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Kurzfassung

Die Grenz-Gleichgewichtsverfahren nach Bishop (1955) oder Morgenstern & Price
(1965) finden in der Geotechnik eine breite Verwendung zur Bestimmung des
Sicherheitsfaktors (FoS). Unterschiedliche Annahmen zur Form des Versagens, sowie
der Krafte zwischen den Lamellen verhindern eine einheitliche Definition des
Sicherheitsfaktors. Diese Annahmen sind bei displacement based finite element
analyses oder finite element limit analyses hingegen nicht notwendig. Aufgrund der
Tatsache, dass der letztere Berechnungstyp auf eine assoziierte FlieBregel beschrankt
ist, empfahl Davis (1968) die Verwendung von reduzierten Festigkeitsparametern, um
ein nicht-assoziiertes Verhalten zu simulieren (Davis A). Die Anwendung dieser an
bewahrten Béschungen sowie an Beispielen von Griffiths und Lane (1999) fihren, im
Vergleich zu den strength reduction finite element analyses (SRFEA), zu sehr
konservativen Ergebnissen. Modifizierte Vorgehensweisen der urspringlichen Idee
(Davis B, Davis C) resultieren nach wie vor in einem konservativen Sicherheitsfaktor,
zeigen jedoch eine bessere Ubereinstimmung mit der SRFEA. Weitere
Parameterstudien haben verifiziert, dass ein Anstieg im Reibungswinkel ¢’, Koh&sion ¢’
und Mal3 an nicht-Assoziativitdt A zu groBeren Differenzen zwischen Davis A und

SRFEA fuhren. Fur Davis B und Davis C wirken sich Kohasion ¢’und Reibungswinkel ¢

gering auf die Differenzen aus.

StandardmaBig wird bei einer strength reduction finite element analysis die Poisson’s
Zahl v konstant gehalten, wahrend Reibungswinkel ¢’und Kohasion ¢’reduziert werden.
Basierend auf dem Mohr-Coulomb Fehlerkriterium kann die ¢ - v Ungleichheit sing’ > 1
- 2v abgeleitet werden. Fir hohe Sicherheitsfaktoren wird die Bedingung verletzt.
Numerische Untersuchungen haben ergeben, dass die ¢ - v Ungleichheit keinen Einfluss
auf den Sicherheitsfaktor nimmt, jedoch mit héherer Poisson Zahl vdie Anzahl an failure

points sinkt.

In den meisten Fallen ist die Spannungssituation in situ unbekannt. Daher ist die
Auswirkung des ursprlinglichen Spannungsniveaus auf den Sicherheitsfaktor von
groBem Interesse. Eine weitere Studie zeigt, dass die urspriingliche
Spannungsverteilung keinen Einfluss auf den FoS nimmt. Unabhangig vom
Ausgangspunkt des Spannungspfades wird dieser immer am selben Mohr-Coulomb-

Fehlerkriterium versagen.






Abstract

Limit equilibrium methods by Bishop (1955) or Morgenstern & Price (1965) are commonly
used in practical geotechnical engineering to determine the factor of safety (FoS).
Varying assumptions about the shape of failure mechanisms as well as interslice forces
make an unique definition of the safety factor next to impossible. On the other hand,
displacement based finite element analyses and finite element limit analyses don’t need
those assumptions to perform. Due to the fact that the latter one is limited to associated
plasticity, Davis (1968) suggested the use of reduced strength parameters in order to
generate a non-associated behaviour (Davis A). Applying this approach on reinforced
slopes and on examples taken from Griffiths and Lane (1999) lead to very conservative
results compared to strength reduction finite element analyses (SRFEA) with non-
associated plasticity. Modified versions of the original approach (Davis B, Davis C) still
result in a conservative factor of safety but achieve a far better agreement with the
SRFEA. Further parameter studies have verified that an increase in friction angle ¢’,
cohesion ¢’ and degree of non-associativity A lead to larger differences between Davis
A and SRFEA. For Davis B and Davis C, these differences are weakly affected by

cohesion ¢’ and friction angle ¢'.

It is common practice that in a strength reduction finite element analysis the Poisson’s
ratio v is kept constant while friction angle ¢’ and cohesion ¢’ get reduced. Deriving from
the Mohr-Coulomb failure criterion, the relation sing’ > 1 - 2v, known as the ¢ - v
inequality obviously gets violated for high safety factors. Numerical analyses proved that
the ¢ - v inequality does not affect the factor of safety. It should be noted that with

increasing Poisson’s ratio the number of failure points decreases.

In most cases the stress situation in situ is unknown. Therefore, the influence of the initial
stress state on the factor of safety is of interest. A further study established shows that
the initial stress level has no impact on the FoS. For any point situated along the failure
mechanism, the origin of its stress path is of no importance. Failure will always occur

along the same Mohr-Coulomb criterion.
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1 Introduction

In this thesis, several different numerical studies based on strength reduction finite
element analyses and finite element limit analyses have been conducted in order to
prove modifications of the Davis approach as well as the effects of the ¢ - v inequality
and the initial stress condition on the factor of safety regarding slope stability analyses.

In geotechnical engineering no uniform definition of the factor of safety (FoS) exists. For
many bearing capacity problems the FoS is usually defined as the load capacity.
However, for slope stability analyses it is more common that the strength parameters are
used to define the safety factor (Tschuchnigg et al. 2015Db).

The limit equilibrium methods by Janbu (1954), Bishop (1955) and Morgenstern & Price
(1965) are based on the method of slices and have a wide tradition in slope stability
analysis (Tschuchnigg et al. 2015). Despite the long-lasting experience with limit
equilibrium analysis (LEA), all methods do show several disadvantages. Assumptions
regarding the shape of the failure mechanism and the forces acting between the slices
lead to no unique definition of the factor of safety. Furthermore, it cannot be guaranteed
that the failure mechanism is kinematically admissible.

Therefore, displacement based finite element analyses became increasingly popular
over the last decades. The FoS is no longer defined as the ratio of driving and resisting
forces and moments along a failure surface. Instead, friction angle ¢’ and cohesion ¢’
are simultaneously reduced until no equilibrium can be satisfied. Consequently, the ratio
of initial strength parameters to mobilized strength parameters is the most widespread
definition of the safety factor in strength reduction finite element analyses (SRFEA). It
has been previously shown that LEA and SRFEA according to associated plasticity yield
to similar results when employing a Mohr-Coulomb failure criterion. As mentioned by

Tschuchnigg (2015b), large differences between friction angle ¢’ and dilatancy angle

may lead to numerical problems without any clear definition of the factor of safety.

Alternatively, rigorous upper and lower bounds on the factor of safety are determined in
finite element limit analyses (FELA). As FELA is restricted to associated plasticity, Davis
(1968) proposed reduced strength parameters to simulate a non-associated behaviour.
This approach causes good agreements if the FoS is expressed by maximising loads for
a given strength (Tschuchnigg et al. 2015b). In the event that the definition of safety is
based on the strength parameters, the mentioned approach leads to very conservative
results. Therefore, two modifications (Davis B and Davis C) were developed by

Institute of Soil Mechanics and Foundation Engineering 1
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Tschuchnigg (2015b). Both correlate better with the non-associated SRFEA. The first
two chapters are meant to give the reader some essential background knowledge which
helps the understanding of LEA, SRFEA, FELA and the basic concept by Davis.

Numerical studies according to associated and non-associated plasticity are performed
on two reinforced slopes and on examples taken from Griffiths and Lane (1999). The
calculations aim to clarify how well the original Davis and the modified procedures
correlate with non-associated SRFEA. In addition, it should be determined how the
strength parameters friction angle ¢’, dilatancy angle y’ and cohesion ¢’ affect the
differences between Davis procedures and SRFEA. For comparison, the numerical
analyses are supplemented by limit equilibrium analyses after Morgenstern & Price.
Summing up, the aim of this section lies in a better understanding of the efficiency of the
Davis approach modifications as well as in highlighting the boundaries of the LEA.

The strength reduction finite element analysis will be run by several programs with a
constant Poisson’s ratio v. At the same time, the friction angle ¢’ and cohesion ¢’ are
reduced. Based on the Mohr-Coulomb failure criterion the relation sing’ > 1 - 2v is formed.
This equation is known as the ¢ - v inequality. In combination with a high safety factor,
the relation might be violated. The main goal of this section is to clarify through numerical

analyses to what extent the ¢ - v inequality influences the factor of safety.

In geotechnical engineering the stress conditions in situ are in most cases unknown.
Finite element programs like Plaxis 2D provide several tools to generate the initial stress
level with respect to different boundary conditions. Here, a further study aims at
investigating whether the initial stress condition influences the safety factor.

2 Institute of Soil Mechanics and Foundation Engineering
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2 Analytical method of defining a FoS

2.1 Definition of limit equilibrium

LAt the moment of failure, the shear strength is fully mobilized along the failure surface

when the critical state conditions are reached” (Nash 1987)

This quote states that a limit equilibrium is defined as the ratio of shear strength to the
factor of safety whereby the shear strength is generally related to the Mohr-Coulomb
failure criterion (Aryal 2006). The relation is expressed in accordance to Eq. (1). In it, the
soil strength zis expressed in terms of the cohesion and friction angle of the soil material

and the shear stress 7. is affected by external forces acting on the domain.

i
Tmob. = F_S
0 (1)
Tp = C +tang’

The factor of safety offers three definitions pursuant to Abramson (2002). Eq. (1)
mentions the first option that is expressed by means of shear strength and mobilized
shear stress. In a second option, the FoS can be related to the equilibrium of driving and
resisting forces (Eq. (2)).The acting moments are covered by a third one (Eq. (3))
(Abramson et al. 2002).

Sum of resisting forces S
FOSF = . = . ( 2 )
Sum of driving forces  Gsina
FoS. — Sum of resisting moments R fOL Sdl (3)
%M = Sum of driving moments  Gx

It might not always be clear if forces or moments should be counted to either the resisting
side or the driving one. If one imagines the self-weight at the toe of a slope, the moment
might act in another direction than the rest of the self-weight (Fig. 1). The moments of
the toe can either be subtracted from the driving side or added to the resistant side.

0 P

X e

R/
P SIFos // //‘
o G o
- e =<7 S/FoS

Tmob

Fig. 1 Definition of FoS in LEA (according to Abramson et al. 2002)

Institute of Soil Mechanics and Foundation Engineering 3
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2.2 Limit equilibrium analysis

In practical engineering, slope stability analyses are mostly performed by using limit
equilibrium analyses. Over the years, different methods were developed, using various
assumptions. In this section, the most common methods including their respective
characteristics will be discussed. All of the limit equilibrium methods have some
disadvantages in common. First, the failure mechanism has to be defined a priori in the
form of a circular or three-line wedge. Furthermore, the kinematic admissibility is not
ensured. Eventually, all programs used to perform LEA need to conduct a global search
in order to determine the failure mechanism with the lowest factor of safety (Schweiger
2016).

Limit equilibrium analyses were developed over the past century. Based on the Ordinary
Method of Slices from Fellenius (1936), Bishop’s simplified method (1955) went a step
further and took normal forces between the slices into account while neglecting shear
forces and neither satisfying all the equilibrium conditions. During the sixties, several
methods taking into account normal and shear forces acting between the slices were
developed. Not all of them fulfilled both equilibrium of moments and forces. Spencer’s
as well as Morgenstern & Price’s method do satisfy the two equations, each with a
different assumption about the interslice forces (Egger 2012). The following chapters will
describe the different methods briefly.

2.2.1 Ordinary method

The ordinary method of Fellenius defines a failure surface with a circular shape and a
satisfied moment equilibrium. Normal and tangential interslice forces are not taken into
account and force equilibrium is not given either (Fig. 2). No iterative process is
necessary to solve the equation needed for a definition of the FoS. As a result, the factor
of safety is easy to calculate through the moments equilibrium (see Eq. (4)). It should be
noted that the ordinary method provides most of the time the lowest safety values
compared to the following methods (Aryal 2006).

-

L S

N’

Fig.2  Ordinary method (according to Aryal 2006)

4 Institute of Soil Mechanics and Foundation Engineering
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_2(cl+ N'tan¢’)

FoS,, = 4
Oom Y Gsina (4)
N’ = (G cosa —ul) (5)
c’ cohesion acting along the slice base length
/ slice base length
N’ effective base normal force acting on shear surface
G self-weight of the slice
u pore water pressure
Uslice inclination in the middle of the slice

2.2.2 Bishop’s simplified method

One of the most common limit equilibrium methods in practical engineering is the
Bishop’s method (1955). It assumes a circular failure surface and satisfies vertical force
equilibrium in order to determine N’ (Eq. (6)), in contrast to the Swedish method. At the
same time, it also satisfies the moment equilibrium to determine the factor of safety. The
normal interslice forces E; and E> get concerned, unlike the shear stresses, as Fig. 3
illustrates.

N = 1 Z(G c'lsina ] ) 5
= FoS ulcosa (6)

tan ¢’
= 7
Mg cosa(1+tana FoS) (7)

Eq. (4) can be used due to the circular failure mechanism as well as the fulfilled moment
equilibrium. It is apparent that both Eq. (4) and Eq. (6) include the factor of safety and
need to be solved iteratively until FoS is equal to FoSu (Abramson et al. 2002).

E2

/‘7

N’

Fig. 3 Bishop’s simplified method (according to Aryal 2006)

Institute of Soil Mechanics and Foundation Engineering 5
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2.2.3 Janbu’s simplified method

The simplified method by Janbu (1954) got developed for a non-circular failure
mechanism where both horizontal and vertical force equilibrium are used to determine
the factor of safety. In contrast, the ordinary as well as the simplified Bishop method use
moment equilibrium to determine the FoS. As shown below, shear forces acting in
between the slices are neglected, but the normal forces are taken into account. The
normal force N’ is determined in accordance to Eq. (6). By using Eq. (8), the factor of
safety FoSr is determined iteratively until FoS (Eq. (6)) is equal to FoSk (Aryal 2006).

E1
E> l ft————
—

G

S
/7
N
Fig. 4  Janbu’s simplified method (according to Aryal 2006)
Y('l+ (N —ul)tan¢@’) seca
FOSF =
YWtana + ), AE (8)

EAE = EZ _El

2.2.4 Morgenstern & Price method

The three described methods satisfied either the moment equilibrium or the force
equilibrium. Morgenstern & Price (1965) define the factor of safety by fulfilling both
moment and force equilibrium. In addition to normal interslice forces, shear forces are

concerned, as shown in Fig. 5.

J;

/

3

Fig. 5 Morgenstern & Price method (according to Aryal 2006)

The inclination of the resulting interslice force can vary along the slip surface, according
to Eqg. (9). The interslice force functions f(x) might show either constant, half-sine,
trapezoidal or user-defined shapes (Fig. 6). Lambda is thereby a scaling factor of f(x).
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T=E-21 f(x) (9)

f(x) interslice force function along the slipping plane

A scale factor of the assumed function f(x)

] f(x) = constant ; f(x) = half-sine ] f(x) = trapezoidal
f(x) f(x) f(x)

0 0 0

L X R L X R L X R

Fig. 6  Selected shapes of the interslice force function (according to Egger 2012)

An iterative procedure is necessary to guarantee the equality of both factors of safety,
according to force and moment equilibrium. To comply with this condition, it must be
confirmed that Eqg. (10) and Eq. (11) are the same (Egger 2012).

Y{[c'l + (N —ul) tan ¢’] seca}
[G — (T, —Ty)]tana + ¥(E; — E7)

FOSF = Z

Y[c'l + (N —ul) tan ¢']
Y Gsina

FOSM =

2.2.5 Spencer’s method

Spencer’s approach (1967) is similar to the procedure proposed by Morgenstern & Price,
with one big difference. The inclination of the interslice forces is constant along the
slipping surface. As a consequence, the interslice force function f(x) is equal to unity
(Tab. 2) and the scale factor A = tan™ (T / E). The factor of safety is determined the same
way as in 2.2.4 (Aryal 2006).

Fig. 7  Spencer’s method (according to Aryal 2006)
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Finally, Tab. 1 and Tab. 2 compare the discussed limit equilibrium methods and show
the satisfied requirements in the respective method.

Tab. 1  Comparison of the equilibrium, normal force and tangential force conditions (according
to Egger 2012)

Limit equilibrium method Moment Force Normal- Tangential
equilibrium equilibrium force E force T
Ordinary Yes No No No
Simplified Bishop Yes No Yes No
Simplified Janbu No Yes Yes No
Morgenstern-Price Yes Yes Yes Yes
Spencer Yes Yes Yes Yes

Tab.2 Comparison of resulting interslice force inclination, A and f(x) conditions (according to
Egger 2012)

Inclination of resulting

Limit equilibrium method interslice force A f(x)
Ordinary No No need No need
Simplified Bishop Horizontal No need No need
Simplified Janbu Horizontal No need No need
Morgenstern-Price Variable Variable Variable
Spencer Constant inclination Constant 1.0
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This section tries to convey a basic understanding of both the displacement based finite
element analysis as well as the finite element limit analysis. Furthermore, a particular

note is made of the strength reduction techniques that define the factor of safety.

3.1 Strength reduction finite element analysis (SRFEA)
3.1.1 Introduction to displacement based finite element analysis

The introduction derives from the scientific manual of Plaxis 2D (2016), because strength
reduction finite element analyses were performed using this software. The basic
characteristics of the displacement based finite element analysis are described in this
chapter. First of all, it is assumed that all deformations are very small and the original
geometry can be used for the formulation. This domain can get discretized by either 6-
noded or 15-noded elements, as defined by the user. Each node is characterized by a
number of degrees of freedom which correspond to the unknown displacement
components. The distribution of the displacements u within elements depends on the
shape function N and the nodal values of displacements v (Eq. (12)). The number of
nodes decides how the displacements vary within the element and determine the
polynomial form of the distribution (Brinkgreve et al. 2016).

u=Nv (12)
A strain interpolation matrix B, containing derivatives of the shape function, is introduced
in order to extrapolate the strains from the nodal displacements (Eq. (13)).

e=Bv (13)

The equilibrium equation is satisfied according to Eq. (14). The formulation allows the
introduction of boundary tractions t and body forces h. Since the actual stress state o is
unknown, an incremental process is introduced according to Eq. (15), where o'~ is the
known stress state of the previous step and 4o is the applied stress increment. The
differences between external and internal forces get balanced due to the stress
increment (Brinkgreve et al. 2016).

fBTAadV = fNThidV+ fNTtidS—fBTai‘ldV (14)

o' =01+ Ao (15)
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Except for a linear elastic material behaviour, no linear correlation between strains and
stresses is given. Therefore, iterative procedures are introduced to satisfy equilibrium
everywhere in the domain. The elasto-platic material behaviour includes a non-linear

material stiffness matrix D (Eq. (16)) (Brinkgreve et al. 2016).

o = De (16)

The standard procedure of a displacement based finite element analysis starts by
applying a displacement increment Au, while using the strain interpolation matrix B to
determine the strain increment Ae. Eq. (17) is used to evaluate the stress increment
whereas D° represents the elastic material stiffness. Depending on the material
behaviour, the vector of incremental plastic strains A& is equal to zero for a linear
material behaviour. Otherwise, it can be determined according to Vermeer (Brinkgreve
et al. 2016).

Ao = D°(Ae — AgP) (17)

Substituting the incremental stress strain connection into the equilibrium Eq. (14), the

resulting correlation can be written as follows:

KiAvi = Pi,, — Pi-1 (18)
K stiffness matrix according to step i
Av/ incremental displacement vector according to step i
Péxt external force vector according to step i
P,-’;;Z internal force vector according to step i - 1

Due to the non-linear connection of stress and strain increments, the stiffness matrix is
determined in an iterative procedure that satisfies both equilibrium and compatibility. The
incremental displacement vector Av' is defined as the sum of sub-incremental
displacement vectors ov, applied to the domain. The global stiffness matrix K
approximately defines the material behaviour and can be written according to Eq. (19).
The more exact the stiffness matrix is determined, the less iteration steps are required

to fulfil an equilibrium (Brinkgreve et al. 2016).

K=fBTDde (19)
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3.1.2 Flow rule

The flow rule is a key factor in finite element analyses, whereby a choice between
associated and non-associated plasticity needs to be taken. To illustrate the explanation,
an elastic perfectly plastic material is assumed. As long as the stress increment is located
in the elastic area, the corresponding strain increment can be calculated by Hooke’s law.
When reaching the failure limit, no further stress increments can be carried by the
material and as a result, plastic strains occur. Eventually, the flow rule decides how the
plastic strains will develop at failure (Nordal 2014).

Considering an associated flow rule, the plastic strains act perpendicularly to the yield
function. Assuming Coulombs failure criterion, the dilatancy angle v’ is equal to the
friction angle ¢’ of the soil. Consequently, the plastic volumetric strains get
overestimated. Assuming a non-associated flow rule, plastic strains act perpendicularly
to the plastic potential only, but not to the yield function anymore. The dilatancy angle
is smaller compared to the friction angle ¢’ and the plastic volumetric strains get reduced
with a decreasing v/, as shown in Fig. 8. The non-associated flow rule is representing
the soil behaviour in a more realistic way and is therefore more appropriate for modelling
(Nordal 2014).

Associated ] y
-

flow rule
P 7
v 7 y=0°

P )
-
-
qw T <o
L
//’/, 5 i
=0 Non-associated

il flow rule

¢ &

Fig. 8  Comparison of associated and non-associated flow rule (according to Egger 2012)

3.1.3 SRFEA in Plaxis 2D

Plaxis 2D enables the user to run a safety analysis where simultaneously the strength
parameters tang’and ¢’ are reduced until the point where no equilibrium can be achieved
anymore. During undrained conditions, the undrained shear strength c, needs to be

reduced. The factor of safety is defined in Eq. (20).

tan ¢’ c o
Fos=—2% _ ¢ _ % (20)
tan D mob. C mob. Cu,mob.
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For associated plasticity, both friction angle ¢’ and dilatancy angle y’ get reduced at the
same time. While highlighting the non-associated flow rule, it should be noted that as
long as the reduced friction angle ¢’ is greater compared to the dilatancy angle v/, the
latter one is kept constant (Fig. 9a). At the point where ¢’ = y’, both get simultaneously
reduced, as shown in Fig. 9b (Brinkgreve et al. 2016).

T T

(@) (b)

1 tan¢' and tany' are
reduced simultaneously

tan ' for ¢’ =y’

tan @' = tany'

tan y' is kept constant T8N @'y, = AN Y gy

for ¢’ >y’

, ’
[e} o2

Fig. 9  Standard strength reduction (Plaxis 2D)

Additional calculations are performed with a user-defined Mohr-Coulomb model where
all tang’, tany’ and ¢’ get concurrently reduced throughout the entire reduction (also for
¢ > v’). The user-defined strength reduction for a non-associated flow rule is illustrated
in Fig. 10. It is of importance that for an associated flow rule and a dilatancy angle v’

equal to zero, the standard strength reduction and the user-defined strength reduction
result in the same factor of safety.

tang'
A~ tan ¢', tan y' and c’ are reduced simultaneously from the
1 beginning (assuming drained conditions).
3 ) tan ¢’ tany)’ c c
> tan FoS = ’(p = ,Ip =— ==
1 tan P mob. tan lIJ mob. C mob. Cu,mob.
Y
’ Note: The definition of FoS holds true for v’ > 0°
ek 1 3> G!

Fig. 10 User-defined strength reduction (Plaxis 2D)

3.1.4 Difficulties by calculating with a non-associated flow rule

A SRFEA performed with non-associated materials may lead to numerical instabilities
without any clear defined failure mechanism. This is due to the fact that the solution of
the governing equations is not unique and the failure mechanism changes with reduced
strength parameters. The bifurcation and kinematics of the failure mechanism lead to a
reduction in the factor of safety, compared to the associated plasticity (Tschuchnigg et
al. 2015a).
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The following strength reduction finite element analysis is inspired by Tschuchnigg
(2015a) and should demonstrate the influence of the dilatancy angle on slope stability
analyses. A 10 m high slope disposed to the horizontal at an angle of about 45° is
discretised by 1060 15-noded elements. A Mohr-Coulomb material model is
implemented with a friction angle ¢’ = 45° and a cohesion ¢’ = 6 KN/m2. To estimate the
importance of the flow rule, calculations with dilatancy angles v’ = 0°, 5°, 10° and 45°
are performed. After a gravity loading is applied, the SRFEA is performed. The
importance of the flow rule can be identified on Fig. 11. The factor of safety amounts to
1.53 by assuming associated plasticity. On the other hand, no clear value can be defined
for a high degree of non-associativity (v’ = 0°). The safety factors vary between 1.28 and
1.36, depending on the number of steps taken (Fig. 11). As a consequence, the
determination of one value for the factor of safety is not possible! An approach could be
made by either choosing the lowest value 1.28 in order to be at the safe side (step 240)
or by rather overestimating the safety and choosing 1.35 (step 292). The most realistic
and therefore favoured approach is an averaged value approximately equal to 1.30 (step
190).

1.6
1.5
1.4
®» 13
o
L
1.2
1.1
1.0
0 50 100 150 200 250 300
Steps [-]
—— SRFEA (y' = @') - Plaxis 2D —— SRFEA (y' = 10°) - Plaxis 2D
—— SRFEA (y' = 5°) - Plaxis 2D —— SRFEA (y' = 0°) - Plaxis 2D

Fig. 11 SRFEA according to different dilatancy angles v’

Fig. 12 demonstrates the change of the failure mechanism depending on the number of
steps taken for the case y’ = 0°. The shape of the incremental shear strains vary widely
in all three cases. To summarize, the oscillation of the factor of safety is the consequence
of the bifurcation of the failure mechanism (Tschuchnigg et al. 2015a).
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Fig. 12 Bifurcation of the failure mechanism for ¢’ = 0°: Step = 190 (a), step = 240 (b), step =
292 (c)

3.2 Finite element limit analysis (FELA)
3.2.1 Introduction to limit analysis

Limit analysis was developed in different fields during the 90s, ranging from metal
deformation processing to the design of reinforced concrete structures. In recent years,
the limit analysis was furthermore applied to soil mechanics (Chen 2007). The power lies
in the constriction of the true collapse load from below as well as from above, by definition
of lower and upper bounds. The difference between those two bounds represents the
error margin of the solution (Tschuchnigg et al. 2015b).

The original procedure of defining the factor of safety is performed by an increase of
applied load until failure is reached. A limit analysis enables the definition of a collapse
load without performing an elasto-plastic analysis. Some well-defined assumptions are
necessary to perform a FELA. First, it should be noted that strain softening is being
ignored and elastic-perfectly plastic stress strain correlation is used. The Mohr-Coulomb
failure criterion is the assumed condition where plastic flow occurs and nothing can be
said about the total plastic strains because of unlimited plastic flow. The changes in
geometry at the time of failure are small and as a consequence, for equilibrium
equations, the original geometry is used. Due to the lack of changes in the geometry, the
virtual work equation can be applied (Chen 2007).

The theorems of the limit analysis can be transferred to any solid body if the material
shows perfect plasticity and no hardening or softening is at risk. Furthermore, the yield
surface is assumed to be convex and in consequence, the strain rates are derivable from
the flow rule (v’ = ¢’). As a third criterion, changes of geometry at limit load are neglected.
If the failure load is reached, all stresses remain constant and only plastic strain
increments occur. The elastic strain increments are assumed to be small and set to zero
because they are not influencing the collapse at the limit load. Moreover, the initial
stresses and deformations do not affect the plastic limit (failure load). The following two
paragraphs are going to impart knowledge for both lower- and upper-bound theorems
(Chen 2007).
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The lower-bound theorem is representing a stress state where equilibrium equations, the
stress boundary conditions and yield criterion are satisfied (statically admissible stress
field). In respect to a lower-bound solution, the load would be smaller compared to the
actual collapse quantity and could be applied to the elastic perfectly plastic material
without reaching failure. This chapter is considered to be appropriate to address the topic
of discontinuities in the stresses. They cause the division of the material into several
stress zones. The mentioned zones are satisfying the equilibrium and do not violate the
yield condition. Furthermore, the stress fields are continuous in each zone, but there
might be a different one in two neighbouring zones. The tangential component of stress
along the two zones may be different, but all the normal directed components, on the
other hand, continue across boundaries. The equilibrium and yield criteria are satisfied
in the lower-bound theorem, but the soil kinematics are not concerned (Chen 2007).

By applying the upper-bound theorem, the loads exceed the collapse quantity and cannot
be carried by the soil body because the work done by the external forces is exceeding
the internal dissipation. The theorem sets the external work equal to the internal rate.
This happens under the terms that the assumed failure mechanism satisfies the
mechanical boundary conditions. Moreover, the worst case upper-bound solution must
be determined using the work equation. The mechanism has to fulfil the condition that
changes in displacements within the soil body are kinematically admissible. No gaps and
overlaps should occur. The upper-bound satisfies the velocity boundary conditions as
well as the strain and velocity compatibility condition. It is of uppermost importance that
the distribution of stresses does not have to satisfy an equilibrium (Chen 2007).
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3.2.2 Introduction to finite element limit analysis

For comprehensibility reasons, the chapter is split into two parts. The first one discusses
the finite element lower-bound formulation while the latter one deals with the formulation
of the finite element upper-bound.

Finite-element lower-bound formulation

This section is set up according to the formulation of Lyamin & Sloan (2002a). For a
better understanding, Fig. 13 represents a soil body with a volume V, loaded by several
different forces. Along boundary A, forces q, t and w might act. Additionally, the two body
forces g and h are acting over the volume and might represent the unit weight as well as
an unknown body force (Sloan 2013).

Fig. 13 Forces acting on soil body (according to Sloan 2013)

The lower bound calculation defines a statically feasible stress field with a satisfying
equilibrium in the whole system that must find a balance with the acting forces at the
boundaries, stick the yield criterion anywhere in the system and define the maximum
possible load (collapse load) too. Referring the collapse load to Eq. (21), in terms of a

slope stability analysis Q1 = 0 and h = vy, the variable has to be optimized.

0= w@da+ | ma (21)
Aq v

The soil body gets discretised by using 3-noded elements. The nodes of the linear
elements consist of a vector of three unknown stresses and a vector of two unknown
body forces which might be equal to zero if any of the two body forces are acting (Fig.
14). The nodal stresses and element body forces are the primary unknowns in the non-
linear equation system. Equilibrium equality constraints have to be ensured for each

element, for each discontinuity and for each stress boundary condition. The normal and
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shear stresses (n,s) acting along stress discontinuities are continuous. Furthermore, the

yield function f(o”) has to be equal or smaller than zero at all nodes (Sloan 2013).

Maximise Q = [ q,dA = collapse load

® Nodes o’= {dl,,, o H;V}T

XX» Fyyr

' T
(O Triangles h®= {h§, hi}

Stresses in elements satisfy equilibrium

Stresses in discontinuities satisfy equilibrium

Stresses at nodes satisfy yield condition

L.

Fig. 14 Lower-bound mesh (according to Sloan 2013)

For a bearing capacity problem, the external traction g gets expanded until collapse
occurs (Fig. 14). Based on the fact that the stresses vary linearly over the edge, the
resulting forces acting in a normal and tangential way are defined according to Eq. (22).
The stresses g’ and g? are acting at the nodes and can be connected linearly because
3-noded elements with edge length L are used (Sloan 2013).

1 2
=2+ ) (22)
With the use of a Cartesian coordinate system and by summing up all the loaded edges,
the collapse load can be defined as c1Ta, where ¢y is representing a vector of constants
and o the global vector of unknown nodal stresses. If body loads are acting instead of
external forces, c}h is defining the critical condition. It should to be noted that c: is the
area on which the global vector of body loads h is acting on. As mentioned before, the

continuum equilibrium has to be fulfilled for each element. By substituting Eq. (24) to Eq.
(23), the condition to satisfy (Eq. (25)) is met (Sloan 2013).
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Dx Ty et oS
do. ot (23)
yy xy
W + 3 + hy + gy =
3
o= Z N;o’ (24)
i=1
[BIB}B%]o¢ = —(h® + g°) (25)

The B-matrices are covering the compatibility and contain the area of the element A® and
constants which depend on the coordinates. When multiplying Eq. (25) on both sides
with A®, an implementation of stress discontinuities is possible. If Eq. (26) is satisfied,

equilibrium at any point in the domain is given.

[BTB;B}]o® = —(h® + g°)A° (26)
— b; 0 c;
where B] = A°B] = [d : bj] (27)

To model areas of discontinuity, zero thickness elements are used because their
utilization is increasing the accuracy of the collapse load.

(x1, y1) = (x2, y2)
(X3, Y3) = (X4, ya)

n y :
s : X 6—:&* 5
Fig. 15 Zero thickness elements (D1, D2) (according to Sloan 2013)

The shear and the normal stress have to be the same on both sides of the discontinuity.

To comply Eq. (26), dis set to zero. It can be seen, that (x1, y1) = (X2, y2) and (Xs, y3) =
(x4, y4) (Fig. 15). Therefore, the Eq. (28) changes and provides the evidence that §Io1 =
B102(Sloan 2013).

[BTBT0]o¢ =0 (28)

As a consequence, normal and shear stresses are continuous along the discontinuity,

while the tangential normal stress may differ at the same nodes (Eqg. (29)).
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To fulfil the stress boundary condition, the boundary nodes have to match the tractions t
which is acting on the surface. This condition can be written as follows.

1 1 2 2
=l =1 %
lrd={a ) = (50)
The yield condition is the last one to be satisfied in the finite-element lower-bound. It is

fulfilled when f(c') < 0 holds true at any node in the domain (Sloan 2013).
Finite-element upper-bound formulation

The formulation of the upper-bound described in this chapter refers to Lyamin & Sloan
(2002b), with some modifications related to discontinuities by Krabbenhgft et al. (2005).

A finite element upper-bound formulation searches for a velocity distribution u that
satisfies compatibility, the flow rule as well as the velocity boundary conditions w along
Aw (Fig. 13). It attempts thereby to minimalize the internal power dissipation minus the
work done by external forces, according to Eq. (31) (Sloan 2013).

W=Pint_f

t"udA —f giudv (31)
At

%4
Py = f o EP AV (32)
%4

The enhanced value for I to the rate of work expended by external forces Pex (Eq. 33))
defines the upper bound of the finite element limit analysis (Sloan 2013).

Poxt =f qTudA —f hTudv (33)
a4 v

In a similar way, if compared to the lower-bound, the 3-noded elements are characterized
by a linear distribution of the velocities u and a constant stress field o. By using this kind
of 3-noded elements, rigorous upper bounds can be set. The primary unknowns are
nodal velocities, element stresses and plastic multipliers. They get determined by
minimizing the internal power dissipation less the external work done by external forces.
As evident in Fig. 16, each nodal vector is composed of two velocities. Three unknown
stress components and one unknown plastic multiplier rate A get assigned to each
element. In the next step, the plastic strains get calculated while considering an

Institute of Soil Mechanics and Foundation Engineering 19



TU

o a2 3 Numerical methods of defining a FoS

associated flow rule and satisfying the consistency requirement Af(o®)=0. Two
multipliers get introduced to model velocity discontinuities in order to fulfil the associated
flow rule. The velocity boundary conditions is ensured on the corresponding nodal
boundaries. The stresses in all elements create the yield condition f(o®) <0 (Sloan
2013).

Minimise Pi = [ 6T&"dV = Q x w,,

® Nodes u= {u’x ujy}T

Wn=-1
‘ ? ( y
 Triangles 0°= {0, 0%, 15y
O O
O o Strains in elements satisfy flow rule
o
[ )
L @
O
0
L

=0

x

Uy

Ux =

Velocities in discontinuities satisfy flow rule

Stresses in elements satisfy yield condition

I_.x ux=uy=0

Fig. 16  Upper-bound elements (according to Sloan 2013)
The stress distribution over each element is constant, therefore the internal power
dissipation P, can be written as shown in Eq. (34). Within the element the plastic strains

&P are constant and can be defined as B°u®. The variables o-and u are representing the

global vector of element stresses and of nodal velocities.

Pipe = j oTEPAV = Z(GTépV)e = 2 o"B°u® = ¢"Bu (34)
4 e

e

The second part of Eq. (31) containing the tractions t and body forces h can be combined
to ¢’u. The final correlation is written as follows (Sloan 2013).
W =06"Bu—c"u (35)
In addition to Eq. (35), a continuum flow rule has to be confirmed, according to Eq. (36)
where A is the plastic multiplier. To ensure that plastic strains & occur only at the yield
surface, A f(o®) = 0 (Sloan 2013).
& = AVf(6®), 1=>0 (36)

In summary, any 3-noded element has to fulfil the flow rule constraints, as shown in Eq.
(37) where &= A® A (Sloan 2013).

20 Institute of Soil Mechanics and Foundation Engineering



TU

Graz
Graz University of Technology

3 Numerical methods of defining a FoS

Beu® = aVf(e®), @ =0, af(c®) =0 (37)

The discontinuity flow rule is satisfied in a similar way as for the lower-bound. Two 3-
noded elements with zero thickness (Fig. 17) model discontinuities. Additionally, two
plastic multipliers are applied to simulate the normal and tangential jumps Au, and Aus
along the discontinuity (Sloan 2013). The velocity components in discontinuities satisfy
the associated flow rule and are defined according to Eq. (38).

(X1, y1) = (X2, y2)
(x3, y3) = (x4, ya)

Fig. 17 Zero thickness elements for the upper-bound solution (according to Sloan 2013)

_ aof
A‘Ll.n = ﬁ
ad 38
Aus = a—_[f ( )

>0, af(o,1)=0

In addition to the discontinuity flow rule, the velocity boundary conditions have to be
fulfilled, according to Eq. (39), at any nodes that are charged by velocities (Fig. 18) (Sloan
2013).

Fig. 18 Velocity boundary condition (according to Sloan 2013)
1 1 2 2
un WTl un WTl
= ) = 9
{u}} {Wsl} {uf} {WSZ} (39)
3.2.3 Strength reduction according to Sloan (2013)

The FELA factor of safety as mentioned above gets commonly expressed in terms of
loads. In slope stability analyses, however, the factor of safety is effectively defined
according to the strength parameters of the soil. Sloan (2013) developed the following
method which is implemented into Optum G2, the software used to perform FELA. As a
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first step, a factor of safety equal to unity is assumed (Fo = 1). Subsequently, the available
strength gets computed according to Eqg. (40) and Eq. (41).

C’a:C'/FO (40)
@', = tan"(tan ¢’ /F,) (41)
According to ¢’s and ¢’s, the upper and the lower bounds of the unit weight (.5, yus) are

computed which can be ensured by the slope. Using both bounds of the unit weight, the

my,, value can be derived from Eq. (42) (Sloan 2013).

m* = (yrg + Yus)/2y (42)
If the m* value is greater than 1, the previous factor of safety increases by 0.1, otherwise
it decreases by 0.1. In one specific kind of iterative process, ¢’s and ¢’s form according
to an updated FoS. Subsequently, m; is calculated according to Eq. (42) again. If
(m7-1)(mg-1) >0, myis equal to m; and F, equal to F;. As long as m*is not equal to
unity, the factor of safety gets modified as mentioned above. The iterative procedure of

strength reduction in finite element limit analyses is shown in Fig. 19. The values are
taken from Sloan (2013).

2.5

Trial 1: m = 2.059

2.0

Trial 2: m = 1.477

Trial 3: m =1.141

(vus + vB)/2Y
o1

Trial 4: m = 0.926

. 1.0 :
* 1
:
|
0.5 !
1 FoS=1.27
i
i
0.0 :
1.0 1.1 1.2 1.3 1.4

FoS [-]

Fig. 19  Strength reduction process in FELA (according to Sloan 2013)
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3.2.4 Safety analysis of Optum G2

The iterative strength reduction process described in 3.2.3 is automatically performed in
Optum G2. This can be achieved by combining the program-internal analysis type
options Strength Reduction with Upper and Lower elements. Since the mentioned
analysis type is limited to approximately 1000 elements, alternatives are needed for a
finer discretisation. The type Limit Analysis with Upper and Lower elements provide the
use of more elements but misses a definition of the FoS according to the strength
parameters. As shown in Eq. (43) and Eq. (44), the safety factors are based on optimizing
loads and gravity for a given strength. The latter option is more appropriate in connection
with slope stability (Krabbenhgft et al. 2016).

Loadg,;
FoSipaa = L:;Zure ( 43 )
Gravitygy;
FOSGravity = ﬂ ( 44 )

Gravity

When choosing the second option, there is, however, a possibility to define the FoS with
respect to the strength parameters manually. The strength parameters ¢’ and ¢’ get
reduced to a FoSgravity = 1. In succession, the ratio of the initial strength parameters to
the ones at failure defines the safety (Krabbenhgft et al. 2016). Appendix 10.1.1 gives
an overview of the several options that Optum G2 offers.

Although the analysis type Strength Reduction is limited to approximately 1000 elements,
an adaptive mesh refinement can lead to more precise results. Thereby, it should be
noted that refinements according to plastic shear (Shear Dissipation) or plastic total
strains (Total Dissipation) are commonly used. Apart from this choice, the refinement is
still automatically executed by Optum G2 (Krabbenhgft et al. 2016).

Moreover, it shall be mentioned at this place that Strength Reduction analyses can also
be performed with 6-noded and 15-noded elements, assuming associated plasticity.
Therefore, the strength parameters define the FoS, according to Eq. (20). Furthermore,
Optum G2 enables the user to reduce the strength of structural elements by keeping the
soil properties constant (appendix 10.1.2).
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3.3 Davis approach
3.3.1 Necessity of the Davis approach in finite element limit analysis

As mentioned in the previous chapter, the limit analysis is always dealing with an
associated flow rule. Due to the fact that in a plastic field, stress and velocity
characteristics are equal only for the associated flow rule (¢’ = y’), some modifications
of the strength parameters ¢’ and ¢’ are necessary to guarantee the equality of the
characteristics and to generate a kind of non-associated behaviour. Therefore, the
modified parameters ¢c*and ¢* are used with an associated flow rule as input parameters
(Eq. (45) and Eq. (46)) (Tschuchnigg 2015a).

c*=pBc
(45)
tan@”® = ftan¢’
cosy’cos @’
:Bfailure =p= 1 —siny’sin ¢’ e

3.3.2 Equality of stress and velocity characteristics

To demonstrate the correlation between the stress and velocity characteristics, an
element ABCD is imagined. The principal stresses ¢’; and o’s as well as the principal
strains ds and ode; are acting on the element ABCD inclined to the vertical axis at an
angle of » (Fig. 20a). The failure criterion is defined by Coulomb, according to the normal
stress o’s and shear stress 7, as it can be seen in Fig. 20b. The pole point Pp is defined
as the point of intersection where the Mohr circle meets extensions of lines acting parallel
to major and minor principle stress directions. Davis introduced the term stress
characteristics, visualized as the red lines, connecting Pr with (I) and (ll). The stress
characteristics are disposed about 45° - ¢’ / 2 to the major principal stress direction
(Tschuchnigg 2015a).
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Fig. 20 Element of interest (a), Mohr stress circle (b), Mohr strain circle (c) (according to
Tschuchnigg 2015a)

Fig. 20c represents the corresponding Mohr strain circle with the major and minor strain
increments dg; and des3 acting along the abscissa. The shear strain increments 6)/2 are

applied to the ordinate axis.

The ratio of volumetric strain increment &« to the related maximal shear strain
increment dymax defines the dilatancy. The approach by Davis deals with plane strain
conditions with a dilatancy angle according to Eq. (47).

Oepoy 08,  beg +0g
6ymax 6ymax 5Vmax

siny’ = (47)

As shown in Fig. 20c, the black dashed lines connecting Pp with (i) or (ii) are representing
planes perpendicular to the direction of zero extension. It should be noticed that (i) and
(i) represent points of zero extension (den = 0). The direction of zero extension is
determined by drawing horizontal lines from (i) and (ii) and connecting the intersection
point of the Mohr strain circle with the pole point Pr. The lines representing the direction
of zero extension are marked in green (Fig. 20c) and are named velocity characteristics,
because according to Davis they are equal to the slip lines. The velocity characteristics
are disposed about 45° - ¢’ / 2 to the principal stress direction. Consequently, the stress
and velocity characteristics are equal for an associated flow rule (¢’ = y’). Assuming a
non-associated flow rule, the stress characteristics are not equal to the slip lines
(Tschuchnigg 2015a). This relation is shown in Fig. 21a.

Concerning a non-associated flow rule, the stress ratio according to the zero extension
lines rather than the stresses related to the stress characteristics has to be applied. In
succession, the shear and normal stresses 7z and o’k are not cutting the Mohr-Coulomb

failure criterion (Fig. 21b). According to Davis, the modified strength parameters ¢* and
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c¢* should be used in combination with an associated flow rule. The combination of o’
and 7z matches remarkably well with the modified strength parameters (Tschuchnigg
2015a).

Stress
Velocity characteristics
\characteristics

Velocity
characteristics

\
\

45 - ¢'/2
Stress —

characteristics

Fig. 21 Comparison of stress and velocity characteristics (a), Davis approach (b) (according to
Tschuchnigg 2015a)

The strength parameters ¢* and c* are dependent on the factor g (Eq. (46)). The amount

of g is diminishing with a decreasing dilatancy angle and an increasing degree of non-
associativity (Tschuchnigg 2015a).

The original approach by Davis is called Davis A, because Tschuchnigg developed two
modifications which are subject of discussion in the following chapter.

3.3.3 Modifications of the original Davis approach

Based on the fact that the original approach by Davis leads to very conservative results
if the factor of safety gets expressed by the strength parameters of the soil, Tschuchnigg
(2015a) developed two procedures which are still conservative compared to the non-
associated FoS, but less than Davis A.

Davis B

In Davis B, the g value is determined iteratively because of a change in the degree of
non-associativity A (¢’ - y’). The factor of safety of the previous iteration step modifies

the dilatancy angle y’ as well as the friction angle ¢’, according to Eq. (48).
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_1 (tan¢@’ _1 (tany’
CoS (tan ( FOS )) COoS (tan ( FOS )) ( 48 )

Igfailure = ’ ’
o _1(tang . _4 (tanyp
1 SIn cos (tan ( FoS sin | tan FoS

For the sake of completeness, a factor of safety equal to unity is assumed for the first

step. Consequently, Eq. (48) becomes equal to Eq. (46). The value Sriure gets calculated

until no change in factor of safety occurs anymore.
Davis C

Davis C is similar to procedure B, with the difference of an unmodified dilatancy angle ’

due to the iterations, as shown in Eq. (49) (Tschuchnigg 2015a).

cos (tan_1 (t;r;g) )) cos )’

failure ’
A . _4(tang o
— 1
1 — sincos (tan ( FoS )) siny

(49)

In the same way as for Davis B, o gets calculated with a factor of safety equal to unity.
As long as the dilatancy angle v’ is zero, procedures B and C remain the same. To
perform Davis B and Davis C, either in Plaxis 2D or Optum G2, the input parameters get

calculated manually and each iteration step is a separate calculation.

Tab.3 Comparison of Davis A, B and C (according to Tschuchnigg 2015a)

Davis A Davis B Davis C

B Constant Varies Varies

Y’ .Bfailure = f((pl' ll}l) Bfailure = f((p’failure: lp’failure) ﬁfailure = f(¢,failure' lpl)

Note:  ¢* could theoretically @* cannot be smaller than ¢* could theoretically
become smaller than become smaller than v’
l//’
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The following chapters show calculations performed on a reinforced embankment as well
as on an upstream slope. The two examples are not linked together and can therefore
be discussed separately. They, however, are connected due to the simple fact that both
are reinforced by structural elements. In addition to LEA, SRFEA and FELA, further
calculations based on Davis A and Davis B are performed with FELA. The approach
results are compared with the non-associated SRFEA performed in Plaxis 2D in order to
clarify how well both match.

4.1 Reinforced embankment
4.1.1 General information

The covered embankment gets reinforced by horizontal geotextile layers at the toe of the
embankment. The four soil layers, namely backfill material, sandy top layer, gravel layer
and clay layer define the soil composition (Fig. 22a). A horizontal water table is defined
on top of the sandy top layer. Assuming drained conditions, the three underlying layers
are fully saturated.

backdill material %

sandy top layer

gravel layer

clay layer

(@)

Fig. 22 Reinforced embankment: Soil composition (a), water table (b)

This study deals with two different cross sections of the reinforced embankment. Both
are similar in many aspects. For the sake of completeness, the differences of cross
section 1 (CS1) and cross section 2 (CS2) are described in the following. Both models
are 35.5 m long, 20.6 m high and show an embankment height equal to 5.6 m. The cross
section 1 is characterized by an embankment inclination of about a1 = 36°, while cross
section 2 is slightly flatter (a2 = 35°). Additionally, the amount of horizontal geogrid layers
is different. Fig. 23 shows that 5 horizontal geogrid layers are installed in CS1, while 6
layers are present in CS2. The geogrids are 5 m long for both cross sections and show
a vertical distance of about 0.3 m. In consequence, the height of the geogrids package
for CS1is 1.2 m and for CS2 1.5 m.
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Fig. 23 Reinforced embankment: Comparison of cross section 1 and cross section 2

The Hardening Soil (HS) model and the Hardening Mohr-Coulomb (HMC) model, both
assuming a Mohr-Coulomb failure criterion, are used for finite element analyses in Plaxis
2D (Schanz 1998) and Optum G2 (Doherty & Muir Wood 2013). Additionally, limit
equilibrium analyses, assuming a Mohr-Coulomb failure criterion, are performed. The
material parameters, listed in Tab. 4, are used as an input. The reinforcements get
modelled by 5 m long geogrids with elastic properties and an extensional stiffness EA =
10000 kN/m2.

Tab.4 Reinforced embankment: Material parameters
Unit r‘::z?c-,f(r’;lgl Sa/'g% rtop Gravel layer Clay layer
Yunsat, Vet (kN/m3) 21;21.5 21;21.5 21;21.5 20;20.5
Esq®f (kN/m2) 40-103 40-10°3 25-103 30-10°
Eoed™ (kN/m2) 40-10°3 40-103 25-103 30-10°
Eu/®f (kN/m2) 120-108 120-103 75-103 90-10°
m (-) 0.5 0.5 0.5 0.8
c’ (kN/m2) 5 0 0 30
9 () 37 35 35 20
v ©) 0; ¢’ 0; ¢’ 0; ¢’ 0; ¢’

This study includes three loading conditions. Loading condition 1 excludes any external
load, only its self-weight is acting. The permanent load pg = 19 kN/m?2, acting along the
whole crest, is taken into account in loading condition 2. In addition to pg, the live load pq
= 63 kN/m?2, is part of loading condition 3 (Fig. 24).
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Loading condition 1 (LC1) Loading condition 2 (LC2) Loading condition 3 (LC3)

Fig. 24 Reinforced embankment: Loading conditions

Due to the similarity of both cross sections, the mesh refinement is only shown for CS2.
In Plaxis 2D, the discretization of the domain is carried out using 15-noded elements. As
Fig. 25 shows, the mesh gets refined until the safety factor remains almost constant. Due
to the fact that the failure mechanism develops behind the reinforcements, this area shall
be the subject of refinements. In order to secure no change in factor of safety for any
loading condition, 10913 elements are used. It should be noticed that the higher the
number of elements, the smaller the change in the factor of safety gets. This correlation
becomes clear in Tab. 5. In order to decrease the FoS from 1.70 to 1.69, 700 additional
elements are needed. To decrease the factor of safety from 1.67 to 1.66, about 5900
elements are needed. This behaviour gets elaborated with more details in chapter 4.1.4.

Fig. 25 Reinforced embankment: Mesh refinement (step 1 - 5)

Tab.5 Influence of mesh density on the factor of safety

Uni 837 1537 3056 4992 10913
nit

elements elements elements elements elements
SRFEA (v’ = ¢) (-) 1.70 1.69 1.68 1.67 1.66

It should be noted that for all SRFEA carried out in Plaxis 2D, the initial stresses are
calculated according to the Ko procedure where no embankment is present. In addition,
the construction of the embankment gets modelled in one step, followed by either the
safety analysis on its own or a loading phase with an additional safety analysis (LC2 and
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LC3). Subdividing the process of construction into more phases has no influence on the
factor of safety (appendix 10.2.1).

4.1.2 Factor of safety according to SRFEA and LEA

It was mentioned earlier that the flow rule might have a strong influence on the factor of
safety in strength reduction analyses. Fig. 26 illustrates the safety factors over reduction
steps for cross section 1. The dashed lines, representing the non-associated calculations
(v’ = 0°), differ strongly from the full lines (v’ = ¢’). Logically, loading condition 1 with
associated plasticity shows the highest FoS, equal to 1.66. In comparison, the non-
associated calculation results in a safety factor equal to 1.52 which corresponds to a
difference of about 9.2 %. The factors of safety for loading conditions 2 and 3 are listed
in Tab. 6. It can be seen that the differences in the factor of safety rise from 9.2 % to 11.7
%. Furthermore, Fig. 26 shows a slightly erratic result for non-associated plasticity due
to the so-called bifurcation of failure mechanism, as mentioned in section 3.1.4.

1.8

FoS [1]

0.8 '
0 25 50 75 100 125 150
Steps [-]
—SRFEA (¢'=y')-LC1 ——SRFEA(¢'=y')-LC2 —— SRFEA (¢'=y')-LC3
------------- SRFEA (¢'=0°)-LC1 - SRFEA (¢'=0°) -LC2 - SRFEA (@' =0°) - LC3

Fig. 26  Cross section 1: ¢ - ¢ reduction
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Tab.6 Cross section 1: Overview of safety factors according to SRFEA

SRFEA

Loading condition 1 Loading condition 2 Loading condition 3
SRFEA (v’ = ¢) 1.66 1.56 1.43
SRFEA (v’ = 0°) 1.52 1.42 1.28
% Difference 9.2 9.9 11.7

The incremental shear strains for the non-associated calculations (y’ = 0°) show a similar
failure mechanism for all three loading conditions (Fig. 27).

Fig. 27 Cross section 1 (v’ = 0°): Incremental shear strains

It can be established that by comparing the shape of incremental shear strains for both
associated and non-associated plasticity, all six failure mechanisms show good
agreement (Fig. 27 and Fig. 28). Due to the additional dynamic load, the failure
mechanism in loading condition 3 is slightly flatter in the upper part. Again, both
associated and non-associated calculations show the same failure mechanism. Because
of numerical problems at the toe of the embankment, a concentration of incremental
shear strains gets developed below the lowest layer of geogrids for all associated
calculations (Fig. 28). As a consequence, the failure mechanism is not as clear defined
as for the non-associated calculations.

Fig. 28 Cross section 1 (y’ = ¢’): Incremental shear strains

In addition, limit equilibrium analyses, using the Morgenstern & Price method, are
performed for cross section 1. A square area, with a side length of 10 m and 200 intervals
in the x and the y direction, is used to search for the circular failure mechanism with the
lowest factor of safety. The safety factors of LC1, LC2 and LC3 are listed in Tab. 7.
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Tab.7 Cross section 1: Overview of safety factors according to LEA
LEA (Morgenstern & Price)
Loading condition 1 Loading condition 2 Loading condition 3

LEA 1.72 1.62 1.50

Fig. 29 highlights the critical failure mechanisms for the different loading conditions. They
are in good agreement with the course of incremental shear strains obtained from
SRFEA.

Loading condition 1 (LC1) Loading condition 2 (LC2) Loading condition 3 (LC3)

Fig. 29 Cross section 1: Failure mechanisms of LEA

Now, comparing the SRFEA and the LEA, it is remarkable that the safety factors obtained
from the LEA are in better agreement with the associated calculations of Plaxis 2D and
give a slightly higher FoS than the SRFEA. A complete comparison is listed below. The
differences between the LEA and the associated SRFEA vary between 3.5 % and 4.7
%. In contrast, compared to the LEA, the non-associated safety factors are between 11.6
% and 14.7 % lower.

Tab.8 Cross section 1: Comparison of SRFEA and LEA

LEA, SRFEA
Loading condition 1 Loading condition 2 Loading condition 3
LEA (M&P) 1.72 1.62 1.50
SRFEA (v’ = ¢) 1.66 1.56 1.43
SRFEA (v = 0°) 1.52 1.42 1.28
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Tab.9 Cross section 1: Differences between SRFEA and LEA

% Differences

Loading Loading Loading
condition 1 condlition 2 condition 3
LEA (M-P) - SRFEA (v = @)
=100 (LEA (M-P) - SRFEA (y' = ¢))) / 3.5 3.7 4.7
LEA (M-P)
LEA (M-P) - SRFEA (v’ = 0°)
= 100 (LEA (M-P) - SRFEA (v = 0°)) / 1.6 12.3 14.7

LEA (M-P)

The same safety analyses are performed for cross section 2. For the sake of
completeness, the results are presented in Fig. 30, Fig. 31, Fig. 32 and Fig. 33 as well
as in Tab. 10 and Tab. 11. It should be noted that all statements made for cross section
1 hold true for cross section 2 as well.

1.75

1.50

1.00

0.75
0 25 50 75 100 125 150
Steps []
—SRFEA (¢'=y')-LC1 ——SRFEA(¢'=y')-LC2 —— SRFEA (¢'=y')-LC3
------------- SRFEA (¢'=0°)-LC1 - SRFEA (@' =0°) -LC2 - SRFEA (@' =0°) - LC3

Fig. 31  Cross section 2 (v’ = 0°): Incremental shear strains
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Fig. 32 Cross section 2 (v’ = ¢’): Incremental shear strains

Loading condition 1 (LC1) J Loading condition 2 (LC2) Loading condition 3 (LC3)

Fig. 33 Cross section 2: Failure mechanism according to LEA

Tab. 10 Cross section 2: Comparison of SRFEA and LEA

LEA, SRFEA
Loading condition 1 Loading condition 2 Loading condition 3
LEA (M-P) 1.74 1.64 1.46
SRFEA (v’ = ¢) 1.66 1.56 1.40
SRFEA (v’ =0°) 1.55 1.43 1.22

Tab. 11 Cross section 2: Differences between SRFEA and LEA

% Differences

Loading Loading Loading
condition 1 condition 2 condition 3
LEA (M-P) - SRFEA (v’ = ¢))
= 100 (LEA (M-P) - SRFEA (v = ¢)) / 4.6 4.9 4.1
LEA (M-P)
LEA (M-P) - SRFEA (v’ = 0°)
= 100 (LEA (M-P) - SRFEA (y' = 0°)) / 10 = e

LEA (M-P)

Due to the uncertainty of the soil parameters and geometry, additional calculations are
performed for cross section 1 and cross section 2. Appendix 10.2.2 includes the SRFEA
and the LEA on two modified cross sections where both embankments are disposed
about 37°. The modified cross sections 1 and 2 still include 5 or rather 6 horizontal
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geogrid layers (see chapter 4.1.1). As shown in Fig. 34, the cohesionless sandy top layer
gets used for backfilling. To avoid near-surface failure mechanisms, a modified backfill
material with ¢’ = 100 kPa is used. This is done because the slope inclination is larger
than the friction angle of the backfill material. The results underline the expectation that
the factor of safety based on the limit equilibrium technique is in better agreement with
analyses according to associated plasticity.

maodified backfill
material

=== sandy top layer

gravel layer
clay layer

Fig. 34 Modified cross section 1: (a) Soil composition, (b) water table

A further study, attached to appendix 10.2.3, shows that the cohesion has a larger impact
on the factor of safety than the friction angle. The influence of extensional stiffness EA
and tensile strength N, is discussed in appendix 10.2.4.

4.1.3 Factor of safety according to Davis A and Davis B

This chapter deals with finite element limit analyses performed on cross section 2 (CS2)
while considering loading condition 1 (LC1). In addition to the standard upper and lower
bound calculation with associated plasticity, Davis A and Davis B are calculated as well.
It should be noted that for this example the latter one is equal to Davis C, because all
soil layers show a dilatancy angle v’ equal to zero. FELA are performed with adaptive
mesh refinement. As mentioned in chapter 4.1.2, a concentration of incremental shear
strains occurs for SRFEA with associated flow rule below the geogrid layers. The same
problem arises in Optum G2 for the lower bound analyses. Fig. 35 shows that the mesh
gets refined automatically at the toe of the embankment.
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Fig. 35 Adaptive mesh refinement: Concentration at the toe for the lower bound

To overcome this numerical problem, tension gets allowed between the geotextile layers
(tension cut-off: No). This assumption is acceptable due to the fact that the geotextiles
get bend up at the edges. Taking these modifications into account, the meshes for lower
and upper bounds get refined according to Fig. 36a and Fig. 36b. The area around the
reinforcements gets refined according to the shear dissipations. A FoSiz = 1.91 and a
FoSue = 1.95 are yielded by the FELA. The deformed meshes of Fig. 36¢ and Fig. 36d
represent the failure mechanisms for the lower and upper bound calculations. It should
be noted that the distribution of incremental shear strains is equal to those based on the
SRFEA.

Fig. 36 Cross section 2 according to FELA: (a) lower bound: adaptive mesh refinement; (b)
upper bound: adaptive mesh refinement; (c) lower bound: failure mechanism; (d) upper
bound: failure mechanism

Moreover, the SRFEA and the FELA are performed with modified strength parameters
c¢* and ¢* according to Eqg. (46). Tab. 12 and Tab. 13 highlight that SRFEA and FELA

are in good agreement. It is apparent that Davis A is about 14 % conservative compared
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to a SRFEA with non-associated plasticity (Tab. 14). The FoSwean based on Davis B is
still conservative at only about 3.1 %. By using Eq. (48), three iterative modifications of
the strength parameters are necessary to guarantee no change in the safety factor.

Tab. 12 Cross section 2 (LC1): Comparison of SRFEA

SRFEA
v'=¢ v =0° Davis A (v’ = 0°)
Plaxis 2D Plaxis 2D Plaxis 2D
FoS 1.66 1.55 1.35

Tab. 13 Cross section 2 (LC1): Comparison of FELA

FELA
v =¢ Davis A (v’ = 0°) Davis B (v’ = 0°)
Optum G2 Optum G2 Optum G2
FoSwmean 1.66 1.35 1.49

Tab. 14 Cross section 2 (LC1): Comparison of Davis A and Davis B with SRFEA (y’ = 0°)

% Difference

Davis A Davis B
=100 (FELA (Davis A) - SRFEA (y’ = 0°)) / =100 (FELA (Davis B) - SRFEA (v’ = 0°)) /
FELA (Davis A) FELA (Davis B)
-14.0 -3.1

4.1.4 Mesh study

The aim of the following studies is to find out if safety analyses can be performed with
less elements when having implemented an adaptive mesh refinement. As mentioned
earlier, Optum G2 can run SRFEA and FELA with and without adaptive mesh refinement.
Keep in mind that by choosing a Strength Reduction analysis with Lower and Upper
element types, a FELA is performed. If more than 1000 elements are needed, a FELA
can also be carried out manually by reducing the strength parameters cohesion and
friction angle until the gravity multiplier (FoOSaraity) is equal to unity (Krabbenhgft et al.
2016).

Cross section 2 with associated plasticity and no external loads (LC1) is subject of
several SRFEA and FELA according to different numbers and types of elements. In the
first part of the study, both SRFEA are performed in Plaxis 2D and Optum G2 with 6-
noded and 15-noded elements. As shown in Fig. 37, about 10500 elements are needed
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to reach a safety factor equal to 1.66, by performing a SRFEA with 15-noded elements
in Plaxis 2D. As mentioned above, the number of elements while using analysis type
Strength Reduction is limited to approximately 1000 elements. This number refers to the
input value. The adaptive mesh refinement may increase or decrease the number of
elements. By turning on the adaptive mesh refinement and using 15-noded elements,
about 1300 elements are necessary to reach a FoS = 1.66. Concurrently, if no adaptive
mesh refinement is concerned, the evolution of safety factors is similar to the
performance obtained in Plaxis 2D.

As presented in Fig. 37, all analyses performed with 6-noded elements result in higher
safety factors compared to the ones that are based on 15-noded elements. However,
the statements for 15-noded elements are valid for 6-noded elements too. The
determined safety values are listed in appendix 10.2.5.
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Fig. 37 Mesh study: Comparison of SRFEA

The question arises, how well the adaptive mesh refinement works for a FELA. As Fig.
38 shows, the difference of upper and lower bound reduces significantly once the
adaptive mesh refinement is turned on. From this follows that the error of the result with
adaptive mesh refinement is significantly smaller. Furthermore, it becomes clear that the
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upper bound is close to the results obtained with the SRFEA. The safety values of all
FELA are listed in appendix 10.2.5.

2.2

0.8

0.6
0 500 1000 1500 2000 2500 3000 3500 4000 4500

No of elements
— Plaxis 2D - SRFEA (y' = ¢') - 15 noded - no adaptive refinement
Optum G2 - FELA - Lower - no adaptive refinement

Optum G2 - FELA - Upper - no adaptive refinement
—— Optum G2 - FELA - Lower - adaptive refinement

Fig. 38 Mesh study: Comparison of SRFEA and FELA
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4.2 Upstream slope
4.2.1 General information

This example deals with a reinforced upstream slope next to a reservoir. Here again, we
distinguish between two cases. Case 1 represents the current status with a low safety
factor, while case 2 considers several modifications in order to reach a higher safety
value. The soil layering is characterized by three soil layers, as seen in Fig. 39a. The top
layer marked in light blue represents moraine material. Underneath, marked in light
green and brown, fractured as well as intact rock layers are situated. The water level can
be found primarily in the fractured rock layer. A conservative approach is made by
defining an inclined water table, as shown in Fig. 39b. As will be discussed later, stability
analyses are performed on a modified water table too.

moraine layer

fractured rock layer |
~o
intact rock layer

(@)

Fig. 39 Upstream slope: (a) Soil layers, (b) inclined water table

According to Fig. 40, the cross section of case 1 can be divided into an area below the
berm, disposed about 30° towards the horizontal, and an area above the berm that is
inclined by 37° towards the horizontal and is supported by several structural elements.
To avoid shallow slides, a Maccaferri grid is installed. In addition, soil nails with spacings
varying between 2 m to 3 m are present. The vertical nail on top of the slope is 4 m long
and is characterized by a spacing equal to 2 m. The following 6 soil nails, the top two
being 6 m, the bottom 4 being 5 m long, show a spacing of about 2.5 m. Referring to Fig.
40, the last six soil nails are 5 m long with a spacing equal to 3 m. At the berm, a pile
trestle consisting of two GEWI piles which are connected with a ridgepole on top is
installed. Below the berm, no further structures are present.
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soil nail

10.4m berm

83.2m

pile trestle:
2x Gewi pile + ridgepole

38.5m

165.0 m
Fig. 40 Upstream slope - case 1: Dimensions and structural elements

Due to the unsafe conditions of case 1, the area below and above the berm gets flatted,
according to Fig. 41. The slope above the berm is disposed about 30° to the horizontal
and is divided by an additional intermediate berm. Furthermore, the Maccaferri grid and
all soil nails get removed from the specified field. The pile trestle remains unchanged
and the area below gets flatted to 26.7°. Case 2 will be calculated for the water table, as
shown in Fig. 39b, as well as a lowered water level. Drainage rips disposed about 10° to
the horizontal guarantee a long term reduction of the water table.

The Hardening Soil and Mohr-Coulomb models are used to model the soil layers in an
appropriate way. The moraine layer and fractured rock layer are designed according to
the HS model. Additionally, limit equilibrium analyses, assuming a Mohr-Coulomb failure
criterion, are performed to work out if the safety factors are in good agreement with the
associated results again. The input parameters for the SRFEA, the FELA and the LEA
are listed in Tab. 15. It should be noted that SRFEA are performed in Plaxis 2D according
to the standard procedure of ¢ - ¢ reduction by assuming a dilatancy angle y’1 = 0° and
y’2 = @’. All following calculations assume drained conditions and ignore external loads.
Furthermore, the reservoir is assumed to be empty for both cases in order to generate

the worst-case scenario.
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pile trestle:
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38.5m

165.0 m
Fig. 41  Upstream slope - case 2: Dimensions and structural elements

Tab. 15 Upstream slope: Material parameters

Unit moraine layer fractured rock layer intact rock layer
Model (-) Hardening Soll Hardening Soil Mohr-Coulomb
Yunsat, Vsat (KN/m3) 22.0; 23.0 22.5;23.0 22.5;23.0
Eso®, *E’ (kN/m?) 40-10°3 50-103 *5-108
Eso%d (kN/mg2) 40-103 50-103 -
Eu/ef (kN/m2) 120-103 150-103 =
m (-) 0.5 0.5 -
c’ (kN/m?2) 10.0 15.0 25.0
o ©) 31.0 31.0 35.0
v ©) 0.0; ¢’ 0.0; ¢’ 0.0; ¢’

Instead of modelling the two GEWI piles with structural elements, the area of the pile
trestle was defined with an increased cohesion of ¢’ = 18.5 kN/m2. All the other soil
properties correspond to the fractured rock layer. In Plaxis 2D, geogrids and embedded
beam rows are used to model the Maccaferri grid and the soil nails. Optum G2 uses the
equivalent option to the latter as a nail row (Krabbenhgft et al. 2016). Both structural
elements show an elasto-plastic material behaviour. An overview of all input parameters

is listed in appendix 10.3.1.
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Nail row:
Lspacing =25 255 8

Embedded beam row:
Lspacing =25 255 &

Smeared area with ¢’ = 18.5 kN/m? Smeared area with ¢’ = 18.5 kN/m?2

(@) (b)
Fig. 42 Upstream slope: Modelling of structural elements in Plaxis 2D (a) and Optum G2 (b)

SRFEA using 15-noded elements are carried out in Plaxis 2D. Referring to Fig. 43, the
moraine layer and fractured rock layer are object of refinements. In particular, the domain
behind and in between the nails as well as the direct environment of the pile trestle are
object of refinements. 8932 elements are used for the discretisation. In a FELA, the mesh
refinement is performed adaptively with 1000 starting elements.

Fig. 43 Upstream slope: Mesh refinement Plaxis 2D

In Plaxis 2D, the initial stresses get determined by a Ko procedure with an additional nil-
step. Subsequently, the soil gets removed in 16 steps, followed by the SRFEA of case
1. Five more phases are considered adequate to flatten the slope and remove the
structural elements before the strength reduction of case 2 is carried out. The individual

excavation phases are shown in appendix 10.3.2.

4.2.2 Safety analysis of case 1

Again, it can be established that the FELA and SRFEA with associated plasticity are in
good agreement with the LEA performed in Slide. In order to find the lowest FoS, the
same square shape grid as discussed in section 4.1.2 is used. All three analyses show
almost the same failure mechanism trough the toe of the reinforced part of the slope (Fig.
44). Referring to Tab. 16 and Tab. 17, the FOSwvean = 1.25 according to the FELA is in
good agreement with the SRFEA and the LEA. The strength reduction with non-
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associated plasticity leads to a FoS = 1.12. Again, the analytical calculation is in better
agreement with calculations based on associated plasticity.

Fig. 44 Case 1 - Comparison of the failure mechanisms: (a) total displacements for SRFEA with
associated plasticity, (b) circular failure mechanism according to LEA, (c) total
displacements for lower-bound FELA, (d) total displacements for upper-bound FELA

In addition, it is of interest to determine how well Davis A and B correspond with the non-
associated SRFEA (v’ = 0°). SRFEA and FELA based on the original approach (Davis
A) only vary at about 0.9 %. The adaptively refined mesh for the upper-bound FELA is
shown in Fig. 45a. Even if the safety factors based on the SRFEA and the FELA are in
good agreement, it should be noted that a second deep-seated failure mechanism is
weakly developed in Plaxis 2D (Fig. 45c). Furthermore, Davis B gets determined due to
three iterations. All the proved failure mechanisms are very similar and do not interact
with the defined water table.

Fig. 45 Case 1 - Davis A: (a) adaptive mesh refinement of upper-bound FELA; (b) total
displacements of upper-bound FELA; (c) total displacements of SRFEA

Tab. 18 compares the factors of safety based on Davis A and Davis B with the non-
associated SRFEA. Both approaches are conservative in contrast to the SRFEA

assuming a dilatancy angle ' = 0°. The differences in the safety factor between
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approach A and B are not as large as in the previous example. This is due to the fact
that the failure mechanism is greatly dependent on the properties of structural elements.

Tab. 16 Case 1: Comparison of LEA and SRFEA

*LEA*, SRFEA

Morgen_stem & V=9 v =0° Davis A (v’ = 0°)
gl Plaxis 2D Plaxis 2D Plaxis 2D
Slide
FoS *1.26 1.26 1.12 1.08

Tab. 17 Case 1: Comparison of FELA

FELA
=9 Davis A (v’ = 0°) Davis B (v’ = 0°)
Optum G2 Optum G2 Optum G2
FoSwmean 1.25 1.07 1.09

Tab. 18 Case 1: Comparison of Davis A and Davis B with SRFEA (y’ = 0°)

% Difference

Davis A Davis B
=100 (FELA (Davis A) - SRFEA (y’ = 0°)) / =100 (FELA (Davis B) - SRFEA (v’ = 0°)) /
FELA (Davis A) FELA (Davis B)
-47 -2.8

4.2.3 Safety analyses of case 2

Safety analyses in case 2 are performed according to the original as well as to a lowered
water table. A phreatic water table is used for the SRFEA performed in Plaxis 2D. As a
consequence, no flow is considered. Optum G2 does not allow the user to choose
phreatic conditions and always determines a steady state groundwater flow. As long as
the water table is not inclined, the phreatic and steady state calculations show the same

results because no gradient is present (Krabbenhgft et al. 2016).

In order to compare the analysis based on an inclined phreatic water level with steady
state groundwater flow conditions, some modifications in Optum G2 are needed. At each
kink of the water table a hydrostatic pore water distribution along vertical lines is
prescribed. As shown in Fig. 46¢, the resulting pore water distribution is in very good
agreement with the phreatic distribution of Plaxis 2D (Fig. 46a). The pore pressure
distribution along the vertical lines does not show the appropriate scaling in Fig. 46c. Not
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modifying the water pressure distribution would result in large FoS differences between
the SRFEA and the FELA. Additional analyses attached to appendix 10.3.3 show results
related to several water tables (without prescription of pore water pressures along lines).

@ ‘_J (b) 1 <

Fig. 46 Case 2 - Comparison of water pressure distributions: (a) Plaxis 2D with phreatic water
table; (b) Optum G2 with steady state ground water flow; (c) Optum G2 with steady state
ground water flow with modifications

The two discussed water tables are shown in Fig. 47. The black dashed line represents
the original water table (used for case 1), whereas the red full line represents a long-term
water lowering by horizontal drainage tubes installed above the berm.

Fig. 47 Original water table (black dashed line), lowered water table (red full line)

Due to the changing conditions in the slope angle and removal of soil nails and geogrids,
the failure mechanism changes. As shown in Fig. 48 and Fig. 49, the failure mechanism
is shifted behind the pile trestle for both water tables. Moreover, one can see that the
SRFEA and the FELA for both water tables fail in an analogous manner. The FELA and
the SRFEA assuming associated plasticity present (as expected) a good agreement in
the factor of safety (Tab. 19 and Tab. 20).

Fig. 48 Case 2 according to the original water table - total displacements: (a) SRFEA (v’ = ¢’),
(b) FELA lower-bound, (c¢) FELA upper-bound
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Fig. 49 Case 2 according to the lowered water table - total displacements: (a) SRFEA (v’ = ¢’),
(b) FELA lower-bound, (c) FELA upper-bound

In addition, a non-associated SRFEA, Davis A and Davis B are applied to both the
original and the lowered water table. For Davis B, the cohesion and friction angle are
modified according to three iterative procedures. The results of adaptive mesh
refinements in Optum G2 (Fig. 50b and Fig. 51b) present a higher mesh density along
the slipping surface. Furthermore, the following two figures highlight that the failure
mechanism of the SRFEA (y’ = 0°) is in good agreement with the failure mechanism of

Davis B.

Fig. 50 Case 2 according to the original water table - total displacements: (a) SRFEA (v’ = 0°),
(b) Davis B - FELA upper-bound mesh refinement, (c) Davis B - FELA upper-bound

Fig. 51 Case 2 according to the lowered water table - total displacements: (a) SRFEA (y’ = 0°),
(b) Davis B - FELA upper-bound mesh refinement, (c) Davis B - FELA upper-bound

By comparing the safety factors of Davis A and Davis B with a non-associated SRFEA,
it becomes apparent that both are conservative, but the Davis B offers a better
agreement with the calculation of Plaxis 2D (Tab. 21). Whereas procedure A deviates
about 6.3 % to 7.6 % compared to the SRFEA, procedure B shows differences between
1.6 % and 1.7 %. It should be stressed that the lowering of the water table rises the FoS
of the non-associated SRFEA at about 7.6 %.
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Tab. 19 Case 2: Comparison of SRFEA

SRFEA
v = v =0° Davis A (v’ = 0°)
Plaxis 2D Plaxis 2D Plaxis 2D
FoS - original w. t. 1.29 1.19 1.10
FoS - lowered w. t. 1.38 1.28 1.16

Tab. 20 Case 2: Comparison of FELA

FELA
v =¢ Davis A (v’ = 0°) Davis B (v’ = 0°)
Optum G2 Optum G2 Optum G2
FoShean - original w. t. 1.31 1.12 1.17
FoShean - lowered w. t. 1.39 1.19 1.26

Tab. 21 Case 2: Comparison of Davis A and Davis B with SRFEA (y’ = 0°)

% Difference

Davis A Davis B
= 100 (FELA (Davis A) - SRFEA = 100 (FELA (Davis B) - SRFEA
(v’ = 0°)) / FELA (Davis A) (v’ = 0°)) / FELA (Davis B)
FoS - original w. t. -6.3 -1.7
FoS - lowered w. t. -7.6 -1.6

More safety analyses are performed on the upstream slope with modified water tables.
Two studies including a horizontal water table and no water table are shown in appendix
10.3.3. Because no gradient arises in both cases, the SRFEA and the FELA are in good
agreement without the need of prescribing the water pressure distribution along vertical

lines.
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5 Slope stability analyses based on six paper

examples

5.1 Introduction

This chapter deals with six slope stability problems shown in Slope stability analysis by
finite elements (Griffiths & Lane 1999). The paper’s calculations are performed using 8-
noded quadrilateral elements and a finite element program which is based on Program
6.2 (Smith & Griffith 1998). For all analyses, the authors assume plane strain conditions
and neglect the formation of tension in the soil. A Mohr-Coulomb failure criterion is used
for total and effective stress analyses whereby the latter assumes a dilatancy angle v’ =
0°. It should be noted that the initial stresses are calculated by gravity loading and, except
for different water tables, no external forces are considered. Safety analyses are
performed by reducing the strength parameters according to Eq. (20). If no global
equilibrium and Mohr-Coulomb failure criterion are verified within a user-defined number
of iteration steps, failure is assumed. Also, associated with this behaviour is a significant
rise of nodal displacements (Griffiths & Lane 1999).

The six paper examples are subject of further analytical and numerical analyses. In
addition to a SRFEA assuming a dilatancy angle v’ = 0°, displacement-based finite
element analyses with associated plasticity are performed in Plaxis 2D and Optum G2.
Again, it should be demonstrated that LEA are in good agreement with FELA and
SRFEA, assuming associated plasticity. Moreover, the following calculations should
prove that under certain conditions LEA end up with a different factor of safety. Again,
Davis A and B are applied to all FELA. It is of main interest how well SRFEA assuming
the modified strength parameters match with those calculations. Moreover, the paper
examples shall continue to prove the better agreement of Davis B, compared to Davis A,
with the non-associated calculations.

Given that all paper examples assume a dilatancy angle y’ = 0°, additional analyses are
elaborated in section 5.8 with y’ # 0° in order to prove the differences between Davis B
and Davis C. Those results get compared with factors of safety that arise out of standard
and user-defined SRFEA (see later).
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5.2 Example 1
5.2.1 General information and paper results

The homogeneous slope is disposed 26.57° to the horizontal and has no foundation layer
(Fig. 52). The soil body is characterized by a friction angle ¢’ = 20°, a dilatancy angle '’
= 0° and the correlation ¢’ / y H = 0.05. Griffiths and Lane do not specify a Young’s
modulus E’and neither a Posson’s ratio vand assert that elastic parameters do not have
a big influence on the computed FoS. This statement will be discussed in detail later.
The finite element analysis, using 200 quadrilateral elements leads to a safety factor
equal to 1.40. A LEA, using Morgenstern & Price boundary conditions, shows a FoS =
1.38. (Griffiths & Lane 1999).

1.2H 2H

-

Fig. 52 Example 1: Geometry (according Griffiths & Lane 1999)

5.2.2 Slope stability analysis on example 1

Since the cohesion, unit-weight and height of the slope are not given precisely, four
material sets are defined to prove the generalisation of the paper results, as long as the
correlation ¢’ /y His equal to 0.05. The sets are listed in Tab. 22 and meet the mentioned
correlation. In addition, it is of main interest how the factors of safety are affected by
elastic parameters. Four different cases with varying standards are defined for each set.
The Young’s modulus E’ differs between 10* and 10® kN/m2, the Poisson’s ratio v
between 0.25 and 0.35.

Tab. 22 Example 1: Set1 -4

Parameter Unit Set 1 Set 2 Set 3 Set 4
c’ (kN/m2) 4 5 8 10
Yunsat (kN/m3) 16 20 16 20
H (m) 5 5 10 10
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To evaluate the paper’s result, both SRFEA with non-associated plasticity (y’ = 0°) and
LEA in accordance to the Morgenstern & Price method are performed in Plaxis 2D and
Slide. The numerical analyses are realized on a fine mesh and coarse mesh, both using
6-noded and 15-noded elements (Fig. 53). An overview of the calculations is listed in
appendix 10.4.1. It is recognized that as long as the correlation ¢’/ y H = 0.05 is fulfilled,
the FoS is not changing. The elastic parameters E’ and v do not affect the results for
example 1. As shown in Fig. 53c and Fig. 53d, the failure mechanism is approximately
the same for both meshes, while the shear band is defined more precise in the fine mesh.

Fig. 53 Example 1: (a) coarse mesh (233 elements); (b) fine mesh (959 elements); (c) coarse
mesh: total displacements after safety analysis; (d) fine mesh: total displacements after
safety analysis

The FoS based on a LEA is in good agreement with the paper result, showing a
difference of only 0.7 %. The SRFEA with the coarse mesh and 6-noded elements
agrees the best with the papers calculations (Tab. 23).

Tab. 23 Example 1: SRFEA (y’ = 0°) and LEA results for E’'= 104 kN/m?2 and v = 0.25

SRFEA (v’ =0°) LEA
Coarse mesh (233 elements) Fine mesh (959 elements)
15-noded 6-noded 15-noded 6-noded Morggzgéem &
1.39 1.37

1.35 1.35 1.36

(paper: 1.40) (paper: 1.38)

Due to the fact that the safety factor is the same as long as the correlation ¢’ / y H is
equal to 0.05, further numerical studies using associated plasticity are performed for set
1 using a fine mesh with approximately 1000 elements. A look at the Tab. 24 shows that
the SRFEA with 15-noded elements are in good agreement with the FELA, while the
analyses using 6-noded elements show a slightly higher safety factor. The failure
mechanism of the lower and upper bound FELA are presented in Fig. 54. It may be
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mentioned that the distribution of incremental shear strains is in good agreement with
the non-associated SRFEA.

Fig. 54 Example 1: (a) FELA - lower-bound failure mechanism, (b) FELA - upper-bound failure
mechanism

Tab. 24 Example 1: SRFEA (v’ = ¢’) and FELA results for E’= 10* kN/m2 and v = 0.25

Associated plasticity (v’ = ¢’)

SRFEA SRFEA FELA

Plaxis 2D Optum G2 Optum G2
6-noded, *Lower 1.39 1.38 *1.36
156-noded, *Upper 1.38 1.37 *1.38
*Mean - - *1.37

SRFEA and FELA with modified strength parameters, according to Davis A and Davis B,
are in good agreement, as shown in Tab. 25. It should be pointed out that SRFEA with
both 6-noded and 15-noded elements lead to approximately the same safety factor.
When comparing those with SRFEA (y’ = 0°), it is obvious that both Davis approaches
give lower safety factors with Davis B being less conservative. Davis A differs from the
non-associated SRFEA about 3.9 % - 4.6 % while Davis B differs about 1.5 % - 2.3 %.
To assist in understanding, the FoSwean (Davis A, Davis B), according to the FELA, gets
compared with the 15-noded SRFEA (v’ = 0°) performed in Plaxis 2D (Tab. 26). All

carried out calculations are listed in appendix 10.4.1.

Tab. 25 Example 1: Davis A and Davis B results for E’= 10* kN/m2 and v = 0.25

Davis A (y’ = 0°), Davis B (y’ = 0°)

v =0° Davis A Davis B Davis A Davis B
SRFEA SRFEA SRFEA FELA FELA
Plaxis 2D Plaxis 2D Plaxis 2D Optum G2 Optum G2
6-noded, *Lower 1.36 1.30 1.34 *1.28 *1.31
15-noded, *Upper 1.35 1.30 1.33 *1.30 *1.33
*Mean - - - *1.29 *1.32
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Tab. 26 Example 1: Comparison of Davis A and Davis B with the SRFEA (y’ = 0°) for E’= 10*
kN/m2 and v = 0.25

% Difference

Davis A Davis B
=100 (Davis A - SRFEA =100 (Davis B - SRFEA
(v’ = 0°)) / Davis A (v’ = 0°)) / Davis B
SRFEAG-noded
-4.6 -1.5
Davis (SRFEAG-noded) - SRFEA6.noded (\V’ = 00)
SRFEA15—noded .39 15
Davis (SRFEA15.nDded) - SRFEA 5-noded (\V‘ = 00)
FELA
-47 -2.3

Davis (FELAyean) - SRFEA 5.n00ed (' = 0°)

5.3 Example 2
5.3.1 General information and paper results

For example 2, the slope of section 5.2 gets complemented by a foundation layer of
thickness H/ 2 (D = 1.5). The friction angle ¢’ = 20°, the dilatancy angle v’ = 0° and the
correlation ¢’/ y H = 0.05 are given. Due to the foundation layer, the failure mechanisms
of the finite element as well as the limit equilibrium analysis pass in both cases
fractionally below the base of the slope. The safety factors remain unchanged (1.38 using
the Morgenstern & Price method and 1.40 for the finite element analysis) (Griffiths &
Lane 1999).

DH

*F

Fig. 55 Example 2: Geometry (according to Griffiths & Lane 1999)
5.3.2 Slope stability analysis on example 2
In a first step it was questioned if the 4 parameter sets, shown in Tab. 22, yield different

safety factors. The reader is referred to appendix 10.4.2 for an overview of all performed

analyses. It is recognized here too that as long as the correlation ¢’ /y H = 0.05 is fulfilled,
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the FoS is not changing. Moreover, the Young’s modulus and Poisson’s ratio do not
show any influence on the safety factor.

By looking at the following table, it becomes clear that the number of elements has an
influence on the resulting safety factor. Simultaneously, the shape function is of decisive
importance. The second column of Tab. 27 is in good agreement with the finite element
paper result. The factor of safety stem from the LEA remains unchanged compared to
example 1 and is equal to 1.37.

Tab. 27 Example 2: SRFEA (y’ = 0°) and LEA results for E’= 10* kN/m2 and v = 0.25

SRFEA (v’ =0°) LEA
Coarse mesh (254 elements) Fine mesh (1004 elements)
15-noded 6-noded 15-noded 6-noded Morgg:}iff” &
1.39 1.37
1523 (paper: 1.40) = 1883 (paper: 1.38)

As Griffiths and Lane already demonstrated, the failure mechanism is changing slightly
due to the additional foundation layer. One can observe at Fig. 56a that the distribution
of incremental shear strains cuts the slope slightly below the base.

(b)

Fig. 56 Example 2: Failure mechanisms of SRFEA (y’ = 0°, fine mesh, 15-noded elements) (a)
and LEA (b)

Comparing the averaged safety factor of FELA with SRFEA (¢’ = 0°), it can be shown
that analyses with 15-noded elements give exactly the same FoS. The calculations with
6-noded elements result in a slightly higher safety (Tab. 28).
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Tab. 28 Example 2: SRFEA (v’ = ¢’) and FELA results for E'= 10* kN/m2 and v = 0.25

Associated plasticity (y' = ¢’)

SRFEA SRFEA FELA

Plaxis 2D Optum G2 Optum G2
6-noded, *Lower 1.37 1.37 *1.35
15-noded, *Upper 1.36 1.36 *1.38
*Mean - - *1.36

If we compare the non-associated SRFEA with Davis A and Davis B, it becomes clear
that Davis B is less conservative compared to Davis A. Furthermore, Davis procedures
in combination with SRFEA and 15-noded elements are in good agreement with FELA
results (Tab. 29). It follows that the differences between Davis procedures and SRFEA

with non-associated plasticity are the same (Tab. 30).

Tab. 29 Example 2: Davis A and Davis B results for E'’= 10 kN/m2 and v = 0.25

Davis A (y’ = 0°), Davis B (' = 0°)

v =0° Davis A Davis B Davis A Davis B
SRFEA SRFEA SRFEA FELA FELA
Plaxis 2D Plaxis 2D Plaxis 2D Optum G2 Optum G2

6-noded, *Lower 1.35 1.29 1.32 *1.27 *1.30
15-noded, *Upper 1.32 1.28 1.31 *1.29 *1.33
*Mean - - - *1.28 *1.31

Tab. 30 Example 2: Comparison of Davis A and Davis B with the SRFEA (y’ = 0°) for E’= 10*
kN/m2 and v = 0.25

% Difference

Davis A Davis B
=100 (Davis A - SRFEA =100 (Davis B - SRFEA
(v’ =0°))/ Davis A (y' =0°))/ Davis B
SRFEAé-n
onoded 47 -2.3
Davis (SRFEA6-noded) - SRFEA6-noded (W' = 0°)
SRFEAs.
15-noded _ 31 _ 08
Davis (SRFEA15.ngded) - SRFEA 5.n0ded (\V‘ = 00)
FELA
- 3.1 -0.8

Davis (FELAwean) - SRFEA 5 nodea (' = 0°)
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5.4 Example 3
5.4.1 General information and paper results

Example 3 demonstrates slope stability analyses of an undrained clay with a thin weak
layer. Instead of calculating with effective stresses, a total stress analysis using a Tresca
failure criterion (@ = 0°) is presented. As shown in Fig. 57, the weak layer (c.2) runs
parallel to the slope (1:2) in the upper part, then it becomes horizontal in the foundation
before it is redisposed at about 45° to the horizontal axis. The stability analysis is
performed for several undrained shear strengths c.. of the weak layer, while the strength
of the surrounding material is kept constant and meets the correlation cy1 /vy H = 0.25
(Griffiths & Lane 1999).

2H 2H 2H
r + ¥ :
06H 02H 1.2H
+ +—t +
Cut 7?
H
7 12H 02H 06H
z - a
2H *
D
. 0.4H
H Cu2 0.2H
0.4 H

Fig. 57 Example 3: Geometry (according to Griffiths & Lane 1999)

A homogeneous slope (Cu1 = Cu2) results in the expected circular failure mechanism. By
gradually reducing the undrained shear strength c.. in finite elements analysis, the failure
mechanism changes and develops within the weak layer at a ratio of c.2 / cu1 = 0.6. In
addition, LEA using Janbu’s method are performed assuming both three-line wedge and
circular failure mechanism. For cy2/ cu1 > 0.6, the behaviour is governed by the circular
failure mechanism and is not significantly affected by the undrained shear strength of the
thin layer. By dropping below the critical ratio, the linear failure mechanism along the thin
layer takes over. The results illustrate the main disadvantage of LEA. If the failure
mechanism is unknown a priori, the chosen shape might lead to an overestimation of
safety (Griffiths & Lane 1999).
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5.4.2 Slope stability analysis on example 3

The geometry of example 3 is subject for further analytical and numerical safety
analyses. SRFEA using 6-noded as well as 15-noded elements are performed in both
Plaxis 2D and Optum G2. The safety values get compared with FELA in a second step.
In addition, LEA, based on Janbu (1954) and Morgenstern & Price (1965), are performed
in Slide. For both methods, a circular and linear failure mechanism is investigated.

As shown in Tab. 31, four different parameter sets are considered to clarify if a variation
of input parameters affects the resulting safety value. All four sets fulfil the correlation cys
/vy H =0.25. An undrained stiffness E, equal to 5000 kN/m? as well as 7000 kN/m? is
used for the calculations. As shown in appendix 10.4.3, the result is not affected by the

variation of the input parameters as long as the correlation cu1 /¥ H = 0.25 holds.

Tab. 31 Example 3: Set1 -4

Parameter Unit Set 1 Set 2 Set 3 Set 4
Cut (kN/m2) 20 25 40 50
Yunsat (kN/m?) 16 20 16 20
H (m) 5 5 10 10

The parameter set 1 with an undrained stiffness E, = 5000 kN/m?2 is used for further
comparisons of SRFEA and FELA. It should be noted that the initial phase in Plaxis 2D,
determined by gravity loading, does not satisfy the equilibrium for cu. / cy1 ratios smaller
than 0.5. Thereby an error message cancels the initial stress analysis because Mstage =
1 cannot be achieved and in consequence the FoS < 1. As can be seen in Tab. 32, there
is a good agreement between 15-noded SRFEA and FELA. The safety analyses with 6-
noded elements show a slightly higher safety factor. See Fig. 58 for a graphical
representation of Tab. 32. It is obvious that the gradient of the curves is changing at a
ratio of cu2 / cu1 = 0.6. For small differences between both undrained shear strengths, the
failure mechanism remains circular (Fig. 59). By dropping below the critical ratio of cy2 /
cut ~ 0.6, another failure mechanism along the thin layer forms and determines the safety
factor.
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Tab. 32 Example 3: SRFEA and FELA results for set 1 and Eu = 5000 kN/m?2

Parameter SRFEA SRFEA FELA
Plaxis 2D Optum G2 Optum G2
Cu2/ Cut 15-n 6-n 15-n 6-n Lower Upper Mean
1 1.46 1.47 1.45 1.46 1.44 1.46 1.45
0.9 1.44 1.45 1.43 1.44 1.42 1.45 1.44
0.8 1.42 1.44 1.41 1.42 1.40 1.43 1.42
0.7 1.39 1.41 1.39 1.40 1.37 1.41 1.39
0.6 1.36 1.38 1.36 1.37 1.34 1.38 1.36
0.5 1.17 1.24 1.17 1.20 1.15 1.20 1.17
0.4 - 1.01 0.95 0.97 0.93 0.98 0.95
0.3 - - 0.72 0.75 0.71 0.75 0.73
0.2 - - 0.50 0.51 0.49 0.52 0.50
0.1 - - 0.27 0.28 0.26 0.28 0.27
1.6

FoS [-]

0.1

Fig. 58

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Cu2/Cu1 [']
----- #- SRFEA - 6 noded - Plaxis 2D —&— SRFEA - 15 noded - Plaxis 2D
----- #- SRFEA - 6 noded - Optum G2 —@— SRFEA - 15 noded - Optum G2

—@&— FELA - Mean - Optum G2

Example 3: Comparison of SRFEA and FELA results
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The change in failure mechanism is shown for three different ratios of undrained shear
strength in Fig. 59, Fig. 60 and Fig. 61.

Fig. 59 Example 3 with cu2/ cu1 = 1: (a) SRFEA - Plaxis 2D;
lower bound - Optum G2

Fig. 60 Example 3 with cu2/ cu1 = 0.6: (a) SRFEA - Plaxis 2D; (b) SRFEA - Optum G2; (c) FELA,
lower bound - Optum G2

Fig. 61 Example 3 with cu2 / cu1 = 0.2: (a) SRFEA - Optum G2; (b) FELA, lower bound - Optum
G2

Additionally, LEA are performed according to Morgenstern & Price and Janbu’s simplified
methods. Slide offers the possibility to define a circular as well as a three line wedge
(linear) failure mechanism for both methods. Without any knowledge about the failure
mechanisms, both options can lead to an overestimation of the safety (Fig. 62).

Fig. 62 Example 3 with cu/cur = 0.4: (a) Circular failure leads to a FoS = 1.28; (b) three line
wedge leads to a FoS = 0.92

Above the critical ratio of cu2 / cu1 = 0.6, the failure mechanism is governed by a circular
shape, while below it the three line wedge provides the appropriate mechanism. To
conclude, the Morgenstern & Price method, compared to Janbu’s method, leads to safety
values which are in better agreement with FELA (Fig. 63).
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Cu2/Cu1 [']
—@— FELA, Mean - Optum G2 —@— LEA, Janbu, Circular - Slide
—— LEA, M&P, Circular - Slide --&--LEA, Janbu, Three line wedge - Slide

--® - LEA, M&P, Three line wedge - Slide

Fig. 63 Example 3: Comparison of FELA and LEA results
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5.5 Example 4
5.5.1 General information and paper results

For example 4, the same geometry is used as in example 3, with the lack of the weak
layer. However, a foundation layer with the undrained shear strength c.. is taken into
account (Fig. 64). For all analyses, cu1 / y H = 0.25 holds true, while c.. gets decreased
stepwise. For cy2 >> cu1, a shallow failure mechanism cutting through the toe of the slope
is observed, while for cu2 << cu1, a deep-seated mechanism is developed. Griffiths and
Lane come to the conclusion that the change in failure mechanism occurs approximately
at a ratio of cu2 / cu1 = 1.5 for both FEA and LEA (Griffiths & Lane 1999).

2H 2H 2H

&
H Cut

2H <

B

= =

Fig. 64 Example 4: Geometry (according to Griffiths & Lane 1999)

5.5.2 Slope stability analysis on example 4

In this case, the calculations carried out in example 3 are performed, with the difference
that the LEA is used with a circular failure mechanism and Morgenstern & Price method
only. Appendix 10.4.4 proves that the variation of input parameters is not affecting the
factor of safety as long as the correlation cy1 / y H = 0.25 holds. Furthermore, the variation

of undrained stiffness E, does not affect the safety factors.

The parameter set 1 (Tab. 31) with an undrained stiffness of E, = 5000 kN/m?2 is used for
further comparisons of SRFEA and FELA. Initial phases in Plaxis 2D, determined by
gravity loading, do not satisfy an equilibrium for cu2 / cy ratios smaller than 0.75. As
mentioned in the previous section, the FoS becomes smaller than 1 (for cu2 / cu1 < 0.75).
The following table shows that the safety factors according to FELA and SRFEA are in
good agreement. Again, the 6-noded strength reduction analyses result in slightly higher
safety values. It's obvious, however, that the safety factors of all analyses fall faster when

dropping below cu2 / cu1 = 1.5. For ratios larger than 1.5, the safety factor remains almost
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constant, because the shallow failure mechanism does not interact with the foundation
layer. This connection becomes clear by looking at Fig. 65, Fig. 66 and Fig. 67. By
undercutting cu2 / cu1 = 1.5, another deep seated failure mechanism arises. With a further
decrease of the undrained shear strength cy2, the shallow failure mechanism disappears
(Fig. 67).

Tab. 33 Example 4: SRFEA and FELA results for set 1 and Eu = 5000 kN/m?2

Parameter SRI_:EA SRFEA FELA
Plaxis 2D Optum G2 Optum G2

Cu2/ Cu1 15-n 6-n 15-n 6-n Lower Upper Mean
4 2.04 2.07 2.02 2.05 1.99 2.05 2.02
3.5 2.04 2.07 2.02 2.04 1.99 2.05 2.02

3 2.04 2.07 2.02 2.04 1.99 2.05 2.02
2.5 2.04 2.07 2.02 2.04 1.99 2.05 2.02

2 2.04 2.07 2.02 2.04 1.99 2.05 2.02
1.5 2.02 2.04 2.02 2.04 1.99 2.05 2.02

1 1.46 1.47 1.45 1.46 1.44 1.46 1.45
0.75 1.15 1.17 1.15 1.16 1.14 1.16 1.15
0.5 - - 0.85 0.86 0.84 0.86 0.85
0.25 - - 0.54 0.55 0.53 0.55 0.54

Fig. 65 Example 4 with cu2 / cu1 = 2: (a) SRFEA - Plaxis 2D; (b) SRFEA - Optum G2; (c) FELA,
upper bound - Optum G2

Fig. 66 Example 4 with cu2/ cu1 = 1.5: (a) SRFEA - Plaxis 2D; (b) SRFEA - Optum G2; (c) FELA,
upper bound - Optum G2

Fig. 67 Example 4 with cu2/ cu1 = 0.75: (a) SRFEA - Optum G2; (b) FELA, upper bound - Optum
G2
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In addition, limit equilibrium analyses (Morgenstern & Price) get determined for several

Cu2 / Cut ratios. Fig. 68 shows that 15-noded SRFEA, FELA and LEA are in good
agreement with each other.

2.4

0.6
0.5 1 1.5 2 2.5 3 3.5 4
Cya/Cyt [1]

—— SRFEA, 15 noded - Plaxis 2D —@— SRFEA, 15 noded - Optum G2
—@— FELA, Mean - Optum G2 --® - LEA, M&P, Circular - Slide

Fig. 68 Example 4: Comparison of FELA, SRFEA and LEA results
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5.6 Example 5
5.6.1 General information and paper results

A homogeneous slope without foundation layer, disposed to the horizontal with 26.57°
(1:2), is the object of example 5 analyses. Several horizontal water tables with a vertical
distance L from the crest get analysed (Fig. 69) in order to detect which L / H ratio
provides the lowest safety (Griffiths & Lane 1999).

L (negative)

-+ +L=0

&
L (positive)

R

L

Fig. 69 Example 5: Geometry (according to Griffiths & Lane 1999)

The problem can be seen as a slow drawdown process where the water table is initially
defined above the crest (L / H = - 0.2) and gets lowered to the base (L/ H = 1). An
effective stress analysis with friction angle ¢’ = 20°, dilatancy angle v’ =0°andc’ /yH =
0.05 provides the lowest FoS = 1.3 when L/ H = 0.7. The constant cohesive strength of
the slope and the changing relation of soil weight and shear strength due to the draw-
dawn process are responsible for this behaviour. As long as L / H < 0.7, the increased
frictional strength of the soil has a proportionally smaller stabilizing effect than the
increased unit weight. For larger ratios (L / H > 0.7), the frictional strength has a greater
influence compared to the increased unit weight, therefore the safety factor rises again.
A limit equilibrium analysis and a finite element analysis show that the FoS = 1.85
remains constant for L / H < 0. As discussed in example 1, analyses without any free
surface (L/H = 1) lead to a FoS ~ 1.4 (Griffiths & Lane 1999).

5.6.2 Slope stability analysis on example 5

Due to the fact that the cohesion c¢’, the unit-weight y and the height H are given by the
correlation ¢’/ y H = 0.05, the six parameter sets shown in Tab. 34 are object to SRFEA
with non-associated plasticity (v’ = 0°) while using 6-noded elements in Plaxis 2D. The

safety factors for the different L / H ratios are listed in appendix 10.4.5.
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Tab. 34 Example 5: Set1-6

Parameter Unit Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
c’ (kN/m?) 4 5 6 8 10 12

Yunsat = ysat (KN/m3) 16 20 24 16 20 24
H (m) 5 5 5 10 10 10

Fig. 70 shows that, as long as the unit-weight is kept constant and the correlation is equal
to 0.05, the other two input parameters can be modified and no change in the safety
factor occurs. The parameter sets 2 and 5, with minimum and maximum safety factors
equal to 1.28 and 1.83, show the best accordance with the paper results. The slight
differences between the results of set 2 and the ones stated in the paper can be deduced

from a higher number of elements in Plaxis 2D.
2.2
2.0

1.8

FoS []

1.6
1.4

1.2
-0.2 0 0.2 0.4 0.6 0.8 1

L/HI[]
Set 1 ® Set?2 ® Set3 Set4 ——Set5 ——Set6

Fig. 70 Example 5: Comparison of SRFEA (v’ = 0°, 6-noded elements)

The following calculations are performed with parameter set 2. SRFEA with associated
plasticity are in good agreement with FELA. In this connection, it is worthwhile to mention
that the calculations with 6-noded elements give a slightly higher FoS. An overview of
the discussed calculations can be found in appendix 10.4.5. In addition, LEA are carried
out to highlight that the Morgenstern & Price method is in good agreement with finite

element analyses (v’ = ¢’). A closer look at Fig. 71 and Fig. 72 confirm this.
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FoS []

1.9

1.2
-0.2 0 0.2 0.4 0.6 0.8 1
L/H [-]
----- % SRFEA (¢' = ¢'), 6 noded - Plaxis 2D —@— SRFEA (y' = ¢'), 15 noded - Plaxis 2D
----- #- SRFEA (¢' = ¢'), 6 noded - Optum G2 —@— SRFEA (¢' = ¢'), 15 noded - Optum G2

Fig. 71 Example 5: Comparison of SRFEA (y’ = ¢’) results

1.9

1.8

1.7

1.6

FoS []

1.5

1.4

1.3

1.2
-0.2 0 0.2 0.4 0.6 0.8 1

L/H []

—@— SRFEA (y' = ¢'), 15 noded - Plaxis 2D —@— SRFEA (y' = ¢'), 15 noded - Optum G2
—&— FELA, Mean - Optum G2 --& - LEA, M&P, Circular - Slide

Fig. 72 Example 5: Comparison of SRFEA (v’ = ¢’), FELA and LEA results
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Next, it shall be analysed how well Davis A and Davis B agree with the non-associated
calculations performed in Plaxis 2D. As Tab. 35 shows, Davis A as well as Davis B
(according to FELA) agree better with the 15-noded analyses. As mentioned before for
associated plasticity, 6-noded analyses show a slightly higher FoS.

Tab. 35 Example 5: Comparison of Davis A and Davis B results with SRFEA (y’ = 0°)

Davis A (y’ = 0°), Davis B (y’ = 0°)

v =0° Davis A Davis B Davis A Davis B
Parameter SRFEA SRFEA SRFEA FELA FELA
Plaxis 2D Plaxis 2D Optum G2 Optum G2 Optum G2

L/H 15-n 6-n 15-n 6-n 15-n 6-n Mean Mean
-0.2 1.81 183 172 173 179 1.80 1.70 1.77
-0.1 1.81 183 172 173 179 1.81 1.70 1.77
0.0 1.81 183 172 173 179 1.80 1.70 1.76
0.1 168 170 160 162 167 1.68 1.59 1.65
0.2 155 157 149 150 154 155 1.48 1.53
0.3 144 146 139 140 143 144 1.38 1.43
0.4 136 138 132 133 135 1.36 1.31 1.35
0.5 130 133 127 127 130 1.31 1.26 1.29
0.6 127 129 123 124 126 1.27 1.23 1.26
0.7 126 128 122 123 125 1.26 1.22 1.24
0.8 127 129 123 124 126 1.27 1.23 1.26
0.9 130 132 126 127 129 130 1.25 1.29
1.0 13 136 130 130 133 1.34 1.29 1.32

Fig. 73, Fig. 74 and Fig. 75 demonstrate the conservativeness of the original and
enhanced Davis approach compared to SRFEA (y’ = 0°). It is recognizable that Davis B
clearly agrees better with non-associated analyses. When comparing both Davis
approaches, according to FELA with non-associated SRFEA, it can be seen that Davis
A differs at a maximum of 6.5 % while Davis B is at 2.5 %.
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Fig. 73
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Example 5 - SRFEA, 6-noded: Comparison of Davis approaches and SRFEA (v’ = 0°)

0.8 1

—8— SRFEA (y¢'=0°), 15 noded - Plaxis 2D —@— Davis A (SRFEA), 15 noded - Plaxis 2D
Davis B (SRFEA), 15 noded - Plaxis 2D

Fig. 74 Example 5 - SRFEA, 15-noded: Comparison of Davis approaches and SRFEA (y’ = 0°)
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1.9
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1.7

1.6
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1.5
1.4
1.3

1.2
-0.2 0 0.2 0.4 0.6 0.8 1

L/H []

—8— SRFEA (y' = 0°), 15 noded - Plaxis 2D —@— Davis A (FELA, Mean) - Optum G2
—&— Davis B (FELA, Mean) - Optum G2

Fig. 75 Example 5 - FELA: Comparison of Davis approaches and SRFEA (v’ = 0°)

5.7 Example 6
5.7.1 General information and paper results

A two-side earth embankment including a free (water) surface is object of these
numerical and analytical analyses. The downstream slope is disposed about 23° to the
horizontal and slightly steeper than the upstream slope. The homogeneous embankment
is characterized by a friction angle ¢’ = 37°, a dilatancy angle v’ = 0°, a cohesion ¢’ =
13.8 kKN/m? and an unit-weight yunsat = ysat = 18.2 KN/m3. The limit equilibrium analysis
leads to a safety factor equal to 1.90 while considering a free (water) surface, as it is
shown in Fig. 76. A second case without any free surface gives a FoS = 2.42.

7.3m
—t
Reservoir level
174m 21.3m
18° 23°
7.3m

33.5m 124.4m 33.5m

Fig. 76 Example 6: Geometry (according to Griffiths & Lane 1999)

70 Institute of Soil Mechanics and Foundation Engineering



TU

5 Slope stability analyses based on six paper examples Graz

Graz University of Technology

The failure occurs for both cases on the steeper slope, whereby the corresponding failure
mechanisms are slightly different. A toe failure is shown for case 2 while a deeper
mechanism (cutting through the foundation layer) occurs when the free surface is
considered (Griffiths & Lane 1999).

5.7.2 Slope stability analysis on example 6

The results of SRFEA, FELA and LEA will be discussed in this chapter. The two cases
are considered separately. Due to the fact that both elastic parameters E’ and v are not
given, the calculations are performed for Poisson’s ratios vi = 0.25 and vz = 0.35. As
shown in appendix 10.4.6, both sets lead to the same safety values. The Young’s
modulus is thereby kept constant (E' = 10* kN/m2), because no influence on the safety
factor was determined in previous analyses. It should be noted that the results for v get
discussed in this chapter.

The LEA with the Morgenstern & Price method, assuming a circular failure mechanism,
leads to a FoS = 2.46, which differs approximately 1.7 % from the paper’s result. Tab.
36 shows that numerical analyses, assuming associated plasticity, are in good
agreement with the analytical results. The safety factors, which result from SRFEA with

6-noded elements, give higher values of 1.2 %. The failure mechanism going through
the toe of the slope is shown in Fig. 77 for all SRFEA (v’ = ¢’), FELA and LEA.

o o

©

o ]

Fig. 77 Example 6 without free surface — failure mechanism: Comparison of SRFEA (v’ = ¢’)
with 15-noded elements (a), FELA (b) and LEA (c)

Furthermore, SRFEA in accordance with non-associated plasticity get performed with 6-
as well as 15-noded elements. By comparing those safety values with Davis A and B
results, it is obvious that the original Davis is way more conservative compared to the
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enhanced one. Procedure A provides 20.4 % to 21.8 % lower safety factors compared
to the non-associated SRFEA. On the other hand, procedure B is in very good agreement

with the mentioned analyses, showing differences of 0.9 % to 2.1 % (Tab. 38).

Tab. 36 Example 6 without free surface: Comparison of SRFEA (v’ = ¢’) and FELA

Associated plasticity (y' = ¢’)

SRFEA SRFEA FELA

Plaxis 2D Optum G2 Optum G2
6-noded, *Lower 2.47 2.47 *2.43
15-noded, *Upper 2.45 2.44 *2.49
*Mean - - *2.46

Tab. 37 Example 6 without free surface: Comparison of Davis A and Davis B

Davis A (v’ = 0°), Davis B (v’ = 0°)

v =0° Davis A Davis B Davis A Davis B
SRFEA SRFEA SRFEA FELA FELA
Plaxis 2D Plaxis 2D Plaxis 2D Optum G2 Optum G2
6-noded, *Lower 2.40 1.97 2.35 *1.94 *2.31
15-noded, *Upper 2.36 1.96 2.33 *1.98 *2.37
*Mean - - - *1.96 *2.34

Tab. 38 Example 6 without free surface: Comparison of Davis A and Davis B with SRFEA (y’ =
0°)

% Difference

- 100 (Davis A - SRFEA =100 (Davis B - SRFEA
(v’ =0°)) / Davis A (v’ = 0°) / Davis B
SRF EA6-noded ) )
Davis (SRFEAs rodeo) - SRFEAG noaes (' = 0°) 21.8 2.1
SRFEA15.noded
Davis (SRFEA1s.noded) -~ SRFEA15.n0dea (¢’ = 0°) -20.4 -1.3
FELA
DaViS (FELAMean) - SRFEA15>n0ded (\V’ = Oo) h 204 - 09

For case 2, the same calculations are performed with an additional free surface. As

mentioned in the previous chapter, the failure mechanism changes due to the defined
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water table. It follows a deeper failure mechanism which cuts through the foundation
layer, as shown in Fig. 78. The LEA, performed with the Morgenstern & Price method,

results in a FoS = 1.92 and is in good agreement with associated finite element analyses
shown in Tab. 39. It should be noted that SRFEA with 15-noded elements performed in
Plaxis 2D result in slightly lower safety values, differing from LEA about 1.5 %.

(c)

o o

Fig. 78 Example 6 with free surface — failure mechanism: Comparison of SRFEA (y’ = ¢’) with
15-noded elements (a), FELA (b) and LEA (c)

Tab. 39 Example 6 with free surface: Comparison of SRFEA (y’ = ¢’) and FELA

Associated plasticity (y' = @)

SRFEA SRFEA FELA

Plaxis 2D Optum G2 Optum G2
6-noded, *Lower 1.91 1.93 *1.91
15-noded, *Upper 1.90 1.92 *1.94
*Mean - - *1.92

As can be seen from Tab. 40 and Tab. 41, Davis B results differ about 1.7 % to 6.9 %
from non-associated analyses, whereby the calculations according to 6-noded elements
deviated the most. Again, Davis A gives very conservative results.

This example is used to show one possible problem while performing the Davis
approach. SRFEA may lead to different failure mechanisms, when performing
associated or non-associated analyses. In such cases, Davis A and B might provide the
same mechanism as SRFEA with an associated flow rule. For example 6, the failure
mechanism near the top of the embankment differs from analyses with an associated
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and one with a non-associated flow rule. From Fig. 79, it is apparent that the failure

mechanism according to Davis B is in good agreement with SRFEA (v’ = ¢’).

Tab. 40 Example 6 with free surface: Comparison of Davis A and Davis B

Davis A (y’ = 0°), Davis B (y’ = 0°)

y' =0° Davis A Davis B
SRFEA SRFEA SRFEA
Plaxis 2D Plaxis 2D Plaxis 2D

Davis A Davis B
FELA FELA
Optum G2 Optum G2

6-noded, *Lower 1.87 1.52 1.75 *1.52 *1.76
15-noded, *Upper 1.80 1.52 1.75 *1.55 *1.79
*Mean - - - *1.53 *1.77

Tab. 41

Example 6 with free surface: Comparison of Davis A and Davis B with SRFEA (y’ = 0°)

% Difference

Davis A Davis B

=100 (Davis A - SRFEA

=100 (Davis B - SRFEA
(v’ = 0°)) / Davis A

(v =0°)) / Davis B
Davis (SRFEAEZZE%;EEXNM (v =0°) -230 -6.9
Davis (SRFEAii:)_: {qégléogxsmed (v = 0°) -18.4 -29
Davis (FELAwear) I-:Isz_élf\EAm,noded (v =0°) -17.6 -1.7

Fig. 79 Example 6 with free surface — failure mechanism: Comparison of SRFEA (v’ = 0°) (a),
FELA (b) and FELA with Davis B (y’ = 0°) parameters (c)
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5.8 Comparison of Davis A, Davis B and Davis C
5.8.1 General information

All slope stability analyses up to this point were performed either with associated
plasticity or a dilatancy angle v’ = 0°. For Davis procedures B and C, the latter provide
the same safety factors. For a better understanding, please refer to section 3.3.3. It has
been demonstrated that procedures A and B supply conservative results.

Two geometries are used to elaborate how the effective friction angle ¢’, the degree of
non-associativity A = ¢’ - y’ and the cohesion ¢’ influence the differences between Davis
and non-associated SRFEA. Particular emphasis is given to the comparison of Davis B
and Davis C. While procedure B is simultaneously modifying the friction angle ¢’ and
dilatancy angle v/, the latter one is kept constant for procedures A and C. Therefore,
Davis A and C will be compared with the standard strength reduction of Plaxis 2D,
whereby the dilatancy angle v’ is kept constant until the reduced effective friction angle
¢’red. 1S the same. Thereupon, both get concurrently reduced. Since the friction angle and
dilatancy angle get reduced at the same time, Davis B is compared with a user-defined
strength reduction. All SRFEA are performed in Plaxis 2D with gravity loading as the
initial phase.

5.8.2 Study 1: Variation of ¢’and A

The study consists of two different geometries. Slope 1 is disposed 26.57° (1:2) to the
horizontal, while slope 2 is inclined by 45°. The dimensions for both cases are shown in
Fig. 80.

10m 10m 10m 10m 5m 15m
AT N
5m 5m N
5m 5m
(a) (b)
30m 30m

Fig. 80 Geometry of slope 1 (a) and slope 2 (b)

The homogeneous slopes are characterized by a unit-weight of yunsat = 16 kN/ms3.
However, the cohesion for both cases is different. A complete overview of the soil
parameters is listed in Tab. 42. The dilatancy angle (equal to friction angle) gets reduced

in intervals of five, until zero is reached. This is done for the effective friction angles ¢’
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= 25° ¢’2 = 30° ¢’s = 35° and ¢’s = 40°. The safety values of SRFEA are listed in
appendix 10.4.7.

Tab. 42 Study 1: Soil properties

Soil parameters Unit Slope 1 Slope 2
Constitutive model - Mohr-Coulomb Mohr-Coulomb
Yunsat (kN/m83) 16 16

c (kN/m2) 2 5
¢ (°) 25; 30; 35; 40 25; 30; 35; 40
v () ¢’; ¢ -n-5;0° @5 ¢ -n-50°

5.8.3 Study 2: Variation of ¢’ and A for ¢’ = 30°

Slope 1 is disposed 26.57° to the horizontal and will be subject to further investigations.
Study 2 tries to figure out how cohesion influences the difference between Davis
calculations and non-associated SRFEA. For this purpose, the effective friction angle ¢’
= 30° is kept constant, while the cohesion will vary between 0 and 10 kPa (Tab. 43).
Again, Davis A, B and C get compared with standard as well as user-defined SRFEA.
The calculations are listed in appendix 10.4.7.

Tab. 43 Study 2 - soil properties

Soil parameters Unit Slope 1
Constitutive model = Mohr-Coulomb
Yunsat (kN/m3) 16
c (kN/m2) 0;2;5;10

o} ) 30
v ) ¢’ ¢-n*5; 0°

At this point, it should be noted that Davis C might supply wrong results. It has been
mentioned in Tab. 3 that in certain circumstances the reduced effective friction angle
according to Davis ¢* can become smaller than /. Since such a state makes no sense,
¢* > y’ has to be ensured. If one considers for example a friction angle ¢’ = 35°, a

cohesion ¢’ = 2 kPa and the geometry of slope 1, Fig. 81 shows that for A < 15° the FoS
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decreases significantly with decreasing degree of non-associativity (pink dashed line).
This goes back to the fact that the reduced friction angle ¢*is smaller than the dilatancy
angle v’ for A < 15°. The results of Davis C analyses, presented in chapter 5.8.4, are

modified by a simple cut-off criterion to fulfil the condition ¢* > .

0 5 10 15 20 25 30 35
A=¢-vy'[]
—8— ¢'=35° - SRFEA - standard -~ W @' =35° - SRFEA - Davis C: y' < ¢*

i @' = 35° - SRFEA - Davis C: y' > ¢~
Fig. 81 Range where modification of Davis C is required to ensure ¢* > v’

5.8.4 Comparison of the results

The results are shown for slope 1. All statements are valid for slope 2 as well.

At Fig. 82, it becomes clear that standard and user-defined SRFEA as well as Davis B
and Davis C supply the same results for a dilatancy angle y’ = 0°. Section 3.3.3 explains
the reasons for this. Furthermore, it becomes clear that, with an increasing degree of
non-associativity (A = ¢’ - '), the differences between all Davis approaches and
standard or user-defined SRFEA become larger. Fig. 82 illustrates that with an
increasing friction angle ¢’ those differences become significantly larger for Davis A,
while differences for Davis B and C do not rise as much. As a result, the differences
between the original Davis and the enhanced procedures increase. In order to gain a
better understanding of this relations, Tab. 44 and Tab. 45 summarize the results for
several effective friction angles, always assuming a dilatancy angle ' = 0°. If one
considers two extreme cases with effective friction angles ¢’ equal to either 25° or 40°,
the differences between Davis A and standard SRFEA increase from - 5.7 % to - 24.6
%, while Davis B’s rise from - 1.6 % to - 4.0 %. Hence, the differences between Davis A
and Davis B rise from - 4.1 % to - 19.8 %. The results for the dilatancy angles y’ = 0° are
listed in appendix 10.4.7.
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The differences between Davis B and user-defined SRFEA as well as the differences
between Davis C and standard SRFEA show approximately the same values. In Fig. 83,
it becomes obvious that the blue and green dashed lines have got a good correlation.
The black dashed Reference lines represent the standard and user-defined SRFEA
results. Starting from there the differences are added in the positive direction. For a better

view different Reference values are chosen for the friction angles ¢’ = 25° - 40°.

Tab. 44 Study 1 - slope 1 (¢’ = 2 kPa): Comparison of SRFEA (y’ = 0°), Davis A and Davis B

SRFEA (y’ = 0°), Davis A, Davis B

Effective friction Standard SRFEA Davis A Davis B
angle ¢’ Plaxis 2D Plaxis 2D Plaxis 2D
¢ =25° 1.29 1.22 1.27
¢ =30° 1.55 1.39 1.49
¢ =35° 1.78 1.53 1.73
¢ =40° 2.08 1.67 2.00

Tab. 45 Study 1 - slope 1 (¢’ = 2 kPa): Comparison of Davis A and Davis B with SRFEA (y’ =
0°)

% Difference

Davis A vs. SRFEA Davis B vs. SRFEA Davis A vs. Davis B

Effective frir:‘tion =100 (Davis A - =100 (Davis B - =100 (Davis A - Davis
angle ¢ SRFEA (y’ = 0°)) / SRFEA (v’ = 0°)) / B) / Davis A
Davis A Davis B
¢ =25° -5.7 -1.6 -4.1
o = 30° -115 -4.0 -7.2
¢ =35° -16.3 -2.9 -13.1
© = 40° -24.6 - 4.0 -19.8

Study 2 demonstrates similar results as study 1. Keeping the friction angle constant and
varying the cohesion between 0 and 10 kN/m? leads to the conclusion that with
increasing cohesion Davis A becomes more conservative compared to the standard
strength reduction. As it can be seen in Fig. 84 and Fig. 85, Davis B and Davis C are not
strongly affected by the variation of cohesion. Again, the differences between Davis B
and user-defined SRFEA as well as the differences between Davis C and standard
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strength reductions are approximately the same. Despite the change of non-associativity

A, the green and blue dashed lines do match well in Fig. 85.

In conclusion, it can be said that the larger the friction angle ¢’, the cohesion ¢’ and the
degree of non-associativity A are set, the larger the differences between Davis A and
standard SRFEA get. It should be noted that the differences between Davis B and user-
defined SRFEA as well as Davis C and standard SRFEA are approximately the same.

Both differences are not strongly affected by the cohesion ¢’ and the friction angle ¢’.

2.2

21

2.0

1.9

o

1.8

FoS []
Y

1.2
0 5 10 15 20 25 30 35 40
A=¢"-y'[]
—@— ¢' = 40° - SRFEA - standard —@— @' = 40° - SRFEA - user-defined
----- #- @' =40° - Davis C <@ @' =40° - Davis B
@' =40° - Davis A
—— ¢' = 35° - SRFEA - standard —— @' = 35° - SRFEA - user-defined
----- - @' = 35° - Davis C - @' =35% - Davis B
@' =35° - Davis A
—&— @' = 30° - SRFEA - standard —&— @' = 30° - SRFEA - user-defined
..... 4 @' =30°-Davis B e @' = 30° - Davis C
@' =30° - Davis A
—&— @' = 25° - SRFEA - standard —&— @' = 25° - SRFEA - user-defined
e ' = 25° - Davis B = @' = 25° - Davis C

@' =25° - Davis A

Fig. 82 Study 1 - slope 1: Standard SRFEA, user-defined SRFEA, Davis A, Davis B and Davis
C results for different A and ¢’
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2.7

2.6

2.5

2.4

2.3

Woonunwunalffousasunan JiIIIT UL

1.8

1.5
1.4
I I T ;ﬁ:
1.3
0 5 10 15 20 25 30 35 40
A=0"-y'[]
@' = 40° - Difference DavisA == ®- @' = 40° - Difference Davis B
----- #- @' =40° - Difference Davis C --®--- @' =40° - Reference
@' = 35° - Difference DavisA - M- @' = 35° - Difference Davis B
----- #- @' = 35° - Difference Davis C --®--- @' = 35° - Reference
¢'=30° - Difference DavisA - - @' = 30° - Difference Davis B
----- 4 @' = 30° - Difference Davis C --#--- @' =30° - Reference
@' = 25° - Difference Davis A - @' = 25° - Difference Davis B
- @' = 25° - Difference Davis C ---A--- @' = 25° - Reference

Fig. 83 Study 1 - slope 1: Differences between Davis A and standard SRFEA, Davis B and user-
defined SRFEA and Davis C and standard SRFEA for different A and ¢’
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Fig. 84

C results for different A and ¢’

20 25

—@— ' = 10 kN/m2 - SRFEA - user-defined

----- #- c'=10 kN/m? - Davis B

—@— ¢' = 5 kN/m2 - SRFEA - user-defined

..... W c'=5kN/m? - Davis B

—a&— ' = 2 kN/m2 - SRFEA - user-defined

e ¢ = 2 KN/m2 - Davis B

—&— ' = 0 kN/m2 - SRFEA - user-defined

..... #- ¢'=0 kN/m2 - Davis B

C.J; -
A A
¢ s
0 5 10
A=9¢'-y'["]
—— ' = 10 kN/m2 - SRFEA - standard
----- #-- ¢' =10 kN/m2 - Davis C
¢' =10 kN/m2 - Davis A
—— c' = 5 kN/m2 - SRFEA - standard
----- - ¢' =5 kN/m2 - Davis C
¢'=5kN/m2 - Davis A
—a&— ¢' = 2 kN/m2 - SRFEA - standard
e €' = 2 KN/m2 - Davis C
¢' =2 kN/m2 - Davis A
—&— ' = 0 kN/m2 - SRFEA - standard
----- #- ' = 0 kN/m2 - Davis C
¢' =0 kN/m2 - Davis A
Study 2 - slope 1: Standard SRFEA, user-defined SRFEA, Davis A, Davis B and Davis
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1.0
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A=¢"-vy'[]
c' = 10 kN/m2 - Difference Davis A - #- ¢' =10 kN/m2 - Difference Davis B
----- #-- ¢' = 10 kKN/m2 - Difference Davis C --@---c'= 10 kN/m2 - Reference
¢' =5 kN/mz2 - Difference Davis A - ®- c' =5 kN/m2 - Difference Davis B
----- #-- c' =5 kN/m2 - Difference Davis C --@---c' =5 kN/m2 - Reference
¢' = 2 kN/m2 - Difference Davis A - 4 ¢' = 2 kN/m2 - Difference Davis B
- C'= 2 KN/m2 - Difference Davis C ---A---¢' = 2 kN/m2 - Reference
c¢' = 0 kN/m2 - Difference Davis A - % ¢' = 0 kN/m2 - Difference Davis B
----- % ¢' = 0 kN/m2 - Difference Davis C --#---¢'= 0 kN/m2 - Reference
Fig. 85 Study 2 - slope 1: Differences between Davis A and standard SRFEA, Davis B and user-
defined SRFEA and Davis C and standard SRFEA for different A and ¢’
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For most of Griffiths and Lane’s paper examples the elastic parameters Young’s modulus
E’ and Poisson’s ratio v were not given. The variation of these parameters show that E’
has no influence on the safety factor at all, while v can lead to small differences in some

cases. The reason for this behaviour could possible lie in the so-called ¢ - v inequality.

6.1 Derivation of the ¢ - v inequality

To get a better idea of the following steps, a rigid cylinder filled with homogeneous dry
soil is used for the following explanations. Considered is a free top surface, between
cylinder and soil no friction is acting. By assuming elastic soil properties and gravity
acting on the domain, Eq. (50) and Eq. (51) define the vertical and horizontal earth
pressure. The z-axis, directed positively downwards, starts on top of the free surface.
The earth pressure coefficient at rest Ko is defined according to Eq. (52).

0, = —yh (50)

03 = 0, = —Koyh (51)
v

KO:l—v (52)

It should be noted that no point in the soil can ever fail, because the system is horizontally
confined. Furthermore, a Mohr-Coulomb failure criterion is used. Substituting Eq. (50)
and Eq. (51) into Eq. (53) and letting the height h go towards infinity, the relation for the
¢ - v inequality is build (Eqg. (54)).

(1 +sing")o; — (1 —sing’)a; < 2ccos ¢’ (53)
1-K
sin<p'2—1+K=1—2v (54)

Hence one can imply that the whole soil would fail if the inequality is not guaranteed
(sing’ < 1 - 2v). This is particularly the case for cohesionless soils in an infinite half space
or for the mentioned cylinder. Obviously, this cannot be considered to be correct (Zheng
et al. 2005).

It needs to be stated that the expressions ¢ - v inequality satisfied or ¢ - v inequality
given mean that Eq. (54) is fulfilled. If this is not the case, ¢ - vinequality neglected or ¢

- vinequality not given will be stated.

Institute of Soil Mechanics and Foundation Engineering 83



TU

Graz
Graz University of Technology

6 ¢ - v inequality

6.2 Scheme of analysis

In order to establish whether the ¢ - v inequality has an influence on the computed safety
factor, two scenarios get compared where the first neglects and the second satisfies the
correlation. The scheme of analysis is shown in the following paragraph.

To ensure that the ¢ - v inequality is not satisfied, the first case is assuming a limit
condition for the input. The friction angle ¢’ and the Poisson’s ratio v have been chosen
so that sing’ equals 1 - 2v and thus Eq. (55) gives unity (6 = 1). When considering a
strength reduction with a constant v, any further decrease of the friction angle leads to a
state where the correlation is neglected.

sing’

= = 55
0 1-2v 1 ( )

Eq. (20) is used to determine friction angle ¢’'no». and cohesion ¢’nop. at failure. To ensure
a given inequality for scenario two, a modified Poisson’s ratio vmos. is determined

according to Eq. (56).

Vmod. = %(1 — (sin (p,mob./e)) ( o6 )

The original friction angle with the modified Poisson’s ratio vmes €nables a strength
reduction where the inequality is always satisfied, as long as the safety factor is not
increasing (Zheng et al. 2005).

To investigate if a further increase of the Poisson’s ratio vchoice > Vmod. Shows any influence
on the factor of safety, further calculations are performed for some selected examples.
For the sake of completeness, it should be mentioned that any further increase of the
Poisson’s ratio leads to a clear fulfiiment of Eq. (54).

6.3 Analysis
6.3.1 General information

All calculations are performed on a homogeneous slope, five meters high and disposed
26.57° to the horizontal (Fig. 86). The analyses consider drained conditions and a linear
elastic-perfectly plastic constitutive model with a Mohr-Coulomb failure criterion. Case 1
with an effective friction angle ¢’+ = 37° and a Poisson’s ratio vi = 0.2 as well as case 2
with an effective friction angle ¢’> = 23.6° and a Poisson’s ratio vz = 0.3 shall be subject

to further analyses. For both parameter sets, Eq. (55) is equal to unity. The Young’s
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modulus E’, the unit-weight yunsat, the dilatancy angle y’ and the cohesion ¢’ get modified
for both cases, according to Tab. 46.

10m 10m 10m

AL

30m

Fig. 86 ¢ - v inequality: Geometry of the slope

Tab. 46 ¢ - vinequality: Variation of the strength and stiffness parameters

Soil parameters Unit Case 1 Case 2
E (kN/m2) 104; 107 104; 107
v (-) 0.2; Vmod; (Vchoice) 0.3; Vmod; (Vchoice)
Yunsat (kN/m3) 16; 20 16; 20
¢ (°) 37 23.6
vy’ () 90 /3,¢0/4,0 00 /3,9 /4,0
c (kN/m?) 0;2;4 2;4

In the first phase, gravity loading is applied in Plaxis 2D, followed by a SRFEA. To
monitor the change in failure points, a nil-step gets additionally inserted after the initial
phase. Plaxis 2D uses a tolerated error of 1 % and these tolerances might cause an
additional load redistribution in the nil-step, as shown in Fig. 87 (Brinkgreve et al. 2016).
It should be stressed at this point that the amount of failure points is smaller compared

to the initial phase.

Fig. 87 o - v inequality - failure points: Comparison of gravity loading and the following nil-step
(¢'1=37°v1=0.2,c’=2kN/m2, E’ = 104 KN/m2, yunsat = 16 kN/m3)
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Besides any standard and user-defined SRFEA, Davis procedures A, B and C are carried
out in Plaxis 2D. For all calculations, the domain is discretised by 1035 15-noded
elements. In addition, SRFEA, FELA, Davis A, Davis B and Davis C are performed in
Optum G2 with an adaptive mesh refinement. An overview of the calculations for both

cases is shown in appendix 10.5.

6.3.2 Comparison of the results

Analyses with the soil properties according to Tab. 47 are the subject of the following
discussion. It should be noted that all statements hold true for the other calculations as

well.

Tab. 47 ¢ - vinequality: Soil parameters used for the evaluation

Soil parameters Unit Case 1
E (kN/m2) 104
v (-) 0.2; Vmod; Vchoice
Yunsat (kKN/m3) 16
¢ ) 37
v’ () ©59' /3¢ /4,0
c (kN/m2) 2

In the first part, SRFEA with associated plasticity and FELA are going to be compared
for different Poisson’s ratios v. Special emphases is put on the development of failure
points. Alongside the development of those failure points, it is of main interest to clarify
if the ¢ - v inequality affects the factor of safety. For this particular case, additional safety
analyses are made with a Poisson’s ratio of vecheice = 0.4. In order to gain a better
understanding of the following tables, it should be said that for each Poisson’s ratio (v,
Vmod., Vchoice) tWO safety analyses (analysis 1, analysis 2) are performed. The effective
friction angle and cohesion listed in Tab. 47 are used as input parameters for analysis 1,
while the resulting friction angle and cohesion at failure (¢@’mob., Cmor.) are the input
parameters for analysis 2. Logically, this also means that the safety factor of the latter
analysis has to be equal to unity (FoS = 1). The amount and the distribution of failure
points (or yield function for Optum G2) shown in the initial phase of analysis 2 are
important, because they represent the failure condition of analysis 1. Summarized in one

sentence, the upper figures show the plastic points at the initial state, while the figures
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at the bottom represent the state of failure (this statement refers to Tab. 48, Tab. 49,
Tab. 50). Tab. 48, Tab. 49 and Tab. 50 clearly indicate the significant influence the
Poisson’s ratio v has on the amount of plastic points. The amount of plastic points is
further decreasing for the chosen Poisson’s ratio venoice = 0.4. Furthermore it could be
seen that the ¢ - v inequality does not influence the safety factors. By varying v between
0.2 and 0.4, the FoS does not change remarkably for SRFEA and FELA. The safety
values differ between 1.98 and 2.00.

Tab. 48 Failure points: SRFEA (y’ = ¢’), Plaxis 2D

v=0.2 Vmod. = 0.323 Vehoice = 0.4
2
g
o X
o N
=1
£
o& sin37=060>1-2-02=060 sin37 = 0.60 = 1—2-0323 = 035 Sin37 = 0.60 = 1—2-04 = 0.20
%,; Fos — 2 tan37 —199 FoS — 2 tan37 —199 oS — 2 tan37 —198
g %= T01 w@n2078 %7101 tan2077 %7101 tan2077
(0]
(%2}
©
<
2
S s
co
=5
N 2 sin2078=035<1-2-02=060  sin2078=035>1-2-0323=035  sin20.80 = 036>1—-2-04=020
‘S
2 pog o 101 _tan2078 pog 01 _tan2077 pog 01 _tan2080
g %= 101 tanz2078 - %101 t@nz077 %101 t@nz080

Tab. 49 Yield function: SRFEA (y’ = ¢’), Optum G2

v=0.2 Vmod. = 0.323 Vehoice = 0.4
2
sg
o X
o N
= 1
£
oK sin37=06021-2-02=060 sin37 = 0.60 = 1—2-0.323 = 0.35 sin37 =060 >1—2-04 =020
S Ll 2 tam37 s _ 2 _ tan37 s 2 _ tan37
g ® =101 tnz076 =101 tan2076 =101 tan2076
(0]
(%2}
(]
<
Qe
E o
2 F  sin2076=035<1-2-02=060  sin2076=035>1-2-0323=035  sin2076 = 0.35 > 1-2-0.4 = 0.20
H pog 2 101 _tan2076 pog 01 _tan2076 pog 01 _tan2076
< %= 101 " tan2076 °701  tan2076 %701 tan2076
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Tab. 50 Yield function: FELA, upper-bound (v’ = ¢’), Optum G2

v=0.2 Vmod. = 0.324 Vehoice = 0.4
(o]
8 ©
< 0
o X
& N
= 1
£
P sin37 =060 >1—-2-02 = 0.60 sin37 =060 >1—2-0324 = 035 sin37 = 060 >1—2-04 = 0.20
‘0
e Fos.. < 2 _ tan37 _ Fos. - 2 _ tam37 Fos. o 2 _ ta37 o
g O%Mean = T01 = tan20.65 - O%Mean = 707~ tan20.65 OoMean = 707 = an2065
(o]
(2]
©
e
Q o
E ke
S 3 sin2065=035<1-2:02=060  sin20.65=035>1-2-0324=035  sin20.65=035>1—-2:04=020
g S
©
fe
<C

Finally, it is important to emphasize that changes in Poisson’s ratio do not affect the
safety factor for any associated SRFEA, FELA and Davis approaches at all. The variation
of strength and stiffness parameters, according to Tab. 46, have also no impact on this
finding, as it can be seen in appendix 10.5.

The statements herein hold true for SRFEA with non-associated plasticity as well. As
shown in Tab. 51, the safety values are approximately constant for all the Poisson’s

ratios.

Tab. 51 ¢ - v inequality: SRFEA results according to non-associated plasticity (Plaxis 2D)

Dilatancy angle v=0.2 Vmod. = Variable Vehoice = 0.4
vy =0° 1.88 1.87 1.87
Vv =0/4 1.98 1.97 1.96
v =0/3 1.99 1.98 1.98
V= 1.99 1.99 1.98

In rare cases, the study identifies larger differences in FoS for several Poisson’s ratios.
By assuming a unit-weight yunsat = 20 kN/m3, a Young’s modulus E’ = 10* kN/m2, an
effective friction angle ¢’ = 37°, a dilatancy angle y’ = 0° and varying the cohesions ¢’

between 0 and 4 kPa, the computed safety factors for v = 0.2 and vmoq. differ slightly. On
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the other hand, Davis A and Davis B do not show these differences. The observed
behaviour can be explained through the bifurcation of the failure mechanism. As
mentioned in section 3.1.4, large differences between the effective friction angle and the
dilatancy angle may lead to changes in the failure mechanism. Consequently, no precise
definition of the safety factor is possible.

2.2

— 1.8

FoS [-

0 0.5 1 1.5 2 2.5 3 3.5 4
c' [kN/mZ]
—&— SRFEA (¢'=0°)-v=02 == & SRFEA (¢'=0°) -v=mod
—&— DavisA-v=02 e & Davis A - v =mod
DavisB-v=0,2 Davis B - v = mod

Fig. 88 ¢ - v inequality: Comparison of SRFEA, Davis A and Davis B for different v (yunsat = 16
kN/m2, E’ = 10* kN/m2, ¢’1 = 37°, ¢’ = 0°)

Subsequently, the example was taken to demonstrate the bifurcation of a failure
mechanism. This behaviour has already been introduced in section 3.1.4. As Fig. 89
shows, the choice of safety value is decisive for the resulting modified Poisson’s ratio
vmod.- Those Poisson’s ratios differ up to 5 %, depending on the chosen FoS. Running a
SRFEA with modified Poisson’s ratios vmes. can show that the erratic distributions are not
weakened and still deviate of 2.5 % from the previous calculations, according to v =
0.146 (Fig. 90).

In conclusion, it can be said that the Poisson’s ratio is not affecting the safety factor for
any analyses but is particularly responsible for the amount of plastic points in a domain.
Differences in the FoS arising from the variation of v are related to the bifurcation of the
failure mechanism. Furthermore, it has been shown that the ¢ - v inequality does not
influence the erratic behaviour of the ¢ - ¢ reduction in combination with non-associated

plasticity.
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Fig. 89 o - vinequality: SRFEA (v’ = 0°) according to v = 0.146
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7 Influence of the initial stress condition on the FoS

As several studies that have been investigated in this thesis have shown, Poisson’s ratio
does not affect the FoS. The initial phase was determined by gravity loading. Chapter
7.1 and 7.2 are going to make an attempt to answer the following two questions: Do the
statements on the ¢ - v inequality hold true if the initial stresses are calculated by a Ko

procedure? Has the Ky value any influence on the factor of safety?

In Plaxis 2D, the initial stress distribution by using gravity loading gets determined by
considering the self-weight, according to Eq. (52). By using an elastic-perfectly plastic
constitutive model, the ratio of the horizontal to the vertical effective stresses is strongly
affected by the Poisson’s ratio. The procedure satisfies the equilibrium for all geometries.
In contrast, a Ko procedure calculates the stresses according to Eq. (57) whereby the
mayor and minor principal stresses remain vertical and horizontal. It follows that Ko
becomes an input parameter (default: Ko = 1 - sing’). The vertical stresses are in
equilibrium with the self-weight of the soil, but the Ko procedure does not ensure any
failure criterion in the complete stress field. Only in the case of a horizontal soil surface,
soil layers and phreatic levels, a complete equilibrium is guaranteed (Brinkgreve et al.
2016).

!
Uxx

K0=

!
0yy

7.1 ¢ - vinequality with Ko procedure

To answer the first of the above mentioned questions, SRFEA are performed on two
slopes in Plaxis 2D. Looking at the figure below, one can see that slope 1 is disposed
26.57° (1:2) to the horizontal, while slope 2 is 45° (1:1) steep.

10m 10m 10m 20m 5m 10m
. N
5m I 5m N-
5m
(@) Ml b
30m 30m

Fig. 91 Geometry of slope 1 (a) and slope 2 (b)

The homogeneous slopes are characterized by a unit-weight yunsat = 16 kN/m3. However,
the cohesion for both cases is different. Note that for both slopes, SRFEA according to
associated and non-associated plasticity are performed. A complete overview of the soll
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parameters is listed in Tab. 52. The discussion of results will be made for slope 1 with
associated plasticity. The statements apply for all calculations performed in this study.
The results are attached in appendix 10.6. For slope 1, about 1509 15-noded triangular
elements are used to discretize the domain.

Tab. 52 Soil parameters used for analyses

Soil parameters Unit Slope 1 Slope 2
E (kN/m2) 104 104
v (-) 0.2; Vimod; Vchoice 0.2; Vimod; Vchoice
Yunsat (kN/m83) 16 16
¢ () 37 37
v () 050 ¢’ 10
c (kN/m2) 1 4

Three variations of slope stability analyses with Ko procedure as the initial phase are the
subject for further studies. The initial phase is followed by either a construction phase,
an excavation phase or a nil-step. A standard ¢ - ¢ reduction is used to determine the
factor of safety in phase 3. Furthermore, SRFEA with initial phase gravity loading are
calculated as well (variation 4). In order to gain a better understanding, Tab. 53 highlights
the phases of each variation.

Tab. 53 Variation 1 - 4: Calculation phases (Plaxis 2D)

Phase1 Phase 2 Phase 3

‘; ) / ) /
L
ke,
Py
N

Ko procedure Construction @ - ¢ reduction
2 ) / ) /
L
ke
&
>

Ko procedure Excavation @ - ¢ reduction
™ B / // //
S
T
S
>

Ko procedure Nil-step @ - ¢ reduction
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In the same way as described in 6.2, SRFEA are performed with Poisson’s ratios v, viod.
and veroice. FOr variations 1 - 3 the Ko value is determined according to Eq. (52) to ensure
a comparable initial stress distribution in all initial phases. It is important to note that the
direction and magnitude of major (o’s) and minor (o’s) principle stresses are different for
variations 1 - 4 in the initial phase, depending on the geometry and the chosen method
(Ko procedure, gravity loading). However, a basis for comparison can be achieved. The
Ko value gets modified depending on the Poisson’s ratio (Tab. 54).

Tab. 54 Ko values for the several Poisson’s ratios

v=0.2 Vimod = 0.308 Vehoice = 0.4
K, = 02 =0.25 K, = 0.308 = 0.45 K, = 04 =0.67
"7 1-02" 7 7 1-0308 7 1-04

For each variation and Poisson’s ratio, SRFEA are performed according to the original
strength parameters and strength parameters at failure (FoS = 1). The failure points of
the latter ones are shown in Tab. 55. The underlined phase is subject of discussion (left
column in Tab. 55).

The calculations show that the FoS is not affected by the variation of Poisson’s ratio and
Ko value respectively. As can be seen in Tab. 55, the factors of safety for variations 1 -
4 vary between 1.80 and 1.81. On the other hand, the amount of failure points strongly
decreases again with an increasing Poisson’s ratio (see also chapter 6.3.2).

The amount and distribution of failure points is similar for variations 1, 3 and 4. Variations
2, however, shows less failure points. The reason for this is that the excavation phase is
an unloading process. Therefore, failure points can become elastic again. Contrary to
the expectations, the amount of failure points is increasing for a Poisson’s ratio vmed =
0.308. This increase of failure points remains unclarified. The increase of failure points
is not present on slope 2 (Tab. 56). The amount of tension points at the crown of the
embankment is increasing with an increasing Poisson’s ratio. This becomes particularly
obvious in Tab. 56. In order to be able to draw more conclusions, further analyses are
needed. To conclude this chapter, it should be underlined that SRFEA with a Ko
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procedure as the initial phase do confirm all statements made on the ¢ - v inequality.
The factor of safety is not affected by the Poisson’s ratio, but the amount of failure points

diminishes with an increasing v.

Tab. 55 Slope 1 - SRFEA (v’ = ¢’): Failure points and safety factors for several v

v=0.2 Vimod = 0.308 Vehoice = 0.4
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Tab. 56 Slope 2 - SRFEA (v’ = ¢’): Failure points and safety factors for the several v
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7.2 Influence of Ko on the FoS

In 7.1 the Ko value and the Poisson’s ratio got modified in a simultaneous manner,
according to Eqg. 52. The following study can be considered isolated from the ¢ - v
inequality and should clarify the effect from the Ko value on the FoS. The two slopes of
the previous chapter are object to further SRFEA with associated and non-associated
plasticity. To prove if the Ky value influences the FoS, the variations 1 to 3 are considered
for both slopes again. By keeping the Poisson’s ratio (v = 0.2) constant, the initial stress
distribution is established for a Ko value equal to 0.25 and 0.40. The first value results
from Eqg. 52 while the latter one corresponds to the default value Ko = 1 - sing’. An
overview of all the calculations is found in appendix 10.6. As Tab. 57 shows, the initial
stress state does not affect the obtained safety value. For an explanation of this
behaviour, slope 1 with associated plasticity will be utilized.

Tab. 57 SRFEA results (FoS) according to associated and non-associated plasticity

Slope 1 Slope 2
vy =0° V=9 vy =0° V=9
Ko 0.25 0.40 0.25 0.40 0.25 0.40 0.25 0.40
Variation 1:
1.72 1.72 1.80 1.80 1.37 1.37 1.43 1.43
Construction
Variation 2:
1.72 1.71 1.81 1.81 1.37 1.37 1.43 1.43
Excavation
Variation 3:
1.70 1.71 1.81 1.81 1.36 1.36 1.43 1.43
Nil-step
Variation 4:
1.72 1.81 1.37 1.43
Gravity load.

In order to gain a better understanding of the stress distribution, the ratio of minor
principle stress o’s over major principle stress o’y for the several variations and phases
is plotted in Tab. 58. Due to the fact that no rotation of the principle stresses occurs in a
Ko procedure, the illustrated ratio is equal to Ko. As it can be clearly seen, the ratio is
constant for the whole domain (as it is an input to the analysis). In phase 2, the different
initial stress conditions cause divergent ¢’s / ¢’1 ratios. It is notable that all three variations
with an initial Ko value equal to 0.25 are in exceptional agreement with the initial phase
of variation 4 (gravity loading). The second phases based on Ko = 0.4 are in good
agreement as well. Variation 2 leads to higher ratios below the toe of the embankment.
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Due to the excavation, the minor principle stresses rotate and become relatively large
compared to the diminishing major principle stresses. The followed strength reduction
analyses show that the ratios of principle stresses are almost the same for all the
variations. The exception here is again variation 2 with an initial Ko = 0.4. The reason for
this is the same as discussed above.

Tab. 58 Slope 1 - SRFEA (v’ = ¢'): 6’3/ ¢’y

Phase 1: Phase 2: Phase 3:
Initial phase (Ko Construction, excavation, Strength reduction
procedure, gravity load.) nil-step
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To demonstrate that the initial stress distribution does not affect the factor of safety, the
stress paths of point A and B are considered in more detail. Both points are located within
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the failure mechanism, as it is shown in Fig. 92. The corresponding stress paths for
variations 1 to 4 are shown in Fig. 93 and Fig. 94. However, it must be said that the
starting points of each stress path are marked by an orange node. Equal factors of safety
must result in stress paths reaching the same Mohr-Coulomb failure criterion. By looking
at Fig. 93 and Fig. 94, it becomes clear that the stress paths always end at the same

Mohr-Coulomb failure criterion, unaffected by their starting point.

Fig. 92 Location of point A and point B
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Fig. 93 Stress paths of point A
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Fig. 94 Stress paths of point B
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8 Conclusion

The results presented in this thesis confirm that the limit equilibrium analysis (LEA), the
finite element limit analysis (FELA) and the strength reduction finite element analysis
(SRFEA) assuming associated plasticity are in good agreement with each other. At the
same time it is shown, that by using an adaptive mesh refinement, it is possible to
remarkably reduce the number of elements. It has been determined in Griffiths & Lane
(1999) that a priori knowledge of the failure mechanism is required in order to avoid an
overestimation of the factor of safety. Cases with ¢’ # ' demonstrated a lower FoS
provided by the SRFEA compared to a LEA. It should be noted that for steep slopes with
a high degree of non-associativity (A = ¢’ - '), the failure mechanism changes during a

¢ - ¢ reduction. As a consequence, no clear definition of the FoS is possible.

The numerical instabilities of non-associated displacement based finite element
analyses can be avoided by using the Davis approach with reduced strength parameters
in combination with an associated flow rule. The original concept (Davis A) leads to very
conservative results when the factor of safety is expressed by strength parameters. For
the enhanced procedures Davis B and Davis C, the reduction factor gis not constant
anymore. It was established that three iterative determinations of g are in general
sufficient that the safety factor remains the same. These stability analyses on two
reinforced slopes as well as on six examples (Griffiths & Lane 1999) showed that the
modified procedures lead to slightly conservative results too but are in better agreement
with the non-associated SRFEA.

Further parameter studies have proven that an increasing friction angle ¢’, cohesion ¢’
and degree of non-associativity A lead to larger differences between Davis A and the
standard SRFEA. The dilatancy angle is kept constant in a standard strength reduction
until the reduced friction angle amounts to the same value. Once ¢’qs. €quals ¥/, both
strength parameters are simultaneously reduced. Therefor a user-defined SRFEA has
been used, on the other hand, where the friction and dilatancy angle are reduced
concurrently from the beginning. Since the difference of the friction angle ¢’ to the
dilatancy angle ¥’ characterizes the amount of non-associativity, the latter method is
considered to be more appropriate. It should be noted that the differences between Davis
B and the user-defined SRFEA as well as between Davis C and the standard SRFEA
are approximately the same. While the degree of non-associativity A4 has a noticeable
influence on those differences, a change in the cohesion ¢’ shows no effect.
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8 Conclusion

It should be mentioned that Davis B and Davis C do not always have to be conservative
compared to non-associated SRFEA. E.g. in the case of a vertical pile where the
confined situation of the boundary value problem leads to the mobilisation of normal
forces along the skin. Such a scenario where the FoS obtained with non-associated
plasticity is smaller than the FoS obtained with the modified Davis approach was never
achieved in this study.

In a further section, it was proved that the ¢ - v inequality does not influence the factor
of safety. Small differences in the FoS arising from the variation of vare related to varying
failure mechanism. The Poisson’s ratio v, however, plays an important role for the
amount of failure points. It appears that the amount of failure points diminishes with an

increasing v.

Final analyses proved that the initial stress state has no impact on the FoS. If a point
which is situated along the failure mechanism is considered, it is of no importance where
the stress path starts (in the initial phase), failure will always occur at the same reduced

strength parameters (@’mob., C'mob.), thus Mohr-Coulomb criterion.
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10.1 Safety analysis of Optum G2
10.1.1FELA (Optum G2)
Name From Analysis Name From Analysic
|5 Stagel  [{None) +|StrengthReduction w| /3] Stagel  |(None) |Strength Reduction |
BGEE ¥ B GEE ¥ b
Settings Settings
Reduce Strengthin [ Solids - | Reduce Strength in | Solids -
Time Scope %Lozng Term hd ] Time Scope [ Long Term X ]
Element Type Lower i I Element Type [ Upper ']
No of Elements 100 Mo of Elements 100

Fig. 95 FELA - Optum G2: Strength Reduction (in Solids) with (a) Lower and (b) Upper element

type
Name From Analysis Name From Analysis
| stage1  |(None) = |Limit Analysis «| |3 stagel  [{None) +|Limit Analysis -
GEBE ¥ B AR 4% B
Settings Settings
Multiplier [ Load v Multiplier [ Load hd
Time Scope Long Term v] Time Scope Long Term -
Element Type Lower hd ] Element Type Upper v
No of Elements 100 No of Elements 100

Fig. 96 FELA - Optum G2: Limit Analysis (Multiplier: Load) with (a) Lower and (b) Upper
element type

Name From Analysis Name From Analysis |

[] stage1  [(None) v |Limit Analysis v| |[5] stage1  |None) ~|LimitAnalysis -
N )

GEE 4% B GiEBE ¥ b
Settings Settings
Multiplier [ Gravity v ] Multiplier [ Gravity v
Time Scope [ Long Term - Time Scope Long Term -
Element Type [ Lower v ] Element Type Upper v/
No of Elements 100 No of Elements 100

Fig. 97 FELA - Optum G2: Limit Analysis (Multiplier: Gravity) with (a) Lower and (b) Upper

element type
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10.1.2SRFEA (Optum G2)

Tab. 59 Strength reduction in the soil (according to Krabbenhgft et al. 2016)

Parameters reduced

Mohr-Coulomb ¢, tang’
Drucker-Prager K, M
Tesca Cu
Hoek-Brown Gci, M
GSK c, tang’1, tang’2
Modified Cam Clay tang’
Hardening Mohr-Coulomb (HMC) ¢, tang’

Tab. 60 Strength reduction in structural elements (according to Krabbenhgft et al. 2016)

Parameters reduced

Beams Np, Mp (Set A) or co (Set B)
Geogrids Np (Set A) or oo (Set B)
Fixed-End Anchors Np (Set A) or co (Set B)
Connectors Nr (Set A) or oo (Set B)
Stage Manager v I X  Stage Manager 3 X
Name From Analysis Name From Analysis

|| Stagel l(None) - lStrength Reduction l >/ Stage 1 l(None} '[Strength Reduction v‘

BEE ¥ b GEE ¥ B

Settings Settings
Reduce Strength in | Solids v ! Reduce Strength in 1 Structs |
Time Scope | Long Term v Time Scope | Long Term v
Element Type | 15-node Gauss 'I Element Type [ 15-node Gauss - |
No of Elements 100 No of Elements 160

Fig. 98 SRFEA - Optum G2: (a): Strength reduction in the soil (Solids), (b) strength reduction in
the structural elements (Struts)
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10.2 Reinforced embankment

10.2.1Influence of construction steps on the FoS

LI 1

Fig. 99 Construction in one step

<l |

Fig. 100 Construction in three steps

Ir]ﬂHIIHtI 1 l 1 r “l l [iEu-IrIil l *

Fig. 101 Construction in five steps
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Tab. 61 Influence of construction steps on the factor of safety: Overview of the safety factors

SRFEA (y = 0°)

Construction in 1 step Construction in 3 steps Construction in 5 steps
LC1 1.52 1.52 1.53
LC2 1.42 1.41 1.42
LC3 1.28 1.27 1.27

10.2.2Safety analyses on modified cross section 1 and cross section2

Tab. 62 Modified cross section 1: Comparison of SRFEA and LEA

LEA, SRFEA
Loading condition 1 Loading condition 2 Loading condition 3
LEA (M-P) 1.59 1.49 1.37
SRFEA (v’ = ¢) 1.54 1.45 1.33
SRFEA (v =0°) 1.40 1.31 1.17

Tab. 63 Modified cross section 1: Differences between SRFEA and LEA

% Differences

Loading Loading Loading
condition 1 condition 2 condition 3
LEA (M-P) - SRFEA (v’ = ¢))
=100 (LEA (M-P) - SRFEA (y' = ¢)) / 3.1 2.7 2.9
LEA (M-P)
LEA (M-P) - SRFEA (v’ = 0°)
=100 (LEA (M-P) - SRFEA (y’ = 0°)) / 1.9 12.1 14.6
LEA (M-P)
Tab. 64 Modified cross section 2: Comparison of SRFEA and LEA
LEA, SRFEA
Loading condition 1 Loading condition 2 Loading condition 3
LEA (M-P) 1.62 1.51 1.33
SRFEA (v’ = ¢') 1.56 1.46 1.28
SRFEA (v =0°) 1.42 1.33 1.14
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Tab. 65 Modified cross section 1: Differences between SRFEA and LEA

% Differences

Loading Loading Loading
condition 1 condition 2 condition 3
LEA (M-P) - SRFEA (v’ = ¢))
=100 (LEA (M-P) - SRFEA (y’ = ¢)) / 3.7 3.3 3.8
LEA (M-P)
LEA (M-P) - SRFEA (v’ = 0°)
=100 (LEA (M-P) - SRFEA (y’ = 0°)) / 12.3 1.9 14.3

LEA (M-P)

10.2.3Cross section 2: Influence of strength parameters ¢’ and ¢’ on FoS

A non-associated flow rule (v’ = 0°) is used for the calculations. In addition, it should be

noted that 400 steps are used to perform the ¢ - ¢ reduction.

Tab. 66 Cross section 1: Influence of strength parameters ¢’ and ¢’ on FoS

SRFEA (y' = 0°)

Loading condition 1 Loading condition 2 Loading condition 3
¢’ = 35% ¢' = 2 kPa 1.16 1.04 1.04
@' =35°%c’'=5kPa 1.48 1.36 1.23
@' =37°% ¢’ =2kPa 1.22 1.16 1.13
@ =37°%c’ =5kPa 1.52 1.42 1.28

10.2.4Influence of extensional stiffness and tensile strength N, on FoS

Tab. 67 EA =750 kN/m2: Variation of tensile strength

SRFEA (y' = 0°)

Linear Np = Np = Np = Np =
elastic 50 kKN/m 15 kN/m2 10 kN/m 5 kN/m
Loading condition 1 1.53 1.53 1.53 1.53 1.50
Loading condition 2 1.42 1.43 1.43 1.43 1.40
Loading condition 3 1.24 1.23 1.23 1.23 1.24
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Tab. 68 EA =500 kN/m2: Variation of tensile strength
SRFEA (y’ = 0°)
Linear Np = Np = Np = Np =
elastic 50 kN/m 10 kN/m2 5 kN/m 2.5 kN/m
Loading condition 1 1.57 1.57 1.54 1.49 1.33
Loading condition 2 1.43 1.44 1.44 1.40 1.26
Loading condition 3 1.25 1.24 1.23 1.21 1.18
10.2.5Mesh study: Safety values for SRFEA and FELA
Tab. 69 SRFEA (y’ = ¢’): Plaxis 2D - no adaptive mesh refinement
15-noded 6-noded
No of elements FOS15-noded No of elements F0Sé-noded
62 1.92 62 2.23
75 1.89 75 2.18
103 1.81 103 1.99
213 1.74 213 1.91
406 1.70 406 1.83
637 1.70 637 1.82
821 1.70 821 1.81
1060 1.69 1060 1.78
1537 1.69 1696 1.76
3056 1.68 3056 1.73
4992 1.67 4992 1.71
10913 1.66 10913 1.69
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Tab. 70 SRFEA (v’ = ¢’): Optum G2 - no adaptive mesh refinement

15-noded 6-noded

495 1.72 483 1.94

687 1.72 673 1.85

883 1.69 880 1.79

1065 1.69 1057 1.78

1269 1.69 1279 1.78

Tab. 71 SRFEA (v’ = ¢’): Optum G2 - adaptive mesh refinement

15-noded 6-noded

359 1.71 371 1.85

637 1.68 635 1.74

916 1.66 964 1.70

1273 1.66 1333 1.68

Institute of Soil Mechanics and Foundation Engineering 111



wiiTy

Graz University of Technol

Tab. 72 FELA: Optum G2 - no adaptive mesh refinement

Lower-bound Upper-bound

495 0.68 483 2.06

683 1.29 673 1.97

955 1.46 969 1.88

1142 1.48 1132 1.84

1327 1.48 1324 1.84

Tab. 73 FELA: Optum G2 - adaptive mesh refinement

Lower-bound Upper-bound

359 0.83 371 1.96

626 1.54 649 1.79

916 1.60 956 1.72

1246 1.62 1302 1.71
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10.3 Upstream slope
10.3.1Input parameters for modelling soil nails and Maccaferri grid
Tab. 74 Input parameters for the Maccaferri grid
Plaxis 2D Optum G2
Set type Geogrids Geogrids
Material type Elastoplastic Elastoplastic
EA (kN/m) 2000 2000
Np (kN/m) 40 40
Tab. 75 Input parameters for the soil nails
Plaxis 2D Optum G2 2
Set type Embedded beam row Nail Rows
Material type Elastoplastic Elastic
E’ (MPa) 200000 200000
¥ (kN/m?3) 7850 -
D (cm) 2.7 2.7
L spacing (M) 2;25;3 2;2.5;3
Ny (kN) 104 )
T skin,axial (KN/m) 34 (start, max = end, max) 34
Tskin,jateral (KIN/m) 5 (start = end) 5
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10.3.2Excavation steps for SRFEA

Tab. 76 Single phases for SRFEA performed in Plaxis 2D

Ko procedure Nil-step Excavation 1

Excavation 2 + installation of Excavation 3 + installation of Excavation 4 + installation of
structural elements structural elements structural elements

Excavation 5 + installation of Excavation 6 + installation of Excavation 7 + installation of
structural elements structural elements structural elements

Excavation 8 + installation of Excavation 9 + installation of Excavation 10 + installation of
structural elements structural elements structural elements

Excavation11 + installation of Excavation 12 + installation of Excavation 13 + installation of
structural elements structural elements structural elements

Excavation14 + installation of Excavation 15 SRFEA — case 1
structural elements

Removing geogrids and soil nails

Excavation 17
(upper area)

Excavation16
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Removing geogrids and soil nails

Excavation 18 SRFEA - case 2
(lower area)

g

10.3.3Additional studies on the upstream slope

¢ Original water table, without modifying the water pressure in Optum G2

Tab. 77 Original water table (no modifications in Optum G2): Comparison of total displacements
and mesh refinements

SRFEA (v’ = ¢) SRFEA (v’ = 0°) Davis A (y’ = 0°)
Total displacements (Plaxis 2D) Total displacements (Plaxis 2D) Total displacements (Plaxis 2D)

FELA lower-bound FELA lower-bound FELA upper-bound
Mesh refinement (Optum G2) Total dissipation (Optum G2) Mesh refinement (Optum G2)

FELA upper-bound Davis A: FELA lower-bound Davis A: FELA lower-bound
Total dissipation (Optum G2) Mesh refinement (Optum G2) Total dissipation (Optum G2)

Davis A: FELA upper-bound Davis A: FELA upper-bound Davis B: FELA lower-bound
Mesh refinement (Optum G2) Total dissipation (Optum G2) Mesh refinement (Optum G2)
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Davis B: FELA lower-bound Davis B: FELA upper-bound Davis B: FELA upper-bound

Total dissipation (Optum G2) Mesh refinement (Optum G2) Total dissipation (Optum G2)

Tab. 78 Original water table (no modifications in Optum G2): Comparison of SRFEA results

SRFEA
o=y v =0° Davis A (v’ = 0°)
Plaxis 2D Plaxis 2D Plaxis 2D
FoS 1.29 1.19 1.10

Tab. 79 Original water table (no modifications in Optum G2): Comparison of FELA results

FELA
o=y Davis A (v’ = 0°) Davis B (v’ = 0°)
Optum G2 Optum G2 Optum G2
FoSMmean 1.35 1.15 1.21

e Horizontal water table

Tab. 80 Horizontal water table (no modifications in Optum G2): Comparison of total
displacements and mesh refinements

SRFEA (v’ = ¢) SRFEA (v’ =0°) Davis A (y’ = 0°)
Total displacements (Plaxis 2D) Total displacements (Plaxis 2D) Total displacements (Plaxis 2D)

FELA lower-bound FELA lower-bound FELA upper-bound

Mesh refinement (Optum G2) Total dissipation (Optum G2) Mesh refinement (Optum G2)

FELA upper-bound Davis A: FELA lower-bound Davis A: FELA lower-bound
Total dissipation (Optum G2) Mesh refinement (Optum G2) Total dissipation (Optum G2)

116 Institute of Soil Mechanics and Foundation Engineering



TU

10 Appendix Graz

Graz University of Technology

Davis A: FELA upper-bound Davis A: FELA upper-bound Davis B: FELA lower-bound
Mesh refinement (Optum G2) Total dissipation (Optum G2) Mesh refinement (Optum G2)

Davis B: FELA lower-bound Davis B: FELA upper-bound Davis B: FELA upper-bound

Total dissipation (Optum G2) Mesh refinement (Optum G2) Total dissipation (Optum G2)

Tab. 81 Horizontal water table (no modifications in Optum G2): Comparison of SRFEA results

SRFEA
o=y v =0° Davis A (v’ = 0°)
Plaxis 2D Plaxis 2D Plaxis 2D
FoS 1.55 1.49 1.33

Tab. 82 Horizontal water table: Safety factors according to FELA

FELA
o=y Davis A (v’ = 0°) Davis B (v’ = 0°)
Optum G2 Optum G2 Optum G2
FOSMean 1.55 1.33 1.43

Tab. 83 Horizontal water table (no modifications in Optum G2): Comparison of Davis A and
Davis B with SRFEA (y’ = 0°)

% Difference

Davis A Davis B
=100 (FELA (Davis A) - SRFEA (y’ = 0°)) / =100 (FELA (Davis B) - SRFEA (v’ = 0°)) /
FELA (Davis A) FELA (Davis B)
-12.0 -4.2

Institute of Soil Mechanics and Foundation Engineering 117



TU

Graz 10 Appendix

Graz University of Technology

e No water table

Tab. 84 No water table: Comparison of total displacements and mesh refinements

SRFEA (v’ = ¢’) SRFEA (v’ =0°) Davis A (y’ = 0°)
Total displacements (Plaxis 2D) Total displacements (Plaxis 2D) Total displacements (Plaxis 2D)

FELA lower-bound FELA lower-bound FELA upper-bound

Mesh refinement (Optum G2) Total dissipation (Optum G2) Mesh refinement (Optum G2)

FELA upper-bound Davis A: FELA lower-bound Davis A: FELA lower-bound
Total dissipation (Optum G2) Mesh refinement (Optum G2) Total dissipation (Optum G2)

Davis A: FELA upper-bound Davis A: FELA upper-bound Davis B: FELA lower-bound
Mesh refinement (Optum G2) Total dissipation (Optum G2) Mesh refinement (Optum G2)

Davis B: FELA lower-bound Davis B: FELA upper-bound Davis B: FELA upper-bound
Total dissipation (Optum G2) Mesh refinement (Optum G2) Total dissipation (Optum G2)

Tab. 85 No water table: Comparison of SRFEA results

SRFEA
o=y v =0° Davis A (v = 0°)
Plaxis 2D Plaxis 2D Plaxis 2D
FoS 1.52 1.44 1.30
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Tab. 86 No water table: Comparison of FELA results

FELA
o=y Davis A (v’ = 0°) Davis B (v’ = 0°)
Optum G2 Optum G2 Optum G2
FoSmean 1.52 1.30 1.39

Tab. 87 No water table: Comparison of Davis A and Davis B with SRFEA (v’ = 0°)

% Difference

Davis A Davis B
=100 (FELA (Davis A) - SRFEA (v’ = 0°)) / =100 (FELA (Davis B) - SRFEA (v’ = 0°)) /
FELA (Davis A) FELA (Davis B)
-10.8 -3.6
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10.4 Slope stability analyses based on six paper examples
10.4.1Example 1

Tab. 88 Example 1: Check calculations

SRFEA (v’ = 0°) )
Parameters (Plaxis 2D) LEA (Slide)
~200 elements ~1000 elements M-P
15-n 6-n 15-n 6-n Circular
E'=10*kN/m2- v = 0.25 1.35 1.39 1.35 1.36
Lo E'=10*kN/m?- v = 0.35 1.35 1.39 1.34 1.36
y=16kN/m® g _ 405 kN/m2 - v = 0.25 1.35 1.39 1.35 1.36 187
c' =4 kN/m2 : ' ' '
E'=106kN/m2-v = 0.35 1.35 1.39 1.34 1.36
E'=10*kN/m2-v =0.25 1.35 1.39 1.35 1.36
Set 2:
H =65 m E'=10*kN/m2-v =0.35 1.35 1.39 1.34 1.36
v = 20 kN/m? 6 1.37
- ' 2 _ =
5 kN/m2 E'=10°kN/m2- v = 0.25 1.35 1.39 1.35 1.36
E'=10°kN/m2- v = 0.35 1.35 1.39 1.34 1.36
E'=10*kN/m2- v = 0.25 1.35 1.39 1.35 1.36
Set 3:
H =e10 m E'=10*kN/m2-v =0.35 1.35 1.39 1.34 1.36
1.37
y =16 kN/m3 v G .
8 KN/m? E'=106kN/m2-v = 0.25 1.35 1.39 1.35 1.36
E'=106kN/m2-v = 0.35 1.35 1.39 1.34 1.36
E'=10*kN/m2- v = 0.25 1.35 1.39 1.35 1.36
Set 4: . .
H=10m E'=10*kN/m2- v = 0.35 1.35 1.39 1.34 1.36
y=20kN/m® e 408 kN/m2 - v = 0.25 1.35 1.39 1.35 1.36 197
¢' = 10 kN/m2 - veE ' ' ' '
E'=10°kN/m2- v = 0.35 1.35 1.39 1.34 1.36
Tab. 89 Example 1: Further calculations for set 1 - part 1
. SRFEA Davis A Davis B SRFEA
Parameters SR'(E;“(SW 25)0 ) (=) SRFEA SRFEA (v'=¢)
(Plaxis 2D) | (Plaxis 2D) | (Plaxis 2D) | (Optum G2)
~200 ~1000 ~1000 ~1000 ~1000 ~900
elements elements elements elements elements elements
15-n 6-n 15-n 6-n 15-n 6-n 15-n 6-n 15-n 6-n 15-n 6-n
v _ 4 2
=0 N | 135 | 139 | 135 | 136 | 1.38 | 1.39 | 130 | 130 | 133 | 1.34 | 137 | 138
v 4 2
E'=10"kN/M? | 4 35 | 139 | 1.34 | 1.36 | 1.38 | 1.39 | 1.20 | 1.30 | 1.33 | 1.34 | 1.37 | 1.38
St e
_‘V 0 25m 135 | 1.39 | 1.35 | 1.36 | 1.38 | 1.39 | 1.30 | 1.30 | 1.33 | 1.34 | 1.37 | 1.38
L 6 2
E _‘JS Okg'ém 135 | 139 | 1.34 | 1.36 | 1.38 | 1.39 | 1.29 | 1.30 | 1.33 | 1.34 | 1.37 | 1.38
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Tab. 90 Example 1: Further calculations for set 1 - part 2

Davis A - FELA Davis B - FELA LEA
Parameters FELA (Optum G2) (Optum G2) (Optum G2) (Slide)
~900 elements ~900 elements ~900 elements M-P
Lower | Upper | Mean | Lower | Upper | Mean | Lower | Upper | Mean Circ.
L 2
E _‘V1(140kggm 136 | 1.38 | 1.37 | 128 | 130 | 1.29 | 1.31 1.33 | 1.32
L 2
E' =104 kN/m 136 | 1.38 | 1.37 | 128 | 130 | 1.29 | 1.31 1.33 | 1.32
Set 1 -v=0.35 .
E' = 106 kN/m? :
V=025 136 | 1.38 | 1.37 | 128 | 130 | 1.29 | 1.31 1.33 | 1.32
E'=106kN/m* | 4 35 | 138 | 137 | 128 | 130 | 1.29 | 131 1.33 | 1.32
-v=0.35
10.4.2Example 2
Tab. 91 Example 2: Check calculations
SRFEA (v’ = 0°) LEA
Parameters (Plaxis 2D) (Slide)
~250 elements ~1000 elements M-P
15-n 6-n 15-n 6-n Circular
E'=10*kN/m2- v = 0.25 1.33 1.39 1.32 1.35
Hsft51r"n E'=10*kN/m2- v = 0.35 1.33 1.39 1.33 1.35
y=16kN/m® £ _ 408 N/ 1.33 1.39 1.32 1.35 187
= ‘= 2 - = . . . .
= 4 KN/mz =108 kN/m2 - v = 0.25
E'=10°kN/m2- v = 0.35 1.33 1.39 1.33 1.35
E'=10*kN/m2- v = 0.25 1.33 1.39 1.32 1.35
Set 2:
Heem E'=10‘kN/m2-v=035 | 1.33 1.39 1.33 1.35
v = 20 kKN/m? 1.87
= L 6 2_y =
& o 5 kN2 E'=10°kN/m2- v = 0.25 1.33 1.39 1.32 1.35
E'=10°kN/m2- v = 0.35 1.33 1.39 1.33 1.35
E'=10*kN/m2- v = 0.25 1.32 1.39 1.32 1.35
Set 3 E' = 10*kN/m2- v = 0.35 1.32 1.39 133 1.35
H=10m 1.37
y =16 kN/m3 v _aps o :
o 8 KN/ E'=10°kN/m2- v = 0.25 1.33 1.39 1.32 1.35
E'=10°kN/m2- v = 0.35 1.33 1.39 1.33 1.35
E'=10*kN/m2- v = 0.25 1.33 1.39 1.32 1.35
Set 4:
_ E'=10*kN/m2- v = 0.35 1.33 1.39 1.33 1.35
H=10m
y=20kN/m® e 406 kN/m2 - v = 0.25 1.33 1.39 1.32 1.35 187
¢ = 10 kN/m? - mov=s ' ' ' '
E'=10°kN/m2- v = 0.35 1.33 1.39 1.33 1.35
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Tab. 92 Example 2: Further calculations for set 1 - part 1
SRFEA SRFEA Davis A Davis B SRFEA
Parameters (v'=0° (v'=¢) SRFEA SRFEA (v'=¢)
(Plaxis 2D) (Plaxis 2D) (Plaxis 2D) (Plaxis 2D) | (Optum G2)
~250 ~1000 ~1000 ~1000 ~1000 ~900
elements elements elements elements elements elements
16-n | 6-n 15-n | 6-n 15-n | 6-n 16-n | 6-n 15-n | 6-n 16-n | 6-n
v 4 2
E ;1_00‘(2’\;/"1 133 1139|182 | 135|136 | 137 | 1.28 | 1.29 | 1.31 | 1.32 | 1.36 | 1.37
v _ 4 2
E= 1_002’\;/m 1331139183 | 135|136 | 137 | 1.28 | 1.29 | 1.31 | 1.32 | 1.36 | 1.37
Set1 g o8 knjme
v = 0.25 133 |1 139|132 | 135|136 | 1.37 | 1.28 | 1.29 | 1.31 | 1.32 | 1.36 1.37
v 6 2
B0 WM™ | 133 | 139 | 133 | 135 | 1.36 | 1.7 | 128 | 129 | 131 | 1.82 | 1.36 | 17
Tab. 93 Example 2: Further calculations for set 1 - part 2
Davis A Davis B
Parameters © I;frilAG 2) FELA FELA (IS_II/T::; )
P (Optum G2) (Optum G2)
~900 elements ~900 elements ~900 elements M-P
Lower | Upper | Mean | Lower | Upper | Mean | Lower | Upper | Mean Circ.
v _ 4 2
E _\/1_00‘(2’\5]/m 1.35 1.38 1.36 1.27 1.29 1.28 1.30 1.33 1.31
v 4 2
E'=10"kN/m 1.35 1.38 1.36 1.27 1.29 1.28 1.30 1.33 1.31
v=0.35
Set 1 E' = 10° KN/m2 1.37
_V - 0.25 1.35 1.38 1.36 1.27 1.29 1.28 1.30 1.33 1.31
v 6 2
E _\}1_002'\;@ 1.35 1.38 1.36 1.27 1.29 1.28 1.30 1.33 1.31
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10.4.3Example 3

Tab. 94 Example 3: Overview of the calculations

SRFEA SRFEA FELA LEA
Farameters (Plaxis 2D) (Optum G2) (Optum G2) (Slide)
~1750 elements ~1000 elements ~1250 elements Js?r':;” M-P Jsf‘rgslu M-P
6-n 156-n 6-n 15-n Lower:Upper Mean| Circ. Cire. 31w 31w
CoolCur = 1 147 146 146 145 | 144 146 145 | 141 147 228 | 2.44
colcw=09|  1.45 1.44 1.44 143|142 145 144 | 139 145 = 206 = 221
Colci=0.8|  1.44 142 142 141|140 143 142 | 137 143 183 = 196
E.=5000 Cwlcw=07| 1.41 1.39 1.40 139|137 141 139 | 135 = 141 160 = 172
KNIM?  colc,=0.6|  1.38 1.36 1.37 136 | 134 138 136 | 133 - 138 137 = 147
v=0495 colcu=05| 1.24 147 120 147 | 115 120 147 | 131 136 114 = 122
(05) cwlc=04| 101 ; 0.97 095 |093 098 095/ 128 133 = 092 . 098
CualCur = 0.3 - . 0.75 072 |071. 075 073 126 = 131 = 069 . 073
H=5m CialCur = 0.2 - - 0.51 050 |049 052 050 | 121 = 124 = 046 . 048
v = 16 KNim® ceoley = 0.1 - - 0.28 027 |026 028 027 112 . 111 . 023 | 024
Cur = 20 CoolCur = 1 147 146 146 145 | 144 146 145 - - - -
KN/m? colc=0.9|  1.45 1.44 1.44 143 | 142 145 144 | - ; - -
colcu = 0.8 1.44 142 142 141|140 143 142| - ; . .
E,=7000 Cwlow=07| 141 1.39 1.40 139|137 141 139 - ; . .
KNIm?  colc,i=0.6| 1.38 1.36 137 136 | 134 138 136 | - ; - -
vw=0495 Colc=05| 1.24 147 1.20 117|115 120 147 | - ) i i
(05) cwlcw=04| 101 - 0.97 095 |093 098 095 - ; . .
coolcu = 0.3 ) - 0.75 072 | 071 075 073 - ; - -
CualCur = 0.2 - - 0.51 050 |049 052 050 | - ; . .
Cualcur = 0.1 - - 0.28 027 |026 028 027 - ; - -
CoolCur = 1 147 146 1.46 145 | 144 146 145 | 141 147 228 2.44
Colcui=0.9| 145 1.44 1.44 143 | 142 145 144| 139 = 145 &= 206 = 221
calcw=08|  1.44 1.42 142 141 | 140 143 142 | 137 - 143 = 183 & 196
E.=5000 Gwlow=07| 141 1.39 1.40 139 | 137 141 139 | 135 - 141 = 160 & 172
KNIM?  colc=0.6| 138 1.36 137 136 | 134 138 136 | 133 ~ 138 137 = 147
vu=0495 colcy =05 124 117 120 147|145 120 147 | 131 = 136 114 | 122
(05)  Cwlcw=04| 101 ; 0.97 095 |093 098 095 128 133 092 = 098
CuolCur = 0.3 . - 0.75 072 |071 075 073 126 131 = 069 = 073
H=5m CualCur = 0.2 : - 0.51 050 |049 052 050 121 = 124 = 046 = 048
1= 20 KNim® CualCur = 0.1 - - 0.28 027 |026 028 027 112 111 023 . 024
Cut =25 Coolcur = 1 147 146 146 145 | 144 146 145 - : g 2
KN/m2 Colcn=0.9| 145 144 1.44 143|142 145 144 | - ; . .
colcn=0.8|  1.44 1.42 1.42 141|140 143 142 | - ; . .
E,=7000 Cwlcw=07| 141 1.39 1.40 139|137 141 139 | - ; . .
KNIM?  Cwlc=0.6| 138 1.36 1.37 136 | 134 138 136 | - ; . .
v=0495 colcy=05 1.24 117 1.20 117|115 120 117 | - ; - -
05)  cwlcw=04| 101 = 0.97 095 |093 098 095 - : = .
CualCur = 0.3 - - 0.75 072 |071 075 073 - ; . .
Calcu = 0.2 ; - 0.51 050 | 049 052 050 | - ; - -
CualCur = 0.1 - - 0.28 027 |026 028 027 - - - -
Coolcur = 1 147 146 1.46 145 | 144 146 145 | 141 147 228 244
colc =09 1.45 1.44 1.44 143|142 145 144 | 139 = 145 = 206 = 221
Colcyi=0.8|  1.44 1.42 142 141 | 140 143 142 | 137 143 183 = 196
E,=5000 Cwlcy=07| 1.41 1.39 1.40 139|137 141 139 | 135 141 160 = 172
KNIM?  colc=0.6| 138 1.36 1.37 136 | 134 138 136 | 133 138 137 = 147
vw=0495 cofc=05 1.24 147 1.20 117|115 120 147 | 131 136 114 = 122
05)  cplcw=04| 1.0 - 0.97 095 |03 098 095/ 128 133 092 098
CualCur = 0.3 - - 0.75 072 |071 075 073 126 131 = 069 = 073
H=10m CealCur = 0.2 . - 0.51 050 |049 052 050 | 121 @ 124 = 046 @ 048
7= 16 KN/m? CealCur = 0.1 . = 0.28 027 |026 028 027 112 111 023 | 0.4
Cu = 40 CoolCur = 1 147 146 1.46 145 | 144 146 145 - - - N
KN/m? colcw=09|  1.45 1.44 1.44 143 | 142 145 144 | - ; ; .
Colc=0.8|  1.44 142 142 141|140 143 142 | - ; . .
E,=7000 Cwlcwi=07| 1.41 1.39 1.40 139|137 141 139 | - : . y
KNIm?  cplc,=0.6|  1.38 1.36 137 136 | 134 138 136 | - - - -
vw=0495 colcw=05| 1.4 147 120 147|115 120 147 | - : e y
(05) cwlcy=04| 1.0 - 0.97 095 |093 098 095 - ; - ;
CuzlCur = 0.3 ; - 0.75 072|071 075 073 - : < .
CualCur = 0.2 - - 0.51 050 |049 052 050 | - ; . .
ceolcu = 0.1 - - 0.28 027 |026 028 027 - - - -
CoolCur = 1 147 146 146 145 | 144 146 145 | 141 . 147 228 | 244
Colow=09|  1.45 1.44 1.44 143 | 142 145 144| 139 = 145 @ 206 = 221
colcu = 0.8 1.44 142 142 141|140 143 142 | 137 = 143 183 . 196
E.=5000 Cwlow=07| 1.41 1.39 1.40 139 | 137 141 139 | 135 - 141 = 160 . 172
KNIM®  colc,=0.6|  1.38 1.36 137 136 | 134 138 136 | 133 - 138 = 137 . 147
vw=0495 Colc=05| 1.24 147 1.20 147|115 120 147 | 131 136 114 = 122
05)  cwlcw=04| 101 - 0.97 095 |093 098 095/ 128 133 = 092 = 098
colcu = 0.3 ) - 0.75 072 | 071 075 073 126 131 = 069 = 073
H=10m CualCur = 0.2 - - 0.51 050 |049 052 050 | 121 124 = 046 = 048
4= 20 KNim® Cualcun = 0.1 - . 0.28 027 |026 028 027 112 111 023 024
Cu = 50 ConlCur = 1 147 146 146 145 | 144 146 145 - - - -
KN/m? Colc=0.9| 145 1.44 1.44 143 | 142 145 144 | - ; . .
calc=08|  1.44 1.42 142 141|140 143 142 | - : < .
E,=7000 Cwlcwi=07| 141 1.39 1.40 139|137 141 139 | - ; . .
KNIm?  cwlc=0.6| 138 1.36 137 136 | 134 138 136 | - . - -
ve=0495 colcy =05 1.24 147 1.20 117|115 120 147 | - ; - -
05)  cwlcw=04| 101 - 0.97 095 |093 098 095 - : . -
calcu = 0.3 ) - 0.75 072 |071 075 073 - ; - -
Cazlcur = 0.2 . - 0.51 050 | 049 052 050 | - : . i
CualCur = 0.1 - - 0.28 027 |026 028 027 - - - -
Institute of Soil Mechanics and Foundation Engineering 123



TU

Graz

Graz University of Technology

10 Appendix

10.4.4Example 4

Tab. 95 Example 4:

Overview of the calculations

SRFEA SRFEA FELA LEA
FArameErs (Plaxis 20) (Optum G2) (Optum G2) (Slide)
~1450 elements ~1000 elements ~1050 elements M-P
6-n 15-n 6-n 15-n Lower Upper Mean Circular

CuzlCy =4 207 2.04 205 202 1.99 2.05 202 203

cwfty =3.5 207 2,04 204 202 1.99 2.05 202 203

CuzlCy =3 207 2,04 204 202 1.99 2.05 202 203

Cwfty =25 207 2,04 204 2.02 1.99 2.05 202 203

E.= 5000 kKN/M®  Culur =2 207 204 204 202 1.99 205 202 203

vu=0.495(05)  Culcu =15 204 202 204 202 1.99 205 202 203

Cultur =1 147 1.46 146 145 1.44 1.46 1.45 147

Cultur = 0.75 117 1.15 1.16 1.15 1.14 1.16 1.15 1.18

Hegm Cwltn =05 - - 0.86 0.85 0.84 0.86 0.85 0.87

L Cultnr = 0.25 - S 0.55 054 053 0.55 0.54

& S0 kNm? CulCur = 4 207 204 205 202 1.99 2.05 202 B
o Cwlty =35 207 204 204 202 1.99 205 202 -
Cultu =3 207 204 204 202 1.99 205 202 -
Cwlts =25 207 204 204 202 1.99 205 202 -
= TO00KN/M?  clcyr =2 207 204 204 202 1.99 205 202 -
vu=0495(05) culcy=15 204 202 204 202 1.99 205 202 -
Cuplut = 1 147 146 146 145 1.44 1.46 145 -
Culent = 0.75 117 115 116 115 114 1.16 115 -
Cwle =05 - - 0.86 0.85 0.84 0.86 0.85 -
Cultu = 0.25 - - 0.55 0.54 0.53 0.55 0.54 -

Cultu = 4 207 204 205 202 1.99 2.05 202 203

Caltn =35 207 204 204 202 1.99 205 202 203

Culeu =3 207 204 204 202 1.99 2,05 202 203

Cwltu =25 2,07 204 204 202 1.99 205 202 203

E.=5000kKN/m®  Culcu =2 207 204 204 202 1.99 2,05 202 203

vu=0495(05) cuolcy=15 204 202 204 202 1.99 205 202 203

Cuplur =1 147 146 146 145 1.44 1.46 145 147

Cuwltu =075 117 115 116 115 114 116 115 118

fioe Cwlty =05 - - 086 0.85 0.84 0.86 085 087
+:= 20 Rl CuwlCut = 0.25 5 ) 055 054 053 0.55 0.54 -
s i CuslCr = 4 207 204 205 202 199 205 202 -
. Cupltu = 3.5 207 204 2.04 2.02 1.99 2.05 202 -
CuafCur =3 207 204 2.04 202 1.99 2.05 202 -
Cuplcu = 2.5 207 204 2.04 202 1.99 2.05 202 -
E.=7000kN/m? = cuwltu =2 207 204 2.04 202 1.99 2.05 202 -
vu=0.495(0.5) cwlcu=15 2.04 202 2.04 202 1.99 2.05 202 -
Culeu =1 147 1.46 146 145 1.43 1.46 1.45 -
Curleu = 0.75 117 1.15 1.16 1.15 1.14 1.16 1.15 -
Cwltn =05 - - 0.86 0.85 0.84 0.86 085 )
Cultur = 0.25 - - 0.55 054 053 055 0.54 -

Cultur = 4 207 204 204 202 1.98 205 201 203

Colt =35 207 204 204 202 1.98 205 201 203

Cwltur =3 207 204 204 202 1.98 205 201 203

Coltn =25 207 204 204 202 1.98 205 201 203

E, = 5000kN/m* = Cwltu =2 207 204 204 202 1.98 2.05 201 203

vu=0495(05) cwlcu=15 204 202 204 202 1.98 2.05 201 203

Cuoltun =1 147 146 146 145 143 1.46 144 147

/e =075 117 115 1.16 115 114 116 115 118

H=10m Cwltu =05 - - 086 085 0.84 0.86 0.85 0.87
. = 16 KN/Im? Cus/Cur = 0.25 - - 0.55 0.54 0.53 0.55 0.54 -
c'u‘ = 40 KN/m? CuclCur = 4 207 204 204 202 1.98 2.05 201 -
Cwltu =35 207 204 204 202 1.98 2,05 201 -
Cultur =3 2,07 204 204 202 1.98 205 201 -
Coltu =25 207 204 204 202 1.98 205 201 .
E.=T7000KN/M®  Culeu =2 207 204 204 202 1.98 205 201 -
vu=0495(05) cuolen =15 204 202 204 202 1.98 205 201 E
Cultur =1 147 1.46 146 145 1.43 1.46 1.44 -
Cuwltu = 0.75 117 115 116 115 114 116 115 -
Cwlty =05 S - 086 085 0.84 0.86 085 .
Cuwlut = 0.25 : ) 0.55 054 053 0.55 0.54 :

CuslCur = 4 207 204 204 202 198 205 201 203

Cwlty =35 207 204 204 202 198 205 201 203

Culour =3 207 204 204 202 198 205 201 203

Colts =25 207 204 204 202 198 205 201 203

= 5000 KN/m?  Culyr = 2 207 204 204 202 1.98 205 201 203

vu=0.495(0.5) culcy =15 204 202 204 202 1.98 205 201 203

Culeu =1 147 1.46 146 145 1.43 1.46 1.44 147

Culeu = 0.75 117 1.15 1.16 115 114 1.16 1.15 118

Hetom Culey =05 - - 0.86 0.85 0.84 0.86 0.85 0.87
ki Culty = 0.25 - - 0.55 0.54 0.53 0.55 0.54 -
i Cultur = 4 207 204 204 202 1.98 205 201 -
ut Colty =35 207 204 204 202 1.98 205 201 -
Culcu =3 207 204 204 202 1.98 205 201 -
Coltn =25 207 204 204 202 1.98 205 201 -
E,=T000KN/m®  cplcy =2 207 204 204 202 1.98 205 201 .
vu=0.495(05)  Culcy =15 204 202 204 202 1.98 205 201 -
Curlur = 1 147 1.46 146 145 1.43 1.46 1.44 -
CualCur = 0.75 117 1.15 1.16 1.15 1.14 1.16 1.15 -
Cwltn =0.5 - - 086 085 0.84 0.86 0.85 -
Cua/Cur = 0.25 - - 0.55 0.54 0.53 0.55 0.54 -
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10.4.5Example 5

Tab. 96 Example 5: Check calculations

Parameters SR(I;ZA)\HQPZYB)OH)
H=5m H=10m
Set 1 Set 2 Set 3 Set 4 Set 5 Set6
Yunsat = 16KNIM®  Yunsat = 20 KNIM®  yunsat = 24 KNIM® | Junsat = 16 KN/M? © Junsat = 20 KN/M? © yunozt = 24 KN/m?
et = 1BKNIM? | e = 20KNIMP © yor = 24 KNIM® |y = 16 KNIM® | your = 20KNIM® |y = 24 KN/®
¢'= 4kN/m? ¢' = 5 kNim? ¢' = 6 kN/m? c'=8KkN/m* | ¢'=10kN/m* | c'=12kNm?
H=5m H=5m H=5m H=10m H=10m H=10m

6-n 6-n 6-n 6-n 6-n 6-n

LH=-02 2.12 1.83 1.70 2.12 1.83 1.70

LH=-01 212 1.83 1.70 2.12 1.83 1.70

LH=0 2.11 1.83 170 2.1 1.83 1.70

LH=0.1 1.86 1.70 162 1.86 1.70 1.62

LH=02 1.64 157 152 1.64 157 152

LUH=03 1.48 1.46 1.45 1.48 1.46 1.45

E'=10°kN/m? LUH=04 1.38 1.38 138 1.38 1.38 1.38
v=025 LUH=05 1.30 133 134 1.30 133 1.34
LUH=06 1.26 1.29 131 1.26 1.29 1.31

LUH=07 1.25 1.28 1.30 1.25 1.28 1.30

LUH=08 1.27 1.29 1.30 1.27 1.29 1.30

LH=09 1.31 132 133 1.31 1.32 133

LH =1 1.36 1.36 1.36 1.36 1.36 1.36
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Further calculations for set 2

Tab. 97 Example 5

- €1 6EL GEL | €1 egl velL | 9gh L =HM
- €el Gl Tl | €€l vEL oclL | zel 60=HN
- 0L 2EL 6L | LEL  LEL VAN T 80=HN
- oL LEL 6ZL| 0¢L . 0L 9zL | 8zl L0=HN
- LeL ZeL 0L | 1L | LEL VAT 90=HN
- VLI GEL €L | vEL | GEL oL | eel §0=HN Ge0=A
- obL WL 6L | OFL - oFL 9L . 8¢l PO=HN Xt - g
- L 8yl GhL| 8¥L o 8vL Pl 9rL €0=H1 ° e
- /SL 8§l 6L | /SL 8%l GGL LG 20=Hn
- 69°L 01 89L | 691 & 0L 89l 0L} 1'0=HN
- L8'L 8L 6L | 081 L8l -4 0=HM
- 08L 28L 8LL| 081 T8l 18L . 28L | LOo-=HN SOl
- 08l Z8L 8LL| 08L . z8l 181 Z8L | Z0o-=HN WNY 07 = L.
e €1 681 GEL | L€ . 8l Gel  9t) L=HA /N 0% = S0l
el €L GEL  2eL | eel - vEL oL el 60=HN WolL=H
el ogL ZEL 6ZL| LEL  LEL VAT 80=HN cioc
og'l 0L LEL 621 | 0L - OEL 9L 8zl L0=HN
[ LeL ZEL 0L | L o LEL VAN T 90=HN
Gel velL . GEL eeL | veL | GEL oclL | egl G0=HN cz0=A
L7l oL LWL BEL| OFL . oFL 9eL | 8gl YO=HT  _usiol=.3
8rl LoeyL GPL| 8¥L el AT €0=HN adt
8G) /G185l GSL | 4SL | 8GL 66l LG T0=HN
0Ll 69°L . 0L 89L | 69 . 01 89, . 0L L0=HN
4 18l Z8L 6LL| 081 18l gL €8l 0=H/
z8l 08l Z8L 8LL| 081  z8L 18L €8 | LO-=HN
z8 08L 281 8LL| 08L & 281 18L | €8L | 20-=HN
- 8L 6L GEL | g1 | eel veL 9tk L=HM
- €el Gl Tl | €€l vEL oclL | zgl 60=HM
- 0L 2EL 62L| LEL . LEL VAT 80=HnN
- oL LEL  6ZL | 0¢L - 0L 9zl | 8T L0=HN
- Le'L 2ZeL 6ZL | LeL | LEL VAN 90=HN
- vl GEL eeL | velL  GEL oL zel §0=HN S
- ob'L WL 6eL| OFL  ovL 9L 8¢l VO=HN i g
- L8yl GhL| s¥L 8L L 9rL £0=HN ° et
- ISL 8GL  GSL | /SL 8%l 6L LG Z0=Hn
- 69°L 01 89L| 691 01 89l 0L 1'0=HN
- L8'L 28l 6LL| 081 | 28l gL 28l 0=HM e
- 18l 8L 6LL| 081 . 28l 1gL L 28L | L0o-=HN .w\zv_ 0z = Bl
- 1871 Z8L 6L | 081 : z8l 181 Z8L | Z0-=HN ns\zv_ 0z = sl
1€ T€L €€l 1EL |62 OEL 8L |ZEL 6EL GEL| Z€1 8L | €L ¥EL | Ol  OEL | 8€L  6EL | GEL  9F) L=HA S i
el 621 01 [T) |GT) LZL vel |€eL GEL 2TEL| €€L  vEL | 6T 0Eh | 9TV L2V | ¥EL  GEL | 0€L  2E) 60=Hn 2 198
el 9L 4Z)L GTL |€TL ¥TL Tl |0EL zEL 6TL| el LEL | 9ZL LTV | €TV vZL | eV zeL | LTV 6Tl 80=HN
oe'l ¥ZL 921 €2V |22 €ZL LV |0EL LEL 62V | 0L OEL | GZL  9Th | TV €2V | OEL  MEL | 9TV . 8T L0=HN
[ 9TV LTV YTV |E€TL ¥TL €T | LEL ZEL 6TV | ML ML | 9L LTV | €TV vTL | WL €L | LTV 6T 90=HN
Gel 621 L€l 8T |92 [z GZL |PEL GEL €€l | vElL . GEL | 0L . LEL | LTV JZL | Ss€L . 9gL | o€l . €€l §0=HN S0
L7 GE'L - 9EL  PEL [ LEL 2EL D 0EL OVl LpL BEL | OFL o OFL | GEL . 9EL | 2€L €€l | oL . ML | 9EL . 8l vO=HT  uisiol=.3
8yl Pl WYL TPl [8€L 6ETL D AEL | LVL 8FL GYL| 8¥L  8¥L | VL vFL | 6L OFL | 8¥L  6FL | wFL  9F) €0=HN e
8G) €61 PGl g6l [8hl 6Vl A¥L |61 8SL GGl | 461  8SL | ¥GL  GGL | 6vlL 0§l | 85l 66 | GGl LGl T0=HN
0L} Go'L 991 ¥9'L (661 09L  8GL |69 0L 891 | 691  OLL | 9L  89L | 09V 29V | WL 2LV | 891 0L} L0=HN
€8l 9L 8L ¥LL|OLL 1L 891 |L8L Z8L 6LL| 08l L8l | 641  08L | 2Ll €LV | €8L  v8L | 181 €8l 0=HM
8l 12V 641 GLL |04V 2L 89L | L8L g8k 641 | 081l g8l | 641  L8L | ¢LL €LV | €8L  v8L | I18L €8l | L0-=HA
z8 L0V 621 9LV [0L) 2lL 89 | L8L 28L 6L | 081 28l | 6L 08 | 2LV €L | €81  v¥8L | 8L €8} | 20-=HA
1einaip) uesyy Jaddn semo|uespy saddn demoT|uespy Jsaddn ismo]| u-Gi u-9 u-GL u-9 u-gJ u-9 u-GL u-9 u-Gl u-g
d-N sSjuswel@ 000~ Sjuswed 000~ sjuswele S0 L~ Sjuswal@ 000 L~ Sjuswale 0G6~ Sjuswale 056~ Sjuswisle 0G6~ Sjuswiee 06~
(29 wmdo) (29 wmdo) (29 wmdo) (@z sixeid) (az sixeld) (@z sixeid) (az sixeld)
@PIS)VIT | o) gemeq | vigd-wemeg | EOWMIONVIES | (6Th) umius | vadus - 8 SMeq vaus - ¥ Seq | (b=44) yaaas | (0 = M) yadds SisieuBIed

ineering
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10.4.6Example 6

Tab. 98 Example 6: Overview of the calculations - part 1

Parameters SRFEA (y'=0%) SRFEA (/=) Davis A - SRFEA Davis B - SRFEA SRFEA (/=)
(Plaxis 2D) (Plaxis 2D) (Plaxis 2D) (Plaxis 2D) (Optum G2)
~1250 elements ~1250 elements ~1250 elements ~1250 elements ~850 elements
6-n 15-n 6-n 15-n 6-n 15-n 6-n 15-n 6-n 15-n
- 4
ELIO™ ] 240 236 247 245 197 196 235 233 247 244
No free
surface
= 104 2
- v1=oo ';';’"‘ 2.40 2.36 247 245 197 1.95 2.34 234 247 2.44
"= 104 2
E'=10"kNim 1.87 1.80 191 1.90 152 1.52 1.75 1.75 193 1.92
~ v=025
With a free
surface
e — 4
B'=10°kNIm® | 4 g7 1.80 191 1.90 152 151 175 174 193 192
v=035
Tab. 99 Example 6: Overview of the calculations - part 2
Davis A- FELA Davis B - FELA i
Parameters FELA (Optum G2) (Optum G2) (Optum G2) LEA (Slide)
~850 elements ~850 elements ~850 elements M-P
Lower @ Upper Mean Lower Upper Mean Lower Upper Mean Circular
s 4
E=10 kNmM* | 543 249 2.46 194 1.98 1.96 2.31 237 234
v=025
No free
surface .
e 4
E=10 KNIM* | 543 249 2.46 1.94 1.98 1.96 2.31 237 234
v=0.35
v 4
B =10 KNM? |y g 1.94 192 152 155 153 176 179 177
v=025
With a free
surface 1.92
4
B'=10 kKNm* [ o 1.94 192 152 155 153 176 179 177
v=0.35
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10.4.7Comparison of Davis A, Davis B and Davis C

Tab. 100 Study 1 - slope 1: Overview of the calculations

Parameters

SRFEA
(Plaxis 2D)

Davis A
(Plaxis 2D)

Davis B
(Plaxis 2D)

Davis C
(Plaxis 2D}

15 noded

15 noded: user-defined MC

15 noded

15 noded

v=02
Caiure
0.92
0.92
0.92
0.92
0.92
0.92
0.93
0.94
0.96
1.07
1.07
1.07
1.07
1.07
1.07
1.08
1.12
1.25
1.25
1.25
1.25
1.26
1.28
1.29
1.48
1.48
1.48
1.49
1.51
1.55

v=02

Claiure G

092 4166.67
092 4166.67
092 4166.67
092 4166.67
093 416667
094 4166.67
094 4166.67
096 4166.67
096 4166.67
1.07 4166.67
107 4166.67
107 4166.67
1.08 4166.67
1.09 4166.67
1.09 4166.67
109 4166.67
112 4166.67
125 4166.67
125 4166.67
126 4166.67
126 4166.67
127 4166.67
129 4166.67
1.29 4166.67
148 4166.67
148 4166.67
149 4166.67
150 4166.67
1.52 4166.67
1.55 4166.67

v=02
C'faire.
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
1.07
1.07
1.07
1.07
1.07
1.07
1.07
1.07
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.48
1.48
1.48
1.48
1.48
1.48

v=02

C'faiure
0.86
0.89
0.91
0.92
0.92
0.92
0.92
0.92
0.92
1.03
1.05
1.07
1.07
1.07
1.07
1.07
1.07
1.23
1.25
1.25
1.25
1.25
1.25
1.25
1.48
1.48
1.48
1.48
1.48
1.48

FoS
218
218
218
2.18
218
218
216
213
208
187
1.87
1.87
187
1.87
187
1.85
178
1.60
1.60
1.60
1.60
1.59
156
1.55
135
1:35
135
1.34
1.33
1:29

FoS
217
217
247
247
215
213
292
2.09
2.08
1.87
1.87
1.87
1.86
1.84
1.83
1.83
1.78
1.60
1.60
1.59
1.58
1.57
1.55
1.55
1.35
1.35
1.34
1.33
1.32
1.29

FoS
218
2.16
213
2.08
201
1.93
1.85
1.76
1.67
1.87
1.87
1.83
1.79
1.74
168
1.60
1.53
1.60
1.59
1.57
1.54
1.49
144
1.39
1.35
1.35
1.33
1.30
127
1.22

FoS
218
217
2.16
2.15
213
2.10
2.07
2.04
2.00
1.87
1.87
1.86
1.84
1.82
1.80
1.77
1.73
1.60
1.60
1.59
1.57
1.55
1.52
1.49
1.35
1.35
1.34
1.32
130
1.27

FoS
247
2147
247
247
217
2.16
213
2.08
2.00
187
1.87
1.87
1.87
1.86
1.84
179
173
1.60
1.60
1.60
1.60
1.57
1.54
1.49
135
1.35
1.356
133
1.30
1.27

@ 'failure
19.91
20.47
20.86
21.07
2112
21.11
21.09
21.09
21.12
19.84
20.23
20.46
20.53
20.54
20.51
20.52
20.53
19.57
19.81
19.90
19.83
19.85
19.84
19.83
18.99
19.09
19.06
19.03
19.07
19.05

Qlailure
21.10
21.10
21.09
21.10
21.10
21.08
21.10
21.11
21.12
20.50
20.51
20.50
20.52
20.55
20.51
20.49
20.53
19.85
19.85
19.84
19.83
19.82
19.85
19.83
19.04
19.02
19.06
19.03
19.04
19.05

©'railure
21.10
21.11
21.09
21.08
21.09
21.07
21.12
211
21.06
20.50
20.48
20.51
20.51
20.51
20.51
20.55
20.53
19.85
19.84
19.84
19.83
19.85
19.83
19.82
19.04
19.04
19.02
19.06
19.05
19.06

@'fsilure
2111
21.11
2112
21.18
21.33
2148
21.59
2185
2196
2049
2054
2057
20.68
20.83
20.91
2097
2148
19.86
19.88
19.95
20.03
2018
20.43
20.41
19.03
19.07
19.16
19.31
19.52
19.83

Qlailure
21.10
21.10
21.10
21.10
21.08
21.08
21.26
21.53
21.98
20.50
20.50
20.52
20.52
20.51
20.58
20.78
21.50
19.85
19.83
19.85
19.84
19.98
20.27
20.41
19.04
19.00
19.07
19.16
19.37
19.83

¢'=40°  y=20°

g=3° V¥

c'=2kN/m*

¢ =25°

Tab. 101 Study 1 - slope 2: Overview of the calculations

Parameters

SRFEA
(Plaxis 2D)

Davis A
(Plaxis 2D)

Davis B
(Plaxis 2D)

DavisC
(Plaxis 2D)

15 noded
v=02

v=02

15 noded: user-defined MC

15 noded
v=02

15 noded
v=02

15 noded
v=02

FoS FoS
1.65
1.65
1.64
1.62
1.60
1.58
1.56
1.53
1.49
1.46

FoS
165
164
1.60
1.56
1:52
1.46
1.39
1.33
1.26
1.48
145
143
1.40
1.36
1.31
1.26
1.20
1.30
1.29
1.27
1.24
1.21
117
1.12
1.14
1.14
1.12
1.08
1.07
1.03

FoS
165
164
163
1,60
158
1.55
1.51
1486
141
1.46
1486
1.45
143
1.40
1.37
1.33
1.28
1.30
1.29
128
1.26
1.24
1.20
1.16
1.14
1.14
1.12
1.10
1.08
1.03

FoS
1.64
164
1.64

C'tailure
295
3.01

3.04
3.04
3.05
3.04
3.05
3.04
3.04
337
341

342
342
342
3.43
3.42
341

3.85
3.88
3.86
3.87
3.87
386
3.86
4.40
4.40
439
4.40
4.41

4.41

@'tailure
26.33
26.80
27.04
27.06
27.07
27.00
27.09
27.01
27.05
2524
25.53
2561
25.59
25.59
2563
25.58
25.54
2397
2411
2405
2410
2407
24.03
24.01
223
2232
2225
22.31
2233
22.35

Cliaiure
3.04
3.04
3.04
3.05
3.05
3.04
3.05
3.05
3.04
3.42
342
342
3.42
3.42
3.42
343
341
3.86
3.86
3.86
3.87
3.86
3.86
3.86
4.40
439
4.40
4.40
4.39
4.41

@railure
27.01
27.01
27.01
27.08
2712
26.99
27.07
2711
27.05
25.61
25.60
25.60
25.59
25.57
2581
2567
25.54
24.01
24.04
2405
24.06
24.03
24.01
24.01
2230
2226
22.30
22.32
2227
22.35

C'faiure
3.04
3.04
3.05
3.05
3.04
3.05
3.05
3.04
3.04
3.42
3.42
342
3.42
3.42
3.42
3.42
3.42
3.86
3.86
3.86
3.86
3.87
3.85
3.86
4.40
4.39
4.39
4.40
4.39
4.40

Cliaire G

3.04 4166.67
3.04 416667
3.04 4166.67
3.08 4166.67
312 4166.67
3.16 4166.67
3.21 416667
3.27 4166.67
3.35 416667
342 416667
3.42 4166.67
344 416667
3.48 416667
3.53 4166.67
3.58 4166.67
364 4166.67
3.71 4166.67
3.86 4166.67
3.86 4166.67
3.89 4166.67
3.92 4166.67
3.99 4166.67
408 416667
413 4166.67
440 416667
441 416667
4.44 4166.67
4.48 4166.67
456 4166.67
4.66 4166.67

@'tailure
27.01
27.03
27.10
2712
27.05
27.09
27.09
27.01
26.99
2561
25.59
2557
25.62
2560
2562
25.57
25.58
24.01
24.04
2405
2403
2409
23.99
24.02
22.30
2225
22.26
22.32
2226
22.29

@'ailure
27.00
27.00
27.04
27.35
2763
27.96
28.31
28.76
29.34
25.58
2562
25.71
25.98
26.30
26.60
27.02
27.45
24.01
24.05
2419
2438
2476
25.22
25.49
22.30
2237
22.50
2268
23.05
23.51

C'taire
3.04
3.04
3.04
3.04
3.05
3.08
3.15
3.22
3.34
3.42
342
3.42
342
3.45
3.52
3.61
3.72
3.86
3.86
3.85
3.88
3.94
4.04
4.13
4.40
4.37
4.39
4.45
4.55
4.67

@'taiure
27.01
27.00
27.05
27.05
2712
27.37
27.84
28.40
29.30
2561
25.59
25.56
25.58
25.81
26.23
26.80
w=0" | 2752
24.01
24.01
2398
2414
24.48
2498
25.49
2230
2219
22.28
22.55
22.99
23.53

o' =40° 163
1.60
1.55
1.49
141
146
1.46
1.46
145
143
1.39
1.34
Ght]
1.29
1.29
1.29
1.27
1.25
121
1.16
1.14
1.14
1.13
111
1.08
1.03

145
144

¥'=35 142

c¢'= 5 kN/m* 137
1.36
1.30
1.29
129
1.27
1.25
1.23
1.21
1.14
1.13
113
1.12
1.10
1.07

o= 30°
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Tab. 102 Study 2 - slope 1: Overview of the calculations

Parameters SRI_:EA Dal._'isA Dagis B Dav_fs Cc
(Plaxis 2D) (Plaxis 2D) (Plaxis 2D) (Plaxis 2D)
15 noded 15 noded: user-defined MC 15 noded 15 noded 15 noded
v=02 v=0.2 v=02 v=0.2 v=0.2

Qlaire_ Claire  FOS | @raiwe  C'raure G FOS | @'swre Claiwe FOS | @lraiwe Claiwse FOS | @laiwe C'raiee FOS

w=230" 1274 392 255 (1274 3.92 416667 255 (1275 392 255 (1275 392 255 (1217 374 255

w=25° 1275 392 255 (1275 3.92 416667 255 (1273 391 254 1273 391 255 (1246 383 255

y=20" 12.74 392 255 (1277 3.92 416667 255 |1274 392 251 (1274 392 254 |1265 389 255

c'= 10 kN/m? 9'=30" w=157 1274 392 255 (1279 3.93 416667 254 (1272 391 246 1274 392 254 |[1275 392 255
w=10" 1275 3.92 255 |1282 3.94 416667 254 |1272 391 239 (1271 391 253 |[1274 392 255

w=5° 1277 392 255 (1286 3.95 416667 253 (1272 391 231 1273 391 251 [1272 391 253

y=0° 1289 396 252 1289 3.96 416667 252 |1274 392 221 (1274 392 249 [12.74 392 249

w=30° 16.04 249 2.01 [16.05 249 416667 2.01 16.04 249 201 [16.04 249 201 1557 241 201

w=26° 16.06 249 201 |1610 250 416667 200 |16.06 249 200 [16.06 249 200 1586 246 201

w=20° 16.05 249 2.01 [16.12 250 416667 2.00 |16.07 249 197 [16.07 249 199 [16.03 249 201

c' =5 kN/im? @' =30° w=16° 16.06 249 201 [1620 252 416667 199 |1608 250 193 1605 249 198 |16.06 249 201
w=10° 16.11 250 2.00 [16.24 252 416667 198 |[16.08 250 187 [16.05 249 197 |16.05 249 199

y=5° 1623 252 198 [1630 253 416667 197 |1604 249 181 (1606 249 195 1605 249 197

w=0" 16.39 255 196 | 1640 255 416667 196 |16.07 249 174 |16.06 249 192 /16.06 249 1.92

y=30" 2613 0.00 1.18 |26.13 0.00 416667 118 (2613 000 1.18 |[26.13 000 1.18 |26.08 000 1.18

y=25" 26.09 000 1.18 |26.25 0.00 416667 117 |[26.14 0.00 1.17 |26.14 000 1.17 |26.14 000 1.18

y=20" 2644 000 1.16 |2646 0.00 416667 116 (2618 000 115 |26.15 000 1.16 |26.16 000 1.17

c'= 0 kN/m? @' =30° w=16° 2658 000 1.15 2668 0.00 416667 1.16 2617 000 113 |26.13 000 1.14 [26.14 000 1.15
w=10° 2684 000 114 |2694 0.00 416667 114 (2620 000 110 |[26.16 000 1.11 |26.19 000 1.12

w=5° 2742 000 111 |2750 0.00 416667 111 |[2614 000 106 |26.17 000 1.07 |26.19 000 1.07

w=0° 2855 000 106 2855 0.00 416667 106 |26.16 000 102 |[26.16 0.00 102 |26.16 0.00 1.02

w=30° 1985 125 160 |1986 1.25 416667 160 (1985 125 160 |[1985 125 160 |19.84 125 160

=25 1983 125 160 | 1988 125 416667 160 (1984 125 159 |[1985 125 160 1984 125 160

y=20" 1985 125 160 |1995 1.26 416667 159 (1984 125 157 |[19.84 125 159 (1983 125 160

¢'=2 kN/m? @' =30 w=15° 19.84 125 160 | 2003 126 416667 158 (1983 125 154 |1983 125 157 (1983 125 160
w=10" 1998 126 1.59 |20.18 1.27 416667 157 (1985 125 149 |19.82 125 155 (1985 125 1.57

w=5° 2027 128 156 (2043 129 416667 156 |1983 125 144 (1985 125 152 (1984 125 154

w=0" 2041 129 155 |2041 1.29 416667 155 |19.82 125 139 |19.83 125 149 1983 125 149
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1.7

h
1.0
0 5 10 15 20 25 30 35 40
A=¢"-y'[’]

—&— @' = 40° - SRFEA - standard —&— @' = 40° - SRFEA - user-defined
----- - @' =40° - Davis C <@ @' =40° - Davis B

@' =40° - Davis A
—— @' = 35° - SRFEA - standard —#— @' = 35° - SRFEA - user-defined
----- #- @' =35°- Davis C <M @' = 35° - Davis B

@' =35° - Davis A
—— @' = 30° - SRFEA - standard —&— @' = 30° - SRFEA - user-defined
----- 4 @'=30° - Davis C e @' = 30° - Davis B

@' =30° - Davis A
—A&— @' = 25° - SRFEA - standard —&— @' = 25° - SRFEA - user-defined
------ 4 @' = 25° - Davis C e @' = 25° - Davis B

@' =25° - Davis A

Fig. 102 Study 1 - slope 2: Standard SRFEA, user-defined SRFEA, Davis A, Davis B as well as
Davis C results for different A and ¢’
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1.9

1.8

FoS []

1.4

0 5 10 15 20 25 30 35 40
A=0"-y'[]
@' =40° - Difference DavisA - #- @' = 40° - Difference Davis B
----- #- @' = 40° - Difference Davis C ---@--- @' =40° - Reference
@' = 35° - Difference DavisA - #-- @' = 35° - Difference Davis B
----- W @' = 35° - Difference Davis C ---®--¢' = 35° - Reference
¢' = 30° - Difference DavisA == +- @' = 30° - Difference Davis B
----- #- @' = 30° - Difference Davis C ---#--- @' = 30° - Reference
@' = 25° - Difference Davis A - @ = 25° - Difference Davis B
- @ = 25° - Difference Davis C ---A--- @' = 25° - Reference

Fig. 103 Study 1 - slope 2: Differences between Davis A and standard SRFEA, Davis B and user-
defined SRFEA as well as Davis C and standard SRFEA for different A and ¢’
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10.6 Influence of the initial stress condition on the FoS
Tab. 105 ¢ - v inequality with Ko procedure: Overview of the calculations
SRFEA (y'=0°) SRFEA (y'=¢))
FRmEmeRs (Plaxis 2D) (Plaxis 2D)
15 noded 15 noded
v=0.2 iv=modified: v=choice v=0.2 iv=modified: v= choice
FoS FoS FoS FoS FoS FoS
Construction 72 1.71 A7 1.80 1.80 1.80
c=1knme: E = 10'kNm?  Excavation .72 1.68 1.7 1.81 1.80 1.80
yunsat = 16 KN/M® il step 1.70 1.71 1.71 1.81 1.80 1.80
Gravity 1.72 1.71 1.72 1.81 1.81 1.80
Construction 1.37 137 137 143 1.42 1.41
c=aknyme E=10°kNm?  Excavation 1.37 137 1.37 1.43 1.43 1.42
yunsat = 16 KN/M® il step 1.36 1.36 1.36 1.43 1.42 1.41
Gravity 1.37 1.37 137 1.43 1.42 1.42
Tab. 106 Influence of Ko on FoS: Overview of the calculations with Ko = 0.25
SRFEA (y'=0°) SRFEA (v'= ')
PaAIIEIRIS (Plaxis 2D) (Plaxis 2D)
15 noded 15 noded
Ko=0.25 Ko=0.25
FoS FoS
N ) Construction 1.2 1.80
, E'=10"kN/m* £ - avation 172 1.81
c¢' =1 kN/m? Yunsat =16 Nil st 1.70 1.81
KN/m? ioren - :
Gravity i 1.81
e ’ Construction 127 1.43
e 4 kN E : 10_":"ém Excavation 1.37 143
- Yunsat = :
Gravity 1.37 1.43
Tab. 107 Influence of Ko on FoS: Overview of the calculations with Ko = 0.4
SRFEA (y'=0°) SRFEA (y'= ¢)
FRlaICErS (Plaxis 2D) (Plaxis 2D)
15 noded 15 noded
Ko=04 Ko=04
FoS FoS
N , Construction L7z 1.80
, E'=10"kNM* £y avation 171 181
¢'=TkN/M  yursat = 16 Nil st 171 181
KN/m? Irstep : :
Gravity 1.72 1.81
o s Construction 185 1.43
, E'=10"kNmM* £y cavation 137 143
ERREE - e 10 Nil st 1.36 143
KN/m? IRStER : :
Gravity .27 1.43
134 Institute of Soil Mechanics and Foundation Engineering



