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Abstract

The mean block size as well as the block size distribution of jointed rock mass is an important

parameter in the field of geotechnical engineering. In rock mass characterization, as example,

the block size enters rock mass classification systems. The in situ block size distribution is used

for the design of support measures against rockfall or to design the blast concept of mining and

quarrying. To determine the block size distribution, three dimensional models are commonly

used to simulate a specific area of the rock mass. Key parameters for such modeling systems

are mainly the joint orientation, the spacing and the persistence. These data are practically

gained by outcrop measurements or on the basis of core data in combination with geophysical

measurements. By means of a practical example, this thesis investigates the question, what

effect statistical simplifications of these key parameters have on the calculated block size

distribution. For this purpose, a deterministic reference model, which is purely based on core

data and borehole data, was created with the program 3DEC. This model is then compared to

other, simplified, statistical 3DEC models. Furthermore, the accuracy of analytical solutions

to calculate the mean block volume are tested.

A comparison with block volumes measured on the surface shows that an accurate block size

distribution based solely on borehole data can only be achieved if there is knowledge about

the persistence.

The results of the various models show that certain statistical simplifications, such as the

statistical grouping of single joints to joint sets, represent a sufficiently precise approximation.

Other simplifications, such as the artificial reduction of the number of joint sets, can be

problematic. The analytical calculation methods can partly provide reliable results for the

average block volume, appropriate for certain applications.



Kurzfassung

Sowohl die mittlere Blockgröße als auch die Blockgrößenverteilung von zerklüftetem Gebirge

können für diverse geotechnische Problemstellungen eine entscheidende Kenngröße darstellen.

Für die Gebirgscharakterisierung mit Hilfe von Klassifizierungssystemen wird beispielsweise

die Blockgröße auf verschiedene Arten berücksichtigt. Die Blockgrößenverteilung hingegen,

findet zum Beispiel Anwendung bei der Dimensionierung von Schutzbauwerken gegen Stein-

schlag oder auch bei der Sprengmitteldimensionierung im Lagerstättenwesen.

Die Bestimmung der Blockgrößenverteilung erfolgt vorwiegend mit dreidimensionalen Mod-

ellen, die einen bestimmten Bereich des Gebirges simulieren. Ausschlaggebende Eingangs-

größen für solche Modellierungen sind Gefügeparameter wie Trennflächenorientierung, Trenn-

flächenabstand und Persistenz. Diese Informationen werden in der Praxis durch die Kartierung

von Felsaufschlüssen, oder durch Bohrkernanalysen in Kombination mit geophysikalischen

Messungen gewonnen.

In dieser Arbeit wird an Hand eines Beispiels untersucht, welche Auswirkungen statistische

Vereinfachungen der Eingangsdaten auf die berechnete Blockgrößenverteilung haben. Hier-

für wurde zunächst mit dem Programm 3DEC ein deterministisches Referenzmodell erstellt,

das rein auf Bohrkern- und Bohrlochdaten basiert. Dieses Modell wurde dann mit anderen,

vereinfachten, statistischen 3DEC-Modellen verglichen. Zudem wurde die Genauigkeit von

analytischen Berechnungsverfahren zur Ermittlung des mittleren Blockvolumens geprüft.

Ein Vergleich mit Blockvolumina, die an der Oberfläche gemessen wurden, zeigt, dass eine

adäquate Blockgrößenverteilung, rein auf Bohrlochdaten basierend, nur dann berechnet wer-

den kann, wenn Kenntnisse bezüglich der Persistenz vorliegen.

Die Ergebnisse der verschiedenen Modelle zeigen, dass gewisse statistische Vereinfachungen,

wie die Zusammenfassung von einzelnen Trennflächen zu Trennflächenscharen, eine genügend

genaue Näherung darstellen. Andere Vereinfachungen, wie die künstliche Reduzierung der

Scharanzahl, können jedoch problematisch werden. Auch die analytischen Verfahren können

teilweise für gewisse Anwendungen herangezogen werden.
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1 Introduction

When a rock mass is subjected to tectonic forces, its formerly massive structure may change

to a less compact one, i.e. cracks and faults form and leave behind a rock mass that consists

of smaller and larger blocks. The distribution of the volume of these different blocks is called

in situ block size distribution and the borders or separations are generally called joints. Since

these joints tell a story of how exactly the forces have acted on the rock in the past, they are

of major interest in tectonics and related geological fields.

In geotechnics, the distribution and characteristics of joints are none the less important,

because they have a significant influence on the rock mass behavior from an engineering

perspective.

Whenever geotechnical or geological engineers have to deal with jointed rock mass, the in situ

block size distribution of the rock mass is important for several tasks. The main disciplines

which operate with these block statistics are, for example, rock mass characterization, rockfall

hazard analysis, mining and quarrying.

For rock mass characterization, the block size can be used to calculate homogenized rock

mass parameters like compressive strength, tensile strength or the deformation modulus (Hoek

et al., 1995). For rockfall hazard analysis, block parameters like size or shape are important

for the design of support measures (e.g. installation of rock bolts) and damage protection

measures (e.g. construction of rockfall protection barriers). In mining and quarrying, the

natural size of single blocks have for example significant impact on the design of the blast

concept.

Important parameters, which determine the block size distribution of a rock mass section are

the joint orientation, the joint spacing and the joint persistence (Kim et al., 2006).
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1.1 State of the art

Over the past decades, several concepts to determine in situ block sizes, have been introduced.

Here we want to present three different major groups of research for engineering and scientific

issues. All three groups set a focus on the in situ block size, either embedded as a parameter

for rock mass classification systems, or with a direct approach by means of analytic formulae

or three dimensional modeling.

1.1.1 Block sizes considered in classification systems

For geotechnical design, different methods for rock mass classification systems had been de-

veloped. All these different systems are based on index evaluations of geological and physical

quantities, and also consider the block size of the rock mass in one way or another. Utilizing

these indexes, or more precisely, the combination of these indexes, one can roughly estimate

the fragmentation of the rock mass.

Following the rock mass classification method of the so-called Q-System of Barton et al.

(1974), one uses the Rock Quality Designation (RQD) index, which is the ratio of lfrac > 100mm

– the sum of length of core pieces (e.g. in the core box of the drilling) larger than 100 mm –

to the total core length ltot, i.e.

RQD =
lfrac > 100mm

ltot
· 100%. (1.1)

The RQD is then related to the index for the number of joint sets Jn. The main index Q

is the approximate block size times a ratio that represents discontinuity properties times a

factor to consider the effect of the water pressure and reads

Q =
RQD

Jn
· Jr
Ja
· Jw
SRF

. (1.2)

One year earlier, Bieniawski (1973) introduced the Rock Mass Rating (RMR) system. This

classification system considers an approximation of the mean block size as well, but this time

as a combination of RQD with a factor for the joint spacing. Together with other determining

parameters like rock strength, discontinuity properties, water conditions and joint orientation,

one evaluates the rock mass quality with an index of 0− 100.

Another rock mass classification system, the RMi (Rock Mass index), was developed by

2



Palmström (1995). This system is a combination of the intact rock compressive strength (σc)

and a jointing parameter (JP ) for the rock mass.

RMi = σc · Jp. (1.3)

The jointing parameter includes in addition to the joint roughness, alteration and size, also

the block volume.

Finally, Hoek et al. (1995) established the Geological Strength Index (GSI), with which one

can directly assigns a number from 0 to 100 according to the “rock mass quality”. The original

GSI chart only contains a scale for the spacing with a verbal description of the block size in

the first place, which was later extended by Cai et al. (2004) with an additional scale for

the block volume (figure 1.1). Hence, the block volume Vb is directly implemented in the

classification system as a parameter for characterization.

1.1.2 Block sizes via analytic formulae

Another group of methods to determine block volumes is through analytic calculations. Palm-

ström (2005) introduced a formula for the mean block volume Vb of jointed rock masses,

however only allowing for three distinct joint sets.

Vb =
S1 · S2 · S3

sin γ1 · sin γ2 · sin γ3
. (1.4)

In equation 1.4, Si refers to the average joint spacing of sets i and γi to the intersection angle

between the joint sets, respectively (figure 1.2).

Later, Cai et al. (2004) expanded Palmstöm’s formula with the term pi to consider the per-

sistence of the joint sets (equation 1.5). It should be remarked, that these two formulae do

not cover any distributions of block sizes, just single values.

Vb =
S1 · S2 · S3

sin γ1 · sin γ2 · sin γ3 · 3
√
p1 · p2 · p3

. (1.5)
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Figure 1.1: GSI chart with additional quantification for the block size (Cai et al., 2004).
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To obtain more statistic values than the mean, Söllner (2014) introduced the transformation

factor T , which depends on the average joint persistence:

Vb(mean,25%,50%,75%) =
S1 · S2 · S3

sin γ1 · sin γ2 · sin γ3
· T(mean,25%,50%,75%). (1.6)

With this equation, one has the ability to calculate additional values for the 25 %-quantile,

75 %-quantile and the median (50 %-quantile).

Figure 1.2: angles and spacing for analytic formula, 2-dimensional (a), 3-dimensional (b);

(Kim et al., 2006).
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1.1.3 Block sizes simulated with 3D models

The next level of research were 3D simulations of the block size distributions, either with an-

alytic or numerical dissection models in combination with stochastic methods. The analytic

approach of Wang et al. (2003), for example, can deal with any number of joint sets and with

additional random joints. All blocks are individually sampled and some kind of persistence

of the discontinuities is considered as well.

The most common numerical concepts are based on Discrete Fraction Network (DFN) mod-

eling. DFN assumes all discontinuities as planar surfaces and the geometric input parameters

like orientation, spacing, persistence or size as independent random variables, which are gen-

erated from certain probability distributions (Lei et al., 2017). Here, the location of the

discontinuities is randomly determined. This method can be used for several approaches. El-

mouttie & Poropat (2012) for example presented a polyhedral modeling algorithm for Monte

Carlo simulation–based fracture models. The limitations of this statistical DFN method are,

for instance, geometric oversimplifications and uncertainties in the statistic parameters (Lei

et al., 2017).

As a part of this thesis, DFN was used for stochastic 3D modeling as well as for deterministic

3D modeling with discrete geometric input parameters.

1.2 Aim

This thesis aims to quantify different approaches to determine the in situ block size distri-

bution of jointed rock mass. In order to create a realistic practical reference, data from an

actual project were used, which is currently in progress. The provided data, which primarily

contains basic geological information, field measurements, images of the drilling core samples

and geophysical borehole analysis, is used to develop a 3D deterministic discontinuity model.

This model, within certain limitations, shall be assumed as a realistic description of the in

situ block size distribution and will be compared to results of simplified models and methods.

Additionally, the block size distribution of the 3D underground models with surface measure-

ments of block sizes are compared. Finally, an answer should be given whether and how these

simplifications reflect on in situ block size distributions.
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2 Project data

For the following investigations, we evaluated data of a current construction project in Aus-

tria. In this chapter we want to give a brief overview of the geological conditions of the area,

the chosen subsurface area for specific studies and describe the types of provided geophysical

data.

The geological information in the next section have been obtained from the non–public

geological-, hydrological- and geotechnical report of the project, which can not be referenced

due to confidentiality reasons.

2.1 Geology

The project area is located at the edge of the Bohemian Massif. The crystalline basement is

overlaid with paleogene and neogene sediments, which are then again covered with quaternary

sediments. This leads to the following simplified formation from top to bottom:

• recent deposits (scree)

• quaternary sediments

• neogene and paleogene sediments

• crystalline basement

Lithologically, the project area includes predominantly migmatites and paragneisses from the

crystalline basement. As part of the Variscan orogeny, old paragneisses had been metamor-

phosed to “meta- to diatectic gneiss” and to “granitic diatexites”. Figure 2.1 shows a typical

picture of the rock mass. Characteristic for this gneiss is a constant change between foli-

ated zones and homogeneous granitic zones. The main mineralogical components are alkaline

feldspar, plagioclase, quartz and mica.

The foliation of the gneiss is dominated mainly by layers of biotite. With the exception of

7



Figure 2.1: Outcrop of typical gneiss which can be found across the entire project area.

strongly foliated sections, the foliation itself has no major geomechanical relevance. In the

project area, the foliation strikes generally NNW - SSE and dips mostly to ENE. Significant

deviations from this direction can locally be caused by folding or flow structures. The inter-

section of the main joints with the foliation divide the rock mass into rhombic and prismatic

rock blocks.

Referring to the guideline of the Austrian Society for Geomechanics (2010), three general

ground types are distinguished, following the nomenclature shown in table 2.1. The key

parameters for this classification are the degree of fracturing, degree of weathering, disconti-

nuity properties and tectonic stress. A lithological distinction of the ground types by mineral

composition, grain size or texture is not possible because of rock related variability and the

frequent small-scale changes within the crystalline complex. However, such a distinction is

not necessary due to similarity of physical properties.

2.2 Studied area

One of the main problems when measuring block size parameters is that one wants to create

three-dimensional data from two-dimensional outcrops or one-dimensional geophysical mea-

sures from boreholes (Einstein & Baecher, 1983).

It is impossible to capture all joint orientations by the measurements. For this reason, an area

was chosen where three boreholes exist in an uncommonly close range with different directions

8



Table 2.1: General classification of ground types in the project area.

Abbr. Description Rock Type Remarks

GT 1 Crystalline rock –

mostly fresh, low to

moderately fractured.

Solid rock Strong to very strong com-

pressive strength; mostly fa-

vorable discontinuity properties

(generally no infillings, undu-

late/stepped and rough surfaces).

GT 2 Crystalline rock –

fresh to slightly

weathered, mod-

erately to very

fractured.

Solid rock Strong to very strong com-

pressive strength; favorable to

partly less favorable discontinu-

ity properties (surfaces partly

show fine-grained infillings) or lo-

cally weathered.

GT 3 Crystalline rock –

partly moderately

weathered or sheared,

strong to very strong

fractured.

Solid rock Mostly medium strong to partly

strong compressive strength,

partly lowered by weathering or

tectonic stresses; low to unfa-

vorable discontinuity properties

(surfaces show fine-grained in-

fillings, partly smooth surfaces,

weathered, open).

and inclinations to optimize the density of information (see table 2.2). For the present study,

it was required to capture as many discontinuities as possible in the area. The maximum

distance between the drilling start-locations is less than 7 m. For the numerical models, we

chose different cubes with sides of 5 m − 35 m, so that the edges of the volumes are not far

beyond the spatial drilling range. All cubes were located at a minimum of 10 m below the

surface, such that their locations are underneath any soil– or loose–rock–zone. The dominant

ground type of the investigated rock mass volume is GT2 (see table 2.1).

For to the field measurements, outcrops and rock blocks within the project area were consid-

ered as well, because the rock mass at the surface in general is homogeneous and a subdivision

of the area into different sections is not necessary.
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Table 2.2: Geometric parameter of the three investigated drillings.

Drilling Depth Dip Dip Direction

[m] [◦] [◦]

KB 1 86.4 90 0

KB 2 77.0 70 23

KB 3 95.1 64 135

2.3 Geophysical data

The most common way to get orientations of the joints in boreholes is through geophysical

investigations with sondes. For this project, two types of borehole-wall imaging methods were

applied, namely acoustic (ATV) and optical televiewer (OTV) imaging. These two imaging

methods can provide continuous and orientated 360◦ images of the borehole-wall, from which

the character and orientation of lithological and structural features can be defined (Williams

& Johnson, 2000). As can be seen in figure 2.2 and 2.3, the 360◦ measurements of the borehole

are then projected onto a planar surface. The position of the maximum amplitude defines the

dip direction (DD). The dip angle can be calculated with formula 2.1

dip = tan−1

(
amplitude

diameter

)
. (2.1)

The strike can be calculated with formula 2.2.

strike = DD− 90◦. (2.2)

Optical televiewers scan the borehole-wall with a camera and can extract a 360◦ “photog-

raphy” of the borehole. With this image (Figure 2.2), the geophysicists can identify single

joints, their dip and dip direction. The discrimination between rock and joints works through

the intensity of the color spectrum.

The main disadvantage of this method is that it can only be applied in boreholes, which are

not filled with water or mud. Another problem are residuals of the drilling liquids at the

borehole-wall, which make an identification of discontinuities impossible.

The main advantage of OTV compared to ATV is a clearer distinction between specific dis-
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Figure 2.2: Image from the optical televiewer, evaluation of joint orientation and picture of

the core sample from the same depth.

continuities and structures of less geomechanical significance, like foliation. It is also possible

to define the fraction opening and the filling of a joint.

Acoustic televiewers, which are commonly in use, work with ultrasonic signals. ATV data can

also be gained in water– or slightly mud–filled sections of boreholes. Various structures at the

borehole-wall like joints, foliation or faults scatter energy of the acoustic beam and reduce the

incoming signal. Thus, a contrast between the intact rock and the discontinuities is visible

on the images (Paillet et al., 1990).

Conventional ATV systems use an ultrasonic pulse–echo configuration with a 0.5 MHz −

1.5 MHz transducer. This transducer is rotating on a motor–driven shaft while the tool is

pulled up–hole (Williams & Johnson, 2004). The identification of certain structures in the

borehole is possible due to different acoustic impedances of the rock and the structures. The

main problem with this method is the lack of possibility to differentiate between fractures

and foliation or bedding planes.
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Figure 2.3: Image from the optical televiewer, evaluation of joint orientation and picture of

the core sample from the same depth.
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3 Methodology

For the description of the different methods of this work, one can distinguish the following

groups:

• Evaluation of the provided subsurface data for numerical modeling,

• Field measurement at the surface,

• numerical modeling with 3DEC and

• analytic calculations.

3.1 Field measurement

The fact that the investigated drilling-area is located close to the surface (10 m to 40 m)

rises the question if there exists any connection of the surface block size distribution to the

subsurface block size distribution. To analyze this issue, measurements of block sizes were

evaluated that had been taken across the surface of the project area. All measurements were

taken by hand with manual measuring instruments like yardsticks and under the simplified

assumption of rectangular blocks, such that sorting of the data in length, width and height

could be done afterwards. The measurements are divided into different rock objects (see

figure 3.1), namely

• fallen blocks,

• dry-stone wall rocks,

• deposits and

• bedrock.

It is furthermore safe to assume that the dry stone walls, which have served as early protec-

tion from rockfall for the local infrastructure, were built from deposit blocks of the nearby

13



(a) Fallen rocks (b) Dry-stone wall

(c) Deposit (d) Bedrock

Figure 3.1: Different types of measured rocks at the surface.

environment.

Because of additional decomposition due to the erosion processes, it is very likely that fallen

rocks and deposits cannot represent the in situ block size distribution. It is also sure that just

the bedrock itself does not represent the subsurface in situ block size distribution, as smaller

blocks are rarely elements of rock faces at outcrops and would thereby not be represented in

the distribution.

The mean block size of the bedrock and the mean block size of the decomposed rock can

therefore be expected as extreme values of the actual in situ block size distribution, that will

lie somewhere in between.

3.2 Evaluation of geophysical measurements

The main challenge when evaluating of the described geophysical measurements is to distin-

guish between fractions and other detected structures in the borehole. As already mentioned
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(section 2.3), discrimination only on the basis of ATV- or OTV-data is not possible. For

this reason, it is necessary to compare the measurements with the drilling core sample, where

every single discontinuity should be visible. The depth and the dip of a joint can be directly

gauged at the core. To determine the dip direction, it is necessary to associate a geophysical

measurement with equal depth and equal dip to the core data.

With this procedure, 150 discontinuities were determined in the three boreholes. Figure 3.2

shows all poles of the joints in the Schmidt net. All gathered discontinuities are either joints

or foliation. The foliation is orientated approximately between 50◦ to 105◦ and are overlayed

with joints. Faults and slickensides do not occur in the investigated area.

Figure 3.2: Stereonet with all 150 discontinuities, obtained with borehole measurements and

drill core sampling.
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3.3 DFN modeling

To be able to compare different DFN approaches, different types of 3D models were created.

The first model is a deterministic fraction model, the second and third ones are stochastic

fraction models. The discontinuities for all these three models are considered completely per-

sistent, because it is not possible to gain valid values of the persistence for the deterministic

model from borehole data. A stochastic fraction model with non-persistent discontinuities

(values estimated for each set) was furthermore created (see section 3.3.4) to come even closer

to the real in situ block size distribution and for comparison with the results of the field

measurements.

To build the models, 3DEC 5.0 (3-dimensional distinct element code, software of Itasca Con-

sulting Group Inc.) was used. Either each single discontinuity is defined individually, which

we did for the deterministic model, or a stochastic model is built with statistical joint set

information (Itasca Consulting Group Inc., 2013).

For each of the 3DEC models, the jset command was used, with which single joints or sets

of joints within a defined volume can be generated. To avoid artificially small block volumes,

a minimum block side length was set, which corresponds to the minimum block side length

measured at the surface.

3.3.1 Model 1 (deterministic)

The first model serves as a reference model for all other investigations. For this model, every

single discontinuity was generated individually in the following way: From the geophysical

measurements, one is able to obtain the orientation of each joint that intersects the borehole,

and knowing the drill direction and depth, the exact position in space was determined. The

actual in situ block size distribution can therefore be assumed as well reproduced. Figure 3.3

shows the flow chart for the 3DEC modeling, the entire code is shown in listing 5.1 in the

appendix.

As input data, the following parameters for each of the 150 joints were used (see appendix,

table 5.1):

• dip angle

• dip direction

• x-, y- and z-coordinates of the intersections with the borehole
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start

set boundary conditions and create cube

input joint data

intersection of all joints

delete boundary blocks

output block volumes

end

Figure 3.3: Flow chart for 3DEC modeling.

In a first step, the program intersected all discontinuities with each other within a cube of

the dimensions 40 m x 40 m x 40 m. This cube size was chosen to be able to cut out cubes

of different sizes at a later stage.

As can be seen in figure 3.4, the model still contains blocks at the boundary of the cube,

that are not only cut by discontinuities, but also by the model boundary faces itself and

are therefore of artificial origin. While not slicing the cube once more but removing these

so-called boundary blocks (Söllner, 2014) (see figure 3.5), in seven consecutive steps, we gain

seven different sets of data, which can later be used to evaluate the influence of the model

volume on the block size distribution. Therefore all blocks within a certain range from the

cube boundary to 2.5 m (5 m, 7.5 m, . . . , 17.5 m respectively) had been deleted on each side

of the cube.
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Figure 3.4: Model 1 – cube of 40 m length, still containing boundary blocks.

Figure 3.5: Model 1 – cube of 20 m length with deleted boundary blocks.

18



3.3.2 Model 2 (stochastic, five joint sets)

The second model considers the measured data in a way that is common for typical geotech-

nical approaches, namely in terms of certain numbers of joint sets and additional arbitrary

joints that are not associated with any set. The joints of Model 1 were grouped, such that

five sets of joints were determined, which belong to the same family with respect to their

orientation, see figure 3.6, and table 3.1 for all 3DEC joint set input parameters, with S for

spacing and SD for standard deviation.

Figure 3.6: Model 2 – stereonet; grouping to five sets.

The additional arbitrary joints that do not fit in the clustering scheme are neglected for the

computation of the set orientation statistics. To use the complete data for the calculation of

the spacing, however, each of these off-set joints were later associated to the best matching

set and evaluate the spacings statistically for each set. In general, the measured spacings

from the core have to be corrected by a factor of cosβ, with the dip-angle β, to get the true

spacing. As outliers strongly influence the arithmetic mean, the median value of the joint
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Table 3.1: 3DEC input parameters for Model 2 with S for spacing and SD for standard devi-

ation.

Set Dip DipSD DD DDSD Smedian SSD

[◦] [◦] [◦] [◦] [m] [m]

Set 1 79 4.97 249 8.66 0.86 1.17

Set 2 73 6.68 303 8.31 0.91 2.94

Set 3 82 6.89 339 37.35 0.50 0.62

Set 4 53 9.03 81 16.53 0.52 3.31

Set 5 6 10.10 278 102.86 2.46 2.46

spacing was used as input parameter. In figure 3.7 statistical values for the spacing of each

joint set are shown (for whole spacing data see appendix table 5.2).
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Figure 3.7: Box plot for the spacing of each joint set of Model 2, with outliers and mean

values.

Following this procedure, it is possible to simulate block models with five joint sets with values

for the orientation and one value for the spacing, respectively. Note that in 3DEC, when the

standard deviation is entered additionally, values for the orientation and spacing are randomly

generated. The cube of 40 m length with boundary blocks is shown in figure 3.8 and the cube

of 20 m length without boundary blocks in figure 3.9.

20



Figure 3.8: Model 2 – cube of 40 m length, still containing boundary blocks.

Figure 3.9: Model 2 – cube of 20 m length with deleted boundary blocks.
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3.3.3 Model 3 (stochastic, three joint sets)

In order to compare the models with the results of analytic methods that rely on three joint

sets only, such as equation 1.4 after Palmström (section 1.1.1), the number of joint sets was

restricted to three. This classification is purely artificial and requires further analysis of the

data with respect to the geologically heterogeneous nature. Therefore, crucial points in the

data were selected that could represent each set well and tested all possible resulting combi-

nations. Due to this so-called sensibilisation of the set orientation, an extra diversification of

the orientation by the standard deviation, as in Model 2, is not necessary. In figure 3.7 the

clustering of the sets and the crucial points are shown in the stereonet.

Figure 3.10: Model 2 – stereonet; grouping to three sets with statistical orientation of the

clustering (named “a”) plus crucial points (named with “b” and “c”).

The determination of the spacing for Model 3 was done in the same way as for Model 2

(section 3.3.2), but had to be performed for all nine set-points (1a–c, 2a–c, 3a–c) separately,
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because different dip angels lead to different spacings. As for Model 2, the spacing shows an

asymmetric probability distribution, so the median value as reference value for the spacing

was chosen (see figure 3.11 and for the whole spacing data see appendix table 5.3).
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Figure 3.11: Box plot for the spacing of each joint set of Model 3, with outliers and mean

values.

Table 3.2 summarizes the resulting joint set parameters for Model 3. Finally, 27 models were

generated by combining each set orientation with each other. As explained for Model 2, a

cube of 40 m side–length was first built(figure 3.12) and then remove all boundary blocks to

get cubes of 20 m side–length (figure 3.13). An additional grading of the cube size, as done

for Model 1 and Model 2, was not applied at Model 3, since the influence of the cube size on

the block size distribution can already be investigated in great detail with the two previous

models.
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Table 3.2: 3DEC input parameter for all different joint sets of Model 3 with S for spacing and

SD for standard deviation.

Set Dip DD Smedian SSD

[◦] [◦] [m] [m]

Set 1a 70 326 0.74 1.28

Set 1b 85 334 0.19 0.33

Set 1c 76 303 0.52 0.92

Set 2a 55 247 1.34 2.79

Set 2b 79 252 0.45 0.93

Set 2c 32 242 1.98 4.12

Set 3a 47 80 0.59 2.65

Set 3b 56 84 0.48 2.17

Set 3c 37 50 0.69 3.10

Figure 3.12: Model 3 – cube of 40 m length, combination aaa, still containing boundary blocks.
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Figure 3.13: Model 3 – cube of 20 m length, combination aaa, with deleted boundary blocks.

3.3.4 Model with non–persistent joints (stochastic, five joint sets)

For the sake of completeness, a model with non-persistent joints was also accomplished. For

this purpose the input data of Model 2 was used and supplemented by the values for the

persistence to each joint set. Table 3.3 shows all input values for the modeling with non-

persistent joints.

The values for the persistence (P) refer to a rough estimation of the project geologist, which

can only be achieved for actual joint sets. For this reason it is only possible to operate with

the data of Model 2, but not with the data of Model 3, because of its artificial joint set

clustering.

Moreover, the results of the non-persistent model can only be compared to the results of the

field measurements, since the other models consider all discontinuities with full persistence.

The modeling itself was executed in the same way as for Model 2, starting with a cube with

the dimensions 40 m x 40 m x 40 m (figure 3.14) and then removing all boundary for different

cube sizes (figure 3.15).
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Table 3.3: 3DEC input parameter for non–persistent modeling with joint set parameter of

Model 2 plus persistence (P).

Set Dip DipSD DD DDSD Smedian SSD P

[◦] [◦] [◦] [◦] [m] [m] [-]

S 1 79 4.97 249 8.66 0.86 1.17 0.25

S 2 73 6.68 303 8.31 0.91 2.94 0.90

S 3 82 6.89 339 37.35 0.50 0.62 0.90

S 4 53 9.03 81 16.53 0.52 3.31 0.50

S 5 6 10.10 278 102.86 2.46 2.46 0.30

Figure 3.14: Model with non–persistent joints, cube of 40 m length, still containing boundary

blocks.
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Figure 3.15: Model with non–persistent joints, cube of 20 m length, without boundary blocks.

3.4 Analytic Formula

In order to evaluate an analytic calculation of our example, all combinations of Model 3 were

calculated (section 3.3.3) with the formula of Palmström (formula 1.4):

Vb =
S1 · S2 · S3

sin γ1 · sin γ2 · sin γ3
.

The other formulae of section 3.3.3 were not used, because they contain parameters for the

persistence, which is not available for the three–set model.

The calculations were done in three different ways to allow for a direct comparison of different

levels of abstraction.

In the first and most simple case, Case 1, a single value for the volume was computed(Vb)

with the median of the spacings (Si) and the intersection angles (γi) between each joint set

(see figure 1.2). This case should represent the situation where only single values for the
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spacing and the orientations are available. All input values for this “standard” computation

are listed in table 3.4.

In Case 1, the restriction to the median values of each set is artificial, since it is in general

possible to compute each combination of the whole population of spacing values (provided by

the core measurements, see appendix table 5.3) separately, with very little numerical effort.

For the Si in Case 2, each measurement of each of the three sets was multiplied with each

measurement of the other sets in three nested loops (see Matlab code in listing 3.1), which

generated a number of 77220 block volumes that can be treated as a distribution for further

analysis.

Listing 3.1: Matlab code for Palmström’s formula with whole population of spacing data.

i 1 = s ize ( Set_1a , 1 ) ;

j 2 = s ize ( Set_2a , 1 ) ;

k3 = s ize ( Set_3a , 1 ) ;

l = 1 ;

for i =1: i 1

for j =1: j 2

for k=1:k3

V( l ) = Set_1a ( i ) ∗ Set_2a ( j ) ∗ Set_3a (k ) ;

l = l +1;

end

end

end

gamma = [ 7 0 . ; 7 9 . ; 8 7 . ] ;

gamma = gamma / 180 . ∗ pi ;

gam = sin (gamma( 1 ) ) ∗ sin (gamma( 2 ) ) ∗ sin (gamma( 3 ) ) ;

V = sort (V / gam ) ;

In addition a more realistic case was investigated, Case 3, for the situation when the whole

population of data is not available and one has to rely on statistical values. For this calculation,

each set of spacings (Si) was fitted with a gamma distribution (Di) with distinct parameters

and then generated n = 10000 random values (Monte–Carlo Simulation) that follow Di.
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Afterwards, block volumes were generated in such a way that all 27 combinations of Model

3 were computed (n times three nested loops over the Si’s, for computational details see

listing 3.2).

Listing 3.2: Matlab code for Palmström’s formula with randomly generated spacing data.

l =1;

for i =1:3

for j =1:3

for k=1:3

s1 = Set_1a ;

s2 = Set_2a ;

s3 = Set_3a ;

g1 = gamfit ( s1 ) ;

g2 = gamfit ( s2 ) ;

g3 = gamfit ( s3 ) ;

m=1000;

for i i =1:m

V( i i ) = gamrnd ( g1 (1 ) , g1 ( 2 ) , 1 ) ∗ gamrnd ( g2 (1 )

, g2 ( 2 ) , 1 )

∗ gamrnd ( g3 (1 ) , g3 ( 2 ) , 1 ) ;

end

gam = sin ( ga1 ( l ) ) ∗ sin ( ga2 ( l ) ) ∗ sin ( ga3 ( l ) ) ;

V = sort (V / gam ) ;

l = l + 1 ;

fpr intf ( )

end

end

end
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Table 3.4: Input parameters for calculation with Palmström formula.

Combination S1 S2 S3 γ1 γ2 γ3

[m] [m] [m] [◦] [◦] [◦]

aaa 0.74 1.34 0.59 70 79 87

aab 0.74 1.34 0.48 70 71 80

aac 0.74 1.34 0.69 70 89 71

aba 0.74 0.45 0.59 71 54 87

abb 0.74 0.45 0.48 71 46 80

abc 0.74 0.45 0.69 71 67 71

aca 0.74 1.98 0.59 70 78 87

acb 0.74 1.98 0.48 70 86 80

acc 0.74 1.98 0.69 70 69 71

baa 0.19 1.34 0.59 85 79 82

bab 0.19 1.34 0.48 85 71 76

bac 0.19 1.34 0.69 85 89 78

bba 0.19 0.45 0.59 81 54 82

bbb 0.19 0.45 0.48 81 46 76

bbc 0.19 0.45 0.69 81 67 78

bca 0.19 1.98 0.59 87 78 82

bcb 0.19 1.98 0.48 87 86 76

bcc 0.19 1.98 0.69 87 69 78

caa 0.52 1.34 0.59 54 79 69

cab 0.52 1.34 0.48 54 71 61

cac 0.52 1.34 0.69 54 89 89

cba 0.52 0.45 0.59 50 54 69

cbb 0.52 0.45 0.48 50 46 61

cbc 0.52 0.45 0.69 50 67 89

cca 0.52 1.98 0.59 63 78 69

ccb 0.52 1.98 0.48 63 86 61

ccc 0.52 1.98 0.69 63 69 89
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4 Results and Discussion

To be able to compare the results of all measurements, DFN models and calculations, the

following statistical parameters are determined:

• Maximum block size (Vmax)

• Mean block size (Vmean)

• Median of the block size distribution (Vmedian)

• Standard deviation of the block size distribution (VSD)

• Minimum block size (Vmin)

• Number of single blocks (No.)

Besides the statistical analysis, the entire block size distributions of all 3DEC–models and of

the field measurements are illustrated in a cumulative probability graph. The curves follow a

log-normal distribution. Additionally, a closer focus was set on the median value to describe

the representative block volume of each model.

4.1 3DEC–modeling for non–persistent joints and field

measurements

In this section, the results of the field measurements (section 3.1) are related to the results

of the numerical model with non–persistent joints of (section 3.3.4). These two data sets are

comparable, because both contain the persistence of the rock mass and therefore refer to the

actual in situ block size distribution as it should appear in nature.
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4.1.1 Results of the non–persistent 3DEC–models

The 3DEC–model with non–persistent discontinuities was used to evaluate the entire concept

of numerical modeling. One can assume that the block size distribution at the surface strongly

correlates with the block size distribution of the investigated rock mass, with some restrictions.

Figure 4.1 shows the in situ block size distribution of models with different cube sizes. It is

clearly recognizable that in this case the cube size does not have a notable impact on the

distribution.

From the statistic values in table 4.1 we can conclude that all values, except the maximum

value, are within a close range. We put this down to the fact, that big blocks are statistically

rare and have appeared in ranges, which were deleted later to cut out the required cube sizes.

Thus the model with the largest cube size also contains the largest block size.

It should also be noted, that the for this model, the in situ block size distribution strongly

depends on the values for the persistence.
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Figure 4.1: In situ block size distribution of non–persistent joint model with different cube

sizes.

32



Table 4.1: Statistic values for the block volume of the non–persistent joint models (see section

3.3.4).

Cube length Vmax Vmean Vmedian VSD Vmin No.

[m3] [m3] [m3] [m3] [m3] [–]

5 13.41 0.457 0.062 1.21 4.19E-05 285

10 22.57 0.435 0.070 1.10 1.23E-05 2,309

15 27.42 0.403 0.057 1.08 1.22E-05 8,338

20 27.42 0.397 0.057 1.07 1.21E-05 20,025

25 27.42 0.396 0.057 1.07 1.20E-05 39,395

30 32.20 0.387 0.057 1.06 1.20E-05 69,756

35 46.06 0.389 0.058 1.07 1.20E-05 110,248

4.1.2 Results of field measurements

In figure 4.2, cumulative probability curves of the block volumes of each different rock type

measured in the field (section 3.1) are plotted. Additionally, we added the curve of the non–

persistent model with 20 m cube length for comparison. The figure shows that the distribution

of the numerical model comes reasonably close to the distribution of the outcrop.

A larger deviation can be observed at smaller block volumes. The reason for this deviation is

that small blocks rarely remain at rock faces and are more prone to erosion, thus the small

blocks are then under–represented in the curve of the blocks measured at outcrops (bedrock)

and are over–represented in the curves of the other measured rock types, that contains eroded

objects.

When comparing the statistic values of the 3DEC–model with the statistic values in table 4.2

for the surface objects, it is furthermore obvious that the maximum bedrock volume is much

lower. The reason for this is that extreme large blocks are very rare at outcrops. Even if a

very large outcrop is available, it is unlikely to show non–eroded large blocks.
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Figure 4.2: Cumulative probability distribution for the field measurements and for the numer-

ical non–persistent model with 20 m cube length (section 3.3.4).

Table 4.2: Statistic values for block volumes determined with field measurements.

Objects Vmax Vmean Vmedian VSD Vmin No.

[m3] [m3] [m3] [m3] [m3] [–]

all 3.90 0.099 0.012 0.28 1.20E-05 1,900

fallen blocks 3.12 0.059 0.008 0.21 1.20E-05 1,077

deposits 3.90 0.173 0.014 0.49 1.35E-04 165

bedrock 2.10 0.236 0.084 0.34 1.20E-03 397

wall rocks 0.18 0.013 0.007 0.02 1.20E-04 261
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4.2 3DEC–modeling with persistent joints

4.2.1 Results – Model 1 (deterministic)

At the first sight, the outcome of the deterministic model (figure 4.3) shows greater scattering

for different cube sizes compared to the outcome of the model with non–persistent disconti-

nuities (figure 4.1). This phenomenon is due to the fact that the deterministic input data has

a lower level of repetition than the statistic input data.

Also the calculated values (see table 4.3) show some major differences. The maximum volume

is noticeable larger than the maximum block sizes of the models with non–persistent joints

(see table 4.1), although the model at hand only contains totally persistent discontinuities

and therefore the maximum block size should be smaller. The deterministic model contains

relatively large blocks, because the joint spacings for the model are not completely homoge-

neous and partially a large spacing up to several meters occurs (see figure 3.7). The statistical

models can not totally reproduce this inhomogeneity and so the maximum block volume of

the deterministic model is larger.

It is worth mentioning that the larger volumes of the models with large cube sizes result

because for the deterministic model each joint, encountered in one of the boreholes, is just

defined once. With increasing cube size, the volume within which no joints are defined in-

creases too. On the other hand, the median also increases from 15 m–cube size to 5 m–cube

size, because variations of the input data have an enhanced effect on models with smaller

cube sizes featuring less joints.

Table 4.3: Statistic values for the block volume of Model 1.

Cube length Vmax Vmean Vmedian VSD Vmin NO.

[m3] [m3] [m3] [m3] [m3] [–]

5 m 6.64 0.251 0.031 0.59 1.66E-05 426

10 m 57.72 0.268 0.025 1.30 1.22E-05 3,707

15 m 57.72 0.226 0.020 1.02 1.22E-05 15,253

20 m 57.72 0.238 0.022 1.01 1.20E-05 33,462

25 m 68.23 0.269 0.025 1.06 1.20E-05 56,638

30 m 74.23 0.332 0.030 1.35 1.20E-05 80,247

35 m 82.11 0.415 0.035 1.77 1.20E-05 103,510
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Figure 4.3: In situ block size distribution of Model 1 with different cube sizes.

4.2.2 Results – Model 2 (stochastic, five joint sets)

For the statistic model with fully persistent discontinuities, figure 4.4 shows that the cube

size has no influence on the block size distribution. Only the curve for 5 m–cube shows some

deviations, also since a curve with less values appears less smooth than the curves for the

cube sizes with a higher number of values. It is anticipated that for this approach, the size of

the model is variable, as long as the rock mass is more or less homogeneous.

In table 4.4 we can see that the statistic values of all models are very close. Only the maximum

block volumes strongly deviate. As already mentioned in section 4.1.1, larger blocks remain

in models with bigger cube size, which later on are removed for the models with smaller cube

sizes.
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Figure 4.4: In situ block size distribution of Model 2 with different cube sizes.

Table 4.4: Statistic values for the block volume of Model 2.

Cube length Vmax Vmean Vmedian VSD Vmin NO.

[m3] [m3] [m3] [m3] [m3] [–]

5 m 8.66 0.108 0.019 0.34 1.43E-05 1,180

10 m 8.66 0.092 0.014 0.25 1.20E-05 10,923

15 m 20.58 0.090 0.016 0.26 1.20E-05 37,231

20 m 20.58 0.088 0.015 0.24 1.20E-05 90,771

25 m 66.43 0.098 0.015 0.44 1.20E-05 160,845

30 m 66.43 0.095 0.015 0.39 1.20E-05 285,622

35 m 66.43 0.092 0.015 0.36 1.20E-05 466,639
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4.2.3 Results – Model 3

When looking at the results of Model 3 (figure 4.5), it is apparent that the curves are rela-

tively widespread, although their form (e.g. gradient) is quite similar. In the figure we can

see that the dispersion of all curves is not homogeneous. They can be roughly grouped into

three sections, differing significantly in their median values. The upper section contains the

combinations bba, bbb, and bbc, the middle one bab, bac, bcb, baa, abb, cbc, cba, cbb, bca, aba,

abc, and bcc. The lower group consists of cab, aaa, cac, ccc, aab, acb, caa, cca, ccb, aac,

aca, and acc. By comparing with the results of the other models, it can be said that the

upper group, with the selected set orientation “b” of the clustered joint Set 1 and Set 2 (see

figure 3.10), is the closest to the other models.

From the table with the calculated statistic values (table 4.5) one can extract that the differ-

ence between the highest (acc) and the lowest (bbb) median value is more than by a factor

of ten. The other statistical parameters show a high dispersion as well, but are relatively

homogeneous within the three groups.
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Figure 4.5: In situ block size distribution of Model 3 for different combinations of joint sets.
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Table 4.5: Statistic values for the block volume of Model 3 for different combinations of joint

sets.

Comb. Vmax Vmean Vmedian VSD Vmin

[m3] [m3] [m3] [m3] [m3]

aaa 16.43 0.623 0.232 1.11 1.72E-04

aab 15.31 0.619 0.272 1.00 2.92E-04

aac 26.63 1.005 0.322 1.89 4.84E-04

aba 10.94 0.275 0.110 0.49 1.55E-04

abb 13.85 0.276 0.088 0.53 6.44E-05

abc 10.50 0.372 0.123 0.67 8.46E-05

aca 29.65 0.983 0.337 1.84 1.89E-04

acb 19.08 0.834 0.288 1.50 3.51E-04

acc 43.22 1.163 0.419 2.20 1.16E-04

baa 5.72 0.202 0.082 0.33 6.26E-05

bab 5.60 0.154 0.056 0.27 2.45E-05

bac 6.59 0.195 0.074 0.35 3.65E-05

bba 3.06 0.073 0.029 0.13 2.59E-05

bbb 2.94 0.069 0.027 0.12 2.62E-05

bbc 3.82 0.079 0.031 0.14 2.82E-05

bca 9.62 0.260 0.100 0.45 4.90E-05

bcb 7.53 0.211 0.081 0.37 5.01E-05

bcc 10.76 0.334 0.128 0.60 9.69E-05

caa 21.03 0.870 0.299 1.58 2.02E-04

cab 12.53 0.547 0.217 0.93 1.97E-04

cac 21.23 0.676 0.260 1.18 5.92E-05

cba 7.30 0.262 0.095 0.47 4.35E-05

cbb 14.23 0.253 0.097 0.47 6.25E-05

cbc 11.87 0.274 0.092 0.53 4.37E-05

cca 21.03 0.870 0.299 1.58 2.02E-04

ccb 31.47 0.847 0.302 1.58 2.08E-04

ccc 33.01 0.819 0.270 1.64 2.05E-04
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4.2.4 Summary of results of the models with persistent joints

To allow for a direct comparison between Models 1, 2 and 3, representative block size distri-

butions for each model are plotted in figure 4.6: The distributions of Model 1 and Model 2

with 20 m-cube length each, and the upper group of distributions of Model 3.

It is apparent that the block size distribution of Model 2 is close to the one of the deterministic

reference model, only in the range of larger block volumes, the curves deviate considerably.

However, one can conclude that a simplified DFN–model (Model 2) using statistical joint set

parameters, can produce a suitable block size distribution, while keeping in mind that here

the geological data was processed in an unusually detailed way.

The distributions of Model 3 deviate significantly from the one of the deterministic model

such that the actual block size distribution is poorly reproduced. Therefor one can conclude,

that any reduction of naturally occurring joint sets (Model 2: 5 sets > Model 3: 3 sets) is not

valid, if the distribution of block sizes is requested.
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Figure 4.6: Comparison of block size distributions of different models with persistent joints.

A closer look at the statistic values in table 4.6 reveals that, in stark contrast to the distribu-

tions, the median values for all three models are close, however not the mean values. At the

least the median can be considered as a more representative value for the block size distribu-

tions than the mean, which could correspond to the power of three scaling of the volume and

thus the overrepresenting of extreme values in the spacings.
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In addition one can say that if only a representative volume for the block size distribution is

requested, and the median value is used, then even the simplified Model 3 may be adequate.

Nevertheless, if such a simplification to three joint sets is done, it is necessary to define rep-

resentative values for the set orientation manually and not to take the statistic values of the

set clustering (here: a-values, compare with figure 3.10).

Table 4.6: Comparison of statistic values for the block volume of Model 1, 2 and 3.

Model Vmax Vmean Vmedian VSD Vmin No.

[m3] [m3] [m3] [m3] [m3] [–]

M1 57.72 0.238 0.022 1.01 1.20E-05 33,462

M2 20.58 0.088 0.015 0.24 1.20E-05 90,771

M3 bba 3.06 0.073 0.029 0.13 2.59E-05 109,781

M3 bbb 2.94 0.069 0.027 0.12 2.62E-05 116,762

M3 bbc 3.82 0.079 0.031 0.14 2.82E-05 101,405

4.3 Results of analytic calculations

In the preceding sections, the outcomes of our numerical modeling had been discussed. Now

the results of the three cases (section 3.4), computed with the equation of Palmström are

compared with each other.

In table 4.7, the results of the standard calculation (Case 1) are listed together with those of

Case 2. Although Case 1 was calculated with the median values of the spacings, the results

of Case 1 can be considered as a mean block volume. For Case 2 the focus is set on the more

plausible median values again. Generally the values of Case 1 are higher than the one of Case

2, with a relative error varying between 38 % and 46 %. In Case 2, the values for Vmax are

inappropriately high, because extreme combinations of spacings are considered as well. The

scattering of the median values is comparable to the one of Model 3 (see table 4.5).

Additionally, a Monte–Carlo simulation with fitted gamma distributions for the spacings

(Case 3, section 3.4) was performed. The results of these computations are listed in table

4.8. When comparing to the results of Case 2, a relative error occurs between 9 % and 28 %,

which reflects rather the varying quality of the respective fit, than the method itself. This

reflects e.g. in unreasonable low values for Vmin, since the gamma distribution has no lower

bound for certain sets of input parameters.
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Table 4.7: Statistic values of Case 2 compared to the results of Case 1.

Comb. Vmax Vmean Vmedian VSD Vmin Case 1

[m3] [m3] [m3] [m3] [m3] [m3]

aaa 1,655.20 3.29 0.39 18.83 8.87E-05 0.635

aab 1,428.80 2.84 0.34 16.25 7.66E-05 0.545

aac 2,009.90 3.99 0.47 22.86 1.08E-04 0.772

aba 664.00 1.32 0.16 7.55 3.56E-05 0.255

abb 620.90 1.23 0.15 7.06 3.33E-05 0.236

abc 721.77 1.43 0.17 8.21 3.87E-05 0.280

aca 2,456.00 4.78 0.54 27.84 1.32E-04 0.942

acb 2,002.30 3.90 0.44 22.70 1.07E-04 0.762

acc 3,182.60 6.19 0.70 36.08 1.71E-04 1.225

baa 401.23 0.80 0.09 4.56 2.15E-05 0.155

bab 348.58 0.69 0.08 3.96 1.87E-05 0.134

bac 467.00 0.93 0.11 5.31 2.50E-05 0.181

bba 163.35 0.32 0.04 1.86 8.75E-06 0.063

bbb 153.73 0.31 0.04 1.75 8.24E-06 0.059

bbc 170.20 0.34 0.04 1.94 9.12E-06 0.067

bca 593.89 1.15 0.12 6.73 3.00E-05 0.230

bcb 487.30 0.94 0.10 5.52 2.46E-05 0.186

bcc 737.69 1.42 0.15 8.36 3.72E-05 0.286

caa 1,454.70 2.89 0.34 16.55 7.80E-05 0.551

cab 1,321.70 2.62 0.31 15.03 7.08E-05 0.500

cac 1,561.60 3.10 0.37 17.76 8.37E-05 0.592

cba 620.10 1.23 0.15 7.05 3.32E-05 0.237

cbb 610.37 1.21 0.14 6.94 3.27E-05 0.233

cbc 595.90 1.18 0.14 6.78 3.19E-05 0.230

cca 1,959.80 3.80 0.43 22.21 1.05E-04 0.746

ccb 1,681.80 3.26 0.37 19.06 9.01E-05 0.638

ccc 2,245.10 4.35 0.49 25.45 1.20E-04 0.857
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Table 4.8: Statistic values of Case 3 (Monte–Carlo simulation).

Comb. Vmax Vmean Vmedian VSD Vmin

[m3] [m3] [m3] [m3] [m3]

aaa 826.41 3.48 0.50 14.83 9.18E-08

aab 384.06 2.90 0.42 9.52 2.67E-08

aac 369.59 4.09 0.66 12.95 1.38E-07

aba 80.40 1.28 0.19 3.73 5.75E-08

abb 92.16 1.17 0.17 3.46 1.65E-07

abc 150.27 1.49 0.20 4.92 1.31E-07

aca 325.27 4.72 0.69 14.48 3.22E-08

acb 324.20 3.83 0.59 11.49 6.63E-09

acc 820.57 5.94 0.89 19.63 1.71E-07

baa 269.27 0.81 0.11 4.51 6.46E-08

bab 64.26 0.70 0.10 2.30 1.12E-07

bac 59.02 0.93 0.14 2.85 7.56E-08

bba 24.15 0.32 0.05 0.95 4.30E-09

bbb 30.28 0.30 0.04 0.93 5.60E-11

bbc 35.78 0.33 0.05 1.03 7.83E-09

bca 208.61 1.15 0.16 3.96 7.42E-10

bcb 108.48 0.98 0.13 3.34 6.32E-09

bcc 149.84 1.49 0.19 4.77 2.57E-08

caa 261.14 2.92 0.44 9.11 5.88E-08

cab 514.97 2.58 0.38 10.22 2.91E-08

cac 244.17 3.02 0.46 8.97 1.00E-08

cba 136.03 1.24 0.18 4.08 2.59E-08

cbb 155.31 1.28 0.18 4.56 2.01E-07

cbc 139.81 1.22 0.17 4.12 1.67E-09

cca 297.74 3.69 0.55 10.94 5.74E-08

ccb 533.70 3.28 0.46 11.26 5.00E-11

ccc 363.25 4.22 0.61 12.58 2.93E-08
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4.4 GSI for different approaches

To compare the numerical models with the analytic calculations, and to estimate the effect,

the different approaches could have on the rock mass characterization, the different results

of this work are show on the GSI-chart in figure 4.7. Since the predicted ground type of

the investigated area is GT 2 (see table 2.1), the joint conditions are assumed to be of the

type "good" (second column of the GSI-chart). In principle all three 3DEC models fall into

the category "very blocky", in contrast to the Palmström models with the characterization

"blocky", although their margin is small. The reference model (Model 1) shows a GSI-value

in the range from 53 to 63, which also almost holds for Model 2, Model 3 and partly for the

Palmström cases. Here, Case 1 and Case 3 are located in the range of 57 to 67, whereas Case

2 lies in the range from 55 to 65. In conclusion, it can be stated, that the impact of the

different approaches on the rock mass characterization via GSI is relatively low.

Figure 4.7: GSI for GT 2 with different models and different analytic calculations.
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5 Conclusion

To determine an in situ block size distribution based on geophysical borehole measurements,

different numerical models of a certain subsurface area were created. The aim was to evaluate

different approaches to determine the block size distribution with different levels of simplifi-

cation of the input data. In order to validate the methodology, a statistical DFN model with

non–persistent discontinuities was compared to the results of surface block size measurements.

For a second group of models, the persistence was neglected being the input parameter most

difficult to determine and hence featuring the highest level of uncertainty.

The first model represents a deterministic DFN and served as a reference model for further

investigations and therefore features the lowest level of simplification. The second one repre-

sents a DFN model based on statistical parameters with five joint sets. For the third model,

these five joint sets were restricted to three and a diversification of the set orientations was

implemented. The results of the third model were furthermore compared to block size calcu-

lations with an analytic formula.

First of all, a high correlation between the distributions from surface block size measurements

and the DFN model with non–persistent joints is shown and thus the chosen modeling ap-

proach can be considered as an appropriate method for this investigations.

When comparing the different persistent models, it came out that some simplifications are

permitted and others are facing difficulties. To be specific, the restriction from five to three

joint sets is problematic, because this will yield a significant change in the block size dis-

tribution. In general, one can conclude that the mapping from a deterministic model to a

statistical one, it is possible to obtain block size distributions that are similar in shape. If the

entity of interest is not a reliable block size distribution for scientific purposes but the mean

block size volume, all models can produce satisfying results. However, for any restriction to a

lower number of joint sets (third model approach), certain subtleties must be implied. Here, it

is crucial to reflect the geological inhomogeneities when choosing the artificial set clustering,

which might be error-prone in situations with very discrete and diversely separated groups of
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joints.

In practice, one can also utilize an analytic formula to determine the mean block volume, for

a three–set configuration. It is advisable not to calculate one single value for the block volume

using the mean value of the joint spacings, but rather compute a number of block volumes

utilizing the original distributions of spacings. As shown in the course of this work, this can

be done with Monte Carlo Simulations with little computational effort and was successfully

compared to the computation with the original distributions of spacings.

Future investigations could compare our results of non–persistent modeling with different DFN

models, such as Monte Carlo based simulations that use more realistic geometry features as

an input.
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Appendix A

Table 5.1: Input data containing 150 joints.

Dip DD x–value y–value z–value

[◦] [◦] [m] [m] [m]

51.24 70.62 10.12 21.67 -3.32

58.61 80.68 10.12 21.67 -4.38

64.62 83.71 10.12 21.67 -4.65

59.41 84.44 10.12 21.67 -5.80

83.55 331.09 10.12 21.67 -6.73

85.12 343.46 10.12 21.67 -7.53

11.01 138.59 10.12 21.67 -8.04

83.71 337.19 10.12 21.67 -8.06

25.45 118.48 10.12 21.67 -8.30

66.95 97.59 10.12 21.67 -10.42

63.10 63.67 10.12 21.67 -11.33

18.01 328.54 10.12 21.67 -11.55

75.05 296.32 10.12 21.67 -12.48

43.83 97.72 10.12 21.67 -12.86

11.86 298.02 10.12 21.67 -12.98

71.00 313.14 10.12 21.67 -13.11

65.16 107.37 10.12 21.67 -13.83

58.74 99.82 10.12 21.67 -13.90

51.03 242.41 10.12 21.67 -15.92

34.79 240.52 10.12 21.67 -16.18

67.69 319.18 10.12 21.67 -16.62

69.80 332.13 10.12 21.67 -16.94

14.91 254.55 10.12 21.67 -17.07
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33.78 241.09 10.12 21.67 -17.41

40.56 105.90 10.12 21.67 -17.79

74.12 303.69 10.12 21.67 -18.26

58.09 69.13 10.12 21.67 -19.16

79.51 295.10 10.12 21.67 -21.07

50.52 78.99 10.12 21.67 -21.74

54.50 104.44 10.12 21.67 -22.65

62.86 356.88 10.12 21.67 -22.66

62.00 310.02 10.12 21.67 -25.37

44.39 50.07 10.12 21.67 -25.91

77.55 250.86 10.12 21.67 -26.49

22.37 172.81 10.12 21.67 -26.93

25.37 176.29 10.12 21.67 -27.71

70.93 90.41 10.12 21.67 -28.19

37.29 195.51 10.12 21.67 -28.33

58.90 79.08 10.12 21.67 -28.89

54.41 86.05 10.12 21.67 -29.29

58.23 82.20 10.12 21.67 -29.75

52.64 101.53 10.12 21.67 -30.40

43.07 64.06 10.12 21.67 -30.56

72.51 355.91 10.12 21.67 -31.64

62.63 90.90 10.12 21.67 -32.91

38.77 39.62 10.12 21.67 -33.14

33.75 52.24 10.12 21.67 -34.14

16.24 257.55 10.12 21.67 -34.35

57.64 81.07 10.12 21.67 -34.77

49.83 75.44 10.12 21.67 -35.37

55.93 85.47 10.12 21.67 -35.42

34.40 98.24 10.12 21.67 -35.86

54.86 92.36 10.12 21.67 -36.14

23.94 219.63 10.12 21.67 -36.37

21.08 127.43 10.12 21.67 -38.76

79.46 62.33 10.12 21.67 -41.08

66.88 350.99 10.12 21.67 -43.95
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58.37 62.02 10.12 21.67 -44.42

28.78 175.94 10.12 21.67 -45.29

66.97 86.92 10.12 21.67 -45.86

60.40 94.32 10.12 21.67 -45.98

49.18 86.92 10.12 21.67 -46.12

31.27 47.62 10.12 21.67 -47.32

53.92 87.65 10.12 21.67 -47.67

21.52 20.36 10.12 21.67 -48.31

50.08 85.66 10.12 21.67 -48.82

71.47 298.55 10.12 21.67 -64.77

57.76 82.89 16.90 22.25 -6.34

60.59 96.34 16.96 22.39 -6.77

60.45 103.23 17.00 22.48 -7.04

52.85 85.47 17.09 22.70 -7.68

84.61 358.02 17.42 23.47 -9.99

65.72 286.00 19.58 28.55 -25.17

80.42 350.62 19.89 29.28 -27.34

72.48 236.32 20.19 30.00 -29.48

87.29 357.53 21.18 32.33 -36.45

84.51 346.30 22.41 35.22 -45.07

85.43 331.80 22.77 36.06 -47.58

85.53 346.41 24.40 39.90 -59.03

52.14 71.52 18.68 17.69 -7.52

76.80 330.27 18.80 17.57 -7.89

61.23 84.31 18.98 17.39 -8.39

61.66 65.07 19.24 17.13 -9.14

80.21 246.41 21.47 14.90 -15.63

85.55 153.63 21.90 14.47 -16.87

85.26 340.48 22.81 13.56 -19.49

79.61 257.16 22.90 13.47 -19.77

77.02 328.81 23.98 12.39 -22.90

84.60 309.45 24.04 12.33 -23.07

74.59 344.90 24.12 12.25 -23.31

88.44 259.11 24.51 11.86 -24.44
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53.01 338.60 24.85 11.52 -25.42

72.02 303.35 25.42 10.95 -27.08

76.81 233.40 26.01 10.36 -28.78

38.24 319.58 26.97 9.40 -31.57

73.15 311.24 27.01 9.36 -31.69

80.08 272.91 27.63 8.74 -33.48

87.58 342.92 28.25 8.12 -35.27

78.94 221.49 28.29 8.08 -35.40

31.23 245.53 28.47 7.90 -35.92

79.84 291.74 28.67 7.70 -36.51

82.23 337.80 28.95 7.42 -37.30

83.62 256.29 29.02 7.35 -37.50

60.06 300.13 29.77 6.60 -39.70

39.63 330.10 30.48 5.89 -41.74

47.08 326.38 30.78 5.59 -42.62

82.42 321.81 31.74 4.63 -45.40

81.61 308.64 31.92 4.45 -45.93

61.25 22.75 32.63 3.74 -47.99

89.32 325.40 33.04 3.33 -49.17

82.22 329.46 33.09 3.28 -49.33

89.08 189.80 33.36 3.01 -50.09

86.67 325.61 35.82 0.55 -57.24

88.20 333.72 36.18 0.19 -58.27

73.47 248.36 36.67 -0.30 -59.68

88.31 325.25 37.07 -0.70 -60.86

76.76 307.96 39.85 -3.48 -68.92

79.85 301.23 39.90 -3.53 -69.05

82.50 255.18 39.96 -3.59 -69.22

43.74 85.63 18.88 25.19 -8.58

72.73 149.02 19.48 25.45 -10.37

33.00 133.67 19.74 20.48 -10.60

35.38 54.66 21.11 19.11 -14.59

10.24 68.74 20.88 19.34 -13.92

15.44 50.38 21.14 19.08 -14.66
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84.56 336.71 20.10 25.71 -12.22

7.10 117.48 21.76 18.46 -16.45

14.84 350.11 21.16 19.06 -14.73

28.71 23.42 22.42 17.80 -18.37

25.66 19.31 22.37 17.85 -18.24

30.83 241.11 23.62 16.60 -21.87

13.04 245.80 25.83 14.39 -28.27

16.25 271.30 26.79 28.55 -32.21

52.59 77.15 19.49 25.45 -10.40

55.46 100.44 19.71 25.55 -11.07

52.01 87.39 19.76 25.57 -11.21

56.12 85.19 19.81 25.59 -11.36

56.34 52.56 20.28 25.79 -12.76

58.23 60.41 20.30 25.80 -12.84

58.85 80.60 20.36 25.82 -13.00

72.88 305.85 24.40 27.54 -25.07

68.88 297.17 24.42 27.54 -25.12

68.24 89.42 28.62 29.33 -37.68

57.40 59.41 20.10 20.12 -11.66

60.97 60.37 20.37 19.85 -12.43

74.77 248.22 20.50 19.72 -12.80

33.21 326.01 21.57 26.33 -16.61

23.31 338.32 23.31 27.07 -21.81

38.24 305.24 22.45 26.71 -19.26

16.34 90.33 28.88 11.34 -37.11
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Listing 5.1: 3DEC code for creating joints for the deterministic model.

new

de f sys

md = ’C:\\ ’

end

@sys

s e t d i r e c t o r y @md

se t a t o l 0 .0229

poly br i ck 0 40 0 40 −40 0

de f create_array

array aa (500)

array bb (500 ,5 )

array temp (1)

end

@create_array

de f read_data

f i l e = ’ 3DEC_Model1 . txt ’

s t a tu s = open ( f i l e , 0 , 1 )

command

pr in t @status

endcommand

s ta tu s = read ( aa , 500 )

command

pr in t @status

endcommand

loop n (1 ,500)

loop m (1 , 5 )
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bb(n ,m) = parse ( aa (n ) ,m)

endloop

endloop

s t a tu s = c l o s e

end

@read_data

de f c r e a t e_ jo i n t s

loop n (2 ,151)

dip_star = bb(n , 1 )

dd_star = bb(n , 2 )

x_star = bb(n , 3 )

y_star = bb(n , 4 )

z_star = bb(n , 5 )

command

j s e t dd @dd_star dip @dip_star n 1 o r i g i n

@x_star @y_star @z_star

endcommand

endloop

end

@create_jo ints

delete range x 0 10

delete range x 30 40

delete range y 0 10

delete range y 30 40

delete range z −40 −30

delete range z −10 0
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de f write_bv

f i l e = ’ output . txt ’

s t a tu s = open ( f i l e , 1 , 1 )

temp (1) = ’Number ’+’ ␣ ’+’ BlockIndex ’+’ ␣ ’+’ BlockID ’+’ ␣ ’

+’ BlockVolume ’

s t a tu s = wr i t e ( temp , 1 )

b i = block_head

i i = 1

loop while bi # 0

bvi = b_vol ( b i )

bid = b_id ( b i )

temp (1) = s t r i n g ( i i )+ ’ ␣ ’+s t r i n g ( b i )+ ’ ␣ ’

+s t r i n g ( bid)+ ’ ␣ ’+s t r i n g ( bvi )

s t a tu s = wr i t e ( temp , 1 )

b i = b_next ( b i )

i i = i i + 1

endloop

s t a tu s = c l o s e

end

@write_bv

return
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Table 5.2: Spacing data for five sets.

Set 1 Set 2 Set 3 Set 4 Set 5

[m] [m] [m] [m] [m]

0.54 0.18 0.11 0.64 0.26

0.79 1.03 0.07 0.16 3.23

0.89 0.48 1.24 0.69 1.42

0.83 0.82 0.80 2.78 2.92

1.26 1.26 1.25 0.55 0.26

0.40 11.52 1.71 0.92 0.89

4.23 0.02 0.05 0.58 0.34

1.82 0.01 0.26 0.04 9.47

1.17 2.10 2.34 0.78

1.35 1.27 0.82 0.62

0.52 1.20 1.55 5.99

0.89 0.35 0.55 2.01

0.93 1.59 1.96 2.38

1.82 1.25 1.37 6.49

6.72 0.37 0.42 3.00

0.04 0.47 0.24 2.64

0.06 0.28 2.54

1.66 0.39 10.34

0.28 0.10 3.31

1.13 1.41 0.73

0.53 0.14 0.07

0.02 0.60 1.71

0.11 0.38 1.78

0.99 0.36 0.13

0.14 0.03 3.48

0.36 0.26 3.53

0.17 2.83

2.97 3.29

2.01 4.33

0.87 1.18
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0.07 4.60

0.08 0.88

0.72

0.21

0.69

0.26

0.16

0.38

0.54

1.09

0.41

0.08

0.08

0.85

0.05

0.10

14.85

0.52

0.45

1.51

0.47

1.30

20.10

Table 5.3: Spacing data for three sets.

1a 1b 1c 2a 2b 2c 3a 3b 3c

[m] [m] [m] [m] [m] [m] [m] [m] [m]

0.27 0.15 0.72 0.07 0.05 0.59 0.19 0.22 0.85

0.18 0.51 0.18 0.05 0.17 0.15 0.13 0.75 0.22

1.19 0.20 0.78 0.30 0.06 0.64 0.84 0.29 0.92

0.32 5.21 1.53 0.08 1.73 1.25 0.22 7.70 1.79

0.17 0.70 0.18 0.04 0.23 0.15 0.12 1.03 0.21

0.04 0.36 1.45 0.01 0.12 1.19 0.03 0.53 1.69
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1.20 3.45 0.62 0.31 1.15 0.51 0.85 5.11 0.73

0.11 1.16 1.04 0.03 0.39 0.86 0.08 1.71 1.22

0.45 5.12 0.66 0.12 1.70 0.54 0.32 7.56 0.77

0.96 1.56 0.05 0.24 0.52 0.04 0.68 0.58 0.06

0.54 1.62 2.65 0.14 0.54 2.18 0.38 2.40 3.11

0.93 2.38 0.93 0.24 0.79 0.77 0.66 3.51 1.09

2.14 1.20 1.76 0.55 0.40 1.44 1.52 1.78 2.06

4.21 1.47 0.62 1.07 0.49 0.51 2.98 2.18 0.73

7.12 2.20 2.22 1.81 0.73 1.82 5.04 3.25 2.60

0.13 0.29 0.70 0.03 0.10 0.57 0.09 0.43 0.81

0.63 2.70 0.86 0.16 0.90 0.70 0.45 3.99 1.01

1.50 1.10 0.48 0.38 0.37 0.39 1.06 1.63 0.56

0.91 0.30 0.27 0.23 0.10 0.22 0.64 0.44 0.32

0.87 0.90 0.31 0.22 0.30 0.26 0.62 1.33 0.37

1.11 12.72 0.44 0.28 4.23 0.36 0.79 18.81 0.52

0.02 5.47 0.11 0.00 1.82 0.09 0.01 8.09 0.13

0.02 1.60 0.00 1.31 0.01 1.88

0.74 0.16 0.19 0.13 0.53 0.18

3.11 0.68 0.79 0.56 2.20 0.80

2.95 0.43 0.75 0.35 2.09 0.50

0.86 0.41 0.22 0.34 0.61 0.48

3.91 0.03 1.00 0.03 2.77 0.04

2.34 0.30 0.60 0.25 1.65 0.35

0.73 0.19 0.19 0.16 0.52 0.22

0.90 1.79 0.23 1.47 0.63 2.09

1.17 1.58 0.30 1.30 0.82 1.85

0.06 2.28 0.01 1.87 0.04 2.67

0.08 0.98 0.02 0.81 0.06 1.15

0.72 0.08 0.18 0.07 0.51 0.10

0.57 0.10 0.14 0.08 0.40 0.11

1.54 0.82 0.39 0.67 1.09 0.96

0.04 0.24 0.01 0.20 0.03 0.28

1.22 0.44 0.31 0.36 0.87 0.51

0.42 0.35 0.11 0.29 0.30 0.41
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0.27 0.29 0.07 0.24 0.19 0.35

0.82 0.19 0.21 0.15 0.58 0.22

0.70 0.44 0.18 0.36 0.49 0.51

0.30 0.62 0.08 0.50 0.21 0.72

0.95 1.24 0.24 1.01 0.67 1.45

0.18 0.46 0.05 0.38 0.13 0.54

1.11 0.10 0.28 0.08 0.78 0.11

0.05 0.10 0.01 0.08 0.04 0.11

0.26 0.96 0.07 0.79 0.18 1.13

2.44 0.05 0.62 0.04 1.73 0.06

0.35 0.11 0.09 0.09 0.25 0.13

0.89 16.83 0.23 13.80 0.63 19.71

2.76 0.59 0.70 0.48 1.95 0.69

0.05 0.51 0.01 0.42 0.03 0.60

0.99 0.81 1.16

0.72 0.59 0.85

0.53 0.43 0.62

1.02 0.83 1.19

0.45 0.37 0.53

0.05 0.04 0.06

1.22 1.00 1.43

1.22 1.00 1.43

0.09 0.08 0.11

12.78 10.48 14.97

7.42 6.08 8.69
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