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Preface

In the present work, resonant transport regimes in non-axisymmetrically perturbed
tokamaks are treated by the application of Hamiltonian perturbation theory in action-
angle variables. The main advantages of this method are the independence from
assumptions on geometry such as the large-aspect-ratio limit and its extensibility
to non-linear regimes. In the context of this problem, weakly non-linear theory
is applied to go beyond the quasilinear limit and allow for a physically consistent
transition between limiting cases.

Naturally, a significant portion of this text is dedicated to the review of well-known
concepts found in the cited literature and aims to clarify some details, which may not
be obvious to a fresh PhD student studying the scientific literature, or not obvious at
all. In that sense, this thesis is aimed to be useful for the reader to efficiently acquire
knowledge on both, required basics and the specific topic.

The initial part introduces methods for studying resonant effects in a perturbed
Hamiltonian system subject to collisional effects. To separate the essential points
from additional requirements in the general case, the development starts with a
bottom-up approach, where concepts are developed based on a one-dimensional
example and then generalised to a wider class of systems. In the second part, the
Hamiltonian description of guiding-centre motion in an axisymmetric magnetic field
is reviewed together with required aspects of plasma kinetic theory. Finally, the
general form of the method from the first part is applied to the specific problem of
resonant transport regimes in a non-axisymmetrically perturbed tokamak plasma.

Results from computations confirm the significance of contributions from those re-
gimes to neoclassical toroidal viscous torque in medium-sized tokamaks with mag-
netic perturbations from coils installed for the control of edge-localized modes. The
major features of this work appear to be relevant for quantitative evaluation of
toroidal torque, namely complete geometry, consideration of magnetic drift, mag-
netic shear and the transition region between quasilinear and non-linear regimes
under the assumption of well-separated resonances.
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Introduction

Background

The general topic of this thesis is the behaviour of magnetically confined fusion
plasmas in tokamaks with small non-axisymmetric perturbations. For readers not
familiar with the issue this section will give a very short introduction together with
references to relevant literature. A current overview can be found e.g. in the re-
view articles of Boozer (2005) and Ongena et al. (2016). In the last paragraph the
purpose of the present work in this general context is outlined.

Magnetic confinement fusion is considered to be a potential technology for sus-
tainable world-wide large-scale energy supply. In analogy to the natural processes
heating the Sun, fusion reactions between small nuclei are used as a power source.
To initiate this process, the nuclei have to be brought together sufficiently close,
which is possible by gravitational pressure inside the Sun. Here on earth, we have
to rely on other mechanisms, one of them being a magnetic trap for a sufficiently
hot plasma of nuclei (usually deuterium and tritium) together with their electrons.
To produce a significant amount of energy by fusion reactions that allow for the
plasma to be mostly self-heated (or fully – ignited), the product of density, pressure
and energy confinement time has to be sufficiently high (Lawson, 1957). Devices
currently believed to be able to fulfil those requirements1 are tokamak (Artsimovich,
1972; Wesson, 2011), and stellarator (Spitzer, 1958). Both of these devices have the
topology of a torus and rely on magnetic coils to produce a toroidal magnetic field.
In the stellarator, additional poloidal field components required for plasma stability
are produced by a twisted coil geometry. The classical tokamak is an axisymmet-
ric device, which means that toroidal currents are required to produce a poloidal
magnetic field. Up to today, the best confinement properties have been reached in
so-called H-mode plasmas in tokamaks (Wagner et al., 1984), which has made it
possible to achieve fusion gains of the order of heating power already in the 1990s
(Keilhacker et al., 1999). In this operational mode, a transport barrier is formed at

1Another possible candidate is inertial confinement fusion (Nuckolls and Wood, 1972), which
relies on laser beams instead of magnetic fields, which is not the scope of the present thesis.
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the plasma edge, which results in a substantial enhancement of energy confinement
time. This improvement comes at a cost: the occurrence of edge-localised modes
or ELMs (Zohm, 1996), small instabilities that lead to the continuous expulsion of
heat towards the device wall, is still an issue of active research. While not dramatic
for current devices, those modes will have to be reduced or suppressed in future
devices of dimensions large enough for significant energy production, namely ITER
(Loarte et al., 2003), to avoid damage to the wall. One way to achieve this purpose
is to intentionally perturb the original axisymmetry by so-called resonant magnetic
perturbations or RMPs (Evans et al., 2004) using additional coils.

The purpose of this work is the investigation of side-effects from such perturba-
tions on toroidal plasma rotation. One reason for the importance of this question
is the requirement of sufficiently high toroidal plasma rotation for magnetohydro-
dynamic stability (Ida and Rice, 2014). In an completely axisymmetric plasma, the
toroidal rotation velocity can in principle take arbitrary values due to conservation
of toroidal angular momentum linked to this symmetry. Breaking the symmetry by
non-axisymmetric magnetic field perturbations, e.g. by toroidal field ripple, error
fields or RMP fields, leads to non-ambipolar transport that results in toroidal rota-
tion damping, an effect known as neoclassical toroidal viscous (NTV) torque (Shaing,
1986; Shaing et al., 2010). An accurate computation of this effect is possible and re-
quired for the distinction from turbulent effects not considered here (Kasilov et al.,
2014; Martitsch et al., 2016).

It should be stressed that NTV torque is related to the part of the RMP field that is not
in resonance with the equilibrium magnetic field, while the resonant part leads to
additional resonant torque, which requires a different treatment (Heyn et al., 2008).
In this sense, the term resonant used here is not related to the “R” of RMP but rather
to orbital resonances, which can play a major role in NTV torque at low-collisionality
conditions relevant for reactor applications (Martitsch et al., 2016). Although initial
results from a fully numerical kinetic approach to the effect of RMPs in tokamaks
(including resonant torque) have been published (Albert et al., 2016c), the scope
of this thesis is intentionally limited to the self-contained topic of the Hamiltonian
approach to resonant transport regimes of NTV torque.

The first task of this work is to formulate a method to treat the quasilinear limit
(Romanov and Filippov, 1961; Vedenov et al., 1961) produced by infinitesimal
perturbations without the limitations of bounce-averaging or expressions for large
aspect-ratios. This is done by a Hamiltonian approach in action-angle coordinates
introduced by Taylor (1964) first for magnetic traps, established in the context of
quasilinear transport in tokamak plasmas by Kaufman (1972), and applied in par-
ticular by Hazeltine et al. (1981) and Mahajan et al. (1983). A notable application
of the Hamiltonian approach is plasma heating by quasilinear wave-particle inter-
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action (Osipenko and Shurygin, 1989, 1990; Bécoulet et al., 1991; Eriksson and
Helander, 1994; Timofeev and Tokman, 1994; Kasilov et al., 1997). Since pertur-
bation amplitudes can reach more than half a percent of the axisymmetric magnetic
field module (see section 5.3 based on (Martitsch et al., 2016)), the second task is to
overcome the limitation of infinitesimal perturbations required for quasilinear the-
ory. To achieve this, non-linear effects by orbital resonances are taken into account
following secular perturbation theory (Chirikov 1960; 1979) in combination with a
kinetic approach describing the transition between quasilinear and non-linear limit,
where the limiting cases have originally been introduced in the context of plasma
wave-particle interaction (Romanov and Filippov, 1961; Vedenov et al., 1961; Za-
kharov and Karpman, 1963).
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Overview

The main features of this work are the following:

• Unified descriptions of low-collisional quasilinear and non-linear resonant trans-
port regimes of neoclassical viscous torque in non-axisymmetrically perturbed
tokamak plasmas without limitations on device geometry.

• Accurate transition between superbanana and superbanana plateau regimes
and equivalent bounce resonance regimes.

• Review of the construction of action-angle coordinates and canonical frequen-
cies in a tokamak.

• Natural appearance of a magnetic shear term that is absent in the standard
local neoclassical ansatz.

• Extension to consider the full orbit width for computation of toroidal torque.

• Demonstration that a momentum-conserving collision operator is not required
for quasilinear resonant transport regimes at sub-sonic rotation.

• Illustration of importance of the discovered features on a model tokamak and
ASDEX Upgrade with resonant magnetic perturbations.

• Efficient implementation in the code NEO-RT by interpolation of pre-computed
frequencies and a non-linear attenuation parameter.

This first chapter on Hamiltonian mechanics should serve as a quick overview of
well-known concepts and methods that are applied in the subsequent chapters. In
particular, this includes the treatment of resonances in the context of Hamiltonian
perturbation theory, which is demonstrated on the example of a one-dimensional
pendulum. Moreover, a number of notations and conventions used in the remaining
text will be defined here. In chapter 2 the basic concepts of kinetic theory are out-
lined and the general weakly non-linear perturbation theory in the low-collisionality
limit is introduced.

Chapter 3 describes the transformation to action-angle variables for the guiding-
centre motion of in the magnetic field of a tokamak. Though the use of actions
and adiabatic invariants dates back to the beginning of research in the field of mag-
netic plasma confinement, some specific details needed for a consistent derivation
are not completely clear from common literature. One of these peculiarities is the
transformation of geometrical angles from magnetic coordinates in a way to obtain
a canonical form of the guiding-centre Lagrangian. This has been solved by an exact
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transformation closely related to the one of Li et al. (2016) and additionally by a
modification of the approximate method of White (1990).

In chapter 4, general conservation laws for flux-surface averaged quantities are for-
mulated with emphasis on particle density and toroidal momentum density. The
toroidal torque at low collisionalities due to a small non-axisymmetric Hamiltonian
perturbation is derived based on the action-angle variables for the unperturbed sys-
tem for the quasilinear case. The approach is then extended to the weakly non-linear
case (lower collisionalities and/or higher perturbation amplitudes), where new orbit
classes (e.g. superbananas) become relevant.

In chapter 5 results from computations from the code NEO-RT that has been de-
veloped based on the presented approach are presented, validated and analysed.
Computations have been performed for test cases in a circular tokamak and equilib-
ria from the experiment ASDEX Upgrade with ELM control coils (resonant magnetic
perturbations or RMPs). In the end an outlook on the possible treatment of finite or-
bit width is given. The chapter is mostly based on parts of the author’s publications
on the topic to which references are given.

Finally, the appendix includes details on the construction of magnetic flux coordi-
nates, analytical comparisons to existing works and a list of formulas used in deriva-
tion and implementation of the method.

Some remarks on the notation

To balance clarity and readability, dependent variables of function are given explic-
itly where needed, e.g. in the first occurrence of partial derivatives ∂J‖(J⊥, H, pϕ)/∂pϕ

and omitted in subsequent lines as in ∂J‖/∂pϕ. Jacobians of variable transforma-
tions (x1, x2, x3)→ (y1, y2, y3) are denoted by

∂(x1, x2, x3)

∂(y1, y2, y3)
≡ det




∂x1(y1,y2,y3)
∂y1

∂x1(y1,y2,y3)
∂y2

∂x1(y1,y2,y3)
∂y3

∂x2(y1,y2,y3)
∂y1

∂x2(y1,y2,y3)
∂y2

∂x2(y1,y2,y3)
∂y3

∂x3(y1,y2,y3)
∂y1

∂x3(y1,y2,y3)
∂y2

∂x3(y1,y2,y3)
∂y3


 . (1)

N-tuples of quantities (this includes vectors) are denoted by bold-face letters, i.e.
J = (J1, J2, J3). In particular for vectors, the co- and contravariant notation with
superscripts and subscripts (see, e.g. the book of D’haeseleer et al. (1991)) is chosen.
The sum convention applies for repeated indices at opposite positions,

akbk ≡
∑

k

akbk. (2)

There are a few ambiguities in the notation, most notably the use of letters m and
n for both mass/density as well as harmonic indices, and the use of Dij not only
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as components of diffusivity but also as transport coefficients later. Normally, the
choice should be clear from the context, and otherwise the notation is resolved by
additional comments and/or by including subscript α for the particle species, i.e.
mα is the mass of species α.



Chapter 1

Hamiltonian mechanics

1.1 Lagrangian, Hamiltonian and equations of motion

A classical mechanical system (see e.g. the books of Goldstein (1980), Landau and
Lifshitz (1960), Lichtenberg and Lieberman (1983) or Arnold (1989)) is fully char-
acterised by its Lagrangian L(q, q̇, t), which is a function of N generalised coordi-
nates qi in configuration space, N generalised velocities q̇i and time t. The solution
of a mechanical problem is given by a trajectory in configuration space, i.e. a twice
continuously differentiable curve q(t) for which the action functional

S =

ˆ t1

t0

dt L(q(t), q̇(t), t) (1.1)

takes an extremal value. This is equivalent to each components of q(t) fulfilling a
set of N second order ordinary differential equations – the Euler-Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (1.2)

Since the extremal path in Eq. (1.1) is not affected by a constant shift in S, adding a
total time derivative inside the integral results in a new Lagrangian

L̄ = L+
dF (q, q̇, t)

dt
, (1.3)

that describes the same mechanical system as L. Here, F can be any dynamical
variable (a function depending on position, velocity and time), for which the total
time derivative is defined as

dF

dt
=
∂F

∂t
+ q̇ · ∂F

∂q
+ q̈ · ∂F

∂q̇
(1.4)

along any trajectory (the actual solution is still undetermined).
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Derivatives of L with respect to q̇α are called generalised momenta

pi =
∂L

∂q̇i
, (1.5)

which are conserved along the trajectory (short: conserved), if L is independent of
their respective coordinate qi. Together with q, they form a set of so-called canoni-
cally conjugate coordinates in 2N -dimensional phase space. Introducing the Hamil-
tonian H(q,p, t) by a Legendre transformation

H(q,p, t) = p · q̇ − L(q, q̇ (q,p) , t),

we obtain the equivalent Hamiltonian description of Eq. (1.2). A set of 2N first order
ordinary differential equations,

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

. (1.6)

describes the temporal evolution of coordinates and momenta. They are called
Hamilton’s equations of motion or canonical equations.

Introducing the Poisson bracket

{f, g} ≡ ∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
, (1.7)

total time derivatives of dynamical variables f(q,p, t) can be expressed by

df

dt
=
∂f

∂t
+ {f,H}. (1.8)

In particular, for q and p, the canonical equations (1.6) may also be written as

{qi, H} =
∂H

∂pi
,

{pi, H} = −∂H
∂qi

. (1.9)

For the Hamiltonian itself, it follows that

dH

dt
=
∂H

∂t
=
∂L

∂t
. (1.10)

Hence, if L(q, q̇, t) = L(q, q̇) does not explicitly depend on time, H is conserved.
If there are no explicitly time-dependent constraints in addition, H is equal to the
total energy. We call such systems conservative.
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It is possible to switch to a new set of canonically conjugate variables (q̄, p̄) by
canonical transformations that leave the Poisson brackets (1.7) invariant,

{f, g} =
∂f

∂q̄i
∂g

∂p̄i
− ∂f

∂p̄i

∂g

∂q̄i
. (1.11)

This is usually performed via a generating function, for example F2 = F2(q, p̄, t) and

pi =
∂F2

∂qi
, q̄i =

∂F2

∂p̄i
. (1.12)

If F2 depends on time explicitly, H is transformed to a new Hamiltonian1

H̄(q̄, p̄) = H +
∂F2

∂t
. (1.13)

1.2 Action-angle variables

A conservative system is called integrable if it is possible to find a set of N indepen-
dent first integrals of motion α with α̇ = 0 and {αi, αj} = 0. A specific set of the
latter uniquely determines the trajectory in phase space together with N initial val-
ues. If the motion is bounded in phase space, it can then be shown (see e.g. Arnold
(1989)) to be conditionally periodic, i.e., it is possible to choose angle variables θ
that evolve linearly in time,

θ = Ωt, (1.14)

with conserved canonical frequencies Ω = Ω(α). The pairs (θ,α) do not generally
form a set of canonically conjugate coordinates. It is however possible to perform
a transformation α = α(J) to a set of N action variables J that are canonically
conjugate to the angles θ. In particular, since H = α1 itself is conserved, it will
depend only on J but not on θ. From Eq. (1.6) we obtain

J̇i = 0, (1.15)

θ̇i = Ωi =
∂H(J)

∂Ji
. (1.16)

To determine action-angle variables for a certain system, a canonical transforma-
tion (q,p) → (θ,J) is performed via the abbreviated action (also called Hamilton’s
characteristic function) written in terms of q and α,

W (q,α) =

ˆ q

q0

dq′ · p(q′,α) (1.17)

=

ˆ ζ1

ζ0

dζ
dqi(ζ)

dζ
pi(q(ζ),α), (1.18)

1Sometimes called the Kamiltonian due to its often used label K (Goldstein, 1980, p. 380)
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where the integral is taken along a path of constant α, which also implies constant
J . This path is the actual trajectory in phase space for this specific set of α. Never-
theless, the curve parameter ζ used for integration can be different from time t.

The transformation reads

pi(q,J) =
∂W (q,α(J))

∂qi
, (1.19)

θi(q,J) =
∂W (q,α(J))

∂Ji
=

(
∂J

∂α

)−1 ∂W (q,α)

∂α
. (1.20)

The actions can be easily computed explicitly in the case of a separable system, where
for a certain set of (q,p), W can be written as a sum of terms depending only on
one coordinate each,

W (q,α) =
∑

i

Wi(q
i,α) =

ˆ
dqi pi(q

i,α) . (1.21)

In a separable system, the actions are given by integrals

Ji(α) =
1

2π

˛
dqi pi(q

i,α) =
1

2π

˛
dqi

∂Wi(q
i,α)

∂qi
(1.22)

taken either over the range of motion of one round-trip (back and forth) if oscillatory
(libration) or one period in qi if periodic (rotation). We will keep this distinction
in mind to maintain consistent sign conventions for canonical actions, angles and
frequencies later.

Finally we note that in action-angle variables dynamical time derivatives in Eq. (1.8)
take an especially simple form using Poisson brackets with the Hamiltonian,

{f,H} = Ωi
∂f

∂θi
. (1.23)

1.3 A one-dimensional example

To illustrate the methods that are defined in a general way, let us consider a conser-
vative one-dimensional mechanical system of a particle with mass mα, position x,
momentum p in a potential U(x). The Hamiltonian of such a system is given by

H =
p2

2mα
+ U(x) (1.24)

and the equations of motion are

ẋ =
p

mα
, (1.25)

ṗ = −dU(x)

dx
. (1.26)
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Because H is conserved in this system, it can be used to write p as a function of
position and integrals of motion,

p(x,H) = σ
√

2mα(H − U(x)), (1.27)

∂p(x,H)

∂H
= σ

√
mα

2

1√
H − U(x)

=
mα

p(x,H)
. (1.28)

The constant σ = ±1 specifies whether the motion is directed towards the positive
or negative x direction. Since the system is one-dimensional, the abbreviated action
W in Eq. (1.21) is trivially separable, since it contains only one term

W = Wx =

ˆ x

x0

dx′ p(x,H)

=

ˆ x

x0

dx′ σ
√

2mα(H − U(x)). (1.29)

To be more specific, let us choose a cosine-shaped potential

U(x) = U0(1− cos(x))

= 2U0 sin2(x/2), (1.30)

which results in the Hamiltonian

H =
p2

2mα
+ U0(1− cos(x)). (1.31)

The classical physical interpretation of this system is the pendulum of mass mα on
a rigid, massless rod in a homogeneous gravitational field. In this case, x takes the
role of the angle of the pendulum towards the vertical axis. Alternatively, it can
represent a particle in a 2π-periodic cosine-shaped potential well. In that case, x is
interpreted as a Cartesian coordinate and the size of the system is infinite. In a more
abstract sense, this Hamiltonian also appears in weakly non-linear approximations
within more complex systems, which will become clear in the subsequent section.
Integrals of the type (1.29) for the pendulum Hamiltonian can be represented by
elliptic integrals E and K depending on the parameter

κ = k2 ≡ H

2U0
,

defined e.g. in the book of Gradshtein and Ryzhik (1965) (see also the article of
Brizard (2013), who uses the same notation for elliptic integrals as we do here).
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One important feature of the pendulum Hamiltonian is the existence of two distinct
types of motion. If the parameter κ is smaller than one, the libration kind of motion
is bounded between two turning points given by

H = U(x±) = U0(1− cos(x±)) , (1.32)

x± = ± arccos(1− 2κ) (1.33)

= ±2 arcsin(
√
κ). (1.34)

The classical pendulum would oscillate between those two points. For κ > 1, the
rotation kind of motion is unbounded, corresponding to a pendulum rotating over
the top. This kind of behaviour leads to two regions in phase space that have to be
treated separately. The boundary in-between defined by κ = 1 is called separatrix.

To be consistent with later terminology, we switch to the particle-in-well interpreta-
tion and call the librating orbits trapped and the rotating orbits passing.

For trapped orbits, the action associated to x is given by an integration forth and
back between the turning points from Eq. (1.22),

J(H) =
1

2π

ˆ x+

x−
dx p(x,H)|σ=1 +

1

2π

ˆ x−

x+

dx p(x,H)|σ=−1

=
1

π

ˆ x+

x−
dx p(x,H)|σ=1

=
1

π

ˆ x+

x−
dx

√
2mα(H − 2U0 sin2(x/2))

=

√
2mαU0

π

ˆ x+

x−
dx

√
κ− sin2(x/2)

=
√
mαU0

8

π
(E(κ)− (1− κ)K(κ)) . (1.35)

As mentioned at the end of section 1.2, the integration direction has been switched
at the turning points to result in a non-zero J .

For passing orbits, integration over one period of the motion in x results in

J(H) =
1

2π

ˆ π

−π
dx p(x,H)

= σ

√
2mαU0

2π

ˆ π

−π
dx

√
κ− sin2(x/2)

= σ
√
mαU0

4
√
κ

π
E(κ−1) . (1.36)

In contrast to the trapped case, we have maintained the positive x-direction in the
integration. The result are different signs in J distinguishing co-passing orbits with
σ = 1 from counter-passing orbits with σ = −1. This detail of the sign convention
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for canonical actions is frequently neglected or taken for granted in the literature
(it is for example clear that gyration of a positively charged particle in the negative
sense results in negative magnetic moment). In any case we should keep it in mind
for the later developments for axisymmetric plasmas, where it will be crucial for the
correct expressions for canonical variables.

The associated canonical frequency for trapped orbits is computed according to Eq.
(1.16). For reasons that will become clear in the following paragraphs, we call it the
bounce frequency ωb corresponding to the bounce time τb and write

Ω =

(
∂J(H)

∂H

)−1

≡ ωb =
2π

τb
. (1.37)

Here, the derivative with respect to H in principle affects also the boundaries x± =

x±(H) by the Leibniz rule,

∂

∂H

ˆ x+(H)

x−(H)
dx p(x,H) =

ˆ x+(H)

x−(H)
dx

∂p(x,H)

∂H

+
dx+(H)

dH
p(x+, H)− dx−(H)

dH
p(x−, H) . (1.38)

However, since p(x+, H) = p(x−, H) = 0 , the latter two boundary terms vanish and
we obtain

τb = 2π
dJ

dH
= 2

ˆ x+

x−
dx

∂p(x,H)

∂H

∣∣∣∣
σ=1

=
√

2mα

ˆ x+

x−

dx√
H − U(x)

=

√
mα

U0

ˆ x+

x−

dx√
κ− sin2(x/2)

. (1.39)

If the analytical solution for J were not known, one could integrate the equations
of motion ((1.25)-(1.25)) numerically and use the orbit time τ as an integrand to
substitute x, taking x(τ) from the orbit integration and

dx =
p

mα
dτ =

√
2

mα

√
H − U(x) dτ . (1.40)

The general bounce time integral (1.39) then becomes

τb =
√

2mα

ˆ τ+

τ−

dτ√
H − U(x(τ))

√
2

mα

√
H − U(x(τ))

= 2

ˆ τ+

τ−
dτ , (1.41)
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Figure 1.1: Left: pendulum orbits in phase-space with initial conditions equally
spaced in κ ∈ (0.05, 1.1585) traced until the bounce time τ0 = 2π/ω0 of the harmonic
limit at κ = 0 (solid) and their full shape (dashed). Right: dependency of bounce
frequency |ωb| on κ with limit 0 at the separatrix κ = 1. The frequency ωb of passing
orbits becomes larger than ω0 already close to the separatrix, tending towards the
linear behaviour of free orbits further outside.

which is two times the time of one half-turn. As expected, this is indeed the bounce
time of the one-dimensional oscillation.

For our cosine potential in particular, we can just take a derivative of the analytical
solution for the action in Eq. (1.35) and obtain

τb =

√
mα

U0
4K (κ) , (1.42)

Ω =

√
U0

mα

π

2K (κ)
= ωb . (1.43)

The canonical frequency Ω is the bounce frequency ωb, which becomes the usual
harmonic frequency

ω0 =

√
U0

mα
(1.44)

for κ � 1 where the orbit remains close to x = 2nπ with integer n. Orbits at
κ . 1 take longer and longer time to complete as the anharmonic contributions grow
stronger at higher energy (Fig. 1.1). At the separatrix κ = 1 the system approaches
one of the unstable equilibrium points x = (2n + 1)π to come arbitrarily close with
time.

The bounce (transit) time for passing orbits can be computed by the same means.
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The analytical results for the cosine potential follow as

τb =

√
mα

U0

2K
(
κ−1

)
√
κ

, (1.45)

Ω = σ

√
U0

mα

π
√
κ

K (κ−1)
. (1.46)

This is already known as the canonical (bounce) frequency Ω = ωb, which can
now become negative for counter-passing particles, where σ = −1 over the whole
orbit. This follows from the sign convention when computing canonical angles for
momenta from Eq. (1.20), which yields

θ(x, J) =

(
∂J

∂H

)−1 ∂W (x,H)

∂H
= Ω

∂W (x,H)

∂H
. (1.47)

Using Eqs. (1.28) and (1.40), the canonical angle follows as

θ = Ω
∂

∂H

ˆ x

x0

dx′ p(x,H) = Ω

ˆ x

x0

dx′
∂p(x,H)

∂H

= Ω

ˆ τ

0
dτ ′

p

mα

mα

p
= τΩ = 2πσ

τ

τb
, (1.48)

where the global σ = −1 is relevant for counter-passing orbits only. It is thus equal
to the orbit time τ normalized to the bounce time τb (both always positive) span-
ning 2π in one full turn and is valid for both, trapped and passing orbits in general
one-dimensional Hamiltonian systems. Here, the orbit time τ appears as a purely
geometrical quantity in phase space – a rescaled canonical angle θ. For the cosine
potential, it is given by the incomplete elliptic integral

θ(x) =
πF
(
x
2 |κ−1

)

K(κ−1)
, (1.49)

in the passing region and by

θ(x) =
πF
(
x
2 |κ
)

2K(κ)
(1.50)

in the trapped region during the first half-oscillation x− < x < x+ with σ = +1,
together with a phase-shifted variant of the expression for the other with σ = −1

(see Fig. 1.2).

For a general potential U(x) with local minima, multiple classes of trapped particles
with different turning points can arise, as long as their total energy H is below the
respective local maximum that marks the boundary of the potential well. In that
case, different starting positions x0 lead to different classes of canonical frequencies
and angles.
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Figure 1.2: Evenly spaced contours of constant canonical actions J (left) and angles
θ (right) for the pendulum. By convention, J > 0 in the trapped region and has
sign σ of p in the respective passing region. Angle θ is zero at x = 0 (in the trapped
region only for σ = 1) and grows with x in both passing regions specified by σ = ±1.

1.4 Treatment of perturbations and resonances

We are now going to introduce a time-harmonic perturbation H1(θ,J , t) on an
originally unperturbed Hamiltonian H0(J) with the new Hamiltonian being H =

H0 +H1. The perturbation shall be of smaller order than H0 and be represented by
a Fourier series

H1(θ,J , t) =
∑

m

Hm(J)ei(m·θ−ωt) (1.51)

with complex coefficients Hm. In case of a resonance

m ·Ω− ω = 0 (1.52)

between canonical frequencies Ω and perturbation frequency ω (which can also be
zero), special treatment is required. The technique of choice is known as secular
perturbation theory (Lichtenberg and Lieberman, 1983, p. 109) and can be applied
in a number of systems involving resonant interaction of a perturbation with the
original system. A review of the method with emphasis on resonance overlap and
resulting Arnol’d diffusion is given by Chirikov (1979), who introduced the concept
of chaotic diffusion in his work on magnetic traps (Chirikov, 1960).

The applicability of the method relies on the resonances to be well separated, so
we can treat each harmonic m in canonical angles individually similar to the case
of a linear system. Still, the result is a 1-dimensional non-linear system for each
harmonic. This way, some non-linear features of the overall system are captured,
which is the reason why the method can be classified as weakly non-linear. As we
will see, new orbit classes oscillating at a non-linear bounce frequency ωbN around
each resonance will emerge.
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First, we introduce the resonant phase by a Galilean transformation

θ̄ = m · θ − ωt+ θ̄0, (1.53)

where θ̄0 is defined to shift the complex phase of Hm such that

Hme
i(m·θ−ωt) = −|Hm| cos θ̄ . (1.54)

In the one-dimensional case with only one pair (θ, J), where the canonical angle is
the normalised bounce time of the unperturbed system, Eq. (1.53) can be written as

θ̄ = mωbτ − ωt+ θ̄0, (1.55)

with a scalar harmonic index m. At the resonance condition (1.52) with ω = mωb,
fulfilled only for a specific J = Jres, the interpretation of θ̄ becomes clear from the
modified expression

θ̄ = ω(τ − t) + θ̄0. (1.56)

The physical meaning of θ̄ is the normalised shift τ̄ = θ̄/ω = τ − t + τ̄0 between
the orbit time τ of the unperturbed trajectory and the actual time in the perturbed
system. Intuitively, this shift will develop faster with larger perturbation amplitudes.
As we will see, the dynamics of θ̄ close to the resonance condition can be modelled
by a “super”-pendulum Hamiltonian with a non-linear (super)bounce frequencies
ωbN . To allow for a perturbative treatment in this way, the time-scale of this new
kind of motion should be much longer than the bounce time τ . The task of the
further derivation is to find quantitative expressions to describe this behaviour.

For the 1D case, a canonical transformation replacing θ by θ̄ together with its reso-
nant action J̄ is

F2(θ, J̄) = J̄ θ̄(θ)

= J̄ (mθ − ωt− θ̄0). (1.57)

The original action J is related to J̄ by

J =
∂F2

∂θ
= mJ̄. (1.58)

Specifically for non-zero ω, the explicit time dependence in F2 enters the unper-
turbed Kamiltonian (1.13) given by

H̄0(J̄) = H0 +
∂F2

∂t
= H0 − ωJ̄ . (1.59)
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The new canonical frequency Ω̄ is

Ω̄ =
∂

∂J̄
(H0(J̄)− ωJ̄) =

∂J

∂J̄

∂H0(J)

∂J
− ω = mΩ− ω. (1.60)

This expression vanishes at the 1D resonance condition (1.52), which is the intended
result of our choice of the canonical transformation.

In theN -dimensional case the situation is similar. In contrast to the 1D case, we now
need to choose a specific action, e.g. JN (without loss of generality), to be replaced
by the resonant action J̄ = J̄N . A canonical transformation for this purpose is
generated by the function

F2(θ, J̄) =
∑

k 6=N
J̄kθ

k + J̄ θ̄(θ)

=
∑

k 6=N
J̄kθ

k + J̄ (m · θ − ωt− θ̄0) . (1.61)

In this transformation, the new resonant phase θ̄ = θ̄N is defined as in Eq. 1.53, but
all other angles stay the same with

θ̄N = θ̄ = m · θ − ωt− θ̄0, (1.62)

θ̄k 6=N =
∂F2

∂J̄k
= θk. (1.63)

The action JN is related to the resonant action J̄ as in Eq. (1.58) via

JN = mN J̄ , (1.64)

and the remaining original actions are modified via the components of their respec-
tive component in the mode-number vector,

Jk 6=N =
∂F2

∂θk
= J̄k +mkJ̄ . (1.65)

This yields the transformed actions in terms of the original actions as

J̄N = J̄ =
1

mN
JN , (1.66)

J̄k 6=N = Jk −
mk

mN
JN . (1.67)

Since the perturbation

H̄1(θ̄, J̄) = −|Hm(J̄)| cos θ̄ (1.68)
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depends only on the single angle θ̄ in addition to the actions, all actions with k 6= N

are constants of motion which can be treated as parameters and their dependency
dropped in the notation of the Hamiltonian. In this step, the problem becomes
formally equivalent to the one-dimensional case in Eq. (1.59), where we treat a
one-dimensional perturbed Kamiltonian system in (θ̄, J̄) with

H̄(θ̄, J̄) = H̄0(J̄)− |Hm(J̄)| cos θ̄

= H0(J̄)− ωJ̄ − |Hm(J̄)| cos θ̄. (1.69)

For an originally N -dimensional system, the associated single canonical frequency
is

Ω̄ =
∂

∂J̄
(H0(J̄)− ωJ̄) =

∂Jk
∂J

∂H0(J)

∂Jk
− ω = m ·Ω− ω, (1.70)

which vanishes at the resonance condition in analogy to the one-dimensional case
of Eq. (1.60).

Keeping in mind that the main effect of the perturbation should be located around
the resonance, we now expand the system around Ω̄ = 0, with J̄ = J̄res + ∆J̄ close
to the resonant action J̄res for a specific set of remaining actions {J̄k 6=n}. In this
approximation, the unperturbed part of Eq. (1.69) is expanded up to the second
order as

H̄0(J̄)− H̄0(J̄res) = ∆J
∂H̄0

∂J̄
+

1

2
∆J̄2∂

2H̄0

∂J̄2

= Ω̄∆J̄ +
1

2
Ω̄′∆J̄2, (1.71)

where the first order term vanishes in the resonance condition. The second deriva-
tive of the unperturbed Kamiltonian,

Ω̄′ =
∂2H̄0

∂J̄2
, (1.72)

is also called the nonlinearity parameter of the system (Lichtenberg and Lieberman,
1983). In 1D,

Ω̄′ = m
d

dJ
(mΩ− ω) = m2 dΩ

dJ
= m2Ω

dΩ

dH0
. (1.73)

Subtracting the constant H̄0(J̄res) − |Hm(J̄res)| and evaluating the perturbation for
J = Jres in Eq. (1.69), we obtain a simplified Hamiltonian in (θ̄,∆J̄) close to the
resonance with

H(θ̄,∆J̄) =
1

2
Ω̄′∆J̄2 + |Hm|(1− cos θ̄), (1.74)
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with Ω̄′ and Hm constant. This is the pendulum Hamiltonian (1.31) with position
θ̄, momentum ∆J̄ , "mass" 1/Ω̄′ and potential normalisation U0 = 2|Hm|. Orbits can
be trapped in this resonance with turning points2 from Eq. (1.33) if

H < 2|Hm|. (1.75)

This kind of orbit arising via this weakly non-linear treatment of the perturbation
will be called supertrapped and their passing counterparts superpassing. The non-
linear bounce frequency ωbN of such orbits is given by complete elliptic integrals as
specified in section 1.3. The highest non-linear bounce frequency of supertrapped
orbits is achieved in the harmonic limit (1.44) with

ω0N =
√

Ω̄′|Hm|, (1.76)

which appears also as a common scaling factor in the anharmonic range. As long
as the relative perturbation amplitude |Hm|/H0 is small enough, |ωbN | will be much
smaller than |ωb|. Clearly, if they approach the same order, this kind of perturbation
theory will break down and more complicated types of motion will set in.

For the applicability of the developed method, we should keep in mind that its un-
derlying principle in 1D is a resonance condition fulfilled only at specific energy
levels linked to a certain canonical frequency. Chirikov (1979) refers to the termi-
nology of isochronicity and steepness. On the one hand, it is impossible to apply the
theory to an originally harmonic oscillator, where the oscillation frequency does not
depend on energy (isochronicity). In such a system the resonance condition is ful-
filled either at all times, if ω = ω0, or otherwise never. Thus the unperturbed system
has to be non-isochronous, i.e. a non-linear oscillator. On the other hand, steepness is
linked to the convexity of H in action space. Problems can arise if H is not convex,
such that Ω̄′ (classifying convexity of H in action space) can change sign at some
point. In this case both Hamiltonians (1.74) with positive and negative “super”-mass
can influence the motion, which becomes more complicated as a result.

Finally, we remark that the results described in this section are general within the
approximations made, and do not rely on the specific original system, as long as it is
integrable and can thus be written in terms of action-angle variables3. The described
method is limited to the collisionless case of perfectly Hamiltonian orbits up to now.
However, as soon as collisions enter the picture, decorrelation of orbits within the
non-linear bounce time can occur. The kinetic treatment of this problem will be a
topic of chapter 2.

2In case of negative Ω̄′ they are shifted in θ̄ by π, what will be recalled in section 2.3.
3or, as a theoretical physicist would put it: "Everything is a pendulum in sufficient approximation."
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1.5 Fourier harmonics in canonical angles

Here, the computation of Fourier harmonics in canonical angles from given functions
in real space is briefly pointed out. This process is necessary in particular to obtain
the form of Eq. (1.51) for the Hamiltonian perturbation.

In an N -dimensional system, harmonics in canonical angles of a function a(θ,J) are
given by the integral

am(J) =
1

(2π)N

ˆ 2π

0
dNθ a(θ,J) e−im·θ. (1.77)

For a one-dimensional system we consider a function originally dependent on x with
additional harmonic time dependence,

a(x, t) = a(x) e−iωt =
∑

m

am(J) ei(mθ−ωt). (1.78)

Harmonics (1.77) in the single angle θ depending on the action J are

am(J) =
1

2π

ˆ 2π

0
dθ a(x(θ, J)) e−imθ. (1.79)

With the angle θ = τ/τb taking the role of the normalised orbit time according to
Eq. (1.48) we can write this as

am =
1

τb

ˆ τb

0
dτ a(x(τ)) e−imτ/τb

=
〈
a(x(τ)) e−imτ/τb

〉
b
, (1.80)

where the bounce average

〈b(τ)〉b =
1

τb

ˆ τb

0
dτ b(τ) (1.81)

has been introduced for an orbit evaluated at a specific J . In the 1D case, harmonics
in canonical angle are identical to harmonics in bounce time (bounce harmonics).
For f(x) = fke

ikx of harmonic form in x, those are

am =
ak
2π

ˆ 2π

0
dθ ei(kx−mθ)

= ak

〈
ei(kx(τ)−2πmτ/τb)

〉
b
. (1.82)

In conclusion, for one-dimensional systems, the computation of harmonics in θ has
been reformulated as a bounce average over the orbit. We will see later that this
picture stays approximately valid for one of the angles in certain systems of higher
dimensionality. In practice, bounce averages can be performed alongside a usually
numerical orbit integration of Hamilton’s equations of motion (1.6).
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Figure 1.3: Left: spectrum (fully real coefficients) for a perturbation ∝ cos(kx) with
k = 1 in harmonics m of the canonical angle from Eq. (1.82) for the pendulum
Hamiltonian. Right: non-linear super-bounce frequency ωbN for harmonic m = 2
for ω = 1.5ω0: small-oscillation limit ωN0 of Eq. (1.76) (solid line) and numeri-
cally computed value close to the resonance (dashed) over perturbation amplitude
|Hm|/U0.

1.6 A numerical experiment for the pendulum

To illustrate the effect of small Hamiltonian perturbations at resonances and assess
the validity range of the discussed perturbation theory, we take a look at a numer-
ical solution of Hamilton’s equations of motion for the unperturbed and perturbed
pendulum. A time-harmonic perturbation is introduced with

H = H0 + |Hk| cos(kx− ωt), (1.83)

where the harmonic in the x-direction of real space has been chosen to be k = 1

and the perturbation frequency ω = 1.5ω0. The phase of the chosen perturbation
at t = 0 is opposite to the x-dependency of the unperturbed system’s potential
U(x) ∝ 1 − cos(x). This makes it easier to initialize a supertrapped orbit at t = 0

in practice. The spectrum of such a perturbation in canonical angle θ is plotted in
Fig. 1.3. In our case, the first resonance mΩ− ω = 0 appears at m = 2 with energy
H0 = E ≈ 1.4252U0, with resonances for higher m close to the separatrix U0 = 2.
If ω had been chosen smaller than ω0, also the first harmonic m = 1 could form a
resonance.

The right side of Fig. 1.3 shows a comparison between the analytically computed
value of ωN0 from Eq. (1.76) and the value for ωbN computed from the large-scale
periodicity of the numerical solution. In this example the match between analytical
and numerical values is accurate below a relative perturbation amplitude of 1% and
reasonable as long as the qualitative behaviour of the system remains the same.
Slightly below a relative amplitude of 5% the method breaks down due to chaos
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setting in. This behaviour is illustrated in Fig. 1.4, where orbits and development of
energy over time are plotted at selected perturbation amplitudes.

While this example is by far not exhaustive, it confirms the usual expectation of a
“small” perturbation being of the order of a few percent, leading to a separation of
scales between ωb and ωbN . For the remaining developments, we will assume the
method to be generally applicable in such cases. However, problems can arise for
very high values of Ω̄′ or where it changes sign, in particular close to the separatrix
of the unperturbed system.
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Figure 1.4: Motion close to the resonance for perturbation harmonic m = 2 and
frequency ω = 1.5ω0 : orbits (left) and total energy over time (right) at am-
plitudes |Hm|/U0 = 0.0028, 0.0052, 0.042, 0.046 (top to bottom). The non-linear
super-bounce frequency ωbN decreases with |Hm|, while the covered energy range
increases. Here the transition to chaotic motion occurs between the last two cases.



Chapter 2

Kinetic description and resonant
interaction

In this chapter a weakly non-linear kinetic description for resonant interaction with
a Hamiltonian perturbation will be derived. The method is related to the treatment
of damping of plasma waves, where a quasilinear (Romanov and Filippov, 1961; Ve-
denov et al., 1961) and a non-linear regime (Zakharov and Karpman, 1963) emerge
as the limiting cases. The advantage of the present formulation is its universal ap-
plicability to weakly perturbed non-linear Hamiltonian systems with well-separated
resonances described in section 1.4 and a consistent description of the transition
region. For the latter, a numerical solution is provided, which will later be useful
for the transition between quasilinear and non-linear resonant transport regimes in
non-axisymmetrically perturbed tokamak plasmas.

2.1 Liouville’s theorem

For the treatment of systems with a large number of degrees of freedom it is conve-
nient to introduce a distribution function, which does not describe the exact system
but rather an evolving probability density in phase space.

The classical approach is the definition of a distribution function f(q,p, t) in 2N -
dimensional phase space. In the statistical interpretation it describes the distribution
of states in an ensemble of identical systems at time twith different initial conditions
at t = 0. The latter are described by an initial distribution function at f(q,p, 0) =

fa(q,p). In a bounded region of phase space such a distribution is well-defined
down to an arbitrarily small length scale as long as the number of ensembles is
chosen sufficiently high. In the probabilistic point of view, f(q,p, t) describes the
probability density of where to find a single system in phase space at a specific time
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if initial conditions are only known in terms of a probability density and no further
statistical argument is necessary.

In any case, the evolution of a region in phase space subject to the flow generated by
the canonical equations is subject to Liouville’s theorem (see e.g. Arnold (1989)),
which states that its volume is conserved over time. For a heuristic proof involv-
ing a time-independent Hamiltonian H with N = 1, we define an arbitrarily small
rectangle with corners {(q0, p0), (q1, p0), (q1, p1), (q0, p1)} and volume (area)

V = (q1 − q0)(p1 − p0) . (2.1)

After an infinitesimal time-step dt, this rectangle has been deformed to a quadrangle
with corners {(q0, p0)′, (q1, p0)′, (q1, p1)′, (q0, p1)′}, where

(q0, p0)′ = (q0, p0) + dt (q̇, ṗ)|q0,p0

= (q0, p0) + dt

[
∂H

∂p
,−∂H

∂q

]
q0,p0 , (2.2)

and so on. If the region is chosen small enough with q1 − q0 = dq, p1 − p0 = dp

and only leading order terms are retained expanding around (q0, p0)′, we obtain an
infinitesimal parallelogram with

(q1, p0)′ − (q0, p0)′ = (dq, 0) + dt dq
∂

∂q

(
∂H

∂p
,−∂H

∂q

)
, (2.3)

(q1, p1)′ − (q0, p0)′ = (dq, dp) + dtdq
∂

∂q

(
∂H

∂p
,−∂H

∂q

)
+ dt dp

∂

∂p

(
∂H

∂p
,−∂H

∂q

)
,

(2.4)

(q0, p1)′ − (q0, p0)′ = (0, dp) + dt dp
∂

∂p

(
∂H

∂p
,−∂H

∂q

)
. (2.5)

The area of this parallelogram is given by the 2× 2 determinant

V ′ = dq

(
1 + dt

∂2H

∂q∂p

)
dp

(
1− dt

∂2H

∂q∂p

)
− dtdp

∂2H

∂p2

(
−dt dq

∂2H

∂q2

)

= dqdp

(
1 + dt2

(
∂2H

∂q2

∂2H

∂p2
−
(
∂2H

∂q∂p

)2
))

= V +O(dt2), (2.6)

which is equal to S retaining only linear order terms in dt in the infinitesimal limit.
This result can be generalised to finite regions and time differences by integration
over phase space and time and to more degrees of freedom and time-dependent
Hamiltonians (Arnold, 1989).

Liouville’s theorem has an important consequence on the time evolution of the dis-
tribution function f(q,p, t). Since the phase space volume occupied by a number of
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system realisations in an ensemble does not change along the orbits, their density
remains constant with

d

dt
f(q(t),p(t), t) = 0 . (2.7)

The phase space volume V is moving along the orbits in time, so the described
picture is of Lagrangian nature. In the Eulerian picture, defining f(q,p, t) in a fixed
point of phase space and using Eq. (1.8), we obtain

∂f(q,p, t)

∂t
+ {f,H} = 0 , (2.8)

or

∂f(q,p, t)

∂t
+
∂H

∂p
· ∂f(q,p, t)

∂q
− ∂H

∂q
· ∂f(q,p, t)

∂p
= 0 . (2.9)

Due to its origin, this equation is often called Liouville’s equation for Hamiltonian
systems.

2.2 Collisions and the kinetic equation

We now consider a modification to our original one-dimensional system by exposing
it to random collisions with a thermal background consisting of particles with small
mass as compared to mα and thermal momentum pT . This corresponds to a gen-
eralised of one-dimensional Brownian motion of a particle (see e.g. Van Kampen
(1983)) described by a Langevin equation (the analogy to collisional processes in
plasma will be pointed out in section 4.1). For a sufficiently small time-step ∆t we
add a collisional contribution ∆pc to the dynamical evolution of p from Eq. (1.26),

p(t+ ∆t) = p(t)− U ′(x)∆t+ ∆pc +O(∆t2) . (2.10)

Collisions shall lead to a random distribution of ∆pc that is slowed down towards
p = 0 with the average rate ν, so

〈∆pc〉
∆t

= −νp , (2.11)

and is randomised with a variance
〈
∆p2

c

〉

∆t
= 2νp2

T . (2.12)

This random process on p is known as the Ornstein-Uhlenbeck process. To imple-
ment it in a numerical time-stepping routine for the orbit, we can use rescaled sam-
ples from computer-generated random numbers to produce a distribution Θ with
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〈Θ〉 = 0 and
〈
Θ2
〉

= 1 and compute

∆pc = −νp∆t+
√

2νp2
TΘ
√

∆t . (2.13)

For our 1-dimensional model system, Liouville’s equation (2.9) for the distribution
function f(x, p, t) is given by

df

dt
=
∂f

∂t
+

p

mα

∂f

∂x
− U ′(x)

∂f

∂p
= 0. (2.14)

The described effects of collisions along the particle trajectory are accounted for by
replacing the right-hand side of Eq. (2.14) by a linear collision operator acting on f ,

L̂Cf =ν
∂

∂p

(
p2
T

∂f

∂p
+ p f

)
, (2.15)

which results in a kinetic equation known as Kramers’ equation (Kramers, 1940),

∂f

∂t
+

p

mα

∂f

∂x
− U ′(x)

∂f

∂p
= L̂Cf, (2.16)

which is a generalisation of the original results on Brownian motion by Uhlenbeck
and Ornstein (1930). The constant ν describes a collision frequency that quantifies
the collisional decorrelation in time, and the thermal momentum pT is a momentum
scale corresponding to the width of the stationary distribution, i.e. its temperature

T =
p2
T

2mα
. (2.17)

This stationary distribution for which L̂Cf(x, p) vanishes is given by the local Maxwellian
in energy E = p2/2mα + U(x), which is a Gaussian in momentum p,

fM (x, p) =
n0√
2πp2

T

exp

(
−p

2 + 2mαU(x)

2p2
T

)
, (2.18)

where n0 is the average density n(x). Eq. (2.16) is fulfilled by fM since also the
left-hand-side is evaluated to zero, which is the reason why U(x) has to enter the
exponent. In the picture of randomized orbits, Eq. (2.18) describes the statistical
distribution generated by the process (2.13) after a sufficiently long time.

A generalisation of Eq. (2.16) in arbitrary dimension is given by the kinetic equation

∂f

∂t
+ {f,H} = L̂Cf (2.19)

for the distribution function f = f(x,p, t) in 2N -dimensional phase space plus one
time dimension. The general Fokker-Planck collision operator

L̂Cf =
∂

∂pi

(
Dik(x,p)

∂f

∂pk
− Fi(x,p) f

)
, (2.20)
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contains componentsDik of the momentum space diffusivity tensor D̂(p, t) and drag
coefficients Fi. As we can see from Eq. 2.15, in our simplified one-dimensional
example those quantities are related to ν, pT and p by1

D11 = νp2
T , F1 = −νp. (2.21)

2.3 Weakly non-linear kinetic theory

For a sufficiently small perturbation H1 as described in section 1.4 and sufficiently
low collisionality (small enough ν in the 1D case), it is possible to construct a per-
turbation theory based on an unperturbed steady-state solution f0 of a kinetic equa-
tion (2.19) with Hamiltonian H0. The unperturbed steady-state equation is

{f0, H0} = L̂Cf0. (2.22)

The steady-state equation for the perturbed system withH = H0+H1 and f = f0+f1

is

{f1, H0 +H1} − L̂Cf1 = {f0, H1} = m · ∂f0

∂J
|Hm| sin θ̄, (2.23)

where the right-hand side has been evaluated from the harmonic form of the per-
turbation in Eq. (1.54).

Looking at the 1D example, the result is a simplified collision operator

L̂Cf1 =Dres
∂2f1

∂∆J̄2
, (2.24)

that describes scattering across the resonance zone around J̄ = J̄res. The assumption
of a sufficiently small ν leads to this process happening slowly in comparison to the
original canonical frequency Ω allows us to use a canonically averaged resonant
diffusivity,

Dres =

〈
D11

(
∂p

∂∆J̄

)2
〉

θ

= νp2
T

〈(
∂p

∂∆J̄

)2
〉

b

. (2.25)

In the N -dimensional case we approximate the collision operator L̂C by

L̂Cf ≈
〈
D

(J̄)
ik

〉
θ

∂2f

∂J̄i∂J̄k
, (2.26)

with canonically averaged diffusion coefficient
〈
D

(J̄)
ik

〉
θ

in action space, where the

relation

D
(J̄)
ik =

∂Ji
∂pl

∂Jk
∂pm

Dlm (2.27)

1The notation D11 here should not be confused with the one used later for transport coefficients
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to the momentum space diffusivity Dlm holds.

Following the approximation of closeness to the resonance in action space from
section 1.4 with the distance from the resonance ∆J̄ = J̄−J̄res({J̄k 6=n}), we consider
only scattering across the resonance J̄ = J̄res via ∆J̄ , as in the 1D case. Once more,
we emphasize that this is a variable change from J̄ = J̄N to ∆J̄ depending on a
specific set of non-resonant actions J̄k 6=N , which are treated as parametric constants.
This leads to the approximation

L̂Cf ≈ Dres
∂2f

∂∆J̄2
, (2.28)

with the diffusivity Dres across the resonance given by

Dres =
〈
D

(J̄)
ik

〉
θ

∂∆J̄

∂J̄i

∂∆J̄

∂J̄k
. (2.29)

The derivatives of

∆J̄ = J̄ − J̄res({J̄k 6=N}) (2.30)

arising from the variable transformation in action space can be evaluated by using
the expansion of the frequency Ω̄ close to the resonance condition Ω̄ = 0,

Ω̄(J̄ ≈ J̄res) =
∂Ω̄

∂J̄

∣∣∣∣
J̄res

∆J̄ (2.31)

⇒ ∆J̄ =
∂Ω̄

∂J̄

∣∣∣∣
−1

J̄res

Ω̄ =
Ω̄

Ω̄′
. (2.32)

For the derivatives with respect to J̄k this means

∂∆J̄

∂J̄k
=

1

Ω̄′
∂Ω̄

∂J̄k
. (2.33)

In the resulting expression

Dres = (Ω̄′)−2
〈
D

(J̄)
ik

〉
θ

∂Ω̄

∂J̄i

∂Ω̄

∂J̄k
, (2.34)

we can finally transform back to the original actions J . This yields

Dres = (Ω̄′)−2
〈
D

(J)
ik

〉
θ

∂Ω̄

∂Ji

∂Ω̄

∂Jk
, (2.35)

with diffusion coefficients D(J)
ik in action space given by the transformation from

momentum diffusion coefficients Dlm.

The kinetic equation around the resonance condition (2.23) becomes

∂f1

∂θ
Ω̄′∆J̄ − ∂f1

∂∆J̄
|Hm| sin θ̄ −Dres

∂2f1

∂∆J̄2
= m · ∂f0

∂J
|Hm| sin θ̄, (2.36)
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where the right-hand-side is evaluated at the resonance with J̄ = J̄res and is inde-
pendent of ∆J̄ .

To reach a dimensionless form, we introduce the substitution

∆J̄ = sgn
(
Ω̄′
) ∣∣∣∣
Hm
Ω̄′

∣∣∣∣
1/2

y, (2.37)

with expressions for derivatives

∂f1

∂∆J̄
= sgn

(
Ω̄′
) ∣∣∣∣
Hm
Ω̄′

∣∣∣∣
−1/2 ∂f1

∂y
, (2.38)

∂2f1

∂∆J̄2
=

∣∣∣∣
Hm
Ω̄′

∣∣∣∣
−1 ∂2f1

∂y2
. (2.39)

The Hamiltonian of Eq. (1.74) in variables (θ̄, y) is

H(θ̄, y) = |Hm|
(

sgn
(
Ω̄′
) y2

2
+ (1− cos θ̄)

)
, (2.40)

with "negative mass" or rather inverted potential if Ω̄′ < 0.

Substituting in Eq. (2.36) leads to a kinetic equation in θ̄ and y with

∂f1

∂θ̄
y − sgn

(
Ω̄′
) ∂f1

∂y
sin θ̄ −D∂

2f1

∂y2
= m · ∂f0

∂J

∣∣∣∣
Hm
Ω̄′

∣∣∣∣
1/2

sin θ̄, (2.41)

where we have introduced the dimensionless diffusivity

D = Dres

∣∣Ω̄′
∣∣1/2

|Hm|3/2
. (2.42)

Shifting the resonant angle θ̄ by π if Ω̄′ < 0, the sign of sin θ̄ is switched in that case,
and the sign-dependent part of Eq. (2.41) appears now in the right-hand side,

∂f1

∂θ̄
y − ∂f1

∂y
sin θ̄ −D∂

2f1

∂y2
= sgn

(
Ω̄′
)
m · ∂f0

∂J

∣∣∣∣
Hm
Ω̄′

∣∣∣∣
1/2

sin θ̄. (2.43)

The source term on the right-hand side can be normalised by rescaling f1 with

f1 = sgn
(
Ω̄′
) ∣∣∣∣
Hm
Ω̄′

∣∣∣∣
1/2

m · ∂f0

∂J
g, (2.44)

which leads to a universal dimensionless equation

y
∂g

∂θ̄
− sin θ̄

(
∂g

∂y
+ 1

)
−D∂

2g

∂y2
= 0. (2.45)

This corresponds to a 1D kinetic equation (2.16) for a particle of mass normalised
to one with position θ̄ and momentum y, subject to a cosine-shaped potential as
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in Eq. (1.31) with U0 = 1. In addition to a diffusive term with diffusivity D, a
source term sin θ̄ originating from the interaction of the unperturbed steady-state
solution f0 with the Hamiltonian perturbation H1 in Eq. (2.23) influences the result.
At θ̄ = ±π, periodic boundary conditions should be used. At infinite momentum
y → ±∞ the solution should vanish sufficiently fast. Let us first consider the limiting
cases of this equation and then continue to the overall solution.

2.4 Quasilinear limit

On one end, there is the case of D � 1, where scattering across the resonance dom-
inates the process. In this case, the first derivative of g with respect to y can be
neglected in Eq. (2.45), leading to the diffusion-dominated equation of the quasilin-
ear limit,

y
∂g

∂θ̄
−D∂

2g

∂y2
= sin θ̄. (2.46)

An even more simplified version of this equation is obtained, if a Krook model is
used, replacing the differential operator D ∂2

∂y2 by the constant factor −ν̄, so

y
∂g

∂θ̄
+ ν̄g = sin θ̄. (2.47)

The solution within this model is

g(θ̄, y) = Re

(
−ieiθ̄

iy + ν̄

)
. (2.48)

For the actual solution of Eq. (2.46), a separation

g(θ̄, y) = T (θ̄)Y (y) (2.49)

yields
T ′

T
=
D

y

Y ′′

Y
= ik (2.50)

with complex separation parameter ik. The homogeneous ordinary differential
equation for T ,

T ′ − ikT = 0, (2.51)

has solutions of the type

T (θ̄) = eikθ̄. (2.52)
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The constant k must be real, since periodic boundary conditions are required. We
take this solution as the ansatz for the inhomogeneous equation 2.46, which we
solve in its complex form

y
∂g

∂θ̄
−D∂

2g

∂y2
= Re(−ieiθ̄), (2.53)

considering only its real part in the end. Due to linearity and the form of the inho-
mogeneity, we obtain only a non-zero contribution from k = 1. More specifically, we
specify

g(θ̄, y) = Z(y) sin θ̄ = −Re(iZ(y)eiθ̄). (2.54)

The inhomogeneous ordinary differential equation for Z is

yZ + iDZ ′′ = −i. (2.55)

Choosing u = −iD−1/3y and Z(y) = U(u) we have

Z ′ = −iD−1/3U ′, (2.56)

Z ′′ = −D−2/3U ′′, (2.57)

and the result is the inhomogeneous Airy equation

U ′′ − uU = D−1/3. (2.58)

Substituting back in Eq. (2.55), we obtain the homogeneous solution

Zh(y) = C1Ai(−iD−1/3y) + C2Bi(−iD−1/3y)

involving Airy functions

Ai(x) =
1

π

ˆ ∞
0

dw cos

(
w3

3
+ xw

)
, (2.59)

Bi(x) =
1

π

ˆ ∞
0

dw

[
exp

(
−w

3

3
+ xw

)
+ sin

(
w3

3
+ xw

)]
, (2.60)

and at least two possible particular solutions represented by the Scorer functions

Z1(y) = πD−1/3Gi(−iD−1/3y), (2.61)

Z2(y) = πD−1/3Hi(−iD−1/3y), (2.62)

where

Gi(x) =
1

π

ˆ ∞
0

dw sin

(
w3

3
+ xw

)
, (2.63)

Hi(x) =
1

π

ˆ ∞
0

dw exp

(
−w

3

3
+ xw

)
. (2.64)
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Figure 2.1: Airy functions Ai, Bi and Scorer functions Gi, Hi with imaginary argu-
ment ix: real (solid line) and imaginary part (dashed). Despite extra weighting with
e−|x|, the first three diverge, and only Hi(ix) converges for x→ ±∞.

Since complex arguments are employed, special care needs to be taken with respect
to contour integration in the complex plane. This is described in detail in the book
of Gil et al. (2007), where also asymptotic properties of all four functions are given.
The only one decaying at x→ ±∞ for purely imaginary argument is Hi(ix) , which
is illustrated in Fig. 2.1. The conclusion is that there are no contributions to Z(y)

from the homogeneous solution, C1 = C2 = 0, and the solution is directly given
as Z(y) = Z2(y) involving Scorer’s Hi from Eq. (2.61). The overall solution for
Eq. (2.46) fulfilling the correct boundary conditions at y → ±∞ is

g(θ̄, y) = Re
[
−iπD−1/3eiθ̄Hi(−iD−1/3y)

]
. (2.65)

A comparison between this solution and the simplified Krook model from Eq. (2.47)
is plotted in Fig. 2.2 (y-dependent part) and Fig. 2.3 (contours of g) for D = 100.
The results agree qualitatively, and due to the specific choice of ν̄ also quantitatively
up to a certain systematic error. This choice has been made manually to roughly
match the two models and demonstrate their behaviour. The significance of this
similarity will become clear later when applying the method to resonant transport
regimes in a tokamak plasma (section 4.9).
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Figure 2.2: Real (solid line) and imaginary part (dashed) of the y-dependent part
Z(y) with D = 100 for full solution (left) from Eq. (2.65) and Krook model (2.48)
with ν̄ = 3.5 (right)
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Figure 2.3: Dimensionless distribution function g(θ̄, y) for D = 100 for full quasilin-
ear solution (left, Eq. (2.65)) and Krook model (2.48) with ν̄ = 3.5 (right), separa-
trix of the non-linear oscillation (thin black line).

2.5 Non-linear limit

At the one end, there is the case of D � 1. Physically, this means a combination
of high-enough perturbation amplitude with low-enough collisionality. This can be
seen in Eq. (2.42), where D scales with |Hm|−3/2 and ν1/2. The resulting equation
in this non-linear limit is obtained by using a perturbative ansatz for g with

g = g0 +Dg1, (2.66)
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where Dg1 is of one order higher in D than g0. Separation of orders 0 and 1 in D,
truncating at D2 and dividing the first-order equation by D yields

y
∂g0

∂θ̄
− sin θ̄

(
∂g0

∂y
+ 1

)
= 0, (2.67)

y
∂g1

∂θ̄
− sin θ̄

∂g1

∂y
=
∂2g0

∂y2
. (2.68)

We substitute

y = σ
√
I + 2 cos θ̄, (2.69)

where σ = sgn(y), with the inverse transformation

I = y2 − 2 cos θ̄, (2.70)

and derivatives

∂I(θ̄, y)

∂θ̄
= 2 sin θ̄, (2.71)

∂I(θ̄, y)

∂y
= 2σ

√
I + 2 cos θ̄. (2.72)

This transformation is effectively a change from momentum y to two times the nor-
malised shifted total energy I, which is conserved in the particle picture. Thus,
contours of constant I are characteristics of the homogeneous variant of Eq. 2.68.
The partial differential operator in Eqs. 2.67-2.68 is transformed by

(
y
∂

∂θ̄
− sin θ̄

∂

∂y

)
a(θ̄, y) = σ

√
I + 2 cos θ̄

(
∂

∂θ̄
+ 2 sin θ̄

∂

∂I

)
a(θ̄, I)

− 2σ
√
I + 2 cos θ̄ sin θ̄

∂

∂I
a(θ̄, I)

= σ
√
I + 2 cos θ̄

∂

∂θ̄
a(θ̄, I). (2.73)

As expected, the transformed differential operator contains only a partial derivative
with respect to θ̄ in the new variables (θ̄, I) on the right-hand-side. Using the shift

g0 = ḡ0 − y, (2.74)

the result for ḡ0 is an arbitrary function in I, so substituting back, the general solu-
tion for Eq. (2.67) is

g0(θ̄, I) = ḡ0(I)− σ
√
I + 2 cos θ̄. (2.75)

For the second derivative of g0 with respect to y in Eq. (2.68), only the ḡ0 part enters,
yielding

∂g1

∂θ̄
= 4σ

∂

∂I

(√
I + 2 cos θ̄ ḡ′0(I)

)
(2.76)
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in variables (θ̄, I). Since ḡ0 depends only on I, one partial derivative is denoted as a
total derivative ḡ′0(I) = dḡ0(I)/dI. The general solution for g1 is

g1(θ̄, I) = 4σ
∂

∂I

(
ḡ′0(I)

ˆ
dθ̄
√
I + 2 cos θ̄

)
+ ḡ1(I), (2.77)

with an indefinite integral over θ̄ and an arbitrary function ḡ1(I).

For the case of superpassing orbits with I > 2, the term
√
I + 2 cos θ̄ is defined over

the whole range −π < θ̄ < π. The case y = 0 is never reached following a contour.
Accordingly, periodic boundary conditions g1(π) = g1(−π) are needed. This requires
the solubility condition

∂

∂I

(
ḡ′0(I)

ˆ π

−π
dθ̄
√
I + 2 cos θ̄

)
= 0 , (2.78)

or rather

ḡ′0(I) = Cσp

(ˆ π

−π
dθ̄
√
I + 2 cos θ̄

)−1

=
Cσp

4
√
I + 2E

(
4

2+I

) , (2.79)

with the complete elliptic integral E(κ) according the convention given in sec-
tion 1.3, and

κ =
I + 2

4
. (2.80)

The constant Cσp can depend on sign σ. For I →∞ the asymptotic limit

ḡ′0(I) |I�1 ≈
Cσp

2π
√
I

(2.81)

follows from neglecting the dependence on θ̄ in Eq. (2.78). In this limit, we evaluate
the derivative of Eq. (2.75) with respect to I as

∂

∂I
g0(θ̄, I) |I�1 ≈

Cσp

2π
√
I
− σ

2
√
I
. (2.82)

In order to vanish in the limit I →∞, the constant needs to be fixed by Cσp = πσ.

For the supertrapped case −2 < I < 2, turning points where the contours of I meet
at y = 0 are given by

cos θ̄± = −I
2
. (2.83)

The expression
√
I + 2 cos θ̄ is undefined outside the interval spanned by θ̄±. To

enforce continuity at y = 0 in Eq. (2.75), in contrast to the superpassing case, ḡ0
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Figure 2.4: Contours of the dimensionless distribution function g0(θ̄, y) in the non-
linear limit D � 1, separatrix of the non-linear oscillation (thin black line).

must not depend on the sign σ. Again, we look at the solubility condition from the
first-order equation, that is

∂

∂I

(
ḡ′0(I)

ˆ θ̄+

θ̄−
dθ̄
√
I + 2 cos θ̄

)
= 0 , (2.84)

So

ḡ′0(I) =
Ct

E
(

2+I
4

)
−
(

1−
√

2+I
2

)
K
(

2+I
4

) . (2.85)

Due to the divergence of this expression at the o-point with I = −2, we have to set
Ct to zero, so ḡ0 is constant. Due to symmetry, we set it to zero, and it is in fact
possible to absorb it into the equilibrium solution. Thus, in the supertrapped region,

g0(θ̄, I)|I<2 = −σ
√
I + 2 cos θ̄, (2.86)

g1(θ̄, I)|I<2 = ḡ1(I). (2.87)

At the separatrix, continuity of g0 requires the integration constant for ḡ0 to be fixed
in the superpassing region with I > 2 and we obtain the zeroth order expression
there as

g0(θ̄, I)|I>2 = πσ

ˆ I

2
dI ′
(ˆ π

−π
dθ̄
√
I ′ + 2 cos θ̄

)−1

− σ
√
I + 2 cos θ̄. (2.88)

As opposed to the quasilinear limit of the previous section, the distribution function
of the non-linear limit is symmetric with respect to angle θ̄, which can be seen
in Fig. 2.4, where the evaluated formulas for the non-linear limit that have been
obtained in this section are plotted.
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2.6 Numerical solution for weakly non-linear kinetics

To solve Eq. (2.45) numerically between the two limiting cases, we combine a har-
monic decomposition of g in the angle θ̄ with a finite difference scheme in y for each
of the harmonics. The obtained results illustrate the transition and will be useful
later to compute non-linear attenuation in resonant transport regimes (section 4.9).

We first develop g as a Fourier series

g(y, θ̄) =

M∑

m=−M
gm(y)eimθ̄. (2.89)

With this ansatz, Eq. (2.45) becomes

i

2
(eiθ̄ − e−iθ̄) +

M∑

m=−M

[(
iymgm −D

∂2gm
∂y2

)
eimθ̄ +

i

2

∂gm
∂y

(ei(m+1)θ̄ − ei(m−1)θ̄)

]
= 0

(2.90)

for each harmonic or rather

M∑

m=−M

(
i

2
(δm,1 − δm,−1) + iymgm −D

∂2gm
∂y2

)
eimθ̄

+
i

2

M−1∑

m=−M−1

∂gm−1

∂y
eimθ̄ − i

2

M+1∑

m=−M+1

∂gm+1

∂y
eimθ̄ = 0, (2.91)

where M is the highest harmonic that we consider. For a harmonic m 6= ±M this
means

iymgm +
i

2
(g′m−1 − g′m+1)−Dg′′m =

i

2
(δm,−1 − δm,1), (2.92)

where primes are derivatives with respect to the argument y. For the minimum
(−M) and the maximum (+M) harmonic (M > 1 in any case) follows

iymg−M −
i

2
g′−M+1 −Dg′′−M = 0, (2.93)

iymgM +
i

2
g′M−1 −Dg′′M = 0. (2.94)

We discretise gm on a regular grid with distance ∆y using a central difference
scheme, so near y = yn we have

gm(y) ≈ gmn, (2.95)

g′m(y) ≈ (gm(n+1) − gm(n−1))/(2∆y), (2.96)

g′′m(y) ≈ (gm(n+1) − 2gmn + gm(n−1))/∆y
2. (2.97)
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Figure 2.5: Dimensionless distribution function g(θ̄, y) for θ̄ = 0 (left) and θ̄ = π
plotted over y with D = 1.2 · 10−2, 10−1, 1, 10, 102 and comparison to quasilinear
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The finite difference form of Eq. (2.92) is

iymgmn +
i

4∆y
(g(m−1)(n+1) − g(m−1)(n−1) − g(m+1)(n+1) + g(m+1)(n−1))

− D

∆y2
(gm(n+1) − 2gmn + gm(n−1)) =

i

2
(δm,−1 − δm,1), (2.98)

and Eqs. (2.93-2.94) are approximated by

iymg−Mn −
i

4∆y
(g(−M+1)(n+1) − g(−M+1)(n−1))

− D

∆y2
(g−M(n+1) − 2g−Mn + g−M(n−1)) = 0, (2.99)

iymgMn +
i

4∆y
(g(M−1)(n+1) − g(M−1)(n−1))

− D

∆y2
(gM(n+1) − 2gMn + gM(n−1)) = 0. (2.100)

As boundary conditions we can either set gm(±y0) = 0 at a distant y = y0 (homoge-
neous Dirichlet) or rather set the difference between gm at the boundary to its next
neighbour to zero (homogeneous Neumann). To match our non-linear solution we
choose the latter condition. For the gk vector numbering we start from k = 0 and
use the usual k = M + (2M + 1)n+m. Our final discrete equations are

iymgmn +
i

2∆y
(g(m−1)(n+1) − g(m−1)n − g(m+1)n + g(m+1)(n−1)) (2.101)

− D

∆y2
(gm(n+1) − 2gmn + gm(n−1)) =

i

2
(δm,−1 − δm,1), (2.102)
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and

iymg−Mn −
i

2∆y
(g(−M+1)n − g(−M+1)(n−1))

− D

∆y2
(g−M(n+1) − 2g−Mn + g−M(n−1)) = 0, (2.103)

iymgMn +
i

2∆y
(g(M−1)n − g(M−1)(n−1))

− D

∆y2
(gM(n+1) − 2gMn + gM(n−1)) = 0. (2.104)

Results of numerical computations using maximum harmonic M = 10 and 300 steps
in y in the range between −50 and 50 with homogeneous Neumann conditions are
shown in Figs. 2.5-2.6 for different values of dimensionless diffusivity D across the
resonance. At D = 1.2 ·10−2 the solution visually matches the non-linear limit while
at D = 102 a match to the quasilinear case is achieved.
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Figure 2.6: Contours of the dimensionless distribution function g(θ̄, y) with D =
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Chapter 3

Hamiltonian theory of
guiding-centre motion in a
tokamak

The goal in this chapter is to define action-angle variables for charged particle mo-
tion in an axisymmetric toroidal system such as an unperturbed electromagnetic
field of a tokamak. For this purpose, the guiding-centre Lagrangian in magnetic co-
ordinates is first transformed to a canonical form. Action variables are then found by
a canonical transformation as described in section 1.2. The principle of the deriva-
tion is identical to the one-dimensional example in section 1.3. However, in contrast
to that simple example, the guiding-centre motion in arbitrary axisymmetric geom-
etry cannot be expressed analytically in general. An expansion in orbit width allows
for integral expressions for actions, canonical frequencies and angles to the lowest
order. Finally, the transformation of quantities given by a Fourier series over angles
of magnetic coordinates to a Fourier series in canonical angles is given. The evalua-
tion of the mentioned quantities can be performed via numerical orbit integration.
With those ingredients the foundation is laid for the derivations of transport arising
from resonances between canonical frequencies, which is performed in the following
chapters.

3.1 Guiding-centre Lagrangian

For the purpose of our model, the motion of a charged plasma particle in a magnetic
field is described in terms of guiding-centre variables (R, φ, J⊥, H) according to
Littlejohn (1983). Here, R is the guiding-centre position, φ the gyrophase, J⊥ the
perpendicular adiabatic invariant and H the Hamiltonian equal to the total energy.
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The Lagrangian in these variables is

L = (mαv‖(R, J⊥, H)h(R) +
eα
c
A(R)) · Ṙ+ J⊥φ̇−H , (3.1)

where the parallel velocity v‖ is given as a function of R, J⊥ and H with

v‖(R, J⊥, H) = σ

(
2

mα
(H − eαΦ(R)− J⊥ωc(R))

)1/2

. (3.2)

The binary variable σ is the sign of the parallel motion along the magnetic field lines
and the cyclotron or gyrofrequency is proportional to the magnetic field modulus
B(R) at the guiding-centre position with

ωc(R) =
eαB(R)

mαc
. (3.3)

Since the Lagrangian doesn’t depend on φ in this approximation, it is clear that J⊥
must be conserved and the two form a pair of action-angle variables already.

If v‖ is used to replace H as a variable, the dependency of the latter from the re-
maining variables is

H(R, J⊥, v‖) =
mαv

2

2
+ eαΦ(R) =

mαv
2
‖

2
+ eαΦ(R) + J⊥ωc(R), (3.4)

where v is the velocity module containing both, parallel motion and gyration.

For the construction of action-angle variables, we will rely on an originally unper-
turbed Hamiltonian in the axisymmetric geometry of a tokamak. In such a two-
dimensional equilibrium, flux surfaces are closed and straight field-line flux coordi-
nates (r, ϑ, ϕ) parametrising R = R(r, ϑ, ϕ) as defined in appendix A can be con-
structed (D’haeseleer et al., 1991). In those coordinates, the radial component of
the vector potential A vanishes and L can be written as

L = mαv‖hrṙ + (mαv‖hϑ +
eα
c
Aϑ)ϑ̇+ (mαv‖hϕ +

eα
c
Aϕ)ϕ̇+ J⊥φ̇−H. (3.5)

If H is used as a variable, the dependencies of v‖ on the coordinates is

v‖(r, ϑ, J⊥, H) = σ

(
2

mα
(H − eαΦ(r, ϑ)− J⊥ωc(r, ϑ))

)1/2

. (3.6)

In the other case, according to Eq. (3.4), the dependency of H is

H(r, ϑ, J⊥, v‖) =
mαv

2
‖

2
+ eαΦ(r, ϑ) + J⊥ωc(r, ϑ). (3.7)

If cross-field drifts were neglected, r would appear as a parameter in addition to J⊥,
and motion would occur purely along magnetic field lines. In this case, there is a
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perfect analogy of the system to the 1-dimensional model Hamiltonian discussed in
section 1.3. The dynamics are driven mainly by the mirroring force caused by the
increase of the magnetic field modulus B on the inboard side of the torus. Generally,
in tokamak plasmas, electric forces along the field lines caused by the potential Φ are
much smaller than magnetic forces, which is ultimately caused by Debye shielding
(Wesson, 2011). The potential is however important for drift motion (E ×B drift),
which contributes to toroidal precession.

If we assume variations of eαΦ to be small or constant along field lines and consider
the limit of large aspect ratio in a tokamak with circular concentric flux surfaces,

B(r, ϑ) ≈ B0(r) · (1− ε cos(ϑ)), (3.8)

with the inverse aspect ratio ε = r/R0 describing the ratio between minor r and
major R0 radii of the flux surface, the system becomes equivalent to the pendulum
Hamiltonian of Eq. (1.31) with

H(ϑ, p‖) =
p2
‖

2mα
+
J⊥eα
mαc

B0(1− ε cos(ϑ)). (3.9)

Here we have dropped the constant eαΦ from H and defined the parallel kinematic
momentum p‖ = mαv‖. Those crude simplifications are not required for our task of
computing non-ambipolar radial particle fluxes in resonant transport regimes. Still,
this zeroth order picture tells us something about the features of guiding-centre
orbits that give us hope to be able to apply the concepts of the first two chapters:
first of all the description is essentially Hamiltonian. Furthermore, the system is
anharmonic, with the oscillation frequency depending on energy, making non-linear
resonances possible. Finally, there are trapped and passing orbits and a separatrix in-
between, where motion becomes infinitely slow. Keeping these properties in mind,
we can now proceed to treat the system in more detail.

3.2 Canonical form of the guiding-centre Lagrangian

For the treatment in the action-angle formalism, we require the system to be of
canonical Hamiltonian form. Although the expression for the guiding-centre La-
grangian in Eq. (3.5) seems to be of this form on first sight, it is not. The reason
is that four of the six dimensions of phase-space are used up by the coordinates
(r, ϑ, ϕ, φ). Different approximate and exact approaches to construct a canonical
form of the guiding-centre Lagrangian have been undertaken by (White et al., 1982;
White, 1990; Meiss and Hazeltine, 1990; Abdullaev and Finken, 2002), and lately
by Li et al. (2016), which offers an exact transformation closely related to the one
constructed here.
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Neglecting finite Larmor radius effects in the guiding-centre approximation, we can
immediately identify J⊥ as the canonical momentum for φ, being already a canonical
action. This leaves only one remaining variable, which is conventionally chosen as
the (conserved) total energy H or the parallel velocity v‖. Nevertheless we identify
(non-canonical) momenta in Eq. (3.5),

pr = mαv‖hr, (3.10)

pϑ = mαv‖hϑ +
eα
c
Aϑ, (3.11)

pϕ = mαv‖hϕ +
eα
c
Aϕ, (3.12)

where all expressions are functions of phase-space variables. In a toroidally sym-
metric plasma in the guiding-centre approximation there are no dependencies on
φ or ϕ, so the momenta J⊥ and pϕ are conserved. Furthermore, the poloidal mo-
mentum pϑ (3.11) depends only on ϑ and conserved quantities. If our coordinates
({r̄ = r}, ϑ̄, ϕ̄) had the additional property that the covariant magnetic field compo-
nent Br̄ vanishes, we could represent L in canonical form,

L = (mαv‖hϑ̄ +
eα
c
Aϑ̄) ˙̄ϑ+ (mαv‖hϕ̄ +

eα
c
Aϕ̄) ˙̄ϕ+ J⊥φ̇−H, (3.13)

and clearly identify canonical momenta for ϑ̄ and ϕ̄ being

pϑ̄ = mαv‖hϑ̄ +
eα
c
Aϑ̄, (3.14)

pϕ̄ = mαv‖hϕ̄ +
eα
c
Aϕ̄. (3.15)

An exact way to switch to the canonical form is possible by a strategy similar to the
one recently pointed out by Li et al. (2016) via the general form of the transforma-
tion between straight field-line flux coordinates,

ϑ̄(r, ϑ, ϕ) = ϑ−G(r, ϑ, ϕ), (3.16)

ϕ̄(r, ϑ, ϕ) = ϕ− q(r)G(r, ϑ, ϕ). (3.17)

In contrast to the reference, we use the inverse form,

ϑ(r, ϑ̄, ϕ̄) = ϑ̄+ Ḡ(r, ϑ̄, ϕ̄), (3.18)

ϕ(r, ϑ̄, ϕ̄) = ϕ̄+ q(r) Ḡ(r, ϑ̄, ϕ̄), (3.19)

with safety factor q(r) and a function Ḡ(r, ϑ̄, ϕ̄) that is periodic in the angles. The
choice of this function is specified by the condition that the covariant radial magnetic
field component Br̄ vanishes in new coordinates. This means that

0 = Br̄ =
∂ϑ

∂r
Bϑ +

∂ϕ

∂r
Bϕ +Br

=
∂Ḡ

∂r
(Bϑ + qBϕ) +G

dq

dr
Bϕ +Br, (3.20)
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or

∂

∂r
Ḡ(r, ϑ̄, ϕ̄) = −Br(r, ϑ, ϕ) + Ḡ(r, ϑ̄, ϕ̄) q′(r)Bϕ(r, ϑ, ϕ)

Bϑ(r, ϑ, ϕ) + qBϕ(r, ϑ, ϕ)
. (3.21)

Since only a derivative over r occurs, this is an ordinary differential equation in
Ḡ. It is non-linear because Ḡ occurs implicitly in the coordinate dependencies of
the magnetic field components in the original coordinates, which are substituted by
their functional dependencies (3.18)-(3.19). For sufficiently smooth functions on
the right-hand side, standard theory of ordinary differential equations guarantees a
unique solution to this equation for each given pair (ϑ̄, ϕ̄) that can in principle be
found (if no closed analytical form exists, by numerical means).1 For our purpose,
the existence and uniqueness of a solution in this form is sufficient, as we will use ϑ̄
and ϕ̄ only as intermediate quantities and finally transform back to ϑ and ϕ.

In (3.21) for a tokamak field, all quantities are independent of toroidal angle ϕ so
also ϕ̄ and Ḡ = Ḡ(r, ϑ̄). This leads to an invariance of covariant toroidal vector
components, particularly the toroidal momentum (3.12) using the transformation
equations (3.18-3.19),

pϕ̄ =
∂ϕ

∂ϕ̄
pϕ +

∂ϑ

∂ϕ̄
pϑ +

∂r

∂ϕ̄
pr = pϕ. (3.22)

Due to the independence of the Lagrangian on ϕ̄, the toroidal momentum is con-
served along the orbit and because of the 2π-periodicity of ϕ and ϕ̄ we use it as a
canonical action with a yet unknown angle coordinate. With two symmetries in φ

and ϕ, separated out from the very beginning, the problem of tokamak orbits is now
quasi-one-dimensional in ϑ̄.

A final comment shall be made on the scaling of Ḡ, i.e. G, being roughly of the
order Br/(Bϑ + qBϕ) = hrh

ϑ if r is normalised to 1 at the minor radius. As long
as hr is small, it can be regarded as a small phase shift compared to the range of ϑ
and ϑ̄ being 2π. This is confirmed by Li et al. (2016) for symmetry flux coordinates,
where the module of G remains below 1.5 · 10−2. In this work, we are going to use
Boozer magnetic coordinates, which we expect to be even more favourable in terms
of the smallness of hr.

3.3 Transformation of radial dependencies

In phase-space, switching from variables (r, ϑ, ϕ, φ, J⊥, H) to z = (φ, ϑ, ϕ, J⊥, H, pϕ)

or canonical (φ, ϑ̄, ϕ̄, J⊥, pϑ̄, pϕ) implies a radially non-local formulation, since r is
now a dependent function of coordinates and constants of motion α = (J⊥, H, pϕ)

1In usual tokamak plasmas the denominator never vanishes (Li et al., 2016).
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or momenta p = (J⊥, pϑ̄, pϕ), respectively. Instead of flux surfaces of fixed radius,
drift surfaces (Kaufman, 1972; Hazeltine et al., 1981) defined by fixed α swept
by the actual banana or transit orbit are now relevant for the formulation. On a
drift surface the radial guiding-centre position r = r(ϑ,α) is given implicitly from
relation (3.12) by

pϕ =
eα
c
Aϕ(r(ϑ,α)) +mαv‖(r(ϑ,α), ϑ, J⊥, H)hϕ(r(ϑ,α), ϑ). (3.23)

Here, constants of motion, except for pϕ, enter v‖ both directly and via r, namely

v‖(r(ϑ,α), ϑ, J⊥, H) = σ

(
2

mα
(H − eαΦ(r(ϑ,α), ϑ)− J⊥ωc(r(ϑ,α), ϑ))

)1/2

.

(3.24)

The explicit variation of electric potential on a flux surface with ϑ is negligible due
to Debye shielding. In addition Φ can contain an implicit dependency on ϑ via the
periodic radial drift away from the flux surface during the orbit. The gyrofrequency
ωc also contains this implicit dependency. However, a much bigger variation comes
from the explicit ϑ-dependency of B causing the magnetic mirror force, as long as
the orbit width is small compared to the radial scale of comparable changes in B.

While the explicit evaluation of r(ϑ,α) usually requires numerical orbit integration,
its derivatives are directly known from the magnetic field as

∂pϕ
∂zk

=
eα
c
A′ϕ

∂r

∂zk
+mα

∂(v‖hϕ)

∂r

∂r

∂zk
+mα

∂(v‖hϕ)

∂zk
, (3.25)

where partial derivatives with respect to r are taken for coordinates (r, ϑ, J⊥, H).
In the case zk = pϕ, the left hand side becomes one and partial derivative of v‖
vanishes,

∂r(ϑ,α)

∂pϕ
=

[
∂

∂r

(eα
c
Aϕ +mαv‖hϕ

)]−1

=

(
∂pϕ(r, ϑ, J⊥, H)

∂r

)−1

. (3.26)

For the remaining phase-space variables ϑ, J⊥ and H we obtain

∂r

∂ϑ
= −mα

∂(v‖hϕ)

∂ϑ

(
∂pϕ
∂r

)−1

, (3.27)

∂r

∂J⊥
= −mαhϕ

∂v‖
∂J⊥

(
∂pϕ
∂r

)−1

, (3.28)

∂r

∂H
= −mαhϕ

∂v‖
∂H

(
∂pϕ
∂r

)−1

. (3.29)

In those expressions, partial derivatives of r on the left-hand side are taken for drift-
surface variables (ϑ,α) and translated to radially local ones on the right-hand side
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taken with respect to variables (r, ϑ, J⊥, H). First we note that we can invert partial
derivatives between pϕ and r. The remaining partial derivatives of r taken on drift
surfaces follow a chain rule resulting in ratios between radially local derivatives of
pϕ with respect to (ϑ, J⊥, H) and radial derivatives of pϕ.

For later use, we introduce the approximate radius rϕ defined implicitly by

pϕ =
eα
c
Aϕ(rϕ) = −eα

c
ψpol(rϕ). (3.30)

For trapped orbits, r = rϕ is realised in the turning points (banana tip) where the
parallel velocity v‖ vanishes. In contrast, v‖ is always finite for passing orbits, so
by using the quantity rϕ defined by Eq. (3.30), a small radial shift is introduced in
comparison to the actual orbit.

The derivative of pϕ with respect to rϕ is

dpϕ
drϕ

= −eα
c
ψ′pol(rϕ) = −eα

c

√
gBϑ = −mα

√
ghϑωc. (3.31)

It differs from ∂pϕ/∂r by the term mα
∂
∂r (v‖hϕ), being of first order in ρ‖ = v‖/ωc.

In contrast to r, the quantity rϕ is a direct measure for toroidal momentum pϕ, with
their ratio from Eq. (3.31) constant on the flux surface at rϕ.

Finally, we consider the Hamiltonian in canonical coordinates (φ, ϑ̄, ϕ̄, J⊥, pϑ̄, pϕ̄),
given by

H =
πiḡ

ikπk
2mα

+ J⊥ωc,

with summation over kinematic momenta

πϑ̄ = pϑ̄ −
eα
c
Aϑ̄ = mαv‖hϑ̄, (3.32)

πϕ̄ = πϕ = pϕ −
eα
c
Aϕ = mαv‖hϕ, (3.33)

and components ḡik of the inverse metric in the space spanned by ϑ̄ and ϕ̄. Hamil-
ton’s equations of motion are valid in canonical coordinates, but originally radial
dependencies of A, h, and ωc as well as ḡik have to be resolved with respect to the
new coordinates.

3.4 Action-angle variables in quasi-1D systems

Before we continue with the actual problem in the tokamak, we are now going to
consider the general case of a general quasi-one-dimensional (time-independent)
systems that allow a treatment similar to a one-dimensional system. We define a
quasi-one-dimensional system as a Hamiltonian system with N degrees of freedom,
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where spatial dependencies are only on one coordinate xn. Since we could reduce
guiding-centre dynamics in an axisymmetric magnetic field to depend only on one
coordinate ϑ̄, all results will be immediately applicable to this case. A system de-
fined in this way is for sure integrable, as the Hamiltonian H and the remaining
canonical momenta pk with k 6= n form a set α of N constants of motion. From the
Hamiltonian H = H(xn,p), equations of motion are

ẋn =
∂H

∂pn
, ṗn = − ∂H

∂xn
, (3.34)

ẋk =
∂H

∂pk
, ṗk = 0, for k 6= n. (3.35)

Momenta pk 6=1 in the first set of equations in (x1, p1) can be treated as constants, so
the first two equations are separated and describe dynamics of a one-dimensional
system for each given set of {pk 6=1}. We evaluate actions for k 6= 1 along the trajec-
tory, where their momenta are constant, so

Jk =
1

2π

˛
dxk pk =

∆xk

2π
pk, for k 6= n. (3.36)

Here, ∆xk is the total distance travelled in xk along the full trajectory. In the special
case ∆xk = 2π we can immediately identify pk with the action Jk. There all but
of one coordinate are already “angle-like” with the correct periodicity but not yet
uniform temporal evolution. In any case we redefine constants of motion α at this
point by rescaling momenta to actions, α ≡ (H, {Jk}).
For the n-th coordinate we have to compute the action

Jn =
1

2π

˛
dxn pn(xn,α), (3.37)

from the actual problem as in the one-dimensional case. For passing orbits, this is
an integral over the full range of xn, which we set to 2π without loss of generality,

Jn(α) =

ˆ 2π

0
dxnpn(xn,α). (3.38)

In a trapped region we have

Jn(α) =
1

2π

ˆ xn+

xn−
dxn′ pn(xn′,α)

∣∣
σ=1

+
1

2π

ˆ xn−

xn+

dxn′ pn(xn′,α)
∣∣
σ=−1

, (3.39)

For the representation of Jn as an integral over the actual orbit with orbit time τ ,

Jn =
σ

2π

ˆ τb

0
dτ ẋn(τ) pn(xn(τ)), (3.40)
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the upper integration limit is now the bounce time τb, after which a period of motion
in xn has been performed. For trapped orbits this is one turn between turning points
xn±, and for passing orbits xn covers its full periodic range. The global sign is set
to σ = 1 for trapped and co-passing particles moving from xn = 0 . . . 2π and to
σ = −1 for counter-passing orbits moving from xn = 2π . . . 0 during τb, which is per
definition positive.

Canonical frequencies

The canonical frequencies Ω describing the time evolution of the angles θ are given
from Eq. (1.16) as partial derivatives of H(J) written in terms of the actions. The
frequency associated to Jn is either computed as the derivative of the Hamiltonian,
or found via integrating the orbit over one full turn in xn until the bounce time τb,

Ωn(J) =
∂H(J)

∂Jn
≡ σ2π

τb
, (3.41)

Due to the definition of canonical frequencies, we already know that this frequency
should be defined via the bounce time τb being identical to the upper integration
limit in Eq. (3.40) for the poloidal action, and sign σ positive for trapped and co-
passing and negative for counter-passing orbits. We can check this and obtain an
explicit expression of τb via an integral over coordinates by noting that

Ωn =
∂H(J)

∂Jn
=

(
∂(Jn, {Jk})
∂(H, {Jk})

)−1

=

(
∂Jn(H, {Jk})

∂H

)−1

. (3.42)

This means that

τb = 2πσ
∂Jn
∂H

= σ
∂

∂H

˛
dxn pn(xn,α)

= σ

˛
dxn

∂pn(xn,α)

∂H
. (3.43)

Here we could pull the derivative with respect to H inside the integral for passing
orbits, where the integration boundaries are constant, and for trapped orbits, since
the integral is split into two integrals between the turning points and the derivatives
of the turning points ∂xn±/∂H cancel out. Additionally, we verify the consistency
of Eq. (3.43) with Eq. (3.40), which together with Hamilton’s equations of motion
indeed yields

τb =

ˆ τb

0
dτ ẋn

∂pn(xn,α)

∂H

=

ˆ τb

0
dτ

∂H(xn,p)

∂pn

∂pn(xn, H, {pk})
∂H

=

ˆ τb

0
dτ = τb. (3.44)
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For the remaining canonical frequencies we can exploit the fact that we have trans-
formed from invariants α = (H, {Jk}) to J = (Jn, {Jk}) with k 6= n by changing
only one variable H to Jn. For a specific frequency Ωk we can use the rule of Jaco-
bians with another formal index i taking neither the value k nor n,

Ωk =
∂H(J)

∂Jk
=
∂(H,Jn, {Ji})
∂(Jk, Jn, {Ji})

=
∂(H,Jn, {Ji})
∂(Jk, H, {Ji})

(
∂(Jk, Jn, {Ji})
∂(Jk, H, {Ji})

)−1

= −∂Jn(H,Jk, {Ji})
∂Jk

∂H(J)

∂Jn
= −∂Jn(α)

∂Jk
Ωn for k 6= n. (3.45)

As we can see, the canonical frequencies Ωk are proportional to Ωn with a factor
equal to the negative partial derivatives of Jn as a function of invariants α with
respect to the corresponding action Jk. This expression can be further simplified
by transforming the action integral to an integral over orbit time τ and using the
equation of motion (3.34) for xn,

∂Jn(α)

∂Jk
=

1

2π

˛
dxn

∂pn(xn,α)

∂Jk

=
σ

2π

ˆ τb

0
dτ ẋn(τ)

∂pn(xn,α)

∂Jk

=
σ

2π

ˆ τb

0
dτ

∂H(xn, pn, Jk, {Ji})
∂pn

∂pn(xn, H, Jk, {Ji})
∂Jk

=
σ

2π

ˆ τb

0
dτ

∂(xn, H, Jk, {Ji})
∂(xn, pn, Jk, {Ji})

∂(xn, H, pn, {Ji})
∂(xn, H, Jk, {Ji})

=
σ

2π

ˆ τb

0
dτ

∂(xn, H, pn, {Ji})
∂(xn, pn, Jk, {Ji})

= − σ

2π

ˆ τb

0
dτ

∂H(xn,p)

∂Jk
= − σ

2π

2π

∆xk

ˆ τb

0
dτ ẋk(τ), for k 6= n. (3.46)

As in the one-dimensional example of the first chapter, we could pull the derivative
inside the integral because boundary terms cancel out due to periodicity. Together
with Ωn from Eq. (3.41) the final result for is

Ωk =
2π

∆xk
1

τb

ˆ τb

0
dτ ẋk(τ) =

2π

∆xk

〈
vk
〉
b
, for k 6= n. (3.47)

This expression is a normalised bounce-averaged velocity vk ≡ ẋk in the specific
coordinate k during one bounce period in xn, where the bounce-average is defined
as in the 1D case. Such a velocity average can immediately be translated to an
expression depending only on the end-points,2

Ωk =
2π

∆xk
1

τb

(
xk(τb)− xk(0)

)
, for k 6= n, (3.48)

2This is related to a popular example of school-math: if starting and arrival time are fixed, the av-
erage velocity is computable from the total distance and doesn’t depend on details during the journey.
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which is the ratio of the distance travelled in xk-direction during one bounce in xn

divided by its full range during a period of motion of xk. From our earlier obser-
vation with regard to the actions in Eq. (3.36) this makes sense, as the canonical
frequency “smoothes out” the velocity of the coordinates that are not yet canonical
angles.

Canonical transformation and generating function

The actions Jk which are rescaled conserved momenta appear only as a sum over
linear terms xkJk in the generating function (1.21),

W (q,α) = Wn(xn,α) +
∑

k

2π

∆xk
xkJk. (3.49)

For passing particles, Wn is given by

Wn(xn,α) =

ˆ xn

0
dxn′pn(xn′,α). (3.50)

For trapped particles, the sign of ẋn changes during the motion. Heading towards
the first turning point xn+, σ = 1 and xn > xn0 , Wn is given by

W t,1
n (xn,α) =

ˆ xn

xn0

dxn′ pn(xn′,α)
∣∣
σ=1

, (3.51)

for negative parallel velocity (σ = −1) returning from xn+ by

W t,2
n (xn,α) =

ˆ xn

xn+

dxn′ pn(xn′,α)
∣∣
σ=−1

+

ˆ xn+

xn0

dxn′ pn(xn′,α)
∣∣
σ=1

, (3.52)

and for particles returning again from xn− with σ = 1 and xn < xn0 by

W t,3
n (xn,α) =

ˆ xn

xn0

dxn′ pn(xn′,α)
∣∣
σ=1

+ 2πJn(α) , (3.53)

with turning points at xn+ and xn−.

Canonical angles

For the calculation of the canonical angles, the generating function W must be de-
fined in terms of (xn,J). The canonical angles are then computed by derivatives
over the generating function for the canonical transformation defined in Eq. (3.49).
We start with

θn =
∂Wn(xn,J)

∂Jn
(3.54)
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The derivative is evaluated similar to canonical frequencies by transforming betwe-
en actions J = (Jn, {Jk}) and the original invariants α = (H, {Jk}) using Jacobians,

∂Wn(xn,J)

∂Jn
=
∂(xn,Wn, {Jk})
∂(xn, Jn, {Jk})

=
∂(xn,Wn, {Jk})
∂(xn, H, {Jk})

∂(xn, H, {Jk})
∂(xn, Jn, {Jk})

=
∂H(J)

∂Jn
∂Wn(xn,α)

∂H
= Ωn∂Wn(xn,α)

∂H

= Ωn

ˆ xn

xn0

dxn′
∂pn(xn′,α)

∂H
. (3.55)

The last integral is the orbit parameter τ , i.e. the time spent in the bounce orbit,
normalised to reach θn = 2π after a full turn. While formally written in the range
from xn0 to xn, we should carefully set the integration boundaries as in the case of the
general function also here. The correct sign convention is based on the pendulum:
for trapped orbits, initially σ = 1, and for passing orbits, the direction of positive θn

shall be independent of σ, as in Fig. 1.2. This means that since τ given differentially
by Eq. 3.110 increases during the motion, θn should decrease for passing orbits with
σ = −1, as mentioned before. In summary, we have the same case as for the 1D
example in Eq. (1.48), with

θn = Ωnτ = 2πσ
τ

τb
, (3.56)

with a minus sign only for counter-passing orbits with σ = −1 throughout the orbit.
The 2π-periodicity of θn is the same as the one of xn for passing orbits. For trapped
orbits, a turn back and forth between the turning points xn± leads to an increase of
θn by 2π.

The remaining canonical angles with index k 6= n include a linear term of the origi-
nal coordinate xk normalised to 2π from the generating function,

θk =
∂W (xn,J)

∂Jk
=

2π

∆xk
xk +

∂Wn(xk,J)

∂Jk
. (3.57)

The remaining term depends only on xn and the actions J and is given by

∂Wn(xn,J)

∂Jk
=
∂(xn,Wn, Jn, {Ji})
∂(xn, Jk, Jn, {Ji})

=
∂(xn,Wn, Jn, {Ji})
∂(xn, Jk, H, {Ji})

∂(xn, Jk, H, {Ji})
∂(xn, Jk, Jn, {Ji})

=

(
∂Wn(xk,α)

∂Jk

∂Jn(α)

∂H
− ∂Wn(xn,α)

∂H

∂Jn(α)

∂Jk

)
Ωn

=
∂Wn(xk,α)

∂Jk
+ Ωk ∂Wn(xk,α)

∂H

= Ωkτ +

ˆ xn

xn0

dxn′
∂pn(xn′,α)

∂Jk
. (3.58)
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Here, the first term is the normalised time spent in the orbit period of xk. The second
term can be evaluated similar to the one for canonical frequencies,
ˆ xn

xn0

dxn′
∂pn(xn′,α)

∂Jn
=

ˆ τ

0
dτ ′ẋn(τ ′)

∂pn(xn(τ ′),α)

∂Jn

=
2π

∆xk

ˆ τ

0
dτ ′

∂H(xn(τ ′),p)

∂pn

∂pn(xn(τ ′), H, pk, {pi})
∂pk

=
2π

∆xk

ˆ τ

0
dτ ′

∂(xn, H, pk, {pi})
∂(xn, pn, pk, {pi})

∂(xn, H, pn, {pi})
∂(xn, H, pk, {pi})

=
2π

∆xk

ˆ τ

0
dτ ′

∂(xn, H, pn, {pi})
∂(xn, pn, pk, {pi})

= − 2π

∆xk

ˆ τ

0
dτ ′

∂H(xn,p)

∂pk

= − 2π

∆xk

ˆ τ

0
dτ ′ẋk(τ ′) = − 2π

∆xk

(
xk(τ)− xk(0)

)
. (3.59)

This means on the one hand, that the linear term in Eq. (3.57) can be cancelled out
and we can represent θk(τ) during the orbit as

θk(τ) =
2π

∆xk
xk0 + Ωkτ. (3.60)

As expected this is the phase linear in time for the periodic motion in xk which
can be shifted by xk0 ≡ xk(0) – the point in time where the bounce motion in xn is
initiated. To reach a full period, τ can run shorter or longer than τb, depending on
Ωk.

On the other hand, we can keep the linear term and express the canonical angle via

θk =
2π

∆xk

(
xk +

〈
vk
〉
b
τ −
ˆ τ

0
dτ ′vk(τ ′)

)
. (3.61)

In addition to the constant shift by xk0, the last two terms measure the deviation of
the velocity vk from its bounce-averaged value during the orbit. If this difference is
small, the canonical angle is approximately given by the normalised distance in the
original coordinate,

θk ≈ 2π

∆xk

(
xk − xk0

)
. (3.62)

As we will see for the construction of Fourier series in canonical angles, either of
these expressions for θk can be useful.

3.5 Action-angle variables in a tokamak

We are now going to introduce action-angle variables for guiding-centre orbits in an
axisymmetric magnetic field, starting from phase-space coordinates (φ, ϑ̄, ϕ̄,α) with
constants of motionα = (J⊥, H, pϕ), where we have used the conserved energyH to
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replace pϑ̄. Since H = H(ϑ̄,α), this is a quasi-1D system with xn = ϑ̄, as described
in section 3.4. Since the range of φ and ϕ̄ is 2π, their two invariant momenta can
be immediately used as actions – perpendicular invariant J⊥ ≡ J1 and toroidal
momentum pϕ ≡ J3. The last remaining (poloidal) action is J2 = Jϑ, where we
drop the bar in the notation since a full period in ϑ̄ means also a full period in
ϑ. The bounce time τb measures the time taken for such a period of motion in the
poloidal plane. For passing particles the action is computed by an integral over the
full range of motion of ϑ̄, and trapped particles, Jϑ is composed of two integrals
between the turning points at vanishing parallel velocity

v‖(ϑ̄
±,α) = 0, (3.63)

and is positive per definition. It is also possible to represent Jϑ in terms of integrals
of original guiding-centre coordinates r, ϑ instead. The difference of Eqs. (3.5) and
(3.13) identifies

pϑ̄
˙̄ϑ = prṙ + pϑϑ̇+

d

dt
(pϕ(ϕ− ϕ̄)) (3.64)

up to a total time derivative of pϕ(ϕ − ϕ̄) = pϕq(r)Ḡ(r, ϑ̄) = pϕq(r)G(r, ϑ) of a
function periodic in ϑ̄ as well as ϑ. During integration in Eq. (3.40) it is cancelled at
the boundaries, and we can identify

Jϑ =
σ

2π

ˆ τb

0
dτ
(
v‖hrṙ + (mαv‖hϑ +

eα
c
Aϑ)ϑ̇

)

=
1

2π

˛ (
drmαv‖hr + dϑ (mαv‖hϑ +

eα
c
Aϑ)

)
, (3.65)

where the first integral is evaluated along the orbit, and the second one for constant
α. This is the same expression as given by Kolesnichenko et al. (1998; 2003), who
also perform a second order expansion of this expression with respect to radial orbit
width. Using Eq. (3.27) with constant α, we can switch back to an integration
purely over ϑ with

Jϑ =
1

2π

˛
dϑ

(
pϑ(r(ϑ,α), ϑ,α) +

∂r(ϑ,α)

∂ϑ
pr(r(ϑ,α), ϑ,α)

)

=
1

2π

˛
dϑ

(
mαv‖

(
hϑ − hrmα

∂(v‖hϕ)

∂ϑ

(
∂pϕ
∂r

)−1
)

+
eα
c
Aϑ

)
. (3.66)

The second term in the last line describes a correction that we estimate using Eq. 3.31,

−hrmα

∂(v‖hϕ)

∂ϑ

(
∂pϕ
∂r

)−1

≈ hr√
ghϑωc

∂(v‖hϕ)

∂ϑ
, (3.67)
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being of order ρ‖hr. Another influence from the deviation of the orbit’s drift surface
from the flux surface at rϕ appears via the non-local evaluation of terms mαv‖hϑ
and eα

c Aϑ at r(ϑ,α). For trapped orbits moving inside and outside of rϕ, we expect
those effects to average out during a full bounce in good approximation. However,
passing orbits, never reaching r = rϕ, will maintain a shift in respective opposite
radial direction for co- and counter-passing particles if treated exactly.

Canonical frequencies

By the general results for quasi-1D systems, we have already confirmed that the
poloidal canonical frequency is per definition equal to the bounce frequency,

Ωϑ = σ
2π

τb
≡ ωb , (3.68)

which can take positive or negative values.

According to the general result in Eq. (3.45), the remaining two canonical frequen-
cies are equal to bounce-averaged velocities

Ωφ =
∂H(J)

∂J⊥
=
〈
vφ
〉
b

=
φ(τb)

τb
, (3.69)

Ωϕ =
∂H(J)

∂pϕ
= 〈vϕ〉b =

ϕ̄(τb)

τb
=
ϕ(τb)

τb
. (3.70)

Here we have, without loss of generality, started the bounce integral at phase ϕ(0) =

φ(0) = 0 and used the periodicity in ϑ̄ of the transformation function Ḡ in Eq. (3.19).
Consequently, there is no difference whether we use ϕ of ϕ̄ for the toroidal canonical
frequency.

The generalised velocity vφ associated with the gyrophase is not exactly the gyrofre-
quency ωc, which can be seen from the equation of motion,

vφ =
∂H(ϑ̄, pϑ̄, J⊥, pϕ)

∂J⊥
=
∂H(r, ϑ̄, J⊥, pϕ)

∂J⊥
+
∂H(r, ϑ̄, J⊥, pϕ)

∂r

∂r(ϑ̄,H, J⊥, pϕ)

∂J⊥

= ωc +
∂H(r, ϑ̄, J⊥, pϕ)

∂r

∂r(ϑ̄,H, J⊥, pϕ)

∂J⊥
. (3.71)

Due to the ordering with large gyrofrequency ωc and furthermore the insignificance
of the gyrophase φ for later computations, this correction can safely be neglected.
For vϕ we similarily obtain

vϕ =
∂H(ϑ̄, pϑ̄, J⊥, pϕ)

∂pϕ
=
∂H(r, ϑ̄, J⊥, pϕ)

∂pϕ
+
∂H(r, ϑ̄, J⊥, pϕ)

∂r

∂r(ϑ̄,H, J⊥, pϕ)

∂pϕ
.

(3.72)

In the previous two equations, we could also have chosen ϑ instead of ϑ̄ for poloidal
dependencies, as they influence neither derivatives over radius nor actions.
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Canonical transformation and angles

As above, the two conserved momenta J⊥ and pϕ appear as linear terms φJ⊥ and
ϕ̄pϕ in the generating function (1.21),

W (q,α) = φJ⊥ +Wϑ̄(ϑ̄,α) + ϕ̄pϕ. (3.73)

Generally, Wϑ is given by an incomplete integral, where the dependency via the
transformation back to original coordinates r, ϑ, ϕ does not cancel out in the inte-
gral,

Wϑ(ϑ̄,α) =

ˆ ϑ̄

ϑ̄0

dϑ̄′pϑ̄(ϑ̄′,α)

=

ˆ (r,ϑ)

(r0,ϑ0)

(
dϑ′(pϑ + pϕq

∂G

∂ϑ
) + dr′(pr + pϕ

∂(qG)

∂r
)

)
. (3.74)

As in the computation for the action, there is an influence of the orbit moving away
from r = rϕ via the radial dependencies inside pϑ and also the remaining terms.
With the convention hϑ > 0, the sign of ˙̄ϑ is also given by σ. We follow the trajectory
of a trapped particle starting from ϑ̄ = ϑ̄0 at a global maximum of v‖ with respect
to ϑ̄. Due to symmetry, we consider only trapped orbits with positive v‖ on the
outboard side of the banana −π/2 < ϑ̄ < π/2, where we also choose ϑ̄0.

For canonical angles, we can again use the general expressions from the quasi-1D
case. The first canonical angle is essentially the gyrophase with

θ1 = φc =
∂W (ϑ̄,J)

∂J⊥
= φ+

∂Wϑ(ϑ̄,J)

∂J⊥
, (3.75)

where the difference depends only on ϑ̄ and actions. The second canonical angle
associated to poloidal motion is the bounce phase

θ2 = Ωϑτ = 2πσ
τ

τb
. (3.76)

For the remaining toroidal canonical angle, we have

θ3 = ϕc +
∂Wϑ(ϑ̄,J)

∂pϕ
= ϕ− q(r)G(r, ϑ) +

∂Wϑ(ϑ̄,J)

∂pϕ
, (3.77)

with the last term again independent from ϕ or ϕ̄.

As described in section (1.5) we now proceed to compute Fourier harmonics in
canonical angles of a quantity given on a flux surface at radius r by a Fourier series
in φ and ϕ,

a(φ, ϑ, ϕ) =
∑

l,n

aln(ϑ)ei(lφ+nϕ), (3.78)
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where the poloidal dependency on ϑ remains in the Fourier coefficients. In principle,
finite Larmor radius effects can be considered by the harmonic of index l, but for our
application involving quasi-static perturbation fields, only l = 0 will allow to fulfil
a resonance condition (1.52), since ωc is much larger than ωb and Ωϕ by modulus.
Non-zero harmonics l would be required to consider, in particular, radiofrequency
heating by resonant wave-particle interaction (Bécoulet et al., 1991; Kasilov et al.,
1997). Our goal is to obtain a Fourier series in canonical angles,

a(θ) =
∑

m1,m2,m3

ame
i(mkθ

k). (3.79)

We notice that due to the guiding-centre approximation and toroidal symmetry, nei-
ther φ nor ϕ appear in the transformation equations to canonical angles. Since ϑ̄
can be expressed by θ2 = ϑc via the inverse relation of Eq. (3.54), we can formally
write θ1 = φ − ∆φ(θ2,J), θ3 = ϕ − ∆ϕ(θ2,J). Fourier coefficients in canonical θ
are

am =
∑

l,n

1

(2π)3

ˆ
d3θ aln(ϑ)ei(lφ+nϕ−mkθk)

=
∑

l,n

1

(2π)3

ˆ
d3θ aln(ϑ)ei((l−m)θ1+(n−m3)θ3+l∆φ(θ2,J)+n∆ϕ(θ2,J)−m2θ2). (3.80)

The differences ∆φ and ∆ϕ introduce only a phase-shift in φ and ϕ that keeps inte-
grals over the full range of the angle invariant. As a consequence, only harmonics
m1 = l and m3 = n contribute to the result with a factor of 4π2 at evaluation. Still, a
single poloidal mode m in ϑ contributes to several canonical modes m2 in θ2, similar
to the 1D case illustrated in Fig. 1.3. This dependency with l = 0 is

am =
1

2π

ˆ
dθ2 aln(ϑ)ei(n∆ϕ(θ2,J)−m2θ2).

3.6 Small orbit width approximation

To be able to perform more steps in an analytical way, we rely on a small orbit width
approximation: We assume variations of unperturbed fields across the whole range
of r during an orbit to be small enough so that second order contributions have neg-
ligible influence on canonical actions, angles and frequencies. This approximation
is not necessary for the formalism, which could in principle be performed even for
the full particle orbit taking into account the scale of the Larmor radius. However,
the resulting expressions would be much more complicated and less efficiently com-
putable. Since zero orbit width means dr = 0 in integrals such as Eq. (3.65), we can
formally replace ϑ̄ by ϑ in the following computations.
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It is also important to note that this approximation made for canonical variables is
independent from the later choice of integration along the full or rather the lowest
order orbit for bounce averages. The latter can be used to take into account small-
scale effects of perturbation fields if unperturbed fields vary slowly in space.

Using the approximate (banana-tip) radius rϕ implicitly defined in Eq. 3.30, we
perform a first-order expansion of Eq. (3.12) around r = rϕ with

pϕ −mαv‖hϕ(r) = −eα
c
ψpol(r)

= −eα
c

(
ψpol(rϕ) + (r − rϕ)ψ′pol(rϕ)

)
+O((r − rϕ)2ψ′′pol(rϕ)).

(3.81)

Replacing pϕ by Eq. (3.30) and with mαv‖hϕ of first order in ρ‖ compared to eα
c ψpol

allows us to express r to the first order in ρ‖ by

r = rϕ +
cmαv‖hϕ
eαψ′pol

+O(ε2) , (3.82)

where we assumed both (r − rϕ)2ψ′′pol(rϕ) and ρ2
‖ to be of the order ε2. Here and

in the remaining expansions in this section, all quantities on the right-hand side are
evaluated at r = rϕ. Noting that in magnetic coordinates

ψ′pol =
√
gBhϑ = hϑωc

√
gcmα/eα, (3.83)

we can also write Eq. (3.82) as

r = rϕ +
v‖hϕ

ωc
√
ghϑ

+O(ε2). (3.84)

To this order, the poloidal momentum is approximated by

pϑ +O(ε2) =
eα
c
Aϑ +mαv‖hϑ −

mαv‖hϕ
A′ϕ

A′ϑ

=
eα
c
Aϑ +mαv‖(hϑ + qhϕ)

=
eα
c
Aϑ +

mαv‖
hϑ

. (3.85)

This results in an approximate expression for the poloidal action from Eq. (3.65),
now taken locally in radius with dr = 0,

Jϑ =
1

2π

˛
dϑ pϑ =

eα
c
Aϑδtp + J‖ +O(ε2), (3.86)

where the first term exists only for passing orbits and vanishes for trapped orbits
while integrating back and forth between the turning points. This is formally written
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by the expression

δtp =





0 for trapped orbits

1 for passing orbits
. (3.87)

The second term is the parallel adiabatic invariant given by

J‖ =
1

2π

˛
dϑ

mαv‖
hϑ

=
mατb

2π
σ
〈
v2
‖
〉
b
, (3.88)

with bounce time τb and bounce average 〈a〉b of a function a(r, ϑ) respectively given
by

τb = σ

˛
dτ = σ

˛
dϑ

ϑ̇orb(τ)
= σ

˛
dϑ

v‖hϑ
, (3.89)

〈a〉b =
σ

τb

˛
dτa =

σ

τb

˛
dϑ

a

v‖hϑ
. (3.90)

In those definitions, the sign σ of the parallel velocity has been included for passing
particles to yield τb > 0 and σ is set to 1 per convention for the trapped case. Note
that in contrast to the simpler case of the pendulum in Eq. (1.36), the velocity sign σ
appears only in a the second part of Jϑ. Close to the trapped-passing boundary with
v‖ � eαAϑ

mαc
the sign of v‖ and Jϑ can for example be equal for co-passing (σ = 1)

and different for counter-passing particles (σ = −1).

Canonical frequencies

In the small orbit width approximation we note that in Eq. (3.86) the only depen-
dence of Jϑ(J⊥, H, pϕ) on H is inside J‖, the second (poloidal) canonical frequency
can be expressed as

Ωϑ =
∂H

∂Jϑ
=

(
∂(J⊥, Jϑ, pϕ)

∂(J⊥, H, pϕ)

)−1

=

(
∂Jϑ(J⊥, H, pϕ)

∂H

)−1

=

(
∂J‖(J⊥, H, pϕ)

∂H

)−1

. (3.91)

Accordingly, the sign of Ωϑ is σ for passing particles and 1 for trapped particles,
independent from Aϑ. Using the parallel velocity defined in Eq. 3.2 written in terms
of invariants,

v‖(q,α) = σ
√

2/mα(H − eαΦ(pϕ)− J⊥ωc(ϑ, pϕ)), (3.92)

we take the derivative
∂J‖
∂H

=
1

2π

˛
dϑ

mα

hϑ(ϑ, pϕ)

∂v‖(ϑ, J⊥, H, pϕ)

∂H

=
1

2π

˛
dϑ

mα

hϑ
1

mαv‖
= σ

τb
2π

. (3.93)
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The relative magnitudes of the remaining canonical frequencies,

Ωφ =
∂H

∂J⊥
= −

∂J‖(J⊥, H, pϕ)

∂J⊥
Ωϑ ,

Ωϕ =
∂H

∂pϕ
= −∂Jϑ(J⊥, H, pϕ)

∂pϕ
Ωϑ , (3.94)

can now be computed explicitly. Here we have used again a vanishing derivative of
Aϑ with respect to J⊥, but its dependency on pϕ remains via the radial dependency
evaluated at rϕ. The factor for Ωφ is

∂J‖
∂J⊥

=
1

2π

˛
dϑ

mα

hϑ(ϑ, pϕ)

∂v‖(ϑ, J⊥, H, pϕ)

∂J⊥

= − 1

2π

˛
dϑ

ωc
v‖hϑ

= −σ τb
2π
〈ωc〉b , (3.95)

so the first canonical frequency is exactly the bounce-averaged gyrofrequency here,

Ωφ = 〈ωc〉b . (3.96)

The third (toroidal) canonical frequency Ωϕ differs between passing and trapped
orbits due to the dependence on pϕ of the vector potential component Aϑ in Eq.
(3.86). In our approximation, following (3.31), this is equivalent to a radial depen-
dency evaluated at r = rϕ,

∂Aϑ(pϕ)

∂pϕ
= A′ϑ(rϕ)

drϕ
dpϕ

= − c

eα

ψ′tor(rϕ)

ψ′pol(rϕ)
= − c

eα
q(rϕ) . (3.97)

Thus, the extra term in Ωϕ entering for passing particles is the safety factor q de-
fined for straight field-line magnetic flux coordinates in Eq. (A.14), and Eq. (3.94)
becomes

Ωϕ =qΩϑδtp −
∂J‖(J⊥, H, pϕ)

∂pϕ
Ωϑ

=qωbδtp + Ωt . (3.98)

The parallel velocity sign σ relevant for passing particles remains in the first, but is
cancelled out in the second term. We write the remaining term as a bounce average
by

Ωt = −
∂J‖
∂pϕ

Ωϑ = −σmα

τb

˛
dϑ

drϕ
dpϕ

∂

∂r

(
v‖(ϑ, J⊥, H, r)

hϑ(ϑ, r)

)

=
σ

τb

˛
dϑ

1√
gωchϑ

∂

∂r

( v‖
hϑ

)

=

〈
v‖√
gωc

∂

∂r

( v‖
hϑ

)〉

b

=
〈
vϕg
〉
b
. (3.99)
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This is the bounce average of the toroidal precession frequency vϕg generated by
E × B and magnetic drift on the flux surface. Evaluation of the radial derivative
inside the brackets with r = rϕ results in

∂

∂r

( v‖
hϑ

)
=

1

mαhϑv‖

(
−eα

∂Φ

∂r
− eαJ⊥
mαc

∂B

∂r

)
+ v‖

∂

∂r

(
1

hϑ

)
. (3.100)

Together with the relation in straight field-line flux coordinates

1

mα
√
gωchϑ

=
c

eαψ′pol

, (3.101)

this yields

Ωt =
1

ψ′pol

〈
−c∂Φ

∂r
− J⊥
mα

∂B

∂r
+
v2
‖B

ωc
hϑ

∂

∂r

(
1

hϑ

)〉

b

We can now decompose Ωt in its electric and magnetic part,

Ωt = 〈ΩtE〉b + 〈ΩtB〉b , (3.102)

with E ×B drift frequency ΩtE and its bounce average

〈ΩtE〉b = − c

ψ′pol

〈
∂Φ

∂r

〉

b

, (3.103)

and magnetic drift frequency ΩtB containing the remaining terms related to ∇B
and curvature drift. A transformation to covariant components is advantageous,
especially for the case of Boozer magnetic coordinates, where the former are flux
functions. With B2 = Bϑ(Bϑ + qBϕ) it follows that hϑ = (hϑ − qhϕ)−1 and

∂

∂r

(
1

hϑ

)
=

∂

∂r

(
Bϑ − qBϕ

B

)

= − 1

Bϑ

∂B

∂r
+

1

B

∂

∂r
(Bϑ − qBϕ) . (3.104)

The bounce averaged magnetic drift frequency is given by

〈ΩtB〉b =
1

ψ′pol

〈
−
J⊥ωc +mαv

2
‖

mαωc

∂B

∂r
+
v2
‖
ωc
hϑ
(
∂Bϑ
∂r
− q∂Bϕ

∂r
− dq

dr
Bϕ

)〉

b

.

(3.105)

The last term containing the radial derivative of the safety factor in this form is
absent in standard local neoclassical theory and has only recently been considered
for the case of the superbanana resonance by Shaing (2015), where it appears as a
secular term resolved by bounce averaging.
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For actual computations, we will use a parametrization of velocity space by velocity
modulus v and and normalized perpendicular invariant η related to J⊥ and v‖ by

J⊥ =
mαv

2

2

mαc

eα
η, (3.106)

v‖ = σv
√

1− ηB . (3.107)

From the conserved Hamiltonian (3.4) it follows that also v and subsequently η are
exactly conserved if the electric potential is assumed to be constant on a flux surface
and the orbit integration is performed in the lowest order in orbit width. As long as
the thermal energy mαv2

2 is much higher than the change in the electric energy eαΦ

during the orbit, this still holds in very good approximation. The absolute value of
the bounce frequency in those variables is

|ωb| = 2πv

(˛
dϑ

1

hϑ
√

1− ηB

)−1

, (3.108)

and the bounce-averaged magnetic drift frequency becomes

〈ΩtB〉b =
v2

ψ′pol

〈
−2− ηB

2ωc

∂B

∂r
+

1− ηB
ωc

hϑ
(
∂Bϑ
∂r
− q∂Bϕ

∂r
− dq

dr
Bϕ

)〉

b

. (3.109)

We notice that the involved bounce integrals do not depend on velocity v. This
means that we can efficiently pre-compute the dependency of those integrals on η

and just use v and v2 as the respective scaling when needed. In practice, a numerical
integration based on ordinary differential equations of orbits can be used to perform
bounce averages. The differential of the orbit parameter τ equal to time for the
unperturbed orbits is related to the differential dϑ by

dτ =

∣∣∣∣
dϑ

hϑv‖

∣∣∣∣ , (3.110)

where dϑ is evaluated as it increases or decreases during the motion in the orbit.

Canonical angles and Fourier harmonics

Explicit expressions for canonical angles from section 3.5 can be computed close to
r = rϕ, where setting dr = 0 in integrals allows us to replace ϑ̄ by the original ϑ.
The canonical gyrophase becomes

θ1 = φc = φ+ Ωφτ −
ˆ ϑ

ϑ0

dϑ′
ωc
v‖hϑ

= φ+ 〈ωc〉b τ −
ˆ τ

0
dτ ′ ωc (3.111)
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The last two terms measure the deviation of the current gyrofrequency from its
average value during the orbit.

The canonical poloidal angle, i.e. the bounce phase, is given by

θ2 = ϑc = ωb

ˆ ϑ

ϑ0

dϑ′
dϑ′

v‖hϑ
. (3.112)

For the toroidal canonical angle we evaluate

∂Wϑ(ϑ,J)

∂pϕ
= Ωϕτ +

∂

∂pϕ

ˆ ϑ

ϑ0

dϑ′
[
eα
c
Aϑ +

mαv‖
hϑ

+ pϕq
∂G

∂ϑ

]

= (Ωt + qωbδtp) τ − q (ϑ−G(r, ϑ)− ϑ0 +G(r, ϑ0))−
ˆ τ

0
dτ ′

v‖√
gωc

∂

∂r

v‖
hϑ

= 2πσ
τ

τb
δtp − q(ϑ−G(r, ϑ)− ϑ0 +G(r, ϑ0)) + τ

〈
vϕg
〉
b
−
ˆ τ

0
dτ ′vϕg .

(3.113)

The first term in this expression is only present for passing particles and the last two
terms measure the deviation of the toroidal drift velocity vϕg from its bounce aver-
aged value 〈vϕg 〉b = Ωt. Compared to the other terms of order one, this difference is
of the order of the Larmor radius and can be neglected.

Finally, terms involving the transformation function G at the upper boundary cancel
out and we obtain

θ3 = ϕc = ϕ− q(ϑ− ϑ0 +G(r, ϑ0)) + qθ2δtp

= ϕ− q(ϑorb(ϑ0, τ) +G(r, ϑ0)− 2πσ
τ

τb
δtp), (3.114)

where

ϑorb(ϑ0, τ) = ϑ(τ)− ϑ0 (3.115)

is the angle as evaluated in the integration of unperturbed orbits with initial position
ϑ0 and time parameter τ .

Up to the additional last term for passing orbits, Eq. (3.114) and the constant shift
involving G, the toroidal canonical angle θ3 is identical to the definition of the
toroidal angle ϕ0 = ϕ− qϑ used in the works of Shaing et al. (2009b; 2009a; 2010;
2015) and Park et al. (2009), where the orientation of ϕ is switched in addition, as
well as Kasilov et al. (2014). This choice is usually made for geometrical reasons,
namely because ϕ0 is constant on magnetic field lines on a flux surface. As we have
demonstrated here, its generalisation for passing orbits via the canonical angle con-
tains an additional contribution from the canonical poloidal angle θ2 = ϑc = 2πτ/τb,
i.e. the time spent in the transit orbit.
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Fourier harmonics in canonical angles become

am =
1

2π

ˆ
dθ2 aln(ϑ)ei(n∆ϕ(θ2,J)−m2θ2)

=
〈
a0n(ϑ)einqϑorb−i(m2+nqδtp)ωbτ

〉
b
. (3.116)

The evaluation of this expression, ϑorb(ϑ0, τ) is integrated along the orbit from initial
ϑ0 ignoring the constant phase shift via G. The sign of the bounce frequency ωb is
σ = −1 for the case of counter-passing particles, and σ = 1 for trapped and co-
passing particles, while the integration over τ always runs in the positive direction.
This means that ϑ decreases during the integration for counter-passing particles and
increases for the other cases.

3.7 Approximate transformation to canonical coordinates

An alternative approach to reach a canonical form for the guiding-centre Lagrangian
lies in a transformation of only the toroidal angle coordinate ϕ̄. A similar step is
taken by White (1984; 1990) where the poloidal angle ϑ is transformed instead.
Noticing that

mαv‖hrṙ =
d

dt

(
v‖hrr

)
− r d

dt
(v‖hr), (3.117)

we define the new toroidal angle by

ϕ̄ = ϕ−
cmαv‖hr
eαA′ϕ

. (3.118)

Subtracting the total time derivative

d

dt

(
Aϕ

mαv‖hr
A′ϕ

)
= mαAϕ

d

dt

(
v‖hr
A′ϕ

)
+mα

dAϕ
dt

(
v‖hr
A′ϕ

)

=
eα
c
Aϕ(ϕ̇− ˙̄ϕ) +mαv‖hrṙ (3.119)

from the Lagrangian (3.5) results in

L = pϑϑ̇+ pϕ ˙̄ϕ+ J⊥φ̇−H +mαv‖hϕ(ϕ̇− ˙̄ϕ)

= pϑϑ̇+ pϕ ˙̄ϕ+ J⊥φ̇−H +
cm2

αv‖hϕ
eα

d

dt

(
v‖hr
A′ϕ

)
, (3.120)

with the canonical momenta

pϑ = mαv‖hϑ +
eα
c
Aϑ, (3.121)

pϕ = mαv‖hϕ +
eα
c
Aϕ. (3.122)
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The last term in Eq. (3.120) is of second order in ρ‖ = v‖/ωc compared to the
other terms and can be neglected. Since the correction term in Eq. (3.118) does not
depend on ϕ, we can retain the exact expression for the original canonical momen-
tum pϕ here. The important point of this approximate transformation is that the
correction ϕ − ϕ̄ is of first order in ρ‖hr. This means that in the small orbit width
approximation, where we have neglected other terms of this order, this alternatively
justifies just setting ϕ̄ = ϕ and ϑ̄ = ϑ in the derivation of action-angle coordinates
and canonical frequencies, which confirms the more general procedure performed
above.





Chapter 4

Resonant transport regimes

4.1 Basic kinetic theory

Particularly in the context of fusion plasmas, a large number of particles (1019−1021

per m3) interacting via long-range Coulomb forces and exposed to an externally
imposed electromagnetic field has to be described. This means that Eq. (2.9) is
of little practical use, as long as it is defined for such a high-dimensional system.
The reduction to an effective low-dimensional equation is possible via the BBGKY
hierarchy (named after Bogolyubov, Bom, Green, Kirkwood and Yvon), which is e.g.
described in the books of and Nicholson (1983)1.

For this purpose, velocity coordinates are usually employed instead of momenta.
Neglecting three-particle interactions, a one-particle distribution function f̄(r,v)

defined for a particle subject to two-particle collisions with the remaining particles
follows the plasma kinetic equation

∂f̄(r,v, t)

∂t
+ v · ∂f̄

∂r
+

eα
mα

(
Ē +

1

c
v × B̄

)
· ∂f̄
∂v

=

−n0

ˆ
d3r2d3v2a12·∇vg12(r, r2,v,v2, t) . (4.1)

Here n0 is the average mass density, a12 describes the accelerations due to inter-
action forces, and g12 is the two-particle correlation function. Except for the right
hand side, this equation is formally similar to the Liouville equation (2.9) with an
electromagnetic Hamiltonian. However, Eq. (4.1) is defined for positions r and ve-
locities v of a single particle in 6-dimensional phase space, with the fields Ē and
B̄ containing only ensemble-averaged terms from a smoothed density function and
external forces. Making use of the long-range Coulomb forces leading to small-angle

1The mentioned book also contains an instructive derivation of the Liouville equation based on
individual particles represented by δ distribution terms inside f .
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collisions and assuming g12 to decay on a much faster timescale than the one-particle
distribution function f̄ (Bogoliubov’s hypothesis), the right-hand side of 4.1 can be
modelled by a Fokker-Planck operator Ĉ acting on f̄ . Taking into account possibly
different particle species a and b and omitting the bar in the notation of Eq. (4.1),
we can write the plasma kinetic equation for the one-particle distribution function
fa for a species a as

∂fa
∂t

+ v · ∂fa
∂r

+
eα
mα

(
E +

1

c
v ×B

)
· ∂fa
∂v

= Ĉafa, (4.2)

where collision operator
Ĉafa =

∑

b

Ĉabfa (4.3)

includes collisions with all species b given by

Ĉabfa =
∂

∂vk

(
∂

∂vl

(
Dab
kl (v, fb) fa

)
− F abk (v, fb) fa

)
≡ Ĉab[fa, fb]. (4.4)

Despite various approximative assumptions, the collision operator (4.3) retains im-
portant physical features such as convergence towards a Maxwellian distribution
as time approaches infinity as well as momentum and energy conservation. As an
alternative to the derivation of this result without employing the BBGKY hierarchy,
the book of Helander and Sigmar (2005) provides an instructive derivation based
on more heuristic arguments of two-particle Coulomb collisions.

While formally of Fokker-Planck type, the complexity of the problem in Eq. (4.2)
is now hidden inside the velocity-dependent drag coefficients F abk and diffusion co-
efficients Dab

kl , that are defined via integral operators acting on fb written in terms
of Rosenbluth or Trubnikov potentials (see e.g. the book of Helander and Sigmar
(2005)). In the coefficients with b = a, fa itself appears inside the integrals, which
is even the case for a single-species model, so further measures are necessary for the
analytical or numerical treatment of Eq. (4.2). For plasmas close to thermodynamic
equilibrium fa ≈ fa0 + fa1, with fa0 given by a Maxwellian for all species, in partic-
ular for neoclassical theory of toroidal plasma confinement (Hinton and Hazeltine
(1976), Hirshman and Sigmar (1981)), the collision operator is often used in its
linearised form

Ĉab[fa, fb] ≈ Ĉab[fa0, fb0] + Ĉab[fa1, fb0] + Ĉab[fa0, fb1] . (4.5)

The first term describes temperature equilibration which is usually neglected ei-
ther by the assumption of already equal temperatures of different species or by the
process happening on the slower transport timescale due to the smallness of the
electron-ion mass ratio. The second term is a differential operator acting on fa1

describing the linear order approximation of fa subject to a Maxwellian background
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fb0. The third term is an integral operator acting on fb1, which is required, in par-
ticular, to retain the property of momentum and energy conservation.

For our purpose at the low collisionality limit, we are going to use a linearised colli-
sion operator on a single species plasma, given by

L̂Cf1 = Ĉab[f1, f0] . (4.6)

Since it is of the form of a differential Fokker-Planck operator defined in Eq. (2.20),
we can immediately use all the universal results obtained in chapter 2. To justify all
approximations for the intended application on resonant transport regimes in the
low-collisionality limit, some further investigations will be necessary, described in
the subsequent sections.

4.2 Kinetic equation and conservation laws

In canonically conjugate variables, in particular for Cartesian coordinates and their
respective momenta (r,p) or action-angle variables (θ,J) of the unperturbed sys-
tem, the plasma kinetic equation for the distribution function f = f(t, r,p) =

f(t, r(θ,J),p(θ,J)) can be written employing the Poisson brackets (1.7),

df

dt
=
∂f

∂t
+ {f,H} = L̂cf, (4.7)

where L̂c is the collision operator. With help of Eq. (4.7) we are going to formulate
a flux-surface averaged conservation law for a quantity a(r,p) defined in phase
space. We first define the reduced (Eulerian) quantity A(t, r) by integration over
momentum space,

A(t, r) ≡
ˆ

d3pa f . (4.8)

The time derivative of A is

∂A

∂t
=

ˆ
d3pa

∂f

∂t

=

ˆ
d3pa (L̂cf − {f,H}) . (4.9)

The first term is a source term arising from collisions, which we denote by

s
(c)
A ≡

ˆ
d3paL̂cf , (4.10)
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whereas the second term involving the Poisson brackets can be written as

ˆ
d3p a{f,H} =

ˆ
d3pa

(
∂

∂ri

(
f
∂H

∂pi

)
− ∂

∂pi

(
f
∂H

∂ri

))

=

ˆ
d3p

(
∂

∂ri

(
af
∂H

∂pi

)
− ∂

∂pi

(
af
∂H

∂ri

))

−
ˆ

d3p

(
f
∂a

∂ri
∂H

∂pi
− f ∂a

∂pi

∂H

∂ri

)

=
∂

∂ri

ˆ
d3p af

∂H

∂pi
−
ˆ

d3p {a,H}f, (4.11)

where we have used the condition of f vanishing sufficiently fast at |p| → ∞ and
swapped integration over p and the derivative over r.

Since ∂H/∂pi = {ri, H} (1.9), the first term in (4.11) can be interpreted as the
divergence of a flux density defined by

ΓA(t, r) ≡
ˆ

d3pv a f

=

ˆ
d3p{r, H}a f . (4.12)

The remaining term is identified with a collision-independent source

sA ≡
ˆ

d3p {a,H}f . (4.13)

Finally, we can write down the local conservation law

∂A

∂t
+∇ · ΓA = sA + s

(c)
A . (4.14)

If a is not affected by collisions, which is particularly the case for the toroidal mo-
mentum pϕ in a single-species model, the collisional source term s

(c)
A vanishes.

For the formulation of flux surfaced averaged conservation laws we use curvilinear
magnetic flux coordinates (see D’haeseleer et al. (1991)) x = (r, ϑ, ϕ) with Jacobian
√
g and define the flux average 〈a(r)〉 of a quantity a(r) as the limit of a volume

integral with vanishing radial width around a flux surface,

〈a(r)〉 =
1

S

ˆ π

−π
dϑ

ˆ π

−π
dϕ
√
ga(r). (4.15)

The radial variable r is chosen as the effective radius reff (see Nemov et al., 1999)
fixed by the condition

〈|∇reff |〉 = 1, (4.16)
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so the normalisation constant S is equal to the geometrical area of a flux surface
given by

ˆ π

−π
dϑ

ˆ π

−π
dϕ
√
g
∂r

∂ϑ
× ∂r

∂ϕ
· ∇r|∇r| =

ˆ π

−π
dϑ

ˆ π

−π
dϕ
√
g

Er︷ ︸︸ ︷
Eϑ ×Eϕ ·

Er

√
grr

=

ˆ π

−π
dϑ

ˆ π

−π
dϕ
√
g|∇r|

= 〈|∇r|〉
ˆ π

−π
dϑ

ˆ π

−π
dϕ
√
g = S. (4.17)

This definition of r will be assumed in the following derivation.

From the definition of the Poisson brackets (1.9), we notice that

{r, H} · ∇xk =
∂xk

∂rk
· ∂H
∂pk

= {xk, H}. (4.18)

This can be used to write the flux-averaged radial component of ΓA as

〈ΓrA〉 = 〈ΓA · ∇r〉

=

〈ˆ
d3p a f {r, H} · ∇r

〉

=

〈ˆ
d3p{r,H} a f

〉
. (4.19)

The flux surface average of the divergence of ΓA can be expressed by

〈∇ · ΓA〉 =

〈
1√
g

∂

∂xk
(
√
g ΓkA)

〉

=
1

S

ˆ π

−π
dϑ

ˆ π

−π
dϕ

∂

∂xk
(
√
g ΓkA)

=
1

S

∂

∂r

ˆ π

−π
dϑ

ˆ π

−π
dϕ(
√
g ΓrA)

=
1

S

∂

∂r
S 〈ΓrA〉 . (4.20)

Due to the periodicity of the integral, only a radial derivative remained in this ex-
pression. Finally, we obtain the flux-surface averaged conservation law

∂

∂t
〈A〉+

1

S

∂

∂r
S 〈ΓrA〉 = 〈sA〉+

〈
s

(c)
A

〉
. (4.21)

In this one-dimensional law, the radial derivative describes the divergence where the
flux surface area S has taken the role of the Jacobian, which could be anticipated
from its definition as the flux-averaged Jacobian in Eq. (4.17).

We can also write integrals over momentum of a local quantities as defined in
Eq. (4.8) by an integral over action-angle variables parametrising phase space. The
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correct integration submanifold at constant spatial location r is chosen by a Dirac
delta fixing it to the orbital position rc(θ,J) depending on actions J and angles θ,

A(t, r) =

ˆ
d3p a f (4.22)

=

ˆ
d3θ

ˆ
d3J δ(rc(θ,J)− r)a f . (4.23)

The flux surface average of A is then given by

〈A〉 =

〈ˆ
d3θ

ˆ
d3Jδ(rc(θ,J)− r)a f

〉

=

〈
1√
g

ˆ
d3θ

ˆ
d3Jδ(rc(θ,J)− r)a f

〉

=
1

S

ˆ
d3θ

ˆ
d3J δ(rc(θ,J)− r)a f , (4.24)

where the δ has been transformed to coordinates x and resolved for the two angular
variables ϑ and ϕ by the flux surface integral in (4.15). The particle radial position
has been denoted by rc = r(rc(θ,J)) = rc(θ,J). Similarly, by taking averages of
expressions (4.10) and (4.13) for the source terms, we obtain

〈
s

(c)
A

〉
=

1

S

ˆ
d3θ

ˆ
d3J δ(rc(θ,J)− r)aL̂cf , (4.25)

〈sA〉 =
1

S

ˆ
d3θ

ˆ
d3J δ(rc(θ,J)− r){a,H}f . (4.26)

4.3 Toroidal torque density and flux-force relation

In particular by setting a = 1 in (4.21), we obtain a vanishing source term 〈sA〉 = 0

and the radial particle flux

Γn =
1

S

ˆ
d3θ

ˆ
d3J δ(rc(θ,J)− r) {r,H} f , (4.27)

where we have dropped the index r by using the notation Γn ≡ 〈Γrn〉.
For the toroidal momentum conservation law we choose a = pϕ as defined in Eq.
(3.12). In this case, the source term 〈sA〉 in Eq. (4.15) is the torque density

Tϕ =

〈ˆ
d3p {pϕ, H}f

〉

= −
〈ˆ

d3p
∂H

∂ϕ
f

〉

= − 1

S

ˆ
d3θ

ˆ
d3J δ(rc(θ,J)− r) ∂H

∂ϕc
f. (4.28)
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From this equation, it is immediately clear that radial torque appears only if there
are non-axisymmetric contributions to the Hamiltonian H. In contrast to this, the
radial particle flux in Eq. (4.27) does not necessarily vanish in the axisymmetric
case, where it is given by

Γ0
n =

1

S

ˆ
d3θ

ˆ
d3J δ(rc(θ,J)− r) ∂rc(θ,J)

∂θ
·Ω f0. (4.29)

To the lowest order in orbit width with rc(θ,J) = rϕ(pϕ) defined in Eq. (3.30), it is
possible to immediately resolve the δ via an integration over pϕ as

ˆ
dpϕ δ(rϕ(pϕ)− r) g(pϕ, . . . ) =

ˆ
drϕ

∣∣∣∣
dpϕ(rϕ)

drϕ

∣∣∣∣ δ(rϕ − r) g(pϕ(rϕ), . . . )

=

∣∣∣∣
dpϕ(rϕ)

drϕ

∣∣∣∣ g(pϕ(rϕ), . . . ) |rϕ=r. (4.30)

In this approximation, the axisymmetric flux in Eq. 4.29 vanishes and the total radial
flux is determined by the perturbation with

Γn = − 1

S

∣∣∣∣
dpϕ
drϕ

∣∣∣∣
ˆ

d3θ

ˆ
dJ⊥

ˆ
dJϑ

∂rϕ
∂(J⊥, Jϑ, pϕ)

· ∂H
∂θ

f

= − 1

S
sign

(
dpϕ
drϕ

) ˆ
d3θ

ˆ
dJ⊥

ˆ
dJϑ

∂H

∂ϕc
f. (4.31)

The torque density is proportional to the radial particle flux with

Tϕ = − 1

S

∣∣∣∣
dpϕ
drϕ

∣∣∣∣
ˆ

d3θ

ˆ
dJ⊥

ˆ
dJϑ

∂H

∂ϕc
f

=
dpϕ
drϕ

Γn. (4.32)

This is the flux-force relation introduced by Hirshman (1978) in the context of ax-
isymmetric plasmas and described in Shaing and Callen (1983) for non-axisymmetric
perturbations. The sign of dpϕ/drϕ is dependent on the sign of the charge in
Eq. (4.31), which means that the transport produced by the non-axisymmetric per-
turbation separates charges, it is non-ambipolar.

4.4 Hamiltonian perturbation

Let us consider a perturbed Hamiltonian of the form H = H0 + H̃. Actions J and
angles θ shall be defined for the unperturbed axisymmetric case with H0 which
then depends only on actions J . The Hamiltonian perturbation H̃ and the pertur-
bation of the distribution function, shall be time-harmonic with frequency ω (which
can also be zero) and written as a Fourier series in the canonical angles θ without
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constant part (it can be absorbed in H0 to define a new unperturbed axisymmetric
equilibrium),

H(t,J ,θ) = H0(t,J) + Re
∑

m 6=0

H̃m(t,θ,J) , (4.33)

where
H̃m = Hm(J) ei(m·θ−ωt) . (4.34)

In the kinetic equation for f = f(t,θ,J) in the perturbed system,

df

dt
=
∂f

∂t
+ {f,H} = L̂cf , (4.35)

we split f into an averaged part f̄ and an oscillating part f̃ ,

f = f̄ + f̃ , (4.36)

f̄ ≡ 〈f〉t,θ =
1

(2π)3t0

ˆ t0

0
dt

ˆ 2π

0
d3θ f(t,J ,θ) , (4.37)

〈
f̃
〉
t,θ

= 0 , (4.38)

where 〈〉t,θ denotes the average over canonical angles and over a sufficiently long
timescale t0 if H̃ depends on time explicitly. The latter average is not required
for a time-independent perturbation. At this point we make the assumption that
L̂c = L̂c(J) depends only on actions and not on angles. The operator L̂c acts in
velocity space v independently from position x. However, this distinction breaks
down in action-angle coordinates, where velocities are functions of both, actions
and angles. Thus we expect the assumption to be justified if the collision frequency
νc is of lower order than all canonical frequencies. A quantitative description for
the collisionality dependency will be offered in section (4.9) based on the universal
kinetic equation of resonant regimes.

In our specific case this means the following: since we are working on scales where
the gyrophase θ1 = φ has been averaged out from the very beginning, there are no
dependencies on it. Furthermore our problem is nearly axisymmetric, so the depen-
dency on θ3 = ϕc will enter only at higher order. However, θ2 = ϑc = στ/τb which
describes the phase of the bounce motion affects collisions. Especially orbits near
the trapped-passing boundary will spend significantly more time near the turning
points of marginally trapped orbits with v‖(ϑc,J) = 0, where collisions are most
likely to occur in the particle picture. This means that the limiting timescale is the
bounce frequency ωb, which should be much larger by module than the effective
collision frequency νc. In tokamaks, this limits the range of applicability of this ap-
proach to the low-collisional banana regime. As will become clear later, there is
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also a lower limit on νc for the applicability of quasilinear theory – a transition to a
non-linear regime analogous to the one from banana plateau to banana regime will
occur below this collisionality. At this point, collisionality will enter the results again
and special care needs to be taken regarding L̂c and its averaging.

To continue the construction of the perturbation theory, we split Eq. 4.35 written as

df

dt
=
∂f̄

∂t
+
∂f̃

∂t
+ {f̄ , H0}+ {f̃ , H0}+ {f̄ , H̃}+ {f̃ , H̃} =L̂cf̄ + L̂cf̃ , (4.39)

into an averaged part

∂f̄

∂t
+
〈
{f̃ , H̃}

〉
t,θ

=L̂cf̄ , (4.40)

and an oscillating part with zero (t,θ) average,

∂f̃

∂t
+ {f̄ , H̃}+ {f̃ , H0}+

(
{f̃ , H̃} −

〈
{f̃ , H̃}

〉
t,θ

)
=L̂cf̃ . (4.41)

Here, the Poisson bracket {f̄(J), H0(J)} of two angle-independent quantities is
identically zero and oscillating terms average out to zero.

4.5 Quasilinear approximation

Let us now construct a perturbation expansion from Eqs. (4.40) and (4.41), which
are still exact up to the assumption of a canonically averaged L̂c. The order of the
perturbation is set to be the amplitude of the Hamiltonian perturbation H̃/H0 from
(4.33). We start with the first order equation constructed from Eq. (4.41),

∂f1

∂t
+ {f0, H̃}+ {f1, H0} =L̂cf1 , (4.42)

and collect the remaining terms in

∂

∂t
(f̃ − f1) + {f̄ − f0, H̃}+ {f̃ − f1, H0}+

(
{f̃ , H̃} −

〈
{f̃ , H̃}

〉
t,θ

)
=L̂c(f̃ − f1) .

(4.43)

The zeroth order term f0 shall be sufficiently close to f̄ without dependency on
angles θ and will be specified later. In terms of action-angle variables with canonical
frequencies Ω, Eq. (4.42) becomes

∂f1

∂t
− ∂f0

∂J

∂H1

∂θ
+
∂f1

∂θ
·Ω = L̂cf1 . (4.44)
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Expanding f1 in Fourier harmonics in θ as in Eqs. (4.33-4.34), we obtain an equation
for each individual set of harmonic indices m,

−iωfm − im · ∂f0

∂J
Hm + im ·Ωfm =L̂cfm . (4.45)

At the low collisionality limit L̂cfm → 0, we use a Krook term L̂cfm = −νfmwith
infinitesimal scalar ν > 0. This approximation is justified from the results of section
2.3, where this approximation resulted in similar perturbed distribution functions,
as long as collisionality is not too low. A more detailed derivation based on the exact
solution will be performed later. The solution for fm with a Krook term follows as

fm = lim
ν→0+

Hm
m ·Ω− ω − iν

m · ∂f0

∂J
. (4.46)

At the resonance condition

m ·Ω− ω = 0 , (4.47)

the expression for fm will diverge if ν is set exactly to zero. The term iν retains
causality, i.e. the direction of time, and approaches the resonance from the correct
direction in the complex plane, as in the derivation of Landau damping. Still, we
have to keep this localized divergence in action space in mind when constructing
the zeroth order f0.

In Eq. (4.40), we assume f0 − f̄ and the collision term of second or higher order.
Retaining the locally divergent linear order term in the averaged Poisson bracket
term inside the zeroth order time evolution leads to the quasilinear time evolution
equation

∂f0

∂t
=−

〈
{f1, H̃}

〉
t,θ

, (4.48)

and a second-order equation for the averaged part

∂

∂t
(f̄ − f0) +

〈
{f̃ − f1, H̃}

〉
t,θ

=L̂cf̄ . (4.49)

The source term
〈
{f1, H̃}

〉
t,θ

obtained from the linear order solution causes f0 to

change in time even if collisions have no direct influence on it. Namely, Eq. (4.48)
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is evaluated to

∂f0

∂t
= −

〈
{f1, H̃}

〉
t,θ

=

〈
∂H̃

∂θ
· ∂f1

∂J
− ∂H̃

∂J
· ∂f1

∂θ

〉

t,θ

=
∑

m

〈
Re(iH̃)m · ∂f1

∂J
−m · ∂H̃

∂J
Re(if1)

〉

t,θ

=
∑

m

〈
1

2
Re

(
−iH̃?

mm ·
∂f̃m
∂J

+ if̃mm ·
∂H̃?

m

∂J

)〉

t,θ

=
1

2
Re
∑

m

{H̃?
m, f̃m} = −1

2
Re
∑

m

im · ∂
∂J

(H?
mfm) . (4.50)

Inserting the result from Eq. (4.48) yields

∂f0

∂t
= −1

2
Re
∑

m

im · ∂
∂J

(
H?
m lim

ν→0+

Hm
m ·Ω− ω − iν

m · ∂f0

∂J

)

=
1

2

∑

m

m · ∂
∂J

Im lim
ν→0+

|Hm|2
m ·Ω− ω − iν

m · ∂f0

∂J
. (4.51)

Using the relation

Im
1

x± oi
= ∓πδ(x) , (4.52)

for the δ distribution, the solution for the time evolution of f0 follows as

∂f0

∂t
=
∑

m

m · ∂
∂J
·Qm , (4.53)

with the quasilinear resonant term

Qm =
π

2
|Hm|2δ(m ·Ω− ω)m · ∂f0

∂J
. (4.54)

We have thus reached the main result of this section in Eq. (4.53) and (4.54), where
resonant diffusion occurs in action space around m · Ω − ω for f0, which should
remain close to the averaged f̄ .

In order to construct a higher orders perturbation theory, one would consider the
sum of the second and higher order Eqs. (4.43) and (4.49) given by

∂

∂t
(f − f0 − f1) + {f − f0 − f1, H}+

(
{f1, H̃} −

〈
{f1, H̃}

〉
t,θ

)
=L̂c(f − f1) ,

(4.55)

where the extraction of Eq. (4.49) is possible by averaging.
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4.6 Non-axisymmetric magnetic perturbation

For the intended application of NTV torque, we will introduce a non-axisymmetric
quasistatic magnetic perturbation with ω = 0 to the originally axisymmetric field.
We take into account only the magnetically non-resonant part of the perturbation
field, that does not change topology. In Boozer magnetic coordinates (see e.g. the
book of D’haeseleer et al. (1991)) such a perturbation can be fully described by
a change of the magnetic module B = |B| (see e.g. (Kasilov et al., 2014)). In
addition, Boozer coordinates have the specific property that covariant components
Bϑ and Bϕ are constant on each flux surface.

For the computation of the perturbation amplitude it is necessary to evaluate this
magnetic field modulus on the slightly distorted flux surfaces of the perturbed equi-
librium, which has been pointed out by Boozer (2006). We construct our pertur-
bation theory with orbits and canonical frequencies left unchanged from the ax-
isymmetric equilibrium but formally on those distorted flux surfaces. The magnetic
perturbation enters the guiding-centre Hamiltonian (3.7) via the parallel velocity
v‖ and the gyrofrequency ωc. The former is defined implicitly via Eqs. (3.11-3.12)
together with radius r,

pϑ = mαv‖
Bϑ(r)

B(r, ϑ, ϕ)
+
eα
c
Aϑ(r), (4.56)

pϕ = mαv‖
Bϑ(r)

B(r, ϑ, ϕ)
+
eα
c
Aϕ(r). (4.57)

Expanding up to first order via B = B0 +B1 and v‖ = v‖0 + v‖1 yields

pϑ −
eα
c
Aϑ −mαv‖0

Bϑ
B0

= −mαv‖0
B1

B0

Bϑ
B0

+mαv‖1
Bϑ
B0

+O((B1/B0)2), (4.58)

with a similar equation for pϕ. To balance the left-hand side, we require

v‖1 = v‖0
B1(r, ϕ, ϑ)

B0(r, ϑ)
. (4.59)

Up to linear order in the perturbation field, our Hamiltonian is thus given by H =

H0 +H1 +O((B1/B0)2), with

H0 =
mαv

2
‖0

2
+ J⊥ωc0,

H1 =
(
J⊥ωc0 +mαv

2
‖0
) B1

B0
. (4.60)

It can be shown that in Hamada coordinates a similar choice is possible setting
v‖1 = v‖0B0/B1 to the inverse value.
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With the non-axisymmetric magnetic perturbation given as a series in the toroidal
angle

B1(ϑ, ϕ) =
∑

n

Bn(ϑ)einϕ, (4.61)

Fourier modes of H1 in canonical θ follow via bounce averages along unperturbed
orbits from Eq. (3.116),

Hm =

〈(
eα
mαc

J⊥B0(ϑ) +mαv
2
‖0

)
Bn(ϑ)

B0(ϑ)
einqϑ−i(m2+nqδtp)ωbτ

〉

b

, (4.62)

where m = (0,m2, n) and δtp = 0 for trapped orbits and δtp = 1 for passing orbits.
Resonances m ·Ω = m2ωb + nΩϕ = 0 according to Eq. (4.47) will occur for

(m2 + nqδtp)ωb + n (ΩtE + 〈ΩtB〉b) = 0, (4.63)

where ΩtE = 〈ΩtE〉b due to the approximation of a constant electric potential on a
flux surface and with negative value of ωb for counter-passing particles. The reso-
nance with m2 = 0 for trapped particles is the superbanana resonance

ΩtE + 〈ΩtB〉b = 0, (4.64)

whereas for passing particles, m2 = 0 corresponds to the transit resonance

qωb + ΩtE + 〈ΩtB〉b = 0, (4.65)

which is the only remaining resonance in the inifinite aspect ratio limit, where
it is reduced to a Cherenkov (TTMP) resonance. We need not consider the case
n = 0, since the axisymmetric part of the perturbation can be absorbed in the un-
perturbed field. Mixed resonances with m2, n 6= 0 require a combination of poloidal
bounce/transit motion and toroidal precession drift. Shaing et al. (2009a) has la-
belled this case as the bounce-transit and drift resonance and we will also refer to it
as drift-orbit resonance.

4.7 Quasilinear resonant transport regimes and NTV
torque

With the Hamiltonian perturbation as a Fourier series in θ, we can evaluate

∂H

∂ϕc
= Re(inH̃m) = −nIm(H̃m), (4.66)

where we recall that partial derivatives of H and harmonic number n with respect
to ϕ and ϕc are the same, since those angles differ only by a term independent from
ϕc.
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The toroidal torque density in Eq. 4.28, with rc only dependent on canonical θ2 = ϑc

for guiding-centre orbits in the axisymmetric equilibrium, becomes

Tϕ =
1

S

∑

m

n

ˆ
d3θ

ˆ
d3J δ(rc(ϑc,J)− r)Im(H̃m) Re (f̃m). (4.67)

We evaluate the termˆ
dϕcIm(H̃m) Re (f̃m) =

ˆ
dϕcIm(H̃m) Re (f̃m)

=

ˆ
dϕcIm(Hme

im·θ) Re

(
lim
ν→0+

Hm
m ·Ω− iν

eim·θ
)
m · ∂f0

∂J

= −1

2

ˆ
dϕc lim

ν→0+

|Hm|2 ν
m ·Ω + ν2

m · ∂f0

∂J

= −π
2

ˆ
dϕc |Hm|2 δ(m ·Ω)m · ∂f0

∂J
. (4.68)

This expression is the integral over the quasilinear resonant term Qm from Eq. 4.54
for ω = 0, which we use in the notation for the torque density written in its final
form for the quasilinear limit,

Tϕ = − 1

S

∑

m

n

ˆ
d3θ

ˆ
d3J δ(rc(ϑc,J)− r)Qm. (4.69)

In the small orbit width approximation from Eq. (3.30), that allows trivial integra-
tion over all three angles, the torque becomes

Tϕ = −(2π)3

S

∣∣∣∣
dpϕ
drϕ

∣∣∣∣
∑

m

n

ˆ
dJ⊥

ˆ
dJϑQm (4.70)

= −
|eαψ′pol|

c
Γn, (4.71)

with the linked radial particle flux from the flux-force relation (4.32) given by

Γn = −(2π)3

S
sgn

(
dpϕ
drϕ

)∑

m

n

ˆ
dJ⊥

ˆ
dJϑQm. (4.72)

Switching to velocity space variables (v, η) defined in Eqs. (3.106-3.107), we com-
pute the Jacobian

∣∣∣∣
∂(J⊥, Jϑ)

∂(v, η)

∣∣∣∣ =

∣∣∣∣
∂(J⊥, H0)

∂(v, η)

∣∣∣∣
∣∣∣∣
∂(J⊥, H0)

∂(J⊥, Jϑ)

∣∣∣∣
−1

=
1

ωb

∣∣∣∣
∂(J⊥, H0)

∂(v, η)

∣∣∣∣ =
1

ωb

∣∣∣∣∣
ηm2

αvc
e

m2
αv

2c
2eα

mv 0

∣∣∣∣∣

=
m3
αv

3c

2eαωb
. (4.73)
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After trivial integration over angles, the integral for the particle flux is given by

Γ =
2π2m3

αc

eαS
sgn

(
dpϕ
drϕ

)∑

m

n

ˆ ∞
0

dv v3

ˆ 1/Bmin

0
dη τbQm (4.74)

in those variables.

4.8 Transport coefficients

One of the main differences of the action-angle approach to the standard local neo-
classical ansatz is the inherent non-locality of quantities, which we limited by assum-
ing small orbit width with respect to unperturbed profiles. This means evaluating
the unperturbed distribution function with profiles given in rϕ with

f0(J) =
nα(rϕ(pϕ))

(2πmαT (rϕ(pϕ)))3/2
exp

(
−H0(J⊥, pϕ, Jϑ)− eΦ(rϕ(pϕ))

T (rϕ(pϕ))

)
. (4.75)

Consequently, the perpendicular and poloidal actions appear only in the Hamilto-
nian H0, so separating the dependency of f0 on H0 we obtain

∂f0(J)

∂J⊥
=
∂f0(H0, pϕ)

∂H0

∂H0(J)

∂J⊥
= −Ωφ

T
f0, (4.76)

∂f0(J)

∂Jϑ
=
∂f0(H0, pϕ)

∂H0

∂H0(J)

∂Jϑ
= −Ωϑ

T
f0. (4.77)

For the remaining terms, derivatives over pϕ can be replaced by radial derivatives,

∂f0(J)

∂pϕ
=
∂f0(H0, pϕ)

∂pϕ
+
∂f0(H0, pϕ)

∂H0

∂H0(J⊥, Jϑ, pϕ)

∂pϕ

=
drϕ
dpϕ

f0(H0, r)

∂r
− Ωϕ

T
f0. (4.78)

The radial derivative of the local Maxwellian f0,

f0(H0, r)

∂r
= (A1 +A2u

2)f0, (4.79)

with normalised thermal velocity u = v/vTα and vTα =
√

2Tα/mα, is written in
terms of thermodynamic forces

A1 =
1

nα

∂nα
∂r

+
eα
Tα

∂Φ

∂r
− 3

2Tα

∂Tα
∂r

, (4.80)

A2 =
1

Tα

∂Tα
∂r

. (4.81)
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The expression containing the gradient of f0 in action space appearing in the quasi-
linear term Qm becomes

m · ∂f0

∂J
=

drϕ
dpϕ

f0(H0, r)

∂r
− m ·Ω

T
f0. (4.82)

For our quasi-static perturbation, the last term vanishes due to the resonance con-
dition, and we can directly identify the expressions for radial transport coefficients
D11 and D12 for the flux defined via

Γ = −nα(D11A1 +D12A2), (4.83)

from Eq. (4.74). Eliminating integration over η in (4.74) by the Dirac δ of the
resonance condition inside Qm we obtain

D1k = sgn(ψ′poleα)
π3/2n2c2vTα

e2
αS

ˆ ∞
0

u3e−u
2

×
∑

m2

∑

Res

τb|Hm|2
∣∣∣∣m2

∂ωb
∂η

+ n
∂Ωϕ

∂η

∣∣∣∣
η=ηres

wk, (4.84)

where w1 = 1 and w2 = u2.

Since we have directly derived the flux-force relation Eq. (4.32) in terms of radial
particle flux in Eq. (4.27), this result for small orbit width does not depend on
details of the collision operator, which we have chosen as a Krook operator here.
In particular, momentum conservation should plays no role in resonant transport.
For the superbanana plateau and bounce resonance regimes, only trapped particles
contribute, so the reason is the cancellation of parallel momentum generated by the
perturbation during a single bounce period. For transit-drift resonances of passing
particles a different explanation is required: since the total energyH0 is not changed
by a quasi-static perturbation and resonances with the gyrophase play no role for
bulk particles, the perpendicular invariant J⊥ is conserved in addition. This makes
a change in parallel velocity v‖(x, H0, J⊥) and of bounce frequency ωb(rϕ, H0, J⊥)

proportional to the bounce-averaged parallel momentum of passing particles only
possible through the spatial coordinates x of the guiding-centre, where rϕ represents
the radius. For not too large radial electric fields the variation of the potential energy
along the guiding centre orbit with finite radial width is small (of the order of Larmor
radius) compared to the thermal energy. In this case of sub-sonic rotations (small
toroidal Mach number Mt ≡ RΩtE/vT with major radius R and thermal velocity
vT ), the contribution of the change in kinematic momentum to the overall change
of the canonical momentum is small of the same order. Therefore, the momentum
restoring term in the collision operator provides a correction proportional to the
toroidal Mach number assumed to be small here.
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4.9 Transition to non-linear transport regimes

Despite the frequently used terminology of the low-collisionality limit, the picture
becomes more complicated due to the combination of the smallness of the perturba-
tion and collisionality. As we have seen in section 2.3 a Krook collision model is only
justified if collisionality is not too low. The quasilinear limit described in section 2.4
relies on sufficient decorrelation of the orbit during the non-linear super-bounce
time in Eq. (1.76). In this case, which is valid for an infinitesimal perturbation
amplitude, collisionality does not appear in the final expressions, as we have seen
in the previous section. In contrast to that, if the perturbation amplitude is kept
small but finite and the limit of collisionality is taken to zero, the non-linear limit of
section 2.5 is relevant instead. In a more realistic model, both, perturbation ampli-
tude and collisionality are kept small but finite. For this purpose we will rely on a
numerical solution of the perturbed distribution function, as described in (2.6).

An important limitation of the approach is the separate treatment of each harmonic
of the perturbed Hamiltonian in Eq. (4.34). In the quasilinear limit, this is simply
possible because canonical harmonics are naturally decoupled. Moving towards the
non-linear case, we need to assume the resonances with the dominant contributions
to be well-separated in phase-space. This is a reasonable assumption as long as the
resonances are not too close to the trapped passing boundary, but the latter case
should be checked more carefully, possibly depending on the specific problem.

We first introduce our collision model, which we choose as a linearised Fokker-
Planck operator in velocity space describing collisions with a Maxwellian back-
ground plasma. Coefficients of the collision operator are evaluated in the unper-
turbed system, where violation of axial symmetry in the background field particle
distribution f00 is neglected. This approximation may not be valid in the narrow
phase space region around the resonance. However, diffusion coefficients are the
velocity space integrals, the integral effect of this local violation is negligible small.

The differential operator specified in Eq. (4.4) is then applied with coefficients eval-
uated for f00, with

L̂Cf =
∂

∂vk

(
∂

∂vl

(
Dkl(v) f

)
− F k(v) f

)
. (4.85)

This expression has the form of a divergence, so in arbitrary coordinates parametris-
ing velocity space by v = v(z), it becomes

L̂Cf =
1

Jz

∂

∂zi

[
Jz

(
∂

∂zj

(
Dij

(z) f
)
− F i(z)

)]
, (4.86)

with Jacobian Jy of the transformation and implicit dependence of the coefficients
by y. If canonically conjugated variables (x,p), (θ,J), or z̄ = (θ̄, J̄) are used,
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the Jacobian becomes one. Since action-angle-variables mix velocity and spatial
components in phase-space, the sum for i and j runs over 6 dimensions instead of
just 3 for variables purely in velocity space.

To justify the canonical averaging of diffusion coefficients, we first transform to
action-angle variables (θ,J). Since all quantities are evaluated in the unperturbed
axisymmetric field, there are no dependencies on the canonical toroidal angle θ3 =

ϕc. A transformation to variables (θ̄, J̄) adapted to the resonance condition replaces
this angle by

θ̄ = θ̄3 = m · θ + θ̄0, (4.87)

and leaves the two remaining angles θ̄1 = θ1 = φc and θ̄2 = θ2 = ϑc unchanged.
Canonical averaging of Eq. (4.86) over the non-resonant angles θ̄1,2 can be imme-
diately performed, since it will not influence transport across the resonance. The
originally axisymmetric diffusion coefficients will not depend on θ̄ after the transfor-
mation, so this means that the diffusion coefficients are already in full canonically
averaged form. However, derivatives over θ̄ will stay in the collision operator for
now, which can be expanded to

L̂Cf =
∂

∂z̄i

[(
∂

∂z̄j

(〈
Dij

(z̄)

〉
θ
f
)
−
〈
F i(z̄)

〉
θ
f

)]

+
∂

∂θ̄

[(
∂

∂z̄j

(〈
D3j

(z̄)

〉
θ
f
)
−
〈
F 3

(z̄)

〉
θ
f

)]
,

with i and j only running over action indexes 4 − 6. To justify that we can neglect
derivatives of f with respect to the resonant phase θ̄, we make use of the fast phase
decorrelation as compared to the collision time (Kasilov et al., 1997), which allows
for an estimate of second derivatives over actions being of higher order than the
remaining terms. Finally, we obtain a collision operator with canonically averaged
diffusion coefficients acting purely in action space,

L̂Cf =
∂

∂J̄α

[(
∂

∂J̄β

(〈
Dαβ

(J̄)

〉
θ
f
)
−
〈
Fα(J̄)

〉
θ
f

)]
. (4.88)

Neglecting the drag term and retaining only the diffusive part responsible for scat-
tering across the resonance, we finally obtain the form of Eq. (2.26) required for the
application of the weakly non-linear kinetic theory with

L̂Cf ≈
∂2

∂J̄α∂J̄β

(〈
Dαβ

(J̄)

〉
θ
f
)
. (4.89)

Substituting back the original actions according to Eq. (2.35), we use common ve-
locity space variables (v, η, pϕ) and their transformation to J = (J⊥, Jϑ, pϕ) given
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via Eqs. (3.106-3.107). Furthermore, we notice that we can neglect derivatives with
respect to pϕ, which enter only in the next order in Larmor radius as compared to
the remaining variables due to

∂pϕ
∂v

∂

∂pϕ
= − mαc

eα
√
gBϑ

∂r

∂ϕ

∂

∂rϕ
≈ qRρL

r2

1

v
� 1

v
. (4.90)

The resulting resonant diffusion coefficient from Eq. (2.35) is thus given by

Dres =

(
1

Ω̄′
∂Ω̄

∂v

)2

〈Dvv〉θ +

(
1

Ω̄′
∂Ω̄

∂η

)2

〈Dηη〉θ , (4.91)

since off-diagonal components are zero and 〈Dvv〉θ = Dvv for constant electric po-
tential on a flux surface. Transforming η to the pitch-angle χ by

η =
sin2 χ

B
, (4.92)

we can use the standard expressionsDvv andDχχ (see e.g. the books of Dnestrovskii
and Kostomarov (2012) or Helander and Sigmar (2005)) in the collision operator
for a Maxwellian background,

L̂Cf =
1

v2

∂

∂v
v2Dvv(v)

(
∂f

∂v
+
mαv

Tα
f

)
+

1

sinχ

∂

∂χ
sinχDχχ ∂f

∂χ
. (4.93)

The canonically averaged Dηη follows from the bounce average

〈Dηη〉θ = Dχχ

〈(
∂η

∂χ

)2
〉

b

= Dχχη

(〈
1

B

〉

b

− η
)
. (4.94)

Thus, the final form of the diffusion coefficient describing scattering across the res-
onance is

Dres = Dvv

(
1

Ω̄′
∂Ω̄

∂v

)2

+Dηηη

(〈
1

B

〉

b

− η
)(

1

Ω̄′
∂Ω̄

∂η

)2

. (4.95)

To obtain the solution for the perturbed distribution function, coefficient is trans-
formed to the dimensionless D via Eq. 2.42 appearing in the dimensionless kinetic
equation (2.45).

As it turns out, for our purpose, this equation only needs to be solved once for var-
ious values of D, and the tabulated results can be re-used. This is possible because
quantity of interest is the toroidal torque density, where the distribution function
appears inside an integral in Eq. 4.28. Using the form of the single-harmonic Hamil-
tonian perturbation defined in angle θ̄ from Eq. (1.54) we obtain the torque density

Tϕ = −mϕ

S

ˆ
d3θ

ˆ
d3J δ(rc(θ1,2,J)− r)|Hm| sin θ̄ f1

= −mϕ

S

ˆ
d3θ̄

ˆ
d3J̄ δ(rc(θ̄1,2, J̄)− r)|Hm| sin θ̄ f1

= −mϕ

S

ˆ
d2θ̄1,2

ˆ
d3J̄ δ(rc − r)|Hm|

ˆ π

−π
dθ̄ sin θ̄ f1. (4.96)
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Since contributions come only from the resonant zone, we can insert a Dirac δ term
for the resonant action J̄ ,

ˆ
d3J̄ ≈

ˆ
d3J̄ δ(J̄ − J̄res(J̄1,2))

ˆ ∞
−∞

d∆J̄ (4.97)

=

ˆ
d3J̄ |Ω̄′|δ(Ω̄)

ˆ ∞
−∞

d∆J̄ . (4.98)

The term has been scaled with the total contribution of the integral over ∆J̄ close
to the resonance. In this term we substitute via the dimensionless variable y from
Eq. (2.37) and distribution function g from Eq. (2.44) to obtain

ˆ ∞
−∞

d∆J̄ f1 =

∣∣∣∣
Hm
Ω̄′

∣∣∣∣
1/2 ˆ ∞

−∞
dy f1

=

∣∣∣∣
Hm
Ω̄′

∣∣∣∣m ·
∂f0

∂J

ˆ ∞
−∞

dy g. (4.99)

It is clear that contributions to this integral can come only from the symmetric part
of g in y. According to Figs. 2.5 and 2.6, we suspect that this part will reach its
maximum in the quasiliniear limit. The nonlinearity parameter Ω̄′ cancels out in
the integral but remains in the diffusion coefficient D determining the solution for
g. Adding an integral over θ̄ normalised by 1/2π to restore the complete form in
phase-space of the initial part of the integral, we can transform back to original
actions and angles with

Tϕ = − mϕ

2πS

ˆ
d3θ

ˆ
d3J δ(m ·Ω)δ(rc − r)|Hm|2m ·

∂f0

∂J

ˆ ∞
−∞

dy

ˆ π

−π
dθ̄ sin θ̄ g.

(4.100)

This expression differs to the quasiliniear limit obtained in Eq. (4.69) only via a
factor defined via the integral over g on the right end of the expression,

Tϕ = −mϕ

S

ˆ
d3θ

ˆ
d3J δ(rc − r)QmΘ. (4.101)

Since resonant action and angle are integrated, the only parameter that enters in
Θ is the dimensionless D from Eq. (2.42) with Dres given from Eq. (4.95) in the
plasma. This non-linear attenuation factor (the reason for the name will become
clear immediately) is defined as

Θ = Θ(D) =
1

π2

ˆ ∞
−∞

dy

ˆ π

−π
dθ̄ sin θ̄ g, (4.102)

using the appropriate normalisation.
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Quasilinear limit

In the quasilinear limit D � 1, we obtain the value Θ = 1, which can be checked by
inserting the limiting solution for g from Eq. (2.65) into the integral. Namely in this
case,

Θ(D � 1) = −D
−1/3

π

ˆ ∞
−∞

dyRe
[ˆ π

−π
dθ̄ sin θ̄ieiθ̄Hi(−iD−1/3y)

]

= D−1/3

ˆ ∞
−∞

dyRe
[
Hi(−iD−1/3y)

]

=
D−1/3

π

ˆ ∞
−∞

dyRe
[ˆ ∞

0
dw exp

(
w3

3
− iD−1/3yw

)]

= 2

ˆ ∞
0

dw δ(w)
w3

3
= 1,

in the limit of D → ∞. Alternatively, inserting the approximate solution for g from
Eq. 2.48, where the resonant diffusivity parameter D has been replaced by a Krook
term −ν̄ leads to the same result as above,

Θν̄ =
1

π2

ˆ ∞
−∞

dy

ˆ π

−π
dθ̄ sin θ̄ Re

(
−ieiθ̄

iy + ν̄

)

=
1

π

ˆ ∞
−∞

dy
i

y − iν̄
=

1

π

ˆ ∞
−∞

dy
ν̄

y2 + ν̄2
= 1. (4.103)

Those collisionality-independent results confirm the ones of section 4.7 with torque
density in Eq. (4.69) obtained via the classical quasilinear method of Kaufman
(1972) and Hazeltine et al. (1981) employing an infinitesimal Krook collision term
for the actual collision operator.

Non-linear limit

In the non-linear limit D � 1, direct evaluation of Eq. (4.102) via the first-order
term g1 leads to difficulties with singularities near the separatrix I = 2. In this case,
we make use of the original dimensionless kinetic equation (2.45). First, we switch
to integration variables (I, θ̄) with

ˆ ∞
−∞

dy =
∑

σ=±

ˆ ∞
2

dI

2
√
I + 2 cos θ̄

, (4.104)
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leading to distinct terms for superpassing and supertrapped region,

Θ =
1

2π2

∑

σ=±

(ˆ ∞
2

dI

ˆ π

−π
dθ̄

sin θ̄√
I + 2 cos θ̄

g +

ˆ 2

−2
dI

ˆ θ̄+

θ̄−
dθ̄

sin θ̄√
I + 2 cos θ̄

g

)

=
1

2π2

∑

σ=±

(ˆ ∞
2

dI

ˆ π

−π
dθ̄
√
I + 2 cos θ̄

∂g

∂θ̄
+

ˆ 2

−2
dI

ˆ θ̄+

θ̄−
dθ̄
√
I + 2 cos θ̄

∂g

∂θ̄

)
.

(4.105)

where we have used partial integration together with periodicity/continuity condi-
tions. The partial derivative of g is taken with I held fixed and from Eq. (2.73) we
identify

σ
√
I + 2 cos θ̄

∂g(θ̄, I)

∂θ̄
=

(
y
∂

∂θ̄
− sin θ̄

∂

∂y

)
g(θ̄, y)

= D
∂2g(θ̄, y)

∂y2

= 4D
√
I + 2 cos θ̄

∂

∂I

(√
I + 2 cos θ̄g(θ̄, I)

)
, (4.106)

where we have used the original equation (2.45). Inserting this in the integrals (4.105)
and performing one more partial integration yields

Θ = −D
π2

∑

σ=±
σ

(ˆ ∞
2

dI

ˆ π

−π
dθ̄

∂g

∂I
+

ˆ 2

−2
dI

ˆ θ̄+

θ̄−
dθ̄

∂g

∂I

)
. (4.107)

This expression allows us to insert the zeroth order solution from Eqs. (2.75) and
(2.86). Note that this works despite g0 cancelling out in the original integral (4.102)
because by the replacement via the kinetic equation we are actually also integrating
over g1, containing derivatives ∂g0

∂I , while avoiding singularities. Those are

∂g0

∂I
= ḡ′0(I)− σ

2
√
I + 2 cos θ̄

, (4.108)

with ḡ′0(I) = 0 for supertrapped and

ḡ′0(I) = σπ

(ˆ π

−π
dθ̄
√
I + 2 cos θ̄

)−1

= σ
π

4
√
I + 2E

(
4

2+I

) (4.109)

for the superpassing region.
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The term for the supertrapped region can be immediately computed by adding up
σ± and a change of the integration order,

−
∑

σ=±
σ

ˆ 2

−2
dI

ˆ θ̄+

θ̄−
dθ̄

∂g

∂I
=

ˆ π

−π
dθ̄

ˆ 2

−2 cos θ̄
dI

1√
I + 2 cos θ̄

=

ˆ π

−π
dθ̄
√

2 + 2 cos θ̄ = 16. (4.110)

In the superpassing region, we need to evaluate

2σ

ˆ ∞
2

dI

ˆ π

−π
dθ̄

∂g

∂I
=

ˆ ∞
2

dI

ˆ π

−π
dθ̄

[
1√

I + 2 cos θ̄
− π

(ˆ π

−π
dθ̄
√
I + 2 cos θ̄

)−1
]

=

ˆ ∞
2

dI

ˆ π

−π
dθ̄


 1√

I + 2 cos θ̄
− π

2
√
I + 2E

(
4

2+I

)




(4.111)

where both terms formally diverge at I →∞. Swapping again the integration order
in the first term, we obtain

ˆ ∞
2

dI

ˆ π

−π
dθ̄

1√
I + 2 cos θ̄

= lim
I→∞

ˆ π

−π
dθ̄

ˆ I

2
dI ′

1√
I ′ + 2 cos θ̄

= lim
I→∞

2

ˆ π

−π
dθ̄
(√

I + 2 cos θ̄ −
√

2 + 2 cos θ̄
)

= 4π lim
I→∞

√
I − 16.

= 4π

(ˆ ∞
2

dI

2
√
I

+
√

2

)
− 16. (4.112)

The finite part of this integral cancels out with the supertrapped contribution and
we move the divergent term to the last remaining integral arising from ḡ′0(I) in the
superpassing region to obtain

Θ(D � 1) = D
4
√

2

π


1− 1

2
√

2

ˆ ∞
2

dI


 π

2
√
I + 2E

(
4

2+I

) − 1√
I




 . (4.113)

The last term in the bracket that is subtracted from 1 can be evaluated numerically
as ≈ 0.0250500 to yield

Θ(D � 1) ≈ 1.7555267 ·D. (4.114)

Transition region

For the remaining transition region withD of order one, we can store sampled values
of the smooth function Θ(D) based on the numerical solution described in section
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Figure 4.1: Attenuation factor Θ (�) depending on diffusion parameter D. Quasi-
linear (solid line) and non-linear limit (dashed) Θ ≈ 1.7555267 ·D.

(2.6), and interpolate them according to the actual value for D during bounce in-
tegrals. The dependency is shown in Fig. 4.1. For a given perturbation amplitude
|Hm|, in the non-linear low-collisionality limit D � 1, the asymptotic dependency
Θ(D) is linear. For D � 1, the quasilinear case Θ = 1 without attenuation is
reached.



Chapter 5

Results and discussion

5.1 Quasilinear resonant transport regimes

The content of this section can also be found in Albert et al. (2016a), V. Numerical
implementation and results, and Conclusion formulated by the author and including
some minor modifications.

In the scope of the quasilinear ansatz of section 4.5, analytical expressions for trans-
port coefficients obtained within the Hamiltonian formalism agree with the corre-
sponding expressions obtained earlier for particular resonant regimes within the
validity domains of those results (see appendix B for details). In particular, the
agreement with formulas for the superbanana plateau regime, which have been up-
dated recently for a general tokamak geometry by Shaing (2015), is exact. One in-
consistency in the treatment of passing particles has been found (see appendix B.5)
in comparison to the analytical formulas for bounce-transit resonances of Shaing
et al. (2009a). In addition, it has been demonstrated that momentum conservation
of the collision operator plays a minor role in resonant regimes in general as long
as the toroidal rotation is sub-sonic, which can be seen from the comparison with
runs from the code NEO-2, where a full momentum-conserving collision operator is
employed.

In addition to the analytical assessment, transport coefficients from Eq. (4.84) have
been computed numerically in the newly developed code NEO-RT for the general
case of a perturbed tokamak magnetic field specified in Boozer coordinates. Bounce
averages are performed via numerical time integration of zero order guiding-centre
orbits along the field lines as specified in Eq. (3.116). An efficient numerical proce-
dure for finding the roots in Eq. (4.63) is realized using the scalings

ωb = uω̄b(η), (5.1)

〈ΩtB〉b = u2
〈
Ω̄tB

〉
b
. (5.2)
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Normalized frequencies ω̄b and Ω̄tB (relatively smooth functions) are precomputed
on an adaptive η-grid and interpolated via cubic splines in later calculations.

For testing and benchmarking, a tokamak configuration with circular concentric flux
surfaces and safety factor shown in Fig. 5.1 is used (the same as in Kasilov et al.
(2014)) and results are compared to calculations from the NEO-2 code. The pertur-
bation field amplitude in Eq. (4.60) is taken in the form of Boozer harmonics

Bn = εMB0(ϑ)eimϑ.

Two kinds of perturbations are considered here: a large scale perturbation with
(m,n) = (0, 3) referred below as “RMP-like case” because of the toroidal wavenum-
ber typical for perturbations produced by ELM mitigation coils, and a short scale
perturbation with (m,n) = (0, 18) typical for the toroidal field (TF) ripple. The
remaining parameters are chosen to be representative for a realistic medium-sized
tokamak configuration. In the plots, transport coefficients D1k are normalized by
(formally infinitesimal) ε2

M times the mono-energetic plateau value

Dp =
πqv3

T

16R ω̄2
c

, (5.3)

where R is the major radius, and the reference gyrofrequency ω̄c is given by the
(0, 0) harmonic of ωc. Radial dependencies are represented by the flux surface aspect
ratio A = (ψator/ψtor)

1/2R/a of the current flux surface where a is the minor radius
of the outermost flux surface and ψator the toroidal magnetic flux at this surface.
The radial electric field magnitude is given in terms of the toroidal Mach number
Mt ≡ RΩtE/vT . In all plots there are at least 4 data points between subsequent
markers.

Fig. 5.1 shows the radial dependence of the transport coefficient D11 in the super-
banana plateau regime for the RMP-like perturbation for both positive and negative
radial electric field. For this benchmarking case the relation between toroidal pre-
cession frequencies due to the E ×B drift, ΩtE , and due to the magnetic drift ΩtB,
has been fixed by setting the reference toroidal magnetic drift frequency Ωref

tB ≡
cTα/(eαψ

a
tor) (not the actual ΩtB) equal to ΩtE . Additional curves are shown for cal-

culations where the magnetic shear term (dq/dr) in Eq. (3.109) has been neglected.
The results are compared to the analytical formula for the large aspect ratio limit
by Shaing et al. (2009b). Resonance lines in velocity space are plotted below the
radial profiles for a flux surface relatively close to the axis (A = 10) and one further
outwards (A = 5). Here ∆η̄ = (η − ηtp)/(ηdt − ηtp) is the distance to the trapped
passing boundary ηtp normalized to the trapped region between trapped-passing
boundary ηtp and deeply trapped ηdt. For flux surfaces with A > 10 magnetic shear
plays a small role due to the flat safety factor profile in the present field configura-
tion: The diffusion coefficient D11 is nearly identical to the result without shear and
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Figure 5.1: Radial dependence of superbanana plateau D11 (upper plots) in the
RMP case for Mach number Mt = 0.036 (left) and −0.036 (right). Comparison
of Hamiltonian approach (NEO-RT) to analytical formula by Shaing et al. (2009b)
(solid blue line). Results with (black �) and without magnetic shear (red �) in
the magnetic drift frequency (3.109). A safety factor profile (dash-dotted green) is
shown on the second axis of the upper right plot. The lower plots show resonance
lines ranging from deeply trapped (∆η̄ = 0) to trapped passing boundary (∆η̄ = 1)
at flux surfaces of aspect ratio A = 5 (solid) and A = 10 (dashed).

stays close to the analytical result for the large aspect ratio limit. For aspect ratio
A = 10, the agreement between NEO-2 calculations and large aspect ratio limit of
Shaing et al. (2009b) has been demonstrated earlier by Kasilov et al. (2014). At
larger radii, where the q profile becomes steep, a significant deviation between the
cases with and without magnetic shear term is visible. This can be explained by the
strong shift of the resonance lines due to the shear term in the rotation frequency
ΩtB that is visible in lower plots. For both signs of the electric field, the resonant
ηres is closer to the trapped passing boundary when shear is included.

In Figs. 5.2-5.3 the radial electric field dependence of non-ambipolar transport in-
duced by drift-orbit resonances with magnetic drift neglected (ΩtB set to zero) is
pictured. Here, several canonical modes m2 contribute for both, trapped and pass-
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Figure 5.2: Drift-orbit resonances with neglected magnetic drift: Mach number de-
pendence of D11 (left) and the ratio D12/D11 (right) for an RMP-like perturbation
at A = 10. Comparison of Hamiltonian approach (black �), sum of Hamiltonian
results and ν −√ν regime by Shaing et al. (2010) (red �), and results from NEO-2
at collisionality ν? = 3 · 10−4 (solid blue line).

ing particles.

In Fig. 5.2 the Mach number dependence of transport coefficient D11 and the ratio
D12/D11 is plotted for this regime for an RMP-like perturbation (n = 3). NEO-2
calculations shown for the comparison have been performed at rather low collision-
ality (see the caption) characterized by the parameter ν∗ = 2νqR/vT where ν is the
collision frequency. In addition, also the curves with the sum of diffusion coefficients
in the collisional ν −√ν regime from the joint formula of Shaing et al. (2010) and
resonant contributions from the Hamiltonian approach are shown.

For Mt < 0.02, in contrast to the superbanana plateau regime, collisionless transport
is small compared to collisional effects. Between Mt = 0.02 and 0.04 the sum of
Hamiltonian and ν −√ν results for D11 is clearly below NEO-2 values. The reason
for this are contributions near the trapped passing boundary, which are illustrated in
Fig. 5.3 at Mt = 0.028. There the integrand in Eq. (4.84) for the mode m2 with the
strongest contribution is shown together with the resonance line in velocity space.
For Mt > 0.04 there is a close match between the results with slightly lower D11

values from NEO-2 due to remaining collisionality effects.

It should be noted that validity of the “collisionless” Hamiltonian model cannot be
accessed with the help of a simple Krook model although this model is fully adequate
for the present derivations. The details of the collision model are not important as
long as the collisional width of the resonant line in velocity space is smaller than the
distance from that line to the trapped-passing boundary where the topology of the
orbits changes abruptly. This criterion is much more restrictive than the smallness of
the collision frequency compared to the bounce frequency suggested by the Krook
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Figure 5.3: Drift-orbit resonances, RMP at A = 10 with Mt = 0.028. Dependency of
the subintegrands in Eq. (4.84) on the normalized velocity u for the dominant mode
(solid black line) of passing (left, m2 = −3) and trapped particles (right, m2 = −1)
and resonance lines for these modes (red�, right axis). Significant contributions are
visible where the resonance is close to the trapped passing boundary ηtp = 4.6 ·10−5.

model. At small Mach numbers where the resonant line approaches the trapped-
passing boundary rather closely (see Fig. 5.3), the applicability of the “collisionless”
approach is violated at much lower collisionalities than one could expect from the
Krook model, and in that case a collisional boundary layer analysis including the res-
onant interaction is needed. As one can see from Fig. 5.2, for such transitional Mach
numbers where both, ν − √ν regime and resonant regime are important, a simple
summation of the separate contributions from these regimes obtained in asymptoti-
cal limits cannot reproduce the numerical result, similarly to the observation of Sun
et al. (2010). With increasing Mach numbers, the resonant curve gets more sep-
arated from the trapped-passing boundary, and the collisionless analysis becomes
sufficient, as visible for higher Mach numbers in Fig. 5.2.

Fig. 5.4 shows the Mach number dependence ofD11 as well asD12/D11 for a toroidal
field ripple (n = 18) together with the analytical ripple plateau value Boozer (1980)
and results for finite collisionality from NEO-2. At low Mach numbers Mt < 0.01

collisional effects are again dominant. A resonance peak of passing particles is visi-
ble for D12/D11 at Mt = 2.8 · 10−3. In the intermediate region between Mt = 0.01

and 0.05 oscillations due to trapped particle resonances are shifted and reduced in
the collisional case. For Mt > 0.05 Hamiltonian results converge towards the rip-
ple plateau. A small deviation of NEO-2 values for D11, which is of the order of
Mach number is most likely caused by the low Mach number approximation used in
NEO-2.

Finally, in Fig. 5.5 the Mach number dependence of D11 for the RMP case is plot-
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Figure 5.4: Mach number dependence of transport coefficients of drift-orbit reso-
nances for a toroidal field ripple at A = 10. Comparison between Hamiltonian ap-
proach (black �), ripple plateau (dashed red) and NEO-2 at collisionality ν? = 10−3

(solid blue line).
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Figure 5.5: Mach number dependence of D11 for RMP at A = 5 with shear term in-
cluded (left) and neglected (right) in Eq. (3.109). Total resonant transport (black �)
and contributions by drift-orbit resonances with finite magnetic drift and excluding
superbanana plateau (red �). Comparison to drift-orbit resonances with ΩtB set to
zero (solid blue line).
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ted for both, positive and negative Mach numbers for finite toroidal precession fre-
quency due to the magnetic drift ΩtB. To set the scaling with respect to ΩtE , the
reference magnetic drift frequency defined above is fixed by RΩref

tB/vT = 3.6 · 10−2.
In this case all resonance types contribute to transport coefficients. Due to the finite
magnetic drift, the Mach number dependence is not symmetric anymore. If shear is
neglected in Eq. (3.109) the superbanana plateau is centred around slightly nega-
tive values of the electric field, and magnetic drift induces some deviation from the
idealized case without magnetic drift. In the case with included shear superbanana
plateau, contributions for positive Mach numbers vanish and a large deviation from
the case without magnetic drift is visible also for drift-orbit resonances.

To sum up, numerical results from NEO-RT based on the Hamiltonian approach
agree well with results from the NEO-2 code at relatively high Mach numbers where
finite collisionality effects are small (Mt > 0.04 in the examples here). At these
Mach numbers, both approaches also reproduce the analytical result for the ripple
plateau regime (Boozer, 1980). At intermediate Mach numbers 0.02 < Mt < 0.04

which correspond to the transition between the ν−√ν regime and resonant diffusion
regime, the combined torque of ν −√ν regime and resonant diffusion regime does
not reach the numerical values calculated by NEO-2 even at very low collisionalities.
The reason for this are contributions of the resonant phase space region very close
to the trapped-passing boundary. To obtain more accurate results in these regions,
an analysis of the collisional boundary layer would be required in the Hamiltonian
formalism.

The Hamiltonian approach is of non-local nature, i.e. it does not use truncated
“local” orbits bound to a specific magnetic flux surface. Already in the present lead-
ing order approximation, an additional term describing the influence of magnetic
shear that is absent in the standard local neoclassical ansatz naturally arises in the
resonance condition. This term significantly increases the asymmetry of the super-
banana plateau resonance with respect to the toroidal Mach numbers of E × B
rotation and may even eliminate this resonance for a given Mach number sign (at
positive Mach numbers in the examples here). This shear term has been included
into analytical treatment recently Shaing (2015) but was absent in earlier approxi-
mate formulas (Shaing et al., 2009b, 2010). This could be one possible reason for
the discrepancy with the non-local δf Monte Carlo approach observed by Satake
et al. (2011).

It should be noted that term “non-local transport ansatz” is used here with respect to
the orbits employed in the computation of the perturbation of the distribution func-
tion, and it should not be confused with the non-local transport in the case where
the orbit width is comparable to the radial scale of the parameter profiles and where
the transport equations cannot be reduced to partial differential equations. In the
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sense used here, the shear term appears due to a radial displacement of the guiding-
centre, which is a non-local effect. Namely, due to variation of the safety factor with
radius, the toroidal connection length between the banana tips of the trapped par-
ticle is different at the outer and the inner sides of the flux surface containing these
tips. Since particles with positive and negative parallel (and, respectively, toroidal)
velocity signs are displaced from this surface in different directions, the sum of the
toroidal displacements over the full banana orbit is not balanced to zero. The result
is an overall toroidal drift proportional to the shear parameter. This effect cannot
be described by the local ansatz in an arbitrary coordinate system but still can be
retained within the local ansatz in the field aligned coordinates as the ones used by
Shaing (2015). This ambiguity in the description of the magnetic drift within the
local ansatz (Smith) results from the fact that setting to zero one of the velocity vec-
tor components which are not invariant under a coordinate transformation destroys
the covariance of equations of motion during such transformations.

According to the presented results, magnetic shear can also have a strong influ-
ence on drift-orbit (bounce-transit and drift) resonances. A comparison between
the results in the related resonant diffusion regime with neglected magnetic drift
and results including magnetic drift shows a strong discrepancy, especially if mag-
netic shear is considered. Therefore, for an accurate evaluation of NTV torque in
low-collisional resonant transport regimes it is necessary to consider magnetic drift
including magnetic shear in the resonance condition. This is especially important
for modern tokamaks with poloidal divertors causing high magnetic shear at the
plasma edge where the main part of the NTV torque is produced.

5.2 Non-linear resonant transport regimes

The content of this section can also be found in (Albert et al., 2016b), Numerical
implementation, results and discussion, and Conclusion and Outlook formulated by
the author and including some minor modifications.

Quasilinear calculations of NTV torque provide an upper limit for contributions from
resonant transport regimes. The weak non-linear Hamiltonian treatment that goes
beyond the quasilinear limit has been implemented in the code NEO-RT, enabling
the prediction of NTV torque in transition regimes between quasilinear and non-
linear limit. Results including non-linear attenuation were obtained for the circular
tokamak as in the quasilinear case. The modifications include the non-linear atten-
uation factor Θ(D) inside the integrals for the diffusion coefficients and the calcula-
tion of D from plasma parameters. Θ(D) has been pre-tabulated from a numerical
calculation for the solution of the dimensionless kinetic equation (2.45) described in
section 2.6. Plasma parameters and perturbation amplitudes were chosen represen-
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Figure 5.6: Normalized transport coefficient D11 depending on Mach number Mt at
quasilinear limit (solid black) and for finite relative perturbation amplitudes εM =
10−3 (dashed red) and 10−2 (dash-dotted blue). Left: All resonances including
superbanana resonance (m2 = 0) with peak near Mt = 0. Right: Results omitting
superbanana resonance (m2 6= 0) with peak at Mt = 0.07.

tative for a medium sized tokamak (deuterium plasma, density n ≈ 2·1013 cm−1, ion
temperature Ti ≈ 1.5 keV) with RMPs. The figures show results for computations
with a perturbed magnetic field module B = B0 · (1 + εM cos(mθ + nϕ)) by a single
harmonic in Boozer angles (θ, ϕ) with m = 0 and n = 3, evaluated at a flux surface
of aspect ratio A = 10.

In Fig. 4.1 the non-ambipolar radial diffusion coefficient D11 normalized by the
plateau coefficient Dp = πqv3

T /(16Rω̄2
cα) and the squared relative magnetic pertur-

bation amplitude ε2
M is plotted over the Mach number Mt = ΩtER/vT , which is

proportional to the radial electric field Er. Here, vT is the thermal velocity and R

the major radius. To demonstrate the importance of non-linear attenuation for drift-
orbit resonance regimes, the superbanana resonance m2 = 0, which is dominating
around the electric zero withMt = 0, has been excluded in the right plot. Non-linear
effects are clearly visible at εM = 10−3 − 10−2 and are more pronounced at higher
perturbation amplitudes and higher absolute Mach number values.

Fig. 5.7 shows the transition between quasilinear (superbanana plateau) and non-
linear (superbanana) resonant transport regimes at Mt = −0.036, where most con-
tributions are caused by the superbanana resonance. Similar to the attenuation pa-
rameter, the normalized diffusion coefficient reaches the quasilinear limit at small
εM < 10−3 and a non-linear behaviour at large εM > 10−3. As visible in Fig. 5.6
at Mt ≈ 0.07, for drift-orbit resonances the non-linear onset is reached already at
smaller perturbation amplitudes in this case.

Considering the present results for perturbation amplitudes from RMPs of a few
tenths of a percent, analysis of non-linear attenuation is necessary in order not to
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Figure 5.7: Normalized D11 (red �) over perturbation strength at Mt = −0.036
(superbanana resonance). Quasilinear (solid black line), non-linear limit (dashed
blue).

overestimate toroidal torque in resonant transport regimes. At the chosen parame-
ters for a typical medium sized tokamak, the overall attenuation can be in the order
of tens of percents, depending on Mach number and perturbation strength. The cen-
tral assumption made is the sufficient distance of resonances in phase-space. While
this is fulfilled per definition for the superbanana resonance, further investigations
are necessary to validate the assumption for bounce-transit and drift resonances.

5.3 Application to experiments on ASDEX Upgrade

Finally, results from the Hamiltonian approach are shown for a perturbed tokamak
equilibrium based on experiments on ASDEX Upgrade in a low-collisional plasma
with RMPs by ELM mitigation coils. The intention is to demonstrate the importance
of contributions from resonant transport regimes and the significance of magnetic
shear for NTV torque. By comparing data from the collisional code NEO-2 to results
from the Hamiltonian model, it is possible to separate resonant transport from col-
lisional contributions, which has been published as part of the article by Martitsch
et al. (2016) to which the author has contributed in the context of this thesis.

Original figures from the article shown below together with their descriptions (with
minor modifications) and results from the code NEO-2 have been prepared by An-
dreas Martitsch and also appear in his thesis (2016). Computations from the SFINCS
code have been performed by Håkan Smith. Data on radial profiles and magnetic
perturbation of ASDEX Upgrade shot #30835 have been provided by Sina Fietz,
Erika Strumberger, Wolfgang Suttrop and the ASDEX Upgrade Team. Computations
of bounce/transit/drift frequencies and toroidal torque for the RMP case within the
Hamiltonian approach have been performed by the author using the code NEO-RT.
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Figure 5.8: Left: radial profiles of density, temperatures, toroidal rotation frequency,
collisionalities. Right: toroidal Mach number and safety factor for ASDEX Upgrade
shot #30835 (with ELM mitigation coils switched on).

Fig. 5.8 shows radial profiles of plasma parameters for ions and electrons taken
from the experiment, including collisionality parameter ν? = 2νqRv−1

T chosen in
a reactor-relevant range (ITER Physics Basics, 1999). For the investigation via the
Hamiltonian method we consider only the ion species, since electrons are mainly
in collisional regimes in this plasma. The radial variable here is the normalized
poloidal radius ρpol =

√
ψpol/ψ

a
pol, where ψapol is the poloidal magnetic flux at the

separatrix. The sign of the Mach number, i.e. the radial electric field switches near
the plasma edge.

In Fig. 5.9, the amplitude of the magnetic perturbation relative to the equilibrium
magnetic field B0 is shown as a scan over radius, as well as the poloidal angle ϑ
at half-radius. Both, RMP and toroidal field ripple are shown, from which we will
focus on the RMP field only.

Fig. 5.10 shows typical values of ion bounce and toroidal drift frequencies. All of
those are within a similar order of magnitude, which makes it possible for super-
banana resonance and drift-orbit resonances to make substantial contributions to
non-ambipolar transport and NTV torque.

Results from the computation of NTV torque caused by the RMP field in several mod-
els are compared in Figs. 5.11 and 5.12. First of all, this includes the quasilinear
version of NEO-2 (Kasilov et al., 2014) that is able to numerically compute neo-
classical transport over a wide range of collisionalities (Kernbichler et al., 2016).
Neglecting magnetic drift, a comparison to the code SFINCS by Landreman et al.
(2014) is possible, that additionally includes yet another class of non-linear effects
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Figure 5.10: Left: radial profiles of the ion E × B drift frequency ΩtE , bounce-
averaged magnetic drift frequency 〈ΩtB〉b and bounce frequency ωb in the deeply
trapped (�), trapped-passing boundary (+) and an intermediate (◦) region. Right:
drift and bounce frequencies as functions of the normalized perpendicular adiabatic
invariant η at ρpol = 0.57 (4) and ρpol = 0.95 (�) in the trapped particle domain.
The trapped-passing and deeply trapped boundaries are indicated by dashed and
solid vertical lines, respectively.
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from local particle trapping, which are shown to be insignificant in the RMP case
shown here. Analytical results come from the universal formula of Shaing et al.
(2010) connecting 1/ν, ν −√ν and superbanana-plateau transport regimes, which
is formulated for the large-aspect-ratio limit and does not include drift-orbit reso-
nances. Finally, results from NEO-RT that implements the semi-analytical Hamilto-
nian approach from the present thesis are plotted for the quasilinear case without
non-linear attenuation.
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Figure 5.11: Ion contribution to the NTV torque density produced by the RMP coils
as a function of the normalized poloidal radius. Left: The NEO-2 (solid) result in-
cluding both, E ×B drift and magnetic drift (without magnetic shear), is compared
to the Hamiltonian model (NEO-RT, dashed), as well as to the universal formula by
Shaing et al. (2010) (dotted line). Right: Neglecting magnetic drift, the NEO-2 re-
sult is compared to SFINCS (dashed), to the Hamiltonian model (dash–dotted) and
to the bounce-averaged model by Shaing. Vertical lines mark resonant surfaces with
q(ρpol) = m/n, where m and n are poloidal and toroidal mode number, respectively.

While Fig. 5.11 shows results from the standard local neoclassical ansatz, where
magnetic shear is not present, and intentionally switched off also in NEO-RT, Fig. 5.12
displays data from a modified version of NEO-2 taking into account non-local effects
that lead to the shear term in the magnetic drift frequency compared to the full
Hamiltonian solution. Results from NEO-2, NEO-RT and SFINCS are matching over
the whole radial range despite three fundamentally different approach to the prob-
lem. Differences between NEO-2 and NEO-RT are mainly due to collisional effects
not considered in NEO-RT. Differences to SFINCS can arise due to the mentioned
non-linearity, which is different to the one considered here. Analytical results show
a match of the same order of magnitude near the electric zero, where the super-
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Figure 5.12: Ion contribution to the
NTV torque density produced by the
ELM mitigation coils with a phase of
90 degrees as a function of the nor-
malized poloidal radius. The non-local
NEO-2 result including both, E × B
drift and magnetic drift (with magnetic
shear), is compared to the NEO-2 re-
sult using a local approximation and to
the semi- analytical Hamiltonian model
taking into account drift-orbit (do) and
superbanana-plateau (sbp) resonances.
Vertical lines indicate the positions of
resonant surfaces.
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banana plateau resonance is relevant, however, due to the large-aspect-ratio limit
there is no quantitative match. Apart from that radial range, analytical collisional
regimes are masked by resonant transport from drift-orbit resonances.

It should be noted, that formulas for the superbanana plateau regime without re-
quiring the large-aspect-ratio limit have recently been published by Shaing (2015),
which can be shown to match the present results for bounce harmonic m2 = 0

analytically (see appendix B).

5.4 Outlook on the treatment of finite orbit width

The extension to orbits of finite width is possible within the Hamiltonian approach
firstly for computation of canonical actions, angles and frequencies, secondly for
canonical (bounce) averages of the magnetic perturbation, and thirdly for conserva-
tion laws involving integration over canonical angles used to compute particle trans-
port and torque. For equilibrium fields of characteristic length scale much larger
than the orbit width the first modification would lead to relatively small changes
while requiring pre-computation and interpolation of frequencies in two instead of
one dimension in phase-space, since scaling laws cannot be used anymore. The
latter two modifications can however be done without a substantial degradation of
computational efficiency and lead to more accurate results for perturbations with
significant radial variations on the scale of the orbit width. Here, we are going to
introduce the required new concepts to treat orbits of finite width within this ap-
proximation. While the present approach is in principle also applicable at any point
of the transition between quasilinear and non-linear limit in Eq. (4.101), special
care needs to be taken with regard to the radial width of super-orbits, which can
be larger than the usual orbits width. This is why we are going to focus on the
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Figure 5.13: Example for poloidal projection of thermal deuteron orbits in a rep-
resentative tokamak with circular flux surfaces and parameters as in section 5.3.
Dashed lines show the banana tip radius rϕ from Eq. (3.30) and solid lines the ac-
tual orbits (left: trapped, right: passing). In the right figure the co-passing orbit lies
entirely outside rϕ and the counter-passing orbit inside.

quasilinear limit here. Analytical treatments with emphasis on stochastic motion
of orbits of finite width have been published by Eriksson and Helander (1993) and
Kolesnichenko et al. (1998). Recently, an approach to treat neoclassical toroidal vis-
cous torque taking effects from finite orbit width into account has been published by
Shaing and Sabbagh (2016). Portions of the present section’s text and Figures shall
be submitted for publication at the 44th EPS conference on plasma physics (2017).

Full orbits and bounce averages

An example for orbits of finite width computed for a tokamak with circular flux
surfaces and parameters similar to the ASDEX Upgrade shot in section 5.3 is shown
in Figure 5.13. For those orbits covering roughly one tenth of the radial range it is
evident that finite orbit width effects can play a role, especially with respect to the
length scale of the RMP perturbation shown in Figure 5.9.

Let us consider the harmonics in canonical angles θ of a quantity a given as a func-
tion of straight field line flux coordinates x = (r, ϑ, ϕ) in the guiding-centre approx-
imation inside an axisymmetric magnetic field,

am =
1

2π

ˆ
dθ2 a0n(ϑ)ei(n∆ϕ(θ2,J)−m2θ2). (5.4)

For equilibrium fields with sufficiently small radial gradients as defined above, and
with a small enough correction to the angles ϑ, ϕ from Eq. (3.16) we use the same
expression as in Eq. (3.116) with

am =
〈
a0n(r(ϑ), ϑ)einqϑorb−i(m2+nqδtp)ωbτ

〉
b
. (5.5)
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canonical angle over ϑorb for parameters as in Figure 5.13 (left: trapped, right:
passing). In the right plot the solid line shows the co-passing and the dashed line
the counter-passing orbit. Here the evaluation of q(ϑorb − ωbδtpτ) is performed for
the zero-order orbit at rϕ and the exact ∆ϕ is evaluated for the full orbit.

In contrast to the case of small orbit width, changes of the quantity a0n on the radial
scale similar to the orbit width are taken into account here by evaluation of r(ϑ)

during integration along the orbit. This is particularly relevant to the evaluation
of a Hamiltonian perturbation Hm for radially small-scale magnetic perturbations.
During the bounce integral the initial point ϑ0 where τ = 0 should be correctly
specified for ϑorb = ϑ(τ)− ϑ(0).

To illustrate the error that is introduced in the phase of the exponent in Eq. (5.5),
Figure (5.14) shows the approximate deviation of the approximation ∆ϕ ≈ q(ϑorb−
ωbδtpτ) from the exact quantity ∆ϕ = ϕ− θ3 = ϕ−Ω3τ . We can see that for typical
toroidal mode-numbers n = 2 or n = 3 used for RMPs this error is sufficiently
small to justify the use of Eq. (5.5) here. Problems with this approximation can
potentially arise very close to the trapped-passing boundary and for high toroidal
mode-numbers n. In such cases the exact expression for ∆ϕ should be used instead
in Eq. (5.4).

Volume averaged conservation laws

Starting from a flux surface averaged conservation law, instead of setting rc(θ,J) ≈
rϕ(pϕ) in expressions of the form of Eq. (4.24), we perform integrals along the full
orbit including radial drift away from the flux surface of r = rϕ. Physically this
means that one orbit contributes to sources on all flux surfaces that it passes during
its bounce or transit period. To resolve the term δ(rc(θ,J) − r) inside the flux
surface average, we introduce another average over a finite radial region between
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flux surfaces at radius ra and rb,

〈A〉ab ≡
1

∆rab

ˆ rb

ra

dr 〈A〉 (5.6)

=
1

∆rab

ˆ rb

ra

dr
1

S(r)

ˆ
d3θ

ˆ
d3J δ(rc(θ,J)− r)a(rc(θ,J)) f(t,θ,J). (5.7)

Here the integral describing volumetric contributions between ra and rb is nor-
malised by the radial distance ∆rab = rb − ra. This makes expressions directly
comparable to their radially local counterparts in the limiting case of zero orbit
width together with ∆rab → 0, where all contributions come from a single flux sur-
face with r = ra = rb = rϕ. In particular, for the toroidal torque density given in
Eq. (4.69), we have

〈Tϕ〉ab = − 1

∆rab

∑

m

n

ˆ rb

ra

dr
1

S(r)

ˆ
d3θ

ˆ
d3J δ(rc(θ,J)− r)Qm(J). (5.8)

An exact computation with flux surface area S from Eq. (4.17) is possible, but a fur-
ther simplification can be made if ∆rab is smaller than the characteristic length scale
of the equilibrium field. Since we will choose it to be of similar or smaller order than
the orbit width ∆rmax

c . 2 ·max |rc − rϕ| at thermal velocity, this condition is well
fulfilled within the approximation defined earlier and we set S(r) ≈ S((ra+rb)/2) ≡
Sab. A next order approximation would be a correction due to the geometric scaling
S ∝ r2 from Eq. 4.17, which is not considered here. Consequently, the constant
term 1/Sab can be extracted as a common factor in Eq. (5.7). Keeping the angular
dependency only for the canonical bounce phase θ2 relevant for guiding-centre mo-
tion in the unperturbed axisymmetric field and changing one integration variable
from J3 = pϕ to rϕ with first derivative p′ϕ(rϕ) from Eq. (3.31) yields

〈Tϕ〉ab =− (2π)2

Sab∆rab

∑

m

n

ˆ
dJ⊥

ˆ
dJϑ

ˆ
dθ2

ˆ rb

ra

dr

ˆ
drϕ

∣∣p′ϕ(rϕ)
∣∣ δ(rc(θ2,J)− r)Qm(J). (5.9)

The integral over r is resolved via the general relation

ˆ
dθ2

ˆ rb

ra

dr

ˆ
drϕδ(rc(θ

2, rϕ)− r)g(rϕ) = (θ2
b − θ2

a)

ˆ
drϕ




g(rϕ) if rc ∈ (ra, rb)

0 otherwise

(5.10)

Here we have formally omitted the notation of dependencies on J⊥ and Jϑ. Regard-
ing the canonical bounce phase θ2, no explicit dependency remains from Eq. (5.9),
making integration trivial. We notice that the term

(θ2
b − θ2

a) = 2π
∆τab
τb

(5.11)
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measures the fraction of the bounce time τb of the full orbit spent between radius ra
and rb. The evaluation of integrals over rϕ is possible to second-order accuracy via
the midpoint rule

ˆ
drϕg(rϕ) ≈

∑

i

∆riϕ g
i, (5.12)

with gi = g((riϕ + ri−1
ϕ )/2) evaluated at the midpoint of each interval (ri−1

ϕ , riϕ).
Though not strictly necessary, we choose an equidistant grid with Nr steps, which
we use also to define a set of intervals (ra, rb) for the evaluation of locally volume-
averaged torque densities.1 This simplifies expressions such as Eq. (5.9) by the
cancellation of ∆rab = ∆riϕ = ∆r. In addition, for the special case ∆r > ∆rmax

c

it leads to orbits that are respectively contained in single intervals (ra, rb) with rϕ

centred in-between and ∆τab = τb, which represents a natural connection to the lim-
iting case of small orbit width. To sum up, the volume-averaged quasilinear toroidal
torque density between two sufficiently close flux surfaces a and b of Eq. (5.9) can
be represented by

〈Tϕ〉ab =− (2π)3

Sab

Nr∑

i=1

∆τab
τb

∣∣p′iϕ
∣∣∑

m

n

ˆ
dJ⊥

ˆ
dJϑQ

i
m. (5.13)

The result is the analogue to Eq. (4.70) for orbit widths that are comparable to the
radial perturbation scale. Because of the assumption of sufficiently large-scale equi-
librium field it is still possible to formally define radially local transport coefficients
as defined in section 4.8 for computations. However, due to the radially non-local
nature of the toroidal momentum source in Eq. (5.13), the direct presentation of
〈Tϕ〉ab appears more suited for a straightforward physical interpretation.

5.5 Conclusion

Within this thesis, a unified description of low-collisional quasilinear and non-linear
resonant transport regimes leading to neoclassical viscous torque in tokamak plas-
mas with non-axisymmetric magnetic perturbations has been developed. The method
takes into account the full device geometry and follows from Hamiltonian per-
turbation theory in action-angle coordinates in combination with kinetic theory.
This allows for a physically justifiable transition between quasilinear and non-linear
regimes.

The general form of the method has been described independently from the specific
problem. Here, the transition of a dimensionless perturbation of the distribution
function between quasilinear and non-linear limit has been illustrated. From this

1Actual computations are performed on an equidistant grid in ψtor rather than reff from Eq. (4.16).
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general result, a non-linear attenuation factor for the actual problem of toroidal
torque has been derived. This factor can be tabulated as a function of a parameter
depending on collisionality and perturbation amplitude from a numerical solution
of the general form of the dimensionless perturbed kinetic equation.

To allow the application of the method, exact expressions for action-angle variables
in a tokamak have been constructed based on the guiding-centre Lagrangian in
straight field line magnetic flux coordinates. For efficient numerical computation
of canonical (bounce and drift) frequencies, a first-order expansion in orbit width
is employed later. In this formalism, a magnetic shear term, that is absent in the
standard local neoclassical ansatz, appears naturally.

The obtained expressions for canonical frequencies and transport coefficients have
been validated against existing works analytically and numerically and have been
shown to match in the common range of applicability. Based on the Hamiltonian ap-
proach, the code NEO-RT has been developed and applied on a model tokamak and
ASDEX Upgrade with resonant magnetic perturbations. The features included in the
Hamiltonian approach, namely full geometry, magnetic drift, magnetic shear, and
non-linear attenuation have been demonstrated to be relevant in those cases. The
close match with results from the quasilinear version of the code NEO-2 possessing
a full (energy- and momentum-conserving) collision operator verify the theoretical
result of the negligible role of momentum conservation in the collision model for
resonant transport regimes at sub-sonic toroidal rotation.

A major limitation for the applicability of the method to compute non-linear atten-
uation are well-separated resonances in phase-space. Close to the zero-crossing of
the radial electric field with main contributions from the superbanana resonance,
this is the case. Otherwise, for drift-orbit resonances, this can be safely assumed in
analogy to the pendulum Hamiltonian as long as the dominant resonances are far
from the trapped-passing boundary. If this is not the case, further analysis of the
Chirikov criterion on the width and distance of resonances is necessary.

Besides the possible consideration of the effect of finite orbit width on canonical
frequencies and angles, further analysis of the radial width of super-orbits is re-
quired when approaching the non-linear limit. The used concepts permit also an
extension to consider effects from a non-negligible Larmor radius compared to char-
acteristic length scales of the perturbation. In the latter case, the largeness of the
gyrofrequency would allow for simplifications while spatial finite-Larmor-radius ef-
fects could be fully taken into account. Also, the extension to faster toroidal rotation
is possible, where the radial electric field has a non-negligible influence on parallel
motion of the full orbit. Those are possible points to be treated in the future in
order to better judge the range of applicability of the Hamiltonian approach and to
balance accuracy against computation time.





Appendix A

Construction of magnetic flux
coordinates

Magnetic flux coordinates D’haeseleer et al. (1991) where field lines become straight
in coordinate space are required for the formulation of the described methodology
formulated on curved magnetic geometries. In this appendix the general form of
flux coordinates and their most important properties will be outlined.

A.1 Clebsch Form

The zero-divergence condition for magnetic fields is implicitly given by writing the
field in Clebsch form,

B =∇r ×∇ν. (A.1)

Here, r is an arbitrary radial coordinate withB = const. and ν(r, ϕ, ϑ) can be written
as a function of r and two angle coordinates ϕ and ϑ.

The divergence of the magnetic field is then given by

∇ ·B = ∇ · (∇r ×∇ν) = (∇ · (∇r)︸ ︷︷ ︸
=0

)×∇ν +∇r × (∇ · (∇ν)︸ ︷︷ ︸
=0

) = 0.

Contravariant coordinates are given by first derivatives of the function ν,

B =
1√
g
εijk (∂ir∂jν) ek (A.2)

Br = 0 (A.3)

Bϕ =
1√
g
∂ϑν (A.4)

Bϑ = − 1√
g
∂ϕν. (A.5)
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The periodicity condition

B(r0, ϕ, ϑ) = B(r0, ϕ+ 2π, ϑ) = B(r0, ϕ, ϑ+ 2π) (A.6)

can be fulfilled if ν is a sum of linear terms in the angle variables and a periodic
function ν̃,

ν(r, ϕ, ϑ) = a(r)ϕ+ b(r)ϑ+ ν̃(r, ϕ, ϑ) (A.7)

For a linear function in ϕ and ϑ,

ν(r, ϕ, ϑ) = c(r) + a(r)ϕ+ b(r)ϑ,

the gradient is given by

∇ν = (c′(r) + a′(r)ϕ+ b′(r)ϑ)∇r + a(r)∇ϕ+ b(r)∇ϑ.

The magnetic field (A.1) is still periodic, since

∇r ×∇ν = (c′(r) + a′(r)ϕ+ b′(r)ϑ)(∇r ×∇r︸ ︷︷ ︸
=0

) + a(r)∇r ×∇ϕ+ b(r)∇r ×∇ϑ

= a(r)∇r ×∇ϕ+ b(r)∇r ×∇ϑ.

Adding higher terms to ν, e.g. ϕ2 results in a non-periodic field in the angle vari-
ables,

∇r ×∇(d(r)ϕ2) = (d′(r)ϕ2)(∇r ×∇r) + d(r)
ϕ

2
∇ϕ.

A.2 Magnetic flux

Introducing toroidal and poloidal fluxes by integration over toroidal and poloidal
surfaces,

ψtor(r) =
1

2π

ˆ
Stor

B · dS =
1

(2π)2

ˆ
V
B · ∇ϕdV, (A.8)

ψpol(r) =
1

2π

ˆ
Spol

B · dS =
1

(2π)2

ˆ
V
B · ∇ϑ dV. (A.9)

The equivalence of these volume and surface integrals may be illustrated for a
toroidal surface: We cut the torus at a given toroidal surface with ϕ = 0 and evaluate
the integral

˛
torus

ϕB · dS =

ˆ
V
∇(ϕB) dV =

ˆ
V
B · ∇ϕdV (A.10)
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along a closed toroidal surface, ending at the cut with ϕ = 2π and use Stokes’
theorem and ∇ ·B = 0. The left side can be split into

−
ˆ
ϕ=0

ϕB · dS +

ˆ
Storus

ϕB · dS +

ˆ
ϕ=2π

ϕB · dS.

The first term vanishes because of ϕ = 0, the second term because of the field lines
of B going along the toroidal surface. The remaining term

ˆ
ϕ=2π

ϕB · dS = 2π

ˆ
Stor

B · dS

for the toroidal surface Stor at ϕ = 2π can thus be expressed by the volume integral
(A.10).

The fluxes (A.8) and (A.9) correspond to the functions a(r) and b(r): The first
derivative of the toroidal flux with respect to r is

ψ′tor(r) =
dψtor

dr
=

1

(2π)2

d

dr

ˆ r

0
dr′
ˆ 2π

0
dϕ

ˆ 2π

0
dϑ
√
gB · ∇ϕ

=
1

(2π)2

ˆ 2π

0
dϕ

ˆ 2π

0
dϑ
√
gB · ∇ϕ

=
1

(2π)2

ˆ 2π

0
dϕ

ˆ 2π

0
dϑ
√
gBϕ

=
1

(2π)2

ˆ 2π

0
dϕ

ˆ 2π

0
dϑ∂ϑν

=
1

(2π)2

ˆ 2π

0
dϕ

ˆ 2π

0
dϑ (b(r) + ∂ϑν̃(r, ϕ, ϑ)) .

Since the integral over the second term vanishes, we can identify

ψ′tor(r) = b(r).

Similarly, it can be shown that

ψ′pol = −a(r)

and finally, 124 can be written as

ν(r, ϕ, ϑ) =ψ′tor(r)ϑ− ψ′pol(r)ϕ+ ν̃(r, ϕ, ϑ). (A.11)
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A.3 Transformation to flux coordinates

If ν̃ vanishes, the coordinates (r, ϕ, ϑ) are called flux coordinates and the magnetic
field can be written in the simple form

B = ∇ϕ×∇ψpol(r) +∇ψtor(r)×∇ϑ
= −ψ′pol(r)∇r ×∇ϕ+ ψ′tor(r)∇r ×∇ϑ
= ∇r ×∇(ψ′tor(r)ϑ− ψ′pol(r)ϕ).

=
ψ′pol(r)√

g
Eϑ +

ψ′tor(r)√
g
Eϕ. (A.12)

In flux coordinates, magnetic field lines are straight lines due to

Bϕ = qBϑ, (A.13)

where q is known as the the safety factor, given by the ratio

q =
ψ′tor(r)

ψ′pol(r)
. (A.14)

A corresponding vector potential is given by

A(r) =ψtor(r)∇ϑ− ψpol(r)∇ϕ. (A.15)

Although it would be straightforward to use a vector potential

A = −ν(r)∇r,

this form has the problem of non-uniqueness with respect to the angular coordinates.

Transformation from non-flux coordinates to flux coordinates is possible by a change
of one of the two angle coordinates that cancel out the periodic part in (A.11), either

ϑ = ϑ0 +
ν̃(ρ, ϕ, ϑ)

ψ′tor(r)
(A.16)

or

ϕ = ϕ0 −
ν̃(ρ, ϕ, ϑ)

ψ′pol(r)
. (A.17)



Appendix B

Analytical comparison to existing
results

Results for quasilinear diffusion in the superbanana plateau regime have been pub-
lished by Shaing et al. (2009b) for the large-aspect-ratio approximation with cir-
cular flux surfaces and in Shaing (2015) for arbitrary tokamak geometries. The
resonant plateau regime by bounce-transit and drift resonances has been analysed
in Shaing et al. (2009a) for the large-aspect-ratio limit with circular flux surfaces.
In those works, Hamada coordinates are used with the normalized enclosed vol-
ume r = V̂ = V/4π2 as the radial variable, metric determinant

√
gH = 1 and

contravariant components of the magnetic field constant on a flux surface with
Bϑ = ψ′pol, B

ϕ = ψ′tor. This leads to a specific form of a number of formulas,
including the bounce average 3.90 omitting the sign σ with

τb =

˛
dϑ

v‖hϑ
=

˛
dϑ

B

v‖ψ′pol

, (B.1)

〈a〉b =

˛
dϑ

a

v‖hϑ
=

˛
dϑ

B

v‖ψ′pol

a . (B.2)

B.1 Toroidal drift frequencies

First, we compare the present toroidal drift frequencies to the ones given by Shaing
(2015). Formula (10) of this reference contains the bounce averaged toroidal drift
frequency as defined in (3.102), which, in our notation, is written as

ΩtE =
cΦ′

ψ′pol

, (B.3)

〈ΩtB〉b = − 1

ψ′pol

〈
J⊥ωc +mv2

‖
mωc

∂B

∂r
−
v2
‖
ωc

1

B

∂(B2)

∂r
+
v2
‖
ωc

ψ′′pol

ψ′pol

B

〉

b

. (B.4)
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The pressure P has been set to zero here, since we consider orbits directly in the
actual equilibrium where finite β effects are implicitly included. Shaing defines
the magnetic moment µ without mass, which leads to the additional factor when
changing to the notation using the perpendicular invariant J1 = J⊥. In addition,
the signs are swapped due to the definition of the toroidal angle ϕ0 in the opposite
direction. Using B2 = Bϑ (Bϑ + qBϕ) we can write

ψ′′pol =
dBϑ

dr
=

d

dr

(
B2

Bϑ + qBϕ

)

= − B2

(Bϑ + qBϕ)2

∂

∂r
(Bϑ + qBϕ) +

1

Bϑ + qBϕ

∂(B2)

∂r

= − 1

Bϑ + qBϕ

(
Bϑ ∂

∂r
(Bϑ + qBϕ) +

∂(B2)

∂r

)
. (B.5)

Also,

ψ′′pol

ψ′pol

B =
B

Bϑ (Bϑ + qBϕ)

(
−Bϑ ∂

∂r
(Bϑ + qBϕ) +

∂(B2)

∂r

)

=
1

B

(
−Bϑ ∂

∂r
(Bϑ + qBϕ) +

∂(B2)

∂r

)
. (B.6)

The last term cancels out with the middle term in Eq. (B.4), so we obtain

〈ΩtB〉b =
1

ψ′pol

〈
−
J⊥ωc +mv2

‖
mωc

∂B

∂r
+
v2
‖
ωc
hϑ
(
∂Bϑ
∂r
− q∂Bϕ

∂r
− dq

dr
Bϕ

)〉

b

,(B.7)

which is identical to the bounce-averaged magnetic drift frequency in Eq. (3.105).
In particular, the radial derivative of the safety factor (magnetic shear) is present as
it appears in the second derivative in the poloidal flux ψ′′pol in Eq. (B.4).

B.2 Bounce integrals in the large-aspect-ratio limit

For a circular concentric flux surface, the unperturbed magnetic field modulus is
written as

B = Ba(1− ε cosϑ) , (B.8)

with magnetic field modulusBa on axis and aspect ratio ε relating flux surface minor
radius to the device major radius. With κ = k2 from Shaing et al. (2009a), bounce
integrals are given by

ˆ
dϑ

v‖hϑ
a(ϑ) =

√
mα

4µBaε

1

ψ′pol

ˆ
dϑ

Ba(1− ε cosϑ)√
κ− sin2 ϑ

2

a(ϑ) . (B.9)
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In the large aspect ratio limit the ε term is neglected and the bounce time in Eq.
(B.1) for trapped particles becomes

τb =

√
mα

4µBaε

Ba
ψ′pol

˛
dϑ√

κ− sin2 ϑ
2

=

√
mα

µBaε

Ba
ψ′pol

4K(κ) . (B.10)

Here the integral is performed over the full orbit, so twice between the turning
points defined by

sin2 ϑ
±

2
= κ (B.11)

⇒ ϑ± = ±2 arcsin
√
κ . (B.12)

(0 < κ < 1 for trapped particles). In the notation of Shaing, a bounce integral is
performed just once between ϑ+ and ϑ−. Finally we obtain an expression for bounce
averaging in the large aspect ratio as

〈a〉b =
1

4K(κ)

ˆ ϑ+

ϑ−

dϑa(ϑ)√
κ− sin2 ϑ

2

. (B.13)

This means that we have to replace K(κ) in the formulas of Shaing et al. (2009a)
by

K(κ) =
τb
4

√
µBaε

mα

ψ′pol

Ba
(B.14)

to translate to the notation of the present work.

The bounce integration for passing particles is formally identical to trapped particles
but performed over the full range in ϑ where v‖ doesn’t change sign (κ > 1) .

Using the same approximation as in Eq. (B.10), the bounce (transit) time for passing
particles is

τb =
4K(κ−1)

κ

√
mα

4µBaε

Ba
ψ′pol√

mα

µBaε

Ba
ψ′pol

2K(κ−1)√
κ

. (B.15)

in the large-aspect-ratio limit. Due to the mathematical equivalence of the guiding-
centre motion in the large-aspect-ratio limit with circular, concentric flux surfaces to
the particle in a cosine potential (pendulum), those bounce times represent an exact
analogy to the ones in section 1.3, differing only by a normalisation factor.
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For integrations we use the transformations

x = u2, (B.16)

dx = 2udu, (B.17)

v2
‖ = 4

µBaε

mα

(
κ− sin2 ϑ

2

)
= (1− ηB0)u2v2

T , (B.18)

κ =
H0 − eαΦ− µBa(1− ε)

2µBaε
(B.19)

with

µ =
mu2

2
v2
t η =

mx

2
v2
t η. (B.20)

We get

κ =
1− ηBa(1− ε)

2ηBaε
(B.21)

=
1/η −Ba(1− ε)

2Baε
. (B.22)

The derivative is

dκ

dη
= − 1

2η2Baε
. (B.23)

From this section it is clear that we can use expressions (8) and (33) of Shaing et al.
(2009a) as the equivalent to the poloidal canonical angle of Eq. (3.76) here. Using
the variable transformation for integrals in velocity space allows us to translate from
viscous coefficients µij in the reference to our expressions for transport coefficients
Dij of Eq. (4.84), what will be done in the following section.

B.3 Eulerian approach to drift-orbit resonances

Shaing et al. (2009a) constructs the Eulerian approach for drift-orbit resonances
neglecting magnetic drifts. We write the drift-kinetic equation with mass flow as in
Shaing and Spong (1990); Shaing (1990) referring to Hazeltine and Ware (1978)
as

(v‖ + vd + V ) · ∇f + ẇ
∂f

∂w
= C(f), (B.24)

where the velocity space coordinates are w = v2/2 and µ = v2
⊥/(2B). The parallel

velocity is given by v‖ = v‖b =
√

(1/2− µB)wb. (In the review paper Shaing et al.
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(2015) this is Eq. (6.4.1) where the ẇ is a typo in the partial derivative denomina-
tor). The drift velocity is Hazeltine and Ware (1978)

vd =
F× b
ωcα

+
µBb

mαωcα

(
J‖
B

)
+

b

ωcα
×

(
µ∇B + (v‖ · ∇)V + (V · ∇)v‖ + v2

‖(b · ∇)b
)

(B.25)

with the normalised external force F as the third term in the momentum equation
in addition to Lorentz force and fluid inertia mαDV /Dt given by

F =
eα
mα

(E +
1

c
V ×B)− ∂V

∂t
− V · ∇V . (B.26)

F consists of the pressure gradient and collisional forces R with

F =
∇pα
nαmα

+
R

nαmα
. (B.27)

The change in time of the normalised kinetic energy w up to first order in gyroradius
is

ẇ = F · v‖ − µB∇ · V − (v2
‖ − µB)(b · (b · ∇)V )

+ vd · F− (µB/ωcα)b · ∇ × F. (B.28)

The total distribution function is written as

f = fM

(
1− (2v‖/v

2
Tα)(1− 4

5

w

v2
Tα

)
q‖
pα

)
+ g (B.29)

with parallel heat flow q‖, thermal velocity vTα =
√

2Tα/mα and pressure pα =

nαTα. For the Maxwellian

fM =
nα

(πvtα)3
exp(−2w/v2

tα) (B.30)

we have the derivatives

∇fM = 0, (B.31)
∂fM
∂w

= − 2

v2
Tα

fM , (B.32)

∇f = fM

(
1− (2v‖/v

2
tα)(1− 4

5

w

v2
Tα

)∇
(
q‖
pα

))
+∇g

∂f

∂w
= − 2

v2
Tα

fM +
∂g

∂w

+ (2v‖/v
2
tα)(1− 4

5

w

v2
Tα

)
q‖
pα
fM

− 4

5
(2v‖/v

2
tα)

q‖
pαv2

tα

fM +
2

v2
t

∂v‖
∂w

(1− 4

5

w

v2
tα

)fM

+ (2v‖/v
2
Tα)(1− 4

5

w

v2
Tα

)
∂

∂w

(
q‖
pα

)
fM . (B.33)
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Of course, for the Maxwellian C(fM ) = 0. For now, we ignore the terms related to
the heat flux and write

(v‖ + vd + V ) · ∇g + ẇ
∂g

∂w
− C(g) = − 2

v2
tα

fM ·

(F · v‖ − µB∇ · V − (v2
‖ − µB)(b · (b · ∇)V )

+vd · F− (µB/ωcα)b · ∇ × F)− C(fM ). (B.34)

C(fM ) is not zero for finite V . The first term arising from in ẇ ∂fM
∂w is

−
2v‖
v2
Tα

b ·R
nαmα

fM = −v‖
b ·R
pα

fM

and should cancel C(fM ). The remaining assumptions are ∇pα · b = 0, ∇pα ×
∇Tα = 0, ∇ · V = 0, ∇q = 0 and neglecting viscous forces. The remaining term is
(v2
‖ − µB)(b · (b · ∇)V ). We write

v2
‖ − µB = v2

‖ −
v2 − v2

‖
2

=
3

2
v2
‖ −

1

2
v2

= −v2

(
1

2
− 3

2

v2
‖
v2

)
. (B.35)

Finally

(v‖ + vd + V ) · ∇g + ẇ
∂g

∂w
− C(g) =

2v2

v2
Tα

(
1

2
− 3

2

v2
‖
v2

)
(b · (b · ∇)V )fM . (B.36)

We note that for ∇ · V = 0 and ∇ ·B = 0

b · (b · ∇)V =
1

B
V · ∇B. (B.37)

Including heat fluxes, the final expression is

(v‖ + vd + V ) · ∇g + ẇ
∂g

∂w
− C(g) =

2v2

v2
Tα

(
1

2
− 3

2

v2
‖
v2

)(
V · ∇B
B

− (2v‖/v
2
Tα)(1− 4

5

w

v2
Tα

)
q · ∇B
Bpα

)
fM . (B.38)

In Shaing et al. (2009a), Eq. (3), the flow velocity is split into parallel and perpen-
dicular part from E×B drift and vd · ∇g is neglected, with

(v‖ + vd + V ) · ∇g ≈ ((v‖ + V‖)b+ V E) · ∇g. (B.39)
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Derivations by Shaing are done in Hamada coordinates. We translate the normalised
volume coordinate V̂ = V/4π2 (used by Shaing to get

√
gH = 1 and called V there)

to the normalised flux s as the radial coordinate with

ψ′(V ) = ψ′tor(s)
ds

dV̂
= q(s)ψ′pol(s)

ds

dV̂
, (B.40)

χ′(V ) = ψ′pol(s)
ds

dV̂
. (B.41)

Primes on ψ and χ are defined w.r.t. V , otherwise to s. In Kasilov et al. (2014)
velocity components are listed as

V ϑ =
ckBϕ

eα
√
g 〈B2〉

∂Tα
∂s

=
ckBϕTα
eα
√
g 〈B2〉A2, (B.42)

V ϕ =
c√
gBϑ

(
−∂Φ

∂s
− 1

eαnα

∂pα
∂s

)
+ qV ϑ

= − c√
gBϑ

Tα
eα

(
eα
Tα

∂Φ

∂s
+

1

nα

∂nα
∂s

+
1

Tα

∂Tα
∂s

)
+ qV ϑ

= − c

ψ′pol

Tα
eα

(
A1 +

5

2
A2

)
/ 〈|∇s|〉+ q

ckBϕTα
eα
√
g 〈B2〉A2/ 〈|∇s|〉 . (B.43)

Here, thermodynamic forces are defined as

A1/ 〈|∇s|〉 =
1

nα

∂nα
∂s

+
eα
Tα

∂Φ

∂s
− 3

2

1

Tα

∂Tα
∂s

=
1

pα

∂pα
∂s

+
eα
Tα

∂Φ

∂s
− 5

2

1

Tα

∂Tα
∂s

, (B.44)

A2/ 〈|∇s|〉 =
1

Tα

∂Tα
∂s

. (B.45)

Notice that

1

pα

∂pα
∂s

=
1

nαTα

∂

∂s
(nαTα) =

1

nα

∂nα
∂s

+
1

Tα

∂Tα
∂s

. (B.46)

The validity of (B.42) and (B.43) arises from the divergence-free plasma flow veloc-
ity V which is given by Shaing et al. (2010)

V = V‖h+ V ⊥, (B.47)

V ⊥ = c
b×∇Φ

B2
+ c

b×∇pα
NeαB2

. (B.48)

Its components are related to the gradients and thus to thermodynamic forces with

− eα
cTα

(
χ′(V̂ )V ϕ − ψ′(V̂ )V ϑ

)
=

1

pα

∂pα

∂V̂
+
eα
Tα

∂Φ

∂V̂
, (B.49)
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so in our notation

eα
cTα

(
ψ′pol(s)V

ϕ − ψ′tor(s)V
ϑ
)

=
1

pα

∂pα
∂s

+
eα
Tα

∂Φ

∂s

=
1

nαTα

∂

∂s
(nTα) +

eα
Tα

∂Φ

∂s

=
1

nα

∂nα
∂s

+
1

Tα

∂Tα
∂s

+
eα
Tα

∂Φ

∂s
. (B.50)

we obtain

eα
cTα

ψ′pol

(
qV ϑ − V ϕ

)
〈|∇s|〉 = A1 +

5

2
A2, (B.51)

which is in accordance with the above results. Shaing et al. (2009a) define coeffi-
cients µ for the neoclassical toroidal plasma viscosity by

〈bt · ∇ · π〉 = µp1V · ∇ϑ+ µt1V · ∇ϕ+
2

5
µp2

q · ∇ϑ
pα

+
2

5
µt2
q · ∇ϕ
pα

. (B.52)

The task is, to relate µ coefficients to D11 and D12. We use the flux-force relation
Shaing et al. (2009b)

Γ =
c

eαχ′ψ′
〈bt · ∇ · π〉 (B.53)

and neglect the smaller last two terms containing heat fluxes in (B.52) to write

c

eαqψ′2pol

(
µp1V

ϑ + µt1V
ϕ
)(dV̂

ds

)2

= −nα(D11A1 +D12A2). (B.54)

=
c

eαqχ′2

(
µp1V

ϑ + µt1V
ϕ
)

(B.55)

We insert expressions (B.42) and (B.43) to obtain

D11A1 +D12A2 =

(
dV̂

ds

)2
1

〈|∇s|〉

[
−µp1

1

qψ′2pol

c2kBϕTα
nαe2

α
√
g 〈B2〉A2

+µt1
c2

qψ′3pol

Tα
nαe2

α

(
A1 +

5

2
A2

)
− µt1

1

ψ′2pol

c2kBϕTα
nαe2

α
√
g 〈B2〉A2

]
.

(B.56)



B.4. TRANSPORT COEFFICIENTS FOR BOUNCE-DRIFT RESONANCES 135

So for the coefficients we have

D11 =

(
dV̂

ds

)2
1

〈|∇s|〉
c2Tα

nαe2
αqψ

′3
pol

µt1 ≡ Aµt1, (B.57)

D12 =

(
dV̂

ds

)2
1

〈|∇s|〉

[
− 1

qψ′2pol

c2kBϕTα
nαe2

α
√
g 〈B2〉µp1

+

(
5

2

c2Tα
nαe2

αqψ
′3
pol

− 1

ψ′2pol

c2kBϕTα
nαe2

α
√
g 〈B2〉

)
µt1

]
(B.58)

≡ Cµp1 +

(
5

2
A− qC

)
µt1 (B.59)

= Cµp1 +

(
5

2
− qC

A

)
D11 (B.60)

with

A =

(
dV̂

ds

)2
1

〈|∇s|〉
c2Tα

nαe2
αqψ

′3
pol

, (B.61)

C = −
(
dV̂

ds

)2
1

〈|∇s|〉
1

qψ′2pol

c2kBϕTα
nαe2

α
√
g 〈B2〉 . (B.62)

In the following section, we will explicitly compare Eq. (4.84) to Eq. (27) of Shaing
et al. (2009b).

B.4 Transport coefficients for bounce-drift resonances

Using the large-aspect ratio expressions for bounce resonances, we can transform
transport coefficients from the quasilinear Hamiltonian formalism to

D1k =
π3/2n2c2vT

e2
α 〈|∇s|〉2 ψ′pol(s)

ds

dV

ˆ ∞
0

du (B.63)
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The derivative in the resonance condition is

∂

∂η
(nΩtE +m2ωb) =

∂κ

∂η

∂

∂κ
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−n c
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(B.64)

=− 1
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∂
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where we assumed for trapped particles in the large aspect ratio limit that

µBa ≈
mαx

2
v2
t (B.65)

⇒ ηBa ≈ 1 (B.66)

⇒
√
µBaε

mα
≈
√
xε

2
vt (B.67)

⇒ τb ≈ 4K(κ)

√
2

xε

Ba
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. (B.68)

We can write D1k as

D1k =
1

2
√
π

n2c2Ba
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The perturbation defined by Shaing is

1

B

∂B

∂θ3
=
∑

n,m2

in
Bn
B

=
∑

n,m2

bnm2e
i(m2θ2+nθ3), (B.70)

B̃

B0
=

B̃

Ba + ε cosϑ
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B̃

Ba
− B̃ cosϑ

2Ba2
ε+O(ε2)

=
B̃

Ba
+O(εB̃/Ba) +O(ε2) ≈ B̃

Ba
. (B.71)
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We compare this to the Hamiltonian perturbation

H̃ =

(
mαv

2
‖(ϑ) +

eα
mαc

J⊥B0(ϑ)

)
B̃

B0
(B.72)

≈ mαxv
2
t

2

B̃

Ba
(B.73)

⇒ Hm2n =
mαxv

2
t

2

bnm2

in
(B.74)

Note, that one has to be careful with the sign convention because Shaing defines

B̃ = −εmn exp(mϑ− nζ), (B.75)

ζ0 = qϑ− ζ, (B.76)

ωE = +
cΦ′

χ′
. (B.77)

If one uses ζ = −ϕ we get the usual expansion and canonical angle (to the lowest
order in Larmor radius) with

B̃ = −εmn exp(mϑ+ nϕ), (B.78)

θ3 ≡ ζ0 = qϑ+ ϕ. (B.79)

The minus sign for the perturbation does not cause any troubles, because we include
it in B̃. Inserting this in the transport coefficient expression yields
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3
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For µt1 we obtain

µt1 = nαmαvt

√
π

2
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|χ′|
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. (B.81)

There is a difference in the definition of fluxes by Shaing as he uses a total flux
ΓShaing with normalisation to the Volume V̂ = 4π rather than our flux density Γus as
in Eq. (4.83). The relation is

ΓShaing = ŜΓus (B.82)

Shaing uses

ΓShaing = Γ · ∇V̂ (B.83)
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whereas we take

Γus = Γ · ∇r (B.84)

with the effective radius r defined by

∇V = S∇r (B.85)

or

∇V̂ = Ŝ∇r (B.86)

If we take s as the radial variable, we get

ΓShaing =
∂V̂

∂s

∂r

∂s
Γus =

∂V̂

∂s

1

〈|∇s|〉Γus.

Thus, the results are matching. In the large aspect ratio limit, we have

V ≈ 4π2R0r, (B.87)

Ŝ =
dV̂

dr
≈ R0 =

r

ε
. (B.88)

For the effective radius r we use the translation

〈|∇s|〉 =
ds

dr
=

ds

dV̂

dV̂

dr
≈ R0

ds

dV̂
. (B.89)

To sum up, we have proven the consistency of viscous coefficient µt1 for trapped par-
ticles in Eq. (27) Shaing et al. (2009b) with our expression for transport coefficients
of Eq. (4.84).

B.5 Expressions for the transit-drift resonance

In the same matter as in the previous sections, terms for transport coefficients can
be compared for the transit-drift resonance of passing particles. As we will see, the
article of Shaing et al. (2009a) contains an inconsistency with regard to Fourier
integrals, which will become clear below.

The bounce integration for passing orbits is formally similar to trapped orbits but
performed over the full range in ϑ where v‖ doesn’t change sign (κ > 1). We start
from the resonance condition

∂

∂η
(nΩtE + (m2 + nq)ωb) =
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(B.90)

Our term with nq is not present in Shaing’s paper in (45). The reason for this lies in
his Fourier expansion of a non-periodic function.

For circulating particles in (35) and (39) one should obtain

σ(l − nq)ωt + nωE (B.91)

instead of

σlωt + nωE (B.92)

in the perturbed solution gnl. The reason for that is the following:

To have the correct periodicity for the orbit of circulating particles, it must be possi-
ble to express the angle ξ defined in Eq. (33) as a function of θ by

ξ(θ) = θ + α(θ), (B.93)

where α(θ) is a periodic function. This is indeed the case for

α(θ) =
π

K(1/κ)
F (θ/2, 1/κ)− θ (B.94)

with elliptic integrals for 1/κ < 1. Since ξ(θ) is invertible we can write the inverse
transformation

θ(ξ) = ξ + β(ξ), (B.95)

where α(θ) = −β(ξ(θ)). β(ξ) is periodic in ξ but θ(ξ) is not.

The issue appears in the Fourier expansion in (37) and (38). Consider a function

g(θ, ζ0) =
∑

m,n

gmne
i((m−nq)θ+nζ0),

g(ξ, ζ0) =
∑

m,n

gmne
i((m−nq)(ξ+β(ξ))+nζ0)

=
∑

m,n

gmne
i(mξ+nζ0)ei(m−nq)β(ξ)e−inqξ.
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Since β(ξ) is periodic, all terms are periodic in ξ except for the last one, e−inqξ. Since
the whole function is not periodic in ξ it is not possible to write it as a Fourier series

∑

n,l

gnle
i(lξ+nζ0).

Instead, the non-periodic term has to be separated, leading to

g(ξ, ζ0) =
∑

n,l

gnle
i(lξ+nζ0)e−inqξ =

∑

n,l

gnle
i((l−nq)ξ+nζ0) (B.96)

with Fourier coefficients

gnl =
∑
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ˆ
dξ gmne

i(mξ+nζ0+(m−nq)β(ξ)−lξ−nξ0) (B.97)

=
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m
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We write
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∂g

∂θ
= v‖

∂ξ

∂θ

∂g

∂ξ
= σωt

∑

n,l

i(l − nq)gnlei((l−nq)ξ+nζ0). (B.99)

For trapped particles, the situation is different, since the motion in θ is limited by
the turning points. In this case, θ(η) is a periodic function in η and we can write

g(θ, ζ0) =
∑

m,n

gmne
i((m−nq)θ+nζ0),

g(η, ζ0) =
∑

m,n

gmne
i((m−nq)θ(η)+nζ0),

which is a periodic function in η, so

g(η, ζ0) =
∑

n,l

gnle
i(lξ+nζ0) (B.100)

with coefficients calculated as described in the appendix of the article by Shaing
et al. (2009a). We have thus shown that in order to match the expressions for
Fourier series in canonical angles given in Eq. (3.116) here, an additional factor
e−inqξ could be added in expressions (34), resulting in a matching Fourier series of
Eq. (37) and (38) for passing orbits.



Useful formulas

Magnetic flux coordinates:

1

m
√
gωchϑ

=
c

eψ′pol

(B.101)

Velocities and actions:

v‖ = σv
√

1− ηB (B.102)

v⊥ = v
√
ηB (B.103)

J⊥ = mcµ/e = mv2
⊥/(2ωc) =

mv2

2

mc

e
η (B.104)

J⊥ωc = µB =
mv2
⊥

2
=
mv2

2
ηB (B.105)
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2πe
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Large-aspect ratio limit

B ≈ B0

1 + ε cosϑ
(B.107)

B(π)

B(0)
≈ 1 + ε

1− ε (B.108)

B(π)

B(0)
− εB(π)

B(0)
= 1 + ε (B.109)

ε ≈
B(π)
B(0) − 1

B(π)
B(0) + 1

(B.110)

Plateau diffusion coefficient:

Dp =
πqvthρ

2
L

16R0
(B.111)
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Ripple plateau diffusion coefficient:

Drp =

√
πmϕq

2A2vthρ
2
L

4R
ε2
M (B.112)
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