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Kurzfassung

Neue IT-Paradigmen wie Cloud-Computing haben in den letzten Jahren signi-
fikante Aufmerksamkeit auf sich gezogen und viele Unternehmen lagern mitt-
lerweile Daten, Berechnungen, oder Dienste zu Cloud-Service-Providern aus um
Kostenreduktionen und/oder Effizienzsteigerungen zu erreichen. Gleichzeitig tra-
gen wir portable Computer in unseren Taschen, die den ubiquitären Zugriff
auf die durch diesen Trend entstehenden verteilten Infrastrukturen und Dienste
ermöglichen. Während diese neuen Paradigmen viele Vorteile bieten, bringen sie
auch eine Vielzahl an offenen Fragen mit sich. Viele dieser Fragen ergeben sich
daraus, dass die involvierten Daten von (typischerweise nicht vollständig ver-
trauenswürdigen) Dritten verarbeitet werden und betreffen die Sicherheit der
Daten und die Privatspähre der Nutzer.

In dieser Arbeit adressieren wir die Frage wie man mit kryptographischen
Methoden die Authentizität der verarbeiteten Daten sicherstellen kann, während
man gleichzeitig die Privatsphäre der involvierten Parteien bestmöglich schützt.
Dabei legen wir den Fokus auf zwei (sich teilweise überschneidende) Aspekte
von Privatsphäre. Zum einen adressieren wir die Privatsphäre der Partei, wel-
che die Daten authentisiert (im folgenden Signator). In diesem Zusammenhang
kommt es häufig vor, dass der Signator mehr persönliche Informationen preisgibt
als für die Authentisierung notwendig wären. Um dies zu unterbinden schlagen
wir kryptographische Schemen und Protokolle vor, welche inhärent sicherstel-
len, dass – abgesehen davon dass die authentisierten Daten von einem Mitglied
einer authorisierten Gruppe stammen – keine Informationen über den Signa-
tor preisgegeben werden. Zum Anderen zielen wir auf Privatsphärenaspekte im
Kontext der authentisierten Daten selbst ab. Authentisierte (signierte) Daten
enthalten oft sensible Informationen, und deren Weitergabe an unauthorisier-
te Parteien kann schwerwiegende Verletzungen der Privatsphäre darstellen. Aus
diesem Grund ist es wichtig Möglichkeiten zur Verfügung zu stellen um sensible
Teile vor der Weitergabe der Daten zu entfernen oder zu ersetzen. Gleichzeitig
ist es jedoch wichtig die Authentizität der nicht entfernten oder ersetzten Teile
der Daten garantieren zu können. Unsere Arbeit in diese Richtung beschäftigt
sich mit kryptographischen Schemen und Protokollen die eine Modifikation von
authentisierten Daten in einer kontrollierten, vom Signator definierten Art und
Weise erlauben, während die Authentizitätsgarantien erhalten bleiben.

Von einem technischen Blickwinkel erweitert diese Arbeit den aktuellen Wis-
sensstand bezüglich kryptographischen Schemen und Protokollen in den oben
genannten Interessensgebieten. Wir präsentieren sowohl neue Paradigmen und
Konstruktionen, als auch Generalisierungen und Erweiterungen existierender Pa-
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radigmen und Konstruktionen. Dabei folgen wir einem modularen Ansatz, wel-
cher unsere Konstruktionen konzeptionell einfach und leicht verständlich macht.
Während Modularität oft auf Kosten reduzierter Effizienz erreicht wird, sind die
Paradigmen die unseren Konstruktionen unterliegen auch von einem praktischen
Blickwinkel attraktiv.
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Abstract

New computing paradigms such as cloud computing attracted significant atten-
tion in recent years and meanwhile numerous enterprises outsource data, com-
putations or services to cloud computing providers for flexibility and/or cost ef-
ficiency reasons. In addition, we carry computing devices in our pockets, which
allow to ubiquitously access the distributed infrastructures and services emerg-
ing from this trend. While these novel paradigms have many advantages, they
raise open questions in various directions. Many of those questions are related
to security and privacy and arise from processing data at (typically not fully
trusted) third parties.

We address the question as how to cryptographically ensure the authentic-
ity of processed data, while at the same time maintaining the privacy of the
involved parties. Thereby, we focus on two (partially intersecting) aspects of
privacy. First, we target privacy with respect to the party who authenticates
the data, i.e., the signer. There are many scenarios where signers reveal more
personal information than actually required upon authentication. Our work
in this direction aims to counter this by cryptographic schemes and protocols,
which inherently ensure that—beyond the fact that the authenticated data stems
from a member of some authorized group—nothing is revealed about the signer.
Second, we target privacy with respect to the authenticated data itself. In par-
ticular, authenticated data often contains sensitive information and disclosing
this information to unauthorized parties may pose severe privacy issues. To this
end, it is important to have means to remove or replace the privacy sensitive
parts before disclosure. At the same time, it is important to guarantee authen-
ticity of the parts of the data which were not removed or replaced. Our work
in this direction thus covers cryptographic schemes and protocols which allow
modifications of authenticated data in a controlled, signer-defined manner, while
still upholding the authenticity guarantees.

From a technical point of view, this thesis improves upon the state of the
art of provably secure cryptographic schemes and protocols within the areas of
interest outlined above. More precisely, we present novel paradigms and con-
structions, as well as generalizations and extensions of existing paradigms and
constructions. Thereby we follow a modular approach which makes our con-
structions conceptually simple and easy to understand. While modularity often
comes at the cost of reduced efficiency, we stress that the paradigms underlying
our constructions are also appealing from a practical point of view.
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Samelin, and Daniel Slamanig. Chameleon-Hashes with Ephemeral Trap-
doors and Applications to Invisible Sanitizable Signatures. In Public-Key
Cryptography - PKC 2017 - 20th IACR International Conference on Prac-
tice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands,
March 28-31, 2017, Proceedings, Part II, pages 152–182, 2017. Full Version:
IACR Cryptology ePrint Archive, 2017:11.

[c3] David Derler, Sebastian Ramacher, and Daniel Slamanig. Homomorphic
proxy re-authenticators and applications to verifiable multi-user data aggre-
gation. In Financial Cryptography and Data Security - 21st International
Conference, FC 2017, Sliema, Malta, April 3-7, 2017, Revised Selected Pa-
pers, 2017. To Appear. Full Version: IACR Cryptology ePrint Archive,
2017:86.

[c4] Olivier Blazy, David Derler, Daniel Slamanig, and Raphael Spreitzer. Non-
interactive plaintext (in-)equality proofs and group signatures with verifi-
able controllable linkability. In Topics in Cryptology - CT-RSA 2016 - The
Cryptographers’ Track at the RSA Conference 2016, San Francisco, CA,
USA, February 29 - March 4, 2016, Proceedings, pages 127–143, 2016. Full
Version: IACR Cryptology ePrint Archive, 2016:82.

[c5] David Derler, Stephan Krenn, and Daniel Slamanig. Signer-anonymous
designated-verifier redactable signatures for cloud-based data sharing. In
Cryptology and Network Security - 15th International Conference, CANS
2016, Milan, Italy, November 14-16, 2016, Proceedings, pages 211–227,
2016. Full Version: IACR Cryptology ePrint Archive, 2016:1064.

xv



Refereed Conference Proceedings

[c6] David Derler, Christian Hanser, Henrich C. Pöhls, and Daniel Slamanig.
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1
Introduction

In recent years, computing has experienced a paradigm shift. On the one hand,
enterprises increasingly follow the trend to outsource data, computations, or
services to third party infrastructure (i.e., to cloud computing providers) for
cost efficiency and/or flexibility reasons. On the other hand, computing became
ubiquitous. That is, we face computers in our daily lives, which allow us to ac-
cess the distributed infrastructures and services emerging from this trend from
virtually everywhere. Both aforementioned paradigms are well accepted, many
interesting business models exist in both contexts, and a wide variety of solu-
tions are already deployed. Yet, they pose new challenges in various directions.
Many of those challenges are related to security and privacy (see, e.g., [LRD+15])
and arise from storing and processing data at some typically not fully trusted
third party. In this thesis we address the question as how to reduce the trust
assumptions in the entities processing the data. In particular, we aim to cryp-
tographically ensure the authenticity of the processed data, while at the same
time maintaining the privacy of the involved parties. Our contributions target
two different aspects of privacy in this context, which we will further discuss
below.

Privacy with Respect to the Signer. When authenticating (signing) data,
one often reveals more information than necessary for the respective task. In par-
ticular, in many scenarios it is sufficient to demonstrate that the authenticated
data stems from a member of some authorized group, while not revealing any
other potentially privacy sensitive information about the actual signer. Promi-
nent examples for such scenarios can, e.g., be found in the steadily increasing
area of intelligent transportation systems. This area spans private as well as
public transportation and includes systems for vehicle to vehicle communica-

1



Chapter 1. Introduction

tion, floating car data, electronic toll systems, electronic parking, and smart
ticketing. Unfortunately, practical implementations of such systems often put
privacy features aside in favor of other features—even though the requirement
to ensure privacy of users in those scenarios is meanwhile explicitly stated in
EU Directive 2010/40/EU. To foster a broad acceptance and usage of privacy
respecting systems it is important to develop solutions which produce as lit-
tle overhead regarding computational complexity and bandwidth as possible.
Privacy-enhancing cryptographic primitives like anonymous credentials [Cha85],
group signature schemes [CvH91], or ring signature schemes [RST01] are useful
tools to cryptographically address the privacy issues in this context. Anony-
mous credentials allow organizations to issue credentials (e.g., digital ID cards)
to users, who can then anonymously demonstrate possession of such a credential
to every third party that trusts the respective organization. Thereby, modern
credential systems consider credentials as a collection of attributes, and upon au-
thentication users are able to reveal subsets of these attributes or even to prove
certain predicates with respect to non-revealed attributes (e.g., the attribute
birthdate has a value such that it holds that age > 18).1 Group signatures are a
very related concept and essentially allow a group manager to set up some group
so that every member of this group can anonymously issue signatures on behalf
of the group. Still, in case of a dispute, a dedicated entity called the opening
authority can re-identify the actual signer for a given signature. In a sense,
group signatures can thus informally be viewed as non-interactive counterparts
to anonymous credentials with a single attribute certifying group membership.
Finally, also ring signatures are useful in applications where signer anonymity is
important. They are similar to group signatures, but signatures are generated
with respect to ad-hoc groups (rings) and the actual signer remains uncondi-
tionally anonymous.2

Privacy with Respect to the Signed Data. When outsourcing data stor-
age or processing to third-party infrastructure, one faces some obstacles. Among
them is the question as how to ensure the authenticity of outsourced data. While
conventional digital signatures provide a potential solution to the static setting
where data are simply stored by third parties, we are interested in a dynamic
setting. Here, the goal is to outsource data and to allow third parties to process
them, i.e., to modify them in some controlled manner so that it is later possible
to verify whether certain modifications were from the class of “allowed” modifi-
cations. Useful tools in this context are malleable signatures, i.e., signatures that
allow to modify signed messages in a controlled manner and without invalidating
the respective signatures. The expressiveness of the restrictions on modifications
thereby varies from simply “blacking out” [JMSW02] or replacing [ACdMT05]

1 We note that even though some anonymous credential systems are defined with respect to
an interactive showing procedure, we categorize them as variants of signature schemes. For
simplicity, we also use the term signer to refer to the party who performs the showing.

2 Note that there are also concepts between group signatures and ring signatures. For instance,
in accountable ring signatures [XY04, BCC+15], signatures are generated with respect to
ad-hoc groups, yet there is a dedicated opening authority which is able to re-identify the
signer.
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1.1. Results and Outline

message parts, to the possibility to define rather generic policies that every
signed message needs to fulfill [BF14], or even allowing to evaluate (arbitrary)
functions on the signed messages [BF11, BGI14, GVW15].3 In general, one can
group malleable signature schemes into functional signatures, where the allowed
computations can only be performed by a designated entity, and homomorphic
signatures, where anyone can perform the allowed computations. When using
malleable signatures to ensure authenticity of outsourced data, a signature can
be issued on the data so that the service provider can apply allowed modifications
while still upholding the validity of the signature. Another somewhat related
application is the authentic documentation of outsourced processes for account-
ability and/or auditing reasons. While conventional signatures already deliver a
means to hold the executing party accountable for its actions, i.e., by requiring
a valid signature created by the executing party on a report documenting its
actions, malleable signatures additionally allow the outsourcing party to prede-
fine the structure of such a report (and possibly even certain restrictions).4 In
both scenarios sketched above, it is crucial that signatures on the modified data
do not reveal information on the data that was removed by the modifications,
followingly subsumed as privacy.

Intersections of Both. While the privacy aspects discussed above can be
viewed in isolation in some applications, there are also scenarios where both
aspects are relevant simultaneously. That is, scenarios where the identity of the
signer as well as the document content may reveal privacy sensitive information.
As an example, consider a health information sharing system. In such a system,
doctors sign medical records of patients so that the patients can distribute au-
thentic subsets of their records to further stakeholders such as other doctors or
employers. Clearly, different stakeholders only need to see different portions of
the signed documents and therefore one needs the ability to black out (remove)
certain document parts while still maintaining the authenticity guarantees of the
remaining parts. Orthogonal to that, one may observe that it will often be the
case that only knowing the specialization of the signing doctor (which can be
deduced from the doctor’s identity) allows to infer privacy sensitive knowledge
about the patient’s illness, e.g., in case of an oncologist. Therefore, the doctor’s
identity is also an asset that deserves protection in such a system for the sake
of increased patient privacy.

1.1 Results and Outline

Figure 1.1 clusters our results with respect to the areas of interest in this thesis
and also incorporates pointers to the chapters/sections containing the actual
contributions. In a nutshell, our results can be organized in different layers
building upon each other.

3 For an extensive overview of malleable signatures and related concepts, see [d2].
4 Refer to [c6] for an extensive discussion from the application perspective.
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Cryptographic Accu-
mulators (Section 3.1)

Key-Homomorphic
Signatures (Section 3.2)

Universal Desig-
nated Verifier Signa-
tures (Section 3.3)

Simulation Sound
Extractable NIZK

(Section 3.4)

Homomorphic Proxy-Re Au-
thenticators (Section 5.4)

Extended Sanitizable Sig-
natures (Section 5.3)

Generalized Redactable
Signatures (Section 5.1)

Extended Privacy for Redactable
Signatures (Section 5.2)

Group Signatures (Section 4.2)

Ring Signatures (Section 4.1)

Basic Primitives (Chapter 3)

Data Privacy (Chapter 5) Signer Privacy (Chapter 4)

Figure 1.1: Overview of contributions.

At the bottom layer we focus on basic primitives. They can be seen as
building blocks for schemes and protocols in the areas of interest in this thesis.
Yet, they are also suitable for a broader range of applications in general. Building
upon this layer, we have two clusters focusing on the two topics of interest posed
above, i.e., authentication primitives with privacy features for the signer and
authentication primitives with privacy features with respect to the authenticated
data.

In the remainder of this section we give a high-level overview of our results.
The more technical discussion is postponed to the introductions of the respective
chapters/sections. Note that our overview partly borrows formulations from the
abstracts/introductions of the referenced papers.

Basic Primitives. Below we subsume our results on basic primitives.

Cryptographic Accumulators [c8]. Cryptographic accumulators, firstly intro-
duced in [BdM93], allow to succinctly represent a set X of values as a so-called
accumulator ΛX . Thereby, for each member x ∈ X , one can efficiently compute a
witness attesting the membership of x ∈ ΛX , while this should be computation-
ally infeasible for values x /∈ X (collision freeness). Further, dynamic accumu-
lators allow to dynamically add/delete values to/from the accumulator, whereas
universal accumulators additionally provide means to obtain non-membership
witnesses for non-members (i.e., values x /∈ X ). In case of universal accumula-
tors, collision-freeness also covers the infeasibility to compute non-membership
witnesses for accumulated values. Besides that, accumulators may provide un-
deniability [BLL00, BLL02, Lip12] and indistinguishability. While undeniability
can be seen as a stronger collision-freeness notion, indistinguishability requires
that neither the accumulator nor corresponding witnesses leak information about
the accumulated set. Cryptographic accumulators received quite some attention
from the cryptographic community and many different formalizations consider-
ing different security notions exist.

We introduce a unified formalization of accumulators, where—in addition to
collision freeness—we also consider undeniability and introduce the first mean-
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1.1. Results and Outline

ingful formalization of indistinguishability.5 Such a formalization of accumula-
tors yields a solid basis for generic constructions of primitives that build upon
accumulators and they are used as central building blocks for three of the mal-
leable signature schemes presented in this thesis. In addition to our unifying
formalization, we formally analyze the relations between the different security
properties of accumulators and classify existing constructions with respect to
their security in our unified model. It thereby turns out that no existing con-
struction provides indistinguishability in our model. To resolve this issue, we
propose the first indistinguishable, dynamic accumulator scheme. In addition,
we present a simple, light-weight generic transformation that can be applied to
existing accumulators to obtain a slightly weaker form of indistinguishability.
Furthermore, we analyze relations of accumulators to other primitives. Most
interestingly, one of the relations we prove also yields the first construction of
an undeniable, indistinguishable, universal accumulator.

Key-Homomorphic Signatures and Applications [i5]. As mentioned above, one
of our main areas of interest is in the field of malleable signatures, i.e., signatures
which possess certain homomorphic properties on their message space. For this
result we turn to a related issue, namely signatures with homomorphic properties
on their key space. Interestingly, signature schemes have not yet been explicitly
investigated in this context so far.

We initiate the study of key-homomorphic signatures by introducing a frame-
work that generalizes larger classes of existing signature schemes with respect
to various natural variants of key-homomorphisms. Such a framework is espe-
cially interesting as it allows to make general statements about schemes from
those classes and to obtain generic constructions building upon schemes from
those classes. Our results on extended privacy for redactable signatures in Sec-
tion 5.2 include one immediate example of a generic construction building upon
our framework. Besides that, our results include elegant and simple compilers
from classes of schemes admitting certain types of key homomorphisms to other
interesting cryptographic primitives. In particular, we present multiple appli-
cations of our framework to different variants of (privacy-enhancing) signature
schemes involving multiple parties, as well as an application to non-interactive
proof systems providing strong security guarantees. In addition, we analyze var-
ious signature schemes with respect to their key-homomorphic properties, and
thereby directly obtain various instantiations of our generic constructions being
favorable regarding conceptual simplicity and efficiency when compared to exist-
ing constructions. Note that the applications of our framework which we deem
to be more interesting in the context of this thesis are presented in separate sec-
tions (Section 3.3, Section 3.4, and Section 4.1). We also want to note that our
results go beyond the scope of this thesis and refer the reader to Section 1.1.2
for a brief discussion of additional results.

5 Subsequently to our work this notion has even been strengthened in [GOP+16]. Never-
theless, our indistinguishability notion is better suited for the applications where we use
accumulators.
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Signatures with Signer Privacy. Our results on schemes providing privacy
features for the signer presented in this thesis include a ring signature scheme and
a group signature scheme. The ring signature scheme constitutes one application
of our framework for key-homomorphic signatures discussed above. To this end,
we do not discuss it again and directly turn to our group signature scheme.

Group Signatures [i4]. Initial work on group signatures only introduced “in-
tuitive” security notions and no comprehensive security model existed. To this
end [BMW03], introduced the first formal security model. Subsequently, [BSZ05]
extended the model in [BMW03] by considering the possibility to dynamically
add/remove group members.6 Their model is very strong and anonymity needs
to hold even if the adversary sees arbitrary key exposures and arbitrary openings
of other group signatures. Existing constructions achieving this strong security
notion follow the so-called sign-encrypt-prove (SEP) paradigm [CS97], where
creating a group signature involves proving knowledge of an encrypted mem-
bership certificate (issued by the group manager). An elegant alternative to
this paradigm is the so-called sign-randomize-prove (SRP) paradigm [BCN+10].
Here, the group manager uses a signature scheme with randomizable signatures
(e.g., [CL02a, PS16]) to sign a commitment to the user’s secret key. Creat-
ing a group signature involves the randomization of the signature and proving
knowledge of the signed secret key. While the SRP paradigm seems to be ben-
eficial regarding efficiency, unfortunately all known constructions following this
paradigm are proven secure in a model which is much weaker than the BSZ
model.

We tackle the question whether schemes being secure in the strong BSZ
model while following the SRP paradigm even exist at all. We answer it to the
affirmative by presenting a surprisingly efficient construction. Our construction
allows us to further push the computational efficiency limits regarding signa-
ture generation and verification with respect to all known constructions being
secure in such strong models. Besides those efficiency gains, we even beat the
popular BBS short group signature scheme [BBS04] regarding signature size.
Compared to previous work, our construction uses slightly stronger, yet very
plausible assumptions.

Signatures with Data Privacy. Below we review our results on signature
schemes providing privacy features with respect to the signed data. Our results
include various variants of malleable signature schemes.

Generalized Redactable Signatures [c9]. Redactable signature schemes allow to
sign messages, where certain parts of the message may later be removed (i.e.,
redacted) by any party without signer interaction and without invalidating the
signature. Redactable signatures were initially introduced in [SBZ01, JMSW02]
and subsequently extended to support more sophisticated data structures such
as trees [BBD+10, SPB+12a] or graphs [KB13]. All these constructions make

6 Also note that [KY05] introduced an alternative formalization of dynamic group signatures
providing similar guarantees as [BSZ05].
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the data structure of the messages to be signed explicit in their security model
and are therefore not usable to look at redactable signature schemes from a more
general viewpoint. Besides the work cited above, much other work on redactable
signatures exists. Unfortunately, nearly every proposed construction also intro-
duces its own security model, yielding a rather messy terminology in the field
of redactable signatures. Besides the usual unforgeability guarantees, an impor-
tant requirement in most applications of redactable signatures is that redacted
signatures do not reveal information about the redacted message parts. In the
literature, this requirement is termed privacy. A related, stronger requirement
is that signatures do not even reveal whether redactions have taken place. This
property is called transparency in [BBD+10], while [CLX09] consider it as a
variant of privacy.

We deem redactable signatures to be very useful tools to cryptographically
address the questions we are interested in. To this end, we propose a generalized
security model for redactable signatures that does not depend on the concrete
data structure of the signed messages. Thereby, we closely align our notions and
terminology with the standard security model for the related notion of sanitiz-
able signatures [BFF+09] (as it is done in [BBD+10] for redactable signatures
for trees) and take care that our new model is compatible with existing schemes.
In addition, we introduce the notion of designated redactors, where the signer
can (optionally) hand over some extra piece of information to the redactor(s).
This extra piece of information often allows to obtain more efficient schemes.
Furthermore, we present three generic constructions of redactable signatures for
sets and linear documents which make—among others—black-box usage of indis-
tinguishable cryptographic accumulators. Besides yielding a flexible framework
with many possible instantiations, two of our constructions can also be viewed
as generalizations of existing lines of work.

Extended Privacy for Redactable Signatures [c5]. While plain redactable sig-
natures already address important issues in the context of privacy preserving
processing of authentic documents, one may observe that—depending on the
type of processed document—there may be other privacy sensitive assets which
deserve protection. In particular, redacting certain parts of a document might
not be as useful as intended if already the identity of the signer allows to infer
privacy sensitive information. Thus another important issue to address in this
context is to conceal the identity of the signer, as it is for example known from
group signatures. Besides that, one may observe that everyone getting to hold a
valid (redacted) signature will be able to convince others of the authenticity of
the associated document by simply publishing the signature. Again, this might
be too privacy invasive in certain scenarios. It would be better to have a similar
feature as provided by universal designated verifier (UDV) signatures [SBWP03].
In UDV signatures, the owner of the data can convert publicly verifiable signa-
tures to signatures which are only useful to convince one particular designated
entity of the authenticity of the respective document.

We address the extension of redactable signatures according to the require-
ments sketched above. While the features we would require are provided by
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distinct cryptographic schemes which have been studied in isolation, it is well
known that a näıve combination of different cryptographic primitives to a larger
system is often problematic. In particular, without a thorough specification
and analysis of the resulting combined scheme, subtle issues often remain un-
detected. To this end, we rigorously formalize our desired primitive which we
dub signer-anonymous designated-verifier redactable signatures. Based on our
formalization, we present two constructions and prove them secure in our newly
introduced model. The first one is a generic construction which is more of
theoretical interest. In contrast, for the second construction we build upon our
generic framework for redactable signatures and also leverage our results on key-
homomorphic signature schemes to obtain a particularly efficient instantiation.
We also confirm our efficiency claims with implementation results.

Extended Sanitizable Signatures [c10]. Sanitizable signatures were initially in-
troduced in [ACdMT05] and later formalized in [BFF+09]. They allow to sign
messages, where some dedicated party (the sanitizer) may later change (san-
itize) certain predefined parts of the signed message without invalidating the
signature and without signer interaction. Essentially, sanitizable signatures are
required to provide the following security properties. Firstly, only the signer
and the sanitizer should be able to create valid signatures (unforgeability) and
the sanitizer should only be able to modify the parts of the message which
were initially defined to be modifiable (immutability). Secondly, one should not
be able to distinguish between signatures created by the signer and signatures
created by the sanitizer (transparency) and it should be infeasible to recover
sanitized information (privacy). Finally, neither signers nor sanitizers should
be able to repudiate the creation of signatures (accountability). Subsequent
to the initial formalization, the additional property (strong) unlinkability was
introduced [BFLS10, BPS13] as a stronger privacy notion.

To make sanitizable signature schemes even more expressive, Klonowski and
Lauks [KL06] introduced several extensions to plain sanitizable signatures. Most
interestingly, they introduced the feature to limit the possible modifications
per modifiable message block to signer-defined sets (LimitSet). While [KL06]
did not provide any formal security definitions, [CJ10] extended the security
model for sanitizable signatures to also cover their extensions. Unfortunately,
the definition of privacy in [CJ10] contradicts privacy in the original sense of
sanitizable signatures. That is, it does not require the admissible changes within
the LimitSet blocks to remain concealed upon verification of the signature.

We address this issue and review the notion of unlinkability in the context of
LimitSet. We conclude that—while such a notion would fix the aforementioned
issue—it seems to be too strong to obtain practically efficient schemes. Con-
sequently, we introduce a stronger version of privacy (denoted strong privacy)
that captures privacy in the original sense while still allowing practically efficient
instantiations. In addition, we set our newly introduced privacy notion in the
context of the existing privacy notions and show that privacy is strictly weaker
than strong privacy, that unlinkability is strictly stronger than strong privacy
and that strong privacy is independent of transparency. Finally, we provide a
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black-box construction of schemes supporting the LimitSet extension from plain
sanitizable signatures in the models of [BFF+09, GQZ10] and cryptographic ac-
cumulators, and show that the so-obtained construction provides strong privacy
if the accumulator scheme is indistinguishable.

Homomorphic Proxy-Re Authenticators [c3]. Proxy re-cryptography [BBS98]
targets the setting where a semi-trusted proxy can transform cryptographic ob-
jects under one key to cryptographic objects under another key using so called re-
keys which enable this transformation. While the domain of proxy re-encryption
has proven to be useful in a plethora of applications (cf. Section 5.4), proxy re-
cryptography in the context of authentication primitives seems to inherently
require a combination with homomorphic properties (malleability) on the mes-
sage space to be really useful. Interestingly, however, this direction has received
no attention so far.

We address this issue and propose the notion of homomorphic proxy-re au-
thenticators. Here, data sources authenticate data items under their own secret
keys and send them to an aggregator. The aggregator—who is in possession of
re-keys from all the single sources to a receiver—can then transform the single
signatures to a message authentication code (MAC) under the receiver’s key.
In addition, the resulting MAC provides homomorphic properties on the mes-
sage space, so that the aggregator can report authentic evaluations of arithmetic
circuits (functions) on the data items provided by the sources to the receiver.
Our framework considers two flavors of privacy—input privacy and output pri-
vacy. Input privacy requires that a MAC which authenticates the evaluation of
a function f on a set of data items does not reveal more information than the
description of f and the evaluation result would reveal on their own. Output pri-
vacy requires that the aggregator neither learns the data items provided by the
sources, nor the result of the evaluation of f on them. We present two modular
constructions of homomorphic proxy-re authenticators for linear functions—the
first providing input privacy and the second providing input and output privacy.
On our way to achieve output privacy, we formalize the notion of homomorphic
proxy re-encryption and present an instantiation for linear functions.

1.1.1 Bibliographical Remarks

The technical parts following this introduction are directly taken from the full
versions of the author’s publications as referenced above (mostly verbatim).
We made adaptations to achieve notational consistency within this thesis, re-
arranged the order of some sections, and made some other minor changes and
clarifications. Furthermore, we isolated the required preliminaries within a ded-
icated chapter to avoid redundancies. Likewise to the technical parts, the pre-
liminaries chapter reuses the preliminaries from the author’s publications (also
including the ones where the contribution is not included in this thesis) with
some notational adaptations for consistency reasons. For all included parts the
author contributed as one of the main authors.
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1.1.2 Other Contributions

We now briefly discuss additional contributions of the author which are not
included in this thesis. For the papers where the author did not contribute as
one of the main authors we make the author’s contributions explicit. Again, we
partly borrow formulations from the abstracts/introductions of the referenced
papers.

Further Results on Basic Primitives. We now discuss our additional results
on basic primitives.

Post-Quantum Signatures [i1]. Shor’s polynomial time algorithm for computing
discrete logarithms and factoring [Sho94] made it evident that having a suf-
ficiently powerful quantum computer will allow to break virtually all public
key cryptosystems being currently in place. While statements about the fea-
sibility of building such a quantum computer within the next few decades are
rather speculative, it is important to be prepared. We introduce signature
schemes and zero-knowledge proofs which are solely based on symmetric key
primitives. Those primitives are conjectured to resist attacks by quantum
computers. Furthermore, we present implementations confirming the practi-
cability of our results. This work is a merge of [i3] and [GCZ16]. The author
contributed as one of the main authors of [i3].

Forward-Secure Proxy Re-Encryption [i2]. In this work we turn to another is-
sue in the context of proxy re-cryptography, namely forward secure proxy
re-encryption. Forward security is a notion which aims to prevent that a
key leakage at a certain point in time affects previous usages of the key. For
example, in the domain of encryption schemes this would mean that leak-
ing a key at a certain point in time does not help in decrypting ciphertexts
which were created before the key leakage. The tricky part in such a set-
ting is that one requires a mechanism which allows to update the secret key
while keeping the associated public key constant and compact. We formalize
forward-security in the context of proxy re-encryption and provide two mod-
ular constructions based on different building blocks related to hierarchical
identity based encryption [GS02]. Some techniques we use are also inspired
by our work on key-homomorphic signatures. The author mainly contributed
in the conception phase and in the final writing phase.

Practical Witness Encryption [i6]. Witness encryption is an alternative encryp-
tion paradigm where one encrypts with respect to an instance of some problem
(a word x in an NP-language L) so that everyone who knows a solution to this
problem instance (a witness w attesting the membership of x ∈ L) can later
decrypt. We construct witness encryption for a class of algebraic languages
being particularly interesting in the design of cryptographic schemes and pro-
tocols. Furthermore, we show how to use our witness encryption scheme to
encrypt with respect to a zero-knowledge proof, so that only the prover can
decrypt. Finally, we discuss how to apply our techniques in the context of
privacy-preserving communication.
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Multi-Key Homomorphic Signatures [i5]. In addition to our results on key-homo-
morphic signatures discussed before, we introduce the notion of multi-key
homomorphic signatures in [i5]. Essentially, this notion combines homomor-
phic properties on the message space with homomorphic properties on the
key space. We discuss applications of key homomorphisms in this context
and present first results regarding the feasibility of achieving certain flavors
of multi-key homomorphic signatures.

Further Results on Signatures with Signer Privacy. Below, we revisit
our additional results on variants of signature schemes which provide privacy
features for the signer.

Linking of Group Signatures [c4]. We extend group signatures with a feature
that allows a dedicated entity, called linking authority, to prove whether two
group signatures were created by the same or different group members, while
not learning anything about the group member’s identity. Our construc-
tion complements so-called controllably linkable group signatures [HLhC+11,
HLC+13, SSU14, HCCN15]—where the linking authority only outputs a de-
cision bit—with publicly verifiable proofs. We call group signatures providing
this feature group signatures with verifiable controllable linkability (VCL-GS).
We construct a novel proof system to prove statements about the equality
and inequality of two encrypted plaintexts. Based on this, we formalize the
security requirements for VCL-GS and present a construction using our plain-
text (in-)equality proofs. The author contributed to the construction of the
proof system and to the security proofs of the VCL-GS extension.

Revocation of Anonymous Credentials [c7]. When using signature variants wh-
ere the signers remain anonymous, one may observe that it is a non-trivial
task to revoke their signing rights. In this work, we focus on revocation in
the context of attribute based anonymous credential systems. In particular,
we introduce a security model which explicitly considers revocation together
with two revocation mechanisms for the credential system in [HS14, FHS15b].
Both revocation mechanisms are based on cryptographic accumulators.

Anonymous Credentials on a Java Card [c13]. We demonstrate the feasibility of
using Brands’ attribute based anonymous credential system [Bra00]—which is
well known due to being used within Microsoft’s U-Prove [PZ13]—on a stan-
dard Java card. This work subsumes the results of the author’s bachelor’s
thesis.

Further Results on Signatures with Data Privacy. Below, we review
further results on signature schemes providing privacy features with respect to
the signed data.

Invisible Santizable Signatures [c2]. In this work, we tackle the long standing
open question as how to construct sanitizable signature, where no one except
the signer and the sanitizer is able to decide whether a block is admissibly
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changeable or not. On our way, we introduce a new building block dubbed
chameleon hashes with ephemeral trapdoors (CHETs) and present four con-
structions thereof. The author contributed to the security proofs of the new
sanitizable signature scheme as well as the security proofs of the two CHETs
in the known-order group setting.

Stronger Security for Invisible Sanitizable Signatures [c1]. It remained open in
[c2] whether it is possible to achieve stronger invisibility and signer-account-
ability definitions. In this work we strengthen the definitions from [c2] and
present an extension of the construction in [c2] which achieves these stronger
notions as well as an implementation confirming its practicality. The author
contributed to fine-tuning some details in the construction and the security
proofs.

Authentic Documentation of Outsourced Workflows [c6]. Besides end-to-end au-
thenticity of outsourced modifiable data, we see the authentic documentation
of outsourced processes and/or workflows as one central application of mal-
leable signatures. We define a framework which formally captures the require-
ments for this application. On top of that, we study the suitability of different
flavors of malleable signatures to cover (subsets of) the defined requirements.

Black-Box Constructions of Proxy-Type Signatures [c12]. Proxy-type signatures
are a variant of malleable signatures with similarities to (extended) sanitiz-
able signatures regarding the expressiveness of the allowed modifications. The
main difference to sanitizable signatures is that the delegator does never is-
sue a signature on its own, but only computes a delegation key which allows
a designated party (the proxy) to issue signatures on behalf of the delega-
tor. We focus on the two proxy-type signature variants called blank digital
signatures [HS13a] and warrant-hiding proxy signatures [HS13b]. In particu-
lar, we present black-box constructions of those two signature variants from
non-interactive anonymous credentials. In addition, we present instantiations
from well known CL [CL04] and Brands credentials [Bra00] as used within
IBM’s Identity Mixer [CH02] and Microsoft’s U-Prove [PZ13], respectively.

Optimization and Implementation of Blank Digital Signatures [c11]. We prese-
nt optimizations of blank digital signatures [HS13a] and a library integrating
our optimized version into the Java Cryptography Architecture [Ora]. In
addition, we provide means to integrate the keying material into X.509 cer-
tificates [CSF+08]. Our implementation provides support for XML and PDF
documents. This work subsumes parts of the author’s master’s thesis [t1].

1.2 Cryptographic Aspects

To conclude the introduction, we informally discuss two aspects we consider
important from a cryptographic point of view.
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Modularity vs. Efficiency. When designing complex cryptographic schemes
and protocols with a broad range of different security requirements, one will
notice that it is hard to reach maximum efficiency and maximum modularity at
the same time. To this end, it is required to find a suitable tradeoff between
those two goals. The most extreme path with respect to efficiency would be to
go for ad hoc constructions. Here, one typically buys efficiency at the cost of
reduced modularity, and, thus, reduced conceptual simplicity. In contrast, the
most extreme path regarding modularity would be to build upon composability
frameworks such as universal composability [Can01] or constructive cryptogra-
phy [Mau11, MR11], which, roughly speaking, directly consider arbitrary com-
positions of building blocks proven secure in these frameworks. Here one often
needs to trade efficiency for compatibility with the framework itself.

We take a path which is somewhere in between those two extreme directions.
That is, we aim to modularly construct our schemes from other well-defined
smaller building blocks. This allows us to achieve flexibility with respect to
possible instantiations and underlying cryptographic hardness assumptions. Yet,
we do not target arbitrary compositions of our building blocks. This, in turn,
gives us more flexibility regarding efficiency. Note that our design goal is also
reflected in the structure of this thesis, starting with basic primitives and then
moving on to more sophisticated schemes, (partly) building upon them.

Provable Security. To argue about the security of our constructions, we use
reductionist security proofs. To this end, we informally discuss the idea of re-
ductionist security proofs and some concepts which are of particular interest for
our work. Henceforth, we use the term efficient to refer to algorithms that run
in polynomial time in the length of their input. Furthermore, we use the term
negligible to refer to functions that vanish faster than every inverse polynomial
in their input. The goal of provable security is to relate the security of cryp-
tographic schemes to the hardness of solving well studied and presumably hard
problems.7 In doing so, one carefully defines a so-called security model, which
consists of an interface definition of the cryptographic scheme itself and formal
definitions of the required security properties. To prove the security of a scheme,
one usually uses a reductionist argument to prove security by contradiction.
That is, one shows that an efficient adversary against a certain security prop-
erty can efficiently be turned into an efficient adversary against some presumably
hard problem, contradicting the existence of an efficient adversary against this
security property. With increasing complexity of the cryptographic schemes and
their corresponding security models, also reductionist security proofs become
more complex and are often hard to follow. In this context, sequences of games
(cf. [Sho04] for an excellent overview) turn out to be a very useful tool to obtain
clear and easy to comprehend security proofs. The basic idea is to change the be-
havior of the challenger that interacts with the adversary in a sequence of game
transitions, where each transition changes the winning probability to a certain

7 That is, problems where it is assumed that—for every efficient adversary that can also make
random steps during execution—the probability of solving them is negligible in the security
parameter.
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extent. Ultimately, these transitions yield to a game where one can easily bound
the winning probability of the adversary (e.g., because it is equal to 0 or it is
straightforward to come up with a reduction). Using the changes of the winning
probability in each transition and the winning probability in the final game, one
can then obtain a bound for the winning probability in the original game. In
the simplest case the probabilities to detect the game transitions are negligible
in the security parameter. Then, the winning probability in the original game is
negligible in the security parameter if the winning probability in the final game
is negligible in the security parameter (as long as the number of game changes
is polynomially bounded). For a more formal treatment of reductionist security
and sequences of games, we refer the reader to [Gol08] and [Sho04], respectively.
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2
Preliminaries

In this chapter, we introduce our notation and establish the required preliminar-
ies. We, thereby, assume familiarity with computational complexity theory and
basic cryptographic knowledge, and refer the reader to [KL07, Gol08] for an ex-
cellent treatment of these topics. Most of the notions and definitions in this chap-
ter are rather standard and can, e.g., be found in [Gol01, KL07, Gol08, Kat10].
For less standard notions and definitions we explicitly include references.

2.1 Notation

We use κ to denote the security parameter and we use sans-serif letters, e.g.,
A,B, to denote algorithms. If not stated otherwise, all algorithms are required
to be efficient, i.e., their running time can be bounded by a polynomial in their
input length. Furthermore, all algorithms return a special symbol ⊥ on er-
ror. By y ← A(1κ, x), we denote that y is assigned the output of the poten-
tially probabilistic algorithm A on input x and fresh random coins. If A is
a probabilistic algorithm, we use A(1κ, x; r) to make the random coins r ex-
plicit. For the algorithms representing the adversaries in the security games we
will use calligraphic letters, e.g., A. We assume 1κ to be an implicit input to
all algorithms, and, thus, may omit 1κ as an explicit input parameter. Simi-
lar to our notation in the context of algorithms, we use y←R S to denote that
an element is sampled uniformly at random from a finite set S and assigned
to y. We let [n] := {1, . . . , n} and may use the concatenation operator, e.g.,
(ai)

n
i=1||(bi)mi=1 := (a1, . . . , an, b1, . . . , bm). Thereby, we assume that concate-

nated sequences can later be uniquely decomposed (even when concatenating
elements of different types and lengths). We write Pr[Ω : E ] to denote the prob-
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ability of an event E over the probability space Ω. We use C to denote challengers
of security experiments, and Cκ to make the security parameter explicit. A func-
tion ε(·) : N → R≥0 is called negligible, iff it vanishes faster than every inverse
polynomial, i.e., ∀ k : ∃ nk : ∀ n > nk : ε(n) < n−k. Furthermore, we may also
use the term “practically efficient”. Unlike the previous definitions, this term is
more informal and means that an algorithm can be executed on any state of the
art machine within reasonable time (we deem computation times of ≈ 1s to be
reasonable).

2.2 Cryptographic Hardness Assumptions

Our results include black-box constructions which are independent of the con-
crete assumptions, as well as constructions in the known-order group setting
(with bilinear pairings). As we also require the strong RSA assumption in
hidden-order groups for our overview of existing accumulator constructions in
Section 3.1 we include it here for completeness.

2.2.1 Known-Order Groups

In this section we present the required definitions and assumptions in the known-
order group setting.

Definition 2.1 (Group Generator). Let GGen be an algorithm which takes a
security parameter κ as input, and generates a group description

G := (p,G, g),

where the group order of the group G is a prime p of bitlength κ, and g is a
generator of G.

Definition 2.2 (Discrete Logarithm Assumption (DL)). The DL assumption
holds relative to GGen, if for all PPT adversaries A there exists a negligible
function ε(·) such that:

Pr
[
G← GGen(1κ), r←R Zp, r? ← A(G, gr) : r = r?

]
≤ ε(κ).

Definition 2.3 (Computational Diffie-Hellman Assumption (CDH)). The CDH
assumption holds relative to GGen, if for all PPT adversaries A there exists a
negligible function ε(·) such that:

Pr
[
G← GGen(1κ), r, s←R Zp, h? ← A(G, gr, gs) : h? = grs

]
≤ ε(κ).

Definition 2.4 (Decisional Diffie-Hellman Assumption (DDH)). The DDH as-
sumption holds relative to GGen, if for all PPT adversaries A there exists a
negligible function ε(·) such that:

Pr

[
G← GGen(1κ), b←R {0, 1}, r, s, t←R Zp,
b? ← A(G, gr, gs, gb·(rs)+(1−b)·t)

: b = b?
]
≤ 1/2 + ε(κ).
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Definition 2.5 (Decision Linear Assumption [BBS04] (DLIN)). The DLIN as-
sumption holds relative to GGen, if for all PPT adversaries A there exists a
negligible function ε(·) such that:

Pr

[
G← GGen(1κ), u, v←R G, b←R {0, 1}, r, s, t←R Zp,
b? ← A(G, u, v, ur, vs, gb·(r+s)+(1−b)·t)

: b = b?
]
≤ 1/2+ε(κ).

Definition 2.6 (t-strong Diffie-Hellman Assumption [BB04b] (t-SDH)). The t-
SDH assumption holds relative to GGen, if for all PPT adversaries A there exists
a negligible function ε(·) such that:

Pr

 G← GGen(1κ), α←R Zp,
(c?, h?)← A(G, gα, . . . , gα

t

)
:

h? = g
1

c?+α ∧
c? ∈ Zp \ {−α} ∧

t ≤ poly(κ)

 ≤ ε(κ).

Definition 2.7 (t-Diffie-Hellman Exponent Assumption [GJM02, CKS09] (t-
DHE)). The t-DHE assumption holds relative to GGen, if for all PPT adversaries
A there exists a negligible function ε(·) such that:

Pr

[
G← GGen(1κ), γ←R Zp,
h? ← A(G, gγ

1

, . . . , gγ
t

, gγ
t+2

, . . . , gγ
2t

)
:
h? = gγ

t+1 ∧
t ≤ poly(κ)

]
≤ ε(κ).

Bilinear Maps. Let G1 = 〈g〉, G2 = 〈ĝ〉, and GT be groups of prime order
p. A bilinear map (paring) is an efficiently computable map e : G1 ×G2 → GT
with the following two properties:

Bilinearity: e(ga, ĝb) = e(g, ĝ)ab ∀ (a, b) ∈ Z2
p.

Non-degeneracy: e(g, ĝ) 6= 1GT , i.e., e(g, ĝ) generates GT .

We distinguish three different settings. In the Type-1 setting, we have that
G1 = G2. In the Type-2 setting, we have that G1 6= G2, yet, there exists an
efficiently computable isomorphism ψ : G2 → G1. Finally, in the Type-3 setting,
we also have that G1 6= G2 but no efficiently computable isomorphism is known.
Throughout this thesis, we will denote elements in GT by boldface letters, e.g.,
g = e(g, ĝ).

Definition 2.8 (Bilinear Group Generator). Let BGGen be an algorithm which
takes a security parameter κ and a type T ∈ {1, 2, 3}, and generates a bilinear
group description BG in the Type-T setting, where BG is defined as

BG :=

 (p,G,GT , e, g) if T = 1,
(p,G1,G2,GT , e, g, ĝ, ψ) if T = 2,
(p,G1,G2,GT , e, g, ĝ) if T = 3.

Thereby, the common group order of the groups G and GT (resp. G1, G2, and
GT ) is a prime p of bitlength κ, e is a pairing, g and ĝ are generators of G1 and
G2, respectively, and ψ is an isomorphism G2 → G1.
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Note that a bilinear paring serves as a DDH oracle for the group G in the
Type-1 setting and for the group G2 in the Type-2 setting. Thus, if the CDH
assumption holds in the respective groups, they represent Gap Diffie-Hellman
groups [OP01, BLS04].

While Gap Diffie-Hellman groups are useful in protocol design, also the ab-
sence of a DDH oracle may be useful. This absence is captured by the following
assumptions. In the Type-2 setting, the external Diffie-Hellman (XDH) problem
is assumed to be hard.

Definition 2.9 (XDH). The XDH assumption holds relative to BGGen if the
DDH assumption holds in G1.

Due to the absence of the isomorphism in the Type-3 setting, the symmetric
external Diffie-Hellman (SXDH) problem is assumed to be hard.

Definition 2.10 (SXDH). The SXDH assumption holds relative to BGGen if the
DDH assumption holds in G1 and G2.

We henceforth may also use symmetric setting to refer to the Type-1 setting.
Likewise, when it is clear from the context, we may use asymmetric setting to
refer to the Type-2 or the Type-3 setting.

Finally, we require the bilinear decisional Diffie-Hellman assumption in Type-
1 bilinear groups.

Definition 2.11 (Bilinear Decisional Diffie-Hellman Assumption [BB04a] (BD-
DH)). The BDDH assumption holds relative to BGGen, if for all PPT adversaries
A there is a negligible function ε(·) such that

Pr

[
BG← BGGen(1κ, 1), r, s, t, u←R Zq, b←R {0, 1},
b? ← A

(
BG, gr, gs, gt,gb·rst+(1−b)u) : b = b?

]
≤ 1/2 + ε(κ).

Instantiation of Bilinear Pairings. The currently most prominent choice
to instantiate bilinear pairings is to use a Type-3 pairing defined over Baretto-
Naehrig (BN) curves [BN05]. We, however, note that it is important to con-
sider the recent progress [KB16, SS16] in improving the asymptotic bounds for
solving discrete logarithms in extension fields of prime characteristic (GT is
F12
p for BN-curves) when choosing the key sizes. A recent work by Menezes et

al. [MSS16] assesses (among others) the impact of these advances and suggests
to increase the bitlength of p from 256 to 383 as a conservative choice for the
128-bit security level using BN curves. Another recent and even more conserva-
tive estimate [BD17] suggests to use a bitlength of 462 for p. These results also
suggest that in light of [KB16, SS16] other curve types such as BLS12 [BLS02]
or KSS16 [KSS08] may be the better choice to instantiate parings.
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2.2.2 Hidden-Order Groups

Although hidden-order groups are not in the focus of this thesis, we include the
strong RSA assumption [BP97] for completeness.

Definition 2.12 (RSA Instance Generator). Let RSAGen be an algorithm which
on input of a security parameter κ outputs (N, p, q), where N = pq is an RSA
modulus, and p and q are two random primes of bitlength κ.

Definition 2.13 (Strong RSA assumption (s-RSA)). The s-RSA assumption
holds relative to RSAGen, if for all PPT adversaries A there is a negligible func-
tion ε(·) such that

Pr

[
(N, p, q)← RSAGen(1κ),
u←R Z∗N , (v, w)← A(u,N)

: vw ≡ u (mod N) ∧ w > 1

]
≤ ε(κ).

2.3 Computational Idealizations

In a reductionist security proof one ideally directly relates the hardness of break-
ing a cryptographic scheme or protocol to the hardness of breaking a particular
hardness assumption. If this is possible we talk about a security reduction in
the standard model. While finding a security reduction in the standard model
is most desirable, it is often required to make further idealizing assumptions
when proving the security of a cryptographic scheme or protocol. We will briefly
discuss potential idealizations below.

Common Reference String Model. In the common reference string (CRS)
model, all parties rely on a CRS set up by some trusted third party. In security
reductions, one can then indistinguishably set up the CRS in a way that it
embeds problem instances, or so that certain secrets (trapdoors) are known.
When constructions proven secure using this idealization are used in practice,
one carefully needs to choose the party who sets up the CRS. Sometimes it
can also be possible to use multi-party computation protocols which inherently
ensure that the CRS is jointly set up by multiple parties so that the security
expectations are met.

Generic Group Model. In the generic group model (GGM) [Sho97], one ide-
alizes groups by assuming that an adversary only has access to group operation
oracles but can not exploit any structural properties of the representation of
the group elements. A proof in the GGM should be seen as a means to gain
confidence in the plausibility of an assumption rather than a proof that the as-
sumption is universally true. We refer the reader to [KM07] for an excellent
overview of different opinions on the GGM within the community.
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Random Oracle Model. In the random oracle model (ROM) [BR93], one
idealizes hash functions by modeling them as oracles which return uniformly
random values upon each new query, while consistently repeating the responses
for queries which have already been answered previously. If it does not suffice
that a RO returns uniformly random values to argue about the security of a
scheme, one can additionally program the random oracle so that it returns a
particular value upon a particular query. We refer the reader to [KM15] for an
excellent discussion of the advantages and disadvantages of using the random
oracle model. Their conclusion is that there is currently no evidence that a
proof in the ROM points to a real-world security weakness (even though there
are some artificial counterexamples for the existence of ROs, e.g., [CGH04]).

2.4 Cryptographic Building Blocks

In this section we formally recall the required cryptographic building blocks.

2.4.1 One-Way Functions

Below, we recall the notion of one-way functions.

Definition 2.14. A function f : {0, 1}∗ → {0, 1}∗ is called a one-way function,
if (1) there exists a PPT algorithm A1 so that ∀ x ∈ {0, 1}∗ : A1(x) = f(x), and
if (2) for every PPT algorithm A2 there is a negligible function ε(·) such that it
holds that

Pr
[
x←R {0, 1}κ, x? ← A2(1κ, f(x)) : f(x) = f(x?)

]
≤ ε(κ).

2.4.2 Signature Schemes

We now recall the definition of signature schemes.

Definition 2.15. A signature scheme Σ is a tuple (PGen,KeyGen, Sign,Verify)
of PPT algorithms, which are defined as follows:

PGen(1κ) : This algorithm takes a security parameter κ as input and outputs
public parameters PP. We assume that PP are implicitly included in all public
keys.

KeyGen(PP) : This algorithm takes public parameters PP as input and outputs
a secret (signing) key sk and a public (verification) key pk with associated
message space M (we may omit to make the message space M explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈ M as
input and outputs a signature σ.

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈M and a
signature σ as input and outputs a bit b ∈ {0, 1}.
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We explicitly include the parameter generation algorithm PGen in our definition
as we also want to cover schemes where many independently generated public
keys are with respect to the same parameters PP, e.g., some elliptic curve group
parameters. The usual definition without PGen is a special case of our defini-
tion. That is for schemes without an explicit parameter generation the PGen
algorithm simply returns PP ← 1κ, i.e., one can directly run KeyGen on the
security parameter.

Besides the usual correctness property, Σ needs to provide some unforge-
ability notion. Below, we present two standard notions required in our context
(ordered from weak to strong). We start with universal unforgeability under no
message attacks (UUF-NMA security).

Definition 2.16 (UUF-NMA). A signature scheme Σ is UUF-NMA secure, if for
all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
PP← PGen(1κ), (sk, pk)← KeyGen(PP),
m?←RM, σ? ← A(pk,m?)

: Verify(pk,m?, σ?) = 1

]
≤ ε(κ).

The most common notion is existential unforgeability under adaptively chosen
message attacks (EUF-CMA security).

Definition 2.17 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if for
all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
PP← PGen(1κ), (sk, pk)← KeyGen(PP),
(m?, σ?)← ASign(sk,·)(pk)

:
Verify(pk,m?, σ?) = 1

∧ m? /∈ QSign

]
≤ ε(κ),

where the environment keeps track of the queries to the signing oracle via QSign.

2.4.3 Homomorphic MACs

Our subsequent definition of homomorphic message authentication codes (MACs)
is inspired by [AB09] but tailored to our concrete requirements.

Definition 2.18. A homomorphic MAC for a family of function classes {FPP}
is a tuple (Gen,KeyGen,Sign,Comb,Verify) of algorithms defined as:

Gen(1κ, `) : Takes a security parameter κ and an upper bound ` on the vector
length as input and outputs public parameters PP, determining the message
space M`, the function class FPP containing functions f : (M`)n →M` with
`, n ≤ poly(κ), as well as a tag space being exponentially large in κ.

KeyGen(PP) : Takes public parameters PP as input and outputs a secret key sk.

Sign(sk, ~v, id, τ) : Takes a MAC key sk, a vector ~v, an identifier id, and a tag τ
as input, and outputs a MAC µ.

Comb(PP, f, (µi)i∈[n]) : Takes a function f ∈ FPP and a sequence of valid MACs
(µi)i∈[n] on vectors (~vi)i∈[n] as input, and outputs a MAC µ on ~v = f((~vi)i∈[n]).
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Verify(sk, ~v, µ, τ, (idi)i∈[n], f) : Takes a MAC key sk, a vector ~v, a MAC µ, a tag
τ , a sequence of identifiers (idi)i∈[n], and a function f ∈ FPP as input, and
outputs a bit.

A homomorphic MAC is required to be correct and unforgeable. While we omit
the obvious correctness definition, we recall the unforgeability definition. The
environment maintains a list SIG which is initially empty.

Definition 2.19. A homomorphic MAC for a family of function classes {FPP}
is unforgeable if for all PPT adversaries A there exists a negligible function ε(·)
such that:

Pr

[
PP← Gen(1κ, `), sk← KeyGen(PP),
(~y?, µ?, τ?, (id?i)i∈[n], f

?)← ASig(·,·,·)(PP)
:

Verify(sk, ~y?, µ?, τ?, (id?i)i∈[n], f
?) = 1 ∧ f? ∈ FPP ∧

(@(~vj)j∈[n] : (∀j ∈ [n] : (~vj , id
?

j) ∈ S[τ?]) ∧ f∗((~vj)j∈[n]) = ~y?)

]
≤ ε(κ),

where the sign oracle Sig is defined as:

Sig((~vi)i∈[n], (idi)i∈[n], τ) : If SIG[τ ] 6= ⊥ or there exists u, v ∈ [n], u 6= v so that
idu = idv return ⊥. Otherwise, compute µi ← Sign(sk, ~vi, idi, τ) for i ∈ [n],
set SIG[τ ]← {(~vi, idi)}i∈[n] and return (µi)i∈[n].

2.4.4 Signatures on Equivalence Classes

We briefly recall structure-preserving signatures on equivalence classes (SPS-EQ)
as presented in [HS14, FHS15b]. Therefore, let p be a prime and ` > 1; then
Z`p is a vector space and one can define a projective equivalence relation on it,

which propagates to G`i and partitions G`i into equivalence classes. Let ∼R be
this relation, i.e., for m,n ∈ G`i : m ∼R n ⇔ ∃ s ∈ Z∗p : m = ns, where ns

denotes component wise exponentiation of each vector component of n with s.
An SPS-EQ scheme now signs an equivalence class [m]R for m ∈ (G∗i )` by signing
a representative m of [m]R. One of the design goals of SPS-EQ is to guarantee
that two message-signature pairs from the same equivalence class cannot be
linked. Let us recall the formal definition of an SPS-EQ scheme below.

Definition 2.20. An SPS-EQ on G∗i (for i ∈ {1, 2}) consists of the following
PPT algorithms:

BGGenR(1κ): This algorithm on input of a security parameter κ outputs a bilin-
ear group BG.

KeyGenR(BG, `): This algorithm on input of a bilinear group BG and a vector
length ` > 1 outputs a key pair (sk, pk).

SignR(m, sk): This algorithm on input a representative m ∈ (G∗i )` and a secret
key sk outputs a signature σ for the equivalence class [m]R.
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ChgRepR(m,σ, ρ, pk): This algorithm on input of a representative m ∈ (G∗i )` of
class [m]R, a signature σ for m, a scalar ρ and a public key pk returns an
updated message-signature pair (m′, σ′), where m′ = mρ is the new represen-
tative and σ′ its updated signature.

VerifyR(m,σ, pk): This algorithm on input of a representative m ∈ (G∗i )`, a
signature σ and a public key pk outputs a bit b ∈ {0, 1}.

VKeyR(sk, pk) This algorithm on input a secret key sk and a public key pk outputs
a bit b ∈ {0, 1}.

For security, one requires the following properties.

Definition 2.21 (Correctness). An SPS-EQ scheme on (G∗i )` is called correct
if for all security parameters κ ∈ N, ` > 1, BG ← BGGenR(1κ), (sk, pk) ←
KeyGenR(BG, `), m ∈ (G∗i )` and ρ ∈ Z∗p:

VKeyR(sk, pk) = 1 ∧ Pr
[
VerifyR(m,SignR(m, sk), pk) = 1

]
= 1 ∧

Pr
[
VerifyR(ChgRepR(m,SignR(m, sk), ρ, pk), pk) = 1

]
= 1.

For EUF-CMA security, outputting a valid message-signature pair, corresponding
to an unqueried equivalence class, is considered to be a forgery:

Definition 2.22 (EUF-CMA). An SPS-EQ over (G∗i )` is existentially unforge-
able under adaptively chosen-message attacks, if for all PPT adversaries A with
access to a signing oracle OSignR , there is a negligible function ε(·) such that:

Pr

 BG← BGGenR(1κ),
(sk, pk)← KeyGenR(BG, `),

(m?, σ?)← AOSignR(sk,·)
(pk)

:
[m?]R 6= [m]R ∀ m ∈ QSignR ∧

VerifyR(m?, σ?, pk) = 1

 ≤ ε(κ),

where QSignR is the set of queries that A has issued to the signing oracle OSignR .

Besides EUF-CMA security, an additional security property for SPS-EQ was in-
troduced in [FHS15a].

Definition 2.23 (Perfect Adaption of Signatures). An SPS-EQ scheme on (G∗i )`
perfectly adapts signatures if for all tuples (sk, pk,M, σ, ρ) where it holds that
VKeyR(sk, pk) = 1, VerifyR(m,σ, pk) = 1, m ∈ (G∗i )`, and ρ ∈ Z∗p, the distribu-
tions (mρ,SignR(mρ, sk)) and ChgRepR(m,σ, ρ, pk) are identical.

An instantiation providing all above security properties is provided in [FHS15a,
FHS15b]. Here, assuming the DDH assumption to hold on the message space
yields that different message-signature pairs from the same equivalence class
cannot be linked.
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2.4.5 Static Group Signatures

In the following, we recall the established model for static group signatures from
[BMW03].

Definition 2.24. A group signature scheme GS is a tuple (KeyGen,Sign,Verify,
Open) of PPT algorithms which are defined as follows:

KeyGen(1κ, n) : Takes a security parameter κ and the group size n as input. It
generates and outputs a group verification key gpk, a group opening key gok,
as well as a list of group signing keys gsk = {gski}i∈[n].

Sign(gski,m) : Takes a group signing key gski and a message m as input and
outputs a signature σ.

Verify(gpk,m, σ) : Takes a group verification key gpk, a message m and a sig-
nature σ as input, and outputs a bit b.

Open(gok,m, σ) : Takes a group opening key gok, a message m and a signature
σ as input, and outputs an identity i.

The GS security properties are formally defined as follows (we omit correctness).

Definition 2.25 (Anonymity). A GS is anonymous, if for all PPT adversaries
A there exists a negligible function ε(·) such that

Pr


(gpk, gok, gsk)← KeyGen(1κ, n),
b←R {0, 1}, O ← {Open(gok, ·, ·)},
(i?0, i

?
1,m

?, ST)← AO(gpk, gsk),
σ ← Sign(gski?b ,m

?), b? ← AO(σ, ST)

:
b = b? ∧

(m?, σ) /∈ QOpen
2

 ≤ ε(κ),

where A runs in two stages and QOpen
2 records the Open queries in stage two.

Definition 2.26 (Traceability). A GS is traceable, if for all PPT adversaries A
there exists a negligible function ε(·) such that

Pr


(gpk, gok, gsk)← KeyGen(1κ, n),
O ← {Sig(·, ·),Key(·)},
(m?, σ?)← AO(gpk, gok),
i← Open(gok,m?, σ?)

:
Verify(gpk,m?, σ?) = 1 ∧

(i = ⊥ ∨ (i /∈ QKey ∧
(i,m?) /∈ QSig))

 ≤ ε(κ),

where Sig(i,m) returns Sign(gski,m), Key(i) returns gski, and QSig and QKey

record the queries to the signing and key oracle respectively.

We call a GS secure, if it is correct, anonymous and traceable.

24



2.4. Cryptographic Building Blocks

2.4.6 Public Key Encryption

We also require public key encryption, which we recall below.

Definition 2.27. A public key encryption scheme Ω is a triple (KeyGen,Enc,Dec)
of PPT algorithms, which are defined as follows:

KeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs
a secret decryption key sk and a public encryption key pk (and we assume
that the message space M is implicitly defined by pk).

Enc(pk,m) : This algorithm takes a public key pk and a message m ∈ M as
input and outputs a ciphertext c.

Dec(sk, c) : This algorithm takes a secret key sk and a ciphertext c as input and
outputs a message m ∈M or ⊥.

Besides the obvious correctness property, we require a public key encryption
scheme to be IND-T secure as formally recalled below.

Definition 2.28 (IND-T Security). Let T ∈ {CPA,CCA2}. A public key en-
cryption scheme Ω is IND-T secure, if for all PPT adversaries A there exists a
negligible function ε(·) such that

Pr


(sk, pk)← KeyGen(1κ),
(m?

0,m
?
1, ST)← AOT(pk),

b←R {0, 1}, c← Enc(pk,m?

b),
b? ← AOT(c, ST)

:
b = b? ∧

c /∈ QDec ∧ |m?
0| = |m?

1|

 ≤ 1/2 + ε(κ),

where the adversary runs in two stages,

OT ←
{
∅ if T = CPA, and
{ODec(sk, ·)} if T = CCA2,

QDec denotes the list of queries to ODec in stage two and we set QDec ← ∅ if
T = CPA.

2.4.7 Proxy Re-Encryption

A proxy re-encryption (PRE) scheme is an encryption scheme that allows a proxy
to transform a message m encrypted under public key rpkA of party A into a
ciphertext to m under rpkB for another party B, so that the proxy learns nothing
about m. For our formal definitions, we largely follow [AFGH06].

Definition 2.29. A PRE is a tuple (PGen,KeyGen, ~Enc, ~Dec,ReGen,ReEnc) of

algorithms, where ~Enc = (Enci)i∈[2] and ~Dec = (Deci)i∈[2], which are defined as
follows:

PGen(1κ) : Takes a security parameter κ and outputs parameters PP.
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KeyGen(PP) : Takes parameters PP and outputs a key pair (rsk, rpk).

ReGen(rskA, rpkB) : Takes a secret key rskA and a public key rpkB, and outputs
a re-encryption key rkA→B.

Enci(rpk,m) : Takes a public key rpk and a message m, and outputs a ciphertext
c.

ReEnc(rkA→B , cA) : Takes a re-encryption key rkA→B and a ciphertext cA under
rpkA, and outputs a re-encrypted ciphertext cB for rpkB.

Deci(rsk, c) : Takes a secret key rsk and a ciphertext c, and outputs m.

A PRE scheme needs to be correct. This notion requires that for all security
parameters κ ∈ N, all honestly generated parameters PP ← PGen(1κ), all key
pairs (rskA, rpkA) ← KeyGen(PP), (rskB , rpkB) ← KeyGen(PP), all re-encryption
keys rkA→B ← ReGen(rskA, rpkB), all messages m it holds with probability one
that

∀ i ∈ [2] ∃ j ∈ [2] : Decj(rskA,Enci(rpkA,m)) = m, and

∃ i ∈ [2] ∃ j ∈ [2] : Decj(rskB ,ReEnc(rkA→B ,Enci(pkA,m))) = m.

Thereby i and j determine the level of the ciphertexts. We will henceforth use
the following semantics: first-level ciphertexts (Enc1) cannot be re-encrypted by
a proxy, whereas second-level ciphertexts (Enc2) can be re-encrypted.

In addition, a PRE needs to be IND-CPA secure. We, henceforth, only require
a relaxed IND-CPA notion which we term IND-CPA−. It is clearly implied by
the original IND-CPA notion from [AFGH06] (some oracles are omitted and the
adversary only gets to see a second-level ciphertext).

Definition 2.30 (IND-CPA−). A PRE is IND-CPA− secure, if for all PPT ad-
versaries A there is a negligible function ε(·) such that

Pr


PP← PGen(1κ), b←R {0, 1},
(skt, pkt)← KeyGen(PP),
(skh, pkh)← KeyGen(PP),
rkt→h ← ReGen(skt, pkh),
(m?

0,m
?
1, ST)← A(PP, pkt, pkh, rkt→h),

c← E2(m?

b, pkt), b
? ← A(ST, c)

: b = b?

 ≤ 1/2 + ε(κ).

We remark that ReGen as defined in [AFGH06] also takes skh to cover schemes
which require an interaction upon re-key generation. As we only deal with non-
interactive ones, we omit it.

2.4.8 Non-Interactive Commitments

Below we recall the notion of non-interactive commitments. Henceforth, we may
simply use the term commitment to refer to non-interactive commitments.
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Definition 2.31. A non-interactive commitment scheme is a tuple of PPT al-
gorithms (PGen,Commit,Open), which are defined as follows:

PGen(1κ) : Takes a security parameter κ as input and outputs public parameters
PP (we note that PP implicitly define the message space M).

Commit(PP,m) : Takes public parameters PP and a message m as input and out-
puts a commitment C together with a corresponding opening information O.

Open(PP, C,O) : Takes public parameters PP and a commitment C with corre-
sponding opening information O as input, and outputs message m ∈M∪{⊥}.

We may sometimes omit PP as an input parameter for the Commit and Open
algorithms to ease the notation. We call a non-interactive commitment scheme
secure, if it is correct, (computationally) binding and (computationally) hid-
ing. While correctness is straightforward and therefore omitted, the remaining
security properties are defined as follows.

Definition 2.32 (Binding). A non-interactive commitment scheme is binding,
if for all PPT adversaries A there is a negligible function ε(·) such that

Pr

 PP← PGen(1κ), (C?, O?, O′?)← A(PP),
m← Open(PP, C?, O?), m′ ← Open(PP, C?, O′?)

:
m 6= m′ ∧
m 6= ⊥ ∧
m′ 6= ⊥

 ≤ ε(κ).

Definition 2.33 (Hiding). A non-interactive commitment scheme is hiding, if
for all PPT adversaries A there is a negligible function ε(·) such that

Pr

 PP← PGen(1κ), (m?
0,m

?
1, ST)← A(PP),

b←R {0, 1}, (C,O)← Commit(PP,m?

b),
b? ← A(C, ST)

:
b = b? ∧

m?
0 ∈M ∧
m?

1 ∈M

 ≤ 1

2
+ ε(κ).

Homomorphic Commitments. We call a commitment scheme homomorphic
if for any κ ∈ N, for any PP← PGen(1κ), for any m,m′ ∈M we have m⊕m′ =
Open(PP,Commit(PP,m)⊗Commit(PP,m′)) for some binary operations ⊕ and ⊗.

We emphasize that any perfectly correct IND-CPA secure public key encryp-
tion schemes yields perfectly binding and computationally hiding commitments,
e.g., ElGamal [Gam85], which is also homomorphic.

2.4.9 Σ-Protocols

Let L be an NP-language with statements x living in domain X and associated
witness relation R so that L = {x | ∃w : R(x,w) = 1} ⊆ X. A Σ-protocol for
language L is defined as follows.

Definition 2.34. A Σ-protocol for language L is an interactive three-move pro-
tocol between a PPT prover P = (Commit,Prove) and a PPT verifier V =
(Challenge,Verify), where P makes the first move and transcripts are of the form
(a, e, z) ∈ A× E× Z. Additionally they satisfy the following properties
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Completeness. A Σ-protocol for language L is complete, if for all security
parameters κ, and for all (x,w) ∈ R, it holds that

Pr[〈P(1κ, x, w),V(1κ, x)〉 = 1] = 1.

s-Special Soundness. A Σ-protocol for language L is s-special sound if there
exists a PPT extractor E so that for all x, and for all sets of accepting tran-
scripts {(a, ei, zi)}i∈[s] with respect to x where ∀i, j ∈ [s], i 6= j : ei 6= ej,
generated by any algorithm with polynomial runtime in κ, it holds that

Pr
[
w ← E(1κ, x, {(a, ei, zi)}i∈[s]) : (x,w) ∈ R

]
≥ 1− ε(κ).

Special Honest-Verifier Zero-Knowledge. A Σ-protocol is special honest-
verifier zero-knowledge, if there exists a PPT simulator S so that for every
x ∈ L and every challenge e from the challenge space, it holds that a transcript
(a, e, z), where (a, z)← S(1κ, x, e) is computationally indistinguishable from a
transcript resulting from an honest execution of the protocol.

The s-special soundness property gives an immediate bound for the soundness
of the protocol: if no witness exists then (ignoring a negligible error) the prover
can successfully answer at most to s−1/t challenges, where t = |E| is the size of
the challenge space. In case this value is too large, it is possible to reduce the
soundness error using well known properties of Σ-protocols. Below we restate
some properties for completeness (see, e.g., [Dam10, Sch17]).

Lemma 2.1. The properties of Σ-protocols are invariant under parallel repeti-
tion. In particular, the ` fold parallel repetition of a Σ-protocol for relation R
with challenge length t yields a new Σ-protocol with challenge length `t.

Lemma 2.2. If there exists a Σ-protocol for R with challenge length t, then there
exists a Σ-protocol for R with challenge length t′ for any t′.

Below, we recall another well known fact about the AND composition of Σ-
protocols.

Lemma 2.3. Let L1 and L2 be two languages with associated witness relations
R1 and R2, respectively. Further, let Σ1 and Σ2 be two Σ-protocols with identical
challenge space so that Σ1 is for L1 and Σ2 is for L2. Then a Σ-protocol for
the conjunction of L1 and L2, i.e., L1 ∧ L2 := {(x1, x2) | ∃ w1, w2 : (x1, w1) ∈
R1 ∧ (x2, w2) ∈ R2} is obtained by running Σ1 and Σ2 in parallel using a single
common challenge e.

Finally, we note that an equality (EQ) composition of Σ-protocols resulting in
a language L = {(x1, x2) | ∃ w : (x1, w) ∈ R1 ∧ (x2, w) ∈ R2} can be achieved
as a special case of an AND composition, where besides an identical challenge e
also the same random tape is used for the prover in both instances.
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The Fiat-Shamir Transform. The Fiat-Shamir (FS) transform [FS86] is a
frequently used tool to convert Σ-protocols 〈P,V〉 to their non-interactive coun-
terparts. Essentially, the transform removes the interaction between P and V
by using a hash function H : A × X → E, which is modeled as a RO, to ob-
tain the challenge e.1 That is, one uses a PPT algorithm Challenge′(1κ, a, x)
which obtains e ← H(a, x) and returns e. Then, the prover can locally ob-
tain the challenge e after computing the initial message a. Starting a veri-
fier V′ = (Challenge′,Verify) on the same initial message a will then yield the
same challenge e. More formally, we obtain the non–interactive PPT algorithms
(PH ,VH) indexed by the used RO:

PH(1κ, x, w) : Start P on (1κ, x, w), obtain the first message a, answer with
e← H(a, x), and finally obtain z. Return π ← (a, z).

VH(1κ, x, π) : Parse π as (a, z). Start V′ on (1κ, x), send a as first message to
the verifier. When V′ outputs e, reply with z and output 1 if V accepts and
0 otherwise.

2.4.10 Non-Interactive Proof Systems

Now, we recall a standard definition of non-interactive proof systems (Π). There-
fore, let L be an NP-language with witness relation R defined as L = {x | ∃ w :
R(x,w) = 1}.2

Definition 2.35. A non-interactive proof system Π for language L is a tuple of
algorithms (Setup, Proof, Verify), which are defined as follows:

Setup(1κ) : This algorithm takes a security parameter κ as input, and outputs a
common reference string crs.

Proof(crs, x, w) : This algorithm takes a common reference string crs, a state-
ment x, and a witness w as input, and outputs a proof π.

Verify(crs, x, π) : This algorithm takes a common reference string crs, a state-
ment x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

Below, we formally recall the security notions which are required in the context
of this thesis.

Definition 2.36 (Completeness). A non-interactive proof system Π for language
L is complete, if for every adversary A it holds that

Pr

[
crs← Setup(1κ), (x?, w?)← A(crs),
π ← Proof(crs, x?, w?)

:
Verify(crs, x?, π) = 1

∨ (x?, w?) /∈ R

]
= 1.

1 This is a stronger variant of FS (cf. [FKMV12, BPW12]). The original weaker variant of
the FS transform does not include the statement x in the challenge computation.

2 We want to acknowledge [Gro06, GS08, BGI14], who inspired our notation.
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Definition 2.37 (Soundness). A non-interactive proof system Π for language L
is sound, if for every PPT adversary A there is a negligible function ε(·) such
that

Pr

[
crs← Setup(1κ), (x?, π?)← A(crs) :

Verify(crs, x?, π?) = 1
∧ x? /∈ L

]
≤ ε(κ).

If we quantify over all adversaries A and require ε = 0, we have perfect sound-
ness, but we present the definition for computationally sound proofs (arguments).

Definition 2.38 (Adaptive Witness-Indistinguishability). A non-interactive pro-
of system Π for language L is adaptively witness-indistinguishable, if for every
PPT adversary A there is a negligible function ε(·) such that

Pr
[
crs← Setup(1κ), b←R {0, 1}, b? ← AP(crs,·,·,·,b)(crs) : b = b?

]
≤ ε(κ),

where P(crs, x, w0, w1, b) := Proof(crs, x, wb), and P returns ⊥ if (x,w0) /∈
R ∨ (x,w1) /∈ R.

If ε = 0, we have perfect adaptive witness-indistinguishability.

Definition 2.39 (Adaptive Zero-Knowledge). A non-interactive proof system Π
for language L is adaptively zero-knowledge, if there exists a PPT simulator
(S1,S2) such that for every PPT adversary A there is a negligible function ε(·)
such that ∣∣∣∣∣∣

Pr
[
crs← Setup(1κ) : AP(crs,·,·)(crs) = 1

]
−

Pr
[
(crs, τ)← S1(1κ) : AS(crs,τ,·,·)(crs) = 1

]
∣∣∣∣∣∣ ≤ ε(κ),

where, τ denotes a simulation trapdoor. Thereby, P(crs, x, w) and S(crs, τ, x, w)
return ⊥ if (x,w) /∈ R or π ← Proof(crs, x, w) and π ← S2(crs, τ, x), respectively,
otherwise.

If ε = 0, we have perfect adaptive zero-knowledge.

Definition 2.40 (Proof of Knowledge). A non-interactive proof system Π for
language L admits proofs of knowledge, if there exists a PPT extractor E =
(E1,E2) such that for every PPT adversary A there is a negligible function ε1(·)
such that ∣∣∣∣∣ Pr

[
crs← Setup(1κ) : A(crs) = 1

]
−

Pr
[
(crs, ξ)← E1(1κ) : A(crs) = 1

] ∣∣∣∣∣ ≤ ε1(κ),

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr

[
(crs, ξ)← E1(1κ), (x?, π?)← A(crs),
w ← E2(crs, ξ, x?, π?)

:
Verify(crs, x?, π?) = 1 ∧

(x?, w) /∈ R

]
≤ ε2(κ).
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Definition 2.41 (Simulation Sound Extractability). An adaptively zero-know-
ledge non-interactive proof system Π for language L is simulation sound ex-
tractable, if there exists a PPT extractor (S,E) such that for every adversary A
it holds that ∣∣∣∣∣ Pr

[
(crs, τ)← S1(1κ) : A(crs, τ) = 1

]
−

Pr
[
(crs, τ, ξ)← S(1κ) : A(crs, τ) = 1

] ∣∣∣∣∣ = 0,

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr

 (crs, τ, ξ)← S(1κ),
(x?, π?)← AS(crs,τ,·)(crs),
w ← E(crs, ξ, x?, π?)

:
Verify(crs, x?, π?) = 1 ∧

(x?, π?) /∈ QS ∧ (x?, w) /∈ R

 ≤ ε2(κ),

where S(crs, τ, x) := S2(crs, τ, x) and QS keeps track of the queries to and answers
of S.

Note that the definition of simulation sound extractability of [Gro06] is stronger
than ours in the sense that the adversary also gets the trapdoor ξ as input.
However, in our context this weaker notion (previously also used in other works
such as [DHLW10, ADK+13]) is sufficient.

Definition 2.42 (Weak Simulation Sound Extractability). An adaptively zero-
knowledge non-interactive proof system Π for language L is weakly simulation
sound extractable, if it satisfies Definition 2.41 with the following modified win-
ning condition:

Verify(crs, x?, π?) = 1 ∧ (x?, ·) /∈ QS ∧ (x?, w) /∈ R.

The Groth-Sahai (GS) Proof System [GS08, GS07]. GS proofs are non-
interactive witness-indistinguishable (NIWI) and zero-knowledge (NIZK) proofs
for the satisfiability of various types of equations defined over bilinear groups.
In this thesis we only require proofs for the satisfiability of pairing product
equations (PPEs) of the form

n∏
i=1

e(ai, ŷi) ·
m∏
i=1

e(xi, b̂i) ·
m∏
i=1

n∏
j=1

e(xi, ŷj)
γij = tT . (2.1)

Such a pairing product equation implicitly defines an NP relation, where the
vectors (x1, . . . xm) ∈ Gm1 , (ŷ1, . . . , ŷn) ∈ Gn2 constitute the witness with respect

to the statement (a1, . . . , an) ∈ Gn1 , (b̂1, . . . , b̂m) ∈ Gm2 , (γij)i∈[m],j∈[n] ∈ Zn·mp ,
and tT ∈ GT . To conduct a proof, one commits to the vectors (xi)i∈[m] and
(ŷi)i∈[n], and uses the commitments instead of the actual values in the PPE.
Loosely speaking, the proof π is used to “cancel out” the randomness used in
the commitments. However, this does not directly work when using the groups
G1, G2, and GT , but requires to map the involved elements to vector spaces
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associated to these groups. For instance, in the SXDH setting those vector
spaces are G2

1, G2
2 and G4

T and one uses the corresponding bilinear map F :
G2

1 ×G2
2 → G4

T to prove the satisfiability of PPE.
We do not require further details on the instantiation of GS proofs in the

context of this thesis and refer the reader to [GS07] for an in-depth treatment.
Nevertheless, we want to explicitly point out three properties of GS proofs:

CRS Indistinguishability: The CRS in the GS proof system can be set up in two
different “modes”. The first mode yields unconditional soundness, whereas
the second mode yields unconditional witness indistinguishability (WI)/zero-
knowledge (ZK). The important point is that both modes are computationally
indistinguishable which is why both soundness and WI/ZK can be shown to
hold at the same time.

Requirements to Obtain Zero-Knowledge: Recall that zero-knowledge requires a
PPT simulator which is able to simulate proofs without knowing any witness.
In the context of the GS framework, such a simulator is only known to exist
for a special form of the PPE [GS07, EG14]. That is, a form of the PPE
where the simulator can efficiently find a satisfying witness on its own (e.g.,
if the PPE is so that one can use (1, . . . , 1) ∈ Gm1 , (1, . . . , 1) ∈ Gn2 as a trivial
satisfying witness). It is important to note that such a form of the PPE often
requires additional measures to prevent the actual prover from using those
“trivial” witnesses (e.g., disjunctions of multiple equations [Gro06, BFG13]
as discussed below).

Expressing Disjunctions of PPEs: Groth [Gro06] showed that one can express
disjunctions of PPEs. We illustrate how this is done using a simple example,
which is tailored to our ring signature scheme in Section 4.1. For a general
description we refer the reader to [Gro06]. Assume that we have ` PPEs of
the form {e(xi, ĝ) = e(h, x̂i)}i∈[`] and want to prove that we know a satisfying
assignment for at least one i. To do so, we prove the equations

{e(xi, ĝ) = e(h, x̂i)}i∈[`], (2.2)

e(g−1
∏
i∈[`]

g
i
, ĝ) = 1, and (2.3)

{e(g
i
, (x̂i)

−1x̂i) = 1}i∈[`]. (2.4)

Equation 2.2 modifies the original set of equations so that one additionally
proves knowledge of x̂i. This equation can now be trivially satisfied. To
ensure that the prover, however, uses a non-trivial witness for at least one of
the equations one needs two additional equations. Equation 2.3 constitutes a
selector equation, which can only be satisfied if at least one g

i
is a commitment

to gi 6= 1. Equation 2.4 additionally ensures that the commitment x̂i actually
contains x̂i for each i where g

i
is with respect to a gi 6= 1. We also note that

[BFG13] show a more efficient technique tailored to a disjunction of two PPEs
which have a special form. This technique may, e.g., be useful to instantiate
our schemes in Section 3.3 and Section 3.4.
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Converting Σ-protocols to Non-Interactive Proof Systems. One can
obtain a non-interactive proof system satisfying the properties above by applying
the FS transform to any Σ-protocol where the min-entropy α of the commitment
a sent in the first phase is so that 2−α is negligible in the security parameter
κ and the challenge space E is exponentially large in the security parameter.
Formally, Setup(1κ) fixes a hash function H : A × X → E, which is modeled as
a RO, sets crs ← (1κ, H) and returns crs. The algorithms Proof and Verify are
defined as follows:

Proof(crs, x, w) := PH(1κ, x, w), Verify(crs, x, π) := VH(1κ, x, π).

Combining [FKMV12, Thm. 1, Thm. 2, Prop. 1] (among others) shows that a
so-obtained proof system is complete, sound, and adaptively zero-knowledge if
the underlying Σ-protocol is 2-special sound and the commitments sent in the
first move are unconditionally binding. Furthermore, [FKMV12, Thm. 2] shows,
that such a proof system is also simulation sound if the Σ-protocol additionally
provides quasi-unique responses [Fis05], i.e., it is computationally infeasible to
find a new valid response when given an accepting proof. Finally, [FKMV12,
Thm. 3] shows that such a poof system is even simulation sound extractable
when allowing the extractor to rewind the adversary.

2.4.11 Signatures of Knowledge.

Below we recall signatures of knowledge (SoKs) [CL06], where L is as above. For
the formal notions we follow [BCC+15] and use a generalization of the original
extraction property termed f -extractability. A signature of knowledge (SoK) for
L is defined as follows.

Definition 2.43. A SoK for language L is a tuple of PPT algorithms (Setup,Sign,
Verify), which are defined as follows:

Setup(1κ) : This algorithm takes a security parameter κ as input and outputs
a common reference string crs. We assume that the message space M is
implicitly defined by crs.

Sign(crs, x, w,m) : This algorithm takes a common reference string crs, a word
x, a witness w, and a message m as input and outputs a signature σ.

Verify(crs, x,m, σ) : This algorithm takes a common reference string crs, a word
x, a message m, and a signature σ as input and outputs a bit b ∈ {0, 1}.

Definition 2.44 (Correctness). A SoK with respect to L is correct, if there exists
a negligible function ε(·) such that for all x ∈ L, for all w such that (x,w) ∈ R,
and for all m ∈M it holds that

Pr [crs← Setup(1κ), σ ← Sign(crs, x, w,m) : Verify(crs, x,m, σ) = 1] ≥ 1− ε(κ).
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Definition 2.45 (Simulatability). A SoK with respect to L is simulatable, if
there exists a PPT simulator S = (SimSetup,SimSign) such that for all PPT
adversaries A there exists a negligible function ε(·) such that it holds that∣∣∣∣∣ Pr

[
crs← Setup(1κ), b← ASign(crs,·,·,·)(crs) : b = 1

]
−

Pr
[
(crs, τ)← SimSetup(1κ), b← ASim(crs,τ,·,·,·)(crs) : b = 1

] ∣∣∣∣∣ ≤ ε(κ),

where we set Sim(crs, τ, x, w,m) := SimSign(crs, τ, x,m) and Sim only responds
if (x,w) ∈ R.

Definition 2.46 (f -Extractability). A SoK with respect to L is f -extractable,
if in addition to S there exists a PPT extractor Extract, such that for all PPT
adversaries A there exists a negligible function ε(·) such that it holds that

Pr

 (crs, τ)← SimSetup(1κ),
(x,m, σ)← ASim(crs,τ,·,·,·)(crs),
y ← Extract(crs, τ, x,m, σ)

:

Verify(crs, x,m, σ) = 0 ∨
(x,m, σ) ∈ QSim ∨

(∃ w : (x,w) ∈ R ∧
y = f(w))

 ≥ 1− ε(κ),

where QSim denotes the queries (resp. answers) of Sim.

We note that, as illustrated in [BCC+15], this notion is a generalization of the
original extractability notion from [CL06] which implies the original extractabil-
ity notion if f is the identity. In this case, we simply call the f -extractability
property extractability. Analogous to [BCC+15], we require the used SoK to be
at the same time extractable and straight-line f -extractable with respect to some
f other than the identity, where straight-line as usual says that the extractor
runs without rewinding the adversary [Fis05].

34



3
Basic Primitives

This chapter is dedicated to our results on basic primitives. They can be seen
as building blocks for schemes and protocols in the areas of interest in this
thesis. Yet, they are also suitable for a broader range of applications in general.
The results include generalisations of and new notions for existing primitives. In
particular, we target cryptographic accumulators in Section 3.1 and a framework
capturing key-homomorphic properties for digital signatures and applications of
this framework in Section 3.2, Section 3.3, and Section 3.4.

3.1 Cryptographic Accumulators

A (static) cryptographic accumulator scheme allows to accumulate a finite set
X = {x1, . . . , xn} into a succinct value ΛX , the so called accumulator. For every
element xi ∈ X , one can efficiently compute a so called witness witxi to certify
the membership of xi in ΛX . However, it should be computationally infeasi-
ble to find a witness for any non-accumulated value y 6∈ X (collision freeness).
Dynamic accumulators additionally allow the dynamic addition/deletion of val-
ues to/from a given accumulator and to update existing witnesses accordingly
(without the need to fully recompute these values on each change of the ac-
cumulated set). Universal accumulators additionally provide means to obtain
non-membership witnesses for non-members y 6∈ X . Here, collision freeness also
covers that it is computationally infeasible to create non-membership witnesses
for values xi ∈ X . Over time, further security properties, that is, undenia-
bility and indistinguishability, have been proposed. Undeniability is specific to
universal accumulators and says that it should be computationally infeasible to
compute two contradicting witnesses for z ∈ X and z 6∈ X . Indistinguishability
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says that neither the accumulator nor the witnesses leak information about the
accumulated set X and, thus, requires randomized accumulator schemes.

Applications. Accumulators were originally proposed for timestamping pur-
poses [BdM93], i.e., to record the existence of a value at a particular point in
time. Over time, other applications such as membership testing, distributed
signatures, accountable certificate management [BLL00] and authenticated dic-
tionaries [GTH02] have been proposed. Accumulators are also used as build-
ing blocks in redactable (cf. Section 5.1), sanitizable (cf. Section 5.3), P -
homomorphic signatures [ABC+12], anonymous credentials [SNF11], group sig-
natures [TX03], privacy-preserving data outsourcing [Sla12] as well as for authen-
ticated data structures [GOT15]. Moreover, accumulator schemes that allow to
prove the knowledge of a (non-membership) witness for an unrevealed value in
zero-knowledge (introduced for off-line e-cash in [STY00]) are now widely used
for revocation of group signatures and anonymous credentials [CL02b]. Quite
recently, accumulators were also used in Zerocoin [MGGR13], an anonymity
extension to the Bitcoin cryptocurrency.

Since their introduction, numerous accumulator schemes with somewhat differ-
ent features have been proposed. Basically, the major lines of work are schemes
in hidden-order groups (RSA), known-order groups (DL) and hash-based con-
structions (which may use, but typically do not require number theoretic as-
sumptions).

Hidden-Order Groups. The original RSA-based scheme of Benaloh and de
Mare [BdM93] has been refined by Barić and Pfitzmann [BP97], who strength-
ened the original security notion to collision freeness. In [San99], Sander pro-
posed to use RSA moduli with unknown factorization to construct trapdoor-free
accumulators. Camenisch and Lysyanskaya [CL02b] extended the scheme in
[BP97] with capabilities to dynamically add/delete values to/from the accumu-
lator, which constituted the first dynamic accumulator scheme. Their scheme
also supports public updates of existing witnesses, that is, updates without the
knowledge of any trapdoor. Later, Li et al. [LLX07] added support for non-
membership witnesses to [CL02b] and, therefore, obtained universal dynamic
accumulators. They also proposed an optimization for more efficient updates of
non-membership witnesses, for which, however, weaknesses have been identified
later [PB10, MV13]. Lipmaa [Lip12] generalized RSA accumulators to modules
over Euclidean rings. In all aforementioned schemes, the accumulation domain
is restricted to primes to guarantee collision freeness. In [TX03], Tsudik and
Xu proposed a variation of [CL02b], which allows to accumulate semiprimes.
This yields a collision-free accumulator under the assumption that the used
semiprimes are hard to factor and their factorization is not publicly known.
Moreover, in [WWP07] an accumulator scheme that allows to accumulate arbi-
trary integers and supports batch updates of witnesses has been proposed. Yet,
this scheme was broken in [CH10].
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Known-Order Groups. In [Ngu05], Nguyen proposed a dynamic accumulator
scheme which works in pairing-friendly groups of prime order p. It is secure
under the t-SDH assumption and allows to accumulate up to t values from the
domain Zp. Later, Damg̊ard and Triandopoulos [DT08] as well as Au et al.
[ATSM09] extended Nguyen’s scheme with universal features. Quite recently,
Acar and Nguyen [AN11] eliminated the upper bound t on the number of ac-
cumulated elements of the t-SDH accumulator. To this end, they use a set of
accumulators, each containing a subset of the whole set to be accumulated. An
alternative accumulator scheme for pairing friendly groups of prime order has
been introduced by Camenisch et al. [CKS09]. It supports public updates of
witnesses and the accumulator and its security relies on the t-DHE assumption.

Hash-Based Constructions. Buldas et al. [BLL00, BLL02] presented the
very first universal dynamic accumulator that satisfies undeniability (termed as
undeniable attester and formalized in the context of accumulators in [Lip12]).
Their construction is based on collision-resistant hashing and the use of hash-
trees. Another hash-tree based construction of a universal accumulator that
satisfies a notion similar to undeniability has been proposed in [CHKO08] (the
scheme is called a strong universal accumulator). Quite recently, another accu-
mulator based on hash-trees, which uses commitments based on bivariate poly-
nomials modulo RSA composites as a collision-resistant hash function, has been
introduced in [BC14].

For the sake of completeness, we also mention the construction of static accumu-
lators in the random oracle model based on Bloom filters, proposed by Nyberg
[Nyb96a, Nyb96b].

Subsequent Work. We also want to note that there exists follow-up work on
various aspects of accumulators. In [RY16], Reyzin and Yakoubov aim to mit-
igate the requirement to keep the accumulator and the witnesses synchronized
upon modifications of the accumulated set. They introduce a formal model and
present a corresponding construction which—within some natural limits—allows
to verify outdated witnesses with respect to an up to date accumulator and vice
versa. In [GOP+16], Gosh et al. strengthen our indistinguishability1 notion,
further investigate the relation of accumulators to other similar primitives, and
extend the accumulator model regarding more expressive operations on the accu-
mulated set. In [ZKP17] Zhang et al. present further expressiveness extensions
to accumulators (others than the ones in [GOP+16]). In [BCD+17], Baldimtsi
et al. establish a more modular view on accumulators and show how to combine
accumulators with more basic features and weaker security guarantees to obtain
accumulators with more sophisticated features and stronger security guarantees.

Contribution. The contributions presented in this section are as follows:

1 Note that indistinguishability is better suited for all applications we target in this thesis.

37



Chapter 3. Basic Primitives

– While some papers [BdM93, BP97, CL02b, ATSM09, Ngu05] do not explic-
itly formalize accumulator schemes, formal definitions are given in [CKS09,
WWP07, FN02, LLX07, CF13, Lip12, CHKO08, AN11]. However, these mod-
els are typically tailored to the functionalities of the respective scheme. While
they widely match for the basic notion of (static) accumulators (with the ex-
ception of considering randomized accumulators), they differ when it comes
to dynamic and universal accumulators. To overcome this issue, we propose
a unified formal model for accumulators, which is especially valuable when
treating accumulators in a black-box fashion. We, thereby, also include the
notion of undeniability [BLL00, BLL02, Lip12] and a strengthened version of
the recent indistinguishability notion [dMLPP12]. Besides, we also confirm
the intuition and show that undeniability is a strictly stronger notion than
collision freeness.

– We provide an exhaustive classification of existing accumulator schemes and
show that most existing accumulator schemes are distinguishable in our model.
To resolve this issue, we propose a simple, light-weight generic transformation
that allows to add indistinguishability to existing dynamic accumulators and
prove the security of the so-obtained schemes. As this transformation, how-
ever, comes at the cost of reduced collision freeness, we additionally propose
the first indistinguishable scheme that does not suffer from this shortcoming.

– Since accumulators are somehow related to commitments to sets [KZG10,
FLZ14], commitments to vectors [CF13] and to zero-knowledge sets [MRK03],
it is interesting to study their relationship. We formally show that indistin-
guishable accumulators imply non-interactive commitment schemes. Further-
more, we formally show that zero-knowledge sets imply indistinguishable,
undeniable universal accumulators, yielding the first construction of such ac-
cumulators.

Henceforth, we use Λ to denote an accumulator and if we want to make the
accumulated set X = {x1, . . . , xn} explicit, we write ΛX . Given an accumulator
ΛX , a membership witness for an element xi ∈ X is denoted by witxi , whereas
a non-membership witness for an element yj /∈ X is denoted by wityj . The
accumulator secret key (trapdoor) is denoted by skΛ, while the public key is
denoted by pkΛ.

3.1.1 A Unified Model for Cryptographic Accumulators

In the original sense, accumulator schemes were defined by the following prop-
erties (see, e.g., [CL02b, LLX07]).

Efficient generation: There is an efficient algorithm that, on input of a security
parameter κ, selects a functionality f : ZκA × ZκI → ZκA from a family of
families of functions {Fκ}, i.e., generates the accumulator specific key pair
(skΛ, pkΛ), where skΛ is a trapdoor for f .

Efficient evaluation: There is an efficient algorithm that computes f(Λ, x).
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Quasi-commutativity: It holds that f(f(Λ, x1), x2) = f(f(Λ, x2), x1) ∀ x1, x2 ∈
ZκI ,Λ ∈ ZκA.

Assuming that it is computationally infeasible to invert f without knowing skΛ,
the quasi-commutativity directly yields a way to define witnesses. For instance,
f(Λ, x1) can serve as witness for the accumulation of x2. Nonetheless, it is more
meaningful to provide a more abstract algorithmic definition of accumulators
as done below, since there are several constructions that do not fit into this
characterization (for instance, hash-tree constructions do not require the quasi-
commutativity property).

Trusted vs. Non-Trusted Setup. Known accumulators that rely on number
theoretic assumptions require a trusted setup, i.e., a TTP runs the setup algo-
rithm Gen and discards the trapdoor skΛ afterwards. Here, access to skΛ allows
to break collision freeness (and its stronger form: undeniability). Consequently,
correctness of the accumulator scheme also needs to hold if skΛ is omitted in all
algorithms, which is the case for all existing schemes. In contrast, in construc-
tions relying on collision-resistant hash functions (not based on number theoretic
assumptions) there is no trapdoor at all and, therefore, no trusted setup is re-
quired. To study number theoretic accumulators without trusted setup, Lipmaa
[Lip12] proposed a modified model which divides the Gen algorithm into a Setup
and a Gen algorithm. In this model, the adversary can control the randomness
used inside Setup and, thus, knows the trapdoor. Nevertheless, it can neither
access nor influence the randomness of the Gen algorithm. This model, however,
still requires a partially trusted setup and also does not fit to the known order
group setting, which makes it not generally applicable.2 Consequently, when
considering the state of the art it seems most reasonable to define a security
model with respect to a trusted setup. We emphasize that this model is com-
patible with all existing constructions. Nevertheless, it remains a challenging
open issue to design accumulators based on standard assumptions which are
secure without any trusted setup.

Definitions. In the following, we provide a definition for (static) accumulators,
which we adapt from [WWP07, FN02]. In contrast to previous models, we ex-
plicitly consider randomized accumulator schemes. Then, we extend this model
in order to formalize dynamic accumulators. It is similar to [CKS09, CF13], but
avoids shortcomings such as missing private updates. Based on this, we define
universal and universal dynamic accumulators and propose a suitable security
model. Furthermore, we discuss undeniable and indistinguishable accumulators,
give formalizations for these properties, and, investigate relationships between
security properties.

2 This model is tailored to the hidden order group setting, where Setup produces a compos-
ite modulus N . Gen chooses a random generator g of a large subgroup of Z∗N . Then, the
adversary knows the factorization of N but does not control the choice of g. RSA accumu-
lators are obviously insecure in this setting, but Lipmaa provides secure solutions based on
modules over an Euclidean ring, which, however, rely on rather unstudied assumptions.
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We call accumulators that have an upper bound t on the number of accumu-
lated values t-bounded accumulators and unbounded otherwise. To model this,
our Gen algorithm takes an additional parameter t, where t = ∞ is used to
indicate that the accumulator is unbounded. For the sake of completeness, we
model the algorithms such that they support an optional input of the trapdoor
(denoted as sk∼Λ ) since this often allows to make the algorithms more efficient.
However, we stress that we consider the trusted setup model and, hence, adver-
saries are not given access to the trapdoor skΛ. Consequently, if sk∼Λ is set, the
party running the algorithm needs to be fully trusted.

Definition 3.1 (Static Accumulator). A static accumulator is a tuple of efficient
algorithms (Gen, Eval, WitCreate, Verify) which are defined as follows:

Gen(1κ, t) : This algorithm takes a security parameter κ and a parameter t. If
t 6=∞, then t is an upper bound on the number of elements to be accumulated.
It returns a key pair (skΛ, pkΛ), where skΛ = ∅ if no trapdoor exists.

Eval((sk∼Λ , pkΛ),X ) : This (probabilistic)3 algorithm takes a key pair (sk∼Λ , pkΛ)
and a set X to be accumulated and returns an accumulator ΛX together with
some auxiliary information aux.

WitCreate((sk∼Λ , pkΛ),ΛX , aux, xi) : This algorithm takes a key pair (sk∼Λ , pkΛ), an
accumulator ΛX , auxiliary information aux and a value xi. It returns ⊥, if
xi /∈ X , and a witness witxi for xi otherwise.

Verify(pkΛ,ΛX ,witxi , xi) : This algorithm takes a public key pkΛ, an accumulator
ΛX , a witness witxi and a value xi. It returns 1 if witxi is a witness for xi ∈ X
and 0 otherwise.

Henceforth, we call an accumulator randomized if the Eval algorithm is proba-
bilistic. Based on Definition 3.1, we can now formalize dynamic accumulators.
We widely align our definitions with [WWP07, FN02], but, in addition, we need
to consider that the various dynamic accumulator schemes proposed so far differ
regarding the public updatability of witnesses and the accumulator.

Definition 3.2 (Dynamic Accumulator). A dynamic accumulator is a static
accumulator that additionally provides efficient algorithms (Add, Delete, Wit-
Update) which are defined as follows:

Add((sk∼Λ , pkΛ),ΛX , aux, xi) : This algorithm takes a key pair (sk∼Λ , pkΛ), an ac-
cumulator ΛX , auxiliary information aux, as well as a value xi to be added.
If xi ∈ X , it returns ⊥. Otherwise, it returns the updated accumulator ΛX ′
with X ′ ← X ∪ {xi}, the updated auxiliary information aux′, as well as some
auxiliary witness update information auxu.

3 If Eval is probabilistic, the internally used randomness is denoted as r. If we want to make
the randomness used by the Eval algorithm explicit, we will write Evalr.
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Delete((sk∼Λ , pkΛ),ΛX , aux, xi) : This algorithm takes a key pair (sk∼Λ , pkΛ), an ac-
cumulator ΛX , auxiliary information aux, as well as a value xi to be removed.
If xi /∈ X , it returns ⊥. Otherwise, it returns the updated accumulator ΛX ′
with X ′ ← X \{xi} and auxiliary information aux′, as well as some auxiliary
witness update information auxu.

WitUpdate((sk∼Λ , pkΛ),witxi , auxu, xj) : This algorithm takes a key pair (sk∼Λ , pkΛ),
a witness witxi to be updated, auxiliary update information auxu and a value
xj which was added/deleted to/from the accumulator. It returns an updated
witness wit′xi on success and ⊥ otherwise.

Below, we define universal accumulators and emphasize that features provided
by universal accumulators can be seen as supplementary features for both, static
and dynamic accumulators.

Definition 3.3 (Universal Accumulator). A universal accumulator is a static
or a dynamic accumulator with the following properties. For static accumulator
schemes the algorithms WitCreate and Verify take an additional boolean param-
eter type, indicating whether the given witness is a membership (type = 0) or
non-membership (type = 1) witness. For dynamic accumulator schemes this
additionally applies to WitUpdate.

Security Model. Now, we introduce our unified security model. It is adapted
from [LLX07] and further extended by undeniability and indistinguishability.

Classic Notion. A secure accumulator scheme is required to be correct and
collision-free. Correctness says that for all honestly generated keys, and for all
honestly computed accumulators and witnesses, the Verify algorithm will always
return 1. This also needs to hold after additions, deletions, and witness updates.
We note that the algorithm Eval returns some auxiliary information aux which
is updated by the Add and Delete algorithms (i.e., they return aux′). This in-
formation needs to be provided to the algorithms WitCreate, Add, and Delete.
Furthermore, the algorithms Add and Delete output some auxiliary witness up-
date information auxu, which is required to update the witnesses via WitUpdate
after Add and Delete. Once again, we stress that correctness also needs to hold
when all algorithms are executed without skΛ (denoted by sk∼Λ in the definitions
above) and the output distribution of the algorithms must not be affected by
the presence/absence of skΛ.

We omit to formally define correctness, and continue with collision freeness.
Collision freeness informally states that it is neither feasible to find a witness for
a non-accumulated value nor feasible to find a non-membership witness for an
accumulated value. More formally:

Definition 3.4 (Collision Freeness). A cryptographic accumulator of type t ∈
{static, dynamic} and u ∈ {universal, non-universal} is collision-free, if for all
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PPT adversaries A there is a negligible function ε(·) such that:

Pr

 (skΛ, pkΛ)← Gen(1κ, t),
O ← {Ot,Ou}, (wit?xi/wit?xi ,
x?i ,X?, r?)← AO(pkΛ)

:
(Verify(pkΛ,Λ

?,wit?xi , x
?
i , 0) = 1

∧ x?i /∈ X?) ∨ (x?i ∈ X? ∧
Verify(pkΛ,Λ

?,wit?xi , x
?
i , 1) = 1)

 ≤ ε(κ),

where Λ? ← Evalr?((skΛ, pkΛ),X?) and A has oracle access to Ot and Ou which
are defined as follows:

Ot :=

{
{OE(·,·,·)} if t = static,
{OE(·,·,·),OA(·,·,·,·),OD(·,·,·,·)} otherwise.

Ou :=

{
{OW(·,·,·,·),OW(·,·,·,·)} if u = universal,
{OW(·,·,·,·)} otherwise.

Thereby, OE,OA and OD represent the oracles for the algorithms Eval,Add, and
Delete, respectively. An adversary is allowed to query them an arbitrary number
of times. In case of randomized accumulators the adversary outputs randomness
r?, whereas r? is omitted for deterministic accumulators. Likewise, the adversary
can control the randomness r used by OE for randomized accumulators. There-
fore, OE takes an additional parameter for r (which is missing for deterministic
accumulators). The oracles OW and OW allow the adversary to obtain mem-
bership witnesses for members and non-membership witnesses for non-members,
respectively. Thereby, the environment keeps track of all oracle queries (and
answers) and lets the respective oracle return ⊥ if calls to it are not consistent
with respect to previous queries. Furthermore, we assume that the adversary
outputs either a membership witness wit?xi or a non-membership witness wit?xi
(denoted by wit?xi/wit?xi). If the accumulator is non-universal, one simply omits
the non-membership related parts.

One distinction to previous models is that we explicitly give access to all
algorithms via oracles. In doing so we ensure that security proofs take the
requirement that everything can be simulated in the absence of skΛ into account.
This is vital and could be overseen otherwise.

Definition 3.5 (Secure Accumulator). A cryptographic accumulator is secure
if it is correct and collision-free.

Undeniable Accumulators. In [Lip12], Lipmaa formalized undeniability for ac-
cumulators. A universal accumulator is undeniable if it is computationally in-
feasible to find a membership as well as a non-membership witness for the same
value—independently of whether it is contained in an accumulator or not. More
formally undeniability is defined as:

Definition 3.6 (Undeniability). A universal cryptographic accumulator of type
t ∈ {static, dynamic} is undeniable, if for all PPT adversaries A there is a
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negligible function ε(·) such that:

Pr

 (skΛ, pkΛ)← Gen(1κ, t),

(wit?xi ,wit?xi , x
?
i ,Λ

?)← AOt

(pkΛ)
:

Verify(pkΛ,Λ
?,wit?xi , x

?
i , 0) =

Verify(pkΛ,Λ
?,wit?xi , x

?
i , 1) =

1

 ≤ ε(κ),

where, A has oracle access to Ot which is defined as follows:

Ot :=

{
{OE(·,·,·),OW(·,·,·,·),OW(·,·,·,·)} if t = static,
{OE(·,·,·),OA(·,·,·,·),OD(·,·,·,·),OW(·,·,·,·),OW(·,·,·,·)} otherwise.

Notice that the definition of the oracles is as in the definition of collision freeness
for universal accumulators.

Definition 3.7. A universal accumulator is undeniable if it is a secure accu-
mulator satisfying the undeniability property.

Indistinguishable Accumulators. Li et al. [LLX07] pointed out informally (with-
out giving any formalizations) that the accumulation of an additional random
value may render guessing the accumulated set infeasible. Later, de Meer et al.
[dMLPP12] tried to formalize this intuition via an additional indistinguishabil-
ity property. Unfortunately, there are some issues with their notion. Firstly,
it only covers static accumulators and, secondly, indistinguishability in the vein
of [LLX07] weakens collision resistance. Basically, one can easily generate a
membership witness for the random value. Secondly, the security game in
[dMLPP12] allows to prove indistinguishability of deterministic accumulators,
which are clearly not indistinguishable. In particular, the random value is cho-
sen and accumulated within the security game. However, this non-determinism
is not required to be part of the accumulator construction itself. Consequently,
a deterministic accumulator can satisfy this notion while being trivially distin-
guishable. From this, we conclude that the non-determinism must be intrinsic
to the Eval algorithm.4

Definition 3.8 (Indistinguishability). A cryptographic accumulator of type t ∈
{static, dynamic} and u ∈ {universal, non-universal} is indistinguishable, if for
all PPT adversaries A there is a negligible function ε(·) such that:

Pr


(skΛ, pkΛ)← Gen(1κ, t), b←R {0, 1},
O ← {Ot,Ou}, (X0,X1, ST)← A(pkΛ),
(ΛXb , aux)← Eval((skΛ, pkΛ),Xb),
b? ← AO(pkΛ,ΛXb , ST)

: b = b?

 ≤ 1

2
+ ε(κ),

4 Independently of our work, this observation was quite recently also made in [dMPPS14a] by
the authors of [dMLPP12]: The insertion of the random value has been removed from the
game and the Eval algorithm is now required to be non-deterministic.
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where X0 and X1 are two distinct subsets of the accumulation domain and Ot as
well as Ou are defined as follows:

Ot :=

{
∅ if t = static,
{OA 6∪(·,·,aux,·),OD∩(·,·,aux,·)} otherwise.

Ou :=

{
{OW(·,·,aux,·),OW(·,·,aux,·)} if u = universal,
{OW(·,·,aux,·)} otherwise.

If the probability above is exactly 1/2 we have unconditional indistinguishability,
whereas we have computational indistinguishability if the probability is negligibly
different from 1/2.

Here, the oracles can only be called for the challenge accumulator. We require
that the input parameter aux for the oracles is kept up to date and is consistently
provided by the environment, since the knowledge of aux would allow the adver-
sary to trivially win the game. Furthermore, note that this game does not allow
the adversary to control the randomness used for the evaluation of ΛXb . For the
definitions of the remaining oracles, we use X∪ := X0 ∪X1 and X∩ := X0 ∩X1 to
restrict the adversary from oracle queries which would trivially allow to win the
game. OA 6∪ as well as OD∩ allow the adversary to execute the Add and Delete
algorithms. Thereby, OA 6∪ only allows queries for values xi /∈ X∪, whereas OD∩

only allows queries for values xi ∈ X∩. Upon every Add and Delete the sets X∪
and X∩ are updated consistently. If the accumulator is t-bounded, the Add and
Delete oracles additionally enforce that the difference of additions and deletions
is always less than or equal t − max{|X0|, |X1|}. Oracles OW and OW are as
above, with the difference that OW allows only queries for values xi ∈ X∩, while
OW allows only queries for values yj /∈ X∪.

Remark 3.1. We remark that indistinguishability is only intended to protect
the initially accumulated set, and does not account for dynamic changes of the
accumulated set in case of dynamic accumulators.

As opposed to the approach where indistinguishability is achieved using an in-
herently randomized Eval algorithm, it was suggested in the literature that in-
distinguishability can be achieved by choosing random values from the accu-
mulation domain and additionally accumulating them. We formally capture
this suggestion by introducing a generic transformation for the latter approach
(cf. Transformation 3.1), where we restrict ourselves to static accumulators and
note that an extension to dynamic/universal accumulators is straight forward
(the transformation only affects the Eval algorithm).

Transformation 3.1. Let (Gen,Eval,WitCreate,Verify) be any static accumula-
tor. The transformation defines a new static accumulator scheme (Gen,Eval′,Wit-
Create,Verify), where Eval′ is defined as follows

Eval′((sk∼Λ , pkΛ),X ) : This algorithm samples a uniformly random element xr
from some domain, compatible with the accumulation domain. It computes
and returns the result of Eval((sk∼Λ , pkΛ),X ∪ {xr})
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Usually the domain where xr is sampled from is the accumulation domain. How-
ever, we explicitly allow it to be different so that our transformation is general
enough to also cover the RSA accumulators. As already noted above, colli-
sion freeness no longer holds for X but with respect to X ∪ {xr}. To draw a
line between inherently randomized constructions and such relying on Transfor-
mation 3.1, we differentiate between indistinguishability and collision-freeness-
weakening (cfw) indistinguishability:

Definition 3.9 (cfw-Indistinguishability). A cryptographic accumulator is called
cfw-indistinguishable, if it achieves indistinguishability by applying Transforma-
tion 3.1.

Relation Between Security Properties. Intuitively, undeniability seems to
be a strictly stronger security requirement than collision freeness. We confirm
this intuition below:

Lemma 3.1. Every undeniable universal accumulator is collision-free.

We prove that every undeniable accumulator is also collision-free by showing that
an efficient adversary A against the collision freeness of an accumulator scheme
can be used to construct an efficient adversary B against its undeniability. Note
that B can simulate all required oracles.

Proof. B gets input pkΛ and runs A(pkΛ). There are two cases if A wins the
collision freeness game: A outputs either (wit?xi , x

?
i ,X?, r?) or (wit?xi , x

?
i ,X?, r?).

IfA outputs (wit?xi , x
?
i ,X?, r?) such that x?i /∈ X?, B evaluates the accumulator

with respect to X? and r?. Hence, it obtains ΛX? . Next, it computes witxi using
the witness generation algorithm (which can always be done since xi /∈ X ) and
outputs (wit?xi ,witxi , x

?
i ,ΛX?).

IfA outputs (wit?xi , x
?
i ,X?, r?) such that x?i ∈ X?, B evaluates the accumulator

with respect to X? and r?. Hence, it obtains ΛX? . Next, it computes witxi using
the witness generation algorithm (which can always be done since x?i ∈ X?) and
outputs (witxi ,wit?xi , x

?
i ,ΛX?). Hence, whenever A wins the collision freeness

game, B wins the undeniability game with exactly the same probability

As mentioned in [Lip12], a black-box reduction in the other direction is im-
possible. [BLL02] provides a collision-free universal accumulator that is not
undeniable. Therefore, this proves the following lemma by counterexample:

Lemma 3.2. Not every collision-free universal accumulator is undeniable.

3.1.2 State of the Art and Categorization

In this section we first discuss the basic principles of existing constructions
grouped by their underlying security assumptions. Subsequently, we provide
a compact overview and exhaustive classification of existing approaches.
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Strong RSA Setting. All schemes in this setting are extensions of [BdM93,
BP97]. Here, the accumulator ΛX is defined to be ΛX ← g

∏
x∈X x mod N , where

N is an RSA modulus consisting of two large safe primes p, q and g is randomly
drawn from the cyclic group of quadratic residues modulo N . Thus, we have
(skΛ, pkΛ) = ((p, q), (g,N)) and a witness for a value xi is given by witxi ←
Λ
x−1
i

X mod N . Clearly, if we were able to forge a witness witxi ≡ Λ
x−1
i

X (mod N)
for a value xi not contained in ΛX , then we would also be able to break the strong
RSA assumption. Due to the multiplicative relationship of the accumulated
values in the exponent, the domain of accumulated values is restricted to prime
numbers (or products of primes with unknown factorization [TX03]). Note that
accumulating a composite number a = b · c would allow to derive witnesses
for each of its factors, when given a witness wita for a (i.e., witb ≡ (wita)c

(mod N)). Hence, to accumulate sets from more general domains, one needs a
suitable mapping from these domains to prime numbers (e.g., [STY00]).

Some accumulator schemes in this setting [CL02b, LLX07] also provide dy-
namic features. Adding a value to the accumulator can be done without any
secret by a simple exponentiation of the accumulator and its witnesses. In con-
trast, if one wants to delete a value xj , then one has to compute the xj-th root of
the accumulator, which is intractable without skΛ under the strong RSA assump-
tion. Yet, one can still use an arithmetic trick to publicly update membership
witnesses upon the deletion of a value. To update the witness for a value xi
in ΛX\{xj}, one finds a, b ∈ Z such that axi + bxj = 1 and computes the new

witness as wit′xi ← witxi
b · ΛX\{xj}

a mod N from the old witness witxi [CL02b].
Furthermore, the accumulator scheme in [LLX07] also provides universal

features as it supports non-membership witnesses: Let ΛX be an accumula-
tor to the set X and let yj /∈ X . Now, it holds that gcd(

∏
x∈X x, yj) = 1

or, equivalently, a
∏
x∈X x + byj = 1 for a, b ∈ Z. Consequently, we compute

d← g−b mod N , where g is the initial value of the empty accumulator, and form
a non-membership witness wityj ← (a, d). The verification of non-membership
witnesses is, then, done by checking whether ΛX

a ≡ dyj · g (mod N) holds.
In a similar way as it is done for membership witnesses, also non-membership
witnesses can be updated publicly (cf. [LLX07]).

t-SDH Setting. All schemes in this settings are based on the t-bounded ac-
cumulator proposed by Nguyen [Ngu05], which uses a group G of prime or-
der p generated by g with a bilinear map e : G × G → GT . Here, we have
pkΛ = (g, gs, gs

2

, . . . , gs
t

, u) and skΛ = s. An accumulator ΛX to a set X = {x1,
. . . , xn} ∈ Znp with n ≤ t is defined to be ΛX ← gu

∏
x∈X (x+s) and a membership

witness for a value xi ∈ X is computed as witxi ← gu
∏
x∈X\{xi}

(x+s), where
u←R Z∗p. Then, one checks whether a value xi is contained in ΛX by verifying
whether e(ΛX , g) = e(gxigs,witxi) holds. This scheme allows to evaluate accu-
mulators publicly, that is, by expanding the polynomial h(X) =

∏
x∈X (x+X) ∈

Zp[X] and evaluating it in G via pkΛ, which results in gh(s). The public com-
putation of a witness for xi works likewise with regard to the set X \ {xi}.
Furthermore, these witnesses can also be updated in constant time and without
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knowing the secret key (cf. [Ngu05]).
In [DT08, ATSM09], Nguyen’s scheme is extended by non-membership wit-

nesses and the random value u is eliminated. The former work also shows how
public updates of non-membership witnesses can be done in constant time. Note
that these tweaks can also be applied to the latter. The computation of a non-
membership witness for a value yj /∈ X in [ATSM09] exploits the fact that the
polynomial division of h(X) =

∏
x∈X (x+X) by (yj + X) leaves a remainder

d ∈ Z∗p. Such a witness has the form (a, d) = (g
(h(s)−d)/(yj+s), d) and can be

verified by checking whether e(ΛX , g) = e(a, gyjgs)e(g, gd) holds. In [DT08], d
is set to h(−yj), which also yields suitable non-membership witnesses.

t-DHE Setting. In [CKS09], Camenisch et. al give a t-bounded accumulator
scheme based on the t-DHE assumption. Like the accumulators in the t-SDH
setting, it uses a group G of prime order p generated by g with a bilinear map
e : G×G→ GT . In addition, it requires a signature scheme with a corresponding
key pair (skΣ, pkΣ). Here, we have skΛ = sksig and the public key is pkΛ = (g1,

. . . , gt, gt+2, . . . , g2t, z, pkΣ) = (gγ
1

, . . . , gγ
t

, gγ
t+2

, . . . , gγ
2t

, e(g, g)γ
t+1

, pkΣ) with
γ←R Z∗p. We can accumulate a set X = {x1, . . . , xm} with m ≤ t by com-
puting ΛX ←

∏m
i=1 gt+1−i and signing gi together with xi using skΣ, which

assigns the value of xi to gi. A witness witxj for xj ∈ X is given as witxj ←∏m
i=1,i6=j gt+1−i+j . The membership of xj can be verified by checking whether

e(gj ,ΛX ) = z ·e(g,witxj ) holds and by verifying the signature on gj and xj under
pkΣ.

This scheme enables public updates of the witnesses and the accumulator
upon delete, since this requires only pkΛ. If we, however, want to add a value
xi to the accumulator, then we need the secret signing key skΛ to create a
signature on gi and xi in order to link value xi with parameter gi. Consequently,
public additions to the accumulator require to include a signature for every
potential value to be accumulated into the public parameters. Obviously, with
the exception of very small accumulation domains this seems impractical.

Collision-Resistant Hash Setting. In this setting, accumulators are built
from collision-resistant hash functions and (sorted) Merkle hash-trees. Here,
each leaf node represents an accumulated value and is labeled with the corre-
sponding hash value. Every inner node is labeled with a hash value formed
from its children’s labels (and potentially some additional information). The
accumulator Λ itself is the root node label (root hash) and a membership wit-
ness for an accumulated value xi is its authentication path, i.e., all the labels
of siblings on the path of the leaf to the root node. Verification of witnesses
is done the obvious way, i.e., by recomputing the hash tree and comparing the
root hashes. To prove non-membership, such schemes exploit the order on the
leaf nodes [BLL00, BLL02, CHKO08] (alternatively, an order can also be en-
forced by a suitable encoding on the accumulated values [CHKO08]). Proving
non-membership of a value yj boils down to demonstrating membership wit-
nesses for two values xi, xi+1 corresponding to two consecutive leaves such that
xi < yj < xi+1 holds.
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Accumulators from Vector Commitments. Catalano and Fiore [CF13]
proposed a black-box construction of accumulators from vector commitments.
A vector commitment allows to form a succinct commitment C to a vector
X = (x1, . . . , xn). Here, it should be computationally infeasible to open position
i of C to a value x′i different from xi. The accumulation domain in the black-box
construction in [CF13] is the set D = {1, . . . , t}. The accumulator is modeled
as a commitment to a binary vector of length t, that is, each bit i indicates
the presence or absence of element i ∈ D in the accumulator. Then, the (non-
)membership of a value i can be proven by opening position i of a commitment
to 1 or 0, respectively.

Categorizing Cryptographic Accumulators. Now, we give a comprehen-
sive overview of existing accumulator schemes in Table 3.1. We categorize them
regarding their static or dynamic nature and universal features and provide a
characterization of their public updating capabilities (of witnesses and of ac-
cumulators, respectively). In particular, we tag an accumulator as dynamic, if
witness and accumulator value updates can be performed in constant time, i.e.,
independent of the size of X . If the same is possible without having access to the
accumulator trapdoor, then we tag the accumulator as publicly updatable. Fur-
thermore, the properties indistinguishability and undeniability have not been
considered for most existing accumulator schemes so far. Therefore, we pro-
vide a classification regarding their indistinguishability (when using Transforma-
tion 3.1) and their undeniability, and provide the respective proofs subsequently.
For the sake of completeness, our comparison also includes static accumulator
schemes [BdM93, BP97, Nyb96a, Nyb96b].

In the following, we will analyze the undeniability and (in)distinguishability
of several constructions. We will not reconsider the collision freeness of these
constructions in our model, as it is compatible with previous models.

Undeniability of Universal Accumulators. We will now prove the subsequent
lemma:

Lemma 3.3. The universal accumulators in [DT08, ATSM09] are undeniable.

Proof. We prove the undeniability of [DT08, ATSM09] by showing that an ef-
ficient adversary A against the undeniability can be turned into an efficient
adversary B against t-SDH assumption. Note that B can simulate all oracles,
since, due to the model, the accumulator and the witnesses can be generated
without knowing the trapdoor skΛ. B gets a t-SDH instance (g, gs, . . . , gs

t

) as

input, sets pkΛ = (g, gs, . . . , gs
t

) and starts A with pkΛ .
Eventually, A outputs (wit?xi ,wit?xi , x

?
i ,Λ

?), with wit?xi = (a, d) such that

e(Λ?, g) = e(gx
?
i gs,wit?xi) and e(Λ?, g) = e(gx

?
i gs, a)e(gd, g) holds. Then it holds

that e(gx
?
i gs,wit?xi) = e(gx

?
i gs, a)e(gd, g). With, witxi = gX

′
and a = ga

′
for some

unknown X ′, a′, we know that the relation of the exponents is X ′ = a′+d/(x?i+s).

Thus, B can compute g1/(x?i+s) ← (wit?xi · a
−1)d

−1

and output it as a solution to
the t-SDH problem.
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Indistinguishability of (Dynamic) Accumulators. We investigate the indistin-
guishability of [BdM93, BP97, CL02b, LLX07, ATSM09, Ngu05, DT08, CF13,
BLL00, BLL02, CHKO08]. As we will see, most existing dynamic accumulator
schemes can be turned into cfw-indistinguishable accumulators under Transfor-
mation 3.1, whereas this does not work for existing universal accumulators.

Lemma 3.4. Under Transformation 3.1, the schemes in [BP97], [BdM93] and
[CL02b] are cfw-indistinguishable.

Proof. De Meer et al. [dMLPP12] proved a version of [BP97], where Eval ran-
domly chooses a private starting value g, to be indistinguishable in their model.5

The random choice of g is a way to apply Transformation 3.1. Thus, we can
reuse the proof in [dMLPP12] for cfw-indistinguishability.

The schemes in [BP97] and [BdM93] are identical, with the only difference
that the accumulation domain in [BP97] is restricted to prime numbers. Since
the proof in [dMLPP12] does not require this restriction, indistinguishability
also holds for [BdM93]. The difference from [CL02b] to [BdM93, BP97] is that
[CL02b] supports dynamic updates. We, thus, need to show that access to OA

and OD does not give the adversary any advantage. The proof in [dMLPP12]
shows that the value of the challenge accumulator is random, when x is randomly
sampled from the accumulation domain, i.e., it cannot be distinguished from a
randomly sampled starting value of an empty accumulator. Taking this, together
with the restriction that only elements a /∈ X∪ can be added and only elements
a ∈ X∩ can be deleted, the adversary does not learn more than when dealing
with an empty accumulator. Consequently, it can not win the indistinguisha-
bility game with a probability being non-negligibly greater than 1/2. The same
argumentation also holds for [LLX07] under the assumption that the universal
features, i.e., the non-membership witnesses/proofs, are not being used.

To achieve indistinguishability one could use the random oracle heuristic and
obtain the starting value g ← H(r) for some uniformly random value r. Observe
that this would allow to exclude the case where the adversary chooses the starting
value g as g′v so that it easy to come up with a witness for every prime factor
of v, even though this value is seemingly not included in the accumulator.

Lemma 3.5. Under Transformation 3.1, the scheme in [Ngu05] is cfw-indist-
inguishable.

When applying Transformation 3.1, the accumulator in [Ngu05] is computed as
ΛX ← gu(x+s)

∏n
i=1(xi+s), where X = {x1, . . . , xn}, u is a random value in Z∗p

(chosen during Gen) and x is a random value from the accumulation domain
(freshly chosen upon each call to Eval). As discussed in Section 3.1.3, slight
changes to the accumulator scheme in [Ngu05] make it indistinguishable. In the
following, we show the cfw-indistinguishability under Transformation 3.1.

5 We note that in their security game an additional random value x is inserted into the
accumulator. This value is, however, not required for their indistinguishability proof.
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Proof. It is easy to see that for a given accumulator ΛX to set X = {x1, . . . , xn},
that is, ΛX = gu(x+s)

∏n
i=1(xi+s) (after applying Transformation 3.1), another

value x′ exists such that for an arbitrarily chosen set W = {wi, . . . wm} it holds
that ΛX = gu(x′+s)

∏m
i=1(wi+s). More precisely, this means that the accumulated

set is unconditionally hidden within ΛX . Moreover, since the witnesses have the
same form as the accumulator, they also do not reveal anything beyond the fact
that an element has indeed been accumulated.

Note that it is crucial that the random elements, which are inserted into the
accumulator, are not reused to reach this unconditional indistinguishability. Also
note that the schemes in [LLX07, ATSM09, DT08], which extend [CL02b] and
[Ngu05] by universal features, are cfw-indistinguishable when solely used with
membership witnesses. However, as we will see later, non-membership witnesses
leak information about the accumulated values.

Lemma 3.6. Under Transformation 1, the scheme in [CKS09] is distinguish-
able.

Proof. Here the accumulator Λ is a product of generators contained in pkΛ. Thus
the number of generators is polynomially bounded in the security parameter.
This means that one can choose X0 and X1 so that it is possible to efficiently
brute force the generators contained in ΛXb .

Lemma 3.7. Under Transformation 3.1, the scheme in [BC14] is distinguish-
able.

Here, the accumulator is the root of a perfect Merkle hash-tree, where a sta-
tistically hiding commitment is used as hash function. This implies that the
accumulated values are statistically hidden in the accumulator. A witness for an
accumulated value x is the opening of the corresponding commitment together
with its authentication path (the authentication path only contains commit-
ments).

Proof. Transformation 3.1 inserts a random value x from the accumulation do-
main into the accumulator. To win the game, the adversary chooses two arbi-
trary sets X0,X1 such that 1 ≤ |X0| + 1 ≤ 2t and 2t < |X1| + 1 for arbitrary
integers t > 0. According to the game, the adversary can now obtain a member-
ship witness for an element x′ ∈ X0 ∪X1 and decide which set was accumulated
by using the length l of the authentication path of the witness, i.e., if l > t the
set X1 was accumulated and X0 otherwise.

Since the used commitments are statistically hiding, indistinguishability holds for
sets X0,X1 of size 2t ≤ |X0|, |X1| < 2t+1 with t ∈ N, where the hash-tree is filled
up with dummy elements if the set size is not a power of two. Thus, for sets of size
|X0| = |X1| = 2t we have indistinguishability, whereas cfw-indistinguishability
holds for arbitrary sets meeting the aforementioned constraints.
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Indistinguishability of Universal Dynamic Accumulators. Below, we prove the
following lemmas by providing adversaries that succeed with non-negligible prob-
ability better than 1/2.

Lemma 3.8. Under Transformation 3.1, the universal accumulator from [LLX07]
is distinguishable.

Proof. Here, a non-membership witness for a value yj not contained in ΛX with
X = {x1, . . . , xn} is a tuple (a, d), where a

∏n
i=1 xi + byj = 1 and d ≡ g−b

(mod N). From this, an adversary can compute a−1 mod yj , i.e., a−1 ≡
∏n
i=1 xi

(mod yj). When yj >
∏n
i=1 xi holds, then obviously also a−1 mod yj =

∏n
i=1 xi.

Transformation 3.1 inserts a random value x from the accumulation domain
into the accumulator. Suppose that the adversary chooses two arbitrary sets
X0 = {x1, . . . , xn} and X1 = {w1, . . . , wm} with X0 6= X1 and generates k dis-
tinct non-membership witnesses (yji)

k
i=1 = ((aji , dji))

k
i=1. The adversary can

then compute a−1
ji

mod yji for i = 1, . . . , k such that, depending on whether X0

or X1 was accumulated, either x
∏n
l=1 xl ≡ a−1

ji
(mod yji) or x

∏m
l=1 wl ≡ a−1

ji
(mod yji) holds for i = 1, . . . , k. In the attack, the adversary can compute

a−1
CRT (mod

∏k
i=1 yji) using (a−1

ji
mod yji)

k
i=1 and the Chinese remainder theo-

rem. Now, if
∏k
i=1 yji > x

∏n
i=1 xi and

∏k
i=1 yji > x

∏m
i=1 wi, it either holds that

a−1
CRT = x

∏n
i=1 xi or a−1

CRT = x
∏m
i=1 wi. These conditions can always be ensured,

since the adversary can generate an arbitrary number of non-membership wit-
nesses yji . Next, the adversary can divide a−1

CRT by an element being exclusively
contained in X0. If this division leaves a remainder, X1 was accumulated, and
X0 otherwise. This attack succeeds with overwhelming probability, since only
primes are accumulated and the probability that the randomly chosen x is also
exclusively contained in one of the sets X0 or X1 is negligible.

Lemma 3.9. Under Transformation 3.1, the universal accumulator from [DT08]
is distinguishable.

Proof. Again, we show that the proposed non-membership witnesses leak infor-
mation about the accumulated set. Here, non-membership witnesses are of the
form (a, d) with a = g(h(s)−d)/(yj+s) = g

(
∏n
i=1(xi+s)−d)/(yj+s) and d = h(−yj) =∏n

i=1 (xi − yj).
Transformation 3.1 inserts a random value x from the accumulation do-

main into the accumulator. Suppose w.l.o.g. that the adversary chooses X0 =
{x1, . . . , xn} and X1 = {w1, . . . , wm} for m > n and obtains ΛXb ← gh(s), where
h(s) is either equal to (x + s)

∏n
i=1(xi + s) or equal to (x + s)

∏m
i=1(wi + s).

The adversary is allowed to generate n + 2 distinct non-membership witnesses
((ai, di))

n+2
i=1 corresponding to the non-members (yi)

n+2
i=1 . Now, since di = h(−yi),

one can simply recover a suspected polynomial of degree n+1 by its evaluations
(di)

n+2
i=1 at (−yi)n+2

i=1 using polynomial interpolation. This interpolation yields
the polynomial corresponding to the accumulated set in case X0 was accumu-
lated, and some arbitrary polynomial with the evaluations (di)

n+2
i=1 at (−yi)n+2

i=1
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in case X1 was accumulated. Given this polynomial and (g, gs, . . . , gs
t

), one

can reevaluate the accumulator, i.e.,
∏n+1
i=0 (gs

i

)ai , where ai is the i-th coeffi-

cient of the expanded polynomial. If ΛXb =
∏n+1
i=0 (gs

i

)ai holds, then we know
with overwhelming probability that ΛXb accumulates X0 and X1 otherwise. Note
that this attack succeeds with overwhelming probability, since the probability
that the wrong polynomial has the same evaluation at a random, unknown s is
negligible.

We further note that, due to the structure of the values d in the non-membership
witnesses, also other attacks could apply.

Lemma 3.10. Under Transformation 3.1, the universal accumulator presented
in [ATSM09] is distinguishable.

Proof. We show that the proposed non-membership witnesses leak information
about the accumulated set. Here, non-membership witnesses are of the form
(a, d) such that a = g

(
∏n
i=1(xi+s)−d)/(yj+s) and d is the remainder of the polynomial

division (
∏n
i=1(xi+s))/(yj+s).

Transformation 3.1 inserts a random value x from the accumulation domain
into the accumulator. Similar to the attack against [LLX07], we can w.l.o.g.
assume that the adversary chooses an arbitrary set X and two arbitrary distinct
elements x1, x2 ∈ Zp such that x1, x2 /∈ X . Then, we have X0 = X ∪ {x1}
and X1 = X ∪ {x2}, respectively. According to the game, all values of X can
be deleted. Then, the value of the challenge accumulator is g(x+s)(xi+s) for an
i ∈ {1, 2}. Furthermore, the polynomial division ((x+s)(xi+s))/(yj+s) yields a re-
mainder of the form xxi−(x+xi−yj)yj = d mod p. Now, the adversary obtains
a non-membership witness for some value yj , yielding the remainder dj . Given
that, the adversary can compute two candidate values x′, x′′ for x from the equa-
tion above – simply by trying both x1 and x2. Thus, the adversary knows two
potentially accumulated polynomials (x′+s)(x1 +s) and (x′′+s)(x2 +s), which
can be used to reevaluate the accumulator with respect to these two polynomials
in the same way as in the proof for Lemma 3.9. Thus, the adversary can decide
which set has been accumulated by comparing the resulting accumulators to
the challenge accumulator. This attack succeeds with overwhelming probability,
since the probability that the wrong polynomial has the same evaluation at s is
negligible for a random, unknown s.

We note that in [ATSM09] a second method for generating non-membership
witnesses (where the knowledge of s is required) is proposed. Here, d is reduced
modulo yj + s, which, in turn, means that the attack above only succeeds when
d mod p = d mod yj + s. However, since d leaks information about the set, also
other, more efficient attacks might be possible.

Lemma 3.11. Under Transformation 3.1, the universal accumulators from vec-
tor commitments [CF13] are distinguishable.
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Proof. We show that the proposed accumulator schemes from vector commit-
ments in the RSA and CDH setting are distinguishable by presenting an adver-
sary that wins the indistinguishability game with a probability of 1.

In accumulators from vector commitments, the accumulation domain is the
set D = {1, . . . , t}. In both, the RSA and the CDH instantiation, the accumu-

lator (vector commitment) for a set X ⊆ D is computed as ΛX ←
∏t
i=1 g

χX (i)
i ,

where χX (·) is the characteristic function. The values gi are contained in the
public parameters.

The adversary can choose two arbitrary sets X0,X1, such that |X0 ∩ X1| ≤
|X0| − 2 and |X0 ∩ X1| ≤ |X1| − 2, i.e., X0 and X1 are different in at least
two elements. Transformation 3.1 inserts an additional random value from the
accumulation domain into the accumulator. Then, the value of ΛXb is either
equal to gr

∏
i∈X0

gi with r /∈ X0, or equal to gr′
∏
i∈X1

gi with r′ /∈ X1. Note
that due to the choice of the sets X0 and X1 we can guarantee that adding a single
element cannot make the sets collide. Consequently, the adversary can w.l.o.g.
try if an element from the set D \ X0 was used as randomizer for evaluating
ΛXb with respect to X0. If such an element is found, X0 was accumulated and
X1 otherwise. Note that the size of the public parameters (and thus the size
of D) is polynomially bounded. Thus, this brute-force strategy can be realized
efficiently.

We note that the same argumentation can be applied if the accumulation domain
is an arbitrary set of size n (as proposed in Remark 16 in [CF13]).

Lemma 3.12. Under Transformation 3.1, the universal accumulators presented
in [BLL00], [BLL02] and [CHKO08] are distinguishable.

Proof. We show that the accumulators from collision-resistant hashing are dis-
tinguishable by presenting an adversary that wins the indistinguishability game
with probability 1. Here, one can use the fact that the sets are sorted and that
non-membership witnesses contain two elements of the respective sets. Again,
Transformation 3.1 inserts an additional random element into the set upon Eval.

To break indistinguishability, the adversary chooses two disjoint sets X0,X1.
It is allowed to obtain a non-membership witness for a value yi /∈ X0 ∪ X1,
which contains two consecutive values x1, x2 out of the accumulated set such
that x1 < yi < x2 holds.

Then we distinguish three cases. In the first case x1 and x2 are contained
in Xi for an i ∈ {0, 1}, meaning that the adversary knows that Xi has been
accumulated (neither x1 nor x2 is the random element). In the second case, we
can w.l.o.g. assume that x2 /∈ X0∪X1 (is the random element which is contained
in none of the initially chosen sets). This means that x1 ∈ Xi for an i ∈ {0, 1}
and the adversary knows that Xi was accumulated. In the remaining case, we
can w.l.o.g. assume that x1 ∈ X0 and x2 ∈ X1, and, thus, either x1 is the random
element added to X1 upon Eval or vice versa. Then, the adversary can request
another non-membership witness for y′i < x1 and y′i /∈ X0 ∪ X1 and obtains x3

and x4 such that x3 < y′i < x4. It could be the case that x1 = x4, but still x3
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is either an element of X0 or X1 and, thus, the adversary can decide which set
was accumulated.

Finally, we note that the adversary can always choose yi and y′i such that
obtaining witnesses fulfilling the requirements above is possible, since X0 and X1

are also chosen by the adversary.

3.1.3 Commitments from Indistinguishable Accumulators

In [CF13], it has been shown that universal dynamic accumulators can be black-
box constructed from vector commitments. The question arises whether it is
also possible to provide black-box constructions for certain types of commit-
ments from indistinguishable accumulators. It is apparent that it is not possible
to build vector commitments solely from accumulators in a black-box fashion,
since their position binding would at least require some additional encoding.
Nevertheless, we will show how to construct non-interactive commitments from
indistinguishable 1-bounded accumulators. We start by proposing the first in-
distinguishable t-bounded accumulator construction (for arbitrary t) and, then,
provide the black-box construction based on any such scheme.

An Indistinguishable t-Bounded Dynamic Accumulator. Here, we will
build an indistinguishable t-bounded accumulator from the t-SDH based dy-
namic accumulator in [Ngu05]. This construction already uses a randomizer
(denoted as u) that is chosen by Gen and added to pkΛ. As a consequence,
the Eval algorithm is still deterministic. In order to obtain indistinguishability,
we modify the way u is used and observe that randomly choosing it on each
call to Eval yields an indistinguishable accumulator. Scheme 3.1 states our con-
struction. Subsequently, we prove it to be a secure indistinguishable t-bounded
dynamic accumulator. For sake of consistency, the value u used in [Ngu05] will
be denoted by r.

Theorem 3.1. Under the t-SDH assumption, Scheme 3.1 is an indistinguishable
t-bounded dynamic accumulator.

Lemma 3.13. Scheme 3.1 is correct.

Correctness is easy to verify by inspection; the proof is omitted.

Lemma 3.14. If the t-SDH assumption holds, then Scheme 3.1 is collision free.

Proof. Similar to [ATSM09], we prove the collision freeness for membership wit-
nesses by showing that an efficient adversary A against the collision freeness
can be turned into an efficient adversary B against the t-SDH assumption. B
gets a t-SDH instance (g, gs, . . . , gs

t

) as input and starts the game by setting

pkΛ = (g, gs, . . . , gs
t

) and handing pkΛ over to A. Moreover, note that B can
simulate all oracles by simply running the respective algorithms without skΛ.
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Gen(1κ, t) : Run BG ← BGGen(1κ, 1) and s←R Z∗p, and return (skΛ, pkΛ) ← (s, (BG,

(gs
i

)ti=0)).

Evalr((sk∼Λ , pkΛ),X ) : Parse X as {x1, . . . , xn} and choose r←R Z∗p. Return ΛX and

aux← (r,X ), where

ΛX ←

{
gr

∏n
i=1(xi+s) if skΛ 6= ∅, and

(
∏n
i=0(gs

i

)ai)r otherwise, where (ai)0≤i≤n ← Exp(X ).

WitCreate((sk∼Λ , pkΛ),ΛX , aux, xi) : Parse aux as (r,X ). Return ⊥ if xi /∈ X . Otherwise

return witxi , where

witxi ←

{
Λ

(xi+s)
−1

X if skΛ 6= ∅, and(∏n−1
i=0 (gs

i

)ai
)r

otherwise, where (ai)0≤i≤n−1 ← Exp(X \ {xi}).

Verify(pkΛ,ΛX ,witxi , xi) : Return 1 if the following holds, and 0 otherwise:

e(ΛX , g) = e(witxi , g
xigs).

Add((sk∼Λ , pkΛ),ΛX , aux, xi) : Parse aux as (r,X ) and return ⊥ if xi ∈ X . Otherwise,

return Λ′ and aux′ ← (r,X ∪ {xi}), and auxu ← (Λ′,ΛX , xi, add), where

Λ′ ←

{
Λ

(xi+s)
X if skΛ 6= ∅, and

(
∏n+1
i=0 (gs

i

)ai)r otherwise, where (ai)0≤i≤n+1 ← Exp(X ∪ {xi}).

Delete((sk∼Λ , pkΛ),ΛX , aux, xi) : Parse aux as (r,X ) and return ⊥ if xi /∈ X . Otherwise,

return Λ′, aux′ ← (r,X \ {xi}), and auxu ← (Λ′,ΛX , xi, delete), where

Λ′ ←

{
Λ

(xi+s)
−1

X if skΛ 6= ∅, and

(
∏n−1
i=0 (gs

i

)ai)r otherwise, where (ai)0≤i≤n−1 ← Exp(X \ {xi}).

WitUpdate(pkΛ,witxi , auxu, xj) : Parse auxu as (Λ′,Λ, xi, op), where Λ′ represents the

already updated accumulator, Λ the accumulator before the update. Information op

determines whether xj was added or deleted to/from the accumulator Λ′. It returns

the updated witness wit′xi , where

wit′xi ←

{
Λ · wit

xj−xi
xi if op = add, and

(Λ′−1 · witxi)
1/(xj−xi) if op = delete.

Exp(X ) : This helper function expands the polynomial
∏
x∈X (x+X) to

∑|X|
i=0 ai ·X

i

and returns (ai)0≤i≤|X|.

Scheme 3.1: Indistinguishable t-bounded dynamic accumulator scheme.

Eventually, A outputs a membership witness wit?xj for some value x?j /∈ X?,
a set X? and a randomizer r? such that the verification relation e(wit?xj , g

x?j

gs) = e(ΛX? , g) holds, where (ΛX? , aux) ← Evalr((∅, pkΛ),X?). Then, B knows
the polynomial h(X) =

∏
x∈X?(x + X) , the polynomial φ(X) and d such that

h(X) = φ(X)(xj + X) + d holds (because x?j /∈ X?). Then, B can compute
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gr
?·φ(s) by expanding the polynomial φ(X) to

∑|X?|−1
i=0 ai · Xi and computing

gr
?·φ(s) ← (

∏|X?|−1
i=0 (gs

i

)ai)r
?

. Thus, B can output

(
wit?xj ·

(
gr
?·φ(s)

)−1) 1
r?·d ←

(
g
r?·h(s)
x?
j
+s g

− r
?·(h(s)−d)
x?
j
+s

) 1
r?·d =

(
g
r?·d
x?
j
+s
) 1
r?·d = g

1
x?
j
+s

together with x?j as solution to the t-SDH problem.

Lemma 3.15. Scheme 3.1 is indistinguishable.

Proof. Recall that we have X0 6= X1 and only values from X0∩X1 can be deleted

via OD. The adversary sees ΛXb = g
r
∏
x∈Xb

(x+s)
, and for values xj ∈ X0 ∩ X1

it is possible to obtain witnesses witxj = g
r
∏
x∈Xb\{xj}

(x+s)
. Furthermore, it is

possible to add values x /∈ X0 ∪ X1.
Now, we observe that there exist randomizers r0 and r1 for both candidate

sets X0 and X1, respectively, such that ΛXb = gr0
∏
x∈X0

(x+s) = gr1
∏
x∈X1

(x+s)

(even if one of the sets is empty). Note that this even holds in presence of the
deletion oracle as it can only be called for values in X0 ∩ X1. Likewise, for all
witnesses witxj , where xj ∈ X0 ∩ X1, there are representations consistent with

the values r0 and r1 such that witxj = g
r0

∏
x∈X0\{xj}

(x+s)
= g

r1
∏
x∈X1\{xj}

(x+s)
,

which means that witnesses do not give an additional advantage.
Summing up, even an unbounded adversary can not decide whether r = r0

or r = r1, meaning that it is not possible to distinguish whether X0 or X1 was
accumulated.

Black-Box Construction of Non-Interactive Commitments. We present
a black-box construction of commitments from indistinguishable accumulators
Scheme 3.2 and prove the so obtained construction secure (Theorem 3.2). Before
we continue, we want to recall that in the trusted setup model all algorithms
can be correctly executed without skΛ.

PGen(1κ) : Run (sk∼Λ , pkΛ)← Acc.Gen(1κ, 1), discard skΛ and return PP← pkΛ.

Commit(PP,m) : Choose randomness r, run (C, aux) ← Evalr((∅, pkΛ), m), set O ←
(r,m, aux) and return (C,O).

Open(PP, C,O) : Compute witm ← WitCreate((∅, pkΛ), C, aux,m) and check whether

Evalr((∅, pkΛ),m) = (C, aux) ∧ Verify(pkΛ, C,witm,m) = 1 and return m on success

and ⊥ otherwise.

Scheme 3.2: Commitment scheme from indistinguishable accumulators.

Theorem 3.2. If indistinguishable 1-bounded accumulators exist, then non-inter-
active commitments exist as well.
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Proof. We show that an efficient adversary A against the binding (hiding) prop-
erty of Scheme 3.2 can be turned into an adversary B against the collision free-
ness (indistinguishability) of the indistinguishable 1-bounded accumulator. To
do so, we construct a reduction B, which interacts with a challenger C from the
respective accumulator game (and internally simulates the challenger C′ of the
respective commitment game for adversary A).

Binding: Let us assume that there exists an efficient adversary A against the
binding property of Scheme 3.2. C runs pkΛ ← Acc.Gen(1κ, 1) and starts
B on pkΛ. That is, C′ sets PP ← pkΛ and starts A on input PP. Even-
tually, A outputs C?, O? = (r,m, aux), O′? = (r′,m′, aux′) such that m ←
Open(PP, C?, O?) and m′ ← Open(PP, C?, O′?) and m 6= m′ ∧ m 6= ⊥ ∧ m′ 6=
⊥. Note that this means that Evalr((∅, pkΛ), {m}) = (C?, aux), Evalr′((∅, pkΛ),
{m′}) = (C?, aux′), Verify(pkΛ, C

?,WitCreate((∅, pkΛ), C?, aux,m),m) = 1 and
Verify(pkΛ, C

?,WitCreate((∅, pkΛ), C?, aux′,m′), m′) = 1. Thus, B returns
(WitCreate((∅, pkΛ), C?, aux,m),m, {m′}, r′) as a collision for the accumula-
tor.

Hiding: Let us assume that there exists an efficient adversary A against the
hiding property of Scheme 3.2. C runs pkΛ ← Acc.Gen(1κ, 1) and starts B on
pkΛ, meaning that C′ sets PP ← pkΛ, runs (m0,m1, ST) ← A(PP) and returns
(X0,X1, ST)← ({m0}, {m1}, ST). C then computes the challenge accumulator
ΛXb and hands it to B. Given that, C′ starts A(PP,ΛXb , ST) and obtains and
outputs b?. Thus, B breaks the indistinguishability of the accumulator.

The black-box construction from Scheme 3.2 can easily be extended to support
commitments to sets (where the opening is always with respect to the entire set)
by setting the bound t of the bounded accumulator to the desired set size. Fur-
thermore, using skΛ as trapdoor, one can also construct trapdoor commitments.

We finally note that cfw-indistinguishable accumulators (and hence also Tra-
nsformation 3.1) are not useful for constructing commitments. The reason for
this is that the accumulation of the additional random value immediately breaks
the binding property.

3.1.4 ZK-Sets Imply Indistinguishable Undeniable Accu-
mulators

Zero-knowledge sets (ZK-sets) [MRK03] allow to commit to a set X and then
prove predicates of the form xi ∈ X or xi /∈ X without revealing anything else
about the set. We observe that ZK-sets can be used to model indistinguishable,
unbounded, undeniable accumulators. Unfortunately, there is no formal security
definition for zero-knowledge sets (in [KZG10] only the algorithms are formal-
ized, while security is stated informally). However, zero-knowledge sets are a
special instance of zero-knowledge elementary databases (ZK-EDB) [MRK03].
ZK-EDBs store key-value pairs and when querying the database with a key, the
respective value is returned (or ⊥ if the given key is not contained in the EDB).
Thereby, no further information about the remaining EDB leaks. Therefore,
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ZK-sets are ZK-EDBs where the values for all contained keys are set to 1 (or
the values are omitted at all). We can, thus, define the security on the basis of
the models in [MRK03, CHL+13] as follows.

Definition 3.10. A ZK-set is a tuple of efficient algorithms (Gen,Commit,Qu-
ery,Verify), which are defined as follows:

Gen(1κ) : This (probabilistic) algorithm takes input a security parameter κ and
outputs a public key pk.

Commit(pk,X ): This algorithm takes input the public key pk and a set X and
outputs a commitment C to X .

Query(pk,X , C, x) : This algorithm takes input the public key pk, a set X , a
corresponding commitment C and value x. It outputs a proof πx if x ∈ X and
a proof πx if x /∈ X .

Verify(pk, C, x, πx/πx) : This algorithm takes input the public key pk, a commit-
ment C and a value x. Furthermore, it either takes a membership proof πx
or a non-membership proof πx (denoted by πx/πx). It outputs 1 if the proof
can be correctly verified and 0 otherwise.

For security, ZK-sets require perfect completeness, soundness and zero-know-
ledge. Perfect completeness requires that for every honestly generated key, every
honestly computed commitment C, value x and corresponding proof πx/πx, the
Verify algorithm always returns 1. Since this property is straightforward, we do
not formally state it here. We formally define the remaining properties:

Definition 3.11 (Soundness). A ZK-set is sound, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr

[
pk← Gen(1κ),
(C?, x?, π?x, π

?
x)← A(pk)

:
Verify(pk, C?, π?x, x

?) = 1 ∧
Verify(pk, C?, π?x, x

?) = 1

]
≤ ε(κ).

Definition 3.12 (Zero Knowledge). A ZK-set is zero-knowledge, if for all PPT
adversaries A there is a negligible function ε(·) such that∣∣∣∣∣∣∣∣Pr


pk← Gen(1κ),
(X , ST)← A(pk),
C ← Commit(pk,X ) :

AOQ(·)(ST, pk, C) = 1

− Pr


(pk, τ)← SG(1κ),
(X , ST)← A(pk),
(C, τ ′)← SE(pk, τ) :

ASQ(τ ′,·)(ST, pk, C) = 1


∣∣∣∣∣∣∣∣ ≤ ε(κ).

Here, OQ(x) := Query(pk,X , C, x), whereas S = (SG,SE,SQ) denotes a PPT
simulator, which allows to execute the simulated Gen, Eval and Query algorithms,
respectively. We note that the definition above is tailored to cover computational
zero-knowledge. It could, however, easily be modified to also cover statistical or
perfect zero knowledge.

In Scheme 3.3 we present a black-box construction of indistinguishable un-
bounded undeniable accumulators from ZK-sets.
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Gen(1κ) : Run pk← ZKS.Gen(1κ) and return (skΛ, pkΛ)← (∅, pk).

Eval((∅, pkΛ),X ) : Run ΛX ← ZKS.Commit(pkΛ,X ) and return ΛX and aux← X .

WitCreate((∅, pkΛ),ΛX , aux, xi, type) : Parse aux as X and run πxi/πxi ← ZKS.Query(

pk,X ,ΛX , xi). If πxi/πxi conflicts with the requested witness type, return ⊥. Oth-

erwise, return witxi ← πxi or witxi ← πxi , respectively.

Verify(pkΛ,Λ,witxi , xi, type) : Check whether type conflicts with the type of the sup-

plied witness and return ⊥ if so. Otherwise, return the result of ZKS.Verify(pk,Λ,

xi,witxi).

Scheme 3.3: Indistinguishable unbounded undeniable accumulator from ZK-sets.

Theorem 3.3. If ZK-sets exist, then indistinguishable, unbounded, undeniable
accumulators exist as well.

Proof. It is easy to see that the notions perfect completeness and soundness are
equivalent to the correctness and undeniability notions of accumulators. How-
ever, the zero-knowledge property of ZK-sets is defined in a simulation-based
way, whereas the indistinguishability is defined in a game-based way. To show
that the zero-knowledge property of ZK-sets implies indistinguishability, we use
the following sequence of games where we denote the winning condition of Game
i by Si.

As a ZK-set is zero-knowledge, there is a simulator S whose output cannot
be distinguished from an honest output with non-negligible probability ε(κ). We
will now use S to replace the oracle answers in the indistinguishability game.

Game 0: The original accumulator indistinguishability game.

Game 1: We change the game such that all relevant steps are executed by the
simulator. That is, the setup (Gen) is performed using SG and the computa-
tion of ΛXb is performed by the simulator using SE. Furthermore, the outputs
of the oracles OW and OW are replaced by the output of SQ. More precisely,
if OW has been called and SQ returns a membership proof then OW returns
π and ⊥ otherwise. The oracle OW works in the same way.

Transition - Game 0 → Game 1: A distinguisher between Game 0 to Game 1
is a zero-knowledge distinguisher, i.e., |Pr[S0]− Pr[S1]| ≤ ε(κ).

In Game 1, the adversary only gets to see simulated values, which contain no
information about the respective set. Therefore, the advantage for the adversary
to win this game is equal to 0, i.e., Pr[S1] = 1/2. Taking everything together,
we derive that |Pr[S0]− 1/2| ≤ ε(κ) which shows that every ZK-set fulfilling the
zero knowledge property is also an indistinguishable accumulator.

The above black-box construction yields the first construction of indistinguish-
able undeniable accumulators. We note that it is, however, questionable whether
the two notions of ZK-sets and indistinguishable undeniable accumulators are
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equivalent (as the simulation based model of zero-knowledge appears to be
stronger than the game based indistinguishability model).6

In [KZG10], Kate et al. introduced nearly ZK-sets. The difference to ordinary
ZK-sets is that nearly ZK-sets have a public upper bound on the cardinality of
set X . It is apparent that these constructions imply indistinguishable t-bounded
undeniable accumulators. In further consequence, this means that nearly ZK-
sets can also be used to construct commitments (cf. Section 3.1.3).

3.2 Key-Homomorphic Signatures

The design of cryptographic schemes that possess certain homomorphic prop-
erties on their message space has witnessed significant research within the last
years. In the domain of encryption, the first candidate construction of fully
homomorphic encryption (FHE) due to Gentry [Gen09] has initiated a fruitful
area of research with important applications to computations on (outsourced)
encrypted data. In the domain of signatures, the line of work on homomorphic
signatures [JMSW02], i.e., signatures that are homomorphic with respect to the
message space, has only quite recently attracted attention. Firstly, due to the in-
troduction of computing on authenticated data [ABC+12]. Secondly, due to the
growing interest in the application to verifiable delegation of computations (cf.
[Cat14] for a quite recent overview), and, finally, due to the recent construction
of fully homomorphic signatures [GVW15, BFS14].

In this section we are interested in another type of homomorphic schemes, so
called key-homomorphic schemes. Specifically, we study key-homomorphic sig-
nature schemes, that is, signature schemes which are homomorphic with respect
to the key space. As we will show, this concept turns out to be a very interesting
and versatile tool.

While we are the first to explicitly study key-homomorphic properties of
signatures, some other primitives have already been studied with respect to
key-homomorphic properties previously. Applebaum et al. in [AHI11] stud-
ied key-homomorphic symmetric encryption schemes in context of related key
attacks (RKAs). Recently, Dodis et al. [DMS16] have shown that any such
key-homomorphic symmetric encryption scheme implies public key encryption.
Rothblum [Rot11] implicitly uses key malleability to construct (weakly) homo-
morphic public key bit-encryption schemes from private key ones. Goldwasser
et al. in [GLW12], and subsequently Tessaro and Wilson in [TW14], use pub-
lic key encryption schemes with linear homomorphisms over their keys (and
some related properties) to construct bounded-collusion identity-based encryp-
tion (IBE). Recently, Boneh et al. introduced the most general notion of fully
key-homomorphic encryption [BGG+14]. In such a scheme, when given a cipher-
text under a public key pk, anyone can translate it into a ciphertext to the same
plaintext under public key (f(pk), f) for any efficiently computable function f .

6 Meanwhile this question has been answered: it was shown that ZK-sets are actually stronger
than indistinguishable undeniable accumulators [GOP+16].
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Another line of work recently initiated by Boneh et al. [BLMR13] is con-
cerned with key-homomorphic pseudorandom functions (PRFs) and pseudo ran-
dom generators (PRGs). Loosely speaking, a secure PRF family F : K×X → Y,
is key-homomorphic if the keys live in a group (K,+), and, given two evaluations
F (k1, x) and F (k2, x) for the same value under two keys, one can efficiently com-
pute F (k1 + k2, x). Such PRFs turn out to yield interesting applications such
as distributed PRFs, symmetric key proxy re-encryption or updatable encryp-
tion. Continuing the work in this direction, alternative constructions [BP14]
and extended functionality in the form of constrained key-homomorphic PRFs
have been proposed [BFP+15]. We note that the result from Dodis et al.
[DMS16], although not mentioned, answers the open question posed by Boneh
et al.[BLMR13] “whether key-homomorphic PRFs whose performance is compa-
rable to real-world block ciphers such as AES exist” in a negative way. Finally,
Benhamouda et al. use key-homomorphic projective hash functions to construct
aggregator oblivious encryption schemes [BJL16] and inner-product functional
encryption schemes [BBL17].

When switching to the field of signatures, we can define key-homomorphisms
in various different ways, of which we subsequently sketch two to provide a
first intuition. One notion is to require that given two signatures for the same
message m valid under some pk1 and pk2 respectively, one can publicly compute
a signature to message m that is valid for a public key pk′ that is obtained via
some operation on pk1 and pk2. Another variant for instance is to require that,
given a signature σ to a message m that verifies under pk, σ can be adapted to
a signature to m under pk′. Thereby, pk and pk′ have a well defined relationship
(cf. Section 3.2 for the details).

Although key-homomorphic signatures have never been discussed or stud-
ied explicitly, some implicit use of key-homomorphisms can be found. A recent
work by Kiltz et al. [KMP16] introduces a property for canonical identifica-
tion schemes denoted as random self-reducibility. This basically formalizes the
re-randomization of key-pairs as well as adapting parts of transcripts of iden-
tification protocols consistently. Earlier, Fischlin and Fleischhacker in [FF13]
used re-randomization of key-pairs implicitly in their meta reduction technique
against Schnorr signatures. This concept has recently been formalized, yield-
ing the notion of signatures with re-randomizable keys [FKM+16]. In such
schemes the EUF-CMA security notion is slightly tweaked, by additionally allow-
ing the adversary to see signatures under re-randomized keys. These signatures
with re-randomizable keys are then used as basis of an elegant construction
of unlinkable sanitizable signatures (cf. [FKM+16]). Allowing the adversary
to also access signatures under re-randomized (related) keys, has earlier been
studied in context of security of signature schemes against related-key attacks
(RKAs) [BCM11, BPT12]. In this context, the goal is to prevent that signature
schemes have key-homomorphic properties that allow to adapt signatures under
related keys to signatures under the original key (cf. e.g., [MSM+15]).

Concurrent Work. In concurrent and independent work Lai et al. [LTWC16]
study different flavours of multi-key homomorphic signatures. They consider
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homomorphisms on the message and/or key space and show equivalences of dif-
ferent types of such multi-key homomorphic signatures (which are all implied by
zk-SNARKS). What they call multi-key key-message-homomorphic signatures
can be seen as related to our notion of key-homomorphisms. Yet, our works tar-
get totally different directions. Their approach is top-down, i.e., the focus is on
introducing new primitives and showing implications between them. In contrast,
our approach is bottom-up, i.e., our focus lies on distilling additional properties
of larger classes of existing schemes, to (1) obtain new insights regarding generic
construction paradigms involving schemes from those classes, and (2) to obtain
new instantiations by solely analyzing schemes with respect to their proper-
ties. We also note that another concurrent and independent work [FMNP16]
introduces the notion of multi-key homomorphic authenticators. However, their
work is only related to the parts of [i5] which are not included in this thesis,
and, therefore, we refer the reader to [i5] for a discussion.

Contribution. We initiate the study of key-homomorphic signature schemes.
In doing so, we propose various natural definitions of key-homomorphic signa-
tures, generalizing larger classes of existing signature schemes. This general-
ization makes it possible to infer general statements about signature schemes
from those classes by simply making black-box use of the respective properties.
Thereby, we rule out certain combinations of key-homomorphism and existing
unforgeability notions of signatures. We then employ the formalisms provided
by our definitional framework to show various interesting relations and implica-
tions. From a theoretical viewpoint our results contribute towards establishing
a better understanding of the paradigms which are necessary to construct cer-
tain schemes and/or to achieve certain security notions. In particular, we start
from very mild security requirements and show how to employ our framework
to amplify those to yield relatively strong security guarantees. From a practical
viewpoint, our so obtained constructions compare favorably to existing work:
they are conceptually extremely easy to understand and therefore less prone to
wrong usage. At the same time, our results yield instantiations with no or even
reduced overhead when compared to existing work.

More specifically, besides our framework which we see as a contribution on
its own, our contributions are as follows.

Generic Compilers. We show that our framework enables various compilers from
classes of schemes providing different types of key-homomorphisms to other in-
teresting variants of signature schemes. As a first example, we show that mul-
tisignatures are directly implied by signatures with certain key-homomorphic
properties in this section. We, however, stress that our framework yields various
other (potentially more interesting) compilers which we will present in separate
sections. In particular, we present compilers to (universal) designated verifier
signatures (Section 3.3), simulation sound extractable arguments of knowledge
(Section 3.4), as well as ring signatures (Section 4.1). The so obtained construc-
tions, besides being very efficient, are simple and elegant from a construction and
security analysis point of view. Basically, for ring signatures, (universal) des-
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ignated verifier signatures and weakly simulation sound extractable argument
systems, one computes a signature using any suitable key-homomorphic scheme
under a freshly sampled key and then proves a simple relation over public keys
only. For simulation sound extractable argument systems we additionally require
a strong one-time signature scheme (which, however, also exists under standard
assumptions [Gro06]).

Tight Key-Prefixed Multi-User Security. We prove a theorem which tightly
relates the single-user existential unforgeability under chosen message attacks
(EUF-CMA) of a class of schemes admitting a particular key-homomorphism to
its key-prefixed multi-user EUF-CMA security. This theorem addresses a fre-
quently occurring question in the context of standardization and generalizes
existing theorems [Ber15, Lac16] (where such implications are proven for con-
crete signature schemes) so that it is applicable to a larger class of signature
schemes.

(Standard Model & Standard Assumption) Instantiations. We give examples of
existing signature schemes admitting types of key-homomorphisms we define.
Using our compilers, this directly yields previously unknown instantiations of all
variants of signature schemes mentioned above. Most interestingly, we can show
that a variant of Waters’ signatures in the SXDH setting is perfectly adaptable.
As we will see, this gives us novel and simple constructions of various types
of signature schemes without random oracles from standard assumptions (if re-
quired, we can use witness-indistinguishable Groth-Sahai [GS08] proofs as argu-
ment system). All our instantiations compare favorably to existing constructions
regarding conceptual simplicity and come at no or even reduced computational
overhead. Likewise, our general theorem for multi-user security attests the multi-
user security for schemes whose multi-user security was previously unknown.

A Note on the Security of Multiparty Signatures. In multiparty signa-
ture schemes one often relies on the so called knowledge of secret key (KOSK)
assumption within security proofs, where the adversary is required to reveal the
secret keys it utilizes to the environment. This is important to prevent rogue-
key attacks, i.e., attacks where the adversary constructs public keys based on
existing public keys in the system so that it is not required to know the secret
key corresponding to the resulting public keys.

To prevent such rogue-key attacks, Ristenpart and Yilek [RY07] introduced
and formalized an abstract key-registration concept for multiparty signatures.
Any such key-registration protocol is represented as a pair of interactive algo-
rithms (RegP,RegV). A party registering a key runs RegP with inputs public
key pk and private key sk. A certifying authority (CA) runs RegV, where the
last message is from RegV to RegP and contains either a pk or ⊥. For instance,
in the plain model RegP(pk, sk) simply sends pk to the CA and RegV on receiv-
ing pk simply returns pk. For the KOSK assumption, RegP(pk, sk) simply sends
(pk, sk) to the CA, which checks if (sk, pk) ∈ KeyGen(PP) and if so replies with
pk and ⊥ otherwise.
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To get rid of the KOSK assumption in real protocols without revealing the
secret key, one can require the adversary to prove knowledge of its secret key in a
way that it can be straight-line extracted by the environment. We assume this to
happen for all our mulitparty signature schemes. Yet, we do not make it explicit
to avoid complicated models and we simply introduce an RKey oracle that allows
the adversary to register key pairs. We stress that our goal is not to study
multiparty signatures with respect to real-world key-registration procedures, as
done in [RY07].

3.2.1 Formal Definition of the Framework

In this section, we introduce a definitional framework for key-homomorphic sig-
nature schemes. In doing so, we propose different natural notions and relate
the definitions to previous work that already implicitly used functionality that
is related or covered by our definitions.

We focus on signature schemes Σ = (KeyGen,Sign,Verify), where the secret
and public key elements live in groups (H,+) and (G, ·), respectively. We start
with the notion of an efficiently computable homomorphism between secret keys
and public keys in analogy to the use within IBE in [TW14]. Such a functionality
has been implicitly used recently in [FKM+16] to define the notion of signatures
with re-randomizable keys.

Definition 3.13 (Secret Key to Public Key Homomorphism). A signature sch-
eme Σ provides a secret key to public key homomorphism, if there exists an
efficiently computable map µ : H → G such that for all sk, sk′ ∈ H it holds
that µ(sk + sk′) = µ(sk) · µ(sk′), and for all (sk, pk) ← KeyGen, it holds that
pk = µ(sk).

We stress that secret keys and public keys may be vectors containing elements
of H and G respectively. Then, the operations +, · and the map µ are applied
componentwise. To keep the definitions compact, we however do not make this
explicit. Also, some schemes require to include a copy of the public key in the
secret key. In our definitions those parts are implicitly covered via the constraints
on the public keys, and we may therefore simply ignore them in the secret keys.

In the discrete logarithm setting, where we often have sk←R Zp and pk = gsk

with g being the generator of some prime order p group G, it is obvious that
there exists µ : sk 7→ gsk that is efficiently computable.

Now, we can introduce the first flavour of key-homomorphic signatures, where
we focus on the class of functions Φ+ representing linear shifts and note that
one could easily adapt our definition to other suitable classes Φ of functions
instead of linear shifts. We stress that we consider Φ as a finite set of functions,
all with the same domain and range, and they usually depend on the public
key of the signature scheme (which we will not make explicit). Moreover, Φ
admits an efficient membership test, is efficiently samplable, and, its functions
are efficiently computable. Definition 3.14 together with the adaptability of
signatures (Definition 3.15) or perfect adaption (Definition 3.16) are inspired by
key-homomorphic encryption schemes [AHI11].
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Definition 3.14 (Φ+-Key-Homomorphic Signatures). A signature scheme is
called Φ+-key-homomorphic, if it provides a secret key to public key homomor-
phism and an additional PPT algorithm Adapt, defined as:

Adapt(pk,m, σ,∆) : Takes a public key pk, a message m, a signature σ, and a
function ∆ ∈ Φ+ as input, and outputs a public key pk′ and a signature σ′.

Additionally, we require that for all ∆ ∈ Φ+ and all (pk, sk) ← KeyGen(1κ), all
messages m and all σ ← Sign(sk,m) and (pk′, σ′)← Adapt(pk,m, σ,∆) it holds
that

Pr[Verify(pk′,m, σ′) = 1] = 1 ∧ pk′ = ∆(pk).

In the remainder of this thesis, we identify a function ∆ ∈ Φ+ with its “shift
amount” ∆ ∈ H.

An interesting property in the context of key-homomorphic signatures is
whether adapted signatures look like freshly generated signatures. Therefore,
we introduce two different flavours of such a notion, inspired by the context
hiding notion for P -homomorphic signatures [ABC+12, ALP12] as well as the
adaptability notion from [FHS15a] for equivalence class signatures [HS14].

Definition 3.15 (Adaptability of Signatures). A Φ+-key-homomorphic signa-
ture scheme provides adaptability of signatures, if for every κ ∈ N and every mes-
sage m, it holds that Adapt(pk,m,Sign(sk,m),∆) and (pk·µ(∆),Sign(sk+∆,m))
as well as (sk, pk) and (sk′, µ(sk′)) are identically distributed, where (sk, pk) ←
KeyGen(1κ), sk′←R H, and ∆←R Φ+.

Remark 3.2. Kiltz et al. [KMP16] have recently used a notion related to Defini-
tion 3.15 (denoted as random self-reducibility) in the context of canonical identi-
fication schemes. We observe that when turning canonical identification schemes
into signature schemes in the random oracle model using the Fiat-Shamir heuris-
tic, every random-self-reducible scheme also satisfies adaptability. However, the
contrary is not true as our notion covers a broader class of signature schemes,
and in particular including schemes in the standard model (cf. Appendix 3.2.2).

Thus, the examples of random-self-reducible canonical identification schemes
given in [KMP16] directly yield examples of adaptable signatures in the ROM.
In Section 3.2.2 we explicitly show that the Schnorr signatures [Sch91] scheme,
as well as a signature scheme due to Katz and Wang [KW03, GJKW07] are
adaptable according to the definition above.

An even stronger notion for the indistinguishability of fresh signatures and
adapted signatures on the same message is achieved when requiring the distri-
butions to be indistinguishable even when the initial signature used in Adapt is
known. All schemes that satisfy this stronger notion (stated below) also satisfy
Definition 3.15.

Definition 3.16 (Perfect Adaption). A Φ+-key-homomorphic signature scheme
provides perfect adaption, if for every κ ∈ N, every message m, and every signa-
ture σ ← Sign(sk,m), it holds that (σ,Adapt(pk,m, σ,∆)) and (σ, pk ·µ(∆),Sign(

66



3.2. Key-Homomorphic Signatures

sk + ∆,m)) as well as (sk, pk) and (sk′, µ(sk′)) are identically distributed, where
(sk, pk)← KeyGen(1κ), sk′←R H, and ∆←R Φ+.

One immediately sees that signatures from random-self-reducible canonical iden-
tification schemes, and, thus, Schnorr signatures as well as Katz-Wang signa-
tures, do not satisfy Definition 3.16 as the commitment sent in the first phase
remains fixed. However, we note that there are various existing schemes that
satisfy Definition 3.16. For example, BLS signatures [BLS04], the recent re-
randomizable scheme by Pointcheval and Sanders [PS16], a variant of the well
known Waters’ signatures [Wat05], or the CL signature variant from [CHP12]
to name some (cf. Section 3.2.2 for a formal treatment of these schemes).

When looking at Definition 3.14, one could ask whether it is possible to
replace ∆ in the Adapt algorithm with its public key µ(∆). However, it is
easily seen that the existence of such an algorithm contradicts even the weakest
security guarantees the underlying signature scheme would need to provide, i.e.,
universal unforgeability under no-message attacks (UUF-NMA security).

Lemma 3.16. There cannot be an UUF-NMA secure Φ+-key-homomorphic sig-
nature scheme Σ for which there exists a modified PPT algorithm Adapt′ taking
µ(∆) instead of ∆ that still satisfies Definition 3.14.

Proof. We prove this by showing that any such scheme implies an adversary
against UUF-NMA security of Σ. Let us assume that an UUF-NMA challenger
provides a public key pk? and a target message m?. Run (sk, pk)← KeyGen(1κ)
being compatible with public key pk?, compute σ ← Sign(sk,m?), then compute
pk′ ← pk? · pk−1 and obtain a forgery σ? for message m? under the target public
key pk? by running (σ?, pk?)← Adapt(pk,m?, σ, pk′).

Now, we move to a definition that covers key-homomorphic signatures where the
adaption of a set of signatures, each to the same message, to a signature for the
same message under a combined public key does not even require the knowledge
of the relation between the secret signing keys.

Definition 3.17 (Publicly Key-Homomorphic Signatures). A signature sche-
me is called publicly key-homomorphic, if it provides a secret key to public key
homomorphism and an additional PPT algorithm Combine, defined as:

Combine((pki)
n
i=1,m, (σi)

n
i=1) : Takes public keys (pki)i∈[n], a message m, sig-

natures (σi)i∈[n] as input, and outputs a public key p̂k and a signature σ̂,

such that for all n > 1, all ((ski, pki) ← KeyGen(1κ))ni=1, all messages m and
all (σi ← Sign(ski,m))i∈[n] and (p̃k, σ̃) ← Combine((pki)

n
i=1,m, (σi)

n
i=1) it holds

that p̃k =
∏n
i=1 pki ∧ Pr[Verify(p̃k,m, σ̃) = 1] = 1.

Analogously to Definitions 3.15 and 3.16, one can define indistinguishability of
fresh and combined signatures, but we omit it here as it is straight forward. We
want to mention that Definition 3.17 is, for instance, satisfied by BLS signatures,
Waters’ signatures with shared Waters’ hash parameters (cf. [LOS+06]), as well
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as the scheme with shared parameters assuming synchronized time in [CHP12]
being a variant of the CL signature scheme [CL04] (cf. Section 3.2.2 for a more
formal treatment of these schemes).

3.2.2 Examples of Key-Homomorphic Signature Schemes

We now give some examples of signature schemes providing key-homomorphic
properties. Before we provide the details, we compactly subsume our results in
Table 3.2.

Scheme A PA PKH Dom(∆) PoK(∆)
Schnorr [Sch91] X × × Zp Zp
BLS [BLS04] X X X Zp Zp
Katz-Wang [KW03, GJKW07] X × × Zp Zp
Waters [Wat05, BFG13] X X X G1 ×G2 G1

PS [PS16] X X × Zp × Zp Zp × Zp
CL Variant [CHP12] X X X Zp Zp

Table 3.2: Overview of key-homomorphic properties of existing signature schemes.
All schemes admit a Φ+ key-homomorphism. Legend: A . . . adaptable, PA . . .perfectly
adaptable, PKH . . .publicly key-homomorphic, Dom(∆) . . .domain where the shift
amounts live in, PoK(∆) . . .domain of witnesses in proof of knowledge of shift amount.

Schnorr Signatures [Sch91]. In Scheme 3.4 we recall the Schnorr signature
scheme.

PGen(1κ) : Run G ← GGen(1κ), and choose a hash function H : G ×M → {0, 1}κ

uniformly at random from hash function family {Hk}k. Set and return PP← (G, H).

KeyGen(PP) : Parse PP as (G, H), choose x←R Zp, set pk ← (PP, gx), sk ← (pk, x) and

output (sk, pk).

Sign(sk,m) : Parse sk as x, choose r←R Zp, compute R ← gr, c ← H(R,m), y ←
r + x · c mod p, and output σ ← (c, y)

Verify(pk,m, σ) : Parse pk as (PP, gx) and σ as (c, y), verify whether c = H((gx)−cgy,m)

and output 1 if so and 0 otherwise.

Scheme 3.4: Schnorr signatures.

Lemma 3.17. Schnorr signatures are adaptable according to Definition 3.15.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk,m, σ,∆) : Let ∆ ∈ Zp and pk = (PP, gx). Return (pk′, σ′), where
pk′ ← (PP, gx · g∆) and σ′ ← (c, y′) with y′ ← y + c ·∆ mod p.
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It is immediate that adapted signatures are identical to fresh signatures under
pk′ = (PP, gx+∆) as long as the initial signature is unknown.

BLS Signatures [BLS04]. In Scheme 3.5 we recall BLS signatures in a Type 3
setting (cf. [CHKM10] for a treatment of security of this BLS variant). We stress
that the properties which we discuss below are equally valid for the original BLS
scheme in [BLS04] instantiated in a Type 2 setting.

PGen(1κ) : Run BG ← BGGen(1κ, 3), choose a hash function H : M→ G1 uniformly

at random from hash function family {Hk}k, set PP← (BG, H).

KeyGen(PP) : Parse PP as (BG, H), choose x←R Zp, set pk← (PP, ĝx), sk← (pk, x), and

return (sk, pk).

Sign(sk,m) : Parse sk as x and return σ ← H(m)x.

Verify(pk,m, σ) : Parse pk as (PP, ĝx), verify whether e(H(m), ĝx) = e(σ, ĝ) and return

1 if so and 0 otherwise.

Scheme 3.5: Type 3 BLS signatures.

Lemma 3.18. BLS signatures are perfectly adaptable according to Definition 3.16.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk,m, σ,∆) : Let ∆ ∈ Zp and pk = (PP, ĝx). Return (pk′, σ′), where
pk′ ← (PP, ĝx · ĝ∆) and σ′ ← σ ·H(m)∆.

It is immediate that adapted signatures are identical to fresh signatures under
pk′ = (PP, ĝx+∆).

Lemma 3.19. BLS signatures are publicly key-homomorphic according to Defi-
nition 3.17.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine((pki)
n
i=1,m, (σi)

n
i=1) : Let pki = (PP, ĝxi). Run p̃k ← (PP,

∏n
i=1 ĝ

xi),

and σ̃ ←
∏n
i=1 σi and return public key p̃k and signature σ̃.

Katz-Wang Signatures [KW03, GJKW07]. Katz and Wang in [KW03]
presented a signature scheme that enjoys a tight security reduction to the DDH
problem. Basically, the public key of the scheme represents a Diffie-Hellman
(DH) tuple and the signature is a non-interactive zero-knowledge proof (obtained
using the Fiat-Shamir heuristic) that the public key indeed forms a DH tuple.
We present the version from [GJKW07] (Section 4) in Scheme 3.6, which in
contrast to the original one in [KW03] does not include the statement (public
key) in the Fiat-Shamir transform.
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PGen(1κ) : Run G← GGen(1κ), h←R G, and choose a hash function H : G×G×M→
{0, 1}κ uniformly at random from hash function family {Hk}k. Set and return

PP← (G, h,H).

KeyGen(PP) : Parse PP as (G, h,H), choose x←R Zp, set pk← (PP, gx, hx), sk← (pk, x),

and return (sk, pk).

Sign(sk,m) : Parse sk as x, choose r←R Zp, set A ← gr, B ← hr, c ← H(A,B,m),

compute s← cx+ r mod p and return σ ← (c, s).

Verify(pk,m, σ) : Parse pk as (PP, y1, y2) and σ as (c, s) with c ∈ {0, 1}n and s ∈ Zp.
Compute A← gsy−c1 , B ← hsy−c2 and return 1 if c = H(A,B,m) and 0 otherwise.

Scheme 3.6: Katz-Wang signatures.

Lemma 3.20. Katz-Wang signatures are adaptable according to Definition 3.15.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the adaptability notion.

Adapt(pk,m, σ,∆) : Let ∆ ∈ Zp, pk = (PP, y1, y2) and σ = (c, s). Return
(pk′, σ′), where pk′ ← (PP, y1 · g∆, y2 · h∆) and σ′ ← (c, s+ c∆ (mod p)).

It is immediate that adapted signatures are identical to fresh signatures under
pk′ = (PP, y1 · g∆, y2 · h∆) as long as the initial signature is unknown.

Waters’ Signatures [Wat05]. Below we recall Waters’ signatures with shared
hashing parameters in the Type-3 bilinear group setting as used in [BFG13] (a
similar variant is presented in [CHKM10]). We note that for Waters’ signatures
without shared hash parameters [Wat05] it seems to be impossible to define an
Adapt algorithm satisfying Definition 3.14.

PGen(1κ) : Run BG ← BGGen(1κ, 3), choose U = (h, u0, . . . un)←R Gk+1
1 , and define

H :M→ G1 as H(m) := u0 ·
∏n
i=1 u

mi
i , where M = {0, 1}n. Set PP← (BG, U,H).

KeyGen(PP) : Parse PP as (BG, U,H), choose x←R Zp, set pk ← (PP, ĝx), sk ← (pk, x),

and return (sk, pk).

Sign(sk,m) : Parse sk as (pk, x), choose r←R Zp, set α ← hx ·H(m)r, β ← ĝr, γ ← gr

and return σ ← (α, β, γ).

Verify(pk,m, σ) : Parse pk as (PP, ĝx) and σ as (α, β, γ). Verify whether e(α, ĝ) =

e(h, ĝx) · e(H(m), β) ∧ e(γ, ĝ) = e(g, β) and return 1 if it holds and 0 otherwise.

Scheme 3.7: Waters’ signatures with shared hash parameters.

Lemma 3.21. Waters’ signatures with shared hash parameters are perfectly
adaptable according to Definition 3.16.
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Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk,m, σ,∆) : Let ∆ ∈ Zp and compute ∆1 ← h∆ and ∆2 ← ĝ∆. Further,
let σ = (α, β, γ), and pk = (PP, ĝx). Choose r′←R Zp, compute σ′ ← (α ·∆1 ·
H(m)r

′
, β · ĝr′ , γ · gr′) and pk′ ← (PP, ĝx ·∆2), and return (pk′, σ′).

Signatures output by Adapt are identically distributed as fresh signatures under
randomness r + r′ und key pk = (PP, ĝx ·∆2, ), which proves the lemma.

When instantiating our argument system from Section 3.4 with Groth-Sahai
proofs, it is beneficial to use sk ← (pk, hx, ĝx) as secret key (note that the
security reduction still works in the same way when using this modified key).
The associated secret key space would then be all tuples (∆1,∆2) ∈ H ⊂ G1×G2

where e(∆1, ĝ) = e(h,∆2) and also ∆ ∈ H. This is favourable regarding the
extractability properties of the Groth-Sahai proof system. Observe that in this
setting ∆2 is implicitly given by the difference of the public keys and thus one
only needs to prove knowledge of a single group element.

Lemma 3.22. Waters’ signatures are publicly key-homomorphic according to
Definition 3.17.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine((pki)
n
i=1,m, (σi)

n
i=1) : Let σi = (αi, βi, γi) and pki = (PP, ĝxi). Run

p̃k ← (PP,
∏n
i=1 ĝ

xi)) and σ̃ ← (
∏n
i=1 αi,

∏n
i=1 βi,

∏n
i=1 γi) and return public

key p̃k and signature σ̃.

PS Signatures [PS16]. In Scheme 3.8 we recall a recent signature scheme from
[PS16], which provides perfect adaption, but is not publicly key-homomorphic.

PGen(1κ) : Run BG← BGGen(1κ, 3) and set PP← BG.

KeyGen(PP) : Parse PP as BG, choose x, y←R Zp, compute X̂ ← ĝx, Ŷ ← ĝy and set

pk← (PP, X̂, Ŷ ), sk← (pk, x, y), and return (sk, pk).

Sign(sk,m) : Parse sk as (pk, x, y), choose h←R G∗1 and return σ ← (h, h(x+y·m)).

Verify(pk,m, σ) : Parse pk as (PP, X̂, Ŷ ) and σ as (σ1, σ2). Check whether σ1 6= 1G1

and e(σ1, X̂ · Ŷ m) = e(σ2, g̃) holds. If both checks hold return 1 and 0 otherwise.

Scheme 3.8: PS signatures.

Lemma 3.23. PS signatures are perfectly adaptable according to Definition 3.16.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.
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Adapt(pk,m, σ,∆) : Parse pk as (PP, X̂, Ŷ ), σ as (σ1, σ2) and ∆ as (∆1,∆2) ∈ Z2
p

and choose r←R Zp. Compute pk′ ← (PP, X̂ · ĝ∆1 , Ŷ · ĝ∆2) and σ′ ← (σr1, (σ2 ·
σ∆1+∆2m

1 )r) and return (pk′, σ′).

The key pk′ = (ĝx+∆1 , ĝy+∆2) and σ′ = (hr, (hr)x+∆1+m(y+∆2)) output by the
Adapt algorithm is identically distributed to a fresh signature under randomness
hr and pk′.

It is easy to see, that PS signatures are, however, not publicly key-homomorphic
as independently generated signatures are computed with respect to different
bases h with unknown discrete logarithms. Consequently, there is no efficient
means to obtain a succinct representation of σ̃ that is suitable for Verify.

CL Signature Variant [CHP12]. While the original pairing-based CL signa-
ture scheme [CL04] does not satisfy any of the key-homomorphic properties dis-
cussed in this paper, we recall a CL signature variant from [CHP12] in Scheme 3.9
which does.

PGen(1κ) : Run BG← BGGen(1κ, 1), choose some polynomially bound set Ψ and hash

functions H1 : Ψ→ G, H2 : Ψ→ G , H3 :M×Ψ→ Zp uniformly at random from

suitable hash function families. Set PP← (BG, H1, H2, H3).

KeyGen(PP) : Parse PP as (BG, H1, H2, H3), choose x←R Zp and set pk← (PP, gx), sk←
(pk, x), and return (sk, pk).

Sign(sk, (m,ψ)) : If it is the first call to Sign during time period ψ ∈ Ψ, then parse sk

as (pk, x), compute w ← H3(m,ψ), a← H1(ψ), b← H2(ψ) and return σ ← axbxw.

Otherwise abort.

Verify(pk, (m,ψ), σ) : Parse pk as (PP, X) and compute w ← H3(m,ψ), a ← H1(ψ),

b← H2(ψ) and check whether e(σ, g) = e(a,X) · e(b,X)w holds. If so return 1 and

0 otherwise.

Scheme 3.9: CL signature variant.

Lemma 3.24. Adapted CL signatures are perfectly adaptable according to Defi-
nition 3.16.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk, (m,ψ), σ,∆) : Parse pk as (PP, X) and compute w ← H3(m,ψ), a ←
H1(ψ), b ← H2(ψ). Compute pk′ ← (PP, X · g∆) and σ′ ← σ · a∆ · b∆·w and
return (pk′, σ′).

It is easy to see that adapted signatures are identical to fresh signatures under
pk′ = (PP, X · g∆).
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Lemma 3.25. Adapted CL signatures are publicly key-homomorphic according
to Definition 3.17.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine((pki)
n
i=1,m, (σi)

n
i=1) : Let pki = (PP, gxi). Run p̃k← (PP,

∏n
i=1 g

xi and

σ̃ ← (
∏n
i=1 σi) and return public key p̃k and signature σ̃.

3.2.3 Applications

In this section we present first applications of our framework. As already men-
tioned before, the applications which are closer to the focus of this thesis are
presented in separate, subsequent sections.

Multisignatures. A multisignature scheme [IN83] is a signature scheme that
allows a group of signers to jointly compute a compact signature for a message.
Well known schemes are the BMS [Bol03] and the WMS [LOS+06] schemes that
are directly based on the BLS [BLS04] and variants of the Waters’ signature
scheme [Wat05] respectively. Both of them are secure under the knowledge
of secret key (KOSK) assumption, but can be shown to also be secure under
(slightly tweaked) real-world proofs of possession protocols [RY07].

Our construction can be seen as a generalization of the paradigm behind all
existing multisignature schemes. Making this paradigm explicit eases the search
for new schemes, i.e., one can simply check whether a particular signature scheme
is publicly key-homomorphic. For instance, as we show in Section 3.2.2, the
modified CL signature scheme from [CHP12] provides this key-homomorphism,
and, therefore, directly yields a new instantiation of multisignatures.

We now give a formal definition of multisignatures, where we follow Risten-
part and Yilek [RY07]. As already noted before, we use the KOSK modeled via
RKey for simplicity. Nevertheless, we stress that we could use any other key-
registration that provides extractability or also the extractable key-verification
notion by Bagherzandi and Jarecki [BJ08]. This does not make any difference
for our subsequent discussion as long as the secret keys are extractable.

Definition 3.18. A multisignature scheme MS is a tuple (PGen,KeyGen,Sign,
Verify) of PPT algorithms, which are defined as follows:

PGen(1κ) : This parameter generation algorithm takes a security parameter κ
and produces global parameters PP (including the security parameters and a
description of the message space M).

KeyGen(PP) : This algorithm takes the global parameters PP as input and outputs
a secret (signing) key sk and a public (verification) key pk.

Sign : This is an interactive multisignature algorithm executed by a group of
signers who intend to sign the same message m. Each signer Si executes Sign
on public inputs PP, public key multiset PK, message m and secret input its
secret ski and outputs a multisignature σ.
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Verify(PP, PK,m, σ) : This algorithm takes public parameters PP, a public key mul-
tiset PK, a message m and a multisignature σ as input and outputs a bit
b ∈ {0, 1}.

The above tuple of algorithms must satisfy correctness, which basically states
that Verify(PP, PK,m,Sign(PP, PK,m, sk)) = 1 for any m, any honestly generated
PP and when every participant correctly follows the algorithms. Besides correct-
ness, we require existential unforgeability under a chosen message attack against
a single honest player.

Definition 3.19 (MSEUF-CMA). A multisignature scheme MS is MSEUF-CMA
secure, if for all PPT adversaries A there is a negligible function ε(·) such that

Pr


PP← PGen(1κ),
(sk?, pk?)← KeyGen(1κ),
O ← {Sign(·, ·),RKey(·, ·, ·)},
(PK

?,m?, σ?)← AO(PP, pk?)

:
Verify(PP, PK

?,m?, σ?) = 1 ∧
pk? ∈ PK

? ∧ m? /∈ QSign ∧
(PK

? \ {pk?}) \ QRKey = ∅

 ≤ ε(κ),

where the environment keeps track of signing and registration queries via QSign

and QRKey, respectively. The adversary has access to the following oracles:

Sign(PK,m) : This oracle obtains a public key set PK and returns ⊥ if pk? /∈
PK. Otherwise it acts on behalf of the honest user in a new instance of
Sign(PP, PK,m, sk?) forwarding messages to and from A appropriately and sets
QSign←∪ m.

RKey(sk, pk) : This oracle checks if (sk, pk) ∈ KeyGen(PP) and sets QRKey←∪ pk
if so.

Our Construction. We restrict ourselves to non-interactive Sign protocols, which
basically means that every signer Si locally computes a signatures σi and then
broadcasts it to all other signers in PK. Furthermore, we consider the signature
scheme Σ to work with common parameters PP and in Scheme 3.10 let us for the
sake of presentation assume that PK := (pk1, . . . , pkn) is an ordered set instead
of a multiset.

Theorem 3.4. If Σ is correct, EUF-CMA secure, and publicly key-homomorphic,
then Scheme 3.10 is MSEUF-CMA secure.

Proof. We show that an efficient adversary A against MSEUF-CMA can be effi-
ciently turned into an efficient EUF-CMA adversary for Σ. To do so, we simulate
the environment for A by obtaining pk? from an EUF-CMA challenger of Σ,
then setting PP accordingly, and starting A on (PP, pk?). Additionally, we record
the secret keys provided to RKey in a list KEY indexed by the respective public
keys, i.e., KEY[pk] ← sk. Whenever a signature with respect to pk? is required
we use the Sign oracle provided by the challenger. Eventually, the adversary
outputs (PK

?,m?, σ?) such that Σ.Verify(
∏

pk∈PK?
pk,m?, σ?) = 1, pk? ∈ PK

?, all
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PGen(1κ) : Run PP← Σ.PGen(1κ) and return PP.

KeyGen(PP) : Run (sk, pk)← Σ.KeyGen(PP) and return (sk, pk).

Sign(PP, PK,m, sk) : Let i ∈ [n]. Every participating Si with pki ∈ PK proceeds as

follows:

– Compute σi ← Σ.Sign(ski,m) and broadcast σi.

– Receive all signatures σj for j 6= i.

– Compute (pk, σ)← Combine(PK,m, (σ`)`∈[n]) and output σ.

Verify(PP, PK,m, σ) : Return 1 if the following holds and 0 otherwise:

Σ.Verify
(∏

pk∈PK
pk,m, σ

)
= 1.

Scheme 3.10: Black-box construction of multisignatures.

other keys in PK
? were registered, yet m? was never queried to the signing oracle.

We compute sk′ ←
∑

pk∈PK?\{pk?}−KEY[pk], compute σ′ ← Σ.Sign(sk′,m?), ob-

tain (pk?, σ) ← Combine((
∏

pk∈PK?
pk,
∏

pk∈PK?\{pk?} pk−1),m?, (σ?, σ′)) and out-

put (m?, σ) as a forgery.

Tight Multi-User Security from Key-Homomorphisms. When using sig-
nature schemes in practice, it is often argued that EUF-CMA security does not
appropriately capture the requirements appearing in practical settings [GMS02,
MS04]. Currently we experience a growing interest in the multi-user setting
(e.g., [BJLS16, GHKW16, KMP16]), where an adversary can attack one out of
various public keys instead of a single one. This setting is also a frequently
discussed topic on the mailing list of the CFRG.7

Since many schemes have already been investigated regarding their single-
user security, an important question in this context is whether one can infer
statements about the multi-user security of a certain scheme based on its single-
user security. Without using any further properties of the signature scheme,
every näıve reduction looses a factor of N , where N is the number of users in
the system [GMS02].8 Such a reduction is non-tight and drastically reduces the
security guarantees a scheme provably provides. Thus, it is important to come up
with tight security reductions. This was done in [GMS02], where a tight implica-
tion from single-user EUF-CMA to multi-user EUF-CMA for Schnorr signatures
was proven. Unfortunately, a flaw in this proof was discovered by Bernstein
in [Ber15], where it was also shown that single-user EUF-CMA tightly implies
key-prefixed mulit-user EUF-CMA for Schnorr signatures. Recently, Lacharité in

7 https://www.ietf.org/mail-archive/web/cfrg/current/maillist.html
8 For instance, assuming 230 keys in a system, such a reduction loss requires to significantly

increase the parameters.
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[Lac16] showed this tight implication under key-prefixing for BLS [BLS04] sig-
natures and BGLS [BGLS03] aggregate signatures. Subsequent to the work in
[Ber15], Kiltz et al. [KMP16] studied multi-user security of random self-reducible
canonical identification schemes when turned to signatures in the random oracle
model using the Fiat-Shamir heuristic. They show that for such schemes single-
user security tightly implies multi-user security without key-prefixing. This, in
particular, holds for Schnorr signatures.

Our theorem essentially generalizes the work of [Ber15, Lac16] to be appli-
cable to a larger class of signature schemes. For example, using our results from
Section 3.2.2, it attests the multi-user EUF-CMA security of various variants of
Water’s signatures [Wat05], PS signatures [PS16], and the CL signature [CL04]
variant from [CHP12], which were previously unknown to provide tight multi-
user security. Furthermore, it can be seen as orthogonal to the work of [KMP16],
where the requirement of key-prefixing is avoided at the cost of tailoring the re-
sults to a class of signature schemes from specific canonical identification schemes
in the random oracle model.

Below, we will first recall a definition of multi-user EUF-CMA and then prove
Theorem 3.5, which formalizes the main result of this section.

Definition 3.20 (MU-EUF-CMA). A signature scheme Σ is MU-EUF-CMA se-
cure, if for all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
{(ski, pki)← KeyGen(1κ)}i∈[poly(κ)],
(i?,m?, σ?)← ASign(·,·)({pki}i∈[poly(κ)])

:

Verify(pki? ,m
?, σ?) = 1 ∧

(i?,m?) /∈ QSign

]
≤ ε(κ),

where Sign(i,m) := Σ.Sign(ski,m) and the environment keeps track of the queries
to the signing oracle via QSign.

Theorem 3.5. Let Σ = (KeyGen,Sign,Verify) be a signature scheme which pro-
vides adaptability of signatures where the success ratio (i.e., the quotient of its
success probability and its runtime) of any EUF-CMA adversary is ρ. Then the
success ratio of any adversary against MU-EUF-CMA of Σ′ = (KeyGen′,Sign′,
Verify′) is ρ′ ≈ ρ, where KeyGen′(1κ) := KeyGen(1κ), Sign′(sk,m) := Sign(sk,
µ(sk)||m), and Verify(pk,m, σ) := Verify(pk, pk||m,σ).

Proof. First, our reduction R obtains a public key pk1 from an EUF-CMA chal-
lenger C and initializes an empty list SK. It sets SK[1] ← 0, and for 2 ≤ i ≤
poly(κ), it chooses SK[i]←R H, and sets pki ← pk1 · µ(SK[i]). Then, it starts A on
{pki}i∈[poly(κ)] and simulates Sign′ inside the Sign(·, ·) oracle as follows (where
C.Sign(·) denotes the signing oracle provided by C).

Sign(i,m) : Obtain σ ← C.Sign(pki||m), compute (pki, σ
′)← Adapt(pk1, pki||m,

σ, SK[i]), and return σ′.
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Eventually, A outputs a forgery (i?,m?, σ?), where (i?,m?) /∈ QSign by defini-
tion. Thus, R has never sent pki? ||m? to the sign oracle of C and can ob-
tain (pk1, σ

′?) ← Adapt(pki? , pki? ||m?, σ?,−SK[i]) and output (pki? ||m?, σ′?) as
an EUF-CMA forgery. Due to adaptability of signatures the simulation of the
oracle is perfect; the running time of R is approximately the same as the running
time of A which concludes the proof.

It is quite straight forward to see that such an implication can also be proven for
weaker unforgeability notions. Essentially the security proof would be analogous,
but without the need to simulate the signing oracle. Furthermore, it is important
to note that for key-recovery attacks, where no signatures need to be simulated,
a secret key to public key homomorphism would be sufficient to tightly relate
the single-user setting to the key-prefixed multi-user setting.

3.3 Universal Designated Verifier Signatures

In designated verifier signatures [JSI96] a signer chooses a designated verifier
upon signing a message and, given this signature, only the designated verifier is
convinced of its authenticity. The idea behind those constructions is to ensure
that the designated verifier can “fake” signatures which are indistinguishable
from signatures of the original signer. Universal designated verifier signatures
(UDVS) [SBWP03] further extend this concept by introducing an additional
party, which performs the designation process by converting a conventional sig-
nature to a designated-verifier one. There exists quite a lot of work on UDVS,
and, most notably, in [SS08] it was shown how to convert a large class of signature
schemes to UDVS. Their approach can be seen as related to our approach, yet
they do not rely on key-homomorphisms and they only achieve weaker security
guarantees.9

While one can interpret designated verifier signatures as a special case of ring
signatures where the ring is composed of the public keys of signer and designated
verifier (as noted in [RST01, BKM09]), there seems to be no obvious black-
box relation turning ring signatures into UDVS. Mainly, since UDVS require the
functionality to convert standard signatures to designated verifier ones.10

Contribution. Even though we already discussed the contributions presented
in this section in the context of our framework for key-homomorphic signatures,
we briefly recall the most important aspects here. We present a compiler turning
(perfectly) adaptable signature schemes and witness indistinguishable arguments
of knowledge into UDVS. Our compiler is extremely simple and can be efficiently

9 We also note that [SS08] informally mention that their approach is also useful to construct
what they call hierarchical ring signatures. However their paradigm is not useful to construct
ring signatures as we do in Section 4.1.

10 We, however, note that an extension of the UDVS model to universal designated verifier
ring signatures would be straight forward and also our scheme would be straight forwardly
extensible using the same techniques as in Scheme 4.1.
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instantiated using a wide variety of schemes. This also includes an instantia-
tion using Waters’ signatures and Groth-Sahai witness indistinguishable proofs,
which constitutes the first instantiation of UDVS in the standard model under
standard assumptions.

3.3.1 Formal Security Model

We start by recalling the security model from [SBWP03] including some nota-
tional adaptations and a strengthened version of the DV-unforgeability notion
which we introduce here.

Definition 3.21. A universal designated verifier signature scheme UDVS ex-
tends a conventional signature scheme Σ = (PGen,KeyGen,Sign,Verify) by ad-
ditionally providing the PPT algorithms (DVGen,Desig,Sim,DVerify), which are
defined as follows.

DVGen(PP) : This algorithm takes the public parameters PP as input and gener-
ates and outputs a designated-verifier key pair (vsk, vpk).

Desig(pk, vpk,m, σ) : This algorithm takes a signer public key pk, a designated-
verifier public key vpk, a message m, and a valid signature σ as input, and
outputs a designated-verifier signature δ.

Sim(pk, vsk,m) : This algorithm takes a signer public key pk, a designated-verifier
secret key vsk, and a message m as input, and outputs a designated-verifier
signature δ.

DVerify(pk, vsk,m, δ) : This algorithm takes a signer public key pk, a designated-
verifier secret key vsk, a message m, and a designated-verifier signature δ as
input, and outputs a bit b ∈ {0, 1}.

In the following, we formally recall the security properties, where we omit the ob-
vious correctness notion. For the remaining notions we largely follow [SBWP03,
SS08].

DV-unforgeability captures the intuition that it should be infeasible to come
up with valid designated verifier signatures where no corresponding original sig-
nature exists. We introduce a stronger variant of DV-unforgeability, which we
term simulation-sound DV-unforgeability. This notion additionally provides the
adversary with an oracle to simulate designated-verifier signatures on other mes-
sages for the targeted designated verifier. It is easy to see that our notion implies
DV-unforgeability in the sense of [SBWP03].

Definition 3.22 (Simulation-Sound DV-Unforgeability). An UDVS provides sim-
ulation-sound DV-unforgeability, if for all PPT adversaries A, there exists a
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negligible function ε(·) such that it holds that

Pr

 PP← PGen(1κ), (sk, pk)← KeyGen(PP),
(vsk, vpk)← DVGen(PP), O ← {Sig(sk, ·),
Vrfy(pk, vsk, ·, ·), S(pk, vsk, ·)}, (m?, δ?)← AO(pk, vpk)

:

DVerify(pk, vsk,m?, δ?) = 1 ∧
m? /∈ QSig ∧ m? /∈ QSim

 ≤ ε(κ),

where Sig(sk,m) := Sign(sk,m), Vrfy(pk, vsk,m, δ) := DVerify(pk, vsk,m, δ), and
S(pk, vsk,m) := Sim(pk, vsk,m). Furthermore, the environment keeps tracks of
the messages queried to Sig and S via QSig and QSim, respectively.

Non-transferability privacy models the requirement that the designated verifier
can simulate signatures which are indistinguishable from honestly designated
signatures.

Definition 3.23 (Non-Transferability Privacy). An UDVS provides non-trans-
ferability privacy, if for all PPT adversaries A, there exists a negligible function
ε(·) such that it holds that

Pr


PP← PGen(1κ), (sk, pk)← KeyGen(PP),
b←R {0, 1}, O ← {Sig(sk, ·),RKey(·, ·, ·)},
(m?, st)← AO(pk), σ ← Sign(sk,m?),

b? ← AO∪{SoD(pk,·,m?,σ,b)}(st)

:
b = b? ∧

m? /∈ QSig

 ≤ 1/2 + ε(κ),

where the oracles are defined as follows:

Sig(sk,m) : This oracle computes σ ← Sign(sk,m) and returns σ.

RKey(i, vsk, vpk) : This oracle checks whether DVK[i] 6= ⊥ and returns ⊥ if so.
Otherwise, it checks whether (vsk, vpk) is a valid output of DVGen and sets
DVK[i]← (vsk, vpk) if so.

SoD(pk, i,m, σ, b): This oracle obtains (vsk, vpk) ← DVK[i] and returns ⊥ if no
entry for i exists. Then, if b = 0, it computes δ ← Sim(pk, vsk,m), and, if
b = 1 it computes δ ← Desig(pk, vpk,m, σ). In the end it returns δ. This
oracle can only be called once.

Further, the environment maintains a list QSig keeping track of the Sig queries.

The notion above captures non-transferability privacy in the sense of [SS08].
This notion can be strengthened to what we call strong non-transferability pri-
vacy which allows multiple calls to SoD (as in [SBWP03]). While non-trans-
ferability privacy is often sufficient in practice, we will prove that our con-
struction provides strong non-transferability privacy (clearly implying non-trans-
ferability privacy) to obtain the most general result.
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3.3.2 Our Construction

In Scheme 3.11, we present our construction of UDVS from any Φ+-key-homo-
morphic EUF-CMA secure Σ with perfect adaption of signatures, any witness
indistinguishable argument system Π that admits proofs of knowledge, and any
one-way function f . Our construction uses the “OR-trick” [JSI96], known from
DVS. Upon computing designations and simulations of designated-verifier signa-
tures, we require to prove knowledge of witnesses for the following NP relation
R:

((pk, vpk), (sk, vsk)) ∈ R ⇐⇒ pk = µ(sk) ∨ vpk = f(vsk).

For brevity we assume that the parameters PP generated upon setup are implicit
in every pk and vpk generated by Gen and DVGen respectively. Furthermore, we
assume that R is implicitly defined by the scheme.

PGen(1κ) : Run PP
′ ← Σ.PGen(1κ), crs← Π.Setup(1κ), and return PP← (PP

′, crs).

DVGen(PP) : Run vsk←R {0, 1}κ, set vpk← f(vsk) and return (vsk, vpk).

Desig(pk, vpk,m, σ) : Output δ ← (pk′, σR, π), where

(sk′, pk′)← Σ.KeyGen(1κ), (pkR, σR)← Σ.Adapt(pk,m, σ, sk′),

π ← Π.Proof(crs, (pk′, vpk), (sk′,⊥)).

Sim(pk, vsk,m) : Output δ ← (pk′, σR, π), where

(skR, pkR)← Σ.KeyGen(1κ), pk′ ← pkR · pk−1, σR ← Σ.Sign(skR,m),

π ← Π.Proof(crs, (pk′, f(vsk)), (⊥, vsk)).

DVerify(pk, vsk,m, δ) : Parse δ as (pk′, σR, π) and return 1 if the following holds, and 0

otherwise:

Σ.Verify(pk · pk′,m, σR) = 1 ∧ Π.Verify(crs, (pk′, f(vsk)), π) = 1.

Scheme 3.11: Black-box construction of UDVS.

3.3.3 Formal Security Proof

We show that Scheme 3.11 is secure by proving the following theorem.

Theorem 3.6. If Σ is EUF-CMA secure and perfectly adapts signatures, f is
a one-way function, and Π is witness indistinguishable and admits proofs of
knowledge, then Scheme 3.11 is correct, simulation-sound DV-unforgeable, and
provides strong non-transferability privacy.

We prove the theorem above by proving the subsequent lemmas, and note that
if non-transferability privacy is sufficient, Σ only needs to be adaptable. Then,
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besides the candidate schemes presented in Section 3.2.2, one can, e.g., also
instantiate Scheme 3.11 with the very efficient Schnorr signature scheme.

Lemma 3.26. If Σ is correct, and Π is complete, then Scheme 3.11 is correct.

Lemma 3.26 follows from inspection and the proof is therefore omitted.

Lemma 3.27. If Σ is EUF-CMA secure and adapts signatures, f is a one-way
function, and Π is witness indistinguishable and admits proofs of knowledge, then
Scheme 3.11 is simulation-sound DV-unforgeable.

Proof. We bound the success probability of an adversary using a sequence of
games, where we let qSim ≤ poly(κ) be the number Sim queries.

Game 0: The original simulation-sound DV-unforgeability game.

Game 1: As Game 0, but inside the S oracle we execute the following modified
Sim algorithm Sim′, which additionally takes sk as input.

Sim′(pk, vsk,m, sk ) : Output δ = (pk′, σR, π), where

(skR, pkR)← Σ.KeyGen(1κ), pk′ ← pkR · pk−1, σR ← Σ.Sign(skR,m),

π ← Π.Proof(crs, (pk′, f(vsk)), (skR − sk,⊥) ).

Transition - Game 0 → Game 1: A distinguisher between D0→1 is a disting-
uisher for adaptive witness indistinguishability of Π, i.e., |Pr[S0]− Pr[S1]| ≤
εwi(κ).

Game 2: As Game 1, but instead of generating crs upon PGen, we obtain
(crs, ξ)← Π.E1(1κ) and store ξ.

Transition - Game 1 → Game 2: A distinguisher between Game 1 and 2 distin-
guishes an honest crs from an extraction crs, i.e., |Pr[S1]− Pr[S2]| ≤ εe1(κ).

Game 3: As Game 2, but whenever the adversary outputs a forgery (m?, δ?),
where δ? = (pk′?, σ?R, π

?) we extract a witness (sk′?, vsk′?) ← Π.E2(crs, ξ,
(pk′?, vpk?), π?) and abort if the extractor fails.

Transition - Game 2 → Game 3: Game 2 and Game 3 proceed identically, un-
less the extractor fails, i.e., |Pr[S1]− Pr[S2]| ≤ εe2(κ).

Game 4: As Game 3, but we further modify Sim′ to Sim′′ as follows:

Sim′′(pk, vsk,m, sk) : Output δ = (pk′, σR, π), where

σ ← Σ.Sign(sk,m) ,

(sk′, pk′)← Σ.KeyGen(1κ), (pkR, σR)← Σ.Adapt(pk,m, σ, sk′) ,

π ← Π.Proof(crs, (pk′, f(vsk)), ( sk′ ,⊥)).
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Transition Game 3 → Game 4: Under adaptability of signatures, this change is
conceptual and Pr[S3] = Pr[S4].

Game 5: As Game 4, but instead of generating (sk, pk)← Gen(PP
′), we obtain

pk from an EUF-CMA challenger. Further, whenever a signature under pk is
required, we use the Sign oracle provided by the challenger.

Transition - Game 4 → Game 5: This change is conceptual, i.e., Pr[S4] = Pr[S5].

Game 6: As Game 5, but we obtain vpk from a one-wayness challenger and set
vsk = ⊥. In addition, we simulate the Vrfy oracle by using vpk instead of
f(vsk) inside the DVerify algorithm.

Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].

In Game 6, we either have extracted vsk? so that f(vsk?) = vpk and we can
output vsk? to the one-wayness challenger, or we have extracted sk′? such that
µ(sk′?) = pk′? and can obtain (pk, σ) ← Σ.Adapt(pk · pk′?,m?, σ?R,−sk′?) and
output (m?, σ) as a forgery for Σ. Taking the union bound yields Pr[S6] ≤
εf(κ) + εow(κ), and we obtain Pr[S0] ≤ εf(κ) + εow(κ) + εwi(κ) + εe1(κ) + εe2(κ)
which is negligible.

Lemma 3.28. If Σ perfectly adapts signatures, and Π is witness indistinguish-
able, then Scheme 3.11 is strongly non-transferable private.

Proof. We bound the success probability using a sequence of games.

Game 0: The original non-transferability privacy game.

Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs
from a witness indistinguishability challenger Cwi

κ upon Setup.

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].

Game 2: As Game 1, but inside SoD we execute the following modified the
Desig algorithm Desig′ which additionally takes vsk as input:

Desig′(pk, vpk,m, σ, vsk ) : Output δ ← (pk′, σR, π), where

(sk′, pk′)← Σ.KeyGen(1κ), (pkR, σR)← Σ.Adapt(pk,m, σ, sk′),

π ← Π.Proof(crs, (pk′, vpk), (⊥, vsk) ).

Transition - Game 1 → Game 2: A distinguisher betweenD1→2 is a distinguisher
for adaptive witness indistinguishability of Π, i.e., |Pr[S2]−Pr[S1]| ≤ εwi(κ).

Game 3: As Game 2, but we further modify Desig′ to Desig′′ as follows:
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Desig′′(pk, vpk,m, σ, vsk) : Output δ ← (pk′, σR, π), where

(skR, pkR)← Σ.KeyGen(1κ), pk′ ← pkR · pk−1, σR ← Σ.Sign(skR,m) ,

π ← Π.Proof(crs, (pk′, vpk), (⊥, vsk)).

Transition - Game 2 → Game 3: By the perfect adaption of signatures, this
change is conceptual, i.e., Pr[S2] = Pr[S3].

In Game 3, Desig′′ is identical to Sim. This means that SoD is simulated inde-
pendently of b and |Pr[S3]− Pr[S0]| ≤ εwi(κ), which proves the lemma.

3.4 Simulation Sound Extractable Arguments

The construction of UDVS in the previous sections, as well as the construction of
ring signatures in Section 4.1 implicitly use techniques to ensure that even though
one needs to simulate proofs within the security reductions, it is still possible
to extract the required witness for the forgery. In this section we isolate the
essence of this techniques and show that they are generally applicable to extend
witness indistinguishable argument systems admitting proofs of knowledge to
(weak) simulation sound extractable argument systems using EUF-CMA secure
signature schemes that adapt signatures. This makes our techniques useful in a
broader range of applications.

For the stronger variant of simulation sound extractability we additionally
require strong one-time signatures. We start by defining such schemes. Then
we proceed in showing that for weak simulation sound extractability, we do not
even require strong one-time signatures.

Definition 3.24 (Strong One-Time Signature Scheme). A strong one-time sig-
nature scheme Σot provides the same interface as a conventional signature scheme
Σ and satisfies the following unforgeability notion: For all PPT adversaries A
there is a negligible function ε(·) such that

Pr

[
(sk, pk)← KeyGen(1κ),
(m?, σ?)← ASign(sk,·)(pk)

:
Verify(pk,m?, σ?) = 1 ∧

(m?, σ?) /∈ QSign

]
≤ ε(κ),

where the oracle Sign(sk,m) := Σ.Sign(sk,m) can only be called once.

An efficient example of a strong one-time signature scheme can be found in
[Gro06].

3.4.1 Our Construction

For our construction, first let L be an arbitrary NP-language L = {x | ∃ w :
R(x,w) = 1}, for which we aim to construct a simulation sound extractable
argument system, and let L′ be defined via the NP-relation R′:

((x, cpk, pk), (w, csk− sk)) ∈ R′ ⇐⇒ (x,w) ∈ R ∨ cpk = pk · µ(csk− sk).
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In Scheme 3.12 we present our construction of a simulation sound extractable ar-
gument system Πsse for L. Our technique is inspired by [GMY03, GMY06, Gro06]
but conceptually simpler. This is mainly due to the fact that the adaptability
of the used signature scheme allows us to get rid of the encryption scheme,
and, consequently, also the requirement to prove statements about encrypted
values.11

Essentially, the intuition of our construction is the following. We use a com-
bination of an adaptable EUF-CMA secure signature scheme Σ and a strong
one-time signature scheme Σot to add the required non-malleability guarantees
to the underlying argument system.12 Upon each proof computation, we use Σ
to “certify” the public key of a newly generated key pair of Σot. The associ-
ated secret key of Σot is then used to sign the parts of the proof which must
be non-malleable. Adaptability of Σ makes it possible to also use a newly gen-
erated key pair of Σ upon each proof computation. In particular, the relation
associated to L′ is designed so that the second clause in the OR statement is
the “shift amount” required to shift such signatures to signatures under a key
cpk in the crs. A proof for x ∈ L is easy to compute when given w such that
(x,w) ∈ R. One does not need a satisfying assignment for the second clause in
the OR statement, and can thus compute all signatures under newly generated
keys. To simulate proofs, however, we can set up crs in a way that we know csk
corresponding to cpk, compute the “shift amount” and use it as a satisfying wit-
ness for the second clause in the OR statement. Under this strategy, the witness
indistinguishability of the underlying argument system for L′, the crs indistin-
guishability provided by the proof of knowledge property, and the secret-key to
public-key homomorphism of Σ guarantees the zero-knowledge property of our
argument system for L.

What remains is to argue that we can use the extractor of the underlying ar-
gument system for L′ as an extractor for L in the simulation sound extractability
setting. In fact, under the strategy we use, we never have to simulate proofs for
statements outside L′ which is sufficient for the extractor for L′ to work with
overwhelming probability. Furthermore, we can show that the probability to
extract a valid witness for the second clause in the OR statement is negligible,
as this either yields a forgery with respect to Σot under some pkot previously
obtained from the simulator (if the adversary modified any of the non-malleable
parts of a proof previously obtained via the simulator) or for Σ under cpk (if
pkot has never been certified). Now we know, however, that the extractor for
L′ works with overwhelming probability by definition, which means that we will
extract a satisfying witness for x ∈ L with overwhelming probability.

3.4.2 Formal Security Proof

We show that Scheme 3.12 is secure by proving the following theorem.

11 We however note that the schemes which use encryption can actually achieve a stronger
simulation sound extractability notion. For example, in [Gro06] the adversary also receives
the extraction trapdoor.

12 Σot is only required as the signatures produced by Σ may be malleable on their own.
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Setup(1κ) : Run crsΠ ← Π.Setup(1κ), (csk, cpk) ← Σ.KeyGen(1κ) and return crs ← (

crsΠ, cpk).

Proof(crs, x, w) : Run (sk, pk) ← Σ.KeyGen(1κ), (skot, pkot) ← Σot.KeyGen(1κ), and

return π ← (πΠ, pk, σ, pkot, σot), where

πΠ ← Π.Proof(crs, (x, cpk, pk), (w,⊥)), σ ← Σ.Sign(sk, pkot), and

σot ← Σot.Sign(skot, πΠ||x||pk||σ).

Verify(crs, x, π) : Parse π as (πΠ, pk, σ, pkot, σot) and return 1 if the following holds and

0 otherwise:

Π.Verify(crs, (x, cpk, pk), πΠ) = 1 ∧ Σ.Verify(pk, pkot) = 1 ∧

Σot.Verify(pkot, πΠ||x||pk||σ) = 1.

S1(1κ) : Run (crsΠ,⊥) ← Π.E1(1κ), (csk, cpk) ← Σ.KeyGen(1κ) and return (crs, τ),

where

crs← (crsΠ, cpk) and τ ← csk.

S2(crs, τ, x) : Parse τ as csk, run (sk, pk) ← Σ.KeyGen(1κ), (skot, pkot) ← Σot.KeyGen(

1κ), and return π ← (πΠ, pk, σ, pkot, σot), where

πΠ ← Π.Proof(crs, (x, cpk, pk), (⊥, csk− sk)), σ ← Σ.Sign(sk, pkot), and

σot ← Σot.Sign(skot, πΠ||x||pk||σ).

S(1κ) : Run (crsΠ, ξ) ← Π.E1(1κ), (csk, cpk) ← Σ.KeyGen(1κ) and return (crs, τ, ξ),

where

crs← (crsΠ, cpk) and τ ← csk.

E(crs, ξ, x, π) : Run (w,⊥)← Π.E2(crs, ξ, x, π) and return w.

Scheme 3.12: Simulation sound extractable argument system Πsse.

Theorem 3.7. Let Π be a complete, witness indistinguishable non-interactive
argument system that admits proofs of knowledges for the language L′, let Σ be
an EUF-CMA secure signature scheme that adapts signatures, and let Σot be a
strong one-time signature scheme, then the argument system Πsse is a complete,
simulation sound extractable argument system for language L.

We show that Theorem 3.7 holds by proving the subsequent lemmas.

Lemma 3.29. If Π is complete and Σ is correct, Πsse is complete.

The lemma above follows from inspection and the proof is therefore omitted.

Lemma 3.30. If Π is witness indistinguishable and admits proofs of knowl-
edge, and Σ provides a secret-key to public-key homomorphism, then Πsse is
zero-knowledge.
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Proof. We prove that zero-knowledge follows from witness indistinguishability.

Game 0: The zero-knowledge game, where we use the real Proof(crs, ·, ·) algo-
rithm on witnesses (w,⊥) to reply to queries of the adversary.

Game 1: As Game 0, but we store csk upon Setup.

Transition Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].

Game 2: As Game 1, but use the following modified Proof algorithm Proof′

which additionally takes csk as input:

Proof′(crs, x, w, csk ) : Run (sk, pk) ← Σ.KeyGen(1κ), (skot, pkot) ←
Σot.KeyGen(1κ), and return π ← (πΠ, pk, σ, pkot, σot), where

πΠ ← Π.Proof(crs, (x, cpk, pk), (⊥, csk− sk) ), σ ← Σ.Sign(sk, pkot), and

σot ← Σot.Sign(skot, πΠ||x||pk||σ).

Transition - Game 1 → Game 2: We present a hybrid game which shows that
both games are indistinguishable under the witness indistinguishability of the
argument system. First, we conceptually change the Setup algorithm to Setup′

which obtains crsΠ from a witness indistinguishability challenger:

Setup′(1κ) : Run crsΠ ← Cwi
κ , (csk, cpk) ← Σ.KeyGen(1κ), return crs ← (

crsΠ, cpk).

The change above is only conceptual. Furthermore, we use the following
Proof′′ algorithm instead of Proof′:

Proof′′(crs, x, w, csk ) : Run (sk, pk) ← Σ.KeyGen(1κ), (skot, pkot) ←
Σot.KeyGen(1κ), and return π ← (πΠ, pk, σ, pkot, σot), where

πΠ ← Cwi
κ ((x, cpk, pk), (w,⊥), (⊥, csk− sk)) , σ ← Σ.Sign(sk, pkot), and

σot ← Σot.Sign(skot, πΠ||x||pk||σ).

Now depending of whether the challenger uses the first witness (b = 0) or the
second witness (b = 1) we either simulate Game 1 or Game 2. More precisely,
Proof′′ produces the identical distribution as Proof if b = 0 and the identical
distribution to Proof′ if b = 1. That is |Pr[S1]− Pr[S2]| ≤ εwi(κ).

Game 3: As Game 2, but we further modify Proof ′ to Proof ′′′ so that it no
longer takes w as input:
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Proof′′′(crs, x, csk) : Run (sk, pk) ← Σ.KeyGen(1κ), (skot, pkot) ← Σot.Key-
Gen(1κ), and return π ← (πΠ, pk, σ, pkot, σot), where

πΠ ← Π.Proof(crs, (x, cpk, pk), (⊥, csk− sk)), σ ← Σ.Sign(sk, pkot), and

σot ← Σot.Sign(skot, πΠ||x||pk||σ).

Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S2] = Pr[S3].

Game 4: As Game 3, but instead of obtaining crs using Setup, we obtain
(crs, τ) ← S1 (observe that τ = csk, so we still know csk). Now the setup
is already as in the second distribution of the zero-knowledge game.

Transition - Game 3 → Game 4: A crs output by S1 is indistinguishable from
an honest crs under the CRS indistinguishability provided by the proof of
knowledge property (observe that S1 internally uses E1 to obtain crs). Thus,
|Pr[S3]− Pr[S4]| ≤ εpok1(κ).

Game 5: As Game 4, but we further modify Proof′′′ to Proof′′′′ as follows:

Proof′′′′(crs, τ , x) : Parse τ as csk . Run (sk, pk) ← Σ.KeyGen(1κ), (skot,
pkot)← Σot.KeyGen(1κ), and return π ← (πΠ, pk, σ, pkot, σot), where

πΠ ← Π.Proof(crs, (x, cpk, pk), (⊥, csk− sk)), σ ← Σ.Sign(sk, pkot), and

σot ← Σot.Sign(skot, πΠ||x||pk||σ).

Now Proof′′′′ is equivalent to S2.

Transition - Game 4 → Game 5: This change is conceptual, i.e., Pr[S4] = Pr[S5].

In Game 0 we simulate the first distribution of the zero-knowledge game whereas
in Game 5 we simulate the second distribution. We have that |Pr[S0]−Pr[S5]| ≤
εwi(κ) + εpok1(κ) which concludes the proof.

Now, we have already established the existence of a simulator by proving zero-
knowledge and can go on by proving simulation sound extractability.

Lemma 3.31. If Π is witness indistinguishable and admits proof of knowledge
and Σ is EUF-CMA secure and adapts signatures, then Πsse is simulation sound
extractable.

Proof. We show that even when the adversary sees simulated proofs for arbi-
trary statements, we are still able to extract a witness w from a proof π? for
a statement x? so that R(x?, w) = 1 as long as (x?, π?) does not correspond to
a query-answer pair of the simulation oracle. By Lemma 3.30, we know that
(S1,S2) is a suitable zero-knowledge simulator. In addition, we observe that
the output of S is identical to S1 when restricted to (crs, τ). This completes
CRS indistinguishability part of the proof. To prove the second part of simu-
lation sound extractability we proceed using a sequence of games where we let
q ≤ poly(κ) be the number of queries to the simulator.
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Game 0: The original simulation sound extractability game.

Game 1: As Game 0, but we engage with an EUF-CMA challenger within S.
That is, we execute the following modified S algorithm S′:

S′(1κ) : Run (crsΠ, ξ)← Π.E1(1κ), cpk← Cf
κ , and return (crs, τ, ξ), where

crs← (crsΠ, cpk) and τ ← ⊥.

This also requires us to modify the S2 algorithm used for simulation to obtain
S′2. Essentially, we leverage the adaptability of signatures to shift signatures
obtained from the signing oracle provided by the EUF-CMA challenger under
cpk to signatures under a random key. The “shift-amount” is then a valid
witness for the relation.

S′2(crs, x) : Obtain sk′←R H, pk← cpk · µ(sk′) . Further, run (skot, pkot) ←
Σot.KeyGen(1κ), and return π ← (πΠ, pk, σ, pkot, σot), where

πΠ ← Π.Proof(crs, (x, cpk, pk), (⊥, −sk′ )), σ′ ← Cf
κ.Sign(pkot) ,

(σ,⊥)← Σ.Adapt(cpk, pkot, σ
′, sk′) , and

σot ← Σot.Sign(skot, πΠ||x||pk||σ).

Transition - Game 0 → Game 1: Under adaptability of signatures, this change
is only conceptual, i.e., Pr[S0] = Pr[S1].

Game 2: As Game 1, but we further modify S′2 to S′′2 as follows: we engage
with a strong one-time signature challenger in each call and keep a mapping
from challengers to keys.

S′′2(crs, x) : Obtain sk′←R H, pk ← cpk · µ(sk′). Further, obtain pkot ← Cot
κ

and return π ← (πΠ, pk, σ, pkot, σot), where

πΠ ← Π.Proof(crs, (x, cpk, pk), (⊥,−sk′)), σ′ ← Cf
κ.Sign(pkot),

(σ,⊥)← Σ.Adapt(cpk, pkot, σ
′, sk′), and

σot ← Cot
κ .Sign(πΠ||x||pk||σ) .

Transition - Game 1 → Game 2: This change is conceptual, i.e., Pr[S1] = Pr[S2].

Game 3: As Game 2, but we assume that E2 used inside E does not fail to
extract a valid witness with respect to L′ (i.e., we abort if it fails).

Transition - Game 2 → Game 3: We bound the probability that the adversary
outputs a tuple (x?, π?) in Game 3 so that E2 fails. We refer to this event as F1.
For the sake of contradiction assume that Pr[F1] is non-negligible. Then we
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could obtain crsΠ from a proof of knowledge challenger and set ξ ← ⊥ within
S′1. Whenever the adversary outputs (x?, π?) we output it to the challenger.
Now, the probability for our reduction to win the proof of knowledge game is
exactly Pr[F1]. That is, we have that |Pr[S2]− Pr[S3]| ≤ εe2(κ).

Game 4: As Game 3, but we assume that for every tuple (x?, π?) output by the
adversary, E never fails to output a witness w so that R(x,w) = 1 (i.e., we
abort if it fails).

Transition Game 3 → Game 4: We bound the probability that the adversary
manages to come up with a tuple (x?, π?), where π? = (π?Π, pk?, σ?, pk?ot, σ

?
ot),

so that we extract (⊥, ske) ← E2(crs, ξ, x?, π?) inside E. We refer to this
event as F2. If F2 happens, we obtain a signature (σf , cpk) ← Σ.Adapt(pk?,
pk?ot, σ

?, ske). By definition of the game we know that (x?, π?) is not a query-
answer pair of the simulator. Thus, we have two cases: (1) A signature on pk?ot

was never obtained from the EUF-CMA challenger and we can output (pk?ot, σf)
as a valid EUF-CMA forgery. (2) A signature on pk?ot was previously obtained.
Then we have by definition that either π?Π||x?||pk?||σ? or σ?ot is different from
the tuple signed by the strong one-time signature challenger upon simulation
and we can output (π?Π||x?||pk?||σ?, σ?ot) as a forgery for the strong one-time
signature scheme to the respective challenger. Taking the union bound yields
|Pr[S3]− Pr[S4]| ≤ q · εot(κ) + εf(κ).

In Game 4, we always extract a witness w such that R(x?, w) = 1, i.e., Pr[S4] = 0;
Game 0 and Game 4 are computationally indistinguishable. Overall, we obtain
Pr[S0] ≤ q · εot(κ) + εf(κ) + εe2(κ), which completes the proof.

3.4.3 Weak Simulation Sound Extractability

If one allows the proofs to be malleable and only requires non-malleability with
respect to the statements one can omit the strong one-time signature scheme
and directly sign πΠ||x||pk using Σ. We refer to this modified argument system
as Πwsse.

Theorem 3.8. Let Π be a complete, witness indistinguishable non-interactive
argument system that admits proofs of knowledges for the language L′, and let Σ
be an EUF-CMA secure signature scheme that adapts signatures, then the argu-
ment system Πwsse is a complete, weakly simulation sound extractable argument
system for language L.

Proof (Sketch). The proof is exactly the same as the one for simulation sound
extractability above, except that we do not need to engage with challengers for
the one-time signature scheme (i.e., in Game 2 nothing is changed) and Pr[F2]
is exactly the same as extracting a forgery for Σ in the transition between Game
3 and Game 4.
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3.4.4 Signatures of Knowledge

Also note that using our techniques in a non-black-box way directly yields sig-
natures of knowledge [CL06]. That is, a signature of knowledge on a message
m with respect to statement x is simply a proof with respect to x, where
m is additionally included upon computing the signature using Σot, i.e., one
signs πΠ||x||pk||σ||m. Then one obtains signatures of knowledge in the strong
sense [BCC+15], where even the signature (i.e., the proof) is non-malleable.
If security in the original sense—the counterpart of weak simulation-sound ex-
tractability where the signature (i.e., the proof π) itself may be malleable—is
sufficient, one can even omit the strong one-time signature scheme and directly
sign πΠ||x||pk||m using Σ.

As already mentioned in [CL06], a straight forward application of signatures
of knowledge is the construction of ring signatures. Obtaining such a construc-
tion based on our techniques presented in this section can thus be seen as an
alternative to the direct construction in Section 4.1.

3.4.5 Discussion

Our technique provides nice properties when it comes to converting Groth-Sahai
proofs [GS08] over pairing product equations to simulation-sound extractable
arguments of knowledge. We can use Waters’ signatures as described in Sec-
tion 3.2.2. Here the secret keys as well as the shift amounts are group elements
and the required relations can be proven using a few simple pairing product
equations. Thus our technique constitutes an alternative to known techniques
and yields conceptually simpler constructions with favorable properties regard-
ing efficiency when, e.g., compared to [Gro06] for applications of SSE NIZKs
where the adversary is not required to get the extraction trapdoor, or compared
to [BFG13] for signatures of knowledge without random oracles. We also note
that achieving SSE NIZK where the adversary also gets the extraction trapdoor
seems to crucially require to use encryption. Nevertheless, our techniques might
still be useful to simplify the statement which needs to be proven in construc-
tions satisfying the stronger notion, i.e., the statement can be with respect to
the encrypted shift amount instead of an encrypted signature.
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Signatures with Signer Privacy

In this section we present our results on signature schemes which address privacy
issues with respect to the signer. We start by presenting a ring signature scheme,
which builds upon our results on key-homomorphic signatures, in Section 4.1.
After that, in Section 4.2, we present the most efficient dynamic group signature
scheme known to date, which provides security in the strong security model by
Bellare et al. [BSZ05].

4.1 Ring Signatures

Ring signature schemes [RST01] allow a member of an ad-hoc group R (the so
called ring), defined by the member’s public verification keys, to anonymously
sign a message on behalf of R. Given a ring signature and all public keys for
R, one can verify the validity of such a signature with respect to R, but it
is infeasible to identify the actual signer. Due to this anonymity feature ring
signatures have proven to be an interesting tool for numerous applications, most
notable for whistleblowing. The two main lines of work in the design of ring
signatures target reducing the signature size or removing the requirement for
random oracles (e.g., [DKNS04, CGS07, GK15]).

Contribution. As already briefly mentioned in Section 3.2, we present another
application of our framework for key-homomorphic signatures in this section. In
particular, we propose a generic compiler turning any EUF-CMA secure signature
scheme which adapts signatures together with a suitable witness indistinguish-
able non-interactive proof system into a ring signature scheme. Our compiler
yields ring signatures with linear signature size. It provides an alternative very
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simple generic framework to construct ring signatures in addition to existing
ones (cf. [BKM09, BK10]). Using our results from Section 3.2, we obtain var-
ious novel instantiations. Most notably, using Waters’ signatures and witness
indistinguishable Groth-Sahai proofs we obtain an efficient instantiation which
does not require random oracles.

4.1.1 Formal Security Model

We now formally define ring signature schemes (adopting [BKM09]) and note
that the model implicitly assumes knowledge of secret keys [RY07] as discussed
in Section 3.2.

Definition 4.1. A ring signature scheme RiS is a tuple RiS = (Setup,Gen,Sign,
Verify) of PPT algorithms, which are defined as follows.

Setup(1κ) : This algorithm takes as input a security parameter κ and outputs
public parameters PP.

Gen(PP) : This algorithm takes as input the public parameters PP and outputs a
key pair (sk, pk).

Sign(PP, ski,m,R) : This algorithm takes as input the public parameters PP, a
secret key ski, a message m ∈ M and a ring R = (pkj)j∈[n] of n public keys
such that pki ∈ R. It outputs a signature σ.

Verify(PP,m, σ,R) : This algorithm takes as input the public parameters PP, a
message m ∈M, a signature σ and a ring R. It outputs a bit b ∈ {0, 1}.

A secure ring signature scheme needs to be correct, unforgeable, and anonymous.
While we omit the obvious correctness definition, we provide formal definitions
for the remaining properties following [BKM09]. We note that Bender et al.
in [BKM09] have formalized multiple variants of these properties, where we
always use the strongest one.

Unforgeability requires that without any secret key ski that corresponds to
a public key pki ∈ R, it is infeasible to produce valid signatures with respect to
arbitrary such rings R.

Definition 4.2 (Unforgeability). A ring signature scheme provides unforgeabil-
ity, if for all PPT adversaries A, there exists a negligible function ε(·) such that
it holds that

Pr

 {(sk, pk)← Gen(1κ)}i∈[poly(κ)],
O ← {Sig(·, ·, ·),Key(·)},
(m?, σ?,R?)← AO({pki}i∈[poly(κ)])

:
Verify(m?, σ?,R?) = 1 ∧

(·,m?,R?) /∈ QSign ∧
R? ⊆ {pki}i∈[poly(κ)]\QKey

 ≤ ε(κ),

where Sig(i,m,R) := Sign(ski,m,R), Sig returns ⊥ if pki /∈ R ∨ i /∈ [poly(κ)],
and QSig records the queries to Sig. Furthermore, Key(i) returns ski and QKey

records the queries to Key.
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Anonymity requires that it is infeasible to tell which ring member produced a
certain signature as long as there are at least two honest members in the ring.

Definition 4.3 (Anonymity). A ring signature scheme provides anonymity, if
for all PPT adversaries A there exists a negligible function ε(·) such that it holds
that

Pr


{(ski, pki)← Gen(1κ)}i∈[poly(κ)],
b←R {0, 1}, O ← {Sig(·, ·, ·)},
(m, j0, j1,R, st)← AO({pki}i∈[poly(κ)]),
σ ← Sign(skjb ,m,R), b? ← AO(st, σ, {ski}i∈[poly(κ)])

:

b = b? ∧
{pkj0 , pkj1} ⊆ R

 ≤ 1/2 + ε(κ),

where Sig(i,m,R) := Sign(ski,m,R).

4.1.2 Our Construction

In Scheme 4.1 we present our black-box construction of ring signatures from
any Φ+-key-homomorphic EUF-CMA secure signature scheme Σ with adaptable
signatures and any witness indistinguishable argument system Π that admits
proofs of knowledge. The idea behind the scheme is as follows. A ring signature
for message m with respect to ring R consists of a signature for m||R using Σ
with a randomly generated key pair together with a proof of knowledge attesting
the knowledge of the “shift amount” from the random public key to (at least)
one of the public keys in R.1 Very briefly, unforgeability then holds because—
given a valid ring signature—one can always extract a valid signature of one of
the ring members. Anonymity holds because the witness indistinguishability of
the argument system guarantees that signatures of different ring members are
indistinguishable.

Upon signing, we need to prove knowledge of a witness for the following NP
relation R.

((pk, cpk,R), sk′) ∈ R ⇐⇒ ∃ pki ∈ R ∪ {cpk} : pki = pk · µ(sk′)

For the sake of compactness, we assume that the relation is implicitly defined
by the scheme. One can obtain a straight forward instantiation by means of
disjunctive proofs of knowledge [CDS94] (similar as it is done in many known
constructions). Therefore one could use the following NP relation R.

((pk, cpk,R), sk′) ∈ R ⇐⇒
(
∨pki∈R pki = pk · µ(sk′)

)
∨ cpk = pk · µ(sk′)

Using this approach, however, yields signatures of linear size. To reduce the
signature size, one could, e.g., follow the approach of [DKNS04].

1 For technical reasons we need an additional public key cpk in the public parameters.
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Setup(1κ) : Run crs ← Π.Setup(1κ), (csk, cpk) ← KeyGen(1κ), set PP ← (1κ, crs, cpk)

and return PP.

Gen(PP) : Run (ski, pki)← Σ.KeyGen(1κ) and return (ski, pki).

Sign(PP, ski,m,R) : Parse PP as (1κ, crs, cpk) and return ⊥ if µ(ski) /∈ R. Otherwise,

return σ ← (δ, pk, π), where

(sk, pk)← KeyGen(1κ), δ ← Σ.Sign(sk,m||R), and

π ← Π.Proof(crs, (pk, cpk,R), (ski − sk)).

Verify(PP,m, σ,R) : Parse PP as (1κ, crs, cpk) and σ as (δ, pk, π) and return 1 if the

following holds, and 0 otherwise:

Σ.Verify(pk,m||R, δ) = 1 ∧ Π.Verify(crs, (pk, cpk,R), π) = 1.

Scheme 4.1: Black-Box construction of ring signatures.

Theorem 4.1. If Σ is correct, EUF-CMA secure, and provides adaptability of
signatures, Π is complete and witness indistinguishable and admits proofs of
knowledge, then Scheme 4.1 is correct, unforgeable, and anonymous.

We show that Theorem 4.1 holds by proving the subsequent lemmas.

Lemma 4.1. If Σ is correct, and Π is complete, then Scheme 4.1 is correct.

Lemma 4.1 follows from inspection and the proof is therefore omitted.

Lemma 4.2. If Σ is EUF-CMA secure, and provides adaptability of signatures,
and Π is witness indistinguishable, then Scheme 4.1 is unforgeable.

Proof. We prove unforgeability using a sequence of games where we let qs ≤
poly(κ) be the number of Sign queries.

Game 0: The original unforgeability game.

Game 1: As Game 0, but upon setup we store csk and simulate Sign using the
following modified algorithm Sign′, which additionally takes csk as input:

Sign′(PP, ski,m,R, csk ) : Parse PP as (1κ, crs, cpk) and return ⊥ if µ(ski) /∈ R.
Otherwise, return σ ← (δ, pk, π), where

(sk, pk)← KeyGen(1κ), δ ← Σ.Sign(sk,m||R), and

π ← Π.Proof(crs, (pk, cpk,R), ( csk − sk)).

Transition - Game 0 → Game 1: A distinguisher betweenD0→1 is a distinguisher
for adaptive witness indistinguishability of Π, i.e., |Pr[S0]−Pr[S1]| ≤ εwi(κ).
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Game 2: As Game 1, but instead of generating crs upon setup, we obtain
(crs, ξ)← Π.E1(1κ) and store ξ.

Transition - Game 1 → Game 2: A distinguisher between Game 1 and 2 distin-
guishes an honest crs from an extraction crs, i.e., |Pr[S1]− Pr[S2]| ≤ εe1(κ).

Game 3: As Game 2, but whenever the adversary outputs a forgery (m?, σ?,
R?), where σ? = (δ?, pk?, π?) we extract a witness sk′ ← Π.E2(crs, ξ, (pk?,
cpk,R?), π?) and abort if the extractor fails.

Transition - Game 2 → Game 3: Game 2 and Game 3 proceed identically, un-
less the extractor fails, i.e., |Pr[S2]− Pr[S3]| ≤ εe2(κ).

Game 4: As Game 3, but we further modify Sign′ to Sign′′ as follows:

Sign′′(PP, i ,m,R, csk) : Parse PP as (1κ, crs, cpk) and return ⊥ if pki /∈ R.
Otherwise, return σ ← (δ, pk, π), where

sk←R H, δ′ ← Σ.Sign(csk,m||R) ,

(pk, δ)← Σ.Adapt(cpk,m||R, δ′,−sk) , and

π ← Π.Proof(crs, (pk, cpk,R), ( sk )).

Transition - Game 3 → Game 4: Under adaptability of signatures, this game
change is conceptual, i.e., Pr[S3] = Pr[S4].

Game 5: As Game 4, but we abort whenever we extract an sk′ so that cpk =
pk · µ(sk′).

Transition - Game 4 → Game 5: Game 4 and Game 5 proceed identical, unless
abort event E1 happens. For the sake of contradiction assume that E1 oc-
curs with non-negligible probability. Then we can engage with an EUF-CMA
challenger Cf

κ to obtain cpk upon setup and simulate Sign using the algorithm
Sign′′′ as follows:

Sign′′′(PP, i,m,R, ⊥ ) : Parse PP as (1κ, crs, cpk) and return ⊥ if pki /∈ R.
Otherwise, return σ ← (δ, pk, π), where

sk←R H, δ′ ← Cκf .Sign(m||R) ,

(pk, δ)← Σ.Adapt(cpk,m||R, δ′,−sk), and

π ← Π.Proof(crs, (pk, cpk,R), (sk)).

Now, whenever E1 happens, we use the forgery (m?, σ?,R?), where σ? =
(δ?, pk?, π?) to obtain (cpk, δ)← Adapt(pk,m?||R?, δ?, sk′) and return (m?||R?,
δ) as an EUF-CMA forgery to Cκf with probability Pr[E1]. That is, |Pr[S4]−
Pr[S5]| ≤ εf(κ).
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Game 6: As Game 5, but we guess the index i? the adversary will attack at the
beginning of the game, and abort if our guess is wrong.

Transition - Game 5 → Game 6: The success probability in Game 5 is the same
as in Game 6, unless our guess is wrong, i.e., Pr[S6] = 1

poly(κ) · Pr[S5].

Game 7: As Game 6, but instead of running KeyGen for user i?, we engage with
an EUF-CMA challenger of Σ to obtain pki? .

Transition - Game 6 → Game 7: This change is conceptual, i.e., Pr[S6] = Pr[S7].

If the adversary outputs a forgery (m?, σ?,R?) in Game 7, we compute (pki? , σi?)←
Adapt(pk?,m?||R?, δ?, sk′) and return (σi? ,m

?||R?) as a valid forgery for Σ. That
is, Pr[S7] ≤ εf(κ) and we obtain Pr[S0] ≤ poly(κ)·εf(κ)+εwi(κ)+εe1(κ)+εe2(κ)+
εf(κ) as a bound for the success probability which concludes the proof.

Lemma 4.3. If Σ provides adaptability of signatures and Π is witness indistin-
guishable, then Scheme 4.1 is anonymous.

Proof. We show that a simulation of the anonymity game for b = 0 is indistin-
guishable from a simulation of the anonymity game with b = 1.

Game 0: The anonymity game with b = 0.

Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs
from a witness indistinguishability challenger Cwi

κ upon Setup.

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].

Game 2: As Game 1, but instead of obtaining σ via Sign, we execute the fol-
lowing modified algorithm Sign′, which, besides PP, m and R, takes sk0 and
sk1 as input:

Sign′(PP, sk0, sk1,m,R) : Parse PP as (1κ, crs) and return ⊥ if µ(sk0) /∈
R ∨ µ(sk1) /∈ R . Otherwise, return σ ← (δ, pk, π), where

(sk, pk)← Σ.KeyGen(1κ), δ ← Σ.Sign(sk,m||R), and

π ← Π.Proof(crs, (pk,R), ( sk1 − sk)).

Transition - Game 1 → Game 2: A distinguisher betweenD1→2 is a distinguisher
for adaptive witness indistinguishability of Π, i.e., |Pr[S2]−Pr[S1]| ≤ εwi(κ).

In Game 2, we have a simulation for b = 1; |Pr[S2] − Pr[S0]| ≤ εwi(κ), which
proves the lemma.
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4.2 Dynamic Group Signatures

Group signatures, initially introduced by Chaum and van Heyst [CvH91], allow
a group manager to set up a group so that every member of this group can
later anonymously sign messages on behalf of the group. Thereby, a dedicated
authority (called opening authority) can open a given group signature to deter-
mine the identity of the actual signer. Group signatures were first rigorously
formalized for static groups by Bellare et al. in [BMW03]. In this setting, all
members are fixed at setup and also receive their honestly generated keys at
setup from the group manager. This model was later extended to the dynamic
case by Bellare et al. in [BSZ05] (henceforth denoted by BSZ model), where new
group members can be dynamically and concurrently enrolled to the group. Fur-
ther, it separates the role of the issuer and the opener so that they can operate
independently. Moreover, the BSZ model requires a strong anonymity notion,
where anonymity of a group signature is preserved even if the adversary can
see arbitrary key exposures and arbitrary openings of other group signatures.
A slightly weaker model, which is used to prove the security (and in particu-
lar anonymity) of the popular BBS group signature scheme was introduced by
Boneh et al. [BBS04]. This model is a relaxation of the BSZ model, and in
particular weakens anonymity so that the adversary can not request openings
for signatures. As it is common, we refer to this anonymity notion as CPA-full
anonymity, whereas we use CCA2-full anonymity to refer to anonymity in the
sense of BSZ.

Over the years, two main construction paradigms for group signatures have
been established. The first one is the widely used sign-encrypt-prove (SEP)
paradigm [CS97]. Here, a signature is essentially an encrypted membership
certificate together with a signature of knowledge, where the signer demon-
strates knowledge of some signed value in the ciphertext [ACJT00, BBS04, NS04,
BSZ05, KY05, DP06, BW07, BW06, Gro07, LPY15, LLM+16, LMPY16]. As
an alternative to this paradigm, Bichsel et al. in [BCN+10] used an elegant
design paradigm for group signatures which does not require to encrypt the
membership certificate to produce signatures.2 Henceforth we call this paradigm
sign-randomize-proof (SRP). Essentially, they use a signature scheme which sup-
ports (1) randomization of signatures so that multiple randomized versions of
the same signature are unlinkable, and (2) efficiently proving knowledge of a
signed value. In their construction, on joining the group, the issuer uses such a
signature scheme to sign a commitment to the user’s secret key. The user can
then produce a group signature for a message by randomizing the signature and
computing a signature of knowledge on the message, which demonstrates knowl-
edge of the signed secret key. To open signatures, in contrast to constructions
following SEP which support constant time opening by means of decrypting
the ciphertext in the signature, constructions in this paradigm require a linear
scan, i.e., to check a given signature against each potential user. Bichsel et al.

2 Note that a similar paradigm was earlier also used in [ACHdM05]. We note that their scheme
provides the same security guarantees while being less efficient than [BCN+10] which is why
we omit it in our comparison later on.
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proposed an instantiation based on the randomizable pairing-based Camensich-
Lysyanskaya (CL) signature scheme [CL04] (whose EUF-CMA security is based
on the interactive LRSW assumption). Recently, Pointcheval and Sanders [PS16]
proposed another randomizable signature scheme (whose EUF-CMA security is
proven in the generic group model), which allows to instantiate the approach
due to Bichsel et al. more efficiently. We note that while these two existing
constructions do not explicitly use public key encryption, the required assump-
tions for the scheme imply public key encryption. Yet, it seems to be beneficial
regarding performance to avoid to explicitly use public key encryption.

The main drawback of existing constructions following the SRP paradigm is
that they rely on a security model that is weaker than the BSZ model [BSZ05].
In particular, anonymity only holds for users whose keys do not leak. This essen-
tially means that once a user key leaks, all previous signatures of this user can
potentially be attributed to this user. Furthermore, the models used for SRP
constructions so far assume that the opening authority and the issuing author-
ity are one entity, meaning that the issuer can identify all signers when seeing
group signatures. Both aforementioned weakenings can be highly problematic
in practical applications of group signatures. It is thus a natural question to ask
whether it is possible to prove that constructions following the SRP paradigm
provide CPA- or even CCA2-full anonymity. Unfortunately, for existing con-
structions, we have to answer this negatively. Even when allowing to modify the
existing constructions in [ACHdM05, BCN+10, PS16] to allow the explicit use
of encryption upon joining the group (which might solve the separability issue
regarding issuer and opener), it is easy to see that knowledge of the user secret
key breaks CCA2- as well as CPA-full anonymity for both constructions.3 Since
CCA2-full anonymity straight forwardly implies anonymity in the SRP model,
this example confirms that CCA2-full anonymity is a strictly stronger notion.
The notion of CPA-full anonymity is somewhat orthogonal to the anonymity no-
tion used by the SRP model: it appropriately models the leakage of user secret
keys, but restricts the open oracle access. Yet, in practice it seems that the risk
that a user secret key leaks is extremely hard to quantify, which is why we deem
CPA-full anonymity to be more desirable. This is also underpinned by the fact
that—to the best of our knowledge—no attacks arising from the restriction of
the open oracle access in CPA-full anonymity are known.

Motivation. Group signatures have received significant attention from the
cryptographic community and also gain increasing practical relevance due to
technological innovations in intelligent transportation systems (e.g., floating car
data, toll systems) as well as public transportation systems (i.e., smart ticket-
ing), where user privacy is considered to play an important role (cf. EU Directive
2010/40/EU). These developments make it important to have particularly effi-
cient group signature candidates at hand. As an illustrative example for the

3 Each valid group signature contains a valid randomizable signature on the secret key of
the user. Being in possession of secret key candidates allows to simply test them using
the verification algorithm of the randomizable signature scheme. This clearly provides a
distinguisher against CCA2- as well as CPA-full anonymity.
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importance of very fast signature generation and verification times, consider
public transportation system where every user needs to sign on passing a gate.

Despite their increasing practical importance, no progress has been made
with respect to computational efficiency improvements of signature generation
(and verification) of group signature schemes providing the more desirable no-
tions of CPA- as well as CCA2-full anonymity within the last decade. The most
efficient schemes used today are the BBS group signature scheme [BBS04] (which
achieves CPA-full anonymity) and the XSGS group signature scheme [DP06]
(which achieves CCA2-full anonymity).

We tackle the following open questions, which are of both theoretical and
practical interest:

– Is it possible to construct schemes providing the more desirable CPA-full and
CCA2-full anonymity notions, where particularly efficient signature genera-
tion (and verification) is reached by (1) avoiding the explicit encryption of
the membership certificate upon signing, yet (2) allowing to explicitly use en-
cryption during the joining of a group?

– Is it possible to further push the computational efficiency limits of group sig-
nature schemes providing those more desirable anonymity notions?

We, henceforth, refer to such schemes as “without encryption”.

Contribution. We answer both questions posed above to the affirmative by
contributing a novel approach to construct group signatures “without encryp-
tion”. Our approach is a composition of structure preserving signatures on
equivalence classes (SPS-EQ) [HS14, FHS15b], conventional digital signatures,
public key encryption, non-interactive zero-knowledge proofs, and signatures of
knowledge. Although these tools may sound quite heavy, we obtain surprisingly
efficient group signatures, which provably provide CCA2-full anonymity in the
strongest model for dynamic group signatures, i.e., the BSZ model. In doing
so, we obtain the first construction which achieves this strong security notion
without an encrypted membership certificate in the signature. In addition to
that, we introduce an even more efficient CPA-fully anonymous variant of our
scheme.

We proceed in showing how to instantiate our constructions in the random or-
acle model (ROM) to obtain particularly efficient schemes. We are thereby able
to further push the long standing computational efficiency limits for both CPA-
and CCA2-fully anonymous schemes regarding signature generation and verifi-
cation. When comparing to the popular BBS group signature scheme [BBS04]
(which achieves CPA-full anonymity in the ROM), besides being more efficient we
surprisingly even obtain shorter signatures. Ultimately, when comparing to in-
stantiations in the vein of Bichsel et al. (which provide a less desirable anonymity
notion), our instantiations provide comparable computational efficiency.
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4.2.1 Formal Security Model

Below we recall the established model for dynamic group signatures. We follow
Bellare et al. [BSZ05] (BSZ model), with the slight difference that we relax the
perfect correctness to only require computational correctness. Furthermore, we
also present the weaker anonymity notion of CPA-full anonymity from [BBS04]
and the notion of opening soundness [SSE+12], which addresses issues regarding
hijacking of signatures by malicious group members. In particular, we use the
notion of weak opening soundness, where the opening authority is required to
be honest, since we believe that this notion provides a good tradeoff between
computational efficiency of potential instantiations and expected security guar-
antees (even the authors of [SSE+12] say that already weak opening soundness
addresses the attacks they had in mind).

Definition 4.4. A dynamic group signature scheme is a tuple (GKeyGen,UKey-
Gen, Join, Issue,Sign,Verify,Open, Judge) of PPT algorithms which are defined as
follows:

GKeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs
a triple (gpk, ik, ok) containing the group public key gpk, the issuing key ik as
well as the opening key ok.

UKeyGen(1κ) : This algorithm takes a security parameter κ as input and outputs
a user key pair (uski, upki).

Join(gpk, uski, upki) : This algorithm takes the group public key gpk and the
user’s key pair (uski, upki) as input. It interacts with the Issue algorithm
and outputs the group signing key gski of user i on success.

Issue(gpk, ik, i, upki, reg) : This algorithm takes the group public key gpk, the is-
suing key ik, the index i of a user, user i’s public key upki, and the registration
table reg as input. It interacts with the Join algorithm and adds an entry for
user i in reg on success. In the end, it returns reg.

Sign(gpk, gski,m) : This algorithm takes the group public key gpk, a group sign-
ing key gski, and a message m as input and outputs a group signature σ.

Verify(gpk,m, σ) : This algorithm takes the group public key gpk, a message m
and a signature σ as input and outputs a bit b ∈ {0, 1}.

Open(gpk, ok, reg,m, σ) : This algorithm takes the group public key gpk, the open-
ing key ok, the registration table reg, a message m, and a valid signature σ
on m under gpk as input. It extracts the identity of the signer and returns a
pair (i, τ), where τ is a proof.

Judge(gpk,m, σ, i, upki, τ) : This algorithm takes the group public key gpk, a
message m, a valid signature σ on m under gpk, an index i, user i’s pub-
lic key upki, and a proof τ . It returns a bit b ∈ {0, 1}.
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Oracle Definitions. In the following we recall the definitions of the oracles
required by the security model. We assume that the keys (gpk, ik, ok) created in
the experiments are implicitly available to the oracles. Furthermore, the envi-
ronment maintains the sets HU, CU of honest and corrupted users, the set GS of
message-signature tuples returned by the challenge oracle, the lists upk, usk, gsk
of user public keys, user private keys, and group signing keys. The list upk is
publicly readable and the environment also maintains the registration table reg.
Finally, SI represents a list that ensures the consistency of subsequent calls to
CrptU and SndToI. All sets are initially empty and all list entries are initially set
to ⊥. In the context of lists, we use upki, uski, etc. as shorthand for upk[i], usk[i],
etc.

AddU(i) : This oracle takes an index i as input. If i ∈ CU ∪ HU it returns ⊥.
Otherwise it runs (uski, upki)← UKeyGen(1κ) and

(reg, gski)← 〈Issue(gpk, ik, i, upki, reg)↔ Join(gpk, uski, upki)〉.

Finally, it sets HU← HU ∪ {i} and returns upki.

CrptU(i, upkj) : This oracle takes an index i and user public key upkj as input.
If i ∈ CU ∪ HU it returns ⊥. Otherwise it sets CU ← CU ∪ {i}, SI[i] ← > and
upki ← upkj .

SndToI(i) : This oracle takes an index i as input. If SI[i] 6= > it returns ⊥.
Otherwise, it plays the role of an honest issuer when interacting with the
corrupted user i. More precisely, it runs

reg← 〈Issue(gpk, ik, i, upki, reg)↔ A〉.

In the end it sets SI[i]← ⊥.

SndToU(i) : This oracle takes an index i as input. If i /∈ HU it sets HU← HU∪{i},
runs (uski, upki)← UKeyGen(1κ). Then it plays the role of the honest user i
when interacting with a corrupted issuer. More precisely, it runs

gski ← 〈A ↔ Join(gpk, uski, upki)〉.

USK(i) : This oracle takes an index i as input and returns (gski, uski).

RReg(i) : This oracle takes an index i as input and returns regi.

WReg(i, ζ) : This oracle takes an index i and a registration table entry ζ as input
and sets regi ← ζ.

GSig(i,m) : This oracle takes an index i and a message m as input. If i /∈ HU or
gski = ⊥ it returns ⊥ and σ ← Sign(gpk, gski,m) otherwise.

Ch(b, i0, i1,m) : This algorithm takes a bit b, two indexes i0 and i1, and a mes-
sage m as input. If {i0, i1} 6⊆ HU ∨ gski0 = ⊥ ∨ gski1 = ⊥ it returns ⊥.
Otherwise, it computes σ ← Sign(gpk, gskib ,m), sets GS← GS∪{(m,σ)} and
returns σ.
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Open(m,σ) : This oracle takes a message m and a signature σ as input. If
(m,σ) ∈ GS or Verify(gpk,m, σ) = 0 it returns ⊥. Otherwise, it returns
(i, τ)← Open(gpk, ok, reg,m, σ).

Definitions of the Security Notions. We require dynamic group signatures
to be correct, anonymous, traceable, non-frameable, and weakly opening sound.
We recall the formal definitions below.

Correctness, requires that everything works correctly if everyone behaves
honestly. Note that we relax perfect correctness to computational correctness.

Definition 4.5 (Correctness). A GSS is correct, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr

 (gpk, ik, ok)← GKeyGen(1κ), O ← {AddU(·),RReg(·)},
(i?,m?)← AO(gpk), σ ← Sign(gpk, gski? ,m

?),
(j, τ)← Open(gpk, ok, reg,m?, σ)

:

Verify(gpk,m?, σ) = 1 ∧
i? ∈ HU ∧ gski? 6= ⊥ ∧ i? = j ∧
Judge(gpk,m?, σ, i?, upki? , τ) = 1

 ≥ 1− ε(κ).

Anonymity captures the intuition that group signers remain anonymous for ev-
eryone except the opening authority. Thereby, the adversary can see arbitrary
key exposures. Furthermore, in the CCA2 case the adversary can even request
arbitrary openings of other group signatures.

Definition 4.6 (T-Full Anonymity). Let T ∈ {CPA,CCA2}. A GSS is T-fully
anonymous, if for all PPT adversaries A there is a negligible function ε(·) such
that

Pr

[
(gpk, ik, ok)← GKeyGen(1κ), b←R {0, 1},
b? ← AOT(gpk, ik)

: b = b?
]
≤ 1/2 + ε(κ),

where

OT ←


{

Ch(b, ·, ·, ·), SndToU(·),WReg(·, ·),
USK(·), CrptU(·, ·)

}
if T = CPA, and{

Ch(b, ·, ·, ·), Open(·, ·), SndToU(·),
WReg(·, ·), USK(·), CrptU(·, ·)

}
if T = CCA2.

Traceability models the requirement that, as long as the issuer behaves honestly
and its secret key remains secret, every valid signature can be traced back to
a user. This must even hold if the opening authority colludes with malicious
users.

Definition 4.7 (Traceability). A GSS is traceable, if for all PPT adversaries A
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there is a negligible function ε(·) such that

Pr

 (gpk, ik, ok)← GKeyGen(1κ), O ← {SndToI(·), AddU(·),
RReg(·), USK(·), CrptU(·)}, (m?, σ?)← AO(gpk, ok),
(i, τ)← Open(gpk, ok, reg,m?, σ?)

:

Verify(gpk,m?, σ?) = 1 ∧
(Judge(gpk,m?, σ?, i, upki, τ) = 0 ∨

i = ⊥)

 ≤ ε(κ).

Non-frameability requires that no one can forge signatures for honest users.
This must even hold if the issuing authority, the opening authority, and, other
malicious users collude.

Definition 4.8 (Non-Frameability). A GSS is non-frameable, if for all PPT
adversaries A there is a negligible function ε(·) such that

Pr

[
(gpk, ik, ok)← GKeyGen(1κ), O ← {SndToU(·), WReg(·, ·),
GSig(·, ·), USK(·), CrptU(·)}, (m?, σ?, i?, τ?)← AO(gpk, ok, ik)

:

Verify(gpk,m?, σ?) = 1 ∧ i? ∈ HU ∧ gski? 6= ⊥ ∧
i? /∈ USK ∧ (i?,m?) /∈ SIG ∧ Judge(gpk,m?, σ?, i?, upki? , τ

?) = 1

]
≤ ε(κ),

where USK and SIG denote the queries to the oracles USK and Sign, respectively.

Weak opening soundness [SSE+12] essentially requires that no malicious user
can claim ownership of a signature issued by an honest user, as long as the
opening authority behaves honestly.

Definition 4.9 (Weak Opening Soundness). A GSS is weakly opening sound, if
for all PPT adversaries A there is a negligible function ε(·) such that

Pr

 (gpk, ik, ok)← GKeyGen(1κ), O ← {AddU(·)},
(m?, i?, j?, st)← AO(gpk), σ ← Sign(gpk, gski? ,m

?),
τ ← AO(st, σ, gskj?)

:

i? 6= j? ∧
{i?, j?} ⊆ HU ∧

Judge(gpk,m?, σ, j?, upkj? , τ) = 1

 ≤ ε(κ).

4.2.2 Our Construction

Our construction idea is inspired by [HS14], who use the “unlinkability” feature
of SPS-EQ signatures to construct anonymous credentials. Essentially, a creden-
tial in their approach represents a signature for an equivalence class and to show
a credential they always present a newly re-randomized signature to a random
representative of this class. While, due to the intuitive relation of anonymous
credentials and group signatures, it might seem straightforward to map this idea
to group signatures, it turns out that there are various subtle, yet challenging
issues which we need to solve.
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First, the anonymity notion is much stronger than the one of anonymous
credentials in that it does not put many restrictions on the Ch and the USK
oracles. In particular, Ch can be called an arbitrary number of times and USK
can be called for all users. Thus, the user secret keys must be of a form so that
it is possible to embed decision problem instances into them upon simulation,
while not influencing their distribution (as the adversary sees those keys and
would be able to detect the simulation otherwise). More precisely, anonymity
in our paradigm seems to require that the user keys contain no Zp elements,
which, in turn, renders the non-frameability proof more difficult. Second, if
CCA2-full anonymity is required, the simulatability of the open oracle needs to
be ensured, while the reduction must not be aware of the opening information
(as otherwise the reduction could trivially break anonymity on its own and would
be meaningless). This seems to crucially require a proof system providing rather
strong extractability properties. To maintain efficiency, it is important to find
the mildest possible requirement which still allows the security proofs to work
out. Third, the non-frameability adversary is given the issuing key as well as
the opening key. Thus, the reduction must be able to simulate the whole join
process without knowledge of a user secret key in a way that the distribution
change is not even detectable with the knowledge of these keys.

Now, before we present our full construction, we briefly revisit our basic
idea. In our scheme, each group member chooses a secret vector (w, g) ∈ (G∗1)2

representing an equivalence class where the second component g is identical for
all users. When joining the group, a blinded version (w, g)q with q←R Z∗p of this
vector, i.e., another representative of the class, is signed by the issuer using an
SPS-EQ, and, by the re-randomization property of SPS-EQ and the feature to
publicly change representatives of classes, the user thus obtains a signature on
the unblinded key (w, g) using ChgRepR with q−1. To provide a means to open
signatures, a user additionally has to provide an encryption of a value ŵ ∈ G2

such that e(w, ĝ) = e(g, ŵ) on joining (and has to sign the ciphertext as an
identity proof). The group signing key of the user is then the pair consisting
of the vector (w, g) and the SPS-EQ signature on this vector. A group member
can sign a message m on behalf of the group by randomizing its group signing
key and computing a signature of knowledge (SoK) to the message m proving
knowledge of the used randomizer.4 The group signature is then the randomized
group signing key and the SoK.

Very roughly, a signer remains anonymous since it is infeasible to distin-
guish two randomized user secret keys under DDH in G1. The unforgeability
of SPS-EQ ensures that each valid signature can be opened. Furthermore, it is
hard to forge signatures of honest group members since it is hard to unblind
a user secret key under co-CDHI and the SoK essentially ensures that we can
extract such an unblinded user secret key from a successful adversary.

Detailed Construction. We now present the details of our construction

4 For technical reasons and in particular for extractability, we actually require a signature of
knowledge for message m′ = σ1||m, where σ1 contains the re-randomized user secret key
and SPS-EQ signature.

104



4.2. Dynamic Group Signatures

in Scheme 4.2-4.5. In doing so, we also state the NP-relations for the zero-
knowledge proofs used upon Join and Open, and for the signature of knowledge
used upon Sign. For the sake of compactness, we assume that the languages
defined those relations are implicit in the CRSs crsJ, crsO, and crsS, respectively.

We start by presenting the key generation algorithms in Scheme 4.2.

GKeyGen(1κ) : Run BG ← BGGenR(1κ, 3), (skR, pkR) ← KeyGenR(BG, 2), (skO,

pkO) ← Ω.KeyGen(1κ), crsJ ← Π.Setup(1κ), crsO ← Π.Setup(1κ), crsS ← SoK.Set-

up(1κ), set gpk ← (pkR, pkO, crsJ, crsO, crsS), ik ← skR, ok ← skO and return (gpk,

ik, ok).

UKeyGen(1κ) : Return (uski, upki)← Σ.KeyGen(1κ).

Scheme 4.2: Key generation procedures.

On joining the group, a proof for the following NP relation RJ is carried out

((ui, v, ĈJi , pkO), (r, ω)) ∈ RJ ⇐⇒ ĈJi = Ω.Enc(pkO, ĝ
r; ω) ∧ ui = vr.

In Scheme 4.3 we state the joining procedure.

Join(1)(gpk, uski, upki) : Choose q, r←R Z∗p, set (ui, v) ← (gr·q, gq), and output MJ ←
((ui, v), ĈJi , σJi , πJi) and st← (gpk, q, ui, v), where

ĈJi ← Ω.Enc(pkO, ĝ
r; ω), σJi ← Σ.Sign(uski, ĈJi),

πJi ← Π.Proof(crsJ, (ui, v, ĈJi , pkO), (r, ω)).

Issue(gpk, ik, i, upki, reg) : Receive MJ = ((ui, v), ĈJi , σJi , πJi), return reg and send σ′

to user i, where

regi ← (ĈJi , σJi), σ
′ ← SignR((ui, v), skR),

if Π.Verify(crsJ, (ui, v, ĈJi , pkO), πJi) = 1 ∧ Σ.Verify(upki, ĈJi , σJi) = 1, and return

⊥ otherwise.

Join(2)(st, σ′) : Parse st as (gpk, q, ui, v) and return gski, where

gski = ((gr, g), σ)← ChgRepR((ui, v), σ′, q−1, pkR),

if VerifyR((ui, v), σ′, pkR) = 1, and return ⊥ otherwise.

Scheme 4.3: Join procedure.

Upon signature generation and verification, we require a signature of knowl-
edge which is with respect to the following NP relation RS.

((g, h), ρ) ∈ RS ⇐⇒ h = gρ.

In Scheme 4.4 we present the signing and verification procedure.
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Sign(gpk, gski,m) : Choose ρ←R Z∗p, and return σ ← (σ1, σ2), where

σ1 ← ChgRepR(gski, ρ, pkR), ‡ σ2 ← SoK.Sign(crsS, (g, σ1[1][2]), ρ, σ1||m).

Verify(gpk,m, σ) : Return 1 if the following holds, and 0 otherwise:

VerifyR(σ1, pkR) = 1 ∧ SoK.Verify(crsS, (g, σ1[1][2]), σ1||m,σ2) = 1.

‡ Note that gski is of the form ((w, g), σ) and σ1 is a randomization of gski. We slightly
abuse the notation of VerifyR and ChgRepR and input message-signature tuples instead of
separately inputting messages and signatures.

Scheme 4.4: Signing and verification procedures.

Finally, Scheme 4.5 shows the opening procedure. The NP relation RO

corresponding to the proof carried out upon Open is

((ĈJi , pkO, σ), (skO, ŵ)) ∈ RO ⇐⇒ ŵ = Ω.Dec(skO, ĈJi) ∧
pkO ≡ skO ∧ e(σ1[1][1], ĝ) = e(σ1[1][2], ŵ).

Thereby, pk ≡ sk denotes the consistency of pk and sk. Note that σ1 represents
the randomized user secret key, i.e., is of the form ((wρ, gρ), σ′) and consists of a
randomized message vector and a corresponding randomized SPS-EQ signature.
We use σ1[1][j] to refer to the jth element in the (randomized) message vector.

Open(gpk, ok, reg,m, σ) : Parse σ as (σ1, σ2), and ok as skO. Obtain the lowest index

i,§ so that it holds for (ĈJi , σJi) ← regi that ŵ ← Ω.Dec(skO, ĈJi) and e(σ1[1][1],

ĝ) = e(σ1[1][2], ŵ). Return (i, τ) and ⊥ if no such entry exists, where

τ ← (πO, ĈJi , σJi), and πO ← Π.Proof(crsO, (ĈJi , pkO, σ), (skO, ŵ)).

Judge(gpk,m, σ, i, upki, τ) : Parse τ as (πO, ĈJi , σJi), and return 1 if the following holds

and 0 otherwise:

Σ.Verify(upki, ĈJi , σJi) = 1 ∧ Π.Verify(crsO, (ĈJi , pkO, σ), πO) = 1.

§ We assume that the indexes are in ascending order w.r.t. the time of registration.

Scheme 4.5: Opening procedure.

Note that if multiple users collude and use the same value r upon Join(1), we
always return the first user who registered with this particular value r in Open.
Then, Open always returns the signer who initiated the collusion by sharing the
r value, which, we think, is the most reasonable choice. Note that this is in line
with the BSZ model: traceability only requires that every valid signature can be
opened, while not requiring that it opens to one particular user out of the set
of colluding users; correctness and non-frameability are defined with respect to
honest users and are therefore clearly not influenced.

Additional Hardness Assumption. For our construction, we require a novel
assumption which we call computational co-Diffie-Hellman-Inversion (co-CDHI)
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assumption. This assumption constitutes a natural assumption in the Type-3
bilinear group setting, which is implied by an assumption from the Uber as-
sumption family [Boy08].

Definition 4.10 (co-CDHI). The co-CDHI assumption holds relative to BGGen,
if for all PPT adversaries A there exists a negligible function ε(·) such that:

Pr
[
BG← BGGen(1κ, 3), a←R Zp, c? ← A(BG, ga, ĝ

1/a) : c? = g
1/a
]
≤ ε(κ).

To justify its hardness, we state the following additional assumption in the Type-
3 bilinear group setting, which falls into the Uber assumption family [Boy08] with
R = 〈1, 1/b〉, S = 〈1, b〉, T = 〈1〉, and f = b2.

Definition 4.11. Relative to BGGen we have that for all PPT adversaries A
there exists a negligible function ε(·) such that:

Pr
[
BG← BGGen(1κ, 3), b←R Zp, c? ← A(BG, g

1/b, ĝb) : c? = e(g, ĝ)b
2
]
≤ ε(κ).

Lemma 4.4. If the assumption in Definition 4.11 holds, then also the co-CDHI
assumption holds.

Proof. Assume a co-CDHI adversary B. We obtain a problem instance g1/b, ĝb

relative to BG for the problem underlying the assumption in Definition 4.11,
start B(BG, g1/b, ĝb) to obtain c? = gb, and output e(g, ĝ)b

2 ← e(c?, ĝb) with the
same probability as B outputs gb, i.e., breaks co-CDHI.5

Formal Security Proof of Our Scheme. First, note that our Join ↔ Issue
protocol is inherently and trivially concurrently secure: we only have two moves
and non-interactive proofs which means that interleaving different Join↔ Issue
instances is impossible. Thus concurrency issues are implicitly covered by our
further analysis.

Theorem 4.2. If SPS-EQ is correct, SoK is correct, and Π is sound, then the
group signature scheme described in Scheme 4.2-4.5 is correct.

Proof (Sketch). Correctness is straight forward to verify by inspection. We only
have to take care of one detail: There is the possibility that two honest executions
of AddU yield the same value r (which is chosen uniformly at random upon

Join(1)). Thus, the probability of two colliding r is negligible.

Theorem 4.3. If Π is adaptively zero-knowledge, SoK is simulatable, Ω is IND-
CPA secure, SPS-EQ perfectly adapts signatures, and the DDH assumption holds
in G1, then the group signature scheme described in Scheme 4.2-4.5 is CPA-full
anonymous.

5 Note that when writing b as 1/a it is immediate that the input distributions the adversary
sees in both assumptions are the same.
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Theorem 4.4. If Π is adaptively zero-knowledge, SoK is simulatable and straight-
line f -extractable, where f : Zp → G2 is defined as r 7→ ĝr, Ω is IND-CCA2
secure, SPS-EQ perfectly adapts signatures, and the DDH assumption holds in
G1, then the group signature scheme described in Scheme 4.2-4.5 is CCA2-full
anonymous.

Proof (Anonymity). We prove Theorem 4.3 and 4.4 by showing that the output
distributions of the Ch oracle are (computationally) independent of the bit b,

where we highlight the parts of the proof which are specific to Theorem 4.4
and can be omitted to prove Theorem 4.3. Therefore, let qCh ≤ poly(κ) be the
number of queries to Ch, qO ≤ poly(κ) be the number of queries to Open, and
qSndToU ≤ poly(κ) be the number of queries to SndToU.

Game 0: The original anonymity game.

Game 1: As Game 0, but we run (crsJ, τJ) ← Π.S1(1κ) instead of crsJ ←
Π.Setup(1κ) upon running GKeyGen and store the trapdoor τJ. Then, we
simulate all calls to Π.Proof executed in Join using the simulator (without a
witness).

Transition - Game 0 → Game 1: A distinguisher D0→1 is an adversary against
adaptive zero-knowledge of Π, and, therefore, the probability to distinguish
Game 0 and Game 1 is negligible, i.e., |Pr[S1]− Pr[S0]| ≤ εZKJ

(κ).

Game 2: As Game 1, but we run (crsO, τO) ← Π.S1(1κ) instead of crsO ←
Π.Setup(1κ) upon running GKeyGen and store the trapdoor τO. Then, we
simulate all calls to Π.Proof in Open using the simulator (without a witness).

Transition - Game 1 → Game 2: A distinguisher D1→2 is an adversary against
adaptive zero-knowledge of Π, and, therefore, the probability to distinguish
Game 1 and Game 2 is negligible, i.e., |Pr[S2]− Pr[S1]| ≤ εZKO

(κ).

Game 3: As Game 2, but we run (crsS, τS) ← SoK.SimSetup(1κ) instead of
crsS ← SoK.Setup(1κ) upon running GKeyGen and store the trapdoor τS. Then
we simulate all calls to SoK.Sign using the simulator (without a witness).

Transition - Game 2 → Game 3: A distinguisher D2→3 is an adversary against
simulatability of SoK. Therefore, the distinguishing probability is negligible,
i.e., |Pr[S3]− Pr[S2]| ≤ εSIM(κ).

Game 4: As Game 3, but instead of setting (skO, pkO) ← Ω.KeyGen(1κ) in

GKeyGen, we obtain pkO from an IND-CPA ( resp. IND-CCA2 ) challenger and
set skO ← ⊥.
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In the CCA2 case, we additionally maintain secret lists AU and OI, and
upon each call to the SndToU oracle we store AU[i]← (gski, ĈJi) = (((w, g),
σ), ĈJi). Then, we simulate the WReg oracle as follows

WReg(i, ζ) : As the original oracle, but we additionally parse ζ as
(ĈJi , σJi). If there exists an index j so that AU[j][2] = ĈJi , we parse
AU[j][1] as ((w, g), σ) and set OI[i] ← (w,⊥). If there exists no such
index, we obtain ŵ using the decryption oracle and set OI[i]← (⊥, ŵ).

Furthermore, we simulate the Open algorithm within the Open oracle as
follows.

Open(gpk, ok, reg,m, σ) : First, obtain Ψ̂ = ĝρ using the straight-line f -
extractor. Then, obtain the lowest index i where either e(σ1[1][1],
ĝ) = e(σ1[1][2], OI[i][2]) holds, or e(OI[i][1], Ψ̂) = e(σ1[1][1], ĝ) holds.
Compute a simulated proof τ and return (i, τ) and ⊥ if no such index
exists.

If the extractor fails at some point, we choose b←R {0, 1} and return b.

Transition - Game 3 → Game 4 (CPA): In the CPA case, we do not have to
simulate the open oracle, and we only obtain the opening key from an IND-
CPA challenger. Thus, this change is conceptual, i.e., Pr[S3] = Pr[S4].

Transition - Game 3 → Game 4 ( CCA2 ): By the straight-line f -extractability
of the SoK, one can extract a witness ρ in every call to Open with overwhelm-
ing probability 1− εEXT(κ). Thus, both games proceed identically unless the
extraction fails, i.e., |Pr[S3]− Pr[S4]| ≤ qO · εEXT(κ).

Game 5: As Game 4, but we compute the ciphertext ĈJi in the Join algorithm
(executed within the SndToU oracle) as ĈJi ← Ω.Enc(pk, ĝ), i.e., with a con-
stant message that is independent of the user.

Transition - Game 4 → Game 5: A distinguisher D4→5 is a distinguisher for the

IND-CPA ( resp. IND-CCA2 ) game of Ω, i.e., |Pr[S5] − Pr[S4]| ≤ qSndToU ·
εCPA(κ) ( resp. |Pr[S5]− Pr[S4]| ≤ qSndToU · εCCA2(κ) ).6

Game 6: As Game 5, but we re-add skO, i.e., we again obtain (skO, pkO) ←
Ω.KeyGen(1κ). In the CCA2 case, we again decrypt ourselves within the
WReg simulation instead of using the decryption oracle.

Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].

Game 7: As Game 6, but all calls to ChgRepR(M,ρ, pkR) are replaced by
SignR(Mρ, skR).

6 For compactness, we collapsed the qSndToU game changes into a single game change and note
that one can straight forwardly unroll this to qSndToU game changes where a single ciphertext
is exchanged in each game.
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Transition - Game 6 → Game 7: Under perfect adaption of signatures, the out-
put distributions in Game 6 and Game 7 are identical, i.e., Pr[S7] = Pr[S6].

Game 8: As Game 7, but we modify the Ch oracle as follows. Instead of run-
ning σ1 ← SignR(gskib [1]ρ, skR), we choose s, t←R G1, and compute σ1 ←
SignR((t, s), skR).

Transition - Game 7 → Game 8: We claim that |Pr[S7]−Pr[S8]| ≤ qCh·εDDH(κ).
We will below proof this claim separately.

In Game 8, the simulation is independent of the bit b, i.e., Pr[S8] = 1/2; what
remains is to obtain a bound on the success probability in Game 0. In the CPA
case, we have that Pr[S0] ≤ 1/2 + qSndToU · εCPA(κ) + qCh · εDDH(κ) + εZKJ

(κ) +

εZKO
(κ) + εSIM(κ), which proves Theorem 4.3. In the CCA2 case, we have that

Pr[S0] ≤ 1/2 + qSndToU · εCCA2(κ) + qCh · εDDH(κ) + εZKJ
(κ) + εZKO

(κ) + εSIM(κ) +
qO · εEXT(κ), which proves Theorem 4.4.

Proof (of Claim). Below we will show that Game 7 and Game 8 are indistin-
guishable by introducing further intermediate hybrid games.

Game 71: As Game 7, but we introduce a conceptual change which will make
the subsequent distribution changes easier to follow. In particular upon each
SndToU, we modify the simulation of Join so that we no longer choose r←R Zp
to obtain (ui, v)← (gr·q, gq), but choose ζ←R G1 and obtain (ui, v)← (ζq, gq).

Transition - Game 7 → Game 71: This is a conceptual change, i.e., Pr[S7] =
Pr[S71 ]. Observe that we do not need to know r, as the proofs upon Join are
simulated without a witness. Also the user secret keys gski = ((w, g), σ) are
exactly the same as honest secret keys.

Game 7j (2 ≤ j ≤ qCh + 1): As Game 71, but we modify the Ch oracle as fol-
lows. For the first j−1 queries, instead of running σ1 ← SignR(gskib [1]ρ, skR),
we choose s, t←R G1, and compute σ1 ← SignR((t, s), skR).

Transition - 7j → 7j+1 (1 ≤ j ≤ qCh + 1): For each transition, we present a hy-
brid game, which uses a DDH challenger to interpolate between Game 7j and
Game 7j+1. First, we obtain a DDH instance (ga, gb, gc) ∈ G3

1 relative to BG.
Then we proceed as follows:

– Upon each SndToU, we modify the simulation of Join as follows. Let i be
the index of the user to join. We use the random self reducibility of DDH

to obtain an independent DDH instance (ri, si, ti)
RSR← (ga, gb, gc) and set

CH[i]← (ri, si, ti). Then, we let (ui, v)← (rqi , g
q).

– Up to the j − 1st query to Ch (i.e., for all queries where the answers are
already random in Game 7j), we compute σ1 by choosing s, t←R G1, and
compute σ1 ← SignR((t, s), skR).

– Upon the jth query to Ch, we obtain (·, sib , tib) ← CH[ib] and set σ1 ←
SignR((tib , sib), skR).
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– Starting from the j+1st query to Ch (i.e., for all queries where the answers
are still honest in Game 7j), we obtain (rib , ·, ·) ← CH[ib], choose ρ←R Zp
and set σ1 ← SignR((rρib , g

ρ), skR).

In Game 7j the first j − 1 answers are already random due to the previous
switches. Furthermore, the validity of the DDH instance (ga, gb, gc) provided
by the challenger determines whether the answer of Ch for the jth query are
for user ib or random, i.e., if we are in Game j or in Game j + 1. That is,
|Pr[Sj ]− Pr[Sj+1]| ≤ εDDH(κ).

In Game 7qCh+1 all answers of Ch are random, i.e., this Game is equal to Game
8, i.e., Pr[S8] = Pr[7qCh+1]. We can conclude the proof by summing over the
distinguishing probabilities of all game changes which yields |Pr[S7]−Pr[S8]| ≤
qCh · εDDH(κ).

Theorem 4.5. If SPS-EQ is EUF-CMA secure, and Π is sound, then the group
signature scheme described in Scheme 4.2-4.5 is traceable.

Proof (Traceability). We show that traceability holds using a sequence of games,
where we let q ≤ poly(κ) be the number of queries to the SndToI oracle.

Game 0: The original traceability game.

Game 1: As Game 0, but we obtain crsJ from a soundness challenger of Π.

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].

Game 2: As Game 1, but after every successful execution of SndToI, we obtain
ŵ ← Ω.Dec(skO, CJi) and abort if e(ui, ĝ) 6= e(v, ŵ).

Transition - Game 0 → Game 1: If we abort we have a valid proof πJi attesting
that (ui, v, ĈJi , pkO) ∈ LRJ

, but by the perfect correctness of Ω there exists no

ω such that CJi = Ω.Enc(pkO, ĝ
r; ω) ∧ ui = vr, i.e., (ui, v, ĈJi , pkO) is actually

not in LRJ
. Thus, both games proceed identically unless the adversary breaks

the soundness of Π in one oracle query, i.e., |Pr[S1] = Pr[S2]| ≤ q · εS(κ).

Game 3: As Game 2, but we obtain BG and a public key pkR from an EUF-
CMA challenger of the SPS-EQ. Whenever an SPS-EQ signature is required,
the message to be signed is forwarded to the signing oracle provided by the
EUF-CMA challenger.

Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S2] = Pr[S3].

If the adversary eventually outputs a valid forgery (m,σ), we know that σ con-
tains an SPS-EQ signature σ1 for some (gr, g) such that we have never seen a cor-
responding ĝr, i.e., there is no entry i in the registration table where ĈJi contains
ĝr s.t. e(σ1[1][1], ĝ) = e(σ1[1][2], ĝr) holds. Consequently, σ1 is a valid SPS-EQ
signature for an unqueried equivalence class and we have that Pr[S3] ≤ εF(κ).
This yields Pr[S0] ≤ εF(κ) + q · εS(κ), which proves the theorem.
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Theorem 4.6. If Π is sound and adaptively zero-knowledge, SoK is simulatable
and extractable, Σ is EUF-CMA secure, Ω is perfectly correct, and the co-CDHI
assumption holds, then the group signature scheme described in Scheme 4.2-4.5
is non-frameable.

Proof (Non-frameability). We prove non-frameability using a sequence of games.
Thereby we let the number of users in the system be qu ≤ poly(κ).

Game 0: The original non-frameability game.

Game 1: As Game 0, but we guess the index i? that will be attacked by the
adversary. If the adversary attacks another index, we abort.

Transition - Game 0 → Game 1: The winning probability in Game 1 is the same
as in Game 0, unless an abort event happens, i.e., Pr[S1] = Pr[S0] · 1/qu.

Game 2: As Game 1, but we run (crsJ, τJ) ← Π.S1(1κ) instead of crsJ ←
Π.Setup(1κ) upon running GKeyGen and store the trapdoor τJ. Then, we
simulate all calls to Π.Proof in Join using the simulator (without a witness).

Transition - Game 1 → Game 2: A distinguisher D1→2 is an adversary against
adaptive zero-knowledge of Π, and, therefore, the probability to distinguish
Game 1 and Game 2 is negligible, i.e., |Pr[S2]− Pr[S1]| ≤ εZKJ

(κ).

Game 3: As Game 2, but we obtain crsO from a soundness challenger upon
running GKeyGen.

Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S3] = Pr[S2].

Game 4: As Game 3, but we setup the SoK in simulation mode, i.e., we run
(crsS, τS)← SoK.SimSetup(1κ) instead of crsS ← SoK.Setup(1κ) upon running
GKeyGen and store the trapdoor τS. Then, we simulate all calls to SoK.Sign
using the simulator, i.e., without a witness.

Transition - Game 3 → Game 4: A distinguisher D3→4 is an adversary against
simulatability of SoK. Therefore, the distinguishing probability is negligible,
i.e., |Pr[S4]− Pr[S3]| ≤ εSIM(κ).

Game 5: As Game 4, but we choose the values r, q←R Zp used in the Join algo-
rithm (executed within the SndToU oracle) when queried for user with index
i? beforehand and let (ui? , vi?) denote (grq, gq). Then, on every Join (within
SndToU) for a user i 6= i? we check whether we have incidentally chosen the
same class as for user i?. This check is implemented as follows: with ri being
the value for r chosen upon Join for user i, we check whether ui? = vrii? (note
that this check does not require to know the discrete logarithms q and r for
user i?).

Transition - Game 4 → Game 5: Both games proceed identically unless we have
to abort. An abort happens with probability εguess(κ) = qu/p−1 and we have
that |Pr[S4]− Pr[S5]| ≤ εguess(κ).
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Game 6: As Game 5, but we obtain a co-CDHI instance (ga, ĝ1/a) relative to
BG and choose τ ←R Zp. Then, we modify the Join algorithm (executed within
the SndToU oracle) when queried for user with index i? as follows. We set
(ui? , vi?) ← (gτ , ga), and compute ĈJi? ← Ω.Enc(pkO, (ĝ

1/a)τ ) and store τ .
On successful execution we set gski? ← ((ui? , vi?), σ′). Note that πJi? as well
as the signatures in the GSig oracle are already simulated, i.e., the discrete
log of no vi value is required to be known to the environment.

Transition - Game 5 → Game 6: Since τ is uniformly random, we can write it
as τ = ra for some r ∈ Zp. Then it is easy to see that the game change is
conceptual, i.e., Pr[S5] = Pr[S4].

Game 7: As Game 6, but for every forgery output by the A, we extract ρ ←
SoK.Extract(crsS, τS, (g, σ1[1][2]), σ1||m,σ2) and abort if the extraction fails.

Transition - Game 6 → Game 7: By the extractability of the SoK, one can ex-
tract a witness ρ with overwhelming probability 1−εEXT(κ). Thus, both games
proceed identically unless the extractor fails |Pr[S6]− Pr[S7]| ≤ εEXT(κ).

Game 8: As Game 7, but we further modify the Join algorithm when queried
for user with index i? (executed within the SndToU oracle) as follows. Instead
of choosing (uski? , upki?)← UKeyGen(1κ), we engage with an EUF-CMA chal-
lenger, obtain upki? and set uski? ← ∅. If any signature is required, we obtain
it using the oracle provided by the EUF-CMA challenger.

Transition Game 7 → Game 8: This change is conceptual, i.e., Pr[S7] = Pr[S6].

At this point we have three possibilities if A outputs a valid forgery.

1. If a signature for ĈJi? was never requested, A is an EUF-CMA forger for Σ

and the forgery is (ĈJi? , σJi? ). The probability for this to happen is upper
bounded by εf(κ).

2. Otherwise, we know that ĈJi? is honestly computed by the environment
and—by the perfect correctness of Ω—thus contains ĝτ/a, which leaves us
two possibilities:

(a) If e(σ[1][1], ĝ) = e(σ[1][2], ĝτ/a), A is an adversary against co-CDHI,
since we can obtain (((gτ ·1/a, g), σ′)) ← ChgRepR(σ1, ρ

−1, pkR) and

use τ to output (gτ ·1/a)τ
−1

= g1/a. The probability for this to happen
is upper bounded by εco-CDHI(κ).

(b) If e(σ[1][1], ĝ) 6= e(σ[1][2], ĝτ/a), A has produced an opening proof for
a statement which is actually not in LRO

. The probability for this to
happen is upper bounded by εS(κ).

Taking the union bound we obtain εnf8(κ) ≤ εf(κ) + εco-CDHI(κ) + εS(κ), which
yields the following bound for the success probability in Game 1: Pr[S0] ≤
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q · (εnf8(κ) + εZKJ
(κ) + εSIM(κ) + εguess(κ) + εEXT(κ)), which is negligible.7

Theorem 4.7. If Ω is perfectly correct, and Σ is EUF-CMA secure, then the
group signature scheme described in Scheme 4.2-4.5 is weakly opening sound.

Proof (Sketch). Upon honestly executing Join for users i and j, the probability
that their r (resp. ŵ) values collide is negligible. The perfect correctness of Ω
and the EUF-CMA security of Σ thus uniquely determine user i as the signer of σ
with overwhelming probability. Then, it is easy to see that an adversary against
weak opening soundness is an adversary against soundness of Π.

4.2.3 Instantiation in the ROM

To compare our approach to existing schemes regarding signature size and com-
putational effort upon signature generation and verification, we present the
sign and verification algorithms for an instantiation of our scheme with the
SPS-EQ from [HS14, FHS15a, FHS15b], whose security is shown to hold in the
generic group model. We instantiate SoKs in the ROM by applying the trans-
formation from [FKMV12] to Fiat-Shamir (FS) transformed Σ-protocols.

Before we introduce the approaches to obtain CPA-fully (resp. CCA2-fully)
anonymous instantiations, we recall that the group signing key gski consists
of a vector of two group elements (w, g) ∈ (G∗1)2 and an SPS-EQ signature
σ ∈ G1 ×G∗1 ×G∗2 on this vector. Randomization of a gski with a random value
ρ ∈ Z∗p, i.e., ChgRepR, requires 4 multiplications in G1 and 1 multiplication in
G2. Verification of an SPS-EQ signature on gski requires 5 pairings.

We note that the proofs performed within Join and Open can straight for-
wardly be instantiated using standard techniques. Therefore, and since they are
neither required within Sign nor Verify, we do not discuss instantiations here.

CPA-Full Anonymity. In the following, we show how Sign and Verify are
instantiated in the CPA-full anonymity setting. Therefore, let H : {0, 1}∗ → Zp
be a random oracle and let x be the proven statement (which is implicitly defined
by the scheme):

Sign(gpk, gski,m) : Parse gski as ((w, g), σ), choose ρ←R Zp, compute σ1 = ((w′,
g′), σ′) ← ChgRepR(gski, ρ, pkR). Choose ν←R Zp, compute n ← gν , c ←
H(n||σ1||m||x), z ← ν + c · ρ, set σ2 ← (c, z), and return σ ← (σ1, σ2).

Verify(gpk,m, σ) : Parse σ as (σ1, σ2) = (((w′, g′), σ), (c, z)), return 0 if VerifyR(
σ1, pkR) = 0. Otherwise compute n← gz/g′c and check whether c = H(n||σ1||
m||x) holds. If so return 1 and 0 otherwise.

7 We note that we could also write the three cases in the final step as three additional game
changes where we abort upon the respective forgeries. However, we opted for this more
compact presentation, which also gives us the same bound.
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Since the used Σ-protocol is a standard proof of knowledge of the discrete loga-
rithm logg g

′, it is easy to see that applying the transformations from [FKMV12]
yields a SoK in the ROM with the properties we require. All in all, group signa-
tures contain 4 elements in G1, 1 element in G2 and 2 elements in Zp. Counting
only the expensive operations, signing costs 5 multiplications in G1 and 1 mul-
tiplication in G2, and verification costs 2 multiplications in G1 and 5 pairings.

CCA2-Full Anonymity. CCA2-full anonymity requires straight-line extract-
able SoKs, as standard rewinding would lead to an exponential blowup in the
reduction (cf. [BFW15]). One possibility would be to rely on the rather ineffi-
cient approach to straight-line extraction due to Fischlin [Fis05]. However, as
we do not need to straight-line extract the full witness w, but it is sufficient to
straight-line extract an image of w under a one-way function f : ρ 7→ ĝρ, we can
use the notion of straight-line f -extractable SoKs as recently proposed by Cerulli
et al. [BCC+15]. This allows us to still use the FS paradigm with good effi-
ciency. The construction uses the generic conversion in [FKMV12, BPW12]. The
generic trick in [BCC+15] to obtain straight-line f -extractability is by comput-
ing an extractable commitment to the image of the witness w under a function
f with respect to an extraction key in the CRS and proving consistency with
the witness.8

For straight-line extractability, we let ŷ be a public key for the ElGamal vari-
ant in G2 from [BCC+15], which is generated upon SoK.Setup and represents
the CRS of SoK. SoK.SimSetup additionally returns τ such that ŷ = ĝτ . Fur-
thermore, let x be the proven statement (implicitly defined by the scheme and
the generic compiler). Then Sign and Verify are instantiated as follows, where
H : {0, 1}∗ → Zp is modelled as a random oracle:

Sign(gpk, gski,m) : Parse gski as ((w, g), σ), choose ρ←R Zp, compute σ1 = ((w′,

g′), σ′) ← ChgRepR(gski, ρ, pkR). Choose u, ν, η←R Zp, compute (Ĉ1, Ĉ2) =
(ŷu, ĝρĝu), n ← gν , m̂1 ← ŷη, m̂2 ← ĝ(ν+η), c ← H(n||m̂1||m̂2||σ1||m||x),
z1 ← ν+c·ρ, z2 ← η+c·u, set σ2 ← (Ĉ1, Ĉ2, c, z1, z2), and return σ ← (σ1, σ2).

Verify(gpk,m, σ) : Parse σ as (σ1, σ2) = (((w′, g′), σ), (c, z1, z2)), return 0 if Ver-
ifyR(σ1, pkR) = 0. Otherwise compute n ← gz1/g′c, m̂1 ← ŷz2/Ĉc1 , m̂2 ←
ĝ(z1+z2)

/Ĉc2 , and check whether c = H(n||m̂1||m̂2||σ1||m||x) holds. If so return
1 and 0 otherwise.

Note that we additionally require the Σ-protocol to provide quasi-unique re-
sponses [Fis05], i.e., given an accepting proof it should be computationally in-
feasible to find a new valid response for that proof, in order for the compiler in
[BCC+15] to apply.

Lemma 4.5. The above Σ-protocol is perfectly complete, SHVZK, 2-special-
sound and has quasi-unique responses.

8 Note that one can still obtain the full witness w using a rewinding extractor.
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Proof. We investigate all the properties below.

Perfect Completeness. Is straight forward to verify and omitted.

SHVZK. We describe a simulator which outputs transcripts being indistinguish-
able from real transcripts. First, it chooses g′←R G1, Ĉ1←R G2, Ĉ2←R G2. While
g′ and Ĉ1 are identically distributed as in a real transcript, the random choice of
Ĉ2 is not detectable under DDH in G2 which holds in the SXDH setting (more
generally under IND-CPA of the used encryption scheme). Then, the simulator
chooses z1, z2, c←R Zp and computes n← gz1/g′c, m̂1 ← ŷz2/Ĉc1 , m̂2 ← ĝ(z1+z2)

/Ĉc2 .

It is easy to see that the transcript (g′, Ĉ1, Ĉ2, n, m̂1, m̂2, z1, z2, c) represents a
valid transcript and its distribution is computationally indistinguishable from a
real transcript.

2-Special Soundness. Let us consider that we have two accepting answers (z1, z2,
c) and (z′1, z

′
2, c
′) from the prover for distinct challenges c 6= c′. Then we have

that
z1 − c · ρ = z′1 − c′ · ρ and z2 − c · u = z′2 − c′ · u,

and extract a witness as ρ← z1−z′1
c−c′ , u← z2−z′2

c−c′ .

Quasi-Unique Responses. The answers z1 and z2 are uniquely determined by
the word ŷ, g′, Ĉ1, Ĉ2, the commitments n, m̂1, m̂2 as well as the challenge c
(and thus the verification equation).

Lemma 4.6. Applying the generic conversions from [FKMV12] to the Fiat-
Shamir transformed version of the above Σ-protocol with the setup SoK.Setup
as described in Section 4.2.3 produces a signature of knowledge in the random
oracle model, that is extractable and straight-line f -extractable.

The proof is analogous to [BCC+15], but we restate it for completeness.

Proof. For simulatability, we observe that the CRS output by SoK.SimSetup
is identical to the CRS output by SoK.Setup and SoK.SimSign programs the
random oracle to simulate proofs. Simulatability then follows from SHVZK.
For extractability we rely on rewinding, 2-special soundness and quasi-unique
responses, using the results from [FKMV12]. For straight-line f -extractability,
we use the trapdoor τ to decrypt (Ĉ1, Ĉ2) in the proof transcript and obtain
ĝρ = f(ρ).

Switching Groups. The protocol presented above requires more operations in
the more expensive group G2 than in G1. As we work in the SXDH setting, we
can simply switch the roles of G1 and G2 and thus all elements in G1 to G2 and
vice versa. This allows us to trade computational efficiency for signature size.

4.2.4 Evaluation and Discussion

Finally, we discuss our work in the light of some recent concurrent and indepen-
dent work and provide a performance evaluation.
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The [BCC+16] Model. In independent and concurrent work, a new model
for fully-dynamic group signatures was proposed by Bootle et al. in [BCC+16].
Bootle et al. address maliciously generated issuer and opener keys, include the
notion of opening soundness from [SSE+12] and formally model revocation by
means of epochs. Although we target security in a different model, we want to
briefly put our construction in context of their recent model.

In our scheme, one can straight forwardly incorporate the requirement to
support maliciously generated keys in the fashion of [BCC+16] by extending
the actual public keys of issuer and opener by a (straight-line extractable) zero-
knowledge proof of knowledge of the respective secret issuer and opener key.

For a practical revocation approach, it seems to be reasonable to choose a
re-issuing based approach, i.e., to set up a new group after every epoch, as also
used in [BCC+16]. Their group signature construction being secure in their
model builds upon accountable ring signatures [BCC+15]. It comes at the cost
of a group public key size linear in the number of group members as well as a
signature size logarithmic in the number of group members,9 and the revocation
related re-issuing requires every group member to obtain the new group public
key. Applying the same revocation approach to our scheme yields public keys as
well as signatures of constant size, and re-issuing requires each group member
which is still active to re-join the new group.

While our scheme provides weak opening soundness, achieving the stronger
notion for our scheme (where the opening authority may be malicious) would
require the opening authority to additionally prove that the opened index i cor-
responds to the lowest index in reg so that the respective entry together with
the signature in question satisfies the relation RO. Such a proof could efficiently
be instantiated using non-interactive plaintext in-equality proofs as in [c4]. Nev-
ertheless, we opted to stick with weak opening soundness because: (1) The only
benefit of strong opening soundness would be to also cover dishonest opening
authorities, while we believe that assuming the opening authority’s honesty—
given its power to deanonymize every user—is a crucial and very reasonable
assumption. (2) Even [SSE+12], who introduced opening soundness emphasize
that already weak opening soundness addresses all the attacks that motivated
opening soundness in the first place. (3) Strong opening soundness would un-
necessarily degrade the simplicity of our scheme.

Performance Evaluation and Comparison. To underline the practical ef-
ficiency of our approach, we provide a comparison of our ROM instantiation
with other schemes in the ROM. In particular we use two schemes who follow
the approach of Bichsel et al., i.e., [BCN+10, PS16], which provide less desir-
able anonymity guarantees (denoted CCA−), and the well known BBS scheme
[BBS04] (with and without precomputations) providing CPA-full anonymity. We
note that we use the plain BBS scheme for comparison, which does not even
provide non-frameability and the non-frameable version would be even more

9 We note that there is a recent accountable ring signature scheme [LZCS16], which enables
constant size signatures.
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expensive. Moreover, we use the group signature scheme with the shortest
known signatures [DP06] (with and without precomputations) being secure in
the strong BSZ model and thus providing CCA2-full anonymity. Finally, we also
compare our scheme to the recent CCA2-fully anonymous scheme by Libert et
al. [LMPY16] which is secure in the ROM under SXDH.10

In Table 4.1 we provide a comparison of the estimated efficiency in a 254bit
BN-pairing setting, where we highlight the values where our scheme is currently
the best known scheme among other existing schemes providing the same security
guarantees. Our estimations are based on performance values on an ARM-
Cortex-M0+ with drop-in hardware accelerator [UW14]. This processor is small
enough to be suited for smart cards or wireless sensor nodes [UW14]. Table 4.2
provides an abstract comparison regarding signature size, computational costs,
and the type of the underlying hardness assumption.

Scheme Anon. Signature Size Sign Verify
[BCN+10] CCA− 1273bit 351ms 1105ms
[PS16] CCA− 1018bit 318ms 777ms

[BBS04] CPA 2289bit 1545ms 2092ms
[BBS04] (prec.) CPA 2289bit 1053ms 1600ms
This paper CPA 2037bit 266ms 886ms

This paper CCA2 3309bit 771ms 1290ms
This paper (switch) CCA2 3563bit 703ms 1154ms
[DP06] CCA2 2290bit 1380ms 2059ms
[DP06] (prec.) CCA2 2290bit 1020ms 1353ms
[LMPY16] CCA2 2547bit 1688ms 2299ms

Table 4.1: Estimations based on a BN-pairing implementation on an ARM-
Cortex-M0+ with drop-in hardware accelerator, operating at 48MHz [UW14]. The
performance figures using 254-bit curves are 33ms-101ms-252ms-164ms (G1-G2-GT -
pairing). For the estimation of signature sizes, we use 255bit for elements in G1, 509bit
for elements in G2 and 254bit for elements in Zp. We note that [BBS04] is defined for a
Type-2 pairing setting, which means that our performance estimation for this scheme
is rather optimistic and likely to be worse in practice. The bold values highlight where
our schemes are currently the fastest and have the shortest signatures.

Computational Efficiency. When comparing our CPA-fully anonymous sch-
eme as well as our CCA2-fully anonymous scheme to other schemes providing the
same anonymity guarantees, ours are the by now fastest ones regarding signature
generation and verification costs. While some of the schemes used for comparison
use slightly less progressive assumptions, it seems that very good performance

10 Camenisch and Groth [CG04] report that there are implementation results in a Master’s
thesis by Hansen and Pagels, which show that their strong RSA based group signature
scheme slightly outperforms [BBS04]. Since we do not have timing values for the strong
RSA setting on this particular platform, we can not include their scheme in the comparison.
However, since there is a large gap between the efficiency of [BBS04] and our scheme, we
also expect to achieve better efficiency than [CG04].
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requires more progressive assumptions. When looking for instance at the most
compact CCA2-fully anonymous group signatures in the standard model under
standard assumptions (SXDH and a generalization of DLIN to groups with an
asymmetric pairing) by Libert et al. [LPY15], signature sizes in the best case
will have 30 G1 and 14 G2 elements (≈ 15000 bit when taking the setting in
Table 4.1), large public keys and computation times that are far from being
feasible for resource constrained devices.

Regarding signature generation, we want to emphasize that our CPA-fully
anonymous instantiation is the fastest among all schemes used for comparison
(even among the ones providing CCA− anonymity), and, to the best of our knowl-
edge, the fastest among all existing schemes. This is of particular importance
since signature generation is most likely to be executed on a constrained device.
Regarding signature verification our CPA-fully anonymous instantiation is only
outperformed by the CCA− anonymous instantiation in [PS16].

Signature Size. Comparing schemes providing the same anonymity guaran-
tees, our CPA-fully anonymous instantiation even provides shorter signature sizes
than the popular BBS scheme [BBS04] and, to the best of our knowledge, the
shortest signature sizes among all CPA-fully anonymous schemes. Regarding
CCA2-fully anonymous schemes, it seems that gained efficiency in the “without
encryption” paradigm comes at the cost of larger signatures compared to instan-
tiations following the SEP paradigm. It is interesting to note that the schemes
in the vein of Bichsel et al. providing only CCA− anonymity have the smallest
signatures among all schemes.
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5
Signatures with Data Privacy

Our results on signatures providing privacy features with respect to the signed
data are manifold and include various variants of malleable signatures. In Sec-
tion 5.1, we present our unified model for redactable signatures together with
three generic constructions of redactable signature schemes. Our constructions
use indistinguishable accumulators (Section 3.1) as a central tool. Then, in
Section 5.2 we introduce a framework which extends the privacy features of
redactable signatures in various directions. We present two instantiations: the
first one is a black-box construction and is more of theoretical interest, while
the second achieves very good practical efficiency by building upon one of the
generic constructions of redactable signatures from Section 5.1 and exploiting a
particular type of key-homomorphism (Section 3.2). In Section 5.3, we switch
our focus from redactable signatures to the related concept of sanitizable signa-
tures. In particular, we strengthen the privacy notion for extended sanitizable
signature schemes [CJ10] and provide a black-box construction of such schemes
from standard sanitizable signature schemes [BFF+09] and any indistinguish-
able accumulator scheme (Section 3.1). Finally, in Section 5.4 we tackle more
expressive ways of modifying signed data in a controlled way. In particular, we
present a framework for multi-source data aggregation scenarios, where a semi-
trusted aggregator can collect signed data items from different sources, and then
report authentic evaluations of linear functions on those signed data items to a
receiver.
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5.1 Generalizing Redactable Signatures

A redactable signature scheme (RS) allows any party to remove parts of a signed
message such that the corresponding signature σ can be updated without the
signers’ secret key sk. The so derived signature σ̊ then still verifies under the
signer’s public key pk. This separates RSs from standard digital signatures,
which prohibit any alteration of signed messages. Such a primitive comes in
handy in use cases where only parts of the signed data are required, but ini-
tial origin authentication must still hold and re-signing is not possible or too
expensive. One real-world application scenario is privacy-preserving handling of
patient data [BBM09, BB12, SR10, WHT+12]. For instance, identifying infor-
mation in a patient’s record can be redacted for processing during accounting.

Related Work. RSs have been introduced in [JMSW02, SBZ01]. Their ideas
have been extended to address special data-structures such as trees [BBD+10,
SPB+12a] and graphs [KB13]. While the initial idea was that redactions are
public, the notion of accountable RSs appeared recently [PS15]. Here, the redac-
tor becomes a designated party which can be held accountable for redactions.
Further, RSs with dependencies between elements have been introduced and
discussed in [BBM09]. Unfortunately, their work neither introduces a formal se-
curity model nor provides a security analysis for their construction. Consecutive
redaction control allows intermediate redactors to prohibit further redactions by
subsequent ones [MHI06, MIM+05, SPB+12b].

Much more work on RSs exists. However, they do not use a common security
model and most of the presented schemes do not provide the important security
property denoted as transparency [BBD+10]. As an example, [HHH+08, KB13,
WHT+12] are not transparent in our model. In such non-transparent construc-
tions, a third party can potentially deduce statements about the original message
from a redacted message-signature pair. In particular, their schemes allow to see
where a redaction took place which might be unwanted in certain applications.

Ahn et al. [ABC+12] introduced the notion of statistically unlinkable RSs as
a stronger privacy notion. Their scheme only allows for quoting instead of arbi-
trary redactions, i.e., redactions are limited to the beginning and the end of an
ordered list. Moreover, [ABC+12] only achieves the weaker and less common no-
tion of selective unforgeability. Lately, even stronger privacy notions have been
proposed in [ALP12, ALP13] in the context of the framework of P-homomorphic
signatures. There also exists a huge amount of related yet different signature
primitives, where we refer the reader to [d2] for a comprehensive overview of the
state of the art.

Motivation. RSs have many applications. In particular, minimizing signed data
before passing it to other parties makes RSs an easy to comprehend privacy en-
hancing tool. However, the need for different security models and different data
structures prohibits an easy integration into applications that require such pri-
vacy features, as RSs do not offer a flexible, widely applicable framework. While
the model of RSs for sets (e.g. [MHI06]) can protect unstructured data such as
votes, it is, e.g., unclear if it can be used for multi-sets. For ordered lists (such as
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a text) this already becomes more difficult: should one only allow quoting (i.e.,
redactions at the beginning and/or the end of a text) or general redactions? For
trees (such as data-bases, XML or JSON), we have even more possibilities: only
allow leaf-redactions [BBD+10], or leaves and inner nodes [KB13], or even allow
to alter the structure [PSdMP12]. Furthermore, over the years more sophis-
ticated features such as dependencies, fixed elements and redactable structure
appeared. They complicate the specialized models even more.

We want to abandon the necessity to invent specialized security models tai-
lored to specific use cases and data-structures. Namely, we aim for a framework
that generalizes away details and covers existing approaches. At the same time
we want to keep the model compact and understandable. We aim at RSs to
become generally applicable to the whole spectrum of existing use cases. In
addition, we explicitly want to support the trend to allow the signer to limit
the power of redactors [KL06, CJ10, c10]. To demonstrate the applicability of
our framework, we present three new constructions which hide the length of the
original message, the positions of redactions, and the fact that a redaction has
even happened.

Contribution. Our contribution is manifold.

– Existing work focuses on messages’ representations in only a specific data-
structure, whereas our model is generally applicable (even for data-structures
not yet considered for RSs in the literature). Our general framework also cap-
tures more sophisticated redaction possibilities such as dependencies between
redactable parts, fixed parts and consecutive redaction control.

– We introduce the notion of designated redactors. While this concept might
seem similar to the concept of accountable RSs [PS15], we are not interested
in accountability, but only want to allow to hand an extra piece of information
to the redactor(s). This often allows to increase the efficiency of the respective
scheme.

– We present two RSs, one for sets and one for lists, constructed in a black-box
way from digital signatures and indistinguishable cryptographic accumulators.
We show that existing constructions of RSs are instantiations of our generic
constructions but tailored to specific instantiations of accumulators (often
this allows to optimize some of the parameters of the schemes).

– We present a black-box construction of RSs with designated redactors for
lists from RSs for sets and non-interactive zero-knowledge proof systems. We
stress that all three proposed constructions provide transparency, which is an
important property, but quite hard to achieve.

5.1.1 Our Generalized Security Model

We use the formalization by Brzuska et al. [BBD+10] as a starting point. In
contrast to their model, however, ours is not specifically tailored to trees, but is
generally applicable to all kinds of data. The resulting model is more restrictive
than the ones introduced in the original works [JMSW02, SBZ01], while it is
not as restrictive as [ABC+15, ALP12, ALP13, BFLS10, BPS13, CDHK15]. We
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think that the security model introduced in [BBD+10] is sufficient for most
use cases, while the ones introduced in [ABC+15, ALP12, ALP13, BFLS10,
BPS13, CDHK15] seem to be overly strong for real world applications. Namely,
we do not require unlinkability and its derivatives (constituting even stronger
privacy notations), as almost all messages (documents) occurring in real world
applications contain data usable to link them, e.g., unique identifiers.1 Moreover,
we do not formalize accountability, as this notion can easily be achieved by
applying the generic transformation presented in [PS15] to constructions being
secure in our model.2

In the following, we assume that a message m is some arbitrarily structured
piece of data and for the general framework we use the following notation. ADM

is an abstract data structure which describes the admissible redactions and may
contain descriptions of dependencies, fixed elements or relations between ele-
ments. MOD is used to actually describe how a message m is redacted. Next,
we define how ADM, MOD and the message m are tangled, for which we introduce
the following notation: We use ADM � m to denote that ADM matches m and
MOD � ADM to denote that MOD matches ADM. By m̊←−MOD m, we denote the deriva-
tion of m̊ from m with respect to MOD and ˚ADM←−MOD

ADM to denote the derivation
of ˚ADM from ADM with respect to MOD. Clearly, how MOD, ADM, ←−MOD and � are im-
plemented depends on the data structure in question and on the features of the
concrete RS. Let us give a simple example for sets without using dependencies
or other advanced features: MOD and ADM, as well as m, are sets. A redaction
m̊←−MOD m simply would be m̊ ← m \ MOD. This further means that MOD � ADM

holds if MOD ⊆ ADM, while ADM � m holds if ADM ⊆ m. We want to stress that the
definitions of these operators also define how a redaction is actually performed,
e.g., if a redacted block leaves a visible special symbol ⊥ or not. Furthermore,
if the message m is a list, i.e., m = (m1, . . . ,m|m|), we call mi a block and use
|m| ∈ N to denote the number of blocks in the message m.

Now, we formally define an RS within our general framework.

Definition 5.1. An RS is a tuple of four efficient algorithms (KeyGen,Sign,Verify,
Redact), which are defined as follows:

KeyGen(1κ) : Takes a security parameter κ as input and outputs a key pair
(sk, pk).

Sign(sk,m, ADM) : Takes a secret key sk, a message m and ADM as input and
outputs a message-signature pair (m, σ) together with some auxiliary redaction
information RED.3

Verify(pk, σ,m) : Takes a public key pk, a signature σ and a message m as input
and outputs a bit b ∈ {0, 1}.

Redact(pk, σ,m,MOD, RED) : Takes a public key pk, a valid signature σ for a mes-
sage m, modification instructions MOD, and auxiliary redaction information

1 However, we stress that our model can be extended in a straightforward way.
2 Our model could also be extended to cover accountability in a straightforward way.
3 We assume that ADM can always be recovered from (m, σ).
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RED as input, and outputs a redacted message-signature pair (m̊, σ̊) and an
updated auxiliary redaction information R̊ED.4

We also require that Sign returns ⊥, if ADM � m, while Redact also returns ⊥,
if MOD � ADM. We will omit this explicit check in our constructions. Note that
RED can also be ∅ if no auxiliary redaction information is required.

Security Properties. The security properties for RSs have already been for-
mally treated for tree data-structures in [BBD+10]. We adapt them to our
general framework.

Correctness. Correctness requires that all honestly computed/redacted signa-
tures verify correctly. More formally this means that ∀ κ ∈ N, ∀ n ∈ N, ∀ m,
∀ ADM � m, ∀ (sk, pk) ← KeyGen(1κ), ∀ ((m0, σ0), RED0) ← Sign(sk,m, ADM),
(∀ MODi �

ADM

mi, ∀ ((mi+1, σi+1), REDi+1) ← Redact(pk, σi,mi,MODi, REDi))0≤i<n it
holds that for 0 ≤ i ≤ n : Verify(pk, σi,mi) = 1, where (Si)0≤i<n is shorthand
for S0, . . . , Sn−1.

Unforgeability. Unforgeability requires that, without a signing key sk, it is in-
feasible to compute a valid signature σ on a message m, which is not a valid
redaction of any message obtained by adaptive signature queries.

Definition 5.2 (Unforgeability). An RS is unforgeable, if for all PPT adver-
saries A there exists a negligible function ε(·) such that

Pr

[
(sk, pk)← KeyGen(1κ),
(m?, σ?)← ASign(sk,·,·)(pk)

:
Verify(pk,m?, σ?) = 1 ∧

@ (m, ADM) ∈ QSign : m? �
ADM

m

]
≤ ε(κ),

where the environment keeps track of the queries to the signing oracle via QSign.

Note that the adversary can perform redactions on its own (also transitively).

Privacy. For anyone except the involved signers and redactors, it should be
infeasible to derive information on redacted message parts.

Definition 5.3 (Privacy). An RS is private, if for all PPT adversaries A there
exists a negligible function ε(·) such that

Pr

 (sk, pk)← KeyGen(1κ), b←R {0, 1},
O ← {Sign(sk, ·, ·), LoRRedact((sk, pk), ·, ·, b)},
b? ← AO(pk)

: b = b?

 ≤ 1/2 + ε(κ),

where Sign denotes a signing oracle and LoRRedact is defined as follows:

LoRRedact((sk, pk), (m0, ADM0,MOD0), (m1, ADM1,MOD1), b) :
1: Compute ((mc, σc), REDc)← Sign(sk,mc, ADMc) for c ∈ {0, 1}.
2: Let ((m̊c, σ̊c), R̊EDc)← Redact(pk, σc,mc,MODc, REDc) for c ∈ {0, 1}.
3: If m̊0 6= m̊1 ∨ ˚ADM0 6= ˚ADM1, return ⊥.
4: Return (m̊b, σ̊b).

4 This algorithm may also alter ADM.
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Here, the admissible modifications ˚ADM0 and ˚ADM1 corresponding to the redacted
messages are implicitly defined by (and recoverable from) the tuples (m̊0, σ̊0) and
(m̊1, σ̊1) and the oracle returns ⊥ if any of the algorithms returns ⊥.

In our privacy definition, we allow the adversary to provide distinct values for
ADM0 and ADM1 to the signing oracle. While this guarantees the required flexi-
bility to support arbitrary data structures, it yields a rather strong definition of
privacy.

Transparency. It should be infeasible to decide whether a signature directly
comes from the signer (i.e., is a fresh signature) or has been generated using
the Redact algorithm, for anyone except the signer and the possibly involved
redactor(s). More formally, this means:

Definition 5.4 (Transparency). An RS is transparent, if for all PPT adversaries
A there exists a negligible function ε(·) such that

Pr

 (sk, pk)← KeyGen(1κ), b←R {0, 1},
O ← {Sign(sk, ·, ·), SoR((sk, pk), ·, ·, ·, b)},
b? ← AO(pk)

: b = b?

 ≤ 1

2
+ ε(κ),

where Sign denotes a signing oracle and SoR is defined as follows:

OSoR((sk, pk),m,MOD, ADM, b) :
1: Compute ((m, σ), RED)← Sign(sk,m, ADM).
2: Compute ((m̊, σ0), ·)← Redact(pk, σ,m,MOD, RED).
3: Compute ((m̊, σ1), ·)← Sign(sk, m̊, ˚ADM), where ˚ADM←−MOD

ADM.
4: Return (m̊0, σ̊b).

The oracle returns ⊥ if any of the algorithms returns ⊥.

We call an RS secure, if it is correct, unforgeable, private, and transparent.
We want to emphasize that additionally returning auxiliary redaction infor-

mation RED in Sign and Redact does not contradict transparency or privacy, as
the “final” verifier never sees any RED (which is why the privacy and transparency
games do not return RED for the challenge message-signature pair). Intuitively,
only if an intermediate redactor exists, RED is given away by the signer to selected
designated entities that become redactors.5

Relations between Security Properties. The relations between the different secu-
rity properties do not change compared to the work done in [BBD+10]. Namely,
transparency implies privacy, while privacy does not imply transparency. Fur-
thermore, unforgeability is independent of privacy and transparency. The formal
proofs for these statements are analogous to the ones in [BBD+10]. To this end,
we do not include them here and note that they can be found in the full paper
corresponding to this section [c9].

5 This also distinguishes designated redactors from accountable redactable signatures [PS15].
Namely, the additional information RED can be given to any redactor, while the redactor is a
fixed entity in accountable RSs. Hence, in our notion, the redactors can even form a chain,
and can be pinpointed in an ad-hoc manner.
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Notes on our Model. In a nutshell, our generalized framework leaves the con-
crete data-structure—and, thus, also the definition of ADM, MOD, and RED—open
to the instantiation. For clarity, let us match our framework to already ex-
isting definitions. In particular, consider the model of [BBD+10]. It does not
explicitly define ADM, but implicitly assumes that only leaves of a given tree are
redactable, i.e., MOD may only contain changes which are possible with recursive
leaf-redaction. Pöhls et al. [PSdMP12] explicitly define ADM as the edges be-
tween different nodes in their model for RSS for trees, while allowing arbitrary
redactions, i.e., MOD may contain any set of nodes in the tree (including the
tree’s root), as well as edges.

Finally, we note that our model also covers consecutive redaction control
[MHI06, MIM+05, SPB+12b] via ADM. Recall that ADM is contained in all signa-
tures and Redact may also change ADM.

5.1.2 Redactable Signatures for Sets

For our RSS for sets (cf. Scheme 5.1), we compute an accumulator representing
the set to be signed and then sign the accumulator using any EUF-CMA secure
digital signature scheme. For verification, one simply provides witnesses for each
element in the set and it is verified whether the digital signature on the accumu-
lator as well as the witnesses are valid. Redaction amounts to simply throwing
away witnesses corresponding to redacted elements. To maintain transparency,
while still allowing the signer to determine which blocks (i.e., elements) of the
message (i.e., the set) are redactable, we model ADM as a set containing all blocks
which must not be redacted. We also parametrize the scheme by an operator
ord(·), which allows to uniquely encode ADM as a sequence. MOD is modeled as
a set containing all blocks of the message to be redacted. We note that one can
straightforwardly extend Scheme 5.1 to support multi-sets by concatenating a
unique identifier to each set element. Below, we prove the following:

Theorem 5.1. If A is correct, collision free, and indistinguishable, and Σ is
correct and EUF-CMA secure, then Scheme 5.1 is secure.

We prove Theorem 5.1 by proving Lemma 5.1-5.3 and deriving Corollary 5.1.

Lemma 5.1. If A is correct and Σ is correct, the construction in Scheme 5.1 is
correct.

The lemma above follows from inspection.

Lemma 5.2. If A is collision free and Σ is EUF-CMA secure, then Scheme 5.1
is unforgeable.

Proof. Assume an efficient adversary Auf against unforgeability. We show how
Auf can be used to construct (1) an efficient adversary Acf against the collision
freeness of the accumulator or (2) an efficient adversary Af against the EUF-CMA
security of the signature scheme. To do so, we describe efficient reductions Rcf

and Rf, respectively.
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KeyGen(1κ) : Fix a digital signature scheme Σ and an indistinguishable accumulator

scheme A and return (sk, pk)← ((skΣ, skΛ, pkΛ), (pkΣ, pkΛ)), where

(skΣ, pkΣ)← Σ.KeyGen(1κ), (skΛ, pkΛ)← A.Gen(1κ,∞).

Sign(sk,m, ADM) : Compute (Λ, aux) ← A.Eval((skΛ, pkΛ),m), σΣ ← Σ.Sign(skΣ,Λ|| ord(

ADM)) and return (m, σ) and RED, where

σ ← (σΣ,Λ, {witmi}mi∈m, ADM), RED← ∅, and

{witmi ← A.WitCreate((skΛ, pkΛ),Λ, aux,mi)}mi∈m.

Verify(pk, σ,m) : Return 1 if the following holds and 0 otherwise:

Σ.Verify(pkΣ,Λ|| ord(ADM), σΣ) = 1 ∧ ADM ∩ m = ADM ∧
∀ mi ∈ m : A.Verify(pkΛ,Λ,witmi ,mi) = 1.

Redact(pk, σ,m,MOD, RED) : Parse σ as (σΣ,Λ,WIT, ADM) and return (m̊, σ̊) and R̊ED, where

m̊← m \ MOD, W̊IT← WIT \ {witmi}mi∈MOD, σ̊ ← (σΣ,Λ, W̊IT, ADM), R̊ED← RED.

ord(ADM) : This operator takes a set ADM, applies some unique ordering (e.g., lexico-

graphic) to the elements in ADM and returns the corresponding sequence.

Scheme 5.1: A RS for sets.

Rcf : Here, Rcf obtains the accumulator public key pkΛ from the challenger Ccf

of the collision freeness game of the used accumulator scheme and completes
the setup by running (skΣ, pkΣ) ← Σ.KeyGen(1κ) and handing (pkΣ, pkΛ)
to Auf . It is easy to see that Rcf can simulate all oracles for Auf by for-
warding the respective calls to OE and OW provided by Ccf . Furthermore,
Rcf can choose the randomness used in the calls to OE and keeps a map-
ping of accumulators and corresponding randomizers. Eventually, Auf out-
puts a tuple (m?, σ?), where σ? = (σ?Σ,Λ

?, {witmi}mi∈m? , ADM
?) such that

@(m, ADM) ∈ QSign, @MOD � ADM : m? ←−MOD m. If Λ?|| ord(ADM
?) was never signed

using Σ, it aborts. Otherwise, we have at least one mi with a corresponding
witness witmi such that A.Verify(pkΛ,Λ

?,witmi ,mi) = 1 but mi /∈ m?. Con-
sequently, Rcf can look up the randomness r used to compute Λ and output
(witmi ,mi,m

?, r) as a collision for the accumulator.

Rf : Here, Rf obtains the Σ public key pkΣ from the challenger Cf of the EUF-
CMA game of the used signature scheme and completes the setup by run-
ning (skΛ, pkΛ) ← A.Gen(1κ,∞) and handing (pkΣ, pkΛ) to Auf . It is easy
to see that Rcf can simulate all oracles for Auf by forwarding the respec-
tive calls to Sign to the Σ.Sign oracle provided by Cf. Eventually, Auf out-
puts a tuple (m?, σ?), where σ? = (σ?Σ,Λ

?, {witmi}mi∈m? , ADM
?) such that

@(m, ADM) ∈ QSign, @MOD � ADM : m? ←−MOD m. If Λ?|| ord(ADM
?) was signed

using the signing oracle provided by Cf it aborts. Otherwise, we can output
(σ?Σ,Λ

?|| ord(ADM
?)) as a forgery.
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Overall Bound. The simulations in both reductions are indistinguishable from a
real game. In front of an adversary we randomly guess the adversary’s strategy,
inducing a loss of 1/2. Our reductions for both forger types always succeed if
the forger succeeds. This means that the probability to break unforgeability is
upper-bounded by 2 ·max{εcf(κ), εf(κ)}.

Lemma 5.3. If A is indistinguishable, then Scheme 5.1 is transparent.

Proof. We will bound the probability to win the transparency game by using a
sequence of games. Thereby, we denote the event that the adversary wins Game
i by Si and let k be the number of queries to the SoR oracle.

Game 0: The original transparency game.

Game 1: As the original game, but all calls to A.Eval in SoR are performed
with respect to the originally submitted message m.

Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game
1 is an indistinguishability distinguisher for one of the accumulators, i.e.,
|Pr[S0]− Pr[S1]| ≤ k · εind(κ).6

In Game 1, the value of the accumulator is independent of the bit b. The
remaining signature components are independent of b anyway. This means that
Pr[S1] = 1/2, and, in further consequence, Pr[S0] ≤ 1/2+k·εind(κ). This concludes
the proof.

Since transparency implies privacy, the lemma above yields the following corol-
lary.

Corollary 5.1. If A is indistinguishable, then Scheme 5.1 is private.

Observations and Optimizations. Depending on the properties of the used
accumulator scheme, one can reduce the signature size from O(n) to O(1). In
particular, it turns out that quasi-commutativity as discussed in Section 3.1.1
is sufficient to achieve this. For our illustrations, we recall that the quasi-
commutative accumulator function f : ZκA × ZκI → ZκA. Using this func-
tion the accumulator for a set X = (x1, . . . , xn) can be recursively computed
via ΛX ← f(f(. . . f(Λ∅, x1), . . . ), xn), where Λ∅ denotes the “empty accumula-
tor” which is fixed by the key generation algorithm. Witnesses are defined as
witx ← ΛX\{x}

Now we can use f as a means to achieve batch-membership verification,
i.e., to verify that a set Y is a subset of the accumulated set X using only a
single succinct witness witY . Formally, this means that there are two additional
algorithms WitCreateB and VerifyB, which we define below. Note that we can
without loss of generality assume that aux is of the form (aux′,X ), i.e., contains
the accumulated set.
6 For compactness, we collapse the exchange of the accumulators to one single game change,

which can straightforwardly be unrolled to k game changes.
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WitCreateB((sk∼Λ , pkΛ),ΛX , aux,Y) : Parse aux as (aux′,X ) and output witY ←
ΛX\Y .

VerifyB(pkΛ,ΛX ,witY ,Y) : Parse Y as (y1, . . . , yn) and return 1 if ΛX = f(. . .
f(witY , y1), . . . ), yn) and 0 otherwise.

Also observe that a collision with respect to a batch witness implies a collision in
the underlying accumulator: for a valid collision we have that there must be at
least one y ∈ Y where we have that y /∈ X , even though witY attests that Y ⊆ X .
Now one can simply compute wity from witY using the quasicommutativity and
the elements Y \ {y}.

From this, it is straightforward to derive the following corollary:

Corollary 5.2. For quasi-commutative schemes it holds that ∀{x, y} ⊆ X , one
can use wit{x}∪{y} and ΛX to attest that x is a member of ΛX\{y}. Furthermore,
one can efficiently compute wit{x}∪{y} from wit{x} and y.

Then, only a single witness needs to be stored and verification is performed
with respect to this witness. Redaction is performed by publicly updating the
witness (can be interpreted as removing elements from the accumulator). Such
a scheme generalizes the RS for sets from [PSPdM12], which builds upon the
RSA accumulator.

Our construction may look similar to the one in [PS14]. However, in con-
trast to our construction, they require a rather specific definition of accumula-
tors, which they call trapdoor accumulators. Trapdoor accumulators differ from
conventional accumulators regarding their features and security properties. In
particular, they need to support updates of the accumulated set without mod-
ifying the accumulator itself. Further, they require a non-standard property
denoted as strong collision resistance, which can be seen as a combination of
conventional collision resistance and indistinguishability. Clearly, such a specific
accumulator model limits the general applicability.

5.1.3 Redactable Signatures for Linear Documents

We build our RS for linear documents upon the RS for sets presented in the pre-
vious section. From an abstract point of view, moving from sets to linear doc-
uments means to move from an unordered message to an ordered one. A näıve
approach to assign an ordering to the message blocks would be to concatenate
each message block with its position in the message and insert these extended
tuples into the accumulator. However, such an approach trivially contradicts
transparency, since the positions of the messages would reveal if redactions have
taken place. Thus, inspired by [CLX09], we choose some indistinguishable accu-
mulator scheme and use accumulators to encode the positions. More precisely,
with n being the number of message blocks, we draw a sequence of n uniformly
random numbers (rj)

n
j=1 from the accumulation domain. Then, for each message

block mi, 1 ≤ i ≤ n, an accumulator Λi containing (rj)
i
j=1 is computed (i.e.,

Λi contains i randomizers). Finally, for each mi, one appends Λi||ri and signs
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the so obtained set
⋃n
j=1{(mi||Λi||ri)} using the RS for sets. Upon verification,

one simply verifies the signature on the set and checks for each i whether one
can provide i valid witnesses for (rj)

i
j=1 with respect to Λi. Redaction again

amounts to throwing away witnesses corresponding to redacted message blocks.

Here, m = (mi)
n
i=1 is a sequence of message blocks mi, ADM is the correspond-

ing sequence of fixed message blocks, and the operator ord(·) for the underlying
RS for sets simply returns ADM without modification. All possible valid redac-
tions, forming the transitive closure of a message m, with respect to Redact, are
denoted as span`(M), following [CLX09] and [SPB+12b]. Note that for ADM

it must hold that ADM ∈ span`(m). MOD is modeled as a sequence of message
blocks to be redacted and we assume an encoding that allows to uniquely match
a message block with its corresponding message block in the original message.

KeyGen(1κ) : Fix a redactable signature scheme RS(ord) = {KeyGen,Sign,Verify,

Redact} for sets (with ord(·) as defined below) and an indistinguishable accu-

mulator scheme A = {Gen,Eval,WitCreate,Verify}, run (skΛ, pkΛ) ← A.Gen(1κ,∞),

(sk,pk)← KeyGen(1κ) and return (sk, pk)← ((sk, skΛ, pkΛ), (pk, pkΛ)).

Sign(sk,m, ADM) : Chooses (ri)
|m|
i=1←

R
Dom(Λ)|m|, set m′ ← ∅ and for 1 ≤ i ≤ |m|:

(Λi, aux)← A.Eval((skΛ, pkΛ),∪ij=1{rj}),WITi ← (witij )
i
j=1, where

witij ← A.WitCreate((skΛ, pkΛ),Λi, aux, rj) for 1 ≤ j ≤ i.

Finally, return (m, σ) and RED, where

σ ← (δ, (Λi)
|m|
i=1, (WITi)

|m|
i=1, (ri)

|m|
i=1), RED← ∅, and

δ ← Sign(sk,
⋃|m|
i=1{(mi||Λi||ri)}, ADM).

Verify(pk, σ,m) : Parse σ as (δ, (Λi)
|m|
i=1, (WITi)

|m|
i=1, (ri)

|m|
i=1) and return 1 if the following

holds, and 0 otherwise:

Verify(pk, δ,
⋃|m|
i=1{(mi||Λi||ri)}) = 1 ∧ ADM ∈ span`(m) ∧

∀ 1 ≤ i ≤ |m|, ∀ 1 ≤ j ≤ i : A.Verify(pkΛ,Λi,witij , rj) = 1

Redact(pk, σ,m,MOD, RED) : Parse σ as (δ, (Λi)
|m|
i=1, (WITi)

|m|
i=1, (ri)

|m|
i=1), set MOD

′ ←⋃
mi∈MOD

{(mi||Λi||ri)}, run (·, δ̊)← Redact(pk, σ̂,
⋃|m|
i=1{(mi||Λi||ri)},MOD

′) and for

all mi ∈ MOD, remove the corresponding entries from m, (Λi)
|m|
i=1, (WITi)

|m|
i=1 and (ri)

|m|
i=1

to obtain m̊, (Λi)
|m̊|
i=1, (WITi)

|m̊|
i=1 and (ri)

|m̊|
i=1. Finally, return (m̊, σ̊) and R̊ED, where

σ̊ ← (̊δ, (Λi)
|m̊|
i=1, (WITi)

|m̊|
i=1, (ri)

|m̊|
i=1), and R̊ED← ∅.

ord(ADM) : This operator returns ADM.

Scheme 5.2: A RS for linear documents.

Theorem 5.2. If A is correct, collision-free, and indistinguishable and RS is
is correct, unforgeable and transparent, then Scheme 5.2 is correct, unforgeable,
private and transparent.
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We prove Theorem 5.2 by proving Lemma 5.4-5.6 and deriving Corollary 5.3.

Lemma 5.4. If A is correct and RS is correct, then Scheme 5.2 is correct as
well.

The lemma above follows from inspection.

Lemma 5.5. If A is collision free and RS is unforgeable, then Scheme 5.2 is
unforgeable.

Proof. Assume an efficient adversary Auf against unforgeability. We show how
Auf can be used to construct (1) an efficient adversary Acf against the colli-
sion freeness of the accumulator or (2) an efficient adversary Auf against the
unforgeability of the underlying RS for sets RS. To do so, we describe efficient
reductions Rcf and Ruf , respectively.

Rcf : Here, Rcf obtains the accumulator public key pkΛ from the challenger Ccf

of the collision freeness game of the used accumulator scheme and completes
the setup by running (sk,pk)← KeyGen(1κ) and handing (pk, pkΛ) to Auf .
It is easy to see that Rcf can simulate all oracles for Auf by forwarding the
respective calls to OE and OW provided by Ccf . Furthermore, Rcf can choose
the randomness used in the calls to OE and keeps a mapping of accumulators
and corresponding randomizers. Eventually, Auf outputs a tuple (m?, σ?),

where σ? = (δ?, (Λi)
|m?|
i=1 , (WITi)

|m?|
i=1 , (ri)

|m?|
i=1 ) and δ? contains ADM

? such that
@ (m, ADM

?) ∈ QSign, @ MOD � ADM
? : m? ←−MOD m. If there was no signing query

for a superset of
⋃|m?|
i=1 {(mi||Λi||ri)} and ADM

?, it aborts. Otherwise, we have
at least one accumulator Λi, corresponding set Ri = {rj}ij=1, witness witrk
and randomizer rk such that rk /∈ Ri but A.Verify(pkΛ,Λi,witrk , rk) = 1.
Then, Rcf can look up the randomizer r corresponding to Λi and output
(witrk , rk, Ri, r) as a collision for the accumulator.

Ruf : Here, Ruf obtains the RS public key pk from the challenger Cuf of the
unforgeability game of the used redactable signature scheme for sets and com-
pletes the setup by running (skΛ, pkΛ)← A.Gen(1κ,∞) and handing (pk, pkΛ)
to Auf . It is easy to see that Rcf can simulate all oracles for Auf by forwarding
the respective calls to Sign to the oracles provided by Cuf . Eventually, Auf

outputs a tuple (m?, σ?), where σ? = (δ?, (Λi)
|m?|
i=1 , (WITi)

|m?|
i=1 , (ri)

|m?|
i=1 ) and δ?

contains ADM
? such that @(m, ADM

?) ∈ QSign, @MOD � ADM
? : m? ←−MOD m. If a

superset of
⋃|m?|
i=1 {(mi||Λi||ri)} and ADM

? was signed using the oracle provided

by Cuf it aborts. Otherwise, it outputs the tuple (δ?,
⋃|m?|
i=1 {(mi||Λi||ri)) as a

forgery for the underlying RS for sets.

Overall Bound. The simulations in both reductions are indistinguishable from a
real game. In front of an adversary we randomly guess the adversary’s strategy,
inducing a loss of 1/2. Our reductions for both forger types always succeed if the
forger succeeds. This means that the probability to break group unforgeability
is upper-bounded by 2 ·max{εcf(κ), εuf(κ)}.
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Lemma 5.6. If A is indistinguishable and RS is transparent, then Scheme 5.2
is transparent.

Proof. We will bound the probability to win the transparency game by using a
sequence of games. Thereby, we denote the event that the adversary wins Game
i by Si, where we let k be the overall number of required accumulators.

Game 0: The original transparency game.

Game 1: As the original game, but all accumulators Λi in OSoR are computed

with respect to the initial set of randomizers {ri}|m|i=1.

Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game
1 is an indistinguishability distinguisher for one of the accumulators, i.e.,
|Pr[S0]− Pr[S1]| ≤ k · εind(κ).7

In Game 1, the accumulators Λi are independent of the bit b. In this game the
adversary can only win the game by breaking the transparency of the underlying
RS, i.e., Pr[S1] ≤ 1/2 + εRS(κ). All in all, we have that |Pr[S0] − Pr[S1]| ≤
k ·εind(κ), meaning that the probability to win the transparency game is Pr[S0] ≤
1/2 + εRS(κ) + k · εind(κ), which concludes the proof.

The lemma above yields the following corollary.

Corollary 5.3. If A is indistinguishable and RS is transparent, construction in
Scheme 5.2 is private.

Observations and Optimizations. Depending on the used accumulator sch-
eme, it is possible to reduce the signature size from O(n2) to O(n). Let us
assume a quasi-commutative accumulator, which means that also Corollary 5.2
holds. For our following explanations let Ri :=

⋃i
k=1{rk}. Then for each message

block mi one only needs to store one batch witness witRi . Furthermore, upon
redaction of message block mi with corresponding randomizer ri, one can update
the witnesses witRj for all i > j ≤ |m| by computing wit′Rj ← witRj∪{ri} and
removing witness witRi and randomizer ri from the signature, which can be in-
terpreted as “removing” ri from all accumulators. The so-obtained construction
then essentially generalizes the approach of [CLX09], which make (white-box)
use of the RSA accumulator.

5.1.4 Designated Redactor RSS for Linear Documents

The signature size and computational complexity of RSs can often be improved
by explicitly considering the possibility to allow RED to be non-empty. In Sch-
eme 5.3 we follow this approach and present such a generic construction of RSs
for linear documents. Basically, the idea is to compute commitments to the

7 As in the proof of Lemma 5.3, we collapse the exchange of the accumulators to one single
game change for compactness.
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positions of the messages blocks and concatenate them to the respective mes-
sage blocks. Then, one signs the so obtained set of concatenated messages and
commitments using an RS for sets. Additionally, one includes a non-interactive
zero-knowledge proof of an order relation on the committed positions for attest-
ing the correct order of the message blocks. The information RED then represents
the randomness used to compute the single commitments. Redacting message
blocks simply amounts to removing the single blocks from the signature of the
RS for sets and recomputing a non-interactive proof for the ordering on the re-
maining commitments. Since redaction control via ADM can straightforwardly
be achieved as in Scheme 5.2, we omit it here for simplicity, i.e., we assume
ADM =∞. Also note that without ADM the operator ord(·) is not required. MOD

is defined as in Scheme 5.2. We emphasize that one can easily obtain constant

size RED by pseudorandomly generating the randomizers (ri)
|m|
i=1 and storing the

seed for the PRG in RED instead of the actual randomizers.
Before we define the scheme, we define the required NP relation of com-

mitments and respective openings. Therefore, we may assume without loss of
generality that the openings O of the commitment C are of the form (x, r) where
x is the committed value and r is the randomness used in the commitment:

((C1, C2), (O1, O2)) ∈ Rord ⇐⇒ C1 = Commit(x1; r1) ∧
C2 = Commit(x2; r2) ∧ x1 ≤ x2.

Instantiating the proof system Π for Rord can be done straightforwardly by using
zero-knowledge set membership proofs. Below, we briefly discuss the efficiency of
the instantiations of Scheme 5.3, when based on three common techniques. We
note that the below Σ-protocols can all easily be made non-interactive (having
all the required properties) using the Fiat-Shamir transform and the results
from [FKMV12].

Square Decomposition. An efficient building block for range proofs in hidden
order groups is a proof that a secret integer x is positive [Bou00, Lip03], which
is sufficient for our instantiation. Technically, therefore we need a homomorphic
integer commitment scheme and Rord for Π is as follows:

((C1, C2), (x, r)) ∈ Rord ⇐⇒ C2 − C1 = Commit(x; r) ∧ x ≥ 0.

This approach yields O(n) signature generation cost, signature size and verifica-
tion cost and has a constant size public key. It, however, only works in a hidden
order group setting.

For the subsequent two approaches we need to introduce an upper bound k
on the number of message blocks which will be a parameter of Scheme 5.3.

Multi-Base Decomposition. This technique for range proofs works by decom-
posing the secret integer x =

∑n
i=1Gi · bi with bi ∈ [0, u− 1] into a (multi)-base

representation and then proving that every bi belongs to the respective small
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KeyGen(1κ) : Fix a redactable signature scheme for sets RS = {KeyGen,Sign,

Verify,Redact}, a commitment scheme C = (PGen,Commit,Open) as well as a

non-interactive zero-knowledge proof system Π = (Setup,Proof,Verify) for Rord. Run

(sk,pk) ← KeyGen(1κ), PP ← C.PGen(1κ), crs ← Π.Setup(1κ), sets (sk, pk) ←
((sk, PP, crs), (pk, PP, crs)) and returns (sk, pk).

Sign(sk,m, ADM) : Return ⊥ if ADM 6= ∞. Otherwise, for i ∈ [|m|] compute (Ci, Oi) ←
Commit(PP, i), and for i ∈ [|m| − 1] compute πi ← Proof(crs, (Ci, Ci+1), (Oi, Oi+1)).

Finally, return (m, σ) and RED, where

σ ← (δ, (Ci)
|m|
i=1, (πi)

|m|−1
i=1 ), RED← (Oi)

|m|
i=1, and

δ ← Sign(sk,
⋃
i∈[|m|]{Ci||mi},∞).‡

Verify(pk, σ,m) : Parse σ as (δ, (Ci)
|m|
i=1, (πi)

|m|−1
i=1 ) and return 1 if the following holds

and 0 otherwise:

Verify(pk, δ,
⋃
i∈[|m|]{Ci||mi}) = 1 ∧

∀ i ∈ [|m|] : Π.Verify(crs, (Ci, Ci+1), πi) = 1

Redact(pk, σ,m,MOD, RED) : Parse σ as (δ, (Ci)
|m|
i=1, (πi)

|m|−1
i=1 ), and RED as (Oi)

|m|
i=1. Set

MOD
′ ←

⋃
mi∈MOD

{Ci||mi}, and run (·, δ̊) ← Redact(pk, δ,
⋃|m|
i=1{(Ci||mi)},MOD

′).

For mi ∈ MOD remove the corresponding entries from m, (Ci)
|m|
i=1 and (Oi)

|m|
i=1 to

obtain m̊, (Ci)
|m̊|
i=1, and (Oi)

|m̊|
i=1. Finally, for i ∈ [|m̊| − 1] compute

πi ← Proof(crs, (Ci, Ci+1), (Oi, Oi+1)),

set σ̊ ← (̊δ, (Ci)
|m̊|
i=1, (πi)

|m̊|−1
i=1 ), R̊ED← (Oi)

|m̊|
i=1 and return (m̊, σ̊) and RED

′.

‡ We note that we set RED ← (Oi)
|m|
i=1 = (mi, ri)

|m|
i=1 for notational convenience, while one would

only require RED← (ri)
|m|
i=1.

Scheme 5.3: A designated redactor RS for linear documents.

set ([LAN02], cf. [CCJT13] for an overview). It also works in the prime order
group setting. Here, the relation Rord for Π is as follows:

((C1, C2), (x, r)) ∈ Rord ⇐⇒ C2 − C1 = Commit(x; r) ∧ 0 ≤ x < k.

This approach yields O(n log k) signature generation costs, signature size and
verification costs and a constant size public key.

Signature-Based Approach. This technique [CCS08] pursues the idea of
signing every element in the interval8 using a suitable signature scheme (KeyGen,
Sign,Verify). In our application let the interval be [0, k[ and let us denote the
corresponding public signatures by σ = (σ0, σ1, . . . , σk−1). Now, proving mem-
bership of x in [0, k[ amounts to the relation Rord under crs being σ and the

8 Actually, [CCS08] also propose a combination of this approach with a (multi)-base decom-
position, which we do not consider here for brevity.
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respective public key pkσ (public parameters):

((C1, C2), (x, r)) ∈ Rord ⇐⇒ C2 − C1 = Commit(x; r) ∧
∃ i ∈ [0, k[ : Verify(pkσ, x, σi) = 1.

This approach yields O(n) signature generation cost, signature size and verifi-
cation cost. The crs representing the public signatures and the verification key
may be included into the public key of RS, yielding a public key of size O(k).

Theorem 5.3. If C is correct, perfectly binding and hiding, Π is complete and
adaptively zero-knowledge, and RS is correct, unforgeable and transparent, then
Scheme 5.3 is secure.

We prove Theorem 5.3 by proving Lemma 5.7-5.9 and deriving Corollary 5.4.

Lemma 5.7. If RS is correct, C is correct, and Π is complete, then Scheme 5.3
is correct.

The lemma above follows from inspection.

Lemma 5.8. If RS is unforgeable, C is perfectly binding, and Π is sound, then
Scheme 5.3 is unforgeable.

Proof. To prove unforgeability, we show how an efficient adversary against un-
forgeability Auf can be used to construct (1) an efficient adversary Auf against
the unforgeability of the underlying RS for sets RS or (2) an efficient adversary
Aso against the soundness of the underlying proof system. Below we describe
efficient reductions Ruf and Rso, respectively.

Ruf : Ruf obtains the RS public key pk from the challenger Cuf of the unforge-
ability game of the used redactable signature scheme for sets and completes
the setup by running PP← C.PGen(1κ), crs← Π.Setup(1κ), setting (sk, pk)←
((⊥, PP, crs), (pk, PP, crs)) and handing pk to Auf . It is easy to see that Rcf can
simulate all oracles for Auf by forwarding the respective calls to Sign to the
oracles provided by Cuf . Eventually, Auf outputs a valid tuple (m?, σ?), where

σ? = (δ?, (Ci)
|m?|
i=1 , (πi)

|m?|−1
i=1 ) such that @ (m,∞) ∈ QSign : m? ∈ span`(m). If

a superset of
⋃|m?|
i=1 {(Ci||mi)} was signed using the oracle provided by Cuf it

aborts. Otherwise, it outputs (δ?,
⋃|m|
i=1{(Ci||mi)}) as a forgery for the RS for

sets.

Rso : Rso obtains crs from the challenger Cso of the soundness game of the un-
derlying non-interactive proof system and completes the setup by running
(sk,pk) ← KeyGen(1κ), PP ← C.PGen(1κ), setting (sk, pk) ← ((sk, PP, crs),
(pk, PP, crs)) and handing pk to Auf . It is easy to see that the reduction can
simulate all oracles as in the real game. Eventually, Auf outputs a valid tuple

(m?, σ?), where σ? = (δ?, (Ci)
|m?|
i=1 , (πi)

|m?|−1
i=1 ) such that @ (m,∞) ∈ QSign :

m? ∈ span`(m). If no superset of
⋃|m?|
i=1 {(Ci||mi)} was ever signed it aborts.
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Otherwise, there is at least one i for 1 ≤ i < |m?| such that Π.Verify(crs,
(Ci, Ci+1), πi) = 1 but (Ci, Ci+1) /∈ L, which means that Rso can output
((Ci, Ci+1), πi) to win the soundness game of the non-interactive proof sys-
tem.

Overall Bound. The simulations in both reductions are indistinguishable from a
real game. In front of an adversary we randomly guess the adversary’s strategy,
inducing a loss of 1/2. Our reductions for both forger types always succeed if the
forger succeeds. This means that the probability to break group unforgeability
is upper-bounded by 2 ·max{εuf(κ), εso(κ)}.

Lemma 5.9. If RS is transparent, C is hiding, and Π is adaptively zero-knowledge,
the construction in Scheme 5.3 is transparent.

Proof. We will bound the probability to win the transparency game by using a
sequence of games. Thereby, we denote the event that the adversary wins Game
i by Si and let k be the overall number of required commitments.

Game 0: The original transparency game.

Game 1: As the original game, but the environment sets up the crs for the
non-interactive proof system using the simulator S1, i.e., (crs, τ) ← S1(1κ)
and followingly simulates all proofs using S2(crs, τ, ·, ·).

Transition Game 0 → Game 1: A distinguisher between Game 0 and Game 1 is
an adaptive zero-knowledge distinguisher for Π, i.e., |Pr[S0]−Pr[S1]| ≤ εzk(κ).

Game 2: As Game 1, but all commitments inside OSoR are replaced by com-
mitments to 0.

Transition Game 1 → Game 2: A distinguisher between Game 1 and Game 2
is a distinguisher for the hiding game of C, i.e., the distinguishing probability
|Pr[S1]− Pr[S2]| ≤ k · εhd(κ).9

In Game 2, all values except δ are independent of the bit b, meaning that the
adversary has the same advantage as in the transparency game of the underlying
RS for sets, i.e., Pr[S2] = 1/2 + εRS(κ). Taking all together, we have Pr[S0] ≤
1/2 + εRS(κ) + εzk(κ) + k · εhd(κ), which concludes the proof.

The lemma above yields the following corollary.

Corollary 5.4. If RS is transparent, C is hiding, and Π is adaptively zero-
knowledge, then Scheme 5.3 is private.

9 For compactness, we combine the exchange of the commitments in one game change and
note that it is straightforward to unroll the exchange of the commitments in k game changes.
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5.2 Extended Privacy for Redactable Signatures

The work presented in this section is dedicated to the development of a cryp-
tographically enhanced solution for a real world hospital, which is currently
planning to complement its existing information sharing system for electronic
patient data with additional privacy features. The overall idea of the system
is to grant patients access to all their medical records via a cloud-based plat-
form. The patients are then able to use this as a central hub to distribute their
documents to different stakeholders, e.g., to request reimbursement by the in-
surance, or to forward (parts of) the documents to the family doctor for further
treatment. While means for access control and data confidentiality are already
in place, the system should be complemented by strong authenticity guarantees.
At the same time a high degree of privacy should be maintained, i.e., by allowing
the patients, on a fine-granular basis, to decide which parts of which document
should be visible to which party. For instance, the family doctor might not need
to learn the precise costs of a treatment; similarly a medical research laboratory
should not learn the patients’ identities.

From a research point of view, one motivation behind this work is to show
how rather complex real world scenarios with conflicting interests and strong se-
curity and privacy requirements can be elegantly and securely realized by means
of rigorous cryptographic design and analysis. More importantly, we can indeed
come up with provably secure and practical solutions being well suited for real
world use. We also note that our results are not limited to the proposed appli-
cation, but can also be directly applied to various other contexts such as notary
authorities or e-government services. Now, we discuss the motivation for our
design.

Redactable Signatures. A trivial solution for the above problem would be to let
the hospital cloud create a fresh signature on the information to be revealed every
time the user wishes to forward authentic subsets of a document to other parties.
However, this is not satisfactory as it would require strong trust assumptions
into the cloud: one could not efficiently guarantee that the signed data has not
been altered over time by the cloud or by a malicious intruder. It is therefore
preferable to use redactable signatures (RS). Then it is not necessary to let
the cloud attest the authenticity of the forwarded data, as the signature on the
redacted document can be extracted from the doctor’s signature on the original
document without requiring the doctor’s secret signing key or further interaction
with the doctor.

Designated Verifiers. Unfortunately, using redactable signatures in their vanilla
form in our scenario would lead to severe privacy problems, i.e., everyone get-
ting hold of a signed document would be convinced of its authenticity. In such
a case, for instance, if someone leaks a signed health record of an employee to
an employer, the employer might reliably learn the employee’s disease, and in
further consequence dismiss the employee. What is therefore needed is a desig-
nated verifier for each redacted version of a document. That is, when redacting
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a document, the patient should be able to define the intended receiver. Then,
while everybody can check the validity of a leaked document, only the designated
verifier is convinced about its authenticity. This can be achieved by constructing
the schemes in a way that the designated verifier can fake indistinguishable sig-
natures on its own. Thereby, one may observe that the property that signatures
can be publicly verified might as well be a motivation for designated verifiers
to not leak/sell documents, as this reduces the circle of possible suspects to the
data owner and the designated verifier.

Group Signatures. Another problem of RS is that they only support a single
signer. However, a hospital potentially employing hundreds of doctors will not
use a single signing key that is shared by all its employees. By doing so, the
identity of the signing doctor could not be revealed in case of a dispute, e.g.,
after a malpractice. However, using different keys for different doctors poses a
privacy risk again. For instance, if the document was signed using an oncologist’s
key, one could infer sensitive information about the disease—even though the
diagnosis was blacked out. What is therefore needed are features known from
group signatures, where towards the verifier the doctor’s identity remains hidden
within the set of doctors in the hospital, while re-identification is still possible
by a dedicated entity.

Contribution. The properties we need for our scenario are contributed by three
distinct cryptographic concepts and what we actually need can be considered as
a signer-anonymous designated-verifier redactable signature scheme. However,
while a lot of existing work studies the different concepts in isolation, there is
no work which aims at combining them in a way to profit from a combination of
their individual properties. Trying to obtain this by simply combining them in
an ad-hoc fashion, however, is dangerous. It is well known that the ad-hoc com-
bination of cryptographic primitives to larger systems is often problematic (as
subtle issues often remain hidden when omitting formal analysis) and security
breaches resulting from such approaches are often seen in practice. Unlike follow-
ing such an ad-hoc approach, we follow a rigorous approach and formally model
what is required by the use case, introduce a comprehensive security model and
propose two (semi-)black-box constructions that are provably secure within our
model. While such a (semi-)black-box construction is naturally interesting from
a theoretical point of view, our second construction is also entirely practical and
thus also well suited to be used within the planned system. Finally, as a con-
tribution which may be of independent interest, we also obtain the first group
redactable signatures as a byproduct of our definitional framework.

Technical Overview. Our constructions provably achieve the desired function-
ality by means of a two-tier signature approach: a message is signed using a
freshly generated RS key pair where the corresponding public key of this “one-
time RS” is certified using a group signature. For the designated verifier feature,
we follow two different approaches. Firstly, we follow the näıve approach and
use a disjunctive non-interactive proof of knowledge which either demonstrates
knowledge of a valid RS signature on the message, or it demonstrates knowledge

139



Chapter 5. Signatures with Data Privacy

of a valid signature of the designated verifier on the same message. While this
approach is very generic, its efficiency largely depends on the complexity to prove
knowledge of an RS signature. To this end, we apply our framework for key-
homomorphic signatures from Section 3.2 to one of our generic RS constructions
from the previous section. In particular, we use the observation that a large class
of RS can easily be turned into RS admitting the required key-homomorphism,
to obtain a practical construction. More precisely, besides conventional group
signatures and conventional redactable signatures, our approach only requires to
prove a single statement demonstrating knowledge of the relation between two
RS keys or demonstrating knowledge of the designated verifier’s secret key. For
instance, in the discrete logarithm setting when instantiating this proof using
Fiat-Shamir [FS86] transformed Σ-protocols, they are highly efficient as they
only require two group exponentiations.

Related Work. Although redactable signatures suffer from the aforementioned
problems, we can use them as important building blocks. In particular, we
will rely on the general framework for redactable signatures introduced in the
previous section. We refer the reader to this section for a discussion of related
work.

Besides that, there is a large body of work on signatures with designated
verifiers. However, none of the approaches considers selective disclosure via
redaction or a group signing feature. In designated verifier (DV) signatures (or
proofs) [JSI96], a signature produced by a signer can only be validated by a single
user who is designated by the signer during the signing process (cf. [LWB05] for
a refined security model). Designation can only be performed by the signer and
verification requires the designated verifier’s secret. Thus, this concept is not
directly applicable to our setting. In [JSI96] also the by now well known “OR
trick” was introduced as a DV construction paradigm.

Undeniable signatures [CA89] are signatures that can not be verified without
the signer’s cooperation and the signer can either prove that a signature is valid
or invalid. This is not suitable for us as this is an interactive process.

Designated confirmer signatures [Cha94] introduce a third entity besides the
signer and the verifier called designated confirmer. This party, given a signature,
has the ability to privately verify it as well as to convince anyone of its validity
or invalidity. Additionally, the designated confirmer can convert a designated
confirmer signature into an ordinary signature that is then publicly verifiable.
This is not suitable for our scenario, as it is exactly the opposite of what we
require, i.e., here the signature for the confirmer is not publicly verifiable, but
the confirmer can always output publicly verifiable versions of this signature.

Another concept, which is closer to the designation functionality that we re-
quire, are universal designated verifier (UDV) signatures introduced in [SBWP03].
They are similar to designated verifier signatures, but universal in the sense that
any party who is given a publicly verifiable signature from the signer can des-
ignate the signature to any designated verifier by using the verifier’s public key.
Then, the designated verifier can verify that the message was signed by the
signer, but is unable to convince anyone else of this fact. Like with ordinary
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DV signatures, UDV signatures also require the designated verifier’s secret key
for verification. There are some generic results for UDV signatures. In [Ver06]
it was shown how to convert various pairing-based signature schemes into UDV
signatures. In [SS08] it was shown how to convert a large class of signature
schemes into UDV signatures. Some ideas in our second construction are con-
ceptually related to this generic approach. However, as we only require to prove
relations among public keys, our approach is conceptually simpler and often
more efficient.

5.2.1 Formal Security Model

Now we formally define signer-anonymous designated-verifier redactable signa-
ture schemes (AD-RS). To obtain the most general result, we follow our generic
model for redactable signatures and do not make the structure of the messages
to be signed explicit. Inspired by [MPV09], we view signatures output by Sign
as being of the form σ = (σ, σ). That is, signatures are composed of a pub-
lic signature component σ and a private signature component σ, where σ may
also be empty. Intuitively, this allows for stronger security definitions: while
our signatures are malleable by definition we may still require that the public
components are non-malleable. For the sake of simple presentation we model
our system for static groups, since an extension to dynamic groups [BSZ05] is
straight forward.

Definition 5.5. An AD-RS is a tuple (Setup, DVGen, Sign, GVerify, Open,
Redact, Verify, Sim) of PPT algorithms, which are defined as follows.

Setup(1κ, n) : Takes a security parameter κ and the group size n ≤ poly(κ) as
input. It generates and outputs a group public key gpk, a group opening key
gok, and a list of group signing keys gsk = {gski}i∈[n].

DVGen(1κ) : Takes a security parameter κ as input and outputs a designated
verifier key pair (vskj , vpkj).

Sign(gski,m, ADM) : Takes a group signing key gski, a message m, and admissible
modifications ADM as input, and outputs a signature σ.

GVerify(gpk,m, σ) : Takes a group public key gpk, a message m, and a signature
σ as input, and outputs a bit b.

Open(gok,m, σ) : Takes a group opening key gok, a message m, and a valid
signature σ as input, and outputs an identity i.

Redact(gpk, vpkj ,m, σ,MOD) : Takes a group public key gpk, a designated-verifier
public key vpkj, a message m, a valid signature σ, and modification instruc-
tions MOD as input, and returns a designated-verifier message-signature pair
(m̊, ρ).

Verify(gpk, vpkj ,m, ρ) : Takes a group public key gpk, a designated-verifier public
key vpkj, a message m, and a designated-verifier signature ρ. It returns a bit
b.

141



Chapter 5. Signatures with Data Privacy

Sim(gpk, vskj ,m, ADM,MOD, σ): Takes a group public key gpk, a designated-verifier
secret key vskj, a message m, admissible modifications ADM, modification in-
structions MOD, and a valid public signature component σ as input and outputs
a designated-verifier message signature pair (m̊, ρ).

Oracles. We base our security notions on the following oracles and assume that
(gpk, gok, gsk) generated in the experiments are implicitly available to them. The
environment stores a list DVK of designated-verifier key pairs, and a set of public
signature components SIG. Each list entry and each set is initially set to ⊥.

Key(i) : This oracle returns gski.

DVGen(j) : If DVK[j] 6= ⊥ this oracle returns ⊥. Otherwise, it runs (vskj , vpkj)←
DVGen(1κ), sets DVK[j]← (vskj , vpkj), and returns vpkj .

DVKey(j) : This oracle returns vskj .

Sig(i,m, ADM) : This oracle runs σ = (σ, σ) ← Sign(gski,m, ADM), sets SIG ←
SIG ∪ {σ} and returns σ.

Open(m, σ) : This oracle runs i← Open(gok,m, σ) and returns i.

Sim(j,m, ADM,MOD, σ) : If σ /∈ SIG, this oracle returns ⊥. Otherwise, it runs
(m̊, ρ)← Sim(gpk, vskj ,m, ADM,MOD, σ) and returns (m̊, ρ).

RoS(b, j,m, ADM,MOD, σ) : If b = 0, this oracle runs (m̊, ρ)← Redact(gpk, vpkj ,m,
σ,MOD) and returns (m̊, ρ). Otherwise, it uses the Sim oracle to obtain
(m̊, ρ)← Sim(j,m, ADM,MOD, σ) and returns (m̊, ρ).

Ch(i, j, (m0, ADM0,MOD0), (m1, ADM1,MOD1), b) : This oracle runs σc ← Sign(gski,
mc, ADMc), (m̊c, ρc)← Redact(vpkj ,mc, σc,MODc), for c ∈ {0, 1}. If m̊0 6= m̊1 ∨
˚ADM0 6= ˚ADM1, it returns ⊥ and (m̊b, σb, ρb) otherwise.10

The environment stores the oracle queries in lists. In analogy to the oracle labels,
we use QKey,QDVGen,QDVKey,QSig,QOpen,QSim,QRoS, and QCh to denote them.

Security Notions. We require AD-RS to be correct, group unforgeable, desig-
nated-verifier unforgeable, simulatable, signer anonymous, and private.

Correctness guarantees that all honestly computed signatures verify correctly.
Formally, we require that for all n ∈ N, for all (gpk, gok, gsk)← Setup(1κ, n),

for all (vskj , vpkj) ← DVGen(1κ), for all (vsk`, vpk`) ← DVGen(1κ), for all
(m, ADM,MOD) where MOD � ADM ∧ ADM � m, for all (m′, ADM

′,MOD
′) where

MOD
′ � ADM

′ ∧ ADM
′ � m′ for all i ∈ [n], for all σ = (σ, σ)← Sign(gski,m, ADM),

for all u← Open(gok,m, σ), for all (m̊, ρ)← Redact(gpk, vpkj ,m, σ,MOD), for all
(m̊′, ρ′)← Sim(gpk, vsk`,m

′, ADM
′,MOD

′, σ), it holds with overwhelming probabil-
ity in the security parameter κ that GVerify(gpk,m, σ) = 1 ∧ i = u ∧ Verify(gpk,
vpkj , m̊, ρ) = 1 ∧ Verify(gpk, vpk`, m̊

′, ρ′) = 1 and that m̊←−MOD m ∧ m̊′ ←−MOD
′

m′.

10 Here ˚ADM0 and ˚ADM1 are derived from ADM0 and ADM1 with respect to MOD0 and MOD1.
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Group unforgeability captures the intuition that the only way of obtaining valid
signatures on messages is by applying “allowed” modifications to messages which
were initially signed by a group member. Moreover, this property guarantees
that every valid signature can be linked to the original signer by some authority.

Technically, the definition captures the traceability property of group signa-
tures while simultaneously taking the malleability of RS into account.

Definition 5.6. An AD-RS is group unforgeable, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr


(gpk, gok, gsk)← Setup(1κ, n),
O ← {Sig(·, ·, ·),Key(·)},
(m?, σ?)← AO(gpk, gok),
u← Open(gok,m?, σ?)

:
GVerify(gpk,m?, σ?) = 1 ∧

(u = ⊥ ∨ (u /∈ QKey ∧
@(u,m, ADM) ∈ QSig : m? �

ADM

m))

 ≤ ε(κ).

Designated-verifier unforgeability models the requirement that a designated-
verifier signature can only be obtained in two ways: either by corretly redacting
a signature (which can be done by everybody having access to the latter), or
by having access to the secret key of the designated verifier. The former op-
tion would be chosen whenever a signature is to be legitimately forwarded to a
receiver, while the latter enables the designated verifier to fake signatures.

Together with the previous definition, designated-verifier unforgeability guar-
antees that no adversary can come up with a designated-verifier signature for
a foreign public key: by Definition 5.6 it is infeasible to forge a signature—
and Definition 5.7 states that the only way of generating a designated-verifier
signature for somebody else is to know a valid signature to start from.

Definition 5.7. An AD-RS is designated-verifier unforgeable, if there exists a
PPT opener O = (O1, O2) such that for every PPT adversary A there is a
negligible function ε1(·) such that∣∣∣∣∣ Pr

[
(gpk, gok, gsk)← Setup(1κ, n) : A(gpk, gok, gsk) = 1

]
−

Pr
[
(gpk, gok, gsk, τ)← O1(1κ, n) : A(gpk, gok, gsk) = 1

] ∣∣∣∣∣ ≤ ε1(κ),

and for every PPT adversary A there is a negligible function ε2(·) such that

Pr

 (gpk, gok, gsk, τ)← O1(1κ, n),O ← {Sig(·, ·, ·),Key(·),
DVGen(·),DVKey(·),Sim(·, ·, ·, ·, ·)},
(m?, ρ?, v?)← AO(gpk, gok), u← O2(τ, DVK,m?, ρ?, v?)

:

Verify(gpk, vpkv? ,m
?, ρ?) = 1 ∧ v? /∈ QDVKey ∧

(u = ⊥ ∨ (u /∈ QKey ∧ @(u,m, ADM) ∈ QSig : m? �
ADM

m)) ∧
@(v?,m, ADM, ·, ·) ∈ QSim : m? �

ADM

m)

 ≤ ε2(κ).

In our definition, we assume a simple key registration for designated verifiers
to ensure that all designated-verifier key pairs have been honestly created and
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thus an adversary is not able to mount rogue key attacks. In practice, this re-
quirement can often be alleviated by introducing an option to check the honest
generation of the keys (cf. [RY07]), which we omit for simplicity.

Simulatability captures that designated verifiers can simulate signatures on arbi-
trary messages which are indistinguishable from honestly computed signatures.

Definition 5.8. An AD-RS satisfies the simulatability property, if for all PPT
adversaries A there is a negligible function ε(·) such that it holds that

Pr



(gpk, gok, gsk)← Setup(1κ, n), b←R {0, 1},
O ← {DVGen(·),DVKey(·)},
((m0, ADM0,MOD0), (m1, ADM1),
i?, j?, ST)← AO(gpk, gok, gsk),
σ = (σ, σ)← Sign(gski? ,mb, ADMb),
(m̊0, ρ)← RoS(b, j?,m0, ADM0,MOD0, σ),
b? ← AO(σ, m̊0, ρ, ST)

:
b = b? ∧

ADM0 � m0 ∧
ADM1 � m1


≤ 1/2+ε(κ).

As mentioned earlier, we assume that signatures consist of a private and a public
component (the latter being denoted by σ). To eliminate potential privacy issues
associated with a public σ, we also give σ as input to the simulator and the
adversary, and require that the adversary cannot tell real and faked signatures
apart even when knowing σ. This way, our definitional framework guarantees
that these parts do not contain any sensitive information.

In a realization of the system, the public parts of all signatures issued by the
hospital would be made publicly available (without further meta-information).

Signer anonymity requires that only the opening authority can determine the
identity of a signer.

Definition 5.9. An AD-RS is signer anonymous, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr

 (gpk, gok, gsk)← Setup(1κ, n), b←R {0, 1},
O ← {Open(·, ·)}, (i?0, i

?
1,m

?, ADM
?, ST)← AO(gpk, gsk),

σ ← Sign(gski?b ,m
?, ADM

?), b? ← AO(σ, ST)
:

b = b? ∧
@(m, (σ, ·)) ∈ QOpen

2 :
m �

ADM

m?

 ≤ 1/2 + ε(κ),

and A runs in two stages and QOpen
2 records queries to oracle Open in stage two.

The definition guarantees that—no matter how many signatures already have
been opened—the signers’ identities for all other signatures remain secret. The
formulation is, up to the last clause of the winning condition, similar to the
anonymity definition of group signature schemes (cf. Definition 2.25). We, how-
ever, need to adapt the last clause because Definition 2.25 requires signatures to
be non-malleable. In contrast, our signatures are malleable by definition. How-
ever, we can still require parts of the signature, and in particular the public part,
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to be non-malleable. By doing so, we can achieve a strong notion that resembles
anonymity in the sense of group signatures whenever honestly generated signa-
tures have different public components with overwhelming probability. This is
in particular the case for our instantiations provided in the next sections.

Privacy guarantees that a redacted designated-verifier signature does not leak
anything about the blacked-out parts of the original message.

Definition 5.10. An AD-RS is private, if for all PPT adversaries A there is a
negligible function ε(·) such that

Pr

 (gpk, gok, gsk)← Setup(1κ, n), b←R {0, 1},
O ← {Sig(·, ·, ·),Ch(·, ·, ·, ·, b)},
b? ← AO(gpk, gok, gsk)

: b = b?

 ≤ 1/2 + ε(κ).

We call an AD-RS secure, if it is correct, group unforgeable, designated-verifier
unforgeable, simulatable, signer anonymous, and private.

Group Redactable Signatures. When omitting the DV-related notions and
oracles, one directly obtains a definition of group redactable signatures, which
may also be useful for applications that require revocable signer-anonymity.

5.2.2 A Generic Construction

Now we present a simple generic construction which can be built by combining
any GS, any RS, and any Π that admits proofs of knowledge in a black-box way.
In Scheme 5.4 we present our construction which follows the intuition given in
the introduction. We use Π to prove knowledge of a witness for the following
NP relation R required by the verification of designated-verifier signatures.

((m, pk, vpkj), (σR, σV)) ∈ R ⇐⇒
RS.Verify(pk,m, σR) = 1 ∨ Σ.Verify(vpkj ,m, σV) = 1.

The rationale behind choosing R in this way is that this yields the most general
result. That is, no further assumptions on RS or Σ are required. For an instantia-
tion of our construction we can use standard GS and standard RS, where multiple
practically efficient instantiations exist. Thus, the time required for signature
creation/verification is mainly determined by the cost of the proof of knowledge
of the RS signature σR. We, however, want to emphasize that—depending on
the concrete RS—this proof can usually be instantiated by means of relatively
cheap Σ-protocols. Ultimately, as we will show below, we can replace this proof
with a much cheaper proof by exploiting properties of the used RS.

Theorem 5.4. If GS, RS, and Σ are secure and Π is witness indistinguishable
and admits proofs of knowledge, then Scheme 5.4 is secure.

We show that Theorem 5.4 holds by proving Lemma 5.10-5.15.

Lemma 5.10. If GS is correct, RS is correct, Σ is correct, and Π is complete,
then Scheme 5.4 is also correct.
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Setup(1κ, n) : Run (gpk, gok, gsk) ← GS.KeyGen(1κ, n), crs ← Π.Setup(1κ), set

gpk′ ← (gpk, crs) and return (gpk′, gok, gsk).

DVGen(1κ) : Run (vskj , vpkj)← Σ.KeyGen(1κ) and return (vskj , vpkj).

Sign(gski,m, ADM) : Run (sk, pk) ← RS.KeyGen(1κ) and return σ = (σ, σ) ← ((pk, σG),

(σR,RED)), with

σG ← GS.Sign(gski, pk), and ((m, σR), RED)← RS.Sign(sk,m, ADM).

GVerify(gpk,m, σ) : Parse σ as ((pk, σG), (σR, ·)) and return 1 if the following holds

and 0 otherwise:

GS.Verify(gpk, pk, σG) = 1 ∧ RS.Verify(pk,m, σR) = 1.

Open(gok,m, σ) : Parse σ as ((pk, σG), σ) and return GS.Open(gok, pk, σG).

Redact(gpk, vpkj ,m, σ,MOD) : Parse σ as ((pk, σG), (σR, RED)) and return (m̊, ρ), where

((m̊, σ̊R), ·)← RS.Redact(pk,m, σR,MOD, RED),

π ← Π.Proof(crs, (m̊, pk, vpkj), (̊σR,⊥)), and

ρ← ((pk, σG), π).

Verify(gpk, vpkj ,m, ρ) : Parse ρ as ((pk, σG), π) and return 1 if the following holds, and

0 otherwise:

GS.Verify(gpk, pk, σG) = 1 ∧ Π.Verify(crs, (m, pk, vpkj), π) = 1.

Sim(gpk, vskj ,m, ADM,MOD, σ) : If MOD � ADM ∧ ADM � m, parse σ as (pk, σG), run

m̊←−MOD m, and return (m̊, ρ), where

σV ← Σ.Sign(vskj , m̊),

π ← Π.Proof(crs, (m̊, pk, vpkj), (⊥, σV)), and

ρ← (σ, π).
Otherwise, return ⊥.

Scheme 5.4: Black-box AD-RS.

Lemma 5.10 straight-forwardly follows from inspection; the proof is omitted.

Lemma 5.11. If GS is traceable and RS is unforgeable, then Scheme 5.4 is group
unforgeable.

Proof. We construct efficient reductionsRt andRu turning an efficient group un-
forgeability adversary Agu, into an efficient adversary (1) At against traceability
of GS, or (2) Au against unforgeability of the RS.
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(1) Rt obtains (gpk, gok) from a GS traceability challenger Ct
κ, completes the

setup as in the real game, and starts Agu on (gpk′, gok). Sig queries are simulated
by obtaining the group signature σG using the Sig oracle provided by Ct

κ and
running the remaining Sign algorithm as in the original protocol. Key queries
are simply forwarded to Ct

κ. Eventually, Agu outputs a forgery (m?, σ?) which
is opened to signer index u (recall that σ? = ((pk, σG), (σR,RED)). If u exists
(u 6= ⊥), and Agu either requested gsku or a group signature on pk for u (i.e.,
u ∈ QKey ∨ (u, pk) ∈ QSign), we abort as we are in the other case. Otherwise,
we output (pk, σG) as a valid forgery for traceability of GS.

(2) Ru runs the setup as in the real game and starts Agu on (gpk′, gok). On
each Sig query, Ru engages with an RS unforgeability challenger Cu

κ, obtains
pk and computes the RS signature using the Sign oracle provided by Cu

κ. The
remaining simulation is performed as in the original scheme. Eventually, Agu

outputs a forgery (m?, σ?) which is opened to signer index u (recall that σ? =
((pk, σG), (σR,RED)). If u does not exist (u = ⊥), or u exists and Agu neither
requested gsku nor a group signature on pk for u (i.e., u /∈ QKey ∧ (u, pk) /∈ QSign)
we abort as we are in the other case. Otherwise, we know that we have a valid
RS signature on m? under pk which is not derivable from any queried message
(i.e., @ (u,m, ADM) ∈ QSig : m? �

ADM

m) and we can output (m?, σR) as an RS forgery.

Overall Bound. The simulations in both reductions are indistinguishable from a
real game. In front of an adversary we randomly guess the adversary’s strategy,
inducing a loss of 1/2. Our reduction for a Type 1 forger always succeeds if the
adversary succeeds, whereas our reduction for Type 2 succeeds with a probability
of 1/q, where q ≤ poly(κ) is the number of queries to the Sig oracle. Overall, this
means that the probability to break group unforgeability is upper-bounded by
2 ·max{εgu(κ), q · εp(κ)}.

Lemma 5.12. If Π admits proofs of knowledge, Σ is EUF-CMA secure, and
Scheme 5.4 is group unforgeable, then Scheme 5.4 is also designated-verifier
unforgeable.

Proof. We bound the probability to break designated-verifier unforgeability. We
start by defining our opener O = (O1, O2).

O1(1κ, n) : Run (gpk, gok, gsk)← GS.KeyGen(1κ, n), (crs, τ)← Π.E1(1κ), set
gpk′ ← (gpk, crs), τ ′ ← (gpk′, gok, gsk, τ) and return (gpk′, gok, gsk, τ ′).

O2(τ, DVK,m?, ρ?) : Parse σ as ((pk, σG), σ) and return u ← GS.Open(gok,
pk, σG).

The tuple (gpk′, gok, gsk) contained in the output of O1 is computationally indis-
tinguishable from the output of Setup under the extraction-CRS indistinguisha-
bility of the proof system.

147



Chapter 5. Signatures with Data Privacy

What remains is to show that—using O—the success probability of every
PPT adversary in the designated-verifier unforgeability game is negligible in
the security parameter. We do so by using a sequence of games, where we let
q ≤ poly(κ) be the number of queries to the DVGen oracle.

Game 0: The original designated-verifier-unforgeability game.

Game 1: As Game 0, but we modify O1 as follows. We use Cgu
κ to denote a

group unforgeability challenger.

O1(1κ, n) : Run (gpk, gok)← Cgu
κ , set gsk← ⊥ , (crs, τ) ← Π.E1(1κ), set

gpk′ ← (gpk, crs), τ ′ ← (gpk′, gok, gsk, τ) and return (gpk′, gok, gsk, τ ′).

Then, we simulate all queries to Sig and Key by forwarding them to Cgu
κ .

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].

Game 2: As Game 1, but we guess the index v? that the adversary will attack.

Transition - Game 1 → Game 2: The success probability in Game 2 is the same
as in Game 1, unless our guess is wrong. That is Pr[S2] = Pr[S1] · 1/q.

Game 3: As Game 2, but in the query to DVGen for user v? we engage with
an EUF-CMA challenger Cf

κ, obtain a public key pk and return vpkv? ← pk.
Furthermore, the queries to Sim for user v? are simulated without vskv? by
using the Sign oracle provided by Cf

κ.

Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S3] = Pr[S2].

Game 4: As Game 3, but for every output of the adversary, we obtain (σR, σV)←
Π.E2(crs, τ, (m?, pk, vpkv?), π). If the extractor fails, we abort.

Transition - Game 3 → Game 4: The success probability in Game 2 is the same
as in Game 1, unless the extractor fails, i.e., |Pr[S3]− Pr[S4]| ≤ εext2(κ).

In Game 4 we have two possibilities if A outputs a valid forgery.

1. We extract a signature σR such that RS.Verify(pk,m?, σR) = 1. Since, our
implementation of O1 does the same as what is done in Open and we have
that (u = ⊥ ∨ (u /∈ QKey ∧ @(u,m, ADM) ∈ QSig : m? �

ADM

m)) by definition, we
can compose σ ← ((pk, σG), (σR,⊥)) and return (m?, σ) to Cgu

κ as a forgery
for the group unforgeability game.

2. We extract a signature σV such that Σ.Verify(vpkv? ,m
?, σV) = 1. By def-

inition, we have that v? /∈ QDVKey ∧ @(v?,m, ADM, ·, ·) ∈ QSim : m? �
ADM

m).
Since m? �

ADM

m also includes the identity, i.e., the case where m? = m, we
know that m? was never queried to the signing oracle provided by Cf

κ and
we can output (m?, σV) as a valid EUF-CMA forgery.
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The union bound yields Pr[S4] ≤ εgu(κ) + εf(κ). Furthermore, we have that
Pr[S4] = Pr[S3] · (1 − εext2(κ)), that Pr[S3] = Pr[S2] = Pr[S1] · 1/q, and that
Pr[S0] = Pr[S1]. All in all this yields Pr[S0] ≤ q · (εgu(κ) + εf(κ) + εext2(κ)),
which proves the lemma.

Lemma 5.13. If Π is witness indistinguishable, then Scheme 5.4 is simulatable.

Proof. We show that the output in the simulatability game is (computationally)
independent of the bit b.

Game 0: The original simulatability game (σ is already independent of b).

Game 1: As Game 0, but we obtain crs for Π upon Setup from a witness indis-
tinguishability challenger Cwi

κ instead of internally generating it.

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].

Game 2: As Game 1, but instead of executing Redact inside RoS, we execute
the modified algorithm Redact′ with additional input vskj , which additionally

computes σV ← Σ.Sign(vskj , m̊) and then computes π as π ← Π.Proof(crs, (m̊,

pk, vpkj), (⊥, σV) ).

Transition - Game 1 → Game 2: A distinguisher D1→2 is a distinguisher for
adaptive witness indistinguishability of the Π, i.e., |Pr[S3]−Pr[S2]| ≤ εwi(κ).

In Game 2, Redact′ and Sim are identical, i.e., RoS is independent of b. Thus,
the adversary has no advantage in winning the game, i.e., Pr[S2] = 1/2, which
yields Pr[S0] ≤ 1/2 + εwi(κ).

Lemma 5.14. If GS is anonymous and RS is unforgeable, then Scheme 5.4 is
signer anonymous.

Proof. We construct an efficient reduction R which turns an efficient signer-
anonymity adversary Asa into an efficient adversary A against anonymity of the
underlying GS. R obtains (gpk, gsk) from the challenger Ca

κ of the anonymity
game of GS and completes the setup as in the original scheme. R simulates the
Open oracle by using the Open oracle provided by Ca

κ and startsAsa on (gpk′, gsk).
If Asa eventually outputs b?, then R outputs b? to Ca

κ. By the RS unforgeability,
the simulation of the Open oracle is computationally indistinguishable from a
real game. The reduction succeeds with non-negligible probability whenever Asa

succeeds with non-negligible probability.

Lemma 5.15. If RS is private, then Scheme 5.4 is private.

Proof. We prove privacy using a sequence of games, where we let q ≤ poly(κ) be
the number of queries to the Ch oracle.
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Game 0: The privacy game with bit b = 0.

Game 1` (1 ≤ ` ≤ q): As Game 0, but we set b = 1 for the first ` queries to
Ch.

Transition - Game 0 → Game 11: A distinguisher between Game 0 and Game
11 is a distinguisher for the RS privacy game. To show this, we engage
with an RS privacy challenger Cp

κ in the first call to Ch, obtain pk, com-
pute σG ← GS.Sign(gski, pk), (m̊, σ̊R) ← Cp

κ.LoRRedact((m0,MOD0, ADM0), (m1,
MOD1, ADM1)), as well as π ← Π.Proof(crs, (m̊, pk, vpkj), (̊σR,⊥)), and return
(m̊, σ, ρ) = (m, (pk, σG), ((pk, σG), π)). Depending on the bit chosen by Cp

κ, we
either simulate Game 0 or Game 11.

Transition - Game 1` → 1`+1 (1 ≤ ` < q) : The answers of the Ch oracle for the
first ` queries are already simulated for b = 1. As above, a distinguisher
between Game 1` and Game 1`+1 is a RS privacy distinguisher.

In Game 1q we have a simulation for bit b = 1. We can bound probability
to distinguish the simulations for b = 0 and b = 1 by |Pr[S1q ] − Pr[S0]| ≤
q · εp(κ), which shows that the advantage to win the privacy game is bounded
by 1/2 + q · εp(κ).

5.2.3 Boosting Efficiency via Key-Homomorphisms

In Section 5.1 we have shown that RS can be generically constructed from any
EUF-CMA secure signature scheme and indistinguishable accumulators (cf. Sec-
tion 3.1). In our setting it is most reasonable to consider messages as an (ordered)
sequence of message blocks. A straight forward solution would thus be to build
upon Scheme 5.2, which is tailored to signing ordered sequences of messages
m = (m1, . . . ,mn). Unfortunately, this construction aims to conceal the number
of message blocks in the original message, and the positions of the redactions.
This can be dangerous in our setting, since it might allow to completely change
the document semantics. Besides that, it inherently requires a more complex
construction.

To this end, we pursue a different direction and require another message rep-
resentation: we make the position i of the message blocks mi in the message
explicit and represent messages as sets m = {1||m1, . . . , n||mn}. Besides solv-
ing the aforementioned issues, it also allows us to build upon the (simpler) RS
paradigm for sets presented in Scheme 5.1. This paradigm subsumes the essence
of many existing RSs. For convenience of the reader we will briefly recall it
now: secret keys, public keys, and signatures are split into two parts each. One
corresponds to the signature scheme Σ, and one corresponds to the accumula-
tor Λ. Then, Λ is used to encode the message, whereas Σ is used to sign the
encoded message. Consequently, we can look at RS key pairs and signatures as
being of the form (sk, pk) = ((skΣ, skΛ, pkΛ), (pkΣ, pkΛ)) and σR = (σΣ, σΛ) where
the indexes denote their respective types. We emphasize that for accumulators
it holds by definition that skΛ is an optional trapdoor which may enable more
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efficient computations, but all algorithms also run without skΛ and the output
distribution of the algorithms does not depend on whether the algorithms are
executed with or without skΛ. We require this property to be able to create
designated verifier signatures (cf. Sim) and use (skΣ,⊥, pkΛ) to denote an RS
secret key without skΛ.

RS following this paradigm only require Σ (besides correctness) to be EUF-
CMA secure. We observe that additional constraints on Σ—and in particular
a Φ+-key-homomorphic property with adaptability of signatures as defined in
Section 3.2—does not influence RS security, while it enables us to design the
relation R such that it admits very efficient proofs.

Φ+-Key-Homomorphic Redactable Signature Schemes. When instanti-
ating our RS construction paradigm (as outlined above) with a Φ+-key-homo-
morphic signature scheme, the key homomorphism of the signature scheme
straight-forwardly carries over to the RS and we can define Adapt as follows,
where we use Λ(m) to denote the encoding of message m using Λ.

Adapt(pk,m, σ,∆) : Parse pk as (pkΣ, pkΛ) and σ as (σΣ, σΛ), run (pk′Σ, σ
′
Σ) ←

Adapt(pkΣ,Λ(m), σΣ,∆) and return (pk′, σ′)← ((pk′Σ, pkΛ), (σ′Σ, σΛ)).

This allows us to concisely present our construction in Scheme 5.5. The NP
relation, which needs to be satisfied by valid designated-verifier signatures is as
follows.

((pk, vpkj), (sk, vskj)) ∈ R ⇐⇒ pk = µ(sk) ∨ Σ.VKey(vskj , vpkj) = 1.

In the discrete logarithm setting such a proof requires an OR-Schnorr proof of
two discrete logs, i.e., only requires two group exponentiations.

Theorem 5.5. If GS is secure, RS is an adaptable RS following Scheme 5.1, Σ
is secure, and Π is weakly simulation sound extractable, then Scheme 5.5 is also
secure.

We show that Theorem 5.5 holds by proving Lemma 5.16-5.21. We note that
we could also perform this proof under witness indistinguishability instead of
weak simulation sound extractability (analogous as in the proof of Theorem 3.6).
However, the instantiation of Π we target provides weak simulation sound ex-
tractability anyway, which is why we opt for the simpler proof.

Lemma 5.16. If GS is correct, RS is correct and adapts signatures, Σ is correct,
and Π is complete, then Scheme 5.5 is also correct.

Lemma 5.16 straight-forwardly follows from inspection; the proof is omitted.

Lemma 5.17. If GS is traceable and RS is unforgeable, then Scheme 5.5 is group
unforgeable.

Lemma 5.17 can be proven identically as group unforgeability is proven in the
previous section and is therefore omitted.
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Redact(gpk, vpkj ,m, σ,MOD) : Parse σ as ((pk, σG), (σR, RED)) and return (m̊, ρ), where

sk′←R H, pk′ ← µ(sk′), (pkR, σ
′
R)← Adapt(pk,m, σR, sk′),

((m̊, σ̊′R), ·)← RS.Redact(pkR,m, σ
′
R,MOD, RED),

π ← Π.Proof(crs, (pk′, vpkj), (sk′,⊥)), and ρ← ((pk, σG), pk′, σ̊′R, π).

Verify(gpk, vpkj ,m, ρ) : Parse ρ as ((pk, σG), pk′, σ̊′R, π), let pk = (pkΣ, pkΛ), compute

pkR ← (pkΣ · pk′, pkΛ) and return 1 if the following holds, and 0 otherwise:

GS.Verify(gpk, pk, σG) = 1 ∧ Π.Verify(crs, (pk′, vpkj), π) = 1

∧ RS.Verify(pkR,m, σ̊
′
R) = 1.

Sim(gpk, vskj ,m, ADM,MOD, σ) : If MOD � ADM ∧ ADM � m, parse σ as ((pkΣ, pkΛ), σG)

and return (m̊, ρ), where

skΣ
R←

R H, pkΣ
R ← µ(skΣ

R), pk′ ← pk−1
Σ · pkΣ

R,

((m, σ′R), RED)← RS.Sign((skΣ
R,⊥, pkΛ),m, ADM),

((m̊, σ̊′R), ·)← RS.Redact((pkΣ
R, pkΛ),m, σ′R,MOD, RED),

π ← Π.Proof(crs, (pk′, vpkj), (⊥, vskj)), and ρ← (σ, pk′, σ̊′R, π).

Scheme 5.5: Semi-black-box AD-RS where Setup, DVGen, Sign, GVerify, and Open
are as in Scheme 5.4.

Lemma 5.18. If Π is weakly simulation sound extractable, Σ is EUF-CMA se-
cure, RS adapts signatures, Scheme 5.5 is group unforgeable, and the DL as-
sumption holds in G, then Scheme 5.5 is also designated-verifier unforgeable.

Proof. We prove designated-verifier unforgeability using a sequence of games.
First, we define the opener O = (O1, O2) as follows.

O1(1κ, n) : Run (gpk, gok, gsk) ← GS.KeyGen(1κ, n), (crs, τ)← Π.S1(1κ), set
gpk′ ← (gpk, crs), τ ′ ← (gpk, gok, gsk, τ), and return (gpk′, gok, gsk, τ ′).

O2(τ, DVK,m?, ρ?) : Parse σ as ((pk, σG), σ) and return u ← GS.Open(gok,
pk, σG).

The tuple (gpk′, gok, gsk) contained in the output of O1 is computationally indis-
tinguishable from the output of Setup under the simulation-CRS indistinguisha-
bility of the proof system. From now on we will simulate all proofs, i.e., replace
all calls to Π.Proof(crs, x, w) by Π.S2(crs, τ, x).

What remains is to show that—using O—the success probability of every
PPT adversary in the designated-verifier unforgeability game is negligible in
the security parameter. We do so by using a sequence of games where we let
qSim ≤ poly(κ) be the number of queries to the Sim oracle and q ≤ poly(κ) the
number of users in the system.
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Game 0: The original designated-verifier unforgeability game.

Game 1: As Game 0, but we modify O1 as follows, where Cgu
κ denotes a group-

unforgeability challenger (note that we can assume that all required accumu-
lator public keys are obtained from collision freeness challengers as all algo-
rithms also run without secret keys without affecting the output distribution
of the algorithms):

O1(1κ, n) : Run (gpk, gok)← Cgu
κ , set gsk← ⊥ , (crs, τ)← Π.S1(1κ),

gpk′ ← (gpk, crs), τ ′ ← (gpk, gok, gsk, τ), and return (gpk′, gok, gsk, τ ′).

Furthermore, whenever the adversary queries Sig or Key, we use the oracles
provided by Cgu

κ to obtain the required group signatures and keys, respectively.

Transition - Game 0 → Game 1: This game change is conceptual and Pr[S1] =
Pr[S0].

Game 2: As Game 1, but whenever the adversary outputs a forgery so that
pkΣ · pk′ corresponds to a key pkΣ

R used in a Sim oracle call we check whether
the signed accumulator value (used to encode the message) is still the same
as the one signed in Sim and abort if so.

Transition - Game 1 → Game 2: If we abort, we have a collision for one of the
accumulators. That is, |Pr[S1]− Pr[S2]| ≤ qSim · εcf(κ).

Game 3: As Game 2, but inside Sim we obtain pkΣ

R from an EUF-CMA chal-
lenger of Σ and obtain the required signatures inside RS.Sign using the Sign
oracle provided by the challenger.

Transition - Game 2 → Game 3: This change is conceptual: Pr[S2] = Pr[S3].11

Game 4: As Game 3, but we guess the index v? that the adversary will attack.
If our guess is wrong, we abort.

Transition - Game 3 → Game 4: The success probability in Game 4 is the same
as in Game 3, unless our guess is wrong. That is Pr[S4] = Pr[S3] · 1/q.

Game 5: As Game 4, but in the query to DVGen for user v? we engage with an
EUF-CMA challenger Cf

κ, obtain a public key pk and return vpkv? ← pk.

Transition - Game 4 → Game 5: This change is conceptual, i.e., Pr[S4] = Pr[S5].

Game 6: As Game 5, but we further modify O1 as follows, where Cgu
κ denotes

a group-unforgeability challenger:

11 Note that the changes in Game 2 and Game 3 resemble the unforgeability proof strategy of
Scheme 5.1. For further details see Section 5.1.
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O1(1κ, n) : Run (gpk, gok)← Cgu
κ , set gsk← ⊥, (crs, τ, ξ)← Π.S(1κ) ,

gpk′ ← (gpk, crs), τ ′ ← (gpk, gok, gsk, τ, ξ ), and return (gpk′, gok, gsk,
τ ′).

Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].

Game 7: As Game 6, but for every output of the adversary, we check whether
pkΣ

R corresponds to a key obtained from a challenger in Sim and continue if so.
Otherwise, we obtain (sk′, vskv?)← Π.E(crs, ξ, (pk′, vpkv?), π). If the extractor
fails, we abort.

Transition - Game 6 → Game 7: Both games proceed identically, unless the ex-
tractor fails, i.e., |Pr[S6]− Pr[S7]| ≤ εext(κ).

If the adversary outputs a forgery (m?, ρ?, v?), where ρ? = (((pkΣ, pkΛ), σG), pk′,
σ̊′R, π), we check if pkΣ · pk′ corresponds to a key pkΣ

R used in Sim. Then, we
can output the Σ-signature σ on the accumulator together with the accumu-
lator as an EUF-CMA forgery to one of the challengers from Sim. Otherwise,
we check whether we have extracted vskv? such that Σ.VKey(vpkv? , vskv?) = 1.
If so, we choose a random message m in the message space of Σ, compute
σ ← Σ.Sign(vskv? ,m) and output (m,σ) as an EUF-CMA forgery for Σ. If not, we
must have extracted a secret key sk′ such that RS.VKey(pk′, sk′) = 1. Then, we
have that Verify(gpk, vpkv? ,m

?, ρ?) = 1 by definition and can obtain (pk, σ̊′′R) ←
RS.Adapt(pkΣ · pk′,m?, σ̊′R,−sk′) and output (m?, σ) = (m?, (((pkΣ, pkΛ), σG),
(̊σ′′R,⊥))) to break group unforgeability. Note that our implementation of O2

does the same as what is done in Open and we have that (u = ⊥ ∨ (u /∈
QKey ∧ @(u,m, ADM) ∈ QSig : m? �

ADM

m)) by definition. Taking the union bound,
the success probability in Game 7 is bounded by Pr[S7] ≤ εgu(κ)+(1+qSim)·εf(κ).
Thus, we have that Pr[S0] ≤ q · (εgu(κ) + (1 + qSim) · εf(κ) + εext(κ)) + qSim · εcf(κ)
which concludes the proof.

Lemma 5.19. If Π is witness indistinguishable, and RS adapts signatures, then
Scheme 5.5 is simulatable.

Proof. We prove that the output in the simulatability game is (computationally)
independent of the bit b.

Game 0: The original simulatability game (σ is already independent of b).

Game 1: As Game 0, but we obtain crs for the Π upon Setup from a witness
indistinguishability challenger Cwi

κ instead of internally generating it.

Transition - Game 0 → Game 1: This change is conceptual, i.e., Pr[S0] = Pr[S1].

Game 2: As Game 1, but instead of Redact inside RoS we execute the modified
algorithm Redact′ which runs on additional input vskj and computes π as

π ← Π.Proof(crs, (pk′, vpkj), (⊥, vskj) ).
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Transition - Game 1 → Game 2: A distinguisher D1→2 is a distinguisher for
adaptive witness indistinguishability of Π, i.e., |Pr[S2]− Pr[S1]| ≤ εwi(κ).

Game 3: As Game 2, but we further modify Redact′ to Redact′′ so that it
additionally takes ADM as input and works as follows.

Redact′′(gpk, vpkj ,m, σ,MOD, vskj , ADM) : Parse σ as ((pk, σG), (σR, RED))
and return (m̊, ρ), where

skR ←R H, pkR ← µ(skR), pk′ ← pk−1 · µ(skR)

((m, σ′R), RED)← RS.Sign((skR,⊥, pkΛ),m, ADM) ,

((m̊, σ̊′R), ·)← RS.Redact(pkR,m, σ
′
R,MOD, RED),

π ← Π.Proof(crs, (pk′, vpkj), (⊥, vskj)), and ρ← (σ, pk′, σ̊′R, π).

Transition - Game 2 → Game 3: Under adaptability of the RS, Game 2 and
Game 3 are perfectly indistinguishable, i.e., Pr[S3] = Pr[S2].

In Game 3, Redact′′ and Sim are identical; RoS is thus independent of b. Thus,
the adversary has no advantage in winning the game, i.e., Pr[S3] = 1/2. Further,
we have that Pr[S0] = Pr[S1] ≤ Pr[S2] + εwi(κ), and that Pr[S3] = Pr[S2], which
yields Pr[S0] ≤ 1/2 + εwi(κ).

Lemma 5.20. If GS is anonymous, then Scheme 5.5 is signer anonymous.

The proof is identical to the proof of Lemma 5.14 and therefore not restated
here.

Lemma 5.21. If RS is private and adapts signatures, then Scheme 5.5 is private.

Proof. The proof strategy is identical to the privacy proof in the previous sec-
tion. We however, use the following hybrid to interpolate between the games:
We engage with an RS privacy challenger Cp

κ in the ` + 1st call to Ch, obtain
pk, compute σG ← GS.Sign(gski, pk), (m̊, σ̊R)← Cp

κ.LoRRedact((m0,MOD0, ADM0),
(m1,MOD1, ADM1)), sk′←R H, pk′ ← µ(sk′), (pkR, σ̊

′
R) ← RS.Adapt(pk, m̊, σ̊R, sk′),

as well as π ← Π.Proof(crs, (pk′, vpkj), (sk′,⊥)), and return (m̊, σ, ρ) = (m̊, (pk,

σG), ((pk, σG), pk′, σ̊′R, π)) Then, depending on the bit chosen by Cp
κ, we either

simulate Game 0 or Game 11 (resp. 1` or Game 1`+1).

5.2.4 Performance Overview

In this section we evaluate the practical efficiency of Scheme 5.5. We first assess
the practicality of the underlying components and then analyze the overhead
imposed by the provably provided strong security guarantees.
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Group Signatures. It is well known that there exist multiple practically efficient
group signature schemes for non-constrained devices such as standard PCs or
even more powerful machines in the cloud. Yet, to adequately protect the doc-
tor’s group signing key—which is the only key that persists over multiple signing
operations—it might make sense to compute the doctor’s group signature σG on
the one-time RS public key pk upon Sign on some dedicated signature token such
as a smart card or smart phone. Using the estimations in Section 4.2, such a
signature can be computed in < 1s on an ARM Cortex-M0+, a processor that is
small enough to be employed in smart cards. While this is already acceptable,
the performance on smart phones will even be significantly better. For instance,
[CDDT12] report execution times of approximately 150ms for the computation
of a group signature with the well-known BBS [BBS04] scheme on a by now
rather outdated smart phone.

Key-Homomorphic Redactable Signatures. We first note that the RS keys are
freshly generated and the secret keys can be deleted after each signing operation.
The respective operations can therefore be directly executed on the doctor’s PC,
potentially even in parallel to the computation of the group signature. Since we
are not aware of any performance evaluation of RS on standard PCs, we imple-
mented one possible instantiation of Scheme 5.1. In our RS implementation we
use Schnorr signatures and the indistinguishable t-SDH accumulator presented
in Scheme 3.1. In Table 5.1, we present our performance results on an Intel
Core i7-4790 @ 3.60GHz with 8GB of RAM, running Java 1.8.0 91 on top of
Ubuntu 16.04. Each value represents the mean of 100 consecutive executions.
These results confirm that the required RS paradigm is perfectly suited for our
application.

Sign Verify Redact Verify (after Redact)

73.1ms 886.3ms 0.1ms 450.3ms

Table 5.1: RS timings in milliseconds, with a number of n = 100 message blocks,
50% admissibly redactable blocks and 25% of the blocks being redacted upon Redact.

Additional Computations. Using Schnorr signatures, one only needs two group
exponentiations for the proof of knowledge12; the adaption of the signature only
requires a Zp operation, which, compared to the group exponentiations, can be
neglected. All in all, the additional computations can thus be ignored compared
to those of GS and RS13, even on very constrained devices such as [UW14].

12 The results of [FKMV12] confirm that one can use Fiat-Shamir transformed Σ-protocols in
the discrete log setting as simulation sound extractable (and therefore weakly simulation
sound extractable) proof system when including the statement x upon computing the hash
for the challenge.

13 This is underpinned by the results in Table 5.1, where O(n) exponentiations happen.
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Signature Size. Regarding signature size, the dominant part is the size of the
RS public key and signature, respectively, which is in turn determined by the
choice of the accumulator. In particular, when instantiating the RS with an
accumulator having constant key size and supporting batch verification, one can
even obtain constant size signatures. We refer the reader to Section 5.1 for a
discussion on RS signature sizes and to Section 3.1 for an overview of suitable
accumulators.

5.3 Revisiting Extended Sanitizable Signatures

Sanitizable signatures were initially introduced in [ACdMT05] and later formal-
ized in [BFF+09]. They allow to sign messages, where some dedicated party
(the sanitizer) may later change (sanitize) certain predefined parts of the signed
message without invalidating the signature and without signer interaction.

To realize a controlled and limited sanitization of digitally signed content
without signer-interaction, various approaches to so called sanitizable signatures
have been introduced and refined over the years. Today, there are essentially
two flavors of sanitizable signatures. The first one focuses on removal (blacking-
out) of designated parts not necessarily conducted by a designated party (could
be everyone) and it covers redactable signatures as discussed in the previous
sections and the sanitizable signatures in [MIM+05]. The second one focuses
on replacement of designated parts conducted only by a designated party (the
sanitizer) and covers sanitizable signatures as defined in [ACdMT05] and follow
up work [BFF+09, BFLS09, BFLS10, BPS12, BPS13, PSP11]. For a separation
of these flavors we refer the reader to [dMPPS14b].

In addition to the motivating examples in the beginning, sanitizable signa-
tures have shown to be a useful tool in various scenarios. Their applications
include customizing authenticated multicast transmissions, database outsourc-
ing (combating software piracy and unauthorized content distribution), remote
integrity checking of outsourced data [CX08] and secure routing [ACdMT05].
Moreover, they find applications in the context of public sector (open gov-
ernment) data [SKZ13], DRM licensing for digital content protection [CLM08,
YSL10], privacy protection in smart grids [PK14], privacy-aware management of
audit-log data [HHH+08], health record disclosure [BBM09] and anonymization
[SR10], as well as identity management [SSZ14, ZS13]. On the more theoreti-
cal side, it has been shown how to build attribute-based anonymous credential
systems from sanitizable signatures in a black-box fashion [CL13].

In this paper, we focus on sanitizable signatures in the vein of Ateniese et al.
[ACdMT05]. The basic idea behind such a scheme is that a message is split into
fixed and modifiable (admissible) blocks, where each admissible block is replaced
by a chameleon hash (a trapdoor collision resistant hash) of this block, and the
concatenation of all blocks is then signed. A sanitizer being in possession of
the trapdoor, can then change each admissible block arbitrarily by computing
collisions. Such a sanitizable signature scheme needs to satisfy (1) unforgeability,
which says that no one except the honest signer and sanitizer can create valid
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signatures and sanitizations respectively, (2) immutability, which says that a
malicious sanitizer must not be able to modify any part of the message which
has not been specified as admissible by the signer, (3) privacy, which says that all
sanitized information is unrecoverable for anyone except signer and sanitizer, (4)
transparency, which says that signatures created by the signer or the sanitizer are
indistinguishable, and (5) accountability, which requires that a malicious signer
or sanitizer is not able to deny authorship. These security properties have later
been rigorously defined in [BFF+09], where it is also shown that accountability
implies unforgeability, transparency implies privacy14 and all other properties
are independent. Later, the property of (strong) unlinkability [BFLS10, BPS13]
as an even stronger privacy property has been introduced. Additionally, other
properties such as (blockwise) non-interactive public accountability [BPS12] have
been proposed and the model has also been extended to cover several signers
and sanitizers simultaneously [CJL12].

Motivation for this Work. With sanitizable signatures, admissible blocks can
be replaced arbitrarily by the sanitizer. However, this often makes sanitizers too
powerful and thus may limit their applicability in various scenarios severely. To
reduce the sanitizers’ power, Klonowski and Lauks [KL06] introduced several ex-
tensions for sanitizable signatures, which allow to limit the power of a sanitizer in
several ways and thus eliminate the aforementioned concerns. In particular, they
have introduced extensions (1) limiting the set of possible modifications for an
admissible block (LimitSet), (2) forcing the sanitizer to make the same changes
in logically linked admissible blocks (EnforceModif), (3) limiting the sanitizer
to modify at most k out of n admissible blocks (LimitNbModif) and (4) forc-
ing the sanitizer to construct less than ` versions of a message (LimitNbSanit).
Later, Canard and Jambert [CJ10] extended the security model of Brzuska et
al. [BFF+09] to cover the aforementioned extensions (as [KL06] did not provide
any model or proofs).

The LimitSet Extension. Although all of the aforementioned features improve
the applicability of sanitizable signatures, we deem the LimitSet extension to be
the generally most useful one (besides, it is the only extension that is related to
the privacy property). Thus, in the remainder of this paper, we only consider the
LimitSet extension and refer to schemes that implement this extension as ex-
tended sanitizable signature schemes (ESS). In existing constructions, LimitSet
is realized by using cryptographic accumulators, a primitive that allows to suc-
cinctly represent a set (as a so called accumulator) and to compute witnesses
certifying membership for elements in the set. Basically, the set of admissible
changes for such a block is accumulated and the admissible block is replaced by
the respective accumulator. Loosely speaking, the signer initially provides an
element together with the witness and sanitizing simply requires the sanitizer to
exchange this element and the witness.

14 We note that the implication of privacy by transparency [BFLS10] only holds in the proof-
restricted case (cf. Section 5.3.1).
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How to define Privacy? Recall that for sanitizable signatures without extensions,
privacy means that it should not be possible to recover the original message from
a sanitized version. Now, what is the most reasonable definition for privacy given
the LimitSet extension? It seems to be most natural to require that, given a
(sanitized) signature, a LimitSet block does not leak any information about the
remaining elements in the respective set (and thus no information about the orig-
inal message). By carefully inspecting the security model for ESS in [CJ10], we,
however, observe that their privacy definition does not capture this. In fact, an
ESS that reveals all elements of the sets corresponding to LimitSet blocks will be
private in their model. One motivation for a weak definition of privacy in [CJ10]
might have been to preserve the implication from (proof-restricted) transparency
(as in the original model from [BFF+09]). However, as it totally neglects any
privacy guarantees for the LimitSet extension, a stronger privacy notion seems
advantageous and often even required. In [BFLS10, BPS13] a stronger notion
of privacy for sanitizable signatures—called (strong) unlinkability—has been in-
troduced. This notion, when adapted to ESS, indeed guarantees what we want
to achieve. Yet, unlinkability induces a significant overhead for constructions
supporting the LimitSet extension. As we will see later, the only unlinkable
construction that supports the LimitSet extension [CL13] is rather inefficient
and is only proven secure in a customized model which does not consider all
security requirements of sanitizable signatures and thus does not represent an
ESS. In general, as we will discuss later, efficient unlinkable constructions of ESS
seem hard to achieve. Taking all together we conclude that, while the notion of
privacy in [CJ10] seems to be too weak, unlinkability seems to be too strong. In
the following, we motivate why a stronger privacy notion (inbetween these two
notions) that still allows to obtain efficient instantiations is however important
for practical applications.

Motivating Applications. We consider use cases where it is required to limit
the sanitizers abilities, while at the same time providing privacy with respect
to verifiers. For instance, consider authenticity preserving workflows that span
multiple enterprises. Using ESS they can be modeled as illustrated in Figure 5.1,
with a signer and a sanitizer per enterprise. Then, employees can—within some
well defined boundaries—act (in the role of the sanitizer) on behalf of their
company, while also being accountable for their actions. However, companies
do not disclose sensitive business internals. As a concrete example for such a

  

 

Figure 5.1: Modeling a workflow using ESS.
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workflow, envision that a bank signs a document containing a LimitSet block
with authorized financial transactions for some company once every day. An
employee of this company is then able to demonstrate the authorization of sin-
gle transactions to subsequent enterprises via sanitization, while not being able
to maliciously introduce new transactions. The company will definitely want
that employees can be held accountable for revealing certain transactions and
that transactions which were never revealed by sanitized versions of the orignal
document remain concealed. Observe, that an ESS being private according to
[CJ10] could reveal sensitive business internals upon signature verification (i.e.,
the unused transaction information). Another use case is the anonymization of
(medical) data before publishing it, e.g., instead of removing the entire address
information of some individual, one can replace the precise address with some
larger region. To do so, one could define an admissible set with two elements
being the precise address and the region. This would greatly help to automate
the sanitization and to reduce errors, which, in turn, improves the quality of
sanitized documents.15 Likewise to the previous example, an ESS which is pri-
vate according to the definition in [CJ10] would allow to reconstruct the precise
address from a sanitized document.

Contribution. We take a closer look at the privacy definition for ESS in [CJ10]
as well as the unlinkability definitions in [BFLS10, BPS13] when applied to
the security model for ESS. We conclude that these notions are either not
strict enough to cover the requirements outlined in the previous section or too
strict to obtain practical schemes. To this end, we introduce a stronger notion
of privacy—denoted strong privacy—which explicitly considers privacy issues
related to the LimitSet extension. More precisely, our strengthened notion
guarantees that the sets of allowed modifications remain concealed, while still
allowing efficient instantiations. We show that privacy is strictly weaker than
strong privacy and that unlinkability is strictly stronger than strong privacy.
Most importantly, we show that efficient and secure ESS providing strong privacy
can be constructed in a black-box way from any sanitizable signature scheme
that is secure in the models of [BFF+09, GQZ10]. We do so by proposing (1) a
generic conversion of sanitizable signatures to ESS which support the LimitSet

extension and (2) showing that instantiating the LimitSet extension in this
generic conversion with indistinguishable accumulators (cf. Section 3.1) yields
constructions that provide strong privacy.

5.3.1 Formalizing Extended Sanitizable Signatures

In this section, we present a formal model for ESS. Our model can thereby
be seen as a rigorous formalization of the model for ESS presented in [CJ10].
Additionally, we include the suggestions from [GQZ10], i.e., additionally consider
forgeries where one only tampers with ADM. We stress that, when omitting
the extensions regarding LimitSet and ADM, it is equivalent to the model of

15 Such sets could be obtained and standardized by using concepts from k-anonymity [Swe02]
or t-plausibility [ACJ+12] with the help of domain expert knowledge.
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[BFF+09], which is generally considered as the standard model for sanitizable
signature schemes.

Definition 5.11 (Message). A message m = (mi)
n
i=1 is a sequence of n bitstrings

(message blocks).

Henceforth, we use `i to refer to the (maximum) length of message block mi and
assume an encoding that allows to derive (`i)

n
i=1 from m.

Definition 5.12 (Admissible Modifications). Admissible modifications ADM with
respect to a message m = (mi)

n
i=1 are represented as a sequence ADM = (Bi)

n
i=1,

with Bi ∈ {fix, var, lim}.

Here Bi = fix indicates that no changes are allowed, Bi = var indicates that
arbitrary replacements are allowed, and Bi = lim indicates that the replacements
are limited to a predefined set (LimitSet).

Definition 5.13 (Set Limitations). Set limitations V with respect to a message
m = (mi)

n
i=1 and admissible modifications ADM = (Bi)

n
i=1 are represented by a

set V = {(i,Mi) : Bi = lim ∧ Mi ⊂
⋃`i
j=0{0, 1}j}.

We use m̊ �
(ADM, V)

m to denote that m′ can be derived from m under ADM and V.

Definition 5.14 (Witnesses). Witnesses WIT = {(i,WITi)}ti=1, with WITi = {(mi1 ,
witi1), . . . , (mik ,witik)}, are derived from set limitations V = {(i,Mi)}ti=1, with
Mi = {mi1 , . . . ,mik}. Thereby, witij attests that its corresponding message block
mij is contained in the set Mi.

With V ←−(m, ADM)
WIT, we denote the extraction of the set of witnesses V correspond-

ing to a message m from the set WIT.

Definition 5.15 (Modification Instructions). Modification instructions MOD, with
respect to a message m = (mi)

n
i=1, admissible modifications ADM and set limita-

tions V are represented by a set MOD = {(i, m̊i)}ti=1 with t ≤ n, where i refers to
the position of the message block in m, and m̊i is the new content for message
block mi.

With MOD � (ADM, V), we denote that the modification instructions in MOD are
compatible with ADM and V. Furthermore, with (m0,MOD0, ADM, V) ≡ (m1,MOD1,
ADM, V), we denote that after applying the changes in MOD0 and MOD1 to m0 and
m1 respectively, the resulting messages m̊0 and m̊1 are identical.

The Model. Below we formally describe the security model.

Definition 5.16. An ESS is a tuple of PPT algorithms (KeyGen,KeyGens,Sign,
Sanit,Verify,Proof, Judge) which are defined as follows:

KeyGen(1κ) : Takes a security parameter κ as input and outputs a key pair
(sk, pk) for the signer.
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KeyGens(1
κ) : Takes a security parameter κ as input and outputs a key pair

(sks, pks) for the sanitizer.

Sign(m, ADM, V, (sk, pk), pks) : Takes a message m, admissible modifications ADM,
set limitations V, as well as the key pair (sk, pk) of the signer and the ver-
ification key pks of the sanitizer as input. It computes the set WIT from V,
obtains V ←−MOD

WIT and outputs a signature σ = (δ, V) together with some auxil-
iary sanitization information SAN = (aux,WIT).16 As in [BFF+09], we assume
that ADM can be recovered from a signature σ.

Sanit((m, σ),MOD, SAN, pk, sks) : Takes a valid message-signature pair (m, σ), mod-
ification instructions MOD, auxiliary sanitization information SAN, the verifi-
cation key pk of the signer, and the signing key sks of the sanitizer as input. It
modifies m and σ according to MOD and outputs an updated message-signature
pair (m̊, σ̊). We assume that V can be reconstructed from SAN.

Verify((m, σ), pk, pks) : Takes a message-signature pair (m, σ) and the public ver-
ification keys of the signer pk and the sanitizer pks as input and returns a bit
b.

Proof((m, σ), {(mj , σj)}qj=1, (sk, pk), pks) : Takes a message-signature pair (m, σ),
q message-signature pairs {(mj , σj)}qj=1 created by the signer, the key pair
(sk, pk) of the signer and the public key pks of the sanitizer as input and
outputs a proof π.

Judge((m, σ), pk, pks, π) : Takes a message-signature pair (m, σ), the verification
keys of the signer pk and the sanitizer pks and a proof π as input and outputs
a decision d ∈ {sig, san}.

Security Properties. An ESS is required to fulfill the following properties.

Definition 5.17 (Correctness). An ESS is correct, if

∀ κ,∀ q ≤ poly(κ),∀ m,∀ ADM,∀ V,∀ MOD � (ADM, V),
∀ (sk, pk)← KeyGen(1κ), ∀ (sks, pks)← KeyGens(1

κ),
∀ (σ, SAN)← Sign(m, ADM, V, (sk, pk), pks),
∀ (m̊, σ̊)← Sanit((m, σ),MOD, SAN, pk, sks),
∀ {(m1, ADM1, V1), . . . , (mq, ADMq, Vq)},
∀ ((σj , ·)← Sign(mj , ADMj , Vj , (sk, pk), pks))

q
j=1,

∀ π ← Proof((m̊, σ̊), {(m, σ)} ∪ {(mj , σj)}qj=1, (sk, pk), pks) :

Verify((m, σ), pk, pks) = 1 ∧ Verify((m̊, σ̊), pk, pks) = 1 ∧
Judge((m̊, σ̊), pk, pks, π) = san,

where we omit to make the domains of the values over which we quantify explicit
for brevity.

16 While SAN is not required for plain sanitizable signature schemes, ESS additionally return
SAN to pass auxiliary information, which is only relevant for the sanitizer.
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Definition 5.18 (Unforgeability). An ESS is unforgeable, if for all PPT adver-
saries A there is a negligible function ε(·) such that:

Pr


(sk, pk)← KeyGen(1κ),
(sks, pks)← KeyGens(1

κ),
O ← {Sig(·, ·, ·, (sk, pk), ·),
San(·, ·, ·, ·, sks),
Prf(·, ·, (sk, pk), ·)},
(m?, σ?)← AO(pk, pks)

:
Verify(m?, σ?, pk, pks) = 1 ∧

(m?, ADM
?, ·, pks) /∈ QSig ∧

((m?, ·), ADM
?, pk) /∈ QSan

 ≤ ε(κ),

where Sig, San and Prf represent the oracles for the Sign, Sanit and Proof al-
gorithms, respectively. The environment keeps track of the queries to Sig using
QSig. Furthermore, it maintains a list QSan containing the answers of San ex-
tended with ADM and pk from the respective oracle query. Note that ADM

? can be
recovered from σ?.

Definition 5.19 (Immutability). An ESS is immutable, if for all PPT adver-
saries A there is a negligible function ε(·) such that:

Pr


(sk, pk)← KeyGen(1κ),
O ← {Sig(·, ·, ·, (sk, pk), ·),
Prf(·, ·, (sk, pk), ·)},
(pk?s,m

?, σ?)← AO(pk)

:

Verify(m?, σ?, pk, pk?s) = 1 ∧
(

(·, ·, ·, pk?s) /∈ QSig ∨ @ m? �
(ADM

?, V
?)
m :

(m, ADM
?, V

?, pk?s) ∈ QSig
)
 ≤ ε(κ),

where the oracles and the environment variables are as in Definition 5.18.

Definition 5.20 (Privacy). An ESS is private, if for all PPT adversaries A
there is a negligible function ε(·) such that:

Pr


(sk, pk)← KeyGen(1κ), (sks, pks)← KeyGens(1

κ),
b←R {0, 1}, O ← {Sig(·, ·, ·, (sk, pk), ·),
San(·, ·, ·, ·, sks), Prf(·, ·, (sk, pk), ·),
LoR(·, ·, ·, (sk, pk), (sks, pks), b)},
b? ← AO(pk, pks)

: b = b?

 ≤ 1/2 + ε(κ),

where Sig, San and Prf are as in Definition 5.18. LoR is defined as follows:

LoR((m0,MOD0), (m1,MOD1), ADM, (sk, pk), (sks, pks), b) :
1: Randomly choose V (compatible with MOD0 and MOD1).
2: If MOD0 6� (ADM, V) ∨ MOD1 6� (ADM, V), return ⊥.
3: If (m0,MOD0, ADM, V) 6≡ (m1,MOD1, ADM, V), return ⊥.
4: Compute (σb, SANb)← Sign(mb, ADM, V, (sk, pk), pks).
5: Return (m̊b, σ̊b)← Sanit((mb, σb), MODb, SANb, pk, sks).

Observe that since V is internally chosen (and, thus, independent of the bit b) in
LoRSan, privacy holds independent of the adversaries capability to reconstruct
the set limitations. Clearly, this contradicts a definition of privacy in a sense
that sanitized signatures do not reveal the original message.
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Definition 5.21 (Transparency). An ESS is transparent, if for all PPT adver-
saries A there is a negligible function ε(·) such that:

Pr


(sk, pk)← KeyGen(1κ), (sks, pks)← KeyGens(1

κ),
b←R {0, 1}, O ← {Sig(·, ·, ·, (sk, pk), ·),
San(·, ·, ·, ·, sks), Prf(·, ·, (sk, pk), ·),
SoS(·, ·, ·, ·, (sk, pk), (sks, pks), b)},
b? ← AO(pk, pks)

: b = b?

 ≤ 1/2 + ε(κ),

where Sig, San and Prf are as in Definition 5.18. In addition, Prf does not
respond to queries for messages queried to SoS. SoS is defined as follows:

SoS(m, ADM, V,MOD, (sk, pk), (sks, pks), b) :
1: If MOD 6� (ADM, V), return ⊥.
2: Compute (σ, SAN)← Sign(m, ADM,V, (sk, pk), pks).
3: Compute (m̊, σ0)← Sanit((m, σ),MOD, SAN, pk, sks).
4: Compute (σ1, SAN)← Sign(m̊, ADM, V, (sk, pk), pks).
5: Return (m̊, σb).

Proof-restricted transparency [BFLS10]: Prf does not answer queries for mes-
sages returned by SoS. In the proof for the implication of privacy by trans-
parency [BFF+09], SoS is used to simulate the LoR queries. Thus, note that
the implication only holds if the privacy-adversary is restricted to Prf queries
for messages which do not originate from LoR. To additionally rule out even
stronger adversaries against privacy, i.e., such that privacy also holds after see-
ing proofs for the messages in question, one would need to prove privacy directly
(we will later do so for our generic extension to obtain a more general result).

Definition 5.22 (Sanitizer-Accountability). An ESS is sanitizer-accountable, if
for all PPT adversaries A there is a negligible function ε(·) such that:

Pr


(sk, pk)← KeyGen(1κ),
O ← {Sig(·, ·, ·, (sk, pk), ·),
Prf(·, ·, (sk, pk), ·)},
(pk?s,m

?, σ?)← AO(pk),
π ← Proof((m?, σ?), SIG,
(sk, pk), pk?s)

:
Verify(m?, σ?, pk, pk?s) = 1 ∧

(m?, ADM
?, ·, pk?s) /∈ QSig ∧

Judge((m?, σ?), pk, pk?s, π) = sig

 ≤ ε(κ),

where the oracles are as in Definition 5.18. The environment maintains a list
SIG, containing all message-signature tuples obtained from Sig. Note that ADM

?

can be recovered from σ?.

Definition 5.23 (Signer-Accountability). An ESS is signer-accountable, if for
all PPT adversaries A there is a negligible function ε(·) such that:

Pr

 (sks, pks)← KeyGens(1
κ),

O ← {San(·, ·, ·, ·, sks)},
(pk?,m?, σ?, π?)← AO(pks)

:
Verify(m?, σ?, pk?, pks) = 1 ∧
((m?, ·), ADM

?, pk?) /∈ QSan ∧
Judge((m?, σ?), pk?, pks, π

?) = san

 ≤ ε(κ),

where San as well as QSan are as in Definition 5.18.
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5.3.2 Rethinking Privacy for ESS

In the following, we consider alternatives to the standard privacy property, i.e.,
(strong) unlinkability, and finally come up with a notion denoted as strong pri-
vacy which captures privacy for ESS in the original sense of sanitizable signa-
tures.

Revisiting Unlinkability. The notion of unlinkability for sanitizable signa-
tures has been introduced in [BFLS10] as a stronger notion of privacy (which
implies the usual privacy property). Below we adapt the unlinkability property
to the model for ESS.

Definition 5.24 (Unlinkability). An ESS is unlinkable, if for all PPT adver-
saries A there is a negligible function ε(·) such that:

Pr


(sk, pk)← KeyGen(1κ), (sks, pks)← KeyGens(1

κ),
b←R {0, 1}, O ← {Sig(·, ·, ·, (sk, pk), ·),
San(·, ·, ·, ·, sks), Prf(·, ·, (sk, pk), ·),
LoR(·, ·, ·, (sk, pk), (sks, pks), b)},
b? ← AO(pk, pks)

: b = b?

 ≤ 1/2 + ε(κ),

where Sig, San and Prf are as in Definition 5.18 and OLoRSanit operates as fol-
lows:

LoR((m0,MOD0, SAN0, σ0), (m1,MOD1, SAN1, σ1), ADM, (sk, pk), (sks, pks), b) :
1: If MOD0 6� (ADM, V0) ∨ MOD1 6� (ADM, V1), return ⊥.
2: If (m0,MOD0, ADM, V0) 6≡ (m1,MOD1, ADM, V1), return ⊥.
3: If for any i ∈ {0, 1}, Verify((mi, σi), pk, pks) = 0, return ⊥
4: Return (m̊b, σ̊b)← Sanit((mb, σb), MODb, SANb, pk, sks).

Note that V0 and V1 can be reconstructed from SAN0 and SAN1, respectively. Fur-
thermore, note that for answers from the oracle LoR, the oracle Sanit is restricted
to queries for modifications which are covered by both set limitations V0 and V1,
which were initially submitted to LoR.

In [BPS13], an even stronger notion, i.e., strong unlinkability, has been proposed.
It requires that unlinkability must even hold for signers. The corresponding
definition (adapted to the model for ESS) is provided below.

Definition 5.25 (Strong Unlinkability). An ESS is strongly unlinkable, if for
all PPT adversaries A there is a negligible function ε(·) such that:

Pr

 (sks, pks)← KeyGens(1
κ), b←R {0, 1},

O ← {San(·, ·, ·, ·, sks), LoR(·, ·, ·, ·, (sks, pks), b)},
b? ← AO(pks)

: b = b?

 ≤ 1/2 + ε(κ),

where the oracles are as in Definition 5.24, except that the signer is no longer
fixed by the environment and A can query the San and LoR oracle with arbitrary
(dishonest) signer public keys.
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While (strong) unlinkability covers privacy for the LimitSet extension in the
original sense of privacy17, it seems very hard to construct efficient (strongly)
unlinkable schemes that support the LimitSet extension. Unfortunately, it is not
possible to simply extend existing (strongly) unlinkable constructions [BFLS10,
BPS13, FKM+16] by the LimitSet extension. To illustrate why, we revisit
the design principle of such schemes. Here, upon Sign, the signer issues two
signatures. The first signature, σFIX, only covers the fixed message blocks and
the public key of the sanitizer, whereas the second signature, σFULL, covers the
whole message together with the public key of the signer (and the public key of
the sanitizer [BPS13]). Upon Sanit, the sanitizer simply issues a new signature
σFULL, whereas the signature σFIX remains unchanged. Finally, upon Verify, one
verifies whether σFIX is valid under pk and σFULL is either valid under pk or pks

for a given message m and ADM. Thereby, the signature scheme used for σFIX

is a deterministic signature scheme, while the scheme used for σFULL can either
also be a deterministic signature scheme [BPS13], a group/ring signature scheme
[BFLS10], or a signature scheme with rerandomizable keys [FKM+16].

When extending these schemes to also support the LimitSet extension, it
is clear that the set limitations need to be fixed by the signer and must not be
modifiable by the sanitizer. One simple way to realize the LimitSet extension
would be to additionally include some unambiguous encoding of the limitations V

in σFIX and check whether the message is consistent with the defined limitations
upon Verify. Obviously, this extension does not influence unforgeability and
immutability and the scheme is still (publicly) accountable. Furthermore also
privacy holds, since the set limitations which are included in the challenge tuple
in the privacy game are randomly chosen inside LoR. However, unlinkability
can not hold for the following reason: When querying the oracle LoR in the
unlinkability game, the adversary can choose set limitations V0 and V1 such
that MOD0 � (ADM, V0), MOD1 � (ADM, V1) and (m0,MOD0, ADM, V0) ≡ (m1,MOD1,
ADM, V1), but V0 6= V1. For the corresponding signatures σ0 = (σFIX0

, σFULL0),
σ1 = (σFIX1

, σFULL1) submitted to the oracle, this means that σFIX0
6= σFIX1

which
yields a trivial distinguisher for the unlinkability game.

As an alternative, one may think of separately signing each message con-
tained in the limited sets (using a deterministic signature scheme), where only
the signatures corresponding to the chosen messages are revealed. However, to
prevent forgeries where message blocks are re-used in other signatures (i.e., mix-
and-match like attacks [BFLS09]), it would be required to also include some
message-specific identifier in each signature. Again, it is easy to see that this
would provide a trivial distinguisher for the (strong) unlinkability game.

Clearly, the requirement that the limited sets are fixed by the signer and can-
not be modified later is not only specific to the aforementioned constructions,
but is inherent to all constructions of such schemes. To circumvent the afore-
mentioned issues, one could make use of more sophisticated primitives, which,
however, come at the cost of significant computational overhead and complexity

17 Note that the ability to reconstruct the set limitations for σ̊b obtained via LoR would imply
a trivial distinguisher for the unlinkability game.
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of the scheme. This is confirmed by the only known unlinkable construction
supporting LimitSet [CL13]. It is computationally very expensive due to a
high number of bilinear map applications and the use of non-interactive zero-
knowledge proofs of knowledge in the computationally expensive target group
of the bilinear map. Moreover, it is proven secure only in a model which does
not consider all security requirements of sanitizable signatures (as it is tailored
to their black-box construction of anonymous credentials) and thus does not
represent an ESS.

A Strengthened Notion for Privacy. Surprisingly, our requirement that
the set limitations remain concealed can be met by a simple extension of the
conventional privacy property. We call the extended property strong privacy.18

As we will see, this modification allows to obtain efficient implementations from
secure existing ones in a black-box fashion. We modify the privacy game such
that the set limitations in LoR can be submitted per message, i.e., LoR takes
(m0,MOD0, V0), (m1, MOD1, V1), ADM. This means that V0 and V1 can be different
and only need an overlap such that after applying MOD0 and MOD1 the messages
m̊0 and m̊1 are identical. More formally, the game is defined as follows:

Definition 5.26 (Strong Privacy). An ESS is strongly private, if for all PPT
adversaries A there is a negligible function ε(·) such that:

Pr


(sk, pk)← KeyGen(1κ), (sks, pks)← KeyGens(1

κ),
b←R {0, 1},O ← {Sig(·, ·, ·, (sk, pk), ·),
San(·, ·, ·, ·, sks), Prf(·, ·, (sk, pk), ·),
LoR(·, ·, ·, (sk, pk), (sks, pks), b)},
b? ← AO(pk, pks)

: b = b?

 ≤ 1

2
+ ε(κ),

where the oracles Sign, Sanit and Proof are defined as in Definition 5.18. The
oracle LoR is defined as follows:

LoR((m0,MOD0, V0), (m1,MOD1, V1), ADM, (sk, pk), (sks, pks), b) :
1: If MOD0 6� (ADM, V0) ∨ MOD1 6� (ADM, V1), return ⊥.
2: If (m0,MOD0, ADM, V0) 6≡ (m1,MOD1, ADM, V1), return ⊥.
3: Compute (σb, SANb)← Sign(mb, ADM, Vb, (sk, pk), pks).
4: Return (m̊b, σ̊b)← Sanit((mb, σb),MODb, SANb, pk, sks).

Note that for answers from the oracle LoR, the oracle San is restricted to queries
for modifications which are covered by both set limitations V0 and V1, which were
initially submitted to LoR.

Theorem 5.6. Privacy is strictly weaker than strong privacy, while (strong)
unlinkability is strictly stronger than strong privacy.

As mentioned in [CJ10], the extension of the model regarding LimitSet does
not influence the relations of the properties shown in [BFF+09]. That is, un-
forgeability is implied by accountability, (proof-restricted) privacy is implied by

18 In [dMPPS14b], a security notion called strong privacy has been introduced for plain san-
itizable signatures. Our notion of strong privacy is unrelated to their notion and does not
conflict with their notion as ours is only meaningful in context of ESS.

167



Chapter 5. Signatures with Data Privacy

(proof-restricted) transparency and immutability is still independent of the other
properties. What remains for the proof of Theorem 5.6 is to unveil the relations
of strong privacy to the other privacy related notions. We now prove a number
of lemmas to finally obtain the desired result.

Lemma 5.22. Not every transparent ESS is strongly private.

We prove Lemma 5.22 by counterexample.

Proof. Let us consider an instantiation of Scheme 5.6 with a correct, unforgeable,
immutable, private, (proof-restricted) transparent and accountable sanitizable
signature scheme. Further, assume that the accumulator scheme is distinguish-
able. The ability to distinguishing two accumulators implies an adversary against
strong privacy.

This proof also yields the following corollary.

Corollary 5.5. Not every private ESS is strongly private.

To show that strong privacy is a strictly stronger notion than privacy, we addi-
tionally need to show that the following lemma holds.

Lemma 5.23. Every strongly private ESS is also private.

To prove this, we show that we can construct an efficient adversary ASP against
strong privacy using an efficient adversary AP against privacy.

Proof. ASP simply forwards the calls to the oracles Sig,San,Prf, whereas the
oracle LoR is simulated as follows: Upon every query (m0, MOD0), (m1,MOD1), ADM

of AP, ASP internally chooses random set limitations V such that MOD0 � (ADM,
V), MOD1 � (ADM, V). Then ASP forwards the query (m0, MOD0, V), (m1,MOD1, V),
ADM to its own LoR oracle and returns the result to AP. Eventually, AP outputs
a bit b which is forwarded by ASP. It is easy to see that the winning probability
of ASP is identical to that of AP.

Below, we show that unlinkability is strictly stronger than strong privacy.

Lemma 5.24. Not every strongly private ESS is (strongly) unlinkable.

We prove Lemma 5.24 by counterexample.

Proof. Let us consider an instantiation of Scheme 5.6 with a correct, unforgeable,
immutable, private, (proof-restricted) transparent and accountable sanitizable
signature scheme which does not fulfill unlinkability. By Theorem 5.8, we can
extend it to be strongly private by using an indistinguishable accumulator.

Lemma 5.25. Every unlinkable ESS is also strongly private.

To prove Lemma 5.25, we show that we can construct an efficient adversary AU

against unlinkability using an efficient adversary ASP against strong privacy.
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Proof. Likewise to the proof of Lemma 5.23, AU simply forwards the calls to
the oracles Sig,San,Prf, whereas the oracle LoR is simulated as follows: Upon
every query (m0, MOD0, V0), (m1,MOD1, V1), ADM of ASP, AU obtains (σ0, SAN0)←
Sig(m0, ADM, V0), (σ1, SAN1) ← OSign(m1, ADM, V1) using its own Sig oracle. Then
AU forwards the query (m0,MOD0, SAN0, σ0), (m1,MOD1, SAN1, σ1), ADM to its own
OLoR oracle and returns the result to ASP. Eventually, ASP outputs a bit b
which is forwarded by AU. It is easy to see that the winning probability of AU

is identical to that of ASP.

Taking all the above results together, Theorem 5.6 follows.

5.3.3 Black-Box Extension of Sanitizable Signatures

Provably secure existing constructions of ESS build up on concrete existing san-
itizable signature schemes. As it turns out, we can even obtain a more general
result, i.e., we obtain an ESS that only makes black-box use of sanitizable sig-
natures in the model of [BFF+09, GQZ10] and secure accumulators. The so
obtained black-box construction of an ESS then fulfills all the security notions
of the underlying sanitizable signature scheme.

Before we continue, we recall the general paradigm for instantiating LimitSet

(cf. [CJ10, KL06]).

Paradigm 5.1. For each LimitSet block, use a secure accumulator to accumu-
late the set of admissible replacements. The respective message blocks are then
replaced with the corresponding accumulator value, i.e., the accumulators are in-
cluded in the same way as fixed message blocks. Conversely, the actually chosen
message blocks for each LimitSet block are included in the same way as variable
message blocks (since they change on every sanitization). Finally, the signature
is augmented by the witnesses corresponding to the actual message blocks, while
the remaining witnesses are only known to the signer and the sanitizer.

We introduce our generic construction (that follows Paradigm 5.1) in Scheme 5.6,
where we use (KeyGen, KeyGens,Sign, Sanit,Verify,Proof ,Judge) to de-
note the algorithms of the underlying sanitizable signature scheme. We define
two operators φ and ψ to manipulate sets S = {(k1, v1), . . . , (kn, vn)} of key-
value pairs. Thereby, we assume the keys k1, . . . , kn to be unique. The operator
φ(·, ·) takes a key k and a set S, obtains the tuple (ki, vi) with k = ki from S,
and returns vi. If no such tuple exists, ⊥ is returned. Similarly, the operator
ψ(·, ·, ·), takes a key k, a value v′i and a set S and obtains the tuple (ki, vi) with
k = ki from S. It returns (S \{(ki, vi)})∪{(ki, v′i)} and ⊥ if no such tuple exists.

We will prove the security of Scheme 5.6 using similar arguments as in [CJ10],
but relying on the abstract model of [BFF+09, GQZ10], instead of specific prop-
erties of the used sanitizable signature scheme.

Observations. Now, we discuss some observations related to the instantiation
of the LimitSet extension using accumulators. As discussed in the previous
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KeyGen(1κ) : Fix a sanitizable signature scheme {KeyGen,KeyGens,Sign,Sanit,

Verify,Proof ,Judge}, run (sk,pk) ← KeyGen(1κ), fix an accumulator scheme

A = {Gen,Eval,WitCreate,Verify}, run (skΛ, pkΛ) ← A.Gen(1κ,∞), and return (sk,

pk)← ((sk, skΛ), (pk, pkΛ)).

KeyGens(1
κ) : Run (sks,pks)← KeyGens(1

κ) and return (sks, pks)← (sks,pks).

Sign(m, ADM, V, (sk, pk), pks) : Parse m as (mi)i∈[n], ADM as (Bi)i∈[n], V as {(i,Mi)}i∈[m]

with m ≤ n, set V ← ∅, WIT← ∅ and run

for i = 1 . . . n if Bi = lim do:

Mi ← φ(i, V), (Λi, auxi)← A.Eval((skΛ, pkΛ),Mi), WITi ← ∅,
∀ vj ∈ Mi : witij ← A.WitCreate((skΛ, pkΛ),Λi, auxi, vj), WITi ← WITi ∪{(vj ,witij )},
Vi ← (i, (φ(mi,WITi),Λi)), V ← V ∪ {Vi},WIT← WIT ∪ {(i,WITi)},
Bi ← var, m← m||(Λi, i), ADM← ADM||(fix).

endfor.

Run δ ← Sign(m, ADM, (sk,pk),pks), and return (σ, SAN), where σ ← (δ, V), SAN ←
(∅,WIT).

Sanit((m, σ),MOD, SAN, pk, sks) : Parse (m, σ) as ((mi)i∈[n], (δ, V)), MOD as {(i, m̊i)}i∈I
with I ⊆ [n], SAN as (∅,WIT), obtain ADM = (Bi)i∈[n] from σ, and run

for i ∈ I if Bi = var ∧ φ(i,WIT) 6= ⊥ do:

WITi ← φ(i,WIT), wit← φ(m̊i,WITi), (·,Λi)← φ(i, V), V̊ ← ψ(i, (wit,Λi), V).

endfor.

Run δ̊ ← Sanit(Ext(m, σ),MOD,pk, sks) and return σ̊ = (̊δ, V̊).

Verify((m, σ), pk, pks) : Parse (m, σ) as ((mi)
n
i=1, (δ, V)) and run

for i = 1 . . . n if Bi = var ∧ φ(i, V) = ⊥ do:

(witij ,Λi)← φ(i, V), if [A.Verify(pkΛ,Λi,witij ,mi) = 0] { return 0 }.
endfor.

Finally return 1 if Verify(Ext(m, σ),pk,pks) = 1 holds, and 0 otherwise.

Proof((m, σ), {(mj , σj)}qj=0, (sk, pk), pks) : Return Proof(Ext(m, σ), {Ext(mj , σj)}qj=0,

(sk,pk),pks).

Judge((m, σ), pk, pks, π) : Return Judge(Ext(m, σ),pk,pks, π).

Ext(m, σ) : On input (m, σ) = ((mi)
n
i=1, σ),

for i = 1 . . . n do:

(witij ,Λi) ← φ(i, V), if [(witij ,Λi) 6= ⊥] { set m← m||(Λi, i) }.
endfor.

Return (m, σ).

Scheme 5.6: Black-box construction of ESS from any sanitizable signature scheme.

section, it seems to be hard to design generic extensions that also preserve un-
linkability [BFLS10, BPS13]. Furthermore, the abstract model does not consider
the signer as an adversary, which gives some freedom regarding the implemen-
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tations of certain algorithms and the choice of the accumulator scheme. As
mentioned in Section 3.1, the abstract model of accumulators assumes a trusted
setup. It is, however, beneficial that the signer runs the A.Gen algorithm to be
able to perform more efficient updates using the trapdoor.

Theorem 5.7. When instantiating Scheme 5.6 with a sanitizable signature sch-
eme SSS that provides security properties Ψ in the model of [BFF+09, GQZ10], a
secure accumulator scheme, and an unambiguous encoding of the message blocks,
one obtains an ESS that provides security properties Ψ.

First, we emphasize that—while our model includes the extensions regarding ADM

from [GQZ10]—the proof does not rely on these extensions. This means that
our black-box extension is also applicable to schemes in the model of [BFF+09].
Below we prove Theorem 5.7 by proving Lemma 5.26-5.32.

Lemma 5.26. Instantiating Scheme 5.6 with a correct SSS and a correct accu-
mulator A yields a correct ESS.

The lemma above straightforwardly follows from inspection and the correctness
of the underlying primitives; the proof is omitted.

Lemma 5.27. Instantiating Scheme 5.6 with an unforgeable SSS yields an un-
forgeable ESS.

Proof. Assume an efficient adversary A against unforgeability. We show how
this adversary can be turned into an efficient adversary B against unforgeability
of the underlying sanitizable signature scheme SSS. To do so, we describe a
reduction R such that (A,R) form B. Firstly, R obtains pk and pks from
the challenger, runs (skΛ, pkΛ) ← A.Gen(1κ) and starts A on ((pk, pkΛ),pks).
R implements the oracles by computing the accumulator related parts itself
and for the rest it uses the oracles of the unforgeability challenger of the SSS.
Now, by definition, A outputs (m?, σ?) = (m?, (δ?, V?)) such that Verify(m?, σ?, pk,
pks) = 1 ∧ (m?, ADM

?, ·, pks) /∈ QSig ∧ ((m?, ·), ADM
?, pk) /∈ QSan. This means

that R can output (Ext(m?, σ?), δ?) as a forgery for SSS.19 Since we assume an
unambiguous encoding, the probability to break unforgeability is upper bounded
by εuf(κ), which concludes the proof.

Lemma 5.28. Instantiating Scheme 5.6 with an immutable SSS and an indis-
tinguishable accumulator A yields an immutable ESS.

Proof. Assume an efficient adversary A against immutability. We show how this
adversary can be turned (1) into an efficient adversary B1 against immutability of
the underlying sanitizable signature SSS scheme, or (2) into an efficient adversary
B2 against the collision freeness of the underlying accumulator. To do so, we
describe two reductions R1,R2 such that Bi = (A,Ri), i ∈ {1, 2}.
19 Observe that the chosen message block per LimitSet block is also included as variable

element, while the accumulators Λi together with the positions i of the LimitSet blocks in
the message are treated as additional fixed elements (cf. Ext in Scheme 5.6). Thus, every
forgery is a forgery for the underlying SSS scheme.
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R1 : R1 obtains pk from the challenger, runs (skΛ, pkΛ)← A.Gen(1κ) and starts
A on (pk, pkΛ). R1 implements the oracles by computing the accumula-
tor related parts itself and for the rest it uses the oracles of the immutability
challenger of the SSS. Eventually, A outputs (pk?s,m

?, σ?) = (pk?s,m
?, (δ?, V?))

such that Verify(m?, σ?, pk, pk?s) = 1 ∧ ((·, ·, ·, pk?s) /∈ QSig ∨ @ m? �
(ADM

?, V
?)
m :

(m, ADM
?, V

?, pk?s) ∈ QSig). If @ m? �
(ADM

?, V
?)
m : (m, ADM

?, V
?, pk?s) ∈ QSig) be-

cause of a modification of a LimitSet element that is not covered by V
?,

then R1 aborts (since we are in the other case). Otherwise, R1 can output
(pk?s, Ext(m?, σ?), δ?) and wins the immutability game of SSS.

R2 : R2 obtains pkΛ from the challenger, runs (sk,pk) ← KeyGen(1κ) and
starts A on (pk, pkΛ). R2 can simulate the oracles by computing the SSS re-
lated parts itself and calling the respective oracles for the accumulator related
computations. R2 keeps track of the accumulators, contained sets and (op-
tionally) the used randomizers obtained from the oracles via a list LΛ. Even-
tually, A outputs (pk?s,m

?, σ?) = (pk?s,m
?, (δ?, V?)) such that Verify(m?, σ?, pk,

pk?s) = 1 ∧ ((·, ·, ·, pk?s) /∈ QSig ∨ @ m? �
(ADM

?, V
?)
m : (m, ADM

?, V
?, pk?s) ∈ QSig).

If (·, ·, ·, pk?s) /∈ QSig, R2 aborts. If @ m? �
(ADM

?, V
?)
m : (m, ADM

?, V
?, pk?s) ∈ QSig)

because of a modification of a LimitSet element that is not covered by
V
?, we know that there is at least one tuple (i, (witij ,Λi)) ∈ V such that

A.Verify(pkΛ,Λi,witij ,mi) = 1 but mi /∈ Mi, where Mi is the set contained in
Λi. Now, R2 can look up the set Mi and the corresponding randomizer ri in
LΛ and return (witij ,mi,Mi, ri) as a collision for the accumulator. Otherwise,
R2 aborts (since we are in the other case).

Overall Bound. The simulations in both reductions are indistinguishable from a
real game. In front of an adversary we randomly guess the adversary’s strategy,
inducing a loss of 1/2. Because of the unambiguous encoding, our reductions
always succeed if the forger succeeds. This means that the probability to break
immutability is upper-bounded by 2 ·max{εim(κ), εcf(κ)}.

Lemma 5.29. Instantiating Scheme 5.6 with a private SSS yields a private ESS.

Proof. Assume an efficient adversary A against privacy. We show how this ad-
versary can be turned into an efficient adversary B against privacy of the un-
derlying sanitizable signature scheme SSS. To do so, we describe a reduction R
such that (A,R) form B. Firstly, R obtains pk and pks from the challenger,
runs (skΛ, pkΛ) ← A.Gen(1κ) and starts A on ((pk, pkΛ), pks). R implements
the oracles by computing the accumulator related parts itself and for the rest
it uses the oracles of the privacy challenger of the SSS. Eventually A outputs
a bit b?, which can be used by R to win the privacy game of the SSS, where
the winning probability is that of A. Now, we argue why this is the case: In
the privacy game, the set limitations V are internally chosen in LoR such that
they are compatible with both submitted challenge messages. This, means that
the LimitSet related signature components are independent of the actual bit b,
which concludes the proof.
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Lemma 5.30. Instantiating Scheme 5.6 with a transparent SSS yields a trans-
parent ESS.

Proof. Assume an efficient adversary A against transparency. We show how this
adversary can be turned into an efficient adversary B against transparency of the
underlying sanitizable signature scheme SSS. To do so, we describe a reduction
R such that (A,R) form B. Firstly, R obtains pk and pks from the challenger,
runs (skΛ, pkΛ)← A.Gen(1κ) and starts A on ((pk, pkΛ), pks). R implements the
oracles by computing the accumulator related parts itself and for the rest uses
the oracles of the transparency challenger of the SSS. Eventually, A outputs a
bit b? and R forwards this bit to the transparency challenger of the SSS and
wins the game—the winning probability is that of A. To see this, observe that
in SoS the same set limitations V are used in both, the signed and the sanitized
message.

Lemma 5.31. Instantiating Scheme 5.6 with a sanitizer-accountable SSS yields
a sanitizer-accountable ESS.

Proof. Assume an efficient adversary A against sanitizer-accountability. We
show how this adversary can be turned into an efficient adversary B against
sanitizer-accountability of the underlying sanitizable signature scheme SSS. To
do so, we describe a reduction R such that (A,R) form B. Firstly, R obtains
pk from the challenger, runs (skΛ, pkΛ)← A.Gen(1κ) and starts A on (pk, pkΛ).
R implements the oracles by computing the accumulator related parts itself
and for the rest uses the oracles of the sanitizer-accountability challenger of
the SSS. Now, by definition, A outputs (pk?s,m

?, σ?) = (pk?s,m
?, (δ?, V?)) such

that Verify(m?, σ?, pk, pk?s) = 1 ∧ (m?, ADM
?, ·, pk?s) /∈ QSig ∧ Judge((m?, σ?), pk,

pk?s,Proof((m?, σ?), SIG, (sk, pk), pk?s))) = sig. Consequently,R can output (pk?s,
Ext(m?, σ?), δ?) and wins the sanitizer-accountability game of the SSS (the ar-
gumentation why is analogous to the one in the unforgeability proof).

Lemma 5.32. Instantiating Scheme 5.6 with a signer-accountable SSS yields a
signer-accountable ESS.

Proof. Assume an efficient adversary A against signer-accountability. We show
how this adversary can be turned into an efficient adversary B against signer-
accountability of the underlying sanitizable signature scheme SSS. To do so, we
describe a reduction R such that (A,R) form B. Firstly, R obtains pks from
the challenger and starts A on pks. R implements the oracles by computing the
accumulator related parts itself and for the rest uses the oracles of the signer-
accountability challenger of the SSS. Eventually, A outputs (pk?,m?, σ?, π?) =
((pk?, pk?Λ),m?, (δ?, V?), π?) such that Verify(m?, σ?, pk?, pks) = 1 ∧ ((m?, ·), ADM

?,
pk?) /∈ QSan ∧ Judge((m?, σ?), pk?, pks, π

?) = san. Consequently, A outputs
(pk?, Ext(m?, σ?), δ?, π?) and wins the signer-accountability of the SSS (the ar-
gumentation why is analogous to the one in the unforgeability proof).
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5.3.4 Achieving Strong Privacy

Now we show how strongly private ESS can be constructed from private saniti-
zable signature schemes in a black-box fashion. Basically, this can be achieved
by applying the conversion in Scheme 5.6 and instantiating LimitSet using an
accumulator that provides the indistinguishability property.

Theorem 5.8. Let ESS obtained using Scheme 5.6 be private and (AGen, AEval,
AWitCreate, AVerify) be an indistinguishable accumulator, then ESS is strongly
private.

Proof. We prove the theorem above by using a sequence of games. Thereby, we
denote the event that the adversary wins Game i by Si and let k be the overall
number of accumulators created within LoR.

Game 0: The original strong privacy game.

Game 1: As in the original game, but we modify the oracle LoR to firstly com-
pute V← V0 ∩ V1 and to set V0 ← V, V1 ← V.

Transition Game 0 → Game 1: A distinguisher between Game 0 and Game 1
is a distinguisher for the indistinguishability game of the accumulator, i.e.,
|Pr[S0]− Pr[S1]| ≤ k · εind(κ).20

In Game 1, the signatures are computed with respect to V0 ∩ V1 in LoR. This
means that the LimitSet related values are independent of the bit b (similar as
when randomly choosing V). Thus, from the adversary’s viewpoint, Game 1 is
equivalent to the conventional privacy game, meaning that Pr [S1] ≤ 1

2 +εpriv(κ).
In further consequence, we obtain Pr [S0] ≤ 1

2+εpriv(κ)+k·εind(κ) which concludes
the proof.

We also note that it might be an option to use cfw-indistinguishable accumu-
lators instead of indistinguishable accumulators if the chosen random value xr
can not be efficiently guessed. This would resemble the suggestion of [KL06],
who informally mentioned that additionally accumulating a random value might
prevent the adversary from guessing the set limitations.

5.4 Homomorphic Proxy Re-Authenticators

Proxy re-cryptography [BBS98] is a powerful concept which allows proxies to
transform cryptographic objects under one key to cryptographic objects un-
der another key using a transformation key (a so called re-key). In particular,
proxy re-encryption has shown to be of great practical interest in cloud sce-
narios such as data storage [CD16, BBL16], data sharing [XXW+16], publish-
subscribe [BGP+16] as well as cloud-based identity management [NAL12, NA14,

20 For compactness, we exchange all accumulators in a single game change and note that it is
straight forward to unroll the exchange of the accumulators to k simple game changes.
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ZSSH14, SSZ14]. In contrast, other proxy re-primitives, and in particular proxy
re-signatures (or MACs), seem to unleash their full potential not before consid-
ering them in combination with homomorphic properties on the message space.
Interestingly, however, this direction has received no attention so far. To this
end, we introduce the notion of homomorphic proxy re-authenticators (HPRAs),
which allows distinct senders to authenticate data under their own keys, and
an evaluator (aggregator) can transform these single signatures or message au-
thentication codes (MACs) to a MAC under a receiver’s key without knowing
it. Most importantly, the aggregator can evaluate arithmetic circuits (functions)
on the inputs so that the resulting MAC corresponds to the evaluation of the
respective function. Furthermore, we investigate whether we can hide the input
messages from the aggregator. On the way to solve this, we formally define the
notion of homomorphic proxy re-encryption (HPRE). We see data aggregation
as the central application of our framework, but want to stress that it is not
limited to this application.

Motivation. Data aggregation is an important task in the Internet of Things
(IoT) and cloud computing. We observe a gap in existing work as the important
issue of end-to-end authenticity and verifiability of computations on the data
(aggregation results) is mostly ignored. We address this issue and propose a
versatile non-interactive solution which is tailored to a multi-user setting. The
additional authenticity features of our solution add robustness against errors
occurring during transmission or aggregation even in the face of a non-trusted
aggregator.

Multi-User Data Aggregation. Assume a setting where n senders, e.g., sensor
nodes, regularly report data to some entity denoted the aggregator. The aggre-
gator collects the data and then reports computations (evaluations of functions)
on these data to a receiver. For example, consider environmental monitoring
of hydroelectric plants being located in a mountainous region, where small sen-
sors are used for monitoring purposes. Due to the lack of infrastructure (e.g.,
very limited cell coverage) sensors are not directly connected to the Internet and
collected data is first sent to a gateway running at the premise of some telecom-
munication provider. This gateway aggregates the data and forwards it to some
cloud service operated by the receiver.

Obviously, when the involved parties communicate via public networks, secu-
rity related issues arise. Apart from achieving security against outsiders, there
are also security and privacy related issues with respect to the involved parties.

In general, we identify three main goals. (1) End-to-end authenticity, i.e.,
protecting data items from unauthorized manipulation and preserving the source
authenticity. (2) Concealing the original data from the aggregator and the re-
ceiver, and, even further, concealing the result of the computation from the
aggregator. Clearly, in (2) we also want to conceal data from any outsider. (3)
Establishing independent secret keys for the involved parties so that they do not
share a single secret. Latter facilitates a dynamic setting.
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Below, we present such an aggregation scenario, discuss why straightforward
solutions fall short, and sketch our solution. Then, we discuss the problems
popping up when we require stronger privacy guarantees and show how our
primitives help to overcome these issues.

Authenticity & Input Privacy. In our first scenario, the n senders each hold their
own signing key and within every period sender i reports a signed data item di to
the aggregator. The aggregator must be able to evaluate functions f ∈ F (where
F is some suitable class of functions, e.g., linear functions) on d1, . . . , dn so that
a receiver will be convinced of the authenticity of the data and the correctness
of the computation without fully trusting the aggregator (recall the end-to-end
authenticity requirement). Moreover, although the inputs to the aggregator are
not private, we still want them to be hidden relative to the function f , i.e., so
that a receiver only learns what is revealed by f and d̂ = f(d1, . . . , dn), as a
receiver might not need to learn the single input values.

A central goal is that the single data sources have individual keys. Thus, we
can not directly employ homomorphic signatures (or MACs). Also the recent
concept of multikey-homomorphic signatures [FMNP16, i5, LTWC16] does not
help: even though they allow homomorphic operations on the key space, they
do not consider transformations to some specific target key.21 With HPRAs we
can realize this, as the aggregator (who holds re-keys from the senders to some
receiver) can transform all the single signatures or MACs to a MAC under the
receiver’s key (without having access to it). Moreover, due to the homomorphic
property, a MAC which corresponds to the evaluation of a function f on the
inputs can be computed. The receiver can then verify the correctness of the
computation, i.e., that d̂ = f(d1, . . . , dn), and the authenticity of the used inputs
(without explicitly learning them) using its independent MAC key.

Adding Output Privacy. In our second scenario, we additionally want data pri-
vacy guarantees with respect to the aggregator. This can be crucial if the ag-
gregator is running in some untrusted environment, e.g., the cloud. We achieve
this by constructing an output private HPRA. In doing so, one has to answer
the question as how to confidentially provide the result of the computation to
the receiver and how to guarantee the authenticity (verifiability) of the compu-
tation. We tackle this issue by introducing a HPRE where the homomorphism
is compatible to the one of the HPRA. The sources then additionally encrypt
the data under their own keys and the aggregator re-encrypts the individual ci-
phertexts to a ciphertext under a receiver’s key and evaluates the same function
f as on the MACs on the ciphertexts. This enables the receiver to decrypt the
result d̂ using its own decryption key and to verify the MAC on d̂ together with
a description of the function f . In addition, we use a trick to prevent public
verifiability of the signatures from the single data sources, as public verifiabil-

21 While the homomorphic properties might allow one to define a function mapping to a target
key, it is unclear whether handing over the description of such a function to a proxy would
maintain the security requirements posed by our application.
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ity potentially leaks the signed data items which trivially would destroy output
privacy.

Contribution. Our contributions can be summarized as follows.

– We introduce the notion of homomorphic proxy re-authenticators (HPRA).
Our framework tackles multi-user data aggregation in a dynamic setting. For
the first time, we thereby consider independent keys of the single parties, the
verifiability of the evaluation of general functions on the authenticated inputs
by the sources, as well as privacy with respect to the aggregator.

– As a means to achieve the strong privacy requirements imposed by our security
model, we formally define the notion of homomorphic proxy re-encryption
(HPRE), which may be of independent interest.

– We present two modular constructions of HPRA schemes for the family of
linear function classes, which differ regarding the strength of the provided
privacy guarantees. On our way, we establish various novel building blocks.
Firstly, we present a linearly homomorphic MAC which is suitable to be used
in our construction. Secondly, to achieve the stronger privacy guarantees, we
construct a HPRE scheme for the family of linear function classes. All our
proofs are modular in the sense that we separately prove the security of our
building blocks; our overall proofs then build upon the results obtained for
the building blocks. Thus, our building blocks may as well easily be used in
other constructions.

Related Work. In this paragraph we review related work. As our focus is on
non-interactive approaches, we omit interactive approaches where clients down-
load all the data, decrypt them locally, compute a function, and send the results
back along with a zero-knowledge proof of correctness (as, e.g., in [DL11]).

Proxy Re-Cryptography. Proxy re-encryption (PRE) [BBS98] allows a semi-
trusted proxy to transform a message encrypted under the key of some party into
a ciphertext to the same message under a key of another party, where the proxy
performing the re-encryption learns nothing about the message. This primitive
has been introduced in [BBS98], further studied in [ID03] and the first strongly
secure constructions have been proposed by Ateniese et al. in [AFGH06]. Boneh
et al. construct PRE in the symmetric setting [BLMR13]. Follow-up work fo-
cuses on even stronger (IND-CCA2 secure) schemes (cf. [CH07, LV11, NAL15,
NAL16]). Since we, however, require certain homomorphic properties, we focus
on IND-CPA secure schemes (as IND-CCA2 security does not allow any kind of
malleability). In previous work by Ayday et al. [ARHR13], a variant of the
linearly homomorphic Paillier encryption scheme and proxy encryption in the
sense of [ID03] were combined. Here, the holder of a key splits the key and
gives one part to the proxy and one to the sender, with the drawback that the
secret key is exposed when both collude. We are looking for proxy re-encryption
that is homomorphic, works in a multi-user setting but is collusion-safe and
non-interactive, i.e., re-encryption keys can be computed by the sender using
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only the public key of the receiver without any interaction and a collusion of
sender and proxy does not reveal the receiver’s key. Also note that, as our focus
is on practically efficient constructions, we do not build upon fully homomor-
phic encryption [Gen09], which allows to build HPRE using the rather expensive
bootstrapping technique. In concurrent work Ma et al. [MLO16] follow this
approach and propose a construction of a PRE scheme with homomorphic prop-
erties which additionally achieves key privacy. They build upon [GSW13] using
the bootstrapping techniques in [AP14] and apply some modifications for key
privacy. While their construction can be seen as a HPRE in our sense, they do
not formally define a corresponding security model and we are not aware of a
suitable formalization for our purposes.

Proxy re-signatures, i.e., the signature analogue to proxy re-encryption, have
been introduced in [BBS98] and formally studied in [ID03]. Later, [AH05] in-
troduced stronger security definitions, constructions and briefly discussed some
applications. However, the schemes in [AH05] and follow up schemes [LV08]
do not provide a homomorphic property and it is unclear how they could be
extended. The concept of homomorphic proxy re-authenticators, which we pro-
pose, or a related concept, has to the best of our knowledge not been studied
before.

Homomorphic Authenticators. General (non-interactive) verifiable computing
techniques (cf. [WB15] for a recent overview) are very expressive, but usually
prohibitive regarding proof computation (proof size and verification can, how-
ever, be very small and cheap respectively). In addition, the function and/or
the data needs to be fixed at setup time and inputs are not authenticated.
Using homomorphic authenticators allows evaluations of functions on authen-
ticated inputs under a single key (cf. [Cat14] for a recent overview). They
are dynamic with respect to the authenticated data and the evaluated func-
tion, and also efficient for interesting classes of functions. Evaluating results
is typically not more efficient than computing the function (unless using an
amortized setting [BFR13, CFW14]). Yet, they provide benefits when saving
bandwidth is an issue and/or the inputs need to be hidden from evaluators (cf.
[LDPW14, CMP14]). Computing on data authenticated under different keys
using so called multi-key homomorphic authenticators [FMNP16, i5, LTWC16],
has only very recently been considered. Even though they are somewhat related,
they are no replacement for what we are proposing.

Aggregator-Oblivious Encryption (AOE). AOE [RN10, SCR+11] considers data
provided by multiple producers, which is aggregated by a semi-honest aggrega-
tor. The aggregator does not learn the single inputs but only the final result.
Follow-up work [JL13, LEM14, BJL16] improved this approach in various direc-
tions. Furthermore, [CSS12] introduced a method to achieve fault tolerance, be-
ing applicable to all previous schemes. There are also other lines of work on data
aggregation, e.g., [LC13, CCMT09], [LCP14, GMP14]. Very recently, [LEÖM15]
combined AOE with homomorphic tags to additionally provide verifiability of
the aggregated results. Here, every user has a tag key and the aggregator ad-

178



5.4. Homomorphic Proxy Re-Authenticators

ditionally aggregates the tags. Verification can be done under a pre-distributed
combined fixed tag key. Their approach is limited to a single function (the sum)
and requires a shared secret key-setting, which can be problematic.

In all previous approaches it is impossible to hide the outputs (i.e., the ag-
gregation results) from the aggregator. In contrast to only hiding the inputs, we
additionally want to hide the outputs. In addition, we do not want to assume
a trusted distribution of the keys, but every sender should authenticate and
encrypt under his own key and the aggregator can then perform re-operations
(without any secret key) to the receiver.

5.4.1 Formal Security Model

We introduce homomorphic proxy re-authenticators (HPRAs) and rigorously for-
malize a suitable security model capturing the requirements discussed above.
Recall that our goal is formalize a scheme where multiple signers create signa-
tures under their own keys. Those signatures can then be transformed to a MAC,
which is valid under the receiver’s key, and which authenticates the evaluation
of some function on the authenticated data items provided by the potentially
different signers. Our goal is to obtain a flexible framework with various pos-
sible instantiations. Accordingly, our definitions are rather generic. We stress
that both the source and receiver re-key generation, besides the secret key of the
executing party, only require public inputs, i.e., are non-interactive.

Definition 5.27. A homomorphic proxy re-authenticator (HPRA) for a family of
function classes {FPP} is a tuple of PPT algorithms (Gen,SGen,VGen,Sign,Verify,
SRGen,VRGen,Agg,AVerify), where Verify is optional. They are defined as fol-
lows:

Gen(1κ, `) : Takes security parameter κ and vector length ` and outputs parame-
ters PP, determining the message space M`, the function class FPP containing
functions f : (M`)n → M` with `, n ≤ poly(κ), as well as a tag space being
exponentially large in κ.

SGen(PP) : Takes parameters PP as input, and outputs a signer key (id, sk, pk).

VGen(PP) : Takes parameters PP, and outputs a secret MAC key mk and public
auxiliary information aux.

Sign(sk, ~m, τ) : Takes a signer secret key sk, a message vector ~m, and a tag τ as
input, and outputs a signature σ.

Verify(pk, ~m, τ, σ) : Takes a signer public key pk, a message vector ~m, a tag τ ,
and a signature σ as input, and outputs a bit b.

SRGen(ski, aux) : Takes a signer secret key ski, some auxiliary information aux,
and outputs a re-encryption key rki.

VRGen(pki,mk, rki) : Takes a signer public key pki and a MAC key mk, as well
as a re-encryption key rki as input, and outputs an aggregation key aki.
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Agg((aki)i∈[n], (σi)i∈[n], τ, f) : Takes n aggregation keys (aki)i∈[n], n signatures
(σi)i∈[n], a tag τ , and a function f ∈ FPP as input, and outputs an aggregate
authenticated message vector Φ.

AVerify(mk,Φ, ID, f) : Takes a MAC key mk, an aggregate authenticated message
vector Φ, n identifiers ID = (idi)i∈[n], and a function f ∈ FPP. It outputs a
message vector and a tag (~m, τ) on success and (⊥,⊥) otherwise.

Security Properties. Below we define the oracles, where the public param-
eters and the keys generated in the security games are implicitly available to
the oracles. While most oracle definitions are fairly easy to comprehend and
therefore not explicitly explained, we note that the RoS oracle is used to model
the requirement that signatures do not leak the signed data in a real-or-random
style. The environment maintains the initially empty sets HU and CU of honest
and corrupted users (CU is only set in the output privacy game). Further, it
maintains the initially empty sets SK, RK and AK of signer, re-encryption and
aggregation keys, and an initially empty set SIG of message-identity pairs.

SG(i) : If SK[i] 6= ⊥ return ⊥. Otherwise run (idi, ski, pki) ← SGen(PP), set
SK[i]← (idi, ski, pki), and, if i /∈ CU set HU← HU ∪ {i}. Return (idi, pki).

SKey(i) : If i /∈ HU return ⊥. Otherwise return SK[i].

Sig((ji)i∈[n], ( ~mi)i∈[n]) : If SK[ji] = ⊥ for any i ∈ [n], or there exists u, v ∈
[n], u 6= v so that ju = jv, return ⊥. Otherwise sample a random tag τ
and compute (σji ← Sign(SK[ji][2], ~mi, τ))i∈[n], set SIG[τ ] ← SIG[τ ] ∪ {(~mi,
SK[ji][1])} for i ∈ [n], and return (σji)i∈[n] and τ .

RoS((ji)i∈[n], ( ~mi)i∈[n], b) : If SK[ji] = ⊥ or ji ∈ CU for any i ∈ [n] return ⊥.
Otherwise sample τ uniformly at random and if b = 0 compute (σji ← Sign(
SK[ji][2], ~mi, τ))i∈[n]. Else choose (~ri)i∈[n]←R (M`)n where M is the message
space and compute (σji ← Sign(SK[ji][2], ~ri, τ))i∈[n]. Finally, return (σji)i∈[n].

SR(i) : If SK[i] = ⊥ ∨ RK[i] 6= ⊥ return ⊥. Else, set RK[i]← SRGen(SK[i][2], aux)
and return RK[i].

VR(i) : If SK[i] = ⊥ ∨ RK[i] = ⊥ ∨ AK[i] 6= ⊥ return ⊥. Else, set AK[i]← VRGen(
SK[i][3],mk, RK[i]).

VRKey(i) : Return AK[i].

A((σji)i∈[n], (ji)i∈[n], τ, f) : Check validity of all σji , whether f ∈ FPP, whether
SIG[τ ] = ⊥, and return ⊥ if any check fails. Further, check whether there
exists u, v ∈ [n], u 6= v so that ju = jv and return ⊥ if so. Obtain (akji)i∈[n]

from AK and return ⊥ if AK[ji] = ⊥ for any i ∈ [n]. Set SIG[τ ]←
⋃
i∈[n]{(~mji ,

SK[ji][1])} and return Φ← Agg((akji)i∈[n], (σji)i∈[n], τ, f).

180



5.4. Homomorphic Proxy Re-Authenticators

We require a HPRA to be correct, signer unforgeable, aggregator unforgeable,
and input private. We formally introduce the security notions below. Intuitively,
correctness requires that everything works as intended if everyone behaves hon-
estly.

Definition 5.28 (Correctness). A HPRA for a family of function classes {FPP}
is correct, if for all κ, for all ` ≤ poly(κ), for all PP← Gen(1κ, `) determining FPP,
for all n ≤ poly(κ), for all ((idi, ski, pki) ← SGen(PP))i∈[n], for all (mk, aux) ←
VGen(PP), for all (~mi)i∈[n], for all τ , for all (σi ← Sign(ski, ~mi, τ))i∈[n], for
all (aki ← VRGen(pki,mk,SRGen(ski, aux)))i∈[n], for all f ∈ FPP, for all Φ ←
Agg((aki)i∈[n], (σi)i∈[n], τ, f) it holds that (Verify(pki, ~mi, τ, σi) = 1)i∈[n] and that
AVerify(mk,Φ, ID, f) = 1, where we sometimes omit to make the domains of the
values over which we quantify explicit for brevity.

Signer unforgeability requires that, as long as the aggregator remains honest,
no coalition of dishonest signers can produce a valid aggregate authenticated
message vector Φ with respect to function f ∈ FPP so that Φ is outside of
the range of f evaluated on arbitrary combinations of actually signed vectors.
Aggregator unforgeability is the natural counterpart of signer unforgeability,
where the aggregator is dishonest while the signers are honest.22

Definition 5.29 (T-Unforgeability). Let T ∈ {Signer,Aggregator}. A HPRA for
a family of function classes {FPP} is T-unforgeable, if for all PPT adversaries A
there is a negligible function ε(·) such that

Pr


PP← Gen(1κ, `),
(mk, aux)← VGen(PP),
(Φ?, ID?, f?)← AOT(PP, aux),
(~m, τ)← AVerify(mk,Φ?, ID?, f?)

:

~m 6= ⊥ ∧ f? ∈ FPP ∧
0 < n, ` ≤ poly(κ) ∧(

@ (~mj)j∈[n] : (∀ j ∈ [n] :
(~mj , id

?

j) ∈ SIG[τ ]) ∧
f?((~mj)j∈[n]) = ~m

)

 ≤ ε(κ),

where OT := {SG(·),SKey(·),SR(·),VR(·),A(·, ·, ·)} for T = Signer and OT :=
{SG(·),Sig(·, ·),SR(·),VR(·),VRKey(·)} for T = Aggregator.

Input privacy captures the requirement that an aggregate authenticated message
vector does not leak more about the inputs to f as the evaluation result and the
description of f would leak on their own.

Definition 5.30 (Input Privacy). A HPRA for a family of function classes {FPP}
is input private if for all κ ∈ N, for all ` ≤ poly(κ), for all PP ← Gen(1κ, `)
determining FPP, for all f ∈ FPP implicitly defining n, for all tags τ , and for all
(~m11, . . . , ~mn1) and (~m12, . . . , ~mn2) where f(~m11, . . . , ~mn1) = f(~m12, . . . , ~mn2),
for all (mk, aux)← VGen(PP), for all ((ski, pki)← SGen(PP))i∈[n], (aki ← SRGen(

22 It is impossible to consider both, signers and aggregators, to be dishonest at the same
time, as such a coalition could essentially authenticate everything. This is in contrast to
the setting of proxy re-encryption, where it makes sense to model security in the face of
receivers colluding with the proxy.
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ski, aux,VRGen(pki,mk)))i∈[n], the following distributions are identical:

{Agg((aki)i∈[n], (Sign(ski, ~mi1, τ))i∈[n], τ, f)},
{Agg((aki)i∈[n], (Sign(ski, ~mi2, τ))i∈[n], τ, f)}.

Additionally, a HPRA may provide output privacy. It models that the aggregator
neither learns the inputs nor the result of the evaluation of f .

Definition 5.31 (Output Privacy). A HPRA for a family of function classes
{FPP} is output private, if for all PPT adversaries A there is a negligible function
ε(·) such that:

Pr


PP← Gen(1κ, `), (CU, ST)← A(PP), b←R {0, 1},
(mk, aux)← VGen(PP),O ← {SG(·),SKey(·),
RoS(·, ·, b),SR(·),VR(·),VRKey(·)},
b? ← AO(aux, ST)

: b = b?

 ≤ 1/2 + ε(κ).

5.4.2 An Input Private Scheme for Linear Functions

Now we present our first HPRA for the family of linear function classes {F lin
PP }.

The main challenge we face is to construct a signature scheme with an associated
linearly homomorphic MAC scheme, where the translation of the signatures
under one key to a MAC under some other key works out. Since we believe that
our linearly homomorphic MAC may as well be useful in other settings we present
it as a standalone building block and then proceed with our full construction,
where the MAC is used as a submodule. Both build upon the ideas used in the
signature scheme presented in [BFKW09].

A Suitable Linearly Homomorphic MAC. We present our linearly ho-
momorphic MAC in Scheme 5.7. We can not recycle the security arguments
from [BFKW09] as we require the ability to submit arbitrary tags τ to the Sig
oracle (cf. Definition 2.19). Thus we directly prove unforgeability.

Gen(κ, `) : Run BG ← BGGen(1κ), fix H : {0, 1}∗ → G, choose (gi)i∈[`]←
R

(G∗)`, and

return PP← (BG, H, (gi)i∈[`], `).

KeyGen(PP) : Choose α←R Zp and return sk← (PP, α).

Sign(sk, ~v, id, τ) : Parse sk as (PP, α) and return µ← e(H(τ ||id) ·
∏
j∈[`] g

vj
j , g

α).

Comb(PP, f, (µi)i∈[n]) : Parse f as (ωi)i∈[n] and return µ←
∏
i∈[n] µ

ωi
i .

Verify(sk, ~v, µ, τ, (idi)i∈[n], f) : Parse sk as (PP, α), f as (ωi)i∈[n], and output 1 if the

following holds, and 0 otherwise: µ = e(
∏
i∈[n] H(τ ||idi)ωi

∏
j∈[`] g

vj
j , g

α)

Scheme 5.7: Linearly homomorphic MAC based on [BFKW09].

Lemma 5.33. If the bilinear BDDH assumption holds, then Scheme 5.7 is an
unforgeable linearly homomorphic MAC in the ROM.
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We weaken BDDH to BDDH′, where the adversary is given (BG, ga,gb,gc) with
a, b←R Zq and needs to decide whether c = ab, or c is random in Zq. Clearly,
BDDH′ is weaker than BDDH: given a BDDH instance (BG, ga, gb, gc,gd) one
can use the BDDH′ distinguisher on (BG, ga, e(gb, gc),gd).

Proof. We prove Lemma 5.33 under BDDH′ (and, therefore, BDDH) and let qR ≤
poly(κ) be the number of random oracle queries (also including the calls we use
internally in the reduction). We obtain a BDDH′ instance (BG, ga,gb,gc), choose
((xi, yi)←R Zq2)i∈[qR], set ((gai ,gb,gci)← ((ga)xigyi),gb, (gc)xi(gb)yi)i∈[qR], cho-

ose (ui)i∈[`]←R Z`q, and set (gi ← gui)i∈[`]. Finally, we set PP← (BG, H, (gi)i∈[`]),
start A on PP and simulate the oracles as follows. We use a counter j initialized
to 1 and an initially empty list H.

H(x) : If x /∈ H set H[x]← (gaj ,gcj ) and j ← j + 1. Return H[x][1].

Sig((~vi)i∈[n], (idi)i∈[n], τ) : As the original oracle, except that the values (µi)i∈[n]

are computed as follows. For i ∈ [n] call H(τ ||idi), set µi ← H[τ ||idi][2] ·∏
j∈[`](g

b)vij ·uj and return (µi)i∈[n].

Now, if the BDDH′ instance is valid the simulation is perfect. If the BDDH′

instance is invalid the responses of the Sig oracle are uniformly random and
independent values from GT and therefore do not reveal anything about the
MAC key. In this case the adversary can only guess a forgery with probability
1/q. Both cases are computationally indistinguishable.

Our Input Private Construction. In Scheme 5.8 we present our HPRA con-
struction for the family of linear function classes {F lin

PP }. It allows to authenticate
vectors of length `, so that the same function can be evaluated per vector com-
ponent. In our application scenario we have ` = 1. We allow to parametrize our
construction with an algorithm Eval(·, ·), which defines how to compute f ∈ F lin

PP

on the message vector. When directly instantiating Scheme 5.8, Eval is defined
as Eval(f, (~mi)i∈[n]) := f((~mi)i∈[n]). Also note that the signature σ output by
Sign also carries the message. This is just an artifact required for the generic
extension presented in Scheme 5.10 and can be omitted when instantiating the
plain Scheme 5.8.

To prove the security of our construction, we require a novel assumption
which we introduce below. We call this assumption—which follows from the
Uber-assumption [Boy08] with R = S = 〈1, 1/U, U, V,W 〉, T = 〈1〉, f = UVW—
extended bilinear computational Diffie-Hellman assumption (eBCDH).

Definition 5.32 (Extended Bilinear Computational Diffie-Hellman Assumption
(eBCDH)). The eBCDH assumption holds relative to BGGen, if for all PPT
adversaries A there is a negligible function ε(·) such that

Pr

[
BG← BGGen(1κ, 1), u, v,w←R Zq

h← A(BG, g1/u, gu, gv, gw)
: h = e(g, g)uvw

]
≤ ε(κ).
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Gen(1κ, `) : Run BG← BGGen(1κ), fix H : Zq → G, choose (gi)i∈[`]←
R G`, and return

PP← (BG, H, (gi)i∈[`], `).

SGen(PP) : Choose β←R Zq, set id ← gβ , pk ← (PP, gβ , g
1/β), sk ← (pk, β), and return

(id, sk, pk).

VGen(PP) : Choose α←R Zq, set aux← ∅, mk← (PP, α) and return (mk, aux).

Sign(sk, ~m, τ) : Parse sk as (((BG, H, (gi)i∈[`], `), g
β , ·), β), compute and return σ ←

(σ′, ~m), where

σ′ ←
(
H(τ ||gβ) ·

∏̀
i=1

gmii

)β
.

Verify(pk, ~m, τ, σ) : Parse pk as ((BG, H, (gi)i∈[`], `), g
β , ·), and σ as (σ′, ~m′), and return

1 if the following holds and 0 otherwise:

e(H(τ ||gβ) ·
∏̀
i=1

gmii , gβ) = e(σ, g) ∧ ~m = ~m′.

SRGen(ski, aux) : Return rki ← ∅.

VRGen(pki,mk, rki) : Parse pki as (·, ·, g1/βi), mk as (·, α), and return aki ← (g
1/βi)α.

Agg((aki)i∈[n], (σi)i∈[n], τ, f) : Parse f as (ωi)i∈[n], and for i ∈ [n] parse σi as (σ′i, ~mi)

and return Φ← (Eval(f, (~mi)i∈[n]), µ, τ), where

µ←
∏
i∈[n]

e(σ′ωii , aki).

AVerify(mk,Φ, ID, f) : Parse mk as (PP, α), Φ as (~m, µ, τ), ID as (gβi)i∈[n] and f as

(ωi)i∈[n] and return (~m, τ) if the following holds, and (⊥,⊥) otherwise:

µ′ =
( n∏
i=1

e(gωi , H(τ ||gβi)) · e(
∏̀
i=1

gmii , g)
)α

Scheme 5.8: HPRA scheme for Flin parametrized by Eval.

Theorem 5.9. If the linearly homomorphic MAC from Scheme 5.7 is unforge-
able and the eBCDH assumption holds, then Scheme 5.8 represents a signer
unforgeable, aggregator unforgeable and input private HPRA for family of linear
function classes {F lin

PP } in the ROM.

We prove Theorem 5.9 by proving Lemmas 5.34-5.36.

Lemma 5.34. If Scheme 5.7 is unforgeable, then Scheme 5.8 is signer unforge-
able.

Proof. We show that an efficient adversary A against signer unforgeability can
efficiently be turned into an efficient adversary B against unforgeability of Sch-
eme 5.7 by presenting a reduction R, which interacts with the unforgeability
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challenger of Scheme 5.7 and simulates the environment for A, i.e., so that
B = (A,R).
R obtains PP from C, starts A on PP and aux = ∅ and simulates the environ-

ment for A as follows.

VR(i) : If SK[i] = ⊥ ∨ RK[i] = ⊥ return ⊥, otherwise set AK[i]← >.

A((σji)i∈[n], (ji)i∈[n], τ, f) : Check whether any (Verify(pkji , ~mji , τ, σji) = 0)i∈[n],
whether there is any duplicate index j in (ji)i∈[n], whether SIG[τ ] 6= ⊥, or
whether AK[ji] = ⊥ for any i ∈ [n], and return ⊥ if so. Otherwise, set
SIG[τ ] ←

⋃
i∈[n]{(~mji , idji)} compute (µi)i∈[n] ← C.Sig((~mji)i∈[n], (idji)i∈[n],

τ) and return Λ← (Eval(f, (mji)i∈[n]), µ, τ), where µ←
∏
i∈[n] µ

ωi
i .

The oracles SG, SKey, and SR are simulated honestly. If A eventually out-
puts a forgery (Λ?, ID?, f?) the reduction R can parse Λ? as (~m, µ, τ), forward
(~m, µ, τ, ID?, f?) to C and wins the unforgeability game with the same probability
as A breaks HPRA unforgeability.

Lemma 5.35. If the eBCDH assumption holds, then Scheme 5.8 is aggregator
unforgeable in the ROM.

Our proof is along the lines of [BFKW09], but under a slightly different, novel
assumption, i.e., eBCDH.

Proof. We construct an efficient algorithmR which turns an efficient algorithmA
breaking aggregator unforgeability into an efficient eBCDH solver. R internally
maintains the lists Rnd and H, which are initially empty. R obtains an extended
bilinear CDH instance eBCDHκ ← (BG, g1/β, gβ , gα/β, gγ) relative to the security
parameter κ and runs the following modified Gen algorithm Gen′ to obtain PP.

Gen′(eBCDHκ, `) : For i ∈ [`], choose Rnd[i] ← (si, ti)←R Z2
q and set gi ←

(gγ)sigti . Fix H : Zq → G and return PP← (BG, H, (gi)i∈[`], `)

Then, R starts A on PP and aux = ∅, where the oracles are simulated as follows
and we assume that all oracles have implicit access to the state ofR (in particular
to Rnd and H):

H(x) : If x ∈ H return H[x][1]. Otherwise choose (ρ, ν)←R Z2
q, set H[x]← ((gγ)ρgν ,

ρ, ν) and return H[x][1].

SG(i) : Choose ξ←R Z∗q , and set SK[i]← (ξ, (gβ)ξ, (g1/β)1/ξ). Then, return ((gβ)ξ,

(g1/β)1/ξ).

Sig((ji)i∈[n], (~mji)i∈[n]) : As the original oracle, except: choose τ ←R Zq and for
all i ∈ [n] choose νi←R Zq. If τ ||SK[ji][2] ∈ H for any i ∈ [n] abort. Other-
wise, for all i ∈ [n], set ρi ← −

∑
k∈[`] Rnd[k][1] ·mji [k], and H[τ ||SK[ji][2]] ←

((gγ)ρigνi , ρi, νi), compute δ ← νi+
∑
k∈[`]mji [k]·Rnd[k][2] and return (σji ←

SK[ji][2]δ)i∈[n] and τ .

185



Chapter 5. Signatures with Data Privacy

VR(i) : If SK[i] = ⊥ ∨ RK[i] = ⊥ ∨ AK[i] 6= ⊥ return ⊥. Otherwise, set
AK[i]← (gα/β)1/SK[i][1].

The oracles SR and VRKey are simulated honestly. If A eventually outputs a
valid forgery (Λ?, ID?, f?) = ((~m?, µ?, τ?), ID?, f?) with f? = (ω?i )i∈[n], we know
that it is of the form

µ? =
(
e(
∏
i∈[`]

g
m?i
i , g) ·

∏
i∈[n]

e(gω
?
i , H(τ?||id?i))

)α
=

(gαγ)
∑
i∈[`]m

?
i ·Rnd[i][1](gα)

∑
i∈[`]m

?
i ·Rnd[i][2]·

(gαγ)
∑
i∈[n] ω

?
i ·H[τ

?||pk?i ][2](gα)
∑
i∈[n] ω

?
i ·H[τ

?||pk?i ][3].

Then we let

ψ =
∑
i∈[`]

m?

i · Rnd[i][1] +
∑
i∈[n]

ω?i · H[τ?||pk?i ][2],

υ =
∑
i∈[`]

m?

i · Rnd[i][2] +
∑
i∈[n]

ω?i · H[τ?||pk?i ][3],

and output gαγ ← (µ? · e(gβ , gα/β)−υ)1/ψ as eBCDH solution. The simulation
is negligibly close to the original game: all values are identically distributed;
the signature is uniquely determined by the responses of the random oracle and
the key, and, thus, also identically distributed as a real signature. Collisions in
the answers of the random oracle only occur with negligible probability. Con-
sequently, also an abort happens with negligible probability. What remains is
to analyze the probability that the forgery output by A is of the form that we
actually extract gαγ , i.e., we have that ψ 6= 0 which we define as event E. By the
same argumentation as [BFKW09] we obtain that Pr[¬E] = 1/q which concludes
the proof (cf. [BFKW09, Proof of Theorem 6] for a more detailed probability
analysis).

Lemma 5.36. Scheme 5.8 is input private.

Proof. Both input privacy ensembles are identical.

5.4.3 Adding Output Privacy

An additional goal is that the aggregator neither learns the input nor the output
(output privacy). On our way to achieve this, we formally define the notion of
homomorphic proxy-re encryption (HPRE) and develop an instantiation for the
family of linear function classes {F lin

PP }. Based on this, we extend Scheme 5.8 to
additionally provide output privacy.
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Homomorphic Proxy Re-Encryption. A homomorphic proxy re-encryption
scheme (HPRE) is a PRE which additionally allows the homomorphic evaluation
of functions on the ciphertexts. This functionality firstly allows to aggregate
messages encrypted under the same public key, and, secondly, to transform the
ciphertext holding the evaluation of a function to a ciphertext for another en-
tity, when given the respective proxy re-encryption key. We stress that if the
initial ciphertexts are with respect to different public keys, then one can use the
respective re-encryption keys to transform them to a common public key before
evaluating the function. More formally:

Definition 5.33. A HPRE for a family of function classes {FPP} is a PRE with
an additional evaluation algorithm Eval.

Eval(PP, f,~c) : This algorithm takes public parameters PP, a function f ∈ FPP,
and a vector of ciphertexts ~c = (ci)i∈[n] to messages (mi)i∈[n] all under public
key pk, and outputs a ciphertext c to message f((mi)i∈[n]) under pk.

Additionally, we require the following compactness notion (analogous to [CF15]).

Definition 5.34 (Compactness). A HPRE for a family of function classes {FPP}
is called compact if for all PP← PGen(1κ) and for all f ∈ FPP the running time

of the algorithms ~Dec is bounded by a fixed polynomial in the security parameter
κ.

Besides the straightforward adoption of correctness, IND-CPA− remains identical
(Eval is a public algorithm). However, we require an IND-CPA− variant, where
the adversary may adaptively choose the targeted user. To the best of our
knowledge, such a notion does not exist for PRE. We introduce such a notion
(termed mt-IND-CPA−) and show that it is implied by the conventional IND-CPA
notions.

Definition 5.35 (mt-IND-CPA−). A (H)PRE is mt-IND-CPA− secure, if for all
PPT adversaries A there is a negligible function ε(·) such that

Pr


PP← PGen(1κ), b←R {0, 1},
(skh, pkh)← KeyGen(PP),O ← {G(·),RG(·)},
(m0,m1, i

?, st)← AO(PP, pkh),

c← Enc2(mb, pki?), b? ← A(st, c)

: b = b?

 ≤ 1/2 + ε(κ),

where the environment holds an initially empty list HU. G and RG are defined
as:

G(i) : If HU[i] 6= ⊥ return ⊥. Otherwise, run (ski, pki) ← KeyGen(PP), set
HU[i]← (ski, pki), and return pki.

RG(i) : If HU[i] = ⊥ return ⊥. Otherwise, set rki→h ← ReGen(HU[i][1], pkh) and
return rki→j.
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Lemma 5.37. Every IND-CPA− (and thus every IND-CPA) secure PRE also
satisfies mt-IND-CPA− security.

Proof. We prove the lemma by bounding the success probability in the mt-IND-
CPA− game relative to the IND-CPA− bound. Therefore, we let qG be the number
of queries to the G oracle.

Game 0: The mt-IND-CPA− game.

Game 1: As Game 0, but we guess the index i? beforehand. If our guess is
wrong we abort.

Transition0→1 : We have that Pr[S0] = qG · Pr[S1].

Game 2: As Game 1, but we engage with an IND-CPA′ challenger, obtain
(PP, pkt, pkh, rkt→h), set HU[i?] ← (⊥, pkt, rkt→h) and start A on (PP, pkh).
Furthermore, we simulate the oracles when queried for user i? as follows:

G(i?) : Return HU[i?][2] (i.e., pkt).

RG(i?) : Return HU[i?][3] (i.e., rkt→h).

The oracle calls for the remaining indexes are simulated honestly.

Transition1→2 : This change is conceptual.

Whenever an adversary in Game 2 outputs its guess b?, we can forward b? to the
IND-CPA− challenger and win whenever the adversary wins Game 2. As we have
that Pr[S1] = Pr[S2] ≤ εcpa−(κ), and, thus, Pr[S0] ≤ qG · εcpa−(κ), this concludes
the proof.

HPRE Construction for the Family of Linear Function Classes. We
state our construction in Scheme 5.9. Essentially, we build on the PRE scheme in
[AFGH06, third attempt] and turn it into a HPRE for the family of linear function
classes {F lin

PP }, henceforth referred to as HPRElin. For the desired homomorphism
we use a standard trick in the context of ElGamal-like encryption schemes: we
encode messages m ∈ Zq into the exponent and encrypt gm. Decryption then
yields m′ = gm and one additionally needs to compute m = loggm

′ to obtain
m. Thus, for the schemes to remain efficient, the size of the message space
needs to be polynomial in the security parameter. While this might sound quite
restrictive, we stress that in practical settings one deals with numerical values
where messages in the order of millions to billions are by far sufficient. Thus,
this type of decryption is not a limitation and entirely practical.

As Eval is a public algorithm it does not influence IND-CPA security. Thus,
our argumentation is identical to [AFGH06] and we can use the following theo-
rem.

Theorem 5.10 (cf. [AFGH06]). If the eDBDH assumption holds in (G,GT )
then Scheme 5.9 is an IND-CPA secure HPRElin.

We also note that compactness of Scheme 5.9 (Definition 5.34) is easy to verify.
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PGen(1κ) : Run BG← BGGen(1κ), and return PP← BG.

KeyGen(PP) : Choose (a1, a2)←R Z2
q, and return (rskA, rpkA)← ((a1, a2), (ga1 , ga2)).

ReGen(rskA, rpkB) : Parse rskA as (a1A, ·) and rpkB as (·, ga2B ) and return rkA→B ←
(ga2B )a1A .

Enc1(rpk,m) : Parse rpk as (ga1 , ·), choose k←R Zq, and return c← (gk,gm · (ga1)k, 1)

Enc2(rpk,m) : Parse rpk as (ga1 , ·), choose k←R Zq, and return c← (gk,gm · (ga1)k, 2)

ReEnc(rkA→B , cA) : Parse cA as (c1, c2, 2) and return c← (e(c1, rkA→B), c2, R)

Dec1(rsk, c) : Parse c as (c1, c2, c3) and rsk as (a1, a2), and return gm ← c2 · c−a11 if

c3 = 1 and gm ← c2 · c−
1/a2

1 if c3 = R.

Dec2(rsk, c) : Parse c as (c1, c2, 2) and rsk as (a1, a2), and return gm ← c2 · e(g, c−a11 ).

Eval(PP, f,~c) : Parse f as (ω1, . . . , ωn) and ~c as (ci)i∈[n], and return c ←
∏
i∈[n] c

ωi
i ,

where multiplication and exponentiation is component-wise.

Scheme 5.9: HPRElin based on [AFGH06, third attempt].

HPRElin for Vectors. We extend HPRElin to vectors over Zq, while preserving
the support for re-encryption and the homomorphic properties. It turns out
that we can employ a communication efficient solution. That is, borrowing the
idea of randomness re-use from [BBKS07] and applying it to HPRElin, we can
reduce the size of the ciphertexts as long as no re-encryption is performed. Upon
setup, we have to fix a maximum length ` of the message vectors, which needs
to be additionally provided to the PGen algorithm. The secret and the public
keys are then of the form rsk ← (rski)i∈[`] = ((a1i, a2i))i∈[`], rpk ← (rpki)i∈[`] =

((ga1i , ga2i))i∈[`], where (a1i, a2i)i∈[`]←R (Z2
q)
`. First and second level encryption

are defined as

Enc1
`(rpk, ~m) := (gk, (gmi · rpki[1]k)i∈[`], 1), and

Enc2
`(rpk, ~m) := (gk, (gmi · rpki[1]k)i∈[`], 2), respectively.

Decryption Decj`(·, ·) of a ciphertext (c[1], (c[i+ 1])i∈[`], j) is defined as

Dec1
`(rsk,~c) := (c[i+ 1] · c[1]−rski[1])i∈[`], and

Dec2
`(rsk,~c) := (c[i+ 1] · e(c[1], g−rski[1]))i∈[`].

Re-encryption key generation is defined as

ReGen`(rskA, rpkB) := (((rpkB)i[2])(rskA)i[1])i∈[`].

From a second level ciphertext ~cA for A and a re-encryption key rkA→B , a
ciphertext ~cB for B is computed as

~cB ← ReEnc(rkA→B ,~cA) := ((e(cA[1], rkA→B [i]), cA[i+ 1]))i∈[`].
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Note that re-encrypted ciphertexts have a different form. Thus we do not need
to add the level as suffix. Decryption Dec1

`(·, ·) for re-encrypted ciphertexts is

Dec1
`(rsk, (ci)i∈[`]) := (ci[2] · ci[1]−1/rski[2])i∈[`].

Theorem 5.11. If the eDBDH assumption holds, then the extension of HPRElin

as described above, yields an IND-CPA secure HPRElin for vectors.

Proof (Sketch). IND-CPA security of the original scheme implies Theorem 5.11
under a polynomial loss: using ` hybrids, where in hybrid i (1 ≤ i ≤ `) the
i-th ciphertext component is exchanged by random under the original strategy
in [AFGH06].

Combining the theorem above with Lemma 5.37 yields:

Corollary 5.6. The extension of HPRElin as described above yields an mt-IND-
CPA− secure HPRElin for vectors.

Putting the Pieces Together: Output Privacy. Our idea is to combine
Scheme 5.8 with the HPRElin presented above. In doing so, we face some ob-
stacles. First, a näıve combination of those primitives does not suit our needs:
one can still verify guesses for signed messages using solely the signatures, since
signatures are publicly verifiable. Second, switching to a MAC for the data
sources is also no option, as this would require an interactive re-key genera-
tion. This is excluded by our model as we explicitly want to avoid it. Thus,
we pursue a different direction and turn the signatures used in Scheme 5.8 into
a MAC-like primitive by blinding a signature with a random element gr. An
aggregated MAC holding an evaluation of f is then blinded by gf(...,r,...), i.e.,
the receiver needs to evaluate the function f on all the blinding values from the
single sources. Now the question arises as how to transmit the blinding values to
the receiver. Using our HPRElin for vectors yields an arguably elegant solution:
by treating the randomness as an additional vector component, we can use the
re-encryption features of the HPRElin. More importantly, by executing the EV
algorithm the aggregator simultaneously evaluates the function f on the data
and on the randomness so that the receiver can directly obtain the blinding value
f(. . . , r, . . .) upon decryption.

Note on the Instantiation. Augmenting Scheme 5.8 to obtain Scheme 5.10
using HPRElin requires an alternative decryption strategy for the vector compo-
nent containing r, as r is uniformly random in Zq and can thus not be efficiently
recovered. Fortunately, obtaining r ∈ Zq is not required, as gr (resp. gr) is
sufficient to unblind the signature (resp. MAC). Those values are efficiently
recoverable.

Theorem 5.12. If Scheme 5.8 is signer and aggregator unforgeable, and HPRElin

for vectors is mt-IND-CPA− secure, then Scheme 5.10 is a signer and aggregator
unforgeable, input and output private HPRA for the family of linear function
classes {F lin

PP }.
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Gen(1κ, `) : Fix a homomorphic PRE = (Gen,KeyGen, ~Enc, ~Dec,ReGen,ReEnc,Eval)

for class Flin and the HPRA(Eval) = (Gen,SGen,VGen,Sign,Verify,SRGen,

VRGen,Agg,AVerify) from Scheme 5.8 such that MPRA ⊆ MPRE, run PPs ←
Gen(1κ, `), PPe ← PGen(1κ, `+ 1), and return PP← (PPs, PPe).

SGen(PP) : Run (id, sk,pk) ← SGen(PPs), (rsk, rpk) ← KeyGen(PPe), and return

(id, sk, pk)← (id, (sk, rsk, rpk),pk).

VGen(PP) : Run (mk,aux) ← VGen(PPs), (rsk, rpk) ← KeyGen(PPe), and return (mk,

aux)← ((mk, rsk), (aux, rpk)).

Sign(sk, ~m, τ) : Parse sk as (sk, ·, rpk), choose r←R Zq, and return σ ← (σ′ ·gr,~c), where

(σ′, ·)← Sign(sk, ~m, τ) and ~c← Enc2
`+1(rpk, ~m||r).

SRGen(ski, aux) : Parse ski as (ski, rski, rpki) and aux as (aux, rpk). Obtain rki ←
SRGen(ski,aux) and prki ← ReGen(rski, rpk), and return rki ← (rki, prki).

VRGen(pki,mk, rki) : Parse pki as pki and mk as (mk, ·), obtain aki ← VRGen(pki,

mk) and return aki ← (aki, rki).

Agg((aki)i∈[n], (σi)i∈[n], τ, f) : For i ∈ [n] parse aki as (aki, (rki, prki)), σi as (σ′i,~ci).

Output Λ← (~c′, µ, τ), where

(~c′i ← ReEnc(prki,~ci))i∈[n], (~c′, µ, τ)← Agg((aki)i∈[n], (σ
′
i,~c
′
i)i∈[n], f).

AVerify(mk,Λ, ID, f) : Parse mk as (mk, rsk) and Λ as (~c, µ, τ), obtain ~m′||r ←
Dec1

`+1(rsk,~c) and return (~m, τ) if the following holds, and (⊥,⊥) otherwise:

AVerify(mk, (~m, µ · (gr)−1, τ), ID, f) = 1

Scheme 5.10: Output private HPRA scheme for the family of linear function classes
{F lin

PP} with Eval(·, ·) := HPRE.Eval(PPe, ·, ·)

We prove Theorem 5.12 by proving Lemma 5.38-5.40.

Lemma 5.38. If Scheme 5.8 is signer and aggregator unforgeable, then Scheme 5.10
is so as well.

Proof. Additional encryption does not influence unforgeability.

Lemma 5.39. Scheme 5.10 is input private.

Proof. Both input privacy ensembles are identical.

Lemma 5.40. If HPRElin for vectors is mt-IND-CPA− secure, then Scheme 5.10
is output private.
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Proof. We prove output privacy using a sequence of games, and let qRoS be the
cumulative number of signing calls within the RoS queries.

Game 0: The original privacy game with bit b = 0.

Game 1i(1 ≤ i < qRoS): As the previous game, but we modify i-th Sign run
within RoS as follows:

Sign(sk, ~m, τ) : Parse sk as (sk, rsk, rpk), choose r←R Zq, choose ~ρ←R Z`+1
q , and

return σ ← (σ′·gr,~c), where (σ′, ·)← Sign(sk, ~m, τ) and ~c← Enc2
`+1(rpk, ~ρ′ ).

Transition1i→1i+1 : We show that the success probability of a distinguisher
D0 → D11 (resp. D1i→1i+1) is bounded by εmt-cpa-(κ). In doing so, we present
a hybrid game, which, based on the bits chosen by the challengers, interpolates
between Game 0 and Game 11 (resp. Game 1i and Game 1i+1). Thereby, we
use Cκ to denote an mt-IND-CPA− challenger for HPRElin for vectors. Firstly, we
run the modified Gen algorithm Gen′:

Gen′(1κ, `) : Run PPs ← Gen(1κ, `), obtain (PPe, pkh)← Cκ , store pkh and re-
turn PP← (PPs, PPe).

Secondly, we run the modified VGen algorithm VGen′:

VGen′(PP) : Run (mk,aux) ← VGen(PPs), rpk← pkh , set rsk← ⊥ . Return
(mk, aux)← ((mk, rsk), (aux, rpk)).

Thirdly, we modify the oracles SG as well as SR.

SG(i) : If SK[i] 6= ⊥ return ⊥. Otherwise, run (idi, ski, pki)← SGen′(PP, i, CU), set
SK[i]← (idi, ski, pki) and return (idi, pki), where SGen′ is defined as follows:

SGen′(PP, i, CU) : Run (id, sk,pk) ← SGen(PPs). If i ∈ CU, run (rsk, rpk) ←
KeyGen(PPe). Otherwise, obtain rpk ← Cκ.G(i), set rsk ← ⊥. In any case
set (id, sk, pk)← (id, (sk, rsk, rpk),pk).

SR(i) : If SK[i] = ⊥ ∨ RK[i] 6= ⊥ return⊥. Otherwise, if i ∈ CU set RK[i]← SRGen(
SK[i][2], aux) and return RK[i]. If i /∈ CU simulate the oracle as for i ∈ CU, but
with the following modified SRGen algorithm SRGen′:

SRGen′(ski, aux) : Parse ski as (ski,⊥, rpki) and aux as (aux, rpk). Return
rki ← (rki, prki), where rki ← SRGen(ski,aux), and prki ← Cκ.RG(i).

Finally, we modify the i-th Sign run within RoS as follows:

Sign(ski, ~m, τ) : Parse ski as (ski,⊥, rpki), choose r←R Zq, choose ~ρ←R Z`+1
q , and

return σ ← (σ′ · gr,~c), where (σ′, ·)← Sign(ski, ~m, τ), and ~c← Cκ(~m||r, ~ρ, i).

Here, ~c ← Cκ(~m||r, ~ρ, i) denotes that a challenge ciphertext with respect to
messages ~m||r and ~ρ, and signer i is obtained from the challenger. The oracles
SKey, VR, and VRKey, are simulated honestly. Now, the bit b chosen by Cκ
switches between the distributions in Game i and Game i+ 1.
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In Game 1qRoS
all ciphertexts are encryptions of random values. The gr’s

unconditionally hide the signed messages in the signatures (signatures can be
viewed as Pedersen commitments under randomness r), i.e., signatures are dis-
tributed as signatures on random vectors, and we are in the game where b = 1;
the distinguishing probability between the original Game 0 and Game 1qRoS

is
negligible.
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6
Conclusion

In this thesis we cryptographically addressed several important questions in the
context of privacy preserving processing of authenticated data. These ques-
tions gained more and more relevance in recent years due to many security and
privacy related challenges arising from the following two developments. First,
outsourcing computations to, and storing data at cloud computing providers,
who are typically not fully trusted, became an increasingly followed trend. Sec-
ond, we can observe a tremendous growth in the number of computing devices
which allow us to ubiquitously access the distributed infrastructures and services
emerging from this trend.

From a technical viewpoint, we improved upon the state of the art in various
directions. We developed novel schemes and protocols as well as generalizations
and extensions of existing schemes and protocols which are suitable to reduce the
required trust assumptions in the parties being involved in processing the data,
while simultaneously also taking privacy issues into account. Throughout the
thesis we followed a modular approach which is also resembled by the structure
of this thesis.

We started by establishing various basic primitives being well suited as build-
ing blocks in our constructions. However, we want to stress that they address
more fundamental issues which may also be of interest for other areas in cryp-
tography. In the context of cryptographic accumulators we introduced a com-
prehensive unified security model. We used this model to analyze the security
of existing accumulator constructions, and also set accumulators being secure in
this model into relation with other primitives. Most importantly, our security
model includes the first meaningful formalization of indistinguishability, which is
a central requirement in many applications. In this work we also presented novel
constructions of accumulator schemes and proved them secure in our model. In
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the area of key-homomorphic signatures we established a framework which allows
us to gain further insights into the properties of plain signature schemes being
required to use them in advanced signature primitives (including universal des-
ignated verifier signatures and ring signatures) and zero-knowledge argument
systems with strong security properties. Besides being of theoretical interest
it turns our that our constructions are surprisingly efficient and even yield to
instantiations without random oracles which are favorable regarding efficiency
when compared to existing work.

We then proposed a new group signature scheme which provides security
in the strong BSZ model [BSZ05]. We were, thereby, able to make efficiency
gains by using a paradigm to construct group signatures, which was previously
unknown to be compatible with such a strong security model. Bottom line, we
outperform all existing group signature schemes being proven secure in a com-
parably strong model and, in addition, even outperform the popular BBS short
group signature scheme [BBS04] regarding signature size. As many applications
of group signatures require particularly efficient signature generation, our results
are an important step towards better acceptance of group signatures in practice.
Compared to other schemes we use slightly stronger/riskier, yet very plausible
assumptions.

Somewhat orthogonal to our results on group signatures, we presented sev-
eral contributions in the area of malleable signature schemes. First, we pro-
posed a unified framework for redactable signatures being independent of the
concrete data structure to be signed. On top of that we introduced three generic
constructions for different message structures. Our constructions are based on
indistinguishable accumulators and other standard primitives, yielding various
practically efficient instantiations. Second, we built upon this framework to
extend redactable signatures with two additional important privacy features be-
ing motivated by the requirements of cloud-based document sharing scenarios:
signer anonymity and designated verifiers. We formally modeled this primitive
and presented two constructions. The first one is a generic construction which
is more of theoretical interest, whereas the second one is a particularly efficient
construction. The efficiency gains we made were obtained by combining our re-
sults on key-homomorphic signatures with our results on redactable signatures.
Third, we focused on extensions of sanitizable signatures with a feature to limit
the allowed modifications by the sanitizer to signer-defined sets of messages per
block (LimitSet). We found that existing formalizations do not guarantee the
privacy one would expect, as they do not require the sets of possible modifica-
tions to remain concealed. To this end we strengthened the security model with
respect to this observation and showed how to generically extend plain sanitiz-
able signatures to also support the LimitSet extension using (indistinguishable)
accumulators. Finally, we turned to a variant of malleable signatures allowing
to evaluate functions on authenticated data vectors. In our work, we combined
the malleability properties with features known from proxy re-cryptography: an
aggregator can transform data vectors authenticated under different keys of var-
ious data sources to data vectors authenticated under a receiver’s key, while
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at the same time being able to evaluate functions on the authenticated vectors.
We introduced a model which formally captures our requirements and developed
novel building blocks to eventually come up with a modular construction of our
newly introduced primitive covering the class of linear functions.

Summing up, the work presented in this thesis can be seen as a framework
which addresses important privacy issues arising when third parties, who are not
fully trusted, process authenticated data. In our work we aimed to find a suit-
able tradeoff between computational efficiency and modularity. That is, while
most of our constructions are generic, and thus flexible enough to be instantiated
using different primitives and hardness assumptions, there are efficient instanti-
ations of all our constructions which are well suited for deployment in practical
applications.

6.1 Open Questions and Future Work

Finally, we shed light on open questions and interesting directions for future
work. In general, we observe that malleability of signature schemes, or mal-
leability of cryptographic objects in general, seems to be a useful tool to address
various practical as well as theoretical issues one faces when designing crypto-
graphic schemes and protocols with advanced features and/or strong security
properties. So the broader future direction we aspire is to further investigate
cryptographic objects with malleable properties.

Besides that, we want to briefly sketch open questions which are directly
tangled with the work presented in this thesis. Some questions which remained
open in our work were already addressed in follow-up work. For completeness,
we also include these follow-up results (which were already discussed in more
detail in the respective technical chapters) in our discussion below.

Cryptographic accumulators received quite some attention in the recent time
and meanwhile there are multiple works which mainly address stronger vari-
ants of indistinguishability and more expressive set operations [RY16, GOP+16,
ZKP17, BCD+17]. What is still open is to investigate further relationships of
accumulators to other primitives with similar functionalities, in the fashion as
we have investigated their relation to commitments and zero-knowledge sets. In
the area of key-homomorphic signatures, we have already demonstrated their
usefulness in a broad spectrum of applications. It would, nevertheless, be inter-
esting to find further applications where key homomorphisms are useful to obtain
compellingly efficient and simple schemes and protocols—especially schemes and
protocols which come with security proofs without random oracles. In addition,
it seems that malleability properties on the key space are also a valuable tool
when it comes to achieving tightness in security proofs. It would thus be inter-
esting to develop new techniques for tight security proofs being based on key
homomorphisms.

Our work on group signatures centrally focuses on schemes with particu-
larly efficient signature generation and verification, providing strong security
guarantees. One open point for future work would be to weaken the required
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underlying assumptions while still preserving the efficiency. Another question
to investigate would be to which extent our construction paradigm is useful to
achieve instantiations which do not require random oracles. Finally, while we
informally sketched an extension to the stronger variant of opening soundness
using our results on plaintext (in-)equality proofs in [c4], a formal treatment of
this issue is still open.

In our work on extended privacy for redactable signatures, it remained open
whether it is possible to achieve a stronger notion of simulatability where the
adversary can adaptively query the simulation oracle (RoD). While an extension
seems straight forward for our generic construction, we currently do not see how
to adapt our construction which is based on key-homomorphisms. In the context
of sanitizable signatures we have quite recently seen another efficient instantia-
tion of plain unlinkable sanitizable signatures in the standard model [LZCS16].
We note that—likewise to the paradigm to obtain unlinkability in [FKM+16]—
also the paradigm which is used in [LZCS16] is not helpful to obtain practically
efficient unlinkable ESS. Accordingly it is still open to come up with a practically
efficient construction of unlinkable ESS. In this context we observe similarities
between unlinkable ESS and anonymous credential systems.1 So a fruitful direc-
tion might be to study relations between them. Then, unlinkable ESS can also
benefit from advances in the context of attribute based anonymous credential
systems and vice versa. We, however, note that a notion like unlinkability will
often be too strong for a primitive like ESS, since most real world documents
will contain elements which allow to link the sanitized documents despite the
unlinkability of the signature. Finally, in the context of homomorphic proxy
re-encryption an instantiation for function classes beyond linear ones, as well as
a construction in the standard model remained open.

1 In fact, in [CL13] it was shown that anonymous credential schemes can be constructed from
a variant of sanitizable signature schemes. However, they use a model which is tailored to
showing this implication and does not consider all security properties of sanitizable signa-
tures. Showing an implication in the other direction is open at all.
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[ALP12] Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Com-
puting on Authenticated Data: New Privacy Definitions and Con-
structions. In Advances in Cryptology - ASIACRYPT 2012 - 18th
International Conference on the Theory and Application of Cryp-
tology and Information Security, Beijing, China, December 2-6,
2012. Proceedings, pages 367–385, 2012.

[ALP13] Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Ef-
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