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Abstract

FabLabs (Fabrication Laboratories) are publicly accessible and mostly free of

charge facilities where users can transform their ideas into real products by ap-

plying a set of rapid prototyping equipment such as 3D printers, CNC milling

machines and laser cutters. Nowadays, there are already more than 1000 registered

FabLabs all around the world and the tendency is still rising.

However, current FabLabs do have a problem. The information flow between

the operators and the manufacturing machines is only single-sided, providing

no feedback of the machine to outside influences or production relevant data.

The aim of this thesis is to establish a bi-directional communication between the

FabLab equipment and the users by the development and application of a cloud-

based sensor system. Thus, machine related data is acquired by various sensors

and forwarded to a cloud computing service for subsequent data processing and

analytics. A smart user interface allows real-time monitoring, interaction as well

as notifications on various end devices.

To achieve the objectives, the thesis is sub-divided into four essential parts. First,

the theoretical background of an approach known as the Internet of Things (IoT) is

introduced and the fundamentals as well as the technical functionality of Internet-

connected objects is outlined. The second part deals with the creation of a concept

that is required for the practical development of the sensor system. In the third

part, a market research is conducted whereby sophisticated IoT capable gateway

controllers are compared to each other to find an appropriate alternative for the

application. The fourth part is the development and installation stage. In this

part the required controller hardware and software is implemented, sensors are

selected and tested, the cloud platform including the user interface is configured

and the overall communication chain is established. Finally, the system including

all its components is installed at a selected FabLab machine.

The overall result of this thesis is the installation of a fully working sensor system

that is applied at the Ultimaker 2 - Extended 3D printer for gathering machine

related data and to furthermore validate the bi-directional user interaction as well

as the data monitoring.
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Kurzfassung

FabLabs (Fabrication Laboratories) sind für die Öffentlichkeit zugängliche Einrich-

tungen bzw. Produktionsstätten, die meist unentgeltlich dazu verwendet werden

können, um eigene Ideen und Entwürfe erfolgreich umzusetzen. Dazu steht eine

Auswahl verschiedener Maschinen und Werkzeuge wie z.B. 3D Drucker, CNC

Fräsen oder Laser Cutter zur Verfügung. Weltweit betrachtet gibt es heutzutage

bereits über 1000 offiziell registrierte FabLabs, wobei die Anzahl weiterhin kon-

tinuierlich ansteigt.

Eine Einschränkung heutiger FabLabs ist jedoch der nur einseitig vorhandene

Informationsfluss ausgehend vom Anwender hin zur Maschine, wodurch die

FabLab Maschinen nicht in der Lage sind auf Umwelteinflüsse oder produk-

tionsrelevante Ereignisse selbständig zu reagieren. Ziel dieser Masterarbeit ist

es diese eingeschränkte Kommunikation zu erweitern, indem ein cloudbasiertes

Sensor System entwickelt und implementiert wird. Verschiedene Sensoren sollen

maschinenrelevante Daten erfassen und über eine internetbasierte Verbindung

in eine Cloud Plattform übertragen um sie dort zu speichern. Auf diesem Weg

ist eine Weiterverarbeitung der Daten für analytische Zwecke sowie die grafische

Anzeige der aktuell erfassten Sensordaten möglich und zusätzlich lässt sich eine

bidirektionale Kommunikation zwischen Anwender und Maschine realisieren.

Die Arbeit gliedert sich in vier wesentliche Teilbereiche, wobei sich der erste mit

dem theoretischen Hintergrund des Konzepts Internet of Things (IoT) beschäftigt,

auf dem die Vernetzung des Systems mit der Cloud Plattform aufbaut. Der daran

anschließende Teil widmet sich der Erstellung eines Konzepts für die spätere

Implementierung des Sensor Systems. Im dritten Teil wird eine Marktrecherche

hinsichtlich internetfähiger Controller (IoT Gateways) durchgeführt, um eine

geeignete Variante für diese Anwendung zu finden. Der abschließende Teil be-

handelt die eigentliche Entwicklung und Implementierung des Systems inklusive

der notwendigen Hardware und Software Elemente sowie der Konfiguration der

Cloud Plattform und Herstellung der Kommunikation.

Das Ergebnis ist ein funktionsfähiges Sensor System, welches testweise am Ul-

timaker 2 – Extended 3D Drucker installiert wurde, um Daten aufzunehmen

sowie die zweiseitige Kommunikation zwischen dem System und der Benutzer-

schnittstelle zu validieren.
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1 Introduction

A Fabrication Laboratory (FabLab), also denoted as a Makerspace, is an open and

free to use environment where users can transform their unique ideas, designs

and sketches into real products with a set of easy-to-use machines and tools such

as desktop CNC mills, laser cutters, vinyl cutters and 3D printers. The first and, so

far, only FabLab of Graz was opened in 2014 by the Institute of Innovation and

Industrial Management at Graz University of Technology located at the university

campus.1

Figure 1.1: FabLabs - Overview and worldwide distribution (Jan. 2017)2

1Cf. FRIESSNIG; BÖHM; RAMSAUER, (2015).
2Illustration extracted from FABLABS.IO, (2016).
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Motivation

Currently, there are more than 1000 registered FabLabs distributed in 97 countries

all over the world, whereby the number of Labs is still increasing continuously.

Fig. 1.1 illustrates the distribution of Makerspaces all over the globe. One must

imagine that the first-ever opened FabLab introduced by the Massachusetts Insti-

tute of Technology (MIT) only started back in the year 20013, so the rapid spread

within the last 16 years is really remarkable. In Austria, there are currently eight

FabLabs located in Vienna (2x), Mödling, Graz, Leoben, Wattens, Salzburg and

Kirchfidisch.4

One essential characteristic of FabLabs is that they are accessible to the public

for free and opened for a certain time at least once a week. The idea behind

Makerspaces is that they share a common set of tools, machines and processes.

Following this concept allows to share designs as well as the knowledge across

international borders, to reproduce items in any other registered FabLab around

the world by providing a similar set of machinery with the same capabilities.5

1.1 Motivation

FabLabs are a great and helpful prototyping establishment for makers, innovators,

technologists as well as learners.6

Nevertheless, there is a certain drawback regarding current Makerspaces. A major

problem of FabLabs is the constrained one-way interaction and one-way infor-

mation flow from the user to the machine. As a result, this implicates that there

is no reaction of the applied FabLab machine to outside influences such as other

machines, people or environmental conditions. In case a machine would be able

to send production related data for analysis purposes, the recorded data could be

utilized in order to predict certain events such as service intervals, maintenance,

or the replenishment of consumables. Automatic remote user notifications could

contribute to receive messages about ongoing production progresses once a pro-

duction is finished, or about critical errors that may occur. A machine could even

prevent worst case scenarios like crashes or it performs automatically executed

3Cf. MOREL; LE ROUX, (2016), p. 2.
4Cf. FABLABCONNECT.COM, (2016).
5Cf. FABFOUNDATION.ORG, (2016b).
6Cf. FABFOUNDATION.ORG, (2016a).
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Approach

emergency stops via predictive methods and predefined program routines. Addi-

tionally to the machine related benefits, gathered ambient data within a FabLab

environment can be obtained to provide more details about the current degree of

utilization and attendance during open days.

The general objective of this thesis is to overcome the one-way information flow

pointed from the “user-to-computer-to machine” by establishing a bi-directional

connection between the FabLab users and the machinery.

1.2 Objectives

Within the context of this thesis, it emerges out of the motivation that the efficiency

and the usability of FabLabs and Makerspaces can be increased by providing

the possibility of a two-way communication between users and the equipment,

whereby machines are able to react automatically to predefined events, or to

interact with the users via remote interfaces.

Hence, the overall objective of the thesis is to develop and implement a cloud-

based sensor system within the FabLab Graz to, on the one hand, collect and store

machine related data within a cloud-based platform for subsequent data analysis

and analytics schemes, and on the other hand, to provide a two-way interaction

between users and the machines for receiving and sending notifications as well as

machine related information and the production status to miscellaneous connected

devices.

1.3 Approach

In order to achieve the overall objectives of the master thesis, which are defined

in section 1.2, the approach of the thesis related work is sub-divided into four

main constituents. Within the structuring, the first three parts are more theoretical

followed by a part that deals with the practical system implementation, as it can

be seen from Fig. 1.2.
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Approach

(A) Theoretical Background (IoT)

(B) System Concept

(C) Market Research

(D) Sensor System Implementation

Figure 1.2: Thesis Approach

(A) Theoretical Background

The initial part of the thesis provides a theoretical overview about a fundamental

concept of internet-connected objects on which this thesis is based on, introduced

as the Internet of Things (IoT). It deals with the beginnings and evolution of the

concept, the functionality, describes the required components and interfaces to

successfully form an IoT and it outlines several use cases where it is applied

nowadays.

(B) System Concept

Before it is possible to implement a sensor system, a basic concept is required

where system constraints, boundary conditions and other aspects regarding the

implementation have to be considered, e.g. the utilized FabLab machine or equip-

ment that subserves for the initial installment. The output is a simplified system

block diagram that is based on the fundamentals of part (A) and is furthermore

used to create a detailed system overview within the subsequent implementation

phase.
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(C) Market Research

IoT systems include a significant component to receive, process and to forward

data that is obtained from physical objects (things) in the real world through

sensors. A various amount of such “gateways” with different computing architec-

tures, communication interfaces and layouts are available on the market nowadays.

Consequently, it is not straightforward to pick an appropriate controller that is

automatically suitable for the desired application. In context of this part a mar-

ket research is conducted to first, introduce various devices and device families

and second, to opposite them regarding their technical specifications and IoT

capabilities that are required to successfully utilize it.

(D) Sensor Sensor System Implementation

This part of the thesis is the centerpiece and deals with the practical implemen-

tation of the smart sensor system within the FabLab. Based on a detailed system

overview that includes all the required components, interfaces and cloud applica-

tions, the realization is outlined in detail for all system parts such as the hardware,

software, the installment on the machine and the configuration of the Platform

as a Service (PaaS) IBM Bluemix7. This part also involves the visualization of

gathered test data by providing a user interface for interaction with the sensor

system and to receive automatic notifications on end device such as smartphones

or computers.

7IBM Bluemix Cloud Computing, https://www.ibm.com/cloud-computing/bluemix, (re-
trieved 06/02/2017).
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2 Internet of Things (IoT)

Nowadays the term IoT is widely spread and well known in various technological

areas. Everything revolves about Smart Homes, Smart Energy and the possibility

to control various appliances just by the use of a smartphone or other mobile

devices. But what exactly is the IoT, how does it work, how did it develop that fast

and most importantly, where did it originally derive from? This and more details

about the concept of IoT and its evolution is outlined in the following chapter.

2.1 Definition and Characteristics of IoT

When introducing the term IoT it is obvious that it consists out of the two essential

terms “Internet” and “Things”. Basically, the IoT is nothing else than physical

objects called “Things” connected together via an open network that is accessible

to anyone, which is known as the “Internet”.8

It was Kevin Ashton who was the first person to introduce the term IoT back

in 1999, which will be discussed in section 2.2 that is about the history and the

development of IoT in more detail. An appropriate definition for today‘s IoT

according to a McKinsey article is known as: “In what’s called the Internet of Things,

sensors and actuators embedded in physical objects - from roadways to pacemakers - are

linked through wired and wireless networks, often using the same Internet Protocol (IP)

that connects the Internet”9.

According to this definition another two important components are required

to successfully form an IoT, the “Sensors” and “Actuators” to either retrieve

information from the real world and sending it to the Internet (sensors), or to

8Cf. BUYYA; DASTJERDI, (2016), p. 3.
9CHUI; LÖFFLER; ROBERTS, (2010), http://www.mckinsey.com/industries/high-tech/our-

insights/the-internet-of-things, (retrieved 14/11/2016).
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Definition and Characteristics of IoT

produce an output into the real world (actuators). So now it is reasonable that

there is more about the term “Internet of Things” than just the two words “Things”

and “Internet” as mentioned earlier. It is due to the fact that “Things”, which are

the physical objects in our real world, simply cannot communicate without the

use of sensors, actuators and an appropriate controller for further processing of

the generated and the received data. The definition also indicates that the form of

the physical objects is not specified and can include anything from commonplace

items like a simple toaster up to objects in the high-tech or medical industry.10

Putting this all together, the IoT can be described as the sum of a few fundamental

components, illustrated in Fig. 2.1 below.

Figure 2.1: Basic Components of the IoT11

The different components that are required to form an IoT will be discussed in

section 2.3 in more detail. It is important to understand that the physical object

(thing) does not change its form at all, although computing capabilities are being

added by the installation of sensors and the connection to the Internet.12

Depending on the scope, the IoT can also be referred as the “Internet of Everything”

(IoE), which extends the communication of physical objects with people, data and

processes.13

10Cf. MCEWEN; CASSIMALLY, (2013), pp. 10-11.
11Own illustration based on ibid., p. 11.
12Cf. ibid., p. 11.
13Cf. BRADLEY, (2013), p. 2.
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History & Evolution

2.2 History & Evolution

2.2.1 Starting Point & Development

As already mentioned in section 2.1, the term “Internet of Things” was coined by

Kevin Ashton back in the year 1999. Ashton, co-founder of the Auto-ID Center of

MIT was working on the development of Radio Frequency Identification (RFID)

in context of supply chain optimization. The idea was to extend RFID uses, which

are in general limited to near field applications, to broader domains. During a

presentation about supply chain management and Ashtons visions to improve

RFID, the term “Internet of Things” (IoT) had its first appearance and the idea of

linking devices together was born.14

Although the term and the basic idea is still the same today, the concept of IoT

is significantly different in 2016 than it used to be 16 years ago. Of course, this

is also caused by the rapid development of technology. In 1999 the Internet was

not mainstream yet and the Wireless Fidelity (WiFi) technology, which makes

the connection of objects much easier and flexible, was not available at all for

commercial uses. The concept Ashton was tracing at this time was not exactly

the idea of assigning each device a unique identification number (IP-address)

within a network, because it was technically inconceivable in terms of network

availability, speeds and storage capacities. The concepts and the ideas about IoT

have proceeded hand in hand with the rapid improvements regarding network

technology and technology in general over the last years. New communication

standards like Bluetooth, improved WiFi generations, enhanced network speeds

and storage capabilities became available and all the services became much more

affordable. This has increased the number of connected devices to the Internet

tremendously and entirely new possibilities have been opened for IoT and its use

cases.15

14Cf. BUYYA; DASTJERDI, (2016), p. 5.
15Cf. TOZZI, (2016).
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History & Evolution

2.2.2 Internet Protocol v6 (IPv6)

A key part in terms of IoT evolution was the launch of the next generation Internet

Protocol Version 6 (IPv6) with increased address space back in the year 2011.

Through the implementation of the IPv6 address allocation it was possible to

assign a total amount of 340 sextillions (2128 = 340·1036) unique IP addresses by

enhancing the address size to 128 Bit. In comparison to this, the previous standard

Internet Protocol Version 4 (IPv4) only provided an address space of 32 Bit which

results in a total amount of around 4.3 billion (232 = 4.3·109) addresses. Because

of the fast increase of connected devices over the past years and according to

different market forecasts that have predicted an enormous incline of connections

in future, the limitation of IPv4 was a serious issue and the remaining addresses

started to run low. This was the actual trigger to start with IPv6. With the launch

of IPv6 and its large address space it became feasible to assign each physical object

that is part of the IoT an unique IP-address, just like any computer or notebook

that is connected to the Internet.16

2.2.3 Growth Forecast & Market Size

Over the last years a lot of companies were publishing future trends regarding

the development of IoT, however, they have to be treated with caution because

they show remarkable differences concerning the growth rates and it is difficult

to estimate whether a forecast is feasible or not. The following Fig. 2.2 shows a

forecast regarding the increase of connected devices from the year 2004 to 2018. It is

noticeable that the IoT sector was setting off around the year 2010, just when IPv6

was about to start, and that its total share inclines faster than any other Internet

related branch from that point.17

According to a market research that was conducted by RnRMarketResearch, the

IoT market worth will rise to almost $500 billion by the year 2019. Compared to

the market value of $44 billion in 2011, this would be the result of more than a

tenfold increase. The fast increase over the last years is also associated with leading

16Cf. VERMESAN; FRIESS, (2014), pp. 226,228.
17Cf. ROSENQUIST, (2014).
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IoT Components & Architecture

tech companies like Microsoft, Google, IBM, Cisco or Intel that have started to

cooperate to push the development of IoT and its market growth.18

Figure 2.2: Connected Devices to the Internet - Forecast19

2.3 IoT Components & Architecture

In the following section the most important components that together form the

Internet of Things will be discussed. Depending on the architecture and the type of

an IoT platform the components may vary or additional components are needed. In

general, IoT Systems require a cloud-based data storage within a cloud-computing

service where data, gathered from sensors in the real world, is being recorded.

The historical data can be analyzed afterwards within provided cloud computing

services to understand a certain behavior of a machine or any other physical object.

However, if only real-time data generated by the sensors is relevant, e.g. to trigger

an event or an actuator based on a threshold value of a sensor, then the recording

of historical data may not be necessary and thus, the implementation to the IoT

platform is not reasonable. Note that the three main constituents according to

Fig. 2.1 are always part of an IoT system, otherwise it would be a different concept

18Cf. BUYYA; DASTJERDI, (2016), p. 6.
19Modified illustration from ROSENQUIST, (2014)
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IoT Components & Architecture

of connected devices, such as Machine to Machine (M2M). The easiest scenario is to

connect each sensor directly to the Internet via WiFi or a wired Ethernet connection,

but realizing this requires a full Transmission Control Protocol/Internet Protocol

(TCP/IP) stack plus a controller implemented to each sensor. Depending on the

amount of data that is being collected and depending on the total number of

sensors and actuators used for the application this is very inefficient, so “gateways”

are used to overcome this issue.20

Fig. 2.3 shows an overview of a possible IoT architecture including the key com-

ponents and common communication protocols between the instances.

Figure 2.3: IoT Example Architecture - Key Components and Protocols21

2.3.1 Physical Objects & Smart Objects

A physical object, often referred as a “Thing” in context of IoT, could be any

possible item in the environment of the real world no matter if it is a daily item,

a machine, a vehicle or a building. The illustration according to the following

Fig. 2.4 shows a classification of objects based on the size, the moveable aspect,

the complexity and even if they are animate or inanimate.22

A “Smart Object” on the other hand must not be confused with the physical object

itself, although it is derived from a non-smart object and its original attributes

remain the same. The essential difference is that the smart object is equipped with

a form of a sensor or actuator and a controller for processing the data, therefore, it

gains the ability to interact with the physical world and other smart objects.23

20Cf. BUYYA; DASTJERDI, (2016), p. 278.
21Illustration from ibid., p. 279.
22Cf. CHAOUCHI, (2010), p. 7.
23Cf. VASSEUR; DUNKELS, (2010), p. 3.
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Figure 2.4: Objects “Things” of the IoT - Classification24

Note that communication devices such as mobile phones or PCs are already

connected objects using a wireless or wired communication. Nevertheless, in

this terminology they are still considered as “Things” because IoT contributes to

extend the connectivity and interconnection of these existing objects with new

objects.25

2.3.2 Sensors

Sensors in IoT systems are essential key components and responsible for collecting

data of the physical objects or environmental factors in the real world. Basically, a

sensor is a device that translates a non-electrical physical unit, e.g. the temperature

of an object or the environment, into a proportional electrical output signal in

the form of a voltage or current. In a physical perspective, a sensor is an energy

transformer. Certain types of sensors are also referred as “detectors”, especially

when it comes to applications like measuring a movement or a distance from an

object.26

24Modified illustration from CHAOUCHI, (2010), p. 8.
25Cf. ibid., p. 8.
26Cf. FRADEN, (2016), pp. 2-3.
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A Microcontroller Unit (MCU) cannot interpret continues analog values directly,

so the analog output signal of the sensor has to be converted into a digital form

using the Analog Digital Converter (ADC) of the microcontrollers input.27

The simplest form of a sensor is a pushbutton, which transforms an user input

into a logic state that is interpreted digitally either as “0” or “1”. Sensors that only

distinguish between a series of low and high states are called “Digital Sensors”,

they do not require an additional analog-to-digital conversion just like analog

sensors do.28

Communication with the gateway is done via various available electronic inter-

faces such as ADC, Pulse Width Modulation (PWM), Inter Integrated Circuit (I2C)

or General Purpose Input Output (GPIO).29

The selection of a sensor for an IoT system clearly depends on the requirements

and the accuracy that has to be met. Sensors have different properties like the

overall accuracy, measurement range, sampling rate, power demand and they have

an accuracy drift depending on environmental influences like the temperature.

Thus, before picking a sensor the datasheet has to be studied carefully to ensure

that it is adequate for the application.30

2.3.3 Actuators

Compared to a sensor, the actuator is the exact opposite in terms of functionality.

The actuators input is driven by an electrical signal which is then translated to a

physical signal as an output.31

Good examples for actuators in the field of IoT are speakers or visual displays. A

monitoring screen is able to display data points measured at the sensor site and the

speaker can additionally output an acoustic alert once a defined critical value has

exceeded. The output of an actuator can also be in the form of a mechanical action,

like the movement of an electric motor or an electro-pneumatic cylinder.32

27Cf. FRADEN, (2016), p. 5.
28Cf. WINKLER, (2014).
29Cf. BUYYA; DASTJERDI, (2016), pp. 279-282.
30Cf. FRADEN, (2016), pp. 7-11.
31Cf. ibid., p. 3.
32Cf. MCEWEN; CASSIMALLY, (2013), pp. 90-91.
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2.3.4 Gateway

As already mentioned in section 2.3 it is cost-inefficient to implement the Internet

ability via a TCP/IP stack to every single sensor, particularly when there is a

large number of sensors used for the system. Therefore, “gateways” are used as

an interface between the sensor site and the cloud-based backend service in the

Internet. The gateway usually consists out of a microcontroller/microcomputer

with Internet capability and the appropriate development environment/operating

system. A MCU is a combination of a Central Processing Unit (CPU) with Read

Only Memory (ROM), Random Access Memory (RAM) and input/output periph-

erals for the communication with external sensors and actuators, put together

on a Printed Circuit Board (PCB). Some modern controllers are also designed as

a System on Chip (SoC) solution, where all components are integrated in one

single Integrated Circuit (IC). Depending on the type of the controller the Internet

capability is either already on-board by the use of WiFi and Ethernet, or it has to

be extended using a “Shield” which is an additional PCB that adds a full TCP/IP

stack for Internet capability to the controller.33

2.3.5 Cloud Computing Services

Cloud computing was introduced as a term that describes on-demand computing

services offered by certain providers. The computing infrastructure is classified as

the “cloud” where individuals can access the infrastructure, applications, services

as well as storage from anywhere via the Internet34

There are three fundamental instances of cloud-based services models available,

the Infrastructure as a Service (IaaS), PaaS and the Software as a Service (SaaS),

which are offered in different environments of providers.35

Pricing of these services, if they are not free to use, is usually based on pay-per-

use, subscription, or on the amount of infrastructure and virtual storage that is

requested.36

33Cf. BUYYA; DASTJERDI, (2016), pp. 286-287.
34Cf. BUYYA; BROBERG; GOSCINSKI, (2011), p. 3.
35Cf. SRINIVASAN, (2014), p. 9.
36Cf. AL-ROOMI, (2013), pp. 101-103.
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Infrastructure as a Service (IaaS):

The IaaS model represents the lowest level of the model hierarchy and already

provides the server infrastructure such as storage, processing power and networks.

The benefit of this model is that cloud users do not need to manage and control

these resources themselves, they just need to install the necessary operating sys-

tem as well as the software components and can then deploy their applications.

Therefore, the IaaS is also identified as the hardware-level-service.37

Examples: IBM Cloud, Amazon EC2, Google Compute Engine,...

Platform as a Service (PaaS):

PaaS is a system-level-service and provides users a computing platform for devel-

oping, deploying and testing of applications directly within cloud services without

the need of local development environments. Programming languages and tools

that are required to build applications are already supported by the PaaS. The

applications then run on the infrastructure of the provider and are presented via

the Hypertext Transfer Protocol (HTTP) interface of the Internet to the end-users.38

Examples: IBM Bluemix, Microsoft Azure, Google App Engine,...

Software as a Service (SaaS):

SaaS is the application-level-service and ranked on top of the cloud computing

services. SaaS allows users to access the applications of the provider that are ready

to use via a client interface, e.g. a web browser, without the need of installing the

application locally plus they do not have to worry about managing the application

and the underlying cloud infrastructure.39

Examples: Google Docs, Microsoft OneDrive, Dropbox,...

37Cf. SRINIVASAN, (2014), p. 10.
38Cf. ibid., p. 12.
39Cf. ibid., p. 12.
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2.3.6 Data Transmission

The sensor data needs to be transmitted from the sensor installation site to the

gateway and furthermore from the gateway to the cloud services via the Internet.

Because an IoT platform also includes actuators that are triggered with commands

coming from the gateway and respectively the backend services, the connection

of the instances has to be bi-directional in order to provide the two-way commu-

nication. Examples for the low-level interfaces between a MCU or Single Board

Computer (SBC) board that acts as the gateway have already been mentioned in

section 2.3.2.

The communication between the gateway and the cloud service is achieved by the

use of wired or wireless Internet access and an appropriate TCP/IP messaging

protocol, where the data gets packed and formatted properly for the transmission

via a message payload.40

The most common messaging protocol with included TCP/IP stack is the HTTP,

which is primarily known as the standard communication protocol for the World

Wide Web (WWW) using a request/response model.41

However, for IoT applications protocols like Data Distribution Service (DDS),

Advanced Message Queuing Protocol (AMQP), Extensible Messaging and Pres-

ence Protocol (XMPP) and in particular the Message Queue Telemetry Trans-

port (MQTT) protocol are utilized to a wide extend, since they are better optimized

for it.42

Especially MQTT is beneficial, because it is a very light weighted protocol with

a small message size, thus, it provides better capabilities in constrained environ-

ments compared to HTTP. This are apparently essential advantages when it comes

to the connection of a large number of sensors and actuators.43

The MQTT protocol is furthermore used for the communication within the prac-

tical part of this thesis where some more details about it are discussed in sec-

tion 5.3.3.

40Cf. BUYYA; DASTJERDI, (2016), p. 290.
41Cf. LAMPKIN, (2012), p. 7.
42Cf. BUYYA; DASTJERDI, (2016), p. 292.
43Cf. LAMPKIN, (2012), p. 4.
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2.4 Other Concepts beside IoT

Besides IoT there are also two other related concepts that are relevant for appli-

cations in the industrial area and follow the idea of “connected devices”. To a

certain extend they are very similar to IoT and for some parts they are overlapping,

nevertheless there are some particular differences between the approaches that

have to be outlined.44

2.4.1 Machine to Machine (M2M)

M2M is, as well as IoT, a concept that allows communication of devices that are

linked together by either using a wired or wireless connection. However, the

essential difference to IoT is that the devices in M2M are all of the same type and

that each solution is for one specific application for the use within a smaller domain.

Thereby it is usually not intended to share sensor data directly via the Internet,

but rather within a Local Area Network (LAN) or Wide Area Network (WAN)

environment. Fig. 2.5 shows a direct comparison of the characteristics of IoT and

M2M, additionally divided into different aspects.45

Figure 2.5: IoT vs. M2M - Differences46

44Cf. MOOLAYIL, (2016), pp. 12-14.
45Cf. HÖLLER, (2014), p. 11.
46Illustration from ibid., p. 37.
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A typical M2M solution is the remote monitoring of enterprise assets, where oper-

ators will be informed when and why a machine or product needs maintenance.

Fig. 2.6 shows an overview of additional M2M applications including estimated

market sizes of deployed M2M devices from the years 2012 and 2016.47

TELEMATICS
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and small business security
alarms.

ATM and POS devices are
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METERING REMOTE MONITORING
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consumption, mainly
electricity.
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Figure 2.6: M2M Applications & Market Size48

2.4.2 Industrial Internet of Things (IIoT)

The Industrial Internet of Things (IIoT) is not exactly another concept of IoT, but

is rather to be considered as a subdomain or a special use case of IoT. Basically

IIoT is the application of IoT in the industrial manufacturing section to improve

the productivity.49

Sensor technology has enhanced in recent years by reducing the size and costs of

the components and so the instrumentation of devices, manufacturing machines

and processes for capturing data became technically as well as financially feasible.

Big amounts of data generated by the industrial equipment is stored within cloud

computing services and can be used to perform advanced analytics to acquire

useful information, which is known as the Big Data Analysis. This provides

insights into machines and their processes to furthermore improve the procedures

by predictive analytics such as machine-learning or data mining.50

47Cf. HÖLLER, (2014), p. 13.
48Illustration from ibid., p. 13.
49Cf. LAMBRECHTS; SINHA, (2016), p. 13.
50Cf. GILCHRIST, (2016), p. 4.
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Other IoT cloud computing services such as the visualization of real-time machine

data and the information as well as the notification of operators and users based

on specific events or triggers can be implemented as well.

2.5 Application Areas

The IoT, together with M2M and other subdomains, has a wide field of applications

nowadays and it is present in almost any possible scenario, from the transport

and mobility sector to health monitoring up to the complete interconnection of a

building and its objects as well as the integration into intelligent electrical power

grids. In context of all the different applications that are illustrated in Fig. 2.7

below, the phrase “smart” does not only relate to the connection of objects as

known from its definition. It is also a term used for energy-efficiency and energy

saving applications and thoughts.51

The following section will discuss several areas of applications and their benefits

for the users and the environment.

Figure 2.7: Smart Environments & Applications52

51Cf. VERMESAN; FRIESS, (2014), p. 23.
52Illustration from ibid., p. 23.
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2.5.1 Smart Grid & Energy

Nowadays there is an increasing tendency to utilize renewable energy resources

to prevent climate changes caused by the further use of fossil energy resources.

The idea of smart energy supply is based on the intelligent connection of various

energy sources, consumers and the infrastructure to react on power fluctuations

and peaks by balancing the energy using flexible and smart electrical power grids.

The functionality of the “Smart Grid” is achieved by implementing the IoT concept

of connected devices within a network.53

Figure 2.8: Smart Grid System - Overview54

The implementation of such a future Smart Grid is expected to partially correspond

with the Internet, where energy within the grid is managed more or less like data

packets in the Internet using gateways and routers to identify the best paths for the

energy flow. This concept allows energy exactly to be transferred where and when

it is needed plus the monitoring of power consumption on different levels, from the

single household using “Smart Meters” up to national and international levels is

53Cf. VERMESAN; FRIESS, (2014), pp. 45-47.
54Illustration from ibid., p. 45.

20



Application Areas

feasible. A Smart Meter is a connected device that gives information about the real-

time energy consumption to the users, thus, it is easier to identify and to eliminate

energy wasting devices and to reduce the overall energy consumption.55

2.5.2 Smart Health & Medical Applications

IoT is a big opportunity for today‘s healthcare management by performing real-

time monitoring of people‘s health status and the recording of various physiolog-

ical parameters like the body temperature or blood pressure using wearable, or

even implemented sensors. The gathered information is provided directly to the

user by the utilization of a mobile receiver (concentrator) and can be transmitted

to a cloud based server via the Internet where medical staff or doctors can access

the data online using appropriate backend services. The remote monitoring is

helpful for the detection and early prevention of diseases as well as for physical

examinations where doctors can resort to the historical records in addition to the

local clinical tests. Fig. 2.9 shows an example for a cloud based patient health

monitoring system.56

Figure 2.9: Cloud-Based Healthcare Monitoring System57

55Cf. VERMESAN; FRIESS, (2014), pp. 45-47.
56Cf. HASSANALIERAGH, (2015), p. 285.
57Illustration from ibid., p. 285.
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This large set of recorded data considered over a longer timespan allows medical

staff to make a much better and more precise prognosis and therefore the quality

of a patient‘s health can be improved. As a result of this disruptive technology,

healthcare costs could be essentially reduced and the healthcare system could be

much more efficient by improving the quality and the diagnostic speeds.58

2.5.3 Smart Homes & Buildings

The upcoming trend of IoT and the connection of everything is also to be found in

the subject of homes and buildings. A network of intelligent sensors and actuators

are integrated in household facilities and devices like the heating, air conditioning,

lightning or the security system. Therefore, it is possible to use a single device

such as a tablet or smartphone to receive information about the state of the home,

or to remote control the facilities using cloud based services and mobile backed

services of different providers, e.g. the Shaspa59 smart home system, even when

not being at home.60

Figure 2.10: Smart Home - Example61

58Cf. HASSANALIERAGH, (2015), p. 285.
59Shaspa Smart Home System, http://www.shaspa.com/smart-home/Smart-Building/2012/

12/smart-home, (retrieved 06/02/2017).
60Cf. VERMESAN; FRIESS, (2014), p. 56.
61Illustration from ibid., p. 56.
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2.6 IoT Risks & Privacy Challenges

As it can be seen from the outcomes of the actual chapter, IoT has developed

rapidly within the last years and it offers big potential for various application

areas. Nevertheless, there are certain topics that are very controversial, particularly

the privacy of the user data and the security of IoT systems. Most of all when it

comes to the privacy of personal data that is gathered, e.g. in smart home systems,

security is a big challenge. There are various security threads in IoT systems which

are mainly to be found in the network connection. Since all the objects and things

that gather sensitive user data are connected to the Internet, data is exposed to

threats either through direct attacks by trying to access the cloud services and

therefore the dataset, or by infiltrating malware to host devices to furthermore

grand system access. It is horrific to see that for some self-managed security

applications, like the use of home surveillance cameras (IP cameras), the access

is sometimes not protected at all even though the user might assume. Different

Internet device-scanning search engines allow to find accessible sensors and to

make many devices visible for the whole world if they are not password protected.

This example demonstrates how fast and easy personal information can end up in

the wrong hands, and that this is a big issue to overcome for IoT and its further

development in future.62

62Cf. LIN; BERGMANN, (2016), pp. 4-6.
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3 Sensor System Concept

The following chapter deals with the considerations how a smart sensor system

for the FabLab Graz machinery can be applied, by creating an appropriate concept

that serves as the basis for the practical implementation and the installation of the

system on the machine(s).

The foundation for it is based on section 2.3, where the theoretical background of

IoT systems and its required components were discussed in detail. No restrictions

were given on how to implement the system and what platforms or components

have to be used, except the cloud computing backend service which was predeter-

mined to be the platform called “IBM Bluemix”. Because Bluemix, as many other

well established PaaS providers, are mostly based on a pay-per-use pricing, free

trail codes were provided by IBM during and already before the start of this thesis.

Therefore, it was preferred to use Bluemix as the cloud-platform service for the

purpose of this thesis.

3.1 Basic Considerations

As it can be seen out of the objectives that were defined in section 1.2, a bi-

directional sensor system that is capable of sending machine related data as

well as sending/receiving user specific commands and notifications for manual

intervention is required. Gathered sensor data should be transmitted via the

Internet to the cloud service for prospective big data analytics and storage, but

should also be displayed in real-time via an implemented information dashboard

that is accessible from various devices like a host PC or a mobile device in order to

supervise the machine activities.
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3.1.1 FabLab Equipment

The FabLab in Graz provides a variety of standardized FabLab equipment such

as 3D printers, laser cutters, CNC milling machines as well as an electronic work-

bench.63

For the development of the sensor system, in order to make the machines “smart”

and intelligent, it is preferable to only pick one specific machine acting as the

reference device for testing, rather than the application to several machines at a

time. This keeps the effort for the implementation lower and once the system is

successfully working it can still be adopted to other machines by adjusting the

required sensors at the installation site. The machine that is utilized for the initial

installment of the sensor system is a 3D printer, more specifically the “Ultimaker 2

- Extended” that uses Fused Deposition Modeling (FDM) technology and supports

an “extended” build volume compared to the standard version. This printer is fre-

quently used in the FabLab and affords easy accessibility for the sensor assembly.

Depending on the installation site and the type of the sensors additional mounting

mechanisms may also be required in order to attach the sensors appropriately and

save. For the installation of the sensor equipment it is also important to ensure

that the accessibility to the machine, e.g. for maintenance or repair work, is not

restricted due to the installed parts.

3.1.2 Components

To develop the sensor system, various components including sensors and actuators

are required where the types depend on the machine for installment. For example,

when installing the sensors on the 3D printer “Ultimaker 2 - Extended” which is

the reference device for implementing the system, it is obvious that a parameter

like the extruder temperature at the nozzle is of great interest. Thus, sensors have

to be selected appropriate and of course the measurement range of each sensor

has to match with the scale of the physical values that are obtained, otherwise

the recorded values are incorrect. The key point of the system is the controller

board, that serves as the gateway between the sensors and the cloud platform. The

controller needs to be capable of processing the gathered sensor data with respect

63Cf. FABFOUNDATION.ORG, (2016b).
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to size and resolution and it needs to provide all the required peripherals that are

needed for the sensor connection and communication. Additionally, the controller

has to support network capabilities by providing a TCP/IP stack to forward the

sensor data to IBM Bluemix. A market research is conducted in chapter 4, where

different MCU boards and SBC solutions are compared in order to assess which

controllers are most suitable for this application.

3.1.3 Connection & Sensor Wiring

For the implementation, installment and testing of the system, the 3D printer

“Ultimaker 2 - Extended” is intended to be used, because this machine is frequently

accessed at the FabLab opening times by students or other users, hence, it is

suitable to generate a good amount of test data. For extending the system to other

machines there are two possibilities. Either the same gateway, respectively the

same MCU board or SBC, can be used if the machines are located fairly close,

or a separate gateway for each machine needs to be implemented if the cable

lengths of the sensor connection would exceed a limit where the communication

gets distorted. Especially when applying sensors that make use of a bus based

interface such as I2C, where multiple devices (sensors) called “slaves” participate,

the maximum cable length needs to be considered as the wire capacitance that

increases with the cable length, must not exceed a default limit.

The data size is also a limiting factor because not every controller is able to process

a big amount of data throughput caused by a vast amount of sensors. For the

connection of the sensors with the gateway, the wiring has to be reflected as

well because the routing can easily become confusing when dealing with a large

number of sensors and a lot of connections.

In general, the application of a gateway for each machine brings more flexibility,

since every device and its gateway controller can be managed on its own and is

independent from the other machines, although it is still possible to communicate

among each other. However, this solution also has the disadvantage of higher costs

when it comes to the connection of various machines within a FabLab. Depending

on the type and capabilities of the controllers they get particularly costly.
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3.1.4 Internet Accessibility

An essential point for the system consideration is the establishment of the com-

munication chain from the sensors up to the cloud service, where data is being

processed and stored. The FabLab is located within the TU Graz (TUG) campus,

thus, the Internet connection has to be obtained by either using the tethered Eth-

ernet, or the wireless TUG accessibility. Access to the TUG network is generally

restricted in terms of security and therefore only possible by using appropriate

user credentials in the case of WiFi, or by unlocking some devices Media Access

Control (MAC) address to receive an IP address by the Dynamic Host Configura-

tion Protocol (DHCP) server and by using the network sockets mounted within

the facilities. With respect to the gateway hardware it has to be ensured that the

controller and its TCP/IP stack supports this procedure in order to successfully

establish a connection to forward the data.

3.1.5 The Cloud Platform - IBM Bluemix

In order to make use of IBM Bluemix that serves as the cloud computing platform,

the PaaS needs to be configured properly by creating an user account for the

management of the provided applications and services, like Node-RED or a NoSQL

Database. As the key part of IBM IoT, Bluemix initially comes up with an “Internet

of Things Platform” that basically acts as the interface for the communication with

the sensor gateways by providing a suitable protocol for the data transmission.

Each gateway is identified by the assignment of a unique device ID and an access

token for the device registration in the cloud. The appropriate configuration of

IBM Bluemix together with the necessary steps to set up the cloud service is part

of the implementation chapter, where the specific realization of the sensor system

on the “Ultimaker 2 - Extended” 3D printer is explained in more detail.

3.2 System Block Diagram

The following Fig. 3.1 illustrates a very basic block diagram for the implementa-

tion of the sensor system. It shows the essential components that are required to

form the overall system and it indicates the communication interfaces between
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the different layers. Although the exact components and communication proto-

cols/interfaces are not declared yet, the fundamental functionality still proceeds

very well out of this conceptual block diagram.

Basically, there are three different subsystems that have to be implemented which

is first, the local sensor site embedded in the FabLab machine(s). Second, the

appropriate gateway that is conducted as an Internet capable microcontroller

or microcomputer solution and third, the cloud-based platform executed as the

IBM Bluemix PaaS. Regarding the system implementation, each instance can be

considered individually, where the subsequent functionality is achieved by using

convenient communication interfaces and messaging protocols.

Note that the block diagram below is only applicable for the view of a single ma-

chine in the FabLab and that no specific components or communication protocols

are defined at this point. It represents a demonstration of the overall system and

how all the different instances are aligned, for a better insight of the component

interaction.
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Figure 3.1: Sensor System Concept - Block Diagram64

64Own illustration.
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4 Market Research

In the following chapter, a market research and comparison regarding IoT capable

MCU boards and SBCs is conducted. As already mentioned in previous sections,

the MCU board or SBC will acts as the gateway between the sensor site of the

IoT system and the cloud platform IBM Bluemix. Therefore, the device needs to

be selected properly according to the requirements of the system and it needs to

provide capabilities that IBM Bluemix can make advantage of.

Nowadays, a broad range of controllers provided by different suppliers and

developers are available on the market represented in wide price ranges and

performance levels. Thus, not every controller is appropriate for IoT scenarios,

although it may support network functionality via Ethernet or WiFi since certain

types are very limited in program memory, working memory and in terms of

interfaces for the sensor connection. The allocated memory space of a controller

can be insufficient very fast, depending on the complexity of the program code,

the number of sensors and the required update rate of the sensor values that are

gathered from the machinery. Moreover, the measured sensor data needs to be

translated into an appropriate data format within the program code to successfully

transmit it to the IBM Bluemix “Internet of Things Foundation” by using a suitable

messaging protocol.

Within this chapter, available controller families on the market are introduced in-

dividually and are additionally compared to each other using different properties

that are essential for the selection. Subsequently, a tool called “Weighted Criteria

Matrix” is utilized to rate the different characteristics based on their importance to

furthermore receive a scoreboard of the evaluation, whereby the highest numeri-

cal number of the overall rating represents the most suitable alternative for the

application. The benefit of this tool is the possibility to weight the relevance of all

criteria individually, therefore an over-influence of specific characteristics can be

avoided.
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4.1 Development Boards - Market Overview

The following section provides an outline of the most popular development boards

at the market, including an overview of the technical specifications for each prod-

uct group. The full comparison table including all the boards is represented in the

appendix (A.1 Market Overview - IoT Development Boards).

4.1.1 Arduino Family

The first Arduino board was invented in 2005 by a group of the Interaction Design

Institute Ivrea (IDII) to be used by their students for building projects. At this time

MCU boards were rather expensive and complicated to handle. The intention was

to introduce an affordable board that is easy to use, but that still includes all the

necessary interfaces that characterize a MCU such as onboard serial connection for

programming the device, or other common interfaces like I2C, Serial Peripheral

Interface (SPI), Universal Asynchronous Receiver Transmitter (UART), ADC and

GPIOs. The Arduino project was based on open source from the very beginning,

meaning that the code and the schematics of the boards are accessible to anyone

for better extension or adaption of the platforms to suit the individual needs.65

Arduino also provides a compact open source Integrated Development Environ-

ment (IDE), including a text editor for writing the code using C or C++ language.

The IDE also supports other controllers like an ESP8266 by including the appro-

priate library files.66

These days, lots of different Arduino boards, modules, bundles and extension

called “shields” are available for different application areas. The “shield” can be

racked onto the board to extend its functionality with additional features, e.g.

network capability for IoT applications. Fig. 4.1 shows an overview of the current

Arduino product range according to their homepage. Note that not all of these

products like the MKR1000 were available at the start of this market research in

context of the sensor system implementation, therefore, not all of the products

could be considered in the research and the comparison.

65Cf. MCEWEN; CASSIMALLY, (2013), pp. 100-101.
66Cf. ARDUINO.CC, (2016c).
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Figure 4.1: Arduino Product Range67

As shown in Fig. 4.1 above, Arduino provides controllers within different appli-

cation areas and performance levels. Low-budget entry devices like the Arduino

UNO have less functionalities, are slower in terms of processing speed and they

are equipped with less RAM and Flash Memory for the program storage. Devices

of the “Wearable” series are not considered for the comparison, since they are not

suitable at all and also the “Materia 101” which is a complete 3D printer kit is

insignificant in this context.

Table 4.1 shows a tabular comparison of some Arduino based MCU boards that

are potentially appropriate to serve as the IoT platform gateway, including all the

detailed characteristics and technical specifications. Most of the Arduino devices

are based on a type of the Atmel AVR MCUs, apart from some exceptions like the

Arduino DUE that uses an Advanced RISC Machines (ARM) based MCU. There

are several models, like the Arduino Yun, that already provide a built in WiFi or

Ethernet module. In general, the differences between the controllers are mainly

67Illustration from https://www.arduino.cc/en/Main/Products, (retrieved 12/12/2016).
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to be found in the embedded MCU, the amount of GPIO Pins, RAM and Flash

Memory size.

Figure 4.2: Arduino Models & Ethernet Shield (Examples)68

At the first glance, the Arduino DUE seems to be a perfect Arduino alternative,

since it comes up with a large amount of memory, a good amount of GPIOs

and a fast ARM processor with enhanced features compared to an Atmega AVR.

However, the issue with the DUE is that the board operates on 3.3 V only, meaning

that shields or sensors that require a 5 V supply, or analog sensors that deliver a

5 V output signal, e.g. the HC-SR04 ultrasonic distance sensor, are not compatible

with this board without further customization.

68Illustrations from ARDUINO.CC, (2016b).
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Arduino 
UNO 

Arduino 
DUE (ARM)

Arduino 
101

Arduino 
YUN

Arduino 
ETHERNET

Arduino 
MEGA

Price $24,95 $49,95 $30,00 $74,95 $45,95 $59,95

Digital I/O Pins 14 54 14 20 14 54

Analog I/O Pins 6 12 6 12 6 16

Microcontroller (MCU) ATmega328 AT91SAM3X8E Intel Curie ATmega32U4 ATmega328 ATmega2560

Flash Memory  (MCU) 32 kB 512 kB 196 kB 32 kB 32 kB 256 kB

RAM (MCU) 2 kB 96 kB 24 kB 2.5 kB 2 kB 8 kB

EEPROM (MCU) 1 kB none none 1 kB 1 kB 4 kB

Clock Speed (MCU) 16 MHz 84 MHz 32 MHz 16 MHz 16 MHz 16 MHz

Microprocessor (MPU) ─ ─ ─ Atheros AR9331 ─ ─

Flash Memory  (MPU) ─ ─ ─ 16 MB ─ ─

RAM (MPU) ─ ─ ─ 64 MB ─ ─

EEPROM (MPU) ─ ─ ─ 1 kB ─ ─

Clock Speed (MPU) ─ ─ ─ 16 MHz ─ ─

Input Voltage (Power Jack) 7 - 12 V 7- 12 V 7 - 12 V 5 V 7 - 12 V 7 - 12 V

Operating Voltage 5 V 3.3 V 3.3 V / 5 V 5 V 5 V 5 V

I/O Pin Current 20 mA 800 mA 20 mA 40 mA 40 mA 20 mA

Length/Width 68.6 x 53.4 mm 101.52 x 53.3 mm 68.6 x 53.4 mm 68.6 x 53.4 mm 68.6 x 53.3 mm 101.52 x 53.3 mm

Connectivity USB Type B
Power Jack

2x micro USB
Power Jack

USB Type B
Power Jack

USB Type B
Power Jack

Ethernet 10/100

6-PIN SPI
Power Jack

Ethernet 10/100
microSD Slot

USB Type B
Power Jack

Low-level peripherals SPI, I2C, ADC, 
PWM, UART

SPI, I2C, ADC, 
PWM, UART, CAN

SPI, I2C, ADC, 
PWM, UART

SPI, I2C, ADC, 
PWM, UART

SPI, I2C, ADC, 
PWM, UART

SPI, I2C, ADC, 
PWM, UART

Programming Arduino IDE Arduino IDE Arduino IDE Arduino IDE Arduino IDE Arduino IDE

Real-Time Capability Yes Yes Yes Yes (MCU) Yes Yes

Features ─ ─
Bluetooth

6-Axis
accelero./gyro

 MCU + MPU
WiFi IEE 

802.11b/g/n
─ ─

ARDUINO

Table 4.1: Technical Specifications - Arduino Boards69

4.1.2 ESP 8266

The ESP8266 is an integrated SoC solution invented by the Chinese company

Espressif, including a WiFi chip with full TCP/IP stack as well as a 32 Bit Tensilca

MCU. The chip features an Ultra Low Power (ULV) 16 Bit Reduced Instruction

Set Computer (RISC) processor that clocks with a maximum speed of 160 MHz.

Therefore, it is possible to provide an easy WiFi add-on for other MCU boards, or

to use it even as a standalone solution for hosting its own software applications.

The SoC comes up with all common interfaces like SPI, I2C, ADC and 16 GPIOs

for digital and analog uses.70

For better interface accessibility, different third-party manufacturers like AI-Thinker

provide ESP8266 breakout modules for the possibility to attach external devices

such as sensors or actuators. The simplest breakout is the ESP-01, a compact board

69Technical specifications based on ARDUINO.CC, (2016b)
70Cf. ESPRESSIF, (2016), pp. 1-3.
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providing only two external GPIO pins and UART functionality. Larger devel-

opment boards such as the NodeMCU illustrated in Fig. 4.3 below are using the

ESP-12 module that offers more external GPIO pins for enhanced interface usage

and connectivity.71

Figure 4.3: NodeMCU DevKit v1.072

The NodeMCU development kit also contains an onboard 3.3 V power regulator

for USB supply of the unit and an Universal Serial Bus (USB) to serial converter

(USB-TTL) for programming the device directly via micro USB cable. These imple-

mentations make it possible to use the development board in the exact way as an

Arduino MCU board.73

Besides the official Software Development Kit (SDK) from Expressif, there are also

other open source SDKs available for the ESP8266. Especially the possibility to

use the Arduino based C++ firmware makes it easy to use the SoC just like any

other Arduino device within the Arduino IDE. Considering the specifications and

capabilities of the board, the advantages compared to an ordinary microcontroller

solution are obvious. The ESP8266 boards are much smaller and more compact

compared to a common Arduino or Raspberry PI (RPI) so there is much more

flexibility, for example when mounting the unit inside a machine near the sensor

site. Compared to some other controllers such as the Arduino MEGA 2560, the

NodeMCU SoC initially comes up with integrated WiFi and does not required

71Cf. ESP8266.COM, (2016).
72Illustration from NODEMCU, (2015a).
73Cf. NODEMCU.COM, (2014).
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additional shields or extensions to grand network accessibility. Another big ad-

vantage is the price factor because the NodeMCU board is around 5 to 10 times

cheaper compared to certain other development boards, depending on the market

of purchase. Although the module is very compact and limited in interfaces, the

SoC includes a remarkable size of RAM (96 kB) and Flash Memory (64 kB) which

is important when dealing with a great amount of sensor data that has to be

forwarded to the IBM Bluemix backend.

However, of course there are also some drawbacks compared to a larger platform.

In consequence of the compact size of the ESP8266 development boards, they only

provide a limited amount of GPIO pins with a maximum amount of 16 provided

by the ESP-12. Another disadvantage is the missing possibility to use a cable based

network communication via RJ45 just like the Arduino MEGA 2560 with Ethernet

Shield solution. A tethered connection is more reliable, more interference-free and

better in terms of security compared to a WiFi connection. Detailed specifications

of the ESP8266 modules and development kits can be found in Table 4.2 below.

NodeMCU DEVKIT
(ESP-12)

WiFi Module 
(ESP-01)

WiFi Module
(ESP-201)

Price $12 $6,95 $8,95

Digital I/O Pins 13 2

Analog I/O Pins 1 0 1

Microcontroller (MCU) Tensilica L106 32-Bit Tensilica L106 32-Bit Tensilica L106 32-Bit

Flash Memory  (MCU) 96 kB 96 kB 96 kB

RAM (MCU) 64 kB 64 kB 64 kB

EEPROM (MCU) ─ ─ ─

Clock Speed (MCU) 80 MHz 80 MHz 80 MHz

Microprocessor (MPU) ─ ─ ─

Flash Memory  (MPU) ─ ─ ─

RAM (MPU) ─ ─ ─

EEPROM (MPU) ─ ─ ─

Clock Speed (MPU) ─ ─ ─

Input Voltage (Power Jack) 4.5 - 9 V 3.3 V 3.3 V

Operating Voltage 3 - 3.6 V 3.3 V 3.3 V

I/O Pin Current 12 mA 12 mA 12 mA

Length/Width 49 x 24.5 mm 25 x 14.5 mm 35 x 25 mm

Connectivity micro USB  GPIO (TX, RX)  GPIO (TX, RX)

Low-level peripherals SPI, I2C, ADC, PWM, UART
SPI, I2C, ADC, PWM, 

UART
SPI, I2C, ADC, PWM, 

UART
Programming LUA, Arduino IDE LUA, Arduino IDE LUA, Arduino IDE

Real-Time Capability Yes Yes Yes

Features WiFi 802.11 b/g/n 
Deep sleep power < 10 uA

WiFi 802.11 b/g/n 
Deep sleep power < 10 uA

WiFi 802.11 b/g/n 
Deep sleep power < 10 uA

ESP 8266

Table 4.2: Technical Specifications - ESP8266 Boards74

74Technical specifications based on TECHBLOG, (2015).
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4.1.3 Raspberry PI (RPI)

The RPI is a small personal computer in a Single Board Computer (SBC) format.

It includes USB ports, a SD card slot, an Ethernet port, a graphical interface

using HDMI and a 3.5 mm audio connector for sound. Because of the compact

construction it does not include on-board devices such as DVD and hard drives,

nevertheless it is capable of acting like a full personal computer by connecting

peripheral devices like a keyboard, mouse and a monitor. Using the SD slot, that

replaces the hard drive of a conventional computer, it is possible to boot from

various Linux distributions or to use a Windows 10 IoT Core Version. The RPI also

supports several programming languages such as Python, C, C++, Java, Scratch

and Ruby, whereby Python is the recommended language for beginners since it is

rather easy to learn.75

The first Raspberry PI model was released back in 2012, using a Broadcom

BCM2835 SoC with an embedded 700 MHz ARM processor, a VideoCore IV

Graphics Processing Unit (GPU) and a total amount of 256 MB Synchronous Dy-

namic Random Access Memory (SDRAM). Over the years, new models with better

specifications were released, including the Raspberry PI 2, the Raspberry PI Zero

and the latest revision, the Raspberry PI 3, in early 2016. The RPI 3 already uses

1 GB of SDRAM and has an improved Broadcom SoC (BCM2837) with a 1.2 GHz

64 Bit ARM-Cortex-A53 quad-core processor, making it a quite powerful SBC.

Additionally, the RPI 3 includes integrated WiFi besides the standard Ethernet jack

for easier network integration. In contrast to the traditional RPI models where the

PCBs are in the dimension of a credit card, the RPI zero is designed even smaller.

At a price of 5 $ it is the low-budget entry device with similar functionalities as

the first RPI Model A. Power supply for all RPI models is provided by simply

using the 5 V USB bus and an appropriate USB cable, depending on the model

and its USB connector. The detailed specifications of all revisions are to be found

in Table 4.3 above, where all the models are compared to each other.76

75Cf. RASPBERRYPI.ORG, (2016b).
76Cf. ibid.
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Raspberry PI 3 
Model B

Raspberry PI 2 
Model B

Raspberry PI
Zero

Raspberry PI
Model A (1/1+)

Raspberry PI
Model B (1/1+)

Price $39,95 $41,95 $5,00 $29,95 $39,95

Digital I/O Pins 17 17 17
17 (Model 1+)

8 (Model 1)
17 (Model 1+)

8 (Model 1)

Analog I/O Pins ─ ─ ─ ─ ─

Microcontroller (MCU) ─ ─ ─ ─ ─

Flash Memory  (MCU) ─ ─ ─ ─ ─

RAM (MCU) ─ ─ ─ ─ ─

EEPROM (MCU) ─ ─ ─ ─ ─

Clock Speed (MCU) ─ ─ ─ ─ ─

Microprocessor (MPU) BCM2837 Cortex-A53 BCM2836 ARMv7 BCM2835 BCM2835 BCM2835 

Flash Memory  (MPU) microSD microSD microSD microSD microSD

SDRAM (MPU) 1 GB 1 GB 512 MB 
512 MB (Model 1+)
256 MB (Model 1)

512 MB 

EEPROM (MPU) ─ ─ ─ ─ ─

Clock Speed (MPU) 1,2 GHz 900 MHz 1 GHz 700 MHz 700 MHz

Input Voltage (Power Jack) 5 V 5 V 5 V 5 V 5 V

Operating Voltage 5 V 5 V 5 V 5 V 5 V

I/O Pin Current 50 mA 50 mA 50 mA 50 mA 50 mA

Length/Width 85 x 56 mm 85 x 56 mm 65 x 30 mm 85 x 56 mm 85 x 56 mm

Connectivity

4x USB Type A
HDMI

3.5 mm Audio
Ethernet 10/100

microSD Slot
micro USB

WiFi

4x USB Type A
HDMI

3.5 mm Audio
Ethernet 10/100

microSD Slot
micro USB

microSD Slot
miniHDMI

2x microUSB

1x USB Type A
HDMI

3.5 mm Audio

2x USB Type A
HDMI

Ethernet 10/100
3.5 mm Audio

Low-level peripherals SPI, I2C, I2S, UART SPI, I2C, I2S, UART SPI, I2C, I2S, UART SPI, I2C, I2S, UART SPI, I2C, I2S, UART

Programming Linux (Python), C, C++, 
Java, Scratch, Ruby

Linux (Python), C, 
C++, Java, Scratch, 

Linux (Python), C, 
C++, Java, Scratch, 

Linux (Python), C, 
C++, Java, Scratch, 

Linux (Python), C, 
C++, Java, Scratch, 

Real-Time Capability No No No No No
Features BCM43143 WiFi on board ─ ─ ─ ─

RASPBERRY PI

Table 4.3: Technical Specifications - Raspberry PI Family77

Originally, the RPI was developed in the UK for providing an inexpensive personal

computer for educational uses, which is also capable of interacting with hardware

for low-level programming. The RPI combines features of a common MCU board

such as external GPIOs with the convenience of a personal computer by using a

graphical operation system. Although the RPI might look like a MCU board and

also shares some capabilities, it must not be confused with a MCU solution like

an Arduino. The RPI, in difference to a MCU solution, is not real-time capable

because of the underlying operating system and it comes with less interfaces, e.g.

the missing ADC, for the connection of analog sensors. On the other hand, the

RPI can handle multiple threads respectively fast compared to a MCU that is only

able to process low-level tasks that are executed one after another. Therefore, it

remains to be seen if the RPI is appropriate for the application of a sensor system,

where multiple sensors that use different interfaces need to be connected.78

77Technical specifications based on RASPBERRYPI.ORG, (2016a).
78Cf. MCEWEN; CASSIMALLY, (2013), pp. 111-121.
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4.1.4 Intel® Edison & Intel® Galileo Gen. 2

Intel provides, together with the Edison and the Galileo, two IoT development

systems. They are based on Intel‘s own 32 Bit x86 Quark SoC X1000 microcontroller,

which was introduced for low-power wearable devices and IoT applications.

The Intel Galileo is basically an Arduino certified SBC, which is fully based on

open source and it is compatible with a wide range of Arduino Uno extension

shields. In contrast to Arduino boards that use Atmel AVR MCUs, the 400 MHz

clocked Intel Quark SoC applied at the Galileo is much more powerful and it

provides considerably more RAM and Flash Memory than all available Arduino

MCU boards. However, it does also support the Arduino IDE by using an Arduino

I/O adapter that communicates with the Linux kernel of the board firmware79

The Intel Edison comes up with an Intel Atom dual-core processor additionally to

the Quark SoC X1000, for performing more powerful tasks and multiple threads.

It is capable of 3D graphics acceleration and supports a full USB 3.0 stack. In

difference to the Galileo, the Quark SoC that acts as the MCU is clocked down

to 100 MHz. Similar to the RPI it is possible to use several Linux distributions as

the operating system, but also the Arduino IDE for low-level, machine-oriented C

programming can be utilized.80

Figure 4.4: Edison Breakout Board (left) & Arduino Edison Board (right)81

Unlike the Intel Galileo that already implicates a full Arduino based MCU board,

the Intel Edison is only a small module including the integrated Quark SoC and the

Atom CPU. Therefore, an additional “Edison Breakout Board” has to be obtained

79Cf. INTEL, (2014), p. 1.
80Cf. INTEL, (2015a).
81Illustration from ibid.

38



Development Boards - Market Overview

in order to add microUSB connectivity that is required to gain accessibility of the

module. To make use of the external interfaces and other MCU features, a larger

“Edison Board” for Arduino, similar to the Galileo layout, is also available. For

both solutions the Edison module is placed on the boards within the appropriate

socket, as illustrated in Fig. 4.4.82

Intel® Edison 
(Arduino Kit)

Intel® Edison 
(Mini Breakout Board)

Intel® Galileo Gen 2

Price $99,95 $74,95 $74,95

Digital I/O Pins 20 4 14

Analog I/O Pins 6 ── 6

Microcontroller (MCU)
32 Bit Intel Quark SoC X1000 
@ 100 MHz (clocked down)

32 Bit Intel Quark SoC X1000 
@ 100 MHz (clocked down)

32 Bit Intel Quark SoC X1000 
@ 400 MHz

Flash Memory  (MCU) ─ ─ 8 Mb / SD card

RAM (MCU) 512 kB SRAM 512 kB SRAM 512 kB SRAM

EEPROM (MCU) 8 kB 8 kB 8 kB

Clock Speed (MCU) 100 MHz 
100 MHz 400 MHz

Microprocessor (MPU) Intel Atom Z34xx 
@ 500 MHz

Intel Atom Z34xx 
@ 500 MHz

── 

Flash Memory  (MPU) 1 GB 1 GB ─

RAM (MPU) 4 GB eMMC / SD card 4 GB eMMC / SD card 256 MB

EEPROM (MPU) ─ ─ ─

Clock Speed (MPU) 	500 MHz 	500 MHz ─

Input Voltage (Power Jack) 7 - 15 V ─ 7 - 15 V

Operating Voltage 3.3 - 4.5 V 1.8 V 3.3V / 5.5 V

I/O Pin Current 80 mA 80 mA 80 mA

Length/Width 127 x 72 mm 61 x 29 mm 124 x 72 mm

Connectivity

2x USB Type A
microUSB

microSD Slot
Power Jack

2x micro USB
battery re-charger

USB Type A, micro USB
Ethernet

Power Jack
microSD

Low-level peripherals SPI, I2C, I2S, UART, 
PWM, ADC, PCIe

SPI, I2C, I2S, UART, 
PWM, ADC, PCIe

SPI, I2C, I2S, UART, 
PWM, ADC, PCIe

Programming Linux
Arduino IDE 

Linux
Arduino IDE 

Linux
Arduino IDE

Real-Time Capability Yes (Via MCU) Yes (Via MCU) Yes

Features
WiFi

Bluetooth 4.0
Arduino shield compatible

Battery Powered Supply
WiFi

Bluetooth 4.0
Arduino shield compatible

INTEL

Table 4.4: Technical Specifications - Intel® Boards83

4.1.5 Other Development Boards

Apart from the well-established controllers and SBCs with a large community such

as the Arduino Family or the Raspberry PIs, a couple of other development boards

are existing as well that are rather unknown. Two of them are the “BeagleBone

Black” and the “LinkSprite pcDuino3”.

82Cf. INTEL, (2015a).
83Technical specifications based on ibid. & INTEL, (2014).
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pcDuino3(B)

The pcDuino series invented by LinkSprite is a high performance, open source SBC

that is able to run operation systems such as Googles Android or Ubuntu (Linux).

It uses an AllWinner-A20 SoC that is based on the 1 GHz ARM Cortex A7 Dual-

Core with 1 GB of Dynamic Random Access Memory (DRAM) and 4 GB internal

Flash Memory, serving as the boot medium. For graphical processing, a Mali-400

GPU with hardware video processing is implemented that together with a HDMI

interface supports video formats up to 1080p. Network capability is provided by

the use of integrated WiFi or the Ethernet Port. Due to the specifications, the board

is capable of handling multimedia and office applications just like a classic PC.

The pcDuino3 is also available as the model pcDuino3(B) which includes the exact

same hardware except that it supports faster Ethernet speed up to 1 Gbps instead

of only 100 Mbps. This results in a larger RJ45 port that can be seen from Fig. 4.5

below.The device comes with pre-installed Ubuntu as well as the Arduino IDE

to execute Arduino scripts in C/C++ language without additional modifications,

although it does not provide full real-time capability.84

Figure 4.5: LinkSprite pcDuino3 (left) & LinkSprite pcDuino3(B) (right)85

In contrast to many other SBCs that only provide digital I/Os, the pcDuino3 also

provides 6 analog I/Os giving it better MCU characteristics, including the common

interfaces I2C, SPI, UART, PWM and ADC for processing all kinds of sensors. The

board also provides a battery interface for the connection and charging of standard

lithium polymer batteries to use the device for mobile applications. As an extra,

the pcDuino is designed for the compatibility with Arduino shields that can

84Cf. LINKSPRITE, (2014).
85Illustrations from ibid.
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immediately be installed by attaching them on the pin headers of the board.86

However, an obvious drawback of the pcDuino3 is that the output current capacity

is not as high as on Arduino boards and the device is only capable of 3.3 V pin

logic, thus 5 V Arduino Shields or 5 V sensors cannot be used without additional

actions in order to prevent damage to the board. This makes the device rather

inflexible for low-level sensor processing because sensors and actuators have to be

selected according to the limited 3.3 V logic of the board.

BeagleBone Black

BeagleBone provides with its “Black” model a community-supported development

SBC platform for developers, students and hobbyists that is very similar to the

pcDuino3. The device is also compatible to a range of software such as Linux

distributions (Debian, Ubuntu) or Android and it is possible to run the Arduino

IDE on it, although it is not pre-installed like on the pcDuino.87

Figure 4.6: BeagleBone Black Rev. C88

The BeagleBone Black uses a Sitara AM335x 1 GHz ARM-Cortex A8 SoC that

includes 512 MB DDR3-RAM and a 4 GB on-board flash storage together with a

SGX530 3D accelerator for graphical output via HDMI. In contrast to the pcDuino,

the Sitara chip additionally contains two 200 MHz, 32 Bit MCUs with 12 kB RAM ,

called Programmable Real-time Unit (PRU), for the support of real-time processing,

86Cf. LINKSPRITE, (2014).
87Cf. COLEY, (2014), pp. 30-34.
88Illustration from ibid., p. 31.
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which is apparently not possible under the use of an operation system such as

Linux. For connectivity, the BeagleBone Black supports 10/100 base Ethernet and

the board is equipped with 2x 46 pin headers for external use of the interfaces I2C,

SPI, Controller Area Network (CAN), Timers and the digital as well as the 7 analog

Input/Output (I/O) pins. Equivalent to the “Shields” that are used for Arduino

based solutions, the Beagebone Black also supports I/O extensions known as

“Capes” that are stacked onto the board by using the pin headers.89

Note that the logic levels for all pins are such as for the pcDuino only 3.3 V, thus,

the BeagleBone Black suffers from the same drawbacks regarding 5 V sensor con-

nectivity. The following Table 4.5 shows a specification overview of the BeagleBone

Black and the pcDuino3(B).

Price
Digital I/O Pins
Analog I/O Pins
Microcontroller (MCU)
Flash Memory  (MCU)
RAM (MCU)
EEPROM (MCU)
Clock Speed (MCU)
Microprocessor (MPU)
Flash Memory  (MPU)
RAM (MPU)
EEPROM (MPU)
Clock Speed (MPU)
Input Voltage (Power Jack)
Operating Voltage 
I/O Pin Current 
Length/Width

Connectivity

Low-level peripherals

Programming

Real-Time Capability

Features

2x PRU 32-Bit ─

7 6

Beaglebone Black - Rev C pcDuino3(B) - Dev Board

$54,95 $59,95

65 14

─ ─

1 GHz 1 GHz

200 MHz ─

AM3358 Cortex-A8 AllWinner A20 Cortex-A7

4 GB eMMC 4 GB / microSD

8 kB ─

8 kB / 12 kB (shared) ─

─

OTHERS

SPI, I2C, UART, Timers, 
CAN, ADC

SPI, I2C, ADC, UART, 
PWM, ADC

─ 5 V

3.3 / 5 V 5 V

─ ─

512 MB (SDRAM) 1 GB (SDRAM)

86.44 x 54.54 mm 121 x 65 mm

USB Type A
microHDMI

Ethernet 10/100
Power Jack

mirco HDMI

USB Type A
HDMI

Ethernet 10/100 (pcDuino3)
Ethernet 10/10/1000(pcDuino3B)

3.5 mm Audio
SATA socket

─

Yes (Via MCU) No

Linux (Python)
Linux (Python)
Android (Java)

WiFi
Arduino shield compatible

Table 4.5: Technical Specifications - Other Boards90

89Cf. COLEY, (2014), pp. 30-34.
90Technical specifications based on ibid. & LINKSPRITE, (2014).
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4.2 Platform Selection Criteria

Before starting a selection of the different IoT platforms introduced above, it is

essential to clarify which criteria of the devices regarding the IoT application is

important and has to be considered the most, for balancing within the criteria

matrix.

The development board that serves as the gateway for this application needs to

be network capable as a basic requirement, otherwise the collected sensor data

cannot be forwarded to the selected cloud platform, IBM Bluemix. Also important

is the amount of GPIOs and the interfaces that are integrated for connecting all

the required sensors to the board. Some development boards, especially SBCs,

do not provide an ADC and therefore the use of analog sensors is not possible.

This is critical because certain types of sensors are only executed in an analog

form due to their functionality. A key criterion is the provided program memory

and the working memory (RAM) of the different development boards, where the

required size depends on the amount of attached sensors and their complexity

regarding additional libraries that each sensor comes up with. Additionally, the

full TCP/IP stack that provides the Internet access runs on the controller too,

which also demands extra memory when forwarding the sensor data to the cloud

by the use of a messaging protocol. In general, memory size is only an issue

for MCU based controllers because they use low-level hardware with much less

power and storage compared to SBCs that are similar to personal computers with

memory in the scale up to gigabytes. While SBCs provide very powerful hardware

that is easily capable of processing a vast amount of sensor data and multiple

tasks, MCUs have the big advantage that they are real-time capable because they

do not use an operation system. MCUs execute the program code using a compiler

that translates the C/C++ or assembler language into low-level machine-code that

is stored on the MCUs flash memory.

Summarizing, it can be said that characteristics such as the network capability,

the amount of GPIOs and interfaces, the hardware performance including flash

memory and RAM as well as the real-time capability are the most important

selection criteria that have to be taken into account for the balancing within the

matrix. Other characteristics like the provided IDE or the documentation are
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also to be considered, but they are weighted less than the key criteria mentioned

above.

4.3 Value Benefit Analysis

For the implementation of the IoT sensor system on FabLab machines such as

the “Ultimaker 2 - Extended” 3D printer, there are certain specifications of the

introduced development platforms that are rather more important than others, as

already mentioned in section 4.2 above. To take this into account, a selection tool

called “Value Benefit Analysis” is utilized to weight the importance of the different

selection criteria by using a scoreboard. Within this scoreboard, each selection

criteria such as the amount of GPIOs, the price, or the hardware performance is

rated by assigning each alternative a specific score between predefined boundaries,

e.g. a score from 0 to 5. Depending on whether the alternative (development

board) is well suited or not, the score for the specific criteria is either high, low or

somewhere in between if it is partly suitable.

In order to distinguish the relevance of each selection criterion individually and to

avoid an over-influence of certain characteristics that might be not as important

as others, the score of each criteria is “balanced” as a percentage, depending on

the importance compared to the other criteria. For this purpose, the criterions

are placed in the columns and in the rows of a matrix, where the main diagonal

remains empty. The criterions are then compared in pairs and depending on the

importance to each other criterion, it receives a rating of 2 (more important than

the other one), 1 (equally important), or 0 (less important). After summing up all

the ratings for each criterion and dividing it by the total sum over all single sums in

the matrix lines, the relevance of each criterion is received. The following Table 4.6

shows the “pairwise comparison” of the criterion pairs, in order to receive the

weights for the balanced scoring.91

91Cf. SCHULZE, (2016).
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Cost Factor 0 1 0 1 1 2 2 2 2 2 2 15 11,4%

GPIO Capability 2 2 1 2 2 2 2 2 2 2 2 21 15,9%

Peripherals 1 0 0 1 1 2 2 2 2 2 2 15 11,4%

Hardware 2 1 2 2 2 2 2 2 2 2 2 21 15,9%

Speed 1 0 1 0 1 2 2 2 2 2 2 15 11,4%

Features 1 0 1 0 1 2 2 2 2 2 2 15 11,4%

IDE 0 0 0 0 0 0 1 1 1 1 1 5 3,8%

Coding Skills 0 0 0 0 0 0 1 1 1 1 1 5 3,8%

Documentation 0 0 0 0 0 0 1 1 1 1 1 5 3,8%

Community (IoT) 0 0 0 0 0 0 1 1 1 1 1 5 3,8%

Usability 0 0 0 0 0 0 1 1 1 1 1 5 3,8%

Expandability 0 0 0 0 0 0 1 1 1 1 1 5 3,8%

Total Score 132 100,0%

Ranking: 2… criterion is more important, 1… importance is equal, 0… criterion is less important

Table 4.6: Pairwise Comparison92

4.4 Results

The following Table 4.7 shows a simplified extract that is based on the full weighted

criteria matrix that is to be found in the appendix (A.2 Value Benefit Analysis - IoT

Development Boards). It shows the rating and balancing of the selection criteria

and how the overall score is being calculated. The result of the comparison shows

that the MCU based solution Arduino MEGA 2560 has achieved the highest score,

followed by the ESP8266 NodeMCU Lua development kit. Although the Arduino

MEGA 2560 requires an additional “Ethernet Shield” for the TCP/IP stack and it

does not provide onboard network capability such as, e.g. the Arduino YUN, it is

still more suitable because of better hardware requirements and plenty of GPIOs

for sensor connectivity. The required shield for the Arduino is already implied

within its rating of the cost factor. Since the implementation of the sensor system

during this thesis is only at the prototype stage, the cost factor for the components

is not that important as it would be for extensive application in multiple FabLabs

later on.

As a second alternative next to the Arduino MEGA, the ESP8266 NodeMCU Lua

development kit is used as a WiFi based option. This controller follows a different

approach, with the possibility to place the board closer to the sensor site or even

92Own illustration.
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Arduino

MEGA

ESP8266

NodeMCU 

Lua

Raspberry 

PI 3

Intel 

Galileo

Gen 2

Beaglebone

Black Rev. C

Criteria Weight

Cost Factor 11,4% 1 5 3 3 3

GPIO Capability 15,9% 5 2 2 2 3

Peripherials 11,4% 3 3 2 3 4

Hardware 15,9% 3 3 4 3 1

Speed 11,4% 3 2 1 3 3

On-Board 

Communication
11,4% 1 2 3 2 3

IDE 3,8% 2 2 3 2 3

Coding Skills 3,8% 2 2 1 2 1

Documentation 3,8% 3 3 3 2 1

Community (IoT) 3,8% 4 4 3 2 2

Usability 3,8% 3 2 2 2 2

Expandability 3,8% 3 1 2 2 2

Weighted Scores 100,0% 2,83 2,69 2,51 2,50 2,53

Ranking: 0-1… bad fulfillment, 2-3…medium fulfillment, 4-5… good fulfillment

Criteria
Cost Factor

GPIO Capability

Peripherials

Hardware 

Speed

Features 

IDE

Coding Skills

Documentation

Community (IoT)

Usability

Expandability

Explanation

Hardware architecture and performance  (MCU/MPU), flash/program memory size 

Decision Matrix 

Initial costs for the development platform (Including Shields)

Amount of digital and analog input/output ports that the hardware provides 

 Provided protocols such as I2C, PWM, SPI, ADC,…

Table 4.7: Value Benefit Analysis (simplified extract)93

inside machines due to its small dimensions. The much lower price compared to

an Arduino MEGA including the Ethernet Shield allows to use several ESP8266

development boards for a single machine in order to compensate the lack of GPIOs.

Regarding the possibility to use the same IDE (Arduino IDE) with the ESP8266

SoC, the implemented program code to establish the functionality can easily be

adapted to it.

Whereas other development platforms that are based on SBCs provide more

computing power compared to the introduced MCU boards, they are not really

appropriate for sensor data acquisition and processing that benefits more from

capabilities that are provided by MCU solutions.

93Based on appendix: A.2 Value Benefit Analysis - IoT Development Boards.
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5 Sensor System Implementation

The following chapter deals with the implementation of the sensor system on the

Ultimaker 2 - Extended 3D printer that is based on the results of chapter 3, where

the basic system concept was introduced and on chapter 4 (Market Research),

where the appropriate development platforms were compared and chosen. This

chapter is mainly separated into a hardware section, a software section, and a

section where the establishment of the IBM Bluemix environment will be discussed

in more detail. For sensor data visualization and interaction with the system, a

Node-RED application running within IBM Bluemix is implemented in section 5.6

(User Interaction) that can be controlled via a Telegram Bot Application Program-

ming Interface (API) by the simple use of a smartphone or any other device that

supports the Telegram messaging service.

5.1 Functional System Overview

Based on the simple concept block diagram that was introduced in section 3.2,

a full functional system diagram, including all the essential hardware as well as

software components and services was realized. Therefore, the full implementation

of the system for the Ultimaker 2 Extended 3D printer can be described by the

following Fig. 5.1, which illustrates the full system overview including all required

modules. During this chapter, the most important components and processes of

the diagram are discussed in detail to understand the coherences and the overall

functionality of the bi-directional, cloud-based sensor system.
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IBM IoT Foundation
(MQTT Broker) 

Cloudant 
noSQL DB

dashDB

Node-RED
Flow Editor

dashboard UI

IBM Bluemix 
PaaS

„Subscribe“

„Publish“

JSON 
String

SENSORS

ACTUATORS

MQTT
Communiation

.stl FABLAB
USER

Status of Production 
Process & User 

Information 

Email & Chat Bot
(Telegram)

Store Historical 
Data

Real-Time 
Visualization

INTERVENTIONS, 
ADJUSTMENTS

ULTIMAKER 2 - EXTENDED

3D PRINTER

IOT 
GATEWAY

ARDUINO MEGA 2560 + 
ETHERNET SHIELD

HTTP

Monitor/Access sensor 
data from any device

Figure 5.1: Cloud Sensor System - Full Functional Overview94

5.2 Hardware

In order to be able to attach the sensors, placed on the 3D printer to the develop-

ment board (IoT gateway), the pinout of the the hardware is of great importance.

It is highly relevant for the controller software, because the peripheral functions

need to be assigned to the appropriate pins manually within the code and the

relevant GPIOs have to be configured properly, depending whether they are used

as inputs or outputs.

5.2.1 Arduino MEGA 2560

Fig. 5.2 shows the pinout of the Arduino MEGA 2560 that acts together with

the Ethernet Shield as the gateway for the communication of the Ultimaker 2

- Extended with the PaaS IBM Bluemix. The Board supports a large amount of

digital as well as analog I/Os. In the center of the board, between the ATMega

2560 MCU and the reset button, the 6-pin In-Circuit Serial Programming (ICSP)

94Own illustration.

48



Hardware

header is required to connect Arduino shields by the internal use of the SPI bus,

which is also accessible using the pins 50 to 53, according to Fig. 5.2 below.

Digital 22
Digital 24
Digital 26
Digital 28
Digital 30
Digital 32
Digital 34
Digital 36
Digital 38
Digital 40
Digital 42

(PWM) Digital 44
(PWM) Digital 46

Digital 48 
(SPI – MISO) Digital 50

(SPI – SCK) Digital 52

Digital 31
Digital 33
Digital 35
Digital 37
Digital 39
Digital 41
Digital 43
Digital 45 (PWM)
Digital 47
Digital 49 
Digital 51 (SPI – MOSI)
Digital 53 (SPI – SS)

Digital 21 (I2C - SCL)
Digital 20 (I2C - SDA)
Digital 19 (RXD1)
Digital 18 (TXD1)
Digital 17 (RXD2)
Digital 16 (TXD2)
Digital 15 (RXD3)
Digital 14 (TXD3)

Digital 0 (RXD0)
Digital 1 (TXD0)
Digital 2 (PWM) 
Digital 3 (PWM)
Digital 4 
Digital 5 (PWM) 

(PWM)

Digital 6 (PWM) 
Digital 7 (PWM) 

Digital 8 (PWM) 
Digital 9 (PWM) 
Digital 10 (PWM) 
Digital 11 (PWM) 
Digital 12 (PWM) 
Digital 13 (PWM) 

GND
5 V   5V

Analog 15
Analog 14

Analog 12
Analog 13

Analog 11
Analog 10
Analog 9
Analog 8

Analog 7
Analog 6
Analog 5
Analog 4
Analog 3
Analog 2
Analog 1
Analog 0

Ext. VCC

GND

GND
5 V

3.3 V
RESET
V_REF

ICSP

USB Typ B

Power Jack

RESET

For shield
communication
via SPI

ICSP 

GND  GND

Ref. Voltage

N.C

N.C
N.C

VCC Pin

Ground Pin

Digital Pin

PWM Pin

Analog Pin

SPI 

Serial Pin

I2C Pin

Other Pins

Figure 5.2: Arduino MEGA 2560 - Pin Definition95

The Arduino also supports an external reset pin that can be used to perform remote

resets by triggering its input. Therefore, it is possible to reset the sensor system

by the use of a defined “reset signal”, that is sent from the cloud platform via the

communication protocol to the controller.

The board is capable of handling 3.3 V as well as 5 V signals, respectively sensors

and actuators. However, the I2C bus of the 2560 is using a 5 V tolerant logic, thus,

a 3.3 V I2C device that is directly connected to the bus, is exposed to a higher

voltage level that it is designed for. This does potentially work, although it is

recommended to use a “logic level shifter”, that performs a voltage shift of the

5 V I2C signal to 3.3 V, in order to prevent damage or a reduced lifespan of the

3.3 V tolerant components. The process of level shifting, to use 3.3 V and 5 V I2C

devices on the same bus is explained in more detail in section 5.2.5.

95Own illustration based on ARDUINO.CC, (2016d).
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5.2.2 Arduino Ethernet Shield v2

Since the Arduino Mega 2560 does not provide on-board network functionality,

the Arduino Ethernet Shield is required to extend the microcontroller board with

an Ethernet connection and the TCP/IP stack for network communication. The

shield is currently available in version 2 that uses the Wiznet W5500 Ethernet

controller, supporting network speeds up to 100 Mbps and providing an internal

32 kB buffer. As an addition, the shield also includes a micro-SD card slot that can

be utilized to directly store data. The shield is simply plugged onto the Arduino

Board, using the ICSP header for communication via SPI. The required TCP/IP

stack for network communication is added by the use of the appropriate Ethernet

library that needs to be included to the program code within the Arduino IDE.

Note that the pinout of the shield is equal to the Arduino Uno, although it is

possible to use it on the larger MEGA 2560 due to the same header alignment. The

following Fig. 5.3 shows the pinout of the shield.96

Figure 5.3: Arduino Ethernet Shield - Pin Definition97

96Cf. ARDUINO.CC, (2016a).
97Own illustration.
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5.2.3 NodeMCU Development Kit (ESP8266)

The NodeMCU development kit builds upon the ESP8266 SoC and is another

alternative for the application as an IoT gateway by using a WiFi interface for data

transmission. It is implemented additionally to the Arduino MEGA 2560 which is

intended as the gateway for the Ultimaker 2 - Extended 3D printer. Advantages

and features of the NodeMCU were already mentioned in section 4.1.2, where the

board was introduced with all details.

For the appropriate integration of NodeMCU development boards in the Arduino

IDE, it is also important to have knowledge about the actual pin mapping. In case

of the NodeMCU, the access for programming the device is based on the number

of the I/O index (GPIO) of the board and not on the actual pin numbers that are

printed as a silkscreen onto the PCB.

The following Fig. 5.4 shows an overview of the I/O pin labels and the equivalent

GPIOs. It points out that, for example, the digital pin D5 corresponds to GPIO14.

This has to be taken into account within the software, otherwise the attached

peripherals or sensors won‘t be recognized and they furthermore won‘t work, if

they are declared wrong within the code.

Figure 5.4: NodeMCU - Pin Definition98

98Own illustration based on NODEMCU, (2015b).
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In contrast to the Arduino, the I2C bus is running on a 3.3 V level, whereas the

board is also running on 3.3 V by the use of an internal Low Dropout Regula-

tor (LDO) that down-regulates the 5 V input voltage provided by the USB bus.

Therefore, a level conversion for the use of 5 V I2C devices is not required neces-

sarily if the 3.3 V high level is sufficient, because it does not exceed the devices

ratings. The related I2C pins are not predetermined for the NodeMCU and have to

be assigned within the software. According to Fig. 5.4, the Serial Clock Line (SCL)

is referred to pin D2 (GPIO4) and the Serial Data Line (SDA) to pin D1 (GPIO5).

These I/Os are also used for the definition within software later on to match the

pinout.

5.2.4 Sensors

The following section provides a brief overview about the sensors as well as the

actuators that are connected to the Arduino MEGA 2560, used for the installation

at the Ultimaker 2 Extended 3D printer as well as for the NodeMCU development

kit to monitor various environmental data within the FabLab. The consideration

for the first implementation of the system is to install different types of sensors

for acquiring machine related data such as temperatures inside the machine at

various installation points, noises caused by an ongoing production progress or

the actual position and acceleration of the printer head, depending on its travel

speed. Moreover, a detection of the filament presence is realized to inform the user

in case that the material is running low.

ADXL345 - Accelerator

In order to be able to detect the acceleration of the printer head during a print

job, a 3-axis accelerator is placed directly onto the head. For practical use of the

installation at the machine only the XY-axes are relevant, since the head only

travels two-dimensional and the printer table, which is attached to the Z-axis,

is moving too slow to detect any considerably acceleration change. Several ac-

celerators are suitable for the application according to Table 5.1. They mainly

differ in measurement range, resolution and the communication interface. The

accelerator ADXL34599 is a well suited option and is chosen because it offers a

99SPARKFUN, (2016b).
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wide measurement range combined with a relatively low current consumption

during the operation.

ADXL335 ADXL337 ADXL345 LSM303 MMA8452Q 

Price $14,95 $9,95 $17,95 $14,95 $9,95
Axis 3 3 3 3 3
Measurement Range ± 3g ± 3g ± 2/4/8/16 g ± 2/4/8/16 g ± 2/4/8 g
Operating Temp. Range  ‐40 ‐ 85 °C  ‐40 ‐ 85 °C  ‐40 ‐ 85 °C  ‐40 ‐ 85 °C  ‐40 ‐ 85 °C
Resolution ±1% ±1% 10‐13 Bit 12 Bit 12 Bit
Supply Voltage 1.8 ‐ 3.6 V 1.8 ‐ 3.6 V 2 ‐ 3.6 V  3.3 ‐ 5 V 1.6 ‐ 3.6 V
Supply Current 350 μA 300 μA 40 μA 110 μA 6 ‐165 μA
Communication analog  analog  SPI / I2C I2C I2C

Acceleration Sensors

Table 5.1: Acceleration Sensors100

HC-SR04 - Range Detector

By attaching two HC-SR04101 range detectors at the end stop of the linear units

of the Ultimaker 2, it is possible to detect the position of the head within the

XY-plane. Since the overall travel length in both directions is known, it is only

required to measure the distance to the head from one side each, the other spans

are calculated within the Arduino code. The selection of affordable and precise

range detectors that provide the required measurement range is rather limited.

Consequently, the only suitable option starting at a minimum measurement range

of 20 mm and providing a proper resolution is the HC-SR04 range detector, which

is an ultrasonic detector based on a run-time measurement of the signal. The

specifications are outlined in Table 5.2 on the next page, where also other detectors

with inappropriate measurement ranges are opposed.

Temperature/Humidity/Pressure/Altitude

For the detection of physical parameters such as temperatures, humidity or the

pressure, various sensor breakouts are available. Table 5.3 shows the applied

sensors that are to be installed at the Ultimaker 2, at different installation points.

Certain breakouts like the MPL3115A2102 and the BME280103 are combined sensors

100Technical specifications based on SPARKFUN, (2016a).
101SPARKFUN, (2016g).
102SPARKFUN, (2016j).
103SPARKFUN, (2016c).
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that are capable of measuring multiple parameters, as illustrated in Table 5.3. It is

convenient because it reduces the wiring effort for the installation.

SRF02 SRF04 HC‐SR04  GP2Y0A21YK GP2Y0A02YK0F

Price $13 $22,00 $5,00 $13,95 $14,95
Type Ultrasonic Ultrasonic Ultrasonic Infrared Infrared
Measurement Range 16 ‐ 6000 cm 3 ‐ 3000 cm 2 ‐ 400 cm 10 ‐ 80 cm 15 ‐ 150 cm
Operating Temp. Range  ‐30 ‐ 70 °C  ‐30 ‐ 70 °C  ‐15 ‐ 70 °C  ‐10 ‐ 60 °C  ‐10 ‐ 60 °C
Resolution 3 cm 3 cm 0.3 cm n.a n.a
Supply Voltage 5 V 5 V 5 V 4.5 ‐ 5.5 V 4.5 ‐ 5.5 V
Supply Current 4 mA 30 ‐ 50 mA 15 mA 30 mA 33 mA

Communication I2C I2C
two‐wire
(digital)

analog analog

Distance Sensors

Table 5.2: Distance Sensors104

MPL3115A2 BME 280 TMP 102
DHT22 
(RHT03)

MAX31855K
(ThermoCouple)

Price $13 $19,95 $5,95 $9,95

$13,95 
(Thermocouple)

$14,95 
(MAX31855K)

Type
Temperature
Pressure
Altitude

Temperature
Pressure
Humidity

Temperature
Temperature
Humidity

High Temp.

Measurement Ranges

 ‐40 ‐ 85 °C 
(Temp.)

20 ‐ 110 kPa 
(Baro.)

 ‐40 ‐ 65 °C 
(Temp.)

30 ‐ 110 kPa 
(Baro.)

0 ‐ 100% (RH)

 ‐40 ‐ 125 °C
 ‐40 ‐ 80 °C 
(Temp.)

0 ‐ 100% (RH)
 ‐200 ‐ 700 °C

Operating Temp. Range ‐40 ‐ 85 °C ‐40 ‐ 85 °C  ‐40 ‐ 125 °C  ‐40 ‐ 80 °C  ‐200 ‐ 700 °C

Accuracy 

± 1‐3 °C 
(Temp.)
± 0.5 kPA 
(Baro.)

± 0.5 °C 
(Temp.)
± 1 hPA 
(Baro.)

± 3 % (RH)

± 0.5 °C
( ‐25 ‐ 85 °C)

± 0.5 °C (Temp.)
± 2 % (RH)

± 2°C

Resolution

 0.25 ‐ 1.5 Pa 
(Baro.)

0.0625 ‐ 0.3 m 
(Alt.)

0.01 °C 
(Temp.)
 0.18 Pa 
(Baro.)

0.008 % (RH)

0.0625 °C
± 0.1 °C (Temp.)
± 0.1 % (RH)

0.25 °C / 14 Bit

Supply Voltage 1.6 ‐ 3.6 V 3.3 V 1.4 ‐ 3.6V 3.3 ‐ 6 V 3 ‐ 3.6 V
Supply Current 2 mA 300 ‐ 700 μA 1‐ 10 μA  1 ‐ 1.5 mA 0.9 ‐ 1.5 mA

Communication I2C SPI/I2C
two‐wire
(I2C)

single‐wire 
(digital)

SPI

Temperature/Humidity/Pressure/Altitude Sensors

Table 5.3: Temperature/Humidity/Pressure/Altitude Sensors105

104Technical specifications based on SPARKFUN, (2016k).
105Technical specifications based on SPARKFUN, (2016m) & SPARKFUN, (2016e).
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Type-K Thermocouple

An important parameter is the actual temperature of the nozzle, mounted within

the extrusion head. The nozzle is heated from 180 °C up to 260 °C106 and required

to melt the filament used for production. Depending on the filament material,

an inappropriate nozzle temperature can easily lead to a nozzle clog that inter-

rupts and/or corrupts the ongoing production with the possibility to damage the

extruder in the worst case. Because of the high temperature it is not possible to

attach an ordinary temperature sensor as introduced above, due to their limited

measurement ranges. Therefore, a Thermocouple Type-K107 wire together with

the MAX31855K108 digitizer for data conversion is utilized, which supports tem-

perature readings up to 700 °C at a resolution of ±2 °C, as it can be seen out of the

previous Table 5.3. The communication between the digitizer breakout and the

MCU board is realized by using the SPI bus.

TSL2561 - Luminosity Sensor

The TSL2561 breakout includes a sophisticated, integrated light sensor that allows

to measure the visible light intensity in the range of 0.1 to 40 klx. Thus, the TSL2561

is able to detect changes of the ambient lightning, e.g. someone enters the room

and turns on the light, or the lightning inside the machine caused by the installed

LED stripes. The sensor requires a 3.3 V supply voltage and is capable of I2C

communication.109

Electret Microphone

To detect a variety of sounds inside the Ultimaker 2 caused by an ongoing pro-

duction progress or to monitor surrounding sounds within the FabLab, electret

microphone breakouts are utilized to detect various noise influences. The micro-

phone includes a 60x pre-amplifier for the ADC of the Arduino or the NodeMCU

so that even very slight noises that are not within close proximity, are detectable.

106https://ultimaker.com/en/products/ultimaker-2-plus/specifications, (retrieved
06/02/2017).

107SPARKFUN, (2016n).
108SPARKFUN, (2016i).
109SPARKFUN, (2016p).
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Depending on the loudness, the output delivers a proportional voltage signal that

represents a certain noise level.110

Air Quality Sensor

Air quality sensors are suitable for sensing different gas concentrations within the

air, e.g. smoke, methane, carbon monoxide or other flammable gases. Therefore,

different types of “MQ” sensors are available, whereby all providing different

gas sensing capabilities. The breakout uses a built-in heater together with an

electro-chemical sensor and requires a rather complex calibration using the “load-

resistor” for a precise detection of gas concentrations. Nevertheless, the sensor is

also applicable without exact calibration in form of a tendency, since the analog

output value will increase in case the gas concentration is rising or vice versa.

Additionally, the heater requires a “burn-in” time of 12-24 hours to make the

analog sensor readings more consistent. For the installation, the MQ-135 and

MQ-9 air quality sensors are tested in order to detect possible emissions inside

the Ultimaker 2 caused by the heated Polylactic Acid (PLA) and Acrylonitrile

Butadiene Styrene (ABS) thermoplastics, used as the filament material.111

Photo Interrupter

A photo interrupter is composed of an infrared emitter (sender) at one side, and of

an infrared detector at the other side of the gate. The detector simply identifies

if there is a present object between the emitter and the detector of the uprights

breaking the infrared beam. Depending on whether the gate is clear or blocked

by an object, the output signal is either HIGH or LOW. By utilizing such a photo

interrupter at the Ultimaker 2, it is possible to detect the filament presence at

the machine by leading the filament through the photo interrupter‘s detection

area before the filament enters the material feeder. In fact that the machine is not

capable of detecting the run out of filament during a production, it will continue

the programmed print job even without material. As a result, the production is

incomplete and the machine still keeps on running without any purpose. Therefore,

the photo interrupter detects empty filament as soon as the interrupter gate is

clear again, as a consequence that no filament is pulled into the feeder anymore. A

110SPARKFUN, (2016d).
111ARDUINO.CC, (2016e).
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detailed overview of the intended installation at the back of the machine can be

found in section 5.2.7.112

SSD1306 OLED Display

The SSD1306 is an Organic Light Emitting Diode (OLED) display, serving as an

actuator to output measured sensor values. It consists of 128x64 pixels at a screen

size of 0.96 ”. Although the display is rather small, due to its good resolution

and integrated lightning of the OLED technology compared to LCD screens, it is

possible to visualize multiple sensor values at a time. Communication with the

controller is done via the I2C interface which is already 5 V tolerant and does not

require additional level shifting. See section 5.7.2 for more information, where the

display is installed at the machine to locally visualize sensor data.113

112SPARKFUN, (2016f).
113ADAFRUIT, (2016).
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5.2.5 I2C Level Shifting

A lot of the sensors that have been introduced in the previous section make use of

the I2C bus. Due to the fact that not all sensors and actuators are available with the

same logic levels, 3.3 V devices and 5 V devices have to be utilized together using

the same 5 V I2C bus of the Arduino MEGA 2560. This might be critical, as already

mentioned in previous sections, because a 3.3 V device is principally not designed

to work on a 5 V voltage level. Although it does work for some cases, the lifespan

of the devices can get reduced or they might even get damaged. To prevent this

issue, a so called “Logic Level Shifter” is applied which converts the 5 V I2C logic

level to a lower 3.3 V level. The following Fig. 5.5 shows the component, including

some colored highlights for further explanation.

Figure 5.5: 4-Channel I2C Level Shifter114

Basically, it is a 4-channel converter which means that it is possible to transform

four different logic levels independently at a time. The high-level side, in this case

5 V on the top is marked red, whereas the low-level side (3.3 V) on the bottom

is marked blue. The right illustration, presenting the opposite side of the level

converter, additionally shows the four channels plus the pins that are required

for ground and voltage supply on each side. Note that this converter works bi-

directional, thus, it ensures that the two-way I2C communication is able to work

properly.115

For the use of the level shifter, the I2C data signals SDA and the clock signal SCL

need to be connected to the high side (HV1, HV2, HV3 or HV4). As a consequence,

114Modified illustrations from SPARKFUN, (2016h).
115Cf. ibid.
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the I2C lines of the 3.3 V sensors and devices need to be connected to the corre-

sponding low-level pins (LV1, LV2, LV3 and LV4), where the voltage level of the

bus is then reduced to 3.3 V. To validate the level conversion and the functionality

of the bus on 3.3 V, the measurement of a random Arduino I2C scanner signal

using a Tektronix TDS 2024C Digital Oscilloscope was performed. The result is

illustrated in Fig. 5.6 below, where the clock line SCL is measured using channel

2 (light blue) and the data line SDA by the use of channel 1 (yellow). Out of the

adjusted voltage divisions of both channels (CH1 - 5 V, CH2 - 2 V) for the screen

follows that the voltage level is on 3.3 V, at a measured standard clock speed of

100 kHz.

Figure 5.6: I2C - 3.3 V Communication Test116

5.2.6 Wiring Diagram & Stripboard

Due to a great amount of wires and cables for all the sensor connections at the

Ultimaker 2 Extended 3D printer, a wiring diagram was prepared as an auxiliary

tool for the installment that is performed at the machine and the Arduino later

on. It is helpful to keep track of all the traces and it is useful for debugging in

case of errors. The tool which has been utilized for creating the schematic is called

116Own illustration, Tektronix TDS 2024C measurement.
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Fritzing. It is an open source project including a great library of development

boards as well as sensors, actuators and other components of various suppliers. In

comparison to more professional schematic editors such as Eagle, it is very easy to

handle in context of stripboards and it provides an authentic look of the schematic

by using all virtual models of the components.117

Fig. 5.7 below shows the schematic of all the intended sensors and components,

connected to the Arduino MEGA 2560 and the Ethernet Shield for the first in-

stallment at the machine. The figure also shows the full connection of the I2C

level shifter with its attached 3.3 V I2C devices that was discussed in the previous

section.

Figure 5.7: Sensor Wiring Diagram118

Because each sensor, depending on the interface comes up with several electrical

117http://fritzing.org/home/, (retrieved 06/02/2017).
118Own illustration.
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connections such as supply, ground, signal and clock lines, the total amount

of wires that need to be attached to the Arduino MEGA 2560 and the Ethernet

Shield is quite a lot. Wiring all the cables and lines of each sensor directly to

the controller would end up in a total mess, moreover, it is not even possible

because of insufficient supply and ground output pins of the controller. Therefore,

a stripboard is deployed to arrange the sensor connectors suitable on it and to

route all the required electrical connections at the bottom layer of the board. The

following Fig. 5.8 shows a sketch of the stripboard together with the Arduino and

the Ethernet Shield on top. For sensor connection, common pin headers and cables

are used to be flexible regarding the connectivity and attachments.

Figure 5.8: Stripboard - Sensor Connections119

After the installation of the sensor and component connectors at the stripboard

and the Arduino MEGA 2560, the whole unit shall be placed under the machine

by the use of an appropriate housing that still provides access from the outside for

119Own illustration.
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the external power supply and the RJ45 network connection of the Arduino.

5.2.7 Sensor Placement

The intended sensors for the installation at the Ultimaker 2, which were introduced

in section 5.2.4, are placed inside the machine at different installation points. For

some sensors such as the range detectors at the printer head or the photo inter-

rupter for detecting an empty filament, additional mounting supports are required

since it is not possible to position them in a suitable way without additional parts

by the use of screws or double-sided adhesive tape. The mountings are designed

within the CAD tool Solid Work120 and manufactured using the Ultimaker 2 3D

printer.

The following Fig. 5.9 illustrates the mounting mechanism for the HC-SR04 ultra-

sonic range detectors and the additional reflector that is placed onto the printer

head for better reflection of the ultrasonic signal.

Figure 5.9: Sensor Mounting - Installed Mounting (left); HC-SR04 Mounting (middle); Reflector
(right)121

120http://www.solidworks.com/, (retrieved 06/02/2017).
121Own illustration.
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The completed assembly of the mountings including the sensors is to be found in

section 5.5.2

Another mounting support is required for the photo interrupter that is intended

to detect a filament run-out by continuous monitoring of the material between

the photo emitter and the receiver of the interrupter. Since the filament needs to

run perpendicular to the interrupter‘s gap before it leads into the filament feeder

of the machine, a mounting mechanism according to the following Fig. 5.10 was

constructed and produced with the Ultimaker 2.

Once the gap of the interrupter is clear, meaning no filament is supplied any longer

from the material spool, the output signal of the sensor changes from 5 V to 0 V or

opposite, depending on the signal logic that is implemented within the software.

Thereby it is possible to inform the user beforehand once the material is running

low.

Figure 5.10: Photo Interrupter - Installed Mounting (left); Detailed View (right)122

122Own illustration.
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5.3 Software

The controller software that needs to be implemented for the IoT gateway is an

essential part of the system implementation process, since it is responsible for

controlling, managing and forwarding the received data that is gathered by the

sensors. Within the software all the attached peripherals need to be configured

properly according to their connected GPIOs. Furthermore, the application of the

TCP/IP stack, which is required to establish a connection with IBM Bluemix via

the Internet, is also part of the software.

The following sections discuss how the software for the controller and the messag-

ing protocol that is required to establish a bi-directional communication between

the IoT gateway and the PaaS IBM Bluemix is implemented and how to set up the

development environment properly.

5.3.1 Arduino IDE

Arduino provides its own development environment to connect Arduino boards,

but also third-party hardware such as the NodeMCU development kit for program-

ming the connected devices and to communicate with them. The IDE contains a

text editor for writing the program code in C/C++ language, a console to output

compiling information and errors, a “avr-gcc” compiler to translate the C code

into machine instructions and a serial monitor to visualize serial inputs as well

as outputs. The whole IDE is kept rather simple compared to other development

tools, hence it does not provide additional features such as a debugger for trou-

bleshooting. By the use of the Arduino IDE, program files that are written are

called “sketches” and are saved with an .ino file extension. Within the IDE it is

also possible to split the code into multiple files to keep a better overview.123

Fig. 5.11 shows an overview of the Arduino IDE with the opened program code

for the Arduino MEGA 2560 and the Ethernet Shield that are together used as the

sensor gateway for the Ultimaker 2 Extended 3D printer. As it can be seen out of

the figure several tabs are created to manage certain program parts such as the

different sensors separately.

123ARDUINO.CC, (2016c).
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Figure 5.11: Arduino IDE - Overview124

In order to upload the code to the attached device, the appropriate controller

needs to be selected out of the board manager. The Arduino IDE also supports

third-party hardware such as the NodeMCU development board by applying the

required “Board Manager URL” in the preferences so that the IDE is able to find

the desired controller within its boards manager.

The following Fig. 5.12 shows the preferences menu where the URL for for addi-

tional ESP8266 boards (marked red) has to be added to provide the installation

of the ESP8266 Library. Within the preferences it is also possible to change the

sketchbook location where all the program files are being stored. In context of this

project, the sketchbook was assigned to a cloud based location to synchronize the

progress when writing and testing code on different computers.

124Own illustration.
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Figure 5.12: Arduino IDE - Preferences125

As shown in Fig. 5.13 below, the ESP8266 board library that includes several

development boards and modules is successfully listed in the boards manager

after adding the URL in the preferences above.

Figure 5.13: Board Manager - ESP8266 Board support126

Once the library is installed, the additional ESP8266 boards can be found in the

“Tools” menu (ESP8266 Modules), as illustrated in Fig. 5.14. Consequently, the

NodeMCU Development Board can be programmed just like any other regular

Arduino board using the Arduino IDE.

125Own illustration.
126Own illustration.
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Figure 5.14: Arduino IDE - Board Selection127

5.3.2 Network Communication

Depending on whether the Arduino MEGA 2560 including the Ethernet Shield or

the NodeMCU development kit is applied, the network communication is either

performed wired (Ethernet), or wireless (WiFi). However, the utilized communica-

tion form does not affect the actual program code, except the configuration of the

TCP/IP stack since different libraries are required for the devices.

For the wired solution using the Ethernet Shield to integrate the TCP/IP stack,

the library needs to know the MAC address of the shield in order to receive an

IP address by the DHCP server of the network router. The MAC is usually to be

found on a sticker that is attached on the bottom of the shield.

Using the NodeMCU on the other hand, the registration within a wireless network

is done via the Service Set Identifier (SSID) and the appropriate password, whereby

the device obtains the IP from the DHCP server. In case no DHCP server is avail-

able, then the IPs have to be assigned manually for both solutions. The differences

of the configuration within the program code are opposed in Fig. 5.15.

127Own illustration.
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Figure 5.15: Network Configuration - Arduino (right) & NodeMCU (left)128

5.3.3 MQTT Messaging Protocol

MQTT is a very simple and lightweight messaging protocol on top of the TCP/IP

protocol that is based on a bi-directional publish/subscribe architecture, support-

ing up to thousands of remote clients. It is especially well-suited for M2M or IoT

applications, because it is optimized for sensors, actuators and remote devices

and it minimizes the network bandwidth at a high level of reliability by choosing

between three Quality of Service (QoS) levels. Therefore, the MQTT protocol is

ideal for the use in constrained environments where the bandwidth is low, a high

latency is occurring and remote devices with limited processing capabilities and

memory (microcontrollers) are participating.129

Publish/Subscribe Pattern

As mentioned above, the communication by the use of MQTT is based on a

“Publish” and “Subscribe” concept, in contrast to the traditional “Client - Server”

connection that uses a direct point-to-point communication. The device or gateway

that wants to provide or share information is called the “Publisher”, whereas the

application or device that consumes the shared information is known as the

“Subscriber”. The big advantage of this approach is that the publisher and the

subscriber do not need to know anything from each other since there is a third

components, the MQTT broker that is located in between for distributing all the

messages.130

When a publisher sends a message, e.g. gathered sensor data for this application,

the message subject needs to be classified by the use of a “Topic”. A topic is

required to define the content of a message, so the broker is able to forward the

message according to those subscribers that are “Subscribed” to the same topic.

128Own illustration.
129Cf. LAMPKIN, (2012), pp. 4-5.
130Cf. ibid., p. 26.
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Therefore, only those subscribers that “Listen” to the same topic will receive

the information. While a point-to-point communication, such as HTTP, knows

the destination of a message packet due to a specific destination address, the

distribution of the data utilizing MQTT is only based on the “Topic” name.131

Fig. 5.16 shows an example of the publish/subscribe procedure, based on the

sensor connection with the Arduino MEGA 2560 and the IBM Bluemix Internet of

Things Foundation that acts as the MQTT broker. Additionally, it is also possible to

use external, open source MQTT brokers such as “Mosquitto”132. However, since

the broker is already integrated into IBM Bluemix there is no need for the use of

an external one.

MQTT Broker

(IBM Internet of Things 
Foundation)

IoT Gateway

(Arduino MEGA 2560 + 
Ethernet Shield) publish: „value“

subscribe to topic „sensor“ (iot‐2/evt/sensor/fmt/json)
publish to topic „sensor“ (iot‐2/evt/sensor/fmt/json)

Client 1
(e.g. mobile device)

Client 2
(e.g. computer)

Application Side
Device Side

Figure 5.16: MQTT - Publish/Subscribe133

The following Fig. 5.17 shows the configuration of the MQTT topics, the access

point for the broker and the IBM Bluemix credentials of the programmed Arduino

2560 MEGA microcontroller code in order to establish the connection with the

“Internet of Things Foundation” that is discussed in section 5.4.1.

There are two topics available, one for “Publishing” the gathered sensor data to

the broker that will distribute the data within IBM Bluemix and its applications

131Cf. LAMPKIN, (2012), p. 27.
132https://mosquitto.org/, (retrieved 06/02/2017).
133Own illustration, based on Cf. LAMPKIN, (2012), p. 26.
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and the other one for “Subscribing” the gateway device (Arduino MEGA 2560)

to a Node-RED134 application, where users can send specific commands via the

Telegram Messenger135 back to Node-RED and the gateway to furthermore interact

with it. The possibilities of the user interaction with the system will be discussed

in section 5.6 in more detail.

Figure 5.17: MQTT - Arduino Code Configuration136

5.3.4 Message Payload Format - JSON

IBM Bluemix requires a special message payload format, containing the data

that is published to, or subscribed from the MQTT broker. The utilized standard

format for the transmission is JavaScript Object Notation (JSON), which is a data-

interchange format to transmit data objects with the advantage that it can be read

and used by any program language.137

It supports basic data types such as numbers, strings and arrays. The message

payload requests a notation according to the example illustrated in Fig. 5.18, where

two sensor values are transmitted using the JSON string. Each object contains a set

of names or value strings written with double quotes and is delimited with curly

braces. The additional backslashes in the string are required to escape the quotation

marks within a text string, which is needed for proper JSON formatting.

134https://nodered.org/, (retrieved 06/02/2017).
135https://telegram.org/, (retrieved 06/02/2017).
136Own illustration.
137Cf. VASSEUR; DUNKELS, (2010), pp. 94-95.
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Note that the IBM Bluemix MQTT broker also requires a top-level property “d”,

at the very beginning of the payload string, otherwise the messages won‘t be rec-

ognized within the Internet of Things Foundation and no data can be transmitted.

The length of the payload is also limited by Bluemix to a total size of 131 072 Bytes,

where all message payloads that exceed this size will not be accepted by the broker.

As a result, the connection to the gateway is disconnected and has to be established

again with reduced message size.138

Figure 5.18: JSON Message Format139

5.3.5 Establishing a Connection

As soon as the program code is successfully uploaded to the controller and the

IoT gateway is connected to an Internet capable network either by Ethernet with

the Arduino and the shield, or by WiFi when using the NodeMCU development

kit, the program routine tries to connected to the MQTT broker and furthermore

starts to publish the gathered sensor data. The following Fig. 5.19 shows the serial

monitor of the Arduino IDE where the connection process and some published

JSON strings, containing the sensor values, are illustrated.

As already mention in previous sections, it is also possible to use an external reset

pin of the Arduino and the NodeMCU to soft-reset the gateway hardware by the

use of a MQTT subscribe. This is achieved with Node-RED where a user specific

command, e.g. the string “reset”, is sent back to the controller that is subscribed to

the topic in Node-RED. The received command then triggers a digital output pin

which is connected to the reset pin via a resistor.

138Cf. IBM, (2016).
139Own illustration.
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Figure 5.19: Serial Monitor - Connection & Data Publishing140

Thus, after the implementation of a mobile user interaction with Telegram that is

described during section 5.6, it is possible to reset the system from any device that

is connected to the Internet if required.

5.4 IBM Bluemix

Bluemix is an open cloud platform that allows developers and end-users to

build, run and deploy applications directly within the cloud. It supports own

IBM software and services as well as applications from other business partners.

The Bluemix cloud platform is based on PaaS with additional Backend as a Ser-

vice (BaaS) capabilities and it supports various programming languages for de-

veloping web and mobile applications such as iOS or Android. By providing a

wide range of services that are ready-to-use, it is possible to either directly use the

prebuilt services via “Boilerplates”, or to customize them by adding additional

functionalities. As a developer, the interaction with the Bluemix infrastructure is

either possible by the use of a browser-based interface, or by using the “Cloud

Foundry” command-line-interface (CF) which allows to deploy locally developed

applications at Bluemix.141

As usual for PaaS providers, Bluemix is also based on a pay-as-you-go scheme,

where users only get a bill for the services that have been chosen and on the amount

140Own illustration.
141Cf. STIFANI, (2015), pp. 2-4.
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of infrastructure that is obtained. The following Fig. 5.20 shows an overview of

all the available service categories in the Bluemix environment, whereby each

category contains multiple services that can be executed.

� Boilerplates
� Runtimes
� Watson
� Mobile

� DevOps
� Web and Application Services
� Integration
� Data Management

� Big Data
� Security
� Business Analytics
� Internet of Things

Figure 5.20: IBM Bluemix - Categories of Services142

In context of implementing the sensor system, the “Boilerplates” named “Internet

of Things Foundation Starter”, “Node-RED Starter” as well as the “Data Manage-

ment” service “Cloudant NoSQL DB” and the “Big Data” service “IBM dashDB”

are essential for establishing the communication with the IoT gateway via MQTT

and to furthermore process, store and monitor the real-time and historical data.

Fig. 5.21 shows the application and service dashboard of the IBM Bluemix user

environment. The green circles below the Node-RED applications indicate whether

the app is running or not. The created services, including the setup and configura-

tion is discussed in the following sections.

5.4.1 Internet of Things Foundation

The Internet of Things Foundation is the key service for establishing a commu-

nication between IBM Bluemix and the sensor gateway, either to retrieve sensor

data from the gateway, or to send user specific commands back to the gateway via

the Internet by using the lightweight MQTT protocol and acting as the “MQTT

Broker”143

In order to establish a connection with an IoT gateway, which in this case is the

Arduino Mega 2560 or the ESP8266 NodeMCU, the device needs to be registered

within the Internet of Things Foundation. Therefore, each connected gateway or

device essentially needs to be assigned a “Device Class”, a unique “Device ID”

and an authentication token that is either generated or self-defined, for security

142Illustration from STIFANI, (2015), p. 2.
143https://console.ng.bluemix.net/docs/services/IoT/index.html, (retrieved

06/02/2017).
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Figure 5.21: IBM Bluemix - Dashboard144

and privacy reasons. All this information is related to the “Organization ID” of the

user account where the “Internet of Things Foundation” service is running. The

“Device Class” is required for the connection of multiple devices of a different type,

e.g. the ESP8266 NodeMCU and the Arduino MEGA 2560. It is left to the user to

enter additional information, such as the manufacturer and the controller model,

a serial number, the installation site, or a useful comment for each device.

Of course, the registration information for each device also needs to be configured

within the Arduino program that runs on the controller so that the gateway is

able to successfully connect to the Bluemix MQTT broker to publish and subscribe

data. Fig. 5.22 shows the process of registering a device, with all the parameters

listed.

After the registration of the IoT gateways, the devices show up in the overview of

the main screen. A symbol also indicates whether there is an active connection of

a gateway or not. As illustrated in the following Fig. 5.23, the registered Arduino

MEGA 2560 is currently connected to the Internet of Things Foundation and is

144Own illustration.
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Figure 5.22: Internet of Things Foundation - Registering a Device145

transmitting data to the broker. The overview also displays the additional device

parameters that were entered during the registration process of the gateways.

Figure 5.23: Internet of Things Foundation - Device Overview146

A detailed overview of the received sensor values that are shaped in a JSON format

is available by clicking on the connected device. It lists all data points that are

transmitted, including the timestamp for recording the information in a database

or to visualize it by the use of a real-time graph.

145Own illustration.
146Own illustration.
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The following Fig. 5.24 below illustrates an example of some received data points

at a specific timestamp that is transferred via MQTT as a JSON string.

Figure 5.24: Internet of Things Foundation - Received Sensor Values147

5.4.2 Cloudant NoSQL DB

In order to store the historical sensor data that is gathered during the use of

the Ultimaker 2 Extended 3D printer, a free-to-use NoSQL data layer, based on

JSON documents is provided within Bluemix. The service is accessible through a

HTTP interface and can be easily linked with the “Internet of Things Foundation”.

Through this implementation, the transferred sensor data is automatically archived

in the database by the use of monthly changing containers, as shown in the

following Fig. 5.25.148

147Own illustration.
148Cf. STIFANI, (2015), p. 48.
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Figure 5.25: Cloudant NoSQL DB - Historical Sensor Data149

5.4.3 dashDB

dashDB is a data warehousing tool to analyze historical data with built-in ad-

vanced analytics like data mining and predictive analytics. It is also possible to

download a customized data set with adjusted columns and rows, as a .CSV file,

for subsequent processing by the use of appropriate development tools such as

Microsoft Excel150 or MATLAB151. The warehousing tool is easy to connect to the

other services such as the Cloudant NoSQL DB where the historical data is stored.

Therefore, it is possible to transfer the data sets to dashDB and to start different

analytics.152

During this setup, an application of analytics tools for the gathered sensor data

was not implemented yet since it is only test data that is recorded to validate the

functionality of the sensor system. However, the subsequent Fig. 5.26 shows an

example of a data set in dashDB which was retrieved from the Cloudant NoSQL

DB.

149Own illustration.
150https://products.office.com/de-at/excel, (retrieved 06/02/2017).
151https://www.mathworks.com/, (retrieved 06/02/2017).
152Cf. STIFANI, (2015), p. 56.
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Figure 5.26: IBM dashDB - Sensor Data Table153

5.4.4 Node-RED

The IBM Emerging Technology organization developed the open source platform

Node-RED back in 2013 and introduced it in early 2015. Node-RED is a visual

programming and wiring tool that makes it easier to connect, program and use

the components of the Internet of Things. The naming relates to the fact that the

platform was implemented using “Node.js”, which is an open-source JavaScript

runtime development environment.154

The basic idea of Node-RED was to make programming easier and accessible

for everyone, also for people without good programming knowledge. For this

reason, predefined code blocks called “Nodes” are provided and can be dragged

into the Node-RED editor. Wiring them up in different ways makes up a “Flow”

that can finally be deployed to build the application. For more complex tasks,

“Function Nodes” can be added to use customized code blocks for adding user

specific functionalities to the “Flows”.155

153Own illustration.
154HEIDLOFF, (2015).
155https://nodered.org/, (retrieved 18/12/2016).
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Additionally, there is also an available database where users can contribute their

own nodes and make them available for public. By importing those “Nodes” with

the Node Package Manager (NPM) to the Node-RED application, other users can

then easily reuse them for their own tasks. The process of importing new nodes to

the application will be discussed in more detail in the next section.

Although Node-RED is already included within IBM Bluemix and can be set up

really quickly by using a “Starter Platform”, it is also possible to run it locally and

to deploy it as a stand-alone Node.js application.

Once a Node-Red application has been prepared using the “Node-RED Starter”

Boilerplate in the IBM Bluemix environment, the source code can be edited after-

wards in a created GIT repository156 for the application. This is necessary when

the user wants to add new custom nodes, or to update nodes of the application.

See the following section for further details.

Figure 5.27: Node-RED - Flow Editor157

Importing Nodes

It is possible to import new nodes to the Node-RED application by using the NPM.

When using Node-RED locally without Bluemix, new nodes can be added by

156https://git-scm.com/, (retrieved 06/02/2016).
157Own illustration.
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using the “npm install <npm-packagename>” command within the command

line. The <npm-packagename> has to match with the corresponding name on

the Node-RED flow-database158 in order that the package manager is able to find

and install the required node.

It is also possible to add nodes to the application directly within Bluemix by

editing the source code of the Node-RED application in the IBM Bluemix DevOps

Services. The nodes have to be added to the “package.json” file, again using the

same package name as provided in the library. The left illustration of the following

Fig. 5.28 shows the “package.json” file including manually added NPM nodes such

as the Telegram Bot API as well as the Node-RED Dashboard User Interface (UI)

for graphical visualization of the sensor data.159

In case custom nodes need to be added that are not part of the Node-RED li-

brary introduced above, the import can also be done manually by uploading the

“nodename.html” and the “nodename.js” file to a subfolder of the “nodes” folder

within the applications structure. The naming of this subfolder has to match with

the package name in the package.json file, just like the node in the Node-RED

library. The left illustration of Fig. 5.28 shows the application structure including

the manually added Telegram Bot API that is required for the user interaction

discussed in section 5.6.160

After performing changes to the code, the application has to be rebuilt and

restarted by using the “Build & Deploy” command. It may take a little time

until the application is running up and is ready to be started from the IBM Bluemix

application dashboard again.

158Node-RED Library, http://flows.nodered.org/, (retrieved 18/12/2016).
159NODE-RED, (2016).
160Cf. BISON, (2016), pp. 7-12.
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Figure 5.28: Node-RED - package.json File (left); Manually Added Nodes (right)161

Updating

The process of updating existing nodes via NPM to a new version is quiet similar.

The “package.json” file that contains all the manually added nodes also includes

the current version number for every installed node at the end of each line, as it

can be seen from Fig. 5.28 above. This information does not have to be changed

necessarily, however, it is still recommended for keeping the overview of the

installed versions. After the changes are done, the execution of another “Build &

Deploy”, as already described earlier, is required to update the added nodes to the

latest version, including the Node-RED editor itself.162

5.5 Sensor System Installation

Based on the insights regarding the previous sections of this chapter where the

pinout, the wiring diagram and the sensors including the placement at the Ulti-

maker 2 Extended 3D printer was described, the following section outlines the

finished installation of the sensor system at the machine.

161Own illustration.
162NODE-RED, (2016).
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5.5.1 IoT Gateway - Arduino MEGA 2560 & Ethernet Shield

The following Fig. 5.29 shows the IoT gateway for the communication with the

sensors that are installed at the Ultimaker 2, including the Arduino MEGA 2560

as well as the Ethernet Shield v2 on top. The wiring and the placement of all the

pin headers for connecting the sensor cables is based on the wiring diagram and

stripboard layout of section 5.2.6. Because the routing of all the connections and

traces is performed at the bottom layer of the stripboard, it is rather manageable

to keep track of all the connected sensors.

Figure 5.29: Sensor Installation - Arduino MEGA 2560, Ethernet Shield and Sensor Stripboard163

163Own illustration.
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5.5.2 Ultimaker 2 - Extended & Sensor Setup

The finished installation of the introduced sensors in section 5.2.4 at the Ultimaker

2 Extended 3D printer is illustrated in the following example figures. Fig. 5.30

shows the installed HC-SR04 range detectors, including the printed mounting

mechanisms based on the CAD models that were introduced in section 5.2.7.

As it can be seen out of the figures, the detectors “float” above the machines frame

by attaching the mountings directly at the driving units, still providing enough

space for the printer head to hit its end positions and the limit switches.

The illustration also shows the ADXL345 accelerator that was mounted directly

onto the reflection shield for the range detectors at the printer head. Therefore, it

is possible to detach the accelerator and the reflector simultaneously for providing

easy maintaining access at the machine.

Figure 5.30: Sensor Installation - Ultimaker 2 (1)164

Fig. 5.31 shows the top view of the installed sensor, where additional sensors

such as the electret microphone or the MQ-135 air quality sensor are noticeable as

well.

164Own illustration.
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Figure 5.31: Sensor Installation - Ultimaker 2 (2)165

The subsequent Fig. 5.32 shows an applied limit switch to ensure that the sensor

system is only active in case that the printer head of the Ultimaker 2 drives out of

its defined home position when starting a production progress.

Figure 5.32: Sensor Installation - Limit Switch)166

165Own illustration.
166Own illustration.
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5.5.3 NodeMCU - Compact Solution

The NodeMCU is a compact alternative to the Arduino MEGA 2560 gateway, based

on WiFi communication. As already mentioned in previous sections, due to the

compact dimensions of the NodeMCU development board it is possible to install

it closer to the sensor site or directly inside a machine if required. However, during

the development of the sensor system in context of this thesis, the NodeMCU was

mainly used to gather environmental parameters such as the ambient temperature,

air pressure and humidity inside the FabLab and it was utilized for testing various

sensors that were intended for the installation at the Ultimaker 2. Since the usability

and the flexibility for testing is easier by the use of a WiFi connection instead of

a tethered one, which is required for the Arduino and the Ethernet Shield, the

NodeMCU development kit is more convenient for testing purposes.

To use the NodeMCU as an universal application for several installation purposes,

a customized case was applied to place the controller inside of it on a small

stripboard. For sensor communication the available analog as well as the I2C

interface is accessible through pin headers, as it can be seen from the following

Fig. 5.33.

Figure 5.33: NodeMCU - Housing (1)167

Additionally, a status LED is installed and connected to a digital GPIO to receive an

167Own illustration.
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optical notification whether the communication with IBM Bluemix or, respectively,

the publishing of sensor data to the “Internet of Things Foundation” MQTT broker

is successful or not.

Fig. 5.34 shows the connected NodeMCU inside the housing. The small hole is

applied to perform a hard reset by triggering a small push button in case the

controller software crashes.

Figure 5.34: NodeMCU - Housing (2)168

5.6 User Notification & Interaction

By the use of the bi-directional MQTT messaging protocol to either transfer sensor

data to IBM Bluemix or to receive user commands from Bluemix, it is possible

to implement an user interaction with the sensor system and the machine. IBM

Bluemix supports a lot of applications that can be controlled by the use of the

Node-RED editor, which is the interface between the Bluemix IoT Foundation and

applications outside the Bluemix environment such as various messaging services

or Push applications.169

Because of the bi-directional communication it is not only possible to provide

monitoring of the current printer state, but it also allows notifications and remote

168Own illustration.
169TANG, (2015).
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intervention of the system if necessary, or demanded. To provide a solution that is

as convenient as possible, an interaction by the use of mobile devices is preferred.

The fact that a smartphone is connected to the Internet continuously nowadays

and that it is usually always carried with the user makes it a perfect alternative for

notification, or interaction purposes. In general, it is possible to interact with the

system by the use of any type of device, just like it is illustrated in the functional

system diagram in section 5.1.

5.6.1 Telegram Messenger

Telegram is an easy to use messaging application available for multiple platforms

such as Windows, MacOS, Android and iOS. In contrast to other messengers, Tele-

gram supports a powerful API for building and integrating customized Telegram

clients as well as an additional API to create programs that make use of Telegram

messages as an interface, which are called Bots. This is also the reason why it was

prefered over other messengers170

The Telegram API can be integrated into Node-RED, as discussed in section 5.4.4,

to implement a set of Telegram “Flows” into the Node-RED Editor for sending and

receiving data or information via IBM Bluemix. The Bot acts as a HTTP-interface

between the Node-RED code on the server and the user to automatically receive

information based on specific events, or to send commands to the Bot within

the messenger. The instruction set can be created directly within the messenger,

whereas it has to match with the command names created in Node-RED in order

to provide the required functionality.

During the set-up, the Bot receives an unique authorization token for making it

identifiable within Node-RED. Once the Bot is created it can be invited to a chat

group where multiple users can attend. Thereby, it is possible that several FabLab

users can control the Bot and use its interfaces. The chat record is represented in a

way that it is verifiable at any time which commands have been entered and by

whom. For security reasons, the Bot can be protected in Node-RED by unlocking

the “Chat-ID” of a user, so that the communication and interaction with the Bot

and furthermore with the sensor system is only allowed for authorized users. Any

170TELEGRAM.ORG, (2017).
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attempt of controlling the Bot with an unauthorized Telegram account is recorded

and the log is immediately sent to the administrator of the Bot in Telegram.

Fig. 5.35 shows the available commands of the implemented Telegram Bot, per-

formed on an Android device. The right part of the illustration shows an example

of the automated notifications, which are sent by the Bot as soon as a print job

is started, or when the production is finished and the printer has returned to its

home position.

Figure 5.35: Telegram Bot - Command Overview171

By the use of Telegram it is also possible to reset a gateway device, e.g. if a sensor

is disconnected accidentally during maintenance work on a machine. Depending

on the sensor type and its interface, the communication with the controller can

still be interrupted, although the header has been connected again.

In that case, a reset of the controller and the subsequent re-connection with the

network is the only possible intervention. Fig. 5.36 shows the process of resetting

a connected device within the Telegram messenger.

171Own illustration.
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Figure 5.36: Telegram Bot - Command Overview172

5.7 Visualization

Within the scope of introducing IBM Bluemix, section 5.4.2 and 5.4.3 have already

pointed out how to store the measured sensor values within a database and

how to access the historical data afterwards for analysis purposes. However, for

monitoring and supervision it is also of great interest to visualize current absolute

values as well as the real-time data over time. Although it is possible to visualize

the published sensor data directly within the “Internet of Things Foundation” of

Bluemix, this solution is rather inappropriate because it is required to be logged

into the Bluemix environment, thus, it is not possible to access the charts from

outside using a HTTP interface. To overcome this issue, Node-RED provides a

package to create adjustable dashboards to visualize sensor graphs or data that

will be described in more detail within this section.

5.7.1 Node-RED Dashboard UI

Node-RED provides a convenient user interface for creating IoT dashboards and

to visualize real-time data via different types of diagrams. The dashboard is

customizable regarding its dimensions, depending on which device is going to be

172Own illustration.
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used for monitoring. Whereas desktop computers or notebooks provide a larger

display for visualization, a mobile device such as a tablet or a smartphone is

restricted in display size due to its smaller dimensions.173

Although it is still possible to display a large dashboard on a small screen by

scrolling, it is better to provide two different visualization schemes for both,

computer and mobile devices. The dashboard user interface does not only allow

to display the published sensor data, but it is also possible to display information

messages for the users, depending on specific events or sensor values.

Figure 5.37: Ultimaker 2 Extended - Sensor Visualization174

Fig. 5.37 above shows the example of a numerical dashboard, optimized for

desktop devices to provide an overview of the real-time sensor values, measured

at the Ultimaker 2 Extended 3D printer. The dashboard also displays additional

information such as the printer state and if there are sensor errors in case a sensor

is disconnected accidentally, e.g. during maintenance of the machine. Within

the dashboard it is also possible to display information messages depending on

a specific event such as the printer status or the connection status of the IoT

gateway.

As mentioned earlier, the dashboard can be adjusted in its size in order to fit on

173https://github.com/node-red/node-red-dashboard, (retrieved 06/02/2017).
174Own illustration.
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screens of mobile devices. With the use of the developed Telegram Bot acting as an

interface between Node-RED and the user, it is possible to integrate the dashboard

view into the Telegram Chat Group. The command list of Telegram, illustrated in

Fig. 5.35 of section 5.6.1, includes separated commands for the visualization of the

dashboard. By using the “/dash mobile” command, Telegram opens the mobile

dashboard via the provided HTTP interface of Node-RED.

The following Fig. 5.38 shows the mobile view of Ultimaker 2 printer head data

(left figure) and environmental parameters inside the FabLab Graz, measured with

the NodeMCU Development Kit (right figure).

Figure 5.38: Sensor Visualization - Mobile View175

175Own illustration.
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5.7.2 Local Data Visualization

Besides the Node-RED visualization dashboard and the remote notifications in

Telegram, a local information system using small, 0.96 ” OLED displays (SSD1306)

with I2C interfaces, is additionally implemented.

The display shows the acquired real-time sensor data directly at the machine site

for providing an overview without the need of an additional device. In context

of the first implementation of the system only one display is installed, whereby

the different measurement values can be monitored by toggling between different

screens using a push button that is connected to a digital input of the controller.

Fig. 5.39 illustrates the three screens of the display, visualizing sensor data of the

3-axis accelerator attached at the printer head as well as various other parameters

such as temperatures, the humidity or the light intensity inside the machine,

gathered from the sensors that were introduced in section 5.2.4.

Figure 5.39: OLED - Notification Display; Ultimaker 2 - Extended176

176Own illustration.
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6 Conclusion & Future Perspectives

This thesis provides a concept to improve a major drawback of current FabLabs

or Makerspaces. Most FabLabs are free to use facilities where users can realize

their own ideas and concepts by the use of various production machines and tools

such as 3D printers, laser cutters or CNC milling machines. Due to the lack of a

bi-directional communication between the operator and the machines within a

FabLab, it is not possible to receive notifications about specific events and states

of machines and it is unfeasible that a machine is able to react automatically to

certain incidents, or to prevent worst case scenarios such as machine crashes.

The objective of this master thesis is the initial development of a smart, cloud-based

sensor system for the application within FabLabs to extend the present one-way

user-to-machine communication flow. A “smart” sensor system which is connected

to the Internet and installed at the machine site is acquired to gather machine

related as well as environmental data by the use of a vast amount of sensors and

actuators. The data is processed by a microcontroller to store production-relevant

information as well as environmental parameters within the PaaS cloud service

IBM Bluemix.

Since the connection between the sensor system and the cloud platform is bi-

directional, machine users are informed about specific events via notifications

messages and visualization charts and they are allowed to intervene into ongoing

production processes if required. For the first implementation and testing of the

developed sensor system in context of this thesis, the Ultimaker 2 Extended 3D

Printer, being part of the machine park in the FabLab Graz, was intended because

it provides easy accessibility for the sensor installment and it is frequently used at

the FabLab opening times in order to record test data during ordinary operation.

The information flow of the sensor system, starting at the low-level controller

interface where all the sensor data is gathered and furthermore transmitted to the
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cloud service IBM Bluemix, is based on the approach of the Internet of Things

(IoT). IoT applications have experienced a rapid development since the first-

ever definition of the term back in 1999 until recent years, where the amount

of connected devices to the Internet started to escalate. The technological leap

regarding new electronic data processing hardware, faster and affordable Internet

access from multiple devices using WiFi, as well as the introduction of cloud

computing technologies and services have contributed significantly to the growth

of connected devices. As a consequence of the massive increase, it was essential

to launch the new generation Internet Protocol Version 6 (IPv6) for providing

additional address space within the Internet.

An IoT system requires essential components for collecting data of physical objects,

or environmental factors in the real world to process the data and to furthermore

store the data in an appropriate format within a cloud service. Thus, the consider-

ation of a basic system concept was carried out in chapter 3 that also forms the

foundation of the subsequent implementation by acquiring specific components.

Related to the sensor system concept that was outlined in chapter 3, the selection

of an appropriate gateway device that was required for the connection of all the

utilized sensors as well as for further data processing and forwarding of the sensor

data to the cloud platform IBM Bluemix, was essential. Consequently, the IoT

gateway, being the centerpiece of the entire system, is of particular significance.

Several network capable gateway devices are available on the market, however,

not every device is suitable for processing a vast amount of sensor data in terms

of hardware interfaces and resources.

In order to provide a comprehensive comparison of current controllers and to

pick the most suitable alternatives for the application, a value benefit analysis was

utilized in chapter 4 in context of a market research. The matrix considers multiple

aspects and device specifications that are important to meet the requirements of

the sensor system. To prevent an over influence of certain factors and vice versa,

the scoring of each utilized criteria was balanced within the scoreboard. As a result

of the comparison, two MCU boards with different network interfaces (Ethernet

and WiFi) were utilized for the application as the sensor gateway for providing

two different communication approaches.

The practical implementation of the sensor system that is carried out within chap-

ter 5 outlines the selection of the applied sensors at the Ultimaker 2 as well as the
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wiring and installation interventions at the machine. The software development

for the microcontroller and several communication tests to establish a connection

between the IoT gateway and the IBM Bluemix “Internet of Things Foundation”

were already performed before the actual system installation to ensure a full func-

tionality. Testing of both communication directions to either receive data from

the sensors, or to send user commands to the sensor system, e.g. resetting, was

an essential part of the implementation process. In context of this, an HTTP user

interface based on the Node-RED programming editor together with a messaging

application Bot was implemented to furthermore receive machine related infor-

mation directly to a mobile device or a computer. It allows to monitor real-time

machine data on different dashboards and it supports the possibility to send noti-

fications about an ongoing production progress or sensors errors to the messenger

application.

Since the controller software was implemented in a way that it is applicable on

both gateway controllers independent from the network interface, it is possible to

connect and mix multiple gateways of different types to IBM Bluemix in order to

interchange data between different machines. Thereby, is possible to implement a

complete connectivity of all devices within a FabLab to extend the implemented

bi-directional user-to-machine communication also to an intelligent machine-to-

machine communication (M2M).

However, the practical implementation of this thesis also provides a good foun-

dation for further advances regarding predictive analytics or machine learning

where machines can automatically react and adjust themselves based on a certain

tendency or trend of a greater amount of gathered data (Big Data Analytics). A

consequence of this approach would be to directly connect the IoT gateway with

the machines controller and its software, which is not realized at this stage. There-

fore, it is not yet possible to directly interfere with active machine parts, such as

the controlling of the printer head or the drive units.

Another possible future enhancement regarding the sensor system is the installa-

tion and the connection of the sensors and hardware at the machine. Although it

was already ensured to keep the wiring effort at the controller as low as possible, it

is still a prototypical application with provisional attached sensors and mountings.

The stripboard that was utilized to place all the sensor pin headers within close

proximity to the MCU board may be substituted with a professional circuit board
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by the preparation of a PCB layout, to improve the overview and to build it more

compact.

Also for other application areas next to FabLabs and Makerspaces, the concept of

cloud computing based data monitoring and the application of IoT based sensor

systems for smart manufacturing, including connected machines or industrial

robots with embedded sensors, is a big opportunity for the future. By applying

such systems it is possible to enhance the efficiency of production progresses

and to reduce errors in the complete production chain, whereas multiple ma-

chines and processes are involved. Furthermore, also the safety within industrial

environments can be increased by applying smart sensor systems that are capa-

ble of advanced warnings, in order to reduce the risk of damages or dangerous

conditions.

Overall, the result of this thesis is a fully working implementation of an initial

cloud-based sensor system applied on the Ultimaker 2 Extend 3D printer within

the FabLab Graz. The sensor system supports a bi-directional communication

between the machine and the user as well as an automated storage process of the

gathered sensor data in a structured database for historical purposes. The addi-

tionally implemented user interface allows easy communication with the system

to either receive notifications, or to visualize machine related data. The achieve-

ments during this thesis provide a solid foundation for further development and

expansion of the system in future.
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Appendix

A.1 Market Overview - IoT Development Boards

NodeMCU DEVKIT
(ESP‐12)

WiFi Module
(ESP‐201)

WiFi Module 
(ESP‐01)

Arduino 
UNO 

Arduino DUE 
(ARM)

Arduino 
101

Arduino 
YUN

Arduino 
ETHERNET

Arduino 
MEGA

Raspberry PI 3 
Model B

Raspberry PI 2 
Model B

Raspberry PI
Zero

Raspberry PI
Model A (1/1+)

Raspberry PI
Model B (1/1+)

Beaglebone Black
Rev C

pcDuino3(B)
Dev Board

Intel® Edison 
(Arduino Kit)

Intel® Edison 
(Mini Breakout 

Board)

Intel® Galileo 
Gen 2

Price $12 $8,95 $6,95 $24,95 $49,95 $30,00 $74,95 $45,95 $59,95 $39,95 $41,95 $5,00 $29,95 $39,95 $54,95 $59,95 $99,95 $74,95 $74,95

Digital I/O Pins 13 4 2 14 54 14 20 14 54 17 17 17
17 (Model 1+)
8 (Model 1)

17 (Model 1+)
8 (Model 1)

65 14 20 4 14

Analog I/O Pins 1 1 0 6 12 6 12 6 16 ─ ─ ─ ─ ─ 7 6 6 ─  6

Microcontroller (MCU) Tensilica L106 32‐Bit Tensilica L106 32‐Bit Tensilica L106 32‐Bit ATmega328 AT91SAM3X8E  Intel Curie ATmega32U4 ATmega328 ATmega2560 ─ ─ ─ ─ ─ 2x PRU 32‐Bit ─

32 Bit Intel Quark SoC 
X1000 

@ 100 MHz (clocked 
down)

32 Bit Intel Quark SoC 
X1000 

@ 100 MHz (clocked 
down)

32 Bit Intel Quark SoC 
X1000 

@ 400 MHz 

Flash Memory  (MCU) 96 kB 96 kB 96 kB 32 kB 512 kB 196 kB 32 kB 32 kB 256 kB ─ ─ ─ ─ ─ 8 kB ─ ─ ─ 8 Mb / SD card

RAM (MCU) 64 kB 64 kB 64 kB 2 kB  96 kB 24 kB  2.5 kB 2 kB 8 kB ─ ─ ─ ─ ─ 8 kB / 12 kB (shared) ─ 512 kB SRAM 512 kB SRAM 512 kB SRAM

EEPROM (MCU) ─ ─ ─ 1 kB none none 1 kB 1 kB 4 kB ─ ─ ─ ─ ─ ─ ─ 8 kB 8 kB 8 kB

Clock Speed (MCU) 80 MHz 80 MHz 80 MHz 16 MHz 84 MHz 32 MHz 16 MHz 16 MHz 16 MHz ─ ─ ─ ─ ─ 200 MHz ─ 100 MHz  100 MHz  400 MHz

Microprocessor (MPU) ─ ─ ─ ─ ─ ─ Atheros AR9331 ─ ─ BCM2837 Cortex‐A53 BCM2836 ARMv7 BCM2835 BCM2835 BCM2835  AM3358 Cortex‐A8
AllWinner 

A20 Cortex‐A7
Intel Atom Z34xx 

@ 500 MHz
Intel Atom Z34xx 

@ 500 MHz
─ 

Flash Memory  (MPU) ─ ─ ─ ─ ─ ─ 16 MB ─ ─ microSD microSD microSD microSD microSD 4 GB eMMC 4 GB / microSD 1 GB 1 GB ─

RAM (MPU) ─ ─ ─ ─ ─ ─ 64 MB ─ ─ 1 GB (SDRAM) 1 GB (SDRAM) 512 MB (SDRAM) 
512 MB (Model 1+)
256 MB (Model 1)

512 MB (SDRAM) 512 MB (SDRAM) 1 GB (SDRAM) 4 GB eMMC / SD card 4 GB eMMC / SD card 256 MB

EEPROM (MPU) ─ ─ ─ ─ ─ ─ 1 kB ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─

Clock Speed (MPU) ─ ─ ─ ─ ─ ─ 16 MHz ─ ─ 1,2 GHz 900 MHz 1 GHz 700 MHz 700 MHz 1 GHz 1 GHz  500 MHz  500 MHz ─

Input Voltage 
(Power Jack)

4.5 ‐ 9 V 3.3 V 3.3 V 7 ‐ 12 V 7‐ 12 V 7 ‐ 12 V 5 V 7 ‐ 12 V 7 ‐ 12 V 5 V 5 V 5 V 5 V 5 V ─ 5 V 7 ‐ 15 V ─ 7 ‐ 15 V

Operating Voltage  3 ‐ 3.6 V 3.3 V 3.3 V 5 V 3.3 V 3.3 V / 5 V 5 V 5 V 5 V 5 V 5 V 5 V 5 V 5 V 3.3 / 5 V 5 V 3.3 ‐ 4.5 V 1.8 V 3.3V / 5.5 V

I/O Pin Current  12 mA 12 mA 12 mA 20 mA 800 mA 20 mA 40 mA 40 mA 20 mA 50 mA 50 mA 50 mA 50 mA 50 mA ─ 80 mA 80 mA 80 mA

Length/Width 49 x 24.5 mm 35 x 25 mm 25 x 14.5 mm 68.6 x 53.4 mm 101.52 x 53.3 mm 68.6 x 53.4 mm 68.6 x 53.4 mm 68.6 x 53.3 mm 101.52 x 53.3 mm 85 x 56 mm 85 x 56 mm 65 x 30 mm 85 x 56 mm 85 x 56 mm 86.44 x 54.54 mm 121 x 65 mm 127 x 72 mm 61 x 29 mm 124 x 72 mm

Connectivity micro USB  GPIO (TX, RX)  GPIO (TX, RX)
USB Type B
Power Jack

2x micro USB
Power Jack

USB Type B
Power Jack

USB Type B
Power Jack

Ethernet 10/100

6‐PIN SPI 
Power Jack

Ethernet 10/100
microSD Slot

USB Type B
Power Jack

4x USB Type A
HDMI

3.5 mm Audio
Ethernet 10/100
microSD Slot
micro USB

WiFi

4x USB Type A
HDMI

3.5 mm Audio
Ethernet 10/100
microSD Slot
micro USB

microSD Slot
miniHDMI
2x microUSB

1x USB Type A
HDMI

3.5 mm Audio

2x USB Type A
HDMI

Ethernet 10/100
3.5 mm Audio

USB Type A
microHDMI

Ethernet 10/100
Power Jack
mirco HDMI

USB Type A
HDMI

Ethernet 10/100/1000
3.5 mm Audio
SATA socket

2x USB Type A
microUSB

microSD Slot
Power Jack

2x micro USB
battery re‐charger

USB Type A, micro USB
Ethernet

Power Jack
microSD

Low‐level peripherals SPI, I2C, ADC, PWM, 
UART

SPI, I2C, ADC, PWM, 
UART

SPI, I2C, ADC, PWM, 
UART

SPI, I2C, ADC, 
PWM, UART

SPI, I2C, ADC, 
PWM, UART, 

CAN

SPI, I2C, ADC, 
PWM, UART

SPI, I2C, ADC, 
PWM, UART

SPI, I2C, ADC, 
PWM, UART

SPI, I2C, ADC, 
PWM, UART

SPI, I2C, I2S, UART SPI, I2C, I2S, UART SPI, I2C, I2S, UART SPI, I2C, I2S, UART SPI, I2C, I2S, UART
SPI, I2C, UART, Timers, 

CAN, ADC

SPI, I2C, ADC, 
UART, 

PWM, ADC

SPI, I2C, I2S, UART, 
PWM, ADC, PCIe

SPI, I2C, I2S, UART, 
PWM, ADC, PCIe

SPI, I2C, I2S, UART, 
PWM, ADC, PCIe

Programming LUA, Arduino IDE LUA, Arduino IDE LUA, Arduino IDE Arduino IDE Arduino IDE Arduino IDE Arduino IDE Arduino IDE Arduino IDE
Linux (Python), C, C++, 
Java, Scratch, Ruby

Linux (Python), 
C, C++, Java, 
Scratch, Ruby

Linux (Python), C, 
C++, Java, 

Scratch, Ruby

Linux (Python), C, 
C++, Java, Scratch, 

Ruby

Linux (Python), C, 
C++, Java, Scratch, 

Ruby
Linux (Python)

Linux (Python)
Android (Java)

Linux
Arduino IDE 

Linux
Arduino IDE 

Linux
Arduino IDE

Real‐Time Capability Yes Yes Yes Yes Yes Yes Yes (MCU) Yes Yes No No No No No Yes (Via MCU) No Yes (Via MCU) Yes (Via MCU) Yes

Features
WiFi 802.11 b/g/n 
Deep sleep power 

< 10 uA

WiFi 802.11 b/g/n 
Deep sleep power 

< 10 uA

WiFi 802.11 b/g/n 
Deep sleep power 

< 10 uA
─ ─

Bluetooth
6‐Axis 

accelero./gyro

 MCU + MPU
WiFi IEE 

802.11b/g/n
─ ─

BCM43143 
WiFi on board

─ ─ ─ ─ ─
WiFi

Arduino shield 
compatible

WiFi
Bluetooth 4.0
Arduino shield 
compatible

Battery Powered Supply
WiFi

Bluetooth 4.0
Arduino shield 
compatible

RASPBERRY PI

OVERVIEW: IoT BOARDS

ESP 8266 INTELOTHERSARDUINO
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Appendix

A.2 Value Benefit Analysis - IoT Development Boards

Arduino
UNO

Arduino
101

Arduino
MEGA

Arduino
ETHERNET

Arduino
YUN

NodeMCU 
DEVKIT
(ESP‐12)

WiFi 
Module 
(ESP‐01)

Raspberry 
PI 2 

Model B

Raspberry 
PI 3 

Model B

Intel® 
Galileo 
Gen 2

Intel® Edison 
(Arduino Kit)

pcDuino3(B) 
Dev. Board

Beaglebone 
Black
Rev. C

Criteria Explanation Weight Criteria Definition

Cost Factor Initial costs for the development platform 11,4% 3 3 1 3 3 5 5 3 3 3 2 3 3 Cost Factor Initial costs for the basic system

GPIO Capability
(digital + analog)

Amount of digital and analog input/output ports that 
the hardware provides 

15,9% 2 2 5 3 3 2 1 2 2 2 3 2 3  GPIO Capability(digital + analog)
How much digital and analog input/output ports does 
the hardware provide? 

Peripherals
(low‐level)

 Provided protocols such as I2C, Two‐wire, SPI or 
ADC

11,4% 3 3 3 3 3 3 3 2 2 3 3 3 4

Hardware 
Hardware architecture and performance  (MCU/MPU), 
flash/program memory size 

15,9% 1 3 3 1 1 3 3 4 4 3 4 4 1 Hardware  Hardware architecture (CPU), flash/program memory size 

Speed
(low‐level tasks)

Speed regarding low level tasks (reading 
analog/digital inputs) & real‐time capability

11,4% 3 3 3 3 3 2 2 1 1 3 2 1 3  Speed(low‐level tasks) Speed regarding low level tasks (reading analog/digital inputs)

Features (WiFi, Ethernet, 
Bluetooth)

Integrated network capability (WiFi, Ethernet) on‐
board, otherwise additional extension shields are 
required

11,4% 1 1 1 2 3 2 2 2 3 2 2 2 2  Features (WiFi, Ethernet, Bluetooth)

Integrated
 Development 

Environment (IDE)
e.g. Arduino IDE, Python 3,8% 2 2 2 2 2 2 2 3 3 2 2 4 3  Integrated Development Environment (IDE) e.g. Arduino IDE, Eclipse, Linux based

Coding Skills Needed skills (e.g. python, C/C++, Linux skills needed 
for RPI) for programming/using the device

3,8% 2 2 2 2 2 2 2 1 1 2 2 1 1 Coding Skills
Needed skills (e.g. python, #C, Linux skills needed for RPI) for 
programming/using the device

Documentation
Availability, amount and quality of existing 
documentation

3,8% 3 3 3 3 3 3 3 3 3 2 2 1 1 Documentation Availability, amount and quality of existing documentation

Community (IoT) How good is the support/documentation for 
integration into IBM Bluemix? (Receipts, FAQs)

3,8% 4 4 4 4 4 4 4 3 3 2 2 1 1 IBM Bluemix Support
How good is the support/documentation for integration into
 IBM Bluemix?

Usability
How convenient is the implementation of 
sensors/actuators (e.g. availability of additional 
software libraries) 

3,8% 3 3 3 3 3 2 2 2 2 2 2 2 2

Expandability e.g. breadboards, prototyping plates availability,
sensors and additional equipment

3,8% 3 3 3 3 3 1 1 2 2 2 2 2 1 Expandability
e.g. breadboards, prototyping plates avaliability, sensors and 
additional equipment

100,0% 2,26 2,58 2,83 2,53 2,64 2,69 2,53 2,39 2,51 2,50 2,59 2,39 2,34Weighted Scores

Decision Matrix 

Weighted Decision Matrix  ‐ IoT Sensor System Legend

Leitner A. 06.02.2017
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Appendix

A.3 Node-RED Editor - Flow Overview
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