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Abstract

As the system Earth is a dynamic one, ocean tides refer to the relocation of water masses relative
to the sea floor as a result of tide generating forces. When modeling gravity field model (e.g.
[10, ITSG-Grace2016 ]), several background models get subtracted during the data processing
procedure. It pointed out, that one source of trouble is represented by the global ocean tide
model (T. Mayer-Gürr, personal communication, May 2017). Therefore profound knowledge of
ocean tides is required, to understand the dynamic system Earth.

Furthermore minor tides shall be computed with a new approach in this field of interest, instead
of the standard linear admittance approach. In this thesis prediction of minor tides by least
square collocation in application of collocation for the determination of minor ocean tides is
presented. The developed approach is applied to major tides out of the FES2014, which are not
available at the EOT11a model.

Since the EOT11a model is in use for the GRACE-only gravity field model [22, ITSG-Grace2016],
this global ocean tide model gets compared with a newer assimilated one - the FES2014. Both
ocean tide models are are provided in form of tidal maps. Those differences are also collated
with residual major tidal constituents, estimated by diurnal solutions of GRACE.

Kurzfassung

Ozeangezeiten beziehen sich auf die Verlagerung von Wassermassen in Bezug auf den Meeresbo-
den, da das System Erde dynamisch ist. Für die Bestimmung des statischen Gravitationsfeldes
(z.B.: [10, ITSG-Grace2016]), müssen diverse Hintergrundmodelle vorab subtrahiert werden. Es
stellte sich heraus, dass das globale Ozeangezeitenmodell einen großen Fehlereinfluss darstellen
könnte (T. Mayer-Gürr, persönliches Gespräch, Mai 2017). Daher ist es wichtig, fundierte Ken-
ntnisse über Ozeangezeiten zu haben, um das dynamische System Erde besser zu verstehen.

In weiterer Folge sollen kleinere Tiden mittels eines neuen Ansatzes berechnet werden, anstatt
mit dem Ansatz der linearen Admittanz. In dieser Arbeit wird die Prädiktion von Gezeiten
mittels Kollokation am Beispiel der Bestimmung von Ozeangezeiten präsentiert. Der entwick-
elte Ansatz wird angewandt auf jene Haupttiden des FES2014, welche nicht im EOT11a Mod-
ell verfügbar sind.Das globale Ozeangeitenmodell EOT11a wird als Hintergrundmodell für das
GRACE-only Schwerefeld [22, ITSG-Grace2016] verwendet. Daher wird ebendieses gegen ein
neueres assimiliertes Modell getestet - das FES2014. Beide Modelle stehen als tidal maps zur
Verfügung. Die daraus berechneten Differenzen werden auch mit den residualen Haupttiden,
welche aus täglichen GRACE Lösungen geschätzt werden, verglichen.
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1 Introduction

Since oceans cover almost 71% of Earth’s surface, they contribute a huge amount to model the
dynamic system Earth. Therefore precise knowledge of ocean tides is crucial, because they cause
of 75% of the sea level change.
Several ocean tide models exist, which are computed by different methods, but none of them
do include observations of the satellite mission GRACE. This brings up the first question, if
a known ocean tide model can be improve considerably, if more than 15 years observations of
GRACE are considered in addition.
All models do provide a set of major tides, which represent about 95% of the the ocean tide
magnitudes. The remaining 5% are represented by minor tides, which may also interfere the
related major tide [1, Allain D.]. As yet they are computed under the assumption of linear-
ity within several frequency bands. This is realized by the approach of linear, quadratic or
spline admittance - depending on the ocean tide model. This thesis deals with the evaluation
of this assumption. It’s known, that some tidal constituents are highly correlated with some
other, therefore it’s necessary to do a detailed study about the questions - can improvements be
achieved, if the known correlations of the modeled major tides are taken into account too.
The goal of this thesis is to estimate major constituents out of GRACE observations and devel-
oping a new approach to determine minor tides without the assumption of linearity.

The present thesis is structured in the following sections: Section 2 deals with the fundamentals
of potential theory, the principle of least squares collocation and a brief overview of the satellite
mission GRACE. The available and used ocean tide models are described in detail, including the
specifications of the different data types of the given netCDF-files and of course the available
different major tides.
In chapter 3 the theory of tides is discussed. It shows an overview of the different types of tides
and a detailed explanation how they originate and the principle of modelling ocean tides (major
and minor tides).
Section 4 deals with the proceeding of the available datasets of different ocean tide models, to
retrieve individual tidal constituents in terms of equivalent water heights, which are following
the IERS conventions 2010 [16]. Moreover minor tides, calculated by the admittance approach,
are discussed.
In chapter 6 the estimation of long-periodic, diurnal and semi-diurnal residual tidal constituents
from GRACE observations, to improve the EOT11a model, is discussed and validated.
Section 5.3 deals with the least squares collocation of minor tides in terms of equivalent water
heights. Chapter 7 contains a summary and a conclusion of all received results, a statement of
the developed method and last but nor least an outlook on possible prospective research.
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2 Theoretical Background

This section deals with the theoretical background of the satellite mission GRACE, the used
ocean tide models, the fundamentals of potential theory and the principle of collocation, which
are used in this thesis.

2.1 GRACE

The Gravity Recovery And Climate Experiment - GRACE - gravity field satellite mission is a
joint project of the National Aeronautics and Space Administration - NASA - and the Deutsches
Zentrum für Luft- und Raumfahrt -DLR. It was launched in 2002 and it’s accurately mapping
variations in Earth’s gravity field [22, Tapley].

Figure 2.1: scenario of the GRACE mission source:

GRACE consists of two identical satellites - a twin satellite mission - in the same polar orbit
(inclination of 89°) in a height of 500 kilometers (at the beginning of the mission) above Earth.
The twin satellites are separated by a distance of round 220 km. This orbit configuration guar-
antees a global regular data distribution. A homogeneous data coverage can be obtained after
a period of 30 days of observations.

Both satellites have a microwave distance measurement system (K-Band and Ka-Band). The
measuerements principle is known as low-low satellite to satellite tracking (SST) system.The
distance between the two satellites changes due to mass anomalies. To gather additional in-
fluences, which change the orbital parameters of GRACE, the mission has an accelerometer on
board, to measure non-gravitational forces too. Additionally there are GPS receiver to measure
the satellite’s position to enable high-low satellite to satellite tracking [22, Tapley].

Because of possible determination of the time variable gravity field it seems to be meaning-
ful to have a closer look on estimation of tidal constiutents using GRACE observations - if the
aliasing problems allow it - see in more detail section 6.1.
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2.2 Ocean tide models

In general there exist three different types of ocean tide models [9, Mazdak M.]:

• pure hydrodynamic models: dynamic equations are solved to derive tidal heights and
currents consistent with predescribed physics,

• assimilated models: observations of ocean surface (e.g. altimetry) are used in additional
to the pure hydrodynamic model (=assimilated models) and

• empirical models: only observations of oceans surface are used to determine tides.

In this thesis two out of three models are used - the empirical model EOT11a (see EOT11a in
2.2) and the assimilated model FES2014 (see FES2014 in section 2.2). similiar behaviour.

(a) EOT11a, cosine and sine (b) FES2014, cosine and sine

Figure 2.2: semi-diurnal constiuent N2 from EOT11a and FES2014

Figure 2.2 shows the semi-diurnal tide N2 in cosine and sine of both handled models.

At first appearance it shows, that the FES2014 model (right side) has a better resolution than
the EOT11a model (left side). More differences will be disucussed in section 2.2.
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EOT11a - Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry

This model is a global solution for tidal constituents based on an empirical analysis of multi-
mission satellite altimetry data (see Table 2.1). EOT11a provides a spatial resolution of 7.5'x
7.5'for all nineteen provided tidal constituents [17, Technical Note EOT11a].

Table 2.1: Overview of satellite alitimetry missions for EOT11a, [19, DGFI Report
No.89]

Mission Operation period [m.yy] Latitude coverage [°]
TOPEX/Poseidon 09.92 – 10.05 ±66.1

Jason-1 01.02 – 12.09 ±66.1

Jason-2 07.08 – 04.10 ±66.1

ERS-2 04.95 – 07.03 ±81.5

ENVISAT 09.02 – 01.08 ±81.5

The grids are stored as coards in NetCDF-3files. Each file has informations/data about number
of nodes in west-east- and south-north-directions, longitudes and latitudes of grid nodes [°] , real
part of tidal constants [cm] and imaginary part of tidal constants [cm] (see figure 2.3).

Figure 2.3: header-informations of netcdf file EOT11a

EOT11a includes the main astronomical tides Q1, O1, P1, S1, K1, 2N2, N2, M2, S2, K2, the
non-linear constituent M4 (2xM2), the long period tides Mm and Mf and four long periodic
tidal waves (Ω1, Ω2, Sa and Ssa ).
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Table 2.2: list of main tides in EOT11a

Darwin notation Doodson number frequency[°/h] Source

long period waves

Ω1 055.565 0.002206 HW95

Ω2 055.575 0.004412 HW95

Sa 056.554 0.041066 HW95

Ssa 057.555 0.082137 HW95

Mm 065.455 0.544375 EOT11a

Mf 075.555 1.098033 EOT11a

Mtm 085.455 1.642407 FES2004

Msqm 093.555 2.113928 FES2004

diurnal waves

Q1 135.655 13.398661 EOT11a

O1 145.555 13.943036 EOT11a

P1 163.555 14.958931 EOT11a

K1 165.555 15.041069 EOT11a

semi-diurnal waves

2N2 235.755 EOT11a

N2 245.655 28.439730 EOT11a

M2 255.555 28.984104 EOT11a

S2 273.555 30.000000 EOT11a

K2 275.555 30.082137 EOT11a

quarter-diurnal waves

M4 455.555 EOT11a

Two long periodic waves (Mtm and Msqm) are further included to complete the tidal spectrum
(see table 2.2). Those tidal constituents are taken from the Tide Generating Potential catalog
(HW95 - [7]) or from the global oceantide model FES2004.

Figure 2.4: semi-diurnal constituent S2 derived from EOT11a in terms of water equiv-
alent heights in cosine and sine

Minor tides are calculated by the approach of linear admittance.
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FES2014 - Finite Element Solution

The global ocean tide model FES2014 uses a longer altimeter time series, compared to the
empirical model EOT11a. Satellite altimetry observations are assimilated into a global hydro-
dynamic model. It provides a more accurate model in most of shallow water regions (source:
www.aviso.com). Since the missions Jason-1(from cycle 262 on) and Topex/Poseidon (from
cycle 369 on) are on their new orbit, those dates are also included into calculations. FES2014
provides a spatial resolution of 3.75'x 3.75'for all 27 tidal constituents.

Figure 2.5: header-informations of netcdf file FES2014

The grids are stored as coards in NetCDF-4 files. Each file has informations/data about number
of nodes in west-east direction and south-north-directions, longitudes and latitudes of grid nodes
[°] , amplitude [cm] and phase [°] of tidal constituents (see figure 2.5). There are much more
datasets stored in this file compared to the EOT11a netcdf files.

FES2014 provides one additonal diurnal tide (J1) and eight additional semi-dirunal tides (ε2,
µ2, ν2, MKS2, λ2, L2, T2 and R2), compared to EOT11a.

www.aviso.com
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Table 2.3: list of additional main tides in FES2014 w.r.t. EOT11a

Darwin notation Doodson number frequency[°/h]

long period waves

Msf 073.555 0.544375

diurnal waves

J1 175.455 0.043293

semi-diurnal waves

ε2 227.555

µ2 237.555 0.0776897

ν2 247.455 0.0792009

MKS2 257.555 0.080739

λ2 263.655

L2 265.455 0.0820239

T2 272.556 0.0832193

R2 274.556

quarter-diurnal waves

MN4 445.655 0.1595109

MS4 473.555 0.1638446

S4 491.555 0.1666663

tre-diurnal waves

M3 355.555

There are also one tre-dirunal tide (M3 - 355.555), one shallow water overtide of principal lunar
(M6 - 655.555) and one eight-diurnal tides (M8 - 855.555) provided. In total there are 34 tides
available at the global ocean tide model FES2014.

Figure 2.6: semi-diurnal constitutent S2 derived from FES2014 in terms of equivalent
water heights in cosine and sine
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2.3 Fundamentals of potential theory

The gravitational field is a conservative vector field. It can be described mathematically by
Newton’s law of universal gravitation, which implies that two distanced points attract each
other with a force

f = G
m1m2

l2
l

l
(2.1)

where G = 6.6742 ·10−11m3kg−1s−2 is Newton’s gravitational constant, l represents the distance
between the points centers and m1, m2 are the respective masses. This means, that all point
masses attract an other point mass by a force directed along the distance between the interacting
point masses. The force F is directly proportional to the two point’s masses and inversely
proportional to the square of the separation distance l2. Since the attraction of the masses m1

and m2 is symmetrically, no distinguishing between the attracted mass and the attracting mass
is necessary, which means, that the force is performed by the mass m on a unit mass of the point
of view P (x, y, z). Therefore equation (2.1) can be rewritten as

F (x, y, z) = G
m

l2
= ∇V. (2.2)

Under consideration of all mass elements dm(ξ, η, θ) in a volume v and their local density ρ,
equation (2.2) becomes an integral (Newton integral)

V (x, y, z) = G

∫ ∫
ν

∫
dρ

l
dν, (2.3)

with the density of the volume ρ = dm
dν . Equation (2.3) requires the detailled knowledge of the

density function. In reality it’s just known for the upper layers of the Earth [21, Torge, 2001]

Spherical Harmonic Expansion of the Gravitational Potential

As already mentioned it’s necessary to know the density function ρ(r) of the earth to compute
the gravitational potential V using equation (2.3). Assuming that the gravitational potential is
a continuous function - outside the attracting masses - V is a solution of the Laplace equation

∆V = 0. (2.4)

This solutions are called harmonic functions, hence the gravitational potential is a harmonic
function outside the attracting masses [8, Hofmann-Wellenhof et al.].

It’s common to express the potential V in terms of spherical harmonics

V (r, λ, θ) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=0

cnmCnm(λ, θ) + snm Snm(λ, θ) (2.5)

with the geocentric constant GM , earth’s radius R and the basis functions

Cnm(λ, θ) = cos (mλ)Pnm(cos θ)

Snm(λ, θ) = sin (mλ)Pnm(cos θ).
(2.6)

The respective associated Legendre functions Pnm(cos θ) in formula (2.6) of degree n and order
m can be computed by

Pnm(t) =
(
1− t2

)m/2 dmPn(t)

dtm
(2.7)

with t = cos θ. Pn(t) are Legendre polynomials [8, Hofmann-Wellenhof et al].
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2.4 Collocation

This sections deals with collocation - the least-squares prediction of a quantity. The basic idea
of collocation is, that every geodetic observation can be split up into

1. a systematic part, which depends from unknown parameters (trend, Ax),

2. an irregular part, which expresses the influence of the gravitational disturbing potential

T =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=0

cnmCnm(λ, θ) + snmSnm(λ, θ) (2.8)

on the considered quantity (signal, t) and

3. random part (noise, n).

Hence, the basic mathematical model can be written as

l = Ax+ t+ n. (2.9)

Equation (2.9) is visualized in figure 2.7 below:

Figure 2.7: basic model collocation

In this thesis the scenario A = 0 and n = 0 is handled, therefore the observation equation
changes to just on problem - estimating the signal t, to receive predicted quantities.

Generals

Many problems of gravimetric geodesy are formulated and solved in terms of integrals over the
whole earth (e.g. Stokes formula). To solve those problems, measurements of the considered item
must be theoretically available at every point of Earth’s surface. This is practically not possible
- either on land or at the ocean. Hence it’s necessary to estimate functionals of the disturbing
potential nor the disturbing potential itself for other points of Earth’s surface. Especially in
oceanic regions extrapolations beside interpolations are required. As said by Hofmann-Wellenhof
and Moritz in physical geodesy [8]:

Prediction (i.e., interpolation or extrapolation) cannot give exact values; hence, the
problem is to estimate the errors that are to be expected in the gravity g or in the
gravity anomaly ∆g.

This begs following questions:

• How accurate are the prediction methods (estimation errors of e.g. δg)?

• What influence does the prediction error have on derived quantities?

• What is the best prediction method?

Therefore it’s necessary to have a closer look on statistical treatment, because those errors/prob-
lems which are mentioned above, can be described by one function - the covariance function.
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Accuracy of prediction methods

One functional of the disturbing potential l = F{T} at point P can be calculated by a linear
combination of all other measurements.

l̃P = F{li} =
n∑
i=1

αPi · li (2.10)

The task is to determine αPi in a kind of way, that they represent a minimum, therefore it has
to be considered the quadratic prediction error

ε2P = (lP − l̃P )2 = (lP −
n∑
i=1

αPi · li) · (lP −
n∑
k=1

αPk · lk). (2.11)

The expansion of the product in (2.11) gives

ε2P = l2P − 2
∑
i

αPi lP li +
∑
i

∑
k

αPi αPk li lk. (2.12)

By applying the average operator M{· · · } on equation (2.12) and Einstein’s summation con-
vention, the result is

m2
P = C0 − 2αPiCPi + αPi αPk Cik with (2.13)

m2
P = M{ε2P },

C0 ≡ C(0) = M{l2P },
CPi ≡ C(Pi) = M{lP li},
Cik ≡ C(ik) = M{li lk}.

(2.14)

Equation (2.13) is the basic formula for the standard error of the prediction formula (2.10) above,
where CPi is the covariance between observations and the quantity which shall be predicted and
Cik is the covariance between known quantities.

Thus it could be shown, that the covariance function is essential to determine the accuracy
of prediction methods.

Least - squares prediction of functionals of the disturbing potential

Section 2.4 dealed with the accuracy of prediction methods and forms the basis for collocation.
The values αPi can be obtained by minimizing the standard error of the prediction formula
(2.13),

∂m2
P

∂αPi
= −2CPi + αPk Cik (2.15)

Rearranging equation (2.15) yields to

αPk = C−1
ik CPi , (2.16)

which represents the solution of formula (2.15) , which is a system of linear equations with
unknown αPk. Substituting formula (2.16) into formula (2.10), gives

l̃P = αPkli = C−1
ik CPi lk (2.17)

in matrix-notation. This fundamental formula for least-squares prediction shows, that it is
necessary to know statistical behavior of the quantities through the covariance function, to
estimate functionals of the disturbing potential T .
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Covariance function

As shown before (see section 2.4), the covariance function

C(∆s) ≡ cov∆s{l} = M{l · l′} with (2.18)

covs{} operator of covariance
M{} operator of mean
∆ω frequency
l observation (functional of T )

has great importance for predicting functionals of the disturbing potential. The covariance
function depends on the distance differences ∆s. .

Figure 2.8: The covariance function

In figure 2.8 can be seen, that the covariance function decreases with increasing distance differ-
ences. The observations become more and more independent. The highest peak in the figure
above represents the mean variance

C(0) ≡ var{l} =M{l · l} (2.19)

of all considered observations l.

The input data have to be without any trend and mean value. The determination of the
covariance function is problematic, hence it can be estimated only from available samples (e.g.
measurements of gravity anomalies or like treated in this thesis, in terms of equivalent water
heights).

For Earths surface on land, there are estimations of covariance functions available (e.g. Kaula -
1959, Hirvonen - 1962, Tscherning-Rapp model - 1974, Kühtreiber 2002).

The mentioned covariance functions are available in a global and also local way for free-air
anomalies or gravity anomalies. Field of interests mainly are regional geoid determinations or
regional Moho-estimations as done in several projects, but there is none for estimating minor
tides in frequency domain.
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3 Theory of Tides

Tidal movements (verical and horizontal) are caused by gravitational attraction of celestial
bodies, in particular by the Moon and the Sun. This attraction can be expressed mathematically
by Newtons’s law of gravitation, which is described in detail in section 3.1. The Earth responses
to the acting forces by means of various deformations, principled following different types of
tides exist [2, lecture notes GGOS]:

• Solid earth tides are defined as the response of the solid Earth (deformation of land-
masses) on external - direct forces (caused by Sun and Moon).

• Ocean tides are the relocation of water masses relative to the sea floor caused by tidal
forces.

• Ocean tide loading is defined as the response of the solid Earth (seafloor and coastal
areas) and on the relocation of ocean masses caused by ocean tides. Hence it’s an indirect
effect. It causes two differents effects - the deformation of Earth’s crust and changes of
the gravitational potential.

• Elastic ocean tides represent the sum of ocean tides and ocean tide loading.

• Earth tides are defined by the sum of solid Earth tides and ocean tide loading, therefore
they are also called total deformation of the Earth.

• Atmospheric tides: represent pressure fluctations in the atmosphere.

All deformations lead to a disturbance in the gravitational potential. Furthermore can be dis-
tinguished between astronomic waves, radiational waves and non-linear waves. The former are
generated by the gravitational attraction by sun and moon (e.g. M2). The latter ones are
generated by cyclic geophysical phenomens (e.g. atmosphere - S2) and last the non-linear-waves
are generated by a non-linear interaction of several waves. It has to be mentioned, that all tidal
constituents have non-linear components [20, Schureman P.].

For example the tidal constituent S2 belongs to all three wave types mentioned above.

3.1 Tidal acceleration

Due to gravitational attraction of celestial bodies, tidal forces arise. Tides are periodic motions
of the solid or fluid Earth. The Moon has the biggest influence, because comapred to the other
celestial bodies, his distance to Earth is the smallest. Therefore the schmeatic scenario for tides
in system Earth-Moon is shown in the illustration below.
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Figure 3.1: schematic tidal force acting on a point of the Earth’s surface due to the
moon

According to Newton’s law of gravitation, the acceleration ggrav(CB)(r) on a point P on Earth’s
surface in direction of l caused by a celestial body (CB) is

ggrav(CB)(r) =
GMCB

l2
rCB − rP

l
(3.1)

where G is the gravitational constant, MCB the mass of the attracting body , rCB and rP are
the position vectors of the center of mass of the CB and the point P on Earth’s surface. Arising
thereby l = |rCB − rP | is the distance between the points mentioned before.

The tidal acceleration gtid in point P is defined as the difference between the gravitational
attraction of CB in P and the acceleration of Earth’s center of mass r̈M . Due to Earth’s rota-
tion and the orbital motion as well, the tidal acceleration depends on time and can be written
as

gtid(r, t) = ggrav(CB)(r, t)− r̈M (t). (3.2)

The acceleration of the Earth’s center of mass r̈M can be approximated by ggrav(CB)(rM , t) and
this yields to

gtid(r, t) = ggrav(CB)(r, t)− ggrav(CB)(rM , t) (3.3)

Caused by the huge distance, the gravitational field can be assumed to be radially symmetric.
Hence the tidal acceleration can be written as

gtid(r, t) = −GMCB
r− rCB
‖ r− rCB ‖3

+
GMCB

GM
g(rCB). (3.4)
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3.2 Tide Generating Potential

To calculate functionals of the tidal potential ephemerides of the celestial bodies can be used,
or the tidal potential can be expended into spherical harmonics. The first noted method is
restricted to precise applications [24, Wenzel], the second method is used and described in this
thesis.

Considering computing equation (3.3) on every point of Earth’s surface, a gravitational force
vector field comes into existence, which is conservative. Hence the tidal acceleration gtid(r, t)
can be expressed as gradient of the gravitational potential V tid (compare 2.3).

gtid(r, t) = gradV = ∇V tid (3.5)

and represents the direct link between the tidal acceleration (3.3) and the tide generating po-
tential. Equation 3.5 satisfies the Laplace equation

∇V tid = 0, (3.6)

since the potential is considered to be a harmonic function outside the attracting masses. In
case of point masses this yields to

V tid
CBi

(r,t) = −GMCB

(
r · rCB
‖ rCB ‖3

− 1

‖ r− rCB ‖3

)
(3.7)

and can be expanded into a series of spherical harmonics

V tid
CBi

(r, t) =
GMCBi

rCBi

∞∑
n=2

n∑
m=0

1

2n+ 1

(
r

rCBi

)n
P̄nm(cos θ)P̄nm(cos θCBi)(c̄

tid
nm cosmλ+s̄tidnm sinmλ).

(3.8)
which represents the tide generating potential. The function depends on the mass and the po-
sition of the celestial body.

The tide generating potential is dominated by terms of degree n = 2

V tid,2
CBi

(r, θ, λ, t) = 1
5GMCBi

r2

r3CBi

[P̄20(cos θ)P̄20(cos θCBi)

+P̄21(cos θ)P̄21(cos θCBi) cos (λ− λCBi)

+P̄22(cos θ)P̄22(cos θCBi) cos (2(λ− λCBi))]

(3.9)

The term λ−λCBi has a period of approximately one day, caused by the Earth’s rotation. There
exists also a permanent zonal term

V tid,2
CBi

(r, θ, λ) =
GMCBi

4

r2

r3
CBi

(1− 3 cos θ), (3.10)

which is independent of time, since it’s just dependend on the observed point on the Earth and
not - in contrast to the time dependent part - on the position of the celestial body.
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Figure 3.2: illustration of spherical harmonics up to D/O 4 [9, Mazdak M.,]

The zonal parts (m = 0) reflects the long-periodic tides, which have a maximum at the pole. The
tesseral term (m = 1) reflects the diurnal tides with a period of one day and shows a maximum
at ±45◦ latitude. The semi-diurnal tides are reflected by the sectorial term (m = 2) and have a
period of half a day and have a maximum at the equator [24, Wenzel].

Caused by the time dependence of the celestial body’s position - see section 3.1 - it’s quite
difficult to model tides by equation (3.9). Therefore investigations have been done to express
the time dependency by orbital parameters of the celestial body. The first research is done by
Darwin, but his development was not harmonic, because the amplitudes and phases changed
within time. Arthur Doodson accomplished it first, to originate harmonic algebraic expansion -
under considerations of Newcomb and Brown - which was sufficient enough for former calcula-
tions [4, Cartwright] (see in detail in section 3.3).

harmonic representation of the tide generating potential

Since celestial dynamics according to periodic behaviour, an expansion of V tid
CBi

in a Fourier
series is possible:

V tid
CBi

(r, θ, λ, t) =
∞∑
n=2

n∑
m=0

( r
R

)n
Pnm(cos θ)

∑
j

(
c
tid(CBi)
nm,j cos(argj(t)) + s

tid(CBi)
nm,j sin(argj(t))

)
,

(3.11)
because the tide generating potential is composed of j superposed waves [2, lecture notes GGOS,

2012]. The amplitudes c
tid(CBi)
nm,j and s

tid(CBi)
nm,j and the argument

argj(t) = Φj + ωjt (3.12)

represent an individual wave. Φj and ωj denote the phase and the frequency. The dependency
of the evaluation point is contained in the argument.
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3.3 Astronomical arguments

The harmonic development of the tide generating potential is fundamental for tidal analysis.
Charles Darwin developed some harmonic constants, which yields to discrepancies between ob-
servations and predictions of tides. Therefore Arthur Doodson gained luni-solar elements to
describe the position of the celestial body with respect to the Earth subjected to time. [5,
Doodson]

Figure 3.3: Doodson arguments

As described in section 3.2, the time-dependecy of the evaluation point (longitude of the celestial
body) can be described by the phase and the amplitude. The results of his investigations are, that
phases and frequencies of each individual tide can be expressed by an integer linear combination

Φj =

6∑
l

kj,lΦl (3.13)

and

ωj =
6∑
l

kj,lΩl (3.14)

of so called luni-solar Doodson elements, which are shown in illustration 3.3. The six independet
variables of table 3.1 are describing the relative positions of the Sun and the Moon with respect
to the Earth. The mean longitude of the moon s, the longitude of the lunar perigee p and the
longitude of the ascending lunar ascending node N ′ describe the lunar orbit.

The mean longitude of the Sun h and the longitude of the solar perigee ps specify the solar
orbit. The local mean lunar time τ is the dominating part of the Doodson elements, it contains
the Earth’s rotation and dominates the classification of the tidal constituents.
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Table 3.1: periods and definitions of the luni-solar Doodson elements at J2000.0, with
d denoting a mean solar day, a denoting tropical year

Element Period Definition

τ 1.0351d local mean lunar time
s 27.322 d mean longitude of the moon
h 1 a mean longitude of the sun
p 8.847 a longitude of the lunar perigee

N′ = -Ω 18.613 a longitude of the ascending node of the moon
ps 20936 a longitude of the solar perigee

The Doodson elements can be computed by

τ = 15◦t+ h− s− L

s = 277.0248◦ + 481267.8906◦T + 0.0020◦T 2 + · · ·

h = 280.1895◦ + 36000.7689◦T + 0.0003◦T 2 + · · ·

p = 334.3853◦ + 4069.0340◦T − 0.0103◦T 2 + · · ·

N ′ = 100.8432◦ + 1934.1420◦T − 0.0021◦T 2 + · · ·

ps = 281.2209◦ + 1.7192◦T + 0.0005◦T 2 + · · ·

(3.15)

where T is Julian centuries since January 1, 1990 at midnight in Greenwich and t is the Green-
wich mean solar time (GST) [5, Doodson].

According to equations (3.12) - (3.14) the argument can be calculated for each individual tide
by

argj(t) = kj,1 τ(t) + kj,2 s(t) + kj,3 h(t) + kj,4 p(t) + kj,5N
′(t) + kj,6 ps(t). (3.16)

The coefficient kj,1 is identical to the order m of the tide generating potential, hence those co-
efficients can be classified just like the tide generating potential in equation (3.9).

The coefficient kj,1 = 0 represent the long-periodic part of tides, it’s independent of τ . The
diurnal tides depent on 1τ and are represented by the coefficient kj,1 = 1. If the coefficient
kj,1 has the numerical value 2, it performs the semi-diurnal tides and is dependent on 2τ . The
remaining coefficients (kj,2 . . . kj,6) can be either positive or negative. To avoid negative num-
bers, each of them get added the value five, this yields to dj,l = kj,l+5. The coefficient dj,1 = kj,1.

Each individual tides are represented by the Doodson code:

dj,1dj,2dj,3.dj,4dj,5dj,6. (3.17)

For example the diurnal lunar tide K1 can be written as 165.555.
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Figure 3.4: tidal spectrum from the HW95 tidal potential catalog in all three frequency
bands

The amplitudes and frequencies of each tidal constituents can be retaliated in luni-solar tidal
catalogs, i.e. of Hartmann and Wenzel [7, 1995]. 12932 tidesare listed; the expansion in spherical
harmonics for the Moon is six and three for the Sun (see table 3.2).

Table 3.2: luni-solar tidal catalogs [24, Wilhelm (1997)], [18, RATGP95]

catalog #tides D/O Moon D/O Sun

Doodson (1921) 377 3 2
Cartwright et al. (1971, 1973) 505 3 2
Büllesfeld (1985) 656 4 2
Tamura (1987) 1200 4 3
Xi(1989) 3070 4 3
Tamura (1993) 2060 4 3
Roosbeek(1996) 6499 5 3
Hartmann & Wenzel (1995a,b) 12932 6 3
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3.4 Ocean tides

Ocean tides refer to the relocation of water masses (motion of the ocean’s surface) relative to
the sea floor as a result of tide generating forces. These deformations lead to a disturbance in
the potential. The reaction of the ocean to the tide generating potential can be described by
tidal heights at a point on the Earth at a specific time t

ζ(λ, φ, t) =
∑
s

ξs(λ, φ) cos [Θs(t) + χs − δs(λ, φ)] (3.18)

which are frequency dependent and can be represented by the correspondending amplitude ξs
and phase δs. The subscript s denotes a single tidal wave. The Doodson argument Θs can be
computed easily by formula 3.16. The term χs is the Doodson-Wartburg phase correction

χs =


0 for semi-diurnal and longperiodic tides: d1,s = 0, 2

π
2 for diurnal tide K1 (165.555)

−π
2 for remaining diurnal tides: d1,s = 1

(3.19)

as defined in the IERS conventions 2010 [16]. Hence a single tidal height at a specific point on
Earth can be written as

ζs = ξs [cos (δs) cos (Θs + χs) + sin (δs) sin (Θs + χs)] . (3.20)

The particular products of the amplitude ξs and the term in the bracket - containing the phase
δs, can be expanded into spherical harmonics [6, Dow (1988)]

ξs cos (δs) =
∞∑
n=0

n∑
m=0

(anm,s cosmλ+ bnm,s sinmλ)Pnm(sinΦ)

ξs sin (δs) =
∞∑
n=0

n∑
m=0

(cnm,s cosmλ+ dnm,s sinmλ)Pnm(sinΦ),

(3.21)

where the coefficients anm,s, bnm,s, cnm,s and dnm,s represent the spherical harmonics coefficients.
The associated Legendre polynomials Pnm can be calculated by equation (2.7).

Combining equation (3.21) and (3.20), doing some rearranging and applying trigonometric the-
orems, yields to [17, TN36]

ζs =

∞∑
n=0

m∑
m=0

−∑
+

[
C±nm,s cos (Θs + χs ±mλ) + S±nm,s sin (Θs + χs ±mλ)

]
Pnm(sinΦ) (3.22)

with the coefficients

C±nm,s = Ĉ±nm,s sin (ε±nm,s) = 1
2

(
a±nm,s ∓ d±nm,s

)
S±nm,s = Ĉ±nm,s cos (ε±nm,s) = 1

2

(
c±nm,s ∓ b±nm,s

)
.

(3.23)

where Ĉ±nm,s are the amplitudes and ε±nm,s are the phases.

The effect of the relocation of water masses relative to the seafloor on Earth’s gravitational
potential can be described by

∆V O
s =

GM

R

∞∑
n=0

(
R

r

)n+1 m=n∑
m=0

[∆cnm,s cosmλ+ ∆snm,s sinmλ]Pnm(sinΦ). (3.24)



20

where GM is the geocentric gravitational constant and R the radius of the Earth. The di-
mensionless potential coefficients or Stokes coefficients ∆cnm,s and ∆snm,s can be obtained by

∆cnm,s = 4πR2ρw
M

1+k′n
2n+1

[
(C+

nm,s + C−nm,s) cos (Θs + χs) + (S+
nm,s + S−nm,s) sin (Θs + χs)

]
∆snm,s = 4πR2ρw

M
1+k′n
2n+1

[
(S+
nm,s + S−nm,s) cos (Θs + χs)− (C+

nm,s + C−nm,s) sin (Θs + χs)
]
(3.25)

to calculate the mass redistribution effect of ocean tides on the Earth’s gravitational potential
(with ρw is the water density and k′n the load love numbers). Since the load love k′n numbers are
the ratio between the loading the resultant disurbances [15], the factor 1 + k′n denotes the mass
effect of ocean tides and the deformation of the solid Earth as well [17, TN36]. The coefficients,
amplitudes and phases can be obtained from the relations of formulas in equation (3.23).
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3.5 Theory of Admittance

In global ocean tide models only major tides of the tidal spectrum are determined, but there exist
lots more minor tides, which should not be neglected, because their influences are significant.
Hence minor tides have to be interpolated related to main tides by response analysis method
(Munk & Cartwright, 1966). This methodology allows a connection between main tides and
minor tides - the qoutient of input (tidal potential) and output defines the admittance

Z(ω) =
H(ω)

G(ω)
, (3.26)

where H(ω) is the tidal height and G(ω) the tidal potential and is assumed to be a smooth
function of frequency within the same frequency band. Based on this method unknown admit-
tances of minor tides can be determined from those major tides, which are given in the global
tide model (e.g. EOT11a - see table 2.2). Figure 3.5 below shows schematically how to linearly
interpolate one minor tide by two known major tides. In general minor tides will be interpo-
lated separately for each frequency band (diurnal, long-periodic and semi-diurnal) to ensure a
small frequency-span, so the regression is not skewed. Hence the assumption of linear variations
between closely spaced tidal frequencies is still valid.

Figure 3.5: schematic illustration of the theory of admittance by linearly interpolating
one minor tide by two main tides based on [3, Baur O.]

The interpolations coefficients can be calculated by a weighted average:

Zs =

(
ω1 − ωs
ω2 − ω1

)
H1

G1
+

(
ωs − ω1

ω2 − ω1

)
H2

G2
, with (3.27)

ω1,2 tidal frequencies of main tides
ωs tidal frequency of minor tide
G1,2 tidal potential main tides
H1,2 tidal height main tides.
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Rearranging equation (3.27) with respect to equation (3.26) leads to the following formula for
interpolated tidal heights:

Hs =

(
ω1 − ωs
ω2 − ω1

Gs
G1

)
H1 +

(
ωs − ω1

ω2 − ω1

Gs
G2

)
H2 (3.28)

The product of the quotient of the differences of frequencies and the quotient of the tidal potential
are denoted as scalar weighted interpolating coefficients

as,oceanT ideModel =
ω1 − ωs
ω2 − ω1

Gs
G1

bs,oceanT ideModel =
ωs − ω1

ω2 − ω1

Gs
G2

.

(3.29)

Figure 3.6: linearly interpolated minor tides from EOT11a w.r.t. HW95 catalog

Figure 3.6 shows the tidal spectrum of FES2014. The main tides, which are available at the
model are drawn in colour. The IERS Conventions suggest using a linear admittance based
on the assumption of linear variations between closely spaced tidal frequencies (see [16, IERS
Technical Note, No.36]). The EOT11a follows this advice. Diurnal minor tides from the FES2014
ocean tide model are derived by linear interpolation and semi-diurnal tides are determined by a
quadratic spline interpolation [9, Madzak M.]. Different interpolation methods lead to different
results, which will be discussed in detail in section 4.3.



23

4 Estimation of tidal constituents in terms of water heights de-
duced from oceantide models

This section deals with the proceeding of the available datasets of the different oceantide models,
which are mentioned in detail in section 2.2, to retrieve individual tidal constituents in terms
equivalent water heights, which are following the IERS conventions 2010 [16]. Moreover minor
tides, calculated by the admittance approach, are discussed. The results of these to computations
are represented in sections 4.2 and 4.3.

4.1 Transforming input parameters to equivalent water heights

As described in section 2.2, the two considered ocean tide models are stored in a netCDF format
- either as phase and amplitude (FES2014) or as real and imaginary part (EOT11a) of the tidal
constituents. Hence it’s necessary to convert each file for each constituent to a same base, to be
able to compare those furthermore.

In a first step, the amplitudes and phases of the FES2014 global oceantide model, have to
be converted to the same components as in the global model EOT11a by

res(φ, λ) = As cos δs

ims(φ, λ) = As sin δs.
(4.1)

Next up, the tidal constituents, in form of the real and imaginary part of equation (4.1), get
transformed to potential coefficients by a least squares adjustment. To confirm the IERS con-
ventions of 2010 [16], the Doodson Wartburg phase correction has to be applied. The coefficients
can be obtained by using formula (3.25) with

ccosnm, s
cos
nm ≡ C+

nm,s + C−nm,s

csinnm, s
sin
nm ≡ S+

nm,s + S−nm,s.
(4.2)

To evaluate tidal constituents in terms of equivalent water heights, equation (3.24) changes to

ewhs =
M

4πR2ρw

2n+ 1

1 + k′n

∞∑
n=0

(
R

r

)n+1 m=n∑
m=0

[∆cnm,s cosmλ+ ∆snm,s sinmλ]Pnm(sinΦ). (4.3)
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4.2 Evaluation and validation of EOT11a w.r.t FES2014

Illustrations 4.1 and 4.2 show the major tide P1 and 2N2 of the EOT11a model, the FES2014
model and their respective differences in terms of equivalent water heights. The behaviour of
those two different models and tidal constituents are similar. The differences mainly occur in
regions of high currents or other geophysical phenomens (e.g. plate tectonics Scotia Plate) and
of course at the pole regions just because the EOT11a model - compared to the FES2014 model,
is a satellite altimetry model only.

(a) EOT11a (b) FES2014 (c) differences

Figure 4.1: diurnal tidal constituent P1 derived by different ocean tide models in cosine
and sine in terms of equivalent water heights

(a) EOT11a (b) FES2014 (c) differences

Figure 4.2: semi-diurnal tidal constituent 2N2 derived by different ocean tide models
in cosine and sine in terms of equivalent water heights

It turns out clearly, that more investigations are meaningful, to improve the EOT11a model as
a background model for ITSG-Grace2016 gravity field [10] , so that the dynamic system Earth
can get described in a better way.

The other results do not differ from the results above, hence they are illustrated in the ap-



25

pendix A.1 for the sake of completeness.
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4.3 Minor tides & Admittance

As described in section 2.2 at the EOT11a model are less tides available than in FES2014
(compare 3.6 with figure 4.3 below).

Figure 4.3: linearly interpolated minor tides from FES2014 w.r.t. HW95 catalog

linear Admittance

To evaluate EOT11a it is necessary to calculate those tides with admittance, which are available
as major tides in FES2014. Therefore the interpolating-coefficients can be computed as following:

ccos,sinnms
= as c

cos,sin
nm1,FES2014

+ bs c
cos,sin
nm2,FES2014

scos,sinnms
= as s

cos,sin
nm1,FES2014

+ bs s
cos,sin
nm2,FES2014

(4.4)

where a, b (compare with equation (3.28) in section 4.3) denote the scalar interpolation coeffi-
cients, the subscripts 1, 2 denote the two used main tides for interpolating the minor tide with
subscript s.
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(a) cosine (b) sine

Figure 4.4: diurnal constituent J1 derived by linear admittance based on FES2014 main
tides potential coefficients (upper block), from FES2014 major tides potential coefficients
directly(lower block) in cosine and sine

Figures 4.4 shows the diurnal constituent J1 derived by linear admittance from EOT11a with
FES2014 main tides potential coefficients (left) and derived from FES2014 main tides potential
coefficients directly (right). It can be clearly seen, that there are differences between the two
models. Both Figures are plottet between ±1 cm, to clarify the differences of both models. The
differences in detail are shown for both oscillations in figure 4.5 below.

(a) cosine (b) sine

Figure 4.5: difference between J1 out of FES2014 directly and calculated by linear
admittance based FES2014 in terms of water heights

For a better possibility of interpretation and appreciation, the differences between FES2014-
original and minor tides derived by linear admittance are calculated and illustrated in figure
4.5. The tidal constituent J1 is extrapolated by O1 and K1 (see figure 4.3). There are huge
differences up to ±4 cm in specific areas. Those differences are already identifiable in figure 4.4.
They mainly occur in areas where ocean currents are present.
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Therefore it’s explicable that the tidal constituents estimated by FES2014 are better modeled,
since this model also includes hydrodynamic models in contrast to the EOT11a model.

Table 4.1 shows how the listed minor tides (column one) gets interpolated. Each minor tide
has different coefficients for interpolating. The magnitude of the differences of interpolated mi-
nor tides are between ca. ±12 cm. It depends on the size of the minor tide. The rms of all
interpolated constituents are similar in scale of a few subcentimenters.

Table 4.1: interpolated minor tides with linear admittance with FES2014 potential
coefficients and their differences to FES2014 main tides in terms of minima, maxima and
rms

minor tide main tide 1 main tide 2 trig.function differences [cm]

min max rms

J1 O1 K1 cos -4.193 4.647 0.344

sin -4.615 4.778 0.327

ε2 2N2 N2 cos -3.113 4.446 0.177

sin -3.282 4.429 0.197

µ2 2N2 N2 cos -11.524 6.917 0.440

sin -8.329 9.299 0.415

ν2 N2 M2 cos -2.207 2.733 0.154

sin -2.848 2.227 0.129

λ2 M2 K2 cos -4.086 1.893 0.143

sin -4.023 3.860 0.164

L2 M2 K2 cos -6.066 4.300 0.278

sin -10.256 9.014 0.308

T2 M2 K2 cos -1.148 1.144 0.108

sin -1.631 1.065 0.097

R2 M2 K2 cos -0.106 0.158 0.013

sin -0.158 0.238 0.013

The biggest differences are in the diurnal constituent J1 and the semi-diurnal constituents L2

and µ2. This fact can be also seen in the extrema in terms of minima and maxima and in
their rms. Caused of this fact those particular mentioned tides are discussed in detail on the
following pages. The behaviour of the remaining ones is similar, hence they are represented in
the appendix at section A.2 from figure A.14 to A.21.
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Figure 4.6: differences of semi-diurnal constituent L2 derived from FES2014 in terms
of water height in cosine and sine

The illustration above shows the differences of the two L2 tides (FES2014 - FESlinearAdmittance).

(a) cosine (b) sine

Figure 4.7: semi-diurnal constituent µ2 derived by linear admittance with FES2014
major tides potential coefficients (upper block), from FES2014 main tides potential co-
efficients directly (lower block)

Figure 4.7 shows the semi-diurnal constituent µ2 derived by linear admittance based on FES2014
main tides potential coefficients (left) and derived from FES2014 main tides potential coefficients
directly (right). At first the differences between the illustrations seem to be smaller compared
to the diurnal-tide J1 (compare with figures 4.4 and 4.5). The main varieties are located on the
west coast of South-America and in South-Africa.
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Figure 4.8: difference between µ2 out of FES2014 and calculated by linear admittance
from EOT11a with FES2014 in terms of water heights in cosine and sine

The figure above shows the differences between FES2014 and minor tides derived by linear ad-
mittance from EOT11a with FES2014 main tides as input. First assumptions are confirmed by
considering figure 4.8. The same conclusion can be drawn like at the lunar diurnal tide J1 before.

More investigations seem to be meaningful to minimize those discrepancies. An other interpolation-
method or different major tides as supporting points could be taken into account.

Therefore more investigations are performed by having a closer look on the frequency spec-
tra of the tidal consitutents. Those investigations are done at the semi-diurnal tidal constituent
µ2.

linear Admittance of µ2 by using main tides M2 and 2N2

The tidal constituent µ2 gets linearly interpolated by the main tides 2N2 and N2, which are
directly next to considered tide (see figure 4.3 in section 4.3). The origin of µ2 is a variation of
M2. Hence it’s questionable if the choice of interpolation’s supporting points was the right and
for that reason µ2 was calculated by using M2 instead of N2 in a first step.

Figure 4.9: µ2 linearly interpolated by M2 and 2N2 in cosine and sine

Figure 4.9 shows the semi-diurnal constituent µ2 derived by linear admittance from FES2014
main tides potential coefficients directly with interpolations-coefficients out of EOT11a in cosine
(left) and sine (right). Compared with figure 4.7 upper block, the root mean square changes in
a minimal positively way from 0.9439 cm to 0.9347 cm for cosine and from 0.8704 cm to 0.8703
cm for sine.
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Figure 4.10: difference between µ2 out of FES2014 and calculated by linear admittance
from EOT11a with FES2014 in terms of water heights by main tides M2 and 2N2 in
cosine and sine

Comparison of the differences (figure 4.8 and 4.10 ) also display minimal improvements.

Caused by that fact more investigatons are considered - how does the result change if it’s
computed by a quadratic interpolation including 2N2, N2 and M2 .

quadratic Admittance of µ2 by using main tides 2N2, N2 and M2

In this section the results of interpolating µ2 by a quadratic polynom are discussed and visualized.
The supporting points for the mentioned constituent are 2N2, N2 and M2. The quadratic
interpolation Admittance can be computed by

Hs =
3∑
i=1

Gs
Gi

3∏
k=1,k 6=i

ωs − ωk
ωi − ωk

(4.5)

and the three interpolating coefficients c, d, e can be derived out of it, to calculate the potential
coefficients for each minor tide in cosine and sine.
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(a) cosine (b) sine

Figure 4.11: semi-diurnal constituent µ2 derived by quadratic admittance with FES2014
main tides potential coefficients (upper block) and their differences to FES2014.

Illustration 4.11 shows the tidal constituent µ2 derived by quadratic interpolation (upper block)
and their differences to FES2014 (lower block) in sine and cosine. Although the root mean
square get’s higher compared to the linearly interpolated calculations, the minima and maxima
of the differences get smaller. Altogether the result seems to be smoother than before. Table
4.2 shows the results of the qudratic interpolated minor tides.
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Table 4.2: interpolated minor tides with quadratic admittance EOT11a combined with
FES2014 potential coefficients and their differences to FES2014 main tides in terms of
minima, maxima and rms

minor tide main tide 1 main tide 2 main tide 3 trig.function differences [cm]

min max rms

J1 Q1 O1 K1 cos -6.374 3.797 0.433

sin -8.135 4.005 0.422

ε2 2N2 N2 M2 cos -3.021 4.638 0.188

sin -3.309 4.318 0.209

µ2 2N2 N2 M2 cos -11.463 6.881 0.444

sin -8.405 9.341 0.416

ν2 2N2 N2 M2 cos -1.872 2.561 0.140

sin -2.830 2.119 0.125

λ2 N2 M2 K2 cos -4.158 1.789 0.134

sin -3.657 3.468 0.151

L2 N2 M2 K2 cos -5.714 3.487 0.235

sin -8.825 7.481 0.254

T2 M2 S2 K2 cos -0.156 0.141 0.014

sin -0.187 0.236 0.013

This validates the assumption, that more investigations are important and meaningful if calcu-
lating minor tides. Therefore it brings up another question, what if the whole tidal spectrum is
considered in computations with an included functional model, instead of linear interpolation.
This will be discussed in detail in section 5.3.
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5 Prediction of minor tides by least squares collocation

This section deals with the least squares collocation in terms of equivalent water heights. As
described in detail in section 2.4, the datasets, which are used for the determination of minor
tides by collocation, have to be without trend and mean value, to determine the covariance
function.

To facilitate the validation of this method, the major tides of the global ocean tide model
FES2014, which are also available at the EOT11a model, are used as input for computations.
Hence the remaining major tides of FES2014 (ε2, µ2, ν2, λ2, L2, T2, R2 and J1) are treated as
minor tides, which shall be estimated through this statistical approach.

So far, the covariance function was determined for functionals of the disturbing potential as
a function of the distance s. Now, a covariance function must be found in dependency of the
frequency.

Therefore a pre-assumption is necessary:

The behaviour of all observed points is similar and they just depend on their frequencies and
not on their position on Earth’s surface. To meet those requirement, the partial tides in terms
of equivalent water heights, are ranged to the same level by deviding each tide by it’s related
tide generating potential

ewhsame levels =
ewhs
TGPs

. (5.1)

Furthermore a spatial trend gets calculated for each tidal constituent in form of a hyperplane

zs = a0 + a1φ+ a2λ+ a3φ
2 + a3λ

2 + a4φλ (5.2)

and gets subtracted as a mean trend of the used partial tide by

ewhtrend reduceds = ewhsame levels − 1

N

N∑
n=1

zn. (5.3)

Those trend-reduced datasets (in time domain) build the foundation for all upcoming calcula-
tions.

In a next step, to be up to par, the main tides must be trend-reduced in frequency domain.
Hence it’s unalterable to estimate a trend for all observed points for each frequency.

5.1 Estimating trend in frequency domain

For this purpose, a trend was removed (in a linearly way) since one of collocation’s requirements
is, that the data is mean-centric and without any trend. This is necessary to validate the input
datas behaviour and to estimate a more dense grid of equivalent water heights at specific fre-
quencies.

Each tidal constituent (regardless of whether if it’s a minor or major tide) has different ori-
gins and are located at different frequencies, therefore it’s relevant to compute different trends
(varying weighted major tides) for different minor tides. The table below shows a brief expla-
nation of the considered minor tides.
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Table 5.1: explanation of the used harmonic constituents [23, UKHO]

minor tide origin description

J1 diurnal, modulates the effect of the lunar declination of the major
smaller lunar elliptic tides K1 and O1 in combination with M1 and Q1

ε2 semi-diurnal lunar minor tide component, may interfere with 2N2, µ2 and L2

µ2 semi-diurnal variational,
lunar

ν2 semi-diurnal larger modulates the effect of M2 and represents a modification
evectional, lunar of the lunar orbit due to gravitational effects of the Sun

λ2 semi-diurnal smaller
evectional, lunar

L2 semi-diurnal smaller together with N2, the circular orbit of M2

elliptic, lunar gets converted into an elliptical, in equatorial plane

T2 semi-diurnal larger
solar elliptic modulates variation of Earth’s orbital speed of S2

R2 smaller solar elliptic

E.g. it doesn’t make sense to give the solar major tide S2 a high weight (when calculating
trend), if the lunar minor tide µ2 shall be estimated. µ2 is located near the major tide 2N2 in
frequency domain and modulates the amplitude of M2, together with the partial tides ν2 and λ2.

In this thesis two scenarios are tested:

Calculating a linear trend in frequency domain through

1. direct amplitude weighting and

2. inverse amplitude weighting,

by a Gauß Markoff model:
x̂ = (ATPA)−1ATPl , (5.4)

where the designmatrix A represents the functional model, P the weight matrix with the am-
plitudes (T2 and R2) or inverse amplitudes (J1, ε2, µ2, ν2, λ2 and L2) in it’s main diagonal and
l denotes the observations of each point at one specific frequency.

Those weightings are chosen, because they seem to be sufficient enough for first investigations
to check if estimating minor tides by collocation make sense at all.

The magnitudes of the amplitudes can be seen in figure 4.3. The figure below shows the empirical
covariances for both scenarios. On the right side the dataset got reduced by a direct weighting
of the amplitudes and the left side shows the dataset reduced by the inverse amplitude weighted
linear trend.
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Figure 5.1: empirical covariances for semi diurnal tides reduced by different weighted
linear trend

It can be seen, that there aren’t huge differences in the shape of the empirical covariances and
C(∆ω) decreases with increasing ∆ω. Therefore just one analytical covariance function must
be developed, which plays the main role in collocation.
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5.2 Determination of an analytical covariance function

The determination of an analytical covariance function is quite difficult - as already mentioned
in section 2.4. It has to be attempted to fit the empirical covariance function to an yet unknown
covariance function model, since the already designed ones are mainly valid for functions in
dependency of the distance. In every field of research, where statistical methods in physical
geodesy are applied, this is the key problem in this context.

First the empirical covariance function (see figure 5.1) got approximated by a simple harmonic
oscillation

C(∆ω) =
n∑
i=1

cn cos

(
2π

f
n∆ω

)
, (5.5)

where ∆ω is the frequency difference, f the maximal frequency difference of the whole spectrum
and cn the unknown coefficients, which shall be estimated by a least-squares adjustment. It
turned out, that this representation doesn’t fit for the present empirical covariance (see figure
5.2 below).

Figure 5.2: analytical covariances for diurnal and semi diurnal tides formed by equation
(5.5)

.

Therefore, in a second turn, an already known covariance model was used for estimating tides
by collocation - a modified analytical expression for Hirvonen’s covariance function in form of

C(∆ω) =
C0

1 +
(

∆ω
d

2
) . (5.6)

with the model parameters of the variance C0 and the half width at half maximum d. The
variance can be calculated empirical by formula (2.18) and the half width at half maximum gets
interpolated.
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Figure 5.3: analytical covariances for diurnal and semi diurnal tides formed by equation
(5.6)

.

The results based on this covariance function do fit, but it does not produce better results than
with the approach of linear admittance in terms of root mean squares w.r.t to FES2014. This
can be explained by having a look on the analytical covariance function in illustration 5.3.

By having a closer look on the empirical covariances in figure 5.1, their shapes look partly
as a cardinal sine (sinc) function. Since the harmonical behaviour of the tidal constituents,
should not be neglected, equation (5.5) gets combined with a sinc function as an experiment:

C(∆ω) =

n∑
i=1

cn

[
1

C2
0

sinc

(
2π

f
n∆ω

)
− cos

(
2π

f
n∆ω

)]
. (5.7)

The coefficients cn are the unknown parameters as before. For first investigatons with this
function, the numerical value for the factor f is considered as the maximal frequency difference
which occur in each frequency band (between major tides and minor tides). Hence it can be
numberated with f = 0.25.

Figure 5.4: covariances for diurnal tides formed by equation (5.7) with f = 0.25
(weighted by inverse amplitude).

Figure 5.4 shows the covariance function for diurnal tides with f = 0.25. It apparently fits way
better than before with the two other coveriances. It’s a debatable point if all other diurnal
covariances can be described by equation 5.7 with one factor f , since there’s is just one testing
tide available.
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Figure 5.5: covariances for semi diurnal tides formed by equation (5.7) with f = 0.25
(left side: weighted by amplitude, right side: weighted by inverse amplitude).

Illustration 5.5 confirmed the assumption, that just one factor is not sufficient to estimate all
tidal constituents, because the covariance function changes depending on this factor. Therefore
more investigations are done, how the covariances change, if this factor gets changed for each
tidal constituent. This research was done empirically, based on the result of the estimated minor
tides w.r.t to FES2014 (see table 5.2).

Table 5.2: kind of weighting for trend calculations in frequency domain and numerical
values for f to adjust the analytical covariance function

tidal constituent f [cycles per day] weighting

J1 0.25
ε2 0.17
µ2 0.28 A−1

ν2 0.25
λ2 0.29
L2 0.29

T2 0.09 A
R2 0.08

In figure 5.6 can be seen the graphical results of the different covariances, with the correspon-
dening factor f for each tidal constituent.
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Figure 5.6: covariances for semi diurnal tides formed by equation (5.7) with different
numerical values for f (see table 5.2).
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5.3 Application of collocation to determination of minor ocean tides

In this section the results of estimating minor tides by least squares collocation are represented
and discussed. They get computed in terms of trend reduced and TGP-leveled equivalent water
heights by equation 2.17 and looks like

˜ewh
trend reduced
s,P = [CsP1, C

s
s2, . . . C

s
Pn]


C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
...

Cn1 Cn2 . . . Cnn


−1 

ewh1

ewh2
...

ewhn

 (5.8)

in matrix notation. The covariances are calculated by formula (5.7) with different factors f , as
pointed out in table 5.2. To obtain equivalent water heights, the calculated trends (spatial -
trends and frequency based - trendfb) have to be restored in a first step

ewhsame levels = ewhtrend reduceds + trends + trendfb. (5.9)

As a second step, the respective TGP has to be applied by

ewhs = ewhsame levels · TGP (5.10)

to gain the uniqueness of each tidal constituent.

Table below shows the numerical results of LSC and also the differences out of the linear admit-
tance approach. The graphical representation is shown on the upcoming pages.

Table 5.3: differences of minor tides of LSC w.r.t FES2014 in terms of minima, maxima
and rms and the rms of linear admittance for comparison

minor tide trig.function differences [cm] rms ∆ewh lin.A [cm]

min max rms

J1 cos -3.494 4.229 0.286 0.344
sin -3.688 5.296 0.280 0.327

ε2 cos -3.298 4.274 0.178 0.177
sin -3.045 4.217 0.189 0.197

µ2 cos -11.656 6.970 0.437 0.440
sin -8.199 9.212 0.406 0.415

ν2 cos -2.179 3.343 0.162 0.154
sin -3.717 3.020 0.190 0.129

λ2 cos -3.123 1.677 0.133 0.143
sin -3.281 3.330 0.153 0.164

L2 cos -5.289 3.690 0.247 0.278
sin -8.967 7.789 0.267 0.308

T2 cos -1.178 1.149 0.119 0.108
sin -1.484 1.505 0.093 0.097

R2 cos -0.161 0.158 0.013 0.013
sin -0.173 0.397 0.012 0.013
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In figure 5.7 can be seen the diurnal tidal constituent J1 calculated by least square collocation
and the differences to FES2014.

For better comparison, the differences of the linear admittance approach w.r.t to FES2014 is
also visualized. In terms of the root mean square and minima and maxima, the result, received
by collocation gets better, compared to the linear admittance approch. The biggest improve-
ments are near Greenland and Sweden for both oscillations. The sine oscillation has additional
betterments near India.

(a) collocation (b) FES2014 - lin. admittance (c) FES2014 - collocation

Figure 5.7: diurnal tidal constituent J1 estimated by least squares collocation in co-
sine (above) and sine (below) and their differences to FES2014 of the linear admittance
apporach and LSC

Illustration 5.8 shows the partial tide ε2 in terms of equivalent water heights. The input data
set got reduced by a weighted trend. The weighting is the inverse amplitude of the major tides.
It seems like this weighting does fit very well for this purpose.

First, because the the nearest major tide 2N2 gets the heighest weight and second also the
covariance function fits in a good way (see figure 5.1).

The results in the figure below substantiate that - in particular, the behaviour of the sine
oscillation gets much better than the results of the linear admittance approach.
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(a) collocation (b) FES2014 - lin. admittance (c) FES2014 - collocation

Figure 5.8: semi - diurnal tidal constituent ε2 estimated by least squares collocation in
cosine (above) and sine (below) and their differences to FES2014 of the linear admittance
apporach and LSC

The fact, that the EOT11a model does not deliver good results in the pole regions, does not
affect the represented results, since the major tides of the global assimilated model FES2014 are
used as input, instead of the EOT11a model - precisely because of that reason.

The assumption, which is formulated in table 5.1, that the major tide 2N2 may interfere the
partial tide ε2, is hardend by this result.

All in all it can be said, that the minor tide ε2 - determined by collocation - has improved
over the results of the linear admittance approach. The solution gets smoother and exhibits
minimal enhancements against the standard practice.
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Considering the tidal spectrum of semi-diurnal tides and the explanations of minor tides in ta-
ble 5.1, the tidal constiuents µ2, ν2 and λ2 are modelling the effect of solar gravitation on the
Moon’s orbital speed of the major tide M2, since M2 moves in a circular orbit in the equatorial
plane.

(a) collocation (b) FES2014 - lin. admittance (c) FES2014 - collocation

Figure 5.9: semi - diurnal tidal constituent µ2 estimated by least squares collocation in
cosine (above) and sine (below) and their differences to FES2014 of the linear admittance
apporach and LSC

Hence it’s quite difficult to find a fast proper weighting for those three partial tides. Also their
determined covariances show this fact in higher frequency differences. It doesn’t fit as good, as
e.g. for the tidal constiuent ε2, which is described previous.

Even if the rms gets better, the end solution is worse - the minima and maxima get higher.

During the fitting process, by adjusting the factor f , the solution seems to be random. There’s
no scheme, compared with the other minor tides. Therefore it’s clear, that the covariance func-
tion does not match those three tidal constituents and it needs much more investigations.

On the next page, the other two minor tides (ν2 and λ2) of the triple mentioned above are
illustrated.

The behaviour and results of the illustrated partial tides (ν2 - 5.10 and λ2 - 5.11) are similar
to the µ2 partial tide as described before. In particular ν2 has huge differences w.r.t. FES2014
(figure 5.10), compared to the linear approach.
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(a) collocation (b) FES2014 - lin. admittance (c) FES2014 - collocation

Figure 5.10: semi - diurnal tidal constituent ν2 estimated by least squares collocation in
cosine (above) and sine (below) and their differences to FES2014 of the linear admittance
apporach and LSC

(a) collocation (b) FES2014 - lin. admittance (c) FES2014 - collocation

Figure 5.11: semi - diurnal tidal constituent λ2 estimated by least squares collocation in
cosine (above) and sine (below) and their differences to FES2014 of the linear admittance
apporach and LSC
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In illustration 5.12 the tidal constituent L2 can be seen. It’s determination by least squares col-
location works very well, which turns out by the graphical representation and by it’s numerical
values (see table 5.3).

Its rms has betterments of a round 0.3 millimeters and it’s extrema get smaller compared to the
reults of the linear admittance approach.

(a) collocation (b) FES2014 - lin. admittance (c) FES2014 - collocation

Figure 5.12: semi - diurnal tidal constituent L2 estimated by least squares collocation in
cosine (above) and sine (below) and their differences to FES2014 of the linear admittance
apporach and LSC

The tidal constituents T2 - figure 5.13 and R2 - figure 5.14 are illustrated on the next page.
T2 show improvements for both oscillations in the range of a few submillimeters. All in all the
results get smoother.

Since the magnitude of the tidal constituent R2 is round 10 mm, it’s quite difficult to sepa-
rate this partial tide. This is also reflected in terms of the differences and in it’s rms for both
oscillations, independent of the computation method.
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(a) collocation (b) FES2014 - lin. admittance (c) FES2014 - collocation

Figure 5.13: semi - diurnal tidal constituent T2 estimated by least squares collocation in
cosine (above) and sine (below) and their differences to FES2014 of the linear admittance
apporach and LSC

(a) collocation (b) FES2014 - lin. admittance (c) FES2014 - collocation

Figure 5.14: semi - diurnal tidal constituent R2 estimated by least squares collocation in
cosine (above) and sine (below) and their differences to FES2014 of the linear admittance
apporach and LSC
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6 Estimation of residual tidal constituents in terms of potential
coefficients by GRACE

This section deals with the estimation of long-periodic, diurnal and semi-diurnal residual tidal
constituents from GRACE observations to improve the EOT11a model. More than 15 years of
observations are used in calculations by the short arc approach in the global gravity field model
ITSG - Grace2016 [10]. The GRACE observations do not only consist of tidal residual signals.
It’s a co-estimated approach together with all gravity field variations from other mass redistri-
butions, in order that, the ocean tide effect can be separated from other mass distributions. A
benefit of estimating ocean tides with GRACE is - in addition to altimeter data, that it provides
informations in the pole regions. [12, Rieser et al.].

Each tidal constituent has different tidal alias frequencies of GRACE, therefore those should
be taken closer into account.

6.1 GRACE tidal alias frequencies

As mentioned before, it could be meaningful to have a closer look on GRACE tidal alias fre-
quencies to clarify if it’s possible to estimate tidal constituents by GRACE observations.

Figure 6.1: GRACE alias periods of different tidal constituents [12, Mayer-Gürr]

GRACE has no exact repeat orbit, so it is not possible to compute the aliasing frequencies of
the different tidal constituents using closed formulas. An analysis of the real GRACE orbits is
required. Therefore, the local sampling by GRACE during the time span from 2002 until 2016
are compared to the oscillations of the major tides.

The aliasing periods are listed in table 6.1 below.
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Table 6.1: GRACE tidal alias frequencies [11]

Darwin notation Alias period [d]

long period waves

Mm 28

Mf 14

Mtm 9

diurnal waves

Q1 9.00

O1 13.60

P1 171.20

S1 322.10

K1 2725.40

semi-diurnal waves

N2 9.10

M2 13.50

S2 161.00

K2 1362.70

It can be seen, that the tidal constituent K1 has the highest aliasing period (7.48 y). Hence
at least 8 years of GRACE observations are needed, to compute tides. Caused by a combined
estimation together with the monthly solutions is possible.

6.2 Residual tidal constituents from GRACE

First investigations are done over the whole period of available observations from 2002 - 2016.
The residual consituents differ in dependency of the frequency band. For instance the results
in the long-periodic frequency band are very smooth and the main residuals can be seen in the
pole regions and at coastal areas (see figure 6.2) .

Figure 6.2: tidal constituent (Mf ) estimated from GRACE observations during different
time-spans (2002 - 2016) from degree 2 up to D/O 30 in terms of equivalent water heights
in cosine (left) and sine (right)

Those residuals are reasonable, because for one thing the background model EOT11a is a pure
altimetry model - that’s why there is no data available at pole regions - and for another thing
currents are an issue. In the other frequency bands, the residuals get higher and it looks like
the results could be random - particular at the semi-diurnal tidal constituents (see figure 6.3).
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Figure 6.3: tidal constituents (S1 and S2) estimated from GRACE observations during
2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(left block) and sine (right block)

The results of the semi-diurnal solar tidal constituent S2 shows much signal/noise along the
continents too. To validate the results of 14 years of GRACE observations above, the available
dataset got split up in

• even/odd years,

• 2002 - 2008 and

• 2009 - 2016.

This is necessary to find out, if the results are signal or just noise/random. Three tidal con-
stituents are illustrated below (figure 6.4 - 6.6) to show the signals behavior. All estimated
residual tidal constituents can be seen in the appendix A.3.

The chosen time-spans consider the tidal aliasing and ensure that the combined estimation
is possible.
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(a) 2002-2016 (b) 2009-2016 (c) odd years

Figure 6.4: tidal constituent (Mf ) estimated from GRACE observations during different
time-spans from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(upper block) and sine (lowerblock)

Illustration 6.4 shows residuals estimated from 2002-2016, 2009-2016 and odd years of obser-
vations. Caused by similar behavior of the resiudals, although the input data got changed, it
can foreshadowed, that the received residuals are actually signals, at least at the long-periodic
frequency band.

(a) 2002-2016 (b) 2009-2016 (c) odd years

Figure 6.5: tidal constituent (K1) estimated from GRACE observations during different
time-spans from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(upper block) and sine (lowerblock)

Figure 6.5 shows the behavior of the residuals of the luni-solar diurnal tide K1. Equally to
the semi-diurnal tide S2 - see illustration 6.3 - the results show inexplicable behavior over the
continents. The question above, if it is signal or just random/noise, could be clarified, since the
residuals behaviour does not change significant.
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(a) 2002-2016 (b) 2009-2016 (c) odd years

Figure 6.6: tidal constituent (K2) estimated from GRACE observations during different
time-spans from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(upper block) and sine (lowerblock)

Compared with the the other illustrated tidal residuals, the diurnal luni-solar tide K2 shows the
most random behaviour. The results does not change depending on the input-dataset.

Caused by this results another investigation will be done - estimating tidal constituents ex-
clusive K2 to see if this single tide sophisticates the other results.

estimating residual tides exclusive K2 from GRACE observations (2009-2016)

The following subsection deals with the estimation of tidal constituents with GRACE obsvera-
tions exclusive K2 to proof how the signals behaviour change.

Figure 6.7: tidal constituent (Mf ) estimated from GRACE observations during 2009
- 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine (left)
and sine (right) with K2 eliminated from normal equations

At first the long-periodic frequency band has been investigated, because it has the lowest noisy
characteristics. As it can be seen in illustration 6.7, there are no changes in the result compared
to figure 6.4.
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Figure 6.8: tidal constituents (Mf ,K1 and S2) estimated from GRACE observations
during 2009 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block) with K2 eliminated from normal equation

The figure shows the tidal constituents K1 and S2 estimated with eliminated K2 tide. Compared
to figures 6.5 and 6.3 there are no significant differences. It can be assumed, that the tidal con-
stituent K2 does not falsify the results.

Furthermore it can be said clearly, that the current signals - in form of residual tidal waves
- are not just noise or random, because their behaviour is similar, no matter which combination
of GRACE years observations are used as input for computations.
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6.3 Validation of the residual constituents w.r.t to FES2014

Since the global ocean-tide model EOT11a is the background model for ocean tides, the results
of this chapter are residuals to the EOT11a model up to degree 30th. Those residuals get com-
pared with the differences between the FES2014 and EOT11a model.

The illustrations below show the tidal constituent Q1 derived by GRACE and for purpose
of comparison the differences of the ocean tide models. It implies, that both residuals have the
same magnitude and a quite similiar behaviour.

(a) residuals by GRACE (b) residuals of ocean tide models

Figure 6.9: residuals of the diurnal tidal constituent Q1 from GRACE and the observed
ocean tide models in cosine (above) and sine (below)

The results yield to the fact, that estimating tidal constituents from GRACE observations are
meaningful and should be done to improve the existing model.

Because all other tidal constituents show the same results, just two more tidal constituents
are shown exemplaric on the following page. The remaining ones can be seen in the appendix
A.3.
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(a) residuals by GRACE (b) residuals of ocean tide models

Figure 6.10: residuals of the semi-diurnal tidal constituent N2 from GRACE and the
observed ocean tide models in cosine (above) and sine (below)

(a) residuals by GRACE (b) residuals of ocean tide models

Figure 6.11: residuals of the semi-diurnal tidal constituent M2 from GRACE and the
observed ocean tide models in cosine (above) and sine (below)
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7 Summary and Outlook

The objectives of this thesis have been to validate the major tides of the global ocean tide
model EOT11a w.r.t. to FES2014 and furhtermore with special respect to the satellite mission
GRACE. The second goal of this current work was it to proof if the linear admittance apporach
can be improved, since they are representing one of the main error sources of the latest gravity
field model [22, ITSG-Grace2016].

In a first step, equivalent water heights are succesfully computed from the given tidal con-
stituents for each global ocean tide model with the allocated software GROOPS. These first
investigations show that the EOT11a model should be enhanced for the reason that in the pole
regions are less altimeter data available. Moreover the differences compared to FES2014 are
larger, since it uses an additional hydrodynamic model for modeling major ocean tides.

The second part of the thesis deals with different methods to determine minor tides. First
off, different linear and quadratic admittance approaches are computed by changing the sam-
pling points in form of the respective major tides. It turned out that detailed considerations of
the origins of the respective tidal constituents yield to better results. Out of that reason, some
minor tides got computed by least square collocation, to examine if the assumption of linearity
inside the frequency band is proper. Therefore it was tested how a single minor tide changes,
if one major tide gets excluded. The results show clearly, that all major tides do influence one
single minor tide and that the approach of admittance should be reconsidered.

In a next step, the major tidal constituents are estimated of GRACE observations from 14
years. These residuals show the same behaviour as the differences between the EOT11a model
and the FES2014. Hence it can be clearly said, that a thorough modeling of tidal constituent
is fundamental and that GRACE can also see ocean tides, since there are so many years of ob-
servations available. To improve the current solution a combined estimation seems to be useful.
Also a regional refinement could be considered.

If all available major tides are considered, the determination of minor tides by LSC show good
results, even if the defined covariance function does not fit properly for all observed minor tides.
More investigations on the analytical covariance are necessary, to be able to predict all minor
tides automatically. Also the estimated weighted trend should be adjusted by considering the
origins of the respective minor tides in more detail.

The adaption of the ocean tide model by regional refinement can be mentioned as an addi-
tional point of view.
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A APPENDIX

A.1 major tides of ocean tide models and their respective differences

(a) EOT11a (b) FES2014 (c) differences

Figure A.1: tidal constituent (MM) derived by different ocean tide models in cosine
and sine in terms of equivalent water heights

(a) EOT11a (b) FES2014 (c) differences

Figure A.2: tidal constituent (MF ) derived by different ocean tide models in cosine
and sine in terms of equivalent water heights
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(a) EOT11a (b) FES2014 (c) differences

Figure A.3: tidal constituent (M4) derived by different ocean tide models in cosine and
sine in terms of equivalent water heights

(a) EOT11a (b) FES2014 (c) differences

Figure A.4: tidal constituent (Q1) derived by different ocean tide models in cosine and
sine in terms of equivalent water heights
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(a) EOT11a (b) FES2014 (c) differences

Figure A.5: tidal constituent (O1) derived by different ocean tide models in cosine and
sine in terms of equivalent water heights

(a) EOT11a (b) FES2014 (c) differences

Figure A.6: tidal constituent (P1) derived by different ocean tide models in cosine and
sine in terms of equivalent water heights
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(a) EOT11a (b) FES2014 (c) differences

Figure A.7: tidal constituent (S1) derived by different ocean tide models in cosine and
sine in terms of equivalent water heights

(a) EOT11a (b) FES2014 (c) differences

Figure A.8: tidal constituent (K1) derived by different ocean tide models in cosine and
sine in terms of equivalent water heights
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(a) EOT11a (b) FES2014 (c) differences

Figure A.9: tidal constituent (N2) derived by different ocean tide models in cosine and
sine in terms of equivalent water heights

(a) EOT11a (b) FES2014 (c) differences

Figure A.10: tidal constituent (M2) derived by different ocean tide models in cosine
and sine in terms of equivalent water heights
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(a) EOT11a (b) FES2014 (c) differences

Figure A.11: tidal constituent (S2) derived by different ocean tide models in cosine and
sine in terms of equivalent water heights

(a) EOT11a (b) FES2014 (c) differences

Figure A.12: tidal constituent (K2) derived by different ocean tide models in cosine
and sine in terms of equivalent water heights
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(a) EOT11a (b) FES2014 (c) differences

Figure A.13: tidal constituent (K2) derived by different ocean tide models in cosine
and sine in terms of equivalent water heights

A.2 minor tides linearly interpolated with FES2014 potential coefficients

(a) admittance (b) FES2014 (c) differences

Figure A.14: diurnal constitutent J1 derived by linear admittance from EOT11a with
FES2014 main tides potential coefficients, from FES2014 main tides potential coefficients
and their differences in cosine (upper block) and sine (lower block)
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(a) admittance (b) FES2014 (c) differences

Figure A.15: semi-diurnal constitutent ε2 derived by linear admittance from EOT11a
with FES2014 main tides potential coefficients, from FES2014 main tides potential coef-
ficients and their differences in cosine (upper block) and sine (lower block)

(a) admittance (b) FES2014 (c) differences

Figure A.16: semi-diurnal constitutent µ2 derived by linear admittance with FES2014
main tides potential coefficients, from FES2014 main tides potential coefficients and their
differences in cosine (upper block) and sine (lower block)
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(a) admittance (b) FES2014 (c) differences

Figure A.17: semi-diurnal constitutent ν2 derived by linear admittance with FES2014
main tides potential coefficients, from FES2014 main tides potential coefficients and their
differences in cosine (upper block) and sine (lower block)

(a) admittance (b) FES2014 (c) differences

Figure A.18: semi-diurnal constitutent λ2 derived by linear admittance with FES2014
main tides potential coefficients, from FES2014 main tides potential coefficients and their
differences in cosine (upper block) and sine (lower block)
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(a) admittance (b) FES2014 (c) differences

Figure A.19: semi-diurnal constitutent L2 derived by linear admittance with FES2014
main tides potential coefficients, from FES2014 main tides potential coefficients and their
differences in cosine (upper block) and sine (lower block)
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(a) admittance (b) FES2014 (c) differences

Figure A.20: semi-diurnal constitutent T2 derived by linear admittance with FES2014
main tides potential coefficients, from FES2014 main tides potential coefficients and their
differences in cosine (upper block) and sine (lower block)
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(a) admittance (b) FES2014 (c) differences

Figure A.21: semi-diurnal constitutent T2 derived by linear admittance with FES2014
main tides potential coefficients, from FES2014 main tides potential coefficients and their
differences in cosine (upper block) and sine (lower block)
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A.3 residual tidal constituents estimated from GRACE observations (2002-
2016)

Figure A.22: residual tidal constituents (MM) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)

Figure A.23: residual tidal constituents (MF ) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)

Figure A.24: residual tidal constituents (MTM) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)
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Figure A.25: residual tidal constituents (Q1) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)

Figure A.26: residual tidal constituents (O1) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)

Figure A.27: residual tidal constituents (P1) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)
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Figure A.28: residual tidal constituents (S1) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)

Figure A.29: residual tidal constituents (S1) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)

Figure A.30: residual tidal constituents (N2) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)
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Figure A.31: residual tidal constituents (M2) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)

Figure A.32: residual tidal constituents (S2) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)

Figure A.33: residual tidal constituents (K2) estimated from GRACE observations
during 2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block)
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6.2 tidal constituent (Mf ) estimated from GRACE observations during different time-

spans (2002 - 2016) from degree 2 up to D/O 30 in terms of equivalent water
heights in cosine (left) and sine (right) . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 tidal constituents (S1 and S2) estimated from GRACE observations during 2002
- 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 tidal constituent (Mf ) estimated from GRACE observations during different time-
spans from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(upper block) and sine (lowerblock) . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5 tidal constituent (K1) estimated from GRACE observations during different time-
spans from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(upper block) and sine (lowerblock) . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 tidal constituent (K2) estimated from GRACE observations during different time-
spans from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(upper block) and sine (lowerblock) . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.7 tidal constituent (Mf ) estimated from GRACE observations during 2009 - 2016
from degree 2 up to D/O 30 in terms of equivalent water heights in cosine (left)
and sine (right) with K2 eliminated from normal equations . . . . . . . . . . . . 53

6.8 tidal constituents (Mf ,K1 and S2) estimated from GRACE observations during
2009 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block) with K2 eliminated from normal equation 54

6.9 residuals of the diurnal tidal constituent Q1 from GRACE and the observed ocean
tide models in cosine (above) and sine (below) . . . . . . . . . . . . . . . . . . . 55



77

6.10 residuals of the semi-diurnal tidal constituent N2 from GRACE and the observed
ocean tide models in cosine (above) and sine (below) . . . . . . . . . . . . . . . 56

6.11 residuals of the semi-diurnal tidal constituent M2 from GRACE and the observed
ocean tide models in cosine (above) and sine (below) . . . . . . . . . . . . . . . 56

A.1 tidal constituent (MM) derived by different ocean tide models in cosine and sine
in terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 tidal constituent (MF ) derived by different ocean tide models in cosine and sine
in terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.3 tidal constituent (M4) derived by different ocean tide models in cosine and sine
in terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.4 tidal constituent (Q1) derived by different ocean tide models in cosine and sine
in terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.5 tidal constituent (O1) derived by different ocean tide models in cosine and sine
in terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.6 tidal constituent (P1) derived by different ocean tide models in cosine and sine in
terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.7 tidal constituent (S1) derived by different ocean tide models in cosine and sine in
terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.8 tidal constituent (K1) derived by different ocean tide models in cosine and sine
in terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.9 tidal constituent (N2) derived by different ocean tide models in cosine and sine
in terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.10 tidal constituent (M2) derived by different ocean tide models in cosine and sine
in terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.11 tidal constituent (S2) derived by different ocean tide models in cosine and sine in
terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.12 tidal constituent (K2) derived by different ocean tide models in cosine and sine
in terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.13 tidal constituent (K2) derived by different ocean tide models in cosine and sine
in terms of equivalent water heights . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.14 diurnal constitutent J1 derived by linear admittance from EOT11a with FES2014
main tides potential coefficients, from FES2014 main tides potential coefficients
and their differences in cosine (upper block) and sine (lower block) . . . . . . . . 65

A.15 semi-diurnal constitutent ε2 derived by linear admittance from EOT11a with
FES2014 main tides potential coefficients, from FES2014 main tides potential
coefficients and their differences in cosine (upper block) and sine (lower block) . 66

A.16 semi-diurnal constitutent µ2 derived by linear admittance with FES2014 main
tides potential coefficients, from FES2014 main tides potential coefficients and
their differences in cosine (upper block) and sine (lower block) . . . . . . . . . . . 66

A.17 semi-diurnal constitutent ν2 derived by linear admittance with FES2014 main
tides potential coefficients, from FES2014 main tides potential coefficients and
their differences in cosine (upper block) and sine (lower block) . . . . . . . . . . . 67

A.18 semi-diurnal constitutent λ2 derived by linear admittance with FES2014 main
tides potential coefficients, from FES2014 main tides potential coefficients and
their differences in cosine (upper block) and sine (lower block) . . . . . . . . . . . 67

A.19 semi-diurnal constitutent L2 derived by linear admittance with FES2014 main
tides potential coefficients, from FES2014 main tides potential coefficients and
their differences in cosine (upper block) and sine (lower block) . . . . . . . . . . . 68

A.20 semi-diurnal constitutent T2 derived by linear admittance with FES2014 main
tides potential coefficients, from FES2014 main tides potential coefficients and
their differences in cosine (upper block) and sine (lower block) . . . . . . . . . . . 69



78

A.21 semi-diurnal constitutent T2 derived by linear admittance with FES2014 main
tides potential coefficients, from FES2014 main tides potential coefficients and
their differences in cosine (upper block) and sine (lower block) . . . . . . . . . . . 70

A.22 residual tidal constituents (MM) estimated from GRACE observations during
2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . 71

A.23 residual tidal constituents (MF ) estimated from GRACE observations during
2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . 71

A.24 residual tidal constituents (MTM) estimated from GRACE observations during
2002 - 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in
cosine (left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . 71

A.25 residual tidal constituents (Q1) estimated from GRACE observations during 2002
- 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.26 residual tidal constituents (O1) estimated from GRACE observations during 2002
- 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.27 residual tidal constituents (P1) estimated from GRACE observations during 2002
- 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.28 residual tidal constituents (S1) estimated from GRACE observations during 2002
- 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.29 residual tidal constituents (S1) estimated from GRACE observations during 2002
- 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.30 residual tidal constituents (N2) estimated from GRACE observations during 2002
- 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.31 residual tidal constituents (M2) estimated from GRACE observations during 2002
- 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.32 residual tidal constituents (S2) estimated from GRACE observations during 2002
- 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.33 residual tidal constituents (K2) estimated from GRACE observations during 2002
- 2016 from degree 2 up to D/O 30 in terms of equivalent water heights in cosine
(left block) and sine (right block) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



79

List of Tables

2.1 Overview of satellite alitimetry missions for EOT11a, [19, DGFI Report No.89] . 4
2.2 list of main tides in EOT11a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 list of additional main tides in FES2014 w.r.t. EOT11a . . . . . . . . . . . . . . 7
3.1 periods and definitions of the luni-solar Doodson elements at J2000.0, with d

denoting a mean solar day, a denoting tropical year . . . . . . . . . . . . . . . . . 17
3.2 luni-solar tidal catalogs [24, Wilhelm (1997)], [18, RATGP95] . . . . . . . . . . . 18
4.1 interpolated minor tides with linear admittance with FES2014 potential coeffi-

cients and their differences to FES2014 main tides in terms of minima, maxima
and rms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 interpolated minor tides with quadratic admittance EOT11a combined with FES2014
potential coefficients and their differences to FES2014 main tides in terms of min-
ima, maxima and rms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 explanation of the used harmonic constituents [23, UKHO] . . . . . . . . . . . . 35
5.2 kind of weighting for trend calculations in frequency domain and numerical values

for f to adjust the analytical covariance function . . . . . . . . . . . . . . . . . . 39
5.3 differences of minor tides of LSC w.r.t FES2014 in terms of minima, maxima and

rms and the rms of linear admittance for comparison . . . . . . . . . . . . . . . . 41
6.1 GRACE tidal alias frequencies [11] . . . . . . . . . . . . . . . . . . . . . . . . . . 50



80

References

[1] Allein D. J., (2012) TUGOm Tidal ToolBox. CNES/CLS, LEGOS. France.

[2] Baur O., (2012) Lecture Notes of GGOS. TU Graz.
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