

Acknowledgements

First, I want to thank my supervisor Roland Resel for giving me the
opportunity to work on this project and the possibility to be part of his
team. He always supported me in every aspect and made it possible
to finish my work in the narrow time frame I had.

It was a great experience to work in this research group and I want
to especially thank Stefan Pachmajer, Andrew Jones, Fabian Muralter
and Martin Tazreiter for many discussions and the continuous help
with upcoming riddles, problems and challenges.

I also want to thank Peter Hadley for advice on many topics and
always having an open door for me as well as Martin Kornschober
for helping me during the whole process of the laboratory setup and
providing me with insight into the mechanical construction process.
I highly appreciate the help from Alberto Perrotta for performing
spectroscopic ellipsometry measurements and also help from Harald
Kerschbaumer, Birgit Kunert, Elisabeth Stern and Robert Schennach is
gratefully appreciated.

The opportunity to collaborate with the Russian Academy of Sciences,
Ioffe Physical Technical Institute was a great experience and I want
to specially thank Alexander Burkov and P.P. Konstantinov for per-
forming Hall effect and resistivity measurements on prepared samples
and providing me with insight about their Hall effect measurement
setup.

I want to thank my parents Herbert and Inge and my brothers Christian
and Markus for their continuous support, discussions and patience for
so many years.

Finally, I want to thank Katrin - the love of my life - for dreaming,
laughing and sharing the most valuable and exiting things in life with
me.

Thank you Ria, for giving me the final push!

v

Abstract

Hall effect measurements are a well established and widely used
method in the semiconductor industry to gain information about the
electrical properties of materials such as electrical resistivity, charge
carrier type, charge carrier density and charge carrier mobility. In
this work, the process of setting up a new Hall effect measurement
laboratory at the Institute of Solid State Physics at the Graz University
of Technology is shown. The setup provides the possibility to perform
simultaneous measurement of electrical resistivity and Hall coefficient
and uses a combined AC / DC method to enhance accuracy. The setup
can provide a constant magnetic field of up to 1 T with a homogeneity
better than 99.9 % and is capable of performing measurements on ma-
terials with an electrical resistance between 0.1 Ω and 10 MΩ. Besides
performance verification of existing devices, also a new cryostat was
acquired and characterized in order to perform temperature dependent
measurements in the range of 8 K to 800 K. For all measurement de-
vices, a Python library was developed to provide easy and future-proof
access to device functionalities. To verify the performance of the new
laboratory, custom Indium Tin Oxide (ITO) Hall geometries have been
laser structured with an accuracy of ±2µm. Temperature dependent
measurements of the ITO between 8 K and 300 K reveal an increase of
electrical resistivity with rising temperature. For room temperature
measurements, the produced ITO standard samples show a resistivity
of ρ = 184µΩ cm, a charge carrier density of n = 9.33 1020 cm−3 and
a charge carrier mobility of µ = 36.35 cm2/(V s). Those values are in
good agreement with results from measurements performed at the
Russian Academy of Sciences, Ioffe Physical Technical Institute.

vii

Kurzfassung

Hall Effekt Messungen sind in der Halbleiterindustrie eine etablierte
und weit verbreitete Methode zu Bestimmung von elektrischen Mate-
rialparametern wie dem elektrische Widerstand, dem Ladungsträger-
typ, der Ladungsträgerdichte und der Ladungsträgerbeweglichkeit.
In dieser Arbeit wird der Aufbau eines neuen Hall Effekt Messlabors
am Institut für Festkörperphysik der Technischen Universität Graz
gezeigt. Das aufgebaute Setup bietet die Möglichkeit gleichzeitig den
elektrischen Widerstand sowie den Hall Koeffizienten zu messen und
benutzt dabei eine kombinierte AC / DC Methode um die Messge-
nauigkeit zu erhöhen. Messungen an Proben mit einem elektrischen
Widerstand zwischen 0.1 Ω und 10 MΩ können bei Magnetfeldern
bis zu 1 T durchgeführt werden. Neben der Charakterisierung von
bestehenden Geräten wurde auch ein neues Kryostat angeschafft
um temperaturabhängige Messungen in einem Bereich von 8 K bis
800 K durchführen zu können. Für alle Messgeräte wurde eine Python
Bibliothek programmiert die eine einfache und zukunftssichere Ans-
teuerung der Messgeräte ermöglicht. Zur Verifizierung des neuen
Labors wurden spezielle Indium Zinn Oxid (ITO) Hall Strukturen
mittels Laser-Strukturierung hergestellt. Der ausgewählte Herstel-
lungsprozess garantiert Strukturgenauigkeiten von±2µm. Temperatur
abhängige Messungen zwischen 8 K und 300 K zeigen einen steigenden
spezifischen Widerstand mit steigender Temperatur. Für Raumtemper-
atur zeigen die ITO Standard Proben einen spezifischen Widerstand
von ρ = 184µΩ cm, eine Ladungsträgerdichte von n = 9.33 1020 cm−3

und eine Ladungsträgerbeweglichkeit von µ = 36.35 cm2/(V s). Die
ermittelten Werte zeigen eine gute Übereinstimmung mit Messergeb-
nissen des Russian Academy of Sciences, Ioffe Physical Technical
Institute.

ix

Contents

Acknowledgements v

Abstract vii

Abstract ix

1. Introduction 1

2. Fundamentals 3

2.1. The Drude-Model . 3

2.2. The Hall Effect . 4

2.3. Hall geometries . 7

2.3.1. Van der Pauw geometries 7

2.3.2. Hall bar geometries 8

2.4. Indium Tin Oxide (ITO) 10

3. Measurement techniques 13

3.1. Van der Pauw . 13

3.2. Hall bar type . 19

3.3. Low level current measurement 20

3.4. Low level voltage measurement 23

4. Experimental Section 27

4.1. Sample Preparation . 27

4.1.1. Geometry Considerations 28

4.1.2. Sample Investigation 30

4.2. Laboratory Setup . 31

4.2.1. Magnet Characterization 31

4.2.2. Closed Cycle Cryostat 34

4.2.3. Programming of measurement devices 40

4.3. Measurement setup . 51

4.3.1. Setup at the Graz University of Technology . . . 51

4.3.2. Setup at the Ioffe Institute 53

5. Results 55

xi

Contents

6. Conclusions 61

A. Appendix 65

A.1. Device specifications . 65

A.1.1. Bruker Electromagnet 65

A.1.2. Heinzinger Power Supply 66

A.1.3. Advanced Research Systems Cryostat 69

A.1.4. Keithley SourceMeter 2600 91

A.1.5. Agilent Switch Mainframe 91

A.1.6. Magnet-Physic magnetometer 95

A.1.7. Lock-In Amplifiers 97

A.1.8. Function generator 104

A.2. Source codes . 108

A.2.1. Calculation of the van der Pauw geometry cor-
rection factor . 108

A.2.2. Van der Pauw measurement using four Source
Measure Units . 108

A.2.3. 2D-Stage Stepper Control code 116

A.2.4. Agilent 3499A switch mainframe library 121

A.2.5. Stanford Research Systems SR830 lock-in Python
library . 122

A.2.6. Princeton Applied Research Model 5210 lock-in
Python library . 127

A.2.7. Heinzinger PTN40-125 Power Supply 131

A.2.8. MagnetPhysik FH54 Magnetometer 133

A.2.9. Philips PM5193 function generator 138

A.2.10. Keithley 199 Multimeter 141

A.2.11. Keithley SourceMeter 2600 series 143

A.2.12. Hall effect and resistivity measurement 156

Bibliography 165

xii

List of Figures

2.1. Direction of the most important physical quantities for
measurement of Hall effect 4

2.2. Resistivity measurement on Hall bar type sample 6

2.3. Van der Pauw measurements on arbitrary shape 8

2.4. Hall measurement - van der Pauw shapes 8

2.5. Hall measurement - bridge-type 9

2.6. Optical transmission of ITO 11

3.1. Flat lamella of arbitrary shape 13

3.2. Van der Pauw geometrical correction factor 15

3.3. Multiple van der Pauw resistivity measurements 15

3.4. Multiple van der Pauw Hall measurements 16

3.5. Typical van der Pauw measurement setup 17

3.6. Van der Pauw measurement configuration with four
Source Measure Units . 18

3.7. Hall bar geometry . 18

3.8. Step function test . 21

3.9. Guarding the Leakage Resistance of a Cable 22

3.10. Experimental setup of a lock-in amplifier 24

4.1. Laser structured Hall geometries 28

4.2. Hall bar custom shape . 29

4.3. Dimensions of selected ITO Hall geometries 30

4.4. Spectroscopic ellipsometry measurement 31

4.5. Bruker Magnet type B-E15 B8 32

4.6. 2D-stage for Hall sensor movement 33

4.7. 2D magnetic field homogeneity measurement 33

4.8. 1D magnetic field homogeneity measurement 34

4.9. Cold head of the ARS cryostat 35

4.10. Cryostat cool down characteristic 36

4.11. Cryostat self heat up characteristic 36

4.12. SolidWorks rendering of the closed cycle cryostat sup-
port frame. 37

4.13. Support frame for the closed cycle cryostat. 38

4.14. LakeShore 336 temperature controller 39

4.15. Structure of device control using Python 40

xiii

List of Figures

4.16. Switch matrix configuration 42

4.17. Four quadrants of operation 46

4.18. Correct use of setpoint feature 50

4.19. Measurements setup at the TUGraz 52

4.20. Flow diagram of Hall and resistivity measurements . . . 52

4.21. Hall bar specimen on sample holder 53

4.22. Measurements setup at the Ioffe Institute 54

5.1. ITO measurement (70 K to 500 K) performed at the Ioffe
Institute . 55

5.2. Resistivity comparison Ioffe and TUGraz 56

5.3. ITO measurement (300 K to 620 K) performed at the
Ioffe Institute . 57

5.4. ITO contact hairline fracture 58

5.5. Hall coefficient comparison Ioffe and TUGraz 58

5.6. Resistivity, carrier concentration and Hall mobility of ITO 59

A.1. Dimensions of the Bruker B-E15 electromagnet 65

A.2. Principle schematic of the Heinzinger PTN 125-40 [29] . 66

A.3. Components of the ARS cold-head 75

A.4. Typical setup of the ARS cryostat components 75

A.5. Source and measure limits of the Keithley SMU2600 series 91

A.6. Schematic of the 44473A matrix switch module 94

A.7. FH-54 magnetometer technical specifications 95

xiv

1. Introduction

Silicon is nowadays the most widely used semiconductor material in
electronic devices. Silicon is cheap, robust and easy to process but
has some limitations where other materials need to be used [1]. With
the rapid development in electronics, the need for new materials with
specially tuned properties is immanent. Promising candidates such as
doped zinc oxide (ZnO) are investigated by different groups [2], [3],
[4].

Upon fabrication of new materials, it is vital to know electrical mate-
rial properties such as resistivity, charge carrier type, charge carrier
concentration and charge carrier mobility. Despite Hall effect measure-
ments have been known since 1879 [5], this method of investigation is
still one of the industries standard to test materials for their electrical
properties. As testing methods and instruments have vastly improved
it is possible to investigate the whole span of materials from high
conductive, highly doped materials up to nearly pure, low conductive
semiconductors [6]. Although experimental techniques have improved,
Hall effect measurement on semiconductors can still be a challenge
and requires careful interpretation of measurement results [7], [8].

The aim of this work was to establish the possibility to perform Hall
effect measurements at the Institute of Solid State Physics at the Uni-
versity of Technology, Graz. This work will give an insight about the
fundamentals of Hall effect measurements, the measurement methods
and devices needed to perform those measurements, provide infor-
mation how the new laboratory was build and how standard samples
were prepared to get first performance results.

1

2. Fundamentals

2.1. The Drude-Model

The Drude-Model describes the classical charge transport inside a
material caused by an external electric field [9]. In the Drude-Model
a conductor is seen as an ion-crystal with free moving electrons that
form an electron-gas. If an external electric field ~E is applied, the
electrons inside the conductor experience the force:

~F = q ~E (2.1)

This force causes an acceleration of the electrons until an equilibrium is
reached with a mean electron velocity resulting in an electrical current
proportional to the strength of the electric field. This equilibrium was
explained by Drude due to the assumption, that moving electrons
collide with ions and will be decelerated. With the introduction of the
mean time τ between two collisions, the equation of motion can be
written as (with the electron mass m, the electron-velocity v and the
electron-drift-velocity vD):

m v̇+
m

τ
vD = −e E (2.2)

In the stationary state (v̇ = 0) equation 2.2 can be rearranged and
brought into relation with the current density j:

j = −e n vD =
e2 τ n

m
E (2.3)

Equation 2.3 shows, that the current density j is linear dependent
on the charge carrier density n. With known current density, the
conductivity σ can be calculated:

σ =
j

E
=
e2 τ n

m
(2.4)

3

2. Fundamentals

The Drude model can be also applied to positive charge carriers (holes)
in the same way. In the Drude model the interactions between the
charge carriers (electrons or holes) themselves are not taken into ac-
count which was later improved by Sommerfeld who described charge
movement as a Fermi-gas [10] instead of a classical ideal gas as it is
described in the Drude model. Nevertheless the Drude theory provides
a good explanation for the Hall effect that will be used in the following
chapter.

2.2. The Hall E�ect

When current flows through a conductor and a stationary magnetic
field is present in perpendicular direction, the charge carriers inside
the conductor experience a force in transverse direction. This force
leads to a charge carrier imbalance inside the conductor resulting in
an electric field that can be measured as Hall voltage.

Edwin Hall showed this effect in 1879 on a gold sample [5]. This was
the first proof that charge carries inside metals are moving electrons
and not protons.

Figure 2.1.: Direction of the most important physical quantities for measurement of
Hall effect

The Hall effect can be described by the Lorentz force acting on charge
carriers inside the material.

~F = q(~E+ (~v× ~B)) (2.5)

For the following calculations the coordinate system is defined so, that
the current is flowing along the x-axis Ix (the drift velocity is therefore

4

2.2. The Hall E�ect

Table 2.1.: Definition of quantities in order of their occurrence

quantities symbol unit
current density ~j A m−2

current I A
area A m2

charge carrier density n A s m−3

charge q A s
drift velocity ~v m s−1

force ~F kg m s−2

electric field ~E V m−1

magnetic field ~B N m−1 A−1

width a m
thickness t m
Hall voltage UH V
Hall coefficient RH m3 C−1

mobility µ m2 V−1 s−1

elementary charge e A s
distance d m
electrical resistivity ρ Ω m

also along the x-axis ~v = (vx, 0, 0)) and the magnetic field is applied
along the z-axis ~B = (0, 0,Bz) leading to an electric field in y-direction
~E = (0,Ey, 0) as shown in figure 2.1.

In steady state, the generated electric field compensates for the force
caused by the magnetic field, resulting in F = 0. The Lorentz force can
be rewritten as:

Ey − vxBz = 0 (2.6)

Due to the miss-balance of charge carriers, the specimen can be treated
as capacitor and the electric field can be written as:

Ey = UHa (2.7)

The current density through a conductor can be described as:

~j =
I

a · t = nq
~v (2.8)

5

2. Fundamentals

Equation 2.6 combined with 2.7 and 2.8 states the relation between the
measured Hall voltage (UH) and the Hall constant RH. The calculation
of the carrier density (n) is only valid for materials with one major
carrier type.

UH = RH
IxBz

t
(2.9)

RH =
1

nq
(2.10)

A negative Hall voltage (UH) indicates a n-type material (electrons
as charge carriers) whereas a positive Hall voltage indicates p-type
material (holes as charge carriers).

To calculate the mobility of the charge carriers, additionally the re-
sistivity of the material has to be determined. The resistivity of the
specimen can be calculated by measurement of the voltage drop (UR)
across a known distance d as shown in figure 2.2. To avoid errors due
to the contact resistance, the measurement is performed by use of
distinct contacts resulting in a four contact resistivity measurement.

Figure 2.2.: Resistivity measurement on a Hall bar sample type by measurement of
the voltage drop across contacts of known geometry.

ρ =
UR
Ix

A

d
(2.11)

When a magnetic field is applied during resistivity measurement, the
magnetoresistance ρ(BZ) of the specimen can be obtained.

For materials with dominant carrier type and known resistivity (ρ)
and Hall coefficient (RH), the carrier density (n) and carrier mobility
(µH) can be calculated:

6

2.3. Hall geometries

n = −
1

RH · q
(2.12)

µH =
|RH|

ρ
(2.13)

In semiconductors, where the material often has both holes and elec-
trons as charge carriers, the Hall constant needs to include the different
carrier concentrations and carrier mobilities. With index p indicating
the quantity is related to positive charge carriers and index e indicating
relation to negative charge carriers.

RH =
npµ

2
p −neµ

2
e

e(npµp +neµe)2
(2.14)

2.3. Hall geometries

2.3.1. Van der Pauw geometries

Van der Pauw discovered that it is possible to measure the sheet
resistance and the Hall coefficient of a thin, uniform sample of arbitrary
shape [11].

This chapter will focus on special van der Pauw geometries that are
frequently used when performing Hall measurements and explain
why it is beneficial to use those geometries. Details to the van der
Pauw measurement method will be discussed in chapter 3.1.

To perform accurate van der Pauw measurements, the specimens need
to fulfill the following requirements [11]:

• The sample has to be a thin film with t < 0.1 cm.
• The sample needs to be homogeneous (no holes).
• The contacts need to be placed on the edges of the sample.
• The contacts must be point-like.

In practice point-like contacts can not be achieved and measurements
will produce erroneous results. To overcome this limitation, special
van der Pauw geometries can be used to minimize the influence of
finite sized contacts. In figure 2.4 the most often used structures are
listed.

7

2. Fundamentals

Figure 2.3.: Representation of the two necessary Van der Pauw measurements on a
arbitrary geometry to calculate sheet resistance [12].

Figure 2.4.: Commonly used van der Pauw sample geometries to perform Hall effect
and resistivity measurements. Modified from [12].

For Hall effect measurements, the clover leaf or the cross structure
as shown in figure 2.4 reduce the error caused by finite contact size
the most. The American Society for Testing and Materials released the
standard ASTM F76-08: Test Methods for Measuring Resistivity and Hall
Coefficient and Determining Hall Mobility in Single-Crystal Semiconductors
[13]. This standard recommends, that the sample thickness is uniform
to ±1% and should not be bigger than 0.1 cm. The recommended ratio
of length L to thickness t should be b ≥ 15 · t. Contacts should be
placed on the edges of the sample and the contact size must be smaller
than 0.05 · L.

A limitation of the van der Pauw geometry is, that it is not possible
to perform accurate magnetoresistance measurements and that it will
produce erroneous results when used on anisotropic materials.

2.3.2. Hall bar geometries

The second class of sample geometries, that are used for Hall effect
measurements, are called parallelepiped, bridge-type or Hall bar ge-
ometries. In contrast to the van der Pauw geometries these samples
need to fulfill higher accuracy in shape.

8

2.3. Hall geometries

Table 2.2.: Geometry definitions of bridge-type specimens. Eight-contact geometry
as shown in figure 2.5(a) and 2.5(c) [13].

L ≥ 4 ·w
w ≥ 3 · a
b1,b2 ≥ w
t ≤ 0.1 cm
c ≥ 0.1 cm

1.0 cm ≤ L ≤ 1.5 cm
b1 = b

′
1± 0.005 cm

b2 = b
′
2± 0.005 cm

d1 = d
′
1± 0.005 cm

d2 = d
′
2± 0.005 cm

b1 + d1 = (1/2) · L+ 0.005 cm
b ′1 = d

′
1 = (1/2) · L± 0.005 cm
b1 ≈ b2,d1 ≈ d2

The measurement techniques used for parallelepiped samples are
described in chapter 3.2.

Figure 2.5.: Typical bridge-type specimen geometries to perform Hall effect and
resistivity measurements [13].

Typical bridge-type samples are shown in figure 2.5. In table 2.2 and
table 2.3 the geometry specifications for specimen preparation are
listed as described in the ASTM F76-08 standard [13].

The major benefit of these samples is, that finite contact size has less
effect on the measurement result. Also these type of geometries are
better suited for resistivity measurements on high conductive samples.
The larger distance between the measurement contacts (compared to
van der Pauw geometries) will cause a larger voltage to be present

9

2. Fundamentals

Table 2.3.: Geometry definitions of bridge-type specimens. Six-contact geometry as
shown in figure 2.5(b) and 2.5(d) [13].

L ≥ 5 ·w
w ≥ 3 · a

b1,b2 ≥ 2 ·w
t ≤ 0.1 cm
c ≥ 0.1 cm

1.0 cm ≤ L ≤ 1.5 cm
b1 = b

′
1± 0.005 cm

b2 = b
′
2± 0.005 cm

d2 = d
′
1± 0.005 cm
b1 ≈ b2

between the voltage measurement contacts. This is especially important
if magnetoresistance measurements should be performed because of
the small change in resistance that needs to be detected reliably.

A disadvantage - apart from the more complicated sample geometry -
is, that more electrical connections are needed to be able to perform
Hall and resistivity measurements.

To make contacting easier it is recommended to extend the side arms
of the sample as shown in figure 2.5(c) and 2.5(d). These contacts on
the side should be less than 0.02 cm in width. This however makes the
sample more fragile.

2.4. Indium Tin Oxide (ITO)

Indium Tin Oxide (ITO) is a heavily doped n-type material that usually
consists of 90 % Indium(III)-oxide (In2O3) and 10 % Tin(IV)-oxide
(SnO2) [14]. It has a wide bandgap of around 4 eV that makes it mostly
transparent in the visible range [15].

ITO is widely used in nowadays industry and electronic devices be-
cause of being electrical conductive and being transparent in the visible
range as shown in figure 2.6. One of the main applications of ITO is
the use as electrode in liquid crystal displays.

ITO is usually coated onto glass substrate. There are several deposi-
tion techniques such as chemical vapor deposition [16], magnetron
sputtering [17], evaporation [18] among others.

10

2.4. Indium Tin Oxide (ITO)

Figure 2.6.: Effect of film thickness on the optical transmission for the films grown
at 300

◦C in 10 mTorr of oxygen [15].

The use in modern electronics most often requires structuring. For
mass production photo-lithography and etching is the common tech-
nique. For smaller quantities as well as higher accuracies, laser struc-
turing can be used.

For verification and performance tests of the new build Hall measure-
ment laboratory, ITO was chosen as reference material because of its
well known characteristics as well as the possibility to have different
geometries structured at high accuracy. ITO is stable up to approx-
imately 500 K and has a high conductivity. Details to the produced
standard samples will be discussed in chapter 4.1.1.

11

3. Measurement techniques

3.1. Van der Pauw

Van der Pauw geometries require multiple measurements in order to
be able to calculate the sheet resistance. This chapter will concentrate
on the measurement techniques needed to perform resistivity and Hall
effect measurements on those type of samples.

Figure 3.1.: Flat lamella of arbitrary shape, with four contacts 1, 2, 3 and 4 on the
periphery modified from [11].

In the following notation the indices describe the used contacts. IAB
specifies a current-flow between contact A and B. Likewise UCD refers
to the potential difference UC −UD measured between contact C and
D.

A van der Pauw resistivity measurement consists of at least two mea-
surements. First a resistance R43,21 measurement is taken by providing
a current I43 and measuring the voltage U21.

R43,21 =
U21

I43

(3.1)

Analogously a second measurement is taken:

13

3. Measurement techniques

R32,14 =
U14

I32

(3.2)

As van der Pauw showed, the electrical resistivity ρ can be calculated
by the following relationship between the two resistance measurements
taken if the sheet thickness d is known [11].

exp
(
−
πd

ρ
· R43,21

)
+ exp

(
−
πd

ρ
· R32,14

)
= 1 (3.3)

For an arbitrary shape, an expression for ρ can not be gained analyti-
cally. However it is possible to rearrange to the following form with
introduction of the correction factor f:

ρ =
πd

ln 2
· R43,21 + R32,14

2
· f (3.4)

The factor f can be expressed as a function of the ratio of the two
measured resistances as shown in equation 3.6 and can be calculated
numerically. The result is shown in graph 3.2. This numerical calcu-
lation was done using fsolve from the Python scipy.optimize
package. The source to the calculation can be found in appendix
A.2.1.

Q :=
R43,21

R32,14

(3.5)

Q− 1

Q+ 1
=

f

ln(2)
· cosh

(
1

2
· exp

(
ln(2)
f

))
(3.6)

As shown, only two measurements are sufficient to obtain the resis-
tivity ρ. To get a higher accuracy, it is beneficial to take more mea-
surements as illustrated in figure 3.3. To eliminate offset errors from
measurement instruments, it is recommended to perform all the mea-
surements shown in figure 3.3 with reversed polarity as well. This leads
to a total of eight measurements to gain accurate sheet resistivity.

With the van der Pauw geometry also Hall measurements can be
performed. Therefore a current is driven through opposite contacts
(for example contacts 4 and 2) and a resistance measurement R42,31 is
performed by measuring the voltage across the two remaining contacts
(3 and 1). After this initial measurement a homogeneous magnetic

14

3.1. Van der Pauw

Figure 3.2.: Numerically calculated van der Pauw geometrical correction factor
needed for calculation of the resistivity ρ by use of equation 3.4.

Figure 3.3.: Computing average resistivity ρ with multiple van der Pauw measure-
ments [6].

15

3. Measurement techniques

field B perpendicular to the surface is applied and the measurement is
done again. The resulting change in resistance is ∆R42,31 and the Hall
coefficient can be written as:

RH =
d

B
·∆R42,31 (3.7)

Depending on the geometry, the change of resistance (∆R42,31) can be
small compared to the absolute values of R42,31. This means that the
voltages that need to be measured (U31 with and without magnetic
field) require the measurement equipment to be set to a high enough
range so that the input does not saturate. If the voltage difference is
small, this may be a problem because the dynamic measurement range
of the equipment might not be sufficient to reliably measure the small
difference in the signals.

To minimize this effect, it is beneficial to use van der Pauw geometries
that have a high symmetry. For semiconductor characterization often
the clover leaf or the Greek cross geometry is used as shown in figure
2.4.

Figure 3.4.: Computation of the Hall voltage with both positive and negative polarity
current and with the magnetic field up and down [6].

To enhance accuracy, this measurement should be repeated with per-
muted contacts (∆R31,42) as well as with reversed polarity and average
over the measured quantities. A whole of four measurements are taken
as shown in figure 3.4.

To further improve confidence in the measurement results, it is rec-
ommended to repeat these four Hall measurements with 180

◦ rotated
magnetic field.

If temperature dependent van der Pauw measurements are done, the
temperature needs to be kept stable during the series of measurements.
It is recommended by the ASTM F76-08 standard [13] to perform

16

3.2. Hall bar type

temperature measurements at least before and after the resistivity
and Hall measurements. If the temperature change exceeds ±1

◦C the
resistivity and Hall measurement should be repeated.

Figure 3.5.: Typical van der Pauw measurement setup by use of a Keithley 7065 Hall
effect card [6].

For a complete van der Pauw resistivity and Hall effect determination,
twelve measurements need to be taken. If the measurement devices
are able to reverse polarity, still six measurements require rewiring of
the specimen contacts. This can either be done manually or automated
by use of a switch matrix (see figure 3.5). Another method is the
use of four Source Measurement Units (for example two two-channel
Keithley SourceMeters) in the configuration shown in figure 3.6. The
benefit of using four Source Measure Units instead of a switch matrix
is, that the sample can be directly wired to the Source Measure Units
and no other circuitry is needed. The Source Measure Units have an
electrometer grade high impedance input and therefore also samples
with low conductivity can be measured accurately. An implementation
of the above described van der Pauw measurement method using two
two-channel Keithley SourceMeters has been implemented in Python
and can be found in appendix A.2.2.

17

3. Measurement techniques

Figure 3.6.: Van der Pauw measurement configuration to measure an arbitrary shape
with four Source Measure Units eliminating the need for a switch matrix.

Figure 3.7.: Hall bar geometry with contacts labeled from 1 to 6 and indicated current
and magnetic field direction [12].

18

3.2. Hall bar type

3.2. Hall bar type

Hall bars (as shown in figure 3.7) approximate the ideal geometry for
Hall effect measurements. A constant current density flows along the
long axis of the specimen, perpendicular to an external magnetic field.
The Hall voltage can be measured across contact pairs that are placed
symmetrically along the long axis of the sample.

In figure 3.7 a current is driven across contacts 5 and 6 (I56). Resistivity
can be measured by measuring the voltage drop across contacts 2

and 3 (U23) and across contacts 1 and 4 (U14). The use of separate
contacts for resistivity measurement is due to the principle of four
contact resistivity measurement. It ensures that contact resistance can
be neglected.

The resistivity of the specimen can be calculated by the measured
current and voltage and the known geometry dimensions as shown in
figure 3.7:

ρ =
U23
I56
· w t
a

(3.8)

To get a higher accuracy, the polarity of the current should be reversed
and additionally the voltage drop across contacts 1 and 4 should be
measured. With those four measurements the mean resistivity can be
calculated:

ρA =
U+
23 −U

−
23

I+56 − I
−
56

· w t
a

(3.9)

ρB =
U+
14 −U

−
14

I+56 − I
−
56

· w t
b

(3.10)

ρ =
ρA + ρB
2

(3.11)

According to ASTM F76-08 standard ρA and ρB need to be equal
within ±10 %, otherwise the specimen is too inhomogeneous and a
more uniform specimen is required [13].

The Hall coefficient can be obtained by measuring the Hall voltage
between contacts 1 and 2 when a magnetic field is applied.

19

3. Measurement techniques

RH =
t

B
· U12
I56

(3.12)

To further enhance accuracy and eliminate the influence of geomet-
rical errors, it is advised to perform multiple measurements with
reversed current polarity, reversed magnetic field by 180

◦ and also
measurements of the Hall voltage across the contact pair 3 and 4. B−

indicating a 180
◦ rotated magnetic field in respect to B+. The rotation

of the magnetic field can either be achieved by physical rotation of the
magnet 180

◦ or, if an electromagnet is used, by reversing the current
that is flowing through the coils of the magnet. With these additional
measurements, the Hall coefficient can be calculated as:

RHA =
U+
21(B

+) −U−
21(B

+) +U+
21(B

−) −U−
21(B

−)

I+56(B
+) − I−56(B

+) + I+56(B
−) − I−56(B

−)
· t
B

(3.13)

RHB =
U+
34(B

+) −U−
34(B

+) +U+
34(B

−) −U−
34(B

−)

I+56(B
+) − I−56(B

+) + I+56(B
−) − I−56(B

−)
· t
B

(3.14)

If the values for RHA and RHB do agree within ±10 %, the Hall coeffi-
cient RH can be calculated as follows. If the deviation is higher, a more
uniform sample is needed.

RH =
RHA + RHB

2
(3.15)

For materials with dominant carrier type, the carrier density (n) and
the carrier mobility (µH) can be calculated using equations 2.12 and
2.13, as described in chapter 2.2.

3.3. Low level current measurement

When working with low conductive samples, it is necessary to pay
closer attention to possible sources and sinks of unwanted currents.
One of the major error sources are leakage currents and parasitic
capacities within the measurement setup and the measurement devices
itself.

Leakage currents are currents across stray resistance paths that bypass
the device under test (DUT). Those stray resistance paths are most
often currents across insulators. For example the leakage current IL

20

3.3. Low level current measurement

across the cable insulation resistance RL as shown in figure 3.9(a).
Additionally also parasitic capacitance need to be charged when an
applied or measured voltage changes. In contrast to leakage currents,
the currents caused by parasitic capacitance will diminish over time.

To investigate the performance of a measurement setup, a step function
test, as shown in figure 3.8, can be performed. To run this test, a
voltage source and a current meter is needed. A Source Measure Unit
is a measurement device that has both of those instruments build
into the same device. The following exemplary description will use a
Source Measure Unit but is adaptable to any kind of source measure
arrangement of instruments.

Figure 3.8.: Step function test to obtain information about system settling time and
system leakage current. The top graph shows the test voltage increasing
as a step function. The bottom graph shows the current change caused
by the change of the voltage.

The procedure of this test is as follows:

1. The specimen is disconnected form the devices. The cables need
to stay attached.

2. Initially the test voltage is set to zero Vtest = 0 and the current is
recorded. This is the offset current Ioffset of the system.

3. The test voltage Vtest is then instantly increased to Vtest > 0 (step
function as seen in the top figure 3.8) and the trend of the current
I(t) is recorded.

21

3. Measurement techniques

4. The current I(t) will converge to a value that represents the
leakage current Ileak. The time it takes the system to converge is
the settling time tsettle of the system.

To gain correct measurement values of a device under test, a mea-
surement must be taken after tsettle and the offset current needs to be
subtracted. To distinguish between internal and external currents, the
test can be as well done with no cables attached to the measurement
device. The results then represent the internal leakage currents.

Figure 3.9.: Guarding the leakage resistance of a cable with an SMU instrument [19].

To avoid these unwanted currents, guarding can be used as shown in
figure 3.9(b). Therefore the inner conductor of the wire is surrounded
by an additional conductor (triaxial cable) whose voltage is set to the
same level as the voltage level of the inner conductor. This way there
is no potential difference between the inner conductor and the next
surrounding conductor and therefore no current is flowing through RL1.

22

3.4. Low level voltage measurement

The guard itself is driven by a dedicated circuit and current flowing
from guard to the outer ground shield (indicated by RL2) does not add
to the measured current.

The concept of guarding can be applied to both AC and DC mea-
surements. However on AC it must be taken into consideration that
parasitic capacities need to be charged and discharged from the guard-
ing circuit. The period of the AC signal should be larger then the
settling time evaluated with the step function test.

Guarding will decrease the leakage current IL and more importantly
reduce the settling time of the system enabling for faster measurement
intervals.

3.4. Low level voltage measurement

Hall voltages can be in the µV range and below, therefore making these
measurements specially sensitive to thermal voltages on connections,
electrochemical potentials and electromagnetic interference. To reliably
measures such small signals, the lock-in measurement technique can
be used. The lock-in technique uses AC signals, therefore the specimen
as well as the setup must be designed to deal with AC signals. Special
attention needs to be paid to ohmic contacts to the sample.

A lock-in amplifier is a frequency and phase sensitive measurement
device. Only signals with the same frequency and phase as a reference
frequency are amplified and contribute to the output signal. The best
instruments manage to recover signals that are one million times
smaller than the noise present [20].

The working principle of a lock-in amplifier is, that the input signal
(index sig) is multiplied with the provided reference signal (index ref)
and integrated in a low pass filter. The cross correlation of signals
with different frequency is zero and they will cancel out during the
integration time.

The experimental setup needs to ensure that the AC signal source is
fed to the lock-in amplifier in two ways as shown in figure 3.10. This
can either be achieved by use of the internal AC reference (that most
lock-in amplifiers have) or by using the TTL (logic level) output of the
external signal generator that is used for the experiment.

23

3. Measurement techniques

Figure 3.10.: Experimental setup of a lock-in amplifier with external AC source pro-
viding the device under test (DUT) test voltage as well as the reference
signal [20].

Mathematically this is a multiplication of two waves with amplitude
V , frequency ω and phase θ. Vpsd represents the output voltage of the
phase sensitive detection device.

Vpsd = Vsig sin(ωsigt+ θsig) · Vref sin(ωreft+ θref) (3.16)

which can be rewritten as:

Vpsd =
1

2
· VsigVref cos

(
(ωsig −ωref)t+ θsig − θref

)
−

1

2
· VsigVref cos

(
(ωsig +ωref)t+ θsig + θref

) (3.17)

After the multiplication the signal is filtered in a low pass filter elimi-
nating all the AC content. The output signal is then a DC signal that is
proportional to the input signal amplitude Vsig as shown in equation
3.18 [21].

Vpsd =
1

2
· VsigVref cos

(
θsig − θref

)
(3.18)

When choosing the frequency for the measurement the following
should be considered:

• The higher the frequency, the more parasitic capacities will influ-
ence the measurement.
• The lower the frequency, the longer the integration time must be

for the lock-in to output a correct signal.
• Be aware that other measurement equipment (for example a

multimeter) has a minimum frequency for AC signals to be
measured correctly. Consult the devices manual for detailed
information about the AC range.

24

3.4. Low level voltage measurement

• Avoid frequencies with high content of noise. For example the
mains frequency (50 Hz) and multiples of this frequency should
be avoided.

When using a lock-in setup and only measuring with AC, the in-
formation about the polarity of the Hall voltage is within the phase
output of the lock-in. A phase close to zero indicates a positive Hall
voltage whereas a phase of approximately 180

◦ indicates a negative
Hall voltage. A more reliable method is to use simultaneous AC and
DC measurement as shown in chapter 4.3.1.

25

4. Experimental Section

4.1. Sample Preparation

In order to verify the performance of the new Hall measurement labo-
ratory, standardized Hall samples were needed. Neither the National
Institute of Standards and Technology (NIST) nor commercial suppli-
ers offer thin film Hall standards that could be used to calibrate and
verify the setup against.

The Russian Academy of Sciences, Ioffe Physical Technical Institute
(Russia, St. Petersburg) is specialized on Hall measurements on highly
doped semiconductors and offered to measure provided samples to
compare results. Therefore custom standard samples were needed, that
can be measured at the Ioffe Institute and at the new Hall measurement
laboratory at the Institute of Solid State Physics, TUGraz. The material
chosen for the standard test samples were ITO because of its well
known properties as well as the commercially available structuring
possibilities.

The ITO base material was ordered from Sigma-Aldrich in the form
of Indium Tin Oxide coated rectangular glass slides1 that were laser
structured. The laser structuring process produces geometries with
an error of only ±2µm and is therefore ideally suited to produce
standard Hall geometries.

For the purchased ITO the following properties were listed by Sigma
Aldrich:

• thickness 600 to 1000 Å
• surface resistivity 15 to 25 Ω/sq
• transmittance > 78%

27

4. Experimental Section

Figure 4.1.: Overview of the laser structured Indium Tin Oxide Hall geometries.
Indium Tin Oxide is shown in red color, glass substrate is shown in gray.
Left: different Hall bar geometries. Right: Van der Pauw Hall geometries.

4.1.1. Geometry Considerations

With laser structuring, it is possible to produce arbitrary geometries.
The design of the samples, that were produced, is based on the rec-
ommended geometries as stated in the ASTM F76-08 standard [13]
with specifications as listed in table 2.2 and table 2.3. In figure 4.1 a
overview of the produced geometries is shown. On the left part Hall
bar geometries have been structured and on the right part van der
Pauw geometries were structured.

The laser structuring was performed by the company LaserMicronics
GmbH (Garbsen, Germany). The laser structuring works by evaporat-
ing ITO from the surface where it is not needed leaving the remaining
surface covered with ITO. The benefit of this method is the fact, that
the ITO surface is not brought into contact with any other material
(as it would have been when using photolithography as structuring
method).

In total six slides as shown in figure 4.1 were manufactured. From two
slides selected geometries were sent to the Ioffe Institute to measure the
ITO samples with their calibrated equipment. Results and comparison
with measurements done at the Institute of Solid State Physics will be
presented and discussed in chapter 5.

The Hall bar geometries differ in the aspect of having more than two
contacts along the long axis of the sample. In figure 4.2(a) a sample as
listed in the ASTM standard is shown. Three of the six side contacts
are grayed out because they are only needed to enhance accuracy on
non ideal samples by providing the possibility of performing multiple
measurements. The Hall voltage as well as resistivity can be measured
with the remaining five contacts.

1http://www.sigmaaldrich.com/catalog/product/aldrich/636916

28

http://www.sigmaaldrich.com/catalog/product/aldrich/636916

4.1. Sample Preparation

Figure 4.2.: Modification of the recommended Hall bar shape in order to compensate
for geometrical errors by adjustment of the current path through the
specimen. (a) recommended structure by ASTM, (b) ideal structure with
no geometrical offset, (c) geometrical offset of the Hall contacts, (d)
adjustment of the current path.

If samples have ideal geometry without any error the current path
is exactly along the long axis and the Hall voltage can be measured
perpendicular as shown in 4.2(b). If however there is even a small
geometrical error, as shown in 4.2(c), a voltage drop across the contact
will occur without magnetic field applied. This offset is most likely
much bigger than the Hall voltage. Even if the offset is known (and
can be subtracted from the measurement), it causes a reduction of
the usable dynamic range of measurement devices. If the offset is too
large, it is maybe not even possible to measure the Hall effect because
the resolution of measurement devices is too small.

In order to circumvent this problem, the current path inside the sample
can be modified as shown in 4.2(d). A variable resistor is connected to
the top two contacts. By changing the ratio of resistance the current
distributes unevenly across the two contacts resulting in a tilted mean
current path. Now the Hall voltage can be once again measured exactly
perpendicular to the current path and no offset voltage is present. To
adjust the potentiometer to the correct position, a current is driven
through the sample and the potentiometer is adjusted to a position
where the offset voltage is zero. This offset correction has to be done
when no magnetic field is applied.

The value of the potentiometer should be chosen carefully. To small
values will have not the desired effect as to large values will reduce the
maximum possible current to be driven through the sample. It should

29

4. Experimental Section

be also considered that larger values of the potentiometer have the
benefit that a change in sample contact resistance during measurement
has less influence on the resistance ratio and therefor the current path
will not be changed significantly.

Figure 4.3.: Dimensions of selected ITO Hall geometries. Left: Hall bar geometry
used at the Ioffe Institute, Russia. Right: Rectangle sample that can either
be measured with the van der Pauw method or Hall bar method.

In figure 4.3 the two Hall bar structures are shown that were selected
for initial measurements and shipped to the Ioffe Institute. The geome-
try on the left is a custom design as used by Ioffe Institute fitting in
their specialized test fixture. The geometry on the right is a rectangular
shape that can either be measured with the van der Pauw method or
Hall bar method.

4.1.2. Sample Investigation

For calculation of the resistivity, the carrier density and the carrier
mobility, physical dimensions of the specimens are needed. The lateral
dimensions are (based on the laser structuring process) known to
±2µm and listed in figure 4.3.

The thickness was measured with spectroscopic ellipsometry (wave-
length range of 371 to 1000 nm with ellipsometer M-2000V, J.A. Wool-
lam Co.Inc.). The measured angles as well as the fitting model is shown
in figure 4.4. The purchased samples have an additional SiO2 layer
between the glass substrate and the ITO layer. This SiO2 layer has also
been included in the fitting model.

The following parameters have been evaluated:

30

4.2. Laboratory Setup

Figure 4.4.: Spectroscopic ellipsometry measurement of ITO specimen at different
incident angles of 65

◦, 70
◦ and 75

◦ with overlayed fitting model 2.

• Thickness SiO2: (23± 2)nm
• Thickness ITO: (78± 2)nm
• refractive index ITO (@632.8nm): 1.75

The ITO was investigated with spectroscopic ellipsometry before and
after laser structuring. No significant changes of material properties
were found, confirming that the laser structuring process did not alter
the ITO base material.

4.2. Laboratory Setup

4.2.1. Magnet Characterization

The magnet used in the setup of the new magnetic laboratory is a
Bruker type B-E15 B8 that was build prior to 1980 (shown in figure
4.5). The manufacturer was not able to provide any specifications for
the magnet so it was necessary to ensure that the homogeneity of the
magnetic field is sufficient at the pole distance needed for the closed
cycle cryostat.

2Measurement and fitting model done by Alberto Perrotta

31

4. Experimental Section

Figure 4.5.: Bruker Magnet type B-E15 B8 used for the new magnetic laboratory
shown on the old support frame prior to operation.

To evaluate the homogeneity of the magnetic field, a test setup (figure
4.6) was build to move a Hall sensor element in two dimensions across
the area between the pole shoes. The mechanical construction of the 2D-
stage was made with MakerBeam 10 x 10 mm T-slot aluminum profiles.
The movement of the stage was driven by two NEMA 17 stepper
motors connected to a PepRap Arduino Mega Pololu Shield with A4988

stepper motor drivers. The basic control of speed, acceleration and
position was done with an Arduino Mega2560 using the AccelStepper
library3. The Arduino source code of the stepper control can be found
in appendix A.2.3. The Arduino itself was connected to the computer
and movement commands and measurement was controlled by a
Python program. Figure 4.7 shows such a two dimensional scan at a
pole distance of 4.5 cm.

The Hall sensor used was a ChenYang CYSJ362A GaAs Hall element4

with an Hall output voltage of 2 mV/mT (Isensor = 5mA). The measure-
ment of the Hall voltage was done with a Keithley 2000 multimeter.

In figure 4.8 a cross sectional scan horizontally through the center of
the pole shoes is shown at different magnetic fields. The magnetic field
inside the sample area varies only 0.1 % independent of the applied
magnetic field.

During the setup of the laboratory the magnet needed to be lifted to a
new support frame. To estimate the weight of the magnet it has been

3http://www.airspayce.com/mikem/arduino/AccelStepper/
4http://www.sonnecy-shop.com/en/linear-hall-effect-sensors

-elements-cysj362a-max.-sensitivity-3.1-4.1-mv/mt-measuring-r
ange-3t.html

32

http://www.airspayce.com/mikem/arduino/AccelStepper/
http://www.sonnecy-shop.com/en/linear-hall-effect-sensors-elements-cysj362a-max.-sensitivity-3.1-4.1-mv/mt-measuring-range-3t.html
http://www.sonnecy-shop.com/en/linear-hall-effect-sensors-elements-cysj362a-max.-sensitivity-3.1-4.1-mv/mt-measuring-range-3t.html
http://www.sonnecy-shop.com/en/linear-hall-effect-sensors-elements-cysj362a-max.-sensitivity-3.1-4.1-mv/mt-measuring-range-3t.html

4.2. Laboratory Setup

Figure 4.6.: 2D-stage for automated two dimensional movement of a Hall sensor
element between the pole shoes of the Bruker electromagnet.

Figure 4.7.: 2D measurement of the homogeneity of the magnetic field measured
with a Hall sensor element between the pole shoes of the Bruker magnet
at a pole distance of dpoles = 4.5 cm.

33

4. Experimental Section

Figure 4.8.: 1D measurement between the pole shoes of the magnet at different
magnetic fields. The Hall senor element was moved horizontally through
the center of the circular pole shoes at a pole distance of dpoles = 4.5 cm.

modeled in SolidWorks with the appropriate material parameters for
the different parts of the magnet. The estimate weight evaluated by
the SolidWorks model is approximately 650 kg. On top of the magnet
two M16 screw threads can be used to attach lifting equipment.

4.2.2. Closed Cycle Cryostat

To perform temperature dependent measurements, a closed cycle
cryostat has been custom made for narrow gap magnetic applications
by the company Advanced Research Systems (ARS), USA.

The basic operation principle of a closed cycle cryostat is, that a com-
pressor system supplies compressed helium to the cold head of the
cryostat through gas lines. The gas expands in the cold head to provide
refrigeration, by expanding the high-pressure helium to low pressure,
and then returns to the compressor to be compressed again. The he-
lium cycle is completely closed and no liquid helium is needed for
operation.

A sample holder is attached at the tip of the cold head by screwing
the sample holder into the 800 K high temperature interface. Due to
manufacturing processes, the rotation of the sample holder can vary.
In order to achieve a horizontal sample orientation when the cold head

34

4.2. Laboratory Setup

Figure 4.9.: Cold head of the ARS CS202AE/800K-DMX.3-1AL closed cycle cryostat.
(a) free length Cernox temperature sensor, (b) over temperature ther-
mostat, (c) sapphire thermal insulation interface, (d) PTR temperature
sensor for high temperatures, (e) sample mounting space, (f) second
cold stage, (g) diode reference temperature sensor, (h) 800 K interface, (i)
thermocouple temperature sensor.

is tilted out of the magnet, silver gaskets can be used to act as spacer
between the cold head and the sample holder. The silver gaskets also
improve the thermal contact between the high temperature interface
and the sample holder.

The cryostat is capable of reaching a base temperature of 8 K in less
than 70min. The exact cool down characteristic can be seen in figure
4.10. The cryostat is additionally equipped with a heating interface
that can go up to 800 K. Refer to figure 4.9 for detailed description of
the construction of the cold head and the position of the four different
temperature sensors.

For very sensitive measurements it is required to minimize sources of
interference (such as the heating controller). The best way to perform
such measurements is, to turn off every unneeded devices and perform
measurements during the self heat-up of the system. In figure 4.11

the temperature trend is shown during self heat-up (the compressor
is turned off and no controlled heat-up is initiated). The curve shown
in figure 4.11 represents the heat-up when no power is brought into
the system by measurements on a device under test. However little
power is brought into the system by the constant measurement of the

35

4. Experimental Section

Figure 4.10.: Cool down characteristic of the Advanced Research Systems Closed
Cycle Cryostat CS202AE-DMX-3-1AL cold head.

Figure 4.11.: Self heat up characteristic of the Advanced Research Systems Closed
Cycle Cryostat CS202AE-DMX-3-1AL cold head from base temperature
to room temperature.

36

4.2. Laboratory Setup

temperature. The heat-up time from base temperature (8 K) to room
temperature 297 K is longer than 1000 min. The thermal insulation
vacuum during this test was constant at 10−6 mbar.

Figure 4.12.: SolidWorks rendering of the support frame holding the closed cycle
cryostat between the pole shoes of the magnet 5.

To mount the cold head, a support frame has been build using 40 x
40 mm non magnetic ITEM aluminum profiles. The profiles enable
for accurate position adjustment and provide flexibility to extend or
modify the setup. The support frame, the cold head and the magnet
have been 3D-modeled in SolidWorks prior to construction to ensure
optimal interaction of the different devices. A rendering of the model
is shown in figure 4.12.

The cold head is mounted in a rotate-able frame that can be tilted by
90
◦ as shown in figure 4.13. When the cold head is tilted horizontally,

easy access to the sample is provided by removal of the cold heads
vacuum shroud and radiation shield. When the cold head is tilted
vertically, the geometry of the support frame ensures that the sample
resides in the center of the magnet pole shoes.

For thermal insulation a pressure of p < 10−4 mbar or lower is needed.
This setup uses a Pfeiffer vacuum pumping stand consistent of a
dry membrane pump combined with a turbomolecular pump 4.13(g).

5SolidWorks construction and rendering done by Martin Kornschober.

37

4. Experimental Section

Figure 4.13.: Support frame for the closed cycle cryostat. (a) rotate-able frame to tilt
the cold head for sample access, (b) preparation for absolute position
control of the cold head, (c) rotate-able magnet, (e) preparation for
motorized movement and absolute position control of the magnet, (f)
pressure sensor, (g) vacuum pump system consisting of a dry mem-
brane pump and a turbomolecular pump, (h) magnet power supply, (i)
preparation for motorized movement of the cold head, (j) hand wheel
for manual tilting of the cold head, (k) Helium compressor, (l) ITEM
aluminum profiles.

38

4.2. Laboratory Setup

The cryostat is attached by use of flexible bellows to minimize the
transmission of vibrations from the vacuum stand to the cold head.

The temperature sensors are connected to a LakeShore 336 temperature
controller (figure 4.14) that has four sensor inputs (Senor A, B, C, D).

Figure 4.14.: LakeShore 336 temperature controller shown with disabled heating and
cryostat at room temperature.

Sensor A

Type: LakeShore DT-670B-SD diode temperature sensor.
Range: From 1.4 K to 500 K.
Position: Reference sensor mounted at the second cold stage 4.9(f)
above the thermal insulation interface 4.9(c).
Remark: High magnetic field-induced error.

Sensor B

Type: LakeShore Cernox CX-1030-SD-HT-1.4M thin film resistance
temperature sensor (S/N-X119992).
Range: Calibrated within 1.4 K to 420 K; most accurate sensor for
low temperatures.
Position: Can be positioned freely inside the cryostat; usually
placed near specimen 4.9(a).
Remark: Low magnetic field-induced error.

Sensor C

Type: LakeShore PT-103 platinum resistance sensor.
Range: From 30 K to 800 K.
Position: Mounted on the side of the heating stage 4.9(d).
Remark: Used for better accuracy at high temperatures. The PT-
103 package is a special non-magnetic variant of a PT-100 tem-
perature sensor.

Sensor D

Type: Thermocouple Type E (Chromel-Constantan).
Range: From 3.15 K to 953 K.
Position: Mounted on the heating stage close to the sample holder
4.9(f).

39

4. Experimental Section

Remark: Covers the whole temperature range of the cryostat and
is used for PID control. For magnetic fields B < 1T the error is
∆T/T < 1%.

The temperature sensors have been calibrated by Advanced Research
Systems and the calibration curves are stored in the internal memory
of the LakeShore 336 temperature controller.

The LakeShore 336 temperature controller can be controlled via com-
puter interface. In this setup a LAN connection was used. A library
for easy operation was build using Python with pyVISA (details can
be found in chapter 4.2.3).

4.2.3. Programming of measurement devices

The system used to control the measurement devices is shown in
figure 4.15 and consists of the physical connection to the instrument,
the appropriate software drivers, the National Instruments Virtual
Instrument Software Architecture (NI-VISA) and the Python package
PyVISA to interface with the NI-VISA interface. This ensures that the
devices can be accessed from within Python.

Figure 4.15.: Structure of the involved components to control a measurement device
using Python.

The Virtual Instrument Software Architecture (VISA) is a standard
for configuring, programming, and troubleshooting instrumentation
systems comprising GPIB, VXI, PXI, Serial, Ethernet, and/or USB
interfaces6.

For an easy and safe operation, for each device a custom Python
library has been programmed that provides functions for the user to
interact with the device. The measurement program itself uses those
libraries which ensures that the source code stays simple to read and

6https://www.ni.com/visa/

40

https://www.ni.com/visa/

4.2. Laboratory Setup

maintain. The design payed special attention to keeping code readable
so that future operators (that are new to Python) can understand the
programs and operate devices instantly. The Python implementation
uses Python 3.x and is not compatible to Python 2.x.

The documentation of the libraries is contained within the library in
the form of standardized docstrings7. This ensures that documentation
is consistent with the functionality of the library and can be accessed
during programming by any modern development environment.

When using a measurement devices within Python, the first thing
that needs to be done is to connect to the device. Upon successful
connection, the device with its implemented functions can be accessed
by the returned device object. Such an initialization procedure is nearly
the same for every device and looks like the following example code.

from libs.DeviceManufacturer import ModelXYZ

connect to the device over the interface as listed in the NI-VISA manager
this example uses a GPIB connection
device = ModelXYZ()
device.connect("GPIB0::2::INSTR")

(optional)
Enable debug output so we see the commands that are
sent to and received from the device
device.enable_debug_output()

Reset the device to defaults
device.reset()

#
Device is ready for operation and can be used.
#

disconnect from the device
device.disconnect()

The variable device should be replaced with a meaningful name that
describes which device is accessed. This makes code easier to maintain
within the program.

In the following section some basic programming examples are listed
for the devices used in the following experiments.

Switch matrix

The switch matrix is used to connect different measurement devices to
the sample and is specially needed if van der Pauw measurements are

7https://www.python.org/dev/peps/pep-0257/

41

https://www.python.org/dev/peps/pep-0257/

4. Experimental Section

done. The Agilent 3499A switch controller can be equipped with up to
five switch cards with different functionalities. The switch cards have
IDs related to the installed slot. The first switch card has ID 100 and
the relays on that card can be accessed by sub-IDs.

Figure 4.16.: Switch matrix configuration using four Agilent 44473A 4 x 4 2-
wire switch modules that are connected to obtain one 8 x 8 matrix
configuration.

This setup uses a special configuration in which four 44473A 4 x 4

2-wire switch modules are connected to obtain one 8 x 8 matrix config-
uration. To provide easier usage, the Python library was extended to
support this special configuration as shown in figure 4.16. The source
code of the Python library can be found in appendix A.2.4. To operate
the switch matrix the following commands can be used:

Close connection row 6 to column 3 then
wait for 5 seconds and open the connection again
switch.close_matrix(6, 3)
sleep(5)
switch.open_matrix(6, 3)

To directly control a relay of the switch controller, the following com-
mands can be used. The ID of the corresponding relay can be seen in
figure 4.16 at the crossing of the wires that should be connected.

Close connection row 6 to column 3
This is the equivalent of switch.close_matrix(6, 3)
wait for 5 seconds and open the connection again
switch.close_channel(312)
sleep(5)
switch.open_channel(312)

42

4.2. Laboratory Setup

Lock-in ampli�er

A detailed description of the operation principle of lock-in amplifiers
can be found in chapter 3.4.

In this setup two different lock-in amplifiers were used. A Stanford
Research Systems SR830 dual phase lock-in and the Princeton Applied
Research Model 5210 dual phase lock-in. For both devices a Python
library was programmed that can be found in appendix A.2.5 and
A.2.6

After connecting to the device (as shown in the pseudo code in chapter
4.2.3) the basic measurement parameters need to be configured:

use the internal signal generator as reference clock
with an output level of 0.1 V at a frequency of 11 Hz
sr830.use_internal_reference()
sr830.set_reference_frequency(11)
sr830.set_sine_output_level(0.1)

enable the 2 line filters (50 Hz and 100 Hz)
sr830.enable_line_filters()

set the input to differential mode
sr830.set_input_mode_A_minus_B()
sr830.set_input_shield_to_ground()
sr830.set_input_coupling_ac()

set the time constant and the filter
sr830.set_time_constant(0.1)
sr830.set_filter_slope(18)

set the reserve
sr830.set_reserve_low_noise()

set the sensitivity to 50mV
sr830.set_sensitivity(50E-3)

set the displays to show real part and the phase shift
sr830.display_ch1_r()
sr830.display_ch2_phi()

When the lock-in is configured properly, measurements can be taken.
To command the lock-in to take a measurement the following com-
mands can be used:

r = sr830.read_r()
phi = sr830.read_phi()

43

4. Experimental Section

Magnet power supply

The power supply used to drive current through the magnet is a
Heinzinger PTN40-125. The Python library to control the power supply
can be found in appendix A.2.7.

To control the magnetic field, the power supply is usually operated
in constant current mode. The mode is automatically switched to the
limiting quantity (either voltage or current). Voltage and current can
be set by issuing the commands:

Set current to 10 A and voltage to 42 Volt
ptn.set_current(10)
ptn.set_voltage(42)

Because the current should not be changed too quickly (the magnetic
field would collapse and produce a high voltage spike in reversed
polarity), a ramp function was implemented to change the current
with a given slope. The same command as before but with slowly
rising current.

Set voltage to 42 Volt and current initially to 0 A
ptn.set_voltage(42)
ptn.set_current(0)

now rise the current with a defined slope of 0.5 A/s
ptn.ramp_current(10, slope=0.5)

Magnetometer

The magnetometer (MagnetPhysik model: FH54) is a hand held device
that can be connected to the computer by a serial RS232 interface. The
Python library for this device differs in that aspect, that it uses the
Python serial implementation and does not use the PyVISA interface.
The source code of the library can be found in appendix A.2.8.

To measure the magnetic field, the following commands can be used:

create an instance of the magnetometer and connect to it
magnetometer = FH54()
magnetometer.connect(’COM1’)

set the unit and the range
magnetometer.set_unit_Tesla()
magnetometer.set_range(FH54.RANGE_3T)

44

4.2. Laboratory Setup

read the value from the magnetometer
magnetic_field = magnetometer.read()

The magnetometer can measure magnetic fields up to 3 T and is
equipped with a 200 mm long transversal hall probe. The device can ei-
ther be used battery powered or connected to mains with the included
power adapter.

Function generator

The function generator used in this setup was a Philips PM 5193

capable of generating signals from 0.1 mHz up to 50 MHz. The function
generator can be controlled by GPIB interface. The Python library to
control the unit can be found in appendix A.2.9.

To set a sine output wave with a frequency of 11 Hz and an amplitude
of 1Vrms the following code can be used.

create an instance of the function generator and connect to it
function_generator = PM5193()
function_generator.connect("GPIB0::20::INSTR")

reset the function generator to the default configuration
function_generator.reset()

set the waveform parameters
function_generator.set_waveform_sine()
function_generator.set_frequency(11)
function_generator.set_voltage_rms(1)

enable the output of the device
function_generator.enable_ac()

In order to apply also a DC offset to the output the following command
can be used:

apply a dc offset of 2.5 V to the output
function_generator.set_dc_offset(2.5)

Keithley 199 Multimeter

The Keithley 199 multimeter can be connected to the computer by
GPIB interface. The device was mainly used to measure current or

45

4. Experimental Section

voltages. The basic functionality has been implemented in the Python
library that can be found in appendix A.2.10.

To measure DC voltage the following program can be used:

from libs.Keithley199 import Keithley199

connect to the Keithley 199 System DMM
dmm = Keithley199()
dmm.connect("GPIB0::6::INSTR")

Reset the multimeter to the default configuration
dmm.reset()

Set function and range
dmm.set_function_dc_volts()
dmm.set_range(Keithley199.RANGE_AUTO)

Take a measurement
voltage = dmm.measure()

Keithley SourceMeter 2600 series

The Keithley SourceMeter is a source measure unit that can either
source or sink current or voltage. Such devices are also called four
quadrant devices and are often used to characterize semiconductors.
The Keithley SourceMeter has a build in processor and is able to run
scripts directly form the device itself.

Figure 4.17.: Representation of the four quadrants a source measure unit can operate.
The segment (I) represents the quadrant that common power supplies
work in [22].

For measurements that are not time critical the functionality can also
be used by issuing commands from the computer and transferring the
measurement results back to the computer. The Python library that can

46

4.2. Laboratory Setup

be found in the appendix A.2.11 implements the basic functionality of
the source measure unit.

To perform a simple current and voltage measurement the following
script can be used:

from KeithleySMU import SMU26xx

initialize the SMU and connect to it
smu = SMU26xx("TCPIP0::129.27.158.xx::inst0::INSTR")

get one channel of the SMU (we only need one for this measurement)
smua = smu.get_channel(smu.CHANNEL_A)

reset to default settings
smua.reset()

setup the operation mode and what will be shown at the display
smua.set_mode_current_source()
smua.display_voltage()

define the initial parameters for the channel
smua.set_voltage_range(20)
smua.set_voltage_limit(20)

set the measurement current to 1 mA
smua.set_current_range(0.1)
smua.set_current_limit(0.1)
smua.set_current(1E-3)

enable the output
smua.enable_output()

measure current and voltage simultaneously
[current, voltage] = source_smu.measure_current_and_voltage()

LakeShore 336 Temperature Controller

The LakeShore 336 is used to control the temperature of the cryostat
and read out the temperature sensors that are inside. The temperature
controller is a PID controller with a 50 W heating element and has
multiple sensor inputs. Details about the temperature sensors can be
found in chapter 4.2.2.

For temperature control it is advised to use the thermocouple (Sensor
D) as PID reference. This sensor is the only build in sensor that covers
the whole temperature range from 8 K to 800 K and has little error
caused by magnetic fields.

To read the temperature values form the controller, the following
commands can be used:

47

4. Experimental Section

Table 4.1.: Heating power ranges of the LakeShore 336 temperature controller

range maximum heating power
off heater disabled
low 0.5 W
medium 5.0 W
high 50.0 W

from source.libs.LakeShore import Model336

connect to LakeShore Model 336 temperature controller
temperature_controller = Model336()
temperature_controller.connect("TCPIP0::129.27.158.xx::7777::SOCKET")

query all temperature sensors simultaneously
[sensor_a, sensor_b, sensor_c, sensor_d] = temperature_controller.

query_temperatures()

each sensor can also be queried separately
sensor_a = read_temperature_sensor_A()
sensor_b = read_temperature_sensor_B()
sensor_c = read_temperature_sensor_C()
sensor_d = read_temperature_sensor_D()

The output power of the heater can either be set manually (open loop
with no feedback) or be controlled by the build in PID controller. The
manual operation has the benefit that the heating power does not
change and interference with sensitive measurements is less likely. The
PID control enables the user to hold a specified temperature or run a
specified temperature profile.

If operated above room temperature, the compressor needs to stay
turned on to prevent damage to the cold stages of the cold head.

The temperature controller offers different ranges (as listed in table
4.1) for the heating power that limits the maximum output power to
the heating element. The range limits the output power regardless if
manual output is selected of if the PID control is used.

The manual output specifies the amount of heating in percent in
respect to the currently selected range. For example a manual output
of 25 % in the range medium would result in an output power of 1.25 W
as shown in the example code below:

set the output power to 1.25 W
temperature_controller.set_heater_range_medium()
temperature_controller.set_heater1_manual_output(25)

48

4.2. Laboratory Setup

The range command is also used to turn the heater off regardless of
other setting like set point or manual heating power.

turn the heater off
temperature_controller.set_heater_range_off()

To specify a temperature and let the integrated PID controller control
the heating element, the following commands can be used. The power
to the heating element is now controlled by the PID and is limited by
the range. The .set_heater_range_... command is also used to turn the
heating on.

set the target temperature to 120 K
temperature_controller.disable_setpoint_ramp()
temperature_controller.set_setpoint(120)

turn on the heater
temperature_controller.set_heater_range_high()

In most of the cases a controlled temperature ramp is beneficial. The
controller offers a possibility to control the slope of the set point
temperature. It is important to know that - if the set point ramp is
enabled - all value changes of the set point will be executed with this
ramp.

In figure 4.18 the correct and incorrect use of the setpoint feature is
described. For this example the assumptions are, that the last user left
the system with a setpoint at room temperature (a) and that the current
temperature is T0 = 8K (1). For this example we further assume, that
a controlled heat up with ∆T = 10K/min to the target temperature
100K should be achieved.

The wrong usage is, that at t = 0 the setpoint ramp is enabled, the
target temperature is set and the heater is enabled. The controller
immediately starts to constantly change the setpoint temperature with
the slope of ∆T (b) starting from the last value (a) until the target
temperature (c) is reached. The temperature PID controller always
tries to reach the setpoint temperature. Because the initial setpoint
temperature (a) is much higher then the current temperature (1), the
temperature controller will do a fast heat up of the system (2). At a
certain point the measured temperature is higher then the setpoint

49

4. Experimental Section

Figure 4.18.: Illustration of the correct and incorrect usage of the setpoint feature.
If it is omitted to set the setpoint prior to enabling the ramp (B), the
change of the setpoint temperature will start from the last used value
(a).

temperature and the heater will shut off in order to match the mea-
sured temperature and the setpoint temperature. If the cooling power
is higher then the requested slope, the system will, from this point
on, follow the changing setpoint until the target temperature (4) is
reached. In the case of the example shown in figure 4.18, the cooling
power was insufficient to follow the setpoint (b).

The correct way is, to set the the setpoint (A) at t = 0 to the current
temperature with disabled ramp (B). This way the setpoint can in-
stantly change to the current temperature and changes of the setpoint
temperature (C) will start from the current temperature (I) until the
target temperature (D) is reached. The measured temperature now
behaves like expected and rises with the slope ∆T (II) from the initial
value (I) to the target temperature (III).

Correct use of the command if a controlled slope from the current
temperature should be achieved:

set the set point to the current temperature with disabled ramp
this will result in a immediate change in the set_point value
temperature_controller.disable_setpoint_ramp()
current_temperature = temperature_controller.read_temperature_sensor_D()
temperature_controller.set_setpoint(current_temperature)

set the slope of the heat up to 10 K/s
temperature_controller.set_setpoint_ramp(10)

50

4.3. Measurement setup

set the target temperature to 100 K
temperature_controller.set_setpoint(100)

turn the heater on
temperature_controller.set_heater_range_high()

4.3. Measurement setup

4.3.1. Setup at the Graz University of Technology

The simplified measurement setup can be seen in figure 4.19. The
setup consists of a AC voltage source that drives a current through the
longitudinal axis of the Hall bar type specimen. The voltage source
also outputs a DC offset that enables for concurrent AC and DC Hall
effect measurements. The lock-in amplifiers are AC coupled so the
DC offset will not influence the measurement result of the lock-in
amplifiers.

The side arms of the Hall bar are connected to the switch matrix. This
enables automated switching of the contacts between resistivity and
Hall effect measurements and also offers the possibility to measure
across different contact pairs.

In this setup the current is measured with a lock-in amplifier that
measures the voltage drop across an external shunt resistor and is
also locked to the frequency of the signal generator. The benefit is,
that the current measurement and the Hall effect measurement are
consistent and also that the current can be reliably measured at low
frequencies8.

The measurement was controlled using a Python script with the mea-
surement technique described in chapter 3.2. A flow diagram of the
measurement process is shown in figure 4.20. The Python implementa-
tion can be found in appendix A.2.12.

The sample was contacted with 0.1 mm copper wires attached to the
ITO with silver loaded conductive epoxy adhesive9. The copper wires
were mechanically clamped to the electrical contacts of the sample

51

4. Experimental Section

Figure 4.19.: Resistivity and Hall effect measurement setup used for measurements
at the new magnetic laboratory showing the connection to a Hall bar
type sample. The blue area indicates components of the system that can
be cooled and heated. The green area indicates components that reside
inside the magnetic field.

Figure 4.20.: Flow diagram of the Python program to measure Hall coefficient and
resistivity during a temperature sweep. The right part of the block
diagram shows the process of taking continuous measurements until a
specified temperature is reached.

52

4.3. Measurement setup

Figure 4.21.: Eight contact Hall bar specimen with contact wires attached with silver
loaded conductive epoxy adhesive.

holder. The ITO on glass was fixed with Kapton tape to the sample
holder as shown in figure 4.21.

4.3.2. Setup at the Io�e Institute

At the Ioffe Institute (St. Petersburg, Russia) a different approach is
used to perform Hall coefficient measurements (a simplified represen-
tation is shown in figure 4.22). In comparison to the setup used at the
Institute of Solid State Physics (shown in figure 4.19), the Ioffe Institute
does not measure the specimen current and the magnetic field but
substitutes those measurements with a Hall voltage measurement of a
calibrated Hall element.

The index ref represents values associated to the calibrated Hall element
(reference). For the calibrated Hall element, the charge carrier density
nref and the thickness tref are known so equation 2.9 can be rewritten
to:

Uref =
Ix Bz

e nref tref
(4.1)

As the charge carrier density nref and the thickness tref of the cali-
brated Hall element are known, it is possible to substitute those with
a constant Cref = nref tref and rewrite equation 4.1 as:

8Multimeters have a minimum and maximum frequency limit for AC measure-
ment capabilities. Outside these limits measurements can be erroneous.

9http://at.rs-online.com/web/p/leitende-kleber/1863616/

53

http://at.rs-online.com/web/p/leitende-kleber/1863616/

4. Experimental Section

Figure 4.22.: Simplified representation of the setup used at the Ioffe Institute (St.
Petersburg, Russia) to perform Hall coefficient measurements. The blue
area indicates components of the system that can be cooled and heated.
The green area indicates components that reside inside the magnetic
field.

Ix Bz = e Cref Uref (4.2)

The current Ix and the magnetic field Bz are the same for the calibrated
Hall element and the device under test. Inserting equation 4.2 into 2.9
results in:

UH
Uref

= Cref
1

n t
(4.3)

As can be seen from equation 4.3, with the ratio of the Hall voltage
UH to the Hall voltage of the calibrated hall element Uref, the charge
carrier density n of the device under test can be calculated.

54

5. Results

Selected laser structured ITO samples have been measured at the
Institute of Solid State Physics, TUGraz and at the Ioffe Institute, St.
Petersburg.

The first measurement run at the Ioffe Institute was done from 70 K
up to 500 K and back down to room temperature. The resistivity of the
ITO shows a temperature dependency and the Hall coefficient stays
constant over the whole temperature range as shown in figure 5.1.

Figure 5.1.: Measurement of the resistivity and Hall coefficient of ITO Hall bar
structure. The measurement was performed with alternating magnetic
field and alternating current at the Ioffe Institute, Russia.

Resistivity measurements at the Institute of Solid State Physics from
20 K up to room temperature 290 K showed similar results. The mea-
surement was done during a controlled heat up with 10 K/min with
the experimental setup as described in figure 4.19. The test voltage
for this measurement was 1Vrms and the current was permanently
measured and stayed below 3mA. The measured values (figure 5.2) are

55

5. Results

in good agreement with the values measured at the Ioffe Institute. The
slope of the temperature dependent resistance matches very well be-
tween the two Institutes and also the absolute values agree within 5 %.
Tuna et al. investigated ITO thin films grown by magnetron sputtering
techniques on glass substrate. They produces films with a resistivity
of 128µΩ cm. Their films show a band gap of about 3.64 eV. These
values are some of the lowest measured room temperature resistivities
reported for both RF and dc sputtered films [23]. Similar results of 145-
148µΩ cm have been achieved by Stowell et al. by RF-superimposed
pulsed DC sputtering [24]. The difference in the resistivity values
shows, that properties of ITO can be tuned by different manufacturing
processes.

Figure 5.2.: Resistivity measurement of ITO Hall bar structure comparison between
results from the Ioffe Institute (red) and the Institute of Solid State
Physics (blue).

In another measurement run at the Ioffe Institute form 300 K to 620 K
the ITO showed a drastic change in resistivity and Hall coefficient
above 550 K. The electrical properties of ITO changed non reversible
as was confirmed through cooldown back to room temperature. Nishi-
moto et al. investigated effects of thermal annealing in relation to the
electrical properties of ITO. They showed, that with higher tempera-
tures resistivity increased and charge carrier density decreased [25].
Those findings agree well with the observed changes in resistivity and
Hall coefficient found at the Ioffe Institute.

Hall effect measurement done at the Ioffe Institute shows a Hall

56

Figure 5.3.: Measurement of the resistivity and Hall coefficient of ITO Hall bar
structure from 300 K to 620 K. Above 550 K a non reversible change of
the electrical properties of ITO occurred.

constant that is fairly constant over temperature. Measurements at
the Institute of Solid State Physics (figure 5.5) show an unexpected
temperature dependency. The reason for this behavior is most likely a
contact problem at the interface to the sample. As shown in figure 4.2(d)
the setup uses a resistor to adjust for geometrical errors. If however
one of the contacts the resistor is attached to, changes resistance with
temperature differently than the other, this has immediate effect on
the current path and therefore on the Hall offset voltage.

Multiple measurement runs were done but contact resistance changed
not reproducible. After several temperature runs, the contact to the
sample was completely lost. Upon investigation of the sample, hairline
fractures could be clearly seen as shown in figure 5.4. A different
Hall bar structure was contacted with smaller copper wires (0.1 mm)
to reduce physical stress to the contact points by thermal expansion
and contraction. The contacting was again done with silver loaded
epoxy adhesive that has been cured for 45 min at 80

◦C. Also this
sample showed a shift in the contact resistance and contact was even
lost during the first measurement run. Van Beveren et al. found as a
byproduct of their ITO investigation, that wire bonding is possible on
ITO thin films [26]. The use of wire bonding should be evaluated to
substitute for the silver loaded epoxy adhesive.

57

5. Results

Figure 5.4.: Hairline fracture in the silver loaded epoxy adhesive at the contacts to
the ITO Hall bar type structure.

Figure 5.5.: Hall coefficient measurement of ITO Hall bar structure between results
from the Ioffe Institute, Russia and the University of Technology, Graz.

58

Table 5.1.: Hall effect and resistivity measurement results for ITO samples at room
temperature. Comparison between results from the TUGraz and the Ioffe
Institute.

RH (cm3/C) ρ (µΩ cm) n (cm−3) µ (cm2/(V s))

TUGraz -6.69 184 9.33 1020 36.35

Ioffe -6.45 193 9.68 1020 33.52

|∆| 3.7 % 4.7 % 3.6 % 8.4 %

For room temperature the measurement of the Hall coefficient, the
resistivity, the charge carrier density and the charge carrier mobility
are in good agreement with the results from the Ioffe Institute as
shown in table 5.1. The negative Hall coefficient indicates a n-type
semiconductor which is in agreement with known material parameters
of ITO [27].

Figure 5.6.: Dependence of resistivity, carrier density, and Hall mobility on SnO2

content for the deposited ITO films. The substrate deposition tempera-
ture was kept at 250

◦C and the oxygen pressure was 10 mTorr during
deposition [15].

The measured values also are in the same order of magnitude that Kim
et al. [15] found upon investigation of different deposition tempera-
tures of ITO as shown in figure 5.6. Van Beveren et al. growed ITO thin

59

5. Results

films on silica substrates. For a 12.5 nm PVD annealed thin film they
measured a room temperature resistivity of 815µΩ cm. The electron
density equals 3.6 1020 cm−3 and results in a mobility of 21.3 cm2/(V s)
[26].

The deviation of electrical properties of ITO among different research
group shows, that these values are highly dependent on the exact pro-
cess of manufacturing. Pern found that ITO even shows degradation if
exposed to damp humid air (80

◦C, 85 % RH) for several hours [28].

60

6. Conclusions

The realization of a laboratory setup for Hall effect measurements was
successfully performed. The existing magnet has been characterized
and is capable of providing a constant magnetic field up to 1 T with
a field homogeneity better than 99.9 % across the whole sample-area.
The closed cycle cryostat can reach a base temperature of 8 K in less
then 70 min and the self heat up duration, from base temperature to
room temperature, is longer than 12 h at a thermal insulation vacuum
of 10−6 mbar. The closed cycle cryostat is also equipped with a heating
interface enabling for temperature dependent measurements up to
800 K.

The electrical measurement setup provides the possibility to perform
simultaneous measurement of electrical resistivity and Hall coefficient
and uses a combined AC / DC method to enhance accuracy. The usage
of the lock-in measurement technique enables reliable measurements
of Hall voltages down to the nV range. Thin film specimens with
dimensions up to 20 x 15 mm that have an electrical resistance be-
tween 0.1 Ω and 10 MΩ can be measured with this setup. Preparations
for measurements on high impedance specimens with an electrical
resistance larger than 10 MΩ have been made and can be easily imple-
mented. For all measurement devices, a Python library was developed
to provide easy access to device functionalities. The Python library uses
the National Instruments Virtual Instrument Software Architecture
(NI-VISA) to provide connection independent and operating system
independent access to measurement device functions. Multiple Python
programs have been written to perform resistivity and Hall effect
measurements and fully automate the testing process.

Different types of Hall standard specimen geometries were produced
by laser structuring Indium Tin Oxide (ITO) material. The laser struc-
turing process provides high geometrical accuracy of ±2µm. The ITO
samples were measured by spectroscopic ellipsometry and the evalu-
ated thickness is (78± 2)nm. The specimens have been investigated
in their electrical properties at the Russian Academy of Sciences, Ioffe
Physical Technical Institute in the temperature range between 70 K and
620 K. For room temperature, the ITO showed an electrical resistivity

61

6. Conclusions

of ρ = 193µΩ cm, a charge carrier density of n = 9.68 1020 cm−3 and a
charge carrier mobility of µ = 33.52 cm2/(V s).

Temperature dependent resistivity measurements between 8 K and
300 K of the ITO thin film samples reveal an increasing electrical
resistivity with temperature, correlating to the behavior expected from
a classical conductor. Hall effect measurements have been made at
room temperature with a test current of Ix = 2 mA at a magnetic field
of B = 1 T resulting in a Hall voltage of UH = -170µV that indicates
a n-type material with electrons acting as charge carriers. The ITO
standard samples show an electrical resistivity of ρ = 184µΩ cm, a
charge carrier density of n = 9.33 1020 cm−3 and a charge carrier
mobility of µ = 36.35 cm2/(V s).

62

Appendix

63

Appendix A.

Appendix

A.1. Device speci�cations

A.1.1. Bruker Electromagnet

Manufacturer: Bruker Austria GmbH
Type: B-E15 B8

Serial: 158 1118

TUGraz Inventory number: 0071410

Maximum cooling water pressure: 3 bar
Maximum continuous current: 30 A per coil
Resistance: 1.5 Ω per coil
Wiring: Coils are in series
Remarks: The magnet is equipped with reverse diodes to protect
from voltage spikes upon collapsing magnetic fields.

Figure A.1.: Dimensions of the Bruker B-E15 electromagnet in side view without the
supporting frame.

65

Appendix A. Appendix

A.1.2. Heinzinger Power Supply

Technical specifications are taken form the device manual [29].

Manufacturer: Heinzinger electronic GmbH
Type: PTN 125-40

Part number: 00.220.230.1-02

Serial: 3352 09878

TUGraz inventory number: 0113868

Figure A.2.: Principle schematic of operation of the Heinzinger PTN 125-40 power
supply.

66

r

I

r

l
l

Bedienungsanleitung und Beschreibung
Manual and Technical description Heinzinger arid

power suppheffies yalft W
supP Gerät / power pack: PTN

(Stand: 08.08.2012)

4. Technical Data

Technical data of the power pack - like maximal output voltage (U NENN) and maximal output
current (INENN) - can be seen in the type designation. The first number after the series name
stands for the nominal voltage in volt, the second number for the nominal current in
milliampere
For example: PTN 125 - 5 means UN = 125 V, IN = 5 mA. Mains supply voltage and fuse rate
can be seen on the device type plate at the back of the power pack.

General:
Mains connection
l-phase-devices
2-phase-devices
Ambient temperature:
Potential isolation output
Discharge time (open output)

Voltage Stabilization:

Setting range:

Accuracy of setting range:

Reproducibility:

Reproducibility at
±10% mains variation:

Between no-load and
full-Ioad operation:

Control time (no-load to
full-Ioad operation):

Stability (over period of more
then 8 hrs., under constant
operating conditions)

PTN Series
PTNhp-Series

Temperature coefficient
PTN Series
PTNhp-Series

Residual ripple:
PTN Se ries
PTNhp-Series

230V ± 10%, 47 .. 63 Hz
400V three-phase current ±100/0, 47 .. 63 Hz
ooe .. +40oe
according to VDE 0160
depend on type <30s for voltages smaller then 50V

from approx. 0,1% to 100% Unom

(no-load operation stable operation> 1 % to 5%)

±0,02% Unom

<±0,001 % Unom

< ±O,O 1 % Unom ±200IJV

< 5ms to 0,1% Unom deviation (type-dependent)

~0,01 % Unom

~0,001 % Unom

~0,01 % Unom /K
~0,001 % Unom /K

~0,01 % pp ±lmV Unom

~0,001 % pp ±500j..lV Unom

Seite - 29 -

A.1. Device speci�cations

67

Bedienungsanleitung und Beschreibung
Manual and Technical description Heinzinger o,-Id

power su ppi äe f!1 es yoUt IN
sup P Gerät / power pack: PTN

(Stand: 08.08.2012)

Current Stabilization:

Setting range:

Accuracy of setting range:

Reproducibility

Reproducibility at
±100/o mains variation:

Reproducibility at
±100/o load variation:

Control time (±10% ARL)

Stability (over period of more
then 8 hrs, under constant
operating conditions)

PTN Se ries
PTNhp-Series

Temperature coefficient
PTN Series
PTNhp-Series

Residual ripple:
PTN Se ries
PTNhp-Series

from approx. 0,1 % to 100% I nom

±O,02% I nom

<±O,003% I nom ±2001JA

<±O,Ol% I nom ±1001JA

<5ms to 0,1 % Inom deviation (type-dependent)

~O,02% I nom

~O,002% I nom

~O,02% I nom /K
~0,002% I nom /K

~O,05% pp ±lmA I nom

~O,005% pp ±lmA I nom

Above technical specifications can differ from customized equipment.

Seite - 30 -

r

l

Appendix A. Appendix

68

A.1. Device speci�cations

A.1.3. Advanced Research Systems Cryostat

The cryogenic-system consists of a cold head, a helium compressor
and a temperature controller. Technical information presented here
was taken from documents that came with the shipping or from the
provided user manuals [30], [31], [32].

Cold-head:

Manufacturer: Advanced Research Systems, Inc
Type: CS202AE-DMX-3-1AL
Serial: 16-E1868

TUGraz inventory number: to be assigned

Helium compressor:

Manufacturer: Advanced Research Systems, Inc
Type: ARS-4HW
Serial: 16-HC1438ST
TUGraz inventory number: to be assigned

Temperature controller:

Manufacturer: Lake Shore Cryotronics, Inc.
Type: Model 336

Serial: LSA17UL
TUGraz inventory number: 540289/2017/0001

69

Non-Optical Cryostat - Economy

DS-CS202*E-DMX-3-1-R1 www.arscryo.com

The CS202*E-DMX-3-1AL offers a wide range of flexibility at a low cost, making it an excellent

choice for most sample and device testing. This system is well suited for optical, electrical, and

magnetic sample testing.

Applications

 Resistivity/Hall Probe Experiments

 Thermal, Electrical and Magnetic Susceptibility

 Heat Capacitance

 Seebeck Effect

 DLTS

Features

 Cryogen Free, Low Power

 Low cost aluminum construction

 Can operate in any orientation

 Fully customizable

Typical Configuration

 Cold head (DE-202AE)

 Compressor (ARS-2HW)

 2 Helium Hoses

 Aluminum vacuum shroud for electrical experiments (DMX-3)

 Aluminum radiation shield

 Instrumentation for temperature measurement and control:

 10 pin hermetic feed through
 36 ohm thermofoil heater
 Silicon diode sensor curve matched to (±0.5K) for control
 Calibrated silicon diode sensor (±12 mk) with 4 in. free length for accurate
 sample measurement.

 Wiring for electrical experiments:

 10 pin hermetic feed through
 4 copper wires

 Sample holder for electrical experiments

 Temperature Controller

Options and Upgrades

 4K Coldhead (0.1W @ 4.2K)

 5.5K Coldhead (1W @ 10K)

 450K High Temperature Interface

 800K High Temperature Interface

 Turbo upgrade for faster cooldown times

 Custom temperature sensor configuration (please contact our sales staff

 Custom wiring configurations (please contact our sales staff)

 Window material upgrades (custom materials available)

 Sample holder upgrades (custom sample holders available)

The above picture shows a complete system

(minus the vacuum pump and temperature

controller)

The above picture shows a cryocooler with a

vacuum shroud, radiation shield, and sample

holder installed.

Appendix A. Appendix

70

Non-Optical Cryostat - Economy

DS-CS202*E-DMX-3-1-R1 www.arscryo.com

Cooling Technology- Temperature Instrumentation and Control - (Standard) -

 DE-202 Closed Cycle Cryocooler Heater 36 ohm Thermofoil Heater anchored

to the coldtip

 Refrigeration Type Pneumatically Driven GM Cycle Control Sensor Curve Matched Silicon Diode

installed on the coldtip

 Liquid Cryogen Usage None, Cryogen Free Sample Sensor Calibrated Silicon Diode with free

length wires

Temperature*- Contact ARS for other options

 DE-202AE < 10K - 350K Instrumentation Access-

 DE-202SE < 4.2K - 350K Instrumentation Skirt Bolt-On, Aluminum

 DE-202PE < 5.5K - 350K Pump out Port 1 - NW 25

 With 800K Interface (Base Temp + 2K) - 700K Instrumentation Ports 2

 With 450K Interface (Base Temp + 2K) - 450K Instrumentation Wiring Contact sales staff for options

 Stability 0.1K Vacuum Shroud -

 *Based on bare cold head with a closed radiation shield, and

no additional sources of experimental or parasitic heat load

 Material Aluminum

Sample Space - Length 338 mm (13.3 in)

 Diameter 36 mm (1.43 in.)27mm(1.06in) Diameter 45 mm (1.75 in) at the sample space

 Height 39 mm (1.53 in.) 35mm (1.37 in) FMX-3-1B

 Sample Holder Attachment 1/4 - 28 screw Radiation Shield -

 Sample Holder www.arscryo.com/Products/

SampleHolders.html

 Material Aluminum

Optical Access- Attachment Threaded

 Window Ports N/A Optical Access N/A

 Diameter N/A Cryostat Footprint -

 Clear View N/A Overall Length 544 mm (21.41 in)

 #/F N/A Motor Housing Diameter 114 mm (4.5 in)

 Window Material N/A Rotational Clearance 200 mm (8 in) with “G” Configuration

Cryocooler Model DE-202AE DE-202A(T)E DE-202PE DE-202SE

 Frequency 60 Hz 50 Hz 60 Hz 50 Hz 60 Hz 50 Hz 60 Hz 50 Hz

Base Temperature <9K <9K <9K <9K <5.5K <5.5K <4.2K <4.2K

Cooling Capacity 4.2K - - - - - - 0.1W 0.08W

 10K 0.5W 0.4W 0.7W 0.56W 1W 0.8W 1.2W 1W

 20K 2.5W 2W 3.7W 3W 3.5W 2.8W 4W 3.2W

 77K 4W 3.2W 6W 4.8W 3.5W 2.8W 4W 3.2W

Radiation Shield Cooling Capacity 10W 8W 15W 12W 10W 8W 10W 8W

Cooldown Time 20K 50 min 60 min 35 min 42 min 60 min 72 min 60 min 72 min

 Base Temperature 70 min 84 min 50 min 60 min 90 min 108 min 90 min 108 min

Compressor Model ARS-2HW ARS-2HW ARS-2HW ARS-4HW

Typical Maintenance Cycle 12,000 hours 8,000 hours 12,000 hours 12,000 hours

A.1. Device speci�cations

71

Non-Optical Cryostat - Economy

DS-CS202*E-DMX-3-1-R1 www.arscryo.com

DE202*E-DMX-3-1 Outline Drawing

Appendix A. Appendix

72

Non-Optical Cryostat - Economy

DS-CS202*E-DMX-3-1-R1 www.arscryo.com

DE202*E-DMX-3-1B Outline Drawing

A.1. Device speci�cations

73

Non-Optical Cryostat - Economy

DS-CS202*E-DMX-3-1-R1 www.arscryo.com

 Sample Space ARS-2HW/ARS-4HW Compressor

R

A
d

v
a

n
c
e

d
 R

e
s
e

a
rc

h
 S

y
s
te

m
s
,
In

c
.

ARS-4HW

Compressor

www.arscryo.com

A
S

HOURS 1

914

00000.0

bar

psi

200

0 400

I

ON

OFF

O

W

H

L

Compressor Model ARS-2HW ARS-4HW

 Frequency 60 Hz 50 Hz 60 Hz 50 Hz

Standard Voltage Min 208 V 190 V 208 V 190 V

 Max 230 V 210 V 230 V 210 V

Transformer Options 10% 220 V, 230V 220 V, 230 V

 15% 240 V 240 V

Power Usage Single Phase 1.3 kW 1.2 kW 3.6 kW 3.0 kW

Refrigerant Gas 99.999% Helium Gas, Pre-Charged 99.999% Helium Gas, Pre-Charged

Noise Level 60 dBA 60 dBA

Ambient Temperature 12 - 40 C (54—104 F)

Cooling Water Consumption 1.5 L / min (0.4 Gal. / min) 2.3 L / min (0.6 Gal. / min)

 Temperature 10 - 35 C (50—95 F) 10 - 35 C (50—95 F)

 Connection 3/8 in. Swagelok Fitting 3/8 in. Swagelok Fitting

Dimensions: L 483 mm (19 in) 483 mm (19 in)

 W 434 mm (17.1 in) 434 mm (17.1 in)

 H 516 mm (20.3 in) 516 mm (20.3 in)

Weight 62 kg (137 lbs) 72 kg (160 lbs)

Typical Maintenance Cycle 12,000 hours 12,000 hours

Water Recirculation Option CoolPac Compatible CoolPac Compatible

Appendix A. Appendix

74

A.1. Device speci�cations

Figure A.3.: Description of the construction and components inside the cold head of
the ARS CS202AE-DMX-3-1AL [30].

Figure A.4.: Typical setup of the ARS cryostat components interconnections. Showing
a simple shroud, radiation shield and sample holder [30].

75

Non-Optical Cryostat - Economy

DS-CS202*E-DMX-3-1-R1 www.arscryo.com

The CS202*E-DMX-3-1AL offers a wide range of flexibility at a low cost, making it an excellent

choice for most sample and device testing. This system is well suited for optical, electrical, and

magnetic sample testing.

Applications

 Resistivity/Hall Probe Experiments

 Thermal, Electrical and Magnetic Susceptibility

 Heat Capacitance

 Seebeck Effect

 DLTS

Features

 Cryogen Free, Low Power

 Low cost aluminum construction

 Can operate in any orientation

 Fully customizable

Typical Configuration

 Cold head (DE-202AE)

 Compressor (ARS-2HW)

 2 Helium Hoses

 Aluminum vacuum shroud for electrical experiments (DMX-3)

 Aluminum radiation shield

 Instrumentation for temperature measurement and control:

 10 pin hermetic feed through
 36 ohm thermofoil heater
 Silicon diode sensor curve matched to (±0.5K) for control
 Calibrated silicon diode sensor (±12 mk) with 4 in. free length for accurate
 sample measurement.

 Wiring for electrical experiments:

 10 pin hermetic feed through
 4 copper wires

 Sample holder for electrical experiments

 Temperature Controller

Options and Upgrades

 4K Coldhead (0.1W @ 4.2K)

 5.5K Coldhead (1W @ 10K)

 450K High Temperature Interface

 800K High Temperature Interface

 Turbo upgrade for faster cooldown times

 Custom temperature sensor configuration (please contact our sales staff

 Custom wiring configurations (please contact our sales staff)

 Window material upgrades (custom materials available)

 Sample holder upgrades (custom sample holders available)

The above picture shows a complete system

(minus the vacuum pump and temperature

controller)

The above picture shows a cryocooler with a

vacuum shroud, radiation shield, and sample

holder installed.

Appendix A. Appendix

76

Non-Optical Cryostat - Economy

DS-CS202*E-DMX-3-1-R1 www.arscryo.com

Cooling Technology- Temperature Instrumentation and Control - (Standard) -

 DE-202 Closed Cycle Cryocooler Heater 36 ohm Thermofoil Heater anchored

to the coldtip

 Refrigeration Type Pneumatically Driven GM Cycle Control Sensor Curve Matched Silicon Diode

installed on the coldtip

 Liquid Cryogen Usage None, Cryogen Free Sample Sensor Calibrated Silicon Diode with free

length wires

Temperature*- Contact ARS for other options

 DE-202AE < 10K - 350K Instrumentation Access-

 DE-202SE < 4.2K - 350K Instrumentation Skirt Bolt-On, Aluminum

 DE-202PE < 5.5K - 350K Pump out Port 1 - NW 25

 With 800K Interface (Base Temp + 2K) - 700K Instrumentation Ports 2

 With 450K Interface (Base Temp + 2K) - 450K Instrumentation Wiring Contact sales staff for options

 Stability 0.1K Vacuum Shroud -

 *Based on bare cold head with a closed radiation shield, and

no additional sources of experimental or parasitic heat load

 Material Aluminum

Sample Space - Length 338 mm (13.3 in)

 Diameter 36 mm (1.43 in.)27mm(1.06in) Diameter 45 mm (1.75 in) at the sample space

 Height 39 mm (1.53 in.) 35mm (1.37 in) FMX-3-1B

 Sample Holder Attachment 1/4 - 28 screw Radiation Shield -

 Sample Holder www.arscryo.com/Products/

SampleHolders.html

 Material Aluminum

Optical Access- Attachment Threaded

 Window Ports N/A Optical Access N/A

 Diameter N/A Cryostat Footprint -

 Clear View N/A Overall Length 544 mm (21.41 in)

 #/F N/A Motor Housing Diameter 114 mm (4.5 in)

 Window Material N/A Rotational Clearance 200 mm (8 in) with “G” Configuration

Cryocooler Model DE-202AE DE-202A(T)E DE-202PE DE-202SE

 Frequency 60 Hz 50 Hz 60 Hz 50 Hz 60 Hz 50 Hz 60 Hz 50 Hz

Base Temperature <9K <9K <9K <9K <5.5K <5.5K <4.2K <4.2K

Cooling Capacity 4.2K - - - - - - 0.1W 0.08W

 10K 0.5W 0.4W 0.7W 0.56W 1W 0.8W 1.2W 1W

 20K 2.5W 2W 3.7W 3W 3.5W 2.8W 4W 3.2W

 77K 4W 3.2W 6W 4.8W 3.5W 2.8W 4W 3.2W

Radiation Shield Cooling Capacity 10W 8W 15W 12W 10W 8W 10W 8W

Cooldown Time 20K 50 min 60 min 35 min 42 min 60 min 72 min 60 min 72 min

 Base Temperature 70 min 84 min 50 min 60 min 90 min 108 min 90 min 108 min

Compressor Model ARS-2HW ARS-2HW ARS-2HW ARS-4HW

Typical Maintenance Cycle 12,000 hours 8,000 hours 12,000 hours 12,000 hours

A.1. Device speci�cations

77

Non-Optical Cryostat - Economy

DS-CS202*E-DMX-3-1-R1 www.arscryo.com

DE202*E-DMX-3-1 Outline Drawing

Appendix A. Appendix

78

Non-Optical Cryostat - Economy

DS-CS202*E-DMX-3-1-R1 www.arscryo.com

DE202*E-DMX-3-1B Outline Drawing

A.1. Device speci�cations

79

Non-Optical Cryostat - Economy

DS-CS202*E-DMX-3-1-R1 www.arscryo.com

 Sample Space ARS-2HW/ARS-4HW Compressor

R

A
d

v
a

n
c
e

d
 R

e
s
e

a
rc

h
 S

y
s
te

m
s
,
In

c
.

ARS-4HW

Compressor

www.arscryo.com

A
S

HOURS 1

914

00000.0

bar

psi

200

0 400

I

ON

OFF

O

W

H

L

Compressor Model ARS-2HW ARS-4HW

 Frequency 60 Hz 50 Hz 60 Hz 50 Hz

Standard Voltage Min 208 V 190 V 208 V 190 V

 Max 230 V 210 V 230 V 210 V

Transformer Options 10% 220 V, 230V 220 V, 230 V

 15% 240 V 240 V

Power Usage Single Phase 1.3 kW 1.2 kW 3.6 kW 3.0 kW

Refrigerant Gas 99.999% Helium Gas, Pre-Charged 99.999% Helium Gas, Pre-Charged

Noise Level 60 dBA 60 dBA

Ambient Temperature 12 - 40 C (54—104 F)

Cooling Water Consumption 1.5 L / min (0.4 Gal. / min) 2.3 L / min (0.6 Gal. / min)

 Temperature 10 - 35 C (50—95 F) 10 - 35 C (50—95 F)

 Connection 3/8 in. Swagelok Fitting 3/8 in. Swagelok Fitting

Dimensions: L 483 mm (19 in) 483 mm (19 in)

 W 434 mm (17.1 in) 434 mm (17.1 in)

 H 516 mm (20.3 in) 516 mm (20.3 in)

Weight 62 kg (137 lbs) 72 kg (160 lbs)

Typical Maintenance Cycle 12,000 hours 12,000 hours

Water Recirculation Option CoolPac Compatible CoolPac Compatible

Appendix A. Appendix

80

Instrumentation Receptacle Pin-Out

Work Order #. 16-A221

Controller Type: LS336

PORT A

Connector Pin Function (Connection)

A E-TYPE T/C (Chromel+) Controls 700/800K Input-D

B E-TYPE T/C (Constantan-) Controls 700/800K Curve-22

C Open

D Open

E Open

F Open

G PT-103 used for better Accuracy at high temp.I+ 40K to 800K

H PT-103 used for better Accuracy at high temp.V+ Input-C

J PT-103 used for better Accuracy at high temp.I- Curve-06

K PT-103 used for better Accuracy at high temp.V-

PORT B

Connector Pin Funcition (Connection)

A Reference sensor mounted on cold stage I+ Input -A

B Reference sensor mounted on cold stage V+ Curve-02

C Reference sensor mounted on cold stage I- DT-670B-SD

D Reference sensor mounted on cold stage V-

E Heater 50-Ohm

F Heater Cartridge heater

G Cernox sensor freelength good to 420K only I+ Input-B

H Cernox sensor freelength good to 420K only V+ Curve-21

J Cernox sensor freelength good to 420K only I- S/N-X119992

K Cernox sensor freelength good to 420K only V- CX-1030-SD-HT-1.4M

A.1. Device speci�cations

81

700 800K Probe Station

Instrumentation Receptacle Pin-Out

32-PIN

Work Order #. Port-C

Controller Type/Sn. LS336

Connector Pin Function (Connection)

A Phosphor Bronze

B Twisted Pair #1 High Tenp.

C Phosphor Bronze

D Twisted Pair #2 High Tenp.

E Phosphor Bronze

F Twisted Pair #3 High Temp

G Phosphor Bronze

H Twisted Pair #4 High Temp.

J Phosphor Bronze

K Twisted Pair #5 High Temp

L Phosphor Bronze

M Twisted Pair #6 High Temp.

N Phosphor Bronze

P Twisted Pair #7 High Temp.

R 26 gauge copper wire

S Twisted Pair Kapton Coated

T Open

U Open

V Open

W Open

X Open

Y Open

Z Open

a Open

b Open

c Open

d Open

e Open

f Open

g Open

h Open

j Open

Appendix A. Appendix

82

ARS-4HW Specifications

3

A

R
S Advanced Research Systems, Inc.

1

914

00000.0

bar
psi

200

0 400

I

ON

OFF

O

W

H

L

R

A
d

v
a

n
c
e

d
 R

e
s
e

a
rc

h
 S

y
s
te

m
s
,
In

c
.

ARS-4HW

Compressor

www.arscryo.com

A
S

HOURS

Dimensions

Width 17.1 in (434 mm)

Length 19.0 in (483 mm)

 Height 20.3 in (516 mm) with casters (standard)

 19.4 in (493 mm) with glides (optional)

Weight

 160 lb (72.6 kg)

Mounting Position

 Sitting on its casters (or glides) and level within 5°

Ambient

 Operating: 12-40 C (54-104 F)

with optional air-cooled CoolPac™: < 32 C (90 F)

 Storage: -20 to 60 C (-4 to 140 F) with water removed

Electrical Power Requirements

208-230 VAC ± 5%, 1 Ph, 60 Hz

200 VAC ± 5%, 1 Ph, 50 Hz

19 FLA

80 LRA

25 A MIN. external electrical service rating

30 A MAX. external electrical service circuit breaker or fuse

Nominal 3.7 kVA (3.6 kW) @ 60 Hz

Nominal 3.4 kVA (3.0 kW) @ 50 Hz

Transformers are required for voltages outside the above voltage ranges. Transformers are
available from ARS Inc. Typical step-down (buck) transformers are applied as follows:

-10% for nominal 220 VAC, 50 Hz

-10% for nominal 230 VAC, 50 Hz

-15% for nominal 240 VAC, 50 Hz

-20% for nominal 250 VAC, 50 Hz

CAUTION !

This equipment is for indoor use only.

A.1. Device speci�cations

83

ARS-4HW Specifications

4

A

R
S Advanced Research Systems, Inc.

Cooling Water Requirements

Typical: > 0.6 gal/min (2.3 L/min) with < 24 C (75 F) and > 25 psig (173 kPa) water supply,
discharging to drain at < 40 C (100 F)

See charts below for minimum flow and pressure
requirements:

Water Quality

 Typical municipal drinking water quality is recommended:

 pH of 6-8 and total hardness < 85 ppm (5 grains/gal) CaCO3

Air Cooling (optional)

 Use ARS, Inc. CoolPac™

MINIMUM WATER SUPPLY PRESSURE

for a given cooling water flow rate

CAUTION ! 100 psig (690 kPa) Max.

10

20

30

40

50

60

70

80

90

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Water Flow, gal/min

M
in

im
u

m
 W

a
te

r
P

re
s
s
u

re
,
p

s
ig

Conversions

6.9 kPa / psi

0.070 kg/cm^2 / psi

0.069 bar / psi

3.8 L / gal

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

10 15 20 25 30 35 40

Water Supply Temperature, C

M
in

im
u

m
 W

a
te

r
F

lo
w

,
g

a
l/
m

in

Conversions

3.8 L / gal

F = (C x 1.8) + 32

MINIMUM COOLING WATER FLOW RATE

for a given water supply temperature

CAUTION ! 50 C (122 F) Max. water discharge temp.

CAUTION !

Do not exceed 50 C (122 F) MAX. water
discharge temperature at compressor.

Do not exceed 100 psig (690 kPa) MAX.
water supply pressure.

Appendix A. Appendix

84

ARS-4HW Specifications

5

A

R
S Advanced Research Systems, Inc.

Refrigerant Gas

Helium, 99.999% ultra-high purity, with a dew point < -50 C (-58 F) at 300 psig (2069 kPa)

Static pressure: 200-205 psig (1379 -1413 kPa) @ 19-25 C (67-77 F)

Operating supply pressure range: 270 20 psig (1862 138 kPa)

Interfaces

 Expander power receptacle: Mates with ARS Inc. standard expander power cable.

 Compressor input power cord: Standard 10 ft (3.0 m) long; universal rated, 300 V, 30 A, 10/3
SJT and HO5VVF3G6; EU-harmonized color code.

 Compressor input power cord plug (for USA and Canada): NEMA L6-30P twist-lock.

 Helium connections: Male self-sealing gas couplings to mate with ARS Inc. flexible gas lines.
Valve and 1/4 in (6.4 mm) o.d. tube compression fitting for gas fill/vent.

 Water connections: 3/8 in (9.5 mm) o.d. tube compression fittings (polyethylene tubing
provided: 40 ft (12 m) length, 190 psi (1310 kPa) working pressure rating @ 24 C (75 F)).

 Elapsed Time Meter (ETM): Displays total time unit has operated when power is applied.

Safety

 22-25 A On/Off Switch-Circuit Breaker, with green indicator light

 Fused controls circuit (F1): 2 A, 250 V, type 3AG (¼ in o.d. x 1¼ in long), quick-acting

 Fused expander power (F2): 1 A, 250 V, type 3AG (¼ in o.d. x 1¼ in long), quick-acting, with
green indicator light on front panel

 High Temperature Switch (HTS) with red Over Temp indicator light on front panel;
automatically resets

 Compressor motor internal over-current/temperature switch; automatically resets

 Gas supply pressure gauge

 Gas bypass Internal Relief Valve (IRV) and Equalization Solenoid Valve (ESV)

 Atmospheric Relief Valve (ARV) set at 350 psig (2410 kPa), ASME certified ± 3%

 Pressure vessels designed to ASME code Section VIII Division I (although exempt from
requiring ASME stamp due to size), and PED 97/23/EC (Group 2 gas, Category I, Module A);
400 psi (2760 kPa) design pressure, 500 psi (3450 kPa) pneumatic proof pressure

 Electrical components rated UL, CSA, CE; Wiring designed to NFPA 79 and LVD 73/23/EEC;
Insulation co-ordination per EN61010-1 (Pollution degree 1, Installation category II)

 Enclosure is ~ NEMA/UL/CSA Type 1 (indoor use, protection against contact with internals)
and ~ IEC/IP21 (protected from intrusion of solid objects > 12 mm and vertical falling water)

Scheduled Maintenance

 Replace adsorber after 12,000 hours of operation

A.1. Device speci�cations

85

 1.3 Model 336 Specifications 7

 | www.lakeshore.com

1.3 Model 336
Specifications

1.3.1 Input
Specifications

Standard
inputs and

scanner option
Model 3062

Sensor
Tempera-

ture Coeffi-
cient

Input Range Excitation
Current

Display
Resolution

Measurement
Resolution

Electronic
Accuracy
(at 25 °C)

Measurement Temperature
Coefficient

Electronic
Control Stability8

Diode Negative 0 V to 2.5 V 10 µA ±0.05%9,10 100 µV 10 µV ±80 µV ±0.005%
of rdg

(10 µV + 0.0005% of rdg)/°C ±20 µV

Negative 0 V to 10 V 10 µA ±0.05%9,10 100 µV 20 µV ±320 µV ±0.01%
of rdg

(20 µV + 0.0005% of rdg)/°C ±40 µV

PTC RTD Positive 0) to 10) 1 mA11 0.1 m) 0.2 m) ±0.002)
±0.01% of rdg

(0.01 m) + 0.001% of rdg)/°C ±0.4 m)

0) to 30) 1 mA11 0.1 m) 0.2 m) ±0.002)
±0.01% of rdg

(0.03 m) + 0.001% of rdg)/°C ±0.4 m)

0) to 100) 1 mA11 1 m) 2 m) ±0.004)
±0.01% of rdg

(0.1 m) + 0.001% of rdg)/°C ±4 m)

0) to 300) 1 mA11 1 m) 2 m) ±0.004)
±0.01% of rdg

(0.3 m) + 0.001% of rdg)/°C ±4 m)

0) to 1 k) 1 mA11 10 m) 20 m) ±0.04)
±0.02% of rdg

(1 m) + 0.001% of rdg)/°C ±40 m)

0) to 3 k) 1 mA11 10 m) 20 m) ±0.04)
±0.02% of rdg

(3 m) + 0.001% of rdg)/°C ±40 m)

0) to 10 k) 1 mA11 100 m) 200 m) ±0.4)
±0.02% of rdg

(10 m) + 0.001% of rdg)/°C ±400 m)

NTC RTD
10 mV

Negative 0) to 10) 1 mA11 0.1 m) 0.2 m) ±0.002) ±0.06%
of rdg

(0.01 m) + 0.001% of rdg)/°C ±0.3 m)

0) to 30) 300 µA11 0.1 m) 0.2 m) ±0.002) ±0.06%
of rdg

(0.03 m) + 0.001% of rdg)/°C ±0.9 m)

0) to 100) 100 µA11 1 m) 1 m) ±0.01) ±0.04%
 of rdg

(0.1 m) + 0.001% of rdg)/°C ±3 m)

0) to 300) 30µA11 1 m) 2 m) ±0.01) ±0.04% of
rdg

(0.3 m) + 0.001% of rdg)/°C ±9 m)

0) to 1 k) 10 µA11 10 m) 10 m) +0.002%
of rdg

±0.1) ±0.04%
of rdg

(1 m) + 0.001% of rdg)/°C ±30 m) ±0.004%
of rdg

0) to 3 k) 3 µA11 10 m) 20 m) +0.002%
of rdg

±0.1) ±0.04%
of rdg

(3 m) + 0.001% of rdg)/°C ±90 m) ±0.004%
of rdg

0) to 10 k) 1 µA11 100 m) 100 m) +0.002%
of rdg

±1.0) ±0.04%
of rdg

(10 m) + 0.001% of rdg)/°C ±300 m)
±0.004% of rdg

0) to 30 k) 300 nA11 100 m) 200 m) +0.002%
of rdg

±2.0) ±0.04%
of rdg

(30 m) + 0.001% of rdg)/°C ±900 m)
±0.004% of rdg

0) to 100 k) 100 nA11 1) 1) +0.005% of rdg ±10.0) ±0.04%
of rdg

(100 m) + 0.001% of rdg)/°C ±3) ±0.01% of
rdg

8 Control stability of the electronics only, in ideal thermal system
9 Current source error has negligible effect on measurement accuracy
10 Diode input excitation can be set to 1 mA
11 Current source error is removed during calibration
12 Accuracy specification does not include errors from room temperature compensation

TABLE 1-3 Input specifications

Appendix A. Appendix

86

8 cHAPTER 1: Introduction

Model 336 Temperature Controller

1.3.2 Sensor Input
Configuration

1.3.3 Thermometry

Thermocouple
option

 Model 3060

Sensor
Tempera-

ture Coeffi-
cient

Input Range Excitation
Current

Display
Resolution

Measurement
Resolution

Electronic
Accuracy
(at 25 °C)

Measurement Temperature
Coefficient

Electronic
Control

Stability13

Thermocouple
3060

Positive ±50 mV NA 0.1 µV 0.4µV ±1 µV ±0.05%
of rdg12

(0.1 µV + 0.001% of rdg)/°C ±0.8µV

13 Control stability of the electronics only, in ideal thermal system

TABLE 1-4 Thermocouple option input specifications

Capacitance
option

Model 3061

Sensor
Tempera-

ture Coeffi-
cient

Input Range Excitation
Current

Display
Resolution

Measurement
Resolution

Electronic
Accuracy
(at 25 °C)

Measurement Temperature
Coefficient

Electronic
Control

Stability14

Capacitance
3061

Positive or
negative

0.1 nF to 15 nF 3.496 kHz 1 mA
square wave

0.1 pF 0.05 pF ±50 pF ±0.1%
of rdg

2.5 pF/°C 0.1 pF

1 nF to 150 nF 3.496 kHz 10 mA
square wave

1 pF 0.5 pF ±50 pF ±0.1%
of rdg

5 pF/°C 1 pF

14 Control stability of the electronics only, in ideal thermal system

TABLE 1-5 Capacitance option input specifications

Diode/RTD Thermocouple

Measurement
type

4-lead differential
2-lead differential, room

temperature compensated

Excitation
Constant current with

current reversal for RTDs
NA

Supported sensors

Diodes: Silicon, GaAlAs
RTDs: 100) Platinum (option), 1000) Plat-

inum, Germanium,
Carbon-Glass, Cernox™, and Rox™

Most thermocouple types

Standard curves
DT-470, DT-670, DT-500-D, DT-500-E1,

PT-100, PT-1000, RX-102A, RX-202A
Type E, Type K, Type T, AuFe

0.07% vs. Cr, AuFe 0.03% vs. CR

Input connector 6-pin DIN
Screw terminals in a ceramic

isothermal block

TABLE 1-6 Sensor input configuration

Number of inputs 4 (8 with Model 3062)

Input configuration Inputs can be configured from the front panel to accept any of the
supported input types. Thermocouple and capacitance inputs require
an optional input card that can be installed in the field.

Supported option cards Thermocouple (3060), capacitance (3061), or scanner (3062)

Option slots 1

Isolation Sensor inputs optically isolated from other circuits but not each other

A/D resolution 24-bit

Input accuracy Sensor dependent, refer to Input Specifications table

Measurement resolution Sensor dependent, refer to Input Specifications table

Maximum update rate 10 rdg/s on each input, 5 rdg/s when configured as 100 k) NTC RTD
with reversal on

Maximum update rate (scanner) The maximum update rate for a scanned input is 10 rdg/s distributed among
the enabled channels. Any channel configured as 100 k) RTD with reversal on
changes the update rate for the channel to 5 rdg/s

Autorange Automatically selects appropriate NTC RTD or PTC RTD range

User curves Room for 39 200-point CalCurves™ or user curves

SoftCal™ Improves accuracy of DT-470 diode to ±0.25 K from 30 K to 375 K; improves
accuracy of platinum RTDs to ±0.25 K from 70 K to 325 K; stored as user curves

Math Maximum and minimum

Filter Averages 2 to 64 input readings

A.1. Device speci�cations

87

 1.3.4 Control 9

 | www.lakeshore.com

1.3.4 Control There are 4 control outputs.

1.3.4.1 Heater Outputs (Outputs 1 and 2)
Control type Closed loop digital PID with manual heater output or open loop

Update rate 10/s

Tuning Autotune (one loop at a time), PID, PID zones

Control stability Sensor dependent, see Input Specifications table

PID control settings

Proportional (gain) 0 to 1000 with 0.1 setting resolution

Integral (reset) 1 to 1000 (1000/s) with 0.1 setting resolution

Derivative (rate) 1 to 200% with 1% resolution

Manual output 0 to 100% with 0.01% setting resolution

Zone control 10 temperature zones with P, I, D, manual heater out,
heater range, control channel, ramp rate

Setpoint rampin 0.1 K/min to 100 K/min

25) setting 50) setting

Type Variable DC current source

D/A resolution 16-bit

Max power 100 W 50 W

Max current 2 A 1 A

Compliance voltage 50 V 50 V

Heater load for max power 25) 50)

Heater load range 10) to 100)

Ranges 3 (decade steps in power)

Heater noise 0.12 µA RMS (dominated by line frequency and its harmonics)

Grounding Output referenced to chassis ground

Heater connector Dual banana

Safety limits Curve temperature, power up heater off, short circuit protection

TABLE 1-7 Output 1

25) setting 50) setting

Type Variable DC current source

D/A resolution 16-bit

Max power 50 W 50 W

Max current 1.41 A 1 A

Compliance voltage 35.4 V 50 V

Heater load for max power 25) 50)

Heater load range 10) to 100)

Ranges 3 (decade steps in power)

Heater noise 0.12 µA RMS (dominated by line frequency and its harmonics)

Grounding Output referenced to chassis ground

Heater connector Dual banana

Safety limits Curve temperature, power up heater off, short circuit protection

TABLE 1-8 Output 2

Appendix A. Appendix

88

10 cHAPTER 1: Introduction

Model 336 Temperature Controller

1.3.4.2 Unpowered Analog Outputs (Outputs 3 and 4)

1.3.5 Front Panel

Control type
Closed loop PID, PID zones, warm up heater mode, manual output or
Monitor Out

Tuning Autotune (one loop at a time), PID, PID zones

Control stability Sensor dependedn, see Input Specifications table

PID control settings

Proportional (gain) 0 to 1000 with 0.1 setting resolution

Integral (reset) 1 to 1000 (1000/s) with 0.1 setting resolution

Derivative (rate) 1 to 200% with 1% resolution

Manual output 0 to 100% with 0.01% setting resolution

Zone control
10 temperature zones with P, I, D, manual heater out, heater range,
control channel, ramp rate

Setpoint ramping 0.1 K/min to 100 K/min

Warm up heater mode settings

Warm up percentage 0 to 100% with 1% resolution

Warm up mode Continuous control or auto-off

Monitor Out settings

Scale User selected

Data source Temperature or sensor units

Settings Input, source, top of scale, bottom of scale or manual

Type Variable DC voltage source

Update rate 10/s

Range ±10 V

Resolution 16-bit, 0.3 mV

Accuracy ±2.5 mV

Noise 0.3 mV RMS

Minimum load resistance 1 k) (short-circuit protected)

Connector Detachable terminal block

Display 8-line by 40-character (240 × 64 pixel) graphic LCD display module with
LED backlight

Number of reading displays 1 to 8

Display units K, °C, V, mV,)

Reading source Temperature, sensor units, max, and min

Display update rate 2 rdg/s

Temperature display resolution 0.0001° from 0° to 99.9999°, 0.001° from 100° to 999.999°,
0.01° above 1000°

Sensor units display resolution Sensor dependent, to 6 digits

Other displays Input name, setpoint, heater range, heater output, and PID

Setpoint setting resolution Same as display resolution (actual resolution is sensor dependent)

Heater output display Numeric display in percent of full scale for power or current

Heater output resolution 0.01%

Display annunciators Control input, alarm, tuning

LED annunciators Remote, Ethernet status, alarm, control outputs

Keypad 27-key silicone elastomer keypad

Front panel features Front panel curve entry, display contrast control, and keypad lock-out

A.1. Device speci�cations

89

 1.3.6 Interface 11

 | www.lakeshore.com

1.3.6 Interface

1.3.7 General

IEEE-488.2

Capabilities SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT0, C0, E1

Reading rate To 10 rdg/s on each input

Software support LabVIEW™ driver (contact Lake Shore for availability)

USB

Function Emulates a standard RS-232 serial port

Baud Rate 57,600

Connector B-type USB connector

Reading rate To 10 rdg/s on each input

Software support LabVIEW™ driver (contact Lake Shore for availability)

Ethernet

Function TCP/IP web interface, curve handler, configuration backup,
chart recorder

Connector RJ-45

Reading rate To 10 rdg/s on each input

Software support LabVIEW™ driver (contact Lake Shore for availability)

Alarms

Number 4, high and low for each input

Data source Temperature or sensor units

Settings Source, high setpoint, low setpoint, deadband, latching or
non-latching, audible on/off, and visible on/off

Actuators Display annunciator, beeper, and relays

Relays

Number 2

Contacts Normally open (NO), normally closed (NC), and common (C)

Contact rating 30 VDC at 3 A

Operation Activate relays on high, low, or both alarms for any input, or
manual mode

Connector Detachable terminal block

Ambient temperature 15 °C to 35 °C at rated accuracy;
5 °C to 40 °C at reduced accuracy

Power requirement 100, 120, 220, 240, VAC, ±10%, 50 or 60 Hz, 250 VA

Size 435 mm W × 89 mm H × 368 mm D
(17 in × 3.5 in × 14.5 in), full rack

Weight 7.6 kg (16.8 lb)

Approval CE mark

Appendix A. Appendix

90

A.1. Device speci�cations

A.1.4. Keithley SourceMeter 2600

Manufacturer: Keithley Instruments, Inc.
Type: SourceMeter 2614B
Serial: 4038238

TUGraz inventory number: 0113863

Manufacturer: Keithley Instruments, Inc.
Type: SourceMeter 2636A
Serial: 1239787

TUGraz inventory number: 0105311

Figure A.5.: The table lists the source and measure limits for the voltage and current
functions of the Keithley SMU2600 series [22]

A.1.5. Agilent Switch Mainframe

Manufacturer: Agilent Technologies, Inc.
Type: 3499A
Serial: CN40053425

91

 339

Chapter 9 Specifications

44473A 4 x 4 2-Wire Matrix Switch Module

4

9

44473A 4 x 4 2-Wire Matrix Switch Module

 INPUT CHARACTERISTICS

Total Channels: 16

Maximum Voltage:
Terminal-Terminal or
Terminal-Chassis:

250 V, dc or ac rms

Maximum Current:
Per Channel:
Per Module:

2 A, dc or ac rms
8 A, dc or ac rms

Maximum Power:
Per Channel:
Per Module:

60 W dc; 500 VA ac
240 W dc; 2000 VA ac

Maximum Overvoltage
Transients:

1400 Vpk

Thermal Offset: < 3 V differential

Initial Closed Channel
Resistance:

< 1

Relay Life:
Dry Load of < 300 mA & < 10 V:
Maximum Rated Load:

108

105

Maximum Scan Rate:a

a. Using the 44474A external increment & channel closed, display off.

43 Chans/sec

 DC ISOLATION

Open Channel, Channel-Channel:
(with 1 channel closed)

< (40oC, 60% RH):
< (40oC, 95% RH):

> 1011
> 109

HI-LO:
(with 1 channel closed)

< (40oC, 60% RH):
< (40oC, 95% RH):

> 1010
> 108

Channel-Chassis:
(with 1 channel closed)

< (40oC, 60% RH):
< (40oC, 95% RH):

> 1010
> 5x108

Appendix A. Appendix

92

 340

Chapter 9 Specifications

44473A 4 x 4 2-Wire Matrix Switch Module

9

 AC ISOLATION / PERFORMANCEa

Capacitance:
(with 1 channel closed)

Open Channel, Channel-Channel:
HI-LO:
Channel-Chassis:

< 5 pF
< 40 pF
< 70 pF

Insertion Loss:
(with 50 termination)

100 kHz:
1 MHz:
10 MHz:

< 0.30 dB
< 0.35 dB
< 0.90 dB

Crosstalk:
(with 50 termination)

100 kHz:
1 MHz:
10 MHz:

< -76 dB
< -56 dB
< -36 dB

a. With chassis of all instruments connected, and with the Lo of input lines connected to the Lo of output lines (either
directly or via the 3499A/B/C switching channels).

A.1. Device speci�cations

93

Appendix A. Appendix

Figure A.6.: A simplified schematic of the 44473A 4 x 4 2-Wire Matrix Switch Module.
It consists of 16 2-wire relays (nodes/crosspoints) organized in a 4-row
by 4-column matrix [33].

94

A.1. Device speci�cations

A.1.6. Magnet-Physic magnetometer

Manufacturer: Magnet-Physik Dr. Steingroever GmbH
Type: FH 54

Serial: 122310

TUGraz inventory number: 0190635

Figure A.7.: Technical specifications of the Magnet-Physik FH 54 magnetometer [34].

95

www.magnet-physik.de

 Seite 1 / 2

HALL-SONDEN
FÜR FH 54 UND FH 55

•••• Transversale Hall-Sonden für FH 54 und FH 55

Transversalsonden für FH 54 und FH 55

Modell HS-TGB5-104005 HS-TGB5-104010 HS-TGB5-104020
W 4,0 mm max. 4,0 mm max. 4,0 mm max.
T (max.) 1,0 mm 1,0 mm 1,0 mm
L (nom.) 55 mm 100 mm 200 mm
A (nom.) 2 mm ± 0,1 mm 2 mm ± 0,1 mm 2 mm ± 0,1 mm
H (nom.) 70 mm 70 mm 70 mm
Kabellänge C 1,5 m 1,5 m 1,5 m
Stabmaterial Glasfaser-Kunststoff
Aktive Fläche,
nomineller Durchmesser

0,4 mm 0,4 mm 0,4 mm

Messbereiche,
Vollausschlag 3 mT bis 3 T

Korrigierte Genauigkeit
[% vom Messwert, DC]

0,25 % bis 3 T 0,25 % bis 3 T 0,25 % bis 3 T

Temperaturkoeffizient
der Empfindlichkeit
(maximal)
[% / °C]

± 0,02 (T) ± 0,02 (T) ± 0,02 (T)

(T): Sonde mit Sensor zur Temperaturkorrektur
Betriebstemperaturbereich 0 °C bis 75 °C.

Aufgrund kontinuierlicher Produktverbesserungen können sich die Spezifikationen ohne Mitteilung ändern.

Appendix A. Appendix

96

A.1. Device speci�cations

A.1.7. Lock-In Ampli�ers

Technical specifications are taken form the device manuals [21], [35].

Stanford Research Systems SR830

Manufacturer: Stanford Research Systems
Type: SR830

Serial: 83104

TUGraz inventory number: 0067883

Princeton Applied Research Model 5210

Manufacturer: Princeton Applied Research
Type: Model 5210

Serial: 05120

TUGraz inventory number: 9528205

97

SR830 DSP LOCK-IN AMPLIFIER

1-5

SPECIFICATIONS
SIGNAL CHANNEL

Voltage Inputs Single-ended (A) or differential (A-B).
Current Input 106 or 108 Volts/Amp.
Full Scale Sensitivity 2 nV to 1 V in a 1-2-5-10 sequence (expand off).
Input Impedance Voltage: 10 MΩ+25 pF, AC or DC coupled.

Current: 1 kΩ to virtual ground.
Gain Accuracy ±1% from 20°C to 30°C (notch filters off), ±0.2 % Typical.
Input Noise 6 nV/√Hz at 1 kHz (typical).
Signal Filters 60 (50) Hz and 120(100) Hz notch filters (Q=4).
CMRR 100 dB to10 kHz (DC Coupled), decreasing by 6db/octave above 10 kHz
Dynamic Reserve Greater than 100 dB (with no signal filters).
Harmonic Distortion -80 dB.

REFERENCE CHANNEL
Frequency Range 1 mHz to 102 kHz
Reference Input TTL (rising or falling edge) or Sine.

Sine input is1 MΩ, AC coupled (>1 Hz). 400 mV pk-pk minimum signal.
Phase Resolution 0.01°
Absolute Phase Error <1°
Relative Phase Error <0.01°
Orthogonality 90° ± 0.001°
Phase Noise External synthesized reference: 0.005° rms at 1 kHz, 100 ms, 12 dB/oct.

Internal reference: crystal synthesized, <0.0001° rms at 1 kHz.
Phase Drift <0.01°/°C below 10 kHz

<0.1°/°C to 100 kHz
Harmonic Detect Detect at Nxf where N<19999 and Nxf<102 kHz.
Acquisition Time (2 cycles + 5 ms) or 40 ms, whichever is greater.

DEMODULATOR
Zero Stability Digital displays have no zero drift on all dynamic reserves.

Analog outputs: <5 ppm/°C for all dynamic reserves.
Time Constants 10 µs to 30 s (reference > 200 Hz). 6, 12, 18, 24 dB/oct rolloff.

up to 30000 s (reference < 200 Hz). 6, 12, 18, 24 dB/oct rolloff.
Synchronous filtering available below 200 Hz.

Harmonic Rejection -80 dB

INTERNAL OSCILLATOR
Frequency 1 mHz to 102 kHz.
Frequency Accuracy 25 ppm + 30 µHz
Frequency Resolution 4 1/2 digits or 0.1 mHz, whichever is greater.
Distortion f<10 kHz, below -80 dBc. f>10 kHz, below -70 dBc.1 Vrms amplitude.
Output Impedance 50 Ω
Amplitude 4 mVrms to 5 Vrms (into a high impedance load) with 2 mV resolution.

(2 mVrms to 2.5 Vrms into 50Ω load).
Amplitude Accuracy 1%
Amplitude Stability 50 ppm/°C
Outputs Sine output on front panel. TTL sync output on rear panel.

When using an external reference, both outputs are phase locked to the
external reference.

Appendix A. Appendix

98

SR830 DSP Lock-In Amplifier

1-6

DISPLAYS
Channel 1 4 1/2 digit LED display with 40 segment LED bar graph.

X, R, X Noise, Aux Input 1 or 2. The display can also be any of these
quantities divided by Aux Input 1 or 2.

Channel 2 4 1/2 digit LED display with 40 segment LED bar graph.
Y, θ, Y Noise, Aux Input 3 or 4. The display can also be any of these
quantities divided by Aux Input 3 or 4.

Offset X, Y and R may be offset up to ±105% of full scale.
Expand X, Y and R may be expanded by 10 or 100.
Reference 4 1/2 digit LED display.

Display and modify reference frequency or phase, sine output amplitude,
harmonic detect, offset percentage (X, Y or R), or Aux Outputs 1-4.

Data Buffer 16k points from both Channel 1 and Channel 2 display may be stored
internally. The internal data sample rate ranges from 512 Hz down to 1
point every 16 seconds. Samples can also be externally triggered. The data
buffer is accessible only over the computer interface.

INPUTS AND OUTPUTS
Channel 1 Output Output proportional to Channel 1 display, or X.

Output Voltage: ±10 V full scale. 10 mA max output current.
Channel 2 Output Output proportional to Channel 2 display, or Y.

Output Voltage: ±10 V full scale. 10 mA max output current.
X and Y Outputs Rear panel outputs of cosine (X) and sine (Y) components.

Output Voltage: ±10 V full scale. 10 mA max output current.
Aux. Outputs 4 BNC Digital to Analog outputs.

±10.5 V full scale, 1 mV resolution. 10 mA max output current.
Aux. Inputs 4 BNC Analog to Digital inputs.

Differential inputs with1 MΩ input impedance on both shield and center
conductor. ±10.5 V full scale, 1 mV resolution.

Trigger Input TTL trigger input triggers stored data samples.
Monitor Output Analog output of signal amplifiers (before the demodulator).

GENERAL
Interfaces IEEE-488 and RS232 interfaces standard.

All instrument functions can be controlled through the IEEE-488 and RS232
interfaces.

Preamp Power Power connector for SR550 and SR552 preamplifiers.
Power 40 Watts, 100/120/220/240 VAC, 50/60 Hz.
Dimensions 17"W x 5.25"H x 19.5"D
Weight 30 lbs.
Warranty One year parts and labor on materials and workmanship.

A.1. Device speci�cations

99

Appendix A. Appendix

100

A.1. Device speci�cations

101

Appendix A. Appendix

102

A.1. Device speci�cations

103

Appendix A. Appendix

A.1.8. Function generator

Technical specifications are taken form the device manual [36].

Manufacturer: Philips Industrial & Electro-acoustic Systems
Type: PM 5193

Serial: LO 593615

TUGraz inventory number: 9000452

104

A.1. Device speci�cations

105

Appendix A. Appendix

106

A.1. Device speci�cations

107

Appendix A. Appendix

A.2. Source codes

A.2.1. Calculation of the van der Pauw geometry

correction factor

1 import numpy
import scipy.optimize

3 import matplotlib.pyplot as plt
import csv

5

prepare a csv file the calculated values are stored in
7 f = open(’data\\vdp-correction-factor.csv’, ’w’)

f_csv = csv.writer(f, delimiter=’;’, lineterminator=’\n’)
9

write headers into the file
11 f_csv.writerow([’Q’, ’f’])

13 # generate the Q test vector
Q_vec = numpy.arange(1, 100000, 0.1)

15 data = []

17 # calculate f for given Q
for Q in Q_vec:

19

define a function that can be passed to the solver
21 def func(f):

y = f/numpy.log(2) * numpy.arccosh(1/2 * numpy.exp(numpy.log(2)/f)) \
23 - ((Q - 1) / (Q + 1))

return y
25

if Q is within the range of 1 the iteration doesn’t work.
27 # so we specify the result for that

sigma = 0.01
29

if Q < (1 + sigma):
31 f_solution = [1]

else:
33 # calculate a numeric solution

f_solution = scipy.optimize.fsolve(func, numpy.array(0.99999))
35

data.append(f_solution[0])
37

write data to the csv file and flush the buffer
39 f_csv.writerow([Q, f_solution[0]])

f.flush()
41

Plot the result
43 plt.figure(1)

plt.semilogx(Q_vec, data)
45 plt.grid()

plt.ylabel(’f’)
47 plt.xlabel(’Q’)

plt.show()
49

close the csv file
51 f.close()

sources/CalculateCorrectionFactorV3.py

A.2.2. Van der Pauw measurement using four Source

Measure Units

1 """
This program controls the whole process to measure temperature dependent

3 resistivity using the Van der Pauw method

5 Programmed by: Peter Luidolt
Last modified: 2017-02-21

7 """

9 # import some standard libraries
from time import strftime, localtime, sleep

11 import os

108

A.2. Source codes

import logging
13 import sys

import json
15

import self written libraries
17 from libs.UsefulThings import step_list, pt100_r2t

from libs.voetschV3 import VT4002
19 from libs.KeithleyV13 import SMU26xx

import functions to make smu configuration easier
21 from vdp_measurement import measure_vdp

23

"""
25 ****************************

PARAMETERS
27 ****************************

"""
29

’’’general parameters’’’
31 # define the log-level you want to see

this parameter influences what is displayed on the console and what is written to the log file
33 LOG_LEVEL = logging.DEBUG

35 ’’’Van der Pauw measurement parameters’’’
current and compliance voltage we make the Van der Pauw resistivity measurements with

37 VDP_MEASUREMENT_CURRENT = 100e-3
VDP_COMPLIANCE_VOLTAGE = 20

39 # time after the SMU is enabled until the measurement value is taken (value in seconds)
VDP_SETTLING_TIME = 1

41

’’’Temperature profile parameters’’’
43 # the temperature we start the measurement with in ◦C

START_TEMPERATURE = 20
45 # the temperature we measure up to in ◦C

END_TEMPERATURE = 100
47 # steps of the temperature; we will

TEMPERATURE_STEP_SIZE = 10
49 # defines the time a temperature has to be stable before we start a measurement (value in s)

the temperature needs to stay within the target temperature +- the allowed deviation (value in ◦C)
51 TEMPERATURE_SETTLING_TIME = 60

TEMPERATURE_ALLOWED_DEVIATION = 0.2
53

’’’Parameters needed for data analysis and calculations’’’
55 # sample thickness (in nm)

SAMPLE_THICKNESS = 150
57

59 """

61 DEFINITIONS

63 """

65 # variable that stores the absolute path for the directory in which we will write all our measurement
data and results

base_path = None
67

69 """

71 FUNCTIONS

73 """

75

def main():
77

import the needed global variables
79 global base_path

81 # create a directory for this measurement. In it all the data will be stored
base_path = create_base_path()

83

setup the logging
85 configure_logging()

87 # connect to the the climate
clim = connect_climate_chamber()

89

connect and setup the smu used for temperature measurement
91 [smu_temp, smua_temp] = setup_smu_temperature()

93 # connect to the SMUs used for the Van der Pauw measurement
[smu_alpha, smu_beta, smu_channel_list] = setup_smu_vdp()

95

define a filename to store the Van der Pauw measurements in
97 csv_filename = os.path.join(base_path, "vdp_measurements.csv")

109

Appendix A. Appendix

99 # write all the parameters to a json file for further reference
store_measurement_parameters("parameters.json")

101

Temperature-Loop
103 temperature_step_list = step_list(START_TEMPERATURE, END_TEMPERATURE, TEMPERATURE_STEP_SIZE)

logging.info("generated temperature step list: " + str(temperature_step_list))
105

enable the climate chamber
107 logging.info("Climate chamber has been enabled.")

109 for temp in temperature_step_list:
set temperature and wait for it to get stable

111 # this process may take some time because we need to bring the climate chamber to temperature
and then wait that also the sample temperature becomes stable

113 go_to_temp(clim, temp, smua_temp)

115 # Make a Van der Pauw measurement
measure_vdp(smu_channel_list,

117 VDP_MEASUREMENT_CURRENT,
VDP_COMPLIANCE_VOLTAGE,

119 VDP_SETTLING_TIME,
temp,

121 csv_filename,
logging,

123 smua_temp)

125 # properly shut down and disconnect SMUs
generate a list with all SMU channels in it

127 all_smu_channels = [smua_temp] + smu_channel_list
disable_smu(all_smu_channels)

129 disconnect_smu([smu_temp, smu_alpha, smu_beta])

131 # start to cool down the climate chamber to room temperature
clim.set_target_temperature(20)

133 logging.info("Measurements finished. Starting cooldown procedure.")

135 # TODO: analysis of all the Van der Pauw data
analyze()

137

if climate chamber reached room temperature switch it off
139 clim.go_to_temperature(20, target_accuracy=1, settling_time=5)

clim.disable()
141 logging.info("Cooldown finished. Climate chamber disabled.")

143

def disable_smu(smu_channel_list):
145 """

Function to disable all outputs of the SMU channels in the channel list
147 :param smu_channel_list: list of smu channels that will be disabled

"""
149 # put the SMUs in an un-harmful mode

for device in smu_channel_list:
151 device.disable_output()

device.set_voltage(0)
153 device.set_current(0)

155

def disconnect_smu(smu_list):
157 """

Function to disconnect the smu properly
159 :param smu_list: list of SMUs to disconnect

"""
161 for device in smu_list:

device.disconnect()
163

165 def go_to_temp(clim, temperature, smua_temp):
"""will cause the climate chamber to go to the specified temperature"""

167

logging.info("Wait for the climate chamber to reach " + "{:.2f}".format(temperature) + " ◦C")
169

command the climate chamber to go to a specified temperature
171 # we wait until the climate chamber has approximately the correct temperature

clim.go_to_temperature(target_temperature=temperature,
173 target_accuracy=TEMPERATURE_ALLOWED_DEVIATION,

settling_time=TEMPERATURE_SETTLING_TIME)
175

logging.info("Climate chamber reached " + "{:.2f}".format(temperature) + " ◦C")
177

measure the PT100 and wait for the temperature value to settle
179 # now we wait until the sample reached a stable temperature

wait_for_stabilisation(smua_temp, TEMPERATURE_ALLOWED_DEVIATION, TEMPERATURE_SETTLING_TIME)
181

183 def wait_for_stabilisation(smua_temp, max_allowed_deviation, measurement_count):

185 deviation = temp_pt100 = 1e10 # some large number to start with
stable = False

110

A.2. Source codes

187 readings = []

189 logging.info("Waiting for the sample temperature to stabilize.")

191 while not stable:
take a new reading from the instrument and append it to the readings list

193 r_pt100 = smua_temp.measure_resistance()
temp_pt100 = pt100_r2t(r_pt100)

195 readings.append(temp_pt100)

197 # if we have already enough readings in the list pop the first (= oldest) element from the
list

this way the list will always have "count" elements in it.
199 if len(readings) > measurement_count:

readings.pop(0)
201

TODO: Calculate deviation correctly
203

check if the values in the list are stable
205 # meaning: is the change in temperature smaller than our allowed deviation

if so the temperature is stable and we can exit the loop
207 deviation = max(readings) - min(readings)

if deviation < max_allowed_deviation:
209 stable = True

211 # log the progress
logging.info("PT100_temp = " + "{:.2f}".format(temp_pt100) + " ◦C | " +

213 "deviation = " + "{:.2f}".format(deviation) + " ◦C | " +
"stability = " + str(stable))

215

sleep for one second before we take the next measurement
217 sleep(1)

219 logging.info("We have now a stable sample temperature of " + "{:.2f}".format(temp_pt100) + " ◦C")

221

def connect_climate_chamber():
223 """connect to the climate chamber"""

225 # define connection parameters
ip_address = "129.27.158.42"

227 username = "simpacuser"
password = "u1s2e3r4"

229

connect to the climate chamber
231 clim = VT4002(ip_address, username, password)

233 return clim

235

def setup_smu_vdp():
237 """connect to the two SMUs used to measure Van der Pauw"""

239 # initialize the SMU and connect to it
smu_alpha = SMU26xx("TCPIP0::129.27.158.189::inst0::INSTR")

241 smu_beta = SMU26xx("TCPIP0::129.27.158.41::inst0::INSTR")

243 # get the channel object of the SMU
smu1 = smu_alpha.get_channel(smu_alpha.CHANNEL_A)

245 smu2 = smu_alpha.get_channel(smu_alpha.CHANNEL_B)
smu3 = smu_beta.get_channel(smu_beta.CHANNEL_A)

247 smu4 = smu_beta.get_channel(smu_beta.CHANNEL_B)

249 # define a list with all the SMUs in it.
this enables us to address the smu1 as smu[0]

251 # smu_list = [smu1, smu2, smu3, smu4]
to test only use smu_alpha

253 smu_channel_list = [smu1, smu2, smu3, smu4]

255 # reset channels to default settings
for smu in smu_channel_list:

257 smu.reset()

259 return [smu_alpha, smu_beta, smu_channel_list]

261

def setup_smu_temperature():
263 """connect to the SMUs (used for PT100 reading)"""

265 # initialize the SMU and connect to it
we use this smu to measure the the temperature with a PT100 temperature sensor

267 smu_temp = SMU26xx("TCPIP0::129.27.158.84::inst0::INSTR")
smua_temp = smu_temp.get_channel(smu_temp.CHANNEL_A)

269

reset to default settings
271 smua_temp.reset()

setup the operation mode
273 smua_temp.set_mode_current_source()

111

Appendix A. Appendix

set the voltage and current parameters
275 smua_temp.set_voltage_range(10)

smua_temp.set_voltage_limit(10)
277 smua_temp.set_voltage(0)

279 # we set the measurement current to 1 mA
smua_temp.set_current_range(1e-3)

281 smua_temp.set_current_limit(1e-3)
smua_temp.set_current(1e-3)

283

set to 4-wire sense mode
285 smua_temp.set_sense_4wire()

display the resistance on the smu
287 smua_temp.display_resistance()

set the smu to high accuracy measurement (slower but that doesn’t matter)
289 smua_temp.set_measurement_speed_hi_accuracy()

291 # enable temperature measurement
smua_temp.enable_output()

293

return [smu_temp, smua_temp]
295

297 def store_measurement_parameters(filename):
file = os.path.join(base_path, filename)

299

put all the parameters in a dictionary so we can write it to the json file
301 data = {

’VDP_MEASUREMENT_CURRENT’: VDP_MEASUREMENT_CURRENT,
303 ’VDP_COMPLIANCE_VOLTAGE’: VDP_COMPLIANCE_VOLTAGE,

’VDP_SETTLING_TIME’: VDP_SETTLING_TIME,
305 ’START_TEMPERATURE’: START_TEMPERATURE,

’END_TEMPERATURE’: END_TEMPERATURE,
307 ’TEMPERATURE_STEP_SIZE’: TEMPERATURE_STEP_SIZE,

’TEMPERATURE_SETTLING_TIME’: TEMPERATURE_SETTLING_TIME,
309 ’TEMPERATURE_ALLOWED_DEVIATION’: TEMPERATURE_ALLOWED_DEVIATION,

’SAMPLE_THICKNESS’: SAMPLE_THICKNESS,
311 }

313 # Writing JSON data
with open(file, ’w’) as f:

315 json.dump(data, f, indent=4)

317 logging.info("Stored the measurement parameters to .\\" + filename)

319

def configure_logging():
321

get the root logger and set the logging level the user specified
323 root_logger = logging.getLogger()

root_logger.setLevel(LOG_LEVEL)
325 logging.getLogger("requests").setLevel(logging.WARNING)

327 # define a handler for the log-file
filename = os.path.join(base_path, "app.log")

329 file_handler = logging.FileHandler(filename=filename)
file_handler.setFormatter(logging.Formatter(’%(asctime)s: %(levelname)s: %(message)s’))

331 file_handler.setLevel(logging.DEBUG)
root_logger.addHandler(file_handler)

333

define a log handler that print the output to the stdout
335 stream_handler = logging.StreamHandler(sys.stdout)

stream_handler.setFormatter(logging.Formatter(’%(asctime)s: %(levelname)s: %(message)s’, datefmt=’
%I:%M:%S’))

337 stream_handler.setLevel(logging.INFO)
root_logger.addHandler(stream_handler)

339

341 def create_base_path():
"""creates a folder within the data folder that contains the timestamp"""

343 global base_path

345 base_directory = "data"
timestamp = str(strftime("%Y-%m-%d_%H-%M-%S", localtime()))

347 base_path = os.path.abspath(os.path.join(base_directory, timestamp))

349 if not os.path.exists(base_path):
os.makedirs(base_path)

351 return base_path

353

if __name__ == ’__main__’:
355 main()

sources/vdpResistivityMeasurement.py

1 """

112

A.2. Source codes

This program measures the resistivity with the Van der Pauw method
3

Programmed by: Peter Luidolt
5 Last modified: 2017-02-22

"""
7

import os.path
9 import csv

from time import sleep
11

import functions to make smu configuration easier
13 import SMUConfigurations

from libs.UsefulThings import pt100_r2t
15

17 def measure_vdp(smu_channel_list,
test_current,

19 compliance_voltage,
settling_time,

21 target_temperature,
csv_filename,

23 logging,
smua_temp):

25 """
performs a van der Pauw measurement with four SMUs

27 :param smu_channel_list: There need to be four SMU channels in that list.
They must be in the order 1, 2, 3, 4 according to the ASTM Standard

29 :param test_current: The current that is applied to the sample
:param compliance_voltage: The maximum allowed voltage

31 :param settling_time: the time between applying a configuration and actual measurement
:param target_temperature: the temperature at which the measurement takes place

33 :param csv_filename: the path to the csv data file the measurements will be written in
:param logging: the logging object (used to write the log file)

35 :param smua_temp: the smu channel that is used to measure the temperature
:return:

37 """

39 # check if the csv file already exists and open it
[file, file_csv, header] = setup_csv_file(csv_filename)

41

dump the header to the logfile so we know what the next debug messages mean
43 logging.info(str(header))

45 ’’’make a measurement according to the rotation plan’’’

47 # define in what order the current is applied
we therefore use a list with four entries [A, B, C, D]

49 # A ... the SMU that sources the current
B ... the SMU that acts as Ground

51 # C ... first SMU in high-z mode for voltage measurement
D ... second SMU in high-z mode for voltage measurement

53

this rotation plan is according to the resistivity measurement procedure as stated in
55 # ASTM F76-08, Standard Test Methods for Measuring Resistivity and Hall Coefficient and

Determining
Hall Mobility in Single-Crystal Semiconductors, ASTM International, West Conshohocken, PA, 2008,

www.astm.org
57

rotation_plan = [[2, 1, 3, 4], [1, 2, 3, 4],
59 [3, 2, 4, 1], [2, 3, 4, 1],

[4, 3, 1, 2], [3, 4, 1, 2],
61 [1, 4, 2, 3], [4, 1, 2, 3]]

63 # counter
measurement_number = 0

65

get the start time of the measurement
67 # starting_time = datetime.now()

69 # make the measurements according to the rotation plan
for measurement in rotation_plan:

71

increase the measurement counter
73 measurement_number += 1

75 # the numbers specified in the rotation_plan map to the corresponding SMUs
we need to subtract 1 because python starts counting at 0

77 source_smu = smu_channel_list[int(measurement[0]) - 1]
ground_smu = smu_channel_list[int(measurement[1]) - 1]

79 high_z_smu_c = smu_channel_list[int(measurement[2]) - 1]
high_z_smu_d = smu_channel_list[int(measurement[3]) - 1]

81

set all the SMUs into an un-harmful mode
83 disable_smu(smu_channel_list)

85 # set SMUs in correct modes
SMUConfigurations.set_smu_to_i_source(source_smu, test_current)

87 SMUConfigurations.set_smu_to_ground_connection(ground_smu)

113

Appendix A. Appendix

SMUConfigurations.set_smu_to_v_measurement(high_z_smu_c)
89 SMUConfigurations.set_smu_to_v_measurement(high_z_smu_d)

91 # the voltage limit should be set to something ok
this highly depends on the device under test (DUT)

93 source_smu.set_voltage_range(compliance_voltage)
source_smu.set_voltage_limit(compliance_voltage)

95 source_smu.enable_voltage_autorange()

97 # enable high-z and ground smu
ground_smu.enable_output()

99 high_z_smu_c.enable_output()
high_z_smu_d.enable_output()

101

enable the smu and wait some time till the current is settled
103 # print some information for the user

logging.info("Starting the measurement in configuration: " + str(measurement))
105

enable the source smu
107 source_smu.set_current(test_current)

source_smu.enable_output()
109

wait some time until the voltage is settled
111 sleep(settling_time)

113 # get the time till start
delta_t = datetime.now() - starting_time

115

measure all values that we are interested in
117 # we need the source current and the delta voltage between contact C and D

[source_current, source_voltage] = source_smu.measure_current_and_voltage()
119 high_z_voltage_c = high_z_smu_c.measure_voltage()

high_z_voltage_d = high_z_smu_d.measure_voltage()
121

measure the PT100 temperature sensor
123 # we do this so we can check that the temperature isn’t changing any more

r_pt100 = smua_temp.measure_resistance()
125 temp_pt100 = pt100_r2t(r_pt100)

127 # calculate the delta voltage
delta_v = high_z_voltage_c - high_z_voltage_d

129

calculate the resistance
131 resistance = delta_v / source_current

133 # store all the measured values in a dictionary so we can access it later
vdp_measurement_index = str(measurement[0]) + str(measurement[1]) + str(measurement[2]) + str(

measurement[3])
135

store values to the csv file
137 measurement_data = ([target_temperature,

temp_pt100,
139 vdp_measurement_index,

source_current,
141 source_voltage,

high_z_voltage_c,
143 high_z_voltage_d,

delta_v,
145 resistance

])
147 file_csv.writerow(measurement_data)

149 # ensure that the data is written to the disk immediately
file.flush()

151

TODO: log measured data
153 logging.info(str(measurement_data))

155 # set all the SMUs into an un-harmful mode
disable_smu(smu_channel_list)

157

Close the file properly
159 file.close()

161

def disable_smu(smu_channel_list):
163 for smu in smu_channel_list:

smu.disable_output()
165 smu.set_voltage(0)

smu.set_current(0)
167

169 def setup_csv_file(csv_filename):

171 # define the headers for the csv file
header = [’Target Temp (◦C)’,

173 ’Actual Temp (◦C)’,
’Mode’,

114

A.2. Source codes

175 ’I-source (A)’,
’U-source (V)’,

177 ’V-C (V)’,
’V-D (V)’,

179 ’delta_V (V)’,
’Resistance (Ohm)’

181]

183 if os.path.exists(csv_filename):
open the file

185 f = open(csv_filename, ’a’)
define the file as csv file

187 f_csv = csv.writer(f, lineterminator=’\n’)

189 else:
create the file and write the header into it

191 f = open(csv_filename, ’w’)
define the file as csv file

193 f_csv = csv.writer(f, lineterminator=’\n’)

195 # write the headers to the new csv file
f_csv.writerow(header)

197 f.flush()

199 # return the file and the csv-file object
return [f, f_csv, header]

sources/vdp_measurement.py

from libs.KeithleyV13 import _SMUChannel
2

4 def set_smu_to_ground_connection(smu):
"""

6 Puts the channel into LOW impedance mode.
This means that current can flow through the smu towards ground.

8

Args:
10 smu (_SMUChannel): the SMU channel

"""
12

we force the smu to ground potential
14 smu.set_mode_voltage_source()

smu.set_voltage_range(0.2)
16 smu.set_voltage(0)

18 # let the smu sink / source as much current as needed.
smu.set_current_range(1)

20 smu.set_current_limit(1)
smu.enable_current_autorange()

22

24 def set_smu_to_v_measurement(smu):
"""

26 Puts the channel into HIGH impedance mode.
In this mode the SMU channel can be used to measure voltage towards ground.

28 No current should be flowing into / or out of this channel

30 Args:
smu (_SMUChannel): the SMU channel

32 """

34 # we set the unit to current source (we want to measure the voltage)
smu.set_mode_current_source()

36

set the smu to the lowest current range and source no current --> the unit will be as High-Z as
possible

38 smu.set_current_range(1e-6)
smu.set_current_limit(1e-6)

40 smu.set_current(0)

42 # define a voltage range and limit
smu.set_voltage_range(200)

44 smu.set_voltage_limit(200)
smu.enable_voltage_autorange()

46

48 def set_smu_to_i_source(smu, current_range):
"""

50 Puts the channel into current source mode.
This channel provides us with the measurement current we want to have

52

Args:
54 smu (_SMUChannel): the SMU channel

current_range (float): The current the smu channel will source
56 """

115

Appendix A. Appendix

58 # we set the unit to current source (we want to measure the voltage)
smu.set_mode_current_source()

60

set the smu to desired measurement current
62 smu.set_current_range(current_range)

smu.set_current_limit(current_range)
64 smu.set_current(0)

66 # define a voltage range and limit
smu.set_voltage_range(200)

68 smu.set_voltage_limit(200)
smu.enable_voltage_autorange()

70

72 def set_smu_to_v_source(smu, voltage_range):
"""

74 Puts the channel into voltage source mode.
This channel provides us with the measurement voltage we want to have

76

Args:
78 smu (_SMUChannel): the SMU channel

voltage_range (float): the voltage the smu channel will source
80 """

82 # we set the unit to voltage source (we want to measure the current)
smu.set_mode_voltage_source()

84

set the smu to the lowest current range and source no current --> the unit will be as High-Z as
possible

86 smu.set_current_range(0.1)
smu.set_current_limit(0.1)

88 smu.enable_current_autorange()

90 # set the smu to desired measurement voltage
smu.set_voltage_range(voltage_range)

92 smu.set_voltage_limit(voltage_range)
smu.set_voltage(0)

sources/SMUConfigurations.py

A.2.3. 2D-Stage Stepper Control code

1 /*
2D stage control

3 Controls the movement of two carriages with two stepper motors

5 created 2016-11-15
by Peter Luidolt

7 */

9 #include <AccelStepper.h>

11 // ########################
// constants won’t change.

13

const int ledPin = 13; // the number of the LED pin
15 const int xend stopPin = 3; // the pin the x-Axis end stop switch is connected

const int zend stopPin = 2; // the pin the x-Axis end stop switch is connected
17

// define the x stepper
19 const int xStepperEnablePin = 24;

const int xStepperStepPin = 26;
21 const int xStepperDirectionPin = 28;

const int xStepperAcceleration = 200; // sets the allowed acceleration of the stepper
23 const int xStepperMaxSpeed = 1000; // sets the maximum allowed speed of the stepper

const int xStepperLowerLimit = 0; // the home position is directly at the left edge
25 const long xStepperUpperLimit = 7218; // this equals approx 18 cm to the right

const float xStepperStepsPerCM = 400.5; //defines how many steps are necessary for the carriage to
move 1 cm

27

// define the z stepper
29 const int zStepperEnablePin = A8;

const int zStepperStepPin = 46;
31 const int zStepperDirectionPin = 48;

const int zStepperAcceleration = 500; // sets the allowed acceleration of the stepper
33 const int zStepperMaxSpeed = 1000; // sets the maximum allowed speed of the stepper

const int zStepperLowerLimit = 0; // the home position is directly at the top edge
35 const long zStepperUpperLimit = 35000; // this equals approx 17.6 cm towards the bottom

const float zStepperStepsPerCM = 1988; //defines how many steps are necessary for the carriage to move
1 cm

37

116

A.2. Source codes

// ########################
39 // variables that store changing values

41 int xend stopState = 0; // variable for reading the x-end stop status
int zend stopState = 0; // variable for reading the z-end stop status

43 long XGoToPos = 0; // variable to store the position the x-servo moves to
long ZGoToPos = 0; // variable to store the position the z-servo moves to

45

long SetXPos = 0; // variable to store the XSET given by the serial command
47 long SetZPos = 0; // variable to store the ZSET given by the serial command

49 // Define a stepper and the pins it will use
AccelStepper xStepper(1,xStepperStepPin,xStepperDirectionPin); // x stepper

51 AccelStepper zStepper(1,zStepperStepPin,zStepperDirectionPin); // z stepper

53

// ########################
55 // some functions

57 // Stop the x stepper as quickly as possible
void xStepperEmergencyStop() {

59

xStepper.stop();
61 xStepper.setMaxSpeed(0);

63 // set a very high acceleration so the stepper can make a quick stop
xStepper.setAcceleration(200000);

65

// actually stops the stepper
67 xStepper.runToPosition();

69 // move the stepper to the position it already is
// this should prevent any further movement

71 xStepper.move(xStepper.currentPosition());

73 // set acceleration and max speed back to the correct value
xStepper.setAcceleration(xStepperAcceleration);

75 xStepper.setMaxSpeed(xStepperMaxSpeed);

77 Serial.println("Emergency stop has been hit (x-home limit)");
}

79

// Stop the z stepper as quickly as possible
81 void zStepperEmergencyStop() {

83 zStepper.stop();
zStepper.setMaxSpeed(0);

85

// set a very high acceleration so the stepper can make a quick stop
87 zStepper.setAcceleration(200000);

89 // actually stops the stepper
zStepper.runToPosition();

91

// move the stepper to the position it already is
93 // this should prevent any further movement

zStepper.move(zStepper.currentPosition());
95

// set acceleration and max speed back to the correct value
97 zStepper.setAcceleration(zStepperAcceleration);

zStepper.setMaxSpeed(zStepperMaxSpeed);
99

Serial.println("Emergency stop has been hit (z-home limit)");
101 }

103 // moves the x-stepper slowly to the home position
void xFindHome() {

105

Serial.println("Slowly moving x-carriage towards home.");
107

// xStepper.setMaxSpeed(100);
109 // xStepper.setAcceleration(200000);

111 // slowly drive to the left
xStepper.setSpeed(-200);

113

// drive left until the end stop is found
115 while (digitalRead(xend stopPin) != LOW) {

xStepper.runSpeed();
117 }

119 // stop the stepper
xStepper.stop();

121 xStepper.runSpeed();

123 // set the end stop position as 0
xStepper.setCurrentPosition(0);

125

117

Appendix A. Appendix

// move a bit away from the end stop (so it is depressed)
127 xStepper.moveTo(200);

xStepper.runToPosition();
129

// set the end stop position as 0
131 xStepper.setCurrentPosition(0);

133 Serial.println("Found x-home!");
delay(1000);

135 }

137 // moves the z-stepper slowly to the home position
void zFindHome() {

139

Serial.println("Slowly moving z-carriage towards home.");
141

// xStepper.setMaxSpeed(100);
143 // xStepper.setAcceleration(200000);

145 // slowly drive to the left
zStepper.setSpeed(-500);

147

// drive left until the end stop is found
149 while (digitalRead(zend stopPin) != LOW) {

zStepper.runSpeed();
151 }

153 // stop the stepper
zStepper.stop();

155 zStepper.runSpeed();

157 // set the end stop position as 0
zStepper.setCurrentPosition(0);

159

// move a bit away from the end stop (so it is depressed)
161 zStepper.moveTo(600);

zStepper.runToPosition();
163

// set the end stop position as 0
165 zStepper.setCurrentPosition(0);

167 Serial.println("Found z-home!");
delay(1000);

169 }

171 // ########################
// initialization (runs once when the Arduino boots)

173

void setup() {
175

// initialize serial communication at 9600 bits per second:
177 Serial.begin(9600);

while (!Serial) {
179 ; // wait for serial port to connect. Needed for native USB port only

}
181

Serial.println("Initializing system ...");
183

// initialize the LED pin as an output:
185 pinMode(ledPin, OUTPUT);

187 // initialize the end stops as input
pinMode(xend stopPin, INPUT);

189 pinMode(zend stopPin, INPUT);

191 // initialize the stepper enable pins and enable the steppers
pinMode(xStepperEnablePin, OUTPUT);

193 digitalWrite(xStepperEnablePin, LOW);
pinMode(zStepperEnablePin, OUTPUT);

195 digitalWrite(zStepperEnablePin, LOW);

197 // set the maximum speed and the maximum acceleration
xStepper.setMaxSpeed(xStepperMaxSpeed);

199 xStepper.setAcceleration(xStepperAcceleration);
zStepper.setMaxSpeed(zStepperMaxSpeed);

201 zStepper.setAcceleration(zStepperAcceleration);

203 // find the x home position by driving slowly to the end stop
xFindHome();

205

// find the z home position by driving slowly to the end stop
207 zFindHome();

209 // zStepper.moveTo(2000);
// zStepper.runToPosition();

211

// xStepper.moveTo(3000);
213 // xStepper.runToPosition();

118

A.2. Source codes

215 Serial.println("Initialization complete.");
Serial.println("READY");

217

}
219

// ########################
221 // the loop function runs over and over again forever

223 void loop() {

225 // check if the x-end stop is hit
if (digitalRead(xend stopPin) == LOW) {

227 xStepperEmergencyStop();
digitalWrite(xStepperEnablePin, HIGH);

229 while (1 != 0) {
// this shouldn’t happen so something went terrible wrong

231 // for safety we stick here until reset
}

233 }

235 // check if the z-end stop is hit
if (digitalRead(zend stopPin) == LOW) {

237 zStepperEmergencyStop();
digitalWrite(zStepperEnablePin, HIGH);

239 while (1 != 0) {
// this shouldn’t happen so something went terrible wrong

241 // for safety we stick here until reset
}

243 }

245

// check if the is a new command from the serial interface
247 if (Serial.available() > 0) {

249 // read in the command and store it in a string
String SerialInStr = Serial.readStringUntil(’\r’);

251

if (SerialInStr == "*IDN?") {
253 // returns an identification string

Serial.println("ARDUINO 2D STAGE CONTROLLER, FIRMWARE v 0.2 (2016-11-15), Peter Luidolt");
255

} else if (SerialInStr == "STOP!") {
257 // stops the current movement

xStepper.stop();
259 zStepper.stop();

261 Serial.println("OK: Stopping all stepper movement.");

263

} else if (SerialInStr == "XSET:CENTER") {
265 // sets the XSET to the center of the movement range

// for actual movement the RUN! command needs to be issued
267

SetXPos = (xStepperUpperLimit - xStepperLowerLimit) / 2;
269

Serial.println("OK: Set X position to " + String(SetXPos / xStepperStepsPerCM) + " cm / Step-Pos
= " + String(SetXPos));

271

} else if (SerialInStr == "ZSET:CENTER") {
273 // sets the ZSET to the center of the movement range

// for actual movement the RUN! command needs to be issued
275

SetZPos = (zStepperUpperLimit - zStepperLowerLimit) / 2;
277

Serial.println("OK: Set Z position to " + String(SetZPos / zStepperStepsPerCM) + " cm / Step-Pos
= " + String(SetZPos));

279

} else if (SerialInStr.startsWith("XSET:")) {
281 // x-axis movement

283 // Remove the leading XSET: command so that only the number is left and convert this number to a
float
SerialInStr.remove(0,5);

285 float SerialInNumber = SerialInStr.toFloat();

287 // take the number from the serial and calculate how many steps this translates to
SetXPos = SerialInNumber * xStepperStepsPerCM;

289

Serial.println("OK: Set X position to " + String(SerialInNumber) + " cm / Step-Pos = " + String(
SetXPos));

291

293 } else if (SerialInStr.startsWith("ZSET:")) {
// z-axis movement

295

// Remove the leading ZSET: command so that only the number is left and convert this number to a
float

119

Appendix A. Appendix

297 SerialInStr.remove(0,5);
float SerialInNumber = SerialInStr.toFloat();

299

// take the number from the serial and calculate how many steps this translates to
301 SetZPos = SerialInNumber * zStepperStepsPerCM;

303 Serial.println("OK: Set Z position to " + String(SerialInNumber) + " cm / Step-Pos = " + String(
SetZPos));

305

} else if (SerialInStr == "RUN!") {
307 // actually start the movement if the targets are in range of motion

309 // check if the x-value is set outside the range of motion
if (SetXPos < xStepperLowerLimit || SetXPos > xStepperUpperLimit) {

311

Serial.println("ERR: X value out of range --> no movement");
313

// check if the z-value is set outside the range of motion
315 } else if (SetZPos < zStepperLowerLimit || SetZPos > zStepperUpperLimit) {

317 Serial.println("ERR: Z value out of range --> no movement");

319 // if the boundaries work out then command the steppers to the new position.
} else {

321

// tell the user that everything is OK and we start moving
323

Serial.println("OK: x = " + String(SetXPos / xStepperStepsPerCM) + " cm / z = " + String(
SetZPos / zStepperStepsPerCM) + " cm");

325

// sets a new target for the x-stepper
327 xStepper.moveTo(SetXPos);

329 // sets a new target for the z-stepper
zStepper.moveTo(SetZPos);

331

}
333

} else if (SerialInStr == "HOME!") {
335 // immediately go back to the x=0 and z=0 position

SetXPos = 0;
337 SetZPos = 0;

339 Serial.println("OK: x=0 / z=0");

341 } else if (SerialInStr == "STATUS?") {
// return the status of the steppers (moving, stopped, ...)

343

if ((xStepper.distanceToGo() == 0) && (zStepper.distanceToGo() == 0)) {
345 // Steppers are at the positions they should be

Serial.println("READY");
347

} else {
349 // at least one stepper is still moving

Serial.println("MOVING");
351 }

353 } else if (SerialInStr == "HELP?") {
// Print the commands that are available

355 Serial.println("List of available commands:");
Serial.println("HOME! // Causes the system to go to position 0,0");

357

Serial.println("XSET:<cm> // Set the desired absolute x-position");
359 Serial.println("ZSET:<cm> // Set the desired absolute z-position");

Serial.println("XSET:CENTER // Set the x-position to the middle of the range of motion");
361 Serial.println("ZSET:CENTER // Set the z-position to the middle of the range of motion");

Serial.println("RUN! // Actually performs the movement");
363

Serial.println("STOP! // Stops the movement by deacceleration");
365

Serial.println("*IDN? // Returns the identification");
367 Serial.println("HELP? // Shows the command list");

369 } else {
Serial.println("ERR: UNKNOWN COMMAND");

371 }

373 } // end of serial command interpretation

375 // actually moves the stepper if the current position is different from the set position
// these lines should be executed as often as possible otherwise the stepper will not move

377 xStepper.run();
zStepper.run();

379

}

120

A.2. Source codes

sources/2D–Stage–Stepper.ino

A.2.4. Agilent 3499A switch mainframe library

import pyvisa
2

4 class Agilent3499A:

6 OPERATION_RESET = "*RST"
OPERATION_CLEAR = "*CLS"

8 OPERATION_CLOSE = "ROUTe:CLOSe" # example: ROUTe:CLOSe (@111)
OPERATION_OPEN = "ROUTe:OPEN"

10 OPERATION_DISPLAY_TEXT = "DIAGnostic:DISPlay"

12 def __init__(self, rm=None):

14 # variable to store if the debug output was enabled
self.__debug = False

16 self.instrument = None

18 # if we have no resource manager then get one
if rm is None:

20 self.rm = pyvisa.ResourceManager()
else:

22 self.rm = rm

24 def enable_debug_output(self):
"""Enables the debug output of all communication.The messages will be printed on the console.

"""
26 self.__debug = True

28 def disable_debug_output(self):
"""Disables the debug output. Nothing will be printed to the console that you haven’t

specified yourself."""
30 self.__debug = False

32 def connect(self, visa_resource_name):

34 # Connect to the device
self.instrument = self.rm.open_resource(visa_resource_name)

36

define the termination characters as stated in the manual
38 self.instrument.read_termination = ’\r’

self.instrument.write_termination = ’\r’
40

the instrument handle is returned although the user most likely doesn’t need it
42 return self.instrument

44 def _write(self, msg):
if the debug output is enabled we dump the msg to the console

46 if self.__debug:
print(’Write cmd: ’ + str(msg))

48

send the command to the instrument
50 self.instrument.write(msg)

52 def _read(self):
return self.instrument.read()

54

def disconnect(self):
56 self.instrument.close()

58 def reset(self):
self._write(self.OPERATION_RESET)

60 self._write(self.OPERATION_CLEAR)

62 """
#############################

64 Instrument specific functions
#############################

66 """

68 def __operate_channel(self, operation, channel):

70 # convert the provided channel to a string
channel_string = str(channel)

72

ensure that we have a three digit channel number
74 if len(channel_string) is not 3:

121

Appendix A. Appendix

raise ValueError("The channel has to have 3 digits in the format YXX. \n"
76 "Y ... Number of the module\n"

"X ... Number of the channel")
78

construct the message we want to send
80 msg = operation + " (@" + channel_string + ")"

82 # send it to the instrument
self._write(msg)

84

def close_channel(self, channel):
86 self.__operate_channel(self.OPERATION_CLOSE, channel)

88 def open_channel(self, channel):
self.__operate_channel(self.OPERATION_OPEN, channel)

90

def display_text(self, text):
92 cmd = self.OPERATION_DISPLAY_TEXT + ’ "’ + str(text) + ’"’

self._write(cmd)
94

96 """
#############################

98 special command to operate the 8x8 switch matrix
#############################

100 """
@staticmethod

102 def calc_real_channel(column, row):

104 # calculate the correct module based on the given column and row
real_column = real_row = switch_module = 0

106

define the four different cases
108 if column <= 4 and row <= 4:

switch_module = 1
110 real_row = row

real_column = column
112

elif column > 4 and row <= 4:
114 switch_module = 2

real_row = row
116 real_column = column - 4

118 elif column <= 4 and row > 4:
switch_module = 3

120 real_row = row - 4
real_column = column

122

elif column > 4 and row > 4:
124 switch_module = 4

real_row = row - 4
126 real_column = column - 4

128 # the -1 is because Agilent starts to count the channels with number 0
return str(switch_module) + str(real_row - 1) + str(real_column - 1)

130

def close_matrix(self, column, row):
132 # calculate the correct module based on the given column and row

channel = self.calc_real_channel(column, row)
134 self.close_channel(channel)

self.display_text("CLOSED C" + str(column) + ":R" + str(row))
136

def open_matrix(self, column, row):
138 # calculate the correct module based on the given column and row

channel = self.calc_real_channel(column, row)
140 self.open_channel(channel)

self.display_text("OPENED C" + str(column) + ":R" + str(row))

sources/Agilent3499A.py

A.2.5. Stanford Research Systems SR830 lock-in

Python library

import pyvisa
2

class SR830:
4 """library to control / read out the Stanford Research Systems SR830 Lock-In Amplifier"""

6 """
List of device specific commands and parameters based on

122

A.2. Source codes

8 the programming section (5) of the manual (Starting at page 85)
"""

10

general operations
12 OPERATION_IDENTIFY = "*IDN?"

OPERATION_RESET = "*RST"
14 OPERATION_CLEAR = "*CLS"

16 # operations concerning communication with the computer
OPERATION_SEND_RESPONSE_TO_RS232 = "OUTX 0"

18 OPERATION_SEND_RESPONSE_TO_GPIB = "OUTX 1"

20 # operations / parameters for controlling the oscillator
OPERATION_SET_TO_INTERNAL_REFERENCE = "FMOD 1"

22 OPERATION_SET_TO_EXTERNAL_REFERENCE = "FMOD 0"
OPERATION_SET_INTERNAL_REFERENCE_FREQUENCY = "FREQ"

24 UPPER_FREQ_LIMIT = 102000 # Limit in Hz based on the specifications of the SR830
LOWER_FREQ_LIMIT = 0.001

26

OPERATION_SINE_OUTPUT_LEVEL = "SLVL"
28 LOWER_SINE_OUTPUT_LEVEL = 0.004 # Limit in Volts based on the specifications of the SR830

UPPER_SINE_OUTPUT_LEVEL = 5
30

operations that define the input characteristics
32 OPERATION_SET_INPUT_TO_A = "ISRC 0"

OPERATION_SET_INPUT_TO_A_MINUS_B = "ISRC 1"
34 OPERATION_SET_INPUT_SHIELD_TO_FLOATING = "IGND 0"

OPERATION_SET_INPUT_SHIELD_TO_GROUND = "IGND 1"
36 OPERATION_SET_INPUT_COUPLING_AC = "ICPL 0"

OPERATION_SET_INPUT_COUPLING_DC = "ICPL 1"
38

OPERATION_DISABLE_LINE_FILTER = "ILIN 0"
40 OPERATION_ENABLE_LINE_FILTER = "ILIN 3"

42 # sensitivity commands
OPERATION_SET_SENSITIVITY = "SENS"

44 # Available sensitivity ranges in volts
SENSITIVITY_RANGES = (2e-9, 5e-9, 10e-9, 20e-9, 50e-9, 100e-9, 200e-9, 500e-9, 1000e-9,

46 2e-6, 5e-6, 10e-6, 20e-6, 50e-6, 100e-6, 200e-6, 500e-6, 1000e-6,
2e-3, 5e-3, 10e-3, 20e-3, 50e-3, 100e-3, 200e-3, 500e-3, 1000e-3)

48

OPERATION_SET_RESERVE_MODE_HIGH_RESERVE = "RMOD 0"
50 OPERATION_SET_RESERVE_MODE_NORMAL = "RMOD 1"

OPERATION_SET_RESERVE_MODE_LOW_NOISE = "RMOD 2"
52

OPERATION_SET_TIME_CONSTANT = "OFLT"
54 # Available time constants in seconds

TIME_CONSTANTS = (10e-6, 30e-6, 100e-6, 300e-6,
56 1e-3, 3e-3, 10e-3, 30e-3, 100e-3, 300e-3,

1, 3, 10, 30, 100, 300,
58 1e3, 3e3, 10e3, 30e3)

60 OPERATION_LOW_PASS_FILTER_SLOPE = "OFSL"
Available filters slopes in dB/oct

62 FILTER_SLOPES = (6, 12, 18, 24)

64 # display commands
OPERATION_SET_DISPLAY_CH1_TO_X = "DDEF 1, 0, 0"

66 OPERATION_SET_DISPLAY_CH1_TO_R = "DDEF 1, 1, 0"
OPERATION_SET_DISPLAY_CH2_TO_Y = "DDEF 2, 0, 0"

68 OPERATION_SET_DISPLAY_CH2_TO_PHI = "DDEF 2, 1, 0"

70 # auto functions
OPERATION_AUTO_GAIN = "AGAN"

72 OPERATION_AUTO_RESERVE = "ARSV"
OPERATION_AUTO_PHASE = "APHS"

74 OPERATION_AUTO_OFFSET_X = "AOFF 1"
OPERATION_AUTO_OFFSET_Y = "AOFF 2"

76 OPERATION_AUTO_OFFSET_R = "AOFF 3"

78 # data transfer commands
READ_X = "OUTP? 1"

80 READ_Y = "OUTP? 2"
READ_R = "OUTP? 3"

82 READ_PHI = "OUTP? 4"

84 # snap commands read data synchronously (important if time constant is very short)
READ_SNAP_X_Y_R_PHI = "SNAP? 1, 2, 3, 4"

86

"""
88 General functions to communicate with the device

"""
90 def __init__(self, rm=None):

92 # variable to store if the debug output was enabled
self.__debug = False

94 self.instrument = None

123

Appendix A. Appendix

96 # if we have no resource manager then get one
if rm is None:

98 self.rm = pyvisa.ResourceManager()
else:

100 self.rm = rm

102 def enable_debug_output(self):
"""Enables the debug output of all communication.The messages will be printed on the console.

"""
104 self.__debug = True

106 def disable_debug_output(self):
"""Disables the debug output. Nothing will be printed to the console that you haven’t

specified yourself."""
108 self.__debug = False

110 def connect(self, visa_resource_name):

112 # Connect to the device
self.instrument = self.rm.open_resource(visa_resource_name)

114

define the termination characters as stated in the manual
116 self.instrument.read_termination = ’\r’

self.instrument.write_termination = ’\r’
118

clears the resource; if something was in the input buffer it gets lost
120 self.instrument.clear()

122 # send the appropriate command to respond to RS232 or GIPB based on the initial connection
method

if "GPIB" in visa_resource_name:
124 # we have a GPIB connection; command the device to also respond to the GPIB interface

self._write(self.OPERATION_SEND_RESPONSE_TO_GPIB)
126 else:

send responses to the serial interface
128 self._write(self.OPERATION_SEND_RESPONSE_TO_RS232)

130 # the instrument handle is returned although the user most likely doesn’t need it
return self.instrument

132

def _write(self, msg):
134 # if the debug output is enabled we dump the msg to the console

if self.__debug:
136 print(’Write cmd: ’ + str(msg))

138 # send the command to the instrument
self.instrument.write(msg)

140

def _query(self, msg):
142 # if the debug output is enabled we dump the msg to the console

if self.__debug:
144 print(’Query cmd: ’ + str(msg))

146 # send the command to the instrument
return self.instrument.query(msg)

148

def _read(self):
150 return self.instrument.read()

152 def disconnect(self):
self.instrument.close()

154

def identify(self):
156 return self._query(self.OPERATION_IDENTIFY)

158 def reset(self):
self._write(self.OPERATION_RESET)

160 self._write(self.OPERATION_CLEAR)

162 """
Instrument specific functions

164 """

166 """ Oscillator / reference section """

168 def use_external_reference(self):
self._write(self.OPERATION_SET_TO_EXTERNAL_REFERENCE)

170

def use_internal_reference(self):
172 self._write(self.OPERATION_SET_TO_INTERNAL_REFERENCE)

174 def set_reference_frequency(self, frequency_in_hz):
if self.LOWER_FREQ_LIMIT <= frequency_in_hz <= self.UPPER_FREQ_LIMIT:

176 msg = self.OPERATION_SET_INTERNAL_REFERENCE_FREQUENCY + " " + str(frequency_in_hz)
self._write(msg)

178 else:
raise ValueError("Frequency must be within " + str(self.LOWER_FREQ_LIMIT) + " Hz to "

180 + str(self.UPPER_FREQ_LIMIT) + " Hz")

124

A.2. Source codes

182 def set_sine_output_level(self, voltage):
if self.LOWER_SINE_OUTPUT_LEVEL <= voltage <= self.UPPER_SINE_OUTPUT_LEVEL:

184 msg = self.OPERATION_SINE_OUTPUT_LEVEL + " " + str(voltage)
self._write(msg)

186 else:
raise ValueError("Sine output voltage must be within " + str(self.LOWER_SINE_OUTPUT_LEVEL)

+ " V to "
188 + str(self.UPPER_SINE_OUTPUT_LEVEL) + " V")

190 """ Input Mode section """

192 def set_input_mode_A(self):
self._write(self.OPERATION_SET_INPUT_TO_A)

194

def set_input_mode_A_minus_B(self):
196 self._write(self.OPERATION_SET_INPUT_TO_A_MINUS_B)

198 def set_input_shield_to_floating(self):
self._write(self.OPERATION_SET_INPUT_SHIELD_TO_FLOATING)

200

def set_input_shield_to_ground(self):
202 self._write(self.OPERATION_SET_INPUT_SHIELD_TO_GROUND)

204 def set_input_coupling_ac(self):
self._write(self.OPERATION_SET_INPUT_COUPLING_AC)

206

def set_input_coupling_dc(self):
208 self._write(self.OPERATION_SET_INPUT_COUPLING_DC)

210 def enable_line_filters(self):
self._write(self.OPERATION_ENABLE_LINE_FILTER)

212

def disable_line_filters(self):
214 self._write(self.OPERATION_DISABLE_LINE_FILTER)

216 """ sensitivity / time constant section """

218 def set_sensitivity(self, sensitivity_in_volt):

220 # check the given values for a suitable range and return a value that is certainly available.
if the value is larger then the maximum available range, a error is raised

222 value = self.find_suitable_range(sensitivity_in_volt, self.SENSITIVITY_RANGES)

224 # get the index of the range. This is needed for the command that needs to be sent to the
SR830

range_index = self.SENSITIVITY_RANGES.index(value)
226

construct the command and sent it to the device
228 cmd = self.OPERATION_SET_SENSITIVITY + " " + str(range_index)

self._write(cmd)
230

def set_time_constant(self, time_in_seconds):
232

check the given values for a suitable range and return a value that is certainly available.
234 # if the value is larger then the maximum available range, a error is raised

value = self.find_suitable_range(time_in_seconds, self.TIME_CONSTANTS)
236

get the index of the range. This is needed for the command that needs to be sent to the
SR830

238 range_index = self.TIME_CONSTANTS.index(value)

240 # construct the command and sent it to the device
cmd = self.OPERATION_SET_TIME_CONSTANT + " " + str(range_index)

242 self._write(cmd)

244 def set_filter_slope(self, filter_in_db):

246 # check the given values for a suitable range and return a value that is certainly available.
if the value is larger then the maximum available range, a error is raised

248 value = self.find_suitable_range(filter_in_db, self.FILTER_SLOPES)

250 # get the index of the range. This is needed for the command that needs to be sent to the
SR830

range_index = self.FILTER_SLOPES.index(value)
252

construct the command and sent it to the device
254 cmd = self.OPERATION_LOW_PASS_FILTER_SLOPE + " " + str(range_index)

self._write(cmd)
256

""" reserve mode section """
258

def set_reserve_high_reserve(self):
260 self._write(self.OPERATION_SET_RESERVE_MODE_HIGH_RESERVE)

262 def set_reserve_normal(self):
self._write(self.OPERATION_SET_RESERVE_MODE_NORMAL)

264

125

Appendix A. Appendix

def set_reserve_low_noise(self):
266 self._write(self.OPERATION_SET_RESERVE_MODE_LOW_NOISE)

268 """ display control section (what will be shown on the device display) """

270 def display_ch1_x(self):
self._write(self.OPERATION_SET_DISPLAY_CH1_TO_X)

272

def display_ch1_r(self):
274 self._write(self.OPERATION_SET_DISPLAY_CH1_TO_R)

276 def display_ch2_y(self):
self._write(self.OPERATION_SET_DISPLAY_CH2_TO_Y)

278

def display_ch2_phi(self):
280 self._write(self.OPERATION_SET_DISPLAY_CH2_TO_PHI)

282 """ auto commands section """

284 def auto_gain(self):
self._write(self.OPERATION_AUTO_GAIN)

286

def auto_reserve(self):
288 self._write(self.OPERATION_AUTO_RESERVE)

290 def auto_phase(self):
self._write(self.OPERATION_AUTO_PHASE)

292

def auto_offset_x(self):
294 self._write(self.OPERATION_AUTO_OFFSET_X)

296 def auto_offset_y(self):
self._write(self.OPERATION_AUTO_OFFSET_Y)

298

def auto_offset_r(self):
300 self._write(self.OPERATION_AUTO_OFFSET_R)

302 """ data transfer section section (to read measurement values from the device) """

304 def read_x(self):
return float(self._query(self.READ_X))

306

def read_y(self):
308 return float(self._query(self.READ_Y))

310 def read_r(self):
return float(self._query(self.READ_R))

312

def read_phi(self):
314 return float(self._query(self.READ_PHI))

316 def read_snap(self):

318 # query the values (the values will be read simultaneously and are transmitted together
response = self._query(self.READ_SNAP_X_Y_R_PHI)

320 [x, y, r, phi] = str(response).split(",")

322 # convert values to float before returning them
x = float(x)

324 y = float(y)
r = float(r)

326 phi = float(phi)

328 return [x, y, r, phi]

330 """
Helper functions

332 """

334 @staticmethod
def find_suitable_range(value, value_list):

336

if the value is in the list directly return the given value
338 if value in value_list:

return value
340

if the value is larger then the largest range of the device raise an error.
342 # This will maybe prevent the user from overloading the input

elif value > max(value_list):
344 raise ValueError("\n\nThe value " + str(value) + " is larger than the largest available

range.\n\n" +
"Available ranges are:\n" + str(value_list))

346

in other cases just select the smallest possible range the requested value is within
348 else:

go through the available ranges starting with the smallest and return if we reach a
suitable range

350 for v in sorted(value_list):

126

A.2. Source codes

if v > value:
352 return v

sources/StanfordResearchSystems.py

A.2.6. Princeton Applied Research Model 5210

lock-in Python library

import pyvisa
2 from time import sleep

4

class Model5210:
6 """library to control / read out the EG&G Princeton Applied Research Model 5210 Lock-In Amplifier

"""

8 """
List of device specific commands and parameters based on

10 the programming section of the manual (chapter 6; starting at page 81)
"""

12

the Model 5210 is not fast enough so we need to wait a bit after the commands we send.
14 COMMAND_DELAY = 0.1

16 # general operations
OPERATION_IDENTIFY = "ID; VER"

18

sensitivity commands
20 OPERATION_SENSITIVITY = "SEN"

Available sensitivity ranges in volts
22 SENSITIVITY_RANGES = (100e-9, 300e-9,

1e-6, 3e-6, 10e-6, 30e-6, 100e-6, 300e-6,
24 1e-3, 3e-3, 10e-3, 30e-3, 100e-3, 300e-3,

1, 3)
26

auto functions
28 OPERATION_AUTO_GAIN = "AS"

OPERATION_AUTO_MEASUREMENT = "ASM"
30 OPERATION_AUTO_TUNE_FILTER_FREQUENCY = "ATS"

OPERATION_AUTO_PHASE = "AQN"
32 OPERATION_ABANDON_AUTO_FUNCTION = "AA"

34 # line filter functions
OPERATION_DISABLE_LINE_FILTER = "LF 0"

36 OPERATION_ENABLE_LINE_FILTER = "LF 3"

38 # main filter options
OPERATION_SET_FILTER_FLAT = "FLT 0"

40 OPERATION_SET_FILTER_NOTCH = "FLT 1"
OPERATION_SET_FILTER_LP = "FLT 2"

42 OPERATION_SET_FILTER_BP = "FLT 3"

44 OPERATION_LOW_PASS_FILTER_SLOPE = "XDB"
Available filters slopes in dB/oct

46 FILTER_SLOPES = (6, 12)

48 # operations / parameters for controlling the oscillator
OPERATION_SET_TO_INTERNAL_REFERENCE = "IE 1"

50 OPERATION_SET_TO_EXTERNAL_REFERENCE = "IE 0"

52 OPERATION_SINE_OUTPUT_LEVEL = "OA"
LOWER_SINE_OUTPUT_LEVEL = 0 # Limit in Volts based on the specifications of the Model 5210

54 UPPER_SINE_OUTPUT_LEVEL = 2

56 # TODO: Oscillator frequency control
Manual page 95

58

OPERATION_SET_TIME_CONSTANT = "TC"
60 # Available time constants in seconds

TIME_CONSTANTS = (1e-3, 3e-3, 10e-3, 30e-3, 100e-3, 300e-3,
62 1, 3, 10, 30, 100, 300,

1e3, 3e3)
64

Dynamic reserve control
66 OPERATION_SET_RESERVE_MODE_HIGH_RESERVE = "DR 2"

OPERATION_SET_RESERVE_MODE_NORMAL = "DR 1"
68 OPERATION_SET_RESERVE_MODE_HIGH_STABILITY = "DR 1"

70 # display commands
OPERATION_SET_DISPLAY1_TO_DISP = "D1 5" # content of display 1 is controlled by display 2

127

Appendix A. Appendix

72 OPERATION_SET_DISPLAY2_TO_X_Y_REL = "D2 0" # Display1: X in %; Display2: Y in %
OPERATION_SET_DISPLAY2_TO_X_Y_ABS = "D2 0" # Display1: X in Volt; Display2: Y in Volt

74 OPERATION_SET_DISPLAY2_TO_R_PHI = "D2 2" # Display1: Magnitude; Display2: Phase

76 # data transfer commands
READ_REFERENCE_FREQUENCY = "FRQ"

78 READ_X = "X"
READ_Y = "Y"

80 READ_MAG = "MAG"
READ_PHI = "PHA"

82 READ_MAG_PHASE = "MP"

84 # status registers
READ_OVERLOAD_BYTE = "N"

86

There is no RESET option; so we define a State that is "safe" and can be considered similar to a
reset.

88 # Set sensitivity to 3 V full scale (level 15)
Set oscillator output to 0 Volt

90 # Set to internal reference
Set time constant to 1 second (level 6)

92 # Reset the displays to the default view
OPERATION_RESET = "SEN 15;OA 0;IE 1;TC 6;D1 5;D2 0;"

94

"""
96 General functions to communicate with the device

"""
98

def __init__(self, rm=None):
100

variable to store if the debug output was enabled
102 self.__debug = False

self.instrument = None
104

if we have no resource manager then get one
106 if rm is None:

self.rm = pyvisa.ResourceManager()
108 else:

self.rm = rm
110

def enable_debug_output(self):
112 """Enables the debug output of all communication.The messages will be printed on the console.

"""
self.__debug = True

114

def disable_debug_output(self):
116 """Disables the debug output. Nothing will be printed to the console that you haven’t

specified yourself."""
self.__debug = False

118

def connect(self, visa_resource_name):
120

Connect to the device
122 self.instrument = self.rm.open_resource(visa_resource_name)

124 # define the termination characters as stated in the manual
self.instrument.read_termination = ’\r’

126 self.instrument.write_termination = ’\r’

128 # the instrument handle is returned although the user most likely doesn’t need it
return self.instrument

130

def _write(self, msg):
132 # if the debug output is enabled we dump the msg to the console

if self.__debug:
134 print(’Write cmd: ’ + str(msg))

136 # send the command to the instrument
self.instrument.write(msg)

138 sleep(self.COMMAND_DELAY)

140 def _query(self, msg):
if the debug output is enabled we dump the msg to the console

142 if self.__debug:
print(’Query cmd: ’ + str(msg))

144

send the command to the instrument
146 reading = self.instrument.query(msg)

sleep(self.COMMAND_DELAY)
148

if self.__debug:
150 print(’Query response: ’ + str(reading))

152 return reading

154 def _read(self):
send the command to the instrument

156 reading = self.instrument.read()

128

A.2. Source codes

sleep(self.COMMAND_DELAY)
158

if self.__debug:
160 print(’Query response: ’ + str(reading))

162 return reading

164 def disconnect(self):
self.instrument.close()

166

def identify(self):
168 return self._query(self.OPERATION_IDENTIFY)

170 def reset(self):
self._write(self.OPERATION_RESET)

172

"""
174 Instrument specific functions

"""
176

""" Oscillator / reference section """
178

def use_external_reference(self):
180 self._write(self.OPERATION_SET_TO_EXTERNAL_REFERENCE)

182 def use_internal_reference(self):
self._write(self.OPERATION_SET_TO_INTERNAL_REFERENCE)

184

def set_reference_frequency(self, frequency_in_hz):
186 # TODO: Oscillator frequency control

Manual page 95
188 pass

190 def set_sine_output_level(self, voltage):
if self.LOWER_SINE_OUTPUT_LEVEL <= voltage <= self.UPPER_SINE_OUTPUT_LEVEL:

192 msg = self.OPERATION_SINE_OUTPUT_LEVEL + " " + str(voltage)
self._write(msg)

194 else:
raise ValueError("Sine output voltage must be within " + str(self.LOWER_SINE_OUTPUT_LEVEL)

+ " V to "
196 + str(self.UPPER_SINE_OUTPUT_LEVEL) + " V")

198 """ Filter section """

200 def enable_line_filters(self):
self._write(self.OPERATION_ENABLE_LINE_FILTER)

202

def disable_line_filters(self):
204 self._write(self.OPERATION_DISABLE_LINE_FILTER)

206 """ sensitivity / time constant section """

208 def set_sensitivity(self, sensitivity_in_volt):

210 # check the given values for a suitable range and return a value that is certainly available.
if the value is larger then the maximum available range, a error is raised

212 value = self.find_suitable_range(sensitivity_in_volt, self.SENSITIVITY_RANGES)

214 # get the index of the range. This is needed for the command that needs to be sent to the
SR830

range_index = self.SENSITIVITY_RANGES.index(value)
216

construct the command and sent it to the device
218 cmd = self.OPERATION_SENSITIVITY + " " + str(range_index)

self._write(cmd)
220

def set_time_constant(self, time_in_seconds):
222

check the given values for a suitable range and return a value that is certainly available.
224 # if the value is larger then the maximum available range, a error is raised

value = self.find_suitable_range(time_in_seconds, self.TIME_CONSTANTS)
226

get the index of the range. This is needed for the command that needs to be sent to the
SR830

228 range_index = self.TIME_CONSTANTS.index(value)

230 # construct the command and sent it to the device
cmd = self.OPERATION_SET_TIME_CONSTANT + " " + str(range_index)

232 self._write(cmd)

234 def set_filter_slope(self, filter_in_db):

236 # check the given values for a suitable range and return a value that is certainly available.
if the value is larger then the maximum available range, a error is raised

238 value = self.find_suitable_range(filter_in_db, self.FILTER_SLOPES)

240 # get the index of the range. This is needed for the command that needs to be sent to the
SR830

129

Appendix A. Appendix

range_index = self.FILTER_SLOPES.index(value)
242

construct the command and sent it to the device
244 cmd = self.OPERATION_LOW_PASS_FILTER_SLOPE + " " + str(range_index)

self._write(cmd)
246

""" reserve mode section """
248

def set_reserve_high_reserve(self):
250 self._write(self.OPERATION_SET_RESERVE_MODE_HIGH_RESERVE)

252 def set_reserve_normal(self):
self._write(self.OPERATION_SET_RESERVE_MODE_NORMAL)

254

def set_reserve_high_stability(self):
256 self._write(self.OPERATION_SET_RESERVE_MODE_HIGH_STABILITY)

258 """ display control section (what will be shown on the device display) """

260 def display_x_y_relative(self):
self._write(self.OPERATION_SET_DISPLAY1_TO_DISP + ";" + self.OPERATION_SET_DISPLAY2_TO_X_Y_REL

)
262

def display_x_y_absolute(self):
264 self._write(self.OPERATION_SET_DISPLAY1_TO_DISP + ";" + self.OPERATION_SET_DISPLAY2_TO_X_Y_ABS

)

266 def display_r_phi(self):
self._write(self.OPERATION_SET_DISPLAY1_TO_DISP + ";" + self.OPERATION_SET_DISPLAY2_TO_R_PHI)

268

""" auto commands section """
270

def auto_gain(self):
272 self._write(self.OPERATION_AUTO_GAIN)

274 def auto_phase(self):
self._write(self.OPERATION_AUTO_PHASE)

276

def auto_measurement(self):
278 """basically a auto gain and then a auto phase optimisation"""

self._write(self.OPERATION_AUTO_MEASUREMENT)
280

def auto_tune_filter_frequency(self):
282 self._write(self.OPERATION_AUTO_TUNE_FILTER_FREQUENCY)

284 def stop_auto_function(self):
self._write(self.OPERATION_ABANDON_AUTO_FUNCTION)

286

""" data transfer section section (to read measurement values from the device) """
288

def read_reference_frequency(self):
290 return self._query(self.READ_REFERENCE_FREQUENCY)

292 def read_x(self):
reading = self._query(self.READ_X)

294 return self.calculate_voltage_value(reading)

296 def read_y(self):
reading = self._query(self.READ_Y)

298 return self.calculate_voltage_value(reading)

300 def read_r(self):
reading = self._query(self.READ_MAG)

302 return self.calculate_voltage_value(reading)

304 def read_phi(self):
"""The return from the instrument is in milli-degrees the range +-180000 corresponding to

+-180◦"""
306 response = self._query(self.READ_PHI)

return a value in degree
308 return float(response)/1000

310 def read_r_phi(self):
query the values (the values will be read simultaneously and are transmitted together

312 response = self._query(self.READ_MAG_PHASE)
[r, phi] = str(response).split(",")

314

convert values to float before returning them
316 r = self.calculate_voltage_value(float(r))

phi = float(phi)/1000
318

return [r, phi]
320

"""
322 Helper functions

"""
324

def calculate_voltage_value(self, reading):

130

A.2. Source codes

326

counter that counts how often we failed to calculate the value
328 try_counter = 0

330 while try_counter < 5:

332 try:
get the current sensitivity

334 sensitivity_index = int(self._query(self.OPERATION_SENSITIVITY))
full_scale_sensitivity = self.SENSITIVITY_RANGES[sensitivity_index]

336

the full scale sensitivity is equal to 10000
338 voltage = float(reading) * float(full_scale_sensitivity) / 10000

return voltage
340

except ValueError or IndexError:
342 # we just try again and keep track how often we tried

try_counter += 1
344 sleep(0.1)

pass
346

@staticmethod
348 def find_suitable_range(value, value_list):

350 # if the value is in the list directly return the given value
if value in value_list:

352 return value

354 # if the value is larger then the largest range of the device raise an error.
This will maybe prevent the user from overloading the input

356 elif value > max(value_list):
raise ValueError("\n\nThe value " + str(value) + " is larger than the largest available

range.\n\n" +
358 "Available ranges are:\n" + str(value_list))

360 # in other cases just select the smallest possible range the requested value is within
else:

362 # go through the available ranges starting with the smallest and return if we reach a
suitable range

for v in sorted(value_list):
364 if v > value:

return v

sources/PrincetonAppliedResearch.py

A.2.7. Heinzinger PTN40-125 Power Supply

1 import pyvisa
from time import sleep

3 from datetime import datetime

5

class DigitalInterface:
7

UNIT_VOLTAGE = "VOLT"
9 UNIT_CURRENT = "CURR"

11 # the digital interface needs some time to process commands
200 ms proved to be a good value

13 COMMAND_DELAY = 0.2

15 # It can happen that there is a problem / delay with the network connection
in such cases the command is sent again (after some delay).

17 # here you can specify how often this will happen until a timeout error is raised
MAX_RETRIES = 2

19

def __init__(self, rm=None):
21

variable to store if the debug output was enabled
23 self.__debug = False

self.instrument = None
25

if we have no resource manager then get one
27 if rm is None:

self.rm = pyvisa.ResourceManager()
29 else:

self.rm = rm
31

def connect(self, visa_resource_name):
33

Connect to the device

131

Appendix A. Appendix

35 self.instrument = self.rm.open_resource(visa_resource_name)

37 # define the termination characters as stated in the manual
self.instrument.read_termination = ’\00’

39 self.instrument.write_termination = ’\r’

41 # the instrument handle is returned although the user most likely doesn’t need it
return self.instrument

43

def disconnect(self):
45 self.instrument.close()

47 def _query(self, msg, await_return=True):

49 # variable to store the data in we will receive
data = None

51

variables to keep track about success and amount of retries
53 retry = 0

success = False
55

clear anything that is in the queue
57 self.instrument.clear()

59 # if the command isn’t successful the first time we send it again
if it fails to often a timeout error will be raised

61 while retry < self.MAX_RETRIES and not success:

63 try:
if the debug output is enabled we dump the msg to the console

65 if self.__debug:
print(’Write cmd: ’ + str(msg))

67

send the command to the instrument
69 self.instrument.write(msg)

the digital interface needs some time to process the command
71 sleep(self.COMMAND_DELAY)

73 # if we await a return then data is read from the instrument.
Otherwise we just set data to True to show the user that the write was successful

75 if await_return:
data = self.instrument.read()

77 # if the debug output is enabled we dump the response to the console
if self.__debug:

79 print(’Read: ’ + str(data))
else:

81 data = True

83 # if we reach this point the communication was successful
success = True

85

except pyvisa.VisaIOError:
87 retry += 1

89 # if the command was successful we return the data to the user
otherwise we raise a timeout error

91 if success:
return data

93 else:
raise TimeoutError("The command \"" + str(msg) + "\" "

95 + "has been sent " + str(retry+1) + " times "
+ "but no response has been received.")

97

def _write(self, cmd):
99 # a write command is just a query without the read

return self._query(cmd, await_return=False)
101

def enable_debug_output(self):
103 """Enables the debug output of all communication.The messages will be printed on the console.

"""
self.__debug = True

105

def disable_debug_output(self):
107 """Disables the debug output. Nothing will be printed to the console that you haven’t

specified yourself."""
self.__debug = False

109

def reset(self):
111 self._write("*RST")

113 def set_voltage(self, value):
self._write("VOLT:" + str(value))

115

def get_voltage(self):
117 return float(self._query("VOLT?"))

119 def measure_voltage(self):
return float(self._query("MEAS:VOLT?"))

132

A.2. Source codes

121

def set_current(self, value):
123 self._write("CURR:" + str(value))

125 def get_current(self):
return float(self._query("CURR?"))

127

def measure_current(self):
129 return float(self._query("MEAS:CURR?"))

131 def identify(self):
return self._query("IDN?")

133

def ramp_voltage(self, target_voltage, slope):
135 self._ramp(target_voltage, slope, self.UNIT_VOLTAGE)

137 def ramp_current(self, target_current, slope):
self._ramp(target_current, slope, self.UNIT_CURRENT)

139

def _ramp(self, target_value, slope, unit):
141

falling = False
143 finished = False

145 # ensure that slope is positive (no matter what the user entered)
slope = abs(slope)

147

get the current value (current as up-to-date)
149 if unit is self.UNIT_VOLTAGE:

start_value = self.measure_voltage()
151 else:

start_value = self.measure_current()
153

check if we have a rising or a falling ramp
155 if target_value < start_value:

falling = True
157 slope *= -1

159 # get the start time and the start value
starting_time = datetime.now()

161

while not finished:
163

info how much time has passed in seconds
165 delta_time = (datetime.now() - starting_time).total_seconds()

167 # calculate the value that should be set
value_to_set = (delta_time * slope) + start_value

169

check if we reached our target value
171 if falling:

if value_to_set < target_value:
173 value_to_set = target_value

finished = True
175 else:

if value_to_set > target_value:
177 value_to_set = target_value

finished = True
179

send the voltage to the device
181 if unit is self.UNIT_VOLTAGE:

self.set_voltage(value_to_set)
183 else:

self.set_current(value_to_set)

sources/Heinzinger.py

A.2.8. MagnetPhysik FH54 Magnetometer

1 import serial # Serial communication
import io # Input / Output buffer

3 import re # regular expressions
from time import sleep # sleep command

5

7 class FH54:
""""Implements the serial protocol of the Magnet-Physik FH 54 magnetometer"""

9

define Ranges that are available (depends on the probe connected)
11 # the Magnet-Physik HS-TGB5-104020 probe has a range from 3mT to 3T

RANGE_30uT = 1

133

Appendix A. Appendix

13 # RANGE_300uT = 2
RANGE_3mT = 3

15 RANGE_30mT = 4
RANGE_300mT = 5

17 RANGE_3T = 6
RANGE_30T = 7

19

ranges_available = {’3mT’: RANGE_3mT, ’30mT’: RANGE_30mT, ’300mT’: RANGE_300mT, ’3T’: RANGE_3T}
21

def __init__(self):
23 # define some variables that are used to store the connection info of the serial interface

self.__connected = False
25 self.__sio = io.TextIOWrapper

self.__ser = serial.Serial
27

def connect(self, port, baud_rate=19200, timeout=1):
29 """function used to connect to the magnetometer over the serial interface

31 IMPORTANT: This function needs to be called before the other functions are available

33 Args:
port (str): The com port the magnetometer is connected to.

35 under Windows usually something like "COM1"
under Linux usually something like "dev/tty1"

37 boud_rate (int): The boud rate that is set at the magnetometer
timeout (int): Timeout for serial commands. You usually don’t have to touch this

39

Returns:
41 bool: The return value. True for success, False otherwise.

"""
43

if not self.__connected:
45 # connect to the magnetometer

self.__ser = serial.Serial(port=port, baudrate=baud_rate, timeout=timeout)
47 self.__sio = io.TextIOWrapper(io.BufferedRWPair(self.__ser, self.__ser))

self.__connected = True
49

check if the serial port was opened successfully; if not then open the port
51 if not self.__ser.isOpen():

self.__ser.open()
53

def disconnect(self):
55 """disconnect the serial port"""

if self.__connected:
57 self.__ser.close()

self.__connected = False
59

def _query(self, cmd):
61 """internal function to communicate with the magnetometer"""

if not self.__connected:
63 raise RuntimeError(’you need to call connect() first’)

else:
65 self.__ser.flushInput()

67 # Write the command to the serial port
self.__sio.write(cmd + ’\r’)

69 self.__sio.flush() # it is buffering. required to get the data out *now*

71 # wait a short time for the multimeter to process the request
if we get bytes back then we can read them

73 bytes_to_read = 0
while bytes_to_read == 0:

75 sleep(0.1)
bytes_to_read = self.__ser.inWaiting()

77

read the response and convert it to a string.
79 raw_data = self.__ser.read(bytes_to_read)

return raw_data.decode(’utf-8’)
81

def __query_flag(self, cmd):
83 """internal function to query values that have only true or false as answer"""

raw_data = self._query(str(cmd))
85

filter everything that is not a digit
87 value = int(re.sub(’[^\d]’, ’’, raw_data))

89 if value == 0:
return False

91 else:
return True

93

def read(self):
95 """returns the current reading in the unit T (Tesla)"""

raw_data = self._query(’?MEAS’)
97

if ’FULLS’ in raw_data:
99 return ’Overflow’

else:

134

A.2. Source codes

101 # split the string in value and unit
data_list = raw_data.split(’ ’)

103 value = float(re.sub(’[^\d.-]’, ’’, data_list[0]))
unit = data_list[1]

105

convert value based on unit reading
107 if ’k’ in unit:

value *= 1e3
109 elif ’m’ in unit:

value /= 1e3
111 elif ’u’ in unit:

value /= 1e6
113

return value
115

def set_mode_ac(self):
117 """sets the device to magnetic AC measurement mode"""

return self._query(’#MODE 1’)
119

def set_mode_dc(self):
121 """sets the device to magnetic DC measurement mode"""

return self._query(’#MODE 0’)
123

def get_mode(self):
125 """returns the current magnetic measurement mode (AC or DC)"""

raw_data = self._query(’?MODE’)
127

if ’0’ in raw_data:
129 return ’DC’

else:
131 return ’AC’

133 @staticmethod
def get_ranges_available(self):

135 """return the available ranges"""
return self.ranges_available

137

def set_range(self, measurement_range):
139 """sets the range of the magnetometer

The parameter range can either be the range-index 1...7 or the word
141

examples all commands do the same:
143 set_range(3)

set_range(FH54.RANGE_3mT)
145 set_range(’3mT’)

"""
147

if the range is passed as string
149 if ’T’ in measurement_range:

range_id = self.ranges_available[measurement_range]
151 else:

range_id = measurement_range
153

send the command to the device
155 raw_data = self._query(’#RANGE ’ + range_id)

return raw_data
157

def get_range_id(self):
159 """returns the range id that corresponds the current range of the magnetometer"""

raw_data = self._query(’?RANGE’)
161

filter everything that is not a digit
163 value = int(re.sub(’[^\d]’, ’’, raw_data))

165 return value

167 def get_range(self):
"""returns the current range of the magnetometer"""

169

current_range_id = self.get_range_id()
171

for measurement_range, range_id in self.ranges_available.items():
173 if range_id == current_range_id:

return measurement_range
175

return "unknown range with id " + str(current_range_id)
177

def set_autorange(self, flag):
179 """sets the autoranging mode"""

if flag:
181 return self._query(’#AUTO 1’)

else:
183 return self._query(’#AUTO 0’)

185 def get_autorange(self):
"""returns True it the magnetometer is in autoranging mode"""

187 return self.__query_flag(’?AUTO’)

135

Appendix A. Appendix

189 def zero(self):
"""starts the zero function

191 ensure that the zero-field chamber is put over the sensor tip"""
return self._query(’#ZERO 1’)

193

def get_zero_complete(self):
195 """returns True if the zeroing is finished"""

raw_data = self._query(’?ZERO’)
197 if "OK" in raw_data:

return True
199 else:

return False
201

def set_filter(self, flag):
203 """enables or disables the filter"""

if flag:
205 return self._query(’#FILTER 1’)

else:
207 return self._query(’#FILTER 0’)

209 def get_filter(self):
"""returns if the filter is enabled"""

211 return self.__query_flag(’?FILTER’)

213 def set_unit_Tesla(self):
"""sets the displaying unit to Tesla"""

215 return self._query(’#UNIT 0’)

217 def set_unit_Gauss(self):
"""sets the displaying unit to Gauss"""

219 return self._query(’#UNIT 1’)

221 def set_unit_Ampere_per_meter(self):
"""sets the displaying unit to A/m"""

223 return self._query(’#UNIT 2’)

225 def get_unit(self):
"""returns the unit of the device"""

227 raw_data = self._query(’?UNIT’)

229 # filter everything that is not a digit
value = int(re.sub(’[^\d]’, ’’, raw_data))

231

if value == 0:
233 return "T"

elif value == 1:
235 return "G"

else:
237 return "A/m"

239 def get_temp(self):
"""returns the current temperature reading"""

241 raw_data = self._query(’?TEMP’)

243 # filter everything that is not a digit, the decimal dot or a minus-sign
value = float(re.sub(’[^\d.-]’, ’’, raw_data))

245 return value

247 def set_temp_off(self):
"""disables the displaying of the temperature"""

249 return self._query(’#TEMP 0’)

251 def set_temp_celsius(self):
"""displays the temperature in degree celsius"""

253 return self._query(’#TEMP 1’)

255 def set_temp_fahrenheit(self):
"""displays the temperature in degree fahrenheit"""

257 return self._query(’#TEMP 2’)

259 def set_limit(self, flag):
"""enables or disables the limit mode"""

261 if flag:
return self._query(’#LIMIT 1’)

263 else:
return self._query(’#LIMIT 0’)

265

def get_limit(self):
267 """returns True if the limit function is enabled"""

self.__query_flag(’?LIMIT’)
269

def set_upper_limit(self, measurement_range, value, unit=0):
271 """sets and enables the upper limit"""

return self._query(’#LIMU ’ + str(measurement_range) + ’,’ + str(value) + ’,’ + str(unit))
273

def set_lower_limit(self, measurement_range, value, unit=0):
275 """sets and enables the lower limit"""

return self._query(’#LIML ’ + str(measurement_range) + ’,’ + str(value) + ’,’ + str(unit))

136

A.2. Source codes

277

def get_upper_limit(self):
279 """returns the current upper limit"""

raw_data = self._query(’?LIMU’)
281 data_list = raw_data.split(’,’)

return data_list
283

def get_lower_limit(self):
285 """returns the current lower limit"""

raw_data = self._query(’?LIML’)
287 data_list = raw_data.split(’,’)

return data_list
289

def set_relative_parameters(self, measurement_range, value, unit=0):
291 """sets and enables the relative measurement function"""

return self._query(’#SETREL ’ + str(measurement_range) + ’,’ + str(value) + ’,’ + str(unit))
293

def get_relative_parameters(self):
295 """returns the relative measurement parameters"""

raw_data = self._query(’?SETREL’)
297 data_list = raw_data.split(’,’)

return data_list
299

def set_relative(self, flag):
301 """enables or disables the relative mode"""

if flag:
303 return self._query(’#REL 1’)

else:
305 return self._query(’#REL 0’)

307 def get_relative(self):
"""returns True if the relative function is enabled"""

309 self.__query_flag(’?REL’)

311 def set_peak(self, flag):
"""enables or disables the peak detection mode"""

313 if flag:
return self._query(’#PEAK 1’)

315 else:
return self._query(’#PEAK 0’)

317

def get_peak(self):
319 """returns True if the peak detection mode is enabled

321 In DC mode the peak values are displayed in the first line of the display
and can be accessed by use of the get_meas() function.

323 """
self.__query_flag(’?REL’)

325

def set_max(self, flag):
327 """enables or disables the min/max mode"""

if flag:
329 return self._query(’#MAX 2’)

else:
331 return self._query(’#MAX 0’)

333 def get_max(self, flag):
"""returns True if the magnetometer is in min/max mode"""

335 return self.__query_flag(’?MAX’)

337 def read_max(self):
"""read the stored maximum value"""

339 raw_data = self._query(’?MMAX’)

341 # split the string in value and unit
data_list = raw_data.split(’ ’)

343 value = float(re.sub(’[^\d.-]’, ’’, data_list[0]))
unit = data_list[1]

345

convert value based on unit reading
347 if ’k’ in unit:

value *= 1e3
349 elif ’m’ in unit:

value /= 1e3
351 elif ’u’ in unit:

value /= 1e6
353

return value
355

def read_min(self):
357 """read the stored minimum value"""

raw_data = self._query(’?MMIN’)
359

split the string in value and unit
361 data_list = raw_data.split(’ ’)

value = float(re.sub(’[^\d.-]’, ’’, data_list[0]))
363 unit = data_list[1]

137

Appendix A. Appendix

365 # convert value based on unit reading
if ’k’ in unit:

367 value *= 1e3
elif ’m’ in unit:

369 value /= 1e3
elif ’u’ in unit:

371 value /= 1e6

373 return value

375 def reset_min_max(self):
"""Resets the stored min / max values"""

377 return self._query(’#RESET’)

379 def set_local_operation(self):
"""switch to local control"""

381 return self._query(’#LOCAL’)

383 def get_local_operation(self):
"""returns True if the unit is in local control mode"""

385 return self.__query_flag(’?LOCAL’)

387 def set_number_of_measurements(self, count):
"""defines how many measurements will be returned when started with read_multi_start()

389 count = 0 means infinite until read_multi_stop() is executed
"""

391 return self._query(’#NMEAS ’ + str(count))

393 def get_number_of_measurements(self):
"""returns the number of measurements that will be executed when started with read_multi_start

()
395 count = 0 means infinite until read_multi_stop() is executed

"""
397 return self._query(’?NMEAS’)

399 def read_multi_start(self):
"""starts the automatic measurement"""

401 return self._query(’#MULTI 1’)

403 def read_multi_stop(self):
"""stops the automatic measurement"""

405 return self._query(’#MULTI 0’)

407 def read_multi_enabled(self):
"""returns True if the automatic measurement is enabled"""

409 return self.__query_flag(’?MULTI’)

411 def set_field_correction(self, flag):
"""enables or disables linearity correction"""

413 if flag:
return self._query(’#CFIELD 1’)

415 else:
return self._query(’#CFIELD 0’)

417

def get_field_correction(self):
419 """returns True if the linearity correction is enabled"""

self.__query_flag(’?CFIELD’)
421

def set_temp_correction(self, flag):
423 """enables or disables temperature correction"""

if flag:
425 return self._query(’#CTEMP 1’)

else:
427 return self._query(’#CTEMP 0’)

429 def get_temp_correction(self):
"""returns True if the temperature correction is enabled"""

431 self.__query_flag(’?CTEMP’)

433 def system_reset(self):
"""executes a system reset of the magnetometer"""

435 self.__query_flag(’#INIT’)

sources/MagnetPhysik.py

A.2.9. Philips PM5193 function generator

1 import pyvisa
from time import sleep

3

138

A.2. Source codes

5 class PM5193:
"""library to control / read out the Philips programmable synthesizer / function generator"""

7

"""
9 ##########

List of device specific commands and parameters based on
11 the programming section of the manual (section 1.2.8; starting at page 16)

##########
13 """

15 # the device is not fast enough so we need to wait a bit after the commands we send.
COMMAND_DELAY = 0.01 # Unit: s

17

general commands
19 OPERATION_IDENTIFY = "ID?"

21 # frequency commands
OPERATION_BASE_FREQUENCY = "F"

23

Frequency limits based on the specifications (0.1 mHz to 50 MHz)
25 UPPER_FREQUENCY_LIMIT = 50000000

LOWER_FREQUENCY_LIMIT = 0.0001
27

amplitude commands
29 OPERATION_AMPLITUDE_PEAK_PEAK = "LA"

OPERATION_AMPLITUDE_RMS = "LR"
31 OPERATION_AMPLITUDE_DC_OFFSET = "LD"

33 # Voltage limits based on the specifications
These limits are slightly different for different waveforms.

35 LOWER_LIMIT_SINE_VOLTAGE = 0
UPPER_LIMIT_SINE_VOLTAGE_PEAK_PEAK = 20

37 UPPER_LIMIT_SINE_VOLTAGE_RMS = 7

39 LOWER_LIMIT_TRIANGULAR_VOLTAGE = 0
UPPER_LIMIT_TRIANGULAR_VOLTAGE_PEAK_PEAK = 20

41 UPPER_LIMIT_TRIANGULAR_VOLTAGE_RMS = 5.7

43 LOWER_LIMIT_SQUARE_VOLTAGE = 0
UPPER_LIMIT_SQUARE_VOLTAGE_PEAK_PEAK = 20

45 UPPER_LIMIT_SQUARE_VOLTAGE_RMS = 10

47 LOWER_LIMIT_DC_VOLTAGE = -10
UPPER_LIMIT_DC_VOLTAGE = 10

49

waveform commands
51 OPERATION_WAVEFORM_SINE = "WS"

OPERATION_WAVEFORM_TRIANGULAR = "WS"
53 OPERATION_WAVEFORM_SQUARE = "WS"

55 # output commands
OPERATION_AC_OFF = "AC0"

57 OPERATION_AC_ON = "AC1"

59 # There is no RESET option; so we define a state that is "safe" and can be considered similar to a
reset.

Set DC offset level to 0 Volt
61 # Disable AC output

Set AC level to 0 Volt p-p
63 # Set Waveform to sine

Set Frequency to 0 Hz
65 OPERATION_RESET = "LD 0; AC0; LA 0; WS; F 0"

67 """
##########

69 General functions to communicate with the device
##########

71 """

73 # if we have no information about the waveform we assume it is sine and set the limits accordingly
the values of those variables will change whenever the waveform is changed.

75 lower_limit_voltage = LOWER_LIMIT_SINE_VOLTAGE
upper_limit_voltage_pp = UPPER_LIMIT_SINE_VOLTAGE_PEAK_PEAK

77 upper_limit_voltage_rms = UPPER_LIMIT_SINE_VOLTAGE_RMS

79 def __init__(self, rm=None):

81 # variable to store if the debug output was enabled
self.__debug = False

83 self.instrument = None

85 # if we have no resource manager then get one
if rm is None:

87 self.rm = pyvisa.ResourceManager()
else:

89 self.rm = rm

91 def enable_debug_output(self):

139

Appendix A. Appendix

"""Enables the debug output of all communication. The messages will be printed on the console.
"""

93 self.__debug = True

95 def disable_debug_output(self):
"""Disables the debug output. Nothing will be printed to the console that you haven’t

specified yourself."""
97 self.__debug = False

99 def connect(self, visa_resource_name):

101 # Connect to the device
self.instrument = self.rm.open_resource(visa_resource_name)

103

define the termination characters as stated in the manual
105 self.instrument.read_termination = ’\r’

self.instrument.write_termination = ’\r’
107

the instrument handle is returned although the user most likely doesn’t need it
109 return self.instrument

111 def _write(self, msg):
if the debug output is enabled we dump the msg to the console

113 if self.__debug:
print(’Write cmd: ’ + str(msg))

115

send the command to the instrument
117 self.instrument.write(msg)

sleep(self.COMMAND_DELAY)
119

def _query(self, msg):
121 # if the debug output is enabled we dump the msg to the console

if self.__debug:
123 print(’Query cmd: ’ + str(msg))

125 # send the command to the instrument
reading = self.instrument.query(msg)

127 sleep(self.COMMAND_DELAY)

129 if self.__debug:
print(’Query response: ’ + str(reading))

131

return reading
133

def _read(self):
135 # send the command to the instrument

reading = self.instrument.read()
137 sleep(self.COMMAND_DELAY)

139 if self.__debug:
print(’Query response: ’ + str(reading))

141

return reading
143

def disconnect(self):
145 self.instrument.close()

147 def identify(self):
return self._query(self.OPERATION_IDENTIFY)

149

def reset(self):
151 self._write(self.OPERATION_RESET)

153 """
##########

155 Instrument specific functions
##########

157 """

159 """ Waveform section """

161 def set_waveform_sine(self):
self.set_voltage_limits(self.OPERATION_WAVEFORM_SINE)

163 self._write(self.OPERATION_WAVEFORM_SINE)

165 def set_waveform_triangular(self):
self.set_voltage_limits(self.OPERATION_WAVEFORM_TRIANGULAR)

167 self._write(self.OPERATION_WAVEFORM_TRIANGULAR)

169 def set_waveform_square(self):
self.set_voltage_limits(self.OPERATION_WAVEFORM_SQUARE)

171 self._write(self.OPERATION_WAVEFORM_SQUARE)

173 def set_frequency(self, frequency):
"""Sets the base frequency in Hz"""

175

if self.LOWER_FREQUENCY_LIMIT <= frequency <= self.UPPER_FREQUENCY_LIMIT:
177 msg = self.OPERATION_BASE_FREQUENCY + " " + str(frequency)

140

A.2. Source codes

self._write(msg)
179 else:

raise ValueError("The output frequency must be within " + str(self.LOWER_FREQUENCY_LIMIT)
+ " Hz to "

181 + str(self.UPPER_FREQUENCY_LIMIT) + " Hz")

183 def set_voltage_pp(self, voltage_pp):
"""Sets the Peak-Peak voltage in volts"""

185

check for the correct voltages
187 if self.lower_limit_voltage <= voltage_pp <= self.upper_limit_voltage_pp:

msg = self.OPERATION_AMPLITUDE_PEAK_PEAK + " " + str(voltage_pp)
189 self._write(msg)

else:
191 raise ValueError("The output peak to peak voltage must be within " + str(self.

lower_limit_voltage)
+ " V to " + str(self.upper_limit_voltage_pp) + " V")

193

def set_voltage_rms(self, voltage_rms):
195 """Sets the Peak-Peak voltage in volts"""

197 # check for the correct voltages
if self.lower_limit_voltage <= voltage_rms <= self.upper_limit_voltage_rms:

199 msg = self.OPERATION_AMPLITUDE_RMS + " " + str(voltage_rms)
self._write(msg)

201 else:
raise ValueError("The output RMS voltage must be within " + str(self.lower_limit_voltage)

203 + " V to " + str(self.upper_limit_voltage_rms) + " V")

205 def set_dc_offset(self, offset_voltage):
"""Sets the DC offset voltage in volts"""

207

check for the correct voltages
209 if self.LOWER_LIMIT_DC_VOLTAGE <= offset_voltage <= self.UPPER_LIMIT_DC_VOLTAGE:

msg = self.OPERATION_AMPLITUDE_DC_OFFSET + " " + str(offset_voltage)
211 self._write(msg)

else:
213 raise ValueError("The DC offset voltage must be within " + str(self.LOWER_LIMIT_DC_VOLTAGE

)
+ " V to " + str(self.UPPER_LIMIT_DC_VOLTAGE) + " V")

215

def disable_ac(self):
217 """disables the AC output"""

self._write(self.OPERATION_AC_OFF)
219

def enable_ac(self):
221 """enables the AC output"""

self._write(self.OPERATION_AC_ON)
223

"""
225 ##########

Helper functions
227 ##########

"""
229

def set_voltage_limits(self, waveform):
231 """set the limits based on the currently selected waveform"""

233 if waveform is self.OPERATION_WAVEFORM_SINE:
self.lower_limit_voltage = self.LOWER_LIMIT_SINE_VOLTAGE

235 self.upper_limit_voltage_pp = self.UPPER_LIMIT_SINE_VOLTAGE_PEAK_PEAK
self.upper_limit_voltage_rms = self.UPPER_LIMIT_SINE_VOLTAGE_RMS

237

elif waveform is self.OPERATION_WAVEFORM_TRIANGULAR:
239 self.lower_limit_voltage = self.LOWER_LIMIT_TRIANGULAR_VOLTAGE

self.upper_limit_voltage_pp = self.UPPER_LIMIT_TRIANGULAR_VOLTAGE_PEAK_PEAK
241 self.upper_limit_voltage_rms = self.UPPER_LIMIT_TRIANGULAR_VOLTAGE_RMS

243 elif waveform is self.OPERATION_WAVEFORM_SQUARE:
self.lower_limit_voltage = self.LOWER_LIMIT_SQUARE_VOLTAGE

245 self.upper_limit_voltage_pp = self.UPPER_LIMIT_SQUARE_VOLTAGE_PEAK_PEAK
self.upper_limit_voltage_rms = self.UPPER_LIMIT_SQUARE_VOLTAGE_RMS

sources/PhilipsPM.py

A.2.10. Keithley 199 Multimeter

import pyvisa
2

4 class Keithley199:

141

Appendix A. Appendix

6 # define the commands as listed in the Table 3-8 (Device-Dependent Command Summary)
on page 3-14 of the Keithley 199 handbook.

8 FUNCTION_DC_VOLTS = "F0"
FUNCTION_AC_VOLTS = "F1"

10 FUNCTION_OHMS = "F2"
FUNCTION_DC_CURRENT = "F3"

12 FUNCTION_AC_CURRENT = "F4"
FUNCTION_ACV_DB = "F5"

14 FUNCTION_ACA_DB = "F6"

16 RANGE_AUTO = "R0"

18 RANGE_300mV = "R1"
RANGE_3V = "R2"

20 RANGE_30V = "R3"
RANGE_300V = "R4"

22 RANGE_30mA = "R1"
RANGE_3A = "R2"

24 RANGE_300Ohm = "R1"
RANGE_3kOhm = "R2"

26 RANGE_30kOhm = "R3"
RANGE_300kOhm = "R4"

28 RANGE_3MOhm = "R5"
RANGE_30MOhm = "R6"

30 RANGE_300MOhm = "R7"

32 DEFAULT_CONFIGURATION = "L0"

34 OPERATION_EXECUTE = "X"

36 DISPLAY = "D"

38 def __init__(self, rm=None):

40 # variable to store if the debug output was enabled
self.__debug = False

42 self.instrument = None

44 # if we have no resource manager then get one
if rm is None:

46 self.rm = pyvisa.ResourceManager()
else:

48 self.rm = rm

50 def enable_debug_output(self):
"""Enables the debug output of all communication.The messages will be printed on the console.

"""
52 self.__debug = True

54 def disable_debug_output(self):
"""Disables the debug output. Nothing will be printed to the console that you haven’t

specified yourself."""
56 self.__debug = False

58 def connect(self, visa_resource_name):

60 # Connect to the device
self.instrument = self.rm.open_resource(visa_resource_name)

62

define the termination characters as stated in the manual
64 self.instrument.read_termination = ’\r’

self.instrument.write_termination = ’\r’
66

the instrument handle is returned although the user most likely doesn’t need it
68 return self.instrument

70 def _write(self, msg):
if the debug output is enabled we dump the msg to the console

72 if self.__debug:
print(’Write cmd: ’ + str(msg))

74

send the command to the instrument
76 self.instrument.write(msg)

78 def _read(self):
return self.instrument.read()

80

def disconnect(self):
82 self.instrument.close()

84 def reset(self):
self._write(Keithley199.DEFAULT_CONFIGURATION + Keithley199.OPERATION_EXECUTE)

86

"""
88 #############################

Instrument specific functions
90 #############################

142

A.2. Source codes

"""
92

def measure(self):
94

value = self._read()
96

if we receive a data format that is strange, then command the dmm to use the data format
without prefix

98 # and get the reading once more
this will probably only be executed on the first measurement

100 if value[0] is not "+" and value[0] is not "-":
self._write(’G1X’)

102 value = self._read()

104 return float(value)

106 def set_function_dc_volts(self):
puts the device into dc voltage measurement mode

108 msg = Keithley199.FUNCTION_DC_VOLTS + Keithley199.OPERATION_EXECUTE
self._write(msg)

110

def set_function_ac_volts(self):
112 # puts the device into ac voltage measurement mode

msg = Keithley199.FUNCTION_AC_VOLTS + Keithley199.OPERATION_EXECUTE
114 self._write(msg)

116 def set_function_ohms(self):
puts the device into ohms measurement mode

118 msg = Keithley199.FUNCTION_OHMS + Keithley199.OPERATION_EXECUTE
self._write(msg)

120

def set_function_dc_current(self):
122 # puts the device into dc current measurement mode

msg = Keithley199.FUNCTION_DC_CURRENT + Keithley199.OPERATION_EXECUTE
124 self._write(msg)

126 def set_function_ac_current(self):
puts the device into ac current measurement mode

128 msg = Keithley199.FUNCTION_AC_CURRENT + Keithley199.OPERATION_EXECUTE
self._write(msg)

130

def set_function_ac_volts_db(self):
132 # puts the device into ac voltage measurement mode and output the dB

msg = Keithley199.FUNCTION_ACV_DB + Keithley199.OPERATION_EXECUTE
134 self._write(msg)

136 def set_function_ac_current_db(self):
puts the device into ac current measurement mode and output the dB

138 msg = Keithley199.FUNCTION_ACA_DB + Keithley199.OPERATION_EXECUTE
self._write(msg)

140

def set_range(self, dmm_range):
142 msg = dmm_range + Keithley199.OPERATION_EXECUTE

self._write(msg)
144

def display_text(self, text):
146 """displays a text on the display (max 10 characters)"""

148 # we need to substitute spaces with the @ character (the @ is displayed as space on the
Keithley 199)

text = text.replace(" ", "@")
150 msg = Keithley199.DISPLAY + str(text) + Keithley199.OPERATION_EXECUTE

self._write(msg)
152

def reset_display(self):
154 # resets the display to show the current reading again

msg = Keithley199.DISPLAY + Keithley199.OPERATION_EXECUTE
156 self._write(msg)

sources/Keithley199.py

A.2.11. Keithley SourceMeter 2600 series

"""
2 Library to access the basic functionality of the Keithley SourceMeter 2600 series using pyvisa for

communication.

4 written by: Peter Luidolt @ TUGraz
last modified: 2016-12-21

6 """

143

Appendix A. Appendix

8 import pyvisa

10

noinspection PyProtectedMember
12 class _SMUChannel:

variables to store the ranges that have been selected
14 # we need this information to check if the limit value is valid

__current_range = 0
16 __voltage_range = 0

18 def __init__(self, smu_object, smu_channel):
"""

20 Implements the functionality for one individual channel of the SMU.

22 Args:
smu_object (SMU26xx): the SMU the channel belongs to

24 smu_channel: the channel you want to connect to

26 Returns:
an "channel" object that has methods to control the channel

28 """
store the parameters in variables that can be accessed from other methods

30 self.__smu = smu_object
self.__channel = smu_channel

32

"""
34 #############

commands for setting the mode / ranges / limits / levels
36 #############

"""
38

def identify(self):
40 """

returns a string with model and channel identification
42 """

model = self.__smu.identify_model()
44

if self.__channel is SMU26xx.CHANNEL_A:
46 channel = "Channel A"

else:
48 channel = "Channel B"

50 identification_string = str(model) + " " + str(channel)
return identification_string

52

def reset(self):
54 """

Resets the channel to the default setting of the SMU.
56 """

self.__smu._reset(self.__channel)
58

def set_mode_voltage_source(self):
60 """

Sets the channel into voltage source mode.
62

In this mode you set the voltage and can measure current, resistance and power.
64 """

self.__smu._set_mode(self.__channel, SMU26xx.VOLTAGE_MODE)
66

def set_mode_current_source(self):
68 """

Sets the channel into current source mode.
70

In this mode you set the current and can measure voltage, resistance and power.
72 """

self.__smu._set_mode(self.__channel, SMU26xx.CURRENT_MODE)
74

def enable_voltage_autorange(self):
76 """

Enables the autorange feature for the voltage source and measurement
78 """

self.__smu._set_autorange(self.__channel, SMU26xx.UNIT_VOLTAGE, SMU26xx.STATE_ON)
80

def disable_voltage_autorange(self):
82 """

Disables the autorange feature for the voltage source and measurement
84 """

self.__smu._set_autorange(self.__channel, SMU26xx.UNIT_VOLTAGE, SMU26xx.STATE_OFF)
86

def enable_current_autorange(self):
88 """

Enables the autorange feature for the current source and measurement
90 """

self.__smu._set_autorange(self.__channel, SMU26xx.UNIT_CURRENT, SMU26xx.STATE_ON)
92

def disable_current_autorange(self):
94 """

Disables the autorange feature for the current source and measurement

144

A.2. Source codes

96 """
self.__smu._set_autorange(self.__channel, SMU26xx.UNIT_CURRENT, SMU26xx.STATE_OFF)

98

def set_voltage_range(self, value):
100 """

Sets the range for the voltage.
102

Args:
104 value: set to the maximum expected voltage be sourced or measured

106 Examples:
to set the voltage range to 2 V use:

108 >>> self.set_voltage_range(2)

110 Note:
The range is applied to the source function as well as the measurement function.

112 """

114 # store the requested voltage range; we check it when the limit is set
self.__voltage_range = value

116 self.__smu._set_range(self.__channel, SMU26xx.UNIT_VOLTAGE, value)

118 def set_current_range(self, value):
"""

120 Sets the range for the current.

122 Args:
value: set to the maximum expected current be sourced or measured

124

Examples:
126 to set the current range to 100 mA use:

>>> self.set_voltage_range(0.1)
128

you can also use scientific notation: i.e. set the current to 1 uA
130 >>> self.set_voltage_range(1e-6)

132 Note:
The range is applied to the source function as well as the measurement function.

134 """
store the requested current range; we check it when the limit is set

136 self.__current_range = value
self.__smu._set_range(self.__channel, SMU26xx.UNIT_CURRENT, value)

138

def set_voltage_limit(self, value):
140 """

Limits the voltage output of the current source.
142

Args:
144 value: set to the maximum allowed voltage.

146 Examples:
to set the limit to 20 V

148 >>> self.set_voltage_limit(20)

150 Note:
If you are in voltage source mode the voltage limit has no effect.

152

Raises:
154 ValueError: If ‘value‘ is bigger then the selected voltage range.

"""
156

check if the limit is within the range
158 if value <= self.__voltage_range:

self.__smu._set_limit(self.__channel, SMU26xx.UNIT_VOLTAGE, value)
160 else:

raise ValueError("The limit is not within the range. Please set the range first")
162

def set_current_limit(self, value):
164 """

Limits the current output of the voltage source.
166

Args:
168 value: set to the maximum allowed current.

170 Examples:
to set the limit to 1 mA (both of the lines below do the same)

172 >>> self.set_current_limit(0.001)
>>> self.set_current_limit(1e-3)

174

Note:
176 If you are in current source mode the current limit has no effect.

178 Raises:
ValueError: If ‘value‘ is bigger then the selected current range.

180 """

182 # check if the limit is within the range
if value <= self.__current_range:

145

Appendix A. Appendix

184 self.__smu._set_limit(self.__channel, SMU26xx.UNIT_CURRENT, value)
else:

186 raise ValueError("The limit is not within the range. Please set the range first")

188 def set_power_limit(self, value):
"""

190 Limits the output power.

192 Args:
value: set to the maximum allowed power.

194 if you set the ‘value‘ to 0 the limit will be disabled

196 Examples:
to set the limit to 1 mW (both of the lines below do the same)

198 >>> self.set_power_limit(0.001)
>>> self.set_power_limit(1e-3)

200

to disable the output power limit
202 >>> self.set_power_limit(0)

"""
204 self.__smu._set_limit(self.__channel, SMU26xx.UNIT_POWER, value)

206 def set_voltage(self, value):
"""

208 Sets the output level of the voltage source.

210 Args:
value: source voltage level.

212

Examples:
214 to set the output level to 500 mV

>>> self.set_voltage(0.5)
216

Note:
218 If the source is configured as a voltage source and the output is on,

the new setting is sourced immediately.
220

The sign of ‘level‘ dictates the polarity of the source.
222 Positive values generate positive voltage from the high terminal of the source relative to

the low terminal.
Negative values generate negative voltage from the high terminal of the source relative to

the low terminal.
224 """

self.__smu._set_level(self.__channel, SMU26xx.UNIT_VOLTAGE, value)
226

def set_current(self, value):
228 """

Sets the output level of the current source.
230

Args:
232 value: source current level.

234 Examples:
to set the output level to 10 uA

236 >>> self.set_current(10e-6)

238 Note:
If the source is configured as a current source and the output is on, the new setting is

sourced immediately.
240

The sign of ‘level‘ dictates the polarity of the source.
242 Positive values generate positive current from the high terminal of the source relative to

the low terminal.
Negative values generate negative current from the high terminal of the source relative to

the low terminal.
244 """

self.__smu._set_level(self.__channel, SMU26xx.UNIT_CURRENT, value)
246

def enable_output(self):
248 """

Sets the source output state to on.
250

Examples:
252 to enable the output

>>> self.enable_output()
254

Note:
256 When the output is switched on, the SMU sources either voltage or current, as set by

set_mode_voltage_source() or set_mode_current_source()
258 """

self.__smu._set_output_state(self.__channel, SMU26xx.STATE_ON)
260

def disable_output(self):
262 """

Sets the source output state to off.
264

Examples:
266 to disable the output

146

A.2. Source codes

>>> self.disable_output()
268

Note:
270 When the output is switched off, the SMU goes in to low Z mode (meaning: the output is

shorted).
Be careful when using the SMU for measurement of high power devices. The disabling of the

output could lead
272 high current flow.

"""
274 self.__smu._set_output_state(self.__channel, SMU26xx.STATE_OFF)

276 """
#############

278 commands for setting what measurement will be shown at the display of the SMU channel
#############

280 """

282 def display_voltage(self):
"""

284 The voltage measurement will be displayed on the SMU.
"""

286 self.__smu._set_display(self.__channel, SMU26xx.DISPLAY_VOLTAGE)

288 def display_current(self):
"""

290 The current measurement will be displayed on the SMU.
"""

292 self.__smu._set_display(self.__channel, SMU26xx.DISPLAY_CURRENT)

294 def display_resistance(self):
"""

296 The calculated resistance will be displayed on the SMU.
"""

298 self.__smu._set_display(self.__channel, SMU26xx.DISPLAY_RESISTANCE)

300 def display_power(self):
"""

302 The calculated power will be displayed on the SMU.
"""

304 self.__smu._set_display(self.__channel, SMU26xx.DISPLAY_POWER)

306 """
#############

308 commands for setting the sense mode (2-wire or 4-wire)
#############

310 """

312 def set_sense_2wire(self):
"""

314 Setting the the sense mode to local (2-wire)

316 Notes:
Corresponding LUA command (SMU 2600B reference manual page 2-77)

318 smuX.sense = smuX.SENSE_LOCAL
"""

320 self.__smu._set_sense_mode(self.__channel, SMU26xx.SENSE_MODE_2_WIRE)

322 def set_sense_4wire(self):
"""

324 Setting the the sense mode to local (4-wire)

326 Notes:
Corresponding LUA command (SMU 2600B reference manual page 2-77)

328 smuX.sense = smuX.SENSE_REMOTE
"""

330 self.__smu._set_sense_mode(self.__channel, SMU26xx.SENSE_MODE_4_WIRE)

332 """
#############

334 commands for setting the measurement speed / accuracy
#############

336 """

338 def set_measurement_speed_fast(self):
"""

340 This attribute controls the integration aperture for the analog-to-digital converter (ADC).
fast corresponds to 0.01 PLC (Power Line Cycles) -> approx. 5000 measurements per second

342 Results in: fast performance, but accuracy is reduced
"""

344 self.__smu._set_measurement_speed(self.__channel, SMU26xx.SPEED_FAST)

346 def set_measurement_speed_med(self):
"""

348 This attribute controls the integration aperture for the analog-to-digital converter (ADC).
fast corresponds to 0.1 PLC (Power Line Cycles) -> approx. 500 measurements per second

350 Results in: speed and accuracy are balanced
"""

352 self.__smu._set_measurement_speed(self.__channel, SMU26xx.SPEED_MED)

147

Appendix A. Appendix

354 def set_measurement_speed_normal(self):
"""

356 This attribute controls the integration aperture for the analog-to-digital converter (ADC).
fast corresponds to 1 PLC (Power Line Cycles) -> approx. 50 measurements per second

358 Results in: speed and accuracy are balanced
"""

360 self.__smu._set_measurement_speed(self.__channel, SMU26xx.SPEED_NORMAL)

362 def set_measurement_speed_hi_accuracy(self):
"""

364 This attribute controls the integration aperture for the analog-to-digital converter (ADC).
fast corresponds to 10 PLC (Power Line Cycles) -> approx. 5 measurements per second

366 Results in: high accuracy, but speed is reduced
"""

368 self.__smu._set_measurement_speed(self.__channel, SMU26xx.SPEED_HI_ACCURACY)

370 """
#############

372 commands for reading values
#############

374 """

376 def measure_voltage(self):
"""

378 Causes the SMU to trigger a voltage measurement and return a single reading.

380 Returns:
float: the value of the reading in volt

382 """
return self.__smu._measure(self.__channel, SMU26xx.UNIT_VOLTAGE)

384

def measure_current(self):
386 """

Causes the SMU to trigger a current measurement and return a single reading.
388

Returns:
390 float: the value of the reading in ampere

"""
392 return self.__smu._measure(self.__channel, SMU26xx.UNIT_CURRENT)

394 def measure_resistance(self):
"""

396 Causes the SMU to trigger a resistance measurement and return a single reading.

398 Returns:
float: the value of the reading in ohm

400 """
return self.__smu._measure(self.__channel, SMU26xx.UNIT_RESISTANCE)

402

def measure_power(self):
404 """

Causes the SMU to trigger a power measurement and return a single reading.
406

Returns:
408 float: the value of the reading in watt

"""
410 return self.__smu._measure(self.__channel, SMU26xx.UNIT_POWER)

412 def measure_current_and_voltage(self):
"""

414 Causes the SMU to trigger a voltage and current measurement simultaneously.
Use this function if you need exact time correlation between voltage and current.

416

Examples:
418 measure current and voltage simultaneously

>>> [current, voltage] = self.measure_current_and_voltage()
420

Returns:
422 list: a list of the two measured values.

current as the first list element
424 voltage as the second list element

"""
426 return self.__smu._measure(self.__channel, SMU26xx.UNIT_CURRENT_VOLTAGE)

428 def measure_voltage_sweep(self, start_value, stop_value, settling_time, points):
"""

430 Causes the SMU to make a voltage sweep based on a staircase profile.

432 Args:
start_value: the voltage level from which the sweep will start.

434 stop_value: the voltage level at which the sweep will stop.
settling_time: the time the unit will wait after a voltage step is reached before a

measurement
436 is triggered. If set to 0 the measurement will be done as fast as possible.

points: the number of steps.
438

Note:

148

A.2. Source codes

440 If you want to measure really fast be sure that you have set the measurement speed
accordingly

442 Examples:
perform a voltage sweep from 0 V to 5 V with 500 steps (so 10 mV step size) as fast as

possible
444 >>> self.set_measurement_speed_fast()

>>> [current_list, voltage_list] = self.measure_voltage_sweep(0, 5, 0, 500)
446

Returns:
448 list: the returning list contains itself two lists

first element is a list of the measured current values
450 second element is a list of the voltage source values (not the actual measured voltage

)
"""

452 return self.__smu._measure_linear_sweep(self.__channel, SMU26xx.UNIT_VOLTAGE,
start_value, stop_value, settling_time, points)

454

def measure_current_sweep(self, start_value, stop_value, settling_time, points):
456 """

Causes the SMU to make a current sweep based on a staircase profile.
458

Args:
460 start_value: the current level from which the sweep will start.

stop_value: the current level at which the sweep will stop.
462 settling_time: the time the unit will wait after a current step is reached before a

measurement
is triggered. If set to 0 the measurement will be done as fast as possible.

464 points: the number of steps.

466 Note:
If you want to measure really fast be sure that you have set the measurement speed

accordingly
468

Examples:
470 perform a current sweep from 1 mA to 100 mA with 1000 steps (so 0.1 mA step size)

and let the device under test 1 second time to settle before taking a measurement
472 >>> self.set_measurement_speed_normal()

>>> [current_list, voltage_list] = self.measure_voltage_sweep(1e-3, 0.1, 1, 1000)
474

Returns:
476 list: the returning list contains itself two lists

first element is a list of the current source values (not the actual measured current)
478 second element is a list of the measured voltage

"""
480 return self.__smu._measure_linear_sweep(self.__channel, SMU26xx.UNIT_CURRENT,

start_value, stop_value, settling_time, points)
482

484 class SMU26xx:

486 # define strings that are used in the LUA commands
CHANNEL_A = "a"

488 CHANNEL_B = "b"
defines an arbitrary word; when used the program tries to access all available channels

490 CHANNEL_ALL = "all"

492 CURRENT_MODE = "DCAMPS"
VOLTAGE_MODE = "DCVOLTS"

494

DISPLAY_VOLTAGE = ’DCVOLTS’
496 DISPLAY_CURRENT = ’DCAMPS’

DISPLAY_RESISTANCE = ’OHMS’
498 DISPLAY_POWER = ’WATTS’

500 SENSE_MODE_2_WIRE = ’SENSE_LOCAL’
SENSE_MODE_4_WIRE = ’SENSE_REMOTE’

502

UNIT_VOLTAGE = "v"
504 UNIT_CURRENT = "i"

UNIT_CURRENT_VOLTAGE = "iv"
506 UNIT_POWER = "p"

UNIT_RESISTANCE = "r"
508

STATE_ON = "ON"
510 STATE_OFF = "OFF"

512 SPEED_FAST = 0.01
SPEED_MED = 0.1

514 SPEED_NORMAL = 1
SPEED_HI_ACCURACY = 10

516

maximum amount of values that can be read from the Keithley buffer without an error from the
518 # pyvisa interface. We set it to 1000 values.

__PYVISA_MAX_BUFFER_REQUEST = 1000
520

def __init__(self, visa_resource_name, timeout=1000):
522 """

149

Appendix A. Appendix

Implements the global (channel independent) functionality for the Keithley SMU 2600 series.
524 The communication is made through NI-VISA (you need to have this installed)

526 Args:
visa_resource_name: use exactly the VISA-resource-name you see in your NI-MAX

528

Returns:
530 pyvisa.ResourceManager.open_resource: Object to control the SMU

"""
532

Variables to store the capabilities of the instrument
534 self.__voltage_ranges = None

self.__current_ranges = None
536 self.__channel_b_present = None

538 # variable to store if the debug output was enabled
self.__debug = False

540

open the resource manager
542 __rm = pyvisa.ResourceManager()

544 # Connect to the device
self.__instrument = __rm.open_resource(visa_resource_name)

546 self.__connected = True

548 # set the timeout
self.__instrument.timeout = timeout

550

clear the error queue
552 self.__clear_error_queue()

554 # clear everything that may is in the buffer
self.__instrument.clear()

556

find out the ranges of the device and set the limits
558 model = self.identify_model()

self.set_model_limits(model)
560

def disconnect(self):
562 """

Disconnect the instrument. After this no further communication is possible.
564 """

if self.__connected:
566 self.__instrument.close()

self.__connected = False
568

def get_channel(self, channel):
570 """

Gives you an object with which you can control the individual parameters of a channel.
572

Args:
574 channel: the channel you want to connect to.

Use the keywords SMU26xx.CHANNEL_A or SMU26xx.CHANNEL_B
576

Returns:
578 _SMUChannel: an "channel" object that has methods to control the channel

580 Raises:
ValueError: If the channel is not available.

582 """

584 # check if the channel b is available. We don’t have to check channel a because every smu has
one

if channel is SMU26xx.CHANNEL_B and not self.__channel_b_present:
586 raise ValueError("No channel B on this model")

588 return _SMUChannel(self, channel)

590 def enable_debug_output(self):
"""

592 Enables the debug output of all communication to the SMU.
The messages will be printed on the console.

594 """
self.__debug = True

596

def disable_debug_output(self):
598 """

Disables the debug output. Nothing will be printed to the console that you haven’t specified
yourself.

600 """
self.__debug = False

602

"""
604 #############

commands for communicating with the instrument via the pyvisa interface
606 #############

"""
608

150

A.2. Source codes

def __clear_error_queue(self):
610 """

internal function to clear the error queue of the SMU
612 """

self.write_lua("errorqueue.clear()")
614

def __check_error_queue(self):
616 """

requests the error queue from the SMU. If there is an error this function will raise an
618 value error containing the message from the SMU.

620 Raises:
ValueError: If there is an error stored at the SMU

622 """

624 # check if there was an error
cmd = "errorcode, message = errorqueue.next()\nprint(errorcode, message)"

626 response = self.__instrument.query(str(cmd))
if self.__debug:

628 print(’Error msg: ’ + str(response))
try:

630 [code, message] = response.split(’\t’, 1)
if float(code) != 0:

632 # if we have an error code something happened and we should raise an error
raise ValueError(’The SMU said: "’ + str(message) + ’" / Keithley-Error-Code: ’ +

str(code))
634 except:

raise ValueError(’The SMU said: "’ + str(response))
636

def write_lua(self, cmd, check_for_errors=True):
638 """

Writes a command to the pyvisa connection. It expects no return message from the SMU
640

Args:
642 cmd: the TSP command for the SMU

check_for_errors: by default the error queue of the SMU is checked after every command
that is send to the

644 SMU. In some cases the SMU will not respond to this check and a pyvisa timeout would
occur. In such

a case you can disable this check.
646 """

if self.__debug:
648 print(’Write cmd: ’ + str(cmd))

self.__instrument.write(str(cmd))
650 # check if the command executed without any errors

if check_for_errors:
652 self.__check_error_queue()

654 def query_lua(self, cmd, check_for_errors=True):
"""

656 Queries something from the SMU with TSP syntax.
basically we just write a TSP command and expect some kind of response from the SMU

658

Args:
660 cmd: the TSP command for the SMU

check_for_errors: by default the error queue of the SMU is checked after every command
that is send to the

662 SMU. In some cases the SMU will not respond to this check and a pyvisa timeout would
occur. In such

a case you can disable this check.
664 """

if self.__debug:
666 print(’Query cmd: ’ + str(cmd))

send the request to the device
668 reading = self.__instrument.query(str(cmd)).rstrip(’\r\n’)

if self.__debug:
670 print(’Query answer: ’ + str(reading))

check if the command executed without any errors
672 if check_for_errors:

self.__check_error_queue()
674 return reading

676 """
#############

678 commands that gather information of the device and set parameter
#############

680 """

682 def identify_model(self):
"""

684 Returns the model number of the SMU. Based on this string the model limits are set.

686 Returns:
str: the model number of the SMU

688 """
return self.query_lua(’print(localnode.model)’)

690

def set_model_limits(self, model_number):

151

Appendix A. Appendix

692 """
This function is used to set the model specific differences. This method is called at the

initialisation
694 process. There is usually no need for you to call this method.

696 Args:
model_number (str): the model number of the SMU.

698 """
if self.__debug:

700 print("Model " + str(model_number) + " detected. Setting ranges ...")

702 if "2601B" in model_number:
self.__voltage_ranges = [0.1, 1, 6, 40]

704 self.__current_ranges = [1E-7, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2, 1E-1, 1, 3]
self.__channel_b_present = False

706

elif "2612A" in model_number:
708 self.__voltage_ranges = [0.2, 2, 20, 200]

self.__current_ranges = [1E-7, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2, 1E-1, 1, 1.5]
710 self.__channel_b_present = True

712 elif "2614B" in model_number:
self.__voltage_ranges = [0.2, 2, 20, 200]

714 self.__current_ranges = [1E-7, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2, 1E-1, 1, 1.5]
self.__channel_b_present = True

716

elif "2636A" in model_number:
718 self.__voltage_ranges = [0.2, 2, 20, 200]

self.__current_ranges = [1E-9, 1E-8, 1E-7, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2, 1E-1, 1, 1.5]
720 self.__channel_b_present = True

else:
722 raise ValueError("unknown model number")

724 def get_available_voltage_ranges(self):
"""

726 Returns a list containing the available voltage ranges based on the model limits.

728 Returns:
list: containing the available voltage ranges

730 """
return self.__voltage_ranges

732

def get_available_current_ranges(self):
734 """

Returns a list containing the available current ranges based on the model limits.
736

Returns:
738 list: containing the available current ranges

"""
740 return self.__current_ranges

742 """
#############

744 commands for measuring values from the two channels simultaneously
#############

746 """

748 def measure_voltage(self):
"""

750 Causes the SMU to trigger a voltage measurement and return a single reading for both channels
(if available).

Use this function if you need exact time correlation between the voltage of the two channels.
752

Examples:
754 measure voltage simultaneously on both channels

>>> [v_chan_a, v_chan_b] = self.measure_voltage()
756

Returns:
758 list: a list of floats containing the two measured values.

voltage measurement of channel a as the first list element
760 voltage measurement of channel b as the second list element

762 Raises:
ValueError: If the SMU has just one channel

764 """
return self._measure(SMU26xx.CHANNEL_ALL, SMU26xx.UNIT_VOLTAGE)

766

def measure_current(self):
768 """

Causes the SMU to trigger a current measurement and return a single reading for both channels
(if available).

770 Use this function if you need exact time correlation between the current of the two channels.

772 Examples:
measure current simultaneously on both channels

774 >>> [i_chan_a, i_chan_b] = self.measure_current()

776 Returns:

152

A.2. Source codes

list: a list of floats containing the two measured values.
778 current measurement of channel a as the first list element

current measurement of channel b as the second list element
780

Raises:
782 ValueError: If the SMU has just one channel

"""
784 return self._measure(SMU26xx.CHANNEL_ALL, SMU26xx.UNIT_CURRENT)

786 def measure_resistance(self):
"""

788 Causes the SMU to trigger a resistance measurement and return a single reading for both
channels (if available).

Use this function if you need exact time correlation between the resistance of the two
channels.

790

Examples:
792 measure resistance simultaneously on both channels

>>> [r_chan_a, r_chan_b] = self.measure_resistance()
794

Returns:
796 list: a list of floats containing the two measured values.

resistance measurement of channel a as the first list element
798 resistance measurement of channel b as the second list element

800 Raises:
ValueError: If the SMU has just one channel

802 """
return self._measure(SMU26xx.CHANNEL_ALL, SMU26xx.UNIT_RESISTANCE)

804

def measure_power(self):
806 """

Causes the SMU to trigger a power measurement and return a single reading for both channels (
if available).

808 Use this function if you need exact time correlation between the power of the two channels.

810 Examples:
measure power simultaneously on both channels

812 >>> [p_chan_a, p_chan_b] = self.measure_power()

814 Returns:
list: a list of floats containing the two measured values.

816 power of channel a as the first list element
power of channel b as the second list element

818

Raises:
820 ValueError: If the SMU has just one channel

"""
822 return self._measure(SMU26xx.CHANNEL_ALL, SMU26xx.UNIT_POWER)

824 def measure_current_and_voltage(self):
"""

826 Causes the SMU to trigger a voltage and current measurement simultaneously for both channels (
if available).

Use this function if you need exact time correlation between voltage and current of the two
channels.

828

Examples:
830 measure current and voltage simultaneously on both channels

>>> [i_chan_a, v_chan_a, i_chan_b, v_chan_b] = self.measure_current_and_voltage()
832

Returns:
834 list: a list of floats containing the four measured values.

current of channel a as the first list element
836 voltage of channel a as the second list element

current of channel b as the third list element
838 voltage of channel b as the fourth list element

840 Raises:
ValueError: If the SMU has just one channel

842 """
return self._measure(SMU26xx.CHANNEL_ALL, SMU26xx.UNIT_CURRENT_VOLTAGE)

844

"""
846 #############

commands for setting the parameters of channels
848 those should not be accessed directly but through the channel class

#############
850 """

852 def _reset(self, channel):
"""restore the default settings"""

854 cmd = ’smu’ + str(channel) + ’.reset()’
self.write_lua(cmd)

856

def _set_display(self, channel, function):
858 """defines what measurement will be shown on the display"""

cmd = ’display.smu’ + str(channel) + ’.measure.func = display.MEASURE_’ + str(function)

153

Appendix A. Appendix

860 self.write_lua(cmd)

862 def _set_measurement_speed(self, channel, speed):
"""defines how many PLC (Power Line Cycles) a measurement takes"""

864 cmd = ’smu’ + str(channel) + ’.measure.nplc = ’ + str(speed)
self.write_lua(cmd)

866

def _set_mode(self, channel, mode):
868 cmd = ’smu’ + str(channel) + ’.source.func = ’ + ’smu’ + str(channel) + ’.OUTPUT_’ + str(mode)

self.write_lua(cmd)
870

def _set_sense_mode(self, channel, mode):
872 """

set 2-wire or 4-wire sense mode
874 Manual page 2-77

876 Notes:
LUA commands look like this

878 smua.sense = smua.SENSE_REMOTE
smua.sense = smua.SENSE_LOCAL

880 """
cmd = ’smu’ + str(channel) + ’.sense = ’ + ’smu’ + str(channel) + ’.’ + str(mode)

882 self.write_lua(cmd)

884 def _set_autorange(self, channel, unit, state):
"""enables or disables the autorange feature"""

886

set the source range
888 cmd = ’smu’ + str(channel) + ’.source.autorange’ + str(unit) \

+ ’ = smu’ + str(channel) + ’.AUTORANGE_’ + str(state)
890 self.write_lua(cmd)

892 # set the measurement range
cmd = ’smu’ + str(channel) + ’.measure.autorange’ + str(unit) \

894 + ’ = smu’ + str(channel) + ’.AUTORANGE_’ + str(state)
self.write_lua(cmd)

896

def _set_range(self, channel, unit, range_value):
898 """Set the range to the given value (or to the next suitable range)"""

range_found = 0
900

select the range you want to compare to based on the given type
902 if unit is self.UNIT_CURRENT:

range_to_check = self.__current_ranges
904 elif unit is self.UNIT_VOLTAGE:

range_to_check = self.__voltage_ranges
906 else:

raise ValueError(’Type "’ + str(unit) + ’" is valid in range setting’)
908

find the range that fits the desired value best
910 if range_value in range_to_check:

range_found = range_value
912 else:

if there is no exact match use the range that is best suitable
914 for v in sorted(range_to_check):

if v > range_value:
916 range_found = v

break
918 # if none of the ranges above work ... raise an error

if not range_found:
920 raise ValueError("no suitable range found")

922 # set the source range
cmd = ’smu’ + str(channel) + ’.source.range’ + str(unit) + ’ = ’ + str(range_found)

924 self.write_lua(cmd)

926 # set the measurement range
cmd = ’smu’ + str(channel) + ’.measure.range’ + str(unit) + ’ = ’ + str(range_found)

928 self.write_lua(cmd)

930 def _set_limit(self, channel, unit, value):
"""command used to set the limits for voltage, current or power"""

932 # send the command to the SourceMeter
cmd = ’smu’ + str(channel) + ’.source.limit’ + str(unit) + ’ = ’ + str(value)

934 self.write_lua(cmd)

936 def _set_level(self, channel, unit, value):
send the command to the SourceMeter

938 cmd = ’smu’ + str(channel) + ’.source.level’ + str(unit) + ’ = ’ + str(value)
self.write_lua(cmd)

940

def _set_output_state(self, channel, state):
942 cmd = ’smu’ + str(channel) + ’.source.output = smu’ + str(channel) + ’.OUTPUT_’ + str(state)

self.write_lua(cmd)
944

"""
946 #############

commands for reading values from the channels

154

A.2. Source codes

948 those should not be accessed directly but through the channel class
#############

950 """

952 def _measure(self, channel, unit):
"""function for getting a single reading of the specified value"""

954

if CHANNEL_ALL is specified this has only an effect on two channel units
956 if channel == SMU26xx.CHANNEL_ALL:

if channel b is present then modify the LUA command
958 if self.__channel_b_present:

In case we want to measure voltage and current we get four return parameters
960 # so the LUA command has to be different.

if unit == SMU26xx.UNIT_CURRENT_VOLTAGE:
962 cmd = ’iChA, vChA = smua.measure.’ + str(unit) + ’()\n’ \

+ ’iChB, vChB = smub.measure.’ + str(unit) + ’()\n’ \
964 + ’print(iChA, vChA, iChB, vChB)’

else:
966 cmd = ’ChA = smua.measure.’ + str(unit) + ’()\n’ \

+ ’ChB = smub.measure.’ + str(unit) + ’()\n’ \
968 + ’print(ChA, ChB)’

else:
970 raise ValueError("This device has only ONE channel. "

"Use the measurement function of the channel instead.")
972 else:

cmd = ’print(smu’ + str(channel) + ’.measure.’ + str(unit) + ’())’
974

reading = self.query_lua(cmd)
976 reading = reading.replace("’", "")

if we get more than one value out then put it in a list
978 out = []

parts = reading.split("\t")
980 if len(parts) > 1:

for value in parts:
982 out.append(float(value))

return out
984 else:

return float(reading)
986

def _measure_linear_sweep(self, channel, unit, start_value, stop_value, settling_time, points):
988 """function to sweep voltage or current and measure current resp. voltage"""

sweep_unit = measure_unit = ’’
990

if unit is self.UNIT_VOLTAGE:
992 sweep_unit = ’V’

measure_unit = ’I’
994 elif unit is self.UNIT_CURRENT:

sweep_unit = ’I’
996 measure_unit = ’V’

else:
998 ValueError(’Only possible to sweep Voltage or Current’)

1000 # prepare the buffer
cmd = ’smu’ + str(channel) + ’.nvbuffer1.clear()\n’ \

1002 ’smu’ + str(channel) + ’.nvbuffer1.appendmode = 1\n’ \
’smu’ + str(channel) + ’.nvbuffer1.collectsourcevalues = 1\n’ \

1004 ’smu’ + str(channel) + ’.measure.count = 1’
self.write_lua(cmd)

1006

construct the sweep command based on the given parameters
1008 # SweepILinMeasureV(smua, 1e-3, 10e-3, 0.1, 10)

cmd = ’Sweep’ + sweep_unit + ’LinMeasure’ + measure_unit + ’(smu’ + str(channel) + ’, ’ \
1010 + str(start_value) + ’, ’ + str(stop_value) + ’, ’ + str(settling_time) + ’, ’ + str(

points) + ’)’
self.write_lua(cmd, check_for_errors=False)

1012

wait till the measurement is finished
1014 # we just try to read some values of the buffer. If we receive an answer we

know that the measurement is finished
1016 answer = None

cmd = ’print("Are you alive?")’
1018 while answer is None:

try:
1020 # query the values that are stored in the nvbuffer1

answer = self.query_lua(cmd, check_for_errors=False)
1022 except pyvisa.VisaIOError:

no answer yet ... we just try again
1024 pass

1026 # clear any old readings that are in the buffer
self.__instrument.clear()

1028

determine in how many chunks we need to read the buffer and what the start and end values
are

1030 quotient = points // self.__PYVISA_MAX_BUFFER_REQUEST
remainder = points % self.__PYVISA_MAX_BUFFER_REQUEST

1032 # define the starting values for the buffer read
buffer_start_values = []

155

Appendix A. Appendix

1034 buffer_end_values = []
for i in range(quotient):

1036 buffer_start_values.append(i * self.__PYVISA_MAX_BUFFER_REQUEST + 1)
buffer_end_values.append((i+1) * self.__PYVISA_MAX_BUFFER_REQUEST)

1038 # the last value needs to be set to the amount of data points we have
if remainder != 0:

1040 buffer_start_values.append(quotient * self.__PYVISA_MAX_BUFFER_REQUEST + 1)
buffer_end_values.append(quotient * self.__PYVISA_MAX_BUFFER_REQUEST + remainder)

1042

put the readings of the measured data in a list
1044 measure_values = []

read in the buffer and combine the output
1046 for count in range(len(buffer_start_values)):

cmd = ’printbuffer(’ + str(buffer_start_values[count]) + ’, ’ + str(buffer_end_values[
count]) \

1048 + ’, smu’ + str(channel) + ’.nvbuffer1.readings)’
answer = self.query_lua(cmd, check_for_errors=False)

1050 parts = answer.split(",")
for value in parts:

1052 measure_values.append(float(value))
clear the visa input buffer

1054 self.__instrument.clear()

1056 # put the readings of the source values in a list
source_values = []

1058 # read in the buffer and combine the output
for count in range(len(buffer_start_values)):

1060 cmd = ’printbuffer(’ + str(buffer_start_values[count]) + ’, ’ + str(buffer_end_values[
count]) \

+ ’, smu’ + str(channel) + ’.nvbuffer1.sourcevalues)’
1062 answer = self.query_lua(cmd, check_for_errors=False)

parts = answer.split(",")
1064 for value in parts:

source_values.append(float(value))
1066 # clear the visa input buffer

self.__instrument.clear()
1068

always return the current as first parameter
1070 if unit is self.UNIT_VOLTAGE:

return [measure_values, source_values]
1072 else:

return [source_values, measure_values]

sources/KeithleySMU.py

A.2.12. Hall e�ect and resistivity measurement

1 """
This program does a Resistivity measurement during controlled heat up of the cold head

3 """

5 # Import libraries for communication with the devices
from source.libs.Agilent3499A import Agilent3499A

7 from source.libs.PrincetonAppliedResearch import Model5210
from source.libs.Heinzinger import DigitalInterface

9 # from source.libs.MagnetPhysik import FH54
from source.libs.PhilipsPM import PM5193

11 from source.libs.Keithley199 import Keithley199
from source.libs.LakeShore import Model336

13

Import some helpful libraries
15 from source.libs.EngineeringUnitsV2 import ToSI

from source.libs.UsefulThings import step_list
17

Import some other standard libraries
19 from time import sleep, strftime, localtime

from datetime import datetime
21 import os # needed for various operations like creating a directory on the hard drive

import csv # we use csv to store the results
23 import json # We use json to store the parameter file

from pyvisa import VisaIOError # We need the import to handle errors properly
25

27 # Variables used to store the parameters for the measurement; it is declared so early that we can also
include

the constants from the next section already
29 parameters = dict()

31 # ######
Define some constants / parameters

33 # ######

156

A.2. Source codes

35 # just define arbitrary values
RESISTIVITY = 1

37 HALL = 2

39 # define what we want to measure during this experiment
MEASUREMENT = HALL

41

description that will be put in the parameters file
43 DESCRIPTION = ["Measures Resistivity or Hall constant during controlled heat up of the cold head"]

parameters.update({"DESCRIPTION": DESCRIPTION})
45

PROGRAM_FLOW = ["1.) Configure the devices based on the type of measurement",
47 "2.) The temperature controller is commanded to heat up the sample",

"3.) Record resistivity during heat up",
49 "4.) If room temperature is reached, end the measurement.",

"5.) The devices are shut down to a safe state"]
51 parameters.update({"PROGRAM_FLOW": PROGRAM_FLOW})

53 # flag to enable / disable the debug output
DEBUG_OUTPUT_ENABLED = False

55

value used to estimate the polarity of the measured signal
57 ACCEPTABLE_PHASE_SHIFT = 30

59 # parameters for the lock in
TEST_VOLTAGE_RMS = 1

61 TEST_FREQUENCY = 72
parameters.update({"TEST_VOLTAGE (V_rms)": TEST_VOLTAGE_RMS})

63 parameters.update({"LOCK_IN_FREQUENCY (Hz)": TEST_FREQUENCY})

65 # exact value in ohms for the shunt resistor
R_SHUNT = 100.42

67 parameters.update({"R_SHUNT (Ohm)": R_SHUNT})

69 # parameters defined by the sample geometry
SAMPLE_CROSS_SECTIONAL_AREA = 240e-12 # Unit: m^2

71 SAMPLE_RESISTIVITY_TEST_POINT_DISTANCE = 5.5e-3 # Unit: m
SAMPLE_THICKNESS = 80e-9 # Unit: m

73 parameters.update({"SAMPLE_CROSS_SECTIONAL_AREA (m^2)": SAMPLE_CROSS_SECTIONAL_AREA})
parameters.update({"SAMPLE_LENGTH (m)": SAMPLE_RESISTIVITY_TEST_POINT_DISTANCE})

75 parameters.update({"SAMPLE_THICKNESS (m)": SAMPLE_THICKNESS})

77 # measurement parameters
SETTLING_TIME = 20 # Unit: s

79 parameters.update({"SETTLING_TIME (s)": SETTLING_TIME})

81 MEASUREMENT_INTERVAL = 1 # Unit: s
parameters.update({"MEASUREMENT_INTERVAL (s)": MEASUREMENT_INTERVAL})

83

MAGNET_CURRENT = 30 # Unit: A
85 parameters.update({"MAGNET_CURRENT (A)": MAGNET_CURRENT})

87 # TODO: either measure the magnetic field or calculate it based on the current through the magnet
I measured that 30 Amps correspond to approximately 1.04 Tesla; we can work with that for the moment

89 MAGNETIC_FIELD = 1.04 # Unit: T

91 # define sensitivities for the lock-in amplifiers
LOCK_IN_SENSITIVITY_RESISTIVITY_MEASUREMENT = 0.3 # Unit: V

93 LOCK_IN_SENSITIVITY_HALL_MEASUREMENT = 300e-6 # Unit: V
parameters.update({"LOCK_IN_SENSITIVITY_RESISTIVITY_MEASUREMENT (V)":

LOCK_IN_SENSITIVITY_RESISTIVITY_MEASUREMENT})
95 parameters.update({"LOCK_IN_SENSITIVITY_HALL_MEASUREMENT (V)": LOCK_IN_SENSITIVITY_HALL_MEASUREMENT})

97 # define target temperature and heat up characteristics
TARGET_TEMPERATURE = 295 # Unit: K

99 HEAT_UP_RATE = 10 # Unit: K/min
parameters.update({"TARGET_TEMPERATURE (K)": TARGET_TEMPERATURE})

101 parameters.update({"HEAT_UP_RATE (K/min)": HEAT_UP_RATE})

103 # ######
Main program

105 # ######

107 # this flag stores in what state the instruments are. This helps to determine if we need to adjust the
config

before we take a reading
109 current_measurement_setup = None

111 # variable stores the offset of the hall voltage without magnetic field
v_hall_offset = None

113

115 def main():
"""This is the main function where we define the main steps of the program"""

117

global current_measurement_setup
119

157

Appendix A. Appendix

121 # initialize all the instruments

123 print_delimiter()

print("Initialize measurement devices")
125

ptn = init_power_supply()
127 switch = init_switch_matrix()

lia = init_lock_in_model5210() # lia ... Lock-In Amplifier
129 fg = init_frequency_generator()

dmm = init_keithley199_dmm()
131 tc = init_temperature_controller()

133 # store all the devices in one directory so that it is easier to pass the device handles to other
functions

devices = {"ptn": ptn,
135 "switch": switch,

"lia": lia,
137 "fg": fg,

"dmm": dmm,
139 "tc": tc}

141 # generates a folder in that we store all the files related with one measurement
data_directory = generate_measurement_directory()

143

store the parameters to a json file
145 write_parameter_file(data_directory)

147 # ------
start with the measurement

149 # ------
print_delimiter()

151 print("general measurement setup (like frequency generator, closing the circuit to the sample,
setup csv, ...")

153 # set the frequency and voltage we want to run the test with.
fg.set_waveform_sine()

155 fg.set_frequency(TEST_FREQUENCY)
fg.set_voltage_rms(TEST_VOLTAGE_RMS)

157 fg.enable_ac()

159 switch.close_matrix(1, 1) # close the circuit to the sample

161 # init the csv file to store the resistivity measurement data
f_resistivity_handle = init_csv_file_resistivity(data_directory)

163

init the csv file to store the hall measurement data
165 f_hall_handle = init_csv_file_hall(data_directory)

167 # get the start time of the measurement
starting_time = datetime.now()

169

make one hall measurement without magnetic field to get an offset
171 measure_hall(devices, starting_time, f_hall_handle)

173 # ramp up the magnetic field with 1 A/s
ptn.ramp_current(MAGNET_CURRENT, 1)

175 # sleep(SETTLING_TIME) # give the system some time to settle

177 # start the change of the temperature
initiate_temperature_change(devices, TARGET_TEMPERATURE, HEAT_UP_RATE)

179

181 # continuous measurement during heat-up

183

flag to store if the target temperature was reached
185 target_temperature_reached = False

187 while not target_temperature_reached:

189 measure_hall(devices, starting_time, f_hall_handle)

191 # wait for a specified time before taking the next measurement
sleep(MEASUREMENT_INTERVAL)

193

if we reach room temperature, stop the measurement
195 if tc.read_temperature_sensor_D() >= (TARGET_TEMPERATURE - 5):

target_temperature_reached = True
197

end the measurement and bring all devices back to a nice state
199

set the sensitivity of the lock in to something un-harming for the input
201 lia.set_sensitivity(3)

203 # set the voltage to 0 when you are done with the run
fg.set_voltage_rms(0)

205

158

A.2. Source codes

switch.open_matrix(1, 1) # disable power to the sample
207 switch.open_matrix(2, 2) # open the wires for resistivity measurement

switch.open_matrix(2, 3) # open the wires for hall measurement
209

ptn.ramp_current(0, 1) # ramp the current (= the magnetic field) back to 0 A
211

213 # SECTION: tidy up

215

disable / disconnect / shutdown all devices
217 shutdown(ptn, switch, lia, fg, tc)

219

######
221 # measurement functions

######
223

def measure_hall(devices, starting_time, f_handle):
225

get access to global variables
227 global current_measurement_setup

global v_hall_offset
229

in the f_handle the handle of the csv_file as well as the real file handle is handed over
231 # split them up and store them in custom variables so that it is easier to program later on

f = f_handle[0]
233 f_csv = f_handle[1]

235 # extract the devices we use and assign them useful names
temp_controller = devices[’tc’] # temperature controller handle

237 dmm = devices[’dmm’] # digital multi meter
lia = devices[’lia’] # lock in amplifier

239

check if the devices are in hall measurement mode, otherwise set them up properly
241 if current_measurement_setup is not HALL:

setup_hall_measurement(devices)
243

calculate the passed time (delta is in seconds)
245 delta = datetime.now() - starting_time

passed_minutes = float(delta.total_seconds() / 60)
247

take a reading of the temperature values
249 temperatures = temp_controller.query_temperatures()

251 # measure the current through the sample
i_sample = dmm.measure()

253

measure the voltage between the test contact for resistivity
255 v_hall_end = lia.read_r()

hall_phase = lia.read_phi()
257

try to estimate the polarity based on the phase shift
259 polarity = evaluate_lock_in_polarity(hall_phase)

261 if v_hall_offset is None:
v_hall_offset = v_hall_end

263

v_hall = v_hall_end - v_hall_offset
265 hall_coefficient = (v_hall * SAMPLE_THICKNESS) / (i_sample * MAGNETIC_FIELD) * 1e6

267 # write data to the csv file and flush the buffer (so it is written instantly)
f_csv.writerow([passed_minutes, delta,

269 temperatures[0], temperatures[1],
temperatures[2], temperatures[3],

271 MAGNETIC_FIELD, i_sample,
v_hall_offset, v_hall_end, v_hall,

273 hall_phase, polarity, hall_coefficient])
f.flush()

275

print("Time: " + "{:.2f}".format(passed_minutes) + " min | "
277 + "Temp_D = " + "{:.3f}".format(temperatures[3]) + " K | "

+ "I sample = " + ToSI(i_sample, 3) + "A | "
279 + "V-hall = " + ToSI(v_hall, 3) + "V | "

+ "Hall Coefficient = " + str(hall_coefficient * 1e3) + "*10^-3 cm^3/Cl")
281

283 def measure_resistivity(devices, starting_time, f_handle):

285 # get access to global variables
global current_measurement_setup

287

in the f_handle the handle of the csv_file as well as the real file handle is handed over
289 # split them up and store them in custom variables so that it is easier to program later on

f = f_handle[0]
291 f_csv = f_handle[1]

293 # extract the devices we use and assign them useful names

159

Appendix A. Appendix

temp_controller = devices[’tc’] # temperature controller handle
295 dmm = devices[’dmm’] # digital multi meter

lia = devices[’lia’] # lock in amplifier
297

check if the devices are in resistivity mode, otherwise set them up properly
299 if current_measurement_setup is not RESISTIVITY:

setup_resistivity_measurement(devices)
301

calculate the passed time (delta is in seconds)
303 delta = datetime.now() - starting_time

passed_minutes = float(delta.total_seconds() / 60)
305

take a reading of the temperature values
307 temperatures = temp_controller.query_temperatures()

309 # measure the current through the sample
i_sample = dmm.measure()

311

measure the voltage between the test contact for resistivity
313 v_resistance = lia.read_r()

phase_resistance = lia.read_phi()
315

calculate the resistivity based on the sample geometry
317 resistance = v_resistance / i_sample

resistivity = resistance * (SAMPLE_CROSS_SECTIONAL_AREA / SAMPLE_RESISTIVITY_TEST_POINT_DISTANCE)

* 1e8
319

write data to the csv file and flush the buffer (so it is written instantly)
321 f_csv.writerow([passed_minutes, delta,

temperatures[0], temperatures[1],
323 temperatures[2], temperatures[3],

i_sample, v_resistance, phase_resistance,
325 resistance, resistivity])

f.flush()
327

print("Time: " + "{:.2f}".format(passed_minutes) + " min | "
329 + "Temp_D = " + "{:.3f}".format(temperatures[3]) + " K | "

+ "I sample = " + ToSI(i_sample, 3) + "A | "
331 + "V-res = " + ToSI(v_resistance, 3) + "V | "

+ "Resistivity = " + "{:.3f}".format(resistivity) + " uOhm*cm")
333

335 def setup_resistivity_measurement(devices):

337 # get access to global variables
global current_measurement_setup

339

extract the devices we use and assign them useful names
341 switch = devices[’switch’] # switch matrix handle

lia = devices[’lia’] # lock in amplifier
343

configure the lock in to the highest measurement range (avoids overload)
345 lia.set_sensitivity(3)

347 # change the switch to the correct setting
switch.open_matrix(2, 3) # opens the wires of the hall measurement

349 switch.close_matrix(2, 2) # wires the Lock-In to do resistivity measurement

351 # configure the lock in to do resistivity measurement
lia.set_sensitivity(LOCK_IN_SENSITIVITY_RESISTIVITY_MEASUREMENT)

353

set the flag so that we know which mode we are in
355 current_measurement_setup = RESISTIVITY

357 # sleep for a bit so that everything can settle
sleep(SETTLING_TIME)

359

361 def setup_hall_measurement(devices):

363 # get access to global variables
global current_measurement_setup

365

extract the devices we use and assign them useful names
367 switch = devices[’switch’] # switch matrix handle

lia = devices[’lia’] # lock in amplifier
369

configure the lock in to the highest measurement range (avoids overload)
371 lia.set_sensitivity(3)

373 # change the switch to the correct setting
switch.open_matrix(2, 2) # opens the wires of the resistivity measurement

375 switch.close_matrix(2, 3) # wires the Lock-In to do hall measurement

377 # configure the lock in to do hall measurement
lia.set_sensitivity(LOCK_IN_SENSITIVITY_HALL_MEASUREMENT)

379

set the flag so that we know which mode we are in

160

A.2. Source codes

381 current_measurement_setup = HALL

383 # sleep for a bit so that everything can settle
sleep(SETTLING_TIME)

385

387 def initiate_temperature_change(devices, target_temperature, slope):
"""sends the commands to the temperature controller so that we have a controlled heat-up / cool-
down"""

389

extract the devices we use and assign them useful names
391 tc = devices[’tc’] # temperature controller handle

393 # disable the setpoint ramp and set the target temperature to the current temperature
this way we can run a ramp from the temperature we currently have

395 tc.disable_setpoint_ramp()
tc.set_setpoint(tc.read_temperature_sensor_D())

397

set the slope of the heat up to 5 K/s
399 tc.set_setpoint_ramp(slope)

set the target temperature to room temperature
401 tc.set_setpoint(target_temperature)

403 # enable the heater (we can set it to high so it is able to follow the ramp we selected
tc.set_heater_range_high()

405

407 # ######
Initialisation functions

409 # ######

411 def generate_measurement_directory():
"""generates a folder all files are stored in"""

413

Timestamp for the files we store
415 timestamp = str(strftime("%Y-%m-%d_%H-%M-%S", localtime()))

directory = ’..\\data\\’ + timestamp
417

create the directory for data storage if it doesn’t exist
419 if not os.path.exists(directory):

os.makedirs(directory)
421

return the path
423 return directory + str("\\")

425

def init_csv_file_resistivity(directory):
427 """setup the csv file we can store the resistivity measurement data in"""

429 # open a file and define it as a csv file
f = open(directory + ’results_resistivity.csv’, ’w’)

431 f_csv = csv.writer(f, delimiter=’;’, lineterminator=’\n’)

433 # write headers into the file
f_csv.writerow([’Time (min)’, ’Timestamp’,

435 ’Sensor A (K)’, ’Sensor B (K)’,
’Sensor C (K)’, ’Sensor D (K)’,

437 ’I_sample (A)’, ’V_resistivity (V)’, ’phase_resistivity (◦)’,
’resistance (Ohm)’, ’resistivity (uOhm*cm)’])

439

return the handle to the csv file
441 return [f, f_csv]

443

def init_csv_file_hall(directory):
445 """setup the csv file we can store our measurement data in"""

447 # open a file and define it as a csv file
f = open(directory + ’results_hall.csv’, ’w’)

449 f_csv = csv.writer(f, delimiter=’;’, lineterminator=’\n’)

451 # write headers into the file
f_csv.writerow([’Time (min)’, ’Timestamp’,

453 ’Sensor A (K)’, ’Sensor B (K)’,
’Sensor C (K)’, ’Sensor D (K)’,

455 ’B field (T)’, ’I_sample (A)’,
’V_hall_offset (V)’, ’V_hall_end (V)’, ’V_hall (V)’,

457 ’phase_hall (◦)’, ’Polarity’, ’hall_coefficient (cm^3/Cl)’])

459 # return the handle to the csv file
return [f, f_csv]

461

463 def init_temperature_controller():
"""LakeShore 336 temperature controller initialisation"""

465

temperature_controller = Model336()
467 try:

161

Appendix A. Appendix

print_delimiter()
469 print("Initializing the LakeShore 336 temperature controller ...")

471 # connect to the temperature controller
temperature_controller.connect("TCPIP0::129.27.158.33::7777::SOCKET")

473

Enable debug output so we see the commands that are sent
475 if DEBUG_OUTPUT_ENABLED:

temperature_controller.enable_debug_output()
477

Reset the device
479 # temperature_controller.reset()

481 print("Initialisation of the temperature_controller complete.")

483 # return the device object so that it can be accessed
return temperature_controller

485

except VisaIOError:
487 print("Error initializing the temperature_controller!")

exit(1)
489

491 def init_frequency_generator():
"""Philips PM5193 frequency generator initialisation"""

493

fg = PM5193()
495 try:

print_delimiter()
497 print("Initializing the Philips frequency generator ...")

499 # connect to the switch matrix
fg.connect("GPIB0::20::INSTR")

501

Enable debug output so we see the commands that are sent over the GPIB interface
503 if DEBUG_OUTPUT_ENABLED:

fg.enable_debug_output()
505

Reset the device
507 fg.reset()

509 print("Initialisation of the frequency generator complete.")

511 # return the device object so that it can be accessed
return fg

513

except VisaIOError:
515 print("Error initializing the Philips frequency generator!")

exit(1)
517

519 def init_lock_in_model5210():
"""Princeton Applied Research Model 5210 Lock in Amplifier initialisation"""

521

lia = Model5210() # lia ... Lock-In Amplifier
523

try:
525 print_delimiter()

print("Initializing the Princeton Applied Research Model 5210 Lock in Amplifier ...")
527

connect to the Princeton Applied Research Model 5210 Lock in Amplifier
529 lia.connect("GPIB0::12::INSTR")

531 # Enable debug output so we see the commands that are sent to the instrument
if DEBUG_OUTPUT_ENABLED:

533 lia.enable_debug_output()

535 # Reset the device
lia.reset()

537

configure it for our measurements (we want to measure the shunt resistor)
539 lia.use_external_reference() # use a external reference clock

lia.enable_line_filters() # enable the 2 line filters (50 Hz and 100 Hz)
541 lia.disable_line_filters()

lia.set_time_constant(1) # set the time constant and the filter
543 lia.set_filter_slope(12)

lia.set_reserve_high_stability() # set the reserve
545 lia.set_sensitivity(3) # set the sensitivity to 3 V

lia.display_r_phi() # set the displays to interesting things
547

print("Initialisation of the Princeton Applied Research Model 5210 Lock in Amplifier complete.
")

549

return the device object so that it can be accessed
551 return lia

553 except VisaIOError:
print("Error initializing the Princeton Applied Research Model 5210 Lock in Amplifier!")

162

A.2. Source codes

555 exit(1)

557

def init_keithley199_dmm():
559 """Keithley 199 initialisation"""

561 dmm = Keithley199()
try:

563 print_delimiter()
print("Initializing the Keithley 199 dmm...")

565

connect to the device
567 dmm.connect("GPIB0::26::INSTR")

569 # Enable debug output so we see the commands that are sent over the GPIB interface
if DEBUG_OUTPUT_ENABLED:

571 dmm.enable_debug_output()

573 # Reset the device
dmm.reset()

575

dmm.set_function_ac_current()
577 dmm.set_range(Keithley199.RANGE_30mA)

579 print("Initialisation of the Keithley 199 complete.")

581 # return the device object so that it can be accessed
return dmm

583

except VisaIOError:
585 print("Error initializing the Keithley 199!")

exit(1)
587

589 def init_switch_matrix():
"""Agilent3499A initialisation"""

591

switch = Agilent3499A()
593 try:

print_delimiter()
595 print("Initializing the Agilent switch matrix ...")

597 # connect to the switch matrix
switch.connect("GPIB0::2::INSTR")

599

Enable debug output so we see the commands that are sent over the GPIB interface
601 if DEBUG_OUTPUT_ENABLED:

switch.enable_debug_output()
603

Reset the switch matrix (= open all channels)
605 switch.reset()

607 print("Initialisation of the switch matrix complete.")

609 # return the device object so that it can be accessed
return switch

611

except VisaIOError:
613 print("Error initializing the switch matrix!")

exit(1)
615

617 def init_power_supply():
"""Magnet power supply initialisation"""

619

ptn = DigitalInterface()
621 try:

print_delimiter()
623 print("Initializing the magnet power supply ...")

625 # connect to the magnet power supply
ptn.connect("TCPIP0::129.27.158.19::7::SOCKET")

627

print("Set initial parameters")
629 # initial conditions. We will control the current so the voltage limit has to be high enough

ptn.set_current(0)
631 ptn.set_voltage(100)

633 print("Initialisation of the magnet power supply complete.")

635 # return the device object so that it can be accessed
return ptn

637

except VisaIOError:
639 print("Error initializing the magnet power supply!")

exit(1)
641

163

Appendix A. Appendix

643 def shutdown(ptn, switch, lia, fg, tc):
"""This function ensures that every instrument is back in an un-harmful state when we finish the
measurement

645 (or when an error occurs"""

647 print_delimiter()
print("Shutting down all instruments:")

649

print("Shutting down magnet power supply to 0 A (Speed: 1 A/s)")
651 ptn.ramp_current(0, slope=1) # gracefully ramp down the magnetic filed

ptn.set_voltage(0) # for security set current and voltage to 0
653 ptn.set_current(0)

ptn.disconnect() # disconnect the power supply
655

print("Open all ports on the switch matrix")
657 switch.reset() # open all ports

switch.disconnect() # disconnect the switch matrix
659

print("Set the Model5210 lock in to an initial state")
661 lia.reset() # set to defaults

lia.disconnect()
663

print("Set the frequency generator to an initial state")
665 fg.reset() # set to defaults

fg.disconnect()
667

print("Turn the heater off and disconnect from the temperature controller")
669 tc.set_heater_range_off()

tc.disconnect()
671

print_delimiter()
673 print("FINISHED!")

675

######
677 # Helper functions (not directly related to the experiment; but useful in some way)

######
679

def write_parameter_file(directory):
681 """The parameter file is used to store parameters of the setup.

This should ensure that everyone is able to redo the experiment and reproduce the results."""
683

Writing JSON data
685 with open(directory + ’parameters.json’, ’w’) as f:

json.dump(parameters, f, indent=4)
687

689 def evaluate_lock_in_polarity(phase):
"""check the phase to estimate the polarity"""

691

if abs(phase) < ACCEPTABLE_PHASE_SHIFT:
693 # if the hall phase is within the acceptable phase shift we can assume that the polarity is

positive
return 1

695 elif abs(phase) > (180 - ACCEPTABLE_PHASE_SHIFT):
if it is within the phase shift but 180◦ reversed we can assume that the polarity is

negative
697 return -1

else:
699 # in other cases it is not wise to decide polarity automatically

return 0
701

703 def print_delimiter():
"""a function that prints a horizontal line. This makes the output in the console nicer"""

705 print("---")

707

######
709 # This is actually the only line that gets executed when you run this file. It checks if you really

intended to run it
(not just import it). If so it executes the main() routine.

711 # ######

713 if __name__ == "__main__":
main()

sources/hall–measurement–heatup–rh–v2.py

164

Bibliography

[1] M. Ohring. Reliability and Failure of Electronic Materials and Devices.
Elsevier Science, 1998. isbn: 9780080516073. url: https://
books.google.at/books?id=gxSyMjosCwcC (cit. on p. 1).

[2] Hiroyuki Kato et al. “Growth and characterization of Ga-doped
ZnO layers on a-plane sapphire substrates grown by molecu-
lar beam epitaxy.” In: Journal of Crystal Growth 237-239 (2002),
pp. 538–543. issn: 00220248. doi: 10.1016/S0022-0248(01)
01972-8 (cit. on p. 1).

[3] Jari Malm et al. “Low-temperature atomic layer deposition of
ZnO thin films. Control of crystallinity and orientation.” In: Thin
Solid Films 519 (16 2011), pp. 5319–5322. issn: 00406090. doi:
10.1016/j.tsf.2011.02.024 (cit. on p. 1).

[4] Y. R. Ryu, T. S. Lee, and H. W. White. “Properties of arsenic-
doped p-type ZnO grown by hybrid beam deposition.” In: Ap-
plied Physics Letters 83 (1 2003), pp. 87–89. issn: 0003-6951. doi:
10.1063/1.1590423 (cit. on p. 1).

[5] E. H. Hall. “On a New Action of the Magnet on Electric Cur-
rents.” In: American Journal of Mathematics 2 (3 1879), p. 287. issn:
00029327. doi: 10.2307/2369245 (cit. on pp. 1, 4).

[6] Robert Green. Hall Effect Measurements Essential for Characterizing
High Carrier Mobility. Keithley Instruments, Inc., November 2011

(cit. on pp. 1, 15–17).

[7] Takeshi Ohgaki et al. “Positive Hall coefficients obtained from
contact misplacement on evident n-type ZnO films and crystals.”
In: Journal of Materials Research 23 (09 2008), pp. 2293–2295. issn:
0884-2914. doi: 10.1557/jmr.2008.0300 (cit. on p. 1).

[8] P. Wagner and R. Helbig. “Halleffekt und anisotropie der be-
weglichkeit der elektronen in ZnO.” In: Journal of Physics and
Chemistry of Solids 35 (3 1974), pp. 327–335. issn: 00223697. doi:
10.1016/S0022-3697(74)80026-0 (cit. on p. 1).

[9] P. Drude. “Zur Elektronentheorie der Metalle.” In: Annalen der
Physik 306 (3 1900), pp. 566–613. issn: 00033804. doi: 10.1002/
andp.19003060312 (cit. on p. 3).

165

https://books.google.at/books?id=gxSyMjosCwcC
https://books.google.at/books?id=gxSyMjosCwcC
https://doi.org/10.1016/S0022-0248(01)01972-8
https://doi.org/10.1016/S0022-0248(01)01972-8
https://doi.org/10.1016/j.tsf.2011.02.024
https://doi.org/10.1063/1.1590423
https://doi.org/10.2307/2369245
https://doi.org/10.1557/jmr.2008.0300
https://doi.org/10.1016/S0022-3697(74)80026-0
https://doi.org/10.1002/andp.19003060312
https://doi.org/10.1002/andp.19003060312

Bibliography

[10] H. A. Bethe and A. Sommerfeld. Elektronentheorie der Metalle.
Heidelberger Taschenbücher. Springer-Verlag, 1967. url: https:
//books.google.at/books?id=oJ86AAAAMAAJ (cit. on
p. 4).

[11] Van der Pauw. “Philips technical review. A Methode of measur-
ing the resistivity and hall coefficient on lamellae of arbitrary
shape.” In: 20 (8 1958/59), pp. 220–224 (cit. on pp. 7, 13, 14).

[12] Inc. Lake Shore Cryotronics. 7500/9500 Series Hall System User’s
Manual. Appendix A, Hall effect measurements. Westerville, Ohio
43082-8888 USA: Lake Shore (cit. on pp. 8, 18).

[13] F01 Committee, ed. Test Methods for Measuring Resistivity and
Hall Coefficient and Determining Hall Mobility in Single-Crystal
Semiconductors. West Conshohocken, PA: ASTM International,
2016. doi: 10.1520/F0076-08R16E01 (cit. on pp. 8–10, 16, 19,
28).

[14] Wikipedia, ed. Indiumzinnoxid. 31.05.2017. url: https://de.
wikipedia.org/w/index.php?oldid=165150667 (visited
on 06/02/2017) (cit. on p. 10).

[15] H. Kim et al. “Electrical, optical, and structural properties of
indium–tin–oxide thin films for organic light-emitting devices.”
In: Journal of Applied Physics 86 (11 1999), pp. 6451–6461. issn:
0021-8979. doi: 10.1063/1.371708 (cit. on pp. 10, 11, 59).

[16] Toshiro Maruyama and Kunihiro Fukui. “Indium tin oxide thin
films prepared by chemical vapour deposition.” In: Thin Solid
Films 203 (2 1991), pp. 297–302. issn: 00406090. doi: 10.1016/
0040-6090(91)90137-M (cit. on p. 10).

[17] Wen-Fa, Wu and Bi-Shiou Chiou. “Effect of oxygen concentra-
tion in the sputtering ambient on the microstructure, electrical
and optical properties of radio-frequency magnetron-sputtered
indium tin oxide films.” In: Semiconductor Science and Technology
11 (2 1996), p. 196. issn: 0268-1242 (cit. on p. 10).

[18] I. A. Rauf. “Structure and properties of tin-doped indium oxide
thin films prepared by reactive electron-beam evaporation with
a zone-confining arrangement.” In: Journal of Applied Physics 79

(8 1996), p. 4057. issn: 0021-8979. doi: 10.1063/1.361882
(cit. on p. 10).

166

https://books.google.at/books?id=oJ86AAAAMAAJ
https://books.google.at/books?id=oJ86AAAAMAAJ
https://doi.org/10.1520/F0076-08R16E01
https://de.wikipedia.org/w/index.php?oldid=165150667
https://de.wikipedia.org/w/index.php?oldid=165150667
https://doi.org/10.1063/1.371708
https://doi.org/10.1016/0040-6090(91)90137-M
https://doi.org/10.1016/0040-6090(91)90137-M
https://doi.org/10.1063/1.361882

Bibliography

[19] Keithley Instruments, Inc. Low Level Measurement Handbook.
Precision DC Current, Voltage, and Resistance Measurements.
Version 7th Edition. 2013. url: http : / / www . tek .
com / document / primer / low - level - measurements -
handbook - precision - dc - current - voltage - and -
resistance-measurem# (cit. on p. 22).

[20] Zurich Instruments. Principles of lock-in detection and the state of
the art (white paper). November 2016 (cit. on pp. 23, 24).

[21] Standford Research Systems. Model SR830 Manual. DSP Lock-In
Amplifier. Version Revision 2.5. October 2011 (cit. on pp. 24, 97).

[22] Keithley Instruments, Inc. Series 2600B System SourceMeter Instru-
ment Reference Manual. 2600BS-901-01 Rev. A. Cleveland, Ohio,
U.S.A., September 2012 (cit. on pp. 46, 91).

[23] Ocal Tuna et al. “High quality ITO thin films grown by dc and
RF sputtering without oxygen.” In: Journal of Physics D: Applied
Physics 43 (5 2010), p. 055402. issn: 0022-3727. doi: 10.1088/
0022-3727/43/5/055402 (cit. on p. 56).

[24] Michael Stowell et al. “RF-superimposed DC and pulsed DC
sputtering for deposition of transparent conductive oxides.” In:
Thin Solid Films 515 (19 2007), pp. 7654–7657. issn: 00406090. doi:
10.1016/j.tsf.2006.11.166 (cit. on p. 56).

[25] Naoki Nishimoto et al. “Effect of temperature on the electrical
properties of ITO in a TiO 2 /ITO film.” In: physica status solidi (a)
210 (3 2013), pp. 589–593. issn: 18626300. doi: 10.1002/pssa.
201228325 (cit. on p. 56).

[26] L. H.W. van Beveren et al. “Indium Tin Oxide film characteriza-
tion using the classical Hall Effect.” In: 2014 CONFERENCE ON
OPTOELECTRONIC AND MICROELECTRONIC MATERIALS
AND DEVICES (COMMAD 2014) (2014) (cit. on pp. 57, 60).

[27] Wikipedia, ed. Indium tin oxide - Wikipedia. 9.06.2017. url: https:
//en.wikipedia.org/w/index.php?oldid=781283039
(visited on 06/19/2017) (cit. on p. 59).

[28] John Pern. Stability Issues of Transparent Conducting Oxides (TCOs)
for Thin-Film Photovoltaics. In collab. with APP International PV
Reliability Workshop. Golden, Colorado, USA: National Renew-
able Energy Laboratory, USA, Dec. 1, 2008 (cit. on p. 60).

[29] Heinzinger electronic GmbH. Operating instructions. PTN 125 -
40 / 72IP. Rosenheim, Germany, August 2012 (cit. on p. 66).

167

http://www.tek.com/document/primer/low-level-measurements-handbook-precision-dc-current-voltage-and-resistance-measurem#
http://www.tek.com/document/primer/low-level-measurements-handbook-precision-dc-current-voltage-and-resistance-measurem#
http://www.tek.com/document/primer/low-level-measurements-handbook-precision-dc-current-voltage-and-resistance-measurem#
http://www.tek.com/document/primer/low-level-measurements-handbook-precision-dc-current-voltage-and-resistance-measurem#
https://doi.org/10.1088/0022-3727/43/5/055402
https://doi.org/10.1088/0022-3727/43/5/055402
https://doi.org/10.1016/j.tsf.2006.11.166
https://doi.org/10.1002/pssa.201228325
https://doi.org/10.1002/pssa.201228325
https://en.wikipedia.org/w/index.php?oldid=781283039
https://en.wikipedia.org/w/index.php?oldid=781283039

Bibliography

[30] Inc. Advanced Research Systems. Operation Manual Expanders.
Models DE-202 and DE-204. Rev 4. Macungie, PA 18062, U.S.A.,
November 2012 (cit. on pp. 69, 75).

[31] Inc. Advanced Research Systems. Technical Manual Model ARS-
4HW. Water-cooled helium compressor. Rev 3. Macungie, PA 18062,
U.S.A., November 2012 (cit. on p. 69).

[32] Inc. Lake Shore Cryotronics. User’s Manual. Model 336 Temperature
Controller. Rev. 1.8. Westerville, Ohio 43082-8888 USA, January
2014 (cit. on p. 69).

[33] Inc. Agilent Technologies. User’s Manual Agilent 3499A/B/C
Switch/Control System. Revision F. Loveland, Colorado, U.S.A.,
October 2012 (cit. on p. 94).

[34] Magnet-Physik Dr. Steingroever GmbH. Betriebsanleitung FH 54
Gauss-/Teslameter. BA - Nr.: 9920040201. Köln, Germany, June
2000 (cit. on p. 95).

[35] Ametek Advanced Measurement Technology, Inc. Model 5210
Dual Phase Lock-in Amplifier. Instruction Manual. 219874-A-MNL-
G (cit. on p. 97).

[36] Philips Industrial & Electro-acoustic Systems. PM 5193 Pro-
grammable syntesizer/function generator. Operating manual. 9445

051 93001. Amsterdam, Netherlands (cit. on p. 104).

168

.->]<+++>-[---.-----------.++++++++++.>]<
+++>--[.>]<++>-[+++.->]<+>---[--.---.----
--------.>]<++++>-[---.-->]<--->++[..+>]<
+>---[.+>]<++>-[.+++>]<+++++>--[.+++.++++
+++++.>]<+++>-[++.+++>]<+>----[+.++++++++
.---.+++++++++++++.-------.->]<+++++>----
[.->]<+>---[->.->]<+>---[-.----------.+++
++++++++++.+>]<+++>-[.------------.>]<+++
>-[---.-------.-.>]<+>---[+.>]<++>-[+++++
+.----->]<+>---[.-->]<+>---[.-->]<+>---[-

RG91Z2xhcyBBZGFtcyAoMTk4NCk=

