
Markus Hobisch, BSc

Migration of a Jira add-on with regard to
security and compatibility aspects

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Software Development and Business

Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Co-Supervisor

Dipl-Ing. Annemarie Harzl, BSc

Institute for Software Technology

Graz, August 2017

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master‘s thesis dissertation.

Date Signature

iv

Abstract

This thesis deals with the theoretical and practical resolution of legacy
code in software projects. For this reason, different approaches on how to
modernize software are outlined and discussed.

Legacy code leads to unavoidable problems in the entire software industry
due to the fact that it is mostly based on outdated technologies and infras-
tructures. This typically leads to higher costs in the future because systems
which contain legacy code must be continuously maintained.
The source code is often badly structured and makes use of outdated pro-
gramming languages, which do not support modern software constructs
and features such as an integration and linking to an online cloud service.
Especially the financial sector uses many computer programs based on
legacy code. These computer programs still run on mainframe computers
and are wide-spread. The mainframe computers are used because they are
still working, despite of increasing maintenance costs. Modernizing the
systems to new PC architectures like the x86 architecture are rare because
of the high effort linked with the upgrade of an existing system. However,
as mainframe computers cannot be maintained indefinitely, rising mainte-
nance costs will soon force companies to watch out for new approaches and
solutions to these problems.

The outlined approaches in this thesis show how to deal with legacy code
theoretically. The various possibilities of modernization are examined and
described. We also investigate the costs of using legacy code. Several factors
are analysed which could lead to higher maintenance costs.

The practical part describes the modernization of an existing program,
specifically the migration of a Jira add-on to the current major Jira version
7. The migration approach was chosen due to higher efficiency and time

vi

saving reasons. During the thesis, also different migration strategies are
explained and occurring problems are analysed and discussed. As a result
of the migration process, the timesheet add-on can now be used for other
projects due to its compatibility with the newest Jira version.

Keywords
timesheet, Jira, add-on, modernization, legacy code, migration

vii

Kurzfassung

In dieser Masterarbeit geht es um die theoretische wie praktische Be-
handlung von Legacy Code in Softwareprojekten. Es werden verschiedene
Ansätze der Modernisierung von Softwaresystemen vorgestellt und disku-
tiert.

Legacy Code führt zwangsläufig zu Problemen in der gesamten Softwarein-
dustrie, weil es meist auf veralteten Technologien und Infrastrukturen
basiert. Das führt in der Regel zu höheren zukünftigen Kosten, weil Soft-
waresysteme, welche Legacy Code beinhalten, laufend gewartet werden
müssen. Der Sourcecode ist oftmals schlecht strukturiert und zumeist wer-
den veraltete Programmiersprachen verwendet, welche moderne Konstrukte
und Features wie z.B. Cloud-Anbindung nicht unterstützen. Besonders in
der Finanzindustrie sind veraltete Computerprogramme häufig anzutreffen.
Softwareapplikationen, welche Legacy Code beinhalten, werden noch im-
mer aus Kostengründen eingesetzt. Diese Abhängigkeit führt jedoch zu
teilweisen hohen und zeitlich tendenziell steigenden Wartungskosten.

Modernisierungen auf neuere PC-Architekturen wie die x86-Architektur
sind rar und werden aufgrund des mit der Umstellung verbundenen hohen
Aufwands oftmals nicht durchgeführt. Da Mainframes jedoch nicht ewig
eingesetzt werden können, suchen Unternehmen nach neuen Lösungen, um
das Problem zu lösen.

Die hier vorgestellten Ansätze beschreiben zunächst theoretisch, wie man
am besten mit Legacy Code umgeht. Ebenso werden die, durch veraltete
Computerprogramme entstehenden Kosten, erörtert und die entscheiden-
den Faktoren, welche zu den höheren Wartungskosten führen, eruiert und
analysiert.

viii

Der praktische Teil beschreibt die Modernisierung eines bestehenden Pro-
gramms, der Fokus lag speziell bei der Migration eines Jira Add-ons auf die
aktuelle Jira-Version 7. Wir entschieden uns aufgrund höherer Effizienz und
schnellerer Durchführbarkeit für den Migrationsansatz. Im Zuge der Ar-
beit werden verschiedene Migrationsstrategien vorgestellt und aufgetretene
Probleme analysiert und diskutiert.

Als Resultat des Migrationsprozesses kann das Add-on in weiteren Pro-
jekten verwendet werden, weil es nun mit der aktuellen Jira Version 7

kompatibel ist.

Schlagwörter: Jira, Add-on, Modernisierung, Legacy Code, Timesheet, Mi-
gration

ix

Acknowledgements

First, I would like to express my gratitude to my supervisors, Annemarie
Harzl and Wolfang Slany, for their excellent support and assistance during
the entire process of working on this thesis.

I would also like to thank my fellow students (Christof, David and Philipp,
Florian and Berni). It was a great collaboration and we had a lot of fun
together.

Especially I would like to thank my parents who have always supported me
over the years and without whom I would not be able to stand here where I
am today. But I also want to thank my closest friends and my roommate
Florian who always had an open ear when I needed some help.

Thank all of you so much!

Graz, August 2017

x

Contents

Abstract vi

1 Introduction 2
1.1 Glossary . 4

1.2 Motivation . 7

2 Legacy Information Systems 10
2.1 Definition and General Idea . 10

2.2 Modernization Strategies . 12

2.2.1 Redevelopment . 14

2.2.2 Wrapping . 17

2.2.3 Migration . 20

3 Dealing with LIS in the business world 32
3.1 Maintenance Costs . 33

3.2 Talent Costs . 33

3.3 Mainframes are still popular 33

3.4 Facts and Figures of Maintenance Cost in Software Projects . 36

4 Strategies on how to successfully deal with LIS 38
4.1 Technical Debt Management . 38

4.2 Code Smell Avoidance . 41

4.3 Design Pattern . 42

4.4 Software Design Principles . 42

4.5 Google Closure Templates . 46

4.6 Active Objects . 46

5 Feature Specification 48
5.1 Overview of the Existing Implementation 48

xii

Contents

5.2 The Catrobat Organization . 53

5.2.1 Catrobat - Jira . 54

5.2.2 Catrobat - Confluence 55

5.2.3 Pocket Code . 55

5.3 Requirements . 57

5.3.1 General Requirements 58

5.3.2 GUI Requirements . 61

5.3.3 Security Requirements 63

5.3.4 Compatibility Requirements 66

5.3.5 Migration Requirements 66

5.3.6 Performance and Stability Requirements 67

5.4 Demarcation and Self-Implementation 68

6 Implementation 70
6.1 Migration of the Jira Timesheet Add-on 70

6.1.1 Analysis of the chosen strategy and comparison with
other migration strategies 70

6.1.2 Decision Making . 71

6.2 Realization & Implementation 74

6.2.1 Researching . 74

6.2.2 Preparation . 74

6.2.3 Migration Process . 74

6.2.4 Additional Problems . 77

6.2.5 Security Vulnerabilities 77

6.2.6 Compatibility, Stability and Performance 80

6.2.7 Improvements . 81

6.3 Software Testing . 85

6.3.1 Test Environment . 86

6.3.2 Test Framework . 86

6.3.3 Additional Software Testing Group 86

6.3.4 Updating Jira Software Server & Backups 87

6.4 Results . 87

7 Summary and Future Work 88
7.1 Summary . 88

7.2 Future Work . 89

xiii

Contents

Bibliography 96

xiv

List of Figures

2.1 General Idea of a Legacy Platform (Makki, 2006) 11

2.2 The impact on the system according to the chosen strategy
(Bisbal, Lawless, Wu, and Grimson, 1999) 13

2.3 Different types of problems when it comes to migrating sys-
tems (Bisbal, Lawless, Wu, and Grimson, 1999) 21

2.4 Database First Strategy (Tripathy and Naik, 2014b) 26

2.5 Database Last Strategy (Tripathy and Naik, 2014b) 27

2.6 The Butterfly Methodology . 30

3.1 Share of Maintenance Costs in Large Organisations adapted
from (Boehm, 1981; Mukhija, 2003) 37

3.2 Maintenance and Development Costs in 487 Business Organ-
isations (Boehm, 1981; Mukhija, 2003) 37

4.1 MVC pattern implemented on a practical example 44

5.1 Timesheet Form . 50

5.2 Visualization of the timesheet data 51

5.3 Summary of hours worked . 52

5.4 Kanban board used by Catrobat team members 54

5.5 Android Application Pocket Code 56

5.6 State Diagram . 59

6.1 Inactive category is selected . 82

6.2 Pair Programming category is selected 84

xvi

List of Tables

2.1 Comparison of Modernization Techniques; 1:1 cited from
Comella-Dorda et al. (Comella-Dorda et al., 2000) 19

3.1 Amount of time developers and system analysts need for the
individual items related to maintenance in the US (Adapted
from (UECD, 2010)). 36

5.1 General Requirements . 60

5.2 Graphical Requirements Part One 62

5.3 Graphical Requirements Part Two 63

5.4 Security Requirements . 65

5.5 Compatibility Requirements . 66

5.6 Migration Requirements . 67

5.7 Performance and Stability Requirements 68

6.1 Pros and Cons of the Chicken Little Approach 73

6.2 Most common States of the HTTP Protocol (W3, 2017) 78

6.3 Permissions a user can have . 79

7.1 Future Requirements . 90

xviii

1 Introduction

Many companies still use outdated technologies, e.g. old programming
languages. Many of these are no longer supported, are regarded as com-
pletely obsolete or are replaced by newer technologies. New technologies are
easier to extend and save developers a lot of time and headaches. However,
many companies still use outdated technologies because they often have
no other choice. A complete new development is often far too expensive
and involves a high risk of a total failure. Old knowledge about the soft-
ware architecture can often no longer be reconstructed and is lost forever.
Programmers from the past are now retired and therefore are no longer
available to companies. Therefore, many companies are opting for a suitable
modernization strategy. These strategies help companies to modernize their
existing implementations. Various types of modernization are available and
can be used depending on the application scenario. Each strategy brings
its advantages and disadvantages and must be carefully thought through.
Some of them are more risky than others depending on how much source
code can be copied from the existing system and how much code has to be
written anew. To develop a new system from scratch is always very risky
and the code has to be thoroughly tested before it works as it should do.

In this thesis we deal with the following questions:

• What is a Legacy Information System?
• What types of modernization do exist?
• What types of migration do exist and which risks could arise in such

software systems?
• What costs can arise for businesses when they keep using outdated

systems, in particular outdated code?
• How to deal with legacy code and how to avoid it?

2

In the practical part, we describe the migration process of a Jira add-on,
developed by Adrian Schnedlitz (Schnedlitz, 2016), from Jira version 6 to the
current version 7. We describe the type of migration which was used and
what problems occurred. Several types of migration were compared and the
most suitable one selected. Furthermore, we will discuss security issues and
how these can be minimized. Questions about compatibility, stability and
performance are also illustrated and answered.

In Chapter 2, we examine the question of what is meant by modernization
and what types of modernization exist. The risks of modernization strategies
are explained. The main focus is on the migration of legacy code. Migration
techniques such as Database First, Database Last or Butterfly Methodology
are explained in detail.

Chapter 5 discusses the requirements for the Jira add-on. In essence, this is
about the migration of the add-on. But other requirements such as perfor-
mance, security, stability, maintainability also play an important role. Finally,
brief reasons are given, why it was originally important to implement this
add-on.

Chapter 3 answers the question of how to deal with existing legacy in-
formation systems. Here, an insight into the business world is given and it
is explained how banks and insurance companies deal with LIS. The various
types of costs incurred by maintaining the systems are listed.

Chapter 4 explores the concept of technical debt and illustrates how this
concept can help companies to reduce costs. Furthermore, strategies are
presented that lead to better code quality which help developers better in
dealing with LIS.

Chapter 6 is all about the implementation. Here information about the
concrete implementation of the migration process is given. Further aspects
such as safety aspects or compatibility are discussed.

Chapter 7 summarizes the essentials and gives a brief outlook on future
possibilities of extending the plug-in.

3

1 Introduction

1.1 Glossary

Application Programming Interfaces (API)
An API is an external interface that allows other computer programs to

exchange data. An API usually consists of protocols, routines, functions
and/or commands (Technopedia, 2017b).

Asynchronous JavaScript and XML (AJAX)
With AJAX interactive web applications can be created that behave very

similar to desktop applications. It is a client-side web technology and the
transfer of data is asynchronous (Technopedia, 2017c).

Atlassian Plugin Software Developer Kit (APSDK)
APSDK is a development kit which is used by developers to create new

add-ons for the Jira platform1.

Catrobat
Catrobat is the organisation where the Pocket Code application is devel-

oped. Wolfgang Slany is the founder of it and the head of the Institute for
Software Technology (IST) at Graz University of Technology.

Comma Separated Values (CSV)
CSV is a data format were data is separated by comma. It is very useful

for exchanging data between applications (Webopedia, 2017).

Confluence
Confluence is a knowledge management system where information about

the project can be easily shared. Blog posts can be created and shared with
the team. All Atlassian products work together. Thus, there is a smooth
transition between Jira and Confluence. In Confluence you can access all of
your Jira tickets and include them in your blog posts. These two products

1https://developer.atlassian.com/docs/getting-started (accessed 2017-04-07)

4

https://developer.atlassian.com/docs/getting-started

1.1 Glossary

are also used in our Catrobat team and support the students in their work
(Confluence, 2017).

Extensible Markup Language (XML)
XML is a simple text format that can be read by people. It is extensively

used for the permanent storage of information and the exchange of data
between computers.

Fourth Generation (Programming) Language (4GL)
A group of programming languages that provides more programmer-

friendly instructions and improve the overall efficiency through the usage of
graphical interfaces and symbolical representations (Technopedia, 2017d).

Git
Git is an open source version control tool which helps to manage code in

a easy way (Git, 2017).

Github
Github is a plattform where developers can share their code. Other devel-

opers can contribute to the project2.

Graphical User Interface (GUI)
A GUI is a graphical representation of a computer program and helps user

to facilitate the handling of those programs. The opposite are commandline
tools.

HyperText Transfer Protocol Secure (HTTPS)
HTTPS is a protocol that ensures secure sharing of data across the world

wide web. The secure socket layer (SSL) protocol or the transport layer
security (TLS) is used as an encryption protocol (Technopedia, 2017e).

2https://github.com/ (accessed 2017-06-17)

5

https://github.com/

1 Introduction

JavaScript (JS)
JavaScript is a client-side scripting language used to display dynamic

content in web browsers.

Jira
Jira is an issue and project tracking tool which helps developer teams

to improve their collaboration. In Jira, tickets can be created and tracked
trough the whole development process. Bugs can be reported and enriched
with important comments. This makes the work of the developers easier.
Several developers can work together to complete a task3.

Legacy Code (LC)
LC is a source code which is only patched but no longer supported. LC

does not have to be necessarily outdated source code, even if it is often the
case. Through the use of many patches, the code becomes more and more
unmaintainable (Technopedia, 2017f).

Legacy Information Systems (LIS)
LIS are outdated computer systems that use outdated technologies such as

outdated programming languages. LIS can not be modernized so easily and
are therefore still used in companies (Technopedia, 2017g). In this master
thesis we use the term LIS in the singular form as well as in the plural
form.

Project Object Model (POM)
The POM file is an integral part of the Maven framework. Here depen-

dency conditions are defined, and further project-specific adjustments are
made 4.

3https://www.atlassian.com/software/jira (accessed 2017-06-17)
4https://maven.apache.org/pom.html (accessed 2017-05-09)

6

https://www.atlassian.com/software/jira
https://maven.apache.org/pom.html

1.2 Motivation

Remote Procedure Call (RPC)
RPC is an interprocess communication technology and is used in server

client architectures. The client sends a request to the server. The server
processes the request and returns a response. The client continues his work
(Technopedia, 2017a).

Uniform Resource Locator (URL)
URL is an address where a particular resource can be found in the World

Wide Web (Technopedia, 2017h).

Velocity
Velocity is a template language and supports the MVC (Model View

Controller) pattern. It runs on a Java-based templated engine. With Velocity
templates can be created and afterwards filled with data through Java
objects. It separates Java code from web pages and is an alternative to JSP
(Java Server Pages) and PHP (Apache, 2017).

1.2 Motivation

The main focus of this master thesis is the migration of the existing Jira
add-on Timesheet to the current Jira version 7. The Timesheet add-on was
developed by Adrian Schnedlitz (Schnedlitz, 2016) for version 6. This ver-
sion is no longer compatible with the current version and so the add-on
had to be adapted. Since our Jira server was updated, it was also necessary
to update the add-on to the latest version. Otherwise, the add-on could no
longer be used.

The timesheet add-on is used in the Catrobat project. The big advantage
of this add-on is that it perfectly fits our needs. Users can make timesheet
entries and link them with a suitable category. A category could be “pair
programming”, “meeting” or “developing”. With these categories, coordina-
tors can see how much time users spend on specified activities. If a category
is never used by a user or team, the team coordinator can encourage the

7

1 Introduction

user/team to use them more actively. If the “pair programming” category
is selected the user has the choice to pick up his team partner from the
user list and add him to the timesheet entry. So it is clear who did pair
programming together.

Furthermore, the data can be visualized through diagrams. Here an overview
about one’s performance in hours over the time is given. The user can see
when he/she was more productive and when he/she did not spend a lot
of time on the project. The visualization can also be applied to a team. In a
second diagram the team performance is shown. Thus, the team coordinator
can see how successfully his team performs.

In the administrator area, timesheet admins have a lot of preferences which
they can adjust. They can add or delete new categories, assign team mem-
bers to teams or decide when team members should be set automatically to
inactive or inactive/offline. If a user is set to inactive or inactive/offline he
receives an email that informs him that he was set to inactive because he
did not make a timesheet entry for a longer period of time. The period of
time can be specified by the timesheet administrator. If the user still remains
inactive, he will receive more emails which prompt the user to become
active again. This should help students to get motivated and move on with
their work.

Finally, students are able to export their timesheet as CSV and JSON format
and reimport them later again. If there is a loss of data one day, the stu-
dent’s timesheet data are safe. Students can also import their timesheet data
from Google sheets. This is necessary because the students used the Google
tables for their timesheets in the past and are now forced to use only our
timesheets anymore.

To use our timesheet in next few years as well, it was necessary to up-
date our Jira add-on version from 6 to 7 because the major version of the Jira
platform also changed. Therefore, considerations were done to decide how
to best deal with it. We decided to choose the migration strategy because it
was the easiest way and moreover a lot of time could be saved. Otherwise
the add-on would have had to be newly developed, which would destroy
all the hard work that was already investigated by Schnedlitz.

8

1.2 Motivation

In the course of the adjustment, several improvements were made. The
timesheet add-on is now compatible with the most used browsers and can
be also used on smartphones or tablets. The security was improved, so
that the manipulation of data can be excluded. The administration area
is safe now, so that unauthorized persons have no access anymore. The
performance could be increased, so that the timesheet loads significantly
faster.

All in all it is a useful add-on which fulfills all our requirements. Stu-
dents have a powerful timesheet add-on which helps them to have a better
overview about their personal performance, but also over the whole team
performance. Moreover, maybe it can help to increase student’s motivation.

Finally, it should be pointed out that the original add-on contained legacy
code which was successfully removed during the migration process. Other-
wise, the add-on could no longer be used on modern Jira platforms.

9

2 Legacy Information Systems

2.1 Definition and General Idea

It is not possible to give a universally valid answer to what exactly a legacy
information system (LIS) is. Keith Bennet from University of Durham tried
to specify it. In his opinion, legacy information systems (LIS) are defined
as “large software systems that we don’t know how to cope with, but that
are vital to our organization.” (K. Bennett, 1995). A LIS is typically a 10 or
more years old system which runs on obsolete hardware. The software is
mostly based on an old standard, so the integration with newer systems is
often a huge problem (X. Li, 2010). It connects system files and interfaces as
Figure 2.1 shows. The lack of documentation and old standards could lead
to misunderstanding of the fundamental system, so it is often difficult for
programmers to maintain the software (Bisbal, Lawless, Wu, and Grimson,
1999). Organizations have to weigh whether they change the existing old
system to a newer one or to stay with the existing one (Tripathy and Naik,
2014a). There are many possibilities to deal with such systems which will
be shortly mentioned. An overview of common migration strategies is given
in (K. H. Bennett, Ramage, and Munro, 1999; Cimitile, Muller, and (eds.),
1997):

• Freeze: The system will be frozen because it will not be used anymore
or it will be replaced by a newer system.

• Outsource: The system will be outsourced to another company because
it is better to hand the software to a third party than continue to
develop. One reason for this decision is that the other company could
be more specialized in this field.

• Carry on maintenance: The Company shifts the task to a later time.
All problems continue to exist.

10

2.1 Definition and General Idea

• Discard and redevelop: The LIS will be scrapped, instead a new power-
ful and modern system will be developed. New technologies, hardware
and software platforms, databases and tools will be used. The new
system is up to date.

• Wrap: The LIS system will be wrapped with a new system because
this system better fits the user’s requirements. The old system still
exists and keeps the logic of the system, but is enhanced by a new
software layer which hides the complexity of the system. The new
layer could be a new graphical interface.

• Migrate: The LIS will be moved to a new environment. The system
has to be refactored, but the functionality will be the same. Migrating
software can be a very time consuming and complex process.

The migration of a LIS is a very complex and difficult process. In the worst
case, this can lead to the destruction of the whole system. The problems are
in the understanding of the target system and how the migration process
can be put into practice (Souiou and Bounour, 2013). There are several
influencing factors such as decomposability, budget or technical and time
constraints (Colosimo et al., 2009). To avoid such kind of situations, strategies
have to be found to deal with these problems. Modernization strategies are
one such approach.

Figure 2.1: General Idea of a Legacy Platform (Makki, 2006)

11

2 Legacy Information Systems

2.2 Modernization Strategies

There are different definitions in literature about what exactly software
modernization is. For some of them, redevelopment and migration are
modernization techniques for others only migration is. When we use the
term software modernization, we mean migration as well as wrapping or
other reengineering techniques. Generally there exist three main categories.
The most common modernization strategies are (Souiou and Bounour,
2013):

• Redevelopment (Comella-Dorda et al., 2000; Littlejohn, DelPrincipe,
and Preston, 2000)

• Wrapping (Comella-Dorda et al., 2000)
• Migration (Zapata et al., 2015; Menychtas, Santzaridou, et al., 2013;

Menychtas, Konstanteli, et al., 2014)

Each strategy has effects on the system. The effects range from slight changes
like Wrapping to the completely new development which can lead to major
changes and risks as shown in Figure 2.2. All three different strategies will
now be discussed.

12

2.2 Modernization Strategies

Figure 2.2: The impact on the system according to the chosen strategy (Bisbal, Lawless, Wu,
and Grimson, 1999)

13

2 Legacy Information Systems

2.2.1 Redevelopment

When we speak about redevelopment we typically mean the reimplemen-
tation of an existing system. All the existing code is thrown away and
reimplemented from scratch. Typically we use a new software or hardware
platform for redevelopment because technology has changed and the old
environment may not be used anymore. New tools, modern architectures
and databases replace old ones (Bisbal, Lawless, Wu, and Grimson, 1999).

Before we can reimplement the old system, we have to analyze it’s functions
and requirements to derive the requirements the new system has to possess.
Necessary documents are rare and make the process more difficult (X. Li,
2010). It should also be checked if the existing system can be migrated or
wrapped because it is less expensive and minimizes the risk of failure (Bis-
bal, Lawless, Wu, and Grimson, 1999; Littlejohn, DelPrincipe, and Preston,
2000). Technology and business requirements can change very quickly over
time and at the end the software does not fulfil the requirements any more.
Therefore it could be very risky to reimplement the whole system from
scratch (Bisbal, Lawless, Wu, and Grimson, 1999).

If developers decide to develop a new system, there are many obstacles that
have to be overcome. K. Littlejohn mentions some key factors which influ-
ence the progress of redevelopment (Littlejohn, DelPrincipe, and Preston,
2000):

• Outdated Methods: LIS are typically based on hierarchical platforms
which were originally developed for uniprocessor platforms. In con-
trast to modern object-oriented languages, LIS are often based on
functional implementations with centralized data pools.

• Lack of Modern Integrated Analysis Capability: In LIS environments,
there is the possibility of symbol and dependency tracking. Generally
the problem is that there are several tools which do not work together
properly and it is often cumbersome to use them. Therefore, the
recognition of design changes is tedious and difficult which has an
impact on the motivation when an existing system structure should
be updated.

14

2.2 Modernization Strategies

• Platform Coupling: Device drivers are software components which
control the communication between the kernel of the operating system
and the hardware. They convert requests from high-level software to
low-lowel software in form of a series of input/output (I/O) opera-
tions. A device driver defines an interface to the kernel and allows
high-level applications to communicate with low-level devices. Com-
ponents like OS, bus protocols, system management and network pro-
gramming are different depending on the underlying system. When
for instance source code from the device driver should be migrated
to another target platform, this is not an easy venture. Platform speci-
fications like I/O offsets, interrupt connections or bus clock must be
considered (Chen et al., 2014). So there is often no separation between
the application and the underlying operating system. Legacy code
often contains source code which controls the peripherals. Such as
timing constraints there are many other constraints that have to be
customized to the underlying system. Thus performance as well as
the computation accuracy can be improved (Littlejohn, DelPrincipe,
and Preston, 2000).

• Structural “Degradation”: Through the maintenance lifetime of a LIS
many changes are made to the original software design. That includes
extensions and local modifications which could lead to obscure and
complex system architecture. The original design idea is not valid
anymore.

• Resource Constraints: Resources like memory, computation and I/O
operations are limited. As a result many structural and performance
challenges have to be handled.

• Commercial off-the-shelf (COTS) Exploitation: In the past, the defence
industry developed their own hardware and software systems. The
self-developed components had a durability of 15 to 20 years (Kent
and Dewey, 2016) but the development was very expensive. Nowadays,
standardized products which are available on the market are preferred
because costs can be reduced. The disadvantage is that commercial
products typically have a refresh cycle of 2 years, which is too short
for the military purpose (Kent and Dewey, 2016).

• Available Knowledge and Experience Base: When developers decide
to reimplement a system, a lot of information about the previous
system is needed. Often the information is not available anymore

15

2 Legacy Information Systems

because the experts are no longer available. The lack of documentation
could make a redevelopment difficult and expensive.

Sneed (2001) described further obstacles. He sketched a scenario where
information was already collected. The information was made available to
the programmers and could have been very helpful when it came to a new
development of an existing system. Sneed found out that it depended on
the programmers how carefully the newly generated information was used.
In his study he came to the conclusion that programmers who were familiar
with the existing system, tended to reject the extracted information, while
developers who had no background knowledge were more open to it. He
explain his insights with the fact that system-experienced programmers
reconstruct information out of their heads instead of listening to someone
else. Furthermore, he underlines his statement with three points:

• “first, they tend to overestimate their own knowledge of the business
logic,

• secondly, they confuse the current solution with the business problem
to be solved,

• thirdly, they believe that their existing solution is optimal whereas in
reality it is usually dependent on the environment they have imple-
mented it in.”(Sneed, 2001)

His final conclusion is that developers who maintained the LIS over years
are not the most suitable candidates for the reengineering process because
they are closed for new information. He recommends reimplementing the
LIS in a new environment with new programmers who are not familiar
with the code base. They are more willing to use knowledge extraction tools
and regenerate new knowledge from existing sources (Sneed, 2001).

16

2.2 Modernization Strategies

2.2.2 Wrapping

Wrapping describes the process of providing a LIS with an additional wrap-
ping layer. The LIS can commuincate with the wrapper over sockets, Remote
Procedure Calls (RPC) or Application Programming Interfaces (API). The
wrapper typically provides an object-based interface across which an exisit-
ing system can communicate with the unchanged LIS and hides interface
screens, APIs, communications adapters, files, and databases. The advantage
is that LIS are embedded into new environments and can be reused as a
new component of the system. They can be extended and are longer in use.
(Goyla, 2000).

There exist different kinds of wrappers (Tripathy and Naik, 2014b):

• Database wrappers
• System service wrappers
• Application wrappers
• Function wrappers

From the view of the LIS, there is no difference between the new wrapped
system and the original state, but from the perspective of the end user
the new system looks modern and more user-friendly than the old one
(Comella-Dorda et al., 2000). To illustrate the concept, an example will be
used. The screen scraping is a wrapping technique where an existing system
is wrapped with a new GUI. In earlier versions the output was shown on
text-based screens like terminals but is now migrated to a new graphical
interface. Although the functionality of that system is the same, the user
experience is more pleasant. However, the problems of the LIS still remain
and aggravate the general issues. It is more difficult to maintain such a
system (Comella-Dorda et al., 2000). Developers can reuse existing well
performing code to reduce the costs. The maintenance costs will increase
because the issues addressed to LIS still exist and the problems that occured
by maintaining a LIS will be only postponed to the future (Bisbal, Lawless,
Wu, and Grimson, 1999).

Screen scraping is only one of the modernization techniques. For the sake
of completeness, an overview of all common techniques will be given. The

17

2 Legacy Information Systems

following Table 2.1 was retrieved from Comella-Dorda et al. (Comella-Dorda
et al., 2000):

18

2.2 Modernization Strategies

Artifact
Modern-
ized

Target Strengths Weaknesses

Screen
Scraping

Text-based
user
interface

Graphical
or
web-based
user
interface

• Cost
• Time to

market
• Internet

support

• Flexibility
• Limited

impact on
maintainabil-
ity

Database
Gateway

Proprietary
access
protocol

Standard
access
protocol

• Cost
• Tool support

• Limited
impact on
maintainabil-
ity

XML Inte-
gration

Proprietary
access
protocol

XML
server

• Flexibility
• Tool support

(future)
• B2B

• Tool support
(present)

• Evolving
technology

CGI
(Common
Gateway
Interface)

Mainframe
Data or
TM
services

HTML
pages

• Cost
• Internet

support

• Flexibility
• Applicability

OO
Wrapping

Any
Enterprise
Resource

OO Model
• Flexibility
• Easier under-

standing
• Cost

Component
Wrapping

Any
Enterprise
Resource

Component
Model

• Flexibility
• Integrated

services
• Incremen.

replacement

• Cost

Table 2.1: Comparison of Modernization Techniques; 1:1 cited from Comella-Dorda et al.
(Comella-Dorda et al., 2000) 19

2 Legacy Information Systems

2.2.3 Migration

In this Chapter we will discuss the issues and challenges of the migration
of LIS and known strategies for minimizing these problems.

When we talk about migration and migration processes, we typically mean
that we want to move an existing mostly old system to a new modern
platform. The existing logic of the software will still be in use. The software
itself is adapted to the new target system. The correctness and behavior of
the system will be checked through testing. Figure 2.3 shows an overview
of migration issues. Some of them are more researched than others. For
instance, target system development, testing and database model selection
are very well researched as they are very often used in software projects.
On the other hand, target system database population and cut-over are less
explored, since they are less often used in practice (Bisbal, Lawless, Wu, and
Grimson, 1999).

20

2.2 Modernization Strategies

Figure 2.3: Different types of problems when it comes to migrating systems (Bisbal, Lawless,
Wu, and Grimson, 1999)

21

2 Legacy Information Systems

LIS migration issues and challenges

Sarrab, Elbasir, and Elgamel (2013) mentioned that migration problems
can be basically divided into two classes. On the one hand, into technical
problems and on the other hand into non-technical problems.

The technical issues are (Sarrab, Elbasir, and Elgamel, 2013):

• Performance
• Technical Infrastructure
• Usability
• Integrity
• Support Availability
• Security
• Information Flow Control
• Data Migration
• Flexibility and Ease of Use
• Management and Maintenance of Open Source Software (OSS)

The non-technical issues are (Sarrab, Elbasir, and Elgamel, 2013):

• Organisational Culture
• Human Factors – Staff Skills
• Legal Issues

22

2.2 Modernization Strategies

Migration Methods

Cold Turkey/Big Bang
The Cold Turkey strategy (Brodie and Stonebraker, 1995) is also called Big

Bang strategy. In this case the LIS is thrown away and is replaced by a newly
developed system. It has the advantage that it uses modern techniques such
as new platforms, tools, databases and software architectures (Tripathy and
Naik, 2014b). Additionally new programming languages, so-called 4GLs,
replace older ones (Brodie, Stonebraker, and Ai, 1993). But redevelopment
also increases the risk of failure because of the complexity of the old legacy
system (Tripathy and Naik, 2014b). M. Brodie and M. Stonebraker discussed
several reasons which can be regarded as barriers to a new development
(Brodie, Stonebraker, and Ai, 1993):

• A better system must be promised
• Business conditions never stand still
• Specifications rarely exist
• Undocumented dependencies frequently exist
• LIS can be too big to cut-over
• Management of large projects is hard
• Lateness is seldom tolerated
• Large projects tend to bloat

Finally, it should be said that the Cold Turkey / Big Bang involves high risk
and should be avoided in large organsisations. Michael Brodie mentions
many points, but one should be emphasized (Brodie, Stonebraker, and Ai,
1993):

“A better system must be promised”

Management will not invest money into a new system, only to have less
maintenance costs in the future. The system must provide additional re-
quirements that fulfil the management expectations. But this increases the
complexity and the risk of a total failure (Brodie, Stonebraker, and Ai, 1993).
It should also be mentioned that it can be very risky to assume that the new
system will run very smoothly from the beginning, because this is often not
the case (Bisbal, Lawless, Wu, and Grimson, 1999).

23

2 Legacy Information Systems

Chicken Little
In contrast to the Cold Turkey approach, the Chicken Little method mi-

grates the old LIS in small steps to the target system (Brodie, Stonebraker,
and Ai, 1993). The LIS is built on the new target system with modern tools
and technology (Bianchi et al., 2003). The advantage is that if one migration
steps fails, only that step has to be repeated and not all of the previous ones.
The entire migration process will not be affected by this.

According to Michael Brodie and Michael Stonebraker the Chicken Lit-
tle strategy consists of the following 11 steps (Brodie and Stonebraker,
1995):

1. Analyse the LIS.
2. Decompose the LIS structure.
3. Design the target interface.
4. Design the target application.
5. Design the target database.
6. Install the target environment.
7. Create and install necessary gateways.
8. Migrate the legacy database.
9. Migrate the legacy applications.

10. Migrate the legacy interfaces.
11. Cut over to the target information system.

While the risk of failure is minimized, the complexity is increased. Moreover,
if you want to migrate LIS which consists of unstructured and monolithic
program code, it could be very hard to slice it into small pieces (Bisbal, Law-
less, Wu, and Grimson, 1999). Compared with the Cold Turkey strategy it is
more likely that the migration process will be a success (Brodie, Stonebraker,
and Ai, 1993).

24

2.2 Modernization Strategies

Database First / Forward Migration Method
The Database First method (Bateman and Murphy, 1994) is also called

forward migration method (Brodie, Stonebraker, and Ai, 1993). First the
database of the existing LIS will be migrated to the new target system such
as a Database Management System (DBMS), and then the applications and
user interfaces are integrated. For this approach a forward gateway must be
created, otherwise the existing LIS applications will not be able to access the
new database as shown in Figure 2.4. While the LIS is able to communicate
with the new target system, applications and interfaces have to be adapted
or redeveloped (Tripathy and Naik, 2014b; Bisbal, Lawless, Wu, Grimson,
et al., 1997). The forward gateway serves as a translator between the legacy
system and the new system. It’s task is to redirect the calls from the LIS to
the target system and to translate the answer of the new database system
(DBMS) back to the old one. But the gateway can do much more than just
translate calls. It can also be used to enhance or correct old LIS applications.
For instance, a new data type could be introduced which will be later used
in the target application (Brodie, Stonebraker, and Ai, 1993).

Ultimately when the migration has been completed, the gateway can be
removed because it will not be needed anymore (Tripathy and Naik, 2014b).
The prerequisite for using this approach is that the underlying architecture
has to be decomposable. This means that the application modules must be
independent from each other, so they only communicate with the database
service (Brodie, Stonebraker, and Ai, 1993).

25

2 Legacy Information Systems

Figure 2.4: Database First Strategy (Tripathy and Naik, 2014b)

26

2.2 Modernization Strategies

Database Last / Reverse Migration Method
The Database Last method (Bateman and Murphy, 1994) is also called

reverse migration method (Brodie, Stonebraker, and Ai, 1993). In contrast to
the previous strategy, the database is migrated during the last step as seen
in Figure 2.5. The remaining database after the migration process will be the
original LIS database, so only the application modules of the new system
will be integrated into the old legacy database service. Therefore a reverse
interface is needed which translates the target application calls into the
LIS database. There are two problems with this approach. First, the target
applications may use modern calls which are supported by a new relational
database system but would not be supported by the old one. Examples are
triggers, integrity or defining constraints. The second problem is that these
translations could lead to performance losses, so applications have to be
adapted (Tripathy and Naik, 2014b).

For this approach it is also necessary that the underlying architecture is
decomposable (Brodie, Stonebraker, and Ai, 1993).

Figure 2.5: Database Last Strategy (Tripathy and Naik, 2014b)

27

2 Legacy Information Systems

Butterfly
For the Butterfly approach (Wu, Lawless, Bisbal, Richardson, et al., 1997;

Wu, Lawless, Bisbal, Grimson, et al., 1997) it is not necessary that the target
system communicates with the LIS system during the migration process.
So there is no need to synchronize these two systems as no interoperation
between those systems exists (Wu, Lawless, Bisbal, Grimson, et al., 1997).
Furthermore also no gateways are needed and the overall complexity can
be reduced (Bisbal, Lawless, Wu, and Grimson, 1999; Tripathy and Naik,
2014b). It is important to mention that the data migration and the target
system are carried out as completely independent processes (Bianchi et al.,
2003).

Before we describe the Butterfly methodology, some points should be men-
tioned (Wu, Lawless, Bisbal, Grimson, et al., 1997):

1. The target system is not running during the LIS migration.
2. The LIS is always running during the migration process.
3. There exists no cooperation between the LIS and the target system,

so live data will never be stored at the same time on both systems.
This is the difference to the previously mentioned approaches such as
Big-bang, Database First and Database Last where data are translated
through a gateway and always available on each system.

4. The butterfly methodology uses a legacy data migration engine which
has the advantage that the LIS is available and needs to be shut down
only for a short time of period.

Figure 2.6 shows the butterfly methodology. At the beginning of the migra-
tion process several data stores, so-called TempStore (TS), are created and
the LIS data stock is set to read-only, also called frozen. Through the data
access allocator (DAA) the database accesses are redirected to the temporary
data stores TS. First TS1 is created. New entries are saved into TS1, existing
entries will be updated. Modified data will be recovered from TS1 (Bisbal,
Lawless, Wu, and Grimson, 1999; Erdle, 2005). So the old database is only
used for reading while changes are stored in the temporary data stores
(Bianchi et al., 2003).

In the next step, the database of the LIS is migrated to the target sys-
tem. For this task a new term should be introduced, the Chrysalizer. It is

28

2.2 Modernization Strategies

a component which migrates the old database to the new target system
database. During this process all new data manipulations are not stored in
the old LIS data stock anymore, instead they are redirect to TS1. Therefore
during migration the temporary data stores keep all the manipulated data.

Once the migration of the LIS is finished, the first temporary data store TS1
has also to be migrated to the target system. For this reason a new data
store TS2 is created to save all new modifications because TS1 is locked now
and cannot be written any more. During the migration of TS1 through the
Chrysalizer all new modifications are written in TS2.

Each time a data store is migrated to the target system, the current TSn is
frozen and a new TSn+1 is created. This process continues until the time for
the migration of the last TSn is so small that the remaining migration can
be treated very quickly.

Finally the LIS is shut down (frozen), the remaining TSn is migrated and
the new target system is running. The data consistency is equal to the LIS
and the migration process has finished.

The big advantage of this approach is that if there is a problem during
the migration process, the whole process could be stopped. The data only
have to be copied back from the data storages TS1... TSn to the original
database (Bisbal, Lawless, Wu, and Grimson, 1999; Erdle, 2005).

29

2 Legacy Information Systems

Figure 2.6: The butterfly methodology. The LIS database is migrated through the
Chrysaliser in several steps to the target system (Bisbal, Lawless, Wu, and
Grimson, 1999).

30

3 Dealing with LIS in the business
world

“48% of employees are wasting at least 3 hours a day by working with
inefficient systems

On average more than half of IT budgets are spent maintaining existing
IT systems

Inefficient systems and a poor user experience impact staff morale and
citizen satisfaction” (KCOM, 2017)

LIS cause costs. It does not matter if you simply work with the existing
system or modernize it. Updating an existing system costs a lot of money,
but not updating a LIS can lead to major challenges for the future that could
lead to even more costs. Therefore, companies need to think wisely about
which way is better for them (KCOM, 2017).

Legacy systems are widespread in the industry. The question is what is the
true cost of LIS? Joe Stangarone tries to give an answer to that question and
explains 7 points that he thinks cause costs (Stangaroneifi20, 2017):

• Maintenance costs
• Talent costs
• Support costs
• Integration costs
• Compliance costs
• Lost opportunity costs
• Agility costs

32

3.1 Maintenance Costs

3.1 Maintenance Costs

Over time, it is difficult to maintain LIS. Ongoing changes make the existing
system more complex. If you change one part of the system, another one
could easily break. Therefore developers spend more and more time with
maintenance rather than developing new features. In case of a problem,
it becomes even more problematic. When using modern technologies it is
easy to search for a solution on the internet. But if systems are outdated,
it is much more difficult to find an adequate solution which in turn will
waste a lot of time. Also, troubleshooting can only be reached with a high
effort. Summarized, maintenance is inefficient and wastes a lot of time
(Stangaroneifi20, 2017).

3.2 Talent Costs

As mentioned earlier, LIS often use old programming languages and tech-
nologies. In the finance industry mainframe computers are still in use. Many
programs were written in COBOL and have never been updated. Nowadays
it is very difficult to migrate these programs to new platforms because
programmers are needed who can extract the business logic. Most devel-
opers who originally wrote these programs are now retired and usually
documentation is not available (Sneed, 2001), (Paulson, 2001). So new talents
have to be found who can deal with the old source code, but they are rare.
It is hard to find developers who are skilled in those old programming
languages and if they could be found, the salary would be very high as
there are less and less qualified people. In the end, the costs will increase
which could be avoided if new modern systems were used (Stangaroneifi20,
2017).

3.3 Mainframes are still popular

“In a survey, 45 percent of IT managers expected Cobol to be used at
the existing level for the next 10 years.”(Paulson, 2001).

33

3 Dealing with LIS in the business world

Mainframes in combination with Cobol programs are still in use. In a Cutter
Consortium survey they found out that more than 50 percent of the respon-
dents still use mainframe machines. 25 percent of the respondents said that
more than half of their critical software are running on mainframes. Ronald
J. Kizior, Loyola University assistant professor, says that there is a demand
on Cobol skills. Head hunters seek for programmers with 2 or 3 years pro-
gramming experience but it is very hard to find mainframe programmers
(Paulson, 2001). Typically the average age of programmers who have skills
in writing Cobol programs is 45 years old and the number is continuously
decreasing. Younger people prefer more modern programming languages
such as C++, Java or Visual Basic. From their point of view, learning Cobol
is like learning Latin – it is a dead language and nobody wants to used it
but is still needed (Paulson, 2001).

The situation is not different in the financial industry. It is estimated that
75 per cent of the IT budget of banks and insurance companies is used for
the maintenance of software systems (Arnold and Braithwaite, 2017; Gan-
gadharan et al., 2013). Therefore, it is important for companies to develop
solutions to deal with the maintenance costs (Crotty and Horrocks, 2016).
The advantages of mainframes are that they are able to process a huge num-
ber of complex transactions at high speed and that they are reliable. But the
cost to maintain mainframes is much higher. It is estimated that mainframes
cost 90 per cent more than x86 servers. Furthermore, new modern servers
have a better price vs performance ratio, a higher interoperability and cost
less money. Expanding to the cloud and other open platforms is much
easier because new technologies come with modern integration tools that
support popular platforms. Cloud mobility, automation and big data are
new banking services which companies in the finance sector have to deal
with. Additionally, new EU legislation forces monetary financial institutes
to adapt the services to meet new laws and agreements (Ismail, 2017).

In the year 2000, another study from Kizior and Donald Carr was pub-
lished. The authors said that 90 percent of the information system managers
want to keep their existing Cobol programs and 45 percent want to keep
Cobol systems at the existing level for the next 10 years (Carr and Kizior,
2000).

34

3.3 Mainframes are still popular

Cost is the main influencing factor which decides if a legacy system is
going to be redesigned or continued to maintain. If the risk for reengi-
neering is too high, the current system will be used. But there are many
reasons to argue against the maintenance of LIS. LIS are less stable over
time, changes to the code require more time. It is difficult to add new func-
tionality because programmers often do not understand the impacts of their
changes. The existing system is getting more and more complex over time
(Schneidewind and Ebert, 1998).

But what is the optimal software for life time? A newly developed system is
error-prone and normally has many bugs which have to be eliminated. New
tests have to be written and extensively tested against the new implementa-
tion. The existing architecture and source code has to be reengineered. Costs
can exceed the original development time and can increase very quickly
(Karthikeyan and Nandhini, 2016). But there is also the risk that the new
system will fail and will not deliver the required services.

35

3 Dealing with LIS in the business world

3.4 Facts and Figures of Maintenance Cost in
Software Projects

In a study, Boehm examined the ratio of maintenance and development costs
in companies. He conducted a survey with 487 companies. His findings are
shown in the following two diagrams. Boehm claimed that programmers
spend 43% of their time with development and the remaining 57% with
maintenance of programs. For economic purposes some parts were booked
as maintenance, which would be better placed under development. Table
3.1 shows how much time programmers spend with individual tasks. The
tasks that are highlighted are actually part of the development and should
be excluded. So if you add the 19% to the 43% you get to 62% which seems
more realistic. Figure 3.1 shows the software development and maintenance
costs in large business organizations when software is in use for 10 years.
Figure 3.2 shows the maintenance and development costs in 487 business
organizations (UECD, 2010; Boehm, 1981).

Development 43 per cent
Maintenance
a) Emergency program fixes 6 per cent
b) Routine debugging 4 per cent
c) Accommodate changes to input data, files 8 per cent
d) Accommodate changes to hardware, operating systems 3 per cent
e) Enhancements for users:
New reports 8 per cent
Added data for existing reports 6 per cent
Other 7 per cent
f) Improve documentation 3 per cent
g) Improve code efficiency 2 per cent
h) Other 8 per cent
Other 2 per cent

Table 3.1: Amount of time developers and system analysts need for the individual items
related to maintenance in the US (Adapted from (UECD, 2010)).

36

3.4 Facts and Figures of Maintenance Cost in Software Projects

Figure 3.1: Share of Maintenance Costs in Large Organisations adapted from (Boehm, 1981;
Mukhija, 2003)

Figure 3.2: Maintenance and Development Costs in 487 Business Organisations (Boehm,
1981; Mukhija, 2003)

37

4 Strategies on how to
successfully deal with LIS

4.1 Technical Debt Management

Technical debt (TD) is a metaphor for bad code practise and was introduced
by Ward Cunningham in 1992. He said that the delivery of unfinished
code may be great for the customer, but would be dangerous in the long
run. Programs become unmanageable and inflexible (Cunningham, 1992).
Furthermore he said:

“Shipping first time code is like going into debt. A little debt speeds
development so long as it is paid back promptly with a rewrite. Objects
make the cost of this transaction tolerable. The danger occurs when the
debt is not repaid. Every minute spent on not-quite-right code counts
as interest on that debt.” (Cunningham, 1992)

TD describes situations in software development where a workaround or
a shortcut is used to solve a specific problem. Such a shortening can be
accompanied by the advantage of fast releases to fulfil business deadlines.
At the same time, the coding structure becomes more and more complex
and opaque. A problem which primarily software developers have to fight.
As a result, the efforts to maintain the code increases. In other words, TD is
increasing while software quality decreases steadily. (Yli-Huumo, Maglyas,
and Smolander, 2016).

38

4.1 Technical Debt Management

According to Allman (2012) TD has many similarities to financial debt:

• Repayment
• Interest
• High cost (in some cases)

Therefore it is important for companies to develop strategies to deal with
TD. At this point the technical term technical debt management (TDM) is
introduced. TDM was introduced to manage, prevent, measure and reduce
TD. TDM consists of processes, techniques and tools. The aim is to reduce
TD. TDM is hard to establish in companies because it is often difficult to
estimate how much TD a system has and what impacts it will have in the
future (Yli-Huumo, Maglyas, and Smolander, 2016).

According to Power (2013) there are 7 challenges with TDM:

• Agreeing what Technical Debt is
• Quantifying Technical Debt
• Visualizing Technical Debt
• Tracking Technical Debt Over Time
• Impact of Neglecting Technical Debt Over Multiple Releases
• Identiyfing Technical Debt as a Root Cause of Defects
• Understanding the Cost of Delay

TDM can be divided into several activities (Z. Li, Avgeriou, and Liang,
2015):

• Identification
• Measurement
• Prioritization
• Prevention
• Monitoring
• Repayment
• Representation/documentation
• Communication

Originally TD was limited to the code level of a software project. Terms
like Code Smell (Fowler et al., 1999) were introduced to show how bad

39

4 Strategies on how to successfully deal with LIS

software decisions affect code quality and architecture. Since then, the term
has evolved and is now associated with a number of other stages in the
software development lifecycle. Today, the concept is no longer related only
to the code level, but also to (Yli-Huumo, Maglyas, and Smolander, 2016):

• Requirements
• Design
• Architectural
• Process
• Test
• Documentation
• People debt

It should be pointed out that in the single steps, shortcuts and workarounds
can also result in TD. So TD is a term not only referring to the code level of
a software project (Yli-Huumo, Maglyas, and Smolander, 2016).

TD can be classified into two groups (Yli-Huumo, Maglyas, and Smolander,
2016):

• Intentional TD: This includes factors such as code complexity and
business deadlines.

• Unintentional TD: This includes factors such as the lack of competence,
the need for an upgrade or customer or market specific causes.

A study of Martini, Besker, and Bosch (2016) investigated the impact of
TD on companies. 226 people from 15 companies were interviewed. The
result was that the development time spent on TD was about 25 percent.
The benefits of reducing TD were clearly noticeable in the next release. New
features were easier to implement as there were no side effects. In addition,
the architecture had been simplified (Martini, Besker, and Bosch, 2016).
But there were also resistances when TDM was introduced. Particularly
managers criticized the model and often were not ready to provide the
required budget. Conviction was necessary why TDM is important. But
Conviction was also necessary in teams. While enthusiasm prevailed in
some teams, other teams had to be guided why TDM was really important.
Thus, TDM is not always well accepted by managers and developers. A TD
backlog was created to make it clear that they always have to think about it,

40

4.2 Code Smell Avoidance

otherwise the concept cannot be successful in the future (Martini, Besker,
and Bosch, 2016).

4.2 Code Smell Avoidance

The term code smell was introduced for the first time by Fowler (Fowler
et al., 1999). Code smell is an indicator of how good or how bad the code
quality is. Bad code leads to increased maintenance efforts and should be
avoided. Code smell can be eliminated by refactoring (Fontana, Ferme, and
Spinelli, 2012). According to Carver et al. (2017) the most bad code smells
are:

• Duplicate Code
• Cyclomatic Complexity
• Too Many Methods
• Excessive Imports
• God Class

Duplicated Code is one of the most common code smells besides Data Class
and God Class (Fontana, Ferme, and Spinelli, 2012). Even in the development
of our add-on, we found out that Duplicated Code occurrs often. For lack of
time only small parts could be refactored. God Class was also a topic that
could be reduced by refactoring, but could not be completely resolved due
to lack of time.

41

4 Strategies on how to successfully deal with LIS

4.3 Design Pattern

Design patterns are solutions for recurring problems. They can help in situ-
ations where a design decision has to be made and provide some necessary
information to prevent bad coding styles. In addition, they help to make
existing designs more flexible, understandable and performable. The risk
of errors caused by a bad design can be minimized (Eilebrecht and Starke,
2010a).

Design patterns are based on principles that have proven their worth in the
past. General heuristics can also be applied in many situations. Principles
and heuristics form a unity that can be helpful when a decision has to be
made if a design pattern should be chosen or not (Eilebrecht and Starke,
2010b).

4.4 Software Design Principles

Heuristics give programmers instructions how optimize the code. Many
design patterns are based on heuristics. These can be divided into the
following categories (Eilebrecht and Starke, 2010b):

• Design of classes and objects
• Inheritance and delegation
• Distribution
• Concurrency

For example, overly powerful classes (so-called God classes) should be
avoided. Another good advice is that the superclass should not be supposed
to know anything about their subclasses (Eilebrecht and Starke, 2010b).

42

4.4 Software Design Principles

A couple of design principles will be discussed now (Eilebrecht and Starke,
2010b):

• Open Close Principle: Classes should be open for extensions but closed
for changes. New functions have to be extended by new classes, instead
of modifying existing ones. Existing classes should only be adapted if
they are improved or when bugs are fixed.

• Once and Once Only: Redundancy of code pieces should be avoided
(i.e. duplicated code)

• Single Responsibility Principle: A class should have exactly one task
and only a strictly bounded responsibility. Each class fulfills exactly
one purpose. The same applies to methods. One method fulfills exactly
one task. For a new task, new classes and methods have to be defined.

• Liskov’s Substitution Principle: Super classes should only contain
methods that fit for all subclasses. Subclasses which inherit meth-
ods that they do not need and therefore remain empty should be
avoided.

• Composite Reuse Principle: Classes should be decoupled from each
other and composition should be preferred over inheritance. The
advantage is that the behavior can be changed during runtime which
leads to a more stable and flexible code. Composition is often used
in design patterns and has advantages compared to inheritance (Eric
Freeman and Elisabeth Freeman, 2006).

Only a short list of principles has been presented here. The subject area is
far more comprehensive. For further information, the book Head First Design
Patterns by O’Reilly1 can be recommended. On the basis of many practical
examples it is shown how from dirty code, clear and well-structured code
emerges. The learning effect is very high. If you follow these rules, you can
easily avoid smell code. The MVC (Model View Control) pattern is also
used in our add-on. Therefore it will be briefly mentioned and explained in
more detail with a practical example.

1http://shop.oreilly.com/product/9780596007126.do (accessed 2017-06-19)

43

http://shop.oreilly.com/product/9780596007126.do

4 Strategies on how to successfully deal with LIS

Figure 4.1: MVC pattern implemented on a practical example

44

4.4 Software Design Principles

Figure 4.1 shows the MVC model 2 pattern as it is also used in our appli-
cation. According to Eric Freeman and Elisabeth Freeman (2006) the MVC
pattern can be divided into the following steps:

1. The client sends a HTTP request to the server
The user sends an HTTP request to the server by using the web
browser. Typically form data such as username and password are sent.
The server accepts the incoming request and processes it.

2. The servlet is the controller
The servlet or REST interface accepts the request. It serves as controller.
Because existing data often needs to be accessed, a query is made to
the model to retrieve previously saved data. Often a database is used
as a model. The result of the query is bundled in a JavaBean.

3. The controller sends the data to the view
Velocity presents the view. It is a template language. First, it fills the
template with data and then generates an HTML document. It is very
similar to Java Server Pages (JSP), but has the great advantage that the
code can be reused. The view is only responsible for presenting the
model. The data are transmitted through the JavaBean (point number
4 in the chart) (Eric Freeman and Elisabeth Freeman, 2006).

4. The result is returned to the client
The page generated by the view is sent back to the client and can be
displayed there.

45

4 Strategies on how to successfully deal with LIS

4.5 Google Closure Templates

With Google Closure Templates aka Soy templates can be created which
can be used on client side as well as on server side. Atlassian supports
Soy templates and our Timesheet add-on also uses these templates. This
enables us to reuse HTML code. The security aspect was also very important.
Closure templates effectively prevent Cross-site scripting (XSS) due to auto
escaping. Angle brackets were replaced by < and > so the code is no
longer interpreted as tags and the risk of harmful attacks can be reduced.
Closure Templates also checks if the code has already been escaped and
prevents double-escaping (Google, 2017).

4.6 Active Objects

Active Objects (AO) is a add-on for Atlassian which enables developers
to access data in an easier and faster way. It is an additional layer based
on object relational mapping (Atlassian, 2017a). Through getter and setter
methods objects can be saved persistently and previously saved data can be
retrieved from the database. SQL statements are no longer required, which
also minimizes the risk of SQL injections.

46

5 Feature Specification

5.1 Overview of the Existing Implementation

The Timesheet add-on was developed by Adrian Schnedlitz in 2016. It is
a Jira add-on and it uses the Atlassian plugin software developer kit (Jira
SDK) (Atlassian, 2017c) for development. The Jira version was 6.4 at that
time. Atlassian typically supports major versions only for 2 years (Atlassian,
2017b) and Atlassian announced that the version 6.4 will only be supported
until March 17th 2017 (Burwinklepple, 2017). Therefore the Jira instance
had to be updated to Jira 7, and also the Jira add-on had to be updated to
version 7. Regrettably, the Jira SDK is neither compatible downwards nor
upwards. So many adaptions of the program code were made to keep it
running. Otherwise it could not be used anymore in our project.

The add-on is a time tracking tool which replaces the Google timesheets.
Students can import their existing timesheets from a CSV file or export
them as CSV. All timesheets can be exported at once. Only single timesheets
can be imported from an existing document (Schnedlitz, 2016). The tool
will be used in the Catrobat organization. Currently more than 100 students
are involved in the project. These students have many obligations such as
exams, exercises and some of them are working at companies. Depending
on their schedules, they invest more or less time into Catrobat. For many
students it is harder to continue with the work after a long break. In this
case, our add-on could help them to stay focused on their work. If they
are inactive for a longer period of time, they will be informed by email
notification. The project coordinator will be informed as well, who can then
help students to continue with the project.

The administrative tasks can be reduced drastically because many steps can

48

5.1 Overview of the Existing Implementation

be automated. For instance, in the past an administrator needed 5 to 10

minutes to create or delete a new user. Now the same task can be done in
only a few seconds. Furthermore, formatting errors such as point numbers
or date errors can be avoided because many fields are filled in automatically
and only valid inputs are accepted.

In the past, wrong date formats led to broken Google links and so co-
ordinators and timesheet administrators were not able to get an overview
about timesheet related data like remaining hours of a user. Sometimes
when a user formatted the date and saved the timesheet, his changes where
not recognized by Google and the user had to repeat his changes again and
again until it accepted the new data format. Formulas did not work if the
data were not formatted correctly.

The new add-on will also help to increase transparency and visibility. Super-
visors get a great tool to analyze the whole project performance and how the
agile development approach is realized. They also have more opportunities
to analyse project specific behavior and get more detailed information about
what is going on. Team visualization data help project coordinators as well
as team members to get a better understanding of the team performance.
Timesheet administrators have more configuration options and can manage
the whole project in a better way.

49

5 Feature Specification

Figure 5.1: Timesheet Form

50

5.1 Overview of the Existing Implementation

Figure 5.2: Visualization of the timesheet data

51

5 Feature Specification

Figure 5.3: Summary of hours worked

52

5.2 The Catrobat Organization

5.2 The Catrobat Organization

Catrobat makes it possible for students to work in teams and increase their
experiences in programming but also in the acquisition of social skills.
For most students it is the first time to work in a Free and Open Source
Software (FOSS) team. The code is open source and available on GitHub1

. The Catrobat organization is divided into several teams. More than 20

subprojects exist, some of them are:

• ScratchToCatrobat
• Catrobat marketing team
• CatroidArduino, Raspberry Pi
• CatrobatDrone
• Catroweb
• HTML5

• iOS
• Jenkins
• Catroid
• Musicdroid
• Paintroid
• Usability
• Design

The main focus is on maintainability, usability and design (Wolfgang Slany,
2014). There are many subteams which work on several extensions for
Pocket Code. Extreme Programming (XP) is used as agile development
methodology. Teams usually consist of 3 to 5 people, but there are also
larger teams up to 10 people. Not all of them are developers. Some are
designers or take care of the usability. Each team has a coordinator who
manages the team and is in connection with other coordinators. New ideas
are developed jointly by the coordinators. Every two weeks, meetings take
place where every coordinator has to join and shares his/her project-related
updates with others. Proposals for solutions are discussed with Professor
Slany, and if necessary, realized.

1https://github.com/ (accessed 2017-06-17)

53

https://github.com/

5 Feature Specification

5.2.1 Catrobat - Jira

Catrobat team members use the Jira Agile boards for collaborating. Figure
5.4 shows the Kanban board used by Catrobat team members. There, our
students can:

• create an issue
• assign an issue to a third person or themselves
• get an overview of which tickets are currently being processed
• create the next major release

Figure 5.4: Kanban board used by Catrobat team members

54

5.2 The Catrobat Organization

5.2.2 Catrobat - Confluence

Atlassian Confluence is used in Catrobat as knowlegde management plat-
form. Students can:

• communicate with each other
• write blog entries
• share information with others
• find others and get in contact with them
• create a survey or
• use the team calendar

Here students get a great overview about the whole organization and find a
lot of useful information about what they may need.

5.2.3 Pocket Code

The project was launched by Wolfgang Slany in 2010. He is the head of the
Institute for Software Technology (IST) at Graz University of Technology.
The main motivation is that teenagers can easily build and share their
mobile applications (Wolfgang Slany, 2014).

Catrobat formally known as Catroid (W. Slany, 2012; Wolfgang Slany, 2014)
is a visual programming language developed for teenagers between 13 and
18 years (Koitz and Wolfgang Slany, 2014).

Pocket Code is a smartphone and tablet application where users can create
their own programs such as animations or games and distribute them on
the Pocket Code platform (Catrobat, 2017). There everyone can download
any project, modify it and upload it again (W. Slany, 2012). These programs
are created by composition. This means that many simple blocks are con-
nected to create a complex program. These colored Lego-style blocks can
be combined with conditions, loops and other statements. The blocks are
divided into different categories depending on the behavior of the brick
(Koitz and Wolfgang Slany, 2014). Figure 5.5 shows the home screen on the
left side and the script view on the right side.

55

5 Feature Specification

Figure 5.5: Android Application Pocket Code

56

5.3 Requirements

Currently the software is only available for Android2, but other platforms
are under development (W. Slany, 2012). The original name was Catroid
but has changed to Pocket Code and can be found on the android play
store (Store, 2017). Pocket Code has been inspired by Scratch which was
developed by MIT (W. Slany, 2012; Scratch, 2017).

With Pocket Code it is possible to control external hardware via Blue-
tooth 3 or WiFi4 . The supported devices are Parrot AR.Drone 1 and 2

5 , and
the Parrot Minidrones6 , Lego Mindstorms robots7 , Phiro robots 8 and the
Bluetooth Arduino boards9.

5.3 Requirements

Primarily it was important that the existing Timesheet add-on can be used
in our project. Due to the fact that Jira has stopped the support for version 6

it was clear that the add-on had to be adapted to the latest version. During
the migration process the focus was placed on several points:

• The add-on should be stable and reliable
• It should be compatible with all modern browsers and operating

systems
• It must be safe against security vulnerabilities such as SQL injections

or Cross-Site-Scripting (XSS)
• Students are not allowed to see any private data of others
• It should be well-tested so it can be used in productive mode

2https://www.android.com/ (accessed 2017-04-28)
3https://www.bluetooth.com/what-is-bluetooth-technology/

discover-bluetooth (accessed 2017-04-07)
4http://standards.ieee.org/about/get/802/802.11.html (accessed 2017-04-14)
5https://www.parrot.com/de/ (accessed 2017-04-07)
6https://www.parrot.com/de/minidroneS (accessed 2017-04-07)
7https://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com

(accessed 2017-04-07)
8http://www.robotixedu.com/phiro.aspx?AspxAutoDetectCookieSupport=1

(accessed 2017-04-07)
9https://www.arduino.cc/en/Main/ArduinoBoardBT?from=Main.

ArduinoBoardBluetooth (accessed 2017-04-07)

57

https://www.android.com/
https://www.bluetooth.com/what-is-bluetooth-technology/discover-bluetooth
https://www.bluetooth.com/what-is-bluetooth-technology/discover-bluetooth
http://standards.ieee.org/about/get/802/802.11.html
https://www.parrot.com/de/
https://www.parrot.com/de/minidroneS
https://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com
http://www.robotixedu.com/phiro.aspx?AspxAutoDetectCookieSupport=1
https://www.arduino.cc/en/Main/ArduinoBoardBT?from=Main.ArduinoBoardBluetooth
https://www.arduino.cc/en/Main/ArduinoBoardBT?from=Main.ArduinoBoardBluetooth

5 Feature Specification

• All critical bugs must be removed
• Comfort functionalities: some extra features extends the add-on
• Refactoring: source code should be simplified
• Speed should be increased, especially in case of many timesheet entries

The requirements are divided into several groups:

• General requirements
• Graphic requirements
• Security requirements
• Compatibility requirements
• Migration requirements
• Performance requirements
• Bug fixing

5.3.1 General Requirements

General requirements include extending the existing implementation with
new features. One feature was to define and implement the behavior when
a timesheet is automatically set to inactive and when it should be set (active)
again. Figure 5.6 shows the different states a user can have. A user can set
himself to inactive or inactive & offline and later active again. The difference
between these two states is that in inactive mode he is willing to answer
emails or chats. In active & offline mode he/she is not available, when he is
on holiday for example. If a user does not make a new timesheet entry for a
while, the system will automatically set the user to inactive (auto inactive).
The user receives an email notification. If the user makes an entry, he is
set to active again. Otherwise the inactive phase will continue and extend
the inactive end date. After x iterations the timesheet will be disabled. The
timesheet admin and the user are notified. Only the timesheet admin is
allowed to reset the timesheet’s state to active again.

The intention is that a conversation between the team member and the
administrator must take place if the user is disabled. Otherwise the user
may be removed from the team, which would not be very satisfying and
should be avoided. Occurred problems should be discussed and strategies

58

5.3 Requirements

developed which help students to reach their goals. If a problem is related to
other team members or to the team coordinator, the coordinator is involved
in the discussion. The aim is to develop solutions which satisfy all members.
Furthermore, the administrator gets a better overview of the project and can
see which teams need more support.

Figure 5.6: State Diagram

59

5 Feature Specification

Requirement Description
Timesheet If the user has no timesheet, the link in the

main menu should be hidden.
User
Information

The table should be sorted by name.

Timesheet A timesheet administrator or coordinator
should be able to see another timesheet.

Timesheet If the F5 key is pressed, the last timesheet
should be shown.

Timesheet If a user adds an inactive entry, it should
be possible to extend this inactive duration.

Timesheet If a user state is updated to inactive
because he/she was not working for two
weeks, the inactive duration is extended
(x-times) before an email notification is
sent.

Timesheet There must be an inactive date selection
limit.

Timesheet If you are manually inactive, but added a
new entry you should be asked if you want
to remain inactive or set to active.

Timesheet If you are automatically inactive, but you
have added a new entry you will
immediately be set to active again.

Timesheet If you are automatically set to inactive, a
new entry is to be created with a text: “I
am inactive presumably up to xxx”. Start
and end dates are not necessary here.

Timesheet If you are automatically set to inactive, the
coordinator of the team will be notified by
e-mail at each extension.

Timesheet If you are automatically set to inactive, the
coordinator of the team will be informed
by e-mail at each round.

Timesheet After a certain period the timesheet
administrator will be notified by e-mail.

Table 5.1: General Requirements

60

5.3 Requirements

Table 5.1 shows the general requirements list. These requirements define
when a user or administrator should be informed about the status of a
timesheet.

5.3.2 GUI Requirements

The original view from the Timesheet add-on should be adopted. For ex-
ample, if the inactive category is selected only the columns Date, Category,
Inactive Until and Task Description should be visible. The others like Start,
End, Pause, Duration, Team, Partner (PP) and Jira Ticket ID should be
hidden.

The pair programming column should only be visible if a pair programming
(PP) category is selected. The Jira Ticket ID field does not exist and should
be added as extra column. It shows only tickets which could be relevant for
the user. Table 5.2 and Table 5.3 show the graphical requirements. Because
there are so many requirements they are splitted up into two tables.

61

5 Feature Specification

Requirement Description
User Interface
of Timesheet In the standard behaviour only the

columns Date, Start, End, Pause, Duration,
Jira Ticket ID and Task Description should
be visible. The team column should only be
shown if the user is in more than one team.

User Interface
of Timesheet If a default category is selected the task

description should be empty.
User Interface
of Timesheet If the inactive category is selected, the

Inactive column should be visible. Start,
End, Pause, Duration, Team, Partner (PP)
and Jira Ticket ID should be hidden.

User Interface
of Timesheet If the Inactive & Offline category is

selected, the Inactive & Offline column
should be visible. Start, End, Pause,
Duration, Team, Partner (PP) and Jira
Ticket ID should be hidden.

User Interface
of Timesheet If a category has changed, the Task

Description field should be emptied.
User Interface
of Timesheet If a column is hidden, its content should be

deleted.
User Interface
of Timesheet If the Pair Programming category is

selected, the Partner field should be visible.
Otherwise it should be hidden.

User Interface
of Timesheet If the category which contains the big

letters PP is selected, the Partner field
should be visible. Otherwise it should be
hidden.

User Interface
of Timesheet If a field is hidden, the input must be

cleared.

Table 5.2: Graphical Requirements Part One

62

5.3 Requirements

Requirement Description
User Interface
of Timesheet If the Inactive & Offline entry date is older

than today, an error message (red box)
should be displayed.

User Interface
of Timesheet If the inactive entry date is more than 2

months ahead, an error message (red box)
should be displayed.

User Interface
of Timesheet If the Inactive & Offline entry date is more

than 2 months ahead, an error message
(red box) should be displayed.

User Interface
of Timesheet A new field called Jira Ticket ID should be

created.
User Interface
of Timesheet The Jira Ticket ID should only display

tickets which could be relevant for the user.
User Interface
of Timesheet The Jira Tickets in the Jira Ticket ID field

should be linked with the issue page in
Jira.

User Interface
of Timesheet If the Task Description is empty, an error

message (red box) should be shown.
User Interface
of Timesheet The name of the timesheet owner should

be displayed.
User Interface
of Timesheet There should be no space under the table.

Table 5.3: Graphical Requirements Part Two

5.3.3 Security Requirements

In the testing phase we found critical security vulnerabilities that had to be
closed immediately. All admin sites were still accessible if the user knew the

63

5 Feature Specification

exact Uniform Resource Locator (URL)10. Furthermore, a normal user was
able to drop the whole database. Also the self-developed Representational
State Transfer (REST)11 calls were vulnerable because the server had never
proved if the client had the permission to access the requested resource.
Hence a normal user had full read access to all information. He could not
only read data, he was also able to write and manipulate data. In the worst
case he made himself administrator, deleted other timesheet data or had
access to other timesheets. Table 5.4 shows a list of all requirements that
were implemented.

10https://www.techopedia.com/definition/1352/uniform-resource-locator-url

(accessed 2017-04-28)
11https://www.techopedia.com/definition/1312/representational-state-transfer-rest

(accessed 2017-04-28)

64

https://www.techopedia.com/definition/1352/uniform-resource-locator-url
https://www.techopedia.com/definition/1312/representational-state-transfer-rest

5.3 Requirements

Requirement Description
Timesheet
Security

The configuration area should not be
accessible through the URL without
permission.

Timesheet
Security

The user information area should not be
accessible through the URL without
permission.

Timesheet
Security

A normal user should not be able to access
any REST API interface without
permission.

Timesheet
Security

A normal user should not be able to access
any private information about a third
person.

Timesheet
Security

It should be checked if security
vulnerabilities such as SQL injection, cross
side scripting etc. are possible.

Timesheet
Security

It should be checked if a user can access
another timesheet without permission.
Read-Only users and timesheet admins are
allowed to see all timesheet data.

Timesheet
Security

If a user is not allowed to see administrator
areas he should be redirected to Jira login.

Timesheet
Security

A non-privileged user should not be able
to drop the whole database.

Timesheet
Security

A user should not be able to modify
another timesheet except the timesheet
admin.

Table 5.4: Security Requirements

65

5 Feature Specification

Requirement Description
Timesheet
Compatibility

The add-on should work in Firefox.

Timesheet
Compatibility

The add-on should work on iOS devices.

Timesheet
Compatibility

The add-on should work in Safari.

Timesheet
Compatibility

The add-on should work on Linux.

Timesheet
Compatibility

The add-on should work on MAC.

Timesheet
Compatibility

The add-on should work on smartphone
devices.

Table 5.5: Compatibility Requirements

5.3.4 Compatibility Requirements

As Adrian Schedlitz (Schnedlitz, 2016) mentioned in his master thesis the
add-on was only tested with Google Chrome12 and Opera13 . It should be
also compatible with the most popular browsers. In Firefox browser14 there
exists a problem with the sending of timesheet data. It does not work at
the moment and should be fixed. The add-on is also not compatible with
Apple’s Safari15 browser. Table 5.5 shows the compatibility requirements.

5.3.5 Migration Requirements

Timesheet was developed for Jira 6. As mentioned earlier only version
number 7 is supported anymore. Therefore the add-on must be migrated
to version 7. During the migration the code should be refactored and

12https://www.google.de/chrome/browser/desktop/ (accessed 2017-04-14)
13http://www.opera.com/de (accessed 2017-04-14)
14https://www.mozilla.org/de/ (accessed 2017-04-14)
15https://www.apple.com/safari/ (accessed 2017-04-14)

66

https://www.google.de/chrome/browser/desktop/
http://www.opera.com/de
https://www.mozilla.org/de/
https://www.apple.com/safari/

5.3 Requirements

any unnecessary source code eliminated. Table 5.6 shows the migration
requirements.

Requirement Description
Timesheet
Migration

The Jira SDK version should be changed
from 6 to 7.

Timesheet
Migration

The whole functionality should be
migrated to the target system.

Timesheet
Migration

Unsupported and deprecated classes and
methods have to be exchanged.

Timesheet
Migration

Refactoring as part of the migration
process. Elimination of useless code.

Timesheet
Migration

The java version should be changed from 7

to 8. 8 is current state.
Timesheet
Migration

Update dependencies to meet current
requirements.

Timesheet
Migration

Define a strategy how the migration
process can be smoothly implemented.

Timesheet
Migration

Redefine test cases to guarantee the
correctness of the software.

Table 5.6: Migration Requirements

5.3.6 Performance and Stability Requirements

The reaction time of the timesheet is slow and should be increased. Therefore
the code has to be changed. Data should be loaded once from the server
and cached locally. Doubled source code fragments should be refactored.
Table 5.7 shows the performance and stability requirements.

67

5 Feature Specification

Requirement Description
Timesheet
Performance

The speed of the timesheet should be
increased.

Timesheet
Performance

Cache data instead of reloading it twice
from the server.

Timesheet
Performance

Delete unnecessary and duplicated code
fragments.

Timesheet
Performance

Improve system stability through code
analysing tools.

Table 5.7: Performance and Stability Requirements

5.4 Demarcation and Self-Implementation

Finally, we will briefly explain why we decided to develop a new add-on
and did not rely on existing Jira solutions. I would like to mention some
points which were already discussed by Schnedlitz in his master thesis
(Schnedlitz, 2016).

Schnedlitz investigated already existing applications for their usefulness for
our project. He introduced pros and cons lists to facilitate decision-making.
After all, new development should only be considered if all other solutions
did not satisfy our requirements.

Some of the existing solutions are not designed for course management
and do not support categories for project assignments. Categories cannot
be assigned to teams, which is necessary in our project. Administrators or
coordinators cannot be added to teams or groups which is a must have
criterion.

Others are not designed for education purposes, but rather for industry
and are therefore not suitable. Third parties allow us to track the time only
depending on Jira tickets. This is not suitable too because we want to realize
the time recording, regardless of Jira tickets only by means of categories.
Others are not free of charge or are not compatible with our Jira version.

68

5.4 Demarcation and Self-Implementation

For the reasons mentioned above, we started with self-implementation.
Our tool has some advantages:

• All our requirements can be implemented and easily extended
• The data processing can be very well understood
• The code is available and can be viewed by any team member at any

time
• No license fees or other costs incur at any time
• Developed and tested with the utmost care
• Running on the newest Jira version 7

69

6 Implementation

6.1 Migration of the Jira Timesheet Add-on

Several migration strategies have been analyzed in chapter 2 and weighed
up against each other. The best method was chosen and the advantages and
disadvantages should be discussed.

6.1.1 Analysis of the chosen strategy and comparison with
other migration strategies

Initial Situation

The Jira SDK version of the Timesheet add-on was 6 and was no longer
compatible to version 7. Therefore the add-on had to be adapted to the
newest version. The internal database was switched from HSQLDB1 to H2.
Both are relational databases and written in Java. The advantage of the
H2 database compared to others is that the structure is simpler and the
processing speed is increased (H2database, 2017). The Timesheet add-on
was written in Java 7. Many classes and methods which exist in Jira SDK 6

were removed in version 7. Some of them were already deprecated so it was
clear that they would probably be removed in the next major version. But
this is not always the case. As an example, the UserProjectHistoryManager
should be mentioned. No deprecated methods were removed without any
prior notice. So Atlassian is not always following their own policy (Atlas-
sian, 2017d). However, all deprecated methods, interfaces, classes etc. are

1http://hsqldb.org/ (accessed 2017-04-12)

70

http://hsqldb.org/

6.1 Migration of the Jira Timesheet Add-on

visible online2. A short description explains which construct should be used
instead. This is very helpful in many situations.

The add-on had not yet been released, so there were no timesheet data
which had to be saved. This was a huge advantage because otherwise we
would have had to think about problems which could arise with a different
database scheme. Probably we would have had to create a migration task
where we defined how the database scheme was changed. Therefore all
steps would have to be recorded which would have caused a lot of extra
work. The migration would have been more complex, since the data could
not be easily imported again.

As migration strategy we decided to take the Chicken Little approach
because it is easier compared to other approaches. In the following sub-
chapter the pros and cons of this strategy will be discussed and also the
decision making will be explained.

Pros and Cons of the Chicken Little approach

The Chicken Little methodology was selected as most appropriate strategy
for our migration approach which was already descripted in section 2. Table
6.1 shows the pros and cons of this strategy.

6.1.2 Decision Making

After all strategies were weighed against each other and the advantages and
disadvantages of the Chicken Little strategy were scrutinized, this strategy
was chosen. This approach was selected because of the straightforwardness
and simplicity of the strategy. The database first and database last approach
assume that the LIS system uses a very old and obsolete database, and the
new target system a modern DBMS. In our case we already used a relational
database and the new one is still a relational database. Therefore no gateway

2https://docs.atlassian.com/jira/server/deprecated-list.html (accessed 2017-
04-12)

71

https://docs.atlassian.com/jira/server/deprecated-list.html

6 Implementation

layer is needed because the language is quite the same.

The butterfly approach is used in large systems, where it can take a long
time until one migration step is finished. Therefore it makes sense to build
several temporal storages and migrate one after another to the target system.
For us this approach is very inappropriate, it is like to break a butterfly on
a wheel.

The Cold Turkey approach is mostly too time-consuming to implement
it. In fact this means that the whole add-on has to be discarded and replaced
by a new implementation which can be full of bugs. In the opinion of the
author of this thesis this methodology should only be chosen if all other
strategies fail and there is no other way to reuse the whole code or just code
fragments.

72

6.1 Migration of the Jira Timesheet Add-on

Pros Cons
Reuse of existing code Existing bugs are taken over to the

target system.
The system is migrated in several
steps. Therefore the risk of failure can
be minimized.

The complexity is further increased
because additional adjustments have
to be made which cause many
changes to the original design.

The migration process is simpler
compared to other approaches like
Database first or Butterfly.

The maintenance effort increases with
each migration process.

The migration completes more
quickly because no special
preparation is needed. No gateways
or layers must be developed and no
extra storages are necessary.

Improvements such as modern
programming language techniques,
up to date database functions or
improved SDK methods are not
taken. Instead old code still remains.

It can be determined very early on
whether a migration will be
successful at all.

Compared to the redevelopment
approach (Cold Turkey) of the
system, it is more inefficient and
slower but less error prone because
functionalities were well tested in the
past.

Core functionalities and must have
requirements can be provided very
quickly on the target system. Not
system critical or user-relevant data
and functions can be submitted later.
Problems and difficulties from the
first migration step can be improved
during the next step. This allows
more flexibility during the migration
process.
The migration process has no effects
either on the current system or on the
target system because all changes can
be undone very quickly (delete
database entries, restore old
database).

Table 6.1: Pros and Cons of the Chicken Little Approach

73

6 Implementation

6.2 Realization & Implementation

6.2.1 Researching

It is always a great idea to start a search about the target environment.
The most important question is what has changed in the new version? The
Atlassian website3 is always a good point to start. Here you can find all
information about the upgrading process. Announcements are published
regularly. There is also a forum where developers can seek advice. A list of
all API changes can be found here4.

6.2.2 Preparation

In the first step, a new stand-alone Jira add-on for version 7 was created.
We used the online tutorial5 for creation. Afterwards we started the add-on
to see if everything worked fine. There should be no problems because no
changes were made before.

6.2.3 Migration Process

We used the Chicken Little approach as migration strategy. First we created
a new Jira add-on based on version 7. This is our target system and the
existing code should be migrated here. In the opinion of the author it was
the best way to deal with the problem because the new platform supports all
the dependencies which are used in our add-on. Deprecated dependencies
have been replaced by new ones. The new Maven structure guaranteed that
the server would accept the add-on and thus would also start. Otherwise,
we would have had to search manually, which dependencies have changed
and which have to be added. This would have been very cumbersome and
probably would have taken much more time.

3https://de.atlassian.com/ (accessed 2017-04-14)
4https://developer.atlassian.com/jiradev/latest-updates/

preparing-for-jira-7-0/jira-7-0-api-changes (accessed 2017-04-14)
5https://developer.atlassian.com/docs/getting-started (accessed 2017-04-07)

74

https://de.atlassian.com/
https://developer.atlassian.com/jiradev/latest-updates/preparing-for-jira-7-0/jira-7-0-api-changes
https://developer.atlassian.com/jiradev/latest-updates/preparing-for-jira-7-0/jira-7-0-api-changes
https://developer.atlassian.com/docs/getting-started

6.2 Realization & Implementation

Next, the migration process will be explained. First, we tried to migrate the
add-on in one step, but it was too complex. So we decided to divide the
program code into several pieces of code and migrate them one after another
to the target system. First we migrated the core functionality, afterwards
the extensions. The core functionality includes only important parts of the
system without which the add-on could not start. This includes the database
connection, the refactoring of deprecated methods and classes, as well as the
timesheet. Extensions include the administrator area, Timesheets overview,
and visualizations.

The migration process is divided into 4 steps:

1. Migration of a piece of code
2. Adaption of the maven structure in the POM file
3. Adaption of the test cases
4. Verification if server accepts the add-on and starts correctly
5. Repeat step 1 to 4 until all code slices are migrated

Migration of a piece of code

In this first step the code from the existing implementation is copied to the
new platform. On the target system the dependencies may have changed,
so it could happen that not all classes or methods are not available anymore
and have to be replaced by newer ones. So refactoring and adaption is
often necessary. Deprecated methods are often removed or new add-on
constraints are added in the next major release version.

Adaption of the maven structure in the POM file

The POM6 file is an XML (Extensible Markup Language)7 representation
of a Maven project and contains all relevant dependencies a project needs.

6https://maven.apache.org/pom.html (accessed 2017-05-09)
7https://www.techopedia.com/definition/24387/extensible-markup-language-xml

(accessed 2017-05-09)

75

https://maven.apache.org/pom.html
https://www.techopedia.com/definition/24387/extensible-markup-language-xml

6 Implementation

These dependencies have to be adapted to the new Jira version. It might
happen that not all of the dependecies are compatible with the newest Jira
version.

Adaption of the test cases

Each time the coding structure has been changed, the test cases must also
be adapted. If new code is added, new tests have to be written. If code is
removed tests can be deleted. The goal of this step is to ensure that all test
cases work.

Verification if server accepts the add-on and starts correctly

With every change to the POM file, there is a risk that the server will no
longer accept the add-on and refuse to run. Therefore, the local compilation
of the add-on is not sufficient to make sure that the program works properly.
It must also run on the server to ensure that it really works for 100 percent.
This is because the compiler cannot detect all errors. For example, runtime
errors or database errors can only be detected at runtime. Dependencies can
also cause problems that will only show on runtime.

Repeat step 1 to 4 until all code slices are migrated

Now the first migration step has been completed. If everything runs smoothly,
the next migration step can be started until all code pieces have been mi-
grated.

76

6.2 Realization & Implementation

6.2.4 Additional Problems

In this chapter, we discuss additional problems such as security vulnerabili-
ties, compatibility and stability aspects, improvements and bug fixing.

6.2.5 Security Vulnerabilities

The Jira platform provides HTTPS8 secured connections for all requests and
responses between the server and the client. As an unauthorized user it
is not possible to read or write any timesheet-specific data. The following
statements are only valid if the user is logged in. The user needs a Jira
account and is able to access the Timesheet add-on. He does not need an
own timesheet to execute harmful attacks. First, a brief introduction about
the HTTP9 protocol is given. Afterwards two security gaps are discussed.

Structure

The client communicates with the server via AJAX10 calls. A request is sent
to the server, the server processes the request and sends back a response to
the client. This can be trivial user data such as the user’s status or when he
was online the last time. But there are also sensitive data transfers which
should not be viewed by anyone. A REST call cannot only be used to query
data. It is also possible to modify or delete data. In the background the
HTTP protocol defines different states how a client can communicate with
the server. Table 6.2 shows the most common states which have also been
used by our add-on.

8https://www.techopedia.com/definition/5361/hypertext-transport-protocol-secure-https

(accessed 2017-04-14)
9https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

(accessed 2017-04-14)
10https://www.techopedia.com/definition/24402/asynchronous-javascript-and-xml-ajax

(accessed 2017-04-14)

77

https://www.techopedia.com/definition/5361/hypertext-transport-protocol-secure-https
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.techopedia.com/definition/24402/asynchronous-javascript-and-xml-ajax

6 Implementation

State Description
POST A resource is transmitted from the client to the server.

A new resource is created or an existing one is
modified. The POST method does not have the
property “idempotence“. Therefore, it can happen
that the same request leads to different behavior.

GET The client requests a resource from the server. If the
resource is available, the server responds with the
requested resource.

PUT A resource is sent to the server. If the resource does
not exist, a new one is created, otherwise the existing
one is modified. The PUT method has the property
“idempotence“.

DELETE An existing resource should be deleted.

Table 6.2: Most common States of the HTTP Protocol (W3, 2017)

Security gap number 1 – the self-developed REST call interfaces

REST calls must be secured from unauthorized usage. Jira provides a REST
API11 and those REST interfaces are protected. To execute some of them,
administrator access is compulsory. However, the Timesheet add-on uses
also self-defined REST interfaces to provide a broader communication base.
Exactly those interfaces are vulnerable to security attacks. When the server
receives a request from the client it only proves if the user exists. There
are no further checks like is the user an administrator or a coordinator of
a team. An attacker can simply crawl all data by entering the right rest
call URL. He only has to know the correct URL address. He just needs to
open a preferred web browser and open the console. For instance, in Google
Chrome you can see all calls which were sending and receiving data by the
client. Moreover you can see if the REST call was successful. If not, an error
code is shown which helps to narrow down the problem.

But not only data can be read, it is also possible to manipulate data. This is
possible because the server only checks if the user exists, but no permission

11https://docs.atlassian.com/jira/REST/server/ (accessed 2017-04-14)

78

https://docs.atlassian.com/jira/REST/server/

6.2 Realization & Implementation

Permission Description
Anonymous User No Access
Jira User Can view his timesheet.
Coordinator Can see all timesheets of his team.
Read Only User Can see all available timesheets. Only

has read access.
Timesheet Administrator Can read, modify and delete all

timesheets.
Jira Administrator Can only manage the Jira platform.

Has no access to timesheet data.

Table 6.3: Permissions a user can have

checks are carried out. Thus an attacker can manipulate a timesheet - or in
the worst delete it – if he only knows the specified timesheet ID. Due to the
fact that the IDs are numbered consecutively from 1 to infinity it should not
be a high effort to guess the correct ID. The timesheet ID is used very often
and so many REST calls only need the ID as parameter. Because of all these
facts, a capable user can cause enormous damage to the whole system.

To fix that problem, several permission checks were inserted. Table 6.3
shows the different permissions a user can have.

Some of the user roles already exist, but there were no permissions mapped
with those. This step has been completed now. It should be mentioned that
the Jira administrator also had full access to all timesheet data, but did not
need them. Even not project specific persons can be a Jira administrator, so
access rights were restricted for this role. Now they do not have access rights
to view all timesheet data. The timesheet administrator role is introduced
and has full access rights.

Security gap number 2 – administrator sides are open

The Timesheet add-on consists of two parts. In the user area users can man-
age their timesheets. Coordinators have an overview about all timesheets
of a specific team. A coordinator can only see the timesheets of his team

79

6 Implementation

members. In the administrator area admins can create or delete a category
or assign team members to a team. Normally if a user is not an adminis-
trator the links to the admin sections are hidden but still accessible. If the
user knows the URL address of the admin area, he can access it because
the server only checks if the user exists. Therefore the same prevention
was applied as before. Moreover, it was possible to import or export all
timesheets. In the absolute worst case scenario, a normal user was able to
drop the database of the timesheet data. Now the server checks if the user
has the permissions, otherwise he will be redirected to Jira login page.

6.2.6 Compatibility, Stability and Performance

The Timesheet add-on was tested on Google Chrome and Opera browser.
All other browsers were not supported in the past.

In Firefox there was a nasty problem with the sending of timesheet data. The
JS function click of the saveButton object had no event, but it was needed.
So we defined an object event as a parameter for the event handler and it
worked. In Google Chrome browser it worked without defining it because it
tries to find the event variable in the global scope. Chrome always provides
the event object in the global scope, hence no error occurred, but Firefox
does not (Kling, 2017).

To solve the bug we used the following two statements:

form.saveButton.click(function (event) {

event.preventDefault ();

...

}

First, we pass the parameter event to the function. Afterwards we define
that the execution of the standard behaviour should be ignored. When we
click on the save button, no event is executed and the site is not reloaded
anymore. We used the function preventDefault which prevents the execution
of an event. The final solution can be found on Stackoverflow.com where

80

6.2 Realization & Implementation

this case is described in more detail (Kling, 2017).

Apple products had the problem that the Safari12 engine was not able
to understand the time format. The reason was that we used an unsup-
ported date and time format. Firefox and Chrome support this time format,
hence no error occurred. You can read more about it under (Stackoverflow,
2017). The add-on was also tested with iOS smartphones, Ipads and Mac
Books.

Microsoft’s newest browser Edge13 is now supported as well as Firefox
and Safari. The add-on was tested on different operating systems such as
Windows14, Linux15 and Mac OS16.

After the migration, the timesheet was very slow and did not react very
smoothly to user inputs. The reason was that in the JS source code many
data were queried several times from the server and therefore the loading of
the page was very long. Now the data are loaded only once from the server
and cached locally. This step significantly improved the processing speed
of the add-on. With a powerful code analysing tool which is integrated in
IntelliJ IDEA from JetBrains17 it was possible to detect buggy code e.g. code
that always returns true or false independent from the input. Thus it was
possible to increase the code quality and hence the system stability.

6.2.7 Improvements

The user interface of the timesheet has been redesigned. Due to the lack of
screen space some timesheet columns were hidden by default. They will

12https://www.apple.com/safari/ (accessed 2017-04-14)
13https://www.microsoft.com/de-at/windows/microsoft-edge

(accessed 2017-04-14)
14https://www.microsoft.com/de-at/windows/get-windows-10

(accessed 2017-04-14)
15https://www.ubuntu.com/ (accessed 2017-04-14)
16https://www.apple.com/at/macos/sierra/ (accessed 2017-04-14)
17https://www.jetbrains.com/idea/ (accessed 2017-04-28)

81

https://www.apple.com/safari/
https://www.microsoft.com/de-at/windows/microsoft-edge
https://www.microsoft.com/de-at/windows/get-windows-10
https://www.ubuntu.com/
https://www.apple.com/at/macos/sierra/
https://www.jetbrains.com/idea/

6 Implementation

Figure 6.1: Inactive category is selected

only be shown if a special category is selected in the drop down menu.
These special categories are:

• Inactive
• Inactive & Offline
• all categories which contain the string “PP”

Inactive, Inactive & Offline category

If one of these categories is selected, only columns Date, Category, Inactive
Until and Task Description are visible. In Figure 6.1 the inactive category is
selected.

82

6.2 Realization & Implementation

Refactoring (PP)

If a category contains the string “PP”, it is clear that it is a pair program-
ming category. For this purpose the pair programming field previously
called partner is shown. Figure 6.2 shows the selected pair programming
category.

83

6 Implementation

Figure 6.2: Pair Programming category is selected

84

6.3 Software Testing

6.3 Software Testing

After the migration process, it had to be ensured that the requirements
were met. To validate the correctness of the program all tests were started.
Many of them had already been written by Adrian Schnedlitz but were also
adapted to the new platform version. Because the tests did not cover the
new functionalities, new test cases were implemented. Our testing phase
consists of three parts:

• Test Environment
• Test Framework
• Additional Software Testing Group

Software tests are very powerful to find bugs in code. Every time you change
a code piece, you can run all test cases and see if the implementation still
fulfils the requirements. If not, you can easily find where the problem is. But
test cases cannot test all kinds of problems. For instance, performance issues
can only be tested on the physical server. The reaction time depends on the
network connection to the server. If the connection is very fast, you will not
see any difference if the data are requested from the server several times
or just once. But if data is not cached, this can lead to huge performance
degradation.

The previous example is very similar to the next one. Security issues are very
hard to handle because they are not so obvious. The add-on is protected over
HTTPS which prevents the recording of data. But nobody has considered
that all data were automatically decoded by the client. You only need a Jira
account to get access to the necessary page. In our case the weakest link in
the chain was not the encryption but the server which did not check if a
user had the permissions to get the requested data.

85

6 Implementation

6.3.1 Test Environment

We developed the add-on in a virtual machine locally. Due to the fact that the
behavior of a virtual server running on a virtual machine could be different
compared to a physical one we also used a test server for testing. We used a
test server with a live demo version. The test server had an old Jira backup
version from our productive live instance and was updated to Jira 7. There
we tried out all the different states the add-on can have. Several users tried
to add or delete timesheet entries simultaneously. Bugs were reported in Jira.

As mentioned earlier, security and performance issues were identified dur-
ing the test phase. The stability was increased by eliminating bugs in rarely
used functions. Database errors such as data inconsistency were also fixed.
We used the timesheet importer and exporter to save and restore timesheet
data like configuration settings or timesheet data.

6.3.2 Test Framework

As test framework we used PowerMock18 combined with normal JUnit19

tests. PowerMock is a framework that uses bytecode manipulation to enable
mocking of static methods, constructors, final classes and methods, private
methods and many more. It uses a custom class loader. It extends many
other mocking libraries such as EasyMock20.

6.3.3 Additional Software Testing Group

The add-on was tested by the Catrobat team. Users reported many bugs
which finally helped us to improve the stability of the add-on. After the
add-on had been well tested it was rolled out to all students. The current
Google timesheet was replaced by our own one.

18http://powermock.github.io/ (accessed 2017-04-28)
19http://junit.org/junit4/ (accessed 2017-04-30)
20http://easymock.org/ (accessed 2017-04-30)

86

http://powermock.github.io/
http://junit.org/junit4/
http://easymock.org/

6.4 Results

6.3.4 Updating Jira Software Server & Backups

The Jira test server and the productive instance were updated to the latest
version (currently 7.2). The upgrading process was first applied to the test
instance and on success also to the productive instance. This ensured the
failure safety.

6.4 Results

The Timesheet add-on was successfully updated from version 6 to 7. Many
additional requirements were implemented to complete the add-on. A test
run was done with Catrobat team members to ensure that all functions
meet the requirements. The add-on was well tested and rolled out for all
Catrobat team members. It should be mentioned that the current add-on is
only compatible as long as the main version is not changed. The Atlassian
SDK is neither upwards nor downwards compatible. Due to the fact that
Atlassian makes big changes in each major version it cannot be guaranteed
that it will still work with future releases.

87

7 Summary and Future Work

In the final chapter we want to recapitulate the most important information
and give an outlook for future work.

7.1 Summary

The Timesheet add-on is an online timetracking tool for education and helps
students to manage their time better. It is used by the Catrobat organisation
because it completely fulfils the requirements of the Catrobat project. The
add-on was upgraded to version 7, otherwise the add-on could not have
been used in our project. By switching to the new major version, many
problems arose which could be solved successfully. The add-on had to be
migrated to the new platform. We chose the Chicken Little methodology as
migration strategy. The pros and cons of this approach were discussed.

According to the Chicken Little approach 2.2.3, the source code was split
into pieces and then migrated step by step. The Cold Turkey approach
would have resulted in a new development and would have been too la-
borious. In principle, the migration would have been possible in one step
but it would have been very difficult. The complexity was very high and
perhaps only an expert could have done it. Therefore, a very large prob-
lem was divided into many smaller parts because they were easier to handle.

After the migration process stability, safety, compatibility and speed were
emphasized. Security features were implemented that check if a user has
the permission to request a resource. Many web browsers are supported
now. Also the add-on is more stable and can react faster on user inputs
through further improvements.

88

7.2 Future Work

Finally, a test run was started with the Catrobat team members to en-
sure the correctness of the program. Bugs reported by members were fixed
and the availability was increased. This guarantees the future usability of
the Timesheet add-on. The add-on is already used in Catrobat.

7.2 Future Work

Future Work can include requirements like ones in Table 7.1.

The main points relate to the email notifications. The settings could be
extended so that it is possible to decide who is informed and how often
the person is informed during a period of time. Currently users only get
email notifications if they are inactive but not when they are disabled. Also
it would be better for coordinators and timesheet administrators to get
summarized reports about all user activities at once. This would reduce the
number of notifications and would help to improve the overview. These
reports could be sent in specific time intervals, e.g. once a month.

The team visualization works only for one team. If a user is in more than
one team, the diagrams are not drawn correctly. The reason for this prob-
lem is currently unknown. It might be great if it also worked for many teams.

A great feature would be the automatic backup of all timesheets on the
server or in a cloud. Not every user would have to save his timesheet
locally from time to time. Configuration settings could also be saved. In
the case of a total failure, the data would not be lost. This would signifi-
cantly reduce the damage and would help to recover the system much faster.

Last but not least, it would be nice to reimport a timesheet in the same way
as it was exported before. Currently when a timesheet is exported, a new
file is created but it cannot be uploaded to the server again. Instead, the
file must be opened and all entries must be copied manually. This is very
cumbersome. It would be better if the file could be uploaded directly to the
server.

89

7 Summary and Future Work

Requirement Description
Notification It should be possible to specify who

receives notifications
Notification The email notifications should have a

description
Notification Users should be informed when they

were disabled
Notification Inactive users should receive emails

periodically
E-Mail Coordinators should receive

summary reports about all inactive
and disabled users

Visualization Team visualizations should work for
more than one team

Database Management Changes in database should be
logged

Database Management All timesheets should be periodically
saved by the system

Language Support German language should also be
supported

Table 7.1: Future Requirements

90

Appendix

92

The project was renamed from TimePunch in Timesheet for legal reasons.
The complete code of the Timesheet can be found on Github -
https://github.com/Catrobat/Timesheet

94

https://github.com/Catrobat/Timesheet

Bibliography

Allman, Eric (2012). “Managing Technical Debt.” In: Commun. ACM 55.5,
pp. 50–55. issn: 0001-0782. doi: 10.1145/2160718.2160733. url: http:
//doi.acm.org/10.1145/2160718.2160733 (cit. on p. 39).

Apache (2017). Apache Homepage. visited on 2017-06-05. url: http : / /

velocity.apache.org (cit. on p. 7).
Arnold, M. and T. Braithwaite (2017). Homepage Financial Times. visited on

2017-05-21. url: https://www.ft.com/content/90360dbe-15cb-11e5-
a58d-00144feabdc0 (cit. on p. 34).

Atlassian (2017a). Active Objects. visited on 2017-06-05. url: https : / /

developer.atlassian.com/docs/atlassian-platform-common-components/

active-objects (cit. on p. 46).
Atlassian (2017b). Atlassian Support End of Life Policy. visited on 2017-04-

07. url: https://confluence.atlassian.com/support/atlassian-
support-end-of-life-policy-201851003.html (cit. on p. 48).

Atlassian (2017c). Getting Started. visited on 2017-04-07. url: https://
developer.atlassian.com/docs/getting-started (cit. on p. 48).

Atlassian (2017d). JIRA 7 removes non-deprecated methods in UserProjectHisto-
ryManager. visited on 2017-04-12. url: https://jira.atlassian.com/
browse/JRASERVER-43526 (cit. on p. 70).

Bateman, A. and J. Murphy (1994). “Migration of Legacy Systems.” In: School
of Computer Applications. Dublin: Dublin City University: Dublin (cit. on
pp. 25, 27).

Bennett, K. (1995). “Legacy systems coping with success.” In: IEEE Software
12.1, pp. 19–23. issn: 0740-7459. doi: 10.1109/52.363157 (cit. on p. 10).

Bennett, K. H., M. Ramage, and M. Munro (1999). “Decision model for
legacy systems.” In: IEE Proceedings - Software 146.3, pp. 153–159. issn:
1462-5970. doi: 10.1049/ip-sen:19990617 (cit. on p. 10).

96

https://doi.org/10.1145/2160718.2160733
http://doi.acm.org/10.1145/2160718.2160733
http://doi.acm.org/10.1145/2160718.2160733
http://velocity.apache.org
http://velocity.apache.org
https://www.ft.com/content/90360dbe-15cb-11e5-a58d-00144feabdc0
https://www.ft.com/content/90360dbe-15cb-11e5-a58d-00144feabdc0
https://developer.atlassian.com/docs/atlassian-platform-common-components/active-objects
https://developer.atlassian.com/docs/atlassian-platform-common-components/active-objects
https://developer.atlassian.com/docs/atlassian-platform-common-components/active-objects
https://confluence.atlassian.com/support/atlassian-support-end-of-life-policy-201851003.html
https://confluence.atlassian.com/support/atlassian-support-end-of-life-policy-201851003.html
https://developer.atlassian.com/docs/getting-started
https://developer.atlassian.com/docs/getting-started
https://jira.atlassian.com/browse/JRASERVER-43526
https://jira.atlassian.com/browse/JRASERVER-43526
https://doi.org/10.1109/52.363157
https://doi.org/10.1049/ip-sen:19990617

Bibliography

Bianchi, A. et al. (2003). “Iterative reengineering of legacy systems.” In: IEEE
Transactions on Software Engineering 29.3, pp. 225–241. issn: 0098-5589.
doi: 10.1109/TSE.2003.1183932 (cit. on pp. 24, 28).

Bisbal, J., D. Lawless, Bing Wu, and J. Grimson (1999). “Legacy information
systems: issues and directions.” In: IEEE Software 16.5, pp. 103–111. issn:
0740-7459. doi: 10.1109/52.795108 (cit. on pp. xvi, 10, 13, 14, 17, 20, 21,
23, 24, 28–30).

Bisbal, J., D. Lawless, Bing Wu, J. Grimson, et al. (1997). “An overview
of legacy information system migration.” In: Proceedings of Joint 4th
International Computer Science Conference and 4th Asia Pacific Software
Engineering Conference, pp. 529–530. doi: 10.1109/APSEC.1997.640219
(cit. on p. 25).

Boehm, Barry W. (1981). Software Engineering Economics. 1st. Upper Saddle
River, NJ, USA: Prentice Hall PTR. isbn: 0138221227 (cit. on pp. xvi, 36,
37).

Brodie, Michael L. and Michael Stonebraker (1995). Migrating legacy systems:
Gateways, interfaces and the incremental approach. The Morgan Kaufmann
series in data management systems. San Francisco, Calif: Kaufmann
Publ. isbn: 1558603301 (cit. on pp. 23, 24).

Brodie, Michael L., Michael Stonebraker, and Se Ai (1993). DARWIN: On the
Incremental Migration of Legacy Information Systems (cit. on pp. 23–25, 27).

Burwinklepple, Christine (2017). End of support for JIRA 6.4: FAQs about
upgrading. visited on 2017-04-07. url: https://www.atlassian.com/
blog/jira-software/end-of-support-for-jira-6-4 (cit. on p. 48).

Carr, D. and R. J. Kizior (2000). “The case for continued Cobol education.” In:
IEEE Software 17.2, pp. 33–36. issn: 0740-7459. doi: 10.1109/52.841603
(cit. on p. 34).

Carver, J. C. et al. (2017). “GitHub, Technical Debt, Code Formatting, and
More.” In: IEEE Software 34.2, pp. 105–107. issn: 0740-7459. doi: 10.
1109/MS.2017.51 (cit. on p. 41).

Catrobat (2017). PocketCode Homepage. visited on 2017-04-07. url: https:
//share.catrob.at/pocketcode/ (cit. on p. 55).

Chen, H. et al. (2014). “Device driver generation targeting multiple oper-
ating systems using a model-driven methodology.” In: 2014 25nd IEEE
International Symposium on Rapid System Prototyping, pp. 30–36. doi:
10.1109/RSP.2014.6966689 (cit. on p. 15).

97

https://doi.org/10.1109/TSE.2003.1183932
https://doi.org/10.1109/52.795108
https://doi.org/10.1109/APSEC.1997.640219
https://www.atlassian.com/blog/jira-software/end-of-support-for-jira-6-4
https://www.atlassian.com/blog/jira-software/end-of-support-for-jira-6-4
https://doi.org/10.1109/52.841603
https://doi.org/10.1109/MS.2017.51
https://doi.org/10.1109/MS.2017.51
https://share.catrob.at/pocketcode/
https://share.catrob.at/pocketcode/
https://doi.org/10.1109/RSP.2014.6966689

Bibliography

Cimitile, A., H. Muller, and R. R. Klosch (eds.) (1997). “Pulling Together.” In:
Proceedings of the ICSE-97 on Software Engineering. Workshop on Migration
Strategies for Legacy Systems. Available as Technical Report TUV-1841-97-06
from Technical University of Vienna, A-1040 Vienna, Austria (cit. on p. 10).

Colosimo, Massimo et al. (2009). “Evaluating legacy system migration tech-
nologies through empirical studies.” In: Information and Software Tech-
nology 51.2, pp. 433–447. issn: 0950-5849. doi: http://dx.doi.org/10.
1016/j.infsof.2008.05.012. url: http://www.sciencedirect.com/
science/article/pii/S0950584908000694 (cit. on p. 11).

Comella-Dorda, S. et al. (2000). “A survey of black-box modernization
approaches for information systems.” In: Proceedings 2000 International
Conference on Software Maintenance, pp. 173–183. doi: 10.1109/ICSM.
2000.883039 (cit. on pp. xviii, 12, 17–19).

Confluence (2017). Confluence Homepage. visited on 2017-06-17. url: https:
//www.atlassian.com/software/confluence (cit. on p. 5).

Crotty, James and Ivan Horrocks (2016). “Managing legacy system costs:
A case study of a meta-assessment model to identify solutions in a
large financial services company.” In: Applied Computing and Informatics,
pp. -. issn: 2210-8327. doi: https://doi.org/10.1016/j.aci.2016.
12.001. url: http://www.sciencedirect.com/science/article/pii/
S2210832716301260 (cit. on p. 34).

Cunningham, Ward (1992). “The WyCash Portfolio Management System.”
In: Addendum to the Proceedings on Object-oriented Programming Systems,
Languages, and Applications (Addendum). OOPSLA ’92. Vancouver, British
Columbia, Canada: ACM, pp. 29–30. isbn: 0-89791-610-7. doi: 10.1145/
157709.157715. url: http://doi.acm.org/10.1145/157709.157715
(cit. on p. 38).

Eilebrecht, Karl and Gernot Starke (2010a). “Einleitung.” In: Patterns kompakt:
Entwurfsmuster für effektive Software-Entwicklung. Heidelberg: Spektrum
Akademischer Verlag, pp. 1–4. isbn: 978-3-8274-2526-3. doi: 10.1007/
978-3-8274-2526-3_1. url: http://dx.doi.org/10.1007/978-3-8274-
2526-3_1 (cit. on p. 42).

Eilebrecht, Karl and Gernot Starke (2010b). “Grundlagen des Software-
Entwurfs.” In: Patterns kompakt: Entwurfsmuster für effektive Software-
Entwicklung. Heidelberg: Spektrum Akademischer Verlag, pp. 5–18. isbn:
978-3-8274-2526-3. doi: 10.1007/978-3-8274-2526-3_2. url: http:
//dx.doi.org/10.1007/978-3-8274-2526-3_2 (cit. on pp. 42, 43).

98

https://doi.org/http://dx.doi.org/10.1016/j.infsof.2008.05.012
https://doi.org/http://dx.doi.org/10.1016/j.infsof.2008.05.012
http://www.sciencedirect.com/science/article/pii/S0950584908000694
http://www.sciencedirect.com/science/article/pii/S0950584908000694
https://doi.org/10.1109/ICSM.2000.883039
https://doi.org/10.1109/ICSM.2000.883039
https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/confluence
https://doi.org/https://doi.org/10.1016/j.aci.2016.12.001
https://doi.org/https://doi.org/10.1016/j.aci.2016.12.001
http://www.sciencedirect.com/science/article/pii/S2210832716301260
http://www.sciencedirect.com/science/article/pii/S2210832716301260
https://doi.org/10.1145/157709.157715
https://doi.org/10.1145/157709.157715
http://doi.acm.org/10.1145/157709.157715
https://doi.org/10.1007/978-3-8274-2526-3_1
https://doi.org/10.1007/978-3-8274-2526-3_1
http://dx.doi.org/10.1007/978-3-8274-2526-3_1
http://dx.doi.org/10.1007/978-3-8274-2526-3_1
https://doi.org/10.1007/978-3-8274-2526-3_2
http://dx.doi.org/10.1007/978-3-8274-2526-3_2
http://dx.doi.org/10.1007/978-3-8274-2526-3_2

Bibliography

Erdle, Christoph (2005). “Management von Softwaresystemen.” In: url:
http://www4.in.tum.de/lehre/seminare/hs/WS0506/mvs/files/

Ausarbeitung_Erdle.pdf (cit. on pp. 28, 29).
Fontana, F. A., V. Ferme, and S. Spinelli (2012). “Investigating the impact of

code smells debt on quality code evaluation.” In: 2012 Third International
Workshop on Managing Technical Debt (MTD), pp. 15–22. doi: 10.1109/
MTD.2012.6225993 (cit. on p. 41).

Fowler, Martin et al. (1999). Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley. isbn: 0-201-48567-2 (cit. on pp. 39,
41).

Freeman, Eric and Elisabeth Freeman (2006). Entwurfsmuster von Kopf bis
Fuß. Köln: O’Reilly. isbn: 3-89721-421-0 (cit. on pp. 43, 45).

Gangadharan, G. R. et al. (2013). “IT Innovation Squeeze: Propositions
and a Methodology for Deciding to Continue or Decommission Legacy
Systems.” In: Grand Successes and Failures in IT. Public and Private Sectors:
IFIP WG 8.6 International Working Conference on Transfer and Diffusion of IT,
TDIT 2013, Bangalore, India, June 27-29, 2013. Proceedings. Ed. by Yogesh K.
Dwivedi et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 481–
494. isbn: 978-3-642-38862-0. doi: 10.1007/978-3-642-38862-0_30. url:
http://dx.doi.org/10.1007/978-3-642-38862-0_30 (cit. on p. 34).

Git (2017). Git Homepage. visited on 2017-06-17. url: https://git-scm.com/
(cit. on p. 5).

Google (2017). Google Homepage. visited on 2017-06-05. url: https : / /

developers.google.com/closure/templates/ (cit. on p. 46).
Goyla, F. P. (2000). “Legacy integration-changing perspectives [Cobol].” In:

IEEE Software 17.2, pp. 37–41. issn: 0740-7459. doi: 10.1109/52.841604
(cit. on p. 17).

H2database (2017). H2database Homepage. visited on 2017-04-12. url: http://
www.h2database.com/html/performance.html#performance_comparison

(cit. on p. 70).
Ismail, Nick (2017). Legacy systems: the next financial crisis? visited on 2017-

05-21. url: http://www.information-age.com/legacy-systems-next-
financial-crisis-123465888/ (cit. on p. 34).

Karthikeyan, T. and T. Nandhini (2016). “Dependent component cost model
of legacy application for hybrid cloud.” In: 2016 International Conference
on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–5. doi:
10.1109/ICCPCT.2016.7530154 (cit. on p. 35).

99

http://www4.in.tum.de/lehre/seminare/hs/WS0506/mvs/files/Ausarbeitung_Erdle.pdf
http://www4.in.tum.de/lehre/seminare/hs/WS0506/mvs/files/Ausarbeitung_Erdle.pdf
https://doi.org/10.1109/MTD.2012.6225993
https://doi.org/10.1109/MTD.2012.6225993
https://doi.org/10.1007/978-3-642-38862-0_30
http://dx.doi.org/10.1007/978-3-642-38862-0_30
https://git-scm.com/
https://developers.google.com/closure/templates/
https://developers.google.com/closure/templates/
https://doi.org/10.1109/52.841604
http://www.h2database.com/html/performance.html#performance_comparison
http://www.h2database.com/html/performance.html#performance_comparison
http://www.information-age.com/legacy-systems-next-financial-crisis-123465888/
http://www.information-age.com/legacy-systems-next-financial-crisis-123465888/
https://doi.org/10.1109/ICCPCT.2016.7530154

Bibliography

KCOM (2017). KCOM Homepage. visited on 2017-05-11. url: http://www.
kcom.com/connected- thinking/opinion/calculating- the- true-

cost-of-legacy-it-systems/ (cit. on p. 32).
Kent, J. and M. Dewey (2016). “Legacy test systems Replace or maintain.”

In: 2016 IEEE AUTOTESTCON, pp. 1–5. doi: 10.1109/AUTEST.2016.
7589645 (cit. on p. 15).

Kling, Felix (2017). Ajax post working in Chrome, but not in Firefox. visited
on 2017-05-08. url: http://stackoverflow.com/questions/18274383/
ajax-post-working-in-chrome-but-not-in-firefox (cit. on pp. 80,
81).

Koitz, Roxane and Wolfgang Slany (2014). “Empirical Comparison of Vi-
sual to Hybrid Formula Manipulation in Educational Programming
Languages for Teenagers.” In: Proceedings of the 5th Workshop on Eval-
uation and Usability of Programming Languages and Tools. PLATEAU ’14.
Portland, Oregon, USA: ACM, pp. 21–30. isbn: 978-1-4503-2277-5. doi:
10.1145/2688204.2688209. url: http://doi.acm.org/10.1145/
2688204.2688209 (cit. on p. 55).

Li, X. (2010). “A multi-Agent based legacy information system integration
strategy.” In: 2010 International Conference on Networking and Digital
Society. Vol. 2, pp. 72–75. doi: 10.1109/ICNDS.2010.5479398 (cit. on
pp. 10, 14).

Li, Z., P. Avgeriou, and P. Liang (2015). “A systematic mapping study on
technical debt and its management.” In: Journal of Systems and Software
101. PT: J; NR: 33; TC: 5; J9: J SYST SOFTWARE; PG: 28; GA: CB3CY;
UT: WOS:000349507000015, pp. 193–220. issn: 0164-1212. doi: 10.1016/
j.jss.2014.12.027 (cit. on p. 39).

Littlejohn, K., M. V. DelPrincipe, and J. D. Preston (2000). “Embedded
information system re-engineering.” In: IEEE Aerospace and Electronic
Systems Magazine 15.11, pp. 3–7. issn: 0885-8985. doi: 10.1109/62.
888319 (cit. on pp. 12, 14, 15).

Makki, S. K. (2006). “The Integration and Interoperability Issues of Legacy
and Distributed Systems.” In: 2006 Seventh International Conference on
Web-Age Information Management Workshops, pp. 21–21. doi: 10.1109/
WAIMW.2006.30 (cit. on pp. xvi, 11).

Martini, A., T. Besker, and J. Bosch (2016). “The Introduction of Technical
Debt Tracking in Large Companies.” In: 2016 23rd Asia-Pacific Software

100

http://www.kcom.com/connected-thinking/opinion/calculating-the-true-cost-of-legacy-it-systems/
http://www.kcom.com/connected-thinking/opinion/calculating-the-true-cost-of-legacy-it-systems/
http://www.kcom.com/connected-thinking/opinion/calculating-the-true-cost-of-legacy-it-systems/
https://doi.org/10.1109/AUTEST.2016.7589645
https://doi.org/10.1109/AUTEST.2016.7589645
http://stackoverflow.com/questions/18274383/ajax-post-working-in-chrome-but-not-in-firefox
http://stackoverflow.com/questions/18274383/ajax-post-working-in-chrome-but-not-in-firefox
https://doi.org/10.1145/2688204.2688209
http://doi.acm.org/10.1145/2688204.2688209
http://doi.acm.org/10.1145/2688204.2688209
https://doi.org/10.1109/ICNDS.2010.5479398
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1109/62.888319
https://doi.org/10.1109/62.888319
https://doi.org/10.1109/WAIMW.2006.30
https://doi.org/10.1109/WAIMW.2006.30

Bibliography

Engineering Conference (APSEC), pp. 161–168. doi: 10.1109/APSEC.2016.
032 (cit. on pp. 40, 41).

Menychtas, A., K. Konstanteli, et al. (2014). “Software modernization and
cloudification using the artist migration methodology and framework.”
English. In: Scalable Computing 15.2, pp. 131–152. url: www.scopus.com
(cit. on p. 12).

Menychtas, A., C. Santzaridou, et al. (2013). “ARTIST Methodology and
Framework: A Novel Approach for the Migration of Legacy Software
on the Cloud.” In: 2013 15th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pp. 424–431. doi: 10.1109/
SYNASC.2013.62 (cit. on p. 12).

Mukhija, Arun (2003). Estimating Software Maintenance. Requirements Engi-
neering Research Group Institut fuer Informatik Universitaet Zuerich
(cit. on pp. xvi, 37).

Paulson, L. D. (2001). “Mainframes, Cobol still popular.” In: IT Professional
3.5, pp. 12–14. issn: 1520-9202. doi: 10.1109/6294.952975 (cit. on pp. 33,
34).

Power, K. (2013). “Understanding the impact of technical debt on the ca-
pacity and velocity of teams and organizations: Viewing team and
organization capacity as a portfolio of real options.” In: 2013 4th In-
ternational Workshop on Managing Technical Debt (MTD), pp. 28–31. doi:
10.1109/MTD.2013.6608675 (cit. on p. 39).

Sarrab, Mohamed, Mahmoud Elbasir, and Laila Elgamel (2013). “The Tech-
nical, Non-technical Issues and the Challenges of Migration to Free and
Open Source Software.” In: IJCSI International Journal of Computer Science
Issues Vol. 10, Issue 2, No 3.ISSN (Print): 1694-0814 — ISSN (Online):
1694-0784, pp. 464–469 (cit. on p. 22).

Schnedlitz, Adrian (2016). “TimePunch - An Online Timetracking Tool for
Education.” MA thesis. Graz University of Technology (cit. on pp. 3, 7,
48, 66, 68).

Schneidewind, N. F. and C. Ebert (1998). “Preserve or Redesign Legacy
Systems [Guest Editor’s Introduction].” In: IEEE Software 15.4, pp. 14–17.
issn: 0740-7459. doi: 10.1109/MS.1998.687937 (cit. on p. 35).

Scratch (2017). Scratch Homepage. visited on 2017-04-07. url: https://

scratch.mit.edu/ (cit. on p. 57).
Slany, W. (2012). “A mobile visual programming system for Android smart-

phones and tablets.” In: 2012 IEEE Symposium on Visual Languages and

101

https://doi.org/10.1109/APSEC.2016.032
https://doi.org/10.1109/APSEC.2016.032
www.scopus.com
https://doi.org/10.1109/SYNASC.2013.62
https://doi.org/10.1109/SYNASC.2013.62
https://doi.org/10.1109/6294.952975
https://doi.org/10.1109/MTD.2013.6608675
https://doi.org/10.1109/MS.1998.687937
https://scratch.mit.edu/
https://scratch.mit.edu/

Bibliography

Human-Centric Computing (VL/HCC), pp. 265–266. doi: 10.1109/VLHCC.
2012.6344546 (cit. on pp. 55, 57).

Slany, Wolfgang (2014). “Pocket Code: A Scratch-like Integrated Develop-
ment Environment for Your Phone.” In: Proceedings of the Companion
Publication of the 2014 ACM SIGPLAN Conference on Systems, Programming,
and Applications: Software for Humanity. SPLASH ’14. Portland, Oregon,
USA: ACM, pp. 35–36. isbn: 978-1-4503-3208-8. doi: 10.1145/2660252.
2664662. url: http://doi.acm.org/10.1145/2660252.2664662 (cit. on
pp. 53, 55).

Sneed, H. M. (2001). “Extracting business logic from existing COBOL pro-
grams as a basis for redevelopment.” In: Proceedings 9th International
Workshop on Program Comprehension. IWPC 2001, pp. 167–175. doi: 10.
1109/WPC.2001.921728 (cit. on pp. 16, 33).

Souiou, Wafa and Nora Bounour (2013). “Migration of legacy systems to
service oriented architecture.” In: The Second International Conference
on Digital Enterprise and Information Systems (DEIS2013). The Society of
Digital Information and Wireless Communication, pp. 166–173 (cit. on
pp. 11, 12).

Stackoverflow (2017). Stackoverflow Homepage. visited on 2017-04-09. url:
http://stackoverflow.com/questions/3085937/safari-js-cannot-

parse-yyyy-mm-dd-date-format (cit. on p. 81).
Stangaroneifi20, Joe (2017). What is the true cost of your legacy applications?

visited on 2017-05-21. url: http://www.mrc-productivity.com/blog/
2015/03/whats-the-true-cost-of-your-legacy-applications/ (cit.
on pp. 32, 33).

Store, Android (2017). Android Store Homepage. visited on 2017-04-07. url:
https://play.google.com/store/apps/details?id=org.catrobat.

catroid&hl=de (cit. on p. 57).
Technopedia (2017a). Technopedia Hoempage. visited on 2017-06-17. url:

https://www.techopedia.com/definition/24022/remote-procedure-

call-rpc (cit. on p. 7).
Technopedia (2017b). Technopedia Homepage. visited on 2017-06-17. url:

https : / / www . techopedia . com / definition / 24407 / application -

programming-interface-api (cit. on p. 4).
Technopedia (2017c). Technopedia Homepage. visited on 2017-04-14. url:

https : / / www . techopedia . com / definition / 24402 / asynchronous -

javascript-and-xml-ajax (cit. on p. 4).

102

https://doi.org/10.1109/VLHCC.2012.6344546
https://doi.org/10.1109/VLHCC.2012.6344546
https://doi.org/10.1145/2660252.2664662
https://doi.org/10.1145/2660252.2664662
http://doi.acm.org/10.1145/2660252.2664662
https://doi.org/10.1109/WPC.2001.921728
https://doi.org/10.1109/WPC.2001.921728
http://stackoverflow.com/questions/3085937/safari-js-cannot-parse-yyyy-mm-dd-date-format
http://stackoverflow.com/questions/3085937/safari-js-cannot-parse-yyyy-mm-dd-date-format
http://www.mrc-productivity.com/blog/2015/03/whats-the-true-cost-of-your-legacy-applications/
http://www.mrc-productivity.com/blog/2015/03/whats-the-true-cost-of-your-legacy-applications/
https://play.google.com/store/apps/details?id=org.catrobat.catroid&hl=de
https://play.google.com/store/apps/details?id=org.catrobat.catroid&hl=de
https://www.techopedia.com/definition/24022/remote-procedure-call-rpc
https://www.techopedia.com/definition/24022/remote-procedure-call-rpc
https://www.techopedia.com/definition/24407/application-programming-interface-api
https://www.techopedia.com/definition/24407/application-programming-interface-api
https://www.techopedia.com/definition/24402/asynchronous-javascript-and-xml-ajax
https://www.techopedia.com/definition/24402/asynchronous-javascript-and-xml-ajax

Bibliography

Technopedia (2017d). Technopedia Homepage. visited on 2017-07-10. url:
https://www.techopedia.com/definition/24308/fourth-generation-

programming-language-4gl (cit. on p. 5).
Technopedia (2017e). Technopedia Homepage. visited on 2017-04-14. url:

https://www.techopedia.com/definition/5361/hypertext-transport-

protocol-secure-https (cit. on p. 5).
Technopedia (2017f). Technopedia Homepage. visited on 2017-06-17. url:

https://www.techopedia.com/definition/25326/legacy-code (cit.
on p. 6).

Technopedia (2017g). Technopedia Homepage. visited on 2017-06-17. url:
https://www.techopedia.com/definition/635/legacy-system (cit.
on p. 6).

Technopedia (2017h). Technopedia Homepage. visited on 2017-04-28. url:
https://www.techopedia.com/definition/1352/uniform-resource-

locator-url (cit. on p. 7).
Tripathy, Priyadarshi and Kshirasagar Naik (2014a). “Basic Concepts and

Preliminaries.” In: Software Evolution and Maintenance. John Wiley & Sons,
Inc., pp. 1–24. isbn: 9781118964637. doi: 10.1002/9781118964637.ch1.
url: http://dx.doi.org/10.1002/9781118964637.ch1 (cit. on p. 10).

Tripathy, Priyadarshi and Kshirasagar Naik (2014b). “Legacy Information
Systems.” In: Software Evolution and Maintenance. John Wiley & Sons, Inc.,
pp. 187–222. isbn: 9781118964637. doi: 10.1002/9781118964637.ch5.
url: http://dx.doi.org/10.1002/9781118964637.ch5 (cit. on pp. xvi,
17, 23, 25–28).

UECD (2010). Handbook on Deriving Capital Measures of Intellectual Property
Products. G - Reference, Information and Interdisciplinary Subjects Series.
OECD Publishing. isbn: 9789264072909. url: https://books.google.
at/books?id=UyB1CWnftQ4C (cit. on pp. xviii, 36).

W3 (2017). W3 Homepage. visited on 2017-04-14. url: https://www.w3.org/
Protocols/rfc2616/rfc2616-sec9.html (cit. on pp. xviii, 78).

Webopedia (2017). webopedia homepage. visited on 2017-06-17. url: http:
//www.webopedia.com/TERM/C/comma_delimited.html (cit. on p. 4).

Wu, Bing, D. Lawless, J. Bisbal, J. Grimson, et al. (1997). “Legacy systems
migration-a method and its tool-kit framework.” In: Proceedings of Joint
4th International Computer Science Conference and 4th Asia Pacific Software
Engineering Conference, pp. 312–320. doi: 10.1109/APSEC.1997.640188
(cit. on p. 28).

103

https://www.techopedia.com/definition/24308/fourth-generation-programming-language-4gl
https://www.techopedia.com/definition/24308/fourth-generation-programming-language-4gl
https://www.techopedia.com/definition/5361/hypertext-transport-protocol-secure-https
https://www.techopedia.com/definition/5361/hypertext-transport-protocol-secure-https
https://www.techopedia.com/definition/25326/legacy-code
https://www.techopedia.com/definition/635/legacy-system
https://www.techopedia.com/definition/1352/uniform-resource-locator-url
https://www.techopedia.com/definition/1352/uniform-resource-locator-url
https://doi.org/10.1002/9781118964637.ch1
http://dx.doi.org/10.1002/9781118964637.ch1
https://doi.org/10.1002/9781118964637.ch5
http://dx.doi.org/10.1002/9781118964637.ch5
https://books.google.at/books?id=UyB1CWnftQ4C
https://books.google.at/books?id=UyB1CWnftQ4C
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.webopedia.com/TERM/C/comma_delimited.html
http://www.webopedia.com/TERM/C/comma_delimited.html
https://doi.org/10.1109/APSEC.1997.640188

Bibliography

Wu, Bing, D. Lawless, J. Bisbal, R. Richardson, et al. (1997). “The Butterfly
Methodology: a gateway-free approach for migrating legacy information
systems.” In: Proceedings. Third IEEE International Conference on Engineer-
ing of Complex Computer Systems (Cat. No.97TB100168), pp. 200–205. doi:
10.1109/ICECCS.1997.622311 (cit. on p. 28).

Yli-Huumo, Jesse, Andrey Maglyas, and Kari Smolander (2016). “How
do software development teams manage technical debt? An empirical
study.” In: Journal of Systems and Software 120, pp. 195–218. issn: 0164-
1212. doi: https://doi.org/10.1016/j.jss.2016.05.018. url: http:
//www.sciencedirect.com/science/article/pii/S016412121630053X

(cit. on pp. 38–40).
Zapata, F. et al. (2015). “How to speed up software migration and moderniza-

tion: Successful strategies developed by precisiating expert knowledge.”
In: 2015 Annual Conference of the North American Fuzzy Information Pro-
cessing Society (NAFIPS) held jointly with 2015 5th World Conference on
Soft Computing (WConSC), pp. 1–6. doi: 10.1109/NAFIPS-WConSC.2015.
7284166 (cit. on p. 12).

104

https://doi.org/10.1109/ICECCS.1997.622311
https://doi.org/https://doi.org/10.1016/j.jss.2016.05.018
http://www.sciencedirect.com/science/article/pii/S016412121630053X
http://www.sciencedirect.com/science/article/pii/S016412121630053X
https://doi.org/10.1109/NAFIPS-WConSC.2015.7284166
https://doi.org/10.1109/NAFIPS-WConSC.2015.7284166

