
Graz University of Technology
Institute of Electrical Measurement
and Measurement Signal Processing

Dissertation

Deep Learning for Video Recognition

Christoph Feichtenhofer
Monday 28th August, 2017

Advisors:

Prof. Dr. Axel Pinz

Graz University of Technology, Austria

Prof. Dr. Richard P. Wildes

York University, Toronto, Canada

Abstract

Deep learning is an emerging technique in the field of artificial intelligence. It allows us to represent

signals with models of hierarchical abstraction by learning from experience. Deep representations

are extremely powerful for intelligent sensing, rivaling human perception in several applications.

This dissertation is concerned with learning deep spatiotemporal representations for recognition in

video – an area where human level performance is still far ahead, possibly due to the way biology

is processing spatiotemporal information.

The first part of the thesis considers the problem of fusing appearance and motion signals by

using two-stream Convolutional Networks (ConvNets) for the task of human action recognition. We

present spatiotemporal Residual Networks (ResNets) by introducing residual connections between

the appearance and motion pathways to allow hierarchical learning of complex spatiotemporal

features. To capture long-term dependencies, we transform pretrained image ConvNets into spa-

tiotemporal networks by equipping these with learnable convolutional filters that are initialized as

temporal residuals. Building on our spatiotemporal ResNet, we theoretically motivate multiplica-

tive gating functions for residual networks and present a general ConvNet architecture based on

multiplicative interactions of spacetime features. An irritating property of deep networks is that

due to their compositional structure it is difficult to reason explicitly about what these powerful

representations have learned. We shed light on deep spatiotemporal networks by visualizing what

excites the learned models at the input. Our visual explanations, showing the hierarchical features

of a deep spatiotemporal network, provide clear qualitative evidence for separation into appearance

and motion pathways for video recognition.

A related problem is the task of dynamic scene recognition for which this thesis establishes a

new state-of-the-art by presenting a novel ConvNet architecture that is based on temporal residual

units and fully convolutional in spacetime. We also introduce a new video database of dynamic

scenes that contains videos with and without camera motion to allow for systematic study of how

this variable interacts with the defining dynamics of the scene per se. Our evaluations verify the

particular strengths and weaknesses of seven previously top performing approaches as well as our

novel ConvNet architecture with respect to various scene classes and camera motion parameters.

The final chapter of this thesis is concerned with detection of objects from video. We pro-

pose a ConvNet architecture for simultaneous detection and tracking, using a multi-task objective

for frame-based object detection and across-frame track regression with correlation features that

represent object co-occurrences across time. The frame level detections are linked based on our

across-frame tracklets to produce high accuracy detections at the video level. Our approach pro-

vides better single model performance than the winning method of the last ImageNet challenge

while being conceptually much simpler. Finally, we show that by increasing the temporal stride we

can dramatically increase the tracker speed.

In summary, this dissertation makes several contributions for the computational sensing and

analysis of spatiotemporal signals by advancing the state of the art for recognition of actions, scenes

and objects, and also improving our limited understanding of deep representations for video.

Zusammenfassung

Deep Learning ist eine aufstrebende Technik auf dem Gebiet der künstlichen Intelligenz, die es

uns durch das Lernen aus Erfahrung ermöglicht Signale mit hierarchischer Abstraktion darzustellen.

Die gelernten Repräsentationen sind extrem leistungsfähig und erreichen in mehreren Anwendun-

gen ähnlich gute Resultate wie Menschen. Diese Dissertation beschäftigt sich mit dem Erlernen

räumlich-zeitlicher Modelle zur Erkennung von dynamischen visuellen Signalen und behandelt

damit einen Bereich in dem die menschliche Leistungsfähigkeit noch weit voraus ist.

Der erste Teil der Arbeit befasst sich mit dem Problem der Fusion von Erscheinungs- und

Bewegungssignalen durch die Verwendung von Convolutional Networks (ConvNets) für das Erken-

nen von Aktivitäten in Videos. Wir präsentieren räumlich-zeitliche Residual Networks (ResNets),

indem wir Residuenverbindungen zwischen den Erscheinungs- und Bewegungspfaden einführen,

um hierarchisches Lernen komplexer räumlich-zeitlicher Merkmale zu ermöglichen. Zur Erfassung

von Langzeit-Abhängigkeiten werden vortrainierte Bilderkennungs-ConvNets in räumlich-zeitliche

Netzwerke transformiert. Dies erfolgt durch die Ausstattung mit lernbaren Faltungsfiltern, die als

zeitliche Residuen initialisiert werden. Aufbauend auf unserem räumlich-zeitlichen ResNet disku-

tieren wir multiplikative Gating-Funktionen für ResNets und stellen eine allgemeine ConvNet-

Architektur vor, die auf multiplikativen Interaktionen von Raum-Zeit Features basiert.

Eine ungünstige Eigenschaft von tiefen Netzwerken ist, dass es aufgrund ihrer kompositorischen

Struktur schwierig ist, explizite Schlussfolgerungen über die gelernten Repräsentationen zu tref-

fen. Wir untersuchen unsere Netzwerke indem wir visualisieren was die gelernten Modelle anregt.

Unsere visuellen Erkenntnisse, welche die hierarchischen Merkmale eines tiefen räumlich-zeitlichen

Netzwerks zeigen, liefern klare, qualitative Beweise für die Trennung in Erscheinungsbild und Be-

wegungspfade in der Videoerkennung.

Ein verwandtes Problem ist die Erkennung dynamischer Szenen, wofür diese Arbeit einen

neuen Stand der Technik etabliert. Dies erfolgt durch eine neuartige ConvNet-Architektur, die auf

zeitlichen Residueneinheiten basiert und äquivariant in Raum und Zeit ist. Wir stellen zusätzlich

eine neue Videodatenbank mit dynamischen Szenen vor, die Videos mit und ohne Kamerabewegung

enthält, um die Interaktion mit der definierenden Dynamik der Szene systematisch untersuchen zu

können.

Das letzte Kapitel der Arbeit beschäftigt sich mit der Erkennung von Objekten aus dem raum-

zeitlichen Videosignal. Wir präsentieren eine ConvNet-Architektur für das gleichzeitige Erkennen

und Tracking von Objekten, welche eine Multi-Task-Zielfunktion für die Objekterkennung und

Track-Regression mit Korrelationsmerkmalen verwendet. Die Frame-Level-Detektionen sind auf

Basis unserer übergreifenden Tracklets miteinander verknüpft, um auf der Videoebene hochgenaue

Detektionen zu erzeugen.

Zusammenfassend präsentiert diese Dissertation bedeutende Beiträge für das computerbasierte

Erfassen von räumlich-zeitlichen Signalen, indem sie den Stand der Technik zur Erkennung von

Aktionen, Szenen und Objekten vorantreibt und damit unser begrenztes Verständnis für tiefe,

räumlich-zeitliche Repräsentationen verbessert.

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Contents

Contents

Contents iii

Acknowledgements v

1 Introduction 1

1.1 Motivation . 1

1.2 Applications . 3

1.2.1 Scenes . 4

1.2.2 Actions . 5

1.2.3 Objects . 6

1.3 Contributions and thesis outline . 7

2 Deep Learning Background 11

2.1 Feed-forward neural networks . 11

2.2 Convolutional networks for image recognition . 14

2.3 Two-Stream networks for video recognition . 18

2.4 Convolutional networks for object detection . 22

3 Convolutional Two-Stream Network Fusion 25

3.1 Motivation . 26

3.2 Related work . 26

3.3 Approach . 27

3.3.1 Spatial fusion . 28

3.3.2 Where to fuse the networks . 30

3.3.3 Temporal fusion . 31

3.3.4 Proposed architecture . 32

3.3.5 Implementation details . 34

3.4 Evaluation . 36

3.4.1 How to fuse the two streams spatially? . 36

3.4.2 Where to fuse the two streams spatially? 37

3.4.3 Going from deep to very deep models . 38

3.4.4 How to fuse the two streams temporally? 38

3.4.5 Comparison with the previous state-of-the-art 39

3.5 Summary . 40

i

Contents

4 Spatiotemporal Residual Networks 41

4.1 Motivation . 42

4.2 Related work . 43

4.3 Technical approach . 44

4.3.1 Two-Stream residual networks . 44

4.3.2 Additive motion interaction . 46

4.3.3 Convolutional residual connections across time 47

4.3.4 Proposed architecture . 48

4.3.5 Model training and evaluation . 49

4.4 Evaluation . 51

4.4.1 Two-Stream ResNet with additive interactions 51

4.4.2 Comparison with the previous state-of-the-art 52

4.5 Summary . 54

5 Spatiotemporal Multiplier Networks 55

5.1 Motivation . 56

5.2 Related work . 56

5.3 Two-stream multiplier networks . 57

5.3.1 Baseline architecture . 57

5.3.2 Connecting the two streams . 58

5.3.2.1 Additive interaction . 59

5.3.2.2 Multiplicative interaction . 59

5.3.2.3 Discussion . 60

5.3.3 Temporal filtering with feature identity . 60

5.4 Architecture details . 62

5.4.1 Training procedure . 63

5.4.2 Fully convolutional testing . 64

5.5 Experimental results . 64

5.5.1 Analysis of Two-Stream connections . 65

5.5.2 Experiments on temporal aggregation . 66

5.5.3 Going deeper . 67

5.5.4 Comparison with the state-of-the-art . 68

5.6 Summary . 69

6 Understanding Deep Video Representations 71

6.1 Motivation . 72

6.2 Related work . 73

6.3 Approach . 75

6.3.1 Activation maximization . 76

6.3.2 Regularized optimization . 76

6.4 Experiments . 78

6.4.1 Visualization of early layers . 78

6.4.2 Visualization of fusion layers . 81

6.4.3 Visualization under varying spatiotemporal regularization 83

6.4.4 Visualization of global layers . 93

6.5 Summary . 96

ii

Contents

7 Deep Learning for Dynamic Scene Recognition 97

7.1 Motivation . 98

7.2 Related work . 98

7.3 Temporal residual networks . 99

7.3.1 Spatiotemporal residual unit . 100

7.3.2 Global pooling over spacetime . 102

7.3.3 Implementation details . 103

7.4 Dynamic scenes dataset . 103

7.4.1 Specifications . 105

7.4.2 Experimental protocol . 106

7.5 Empirical evaluation . 106

7.5.1 Is there a need for a new dataset? . 107

7.5.2 Does adding new classes solve the problem? 108

7.5.3 Does more challenging data help? . 108

7.5.4 Detailed algorithm comparisons . 108

7.5.5 Impact of the new dataset . 112

7.6 Summary . 112

8 Deep Video Detection & Tracking 113

8.1 Motivation . 114

8.2 Related work . 115

8.3 Approach . 117

8.3.1 D&T overview . 117

8.3.2 Object detection and tracking in R-FCN . 118

8.3.3 Multitask detection and tracking objective 119

8.3.4 Correlation features for object tracking . 119

8.4 Linking tracklets to object tubes . 122

8.5 Experiments . 123

8.5.1 Dataset sampling and evaluation . 123

8.5.2 Training and testing . 123

8.5.3 Results . 124

8.6 Summary . 127

9 Conclusion 129

A Confusion matrices for Spatiotemporal Multiplier Networks 137

B Visualizations for Understanding Deep Video Representations 143

B.1 Early layers under different optical flow encodings 143

B.2 Convolutional fusion layer visualizations . 147

B.3 Global layer visualizations . 164

B.4 Prediction layer visualizations . 168

C Baseline algorithms for Dynamic Scene Recognition 185

D Qualitative results for Video Detection & Tracking 189

Bibliography 192

iii

Acknowledgements

Advisers play a key role in the development of doctoral candidates. I would like to express deep

gratitude to my advisor Axel for his invaluable guidance and support. In our numerous discussions

he always contributed new insights while also providing me with the freedom to pursue my own

ideas. With his deep and broad knowledge of science he taught me a lot about research, teaching

and communicating. I am also grateful for his fundamental support that made my research stays in

Toronto and Oxford possible. Thanks to Rick for advising me during my stays in the Vision Lab at

York University, Toronto and during our regular online meetings. I am very fortunate to have such

a passionate researcher as my co-advisor. Rick’s ability to always keep a clear overview, even for

very complex problems, were a key factor for my progress during my studies. Thanks to Andrew

for hosting me in the VGG Lab at Oxford University and the numerous discussions we had in our

video calls. Andrew’s boundless enthusiasm for research and his abilities to always know where the

field currently stands and foresee how it might evolve are just remarkable. Special thanks to all

my friends and colleagues for making my time as a student very enjoyable and memorable. Finally,

and most importantly, I want to profoundly thank my parents for their unconditional support that

made all this possible.

Financial support: The author gratefully acknowledges support from the Austrian Academy of Sciences for

receiving a DOC Fellowship at the Institute of Electrical Measurement and Measurement Signal Processing,

Graz University of Technology. This work was also supported by the Austrian Science Fund (FWF P27076)

and hardware donations by Nvidia.

1
Introduction

1.1 Motivation

Visual sensing and perception provide valuable information to intelligent systems. Humans are

particularly proficient at recognizing and interpreting the rich visual world around them. Most of

our capability for performing a variety of tasks comes from how we encode sensory measurements to

extract rich representations for recognition, decision and action. How to build artificial intelligent

systems that could rival or even surpass human performance is a fundamental research problem

and of highest interest.

Deep learning (LeCun et al., 2015) has changed computer vision fundamentally. The core idea

behind deep learning is to jointly optimize multiple layers of features for a given task of consid-

eration. Optimization is typically performed iteratively via backpropagation of gradients through

artificial neural networks with special connectivity structure (e.g. convolutional, recurrent) of the

parameters. Since 2012 (Krizhevsky et al., 2012a), deep neural networks have made in-roads to all

areas of audiovisual sensing rapidly with stunning results in all fields. Interestingly, however, deep

learning did not have such a dramatic effect on video analysis where, contrary to other computer

vision domains that rely on single image processing, shallow and hand-crafted representations are

still powerful.

Recent results underline the lack of progress in video understanding compared to single image

understanding, where even in situations where temporal information is available, it is not integrated

1

Chapter 1. Introduction

into the basic processing. These results are unsatisfactory, as the potential richness of the temporal

dimension should be exploited whenever possible, even though it comes with new challenges such

as duration variation, temporal clutter and within-class variation of temporal relations.

A major drawback of Convolutional Neural Networks (CNNs) is that they require millions

of parameters to be optimized during training. Thus, training problems ensue: These networks

require a large amount of data to prevent overfitting and large amounts of time for learning owing

to computational demand. In single image classification these issues have been ameliorated by

using the huge ImageNet (Deng et al., 2009) database, as well as clever GPU implementations

(Krizhevsky et al., 2012b). For video training the challenges are exacerbated, as now the network

also must be optimized over the temporal domain. The lack of large datasets for the video domain

could be one reason that holds back success of deep spatiotemporal image representations. To the

current date, however, several attempts have been made to release large video datasets of scales

that are at ImageNet level or even beyond; e.g. Sports-1M1, YouTube-8M2, YouTube Bounding

Boxes3 are orders of magnitudes larger than ImageNet. Unfortunately, due to the massive size

of such datasets, they are not always well curated (e.g., labels and metadata can be inaccurate,

availability can be unreliable).

Another reason than lack of data for limited success of deep learning in video could be that video

is different, which deduces that the current still image architectures of the deep models are not ideal

for spatiotemporal data. Interestingly, also nature seems to separate processing of appearance and

motion information. In neuroscience, numerous studies suggest a corresponding separation into

ventral and dorsal pathways of the brain. The ventral pathway is mostly tuned for appearance

based perception of objects, whereas the dorsal stream is involved in localization and movement

recognition and also for sensorimotor control of the observer’s interactions with these objects

(Goodale and Milner, 1992). Although these two pathways are not completely segregated from

each other with significant crosstalk across the streams (Felleman and Van Essen, 1991, Goodale

and Milner, 1992, Kourtzi and Kanwisher, 2000, Saleem et al., 2000) each pathway shows highly

selective, hierarchical features for either appearance or motion detection (from local orientation

selective to complex patterns in higher areas of the visual cortex). We frame the question: Why

does nature devote specific neurons for both tasks and what is the benefit of decoupling the

representation of appearance and motion for deep architectures?

In response to the outlined state of affairs, this thesis advances the state-of-the-art in represen-

tations for video understanding. It tries to rectify the deficit of current approaches by presenting

general ConvNet architectures and design guidelines for recognition in video. Our advances come at

the level of refinement of deep spatiotemporal representations that inherently capture both spatial

and temporal structure of video data to abstract information most relevant for particular (e.g.,

recognition) tasks in an adaptive, data-driven fashion for combining local measurements across

space and time to best support higher level inferences. We ground our findings both theoretically

and empirically by showing visualizations of what our representations have learned and what sen-

1https://github.com/gtoderici/sports-1m-dataset
2https://research.google.com/youtube8m/
3https://research.google.com/youtube-bb/

2

https://github.com/gtoderici/sports-1m-dataset
https://research.google.com/youtube8m/
https://research.google.com/youtube-bb/

1.2. Applications

sory information mostly excites them in the input space. To ensure broad practical applicability, our

approaches are developed within the contexts of three major video understandings tasks: dynamic

scene recognition, action recognition and video object detection. Throughout the dissertation a

tight coupling of theoretical developments with rigorous empirical evaluation on applications of

dynamic scene, action and object recognition fosters both fundamental and practical advances.

1.2 Applications

After decades of research dedicated to solve computer vision problems in the spatial image domain,

scientific work addressing spatiotemporal representations has been relatively neglected until recent

years. As motivated in the previous section, research in spacetime image understanding consider-

ably lags behind its spatial counterpart. However, with the amount of video material on the internet

growing exponentially, for example more than 400 hours of video are uploaded to YouTube every

minute4, there has never been a greater need for basic research in the field of spacetime image

representation.

Recording, storing and viewing videos has become an ordinary part of our daily lives. With the

rising amount of video material readily available (e.g., on the web) it is now more important than

ever to develop methods for automatic video processing and content interpretation. Furthermore,

the classification of image sequences is a fundamental computer vision problem on its own, as

principled attacks on the challenge of revealing basic relationships between a dynamic world and

images thereof.

Here, a full understanding would go beyond the ability to assign a simple label to a video

to moreover encompass an integrated interpretation in terms of the captured scene, actions and

objects within the scene as well as the unfolding of actions across time and space, i.e., activities.

A single label is not enough for a complete understanding of video, as its sequences may contain

several interesting objects, actions or events. Videos may contain stories that are told by the actions

performed in a video and the causal relationship between them.

Even given these strong motivations, research in video-based computer vision has received far

less attention than its single image-based counterpart. One reason for this lack of progress is that

the additional temporal dimension leads to a huge amount of data to process. However, memory

issues could be handled, not only by descriptor compression, but, especially for video, by online

incremental processing of the data. Perhaps more fundamental, while single image interpretation

can build directly on the long standing history of 2D image representation and feature extraction,

full consideration of video entails the development of new approaches that inherently encompass

the temporal dimension.

Vehicle autonomy is a related field that has received a surge of attention recently. The rapid

recent progress seen in this field lately can be mainly devoted to the breakthrough of ConvNets in

computer vision (Krizhevsky et al., 2012b). The visual sensing and perception part of an intelligent

4https://www.youtube.com/yt/about/press/

3

https://www.youtube.com/yt/about/press/

Chapter 1. Introduction

agent arguably is the most critical component, especially for avoiding fatalities in a dynamic

environment. The challenges for near-zero fatality requirement are vast and only achievable with

reliable, understandable models. The traditional way to approach the autonomous driving problem

is by “mediated perception” where hand-designed sub-systems are responsible for performing the

sensing tasks in isolation; e.g. estimating road structure, detecting lane markings and obstacles. A

purely hand-designed approach would allow for more interpretability, but only if the overall system

does not get too complex. The process of autonomous driving, however, is highly complex. There

are many aspects for autonomous cars in pattern recognition, localization and mapping. It is not an

easy task to drive through different types of roadways, scenery, driving and weather conditions in a

dynamic environment where humans are acting unpredictably while driving or walking. We think

that it is notoriously impossible to write software that can handle all these factors without artificial

intelligence. Having the ability to let systems learn could tackle such a problem in an integrated

manner, however, understandability of these systems has to be top priority. The contributions

presented in this dissertation could be directly applied to the autonomous driving scenario where

reliable recognition of objects and actions in a dynamic scene play an essential role. Next, we

will briefly describe the details of the tasks on which we will apply our approaches, followed by a

itemization of the contributions and outline of this thesis.

1.2.1 Scenes

The task of scene categorization is to find the categories (e.g. beach, city, river) to which the input

sequence belongs. Humans are able to perform this task with speed and accuracy (Potter and

Levy, 1969, Rousselet et al., 2004) and with little attention to the objects present in the scene (Li

et al., 2002). Such a holistic understanding of the scene is also pursued by popular representations

and algorithms for scene categorization (Fei-Fei and Perona, 2005, Lazebnik et al., 2006, Oliva

and Torralba, 2001), where local features are used to describe a complex scene straightforwardly,

without intermediately extracting semantics of the objects in the scene. Beyond being of basic

scientific interested in and of itself, dynamic scenes are of interest because they can supply context

for other tasks, e.g., action recognition (Marszalek et al., 2009).

Dynamic scenes are characterized by a collection of dynamic patterns and their spatial layout,

as captured in short video clips. For instance, a beach scene might be characterized by drifting

overhead clouds, mid-scene water waves and a foreground of static sandy texture. Other examples

include forest fires, avalanches and traffic scenes. These scenes may be captured by either stationary

or moving cameras; thus, while scene motion is characteristic, it can be compounded with camera

induced motion. Indeed, dynamic scene classification in the presence of camera motion has proven

to be more challenging than when this confounding attribute is absent. In comparison, dynamic

textures (e.g., (Derpanis and Wildes, 2012, Doretto et al., 2003, Szummer and Picard, 1998)) also

are concerned with complicated dynamic patterns, but in simpler settings, typically with stationary

cameras and the field of view completely occupied by the particular complex dynamic pattern.

In our previous research, we have studied the task of dynamic scene recognition extensively

4

1.2. Applications

(Feichtenhofer et al., 2013, 2014, 2016a). In our penultimate approach to the task we build on the

dominant methodology to image classification and object recognition consisting of three steps: fea-

ture extraction, coding and pooling and termed our method “Dynamically Pooled Complementary

Features” (DPCF) (Feichtenhofer et al., 2016a). In DPCF, an input video is analyzed in slices of

the sequence, which are defined as short temporal intervals. For each slice, at each spatiotemporal

location complementary spatial, temporal and color features are extracted. Next, these features

are encoded into a mid-level representation that has been tuned to the task of dynamic scene

recognition via a training procedure. Finally, the encoded features are pooled by a novel, dynamic

spacetime pyramid that adapts to temporal scene dynamics, resulting in a feature vector, that is

subject to online classification. Complementarity in terms of spatial, temporal and color channels is

preserved through all three steps of processing. Note that the approach is also strongly supported

by findings from neurobiology of natural visual systems (Stone, 2012), where there is a separation

into parvocellular, magnocellular and konio layers that strongly suggests a similar complementarity

(spatial, motion and color channels) of visual pathways.

1.2.2 Actions

Action recognition in video is an intensively researched area, with state of the art systems still

being far from human performance - reflecting the difficulty of the task. Over the past years, it has

been actively researched e.g. (Feichtenhofer et al., 2015, Jhuang et al., 2007, Karpathy et al., 2014,

Laptev et al., 2008a, Simonyan and Zisserman, 2014a, Taylor et al., 2010, Wang and Schmid, 2013)

and has been dominated by the Bag of Visual Word (BoW) approach, consisting of 1) feature ex-

traction, 2) encoding, and 3) pooling and classification. Typical techniques used in these BoW steps

are: 1) SIFT (Lowe, 2004), HOG3D (Kläser et al., 2008), spacetime correlation patches (Shecht-

man and Irani, 2007), Histograms of Optical Flow (HOF) (Laptev et al., 2008b), Motion Boundary

Histograms (MBH) (Dalal et al., 2006), trajectories (Wang et al., 2013), and Spatiotemporal Ori-

ented Energy (SOE) (Derpanis et al., 2013); 2) Locality-constrained Linear Coding (LLC) (Wang

et al., 2010), Super Vector (SV) (Zhou et al., 2010), Vector of Locally Aggregated Descriptors

(VLAD) (Jégou et al., 2012) and Fisher Vectors (FV) (Perronnin and Dance, 2007); 3) average-

and max-pooling with geometry embedded by aggregating with Spatial Pyramid Matching (SPM)

(Lazebnik et al., 2006, Yang et al., 2009), or as weighted by spatiotemporal saliency (Feichtenhofer

et al., 2015). Classification is mostly realized using a Support Vector Machine (SVM) (Cortes and

Vapnik, 1995).

As with other areas of computer vision, recent approaches have concentrated on applying Con-

volutional Neural Networks (ConvNets) to this task e.g. (Karpathy et al., 2014, Simonyan and

Zisserman, 2014a, Tran et al., 2015a), with progress over a number of strands: learning local spa-

tiotemporal filters (Karpathy et al., 2014, Taylor et al., 2010, Tran et al., 2015a), incorporating

optical flow snippets (Simonyan and Zisserman, 2014a), and modelling more extended temporal

sequences (Donahue et al., 2015, Ng et al., 2015b). As actions can be understood as spatiotemporal

objects, researchers have investigated carrying spatial recognition principles over to the temporal

domain by learning local spatiotemporal filters (Karpathy et al., 2014, Taylor et al., 2010, Tran

5

Chapter 1. Introduction

et al., 2015a). However, since the temporal domain arguably is fundamentally different from the

spatial one, different treatment of these dimensions has been considered, e.g. by incorporating opti-

cal flow networks (Simonyan and Zisserman, 2014a), or modelling temporal sequences in recurrent

architectures (Donahue et al., 2015, Ng et al., 2015b, Sharma et al., 2015).

However, action recognition has not yet seen the substantial gains in performance that have

been achieved in other areas by ConvNets, e.g. image classification (Krizhevsky et al., 2012a,

Simonyan and Zisserman, 2014b, Szegedy et al., 2015a), human face recognition (Schroff et al.,

2015), and human pose estimation (Tompson et al., 2015). Indeed the current state of the art

ConvNet based approaches experience performance gains by a combination with Fisher Vector

encoded (Perronnin et al., 2010a) hand-crafted features (such as HOF and MBH) over dense

trajectories (Wang and Schmid, 2013)). Thus, in comparison to the dramatic progress in other

single image related problems, the impact of video research lags behind.

A number of datasets are available for empirical evaluation of action recognition from video.

The Sports-1M (Karpathy et al., 2014) contains a large number of videos (≈1M) and classes

(487); however, this data was labelled automatically and therefore is not free of label noise. An

alternative large scale human action dataset is the THUMOS dataset (Gorban et al., 2015) that has

over 45M frames; however, only a small fraction of these actually contain the labelled action and

thus are useful for supervised feature learning. Due to these circumstances, learning spatiotemporal

ConvNets is still largely relying on smaller, but temporally consistent datasets such as UCF101

(Khurram Soomro and Shah, 2012) or HMDB51 (Kuehne et al., 2011), which contain short videos

of actions. This circumstance facilitates learning, but comes with the risk of severe overfitting to

the training data.

Part of the reason for lack of success of deep networks for action recognition is probably that

current datasets used for training are either too small or too noisy (we return to this point below

in related work). Compared to image classification, action classification in video has the additional

challenge of variations in motion and viewpoint, and so might be expected to require more training

examples than that of ImageNet (1000 per class) – yet UCF-101 has only 100 examples per class.

Another important reason is that current ConvNet architectures are not able to take full advan-

tage of temporal information and their performance is consequently often dominated by spatial

(appearance) recognition.

1.2.3 Objects

Object detection in images has received great attention over the last years with tremendous progress

mostly due to the emergence of deep Convolutional Networks (He et al., 2016a, Krizhevsky et al.,

2012a, LeCun et al., 1989, Simonyan and Zisserman, 2014b, Szegedy et al., 2015a) and its region

based descendants (Girshick, 2015, Girshick et al., 2014, Li et al., 2016a, Ren et al., 2016). In the

case of object detection and tracking in videos, recent approaches have mostly used detection as a

first step, followed by post-processing methods such as applying a tracker to propagate detection

scores over time. Such variations on the ‘tracking by detection’ paradigm have seen impressive

6

1.3. Contributions and thesis outline

progress but are dominated by frame-level detection methods.

1.3 Contributions and thesis outline

The objective of this thesis is the visual analysis and representation of spatiotemporal information

for recognition. The thesis is organized as follows. The next chapter describes relevant background

and a literature review that serves as a basis for the for forthcoming chapters.

In Chapter 3 we study how to fuse appearance and motion features for the task of action

recognition in video. Recent applications of Convolutional Neural Networks (ConvNets) for human

action recognition in videos have proposed different solutions for incorporating the appearance

and motion information. We study a number of ways of fusing ConvNet towers both spatially

and temporally in order to best take advantage of this spatiotemporal information. We make

the following findings: (i) that rather than fusing at the softmax layer, a spatial and temporal

network can be fused at a convolution layer without loss of performance, but with a substantial

saving in parameters; (ii) that it is better to fuse such networks spatially at the last convolutional

layer than earlier, and that additionally fusing at the class prediction layer can boost accuracy;

finally (iii) that pooling of abstract convolutional features over spatiotemporal neighbourhoods

further boosts performance. Based on these studies we propose a new ConvNet architecture for

spatiotemporal fusion of video snippets, and evaluate its performance on standard benchmarks

where this architecture achieves state-of-the-art results. Our code and models are available at

http://www.robots.ox.ac.uk/~vgg/software/two_stream_action/

Next, Chapter 4 introduces Spatiotemporal Residual Networks (ST-ResNet) as a combination

of Two-stream ConvNets (Simonyan and Zisserman, 2014a) and Residual Networks (ResNets) (He

et al., 2016a). Two-stream ConvNets have shown strong performance for human action recognition

in videos and recently ResNets have arisen as a new technique to train extremely deep architec-

tures. Our novel ST-ResNet architecture generalizes ResNets for the spatiotemporal domain by

introducing residual connections in two ways. First, we inject residual connections between the

appearance and motion pathways of a two-stream architecture to allow spatiotemporal interaction

between the two streams. Second, we transform pretrained image ConvNets into spatiotemporal

networks by equipping them with learnable convolutional filters that are initialized as temporal

residual connections and operate on adjacent feature maps in time. This approach slowly increases

the spatiotemporal receptive field as the depth of the model increases and naturally integrates im-

age ConvNet design principles. The whole model is trained end-to-end to allow hierarchical learning

of complex spatiotemporal features. As a further contribution we show that using a smaller batch

size for the noisy bias and variance estimation in batch normalization fosters generalization when

training very deep two-stream ResNets for action recognition. In our ablation experiments we

compare additive and multiplicative interactions when connecting the two streams and also show

how to best temporally pool the features for classification. We evaluate our novel spatiotempo-

ral ResNet using two widely used action recognition benchmarks where it exceeds the previous

state-of-the-art.

7

http://www.robots.ox.ac.uk/~vgg/software/two_stream_action/

Chapter 1. Introduction

Chapter 5 builds on our findings from the preceding chapter. While our ST-ResNet led to

state-of-the-art performance, we did not provide systematic justification for our design choices.

Here, we reconsider the combination of the two-stream and ResNet approaches in a more thorough

fashion to increase the understanding of how these techniques interact. We provide a thorough

analysis of additive and multiplicative interactions with two ResNet streams, as well as unidirec-

tional vs. bidirectional connections between the two streams. We also study ways of increasing the

temporal footprint of the network by injecting temporal kernels on strided/dilated inputs to en-

able hierarchical learning of long-term correspondences, which is found to be especially significant

experimentally. We ground our architectural design on a solid theory for multiplicative motion

gating and initial identity mapping kernels that perform temporal filtering. In summary, the re-

sulting novel architecture is a ConvNet based on multiplicative interactions of spacetime features.

Our model combines the appearance and motion pathways of a two-stream architecture by mo-

tion gating and is trained end-to-end. We theoretically motivate multiplicative gating functions for

residual networks and empirically study their effect on classification accuracy. To capture long-term

dependencies we inject identity mapping kernels for learning temporal relationships. In empirical

investigation we find that our model produces a new state-of-the-art in action recognition.

Our models for both Chapters 4 and 5 are fully convolutional in spacetime and able to evaluate

a video in a single forward pass. We share them together with the source code at https://github.

com/feichtenhofer/st-resnet.

In Chapter 6, we are concerned with understanding of what a deep spatiotemporal network

has learned. We expand on the well-known visualization technique of activation maximization

which has previously been used to visualize neurons in deep image-classification ConvNets. For

the first time, we apply activation maximization to both, appearance and motion pathways of a

patiotemporal architecture. Our results provide highly intuitive explanations for what excites the

filters throughout the hierarchy of the networks. We show visual stimuli with vastly different motion

speeds at the input which all excite the same neuron. Overall, the chapter provides clear qualitative

evidence for separation into two streams for processing appearance and motion – a principle that

has also been found in nature where numerous studies suggest a corresponding separation into

ventral and dorsal pathways of the brain.

The subsequent Chapter 7 switches the task from action to dynamic scene recognition. The

scenes are recognized on the basis of their image spacetime appearance, e.g., as forest fire vs.

beach vs. city. Here, we combine three contributions to establish a new state-of-the-art in dy-

namic scene recognition. First, we present a ConvNet architecture based on temporal residual

units that is fully convolutional in spacetime and does not rely on optical flow inputs. Our model

augments spatial ResNets with convolutions across time to hierarchically add temporal residuals

as the depth of the network increases. This simple technique also allows to generalize (extremely

deep) pre-trained appearance models to the spatiotemporal domain. Second, existing approaches

to video-based recognition are categorized and a baseline of seven previously top performing al-

gorithms are selected for comparative evaluation on dynamic scenes. Third, we introduce a new

and challenging video database of dynamic scenes that more than doubles the size of those previ-

8

https://github.com/feichtenhofer/st-resnet
https://github.com/feichtenhofer/st-resnet

1.3. Contributions and thesis outline

ously available. We analyze the two existing benchmark datasets for dynamic scene recognition and

identify need and room for significant improvement: We have carefully designed a novel, extended

dataset of 20 different dynamic scene categories, including an efficient evaluation protocol. The

dataset encompasses a wide range of natural variations (seasonal and diurnal changes as well as

those of viewing parameters) and adds six additional scene classes to those previously available.

Each scene class is captured with and without camera motion to allow for systematic study of how

this variable interacts with dynamics of the scene per se. Neither of the major extant dynamic

scenes datasets allows for systematic control of this dimension. Camera motion is especially rel-

evant in dynamic scene recognition, where defining scene dynamics can be obscured by camera

motion. Our evaluations verify the particular strengths and weaknesses of the baseline algorithms

with respect to various scene classes and camera motion parameters. While performance on pre-

vious datasets was already saturated, the new dataset is sufficiently challenging to foster further

research in dynamic scene recognition. Our temporal ResNet boosts recognition performance and

establishes a new state-of-the-art on dynamic scene recognition. Our code and models are available

at https://github.com/feichtenhofer/temporal-resnet and our dynamic scene recognition dataset

is available at http://vision.eecs.yorku.ca/research/dynamic-scenes/.

Chapter 8 considers the recently emerging problem of large-scale video object detection. Recent

approaches for high accuracy detection and tracking of object categories in video consist of complex

multistage solutions that become more cumbersome each year. In this work we propose a ConvNet

architecture that jointly performs detection and tracking, solving the task in a simple and effective

way. Our contributions are threefold: First, we set up a ConvNet architecture for simultaneous

detection and tracking, using a multi-task objective for frame-based object detection and across-

frame track regression; second, we introduce novel correlation features that represent object co-

occurrences across time to aid the ConvNet during tracking; third, we link the frame level detections

based on our across-frame tracklets to produce high accuracy detections at the video level. Our

ConvNet architecture for spatiotemporal object detection is evaluated on the large-scale ImageNet

VID dataset where it achieves state-of-the-art results. Our approach provides better single model

performance than the winning method of the 2016 ImageNet challenge while being conceptually

much simpler. Finally, we show that by increasing the temporal stride we can dramatically increase

the tracker speed.

Finally, the thesis is concluded in Chapter 9 where further ideas for future directions are given.

9

https://github.com/feichtenhofer/temporal-resnet
http://vision.eecs.yorku.ca/research/dynamic-scenes/

Chapter 1. Introduction

The chapters are related to the following publications

� Chapter 3: Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer, Axel Pinz, Andrew Zisserman

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016

� Chapter 4: Spatiotemporal Residual Networks for Video Action Recognition

Christoph Feichtenhofer, Axel Pinz, Richard P. Wildes

Advances in Neural Information Processing Systems (NIPS) 2016

� Chapter 5: Spatiotemporal Multiplier Networks for Video Action Recognition

Christoph Feichtenhofer, Axel Pinz, Richard P. Wildes

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017

� Chapter 7: Temporal Residual Networks for Dynamic Scene Recognition

Christoph Feichtenhofer, Axel Pinz, Richard P. Wildes

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017

� Chapter 8: Detect to Track and Track to Detect

Christoph Feichtenhofer, Axel Pinz, Andrew Zisserman

IEEE International Conference on Computer Vision (ICCV) 2017

The publications below describe work that has been done earlier and is loosely related to, but not

described in, this thesis:

� Bags of Spacetime Energies for Dynamic Scene Recognition

Christoph Feichtenhofer, Axel Pinz, Richard P. Wildes

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2014

� Dynamically Encoded Actions based on Spacetime Saliency

Christoph Feichtenhofer, Axel Pinz, Richard P. Wildes

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2015

� Dynamic Scene Recognition with Complementary Spatiotemporal Features

Christoph Feichtenhofer, Axel Pinz, Richard P. Wildes

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 2016

10

2
Deep Learning Background

In this chapter we review methods that are closely related to the contributions of this thesis. Since

the forthcoming chapters will build on deep networks for image and video recognition tasks, this

chapter provides a brief introduction to notation and technical terms. Particularly, we start by dis-

cussing our employed practices to apply deep networks to large scale machine learning problems,

then review ConvNets for the image classification task in Section 2.2, describe the two-stream Con-

vNet variant for video recognition tasks in Section 2.3, and provide an overview of the region-based

detection networks serving as baseline for the task of object detection from video in Section 2.4. For

a more comprehensive overview please see (Goodfellow et al., 2016) and for further implementation

details please see (Chatfield et al., 2014a, Li et al., 2016a, Ren et al., 2016, Sermanet et al., 2014,

Simonyan and Zisserman, 2014a, 2015, Szegedy et al., 2015a, Vedaldi and Lenc, 2015).

2.1 Feed-forward neural networks

Generally, feed-forward neural networks consist of layers of neurons that are modelled as weights

and non-linearities transforming the activations of such neurons. Formally, the ith neuron at the

lth layer takes as input the output of all the neurons from the previous layer xl and applies its

parameters, i.e. weights, w
(i)
l and biases b

(i)
l , to produce an output value

a
(i)
l = x>l w

(i)
l x

(i)
l+1 = f(a

(i)
l + b

(i)
l), (2.1)

11

Chapter 2. Deep Learning Background

where f is an activation function taking in activations, a, and biases b. All linear weight layers are

followed by a non-linear activation function f (e.g. a sigmoid or tanh) to allow the learning of non-

linear input-output mappings. The networks presented in this thesis will all use a Rectified Linear

Unit (ReLU) as activation function which, for a given input x, computes as output y = max{0,x}.
Rectifiers ease (gradient-based) optimization because they do not have curvature or saturation

regions as e.g. a sigmoid function would have. A deep network is a hierarchical representation with

multiple (hidden) layers of neurons (weights and non-linearities) between input and output of the

network. This is very loosely motivated by biology where different rows in the weight matrices

would represent a simple abstraction of the synaptic connections of one neuron to its input, with

positive factors exciting and negative ones prohibiting a neuron.

The network architectures proposed in this thesis are trained by using supervised learning. The

parameters of a network, θ, are learned with gradient-based optimization algorithms by backprop-

agation (Rumelhart et al., 1986) of an error signal (loss) that measures the discrepancy of the

network predictions x̂ and the labels c provided as supervision.

Gradient based optimization searches in the parameter space to find θ? that minimizes the loss

over the N training examples

θ? = arg min
θ

1

N

N∑
i=1

`(x
(i)
0 , c(i); θ), (2.2)

where the loss function ` is evaluated for the ith training example x
(i)
0 and its label c(i) to produce

a single scalar value. A scalar loss allows for efficient evaluation of the gradient on the error

function ∇θ`(x, c; θ) w.r.t. the network parameters θ by recursively applying the chain rule (i.e.

the backpropagation algorithm). After the gradient is computed via backpropagation, optimization

proceeds by gradient descent on the loss function and adjusting parameters by a step in this

direction

θ ← θ − η∇θ`(x, c; θ), (2.3)

with η being the learning rate (or step size) for updates. In all our experiments we resort to

minibatch Stochastic Gradient Descent (SGD) with momentum as optimization algorithm (Bot-

tou, 2010). Minibatch SGD iteratively computes parameter updates for M training examples

{x(1)
0 , . . . ,x

(M)
0 } by averaging the gradient over that batch 1

M∇θ
∑M
i=1 `(x

(i)
0 , c(i)) and applying

updates (2.3) based on these noisy estimates of the gradient over the whole training set. In all

our experiments we set the learning rate according to a fixed schedule, i.e. after a fixed number

of iterations the rate is decreased by some factor. Momentum (Sutskever et al., 2013) is used to

speed up and smooth the gradient update by incorporating the velocity vector, v, of the direction

that consistently reduces the loss `

v← µv − η∇θ`(x, c; θ), (2.4)

θ ← θ + v, (2.5)

12

2.1. Feed-forward neural networks

with µ ∈ [0, 1) being the momentum factor, which exponentially decays the estimated gradients

from previous iterations. There exist techniques that use second-order information or more adaptive

gradient schedules, e.g. Adam (Kingma and Ba, 2015) or RMSProp (Hinton et al., 2012b), but

these are not used for optimizing the proposed networks of this thesis. All following chapters build

on classical SGD, as it produces stable and accurate models for the tasks of image and video

classification (Krizhevsky et al., 2012a, Simonyan and Zisserman, 2014a, Szegedy et al., 2015a).

An exception is Chapter 6 where Adagrad (Duchi et al., 2011) is employed due to the difficulties

in scaling learning rates for the underlying problem of activation maximization; an optimization

algorithm description is given in the corresponding Chapter.

A standard pre-processing technique for neural networks is centering the data around zero by

subtracting the mean over the training set; further pre-processing techniques include normalization

by the standard deviation, PCA decorrelation or whitening transformation. Note that for images

that have already a bounded input (e.g. between 0 and 255), and approximately equal scaling,

these input normalizations are not used in practice (subtracting the mean, however, is standard

practice). Normalizing the input to the layers of neural networks has been proven as important

for several reasons, especially when the networks are very deep. The problem that arises in deep

networks is described as internal covariate shift in (Ioffe and Szegedy, 2015), which points to the

change of the layer activation distributions during training. In the gradient update step, every layer

is optimized with the assumption that the other layers do not change. Each layer, however, gets as

input the output from another layer and since the networks operate with (zero-centered) activation

functions, a shift in the input distribution can have a dramatic effect on optimization. This effect

can be addressed by careful initialization (e.g. (He et al., 2015)) of the network weights, but only

if the network is not too deep and the learning rate is kept low. Batch Normalization (BN) (Ioffe

and Szegedy, 2015) is a technique that re-parametrizes the optimization of the network and can

be seen as a breakthrough for efficient training of very deep models. BN normalizes the outputs of

a layer to have zero mean and unit variance across a batch. At the lth layer, it first computes the

mean µl and standard deviation σl of the activations xl and then transforms these as

xBN
l+1 = γl

xl − µl√
σ2
l + ε

+ βl, (2.6)

with ε being a small constant added for stability, and γl and βl being scale and shift parameters

that are learned to allow the output of batch-normalization having a distribution that has non-zero

mean and non-unit variance, so that the network can represent the same input-output mappings

as without batch normalization. Note that µl and σl are computed over the batch and also the

spatial dimensions of the input xl and backpropagation operates backwards through the moment

estimation. Also notably, batch-normalization injects noise into the training process since, similar

as minibatch SGD, it approximates statistics over the entire training data. This process leads to

different network predictions for different batch constellations. Since during testing a deterministic

behaviour, irrespective of the batch constellation, is desired, µl and σl are replaced with a running

average of these moments over training.

13

Chapter 2. Deep Learning Background

Especially if the batch-size is small, or when the batches are highly correlated (e.g. if features

of multiple frames from a single video are in the batch), this leads to a moment estimation that

is highly biased on the current batch and the dependencies of the samples. Empirically, we find in

Chapter 4 that this situation increases training error and provides a regularizing effect. Regular-

ization can be helpful for increasing generalization of trained models to previously unseen (test)

data. In this thesis several additional practices for regularization are employed (e.g. training data

augmentation) and will be described in the relevant chapters. Interestingly, the regularizing effect

coming from the minibatch dependence in BN is not well understood in the literature, although,

there have been very recent works which ameliorate this minibatch dependence (Ba et al., 2016,

Ioffe, 2017, Salimans and Kingma, 2016). This improvement can be helpful for applying BN to

tasks where underfitting is an issue e.g. Generative Adversarial Networks (GANs) in (Salimans

and Kingma, 2016). Next, we introduce deep learning architectures that serve as a starting point

for the presented approaches in this thesis.

2.2 Convolutional networks for image recognition

[Cat]

Maximize class [Cat]

LossFeature Maps

Width (W)

Depth (C)

Height (H)

Figure 2.1: Output feature maps of an image classification network. Given an input image, forward
propagation computes the output network layers which produce feature maps of decreasing size
(H,W) and increasing dimensionality (C), up to the loss layer which maximizes a given class label
(c) (e.g. “Cat”).

ConvNets are artificial neural networks with special (spatial) connectivity structure based on

an idea of local shift invariance that has been observed in the visual cortex of the brain. Hubel

and Wiesel (Hubel and Wiesel, 1962) postulate simple cells that detect local features and com-

plex cells that pool the outputs of simple cells within a retinotopic neighbourhood. This model

inspired Fukushima (Fukushima, 1980) to develop the Neocognitron and LeCun et al. to develop

ConvNets and apply them to digit recognition (LeCun et al., 1989) and optical character recog-

nition (LeCun et al., 1998). In 2012, a paradigm shift enabled by large annotated datasets (i.e.

ImageNet (Russakovsky et al., 2015a) with ≈1M training images in 1K classes) and hardware for

14

2.2. Convolutional networks for image recognition

fast parallel computing (i.e. GPUs that allow processing of > 200 images/second) led to unprece-

dented performance in large scale image classification (Krizhevsky et al., 2012a), and since then,

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015a) has

become the driving force in developing new ConvNet architectures for image recognition. Similarly,

deep networks have also become a standard tool for speech recognition (Hinton et al., 2012a) and

natural language processing (Wu et al., 2016a). Moreover, it has been found that the features

learned by ConvNets are well transferable to other, related tasks. This result enabled success in

numerous machine vision applications such as object detection (Girshick et al., 2014) and semantic

segmentation (Long et al., 2015).

ConvNets are functions that map an input tensor x0 ∈ RH×W×T×C to an output vector y by a

sequence of operations defined by the layers of the network; here, H,W , T and C denote the width,

height, duration and depth of the tensor. Note that the spatiotemporal dimensions for the tensors

can be of an arbitrary number, but are usually set to two (T = 1) when working with images or

three for working with videos. A ConvNet consists of a chain of L layers that are executed in a

sequential manner. Now, considering each layer fl in a network, it computes an output vector xl+1

that depends only on its input xl and parameters wl: To make this more concretely, each layer

computes a function

xl+1 = fl(xl; wl). (2.7)

to produce output map xl+1 ∈ RHl+1×Wl+1×Tl+1×Cl+1 , where W , H, T and C are the width, height,

duration and number of channels (i.e. depth) of the respective feature maps. The most popular

layers, namely convolutional, fully-connected, pooling and nonlinearity layers, used in popular

feedforward ConvNet architectures (He et al., 2016a, Simonyan and Zisserman, 2015, Szegedy

et al., 2015a) are described in the remainder of this chapter.

Convolutional layers. The convolutional layers are equipped with filter weights

wl ∈ RH′×W ′×T ′×C′×C′′ and biases b ∈ RC′ which are convolved with the input xl

xconv
l+1 = xl ∗wl + bl, (2.8)

where the input depth of xl is C ′ and the output depth of xconv
l+1 is C ′′. Specifically, the layer slides

these c filter kernels over all spatiotemporal locations i, j, t of the input and performs pointwise

multiplication and summation

xconv
l+1 (i, j, t, c) = bc +

H′∑
i′=1

W ′∑
j′=1

T ′∑
t′=1

C′∑
c′=1

xl(i
′, j′, t′, c′)wl(i

′, j′, t′, c′, c). (2.9)

Besides the filter dimensions, H ′ ×W ′ × T ′ × C ′ × C ′′, which correspond to the number of

parameters (excluding the length of the bias vector, C ′, the convolutional layer (and any other

locally operating layer that behaves like a filter) has two more variables, stride s and padding

15

Chapter 2. Deep Learning Background

p that modify the output size of the convolution. The stride defines how the filter is translated

over the input dimensions (width, height, duration) and how many operations are performed; i.e.

the increments of (i′, j′, t′) between each multiplication in (2.9). A stride of one corresponds to a

dense convolution, where the filter is slid over all input positions and a larger stride leads to a

subsampling of the input which results in smaller output dimension. The padding p defines the size

of the border added to the input before the filtering operation is performed. Typically the input is

padded with zeros at the border to produce outputs of the same size as the input. Specifically, for

a single dimension (i.e. width W), the size of the output is defined as

W ′′ =

⌊
W −W ′ + pleft

w + pright
w

sw

⌋
+ 1, (2.10)

where W is the input width, W ′ is the filter width, pleft
w is the padding added to the left of the

input, pright
w is the padding added to the right and sw is the stride of the filtering operation in the

horizontal direction.

Fully connected layers. Having defined a convolutional layer, a fully connected layer is a special

case of a convolutional layer which has a filter size that is equal to the input size; therefore, the

filters of such a layer are connected to all locations of the input and produce a single scalar output.

Pooling. The number of filters (i.e. the depth of the feature maps) is increased when going from

input (e.g., three colour channels) to the output of the network. Subsampling of feature maps

has three direct motivations. First, the filters deeper in the network hierarchy should operate on

larger receptive fields at the input to capture high-level semantics. Second, for classification tasks,

the output of the network should be invariant to the exact location of the objects present in the

input. Third, a limited memory budget in hardware can put a constraint on the overall feature

map dimensions that can be held in a network. Pooling can be thought of as a filter that computes

a pre-defined function in a local region H ′ ×W ′ × T ′ individually for each feature channel c. Two

popular pooling functions are employed in current ConvNets: max and average pooling.

Dilation. Using dilated filters is a way of increasing the receptive field, irrespective of the sub-

sampling used. Dilation d increases the offset on which the filter taps operate on the input (d = 1

corresponds to no dilation). Pictorially, dilating the filter-taps can be thought as padding the filter

kernel by zeros. For example, a one dimensional filter [w1, w2, w3] with a dilation factor of d = 2

corresponds to [w1, 0, w2, 0, w3]. Note that in practice this composition is implemented efficiently

by striding the filter taps on the input by the dilation factor. Dilated filter processing is a long

standing practice in the signal processing community where it is referred to as spread-tap filtering.

Example network. This thesis will build on several different network architectures. One highly

effective (but computationally demanding) architecture is the VGG-16 network. Here, we illustrate

the VGG-16 network (Simonyan and Zisserman, 2015) for its simplicity as it is designed by stacking

16

2.2. Convolutional networks for image recognition

13 convolutional layers of size 3 × 3 each with ReLU activation functions, followed by two fully

connected layers. In Fig. 2.2 we illustrate the architecture and how it is used for image classification.

L
os

s

P
re

d
ic

ti
on

F
C

 1
x
1
x
40

9
6

F
C

 1
x
1
x
40

9
6

P
oo

l
2x

2

C
on

v
 3

x
3x

51
2

C
on

v
 3

x
3x

51
2

C
on

v
 3

x
3x

5
1
2

P
oo

l
2x

2

C
on

v
 3

x
3x

51
2

C
on

v
 3

x
3x

51
2

C
on

v
 3

x
3x

51
2

P
oo

l
2x

2

C
on

v
 3

x
3x

25
6

C
on

v
 3

x
3x

25
6

C
on

v
 3

x
3x

25
6

P
oo

l
2x

2

C
on

v
 3

x
31

28

C
on

v
 3

x
31

28

P
oo

l
2x

2

C
on

v
 3

x
3x

6
4

C
on

v
 3

x
3x

6
4

Forward propagation

Backward propagation
[Cat]

Figure 2.2: Architecture of a VGG-16 network (ReLU non-linearities not shown). Given an input
image, forward propagation computes the output of the network and compares it with the correct
answer (cat) to obtain an error signal (loss). The error signal is back-propagated to get derivatives
for learning parameters (i.e. weights) of the individual layers. Supervised learning minimizes the
loss (and some regularization term) w.r.t. the parameters over the training data. The layers are
shown with type and the filter dimensions (H ′×W ′×C ′′), namely filter width, height and output
channels. Note that the temporal extent (T ′) and input dimensionality (C ′) is omitted for brevity.

Geometric transformations. Starting from AlexNet (Krizhevsky et al., 2012a), ConvNet ar-

chitectures have evolved over the last few years. In Table Table 2.1 we show three example archi-

tectures, i.e. AlexNet (winner ILSVRC’12), VGG-M (Chatfield et al., 2014b) (which is very similar

to the ZF-network (Zeiler and Fergus, 2013), winner ILSVRC’13), and VGG-16 (Simonyan and

Zisserman, 2015) (2nd place ILSVRC’14), that were popular in computer vision literature from

2012-2015 (we omit the GoogleNet (Szegedy et al., 2014), the winning architecture of ILSVRC’14,

for simplicity). The geometric properties of the layers can be read from Table 2.1, where we see

a slowly growing receptive field coupled with an increase of feature dimensionality. Notably, since

padding is used during filtering, the overall theoretical receptive field can grow larger than the

input resolution. In Fig. 2.1 we show the output feature maps for the VGG-16 architecture.

17

Chapter 2. Deep Learning Background

AlexNet VGG-M VGG-16
type size stride type size stride type size stride
conv1 11 4 conv1 7 2 conv1 1 3 1
relu1 11 4 relu1 7 2 relu1 1 3 1

conv1 2 5 1
relu1 2 5 1

norm1 11 4 norm1 7 2
pool1 19 8 pool1 11 4 pool1 6 2
conv2 51 8 conv2 27 8 conv2 1 10 2
relu2 51 8 relu2 27 8 relu2 1 10 2

conv2 2 14 2
relu2 2 14 2

norm2 51 8 norm2 27 8
pool2 67 16 pool2 43 16 pool2 16 4
conv3 99 16 conv3 75 16 conv3 1 24 4
relu3 99 16 relu3 75 16 relu3 1 24 4

conv3 2 32 4
relu3 2 32 4
conv3 3 40 4
relu3 3 40 4
pool3 44 8

conv4 131 16 conv4 107 16 conv4 1 60 8
relu4 131 16 relu4 107 16 relu4 1 60 8

conv4 2 76 8
relu4 2 76 8
conv4 3 92 8
relu4 3 92 8
pool4 100 16

conv5 163 16 conv5 139 16 conv5 1 132 16
relu5 163 16 relu5 139 16 relu5 1 132 16

conv5 2 164 16
relu5 2 164 16
conv5 3 196 16
relu5 3 196 16

pool5 195 32 pool5 171 32 pool5 212 32
fc6 355 32 fc6 331 32 fc6 404 32
relu6 355 32 relu6 331 32 relu6 404 32
fc7 355 32 fc7 331 32 fc7 404 32
relu7 355 32 relu7 331 32 relu7 404 32
fc8 355 32 fc8 331 32 fc8 404 32
pred 355 32 pred 331 32 pred 404 32

Table 2.1: Geometric properties of the AlexNet, VGG-M and VGG-16 ConvNet architectures.
The columns list the type and number of the layers, i.e. convolution (conv), rectification (relu),
pooling (pool), fully-connected (fc), or prediction (pred); the corresponding receptive field sizes
(size), and the pixelwise stride in horizontal and vertical direction that is used in the local filtering
operations (stride).

2.3 Two-Stream networks for video recognition

Appearance and motion cues are vital for visual recognition. For example, try to guess which type

of swimming action (e.g. breast stroke, crawling) a person is performing just from a single image.

By just looking at the pose of the person this task can be ambiguous and is hard to determine,

even for humans. For humans it is much easier to recognise the action in Fig. 2.3 if one knows

what (spatial cues) is moving how (temporal cues) and the manner in which these cues evolve

over time. In the above case, knowing how the limbs of the person are moving over short temporal

18

2.3. Two-Stream networks for video recognition

time t

[Archery]

time

Feature Maps (motion)

Width (W)

Depth (C)

Height (H)

Maximize class [Archery]

Loss

LossFeature Maps (appearance)

Maximize class [Archery]

Figure 2.3: Output feature maps of a VGG-16 two-stream action classification network. Given
input samples of appearance (image frame) and motion (optical flow frames), forward propaga-
tion computes the output network layers which produce feature maps of decreasing size (H,W)
and increasing dimensionality C, up to the loss layers which maximize a given class label c (e.g.
“Archery”). Note that there is no connection across the streams and training and testing is imple-
mented in separation.

duration would ease the problem. The two-stream ConvNet architecture proposed by Simonyan and

Zisserman (Simonyan and Zisserman, 2014a) incorporates that information by training separate

ConvNets on still images as well as on stacks of (frame-level) optical flow.

This two-stream approach (Simonyan and Zisserman, 2014a) separately trains two ConvNet

streams, operating on motion and appearance information. Each stream performs video recognition

on its own and softmax class posteriors are combined by late fusion for final classification. During

testing, a fixed number of frames is sampled for the videos and the prediction scores of the two

networks are averaged for all frames. Notably, here, we found that training a ConvNet jointly on

both RGB and optical flow input is non-trivial, as such an architecture can severely overfit to

appearance information.

Appearance and motion streams. The appearance stream operates on individual RGB image

frames from the video and performs classification of these. In this way, appearance information can

be most effectively exploited for recognizing actions by transfer learning from powerful ImageNet

models. The motion stream operates on a stack of optical flow frames. In this thesis we will

show that also this stream can effectively exploit deep models trained for image classification, and

moreover in Chapter 6 we will provide intuitive examples of why this is the case. The motion

19

Chapter 2. Deep Learning Background

L
os

s

P
re

d
ic

ti
on

F
C

 1
x
1
x
40

9
6

F
C

 1
x
1
x
40

9
6

P
oo

l
2x

2

C
on

v
 3

x
3x

51
2

C
on

v
 3

x
3x

51
2

C
on

v
 3

x
3x

51
2

P
oo

l
2x

2

C
on

v
 3

x
3x

51
2

C
on

v
 3

x
3x

51
2

C
on

v
 3

x
3x

5
1
2

P
oo

l
2x

2

C
on

v
 3

x
3x

25
6

C
on

v
 3

x
3x

25
6

C
on

v
 3

x
3x

25
6

P
oo

l
2x

2

C
o
n
v
 3

x
31

28

C
o
n
v
 3

x
31

28

P
oo

l
2x

2

C
on

v
 3

x
3x

6
4

C
on

v
 3

x
3x

6
4

time t

L
os

s

P
re

d
ic

ti
o
n

F
C

 1
x
1
x
40

9
6

F
C

 1
x
1
x
40

9
6

P
oo

l
2x

2

C
on

v
 3

x
3x

5
1
2

C
on

v
 3

x
3x

5
1
2

C
on

v
 3

x
3x

51
2

P
oo

l
2x

2

C
on

v
 3

x
3x

51
2

C
on

v
 3

x
3x

51
2

C
on

v
 3

x
3x

5
1
2

P
oo

l
2x

2

C
on

v
 3

x
3x

25
6

C
on

v
 3

x
3x

25
6

C
on

v
 3

x
3x

25
6

P
oo

l
2x

2

C
o
n
v
 3

x
31

28

C
o
n
v
 3

x
31

28

P
oo

l
2x

2

C
on

v
 3

x
3x

6
4

C
on

v
 3

x
3x

6
4

[Archery]

time

Figure 2.4: Architectural details of a VGG-16 Two-Stream network that trains two separate
network architectures for the appearance and motion stream.

stream receives information based on an input stack of L = 10 horizontal and vertical optical flow

frames. For details on the implementation and ablation studies on the parameter L as well as the

optical flow input (e.g. mean subtraction and trajectory accumulation in the stacking) the reader is

referred to the original publication (Simonyan and Zisserman, 2014a). Notably, here, the mean-flow

subtraction as a form of simple camera motion compensation showed no significant gain, nor did

the way of stacking the optical flow fields (accumulating trajectories vs. inter-frame motion). These

observations may be explained by the hypothesis that such transformations are implicitly learned

by the network during training. The parameter L, which represents the number of frames for each

stack of optical flow input, however is crucial and increases performance for increasing number of

frames L. Besides their comparison of several techniques to align the optical flow frames where

they concluded that simple stacking of L = 10 horizontal and vertical flow fields performs well,

they also employed multitask learning on UCF101 and HMDB51 to increase the amount of training

data and to improve the performance on both. In the forthcoming chapters, we will build on the

two-stream baseline networks by training separate models of varying complexity (e.g. VGG-M,

VGG-16) for the appearance and motion streams. A visual example for training two such separate

streams with a VGG-16 model is given in Fig. 2.4.

Biological perception. The two-stream architecture is inspired by the two-stream hypothesis

(Goodale and Milner, 1992, Mishkin and Ungerleider, 1982, Ungerleider and Haxby, 1994) that

postulates two pathways in the human visual cortex: the ventral pathway that responds to spatial

features such as shape or colour of objects and the dorsal pathway that is sensitive to object

20

2.3. Two-Stream networks for video recognition

transformations and their spatial relationship, as e.g. caused by motion.

Research in neuroscience suggests that the ventral stream is a stack of cortical areas (RGC,

LGN, V1, V2, V4, IT) where each area locally applies a set of operations to produce a retinotopic

output map that is used as an input for a higher map. Such an “object recognition” stream could

be simplified to a ConvNet that applies filtering, including pooling to grow the receptive field

and provide invariances to viewpoint, scale, pose, etc. The dorsal stream, on the other hand,

is responsible for recognizing motion and the spatial location of different entities in the visual

field of view. An interesting question that arises is why does nature separate visual information

processing into a ‘what’ and a ‘where’ pathway? One answer to that question could be that it has

an architectural advantage, since encoding exact spatial coordinates (where) is counter-productive

for recognizing what an object is – a case where invariance to spatial transformations (e.g. shape,

pose, scale) is beneficial. On the other hand, if we would like to know the spatial position of an

object and how the location evolves over time (i.e. motion), object measurements such as shape,

pose and scale are important cues and we don’t want to be invariant against these.

Nevertheless, a full separation of ‘what’ and ‘where’ streams is not expedient when we would

like to reason about spatiotemporal objects with discriminative motion. Here a fusion of the ‘what’

and ‘where’ information could provide clear benefits. Research in neuroscience also suggests that

there are numerous connections between the cortical areas of the ventral and the dorsal pathways;

e.g., that motion information is distributed into separate visual areas (Born and Tootell, 1992,

Van Essen and Gallant, 1994). In this work, our goal is to give the two-stream architecture the

possibility of jointly using these cues for action recognition in video.

21

Chapter 2. Deep Learning Background

Convolutional Feature Maps

Cls

Reg

Cls

Reg

Anchors

RPN

RoI Pooling

Proposals

Objects

Figure 2.5: An object detection architecture working on convolutional feature maps.

2.4 Convolutional networks for object detection

Two families of detectors are currently popular: First region proposal based detectors R-CNN

(Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2016) and R-FCN

(Li et al., 2016a) and second, detectors that directly predict boxes for an image in one step such

as YOLO (Redmon et al., 2016) and SSD (Liu et al., 2016).

Our approach in Chapter 8 builds on R-FCN (Li et al., 2016a), which is a simple and efficient

framework for object detection on region proposals with a fully convolutional nature see Fig. 2.5.

In terms of accuracy it is competitive with Faster R-CNN (Ren et al., 2016), which uses a multi-

layer network that is evaluated per-region (and thus has a cost growing linearly with the number

of candidate RoIs). R-FCN reduces the cost for region classification by pushing the region-wise

operations to the end of the network with the introduction of a position-sensitive RoI pooling

layer, which works on convolutional features that encode the spatially subsampled class scores of

input RoIs.

Here, we describe the object detection pipeline used in Chapter in 8 that is based on R-FCN

(Li et al., 2016a). Given a video, R-FCN takes frames It ∈ RH0×W0×3 at time t and pushes them

through a backbone ConvNet (e.g. a ResNet-101 trunk (He et al., 2016a)) to obtain feature maps

xtl ∈ RHl×Wl×Dl where Wl, Hl and Dl are the width, height and depth (i.e. number of feature

channels) of the respective feature map output by layer l. Notably, since high-accuracy input

resolution is of clear importance for localizing objects, R-FCN reduces the effective stride at the

last convolutional layer from 32 pixels to 16 pixels by modifying the conv5 block to a spatial filter

stride of one, to compensate the reduced receptive field induced by that transformation, the authors

also increase its receptive field by using dilation for convolution (see Section 2.2) with a dilation

factor of 2 for these filters.

Region proposal. Similar to Fast R-CNN (Girshick, 2015), the R-FCN approach (Li et al.,

2016a) operates in two stages: First, it extracts candidate regions of interest (RoIs) using a Region

Proposal Network (RPN) (Ren et al., 2016); second, it performs region classification into differ-

22

2.4. Convolutional networks for object detection

ent object categories and background by using a position-sensitive RoI pooling layer (Li et al.,

2016a). An example is visualized in Fig. 2.5, where the RPN branches out at an intermediate layer

to produce regions of high “objectness” and subsequently RoI-pooling takes in these regions for

classification. Notably, the proposal stage (RPN) performs classification (foreground/background)

and bounding box regression on “anchor” boxes, which are pre-defined boxes of different aspect

ratios that are slid over the feature map in a fully convolutional manner. Only the highest scoring

(typically ≈ 300) “anchors” are kept and used as region proposals for the next stage.

Detection. For the detection stage, the candidate regions are used as input to the RoI pooling

operation which operates on an additional convolutional layer with output xtcls that is injected

(randomly initialized) after the last convolutional layer of the trunk ConvNet (e.g. a ResNet (He

et al., 2016a) or VGG-16 (Simonyan and Zisserman, 2015)). The position-sensitive RoI pooling

operation (Li et al., 2016a) produces a bank of Dcls = k2(C + 1) location-sensitive score maps

which correspond to a k×k spatial grid describing relative positions to be used in the RoI pooling

operation for each category (C) and background. Applying the softmax function to the outputs

leads to a probability distribution p over C + 1 classes for each RoI coming from the RPN sub-

network.

For bounding box regression, a second branch is used. Similar to Faster R-CNN (Ren et al.,

2016), a sibling convolutional layer with output xtreg after the last convolutional layer performs

bounding box regression. However, different than Faster R-CNN, this task is also solved in a fully

convolutional manner (no region-wise operations) where again a position-sensitive RoI pooling

operation is performed on this bank of Dcls = 4k2 maps for class-agnostic bounding box prediction

of candidate boxes.

Multi-task loss. For learning the detectors a multi-task loss formulation (Girshick, 2015), con-

sisting of of a combined classification Lcls and regression loss Lreg is used. For a single iteration

and a batch of N RoIs the network predicts softmax probabilities {pi}Ni=1 and regression offsets

{bi}Ni=1. The overall objective function is written as:

L({pi}, {bi}, {∆i}) =
1

N

N∑
i=1

Lcls(pi,c∗) + λ
1

Nfg

N∑
i=1

[c∗i > 0]Lreg(bi, b
∗
i) (2.11)

Where the ground truth class label of an RoI is defined by c∗i and its predicted softmax score is

pi,c∗ and b∗i is the ground truth regression target. The indicator function [c∗i > 0] is 1 for foreground

RoIs and 0 for background RoIs (with c∗i = 0). Lcls(pi,c∗) = − log(pi,c∗) is the cross-entropy loss for

box classification, and Lreg is the bounding box regression loss defined as the smooth L1 function

in (Girshick, 2015). The tradeoff parameter λ = 1 is used to balance the different loss terms. The

assignment of RoIs to ground truth is as follows: a class label c∗ and regression targets b∗ are

assigned if the RoI overlaps with a ground-truth box at least by 0.5 in intersection-over-union

(IoU). Thus, the first term of (2.11) is active for all N boxes in a training batch and the second

term is only active for Nfg foreground RoIs.

23

Appearance Stream

Motion Stream

Motion + Appearance Stream

P
red
iction

+*

Example outputs of the first three convolutional layers from a two-stream ConvNet model. The
two networks separately capture appearance and motion information at a fine temporal scale. In
this chapter, we investigate several approaches to fuse the two networks across space and time, to
finally come up with a greatly improved Convolutional Two-Stream Fusion architecture.

3
Convolutional Two-Stream Network Fusion

25

Chapter 3. Convolutional Two-Stream Network Fusion

3.1 Motivation

Some actions can be identified from a still image from their appearance alone (e.g. archery in

the above case). For others, though, individual frames can be ambiguous, and motion cues are

necessary. Consider, for example, discriminating walking from running, yawning from laughing,

or in swimming, crawl from breast-stroke. The two-stream architecture (Simonyan and Zisserman,

2014a) incorporates motion information by training separate ConvNets for both appearance in still

images and stacks of optical flow. Indeed, this work showed that optical flow information alone was

sufficient to discriminate most of the actions in UCF101.

Nevertheless, the two-stream architecture (or any previous method) is not able to exploit two

very important cues for action recognition in video: (i) recognizing what is moving where, i.e.

registering appearance recognition (spatial cue) with optical flow recognition (temporal cue); and

(ii) how these cues evolve over time.

Our objective in this chapter is to rectify these limitations by developing an architecture that

is able to fuse spatial and temporal cues at several levels of granularity in feature abstraction,

and with spatial as well as temporal integration. In particular, Sec. 3.3 investigates three aspects

of fusion: (i) in Sec. 3.3.1 how to fuse the two networks (spatial and temporal) taking account of

spatial registration? (ii) in Sec. 3.3.2 where to fuse the two networks? And, finally in Sec. 3.3.3

(iii) how to fuse the networks temporally? In each of these investigations we select the optimum

outcome (Sec. 3.4) and then, putting these results together, propose a novel architecture (Sec. 3.3.4)

for spatiotemporal fusion of two stream networks that achieves state of the art performance in

Sec. 3.4.5.

We implemented our approach using the MatConvNet toolbox (Vedaldi and Lenc, 2015) and

made our code publicly available at https://github.com/feichtenhofer/twostreamfusion

3.2 Related work

Several pieces of recent work on using ConvNets for action recognition in temporal sequences have

investigated the question of how to go beyond simply using the framewise appearance information,

and exploit the temporal information. A natural extension is to stack consecutive video frames

and extend 2D ConvNets into time (Ji et al., 2013) so that the first layer learns spatiotemporal

features. In (Karpathy et al., 2014) the authors study several approaches for temporal sampling,

including early fusion (letting the first layer filters operate over frames as in (Ji et al., 2013)),

slow fusion (consecutively increasing the temporal receptive field as the layers increase) and late

fusion (merging fully connected layers of two separate networks that operate on temporally distant

frames). Their architecture is not particularly sensitive to the temporal modelling, and they achieve

similar levels of performance by a purely spatial network, indicating that their model is not gaining

much from the motion information.

The recently proposed C3D method (Tran et al., 2015a) learns 3D ConvNets on a limited

26

https://github.com/feichtenhofer/twostreamfusion

3.3. Approach

temporal support of 16 consecutive frames with all filter kernels of size 3×3×3. They report better

performance than (Karpathy et al., 2014) by letting all filters operate over space and time. However,

their network is considerably deeper than (Ji et al., 2013, Karpathy et al., 2014) with a structure

similar to the very deep networks in (Simonyan and Zisserman, 2014b), which should be a basis of

better performance on its own. Another way of learning spatiotemporal relationships is proposed in

(Sun et al., 2015), where the authors factorize 3D convolution into a 2D spatial and a 1D temporal

convolution. Specifically, their temporal convolution is a 2D convolution over time as well as the

feature channels and is only performed at higher layers of the network.

The work in (Ng et al., 2015b) compares several temporal feature pooling architectures to com-

bine information across longer time periods. They conclude that temporal pooling of convolutional

layers performs better than slow, local, or late pooling, as well as temporal convolution. They also

investigate ordered sequence modelling by feeding the ConvNet features into a recurrent network

with Long Short-Term Memory (LSTM) cells. Using LSTMs, however, did not give an improvement

over temporal pooling of convolutional features.

The most closely related work to ours, and the one we extend here, is the two-stream ConvNet

architecture proposed in (Simonyan and Zisserman, 2014a). The method first decomposes video

into spatial and temporal components by using RGB and optical flow frames. These components

are fed into separate deep ConvNet architectures, to learn spatial as well as temporal information

about the appearance and movement of the objects in a scene. Each stream is performing video

recognition on its own and for final classification, softmax scores are combined by late fusion.

The authors compared several techniques to align the optical flow frames and concluded that

simple stacking of L = 10 horizontal and vertical flow fields performs best. They also employed

multitask learning on UCF101 and HMDB51 to increase the amount of training data and improve

the performance on both.

Also related to our work is the bilinear method (Lin et al., 2015), which correlates the output

of two ConvNet layers by performing an outer product at each location of the image. The resulting

bilinear feature is pooled across all locations into an orderless descriptor. Note that this approach

is closely related to second-order pooling (Carreira et al., 2012) of hand-crafted SIFT features.

3.3 Approach

We build upon the the two-stream architecture (Simonyan and Zisserman, 2014a), which has been

described in Section 2.3. This architecture has two main drawbacks: (i) it is not able to learn

the pixel-wise correspondences between spatial and temporal features (since fusion is only on the

classification scores), and (ii) it is limited in temporal scale as the spatial ConvNet operates only

on single frames and the temporal ConvNet only on a stack of L temporally adjacent optical flow

frames (i.e. L = 10). The implementation of (Simonyan and Zisserman, 2014a) addressed the latter

problem to an extent by temporal pooling across regularly spaced samples in the video, but this

does not allow the modelling of temporal evolution of actions.

27

Chapter 3. Convolutional Two-Stream Network Fusion

3.3.1 Spatial fusion

In this section we consider different architectures for fusing the two stream networks. However, the

same issues arise when spatially fusing any two networks, so they are not tied to this particular

application.

To be clear, our intention in this section is to fuse the two networks (at a particular convolu-

tional layer) such that channel responses at the same pixel position are put in correspondence. To

motivate this idea, consider for example discriminating between the actions of brushing teeth and

brushing hair. If a hand moves periodically at some spatial location then the temporal network

can recognize that motion, and the spatial network can recognize the location (teeth or hair) and

their combination then discriminates the action (e.g., as brush teeth vs. brush hair).

This spatial correspondence is easily achieved when the two networks have the same spatial

resolution at the layers to be fused, simply by overlaying (stacking) layers from one network on the

other (we make this precise below). However, there is also the issue of which channel (or channels)

in one network corresponds to the channel (or channels) of the other network.

Suppose for the moment that different channels in the spatial network are responsible for

different facial areas (mouth, hair, etc), and one channel in the temporal network is responsible for

periodic motion fields of this type. Then, after the channels are stacked, the filters in the subsequent

layers must learn the correspondence between these appropriate channels (e.g. as weights in a

convolution filter) in order to best discriminate between these actions.

To make this more concrete, we now discuss a number of ways of fusing layers between two

networks, and for each describe the consequences in terms of correspondence.

A fusion function f : xat ,x
b
t ,→ yt fuses two feature maps xat ∈ RH×W×C and xbt ∈ RH′×W ′×C′ ,

at time t, to produce an output map yt ∈ RH′′×W ′′×C′′ , where W,H and C are the width, height

and number of channels of the respective feature maps. When applied to feedforward ConvNet

architectures, consisting of convolutional, fully-connected, pooling and nonlinearity layers, f can

be applied at different points in the network to implement e.g. early-fusion, late-fusion or multiple

layer fusion. Various fusion functions f can be used. We investigate the following ones in this

chapter, and, for simplicity, assume that H = H ′ = H ′′, W = W ′ = W ′′, C = C ′, and also drop

the t subscript.

Sum fusion. ysum = f sum(xa,xb) computes the sum of the two feature maps at the same

spatial locations i, j and feature channels d:

ysum
i,j,d = xai,j,d + xbi,j,d, (3.1)

where 1 ≤ i ≤ H, 1 ≤ j ≤W, 1 ≤ d ≤ C and xa,xb,y ∈ RH×W×C

Since the channel numbering is arbitrary, sum fusion simply defines an arbitrary correspondence

between the networks. Of course, subsequent learning can employ this arbitrary correspondence

to its best effect, optimizing over the filters of each network to make this correspondence useful.

Notably, in the backward pass gradients are distributed equally to both inputs.

28

3.3. Approach

Max fusion. ymax = fmax(xa,xb) similarly takes the maximum of the two feature map:

ymax
i,j,d = max{xai,j,d, xbi,j,d}, (3.2)

where all other variables are defined as above (3.1).

Similarly to sum fusion, the correspondence between network channels is again arbitrary. No-

tably, here the backward pass acts as a gradient switch that only sends gradients backwards to the

highest activating channel of an input.

Concatenation fusion. ycat = f cat(xa,xb) stacks the two feature maps at the same spatial

locations i, j across the feature channels d:

ycat
i,j,2d = xai,j,d ycat

i,j,2d−1 = xbi,j,d, (3.3)

where y ∈ RH×W×2C .

Concatenation does not define a correspondence, but leaves this to subsequent layers to define

(by learning suitable filters that weight the layers), as we illustrate next.

Conv fusion. yconv = f conv(xa,xb) first stacks the two feature maps at the same spatial

locations i, j across the feature channels d as above (3.3) and subsequently convolves the stacked

data with a bank of filters w ∈ R1×1×2C×C and biases b ∈ RC

yconv = ycat ∗w + b, (3.4)

where the number of output channels is C, and the filter has dimensions 1×1×2C. Here, the filter w

is used to reduce the dimensionality by a factor of two and is able to model weighted combinations

of the two feature maps xa,xb at the same spatial (pixel) location. When used as a trainable filter

kernel in the network, w is able to learn correspondences of the two feature maps that minimize

a joint loss function. For example, if w is learnt to be the concatenation of two permuted identity

matrices 1′ ∈ R1×1×C×C , then the ith channel of the one network is only combined with the ith

channel of the other (via summation).

Note that if there is no dimensionality reducing conv-layer injected after concatenation, the

number of input channels of the upcoming layer is 2C.

Bilinear fusion. ybil = fbil(xa,xb) computes a matrix outer product of the two features at

each pixel location, followed by a summation over the locations:

ybil =

H∑
i=1

W∑
j=1

xa>i,j xbi,j . (3.5)

The resulting feature ybil ∈ RC2

captures multiplicative interactions at corresponding spatial

locations. The main drawback of this feature is its high dimensionality. To make bilinear features

usable in practice, they are usually applied at ReLU5, the fully-connected layers are removed (Lin

et al., 2015) and power- and L2-normalisation is applied for effective classification with linear

29

Chapter 3. Convolutional Two-Stream Network Fusion

SVMs.

The advantage of bilinear fusion is that every channel of one network is combined (as a product)

with every channel of the other network. However, the disadvantage is that all spatial information

is marginalized out after this point.

Discussion: These operations illustrate a range of possible fusion methods. Others could be

considered, for example: taking the pixel wise product of channels (instead of their sum or max), or

the (factorized) outer product without sum pooling across locations (Oh et al., 2015). In Chapter 5

we will introduce a method to multiplicatively fuse into the bottleneck unit of a two-stream ResNet

for improved fusion of such an architecture.

Injecting fusion layers can have significant impact on the number of parameters and layers in a

two-stream network, especially if only the network which is fused into is kept and the other network

tower is truncated, as illustrated in Fig. 3.1 (left). Table 3.1 shows how the number of layers and

parameters are affected by different fusion methods for the case of two VGG-M-2048 models (used

in (Simonyan and Zisserman, 2014a)) containing five convolution layers followed by three fully-

connected layers each. Max-, Sum and Conv-fusion at ReLU5 (after the last convolutional layer)

removes nearly half of the parameters in the architecture as only one tower of fully-connected layers

is used after fusion. Conv fusion has slightly more parameters (97.58M) compared to sum and max

fusion (97.31M) due to the additional filter that is used for channel-wise fusion and dimensionality

reduction. Many more parameters are involved in concatenation fusion, which does not include

dimensionality reduction after fusion and therefore doubles the number of parameters in the first

fully connected layer. In comparison, sum-fusion at the softmax layer requires all layers (16) and

parameters (181.4M) of the two towers.

In the experimental section of this chapter, (Sec. 3.4.1), we evaluate and compare the perfor-

mance of each of these possible fusion methods in terms of their classification accuracy.

3.3.2 Where to fuse the networks

As noted above, fusion can be applied at any point in the two networks, with the only constraint

being that the two input maps xat ∈ RH×W×C and xbt ∈ RH′×W ′×C , at time t, have the same spatial

dimensions; i.e. H = H ′, W = W ′. This constraint can be achieved by using an “upconvolutional”

layer (Zeiler and Fergus, 2013), or if the dimensions are similar, upsampling can be achieved by

padding the smaller map with zeros.

Table 3.2 compares the number of parameters for fusion at different layers in the two networks

for the case of a VGG-M model. Fusing after different conv-layers has roughly the same impact on

the number of parameters, as most of these are stored in the fully-connected layers. Two networks

can also be fused at two layers, as illustrated in Fig. 3.1 (right). This arrangement achieves the

original objective of pixel-wise registration of the channels from each network (at conv5), but does

not lead to a reduction in the number of parameters (by half if fused only at conv5, for example).

In the experimental section (Sec. 3.4.2) we evaluate and compare both the performance of fusing

at different levels, and fusing at multiple layers simultaneously.

30

3.3. Approach

conv1
pool1
conv2
pool2
conv3
conv4

fc6

fusion

Loss

conv1
pool1
conv2
pool2
conv3
conv4

conv5
pool5

fc8

conv1
pool1
conv2
pool2
conv3
conv4

fc6

fusion

Loss

conv1
pool1
conv2
pool2
conv3
conv4
conv5

fc8

conv5

pool5

fusion

fc6

fc8

pool5

fc7 fc7
fc7

Figure 3.1: Two examples of where a fusion layer can be placed. The left example shows fusion
after the fourth conv-layer. Only a single network tower is used from the point of fusion. The right
figure shows fusion at two layers (after conv5 and after fc8) where both network towers are kept,
one as a hybrid spatiotemporal net and one as a purely spatial network.

x

t

y

2D Pooling

x

t

y

3D Pooling

x

t

y

3D Conv + 3D Pooling

*
(a) (b) (c)

Figure 3.2: Different ways of fusing temporal information. (a) 2D pooling ignores time and simply
pools over spatial neighbourhoods to individually shrink the size of the feature maps for each
temporal sample. (b) 3D pooling pools from local spatiotemporal neighbourhoods by first stacking
the feature maps across time and then shrinking this spatiotemporal cube. (c) 3D conv + 3D
pooling additionally performs a convolution with a fusion kernel that spans the feature channels,
space and time before 3D pooling.

3.3.3 Temporal fusion

We now consider techniques to combine feature maps xt over time t, to produce an output map

yt. One way of processing temporal inputs is by averaging the network predictions over time (as

used in (Simonyan and Zisserman, 2014a)). In that case, the architecture only pools in 2D (xy); see

Fig. 3.2(a). Specifically, the input of a temporal pooling layer receives feature maps x ∈ RH×W×T×C

that are generated by stacking spatial maps across time t = 1 . . . T . Different temporal inputs can

simply be fused by averaging the networks’ predictions – this is the method adopted by (Simonyan

31

Chapter 3. Convolutional Two-Stream Network Fusion

and Zisserman, 2014a).

This method is compared to simple 2D pooling in figure 3.2. Note that both 2D and 3D pooling

treat feature channels individually; i.e. there is no pooling over feature maps involved. Now consider

the input of a temporal pooling layer as feature maps x ∈ RH×W×T×C that are generated by

stacking spatial maps across time t = 1 . . . T . The following alternatives will be discussed here.

3D Pooling: applies max-pooling to the stacked data within a 3D pooling cube of size W ′ ×
H ′ × T ′. This is a straightforward extension of 2D pooling to the temporal domain, as illustrated

in Fig. 3.2(b). For example, if three temporal samples are pooled, then a 3 × 3 × 3 max pooling

could be used across the three stacked corresponding channels. Note, there is no pooling across

different channels.

3D Conv + Pooling: first convolves the four dimensional input x with a bank of C ′ filters

w ∈ RW ′′×H′′×T ′′×C×C′ and biases b ∈ RC

y = xt ∗w + b, (3.6)

as e.g. in (Tran et al., 2015a), followed by 3D pooling as described above. This method is illustrated

in Fig. 3.2(c). The filters w are able to model weighted combinations of the features in a local spatio-

temporal neighborhood using kernels of size H ′′ ×W ′′ × T ′′ × C. Typically, the neighborhood is

3× 3× 3 (spatial × spatial × temporal).

Discussion. The authors of (Ng et al., 2015b) evaluate several additional methods to combine

two-stream ConvNets over time. They find temporal max-pooling of convolutional layers among

the top performers. We generalize max-pooling here to 3D pooling that provides invariance to small

changes of the features’ position over time. Further, 3D conv allows spatio-temporal filters to be

learnt (Taylor et al., 2010, Tran et al., 2015a). For example, the filter could learn to center weight

the central temporal sample, or to differentiate in time or space.

To give an illustrative example that combines convolutional spatial fusion (Section 3.3.1), at

the last convolutional layer (Section 3.3.2) with 3D temporal fusion (Section 3.3.3), we show a

corresponding architecture for a training sample in Fig. 3.3. The sequence in this case is baseball

pitch with a duration of several seconds. Theoretically, the exemplified architecture is able to

capture the temporal relations of this action in spacetime both locally and globally and has an

conceptual advantage over the original two-stream architecture.

3.3.4 Proposed architecture

We now bring together the ideas from the previous sections to propose a new spatio-temporal fusion

architecture and motivate our choices based on our empirical evaluation in Sec. 3.4. The choice of

the spatial fusion method, layer and temporal fusion is based on the experiments in sections 3.4.1,

3.4.2 and 3.4.4, respectively.

Our proposed architecture (shown in Fig. 3.4) can be viewed as an extension of the architecture

in Fig. 3.1 (right) over time. We fuse the two networks, at the last convolutional layer (after ReLU)

32

3.3. Approach

t−2τ

Spatiotemporal Loss

x

t

y

*
3D Conv fusion + 3D Pooling

Time tt−τ t+2τt+τ

τ

Figure 3.3: Training procedure for a 3D fusion architecture. A training sequence (e.g. shown for
the action baseball pitch) is divided into T temporal chunks with temporal stride τ between them.
The temporal chunks capture short-term information at a fine temporal scale and the fusion layer
puts it into context with temporally adjacent chunks, thus operating at a coarse temporal scale
(t + Tτ). The fusion filter is also able to learn correspondences between highly abstract features
of the spatial stream (blue) and temporal stream (green). After fusion, 3D pooling gathers the
resulting features and the spatiotemporal loss is evoked for supervision.

into the spatial stream to convert it into a spatiotemporal stream by using 3D Conv fusion followed

by 3D pooling (see Fig. 3.4, left). Moreover, we do not truncate the temporal stream and also

perform 3D Pooling in the temporal network (see Fig. 3.4, right). The losses of both streams are

used for training and during testing we average the predictions of the two streams. In our empirical

evaluation (Sec. 3.4.5) we show that keeping both streams performs slightly better than truncating

the temporal stream after fusion.

Having discussed how to fuse networks over time, we discuss here the issue of how often to

sample the temporal sequence. The temporal fusion layer receives T temporal chunks that are τ

frames apart; i.e. the two stream towers are applied to the input video at time t, t+ τ, . . . t+ Tτ .

As shown in Fig. 3.4 this enables us to capture short scale (t± L
2) temporal features at the input

of the temporal network (e.g. the drawing of an arrow) and put them into context over a longer

temporal scale (t + Tτ) at a higher layer of the network (e.g. drawing an arrow, bending a bow,

and shooting an arrow).

Since the optical flow stream has a temporal receptive field of L = 10 frames, the architecture

operates on a total temporal receptive field of T ×L. Note that τ < L results in overlapping inputs

for the temporal stream, whereas τ ≥ L produces temporally non-overlapping features.

After fusion, we let the 3D pooling operate on T spatial feature maps that are τ frames apart. As

features may change their spatial position over time, combining spatial and temporal pooling to 3D

33

Chapter 3. Convolutional Two-Stream Network Fusion

…

Time t t + τt − τ

Spatiotemporal Loss

…

x

t

y

x

t

y

*

Temporal Loss

3D Pooling3D Conv fusion + 3D Pooling

Figure 3.4: Our spatiotemporal fusion ConvNet applies two-stream ConvNets, that capture short-
term information at a fine temporal scale (t±L

2), to temporally adjacent inputs at a coarse temporal
scale (t+Tτ). The two streams are fused by a 3D filter that is able to learn correspondences between
highly abstract features of the spatial stream (blue) and temporal stream (green), as well as local
weighted combinations in x, y, t. The resulting features from the fusion stream and the temporal
stream are 3D-pooled in space and time to learn spatiotemporal (top left) and purely temporal
(top right) features for recognising the input video.

pooling makes sense. For example, the output of a VGG-M network at conv5 has an input stride of

16 pixels and captures high level features from a receptive field of 139×139 pixels. Spatiotemporal

pooling of conv5 maps that are τ frames distant in time can therefore capture features of the same

object, even if they slightly move.

3.3.5 Implementation details

Two-Stream architecture. We employ two pre-trained ImageNet models. First, for sake of

comparison to the original two-stream approach (Simonyan and Zisserman, 2014a), the VGG-M-

2048 model (Chatfield et al., 2014b) with 5 convolutional and 3 fully-connected layers. Second,

the very deep VGG-16 model (Simonyan and Zisserman, 2014b) that has 13 convolutional and 3

fully-connected layers. We first separately train the two streams as described in (Simonyan and

Zisserman, 2014a), but with some subtle differences: We do not use RGB colour jittering; Instead

of decreasing the learning rate according to a fixed schedule, we lower it after the validation

error saturates; For training the spatial network we use lower dropout ratios of 0.85 for the first

two fully-connected layers. Even lower dropout ratios (up to 0.5) did not decrease performance

significantly.

For the temporal net, we use optical flow, (Brox et al., 2004) for VGG-M architectures and

(Zach et al., 2007) for VGG-16 models, by stacking with L = 10 frames (Simonyan and Zisserman,

2014a). We also initialised the temporal net with a model pre-trained on ImageNet, since this

generally facilitates training speed without a decrease in performance compared to our model

34

3.3. Approach

trained from scratch. The network input is rescaled beforehand, so that the smallest side of the

frame equals 256. We also pre-compute the optical flow before training and store the flow fields as

JPEG images (with clipping of displacement vectors larger than 20 pixels). We do not use batch

normalization (Ioffe and Szegedy, 2015).

Two-Stream ConvNet fusion. For fusion, these networks are finetuned, with a batch size of

96 and a learning rate starting from 10−3, which is reduced by a factor of 10 as soon as the validation

accuracy saturates. We only propagate back to the injected fusion layer, since full backpropagation

did not result in an improvement. In our experiments we only fuse between layers with the same

output resolution; except for fusing a VGG-16 model at ReLU5 3 with a VGG-M model at ReLU5,

where we pad the slightly smaller output of VGG-M (13 × 13, compared to 14 × 14) with a row

and a column of zeros. For Conv fusion, we found that careful initialisation of the injected fusion

layer (as in (3.4)) is very important. We compared several methods and found that initialisation

by identity matrices (to sum the two networks) performs as well as random initialisation.

Spatiotemporal architecture. For our final architecture described in Sec. 3.3.4, the 3D Conv

fusion kernel w has dimension 3× 3× 3× 1024× 512 and T = 5, i.e. the spatio-temporal filter has

dimension H ′′ ×W ′′ × T ′′ = 3× 3× 3, the C = 1024 results from concatenating the ReLU5 from

the spatial and temporal streams, and the C ′ = 512 matches the number of input channels of the

following FC6 layer.

The 3D Conv filters are also initialised by stacking two identity matrices for mapping the 1024

feature channels to 512. Since the activations of the temporal ConvNet at the last convolutional

layer are roughly 3 times lower than its appearance counterpart, we initialise the temporal identity

matrix of w by a factor of 3 higher. The spatiotemporal part of w is initialised using a Gaussian

of size 3× 3× 3 and σ = 1. Further, we do not fuse at the prediction layer during training, as this

would bias the loss towards the temporal architecture, because the spatiotemporal architecture

requires longer to adapt to the fused features.

Training 3D ConvNets is even more prone to overfitting than the two-stream ConvNet fusion,

and requires additional augmentation, as follows. During finetuning, at each training iteration we

sample the T = 5 frames from each of the 96 videos in a batch by randomly sampling the starting

frame, and then randomly sampling the temporal stride (τ) ∈ [1, 10] (so operating over a total of

between 15 and 50 frames). Instead of cropping a fixed sized 224× 224 input patch, we randomly

jitter its width and height by ±25% and rescale it to 224× 224. The rescaling is chosen randomly

and may change the aspect-ratio. Patches are only cropped at a maximum of 25% distance from

the image borders (relative to the width and height). Note, the position (and size, scale, horizontal

flipping) of the crop is randomly selected in the first frame (of a multiple-frame-stack) and then

the same spatial crop is applied to all frames in the stack.

Testing. Unless otherwise specified, only the T = 5 frames (and their horizontal flips) are

sampled, compared to the 25 frames in (Simonyan and Zisserman, 2014a), to foster fast empirical

evaluation. In addition we employ fully convolutional testing where the entire frame is used (rather

than spatial crops).

35

Chapter 3. Convolutional Two-Stream Network Fusion

3.4 Evaluation

We evaluate our presented approaches on two challenging and popular used action recognition

datasets. First, we consider UCF101 (Khurram Soomro and Shah, 2012), which consists of 13320

videos showing 101 action classes. It provides large diversity in terms of actions, variations in

background, illumination, camera motion and viewpoint, as well as object appearance, scale and

pose. Second, we consider HMDB51 (Kuehne et al., 2011), which has 6766 videos that show 51

different actions and generally is considered more challenging than UCF0101 due to the even wider

variations in which actions occur (higher intra-class variations lead to larger errors during training

and testing). In our experiments we only use the authors’ original (non-stabilized) versions of

the videos. For both datasets, we use the provided evaluation protocol and report mean average

accuracy over three splits into training and test sets when comparing against state of the art

methods from the literature, while for ablation studies we report the performance on the first split

of each dataset.

3.4.1 How to fuse the two streams spatially?

For these experiments we use the same network architecture as in (Simonyan and Zisserman,

2014a); i.e. two VGG-M-2048 nets (Chatfield et al., 2014b). The fusion layer is injected at the last

convolutional layer, after rectification, i.e. its input is the output of ReLU5 from the two streams.

This choice is made because, in preliminary experiments, it provided better results than alternatives

such as the non-rectified output of conv5. At that point the features are already highly informative

while still providing coarse location information. After the fusion layer a single processing stream

is used.

We compare different fusion strategies in Table 3.1 where we report the average accuracy on

the first split of UCF101. We first observe that our performance for softmax averaging (85.94%)

compares favourably to the one reported in (Simonyan and Zisserman, 2014a). Second we see

that Max and Concatenation perform considerably lower than Sum and Conv fusion. Conv fusion

performs best and is slightly better than Bilinear fusion and simple fusion via summation. For

the reported Conv-fusion result, the convolution kernel w is initialised by identity matrices that

perform summation of the two feature maps. Initialisation via random Gaussian noise ends up at

a similar performance 85.59% compared to identity matrices (85.96%), however, at a much longer

training time (by factor of 8). This is interesting, since this, as well as the high result of Sum-fusion,

suggest that simply summing the feature maps is already a good fusion technique and learning a

randomly initialised combination does not lead to significantly different/better results.

For all the fusion methods shown in Table 3.1, fusion at FC layers results in lower performance

compared to ReLU5, with the ordering of the methods being the same as in Table 3.1, except for

bilinear fusion which is not possible at FC layers. Among all FC layers, FC8 performs better than

FC7 and FC6, with Conv fusion at 85.9%, followed by Sum fusion at 85.1%. We think the reason for

ReLU5 performing slightly better is that at this layer spatial correspondences between appearance

36

3.4. Evaluation

Fusion Method Fusion Layer Acc. #layers #parameters
Sum (Simonyan and Zisserman, 2014a) Softmax 85.6% 16 181.42M
Sum (ours) Softmax 85.94% 16 181.42M
Max ReLU5 82.70% 13 97.31M
Concatenation ReLU5 83.53% 13 172.81M
Bilinear (Lin et al., 2015) ReLU5 85.05% 10 6.61M+SVM
Sum ReLU5 85.20% 13 97.31M
Conv ReLU5 85.96% 14 97.58M

Table 3.1: Performance comparison of different spatial fusion strategies (Sec. 3.3.1) on UCF101
(split 1). Sum fusion at the softmax layer corresponds to averaging the two networks predictions
and therefore includes the parameters of both 8-layer VGG-M models. Performing fusion at ReLU5
using Conv or Sum fusion does not significantly lower classification accuracy. Moreover, this requires
only half of the parameters in the softmax fusion network. Concatenation has lower performance
and requires twice as many parameters in the FC6 layer (as Conv or Sum fusion). Only the bilinear
combination enjoys much fewer parameters as there are no FC layers involved; however, it has to
employ an SVM to perform comparably.

Fusion Layers Accuracy #layers #parameters
ReLU2 82.25% 11 91.90M
ReLU3 83.43% 12 93.08M
ReLU4 82.55% 13 95.48M
ReLU5 85.96% 14 97.57M
ReLU5 + FC8 86.04% 17 181,68M
ReLU3 + ReLU5 + FC6 81.55% 17 190,06M

Table 3.2: Performance comparison for Conv fusion (3.4) at different fusion layers. An earlier
fusion (than after conv5) results in weaker performance. Multiple fusions also lower performance
if early layers are incorporated (last row). Best performance is achieved for fusing at ReLU5 or at
ReLU5+FC8 (but with nearly double the parameters involved).

and motion are fused, which would have already been collapsed at the FC layers (Mahendran and

Vedaldi, 2015).

3.4.2 Where to fuse the two streams spatially?

Fusion from different layers is compared in Table 3.2. Conv fusion is used and the fusion layers

are initialised by an identity matrix that sums the activations from previous layers. Interestingly,

fusing and truncating one net at ReLU5 achieves around the same classification accuracy on the

first split of UCF101 (85.96% vs 86.04%) as an additional fusion at the prediction layer (FC8), but

at a much lower number of total parameters (97.57M vs 181.68M). Fig. 3.1 shows how these two

examples are implemented.

37

Chapter 3. Convolutional Two-Stream Network Fusion

UCF101 (split 1) HMDB51 (split 1)
Model VGG-M-2048 VGG-16 VGG-M-2048 VGG-16
Spatial 74.22% 82.61% 36.77% 47.06%

Temporal 82.34% 86.25% 51.50% 55.23%
Late Fusion 85.94% 90.62% 54.90% 58.17%

Table 3.3: Performance comparison of deep (VGG-M-2048) vs. very deep (VGG-16) Two-Stream
ConvNets on the UCF101 (split1) and HMDB51 (split1). Late fusion is implemented by averaging
the prediction layer outputs. Using deeper networks boosts performance at the cost of computation
time.

Fusion
Pooling

Fusion
UCF101 HMDB51

Method Layers
2D Conv 2D ReLU5 + 89.35% 56.93%
2D Conv 3D ReLU5 + 89.64% 57.58%
3D Conv 3D ReLU5 + 90.40% 58.63%

Table 3.4: Spatiotemporal two-stream fusion on UCF101 (split1) and HMDB51 (split1). The
models used are VGG-16 (spatial net) and VGG-M (temporal net). The “+” after a fusion layer
indicates that both networks and their loss are kept after fusing, as this performs better than
truncating one network. Specifically, at ReLU5 we fuse from the temporal net into the spatial
network, then perform either 2D or 3D pooling at Pool5 and compute a loss for each tower. During
testing, we average the FC8 predictions for both towers.

3.4.3 Going from deep to very deep models

For computational complexity reasons, all previous experiments were performed with two VGG-

M-2048 networks (as in (Simonyan and Zisserman, 2014a)). Using deeper models, such as the very

deep networks in (Simonyan and Zisserman, 2014b) can, however, lead to even better performance

in image recognition tasks (Cimpoi et al., 2015, Lin et al., 2015, Szegedy et al., 2015a). Following

that line, we train a 16 layer network, VGG-16, (Simonyan and Zisserman, 2014b) on UCF101 and

HMDB51. All models are pretrained on ImageNet and separately trained for the target dataset,

except for the temporal HMDB51 networks, which are initialised from the temporal UCF101 mod-

els. For VGG-16, we use TV-L1 optical flow (Zach et al., 2007) and apply a similar augmentation

technique as for 3D ConvNet training (described in Sec. 3.3.5) that samples from the image cor-

ners and its centre. The learning rate is set to 50−4 and decreased by a factor of 10 as soon as the

validation objective saturates.

The comparison between deep and very deep models is shown in Table 3.3. On both datasets,

one observes that going to a deeper spatial model boosts performance significantly (8.11% and

10.29%), whereas a deeper temporal network yields a lower accuracy gain (3.91% and 3.73%).

3.4.4 How to fuse the two streams temporally?

Different temporal fusion strategies are shown in Table 3.4. Conv fusion is again used and the

fusion layers are initialized by an identity matrix that sums the activations from previous layers.

In the first row of Table 3.4 we observe that conv fusion performs better than averaging the softmax

output (cf. Table 3.3). Next, we find that applying 3D pooling instead of using 2D pooling after the

38

3.4. Evaluation

Method UCF101 HMDB51
Spatiotemporal ConvNet (Karpathy et al., 2014) 65.4% -
LRCN (Donahue et al., 2015) 82.9% -
Composite LSTM Model (Srivastava et al., 2015) 84.3% 44.0
C3D (Tran et al., 2015a) 85.2% -
Two-Stream ConvNet (VGG-M) (Simonyan and Zisserman, 2014a) 88.0% 59.4%
Factorized ConvNet (Sun et al., 2015) 88.1% 59.1%
Two-Stream Conv Pooling (Ng et al., 2015b) 88.2% -
Two-Stream ConvNet (VGG-16, ours) 91.7% 58.7%
Ours (S:VGG-16, T:VGG-M) 90.8% 62.1%
Ours (S:VGG-16, T:VGG-16,

91.8% 64.6%
single tower after fusion)
Ours (S:VGG-16, T:VGG-16) 92.5% 65.4%

Table 3.5: Mean classification accuracy of best performing ConvNet approaches over three
train/test splits on HMDB51 and UCF101. For our method we list the models used for the spatial
(S) and temporal (T) stream.

IDT+higher dimensional FV (Peng et al., 2014) 87.9% 61.1%
C3D+IDT (Tran et al., 2015a) 90.4% -
TDD+IDT (Wang et al., 2015b) 91.5% 65.9%
Ours+IDT (S:VGG-16, T:VGG-M) 92.5% 67.3%
Ours+IDT (S:VGG-16, T:VGG-16) 93.5% 69.2%

Table 3.6: Mean classification accuracy on HMDB51 and UCF101 for approaches that use IDT
features (Wang and Schmid, 2013).

fusion layer increases performance on both datasets, with larger gains on HMDB51. Finally, the

last row of Table 3.4 lists results for applying a 3D filter for fusion which further boosts recognition

rates.

3.4.5 Comparison with the previous state-of-the-art

Finally, we compare against the previous state-of-the-art over all three splits of UCF101 and

HMDB51 in Table 3.5. We use the same method as shown above, i.e. fusion by 3D Conv and 3D

Pooling (illustrated in Fig. 3.4). For testing we average 20 temporal predictions from each network

by densely sampling the input-frame-stacks and their horizontal flips.

One interesting comparison is to the original two-stream approach (Simonyan and Zisserman,

2014a), we improve by 3% on UCF101 and HMDB51 by using a VGG-16 spatial (S) network and

a VGG-M temporal (T) model, as well as by 4.5% (UCF) and 6% (HMDB) when using VGG-16

for both streams.

Another interesting comparison is against the two-stream network in (Ng et al., 2015b), which

employs temporal conv-pooling after the last dimensionality reduction layer of a GoogLeNet

(Szegedy et al., 2015a) architecture. They report 88.2% on UCF101 when pooling over 120 frames

and 88.6% when using an LSTM for pooling. Here, our result of 92.5% clearly underlines the

importance of our proposed approach. Note also that using a single stream after temporal fusion

39

Chapter 3. Convolutional Two-Stream Network Fusion

achieves 91.8%, compared to maintaining two streams and achieving 92.5%, but with far fewer

parameters and a simpler architecture.

As a final experiment, we explore what benefit results from a late fusion of hand-crafted IDT

features (Wang and Schmid, 2013) with our representation. We simply average the SVM scores

of the FV-encoded IDT descriptors (i.e. HOG, HOF, MBH) with the predictions (taken before

softmax) of our ConvNet representations. The resulting performance is shown in Table 3.6. We

achieve 93.5% on UCF101 and 69.2% HMDB51. This state-of-the-art result illustrates that there is

still a degree of complementary between hand-crafted representations and our end-to-end learned

ConvNet approach.

3.5 Summary

In this chapter have discussed several variants for fusing two-stream networks both spatially and

over time. We have proposed a new spatiotemporal architecture for two stream networks with

a novel convolutional fusion layer between the networks, and a novel temporal fusion layer (in-

corporating 3D convolutions and pooling). The new architecture does not increase the number

of parameters significantly over previous methods, yet exceeds the state of the art on two stan-

dard benchmark datasets. Our results suggest the importance of learning correspondences between

highly abstract ConvNet features both spatially and temporally. One intriguing finding is that there

is still such an improvement by combining ConvNet predictions with FV-encoded IDT features.

We suspect that this difference may vanish in time given far more training data, but otherwise

it certainly indicates where future research should attend. In the next chapter we will build on

our insights for connecting motion and appearance features spatially and also on how to aggregate

long-term information temporally.

40

Appearance Stream

Motion Stream

con
v
1

con
v
2_

x
+

con
v
1

con
v
2_

x
+

con
v
3_

x

+

con
v
3_

x

+

con
v
4
_

x

+

con
v
4
_

x

+

con
v
5
_

x

+

con
v
5
_

x

+

loss
loss

Residual connections between the appearance and motion pathways of a two-stream architecture
allow spatiotemporal feature learning. Temporal residual connections can be established by trans-
forming pretrained image ConvNets into spatiotemporal networks by equipping them with learn-
able residual connections operating on adjacent feature maps in time. In this chapter, we introduce
Spatiotemporal Residual Networks as a combination of two-stream ConvNets and ResNets.

4
Spatiotemporal Residual Networks

41

Chapter 4. Spatiotemporal Residual Networks

4.1 Motivation

Having the insights on how to fuse the two-stream ConvNets both spatially and temporally in mind,

we now switch to a more general architecture for deep video recognition. Since the introduction of

the “AlexNet” architecture (Krizhevsky et al., 2012a) in the 2012 ImageNet competition, ConvNets

have dominated state-of-the-art performance across a variety of computer vision tasks, including

object-detection (Girshick et al., 2014), image segmentation (Long et al., 2015), image classifica-

tion (Simonyan and Zisserman, 2014b, Szegedy et al., 2015a), face recognition (Schroff et al., 2015)

and human pose estimation (Tompson et al., 2015). In conjunction with these advances as well

as the evolution of network architectures, e.g. from AlexNet (Krizhevsky et al., 2012a) through

ZF-net (Zeiler and Fergus, 2013), Inception (Szegedy et al., 2015a, 2016), VGG (Simonyan and Zis-

serman, 2014b) and Residual nets (He et al., 2016a,b), several design best practices have emerged

(He et al., 2016a, Simonyan and Zisserman, 2014b, Szegedy et al., 2015b, 2016). First, information

bottlenecks should be avoided and the representation size should gently decrease from the input

to the output as the number of feature channels increases with the depth of the network. Second,

the receptive field at the end of the network should be large enough that the processing units

can base operations on larger regions of the input. This functionality can be achieved by stacking

many small filters or using large filters in the network; notably, the first choice can be implemented

with fewer operations (faster, fewer parameters) and also allows inclusion of more nonlinearities.

As a consequence deep networks with small filters outperform shallower nets with larger filters

(Simonyan and Zisserman, 2014b). Third, dimensionality reduction (1×1 convolutions) before spa-

tially aggregating filters (e.g. 3×3) is supported by the fact that outputs of neighbouring filters are

highly correlated and therefore these activations can be reduced before aggregation (Szegedy et al.,

2015b). Fourth, spatial factorization into asymmetric filters can even further reduce computational

cost and ease the learning problem. Fifth, it is important to normalize the responses of each feature

channel within a batch to reduce internal covariate shift; e.g. with batch-normalization (Ioffe and

Szegedy, 2015). The last architectural guideline is to use residual connections to facilitate training

of very deep models that are essential for good performance (He et al., 2016a). We carry over these

good practices for designing ConvNets in the image domain to the video domain by converting

the 1×1 convolutional dimensionality mapping filters in ResNets to temporal filters. By stacking

several of these transformed temporal filters throughout the network we provide a large receptive

field for the discriminative units at the end of the network. Further, this design allows us to convert

spatial ConvNets into spatiotemporal models and thereby exploits the large amount of training

data from image datasets such as ImageNet.

Also in this chapter, we will build on the two-stream approach (Simonyan and Zisserman,

2014a) that employs two separate ConvNet streams, a spatial appearance stream, which achieves

state-of-the-art action recognition from RGB images and a temporal motion stream, which operates

on optical flow information. The two-stream architecture is inspired by the two-stream hypothesis

from neuroscience (Goodale and Milner, 1992) that postulates two pathways in the visual cortex:

The ventral pathway, which responds to spatial features such as shape or colour of objects, and the

42

4.2. Related work

dorsal pathway, which is sensitive to object transformations and their spatial relationship, as e.g.

caused by motion. Notably, as also motivated in Section Section 2.3 further research in neuroscience

suggests that motion information is distributed into separate visual areas (Born and Tootell, 1992,

Van Essen and Gallant, 1994). As shown in the previous chapter, such spatial fusion of appearance

and motion cues can be beneficial. In this chapter, we reconsider our findings from the previous one

and build on the strengths of the additive fusion (see 3.1 and accompanying discussions) as well as

on increasing the temporal receptive field by strided input sampling and convolutions across time.

In particular, this chapter extends the combination of two-stream ConvNets in the following

ways. First, motivated by the recent success of residual networks (ResNets) (He et al., 2016a)

for numerous challenging recognition tasks on datasets such as ImageNet and MS COCO, we

apply ResNets to the task of human action recognition in videos. Here, we initialize our model

with pre-trained ResNets for image categorization (He et al., 2016a) to leverage a large amount

of image-based training data for the action recognition task in video. Second, we demonstrate

that injecting residual connections between the two streams and jointly fine-tuning the resulting

model achieves improved performance over the two-stream architecture. Third, we overcome limited

temporal receptive field size in the original two-stream approach by extending the model over

time. We convert convolutional dimensionality mapping filters to temporal filters that provides

the network with learnable residual connections over time. By stacking several of these temporal

filters and sampling the input sequence at large temporal strides (i.e. skipping frames), we enable

the network to operate over large temporal extents of the input. To demonstrate the benefits of

our proposed spatiotemporal ResNet architecture, it has been evaluated on two standard action

recognition benchmarks where it greatly boosts the previous state-of-the-art.

4.2 Related work

Approaches for action recognition in video can largely be divided into two categories: Those that use

hand-crafted features with decoupled classifiers and those that jointly learn features and classifier.

Our work is related to the latter, which is outlined in the following.

Several approaches have been presented for spatiotemporal feature learning. Unsupervised

learning techniques have been applied by stacking ISA or convolutional gated RBMs to learn

spatiotemporal features for action recognition (Le et al., 2011, Taylor et al., 2010). In other work,

spatiotemporal features are learned by extending 2D ConvNets into time by stacking consecutive

video frames (Ji et al., 2013). Yet another study compared several approaches to extending Con-

vNets into the temporal domain, but with rather disappointing results (Karpathy et al., 2014):

The architectures were not particularly sensitive to temporal modelling, with a slow fusion model

performing slightly better than early and late fusion alternatives; moreover, similar levels of per-

formance were achieved by a purely spatial network. The recently proposed C3D approach learns

3D ConvNets on a limited temporal support of 16 frames and all filter kernels having size 3×3×3

(Tran et al., 2015a). The network structure is similar to earlier deep spatial networks (Simonyan

and Zisserman, 2014b).

43

Chapter 4. Spatiotemporal Residual Networks

Another research branch has investigated combining image information in network architectures

across longer time periods. A comparison of temporal pooling architectures suggested that temporal

pooling of convolutional layers performs better than slow, local, or late pooling, as well as temporal

convolution (Ng et al., 2015b). That work also considered ordered sequence modelling, which feeds

ConvNet features into a recurrent network with Long Short-Term Memory (LSTM) cells. Using

LSTMs, however, did not yield an improvement over temporal pooling of convolutional features.

Other work trained an LSTM on human skeleton sequences to regularize another LSTM that uses

an Inception network for frame-level descriptor input (Mahasseni and Todorovic, 2016). Yet other

work uses a multilayer LSTM to let the model attend to relevant spatial parts in the input frames

(Sharma et al., 2015). Further, the inner product of a recurrent model has been replaced with

a 2D convolution and thereby converts the fully connected hidden layers in a GRU-RNN to 2D

convolutional operations (Ballas et al., 2016). That approach takes advantage of the local spatial

similarity in images; however, it only yields a minor increase over their baseline, which is a two-

stream VGG-16 ConvNet (Simonyan and Zisserman, 2014b) used as the input to their convolutional

RNN. Finally, two recent approaches for action recognition apply ConvNets to dynamic images

created by weighted averaging of video frames over long temporal extends (Bilen et al., 2016), or

capture the transformation of ConvNet features from the beginning to the end of the video with a

Siamese architecture (Wang et al., 2016a).

4.3 Technical approach

4.3.1 Two-Stream residual networks

As our base representation we use deep ResNets (He et al., 2016a,b). These networks are designed

similarly to the VGG networks (Simonyan and Zisserman, 2014b), with small 3×3 spatial filters

(except at the first layer), and similar to the Inception networks (Szegedy et al., 2015b), with

1×1 filters for learned dimensionality reduction and expansion. The network sees an input of size

224×224 that is reduced five times in the network by stride 2 convolutions followed by a global

average pooling layer of the final 7×7 feature map and a fully-connected classification layer with

softmax. Each time the spatial size of the feature map changes, the number of features is doubled

to avoid tight bottlenecks. Batch normalization (Ioffe and Szegedy, 2015) and ReLU (Krizhevsky

et al., 2012a) are applied after each convolution; the network does not use hidden fully connected,

dropout, or max-pooling (except immediately after the first layer). The residual units are defined

as (He et al., 2016a,b):

xl+1 = f (xl + F(xl;Wl)) , (4.1)

where xl and xl+1 are input and output of the l-th layer, F is a nonlinear residual mapping

represented by convolutional filter weights Wl = {Wl,k|1≤k≤K} with K ∈ {2, 3} and f ≡ ReLU

(He et al., 2016b). A key advantage of residual units is that their skip connections allow direct

signal propagation from the first to the last layer of the network. Especially during backpropagation

this arrangement is advantageous: Gradients are propagated directly from the loss layer to any

44

4.3. Technical approach

previous layer while skipping intermediate weight layers that have potential to trigger vanishing

or deterioration of the gradient signal.

We also leverage the two-stream architecture (Simonyan and Zisserman, 2014a). For both

streams, we use the ResNet-50 model (He et al., 2016a) pretrained on the ImageNet dataset and

replace the last (classifiation) layer according to the number of classes in the target dataset. The

filters in the first layer of the motion stream are further modified by replicating the three RGB

filter channels to a size of 2L = 20 for operating over the horizontal and vertical optical flow stacks,

each of which has a stack of L = 10 frames. This tack allows us to exploit the availability of a large

amount of annotated training data for both streams.

+

3
x3

1
x1

x3

1
x1

x3 R
eLU

R
eLU

R
eLU

1
x1

 +

3
x3

x1

1
x1

 R
eLU

R
eLU

R
eLU

+

3
x3

1
x1

x3

1
x1

x3

R
eLU

R
eLU 1

x1

+

3
x3

1
x1

R
eLU

R
eLU

R
eLU

Motion Stream

1
x1

 +

3
x3

1
x1

 R
eLU

R
eLU

R
eLU

1
x1

+

3
x3

1
x1

R
eLU

R
eLU

R
eLU

Appearance Stream
*

* *

*

1
x1

1

x1

1
x1

1

x1

Figure 4.1: Three residual units operating on appearance and motion information. A direct way
of connecting the output of the first motion unit with a residual connection into the appearance
stream leads to high errors in testing. We conjecture that such a fusion hinders the representational
power of the appearance network.

A drawback of the two-stream architecture is that it is unable to spatiotemporally register

appearance and motion information. Thus, it is not able to represent what (captured by the spatial

stream) moves in which way (captured by the temporal stream). Here, we remedy this deficiency

by letting the network learn such spatiotemporal cues at several spatiotemporal scales. We enable

this interaction by introducing residual connections between the two streams. Just as there can be

various types of shortcut connections in a ResNet, there are several ways the two streams can be

connected. In preliminary experiments we found that direct connections between identical layers

of the two streams led to an increase in validation error. This is illustrated in Fig. 4.1, where the

motion stream is connected with an additive operation to the motion stream. Since all residual

units (usually consisting of two 1×1 and a 3×3 spatial convolution layer) are augmented with

skip connections that distribute the signal to all such units in the network hierarchy, the newly

added fusion signal will influence all layers of the appearance network; however, ResNets build

on these identity connections to build up their representational capacity. We conjecture that our

unsatisfactory results for this direct way of fusion are due to the large change that the signal of

one network stream undergoes after injecting a fusion signal from the other stream. Notably, we

were able to ameliorate this effect by inserting channel-wise learnable affine scale layers; however,

45

Chapter 4. Spatiotemporal Residual Networks

in this case neither a negative nor a positive effect of the connection between the streams was

observable (i.e. the network did not perform significantly better than the two-stream baseline).

A more comprehensive ablation study on how the different cross-stream connections, including

bidirectional forms, interact will be given in the next chapter and the next section continues to

develop a solution based on additive interactions which are in accord with the design principles of

ResNets.

4.3.2 Additive motion interaction

+

3
x3

1
x1

x3

1
x1

x3 R
eLU

R
eLU

R
eLU

1
x1

 +

3
x3

x1

1
x1

 R
eLU

R
eLU

R
eLU

+

3
x3

1
x1

x3

1
x1

x3

R
eLU

R
eLU 1

x1

+

3
x3

1
x1

R
eLU

R
eLU

R
eLU

1
x1

 +

3
x3

1
x1

 R
eLU

R
eLU

R
eLU

1
x1

+

3
x3

1
x1

R
eLU

R
eLU

R
eLU

+

*

* *

*

Motion Stream

Appearance Stream

Figure 4.2: The proposed residual units in our ST-ResNet architecture. At the output of the first
unit, a residual connection (highlighted in red) between the two streams enables additive motion
interactions. The second residual unit also includes temporal convolutions by transforming the 1×1
dimensionality mapping filters (highlighted in yellow).

We inject a skip connection from the motion stream to the appearance stream’s residual unit.

To enable learning of spatiotemporal features at all possible scales, this modification is applied

before the second residual unit at each spatial resolution of the network, as exemplified by the

connection shown in Fig. 4.2. Formally, the corresponding appearance stream’s residual units (4.1)

are modified according to

x̂a
l+1 = f(xa

l) + F
(
xa
l + f(xm

l),Wa
l

)
, (4.2)

where xa
l is the input of the l-th layer appearance stream, xm

l the input of the l-th layer motion

stream and Wa
l are the weights of the l-th layer residual unit in the appearance stream. For the

gradient on the loss function L in the backward pass the chain rule yields

∂L
∂xa

l

=
∂L
∂x̂a

l+1

∂x̂a
l+1

∂xa
l

=
∂L
∂x̂a

l+1

(
∂f(xa

l)

∂xa
l

+
∂

∂xa
l

F
(
xa
l + f(xm

l),Wa
l

))
(4.3)

for the appearance stream and similarly for the motion stream

∂L
∂xm

l

=
∂L
∂xm

l+1

∂xm
l+1

∂xm
l

+
∂L
∂x̂a

l+1

∂

∂xa
l

F
(
xa
l + f(xm

l),Wa
l

)
, (4.4)

where the first additive term of (4.4) is the gradient at the l-th layer in the motion stream and

the second term accumulates gradients from the appearance stream. Thus, the residual connection

between the streams backpropagates gradients from the appearance stream into the motion stream.

46

4.3. Technical approach

4.3.3 Convolutional residual connections across time

The cascading of small convolutional filters is a key design choice in state-of-the-art image Con-

vNets. As noted above, the benefits are a large receptive field at lower cost compared to the use of

large filters, coupled with having additional non-linearities in the network that follow each convolu-

tional layer (Simonyan and Zisserman, 2014b). Another design practice is to split 2D convolutions

into separate 1D convolutions; importantly, however, this choice must be realized with care: Such

factorization degrades performance when applied in early layers, but when applied on intermediate

to deep layers with smaller grid-sizes it yields good results (Szegedy et al., 2015b). Here we transfer

both of these design practices to the spatiotemporal domain by injecting temporal convolutions

into the residual units of a two-stream architecture.

Spatiotemporal coherence is an important cue when working with time varying visual data and

can be exploited to learn general representations from video in an unsupervised manner (Goroshin

et al., 2015). In that case, temporal smoothness is an important property and is enforced by

requiring features to vary slowly with respect to time, usually implemented by penalizing with the

distance of temporally neighbouring features. Further, one can expect that in many cases a ConvNet

is capturing similar features across time. For example, an action with repetitive motion patterns

such as “Hammering” would trigger similar features for the appearance and motion stream over

time. For such cases the use of temporal residual connections would make perfect sense. However,

for cases where the appearance or the instantaneous motion pattern varies over time, a residual

connection would be suboptimal for discriminative learning, since the sum operation corresponds to

a low-pass filtering over time and would smooth out potentially important high-frequency temporal

variation of the features. Moreover, backpropagation is unable to compensate for that deficit since

at a sum layer all gradients are distributed equally from output to input connections. Indeed, in

preliminary experiments we observed that temporal residuals (i.e. sum pooling across time) in

both the appearance and motion networks decreased validation accuracy while increasing training

accuracy. Therefore, we conjecture that an averaging residual connection (which is not learnable)

is suboptimal for capturing characteristic temporal patterns. Further support for suboptimality

of this approach comes from the minor performance gain observed in attaching LSTMs to frame-

level ConvNet features, as LSTMs provide a form of gated feature averaging (Ballas et al., 2016,

Donahue et al., 2015, Mahasseni and Todorovic, 2016, Ng et al., 2015b, Sharma et al., 2015).

Based on the above observations, we developed a novel approach to temporal residual connec-

tions that builds on the ConvNet design guidelines of chaining small (Simonyan and Zisserman,

2014b) asymmetric (Ioannou et al., 2016, Szegedy et al., 2015b) filters. We extend the ResNet

architecture with temporal convolutions by transforming spatial dimensionality mapping filters in

the residual paths to temporal filters (see Fig. 4.2). This allows the straightforward use of standard

two-stream ConvNets that have been pre-trained on large-scale datasets e.g. to leverage the mas-

sive amounts of training data from the ImageNet challenge. We initialize the temporal weights as

an averaging filter (i.e. residual connections across time) and let the network learn to best discrim-

inate image dynamics via backpropagation. We achieve this by replicating the learned spatial 1×1

47

Chapter 4. Spatiotemporal Residual Networks

pool

fc

Time t

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

conv1

conv2_x

+

conv_3x

+

conv_4x

+

conv_5x

+

τ

Figure 4.3: The temporal receptive field of a single neuron at the fifth residual layer of our
motion network stream is highlighted. τ indicates the temporal stride between inputs. The outputs
of conv5 3 are max-pooled in time and fed to the fully connected layer of our ST-ResNet*.

dimensionality mapping kernels in pretrained ResNets across time. Given the pretrained spatial

weights, wl ∈ R1×1×C , temporal filters,ŵl ∈ R1×1×T ′×C , are initialized according to

ŵl(i, j, t, c) =
wl(i, j, c)

T ′
,∀t ∈ [1, T ′], (4.5)

and subsequently refined via backpropagation. We transform filters from both the motion and

the appearance ResNets accordingly. Hence, the temporal filters are able to learn the temporal

evolution of the appearance and motion features and, moreover, by stacking such filters as the

depth of the network increases highly complex spatiotemporal features can be learned.

4.3.4 Proposed architecture

Our overall architecture (used for each stream) is summarized in Table 4.1. The underlying net-

work used is a 50 layer ResNet (He et al., 2016a). Each filtering operation is followed by batch

normalization (Ioffe and Szegedy, 2015) and halfway rectification (ReLU). In the columns we show

“metalayers” which share the same output size. From left to right, top to bottom, the first row

shows the convolutional and pooling building blocks, with the filter and pooling size shown as

(W × H × T,C), denoting width, height, temporal extent and number of feature channels, resp.

Brackets outline residual units equipped with skip connections. In the last two rows we show the

output size of these metalayers as well as the receptive field on which they operate. One observes

that the temporal receptive field is modulated by the temporal stride τ between the input chunks.

For example, if the stride is set to τ = 15 frames, a unit at conv5 3 sees a window of 17 ∗ 15 = 255

frames on the input video; see Fig. 4.3. The pool5 layer receives multiple spatiotemporal features,

where the spatial 7× 7 features are averaged as in (He et al., 2016a) and the temporal features are

max-pooled within a window of 5, with each of these seeing a window of 705 frames at the input.

The pool5 output is classified by a fully connected layer of size 1 × 1 × 1 × 2048; note that this

passes several temporally max-pooled chunks to the softmax log-loss layer afterwards. A detailed

view at the conv5 x block can be seen in Fig. 4.4.

48

4.3. Technical approach

Layers conv1 pool1 conv2 x conv3 x conv4 x conv5 x pool5

Blocks

7×
7×

1, 64

3×
3×

1
m

ax

 1×1, 64
3×3, 64
1×1, 256

  1×1, 128
3×3, 128
1×1, 512

  1×1, 256
3×3, 256
1×1, 1024

  1×1, 512
3×3, 512
1×1, 2048


7×

7×
1

avg
stride

2

1×
1×

5
m

ax

skip-stream skip-stream skip-stream skip-stream

stride
2

 1×1, 64
3×3, 64
1×1, 256

  1×1, 128
3×3, 128
1×1, 512

  1×1, 256
3×3, 256
1×1, 1024

  1×1, 512
3×3, 512
1×1, 2048

 1×1, 64
3×3, 64
1×1, 256

  1×1, 128
3×3, 128
1×1, 512

×2

 1×1, 256
3×3, 256
1×1, 1024

×4

 1×1, 512
3×3, 512
1×1, 2048


Output

112×112×11 56×56×11 56×56×11 28×28×11 14×14×11 7×7×11 1×1× 4
size

Recept.
7×7×1 11×11×1 35×35×5τ 99×99×9τ 291×291×13τ 483×483×17τ 675 × 675× 47τ

Field

Table 4.1: Spatiotemporal ResNet architecture used in both ConvNet streams. The metalayers
are shown in the columns with their building blocks showing the convolutional filter dimensions
(W ×H × T,C) in brackets. Each building block shown in brackets also has a skip connection to
the block below and skip-stream denotes a residual connection from the motion to the appearance
stream, e.g., see Fig. 4.4 for the conv5 2 building block. Stride 2 downsampling is performed by
conv1, pool1, conv3 1, conv4 1 and conv5 1. The output and receptive field size of these layers is
shown below. For both streams, the pool5 layer is followed by a 1 × 1 × 1 × 2048 fully connected
layer, a softmax and a loss.

Sub-batch normalization. Batch normalization (Ioffe and Szegedy, 2015) subtracts from all

activations the batchwise mean and divides by their variance. These moments are estimated by

averaging over spatial locations and multiple images in the batch. After batch normalization a

learned, channel-specific affine transformation (scaling and bias) is applied. The noisy bias/variance

estimation replaces the need for dropout regularization (He et al., 2016a, Szegedy et al., 2016). We

found that lowering the number of samples used for batch normalization can further improve the

generalization performance of the model. For example, for the appearance stream we use a low batch

size of 4 for moment estimation during training. This practice strongly supports generalization

of the model and nontrivially increases validation accuracy (≈4% on UCF101). Interestingly, in

comparison to this approach, using dropout after the classification layer (e.g. as in (Szegedy et al.,

2016)) decreased validation accuracy of the appearance stream. Note that only the batchsize for

normalizing the activations is reduced; the batch size in stochastic gradient descent is unchanged.

4.3.5 Model training and evaluation

Our method has been implemented in our own modified version of the MatConvNet (Vedaldi

and Lenc, 2015) library, which supports spatiotemporal processing. We train our model in three

optimization steps with the parameters listed in Table 4.2.

Motion and appearance streams. First, each stream is trained similar to (Simonyan and

Zisserman, 2014a) using Stochastic Gradient Descent (SGD) with momentum of 0.9. We rescale

all videos by keeping the aspect ratio and resizing the smallest side of a frame to 256. The motion

network uses optical flow stacking with L = 10 frames and is trained for 30K iterations with a

learning rate of 10−2 followed by 10K iterations at a learning rate of 10−3. At each iteration,

49

Chapter 4. Spatiotemporal Residual Networks

+

3
x3

x1
 x 5

1
2

1
x1

x3
 x 2

0
4

8

1
x1

x3
 x 5

1
2

R
eLU

R
eLU

R
eLU

1
x1

x1
 x 5

1
2

+

3
x3

x1
 x 5

1
2

1
x1

x1
 x 2

0
4

8

R
eLU

R
eLU

R
eLU

+

3
x3

x1
 x 5

1
2

1
x1

x3
 x 2

0
4

8

1
x1

x3
 x 5

1
2

R
eLU

R
eLU

1
x1

x1
 x 5

1
2

+

3
x3

x1
 x 5

1
2

1
x1

x1
 x 2

0
4

8

R
eLU

R
eLU

R
eLU

Motion
Stream

+

conv5_2 conv5_3

1
x1

x1
 x 5

1
2

+

3
x3

x1
 x 5

1
2

1
x1

x1
 x 2

0
4

8

R
eLU

R
eLU

R
eLU

conv5_1

1
x1

x1
 x 5

1
2

+

3
x3

x1
 x 5

1
2

1
x1

x1
 x 2

0
4

8

R
eLU

R
eLU

R
eLU

1x1x1 x 2048

1x1x1 x 2048

Appearance
Stream

*
*

*
*

Figure 4.4: Detailed view of the conv5 x residual units of our architecture. A residual connection
(highlighted in red) between the two streams enables additive motion interactions. The second
residual unit, conv5 2 also includes temporal convolutions (highlighted in yellow) for learning
high-level spacetime features.

Training phase
SGD Bnorm

Learning Rate (#Iterations)
Temporal

batch size batch size chunks / stride τ

Motion stream 256 86 10−2(30K), 10−3(10K) 1 / τ = 1

Appearance stream 256 4 10−2(10K), 10−3(10K) 1 / τ = 1

ST-ResNet 128 4 10−3(30K), 10−4(30K), 10−5(20K) 5 / τ ∈ [5, 15]

ST-ResNet* 128 4 10−4(2K), 10−5(2K) 11 / τ ∈ [1, 15]

Table 4.2: Parameters for the three training phases of our model

a batch of 256 samples is constructed by randomly sampling a single optical flow stack from a

video; however, for batch normalization (Ioffe and Szegedy, 2015), we only use 86 samples to

facilitate generalization. We precompute optical flow (Zach et al., 2007) before training and store

the flow fields as JPEGs (with displacement vectors > 20 pixels clipped). During training, we use

the same augmentations as in (Ballas et al., 2016, Wang et al., 2016a); i.e. randomly cropping

from the borders and centre of the flow stack and sampling the width and height of each crop

randomly within 256, 224, 192, 168, following by resizing to 224 × 224. The appearance stream is

trained identically with a batch of 256 RGB frames and learning rate of 10−2 for 10K iterations,

followed by 10−3 for another 10K iterations. Notably here we choose a very small batch size of 4

for normalization. We also apply random cropping and scale augmentations: We randomly jitter

the width and height of the 224 × 224 input frame by ±25% and also randomly crop it from a

maximum of 25% distance from the image borders. The cropped patch is rescaled to 224 × 224

and passed as input to the network. The same rescaling and cropping technique is chosen to train

the next two steps of our architecture described below. In all our training steps we use random

horizontal flipping and do not apply RGB colour jittering (Krizhevsky et al., 2012a).

ST-ResNet. Second, to train our spatiotemporal ResNet we sample 5 inputs from a video with

random temporal stride between 5 and 15 frames. This technique can be thought of as frame-rate

50

4.4. Evaluation

jittering for the temporal convolutional layers and is important to reduce overfitting of the final

model. SGD is used with a batch size of 128 videos where 5 temporal chunks are extracted from

each. Batch-normalization uses a smaller batch size of 128/32 = 4. The learning rate is set to 10−3

and is reduced by a factor of 10 after 30K iterations. Notably, there is no pooling over time, which

leads to temporal fully convolutional training with a single loss for each of the 5 inputs. We found

that this strategy significantly reduces the training duration with the drawback that each loss does

not capture all available information. We overcome this downside by the last step of our training

procedure outlined next.

ST-ResNet*. For our final model, we equip the spatiotemporal ResNet with a temporal max-

pooling layer after pool5 (see Table 4.1, temporal average pooling led to inferior results) and

continue training as above with the learning rate starting from 10−4 for 2K iterations followed by

10−5. As indicated in Table 4.2, we now use 11 temporal chunks as input with the stride τ between

these being randomly chosen from [1, 15].

Fully convolutional inference. For fair comparison, we follow the evaluation procedure of

the original two-stream work (Simonyan and Zisserman, 2014a) by sampling 25 frames (and their

horizontal flips). However, rather than using 10 spatial 224 × 224 crops from each of the frames,

we apply fully convolutional testing both spatially (smallest side rescaled to 256) and temporally

(the 25 frame-chunks) by classifying the video in a single forward pass, which takes ≈250ms on

a Nvidia Titan X GPU. For inference, we average the predictions of the fully connected layers

(without softmax) over all spatiotemporal locations.

4.4 Evaluation

As in the previous chapter, we evaluate our approach on the UCF101 (Khurram Soomro and Shah,

2012) and HMDB51 (Kuehne et al., 2011) datasets, where we use the provided evaluation protocol

and report mean average accuracy over three splits into training and test sets.

4.4.1 Two-Stream ResNet with additive interactions

Table 4.3 shows the results of our two-stream architecture across the three training stages outlined

in Sec. 4.3.5. For stream fusion, we always average the (non-softmaxed) prediction scores of the

classification layer as this approach produces better results than averaging the softmax scores.

Initially, let us consider the performance of the two streams, both initialized with ResNet50 models

trained on the ImageNet ILSVRC12 data (He et al., 2016a), but without cross-stream residual

connections (4.2) and temporal convolutional layers (4.5). The accuracies for UCF101 and HMDB51

are 89.47% and 60.59%, resp. Comparatively, a VGG16 two-stream architecture produces 91.4%

and 58.5% (Ballas et al., 2016, Wang et al., 2016a). In comparing these results it is notable that the

VGG16 architecture is more computationally demanding (19.6 vs. 3.8 billion multiply-add FLOPs

) and also holds more model parameters (135M vs. 34M) than a ResNet50, which could explain

the better performance on the larger UCF101 dataset.

51

Chapter 4. Spatiotemporal Residual Networks

Dataset Appearance stream Motion stream Two-Streams ST-ResNet ST-ResNet*
UCF101 82.29% 79.05% 89.47% 92.76% 93.46%
HMDB51 43.42% 55.47% 60.59% 65.57% 66.41%

Table 4.3: Classification accuracy on UCF101 and HMDB51 in the three training stages of our
model.

We now consider our proposed spatiotemporal ResNet (ST-ResNet), which is initialized by our

two-stream ResNet50 model of above and subsequently equipped with 4 residual connections be-

tween the streams and 16 transformed temporal convolution layers (initialized as averaging filters).

The model is trained end-to-end with the loss layers unchanged (we found that using a single, joint

softmax classifier overfits severely to appearance information) and learning parameters chosen as

in Table 4.2. The results are shown in the penultimate column of Table 4.3. Our architecture sig-

nificantly improves over the two-stream baseline indicating the importance of residual connections

between the streams as well as temporal convolutional connections over time. Finally, in the last

column of Table 4.3 we show results for our ST-ResNet* architecture that is further equipped with

a temporal max-pooling layer to consider larger temporal windows in training and testing. For

training ST-ResNet* we use 11 temporal chunks at the input and the max-pooling layer pools over

5 chunks to expand the temporal receptive field at the loss layer to a maximum of 705 frames at

the input. For testing, where the network sees 25 temporal chunks, we observe that this long-term

pooling further improves accuracy over our ST-ResNet by around 1% on both datasets.

4.4.2 Comparison with the previous state-of-the-art

We compare to the state-of-the-art in action recognition over all three splits of UCF101 and

HMDB51 in Table 4.4 (left). We use ST-ResNet*, as above, and predict the videos in a single

forward pass using fully convolutional testing. When comparing to the original two-stream method

(Simonyan and Zisserman, 2014a), we improve by 5.4% on UCF101 and by 7% on HMDB51.

Apparently, even though the original two-stream approach has the advantage of multitask learning

(HMDB51) and SVM fusion, the benefits of our deeper architecture with its cross-stream residual

connections are greater. Another interesting comparison is against the two-stream network in

(Ng et al., 2015b), which attaches an LSTM to a two-stream Inception (Szegedy et al., 2015b)

architecture. Their accuracy of 88.6% is to date the best performing approach using LSTMs for

action recognition. Here, our gain of 4.8% further underlines the importance of our architectural

choices.

At time of publication of our results, the previously best performing action recognition ap-

proach, Transformations (Wang et al., 2016a), captures the transformation from start to finish of

a video by using two VGG16 Siamese streams (that do not share model parameters, i.e. 4 VGG16

models) to discriminatively learn a transformation matrix. This method uses considerably more

parameters than our approach, yet is readily outperformed by ours. Similarly, the computational

demand of a single VGG16 model is much higher than the ResNet50 we employ (19.6 vs. 3.8 billion

52

4.4. Evaluation

Method UCF101 HMDB51
Two-Stream ConvNet (Simonyan and Zisserman, 2014a) 88.0% 59.4%
Two-Stream+LSTM(Ng et al., 2015b) 88.6% -
Two-Stream (VGG16) (Ballas et al., 2016, Wang et al., 2016a) 91.4% 58.5%
Transformations(Wang et al., 2016a) 92.4% 62.0%
Two-Stream Fusion (Chapter 3) 92.5% 65.4%
ST-ResNet* (50 layer) 93.4% 66.4%

Method UCF101 HMDB51
IDT (Wang and Schmid, 2013) 86.4% 61.7%
C3D + IDT (Tran et al., 2015a) 90.4% -
TDD + IDT (Wang et al., 2015b) 91.5% 65.9%
Dynamic Image Networks + IDT (Bilen et al., 2016) 89.1% 65.2%
Two-Stream Fusion (Chapter 3) 93.5% 69.2%
ST-ResNet* (50 layer) + IDT 94.6% 70.3%

Table 4.4: Mean classification accuracy of the state-of-the-art on HMDB51 and UCF101 for the
best ConvNet approaches (top) and methods that additionally use IDT features (bottom). Our
ST-ResNet obtains best performance on both datasets.

multiply-add FLOPs).

The combination of ConvNet methods with trajectory-based hand-crafted IDT features (Wang

and Schmid, 2013) typically boosts performance nontrivially (Bilen et al., 2016, Tran et al., 2015a).

Therefore, we further explore the benefits of adding trajectory features to our approach. We achieve

this goal by simply averaging the L2-normalized SVM scores of the FV-encoded IDT descriptors

(i.e. HOG, HOF, MBH) (Wang and Schmid, 2013) with the L2-normalized video predictions of

our ST-ResNet*, again without softmax normalization. The results are shown in Table 4.4 (right)

where we observe a notable boost in accuracy of our approach on HMDB51, albeit less on UCF101.

Note that unlike our approach, the other approaches in Table 4.4 (right) suffer considerably larger

performance drops when used without IDT, e.g. C3D (Tran et al., 2015a) reduces to 85.2% on

UCF101, while Dynamic Image Networks (Bilen et al., 2016) reduces to 76.9% on UCF101 and

42.8% on HMDB51. These relatively larger performance decrements again underline that our ap-

proach is better able to capture the available dynamic information, as there is less to be gained by

augmenting it with IDT. Still, there is a benefit from the hand-crafted IDT features even with our

approach, which could be attributed to its explicit compensation of camera motion. Overall, our

94.6% on UCF101 and 70.3% HMDB51 has exceeded the previous state-of-the-art on these widely

used action recognition datasets.

Finally, it is interesting to note that across all of the presented results, the peformance of our

ST-ResNet* is particularly outstanding on HMDB51. While performance on UCF101 is becom-

ing saturated and thereby provides less opportunity to demonstrate advances, HMDB51 provides

greater challenge and our approach is able to respond with a decidedly increased performance

margin over the alternatives.

53

Chapter 4. Spatiotemporal Residual Networks

4.5 Summary

In this chapter, we have presented a novel spatiotemporal ResNet architecture for video-based

action recognition. In particular, our approach is the first to combine two-stream with residual

networks and to show the great advantage that results. Our ST-ResNet allows the hierarchical

learning of spatiotemporal features by connecting the appearance and motion channels of a two-

stream architecture. Furthermore, we transfer both streams from the spatial to the spatiotemporal

domain by transforming the dimensionality mapping filters of a pre-trained model into temporal

convolutions, initialized as residual filters over time. The whole system is trained end-to-end and

achieves substantial accuracy gains over the standard two-stream architecture, boosting state-of-

the-art performance on two popular action recognition datasets.

54

Appearance Stream

Motion Stream

∙∙ ∙

Motion gating at the feature level requires feature correspondence in the forward pass that is en-
forced through the gradient update of multiplicative interactions in the backward pass. In this
chapter, we introduce Spatiotemporal Multiplier Networks for learning multiscale spacetime rep-
resentations to advance discriminative video recognition.

5
Spatiotemporal Multiplier Networks

55

Chapter 5. Spatiotemporal Multiplier Networks

5.1 Motivation

Building on our findings from the preceding chapter, we now discuss in greater deal our design

choices and have a more in-depth look into alternatives. The spatiotemporal ResNet (ST-ResNet)

presented in the previous chapter non-trivially extended the performance of the original two-stream

approach in application to action recognition on standard datasets. Although, the ST-ResNet

(Chapter 4) yielded state-of-the-art performance, it did not provide systematic justification for its

design choices. Our work in this chapter reconsiders the combination of the two-stream and ResNet

approaches in a more thorough fashion to increase the understanding of how these techniques

interact, with a resulting novel architecture that exceeds our performance from Chapter 4.

More specifically, three main contributions are provided in this chapter. First, we show that

a multiplicative motion gating of the appearance stream provides nontrivial performance boost

over an additive formulation. We discuss the advantages of multiplicative interactions by the effect

on the gradient in a residual network. We also verify their effectiveness in a series of ablation

experiments where we systematically explore various alternatives for connecting the two streams,

including bidirectional connections.

Second, we discuss several approaches to generalizing the ST-ResNet architecture over long-

term input. Note that in Chapter 3, we have found that 3D convolutional fusion kernels that are

initialized by identity matrices that sums the activations from previous layers performed especially

well. Here, we propose to inject temporal filters that are initialized as identity mapping kernels at

the feature level. These temporal filters inject new layers in an existing model, while preserving

the feature identity property of residual networks. This approach allows injection of new temporal

aggregation filters even into the skip path of the network. We provide ablation studies for where

to inject these mappings and how to initialize the temporal aggregation kernel.

Third, based on what is learned from our investigation of fusing two-streams with residual

connections and extending temporal support, we propose a general ConvNet architecture for action

recognition in video. We provide details for how to learn a deep two-stream architecture that is fully

convolutional in spacetime in an end-to-end fashion. We empirically show how multiplicative motion

gating between the streams and injected temporal aggregation filters can enhance performance

substantially, leading to state-of-the-art performance on two popular action recognition datasets.

Our code and models are available at https://github.com/feichtenhofer/st-resnet

5.2 Related work

Historically, research on video-based action recognition has mostly focused on crafting spatiotem-

poral features from optical flow-based motion information, e.g. Histograms Of Flow (HOF) (Laptev

et al., 2008b), Motion Boundary Histograms (MBH) (Dalal et al., 2006) and trajectories (Wang

and Schmid, 2013), or spatiotemporal oriented filtering e.g. HOG3D (Kläser et al., 2008), Cuboids

(Dollár et al., 2005) and SOEs (Derpanis et al., 2012, Feichtenhofer et al., 2015).

56

https://github.com/feichtenhofer/st-resnet

5.3. Two-stream multiplier networks

More recently, researchers have focused on learning spatiotemporal features in an end-to-end

fashion. Some work along these lines has concentrated on use of unsupervised learning (Le et al.,

2011, Taylor et al., 2010). Other work makes use of a combination of hand-crafted and learned

features (Ji et al., 2013). In contrast, an alternative 3D spatiotemporal ConvNet, directly learned all

of its filter kernels (Tran et al., 2015a). Interestingly, a work that compared a variety of approaches

to extending 2D spatial ConvNets into time found little benefit of the temporal data (Karpathy

et al., 2014).

Another relevant research direction for our concerns has addressed aggregation of temporal

information over extended time periods. Here, a comparison of pooling approaches suggested good

performance for temporal pooling of convolutional layers (Ng et al., 2015b), as well as longer

convolutions across time (Varol et al., 2016). Perhaps the most straightforward approach comes

from simple weighted averaging of video frames across time (Bilen et al., 2016). Complexity can be

found in the various efforts that have incorporated LSTMs into their architectures to extend their

temporal support (e.g. (Mahasseni and Todorovic, 2016, Ng et al., 2015b, Sharma et al., 2015,

Wang et al., 2016b)). Alternatively, RNNs have been applied for similar purposes (Ballas et al.,

2016, Li et al., 2016b). Other recent approaches rely on a Siamese architecture to abstract the

temporal transformation of features across a video (Wang et al., 2016a) or identify key volumes in

the sequences (Zhu et al., 2016).

The most closely related work to our contributions in this chapter is two-stream ConvNet

architecture (Simonyan and Zisserman, 2014a), which initially processes colour and optical flow

information in segregation for subsequent late fusion of their separate classification scores, and

our own extensions to that work that investigated spatiotemporal fusion (Chapter 3) and residual

connections (Chapter 4) are of particular relevance for the work presented in this chapter, as they

serve as points of departure. In contrast to those previous efforts, the current work provides a

more systematic investigation of the design space that leads to a novel architecture with improved

performance.

5.3 Two-stream multiplier networks

5.3.1 Baseline architecture

We build our architecture on the two-stream approach (Simonyan and Zisserman, 2014a), which

separately trains two ConvNet streams: One stream exploits spatial appearance based on input

of RGB image frames; the second exploits motion based on an input stack of L = 10 horizontal

and vertical optical flow frames. As in the previous chapter, for each stream we use ResNets (He

et al., 2016a,b) as the base network architecture. ResNets are fully convolutional architectures that,

after an initial 7×7 filter, chain small spatial 3×3 convolutions with 1×1 dimensionality mapping

filters (Szegedy et al., 2015b) followed by batch normalization (Ioffe and Szegedy, 2015) and ReLU

(Krizhevsky et al., 2012a) non-linearities. The input is of size 224×224 and reduced five times in the

network by stride 2 convolutions followed by global average pooling of the final 7×7 feature map.

57

Chapter 5. Spatiotemporal Multiplier Networks

+

conv

conv

+

conv

conv

+

conv

conv

+

conv

conv

Motion
Stream

Appearance
Stream

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

(a)

+

conv

conv

+

conv

conv

+

conv

conv

+

conv

conv

Motion
Stream

Appearance
Stream

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

∙

(b)

+

conv

conv

+

conv

conv

+

conv

conv

+

conv

conv

Motion
Stream

Appearance
Stream

+
ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

(c)

+

conv

conv

+

conv

conv

+

conv

conv

+

conv

conv

Motion
Stream

Appearance
Stream

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

∙

(d)

+

conv

conv

+

conv

conv

+

conv

conv

+

conv

conv

Motion
Stream

Appearance
Stream

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

Motion &
Appearance

Gating
∙∙

(e)

Figure 5.1: Different types of motion interactions between the two streams enables the learning
of local spatiotemporal features. (a)-(d) show unidirectional connections from the motion into the
appearance path and (e) illustrates bidirectional gating across streams.

ResNets are equipped with additive skip connections to directly propagate signals to all layers of

the network. The building blocks of the network are residual units defined as (He et al., 2016a,b):

xl+1 = f (xl + F(xl;Wl)) , (5.1)

where xl and xl+1 are input and output of the l-th layer, F is a nonlinear residual mapping

represented by convolutional filter weights Wl = {Wl,k|1≤k≤K} with K ∈ {2, 3} and f ≡ ReLU

(He et al., 2016b).

For both streams, we use the ResNet model (He et al., 2016a) pretrained on the ImageNet

CLSLOC dataset and replace the last layer according to the number of classes in the target dataset.

Since the motion stream receives a stack of 2L = 20 horizontal and vertical flow fields at the input,

we replicate the first layer filters to fit that dimensionality.

5.3.2 Connecting the two streams

The original two-stream architecture only allowed the two processing paths to interact via late

fusion of their respective softmax predictions (Simonyan and Zisserman, 2014a). That design did

not support the learning of truly spatiotemporal features, which require the appearance and motion

paths to interact earlier on during processing. This interaction, however, can be important for

the discrimination of actions that have similar motion or appearance patterns and can only be

disentangled by the combination of the two e.g. brushing teeth, applying a lipstick or shaving a

beard. To address this limitation, we inject cross-stream residual connections. There are numerous

ways in which such connections can be embodied. In our ablation studies we compare several

variants (Fig. 5.1). We show that simple cross-residual connections between identical layers of

the two streams leads to inferior classification performance compared to the (non-connected) two-

stream baseline. We conjecture that the decrease in performance is due to the large change of the

input distribution that the layers in one network stream undergo after injecting a fusion signal

from the other stream.

58

5.3. Two-stream multiplier networks

5.3.2.1 Additive interaction

Our approach presented in Chapter 4 provided a natural extension of ResNets for the spatiotem-

poral domain by adding motion residuals to the appearance stream (Chapter 4), as illustrated in

Fig. 5.1c and formalized as

x̂a
l+1 = f(xa

l) + F
(
xa
l + f(xm

l),Wa
l

)
, (5.2)

where xa
l and xm

l are the inputs of the l-th layers of the appearance and motion streams (resp.),

while Wa
l holds the weights of the l-th layer residual unit in the appearance stream. Correspond-

ingly, the gradient on the loss function, L, in the backward pass is given via the chain rule as

∂L
∂xa

l

=
∂L
∂x̂a

l+1

∂x̂a
l+1

∂xa
l

(5.3)

=
∂L
∂x̂a

l+1

(
∂f(xa

l)

∂xa
l

+
∂

∂xa
l

F
(
xa
l + f(xm

l),Wa
l

))
for the appearance stream and similarly for the motion stream as

∂L
∂xm

l

=
∂L
∂xm

l+1

∂xm
l+1

∂xm
l

+
∂L
∂x̂a

l+1

∂

∂xa
l

F
(
xa
l + f(xm

l),Wa
l

)
. (5.4)

Note that these expressions were presented in the previous chapter and are repeated here for the

convenience of the reader.

5.3.2.2 Multiplicative interaction

An interesting variation on the between stream interaction relates to multiplicative motion models

(e.g. (Memisevic and Hinton, 2010, Oh et al., 2015, Taylor and Hinton, 2009)) and treats the motion

signal as gated modulation of the appearance features, illustrated in Fig. 5.1d, and formalized as

x̂a
l+1 = f(xa

l) + F
(
xa
l � f(xm

l),Wl

)
, (5.5)

where � corresponds to elementwise multiplication. A more detailed schematic is shown in Fig. 5.2.

In this case, the gradient on the loss function, L, during the backward pass can be expressed as

∂L
∂xa

l

=
∂L
∂x̂a

l+1

∂x̂a
l+1

∂xa
l

(5.6)

=
∂L
∂x̂a

l+1

(
∂f(xa

l)

∂xa
l

+
∂

∂xa
l

F
(
xa
l � f(xm

l),Wa
l

)
f(xm

l)

)
where the gradient flowing through the appearance stream’s residual unit is modulated by the mo-

tion signal, f(xm
l). Mutually, the residual unit’s gradient is modulated by the forwarded appearance

signal xa
l ,

∂L
∂xm

l

=
∂L
∂xm

l+1

∂xm
l+1

∂xm
l

+
∂L
∂x̂a

l+1

∂

∂xa
l

F
(
xa
l � f(xm

l),Wa
l

)
xa
l , (5.7)

before addition to the motion stream gradient ∂L
∂xm

l+1

∂xm
l+1

∂xm
l

. Thus, during backpropagation the cur-

rent inputs of the motion xm
l and appearance xa

l streams are explicitly involved, acting as a gating

mechanism on the gradient. This formulation makes the architecture particularly capable of learn-

ing spatiotemporal feature correspondences.

59

Chapter 5. Spatiotemporal Multiplier Networks

+

+

+

+

)(a
lf x

a
3,1lW

a
1,lW

a
2,lW

a
3,lW

)(a
1lf x

)(a
1,lf x

)(a
2,lf x

)(a
3,lf x

m
3,1lW

m
1,lW

m
2,lW

m
3,lW

)(m
lf x

)(m
1lf x

)(m
1,lf x

)(m
2,lf x

)(m
3,lf x

a
lx ∙

Figure 5.2: Illustration of multiplicative residual gating between the two streams (detailing
Fig. 5.1d). During backpropagation the gradient is factored with the opposing stream’s forward
signal.

5.3.2.3 Discussion

Inclusion of the multiplicative interaction increases the order of the network fusion from first to

second order (Goudreau et al., 1994). Here, this multiplicative interaction between the two streams

implies a much stronger signal change based on spatiotemporal feature correspondence compared

to the additive interaction (5.2): In the former case, (5.5), the motion information directly scales

the appearance information through the term xa
l �f(xm

l), rather than via a more subtle bias, xa
l +

f(xm
l), as in the additive case, (5.2). During backpropagation, instead of the fusion gradient flowing

through the appearance, (5.3), and motion, (5.4), streams being distributed uniformly due to

additive forward interaction (5.2), it now is multiplicatively scaled by the opposing stream’s current

inputs, f(xm
l) and xa

l in equations (5.6) and (5.7), respectively. This latter type of interaction

allows the streams to more effectively interact during the learning process and corresponding

spatiotemporal features thereby ultimately are captured (cf. similar discussion in the context of

recurrent networks (Wu et al., 2016b)).

Finally, rather than asymmetrically injecting the motion information into the appearance

stream, bidirectional connections could be employed. Such processing could be realized for either

additive or multiplicative interactions and is illustrated for the multiplicative case in Fig. 5.1e. In

empirical evaluation, we show that such interactions yield inferior performance to the asymmetric

case of injecting motion into appearance. We conjecture that this result comes about because the

spatial stream comes to dominate the motion stream during training.

5.3.3 Temporal filtering with feature identity

Beyond very limited means for interaction between its processing paths, the original two-stream

network also employed only a small temporal window (10 frames) in making its predictions, which

subsequently were averaged over the video (Simonyan and Zisserman, 2014a). In contrast, many

60

5.3. Two-stream multiplier networks

real world actions required larger intervals of time to be defined unambiguously (e.g. consider a

“lay-up” in basketball). Thus, the second way that we improve on the two-stream architecture is

to provide it with greater temporal support (cf. Chapters 3 & 4 for previous work with similar

motivations).

We employ 1D temporal convolutions combined with feature space transformations initialized

as identity mappings to achieve our goal. 1D convolutions provide a learning-efficient way to cap-

ture temporal dependencies, e.g. with far less overhead than LSTMs. Initialization of the feature

transformations as identity mappings is appropriate when injecting into deep architectures, as any

significant change in the network path would distort the (pretrained) model and thereby remove

most of its representational power. Furthermore, preserving the feature identity is essential to

preserve the design principles of residual networks. The corresponding kernels can be injected at

any point in the network since they do not impact the information flow at initialization; however,

during training they can adapt their representation under the gradient flow.

Formally, we inject temporal convolutional layers into the network that operate across Cl feature

channels

xl+1 = xl ∗ Ŵl + bl, (5.8)

where the biases bl are initialized as 0 and Ŵl ∈ R1×1×T×Cl×Cl are temporal filters with weights

initialized by stacking identity mappings between feature channels, 1 ∈ R1×1×1×Cl×Cl , across time

t = 1 . . . T . Specifically,

Ŵl = 1⊗ f , (5.9)

where ⊗ denotes the tensor outer product and f is a 1D temporal filter of length T . Notably,

eq. (5.9) initializes temporal kernels to perform identity transforms at feature level.

Since our kernels preserve the feature identity, we can place them after any layer in the network

without affecting its representational ability (at initialization). During training, however, the newly

added temporal conv layers affect the overall model. Here we distinguish two main variants, either

inserting the layers in the shortcut path which directly affects all other layers in the network, or

into the residual units which locally affects the surrounding blocks. These two variants for learning

temporal relationships are illustrated in Fig. 5.3 and evaluated in our experiments (Section 5.5.2).

Recent ConvNet architectures (He et al., 2016a, Szegedy et al., 2015a) are fully convolutional

and use a global average pooling after the last conv layer. Generally global pooling is reasonable,

since the exponentially expanding receptive field for deeper units typically spans the whole input,

e.g. for the ResNet-50 the last convolutional layer has a theoretical receptive field of 483×483 pixels

on the 224×224 sized input.

By design, our temporal convolutional layers, (5.8), provide broad temporal support, analogous

to the broad spatial support that motivates global spatial pooling. Therefore, it is equally motivated

to employ global temporal pooling. Here, our intial investigations showed that global max pooling

over time led to superior results compared to average pooling, presumably because it allowed

the network to capitalize on the most discriminative temporal sample. Therefore, given x(i, j, t, c)

61

Chapter 5. Spatiotemporal Multiplier Networks

+

+

)33(2, lW

)11(1, lW

)11(3, lW

)11(3,1 lW

)311(


lW

(a) �

+

+

)33(2, lW

)11(1, lW

)11(3, lW

)11(3,1 lW

)311(


lW

(b) �, §

Figure 5.3: Injection of identity mapping kernels as temporal filters, Ŵl, into the skip path (a)
or into the residual unit (b). Symbols �, � and § are used in upcoming presentation to distinguish
these cases.

observed over 1 ≤ t ≤ T we pool according to

x(i, j, c) = max
1≤t≤T

x(i, j, t, c). (5.10)

During preliminary experiments, we also considered application of temporal max-pooling earlier

in the network; however, it always produced inferior results to pooling after the last convolutional

layer.

5.4 Architecture details

In our experiments we use 50 and 152 layer ResNets (He et al., 2016a), pretrained on ImageNet.

The building blocks of our architecture are shown in Table 5.1 which reads from left to right, top

to bottom. The operations at each block are convolution or pooling with dimensions (W ×H,C),

denoting width, height and number of feature channels, respectively. Each conv block is accom-

panied by batch normalization (Ioffe and Szegedy, 2015) and ReLU nonlinearities. The brackets

indicate conv blocks that are grouped to residual units as outlined in equation (7.1). � indicates

the point of multiplicative motion gating into the appearance stream (Section 5.3.2.2) and the

symbols �, § and � denote three variants of where to inject temporal convolutions (Sec. 5.3.3). In

our ablation experiments we compare injecting temporal kernels into the skip path of every conv

block (�), into a residual unit at every conv block (�), or only into a residual unit at the last conv

block (§); locally these variants are shown in Fig. 5.3.

62

5.4. Architecture details

Layers conv1 pool1 conv2 x conv3 x conv4 x conv5 x pool5

Blocks
7×

7, 64

3×
3
m
ax

 1×1, 64
3×3, 64
1×1, 256

  1×1, 128
3×3, 128
1×1, 512

  1×1, 256
3×3, 256
1×1, 1024

  1×1, 512
3×3, 512
1×1, 2048


7×

7
avgstride

2

� � � � 1×1, 64
3×3, 64 �
1×1, 256

  1×1, 128
3×3, 128 �
1×1, 512

  1×1, 256
3×3, 256 �
1×1, 1024

  1×1, 512
3×3, 512 �, §
1×1, 2048


 1×1, 64

3×3, 64
1×1, 256

  1×1, 128
3×3, 128
1×1, 512

×N

 1×1, 256
3×3, 256
1×1, 1024

×M

 1×1, 512
3×3, 512
1×1, 2048


� � � �

Table 5.1: ResNet architecture used in our ConvNet streams. The layers are shown in the columns
with brackets indicating residual units with skip connections. The filter dimensions are shown as
(W×H,C) in brackets.� denotes a multiplicative gate from the motion into the appearance stream,
and the symbols �, § and � denote three alternatives for injecting the temporal filters. Notably
for � and § filters are injected only in the residual units (after a 3×3 convolution), whereas for
� temporal filters also are injected into the shortcut path of the network. N = 2, M = 4 for a
ResNet-50 and N = 6,M = 32 for a ResNet-152.

5.4.1 Training procedure

We first separately train the two streams similar to the previous chapters. We start with a learning

rate of 10−2 and lower it two times after the validation error saturates. Our motion network uses

optical flow stacks with L = 10 frames and is trained with dropout of 0.8 after the final classification

layer. Optical flow (Zach et al., 2007) is precomputed prior to training and stored as JPEG images

(with displacement vectors > 20 pixels clipped). During training, we use the same augmentations as

in (Ballas et al., 2016, Wang et al., 2016a); i.e. randomly cropping from the borders and centre of the

flow stack and sampling the width and height of each crop randomly as W,H ∈ {256, 224, 192, 168},
followed by resizing to 224×224. We use a batch size of 128 by randomly sampling a single optical

flow stack from a video. The effective batch size during each forward and backward pass is reduced

to fit GPU memory constraints and the gradient update is applied after aggregating gradients

for all 128 samples. Notably, for batch normalization (Ioffe and Szegedy, 2015) (which is applied

at every forward/backward computation), the batch-size is smaller. We found this fact facilitates

generalization performance of our model, because smaller batches increase the regularization effect

of the noisy bias/variance estimates in batch normalization.

The appearance stream is trained analogously with a batch size of 256 RGB frames. Here, we

apply a less aggressive scale augmentation than for the motion network: We randomly jitter the

width and height of the 224×224 input frame by ±25% and also randomly crop it from a maximum

of 25% distance from the image borders. The crop is rescaled to 224× 224 and passed as input to

the network.

The same rescaling and cropping technique is chosen to train our proposed model. Here, we

sample 5 inputs from a video with random temporal stride between 5 and 35 frames (i.e. temporal

jittering for the injected temporal conv-layers). The batch size is set to 128 videos where 5 temporal

63

Chapter 5. Spatiotemporal Multiplier Networks

case into Fig. UCF101 HMDB51

direct +O ← Fig. 5.1a 24.78 54.85

direct
⊙

← Fig. 5.1b 81.98 77.89

residual +O ←
Fig. 5.1c 9.38 41.89

Section 5.3.2.1

residual
⊙

← Fig. 5.1d 8.72 37.23
Section 5.3.2.2

residual +O → Fig. 5.1c 16.76 49.54

residual
⊙

→ Fig. 5.1d 16.68 48.43

residual
⊙

↔ Fig. 5.1e 15.15 48.56

Table 5.2: Classification error (%) on the first split of UCF101 and HMDB51 under different
cross-stream connections.

chunks are extracted from each one. Importantly, batch-normalization again uses a smaller batch

size to fit GPU memory. The learning rate starts at 10−3 and is reduced by a factor of 10 after 20

epochs and again reduced by an order of magnitude after 10 epochs more.

5.4.2 Fully convolutional testing

We follow the evaluation procedure of the original two-stream work (Simonyan and Zisserman,

2014a) by sampling 25 frames (and their horizontal flips). However, we apply fully convolutional

testing both spatially (smallest side rescaled to 256) and temporally (the 25 frame-chunks) by

classifying the video in a single forward pass. For inference, we average the predictions of the

classification layers over all spatiotemporal locations. Despite our slightly better results with 10-

crop testing, we prefer fully convolutional testing in spacetime as this method greatly increases

inference speed (a video can be tested in ≈250ms on a single Nvidia Titan X GPU).

5.5 Experimental results

As in the previous chapters, we again validate our approach on the two popular action recognition

datasets: UCF101 (Khurram Soomro and Shah, 2012) and HMDB51 (Kuehne et al., 2011). Our

experiments are structured into four sections. First, we present ablation experiments on how to

connect the two streams (Section 5.5.1). Second, we compare different strategies to inject identity

mapping kernels for learning long temporal relationships (Section 5.5.2). Third, we investigate the

impact of network depth (Section 5.5.3). Finally, we provide a comparison with the state-of-the-art

(Section 5.5.4).

64

5.5. Experimental results

5.5.1 Analysis of Two-Stream connections

In Section 5.3.2 we discuss two specific ways of how to connect the two streams of our architecture.

More generally, there are numerous ways how one could insert cross-stream connections. The goal

here is to fuse the two networks (at a particular convolutional layer) such that channel responses

at the same pixel position are put in correspondence. In previous work, different fusion functions

have been discussed Chapter 3 where it has been shown that additive fusion performed better than

maxout or concatenation of feature channels from the two paths. Additive fusion of ResNets has

been used in Chapter 4, but was not compared to alternatives. In this section, we provide a more

systematic analysis on cross-stream connections between the streams.

In Fig. 5.1 we illustrate the various possible flows of information through the network and in

Table 5.2 we compare their performance as error on the first splits of UCF101 and HMDB51.

Note that Fig. 5.1 only illustrates the connection structure for a single layer; the cross-stream

connections are inserted at every conv block (as marked in Table 5.1). Table 5.2 lists the type of

connection (direct or into residual units), the fusion function (additive +O or multiplicative
⊙

),

the direction (from the motion into the appearance stream ←, conversely → or bidirectional ↔).

Note that we do not show schematic figures for fusing from the appearance into the motion stream

(→), as these simply are horizontal reflections of the converse ones (←).

We first focus on straightforward connection of the streams with an additive shortcut connec-

tion, Fig. 5.1a, directly enabling forward and backward signal flow between the two paths. This

strategy produces inferior results because it induces too large a change in the propagated signals,

thereby disturbing the network’s representation abilities. This overly aggressive change is induced

in two ways: via the forwarded signal as it passes through the deep layers; via the backpropagated

signal in all preceding layers that emit the fusion signal. Not surprisingly, the detriment is exac-

erbated when directly multiplying the shortcut paths of the two streams (Fig. 5.1b and second

row of Table 5.2), because the change induced by multiplication is stronger than that from addi-

tion. More generally, injecting into the skip path breaks the identity shortcut of residual networks,

thereby producing optimization difficulties (He et al., 2016b) and significantly increased test error,

as verified by our results.

Next, we compare the additive and multiplicative motion gating into the residual units, as

presented in Section 5.3.2.1 and Section 5.3.2.2, resp. Injection of residuals from the motion stream

has been employed previously in Chapter 4 and produces test errors of 9.38% and 41.89% on

the first splits of UCF101 and HMDB51, resp. In comparison, merely changing the interaction to

multiplicative gating reduces that error to 8.72% and 37.23%. The impact of multiplicative motion

interaction is twofold: First, it directly gates corresponding appearance residual units; second, it

modulates the gradient in the appearance and the motion stream by each other’s current input

features, thereby enforcing spatiotemporal feature correspondences.

As a further experiment, we invert the direction of the connection to fuse from the appearance

into the motion stream. This variation again leads to inferior results, both for additive and multi-

plicative residual fusion. These results can be explained by a severe overfitting of the network to

65

Chapter 5. Spatiotemporal Multiplier Networks

appearance information. In fact, when fusing from the appearance into the motion stream (→),

the training loss of the motion stream decreases much faster and ends up at a much lower value.

The fast training error reduction is due to the networks’ focus on appearance information, which

is a much stronger modality for discriminating different training frames. This effect is not only

the reason for fusing from the motion stream into the appearance stream, but also supports the

design of having two loss layers at the end of the network. Finally, we performed an experiment for

bidirectional connections Fig. 5.1e, which also suffers under the effect of appearance dominating

training.

Having verified the superior performance of multiplicative cross-stream residual connections,

Fig. 5.1d, compared to the alternatives considered, we build on that design for the remainder of

the experiments, unless otherwise noted.

5.5.2 Experiments on temporal aggregation

This section provides experiments for our injection of temporal filter kernels that preserve feature

identity at initialization. We explore several choices for injecting such kernels within the hierarchy

of the network. Table 5.3 again reports the error on the first split of UCF101 and HMDB51, as

we vary operations in three ways. First, we vary where the temporal kernel is injected into overall

architecture (see Table 5.1, §, �, �). Second, we vary the initialization of the temporal filter kernels,

which is the same for all feature channels, by setting them to perform either averaging, [1⁄3, 1⁄3, 1⁄3],
or centering, [0, 1, 0], in time. Third, we vary whether or not max-pooling in time is employed.

Significantly, during training the network inputs consist up to 11 chunks that are temporally strided

in the range between 5 and 35 frames; thus, these kernels are able to learn long-term temporal

relationships between the features.

The results show a clear benefit of adding temporal kernels that are able to learn longer tem-

poral relationships. Compared to the multiplicative cross-stream gating baseline, benefit is had

even if just a single temporal layer is injected into each stream (§). Further, when comparing the

temporal initialization of the filters, the results indicate particular benefit of a centre initializa-

tion on HMDB51. We conjecture this is due to the temporal nature of HMDB51 in comparison

to UCF101: HMDB51 exhibits a higher degree of inter-video diversity e.g. due to camera motion,

whereas videos in UCF101 typically capture temporally consistent scenes.

Finally, we investigate the impact of temporal max pooling of features before the classification

layer. We notice a further decrease in error rates to 6.00% and 30.98% on UCF101 and HMDB51,

respectively. Here, the relative gains again can be explained by the temporal natures of the datasets.

Notably, even if max-pooling is performed after the last convolutional layer, the network will use

information from all frames that are within the span of the temporal kernels. Therefore, max-

pooling conceptually is a meaningful operation, because it allows the network to set the focus

on a particularly discriminating instance in time, even while considering long-term information

captured by stacked temporal conv-layers. This property also holds during backpropagation. Here,

max-pooling only backpropagates a single temporal gradient map, even while the stacked temporal

66

5.5. Experimental results

case temporal init. pool time UCF101 HMDB51

- - 7 8.72 37.23

§ [1⁄3, 1⁄3, 1⁄3] 7 7.85 35.29

� [1⁄3, 1⁄3, 1⁄3] 7 7.72 35.96

� [1⁄3, 1⁄3, 1⁄3] 7 7.45 35.94

� [0, 1, 0] 7 7.61 34.72

§ [0, 1, 0] 7 7.74 34.90

� [0, 1, 0] 7 7.79 34.38

� [0, 1, 0] X 6.74 34.05

� [0, 1, 0] X 6.00 30.98

Table 5.3: Classification error (%) on the first split of UCF101 and HMDB51 under different
temporal filtering layers. The symbols in the first column, §, �, �, denote where the new layers are
placed within the overall architecture (see Table 5.1), temporal init indicates how the temporal filter
taps are initialized (i.e. averaging or centre frame) and pool time indicates whether max-pooling
in time is used during training and testing.

UCF101 HMDB51

Model ResNet-50 ResNet-152 ResNet-50 ResNet-152

Appearance 82.3% 83.4% 48.9% 46.7%

Motion 87.0% 87.2% 55.8% 60.0%

Late Fusion 91.7% 91.8% 61.2% 63.8%

Table 5.4: Classification accuracy for 50 layer deep (ResNet-50), and extremely deep (ResNet-
152) two-stream ConvNets on UCF101 and HMDB51. Using deeper networks boosts performance,
except for the spatial network on HMDB51, which might be due to overfitting of the 152 layer
model.

convolutions expand their receptive field on the gradient inversely from the output to the input.

Therefore, long-range information is also used for gradient updates.

5.5.3 Going deeper

So far, all our ablation studies were conducted with a 50 layer deep ResNet model. We now switch

from reporting classification error (that has been used in the ablation studies above) to accuracy, as

this is the common measure in the action recognition literature. In Table 5.4 we report the accuracy

for our two-stream baseline networks (no connections across streams or time) on all three splits

the UCF101 and HMDB51 datasets. We train 50 and 152 layer models (He et al., 2016a). Classi-

fication is performed by averaging the prediction layer outputs from 25 uniformly sampled input

video frames. Late fusion is implemented by averaging the prediction layer outputs. On HMDB51

we weight the temporal network scores by a factor of three before averaging. By comparing the

performance we observe that the deeper appearance network degrades performance on HMDB51

67

Chapter 5. Spatiotemporal Multiplier Networks

(we were not able to ameliorate this effect with stronger regularization), while producing slightly

better results on UCF101. In contrast, for the deeper motion network we see quite a sizable gain

on HMDB51. These results motivate us to use a ResNet50 for the appearance and a ResNet-152

for the motion stream of our final architecture.

5.5.4 Comparison with the state-of-the-art

In comparison to the current state-of-the-art in video action recognition (Table 5.5), we consis-

tently improve classification accuracy when comparing to the spatiotemporal ResNet presented in

the previous Chapter and other competitors. Confusion matrices for our proposed spatiotemporal

Multiplier Network can be found in appendix A.

Method UCF101 HMDB51

Improved Dense Trajectories (IDT) (Wang and Schmid, 2013) 86.4% 61.7%

Spatiotemporal ConvNet (Karpathy et al., 2014) 65.4% -

Two-Stream ConvNet (Simonyan and Zisserman, 2014a) 88.0% 59.4%

Long-term recurrent ConvNet (Donahue et al., 2015) 82.9% -

Composite LSTM Model (Srivastava et al., 2015) 84.3% 44.0

Two-Stream+LSTM (Ng et al., 2015b) 88.6% -

C3D (Tran et al., 2015a) 85.2% -

C3D + IDT (Tran et al., 2015a) 90.4% -

Dynamic Image Nets (Bilen et al., 2016) 76.9% 42.8 %

Dynamic Image Nets (Bilen et al., 2016) + IDT 89.1% 65.2%

Transformations(Wang et al., 2016a) 92.4% 62.0%

Two-Stream Fusion (Chapter 3) 92.5% 65.4%

Two-Stream Fusion (Chapter 3) + IDT 93.5% 69.2%

Long-term ConvNets (Varol et al., 2016) 91.7% 64.8%

Long-term ConvNets (Varol et al., 2016) + IDT 92.7% 67.2%

VideoLSTM + IDT (Li et al., 2016b) 92.2% 64.9%

Hierarchical Attention Nets (Wang et al., 2016b) 92.7% 64.3%

Key Volume Mining (Zhu et al., 2016) 93.1% 63.3%

RNN-FV (Lev et al., 2016) + C3D (Tran et al., 2015a) + IDT 94.1% 67.7%

Spatiotemporal ResNets (Chapter 4) 93.4% 66.4%

TSN (Wang et al., 2016) + IDT flow 94.2% 69.0%

Spatiotemporal ResNets (Chapter 4) + IDT 94.6% 70.3%

Spatiotemporal MulNets 94.2% 68.9%

Spatiotemporal MulNets + IDT 94.9% 72.2%

Table 5.5: Mean classification accuracy of the state-of-the-art on HMDB51 and UCF101.

As a final experiment, we are interested if there is still something to gain from a fusion with

hand-crafted IDT features (Wang and Schmid, 2013). We simply average the L2 normalized SVM

scores of Fisher vector encoded IDT features (i.e. HOG, HOF, MBH) with the prediction layer

output of our ConvNet model. The resulting performance is shown in the final row of Table 5.5. We

achieve 94.9% on UCF101 and 72.2% on HMDB51. These results indicate that the degree of com-

68

5.6. Summary

plementary between hand-crafted representations and our end-to-end learned ConvNet approach

is vanishing for UCF101, given the fact that other representations see much larger gains by fusion

with IDT. Nevertheless, there is still a 3.7% increase on HMDB51, which we think is mainly due

to dominant camera motion in HMDB51 that is explicitly compensated by IDT’s warped flow.

Second, HMDB51 has a small training set with large intra-class variability which handicaps deep

ConvNet representations; in contrast, both of these properties can be tackled by explicit Fisher

vector encoding and SVM classifiers as in IDT.

An alternative approach that performs competitively to ours is TSN (Wang et al., 2016). No-

tably, however, TSN relies on 2 more input modalities for training than does our approach: It pre-

trains the motion stream on TVL1 optical flow (Zach et al., 2007), IDT-flow (Wang and Schmid,

2013) (termed warped flow in (Wang et al., 2016)) and difference images. This extra data yields

much higher accuracy of their baseline two-stream net (e.g. 87.2% on UCF101’s most difficult split1

in the motion stream where we have 84.9%). Thus, due to the implicit use of IDT during training,

TSN (Wang et al., 2016) is not directly comparable to our results without IDT. Significantly, even

given the advantage of using multiple input modalities for training a stronger baseline, the final

TSN performance is merely equal to our results (without IDT).

Finally, given the large capacity of our models, we anticipate that our approach would even

further improve when additional training data is used.

5.6 Summary

This chapter has addressed the challenging problem of learning multiscale spacetime representa-

tions for discriminative video recognition. We have presented a novel spatiotemporal architecture

for video action recognition that builds on multiplicative interaction of appearance and motion

features coupled with injected identity mapping kernels for learning long-term relationships. Our

model is trained end-to-end and fully convolutional in spacetime to enable video classification in

a single forward pass. In our systematic ablation studies we have underlined the importance of

learning correspondences between highly abstract ConvNet features both spatially and temporally.

Our results are in line with our derivations and suggest that our architecture should be applicable

to related tasks such as localization and detection in video.

69

Motion Stream

Appearance Stream

Example outputs of our visualization technique for filters at three convolutional layers of a two-
stream ConvNet. In this chapter we propose an approach to visualize deep spatiotemporal repre-
sentations to better understand what the underlying models are capturing.

6
Understanding Deep Video Representations

71

Chapter 6. Understanding Deep Video Representations

6.1 Motivation

Principled understanding of how deep networks operate and achieve their strong performance

significantly lags behind their realizations. Since these models are being deployed to all fields

from medicine to transportation, this issue becomes of even greater importance. The previous

chapters have described our advances towards more effective architectures for recognizing actions

in video and we have shown that significant strides towards higher accuracies could be made by

deep spatiotemporal representations. We can understand our approaches from two viewpoints.

First, the architectural viewpoint defines the network as a computational structure (e.g. a directed

acyclic graph) of mathematical operations in feature space (e.g. affine scaling and shifting, local

convolution and pooling, nonlinear activation functions, etc.) with defined analytic (or numeric)

gradient for backpropagation. In the previous chapters, these tools have been structurally used

to build architectures that are theoretically motivated. We can thus reason about their expected

computation and the quantitative performance for a given task justifies their design, but overall

the understanding from an architectural viewpoint is a very loose one as it does not explain

how a network actually arrives at these results. The second way of understanding deep networks

is the representational viewpoint that is concerned with the actually learned representation in

the parameters of the network. Understanding these is inherently hard as networks consist of an

ever higher number of parameters with a vast space of possible functions they can model. The

hierarchical nature in which these parameters are arranged makes the task of understanding even

harder especially for ever deeper representations. Due to their compositional structure it is difficult

to explicitly reason about what these powerful models actually have learned. In this chapter we

shed some light on deep spatiotemporal networks by visualizing what excites the learned models

using activation maximization by backpropagating on the input. We are the first to visualize

the hierarchical features learned by a deep motion network. Our visual explanations are highly

intuitive and indicate qualitative evidence for the separation into two pathways for processing

spatiotemporal information – a principle that has also been found in nature where numerous

studies suggest a corresponding separation into ventral and dorsal pathways of the brain.

It would be interesting to investigate these deep models from a biological point of view. As

already outlined in Section 2.3, research in neuroscience suggests different pathways in the hierar-

chical processing of visual information, namely the ventral (‘what’) and dorsal (‘where’) pathway

(Felleman and Van Essen, 1991, Goodale and Milner, 1992, Mishkin et al., 1983). The ventral

pathway is mostly tuned for appearance based perception, whereas the dorsal stream is involved

in localization and movement recognition. Notably, there is evidence that these two pathways are

not decoupled and there are numerous connections across the streams (Felleman and Van Essen,

1991, Goodale and Milner, 1992, Kourtzi and Kanwisher, 2000, Saleem et al., 2000); thus the two

streams are not as segregated as has been hypothesized earlier (Maunsell and Van Essen, 1983,

Mishkin et al., 1983, Ungerleider and Desimone, 1986). Information is exchanged between the

multiple areas in the two paths, even a ‘fusion stream’ could be hypothesized that is intimately

connected with both the dorsal and ventral streams and projecting into the rostral superior tem-

72

6.2. Related work

poral sulcus (STS) – a region that shows stronger activations for voices vs. environmental sound,

stories vs. nonsense speech, moving faces vs. moving objects, and biological motion (Gusnard and

Raichle, 2001). Thus, the rostral part of the STS seems to be an interconnection between ventral

and dorsal streams (Karnath, 2001). This study also speculates that the evolutionary development

from monkey to human brain led to the lateralization of the superior temporal cortex functions

that were bilateral in earlier forms (Karnath, 2001). Another rather new study proposes that the

dorsal stream can be better categorized as ‘how’ instead of ‘where’ pathway, and that there are

three further streams emerging from the dorsal pathway, underlying its multifaceted nature for

tasks of motion perception, visually guided action and navigation (Kravitz et al., 2011).

In the light of this dissertation, an interesting field of consideration is also how motion-selective

neurons are tuned and represented in the cortex. Research on macaque monkeys suggests that there

are numerous cells that selectively see motion and flicker. Studies on the medial superior temporal

area (MST) of the dorsal stream in the superior temporal sulcus (STS) of the extrastriate visual

cortex identify neurons responding to small and large field motion (Maunsell and Van Essen,

1983, Ungerleider and Desimone, 1986). In the lateralventral (MSTl) region of the medial superial

temporal area evidence for “small field object motion detectors” has been found, which are selective

for visual motion caused by objects (Eifuku and Wurtz, 1998). Specifically, they report that 57%

of the recoded MSTl neurons responded to center receptive field motion with a surround moving

in the opposite direction and nearly 70% of the neurons responded for center motion while the

surround being stationary.

There is also evidence for “large field motion detectors” (Duffy and Wurtz, 1991, Tanaka and

Saito, 1989). That study found that the neurons in the dorsomedial region of the medial superior

temporal area (MSTd) are directionally selective for moving visual stimuli, for three types of

motion: planar (frontoparralel translations), circular (clockwise or counter-clockwise rotations)

and radial motion (expanding motion patterns caused by ego-motion). MST neurons have large

receptive fields and activate on pure optical flow stimuli. From all recorded neurons, 23% responded

to a single motion type (planar, circular, radial expanding), 34% responded to two components

planocircular or planoradial (but not circuloradial) and finally, 29% responded to all three motion

components (Duffy and Wurtz, 1991). A later study suggests that the recorded MST neurons are

resposible for detection of self-movement and disambiguating it from optic flow originating from

the movement of large objects in the field of view of the observer (Duffy, 1998). For example,

that motion responsive MT/MST areas in the brain are responding stronger to static images with

implied animate dynamics into the containing objects (e.g. humans, animals) than on purely static

images (Kourtzi and Kanwisher, 2000).

6.2 Related work

Activation maximization techniques. Activation maximization has been used by backprop-

agating on the input and applying gradient ascent to the input to find an image that increases the

activity of some neuron of interest (Erhan et al., 2009). The method was employed to visualize units

73

Chapter 6. Understanding Deep Video Representations

of Deep Belief Networks (DBNs) (Hinton et al., 2006) in (Erhan et al., 2009) and adopted for deep

auto-encoder visualizations in (Le et al., 2012). The activation maximization idea was first applied

to visualizing ConvNet representations trained on ImageNet (Simonyan et al., 2014). That work

also showed that the activation maximization techniques generalize the deconvolutional network

reconstruction procedure introduced earlier (Zeiler and Fergus, 2013), which can be viewed as a

special case of one iteration in the gradient based activation maximization. In an unconstrained

setting, these methods can exploit the full dimensionality of the input space; therefore, plain gra-

dient based optimization on the input can generate images that do not reflect natural signals.

Regularization techniques can be used to compensate for this deficit. In the literature, the follow-

ing regularizers have been applied to the inputs to make them perceptually more interpretable: L2

norms (Simonyan et al., 2014), total-variation norms (Mahendran and Vedaldi, 2016), Gaussian

blurring, and suppressing of low values and gradients (Yosinski et al., 2015), as well as spatial

sifting (jittering) of the input during optimization, (Mordvintsev et al.).

Most recently, an even stronger natural image prior, generative adversarial networks (GANs)

(Goodfellow et al., 2014) also have been used (Nguyen et al., 2016, 2017) to visualize class level rep-

resentations. Activation maximization results produced by GANs offer visually impressive results,

because these methods do not have to use extra regularization terms to prevent extremely high

input signals, high frequency patterns or translated copies of similar patterns that highly activate

some neuron, since the optimization is performed in a high-dimensional, abstract space (typically

FC6 in AlexNet) that already induces strong regularization on the possible signals it could pro-

duce. In other words, GAN-based activation maximization does not start the optimization process

from scratch, but from a high-level model that has been trained for the same or a similar task

(Dosovitskiy and Brox, 2016). More specifically, (Nguyen et al., 2016) train the generator network

on ImageNet and activation maximization in some target (ImageNet) network is achieved by op-

timizing a high-level code (i.e. FC6) of this generator network. Therefore, the produced result of

this maximization technique is in direct correspondence to the generator, the data used to train

this model, and not a random sample from the network under inspection. Since we are interested

in the raw input that excites our representations, we do not employ any generative priors in this

chapter.

Adversarial examples. In preliminary work to GANs, another related, irritating property of

neural networks has been revealed: They can be “fooled” by applying a perturbation to the input

that is hardly perceptible to humans (Szegedy et al., 2014). This input perturbation can be found

by gradient ascent to maximize the network’s prediction error. Most important, it has been shown

that these so perturbed “adversarial examples” are not network, nor data specific, as the same

perturbation can fool another network, which was trained on a different subset of the dataset

(Szegedy et al., 2014) – This fact makes sense, since it is the basis for generalization of models

trained by backpropagating gradients. Such examples suggest that high performance of a given

model for a task it was trained for does not justify interpretability and means that we truly

understand the models.

74

6.3. Approach

Convolutional Feature Maps

*Fusion

Maximize channel c

c

Loss

width

depth

height

Input

Appearance

Motion

Figure 6.1: Schematic of our spatiotemporal visualization approach (see Section 6.3 for details).

6.3 Approach

There are several techniques that perform activation maximization for image classification Con-

vNets (Mahendran and Vedaldi, 2016, Simonyan et al., 2014, Szegedy et al., 2014, Yosinski et al.,

2015). In this section, we build on the algorithm presented in (Mahendran and Vedaldi, 2016),

since it provides visually most pleasing results while being conceptually simple, and extend it for

the video domain. This section describes our method for finding the preferred input of a single unit

in the model by maximizing its activation. We formulate the problem as a (regularized) gradient-

based optimization problem that searches in the input space. An overview of our approach is shown

in Fig. 6.1. First, a randomly initialized input is presented to the optical flow and the appearance

towers of our model. We compute the feature maps up to a particular layer that we would like to

visualize. This point could be at the last layer of the network where a neuron corresponds to the

classification targets, or at any intermediate layer of the representation. A single target feature

channel, c, is selected and activation maximization is performed to generate the preferred input

as follows. By setting the loss for our target channel and applying backpropagation to compute

gradients with respect to the input we can find the derivatives for the input to affect the target

neuron, c. The gradient vector propagated to the input is scaled by the learning rate and added

to the current input such that it minimizes the loss. This operation is illustrated by the dotted

red line in Fig. 6.1. A gradient based optimization algorithm is used that performs these steps

iteratively with an adaptively decreasing learning rate until the input converges. Note that during

this optimization process the network weights are not altered, only the inputs receive changes. The

detailed procedure is outlined in the remainder of this section.

75

Chapter 6. Understanding Deep Video Representations

6.3.1 Activation maximization

To make the above more concrete, activation maximization of unit c at layer l seeks an input

x∗ ∈ RH×W×T×C , with H being the height, W the width, T the duration, and C the color and

optical flow channels of the input. We find x∗ by optimizing the following objective

x∗ = argmax
x

1

ρ2
l âl,c

〈al(x), ec〉 − λrRr(x) (6.1)

where al are the activations at layer l, ec is the natural basis vector corresponding to the cth

feature channel, and Rr are regularization term(s) with weight(s) λr. To produce plausible inputs,

the unit-specific normalization constant depends on ρl, which is the size of the receptive field at

layer l (i.e. the input space), and âl,c, which is the maximum activation of c recorded on a validation

set.

6.3.2 Regularized optimization

Since the space of possible inputs that satisfy (6.1) is vast, and natural signals only occupy a small

manifold of this high-dimensional space, we use regularization to constrain the input in terms of

range and smoothness to better fit statistics of natural video signals. Specifically, we apply the

following two regularizers, RB and RTV , explicitly to the appearance and motion input of our

networks.

As first regularizer, RB , we enforce a local norm that penalizes large input values

RB(x) =


∑
i,j

(∑
d x(i, j, k, d)2

)α
2 ∀i, j, k, d :

√∑
d x(i, j, k, d)2 ≤ B

+∞, otherwise.
(6.2)

where i, j, k are spatiotemporal indices of the input volume and d indexes either color channels

for appearance input, or optical flow channels for motion input, and B is the allowed range of

the input. Similar norms are also used in (Mahendran and Vedaldi, 2016, Simonyan et al., 2014,

Yosinski et al., 2015), with the motivation of preventing extreme input scales from dominating the

visualization.

The second regularizer should penalize the high frequency content of our input, since natural

signals tend to be dominated by low frequencies. We use a total variation regularizer (Mahendran

and Vedaldi, 2016) that works on top of image gradients

RTV 2D(x) =
∑
ijkd

(
(x(i+ 1, j, k, d)− x(i, j, k, d)))

2
+ (x(i, j + 1, k, d)− x(i, j, k, d)))

2
)

(6.3)

where i, j, k are used to index the spatiotemporal input dimensions and d indexes the color and

optical flow channels. Note that a similar, more explicit regularizer has been used previously, where

a 2D Gaussian blur kernel is applied after each iteration of maximization (Yosinski et al., 2015).

Notably, (6.3) does not penalize variation over the temporal dimension, k.

For motion signals modeling the variation in the temporal dimension is a well studied prin-

ciple in literature. For learning general representations from video in an unsupervised manner,

minimizing the variation across time is seen both in biological, e.g. (Földiák, 1991, Wiskott and

76

6.3. Approach

Sejnowski, 2002), and artificial, e.g., (Goroshin et al., 2015) systems. The motivation for such an

approach comes about how the brain solves object recognition by building a stable, slowly varying

feature space with respect to time (Wiskott and Sejnowski, 2002) in order to model temporally

contiguous objects for recognition. The straightforward extension of (6.3) to the three dimensional

spatiotemporal domain is given by

RTV 3D(x, κ) = κ
∑
ijkd

(
(x(i+ 1, j, k, d)− x(i, j, k, d)))

2
+ (x(i, j + 1, k, d)− x(i, j, k, d)))

2
(6.4)

+ (x(i, j, k + 1, d)− x(i, j, k + 1, d)))
2
)
,

where again i, j, k are used to index the input dimensions and d indexes the color and optical flow

channels and κ is used for weighting the degree of spatiotemporal variation for reconstructing the

input.

As so far developed, the high frequency regularizer, (6.4), is isotropic in the spatiotemporal

domain, but this might not be desired. For example, what if we would want to visualize fast

varying features in time that are smooth in space. For such a anisotropic case, (6.4) would bias

the visualization to be smooth both in space and time, but not allow us to balance between the

two dimensions. Therefore, we split up the regularization term (6.4) into separate regularizers that

penalizes fast variation across space and time, explicitly

RTV 2D1D(x, χ) =
∑
ijkd

(
(x(i+ 1, j, k, d)− x(i, j, k, d)))

2
+ (x(i, j + 1, k, d)− x(i, j, k, d)))

2
)
(6.5)

+ χ
∑
ijkd

(
(x(i, j, k + 1, d)− x(i, j, k + 1, d)))

2
)
,

where χ is the slowness parameter that accounts for the regularization strength on the temporal

gradients. By varying 0 < χ < ∞ we can selectively regularize with respect to the slowness of

the features at the input. Moreover, by choosing χ = 0 we can leave the temporal dimension un-

penalized and produce reconstructions with unconstrained temporal gradients that only considers

two-dimensional spatial variation as in (6.3) (which is also a special case of (6.4), occurring when

the temporal regularization term is omitted). In the next section, such a temporally unconstrained

TV regularizer is used for visualizing fast varying motion signals.

Overall, the regularization of the objective, (6.1), comes from

Rr(x) = RB(x) +RTV (x), (6.6)

where

RTV (x) =

RTV 2D(x), for appearance x

RTVm(x), for motion x.
(6.7)

with m ∈ {2D, 3D, 2D1D}. Thus, Rr(x) serves to bias the visualizations to the space of natural

images in terms of their magnitudes and spatiotemporal rates of change. Note that the three

different variational regularizers for the motion input should allow us to reconstruct signals that

are varying slowly in space (TV2D), uniformly in spacetime (TV3D) and non-uniformly in space-

77

Chapter 6. Understanding Deep Video Representations

time (TV2D1D).

For optimizing the overall objective (6.1), we directly adopt a variation of the AdaGrad al-

gorithm (Duchi et al., 2011) from (Mahendran and Vedaldi, 2016) which adaptively scales the

gradient updates on the input (as in AdaGrad), while aggregating the gradients in a sliding win-

dow over previous iterations (as in AdaDelta (Zeiler, 2012). In all the experiments shown in this

chapter, we chose the regularization/loss trade-off factors λr to provide similar weights for the

different terms (6.2) - (6.5); details are given in the next section.

6.4 Experiments

As noted above, we apply the regularizers separately to the optical flow and appearance input.

The regularization terms for the appearance input are chosen to λB,rgb = 1
HWBα and λTV 2D,rgb =

1
HWV 2 , with V = B/6.5, B = 160 and α = 3, i.e. the default parameters in (Mahendran and

Vedaldi, 2016). The motion input’s regularization differs from the appearance one as follows. In

order to visualize fast and slow motion inputs, we use different weights for the variational regular-

izer of the optical flow input as follows: First, for visualizing different speeds of motion signals, we

use different weight terms for the variational regularizers of the motion input. In particular, to re-

construct different uniformly regularized spatiotemporal inputs (eq. (6.4)) we vary κ for penalizing

the degree of spatiotemporal variation for reconstructing the motion input. Note that since optical

flow is assumed to be smoother than appearance input, the total-variation regularization term of

motion inputs has higher weight than the one for the appearance input. Therefore, also for using

the anisotropic spatiotemporal regularizer, we set the weight to λTV 2D1D,flow = 10λTV 2D,rgb, and

vary the temporal slowness parameter, χ. As for the isotropic spatiotemporal case aboce, we will

chose discrete samples for χ corresponding to various variation degrees at the input (a continuum

could be used). The special case corresponding to unconstrained temporal variation, χ = 0 is im-

plemented as a purely spatial regularizer (eq. (6.3)); i.e. λTV 2D,flow = 10λTV 2D,rgb. Note that the

values in all visualizations are scaled to min-max over the whole sequence for effectively visualizing

the full range of motion.

For the visualizations shown in the remainder of this chapter, we visualize units at multiple

layers of the VGG-16 two-stream fusion model from Chapter 3 that is trained on UCF101.

6.4.1 Visualization of early layers

We first visualize filters of the early convolutional layers from the appearance and motion streams

of the VGG-16 architecture. While we can simply visualize the appearance input as an rgb image

showing the color channels, the question of what is the best way to visualize the optical flow stream

arises. We do not use a variational regularizer in the temporal domain (i.e. the next visualizations

correspond to the unconstrained temporal case, χ = 0 above). In Fig. 6.3 we subsample five

convolutional layers from VGG-16 (conv1 2 to conv5 3) and show different optical flow visualization

encodings. We compare three alternatives for visualizing the optical flow stream: A magnitude

78

6.4. Experiments

plot that plays the optical flow inputs with the rgb channels representing horizontal, vertical and

magnitudes of the flow; the classic optical flow encoding used in several optical flow benchmarks

that encodes flow in the HSV color space, as explained in Fig. 6.2; and the horizontal and vertical

optical flow vectors plotted as grayscale videos. Visualizations for all convolutional layers of the

VGG-16 appearance and motion streams are shown in Appendix B.1.

In Fig. 6.3 we observe that, despite similar ImageNet initialization, the two network streams

learn to represent different properties of the spatiotemporal signals. Nevertheless, if one looks

closely, the spatial structures of the filters for appearance and motion show some similarities, de-

spite being trained separately from different input modalities. In other words, there is no connection

between appearance and motion filters during training, but still the filters share similarities in their

spatial structures. This might also indicate why the sum fusion architecture (in Chapters 3 & 4)

and multiplicative fusion (in Chapter 5) architectures, that are initialized from the visualized rep-

resentation, provide strong performance. Finally, we also observe that temporal variation increases

when going deeper in the network hierarchy. For example, in Fig. 6.3, the bottom-right filters at

conv1 2 and conv2 2 show no temporal variation whereas we see increased temporal variation at

the deeper network layers (e.g. at conv3 3).

Figure 6.2: Flow field coding for the figures presented in this thesis. The displacement of a point
corresponds to the vector from the centre of the figure, marked with a cross.

79

Chapter 6. Understanding Deep Video Representations

appearance

c
o
n
v
1

2
f1

-6
4

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
2

2
f1

-1
2
8

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
3

3
f1

-8
1

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
4

3
f1

-3
6

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
5

3
f1

-1
6

flow mag flow hsv flow flow x flow flow y

Figure 6.3: Different visualizations of the motion input for five convolutional layers of VGG-
16 from conv1 2 to conv5 3. Similar spatial patterns are seen in both input modalities; further,
temporal variation increases with network depth.

80

6.4. Experiments

6.4.2 Visualization of fusion layers

Next, we move to the last convolutional layer of the VGG-16 fusion architecture, specifically to

the conv5-fusion layer that fuses the appearance and flow features. We pick out a single interesting

neuron (namely, filter #021) and visualize it for two spatiotemporal variation cases at the input,

i.e. RTVm(x) = RTV 3D(x) regularization for slow spatiotemporal variation and RTVm(x) =

RTV 2D(x) regularization for fast temporal variation (the temporal dimension is unconstrained).

Fig. 6.4 shows unit f021 that we think is related to the Billiards class in UCF101. We observe that

this neuron is fundamentally different in the slow and the fast motion case: It looks for linearly

moving circular objects in the slow spatiotemporal variation case, while it looks for an exploding,

accelerating motion pattern into various directions in the temporally unconstrained (fast) motion

case. Thus, it appears that this neuron is able to detect particular spatial patterns of motion,

(a) appearance (slow) (b) mag (slow) (c) hsv (slow) (d) flow x (slow) (e) flow y (slow)

(f) appearance (fast) (g) mag (fast) (h) hsv (fast) (i) flow x (fast) (j) flow y (fast)

(k) sample test clip (l) mag clip (m) hsv clip (n) flow x (o) flow y

Figure 6.4: Studying a single neuron (#21) at layer conv5 fusion of a two-stream VGG-16 ar-
chitecture from Chapter 3. In the first row we show what highly activates the filter in the rgb
input (a) space and in the optical flow input with different forms of presentation (b) rgb image
as horizontal, vertical and magnitude; (c) the directional encoding in hsv space; horizontal (d)
vertical flow (e) as grayscale brightness plots. The second row shows what excites the filter when
there is no restriction on the temporal variation of the input. In the last row we see a sample clip
from the test set of UCF101 and the corresponding optical flow.

while allowing for a range of speeds and accelerations. Such an abstraction presumably has value

in recognizing an action class with a degree of invariance to exact manner in which it unfolds across

81

Chapter 6. Understanding Deep Video Representations

time. Another interesting fact is that switching the regularizer for the motion input also has an

impact on the appearance input, even though the regularization for appearance is held constant

to RTV 2D(x). This fact empirically verifies that the fusion unit also expects specific appearance

input when confronted with differently varying motion signals in time.

82

6.4. Experiments

6.4.3 Visualization under varying spatiotemporal regularization

In the previous section we have seen that some filters might correspond to vastly different ac-

celeration patterns. We now explore this dimension further. For this purpose, we again fall back

to a single visualization style of optical flow, the magnitude plots, which show rgb images and

the channels corresponding to the horizontal, vertical and magnitudes of the optical flow vectors

(i.e. the first flow visualization variant, mag, in the above figures) as we think that this style is

perceptually easier to interpret than the other variants. Consequently, in Fig. 6.5 we show the ap-

pearance input as an rgb image, while the motion input is shown as a video that plays the optical

flow inputs with the rgb channels representing horizontal, vertical and magnitudes of the flow. The

motion signals are reconstructed under spatiotemporal, RTV 3D(x, κ), regularization with different

regularization strengths, κ, in the isotropic TV norm (6.4). Varying the regularization in space-

time reveals interesting properties of the underlying representation. We discuss Fig. 6.5 from two

perspectives: First from the temporal perspective, we see that the first layer filters are more robust

to regularization in spacetime, whereas higher layers show larger dependency on the regularization

strength, κ. We think that this originates from the temporally consistent nature of the first layer

filters (e.g. at conv2 2), which exhibit temporal low-pass characteristics. Second, from the spatial

perspective, we see that with decreasing the spacetime regularization strength, κ, high-frequency

inputs become dominant. Especially for low regularization factors κ ≤ 2.5, we see high-frequency

patterns dominating and reconstruction artifacts appearing in the background. These artifacts can

be explained by the linear nature in higher dimensional spaces and also are known as adversarial

examples (Goodfellow et al., 2015) when used for fooling a classifier.

Next, we switch the regularization term to RTV 2D1D(x, χ), (6.5), that anisotropically induces

smoothness in space and time. Specifically, the term regularizes at a constant rate across space and

varies according to the temporal regularization strength χ over time. In Fig. 6.6 we again show the

appearance input as an rgb image and the motion input in the same color encoding as above. Our

anisotropic regularizer reveals the robustness to temporal variation of the filters at all convolutional

layers of the base VGG-16 two-stream architecture. We see that the spatial patterns are preserved

throughout various temporal regularization factors χ, at all layers. From the temporal perspective,

we see that, as expected, for decreasing χ the temporal variation increases; interestingly however,

the direction of the motion patterns are preserved while the spatial scale of the motion increases

with increasing χ. For example, consider the last shown unit f36 of layer conv4 3 (bottom right

filter in the penultimate row of Fig. 6.6). This filter looks for accelerating motion blobs in an

upward facing direction direction, e.g., a persons’ head that moves upwards in an accelerating

manner when he/she is standing up. In the temporally regularized case, χ > 0, this acceleration is

smaller compared to the fast acceleration pattern seen in the temporally unconstrained case, χ = 0.

Notably, all these motion patterns strongly excite the same unit. Based on these observations, we

postulate that the underlying representation in the motion network builds invariances to the spatial

displacement (i.e. changes in magnitude of the motion vector) while preserving the coarse direction

of the motion.

83

Chapter 6. Understanding Deep Video Representations

appearance

c
o
n
v
1

2
f1

-6
4

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

appearance

c
o
n
v
2

2
f1

-1
2
8

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

appearance

c
o
n
v
3

3
f1

-8
1

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

appearance

c
o
n
v
4

3
f1

-3
6

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

appearance

c
o
n
v
5

3
f1

-1
6

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

Figure 6.5: Visualization of two-stream conv filters under diverse RTV 3D(x, κ) spacetime TV
regularization. We show appearance and the optical flow inputs for slowest κ = 10, slow κ = 5,
fast κ = 2.5, and faster κ = 1, spatiotemporal variation. Best viewed electronically, with zoom.

84

6.4. Experiments

appearance

c
o
n
v
1

2
f1

-6
4

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

appearance

c
o
n
v
2

2
f1

-1
2
8

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

appearance

c
o
n
v
3

3
f1

-8
1

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

appearance

c
o
n
v
4

3
f1

-3
6

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

appearance

c
o
n
v
5

3
f1

-1
6

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

Figure 6.6: Visualization of two-stream conv filters under diverse RTV 2D1D(x, χ) temporal TV
regularization. We show appearance and the optical flow inputs for slowest χ = 10, slow χ = 5, fast
χ = 1, and unconstrained (fastest) χ = 0, spatiotemporal variation regularization. Spatial 2DTV
regularization is held constant. Best viewed electronically, with zoom.

85

Chapter 6. Understanding Deep Video Representations

Now, we move on to the convolutional fusion layer (see Chapter 3), that takes in the features

from the appearance and motion stream and learns a local fusion representation for the subsequent

higher level layers with global receptive fields. Therefore, this layer is of particular interest as it

is the first point in the network forward pass where appearance and motion information come

together. Below in Fig. 6.7, we show the filters at the conv5 fusion a layer, which fuses from the

motion into the appearance stream, for multiple spatiotemporal 3D TV regularization strengths.

This is again achieved by varying the parameter κ in the isotropic TV norm (6.4). The visualizations

reveal that these first 6 fusion filters at this last convolutional layer show reasonable combinations of

appearance and motion information, a qualitative proof that our proposed fusion model in Chapter

3 performs as expected. For example the center of the receptive field of conv5 fusion a f002 could

activate for some music instrument (e.g. a flute) with the motion corresponding to movement of

the instrument; the upper and central surrounding region of the receptive field seems to react on

skin-colored mouth-shaped inputs that are relatively static in the motion input. We also observe

that the units are tuned to various degrees of spatiotemporal input variation (all the different

inputs highly activate the same given unit).

Next, in Fig. 6.8 we show visualizations for varying the temporal regularization only, while

keeping the spatial regularization constant. This is again achieved by varying the parameter χ

in the anisotropic TV norm (6.5). Here, we see further evidence that the spatial pattern of the

motion remains relatively consistent across varying values of the temporal regularization parameter,

χ. Overall, it is best to view the two regularization forms in a two-page, side by side, view to see

the full variability of each local filters (in its 8 different visualizations shown).

86

6.4. Experiments

appearance κ = 10

c
o
n
v
5

fu
s
io

n
a

f0
0
1

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

c
o
n
v
5

fu
s
io

n
a

f0
0
2

c
o
n
v
5

fu
s
io

n
a

f0
0
3

c
o
n
v
5

fu
s
io

n
a

f0
0
4

c
o
n
v
5

fu
s
io

n
a

f0
0
5

c
o
n
v
5

fu
s
io

n
a

f0
0
6

Figure 6.7: Visualization of 6 filters of the conv5 fusion (appearance stream) layer under different
3D spacetime TV regularization. We show appearance and the optical flow inputs for slowest
κ = 10, slow κ = 5, fast κ = 2.5, and faster κ = 1, spatiotemporal variation.

87

Chapter 6. Understanding Deep Video Representations

appearance χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
0
1

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
0
2

c
o
n
v
5

fu
s
io

n
a

f0
0
3

c
o
n
v
5

fu
s
io

n
a

f0
0
4

c
o
n
v
5

fu
s
io

n
a

f0
0
5

c
o
n
v
5

fu
s
io

n
a

f0
0
6

Figure 6.8: Visualization of 6 filters of the conv5 fusion (appearance stream) layer under different
temporal TV regularization. We show the appearance input and the optical flow inputs for slowest
χ = 10, slow χ = 5, fast χ = 1, and unconstrained χ = 0, temporal variation regularization.

88

6.4. Experiments

We now pick a single neuron from the above Figures 6.7 & 6.8 and discuss the differences of

TV regularization in spacetime. We focus on unit f004 at conv fusion5, as it seems to capture some

drum-like structure in the center of the receptive field, with skin-colored structures in the upper

region. This unit could correspond to the PlayingTabla class in UCF101. In Fig. 6.9 we show the

unit under the different spacetime regularizers for the motion stream (i.e. the fourth row in Figures

6.7 & 6.8) and also show sample frames from three PlayingTabla videos from the test set. First,

we point an interesting observation about the interactions between appearance and motion input.

In particular, we see that changing the motion regularization also has an effect on the appearance

reconstruction per-se. Our primary hypothesis is that the neuron expects specific appearance for

specific speeds. More concretely, when comparing the appearance inputs for unconstrained temporal

variation in the motion input, i.e. RTV 2D1D(x, χ), with χ = 0, to the appearance reconstruction

under spatiotemporal, RTV 3D(x, κ), motion regularization κ = 10, we see that the appearance

inputs differs slightly. This means that when maximizing for a different spatiotemporal scale at

the motion input, the appearance input that maximally activates the unit is changing. This is

reasonable as a fast moving object (that might be captured at conv5) would have slightly different

appearance than a slowly moving object (one could even interpret that the model hallucinates

motion blur in the temporally unconstrained case χ = 0, compared to the spatially crisper looking

appearance examples for spacetime TV regularization on the motion input with κ = 10). An

alternative explanation for the subtle appearance difference could be that the optimization process

invests more signal energy into the motion input for the temporally unconstrained case, χ = 0,

and therefore the appearance reconstruction is less saturated.

When looking at the motion input for maximizing this unit, we observe it activates for the

drumming motion at different spatiotemporal scales. At strong spatiotemporal input regulariza-

tion (χ, κ = 10), the unit looks for linear motion of the person’s head (e.g. at κ = 10 the red blob

in the flow field activates for horizontally moving circular structures) and body posture, whereas

for increased temporal variation (χ, κ < 10), we observe that the neuron seeks for drumming like

motion of the hands. In terms of regularization comparison, we see that the isotropic spacetime TV

norm, (6.4) RTV 3D(x, κ) leads to spatially dissimilar optical flow patterns for varying the regular-

ization strength, κ. On the other hand, the anisotropic spacetime TV norm, (6.5) RTV 2D1D(x, χ),

produces more coherent spatial optical flow patterns. This is reasonable, since under isotropic

spacetime regularization the network is optimizing in a constrained space in 3D, whereas for the

anisotropic case, variation of x is separately restricted in space (2D) and time (1D); a lower di-

mensional subspace that limits the number of possible input functions.

89

Chapter 6. Understanding Deep Video Representations

appearance κ = 10

c
o
n
v
5

fu
s
io

n
a

f0
0
4

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

appearance χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
0
4

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

PlayingTabla 1 rgb PlayingTabla 1 flow PlayingTabla 2 rgb PlayingTabla 2 flow PlayingTabla 3 rgb PlayingTabla 3 flow

Figure 6.9: Specific unit at conv5 fusion into the appearance stream. Comparison between
isotropic and anisotropic spatiotemporal regularization for a single filter at the last convolutional
layer. The columns show the appearance and the motion input generated by maximizing the unit,
under different degrees of isotropic spatiotemporal (κ) and anisotropic spatiotemporal TV regular-
ization (χ). The last row shows appearance and optical flow of 40 sample frames from three videos
of the PlayingTabla class in the test set.

90

6.4. Experiments

Compared to the specific example of above, we now show two units from the conv5 fusion a

layer, that fuses from the motion into the appearance stream, to discuss generality of these units for

representation across classes. Namely, the filters f006 and f009 shown in Fig. 6.10 seem to capture

general spatiotemporal patterns for recognizing classes such as YoYo and Nunchucks, as seen when

comparing the units visualization to the sample videos from the test set. Next, in Fig. 6.10, we sim-

ilarly show general feature examples for the conv5 fusion m layer, that fuses from the appearance

into the motion stream. Namely, the filters shown in Fig. 6.11 seem to capture general spatiotem-

poral patterns for recognizing classes corresponding to multiple ball sport actions such as Soccer or

TableTennis. These visualizations reveal that at the last convolutional layer, the network builds a

representation that is on the one hand distributed over multiple classes, but on the other hand can

also be quite specifically tuned to a particular class (the specific case in Fig. 6.9 above). Overall,

we observe a consequent increase of class-specificity when moving from the features at close to

the network input to higher layers, in the same manner as we observe invariances to classification-

irrelevant factors building up in the network hierarchy. Additional visualizations showing multiple

specific and general filters at the local conv5 fusion a and conv5 fusion m layers, can be found in

Appendix B.2, where more of the multi-modal nature of these units is shown. Of particular note is

the diversity of the features even for the same unit; for example filter conv5 fusion m f020, shown

in Fig. B.17 acts as a cake candle detector under irratic camera motion.

appearance χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
0
7

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
0
9

YoYo 1 rgb YoYo 1 flow Nunchucks 1 rgb Nunchucks 1 flow Nunchucks 2 rgb Nunchucks 2 flow

Figure 6.10: Two general units at the convolutional fusion layer. The columns show the appear-
ance and the motion input generated by maximizing the unit, under different degrees of anisotropic
spatiotemporal regularization (χ). The last row shows appearance and optical flow of 40 sample
frames from three videos of the YoYo and Nunchucks classes in the test set.

91

Chapter 6. Understanding Deep Video Representations

appearance χ = 0

c
o
n
v
5

fu
s
io

n
m

f0
2
6

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

c
o
n
v
5

fu
s
io

n
m

f0
3
0

c
o
n
v
5

fu
s
io

n
m

f0
5
6

c
o
n
v
5

fu
s
io

n
m

f0
8
5

JugglingBalls rgb JugglingBalls flow SoccerJuggling rgb SoccerJuggling flow

TableTennisShot rgb TableTennisShot flow VolleyballSpiking rgb VolleyballSpiking flow

Figure 6.11: Four general units at the convolutional fusion layer that could be useful for represent-
ing ball sports. The columns show the appearance and the motion input generated by maximizing
the unit, under different degrees of temporal regularization (χ). The last row shows appearance
and optical flow of 40 sample frames from the test set.

92

6.4. Experiments

6.4.4 Visualization of global layers

We now visualize the layers that have non-local filters, e.g. fully-connected layers that operate on

top of the convolutional fusion layer illustrated above. Fig. 6.12 shows the first five filters of the

fully-connected 6 (fc 6) layer in the motion stream of the VGG-16 fusion architecture. In contrast

to the local features above, we observe a holistic representation that consists of a mixture of the

local units seen in the previous layer.

appearance χ = 0

fc
6

m
f0

0
1

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

fc
6

m
f0

0
2

fc
6

m
f0

0
3

fc
6

m
f0

0
4

fc
6

m
f0

0
5

Figure 6.12: Visualization of 5 filters of the fc 6 (motion stream) layer under different temporal
TV regularization. We show the appearance input and the optical flow inputs for slowest χ = 10,
slow χ = 5, fast χ = 1, and unconstrained (fastest) χ = 0, temporal variation regularization.

93

Chapter 6. Understanding Deep Video Representations

A similar visualization showing the subsequent fully-connected 7 (fc 7) layer is shown in Fig. 6.13

where we already observe class-like patterns that serve as a linear subspace for the final prediction

layer. Additional visualizations of these global layers can be found in Appendix B.3.

appearance χ = 0

fc
6

m
f0

0
1

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

fc
6

m
f0

0
2

fc
6

m
f0

0
3

fc
6

m
f0

0
4

fc
6

m
f0

0
5

Figure 6.13: Visualization of 5 filters of the fc 7 (motion stream) layer under different temporal
TV regularization. We show the appearance input and the optical flow inputs for slowest χ = 10,
slow χ = 5, fast χ = 1, and unconstrained (fastest) χ = 0, temporal variation regularization.

94

6.4. Experiments

Finally, we visualize the ultimate class prediction layers of the architecture, where the neuron

outputs corresponds to different classes (thus, we know what they should be matched to). In

Fig. 6.14, we show the fast motion activation of the first four classes in UCF101, ApplyEyeMakeup,

ApplyLipstick, Archery and BabyCrawling (see Appendix B.4 for additional examples). The learned

features for archery (e.g., the elongated bow shape and positioning of the bow, but also shooting

the arrow in the fast variation case) are markedly distinct from those of the make-up examples

(e.g., capturing facial features, such as eyes, and the motion of applicator). Interestingly, it seems

that ApplyEyemakeup and ApplyLipstick are being distinguished, at least in part, by the fact that

eyes tend to move in the latter case, while they are held static in the former case. Here, we see

a benefit of visualizations beyond revealing what the network has learned – they also can reveal

idiosyncrasies of the data on which the network has been trained. The final baby crawling example

is also markedly distinct from any of the other examples (e.g., capturing the facial parts of the

babies’ appearance while focusing on the arm and head movement in the motion representation).

Thus, we find that the class prediction units have learned representations that are well matched

to their classes.

appearance χ = 10 χ = 5 χ = 1 χ = 0 ApplyEyemakeup

appearance χ = 10 χ = 5 χ = 1 χ = 0 ApplyLipstick

appearance χ = 10 χ = 5 χ = 1 χ = 0 Archery

appearance χ = 10 χ = 5 χ = 1 χ = 0 BabyCrawling

Figure 6.14: Classification units at the last layer of the network. The first column shows the ap-
pearance and the second to fifth columns the motion input generated by maximizing the prediction
layer output for the respective classes, with different degrees of temporal variation regularization
(χ). The last column shows 40 sample frames from the first video of that class in the test set.

95

Chapter 6. Understanding Deep Video Representations

6.5 Summary

An irritating property of deep networks is that due to their compositional structure it is diffi-

cult to explicitly reason about what these models actually have learned. As the success of deep

architectures for processing visual signals has led to their deployment in all areas of perceptual

sensing, it is of utmost importance to understand how these representations work and what they

are capturing. In this chapter, we have shed light on deep spatiotemporal representations by visu-

alizing what our models have learned for recognizing actions in video. We have shown that local

detectors for appearance and motion objects arise to form distributed representations for recogniz-

ing human actions. Key observations include the following. First, learned patterns show correlated

spatial structure across the appearance and motion streams even prior to cross stream connections.

This fact might be an artifact of pretraining of both streams on ImageNet. Second, throughout

the hierarchy of the network, features become more abstract (e.g., as illustrated in visualizations

ascending through layers in Figs. 6.6-6.14) and show increasing invariance to aspects of the data

that are unimportant to desired distinctions (e.g., neurons matched to billiard ball shape and mo-

tion patterns across various speeds and accelerations). Third, the network has the ability to learn

representations that are highly class specific (e.g., shape and motion of bow for archery), but it also

can learn more generic representations that can subserve a range of actions (e.g. various sports).

Fourth, visualizations can be used not only to shed light on learned representations, but also to

reveal idiosyncracies of training data (e.g., distinguishing application of lipstick vs. eye make-up

based on eye motion). Finally, the results provide clear qualitative evidence for separation into two

streams for learning highly abstract appearance and motion representations – a principle that has

also been found in nature where numerous studies suggest a corresponding separation into ventral

and dorsal pathways of the mammalian brain.

96

conv1

Wl,t (res2a)

+

conv1

Wl,t (res2a)

+

conv1

Wl,t (res2a)

+

…

Wl,t (res2c)

+

Wl,t (res2c)

+

Wl,t (res2c)

+

Wl,t (res3a)

+

Wl,t (res3a)

+

Wl,t (res3a)

+

Wl,t (res3c)

+

Wl,t (res3c)

+

Wl,t (res3c)

+

** *

** *

** *

** *

conv1

Wl,t (res2a)

+

conv1

Wl,t (res2a)

+

conv1

Wl,t (res2a)

+

Wl,t (res2c)

+

Wl,t (res2c)

+

Wl,t (res2c)

+

Wl,t (res3a)

+

Wl,t (res3a)

+

Wl,t (res3a)

+

Wl,t (res3c)

+

Wl,t (res3c)

+

Wl,t (res3c)

+

Time t

** *

** *

** *

** *

conv1

Wl,t (res2a)

+

conv1

Wl,t (res2a)

+

conv1

Wl,t (res2a)

+

Wl,t (res2c)

+

Wl,t (res2c)

+

Wl,t (res2c)

+

Wl,t (res3a)

+

Wl,t (res3a)

+

Wl,t (res3a)

+

Wl,t (res3c)

+

Wl,t (res3c)

+

Wl,t (res3c)

+

** * *

** * *

** * *

** * *

…

… …

Temporal receptive field of a single neuron at the third conv block of our spatiotemporal ConvNet
architecture. In this chapter, we present T-ResNet, an architecture that is fully convolutional
in spacetime and performs temporal filtering at residual units to hierarchically inject temporal
information as depth increases.

7
Deep Learning for Dynamic Scene Recognition

97

Chapter 7. Deep Learning for Dynamic Scene Recognition

7.1 Motivation

Image-based scene recognition is a basic area of study in visual information processing. Humans

are capable of recognizing scenes with great accuracy and speed (Potter, 2012). Reliable automated

approaches can serve to provide priors for subsequent operations involving object and action recog-

nition, e.g., (Marszalek et al., 2009, Torralba et al., 2010). Moreover, scene recognition could serve

in browsing image databases, e.g. (Vailaya et al., 2001). While early computational research in

scene recognition was concerned with operating on the basis of single images, e.g., (Fei-Fei and

Perona, 2005, Lazebnik et al., 2006, Oliva and Torralba, 2001), more recently dynamic scene recog-

nition from video has emerged as a natural progression, e.g., (Derpanis et al., 2012, Feichtenhofer

et al., 2014, Shroff et al., 2010).

Beyond dynamic scene recognition, considerable research has addressed allied tasks in video-

based recognition. Arguably, the most heavily researched has been action recognition (Marszalek

et al., 2009, Ng et al., 2015b, Simonyan and Zisserman, 2014a); although, a variety of additional

video-based recognition tasks also have been considered, e.g. (Over et al., 2013, Park et al., 2013,

Poleg et al., 2015). In response to the challenges these tasks pose, a wide variety of approaches

have been developed. Here, it is worth noting that recent extensions of Convolutional Networks

(ConvNets) to video have shown particularly strong results, e.g. (Ng et al., 2015a, Tran et al., 2015a,

Xu et al., 2015). While many of these approaches have potential to be generalized and applied to

dynamic scene recognition, that avenue has been under researched to date. The current chapter

addresses this situation by applying a representative sampling of state-of-the-art video recognition

techniques to dynamic scenes, including a novel ConvNet. This work extends our understanding

of not only the individual techniques under evaluation, but also the nature of dynamic scenes as

captured in video.

7.2 Related work

Currently, there are two standard databases to support the study of scene recognition from videos

(Derpanis et al., 2012, Shroff et al., 2010). Both of these databases capture a range of scene classes

and natural variations within class (seasonal and diurnal changes as well as those of viewing

parameters). A significant difference between the two datasets is that one includes camera mo-

tion (Shroff et al., 2010), while the other does not (Derpanis et al., 2012). Unfortunately, neither

database provides balanced scene samples acquired with and without camera motion to support

systematic study of how scene dynamics can be disentangled from camera motion. Moreover, at

this time performance on both datasets is at saturation (Feichtenhofer et al., 2016b, Tran et al.,

2015a). Correspondingly, research in dynamic scene recognition is at risk of stagnation, unless new,

systematically constructed and challenging video databases relevant to this task are introduced.

Video-based dynamic scene classification has been approached based on linear dynamical sys-

tems (Doretto et al., 2003), chaotic invariants (Shroff et al., 2010), local measures of spatiotem-

98

7.3. Temporal residual networks

poral orientation (Derpanis et al., 2012, Feichtenhofer et al., 2013, 2014), slowly varying spatial

orientations (Theriault et al., 2013) and spatiotemporal ConvNets (Tran et al., 2015a), with spa-

tiotemporal orientation and ConvNets showing strongest recent performance (Feichtenhofer et al.,

2016b).

The most closely related work to T-ResNet is the spatiotemporal residual network, ST-ResNet

from Chapter 4, that is based on two-stream (Simonyan and Zisserman, 2014a) and residual net-

works (He et al., 2016a). The ST-ResNet architecture injects residual connections between the

appearance and motion pathways of a two-stream architecture and transforms spatial filter kernels

into spatiotemporal ones to operate on adjacent feature maps in time. Our work in this chapter,

instead extends the spatial residual units with a temporal kernel that is trained from scratch and

hence is able to learn complex temporal features as it is initialized to receive more informative tem-

poral gradients. Importantly, different from the previous chapter, our T-ResNet architecture does

not rely on optical flow input. In many cases the brightness constancy assumption used in optical

flow computation does not hold for dynamic texture patterns (e.g. water, fire), but recognizing

these is essential to discriminate scenes based on their defining dynamics.

In summary, this chapter makes the following contributions to advance dynamic scene classifi-

cation. First, a novel spatiotemporal ConvNet architecture, T-ResNet, is introduced that is based

on transformation of a spatial network to a spatiotemporal ConvNet. This transformation entails a

particular form of transfer learning from spatial image classification to spatiotemporal scene classi-

fication. Second, the superiority in scene recognition from video of the newly developed T-ResNet

is documented by comparing it to a representative sampling of alternative approaches. Results

show that our spatiotemporally trained ConvNet greatly outperforms the alternatives, including

approaches hand-crafted for dynamic scenes and other networks trained directly for large scale

video classification. Third, a new dynamic scenes dataset is introduced. This dataset more than

doubles the size of the previous collections in common use in dynamic scene recognition (Derpanis

et al., 2012, Shroff et al., 2010), while including additional challenging scenarios. Significantly, for

each scene class that is represented an equal number of samples is included with and without cam-

era motion to support systematic investigation of this variable in scene recognition. Our Code uses

our own modified spatiotemporal version of the MatConvNet toolbox (Vedaldi and Lenc, 2015)

and is available at

https://github.com/feichtenhofer/temporal-resnet and our novel dynamic scene recognition dataset

is available at http://vision.eecs.yorku.ca/research/dynamic-scenes/.

7.3 Temporal residual networks

Various paths have been followed to extend ConvNets from the 2D spatial domain, (x, y), to the

3D spatiotemporal domain, (x, y, t), including building on optical flow fields (Poleg et al., 2015, Si-

monyan and Zisserman, 2014a), learning local spatiotemporal filters (Karpathy et al., 2014, Taylor

et al., 2010, Tran et al., 2015a) and modeling as recurrent temporal sequences (Ballas et al., 2016,

Donahue et al., 2015, Srivastava et al., 2015). To date, however, these approaches have not triggered

99

https://github.com/feichtenhofer/temporal-resnet
http://vision.eecs.yorku.ca/research/dynamic-scenes/

Chapter 7. Deep Learning for Dynamic Scene Recognition

the dramatic performance boost over hand-crafted representations (e.g. IDT (Wang and Schmid,

2013)) that ConvNets brought to the spatial domain e.g. in image classification (Krizhevsky et al.,

2012b, Simonyan and Zisserman, 2014b). This relative lack of impact has persisted even when large

new datasets supported training of 3D spatiotemporal filters (Karpathy et al., 2014, Tran et al.,

2015a). This section documents a novel approach that proceeds by transforming a spatial Con-

vNet, ResNet (He et al., 2016a), to a spatiotemporal kindred, T-ResNet. In empirical evaluation

(Sec. 7.5) it will be shown that this approach yields a network with state-of-the-art performance.

7.3.1 Spatiotemporal residual unit

The main building blocks of the ResNet architecture are residual units (He et al., 2016a). Let

the input to a residual unit be a feature map, xl ∈ RH×W×T×C , where W and H are spatial

dimensions, C is the feature dimension and T is time. Such maps can be thought of as stacking

spatial maps of C dimensional features along the temporal dimension. At layer l with input xl, a

residual block is defined as (He et al., 2016a,b)

xl+1 = f (xl + F(xl;Wl)) , (7.1)

with f ≡ ReLU, Wl = {Wl,k|1≤k≤K} holding the K corresponding filters and biases in the unit,

and F denoting the residual function representing convolutional operations. Formally, each of the

K layers in the lth residual unit performs the following filtering operation

xl,k+1 = Wl,kxl,k, (7.2)

where Wl,k|1≤k≤K are the convolutional filter kernels arranged as a matrix and batch normalization

layers are omitted for simplicity. We use the original ResNet architecture (He et al., 2016a) where

K = 3, consisting of 1×1 dimensionality reduction, 3×3 spatial aggregation and 1×1 dimensionality

restoration filtering operations. These choices lead to the residual unit

F = f(Wl,3f(Wl,2f(Wl,1xl))), (7.3)

as illustrated in Fig. 7.1a.

Our proposed spatiotemporal residual unit F̂ injects temporal information into residual blocks

via 1D temporal filtering. Building on the inception idea (Szegedy et al., 2015a), our temporal

convolution block operates on the dimensionality reduced input, xl,1, with a bank of spatiotemporal

filters, Wl,t, and by applying biases, b ∈ RC , according to

xl,t = Wl,txl,1 + bl, (7.4)

xl,t = Wl,tf(Wl,1xl) + bl, (7.5)

where biases bl ∈ RC are initialized to zero and the weights, Wl,t, come as a 3-tap temporal filter

bank. These filters are initialized randomly for the same feature dimensionality as the spatial 3×3

filters, Wl,2, working in parallel on input xl,1. Wl,t is able to model the temporal structure of the

features from the previous layer. Moreover, by stacking several such kernels through the hierarchy

of the network we are able to grow the temporal receptive field.

100

7.3. Temporal residual networks

+

Wl-1,3 (1x1)

Wl,1 (1x1)

+

Wl,2 (3x3)

Wl,3 (1x1)

f (xl+1)

f (xl,2)

f (xl,3)

f (xl,1)

f (xl)

(a)

+

Wl-1,3 (1x1)

Wl,1 (1x1)

+

Wl,2 (3x3)

Wl,3 (1x1)

+

Wl,t (1x1x3)

sl

f (xl+1)

f (xl,2)

f (xl,3)

f (xl,1)

f (xl)

f (xl,t)

(b)

Figure 7.1: Comparison between the original residual units (a) and our proposed spatiotemporal
residual units (b), which augment the “bottleneck structure” with an additional temporal conv
block and an affine scaling layer slO.

Our proposed spatiotemporal residual unit F̂ is now defined as

F̂ = f

(
Wl,3

(
Slf(xl,t) + f(Wl,2f(xl,1))

))
, (7.6)

where Sl is a channel-wise affine scaling weight initialized with a scaling of .01 and zero biases. We

found adaptive scaling of the temporal residuals to facilitate generalization performance. The final

unit is illustrated in Fig. 7.1b.

Discussion. Our design builds on two good practices for designing image ConvNets: First, it

builds on the inception concept that dimensionality reduction should be performed before spatial-

ly/temporally aggregating filters since outputs of neighbouring filters are highly correlated and

therefore these activations can be reduced before aggregation (Szegedy et al., 2015b). Second, it

exploits spatial factorization into asymmetric filters, which reduces computational cost and also

has been found to ease the learning problem (Szegedy et al., 2016).

Scaling down residuals also has been found important for stabilizing training (Szegedy et al.,

2016), where residuals are scaled down by a constant factor before being added to the accumulated

layer activations. Activations also have been usefully rescaled before combining them over several

layers of the network (Bell et al., 2016). As an alternative to scaling has been used where the

network was first pre-conditioned by training with a very low learning rate, before the training

with higher learning rate proceeded (He et al., 2016a).

101

Chapter 7. Deep Learning for Dynamic Scene Recognition

7.3.2 Global pooling over spacetime

The “Network In Network” (Lin et al., 2013) architecture has shown that the fully connected

layers used in previous models (Krizhevsky et al., 2012b, Simonyan and Zisserman, 2014b) can be

replaced by global average pooling after the last convolutional layer and this replacement has been

adopted by recent ConvNet architectures (He et al., 2016a, Szegedy et al., 2015a). The general

idea behind global pooling of activations is that at the last conv-layer the units see all pixels at

the input due to the growth of the receptive field; e.g. for the ResNet-50 architecture that we use

in this work, the last convolutional layer theoretically has a receptive field that covers 483×483

pixels at the input, even though the input is only of size 224×224. Practically, however, the utilized

receptive field of a unit is postulated to be smaller (Zhou et al., 2014).

Correspondingly, a temporal network can be expected to capture similar spatial features across

time. Therefore, it is reasonable to develop a spatiotemporal network by global pooling over the

temporal support. We found in our experiments that globally max pooling over time, i.e.

x(i, j, c) = max
1≤k′≤T ′

x(i, j, k′, c), (7.7)

works better (≈ 2% accuracy gain) than global averaging of temporal activations. We conjecture

that this result is due to the derivative of the sum operation uniformly backpropagating gradients to

the temporal inputs. Thus, the network is not able to focus on the most discriminating instance in

time when employing temporal averaging. Even though max-pooling over time only backpropagates

a single temporal gradient map to the input, it can guide the learning of long-term temporal features

because the filter’s temporal receptive field on the gradient maps grows from the output to the input.

Discussion. We conducted several experiments using max-pooling earlier in the network and it

consistently led to reduced performance with accuracy decreasing more, the earlier pooling starts

(≈1−6%). We also experimented with a more natural decrease of frames by valid convolutions in

time. Typically, ConvNet architectures zero-pad the inputs before each spatial (e.g. 3×3) convo-

lution such that the output size is unchanged. A cleaner strategy is to use valid convolutions (i.e.

not filtering over the border pixels) together with lager sized inputs e.g. used in the early layers of

inception-v4 (Szegedy et al., 2016). We investigated if there is any gain in performance for having a

temporal architecture with valid filtering operations across time. For this experiment, we increase

the number of frames at the input and use temporal residual blocks that do not pad the input in

time. Since the network now hierarchically downsamples the input by two frames at each temporal

residual block, the final max-pooling layer now receives less frames (when keeping GPU-memory

constant compared to a padded design). In our experiments this architectural change leads to an

error increase of 2.4%, in comparison to the padded architecture equivalent. In conclusion, pooling

as late as possible, together with padded convolutions across time, enables best accuracy for our

T-ResNet in dynamic scene classification.

102

7.4. Dynamic scenes dataset

7.3.3 Implementation details

We build on the ResNet-50 model pretrained on ImageNet (He et al., 2016a) and replace the

last (prediction) layer. Next we transform every first and third residual unit at each conv stage

(conv2 x to conv5 x) that hold residual units to our proposed temporal residual units. For our

temporal residual blocks, we switch the order of batch normalization (Ioffe and Szegedy, 2015)

and ReLU from post-activation to pre-activation (He et al., 2016b). The temporal filters are of

dimension W ′ ×H ′ × T ′ ×C ×C = 1× 1× 3×C ×C and initialized randomly. We use 16 frame

inputs and temporal max-pooling is performed immediately after the spatial global average pooling

layer.

The training procedure follows standard ConvNet training (He et al., 2016a, Krizhevsky et al.,

2012b, Simonyan and Zisserman, 2014b), with some subtle differences. We set the learning rate

to 10−2 and decrease it by an order of magnitude after the validation error saturates. We use

batch normalization (Ioffe and Szegedy, 2015) and no dropout. To accelerate training, we train

the network in a two-stage process with a batchsize of 256: First, we train the network in a purely

spatial manner where we randomly sample a single frame from different videos (ResNet); second,

we transform the residual units to spacetime and re-start the training process by sampling 16-frame

stacks from 256/32 videos per batch (T-ResNet).

For data augmentation we obtain multiple frame-stacks by randomly selecting the position

of the first frame and apply the same random crop to all samples. Instead of cropping a fixed

sized 224 × 224 input patch, we perform multi-scale and aspect-ratio augmentation by randomly

jittering its width and height by ±25% and resizing it to obtain a fixed sized 224 × 224 network

input. We randomly crop translated patches at a maximum of 25% distance from the image borders

(relative to the width and height). Compared to training spatial ConvNets, training spatiotemporal

ConvNets is even more prone to overfitting. In response, we use temporal frame jittering: In each

training iteration we sample the 16 frames from each of the training videos in a batch by randomly

sampling the starting frame, and then randomly sampling the temporal stride ∈ [5, 15]. We do not

apply RGB colour jittering (Krizhevsky et al., 2012b).

During testing, we take a sample of 16 equally spaced frames from a video and propagate these

through the net to yield a single prediction for each video. Instead of cropping the image corners,

centre and their horizontal flips, we apply a faster fully convolutional testing strategy (Simonyan

and Zisserman, 2014b) on the original image and their horizontal flips and average the predictions

from all locations. Thus inference can be performed in a single forward pass for the whole video.

7.4 Dynamic scenes dataset

As discussed in the beginning of this chapter, the previously best performing algorithms on dynamic

scene recognition have saturated performance on extant datasets (Feichtenhofer et al., 2016b, Tran

et al., 2015a). In response, this section introduces a new dynamic scenes dataset to support the

current and future studies in this domain.

103

Chapter 7. Deep Learning for Dynamic Scene Recognition

Beach BuildingCollapse Elevator Escalator FallingTrees

Fireworks ForestFire Fountain Highway LightningStorm

Marathon Ocean Railway RushingRiver SkyClouds

Snowing Street Waterfall WavingFlags WindmillFarm

Figure 7.2: Thumbnail examples of the YUP++ dataset.

104

7.4. Dynamic scenes dataset

Figure 7.3: Variations within the new classes in the YUP++. Top-to-bottom: Building Collapse,
Escalator, Falling Trees, Fireworks, Marathon and Waving Flags.

7.4.1 Specifications

The new dynamic scenes dataset samples 20 scene classes, while encompassing a wide range of

conditions, including those arising from natural within scene category differences, seasonal and

diurnal variations as well as viewing parameters. Thumbnail examples of each class are shown in

Figs. 7.2 and 7.3. Details of the dataset are provided in the remainder of this section.

The new dataset builds on the earlier YUPenn dataset (Derpanis et al., 2012). This dataset

is taken as a point of departure rather than the Maryland dataset (Shroff et al., 2010) as it

includes one additional scene class and three times as many videos for each class represented. To

the original dataset, six additional classes have been added for a total of twenty. The final set of

classes represented in the dataset are as follows: beach, city street, elevator, forest fire, fountain,

highway, lightning storm, ocean, railway, rushing river, sky clouds, snowing, waterfall, windmill

farm, building collapse, escalator, falling trees, fireworks, marathon, waving flags. The last six

105

Chapter 7. Deep Learning for Dynamic Scene Recognition

listed classes are in addition to those available in the earlier YUPenn. Due to its extended number

of classes and addition of moving camera videos this novel dataset is termed YUP++.

For each scene class in the dataset, there are 60 colour videos, with no two samples for a given

class taken from the same physical scene. Half of the videos within each class are acquired with

a static camera and half are acquired with a moving camera, with camera motions encompassing

pan, tilt, zoom and jitter. Having both static and moving camera instances for each class allows

for systematic consideration of the role this variable plays in scene categorization, something that

was not supported in either of the previous dynamic scenes datasets. Beyond camera motion and

natural variation of individual scenes within a given class, a wide range of additional acquisition

parameters are varied, including illumination (e.g. diurnal variations), seasonal, scale and camera

viewpoint.

The videos were acquired from online video repositories (YouTube, BBC Motion Gallery and

Getty Images) or a handheld camcorder. All videos have been compressed with H.264 codec using

the ffmpeg video library. Duration for each video is 5 seconds, with original frame rates ranging

between 24 and 30 frames per second. All have been resized to a maximum width of 480 pixels,

while preserving their original aspect ratio.

Overall, the new dynamic scenes dataset more than doubles the size of previous datasets for

this task. All of the videos are distinct from the earlier Maryland dataset. In comparison to the

YUPenn dataset, six new scene classes have been added and all moving camera videos are new.

7.4.2 Experimental protocol

For the purpose of dynamic scene recognition, the dataset has been divided into training and test

sets. A random split is employed to generate the two sets, by randomly choosing for each class

an equal number of static camera and moving camera videos. This random split protocol is in

contrast to the previously used leave-one-out protocol on the YUPenn and Maryland datasets.

As documented in Sec. 7.5, using a random split with such a train/test ratio is better suited to

providing a challenging benchmark protocol in a computationally tractable fashion. Moreover, a

random split protocol is common practice in other domains, e.g. action recognition on HMDB51

(Kuehne et al., 2011) and UCF101 (Khurram Soomro and Shah, 2012) as well as indoor scene

classification on MIT67 (Quattoni and Torralba, 2009).

7.5 Empirical evaluation

To establish the state-of-the-art in dynamic scene recognition, 7 representative algorithms for

video-based recognition are evaluated along with T-ResNet introduced in Sec. 7.3. Three of the

evaluated algorithms, C3D (Tran et al., 2015a), BoSE (Feichtenhofer et al., 2014) and SFA (The-

riault et al., 2013), have shown the first, second and fourth best performance in previous dynamic

scenes evaluations. The third best performer, (Feichtenhofer et al., 2013), is an ancestor of BoSE

and is not considered here. The remaining algorithms, while not previously evaluated on dynamic

106

7.5. Empirical evaluation

scene recognition, are selected to provide a balanced coverage of contemporary strong performers

on image-based classification tasks. To see how well a strong performer on single image classifica-

tion can perform on video-based scene classification, very deep convolutional networks with Fisher

vector encoded features are considered (S-CNN) (Cimpoi et al., 2015). To see how well an approach

that serves as the basis for a variety of strong performing action recognition algorithms can be

adapted to scene recognition, (improved) dense trajectories (IDTs) are considered (Wang et al.,

2013). Also, to test further temporal ConvNets (in addition to spatiotemporal C3D), a represen-

tative based on optical flow is considered (T-CNN) (Simonyan and Zisserman, 2014a). Finally,

to judge the improvements that the spatiotemporal T-ResNet offers over the spatial ResNet (He

et al., 2016a), we report results for the fine-tuned ResNet. Details of how these approaches are

applied to dynamic scene recogntion are supplied in the Appendix C.

7.5.1 Is there a need for a new dataset?

The first question investigated is if a new dynamic scenes dataset is truly needed to challenge the

available algorithms or if only the existing evaluation protocols need an improvement. To answer

this question, the largest previously available dataset, YUP (Derpanis et al., 2012), was explored in

the following fashion with three of the best performing algorithms to date (C3D, BoSE, and SFA):

Instead of using the leave-one-video-out (LOO) protocol, as in previous evaluations (Derpanis et al.,

2012, Feichtenhofer et al., 2014, Shroff et al., 2010, Theriault et al., 2013), fixed train/test splits

are used, as it is common practice in action recognition tasks (Khurram Soomro and Shah, 2012,

Kuehne et al., 2011). Splits were generated by randomly choosing training and testing clips from

each class. Three splits are employed for any given ratio; final recognition accuracy is taken as the

average across the three. This experiment was performed for several train/test ratios. The results

for the three considered algorithms are reported in Table 7.1, left. Surprisingly, performance can

remain on par with the leave-one-out results on this dataset (Feichtenhofer et al., 2014, Theriault

et al., 2013, Tran et al., 2015a); it is also surprising that even very low train/test ratios can still

score high. It is concluded that simply changing the relative sizes of the training and testing sets

does not have a significant enough impact on recognition rates to continue using this dataset in

evaluations.

In comparing results for various 10/90 splits we find little difference, even for the most difficult

moving camera component of the new dataset, YUP++ moving camera; see Table 7.1, right.

This finding suggests that the 10/90 split supports stable algorithm performance evaluation, even

while being most challenging. Moreover, since there is little variation between random splits it jus-

tifies using just a single split in evaluation, as it provides for less overhead in evaluation, especially

for cases involving ConvNet training. Therefore, in all subsequent experiments a single 10/90 split

is employed. In particular, we employ split #1 of Table 7.1.

107

Chapter 7. Deep Learning for Dynamic Scene Recognition

Train/Test: LOO 90/10 70/30 50/50 30/70 10/90

C3D Acc: 98.1 97.6 96.8 94.8 94.2 86.0

BoSE Acc: 96.2 95.3 95.1 94.8 94.1 82.54

SFA Acc: 85.5 84.7 83.4 81.0 80.0 70.0

#split SFA BoSE T-CNN S-CNN IDT C3D

1 51.1 61.9 36.3 68.1 70.4 76.3

2 49.3 60.2 38.8 72.2 69.4 77.6

3 44.8 60.0 36.5 72.8 69.3 78.3

Table 7.1: Left: Performance of 3 of the previously best approaches for dynamic scene recognition
on on the YUP (Derpanis et al., 2012) dataset. Different train/test ratios have no significant
effect on the classification accuracy, except for a very aggressive ratio of 10/90 (i.e. using 3 videos
for training and 27 videos for testing per class). Right: Comparison of different algorithms on
the YUP++ moving camera dataset using a 10/90 train test ratio. Performance levels are
consistent across different random splits.

7.5.2 Does adding new classes solve the problem?

The next question investigated is if adding additional classes would lead to a sufficiently more

challenging dynamic scene benchmark. Table 7.2 (left) lists the results for including six additional

classes BuildingCollapse, Escalator, FallingTrees, Fireworks, Marathon and WavingFlags to the

previously existing YUPenn. Note that still all videos are taken from a static camera and thereby

this subset is called the YUP++ static camera. While all algorithms decrease in performance

compared to the original YUP, the best performers suffer only negligible deficits. It is desirable to

further increase the challenge.

7.5.3 Does more challenging data help?

Since adding more classes has too limited an effect on performance, this section presents a way of

increasing the difficulty of the data. The challenge is increased by including camera motion during

acquisition of videos. The overall size of the datasets is thereby doubled, as each class contains an

equal number of videos captured with and without camera motion. Details are provided in Sec. 7.4.

The results for just the new videos are reported in Table 7.2 (right), with this subset referred to

as YUP++ moving camera. Here it is seen that the challenge has increased so that even the

top performing algorithm scores at 81.5% accuracy and there is spread between algorithms that

allows for interesting comparisons, as discussed next.

7.5.4 Detailed algorithm comparisons

Consistent with previous results (e.g. (Derpanis et al., 2012)), top performers on the static (Ta-

ble 7.2, left) and moving (Table 7.2, right) camera subsets as well as the entirety (Table 7.3, left) of

YUP++ are dominated by algorithms that include both spatial and temporal measurements, i.e.

our novel T-ResNet, C3D, IDT and BoSE. Interestingly, algorithms based on purely spatial fea-

tures, S-CNN and ResNet, also show reasonable performance. Apparently, even for dynamic scenes

defining features can be abstracted on a spatial basis. In contrast, basing feature abstraction on

motion alone (T-CNN) apparently loses too much information.

108

7.5. Empirical evaluation

Class (static) SFA BoSE T-CNN S-CNN IDT C3D ResNet T-ResNet

Beach 74.1 88.9 85.2 74.1 100.0 92.6 74.1 96.3

BuildingCollapse 74.1 92.6 74.1 96.3 100.0 92.6 100.0 100.0

Elevator 81.5 96.3 100.0 100.0 96.3 100.0 100.0 100.0

Escalator 40.7 66.7 22.2 81.5 51.9 70.4 81.5 88.9

FallingTrees 63.0 63.0 29.6 74.1 96.3 92.6 88.9 77.8

Fireworks 63.0 85.2 44.4 77.8 92.6 85.2 88.9 96.3

ForestFire 25.9 85.2 25.9 96.3 74.1 92.6 92.6 92.6

Fountain 14.8 55.6 22.2 44.4 74.1 33.3 77.8 92.6

Highway 66.7 63.0 55.6 63.0 85.2 70.4 81.5 88.9

LightningStorm 33.3 59.3 88.9 77.8 96.3 81.5 74.1 92.6

Marathon 48.1 85.2 92.6 96.3 88.9 100.0 96.3 100.0

Ocean 96.3 85.2 88.9 100.0 100.0 100.0 100.0 100.0

Railway 33.3 48.1 51.9 88.9 74.1 59.3 81.5 96.3

RushingRiver 66.7 92.6 44.4 96.3 74.1 100.0 100.0 85.2

SkyClouds 85.2 100.0 63.0 96.3 96.3 100.0 96.3 100.0

Snowing 44.4 77.8 63.0 66.7 85.2 51.9 37.0 77.8

Street 96.3 92.6 63.0 100.0 96.3 96.3 100.0 96.3

Waterfall 74.1 66.7 25.9 70.4 33.3 96.3 59.3 70.4

WavingFlags 48.1 81.5 55.6 88.9 100.0 96.3 100.0 96.3

WindmillFarm 92.6 85.2 81.5 96.3 100.0 96.3 100.0 100.0

Average 61.1 78.5 58.9 84.3 85.7 85.4 86.5 92.41

Class (moving) SFA BoSE T-CNN S-CNN IDT C3D ResNet T-ResNet

Beach 77.8 77.8 18.5 70.4 66.7 81.5 96.3 96.3

BuildingCollapse 44.4 33.3 0.0 40.7 44.4 44.4 40.7 51.9

Elevator 81.5 100.0 77.8 100.0 100.0 100.0 100.0 100.0

Escalator 51.9 74.1 29.6 88.9 59.3 85.2 92.6 96.3

FallingTrees 55.6 77.8 63.0 77.8 96.3 88.9 85.2 96.3

Fireworks 48.1 74.1 25.9 33.3 85.2 77.8 59.3 81.5

ForestFire 29.6 66.7 14.8 88.9 59.3 55.6 88.9 96.3

Fountain 29.6 11.1 18.5 18.5 37.0 25.9 55.6 74.1

Highway 14.8 22.2 29.6 37.0 44.4 48.1 25.9 55.6

LightningStorm 25.9 59.3 59.3 85.2 81.5 85.2 88.9 92.6

Marathon 74.1 77.8 92.6 96.3 100.0 100.0 100.0 100.0

Ocean 40.7 37.0 33.3 51.9 55.6 85.2 22.2 48.1

Railway 18.5 66.7 25.9 92.6 59.3 88.9 100.0 100.0

RushingRiver 55.6 59.3 66.7 81.5 77.8 96. 85.2 85.2

SkyClouds 63.0 70.4 63.0 77.8 55.6 96.3 92.6 92.6

Snowing 14.8 40.7 14.8 22.2 77.8 40.7 25.9 37.0

Street 70.4 85.2 3.7 77.8 85.2 96.3 77.8 92.6

Waterfall 77.8 66.7 18.5 77.8 77.8 88.9 66.7 63.0

WavingFlags 70.4 70.4 51.9 77.8 81.5 74.1 92.6 96.3

WindmillFarm 77.8 66.7 18.5 66.7 63.0 66.7 74.1 74.1

Average 51.1 61.9 36.3 68.1 70.4 76.3 73.5 81.5

Table 7.2: Performance of different algorithms on the YUP++ static camera (top) and
YUP++ moving camera (bottom) subsets.

109

Chapter 7. Deep Learning for Dynamic Scene Recognition

The top performing algorithm on the static, moving and entire YUP++ is the newly proposed

T-ResNet. It is particularly interesting to compare it to ResNet, as T-ResNet is initialized with

ResNet and transformed from the spatial to spatiotemporal domain; see Sec. 7.3. Surprisingly, this

transformation succeeds on the basis of a very small training set, i.e. a mere 10% of the dynamic

scenes dataset. These results show that well initialized spatial networks can be transformed very

efficiently to extract discriminating spatiotemporal information. Indeed, this discrimination tops

that of a rival spatiotemporal network, C3D, as well as the best hand-crafted spatiotemporal

performer IDT.

Comparing performance on the static (Table 7.2, left) vs. moving (Table 7.2, right) camera

subsets, it is seen that all algorithms show a decrement in performance in the presence of camera

motion. Apparently, the algorithms have difficulty disentangling image dynamics that arise from

scene intrinsics vs. camera motion and this is an area where future research should be focused. As

it stands, the greatest performance loss is suffered by T-CNN, which suggests that building rep-

resentations purely on motion information makes extraction of scene intrinsic dynamics especially

difficult in the presence of camera motion. The smallest decrease in performance is seen by C3D,

which, once again, shows that combined spatial and temporal information provides the strongest

basis for dynamic scene characterization, even in the presence of camera motion. Here, it is worth

noting that because no previous dynamic scenes dataset contained both static and moving camera

examples for each class, it was more difficult to draw such conclusions.

No single algorithm is the top performer across all scene categories (Table 7.3). It is particularly

interesting to compare the two approaches based on hand-crafted features (BoSE and IDT), as the

nature of what they are extracting is most explicitly defined. Trajectory-based IDT excels where

scenes can be characterized by motion of features across time, e.g. the operation of an elevator or

the falling of a tree. In complement, spatiotemporal orientation-based BoSE excels where scenes

can be characterized by dynamic texture, e.g. flickering of forest fires and turbulence of waterfalls.

Along similar lines, while T-ResNet is the overall better performer than IDT, it seems that T-

ResNet exhibits weaker performance for scene dynamics with rather irregular or mixed defining

motion patterns as snowing or fireworks, both categories being resolved quite well by IDT. It also

is interesting to note that the most challenging classes for the spatially-based approaches, S-CNN

and ResNet, are those where motion is particularly important, e.g. with snowing being the most

or second most difficult for each. More generally, classes that are most strongly defined by motion

tend to be the most difficult for most algorithms considered, suggesting that capturing differences

between scenes based on their dynamics remains an area for additional research.

110

7.5. Empirical evaluation

Class SFA BoSE T-CNN S-CNN IDT C3D ResNet T-ResNet

Beach 92.6 83.3 72.2 75.9 87.0 83.3 90.7 74.1

BuildingCollapse 66.7 66.7 37.0 81.5 87.0 83.3 83.3 94.4

Elevator 85.2 98.1 79.6 100.0 100.0 98.1 100.0 100.0

Escalator 48.1 74.1 37.0 90.7 66.7 87.0 88.9 92.6

FallingTrees 42.6 79.6 53.7 88.9 98.1 88.9 92.6 88.9

Fireworks 51.9 83.3 38.9 66.7 98.1 81.5 87.0 96.3

ForestFire 29.6 77.8 9.3 92.6 72.2 79.6 96.3 100.0

Fountain 18.5 44.4 11.1 38.9 57.4 35.2 83.3 75.9

Highway 55.6 50.0 50.0 63.0 68.5 64.8 74.1 79.6

LightningStorm 42.6 79.6 77.8 81.5 94.4 87.0 90.7 90.7

Marathon 66.7 88.9 92.6 96.3 98.1 100.0 100.0 100.0

Ocean 64.8 70.4 51.9 83.3 74.1 96.3 66.7 85.2

Railway 29.6 83.3 53.7 96.3 88.9 88.9 100.0 100.0

RushingRiver 55.6 81.5 72.2 87.0 87.0 100.0 88.9 85.2

SkyClouds 83.3 94.4 74.1 90.7 88.9 98.1 96.3 96.3

Snowing 14.8 57.4 33.3 51.9 90.7 46.3 33.3 53.7

Street 79.6 90.7 44.4 92.6 96.3 98.1 100.0 98.1

Waterfall 77.8 85.2 13.0 88.9 66.7 90.7 57.4 75.9

WavingFlags 53.7 81.5 61.1 87.0 98.1 88.9 96.3 98.1

WindmillFarm 79.6 70.4 50.0 87.0 92.6 83.3 94.4 94.4

Average 56.9 77.0 50.6 82.0 85.6 84.0 85.9 89.0

Table 7.3: Performance comparison of different algorithms on the entire YUP++ dataset
(static and moving camera).

111

Chapter 7. Deep Learning for Dynamic Scene Recognition

7.5.5 Impact of the new dataset

The new YUP++ dataset has allowed for empirical study of the state-of-the-art in visual recog-

nition approaches applied to dynamic scenes in ways not previously possible. First, by providing

increased overall difficulty in comparison to previous datasets, it has allowed for clear performance

distinctions to be drawn across a range of algorithms. Second, it has documented that even the

strongest extant approaches suffer non-negligible performance decrements when operating in the

presence of camera motion in comparison to a stabilized camera scenario. For example, the top

overall performer, T-ResNet, has an overall decrement of over 10% in moving from static to mov-

ing camera scenarios. Third, the dataset has been shown to have adequate diversity to support

ConvNet training on as little as 10% of its total, e.g. with T-ResNet transformed from ResNet

for great performance improvements on that basis. Fourth, the dataset has provided insight into

how different scene characteristics can impact algorithm performance, e.g. the relative impact of

regular vs. irregular motion patterns.

Moving forward the dataset can continue to support advances in dynamic scene research. First,

algorithmic advances focused on discounting camera motion can be developed relative to a dataset

that controls exactly for this variable. For example, the impact of image stabilization preprocessing

can be studied. Similarly, the development of feature representations that aim for invariance with

respect to camera motion can be supported. Second, from a learning perspective the impact of

training on stabilized and testing on moving camera scenarios (and vice versa) can be studied.

Third, and more generally, given that top performance of the evaluated algorithms exhibits less

than 90% accuracy on the entire dataset and less than 82% on the moving camera subset, there is

ample room for further benchmarking of improved algorithms using YUP++.

7.6 Summary

We have presented a general spatiotemporal ConvNet, T-ResNet, based on transforming a purely

spatial network to one that can encompass spacetime via hierarchical injection of temporal resid-

uals. In comparison to a representative set of strong performing alternative approaches to video-

based recognition, our approach has produced the best overall performance on a novel dynamic

scene recognition dataset.

Our new database extends previous dynamic scenes evaluation sets in both diversity and size:

It adds new scene classes and provides balanced samples with and without camera motion. Sig-

nificantly, all algorithms show a decrement in performance when confronted with camera motion,

suggesting that a promising research direction for future studies is the development of approaches

that are robust to this variable. Moving forward, the new dataset can continue to support devel-

opment and comparative evaluation of algorithms for dynamic scene understanding.

112

(a) (b)

(c) (d)

Challenges for video object detection in realistic video. The images show training examples from
the ImageNet video object detection challenge for the classes: (a) bicycle, bird, rabbit; (b) dog; (c)
fox; and (d) red panda. In this chapter, we develop a unified approach for video object detection
& tracking. Best viewed electronically and with zoom.

8
Deep Video Detection & Tracking

113

Chapter 8. Deep Video Detection & Tracking

8.1 Motivation

Object detection in video has seen a surge in interest lately, especially since the introduction of the

ImageNet (Russakovsky et al., 2015b) object detection from video challenge (VID). Different from

the ImageNet object detection (DET) challenge, VID shows objects in image sequences and comes

with additional challenges of (i) size: video provides a massive number of frames (VID has around

1.3M images, compared to around 400K in DET or 100K in COCO (Lin et al., 2014)), (ii) motion

blur: due to rapid camera or object motion, (iii) quality: internet video clips are typically of lower

quality than static photos, (iv) partial occlusion: due to change in objects/viewer positioning and

(v) pose: unconventional object-to-camera poses are frequently seen in video. In the figure above,

we show example images from the VID dataset; for more examples please see1. On the positive

side, however, characteristic object motions have potential to be useful in recognition.

To solve this challenging task, recent top entries in the ImageNet (Russakovsky et al., 2015b)

video detection challenge use exhaustive post-processing on top of frame-level detectors. For exam-

ple, the winner (Kang et al., 2016a) of ILSVRC’15 uses two multi-stage Faster R-CNN (Ren et al.,

2016) detection frameworks, context suppression, multi-scale training/testing, a ConvNet tracker

(Wang et al., 2015a), optical-flow based score propagation and model ensembles.

In this chapter we propose Detect and Track (D&T), a unified approach to tackle the problem

of object detection in realistic video. Our objective is to directly infer a ‘tracklet’ over multiple

frames by simultaneously carrying out detection and tracking with a ConvNet. To achieve this

we propose to extend the R-FCN (Li et al., 2016a) detector with a tracking formulation that is

inspired by current correlation and regression based trackers (Bertinetto et al., 2016, Held et al.,

2016, Ma et al., 2015). We train a fully convolutional architecture end-to-end using a detection

and tracking based loss and term our approach D&T for joint Detection and Tracking. The input

to the network consists of multiple frames which are first passed through a ConvNet trunk (e.g.

a ResNet-101 (He et al., 2016a)) to produce convolutional features that are shared for the task of

detection and tracking. We compute convolutional cross-correlation between the feature responses

of adjacent frames to estimate the local displacement at different feature scales. On top of the

features, we employ an RoI-pooling layer (Li et al., 2016a) to classify and regress box proposals as

well as an RoI-tracking layer that regresses box transformations (translation, scale, aspect ratio)

across frames. Our architecture is fully convolutional up to RoI-pooling/tracking and can be trained

end-to-end for object detection and tracking. Finally, to infer long-term tubes of objects across a

video we link detections based on our tracklets.

An evaluation on the large-scale ImageNet VID dataset shows that our approach is able to

achieve better single-model performance than the winner of the last ILSVRC’16 challenge, despite

being conceptually simple and much faster. We show that including a tracking loss may improve

feature learning for better static object detection and also show a very fast version of D&T that

works on temporally-strided input frames. We think that given its high accuracy and speed, our

unified framework can foster further research and applications in large scale video detection.

1http://vision.cs.unc.edu/ilsvrc2015/ui/vid

114

http://vision.cs.unc.edu/ilsvrc2015/ui/vid

8.2. Related work

Our code is publicly available at https://github.com/feichtenhofer/Detect-Track.

8.2 Related work

Object detection. Object detection has been studied for decades. Most of the recent progress

can be attributed to the rise of deep ConvNets. Two families of detectors are currently popular:

First region proposal based detectors R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015),

Faster R-CNN (Ren et al., 2016) and R-FCN (Li et al., 2016a) and second, detectors that directly

predict boxes for an image in one step such as YOLO (Redmon et al., 2016) and SSD (Liu et al.,

2016).

Our approach builds on R-FCN (Li et al., 2016a) which is a simple and efficient framework

for object detection on region proposals with a fully convolutional nature. In terms of accuracy

it is competitive with Faster R-CNN (Ren et al., 2016), which uses a multi-layer network that is

evaluated per-region (and thus has a cost growing linearly with the number of candidate RoIs).

R-FCN reduces the cost for region classification by pushing the region-wise operations to the

end of the network with the introduction of a position-sensitive RoI pooling layer that works on

convolutional features that encode the spatially subsampled class scores of input RoIs.

Tracking. Tracking is also an extensively studied problem in computer vision, with most recent

progress devoted to trackers operating on deep ConvNet features. In (Nam and Han, 2016) a

ConvNet is fine-tuned at test-time to track a target from the same video via detection and bounding

box regression. Training on the examples of a test sequence is slow and also not applicable in

the object detection setting. Other methods use pre-trained ConvNet features to track and have

achieved strong performance either with correlation (Bertinetto et al., 2016, Ma et al., 2015) or

regression trackers on heat maps (Wang et al., 2015a) or bounding boxes (Held et al., 2016). The

regression tracker in (Held et al., 2016) is related to our method. It is based on a a siamese ConvNet

that predicts the location in the second image of the object shown in the center of the previous

image. Since this tracker predicts a bounding box instead of just the position, it is able to model

changes in scale and aspect of the tracked template. The major drawback of this approach is that it

only can process a single target template and it also has to rely on significant data augmentation to

learn all possible transformations of tracked boxes. The approach in (Bertinetto et al., 2016) is an

example of a correlation tracker and inspires our method. The tracker also uses a fully-convolutional

Siamese network that takes as input the tracking template and the search image. The ConvNet

features from the last convolutional layer are correlated to find the target position in the response

map. One drawback of many correlation trackers (Bertinetto et al., 2016, Ma et al., 2015) is that

they only work on single targets and do not account for changes in object scale and aspect ratio.

Video object detection. Action detection is also a related problem and has received increased

attention recently mostly with methods building on two-stream ConvNets (Simonyan and Zisser-

man, 2014a). In (Gkioxari and Malik, 2015) a method is presented that uses a two-stream R-CNN

115

https://github.com/feichtenhofer/Detect-Track

Chapter 8. Deep Video Detection & Tracking

(Girshick et al., 2014) to classify regions and link them across frames based on the action predic-

tions and their spatial overlap. This method has been adopted by (Saha et al., 2016) and (Peng

and Schmid, 2016) where the R-CNN was replaced by Faster R-CNN with the RPN operating on

two streams of appearance and motion information.

One area of interest is learning to detect and localize in each frame (e.g. in video co-localization)

with only weak supervision. The YouTube Object Dataset (Prest et al., 2012), has been used for

this purpose, e.g. (Joulin et al., 2014, Kwak et al., 2015).

Since the object detection from video task has been introduced at the ImageNet challenge,

it has drawn significant attention. In (Kang et al., 2016b) tubelet proposals are generated by

applying a tracker to frame-based bounding box proposals. The detector scores across the video

are re-scored by a 1D CNN model. In their corresponding ILSVRC submission the group (Kang

et al., 2016a) added a propagation of scores to nearby frames based on optical flows between frames

and suppression of class scores that are not under the top classes in a video. A more recent work

(Kang et al., 2017) introduces a tubelet proposal network that regresses static object proposals

over multiple frames, extracts features by applying Faster R-CNN, which are finally processed by

an encoder-decoder LSTM. In deep feature flow (Zhu et al., 2017) a recognition ConvNet is applied

to key frames only and an optical flow ConvNet is used for propagating the deep feature maps via

a flow field to the rest of the frames. This approach can increase detection speed by a factor of 5 at

a slight accuracy cost. The approach is error-prone due largely to two aspects: First, propagation

from the key frame to the current frame can be erroneous and, second, the key frames can miss

features from current frames. Very recently a new large-scale dataset for video object detection

has been introduced (Real et al., 2017) with single objects annotations over video sequences.

Convolutional Feature Maps

*

RoI Tracking

Cls

Reg

Cls

Reg

Reg

LossVideo Frames

Correlation

RPN

RPN

RoI Pooling

RoI Pooling

Figure 8.1: Architecture of our Detect and Track (D&T) approach (see Section 8.3 for details).

116

8.3. Approach

8.3 Approach

In this section we first give an overview of our Detect and Track (D&T) approach (Section 8.3.1),

then summarize the baseline R-FCN detector (Li et al., 2016a) (Section 8.3.2) and formulate our

tracking objective as cross-frame bounding box regression (Section 8.3.3), finally, we introduce

correlation features (Section 8.3.4) to aid the network in the tracking process.

The next Section 8.4 shows how we link across-frame tracklets to tubes over the temporal extent

of a video and Section 8.5 describes how we apply our approach to the ImageNet VID challenge.

8.3.1 D&T overview

We aim at jointly detecting and tracking (D&T) objects in video. Fig. 8.1 illustrates our D&T

architecture. We build on the R-FCN (Li et al., 2016a) object detection framework that is fully

convolutional up to region classification and regression, and extend it for multi-frame detection

and tracking. Given a set of two high-resolution input frames our architecture first computes

convolutional feature maps that are shared for the tasks of detection and tracking (e.g. the features

of a ResNet-101(He et al., 2016a)). A Region Proposal Network (RPN) is used to propose candidate

regions in each frame based on the objectness likelihood for pre-defined candidate boxes (i.e.

“anchors”(Ren et al., 2016)). Based on these regions, RoI pooling aggregates position-sensitive

score maps produced from an intermediate convolutional layer to classify boxes and refine their

coordinates (regression).

We extend this architecture by introducing a regressor that takes the intermediate position-

sensitive regression maps from both frames (together with correlation maps, see below) as input

to an RoI tracking operation which outputs the box transformation from one frame to the other.

We train the RoI tracking task by extending the multi-task objective of R-FCN with a tracking

loss that regresses object coordinates across frames. Our tracking loss operates on ground truth

objects and evaluates a soft L1 norm (Girshick, 2015) between coordinates of the predicted track

and the ground truth track of an object.

Such a tracking formulation can be seen as a multi-object extension of the single target tracker

in (Held et al., 2016) where a ConvNet is trained to infer an object’s bounding box from features

of the two frames. One drawback of such an approach is that it does not exploit translational

equivariance which means that the tracker has to learn all possible translations from training data.

Thus such a tracker requires exceptional data augmentation (artificially scaling and shifting boxes)

during training (Held et al., 2016) .

A tracking representation that is based on correlation filters (Bolme et al., 2010, Danelljan et al.,

2016, Henriques et al., 2015) can exploit the translational equivariance as correlation is equivariant

to translation. Recent correlation trackers (Bertinetto et al., 2016, Ma et al., 2015) typically work

on high-level ConvNet features and compute the cross correlation between a tracking template

and the search image (or a local region around the tracked position from the previous frame). The

resulting correlation map measures the similarity between the template and the search image for

117

Chapter 8. Deep Video Detection & Tracking

all circular shifts along the horizontal and vertical dimension. The displacement of a target object

can thus be found by taking the maximum of the correlation response map.

Different from typical correlation trackers that work on single target templates, we aim to track

multiple objects simultaneously. We compute correlation maps for all positions in a feature map

and let RoI tracking additionally operate on these feature maps for better track regression. Our

architecture is able to be trained end-to-end taking as input frames from a video and producing

object detections and their tracks. The next sections describe how we structure our architecture

for end-to-end learning of object detection and tracklets.

8.3.2 Object detection and tracking in R-FCN

Our architecture takes frames It ∈ RH0×W0×3 at time t and pushes them through a backbone

ConvNet (i.e. ResNet-101 (He et al., 2016a)) to obtain feature maps xtl ∈ RHl×Wl×Dl where

Wl, Hl and Dl are the width, height and number of channels of the respective feature map output

by layer l. As in R-FCN (Li et al., 2016a) we reduce the effective stride at the last convolutional

layer from 32 pixels to 16 pixels by modifying the conv5 block to have unit spatial stride, and also

increase its receptive field by dilated convolutions (Long et al., 2015).

Our overall system builds on the R-FCN (Li et al., 2016a) object detector that works in two

stages: First it extracts candidate regions of interest (RoI) using a Region Proposal Network (RPN)

(Ren et al., 2016) and second, it performs region classification into different object categories and

background by using a position-sensitive RoI pooling layer (Li et al., 2016a). The input to this RoI

pooling layer comes from an extra convolutional layer with output xtcls that operates on the last

convolutional layer of a ResNet (He et al., 2016a). The layer produces a bank of Dcls = k2(C + 1)

position-sensitive score maps which correspond to a k× k spatial grid describing relative positions

to be used in the RoI pooling operation for each category (C) and background. Applying the

softmax function to the outputs leads to a probability distribution p over C + 1 classes for each

RoI. In a second branch R-FCN puts a sibling convolutional layer with output xtreg after the last

convolutional layer for bounding box regression, again a position-sensitive RoI pooling operation

is performed on this bank of Dcls = 4k2 maps for class-agnostic bounding box prediction of a box

b = (bx, by, bw, bh).

Let us now consider a pair of frames It, It+τ , sampled at time t and t + τ , given as input to

the network. We introduce an inter-frame bounding box regression layer that performs position

sensitive RoI pooling on the concatenation of the bounding box regression features {xtreg,xt+τreg } to

predict the transformation ∆t+τ = (∆t+τ
x ,∆t+τ

y ,∆t+τ
w ,∆t+τ

h) of the RoIs from t to t+ τ . The cor-

relation features, that are also used by the bounding box regressors, are described in section 8.3.4.

We show an illustration of this approach in Fig. 8.2.

118

8.3. Approach

8.3.3 Multitask detection and tracking objective

To learn this regressor, we extend the multi-task loss of Fast R-CNN (Girshick, 2015), consisting

of a combined classification Lcls and regression loss Lreg, with an additional term that performs

tracking across two frames Ltra. For a single iteration and a batch of N RoIs the network predicts

softmax probabilities {pi}Ni=1, regression offsets {bi}Ni=1, and cross-frame RoI-tracks {∆t+τ
i }Ntrai=1 .

Our overall objective function is written as:

L({pi}, {bi}, {∆i}) =
1

N

N∑
i=1

Lcls(pi,c∗)

+λ
1

Nfg

N∑
i=1

[c∗i > 0]Lreg(bi, b
∗
i)

+λ
1

Ntra

Ntra∑
i=1

Lreg(∆
t+τ
i ,∆∗,t+τi).

(8.1)

Where the ground truth class label of an RoI is defined by c∗i and its predicted softmax score

is pi,c∗ . b
∗
i is the ground truth regression target, and ∆∗,t+τi is the track regression target. The

indicator function [c∗i > 0] is 1 for foreground RoIs and 0 for background RoIs (with c∗i = 0).

Lcls(pi,c∗) = − log(pi,c∗) is the cross-entropy loss for box classification, and Lreg is the bounding

box regression loss defined as the smooth L1 function in (Girshick, 2015). The tradeoff parameter

is set to λ = 1 as in (Girshick, 2015, Li et al., 2016a). The assignment of RoIs to ground truth

is as follows: a class label c∗ and regression targets b∗ are assigned if the RoI overlaps with a

ground-truth box at least by 0.5 in intersection-over-union (IoU) and the tracking target ∆∗,t+τ is

assigned only to ground truth targets which are appearing in both frames. Thus, the first term of

(8.1) is active for all N boxes in a training batch, the second term is only active for Nfg foreground

RoIs and the last term is only active for Ntra ground truth RoIs that have a track correspondence

across the two frames.

For track regression we use the bounding box regression parametrisation of R-CNN (Girshick,

2015, Girshick et al., 2014, Ren et al., 2016). For a single object we have ground truth box coordi-

nates Bt = (Btx, B
t
y, B

t
w, B

t
h) in frame t, and similarly Bt+τ for frame t+τ , denoting the horizontal

& vertical centre coordinates and its width and height. The tracking regression values for the target

∆∗,t+τ = {∆∗,t+τx ,∆∗,t+τy ,∆∗,t+τw ,∆∗,t+τh } are then

∆∗,t+τx =
Bt+τx −Btx

Btw
∆∗,t+τy =

Bt+τy −Bty
Bth

(8.2)

∆∗,t+τw = log(
Bt+τw

Btw
) ∆∗,t+τh = log(

Bt+τh

Bth
)). (8.3)

8.3.4 Correlation features for object tracking

Different from typical correlation trackers on single target templates, we aim to track multiple

objects simultaneously. We compute correlation maps for all positions in a feature map and let

RoI pooling operate on these feature maps for track regression. Considering all possible circular

119

Chapter 8. Deep Video Detection & Tracking

C
on

v

frame t

frame t+τ

R
oI

P
oolin

g

conv-features frame t

conv-features frame t+τ

“detections” frame t

R
o
I

P
oo

lin
g

“detections” frame t+τ

R
oI

P
oo

lin
g

Δx, Δy, Δw, Δh

“tracks”

frame t → t+τ

*

Figure 8.2: Schematic of our approach for two frames at time t and t + τ . The inputs are
first passed through a fully-convolutional network to produce feature maps. A correlation layer
operates at multiple feature maps of different scales (only the coarsest scale is shown in the figure)
and estimates local feature similarity for various offsets between the two frames. Finally, position
sensitive RoI pooling (Li et al., 2016a) operates on the convolutional features of the individual
frames to produce per-frame detections and also on a stack of individual frame-features as well as
the between frame correlation features to output regression offsets of the detection boxes across
the two frames.

shifts in a feature map would lead to large output dimensionality and also give responses for too

large displacements. Therefore, we restrict correlation to a local neighbourhood. This idea was

originally used for optical flow estimation in (Dosovitskiy et al., 2015), where a correlation layer

is introduced to aid a ConvNet in matching feature points between frames. The correlation layer

performs point-wise feature comparison of two feature maps xtl ,x
t+τ
l

xt,t+τcorr (i, j, p, q) =
〈
xtl(i, j),x

t+τ
l (i+ p, j + q)

〉
(8.4)

where −d ≤ p ≤ d and −d ≤ q ≤ d are offsets to compare features in a square neighbourhood

around the locations i, j in the feature map, defined by the maximum displacement, d. Thus the

output of the correlation layer is a feature map of size xcorr ∈ RHl×Wl×2d+1×2d+1. Equation (8.4)

can be seen as a correlation of two feature maps within a local square window defined by d. We

compute this local correlation for features at layers conv3, conv4 and conv5 (we use a stride of 2

in i, j to have the same size in the conv3 correlation). We show an illustration of these features for

two sample sequences in Fig. 8.3.

To use these features for track-regression, we let RoI pooling operate on these maps by stacking

them with the bounding box features in Section 8.3.2 {xt,t+τcorr ,x
t
reg,x

t+τ
reg }.

120

8.3. Approach

(a) (b)

(c) (d) (e)

(f) (g)

(h) (i) (j)

Figure 8.3: Correlation features for two frames of two validation sequences. For the frames in (a) &
(b) , we show in (c),(d) and (e) the correlation maps computed by using features from conv3, conv4
and conv5, respectively. The feature maps are shown as arrays with the map centre corresponding
to zero offsets p, q between the frames and the neighbouring rows and columns correspond to shifted
correlation maps of increasing p, q. We observe that the airplane moves to the top-right; hence the
feature maps corresponding to p = 3, q = 3 show strong responses. Note that the features at
conv4 and conv5 have the same resolution, whereas at conv3 we use stride 2 correlation sampling
to produce same sized outputs. In (h),(i) and (j) we show additional multiscale correlation maps
for the frames in (f) & (g) which are affected by camera motion resulting in correlation patterns
that correctly estimate this at the lower layer (conv3 correlation responds on the grass and legs
of the animal (h)), and also handles the independent motion of the animals at the higher conv5
correlation (j).

121

Chapter 8. Deep Video Detection & Tracking

8.4 Linking tracklets to object tubes

One drawback of high-accuracy object detection is that high-resolution input images have to be

processed which puts a hard constraint on the number of frames a (deep) architecture can process

in one iteration (due to memory limitations in GPU hardware). Therefore, a tradeoff between the

number of frames and detection accuracy has to be made. Since video possesses much redundant

information and objects typically move smoothly in time we can use our inter-frame tracks to link

detections in time and build long-term object tubes. To this end, we adopt an established technique

from action localization (Gkioxari and Malik, 2015, Peng and Schmid, 2016, Saha et al., 2016),

which is used to to link frame detections in time to tubes.

Consider the class detections for a frame at time t,Dt,c
i = {xti, yti , wti , hti, pti,c}, whereDt,c

i is a box

indexed by i, centred at (xti, y
t
i) with width wti and height hti, and pti,c is the softmax probability for

class c. Similarly, we also have tracks T t,t+τi = {xti, yti , wti , hti;x
t+τ
i , yt+τi , wt+τi , ht+τi } that describe

the transformation of the boxes from frame t to t+ τ . We can now define a class-wise linking score

that combines detections and tracks across time

sc(D
t
i,c, D

t+τ
j,c , T

t,t+τ) = pti,c + pt+τj,c + ψ(Dt
i , Dj , T

t,t+τ) (8.5)

where the pairwise score is

ψ(Dt
i,c, D

t+τ
j,c , T

t,t+τ) =

1, if Dt
i , D

t+τ
j ∈ T t,t+τ ,

0, otherwise.
(8.6)

Here, the pairwise term ψ evaluates to 1 if the IoU overlap a track correspondences T t,t+τ with

the detection boxes Dt
i , D

t+τ
j is larger than 0.5. This is necessary, because the output of the track

regressor does not have to exactly match the output of the box regressor.

The optimal path across a video can then be found by maximizing the scores over the duration

T of the video (Gkioxari and Malik, 2015)

D̄?
c = argmax

D̄

1

T

T −τ∑
t=1

sc(D
t, Dt+τ , T t,t+τ). (8.7)

Eq. (8.7) can be solved efficiently by applying the Viterbi algorithm (Gkioxari and Malik, 2015).

Once the optimal tube D̄?
c is found, the detections corresponding to that tube are removed from

the set of regions and (8.7) is applied again to the remaining regions.

After having found the class-specific tubes D̄c for one video, we re-weight all detection scores

in a tube by adding the mean of the α = 50% highest scores in that tube. We found that overall

performance is largely robust to that parameter, with less than 0.5% mAP variation when varying

10% ≤ α ≤ 100%. Our simple tube-based re-weighting aims to boost the scores for positive boxes

on which the detector fails. Note that our approach enforces the tube to span the whole video and,

for simplicity, we do not prune any detections in time. Removing detections with subsequent low

scores along a tube could clearly improve the results, but we leave that for future work. In the

following section our approach is applied to the video object detection task.

122

8.5. Experiments

8.5 Experiments

8.5.1 Dataset sampling and evaluation

We evaluate our method on the ImageNet (Russakovsky et al., 2015b) object detection from video

(VID) dataset2 which contains 30 classes in 3862 training and 555 validation videos. The objects

have ground truth annotations of their bounding box and track ID in a video. Since the ground

truth for the test set is not publicly available, we measure performance as mean average precision

(mAP) over the 30 classes on the validation set by following the protocols in (Kang et al., 2016a,b,

2017, Zhu et al., 2017), as is standard practice.

The 30 object categories in ImageNet VID are a subset of the 200 categories in the ImageNet

DET dataset. Thus we follow previous approaches (Kang et al., 2016a,b, 2017, Zhu et al., 2017) and

train our R-FCN detector on an intersection of ImageNet VID and DET set (only using the data

from the 30 VID classes). Since the DET set contains large variations in the number of samples per

class, we sample at most 2k images per class from DET. We also subsample the VID training set

by using only 10 frames from each video. The subsampling reduces the effect of dominant classes

in DET (e.g. there are 56K images for the dog class in the DET training set) and very long video

sequences in the VID training set.

8.5.2 Training and testing

RPN. Our RPN is trained as originally proposed (Ren et al., 2016). We attach two sibling convo-

lutional layers to the stride-reduced ResNet-101 (Section 8.3.2) to perform proposal classification

and bounding box regression at 15 anchors corresponding to 5 scales and 3 aspect ratios. As in (Ren

et al., 2016) we also extract proposals from 5 scales and apply non-maximum suppression (NMS)

with an IoU threshold of 0.7 to select the top 300 proposals in each frame for training/testing our

R-FCN detector. We found that pre-training on the full ImageNet DET set helps to increase the

recall; thus, our RPN is first pre-trained on the 200 classes of ImageNet DET before fine-tuning on

only the 30 classes which intersect ImageNet DET and VID. Our 300 proposals per image achieve

a mean recall of 96.5% on the ImageNet VID validation set.

R-FCN. Our R-FCN detector is trained similar to (Li et al., 2016a, Zhu et al., 2017). We use the

stride-reduced ResNet-101 with dilated convolution in conv5 (see Section 8.3.2) and online hard

example mining (Shrivastava et al., 2016). A randomly initialized 3 × 3, dilation 6 convolutional

layer is attached to conv5 for reducing the feature dimension to 512 (Zhu et al., 2017) (in the

original R-FCN this is a 1 × 1 convolutional layer without dilation and an output dimension of

1024). For object detection and box regression, two sibling 1 × 1 convolutional layers provide

the Dcls = k2(C + 1) and Dreg = 4k2 inputs to position-sensitive RoI pooling layer. We use a

k × k = 7× 7 spatial grid for encoding relative positions as in (Li et al., 2016a).

2http://www.image-net.org/challenges/LSVRC/

123

http://www.image-net.org/challenges/LSVRC/

Chapter 8. Deep Video Detection & Tracking

In both training and testing, we use single scale images with shorter dimension of 600 pixels.

We use a batch size of 4 in SGD training and a learning rate of 10−3 for 60K iterations followed

by a learning rate of 10−4 for 20K iterations. For testing we apply NMS with IoU threshold of 0.3.

D & T. For training our D&T architecture we start with the R-FCN model from above and

further fine-tune it on the full ImageNet VID training set with randomly sampling a set of two

adjacent frames from a different video in each iteration. In each other iteration we also sample from

the ImageNet DET training set to not bias our model to the VID training set. When sampling

from the DET set we send the same two frames through the network as there are no sequences

available. Besides not forgetting the images from the DET training set, this has an additional

beneficial effect of letting our model prefer small motions over large ones (e.g. the tracker in (Held

et al., 2016) samples motion augmentation from a Laplacian distribution with zero mean to bias a

regression tracker on small displacements). Our correlation features (8.4) are computed at layers

conv3, conv4 and conv5 with a maximum displacement of d = 8 and a stride of 2 in i, j for the

the conv3 correlation. For training, we use a learning rate of 10−4 for 40K iterations and 10−5

for 20K iterations at a batch size of 4. During testing our architecture is applied to a sequence

with temporal stride τ , predicting detections D and tracklets T between them. We perform non-

maximum suppression with bounding-box voting (Gidaris and Komodakis, 2015) before the tracklet

linking step to reduce the number of detections per image and class to 25. These detections are

then used in eq. (8.7) to extract tubes and the corresponding detection boxes are re-weighted as

outlined in Section 8.4 for evaluation.

8.5.3 Results

We show experimental results for our models and the current state-of-the-art in Table 8.1. Quali-

tative results for difficult validation videos can be seen in Appendix D.

Single frame methods. First we compare methods working on single frames without any tem-

poral processing. Our R-FCN baseline achieves 74.2% mAP which compares favourably to the best

performance of 73.9% mAP in (Zhu et al., 2017). We think our slightly better accuracy comes from

the use of 15 anchors for RPN instead of the 9 anchors in (Zhu et al., 2017). The Faster R-CNN

models working as single frame baselines in (Kang et al., 2016b), (Kang et al., 2017) and (Kang

et al., 2016a) score with 45.3%, 63.0% and 63.9%, respectively. We think their lower performance

is mostly due to the difference in training procedure and data sampling, and not originating from a

weaker base ConvNet, since our frame baseline with a weaker ResNet-50 produces 72.1% mAP (vs.

the 74.2% for ResNet-101). Next, we are interested on how our model performs after fine-tuning

with the tracking loss, operating via RoI tracking on the correlation and track regression features

(i.e. D (& T loss) in Table 8.1). The resulting performance for single-frame testing is 75.8% mAP.

This 1.6% gain in accuracy shows that merely adding the tracking loss can aid the per-frame de-

tection. A possible reason for that result is because the correlation features propagate gradients

back into the base ConvNet and therefore make the features more sensitive to important objects

124

8.5. Experiments

Methods ai
rp

la
n
e

an
te

lo
p
e

b
ea

r

b
ic

yc
le

b
ir

d

b
u
s

ca
r

ca
tt

le
d
og

d
om

es
ti

c
ca

t
el

ep
h
an

t
fo

x

gi
an

t
p
an

d
a

h
am

st
er

h
or

se

li
on

TCN (Kang et al.,

2016b)

72.7 75.5 42.2 39.5 25.0 64.1 36.3 51.1 24.4 48.6 65.6 73.9 61.7 82.4 30.8 34.4

TPN+LSTM

(Kang et al., 2017)

84.6 78.1 72.0 67.2 68.0 80.1 54.7 61.2 61.6 78.9 71.6 83.2 78.1 91.5 66.8 21.6

Winner

ILSVRC’15 (Kang

et al., 2016a)

83.7 85.7 84.4 74.5 73.8 75.7 57.1 58.7 72.3 69.2 80.2 83.4 80.5 93.1 84.2 67.8

D (R-FCN) 87.4 79.4 84.5 67.0 72.1 84.6 54.6 72.9 70.9 77.3 76.7 89.7 77.6 88.5 74.8 57.9

D (& T loss) 89.4 80.4 83.8 70.0 71.8 82.6 56.8 71.0 71.8 76.6 79.3 89.9 83.3 91.9 76.8 57.3

D&T (τ = 1) 90.2 82.3 87.9 70.1 73.2 87.7 57.0 80.6 77.3 82.6 83.0 97.8 85.8 96.6 82.1 66.7

D&T (τ = 10) 89.1 79.8 87.5 68.8 72.9 86.1 55.7 78.6 76.4 83.4 82.9 97.0 85.0 96.0 82.2 66.0

Methods li
za

rd

m
on

ke
y

m
ot

or
cy

cl
e

ra
b
b
it

re
d

p
an

d
a

sh
ee

p

sn
ak

e
sq

u
ir

re
l

ti
ge

r

tr
ai

n

tu
rt

le
w

at
er

cr
af

t
w

h
al

e
ze

b
ra

m
A

P
(%

)

TCN (Kang et al.,

2016b)

54.2 1.6 61.0 36.6 19.7 55.0 38.9 2.6 42.8 54.6 66.1 69.2 26.5 68.6 47.5

TPN+LSTM
(Kang et al., 2017)

74.4 36.6 76.3 51.4 70.6 64.2 61.2 42.3 84.8 78.1 77.2 61.5 66.9 88.5 68.4

Winner

ILSVRC’15 (Kang

et al., 2016a)

80.3 54.8 80.6 63.7 85.7 60.5 72.9 52.7 89.7 81.3 73.7 69.5 33.5 90.2 73.8

Winner
ILSVRC’16 (Yang

et al., 2016)

(single model performance) 76.2

D (R-FCN) 76.8 50.1 80.2 61.3 79.5 51.9 69.0 57.4 90.2 83.3 81.4 68.7 68.4 90.9 74.2

D (& T loss) 79.0 54.1 80.3 65.3 85.3 56.9 74.1 59.9 91.3 84.9 81.9 68.3 68.9 90.9 75.8

D&T (τ = 1) 83.4 57.6 86.7 74.2 91.6 59.7 76.4 68.4 92.6 86.1 84.3 69.7 66.3 95.2 79.8

D&T (τ = 10) 83.1 57.9 79.8 72.7 90.0 59.4 75.6 65.4 90.5 85.6 83.3 68.3 66.5 93.2 78.6

Table 8.1: Performance comparison on the ImageNet VID validation set. The average precision
(in %) for each class and the mean average precision over all classes is shown. τ corresponds to the
temporal sampling stride.

in the training data. We see significant gains for classes like panda, monkey, rabbit or snake which

likely exhibit significant motion.

Multi-frame methods. Next we investigate the effect of multi-frame input during testing. In

Table 8.1 we see that linking our detections to tubes based on our tracklets, D&T (τ = 1), raises

performance substantially to 79.8% mAP. Some class-AP scores can be boosted significantly (e.g.

cattle by 9.6, dog by 5.5, cat by 6, fox by 7.9, horse by 5.3, lion by 9.4, motorcycle by 6.4 rabbit

by 8.9, red panda by 6.3 and squirrel by 8.5 points AP). This gain is mostly due to the following

reason: If an object is captured in an unconventional pose, is distorted by motion blur, or appears

at a small scale, the detector might fail; however, if its tube is linked to other potentially highly

scoring detections of the same object, these failed detections can be recovered (even though we

use a very simple re-weighting of detections across a tube). The only class that loses AP is whale

125

Chapter 8. Deep Video Detection & Tracking

(−2.6 points) and this has an obvious reason. In most validation snippets the whales successively

emerge and submerge from the water and our detection rescoring based on tubes would assign false

positives when they submerge for a couple of frames.

When comparing our 79.8% mAP against the current state of the art, we make the following

observations. The method in (Kang et al., 2016b) achieves 47.5% by using a temporal convolutional

network on top of the still image detector. An extended work (Kang et al., 2017) uses an encoder-

decoder LSTM on top of a Faster R-CNN object detector that work on proposals from a tubelet

proposal network, produces 68.4% mAP. An even more complex approach is used by the winner

of the ILSVRC 2015 challenge (Kang et al., 2016a) which combines two Faster R-CNN detectors,

multi-scale training/testing, context suppression, high confidence tracking (Wang et al., 2015a)

and optical-flow-guided propagation to achieve 73.8%. Finally, we compare to the challenge winner

from ILSVRC2016 (Yang et al., 2016), which uses a cascaded R-FCN detector, context inference,

cascade regression and a correlation tracker (Ma et al., 2015) to achieve 76.19% mAP validation

performance with a single model (multi-scale testing and model ensembles boost their accuracy

to 81.1%). Here it is noteworthy that our method does not have to rely on these complicated

elaborations.

Online capabilities and runtime. The only component limiting online application is the

tube rescoring. We have evaluated an online version which performs only causal rescoring across

the tracks. The performance for this method is 78.7%mAP, compared to the noncausal method

(79.8%mAP). Since the correlation layer and track regressors are operating fully convolutional (no

additional per-ROI computation is added except at the ROI-tracking layer), the extra runtime

cost for testing a 1000x600 pixel image is 14ms (i.e. 141ms vs 127ms without correlation and ROI-

tracking layers) on a Titan X GPU. The (unoptimized) tube linking takes on average 46ms per

frame on a single CPU core).

Increasing temporal stride. Lastly, we reconsider a finding from our architecture design in

the previous chapters, and look at larger temporal strides τ for detecting and tracking in video,

which we found useful for the related task of video action recognition Chapters 3, 4) and 5. Our

D & T architecture is evaluated only at every τ th frame of an input sequence and tracklets have

to link detections over larger temporal strides. The performance for a temporal stride of τ = 10

is 78.6% mAP which is 1.2% below the full-frame evaluation. We think that such a minor drop is

remarkable as the duration for processing a video is now roughly reduced by a factor of 10.

A potential point of improvement is to extend the detector to operate over multiple frames of

the sequence. We found that such an extension did not have a clear beneficial effect on accuracy for

short temporal windows (i.e. augmenting the detection scores at time t with the detector output

at the tracked proposals in the adjacent frame at time t+ 1 only raises the accuracy from 79.8 to

80.0% mAP). Increasing this window to frames at t ± 1 by bidirectional detection and tracking

from the tth frame did not lead to any gain. Interestingly, when testing with a temporal stride of

τ = 10 and augmenting the detections from the current frame at time t with the detector output

126

8.6. Summary

at the tracked proposals at t+ 10 raises the accuracy from 78.6 to 79.2% mAP.

We conjecture that the insensitivity of the accuracy for short temporal windows originates

from the high redundancy of the detection scores from the centre frames with the scores at tracked

locations. The accuracy gain for larger temporal strides, however, suggests that more complemen-

tary information is integrated from the tracked objects; thus, a potentially promising direction for

improvement is to detect and track over multiple temporally strided inputs.

8.6 Summary

In this chapter we have presented a unified framework for simultaneous object detection and

tracking in video. Our fully convolutional D&T architecture allows end-to-end training for detection

and tracking in a joint formulation. In evaluation our method achieves accuracy competitive with

the winner of the last ImageNet challenge while being simple and efficient. We demonstrate clear

mutual benefits of jointly performing the task of detection and tracking, a concept that can foster

further research in video analysis.

127

9
Conclusion

Deep networks have taken by storm the state-of-the-art in nearly all computer vision domains.

Their impact on academia and industry has been spectacular. In some cases they even outperform

humans e.g. for classifying 1000 ImageNet classes 1 or for reading lips2. As a consequence, deep

networks are deployed in all kinds of applications, from medicine to transportation.

The first part of this dissertation was devoted to a challenging problem in which machine

perception is still far from rivaling human performance – action recognition in video, an area that is

intensively researched, but still far from the level of performance at which humans perform this task.

Chapters 3-5 represent the core contributions of this thesis towards advancing this difficult task.

We build on two-stream ConvNets which have shown strong performance for action recognition

in videos. Nevertheless, the two-stream architecture (or similar previous methods) is not able to

explicitly model two very important cues for recognition in video: First, recognizing what is moving

where, i.e. registering appearance recognition with motion recognition and second, modeling how

these instantaneous spatiotemporal measurements evolve over time. Our main objective towards

advancing video action recognition, was to rectify these limitations by developing architectures

that are able to fuse appearance and motion information at several levels of granularity in feature

abstraction, and with hierarchical integration over space and time. In particular, we investigated

several aspects of spatiotemporal feature learning which can be grouped into the two concepts of

learning of hierarchical spatiotemporal features and temporal integration over long-term input.

1This might not be a fair comparison since the classes in ImageNet are dominated by fine sub-categories such as
different kinds of mushrooms or dogs.

2https://www.theverge.com/2016/11/24/13740798/google-deepmind-ai-lip-reading-tv

129

https://www.theverge.com/2016/11/24/13740798/google-deepmind-ai-lip-reading-tv

Chapter 9. Conclusion

For the concept of learning spatiotemporal features, we first studied spatial fusion of two deep

appearance and motion recognition networks while taking into account spatial feature registration.

This approach is motivated by the importance of such local cues for discriminating between difficult

cases such as actions of brushing teeth and shaving beard which can be discriminated by subtle

differences in the appearance cues representing the tools used (e.g. tooth brush or razor blade) and

the periodic motion patterns of the hand movement for performing these actions. An architecture

that explicitly models these local spatiotemporal cues should have a theoretical advantage over an

architecture that does not form explicit representations to model such spacetime correspondences.

In Chapter 3 we attempt spatial fusion at a particular convolutional layer such that features

at the same spatial position are put in correspondence to form intermediate, local spacetime rep-

resentations. Since the two networks have the same spatial resolution at the layers to be fused

one can overlay (concatenate) features from one network on the other to perform fusion. However,

there is also the issue of which feature channel (or channels) in one network correspond to a par-

ticular channel (or channels) of the other network. We studied several fusion functions that fuse

two feature maps at the same instance in time, i.e. sum, max, concatenation, bilinear and con-

volutional fusion. Our experimental results revealed that a simple sum operation performed near

optimal among the alternatives. This result is surprising, because it either assumes some direct

correspondence of the channels in the two networks at the fusion layer, or the feature averaging is

fully compensated by learning in the later layers of the network that work on top of the sum-fused

features. A more advanced fusion, which provided overall best results in Chapter 3, was an ex-

tra convolutional layer that performed the fusion by learned, weighted summation on the stacked

features of the two networks. Another surprising finding was that the filters of this convolutional

fusion layer can be initialized to perform the sum operation of the corresponding channels from

the two networks, which led to the same performance as if the filters in that layer are initialized

randomly, but convergence is an order of magnitude faster if the filters are initialized to perform

the sum operation across corresponding channels. A noteworthy result from Chapter 3 was also

that two networks can be fused at the last convolution layer while removing the fully connected

layers of one stream completely, to allow a substantial saving in parameters, without a significant

sacrifice of performance.

An alternative viewpoint is to consider the sum-fusion as a residual connection across two

networks of different modalities. In Chapter 4 we build on our insights to present spatiotemporal

Residual Networks by using residual connections for spatial fusion between the appearance and

motion pathways of a two-stream ResNet architecture. These connections are naturally integrated

in ConvNet design principles to allow learning of multiscale spatiotemporal features by designing

such interactions across multiple layers of the network hierarchy. Importantly, we have shown that

a direct fusion between identical layers of the two networks leads to poor results, but a spatial

fusion into the mirror residual unit of the opposing stream allows local learning of spacetime

features. As this connection of the appearance and motion channels is conducted at multiple levels

in the network hierarchy, our ST-ResNet allows the hierarchical learning of spacetime features.

As a further contribution of Chapter 4, we showed that using a smaller batch size for the noisy

130

bias and variance estimation in batch normalization fosters generalization when training very deep

two-stream ResNets for action recognition.

In Chapter 5 we thoroughly discussed the combination of the two-stream and ResNet approaches

by providing ablation studies that increased our understanding of how these techniques interact.

We compared asymmetrical injection of motion information into the appearance stream as well as

symmetric (bidirectional) connections across the two streams. In empirical evaluation, we showed

that bidirectional interactions yield inferior results to the asymmetric case of injecting motion into

appearance and conjectured that this originates from the dominance of the appearance stream over

the motion stream during training, since appearance is a much stronger cue for reducing the training

objective. Another core contribution of Chapter 5 is multiplicative motion gating of the appearance

stream. Our proposed spatiotemporal Multiplier Network provides a nontrivial performance boost

over an additive (sum) formulation. We theoretically discussed the advantages of multiplicative

interactions by the effect on the backward signal in a residual network, which enforces strong

feature correspondence by multiplying the gradient of one stream with the current forward signal

of the opposing stream. In comparison to the additive fusion, multiplicative gating increases the

order of the network fusion from first to second order. In the forward pass, multiplication implies

a much stronger signal change based on spatiotemporal feature correspondence compared to the

additive interaction by the direct scaling of the appearance information through the motion signal,

rather than via a more subtle bias as in the additive case. During backpropagation, instead of the

fusion gradient flowing through the appearance and motion streams being distributed uniformly

due to additive forward interaction, it is now multiplicatively factored by the opposing stream’s

current inputs. This latter type of interaction allows the streams to more effectively interact during

the learning process and makes the system more capable of learning corresponding spatiotemporal

features.

In summary, our multiplicative formulation for spatial fusion exhibits several theoretical benefits

for recognition in video. Suppose for the moment that different channels in the appearance network

are responsible for facial areas (mouth, hair, etc), and particular channels in the motion network

are responsible for periodic optical flow fields which align with these concepts in provided input

data. Multiplicative feature fusion combines the channels of both streams by enforcing strong

spatiotemporal correspondence of the appearance and motion stream via backpropagation through

the respective filters. The weights in the subsequent layers of the residual unit are able to effectively

learn the relationships across these channels in order to best discriminate between related actions

using spacetime features capturing information at similar spatiotemporal scales. As a final note,

our findings for deep network fusion are generally applicable to any problem that attempts to fuse

information from deep architectures, which are capturing different input modalities (e.g. speech,

language, depth), and are not tied to the particular modalities of motion and appearance input.

For the concept of learning long-term correspondences, we first studied in Chapter 3 how to

best fuse two networks temporally. To capture the long-term nature of input sequences and allow

the architecture to best discriminate training sequences, we introduced temporally strided input

sampling. A training sequence is divided into temporal chunks with temporal stride between them.

131

Chapter 9. Conclusion

This approach is a memory efficient form of dilated filtering in the first convolutional layer, with

the dilation factor being the temporal stride. The temporal chunks are fed into the ConvNets to

capture short-term information at a fine temporal scale and spatiotemporal convolution layers put

that into context with temporally adjacent chunks, thus operating at a coarse temporal scale. Our

explored ways of fusing over time include 3D pooling from local spatiotemporal neighbourhoods

by first stacking the feature maps across time and then shrinking this spatiotemporal cube by

applying local average or maximum pooling, or additionally performing a convolution with a 3D

fusion kernel that spans the feature channels, space and time before 3D pooling. Notably, for

using 3D fusion kernels, we found it essential to initialize as sum operation across the feature

channels, since otherwise learning such a 3D filters would require significant amounts of training

data. The fusion filter is able to learn correspondences between highly abstract features of the

spatial stream and temporal stream over multi-frame input. After fusion, 3D pooling gathers the

resulting features and the spatiotemporal loss is evoked for supervision. We also discussed the issue

of how often to sample the temporal sequence, however, our final architecture in Chapter 3 was

limited in its capacity for temporal modelling. Our temporal fusion layer received temporal chunks

that are multiple frames apart by applying the two stream towers to the input video at temporally

strided input locations. This enabled us to capture short scale temporal features at the input of

the temporal network and putting them into context over a longer temporal scale at the higher

fusion layer of the network. Our technique has already had an impact in the field, with popular

methods adopting similar techniques, e.g. (Wang et al., 2016) where the two streams are applied

to temporal segments of the input. Although, that design provided the fusion layer with explicit

capabilities to model long-term structure in the input, it did not allow a hierarchical integration

of temporal information into the architecture.

Building upon our findings for long-term temporal aggregation over strided input samples, we

developed a spatiotemporal residual architecture in Chapter 4. Our ST-ResNet not only allows

the hierarchical learning of spacetime features by fusion of the appearance and motion channels

at multiple scales, it further employs a transformation of pre-trained spatial kernels to temporal

kernels. In particular, we transfer both streams from the spatial to the spatiotemporal domain by

transforming the dimensionality mapping filters of a pre-trained model into temporal convolutions,

initialized as residual filters over time. This technique builds on the ConvNet design principle of

stacking small convolutional filters throughout the hierarchy of the network. The resulting benefits

are a large receptive field at higher layers that comes with lower cost compared to the use of

large filters. Moreover, we factorize spatiotemporal modelling into separate 2D spatial convolutions

and 1D temporal convolutions which is a general ConvNet design principle to ease the learning

problem and keep computational demand low. These techniques allow the straightforward use of

standard ConvNets that have been pre-trained on large datasets and therefore to leverage the

massive amounts of training data in the image domain. We initialize our temporal kernels as an

averaging filter that can be thought as residual connections across time and let the network learn to

best discriminate image dynamics via backpropagation. This is achieved by simply replicating the

learned spatial kernels in pretrained ResNets across time for initialization as a temporal smoothing

132

kernel. Hence, the temporal filters are able to learn the temporal evolution of the appearance and

motion features and, moreover, by stacking such filters as the depth of the network increases, highly

complex spatiotemporal features can be learned. Also our technique of transforming spatial filters

has already had an impact in the field, with popular methods building on it, e.g. (Carreira and

Zisserman, 2017) where the filter transformation is termed “filter inflation”.

In summary, unlike some other approaches that explicitly learn spatiotemporal features using

3D convolutions, our approach has several benefits: Due to the asymmetric kernels the learning

problem is factorized and thus eased. We can learn features over large temporal scales by modelling

the temporal footprint of our architecture with the input stride in time (e.g. typical 3D ConvNets

have limited temporal support of around 16 frame snippets (Tran et al., 2015b)). Finally our method

has a conceptual benefit for temporal feature learning over a sequence modelling approach (e.g. as

in recurrent networks), because our learned filter weights can model spatiotemporal information

from local to global spatiotemporal scales.

In Chapter 5, we take these ideas of long-term feature learning even further by employing tem-

poral convolutions combined with feature space transformations initialized as identity mappings.

Using identity initialization preserves the design principles of residual networks as any significant

change in the network path would distort the (pretrained) model and thereby remove most of its

representational power. Therefore, the corresponding kernels can be injected at any point in the

network since they do not impact the information flow at initialization and during training the

filters can adapt their representation under the gradient flow. Our results show clear benefits of

using temporal kernels that are able to learn longer temporal relationships. We also compared

different temporal initializations and found that low-pass filters are more applicable for videos

that typically capture temporally consistent scenes and high-pass temporal initialization is more

appropriate for videos that exhibit a higher degree of inter-video diversity, for example caused by

camera motion. In summary, our ultimately presented architecture for video action recognition,

the spatiotemporal Multiplier Network, enables learning of multiscale spacetime representations

by multiplicative interaction of appearance and motion features coupled with injected identity

mapping kernels for learning long-term relationships. Our model is trained end-to-end and fully

convolutional in spacetime to process a video in a single forward pass and produces overall best

results on widely used action recognition datasets.

In Chapter 6, we focused on obtaining a better understanding of what deep spatiotemporal

representations are capturing. We visualized deep two-stream representations trained for action

recognition at multiple levels of granularity. Our results provided intuitive explanations for what

most excites filters across the different network layers. We found that lower layer filters learn similar

spatial patterns, even if trained on different input modalities of appearance and flow. For interme-

diate layers, we found visual stimuli of vastly different acceleration patterns that strongly activate

a single neuron; thereby, suggesting invariances to wide spatiotemporal scale changes. When look-

ing at the ultimate classification layers of the visualized networks, we found that these neurons

are very broadly tuned to similar concepts at the input. More generally, the chapter provided

clear qualitative evidence for separation into two streams for processing appearance and motion

133

Chapter 9. Conclusion

– a principle that has also been found in nature where numerous studies suggest a corresponding

separation into ventral and dorsal pathways of the brain.

A weakness of the temporal filters from Chapters 4 and 5 is that they are initialized as temporal

low-pass or high-pass kernels across time. In some cases, temporal coherence is a useful property if

one can expect that a ConvNet is capturing similar features across time (e.g. for repetitive motion

patterns seen in actions such as playing instruments). In other cases where the appearance and the

instantaneous motion pattern strongly vary over time, a high-pass filtering can be advantageous

for finding discriminative information over time, as a low-pass kernel would smooth out poten-

tially important high-frequency temporal variation. If the patterns, however, are broadly tuned in

frequency none of the two initializations are optimal. Of course, learning can alter temporal filter

kernels, but we argue that such initializations are suboptimal for modelling instantaneous temporal

patterns in a video, arising for example as characteristic temporal textures in dynamic scenes. In

Chapter 7, we face the task of dynamic scene recognition, which is a relatively new and growing

area of investigation in computer vision. Going beyond recognition of scenes from single still im-

ages, it addresses how scene dynamics (e.g., waves of water, fluttering of leaves, flow of traffic) can

assist in scene classification. Notably, these dynamic patterns typically subsist at short temporal

scales and do not satisfy brightness constancy assumptions – a reason for why optical flow based

methods usually perform poorly on that task. Different from our methods in Chapters 4 and 5, we

propose a temporal ResNet architecture that does not rely on optical flow input. T-ResNet holds

spatiotemporal residual units that inject temporal information into residual blocks via temporal

filters that are initialized randomly and operate over short temporal scales for capturing defining

dynamics of the scenes. The training of temporal filters from scratch is able to learn complex

temporal features, as it is initialized to receive more informative temporal gradients (than low-

or high-pass initialization); furthermore, our spatiotemporal residual unit can effectively ignore or

enhance temporal information by an extra non-linearity packed into the temporal residual path.

As noted, T-ResNet directly operates on the video input (without explicitly using optical flow)

and can also be viewed as a temporal inception architecture, since the temporal convolution block

operates on the dimensionality reduced input for injecting temporal signals.

Research in the area of dynamic scene classification received a major impetus via the intro-

duction of two video datasets designed to support study of this task. Since that time, aggressive

algorithm development has led to the need for new datasets of dynamic scenes to drive further

efforts. Toward that end, Chapter 7 introduced a new and challenging video database of dynamic

scenes that more than doubles the size of those previously available. The dataset encompasses a

wide range of natural variations (seasonal and diurnal changes as well as those of viewing param-

eters) and adds six additional scene classes to those previously available. Moreover, each scene

class is captured with and without camera motion to allow for systematic study of how this vari-

able interacts with dynamics of the scene per se. Neither of the major previous dynamic scenes

datasets allows for systematic control of this dimension (Derpanis et al., 2012, Shroff et al., 2010).

As a further contribution, a representative sampling of the currently best performing methods for

visual recognition are benchmarked on the database to provide up to date documentation of the

134

state-of-the-art in dynamic scene recognition. Our evaluation of seven state-of-the-art algorithms

on the new dataset shows that algorithms combining spatial and temporal measurements tend to

perform best; although, purely spatial measurements also can perform well on its own. In con-

trast, an algorithm based more purely on optical flow information performs poorly. Significantly,

all algorithms show a decrement in performance when confronted with camera motion, suggesting

that a promising research direction for future studies is the development of approaches that are

robust to this variable. Moving forward, the new dataset can continue to support development and

comparative evaluation of algorithms for dynamic scene understanding.

In the final Chapter 8, we have presented a straightforward and unified approach for simulta-

neous object detection and tracking in video. Our D&T method achieves state of the art on the

ImageNet VID challenge over all previous single model entries while being highly efficient. We also

carried over our ideas of temporally strided sampling from the previous chapters to the task of

video object detection. By looking at larger temporal windows during testing, our D & T architec-

ture is evaluated only at sparse frames of an input sequence and tracklets have to link detections

over larger temporal strides. The performance for such sampling is only slightly below the full-

frame evaluation, which we think is remarkable as the duration for processing a video can thereby

be reduced by orders of magnitudes. A potential point of improvement for D&T is to extend the

detector to operate over multiple frames of the sequence. It is straightforward to extend the D&T

approach in such a way in order to lengthen the temporal footprint. For example, correlation maps

could be computed for a set of neighbouring frames (with stride) symmetrically in time. Notably,

we found in preliminary experiments that such an extension did not have a clear beneficial ef-

fect on accuracy for short temporal windows. Interestingly, however, when testing with a larger

temporal stride and augmenting the detections from the current frame with the detector output

from temporally strided frames leads to clear gains in detection accuracy. We conjecture that the

insensitivity of the accuracy for short temporal windows originates from the high redundancy of

the detection scores from the centre frames with the scores at tracked locations. The accuracy gain

for larger temporal strides, however, suggests that more complementary information is integrated

from the tracked objects; thus, a potentially promising direction for improvement is to detect and

track over multiple temporally strided inputs.

Even though progress of deep learning for single image related tasks has been impressive, deep

video recognition has lagged behind. This thesis provided several significant contributions for ad-

vancing video recognition with deep learning. The core concept of the dissertation is that video

is different from the image domain. Instead of developing approaches that operate directly on the

spacetime volume, we design spatiotemporal architectures that explicitly model the interplay of

appearance and motion information. This allows us to best take advantage of the regularities,

as well as inherent differences, of the spatial and temporal domain instead of directly approach-

ing the problem by a purely data-driven concept. Besides empirical justification, our approach is

also loosely supported by the way nature attends this problem where numerous studies suggest a

corresponding separation into ventral and dorsal pathways of the human brain.

135

A
Confusion matrices for Spatiotemporal Multiplier

Networks

Confusion matrices for our proposed architecture using 50-layer ResNets for both appearance and

motion streams are shown in Fig. A.1 for UCF101 and in Fig. A.2 for HMDB51. We observe

that on UCF101 lowest accuracy is achieved by the classes BrushingTeeth, 52% (33% confused

with ShavingBeard), Hammering, 52% (21% confused with HeadMassage), FrontCrawl, 54% (38%

confused with BreastStroke).

On HMDB51 we report lowest performance for the classes wave 17% (17% confused with

sword exercise), swing baseball 27% (37% confused with throw) and sword 30% (13% confused

with draw sword). In Fig. A.3 and Fig. A.4 we show confusion matrices for our final model that

uses a deeper architecture (ResNet-152) for the motion stream (corresponding to the penultimate

row of Table 5.5 where the average performance over all three splits is listed, while here for confusion

matrices we report results for split 1). Confusions are similar to the case above. Moreover, we see

that there is just a slight gain for using a deeper model in the motion stream.

137

Appendix A. Confusion matrices for Spatiotemporal Multiplier Networks

mean accuracy: 94.0 %
1.0

1.0
.98 .02

1.0
1.0

1.0
.07 .84 .02 .07

.97 .03
1.0

1.0
1.0

1.0
.92 .08

1.0
.83 .03 .07 .07

1.0
.96.04

1.0
1.0

.11 .50 .06 .33
1.0

1.0
.03.75 .06.14.03

.18.71 .02 .06 .02
1.0

1.0
1.0

1.0
.98 .03

.08 .92
1.0

.38 .05 .54 .03
.08 .92

.12 .88
.12 .09 .52 .21 .03 .03

1.0
.04 .93.04

.03.03 .06 .03 .06.74 .03 .03
1.0

.95 .03 .03
1.0

1.0
1.0

1.0
1.0

1.0
1.0

.13 .84 .03
1.0

.06 .94
.90 .10

.11 .86 .03
.03 .97

.04 .96
.03.03 .94

.03 .94 .03
1.0

.03 .09 .06 .79 .03
.05 .84 .11

.02 .98
1.0

.98 .02
1.0

1.0
.02 .98

1.0
1.0

1.0
1.0

.89 .07.04
.05 .03 .92

.13 .87
.07 .93

1.0
1.0

1.0
.02 .98

.12 .02 .02 .84
.09 .09 .02 .78 .02

.06 .88.06
.18.80.03

1.0
1.0

.95 .05
.15 .85

1.0
1.0

1.0
1.0

1.0
.04 .04 .93

1.0
1.0

1.0
.09 .91

.04 .96
1.0

.03 .03 .06 .89
.03 .86.11

1.0
.03 .03 .03 .92

ApplyEyeMakeup
ApplyLipstick

Archery
BabyCrawling
BalanceBeam

BandMarching
BaseballPitch

Basketball
BasketballDunk

BenchPress
Biking

Billiards
BlowDryHair

BlowingCandles
BodyWeightSquats

Bowling
BoxingPunchingBag

BoxingSpeedBag
BreastStroke

BrushingTeeth
CleanAndJerk

CliffDiving
CricketBowling

CricketShot
CuttingInKitchen

Diving
Drumming

Fencing
FieldHockeyPenalty

FloorGymnastics
FrisbeeCatch

FrontCrawl
GolfSwing

Haircut
Hammering

HammerThrow
HandstandPushups
HandstandWalking

HeadMassage
HighJump
HorseRace

HorseRiding
HulaHoop

IceDancing
JavelinThrow
JugglingBalls

JumpingJack
JumpRope

Kayaking
Knitting

LongJump
Lunges

MilitaryParade
Mixing

MoppingFloor
Nunchucks

ParallelBars
PizzaTossing
PlayingCello

PlayingDaf
PlayingDhol
PlayingFlute

PlayingGuitar
PlayingPiano

PlayingSitar
PlayingTabla
PlayingViolin

PoleVault
PommelHorse

PullUps
Punch

PushUps
Rafting

RockClimbingIndoor
RopeClimbing

Rowing
SalsaSpin

ShavingBeard
Shotput

SkateBoarding
Skiing
Skijet

SkyDiving
SoccerJuggling

SoccerPenalty
StillRings

SumoWrestling
Surfing
Swing

TableTennisShot
TaiChi

TennisSwing
ThrowDiscus

TrampolineJumping
Typing

UnevenBars
VolleyballSpiking
WalkingWithDog

WallPushups
WritingOnBoard

YoYo
ApplyEyeMakeup

ApplyLipstick

Archery

BabyCrawling

BalanceBeam

BandMarching

BaseballPitch

Basketball

BasketballDunk

BenchPress

Biking
Billiards

BlowDryHair

BlowingCandles

BodyWeightSquats

Bowling

BoxingPunchingBag

BoxingSpeedBag

BreastStroke

BrushingTeeth

CleanAndJerk

CliffDiving

CricketBowling

CricketShot

CuttingInKitchen

Diving
Drumming

Fencing

FieldHockeyPenalty

FloorGymnastics

FrisbeeCatch

FrontCrawl

GolfSwing

Haircut

Hammering

HammerThrow

HandstandPushups

HandstandWalking

HeadMassage

HighJump

HorseRace

HorseRiding

HulaHoop

IceDancing

JavelinThrow

JugglingBalls

JumpingJack

JumpRope

Kayaking

Knitting

LongJump

Lunges

MilitaryParade

Mixing

MoppingFloor

Nunchucks

ParallelBars

PizzaTossing

PlayingCello

PlayingDaf

PlayingDhol

PlayingFlute

PlayingGuitar

PlayingPiano

PlayingSitar

PlayingTabla

PlayingViolin

PoleVault

PommelHorse

PullUps

Punch
PushUps

Rafting

RockClimbingIndoor

RopeClimbing

Rowing

SalsaSpin

ShavingBeard

Shotput

SkateBoarding

Skiing
Skijet

SkyDiving

SoccerJuggling

SoccerPenalty

StillRings

SumoWrestling

Surfing

Swing
TableTennisShot

TaiChi

TennisSwing

ThrowDiscus

TrampolineJumping

Typing
UnevenBars

VolleyballSpiking

WalkingWithDog

WallPushups

WritingOnBoard

YoYo

(a) ResNet-50 & ResNet-50; UCF101 (split1)

Figure A.1: Confusion matrix for our model on the first split of UCF101 when using ResNet-50
in both streams. Best viewed electronically, with zoom.

138

mean accuracy: 69.0 %
.83 .03 .03 .07 .03

.53 .03 .13 .27 .03
.73 .13.03 .03 .07

.77 .03.07 .03 .07 .03
.77 .03 .03 .03 .07 .03 .03

.87.03 .07 .03
.03 .10.60 .03.07 .03 .03 .03 .03 .03

.77 .07 .10 .03 .03
.37 .03 .30.10.03 .03 .13

.87 .03 .10
.73.20 .03 .03
.27.70 .03

.57 .03 .10.10 .03 .03 .07 .03 .03
.77 .03.03.07 .10

.13.03 .77 .07
.97 .03

.03.07.03 .03 .03.73 .03 .03

.07.03 .50 .03 .07 .03.03 .03 .20
.77.03 .03 .17

.13.03 .03 .03 .50 .07 .13 .07
.07 .03 .07 .03.60 .07 .10 .03

.07 .03 .10 .43 .17 .03 .03 .13
.03 .03 .87.03 .03

.10.03 .03.03 .63 .17

.03 .10 .03 .07.07 .03 .40 .07 .03 .03.07 .03 .03
.07.07 .77 .07 .03

1.0
.07 .07 .83 .03

.90 .07 .03
.10 .90

1.0
.03 .87.07 .03

.03 .07.07 .03 .80
.03 .03 .87 .03 .03

.03.07 .80 .07 .03
1.0

.03 .03 .03 .03 .07.80
.03 .03 .60 .30 .03

.10 .90

.20 .07.07.03 .50 .13

.10 .03.13 .03 .57 .13
.03 .07 .03 .03 .10 .73

.03 .03 .03.03 .23 .57 .07
.03 .07.07 .10 .03.03 .03 .27 .37

.07.03 .20 .03 .03.03 .47.13
.10 .13 .07 .07 .03 .07 .03 .03 .13 .30 .03

.03 .03.03 .87 .03
.07.03 .07 .03.10.03 .03 .10 .03 .10 .40

.07 .03.03 .03 .60.23
.03 .03 .03 .07 .07 .03.70.03

.07 .03 .03.03 .10 .03 .17 .10 .10.17.17

brush_hair
cartwheel

catch
chew
clap

climb
climb_stairs

dive
draw_sword

dribble
drink

eat
fall_floor

fencing
flic_flac

golf
handstand

hit
hug

jump
kick_ball

kick
kiss

laugh
pick
pour

pullup
punch
push

pushup
ride_bike

ride_horse
run

shake_hands
shoot_ball

shoot_bow
shoot_gun

sit
situp
smile

smoke
somersault

stand
swing_baseball
sword_exercise

sword
talk

throw
turn

walk
wave

brush_hair

cartwheel

catch
chew

clap
climb

climb_stairs

dive
draw_sword

dribble
drink

eat fall_floor

fencing
flic_flac

golf
handstand

hit hug
jump

kick_ball

kick
kiss

laugh
pick

pour
pullup

punch
push

pushup
ride_bike

ride_horse

runshake_hands

shoot_ball

shoot_bow

shoot_gun

sit situp
smile

smoke
somersault

stand
swing_baseball

sword_exercise

sword
talk

throw
turn

walk
wave

(a) ResNet-50 & ResNet-50; HMDB51 (split1)

Figure A.2: Confusion matrix for our model on the first split of HMDB51 when using ResNet-50
in both streams. Best viewed electronically, with zoom.

139

Appendix A. Confusion matrices for Spatiotemporal Multiplier Networks

mean accuracy: 94.1 %
1.0

1.0
1.0

1.0
.97 .03

1.0
.07 .86 .02 .05

.03 .94 .03
1.0

1.0
1.0

1.0
.89 .11

.97 .03
.93 .03 .03

.98 .02
.02 .80.16 .02

1.0
1.0

.08 .64 .03 .03 .22
1.0

1.0
.75 .14.11
.20.59 .08 .10 .02

1.0
1.0

1.0
1.0

.95 .05
1.0

1.0
.35 .05 .59

.92 .03 .05
.06 .94

.03 .03 .09 .06 .03 .48 .24 .03
1.0

1.0
.06.09 .82 .03

.02 .98
.03 .84 .05 .03 .05

1.0
1.0

1.0
1.0

.03 .97
1.0

1.0
1.0

1.0
.06 .88 .06

.97 .03
.03 .16 .78 .03

.03 .97
.02 .02 .96

.03 .06 .91
.91 .03 .03 .03

1.0
.03 .09 .06 .21 .61

.07 .93
.02 .98

.98.02
.98 .02

.02 .98
1.0

1.0
1.0

1.0
1.0

1.0
.93 .07

.03.03 .95
.10 .03 .87

.11 .86 .04
1.0

1.0
1.0

1.0
.05.02 .07 .86

.04 .02 .93
.03 .94.03

.10.90
1.0

1.0
.95 .05

1.0
.97 .03

1.0
1.0

.07 .88 .02 .02
.03 .97

.07 .07 .86
1.0

1.0
1.0

.09 .91
.04 .96

1.0
.03 .06 .92

.14 .86
1.0

.03 .06 .92

ApplyEyeMakeup
ApplyLipstick

Archery
BabyCrawling
BalanceBeam

BandMarching
BaseballPitch

Basketball
BasketballDunk

BenchPress
Biking

Billiards
BlowDryHair

BlowingCandles
BodyWeightSquats

Bowling
BoxingPunchingBag

BoxingSpeedBag
BreastStroke

BrushingTeeth
CleanAndJerk

CliffDiving
CricketBowling

CricketShot
CuttingInKitchen

Diving
Drumming

Fencing
FieldHockeyPenalty

FloorGymnastics
FrisbeeCatch

FrontCrawl
GolfSwing

Haircut
Hammering

HammerThrow
HandstandPushups
HandstandWalking

HeadMassage
HighJump
HorseRace

HorseRiding
HulaHoop

IceDancing
JavelinThrow
JugglingBalls

JumpingJack
JumpRope

Kayaking
Knitting

LongJump
Lunges

MilitaryParade
Mixing

MoppingFloor
Nunchucks

ParallelBars
PizzaTossing
PlayingCello

PlayingDaf
PlayingDhol
PlayingFlute

PlayingGuitar
PlayingPiano

PlayingSitar
PlayingTabla
PlayingViolin

PoleVault
PommelHorse

PullUps
Punch

PushUps
Rafting

RockClimbingIndoor
RopeClimbing

Rowing
SalsaSpin

ShavingBeard
Shotput

SkateBoarding
Skiing
Skijet

SkyDiving
SoccerJuggling

SoccerPenalty
StillRings

SumoWrestling
Surfing
Swing

TableTennisShot
TaiChi

TennisSwing
ThrowDiscus

TrampolineJumping
Typing

UnevenBars
VolleyballSpiking
WalkingWithDog

WallPushups
WritingOnBoard

YoYo
ApplyEyeMakeup

ApplyLipstick

Archery

BabyCrawling

BalanceBeam

BandMarching

BaseballPitch

Basketball

BasketballDunk

BenchPress

Biking
Billiards

BlowDryHair

BlowingCandles

BodyWeightSquats

Bowling

BoxingPunchingBag

BoxingSpeedBag

BreastStroke

BrushingTeeth

CleanAndJerk

CliffDiving

CricketBowling

CricketShot

CuttingInKitchen

Diving
Drumming

Fencing

FieldHockeyPenalty

FloorGymnastics

FrisbeeCatch

FrontCrawl

GolfSwing

Haircut

Hammering

HammerThrow

HandstandPushups

HandstandWalking

HeadMassage

HighJump

HorseRace

HorseRiding

HulaHoop

IceDancing

JavelinThrow

JugglingBalls

JumpingJack

JumpRope

Kayaking

Knitting

LongJump

Lunges

MilitaryParade

Mixing

MoppingFloor

Nunchucks

ParallelBars

PizzaTossing

PlayingCello

PlayingDaf

PlayingDhol

PlayingFlute

PlayingGuitar

PlayingPiano

PlayingSitar

PlayingTabla

PlayingViolin

PoleVault

PommelHorse

PullUps

Punch
PushUps

Rafting

RockClimbingIndoor

RopeClimbing

Rowing

SalsaSpin

ShavingBeard

Shotput

SkateBoarding

Skiing
Skijet

SkyDiving

SoccerJuggling

SoccerPenalty

StillRings

SumoWrestling

Surfing

Swing
TableTennisShot

TaiChi

TennisSwing

ThrowDiscus

TrampolineJumping

Typing
UnevenBars

VolleyballSpiking

WalkingWithDog

WallPushups

WritingOnBoard

YoYo

(a) ResNet-50 & ResNet-152; UCF101 (split1)

Figure A.3: Confusion matrix for our model on the first split of UCF101 when using ResNet-50
in the appearance and ResNet-152 in the motion streams. Best viewed electronically, with zoom.

140

mean accuracy: 69.4 %
.83 .03 .03 .03 .03 .03

.63 .07 .23 .03 .03
.77 .10.03 .03 .07

.83 .07 .07 .03
.73 .03 .07 .03.03 .03 .07

1.0
.03.67 .03 .03.07 .07 .07 .03
.03 .73 .03 .07.03 .03.03 .03

.43 .03 .03 .30.07 .13
.83 .03 .13

.73.13 .03 .03 .07

.23.67 .07 .03
.03.10 .47 .10.07 .03 .13 .03.03

.73 .03.03.03 .03 .13
.17 .70 .07 .07

.97 .03
.03.07 .90
.03 .43 .03 .17 .07.07 .03.03.07.03 .03

.80.03 .17
.13.07 .03 .50 .03 .03 .10 .10

.03 .03 .07 .03.67 .03 .07.07
.17 .40 .20 .03 .17 .03

.03 .90 .03 .03
.07 .03 .03.67 .17 .03

.03 .03.03 .03 .03.03.03 .47 .07 .03.07 .03 .03.03 .03
.07 .83 .10

1.0
.03 .03 .03 .83 .03.03

.03 .03 .87 .07
.10 .80 .10

1.0
.03 .03.03 .83.03 .03

.03 .07 .03.07.03 .03 .03.63 .07
.03 .03.03 .83 .03 .03

.03 .03 .07 .83 .03
.90.07 .03

.03 .03 .03 .03 .07.80
.03 .03 .70 .20 .03

.03 .07 .90

.10 .03 .30.03 .03 .43 .07

.07 .10.10 .03 .60 .10
.03 .03 .07 .03 .10 .73

.03 .03 .03 .07 .77 .07
.10 .07 .07 .23 .53

.03 .33 .03 .07 .03 .03.03 .30.10 .03
.13 .07 .03 .07 .03.03 .20.03.37 .03

.03 .03 .90 .03
.07 .07 .10.03 .03 .10 .03 .10 .47

.07 .03 .03 .07 .03 .63.13
.03 .03 .03 .17 .17 .57

.07 .03 .07 .03 .03 .03 .03.07 .03 .03 .17 .10.03.03.07.17

brush_hair
cartwheel

catch
chew
clap

climb
climb_stairs

dive
draw_sword

dribble
drink

eat
fall_floor

fencing
flic_flac

golf
handstand

hit
hug

jump
kick_ball

kick
kiss

laugh
pick
pour

pullup
punch

push
pushup

ride_bike
ride_horse

run
shake_hands

shoot_ball
shoot_bow
shoot_gun

sit
situp
smile

smoke
somersault

stand
swing_baseball
sword_exercise

sword
talk

throw
turn
walk

wave
brush_hair

cartwheel

catch
chew

clap
climb

climb_stairs

dive
draw_sword

dribble
drink

eat fall_floor

fencing
flic_flac

golf
handstand

hit hug
jump

kick_ball

kick
kiss

laugh
pick

pour
pullup

punch
push

pushup
ride_bike

ride_horse

runshake_hands

shoot_ball

shoot_bow

shoot_gun

sit situp
smile

smoke
somersault

stand
swing_baseball

sword_exercise

sword
talk

throw
turn

walk
wave

(a) ResNet-50 & ResNet-152; HMDB51 (split1)

Figure A.4: Confusion matrix for our model on the first split of HMDB51 when using ResNet-50
in the appearance and ResNet-152 in the motion streams. Best viewed electronically, with zoom.

141

B
Visualizations for Understanding Deep Video

Representations

B.1 Early layers under different optical flow encodings

In Figures B.1, B.2 and B.3 we show further examples for visualization of the early layers in

the VGG-16 two-stream representation. For the optical flow components, we use three different

encodings as outlined in Section 6.4.1. For the hsv encoding of optical flow, we show the vector

mapping in the top-right corner of the page. We observe that when going deeper in the network

hierarchy, filters get more specific capturing complex structures at the last convolutional layers.

Also interesting is the correlation of spatial patterns between the appearance and the optical flow

inputs.

143

Appendix B. Visualizations for Understanding Deep Video Representations

appearance

c
o
n
v
1

2
f1

-6
4

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
2

1
f1

-1
2
8

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
2

2
f1

-1
2
8

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
3

1
f1

-1
2
1

flow mag flow hsv flow flow x flow flow y

Figure B.1: Different visualizations of the motion input for VGG-16 layers conv1 1 to conv3 1.

144

B.1. Early layers under different optical flow encodings

appearance

c
o
n
v
3

2
f1

-1
0
0

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
3

3
f1

-8
1

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
4

1
f1

-4
9

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
4

3
f1

-3
6

flow mag flow hsv flow flow x flow flow y

Figure B.2: Different visualizations of the motion input for VGG-16 layers conv3 2 to conv4 2.

145

Appendix B. Visualizations for Understanding Deep Video Representations

appearance

c
o
n
v
4

3
f1

-3
6

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
5

1
f1

-2
5

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
5

2
f1

-1
6

flow mag flow hsv flow flow x flow flow y

appearance

c
o
n
v
5

3
f1

-1
6

flow mag flow hsv flow flow x flow flow y

Figure B.3: Different visualizations of the motion input for VGG-16 layers conv4 3 to conv5 3.

146

B.2. Convolutional fusion layer visualizations

B.2 Convolutional fusion layer visualizations

The visualizations shown in Figures B.4 - B.19 alternately show samples from the conv5 fusion

layers under isotropic RTV 3D(x, κ) and non-isotropic, (6.5) RTV 2D1D(x, χ), spacetime TV norms

as defined in equations (6.4) and (6.5). It is recommended to view the two regularization forms in

a two-page, side by side, view to see the full variability of these local filters (each unit is shown in 8

different visualizations). Interesting patterns appear that act as a local, distributed representation

for multiple abstract features at the higher layers, shown in the next section.

147

Appendix B. Visualizations for Understanding Deep Video Representations

appearance κ = 10

c
o
n
v
5

fu
s
io

n
a

f0
0
7

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

c
o
n
v
5

fu
s
io

n
a

f0
0
8

c
o
n
v
5

fu
s
io

n
a

f0
0
9

c
o
n
v
5

fu
s
io

n
a

f0
1
0

c
o
n
v
5

fu
s
io

n
a

f0
1
1

c
o
n
v
5

fu
s
io

n
a

f0
1
2

Figure B.4: Visualization of 6 filters of the conv5 fusion (appearance stream) layer under different
3D spacetime TV regularization. We show appearance and the optical flow inputs for slowest
κ = 10, slow κ = 5, fast κ = 2.5, and faster κ = 1, spatiotemporal variation.

148

B.2. Convolutional fusion layer visualizations

appearance χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
0
7

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
0
8

c
o
n
v
5

fu
s
io

n
a

f0
0
9

c
o
n
v
5

fu
s
io

n
a

f0
1
0

c
o
n
v
5

fu
s
io

n
a

f0
1
1

c
o
n
v
5

fu
s
io

n
a

f0
1
2

Figure B.5: Visualization of 6 filters of the conv5 fusion (appearance stream) layer under different
temporal TV regularization. We show the appearance input and the optical flow inputs for slowest
χ = 10, slow χ = 5, fast χ = 1, and unconstrained χ = 0, temporal variation regularization.

149

Appendix B. Visualizations for Understanding Deep Video Representations

appearance κ = 10

c
o
n
v
5

fu
s
io

n
a

f0
1
3

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

c
o
n
v
5

fu
s
io

n
a

f0
1
4

c
o
n
v
5

fu
s
io

n
a

f0
1
5

c
o
n
v
5

fu
s
io

n
a

f0
1
6

c
o
n
v
5

fu
s
io

n
a

f0
1
7

c
o
n
v
5

fu
s
io

n
a

f0
1
8

Figure B.6: Visualization of 6 filters of the conv5 fusion (appearance stream) layer under different
3D spacetime TV regularization. We show appearance and the optical flow inputs for slowest
κ = 10, slow κ = 5, fast κ = 2.5, and faster κ = 1, spatiotemporal variation.

150

B.2. Convolutional fusion layer visualizations

appearance χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
1
3

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
1
4

c
o
n
v
5

fu
s
io

n
a

f0
1
5

c
o
n
v
5

fu
s
io

n
a

f0
1
6

c
o
n
v
5

fu
s
io

n
a

f0
1
7

c
o
n
v
5

fu
s
io

n
a

f0
1
8

Figure B.7: Visualization of 6 filters of the conv5 fusion (appearance stream) layer under different
temporal TV regularization. We show the appearance input and the optical flow inputs for slowest
χ = 10, slow χ = 5, fast χ = 1, and unconstrained χ = 0, temporal variation regularization.

151

Appendix B. Visualizations for Understanding Deep Video Representations

appearance κ = 10

c
o
n
v
5

fu
s
io

n
a

f0
1
9

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

c
o
n
v
5

fu
s
io

n
a

f0
2
0

c
o
n
v
5

fu
s
io

n
a

f0
2
1

c
o
n
v
5

fu
s
io

n
a

f0
2
2

c
o
n
v
5

fu
s
io

n
a

f0
2
3

c
o
n
v
5

fu
s
io

n
a

f0
2
4

Figure B.8: Visualization of 6 filters of the conv5 fusion (appearance stream) layer under different
3D spacetime TV regularization. We show appearance and the optical flow inputs for slowest
κ = 10, slow κ = 5, fast κ = 2.5, and faster κ = 1, spatiotemporal variation.

152

B.2. Convolutional fusion layer visualizations

appearance χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
1
9

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
2
0

c
o
n
v
5

fu
s
io

n
a

f0
2
1

c
o
n
v
5

fu
s
io

n
a

f0
2
2

c
o
n
v
5

fu
s
io

n
a

f0
2
3

c
o
n
v
5

fu
s
io

n
a

f0
2
4

Figure B.9: Visualization of 6 filters of the conv5 fusion (appearance stream) layer under different
temporal TV regularization. We show the appearance input and the optical flow inputs for slowest
χ = 10, slow χ = 5, fast χ = 1, and unconstrained χ = 0, temporal variation regularization.

153

Appendix B. Visualizations for Understanding Deep Video Representations

appearance κ = 10

c
o
n
v
5

fu
s
io

n
a

f0
2
5

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

c
o
n
v
5

fu
s
io

n
a

f0
2
6

c
o
n
v
5

fu
s
io

n
a

f0
2
7

c
o
n
v
5

fu
s
io

n
a

f0
2
8

c
o
n
v
5

fu
s
io

n
a

f0
2
9

c
o
n
v
5

fu
s
io

n
a

f0
3
0

Figure B.10: Visualization of 6 filters of the conv5 fusion (appearance stream) layer under differ-
ent 3D spacetime TV regularization. We show appearance and the optical flow inputs for slowest
κ = 10, slow κ = 5, fast κ = 2.5, and faster κ = 1, spatiotemporal variation.

154

B.2. Convolutional fusion layer visualizations

appearance χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
2
5

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

c
o
n
v
5

fu
s
io

n
a

f0
2
6

c
o
n
v
5

fu
s
io

n
a

f0
2
7

c
o
n
v
5

fu
s
io

n
a

f0
2
8

c
o
n
v
5

fu
s
io

n
a

f0
2
9

c
o
n
v
5

fu
s
io

n
a

f0
3
0

Figure B.11: Visualization of 6 filters of the conv5 fusion (appearance stream) layer under dif-
ferent temporal TV regularization. We show the appearance input and the optical flow inputs for
slowest χ = 10, slow χ = 5, fast χ = 1, and unconstrained χ = 0, temporal variation regularization.

155

Appendix B. Visualizations for Understanding Deep Video Representations

appearance κ = 10

c
o
n
v
5

fu
s
io

n
m

f0
0
7

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

c
o
n
v
5

fu
s
io

n
m

f0
0
8

c
o
n
v
5

fu
s
io

n
m

f0
0
9

c
o
n
v
5

fu
s
io

n
m

f0
1
0

c
o
n
v
5

fu
s
io

n
m

f0
1
1

c
o
n
v
5

fu
s
io

n
m

f0
1
2

Figure B.12: Visualization of 6 filters of the conv5 fusion (motion stream) layer under different 3D
spacetime TV regularization. We show appearance and the optical flow inputs for slowest κ = 10,
slow κ = 5, fast κ = 2.5, and faster κ = 1, spatiotemporal variation.

156

B.2. Convolutional fusion layer visualizations

appearance χ = 0

c
o
n
v
5

fu
s
io

n
m

f0
0
7

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

c
o
n
v
5

fu
s
io

n
m

f0
0
8

c
o
n
v
5

fu
s
io

n
m

f0
0
9

c
o
n
v
5

fu
s
io

n
m

f0
1
0

c
o
n
v
5

fu
s
io

n
m

f0
1
1

c
o
n
v
5

fu
s
io

n
m

f0
1
2

Figure B.13: Visualization of 6 filters of the conv5 fusion (motion stream) layer under different
temporal TV regularization. We show the appearance input and the optical flow inputs for slowest
χ = 10, slow χ = 5, fast χ = 1, and unconstrained χ = 0, temporal variation regularization.

157

Appendix B. Visualizations for Understanding Deep Video Representations

appearance κ = 10

c
o
n
v
5

fu
s
io

n
m

f0
1
3

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

c
o
n
v
5

fu
s
io

n
m

f0
1
4

c
o
n
v
5

fu
s
io

n
m

f0
1
5

c
o
n
v
5

fu
s
io

n
m

f0
1
6

c
o
n
v
5

fu
s
io

n
m

f0
1
7

c
o
n
v
5

fu
s
io

n
m

f0
1
8

Figure B.14: Visualization of 6 filters of the conv5 fusion (motion stream) layer under different 3D
spacetime TV regularization. We show appearance and the optical flow inputs for slowest κ = 10,
slow κ = 5, fast κ = 2.5, and faster κ = 1, spatiotemporal variation.

158

B.2. Convolutional fusion layer visualizations

appearance χ = 0

c
o
n
v
5

fu
s
io

n
m

f0
1
3

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

c
o
n
v
5

fu
s
io

n
m

f0
1
4

c
o
n
v
5

fu
s
io

n
m

f0
1
5

c
o
n
v
5

fu
s
io

n
m

f0
1
6

c
o
n
v
5

fu
s
io

n
m

f0
1
7

c
o
n
v
5

fu
s
io

n
m

f0
1
8

Figure B.15: Visualization of 6 filters of the conv5 fusion (motion stream) layer under different
temporal TV regularization. We show the appearance input and the optical flow inputs for slowest
χ = 10, slow χ = 5, fast χ = 1, and unconstrained χ = 0, temporal variation regularization.

159

Appendix B. Visualizations for Understanding Deep Video Representations

appearance κ = 10

c
o
n
v
5

fu
s
io

n
m

f0
1
9

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

c
o
n
v
5

fu
s
io

n
m

f0
2
0

c
o
n
v
5

fu
s
io

n
m

f0
2
1

c
o
n
v
5

fu
s
io

n
m

f0
2
2

c
o
n
v
5

fu
s
io

n
m

f0
2
3

c
o
n
v
5

fu
s
io

n
m

f0
2
4

Figure B.16: Visualization of 6 filters of the conv5 fusion (motion stream) layer under different 3D
spacetime TV regularization. We show appearance and the optical flow inputs for slowest κ = 10,
slow κ = 5, fast κ = 2.5, and faster κ = 1, spatiotemporal variation.

160

B.2. Convolutional fusion layer visualizations

appearance χ = 0

c
o
n
v
5

fu
s
io

n
m

f0
1
9

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

c
o
n
v
5

fu
s
io

n
m

f0
2
0

c
o
n
v
5

fu
s
io

n
m

f0
2
1

c
o
n
v
5

fu
s
io

n
m

f0
2
2

c
o
n
v
5

fu
s
io

n
m

f0
2
3

c
o
n
v
5

fu
s
io

n
m

f0
2
4

Figure B.17: Visualization of 6 filters of the conv5 fusion (motion stream) layer under different
temporal TV regularization. We show the appearance input and the optical flow inputs for slowest
χ = 10, slow χ = 5, fast χ = 1, and unconstrained χ = 0, temporal variation regularization.

161

Appendix B. Visualizations for Understanding Deep Video Representations

appearance κ = 10

c
o
n
v
5

fu
s
io

n
m

f0
2
5

flow κ = 10 flow κ = 5 flow κ = 2.5 flow κ = 1

c
o
n
v
5

fu
s
io

n
m

f0
2
6

c
o
n
v
5

fu
s
io

n
m

f0
2
7

c
o
n
v
5

fu
s
io

n
m

f0
2
8

c
o
n
v
5

fu
s
io

n
m

f0
2
9

c
o
n
v
5

fu
s
io

n
m

f0
3
0

Figure B.18: Visualization of 6 filters of the conv5 fusion (motion stream) layer under different 3D
spacetime TV regularization. We show appearance and the optical flow inputs for slowest κ = 10,
slow κ = 5, fast κ = 2.5, and faster κ = 1, spatiotemporal variation.

162

B.2. Convolutional fusion layer visualizations

appearance χ = 0

c
o
n
v
5

fu
s
io

n
m

f0
2
5

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

c
o
n
v
5

fu
s
io

n
m

f0
2
6

c
o
n
v
5

fu
s
io

n
m

f0
2
7

c
o
n
v
5

fu
s
io

n
m

f0
2
8

c
o
n
v
5

fu
s
io

n
m

f0
2
9

c
o
n
v
5

fu
s
io

n
m

f0
3
0

Figure B.19: Visualization of 6 filters of the conv5 fusion (motion stream) layer under different
temporal TV regularization. We show the appearance input and the optical flow inputs for slowest
χ = 10, slow χ = 5, fast χ = 1, and unconstrained χ = 0, temporal variation regularization.

163

Appendix B. Visualizations for Understanding Deep Video Representations

B.3 Global layer visualizations

This section shows additional visualizations for the fully-connected layers in the motion stream

of the VGG-16 fusion architecture, that have global receptive fields by operating on pooled local

fusion features. In particular, Fig. B.20 & Fig. B.21 show ten filters of the fully-connected 6 (fc 6)

layer while Fig. B.22 & Fig. B.23 show ten filters of the subsequent fully-connected 7 (fc 7) layer.

appearance χ = 0

fc
6

m
f0

0
6

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

fc
6

m
f0

0
7

fc
6

m
f0

0
8

fc
6

m
f0

0
9

fc
6

m
f0

1
0

Figure B.20: Visualization of 5 filters of the fc 6 (motion stream) layer under different temporal
TV regularization. We show the appearance input and the optical flow inputs for slowest χ = 10,
slow χ = 5, fast χ = 1, and unconstrained (fastest) χ = 0, temporal variation regularization.

164

B.3. Global layer visualizations

appearance χ = 0

fc
6

m
f0

1
1

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

fc
6

m
f0

1
2

fc
6

m
f0

1
3

fc
6

m
f0

1
4

fc
6

m
f0

1
5

Figure B.21: Visualization of 5 filters of the fc 6 (motion stream) layer under different temporal
TV regularization. We show the appearance input and the optical flow inputs for slowest χ = 10,
slow χ = 5, fast χ = 1, and unconstrained (fastest) χ = 0, temporal variation regularization.

165

Appendix B. Visualizations for Understanding Deep Video Representations

appearance χ = 0

fc
6

m
f0

0
6

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

fc
6

m
f0

0
7

fc
6

m
f0

0
8

fc
6

m
f0

0
9

fc
6

m
f0

1
0

Figure B.22: Visualization of 5 filters of the fc 7 (motion stream) layer under different temporal
TV regularization. We show the appearance input and the optical flow inputs for slowest χ = 10,
slow χ = 5, fast χ = 1, and unconstrained (fastest) χ = 0, temporal variation regularization.

166

B.3. Global layer visualizations

appearance χ = 0

fc
6

m
f0

1
1

flow χ = 10 flow χ = 5 flow χ = 1 flow χ = 0

fc
6

m
f0

1
2

fc
6

m
f0

1
3

fc
6

m
f0

1
4

fc
6

m
f0

1
5

Figure B.23: Visualization of 5 filters of the fc 7 (motion stream) layer under different temporal
TV regularization. We show the appearance input and the optical flow inputs for slowest χ = 10,
slow χ = 5, fast χ = 1, and unconstrained (fastest) χ = 0, temporal variation regularization.

167

Appendix B. Visualizations for Understanding Deep Video Representations

B.4 Prediction layer visualizations

In Figures B.24-B.40, we show additional visualizations for the learned VGG-16 fusion model on

the classes present in UCF101. Again, we visualize appearance and optical flow inputs for different

temporal regularization strengths (χ). Notably, in some cases, the fast temporal variation case

(χ = 0) reveals large scale motion that is not present in the slower cases. For example, for the

Billiards class the fastest visualization indicates player movement around the pool table, etc.

appearance χ = 10 χ = 5 χ = 1 χ = 0 BalanceBeam

appearance χ = 10 χ = 5 χ = 1 χ = 0 BandMarching

appearance χ = 10 χ = 5 χ = 1 χ = 0 BaseballPitch

appearance χ = 10 χ = 5 χ = 1 χ = 0 Basketball

appearance χ = 10 χ = 5 χ = 1 χ = 0 BasketballDunk

Figure B.24: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

168

B.4. Prediction layer visualizations

appearance χ = 10 χ = 5 χ = 1 χ = 0 BenchPress

appearance χ = 10 χ = 5 χ = 1 χ = 0 Biking

appearance χ = 10 χ = 5 χ = 1 χ = 0 Billiards

appearance χ = 10 χ = 5 χ = 1 χ = 0 BlowDryHair

appearance χ = 10 χ = 5 χ = 1 χ = 0 BlowingCandles

appearance χ = 10 χ = 5 χ = 1 χ = 0 BodyWeightSquats

Figure B.25: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

169

Appendix B. Visualizations for Understanding Deep Video Representations

appearance χ = 10 χ = 5 χ = 1 χ = 0 Bowling

appearance χ = 10 χ = 5 χ = 1 χ = 0 BoxingPunchingBag

appearance χ = 10 χ = 5 χ = 1 χ = 0 BoxingSpeedBag

appearance χ = 10 χ = 5 χ = 1 χ = 0 BreastStroke

appearance χ = 10 χ = 5 χ = 1 χ = 0 BrushingTeeth

appearance χ = 10 χ = 5 χ = 1 χ = 0 CleanAndJerk

Figure B.26: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

170

B.4. Prediction layer visualizations

appearance χ = 10 χ = 5 χ = 1 χ = 0 CliffDiving

appearance χ = 10 χ = 5 χ = 1 χ = 0 CricketBowling

appearance χ = 10 χ = 5 χ = 1 χ = 0 CricketShot

appearance χ = 10 χ = 5 χ = 1 χ = 0 CuttingInKitchen

appearance χ = 10 χ = 5 χ = 1 χ = 0 Diving

appearance χ = 10 χ = 5 χ = 1 χ = 0 Drumming

Figure B.27: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

171

Appendix B. Visualizations for Understanding Deep Video Representations

appearance χ = 10 χ = 5 χ = 1 χ = 0 Fencing

appearance χ = 10 χ = 5 χ = 1 χ = 0 FieldHockeyPenalty

appearance χ = 10 χ = 5 χ = 1 χ = 0 FloorGymnastics

appearance χ = 10 χ = 5 χ = 1 χ = 0 FrisbeeCatch

appearance χ = 10 χ = 5 χ = 1 χ = 0 FrontCrawl

appearance χ = 10 χ = 5 χ = 1 χ = 0 GolfSwing

Figure B.28: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

172

B.4. Prediction layer visualizations

appearance χ = 10 χ = 5 χ = 1 χ = 0 Haircut

appearance χ = 10 χ = 5 χ = 1 χ = 0 Hammering

appearance χ = 10 χ = 5 χ = 1 χ = 0 HammerThrow

appearance χ = 10 χ = 5 χ = 1 χ = 0 HandstandPushups

appearance χ = 10 χ = 5 χ = 1 χ = 0 HandstandWalking

appearance χ = 10 χ = 5 χ = 1 χ = 0 HeadMassage

Figure B.29: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

173

Appendix B. Visualizations for Understanding Deep Video Representations

appearance χ = 10 χ = 5 χ = 1 χ = 0 HighJump

appearance χ = 10 χ = 5 χ = 1 χ = 0 HorseRace

appearance χ = 10 χ = 5 χ = 1 χ = 0 HorseRiding

appearance χ = 10 χ = 5 χ = 1 χ = 0 HulaHoop

appearance χ = 10 χ = 5 χ = 1 χ = 0 IceDancing

appearance χ = 10 χ = 5 χ = 1 χ = 0 JavelinThrow

Figure B.30: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

174

B.4. Prediction layer visualizations

appearance χ = 10 χ = 5 χ = 1 χ = 0 JugglingBalls

appearance χ = 10 χ = 5 χ = 1 χ = 0 JumpingJack

appearance χ = 10 χ = 5 χ = 1 χ = 0 JumpRope

appearance χ = 10 χ = 5 χ = 1 χ = 0 Kayaking

appearance χ = 10 χ = 5 χ = 1 χ = 0 Knitting

appearance χ = 10 χ = 5 χ = 1 χ = 0 LongJump

Figure B.31: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

175

Appendix B. Visualizations for Understanding Deep Video Representations

appearance χ = 10 χ = 5 χ = 1 χ = 0 Lunges

appearance χ = 10 χ = 5 χ = 1 χ = 0 MilitaryParade

appearance χ = 10 χ = 5 χ = 1 χ = 0 Mixing

appearance χ = 10 χ = 5 χ = 1 χ = 0 MoppingFloor

appearance χ = 10 χ = 5 χ = 1 χ = 0 Nunchucks

appearance χ = 10 χ = 5 χ = 1 χ = 0 ParallelBars

Figure B.32: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

176

B.4. Prediction layer visualizations

appearance χ = 10 χ = 5 χ = 1 χ = 0 PizzaTossing

appearance χ = 10 χ = 5 χ = 1 χ = 0 PlayingCello

appearance χ = 10 χ = 5 χ = 1 χ = 0 PlayingDaf

appearance χ = 10 χ = 5 χ = 1 χ = 0 PlayingDhol

appearance χ = 10 χ = 5 χ = 1 χ = 0 PlayingFlute

appearance χ = 10 χ = 5 χ = 1 χ = 0 PlayingGuitar

Figure B.33: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

177

Appendix B. Visualizations for Understanding Deep Video Representations

appearance χ = 10 χ = 5 χ = 1 χ = 0 PlayingPiano

appearance χ = 10 χ = 5 χ = 1 χ = 0 PlayingSitar

appearance χ = 10 χ = 5 χ = 1 χ = 0 PlayingTabla

appearance χ = 10 χ = 5 χ = 1 χ = 0 PlayingViolin

appearance χ = 10 χ = 5 χ = 1 χ = 0 PoleVault

appearance χ = 10 χ = 5 χ = 1 χ = 0 PommelHorse

Figure B.34: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

178

B.4. Prediction layer visualizations

appearance χ = 10 χ = 5 χ = 1 χ = 0 PullUps

appearance χ = 10 χ = 5 χ = 1 χ = 0 Punch

appearance χ = 10 χ = 5 χ = 1 χ = 0 PushUps

appearance χ = 10 χ = 5 χ = 1 χ = 0 Rafting

appearance χ = 10 χ = 5 χ = 1 χ = 0 RockClimbingIndoor

appearance χ = 10 χ = 5 χ = 1 χ = 0 RopeClimbing

Figure B.35: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

179

Appendix B. Visualizations for Understanding Deep Video Representations

appearance χ = 10 χ = 5 χ = 1 χ = 0 Rowing

appearance χ = 10 χ = 5 χ = 1 χ = 0 SalsaSpin

appearance χ = 10 χ = 5 χ = 1 χ = 0 ShavingBeard

appearance χ = 10 χ = 5 χ = 1 χ = 0 Shotput

appearance χ = 10 χ = 5 χ = 1 χ = 0 SkateBoarding

appearance χ = 10 χ = 5 χ = 1 χ = 0 Skiing

Figure B.36: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

180

B.4. Prediction layer visualizations

appearance χ = 10 χ = 5 χ = 1 χ = 0 Skijet

appearance χ = 10 χ = 5 χ = 1 χ = 0 SkyDiving

appearance χ = 10 χ = 5 χ = 1 χ = 0 SoccerJuggling

appearance χ = 10 χ = 5 χ = 1 χ = 0 SoccerPenalty

appearance χ = 10 χ = 5 χ = 1 χ = 0 StillRings

appearance χ = 10 χ = 5 χ = 1 χ = 0 SumoWrestling

Figure B.37: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

181

Appendix B. Visualizations for Understanding Deep Video Representations

appearance χ = 10 χ = 5 χ = 1 χ = 0 Surfing

appearance χ = 10 χ = 5 χ = 1 χ = 0 Swing

appearance χ = 10 χ = 5 χ = 1 χ = 0 TableTennisShot

appearance χ = 10 χ = 5 χ = 1 χ = 0 TaiChi

appearance χ = 10 χ = 5 χ = 1 χ = 0 TennisSwing

appearance χ = 10 χ = 5 χ = 1 χ = 0 ThrowDiscus

Figure B.38: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

182

B.4. Prediction layer visualizations

appearance χ = 10 χ = 5 χ = 1 χ = 0 TrampolineJumping

appearance χ = 10 χ = 5 χ = 1 χ = 0 Typing

appearance χ = 10 χ = 5 χ = 1 χ = 0 UnevenBars

appearance χ = 10 χ = 5 χ = 1 χ = 0 VolleyballSpiking

appearance χ = 10 χ = 5 χ = 1 χ = 0 WalkingWithDog

appearance χ = 10 χ = 5 χ = 1 χ = 0 WallPushups

Figure B.39: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

183

Appendix B. Visualizations for Understanding Deep Video Representations

appearance χ = 10 χ = 5 χ = 1 χ = 0 WritingOnBoard

appearance χ = 10 χ = 5 χ = 1 χ = 0 YoYo

Figure B.40: Visualizations of classification units at the last layer of the network. The first column
shows the appearance and the second to fifth column the motion input generated by maximizing
the prediction layer output for the respective classes, while using different degrees of temporal
variation regularization (χ). The last column shows 40 sample frames from the first video of the
corresponding class in the test set. Best viewed electronically.

184

C
Baseline algorithms for Dynamic Scene Recognition

Slow feature analysis (SFA) approaches analyze temporal data to extract features that vary

most slowly over time, taking those to be most indicative of the stable properties of the input

(Wiskott and Sejnowski, 2002). The approach has been applied to dynamic scene recognition

(Theriault et al., 2013) by extracting features from filter responses that are reputed to model

primate V1 cortical operations, as they result from local maxima of spatially oriented, multiscale

Gabor filters (Serre et al., 2007). The slowest varying features among those are identified by taking

their temporal derivatives and subsequently are encoded via soft assignment with respect to a

dictionary built with unsupervised sampling. Following encoding, the features are pooled into

a feature vector via application of max-pooling to the entire video in spatial pyramid regions

(Lazebnik et al., 2006).

Bags of spacetime energies (BoSE) (Feichtenhofer et al., 2014) is the penultimate version of

spatiotemporal energy approaches applied to dynamic scenes (Derpanis et al., 2012, Feichtenhofer

et al., 2013). The approach extracted dense measurements of spatiotemporal energy across a range

of scales and orientations as well as CIE-LUV colour measurements. Here, the spatiotemporal

features are augmented with dense SIFT measurements (Lowe, 2004) to more finely capture spatial

orientation. The descriptors are encoded by Improved Fisher Vector (IFV) (Perronnin and Dance,

2007, Perronnin et al., 2010b) encoding with a visual word dictionary represented by a Gaussian

Mixture Model (diagonal covariance) with 64 centres. We average the frame-level BoSE encodings

over a video which simplifies the the temporal slice-based SVM prediction of the original BoSE

system (Feichtenhofer et al., 2014). The simplification is employed for equality in comparison to

185

Appendix C. Baseline algorithms for Dynamic Scene Recognition

other baselines which also train a single one-vs-rest SVMs for video classification.

Trajectory features (IDT) have been investigated with respect to a variety of video under-

standing tasks, e.g., (Moore et al., 2011, Raptis and Soatto, 2010, Sand and Teller, 2006, Wang

et al., 2013). Curiously, it appears that they have not previously been applied to dynamic scene

recognition. Recently, however, they have provided the basis for a number of outstanding ap-

proaches to action recognition as instantiated in improved Dense Trajectories (IDTs) (Wang and

Schmid, 2013); therefore, it is of interest to evaluate their performance on scene recognition, as

follows. Trajectory features are extracted across stabilized video sequences by concatenating a se-

ries of optical flow vectors for densely extracted interest points. Feature descriptors are aggregated

across each trajectory in terms of trajectory shape (Wang et al., 2013), HOG (Dalal and Triggs,

2005), HOF (Laptev et al., 2008b) and MBH (Dalal et al., 2006) measurements. Following extrac-

tion, the features are encoded using (improved) Fisher Vectors (FVs) (Perronnin et al., 2010b) with

dictionary represented by a Gaussian Mixture model (diagonal covariance) having 256 centres. Be-

fore training the GMM, all features are augmented with their normalized (x, y) image coordinates

as an efficient way to capture location information. Details of extraction of the trajectories, their

descriptors and encoding are exactly as in their original application to action recognition (Wang

and Schmid, 2013). All DT and IDT parameters are used as in (Wang and Schmid, 2013, Wang

et al., 2013) and their publicly available code is used to extract the descriptors.

Spatial convolutional network (S-CNN) features (Cimpoi et al., 2015) are generated from

the last convolutional layer of a VGG-16 network (Simonyan and Zisserman, 2014b). The model

is pre-trained on ImageNet (Deng et al., 2009). It has been shown that the features from such

pre-trained CNNs are transferable to many other vision domains (Chatfield et al., 2014b, Cimpoi

et al., 2015, Fang et al., 2014, Gupta et al., 2014). This approach derives its features from the

last convolutional layer of a VGG-16, which uses features from the last conv-layer of VGG-16. The

resulting 512-dimensional features are encoded using (improved) Fisher Vectors (FVs) (Perronnin

et al., 2010b) with dictionary represented by a Gaussian Mixture model (diagonal covariance)

having 64 centres. Features from a single video are extracted with a stride of 16 frames. Before

encoding the features are augmented with their normalized (x, y) image coordinates, as with the

above IDT approach.

Temporal convolutional network (T-CNN) uses a stack of 10 optical flow frames as

input, with optical flow extracted by a standard algorithm (Brox et al., 2004) and is first pre-

trained on the UCF101 action recognition dataset (Khurram Soomro and Shah, 2012). The final

model is a CNN-M-2048 network (Chatfield et al., 2014b). (In our preliminary evaluation with

this implementation, a recognition accuracy of 82.6% on UCF101 (split 1) was achieved, which

compares favourably to the 81.2% reported originally (Simonyan and Zisserman, 2014a).) The

same IFV encoding procedure as used for the spatial CNN above is employed, since this approach

is common practice in state-of-the-art video action recognition (Gorban et al., 2015) and provided

slightly better performance than using the output of the last fully connected layer.

Spatiotemporal convolutional network (C3D) provides a spatiotemporal analogue to the

spatial S-CNN. As a generalization of spatial convolutional neural networks, 3D spatiotemporal

186

networks working over image spacetime, (x, y, t), have potential to more directly capture temporal

aspects of the data even while maintaining spatial information. Various previous efforts have been

mounted to consider this potential (Ji et al., 2013, Karpathy et al., 2014, Tran et al., 2015a). Here,

C3D is considered, as it has previously been applied to dynamic scene recognition (Tran et al.,

2015a). Features are extracted by applying the C3D network model, pretrained on the Sports-1M

dataset (Karpathy et al., 2014), densely to 16-frame snippets of the input video. As in (Tran et al.,

2015a), the fully connected layer 6 outputs of each 16-frame clip are averaged across the video into

a 4096-dimensional descriptor.

Classification is performed as in the original approaches (Cimpoi et al., 2015, Feichtenhofer

et al., 2014, Simonyan and Zisserman, 2014a, Theriault et al., 2013, Tran et al., 2015a, Wang and

Schmid, 2013), with a linear SVM (Cortes and Vapnik, 1995). Before training, the descriptors

are L2-normalized. All feature vectors extracted from the training set are used to train one-vs-rest

linear SVM classifiers. The SVM’s regularization loss trade-off parameter is set to C = 100. During

classification, each feature type is classified by its one-vs-rest SVM to yield SVM scores for a test

video and an overall classification of the video according to the maximum score.

187

D
Qualitative results for Video Detection & Tracking

Qualitative examples for our D&T approach are shown in Figures D.1 and D.2. We show challeng-

ing samples from the ImageNet VID validation set. Our method could improve for multi-object

occlusions (e.g. the cars in the second row of Fig. D.1 or the monkeys in the penultimate row of

Fig. D.2), missed or incorrect classifications (e.g. the cars in the ultimate row of Fig. D.1 or the

squirrel classified as hamster in the first row of Fig. D.2); another source of failure are occlusions

as e.g. seen in the background of the frames shown in the ultimate row of Fig. D.1.

189

Appendix D. Qualitative results for Video Detection & Tracking

Figure D.1: Qualitative results for consecutive frames of videos from the ImageNet VID validation
set. Failures can be attributed to scale, occlusion, misclassification, or NMS issues.

190

Figure D.2: Qualitative results for consecutive frames where our D&T approach could improve.

191

Bibliography

Bibliography

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 14

N. Ballas, L. Yao, C. Pal, and A. Courville. Delving deeper into convolutional networks for learning
video representations. In Proc. ICLR, 2016. 44, 47, 50, 51, 53, 57, 63, 99

S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Inside-outside net: Detecting objects in context
with skip pooling and recurrent neural networks. In Proc. CVPR, 2016. 101

L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr. Fully-convolutional
siamese networks for object tracking. In ECCV VOT Workshop, 2016. 114, 115, 117

H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould. Dynamic image networks for action
recognition. In Proc. CVPR, 2016. 44, 53, 57, 68

D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual object tracking using adaptive
correlation filters. In Proc. CVPR, 2010. 117

R. T. Born and R. B. Tootell. Segregation of global and local motion processing in primate middle
temporal visual area. Nature, 357(6378):497–499, 1992. 21, 43

L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer, 2010. 12

T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based
on a theory for warping. In Proc. ECCV, 2004. 34, 186

J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset.
In Proc. CVPR, 2017. 133

J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic segmentation with second-order
pooling. In Proc. ECCV, pages 430–443, 2012. 27

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details:
Delving deep into convolutional nets. In Proc. BMVC., 2014a. 11

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details:
Delving deep into convolutional nets. In Proc. BMVC, 2014b. 17, 34, 36, 186

M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for texture recognition and segmentation.
In Proc. CVPR, 2015. 38, 107, 186, 187

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995. 5,
187

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proc. CVPR,
2005. 186

193

N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and
appearance. In Proc. ECCV, 2006. 5, 56, 186

M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg. Beyond correlation filters: Learning
continuous convolution operators for visual tracking. In Proc. ECCV, 2016. 117

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical
image database. In Proc. CVPR, 2009. 2, 186

K. Derpanis and R. P. Wildes. Spacetime texture representation and recognition based on a
spatiotemporal orientation analysis. PAMI, 34(6):1193–1205, 2012. 4

K. Derpanis, M. Lecce, K. Daniilidis, and R. P. Wildes. Dynamic scene understanding: The role
of orientation features in space and time in scene classification. In Proc. CVPR, 2012. 56, 98,
99, 105, 107, 108, 134, 185

K. Derpanis, M. Sizintsev, K. Cannons, and R. P. Wildes. Action spotting and recognition based
on a spatiotemporal orientation analysis. PAMI, 35(3):527–540, 2013. 5

P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-temporal
features. In Second Joint IEEE International Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance, In conjunction with the ICCV, pages 65–72, 2005. 56

J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and
T. Darrell. Long-term recurrent convolutional networks for visual recognition and description.
In Proc. CVPR, 2015. 5, 6, 39, 47, 68, 99

G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dynamic textures. IJCV, 51(2):91–109, 2003. 4,
98

A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep
networks. In Proc. NIPS, 2016. 74

A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers,
and T. Brox. Flownet: Learning optical flow with convolutional networks. In Proc. ICCV, 2015.
120

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011. 13, 78

C. J. Duffy. MST neurons respond to optic flow and translational movement. Journal of neuro-
physiology, 80(4):1816–1827, 1998. 73

C. J. Duffy and R. H. Wurtz. Sensitivity of MST neurons to optic flow stimuli. i. a continuum of
response selectivity to large-field stimuli. Journal of neurophysiology, 65(6):1329–1345, 1991. 73

S. Eifuku and R. H. Wurtz. Response to motion in extrastriate area MSTl: center-surround inter-
actions. Journal of Neurophysiology, 80(1):282–296, 1998. 73

D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer features of a deep
network. Technical Report 1341, University of Montreal, Jun 2009. 73, 74

H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng, P. Dollár, J. Gao, X. He, M. Mitchell,
J. Platt, et al. From captions to visual concepts and back. In Proc. CVPR, 2014. 186

L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning natural scene categories. In
Proc. CVPR, 2005. 4, 98

194

Bibliography

C. Feichtenhofer, A. Pinz, and R. P. Wildes. Spacetime forests with complementary features for
dynamic scene recognition. In Proc. BMVC, 2013. 5, 99, 106, 185

C. Feichtenhofer, A. Pinz, and R. P. Wildes. Bags of spacetime energies for dynamic scene recog-
nition. In Proc. CVPR, 2014. 5, 98, 99, 106, 107, 185, 187

C. Feichtenhofer, A. Pinz, and R. Wildes. Dynamically encoded actions based on spacetime saliency.
In Proc. CVPR, 2015. 5, 56

C. Feichtenhofer, A. Pinz, and R. P. Wildes. Dynamic scene recognition with complementary
spatiotemporal features. PAMI, 38(12):2389–2401, 2016a. 5

C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional two-stream network fusion for video
action recognition. In Proc. CVPR, 2016b. 98, 99, 103

D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing in the primate cerebral
cortex. Cerebral cortex (New York, NY: 1991), 1(1):1–47, 1991. 2, 72

P. Földiák. Learning invariance from transformation sequences. Neural Computation, 3(2):194–200,
1991. 76

K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological Cybernetics, 36:193–202, 1980. 14

S. Gidaris and N. Komodakis. Object detection via a multi-region and semantic segmentation-
aware cnn model. In Proc. CVPR, 2015. 124

R. B. Girshick. Fast R-CNN. In Proc. ICCV, 2015. 6, 22, 23, 115, 117, 119

R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proc. CVPR, 2014. 6, 15, 22, 42, 115, 116, 119

G. Gkioxari and J. Malik. Finding action tubes. In Proc. CVPR, 2015. 115, 122

M. A. Goodale and A. D. Milner. Separate visual pathways for perception and action. Trends in
Neurosciences, 15(1):20–25, 1992. 2, 20, 42, 72

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Proc. NIPS, 2014. 74

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In
International Conference on Learning Representations, 2015. 83

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org. 11

A. Gorban, H. Indrees, Y. Jiang, A. R. Zamir, I. Laptev, M. Shah, and R. Sukthankar. Thumos
challenge: Action recognition with a large number of classes. http://wwwthumos.info/, 2015. 6,
186

R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Unsupervised feature learning from
temporal data. In Proc. ICCV, 2015. 47, 77

M. Goudreau, C. Giles, S. Chakradhar, and D. Chen. First-order versus second-order single-layer
recurrent neural networks. IEEE Transactions on Neural Networks, 5:511–513, 1994. 60

S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning rich features from RGB-D images for
object detection and segmentation. In Proc. ECCV. 2014. 186

195

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://wwwthumos.info/

D. A. Gusnard and M. E. Raichle. Searching for a baseline: functional imaging and the resting
human brain. Nature Reviews Neuroscience, 2(10):685–694, 2001. 73

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proc. CVPR, 2015. 13

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. CVPR,
2016a. 6, 7, 15, 22, 23, 42, 43, 44, 45, 48, 49, 51, 57, 58, 61, 62, 67, 99, 100, 101, 102, 103, 107,
114, 117, 118

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In Proc. ECCV,
2016b. 42, 44, 57, 58, 65, 100, 103

D. Held, S. Thrun, and S. Savarese. Learning to track at 100 FPS with deep regression networks.
In Proc. ECCV, 2016. 114, 115, 117, 124

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed tracking with kernelized
correlation filters. PAMI, 37(3):583–596, 2015. 117

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012a.
15

G. Hinton, N. Srivastava, and K. Swersky. Neural networks for machine learning lecture 6a overview
of mini–batch gradient descent. 2012b. 13

G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554, 2006. 74

D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture
in the cat’s visual cortex. The Journal of Physiology, 160:106–154, 1962. 14

Y. Ioannou, D. Robertson, J. Shotton, R. Cipolla, and A. Criminisi. Training cnns with low-rank
filters for efficient image classification. In Proc. ICLR, 2016. 47

S. Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-normalized
models. arXiv preprint arXiv:1702.03275, 2017. 14

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proc. ICML, 2015. 13, 35, 42, 44, 48, 49, 50, 57, 62, 63, 103

H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid. Aggregating local image
descriptors into compact codes. PAMI, 2012. 5

H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system for action recognition.
In Proc. ICCV, pages 1–8, 2007. 5

S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neural networks for human action recognition.
PAMI, 35(1):221–231, 2013. 26, 27, 43, 57, 187

A. Joulin, K. Tang, and L. Fei-Fei. Efficient image and video co-localization with frank-wolfe
algorithm. In Proc. ECCV, 2014. 116

K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang, R. Wang, X. Wang,
and W. Ouyang. T-CNN: tubelets with convolutional neural networks for object detection from
videos. arXiv preprint, 2016a. 114, 116, 123, 124, 125, 126

196

Bibliography

K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video tubelets with convolutional
neural networks. In Proc. CVPR, 2016b. 116, 123, 124, 125, 126

K. Kang, H. Li, T. Xiao, W. Ouyang, J. Yan, X. Liu, and X. Wang. Object detection in videos
with tubelet proposal networks. In Proc. CVPR, 2017. 116, 123, 124, 125, 126

H.-O. Karnath. New insights into the functions of the superior temporal cortex. Nature Reviews
Neuroscience, 2(8):568–576, 2001. 73

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. In Proc. CVPR, 2014. 5, 6, 26, 27, 39, 43, 57,
68, 99, 100, 187

A. R. Z. Khurram Soomro and M. Shah. Ucf101: A dataset of 101 human actions calsses from
videos in the wild. Technical Report CRCV-TR-12-01, UCF Center for Research in Computer
Vision, 2012. 6, 36, 51, 64, 106, 107, 186

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. ICLR, 2015. 13

A. Kläser, M. Marsza lek, and C. Schmid. A spatio-temporal descriptor based on 3d-gradients. In
Proc. BMVC, 2008. 5, 56

Z. Kourtzi and N. Kanwisher. Activation in human mt/mst by static images with implied motion.
Journal of cognitive neuroscience, 12(1):48–55, 2000. 2, 72, 73

D. J. Kravitz, K. S. Saleem, C. I. Baker, and M. Mishkin. A new neural framework for visuospatial
processing. Nature Reviews Neuroscience, 12(4):217–230, 2011. 73

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional
neural networks. In NIPS, pages 1106–1114, 2012a. 1, 6, 13, 15, 17, 42, 44, 50, 57

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Proc. NIPS, 2012b. 2, 3, 100, 102, 103

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a large video database for
human motion recognition. In Proc. ICCV, 2011. 6, 36, 51, 64, 106, 107

S. Kwak, M. Cho, I. Laptev, J. Ponce, and C. Schmid. Unsupervised object discovery and tracking
in video collections. In Proc. CVPR, 2015. 116

I. Laptev, M. Marsza lek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from
movies. In Proc. CVPR, 2008a. 5

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from
movies. In Proc. CVPR, 2008b. 5, 56, 186

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for
recognizing natural scene categories. In Proc. CVPR, 2006. 4, 5, 98, 185

Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, and A. Ng. Building
high-level features using large scale unsupervised learning. In Proc. ICML, 2012. 74

Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical invariant spatio-temporal
features for action recognition with independent subspace analysis. In Proc. CVPR, 2011. 43,
57

197

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–
551, 1989. 6, 14

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 14

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015. 1

G. Lev, G. Sadeh, B. Klein, and L. Wolf. RNN Fisher vectors for action recognition and image
annotation. In Proc. ECCV, 2016. 68

F. F. Li, R. VanRullen, C. Koch, and P. Perona. Rapid natural scene categorization in the near
absence of attention. Proceedings of the National Academy of Sciences, 99(14):9596–9601, 2002.
4

Y. Li, K. He, J. Sun, et al. R-FCN: Object detection via region-based fully convolutional networks.
In Proc. NIPS, 2016a. 6, 11, 22, 23, 114, 115, 117, 118, 119, 120, 123

Z. Li, E. Gavves, M. Jain, and C. G. Snoek. VideoLSTM convolves, attends and flows for action
recognition. arXiv preprint arXiv:1607.01794, 2016b. 57, 68

M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013. 102

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In Proc. ECCV, 2014. 114

T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN models for fine-grained visual recognition.
In Proc. ICCV, 2015. 27, 29, 37, 38

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot
multibox detector. In Proc. ECCV, 2016. 22, 115

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.
In Proc. CVPR, 2015. 15, 42, 118

D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91–110, 2004.
5, 185

C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical convolutional features for visual
tracking. In Proc. ICCV, 2015. 114, 115, 117, 126

B. Mahasseni and S. Todorovic. Regularizing long short term memory with 3D human-skeleton
sequences for action recognition. In Proc. CVPR, 2016. 44, 47, 57

A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In
Proc. CVPR, 2015. 37

A. Mahendran and A. Vedaldi. Visualizing deep convolutional neural networks using natural pre-
images. IJCV, pages 1–23, 2016. 74, 75, 76, 78

M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In Proc. CVPR, 2009. 4, 98

J. H. Maunsell and D. C. Van Essen. Functional properties of neurons in middle temporal visual
area of the macaque monkey. i. selectivity for stimulus direction, speed, and orientation. Journal
of neurophysiology, 49(5):1127–1147, 1983. 72, 73

198

Bibliography

L. Wang et al. Temporal segment networks: Towards good practices for deep action recognition.
In ECCV, 2016. 68, 69, 132

R. Memisevic and G. E. Hinton. Learning to represent spatial transformations with factored
higher-order boltzmann machines. Neural Computation, 22(6):1473–1492, 2010. 59

M. Mishkin and L. G. Ungerleider. Contribution of striate inputs to the visuospatial functions of
parieto-preoccipital cortex in monkeys. Behavioural brain research, 6(1):57–77, 1982. 20

M. Mishkin, L. G. Ungerleider, and K. A. Macko. Object vision and spatial vision: two cortical
pathways. Trends in neurosciences, 6:414–417, 1983. 72

B. Moore, S. Ali, R. Mehran, and M. Shah. Visual crowd surveillance through a hydrodynamics
lens. Commun. ACM, 54(12):64–73, 2011. 186

A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Going deeper into neural networks.
Google Research Blog. Retrieved June 20, 2015. https://research.googleblog.com/2015/06/

inceptionism-going-deeper-into-neural.html. 74

H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking. In
Proc. CVPR, 2016. 115

J. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond short
snippets: Deep networks for video classification. In Proc. CVPR, 2015a. 98

J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond
short snippets: Deep networks for video classification. In Proc. CVPR, 2015b. 5, 6, 27, 32, 39,
44, 47, 52, 53, 57, 68, 98

A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesizing the preferred inputs
for neurons in neural networks via deep generator networks. In Proc. NIPS, 2016. 74

A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune. Plug & play generative networks:
Conditional iterative generation of images in latent space. 2017. 74

J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-conditional video prediction using deep
networks in atari games. In Proc. NIPS, 2015. 30, 59

A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial
envelope. IJCV, 2001. 4, 98

P. Over, G. Awad, M. Michael, J. Fiscus, G. Sanders, W. Kraaij, A. Smeaton, and Q. Quenot.
Trecvid 2013 - an overview of the goals, tasks, data, evaluation mechanisms and metrics. In
Proc. TRECVID, 2013. 98

D. Park, C. L. Zitnick, D. Ramanan, and P. Dollár. Exploring weak stabilization for motion feature
extraction. In Proc. CVPR, 2013. 98

X. Peng and C. Schmid. Multi-region two-stream R-CNN for action detection. In Proc. ECCV,
2016. 116, 122

X. Peng, L. Wang, X. Wang, and Y. Qiao. Bag of visual words and fusion methods for action
recognition: Comprehensive study and good practice. CoRR, abs/1405.4506, 2014. 39

F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In
Proc. CVPR, 2007. 5, 185

199

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel for large-scale image
classification. In Proc. ECCV, 2010a. 6

F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel for large-scale image
classification. In Proc. ECCV, 2010b. 185, 186

Y. Poleg, A. Ephrat, S. Peleg, and C. Arora. Compact CNN for indexing egocentric videos. In
Proc. CVPR, 2015. 98, 99

M. Potter. Recognition and memory for briefly presented scenes. Frontiers in Psychology, 3(32):
1–9, 2012. 98

M. C. Potter and E. I. Levy. Recognition memory for a rapid sequence of pictures. Journal of
experimental psychology, 81(1):10, 1969. 4

A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors from
weakly annotated video. In Proc. CVPR, 2012. 116

A. Quattoni and A. Torralba. Recognizing indoor scenes. In Proc. CVPR, 2009. 106

M. Raptis and S. Soatto. Tracklet descriptors for action modeling and video analysis. In Proc.
ECCV, 2010. 186

E. Real, J. Shlens, S. Mazzocchi, X. Pan, and V. Vanhoucke. YouTube-BoundingBoxes: A Large
High-Precision Human-Annotated Data Set for Object Detection in Video. ArXiv e-prints, 2017.
116

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object
detection. In Proc. CVPR, 2016. 22, 115

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with
region proposal networks. PAMI, 2016. 6, 11, 22, 23, 114, 115, 117, 118, 119, 123

G. A. Rousselet, S. J. Thorpe, M. Fabre-Thorpe, et al. How parallel is visual processing in the
ventral pathway? Trends in cognitive sciences, 8(8):363–370, 2004. 4

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986. 12

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, S. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. Berg, and F. Li. Imagenet large scale visual recognition challenge. IJCV, 2015a.
14, 15

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
IJCV, 115(3):211–252, 2015b. 114, 123

S. Saha, G. Singh, M. Sapienza, P. H. Torr, and F. Cuzzolin. Deep learning for detecting multiple
space-time action tubes in videos. In Proc. BMVC, 2016. 116, 122

K. Saleem, W. Suzuki, K. Tanaka, and T. Hashikawa. Connections between anterior inferotemporal
cortex and superior temporal sulcus regions in the macaque monkey. Journal of Neuroscience,
20(13):5083–5101, 2000. 2, 72

T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Proc. NIPS, 2016. 14

200

Bibliography

P. Sand and S. Teller. Particle video: Long-range motion estimation using point trajectories. In
Proc. CVPR, 2006. 186

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and
clustering. In Proc. CVPR, 2015. 6, 42

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat: Integrated
Recognition, Localization and Detection using Convolutional Networks. In Proc. ICLR, 2014.
11

T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object recognition with
cortex-like mechanisms. PAMI, 29(3):411–426, 2007. 185

S. Sharma, R. Kiros, and R. Salakhutdinov. Action recognition using visual attention. In NIPS
workshop on Time Series. 2015. 6, 44, 47, 57

E. Shechtman and M. Irani. Space-time behavior-based correlation-or-how to tell if two underlying
motion fields are similar without computing them? PAMI, 29(11):2045–2056, 2007. 5

A. Shrivastava, A. Gupta, and R. Girshick. Training region-based object detectors with online
hard example mining. In Proc. CVPR, 2016. 123

N. Shroff, P. Turaga, and R. Chellappa. Moving vistas: Exploiting motion for describing scenes.
In Proc. CVPR, 2010. 98, 99, 105, 107, 134

K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in
videos. In NIPS, 2014a. 5, 6, 7, 11, 13, 19, 20, 26, 27, 30, 31, 34, 35, 36, 37, 38, 39, 42, 45, 49,
51, 52, 53, 57, 58, 60, 64, 68, 98, 99, 107, 115, 186, 187

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
In Proc. ICLR, 2014b. 6, 27, 34, 38, 42, 43, 44, 47, 100, 102, 103, 186

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
In International Conference on Learning Representations, 2015. 11, 15, 16, 17, 23

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. In Workshop at International Conference on Learning
Representations, 2014. 74, 75, 76

N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations
using LSTMs. In Proc. ICML, 2015. 39, 68, 99

J. Stone. Vision and Brain - How we perceive the world. MIT press, 2012. 5

L. Sun, K. Jia, D.-Y. Yeung, and B. Shi. Human action recognition using factorized spatio-temporal
convolutional networks. In Proc. ICCV, 2015. 27, 39

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momen-
tum in deep learning. In Proc. ICML, 2013. 12

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In International Conference on Learning Representations, 2014.
17, 74, 75

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Proc. CVPR, 2015a. 6, 11, 13, 15, 38, 39,
42, 61, 100, 102

201

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture
for computer vision. arXiv preprint arXiv:1512.00567, 2015b. 42, 44, 47, 52, 57, 101

C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4, inception-resnet and the impact of residual
connections on learning. arXiv preprint arXiv:1602.07261, 2016. 42, 49, 101, 102

M. Szummer and R. Picard. Indoor-outdoor image classification. In IEEE International Workshop
on Content-Based Access of Image and Video Database, 1998. 4

K. Tanaka and H.-A. Saito. Analysis of motion of the visual field by direction, expansion/contrac-
tion, and rotation cells clustered in the dorsal part of the medial superior temporal area of the
macaque monkey. Journal of neurophysiology, 62(3):626–641, 1989. 73

G. W. Taylor and G. E. Hinton. Factored conditional restricted boltzmann machines for modeling
motion style. In Proc. ICML, 2009. 59

G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-temporal
features. In Proc. ECCV, pages 140–153, 2010. 5, 32, 43, 57, 99

C. Theriault, N. Thome, and M. Cord. Dynamic scene classification: Learning motion descriptors
with slow features analysis. In Proc. CVPR, 2013. 99, 106, 107, 185, 187

J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient object localization using
convolutional networks. In Proc. CVPR, 2015. 6, 42

A. Torralba, K. Murphy, and W. Freeman. Using the forest to see the trees: Object recognition in
context. Commun. ACM, 53:107–114, 2010. 98

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features
with 3D convolutional networks. In Proc. ICCV, 2015a. 5, 26, 32, 39, 43, 53, 57, 68, 98, 99, 100,
103, 106, 107, 187

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features
with 3d convolutional networks. In Proc. ICCV, 2015b. 133

L. G. Ungerleider and R. Desimone. Cortical connections of visual area MT in the macaque.
Journal of Comparative Neurology, 248(2):190–222, 1986. 72, 73

L. G. Ungerleider and J. V. Haxby. ’what’and ’where’ in the human brain. Current opinion in
neurobiology, 4(2):157–165, 1994. 20

A. Vailaya, M. Figueiredo, A. Jain, and H. Zhang. Image classification for content-based indexing.
TIP, 10:117–130, 2001. 98

D. C. Van Essen and J. L. Gallant. Neural mechanisms of form and motion processing in the
primate visual system. Neuron, 13(1):1–10, 1994. 21, 43

G. Varol, I. Laptev, and C. Schmid. Long-term temporal convolutions for action recognition.
arXiv:1604.04494, 2016. 57, 68

A. Vedaldi and K. Lenc. MatConvNet – convolutional neural networks for MATLAB. In Proceeding
of the ACM Int. Conf. on Multimedia, 2015. 11, 26, 49, 99

H. Wang and C. Schmid. Action recognition with improved trajectories. In Proc. ICCV, 2013. 5,
6, 39, 40, 53, 56, 68, 69, 100, 186, 187

H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors
for action recognition. IJCV, pages 1–20, 2013. 5, 107, 186

202

Bibliography

J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for
image classification. In Proc. CVPR, 2010. 5

L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully convolutional networks. In
Proc. ICCV, 2015a. 114, 115, 126

L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-pooled deep-convolutional
descriptors. In Proc. CVPR, 2015b. 39, 53

X. Wang, A. Farhadi, and A. Gupta. Actions ˜ transformations. In Proc. CVPR, 2016a. 44, 50,
51, 52, 53, 57, 63, 68

Y. Wang, S. Wang, J. Tang, N. O’Hare, Y. Chang, and B. Li. Hierarchical attention network for
action recognition in videos. arXiv preprint arXiv:1607.06416, 2016b. 57, 68

L. Wiskott and T. J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural
computation, 14(4):715–770, 2002. 76, 77, 185

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144, 2016a. 15

Y. Wu, S. Zhang, Y. Zhang, Y. Bengio, and R. Salakhutdinov. On multiplicative integration with
recurrent neural networks. In Proc. NIPS, 2016b. 60

Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative CNN video representation for event
detection. 2015. 98

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for
image classification. In Proc. CVPR, 2009. 5

J. Yang, H. Shuai, Z. Yu, R. Fan, Q. Ma, Q. Liu, and J. Deng. ILSVRC2016 object detec-
tion from video: Team NUIST. http://image-net.org/challenges/talks/2016/Imagenet%202016%

20VID.pptx, 2016. 125, 126

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks through
deep visualization. In Deep Learning Workshop, International Conference on Machine Learning,
2015. 74, 75, 76

C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime TV-L1 optical flow. In
Proc. DAGM, pages 214–223, 2007. 34, 38, 50, 63, 69

M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.
78

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR,
abs/1311.2901, 2013. 17, 30, 42, 74

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Object detectors emerge in deep
scene cnns. In Proc. ICLR, 2014. 102

X. Zhou, K. Yu, T. Zhang, and T. Huang. Image classification using super-vector coding of local
image descriptors. In Proc. ECCV, 2010. 5

W. Zhu, J. Hu, G. Sun, X. Cao, and Y. Qiao. A key volume mining deep framework for action
recognition. In Proc. CVPR, 2016. 57, 68

203

http://image-net.org/challenges/talks/2016/Imagenet%202016%20VID.pptx
http://image-net.org/challenges/talks/2016/Imagenet%202016%20VID.pptx

X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei. Deep feature flow for video recognition. In Proc.
CVPR, 2017. 116, 123, 124

204

	Contents
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Applications
	1.2.1 Scenes
	1.2.2 Actions
	1.2.3 Objects

	1.3 Contributions and thesis outline

	2 Deep Learning Background
	2.1 Feed-forward neural networks
	2.2 Convolutional networks for image recognition
	2.3 Two-Stream networks for video recognition
	2.4 Convolutional networks for object detection

	3 Convolutional Two-Stream Network Fusion
	3.1 Motivation
	3.2 Related work
	3.3 Approach
	3.3.1 Spatial fusion
	3.3.2 Where to fuse the networks
	3.3.3 Temporal fusion
	3.3.4 Proposed architecture
	3.3.5 Implementation details

	3.4 Evaluation
	3.4.1 How to fuse the two streams spatially?
	3.4.2 Where to fuse the two streams spatially?
	3.4.3 Going from deep to very deep models
	3.4.4 How to fuse the two streams temporally?
	3.4.5 Comparison with the previous state-of-the-art

	3.5 Summary

	4 Spatiotemporal Residual Networks
	4.1 Motivation
	4.2 Related work
	4.3 Technical approach
	4.3.1 Two-Stream residual networks
	4.3.2 Additive motion interaction
	4.3.3 Convolutional residual connections across time
	4.3.4 Proposed architecture
	4.3.5 Model training and evaluation

	4.4 Evaluation
	4.4.1 Two-Stream ResNet with additive interactions
	4.4.2 Comparison with the previous state-of-the-art

	4.5 Summary

	5 Spatiotemporal Multiplier Networks
	5.1 Motivation
	5.2 Related work
	5.3 Two-stream multiplier networks
	5.3.1 Baseline architecture
	5.3.2 Connecting the two streams
	5.3.2.1 Additive interaction
	5.3.2.2 Multiplicative interaction
	5.3.2.3 Discussion

	5.3.3 Temporal filtering with feature identity

	5.4 Architecture details
	5.4.1 Training procedure
	5.4.2 Fully convolutional testing

	5.5 Experimental results
	5.5.1 Analysis of Two-Stream connections
	5.5.2 Experiments on temporal aggregation
	5.5.3 Going deeper
	5.5.4 Comparison with the state-of-the-art

	5.6 Summary

	6 Understanding Deep Video Representations
	6.1 Motivation
	6.2 Related work
	6.3 Approach
	6.3.1 Activation maximization
	6.3.2 Regularized optimization

	6.4 Experiments
	6.4.1 Visualization of early layers
	6.4.2 Visualization of fusion layers
	6.4.3 Visualization under varying spatiotemporal regularization
	6.4.4 Visualization of global layers

	6.5 Summary

	7 Deep Learning for Dynamic Scene Recognition
	7.1 Motivation
	7.2 Related work
	7.3 Temporal residual networks
	7.3.1 Spatiotemporal residual unit
	7.3.2 Global pooling over spacetime
	7.3.3 Implementation details

	7.4 Dynamic scenes dataset
	7.4.1 Specifications
	7.4.2 Experimental protocol

	7.5 Empirical evaluation
	7.5.1 Is there a need for a new dataset?
	7.5.2 Does adding new classes solve the problem?
	7.5.3 Does more challenging data help?
	7.5.4 Detailed algorithm comparisons
	7.5.5 Impact of the new dataset

	7.6 Summary

	8 Deep Video Detection & Tracking
	8.1 Motivation
	8.2 Related work
	8.3 Approach
	8.3.1 D&T overview
	8.3.2 Object detection and tracking in R-FCN
	8.3.3 Multitask detection and tracking objective
	8.3.4 Correlation features for object tracking

	8.4 Linking tracklets to object tubes
	8.5 Experiments
	8.5.1 Dataset sampling and evaluation
	8.5.2 Training and testing
	8.5.3 Results

	8.6 Summary

	9 Conclusion
	A Confusion matrices for Spatiotemporal Multiplier Networks
	B Visualizations for Understanding Deep Video Representations
	B.1 Early layers under different optical flow encodings
	B.2 Convolutional fusion layer visualizations
	B.3 Global layer visualizations
	B.4 Prediction layer visualizations

	C Baseline algorithms for Dynamic Scene Recognition
	D Qualitative results for Video Detection & Tracking
	Bibliography

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	anm2:
	3.0:
	3.1:
	3.2:
	3.3:
	3.4:
	3.5:
	3.6:
	3.7:
	3.8:
	3.9:
	anm3:
	4.0:
	4.1:
	4.2:
	4.3:
	4.4:
	4.5:
	4.6:
	4.7:
	4.8:
	4.9:
	anm4:
	5.0:
	5.1:
	5.2:
	5.3:
	5.4:
	5.5:
	5.6:
	5.7:
	5.8:
	5.9:
	anm5:
	6.0:
	6.1:
	6.2:
	6.3:
	6.4:
	6.5:
	6.6:
	6.7:
	6.8:
	6.9:
	anm6:
	7.0:
	7.1:
	7.2:
	7.3:
	7.4:
	7.5:
	7.6:
	7.7:
	7.8:
	7.9:
	anm7:
	8.0:
	8.1:
	8.2:
	8.3:
	8.4:
	8.5:
	8.6:
	8.7:
	8.8:
	8.9:
	anm8:
	9.0:
	9.1:
	9.2:
	9.3:
	9.4:
	9.5:
	9.6:
	9.7:
	9.8:
	9.9:
	anm9:
	10.0:
	10.1:
	10.2:
	10.3:
	10.4:
	10.5:
	10.6:
	10.7:
	10.8:
	10.9:
	anm10:
	11.0:
	11.1:
	11.2:
	11.3:
	11.4:
	11.5:
	11.6:
	11.7:
	11.8:
	11.9:
	anm11:
	12.0:
	12.1:
	12.2:
	12.3:
	12.4:
	12.5:
	12.6:
	12.7:
	12.8:
	12.9:
	anm12:
	13.0:
	13.1:
	13.2:
	13.3:
	13.4:
	13.5:
	13.6:
	13.7:
	13.8:
	13.9:
	anm13:
	14.0:
	14.1:
	14.2:
	14.3:
	14.4:
	14.5:
	14.6:
	14.7:
	14.8:
	14.9:
	anm14:
	15.0:
	15.1:
	15.2:
	15.3:
	15.4:
	15.5:
	15.6:
	15.7:
	15.8:
	15.9:
	anm15:
	16.0:
	16.1:
	16.2:
	16.3:
	16.4:
	16.5:
	16.6:
	16.7:
	16.8:
	16.9:
	anm16:
	17.0:
	17.1:
	17.2:
	17.3:
	17.4:
	17.5:
	17.6:
	17.7:
	17.8:
	17.9:
	anm17:
	18.0:
	18.1:
	18.2:
	18.3:
	18.4:
	18.5:
	18.6:
	18.7:
	18.8:
	18.9:
	anm18:
	19.0:
	19.1:
	19.2:
	19.3:
	19.4:
	19.5:
	19.6:
	19.7:
	19.8:
	19.9:
	anm19:
	20.0:
	20.1:
	20.2:
	20.3:
	20.4:
	20.5:
	20.6:
	20.7:
	20.8:
	20.9:
	anm20:
	21.0:
	21.1:
	21.2:
	21.3:
	21.4:
	21.5:
	21.6:
	21.7:
	21.8:
	21.9:
	anm21:
	22.0:
	22.1:
	22.2:
	22.3:
	22.4:
	22.5:
	22.6:
	22.7:
	22.8:
	22.9:
	anm22:
	23.0:
	23.1:
	23.2:
	23.3:
	23.4:
	23.5:
	23.6:
	23.7:
	23.8:
	23.9:
	anm23:
	24.0:
	24.1:
	24.2:
	24.3:
	24.4:
	24.5:
	24.6:
	24.7:
	24.8:
	24.9:
	anm24:
	25.0:
	25.1:
	25.2:
	25.3:
	25.4:
	25.5:
	25.6:
	25.7:
	25.8:
	25.9:
	anm25:
	26.0:
	26.1:
	26.2:
	26.3:
	26.4:
	26.5:
	26.6:
	26.7:
	26.8:
	26.9:
	anm26:
	27.0:
	27.1:
	27.2:
	27.3:
	27.4:
	27.5:
	27.6:
	27.7:
	27.8:
	27.9:
	anm27:
	28.0:
	28.1:
	28.2:
	28.3:
	28.4:
	28.5:
	28.6:
	28.7:
	28.8:
	28.9:
	28.10:
	28.11:
	28.12:
	28.13:
	28.14:
	28.15:
	28.16:
	28.17:
	28.18:
	28.19:
	28.20:
	28.21:
	28.22:
	28.23:
	28.24:
	28.25:
	28.26:
	28.27:
	28.28:
	28.29:
	28.30:
	anm28:
	29.0:
	29.1:
	29.2:
	29.3:
	29.4:
	29.5:
	29.6:
	29.7:
	29.8:
	29.9:
	29.10:
	29.11:
	29.12:
	29.13:
	29.14:
	29.15:
	29.16:
	29.17:
	29.18:
	29.19:
	29.20:
	29.21:
	29.22:
	29.23:
	29.24:
	29.25:
	29.26:
	29.27:
	29.28:
	29.29:
	29.30:
	anm29:
	30.0:
	30.1:
	30.2:
	30.3:
	30.4:
	30.5:
	30.6:
	30.7:
	30.8:
	30.9:
	30.10:
	30.11:
	30.12:
	30.13:
	30.14:
	30.15:
	30.16:
	30.17:
	30.18:
	30.19:
	30.20:
	30.21:
	30.22:
	30.23:
	30.24:
	30.25:
	30.26:
	30.27:
	30.28:
	30.29:
	30.30:
	anm30:
	31.0:
	31.1:
	31.2:
	31.3:
	31.4:
	31.5:
	31.6:
	31.7:
	31.8:
	31.9:
	31.10:
	31.11:
	31.12:
	31.13:
	31.14:
	31.15:
	31.16:
	31.17:
	31.18:
	31.19:
	31.20:
	31.21:
	31.22:
	31.23:
	31.24:
	31.25:
	31.26:
	31.27:
	31.28:
	31.29:
	31.30:
	anm31:
	32.0:
	32.1:
	32.2:
	32.3:
	32.4:
	32.5:
	32.6:
	32.7:
	32.8:
	32.9:
	32.10:
	32.11:
	32.12:
	32.13:
	32.14:
	32.15:
	32.16:
	32.17:
	32.18:
	32.19:
	32.20:
	32.21:
	32.22:
	32.23:
	32.24:
	32.25:
	32.26:
	32.27:
	32.28:
	32.29:
	32.30:
	anm32:
	33.0:
	33.1:
	33.2:
	33.3:
	33.4:
	33.5:
	33.6:
	33.7:
	33.8:
	33.9:
	anm33:
	34.0:
	34.1:
	34.2:
	34.3:
	34.4:
	34.5:
	34.6:
	34.7:
	34.8:
	34.9:
	anm34:
	35.0:
	35.1:
	35.2:
	35.3:
	35.4:
	35.5:
	35.6:
	35.7:
	35.8:
	35.9:
	anm35:
	36.0:
	36.1:
	36.2:
	36.3:
	36.4:
	36.5:
	36.6:
	36.7:
	36.8:
	36.9:
	anm36:
	37.0:
	37.1:
	37.2:
	37.3:
	37.4:
	37.5:
	37.6:
	37.7:
	37.8:
	37.9:
	anm37:
	38.0:
	38.1:
	38.2:
	38.3:
	38.4:
	38.5:
	38.6:
	38.7:
	38.8:
	38.9:
	anm38:
	39.0:
	39.1:
	39.2:
	39.3:
	39.4:
	39.5:
	39.6:
	39.7:
	39.8:
	39.9:
	anm39:
	40.0:
	40.1:
	40.2:
	40.3:
	40.4:
	40.5:
	40.6:
	40.7:
	40.8:
	40.9:
	anm40:
	41.0:
	41.1:
	41.2:
	41.3:
	41.4:
	41.5:
	41.6:
	41.7:
	41.8:
	41.9:
	anm41:
	42.0:
	42.1:
	42.2:
	42.3:
	42.4:
	42.5:
	42.6:
	42.7:
	42.8:
	42.9:
	anm42:
	43.0:
	43.1:
	43.2:
	43.3:
	43.4:
	43.5:
	43.6:
	43.7:
	43.8:
	43.9:
	anm43:
	44.0:
	44.1:
	44.2:
	44.3:
	44.4:
	44.5:
	44.6:
	44.7:
	44.8:
	44.9:
	anm44:
	45.0:
	45.1:
	45.2:
	45.3:
	45.4:
	45.5:
	45.6:
	45.7:
	45.8:
	45.9:
	anm45:
	46.0:
	46.1:
	46.2:
	46.3:
	46.4:
	46.5:
	46.6:
	46.7:
	46.8:
	46.9:
	anm46:
	47.0:
	47.1:
	47.2:
	47.3:
	47.4:
	47.5:
	47.6:
	47.7:
	47.8:
	47.9:
	anm47:
	48.0:
	48.1:
	48.2:
	48.3:
	48.4:
	48.5:
	48.6:
	48.7:
	48.8:
	48.9:
	anm48:
	49.0:
	49.1:
	49.2:
	49.3:
	49.4:
	49.5:
	49.6:
	49.7:
	49.8:
	49.9:
	anm49:
	50.0:
	50.1:
	50.2:
	50.3:
	50.4:
	50.5:
	50.6:
	50.7:
	50.8:
	50.9:
	anm50:
	51.0:
	51.1:
	51.2:
	51.3:
	51.4:
	51.5:
	51.6:
	51.7:
	51.8:
	51.9:
	anm51:
	52.0:
	52.1:
	52.2:
	52.3:
	52.4:
	52.5:
	52.6:
	52.7:
	52.8:
	52.9:
	anm52:
	53.0:
	53.1:
	53.2:
	53.3:
	53.4:
	53.5:
	53.6:
	53.7:
	53.8:
	53.9:
	anm53:
	54.0:
	54.1:
	54.2:
	54.3:
	54.4:
	54.5:
	54.6:
	54.7:
	54.8:
	54.9:
	anm54:
	55.0:
	55.1:
	55.2:
	55.3:
	55.4:
	55.5:
	55.6:
	55.7:
	55.8:
	55.9:
	anm55:
	56.0:
	56.1:
	56.2:
	56.3:
	56.4:
	56.5:
	56.6:
	56.7:
	56.8:
	56.9:
	anm56:
	57.0:
	57.1:
	57.2:
	57.3:
	57.4:
	57.5:
	57.6:
	57.7:
	57.8:
	57.9:
	anm57:
	58.0:
	58.1:
	58.2:
	58.3:
	58.4:
	58.5:
	58.6:
	58.7:
	58.8:
	58.9:
	anm58:
	59.0:
	59.1:
	59.2:
	59.3:
	59.4:
	59.5:
	59.6:
	59.7:
	59.8:
	59.9:
	anm59:
	60.0:
	60.1:
	60.2:
	60.3:
	60.4:
	60.5:
	60.6:
	60.7:
	60.8:
	60.9:
	anm60:
	61.0:
	61.1:
	61.2:
	61.3:
	61.4:
	61.5:
	61.6:
	61.7:
	61.8:
	61.9:
	anm61:
	62.0:
	62.1:
	62.2:
	62.3:
	62.4:
	62.5:
	62.6:
	62.7:
	62.8:
	62.9:
	anm62:
	63.0:
	63.1:
	63.2:
	63.3:
	63.4:
	63.5:
	63.6:
	63.7:
	63.8:
	63.9:
	anm63:
	64.0:
	64.1:
	64.2:
	64.3:
	64.4:
	64.5:
	64.6:
	64.7:
	64.8:
	64.9:
	anm64:
	65.0:
	65.1:
	65.2:
	65.3:
	65.4:
	65.5:
	65.6:
	65.7:
	65.8:
	65.9:
	anm65:
	66.0:
	66.1:
	66.2:
	66.3:
	66.4:
	66.5:
	66.6:
	66.7:
	66.8:
	66.9:
	anm66:
	67.0:
	67.1:
	67.2:
	67.3:
	67.4:
	67.5:
	67.6:
	67.7:
	67.8:
	67.9:
	anm67:
	68.0:
	68.1:
	68.2:
	68.3:
	68.4:
	68.5:
	68.6:
	68.7:
	68.8:
	68.9:
	anm68:
	69.0:
	69.1:
	69.2:
	69.3:
	69.4:
	69.5:
	69.6:
	69.7:
	69.8:
	69.9:
	anm69:
	70.0:
	70.1:
	70.2:
	70.3:
	70.4:
	70.5:
	70.6:
	70.7:
	70.8:
	70.9:
	anm70:
	71.0:
	71.1:
	71.2:
	71.3:
	71.4:
	71.5:
	71.6:
	71.7:
	71.8:
	71.9:
	anm71:
	72.0:
	72.1:
	72.2:
	72.3:
	72.4:
	72.5:
	72.6:
	72.7:
	72.8:
	72.9:
	anm72:
	73.0:
	73.1:
	73.2:
	73.3:
	73.4:
	73.5:
	73.6:
	73.7:
	73.8:
	73.9:
	anm73:
	74.0:
	74.1:
	74.2:
	74.3:
	74.4:
	74.5:
	74.6:
	74.7:
	74.8:
	74.9:
	anm74:
	75.0:
	75.1:
	75.2:
	75.3:
	75.4:
	75.5:
	75.6:
	75.7:
	75.8:
	75.9:
	anm75:
	76.0:
	76.1:
	76.2:
	76.3:
	76.4:
	76.5:
	76.6:
	76.7:
	76.8:
	76.9:
	anm76:
	77.0:
	77.1:
	77.2:
	77.3:
	77.4:
	77.5:
	77.6:
	77.7:
	77.8:
	77.9:
	anm77:
	78.0:
	78.1:
	78.2:
	78.3:
	78.4:
	78.5:
	78.6:
	78.7:
	78.8:
	78.9:
	anm78:
	79.0:
	79.1:
	79.2:
	79.3:
	79.4:
	79.5:
	79.6:
	79.7:
	79.8:
	79.9:
	anm79:
	80.0:
	80.1:
	80.2:
	80.3:
	80.4:
	80.5:
	80.6:
	80.7:
	80.8:
	80.9:
	anm80:
	81.0:
	81.1:
	81.2:
	81.3:
	81.4:
	81.5:
	81.6:
	81.7:
	81.8:
	81.9:
	anm81:
	82.0:
	82.1:
	82.2:
	82.3:
	82.4:
	82.5:
	82.6:
	82.7:
	82.8:
	82.9:
	anm82:
	83.0:
	83.1:
	83.2:
	83.3:
	83.4:
	83.5:
	83.6:
	83.7:
	83.8:
	83.9:
	anm83:
	84.0:
	84.1:
	84.2:
	84.3:
	84.4:
	84.5:
	84.6:
	84.7:
	84.8:
	84.9:
	anm84:
	85.0:
	85.1:
	85.2:
	85.3:
	85.4:
	85.5:
	85.6:
	85.7:
	85.8:
	85.9:
	anm85:
	86.0:
	86.1:
	86.2:
	86.3:
	86.4:
	86.5:
	86.6:
	86.7:
	86.8:
	86.9:
	anm86:
	87.0:
	87.1:
	87.2:
	87.3:
	87.4:
	87.5:
	87.6:
	87.7:
	87.8:
	87.9:
	anm87:
	88.0:
	88.1:
	88.2:
	88.3:
	88.4:
	88.5:
	88.6:
	88.7:
	88.8:
	88.9:
	anm88:
	89.0:
	89.1:
	89.2:
	89.3:
	89.4:
	89.5:
	89.6:
	89.7:
	89.8:
	89.9:
	anm89:
	90.0:
	90.1:
	90.2:
	90.3:
	90.4:
	90.5:
	90.6:
	90.7:
	90.8:
	90.9:
	anm90:
	91.0:
	91.1:
	91.2:
	91.3:
	91.4:
	91.5:
	91.6:
	91.7:
	91.8:
	91.9:
	anm91:
	92.0:
	92.1:
	92.2:
	92.3:
	92.4:
	92.5:
	92.6:
	92.7:
	92.8:
	92.9:
	anm92:
	93.0:
	93.1:
	93.2:
	93.3:
	93.4:
	93.5:
	93.6:
	93.7:
	93.8:
	93.9:
	anm93:
	94.0:
	94.1:
	94.2:
	94.3:
	94.4:
	94.5:
	94.6:
	94.7:
	94.8:
	94.9:
	anm94:
	95.0:
	95.1:
	95.2:
	95.3:
	95.4:
	95.5:
	95.6:
	95.7:
	95.8:
	95.9:
	anm95:
	96.0:
	96.1:
	96.2:
	96.3:
	96.4:
	96.5:
	96.6:
	96.7:
	96.8:
	96.9:
	anm96:
	97.0:
	97.1:
	97.2:
	97.3:
	97.4:
	97.5:
	97.6:
	97.7:
	97.8:
	97.9:
	anm97:
	98.0:
	98.1:
	98.2:
	98.3:
	98.4:
	98.5:
	98.6:
	98.7:
	98.8:
	98.9:
	anm98:
	99.0:
	99.1:
	99.2:
	99.3:
	99.4:
	99.5:
	99.6:
	99.7:
	99.8:
	99.9:
	anm99:
	100.0:
	100.1:
	100.2:
	100.3:
	100.4:
	100.5:
	100.6:
	100.7:
	100.8:
	100.9:
	anm100:
	101.0:
	101.1:
	101.2:
	101.3:
	101.4:
	101.5:
	101.6:
	101.7:
	101.8:
	101.9:
	anm101:
	102.0:
	102.1:
	102.2:
	102.3:
	102.4:
	102.5:
	102.6:
	102.7:
	102.8:
	102.9:
	anm102:
	103.0:
	103.1:
	103.2:
	103.3:
	103.4:
	103.5:
	103.6:
	103.7:
	103.8:
	103.9:
	anm103:
	104.0:
	104.1:
	104.2:
	104.3:
	104.4:
	104.5:
	104.6:
	104.7:
	104.8:
	104.9:
	anm104:
	105.0:
	105.1:
	105.2:
	105.3:
	105.4:
	105.5:
	105.6:
	105.7:
	105.8:
	105.9:
	anm105:
	106.0:
	106.1:
	106.2:
	106.3:
	106.4:
	106.5:
	106.6:
	106.7:
	106.8:
	106.9:
	anm106:
	107.0:
	107.1:
	107.2:
	107.3:
	107.4:
	107.5:
	107.6:
	107.7:
	107.8:
	107.9:
	anm107:
	108.0:
	108.1:
	108.2:
	108.3:
	108.4:
	108.5:
	108.6:
	108.7:
	108.8:
	108.9:
	anm108:
	109.0:
	109.1:
	109.2:
	109.3:
	109.4:
	109.5:
	109.6:
	109.7:
	109.8:
	109.9:
	anm109:
	110.0:
	110.1:
	110.2:
	110.3:
	110.4:
	110.5:
	110.6:
	110.7:
	110.8:
	110.9:
	anm110:
	111.0:
	111.1:
	111.2:
	111.3:
	111.4:
	111.5:
	111.6:
	111.7:
	111.8:
	111.9:
	anm111:
	112.0:
	112.1:
	112.2:
	112.3:
	112.4:
	112.5:
	112.6:
	112.7:
	112.8:
	112.9:
	anm112:
	113.0:
	113.1:
	113.2:
	113.3:
	113.4:
	113.5:
	113.6:
	113.7:
	113.8:
	113.9:
	anm113:
	114.0:
	114.1:
	114.2:
	114.3:
	114.4:
	114.5:
	114.6:
	114.7:
	114.8:
	114.9:
	anm114:
	115.0:
	115.1:
	115.2:
	115.3:
	115.4:
	115.5:
	115.6:
	115.7:
	115.8:
	115.9:
	anm115:
	116.0:
	116.1:
	116.2:
	116.3:
	116.4:
	116.5:
	116.6:
	116.7:
	116.8:
	116.9:
	anm116:
	117.0:
	117.1:
	117.2:
	117.3:
	117.4:
	117.5:
	117.6:
	117.7:
	117.8:
	117.9:
	anm117:
	118.0:
	118.1:
	118.2:
	118.3:
	118.4:
	118.5:
	118.6:
	118.7:
	118.8:
	118.9:
	anm118:
	119.0:
	119.1:
	119.2:
	119.3:
	119.4:
	119.5:
	119.6:
	119.7:
	119.8:
	119.9:
	anm119:
	120.0:
	120.1:
	120.2:
	120.3:
	120.4:
	120.5:
	120.6:
	120.7:
	120.8:
	120.9:
	anm120:
	121.0:
	121.1:
	121.2:
	121.3:
	121.4:
	121.5:
	121.6:
	121.7:
	121.8:
	121.9:
	anm121:
	122.0:
	122.1:
	122.2:
	122.3:
	122.4:
	122.5:
	122.6:
	122.7:
	122.8:
	122.9:
	anm122:
	123.0:
	123.1:
	123.2:
	123.3:
	123.4:
	123.5:
	123.6:
	123.7:
	123.8:
	123.9:
	anm123:
	124.0:
	124.1:
	124.2:
	124.3:
	124.4:
	124.5:
	124.6:
	124.7:
	124.8:
	124.9:
	anm124:
	125.0:
	125.1:
	125.2:
	125.3:
	125.4:
	125.5:
	125.6:
	125.7:
	125.8:
	125.9:
	anm125:
	126.0:
	126.1:
	126.2:
	126.3:
	126.4:
	126.5:
	126.6:
	126.7:
	126.8:
	126.9:
	anm126:
	127.0:
	127.1:
	127.2:
	127.3:
	127.4:
	127.5:
	127.6:
	127.7:
	127.8:
	127.9:
	anm127:
	128.0:
	128.1:
	128.2:
	128.3:
	128.4:
	128.5:
	128.6:
	128.7:
	128.8:
	128.9:
	anm128:
	129.0:
	129.1:
	129.2:
	129.3:
	129.4:
	129.5:
	129.6:
	129.7:
	129.8:
	129.9:
	129.10:
	129.11:
	129.12:
	129.13:
	129.14:
	129.15:
	129.16:
	129.17:
	129.18:
	129.19:
	129.20:
	129.21:
	129.22:
	129.23:
	129.24:
	129.25:
	129.26:
	129.27:
	129.28:
	129.29:
	129.30:
	129.31:
	129.32:
	129.33:
	129.34:
	129.35:
	129.36:
	129.37:
	129.38:
	129.39:
	129.40:
	anm129:
	130.0:
	130.1:
	130.2:
	130.3:
	130.4:
	130.5:
	130.6:
	130.7:
	130.8:
	130.9:
	130.10:
	130.11:
	130.12:
	130.13:
	130.14:
	130.15:
	130.16:
	130.17:
	130.18:
	130.19:
	130.20:
	130.21:
	130.22:
	130.23:
	130.24:
	130.25:
	130.26:
	130.27:
	130.28:
	130.29:
	130.30:
	130.31:
	130.32:
	130.33:
	130.34:
	130.35:
	130.36:
	130.37:
	130.38:
	130.39:
	130.40:
	anm130:
	131.0:
	131.1:
	131.2:
	131.3:
	131.4:
	131.5:
	131.6:
	131.7:
	131.8:
	131.9:
	131.10:
	131.11:
	131.12:
	131.13:
	131.14:
	131.15:
	131.16:
	131.17:
	131.18:
	131.19:
	131.20:
	131.21:
	131.22:
	131.23:
	131.24:
	131.25:
	131.26:
	131.27:
	131.28:
	131.29:
	131.30:
	131.31:
	131.32:
	131.33:
	131.34:
	131.35:
	131.36:
	131.37:
	131.38:
	131.39:
	131.40:
	anm131:
	132.0:
	132.1:
	132.2:
	132.3:
	132.4:
	132.5:
	132.6:
	132.7:
	132.8:
	132.9:
	132.10:
	132.11:
	132.12:
	132.13:
	132.14:
	132.15:
	132.16:
	132.17:
	132.18:
	132.19:
	132.20:
	132.21:
	132.22:
	132.23:
	132.24:
	132.25:
	132.26:
	132.27:
	132.28:
	132.29:
	132.30:
	132.31:
	132.32:
	132.33:
	132.34:
	132.35:
	132.36:
	132.37:
	132.38:
	132.39:
	132.40:
	anm132:
	133.0:
	133.1:
	133.2:
	133.3:
	133.4:
	133.5:
	133.6:
	133.7:
	133.8:
	133.9:
	133.10:
	133.11:
	133.12:
	133.13:
	133.14:
	133.15:
	133.16:
	133.17:
	133.18:
	133.19:
	133.20:
	133.21:
	133.22:
	133.23:
	133.24:
	133.25:
	133.26:
	133.27:
	133.28:
	133.29:
	133.30:
	133.31:
	133.32:
	133.33:
	133.34:
	133.35:
	133.36:
	133.37:
	133.38:
	133.39:
	133.40:
	anm133:
	134.0:
	134.1:
	134.2:
	134.3:
	134.4:
	134.5:
	134.6:
	134.7:
	134.8:
	134.9:
	134.10:
	134.11:
	134.12:
	134.13:
	134.14:
	134.15:
	134.16:
	134.17:
	134.18:
	134.19:
	134.20:
	134.21:
	134.22:
	134.23:
	134.24:
	134.25:
	134.26:
	134.27:
	134.28:
	134.29:
	134.30:
	134.31:
	134.32:
	134.33:
	134.34:
	134.35:
	134.36:
	134.37:
	134.38:
	134.39:
	134.40:
	anm134:
	135.0:
	135.1:
	135.2:
	135.3:
	135.4:
	135.5:
	135.6:
	135.7:
	135.8:
	135.9:
	anm135:
	136.0:
	136.1:
	136.2:
	136.3:
	136.4:
	136.5:
	136.6:
	136.7:
	136.8:
	136.9:
	anm136:
	137.0:
	137.1:
	137.2:
	137.3:
	137.4:
	137.5:
	137.6:
	137.7:
	137.8:
	137.9:
	anm137:
	138.0:
	138.1:
	138.2:
	138.3:
	138.4:
	138.5:
	138.6:
	138.7:
	138.8:
	138.9:
	anm138:
	139.0:
	139.1:
	139.2:
	139.3:
	139.4:
	139.5:
	139.6:
	139.7:
	139.8:
	139.9:
	anm139:
	140.0:
	140.1:
	140.2:
	140.3:
	140.4:
	140.5:
	140.6:
	140.7:
	140.8:
	140.9:
	anm140:
	141.0:
	141.1:
	141.2:
	141.3:
	141.4:
	141.5:
	141.6:
	141.7:
	141.8:
	141.9:
	anm141:
	142.0:
	142.1:
	142.2:
	142.3:
	142.4:
	142.5:
	142.6:
	142.7:
	142.8:
	142.9:
	anm142:
	143.0:
	143.1:
	143.2:
	143.3:
	143.4:
	143.5:
	143.6:
	143.7:
	143.8:
	143.9:
	143.10:
	143.11:
	143.12:
	143.13:
	143.14:
	143.15:
	143.16:
	143.17:
	143.18:
	143.19:
	143.20:
	143.21:
	143.22:
	143.23:
	143.24:
	143.25:
	143.26:
	143.27:
	143.28:
	143.29:
	143.30:
	143.31:
	143.32:
	143.33:
	143.34:
	143.35:
	143.36:
	143.37:
	143.38:
	143.39:
	143.40:
	anm143:
	144.0:
	144.1:
	144.2:
	144.3:
	144.4:
	144.5:
	144.6:
	144.7:
	144.8:
	144.9:
	144.10:
	144.11:
	144.12:
	144.13:
	144.14:
	144.15:
	144.16:
	144.17:
	144.18:
	144.19:
	144.20:
	144.21:
	144.22:
	144.23:
	144.24:
	144.25:
	144.26:
	144.27:
	144.28:
	144.29:
	144.30:
	144.31:
	144.32:
	144.33:
	144.34:
	144.35:
	144.36:
	144.37:
	144.38:
	144.39:
	144.40:
	anm144:
	145.0:
	145.1:
	145.2:
	145.3:
	145.4:
	145.5:
	145.6:
	145.7:
	145.8:
	145.9:
	145.10:
	145.11:
	145.12:
	145.13:
	145.14:
	145.15:
	145.16:
	145.17:
	145.18:
	145.19:
	145.20:
	145.21:
	145.22:
	145.23:
	145.24:
	145.25:
	145.26:
	145.27:
	145.28:
	145.29:
	145.30:
	145.31:
	145.32:
	145.33:
	145.34:
	145.35:
	145.36:
	145.37:
	145.38:
	145.39:
	145.40:
	anm145:
	146.0:
	146.1:
	146.2:
	146.3:
	146.4:
	146.5:
	146.6:
	146.7:
	146.8:
	146.9:
	146.10:
	146.11:
	146.12:
	146.13:
	146.14:
	146.15:
	146.16:
	146.17:
	146.18:
	146.19:
	146.20:
	146.21:
	146.22:
	146.23:
	146.24:
	146.25:
	146.26:
	146.27:
	146.28:
	146.29:
	146.30:
	146.31:
	146.32:
	146.33:
	146.34:
	146.35:
	146.36:
	146.37:
	146.38:
	146.39:
	146.40:
	anm146:
	147.0:
	147.1:
	147.2:
	147.3:
	147.4:
	147.5:
	147.6:
	147.7:
	147.8:
	147.9:
	147.10:
	147.11:
	147.12:
	147.13:
	147.14:
	147.15:
	147.16:
	147.17:
	147.18:
	147.19:
	147.20:
	147.21:
	147.22:
	147.23:
	147.24:
	147.25:
	147.26:
	147.27:
	147.28:
	147.29:
	147.30:
	147.31:
	147.32:
	147.33:
	147.34:
	147.35:
	147.36:
	147.37:
	147.38:
	147.39:
	147.40:
	anm147:
	148.0:
	148.1:
	148.2:
	148.3:
	148.4:
	148.5:
	148.6:
	148.7:
	148.8:
	148.9:
	148.10:
	148.11:
	148.12:
	148.13:
	148.14:
	148.15:
	148.16:
	148.17:
	148.18:
	148.19:
	148.20:
	148.21:
	148.22:
	148.23:
	148.24:
	148.25:
	148.26:
	148.27:
	148.28:
	148.29:
	148.30:
	148.31:
	148.32:
	148.33:
	148.34:
	148.35:
	148.36:
	148.37:
	148.38:
	148.39:
	148.40:
	anm148:
	149.0:
	149.1:
	149.2:
	149.3:
	149.4:
	149.5:
	149.6:
	149.7:
	149.8:
	149.9:
	anm149:
	150.0:
	150.1:
	150.2:
	150.3:
	150.4:
	150.5:
	150.6:
	150.7:
	150.8:
	150.9:
	anm150:
	151.0:
	151.1:
	151.2:
	151.3:
	151.4:
	151.5:
	151.6:
	151.7:
	151.8:
	151.9:
	anm151:
	152.0:
	152.1:
	152.2:
	152.3:
	152.4:
	152.5:
	152.6:
	152.7:
	152.8:
	152.9:
	anm152:
	153.0:
	153.1:
	153.2:
	153.3:
	153.4:
	153.5:
	153.6:
	153.7:
	153.8:
	153.9:
	anm153:
	154.0:
	154.1:
	154.2:
	154.3:
	154.4:
	154.5:
	154.6:
	154.7:
	154.8:
	154.9:
	anm154:
	155.0:
	155.1:
	155.2:
	155.3:
	155.4:
	155.5:
	155.6:
	155.7:
	155.8:
	155.9:
	anm155:
	156.0:
	156.1:
	156.2:
	156.3:
	156.4:
	156.5:
	156.6:
	156.7:
	156.8:
	156.9:
	anm156:
	157.0:
	157.1:
	157.2:
	157.3:
	157.4:
	157.5:
	157.6:
	157.7:
	157.8:
	157.9:
	anm157:
	158.0:
	158.1:
	158.2:
	158.3:
	158.4:
	158.5:
	158.6:
	158.7:
	158.8:
	158.9:
	anm158:
	159.0:
	159.1:
	159.2:
	159.3:
	159.4:
	159.5:
	159.6:
	159.7:
	159.8:
	159.9:
	anm159:
	160.0:
	160.1:
	160.2:
	160.3:
	160.4:
	160.5:
	160.6:
	160.7:
	160.8:
	160.9:
	anm160:
	161.0:
	161.1:
	161.2:
	161.3:
	161.4:
	161.5:
	161.6:
	161.7:
	161.8:
	161.9:
	anm161:
	162.0:
	162.1:
	162.2:
	162.3:
	162.4:
	162.5:
	162.6:
	162.7:
	162.8:
	162.9:
	anm162:
	163.0:
	163.1:
	163.2:
	163.3:
	163.4:
	163.5:
	163.6:
	163.7:
	163.8:
	163.9:
	anm163:
	164.0:
	164.1:
	164.2:
	164.3:
	164.4:
	164.5:
	164.6:
	164.7:
	164.8:
	164.9:
	anm164:
	165.0:
	165.1:
	165.2:
	165.3:
	165.4:
	165.5:
	165.6:
	165.7:
	165.8:
	165.9:
	165.10:
	165.11:
	165.12:
	165.13:
	165.14:
	165.15:
	165.16:
	165.17:
	165.18:
	165.19:
	165.20:
	165.21:
	165.22:
	165.23:
	165.24:
	165.25:
	165.26:
	165.27:
	165.28:
	165.29:
	165.30:
	165.31:
	165.32:
	165.33:
	165.34:
	165.35:
	165.36:
	165.37:
	165.38:
	165.39:
	165.40:
	anm165:
	166.0:
	166.1:
	166.2:
	166.3:
	166.4:
	166.5:
	166.6:
	166.7:
	166.8:
	166.9:
	166.10:
	166.11:
	166.12:
	166.13:
	166.14:
	166.15:
	166.16:
	166.17:
	166.18:
	166.19:
	166.20:
	166.21:
	166.22:
	166.23:
	166.24:
	166.25:
	166.26:
	166.27:
	166.28:
	166.29:
	166.30:
	166.31:
	166.32:
	166.33:
	166.34:
	166.35:
	166.36:
	166.37:
	166.38:
	166.39:
	166.40:
	anm166:
	167.0:
	167.1:
	167.2:
	167.3:
	167.4:
	167.5:
	167.6:
	167.7:
	167.8:
	167.9:
	167.10:
	167.11:
	167.12:
	167.13:
	167.14:
	167.15:
	167.16:
	167.17:
	167.18:
	167.19:
	167.20:
	167.21:
	167.22:
	167.23:
	167.24:
	167.25:
	167.26:
	167.27:
	167.28:
	167.29:
	167.30:
	167.31:
	167.32:
	167.33:
	167.34:
	167.35:
	167.36:
	167.37:
	167.38:
	167.39:
	167.40:
	anm167:
	168.0:
	168.1:
	168.2:
	168.3:
	168.4:
	168.5:
	168.6:
	168.7:
	168.8:
	168.9:
	168.10:
	168.11:
	168.12:
	168.13:
	168.14:
	168.15:
	168.16:
	168.17:
	168.18:
	168.19:
	168.20:
	168.21:
	168.22:
	168.23:
	168.24:
	168.25:
	168.26:
	168.27:
	168.28:
	168.29:
	168.30:
	168.31:
	168.32:
	168.33:
	168.34:
	168.35:
	168.36:
	168.37:
	168.38:
	168.39:
	168.40:
	anm168:
	169.0:
	169.1:
	169.2:
	169.3:
	169.4:
	169.5:
	169.6:
	169.7:
	169.8:
	169.9:
	169.10:
	169.11:
	169.12:
	169.13:
	169.14:
	169.15:
	169.16:
	169.17:
	169.18:
	169.19:
	169.20:
	169.21:
	169.22:
	169.23:
	169.24:
	169.25:
	169.26:
	169.27:
	169.28:
	169.29:
	169.30:
	169.31:
	169.32:
	169.33:
	169.34:
	169.35:
	169.36:
	169.37:
	169.38:
	169.39:
	169.40:
	anm169:
	170.0:
	170.1:
	170.2:
	170.3:
	170.4:
	170.5:
	170.6:
	170.7:
	170.8:
	170.9:
	170.10:
	170.11:
	170.12:
	170.13:
	170.14:
	170.15:
	170.16:
	170.17:
	170.18:
	170.19:
	170.20:
	170.21:
	170.22:
	170.23:
	170.24:
	170.25:
	170.26:
	170.27:
	170.28:
	170.29:
	170.30:
	170.31:
	170.32:
	170.33:
	170.34:
	170.35:
	170.36:
	170.37:
	170.38:
	170.39:
	170.40:
	anm170:
	171.0:
	171.1:
	171.2:
	171.3:
	171.4:
	171.5:
	171.6:
	171.7:
	171.8:
	171.9:
	171.10:
	171.11:
	171.12:
	171.13:
	171.14:
	171.15:
	171.16:
	171.17:
	171.18:
	171.19:
	171.20:
	171.21:
	171.22:
	171.23:
	171.24:
	171.25:
	171.26:
	171.27:
	171.28:
	171.29:
	171.30:
	171.31:
	171.32:
	171.33:
	171.34:
	171.35:
	171.36:
	171.37:
	171.38:
	171.39:
	171.40:
	anm171:
	172.0:
	172.1:
	172.2:
	172.3:
	172.4:
	172.5:
	172.6:
	172.7:
	172.8:
	172.9:
	172.10:
	172.11:
	172.12:
	172.13:
	172.14:
	172.15:
	172.16:
	172.17:
	172.18:
	172.19:
	172.20:
	172.21:
	172.22:
	172.23:
	172.24:
	172.25:
	172.26:
	172.27:
	172.28:
	172.29:
	172.30:
	172.31:
	172.32:
	172.33:
	172.34:
	172.35:
	172.36:
	172.37:
	172.38:
	172.39:
	172.40:
	anm172:
	173.0:
	173.1:
	173.2:
	173.3:
	173.4:
	173.5:
	173.6:
	173.7:
	173.8:
	173.9:
	anm173:
	174.0:
	174.1:
	174.2:
	174.3:
	174.4:
	174.5:
	174.6:
	174.7:
	174.8:
	174.9:
	anm174:
	175.0:
	175.1:
	175.2:
	175.3:
	175.4:
	175.5:
	175.6:
	175.7:
	175.8:
	175.9:
	anm175:
	176.0:
	176.1:
	176.2:
	176.3:
	176.4:
	176.5:
	176.6:
	176.7:
	176.8:
	176.9:
	anm176:
	177.0:
	177.1:
	177.2:
	177.3:
	177.4:
	177.5:
	177.6:
	177.7:
	177.8:
	177.9:
	anm177:
	178.0:
	178.1:
	178.2:
	178.3:
	178.4:
	178.5:
	178.6:
	178.7:
	178.8:
	178.9:
	anm178:
	179.0:
	179.1:
	179.2:
	179.3:
	179.4:
	179.5:
	179.6:
	179.7:
	179.8:
	179.9:
	anm179:
	180.0:
	180.1:
	180.2:
	180.3:
	180.4:
	180.5:
	180.6:
	180.7:
	180.8:
	180.9:
	anm180:
	181.0:
	181.1:
	181.2:
	181.3:
	181.4:
	181.5:
	181.6:
	181.7:
	181.8:
	181.9:
	anm181:
	182.0:
	182.1:
	182.2:
	182.3:
	182.4:
	182.5:
	182.6:
	182.7:
	182.8:
	182.9:
	anm182:
	183.0:
	183.1:
	183.2:
	183.3:
	183.4:
	183.5:
	183.6:
	183.7:
	183.8:
	183.9:
	anm183:
	184.0:
	184.1:
	184.2:
	184.3:
	184.4:
	184.5:
	184.6:
	184.7:
	184.8:
	184.9:
	anm184:
	185.0:
	185.1:
	185.2:
	185.3:
	185.4:
	185.5:
	185.6:
	185.7:
	185.8:
	185.9:
	anm185:
	186.0:
	186.1:
	186.2:
	186.3:
	186.4:
	186.5:
	186.6:
	186.7:
	186.8:
	186.9:
	anm186:
	187.0:
	187.1:
	187.2:
	187.3:
	187.4:
	187.5:
	187.6:
	187.7:
	187.8:
	187.9:
	anm187:
	188.0:
	188.1:
	188.2:
	188.3:
	188.4:
	188.5:
	188.6:
	188.7:
	188.8:
	188.9:
	anm188:
	189.0:
	189.1:
	189.2:
	189.3:
	189.4:
	189.5:
	189.6:
	189.7:
	189.8:
	189.9:
	anm189:
	190.0:
	190.1:
	190.2:
	190.3:
	190.4:
	190.5:
	190.6:
	190.7:
	190.8:
	190.9:
	anm190:
	191.0:
	191.1:
	191.2:
	191.3:
	191.4:
	191.5:
	191.6:
	191.7:
	191.8:
	191.9:
	anm191:
	192.0:
	192.1:
	192.2:
	192.3:
	192.4:
	192.5:
	192.6:
	192.7:
	192.8:
	192.9:
	anm192:
	193.0:
	193.1:
	193.2:
	193.3:
	193.4:
	193.5:
	193.6:
	193.7:
	193.8:
	193.9:
	anm193:
	194.0:
	194.1:
	194.2:
	194.3:
	194.4:
	194.5:
	194.6:
	194.7:
	194.8:
	194.9:
	anm194:
	195.0:
	195.1:
	195.2:
	195.3:
	195.4:
	195.5:
	195.6:
	195.7:
	195.8:
	195.9:
	anm195:
	196.0:
	196.1:
	196.2:
	196.3:
	196.4:
	196.5:
	196.6:
	196.7:
	196.8:
	196.9:
	anm196:
	197.0:
	197.1:
	197.2:
	197.3:
	197.4:
	197.5:
	197.6:
	197.7:
	197.8:
	197.9:
	anm197:
	198.0:
	198.1:
	198.2:
	198.3:
	198.4:
	198.5:
	198.6:
	198.7:
	198.8:
	198.9:
	anm198:
	199.0:
	199.1:
	199.2:
	199.3:
	199.4:
	199.5:
	199.6:
	199.7:
	199.8:
	199.9:
	anm199:
	200.0:
	200.1:
	200.2:
	200.3:
	200.4:
	200.5:
	200.6:
	200.7:
	200.8:
	200.9:
	anm200:
	201.0:
	201.1:
	201.2:
	201.3:
	201.4:
	201.5:
	201.6:
	201.7:
	201.8:
	201.9:
	anm201:
	202.0:
	202.1:
	202.2:
	202.3:
	202.4:
	202.5:
	202.6:
	202.7:
	202.8:
	202.9:
	anm202:
	203.0:
	203.1:
	203.2:
	203.3:
	203.4:
	203.5:
	203.6:
	203.7:
	203.8:
	203.9:
	anm203:
	204.0:
	204.1:
	204.2:
	204.3:
	204.4:
	204.5:
	204.6:
	204.7:
	204.8:
	204.9:
	anm204:
	205.0:
	205.1:
	205.2:
	205.3:
	205.4:
	205.5:
	205.6:
	205.7:
	205.8:
	205.9:
	anm205:
	206.0:
	206.1:
	206.2:
	206.3:
	206.4:
	206.5:
	206.6:
	206.7:
	206.8:
	206.9:
	anm206:
	207.0:
	207.1:
	207.2:
	207.3:
	207.4:
	207.5:
	207.6:
	207.7:
	207.8:
	207.9:
	anm207:
	208.0:
	208.1:
	208.2:
	208.3:
	208.4:
	208.5:
	208.6:
	208.7:
	208.8:
	208.9:
	anm208:
	209.0:
	209.1:
	209.2:
	209.3:
	209.4:
	209.5:
	209.6:
	209.7:
	209.8:
	209.9:
	anm209:
	210.0:
	210.1:
	210.2:
	210.3:
	210.4:
	210.5:
	210.6:
	210.7:
	210.8:
	210.9:
	anm210:
	211.0:
	211.1:
	211.2:
	211.3:
	211.4:
	211.5:
	211.6:
	211.7:
	211.8:
	211.9:
	anm211:
	212.0:
	212.1:
	212.2:
	212.3:
	212.4:
	212.5:
	212.6:
	212.7:
	212.8:
	212.9:
	anm212:
	213.0:
	213.1:
	213.2:
	213.3:
	213.4:
	213.5:
	213.6:
	213.7:
	213.8:
	213.9:
	anm213:
	214.0:
	214.1:
	214.2:
	214.3:
	214.4:
	214.5:
	214.6:
	214.7:
	214.8:
	214.9:
	anm214:
	215.0:
	215.1:
	215.2:
	215.3:
	215.4:
	215.5:
	215.6:
	215.7:
	215.8:
	215.9:
	anm215:
	216.0:
	216.1:
	216.2:
	216.3:
	216.4:
	216.5:
	216.6:
	216.7:
	216.8:
	216.9:
	anm216:
	217.0:
	217.1:
	217.2:
	217.3:
	217.4:
	217.5:
	217.6:
	217.7:
	217.8:
	217.9:
	217.10:
	217.11:
	217.12:
	217.13:
	217.14:
	217.15:
	217.16:
	217.17:
	217.18:
	217.19:
	217.20:
	217.21:
	217.22:
	217.23:
	217.24:
	217.25:
	217.26:
	217.27:
	217.28:
	217.29:
	217.30:
	217.31:
	217.32:
	217.33:
	217.34:
	217.35:
	217.36:
	217.37:
	217.38:
	217.39:
	217.40:
	anm217:
	218.0:
	218.1:
	218.2:
	218.3:
	218.4:
	218.5:
	218.6:
	218.7:
	218.8:
	218.9:
	anm218:
	219.0:
	219.1:
	219.2:
	219.3:
	219.4:
	219.5:
	219.6:
	219.7:
	219.8:
	219.9:
	anm219:
	220.0:
	220.1:
	220.2:
	220.3:
	220.4:
	220.5:
	220.6:
	220.7:
	220.8:
	220.9:
	anm220:
	221.0:
	221.1:
	221.2:
	221.3:
	221.4:
	221.5:
	221.6:
	221.7:
	221.8:
	221.9:
	anm221:
	222.0:
	222.1:
	222.2:
	222.3:
	222.4:
	222.5:
	222.6:
	222.7:
	222.8:
	222.9:
	222.10:
	222.11:
	222.12:
	222.13:
	222.14:
	222.15:
	222.16:
	222.17:
	222.18:
	222.19:
	222.20:
	222.21:
	222.22:
	222.23:
	222.24:
	222.25:
	222.26:
	222.27:
	222.28:
	222.29:
	222.30:
	222.31:
	222.32:
	222.33:
	222.34:
	222.35:
	222.36:
	222.37:
	222.38:
	222.39:
	222.40:
	anm222:
	223.0:
	223.1:
	223.2:
	223.3:
	223.4:
	223.5:
	223.6:
	223.7:
	223.8:
	223.9:
	anm223:
	224.0:
	224.1:
	224.2:
	224.3:
	224.4:
	224.5:
	224.6:
	224.7:
	224.8:
	224.9:
	anm224:
	225.0:
	225.1:
	225.2:
	225.3:
	225.4:
	225.5:
	225.6:
	225.7:
	225.8:
	225.9:
	anm225:
	226.0:
	226.1:
	226.2:
	226.3:
	226.4:
	226.5:
	226.6:
	226.7:
	226.8:
	226.9:
	anm226:
	227.0:
	227.1:
	227.2:
	227.3:
	227.4:
	227.5:
	227.6:
	227.7:
	227.8:
	227.9:
	227.10:
	227.11:
	227.12:
	227.13:
	227.14:
	227.15:
	227.16:
	227.17:
	227.18:
	227.19:
	227.20:
	227.21:
	227.22:
	227.23:
	227.24:
	227.25:
	227.26:
	227.27:
	227.28:
	227.29:
	227.30:
	227.31:
	227.32:
	227.33:
	227.34:
	227.35:
	227.36:
	227.37:
	227.38:
	227.39:
	227.40:
	anm227:
	228.0:
	228.1:
	228.2:
	228.3:
	228.4:
	228.5:
	228.6:
	228.7:
	228.8:
	228.9:
	anm228:
	229.0:
	229.1:
	229.2:
	229.3:
	229.4:
	229.5:
	229.6:
	229.7:
	229.8:
	229.9:
	anm229:
	230.0:
	230.1:
	230.2:
	230.3:
	230.4:
	230.5:
	230.6:
	230.7:
	230.8:
	230.9:
	anm230:
	231.0:
	231.1:
	231.2:
	231.3:
	231.4:
	231.5:
	231.6:
	231.7:
	231.8:
	231.9:
	anm231:
	232.0:
	232.1:
	232.2:
	232.3:
	232.4:
	232.5:
	232.6:
	232.7:
	232.8:
	232.9:
	232.10:
	232.11:
	232.12:
	232.13:
	232.14:
	232.15:
	232.16:
	232.17:
	232.18:
	232.19:
	232.20:
	232.21:
	232.22:
	232.23:
	232.24:
	232.25:
	232.26:
	232.27:
	232.28:
	232.29:
	232.30:
	232.31:
	232.32:
	232.33:
	232.34:
	232.35:
	232.36:
	232.37:
	232.38:
	232.39:
	232.40:
	anm232:
	233.0:
	233.1:
	233.2:
	233.3:
	233.4:
	233.5:
	233.6:
	233.7:
	233.8:
	233.9:
	anm233:
	234.0:
	234.1:
	234.2:
	234.3:
	234.4:
	234.5:
	234.6:
	234.7:
	234.8:
	234.9:
	anm234:
	235.0:
	235.1:
	235.2:
	235.3:
	235.4:
	235.5:
	235.6:
	235.7:
	235.8:
	235.9:
	anm235:
	236.0:
	236.1:
	236.2:
	236.3:
	236.4:
	236.5:
	236.6:
	236.7:
	236.8:
	236.9:
	anm236:
	237.0:
	237.1:
	237.2:
	237.3:
	237.4:
	237.5:
	237.6:
	237.7:
	237.8:
	237.9:
	anm237:
	238.0:
	238.1:
	238.2:
	238.3:
	238.4:
	238.5:
	238.6:
	238.7:
	238.8:
	238.9:
	anm238:
	239.0:
	239.1:
	239.2:
	239.3:
	239.4:
	239.5:
	239.6:
	239.7:
	239.8:
	239.9:
	anm239:
	240.0:
	240.1:
	240.2:
	240.3:
	240.4:
	240.5:
	240.6:
	240.7:
	240.8:
	240.9:
	anm240:
	241.0:
	241.1:
	241.2:
	241.3:
	241.4:
	241.5:
	241.6:
	241.7:
	241.8:
	241.9:
	anm241:
	242.0:
	242.1:
	242.2:
	242.3:
	242.4:
	242.5:
	242.6:
	242.7:
	242.8:
	242.9:
	anm242:
	243.0:
	243.1:
	243.2:
	243.3:
	243.4:
	243.5:
	243.6:
	243.7:
	243.8:
	243.9:
	anm243:
	244.0:
	244.1:
	244.2:
	244.3:
	244.4:
	244.5:
	244.6:
	244.7:
	244.8:
	244.9:
	anm244:
	245.0:
	245.1:
	245.2:
	245.3:
	245.4:
	245.5:
	245.6:
	245.7:
	245.8:
	245.9:
	anm245:
	246.0:
	246.1:
	246.2:
	246.3:
	246.4:
	246.5:
	246.6:
	246.7:
	246.8:
	246.9:
	anm246:
	247.0:
	247.1:
	247.2:
	247.3:
	247.4:
	247.5:
	247.6:
	247.7:
	247.8:
	247.9:
	anm247:
	248.0:
	248.1:
	248.2:
	248.3:
	248.4:
	248.5:
	248.6:
	248.7:
	248.8:
	248.9:
	anm248:
	249.0:
	249.1:
	249.2:
	249.3:
	249.4:
	249.5:
	249.6:
	249.7:
	249.8:
	249.9:
	anm249:
	250.0:
	250.1:
	250.2:
	250.3:
	250.4:
	250.5:
	250.6:
	250.7:
	250.8:
	250.9:
	anm250:
	251.0:
	251.1:
	251.2:
	251.3:
	251.4:
	251.5:
	251.6:
	251.7:
	251.8:
	251.9:
	anm251:
	252.0:
	252.1:
	252.2:
	252.3:
	252.4:
	252.5:
	252.6:
	252.7:
	252.8:
	252.9:
	anm252:
	253.0:
	253.1:
	253.2:
	253.3:
	253.4:
	253.5:
	253.6:
	253.7:
	253.8:
	253.9:
	anm253:
	254.0:
	254.1:
	254.2:
	254.3:
	254.4:
	254.5:
	254.6:
	254.7:
	254.8:
	254.9:
	anm254:
	255.0:
	255.1:
	255.2:
	255.3:
	255.4:
	255.5:
	255.6:
	255.7:
	255.8:
	255.9:
	anm255:
	256.0:
	256.1:
	256.2:
	256.3:
	256.4:
	256.5:
	256.6:
	256.7:
	256.8:
	256.9:
	anm256:
	257.0:
	257.1:
	257.2:
	257.3:
	257.4:
	257.5:
	257.6:
	257.7:
	257.8:
	257.9:
	anm257:
	258.0:
	258.1:
	258.2:
	258.3:
	258.4:
	258.5:
	258.6:
	258.7:
	258.8:
	258.9:
	anm258:
	259.0:
	259.1:
	259.2:
	259.3:
	259.4:
	259.5:
	259.6:
	259.7:
	259.8:
	259.9:
	anm259:
	260.0:
	260.1:
	260.2:
	260.3:
	260.4:
	260.5:
	260.6:
	260.7:
	260.8:
	260.9:
	anm260:
	261.0:
	261.1:
	261.2:
	261.3:
	261.4:
	261.5:
	261.6:
	261.7:
	261.8:
	261.9:
	anm261:
	262.0:
	262.1:
	262.2:
	262.3:
	262.4:
	262.5:
	262.6:
	262.7:
	262.8:
	262.9:
	anm262:
	263.0:
	263.1:
	263.2:
	263.3:
	263.4:
	263.5:
	263.6:
	263.7:
	263.8:
	263.9:
	anm263:
	264.0:
	264.1:
	264.2:
	264.3:
	264.4:
	264.5:
	264.6:
	264.7:
	264.8:
	264.9:
	anm264:
	265.0:
	265.1:
	265.2:
	265.3:
	265.4:
	265.5:
	265.6:
	265.7:
	265.8:
	265.9:
	anm265:
	266.0:
	266.1:
	266.2:
	266.3:
	266.4:
	266.5:
	266.6:
	266.7:
	266.8:
	266.9:
	anm266:
	267.0:
	267.1:
	267.2:
	267.3:
	267.4:
	267.5:
	267.6:
	267.7:
	267.8:
	267.9:
	anm267:
	268.0:
	268.1:
	268.2:
	268.3:
	268.4:
	268.5:
	268.6:
	268.7:
	268.8:
	268.9:
	anm268:
	269.0:
	269.1:
	269.2:
	269.3:
	269.4:
	269.5:
	269.6:
	269.7:
	269.8:
	269.9:
	anm269:
	270.0:
	270.1:
	270.2:
	270.3:
	270.4:
	270.5:
	270.6:
	270.7:
	270.8:
	270.9:
	anm270:
	271.0:
	271.1:
	271.2:
	271.3:
	271.4:
	271.5:
	271.6:
	271.7:
	271.8:
	271.9:
	anm271:
	272.0:
	272.1:
	272.2:
	272.3:
	272.4:
	272.5:
	272.6:
	272.7:
	272.8:
	272.9:
	anm272:
	273.0:
	273.1:
	273.2:
	273.3:
	273.4:
	273.5:
	273.6:
	273.7:
	273.8:
	273.9:
	anm273:
	274.0:
	274.1:
	274.2:
	274.3:
	274.4:
	274.5:
	274.6:
	274.7:
	274.8:
	274.9:
	anm274:
	275.0:
	275.1:
	275.2:
	275.3:
	275.4:
	275.5:
	275.6:
	275.7:
	275.8:
	275.9:
	anm275:
	276.0:
	276.1:
	276.2:
	276.3:
	276.4:
	276.5:
	276.6:
	276.7:
	276.8:
	276.9:
	anm276:
	277.0:
	277.1:
	277.2:
	277.3:
	277.4:
	277.5:
	277.6:
	277.7:
	277.8:
	277.9:
	anm277:
	278.0:
	278.1:
	278.2:
	278.3:
	278.4:
	278.5:
	278.6:
	278.7:
	278.8:
	278.9:
	anm278:
	279.0:
	279.1:
	279.2:
	279.3:
	279.4:
	279.5:
	279.6:
	279.7:
	279.8:
	279.9:
	anm279:
	280.0:
	280.1:
	280.2:
	280.3:
	280.4:
	280.5:
	280.6:
	280.7:
	280.8:
	280.9:
	anm280:
	281.0:
	281.1:
	281.2:
	281.3:
	281.4:
	281.5:
	281.6:
	281.7:
	281.8:
	281.9:
	anm281:
	282.0:
	282.1:
	282.2:
	282.3:
	282.4:
	282.5:
	282.6:
	282.7:
	282.8:
	282.9:
	anm282:
	283.0:
	283.1:
	283.2:
	283.3:
	283.4:
	283.5:
	283.6:
	283.7:
	283.8:
	283.9:
	anm283:
	284.0:
	284.1:
	284.2:
	284.3:
	284.4:
	284.5:
	284.6:
	284.7:
	284.8:
	284.9:
	anm284:
	285.0:
	285.1:
	285.2:
	285.3:
	285.4:
	285.5:
	285.6:
	285.7:
	285.8:
	285.9:
	anm285:
	286.0:
	286.1:
	286.2:
	286.3:
	286.4:
	286.5:
	286.6:
	286.7:
	286.8:
	286.9:
	anm286:
	287.0:
	287.1:
	287.2:
	287.3:
	287.4:
	287.5:
	287.6:
	287.7:
	287.8:
	287.9:
	anm287:
	288.0:
	288.1:
	288.2:
	288.3:
	288.4:
	288.5:
	288.6:
	288.7:
	288.8:
	288.9:
	anm288:
	289.0:
	289.1:
	289.2:
	289.3:
	289.4:
	289.5:
	289.6:
	289.7:
	289.8:
	289.9:
	anm289:
	290.0:
	290.1:
	290.2:
	290.3:
	290.4:
	290.5:
	290.6:
	290.7:
	290.8:
	290.9:
	anm290:
	291.0:
	291.1:
	291.2:
	291.3:
	291.4:
	291.5:
	291.6:
	291.7:
	291.8:
	291.9:
	anm291:
	292.0:
	292.1:
	292.2:
	292.3:
	292.4:
	292.5:
	292.6:
	292.7:
	292.8:
	292.9:
	anm292:
	293.0:
	293.1:
	293.2:
	293.3:
	293.4:
	293.5:
	293.6:
	293.7:
	293.8:
	293.9:
	anm293:
	294.0:
	294.1:
	294.2:
	294.3:
	294.4:
	294.5:
	294.6:
	294.7:
	294.8:
	294.9:
	anm294:
	295.0:
	295.1:
	295.2:
	295.3:
	295.4:
	295.5:
	295.6:
	295.7:
	295.8:
	295.9:
	anm295:
	296.0:
	296.1:
	296.2:
	296.3:
	296.4:
	296.5:
	296.6:
	296.7:
	296.8:
	296.9:
	anm296:
	297.0:
	297.1:
	297.2:
	297.3:
	297.4:
	297.5:
	297.6:
	297.7:
	297.8:
	297.9:
	anm297:
	298.0:
	298.1:
	298.2:
	298.3:
	298.4:
	298.5:
	298.6:
	298.7:
	298.8:
	298.9:
	anm298:
	299.0:
	299.1:
	299.2:
	299.3:
	299.4:
	299.5:
	299.6:
	299.7:
	299.8:
	299.9:
	anm299:
	300.0:
	300.1:
	300.2:
	300.3:
	300.4:
	300.5:
	300.6:
	300.7:
	300.8:
	300.9:
	anm300:
	301.0:
	301.1:
	301.2:
	301.3:
	301.4:
	301.5:
	301.6:
	301.7:
	301.8:
	301.9:
	anm301:
	302.0:
	302.1:
	302.2:
	302.3:
	302.4:
	302.5:
	302.6:
	302.7:
	302.8:
	302.9:
	anm302:
	303.0:
	303.1:
	303.2:
	303.3:
	303.4:
	303.5:
	303.6:
	303.7:
	303.8:
	303.9:
	anm303:
	304.0:
	304.1:
	304.2:
	304.3:
	304.4:
	304.5:
	304.6:
	304.7:
	304.8:
	304.9:
	anm304:
	305.0:
	305.1:
	305.2:
	305.3:
	305.4:
	305.5:
	305.6:
	305.7:
	305.8:
	305.9:
	anm305:
	306.0:
	306.1:
	306.2:
	306.3:
	306.4:
	306.5:
	306.6:
	306.7:
	306.8:
	306.9:
	anm306:
	307.0:
	307.1:
	307.2:
	307.3:
	307.4:
	307.5:
	307.6:
	307.7:
	307.8:
	307.9:
	anm307:
	308.0:
	308.1:
	308.2:
	308.3:
	308.4:
	308.5:
	308.6:
	308.7:
	308.8:
	308.9:
	anm308:
	309.0:
	309.1:
	309.2:
	309.3:
	309.4:
	309.5:
	309.6:
	309.7:
	309.8:
	309.9:
	anm309:
	310.0:
	310.1:
	310.2:
	310.3:
	310.4:
	310.5:
	310.6:
	310.7:
	310.8:
	310.9:
	anm310:
	311.0:
	311.1:
	311.2:
	311.3:
	311.4:
	311.5:
	311.6:
	311.7:
	311.8:
	311.9:
	anm311:
	312.0:
	312.1:
	312.2:
	312.3:
	312.4:
	312.5:
	312.6:
	312.7:
	312.8:
	312.9:
	anm312:
	313.0:
	313.1:
	313.2:
	313.3:
	313.4:
	313.5:
	313.6:
	313.7:
	313.8:
	313.9:
	anm313:
	314.0:
	314.1:
	314.2:
	314.3:
	314.4:
	314.5:
	314.6:
	314.7:
	314.8:
	314.9:
	anm314:
	315.0:
	315.1:
	315.2:
	315.3:
	315.4:
	315.5:
	315.6:
	315.7:
	315.8:
	315.9:
	anm315:
	316.0:
	316.1:
	316.2:
	316.3:
	316.4:
	316.5:
	316.6:
	316.7:
	316.8:
	316.9:
	anm316:
	317.0:
	317.1:
	317.2:
	317.3:
	317.4:
	317.5:
	317.6:
	317.7:
	317.8:
	317.9:
	anm317:
	318.0:
	318.1:
	318.2:
	318.3:
	318.4:
	318.5:
	318.6:
	318.7:
	318.8:
	318.9:
	anm318:
	319.0:
	319.1:
	319.2:
	319.3:
	319.4:
	319.5:
	319.6:
	319.7:
	319.8:
	319.9:
	anm319:
	320.0:
	320.1:
	320.2:
	320.3:
	320.4:
	320.5:
	320.6:
	320.7:
	320.8:
	320.9:
	anm320:
	321.0:
	321.1:
	321.2:
	321.3:
	321.4:
	321.5:
	321.6:
	321.7:
	321.8:
	321.9:
	anm321:
	322.0:
	322.1:
	322.2:
	322.3:
	322.4:
	322.5:
	322.6:
	322.7:
	322.8:
	322.9:
	anm322:
	323.0:
	323.1:
	323.2:
	323.3:
	323.4:
	323.5:
	323.6:
	323.7:
	323.8:
	323.9:
	anm323:
	324.0:
	324.1:
	324.2:
	324.3:
	324.4:
	324.5:
	324.6:
	324.7:
	324.8:
	324.9:
	anm324:
	325.0:
	325.1:
	325.2:
	325.3:
	325.4:
	325.5:
	325.6:
	325.7:
	325.8:
	325.9:
	anm325:
	326.0:
	326.1:
	326.2:
	326.3:
	326.4:
	326.5:
	326.6:
	326.7:
	326.8:
	326.9:
	anm326:
	327.0:
	327.1:
	327.2:
	327.3:
	327.4:
	327.5:
	327.6:
	327.7:
	327.8:
	327.9:
	anm327:
	328.0:
	328.1:
	328.2:
	328.3:
	328.4:
	328.5:
	328.6:
	328.7:
	328.8:
	328.9:
	anm328:
	329.0:
	329.1:
	329.2:
	329.3:
	329.4:
	329.5:
	329.6:
	329.7:
	329.8:
	329.9:
	anm329:
	330.0:
	330.1:
	330.2:
	330.3:
	330.4:
	330.5:
	330.6:
	330.7:
	330.8:
	330.9:
	anm330:
	331.0:
	331.1:
	331.2:
	331.3:
	331.4:
	331.5:
	331.6:
	331.7:
	331.8:
	331.9:
	anm331:
	332.0:
	332.1:
	332.2:
	332.3:
	332.4:
	332.5:
	332.6:
	332.7:
	332.8:
	332.9:
	anm332:
	333.0:
	333.1:
	333.2:
	333.3:
	333.4:
	333.5:
	333.6:
	333.7:
	333.8:
	333.9:
	anm333:
	334.0:
	334.1:
	334.2:
	334.3:
	334.4:
	334.5:
	334.6:
	334.7:
	334.8:
	334.9:
	anm334:
	335.0:
	335.1:
	335.2:
	335.3:
	335.4:
	335.5:
	335.6:
	335.7:
	335.8:
	335.9:
	anm335:
	336.0:
	336.1:
	336.2:
	336.3:
	336.4:
	336.5:
	336.6:
	336.7:
	336.8:
	336.9:
	anm336:
	337.0:
	337.1:
	337.2:
	337.3:
	337.4:
	337.5:
	337.6:
	337.7:
	337.8:
	337.9:
	anm337:
	338.0:
	338.1:
	338.2:
	338.3:
	338.4:
	338.5:
	338.6:
	338.7:
	338.8:
	338.9:
	anm338:
	339.0:
	339.1:
	339.2:
	339.3:
	339.4:
	339.5:
	339.6:
	339.7:
	339.8:
	339.9:
	anm339:
	340.0:
	340.1:
	340.2:
	340.3:
	340.4:
	340.5:
	340.6:
	340.7:
	340.8:
	340.9:
	anm340:
	341.0:
	341.1:
	341.2:
	341.3:
	341.4:
	341.5:
	341.6:
	341.7:
	341.8:
	341.9:
	anm341:
	342.0:
	342.1:
	342.2:
	342.3:
	342.4:
	342.5:
	342.6:
	342.7:
	342.8:
	342.9:
	anm342:
	343.0:
	343.1:
	343.2:
	343.3:
	343.4:
	343.5:
	343.6:
	343.7:
	343.8:
	343.9:
	anm343:
	344.0:
	344.1:
	344.2:
	344.3:
	344.4:
	344.5:
	344.6:
	344.7:
	344.8:
	344.9:
	anm344:
	345.0:
	345.1:
	345.2:
	345.3:
	345.4:
	345.5:
	345.6:
	345.7:
	345.8:
	345.9:
	anm345:
	346.0:
	346.1:
	346.2:
	346.3:
	346.4:
	346.5:
	346.6:
	346.7:
	346.8:
	346.9:
	anm346:
	347.0:
	347.1:
	347.2:
	347.3:
	347.4:
	347.5:
	347.6:
	347.7:
	347.8:
	347.9:
	anm347:
	348.0:
	348.1:
	348.2:
	348.3:
	348.4:
	348.5:
	348.6:
	348.7:
	348.8:
	348.9:
	anm348:
	349.0:
	349.1:
	349.2:
	349.3:
	349.4:
	349.5:
	349.6:
	349.7:
	349.8:
	349.9:
	anm349:
	350.0:
	350.1:
	350.2:
	350.3:
	350.4:
	350.5:
	350.6:
	350.7:
	350.8:
	350.9:
	anm350:
	351.0:
	351.1:
	351.2:
	351.3:
	351.4:
	351.5:
	351.6:
	351.7:
	351.8:
	351.9:
	anm351:
	352.0:
	352.1:
	352.2:
	352.3:
	352.4:
	352.5:
	352.6:
	352.7:
	352.8:
	352.9:
	anm352:
	353.0:
	353.1:
	353.2:
	353.3:
	353.4:
	353.5:
	353.6:
	353.7:
	353.8:
	353.9:
	anm353:
	354.0:
	354.1:
	354.2:
	354.3:
	354.4:
	354.5:
	354.6:
	354.7:
	354.8:
	354.9:
	anm354:
	355.0:
	355.1:
	355.2:
	355.3:
	355.4:
	355.5:
	355.6:
	355.7:
	355.8:
	355.9:
	anm355:
	356.0:
	356.1:
	356.2:
	356.3:
	356.4:
	356.5:
	356.6:
	356.7:
	356.8:
	356.9:
	anm356:
	357.0:
	357.1:
	357.2:
	357.3:
	357.4:
	357.5:
	357.6:
	357.7:
	357.8:
	357.9:
	anm357:
	358.0:
	358.1:
	358.2:
	358.3:
	358.4:
	358.5:
	358.6:
	358.7:
	358.8:
	358.9:
	anm358:
	359.0:
	359.1:
	359.2:
	359.3:
	359.4:
	359.5:
	359.6:
	359.7:
	359.8:
	359.9:
	anm359:
	360.0:
	360.1:
	360.2:
	360.3:
	360.4:
	360.5:
	360.6:
	360.7:
	360.8:
	360.9:
	anm360:
	361.0:
	361.1:
	361.2:
	361.3:
	361.4:
	361.5:
	361.6:
	361.7:
	361.8:
	361.9:
	anm361:
	362.0:
	362.1:
	362.2:
	362.3:
	362.4:
	362.5:
	362.6:
	362.7:
	362.8:
	362.9:
	anm362:
	363.0:
	363.1:
	363.2:
	363.3:
	363.4:
	363.5:
	363.6:
	363.7:
	363.8:
	363.9:
	anm363:
	364.0:
	364.1:
	364.2:
	364.3:
	364.4:
	364.5:
	364.6:
	364.7:
	364.8:
	364.9:
	anm364:
	365.0:
	365.1:
	365.2:
	365.3:
	365.4:
	365.5:
	365.6:
	365.7:
	365.8:
	365.9:
	anm365:
	366.0:
	366.1:
	366.2:
	366.3:
	366.4:
	366.5:
	366.6:
	366.7:
	366.8:
	366.9:
	anm366:
	367.0:
	367.1:
	367.2:
	367.3:
	367.4:
	367.5:
	367.6:
	367.7:
	367.8:
	367.9:
	anm367:
	368.0:
	368.1:
	368.2:
	368.3:
	368.4:
	368.5:
	368.6:
	368.7:
	368.8:
	368.9:
	anm368:
	369.0:
	369.1:
	369.2:
	369.3:
	369.4:
	369.5:
	369.6:
	369.7:
	369.8:
	369.9:
	anm369:
	370.0:
	370.1:
	370.2:
	370.3:
	370.4:
	370.5:
	370.6:
	370.7:
	370.8:
	370.9:
	anm370:
	371.0:
	371.1:
	371.2:
	371.3:
	371.4:
	371.5:
	371.6:
	371.7:
	371.8:
	371.9:
	anm371:
	372.0:
	372.1:
	372.2:
	372.3:
	372.4:
	372.5:
	372.6:
	372.7:
	372.8:
	372.9:
	anm372:
	373.0:
	373.1:
	373.2:
	373.3:
	373.4:
	373.5:
	373.6:
	373.7:
	373.8:
	373.9:
	anm373:
	374.0:
	374.1:
	374.2:
	374.3:
	374.4:
	374.5:
	374.6:
	374.7:
	374.8:
	374.9:
	anm374:
	375.0:
	375.1:
	375.2:
	375.3:
	375.4:
	375.5:
	375.6:
	375.7:
	375.8:
	375.9:
	anm375:
	376.0:
	376.1:
	376.2:
	376.3:
	376.4:
	376.5:
	376.6:
	376.7:
	376.8:
	376.9:
	anm376:
	377.0:
	377.1:
	377.2:
	377.3:
	377.4:
	377.5:
	377.6:
	377.7:
	377.8:
	377.9:
	anm377:
	378.0:
	378.1:
	378.2:
	378.3:
	378.4:
	378.5:
	378.6:
	378.7:
	378.8:
	378.9:
	anm378:
	379.0:
	379.1:
	379.2:
	379.3:
	379.4:
	379.5:
	379.6:
	379.7:
	379.8:
	379.9:
	anm379:
	380.0:
	380.1:
	380.2:
	380.3:
	380.4:
	380.5:
	380.6:
	380.7:
	380.8:
	380.9:
	anm380:
	381.0:
	381.1:
	381.2:
	381.3:
	381.4:
	381.5:
	381.6:
	381.7:
	381.8:
	381.9:
	anm381:
	382.0:
	382.1:
	382.2:
	382.3:
	382.4:
	382.5:
	382.6:
	382.7:
	382.8:
	382.9:
	anm382:
	383.0:
	383.1:
	383.2:
	383.3:
	383.4:
	383.5:
	383.6:
	383.7:
	383.8:
	383.9:
	anm383:
	384.0:
	384.1:
	384.2:
	384.3:
	384.4:
	384.5:
	384.6:
	384.7:
	384.8:
	384.9:
	anm384:
	385.0:
	385.1:
	385.2:
	385.3:
	385.4:
	385.5:
	385.6:
	385.7:
	385.8:
	385.9:
	anm385:
	386.0:
	386.1:
	386.2:
	386.3:
	386.4:
	386.5:
	386.6:
	386.7:
	386.8:
	386.9:
	anm386:
	387.0:
	387.1:
	387.2:
	387.3:
	387.4:
	387.5:
	387.6:
	387.7:
	387.8:
	387.9:
	anm387:
	388.0:
	388.1:
	388.2:
	388.3:
	388.4:
	388.5:
	388.6:
	388.7:
	388.8:
	388.9:
	anm388:
	389.0:
	389.1:
	389.2:
	389.3:
	389.4:
	389.5:
	389.6:
	389.7:
	389.8:
	389.9:
	anm389:
	390.0:
	390.1:
	390.2:
	390.3:
	390.4:
	390.5:
	390.6:
	390.7:
	390.8:
	390.9:
	anm390:
	391.0:
	391.1:
	391.2:
	391.3:
	391.4:
	391.5:
	391.6:
	391.7:
	391.8:
	391.9:
	anm391:
	392.0:
	392.1:
	392.2:
	392.3:
	392.4:
	392.5:
	392.6:
	392.7:
	392.8:
	392.9:
	anm392:
	393.0:
	393.1:
	393.2:
	393.3:
	393.4:
	393.5:
	393.6:
	393.7:
	393.8:
	393.9:
	anm393:
	394.0:
	394.1:
	394.2:
	394.3:
	394.4:
	394.5:
	394.6:
	394.7:
	394.8:
	394.9:
	anm394:
	395.0:
	395.1:
	395.2:
	395.3:
	395.4:
	395.5:
	395.6:
	395.7:
	395.8:
	395.9:
	anm395:
	396.0:
	396.1:
	396.2:
	396.3:
	396.4:
	396.5:
	396.6:
	396.7:
	396.8:
	396.9:
	anm396:
	397.0:
	397.1:
	397.2:
	397.3:
	397.4:
	397.5:
	397.6:
	397.7:
	397.8:
	397.9:
	anm397:
	398.0:
	398.1:
	398.2:
	398.3:
	398.4:
	398.5:
	398.6:
	398.7:
	398.8:
	398.9:
	anm398:
	399.0:
	399.1:
	399.2:
	399.3:
	399.4:
	399.5:
	399.6:
	399.7:
	399.8:
	399.9:
	anm399:
	400.0:
	400.1:
	400.2:
	400.3:
	400.4:
	400.5:
	400.6:
	400.7:
	400.8:
	400.9:
	anm400:
	401.0:
	401.1:
	401.2:
	401.3:
	401.4:
	401.5:
	401.6:
	401.7:
	401.8:
	401.9:
	anm401:
	402.0:
	402.1:
	402.2:
	402.3:
	402.4:
	402.5:
	402.6:
	402.7:
	402.8:
	402.9:
	anm402:
	403.0:
	403.1:
	403.2:
	403.3:
	403.4:
	403.5:
	403.6:
	403.7:
	403.8:
	403.9:
	anm403:
	404.0:
	404.1:
	404.2:
	404.3:
	404.4:
	404.5:
	404.6:
	404.7:
	404.8:
	404.9:
	anm404:
	405.0:
	405.1:
	405.2:
	405.3:
	405.4:
	405.5:
	405.6:
	405.7:
	405.8:
	405.9:
	anm405:
	406.0:
	406.1:
	406.2:
	406.3:
	406.4:
	406.5:
	406.6:
	406.7:
	406.8:
	406.9:
	anm406:
	407.0:
	407.1:
	407.2:
	407.3:
	407.4:
	407.5:
	407.6:
	407.7:
	407.8:
	407.9:
	anm407:
	408.0:
	408.1:
	408.2:
	408.3:
	408.4:
	408.5:
	408.6:
	408.7:
	408.8:
	408.9:
	anm408:
	409.0:
	409.1:
	409.2:
	409.3:
	409.4:
	409.5:
	409.6:
	409.7:
	409.8:
	409.9:
	anm409:
	410.0:
	410.1:
	410.2:
	410.3:
	410.4:
	410.5:
	410.6:
	410.7:
	410.8:
	410.9:
	anm410:
	411.0:
	411.1:
	411.2:
	411.3:
	411.4:
	411.5:
	411.6:
	411.7:
	411.8:
	411.9:
	anm411:
	412.0:
	412.1:
	412.2:
	412.3:
	412.4:
	412.5:
	412.6:
	412.7:
	412.8:
	412.9:
	anm412:
	413.0:
	413.1:
	413.2:
	413.3:
	413.4:
	413.5:
	413.6:
	413.7:
	413.8:
	413.9:
	anm413:
	414.0:
	414.1:
	414.2:
	414.3:
	414.4:
	414.5:
	414.6:
	414.7:
	414.8:
	414.9:
	anm414:
	415.0:
	415.1:
	415.2:
	415.3:
	415.4:
	415.5:
	415.6:
	415.7:
	415.8:
	415.9:
	anm415:
	416.0:
	416.1:
	416.2:
	416.3:
	416.4:
	416.5:
	416.6:
	416.7:
	416.8:
	416.9:
	anm416:
	417.0:
	417.1:
	417.2:
	417.3:
	417.4:
	417.5:
	417.6:
	417.7:
	417.8:
	417.9:
	anm417:
	418.0:
	418.1:
	418.2:
	418.3:
	418.4:
	418.5:
	418.6:
	418.7:
	418.8:
	418.9:
	anm418:
	419.0:
	419.1:
	419.2:
	419.3:
	419.4:
	419.5:
	419.6:
	419.7:
	419.8:
	419.9:
	anm419:
	420.0:
	420.1:
	420.2:
	420.3:
	420.4:
	420.5:
	420.6:
	420.7:
	420.8:
	420.9:
	anm420:
	421.0:
	421.1:
	421.2:
	421.3:
	421.4:
	421.5:
	421.6:
	421.7:
	421.8:
	421.9:
	anm421:
	422.0:
	422.1:
	422.2:
	422.3:
	422.4:
	422.5:
	422.6:
	422.7:
	422.8:
	422.9:
	anm422:
	423.0:
	423.1:
	423.2:
	423.3:
	423.4:
	423.5:
	423.6:
	423.7:
	423.8:
	423.9:
	anm423:
	424.0:
	424.1:
	424.2:
	424.3:
	424.4:
	424.5:
	424.6:
	424.7:
	424.8:
	424.9:
	anm424:
	425.0:
	425.1:
	425.2:
	425.3:
	425.4:
	425.5:
	425.6:
	425.7:
	425.8:
	425.9:
	anm425:
	426.0:
	426.1:
	426.2:
	426.3:
	426.4:
	426.5:
	426.6:
	426.7:
	426.8:
	426.9:
	anm426:
	427.0:
	427.1:
	427.2:
	427.3:
	427.4:
	427.5:
	427.6:
	427.7:
	427.8:
	427.9:
	anm427:
	428.0:
	428.1:
	428.2:
	428.3:
	428.4:
	428.5:
	428.6:
	428.7:
	428.8:
	428.9:
	anm428:
	429.0:
	429.1:
	429.2:
	429.3:
	429.4:
	429.5:
	429.6:
	429.7:
	429.8:
	429.9:
	anm429:
	430.0:
	430.1:
	430.2:
	430.3:
	430.4:
	430.5:
	430.6:
	430.7:
	430.8:
	430.9:
	anm430:
	431.0:
	431.1:
	431.2:
	431.3:
	431.4:
	431.5:
	431.6:
	431.7:
	431.8:
	431.9:
	anm431:
	432.0:
	432.1:
	432.2:
	432.3:
	432.4:
	432.5:
	432.6:
	432.7:
	432.8:
	432.9:
	anm432:
	433.0:
	433.1:
	433.2:
	433.3:
	433.4:
	433.5:
	433.6:
	433.7:
	433.8:
	433.9:
	anm433:
	434.0:
	434.1:
	434.2:
	434.3:
	434.4:
	434.5:
	434.6:
	434.7:
	434.8:
	434.9:
	anm434:
	435.0:
	435.1:
	435.2:
	435.3:
	435.4:
	435.5:
	435.6:
	435.7:
	435.8:
	435.9:
	anm435:
	436.0:
	436.1:
	436.2:
	436.3:
	436.4:
	436.5:
	436.6:
	436.7:
	436.8:
	436.9:
	anm436:
	437.0:
	437.1:
	437.2:
	437.3:
	437.4:
	437.5:
	437.6:
	437.7:
	437.8:
	437.9:
	anm437:
	438.0:
	438.1:
	438.2:
	438.3:
	438.4:
	438.5:
	438.6:
	438.7:
	438.8:
	438.9:
	anm438:
	439.0:
	439.1:
	439.2:
	439.3:
	439.4:
	439.5:
	439.6:
	439.7:
	439.8:
	439.9:
	anm439:
	440.0:
	440.1:
	440.2:
	440.3:
	440.4:
	440.5:
	440.6:
	440.7:
	440.8:
	440.9:
	anm440:
	441.0:
	441.1:
	441.2:
	441.3:
	441.4:
	441.5:
	441.6:
	441.7:
	441.8:
	441.9:
	anm441:
	442.0:
	442.1:
	442.2:
	442.3:
	442.4:
	442.5:
	442.6:
	442.7:
	442.8:
	442.9:
	anm442:
	443.0:
	443.1:
	443.2:
	443.3:
	443.4:
	443.5:
	443.6:
	443.7:
	443.8:
	443.9:
	anm443:
	444.0:
	444.1:
	444.2:
	444.3:
	444.4:
	444.5:
	444.6:
	444.7:
	444.8:
	444.9:
	anm444:
	445.0:
	445.1:
	445.2:
	445.3:
	445.4:
	445.5:
	445.6:
	445.7:
	445.8:
	445.9:
	anm445:
	446.0:
	446.1:
	446.2:
	446.3:
	446.4:
	446.5:
	446.6:
	446.7:
	446.8:
	446.9:
	anm446:
	447.0:
	447.1:
	447.2:
	447.3:
	447.4:
	447.5:
	447.6:
	447.7:
	447.8:
	447.9:
	anm447:
	448.0:
	448.1:
	448.2:
	448.3:
	448.4:
	448.5:
	448.6:
	448.7:
	448.8:
	448.9:
	anm448:
	449.0:
	449.1:
	449.2:
	449.3:
	449.4:
	449.5:
	449.6:
	449.7:
	449.8:
	449.9:
	anm449:
	450.0:
	450.1:
	450.2:
	450.3:
	450.4:
	450.5:
	450.6:
	450.7:
	450.8:
	450.9:
	anm450:
	451.0:
	451.1:
	451.2:
	451.3:
	451.4:
	451.5:
	451.6:
	451.7:
	451.8:
	451.9:
	anm451:
	452.0:
	452.1:
	452.2:
	452.3:
	452.4:
	452.5:
	452.6:
	452.7:
	452.8:
	452.9:
	anm452:
	453.0:
	453.1:
	453.2:
	453.3:
	453.4:
	453.5:
	453.6:
	453.7:
	453.8:
	453.9:
	anm453:
	454.0:
	454.1:
	454.2:
	454.3:
	454.4:
	454.5:
	454.6:
	454.7:
	454.8:
	454.9:
	anm454:
	455.0:
	455.1:
	455.2:
	455.3:
	455.4:
	455.5:
	455.6:
	455.7:
	455.8:
	455.9:
	anm455:
	456.0:
	456.1:
	456.2:
	456.3:
	456.4:
	456.5:
	456.6:
	456.7:
	456.8:
	456.9:
	anm456:
	457.0:
	457.1:
	457.2:
	457.3:
	457.4:
	457.5:
	457.6:
	457.7:
	457.8:
	457.9:
	anm457:
	458.0:
	458.1:
	458.2:
	458.3:
	458.4:
	458.5:
	458.6:
	458.7:
	458.8:
	458.9:
	anm458:
	459.0:
	459.1:
	459.2:
	459.3:
	459.4:
	459.5:
	459.6:
	459.7:
	459.8:
	459.9:
	anm459:
	460.0:
	460.1:
	460.2:
	460.3:
	460.4:
	460.5:
	460.6:
	460.7:
	460.8:
	460.9:
	anm460:
	461.0:
	461.1:
	461.2:
	461.3:
	461.4:
	461.5:
	461.6:
	461.7:
	461.8:
	461.9:
	anm461:
	462.0:
	462.1:
	462.2:
	462.3:
	462.4:
	462.5:
	462.6:
	462.7:
	462.8:
	462.9:
	anm462:
	463.0:
	463.1:
	463.2:
	463.3:
	463.4:
	463.5:
	463.6:
	463.7:
	463.8:
	463.9:
	anm463:
	464.0:
	464.1:
	464.2:
	464.3:
	464.4:
	464.5:
	464.6:
	464.7:
	464.8:
	464.9:
	anm464:
	465.0:
	465.1:
	465.2:
	465.3:
	465.4:
	465.5:
	465.6:
	465.7:
	465.8:
	465.9:
	anm465:
	466.0:
	466.1:
	466.2:
	466.3:
	466.4:
	466.5:
	466.6:
	466.7:
	466.8:
	466.9:
	anm466:
	467.0:
	467.1:
	467.2:
	467.3:
	467.4:
	467.5:
	467.6:
	467.7:
	467.8:
	467.9:
	anm467:
	468.0:
	468.1:
	468.2:
	468.3:
	468.4:
	468.5:
	468.6:
	468.7:
	468.8:
	468.9:
	anm468:
	469.0:
	469.1:
	469.2:
	469.3:
	469.4:
	469.5:
	469.6:
	469.7:
	469.8:
	469.9:
	anm469:
	470.0:
	470.1:
	470.2:
	470.3:
	470.4:
	470.5:
	470.6:
	470.7:
	470.8:
	470.9:
	anm470:
	471.0:
	471.1:
	471.2:
	471.3:
	471.4:
	471.5:
	471.6:
	471.7:
	471.8:
	471.9:
	anm471:
	472.0:
	472.1:
	472.2:
	472.3:
	472.4:
	472.5:
	472.6:
	472.7:
	472.8:
	472.9:
	anm472:
	473.0:
	473.1:
	473.2:
	473.3:
	473.4:
	473.5:
	473.6:
	473.7:
	473.8:
	473.9:
	anm473:
	474.0:
	474.1:
	474.2:
	474.3:
	474.4:
	474.5:
	474.6:
	474.7:
	474.8:
	474.9:
	anm474:
	475.0:
	475.1:
	475.2:
	475.3:
	475.4:
	475.5:
	475.6:
	475.7:
	475.8:
	475.9:
	anm475:
	476.0:
	476.1:
	476.2:
	476.3:
	476.4:
	476.5:
	476.6:
	476.7:
	476.8:
	476.9:
	anm476:
	477.0:
	477.1:
	477.2:
	477.3:
	477.4:
	477.5:
	477.6:
	477.7:
	477.8:
	477.9:
	anm477:
	478.0:
	478.1:
	478.2:
	478.3:
	478.4:
	478.5:
	478.6:
	478.7:
	478.8:
	478.9:
	anm478:
	479.0:
	479.1:
	479.2:
	479.3:
	479.4:
	479.5:
	479.6:
	479.7:
	479.8:
	479.9:
	anm479:
	480.0:
	480.1:
	480.2:
	480.3:
	480.4:
	480.5:
	480.6:
	480.7:
	480.8:
	480.9:
	anm480:
	481.0:
	481.1:
	481.2:
	481.3:
	481.4:
	481.5:
	481.6:
	481.7:
	481.8:
	481.9:
	anm481:
	482.0:
	482.1:
	482.2:
	482.3:
	482.4:
	482.5:
	482.6:
	482.7:
	482.8:
	482.9:
	anm482:
	483.0:
	483.1:
	483.2:
	483.3:
	483.4:
	483.5:
	483.6:
	483.7:
	483.8:
	483.9:
	anm483:
	484.0:
	484.1:
	484.2:
	484.3:
	484.4:
	484.5:
	484.6:
	484.7:
	484.8:
	484.9:
	anm484:
	485.0:
	485.1:
	485.2:
	485.3:
	485.4:
	485.5:
	485.6:
	485.7:
	485.8:
	485.9:
	anm485:
	486.0:
	486.1:
	486.2:
	486.3:
	486.4:
	486.5:
	486.6:
	486.7:
	486.8:
	486.9:
	anm486:
	487.0:
	487.1:
	487.2:
	487.3:
	487.4:
	487.5:
	487.6:
	487.7:
	487.8:
	487.9:
	anm487:
	488.0:
	488.1:
	488.2:
	488.3:
	488.4:
	488.5:
	488.6:
	488.7:
	488.8:
	488.9:
	anm488:
	489.0:
	489.1:
	489.2:
	489.3:
	489.4:
	489.5:
	489.6:
	489.7:
	489.8:
	489.9:
	anm489:
	490.0:
	490.1:
	490.2:
	490.3:
	490.4:
	490.5:
	490.6:
	490.7:
	490.8:
	490.9:
	anm490:
	491.0:
	491.1:
	491.2:
	491.3:
	491.4:
	491.5:
	491.6:
	491.7:
	491.8:
	491.9:
	anm491:
	492.0:
	492.1:
	492.2:
	492.3:
	492.4:
	492.5:
	492.6:
	492.7:
	492.8:
	492.9:
	anm492:
	493.0:
	493.1:
	493.2:
	493.3:
	493.4:
	493.5:
	493.6:
	493.7:
	493.8:
	493.9:
	anm493:
	494.0:
	494.1:
	494.2:
	494.3:
	494.4:
	494.5:
	494.6:
	494.7:
	494.8:
	494.9:
	anm494:
	495.0:
	495.1:
	495.2:
	495.3:
	495.4:
	495.5:
	495.6:
	495.7:
	495.8:
	495.9:
	anm495:
	496.0:
	496.1:
	496.2:
	496.3:
	496.4:
	496.5:
	496.6:
	496.7:
	496.8:
	496.9:
	anm496:
	497.0:
	497.1:
	497.2:
	497.3:
	497.4:
	497.5:
	497.6:
	497.7:
	497.8:
	497.9:
	anm497:
	498.0:
	498.1:
	498.2:
	498.3:
	498.4:
	498.5:
	498.6:
	498.7:
	498.8:
	498.9:
	anm498:
	499.0:
	499.1:
	499.2:
	499.3:
	499.4:
	499.5:
	499.6:
	499.7:
	499.8:
	499.9:
	anm499:
	500.0:
	500.1:
	500.2:
	500.3:
	500.4:
	500.5:
	500.6:
	500.7:
	500.8:
	500.9:
	anm500:
	501.0:
	501.1:
	501.2:
	501.3:
	501.4:
	501.5:
	501.6:
	501.7:
	501.8:
	501.9:
	anm501:
	502.0:
	502.1:
	502.2:
	502.3:
	502.4:
	502.5:
	502.6:
	502.7:
	502.8:
	502.9:
	anm502:
	503.0:
	503.1:
	503.2:
	503.3:
	503.4:
	503.5:
	503.6:
	503.7:
	503.8:
	503.9:
	anm503:
	504.0:
	504.1:
	504.2:
	504.3:
	504.4:
	504.5:
	504.6:
	504.7:
	504.8:
	504.9:
	anm504:
	505.0:
	505.1:
	505.2:
	505.3:
	505.4:
	505.5:
	505.6:
	505.7:
	505.8:
	505.9:
	anm505:
	506.0:
	506.1:
	506.2:
	506.3:
	506.4:
	506.5:
	506.6:
	506.7:
	506.8:
	506.9:
	anm506:
	507.0:
	507.1:
	507.2:
	507.3:
	507.4:
	507.5:
	507.6:
	507.7:
	507.8:
	507.9:
	anm507:
	508.0:
	508.1:
	508.2:
	508.3:
	508.4:
	508.5:
	508.6:
	508.7:
	508.8:
	508.9:
	anm508:
	509.0:
	509.1:
	509.2:
	509.3:
	509.4:
	509.5:
	509.6:
	509.7:
	509.8:
	509.9:
	anm509:
	510.0:
	510.1:
	510.2:
	510.3:
	510.4:
	510.5:
	510.6:
	510.7:
	510.8:
	510.9:
	anm510:
	511.0:
	511.1:
	511.2:
	511.3:
	511.4:
	511.5:
	511.6:
	511.7:
	511.8:
	511.9:
	anm511:
	512.0:
	512.1:
	512.2:
	512.3:
	512.4:
	512.5:
	512.6:
	512.7:
	512.8:
	512.9:
	anm512:
	513.0:
	513.1:
	513.2:
	513.3:
	513.4:
	513.5:
	513.6:
	513.7:
	513.8:
	513.9:
	anm513:
	514.0:
	514.1:
	514.2:
	514.3:
	514.4:
	514.5:
	514.6:
	514.7:
	514.8:
	514.9:
	anm514:
	515.0:
	515.1:
	515.2:
	515.3:
	515.4:
	515.5:
	515.6:
	515.7:
	515.8:
	515.9:
	anm515:
	516.0:
	516.1:
	516.2:
	516.3:
	516.4:
	516.5:
	516.6:
	516.7:
	516.8:
	516.9:
	anm516:
	517.0:
	517.1:
	517.2:
	517.3:
	517.4:
	517.5:
	517.6:
	517.7:
	517.8:
	517.9:
	anm517:
	518.0:
	518.1:
	518.2:
	518.3:
	518.4:
	518.5:
	518.6:
	518.7:
	518.8:
	518.9:
	anm518:
	519.0:
	519.1:
	519.2:
	519.3:
	519.4:
	519.5:
	519.6:
	519.7:
	519.8:
	519.9:
	anm519:
	520.0:
	520.1:
	520.2:
	520.3:
	520.4:
	520.5:
	520.6:
	520.7:
	520.8:
	520.9:
	anm520:
	521.0:
	521.1:
	521.2:
	521.3:
	521.4:
	521.5:
	521.6:
	521.7:
	521.8:
	521.9:
	anm521:
	522.0:
	522.1:
	522.2:
	522.3:
	522.4:
	522.5:
	522.6:
	522.7:
	522.8:
	522.9:
	anm522:
	523.0:
	523.1:
	523.2:
	523.3:
	523.4:
	523.5:
	523.6:
	523.7:
	523.8:
	523.9:
	anm523:
	524.0:
	524.1:
	524.2:
	524.3:
	524.4:
	524.5:
	524.6:
	524.7:
	524.8:
	524.9:
	anm524:
	525.0:
	525.1:
	525.2:
	525.3:
	525.4:
	525.5:
	525.6:
	525.7:
	525.8:
	525.9:
	anm525:
	526.0:
	526.1:
	526.2:
	526.3:
	526.4:
	526.5:
	526.6:
	526.7:
	526.8:
	526.9:
	anm526:
	527.0:
	527.1:
	527.2:
	527.3:
	527.4:
	527.5:
	527.6:
	527.7:
	527.8:
	527.9:
	anm527:
	528.0:
	528.1:
	528.2:
	528.3:
	528.4:
	528.5:
	528.6:
	528.7:
	528.8:
	528.9:
	anm528:
	529.0:
	529.1:
	529.2:
	529.3:
	529.4:
	529.5:
	529.6:
	529.7:
	529.8:
	529.9:
	anm529:
	530.0:
	530.1:
	530.2:
	530.3:
	530.4:
	530.5:
	530.6:
	530.7:
	530.8:
	530.9:
	anm530:
	531.0:
	531.1:
	531.2:
	531.3:
	531.4:
	531.5:
	531.6:
	531.7:
	531.8:
	531.9:
	anm531:
	532.0:
	532.1:
	532.2:
	532.3:
	532.4:
	532.5:
	532.6:
	532.7:
	532.8:
	532.9:
	anm532:
	533.0:
	533.1:
	533.2:
	533.3:
	533.4:
	533.5:
	533.6:
	533.7:
	533.8:
	533.9:
	anm533:
	534.0:
	534.1:
	534.2:
	534.3:
	534.4:
	534.5:
	534.6:
	534.7:
	534.8:
	534.9:
	anm534:
	535.0:
	535.1:
	535.2:
	535.3:
	535.4:
	535.5:
	535.6:
	535.7:
	535.8:
	535.9:
	anm535:
	536.0:
	536.1:
	536.2:
	536.3:
	536.4:
	536.5:
	536.6:
	536.7:
	536.8:
	536.9:
	anm536:
	537.0:
	537.1:
	537.2:
	537.3:
	537.4:
	537.5:
	537.6:
	537.7:
	537.8:
	537.9:
	anm537:
	538.0:
	538.1:
	538.2:
	538.3:
	538.4:
	538.5:
	538.6:
	538.7:
	538.8:
	538.9:
	anm538:
	539.0:
	539.1:
	539.2:
	539.3:
	539.4:
	539.5:
	539.6:
	539.7:
	539.8:
	539.9:
	anm539:
	540.0:
	540.1:
	540.2:
	540.3:
	540.4:
	540.5:
	540.6:
	540.7:
	540.8:
	540.9:
	anm540:
	541.0:
	541.1:
	541.2:
	541.3:
	541.4:
	541.5:
	541.6:
	541.7:
	541.8:
	541.9:
	anm541:
	542.0:
	542.1:
	542.2:
	542.3:
	542.4:
	542.5:
	542.6:
	542.7:
	542.8:
	542.9:
	anm542:
	543.0:
	543.1:
	543.2:
	543.3:
	543.4:
	543.5:
	543.6:
	543.7:
	543.8:
	543.9:
	anm543:
	544.0:
	544.1:
	544.2:
	544.3:
	544.4:
	544.5:
	544.6:
	544.7:
	544.8:
	544.9:
	anm544:
	545.0:
	545.1:
	545.2:
	545.3:
	545.4:
	545.5:
	545.6:
	545.7:
	545.8:
	545.9:
	anm545:
	546.0:
	546.1:
	546.2:
	546.3:
	546.4:
	546.5:
	546.6:
	546.7:
	546.8:
	546.9:
	anm546:
	547.0:
	547.1:
	547.2:
	547.3:
	547.4:
	547.5:
	547.6:
	547.7:
	547.8:
	547.9:
	anm547:
	548.0:
	548.1:
	548.2:
	548.3:
	548.4:
	548.5:
	548.6:
	548.7:
	548.8:
	548.9:
	anm548:
	549.0:
	549.1:
	549.2:
	549.3:
	549.4:
	549.5:
	549.6:
	549.7:
	549.8:
	549.9:
	anm549:
	550.0:
	550.1:
	550.2:
	550.3:
	550.4:
	550.5:
	550.6:
	550.7:
	550.8:
	550.9:
	anm550:
	551.0:
	551.1:
	551.2:
	551.3:
	551.4:
	551.5:
	551.6:
	551.7:
	551.8:
	551.9:
	anm551:
	552.0:
	552.1:
	552.2:
	552.3:
	552.4:
	552.5:
	552.6:
	552.7:
	552.8:
	552.9:
	anm552:
	553.0:
	553.1:
	553.2:
	553.3:
	553.4:
	553.5:
	553.6:
	553.7:
	553.8:
	553.9:
	anm553:
	554.0:
	554.1:
	554.2:
	554.3:
	554.4:
	554.5:
	554.6:
	554.7:
	554.8:
	554.9:
	anm554:
	555.0:
	555.1:
	555.2:
	555.3:
	555.4:
	555.5:
	555.6:
	555.7:
	555.8:
	555.9:
	anm555:
	556.0:
	556.1:
	556.2:
	556.3:
	556.4:
	556.5:
	556.6:
	556.7:
	556.8:
	556.9:
	anm556:
	557.0:
	557.1:
	557.2:
	557.3:
	557.4:
	557.5:
	557.6:
	557.7:
	557.8:
	557.9:
	anm557:
	558.0:
	558.1:
	558.2:
	558.3:
	558.4:
	558.5:
	558.6:
	558.7:
	558.8:
	558.9:
	anm558:
	559.0:
	559.1:
	559.2:
	559.3:
	559.4:
	559.5:
	559.6:
	559.7:
	559.8:
	559.9:
	anm559:
	560.0:
	560.1:
	560.2:
	560.3:
	560.4:
	560.5:
	560.6:
	560.7:
	560.8:
	560.9:
	anm560:
	561.0:
	561.1:
	561.2:
	561.3:
	561.4:
	561.5:
	561.6:
	561.7:
	561.8:
	561.9:
	anm561:
	562.0:
	562.1:
	562.2:
	562.3:
	562.4:
	562.5:
	562.6:
	562.7:
	562.8:
	562.9:
	anm562:
	563.0:
	563.1:
	563.2:
	563.3:
	563.4:
	563.5:
	563.6:
	563.7:
	563.8:
	563.9:
	anm563:
	564.0:
	564.1:
	564.2:
	564.3:
	564.4:
	564.5:
	564.6:
	564.7:
	564.8:
	564.9:
	anm564:
	565.0:
	565.1:
	565.2:
	565.3:
	565.4:
	565.5:
	565.6:
	565.7:
	565.8:
	565.9:
	anm565:
	566.0:
	566.1:
	566.2:
	566.3:
	566.4:
	566.5:
	566.6:
	566.7:
	566.8:
	566.9:
	anm566:
	567.0:
	567.1:
	567.2:
	567.3:
	567.4:
	567.5:
	567.6:
	567.7:
	567.8:
	567.9:
	anm567:
	568.0:
	568.1:
	568.2:
	568.3:
	568.4:
	568.5:
	568.6:
	568.7:
	568.8:
	568.9:
	anm568:
	569.0:
	569.1:
	569.2:
	569.3:
	569.4:
	569.5:
	569.6:
	569.7:
	569.8:
	569.9:
	anm569:
	570.0:
	570.1:
	570.2:
	570.3:
	570.4:
	570.5:
	570.6:
	570.7:
	570.8:
	570.9:
	anm570:
	571.0:
	571.1:
	571.2:
	571.3:
	571.4:
	571.5:
	571.6:
	571.7:
	571.8:
	571.9:
	anm571:
	572.0:
	572.1:
	572.2:
	572.3:
	572.4:
	572.5:
	572.6:
	572.7:
	572.8:
	572.9:
	anm572:
	573.0:
	573.1:
	573.2:
	573.3:
	573.4:
	573.5:
	573.6:
	573.7:
	573.8:
	573.9:
	anm573:
	574.0:
	574.1:
	574.2:
	574.3:
	574.4:
	574.5:
	574.6:
	574.7:
	574.8:
	574.9:
	anm574:
	575.0:
	575.1:
	575.2:
	575.3:
	575.4:
	575.5:
	575.6:
	575.7:
	575.8:
	575.9:
	anm575:
	576.0:
	576.1:
	576.2:
	576.3:
	576.4:
	576.5:
	576.6:
	576.7:
	576.8:
	576.9:
	anm576:
	577.0:
	577.1:
	577.2:
	577.3:
	577.4:
	577.5:
	577.6:
	577.7:
	577.8:
	577.9:
	anm577:
	578.0:
	578.1:
	578.2:
	578.3:
	578.4:
	578.5:
	578.6:
	578.7:
	578.8:
	578.9:
	anm578:
	579.0:
	579.1:
	579.2:
	579.3:
	579.4:
	579.5:
	579.6:
	579.7:
	579.8:
	579.9:
	anm579:
	580.0:
	580.1:
	580.2:
	580.3:
	580.4:
	580.5:
	580.6:
	580.7:
	580.8:
	580.9:
	anm580:
	581.0:
	581.1:
	581.2:
	581.3:
	581.4:
	581.5:
	581.6:
	581.7:
	581.8:
	581.9:
	anm581:
	582.0:
	582.1:
	582.2:
	582.3:
	582.4:
	582.5:
	582.6:
	582.7:
	582.8:
	582.9:
	anm582:
	583.0:
	583.1:
	583.2:
	583.3:
	583.4:
	583.5:
	583.6:
	583.7:
	583.8:
	583.9:
	anm583:
	584.0:
	584.1:
	584.2:
	584.3:
	584.4:
	584.5:
	584.6:
	584.7:
	584.8:
	584.9:
	anm584:
	585.0:
	585.1:
	585.2:
	585.3:
	585.4:
	585.5:
	585.6:
	585.7:
	585.8:
	585.9:
	anm585:
	586.0:
	586.1:
	586.2:
	586.3:
	586.4:
	586.5:
	586.6:
	586.7:
	586.8:
	586.9:
	anm586:
	587.0:
	587.1:
	587.2:
	587.3:
	587.4:
	587.5:
	587.6:
	587.7:
	587.8:
	587.9:
	anm587:
	588.0:
	588.1:
	588.2:
	588.3:
	588.4:
	588.5:
	588.6:
	588.7:
	588.8:
	588.9:
	anm588:
	589.0:
	589.1:
	589.2:
	589.3:
	589.4:
	589.5:
	589.6:
	589.7:
	589.8:
	589.9:
	anm589:
	590.0:
	590.1:
	590.2:
	590.3:
	590.4:
	590.5:
	590.6:
	590.7:
	590.8:
	590.9:
	anm590:
	591.0:
	591.1:
	591.2:
	591.3:
	591.4:
	591.5:
	591.6:
	591.7:
	591.8:
	591.9:
	anm591:
	592.0:
	592.1:
	592.2:
	592.3:
	592.4:
	592.5:
	592.6:
	592.7:
	592.8:
	592.9:
	anm592:
	593.0:
	593.1:
	593.2:
	593.3:
	593.4:
	593.5:
	593.6:
	593.7:
	593.8:
	593.9:
	anm593:
	594.0:
	594.1:
	594.2:
	594.3:
	594.4:
	594.5:
	594.6:
	594.7:
	594.8:
	594.9:
	anm594:
	595.0:
	595.1:
	595.2:
	595.3:
	595.4:
	595.5:
	595.6:
	595.7:
	595.8:
	595.9:
	anm595:
	596.0:
	596.1:
	596.2:
	596.3:
	596.4:
	596.5:
	596.6:
	596.7:
	596.8:
	596.9:
	anm596:
	597.0:
	597.1:
	597.2:
	597.3:
	597.4:
	597.5:
	597.6:
	597.7:
	597.8:
	597.9:
	anm597:
	598.0:
	598.1:
	598.2:
	598.3:
	598.4:
	598.5:
	598.6:
	598.7:
	598.8:
	598.9:
	anm598:
	599.0:
	599.1:
	599.2:
	599.3:
	599.4:
	599.5:
	599.6:
	599.7:
	599.8:
	599.9:
	anm599:
	600.0:
	600.1:
	600.2:
	600.3:
	600.4:
	600.5:
	600.6:
	600.7:
	600.8:
	600.9:
	anm600:
	601.0:
	601.1:
	601.2:
	601.3:
	601.4:
	601.5:
	601.6:
	601.7:
	601.8:
	601.9:
	anm601:
	602.0:
	602.1:
	602.2:
	602.3:
	602.4:
	602.5:
	602.6:
	602.7:
	602.8:
	602.9:
	anm602:
	603.0:
	603.1:
	603.2:
	603.3:
	603.4:
	603.5:
	603.6:
	603.7:
	603.8:
	603.9:
	anm603:
	604.0:
	604.1:
	604.2:
	604.3:
	604.4:
	604.5:
	604.6:
	604.7:
	604.8:
	604.9:
	anm604:
	605.0:
	605.1:
	605.2:
	605.3:
	605.4:
	605.5:
	605.6:
	605.7:
	605.8:
	605.9:
	anm605:
	606.0:
	606.1:
	606.2:
	606.3:
	606.4:
	606.5:
	606.6:
	606.7:
	606.8:
	606.9:
	anm606:
	607.0:
	607.1:
	607.2:
	607.3:
	607.4:
	607.5:
	607.6:
	607.7:
	607.8:
	607.9:
	anm607:
	608.0:
	608.1:
	608.2:
	608.3:
	608.4:
	608.5:
	608.6:
	608.7:
	608.8:
	608.9:
	anm608:
	609.0:
	609.1:
	609.2:
	609.3:
	609.4:
	609.5:
	609.6:
	609.7:
	609.8:
	609.9:
	anm609:
	610.0:
	610.1:
	610.2:
	610.3:
	610.4:
	610.5:
	610.6:
	610.7:
	610.8:
	610.9:
	anm610:
	611.0:
	611.1:
	611.2:
	611.3:
	611.4:
	611.5:
	611.6:
	611.7:
	611.8:
	611.9:
	anm611:
	612.0:
	612.1:
	612.2:
	612.3:
	612.4:
	612.5:
	612.6:
	612.7:
	612.8:
	612.9:
	anm612:
	613.0:
	613.1:
	613.2:
	613.3:
	613.4:
	613.5:
	613.6:
	613.7:
	613.8:
	613.9:
	anm613:
	614.0:
	614.1:
	614.2:
	614.3:
	614.4:
	614.5:
	614.6:
	614.7:
	614.8:
	614.9:
	anm614:
	615.0:
	615.1:
	615.2:
	615.3:
	615.4:
	615.5:
	615.6:
	615.7:
	615.8:
	615.9:
	anm615:
	616.0:
	616.1:
	616.2:
	616.3:
	616.4:
	616.5:
	616.6:
	616.7:
	616.8:
	616.9:
	anm616:
	617.0:
	617.1:
	617.2:
	617.3:
	617.4:
	617.5:
	617.6:
	617.7:
	617.8:
	617.9:
	anm617:
	618.0:
	618.1:
	618.2:
	618.3:
	618.4:
	618.5:
	618.6:
	618.7:
	618.8:
	618.9:
	anm618:
	619.0:
	619.1:
	619.2:
	619.3:
	619.4:
	619.5:
	619.6:
	619.7:
	619.8:
	619.9:
	anm619:
	620.0:
	620.1:
	620.2:
	620.3:
	620.4:
	620.5:
	620.6:
	620.7:
	620.8:
	620.9:
	anm620:
	621.0:
	621.1:
	621.2:
	621.3:
	621.4:
	621.5:
	621.6:
	621.7:
	621.8:
	621.9:
	anm621:
	622.0:
	622.1:
	622.2:
	622.3:
	622.4:
	622.5:
	622.6:
	622.7:
	622.8:
	622.9:
	anm622:
	623.0:
	623.1:
	623.2:
	623.3:
	623.4:
	623.5:
	623.6:
	623.7:
	623.8:
	623.9:
	anm623:
	624.0:
	624.1:
	624.2:
	624.3:
	624.4:
	624.5:
	624.6:
	624.7:
	624.8:
	624.9:
	anm624:
	625.0:
	625.1:
	625.2:
	625.3:
	625.4:
	625.5:
	625.6:
	625.7:
	625.8:
	625.9:
	anm625:
	626.0:
	626.1:
	626.2:
	626.3:
	626.4:
	626.5:
	626.6:
	626.7:
	626.8:
	626.9:
	anm626:
	627.0:
	627.1:
	627.2:
	627.3:
	627.4:
	627.5:
	627.6:
	627.7:
	627.8:
	627.9:
	anm627:
	628.0:
	628.1:
	628.2:
	628.3:
	628.4:
	628.5:
	628.6:
	628.7:
	628.8:
	628.9:
	anm628:
	629.0:
	629.1:
	629.2:
	629.3:
	629.4:
	629.5:
	629.6:
	629.7:
	629.8:
	629.9:
	anm629:
	630.0:
	630.1:
	630.2:
	630.3:
	630.4:
	630.5:
	630.6:
	630.7:
	630.8:
	630.9:
	anm630:
	631.0:
	631.1:
	631.2:
	631.3:
	631.4:
	631.5:
	631.6:
	631.7:
	631.8:
	631.9:
	anm631:
	632.0:
	632.1:
	632.2:
	632.3:
	632.4:
	632.5:
	632.6:
	632.7:
	632.8:
	632.9:
	anm632:
	633.0:
	633.1:
	633.2:
	633.3:
	633.4:
	633.5:
	633.6:
	633.7:
	633.8:
	633.9:
	anm633:
	634.0:
	634.1:
	634.2:
	634.3:
	634.4:
	634.5:
	634.6:
	634.7:
	634.8:
	634.9:
	anm634:
	635.0:
	635.1:
	635.2:
	635.3:
	635.4:
	635.5:
	635.6:
	635.7:
	635.8:
	635.9:
	anm635:
	636.0:
	636.1:
	636.2:
	636.3:
	636.4:
	636.5:
	636.6:
	636.7:
	636.8:
	636.9:
	anm636:
	637.0:
	637.1:
	637.2:
	637.3:
	637.4:
	637.5:
	637.6:
	637.7:
	637.8:
	637.9:
	anm637:
	638.0:
	638.1:
	638.2:
	638.3:
	638.4:
	638.5:
	638.6:
	638.7:
	638.8:
	638.9:
	anm638:
	639.0:
	639.1:
	639.2:
	639.3:
	639.4:
	639.5:
	639.6:
	639.7:
	639.8:
	639.9:
	anm639:
	640.0:
	640.1:
	640.2:
	640.3:
	640.4:
	640.5:
	640.6:
	640.7:
	640.8:
	640.9:
	anm640:
	641.0:
	641.1:
	641.2:
	641.3:
	641.4:
	641.5:
	641.6:
	641.7:
	641.8:
	641.9:
	anm641:
	642.0:
	642.1:
	642.2:
	642.3:
	642.4:
	642.5:
	642.6:
	642.7:
	642.8:
	642.9:
	anm642:
	643.0:
	643.1:
	643.2:
	643.3:
	643.4:
	643.5:
	643.6:
	643.7:
	643.8:
	643.9:
	anm643:
	644.0:
	644.1:
	644.2:
	644.3:
	644.4:
	644.5:
	644.6:
	644.7:
	644.8:
	644.9:
	anm644:
	645.0:
	645.1:
	645.2:
	645.3:
	645.4:
	645.5:
	645.6:
	645.7:
	645.8:
	645.9:
	anm645:
	646.0:
	646.1:
	646.2:
	646.3:
	646.4:
	646.5:
	646.6:
	646.7:
	646.8:
	646.9:
	anm646:
	647.0:
	647.1:
	647.2:
	647.3:
	647.4:
	647.5:
	647.6:
	647.7:
	647.8:
	647.9:
	anm647:
	648.0:
	648.1:
	648.2:
	648.3:
	648.4:
	648.5:
	648.6:
	648.7:
	648.8:
	648.9:
	anm648:
	649.0:
	649.1:
	649.2:
	649.3:
	649.4:
	649.5:
	649.6:
	649.7:
	649.8:
	649.9:
	anm649:
	650.0:
	650.1:
	650.2:
	650.3:
	650.4:
	650.5:
	650.6:
	650.7:
	650.8:
	650.9:
	anm650:
	651.0:
	651.1:
	651.2:
	651.3:
	651.4:
	651.5:
	651.6:
	651.7:
	651.8:
	651.9:
	anm651:
	652.0:
	652.1:
	652.2:
	652.3:
	652.4:
	652.5:
	652.6:
	652.7:
	652.8:
	652.9:
	anm652:
	653.0:
	653.1:
	653.2:
	653.3:
	653.4:
	653.5:
	653.6:
	653.7:
	653.8:
	653.9:
	anm653:
	654.0:
	654.1:
	654.2:
	654.3:
	654.4:
	654.5:
	654.6:
	654.7:
	654.8:
	654.9:
	anm654:
	655.0:
	655.1:
	655.2:
	655.3:
	655.4:
	655.5:
	655.6:
	655.7:
	655.8:
	655.9:
	anm655:
	656.0:
	656.1:
	656.2:
	656.3:
	656.4:
	656.5:
	656.6:
	656.7:
	656.8:
	656.9:
	anm656:
	657.0:
	657.1:
	657.2:
	657.3:
	657.4:
	657.5:
	657.6:
	657.7:
	657.8:
	657.9:
	anm657:
	658.0:
	658.1:
	658.2:
	658.3:
	658.4:
	658.5:
	658.6:
	658.7:
	658.8:
	658.9:
	anm658:
	659.0:
	659.1:
	659.2:
	659.3:
	659.4:
	659.5:
	659.6:
	659.7:
	659.8:
	659.9:
	anm659:
	660.0:
	660.1:
	660.2:
	660.3:
	660.4:
	660.5:
	660.6:
	660.7:
	660.8:
	660.9:
	anm660:
	661.0:
	661.1:
	661.2:
	661.3:
	661.4:
	661.5:
	661.6:
	661.7:
	661.8:
	661.9:
	anm661:
	662.0:
	662.1:
	662.2:
	662.3:
	662.4:
	662.5:
	662.6:
	662.7:
	662.8:
	662.9:
	anm662:
	663.0:
	663.1:
	663.2:
	663.3:
	663.4:
	663.5:
	663.6:
	663.7:
	663.8:
	663.9:
	anm663:
	664.0:
	664.1:
	664.2:
	664.3:
	664.4:
	664.5:
	664.6:
	664.7:
	664.8:
	664.9:
	anm664:
	665.0:
	665.1:
	665.2:
	665.3:
	665.4:
	665.5:
	665.6:
	665.7:
	665.8:
	665.9:
	anm665:
	666.0:
	666.1:
	666.2:
	666.3:
	666.4:
	666.5:
	666.6:
	666.7:
	666.8:
	666.9:
	anm666:
	667.0:
	667.1:
	667.2:
	667.3:
	667.4:
	667.5:
	667.6:
	667.7:
	667.8:
	667.9:
	anm667:
	668.0:
	668.1:
	668.2:
	668.3:
	668.4:
	668.5:
	668.6:
	668.7:
	668.8:
	668.9:
	anm668:
	669.0:
	669.1:
	669.2:
	669.3:
	669.4:
	669.5:
	669.6:
	669.7:
	669.8:
	669.9:
	anm669:
	670.0:
	670.1:
	670.2:
	670.3:
	670.4:
	670.5:
	670.6:
	670.7:
	670.8:
	670.9:
	anm670:
	671.0:
	671.1:
	671.2:
	671.3:
	671.4:
	671.5:
	671.6:
	671.7:
	671.8:
	671.9:
	anm671:
	672.0:
	672.1:
	672.2:
	672.3:
	672.4:
	672.5:
	672.6:
	672.7:
	672.8:
	672.9:
	anm672:
	673.0:
	673.1:
	673.2:
	673.3:
	673.4:
	673.5:
	673.6:
	673.7:
	673.8:
	673.9:
	anm673:
	674.0:
	674.1:
	674.2:
	674.3:
	674.4:
	674.5:
	674.6:
	674.7:
	674.8:
	674.9:
	anm674:
	675.0:
	675.1:
	675.2:
	675.3:
	675.4:
	675.5:
	675.6:
	675.7:
	675.8:
	675.9:
	anm675:
	676.0:
	676.1:
	676.2:
	676.3:
	676.4:
	676.5:
	676.6:
	676.7:
	676.8:
	676.9:
	anm676:
	677.0:
	677.1:
	677.2:
	677.3:
	677.4:
	677.5:
	677.6:
	677.7:
	677.8:
	677.9:
	anm677:
	678.0:
	678.1:
	678.2:
	678.3:
	678.4:
	678.5:
	678.6:
	678.7:
	678.8:
	678.9:
	anm678:
	679.0:
	679.1:
	679.2:
	679.3:
	679.4:
	679.5:
	679.6:
	679.7:
	679.8:
	679.9:
	anm679:
	680.0:
	680.1:
	680.2:
	680.3:
	680.4:
	680.5:
	680.6:
	680.7:
	680.8:
	680.9:
	anm680:
	681.0:
	681.1:
	681.2:
	681.3:
	681.4:
	681.5:
	681.6:
	681.7:
	681.8:
	681.9:
	anm681:
	682.0:
	682.1:
	682.2:
	682.3:
	682.4:
	682.5:
	682.6:
	682.7:
	682.8:
	682.9:
	anm682:
	683.0:
	683.1:
	683.2:
	683.3:
	683.4:
	683.5:
	683.6:
	683.7:
	683.8:
	683.9:
	anm683:
	684.0:
	684.1:
	684.2:
	684.3:
	684.4:
	684.5:
	684.6:
	684.7:
	684.8:
	684.9:
	anm684:
	685.0:
	685.1:
	685.2:
	685.3:
	685.4:
	685.5:
	685.6:
	685.7:
	685.8:
	685.9:
	anm685:
	686.0:
	686.1:
	686.2:
	686.3:
	686.4:
	686.5:
	686.6:
	686.7:
	686.8:
	686.9:
	anm686:
	687.0:
	687.1:
	687.2:
	687.3:
	687.4:
	687.5:
	687.6:
	687.7:
	687.8:
	687.9:
	anm687:
	688.0:
	688.1:
	688.2:
	688.3:
	688.4:
	688.5:
	688.6:
	688.7:
	688.8:
	688.9:
	anm688:
	689.0:
	689.1:
	689.2:
	689.3:
	689.4:
	689.5:
	689.6:
	689.7:
	689.8:
	689.9:
	anm689:
	690.0:
	690.1:
	690.2:
	690.3:
	690.4:
	690.5:
	690.6:
	690.7:
	690.8:
	690.9:
	anm690:
	691.0:
	691.1:
	691.2:
	691.3:
	691.4:
	691.5:
	691.6:
	691.7:
	691.8:
	691.9:
	anm691:
	692.0:
	692.1:
	692.2:
	692.3:
	692.4:
	692.5:
	692.6:
	692.7:
	692.8:
	692.9:
	anm692:
	693.0:
	693.1:
	693.2:
	693.3:
	693.4:
	693.5:
	693.6:
	693.7:
	693.8:
	693.9:
	anm693:
	694.0:
	694.1:
	694.2:
	694.3:
	694.4:
	694.5:
	694.6:
	694.7:
	694.8:
	694.9:
	anm694:
	695.0:
	695.1:
	695.2:
	695.3:
	695.4:
	695.5:
	695.6:
	695.7:
	695.8:
	695.9:
	anm695:
	696.0:
	696.1:
	696.2:
	696.3:
	696.4:
	696.5:
	696.6:
	696.7:
	696.8:
	696.9:
	anm696:
	697.0:
	697.1:
	697.2:
	697.3:
	697.4:
	697.5:
	697.6:
	697.7:
	697.8:
	697.9:
	anm697:
	698.0:
	698.1:
	698.2:
	698.3:
	698.4:
	698.5:
	698.6:
	698.7:
	698.8:
	698.9:
	anm698:
	699.0:
	699.1:
	699.2:
	699.3:
	699.4:
	699.5:
	699.6:
	699.7:
	699.8:
	699.9:
	anm699:
	700.0:
	700.1:
	700.2:
	700.3:
	700.4:
	700.5:
	700.6:
	700.7:
	700.8:
	700.9:
	anm700:
	701.0:
	701.1:
	701.2:
	701.3:
	701.4:
	701.5:
	701.6:
	701.7:
	701.8:
	701.9:
	anm701:
	702.0:
	702.1:
	702.2:
	702.3:
	702.4:
	702.5:
	702.6:
	702.7:
	702.8:
	702.9:
	anm702:
	703.0:
	703.1:
	703.2:
	703.3:
	703.4:
	703.5:
	703.6:
	703.7:
	703.8:
	703.9:
	anm703:
	704.0:
	704.1:
	704.2:
	704.3:
	704.4:
	704.5:
	704.6:
	704.7:
	704.8:
	704.9:
	anm704:
	705.0:
	705.1:
	705.2:
	705.3:
	705.4:
	705.5:
	705.6:
	705.7:
	705.8:
	705.9:
	anm705:
	706.0:
	706.1:
	706.2:
	706.3:
	706.4:
	706.5:
	706.6:
	706.7:
	706.8:
	706.9:
	anm706:
	707.0:
	707.1:
	707.2:
	707.3:
	707.4:
	707.5:
	707.6:
	707.7:
	707.8:
	707.9:
	anm707:
	708.0:
	708.1:
	708.2:
	708.3:
	708.4:
	708.5:
	708.6:
	708.7:
	708.8:
	708.9:
	anm708:
	709.0:
	709.1:
	709.2:
	709.3:
	709.4:
	709.5:
	709.6:
	709.7:
	709.8:
	709.9:
	anm709:
	710.0:
	710.1:
	710.2:
	710.3:
	710.4:
	710.5:
	710.6:
	710.7:
	710.8:
	710.9:
	anm710:
	711.0:
	711.1:
	711.2:
	711.3:
	711.4:
	711.5:
	711.6:
	711.7:
	711.8:
	711.9:
	anm711:
	712.0:
	712.1:
	712.2:
	712.3:
	712.4:
	712.5:
	712.6:
	712.7:
	712.8:
	712.9:
	anm712:
	713.0:
	713.1:
	713.2:
	713.3:
	713.4:
	713.5:
	713.6:
	713.7:
	713.8:
	713.9:
	anm713:
	714.0:
	714.1:
	714.2:
	714.3:
	714.4:
	714.5:
	714.6:
	714.7:
	714.8:
	714.9:
	anm714:
	715.0:
	715.1:
	715.2:
	715.3:
	715.4:
	715.5:
	715.6:
	715.7:
	715.8:
	715.9:
	anm715:
	716.0:
	716.1:
	716.2:
	716.3:
	716.4:
	716.5:
	716.6:
	716.7:
	716.8:
	716.9:
	anm716:
	717.0:
	717.1:
	717.2:
	717.3:
	717.4:
	717.5:
	717.6:
	717.7:
	717.8:
	717.9:
	anm717:
	718.0:
	718.1:
	718.2:
	718.3:
	718.4:
	718.5:
	718.6:
	718.7:
	718.8:
	718.9:
	anm718:
	719.0:
	719.1:
	719.2:
	719.3:
	719.4:
	719.5:
	719.6:
	719.7:
	719.8:
	719.9:
	anm719:
	720.0:
	720.1:
	720.2:
	720.3:
	720.4:
	720.5:
	720.6:
	720.7:
	720.8:
	720.9:
	anm720:
	721.0:
	721.1:
	721.2:
	721.3:
	721.4:
	721.5:
	721.6:
	721.7:
	721.8:
	721.9:
	anm721:
	722.0:
	722.1:
	722.2:
	722.3:
	722.4:
	722.5:
	722.6:
	722.7:
	722.8:
	722.9:
	anm722:
	723.0:
	723.1:
	723.2:
	723.3:
	723.4:
	723.5:
	723.6:
	723.7:
	723.8:
	723.9:
	anm723:
	724.0:
	724.1:
	724.2:
	724.3:
	724.4:
	724.5:
	724.6:
	724.7:
	724.8:
	724.9:
	anm724:
	725.0:
	725.1:
	725.2:
	725.3:
	725.4:
	725.5:
	725.6:
	725.7:
	725.8:
	725.9:
	anm725:
	726.0:
	726.1:
	726.2:
	726.3:
	726.4:
	726.5:
	726.6:
	726.7:
	726.8:
	726.9:
	anm726:
	727.0:
	727.1:
	727.2:
	727.3:
	727.4:
	727.5:
	727.6:
	727.7:
	727.8:
	727.9:
	anm727:
	728.0:
	728.1:
	728.2:
	728.3:
	728.4:
	728.5:
	728.6:
	728.7:
	728.8:
	728.9:
	anm728:
	729.0:
	729.1:
	729.2:
	729.3:
	729.4:
	729.5:
	729.6:
	729.7:
	729.8:
	729.9:
	anm729:
	730.0:
	730.1:
	730.2:
	730.3:
	730.4:
	730.5:
	730.6:
	730.7:
	730.8:
	730.9:
	anm730:
	731.0:
	731.1:
	731.2:
	731.3:
	731.4:
	731.5:
	731.6:
	731.7:
	731.8:
	731.9:
	anm731:
	732.0:
	732.1:
	732.2:
	732.3:
	732.4:
	732.5:
	732.6:
	732.7:
	732.8:
	732.9:
	anm732:
	733.0:
	733.1:
	733.2:
	733.3:
	733.4:
	733.5:
	733.6:
	733.7:
	733.8:
	733.9:
	anm733:
	734.0:
	734.1:
	734.2:
	734.3:
	734.4:
	734.5:
	734.6:
	734.7:
	734.8:
	734.9:
	anm734:
	735.0:
	735.1:
	735.2:
	735.3:
	735.4:
	735.5:
	735.6:
	735.7:
	735.8:
	735.9:
	anm735:
	736.0:
	736.1:
	736.2:
	736.3:
	736.4:
	736.5:
	736.6:
	736.7:
	736.8:
	736.9:
	anm736:
	737.0:
	737.1:
	737.2:
	737.3:
	737.4:
	737.5:
	737.6:
	737.7:
	737.8:
	737.9:
	anm737:
	738.0:
	738.1:
	738.2:
	738.3:
	738.4:
	738.5:
	738.6:
	738.7:
	738.8:
	738.9:
	anm738:
	739.0:
	739.1:
	739.2:
	739.3:
	739.4:
	739.5:
	739.6:
	739.7:
	739.8:
	739.9:
	anm739:
	740.0:
	740.1:
	740.2:
	740.3:
	740.4:
	740.5:
	740.6:
	740.7:
	740.8:
	740.9:
	anm740:
	741.0:
	741.1:
	741.2:
	741.3:
	741.4:
	741.5:
	741.6:
	741.7:
	741.8:
	741.9:
	anm741:
	742.0:
	742.1:
	742.2:
	742.3:
	742.4:
	742.5:
	742.6:
	742.7:
	742.8:
	742.9:
	anm742:
	743.0:
	743.1:
	743.2:
	743.3:
	743.4:
	743.5:
	743.6:
	743.7:
	743.8:
	743.9:
	anm743:
	744.0:
	744.1:
	744.2:
	744.3:
	744.4:
	744.5:
	744.6:
	744.7:
	744.8:
	744.9:
	anm744:
	745.0:
	745.1:
	745.2:
	745.3:
	745.4:
	745.5:
	745.6:
	745.7:
	745.8:
	745.9:
	anm745:
	746.0:
	746.1:
	746.2:
	746.3:
	746.4:
	746.5:
	746.6:
	746.7:
	746.8:
	746.9:
	anm746:
	747.0:
	747.1:
	747.2:
	747.3:
	747.4:
	747.5:
	747.6:
	747.7:
	747.8:
	747.9:
	anm747:
	748.0:
	748.1:
	748.2:
	748.3:
	748.4:
	748.5:
	748.6:
	748.7:
	748.8:
	748.9:
	anm748:
	749.0:
	749.1:
	749.2:
	749.3:
	749.4:
	749.5:
	749.6:
	749.7:
	749.8:
	749.9:
	749.10:
	749.11:
	749.12:
	749.13:
	749.14:
	749.15:
	749.16:
	749.17:
	749.18:
	749.19:
	749.20:
	anm749:
	750.0:
	750.1:
	750.2:
	750.3:
	750.4:
	750.5:
	750.6:
	750.7:
	750.8:
	750.9:
	anm750:
	751.0:
	751.1:
	751.2:
	751.3:
	751.4:
	751.5:
	751.6:
	751.7:
	751.8:
	751.9:
	anm751:
	752.0:
	752.1:
	752.2:
	752.3:
	752.4:
	752.5:
	752.6:
	752.7:
	752.8:
	752.9:
	anm752:
	753.0:
	753.1:
	753.2:
	753.3:
	753.4:
	753.5:
	753.6:
	753.7:
	753.8:
	753.9:
	anm753:
	754.0:
	754.1:
	754.2:
	754.3:
	754.4:
	754.5:
	754.6:
	754.7:
	754.8:
	754.9:
	754.10:
	754.11:
	754.12:
	754.13:
	754.14:
	754.15:
	754.16:
	754.17:
	754.18:
	754.19:
	754.20:
	anm754:
	755.0:
	755.1:
	755.2:
	755.3:
	755.4:
	755.5:
	755.6:
	755.7:
	755.8:
	755.9:
	anm755:
	756.0:
	756.1:
	756.2:
	756.3:
	756.4:
	756.5:
	756.6:
	756.7:
	756.8:
	756.9:
	anm756:
	757.0:
	757.1:
	757.2:
	757.3:
	757.4:
	757.5:
	757.6:
	757.7:
	757.8:
	757.9:
	anm757:
	758.0:
	758.1:
	758.2:
	758.3:
	758.4:
	758.5:
	758.6:
	758.7:
	758.8:
	758.9:
	anm758:
	759.0:
	759.1:
	759.2:
	759.3:
	759.4:
	759.5:
	759.6:
	759.7:
	759.8:
	759.9:
	759.10:
	759.11:
	759.12:
	759.13:
	759.14:
	759.15:
	759.16:
	759.17:
	759.18:
	759.19:
	759.20:
	anm759:
	760.0:
	760.1:
	760.2:
	760.3:
	760.4:
	760.5:
	760.6:
	760.7:
	760.8:
	760.9:
	anm760:
	761.0:
	761.1:
	761.2:
	761.3:
	761.4:
	761.5:
	761.6:
	761.7:
	761.8:
	761.9:
	anm761:
	762.0:
	762.1:
	762.2:
	762.3:
	762.4:
	762.5:
	762.6:
	762.7:
	762.8:
	762.9:
	anm762:
	763.0:
	763.1:
	763.2:
	763.3:
	763.4:
	763.5:
	763.6:
	763.7:
	763.8:
	763.9:
	anm763:
	764.0:
	764.1:
	764.2:
	764.3:
	764.4:
	764.5:
	764.6:
	764.7:
	764.8:
	764.9:
	764.10:
	764.11:
	764.12:
	764.13:
	764.14:
	764.15:
	764.16:
	764.17:
	764.18:
	764.19:
	764.20:
	anm764:
	765.0:
	765.1:
	765.2:
	765.3:
	765.4:
	765.5:
	765.6:
	765.7:
	765.8:
	765.9:
	anm765:
	766.0:
	766.1:
	766.2:
	766.3:
	766.4:
	766.5:
	766.6:
	766.7:
	766.8:
	766.9:
	anm766:
	767.0:
	767.1:
	767.2:
	767.3:
	767.4:
	767.5:
	767.6:
	767.7:
	767.8:
	767.9:
	anm767:
	768.0:
	768.1:
	768.2:
	768.3:
	768.4:
	768.5:
	768.6:
	768.7:
	768.8:
	768.9:
	anm768:
	769.0:
	769.1:
	769.2:
	769.3:
	769.4:
	769.5:
	769.6:
	769.7:
	769.8:
	769.9:
	769.10:
	769.11:
	769.12:
	769.13:
	769.14:
	769.15:
	769.16:
	769.17:
	769.18:
	769.19:
	769.20:
	anm769:
	770.0:
	770.1:
	770.2:
	770.3:
	770.4:
	770.5:
	770.6:
	770.7:
	770.8:
	770.9:
	anm770:
	771.0:
	771.1:
	771.2:
	771.3:
	771.4:
	771.5:
	771.6:
	771.7:
	771.8:
	771.9:
	anm771:
	772.0:
	772.1:
	772.2:
	772.3:
	772.4:
	772.5:
	772.6:
	772.7:
	772.8:
	772.9:
	anm772:
	773.0:
	773.1:
	773.2:
	773.3:
	773.4:
	773.5:
	773.6:
	773.7:
	773.8:
	773.9:
	anm773:
	774.0:
	774.1:
	774.2:
	774.3:
	774.4:
	774.5:
	774.6:
	774.7:
	774.8:
	774.9:
	774.10:
	774.11:
	774.12:
	774.13:
	774.14:
	774.15:
	774.16:
	774.17:
	774.18:
	774.19:
	774.20:
	anm774:
	775.0:
	775.1:
	775.2:
	775.3:
	775.4:
	775.5:
	775.6:
	775.7:
	775.8:
	775.9:
	anm775:
	776.0:
	776.1:
	776.2:
	776.3:
	776.4:
	776.5:
	776.6:
	776.7:
	776.8:
	776.9:
	anm776:
	777.0:
	777.1:
	777.2:
	777.3:
	777.4:
	777.5:
	777.6:
	777.7:
	777.8:
	777.9:
	anm777:
	778.0:
	778.1:
	778.2:
	778.3:
	778.4:
	778.5:
	778.6:
	778.7:
	778.8:
	778.9:
	anm778:
	779.0:
	779.1:
	779.2:
	779.3:
	779.4:
	779.5:
	779.6:
	779.7:
	779.8:
	779.9:
	779.10:
	779.11:
	779.12:
	779.13:
	779.14:
	779.15:
	779.16:
	779.17:
	779.18:
	779.19:
	779.20:
	anm779:
	780.0:
	780.1:
	780.2:
	780.3:
	780.4:
	780.5:
	780.6:
	780.7:
	780.8:
	780.9:
	anm780:
	781.0:
	781.1:
	781.2:
	781.3:
	781.4:
	781.5:
	781.6:
	781.7:
	781.8:
	781.9:
	anm781:
	782.0:
	782.1:
	782.2:
	782.3:
	782.4:
	782.5:
	782.6:
	782.7:
	782.8:
	782.9:
	anm782:
	783.0:
	783.1:
	783.2:
	783.3:
	783.4:
	783.5:
	783.6:
	783.7:
	783.8:
	783.9:
	anm783:
	784.0:
	784.1:
	784.2:
	784.3:
	784.4:
	784.5:
	784.6:
	784.7:
	784.8:
	784.9:
	784.10:
	784.11:
	784.12:
	784.13:
	784.14:
	784.15:
	784.16:
	784.17:
	784.18:
	784.19:
	784.20:
	anm784:
	785.0:
	785.1:
	785.2:
	785.3:
	785.4:
	785.5:
	785.6:
	785.7:
	785.8:
	785.9:
	anm785:
	786.0:
	786.1:
	786.2:
	786.3:
	786.4:
	786.5:
	786.6:
	786.7:
	786.8:
	786.9:
	anm786:
	787.0:
	787.1:
	787.2:
	787.3:
	787.4:
	787.5:
	787.6:
	787.7:
	787.8:
	787.9:
	anm787:
	788.0:
	788.1:
	788.2:
	788.3:
	788.4:
	788.5:
	788.6:
	788.7:
	788.8:
	788.9:
	anm788:
	789.0:
	789.1:
	789.2:
	789.3:
	789.4:
	789.5:
	789.6:
	789.7:
	789.8:
	789.9:
	789.10:
	789.11:
	789.12:
	789.13:
	789.14:
	789.15:
	789.16:
	789.17:
	789.18:
	789.19:
	789.20:
	anm789:
	790.0:
	790.1:
	790.2:
	790.3:
	790.4:
	790.5:
	790.6:
	790.7:
	790.8:
	790.9:
	anm790:
	791.0:
	791.1:
	791.2:
	791.3:
	791.4:
	791.5:
	791.6:
	791.7:
	791.8:
	791.9:
	anm791:
	792.0:
	792.1:
	792.2:
	792.3:
	792.4:
	792.5:
	792.6:
	792.7:
	792.8:
	792.9:
	anm792:
	793.0:
	793.1:
	793.2:
	793.3:
	793.4:
	793.5:
	793.6:
	793.7:
	793.8:
	793.9:
	anm793:
	794.0:
	794.1:
	794.2:
	794.3:
	794.4:
	794.5:
	794.6:
	794.7:
	794.8:
	794.9:
	794.10:
	794.11:
	794.12:
	794.13:
	794.14:
	794.15:
	794.16:
	794.17:
	794.18:
	794.19:
	794.20:
	anm794:
	795.0:
	795.1:
	795.2:
	795.3:
	795.4:
	795.5:
	795.6:
	795.7:
	795.8:
	795.9:
	anm795:
	796.0:
	796.1:
	796.2:
	796.3:
	796.4:
	796.5:
	796.6:
	796.7:
	796.8:
	796.9:
	anm796:
	797.0:
	797.1:
	797.2:
	797.3:
	797.4:
	797.5:
	797.6:
	797.7:
	797.8:
	797.9:
	anm797:
	798.0:
	798.1:
	798.2:
	798.3:
	798.4:
	798.5:
	798.6:
	798.7:
	798.8:
	798.9:
	anm798:
	799.0:
	799.1:
	799.2:
	799.3:
	799.4:
	799.5:
	799.6:
	799.7:
	799.8:
	799.9:
	799.10:
	799.11:
	799.12:
	799.13:
	799.14:
	799.15:
	799.16:
	799.17:
	799.18:
	799.19:
	799.20:
	anm799:
	800.0:
	800.1:
	800.2:
	800.3:
	800.4:
	800.5:
	800.6:
	800.7:
	800.8:
	800.9:
	anm800:
	801.0:
	801.1:
	801.2:
	801.3:
	801.4:
	801.5:
	801.6:
	801.7:
	801.8:
	801.9:
	anm801:
	802.0:
	802.1:
	802.2:
	802.3:
	802.4:
	802.5:
	802.6:
	802.7:
	802.8:
	802.9:
	anm802:
	803.0:
	803.1:
	803.2:
	803.3:
	803.4:
	803.5:
	803.6:
	803.7:
	803.8:
	803.9:
	anm803:
	804.0:
	804.1:
	804.2:
	804.3:
	804.4:
	804.5:
	804.6:
	804.7:
	804.8:
	804.9:
	804.10:
	804.11:
	804.12:
	804.13:
	804.14:
	804.15:
	804.16:
	804.17:
	804.18:
	804.19:
	804.20:
	anm804:
	805.0:
	805.1:
	805.2:
	805.3:
	805.4:
	805.5:
	805.6:
	805.7:
	805.8:
	805.9:
	anm805:
	806.0:
	806.1:
	806.2:
	806.3:
	806.4:
	806.5:
	806.6:
	806.7:
	806.8:
	806.9:
	anm806:
	807.0:
	807.1:
	807.2:
	807.3:
	807.4:
	807.5:
	807.6:
	807.7:
	807.8:
	807.9:
	anm807:
	808.0:
	808.1:
	808.2:
	808.3:
	808.4:
	808.5:
	808.6:
	808.7:
	808.8:
	808.9:
	anm808:
	809.0:
	809.1:
	809.2:
	809.3:
	809.4:
	809.5:
	809.6:
	809.7:
	809.8:
	809.9:
	809.10:
	809.11:
	809.12:
	809.13:
	809.14:
	809.15:
	809.16:
	809.17:
	809.18:
	809.19:
	809.20:
	anm809:
	810.0:
	810.1:
	810.2:
	810.3:
	810.4:
	810.5:
	810.6:
	810.7:
	810.8:
	810.9:
	anm810:
	811.0:
	811.1:
	811.2:
	811.3:
	811.4:
	811.5:
	811.6:
	811.7:
	811.8:
	811.9:
	anm811:
	812.0:
	812.1:
	812.2:
	812.3:
	812.4:
	812.5:
	812.6:
	812.7:
	812.8:
	812.9:
	anm812:
	813.0:
	813.1:
	813.2:
	813.3:
	813.4:
	813.5:
	813.6:
	813.7:
	813.8:
	813.9:
	anm813:
	814.0:
	814.1:
	814.2:
	814.3:
	814.4:
	814.5:
	814.6:
	814.7:
	814.8:
	814.9:
	814.10:
	814.11:
	814.12:
	814.13:
	814.14:
	814.15:
	814.16:
	814.17:
	814.18:
	814.19:
	814.20:
	anm814:
	815.0:
	815.1:
	815.2:
	815.3:
	815.4:
	815.5:
	815.6:
	815.7:
	815.8:
	815.9:
	anm815:
	816.0:
	816.1:
	816.2:
	816.3:
	816.4:
	816.5:
	816.6:
	816.7:
	816.8:
	816.9:
	anm816:
	817.0:
	817.1:
	817.2:
	817.3:
	817.4:
	817.5:
	817.6:
	817.7:
	817.8:
	817.9:
	anm817:
	818.0:
	818.1:
	818.2:
	818.3:
	818.4:
	818.5:
	818.6:
	818.7:
	818.8:
	818.9:
	anm818:
	819.0:
	819.1:
	819.2:
	819.3:
	819.4:
	819.5:
	819.6:
	819.7:
	819.8:
	819.9:
	819.10:
	819.11:
	819.12:
	819.13:
	819.14:
	819.15:
	819.16:
	819.17:
	819.18:
	819.19:
	819.20:
	anm819:
	820.0:
	820.1:
	820.2:
	820.3:
	820.4:
	820.5:
	820.6:
	820.7:
	820.8:
	820.9:
	anm820:
	821.0:
	821.1:
	821.2:
	821.3:
	821.4:
	821.5:
	821.6:
	821.7:
	821.8:
	821.9:
	anm821:
	822.0:
	822.1:
	822.2:
	822.3:
	822.4:
	822.5:
	822.6:
	822.7:
	822.8:
	822.9:
	anm822:
	823.0:
	823.1:
	823.2:
	823.3:
	823.4:
	823.5:
	823.6:
	823.7:
	823.8:
	823.9:
	anm823:
	824.0:
	824.1:
	824.2:
	824.3:
	824.4:
	824.5:
	824.6:
	824.7:
	824.8:
	824.9:
	824.10:
	824.11:
	824.12:
	824.13:
	824.14:
	824.15:
	824.16:
	824.17:
	824.18:
	824.19:
	824.20:
	anm824:
	825.0:
	825.1:
	825.2:
	825.3:
	825.4:
	825.5:
	825.6:
	825.7:
	825.8:
	825.9:
	anm825:
	826.0:
	826.1:
	826.2:
	826.3:
	826.4:
	826.5:
	826.6:
	826.7:
	826.8:
	826.9:
	anm826:
	827.0:
	827.1:
	827.2:
	827.3:
	827.4:
	827.5:
	827.6:
	827.7:
	827.8:
	827.9:
	anm827:
	828.0:
	828.1:
	828.2:
	828.3:
	828.4:
	828.5:
	828.6:
	828.7:
	828.8:
	828.9:
	anm828:
	829.0:
	829.1:
	829.2:
	829.3:
	829.4:
	829.5:
	829.6:
	829.7:
	829.8:
	829.9:
	829.10:
	829.11:
	829.12:
	829.13:
	829.14:
	829.15:
	829.16:
	829.17:
	829.18:
	829.19:
	829.20:
	anm829:
	830.0:
	830.1:
	830.2:
	830.3:
	830.4:
	830.5:
	830.6:
	830.7:
	830.8:
	830.9:
	anm830:
	831.0:
	831.1:
	831.2:
	831.3:
	831.4:
	831.5:
	831.6:
	831.7:
	831.8:
	831.9:
	anm831:
	832.0:
	832.1:
	832.2:
	832.3:
	832.4:
	832.5:
	832.6:
	832.7:
	832.8:
	832.9:
	anm832:
	833.0:
	833.1:
	833.2:
	833.3:
	833.4:
	833.5:
	833.6:
	833.7:
	833.8:
	833.9:
	anm833:
	834.0:
	834.1:
	834.2:
	834.3:
	834.4:
	834.5:
	834.6:
	834.7:
	834.8:
	834.9:
	834.10:
	834.11:
	834.12:
	834.13:
	834.14:
	834.15:
	834.16:
	834.17:
	834.18:
	834.19:
	834.20:
	anm834:
	835.0:
	835.1:
	835.2:
	835.3:
	835.4:
	835.5:
	835.6:
	835.7:
	835.8:
	835.9:
	anm835:
	836.0:
	836.1:
	836.2:
	836.3:
	836.4:
	836.5:
	836.6:
	836.7:
	836.8:
	836.9:
	anm836:
	837.0:
	837.1:
	837.2:
	837.3:
	837.4:
	837.5:
	837.6:
	837.7:
	837.8:
	837.9:
	anm837:
	838.0:
	838.1:
	838.2:
	838.3:
	838.4:
	838.5:
	838.6:
	838.7:
	838.8:
	838.9:
	anm838:
	839.0:
	839.1:
	839.2:
	839.3:
	839.4:
	839.5:
	839.6:
	839.7:
	839.8:
	839.9:
	839.10:
	839.11:
	839.12:
	839.13:
	839.14:
	839.15:
	839.16:
	839.17:
	839.18:
	839.19:
	839.20:
	anm839:
	840.0:
	840.1:
	840.2:
	840.3:
	840.4:
	840.5:
	840.6:
	840.7:
	840.8:
	840.9:
	anm840:
	841.0:
	841.1:
	841.2:
	841.3:
	841.4:
	841.5:
	841.6:
	841.7:
	841.8:
	841.9:
	anm841:
	842.0:
	842.1:
	842.2:
	842.3:
	842.4:
	842.5:
	842.6:
	842.7:
	842.8:
	842.9:
	anm842:
	843.0:
	843.1:
	843.2:
	843.3:
	843.4:
	843.5:
	843.6:
	843.7:
	843.8:
	843.9:
	anm843:
	844.0:
	844.1:
	844.2:
	844.3:
	844.4:
	844.5:
	844.6:
	844.7:
	844.8:
	844.9:
	844.10:
	844.11:
	844.12:
	844.13:
	844.14:
	844.15:
	844.16:
	844.17:
	844.18:
	844.19:
	844.20:
	anm844:
	845.0:
	845.1:
	845.2:
	845.3:
	845.4:
	845.5:
	845.6:
	845.7:
	845.8:
	845.9:
	anm845:
	846.0:
	846.1:
	846.2:
	846.3:
	846.4:
	846.5:
	846.6:
	846.7:
	846.8:
	846.9:
	anm846:
	847.0:
	847.1:
	847.2:
	847.3:
	847.4:
	847.5:
	847.6:
	847.7:
	847.8:
	847.9:
	anm847:
	848.0:
	848.1:
	848.2:
	848.3:
	848.4:
	848.5:
	848.6:
	848.7:
	848.8:
	848.9:
	anm848:
	849.0:
	849.1:
	849.2:
	849.3:
	849.4:
	849.5:
	849.6:
	849.7:
	849.8:
	849.9:
	849.10:
	849.11:
	849.12:
	849.13:
	849.14:
	849.15:
	849.16:
	849.17:
	849.18:
	849.19:
	849.20:
	anm849:
	850.0:
	850.1:
	850.2:
	850.3:
	850.4:
	850.5:
	850.6:
	850.7:
	850.8:
	850.9:
	anm850:
	851.0:
	851.1:
	851.2:
	851.3:
	851.4:
	851.5:
	851.6:
	851.7:
	851.8:
	851.9:
	anm851:
	852.0:
	852.1:
	852.2:
	852.3:
	852.4:
	852.5:
	852.6:
	852.7:
	852.8:
	852.9:
	anm852:
	853.0:
	853.1:
	853.2:
	853.3:
	853.4:
	853.5:
	853.6:
	853.7:
	853.8:
	853.9:
	anm853:
	854.0:
	854.1:
	854.2:
	854.3:
	854.4:
	854.5:
	854.6:
	854.7:
	854.8:
	854.9:
	854.10:
	854.11:
	854.12:
	854.13:
	854.14:
	854.15:
	854.16:
	854.17:
	854.18:
	854.19:
	854.20:
	anm854:
	855.0:
	855.1:
	855.2:
	855.3:
	855.4:
	855.5:
	855.6:
	855.7:
	855.8:
	855.9:
	anm855:
	856.0:
	856.1:
	856.2:
	856.3:
	856.4:
	856.5:
	856.6:
	856.7:
	856.8:
	856.9:
	anm856:
	857.0:
	857.1:
	857.2:
	857.3:
	857.4:
	857.5:
	857.6:
	857.7:
	857.8:
	857.9:
	anm857:
	858.0:
	858.1:
	858.2:
	858.3:
	858.4:
	858.5:
	858.6:
	858.7:
	858.8:
	858.9:
	anm858:
	859.0:
	859.1:
	859.2:
	859.3:
	859.4:
	859.5:
	859.6:
	859.7:
	859.8:
	859.9:
	859.10:
	859.11:
	859.12:
	859.13:
	859.14:
	859.15:
	859.16:
	859.17:
	859.18:
	859.19:
	859.20:
	anm859:
	860.0:
	860.1:
	860.2:
	860.3:
	860.4:
	860.5:
	860.6:
	860.7:
	860.8:
	860.9:
	anm860:
	861.0:
	861.1:
	861.2:
	861.3:
	861.4:
	861.5:
	861.6:
	861.7:
	861.8:
	861.9:
	anm861:
	862.0:
	862.1:
	862.2:
	862.3:
	862.4:
	862.5:
	862.6:
	862.7:
	862.8:
	862.9:
	anm862:
	863.0:
	863.1:
	863.2:
	863.3:
	863.4:
	863.5:
	863.6:
	863.7:
	863.8:
	863.9:
	anm863:
	864.0:
	864.1:
	864.2:
	864.3:
	864.4:
	864.5:
	864.6:
	864.7:
	864.8:
	864.9:
	864.10:
	864.11:
	864.12:
	864.13:
	864.14:
	864.15:
	864.16:
	864.17:
	864.18:
	864.19:
	864.20:
	anm864:
	865.0:
	865.1:
	865.2:
	865.3:
	865.4:
	865.5:
	865.6:
	865.7:
	865.8:
	865.9:
	anm865:
	866.0:
	866.1:
	866.2:
	866.3:
	866.4:
	866.5:
	866.6:
	866.7:
	866.8:
	866.9:
	anm866:
	867.0:
	867.1:
	867.2:
	867.3:
	867.4:
	867.5:
	867.6:
	867.7:
	867.8:
	867.9:
	anm867:
	868.0:
	868.1:
	868.2:
	868.3:
	868.4:
	868.5:
	868.6:
	868.7:
	868.8:
	868.9:
	anm868:
	869.0:
	869.1:
	869.2:
	869.3:
	869.4:
	869.5:
	869.6:
	869.7:
	869.8:
	869.9:
	869.10:
	869.11:
	869.12:
	869.13:
	869.14:
	869.15:
	869.16:
	869.17:
	869.18:
	869.19:
	869.20:
	anm869:
	870.0:
	870.1:
	870.2:
	870.3:
	870.4:
	870.5:
	870.6:
	870.7:
	870.8:
	870.9:
	anm870:
	871.0:
	871.1:
	871.2:
	871.3:
	871.4:
	871.5:
	871.6:
	871.7:
	871.8:
	871.9:
	anm871:
	872.0:
	872.1:
	872.2:
	872.3:
	872.4:
	872.5:
	872.6:
	872.7:
	872.8:
	872.9:
	anm872:
	873.0:
	873.1:
	873.2:
	873.3:
	873.4:
	873.5:
	873.6:
	873.7:
	873.8:
	873.9:
	anm873:
	874.0:
	874.1:
	874.2:
	874.3:
	874.4:
	874.5:
	874.6:
	874.7:
	874.8:
	874.9:
	874.10:
	874.11:
	874.12:
	874.13:
	874.14:
	874.15:
	874.16:
	874.17:
	874.18:
	874.19:
	874.20:
	anm874:
	875.0:
	875.1:
	875.2:
	875.3:
	875.4:
	875.5:
	875.6:
	875.7:
	875.8:
	875.9:
	anm875:
	876.0:
	876.1:
	876.2:
	876.3:
	876.4:
	876.5:
	876.6:
	876.7:
	876.8:
	876.9:
	anm876:
	877.0:
	877.1:
	877.2:
	877.3:
	877.4:
	877.5:
	877.6:
	877.7:
	877.8:
	877.9:
	anm877:
	878.0:
	878.1:
	878.2:
	878.3:
	878.4:
	878.5:
	878.6:
	878.7:
	878.8:
	878.9:
	anm878:
	879.0:
	879.1:
	879.2:
	879.3:
	879.4:
	879.5:
	879.6:
	879.7:
	879.8:
	879.9:
	879.10:
	879.11:
	879.12:
	879.13:
	879.14:
	879.15:
	879.16:
	879.17:
	879.18:
	879.19:
	879.20:
	anm879:
	880.0:
	880.1:
	880.2:
	880.3:
	880.4:
	880.5:
	880.6:
	880.7:
	880.8:
	880.9:
	anm880:
	881.0:
	881.1:
	881.2:
	881.3:
	881.4:
	881.5:
	881.6:
	881.7:
	881.8:
	881.9:
	anm881:
	882.0:
	882.1:
	882.2:
	882.3:
	882.4:
	882.5:
	882.6:
	882.7:
	882.8:
	882.9:
	anm882:
	883.0:
	883.1:
	883.2:
	883.3:
	883.4:
	883.5:
	883.6:
	883.7:
	883.8:
	883.9:
	anm883:
	884.0:
	884.1:
	884.2:
	884.3:
	884.4:
	884.5:
	884.6:
	884.7:
	884.8:
	884.9:
	884.10:
	884.11:
	884.12:
	884.13:
	884.14:
	884.15:
	884.16:
	884.17:
	884.18:
	884.19:
	884.20:
	anm884:
	885.0:
	885.1:
	885.2:
	885.3:
	885.4:
	885.5:
	885.6:
	885.7:
	885.8:
	885.9:
	anm885:
	886.0:
	886.1:
	886.2:
	886.3:
	886.4:
	886.5:
	886.6:
	886.7:
	886.8:
	886.9:
	anm886:
	887.0:
	887.1:
	887.2:
	887.3:
	887.4:
	887.5:
	887.6:
	887.7:
	887.8:
	887.9:
	anm887:
	888.0:
	888.1:
	888.2:
	888.3:
	888.4:
	888.5:
	888.6:
	888.7:
	888.8:
	888.9:
	anm888:
	889.0:
	889.1:
	889.2:
	889.3:
	889.4:
	889.5:
	889.6:
	889.7:
	889.8:
	889.9:
	889.10:
	889.11:
	889.12:
	889.13:
	889.14:
	889.15:
	889.16:
	889.17:
	889.18:
	889.19:
	889.20:
	anm889:
	890.0:
	890.1:
	890.2:
	890.3:
	890.4:
	890.5:
	890.6:
	890.7:
	890.8:
	890.9:
	anm890:
	891.0:
	891.1:
	891.2:
	891.3:
	891.4:
	891.5:
	891.6:
	891.7:
	891.8:
	891.9:
	anm891:
	892.0:
	892.1:
	892.2:
	892.3:
	892.4:
	892.5:
	892.6:
	892.7:
	892.8:
	892.9:
	anm892:
	893.0:
	893.1:
	893.2:
	893.3:
	893.4:
	893.5:
	893.6:
	893.7:
	893.8:
	893.9:
	anm893:
	894.0:
	894.1:
	894.2:
	894.3:
	894.4:
	894.5:
	894.6:
	894.7:
	894.8:
	894.9:
	894.10:
	894.11:
	894.12:
	894.13:
	894.14:
	894.15:
	894.16:
	894.17:
	894.18:
	894.19:
	894.20:
	anm894:
	895.0:
	895.1:
	895.2:
	895.3:
	895.4:
	895.5:
	895.6:
	895.7:
	895.8:
	895.9:
	anm895:
	896.0:
	896.1:
	896.2:
	896.3:
	896.4:
	896.5:
	896.6:
	896.7:
	896.8:
	896.9:
	anm896:
	897.0:
	897.1:
	897.2:
	897.3:
	897.4:
	897.5:
	897.6:
	897.7:
	897.8:
	897.9:
	anm897:
	898.0:
	898.1:
	898.2:
	898.3:
	898.4:
	898.5:
	898.6:
	898.7:
	898.8:
	898.9:
	anm898:
	899.0:
	899.1:
	899.2:
	899.3:
	899.4:
	899.5:
	899.6:
	899.7:
	899.8:
	899.9:
	899.10:
	899.11:
	899.12:
	899.13:
	899.14:
	899.15:
	899.16:
	899.17:
	899.18:
	899.19:
	899.20:
	anm899:
	900.0:
	900.1:
	900.2:
	900.3:
	900.4:
	900.5:
	900.6:
	900.7:
	900.8:
	900.9:
	anm900:
	901.0:
	901.1:
	901.2:
	901.3:
	901.4:
	901.5:
	901.6:
	901.7:
	901.8:
	901.9:
	anm901:
	902.0:
	902.1:
	902.2:
	902.3:
	902.4:
	902.5:
	902.6:
	902.7:
	902.8:
	902.9:
	anm902:
	903.0:
	903.1:
	903.2:
	903.3:
	903.4:
	903.5:
	903.6:
	903.7:
	903.8:
	903.9:
	anm903:
	904.0:
	904.1:
	904.2:
	904.3:
	904.4:
	904.5:
	904.6:
	904.7:
	904.8:
	904.9:
	904.10:
	904.11:
	904.12:
	904.13:
	904.14:
	904.15:
	904.16:
	904.17:
	904.18:
	904.19:
	904.20:
	anm904:
	905.0:
	905.1:
	905.2:
	905.3:
	905.4:
	905.5:
	905.6:
	905.7:
	905.8:
	905.9:
	anm905:
	906.0:
	906.1:
	906.2:
	906.3:
	906.4:
	906.5:
	906.6:
	906.7:
	906.8:
	906.9:
	anm906:
	907.0:
	907.1:
	907.2:
	907.3:
	907.4:
	907.5:
	907.6:
	907.7:
	907.8:
	907.9:
	anm907:
	908.0:
	908.1:
	908.2:
	908.3:
	908.4:
	908.5:
	908.6:
	908.7:
	908.8:
	908.9:
	anm908:
	909.0:
	909.1:
	909.2:
	909.3:
	909.4:
	909.5:
	909.6:
	909.7:
	909.8:
	909.9:
	909.10:
	909.11:
	909.12:
	909.13:
	909.14:
	909.15:
	909.16:
	909.17:
	909.18:
	909.19:
	909.20:
	anm909:
	910.0:
	910.1:
	910.2:
	910.3:
	910.4:
	910.5:
	910.6:
	910.7:
	910.8:
	910.9:
	anm910:
	911.0:
	911.1:
	911.2:
	911.3:
	911.4:
	911.5:
	911.6:
	911.7:
	911.8:
	911.9:
	anm911:
	912.0:
	912.1:
	912.2:
	912.3:
	912.4:
	912.5:
	912.6:
	912.7:
	912.8:
	912.9:
	anm912:
	913.0:
	913.1:
	913.2:
	913.3:
	913.4:
	913.5:
	913.6:
	913.7:
	913.8:
	913.9:
	anm913:
	914.0:
	914.1:
	914.2:
	914.3:
	914.4:
	914.5:
	914.6:
	914.7:
	914.8:
	914.9:
	914.10:
	914.11:
	914.12:
	914.13:
	914.14:
	914.15:
	914.16:
	914.17:
	914.18:
	914.19:
	914.20:
	anm914:
	915.0:
	915.1:
	915.2:
	915.3:
	915.4:
	915.5:
	915.6:
	915.7:
	915.8:
	915.9:
	anm915:
	916.0:
	916.1:
	916.2:
	916.3:
	916.4:
	916.5:
	916.6:
	916.7:
	916.8:
	916.9:
	anm916:
	917.0:
	917.1:
	917.2:
	917.3:
	917.4:
	917.5:
	917.6:
	917.7:
	917.8:
	917.9:
	anm917:
	918.0:
	918.1:
	918.2:
	918.3:
	918.4:
	918.5:
	918.6:
	918.7:
	918.8:
	918.9:
	anm918:
	919.0:
	919.1:
	919.2:
	919.3:
	919.4:
	919.5:
	919.6:
	919.7:
	919.8:
	919.9:
	919.10:
	919.11:
	919.12:
	919.13:
	919.14:
	919.15:
	919.16:
	919.17:
	919.18:
	919.19:
	919.20:
	anm919:
	920.0:
	920.1:
	920.2:
	920.3:
	920.4:
	920.5:
	920.6:
	920.7:
	920.8:
	920.9:
	anm920:
	921.0:
	921.1:
	921.2:
	921.3:
	921.4:
	921.5:
	921.6:
	921.7:
	921.8:
	921.9:
	anm921:
	922.0:
	922.1:
	922.2:
	922.3:
	922.4:
	922.5:
	922.6:
	922.7:
	922.8:
	922.9:
	anm922:
	923.0:
	923.1:
	923.2:
	923.3:
	923.4:
	923.5:
	923.6:
	923.7:
	923.8:
	923.9:
	anm923:
	924.0:
	924.1:
	924.2:
	924.3:
	924.4:
	924.5:
	924.6:
	924.7:
	924.8:
	924.9:
	924.10:
	924.11:
	924.12:
	924.13:
	924.14:
	924.15:
	924.16:
	924.17:
	924.18:
	924.19:
	924.20:
	anm924:
	925.0:
	925.1:
	925.2:
	925.3:
	925.4:
	925.5:
	925.6:
	925.7:
	925.8:
	925.9:
	anm925:
	926.0:
	926.1:
	926.2:
	926.3:
	926.4:
	926.5:
	926.6:
	926.7:
	926.8:
	926.9:
	anm926:
	927.0:
	927.1:
	927.2:
	927.3:
	927.4:
	927.5:
	927.6:
	927.7:
	927.8:
	927.9:
	anm927:
	928.0:
	928.1:
	928.2:
	928.3:
	928.4:
	928.5:
	928.6:
	928.7:
	928.8:
	928.9:
	anm928:
	929.0:
	929.1:
	929.2:
	929.3:
	929.4:
	929.5:
	929.6:
	929.7:
	929.8:
	929.9:
	929.10:
	929.11:
	929.12:
	929.13:
	929.14:
	929.15:
	929.16:
	929.17:
	929.18:
	929.19:
	929.20:
	anm929:
	930.0:
	930.1:
	930.2:
	930.3:
	930.4:
	930.5:
	930.6:
	930.7:
	930.8:
	930.9:
	anm930:
	931.0:
	931.1:
	931.2:
	931.3:
	931.4:
	931.5:
	931.6:
	931.7:
	931.8:
	931.9:
	anm931:
	932.0:
	932.1:
	932.2:
	932.3:
	932.4:
	932.5:
	932.6:
	932.7:
	932.8:
	932.9:
	anm932:
	933.0:
	933.1:
	933.2:
	933.3:
	933.4:
	933.5:
	933.6:
	933.7:
	933.8:
	933.9:
	anm933:
	934.0:
	934.1:
	934.2:
	934.3:
	934.4:
	934.5:
	934.6:
	934.7:
	934.8:
	934.9:
	934.10:
	934.11:
	934.12:
	934.13:
	934.14:
	934.15:
	934.16:
	934.17:
	934.18:
	934.19:
	934.20:
	anm934:
	935.0:
	935.1:
	935.2:
	935.3:
	935.4:
	935.5:
	935.6:
	935.7:
	935.8:
	935.9:
	anm935:
	936.0:
	936.1:
	936.2:
	936.3:
	936.4:
	936.5:
	936.6:
	936.7:
	936.8:
	936.9:
	anm936:
	937.0:
	937.1:
	937.2:
	937.3:
	937.4:
	937.5:
	937.6:
	937.7:
	937.8:
	937.9:
	anm937:
	938.0:
	938.1:
	938.2:
	938.3:
	938.4:
	938.5:
	938.6:
	938.7:
	938.8:
	938.9:
	anm938:
	939.0:
	939.1:
	939.2:
	939.3:
	939.4:
	939.5:
	939.6:
	939.7:
	939.8:
	939.9:
	939.10:
	939.11:
	939.12:
	939.13:
	939.14:
	939.15:
	939.16:
	939.17:
	939.18:
	939.19:
	939.20:
	anm939:
	940.0:
	940.1:
	940.2:
	940.3:
	940.4:
	940.5:
	940.6:
	940.7:
	940.8:
	940.9:
	anm940:
	941.0:
	941.1:
	941.2:
	941.3:
	941.4:
	941.5:
	941.6:
	941.7:
	941.8:
	941.9:
	anm941:
	942.0:
	942.1:
	942.2:
	942.3:
	942.4:
	942.5:
	942.6:
	942.7:
	942.8:
	942.9:
	anm942:
	943.0:
	943.1:
	943.2:
	943.3:
	943.4:
	943.5:
	943.6:
	943.7:
	943.8:
	943.9:
	anm943:
	944.0:
	944.1:
	944.2:
	944.3:
	944.4:
	944.5:
	944.6:
	944.7:
	944.8:
	944.9:
	944.10:
	944.11:
	944.12:
	944.13:
	944.14:
	944.15:
	944.16:
	944.17:
	944.18:
	944.19:
	944.20:
	anm944:
	945.0:
	945.1:
	945.2:
	945.3:
	945.4:
	945.5:
	945.6:
	945.7:
	945.8:
	945.9:
	anm945:
	946.0:
	946.1:
	946.2:
	946.3:
	946.4:
	946.5:
	946.6:
	946.7:
	946.8:
	946.9:
	anm946:
	947.0:
	947.1:
	947.2:
	947.3:
	947.4:
	947.5:
	947.6:
	947.7:
	947.8:
	947.9:
	anm947:
	948.0:
	948.1:
	948.2:
	948.3:
	948.4:
	948.5:
	948.6:
	948.7:
	948.8:
	948.9:
	anm948:
	949.0:
	949.1:
	949.2:
	949.3:
	949.4:
	949.5:
	949.6:
	949.7:
	949.8:
	949.9:
	949.10:
	949.11:
	949.12:
	949.13:
	949.14:
	949.15:
	949.16:
	949.17:
	949.18:
	949.19:
	949.20:
	anm949:
	950.0:
	950.1:
	950.2:
	950.3:
	950.4:
	950.5:
	950.6:
	950.7:
	950.8:
	950.9:
	anm950:
	951.0:
	951.1:
	951.2:
	951.3:
	951.4:
	951.5:
	951.6:
	951.7:
	951.8:
	951.9:
	anm951:
	952.0:
	952.1:
	952.2:
	952.3:
	952.4:
	952.5:
	952.6:
	952.7:
	952.8:
	952.9:
	anm952:
	953.0:
	953.1:
	953.2:
	953.3:
	953.4:
	953.5:
	953.6:
	953.7:
	953.8:
	953.9:
	anm953:
	954.0:
	954.1:
	954.2:
	954.3:
	954.4:
	954.5:
	954.6:
	954.7:
	954.8:
	954.9:
	954.10:
	954.11:
	954.12:
	954.13:
	954.14:
	954.15:
	954.16:
	954.17:
	954.18:
	954.19:
	954.20:
	anm954:
	955.0:
	955.1:
	955.2:
	955.3:
	955.4:
	955.5:
	955.6:
	955.7:
	955.8:
	955.9:
	anm955:
	956.0:
	956.1:
	956.2:
	956.3:
	956.4:
	956.5:
	956.6:
	956.7:
	956.8:
	956.9:
	anm956:
	957.0:
	957.1:
	957.2:
	957.3:
	957.4:
	957.5:
	957.6:
	957.7:
	957.8:
	957.9:
	anm957:
	958.0:
	958.1:
	958.2:
	958.3:
	958.4:
	958.5:
	958.6:
	958.7:
	958.8:
	958.9:
	anm958:
	959.0:
	959.1:
	959.2:
	959.3:
	959.4:
	959.5:
	959.6:
	959.7:
	959.8:
	959.9:
	959.10:
	959.11:
	959.12:
	959.13:
	959.14:
	959.15:
	959.16:
	959.17:
	959.18:
	959.19:
	959.20:
	anm959:
	960.0:
	960.1:
	960.2:
	960.3:
	960.4:
	960.5:
	960.6:
	960.7:
	960.8:
	960.9:
	anm960:
	961.0:
	961.1:
	961.2:
	961.3:
	961.4:
	961.5:
	961.6:
	961.7:
	961.8:
	961.9:
	anm961:
	962.0:
	962.1:
	962.2:
	962.3:
	962.4:
	962.5:
	962.6:
	962.7:
	962.8:
	962.9:
	anm962:
	963.0:
	963.1:
	963.2:
	963.3:
	963.4:
	963.5:
	963.6:
	963.7:
	963.8:
	963.9:
	anm963:
	964.0:
	964.1:
	964.2:
	964.3:
	964.4:
	964.5:
	964.6:
	964.7:
	964.8:
	964.9:
	964.10:
	964.11:
	964.12:
	964.13:
	964.14:
	964.15:
	964.16:
	964.17:
	964.18:
	964.19:
	964.20:
	anm964:
	965.0:
	965.1:
	965.2:
	965.3:
	965.4:
	965.5:
	965.6:
	965.7:
	965.8:
	965.9:
	anm965:
	966.0:
	966.1:
	966.2:
	966.3:
	966.4:
	966.5:
	966.6:
	966.7:
	966.8:
	966.9:
	anm966:
	967.0:
	967.1:
	967.2:
	967.3:
	967.4:
	967.5:
	967.6:
	967.7:
	967.8:
	967.9:
	anm967:
	968.0:
	968.1:
	968.2:
	968.3:
	968.4:
	968.5:
	968.6:
	968.7:
	968.8:
	968.9:
	anm968:
	969.0:
	969.1:
	969.2:
	969.3:
	969.4:
	969.5:
	969.6:
	969.7:
	969.8:
	969.9:
	969.10:
	969.11:
	969.12:
	969.13:
	969.14:
	969.15:
	969.16:
	969.17:
	969.18:
	969.19:
	969.20:
	anm969:
	970.0:
	970.1:
	970.2:
	970.3:
	970.4:
	970.5:
	970.6:
	970.7:
	970.8:
	970.9:
	anm970:
	971.0:
	971.1:
	971.2:
	971.3:
	971.4:
	971.5:
	971.6:
	971.7:
	971.8:
	971.9:
	anm971:
	972.0:
	972.1:
	972.2:
	972.3:
	972.4:
	972.5:
	972.6:
	972.7:
	972.8:
	972.9:
	anm972:
	973.0:
	973.1:
	973.2:
	973.3:
	973.4:
	973.5:
	973.6:
	973.7:
	973.8:
	973.9:
	anm973:
	974.0:
	974.1:
	974.2:
	974.3:
	974.4:
	974.5:
	974.6:
	974.7:
	974.8:
	974.9:
	974.10:
	974.11:
	974.12:
	974.13:
	974.14:
	974.15:
	974.16:
	974.17:
	974.18:
	974.19:
	974.20:
	anm974:
	975.0:
	975.1:
	975.2:
	975.3:
	975.4:
	975.5:
	975.6:
	975.7:
	975.8:
	975.9:
	anm975:
	976.0:
	976.1:
	976.2:
	976.3:
	976.4:
	976.5:
	976.6:
	976.7:
	976.8:
	976.9:
	anm976:
	977.0:
	977.1:
	977.2:
	977.3:
	977.4:
	977.5:
	977.6:
	977.7:
	977.8:
	977.9:
	anm977:
	978.0:
	978.1:
	978.2:
	978.3:
	978.4:
	978.5:
	978.6:
	978.7:
	978.8:
	978.9:
	anm978:
	979.0:
	979.1:
	979.2:
	979.3:
	979.4:
	979.5:
	979.6:
	979.7:
	979.8:
	979.9:
	979.10:
	979.11:
	979.12:
	979.13:
	979.14:
	979.15:
	979.16:
	979.17:
	979.18:
	979.19:
	979.20:
	anm979:
	980.0:
	980.1:
	980.2:
	980.3:
	980.4:
	980.5:
	980.6:
	980.7:
	980.8:
	980.9:
	anm980:
	981.0:
	981.1:
	981.2:
	981.3:
	981.4:
	981.5:
	981.6:
	981.7:
	981.8:
	981.9:
	anm981:
	982.0:
	982.1:
	982.2:
	982.3:
	982.4:
	982.5:
	982.6:
	982.7:
	982.8:
	982.9:
	anm982:
	983.0:
	983.1:
	983.2:
	983.3:
	983.4:
	983.5:
	983.6:
	983.7:
	983.8:
	983.9:
	anm983:
	984.0:
	984.1:
	984.2:
	984.3:
	984.4:
	984.5:
	984.6:
	984.7:
	984.8:
	984.9:
	984.10:
	984.11:
	984.12:
	984.13:
	984.14:
	984.15:
	984.16:
	984.17:
	984.18:
	984.19:
	984.20:
	anm984:
	985.0:
	985.1:
	985.2:
	985.3:
	985.4:
	985.5:
	985.6:
	985.7:
	985.8:
	985.9:
	anm985:
	986.0:
	986.1:
	986.2:
	986.3:
	986.4:
	986.5:
	986.6:
	986.7:
	986.8:
	986.9:
	anm986:
	987.0:
	987.1:
	987.2:
	987.3:
	987.4:
	987.5:
	987.6:
	987.7:
	987.8:
	987.9:
	anm987:
	988.0:
	988.1:
	988.2:
	988.3:
	988.4:
	988.5:
	988.6:
	988.7:
	988.8:
	988.9:
	anm988:
	989.0:
	989.1:
	989.2:
	989.3:
	989.4:
	989.5:
	989.6:
	989.7:
	989.8:
	989.9:
	989.10:
	989.11:
	989.12:
	989.13:
	989.14:
	989.15:
	989.16:
	989.17:
	989.18:
	989.19:
	989.20:
	anm989:
	990.0:
	990.1:
	990.2:
	990.3:
	990.4:
	990.5:
	990.6:
	990.7:
	990.8:
	990.9:
	anm990:
	991.0:
	991.1:
	991.2:
	991.3:
	991.4:
	991.5:
	991.6:
	991.7:
	991.8:
	991.9:
	anm991:
	992.0:
	992.1:
	992.2:
	992.3:
	992.4:
	992.5:
	992.6:
	992.7:
	992.8:
	992.9:
	anm992:
	993.0:
	993.1:
	993.2:
	993.3:
	993.4:
	993.5:
	993.6:
	993.7:
	993.8:
	993.9:
	anm993:
	994.0:
	994.1:
	994.2:
	994.3:
	994.4:
	994.5:
	994.6:
	994.7:
	994.8:
	994.9:
	994.10:
	994.11:
	994.12:
	994.13:
	994.14:
	994.15:
	994.16:
	994.17:
	994.18:
	994.19:
	994.20:
	anm994:
	995.0:
	995.1:
	995.2:
	995.3:
	995.4:
	995.5:
	995.6:
	995.7:
	995.8:
	995.9:
	anm995:
	996.0:
	996.1:
	996.2:
	996.3:
	996.4:
	996.5:
	996.6:
	996.7:
	996.8:
	996.9:
	anm996:
	997.0:
	997.1:
	997.2:
	997.3:
	997.4:
	997.5:
	997.6:
	997.7:
	997.8:
	997.9:
	anm997:
	998.0:
	998.1:
	998.2:
	998.3:
	998.4:
	998.5:
	998.6:
	998.7:
	998.8:
	998.9:
	anm998:
	999.0:
	999.1:
	999.2:
	999.3:
	999.4:
	999.5:
	999.6:
	999.7:
	999.8:
	999.9:
	999.10:
	999.11:
	999.12:
	999.13:
	999.14:
	999.15:
	999.16:
	999.17:
	999.18:
	999.19:
	999.20:
	anm999:
	1000.0:
	1000.1:
	1000.2:
	1000.3:
	1000.4:
	1000.5:
	1000.6:
	1000.7:
	1000.8:
	1000.9:
	anm1000:
	1001.0:
	1001.1:
	1001.2:
	1001.3:
	1001.4:
	1001.5:
	1001.6:
	1001.7:
	1001.8:
	1001.9:
	anm1001:
	1002.0:
	1002.1:
	1002.2:
	1002.3:
	1002.4:
	1002.5:
	1002.6:
	1002.7:
	1002.8:
	1002.9:
	anm1002:
	1003.0:
	1003.1:
	1003.2:
	1003.3:
	1003.4:
	1003.5:
	1003.6:
	1003.7:
	1003.8:
	1003.9:
	anm1003:
	1004.0:
	1004.1:
	1004.2:
	1004.3:
	1004.4:
	1004.5:
	1004.6:
	1004.7:
	1004.8:
	1004.9:
	1004.10:
	1004.11:
	1004.12:
	1004.13:
	1004.14:
	1004.15:
	1004.16:
	1004.17:
	1004.18:
	1004.19:
	1004.20:
	anm1004:
	1005.0:
	1005.1:
	1005.2:
	1005.3:
	1005.4:
	1005.5:
	1005.6:
	1005.7:
	1005.8:
	1005.9:
	anm1005:
	1006.0:
	1006.1:
	1006.2:
	1006.3:
	1006.4:
	1006.5:
	1006.6:
	1006.7:
	1006.8:
	1006.9:
	anm1006:
	1007.0:
	1007.1:
	1007.2:
	1007.3:
	1007.4:
	1007.5:
	1007.6:
	1007.7:
	1007.8:
	1007.9:
	anm1007:
	1008.0:
	1008.1:
	1008.2:
	1008.3:
	1008.4:
	1008.5:
	1008.6:
	1008.7:
	1008.8:
	1008.9:
	anm1008:
	1009.0:
	1009.1:
	1009.2:
	1009.3:
	1009.4:
	1009.5:
	1009.6:
	1009.7:
	1009.8:
	1009.9:
	1009.10:
	1009.11:
	1009.12:
	1009.13:
	1009.14:
	1009.15:
	1009.16:
	1009.17:
	1009.18:
	1009.19:
	1009.20:
	anm1009:
	1010.0:
	1010.1:
	1010.2:
	1010.3:
	1010.4:
	1010.5:
	1010.6:
	1010.7:
	1010.8:
	1010.9:
	anm1010:
	1011.0:
	1011.1:
	1011.2:
	1011.3:
	1011.4:
	1011.5:
	1011.6:
	1011.7:
	1011.8:
	1011.9:
	anm1011:
	1012.0:
	1012.1:
	1012.2:
	1012.3:
	1012.4:
	1012.5:
	1012.6:
	1012.7:
	1012.8:
	1012.9:
	anm1012:
	1013.0:
	1013.1:
	1013.2:
	1013.3:
	1013.4:
	1013.5:
	1013.6:
	1013.7:
	1013.8:
	1013.9:
	anm1013:
	1014.0:
	1014.1:
	1014.2:
	1014.3:
	1014.4:
	1014.5:
	1014.6:
	1014.7:
	1014.8:
	1014.9:
	1014.10:
	1014.11:
	1014.12:
	1014.13:
	1014.14:
	1014.15:
	1014.16:
	1014.17:
	1014.18:
	1014.19:
	1014.20:
	anm1014:
	1015.0:
	1015.1:
	1015.2:
	1015.3:
	1015.4:
	1015.5:
	1015.6:
	1015.7:
	1015.8:
	1015.9:
	anm1015:
	1016.0:
	1016.1:
	1016.2:
	1016.3:
	1016.4:
	1016.5:
	1016.6:
	1016.7:
	1016.8:
	1016.9:
	anm1016:
	1017.0:
	1017.1:
	1017.2:
	1017.3:
	1017.4:
	1017.5:
	1017.6:
	1017.7:
	1017.8:
	1017.9:
	anm1017:
	1018.0:
	1018.1:
	1018.2:
	1018.3:
	1018.4:
	1018.5:
	1018.6:
	1018.7:
	1018.8:
	1018.9:
	anm1018:
	1019.0:
	1019.1:
	1019.2:
	1019.3:
	1019.4:
	1019.5:
	1019.6:
	1019.7:
	1019.8:
	1019.9:
	1019.10:
	1019.11:
	1019.12:
	1019.13:
	1019.14:
	1019.15:
	1019.16:
	1019.17:
	1019.18:
	1019.19:
	1019.20:
	anm1019:
	1020.0:
	1020.1:
	1020.2:
	1020.3:
	1020.4:
	1020.5:
	1020.6:
	1020.7:
	1020.8:
	1020.9:
	anm1020:
	1021.0:
	1021.1:
	1021.2:
	1021.3:
	1021.4:
	1021.5:
	1021.6:
	1021.7:
	1021.8:
	1021.9:
	anm1021:
	1022.0:
	1022.1:
	1022.2:
	1022.3:
	1022.4:
	1022.5:
	1022.6:
	1022.7:
	1022.8:
	1022.9:
	anm1022:
	1023.0:
	1023.1:
	1023.2:
	1023.3:
	1023.4:
	1023.5:
	1023.6:
	1023.7:
	1023.8:
	1023.9:
	anm1023:
	1024.0:
	1024.1:
	1024.2:
	1024.3:
	1024.4:
	1024.5:
	1024.6:
	1024.7:
	1024.8:
	1024.9:
	1024.10:
	1024.11:
	1024.12:
	1024.13:
	1024.14:
	1024.15:
	1024.16:
	1024.17:
	1024.18:
	1024.19:
	1024.20:
	anm1024:
	1025.0:
	1025.1:
	1025.2:
	1025.3:
	1025.4:
	1025.5:
	1025.6:
	1025.7:
	1025.8:
	1025.9:
	anm1025:
	1026.0:
	1026.1:
	1026.2:
	1026.3:
	1026.4:
	1026.5:
	1026.6:
	1026.7:
	1026.8:
	1026.9:
	anm1026:
	1027.0:
	1027.1:
	1027.2:
	1027.3:
	1027.4:
	1027.5:
	1027.6:
	1027.7:
	1027.8:
	1027.9:
	anm1027:
	1028.0:
	1028.1:
	1028.2:
	1028.3:
	1028.4:
	1028.5:
	1028.6:
	1028.7:
	1028.8:
	1028.9:
	anm1028:
	1029.0:
	1029.1:
	1029.2:
	1029.3:
	1029.4:
	1029.5:
	1029.6:
	1029.7:
	1029.8:
	1029.9:
	1029.10:
	1029.11:
	1029.12:
	1029.13:
	1029.14:
	1029.15:
	1029.16:
	1029.17:
	1029.18:
	1029.19:
	1029.20:
	anm1029:
	1030.0:
	1030.1:
	1030.2:
	1030.3:
	1030.4:
	1030.5:
	1030.6:
	1030.7:
	1030.8:
	1030.9:
	anm1030:
	1031.0:
	1031.1:
	1031.2:
	1031.3:
	1031.4:
	1031.5:
	1031.6:
	1031.7:
	1031.8:
	1031.9:
	anm1031:
	1032.0:
	1032.1:
	1032.2:
	1032.3:
	1032.4:
	1032.5:
	1032.6:
	1032.7:
	1032.8:
	1032.9:
	anm1032:
	1033.0:
	1033.1:
	1033.2:
	1033.3:
	1033.4:
	1033.5:
	1033.6:
	1033.7:
	1033.8:
	1033.9:
	anm1033:
	1034.0:
	1034.1:
	1034.2:
	1034.3:
	1034.4:
	1034.5:
	1034.6:
	1034.7:
	1034.8:
	1034.9:
	1034.10:
	1034.11:
	1034.12:
	1034.13:
	1034.14:
	1034.15:
	1034.16:
	1034.17:
	1034.18:
	1034.19:
	1034.20:
	anm1034:
	1035.0:
	1035.1:
	1035.2:
	1035.3:
	1035.4:
	1035.5:
	1035.6:
	1035.7:
	1035.8:
	1035.9:
	anm1035:
	1036.0:
	1036.1:
	1036.2:
	1036.3:
	1036.4:
	1036.5:
	1036.6:
	1036.7:
	1036.8:
	1036.9:
	anm1036:
	1037.0:
	1037.1:
	1037.2:
	1037.3:
	1037.4:
	1037.5:
	1037.6:
	1037.7:
	1037.8:
	1037.9:
	anm1037:
	1038.0:
	1038.1:
	1038.2:
	1038.3:
	1038.4:
	1038.5:
	1038.6:
	1038.7:
	1038.8:
	1038.9:
	anm1038:
	1039.0:
	1039.1:
	1039.2:
	1039.3:
	1039.4:
	1039.5:
	1039.6:
	1039.7:
	1039.8:
	1039.9:
	1039.10:
	1039.11:
	1039.12:
	1039.13:
	1039.14:
	1039.15:
	1039.16:
	1039.17:
	1039.18:
	1039.19:
	1039.20:
	anm1039:
	1040.0:
	1040.1:
	1040.2:
	1040.3:
	1040.4:
	1040.5:
	1040.6:
	1040.7:
	1040.8:
	1040.9:
	anm1040:
	1041.0:
	1041.1:
	1041.2:
	1041.3:
	1041.4:
	1041.5:
	1041.6:
	1041.7:
	1041.8:
	1041.9:
	anm1041:
	1042.0:
	1042.1:
	1042.2:
	1042.3:
	1042.4:
	1042.5:
	1042.6:
	1042.7:
	1042.8:
	1042.9:
	anm1042:
	1043.0:
	1043.1:
	1043.2:
	1043.3:
	1043.4:
	1043.5:
	1043.6:
	1043.7:
	1043.8:
	1043.9:
	anm1043:
	1044.0:
	1044.1:
	1044.2:
	1044.3:
	1044.4:
	1044.5:
	1044.6:
	1044.7:
	1044.8:
	1044.9:
	1044.10:
	1044.11:
	1044.12:
	1044.13:
	1044.14:
	1044.15:
	1044.16:
	1044.17:
	1044.18:
	1044.19:
	1044.20:
	anm1044:
	1045.0:
	1045.1:
	1045.2:
	1045.3:
	1045.4:
	1045.5:
	1045.6:
	1045.7:
	1045.8:
	1045.9:
	anm1045:
	1046.0:
	1046.1:
	1046.2:
	1046.3:
	1046.4:
	1046.5:
	1046.6:
	1046.7:
	1046.8:
	1046.9:
	anm1046:
	1047.0:
	1047.1:
	1047.2:
	1047.3:
	1047.4:
	1047.5:
	1047.6:
	1047.7:
	1047.8:
	1047.9:
	anm1047:
	1048.0:
	1048.1:
	1048.2:
	1048.3:
	1048.4:
	1048.5:
	1048.6:
	1048.7:
	1048.8:
	1048.9:
	anm1048:
	1049.0:
	1049.1:
	1049.2:
	1049.3:
	1049.4:
	1049.5:
	1049.6:
	1049.7:
	1049.8:
	1049.9:
	1049.10:
	1049.11:
	1049.12:
	1049.13:
	1049.14:
	1049.15:
	1049.16:
	1049.17:
	1049.18:
	1049.19:
	1049.20:
	anm1049:
	1050.0:
	1050.1:
	1050.2:
	1050.3:
	1050.4:
	1050.5:
	1050.6:
	1050.7:
	1050.8:
	1050.9:
	anm1050:
	1051.0:
	1051.1:
	1051.2:
	1051.3:
	1051.4:
	1051.5:
	1051.6:
	1051.7:
	1051.8:
	1051.9:
	anm1051:
	1052.0:
	1052.1:
	1052.2:
	1052.3:
	1052.4:
	1052.5:
	1052.6:
	1052.7:
	1052.8:
	1052.9:
	anm1052:
	1053.0:
	1053.1:
	1053.2:
	1053.3:
	1053.4:
	1053.5:
	1053.6:
	1053.7:
	1053.8:
	1053.9:
	anm1053:
	1054.0:
	1054.1:
	1054.2:
	1054.3:
	1054.4:
	1054.5:
	1054.6:
	1054.7:
	1054.8:
	1054.9:
	1054.10:
	1054.11:
	1054.12:
	1054.13:
	1054.14:
	1054.15:
	1054.16:
	1054.17:
	1054.18:
	1054.19:
	1054.20:
	anm1054:
	1055.0:
	1055.1:
	1055.2:
	1055.3:
	1055.4:
	1055.5:
	1055.6:
	1055.7:
	1055.8:
	1055.9:
	anm1055:
	1056.0:
	1056.1:
	1056.2:
	1056.3:
	1056.4:
	1056.5:
	1056.6:
	1056.7:
	1056.8:
	1056.9:
	anm1056:
	1057.0:
	1057.1:
	1057.2:
	1057.3:
	1057.4:
	1057.5:
	1057.6:
	1057.7:
	1057.8:
	1057.9:
	anm1057:
	1058.0:
	1058.1:
	1058.2:
	1058.3:
	1058.4:
	1058.5:
	1058.6:
	1058.7:
	1058.8:
	1058.9:
	anm1058:
	1059.0:
	1059.1:
	1059.2:
	1059.3:
	1059.4:
	1059.5:
	1059.6:
	1059.7:
	1059.8:
	1059.9:
	1059.10:
	1059.11:
	1059.12:
	1059.13:
	1059.14:
	1059.15:
	1059.16:
	1059.17:
	1059.18:
	1059.19:
	1059.20:
	anm1059:
	1060.0:
	1060.1:
	1060.2:
	1060.3:
	1060.4:
	1060.5:
	1060.6:
	1060.7:
	1060.8:
	1060.9:
	anm1060:
	1061.0:
	1061.1:
	1061.2:
	1061.3:
	1061.4:
	1061.5:
	1061.6:
	1061.7:
	1061.8:
	1061.9:
	anm1061:
	1062.0:
	1062.1:
	1062.2:
	1062.3:
	1062.4:
	1062.5:
	1062.6:
	1062.7:
	1062.8:
	1062.9:
	anm1062:
	1063.0:
	1063.1:
	1063.2:
	1063.3:
	1063.4:
	1063.5:
	1063.6:
	1063.7:
	1063.8:
	1063.9:
	anm1063:
	1064.0:
	1064.1:
	1064.2:
	1064.3:
	1064.4:
	1064.5:
	1064.6:
	1064.7:
	1064.8:
	1064.9:
	1064.10:
	1064.11:
	1064.12:
	1064.13:
	1064.14:
	1064.15:
	1064.16:
	1064.17:
	1064.18:
	1064.19:
	1064.20:
	anm1064:
	1065.0:
	1065.1:
	1065.2:
	1065.3:
	1065.4:
	1065.5:
	1065.6:
	1065.7:
	1065.8:
	1065.9:
	anm1065:
	1066.0:
	1066.1:
	1066.2:
	1066.3:
	1066.4:
	1066.5:
	1066.6:
	1066.7:
	1066.8:
	1066.9:
	anm1066:
	1067.0:
	1067.1:
	1067.2:
	1067.3:
	1067.4:
	1067.5:
	1067.6:
	1067.7:
	1067.8:
	1067.9:
	anm1067:
	1068.0:
	1068.1:
	1068.2:
	1068.3:
	1068.4:
	1068.5:
	1068.6:
	1068.7:
	1068.8:
	1068.9:
	anm1068:
	1069.0:
	1069.1:
	1069.2:
	1069.3:
	1069.4:
	1069.5:
	1069.6:
	1069.7:
	1069.8:
	1069.9:
	1069.10:
	1069.11:
	1069.12:
	1069.13:
	1069.14:
	1069.15:
	1069.16:
	1069.17:
	1069.18:
	1069.19:
	1069.20:
	anm1069:
	1070.0:
	1070.1:
	1070.2:
	1070.3:
	1070.4:
	1070.5:
	1070.6:
	1070.7:
	1070.8:
	1070.9:
	anm1070:
	1071.0:
	1071.1:
	1071.2:
	1071.3:
	1071.4:
	1071.5:
	1071.6:
	1071.7:
	1071.8:
	1071.9:
	anm1071:
	1072.0:
	1072.1:
	1072.2:
	1072.3:
	1072.4:
	1072.5:
	1072.6:
	1072.7:
	1072.8:
	1072.9:
	anm1072:
	1073.0:
	1073.1:
	1073.2:
	1073.3:
	1073.4:
	1073.5:
	1073.6:
	1073.7:
	1073.8:
	1073.9:
	anm1073:
	1074.0:
	1074.1:
	1074.2:
	1074.3:
	1074.4:
	1074.5:
	1074.6:
	1074.7:
	1074.8:
	1074.9:
	1074.10:
	1074.11:
	1074.12:
	1074.13:
	1074.14:
	1074.15:
	1074.16:
	1074.17:
	1074.18:
	1074.19:
	1074.20:
	anm1074:
	1075.0:
	1075.1:
	1075.2:
	1075.3:
	1075.4:
	1075.5:
	1075.6:
	1075.7:
	1075.8:
	1075.9:
	anm1075:
	1076.0:
	1076.1:
	1076.2:
	1076.3:
	1076.4:
	1076.5:
	1076.6:
	1076.7:
	1076.8:
	1076.9:
	anm1076:
	1077.0:
	1077.1:
	1077.2:
	1077.3:
	1077.4:
	1077.5:
	1077.6:
	1077.7:
	1077.8:
	1077.9:
	anm1077:
	1078.0:
	1078.1:
	1078.2:
	1078.3:
	1078.4:
	1078.5:
	1078.6:
	1078.7:
	1078.8:
	1078.9:
	anm1078:
	1079.0:
	1079.1:
	1079.2:
	1079.3:
	1079.4:
	1079.5:
	1079.6:
	1079.7:
	1079.8:
	1079.9:
	1079.10:
	1079.11:
	1079.12:
	1079.13:
	1079.14:
	1079.15:
	1079.16:
	1079.17:
	1079.18:
	1079.19:
	1079.20:
	anm1079:
	1080.0:
	1080.1:
	1080.2:
	1080.3:
	1080.4:
	1080.5:
	1080.6:
	1080.7:
	1080.8:
	1080.9:
	anm1080:
	1081.0:
	1081.1:
	1081.2:
	1081.3:
	1081.4:
	1081.5:
	1081.6:
	1081.7:
	1081.8:
	1081.9:
	anm1081:
	1082.0:
	1082.1:
	1082.2:
	1082.3:
	1082.4:
	1082.5:
	1082.6:
	1082.7:
	1082.8:
	1082.9:
	anm1082:
	1083.0:
	1083.1:
	1083.2:
	1083.3:
	1083.4:
	1083.5:
	1083.6:
	1083.7:
	1083.8:
	1083.9:
	anm1083:
	1084.0:
	1084.1:
	1084.2:
	1084.3:
	1084.4:
	1084.5:
	1084.6:
	1084.7:
	1084.8:
	1084.9:
	1084.10:
	1084.11:
	1084.12:
	1084.13:
	1084.14:
	1084.15:
	1084.16:
	1084.17:
	1084.18:
	1084.19:
	1084.20:
	anm1084:
	1085.0:
	1085.1:
	1085.2:
	1085.3:
	1085.4:
	1085.5:
	1085.6:
	1085.7:
	1085.8:
	1085.9:
	anm1085:
	1086.0:
	1086.1:
	1086.2:
	1086.3:
	1086.4:
	1086.5:
	1086.6:
	1086.7:
	1086.8:
	1086.9:
	anm1086:
	1087.0:
	1087.1:
	1087.2:
	1087.3:
	1087.4:
	1087.5:
	1087.6:
	1087.7:
	1087.8:
	1087.9:
	anm1087:
	1088.0:
	1088.1:
	1088.2:
	1088.3:
	1088.4:
	1088.5:
	1088.6:
	1088.7:
	1088.8:
	1088.9:
	anm1088:
	1089.0:
	1089.1:
	1089.2:
	1089.3:
	1089.4:
	1089.5:
	1089.6:
	1089.7:
	1089.8:
	1089.9:
	1089.10:
	1089.11:
	1089.12:
	1089.13:
	1089.14:
	1089.15:
	1089.16:
	1089.17:
	1089.18:
	1089.19:
	1089.20:
	anm1089:
	1090.0:
	1090.1:
	1090.2:
	1090.3:
	1090.4:
	1090.5:
	1090.6:
	1090.7:
	1090.8:
	1090.9:
	anm1090:
	1091.0:
	1091.1:
	1091.2:
	1091.3:
	1091.4:
	1091.5:
	1091.6:
	1091.7:
	1091.8:
	1091.9:
	anm1091:
	1092.0:
	1092.1:
	1092.2:
	1092.3:
	1092.4:
	1092.5:
	1092.6:
	1092.7:
	1092.8:
	1092.9:
	anm1092:
	1093.0:
	1093.1:
	1093.2:
	1093.3:
	1093.4:
	1093.5:
	1093.6:
	1093.7:
	1093.8:
	1093.9:
	anm1093:
	1094.0:
	1094.1:
	1094.2:
	1094.3:
	1094.4:
	1094.5:
	1094.6:
	1094.7:
	1094.8:
	1094.9:
	1094.10:
	1094.11:
	1094.12:
	1094.13:
	1094.14:
	1094.15:
	1094.16:
	1094.17:
	1094.18:
	1094.19:
	1094.20:
	anm1094:
	1095.0:
	1095.1:
	1095.2:
	1095.3:
	1095.4:
	1095.5:
	1095.6:
	1095.7:
	1095.8:
	1095.9:
	anm1095:
	1096.0:
	1096.1:
	1096.2:
	1096.3:
	1096.4:
	1096.5:
	1096.6:
	1096.7:
	1096.8:
	1096.9:
	anm1096:
	1097.0:
	1097.1:
	1097.2:
	1097.3:
	1097.4:
	1097.5:
	1097.6:
	1097.7:
	1097.8:
	1097.9:
	anm1097:
	1098.0:
	1098.1:
	1098.2:
	1098.3:
	1098.4:
	1098.5:
	1098.6:
	1098.7:
	1098.8:
	1098.9:
	anm1098:
	1099.0:
	1099.1:
	1099.2:
	1099.3:
	1099.4:
	1099.5:
	1099.6:
	1099.7:
	1099.8:
	1099.9:
	1099.10:
	1099.11:
	1099.12:
	1099.13:
	1099.14:
	1099.15:
	1099.16:
	1099.17:
	1099.18:
	1099.19:
	1099.20:
	anm1099:
	1100.0:
	1100.1:
	1100.2:
	1100.3:
	1100.4:
	1100.5:
	1100.6:
	1100.7:
	1100.8:
	1100.9:
	anm1100:
	1101.0:
	1101.1:
	1101.2:
	1101.3:
	1101.4:
	1101.5:
	1101.6:
	1101.7:
	1101.8:
	1101.9:
	anm1101:
	1102.0:
	1102.1:
	1102.2:
	1102.3:
	1102.4:
	1102.5:
	1102.6:
	1102.7:
	1102.8:
	1102.9:
	anm1102:
	1103.0:
	1103.1:
	1103.2:
	1103.3:
	1103.4:
	1103.5:
	1103.6:
	1103.7:
	1103.8:
	1103.9:
	anm1103:
	1104.0:
	1104.1:
	1104.2:
	1104.3:
	1104.4:
	1104.5:
	1104.6:
	1104.7:
	1104.8:
	1104.9:
	1104.10:
	1104.11:
	1104.12:
	1104.13:
	1104.14:
	1104.15:
	1104.16:
	1104.17:
	1104.18:
	1104.19:
	1104.20:
	anm1104:
	1105.0:
	1105.1:
	1105.2:
	1105.3:
	1105.4:
	1105.5:
	1105.6:
	1105.7:
	1105.8:
	1105.9:
	anm1105:
	1106.0:
	1106.1:
	1106.2:
	1106.3:
	1106.4:
	1106.5:
	1106.6:
	1106.7:
	1106.8:
	1106.9:
	anm1106:
	1107.0:
	1107.1:
	1107.2:
	1107.3:
	1107.4:
	1107.5:
	1107.6:
	1107.7:
	1107.8:
	1107.9:
	anm1107:
	1108.0:
	1108.1:
	1108.2:
	1108.3:
	1108.4:
	1108.5:
	1108.6:
	1108.7:
	1108.8:
	1108.9:
	anm1108:
	1109.0:
	1109.1:
	1109.2:
	1109.3:
	1109.4:
	1109.5:
	1109.6:
	1109.7:
	1109.8:
	1109.9:
	1109.10:
	1109.11:
	1109.12:
	1109.13:
	1109.14:
	1109.15:
	1109.16:
	1109.17:
	1109.18:
	1109.19:
	1109.20:
	anm1109:
	1110.0:
	1110.1:
	1110.2:
	1110.3:
	1110.4:
	1110.5:
	1110.6:
	1110.7:
	1110.8:
	1110.9:
	anm1110:
	1111.0:
	1111.1:
	1111.2:
	1111.3:
	1111.4:
	1111.5:
	1111.6:
	1111.7:
	1111.8:
	1111.9:
	anm1111:
	1112.0:
	1112.1:
	1112.2:
	1112.3:
	1112.4:
	1112.5:
	1112.6:
	1112.7:
	1112.8:
	1112.9:
	anm1112:
	1113.0:
	1113.1:
	1113.2:
	1113.3:
	1113.4:
	1113.5:
	1113.6:
	1113.7:
	1113.8:
	1113.9:
	anm1113:
	1114.0:
	1114.1:
	1114.2:
	1114.3:
	1114.4:
	1114.5:
	1114.6:
	1114.7:
	1114.8:
	1114.9:
	1114.10:
	1114.11:
	1114.12:
	1114.13:
	1114.14:
	1114.15:
	1114.16:
	1114.17:
	1114.18:
	1114.19:
	1114.20:
	anm1114:
	1115.0:
	1115.1:
	1115.2:
	1115.3:
	1115.4:
	1115.5:
	1115.6:
	1115.7:
	1115.8:
	1115.9:
	anm1115:
	1116.0:
	1116.1:
	1116.2:
	1116.3:
	1116.4:
	1116.5:
	1116.6:
	1116.7:
	1116.8:
	1116.9:
	anm1116:
	1117.0:
	1117.1:
	1117.2:
	1117.3:
	1117.4:
	1117.5:
	1117.6:
	1117.7:
	1117.8:
	1117.9:
	anm1117:
	1118.0:
	1118.1:
	1118.2:
	1118.3:
	1118.4:
	1118.5:
	1118.6:
	1118.7:
	1118.8:
	1118.9:
	anm1118:
	1119.0:
	1119.1:
	1119.2:
	1119.3:
	1119.4:
	1119.5:
	1119.6:
	1119.7:
	1119.8:
	1119.9:
	1119.10:
	1119.11:
	1119.12:
	1119.13:
	1119.14:
	1119.15:
	1119.16:
	1119.17:
	1119.18:
	1119.19:
	1119.20:
	anm1119:
	1120.0:
	1120.1:
	1120.2:
	1120.3:
	1120.4:
	1120.5:
	1120.6:
	1120.7:
	1120.8:
	1120.9:
	anm1120:
	1121.0:
	1121.1:
	1121.2:
	1121.3:
	1121.4:
	1121.5:
	1121.6:
	1121.7:
	1121.8:
	1121.9:
	anm1121:
	1122.0:
	1122.1:
	1122.2:
	1122.3:
	1122.4:
	1122.5:
	1122.6:
	1122.7:
	1122.8:
	1122.9:
	anm1122:
	1123.0:
	1123.1:
	1123.2:
	1123.3:
	1123.4:
	1123.5:
	1123.6:
	1123.7:
	1123.8:
	1123.9:
	anm1123:
	1124.0:
	1124.1:
	1124.2:
	1124.3:
	1124.4:
	1124.5:
	1124.6:
	1124.7:
	1124.8:
	1124.9:
	1124.10:
	1124.11:
	1124.12:
	1124.13:
	1124.14:
	1124.15:
	1124.16:
	1124.17:
	1124.18:
	1124.19:
	1124.20:
	anm1124:
	1125.0:
	1125.1:
	1125.2:
	1125.3:
	1125.4:
	1125.5:
	1125.6:
	1125.7:
	1125.8:
	1125.9:
	anm1125:
	1126.0:
	1126.1:
	1126.2:
	1126.3:
	1126.4:
	1126.5:
	1126.6:
	1126.7:
	1126.8:
	1126.9:
	anm1126:
	1127.0:
	1127.1:
	1127.2:
	1127.3:
	1127.4:
	1127.5:
	1127.6:
	1127.7:
	1127.8:
	1127.9:
	anm1127:
	1128.0:
	1128.1:
	1128.2:
	1128.3:
	1128.4:
	1128.5:
	1128.6:
	1128.7:
	1128.8:
	1128.9:
	anm1128:
	1129.0:
	1129.1:
	1129.2:
	1129.3:
	1129.4:
	1129.5:
	1129.6:
	1129.7:
	1129.8:
	1129.9:
	1129.10:
	1129.11:
	1129.12:
	1129.13:
	1129.14:
	1129.15:
	1129.16:
	1129.17:
	1129.18:
	1129.19:
	1129.20:
	anm1129:
	1130.0:
	1130.1:
	1130.2:
	1130.3:
	1130.4:
	1130.5:
	1130.6:
	1130.7:
	1130.8:
	1130.9:
	anm1130:
	1131.0:
	1131.1:
	1131.2:
	1131.3:
	1131.4:
	1131.5:
	1131.6:
	1131.7:
	1131.8:
	1131.9:
	anm1131:
	1132.0:
	1132.1:
	1132.2:
	1132.3:
	1132.4:
	1132.5:
	1132.6:
	1132.7:
	1132.8:
	1132.9:
	anm1132:
	1133.0:
	1133.1:
	1133.2:
	1133.3:
	1133.4:
	1133.5:
	1133.6:
	1133.7:
	1133.8:
	1133.9:
	anm1133:
	1134.0:
	1134.1:
	1134.2:
	1134.3:
	1134.4:
	1134.5:
	1134.6:
	1134.7:
	1134.8:
	1134.9:
	1134.10:
	1134.11:
	1134.12:
	1134.13:
	1134.14:
	1134.15:
	1134.16:
	1134.17:
	1134.18:
	1134.19:
	1134.20:
	anm1134:
	1135.0:
	1135.1:
	1135.2:
	1135.3:
	1135.4:
	1135.5:
	1135.6:
	1135.7:
	1135.8:
	1135.9:
	anm1135:
	1136.0:
	1136.1:
	1136.2:
	1136.3:
	1136.4:
	1136.5:
	1136.6:
	1136.7:
	1136.8:
	1136.9:
	anm1136:
	1137.0:
	1137.1:
	1137.2:
	1137.3:
	1137.4:
	1137.5:
	1137.6:
	1137.7:
	1137.8:
	1137.9:
	anm1137:
	1138.0:
	1138.1:
	1138.2:
	1138.3:
	1138.4:
	1138.5:
	1138.6:
	1138.7:
	1138.8:
	1138.9:
	anm1138:
	1139.0:
	1139.1:
	1139.2:
	1139.3:
	1139.4:
	1139.5:
	1139.6:
	1139.7:
	1139.8:
	1139.9:
	1139.10:
	1139.11:
	1139.12:
	1139.13:
	1139.14:
	1139.15:
	1139.16:
	1139.17:
	1139.18:
	1139.19:
	1139.20:
	anm1139:
	1140.0:
	1140.1:
	1140.2:
	1140.3:
	1140.4:
	1140.5:
	1140.6:
	1140.7:
	1140.8:
	1140.9:
	anm1140:
	1141.0:
	1141.1:
	1141.2:
	1141.3:
	1141.4:
	1141.5:
	1141.6:
	1141.7:
	1141.8:
	1141.9:
	anm1141:
	1142.0:
	1142.1:
	1142.2:
	1142.3:
	1142.4:
	1142.5:
	1142.6:
	1142.7:
	1142.8:
	1142.9:
	anm1142:
	1143.0:
	1143.1:
	1143.2:
	1143.3:
	1143.4:
	1143.5:
	1143.6:
	1143.7:
	1143.8:
	1143.9:
	anm1143:
	1144.0:
	1144.1:
	1144.2:
	1144.3:
	1144.4:
	1144.5:
	1144.6:
	1144.7:
	1144.8:
	1144.9:
	1144.10:
	1144.11:
	1144.12:
	1144.13:
	1144.14:
	1144.15:
	1144.16:
	1144.17:
	1144.18:
	1144.19:
	1144.20:
	anm1144:
	1145.0:
	1145.1:
	1145.2:
	1145.3:
	1145.4:
	1145.5:
	1145.6:
	1145.7:
	1145.8:
	1145.9:
	anm1145:
	1146.0:
	1146.1:
	1146.2:
	1146.3:
	1146.4:
	1146.5:
	1146.6:
	1146.7:
	1146.8:
	1146.9:
	anm1146:
	1147.0:
	1147.1:
	1147.2:
	1147.3:
	1147.4:
	1147.5:
	1147.6:
	1147.7:
	1147.8:
	1147.9:
	anm1147:
	1148.0:
	1148.1:
	1148.2:
	1148.3:
	1148.4:
	1148.5:
	1148.6:
	1148.7:
	1148.8:
	1148.9:
	anm1148:
	1149.0:
	1149.1:
	1149.2:
	1149.3:
	1149.4:
	1149.5:
	1149.6:
	1149.7:
	1149.8:
	1149.9:
	1149.10:
	1149.11:
	1149.12:
	1149.13:
	1149.14:
	1149.15:
	1149.16:
	1149.17:
	1149.18:
	1149.19:
	1149.20:
	anm1149:
	1150.0:
	1150.1:
	1150.2:
	1150.3:
	1150.4:
	1150.5:
	1150.6:
	1150.7:
	1150.8:
	1150.9:
	anm1150:
	1151.0:
	1151.1:
	1151.2:
	1151.3:
	1151.4:
	1151.5:
	1151.6:
	1151.7:
	1151.8:
	1151.9:
	anm1151:
	1152.0:
	1152.1:
	1152.2:
	1152.3:
	1152.4:
	1152.5:
	1152.6:
	1152.7:
	1152.8:
	1152.9:
	anm1152:
	1153.0:
	1153.1:
	1153.2:
	1153.3:
	1153.4:
	1153.5:
	1153.6:
	1153.7:
	1153.8:
	1153.9:
	anm1153:
	1154.0:
	1154.1:
	1154.2:
	1154.3:
	1154.4:
	1154.5:
	1154.6:
	1154.7:
	1154.8:
	1154.9:
	1154.10:
	1154.11:
	1154.12:
	1154.13:
	1154.14:
	1154.15:
	1154.16:
	1154.17:
	1154.18:
	1154.19:
	1154.20:
	anm1154:
	1155.0:
	1155.1:
	1155.2:
	1155.3:
	1155.4:
	1155.5:
	1155.6:
	1155.7:
	1155.8:
	1155.9:
	anm1155:
	1156.0:
	1156.1:
	1156.2:
	1156.3:
	1156.4:
	1156.5:
	1156.6:
	1156.7:
	1156.8:
	1156.9:
	anm1156:
	1157.0:
	1157.1:
	1157.2:
	1157.3:
	1157.4:
	1157.5:
	1157.6:
	1157.7:
	1157.8:
	1157.9:
	anm1157:
	1158.0:
	1158.1:
	1158.2:
	1158.3:
	1158.4:
	1158.5:
	1158.6:
	1158.7:
	1158.8:
	1158.9:
	anm1158:
	1159.0:
	1159.1:
	1159.2:
	1159.3:
	1159.4:
	1159.5:
	1159.6:
	1159.7:
	1159.8:
	1159.9:
	1159.10:
	1159.11:
	1159.12:
	1159.13:
	1159.14:
	1159.15:
	1159.16:
	1159.17:
	1159.18:
	1159.19:
	1159.20:
	anm1159:
	1160.0:
	1160.1:
	1160.2:
	1160.3:
	1160.4:
	1160.5:
	1160.6:
	1160.7:
	1160.8:
	1160.9:
	anm1160:
	1161.0:
	1161.1:
	1161.2:
	1161.3:
	1161.4:
	1161.5:
	1161.6:
	1161.7:
	1161.8:
	1161.9:
	anm1161:
	1162.0:
	1162.1:
	1162.2:
	1162.3:
	1162.4:
	1162.5:
	1162.6:
	1162.7:
	1162.8:
	1162.9:
	anm1162:
	1163.0:
	1163.1:
	1163.2:
	1163.3:
	1163.4:
	1163.5:
	1163.6:
	1163.7:
	1163.8:
	1163.9:
	anm1163:
	1164.0:
	1164.1:
	1164.2:
	1164.3:
	1164.4:
	1164.5:
	1164.6:
	1164.7:
	1164.8:
	1164.9:
	1164.10:
	1164.11:
	1164.12:
	1164.13:
	1164.14:
	1164.15:
	1164.16:
	1164.17:
	1164.18:
	1164.19:
	1164.20:
	anm1164:
	1165.0:
	1165.1:
	1165.2:
	1165.3:
	1165.4:
	1165.5:
	1165.6:
	1165.7:
	1165.8:
	1165.9:
	anm1165:
	1166.0:
	1166.1:
	1166.2:
	1166.3:
	1166.4:
	1166.5:
	1166.6:
	1166.7:
	1166.8:
	1166.9:
	anm1166:
	1167.0:
	1167.1:
	1167.2:
	1167.3:
	1167.4:
	1167.5:
	1167.6:
	1167.7:
	1167.8:
	1167.9:
	anm1167:
	1168.0:
	1168.1:
	1168.2:
	1168.3:
	1168.4:
	1168.5:
	1168.6:
	1168.7:
	1168.8:
	1168.9:
	anm1168:
	1169.0:
	1169.1:
	1169.2:
	1169.3:
	1169.4:
	1169.5:
	1169.6:
	1169.7:
	1169.8:
	1169.9:
	1169.10:
	1169.11:
	1169.12:
	1169.13:
	1169.14:
	1169.15:
	1169.16:
	1169.17:
	1169.18:
	1169.19:
	1169.20:
	anm1169:
	1170.0:
	1170.1:
	1170.2:
	1170.3:
	1170.4:
	1170.5:
	1170.6:
	1170.7:
	1170.8:
	1170.9:
	anm1170:
	1171.0:
	1171.1:
	1171.2:
	1171.3:
	1171.4:
	1171.5:
	1171.6:
	1171.7:
	1171.8:
	1171.9:
	anm1171:
	1172.0:
	1172.1:
	1172.2:
	1172.3:
	1172.4:
	1172.5:
	1172.6:
	1172.7:
	1172.8:
	1172.9:
	anm1172:
	1173.0:
	1173.1:
	1173.2:
	1173.3:
	1173.4:
	1173.5:
	1173.6:
	1173.7:
	1173.8:
	1173.9:
	anm1173:
	1174.0:
	1174.1:
	1174.2:
	1174.3:
	1174.4:
	1174.5:
	1174.6:
	1174.7:
	1174.8:
	1174.9:
	1174.10:
	1174.11:
	1174.12:
	1174.13:
	1174.14:
	1174.15:
	1174.16:
	1174.17:
	1174.18:
	1174.19:
	1174.20:
	anm1174:
	1175.0:
	1175.1:
	1175.2:
	1175.3:
	1175.4:
	1175.5:
	1175.6:
	1175.7:
	1175.8:
	1175.9:
	anm1175:
	1176.0:
	1176.1:
	1176.2:
	1176.3:
	1176.4:
	1176.5:
	1176.6:
	1176.7:
	1176.8:
	1176.9:
	anm1176:
	1177.0:
	1177.1:
	1177.2:
	1177.3:
	1177.4:
	1177.5:
	1177.6:
	1177.7:
	1177.8:
	1177.9:
	anm1177:
	1178.0:
	1178.1:
	1178.2:
	1178.3:
	1178.4:
	1178.5:
	1178.6:
	1178.7:
	1178.8:
	1178.9:
	anm1178:
	1179.0:
	1179.1:
	1179.2:
	1179.3:
	1179.4:
	1179.5:
	1179.6:
	1179.7:
	1179.8:
	1179.9:
	1179.10:
	1179.11:
	1179.12:
	1179.13:
	1179.14:
	1179.15:
	1179.16:
	1179.17:
	1179.18:
	1179.19:
	1179.20:
	anm1179:
	1180.0:
	1180.1:
	1180.2:
	1180.3:
	1180.4:
	1180.5:
	1180.6:
	1180.7:
	1180.8:
	1180.9:
	anm1180:
	1181.0:
	1181.1:
	1181.2:
	1181.3:
	1181.4:
	1181.5:
	1181.6:
	1181.7:
	1181.8:
	1181.9:
	anm1181:
	1182.0:
	1182.1:
	1182.2:
	1182.3:
	1182.4:
	1182.5:
	1182.6:
	1182.7:
	1182.8:
	1182.9:
	anm1182:
	1183.0:
	1183.1:
	1183.2:
	1183.3:
	1183.4:
	1183.5:
	1183.6:
	1183.7:
	1183.8:
	1183.9:
	anm1183:
	1184.0:
	1184.1:
	1184.2:
	1184.3:
	1184.4:
	1184.5:
	1184.6:
	1184.7:
	1184.8:
	1184.9:
	1184.10:
	1184.11:
	1184.12:
	1184.13:
	1184.14:
	1184.15:
	1184.16:
	1184.17:
	1184.18:
	1184.19:
	1184.20:
	anm1184:
	1185.0:
	1185.1:
	1185.2:
	1185.3:
	1185.4:
	1185.5:
	1185.6:
	1185.7:
	1185.8:
	1185.9:
	anm1185:
	1186.0:
	1186.1:
	1186.2:
	1186.3:
	1186.4:
	1186.5:
	1186.6:
	1186.7:
	1186.8:
	1186.9:
	anm1186:
	1187.0:
	1187.1:
	1187.2:
	1187.3:
	1187.4:
	1187.5:
	1187.6:
	1187.7:
	1187.8:
	1187.9:
	anm1187:
	1188.0:
	1188.1:
	1188.2:
	1188.3:
	1188.4:
	1188.5:
	1188.6:
	1188.7:
	1188.8:
	1188.9:
	anm1188:
	1189.0:
	1189.1:
	1189.2:
	1189.3:
	1189.4:
	1189.5:
	1189.6:
	1189.7:
	1189.8:
	1189.9:
	1189.10:
	1189.11:
	1189.12:
	1189.13:
	1189.14:
	1189.15:
	1189.16:
	1189.17:
	1189.18:
	1189.19:
	1189.20:
	anm1189:
	1190.0:
	1190.1:
	1190.2:
	1190.3:
	1190.4:
	1190.5:
	1190.6:
	1190.7:
	1190.8:
	1190.9:
	anm1190:
	1191.0:
	1191.1:
	1191.2:
	1191.3:
	1191.4:
	1191.5:
	1191.6:
	1191.7:
	1191.8:
	1191.9:
	anm1191:
	1192.0:
	1192.1:
	1192.2:
	1192.3:
	1192.4:
	1192.5:
	1192.6:
	1192.7:
	1192.8:
	1192.9:
	anm1192:
	1193.0:
	1193.1:
	1193.2:
	1193.3:
	1193.4:
	1193.5:
	1193.6:
	1193.7:
	1193.8:
	1193.9:
	anm1193:
	1194.0:
	1194.1:
	1194.2:
	1194.3:
	1194.4:
	1194.5:
	1194.6:
	1194.7:
	1194.8:
	1194.9:
	1194.10:
	1194.11:
	1194.12:
	1194.13:
	1194.14:
	1194.15:
	1194.16:
	1194.17:
	1194.18:
	1194.19:
	1194.20:
	anm1194:
	1195.0:
	1195.1:
	1195.2:
	1195.3:
	1195.4:
	1195.5:
	1195.6:
	1195.7:
	1195.8:
	1195.9:
	anm1195:
	1196.0:
	1196.1:
	1196.2:
	1196.3:
	1196.4:
	1196.5:
	1196.6:
	1196.7:
	1196.8:
	1196.9:
	anm1196:
	1197.0:
	1197.1:
	1197.2:
	1197.3:
	1197.4:
	1197.5:
	1197.6:
	1197.7:
	1197.8:
	1197.9:
	anm1197:
	1198.0:
	1198.1:
	1198.2:
	1198.3:
	1198.4:
	1198.5:
	1198.6:
	1198.7:
	1198.8:
	1198.9:
	anm1198:
	1199.0:
	1199.1:
	1199.2:
	1199.3:
	1199.4:
	1199.5:
	1199.6:
	1199.7:
	1199.8:
	1199.9:
	1199.10:
	1199.11:
	1199.12:
	1199.13:
	1199.14:
	1199.15:
	1199.16:
	1199.17:
	1199.18:
	1199.19:
	1199.20:
	anm1199:
	1200.0:
	1200.1:
	1200.2:
	1200.3:
	1200.4:
	1200.5:
	1200.6:
	1200.7:
	1200.8:
	1200.9:
	anm1200:
	1201.0:
	1201.1:
	1201.2:
	1201.3:
	1201.4:
	1201.5:
	1201.6:
	1201.7:
	1201.8:
	1201.9:
	anm1201:
	1202.0:
	1202.1:
	1202.2:
	1202.3:
	1202.4:
	1202.5:
	1202.6:
	1202.7:
	1202.8:
	1202.9:
	anm1202:
	1203.0:
	1203.1:
	1203.2:
	1203.3:
	1203.4:
	1203.5:
	1203.6:
	1203.7:
	1203.8:
	1203.9:
	anm1203:
	1204.0:
	1204.1:
	1204.2:
	1204.3:
	1204.4:
	1204.5:
	1204.6:
	1204.7:
	1204.8:
	1204.9:
	1204.10:
	1204.11:
	1204.12:
	1204.13:
	1204.14:
	1204.15:
	1204.16:
	1204.17:
	1204.18:
	1204.19:
	1204.20:
	anm1204:
	1205.0:
	1205.1:
	1205.2:
	1205.3:
	1205.4:
	1205.5:
	1205.6:
	1205.7:
	1205.8:
	1205.9:
	anm1205:
	1206.0:
	1206.1:
	1206.2:
	1206.3:
	1206.4:
	1206.5:
	1206.6:
	1206.7:
	1206.8:
	1206.9:
	anm1206:
	1207.0:
	1207.1:
	1207.2:
	1207.3:
	1207.4:
	1207.5:
	1207.6:
	1207.7:
	1207.8:
	1207.9:
	anm1207:
	1208.0:
	1208.1:
	1208.2:
	1208.3:
	1208.4:
	1208.5:
	1208.6:
	1208.7:
	1208.8:
	1208.9:
	anm1208:
	1209.0:
	1209.1:
	1209.2:
	1209.3:
	1209.4:
	1209.5:
	1209.6:
	1209.7:
	1209.8:
	1209.9:
	1209.10:
	1209.11:
	1209.12:
	1209.13:
	1209.14:
	1209.15:
	1209.16:
	1209.17:
	1209.18:
	1209.19:
	1209.20:
	anm1209:
	1210.0:
	1210.1:
	1210.2:
	1210.3:
	1210.4:
	1210.5:
	1210.6:
	1210.7:
	1210.8:
	1210.9:
	anm1210:
	1211.0:
	1211.1:
	1211.2:
	1211.3:
	1211.4:
	1211.5:
	1211.6:
	1211.7:
	1211.8:
	1211.9:
	anm1211:
	1212.0:
	1212.1:
	1212.2:
	1212.3:
	1212.4:
	1212.5:
	1212.6:
	1212.7:
	1212.8:
	1212.9:
	anm1212:
	1213.0:
	1213.1:
	1213.2:
	1213.3:
	1213.4:
	1213.5:
	1213.6:
	1213.7:
	1213.8:
	1213.9:
	anm1213:
	1214.0:
	1214.1:
	1214.2:
	1214.3:
	1214.4:
	1214.5:
	1214.6:
	1214.7:
	1214.8:
	1214.9:
	1214.10:
	1214.11:
	1214.12:
	1214.13:
	1214.14:
	1214.15:
	1214.16:
	1214.17:
	1214.18:
	1214.19:
	1214.20:
	anm1214:
	1215.0:
	1215.1:
	1215.2:
	1215.3:
	1215.4:
	1215.5:
	1215.6:
	1215.7:
	1215.8:
	1215.9:
	anm1215:
	1216.0:
	1216.1:
	1216.2:
	1216.3:
	1216.4:
	1216.5:
	1216.6:
	1216.7:
	1216.8:
	1216.9:
	anm1216:
	1217.0:
	1217.1:
	1217.2:
	1217.3:
	1217.4:
	1217.5:
	1217.6:
	1217.7:
	1217.8:
	1217.9:
	anm1217:
	1218.0:
	1218.1:
	1218.2:
	1218.3:
	1218.4:
	1218.5:
	1218.6:
	1218.7:
	1218.8:
	1218.9:
	anm1218:
	1219.0:
	1219.1:
	1219.2:
	1219.3:
	1219.4:
	1219.5:
	1219.6:
	1219.7:
	1219.8:
	1219.9:
	1219.10:
	1219.11:
	1219.12:
	1219.13:
	1219.14:
	1219.15:
	1219.16:
	1219.17:
	1219.18:
	1219.19:
	1219.20:
	anm1219:
	1220.0:
	1220.1:
	1220.2:
	1220.3:
	1220.4:
	1220.5:
	1220.6:
	1220.7:
	1220.8:
	1220.9:
	anm1220:
	1221.0:
	1221.1:
	1221.2:
	1221.3:
	1221.4:
	1221.5:
	1221.6:
	1221.7:
	1221.8:
	1221.9:
	anm1221:
	1222.0:
	1222.1:
	1222.2:
	1222.3:
	1222.4:
	1222.5:
	1222.6:
	1222.7:
	1222.8:
	1222.9:
	anm1222:
	1223.0:
	1223.1:
	1223.2:
	1223.3:
	1223.4:
	1223.5:
	1223.6:
	1223.7:
	1223.8:
	1223.9:
	anm1223:
	1224.0:
	1224.1:
	1224.2:
	1224.3:
	1224.4:
	1224.5:
	1224.6:
	1224.7:
	1224.8:
	1224.9:
	1224.10:
	1224.11:
	1224.12:
	1224.13:
	1224.14:
	1224.15:
	1224.16:
	1224.17:
	1224.18:
	1224.19:
	1224.20:
	anm1224:
	1225.0:
	1225.1:
	1225.2:
	1225.3:
	1225.4:
	1225.5:
	1225.6:
	1225.7:
	1225.8:
	1225.9:
	anm1225:
	1226.0:
	1226.1:
	1226.2:
	1226.3:
	1226.4:
	1226.5:
	1226.6:
	1226.7:
	1226.8:
	1226.9:
	anm1226:
	1227.0:
	1227.1:
	1227.2:
	1227.3:
	1227.4:
	1227.5:
	1227.6:
	1227.7:
	1227.8:
	1227.9:
	anm1227:
	1228.0:
	1228.1:
	1228.2:
	1228.3:
	1228.4:
	1228.5:
	1228.6:
	1228.7:
	1228.8:
	1228.9:
	anm1228:
	1229.0:
	1229.1:
	1229.2:
	1229.3:
	1229.4:
	1229.5:
	1229.6:
	1229.7:
	1229.8:
	1229.9:
	1229.10:
	1229.11:
	1229.12:
	1229.13:
	1229.14:
	1229.15:
	1229.16:
	1229.17:
	1229.18:
	1229.19:
	1229.20:
	anm1229:

