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Zusammenfassung

Die Suche nach kürzesten Wegen im Straßennetz ist ein Forschungsfeld, das in den letzten

Jahren eine bedeutende Entwicklung erfahren hat. Der wachsende Bedarf, nicht nur für

die individuelle Routenplanung, sondern auch für die Verkehrsplanung, Simulationen

und die bevorstehenden autonomen Fahrzeuge erfordern Algorithmen, die dynamische

Netzwerke kontinentaler Größe mit häufigen Aktualisierungen verarbeiten können.

Für diese Arbeit wurden verschiedene Algorithmen, von den einfachsten bis zu eini-

gen der neuesten und schnellsten, aus verschiedenen Kategorien ausgewählt und jeder

von ihnen wurde im Detail in der Praxis analysiert. Ihr Verhalten auf vollständigen

und kontrahierten Straßennetzen mit unterschiedlichen Metriken wurde untersucht und

miteinander verglichen. Es wurde gezeigt, wie die Vorverarbeitungsphasen der anspruchs-

volleren Algorithmen in der Praxis funktionieren und welchen Einfluss unterschiedliche

Netzwerke auf sie haben. Eine große Sammlung von Straßennetzen aus der ganzen Welt

mit unterschiedlichen Größen, von Städten bis zu Kontinenten, wurde verwendet, um

mögliche Unterschiede aufzuzeigen und um zu analysieren wie die verschiedenen Algo-

rithmen mit ihnen zurecht kommen. Schließlich wurde untersucht, welche Algorithmen

für große und dynamische Netzwerke geeignet sind und ob es mögliche Nischenbereiche

gibt.

Es wurde festgestellt, dass selbst das Verhalten der einfachsten Algorithmen durch

die Verwendung unterschiedlicher Metriken beeinflusst wird. Im Gegensatz dazu betraf

eine Änderung in der Topologie nur die komplexeren Algorithmen. Die Ergebnisse für A*

zeigten den (in diesem Fall negativen) Einfluss der Hardware und der Implementierung

auf die Ausführungsgeschwindigkeit. Es wurde entdeckt, dass die schnellen Abfragezeiten

von Contraction Hierarchies auf den small-world Effekt zurückzuführen sind und dass

Contraction Hierarchies und Customizable Route Planning gleichermaßen durch unter-

schiedliche Topologien beeinflusst werden, obwohl sie auf unterschiedlichen Konzepten

basieren. Die Ergebnisse über die große Anzahl an Straßennetzen zeigte, dass es nur

geringe Unterschiede gibt und nur wenige Netzwerke, wie zum Beispiel Buenos Aires,

herausstechen. Der abschließende Leistungsvergleich zeigte, dass nur der Customizable

Route Planning Algorithmus schnell genug für kontinentale Netze mit häufigen Aktua-

lisierungen ist. Der
”
A*, Landmarks, Triangle Inequality“ Algorithmus in Kombination

mit einem schnellen Vorverarbeitungsverfahren war schnell genug um als eine Alternative

für kleinere und mittlere Netzwerke betrachtet werden zu können.
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Abstract

Finding shortest paths in road networks is a research field that has seen significant

developments in the recent years. The growing needs not only for individual route

planning but also for transportation planning, simulations and the upcoming autonomous

vehicles require algorithms that can handle dynamic networks of continental size with

frequent updates.

In this work, several algorithms ranging from the simplest ones to some of the newest

and fastest from different categories were chosen. Each of them was analyzed in detail

in a practical setup. Their behavior on full and contracted road networks with different

metrics was investigated and compared with each other. It was shown how the pre-

processing phases of the more sophisticated algorithms work in practice and how they

are affected by different networks. A large collection of road networks from all over the

world with different sizes, ranging from cities to continents, was used to find possible

distinctions between them and to analyze how the different algorithms handle them.

Finally it was examined which algorithms are suitable for large and dynamic networks

and if there are possible niche areas.

It was found that even the behavior of the simplest algorithms is influenced by

using different metrics. On the contrary, a change in the topology only affected the

more complex algorithms. The results for A* demonstrated the (in this case negative)

influence of the hardware and implementation on the performance. It was discovered

that the fast query times of Contraction Hierarchies are a result of the small-world

effect and that Contraction Hierarchies and Customizable Route Planning are equally

effected by different topologies, even though they are based on different concepts. The

evaluation of the large selection of road networks showed that the differences between

them are small and only a few networks such as Buenos Aires are standing out. The final

performance comparison showed that only the Customizable Route Planning algorithm is

fast enough for continental sized networks with frequent updates. The ”A*, Landmarks,

Triangle Inequality” algorithm used with a fast preprocessing method was fast enough

to be considered as an alternative for small and medium sized networks.
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Chapter 1

Introduction

Finding the shortest or quickest path between two places is a common task many people

are confronted with every day. Just two decades ago this problem had to be solved by

hand, based on personal or other’s experience and the help of outdated road atlases. And

while it was possible to find the shortest path this way, finding the quickest was a game

of chance due to the lack of knowledge of things such as possible congestions, road works

or accidents. Advances in computers, the opening of the Global Positioning System

(GPS) to the public and the endless effort of various institutions (e.g. the United States

Census Bureau1 or OpenStreetMap2) to create, maintain and provide digital road maps

improved this dramatically. Nowadays, shortest paths can be queried in an instant on

personal computers, automotive navigation systems and smart phones. But the efforts

in this field are just being started. Galileo3, the European equivalent to GPS, went

operational in December 2016 [7] for even more accurate positioning data and roads are

increasingly equipped with sensors for real time traffic information. Combined with the

growing networking it allows for better routing of traffic not only on an individual basis

but also on a grand scale. Also, the research in autonomous vehicles has made huge

advances in the recent years with first prototypes being on the road [43]. These vehicles

will increase the need for fast, accurate and detailed path finding even more.

However, path finding is not only a matter of real traffic on real road networks

but also in the virtual world. With the ever increasing number of vehicles and growing

cities, transportation planning is getting more complex, requiring virtual models that can

simulate traffic consisting of a large number of vehicles [56]. Another virtual application

are computer games, which are getting more sophisticated every year, simulating growing

amounts of entities finding their way on virtual maps.

1https://www.census.gov/geo/maps-data/data/tiger-line.html
2http://www.openstreetmap.org
3http://www.esa.int/Our_Activities/Navigation/Galileo/What_is_Galileo

1
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1.1 Motivation

Due to the growing needs and available data, path finding has been rediscovered as

important research field in the recent years with significant developments [3]. Algorithms

are now able to answer shortest path queries in less than a millisecond on continental

sized networks consisting of tens of millions of nodes. However, there are still many

problems that have only been solved partially or not at all, such as continental sized

journey planning with public transport or the multi-modal route planning problem,

which considers different modes of transportation at once.

Published papers of recently developed algorithms and techniques have in common

that they include detailed theoretical/mathematical descriptions and practical evalu-

ations on a few large road networks that are widely used as benchmark instances. But

a practical analysis on how the algorithms interact with road networks and behavioral

differences compared to other methods are often treated as matters of secondary im-

portance. Furthermore, the given performance comparisons tend to focus on the largest

networks, paying less attention to other networks and their possible differences and im-

pacts.

To investigate these less researched aspects, several techniques from different categor-

ies are selected for this work, ranging from Dijkstra’s algorithm to some of the newest

and fastest, such as Contraction Hierarchies and Customizable Route Planning. The re-

search questions are focused on the practical behavior and differences of the algorithms

on real road networks of various size and origin. Instead of a pure theoretical comparison,

the behavioral patterns are highlighted in a practical setup and inspected for possible

differences between them. The impacts of road networks of different size and origin with

different metrics are examined and the question for possible distinctions in networks

from all over the world is investigated. Furthermore, the query and preprocessing times

are compared to answer the question which of the algorithms are suitable for dynamic

networks with frequent updates and if there are niche areas for the slower ones.

1.2 Outline

In Chapter 2, the theory behind the algorithms used in this work is explained. The

framework and dataset used for the experimental analysis and performance comparison

are presented in Chapter 3. A detailed analysis of the behavior and practical performance

of each algorithm is given in Chapter 4. In Chapter 5, the query times of all algorithms

are compared against each other and the preprocessing times are analyzed. The appendix

contains additional key figures for the road networks in the dataset and information for

compiling and using the framework.
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Chapter 2

Theoretical Overview

This chapter gives an theoretical overview of the algorithms and concepts used in this

work starting with the basic building blocks followed by the high sophisticated algorithms

build upon them.

2.1 Preliminaries

Some basic concepts and notations that are used throughout this work are presented in

the following.

2.1.1 Graphs

A graph G = (V,E) consists of a set V of vertices and a set E of edges. Every edge

is connected to two vertices and denoted as (u, v) ∈ E. Edges that start and end at

the same vertex are called loops. In this work only edges between distinct vertices are

considered. A graph can be directed or undirected. In a directed graph, every edge has

a direction, pointing from one vertex to another. An edge pointing from a vertex u to a

vertex v is called outgoing at u and incoming at v. Edges running in opposite directions

between the same pair of vertices can be combined into a bidirectional edge, i.e. one

edge that points in both directions. In a weighted graph, a weight w(u, v) is associated

with every edge. In this work only positive weights are considered.

The number of edges connected to a vertex is the so called degree of it. There is no

limit to the degree of a vertex. If no edge is connected to it, the degree is zero. Vertices

that are directly connected with each other are called neighbors. Traversing an edge to

reach another vertex is also called a hop.

A path is a sequence of connected vertices. It requires at least a start vertex s and

a target vertex t. A path where s and t are equal is called a cycle. The length of a path

equals the distance d(s, t) which is the sum of the weights of its edges. The shortest path

is the one with the smallest length from all paths between s and t. In an undirected

graph, if a path from s to t exists, the reverse of it constitutes the path from t to s,
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because the edges are undirected. In a directed graph, a path from s to t only has to be

traversable in one direction along its directed edges and the same may not be true for

the reverse from t to s.

In an undirected graph, a connected component is a subgraph where every pair of

vertices is connected with a path. In a directed graph, this is called a strongly connected

component. The difference is that in an undirected graph a path can be traversed in both

directions, which is not true with directed graphs (see above). This means that not every

vertex that is connected by a path is also part of the strongly connected component.

2.1.2 Shortest Path Finding

Several abbreviations and phrases have been established in connection with path finding

which are described in the following:

• SPSP: single pair shortest path, one-to-one; finding the shortest path between a

pair of nodes

• APSP: all pair shortest path, many-to-many; finding the shortest path between all

pairs of nodes

• SSSP: single source shortest path, one-to-all, all-to-one; finding the shortest path

from one node to all other nodes or vice versa

• Node Efficiency : Is calculated as the percentage of the number of nodes that have

been settled during a search in relation to the number of nodes in the shortest

path. A node can only be settled once.

• Edge Efficiency : Is calculated as the percentage of the number of edges that have

been scanned during a search in relation to the number of edges in the shortest

path. The same edge can be scanned several times.

2.1.3 Synonyms

Several different terms are used synonymously in this work:

• A network is the same as a graph.

• A vertex is also called a node.

• The weight of an edge is also called cost.

• The sum of the weights of all edges from a path are equal to the paths length which

is the same as the distance between its start and end node.

• The geometric distance is the same as the spherical distance, spatial distance or

great circle distance.
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• A motorway is the same as a freeway and a Autobahn, describing an arterial road

for high volume traffic.

2.2 Introduction

The problem of finding shortest paths between vertices in graphs has been solved in

the middle of the twentieth century with the Bellman-Ford algorithm [4], Dijkstra’s

algorithm [13] and the Floyd-Warshall algorithm [19, 33, 69]. Since then, many more

algorithms and speedup techniques built upon them have been proposed to improve their

running times on all or certain types of graphs.

With the increased interest in path finding on road networks in recent years, many

new methods specialized on this type of graph have been proposed. A recent and thor-

ough overview of many algorithms is given by Bast et al. in [3] who also divide them

into the following categories:

• Goal directed techniques try to direct the search towards the goal e.g. by applying

heuristics or precomputing paths.

• Separator based techniques divide the graph along vertices or edges to create a

smaller overlay graph which is then used for queries.

• Hierarchical techniques are focused on possible hierarchical structures in road net-

works such as arterial roads and try to reduce the number of visited vertices by

exploiting them.

• Bounded hop techniques reduce the size of the graph by precomputing paths

between pairs of vertices.

Many methods consist of a preprocessing phase that modifies the graph. Because

road networks have a dynamic nature with varying traffic, accidents, road works etc.

which can be unpredictable, preprocessed data will become inaccurate over time. This

means that the data has to be repaired or the search algorithm has to be adapted

which in every case costs time or reduces the performance of queries (if optimality is

not dropped). This can impact algorithms with a time-consuming preprocessing phase

severely, rendering them useless for highly dynamic networks.

2.3 Selected Algorithms

For this work, several algorithms from different categories are selected to provide a broad

comparison. Dijkstra’s algorithm [13] is chosen because it is used as a building block in

many other techniques and it is the performance benchmark every other algorithm has

to compete with.
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From the goal directed category, A* [31] and ”A*, Landmarks, Triangle Inequality”

(ALT) [27] are selected. A* is one of the first algorithms that tried to improve the

running time of Dijkstra’s algorithm by applying a heuristic. Because of its age (it was

proposed in 1968) it is well known and many variations exist. ALT can be seen as the

continuation of A*, which tries to improve its shortcomings by providing better bounds

and not requiring a heuristic, which makes it suitable for any metric. Its disadvantage

is the required preprocessing phase.

From the category of hierarchical techniques, Contraction Hierarchies [23] is taken,

which is the continuation of Highway Hierarchies [54] and Highway Node Routing [58].

It is currently used by the Open Source Routing Machine1 (OSRM) [38]. By contracting

nodes according to its importance in the networks hierarchy and adding shortcuts to the

graph, its query times are among the fastest.

Customizable Route Planning (CRP) [9] is chosen from the separator based category

because it is one of the most sophisticated and fastest techniques developed recently,

used by the the search engine Bing from Microsoft [44]. Its main advantage is that its

preprocessing phase is split into a metric independent and a customization phase, which

allows it to incorporate weight changes quickly.

2.4 Dijkstra’s Algorithm

One of the first algorithms to solve the path finding problem is Dijkstra’s algorithm [13].

It finds the path with the lowest distance from a source node to all other nodes (single

source shortest path problem) and can also be used to find the shortest path to only one

node by terminating the algorithm after the target has been found (single pair shortest

path problem).

2.4.1 Algorithm

The underlying idea of the algorithm, summarized from [13] in this section, is to always

follow the path with the shortest tentative distance available. When a node is reached

(settled), the used path must be optimal, because every other path has a longer distance

[2, p. 208]. If more than one path with the same distance exists, it depends on the

implementation which one is chosen.

For a given graph G = (V,E) with a set V of vertices (nodes) and a set E of edges

with nonnegative weights, the algorithm works as follows:

1. Create two empty sets named closed set and open set.

2. Select a source node s ∈ V , mark it as active node and add it to the open set.

1http://project-osrm.org/
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3. Assign to every node n ∈ V the tentative distance δ(s, n), which is the shortest

distance between it and the source node s found so far. For the source node s this

distance is 0, every other node’s distance is initialized with ∞.

4. Add all nodes v not in a set yet that are direct neighbors of the active node u to

the open set.

5. Relaxation: For all nodes v in the open set that are direct neighbors of the active

node u, calculate the tentative distance δ(s, v) = δ(s, u) +min(w(u, v)), which is

the current tentative distance δ assigned to u, plus the weight w of the edge from

u to v with the smallest weight. Compare the result with the distance δ′ currently

assigned to v. If the new distance δ is smaller, assign it to v and set the active

node u as predecessor node at v.

6. Move the active node u from the open set to the closed set. The node u is now

settled and the final distance from the source node s to u is known.

7. Expansion: Search the node in the open set that has the shortest tentative distance

assigned and make it the new active node. If this node is the target node t, the

shortest path between s and t has been found and the algorithm can be stopped. If

the open set is empty, all shortest paths from s have been found and the algorithm

can also be stopped. Otherwise go back to step 4.

After the algorithm has finished, the assigned tentative distance δ of a node t is equal

to the shortest distance from the source node s to t. If the distance is ∞, then no path

exists between s and t. With the predecessor nodes that have been assigned at step 5,

the shortest path leading from s to t can be reconstructed.

2.4.2 Runtime

The algorithm loops over n = |V | nodes and at each iteration the node with the shortest

tentative distance has to be found and removed from the open set. Also, new neighboring

nodes get added to the open set which can happen at most n times and the tentative

distance of neighboring nodes may be updated, which can happen at most m = |E|
times. This means an implementation with a simple data structure such as an unsorted

array as open set has n∗n find and remove minimum (removeMin) operations, n inserts

of new neighbors and at most m distance updates (also called decreaseKey in use with

priority queues), which means the runtime is T (n) = n ∗ n+ n+m = O(n2 +m).

2.4.3 Performance Improvements

The theoretical runtime can be improved by using a more sophisticated data structure for

the open set. A priority queue implemented with a binary heap [71], which takes log n

time for each of the 3 operations removeMin, insert and decreaseKey, has a runtime
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of T (n) = n ∗ (log n + log n) + m ∗ log n = O((n + m) log n). This can be further

improved by using a Fibonacci heap [20], which takes log n time for removeMin and

only O(1) amortized time for insert and decreaseKey, yielding a runtime of T (n) =

n ∗ (log n+O(1)) +m ∗O(1) = O(n log n+m).

Chen et al. thoroughly compare the practical performance of Dijkstra’s algorithm

with 10 different priority queue implementations in [6]. The fastest implementation

on every tested graph class uses a sequence heap [53], which is optimized for the

cache/memory hierarchy of modern computers.

2.5 Bidirectional Dijkstra’s Algorithm

A bidirectional search, first suggested by Dantzig [8], solves the single pair shortest

path problem by simultaneously expanding from the source and target node. Used in

combination with Dijkstra’s algorithm, a forward search from the source node and a

backward search from the target node is executed until the wave fronts of both searches

meet. Correct termination procedures for this strategy were discussed in [16, 25, 46, 50].

Compared to the unidirectional approach, faster runtimes can be achieved because fewer

nodes are visited [51].

2.5.1 Algorithm

The bidirectional Dijkstra’s algorithm works under the same principle as the unidirec-

tional version, i.e. to always follow the path with the shortest tentative distance (see

Section 2.4 on page 6). The only differences are the handling of the graph in the backward

search, the alternation between the forward and backward search and the termination

procedure.

For undirected graphs, the backward search works equal to the forward search. For

directed graphs, one has to consider that the path has to lead from the source node to

the target node, not vice versa. This means that at the relaxation step, only neighboring

nodes with outgoing edges to the active node are considered. Also, the reconstructed

path has to be reversed.

A naive method of alternation would be switching between forward and backward

search every other iteration, but better performance can be achieved with a cardinality

comparison between the open sets of both searches [50]. The cardinality of the open set

reflects the local density of the network surrounding the settled nodes. By executing

the search with the smaller open set, less work has to be done because of the sparser

surrounding network and the search fronts may meet earlier.

One possible termination procedure, as described in [50, p. 13], works as follows.

The search terminates and a shortest path is found if the same node v ∈ V is settled

in the forward and backward search. Otherwise, if all nodes have been settled but none

in both searches, no path exists between the source and target node. The shortest path

8
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Figure 2.1: Bidirectional search example. The nodes {s, u, v} are settled in the forward
search and {t, w, v} in the backward search. The node v responsible for termination is

not on the shortest path p = ⟨s, u, w, t⟩ [16, p. 7].

does not necessarily contain the node v, but a settled node ui in the forward search and

a settled node wi in the backward search, with an edge from ui to wi, as illustrated in

Figure 2.1.

Let Sf contain all settled nodes in the forward search and Sb all settled nodes in the

backward search. The shortest path is then defined as in Equation 2.1, where δ denotes

the tentative distance and w the edge weight.

distance(s, t) = min(δ(s, ui) + w(ui, wj) + δ(wj , t)) with ui ∈ Sf , wj ∈ Sb. (2.1)

No shorter path including a node i /∈ {Sf ∪ Sb} not settled yet exists, because by the

definition of Dijkstra’s algorithm, the distance to i must be greater than the distance to

v in both searches, which means δ(s, i) + δ(i, t) ≥ δ(s, v) + δ(v, t).

Goldberg [25] proposed a stronger termination procedure. Let vf and vb be the

node with the shortest tentative distance in the open set of the forward and backward

search, respectively. By maintaining the length µ of the shortest path discovered so far

(corresponding to Equation 2.1), the search can be terminated if δ(s, vf ) + δ(vb, t) ≥ µ.

No shorter path can exist for the same reason as given above.

2.6 A*

The A* algorithm [31] (also called ”A star”), first described by Peter Hart, Nils Nilsson

and Bertram Raphael, is from the category of goal directed techniques and extends

Dijkstra’s algorithm with a heuristic to find the shortest path between a start and a

target node (single pair shortest path problem). It is summarized from [31] in the

following section.

2.6.1 Heuristic

The algorithm works after the same principle as Dijkstra’s algorithm, which is to always

follow the path with the shortest distance. But instead of only considering the tentative

distance g(x) from the source node s to the current intermediate node x, it uses the

total distance f(x) = g(x) + h(x), which also includes the remaining distance h(x) to

the target node t. This remaining distance h(x) is estimated with a heuristic function.

9



Depending on the properties of the heuristic, different behaviors can be achieved:

• If h(x) always returns 0 (equal to not using any heuristic), A* behaves like Dijk-

stra’s algorithm.

• If h(x) returns an admissible heuristic, A* can have a lower runtime than Dijkstra’s

algorithm. An admissible heuristic means that the distance to the target node is

never overestimated, which is required for the result to be optimal.

• If h(x) additionally satisfies the condition h(x) ≤ distance(x, y) + h(y) for every

node in the graph, it is also monotone (or consistent) and can further improve

the runtime, because nodes only have to be visited once. (A monotone admissible

heuristic is also called dual feasible [32].)

• If optimality can be neglected, the runtime can be additionally lowered in certain

cases by multiplying h(x) with an ϵ > 1.

The runtime depends on the quality of the heuristic. If the estimates do not correlate with

the actual distances, the benefits over Dijkstra’s algorithm diminish. Possible heuristics

for a road network are, for example, the Euclidean distance or the Manhattan distance2.

2.6.2 Algorithm

In the following description, the open set utilizes a priority queue, with the total distance

f as priority. The used heuristic must be monotone and admissible. For a given graph

G = (V,E) with a set V of vertices (nodes) and a set E of edges with nonnegative

weights, the algorithm works as follows:

1. Create two empty sets named closed set and open set.

2. Select a source node s ∈ V , mark it as active node and add it to the open set.

3. Assign to every node n ∈ V the tentative distance δ(s, n), which is the shortest

distance between it and the source node s found so far. For the source node s this

distance is 0, every other node’s distance is initialized with ∞.

4. Relaxation: For all nodes v not in the closed set yet that are direct neighbors of

the active node u:

• Calculate the tentative distance g(v) = g(u) + min(w(u, v)), which is the

current tentative distance g assigned to u, plus the weight w of the edge from

u to v with the smallest weight.

2Also called City-block metric, as defined in [12, p. 204].
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• Compare the result with the distance g′ currently assigned to v. If the new

distance g is greater, skip this node and continue with the next neighboring

node. Otherwise, assign it to v and set the active node u as predecessor node

at v.

• Calculate the total distance f(v) = g(v)+ ϵ∗h(v), where g(v) is the tentative
distance just calculated, h(v) is the heuristic which estimates the distance

from the current neighboring node v to the target node t and ϵ is a factor

which can improve the runtime if ϵ > 1 at the cost of optimality.

• Replace the stored value of f(v) with the new one.

• If the neighboring node v is not in the open set yet, insert it. Otherwise,

update the position of v in the open set according to the new value of f(v).

5. Move the active node u from the open set to the closed set. The node u is now

settled and the final distance from the source node s to u is known.

6. Expansion: Get the node in the open set that has the shortest total distance f

assigned and make it the new active node. If this node is the target node t, the

shortest path between s and t has been found and the algorithm can be stopped.

If the open set is empty, no path between s and t exists and the algorithm can also

be stopped. Otherwise go back to step 4.

After the target node t has been found and the algorithm has finished, the assigned

tentative distance g(t) is the shortest distance between the source node s and t, if an

admissible heuristic and ϵ = 1 was used. Otherwise, g(t) contains the length of the chosen

path, which may not be the shortest available. With the predecessor nodes assigned in

step 4, the chosen path leading from s to t can be reconstructed.

2.6.3 Runtime

The runtime of the A* algorithm depends on the quality of the heuristic, the value of ϵ,

the runtime of the data structures used for the implementation and the data set. This

means that the runtime can vary from polynomial to exponential. A detailed discussion

can be found in [49].

2.7 Bidirectional A*

A bidirectional A* algorithm is based on the same ideas and assumptions as given for

the bidirectional Dijkstra’s algorithm in Section 2.5 on page 8. By executing the search

in both directions from the start and target node, fewer nodes will be visited in most

cases [51]. The difficult part of the bidirectional version is the termination. Even if a

monotone and admissible heuristic is used and the forward and backward search areas

11



overlap, it is not guaranteed that the shortest path has been found. Different solutions

for this problem have been found ([32, 51]), with the one from Ikeda et al. [32] working

as follows:

To make the heuristics consistent between forward and backward search, they are

combined, as shown in Equation 2.5. πf is the distance estimate function in the forward

and πb in the backward search.

hf (v) =
1
2(πf (v)− πb(v))

hb(v) =
1
2(πb(v)− πf (v)) = −hf (v)

(2.2)

Goldberg et al. proposed the following modification in [30] to make the new heuristic

more intuitive:

hf (v) =
1
2(πf (v)− πb(v)) +

πb(t)
2 t ... target vertex

hb(v) =
1
2(πb(v)− πf (v)) +

πf (s)
2 s ... source vertex

(2.3)

Using the new heuristic, a possible termination criterion for the bidirectional A* al-

gorithm, also proposed by Goldberg et al. in [30], is: Let vf and vb be the node with the

shortest distance δ(v) = g(v)+h(v) in the open set of the forward and backward search,

respectively. By maintaining the length µ of the shortest path discovered so far (analog-

ously to Section 2.5 on page 8), the search can be terminated if δf (vf )+δb(vb) ≥ µ+hb(t).

2.8 A*, Landmarks, Triangle Inequality (ALT)

The ALT (A*, Landmarks, Triangle Inequality) algorithm is an extended version of the

A* algorithm, proposed by Andrew Goldberg and Chris Harrelson [27]. By utilizing a

more sophisticated calculation method for the heuristic, based on the triangle inequality

theorem and so-called landmarks, it achieves better runtimes for queries on road networks

than a typical search using Euclidean distances. The drawback of this technique is that

it requires a preprocessing phase. A description of the algorithm, summarized from [26],

is given below.

2.8.1 Triangle Inequality

The triangle inequality states that the sum of the length of any two sides of a triangle is

always greater or equal to the length of the remaining one. For vectors in the Euclidean

space this relation is defined as shown in Equation 2.4 [1, p. 11].

|v1| − |v2| ≤ |v1 + v2| ≤ |v1|+ |v2| (2.4)

Another consequence of the triangle inequality is that the difference of any two sides is

always smaller or equal to the remaining one. This means an upper and a lower bound
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for the length of a side of a triangle can always be calculated from the other two sides.

s

t

l

Figure 2.2: Triangle inequality in path finding example. The nodes s and t are the
start and end of a path. If the distances from and to a third node l are known, the

length of the path can be estimated.

Finding the shortest path with the A* algorithm requires an estimate of the remaining

distance to the target (see Section 2.6 on page 9). Consider the simple example shown in

Figure 2.2. The distance from node s to t can be estimated with the triangle inequality,

if the distances from and to the node l are known (Equation 2.5).

d(s, l) ≤ d(s, t) + d(t, l) ⇔ d(s, t) ≥ d(s, l)− d(t, l)

d(l, t) ≤ d(l, s) + d(s, t) ⇔ d(s, t) ≥ d(l, t)− d(l, s)
(2.5)

These estimates are admissible and monotone, which means if they are used as heuristic

in the A* algorithm, the result will be optimal. Since only one value is required, the

larger one should be taken, because it gives a tighter lower bound.

low

high

s t
y

x

Figure 2.3: Deviation of the estimated lower bound from the real distance d(s, t)
depending on the relative position of l.

The quality of the bounds depends strongly on the position of the node l relative to

s and t. As can be seen in Figure 2.3, the best results are achieved if l is located in front

of s or behind t.

The triangle inequality also works for nodes not directly connected with each other,

as long as the used distances from and to l are from the shortest paths.
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2.8.2 Landmarks

Landmarks are a set of nodes from the network which are used for the estimation of the

lower bounds with the triangle inequality. They are selected in a preprocessing phase,

because the shortest paths between every node and landmark have to be calculated. As

described above, the positions of the landmarks are responsible for the quality of the

lower bounds and the resulting performance of search queries. Several different landmark

selection methods have been proposed and compared in [17, 21, 27, 29], but no optimal

method exists because of the inherent trade off between the time required for selection

and the resulting query performance. A few of them are described in the following.

• Random [27]: The fastest and simplest method is the selection of nodes at random.

While this method can give good results, its overall performance is poor compared

to more sophisticated ones.

• Partition-Corners [17]: The network is divided into k cells and the four corner-

most nodes of each cell are selected as landmarks. This method is fast and the

authors claim that its performance can compete with advanced techniques.

• Farthest [27]: Start with a set containing a random node. Search the node that is

the farthest away from the nodes in the set and add it to the set. Repeat this until

the desired amount of nodes has been found. While this should give landmarks

with a better distribution than the random method, it has been shown in [29] that

its performance can be worse at certain networks, because it can favour nodes from

sparse over dense regions.

• Planar [27]: Start with a node c from the center of the network. Divide the

network into pie-slices containing about the same amount of nodes around c. Now

find the node that is the farthest from c in every slice. If such a node is close to

the border of two slices, ignore the neighboring nodes in the other slice to avoid

having landmarks to close to each other.

This method requires more time than Farthest but also has a consistently better

performance.

• Avoid [29]: Consider an existing set S of landmarks. Start with a random node

r. Calculate the shortest path tree Tr to all other nodes v. Now calculate the

weight for every node v, which is defined as the difference between the distance

d(r, v) and the estimated lower bound for the same node pair and the given set S

of landmarks. In the next step, calculate the size of every node v which is the sum

of the weights of all nodes in Tv, the subtree from Tr rooted at v. If Tv contains

a landmark from S, set the size to 0. In the final step, take the node with the

largest size and traverse its subtree along the children with the largest size until a

leaf node is reached. Add the leaf node to the set of landmarks.
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The Avoid method improves the quality of an existing set of landmarks by adding

additional ones from regions that are not well covered. Results can be improved

by starting with nodes that are far from existing landmarks, but this adds to the

processing time. Its performance is considerably better than the other methods

mentioned with slightly more computing time required. The maxCover method

[29] is an extended version of Avoid.

The number of landmarks influences the preprocessing time, query performance and

storage requirements. According to Goldberg and Harrelson [27, 29], just one landmark

can already deliver better performance than other methods. Performance gains start to

diminish approximately between 10 and 20 landmarks, depending on the queried nodes,

network topology and quality of the landmarks.

2.8.3 Algorithm

The ALT algorithm works exactly like the A* algorithm described in Section 2.6, using

the triangle inequality with landmarks as heuristic. The landmarks and their distances

from and to every node in the graph have to be calculated in a preprocessing phase. At

the relaxation step during a query, the maximum of all lower bounds over all landmarks

is used as heuristic. Not the whole set of landmarks is required for a query. Instead, a

subset of the landmarks with the highest lower bounds for the path between the start

and target node can be used. This subset can be updated with better landmarks during

execution.

The algorithm can also be executed bidirectional by using the bidirectional version

of A* (Section 2.7 on page 11). If the subset of landmarks is changed during a bidirec-

tional search, the distances in the priority queue have to be recalculated. Otherwise the

termination may not be correct.

2.9 Contraction Hierarchies (CH)

The Contraction Hierarchies algorithm, proposed by Geisberger et al. [23], is the con-

tinuation of Highway Hierarchies [54] and Highway Node Routing [58] to solve the single

pair shortest path problem. As its name suggests, it is from the category of hierarchical

techniques. The basic idea behind Contraction Hierarchies is, to reduce the runtime of

queries by reducing the number of nodes that have to be visited to find the shortest path.

This is achieved by the application of two concepts, Hierarchies and Shortcuts, during a

preprocessing phase. A bidirectional version of Dijkstra’s algorithm is used for shortest

path queries. The following description of the algorithm and concepts is summarized

from [22].
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2.9.1 Hierarchies

The concept of Hierarchies is based on the assumption that not every edge in a graph

has the same importance at certain stages during the pathfinding process. Applied to

road networks this means that not every road is seen as equally important, as there are

many different types of roads, e.g. residential area roads, primary roads and arterial

roads (freeways3). When asking for the shortest route from one town to another, one

may consider residential roads close to the start and target node, but will opt for free-

ways to cover the path between towns, assuming they are the shortest or fastest path.

This approach separates the network in different layers or hierarchy levels. The lowest

hierarchy level may consider only residential area roads and the highest only freeways.

The search for the shortest path then starts at a low hierarchy level working upwards.

Because only nodes in the current or higher hierarchy levels are considered, the search

space is reduced.

The Contraction Hierarchies algorithm is an extreme case of the Hierarchies concept,

because there are not just a few hierarchy levels, but every node has its own.

2.9.2 Shortcuts

In the concept of Shortcuts, the graph is enriched with additional edges to reduce the

number of nodes that have to be visited during a search. Consider three nodes, u, v, w

with two edges (u, v) and (v, w). By adding a new edge (u,w), a shortcut from node u

to w is introduced. The edge weight c of the new edge is set to the sum of the other two

edges: c(u,w) = c(u, v) + c(v, w). The drawback of this concept is, that the graph gets

denser with every additional edge, which increases the runtime of search queries again.

This means that only good shortcuts (i.e. those that improve query runtimes the most)

and as few as possible should be added, which can be achieved by processing the nodes

in a beneficial order.

In Contraction Hierarchies, the process of adding shortcuts is called node contraction

and works as follows. For a node v, consider all paths pij = ⟨ui, v, wj⟩ from a neighboring

node ui through v to a neighboring node wj . For every path pij that is the shortest path

in the graph from ui to wj , a shortcut (new edge) between ui and wj is created. The

weight of the new edge is set to the total weight of the path pij . If there is already an

edge between ui and wj , it is sufficient to update the edge weight only. After all paths pij

have been processed, the node v and its incoming and outgoing edges are temporarily

removed from the graph, before the next node is processed. The node contraction is

repeated for all nodes in the graph in ascending order of their hierarchy level. The final

graph used for queries consists of the initial graph and all created shortcuts.

3motorway, Autobahn
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2.9.3 Node Ordering

The order in which nodes are contracted influences the size and quality of the resulting

graph. By observing certain properties (so-called priority terms), the nodes can be

arranged in a beneficial order for processing. The priority terms, order and hierarchy

level of nodes is determined during preprocessing.

Initially, a minimum priority queue holds all nodes, with them being removed one by

one for node contraction. The priority of a node in the queue is a linear combination of

one or more terms (e.g. edge difference, number of neighbors contracted, Voronoi regions,

cost of contraction)4. The main term is the edge difference: the number of shortcuts

created at the node’s hypothetical contraction minus the number of edges incident to this

node in the current graph. The edge difference ensures that nodes with many shortest

paths going through them are removed later, giving them a higher hierarchy level.

The priority is calculated once for all nodes at the initialization of the minimum

priority queue. But after a node contraction the priority terms of the nodes remaining

in the priority queue can change and have to be recalculated accordingly.

2.9.4 Preprocessing Algorithm

During preprocessing, the hierarchy levels of nodes are set and shortcuts are added to

the graph, both of which will be used to improve the runtime of shortest path queries.

For a given graph G = (V,E) with a set V of vertices (nodes) and a set E of edges with

nonnegative weights, preprocessing works as follows:

1. For all nodes n ∈ V , calculate the initial priority.

2. Create a minimum priority queue named Q and fill it with all nodes n ∈ V .

3. Remove the top node v from Q, set its hierarchy level to the number of nodes

removed so far and mark it as active node.

4. Node contraction: For the active node v, consider all neighboring nodes ui ∈ Q

with outgoing edges to v and all neighboring nodes wj ∈ Q with incoming edges

from v:

• Local search for witness paths: For every pair of nodes (ui, wj) with ui ̸= wj ,

initiate a search for the shortest path p′ij from ui to wj with all intermediate

nodes from Q only.

• If no path p′ij is found or if it is longer than the path pij = ⟨ui, v, wj⟩, create
a shortcut by adding a new edge from ui to wj with the edge weight set to

the total weight of pij .

5. Update the priority of all nodes in Q and go back to step 3, until Q is empty.

4See [22, Chapter 3.2] for more information on priority terms.
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2.9.5 Preprocessing Improvements

Searching for shortest paths, which is part of step 1, 4 and 5 of the preprocessing al-

gorithm, can be very time consuming. Instead of processing every pair of nodes (ui, wj)

separately, a Dijkstra’s search can be started from ui until all wj nodes are settled

or the tentative distance of the last node settled is larger than the longest path from

maxj(⟨ui, v, wj⟩).
In step 5, the recomputation of the priorities, the following optimizations can be

applied, with a periodic full update after every t contractions:

• neighbors only: Recompute the priorities for neighbors of the contracted node only.

• Lazy updates: After a node contraction, only recompute the priority for the top

node of the queue. Repeat this until the top node stays the same.

The computation of the edge difference also requires a local search for shortest paths,

but in contrast to step 4, no shortcuts are added to the graph. This means that search

termination criterions can be less exact without adding a performance penalty during

queries. Two possible criterions are:

• limit number of settled nodes

• limit number of maximum edges per shortest path (hop limit)

2.9.6 Query Algorithm

Queries are based on a bidirectional Dijkstra’s algorithm (see Section 2.5 on page 8)

which is executed on two versions of the resulting graph of the preprocessing phase,

including hierarchy levels and shortcuts. For the forward search the upward graph G↑ is

used and for the backward search the downward graph G↓, as defined in Equation 2.6.

G↑ = (V,E↑) with E↑ = (u, v) ∈ E|u < v)

G↓ = (V,E↓) with E↓ = (u, v) ∈ E|u > v)
(2.6)

This means that in the relaxation step of the forward and backward search, only edges

leading to or coming from neighboring nodes with a higher hierarchy level than the active

node are processed, respectively.

Because of the edge restrictions in the upward and downward graph, the search can

not terminate as soon as the first node has been settled in both searches. Instead, by

maintaining the length of the shortest path discovered so far, the search in one direction

can be stopped at the earliest if the shortest tentative distance in the open set is equal

or larger. Let Sf contain all settled nodes in the forward search and Sb all settled nodes

in the backward search. The shortest path is then defined as in Equation 2.7.

distance(s, t) = min(δ(s, v) + δ(v, t)) with v ∈ {Sf ∩ Sb}. (2.7)
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2.9.7 Query Improvements

The search space of a query can be reduced by a search pruning technique called stall-

on-demand. Because not every edge is taken into consideration during relaxation, nodes

may be settled with a non-optimal tentative distance. If the active node v about to be

settled can be reached with a shorter tentative distance δ′ through an incoming edge

from a neighboring node u that was not considered because of the upward/downward

graph restrictions, the active node gets stalled with stalling distance δ′. Stalled nodes

are excluded from relaxation, because their tentative distance is not optimal. Stalling

can be propagated (e.g. with a breadth-first search) to subsequent nodes wi if the path

over u and v to wi is shorter than the current tentative distance of wi. The propagation

stops at nodes that are not being stalled. A stalled node gets unstalled if a shorter path

is found later on.
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Figure 2.4: Stall-on-demand example. Numbers denote edge weights.

The example illustrated in Figure 2.4 works as follows. When node u is about to

be settled, it gets stalled because its tentative distance δ is 6, but it could be reached

over w with a distance δ′ of 5. By propagation, node v with δ(v) = 9 and node y with

δ(y) = 13 get stalled too, because they could be reached over w and u with δ′(v) = 8

and δ′(y) = 11. Node x is not stalled, because its tentative distance δ(x) = 7, which is

smaller than δ′(x) = 12. Node y is unstalled when node x gets settled, because the new

value for δ(y) is 10, which is smaller than the previous value of 13.

2.9.8 Path Reconstruction

The path returned from a successful query may contain shortcuts. By storing the node

v that initiated the creation of the shortcut (u,w) during node contraction in the data

structure of the shortcut, the original edges can be extracted recursively.

2.10 Customizable Route Planning (CRP)

The CRP algorithm is based on the graph separators approach (graph partitioning) in

combination with several other techniques and optimizations. It is currently used by

the search engine Bing from Microsoft [44] and was proposed by Delling et al. [9, 10].

By dividing the preprocessing into a metric-independent and a customization phase,
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the algorithm can process new metrics (edge weights/costs) faster, which is important

for e.g. real-time traffic updates. The primary steps of the preprocessing stage can be

summarized as:

• simplifying the graph for faster processing

• breaking up the graph into fragments by finding small separators/cuts

• partitioning the graph by combining the fragments into cells of desired size

• creating a multilevel overlay from the partitions

• customization by applying the metrics and calculating the shortest path cliques of

every cell

At the query stage, a bidirectional Dijkstra’s search is run on the multilevel overlay.

The graph partitioning and queries are not limited to certain algorithms (Delling et al.

compare several different methods in [10]). A more detailed overview of the algorithm,

summarized from [10], is given in the following.

2.10.1 Graph Partitioning

The use of partitioned graphs in pathfinding is based on the divide and conquer paradigm.

It can have positive performance effects not only on queries, but also on required up-

dates from changes to the network topology. The drawback is the time required for

partitioning.

Figure 2.5: Graph partitioning: the original graph (left) is partitioned (center). The
cells from the partitioned graph are divided again (right). Boundary nodes and edges

are shown in blue.

Planar graphs can be divided with small separators [64]. Even though road networks

are not strictly planar (because of e.g. bridges, tunnels, over-/underpasses), it has

been shown that almost planar graphs also have small separators [37]. This means

that partitioning leads to only a small amount of boundary nodes. A partition P =

{C1, ..., Ck} of a graph G = (V,E) with a set V of vertices (nodes) and a set E of edges
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contains k cells (sets) with each v ∈ V contained in exactly one cell Ci. Nodes with

edges leading from one cell to another are boundary nodes and the edges are boundary

(or cut) edges.

A multilevel partition is created by partitioning the cells from a partition again,

which creates another partition containing all newly created cells (see Figure 2.5). Each

partition is assigned to a distinct level in descending order, i.e. the last one created

(which will be the one with the most cells) is assigned to level 1. The original graph is

considered as base of a multilevel partition, placed at level 0, with every node having its

own cell.

2.10.2 Overlay Graph

Figure 2.6: Overlay graph: the overlay graphs for the partitions from Figure 2.5 are
created. Only boundary nodes and edges are inherited. Shortcuts (drawn in purple)
between boundary nodes are added. The cell boundaries (shown in dashes) are not

part of the overlay graph.

An overlay graph H is a contracted version of the original graph G. An overlay of

a partitioned graph contains all boundary nodes and boundary edges of all cells (see

Figure 2.6). To preserve the shortest paths between boundary nodes of a cell, a clique is

build for every cell Ci of the partition P : Between every pair of boundary nodes (v, w)

of a given cell Ci, an edge (shortcut) is added to H with the edge weight set to the total

cost of the shortest path (restricted to Ci) between them. The cliques can be created

with any method suitable to find the shortest path between the boundary nodes, which

could be e.g. Dijkstra’s or the Floyd-Warshall algorithm.

Because the overlay graph has fewer nodes than the original graph, shortest path

queries can be answered faster between boundary nodes. Queries between any node s

and t from G can be made by creating a search graph, which is the union of H and the

cells containing s and t.

A multilevel overlay graph can be created from a multilevel partition. For every level

i an overlay graph Hi is created from the partition Pi. By doing this in a bottom-up

approach, withG on the lowest level, the cliques forHi can be created fromHi−1, which is
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faster than using G for every level. Queries in a multilevel overlay are more complicated.

Nodes and edges are either scanned at the highest level where the corresponding cell

does not contain s or t or otherwise in G at level 0. Level transitions can only happen

at overlapping cell boundaries.

2.10.3 Preprocessing

The Customizable Route Planning algorithm splits preprocessing in a metric-

independent phase, where a multilevel partition and multilevel overlay graph of the

network are created, and a customization phase, where the metrics (edge weights/costs)

are applied and the cliques/shortcuts of the cells in the overlays are calculated.

Because a good partition with as few separators (boundary edges between cells)

as possible is crucial for the performance of queries, Delling et al. created PUNCH

[11], which is a graph partitioning algorithm adjusted for road networks. A detailed

description of PUNCH is given at the end of this section.

To enable multilevel queries a unique sequential identifier is assigned to every cell

during partitioning and a list with the corresponding parent cell on each level is created

for every cell on level 1. Also, with every node in G the identifier of the level 1 cell it

belongs to is stored.

To speed up the customization phase, several acceleration techniques can be applied

(for a complete description refer to [10, Chapter 5.2]):

• Prepared data structures: During partitioning, data structures required at custom-

ization are prepared.

• Improving locality : A temporary copy of the subgraph of a cell is created to increase

locality during clique creation.

• Pruning the search graph: Internal boundary nodes of the underlying cells are

contracted prior to clique creation.

• Alternative algorithms: The Bellman-Ford algorithm [4] instead of Dijkstra’s al-

gorithm is used for clique creation because it has better locality.

• Parallelism: Extended CPU instruction sets and multiple cores are used.

• Phantom levels: Additional partition levels are created which decreases the size of

subgraphs and therefore customization time. They are not kept for queries because

of the increased space consumption.

Another possibility that was not mentioned in [10] is the use of the Floyd-Warshall

algorithm [19, 33, 69] in combination with a graphics card (GPU). The Floyd-Warshall

algorithm conforms to the dynamic programming paradigm by breaking down the prob-

lem of shortest paths into simpler subproblems to solve it. Simpler subproblems can
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have the advantage of requiring less memory or being solved in parallel. This can re-

duce the runtime by adapting the implementation to better utilize memory caches or

multiple processing units. Venkataraman et al. [66] propose a blocked version of the

Floyd-Warshall algorithm based on blocked matrix multiplication to improve the per-

formance by better processor (CPU) cache utilization. In [42], this blocked version is

adapted for a hybrid CPU-GPU system which takes advantage of the high number of

processing units on a GPU and using the CPU to hide memory latency for large graphs

exceeding the available GPU memory.

2.10.4 Query Algorithm

Queries use a bidirectional Dijkstra’s algorithm (see Section 2.5 on page 8) which is

executed on the original graph and the overlay graphs. A query for the nodes s and t

starts at the original graph G in the forward and backward search. During the search,

when a node v is made the active node, its query level lst(v) has to be determined. This

is the highest level where v is neither in the same cell as s nor t. During relaxation, only

edges from v in the overlay graph at the query level are scanned (i.e. boundary edges

and shortcuts). By calculating ls(v) and lt(v), which is the highest level where v is not

in the same cell as s or t respectively, lst(v) can be computed with min(ls(v), lt(v)). If v

is in the same cell as s or t at level 1, the query level is 0 and the original graph is used.

The search terminates under the same conditions as the normal bidirectional Dijkstra’s

algorithm.

2.10.5 Path Reconstruction

The shortest path that has been found between a pair of nodes may contain shortcuts

from the cells (cliques) of the overlay graph. Several methods can be applied to recon-

struct the path in the original graph:

• During the creation of the cliques in the overlay graph, the used nodes from the

underlying level are stored with the shortcuts. The original edges can then be

extracted recursively. This is the fastest method in the query phase but also comes

with a considerable increase in memory usage.

• Instead of storing any information about the underlying nodes, a shortest path

search is executed recursively between the nodes from shortcuts on the underlying

levels. This has to be done after each query for all shortcuts in the shortest path.

This method does not require additional space but is the slowest.

• The above method can be sped up by storing a flag with every edge indicating if

it is used in a shortcut during clique creation. Unused edges can then be ignored

at path reconstruction.
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• Another possibility is a cache holding reconstructed paths with a least-recently

used (LRU) update policy to limit the cache size.

2.11 Partitioning Using Natural Cut Heuristics (PUNCH)

While the concept of graph partitioning is straightforward, finding good partitions is

not. Because this is a fundamental problem, various algorithms and solutions have been

created (see [18, 68] for overviews). However, not every solution meets the requirements

of different applications. Pathfinding in overlay graphs requires balanced cells with as few

boundary edges as possible. For the partitioning in CRP, Delling et al. created PUNCH

[11], which is a graph partitioning algorithm adjusted for road networks. It finds better

partitions than general-purpose solutions such as METIS [35]. A description of how

PUNCH works, summarized from [11], is given in the following.

2.11.1 Overview

Compared to other partitioning algorithms, PUNCH does not focus on balancing the

size of the cells but on minimizing the number of cut edges (boundary edges). This

is done by finding so called natural cuts, which can be e.g. rivers and mountains but

also less natural things such as borders, railways or roads. These cuts separate areas of

dense road networks which are connected by few boundary edges such as bridges, tunnels,

mountain passes or border crossings. The algorithm is separated into two phases, filtering

and assembly. During filtering, the size of the graph is reduced while preserving natural

cuts. The graph is then split into fragments by solving the maximum flow minimum cut

problem. Afterwards, the fragments are combined in the assembly phase to create cells

of the desired size with as few boundary edges as possible.

2.11.2 Preliminaries

The input is an undirected graph G = (V,E). Every vertex v ∈ V has a size s(v) and

every edge e ∈ E has a weight w(e). Initially, every vertex has a size of 1 and every

edge a weight of 2. If the input is created from a directed graph all directed edges are

converted to undirected edges and initialized with a weight of 1. A vertex u that is

directly connected with a vertex v can be contracted into a new vertex w with its size

set to s(w) = s(u)+s(v). The vertices u and v and the edges between them are removed

from the graph, while the new vertex w is added. All edges incident to u or v from the

remaining graph are changed to be incident to w instead. Possible parallel edges created

during this process (multiple edges between w and the same neighbor n) are merged

into one edge and the edge weights are combined. Contracting a set of vertices can be

achieved by repeatedly applying this process.
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2.11.3 Filtering

The main goal of the filtering phase is the reduction of the size (number of vertices and

edges) of the graph (which reduces the running time significantly) and the preparation

of fragments as input for the assembly phase. Fragments are small parts of the graph

separated by natural cuts.

The size of the graph is reduced with the following steps. Every consecutive step

takes the modified graph from the previous step as input:

• Finding all bridges: By executing a depth-first search (DFS), all articulation points

and bridges can be found (see [62]). A bridge is an edge that disconnects the graph

if removed (the same applies to an articulation point). In the following a subtree

is a component of the graph that is only connected via a bridge with the rest of

the graph.

• Contracting small subtrees: The previously found DFS tree is rotated to be rooted

in the largest subtree. All other subtrees are then checked and contracted if their

size (number of vertices) is below a given threshold.

• Contracting paths: Paths consist of neighboring nodes with degree 2 which are

contracted into a single node.

• Finding and contracting 2-edge-connected components: The contracted graph is

checked for 2-edge-connected components (see [52]), which are connected with ex-

actly 2 edges with the remaining graph. All components with their size below a

given threshold are contracted.

v

Figure 2.7: Finding a natural cut. A random vertex v is chosen as the start for a
breadth-first search (BFS) to create a subgraph T with a given maximum size. The set
of neighboring vertices (shown as red line) of T in V \ T are called the ring of v. The
core of v (the green area) consists of all vertices found by the BFS while the subgraph

was smaller than a given threshold. The core and the ring are contracted and the
minimum cut between them is calculated (dashed line).

The last step of the filtering phase is the detection of natural cuts and preparation

of fragments. Natural cuts are found by computing the minimum cut (PUNCH uses the

Push-Relabel algorithm from Goldberg et al. [28]) between a small set of vertices and

works as illustrated in Figure 2.7. The cut edges from the minimum cut are stored and
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the procedure is repeated for every vertex that does not belong to at least one core yet.

After all minimum cuts are found, all cut edges C are removed from the graph. Every

remaining connected component GC = (V,E \ C) is contracted and used as a fragment

in the assembly phase. The fragments are connected with each other with the cut edges

in C. Parallel edges are combined into one (see Figure 2.8).

Figure 2.8: Creating a fragment graph. The original graph (encircled in red) is split
into components by natural cuts (dashed lines). The components are contracted into
fragments (black dots). The fragments are connected with each other by the combined

cut edges (blue lines).

2.11.4 Assembly

In the assembly phase the final partition is created by combining and contracting the

fragments created during filtering. The process is split in a greedy algorithm and a local

search. In the following, fragments are called vertices and a vertex is synonymous with

a cell of the partition. The contraction rules used above still apply.

During the greedy algorithm an initial partition is created. To find a good solution

vertices are not contracted at random. Instead, a score (Equation 2.8) is assigned to

every edge in the graph, where w(u, v) is the edge weight and r is a biased random

number between 0 and 1 (see [11, Chapter 4.1] for a full description).

score(u, v) = r ∗

(
w(u, v)√

s(u)
+

w(u, v)√
s(v)

)
(2.8)

The edge with the highest score is then taken and the two vertices u and v associated

with it are contracted. After contraction, the score has to be recomputed for all edges

incident to the newly created vertex. This procedure is repeated until no further vertices

can be combined without violating the size constrain set for a cell.

The initial partition G is then improved by local search. Two connected vertices

(r, s) are randomly chosen and a temporary graph G′ consisting of r, s and all their
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Figure 2.9: Temporary graph of local search. Left: a temporary graph is created with
two randomly chosen, connected vertices (orange, blue) and their neighbors (green),
with the former uncontracted into their fragments (dashed lines). The surrounding
graph that is not part of the temporary graph is shown in gray. Right: a possible

outcome after the greedy algorithm has been applied. Modified vertices are shown in
yellow.

direct neighbors is created. Now, the vertices r and s are uncontracted, that is the

initial fragments and edges from the start of the assembly phase are restored in G′

(Figure 2.9). Then the greedy algorithm is applied on the temporary graph. When the

algorithm stops, the solution quality (sum of the weights of the remaining edges) of G′

is compared with the quality of the initial G′. If the quality has improved, the changes

to vertices and edges in G′ are transfered to G. A counter is maintained for every edge

in G, which is increased for the edge incident to the chosen r and s every time the

described procedure does not yield a better solution. When every counter has reached a

given threshold, the local search is stopped and the final partition is finished.
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Chapter 3

Framework and Dataset

In this chapter, the framework and the dataset used for the experimental analysis and

performance comparison is presented.

3.1 Framework

A framework was created to provide the required functionality for the experimental

evaluation. This includes loading, creating and manipulating networks, executing tests

and recording the readings for evaluation. The framework also has various methods

to process, output and visualize the results and provides common data structures and

methods to the evaluated algorithms. For a fair comparison of the various pathfinding

algorithms, they are all implemented in the framework. This means they are utilizing

the same data structures and methods (e.g. the graph data structure and priority queue

implementation) and the measurements can be taken at equivalent locations. In the

following sections the design of important components in the framework are described

and the configurations of the individual algorithms are given. It is assumed that the

reader is familiar with the various concepts and algorithms as the following sections are

only meant to give an overview of important implementation details for replicability and

reproducibility.

3.1.1 Programming Language and Libraries

The whole framework is written in C++ (version 11) and uses no external libraries or

code except for LodePNG [65], a lightweight PNG image encoder, which is used to write

images to disk as PNG files.

3.1.2 Graph Data Structure

One of the most important parts is the data structure which stores the nodes and edges

of a network. The requirements for it are fast access to the elements as well as the
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possibility to dynamically add and remove nodes and edges at a low cost because some

algorithms such as CH have to modify the graph during preprocessing. For this frame-

work a modified version of the dynamic graph structure proposed by Mali et al. in

[39] is used because it does satisfy the requirements and is actually designed for large

dynamic transportation networks. Its core element is a Packed Memory Array (PMA)

[5] in which the content is kept in a contiguous array intermixed with empty cells which

are uniformly distributed. This allows for fast insertions at any position which is, for

example, required to keep the edges of nodes close to each other for fast access. The

PMA is self-managed and rebalances (i.e. redistributes the elements) or resizes itself if

the specified upper and lower density bounds are reached. To confine these operations,

the PMA uses a virtual binary tree that partitions the contiguous array and only those

segments that are actually out of bounds are rebalanced.

Figure 3.1: Illustration of the graph data structure.

The structure from Mali et al. uses three PMAs, one to store the nodes and two to

store the incoming and outgoing edges, which allows for maximum flexibility in regard to

insertion, deletion and order. Because not every feature is required for this framework,

the following modified version is used. The PMA is replaced by a simple array for the

nodes since the order of them does not matter and insertions just happen at the first free

cell. Only one PMA is used for the edges with a flag indicating if an edge is incoming,

outgoing or both. To associate nodes with edges and vice versa a delimiter is introduced

which is placed in the PMA between the edges of different nodes. An index-pointer

is assigned to every node and delimiter to access each other (see Figure 3.1). To keep

the index-pointers synchronized, a callback function is linked to the delimiters which

gets called when they are moved. The lower and upper density bounds used for the

PMA, which have been determined after some tests, are [0.3, 0.7] for the whole array

and [0.01, 1] for the leaves (smallest segments).

Node and Edge Data

The minimum data that is required to be stored with every node is the index-pointer to

its delimiter in the edge array. The coordinates have to be included if the graph is going
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to be visualized. They are also needed for the A* algorithm, which requires them for its

heuristic, and for ALT, which requires them to partition the graph during preprocessing.

For CH, a second index-pointer has to be stored to separate edges from the upward and

downward graph and CRP requires the identifier of the cell a node belongs to.

With every edge its target node identifier, weight (e.g. geometric distance, travel

time) and flags indicating its direction are stored. An additional identifier is required

to match the corresponding edge entries between two nodes for advanced graph manip-

ulations. For CH, a flag indicating if an edge is a shortcut and the identifier of the

shortcut’s intermediate node have to be stored.

3.1.3 Priority Queue

Priority queues (PQ) play an integral part in all presented algorithms and can be im-

plemented in many different ways. The implementation of the priority queue in this

framework is based on a binary heap and supports querying, removing and updating

(also known as decreaseKey) any element. It uses a lookup table to associate external

items with contained elements and provides the possibility to store additional data with

them (e.g. the predecessor node during a search). Additionally, the code uses tem-

plates to allow any data types and to choose between a minimum or maximum queue.

This means that any algorithm can use it without modification or providing storage for

queue-related data.

Several optimizations are used to improve the performance. The internal heap starts

at index one for faster parent/child calculation and the cell at index zero is used as

temporary slot when elements are moved. Also, the bottom up heuristic [70] is applied:

after the top element is removed, the empty element is first moved down into a leaf node

and only then it is swapped with the last element which is then moved up.

4-ary Heap

A 4-ary heap [63, Chapter 3.2] instead of a binary heap was tested for its advantages

of better memory layout and lower height. On the largest evaluated network using

Dijkstra’s algorithm, the maximum number of elements in the heap never exceeded 6 400

and stayed below 2 700 on average. An element consists of an identifier and a weight

with a total size of eight bytes leading to a maximum memory requirement of only 50 kB

for the whole heap. This means that the better memory layout of the 4-ary heap, which

should reduce the number of cache misses, did not improve the performance, because

modern processors offer far larger caches of several megabytes [34].

Over all evaluated networks using Dijkstra’s algorithm, the function to move elements

towards the root (decreaseKey) was called between 2.3 and 2.5 times more often than its

counterpart which moves elements towards the leaves. This would indicate that a wider

heap with a lower height should perform better. A closer inspection though revealed
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that even on the largest network, elements are only moved 1.62 levels per call towards

the root, on average, with a binary tree. Using a 4-ary heap reduced the number to 1.22.

This means that its lower height only offers a small advantage. However, this advantage

is lost by the more complex parent/child index calculations. The tests showed that

neither of both heap variants has a measurable advantage over the other with Dijkstra’s

algorithm on road networks.

3.1.4 Customizable Route Planning (CRP) and Natural Cuts

The most complex part of the framework is the implementation of PUNCH [11], which

partitions a graph along its natural cuts for CRP. An overview of the work flow and

the most important parts is given in Figure 3.2. At first, smaller biconnected subtrees

and paths in the input graph are contracted, followed by 2-edge-connected components

which are found via cycle space sampling [52]. The contracted graph is broken up into

fragments along its natural cuts. The final partition is then created by combining the

fragments during the assembly phase. Finally, the graph is expanded again and the

nodes are assigned to their cells.

Figure 3.2: Natural cuts work flow overview with the most important classes and
methods.

Push-Relabel

One of the core elements is the Push-Relabel algorithm, proposed by Sleator and Tarjan

in [28], which finds minimum flow cuts in graphs. Although the algorithm itself is

straightforward, several different configurations are possible. Excess flow can be pushed

either directly between neighbouring nodes, or by the use of a link-cut tree [60] which

is a forest of splay trees [59]. The link-cut tree has the advantage that it can push

across several nodes at once, reducing the total number of pushes. Both methods were
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implemented and tested and even though the link-cut tree required fewer pushes, its

computational overhead made it significantly slower and is therefore not used.

Another choice that can be made with Push-Relabel is the order in which nodes

are processed. The method that proved to be the fastest is a combination of first-in

first-out (FIFO) and relabeling the active node until all excess is gone. Additionally,

gaps are detected during relabeling and all labels are recalculated frequently (after each

x relabels, where x = |V |/10).

Cliques

For every cell, the shortest paths between the boundary nodes have to be computed

which is done with Dijkstra’s algorithm. All intermediate nodes are stored for faster

path unpacking during queries.

Settings

Six levels are used for the multilevel partition of CRP, where at level 0 every node has

its own cell and level 6 consists of one cell containing all nodes. At the levels 1 to 5 the

graph is partitioned with PUNCH and a cell size of U = 2level∗3+5. Also, no phantom

levels are used. Several parameters can be configured for PUNCH. The settings used are

shown in Table 3.1 and follow the recommendations from Delling et al. in [11].

Table 3.1: Settings used for PUNCH. The symbols used for each parameter are
identical to those used by Delling et al. in [11].

parameter description

U = 2level∗3+5 maximum size of nodes, fragments and subtrees to be contracted

τ = 5 maximum size of subtrees that can get contracted and combined

with its root node

ζ = 1 coverage; counter determining how often the natural cut procedure

is executed

α = 1 factor for the BFS tree size during natural cut search

f = 10 factor for the core size during natural cut search

φ = 16 maximum number of retries for a node pair from the solution to

be refined during natural cut assemblyφ = 4 (at level 1)

a = 0.03 randomization term (r) probability for score calculation during

natural cut assembly

b = 0.6 randomization term (r) interval for score calculation during nat-

ural cut assembly
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3.1.5 Contraction Hierarchies (CH)

During the preprocessing phase of CH, the order in which nodes are contracted is de-

termined by the priority terms. The terms used in this framework are the edge difference,

which is the difference between newly created shortcuts and the number of incident edges

of a node and the search space size, which is the number of settled nodes during the local

(witness path) search.

The chosen values for parameters follow the recommendations by Geisberger in [22].

The coefficient used for the edge difference is 190 and 1 for the search space size. The

node limit during local searches is set at 1 000 and a full update of the priority of all

remaining nodes is initiated after each 1 000 lazy updates. Other implementation choices

are summarized in the following list:

• Local searches for witness paths are performed with Dijkstra’s algorithm. The

stall-in-advance technique and hop limits described in [22] are not implemented.

• Every shortcut stores its intermediate node for fast unpacking during queries.

• Queries are using the stall-on-demand technique [57], which prunes the search at

nodes that have been reached over a suboptimal path.

3.1.6 A*, Landmarks, Triangle Inequality (ALT)

Three different methods are implemented for the selection of landmarks: Random,

Partition-Corners [17] and a modified version of it. A detailed description of them

is given in Section 4.6.2 on page 61. The distance from and to landmarks is calculated

with Dijkstra’s algorithm.

3.1.7 Other Components

The two remaining algorithms, Dijkstra and A*, do not have any special settings and are

implemented as described earlier in the theoretical part. Furthermore, several tools/-

classes are implemented which are summarized in no particular order in the following:

• FlatSet, FlatMap: For many tasks, short lists of unique elements are required (e.g.

unique neighbors of a node). The containers provided by the Standard Template

Library (STL) are designed for many entries. This requires a more complex in-

ternal representation which imposes a performance penalty. The implemented flat

versions, however, only consist of a contiguous array and duplicates are identified

by iterating over it, which is extremely fast with few entries.

• ActiveList : Consider a list of (active) items that is processed (in no particular

order) but after every step one or more items are removed randomly. The active

list solves this by keeping a pointer to the last active item on the list. Every time an
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item has to be removed, it is swapped with the last active item and the pointer is

decremented by one. This keeps the remaining active items in front of the pointer

and the removed items behind it. The advantage of the active list is that it moves

as few items as possible and the list can be reused endlessly by just resetting the

pointer.

• FastRandom: For performance critical parts, a fast random number generator

based on Xorshift from Marsaglia [41] is used.

• SVG : A lightweight class to create and save Scalable Vector Graphics (SVG) to

visualize smaller graphs.

• PNG : A lightweight class to create bitmap images to visualize larger graphs. The

bitmaps are saved as Portable Network Graphics (PNG) files with the LodePNG

[65] library.

• XML: A simple Extensible Markup Language (XML) reader to import the Open-

StreetMap data files.

• Network : The Network class provides all the functionality related to graphs. This

includes:

– importing/exporting graphs with different file formats

– creating random graphs

– adding and removing nodes and edges

– accessing nodes and their corresponding edges and querying properties

– visualizing graphs

• OSMNetwork : A class to filter and convert the XML data files from OpenStreet-

Map into compact graph data files for this framework.

• ProcessingStatistics: A class that helps collecting the measurements/statistical

data taken by the tests.

• Stopwatch: With the Stopwatch class, the time taken by the tests is recorded.

3.1.8 Final Remarks

The complete framework (excluding the LodePNG library) has approximately 31 200

lines of code including comments in 100 files. Most of its functionality can be accessed

from the command line and details how to compile and use it can be found in the

appendix (Chapter C on page 132). The executable used for the experimental analysis

has been compiled using g++ 4.8.4 with optimization level 4 (-O4), no debug information

and no assertions under Linux Mint 17 (64 bit).
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3.2 Dataset

A wide range of road networks from all over the world with different sizes, ranging

from cities to continents, has been chosen to be used for evaluation and benchmarking.

They are divided into the three main categories Cities & Metropolitan Areas, Regions &

Countries and Continental Sized. The first two categories are further divided into North

America, Europe and Other World.

The number of networks per category is shown in Table 3.2. The mean number

of nodes for each category and separated for full and contracted networks is shown in

Table 3.3. The difference between full and contracted networks is explained further

below and a detailed list with key figures for all networks can be found in the appendix

(Section A.1 on page 123).

Networks from the Cities & Metropolitan Areas category always designate the great-

er/metropolitan area if they are not specifically marked with the word City. To emphas-

ize this, they will be decorated with the phrase Greater Area in some sections.

Table 3.2: Categories and number of networks. The detailed lists and key figures can
be found in the appendix (Section A.1 on page 123).

category

short

name subcategory

short

name networks

detailed

list

Cities &

Metropolitan Areas

Cities North America C-NA 42 Table A.1

Europe C-EU 34 Table A.3

Other World C-OW 26 Table A.4

Regions & Countries Regions North America R-NA 8 Table A.5

Europe R-EU 17 Table A.6

Other World R-OW 1 Table A.7

Continental Sized Continental 6 Table A.8

Table 3.3: Mean number of nodes per category.

category
all networks
mean nodes

full networks
mean nodes

contracted networks
mean nodes

C-NA 559 922 929 657 190 186
C-EU 280 621 457 489 103 754
C-OW 451 732 722 818 180 645
R-NA 5 470 332 10 652 044 3 743 095
R-EU 4 823 066 8 453 526 1 595 990
R-OW 4834 762 - 4 834 762
Continental 14 926 827 23 947 347 13 122 723
all 2 004 233 2 459 156 1 612 494
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All networks except one are based on current data from 2016 from OpenStreet-

Map1. The USA network data has been acquired from the 9th DIMACS Imple-

mentation Challenge - Shortest Paths website2 and has been included as a refer-

ence point for comparison, because it is used in the papers for Contraction Hierarchies

[23] and Customizable Route Planning [9]. According to the source, the data for the

USA network contains errors (e.g. gaps in freeways and bridges) and contains data from

2002 [14].

3.2.1 Metrics

Every network is strongly connected (which means every node can be reached from

any other node) with directed and undirected edges. Two metrics are available for

every edge/network: geometric distance and travel time. The geometric distance is the

spherical distance between two nodes in road networks (and the Euclidean distance for

synthetic networks). The travel time is the time required to traverse the given edge

(road segment) at the given speed limit. Most road segments in the OpenStreetMap

dataset are assigned to a category, but not each of them has a speed limit set. For those

segments, the default speed limits listed in Table 3.4 are used, which are based on the

averages over all networks.

Table 3.4: Default speed limits for road segments according to their OpenStreetMap
category.

category speed limit [km/h]

motorway 120

trunk 100

primary 100

secondary 70

tertiary 50

residential 30

others 50

Figure 3.3 shows the distribution of the edges for different speed limits. The differ-

ence between North America and the rest of the world is due to users, who are adding

data to OpenStreetMap, having a different interpretation of the road categories in Open-

StreetMap.

1http://www.openstreetmap.org
2http://www.dis.uniroma1.it/challenge9/download.shtml
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Figure 3.3: Distribution of edges for different speed limits.

3.2.2 Full and Contracted Networks

In the raw network data, nodes are used to represent intersections and end points but

also geometry, which means that many paths consist of several nodes. This leads to the

problem how such paths should be handled. By using the data without modification,

more memory is consumed and the algorithms may take more time because of the higher

number of nodes and edges. Instead, paths with several nodes could be contracted into

a single edge. However, this means that some information about the geometry is lost

and the question arises how exactly a path should be contracted.

An extreme version is shown in Figure 3.4 which keeps contracting all paths until

none is left. While the size of the graph can be reduced by a large amount with this

method, the extra work that has to be done to translate search queries that either start

or end at removed nodes or edges may be significant.

Figure 3.4: Unrestricted path contraction. From left to right: the paths (orange) are
contracted. This leads to new edges (green). Resulting cycles are removed because
they are not used in shortest paths and some algorithms do not even function with
them. For parallel edges only the edge with the smallest weight is kept because the
other (longer) edge(s) are never used during a search. After removing cycles and
parallel edges, new paths have formed that can be contracted. This leads to a

cascading effect that can collapse some graphs into a single vertex.
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Figure 3.5: Restricted path contraction. Only paths with at least two nodes (orange)
are contracted into a path with a single node (green). This has the advantage that no
cycles or parallel edges are created and the paths of the original graph are still part of

the final graph.

A more restrictive method, which is used in this work, is shown in Figure 3.5. Only

paths with at least two nodes are contracted into a compact version with one node and

two edges. This leads to some loss of geometric information but the paths themselves are

conserved. To investigate the impact of contraction on the performance of the algorithms,

two versions of every network are used: a full version, and a contracted one. For the

largest networks though, only the contracted version is used because the test system

does not have enough memory to fit the full ones which have tens of millions of nodes

and edges.

In Figure 3.6, the number of nodes and edges for the full and contracted versions of

all networks are shown. A logarithmic correlation between them can be seen, with two

exceptions, the network of Graz and Buenos Aires.
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Figure 3.6: Comparison of number of nodes and edges in full and contracted networks.
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3.2.3 Copyright and License

The USA network is based on data which has been downloaded from the 9th DIMACS

Implementation Challenge - Shortest Paths website3 on the 20th July 2016 [14].

No copyright or license is mentioned, only the source is cited as ”UA Census 2000 TI-

GER/Line Files; U.S. Census Bureau, Washington, DC; Geography Division”4.

All other networks (including roads, railways and waterways) are based on raw

data from OpenStreetMap5 which has been downloaded from Mapzen6 and Geo-

fabrik7 on the 22nd September 2016 [24, 40, 48]. The data is under the copyright

of c⃝ OpenStreetMap contributors8 and provided through the Open Database

License ODbL 1.09.

3http://www.dis.uniroma1.it/challenge9/download.shtml
4https://www.census.gov/geo/maps-data/data/tiger-line.html
5http://www.openstreetmap.org
6https://mapzen.com/data/metro-extracts/
7http://download.geofabrik.de/
8http://www.openstreetmap.org/copyright
9http://opendatacommons.org/licenses/odbl/, http://wiki.osmfoundation.org/wiki/Licence
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Chapter 4

Experimental Analysis

In this chapter, the algorithms and concepts described in the theoretical part are applied

to solve shortest path problems on various graphs. Their behavior, special characteristics

and performance is analyzed in a practical setup through numbers and visually and

compared with each other.

4.1 Preliminaries

Width and height specifications given for road networks apply to the center of the graphs

and will differ widely from the real values on the edges. Also, illustration of networks are

done based on their geographic coordinates without any transformation, which means

they are distorted.

Different methods exist to count edges between nodes in directed graphs. In this

work, edges between nodes are only counted once, i.e. if node u and v are connected by

several directed edges with different edge weights, it still counts as only one edge.

4.2 Experimental Setup

For the evaluation on road networks, 10 000 pairs of nodes are selected uniformly at

random for every network and the shortest path is computed for each pair with geometric

distances and travel times. Because CH and CRP can answer queries much faster, 100 000

pairs are selected with them for accurate results.

All tests are run in a single thread on an Intel Core i5-2500k processor running at

4.4 GHz with 16 GB of memory inside a virtual machine (Oracle VM VirtualBox 5.0.26)

with Windows 10 Education (64 bit) as host and Linux Mint 17 (qiana 3.13.0-24-generic,

64 bit) as guest operating system. The performance penalty of the virtual machine is

approximately 400 MHz.

Please refer to the previous Chapter 3 on page 29 for details about the framework,

configuration of the evaluated algorithms and used dataset.
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4.3 Dijkstra’s Algorithm

Dijkstra’s algorithm finds the shortest path between a source and one or more other

nodes. The algorithm requires no preprocessing or modification of the input graph. It

is a building block of many other algorithms, including those presented in this work,

which means its behavior and performance has a direct impact on them. The basic,

unidirectional version will be inspected in the following.

4.3.1 Synthetic Grids

(a) Uniform synthetic grid. (b) Synthetic grid with randomly increased weights
(darker line shade) towards the graph center.

Figure 4.1: Dijkstra’s search on synthetic grid graphs. The start is the upper left and
the target the lower right end of the red line, which shows the shortest path found.

Nodes in the closed set (settled nodes) are drawn in light green. Nodes in the open set
are drawn in dark green.

Figure 4.1 shows a Dijkstra’s search on a grid graph. The pattern of the nodes

settled by the algorithm matches the expected circular expansion, which on a grid graph

resembles a square (Figure 4.1a). By introducing increased edge weights towards the

graph center (this could be e.g. a city center with increased congestion), the pattern

changes, which in this case looks more like a trapezoid (Figure 4.1b). The algorithm

settles more nodes at paths not leading to the target because it keeps expanding the

nodes with the currently shortest distance, independent of the position of the target.

This has the following consequence: For primarily planar graphs such as road networks,

one can expect Dijkstra to expand in a circular fashion only if the edge weights are in

proportion to the geometric distances. Other metrics result in different patterns which

may impact the (expected) number of nodes settled.
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4.3.2 Road Networks

(a) Search on Greater London Area with geometric distances.

(b) Search on Greater London Area with travel times.

Figure 4.2: Dijkstra’s search on Greater London Area (224 × 116 km) with geometric
distances and travel times. Settled nodes are drawn in green, the shortest path in red.

Figure 4.2a and 4.2b illustrate a search with geometric distances and travel times,

respectively, for the Greater London Area, which has been chosen as a typical example

of a European metropolitan area, with a dense city center surrounded by high speed/-

capacity roads in ring and star formation. The search starts in the city center at the

Trafalgar Square and stops at the Farnborough Airport south-west of it. Comparing

both figures, the first one using geometric distances shows a circular expansion while in
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the second one with travel times, it is clearly recognizable that the expansion happens

more rapidly along the motorways (e.g. the search is almost cut off in the south along

the horizontal motorway and spreading along the vertical ones in the north). Because

the chosen target node is close to a motorway, the travel time search benefits from this

behavior and settles fewer nodes (945 505) than the other search with geometric distances

(1 074 016).

Table 4.1: Comparison of the average performance of Dijkstra’s algorithm with
geometric distances and travel times on the Greater London Area.

metric nodes settled node efficiency [%] query time [ms]

geometric distances 804 485 0.204 136.1
travel times 803 247 0.151 148.8

Comparing the average performance of 10 000 random search queries on the Greater

London Area (Table 4.1) reveals some interesting details. Even though the number of

settled nodes is about the same for both metrics, the search with travel times is 26%

less efficient. The reason for this lies in the fact that segments of certain road types,

e.g. motorways, consist of fewer nodes than others and that the shortest paths prefer

different road types, depending on the metric.

In Table 4.2, the average distribution of edges from shortest paths among different

road types is compared between different metrics. The road types are based solely on

the speed limit. While with geometric distances the shortest paths run mostly along

secondary roads, with travel times there is a strong shift to motorways. Using secondary

roads gives a more direct and shorter path to the target with geometric distances, while

using the path via the motorway leads to a shorter travel time due to the higher speed

limit. Because motorways consist of fewer junctions, which means fewer nodes in the

graph, the shortest paths with travel times consist of fewer nodes, as the last column in

the table shows. Switching from the full network, where nodes are also used to represent

geometry, to the contracted network increases the difference between the shortest paths

node count even more from a quarter to a half.

Table 4.2: Average distribution of edges from shortest paths among different road
types for different metrics on the Greater London Area.

network metric
motorway

[%]
primary

[%]
secondary

[%]
residential

[%]
total edge

count

London
(full)

distance 7.0 22.5 62.5 8.0 1 641
time 44.5 25.3 28.5 1.8 1 215

London
(contracted)

distance 1.8 18.3 68.4 11.5 400
time 12.8 30.0 52.3 4.8 187
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This means that the edge efficiency, which is often used as hardware independent

metric to compare the performance between different graphs or algorithms, may not be

used to compare different metrics. Instead, the number of settled nodes can be used to

get a more accurate picture. Taking another look at Table 4.1, though, shows that a

similar number of settled nodes does not equate to same query times. The reason for

the difference in actual performance is that the search with geometric distances has a

higher locality. The fringed search front of the search with travel times leads to a larger

open set which requires more computations and makes it generally slower.

The next figures, 4.3a and 4.3b, show searches on the Greater Chicago Area, which

has the typical grid layout of North American cities and high capacity roads leading

straight into the city center. The search start is once again located at the city center

(the Chicago Navy Pier), but the target is farther away from the next freeway in the

suburbs south-west. In Figure 4.3a, with the search using geometric distances, the nodes

are settled almost in a circular pattern. The grid layout does not have the same effect

on the search pattern as seen on the uniform grid before (Figure 4.1). A closer look at

the graph shows that there are enough diagonal roads to cancel out the square effect.

Only in the south-south-east area those roads are missing and a slight tendency for the

square pattern is visible. In Figure 4.3b, where travel times are used, the same effect

as with the London graph can be seen. The search expands faster along paths with a

lower travel time. While this had a positive effect on the number of settled nodes last

time, the reverse happens this time because the target is farther off. The distance search

settled fewer nodes (530 254) than the travel time search (633 620).

Table 4.3: Comparison of the average performance of Dijkstra’s algorithm with
geometric distances and travel times on the Greater Chicago Area.

metric nodes settled node efficiency [%] query time [ms]

geometric distances 416 135 0.170 73.5
travel times 415 313 0.162 78.6

Table 4.3 shows that the difference in node efficiency between geometric distances

and travel times is not as pronounced as it was on the London graph. The cause for this

can be found in the average distribution of edges from the shortest paths (Table 4.4 on

page 47). On the Chicago network, more edges from both metrics share the same road

type which reduces the discrepancy. That primary roads are the predominant road type

for both metrics indicates that Chicago has a better arterial road layout than London,

where secondary roads prevail. Still, the query time suffers a similar performance hit

caused by the fringed search front of the search with travel times, which can be seen in

Figure 4.3b.
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(a) Search on Greater Chicago Area with geometric distances.

(b) Search on Greater Chicago Area with travel times.

Figure 4.3: Dijkstra’s search on Greater Chicago Area (160 × 107 km) with geometric
distances and travel times. Settled nodes are drawn in green, the shortest path in red.
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Table 4.4: Average distribution of edges from shortest paths among different road
types for different metrics on the Greater Chicago Area.

network metric
freeway

[%]
primary

[%]
secondary

[%]
residential

[%]
total edge

count

Chicago
(full)

distance 3.8 59.7 18.4 18.0 705
time 17.7 71.1 7.4 3.6 672

Chicago
(contracted)

distance 1.5 62.3 18.3 17.9 251
time 7.8 83.1 5.7 3.4 209

4.3.3 Results & Conclusion

In Table 4.5, the average performance over all test cases is shown for Dijkstra’s algorithm.

Even though the search pattern differs between searches with geometric distances and

travel times, about the same number of nodes is settled with both metrics. The node

efficiency is not suited to compare the performance between metrics, because shortest

paths with travel times prefer road types with fewer junctions (nodes) such as motorways

which means they consist of fewer nodes. This leads to a lower efficiency, even when

the same amount of nodes was settled compared to a search with geometric distances.

Query times are generally faster with geometric distances because the search front is

more compact which results in a smaller open set throughout the search. This increases

the locality (e.g. during memory accesses) and reduces the number of computations.

Overall, Dijkstra’s algorithm only achieves a node efficiency of 0.32% and even on the

network where it performed best (the contracted network of Graz) it was below two

percent. On average, half of all nodes in a network are settled by it.

Table 4.5: Average performance of Dijkstra’s algorithm with geometric distances and
travel times.

node efficiency [%] nodes settled query time [ms]

category distance time distance time distance time

C-NA 0.294 0.242 280 045 280 055 48.4 52.3
C-EU 0.523 0.437 140 671 140 647 22.9 24.4
C-OW 0.241 0.208 294 931 294 916 53.71 56.75
R-NA 0.081 0.057 2 746 181 2 741 905 562.2 608.3
R-EU 0.199 0.132 2 413 498 2 417 147 480.9 530.9
R-OW 0.086 0.038 2 428 244 2 428 225 488.8 525.7
Continental 0.058 0.052 7 385 305 7 383 886 1 717.7 1 903.8
all 0.320 0.262 999 641 999 779 206.5 226.4
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4.4 Bidirectional Dijkstra’s Algorithm

In the bidirectional version, Dijkstra’s algorithm is extended by a backward search with

the goal of reducing the number of settled nodes. The algorithm alternates between the

forward and backward search and stops when the combined shortest tentative distance

to nodes in the open sets of both searches is larger than the shortest path discovered so

far (see Section 2.5 on page 8). While the number of settled nodes may be lower with the

bidirectional version, the actual time required for a search does not necessarily benefit

to the same extend or may be worse even. The reason for this is that two searches also

require maintaining two priority queues and querying the graph at two different positions

leading to reduced locality during memory accesses which can have a severe performance

impact because of cache misses (see [15] for a detailed analysis of memory and caches).

4.4.1 Synthetic Grids

(a) Uniform synthetic grid. (b) Synthetic grid with randomly increased weights
(darker line shade) towards the graph center.

Figure 4.4: Bidirectional Dijkstra’s search on synthetic grid graphs. The start is the
upper left and the target the lower right end of the red line, which shows the shortest
path found. Nodes in the closed set (settled nodes) are drawn in light green for the

forward search and in light purple for the backward search. Nodes in the open set are
drawn in dark green and dark purple for the forward and backward search,

respectively. Nodes touched by both searches are drawn in blue.

Figure 4.4a illustrates a search with the bidirectional Dijkstra’s algorithm on a uni-

form grid. As expected, the search pattern resembles two unidirectional searches ori-

ginating from the start and target node (as has been mentioned before, the circular

expansion of Dijkstra’s algorithm resembles a square on a grid graph). The grid graph
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is well suited to demonstrate how the search can not stop just because the search fronts

have met, because there could still be a shorter connection between other nodes (e.g.

the nodes drawn in blue in the figure). Only after both searches have extended in all

directions by the same distance as to the joint node, no shorter path can exist.

The search on the grid graph with increasing edge weights towards the center (Fig-

ure 4.4b) follows the same pattern. It should be noted that the start and target node

of the search query have been chosen further apart compared to the demonstration for

the unidirectional Dijkstra’s algorithm in Figure 4.1 to emphasize the resemblance of the

search patterns. The unidirectional version would have to scan 1.85 times more nodes

to find the shortest path.

4.4.2 Road Networks

Figure 4.5 demonstrates a search with a bidirectional Dijkstra’s algorithm on the Greater

London Area with geometric distances and travel times. The forward search (shown in

green) spans a much smaller area than the backward search (shown in purple) on the

London graph for two reasons. The network at the city center, where the forward search

starts, is denser which has the effect that the searched area looks smaller. The main

reason, though, is that the algorithm does not just alternate between the forward and

backward search every other iteration. Instead it keeps executing the search with fewer

nodes on the open set which favors the search in the sparser area. By doing this, the

search fronts can meet faster (see Section 2.5 on page 8). For example the backward

search shown in Figure 4.5a has been executed 423 077 times and the forward search

only 127 371 times, for a total of 550 448. If both searches had been performed equally

often, each of them would have been called 309 291 times, for a total of 618 582, which

would be 12% less efficient.

The bidirectional search on the Greater Chicago Area, shown in Figure 4.6, shows a

different behavior. Even though the forward search starts in a denser area at the Chicago

Navy Pier, its search space is more or less halved by Lake Michigan which cuts off the

network. This and the fact that the difference in density at the start and target node

is not as severe as on the London network leads to a more balanced alternation. The

forward search shown in Figure 4.6a has been executed 184 099 and the backward search

142 594 times, for a total of 326 693. With an equal distribution, both searches would

have been called 166 539 times, for a total of 333 078, which is only a difference of 2%.

These results reveal that the size of the open set is not only dependent on the density

of the network but also where a search starts.

Searching by travel times (Figure 4.5b and 4.6b) shows the same effect already seen

with the unidirectional version of Dijkstra’s algorithm: the expansion happens more

rapidly along roads with a higher speed limit. While this had no impact on the average

number of settled nodes before, the bidirectional search does benefit from it. The reason

for this can be seen by comparing the unidirectional (Figure 4.3b on page 46) with the
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(a) Search on Greater London Area with geometric distances.

(b) Search on Greater London Area with travel times.

Figure 4.5: Bidirectional Dijkstra’s search on Greater London Area (224 × 116 km)
with geometric distances and travel times. Settled nodes are drawn in green for the

forward search and in purple for the backward search. Nodes touched by both searches
are drawn in blue. The shortest path is shown in red.
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(a) Search on Greater Chicago Area with geometric distances.

(b) Search on Greater Chicago Area with travel times.

Figure 4.6: Bidirectional Dijkstra’s search on Greater Chicago Area (160 × 107 km)
with geometric distances and travel times. Settled nodes are drawn in green for the

forward search and in purple for the backward search. Nodes touched by both searches
are drawn in blue. The shortest path is shown in red.
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bidirectional search (Figure 4.6b) on the Chicago network. Because the target node is not

near a freeway or primary road, the unidirectional search expands past it for a significant

amount. The bidirectional search solves this problem through the backward search which

expands from the target node and creates a barrier for the forward search (and vice

versa). This greatly reduces the chance that a search misses its target. Furthermore, as

both searches extend faster along high speed roads, the search fronts may meet earlier

on them, as can be seen in Figure 4.6b.

4.4.3 Results & Conclusion

Table 4.6 shows the average performance of a bidirectional Dijkstra’s algorithm over

all test cases, which is better in every aspect compared to the unidirectional version

(Table 4.5 on page 47). Its node efficiency is almost twice as high and the average

query takes 34% less time. While the unidirectional version had longer query times with

travel times, the bidirectional one does benefit from the less compact search pattern.

Fewer nodes are settled and query times are faster or similar compared to searches with

geometric distances. The overhead of managing two searches instead of one only has a

small impact. Comparing the average reduction in settled nodes and query times between

the uni- and bidirectional version shows a performance loss below 8%. In conclusion,

the bidirectional version should always be preferred over the unidirectional one.

Table 4.6: Average performance of a bidirectional Dijkstra’s algorithm with geometric
distances and travel times.

node efficiency [%] nodes settled query time [ms]

category distance time distance time distance time

C-NA 0.490 0.504 168 146 137 974 30.1 26.1
C-EU 0.993 1.001 77 524 62 739 13.0 11.2
C-OW 0.547 0.558 170 015 146 078 31.1 28.4
R-NA 0.111 0.085 1 975 105 1 815 230 423.1 427.8
R-EU 0.305 0.233 1 609 265 1 421 722 335.6 327.4
R-OW 0.113 0.051 1 853 564 1 804 496 392.6 413.6
Continental 0.083 0.073 4 937 186 4 692 264 1 178.1 1 243.2
all 0.561 0.559 662 339 599 815 142.3 142.4
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4.5 A*, Bidirectional A*

The normal version of Dijkstra’s algorithm, as presented before, does not take the target’s

position into consideration. This means that the search expands in all directions leading

to many nodes being settled unnecessarily. A* tries to improve this by directing the

search towards the goal which is done by utilizing a heuristic. The heuristic gives an

estimate of the distance from the current node to the target. Different properties of the

heuristic lead to different results, from fewer settled nodes to non-optimal results, as has

been discussed in Section 2.6 on page 9. In this work, only the monotone and admissible

heuristic based on the geometric distance will be used. The main problem with A* is

finding a useful heuristic for a given metric, which is only trivial for geometric distances.

A* can be executed as bidirectional search if the heuristic is consistent between the

forward and backward search (see Section 2.7 on page 11).

4.5.1 Synthetic Grids

In Figure 4.7, unidirectional and bidirectional searches with A* on synthetic grids are

shown which demonstrate the advantage of a goal directed search compared to normal

Dijkstra’s algorithm, but also its problems. The unidirectional search on the uniform

grid (Figure 4.7a) does not expand as much in the wrong directions near the start and

target node and settles 4.55 times fewer nodes than the unidirectional and 2.45 times

fewer nodes than the bidirectional version of Dijkstra’s algorithm. The performance

gains are more moderate on the graph with increasing edge weights (Figure 4.7b) and

the problem with goal directed searches becomes visible. The used heuristic is based on

the geometric distance and does not account for the geometry independent increases in

edge weights which reduces its usefulness.

The bidirectional A* search is not the better choice on the uniform grid (Figure 4.7c)

as it settles more nodes than the unidirectional version. On the graph with the increasing

weights (Figure 4.7d), though, it outperforms all other algorithms used so far. Nonethe-

less, the same problem with the heuristic can be seen, leading to many nodes behind the

start and target that are settled unnecessarily.

4.5.2 Road Networks

Unidirectional and bidirectional searches with A* and geometric distances on the Greater

London and Chicago Area are shown in Figure 4.8. The networks used are the same

as before but cropped and magnified to the affected area. The unidirectional search

shows the typical drop shaped search pattern on both graphs (Figure 4.8a and 4.8c).

The search, which starts on each network in the north-east, expands in a more circular

fashion around the start but gets narrower towards the target. This pattern is a result

of the accuracy of the heuristic which determines how much the search expands in the

wrong directions. Because the heuristic underestimates the distance, the sum of the
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(a) Unidirectional A* on a uniform synthetic grid. (b) Unidirectional A* on a synthetic grid with
randomly increased weights (darker line shade)

towards the graph center.

(c) Bidirectional A* on a uniform synthetic grid. (d) Bidirectional A* on a synthetic grid with
randomly increased weights (darker line shade)

towards the graph center.

Figure 4.7: Unidirectional and Bidirectional A* search on synthetic grid graphs. The
start is the upper left and the target the lower right end of the red line, which shows
the shortest path found. Nodes in the closed set (settled nodes) are drawn in light

green for the forward search and in light purple for the backward search. Nodes in the
open set are drawn in dark green and dark purple for the forward and backward search,

respectively. Nodes touched by both searches are drawn in blue.
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actual distance from the start and the estimate of the remaining distance to the target

gets larger towards the target compared to the area near the start.

The bidirectional search with A* (Figure 4.8b and 4.8d) works equally to the bid-

irectional search with Dijkstra’s algorithm and finds the shortest path with fewer settled

nodes. The drop shaped search pattern is not as distinct as with the unidirectional A*

for two reasons: because the forward and backward search meet half-way the search

fronts are not as narrow yet, resulting in a fringed cut, and the heuristic used with the

bidirectional version is less accurate (see Section 2.7 on page 11), leading to more stray

paths.

(a) Unidirectional A* on London. (b) Bidirectional A* on London.

(c) Unidirectional A* on Chicago. (d) Bidirectional A* on Chicago.

Figure 4.8: Unidirectional and Bidirectional A* search on the Greater London and
Chicago Area with geometric distances. The network is cropped and magnified to
the affected area. Settled nodes are drawn in green for the forward search and in

purple for the backward search. Nodes touched by both searches are drawn in blue.
The shortest path is shown in red.

While A* works well on road networks with geometric distances, no results will be

given for searches with travel times because no trivial heuristic exists for it. It is possible

to adapt the geometric heuristic by scaling it to the fastest road type but the results are

poor.

The average performance over all test cases (see Table 4.7) reveals a problem. Even

though 11% to 41% fewer nodes are settled with the bidirectional version, the query

times do not improve equally and are even slower in some cases. While the bidirectional

version of Dijkstra’s algorithm saw only a small performance impact from the increased

overhead of managing two searches, A* is affected much more. The reason for this is

the heuristic, which requires the computation of the estimated distance for every node
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that is added to the open set. This means the node has to be queried for its coordinates,

which reduces the overall performance of A* and additionally impacts the bidirectional

search, because of its lower locality.

4.5.3 Results & Conclusion

Table 4.7 shows that the A* algorithm significantly reduces the number of settled nodes

compared to bidirectional Dijkstra’s algorithm (Table 4.6 on page 52). The query times,

however, do not decrease as much due to the increased number of computations and

memory accesses caused by the heuristic. The bidirectional version executes only slightly

faster and on several networks even slower than the unidirectional one. In case of the

Regions - Other World category, A* is actually slower than bidirectional Dijkstra’s al-

gorithm despite 39% less nodes are settled and bidirectional A* is even slower. However,

the main problem of A* is the lack of trivial heuristics for other metrics than geometric

distances which limits its usage severely. Another disadvantage is the increased memory

consumption to store each node’s coordinates which may be a problem on computers

with limited resources.

Table 4.7: Average performance of bidirectional Dijkstra’s algorithm with geometric
distances and travel times.

node efficiency [%] nodes settled query time [ms]

category A* Bidir. A* A* Bidir. A* A* Bidir A*

C-NA 1.195 1.800 70 189 46 195 23.9 21.5
C-EU 2.187 3.812 35 144 20 602 11.8 9.5
C-OW 1.082 1.718 76 187 47 713 26.6 22.2
R-NA 0.306 0.413 716 762 535 029 269.8 268.1
R-EU 0.668 0.880 648 071 498 364 244.7 253.0
R-OW 0.185 0.210 1 132 332 998 607 461.4 506.4
Continental 0.168 0.202 2 170 213 1 742 847 902.5 919.0
all 1.251 2.012 276 333 209 622 106.6 106.5

In conclusion, A* has a node efficiency that is two to four times better than bidirec-

tional Dijkstra’s algorithm on graphs with geometric distances. Its query times are lower

in most cases and should further improve with an optimized implementation. As long

as coordinates for nodes are available it is the recommended choice. For other metrics

it should be compared to alternatives first.
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4.6 A*, Landmarks, Triangle Inequality (ALT), Bidirec-

tional ALT

ALT (A*, Landmarks, Triangle Inequality) can be seen as an evolution of the A* al-

gorithm that solves its heuristic shortcomings. Through the application of the triangle

inequality theorem and landmarks, ALT works with any metric without any further

modifications. This is not possible with A*, which requires the implementation of a

heuristic function for every metric. The drawbacks of ALT are that it requires prepro-

cessing and the distances from and to landmarks have to be stored with every node,

which increases the memory usage considerably. Also, after a change to edge weights,

the landmark distances have to be recalculated. The performance of ALT relies strongly

on the quality of the landmarks. For example, two landmarks, that are either identical

with or behind the start and target nodes of a search, can be enough to achieve 100%

node efficiency. Landmarks of lesser quality can be compensated to a certain degree by

a higher quantity.

4.6.1 Synthetic Grids

(a) ALT search. (b) Bidirectional ALT search.

Figure 4.9: ALT and Bidirectional ALT search on uniform synthetic grid graphs. The
start is the upper left and the target the lower right end of the red line, which shows
the shortest path found. Nodes in the closed set (settled nodes) are drawn in light

green for the forward search and in light purple for the backward search. Nodes in the
open set are drawn in dark green and dark purple for the forward and backward search,

respectively. Nodes touched by both searches are drawn in blue. Landmarks are
marked with red dots.
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The ALT algorithm has no special preference for a certain graph type and can work

exceptionally well with grid graphs, as can be seen in Figure 4.9a. With just four

landmarks placed at the corners of the graph, the search achieves almost 100% node

efficiency. Figure 4.9b illustrates an inherent problem of bidirectional algorithms using a

heuristic. Usually, using a heuristic reduces the number of settled nodes by a significant

amount because the search can, based on the extra information, follow possible best

paths which also means the search front is much smaller. But a smaller search front

also increases the chance that the forward and backward search miss each other, as the

figure shows. The forward and backward search only meet each other the first time at

their respective goals which means the bidirectional search was only half as efficient as

the unidirectional one. This is an extreme case though and the bidirectional version

performs on average two times better over all test cases (see Table 4.8).

Table 4.8: Average performance of ALT and Bidirectional ALT with 36 landmarks.

node efficiency [%] nodes settled query time [ms]

category ALT Bidir. ALT ALT Bidir. ALT ALT Bidir. ALT

C-NA 7.19 15.63 10 702 4 063 3.69 1.86
C-EU 12.42 22.43 5 091 2 543 1.75 1.12
C-OW 6.74 14.31 10 790 4 863 3.84 2.24
R-NA 1.63 4.84 114 773 37 796 41.08 18.39
R-EU 4.03 9.17 92 034 34 939 30.56 15.97
R-OW 1.19 4.51 125 807 32 666 53.54 18.34
Continental 1.05 2.96 325 373 115 606 120.27 59.10
all 7.38 14.98 40 776 14 971 14.46 7.21

In Figure 4.10, a search with the uni- and bidirectional version is shown on a graph

with randomly increasing edge weights towards the graph center. With only four land-

marks (Figure 4.10a and 4.10b), much more nodes have to be settled and the performance

drops significantly. The search patterns now look almost identically to the A* search

on the uniform grid (Figure 4.7c on page 54). By increasing the number of landmarks

by more than six times (Figure 4.10c and 4.10d), the number of settled nodes is halved

and the search patterns starts resembling the one from the uniform grid. Because the

positioning of the landmarks is not optimal for the given search, the algorithm has to

visit many nodes for which the heuristic yields the same distance.

However, ALT can perform much better if the landmarks are in the right positions.

In Figure 4.11, the start and target of the search query have been changed to line up

with two landmarks. This brings the node efficiency up to 100% despite the random

edge weights. The problem is that it is impossible to find a small set of landmarks that

is optimal for every search query on most non-uniform road networks.
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(a) ALT search with four landmarks. (b) Bidirectional ALT search with four landmarks.

(c) ALT search with 25 landmarks. (d) Bidirectional ALT search with 25 landmarks.

Figure 4.10: ALT and Bidirectional ALT search with different landmark count on
synthetic grids with randomly increased weights (darker line shade) towards the graph
center. The start is the upper left and the target the lower right end of the red line,

which shows the shortest path found. Nodes in the closed set (settled nodes) are drawn
in light green for the forward search and in light purple for the backward search. Nodes
in the open set are drawn in dark green and dark purple for the forward and backward
search, respectively. Nodes touched by both searches are drawn in blue. Landmarks are

marked with red dots.
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(a) ALT search. (b) Bidirectional ALT search.

Figure 4.11: ALT and Bidirectional ALT search with the same setup as in Figure 4.10
but the start and target node of the query are changed to line up with landmarks. This

brings the node efficiency up to 100% despite the random edge weights.

(a) Floating point weights. (b) Integer weights.

Figure 4.12: Bidirectional ALT search on a uniform synthetic grid with floating point
and integer weights. Because the accuracy of floating point numbers is limited, small
errors are introduced during distance calculations. These errors impact the search

algorithm and lead to strange patterns and possibly false results (left figure).
Switching to integer weights removes the errors (right figure).
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Implementation Pitfalls

During the preparation of this chapter, a few graphs with strange search patterns showed

up like the one in Figure 4.12a. Because the search is done on a uniform grid graph,

the pattern should look like in Figure 4.12b, with the search following a direct path to

the target. A thorough investigation of the framework’s code revealed that the strange

patterns are a result of the inherent accuracy problem of floating point numbers. The

framework creates the synthetic grids with floating point weights which are used by the

ALT algorithm to calculate the distances from and to landmarks. During a search, these

distances are used by the heuristic function to calculate the estimates. Even though only

addition and subtraction is used during these steps, small errors occur. Compared to

the other algorithms, ALT is extremely sensitive to these errors. The problem has been

fixed for this work by using integer weights for the uniform synthetic grid graphs, but

this is not a solution if floating point weights have to be used.

4.6.2 Landmark Selection

Landmark selection is the key element in ALT’s preprocessing duration and performance.

Several different methods have been devised (Section 2.8.2 on page 14 gives an overview)

but no optimal method exists because of the inherent trade off between time required for

landmark selection and resulting query performance. As will be shown in the following

sections, other algorithms with preprocessing such as CH and CRP have much better

efficiency and query performance than ALT. This means that the preprocessing should

be kept as short as possible to position ALT as feasible alternative.

In this work, the Partition-Corners algorithm from Efentakis et al. [17] will be used

with some modifications. The basic idea of this algorithm is to partition the graph

into k cells of about the same size (node wise) and select the four corner-most nodes of

each cell as landmarks. Efentakis et al. are using Buffoon [55] to partition the graph

which is similar to PUNCH and also works with natural cuts. The problem, though, is

that partitioners based on natural cuts are slow and their specialty, finding cells with

few boundary edges, serves no purpose for ALT. Instead, a general-purpose partitioner

could be used, but these may not be fast enough on large graphs either. The issue with

existing partitioners is that they create cells with certain features (e.g. connectivity,

amount of boundary edges, etc.), which increases processing time, even though those

features are not needed.

The only requirements for the partition are to have cells of the same size and compact

shape containing neighboring nodes. To fulfill this requirement, the following simple

method is proposed. Every node of a road network can be associated with x and y

coordinates. Sorting nodes in a set by their x or y coordinate and then splitting the set in

half creates two new sets according to the requirements. By repeating this process while

alternating the sorting on the x and y coordinates, a set (graph) can be partitioned into
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Figure 4.13: Partitioning a graph by coordinates. From left to right: The original
graph is split in half based on the x coordinates (blue line). The two new cells are split
in half again based on the y coordinates (orange lines). The four new cells are then

split in half by the x coordinates (green lines). This process can be repeated until the
cells have the desired size.

a given amount of cells of the same size with rectangular shape containing neighboring

nodes (Figure 4.13). This simple method partitions the largest graph from the dataset

(USA network) into 16 cells in less than 7 seconds. The required time can be further

reduced by processing subsequent cells in parallel.

After the graph has been partitioned, the corner-most nodes of each cell are marked

as landmark. This also means that several landmarks will be very close to each other,

which is less useful for ALT’s performance and should be avoided. Because Efentakis

et al. do not give a solution to this problem in their paper, the following method will

be used: During the distance calculation for a landmark l, the average distance from

this landmark l to all other landmarks is recorded. If a landmark is less than a certain

fraction of the average distance apart from l, it is removed.

Due to the removing of close landmarks, the final number can vary. To get a set

amount of landmarks some have to be added or removed. To remove superfluous ones a

list with the distances between every landmark is created. The landmark pair with the

shortest distance is then taken from the list and from this pair the landmark with the

shortest average distance to all other landmarks is removed. This process is repeated

until the desired number of landmarks is left.

If additional landmarks are required, the center-most nodes of the densest cells are

added. Because all cells contain the same amount of nodes and road networks are mostly

planar, the density of a cell can be determined by the size of its area. If no center-most

nodes are left, random nodes are chosen.

Algorithm Comparison

To assess the quality of the modified algorithm, it will be compared to randomly placed

landmarks and the original Partition-Corners algorithm (using PUNCH instead of Buf-

foon, removing close landmarks and fixing the number of landmarks as described above).

Because the randomly placed landmarks are different every time they are calculated, the

comparison can only give an approximate overview.
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Table 4.9 shows the increase in node efficiency between the modified algorithm and

randomly placed landmarks. In most cases, the modified Partition-Corners algorithm

works significantly better than randomly placed landmarks with an average increase in

efficiency of 34%. There are a few networks from the Cities - Other World category

though where it is worse. These networks have a small, dense center and are extremely

sparse in the surroundings. While the random algorithm places most landmarks in

the center, the modified one is ”wasting” landmarks in the sparse areas. The original

Partition-Corners algorithm suffers from the same problem on them.

Table 4.9: Comparison of the average node efficiency between the modified
Partition-Corners algorithm and randomly placed landmarks with

Bidirectional ALT and 36 landmarks. The numbers denote the efficiency increase in
percent. Every column shows a different combination of the full and contracted

networks with geometric distances and travel time metrics.

category
all
[%]

full
[%]

contr.
[%]

all
distance

[%]

all
time
[%]

full
distance

[%]

full
time
[%]

contr.
distance

[%]

contr.
time
[%]

C-NA 35.7 37.0 34.5 41.1 30.1 42.4 31.8 40.0 28.5
C-EU 38.8 41.2 36.4 51.1 25.4 53.0 29.0 49.2 21.6
C-OW 17.9 26.0 8.8 27.2 8.6 40.2 13.4 14.4 2.5
R-NA 47.3 31.8 56.4 31.0 68.7 15.1 48.8 38.8 83.4
R-EU 38.7 35.2 43.3 35.7 42.8 35.0 35.5 36.6 54.6
R-OW 57.6 - 57.6 41.8 101.2 - - 41.8 101.2
Continental 29.1 47.6 25.5 33.8 24.9 29.6 65.9 34.7 17.3
all 33.5 35.9 31.1 41.3 25.2 44.9 27.1 37.9 23.1

Table 4.10: Comparison of the average node efficiency between the modified and the
original Partition-Corners algorithm with Bidirectional ALT and 36 landmarks.
The numbers denote the efficiency increase in percent. Every column shows a different
combination of the full and contracted networks with geometric distances and travel

time metrics.

category
all
[%]

full
[%]

contr.
[%]

all
distance

[%]

all
time
[%]

full
distance

[%]

full
time
[%]

contr.
distance

[%]

contr.
time
[%]

C-NA 14.0 12.7 15.1 14.9 12.9 14.1 11.4 15.6 14.5
C-EU 14.7 15.4 14.0 17.6 11.1 17.4 12.9 17.8 9.0
C-OW 3.2 4.3 1.8 5.1 1.0 6.0 2.4 4.1 −0.9
R-NA 9.6 4.5 12.2 7.7 11.5 −4.7 13.2 13.7 10.6
R-EU 13.5 14.5 12.3 13.0 14.2 14.7 14.3 11.1 14.1
R-OW 15.5 - 15.5 12.7 21.4 - - 12.7 21.4
Continental 7.8 25.8 4.3 11.9 4.1 22.9 28.2 9.9 −0.8
all 11.9 11.9 11.9 13.7 9.8 13.5 10.2 13.9 9.3
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In Table 4.10, the increase in node efficiency between the modified and the original

Partition-Corners algorithm is shown. Even though both work after the same principal,

the modified algorithm is better in most cases. Additionally, the preprocessing (including

landmark distance calculation) of the modified algorithm only takes a few seconds more

in the worst case compared to randomly placing landmarks, while the original version

can take up to twice the time (i.e. several minutes) on larger graphs.

The performance gains with the unidirectional version of ALT are not as pronounced

but similar. The results can be found in the appendix (Section B.1 on page 129,

Table B.1, Table B.2).

4.6.3 Search on Road Networks

Search queries with ALT and Bidirectional ALT on road networks are demonstrated on

the Greater London Area in Figure 4.14 and Greater Chicago Area in Figure 4.15. Both

figures consist of several sub-figures: the first sub-figure contains the complete network

to show all landmarks, while the network is cropped and magnified to the area affected

by the search in the other sub-figures, which illustrate all of the different search and

metric combinations. The search starts in the city center in the east and ends in the

suburbs in the west on all graphs.

Using geometric distances on the Greater London Area, ALT performs much better

than A*. While A* only knows the distance from the current node in a straight line

to the target, the heuristic of ALT also contains information about the structure of the

network ahead due to the landmarks. This means A* has to scan more nodes in the

surroundings leading to the drop shaped search pattern (Figure 4.8 on page 55), while

ALT can follow possible shortest paths more directly, which can be seen in Figure 4.14b

and 4.14c. The backward search of the bidirectional search does exceptionally well,

which also means that one of the landmarks is lined up (almost) perfectly.

In comparison, the performance is not as good with travel times (Figure 4.14d and

4.14e). More nodes are scanned near the start and target and the forward and back-

ward searches branch out more, e.g. following several different motorway sections, even

though the same amount of landmarks in the same locations are used. Generally, the

unidirectional version of ALT performs worse with travel times than geometric distances.

The results are not as conclusive for the bidirectional version, which takes a small hit on

some graphs but performs equally or even better on others (see Table 4.11 on page 67).

The search with geometric distances does not work as well on the Greater Chicago

Area (Figure 4.15b and 4.15c). Even though ALT works great on the uniform grid graph

with just four landmarks and the Chicago network is more grid like, the performance

does not translate. The uni- and bidirectional searches follow several alternative paths

and get stuck in the surroundings. The main problem is that there is no landmark

behind (i.e. east of) the start and no distinct landmark behind (i.e. west of) the target,

which is also the reoccurring issue with ALT. Because the road network of Chicago is
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(a) Bidirectional ALT search with travel times on Greater London Area (224 × 116 km).

(b) ALT search with geometric distances. (c) Bidir. ALT search with geometric distances.

(d) ALT search with travel times. (e) Bidirectional ALT search with travel times.

Figure 4.14: ALT search on Greater London Area. Settled nodes are drawn as circles
in light green for the forward search and in light purple for the backward search. Nodes
in the open set are drawn as squares in dark green and dark purple for the forward and
backward search, respectively. Nodes touched by both searches are drawn in blue. The

shortest path is shown in red. Landmarks are marked with red dots.
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(a) Bidirectional ALT search with travel times on Greater Chicago Area (160 × 107 km).

(b) ALT search with geometric distances. (c) Bidir. ALT search with geometric distances.

(d) ALT search with travel times. (e) Bidirectional ALT search with travel times.

Figure 4.15: ALT search on Greater Chicago Area. Settled nodes are drawn as circles
in light green for the forward search and in light purple for the backward search. Nodes
in the open set are drawn as squares in dark green and dark purple for the forward and
backward search, respectively. Nodes touched by both searches are drawn in blue. The

shortest path is shown in red. Landmarks are marked with red dots.
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cut off at its densest part by Lake Michigan, it is impossible to set a few good landmarks

for the large amount of endpoints, even if done by hand. The efficiency can still be

increased by massively increasing the number of landmarks. For example using 224

instead of 26 landmarks, the node efficiency increases from 2.46% and 2.32% to 9% and

6.3% for the uni- and bidirectional version, respectively. However, the improvement is

disproportionate to the extra cost in preprocessing and memory usage.

The search with travel times (Figure 4.15d and 4.15e) is plagued by similar problems.

While the forward search has less problems leaving the city center, the uni- and bidirec-

tional search struggle at the target, with the forward search overshooting the target by

a large amount along the highway in the south-west. This is similar to the behavior that

has already been seen on the London graph above.

Remark

The alert reader may have noticed that the search patterns of the forward search differ

between the uni- and bidirectional searches in the figures. The reason for this is that a

slightly different heuristic has to be used for a reliable termination of the bidirectional

version, as has been explained in Section 2.7 on page 11.

4.6.4 Results & Conclusion

Table 4.11: Average performance of ALT and Bidirectional ALT with geometric
distances and travel times with 36 landmarks.

nodes settled query time [ms]

ALT Bidir. ALT ALT Bidir. ALT

category dist. time dist. time dist. time dist. time

C-NA 10 314 11 090 4 329 3 797 3.53 3.84 1.98 1.74
C-EU 4 951 5 232 2 405 2 681 1.70 1.80 1.07 1.17
C-OW 10 348 11 233 4 846 4 879 3.68 3.99 2.24 2.25
R-NA 106 890 122 655 44 426 31 166 36.13 46.04 20.91 15.88
R-EU 85 597 98 472 39 309 30 569 27.68 33.44 17.94 14.00
R-OW 128 831 122 782 35 171 30 160 54.10 52.97 19.67 17.01
Continental 301 754 348 991 131 741 99 471 111.81 128.73 67.17 51.04
all 38 210 43 341 16 708 13 235 13.33 15.59 8.01 6.41

The results over all test cases (see Table 4.8 on page 58 and Table 4.11) show that the

bidirectional version of ALT is on average two times faster and has a smaller performance

gap between geometric distances and travel times metrics than the unidirectional version.

While the bidirectional version of A* struggled to outperform the unidirectional one, this

is not the case with ALT. Even though ALT is subject to a similar performance impact

because for every node added to the open set the distance from and to landmarks has to
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be retrieved, by switching from the uni- to the bidirectional version significantly fewer

nodes have to be settled with ALT than it was the case with A*. This reduces the query

times enough to be faster on almost all test cases and only on very small networks the

benefits of the bidirectional version diminish.

The performance of ALT not only depends on the number of landmarks, but also on

the size of the network which can be seen by comparing the efficiency in Table 4.8 on

page 58 with the mean number of nodes in Table 3.3 on page 36. This is also the main

cause why ALT performs so much better on European cities, which have only half as

many nodes as American cities.

Even though the number of nodes is similar, European regions fare better than North

American. The reason for this is that the European category contains more networks

and some of them such as Austria, Cyprus and Poland achieve high efficiencies, but

Europe and North America have the same overall trend/results for the majority of the

networks.

The efficiency of ALT on contracted networks compared to their full versions gives a

mixed picture (Table 4.12). While slightly better on the contracted networks of North

American cities and about the same for European cities it is notable worse on the other

contracted networks.

Table 4.12: Average node efficiency of ALT and Bidirectional ALT on full and
contracted networks with 36 landmarks. The Continental and R-OW categories are not

included because they consist of contracted networks only.

ALT Bidirectional ALT

category full [%] contr. [%] ratio [%] full [%] contr. [%] ratio [%]

C-NA 6.46 7.93 123 15.12 16.14 107
C-EU 12.13 12.71 105 22.95 21.90 95
C-OW 7.20 6.27 87 16.15 12.47 77
R-NA 1.96 1.52 77 6.40 4.31 67
R-EU 4.68 3.45 74 10.80 7.72 71
all 7.71 7.09 92 16.45 13.72 83

In summary, the performance of bidirectional ALT is significantly better compared

to the other algorithms presented so far, even though only a simple method for land-

mark selection was used. The only disadvantage, beside the preprocessing phase, is the

increased memory consumption to store the distances from and to landmarks.
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4.7 Contraction Hierarchies (CH)

The Contraction Hierarchies algorithm reduces the search space for queries by apply-

ing two concepts, Hierarchies and Shortcuts, during a preprocessing phase. Nodes are

ordered and contracted based on their priority terms, which is basically the order of

their importance as part of shortest paths. Shortcuts are added to retain shortest paths

throughout the hierarchy (see Section 2.9 on page 15). One of the advantages of CH

compared to other algorithms such as ALT or CRP is, that it does not require additional

data structures because it only adds additional edges to the existing graph. The only

modification required is an additional field at edges to store the middle node of shortcuts

for path unpacking. This also means that the graph generated can be used as a base

by other algorithms for further processing or search queries. The main disadvantage of

CH is that the metric is required during preprocessing to create useful shortcuts. It is

possible to keep the initial node ordering from a different metric and only repeat the

hierarchy creation, but this has a severe impact on preprocessing and query times [22,

Chapter 5.4.6]. Consequently, the preprocessing has to be repeated for every metric.

4.7.1 Synthetic Grids

(a) Uniform synthetic grid. (b) Synthetic grid with randomly increased weights
(darker line shade) towards the graph center.

Figure 4.16: CH search on synthetic grid graphs. The start is the upper left and the
target the lower right end of the red line, which shows the shortest path found. Nodes
in the closed set (settled nodes) are drawn in light green for the forward search and in
light purple for the backward search. Nodes in the open set are drawn in dark green
and dark purple for the forward and backward search, respectively. Nodes touched by

both searches are drawn in blue.
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The version of the algorithm proposed by Geisberger et al. [22] is not designed for

uniform grids and thus performs poor on them. Uniform grid graphs contain no hierarchy

and every node has the same importance. Only the degree of the nodes at the edges

of the graph differs, with the corner nodes having the lowest degree. This means the

algorithm keeps processing nodes at the corners of the graph. This has two effects: first

of all, no shortcuts are created, because the path via the removed corner node is not

shorter than the one through the opposite node (see Figure 4.17). Second, the created

node order/hierarchy is worthless to improve search queries. Figure 4.16a shows a search

with CH on a uniform grid graph. Without shortcuts, the search has to follow the grid.

The search pattern reflects the order in which the nodes have been preprocessed, in this

case from the lower left to the upper right (the forward/backward search only processes

edges to/from nodes with a higher level in the hierarchy, respectively). CH can perform

better on uniform grid graphs, though, by modifying the preprocessing to also contract

nodes inside the graph, not only on the edges [61].

Figure 4.17: Contracting corner nodes. The orange node is contracted. The path
between the two blue nodes via the orange node has the same length as the path via
the opposite node in green and no shortcut has to be created. From left to right: the

predicate holds for repeated contraction of corner nodes.

By introducing varying edge weights, the graph obtains structuring which can be used

as hierarchy for CH. The preprocessing now adds shortcuts and the nodes are ordered

in a hierarchical way. The typical search pattern, as shown in Figure 4.16b, emerges.

The search is not bound to follow the grid in the original graph anymore, but can use

shortcuts (which are not shown in the figure) to work its way up in the hierarchy to

more important nodes until the forward and backward searches meet.

4.7.2 Preprocessing on Road Networks

To better illustrate how nodes are ordered and shortcuts are created, the road network

of Graz, a city in Austria, with travel times will be inspected. Graz has been chosen

because a visual inspection of the shortcuts is much easier on a small graph. The

full graph (48 437 nodes, 50 311 edges) and the contracted graph (7 241 nodes, 9 115

edges) will be used to see if they behave differently. As a reminder, paths consisting of

neighboring nodes with degree two are contracted into a single node in the contracted

graph. The degree distribution prior to preprocessing is shown in Table 4.13.
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Table 4.13: Degree distribution for the road network of Graz.

full contracted

degree nodes [%] nodes [%]

1 2 067 4.3 2 009 27.7
2 41 277 85.2 195 2.7
3 4 402 9.1 4 348 60.0
4 661 1.4 659 9.1
5 29 0.1 29 0.4
6 1 0.0 1 0.0
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Figure 4.18: Edge and degree distribution for the road network of Graz with travel
time metric. Left: Number of undirected edges for the given number of nodes, sorted
by hierarchy level in ascending order. Right: Number of nodes with the given degree,

including shortcuts.

Applying the CH preprocessing to the full graph creates 36 228 shortcuts (72% in-

crease in edges) and 6320 shortcuts (69% increase in edges) with the contracted graph.
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In Figure 4.18, the edge and degree distribution after preprocessing is shown. The num-

ber of normal edges and shortcuts for the given number of nodes in 4.18a and 4.18c is

sorted by the hierarchy level (in CH, every node has its own level, which means there

are as many levels as nodes). The results for the full and contracted graph are similar.

No shortcuts are created for the first 30-40% of levels, because unimportant nodes are

contracted first. These are mostly leaf nodes and intermediate nodes from access roads

(e.g. the contracted graph has 27.7% of all nodes as endpoints), which are similar to

the corner nodes in the uniform grid graph. As the algorithm starts processing more

important nodes, the number of shortcuts starts growing polynomial while the number

of normal edges keeps growing linear. This is also the reason why the preprocessing

phase is fast at the beginning but gets increasingly slower at the end. With every new

shortcut, the graph gets denser and better connected, which increases the time required

for witness path (shortest path) searches during contraction.

The degree distribution after preprocessing (Figure 4.18b and 4.18d) resembles a

power-law distribution. By extending the graph with hierarchy depending shortcuts, it

changes from a random to a scale-free network with high degree hubs. This enables

search queries to take advantage of the small-world effect and find shortest paths with

significantly fewer settled nodes. (For a detailed discussion of power-law distribution,

scale-free and small-world networks, see [45].)

Figure 4.19 illustrates various hierarchy level ranges of the graph. All edges incident

to the nodes from the specified hierarchy levels are shown, including those from other

(lower) levels. For better orientation, major roads are drawn additionally in orange as

overlay, but the overlay is not part of the respective graphs.

• Figure 4.19a: The initial road network. The area to the north and east is pre-

dominantly residential. The white spots in the south are the airport and wetlands

around the River Mur. The city is confined by the Plabutsch mountain in the west.

• Figure 4.19b: The nodes and incident edges of the top 5 levels. Even though the

top 5 levels consist of only 5 nodes and 17 normal edges, they are connected to

many important hubs at the city center by 186 shortcuts.

• Figure 4.19c: The city center is already well connected by 1 096 shortcuts with just

50 levels.

• Figure 4.19d: Within the top 250 levels, the network spans the whole city with

4 087 shortcuts.

• Figure 4.19e: Reaching 10 000 levels, most of the major road segments are part of

the graph. All hubs are connected and shortcuts for side roads in the outskirts

show up. Only 32% of the shortcuts are left for the remaining 38 437 levels.

• Figure 4.19f: The full network with all shortcuts.
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(a) Full network without shortcuts. (b) Top 5 levels.

(c) Top 50 levels. (d) Top 250 levels.

(e) Top 10 000 levels. (f) Full network with all shortcuts.

Figure 4.19: CH network layout for various hierarchy level ranges for the road network
of Graz (19 × 17 km). Edges from the original graph are drawn in black and shortcuts
created by CH in blue. For better orientation, major roads are drawn additionally in

orange as overlay, but the overlay is not part of the respective graphs.
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Number of Shortcuts

In Figure 4.20, the number of shortcuts for all networks is shown, separated by network

type and metrics. How pronounced the hierarchy of a network is depends on the metric

used. As can be seen in the figure, fewer shortcuts are created with travel times which

means the hierarchical structure is stronger. The reason for this is simple: shortest

paths with travel times often run along roads with a higher speed limit. These roads

are less often (over all networks, only 20% of the edges are motorways or primary roads)

which means shortest paths often use the same edges. In comparison, using geometric

distances leads to straighter paths utilizing more secondary roads which means the edges

in a graph are used more evenly. The impact of this is significant with up to twice as

many shortcuts created with geometric distances.
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Figure 4.20: Number of shortcuts for all networks shown as percentage of the normal
edge count. Sorted by the percentage of shortcuts with travel times on contracted

networks in ascending order.

The figure also shows that switching between full and contracted networks does

influence the percentage of created shortcuts to a varying degree. While using the

contracted network is beneficial in many cases with travel times, the opposite is true

with geometric distances.

How many shortcuts are created depends not only on the used metric but also how the

graph is connected. Over all networks, the fewest shortcuts are created for the contracted

network of Atlanta (50% increase in edges) and the most shortcuts are created for the

contracted network of Buenos Aires (182% increase in edges). A section of both networks

is shown in Figure 4.21. The network of Atlanta consists of many dead end roads (31%

of all nodes have degree one) which do not contribute to the creation of shortcuts, as

has been shown above on the network of Graz. Buenos Aires in contrast has a dominant

grid layout (only 5% of all nodes have degree one). One may expect that a grid layout

creates fewer shortcuts, as was the case with the uniform synthetic grid. But because

the grid layout of Buenos Aires is not uniform and the network is traversed by many
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(a) Atlanta (10 × 10 km). (b) Buenos Aires (10 × 10 km).

Figure 4.21: Road network section of Atlanta and Buenos Aires.

arterial roads, a large number of shortcuts are created.

On average, 82% of the normal edge count are added as shortcuts. Generally, it is

not trivial to predict how many shortcuts are created, because the priority terms, which

are used to determine the order in which nodes are contracted, consist of several factors.

Preprocessing Time

The following figures and numbers are based on the sequential basic algorithm. Prepro-

cessing times can be reduced by applying various optimizations (see the original paper

on CH [23]) and by parallelizing (see [36, 67]).
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Figure 4.22: Time required for preprocessing for all networks, shown in seconds on a
logarithmic scale. Sorted by the contracted networks’ normal edge count in ascending

order.
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Figure 4.22 shows the total time required for preprocessing for all networks which is

only a few seconds for small and less than a minute for medium sized graphs. Prepro-

cessing on large graphs can take up to an hour, though. With travel times, significantly

less time is required compared to geometric distances. For example the contracted

network of North America requires 13 minutes with travel times and 59 minutes with

geometric distances.
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Figure 4.23: Ratios between the full and contracted version of a network for
preprocessing time with travel times, preprocessing time with geometric distances and
normal edge count. Sorted by the contracted networks’ normal edge count in ascending

order.

The ratios between full and contracted networks for the number of normal edges,

preprocessing time with travel times and preprocessing time with geometric distances

are shown in Figure 4.23. Most full networks have more than three times as many edges

than their contracted version. Preprocessing times do not scale to the same extend,

however. Switching from the full to the contracted network reduces the required average

time by 43% with travel times and only by 20% with geometric distances.
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Figure 4.24: Average time required for preprocessing per normal edge for all networks.
Sorted by the contracted networks’ normal edge count in ascending order.
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The average time required per normal edge, which is shown in Figure 4.24, does not

increase with the size of the graph and is more stable/similar on full networks. Because

the total preprocessing time improves only slightly by switching between the full and

contracted network with geometric distances, the time spent per edge is noticeable worse

with it. The outlier in the center is the network of Buenos Aires.

4.7.3 Search on Road Networks

Figure 4.25: CH search on Graz (19 × 17 km) with travel times. Settled nodes are
drawn as circles in light green for the forward search and in light purple for the

backward search. Nodes in the open set are drawn as squares in dark green and dark
purple for the forward and backward search, respectively. Nodes touched by both

searches are drawn in blue. The shortest path is shown in red. Major roads are drawn
in orange.

CH does not use additional or special data structures which means any search al-

gorithm can work with the preprocessed network. In this work, the bidirectional Dijk-

stra’s algorithm is used for search queries. There is one restriction that has to be obeyed
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to take advantage of the hierarchy. The forward search may only consider edges to nodes

at a higher hierarchy level and the backward search only edges from higher to lower level

nodes.

A search with CH on the road network of Graz is shown in Figure 4.25. The queried

path starts east, at the University of Technology and ends at the main railway station.

CH only settles a few nodes near the start and target and quickly works its way up in the

hierarchy through the shortcuts. Comparing the search in Figure 4.25 with the network

layout previously shown in Figure 4.19 on page 73 reveals that most of the visited nodes

match with hubs from the top levels. Compared to the other algorithms, CH achieves

the highest efficiency (see Table 4.14). For this search, only 109 nodes have been settled,

while the shortest path has 212 nodes, which results in an efficiency of 195%. This is

possible because shortcuts created during preprocessing combine nodes.

Table 4.14: Efficiency comparison between all algorithms.

node efficiency [%] edge efficiency [%]

algorithm mean median mean median

Dijkstra 0.29 0.23 0.13 0.10
Bidir. Dijkstra 0.56 0.43 0.26 0.20
A* 1.25 0.98 0.57 0.46
Bidir. A* 2.01 1.60 0.91 0.71
ALT 7.38 5.98 3.36 2.74
Bidir. ALT 14.98 13.45 6.81 5.96
CH 150.64 99.93 15.81 8.29
CRP 79.40 50.73 4.85 2.47

For comparison with the other algorithms, the same search as before on the Greater

London and Chicago Area is shown in Figure 4.26. The search pattern is similar to

the search on the network of Graz. Because the graph of London has 33 times and the

graph of Chicago 17 times more nodes, there are much more important hubs compared

to Graz and it is less obvious why each node was settled without closer inspection. The

main difference between both searches is the efficiency, which is 377% on the London

graph, while it is 89% on the Chicago graph. The discrepancy is especially high for

this single search, while the average efficiency after 100 000 random searches is 254% for

London and 139% for Chicago, which puts both above the median over all test cases

that happens to be 100%. No definite reason could be found why the performance is so

much better on the network of London.

4.7.4 Results & Conclusion

The average performance of CH over all test cases is shown in Table 4.15. Compared

to the other algorithms presented so far, its performance is unparalleled. Even on the

largest networks the average query only takes a few milliseconds. Due to the addition of
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(a) Greater London Area (224 × 116 km).

(b) Greater Chicago Area (160 × 107 km).

Figure 4.26: CH search on Greater London and Chicago Area with travel times.
Settled nodes are drawn as circles in light green for the forward search and in light
purple for the backward search. Nodes in the open set are drawn as squares in dark
green and dark purple for the forward and backward search, respectively. Nodes
touched by both searches are drawn in blue. The shortest path is shown in red.
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shortcuts to the graph the node efficiency is particularly high with an average of 150%

over all networks and metrics and a top value of 870% on the network of California.

The preprocessing of CH was faster and added fewer shortcuts with travel times than

geometric distances and as expected the results show that queries with travel times are

also significantly faster.

Table 4.15: Average performance of CH with geometric distances and travel times.

node efficiency [%] nodes settled query time [ms]

category distance time distance time distance time

C-NA 100 118 589 415 0.43 0.25
C-EU 118 125 436 344 0.31 0.21
C-OW 103 121 603 439 0.46 0.28
R-NA 204 225 1 148 775 1.40 0.72
R-EU 283 290 1 010 685 1.40 0.70
R-OW 114 92 1 842 996 2.08 0.75
Continental 261 363 1 390 824 2.39 1.24
all 142 159 685 480 0.69 0.38

While the efficiency of all previous algorithms dropped with increasing network size

the opposite is true for CH. The reason for this is that on larger graphs the shortest

paths found by random searches consist of more nodes which means more nodes are

skipped by shortcuts.

Table 4.16 shows the impact of switching from full to contracted networks. Even

though the number of settled nodes stays almost the same, the query times improve.

This is due to the time required to reconstruct the shortest path by unpacking shortcuts.

If the intermediate nodes are not required and the reconstruction is skipped, the query

times are actually equal (see last 2 columns of Table 4.16).

Table 4.16: Average performance of CH on full and contracted networks. The
Continental and R-OW categories are not included because they consist of contracted
networks only. The query times without path reconstruction are only from networks

that have a full and a contracted version.

node efficiency [%] nodes settled query time [ms]

query time [ms]
without path
reconstruction

category full contr. full contr. full contr. full contr.

C-NA 177 41 505 499 0.40 0.28 0.21 0.22
C-EU 201 42 394 386 0.32 0.20 0.15 0.15
C-OW 180 44 531 511 0.44 0.30 0.24 0.23
R-NA 576 94 864 994 1.36 0.96 0.45 0.45
R-EU 537 64 822 871 1.43 0.72 0.45 0.45
all 249 66 540 619 0.57 0.50 0.24 0.24
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To see if the query performance is influenced by the number of shortcuts created,

the node efficiency was compared with the percentage of shortcuts created over all test

cases but no correlation was found between them.

The preprocessing phase only takes a few seconds on small and medium sized graphs

(as has been shown in Figure 4.22) and can be improved further through optimizations

and parallelization [23, 36, 67] which means CH is suitable for dynamic networks that

update frequently. Furthermore, the low query times allow it to handle large number of

queries. On larger countries/regions and continental sized networks the preprocessing

starts taking minutes and without optimizations and multi-threading can even take up

to an hour. While other algorithms such as ALT or CRP can reuse parts to speed up the

preprocessing, this is not possible with CH without a severe impact on the performance

[22]. CH can be parallelized, but not to the same degree/speedup as ALT and CRP due

to its hierarchical nature [67]. This means that the only advantage that remains on large

networks are the low query times.

4.8 Customizable Route Planning (CRP)

Customizable Route Planning is the most complicated of all presented algorithms. It

has a preprocessing stage which partitions the graph in cells with as few boundary edges

as possible and creates a multilevel overlay which is used during queries. The search

for the shortest path is executed with a bidirectional Dijkstra’s algorithm. Because the

partitions and overlay can be created metric independently, customization (partial and

complete edge weight changes) can be applied much faster compared to ALT or CH.

Another advantage of CRP is that its preprocessing is highly parallelizable, including

customization.

4.8.1 Synthetic Grids

Figure 4.27 shows a CRP search with 5 levels on a grid graph. The start and target node

have been chosen farther apart (compared to previous examples) to better demonstrate

how nodes are settled in a multilevel search. The partitioning in CRP is optimized for

road networks with natural cuts (e.g. rivers, mountains; see Section 2.11 on page 24),

but a grid graph as shown in the figure does not have such. While the algorithm still

works with this kind of graphs, its advantage over general purpose partitioners is lost,

i.e. it does not find partitions with considerably fewer boundary edges.

Figure 4.27a with the uniform grid will be analyzed first. The nodes shown as settled

(drawn in green, purple and blue) are boundary nodes of cells on various levels, except

those next to the start and target node, which are from the original graph. The search

must scan the nodes in the original graph up to the first boundary, because only there

a transition to a higher level is possible. Areas of unsettled nodes get larger farther

away from the start and target node because the search uses the highest level where the
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corresponding cell does not contain the start nor the target node. This means larger

cells at higher levels can be used. For a better illustration, the partitions of all levels are

shown in Figure 4.28, except level 0 and 5, because at level 0 every node is its own cell

and at level 5 (the top level) all nodes are in the same cell.

(a) Uniform synthetic grid. (b) Synthetic grid with randomly increased weights
(darker line shade) towards the graph center.

Figure 4.27: CRP search on synthetic grid graphs. The start is the upper left and the
target the lower right end of the red line, which shows the shortest path found. Nodes
in the closed set (settled nodes) are drawn in light green for the forward search and in
light purple for the backward search. Nodes in the open set are drawn in dark green
and dark purple for the forward and backward search, respectively. Nodes touched by

both searches are drawn in blue.

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

Figure 4.28: CRP partitions of the grid graph from Figure 4.27.

Comparing both figures (4.27, 4.28), the outlines of the cells from higher levels can

be spotted easily in the pattern of the settled nodes. It is important to note that cells

always share their boundaries with the cells from the next lower level, otherwise the

transition between levels would not work. In the absence of natural cuts, the shape of
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the cells is purely a result of the random factors used during partitioning (see Section 2.11

on page 24). At level 2 (Figure 4.28b), four cells with distinctly smaller sizes than the

others can be spotted. This is a side effect of the grid graph and happens because the

partitioner is tuned to optimize for fewer boundary nodes and not balanced cell sizes.

Even though CRP is not designed for grid graphs, the pattern shown by the settled

nodes in Figure 4.27 is characteristic of it, as will be shown in further examples. The

performance on this graph is poor though, because of the high number of boundary

nodes. More than 40% of the nodes at level 1 are boundary nodes. For road networks

the median is 4.62% over all test cases.

A last thing to note is the area where the forward and backward search meet each

other which are the nodes shown in blue. As described in the theoretical part, a bidirec-

tional search can not stop as soon as each search front meets the other the first time.

This has the consequence that both searches may have to expand into more than one

cell that has its boundary nodes already settled by the other. In Figure 4.27a there are

four such cells.

Figure 4.27b shows the synthetic grid with increased edge weights towards the graph

center. The partitioning for this graph is the same as for the other, because it is in-

dependent of the edge weights. The search itself though, which uses a bidirectional

Dijkstra’s algorithm, expands along the cells with the shortest distance. This can be

seen on the right side in the figure, where a cell that had nodes settled by both searches

(shown in blue) previously on the uniform grid now only has nodes settled by the back-

ward search (shown in purple). The forward search expanded faster at the bottom of

the graph and the shortest path was already found before it could reach through at the

center.

4.8.2 Partitioning on Road Networks

How CRP works with real road networks will be analyzed now, starting with a close look

at the partitioning, which is the key part for its performance.

Natural Cuts

Because it is clear from a theoretical standpoint what parts (those where the network flow

is limited the most) qualify as natural cuts (see Section 2.11 on page 24), the following

paragraphs will focus on what constitutes a natural cut in practice.
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Figure 4.29: CRP partition of the North American road network with rivers shown on
top of it in blue.

Continental Scale. In Figure 4.29 the partition of the North American road network

with rivers on top of it is shown. The abrupt change in the density of the road network at

the Mexican border happens because the used data from OpenStreetMap is less detailed

for rural parts of Mexico. The first thing to notice is, how the major part of the cell

boundaries run along rivers. Additional natural cuts are the mountain ranges in the

west and the borders to Canada and Mexico are significant boundaries for two cells.

The partition created contains 27 cells with only 1 636 boundary edges (126 per cell on

median), which constitute less than 0.006% of all 29 743 795 edges in the graph. The

partition of continental Europe, which is shown in Figure 4.30, follows the same pattern.

Most cell boundaries run along rivers and mountain ranges. It contains 22 cells with

1 532 boundary edges (142 per cell on median), which also constitute less than 0.006%

of all 26 372 551 edges. Comparing these results to other algorithms shows that CRP

finds better partitions with fewer boundary edges on road networks because of its focus

on natural cuts (see [11, p. 21] for a detailed comparison).

On a continental scale, rivers and mountain ranges can be seen as the dominating

factor for partitioning, with borders only playing a minor part. While there are also

huge desert areas on earth without rivers in abundance such as the Sahara, Central Asia

or Australia, those are mostly uninhabited without vast road networks. Still it remains

to be seen how the partitioning works on a smaller scale where rivers and mountains are

more spread out.
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Figure 4.30: CRP partition of the continental European road network with rivers
shown on top of it in blue.

Figure 4.31: CRP partition of the Greater London Area (224 × 116 km) road network
(black) with waters (blue) and railways (red) shown on top of it.

Greater Metropolitan Area Scale. Figure 4.31 shows the partition of the Greater

London Area with waters and railways on top of it. Compared to the partitions of Europe

and North America, rivers are not as important as boundaries anymore and there are

no large mountains around London. Only the River Thames cuts right through the road
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network, while its tributary rivers only matter at a few segments. The dense rail network

is a main factor near the city center because the number of crossings is small compared

to the amount of roads in the dense network next to it. Outside of the city center the

opposite can be observed. While the rail tracks and motorways lead through towns

surrounding London, the cell boundaries run between these towns in the rural areas

with few roads (e.g. all boundaries in the northern part show this behavior). Motorways

have almost no influence on the partitioning on this graph. Two main reasons for this

circumstance can be found: There are no motorways that lead into the city center where

they could have a similar effect to railways and the motorways outside of London are

subject to the effect described just before. Another reason for the division of the road

network can be seen in the city center as empty (white) spots, which are parks and large

complexes of buildings such as shopping centers and industrial buildings (power plants,

sewage plants etc.). The partition created contains 14 cells with 400 boundary edges (59

per cell on median), which constitute 0.024% of all 1 675 960 edges.

Figure 4.32: CRP partition of the Greater Chicago Area (160 × 107 km) road network
(black) with waters (blue) and railways (red) shown on top of it.

In Figure 4.32 the partition of the Greater Chicago Area with waters and railways

on top of it is shown. Compared to the Greater London Area, the freeways lead straight

into the city center. Furthermore, the suburbs have a different layout. While London

has many smaller towns, separated by rural areas, surrounding it, Chicago features a

continuously urban sprawl only broken up by some remaining parks and recreational
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areas. The graph only has half the number of nodes resulting in a partition with fewer

cells. The city center is split by the Chicago River, which is encompassed by rail tracks

and a freeway. Also, there are several industrial zones along the river which represent

additional barriers. The northern part of the city center is cut off by freeways, cemeteries

and the large O’Hare International Airport in the west and a river, freeways and golf

courses in the north. On the contrary, the southern part of the city center is missing

many features of the north and is mostly cut along parks and undeveloped zones. The

remaining outer cells are for the most part separated by rivers and undeveloped land.

Even though there are clear differences between the layouts of the London and Chicago

area, the quality of the partition is, considering the reduced number of cells, similar,

containing 8 cells with 283 boundary edges (80 per cell on median), which constitute

0.03% of all 920 466 edges.

Comparing the continental scale with the larger metropolitan area partitions, rivers

are not as dominating as before. Railways and motorways/freeways only play a role at

dense areas near or in the city center. A new important factor though are larger road free

zones which disrupt the network. Those are mainly undeveloped land on the outskirts

and parks, recreational areas and building complexes such as airports, shopping centers

and industrial zones closer to the city center.

Figure 4.33: CRP partition of the London City Center (30 × 17 km) road network
(black) with waters (blue) and railways (red) shown on top of it.

City Scale. Partitioning on a larger metropolitan area scale is still high up in the

multilevel hierarchy, actually it is the second highest level with the settings used. To

complete the analysis, the city center networks of London (Figure 4.33) and Chicago
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Figure 4.34: CRP partition of the Chicago City Center (30 × 17 km) road network
(black) with waters (blue) and railways (red) shown on top of it.

(Figure 4.34) will be inspected now. As can be seen in both figures, all the factors men-

tioned before are parts of boundaries, even though railways and freeways seem to have

no effect in some areas, which can be explained with the fact that they are elevated in

the city center (the rapid transit system in Chicago is actually called Chicago Elevated).

Because of the small cell size, boundaries also start running along residential roads at

areas without any noticeable disruption in the network. This can be seen best in the

northern part of the Chicago graph, with the negative effects of the grid graph beginning

to show. While the cells in the London partition have 18 incident edges on median, the

cells in the Chicago partition have almost twice as many with 35. One level below on

level 1, the Chicago cells have 18 incident edges on median, while the median over all

networks is 9.

Conclusion. As has been shown, it depends on the scale at which a network is par-

titioned to specify what is actually responsible for the cuts. On large scales, natural

cuts are dominated by things one would associate with the term in the first place, such

as mountain ranges and rivers. On smaller scales, other things come into play which

are not that natural such as motorways and railways or larger zones (e.g. airports,

shopping centers or industrial areas). While one may think that cuts require something

that blocks the expansion of the road network, areas with a sparser network surround-

ing denser parts such as towns can also be a natural cut. On the smallest scales, the

concept of natural cuts starts reaching its limits and its advantage over general purpose

partitioners diminishes.
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Boundary Sizes

All networks are partitioned using the same settings in accordance with the recommend-

ations by Delling et al. (see [10, Chapter 7.2]) and a cell size of s = 2level∗3+5 . The

maximum and mean cell sizes for each level are shown in Table 4.17. The deviation

increase between maximum and average values with rising level is due to networks not

matching the size ratio (i.e. being too small) at the top level to fill whole cells.

Table 4.17: Cell sizes (node count) for the partition at the given level over all networks.

level max cell size mean cell size

1 256 206
2 2 048 1 688
3 16 384 13 355
4 131 072 94 130
5 1 048 576 461 091

In Figure 4.35, the percentage of boundary nodes per level is shown. While the num-

bers vary between individual networks (up to a factor of six at the first three levels), they

stay constant over all networks, unaffected by their different sizes. For most networks,

the percentage of boundary nodes follow the same trend between levels, e.g. if a network

has a higher than average number of boundary nodes at level 1, this is also true for the

other levels. This can be attributed to the fact that cells at a higher level share their

boundary nodes with cells at lower levels, i.e. the partitions at different levels are not

independent from each other. The results for level 4 and 5 are skewed at the start of the

curves due to the networks being too small to fill whole cells. The networks where the

partitioning performs the worst and best are similar to those from CH’s preprocessing.

Dense and highly connected graphs such as Buenos Aires (Figure 4.21b on page 75) or

the Chicago City Center (Figure 4.34) create the most boundary nodes.
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Figure 4.35: Percentage of nodes that are boundary nodes in the partition at the given
level. Sorted by the networks’ node count in ascending order.

89



The number of boundary nodes and edges per cell are shown in Figure 4.36. A

boundary node can have more than one edge that connects it to other cells but as the

sub-figures show this rarely happens as the results are almost identical. The number of

boundary nodes per cell increases with the level but higher levels also have fewer cells

and the total number of boundary nodes drops, as shown in Figure 4.35.
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Figure 4.36: Number of boundary nodes and edges per cell over all networks at the
given level.

Preprocessing Time

The following figure and numbers are based on the sequential algorithm. Preprocessing

times can be significantly reduced by parallelization because many steps can be executed

independently. For example switching from one to four threads makes partitioning 2.6

times faster [11, p. 15]. By using twelve threads, customization is almost ten times faster

[9, p. 24].

0.01

0.1

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

ti
m
e
[s
]

network

partitioning, contracted network
partitioning, full network

customization, contracted network
customization, full network

Figure 4.37: Time required for preprocessing for all networks, shown in seconds on a
logarithmic scale. Sorted by the networks’ normal edge count in ascending order.
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Figure 4.37 shows the time required for partitioning a network and for customiza-

tion. During customization, the cliques are created, i.e. the shortest paths between all

boundary nodes of a cell are computed. Partitioning and customization is faster with

contracted than with full networks in all cases. In contrast to CH, the partitioning is

independent of the metric used. For small and medium sized graphs, the customization

takes less than a second and even on larger ones it stays below ten seconds. Only on the

largest graphs, namely the European and North American road networks, it can take up

to a minute. However, as has been mentioned before, the customization is highly paral-

lelizable. In [10], Delling et al. demonstrate that the customization of the European and

North American network can be done in less than ten seconds by using twelve cores.

Contracted Networks

(a) Full network, level 1. (b) Full network, level 2.

(c) Contracted network, level 1. (d) Contracted network, level 2.

Figure 4.38: Partition comparison of Greater London Area’s full and contracted
network (magnified section of the center). Because of the different node densities, the

size of the zones spanned by the cells do not match on the same level.

In contracted networks paths consisting of neighboring nodes with degree two are

contracted into a single node which reduces the number and density of nodes in the

network. This has the effect that the space spanned by cells gets larger, as shown in

Figure 4.38. Even though the number of nodes per cell stays the same, the network is cut
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differently because the cell boundary increases. Due to this the cells in the contracted

networks that have been tested have approximately 1.7 times more boundary nodes.

Table 4.18: Comparison of the median number of boundary nodes per cell per level
with different cell sizes over all networks with a full and contracted version. The first
and second row show the results with the default size and the last row with a smaller

size.

boundary nodes

network type cell size (s) level 1 level 2 level 3 level 4 level 5

full s = 2level∗3+5 6 12 24 44 53.5
contracted s = 2level∗3+5 11 22 41 42 58
contracted s = 2level∗3+3 7 13 27 46 52

To see how this influences the preprocessing and performance of CRP, the tests have

been repeated with a smaller cell size that better matches the partitioning of the full

networks. In Table 4.18, the obtained median numbers of boundary nodes per cell are

compared with the previous ones. Partitioning the contracted networks with the same

cell size as the full networks increases the number of boundary nodes per cell as if a level

was skipped. By reducing the cell size, the numbers resemble those of the full networks

again. The results at higher levels, at least for the contracted networks with the default

cell size, are not as representative because, as has been mentioned before, the networks

are too small to fill whole cells or create more than one cell at the top level.
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Figure 4.39: Time required for preprocessing for all contracted networks with different
cell size. Sorted by the networks’ node count in ascending order.

The impact of different cell sizes on the preprocessing time is shown in Figure 4.39.

While the customization phase takes about the same time, partitioning with a smaller

cell size is slower in most cases. The two outliers are the network of Buenos Aires and

Tokyo. In Table 4.19, the average query times from contracted networks with different

cell sizes are compared which shows that a slightly better query performance is achieved
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with the default cell size. In conclusion, even though using the default cell size leads to

more boundary nodes with contracted networks compared to their full version, reducing

the cell size to match the number of boundary nodes does not improve the preprocessing

nor the query times in most cases and should therefore not be done.

Table 4.19: Comparison of the query times on contracted networks with the default cell
size s = 2level∗3+5 and a smaller size s = 2level∗3+3.

query time [ms]

default size smaller size

category distance time distance time

C-NA 0.33 0.30 0.34 0.31
C-EU 0.20 0.19 0.20 0.18
C-OW 0.35 0.32 0.38 0.36
R-NA 0.80 0.75 0.87 0.82
R-EU 0.61 0.54 0.70 0.61
all 0.35 0.32 0.37 0.34

4.8.3 Search on Road Networks

The search on road networks works equally to the synthetic grid. Because of the ab-

straction through the multilevel overlay the influence of the underlying network is small.

Figure 4.40 illustrates a search with six levels on the Greater London and Chicago Area

with travel times. The forward and backward search start scanning nodes at the lowest

level at the start and target, working up the hierarchy at nodes farther away. The nodes

touched by both searches run along the boundaries of the cells from the various parti-

tions, as can be seen by comparing the search graphs with the partitions shown before

(Figure 4.31 on page 85, Figure 4.32 on page 86).

As with the other bidirectional algorithms before, either the forward or backward

search is executed, depending on which has fewer nodes in the open set (see Section 2.5

on page 8). Because the network around the start node in the city center is denser, which

results in more boundary nodes, the backward search (purple) extends farther than the

forward search (green).

Due to the only small difference in the number of settled nodes and query times

between travel times and geometric distances (see Table 4.20), the search pattern with

geometric distances is almost identical to Figure 4.40 and therefore omitted.

4.8.4 Results & Conclusion

In Table 4.20, the average performance of CRP over all test cases is shown. Of the

presented algorithms, CRP is the only one that can compete with the performance of

CH. Due to the overlay network which only consists of the cells’ boundary nodes, a high
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(a) Greater London Area (224 × 116 km).

(b) Greater Chicago Area (160 × 107 km).

Figure 4.40: CRP search on Greater London and Chicago Area with travel times.
Settled nodes are drawn as circles in light green for the forward search and in light
purple for the backward search. Nodes in the open set are drawn as squares in dark
green and dark purple for the forward and backward search, respectively. Nodes
touched by both searches are drawn in blue. The shortest path is shown in red.
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efficiency is achieved with an average of 79% over all networks and metrics and a top

value of 569% on the network of Spain. The used metric only has a small influence on

the performance. With travel times, slightly fewer nodes are settled and queries are a

little bit faster. Compared to CH, the node efficiency is not as good but the query times

are similar.

Table 4.20: Average performance of CRP with geometric distances and travel times.

node efficiency [%] nodes settled query time [ms]

category distance time distance time distance time

C-NA 57 50 996 943 0.34 0.31
C-EU 63 55 793 759 0.22 0.20
C-OW 59 54 1 014 969 0.36 0.33
R-NA 139 112 1 885 1 822 1.13 1.04
R-EU 198 141 1 456 1 391 0.78 0.68
R-OW 97 44 2 160 2 093 1.27 1.15
Continental 170 150 2 312 2 242 1.86 1.71
all 87 72 1 127 1 078 0.49 0.45

Table 4.21: Average performance of CRP on full and contracted networks. The
Continental and R-OW categories are not included because they consist of contracted
networks only. The query times without path reconstruction are only from networks

that have a full and a contracted version.

node efficiency [%] nodes settled query time [ms]

query time [ms]
without path
reconstruction

category full contr. full contr. full contr. full contr.

C-NA 86.92 20.92 989 950 0.34 0.32 0.32 0.31
C-EU 96.17 21.71 808 743 0.23 0.19 0.21 0.19
C-OW 90.98 21.66 1 005 978 0.36 0.33 0.33 0.33
R-NA 354.64 48.67 1 449 1 988 0.77 1.19 0.65 0.73
R-EU 315.16 39.43 1 380 1 462 0.74 0.72 0.61 0.55
all 129.52 36.23 1 042 1 154 0.42 0.52 0.34 0.33

Switching from full to contracted networks only has a small effect (see Table 4.21),

with contracted networks performing slightly better. The reason for the discrepancy at

the Regions - North America category is that it consists of twelve contracted and only

four full networks which skews the results.

Because of the overlay network, the intermediate nodes of shortest paths have to be

reconstructed, similar to CH. There are different ways to manage the overlay network

with a trade-off between increased processing time and memory usage. In this work all

the intermediate nodes are kept in memory which has the smallest performance impact
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on query times, as can be seen in Table 4.21. There is almost no impact from the

reconstruction on the Cities & Metropolitan Areas networks and only on the Regions &

Countries the performance starts dropping.

On small and medium sized graphs, even with the sequential algorithm the prepro-

cessing of CRP only takes a few seconds and the customization stays below one or two

seconds (as has been shown in Figure 4.37). While the preprocessing on larger graphs

starts taking a significant amount of time, it is metric independent, which means the

results can be reused for different metrics. Even on the largest graphs the customization

itself takes less than a minute and can be reduced to a few seconds by parallelization

[10]. This and the fast query times make CRP suitable for frequently updated dynamic

networks of continental size or even larger. Furthermore, smaller changes to the network

inside cells can also be handled by just repeating the customization phase.
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Chapter 5

Performance Comparison

While each algorithm was reviewed separately in the previous chapter, their performance

is now compared among each other. Furthermore, it is examined whether the many

different road networks lead to similar results or if there are significant variations. To

get a detailed image, the tests are performed separately for full and contracted networks

with geometric distances and travel times.

5.1 Experimental Setup

The A* algorithm is only evaluated on networks with geometric distances due to its

limitation with the heuristic with travel times. The query times for CH and CRP

contain the costs for the path reconstruction, i.e. the unpacking of the intermediate

nodes. 36 landmarks are used for ALT which are set with the customized version of

the Partition-Corners algorithm explained in Section 4.6.2 on page 61. Other settings

correspond to those specified in Section 3.1 on page 29. The same experimental setup

as in the previous chapter is used (see Section 4.2 on page 41).

When the average performance of algorithms is compared in the following, the given

percentage of the difference is calculated like this: the result (e.g. query time) from

every network is added up and the total sum is compared. Furthermore, when numbers

between full and contracted networks are compared directly, only those networks that

have a full and contracted version are considered. This means the results will be slightly

different to comparing the totals of all networks.

In the figures of the following sections, the networks are only referenced by a number

on the x-axis. The corresponding names are listed in Table 5.1 for full networks and in

Table 5.1 for contracted networks. A detailed list with key figures for each network can

be found in the appendix (Section A.1 on page 123).
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Table 5.1: Network number to name lookup table for full networks.

# network # network # network # network

0 Graz 16 Hampton Roads 32 Phoenix 48 Los Angeles
1 Chicago City 17 Milan 33 Hong Kong 49 Washington
2 London City 18 Seoul 34 Minneapolis 50 Atlanta
3 Vienna 19 Moscow 35 Paris 51 Netherlands
4 Singapore 20 Lisbon 36 Saint Louis 52 Austria
5 San Diego 21 Rio de Janeiro 37 Chicago 53 Tokyo
6 Edmonton 22 Berlin 38 Philadelphia 54 Poland
7 Cape Town 23 Montreal 39 Detroit 55 California
8 Warsaw 24 Istanbul 40 Sao Paulo 56 Great Britain
9 Mumbai 25 Miami 41 Houston 57 Texas
10 Prague 26 Toronto 42 New York 58 Spain
11 Budapest 27 Madrid 43 Shanghai 59 Italy
12 Rome 28 Stockholm 44 Seattle 60 Germany
13 Brussels 29 Guangzhou 45 Dallas 61 USA
14 Buenos Aires 30 Bangkok 46 San Francisco Bay
15 Cyprus 31 Melbourne 47 London

Table 5.2: Network number to name lookup table for contracted networks.

# network # network # network # network

0 Graz 18 Milan 36 Istanbul 54 California
1 Chicago City 19 Berlin 37 Bangkok 55 Tokyo
2 Vienna 20 Lisbon 38 Buenos Aires 56 Spain
3 San Diego 21 Guangzhou 39 Chicago 57 Italy
4 London City 22 Seoul 40 Detroit 58 Texas
5 Edmonton 23 Toronto 41 Seattle 59 Great Britain
6 Singapore 24 Montreal 42 New York 60 US-Northeast
7 Mumbai 25 Hong Kong 43 Houston 61 Germany
8 Warsaw 26 Minneapolis 44 Washington 62 France
9 Brussels 27 Rio de Janeiro 45 Sao Paulo 63 US-West
10 Prague 28 Philadelphia 46 San Francisco Bay 64 US-Midwest
11 Hampton Roads 29 Saint Louis 47 Dallas 65 Japan
12 Cyprus 30 Madrid 48 Atlanta 66 Africa
13 Rome 31 Miami 49 London 67 South America
14 Moscow 32 Phoenix 50 Los Angeles 68 US-South
15 Budapest 33 Paris 51 Austria 69 Asia
16 Cape Town 34 Shanghai 52 Netherlands 70 Europe
17 Stockholm 35 Melbourne 53 Poland 71 North America
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5.2 Query Times

The most important performance metric for the application of the algorithms is the time

required to execute a search query. To get comparable, undistorted results, all algorithms

have been implemented in one framework using the same components (data structures,

priority queues, etc.) and all tests are executed on the same system.

5.2.1 Geometric Distances
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Figure 5.1: Average query times for all full networks with geometric distances.
Sorted by the networks’ node count in ascending order.

In Figure 5.1, the average query times for full networks with geometric distances are

shown. All algorithms have in common that there is an upward trend in query times with

increasing graph size, with CH and CRP being less affected. The bidirectional versions

of Dijkstra and ALT are always faster than the unidirectional one except for very small

graphs (less than 100 000 nodes), but the difference at those graphs is minimal.

The results are not as clear for A* where the bidirectional version is up to 12% slower

on eleven cases which are spread independently of the networks size and affect graphs

of distinctively different topologies. Furthermore, there are nine cases where the bid-

irectional version of Dijkstra is slightly faster than bidirectional A*. Eight of those nine

graphs consist of several bays and coves that cut through the road network which renders

the heuristic useless during many searches while the computational overhead remains (see

Section 4.5 on page 53 for a detailed discussion about A*’s overhead). An example of

such a search is shown in Figure 5.2 on the network of Seattle. The bidirectional search

with A* settles about the same amount of nodes as with bidirectional Dijkstra (767 517

and 778 390 nodes respectively) but requires 347 ms compared to Dijkstra’s 156 ms.

The query times for CRP are similar or slightly better than those for CH. Both

algorithms follow the same trend on most graphs but there is a discrepancy on some.
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Figure 5.2: Bidirectional A* search on Seattle (289 × 214 km) with geometric
distances. Settled nodes are drawn in green for the forward search and in purple for
the backward search. Nodes touched by both searches are drawn in blue. The shortest

path is shown in red.
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Figure 5.3: Average query times for all contracted networks with geometric
distances. Sorted by the networks’ node count in ascending order.
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Disabling the path unpacking for CH leads to almost identical results for all networks,

compared to CRP, and the discrepancies disappear. The query times for CRP without

path unpacking, which are not shown, only differ by an insignificant amount.

In Figure 5.3, the average query times for contracted networks with geometric dis-

tances are shown. A contracted network has on average 4.8 times (80%) fewer nodes

than its full version. The reduction in nodes translates very well to the performance

of Dijkstra. The bidirectional version of Dijkstra is on average 82% faster than on full

networks. A* also benefits from the reduced sizes but not as much. This leads to five

more cases for a total of sixteen where the bidirectional version of A* is slower than

bidirectional Dijkstra. The query times of ALT are 78% faster on average.

CH and CRP show a different picture. CH is only 37% faster and CRP performs

almost the same with 12% faster queries on average. Due to the contraction, the graphs

are smaller and fewer shortcuts have to be created which removes most of the cost of

path unpacking. The results without path unpacking are therefore omitted because there

is no noteworthy difference. That the performance of CH and CRP only increases by a

small amount is not a disadvantage though. Actually it shows that they can deal with

larger and uncontracted graphs much better than the other algorithms.

One last thing to mention is how close the query times of ALT and CH/CRP are on

smaller graphs while the gap increases significantly with larger ones.

5.2.2 Travel Times
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Figure 5.4: Average query times for all full networks with travel times. Sorted by
the networks’ node count in ascending order.

Figure 5.4 shows the average query times on full networks with travel times. The

performance for each network is similar to the one with geometric distances as metric.

The unidirectional algorithms are slightly slower, with Dijkstra losing 11% and ALT
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21%. All other algorithms perform (slightly) better. Bidirectional Dijkstra is 2%, ALT

18% and CRP 9% faster. Only CH benefits significantly with 37% faster query times

which brings its performance close to that of CRP. The query times for CH without path

unpacking benefit equally which makes them faster than CRP’s on all networks. The

difference for CRP without path unpacking is insignificant and not shown.

A close inspection shows that bidirectional Dijkstra is slightly faster on small and

medium sized graphs with travel times (compared to geometric distances) but the im-

provement vanishes at the larger ones. Bidirectional ALT on the contrary is actually

slower on most smaller graphs and only starts pulling ahead on the larger ones.

The results on the contracted networks, which are shown in Figure 5.5, are likewise.

Only CH is even faster with an improvement of 51% compared to using geometric dis-

tances which makes CH faster than CRP on most networks. Switching from the full to

the contracted networks with travel times shows similar gains for all algorithms as with

geometric distances. Only CH gains noticeable more with 48% faster queries.
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Figure 5.5: Average query times for all contracted networks with travel times.
Sorted by the networks’ node count in ascending order.

5.2.3 Conclusion

In general, the query times only correlate with the network size for all algorithms. This

means that the topologies of the tested road networks from all over the world follow

similar patterns. However, a few exceptions with special properties exist which affect

the algorithms to a different degree. CRP and to some degree CH benefit from graphs

with many bays and coves such as Seattle (Figure 5.2 on page 100), San Francisco and

Stockholm because it increases the number of natural cuts. A* on the contrary performs

worse on them because the heuristic is not designed for it. ALT also has problems

with graphs that are too fragmented because the number of landmarks is too small to
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cover all areas. Some algorithms (mainly bidirectional Dijkstra, A* and unidirectional

ALT) have higher query times on narrow graphs such as the road network of California

(Figure 5.6a), although the node efficiency is similar to other networks of equal size. The

network of Buenos Aires, of which a section is shown in Figure 5.6b, has a dominant

grid layout which has a notable impact on the performance of CH and CRP, which are

not designed for grids.

(a) California (1 139 × 1 074 km). (b) Buenos Aires (10 × 10 km).

Figure 5.6: Road network of California with a bidirectional A* search and a section
from the road network of Buenos Aires.

CH and CRP dominate the other algorithms on full and contracted networks with

geometric distances and travel times. The bidirectional versions of Dijkstra and ALT

are always faster than the unidirectional ones. A* does not benefit as much from the

bidirectional version and in some cases it is even slower. In most cases A* is faster

than bidirectional Dijkstra, but the difference is small. On smaller, contracted networks

the performance of bidirectional ALT comes close to CH/CRP with a smaller gap us-

ing geometric distances than travel times. Switching from contracted to full networks

has a much smaller impact on CH and CRP than on the other algorithms. Only the

performance of CH increases significantly by using travel times compared to geometric

distances.

Only CH and CRP are fast enough to answer thousands of queries per second even

on the largest graphs. On small and medium sized graphs, ALT may be an alternative if

not as many queries are required. Dijkstra and A* are only fast enough on the smallest

graphs or for single queries.

103



5.3 Node Efficiency

The node efficiency is a useful indicator for the theoretical performance and can be

used to compare algorithms independently from implementation and hardware. It is

calculated as the percentage of the number of nodes that have been settled in relation

to the number of nodes in the shortest path.

5.3.1 Full Networks
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Figure 5.7: Average node efficiency for all full networks with geometric distances
and travel times. The results with travel times are shown as offsets with black bars
originating from the results with geometric distances. The gap between both results is
additionally shaded in gray for better visibility. Sorted by the networks’ node count in

ascending order.

In Figure 5.7, the node efficiency for full networks with geometric distances is shown.

Because the results with travel times are very similar, they are also shown as offsets in

the same figure. CH has the highest efficiency followed closely by CRP. Both algorithms

achieve very high percentages because they contract the underlying network. While the

efficiency of all other algorithms drops with increasing network size, it grows with CH

and CRP, reaching top values of 870% and 569%, respectively. All bidirectional versions

of the algorithms perform better than the unidirectional ones, including A*. While the

query times of A* are close to those of bidirectional Dijkstra, the node efficiency is

noticeable better. On many networks the results of all algorithms follow the same trend,

but there is some variation. The efficiency with travel times, compared to geometric

distances, is in most cases slightly worse, except for CH, where it is slightly better.

There are some networks that stand out with worse efficiencies such as Buenos Aires

(Figure 5.6b), Dallas (Figure 5.8a) and Tokyo (Figure 5.8b). All three networks are

dense and well connected. Other networks such as Cyprus, Austria and Poland achieve
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(a) Dallas (10 × 10 km). (b) Tokyo (10 × 10 km).

Figure 5.8: Road network section of Dallas and Tokyo.

comparatively higher efficiencies but this does not mean that the query times are better

too. Using the example of Cyprus, the query times of CH and CRP are slightly faster

on Cyprus and slower on Buenos Aires, while ALT performs equally on both and A* has

slower queries on Cyprus compared to similar sized graphs.

5.3.2 Contracted Networks

The node efficiency on contracted networks with geometric distances and travel times is

shown in Figure 5.9. Compared to full networks, there are several differences. First of all,

the efficiency of CH and CRP drops by 79% for geometric distances and 84% for travel

times which correlates with the average network size reduction of 80%. The drop was to

be expected because the advantage of contracting the network during preprocessing is

gone. This brings the node efficiency of CH and CRP much closer to that of bidirectional

ALT on small and medium sized graphs and in a few cases even below.

While there was only a small difference between geometric distances and travel times

on full networks, it is more pronounced on the contracted ones. For a better illustration,

the difference between both metrics and full and contracted networks is shown for some

algorithms in Figure 5.10. The efficiency with travel times on contracted networks (drawn

in blue) is below geometric distances (drawn in green) in most cases, even with CH. The

figure also reveals that only CH and CRP see a significant efficiency drop between full

and contracted networks while the others do not.

There is no clear picture how the contraction affects the efficiency. Some graphs that

did not do as good as before, such as Buenos Aires, show a much better performance

now, compared to other contracted networks. Others that had a good performance such
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as Austria stayed the same while Cyprus dropped to average and others again that did

not stick out before are now worse, such as Shanghai or Hong Kong.

Two things that did not change are the slight upward trend with increasing net-

work size with CH and CRP, while it drops with the other algorithms, and that the

bidirectional versions perform better than the unidirectional ones, albeit not as much.
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(a) Average node efficiency on contracted networks with geometric distances.
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(b) Average node efficiency on contracted networks with travel times.

Figure 5.9: Average node efficiency for all contracted networks with geometric
distances and travel times. Sorted by the networks’ node count in ascending order.

5.3.3 Conclusion

Compared to query times, there is more variation in the node efficiency with all al-

gorithms. As has been shown, it is not possible to conclude from the efficiency to the

actual query times. On some networks the query times may even be worse, relatively,
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(b) Average node efficiency comparison with CRP.
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Figure 5.10: Average node efficiency comparison for all contracted networks
between geometric distances and travel times. Sorted by the networks’ node count

in ascending order.
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even though the efficiency is high. Switching between full and contracted networks af-

fects algorithms that contract the graph in some way during preprocessing, such as CH

and CRP, significantly, while other algorithms only see small differences. Using travel

times leads to a lower efficiency in most cases, compared to geometric distances. Only

CH can achieve better results with travel times that are noteworthy in some cases. Inter-

estingly enough, the efficiency grows with CH and CRP, while it drops with increasing

network size for all other algorithms. Also, the bidirectional algorithms always have a

better efficiency than the unidirectional ones, although not to the same amount for each

algorithm and metric (with the exception of the contracted network of Africa, where

bidirectional A* is actually slightly worse).

5.4 Edge Efficiency

The problem with the node efficiency is that it is biased towards CH and CRP. Both

algorithms achieve high node efficiencies through the addition of new edges (shortcuts in

CH and cell cliques in CRP) which reduce the number of settled nodes. A possible metric

that reflects this is the edge efficiency. It is calculated as the percentage of the number

of edges that have been scanned in relation to the number of edges in the shortest path.

Please note the difference that the node efficiency counts every settled node only once,

while the edge efficiency counts the same edge as often as it was accessed. Going through

the boundary nodes/clique of a cell in CRP also counts as edge scans.

The edge efficiency for full and contracted networks with geometric distances is shown

in Figure 5.11. As expected, the edge efficiency is lower than the node efficiency for all

algorithms, with CH and CRP taking a significantly larger hit. Interestingly enough,

the course of the curves is almost identical between node and edge efficiency for all

algorithms except CH and CRP, where it is also similar but amplified. However, the

slight upward trend in node efficiency with larger networks that was noticeable with

CH and CRP is gone. On most contracted networks, bidirectional ALT is now more

efficient than CH and CRP. The results with travel times follow the same pattern as

with geometric distances and can be found in the appendix (Section B.2 on page 130).

5.4.1 Conclusion

Algorithms such as CH and CRP increase the number of edges to reduce the number

of nodes that have to be settled. By using the edge efficiency to compare the work

that is done by the different algorithms, the cost that is hidden from the node efficiency

is revealed, i.e. the increased amount of edges that have to be processed. However,

the performance of the networks themselves stays the same, relatively. This includes

switching between full and contracted networks or travel times and geometric distances,

which also leads to similar results, whether viewed with node or edge efficiency.
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(a) Average edge efficiency on full networks with geometric distances.
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(b) Average edge efficiency on full networks with geometric distances.
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(c) Average edge efficiency on contracted networks with geometric distances.
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(d) Average edge efficiency on contracted networks with geometric distances.

Figure 5.11: Average edge efficiency for all full and contracted networks with
geometric distances. Sorted by the networks’ node count in ascending order.
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The results also unveil that the bidirectional ALT algorithm can compete with CH

and CRP, at least theoretically. In practice it loses because CH and CRP do not have

the computational overhead of the heuristic and their memory access pattern is much

more cache friendly. The reason for this is that the edges/shortcuts of a node and the

cliques of cells are stored next to each other in memory. ALT on the contrary has to

scan more nodes and has to get the distances from and to landmarks for every node,

which leads to more non-continuous memory accesses.

5.5 Preprocessing

The time required for preprocessing plays an important part in assessing whether an

algorithm is fast enough for dynamic networks. Dijkstra and A* have the advantage of

not requiring preprocessing which means the network can change completely between

each query. The other algorithms on the contrary require certain data or modifications

which have to be prepared before a search query can be executed. During the prepro-

cessing of ALT with the modified Partition-Corners algorithm the graph is partitioned,

landmarks are set and the distance in both directions from every node to every landmark

is computed. CH creates a hierarchical node ordering and the graph is contracted by

adding shortcuts. And the preprocessing of CRP partitions the graph by natural cuts,

creates an overlay and the cliques (shortest paths between all boundary nodes) for all

cells are computed.

To give an undistorted overview of the actual work done by the different algorithms

during preprocessing, the sequential performance without reusing any previously com-

puted parts will be inspected. It should be noted that there are various additional op-

timizations available for all three algorithms which have not been implemented. These

optimizations can lead to speedups of two to four times but even if implemented the

overall outcome would stay the same.

The time required for sequential preprocessing for all full networks with both metrics

is shown in Figure 5.12a. For CRP, only the results with geometric distances are shown

because they are almost identical with those using travel times.

The preprocessing time with ALT (with 36 landmarks) grows steadily with increasing

network size, almost unaffected by the different topologies of the various networks. The

difference between the metrics is minimal, with travel times taking 8.9% longer on aver-

age and 27% in the worst case. The partitioning phase with ALT (which is not shown

separately) is negligible as it takes less than a second on most graphs and only a few

seconds on the largest. The vast majority of time is spent with the landmark distance

computations.

CH with geometric distances has the worst performance in most cases. It also has the

highest sensitivity to the topology which leads to strongly varying results in regard to

the network size. With travel times, the performance is significantly better and in many
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(a) Sequential preprocessing time on full networks.
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(b) Sequential preprocessing time on contracted networks.

Figure 5.12: Sequential preprocessing time for all networks with geometric
distances and travel times. Sorted by the networks’ node count in ascending order.
The results for CRP with geometric distances and travel times are almost identical and

therefore the latter are not shown.
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cases even the fastest, especially on larger graphs. Furthermore, CH is less sensitive to

the topology with travel times.

The graph partitioning with CRP is metric independent which means it does not

have to be repeated after the graph has changed. Only during the customization phase

the edge weights are used to create the cell cliques. Because of that the time required

for the customization only is also shown in the figure. Even though the preprocessing

of CRP and CH work differently, both are affected similarly by the topology. On most

graphs CRP is faster than ALT and CH with geometric distances, except on the largest.

On small and medium sized graphs CRP can keep up with CH with travel times but its

performance drops significantly on larger graphs in comparison. However, the custom-

ization phase of CRP is an order of magnitude faster than any other algorithm. The

time required for customization is equally affected by the topology because the number

of boundary nodes created correlates with it, i.e. layouts with a stronger hierarchy res-

ult in fewer boundary nodes and therefore less computations during customization (see

Figure 5.13). The metric has almost no influence on the customization with a difference

between geometric distances and travel times of only ±4% at most.
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Figure 5.13: Comparison of the time required for the customization phase of CRP and
the number of boundary nodes created. Sorted by the networks’ node count in

ascending order.

The networks where CH and CRP perform comparatively better or worse are similar

to those mentioned before at the node efficiency comparison (see Section 5.3 on page 104).

By far the worst performance is seen on Buenos Aires followed by other dense networks

such as Tokyo and Dallas. Both algorithms are fast on networks with a strong hierarchy

(which also tend to have many natural cuts) such as Atlanta, Austria and Seattle.

The results for sequential preprocessing on contracted networks, which are shown

in Figure 5.12b, give a similar picture with only a few differences. On contracted net-

works, ALT is faster than CH and CRP in almost all cases. The time required with CH

and geometric distances is more unsteady between networks and slower than any other

algorithm. Also, CH with travel times is now slower than CRP on small networks.
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5.5.1 Optimizations

Not every step of preprocessing has to be repeated after the edge weights of a network

change. However, it depends on the algorithm which parts can be reused and thus how

much time is saved. Preprocessing times can also be reduced at the cost of degraded

query performance. For example an aggressive implementation of CH shows a speedup of

2.5 times on the contracted network of Europe, compared to the one in this framework.

The biggest gains though can be achieved by parallelization. For CH, Vetter achieves

a speedup of seven times with sixteen threads in [67] but the gains start diminishing sig-

nificantly around eight to ten threads. In [11], Delling et al. reduce the time required

for partitioning with CRP by a factor of 3.7 with twelve threads and in [9], Delling et

al. achieve a speedup of ten times with twelve threads for the customization phase.

Similar to CH, the parallelization with CRP has diminishing returns with increasing

thread count. The main part of ALT’s preprocessing is the computation of the dis-

tances between nodes and landmarks which can be parallelized easily. Efentakis et al.

achieve an improvement of 5.6 times with eight threads on a system with four cores and

hyperthreading in [17].

5.5.2 Conclusion

Overall, the preprocessing of CH performs worst. It is the only algorithm that is influ-

enced significantly by the chosen metric and it is affected the most by the topology of the

networks. While CRP is also affected by the topology, its results are more steady and

the influence by the metric is negligible. The preprocessing of ALT is the most stable

and almost unaffected by the topology or metrics. Its preprocessing times are fast and

ahead of the other algorithms on contracted networks.

For small networks the preprocessing of all algorithms stays clearly below ten seconds

and is fast enough for dynamic networks. The same is true for most medium sized

graphs if the improvements through parallelization, which have been mentioned above,

are taken into account. However, on the largest graphs, where preprocessing starts

taking minutes, even those improvements are not sufficient, except for CRP. Because

only the customization has to be repeated with CRP, which is an order of magnitude

faster than the partitioning, the required time can still be brought down to a few seconds.

This makes CRP the only algorithm that is fast enough for continental sized dynamic

networks where edge weights have to be updated every few seconds.

Several different preprocessing methods exist for ALT to find suitable landmarks (see

Section 2.8.2 on page 14). While some of the best methods such as maxCover can find

landmarks that improve the node efficiency by up to 2.5 times compared to the worst,

the preprocessing time increases by a factor of ten (see [29, Section 8.2.1]). Furthermore,

even with those better landmarks or highly optimized algorithms (like the one used by

Efentakis in [17]) the query times with ALT are still at least an order of magnitude
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slower compared to CH and CRP (see [17] for the best results achieved with ALT).

The problem is that ALT is not a useful alternative to CH or CRP if its preprocessing

and query times are significantly worse. For this reason a fast preprocessing method

was chosen in this work and the results confirm this choice. On small and medium sized

graphs, the preprocessing time of ALT is competitive and stays below or near ten seconds

(and can be improved easily by parallelization). Another advantage of ALT, that has

been revealed by the results, is that its preprocessing is extremely stable and almost

unaffected by the topology. If the slower query times of ALT can be tolerated and the

modified Partition-Corners algorithm for preprocessing is used, it is an alternative to

CH and CRP on small and medium sized graphs. ALT can also be implemented and

optimized much easier.
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Chapter 6

Conclusion

Several algorithms from different categories and complexity were presented, analyzed

and compared. Instead of just focusing on theoretical differences or final performance

numbers, the actual behavior in a practical setup was investigated as well. It was shown

that Dijkstra’s algorithm expands differently with travel times than with geometric dis-

tances. It turned out that the travel time metric adds a hierarchy to the graph which

affects Dijkstra’s algorithm, even though it is not designed to utilize hierarchical inform-

ation. Interestingly enough, though, the average number of nodes settled was the same

between both metrics. The results also revealed that the node efficiency is not suited to

compare the performance between different metrics. Even though the same work was

done with both metrics, the results with travel times showed a lower efficiency. The

reason for this is that quickest paths tend to have fewer nodes because they prefer road

types with fewer junctions (nodes) such as motorways. It was seen that these behavioral

patterns of Dijkstra’s algorithm reflect themselves in the other algorithms which utilize

it.

The hierarchical structure added by the travel time metric affected the search pat-

tern but had no influence on the performance of the unidirectional version of Dijkstra’s

algorithm. On the contrary, the bidirectional version was able to benefit from the added

hierarchy and settled fewer nodes with travel times. It was also shown that all algorithms

benefit from using a forward and backward search, independently of the metric.

The preprocessing of CH and CRP was explained and illustrated in great detail.

It was discovered that the graph created by CH has similar properties to a scale-free

network with high degree hubs. This also turns out to be the reason why its query times

are so fast, because search queries can take advantage of the small-world effect. With

CRP it was investigated what constitutes as a natural cut from a practical standpoint.

It was shown that natural cuts differ depending on the observed scale and on smaller

scales are often man-made and not natural, such as railways, airports or industrial zones.

Furthermore, it was seen that areas with a sparser network surrounding denser parts such

as towns can also be a natural cut and that on the smallest scales, the concept of natural
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cuts started reaching its limits.

Even though the preprocessing phases of CH and CRP work completely different,

due to the large number of road networks tested, it was revealed that they are both

equally affected by a network’s topology, i.e. they both need more or less preprocessing

time on the same graph. Also, the results showed that the preprocessing performance

reflects itself in the query times.

A large amount of networks from all over the world and with different scales, ranging

from cities to continents were used to see if there are notable differences. The evaluation

showed that most road networks have a similar topology with only a few networks such

as Buenos Aires standing out. The results where more influenced by natural constraints

such as bays and coves and networks being forced into a narrow layout. Furthermore,

the difference between full and contracted networks was investigated. Search queries

with algorithms that contract the network in some form during preprocessing, such as

CH and CRP, had a much smaller performance penalty on full networks.

The final performance comparison showed that only CRP is fast enough for dynamic

networks of continental size with frequent updates and that ALT can be an alternative for

small and medium sized networks, but only if a fast preprocessing method is used. While

CH has one of the fastest query times, it suffers from its metric dependent preprocessing

on large networks. The results also revealed that the influence of the hardware and

implementation can not be disregarded. For example while A* settled significantly fewer

nodes than Dijkstra’s algorithm, its query times were only slightly better due to its

computational overhead.

6.1 Future Work

There are many interesting aspects left that have not been touched by this work. The

results from A* and ALT showed how additional memory accesses and computations can

have a large impact on the performance. It would be interesting to have a closer look at

possible optimizations for the graph data structure to reduce those impacts.

Also, the computation of cliques for CRP was done on the CPU, but as was men-

tioned during the theoretical overview, it is also possible to compute cliques with the

Floyd-Warshall algorithm on a graphics card (GPU). The fastest graphics card currently

available is the NVIDIA Titan X, which has 12 GB memory (with a bandwidth of 480

GB/s) and achieves 11 TFLOPS (11 × 1012 floating point operations per second) with

FP32 (single precision floating point format) [47]. With such a large amount of memory

and computational power, it should be possible to further reduce the time taken by the

customization phase of CRP.
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Appendix A

Additional Key Figures

A.1 Dataset

Given width and height specifications apply to the center of the graphs and will differ

widely from the real values on the edges.

Table A.1: List of road networks and their key figures of North American cities and
metropolitan areas.

name nodes edges

directed

edges

width

[km]

height

[km]

Chicago City (contracted) 16 992 28 597 7 816 28 18

San Diego (contracted) 39 714 54 588 9 670 41 39

Edmonton (contracted) 48 309 67 545 13 363 234 142

Chicago City 55 559 67 268 21 143 30 18

Hampton Roads (contracted) 63 544 83 953 13 454 81 55

Toronto (contracted) 107 781 154 279 28 424 161 109

Montreal (contracted) 122 193 174 712 31 157 224 121

Minneapolis (contracted) 137 473 188 479 27 306 164 105

Philadelphia (contracted) 153 077 219 279 37 989 104 74

Saint Louis (contracted) 153 153 198 426 13 176 164 121

Miami (contracted) 168 967 240 989 44 090 73 180

San Diego 169 718 184 592 49 432 41 39

Phoenix (contracted) 178 570 244 510 38 389 179 142

Edmonton 181 384 200 620 44 024 234 142

Chicago (contracted) 216 083 309 617 34 825 160 107

Detroit (contracted) 216 614 304 410 37 731 198 161

Seattle (contracted) 220 614 272 279 14 626 289 214

New York (contracted) 260 348 379 083 67 825 142 84
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Table A.2: List of road networks and their key figures of North American cities and
metropolitan areas. (continuation)

name nodes edges

directed

edges

width

[km]

height

[km]

Houston (contracted) 261 290 355 315 71 459 188 156

Washington (contracted) 280 497 364 925 60 824 172 122

San Francisco Bay (contracted) 306 758 409 051 58 810 271 215

Dallas (contracted) 316 966 433 649 75 499 187 141

Atlanta (contracted) 324 771 395 377 27 763 236 197

Hampton Roads 349 634 370 043 67 629 81 55

Los Angeles (contracted) 400 199 542 540 63 128 302 143

Montreal 534 526 587 045 97 674 224 121

Miami 570 942 642 964 136 257 73 180

Toronto 604 356 650 854 110 954 161 109

Phoenix 755 410 821 350 175 872 179 142

Minneapolis 795 087 846 093 138 772 164 105

Saint Louis 799 911 845 184 64 781 164 121

Chicago 826 934 920 466 131 253 160 107

Philadelphia 866 982 933 184 149 227 104 74

Detroit 984 444 1 072 240 142 771 198 161

Houston 1 023 386 1 117 411 214 202 188 156

New York 1 043 898 1 162 633 264 463 142 84

Seattle 1 240 937 1 292 601 89 038 289 214

Dallas 1 437 381 1 554 064 270 113 187 141

San Francisco Bay 1 471 627 1 573 920 269 840 271 215

Los Angeles 1 734 076 1 876 416 282 178 302 143

Washington 1 847 377 1 931 803 323 450 172 122

Atlanta 2 229 226 2 299 832 162 718 236 197
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Table A.3: List of road networks and their key figures of European cities and
metropolitan areas.

name nodes edges

directed

edges

width

[km]

height

[km]

Graz (contracted) 7 241 9 115 1 200 19 17

Vienna (contracted) 29 629 42 083 13 443 64 38

London City (contracted) 40 671 53 626 10 073 30 17

Graz 48 437 50 311 6 876 19 17

Warsaw (contracted) 55 990 74 863 11 494 150 87

Brussels (contracted) 60 545 82 893 19 334 87 46

Prague (contracted) 62 109 82 633 10 682 130 72

Rome (contracted) 69 173 94 712 36 019 82 62

Moscow (contracted) 69 984 94 488 21 234 181 120

Budapest (contracted) 75 024 106 497 13 581 160 93

Stockholm (contracted) 84 756 104 050 10 941 248 170

Milan (contracted) 92 899 130 628 46 357 68 50

Berlin (contracted) 94 863 130 019 18 298 271 128

Lisbon (contracted) 97 529 133 473 34 337 116 88

London City 131 960 144 908 34 762 30 17

Vienna 138 124 150 578 48 791 64 38

Madrid (contracted) 153 319 223 650 81 519 138 137

Paris (contracted) 188 177 260 099 79 229 118 72

Istanbul (contracted) 197 116 292 700 46 084 152 74

Warsaw 266 151 285 023 54 944 150 87

Prague 295 136 315 658 45 769 130 72

Budapest 295 667 327 139 52 489 160 93

Rome 317 020 342 559 115 216 82 62

Brussels 326 325 348 672 71 788 87 46

London (contracted) 384 788 464 106 51 706 224 116

Milan 394 926 432 655 164 262 68 50

Moscow 423 708 448 212 111 173 181 120

Lisbon 453 438 489 381 133 431 116 88

Berlin 492 270 527 426 82 231 271 128

Istanbul 557 248 652 832 127 712 152 74

Madrid 606 894 677 224 273 786 138 137

Stockholm 634 723 654 017 54 316 248 170

Paris 798 642 870 556 271 189 118 72

London 1 596 644 1 675 960 224 107 224 116

125



Table A.4: List of road networks and their key figures of Other World cities and
metropolitan areas.

name nodes edges

directed

edges

width

[km]

height

[km]

Singapore (contracted) 50 719 71 169 18 736 136 66

Mumbai (contracted) 54 936 73 089 8 038 86 115

Cape Town (contracted) 77 091 106 231 10 068 77 99

Guangzhou (contracted) 101 723 148 294 62 195 311 161

Seoul (contracted) 102 211 155 347 16 435 144 107

Hong Kong (contracted) 133 626 195 585 87 391 261 181

Rio De Janeiro (contracted) 148 955 210 470 27 483 124 77

Singapore 165 955 186 405 67 327 137 66

Shanghai (contracted) 189 116 282 440 99 689 392 333

Melbourne (contracted) 191 575 258 694 66 661 172 132

Bangkok (contracted) 198 517 246 975 33 260 197 262

Buenos Aires (contracted) 211 348 361 303 89 834 159 103

Cape Town 258 944 288 084 39 798 77 99

Sao Paulo (contracted) 285 776 417 815 87 486 166 133

Mumbai 291 795 309 948 27 935 86 115

Buenos Aires 339 804 489 759 143 099 159 103

Seoul 398 583 451 719 74 667 145 107

Rio De Janeiro 468 003 529 518 83 362 124 77

Guangzhou 698 933 745 495 327 577 311 161

Bangkok 741 446 789 904 108 526 197 262

Melbourne 748 993 816 111 212 937 172 132

Hong Kong 787 956 849 907 406 546 261 182

Sao Paulo 1 016 997 1 149 036 248 666 166 133

Shanghai 1 068 688 1 162 008 434 116 392 333

Tokyo (contracted) 1 325 372 1 956 313 118 775 233 188

Tokyo 5 301 814 5 932 753 323 013 233 188
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Table A.5: List of road networks and their key figures of North American states and
regions.

name nodes edges

directed

edges

width

[km]

height

[km]

California (contracted) 1 271 872 1 683 116 173 475 1 139 1 074

Texas (contracted) 1 904 475 2 552 576 252 825 1 472 1 205

US Northeast (contracted) 2 343 178 3 096 160 253 950 1 530 944

US West (contracted) 3 709 209 4 834 491 370 953 2 552 1 998

US Midwest (contracted) 4 683 720 6 355 110 369 762 2 668 1 475

US South (contracted) 8 546 116 10 934 235 890 168 3 482 1 793

California 10 188 049 10 599 292 836 070 1 139 1 074

Texas 11 116 039 11 764 140 908 488 1 472 1 205

Table A.6: List of road networks and their key figures of European countries and
regions.

name nodes edges

directed

edges

width

[km]

height

[km]

Cyprus (contracted) 66 979 86 792 5 625 257 126

Cyprus 346 085 365 898 23 065 257 126

Austria (contracted) 408 173 515 234 38 385 848 290

Netherlands (contracted) 660 352 887 830 132 398 439 303

Poland (contracted) 751 207 983 804 126 758 1 119 647

Spain (contracted) 1 855 021 2 626 188 615 158 1 400 865

Italy (contracted) 1 898 260 2 535 517 517 224 1 317 1 016

Great Britain (contracted) 2 266 835 2 704 174 226 199 947 969

Netherlands 2 788 354 3 015 824 502 326 439 303

Germany (contracted) 2 788 477 3 623 921 333 764 1 023 845

France (contracted) 3 668 602 4 801 377 561 744 1 445 972

Austria 4 037 973 4 145 033 204 390 848 290

Poland 5 785 865 6 018 451 619 386 1 119 647

Great Britain 10 968 833 11 406 167 987 652 947 969

Spain 12 256 439 13 027 583 2 108 392 1 400 865

Italy 14 911 334 15 548 577 1 722 523 1 317 1 016

Germany 16 533 327 17 368 755 1 624 559 1 023 845
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Table A.7: List of road networks and their key figures of Asian countries and regions.

name nodes edges

directed

edges

width

[km]

height

[km]

Japan (contracted) 4 834 762 7 112 501 292 433 1 406 1 173

Table A.8: List of road networks and their key figures of continental size.

name nodes edges

directed

edges

width

[km]

height

[km]

Africa (contracted) 5 454 628 7 702 009 367 386 6 040 8 025

South America (contracted) 7 198 662 10 913 434 1 641 918 4 302 7 338

Asia (contracted) 10 681 715 14 706 424 1 881 412 11 449 7 915

Europe (contracted) 19 841 133 26 372 551 3 090 792 5 863 3 943

North America (contracted) 22 437 475 29 743 795 2 451 466 6 715 4 658

USA 23 947 347 28 854 312 0 6 269 2 682
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Appendix B

Additional Results

B.1 ALT, Bidirectional ALT

Table B.1: Comparison of the node efficiency between the modified
Partition-Corners algorithm and randomly placed landmarks with

Unidirectional ALT and 36 landmarks. The numbers denote the efficiency increase in
percent. Every column shows a different combination of the full and contracted

networks with geometric distances and travel time metrics.

category
all
[%]

full
[%]

contr.
[%]

all
distance

[%]

all
time
[%]

full
distance

[%]

full
time
[%]

contr.
distance

[%]

contr.
time
[%]

C-NA 20.5 21.8 19.5 24.2 15.9 22.5 21.0 25.6 11.7
C-EU 21.7 22.3 21.2 25.1 17.6 23.6 20.8 26.5 14.5
C-OW 10.6 15.5 5.6 17.0 3.4 22.5 8.1 11.7 −1.9
R-NA 20.8 19.2 21.5 22.8 17.6 19.9 18.3 23.9 17.3
R-EU 20.2 24.6 15.3 23.2 15.3 28.7 18.7 17.7 10.8
R-OW 22.3 - 22.3 19.6 28.7 - - 19.6 28.7
Continental 15.2 46.8 9.8 15.2 15.1 58.1 32.9 8.3 12.0
all 19.1 20.9 17.4 23.1 14.1 23.5 18.0 22.7 10.4
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Table B.2: Comparison of the node efficiency between the modified and the original
Partition-Corners algorithm with Unidirectional ALT and 36 landmarks. The
numbers denote the efficiency increase in percent. Every column shows a different

combination of the full and contracted networks with geometric distances and travel
time metrics.

category
all
[%]

full
[%]

contr.
[%]

all
distance

[%]

all
time
[%]

full
distance

[%]

full
time
[%]

contr.
distance

[%]

contr.
time
[%]

C-NA 12.3 11.2 13.1 11.5 13.3 10.2 12.5 12.4 14.1
C-EU 10.3 11.6 9.0 10.9 9.5 11.5 11.9 10.5 7.1
C-OW 2.9 3.7 1.9 3.1 2.6 3.9 3.5 2.2 1.5
R-NA 4.0 0.2 5.7 3.7 4.4 −2.7 4.3 6.4 4.5
R-EU 7.4 9.1 5.3 6.9 8.1 8.9 9.5 4.9 6.1
R-OW 8.7 - 8.7 7.9 10.4 - - 7.9 10.4
Continental 3.2 10.1 1.8 4.5 1.4 9.7 10.7 3.4 −0.3
all 9.1 9.6 8.7 9.2 9.1 9.2 10.0 9.1 8.1

B.2 Edge Efficiency with Travel Times
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(a) Average edge efficiency on full networks with travel times.
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(b) Average edge efficiency on full networks with travel times.

Figure B.1: Average edge efficiency for all full networks with travel times. Sorted
by the networks’ node count in ascending order.
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(a) Average edge efficiency on contracted networks with travel times.
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(b) Average edge efficiency on contracted networks with travel times.

Figure B.2: Average edge efficiency for all contracted networks with travel times.
Sorted by the networks’ node count in ascending order.
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Appendix C

Framework

C.1 Compiling

The whole framework is written in C++ (version 11) and uses no external libraries except

for LodePNG [65], which is included. It has been tested with g++ 4.8.4 on Linux Mint

17 (qiana 3.13.0-24-generic, 64 bit). It can be compiled with the following commands:

make debug MT=1 Creates a build with debug information and assertions enabled.

make profile MT=1 Creates a build with debug information but assertions disabled

for profiling.

make release MT=1 Creates a release build without debug information and asser-

tions disabled.

The MT=1 parameter enables multithreading support. To disable multithreading, set

it to 0. Before using the framework, make sure that a subfolder data containing the

graph files and a subfolder output exists.

C.2 Graph Files

The data for each graph is stored in two files, one for the node data and another for

the edge data. The nodes file must contain the phrase _nodes and the edges file _edges

in front of the file extension (e.g. austria_nodes.bin and austria_edges.bin). Four

different graph file formats are supported:

• CUSTOM_CSV_SIMPLE

– text format

– uses file extension .csv

– nodes file each line: node id, x, y, z
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– edges file each line: start node id, target node id, cost

• CUSTOM_CSV and CUSTOM_BINARY

– text format and binary format, respectively

– uses file extension .csv and .bin, respectivley

– nodes file each line: node id, x, y, z

– edges file each line: start node id, target node id, distance cost (meter), time

cost (seconds)

• TIGER

– text format

– uses file extension .csv

– Tiger file format

The identifiers do not have to be consecutive and can start anywhere but have to be

smaller than 264 − 1.

C.3 User Manual

The graph files have to reside in a subfolder called data. All output is written to the

subfolder output. The supplied graphs with the file extension .bin have the format

CUSTOM_BINARY except usa, which has the type TIGER. The framework (program) has

the following command line parameters:

• The following applies to all commands:

– valid strings for <cost type> are: DISTANCE, TIME; cost type only has an

effect for CUSTOM_CSV and CUSTOM_BINARY

– valid strings for <data file format> are: CUSTOM_CSV_SIMPLE, CUSTOM_CSV,

CUSTOM_BINARY, TIGER

• Convert an OSM file to custom data files useable by this program:

./main convert <path + OSM filename> <path + output filename prefix>

<contract paths 0|1>

example usage: ./main convert data/filtered_austria.osm data/austria 0

• Convert an OSM file to custom data files useable by this program:

./main convertcustom [<path + OSM filename>] <path + intermediate filename

prefix> <path + output filename prefix> <contract paths 0|1> [<min x> <max

x> <min y> <max y>]
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– Omit the OSM filename to skip the conversion step in case the intermediate

file has already been created.

– If min/max coordinates are specified, the network will be cropped

accordingly.

– The min/max coordinates have to be in decimal degrees with x being

East-West and y North-South!

– Use negative decimal degrees for West and South coordinates!

example usage: ./main convertcustom data/filtered_austria.osm data/austria

data/austria 0 15.3668 15.5367 46.9849 47.1393

• Run all algorithms on the same network and compare results to find mismatches:

./main debugunittest <data file prefix> <data file format> <cost type>

example usage: ./main debugunittest austria CUSTOM_BINARY DISTANCE

• Print the given network:

./main printnetwork <data file prefix> <data file format> <scale> <max

dimension> <max type> <fat mode radius> <save statistics 0|1>

– <scale>: upscales the coordinates in the graph; if longitude and latitude is

used in the graph file, large values must be used (e.g. 10 000)

– <max dimension>: max dimension is the maximum width/height in pixel the

output image can have; recommended are the following values: 7 000 (=

1 200 dpi), 3 500 (= 600 dpi), 1 750 (= 300 dpi), 875 (= 150 dpi)

– <max type>: only print roads up to the given type (0-3: primary road -

residential road); use -1 for all roads

– <fat mode radius>: use a value other than 0 to increase the size of every

pixel printed

example usage: ./main printnetwork austria CUSTOM_BINARY 10000 7000 -1 0 0

• Print the partitions created by CRP:

./main printcrppartitions <data file prefix> <data file format> <number of

levels> <with waterways 0|1> <with railways 0|1> <ways as separate file

0|1> <save statistic 0|1>

example usage: ./main printcrppartitions austria CUSTOM_BINARY 6 1 1 1 1

• Print the partitions created by CRP:

./main printcrppartitions random <number of nodes> <with center traffic

0|1> <number of levels> <save statistic 0|1>

example usage: ./main printcrppartitions random 3600 1 4 1
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• Print the partition created by Natural Cuts:

./main printncpartition <data file prefix> <data file format> <max cell

size>

example usage: ./main printncpartitions austria CUSTOM_BINARY 65536

• Print the network created by Contraction Hierarchies:

./main printchnetwork <data file prefix> <data file format> <cost type>

<number of top level nodes>

– valid values for <number of top level nodes>: use 0 for all nodes or a

number between 1 and the maximum number of nodes in graph

example usage: ./main printchnetwork austria CUSTOM_BINARY DISTANCE 10

• Print the node degree and shortcut distribution of the network created by

Contraction Hierarchies:

./main printchdistribution <data file prefix> <data file format> <cost

type> <number of parts for shortcut distribution>

example usage: ./main printchdistribution austria CUSTOM_BINARY DISTANCE 4

• Find the shortest path with the given algorithms and network between the

specified nodes:

./main search <data file prefix> <data file format> <cost type> <save

graph 0|1> <save search statistic 0|1> <use Dijkstra 0|1> <use

bidirectional Dijkstra 0|1> <use A-Star 0|1> <use bidirectional A-Star

0|1> <use ALT 0|1> <use BidirectionalALT 0|1> <use CH 0|1> <use CRP 0|1>

<start node number> <target node number>

example usage: ./main search austria CUSTOM_BINARY DISTANCE 1 1 1 1 1 1 1

1 1 1 200 5000

• Find the shortest path with the given algorithms and network between random

nodes:

./main randomsearch <data file prefix> <data file format> <cost type>

<save graph 0|1> <save search statistic 0|1> <use Dijkstra 0|1> <use

bidirectional Dijkstra 0|1> <use A-Star 0|1> <use bidirectional A-Star

0|1> <use ALT 0|1> <use BidirectionalALT 0|1> <use CH 0|1> <use CRP 0|1>

<cost only 0 | reconstruct path 1> <search count>

example usage: ./main randomsearch austria CUSTOM_BINARY DISTANCE 0 1 1 1

1 1 1 1 1 1 1 100000
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• Find the shortest path with the given algorithms between the specified nodes on

a randomly generated grid graph:

./main search_randomgraph <number of nodes> <with center traffic 0|1>

<save graph 0|1> <save search statistic 0|1> <use Dijkstra 0|1> <use

bidirectional Dijkstra 0|1> <use A-Star 0|1> <use bidirectional A-Star

0|1> <use ALT 0|1> <use BidirectionalALT 0|1> <use CH 0|1> <use CRP 0|1>

<start node number> <target node number>

example usage: ./main search_randomgraph 3600 1 1 1 1 1 1 1 1 1 200 1000

• Get the number of the node nearest to the specified decimal coordinates in the

given network:

./main nearestnode <data file prefix> <data file format> <x in decimal

degrees (East-West!)> <y in decimal degrees (North-South!)>

– Use negative decimal degrees for West and South coordinates!

example usage: ./main nearestnode austria CUSTOM_BINARY 15.459519 47.058519

• Get the number of the node nearest to the specified sexagesimal coordinates in

the given network:

./main nearestnode <data file prefix> <data file format> <x degree> <x

minutes> <x seconds> <y degree> <y minutes> <y seconds>

– The x coordinates are East-West and the y coordinates are North-South!

– Use negative degree, minutes and seconds for West and South coordinates!

example usage: ./main nearestnode austria CUSTOM_BINARY 15 27 34.27 47 3

30.67
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