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Kurzfassung 

Die Grenz-Gleichgewichtsverfahren nach Bishop (1955) oder Morgenstern & Price 

(1965) finden in der Geotechnik eine breite Verwendung zur Bestimmung des 

Sicherheitsfaktors (FoS). Unterschiedliche Annahmen zur Form des Versagens, sowie 

der Kräfte zwischen den Lamellen verhindern eine einheitliche Definition des 

Sicherheitsfaktors. Diese Annahmen sind bei displacement based finite element 

analyses oder finite element limit analyses hingegen nicht notwendig. Aufgrund der 

Tatsache, dass der letztere Berechnungstyp auf eine assoziierte Fließregel beschränkt 

ist, empfahl Davis (1968) die Verwendung von reduzierten Festigkeitsparametern, um 

ein nicht-assoziiertes Verhalten zu simulieren (Davis A). Die Anwendung dieser an 

bewährten Böschungen sowie an Beispielen von Griffiths und Lane (1999) führen, im 

Vergleich zu den strength reduction finite element analyses (SRFEA), zu sehr 

konservativen Ergebnissen. Modifizierte Vorgehensweisen der ursprünglichen Idee 

(Davis B, Davis C) resultieren nach wie vor in einem konservativen Sicherheitsfaktor, 

zeigen jedoch eine bessere Übereinstimmung mit der SRFEA. Weitere 

Parameterstudien haben verifiziert, dass ein Anstieg im Reibungswinkel ’, Kohäsion c’ 

und Maß an nicht-Assoziativität  zu größeren Differenzen zwischen Davis A und 

SRFEA führen. Für Davis B und Davis C wirken sich Kohäsion c’ und Reibungswinkel ’ 

gering auf die Differenzen aus. 

Standardmäßig wird bei einer strength reduction finite element analysis die Poisson’s 

Zahl   konstant gehalten, während Reibungswinkel ’ und Kohäsion c’ reduziert werden. 

Basierend auf dem Mohr-Coulomb Fehlerkriterium kann die  -  Ungleichheit sin’  1 

- 2 abgeleitet werden. Für hohe Sicherheitsfaktoren wird die Bedingung verletzt. 

Numerische Untersuchungen haben ergeben, dass die  -  Ungleichheit keinen Einfluss 

auf den Sicherheitsfaktor nimmt, jedoch mit höherer Poisson Zahl  die Anzahl an failure 

points sinkt. 

In den meisten Fällen ist die Spannungssituation in situ unbekannt. Daher ist die 

Auswirkung des ursprünglichen Spannungsniveaus auf den Sicherheitsfaktor von 

großem Interesse. Eine weitere Studie zeigt, dass die ursprüngliche 

Spannungsverteilung keinen Einfluss auf den FoS nimmt. Unabhängig vom 

Ausgangspunkt des Spannungspfades wird dieser immer am selben Mohr-Coulomb-

Fehlerkriterium versagen. 

  



  



Abstract 

Limit equilibrium methods by Bishop (1955) or Morgenstern & Price (1965) are commonly 

used in practical geotechnical engineering to determine the factor of safety (FoS). 

Varying assumptions about the shape of failure mechanisms as well as interslice forces 

make an unique definition of the safety factor next to impossible. On the other hand, 

displacement based finite element analyses and finite element limit analyses don’t need 

those assumptions to perform. Due to the fact that the latter one is limited to associated 

plasticity, Davis (1968) suggested the use of reduced strength parameters in order to 

generate a non-associated behaviour (Davis A). Applying this approach on reinforced 

slopes and on examples taken from Griffiths and Lane (1999) lead to very conservative 

results compared to strength reduction finite element analyses (SRFEA) with non-

associated plasticity. Modified versions of the original approach (Davis B, Davis C) still 

result in a conservative factor of safety but achieve a far better agreement with the 

SRFEA. Further parameter studies have verified that an increase in friction angle ’, 

cohesion c’ and degree of non-associativity  lead to larger differences between Davis 

A and SRFEA. For Davis B and Davis C, these differences are weakly affected by 

cohesion c’ and friction angle ’. 

It is common practice that in a strength reduction finite element analysis the Poisson’s 

ratio  is kept constant while friction angle ’ and cohesion c’ get reduced. Deriving from 

the Mohr-Coulomb failure criterion, the relation sin’  1 - 2, known as the  -  

inequality obviously gets violated for high safety factors. Numerical analyses proved that 

the  -  inequality does not affect the factor of safety. It should be noted that with 

increasing Poisson’s ratio the number of failure points decreases. 

In most cases the stress situation in situ is unknown. Therefore, the influence of the initial 

stress state on the factor of safety is of interest. A further study established shows that 

the initial stress level has no impact on the FoS. For any point situated along the failure 

mechanism, the origin of its stress path is of no importance. Failure will always occur 

along the same Mohr-Coulomb criterion. 
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List of symbols and abbreviations 

Capital letters 

Ae  area of element 

Aq  boundary area of soil mass subjected to unknown surface tractions 

At  boundary area of soil mass subjected to fixed surface tractions 

Aw  boundary area of soil mass subjected to fixed velocities 

B strain–displacement matrix 

B̅ global strain–displacement matrix for mesh multiplied by the element 

areas 

Be  strain–displacement matrix for element e 

B̅e  strain-displacement matrix for element e multiplied by its area 

Bj  strain-displacement matrix for node j of an element 

B̅j strain-displacement matrix for node j of an element multiplied by the 

element area 

D  material stiffness matrix 

De  elastic material stiffness matrix 

D  diameter 

E  interslice normal force 

E’  Young’s modulus of the soil 

Eu  undrained soil stiffness 

Eହ଴௥௘௙  reference secant modulus from triaxial test 

E௢௘ௗ௥௘௙   reference tangential modulus from oedometer test 

E௨௥௥௘௙  reference unloading / reloading modulus 

G  self-weight of the slice; self-weight of the failure body 

H  slope height 

K  stiffness matrix 

Ki  stiffness matrix according to step i 

K0  earth pressure coefficient at rest 

L  length of discontinuity; length of element edge 

Lspacing  spacing 

N  shape function matrix 

N’  effective base normal force acting on shear surface 

Nj  linear shape function for node j 

NP  tensile strength 

P 
i
ext  vector of external force according to step i 



P 
i
int  vector of internal force according to step i 

PP  pole point for planes 

Q  collapse load 

Qn, Qs normal and tangential (shear) loads per unit thickness acting on element 

edge of length L 

R  radius of circular failure surface about origin 0 

S  shear force acting at the base of a slice 

T  interslice shear force 

Tskin,axial axial skin resistance (soil - structural element interaction) 

Tskin,lateral lateral skin resistance (soil - structural element interaction) 

V  volume of soil mass 

Ẇ rate of internal energy dissipation less rate of work done by external 

loads 

Ẇext, Pext rate of work expended by external forces 

Ẇint, Pint rate of internal energy dissipation 

 

Small letters 

c  vector of constants 

c*  reduced cohesion according to Davis (1968) 

c’  effective cohesion 

c’a  effective cohesion divided by factor of safety 

c’mob.  mobilized effective cohesion during SRFEA 

cu  undrained shear strength 

cu,mob.  mobilized undrained shear strength during SRFEA 

f(x)  interslice force function 

g  vector of fixed body forces at a point 

g 
e vector of fixed body forces for element e 

gx, gy fixed body forces in x- and y-directions 

g 
e
x, g 

e
y fixed body forces in x- and y-directions for element e 

h global vector of unknown body forces; vector of unknown body forces at 

a point 

h 
e vector of unknown body forces for element e 

hx, hy unknown body forces in x- and y-directions 

h 
e
x, h 

e
y unknown body forces in x- and y-directions for element e 

l  slice base length 

m  power for stress dependency of stiffness 



m*  gravity multiplier for slope equal to γ̅/γ 

n, s  local Cartesian coordinates in normal and tangential directions 

p’  mean of effective stress 

pg  permanent load 

pq  live load 

q  vector of unknown tractions acting on area Aq 

q  deviatoric stress 

qn, qs  unknown normal and tangential (shear) stresses acting on element edge 

q 
j
n, q 

j
s unknown normal and tangential (shear) stresses acting on element edge 

at node j 

t  vector of fixed surface tractions acting on area At 

t 
j
n, t 

j
s fixed surface tractions in normal and tangential (shear) directions at 

node j 

u vector of displacement field (chapter 3.1.1); global vector of unknown 

nodal velocities (chapter 3.2.2) 

u 
e  vector of unknown nodal velocities for element e 

u 
j  vector of unknown velocities at node j 

u  vector of incremental displacements 

u  pore water pressure 

un, us  unknown velocities in normal and tangential (shear)directions 

ux, uy  unknown velocities in x- and y-directions 

u 
j
n, u 

j
s  unknown velocities in normal and tangential (shear)directions for node j 

u 
j
x, u 

j
y  unknown velocities in x- and y-directions for node j 

un, us velocity jumps across discontinuity in normal and tangential directions 

v  vector of nodal displacements 

v  vector of sub-incremental nodal displacements according to step i 

v 
i  vector of incremental nodal displacements according to step i 

w  fixed velocities on surface Aw 

wn, ws  fixed velocities in normal and tangential (shear) directions 

w 
j
n, w 

j
s  fixed velocities in normal and tangential (shear) directions for node j 

x, y  Cartesian coordinates 

 

Greek letters 

 plastic multiplier rate multiplied by element area  ߙ̇ ௦௟௜௖௘  inclination in the middle of the sliceߙ slope angle  ߙ



  amount of non-associativity (’ - ’) 

  strength factor according to Davis (1968) 

0  strength factor according to Davis (1968) at initial conditions 

failure  strength factor according to Davis (1968) at failure 

  unit weight 

̅  mean of upper and lower bounds on maximum unit weight for slope 

LB, UB  lower and upper bounds on unit weight 

unsat  unsaturated unit weight 

sat  saturated unit weight 

  width of velocity discontinuity 

  engineering shear strain increment 

max  maximum engineering shear strain increment 

1  major principle strain increment 

3  minor principle strain increment 

n  zero direct strain increment 

vol  volumetric strain increment 

  vector of incremental strains 

 p  vector of incremental plastic strains 

  vector of strains 

ε̇ p  vector of plastic strain rates 

  inclination to vertical direction 

  modification factor to determine mod. 

  inclination to horizontal direction 

  scale factor of the assumed function f(x) �̇  plastic multiplier rate 

  Poisson’s ratio 

choice  chosen Poisson’s ratio to fulfil clearly  -  inequality  

mod.  modified Poisson’s ratio to fulfil  -  inequality 

 vector of stress field (chapter 3.1.1); global vector of unknown nodal 

stresses (chapter 3.2.2) 

 e  vector of unknown stresses for element e 

 i  vector of the actual stress state i 

 i-1  vector of the previous stress state i - 1 

 j  vector of unknown stresses at node j 

  vector of the stress increment 



xx, yy, xy Cartesian stresses 

n  normal stress 

 ’1  major effective principal stress 

 ’3  minor effective principal stress 

 ’k  effective normal stress based on velocity characteristics 

 ’s effective normal stress which defines failure criterion according to 

Coulomb 

 jnn  normal stress at node j 

 jxx,  jyy,  jxy Cartesian stresses at node j 

  shear stress 

f  shear strength 

k  shear stress based on velocity characteristics 

mob.  mobilized shear stress 

 jns  shear stress at node j 

s shear stress which defines failure criterion according to Coulomb 

’  effective friction angle 

*  reduced effective friction angle according to Davis (1968) 

u  undrained friction angle (=0°) 

’a  effective friction angle divided by factor of safety 

’failure  effective friction angle at failure 

’mob.  mobilized effective friction angle during SRFEA 

’red.  reduced effective friction angle during SRFEA 

’  dilatancy angle 

’failure  dilatancy angle at failure 

’mob.  mobilized dilatancy angle during SRFEA 

 

Abbreviations 

CS  cross section 

EA  extensional stiffness 

FEA  finite element analysis 

FELA  finite element limit analysis 

FoS  factor of safety 

FoSF  factor of safety according to force equilibrium 

FoSGravity factor of safety based on gravity 

FoSLoad factor of safety based on a load 



FoSLB  factor of safety obtained with lower bound analysis 

FoSM  factor of safety according to moment equilibrium 

FoSMean averaged factor of safety obtained with upper and lower bound analyses 

FoSUB  factor of safety obtained with upper bound analysis 

HMC  Hardening Mohr-Coulomb (model) 

HS  Hardening Soil (model) 

LC  loading condition 

LEA  limit equilibrium analysis 

LEM  limit equilibrium method 

MC  Mohr-Coulomb 

M&P  Morgenstern & Price method 

SRFEA strength reduction finite element analysis 

w. t.  water table 

 

 



1 Introduction  

  

Institute of Soil Mechanics and Foundation Engineering 1 

1 Introduction 

In this thesis, several different numerical studies based on strength reduction finite 

element analyses and finite element limit analyses have been conducted in order to 

prove modifications of the Davis approach as well as the effects of the  -  inequality 

and the initial stress condition on the factor of safety regarding slope stability analyses. 

In geotechnical engineering no uniform definition of the factor of safety (FoS) exists. For 

many bearing capacity problems the FoS is usually defined as the load capacity. 

However, for slope stability analyses it is more common that the strength parameters are 

used to define the safety factor (Tschuchnigg et al. 2015b). 

The limit equilibrium methods by Janbu (1954), Bishop (1955) and Morgenstern & Price 

(1965) are based on the method of slices and have a wide tradition in slope stability 

analysis (Tschuchnigg et al. 2015). Despite the long-lasting experience with limit 

equilibrium analysis (LEA), all methods do show several disadvantages. Assumptions 

regarding the shape of the failure mechanism and the forces acting between the slices 

lead to no unique definition of the factor of safety. Furthermore, it cannot be guaranteed 

that the failure mechanism is kinematically admissible. 

Therefore, displacement based finite element analyses became increasingly popular 

over the last decades. The FoS is no longer defined as the ratio of driving and resisting 

forces and moments along a failure surface. Instead, friction angle ’ and cohesion c’ 

are simultaneously reduced until no equilibrium can be satisfied. Consequently, the ratio 

of initial strength parameters to mobilized strength parameters is the most widespread 

definition of the safety factor in strength reduction finite element analyses (SRFEA). It 

has been previously shown that LEA and SRFEA according to associated plasticity yield 

to similar results when employing a Mohr-Coulomb failure criterion. As mentioned by 

Tschuchnigg (2015b), large differences between friction angle ’ and dilatancy angle ’ 

may lead to numerical problems without any clear definition of the factor of safety. 

Alternatively, rigorous upper and lower bounds on the factor of safety are determined in 

finite element limit analyses (FELA). As FELA is restricted to associated plasticity, Davis 

(1968) proposed reduced strength parameters to simulate a non-associated behaviour. 

This approach causes good agreements if the FoS is expressed by maximising loads for 

a given strength (Tschuchnigg et al. 2015b). In the event that the definition of safety is 

based on the strength parameters, the mentioned approach leads to very conservative 

results. Therefore, two modifications (Davis B and Davis C) were developed by 
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Tschuchnigg (2015b). Both correlate better with the non-associated SRFEA. The first 

two chapters are meant to give the reader some essential background knowledge which 

helps the understanding of LEA, SRFEA, FELA and the basic concept by Davis. 

Numerical studies according to associated and non-associated plasticity are performed 

on two reinforced slopes and on examples taken from Griffiths and Lane (1999). The 

calculations aim to clarify how well the original Davis and the modified procedures 

correlate with non-associated SRFEA. In addition, it should be determined how the 

strength parameters friction angle ’, dilatancy angle ’ and cohesion c’ affect the 

differences between Davis procedures and SRFEA. For comparison, the numerical 

analyses are supplemented by limit equilibrium analyses after Morgenstern & Price. 

Summing up, the aim of this section lies in a better understanding of the efficiency of the 

Davis approach modifications as well as in highlighting the boundaries of the LEA. 

The strength reduction finite element analysis will be run by several programs with a 

constant Poisson’s ratio . At the same time, the friction angle ’ and cohesion c’ are 

reduced. Based on the Mohr-Coulomb failure criterion the relation sin’  1 - 2 is formed. 

This equation is known as the  -  inequality. In combination with a high safety factor, 

the relation might be violated. The main goal of this section is to clarify through numerical 

analyses to what extent the  -  inequality influences the factor of safety. 

In geotechnical engineering the stress conditions in situ are in most cases unknown. 

Finite element programs like Plaxis 2D provide several tools to generate the initial stress 

level with respect to different boundary conditions. Here, a further study aims at 

investigating whether the initial stress condition influences the safety factor. 
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2 Analytical method of defining a FoS 

2.1 Definition of limit equilibrium 

„At the moment of failure, the shear strength is fully mobilized along the failure surface 

when the critical state conditions are reached“ (Nash 1987) 

This quote states that a limit equilibrium is defined as the ratio of shear strength to the 

factor of safety whereby the shear strength is generally related to the Mohr-Coulomb 

failure criterion (Aryal 2006). The relation is expressed in accordance to Eq. (1). In it, the 

soil strength f is expressed in terms of the cohesion and friction angle of the soil material 

and the shear stress mob. is affected by external forces acting on the domain. 

�௠௢௕. = �௙ܵ݋ܨ �௙ = ܿ’ + tan �’ ( 1 ) 

The factor of safety offers three definitions pursuant to Abramson (2002). Eq. (1) 

mentions the first option that is expressed by means of shear strength and mobilized 

shear stress. In a second option, the FoS can be related to the equilibrium of driving and 

resisting forces (Eq. (2)).The acting moments are covered by a third one (Eq. (3)) 

(Abramson et al. 2002). 

ிܵ݋ܨ = ݏ݁ܿݎ݋݂ ݃݊�ݒ�ݎ݀ ݂݋ ݉ݑܵݏ݁ܿݎ݋݂ ݃݊�ݐݏ�ݏ݁ݎ ݂݋ ݉ݑܵ = ܩܵ sin  ( 2 ) ߙ

ெܵ݋ܨ = ݏݐ݊݁݉݋݉ ݃݊�ݒ�ݎ݀ ݂݋ ݉ݑܵݏݐ݊݁݉݋݉ ݃݊�ݐݏ�ݏ݁ݎ ݂݋ ݉ݑܵ = ܴ ∫ ݈ܵ݀௅଴ݔܩ  ( 3 ) 

It might not always be clear if forces or moments should be counted to either the resisting 

side or the driving one. If one imagines the self-weight at the toe of a slope, the moment 

might act in another direction than the rest of the self-weight (Fig. 1). The moments of 

the toe can either be subtracted from the driving side or added to the resistant side. 

 
Fig. 1 Definition of FoS in LEA (according to Abramson et al. 2002) 
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2.2 Limit equilibrium analysis 

In practical engineering, slope stability analyses are mostly performed by using limit 

equilibrium analyses. Over the years, different methods were developed, using various 

assumptions. In this section, the most common methods including their respective 

characteristics will be discussed. All of the limit equilibrium methods have some 

disadvantages in common. First, the failure mechanism has to be defined a priori in the 

form of a circular or three-line wedge. Furthermore, the kinematic admissibility is not 

ensured. Eventually, all programs used to perform LEA need to conduct a global search 

in order to determine the failure mechanism with the lowest factor of safety (Schweiger 

2016). 

Limit equilibrium analyses were developed over the past century. Based on the Ordinary 

Method of Slices from Fellenius (1936), Bishop’s simplified method (1955) went a step 

further and took normal forces between the slices into account while neglecting shear 

forces and neither satisfying all the equilibrium conditions. During the sixties, several 

methods taking into account normal and shear forces acting between the slices were 

developed. Not all of them fulfilled both equilibrium of moments and forces. Spencer’s 

as well as Morgenstern & Price’s method do satisfy the two equations, each with a 

different assumption about the interslice forces (Egger 2012). The following chapters will 

describe the different methods briefly. 

2.2.1 Ordinary method 

The ordinary method of Fellenius defines a failure surface with a circular shape and a 

satisfied moment equilibrium. Normal and tangential interslice forces are not taken into 

account and force equilibrium is not given either (Fig. 2). No iterative process is 

necessary to solve the equation needed for a definition of the FoS. As a result, the factor 

of safety is easy to calculate through the moments equilibrium (see Eq. (4)). It should be 

noted that the ordinary method provides most of the time the lowest safety values 

compared to the following methods (Aryal 2006). 

 
Fig. 2 Ordinary method (according to Aryal 2006) 
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௠ܵ݋ܨ = ∑ሺܿ’݈ + �’ tan �’ሻ∑ ܩ sin ߙ  ( 4 ) 

�’ = ሺܩ cos ߙ −  ሻ ( 5 )݈ݑ

c’  cohesion acting along the slice base length 

l  slice base length 

N’  effective base normal force acting on shear surface 

G  self-weight of the slice 

u  pore water pressure 

slice  inclination in the middle of the slice 

2.2.2 Bishop’s simplified method 

One of the most common limit equilibrium methods in practical engineering is the 

Bishop’s method (1955). It assumes a circular failure surface and satisfies vertical force 

equilibrium in order to determine N’ (Eq. (6)), in contrast to the Swedish method. At the 

same time, it also satisfies the moment equilibrium to determine the factor of safety. The 

normal interslice forces E1 and E2 get concerned, unlike the shear stresses, as Fig. 3 

illustrates. 

�’ = ͳ݉� ∑ ܩ) − ܿ’݈ sin ܵ݋ܨߙ − ݈ݑ cos  ( 6 ) (ߙ

݉� = cos ߙ (ͳ + tan ߙ tan ܵ݋ܨ’� ) ( 7 ) 

Eq. (4) can be used due to the circular failure mechanism as well as the fulfilled moment 

equilibrium. It is apparent that both Eq. (4) and Eq. (6) include the factor of safety and 

need to be solved iteratively until FoS is equal to FoSM (Abramson et al. 2002). 

 
Fig. 3 Bishop’s simplified method (according to Aryal 2006) 
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2.2.3 Janbu’s simplified method 

The simplified method by Janbu (1954) got developed for a non-circular failure 

mechanism where both horizontal and vertical force equilibrium are used to determine 

the factor of safety. In contrast, the ordinary as well as the simplified Bishop method use 

moment equilibrium to determine the FoS. As shown below, shear forces acting in 

between the slices are neglected, but the normal forces are taken into account. The 

normal force N’ is determined in accordance to Eq. (6). By using Eq. (8), the factor of 

safety FoSF is determined iteratively until FoS (Eq. (6)) is equal to FoSF (Aryal 2006). 

 
Fig. 4 Janbu’s simplified method (according to Aryal 2006) ܵ݋ܨி = ∑ሺܿ’݈ + ሺ� − ሻ݈ݑ tan �’ሻ sec ∑ߙ ܹ tan ߙ + ∑ ܧ∆  ΣΔܧ = ଶܧ −  ଵܧ

( 8 ) 

2.2.4 Morgenstern & Price method 

The three described methods satisfied either the moment equilibrium or the force 

equilibrium. Morgenstern & Price (1965) define the factor of safety by fulfilling both 

moment and force equilibrium. In addition to normal interslice forces, shear forces are 

concerned, as shown in Fig. 5. 

 
Fig. 5 Morgenstern & Price method (according to Aryal 2006) 

The inclination of the resulting interslice force can vary along the slip surface, according 

to Eq. (9). The interslice force functions f(x) might show either constant, half-sine, 

trapezoidal or user-defined shapes (Fig. 6). Lambda is thereby a scaling factor of f(x). 
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ܶ = ܧ ∙ � ∙ ݂ሺݔሻ ( 9 ) 

f(x)  interslice force function along the slipping plane 

  scale factor of the assumed function f(x) 

 

 
Fig. 6 Selected shapes of the interslice force function (according to Egger 2012) 

An iterative procedure is necessary to guarantee the equality of both factors of safety, 

according to force and moment equilibrium. To comply with this condition, it must be 

confirmed that Eq. (10) and Eq. (11) are the same (Egger 2012). 

ிܵ݋ܨ = ∑{[ܿ’݈ + ሺ� − ሻ݈ݑ tan �’] sec ܩ]∑{ߙ − ሺ ଶܶ − ଵܶሻ] tan ߙ + ∑ሺܧଶ −  ଵሻ ( 10 )ܧ

ெܵ݋ܨ = ∑[ܿ’݈ + ሺ� − ሻ݈ݑ tan �’]∑ ܩ sin ߙ  ( 11 ) 

2.2.5 Spencer’s method 

Spencer’s approach (1967) is similar to the procedure proposed by Morgenstern & Price, 

with one big difference. The inclination of the interslice forces is constant along the 

slipping surface. As a consequence, the interslice force function f(x) is equal to unity 

(Tab. 2) and the scale factor  = tan-1 (T / E). The factor of safety is determined the same 

way as in 2.2.4 (Aryal 2006). 

 
 

Fig. 7 Spencer’s method (according to Aryal 2006) 
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Finally, Tab. 1 and Tab. 2 compare the discussed limit equilibrium methods and show 

the satisfied requirements in the respective method. 

Tab. 1 Comparison of the equilibrium, normal force and tangential force conditions (according 
to Egger 2012) 

Limit equilibrium method Moment 
equilibrium 

Force 
equilibrium 

Normal-
force E 

Tangential 
force T 

Ordinary Yes No No No 

Simplified Bishop Yes No Yes No 

Simplified Janbu No Yes Yes No 

Morgenstern-Price Yes Yes Yes Yes 

Spencer Yes Yes Yes Yes 

 

Tab. 2 Comparison of resulting interslice force inclination,  and f(x) conditions (according to 
Egger 2012) 

Limit equilibrium method Inclination of resulting 
interslice force  f(x) 

Ordinary No No need No need 

Simplified Bishop Horizontal No need No need 

Simplified Janbu Horizontal No need No need 

Morgenstern-Price Variable Variable Variable 

Spencer Constant inclination Constant 1.0 
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3 Numerical methods of defining a FoS 

This section tries to convey a basic understanding of both the displacement based finite 

element analysis as well as the finite element limit analysis. Furthermore, a particular 

note is made of the strength reduction techniques that define the factor of safety. 

3.1 Strength reduction finite element analysis (SRFEA) 

3.1.1 Introduction to displacement based finite element analysis 

The introduction derives from the scientific manual of Plaxis 2D (2016), because strength 

reduction finite element analyses were performed using this software. The basic 

characteristics of the displacement based finite element analysis are described in this 

chapter. First of all, it is assumed that all deformations are very small and the original 

geometry can be used for the formulation. This domain can get discretized by either 6-

noded or 15-noded elements, as defined by the user. Each node is characterized by a 

number of degrees of freedom which correspond to the unknown displacement 

components. The distribution of the displacements u within elements depends on the 

shape function N and the nodal values of displacements v (Eq. (12)). The number of 

nodes decides how the displacements vary within the element and determine the 

polynomial form of the distribution (Brinkgreve et al. 2016). 

࢛ =  ( 12 ) ࢜ �

A strain interpolation matrix B, containing derivatives of the shape function, is introduced 

in order to extrapolate the strains from the nodal displacements (Eq. (13)). 

� =  ( 13 ) ࢜ �

The equilibrium equation is satisfied according to Eq. (14). The formulation allows the 

introduction of boundary tractions t and body forces h. Since the actual stress state  i is 

unknown, an incremental process is introduced according to Eq. (15), where  i - 1 is the 

known stress state of the previous step and   is the applied stress increment. The 

differences between external and internal forces get balanced due to the stress 

increment (Brinkgreve et al. 2016). 

∫ �்��ܸ݀ = ∫ ௜ܸ݀ࢎ்� +  ∫ ௜்࢚݀ܵ� − ∫ �்�௜−ଵܸ݀  ( 14 ) 

�௜ = �௜−ଵ + Δ� ( 15 ) 
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Except for a linear elastic material behaviour, no linear correlation between strains and 

stresses is given. Therefore, iterative procedures are introduced to satisfy equilibrium 

everywhere in the domain. The elasto-platic material behaviour includes a non-linear 

material stiffness matrix D (Eq. (16)) (Brinkgreve et al. 2016). 

� = �� ( 16 ) 

The standard procedure of a displacement based finite element analysis starts by 

applying a displacement increment u, while using the strain interpolation matrix B to 

determine the strain increment . Eq. (17) is used to evaluate the stress increment 

whereas De represents the elastic material stiffness. Depending on the material 

behaviour, the vector of incremental plastic strains p is equal to zero for a linear 

material behaviour. Otherwise, it can be determined according to Vermeer (Brinkgreve 

et al. 2016). 

Δ� = �௘ሺΔ� − Δ�௣ሻ ( 17 ) 

Substituting the incremental stress strain connection into the equilibrium Eq. (14), the 

resulting correlation can be written as follows: 

�௜Δ࢜௜ = �௘௫௧௜ − �௜௡௧௜−ଵ
 ( 18 ) 

Ki  stiffness matrix according to step i 

Δv i  incremental displacement vector according to step i 

Pext
 i   external force vector according to step i 

Pint
 i-1  internal force vector according to step i - 1 

 

Due to the non-linear connection of stress and strain increments, the stiffness matrix is 

determined in an iterative procedure that satisfies both equilibrium and compatibility. The 

incremental displacement vector vi is defined as the sum of sub-incremental 

displacement vectors v, applied to the domain. The global stiffness matrix K 

approximately defines the material behaviour and can be written according to Eq. (19). 

The more exact the stiffness matrix is determined, the less iteration steps are required 

to fulfil an equilibrium (Brinkgreve et al. 2016). � = ∫ �் � � dV ( 19 ) 
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3.1.2 Flow rule 

The flow rule is a key factor in finite element analyses, whereby a choice between 

associated and non-associated plasticity needs to be taken. To illustrate the explanation, 

an elastic perfectly plastic material is assumed. As long as the stress increment is located 

in the elastic area, the corresponding strain increment can be calculated by Hooke’s law. 

When reaching the failure limit, no further stress increments can be carried by the 

material and as a result, plastic strains occur. Eventually, the flow rule decides how the 

plastic strains will develop at failure (Nordal 2014). 

Considering an associated flow rule, the plastic strains act perpendicularly to the yield 

function. Assuming Coulombs failure criterion, the dilatancy angle ’ is equal to the 

friction angle ’ of the soil. Consequently, the plastic volumetric strains get 

overestimated. Assuming a non-associated flow rule, plastic strains act perpendicularly 

to the plastic potential only, but not to the yield function anymore. The dilatancy angle ’ 

is smaller compared to the friction angle ’ and the plastic volumetric strains get reduced 

with a decreasing ’, as shown in Fig. 8. The non-associated flow rule is representing 

the soil behaviour in a more realistic way and is therefore more appropriate for modelling 

(Nordal 2014). 

 
Fig. 8 Comparison of associated and non-associated flow rule (according to Egger 2012) 

3.1.3 SRFEA in Plaxis 2D 

Plaxis 2D enables the user to run a safety analysis where simultaneously the strength 

parameters tan’ and c’ are reduced until the point where no equilibrium can be achieved 

anymore. During undrained conditions, the undrained shear strength cu needs to be 

reduced. The factor of safety is defined in Eq. (20). 

ܵ݋ܨ = tan �’tan �’௠௢௕. = ܿ’ܿ’௠௢௕. = ܿ௨ܿ௨,௠௢௕. ( 20 ) 
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For associated plasticity, both friction angle ’ and dilatancy angle ’ get reduced at the 

same time. While highlighting the non-associated flow rule, it should be noted that as 

long as the reduced friction angle ’ is greater compared to the dilatancy angle ’, the 

latter one is kept constant (Fig. 9a). At the point where ’ = ’, both get simultaneously 

reduced, as shown in Fig. 9b (Brinkgreve et al. 2016). 

 
Fig. 9 Standard strength reduction (Plaxis 2D) 

Additional calculations are performed with a user-defined Mohr-Coulomb model where 

all tan’, tan’ and c’ get concurrently reduced throughout the entire reduction (also for 

’ > ’). The user-defined strength reduction for a non-associated flow rule is illustrated 

in Fig. 10. It is of importance that for an associated flow rule and a dilatancy angle ’ 

equal to zero, the standard strength reduction and the user-defined strength reduction 

result in the same factor of safety. 

 
Fig. 10 User-defined strength reduction (Plaxis 2D) 

3.1.4 Difficulties by calculating with a non-associated flow rule 

A SRFEA performed with non-associated materials may lead to numerical instabilities 

without any clear defined failure mechanism. This is due to the fact that the solution of 

the governing equations is not unique and the failure mechanism changes with reduced 

strength parameters. The bifurcation and kinematics of the failure mechanism lead to a 

reduction in the factor of safety, compared to the associated plasticity (Tschuchnigg et 

al. 2015a). 
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The following strength reduction finite element analysis is inspired by Tschuchnigg 

(2015a) and should demonstrate the influence of the dilatancy angle on slope stability 

analyses. A 10 m high slope disposed to the horizontal at an angle of about 45° is 

discretised by 1060 15-noded elements. A Mohr-Coulomb material model is 

implemented with a friction angle ’ = 45° and a cohesion c’ = 6 kN/m². To estimate the 

importance of the flow rule, calculations with dilatancy angles ’ = 0°, 5°, 10° and 45° 

are performed. After a gravity loading is applied, the SRFEA is performed. The 

importance of the flow rule can be identified on Fig. 11. The factor of safety amounts to 

1.53 by assuming associated plasticity. On the other hand, no clear value can be defined 

for a high degree of non-associativity (’ = 0°). The safety factors vary between 1.28 and 

1.36, depending on the number of steps taken (Fig. 11). As a consequence, the 

determination of one value for the factor of safety is not possible! An approach could be 

made by either choosing the lowest value 1.28 in order to be at the safe side (step 240) 

or by rather overestimating the safety and choosing 1.35 (step 292). The most realistic 

and therefore favoured approach is an averaged value approximately equal to 1.30 (step 

190).  

 
Fig. 11 SRFEA according to different dilatancy angles ’ 

Fig. 12 demonstrates the change of the failure mechanism depending on the number of 

steps taken for the case ’ = 0°. The shape of the incremental shear strains vary widely 

in all three cases. To summarize, the oscillation of the factor of safety is the consequence 

of the bifurcation of the failure mechanism (Tschuchnigg et al. 2015a). 
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Fig. 12 Bifurcation of the failure mechanism for �’ = 0°: Step = 190 (a), step = 240 (b), step = 

292 (c) 

3.2 Finite element limit analysis (FELA) 

3.2.1 Introduction to limit analysis  

Limit analysis was developed in different fields during the 90s, ranging from metal 

deformation processing to the design of reinforced concrete structures. In recent years, 

the limit analysis was furthermore applied to soil mechanics (Chen 2007). The power lies 

in the constriction of the true collapse load from below as well as from above, by definition 

of lower and upper bounds. The difference between those two bounds represents the 

error margin of the solution (Tschuchnigg et al. 2015b). 

The original procedure of defining the factor of safety is performed by an increase of 

applied load until failure is reached. A limit analysis enables the definition of a collapse 

load without performing an elasto-plastic analysis. Some well-defined assumptions are 

necessary to perform a FELA. First, it should be noted that strain softening is being 

ignored and elastic-perfectly plastic stress strain correlation is used. The Mohr-Coulomb 

failure criterion is the assumed condition where plastic flow occurs and nothing can be 

said about the total plastic strains because of unlimited plastic flow. The changes in 

geometry at the time of failure are small and as a consequence, for equilibrium 

equations, the original geometry is used. Due to the lack of changes in the geometry, the 

virtual work equation can be applied (Chen 2007). 

The theorems of the limit analysis can be transferred to any solid body if the material 

shows perfect plasticity and no hardening or softening is at risk. Furthermore, the yield 

surface is assumed to be convex and in consequence, the strain rates are derivable from 

the flow rule (’ = ’). As a third criterion, changes of geometry at limit load are neglected. 

If the failure load is reached, all stresses remain constant and only plastic strain 

increments occur. The elastic strain increments are assumed to be small and set to zero 

because they are not influencing the collapse at the limit load. Moreover, the initial 

stresses and deformations do not affect the plastic limit (failure load). The following two 

paragraphs are going to impart knowledge for both lower- and upper-bound theorems 

(Chen 2007). 

(a) (b) (c) 
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The lower-bound theorem is representing a stress state where equilibrium equations, the 

stress boundary conditions and yield criterion are satisfied (statically admissible stress 

field). In respect to a lower-bound solution, the load would be smaller compared to the 

actual collapse quantity and could be applied to the elastic perfectly plastic material 

without reaching failure. This chapter is considered to be appropriate to address the topic 

of discontinuities in the stresses. They cause the division of the material into several 

stress zones. The mentioned zones are satisfying the equilibrium and do not violate the 

yield condition. Furthermore, the stress fields are continuous in each zone, but there 

might be a different one in two neighbouring zones. The tangential component of stress 

along the two zones may be different, but all the normal directed components, on the 

other hand, continue across boundaries. The equilibrium and yield criteria are satisfied 

in the lower-bound theorem, but the soil kinematics are not concerned (Chen 2007). 

By applying the upper-bound theorem, the loads exceed the collapse quantity and cannot 

be carried by the soil body because the work done by the external forces is exceeding 

the internal dissipation. The theorem sets the external work equal to the internal rate. 

This happens under the terms that the assumed failure mechanism satisfies the 

mechanical boundary conditions. Moreover, the worst case upper-bound solution must 

be determined using the work equation. The mechanism has to fulfil the condition that 

changes in displacements within the soil body are kinematically admissible. No gaps and 

overlaps should occur. The upper-bound satisfies the velocity boundary conditions as 

well as the strain and velocity compatibility condition. It is of uppermost importance that 

the distribution of stresses does not have to satisfy an equilibrium (Chen 2007). 
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3.2.2 Introduction to finite element limit analysis 

For comprehensibility reasons, the chapter is split into two parts. The first one discusses 

the finite element lower-bound formulation while the latter one deals with the formulation 

of the finite element upper-bound. 

Finite-element lower-bound formulation 

This section is set up according to the formulation of Lyamin & Sloan (2002a). For a 

better understanding, Fig. 13 represents a soil body with a volume V, loaded by several 

different forces. Along boundary A, forces q, t and w might act. Additionally, the two body 

forces g and h are acting over the volume and might represent the unit weight as well as 

an unknown body force (Sloan 2013). 

 
Fig. 13 Forces acting on soil body (according to Sloan 2013) 

The lower bound calculation defines a statically feasible stress field with a satisfying 

equilibrium in the whole system that must find a balance with the acting forces at the 

boundaries, stick the yield criterion anywhere in the system and define the maximum 

possible load (collapse load) too. Referring the collapse load to Eq. (21), in terms of a 

slope stability analysis Q1 = 0 and h = , the variable has to be optimized. 

ܳ = ∫ ܳଵሺ�ሻ݀� + ∫ ܳଶሺࢎሻܸ݀௏஺�  ( 21 ) 

The soil body gets discretised by using 3-noded elements. The nodes of the linear 

elements consist of a vector of three unknown stresses and a vector of two unknown 

body forces which might be equal to zero if any of the two body forces are acting (Fig. 

14). The nodal stresses and element body forces are the primary unknowns in the non-

linear equation system. Equilibrium equality constraints have to be ensured for each 

element, for each discontinuity and for each stress boundary condition. The normal and 
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shear stresses (n,s) acting along stress discontinuities are continuous. Furthermore, the 

yield function f( j) has to be equal or smaller than zero at all nodes (Sloan 2013). 

 
Fig. 14 Lower-bound mesh (according to Sloan 2013) 

For a bearing capacity problem, the external traction q gets expanded until collapse 

occurs (Fig. 14). Based on the fact that the stresses vary linearly over the edge, the 

resulting forces acting in a normal and tangential way are defined according to Eq. (22). 

The stresses q1 and q2 are acting at the nodes and can be connected linearly because 

3-noded elements with edge length L are used (Sloan 2013). 

{ܳ௡ܳ௦ } = ܮʹ {௦ଵݍ௡ଵݍ}) +  ( 22 ) ({௦ଶݍ௡ଶݍ}

With the use of a Cartesian coordinate system and by summing up all the loaded edges, 

the collapse load can be defined as c1
T, where c1 is representing a vector of constants 

and  the global vector of unknown nodal stresses. If body loads are acting instead of 

external forces, c2
Th is defining the critical condition. It should to be noted that c2 is the 

area on which the global vector of body loads h is acting on. As mentioned before, the 

continuum equilibrium has to be fulfilled for each element. By substituting Eq. (24) to Eq. 

(23), the condition to satisfy (Eq. (25)) is met (Sloan 2013). 
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��௫௫�ݔ + ��௫௬�ݕ + ℎ௫ + ݃௫ = Ͳ ��௬௬�ݕ + ��௫௬�ݔ + ℎ௬ + ݃௬ = Ͳ 

( 23 ) 

� = ∑ �௝�௝ଷ
௜=ଵ  ( 24 ) 

[�ଵ் �ଶ்�ଷ்]�௘ = −ሺࢎ௘ +  ௘ሻ ( 25 )ࢍ

The B-matrices are covering the compatibility and contain the area of the element Ae and 

constants which depend on the coordinates. When multiplying Eq. (25) on both sides 

with Ae, an implementation of stress discontinuities is possible. If Eq. (26) is satisfied, 

equilibrium at any point in the domain is given. 

[�̅ଵ் �̅ଶ்�̅ଷ்]�௘ = −ሺࢎ௘ +  ௘ሻ�௘ ( 26 )ࢍ

where �̅௝் = �௘�ଵ் = [ ௝ܾ Ͳ ௝ܿͲ ௝ܿ ௝ܾ] ( 27 ) 

To model areas of discontinuity, zero thickness elements are used because their 

utilization is increasing the accuracy of the collapse load. 

 
Fig. 15 Zero thickness elements (D1, D2) (according to Sloan 2013) 

The shear and the normal stress have to be the same on both sides of the discontinuity. 

To comply Eq. (26),  is set to zero. It can be seen, that (x1, y1) = (x2, y2) and (x3, y3) = 

(x4, y4) (Fig. 15). Therefore, the Eq. (28) changes and provides the evidence that B̅1
Tσ1 = 

B̅1
Tσ2(Sloan 2013). 

[�̅ଵ் �̅ଵ் Ͳ]�௘ = Ͳ ( 28 ) 

As a consequence, normal and shear stresses are continuous along the discontinuity, 

while the tangential normal stress may differ at the same nodes (Eq. (29)). 
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{�௡௡ଵ�௡௦ଵ } = {�௡௡ଶ�௡௦ଶ } , {�௡௡ଷ�௡௦ଷ } = {�௡௡ସ�௡௦ସ } ( 29 ) 

To fulfil the stress boundary condition, the boundary nodes have to match the tractions t 
which is acting on the surface. This condition can be written as follows. 

{�௡௡ଵ�௡௦ଵ } = {௦ଵݐ௡ଵݐ} , {�௡௡ଶ�௡௦ଶ } =  ( 30 ) {௦ଶݐ௡ଶݐ}

The yield condition is the last one to be satisfied in the finite-element lower-bound. It is 

fulfilled when f(i)  0 holds true at any node in the domain (Sloan 2013). 

Finite-element upper-bound formulation 

The formulation of the upper-bound described in this chapter refers to Lyamin & Sloan 

(2002b), with some modifications related to discontinuities by Krabbenhøft et al. (2005). 

A finite element upper-bound formulation searches for a velocity distribution u that 

satisfies compatibility, the flow rule as well as the velocity boundary conditions w along 

AW (Fig. 13). It attempts thereby to minimalize the internal power dissipation minus the 

work done by external forces, according to Eq. (31) (Sloan 2013). 

ܹ̇ = ௜ܲ௡௧ − ∫ �஺�்࢛࢚݀ − ∫ ௏்ܸ࢛݀ࢍ  ( 31 ) 

௜ܲ௡௧ = ∫ �்�̇௣ܸ݀௏  ( 32 ) 

The enhanced value for ܹ̇ to the rate of work expended by external forces Pext (Eq. 33)) 

defines the upper bound of the finite element limit analysis (Sloan 2013). 

௘ܲ௫௧ = ∫ �஺�்࢛݀� − ∫ ௏்ܸ࢛݀ࢎ  ( 33 ) 

In a similar way, if compared to the lower-bound, the 3-noded elements are characterized 

by a linear distribution of the velocities u and a constant stress field . By using this kind 

of 3-noded elements, rigorous upper bounds can be set. The primary unknowns are 

nodal velocities, element stresses and plastic multipliers. They get determined by 

minimizing the internal power dissipation less the external work done by external forces. 

As evident in Fig. 16, each nodal vector is composed of two velocities. Three unknown 

stress components and one unknown plastic multiplier rate λ̇ get assigned to each 

element. In the next step, the plastic strains get calculated while considering an 
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associated flow rule and satisfying the consistency requirement λ ̇ fሺσeሻ = 0. Two 

multipliers get introduced to model velocity discontinuities in order to fulfil the associated 

flow rule. The velocity boundary conditions is ensured on the corresponding nodal 

boundaries. The stresses in all elements create the yield condition fሺσeሻ ≤ 0 (Sloan 

2013). 

 
Fig. 16 Upper-bound elements (according to Sloan 2013) 

The stress distribution over each element is constant, therefore the internal power 

dissipation Pint can be written as shown in Eq. (34). Within the element the plastic strains 

ε̇ p are constant and can be defined as Beue. The variables  and u are representing the 

global vector of element stresses and of nodal velocities. 

௜ܲ௡௧ = ∫ �்�̇௣ܸ݀௏ = ∑ሺ�்�̇௣ܸሻ௘ = ∑ �்�̅௘࢛௘௘௘ =  ( 34 ) ࢛̅�்�

The second part of Eq. (31) containing the tractions t and body forces h can be combined 

to cTu. The final correlation is written as follows (Sloan 2013). 

ܹ̇ = ࢛̅�்� −  ( 35 ) ்࢛�

In addition to Eq. (35), a continuum flow rule has to be confirmed, according to Eq. (36) 

where λ̇ is the plastic multiplier. To ensure that plastic strains ε̇p occur only at the yield 

surface, λ ̇ fሺσeሻ = 0 (Sloan 2013). 

�̇௣ = ̇�   ,ሺ�௘ሻ݂ߘ̇� ൒ Ͳ ( 36 ) 

In summary, any 3-noded element has to fulfil the flow rule constraints, as shown in Eq. 

(37) where α̇ = Ae λ̇ (Sloan 2013). 
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�̅௘࢛௘ = ߙ̇   ,fሺ�௘ሻ∇ߙ̇ ൒ Ͳ,   ̇ߙfሺ�௘ሻ = Ͳ ( 37 ) 

The discontinuity flow rule is satisfied in a similar way as for the lower-bound. Two 3-

noded elements with zero thickness (Fig. 17) model discontinuities. Additionally, two 

plastic multipliers are applied to simulate the normal and tangential jumps un and us 

along the discontinuity (Sloan 2013). The velocity components in discontinuities satisfy 

the associated flow rule and are defined according to Eq. (38). 

 
Fig. 17 Zero thickness elements for the upper-bound solution (according to Sloan 2013) ∆ݑ௡ = ௦ݑ∆                                             ௡��݂�ߙ̇ = ��݂�ߙ̇  

ߙ̇ ൒ Ͳ,   ݂̇ߙሺ�௡, �ሻ = Ͳ 

( 38 ) 

In addition to the discontinuity flow rule, the velocity boundary conditions have to be 

fulfilled, according to Eq. (39), at any nodes that are charged by velocities (Fig. 18) (Sloan 

2013). 

 
Fig. 18 Velocity boundary condition (according to Sloan 2013) {ݑ௡ଵݑ௦ଵ} = {௦ଵݓ௡ଵݓ} , {௦ଶݑ௡ଶݑ} =  ( 39 ) {௦ଶݓ௡ଶݓ}

3.2.3 Strength reduction according to Sloan (2013) 

The FELA factor of safety as mentioned above gets commonly expressed in terms of 

loads. In slope stability analyses, however, the factor of safety is effectively defined 

according to the strength parameters of the soil. Sloan (2013) developed the following 

method which is implemented into Optum G2, the software used to perform FELA. As a 
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first step, a factor of safety equal to unity is assumed (F0 = 1). Subsequently, the available 

strength gets computed according to Eq. (40) and Eq. (41). 

ܿ’௔ = ܿ’ ⁄଴ܨ  ( 40 ) �’௔ = tan−ଵሺtan �’ ⁄଴ܨ ሻ ( 41 ) 

According to c’a and ’a, the upper and the lower bounds of the unit weight (LB, UB) are 

computed which can be ensured by the slope. Using both bounds of the unit weight, the 

m0
*  value can be derived from Eq. (42) (Sloan 2013). 

݉∗ = ሺߛ௅஻ + ௎஻ሻߛ ⁄ߛʹ  ( 42 ) 

If the m* value is greater than 1, the previous factor of safety increases by 0.1, otherwise 

it decreases by 0.1. In one specific kind of iterative process, c’a and ’a form according 

to an updated FoS. Subsequently, m1 is calculated according to Eq. (42) again. If  

(mͳ*  - 1)( m0
*  - 1) > 0, m0

*  is equal to mͳ*  and Fo equal to F1. As long as m* is not equal to 

unity, the factor of safety gets modified as mentioned above. The iterative procedure of 

strength reduction in finite element limit analyses is shown in Fig. 19. The values are 

taken from Sloan (2013). 

 
Fig. 19 Strength reduction process in FELA (according to Sloan 2013)  
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3.2.4 Safety analysis of Optum G2 

The iterative strength reduction process described in 3.2.3 is automatically performed in 

Optum G2. This can be achieved by combining the program-internal analysis type 

options Strength Reduction with Upper and Lower elements. Since the mentioned 

analysis type is limited to approximately 1000 elements, alternatives are needed for a 

finer discretisation. The type Limit Analysis with Upper and Lower elements provide the 

use of more elements but misses a definition of the FoS according to the strength 

parameters. As shown in Eq. (43) and Eq. (44), the safety factors are based on optimizing 

loads and gravity for a given strength. The latter option is more appropriate in connection 

with slope stability (Krabbenhøft et al. 2016). 

௅௢௔ௗܵ݋ܨ = ݀ܽ݋ܮ ி௔௜௟௨௥௘݀ܽ݋ܮ  ( 43 ) 

௥௔௩௜௧௬ீܵ݋ܨ = ݕݐ�ݒܽݎܩ ி௔௜௟௨௥௘ݕݐ�ݒܽݎܩ  ( 44 ) 

When choosing the second option, there is, however, a possibility to define the FoS with 

respect to the strength parameters manually. The strength parameters ’ and c’ get 

reduced to a FoSGravity = 1. In succession, the ratio of the initial strength parameters to 

the ones at failure defines the safety (Krabbenhøft et al. 2016). Appendix 10.1.1 gives 

an overview of the several options that Optum G2 offers. 

Although the analysis type Strength Reduction is limited to approximately 1000 elements, 

an adaptive mesh refinement can lead to more precise results. Thereby, it should be 

noted that refinements according to plastic shear (Shear Dissipation) or plastic total 

strains (Total Dissipation) are commonly used. Apart from this choice, the refinement is 

still automatically executed by Optum G2 (Krabbenhøft et al. 2016). 

Moreover, it shall be mentioned at this place that Strength Reduction analyses can also 

be performed with 6-noded and 15-noded elements, assuming associated plasticity. 

Therefore, the strength parameters define the FoS, according to Eq. (20). Furthermore, 

Optum G2 enables the user to reduce the strength of structural elements by keeping the 

soil properties constant (appendix 10.1.2). 
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3.3 Davis approach 

3.3.1 Necessity of the Davis approach in finite element limit analysis 

As mentioned in the previous chapter, the limit analysis is always dealing with an 

associated flow rule. Due to the fact that in a plastic field, stress and velocity 

characteristics are equal only for the associated flow rule (’ = ’), some modifications 

of the strength parameters c’ and ’ are necessary to guarantee the equality of the 

characteristics and to generate a kind of non-associated behaviour. Therefore, the 

modified parameters c* and * are used with an associated flow rule as input parameters 

(Eq. (45) and Eq. (46)) (Tschuchnigg 2015a). 

ܿ∗ = tan ’ܿߚ �∗ = ߚ tan �’ ( 45 ) 

௙௔௜௟௨௥௘ = ߚ = cos �’ cos �’ͳ − sin �’ sin �’ ( 46 ) 

3.3.2 Equality of stress and velocity characteristics 

To demonstrate the correlation between the stress and velocity characteristics, an 

element ABCD is imagined. The principal stresses ’1 and ’3 as well as the principal 

strains 1 and 3 are acting on the element ABCD inclined to the vertical axis at an 

angle of  (Fig. 20a). The failure criterion is defined by Coulomb, according to the normal 

stress ’s and shear stress s, as it can be seen in Fig. 20b. The pole point PP is defined 

as the point of intersection where the Mohr circle meets extensions of lines acting parallel 

to major and minor principle stress directions. Davis introduced the term stress 

characteristics, visualized as the red lines, connecting PP with (l) and (ll). The stress 

characteristics are disposed about 45° - ’ / 2 to the major principal stress direction 

(Tschuchnigg 2015a). 
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Fig. 20 Element of interest (a), Mohr stress circle (b), Mohr strain circle (c) (according to 

Tschuchnigg 2015a) 

Fig. 20c represents the corresponding Mohr strain circle with the major and minor strain 

increments 1 and 3 acting along the abscissa. The shear strain increments /2 are 

applied to the ordinate axis. 

The ratio of volumetric strain increment vol to the related maximal shear strain 

increment max defines the dilatancy. The approach by Davis deals with plane strain 

conditions with a dilatancy angle according to Eq. (47). 

sin �’ = ௠௔௫ߛߜ௩௢௟ߝߜ = ௠௔௫ߛߜ௡ߝߜ = ଵߝߜ + ௠௔௫ߛߜଶߝߜ  ( 47 ) 

As shown in Fig. 20c, the black dashed lines connecting PP with (i) or (ii) are representing 

planes perpendicular to the direction of zero extension. It should be noticed that (i) and 

(ii) represent points of zero extension (n = 0). The direction of zero extension is 

determined by drawing horizontal lines from (i) and (ii) and connecting the intersection 

point of the Mohr strain circle with the pole point PP. The lines representing the direction 

of zero extension are marked in green (Fig. 20c) and are named velocity characteristics, 

because according to Davis they are equal to the slip lines. The velocity characteristics 

are disposed about 45° - ’ / 2 to the principal stress direction. Consequently, the stress 

and velocity characteristics are equal for an associated flow rule (’ = ’). Assuming a 

non-associated flow rule, the stress characteristics are not equal to the slip lines 

(Tschuchnigg 2015a). This relation is shown in Fig. 21a. 

Concerning a non-associated flow rule, the stress ratio according to the zero extension 

lines rather than the stresses related to the stress characteristics has to be applied. In 

succession, the shear and normal stresses k and ’k are not cutting the Mohr-Coulomb 

failure criterion (Fig. 21b). According to Davis, the modified strength parameters * and 
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c* should be used in combination with an associated flow rule. The combination of ’k 

and k matches remarkably well with the modified strength parameters (Tschuchnigg 

2015a). 

 
Fig. 21 Comparison of stress and velocity characteristics (a), Davis approach (b) (according to 

Tschuchnigg 2015a) 

The strength parameters * and c* are dependent on the factor  (Eq. (46)). The amount 

of  is diminishing with a decreasing dilatancy angle and an increasing degree of non-

associativity (Tschuchnigg 2015a). 

The original approach by Davis is called Davis A, because Tschuchnigg developed two 

modifications which are subject of discussion in the following chapter. 

3.3.3 Modifications of the original Davis approach 

Based on the fact that the original approach by Davis leads to very conservative results 

if the factor of safety gets expressed by the strength parameters of the soil, Tschuchnigg 

(2015a) developed two procedures which are still conservative compared to the non-

associated FoS, but less than Davis A. 

Davis B 

In Davis B, the  value is determined iteratively because of a change in the degree of 

non-associativity  (’ - ’). The factor of safety of the previous iteration step modifies 

the dilatancy angle ’ as well as the friction angle ’, according to Eq. (48). 
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௙௔௜௟௨௥௘ = cos (tan−ଵ (tan ܵ݋ܨ’� )) cos (tan−ଵ (tan ܵ݋ܨ’� ))ͳ − sin cos (tan−ଵ (tan ܵ݋ܨ’� )) sin (tan−ଵ (tan ܵ݋ܨ’� )) ( 48 ) 

For the sake of completeness, a factor of safety equal to unity is assumed for the first 

step. Consequently, Eq. (48) becomes equal to Eq. (46). The value failure gets calculated 

until no change in factor of safety occurs anymore. 

Davis C 

Davis C is similar to procedure B, with the difference of an unmodified dilatancy angle ’ 

due to the iterations, as shown in Eq. (49) (Tschuchnigg 2015a). 

௙௔௜௟௨௥௘ = cos (tan−ଵ (tan ܵ݋ܨ’� )) cos �’ͳ − sin cos (tan−ଵ (tan ܵ݋ܨ’� )) sin �’ ( 49 ) 

In the same way as for Davis B, 0 gets calculated with a factor of safety equal to unity. 

As long as the dilatancy angle ’ is zero, procedures B and C remain the same. To 

perform Davis B and Davis C, either in Plaxis 2D or Optum G2, the input parameters get 

calculated manually and each iteration step is a separate calculation. 

Tab. 3 Comparison of Davis A, B and C (according to Tschuchnigg 2015a) 

 Davis A Davis B Davis C 

� Constant Varies Varies �’ ߚ௙௔௜௟௨௥௘ = ݂ሺ�′, �′ሻ ߚ௙௔௜௟௨௥௘ = ݂(�′௙௔௜௟௨௥௘ , �′௙௔௜௟௨௥௘) ߚ௙௔௜௟௨௥௘ = ݂(�′௙௔௜௟௨௥௘ , �′) 

Note: * could theoretically 
become smaller than 

’ 

* cannot be smaller than ’ * could theoretically 
become smaller than ’ 
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4 Davis in combination with structural elements 

The following chapters show calculations performed on a reinforced embankment as well 

as on an upstream slope. The two examples are not linked together and can therefore 

be discussed separately. They, however, are connected due to the simple fact that both 

are reinforced by structural elements. In addition to LEA, SRFEA and FELA, further 

calculations based on Davis A and Davis B are performed with FELA. The approach 

results are compared with the non-associated SRFEA performed in Plaxis 2D in order to 

clarify how well both match. 

4.1 Reinforced embankment 

4.1.1 General information 

The covered embankment gets reinforced by horizontal geotextile layers at the toe of the 

embankment. The four soil layers, namely backfill material, sandy top layer, gravel layer 

and clay layer define the soil composition (Fig. 22a). A horizontal water table is defined 

on top of the sandy top layer. Assuming drained conditions, the three underlying layers 

are fully saturated. 

 
Fig. 22 Reinforced embankment: Soil composition (a), water table (b) 

This study deals with two different cross sections of the reinforced embankment. Both 

are similar in many aspects. For the sake of completeness, the differences of cross 

section 1 (CS1) and cross section 2 (CS2) are described in the following. Both models 

are 35.5 m long, 20.6 m high and show an embankment height equal to 5.6 m. The cross 

section 1 is characterized by an embankment inclination of about 1 = 36°, while cross 

section 2 is slightly flatter (2 = 35°). Additionally, the amount of horizontal geogrid layers 

is different. Fig. 23 shows that 5 horizontal geogrid layers are installed in CS1, while 6 

layers are present in CS2. The geogrids are 5 m long for both cross sections and show 

a vertical distance of about 0.3 m. In consequence, the height of the geogrids package 

for CS1 is 1.2 m and for CS2 1.5 m. 

(a) (b) 
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Fig. 23 Reinforced embankment: Comparison of cross section 1 and cross section 2 

The Hardening Soil (HS) model and the Hardening Mohr-Coulomb (HMC) model, both 

assuming a Mohr-Coulomb failure criterion, are used for finite element analyses in Plaxis 

2D (Schanz 1998) and Optum G2 (Doherty & Muir Wood 2013). Additionally, limit 

equilibrium analyses, assuming a Mohr-Coulomb failure criterion, are performed. The 

material parameters, listed in Tab. 4, are used as an input. The reinforcements get 

modelled by 5 m long geogrids with elastic properties and an extensional stiffness EA = 

10000 kN/m². 

Tab. 4 Reinforced embankment: Material parameters 

 Unit Backfill 
material 

Sandy top 
layer Gravel layer Clay layer 

unsat; sat (kN/m³) 21; 21.5 21; 21.5 21; 21.5 20; 20.5 

E50ref (kN/m²) 40·10³ 40·10³ 25·10³ 30·10³ 

Eoedref (kN/m²) 40·10³ 40·10³ 25·10³ 30·10³ 

Eurref (kN/m²) 120·10³ 120·10³ 75·10³ 90·10³ 

m (-) 0.5 0.5 0.5 0.8 

c’ (kN/m²) 5 0 0 30 

’ (°) 37 35 35 20 

’ (°) 0; ’ 0; ’ 0; ’ 0; ’ 

 

This study includes three loading conditions. Loading condition 1 excludes any external 

load, only its self-weight is acting. The permanent load pg = 19 kN/m², acting along the 

whole crest, is taken into account in loading condition 2. In addition to pg, the live load pq 

= 63 kN/m², is part of loading condition 3 (Fig. 24). 
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Fig. 24 Reinforced embankment: Loading conditions 

Due to the similarity of both cross sections, the mesh refinement is only shown for CS2. 

In Plaxis 2D, the discretization of the domain is carried out using 15-noded elements. As 

Fig. 25 shows, the mesh gets refined until the safety factor remains almost constant. Due 

to the fact that the failure mechanism develops behind the reinforcements, this area shall 

be the subject of refinements. In order to secure no change in factor of safety for any 

loading condition, 10913 elements are used. It should be noticed that the higher the 

number of elements, the smaller the change in the factor of safety gets. This correlation 

becomes clear in Tab. 5. In order to decrease the FoS from 1.70 to 1.69, 700 additional 

elements are needed. To decrease the factor of safety from 1.67 to 1.66, about 5900 

elements are needed. This behaviour gets elaborated with more details in chapter 4.1.4. 

 
Fig. 25 Reinforced embankment: Mesh refinement (step 1 - 5) 

Tab. 5 Influence of mesh density on the factor of safety 

 Unit 837 
elements 

1537 
elements 

3056 
elements 

4992 
elements 

10913 
elements 

SRFEA (’ = ’) (-) 1.70 1.69 1.68 1.67 1.66 

 

It should be noted that for all SRFEA carried out in Plaxis 2D, the initial stresses are 

calculated according to the K0 procedure where no embankment is present. In addition, 

the construction of the embankment gets modelled in one step, followed by either the 

safety analysis on its own or a loading phase with an additional safety analysis (LC2 and 

Step 1: 837 elements – FoS = 1.70 Step 2: 1537 elements – FoS = 1.69 Step 3: 3056 elements – FoS = 1.68 

Step 4: 4992 elements – FoS = 1.67 Step 5: 10913 elements – FoS = 1.66 

Loading condition 1 (LC1) Loading condition 2 (LC2) Loading condition 3 (LC3) 
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LC3). Subdividing the process of construction into more phases has no influence on the 

factor of safety (appendix 10.2.1). 

4.1.2 Factor of safety according to SRFEA and LEA 

It was mentioned earlier that the flow rule might have a strong influence on the factor of 

safety in strength reduction analyses. Fig. 26 illustrates the safety factors over reduction 

steps for cross section 1. The dashed lines, representing the non-associated calculations 

(’ = 0°), differ strongly from the full lines (’ = ’). Logically, loading condition 1 with 

associated plasticity shows the highest FoS, equal to 1.66. In comparison, the non-

associated calculation results in a safety factor equal to 1.52 which corresponds to a 

difference of about 9.2 %. The factors of safety for loading conditions 2 and 3 are listed 

in Tab. 6. It can be seen that the differences in the factor of safety rise from 9.2 % to 11.7 

%. Furthermore, Fig. 26 shows a slightly erratic result for non-associated plasticity due 

to the so-called bifurcation of failure mechanism, as mentioned in section 3.1.4. 

 

Fig. 26 Cross section 1:  - c reduction 
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Tab. 6 Cross section 1: Overview of safety factors according to SRFEA 

SRFEA 

 Loading condition 1 Loading condition 2 Loading condition 3 

SRFEA (’ = ’) 1.66 1.56 1.43 

SRFEA (’ = 0°) 1.52 1.42 1.28 

% Difference 9.2 9.9 11.7 

 

The incremental shear strains for the non-associated calculations (’ = 0°) show a similar 

failure mechanism for all three loading conditions (Fig. 27). 

 

Fig. 27 Cross section 1 (’ = 0°): Incremental shear strains 

It can be established that by comparing the shape of incremental shear strains for both 

associated and non-associated plasticity, all six failure mechanisms show good 

agreement (Fig. 27 and Fig. 28). Due to the additional dynamic load, the failure 

mechanism in loading condition 3 is slightly flatter in the upper part. Again, both 

associated and non-associated calculations show the same failure mechanism. Because 

of numerical problems at the toe of the embankment, a concentration of incremental 

shear strains gets developed below the lowest layer of geogrids for all associated 

calculations (Fig. 28). As a consequence, the failure mechanism is not as clear defined 

as for the non-associated calculations. 

 
Fig. 28 Cross section 1 (’ = ’): Incremental shear strains 

In addition, limit equilibrium analyses, using the Morgenstern & Price method, are 

performed for cross section 1. A square area, with a side length of 10 m and 200 intervals 

in the x and the y direction, is used to search for the circular failure mechanism with the 

lowest factor of safety. The safety factors of LC1, LC2 and LC3 are listed in Tab. 7. 

Loading condition 1 (LC1) Loading condition 2 (LC2) Loading condition 3 (LC3) 

Loading condition 1 (LC1) Loading condition 2 (LC2) Loading condition 3 (LC3) 
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Tab. 7 Cross section 1: Overview of safety factors according to LEA 

LEA (Morgenstern & Price) 

 Loading condition 1 Loading condition 2 Loading condition 3 

LEA 1.72 1.62 1.50 

 

Fig. 29 highlights the critical failure mechanisms for the different loading conditions. They 

are in good agreement with the course of incremental shear strains obtained from 

SRFEA. 

 
Fig. 29 Cross section 1: Failure mechanisms of LEA 

Now, comparing the SRFEA and the LEA, it is remarkable that the safety factors obtained 

from the LEA are in better agreement with the associated calculations of Plaxis 2D and 

give a slightly higher FoS than the SRFEA. A complete comparison is listed below. The 

differences between the LEA and the associated SRFEA vary between 3.5 % and 4.7 

%. In contrast, compared to the LEA, the non-associated safety factors are between 11.6 

% and 14.7 % lower. 

Tab. 8 Cross section 1: Comparison of SRFEA and LEA 

LEA, SRFEA 

 Loading condition 1 Loading condition 2 Loading condition 3 

LEA (M&P) 1.72 1.62 1.50 

SRFEA (’ = ’) 1.66 1.56 1.43 

SRFEA (’ = 0°) 1.52 1.42 1.28 

  

Loading condition 1 (LC1) Loading condition 2 (LC2) Loading condition 3 (LC3) 
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Tab. 9 Cross section 1: Differences between SRFEA and LEA 

% Differences 

 
Loading 

condition 1 
Loading 

condition 2 
Loading 

condition 3 

LEA (M-P) - SRFEA (’ = ’) 

= 100 (LEA (M-P) - SRFEA (’ = ’)) / 
LEA (M-P) 

3.5 3.7 4.7 

LEA (M-P) - SRFEA (’ = 0°) 

= 100 (LEA (M-P) - SRFEA (’ = 0°)) / 
LEA (M-P) 

11.6 12.3 14.7 

 

The same safety analyses are performed for cross section 2. For the sake of 

completeness, the results are presented in Fig. 30, Fig. 31, Fig. 32 and Fig. 33 as well 

as in Tab. 10 and Tab. 11. It should be noted that all statements made for cross section 

1 hold true for cross section 2 as well. 

 

Fig. 30 Cross section 2:  - c reduction 

 
Fig. 31 Cross section 2 (’ = 0°): Incremental shear strains 
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Fig. 32 Cross section 2 (’ = ’): Incremental shear strains 

 
Fig. 33 Cross section 2: Failure mechanism according to LEA 

Tab. 10 Cross section 2: Comparison of SRFEA and LEA 

LEA, SRFEA 

 Loading condition 1 Loading condition 2 Loading condition 3 

LEA (M-P) 1.74 1.64 1.46 

SRFEA (’ = ’) 1.66 1.56 1.40 

SRFEA (’ = 0°) 1.55 1.43 1.22 

Tab. 11 Cross section 2: Differences between SRFEA and LEA 

% Differences 

 
Loading 

condition 1 
Loading 

condition 2 
Loading 

condition 3 

LEA (M-P) - SRFEA (’ = ’) 

= 100 (LEA (M-P) - SRFEA (’ = ’)) / 
LEA (M-P) 

4.6 4.9 4.1 

LEA (M-P) - SRFEA (’ = 0°) 

= 100 (LEA (M-P) - SRFEA (’ = 0°)) / 
LEA (M-P) 

10.9 12.8 16.4 

 

Due to the uncertainty of the soil parameters and geometry, additional calculations are 

performed for cross section 1 and cross section 2. Appendix 10.2.2 includes the SRFEA 

and the LEA on two modified cross sections where both embankments are disposed 

about 37°. The modified cross sections 1 and 2 still include 5 or rather 6 horizontal 

Loading condition 1 (LC1) Loading condition 2 (LC2) Loading condition 3 (LC3) 

Loading condition 1 (LC1) Loading condition 2 (LC2) Loading condition 3 (LC3) 
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geogrid layers (see chapter 4.1.1). As shown in Fig. 34, the cohesionless sandy top layer 

gets used for backfilling. To avoid near-surface failure mechanisms, a modified backfill 

material with c’ = 100 kPa is used. This is done because the slope inclination is larger 

than the friction angle of the backfill material. The results underline the expectation that 

the factor of safety based on the limit equilibrium technique is in better agreement with 

analyses according to associated plasticity. 

 
Fig. 34 Modified cross section 1: (a) Soil composition, (b) water table 

A further study, attached to appendix 10.2.3, shows that the cohesion has a larger impact 

on the factor of safety than the friction angle. The influence of extensional stiffness EA 

and tensile strength Np is discussed in appendix 10.2.4. 

4.1.3 Factor of safety according to Davis A and Davis B 

This chapter deals with finite element limit analyses performed on cross section 2 (CS2) 

while considering loading condition 1 (LC1). In addition to the standard upper and lower 

bound calculation with associated plasticity, Davis A and Davis B are calculated as well. 

It should be noted that for this example the latter one is equal to Davis C, because all 

soil layers show a dilatancy angle ’ equal to zero. FELA are performed with adaptive 

mesh refinement. As mentioned in chapter 4.1.2, a concentration of incremental shear 

strains occurs for SRFEA with associated flow rule below the geogrid layers. The same 

problem arises in Optum G2 for the lower bound analyses. Fig. 35 shows that the mesh 

gets refined automatically at the toe of the embankment. 

(a) (b) 
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Fig. 35 Adaptive mesh refinement: Concentration at the toe for the lower bound 

To overcome this numerical problem, tension gets allowed between the geotextile layers 

(tension cut-off: No). This assumption is acceptable due to the fact that the geotextiles 

get bend up at the edges. Taking these modifications into account, the meshes for lower 

and upper bounds get refined according to Fig. 36a and Fig. 36b. The area around the 

reinforcements gets refined according to the shear dissipations. A FoSLB = 1.91 and a 

FoSUB = 1.95 are yielded by the FELA. The deformed meshes of Fig. 36c and Fig. 36d 

represent the failure mechanisms for the lower and upper bound calculations. It should 

be noted that the distribution of incremental shear strains is equal to those based on the 

SRFEA. 

 
Fig. 36 Cross section 2 according to FELA: (a) lower bound: adaptive mesh refinement; (b) 

upper bound: adaptive mesh refinement; (c) lower bound: failure mechanism; (d) upper 
bound: failure mechanism 

Moreover, the SRFEA and the FELA are performed with modified strength parameters 

c* and *, according to Eq. (46). Tab. 12 and Tab. 13 highlight that SRFEA and FELA 

are in good agreement. It is apparent that Davis A is about 14 % conservative compared 

(a) (b) 

(c) (d) 
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to a SRFEA with non-associated plasticity (Tab. 14). The FoSMean based on Davis B is 

still conservative at only about 3.1 %. By using Eq. (48), three iterative modifications of 

the strength parameters are necessary to guarantee no change in the safety factor. 

Tab. 12 Cross section 2 (LC1): Comparison of SRFEA 

SRFEA 

 ’ = ’ 

Plaxis 2D 

’ = 0° 

Plaxis 2D 

Davis A (’ = 0°) 

Plaxis 2D 

FoS 1.66 1.55 1.35 

Tab. 13 Cross section 2 (LC1): Comparison of FELA 

FELA 

 ’ = ’ 

Optum G2 

Davis A (’ = 0°) 

Optum G2 

Davis B (’ = 0°) 

Optum G2 

FoSMean 1.66 1.35 1.49 

Tab. 14 Cross section 2 (LC1): Comparison of Davis A and Davis B with SRFEA (’ = 0°) 

% Difference 

Davis A 

= 100 (FELA (Davis A) - SRFEA (’ = 0°)) / 
FELA (Davis A) 

Davis B 

= 100 (FELA (Davis B) - SRFEA (’ = 0°)) / 
FELA (Davis B) 

- 14.0 - 3.1 

4.1.4 Mesh study 

The aim of the following studies is to find out if safety analyses can be performed with 

less elements when having implemented an adaptive mesh refinement. As mentioned 

earlier, Optum G2 can run SRFEA and FELA with and without adaptive mesh refinement. 

Keep in mind that by choosing a Strength Reduction analysis with Lower and Upper 

element types, a FELA is performed. If more than 1000 elements are needed, a FELA 

can also be carried out manually by reducing the strength parameters cohesion and 

friction angle until the gravity multiplier (FoSGravity) is equal to unity (Krabbenhøft et al. 

2016). 

Cross section 2 with associated plasticity and no external loads (LC1) is subject of 

several SRFEA and FELA according to different numbers and types of elements. In the 

first part of the study, both SRFEA are performed in Plaxis 2D and Optum G2 with 6-

noded and 15-noded elements. As shown in Fig. 37, about 10500 elements are needed 
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to reach a safety factor equal to 1.66, by performing a SRFEA with 15-noded elements 

in Plaxis 2D. As mentioned above, the number of elements while using analysis type 

Strength Reduction is limited to approximately 1000 elements. This number refers to the 

input value. The adaptive mesh refinement may increase or decrease the number of 

elements. By turning on the adaptive mesh refinement and using 15-noded elements, 

about 1300 elements are necessary to reach a FoS = 1.66. Concurrently, if no adaptive 

mesh refinement is concerned, the evolution of safety factors is similar to the 

performance obtained in Plaxis 2D. 

As presented in Fig. 37, all analyses performed with 6-noded elements result in higher 

safety factors compared to the ones that are based on 15-noded elements. However, 

the statements for 15-noded elements are valid for 6-noded elements too. The 

determined safety values are listed in appendix 10.2.5. 

 

Fig. 37 Mesh study: Comparison of SRFEA 

The question arises, how well the adaptive mesh refinement works for a FELA. As Fig. 

38 shows, the difference of upper and lower bound reduces significantly once the 

adaptive mesh refinement is turned on. From this follows that the error of the result with 

adaptive mesh refinement is significantly smaller. Furthermore, it becomes clear that the 
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upper bound is close to the results obtained with the SRFEA. The safety values of all 

FELA are listed in appendix 10.2.5. 

 
Fig. 38 Mesh study: Comparison of SRFEA and FELA 
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4.2 Upstream slope 

4.2.1 General information 

This example deals with a reinforced upstream slope next to a reservoir. Here again, we 

distinguish between two cases. Case 1 represents the current status with a low safety 

factor, while case 2 considers several modifications in order to reach a higher safety 

value. The soil layering is characterized by three soil layers, as seen in Fig. 39a. The top 

layer marked in light blue represents moraine material. Underneath, marked in light 

green and brown, fractured as well as intact rock layers are situated. The water level can 

be found primarily in the fractured rock layer. A conservative approach is made by 

defining an inclined water table, as shown in Fig. 39b. As will be discussed later, stability 

analyses are performed on a modified water table too. 

 
Fig. 39 Upstream slope: (a) Soil layers, (b) inclined water table 

According to Fig. 40, the cross section of case 1 can be divided into an area below the 

berm, disposed about 30° towards the horizontal, and an area above the berm that is 

inclined by 37° towards the horizontal and is supported by several structural elements. 

To avoid shallow slides, a Maccaferri grid is installed. In addition, soil nails with spacings 

varying between 2 m to 3 m are present. The vertical nail on top of the slope is 4 m long 

and is characterized by a spacing equal to 2 m. The following 6 soil nails, the top two 

being 6 m, the bottom 4 being 5 m long, show a spacing of about 2.5 m. Referring to Fig. 

40, the last six soil nails are 5 m long with a spacing equal to 3 m. At the berm, a pile 

trestle consisting of two GEWI piles which are connected with a ridgepole on top is 

installed. Below the berm, no further structures are present. 

(a) (b) 

moraine layer 

fractured rock layer 

intact rock layer 
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Fig. 40 Upstream slope - case 1: Dimensions and structural elements 

Due to the unsafe conditions of case 1, the area below and above the berm gets flatted, 

according to Fig. 41. The slope above the berm is disposed about 30° to the horizontal 

and is divided by an additional intermediate berm. Furthermore, the Maccaferri grid and 

all soil nails get removed from the specified field. The pile trestle remains unchanged 

and the area below gets flatted to 26.7°. Case 2 will be calculated for the water table, as 

shown in Fig. 39b, as well as a lowered water level. Drainage rips disposed about 10° to 

the horizontal guarantee a long term reduction of the water table. 

The Hardening Soil and Mohr-Coulomb models are used to model the soil layers in an 

appropriate way. The moraine layer and fractured rock layer are designed according to 

the HS model. Additionally, limit equilibrium analyses, assuming a Mohr-Coulomb failure 

criterion, are performed to work out if the safety factors are in good agreement with the 

associated results again. The input parameters for the SRFEA, the FELA and the LEA 

are listed in Tab. 15. It should be noted that SRFEA are performed in Plaxis 2D according 

to the standard procedure of  - c reduction by assuming a dilatancy angle ’1 = 0° and 

’2 = ’. All following calculations assume drained conditions and ignore external loads. 

Furthermore, the reservoir is assumed to be empty for both cases in order to generate 

the worst-case scenario. 

berm 

Maccaferri grid 

soil nail 

pile trestle: 

2x Gewi pile + ridgepole 

54.3 m 
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83.2 m 

56.7 m 30.9 m 5.8 m 17.3 m 

11.8 m 
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Fig. 41 Upstream slope - case 2: Dimensions and structural elements 

Tab. 15 Upstream slope: Material parameters 

 Unit moraine layer fractured rock layer intact rock layer 

Model (-) Hardening Soil Hardening Soil Mohr-Coulomb 

unsat; sat (kN/m³) 22.0; 23.0 22.5; 23.0 22.5; 23.0 

E50ref, *E’ (kN/m²) 40·10³ 50·10³ *5·106  

E50oed (kN/m²) 40·10³ 50·10³ - 

Eurref (kN/m²) 120·10³ 150·10³ - 

m (-) 0.5 0.5 - 

c’ (kN/m²) 10.0 15.0 25.0 

’ (°) 31.0 31.0 35.0 

’ (°) 0.0; ’ 0.0; ’ 0.0; ’ 

 

Instead of modelling the two GEWI piles with structural elements, the area of the pile 

trestle was defined with an increased cohesion of c’ = 18.5 kN/m². All the other soil 

properties correspond to the fractured rock layer. In Plaxis 2D, geogrids and embedded 

beam rows are used to model the Maccaferri grid and the soil nails. Optum G2 uses the 

equivalent option to the latter as a nail row (Krabbenhøft et al. 2016). Both structural 

elements show an elasto-plastic material behaviour. An overview of all input parameters 

is listed in appendix 10.3.1. 

berm 

intermediate berm 

pile trestle: 

2x GEWI pile + ridgepole 

54.3 m 21.1 m 3.0 m 18.4 m 3.0 m 27.1 m 38.1 m 

165.0 m 

83.2 m 

7.9 m 

15.7 m 

10.6 m 

10.5 m 

38.5 m 
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Fig. 42 Upstream slope: Modelling of structural elements in Plaxis 2D (a) and Optum G2 (b) 

SRFEA using 15-noded elements are carried out in Plaxis 2D. Referring to Fig. 43, the 

moraine layer and fractured rock layer are object of refinements. In particular, the domain 

behind and in between the nails as well as the direct environment of the pile trestle are 

object of refinements. 8932 elements are used for the discretisation. In a FELA, the mesh 

refinement is performed adaptively with 1000 starting elements. 

 
Fig. 43 Upstream slope: Mesh refinement Plaxis 2D 

In Plaxis 2D, the initial stresses get determined by a K0 procedure with an additional nil-

step. Subsequently, the soil gets removed in 16 steps, followed by the SRFEA of case 

1. Five more phases are considered adequate to flatten the slope and remove the 

structural elements before the strength reduction of case 2 is carried out. The individual 

excavation phases are shown in appendix 10.3.2. 

4.2.2 Safety analysis of case 1 

Again, it can be established that the FELA and SRFEA with associated plasticity are in 

good agreement with the LEA performed in Slide. In order to find the lowest FoS, the 

same square shape grid as discussed in section 4.1.2 is used. All three analyses show 

almost the same failure mechanism trough the toe of the reinforced part of the slope (Fig. 

44). Referring to Tab. 16 and Tab. 17, the FoSMean = 1.25 according to the FELA is in 

good agreement with the SRFEA and the LEA. The strength reduction with non-

Smeared area with c’ = 18.5 kN/m² 

Embedded beam row:  

Lspacing = 2; 2.5; 3 

Geogrids 

Smeared area with c’ = 18.5 kN/m² 

Nail row:  

Lspacing = 2; 2.5; 3 

Geogrids 

(a) (b) 
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associated plasticity leads to a FoS = 1.12. Again, the analytical calculation is in better 

agreement with calculations based on associated plasticity. 

 
Fig. 44 Case 1 - Comparison of the failure mechanisms: (a) total displacements for SRFEA with 

associated plasticity, (b) circular failure mechanism according to LEA, (c) total 
displacements for lower-bound FELA, (d) total displacements for upper-bound FELA 

In addition, it is of interest to determine how well Davis A and B correspond with the non-

associated SRFEA (’ = 0°). SRFEA and FELA based on the original approach (Davis 

A) only vary at about 0.9 %. The adaptively refined mesh for the upper-bound FELA is 

shown in Fig. 45a. Even if the safety factors based on the SRFEA and the FELA are in 

good agreement, it should be noted that a second deep-seated failure mechanism is 

weakly developed in Plaxis 2D (Fig. 45c). Furthermore, Davis B gets determined due to 

three iterations. All the proved failure mechanisms are very similar and do not interact 

with the defined water table. 

 
Fig. 45 Case 1 - Davis A: (a) adaptive mesh refinement of upper-bound FELA; (b) total 

displacements of upper-bound FELA; (c) total displacements of SRFEA 

Tab. 18 compares the factors of safety based on Davis A and Davis B with the non-

associated SRFEA. Both approaches are conservative in contrast to the SRFEA 

assuming a dilatancy angle ’ = 0°. The differences in the safety factor between 

(a) (b) 

(c) (d) 

(a) (b) (c) 
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approach A and B are not as large as in the previous example. This is due to the fact 

that the failure mechanism is greatly dependent on the properties of structural elements. 

Tab. 16 Case 1: Comparison of LEA and SRFEA 

*LEA*, SRFEA 

 Morgenstern & 
Price 

Slide 

’ = ’ 

Plaxis 2D 

’ = 0° 

Plaxis 2D 

Davis A (’ = 0°) 

Plaxis 2D 

FoS *1.26 1.26 1.12 1.08 

Tab. 17 Case 1: Comparison of FELA 

FELA 

 ’ = ’ 

Optum G2 

Davis A (’ = 0°) 

Optum G2 

Davis B (’ = 0°) 

Optum G2 

FoSMean 1.25 1.07 1.09 

Tab. 18 Case 1: Comparison of Davis A and Davis B with SRFEA (’ = 0°) 

% Difference 

Davis A 

= 100 (FELA (Davis A) - SRFEA (’ = 0°)) / 
FELA (Davis A) 

Davis B 

= 100 (FELA (Davis B) - SRFEA (’ = 0°)) / 
FELA (Davis B) 

- 4.7 - 2.8 

4.2.3 Safety analyses of case 2 

Safety analyses in case 2 are performed according to the original as well as to a lowered 

water table. A phreatic water table is used for the SRFEA performed in Plaxis 2D. As a 

consequence, no flow is considered. Optum G2 does not allow the user to choose 

phreatic conditions and always determines a steady state groundwater flow. As long as 

the water table is not inclined, the phreatic and steady state calculations show the same 

results because no gradient is present (Krabbenhøft et al. 2016). 

In order to compare the analysis based on an inclined phreatic water level with steady 

state groundwater flow conditions, some modifications in Optum G2 are needed. At each 

kink of the water table a hydrostatic pore water distribution along vertical lines is 

prescribed. As shown in Fig. 46c, the resulting pore water distribution is in very good 

agreement with the phreatic distribution of Plaxis 2D (Fig. 46a). The pore pressure 

distribution along the vertical lines does not show the appropriate scaling in Fig. 46c. Not 
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modifying the water pressure distribution would result in large FoS differences between 

the SRFEA and the FELA. Additional analyses attached to appendix 10.3.3 show results 

related to several water tables (without prescription of pore water pressures along lines). 

 
Fig. 46 Case 2 - Comparison of water pressure distributions: (a) Plaxis 2D with phreatic water 

table; (b) Optum G2 with steady state ground water flow; (c) Optum G2 with steady state 
ground water flow with modifications 

The two discussed water tables are shown in Fig. 47. The black dashed line represents 

the original water table (used for case 1), whereas the red full line represents a long-term 

water lowering by horizontal drainage tubes installed above the berm. 

 
Fig. 47 Original water table (black dashed line), lowered water table (red full line) 

Due to the changing conditions in the slope angle and removal of soil nails and geogrids, 

the failure mechanism changes. As shown in Fig. 48 and Fig. 49, the failure mechanism 

is shifted behind the pile trestle for both water tables. Moreover, one can see that the 

SRFEA and the FELA for both water tables fail in an analogous manner. The FELA and 

the SRFEA assuming associated plasticity present (as expected) a good agreement in 

the factor of safety (Tab. 19 and Tab. 20). 

 
Fig. 48 Case 2 according to the original water table - total displacements: (a) SRFEA (’ = ’), 

(b) FELA lower-bound, (c) FELA upper-bound 

(a) (b) (c) 

(a) (b) (c) 
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Fig. 49 Case 2 according to the lowered water table - total displacements: (a) SRFEA (’ = ’), 

(b) FELA lower-bound, (c) FELA upper-bound 

In addition, a non-associated SRFEA, Davis A and Davis B are applied to both the 

original and the lowered water table. For Davis B, the cohesion and friction angle are 

modified according to three iterative procedures. The results of adaptive mesh 

refinements in Optum G2 (Fig. 50b and Fig. 51b) present a higher mesh density along 

the slipping surface. Furthermore, the following two figures highlight that the failure 

mechanism of the SRFEA (’ = 0°) is in good agreement with the failure mechanism of 

Davis B. 

 
Fig. 50 Case 2 according to the original water table - total displacements: (a) SRFEA (’ = 0°), 

(b) Davis B - FELA upper-bound mesh refinement, (c) Davis B - FELA upper-bound 

 
Fig. 51 Case 2 according to the lowered water table - total displacements: (a) SRFEA (’ = 0°), 

(b) Davis B - FELA upper-bound mesh refinement, (c) Davis B - FELA upper-bound 

By comparing the safety factors of Davis A and Davis B with a non-associated SRFEA, 

it becomes apparent that both are conservative, but the Davis B offers a better 

agreement with the calculation of Plaxis 2D (Tab. 21). Whereas procedure A deviates 

about 6.3 % to 7.6 % compared to the SRFEA, procedure B shows differences between 

1.6 % and 1.7 %. It should be stressed that the lowering of the water table rises the FoS 

of the non-associated SRFEA at about 7.6 %. 

  

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 
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Tab. 19 Case 2: Comparison of SRFEA 

SRFEA  

 ’ = ’ 

Plaxis 2D 

’ = 0° 

Plaxis 2D 

Davis A (’ = 0°) 

Plaxis 2D 

FoS - original w. t. 1.29 1.19 1.10 

FoS - lowered w. t. 1.38 1.28 1.16 

Tab. 20 Case 2: Comparison of FELA 

FELA  

 ’ = ’ 

Optum G2 

Davis A (’ = 0°) 

Optum G2 

Davis B (’ = 0°) 

Optum G2 

FoSMean - original w. t. 1.31 1.12 1.17 

FoSMean - lowered w. t. 1.39 1.19 1.26 

Tab. 21 Case 2: Comparison of Davis A and Davis B with SRFEA (’ = 0°) 

% Difference  

 Davis A 

= 100 (FELA (Davis A) - SRFEA 
(’ = 0°)) / FELA (Davis A) 

Davis B 

= 100 (FELA (Davis B) - SRFEA 
(’ = 0°)) / FELA (Davis B) 

FoS - original w. t. - 6.3 - 1.7 

FoS - lowered w. t. - 7.6 - 1.6 

 

More safety analyses are performed on the upstream slope with modified water tables. 

Two studies including a horizontal water table and no water table are shown in appendix 

10.3.3. Because no gradient arises in both cases, the SRFEA and the FELA are in good 

agreement without the need of prescribing the water pressure distribution along vertical 

lines. 
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5 Slope stability analyses based on six paper 
examples 

5.1 Introduction 

This chapter deals with six slope stability problems shown in Slope stability analysis by 

finite elements (Griffiths & Lane 1999). The paper’s calculations are performed using 8-

noded quadrilateral elements and a finite element program which is based on Program 

6.2 (Smith & Griffith 1998). For all analyses, the authors assume plane strain conditions 

and neglect the formation of tension in the soil. A Mohr-Coulomb failure criterion is used 

for total and effective stress analyses whereby the latter assumes a dilatancy angle ’ = 

0°. It should be noted that the initial stresses are calculated by gravity loading and, except 

for different water tables, no external forces are considered. Safety analyses are 

performed by reducing the strength parameters according to Eq. (20). If no global 

equilibrium and Mohr-Coulomb failure criterion are verified within a user-defined number 

of iteration steps, failure is assumed. Also, associated with this behaviour is a significant 

rise of nodal displacements (Griffiths & Lane 1999). 

The six paper examples are subject of further analytical and numerical analyses. In 

addition to a SRFEA assuming a dilatancy angle ’ = 0°, displacement-based finite 

element analyses with associated plasticity are performed in Plaxis 2D and Optum G2. 

Again, it should be demonstrated that LEA are in good agreement with FELA and 

SRFEA, assuming associated plasticity. Moreover, the following calculations should 

prove that under certain conditions LEA end up with a different factor of safety. Again, 

Davis A and B are applied to all FELA. It is of main interest how well SRFEA assuming 

the modified strength parameters match with those calculations. Moreover, the paper 

examples shall continue to prove the better agreement of Davis B, compared to Davis A, 

with the non-associated calculations. 

Given that all paper examples assume a dilatancy angle ’ = 0°, additional analyses are 

elaborated in section 5.8 with ’ ≠ 0° in order to prove the differences between Davis B 

and Davis C. Those results get compared with factors of safety that arise out of standard 

and user-defined SRFEA (see later). 
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5.2 Example 1 

5.2.1 General information and paper results 

The homogeneous slope is disposed 26.57° to the horizontal and has no foundation layer 

(Fig. 52). The soil body is characterized by a friction angle ’ = 20°, a dilatancy angle ’ 

= 0° and the correlation c’ /  H = 0.05. Griffiths and Lane do not specify a Young’s 

modulus E’ and neither a Posson’s ratio  and assert that elastic parameters do not have 

a big influence on the computed FoS. This statement will be discussed in detail later. 

The finite element analysis, using 200 quadrilateral elements leads to a safety factor 

equal to 1.40. A LEA, using Morgenstern & Price boundary conditions, shows a FoS = 

1.38. (Griffiths & Lane 1999). 

 
Fig. 52 Example 1: Geometry (according Griffiths & Lane 1999) 

5.2.2 Slope stability analysis on example 1 

Since the cohesion, unit-weight and height of the slope are not given precisely, four 

material sets are defined to prove the generalisation of the paper results, as long as the 

correlation c’ /  H is equal to 0.05. The sets are listed in Tab. 22 and meet the mentioned 

correlation. In addition, it is of main interest how the factors of safety are affected by 

elastic parameters. Four different cases with varying standards are defined for each set. 

The Young’s modulus E’ differs between 104 and 106 kN/m², the Poisson’s ratio  

between 0.25 and 0.35. 

Tab. 22 Example 1: Set 1 - 4 

Parameter Unit Set 1 Set 2 Set 3 Set 4 

c’ (kN/m²) 4 5 8 10 

unsat (kN/m³) 16 20 16 20 

H (m) 5 5 10 10 

 

  

1.2 H 2 H 

H 

26.57° 
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To evaluate the paper’s result, both SRFEA with non-associated plasticity (’ = 0°) and 

LEA in accordance to the Morgenstern & Price method are performed in Plaxis 2D and 

Slide. The numerical analyses are realized on a fine mesh and coarse mesh, both using 

6-noded and 15-noded elements (Fig. 53). An overview of the calculations is listed in 

appendix 10.4.1. It is recognized that as long as the correlation c’ /  H = 0.05 is fulfilled, 

the FoS is not changing. The elastic parameters E’ and  do not affect the results for 

example 1. As shown in Fig. 53c and Fig. 53d, the failure mechanism is approximately 

the same for both meshes, while the shear band is defined more precise in the fine mesh. 

 
Fig. 53 Example 1: (a) coarse mesh (233 elements); (b) fine mesh (959 elements); (c) coarse 

mesh: total displacements after safety analysis; (d) fine mesh: total displacements after 
safety analysis 

The FoS based on a LEA is in good agreement with the paper result, showing a 

difference of only 0.7 %. The SRFEA with the coarse mesh and 6-noded elements 

agrees the best with the papers calculations (Tab. 23). 

Tab. 23 Example 1: SRFEA (’ = 0°) and LEA results for E’= 104 kN/m² and  = 0.25 

SRFEA (’ = 0°) LEA 

Coarse mesh (233 elements) Fine mesh (959 elements)  

15-noded 6-noded 15-noded 6-noded Morgenstern & 
Price 

1.35 
1.39  

(paper: 1.40) 
1.35 1.36 

1.37 
(paper: 1.38) 

 

Due to the fact that the safety factor is the same as long as the correlation c’ /  H is 

equal to 0.05, further numerical studies using associated plasticity are performed for set 

1 using a fine mesh with approximately 1000 elements. A look at the Tab. 24 shows that 

the SRFEA with 15-noded elements are in good agreement with the FELA, while the 

analyses using 6-noded elements show a slightly higher safety factor. The failure 

mechanism of the lower and upper bound FELA are presented in Fig. 54. It may be 

(a) (b) 

(c) (d) 
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mentioned that the distribution of incremental shear strains is in good agreement with 

the non-associated SRFEA. 

 
Fig. 54 Example 1: (a) FELA - lower-bound failure mechanism, (b) FELA - upper-bound failure 

mechanism 

Tab. 24 Example 1: SRFEA (’ = ’) and FELA results for E’= 104 kN/m² and  = 0.25 

Associated plasticity (’ = ’) 

 
SRFEA 

Plaxis 2D 

SRFEA 

Optum G2 

FELA 

Optum G2 

6-noded, *Lower 1.39 1.38 *1.36 

15-noded, *Upper 1.38 1.37 *1.38 

*Mean - - *1.37 

 

SRFEA and FELA with modified strength parameters, according to Davis A and Davis B, 

are in good agreement, as shown in Tab. 25. It should be pointed out that SRFEA with 

both 6-noded and 15-noded elements lead to approximately the same safety factor. 

When comparing those with SRFEA (’ = 0°), it is obvious that both Davis approaches 

give lower safety factors with Davis B being less conservative. Davis A differs from the 

non-associated SRFEA about 3.9 % - 4.6 % while Davis B differs about 1.5 % - 2.3 %. 

To assist in understanding, the FoSMean (Davis A, Davis B), according to the FELA, gets 

compared with the 15-noded SRFEA (’ = 0°) performed in Plaxis 2D (Tab. 26). All 

carried out calculations are listed in appendix 10.4.1. 

Tab. 25 Example 1: Davis A and Davis B results for E’= 104 kN/m² and  = 0.25 

Davis A (’ = 0°), Davis B (’ = 0°) 

 
’ = 0° 

SRFEA 
Plaxis 2D 

Davis A 

SRFEA 
Plaxis 2D 

Davis B 

SRFEA 
Plaxis 2D 

Davis A 

FELA 
Optum G2 

Davis B 

FELA 
Optum G2 

6-noded, *Lower 1.36 1.30 1.34 *1.28 *1.31 

15-noded, *Upper 1.35 1.30 1.33 *1.30 *1.33 

*Mean - - - *1.29 *1.32 

(a) (b) 
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Tab. 26 Example 1: Comparison of Davis A and Davis B with the SRFEA (’ = 0°) for E’= 104 
kN/m² and  = 0.25 

% Difference 

 
Davis A 

= 100 (Davis A - SRFEA 
(’ = 0°)) / Davis A 

Davis B 

= 100 (Davis B - SRFEA 
(’ = 0°)) / Davis B 

SRFEA6-noded 

Davis (SRFEA6-noded) - SRFEA6-noded (’ = 0°) 
- 4.6 - 1.5 

SRFEA15-noded 

Davis (SRFEA15-noded) - SRFEA15-noded (’ = 0°) 
- 3.9 - 1.5 

FELA 
Davis (FELAMean) - SRFEA15-noded (’ = 0°) 

- 4.7 - 2.3 

 

5.3 Example 2 

5.3.1 General information and paper results 

For example 2, the slope of section 5.2 gets complemented by a foundation layer of 

thickness H / 2 (D = 1.5). The friction angle ’ = 20°, the dilatancy angle ’ = 0° and the 

correlation c’ /  H = 0.05 are given. Due to the foundation layer, the failure mechanisms 

of the finite element as well as the limit equilibrium analysis pass in both cases 

fractionally below the base of the slope. The safety factors remain unchanged (1.38 using 

the Morgenstern & Price method and 1.40 for the finite element analysis) (Griffiths & 

Lane 1999). 

 
Fig. 55 Example 2: Geometry (according to Griffiths & Lane 1999) 

5.3.2 Slope stability analysis on example 2 

In a first step it was questioned if the 4 parameter sets, shown in Tab. 22, yield different 

safety factors. The reader is referred to appendix 10.4.2 for an overview of all performed 

analyses. It is recognized here too that as long as the correlation c’ /  H = 0.05 is fulfilled, 

1.2 H 2 H 

H 

26.57° 
DH 
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the FoS is not changing. Moreover, the Young’s modulus and Poisson’s ratio do not 

show any influence on the safety factor. 

By looking at the following table, it becomes clear that the number of elements has an 

influence on the resulting safety factor. Simultaneously, the shape function is of decisive 

importance. The second column of Tab. 27 is in good agreement with the finite element 

paper result. The factor of safety stem from the LEA remains unchanged compared to 

example 1 and is equal to 1.37. 

Tab. 27 Example 2: SRFEA (’ = 0°) and LEA results for E’= 104 kN/m² and  = 0.25 

SRFEA (’ = 0°) LEA 

Coarse mesh (254 elements) Fine mesh (1004 elements)  

15-noded 6-noded 15-noded 6-noded Morgenstern & 
Price 

1.33 
1.39  

(paper: 1.40) 
1.32 1.35 

1.37 
(paper: 1.38) 

 

As Griffiths and Lane already demonstrated, the failure mechanism is changing slightly 

due to the additional foundation layer. One can observe at Fig. 56a that the distribution 

of incremental shear strains cuts the slope slightly below the base. 

 
Fig. 56 Example 2: Failure mechanisms of SRFEA (’ = 0°, fine mesh, 15-noded elements) (a) 

and LEA (b) 

Comparing the averaged safety factor of FELA with SRFEA (’ = 0°), it can be shown 

that analyses with 15-noded elements give exactly the same FoS. The calculations with 

6-noded elements result in a slightly higher safety (Tab. 28). 

  

(a) (b) 



 5 Slope stability analyses based on six paper examples 

  

56 Institute of Soil Mechanics and Foundation Engineering 

Tab. 28 Example 2: SRFEA (’ = ’) and FELA results for E’= 104 kN/m² and  = 0.25 

Associated plasticity (’ = ’) 

 
SRFEA 

Plaxis 2D 

SRFEA 

Optum G2 

FELA 

Optum G2 

6-noded, *Lower 1.37 1.37 *1.35 

15-noded, *Upper 1.36 1.36 *1.38 

*Mean - - *1.36 
 

If we compare the non-associated SRFEA with Davis A and Davis B, it becomes clear 

that Davis B is less conservative compared to Davis A. Furthermore, Davis procedures 

in combination with SRFEA and 15-noded elements are in good agreement with FELA 

results (Tab. 29). It follows that the differences between Davis procedures and SRFEA 

with non-associated plasticity are the same (Tab. 30). 

Tab. 29 Example 2: Davis A and Davis B results for E’= 104 kN/m² and  = 0.25 

Davis A (’ = 0°), Davis B (’ = 0°) 

 

’ = 0° 

SRFEA 

Plaxis 2D 

Davis A 

SRFEA 

Plaxis 2D 

Davis B 

SRFEA 

Plaxis 2D 

Davis A 

FELA 

Optum G2 

Davis B 

FELA 

Optum G2 

6-noded, *Lower 1.35 1.29 1.32 *1.27 *1.30 

15-noded, *Upper 1.32 1.28 1.31 *1.29 *1.33 

*Mean - - - *1.28 *1.31 

Tab. 30 Example 2: Comparison of Davis A and Davis B with the SRFEA (’ = 0°) for E’= 104 
kN/m² and  = 0.25 

% Difference 

 
Davis A 

= 100 (Davis A - SRFEA 
(’ = 0°)) / Davis A 

Davis B 

= 100 (Davis B - SRFEA 
(' = 0°)) / Davis B 

SRFEA6-noded 

Davis (SRFEA6-noded) - SRFEA6-noded (’ = 0°) 
- 4.7 - 2.3 

SRFEA15-noded 

Davis (SRFEA15-noded) - SRFEA15-noded (’ = 0°) 
- 3.1 - 0.8 

FELA 
Davis (FELAMean) - SRFEA15-noded (’ = 0°) 

- 3.1 - 0.8 
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5.4 Example 3 

5.4.1 General information and paper results 

Example 3 demonstrates slope stability analyses of an undrained clay with a thin weak 

layer. Instead of calculating with effective stresses, a total stress analysis using a Tresca 

failure criterion (u = 0°) is presented. As shown in Fig. 57, the weak layer (cu2) runs 

parallel to the slope (1:2) in the upper part, then it becomes horizontal in the foundation 

before it is redisposed at about 45° to the horizontal axis. The stability analysis is 

performed for several undrained shear strengths cu2 of the weak layer, while the strength 

of the surrounding material is kept constant and meets the correlation cu1 /  H = 0.25 

(Griffiths & Lane 1999). 

 
Fig. 57 Example 3: Geometry (according to Griffiths & Lane 1999) 

A homogeneous slope (cu1 = cu2) results in the expected circular failure mechanism. By 

gradually reducing the undrained shear strength cu2 in finite elements analysis, the failure 

mechanism changes and develops within the weak layer at a ratio of cu2 / cu1  0.6. In 

addition, LEA using Janbu’s method are performed assuming both three-line wedge and 

circular failure mechanism. For cu2 / cu1 > 0.6, the behaviour is governed by the circular 

failure mechanism and is not significantly affected by the undrained shear strength of the 

thin layer. By dropping below the critical ratio, the linear failure mechanism along the thin 

layer takes over. The results illustrate the main disadvantage of LEA. If the failure 

mechanism is unknown a priori, the chosen shape might lead to an overestimation of 

safety (Griffiths & Lane 1999). 

  

2 H 2 H 

H 

2 H 

2 H 

H 
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5.4.2 Slope stability analysis on example 3 

The geometry of example 3 is subject for further analytical and numerical safety 

analyses. SRFEA using 6-noded as well as 15-noded elements are performed in both 

Plaxis 2D and Optum G2. The safety values get compared with FELA in a second step. 

In addition, LEA, based on Janbu (1954) and Morgenstern & Price (1965), are performed 

in Slide. For both methods, a circular and linear failure mechanism is investigated. 

As shown in Tab. 31, four different parameter sets are considered to clarify if a variation 

of input parameters affects the resulting safety value. All four sets fulfil the correlation cu1 

/  H = 0.25. An undrained stiffness Eu equal to 5000 kN/m² as well as 7000 kN/m² is 

used for the calculations. As shown in appendix 10.4.3, the result is not affected by the 

variation of the input parameters as long as the correlation cu1 /  H = 0.25 holds. 

Tab. 31 Example 3: Set 1 - 4 

Parameter Unit Set 1 Set 2 Set 3 Set 4 

cu1 (kN/m²) 20 25 40 50 

unsat (kN/m³) 16 20 16 20 

H (m) 5 5 10 10 

 

The parameter set 1 with an undrained stiffness Eu = 5000 kN/m² is used for further 

comparisons of SRFEA and FELA. It should be noted that the initial phase in Plaxis 2D, 

determined by gravity loading, does not satisfy the equilibrium for cu2 / cu1 ratios smaller 

than 0.5. Thereby an error message cancels the initial stress analysis because Mstage = 

1 cannot be achieved and in consequence the FoS < 1. As can be seen in Tab. 32, there 

is a good agreement between 15-noded SRFEA and FELA. The safety analyses with 6-

noded elements show a slightly higher safety factor. See Fig. 58 for a graphical 

representation of Tab. 32. It is obvious that the gradient of the curves is changing at a 

ratio of cu2 / cu1  0.6. For small differences between both undrained shear strengths, the 

failure mechanism remains circular (Fig. 59). By dropping below the critical ratio of cu2 / 

cu1  0.6, another failure mechanism along the thin layer forms and determines the safety 

factor. 
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Tab. 32 Example 3: SRFEA and FELA results for set 1 and Eu = 5000 kN/m² 

Parameter SRFEA 
Plaxis 2D 

SRFEA 
Optum G2 

FELA 
Optum G2 

cu2 / cu1 15-n 6-n 15-n 6-n Lower Upper Mean 

1 1.46 1.47 1.45 1.46 1.44 1.46 1.45 

0.9 1.44 1.45 1.43 1.44 1.42 1.45 1.44 

0.8 1.42 1.44 1.41 1.42 1.40 1.43 1.42 

0.7 1.39 1.41 1.39 1.40 1.37 1.41 1.39 

0.6 1.36 1.38 1.36 1.37 1.34 1.38 1.36 

0.5 1.17 1.24 1.17 1.20 1.15 1.20 1.17 

0.4 - 1.01 0.95 0.97 0.93 0.98 0.95 

0.3 - - 0.72 0.75 0.71 0.75 0.73 

0.2 - - 0.50 0.51 0.49 0.52 0.50 

0.1 - - 0.27 0.28 0.26 0.28 0.27 

 

 
Fig. 58 Example 3: Comparison of SRFEA and FELA results 
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The change in failure mechanism is shown for three different ratios of undrained shear 

strength in Fig. 59, Fig. 60 and Fig. 61. 

 
Fig. 59 Example 3 with cu2 / cu1 = 1: (a) SRFEA - Plaxis 2D; (b) SRFEA - Optum G2; (c) FELA, 

lower bound - Optum G2 

 
Fig. 60 Example 3 with cu2 / cu1 = 0.6: (a) SRFEA - Plaxis 2D; (b) SRFEA - Optum G2; (c) FELA, 

lower bound - Optum G2 

 
Fig. 61 Example 3 with cu2 / cu1 = 0.2: (a) SRFEA - Optum G2; (b) FELA, lower bound - Optum 

G2 

Additionally, LEA are performed according to Morgenstern & Price and Janbu’s simplified 

methods. Slide offers the possibility to define a circular as well as a three line wedge 

(linear) failure mechanism for both methods. Without any knowledge about the failure 

mechanisms, both options can lead to an overestimation of the safety (Fig. 62). 

 
Fig. 62 Example 3 with cu2/cu1 = 0.4: (a) Circular failure leads to a FoS = 1.28; (b) three line 

wedge leads to a FoS = 0.92 

Above the critical ratio of cu2 / cu1  0.6, the failure mechanism is governed by a circular 

shape, while below it the three line wedge provides the appropriate mechanism. To 

conclude, the Morgenstern & Price method, compared to Janbu’s method, leads to safety 

values which are in better agreement with FELA (Fig. 63). 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) 

(a) (b) 
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Fig. 63 Example 3: Comparison of FELA and LEA results 
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5.5 Example 4 

5.5.1 General information and paper results 

For example 4, the same geometry is used as in example 3, with the lack of the weak 

layer. However, a foundation layer with the undrained shear strength cu2 is taken into 

account (Fig. 64). For all analyses, cu1 /  H = 0.25 holds true, while cu2 gets decreased 

stepwise. For cu2 >> cu1, a shallow failure mechanism cutting through the toe of the slope 

is observed, while for cu2 << cu1, a deep-seated mechanism is developed. Griffiths and 

Lane come to the conclusion that the change in failure mechanism occurs approximately 

at a ratio of cu2 / cu1  1.5 for both FEA and LEA (Griffiths & Lane 1999). 

 
Fig. 64 Example 4: Geometry (according to Griffiths & Lane 1999) 

5.5.2 Slope stability analysis on example 4 

In this case, the calculations carried out in example 3 are performed, with the difference 

that the LEA is used with a circular failure mechanism and Morgenstern & Price method 

only. Appendix 10.4.4 proves that the variation of input parameters is not affecting the 

factor of safety as long as the correlation cu1 /  H = 0.25 holds. Furthermore, the variation 

of undrained stiffness Eu does not affect the safety factors. 

The parameter set 1 (Tab. 31) with an undrained stiffness of Eu = 5000 kN/m² is used for 

further comparisons of SRFEA and FELA. Initial phases in Plaxis 2D, determined by 

gravity loading, do not satisfy an equilibrium for cu2 / cu1 ratios smaller than 0.75. As 

mentioned in the previous section, the FoS becomes smaller than 1 (for cu2 / cu1 < 0.75). 

The following table shows that the safety factors according to FELA and SRFEA are in 

good agreement. Again, the 6-noded strength reduction analyses result in slightly higher 

safety values. It’s obvious, however, that the safety factors of all analyses fall faster when 

dropping below cu2 / cu1  1.5. For ratios larger than 1.5, the safety factor remains almost 

2 H 2 H 

H 

2 H 

2 H 

H 
cu2 

cu1 
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constant, because the shallow failure mechanism does not interact with the foundation 

layer. This connection becomes clear by looking at Fig. 65, Fig. 66 and Fig. 67. By 

undercutting cu2 / cu1  1.5, another deep seated failure mechanism arises. With a further 

decrease of the undrained shear strength cu2, the shallow failure mechanism disappears 

(Fig. 67). 

Tab. 33 Example 4: SRFEA and FELA results for set 1 and Eu = 5000 kN/m² 

Parameter SRFEA 
Plaxis 2D 

SRFEA 
Optum G2 

FELA 
Optum G2 

cu2 / cu1 15-n 6-n 15-n 6-n Lower Upper Mean 

4 2.04 2.07 2.02 2.05 1.99 2.05 2.02 

3.5 2.04 2.07 2.02 2.04 1.99 2.05 2.02 

3 2.04 2.07 2.02 2.04 1.99 2.05 2.02 

2.5 2.04 2.07 2.02 2.04 1.99 2.05 2.02 

2 2.04 2.07 2.02 2.04 1.99 2.05 2.02 

1.5 2.02 2.04 2.02 2.04 1.99 2.05 2.02 

1 1.46 1.47 1.45 1.46 1.44 1.46 1.45 

0.75 1.15 1.17 1.15 1.16 1.14 1.16 1.15 

0.5 - - 0.85 0.86 0.84 0.86 0.85 

0.25 - - 0.54 0.55 0.53 0.55 0.54 
 

 
Fig. 65 Example 4 with cu2 / cu1 = 2: (a) SRFEA - Plaxis 2D; (b) SRFEA - Optum G2; (c) FELA, 

upper bound - Optum G2 

 
Fig. 66 Example 4 with cu2 / cu1 = 1.5: (a) SRFEA - Plaxis 2D; (b) SRFEA - Optum G2; (c) FELA, 

upper bound - Optum G2 

 
Fig. 67 Example 4 with cu2 / cu1 = 0.75: (a) SRFEA - Optum G2; (b) FELA, upper bound - Optum 

G2 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 
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In addition, limit equilibrium analyses (Morgenstern & Price) get determined for several 

cu2 / cu1 ratios. Fig. 68 shows that 15-noded SRFEA, FELA and LEA are in good 

agreement with each other. 

 
Fig. 68 Example 4: Comparison of FELA, SRFEA and LEA results 
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5.6 Example 5 

5.6.1 General information and paper results 

A homogeneous slope without foundation layer, disposed to the horizontal with 26.57° 

(1:2), is the object of example 5 analyses. Several horizontal water tables with a vertical 

distance L from the crest get analysed (Fig. 69) in order to detect which L / H ratio 

provides the lowest safety (Griffiths & Lane 1999). 

 
Fig. 69 Example 5: Geometry (according to Griffiths & Lane 1999) 

The problem can be seen as a slow drawdown process where the water table is initially 

defined above the crest (L / H = - 0.2) and gets lowered to the base (L / H = 1). An 

effective stress analysis with friction angle ’ = 20°, dilatancy angle ’ = 0° and c’ /  H = 

0.05 provides the lowest FoS  1.3 when L / H  0.7. The constant cohesive strength of 

the slope and the changing relation of soil weight and shear strength due to the draw-

dawn process are responsible for this behaviour. As long as L / H < 0.7, the increased 

frictional strength of the soil has a proportionally smaller stabilizing effect than the 

increased unit weight. For larger ratios (L / H > 0.7), the frictional strength has a greater 

influence compared to the increased unit weight, therefore the safety factor rises again. 

A limit equilibrium analysis and a finite element analysis show that the FoS = 1.85 

remains constant for L / H < 0. As discussed in example 1, analyses without any free 

surface (L / H = 1) lead to a FoS  1.4 (Griffiths & Lane 1999). 

5.6.2 Slope stability analysis on example 5 

Due to the fact that the cohesion c’, the unit-weight  and the height H are given by the 

correlation c’ /  H = 0.05, the six parameter sets shown in Tab. 34 are object to SRFEA 

with non-associated plasticity (’ = 0°) while using 6-noded elements in Plaxis 2D. The 

safety factors for the different L / H ratios are listed in appendix 10.4.5. 
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Tab. 34 Example 5: Set 1 - 6 

Parameter Unit Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

c’ (kN/m²) 4 5 6 8 10 12 

unsat = sat (kN/m³) 16 20 24 16 20 24 

H (m) 5 5 5 10 10 10 

 

Fig. 70 shows that, as long as the unit-weight is kept constant and the correlation is equal 

to 0.05, the other two input parameters can be modified and no change in the safety 

factor occurs. The parameter sets 2 and 5, with minimum and maximum safety factors 

equal to 1.28 and 1.83, show the best accordance with the paper results. The slight 

differences between the results of set 2 and the ones stated in the paper can be deduced 

from a higher number of elements in Plaxis 2D. 

 

Fig. 70 Example 5: Comparison of SRFEA (’ = 0°, 6-noded elements) 

The following calculations are performed with parameter set 2. SRFEA with associated 

plasticity are in good agreement with FELA. In this connection, it is worthwhile to mention 

that the calculations with 6-noded elements give a slightly higher FoS. An overview of 

the discussed calculations can be found in appendix 10.4.5. In addition, LEA are carried 

out to highlight that the Morgenstern & Price method is in good agreement with finite 

element analyses (’ = ’). A closer look at Fig. 71 and Fig. 72 confirm this. 
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Fig. 71 Example 5: Comparison of SRFEA (’ = ’) results 

 
Fig. 72 Example 5: Comparison of SRFEA (’ = ’), FELA and LEA results 
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Next, it shall be analysed how well Davis A and Davis B agree with the non-associated 

calculations performed in Plaxis 2D. As Tab. 35 shows, Davis A as well as Davis B 

(according to FELA) agree better with the 15-noded analyses. As mentioned before for 

associated plasticity, 6-noded analyses show a slightly higher FoS. 

Tab. 35 Example 5: Comparison of Davis A and Davis B results with SRFEA (’ = 0°) 

Davis A (’ = 0°), Davis B (’ = 0°) 

Parameter 
’ = 0° 
SRFEA 

Plaxis 2D 

Davis A 
SRFEA 

Plaxis 2D 

Davis B 
SRFEA 

Optum G2 

Davis A 
FELA 

Optum G2 

Davis B 
FELA 

Optum G2 

L / H 15-n 6-n 15-n 6-n 15-n 6-n Mean Mean 

- 0.2 1.81 1.83 1.72 1.73 1.79 1.80 1.70 1.77 

- 0.1 1.81 1.83 1.72 1.73 1.79 1.81 1.70 1.77 

0.0 1.81 1.83 1.72 1.73 1.79 1.80 1.70 1.76 

0.1 1.68 1.70 1.60 1.62 1.67 1.68 1.59 1.65 

0.2 1.55 1.57 1.49 1.50 1.54 1.55 1.48 1.53 

0.3 1.44 1.46 1.39 1.40 1.43 1.44 1.38 1.43 

0.4 1.36 1.38 1.32 1.33 1.35 1.36 1.31 1.35 

0.5 1.30 1.33 1.27 1.27 1.30 1.31 1.26 1.29 

0.6 1.27 1.29 1.23 1.24 1.26 1.27 1.23 1.26 

0.7 1.26 1.28 1.22 1.23 1.25 1.26 1.22 1.24 

0.8 1.27 1.29 1.23 1.24 1.26 1.27 1.23 1.26 

0.9 1.30 1.32 1.26 1.27 1.29 1.30 1.25 1.29 

1.0 1.35 1.36 1.30 1.30 1.33 1.34 1.29 1.32 

 

Fig. 73, Fig. 74 and Fig. 75 demonstrate the conservativeness of the original and 

enhanced Davis approach compared to SRFEA (’ = 0°). It is recognizable that Davis B 

clearly agrees better with non-associated analyses. When comparing both Davis 

approaches, according to FELA with non-associated SRFEA, it can be seen that Davis 

A differs at a maximum of 6.5 % while Davis B is at 2.5 %. 
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Fig. 73 Example 5 - SRFEA, 6-noded: Comparison of Davis approaches and SRFEA (’ = 0°) 

 
Fig. 74 Example 5 - SRFEA, 15-noded: Comparison of Davis approaches and SRFEA (’ = 0°) 
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Fig. 75 Example 5 - FELA: Comparison of Davis approaches and SRFEA (’ = 0°) 

 

5.7 Example 6 

5.7.1 General information and paper results 

A two-side earth embankment including a free (water) surface is object of these 

numerical and analytical analyses. The downstream slope is disposed about 23° to the 

horizontal and slightly steeper than the upstream slope. The homogeneous embankment 

is characterized by a friction angle ’ = 37°, a dilatancy angle ’ = 0°, a cohesion c’ = 

13.8 kN/m² and an unit-weight unsat = sat = 18.2 kN/m³. The limit equilibrium analysis 

leads to a safety factor equal to 1.90 while considering a free (water) surface, as it is 

shown in Fig. 76. A second case without any free surface gives a FoS = 2.42. 

 
Fig. 76 Example 6: Geometry (according to Griffiths & Lane 1999) 

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

-0.2 0 0.2 0.4 0.6 0.8 1

F
oS

 [-
]

L/H [-]

SRFEA (ψ' = 0°), 15 noded - Plaxis 2D Davis A (FELA, Mean) - Optum G2

Davis B (FELA, Mean) - Optum G2

33.5 m 

17.1 m 

7.3 m 

124.4 m 33.5 m 

7.3 m 

21.3 m 

23° 18° 

Reservoir level 



5 Slope stability analyses based on six paper examples  

  

Institute of Soil Mechanics and Foundation Engineering 71 

The failure occurs for both cases on the steeper slope, whereby the corresponding failure 

mechanisms are slightly different. A toe failure is shown for case 2 while a deeper 

mechanism (cutting through the foundation layer) occurs when the free surface is 

considered (Griffiths & Lane 1999). 

5.7.2 Slope stability analysis on example 6 

The results of SRFEA, FELA and LEA will be discussed in this chapter. The two cases 

are considered separately. Due to the fact that both elastic parameters E’ and  are not 

given, the calculations are performed for Poisson’s ratios 1 = 0.25 and 2 = 0.35. As 

shown in appendix 10.4.6, both sets lead to the same safety values. The Young’s 

modulus is thereby kept constant (E’ = 104 kN/m²), because no influence on the safety 

factor was determined in previous analyses. It should be noted that the results for 1 get 

discussed in this chapter. 

The LEA with the Morgenstern & Price method, assuming a circular failure mechanism, 

leads to a FoS = 2.46, which differs approximately 1.7 % from the paper’s result. Tab. 

36 shows that numerical analyses, assuming associated plasticity, are in good 

agreement with the analytical results. The safety factors, which result from SRFEA with 

6-noded elements, give higher values of 1.2 %. The failure mechanism going through 

the toe of the slope is shown in Fig. 77 for all SRFEA (’ = ’), FELA and LEA. 

 
Fig. 77 Example 6 without free surface – failure mechanism: Comparison of SRFEA (’ = ’) 

with 15-noded elements (a), FELA (b) and LEA (c) 

Furthermore, SRFEA in accordance with non-associated plasticity get performed with 6- 

as well as 15-noded elements. By comparing those safety values with Davis A and B 

results, it is obvious that the original Davis is way more conservative compared to the 

(a) 

(b) 

(c) 
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enhanced one. Procedure A provides 20.4 % to 21.8 % lower safety factors compared 

to the non-associated SRFEA. On the other hand, procedure B is in very good agreement 

with the mentioned analyses, showing differences of 0.9 % to 2.1 % (Tab. 38). 

Tab. 36 Example 6 without free surface: Comparison of SRFEA (’ = ’) and FELA 

Associated plasticity (’ = ’) 

 
SRFEA 

Plaxis 2D 

SRFEA 

Optum G2 

FELA 

Optum G2 

6-noded, *Lower 2.47 2.47 *2.43 

15-noded, *Upper 2.45 2.44 *2.49 

*Mean - - *2.46 

Tab. 37 Example 6 without free surface: Comparison of Davis A and Davis B 

Davis A (’ = 0°), Davis B (’ = 0°) 

 

’ = 0° 

SRFEA 

Plaxis 2D 

Davis A 

SRFEA 

Plaxis 2D 

Davis B 

SRFEA 

Plaxis 2D 

Davis A 

FELA 

Optum G2 

Davis B 

FELA 

Optum G2 

6-noded, *Lower 2.40 1.97 2.35 *1.94 *2.31 

15-noded, *Upper 2.36 1.96 2.33 *1.98 *2.37 

*Mean - - - *1.96 *2.34 

Tab. 38 Example 6 without free surface: Comparison of Davis A and Davis B with SRFEA (’ = 
0°) 

% Difference 

 
Davis A 

= 100 (Davis A - SRFEA 
(’ = 0°)) / Davis A 

Davis B 

= 100 (Davis B - SRFEA 
(’ = 0°)) / Davis B 

SRFEA6-noded 
Davis (SRFEA6-noded) - SRFEA6-noded (’ = 0°) 

- 21.8 - 2.1 

SRFEA15-noded 
Davis (SRFEA15-noded) - SRFEA15-noded (’ = 0°) 

- 20.4 - 1.3 

FELA 
Davis (FELAMean) - SRFEA15-noded (’ = 0°) - 20.4 - 0.9 

 

For case 2, the same calculations are performed with an additional free surface. As 

mentioned in the previous chapter, the failure mechanism changes due to the defined 
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water table. It follows a deeper failure mechanism which cuts through the foundation 

layer, as shown in Fig. 78. The LEA, performed with the Morgenstern & Price method, 

results in a FoS = 1.92 and is in good agreement with associated finite element analyses 

shown in Tab. 39. It should be noted that SRFEA with 15-noded elements performed in 

Plaxis 2D result in slightly lower safety values, differing from LEA about 1.5 %. 

 
Fig. 78 Example 6 with free surface – failure mechanism: Comparison of SRFEA (’ = ’) with 

15-noded elements (a), FELA (b) and LEA (c) 

Tab. 39 Example 6 with free surface: Comparison of SRFEA (’ = ’) and FELA 

Associated plasticity (’ = ’) 

 
SRFEA 

Plaxis 2D 

SRFEA 

Optum G2 

FELA 

Optum G2 

6-noded, *Lower 1.91 1.93 *1.91 

15-noded, *Upper 1.90 1.92 *1.94 

*Mean - - *1.92 

 

As can be seen from Tab. 40 and Tab. 41, Davis B results differ about 1.7 % to 6.9 % 

from non-associated analyses, whereby the calculations according to 6-noded elements 

deviated the most. Again, Davis A gives very conservative results. 

This example is used to show one possible problem while performing the Davis 

approach. SRFEA may lead to different failure mechanisms, when performing 

associated or non-associated analyses. In such cases, Davis A and B might provide the 

same mechanism as SRFEA with an associated flow rule. For example 6, the failure 

mechanism near the top of the embankment differs from analyses with an associated 

(a) 

(b) 

(c) 
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and one with a non-associated flow rule. From Fig. 79, it is apparent that the failure 

mechanism according to Davis B is in good agreement with SRFEA (’ = ’). 

Tab. 40 Example 6 with free surface: Comparison of Davis A and Davis B 

Davis A (’ = 0°), Davis B (’ = 0°) 

 

’ = 0° 

SRFEA 

Plaxis 2D 

Davis A 

SRFEA 

Plaxis 2D 

Davis B 

SRFEA 

Plaxis 2D 

Davis A 

FELA 

Optum G2 

Davis B 

FELA 

Optum G2 

6-noded, *Lower 1.87 1.52 1.75 *1.52 *1.76 

15-noded, *Upper 1.80 1.52 1.75 *1.55 *1.79 

*Mean - - - *1.53 *1.77 

Tab. 41 Example 6 with free surface: Comparison of Davis A and Davis B with SRFEA (’ = 0°) 

% Difference 

 
Davis A 

= 100 (Davis A - SRFEA 
(’ = 0°)) / Davis A 

Davis B 

= 100 (Davis B - SRFEA 
(’ = 0°)) / Davis B 

SRFEA6-noded 
Davis (SRFEA6-noded) - SRFEA6-noded (’ = 0°) 

- 23.0 - 6.9 

SRFEA15-noded 
Davis (SRFEA15-noded) - SRFEA15-noded (’ = 0°) 

- 18.4 - 2.9 

FELA 
Davis (FELAMean) - SRFEA15-noded (’ = 0°) - 17.6 - 1.7 

 

 
Fig. 79 Example 6 with free surface – failure mechanism: Comparison of SRFEA (’ = 0°) (a), 

FELA (b) and FELA with Davis B (’ = 0°) parameters (c) 
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5.8 Comparison of Davis A, Davis B and Davis C 

5.8.1 General information 

All slope stability analyses up to this point were performed either with associated 

plasticity or a dilatancy angle ’ = 0°. For Davis procedures B and C, the latter provide 

the same safety factors. For a better understanding, please refer to section 3.3.3. It has 

been demonstrated that procedures A and B supply conservative results. 

Two geometries are used to elaborate how the effective friction angle ’, the degree of 

non-associativity  = ’ - ’ and the cohesion c’ influence the differences between Davis 

and non-associated SRFEA. Particular emphasis is given to the comparison of Davis B 

and Davis C. While procedure B is simultaneously modifying the friction angle ’ and 

dilatancy angle ’, the latter one is kept constant for procedures A and C. Therefore, 

Davis A and C will be compared with the standard strength reduction of Plaxis 2D, 

whereby the dilatancy angle ’ is kept constant until the reduced effective friction angle 

’red. is the same. Thereupon, both get concurrently reduced. Since the friction angle and 

dilatancy angle get reduced at the same time, Davis B is compared with a user-defined 

strength reduction. All SRFEA are performed in Plaxis 2D with gravity loading as the 

initial phase. 

5.8.2 Study 1: Variation of ’ and  

The study consists of two different geometries. Slope 1 is disposed 26.57° (1:2) to the 

horizontal, while slope 2 is inclined by 45°. The dimensions for both cases are shown in 

Fig. 80. 

 
Fig. 80 Geometry of slope 1 (a) and slope 2 (b) 

The homogeneous slopes are characterized by a unit-weight of unsat = 16 kN/m³. 

However, the cohesion for both cases is different. A complete overview of the soil 

parameters is listed in Tab. 42. The dilatancy angle (equal to friction angle) gets reduced 

in intervals of five, until zero is reached. This is done for the effective friction angles ’1 
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= 25°, ’2 = 30°, ’3 = 35° and ’4 = 40°. The safety values of SRFEA are listed in 

appendix 10.4.7. 

Tab. 42 Study 1: Soil properties 

Soil parameters Unit Slope 1 Slope 2 

Constitutive model - Mohr-Coulomb Mohr-Coulomb 

unsat (kN/m³) 16 16 

c’ (kN/m²) 2 5 

’ (°) 25; 30; 35; 40 25; 30; 35; 40 

’ (°) ’; ’ - n ∙ 5; 0° ’; ’ - n ∙ 5; 0° 

 

5.8.3 Study 2: Variation of c’ and  for ’ = 30° 

Slope 1 is disposed 26.57° to the horizontal and will be subject to further investigations. 

Study 2 tries to figure out how cohesion influences the difference between Davis 

calculations and non-associated SRFEA. For this purpose, the effective friction angle ’ 

= 30° is kept constant, while the cohesion will vary between 0 and 10 kPa (Tab. 43). 

Again, Davis A, B and C get compared with standard as well as user-defined SRFEA. 

The calculations are listed in appendix 10.4.7. 

Tab. 43 Study 2 - soil properties 

Soil parameters Unit Slope 1 

Constitutive model - Mohr-Coulomb 

unsat (kN/m³) 16 

c’ (kN/m²) 0; 2; 5; 10 

’ (°) 30 

’ (°) ’; ’- n*5; 0° 

 

At this point, it should be noted that Davis C might supply wrong results. It has been 

mentioned in Tab. 3 that in certain circumstances the reduced effective friction angle 

according to Davis * can become smaller than ’. Since such a state makes no sense, 

*  ’ has to be ensured. If one considers for example a friction angle ’ = 35°, a 

cohesion c’ = 2 kPa and the geometry of slope 1, Fig. 81 shows that for  < 15° the FoS 
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decreases significantly with decreasing degree of non-associativity (pink dashed line). 

This goes back to the fact that the reduced friction angle * is smaller than the dilatancy 

angle ’ for  < 15°. The results of Davis C analyses, presented in chapter 5.8.4, are 

modified by a simple cut-off criterion to fulfil the condition *  ’. 

 

Fig. 81 Range where modification of Davis C is required to ensure *  ’ 

5.8.4 Comparison of the results 

The results are shown for slope 1. All statements are valid for slope 2 as well. 

At Fig. 82, it becomes clear that standard and user-defined SRFEA as well as Davis B 

and Davis C supply the same results for a dilatancy angle ’ = 0°. Section 3.3.3 explains 

the reasons for this. Furthermore, it becomes clear that, with an increasing degree of 

non-associativity ( = ’ - ’), the differences between all Davis approaches and 

standard or user-defined SRFEA become larger. Fig. 82 illustrates that with an 

increasing friction angle ’ those differences become significantly larger for Davis A, 

while differences for Davis B and C do not rise as much. As a result, the differences 

between the original Davis and the enhanced procedures increase. In order to gain a 

better understanding of this relations, Tab. 44 and Tab. 45 summarize the results for 

several effective friction angles, always assuming a dilatancy angle ’ = 0°. If one 

considers two extreme cases with effective friction angles ’ equal to either 25° or 40°, 

the differences between Davis A and standard SRFEA increase from - 5.7 % to - 24.6 

%, while Davis B’s rise from - 1.6 % to - 4.0 %. Hence, the differences between Davis A 

and Davis B rise from - 4.1 % to - 19.8 %. The results for the dilatancy angles ’ ≥ 0° are 

listed in appendix 10.4.7. 
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The differences between Davis B and user-defined SRFEA as well as the differences 

between Davis C and standard SRFEA show approximately the same values. In Fig. 83, 

it becomes obvious that the blue and green dashed lines have got a good correlation. 

The black dashed Reference lines represent the standard and user-defined SRFEA 

results. Starting from there the differences are added in the positive direction. For a better 

view different Reference values are chosen for the friction angles ’ = 25° - 40°. 

Tab. 44 Study 1 - slope 1 (c’ = 2 kPa): Comparison of SRFEA (’ = 0°), Davis A and Davis B 

SRFEA (’ = 0°), Davis A, Davis B  

Effective friction 
angle ’ 

Standard SRFEA 

Plaxis 2D 

Davis A 

Plaxis 2D 

Davis B 

Plaxis 2D 

’ = 25° 1.29 1.22 1.27 

’ = 30° 1.55 1.39 1.49 

’ = 35° 1.78 1.53 1.73 

’ = 40° 2.08 1.67 2.00 

Tab. 45 Study 1 - slope 1 (c’ = 2 kPa): Comparison of Davis A and Davis B with SRFEA (’ = 
0°) 

% Difference 

Effective friction 
angle ’ 

Davis A vs. SRFEA 

= 100 (Davis A - 
SRFEA (’ = 0°)) / 

Davis A 

Davis B vs. SRFEA 

= 100 (Davis B - 
SRFEA (’ = 0°)) / 

Davis B 

Davis A vs. Davis B 

= 100 (Davis A - Davis 
B) / Davis A 

’ = 25° - 5.7 - 1.6 - 4.1 

’ = 30° - 11.5 - 4.0 - 7.2 

’ = 35° - 16.3 - 2.9 - 13.1 

’ = 40° - 24.6 - 4.0 - 19.8 

 

Study 2 demonstrates similar results as study 1. Keeping the friction angle constant and 

varying the cohesion between 0 and 10 kN/m² leads to the conclusion that with 

increasing cohesion Davis A becomes more conservative compared to the standard 

strength reduction. As it can be seen in Fig. 84 and Fig. 85, Davis B and Davis C are not 

strongly affected by the variation of cohesion. Again, the differences between Davis B 

and user-defined SRFEA as well as the differences between Davis C and standard 
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strength reductions are approximately the same. Despite the change of non-associativity 

, the green and blue dashed lines do match well in Fig. 85. 

In conclusion, it can be said that the larger the friction angle ’, the cohesion c’ and the 

degree of non-associativity  are set, the larger the differences between Davis A and 

standard SRFEA get. It should be noted that the differences between Davis B and user-

defined SRFEA as well as Davis C and standard SRFEA are approximately the same. 

Both differences are not strongly affected by the cohesion c’ and the friction angle ’. 

 
Fig. 82 Study 1 - slope 1: Standard SRFEA, user-defined SRFEA, Davis A, Davis B and Davis 

C results for different  and ’ 
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Fig. 83 Study 1 - slope 1: Differences between Davis A and standard SRFEA, Davis B and user-

defined SRFEA and Davis C and standard SRFEA for different  and ’ 
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Fig. 84 Study 2 - slope 1: Standard SRFEA, user-defined SRFEA, Davis A, Davis B and Davis 

C results for different  and c’ 
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Fig. 85 Study 2 - slope 1: Differences between Davis A and standard SRFEA, Davis B and user-

defined SRFEA and Davis C and standard SRFEA for different  and c’ 
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6 φ - ν inequality 

For most of Griffiths and Lane’s paper examples the elastic parameters Young’s modulus 

E’ and Poisson’s ratio  were not given. The variation of these parameters show that E’ 

has no influence on the safety factor at all, while  can lead to small differences in some 

cases. The reason for this behaviour could possible lie in the so-called  -  inequality. 

6.1 Derivation of the  -  inequality 

To get a better idea of the following steps, a rigid cylinder filled with homogeneous dry 

soil is used for the following explanations. Considered is a free top surface, between 

cylinder and soil no friction is acting. By assuming elastic soil properties and gravity 

acting on the domain, Eq. (50) and Eq. (51) define the vertical and horizontal earth 

pressure. The z-axis, directed positively downwards, starts on top of the free surface. 

The earth pressure coefficient at rest K0 is defined according to Eq. (52). 

�ଵ = ℎ ( 50 ) �ଷߛ− = �ଶ = −K଴γh ( 51 ) ܭ଴ = �ͳ − � ( 52 ) 

It should be noted that no point in the soil can ever fail, because the system is horizontally 

confined. Furthermore, a Mohr-Coulomb failure criterion is used. Substituting Eq. (50) 

and Eq. (51) into Eq. (53) and letting the height h go towards infinity, the relation for the 

 -  inequality is build (Eq. (54)). 

ሺͳ + sin �’ሻ�ଷ − ሺͳ − sin �’ሻ�ଵ ൑ ʹܿ cos �’ ( 53 ) 

sin �’ ൒ ͳ − ͳܭ + ܭ = ͳ − ʹ� ( 54 ) 

Hence one can imply that the whole soil would fail if the inequality is not guaranteed 

(sin’ < 1 - 2). This is particularly the case for cohesionless soils in an infinite half space 

or for the mentioned cylinder. Obviously, this cannot be considered to be correct (Zheng 

et al. 2005). 

It needs to be stated that the expressions  -  inequality satisfied or  -  inequality 

given mean that Eq. (54) is fulfilled. If this is not the case,  -  inequality neglected or  

-  inequality not given will be stated. 
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6.2 Scheme of analysis 

In order to establish whether the  -  inequality has an influence on the computed safety 

factor, two scenarios get compared where the first neglects and the second satisfies the 

correlation. The scheme of analysis is shown in the following paragraph. 

To ensure that the  -  inequality is not satisfied, the first case is assuming a limit 

condition for the input. The friction angle ’ and the Poisson’s ratio  have been chosen 

so that sin’ equals 1 - 2 and thus Eq. (55) gives unity ( = 1). When considering a 

strength reduction with a constant , any further decrease of the friction angle leads to a 

state where the correlation is neglected. 

� = sin �’ͳ − ʹ� = ͳ ( 55 ) 

Eq. (20) is used to determine friction angle ’mob. and cohesion c’mob. at failure. To ensure 

a given inequality for scenario two, a modified Poisson’s ratio mod. is determined 

according to Eq. (56). 

�௠௢ௗ. = ͳʹ (ͳ − ሺsin �’௠௢௕./�ሻ) ( 56 ) 

The original friction angle with the modified Poisson’s ratio mod. enables a strength 

reduction where the inequality is always satisfied, as long as the safety factor is not 

increasing (Zheng et al. 2005). 

To investigate if a further increase of the Poisson’s ratio choice > mod. shows any influence 

on the factor of safety, further calculations are performed for some selected examples. 

For the sake of completeness, it should be mentioned that any further increase of the 

Poisson’s ratio leads to a clear fulfilment of Eq. (54). 

6.3 Analysis 

6.3.1 General information 

All calculations are performed on a homogeneous slope, five meters high and disposed 

26.57° to the horizontal (Fig. 86). The analyses consider drained conditions and a linear 

elastic-perfectly plastic constitutive model with a Mohr-Coulomb failure criterion. Case 1 

with an effective friction angle ’1 = 37° and a Poisson’s ratio 1 = 0.2 as well as case 2 

with an effective friction angle ’2 = 23.6° and a Poisson’s ratio 2 = 0.3 shall be subject 

to further analyses. For both parameter sets, Eq. (55) is equal to unity. The Young’s 
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modulus E’, the unit-weight unsat, the dilatancy angle ’ and the cohesion c’ get modified 

for both cases, according to Tab. 46. 

 

Fig. 86  -  inequality: Geometry of the slope 

Tab. 46  -  inequality: Variation of the strength and stiffness parameters 

Soil parameters Unit Case 1 Case 2 

E’ (kN/m²) 104; 107 104; 107 

 (-) 0.2; vmod; (vchoice) 0.3; vmod; (vchoice) 

unsat (kN/m³) 16; 20 16; 20 

’ (°) 37 23.6 

’ (°) ’; ’ / 3; ’ / 4; 0 ’; ’ / 3; ’ / 4; 0 

c’ (kN/m²) 0; 2; 4 2; 4 

 

In the first phase, gravity loading is applied in Plaxis 2D, followed by a SRFEA. To 

monitor the change in failure points, a nil-step gets additionally inserted after the initial 

phase. Plaxis 2D uses a tolerated error of 1 % and these tolerances might cause an 

additional load redistribution in the nil-step, as shown in Fig. 87 (Brinkgreve et al. 2016). 

It should be stressed at this point that the amount of failure points is smaller compared 

to the initial phase. 

 
Fig. 87  -  inequality - failure points: Comparison of gravity loading and the following nil-step 

(’1 = 37°, 1 = 0.2, c’ = 2 kN/m², E’ = 104 kN/m², unsat = 16 kN/m³) 

30 m 
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10 m 10 m 10 m 
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Besides any standard and user-defined SRFEA, Davis procedures A, B and C are carried 

out in Plaxis 2D. For all calculations, the domain is discretised by 1035 15-noded 

elements. In addition, SRFEA, FELA, Davis A, Davis B and Davis C are performed in 

Optum G2 with an adaptive mesh refinement. An overview of the calculations for both 

cases is shown in appendix 10.5. 

6.3.2 Comparison of the results 

Analyses with the soil properties according to Tab. 47 are the subject of the following 

discussion. It should be noted that all statements hold true for the other calculations as 

well. 

Tab. 47  -  inequality: Soil parameters used for the evaluation 

Soil parameters Unit Case 1 

E’ (kN/m²) 104 

 (-) 0.2; vmod; vchoice 

unsat (kN/m³) 16 

’ (°) 37 

’ (°) ’; ’ / 3; ’ / 4; 0 

c’ (kN/m²) 2 

 

In the first part, SRFEA with associated plasticity and FELA are going to be compared 

for different Poisson’s ratios . Special emphases is put on the development of failure 

points. Alongside the development of those failure points, it is of main interest to clarify 

if the  -  inequality affects the factor of safety. For this particular case, additional safety 

analyses are made with a Poisson’s ratio of choice = 0.4. In order to gain a better 

understanding of the following tables, it should be said that for each Poisson’s ratio (, 

mod., choice) two safety analyses (analysis 1, analysis 2) are performed. The effective 

friction angle and cohesion listed in Tab. 47 are used as input parameters for analysis 1, 

while the resulting friction angle and cohesion at failure (’mob., c’mob.) are the input 

parameters for analysis 2. Logically, this also means that the safety factor of the latter 

analysis has to be equal to unity (FoS = 1). The amount and the distribution of failure 

points (or yield function for Optum G2) shown in the initial phase of analysis 2 are 

important, because they represent the failure condition of analysis 1. Summarized in one 

sentence, the upper figures show the plastic points at the initial state, while the figures 



6 φ - ν inequality  

  

Institute of Soil Mechanics and Foundation Engineering 87 

at the bottom represent the state of failure (this statement refers to Tab. 48, Tab. 49, 

Tab. 50). Tab. 48, Tab. 49 and Tab. 50 clearly indicate the significant influence the 

Poisson’s ratio  has on the amount of plastic points. The amount of plastic points is 

further decreasing for the chosen Poisson’s ratio choice = 0.4. Furthermore it could be 

seen that the  -  inequality does not influence the safety factors. By varying  between 

0.2 and 0.4, the FoS does not change remarkably for SRFEA and FELA. The safety 

values differ between 1.98 and 2.00. 

Tab. 48 Failure points: SRFEA (’ = ’), Plaxis 2D 

  = 0.2 mod. = 0.323 choice = 0.4 
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’

 =
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   sin ͵͹ = Ͳ.͸Ͳ ൒ ͳ − ʹ ∙ Ͳ.ʹ = Ͳ.͸Ͳ ܵ݋ܨ = ʹͳ.Ͳͳ = tan ͵͹tan ʹͲ.͹ͺ = ૚. ૢૢ 

sin ͵͹ = Ͳ.͸Ͳ ൒ ͳ − ʹ ∙ Ͳ.͵ʹ͵ = Ͳ.͵ͷ ܵ݋ܨ =  ʹͳ.Ͳͳ = tan ͵͹tan ʹͲ.͹͹ = ૚. ૢૢ 

sin ͵͹ = Ͳ.͸Ͳ ൒ ͳ − ʹ ∙ Ͳ.Ͷ = Ͳ.ʹͲ ܵ݋ܨ =  ʹͳ.Ͳͳ = tan ͵͹tan ʹͲ.͹͹ = ૚. ૢૡ 
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   sin ʹͲ.͹ͺ = Ͳ.͵ͷ ൑ ͳ − ʹ ∙ Ͳ.ʹ = Ͳ.͸Ͳ ܵ݋ܨ =  ͳ.Ͳͳͳ.Ͳͳ = tan ʹͲ.͹ͺtan ʹͲ.͹ͺ = ͳ.ͲͲ sin ʹͲ.͹ͺ = Ͳ.͵ͷ ൒ ͳ − ʹ ∙ Ͳ.͵ʹ͵ = Ͳ.͵ͷ ܵ݋ܨ ͳ.Ͳͳͳ.Ͳͳ = tan ʹͲ.͹͹tan ʹͲ.͹͹ = ͳ.ͲͲ 

sin ʹͲ.ͺͲ = Ͳ.͵͸ ൒ ͳ − ʹ ∙ Ͳ.Ͷ = Ͳ.ʹͲ ܵ݋ܨ ͳ.Ͳͳͳ.Ͳͳ = tan ʹͲ.ͺͲtan ʹͲ.ͺͲ = ͳ.ͲͲ 

Tab. 49 Yield function: SRFEA (’ = ’), Optum G2 

  = 0.2 mod. = 0.323 choice = 0.4 
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   sin ͵͹ = Ͳ.͸Ͳ ൒ ͳ − ʹ ∙ Ͳ.ʹ = Ͳ.͸Ͳ ܵ݋ܨ = ʹͳ.Ͳͳ = tan ͵͹tan ʹͲ.͹͸ = ૚. ૢૢ 

sin ͵͹ = Ͳ.͸Ͳ ൒ ͳ − ʹ ∙ Ͳ.͵ʹ͵ = Ͳ.͵ͷ ܵ݋ܨ =  ʹͳ.Ͳͳ = tan ͵͹tan ʹͲ.͹͸ = ૚. ૢૢ 

sin ͵͹ = Ͳ.͸Ͳ ൒ ͳ − ʹ ∙ Ͳ.Ͷ = Ͳ.ʹͲ ܵ݋ܨ =  ʹͳ.Ͳͳ = tan ͵͹tan ʹͲ.͹͸ = ૚. ૢૢ 
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sin ʹͲ.͹͸ = Ͳ.͵ͷ ൑ ͳ − ʹ ∙ Ͳ.ʹ = Ͳ.͸Ͳ ܵ݋ܨ =  ͳ.Ͳͳͳ.Ͳͳ = tan ʹͲ.͹͸tan ʹͲ.͹͸ = ͳ.ͲͲ sin ʹͲ.͹͸ = Ͳ.͵ͷ ൒ ͳ − ʹ ∙ Ͳ.͵ʹ͵ = Ͳ.͵ͷ ܵ݋ܨ ͳ.Ͳͳͳ.Ͳͳ = tan ʹͲ.͹͸tan ʹͲ.͹͸ = ͳ.ͲͲ 

sin ʹͲ.͹͸ = Ͳ.͵ͷ ൒ ͳ − ʹ ∙ Ͳ.Ͷ = Ͳ.ʹͲ ܵ݋ܨ ͳ.Ͳͳͳ.Ͳͳ = tan ʹͲ.͹͸tan ʹͲ.͹͸ = ͳ.ͲͲ 
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Tab. 50 Yield function: FELA, upper-bound (’ = ’), Optum G2 

  = 0.2 mod. = 0.324 choice = 0.4 
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sin ͵͹ = Ͳ.͸Ͳ ൒ ͳ − ʹ ∙ Ͳ.ʹ = Ͳ.͸Ͳ ܵ݋ܨெ௘௔௡ = ʹͳ.Ͳͳ = tan ͵͹tan ʹͲ.͸ͷ = ૛. ૙૙ 

sin ͵͹ = Ͳ.͸Ͳ ൒ ͳ − ʹ ∙ Ͳ.͵ʹͶ = Ͳ.͵ͷ ܵ݋ܨெ௘௔௡ =  ʹͳ.Ͳͳ = tan ͵͹tan ʹͲ.͸ͷ = ૛. ૙૙ 

sin ͵͹ = Ͳ.͸Ͳ ൒ ͳ − ʹ ∙ Ͳ.Ͷ = Ͳ.ʹͲ ܵ݋ܨெ௘௔௡ =  ʹͳ.Ͳͳ = tan ͵͹tan ʹͲ.͸ͷ = ૛. ૙૙ 
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   sin ʹͲ.͸ͷ = Ͳ.͵ͷ ൑ ͳ − ʹ ∙ Ͳ.ʹ = Ͳ.͸Ͳ 

 

sin ʹͲ.͸ͷ = Ͳ.͵ͷ ൒ ͳ − ʹ ∙ Ͳ.͵ʹͶ = Ͳ.͵ͷ 

 

sin ʹͲ.͸ͷ = Ͳ.͵ͷ ൒ ͳ − ʹ ∙ Ͳ.Ͷ = Ͳ.ʹͲ 

 

 

Finally, it is important to emphasize that changes in Poisson’s ratio do not affect the 

safety factor for any associated SRFEA, FELA and Davis approaches at all. The variation 

of strength and stiffness parameters, according to Tab. 46, have also no impact on this 

finding, as it can be seen in appendix 10.5. 

The statements herein hold true for SRFEA with non-associated plasticity as well. As 

shown in Tab. 51, the safety values are approximately constant for all the Poisson’s 

ratios. 

Tab. 51  -  inequality: SRFEA results according to non-associated plasticity (Plaxis 2D) 

Dilatancy angle  = 0.2 mod. = variable choice = 0.4 

’ = 0° 1.88 1.87 1.87 

’ = ’ / 4 1.98 1.97 1.96 

’ = ’ / 3 1.99 1.98 1.98 

’ = ’ 1.99 1.99 1.98 

 

In rare cases, the study identifies larger differences in FoS for several Poisson’s ratios. 

By assuming a unit-weight unsat = 20 kN/m³, a Young’s modulus E’ = 104 kN/m², an 

effective friction angle ’ = 37°, a dilatancy angle ’ = 0° and varying the cohesions c’ 

between 0 and 4 kPa, the computed safety factors for  = 0.2 and mod. differ slightly. On 
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the other hand, Davis A and Davis B do not show these differences. The observed 

behaviour can be explained through the bifurcation of the failure mechanism. As 

mentioned in section 3.1.4, large differences between the effective friction angle and the 

dilatancy angle may lead to changes in the failure mechanism. Consequently, no precise 

definition of the safety factor is possible. 

 
Fig. 88  -  inequality: Comparison of SRFEA, Davis A and Davis B for different  (unsat = 16 

kN/m³, E’ = 104 kN/m², ’1 = 37°, ’ = 0°) 

Subsequently, the example was taken to demonstrate the bifurcation of a failure 

mechanism. This behaviour has already been introduced in section 3.1.4. As Fig. 89 

shows, the choice of safety value is decisive for the resulting modified Poisson’s ratio 

mod.. Those Poisson’s ratios differ up to 5 %, depending on the chosen FoS. Running a 

SRFEA with modified Poisson’s ratios mod. can show that the erratic distributions are not 

weakened and still deviate of 2.5 % from the previous calculations, according to  = 

0.146 (Fig. 90). 

In conclusion, it can be said that the Poisson’s ratio is not affecting the safety factor for 

any analyses but is particularly responsible for the amount of plastic points in a domain. 

Differences in the FoS arising from the variation of  are related to the bifurcation of the 

failure mechanism. Furthermore, it has been shown that the  -  inequality does not 

influence the erratic behaviour of the  - c reduction in combination with non-associated 

plasticity. 
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Fig. 89  -  inequality: SRFEA (’ = 0°) according to  = 0.146 

 

 
Fig. 90  -  inequality : SRFEA (’ = 0°) according to mod 
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7 Influence of the initial stress condition on the FoS 

As several studies that have been investigated in this thesis have shown, Poisson’s ratio 

does not affect the FoS. The initial phase was determined by gravity loading. Chapter 

7.1 and 7.2 are going to make an attempt to answer the following two questions: Do the 

statements on the  -  inequality hold true if the initial stresses are calculated by a K0 

procedure? Has the K0 value any influence on the factor of safety? 

In Plaxis 2D, the initial stress distribution by using gravity loading gets determined by 

considering the self-weight, according to Eq. (52). By using an elastic-perfectly plastic 

constitutive model, the ratio of the horizontal to the vertical effective stresses is strongly 

affected by the Poisson’s ratio. The procedure satisfies the equilibrium for all geometries. 

In contrast, a K0 procedure calculates the stresses according to Eq. (57) whereby the 

mayor and minor principal stresses remain vertical and horizontal. It follows that K0 

becomes an input parameter (default: K0 = 1 - sin’). The vertical stresses are in 

equilibrium with the self-weight of the soil, but the K0 procedure does not ensure any 

failure criterion in the complete stress field. Only in the case of a horizontal soil surface, 

soil layers and phreatic levels, a complete equilibrium is guaranteed (Brinkgreve et al. 

2016). 

଴ܭ = �′௫௫�′௬௬ ( 57 ) 

7.1  -  inequality with K0 procedure 

To answer the first of the above mentioned questions, SRFEA are performed on two 

slopes in Plaxis 2D. Looking at the figure below, one can see that slope 1 is disposed 

26.57° (1:2) to the horizontal, while slope 2 is 45° (1:1) steep. 

 
Fig. 91 Geometry of slope 1 (a) and slope 2 (b) 

The homogeneous slopes are characterized by a unit-weight unsat = 16 kN/m³. However, 

the cohesion for both cases is different. Note that for both slopes, SRFEA according to 

associated and non-associated plasticity are performed. A complete overview of the soil 
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parameters is listed in Tab. 52. The discussion of results will be made for slope 1 with 

associated plasticity. The statements apply for all calculations performed in this study. 

The results are attached in appendix 10.6. For slope 1, about 1509 15-noded triangular 

elements are used to discretize the domain. 

Tab. 52 Soil parameters used for analyses 

Soil parameters Unit Slope 1 Slope 2 

E’ (kN/m²) 104 104 

 (-) 0.2; vmod; vchoice 0.2; vmod; vchoice 

unsat (kN/m³) 16 16 

’ (°) 37 37 

’ (°) ’; 0 ’; 10 

c’ (kN/m²) 1 4 

 

Three variations of slope stability analyses with K0 procedure as the initial phase are the 

subject for further studies. The initial phase is followed by either a construction phase, 

an excavation phase or a nil-step. A standard  - c reduction is used to determine the 

factor of safety in phase 3. Furthermore, SRFEA with initial phase gravity loading are 

calculated as well (variation 4). In order to gain a better understanding, Tab. 53 highlights 

the phases of each variation. 

Tab. 53 Variation 1 - 4: Calculation phases (Plaxis 2D) 

 Phase1 Phase 2 Phase 3 

V
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tio

n 
1 

   

K0 procedure Construction  - c reduction 

V
ar

ia
tio

n 
2 

   

K0 procedure Excavation  - c reduction 

V
ar

ia
tio

n 
3 

   

K0 procedure Nil-step  - c reduction 
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V
ar

ia
tio

n 
4 

  

 

Gravity loading  - c reduction  
 

In the same way as described in 6.2, SRFEA are performed with Poisson’s ratios , mod. 

and choice. For variations 1 - 3 the K0 value is determined according to Eq. (52) to ensure 

a comparable initial stress distribution in all initial phases. It is important to note that the 

direction and magnitude of major (’1) and minor (’3) principle stresses are different for 

variations 1 - 4 in the initial phase, depending on the geometry and the chosen method 

(K0 procedure, gravity loading). However, a basis for comparison can be achieved. The 

K0 value gets modified depending on the Poisson’s ratio (Tab. 54). 

Tab. 54 K0 values for the several Poisson’s ratios 

 = 0.2 mod = 0.308 choice = 0.4 

଴ܭ = Ͳ.ʹͳ − Ͳ.ʹ = Ͳ.ʹͷ ଴ܭ = Ͳ.͵Ͳͺͳ − Ͳ.͵Ͳͺ = Ͳ.Ͷͷ ଴ܭ = Ͳ.Ͷͳ − Ͳ.Ͷ = Ͳ.͸͹

 

For each variation and Poisson’s ratio, SRFEA are performed according to the original 

strength parameters and strength parameters at failure (FoS = 1). The failure points of 

the latter ones are shown in Tab. 55. The underlined phase is subject of discussion (left 

column in Tab. 55). 

The calculations show that the FoS is not affected by the variation of Poisson’s ratio and 

K0 value respectively. As can be seen in Tab. 55, the factors of safety for variations 1 - 

4 vary between 1.80 and 1.81. On the other hand, the amount of failure points strongly 

decreases again with an increasing Poisson’s ratio (see also chapter 6.3.2). 

The amount and distribution of failure points is similar for variations 1, 3 and 4. Variations 

2, however, shows less failure points. The reason for this is that the excavation phase is 

an unloading process. Therefore, failure points can become elastic again. Contrary to 

the expectations, the amount of failure points is increasing for a Poisson’s ratio mod = 

0.308. This increase of failure points remains unclarified. The increase of failure points 

is not present on slope 2 (Tab. 56). The amount of tension points at the crown of the 

embankment is increasing with an increasing Poisson’s ratio. This becomes particularly 

obvious in Tab. 56. In order to be able to draw more conclusions, further analyses are 

needed. To conclude this chapter, it should be underlined that SRFEA with a K0 



 7 Influence of the initial stress condition on the FoS 

  

94 Institute of Soil Mechanics and Foundation Engineering 

procedure as the initial phase do confirm all statements made on the  -  inequality. 

The factor of safety is not affected by the Poisson’s ratio, but the amount of failure points 

diminishes with an increasing . 

Tab. 55 Slope 1 - SRFEA (’ = ’): Failure points and safety factors for several  

  = 0.2 mod = 0.308 choice = 0.4 

V
a
ri

a
ti

o
n

 1
: 

K
0 

p
ro

ce
du

re
 +

 
co

ns
tr

uc
tio

n 
+

 s
af

et
y 

p
ha

se
 

   sin ʹʹ.͸ͻ = Ͳ.͵ͺ ൑ ͳ − ʹ ∙ Ͳ.ʹ = Ͳ.͸Ͳ ܵ݋ܨ = ͳͲ.ͷ͸ = tan ͵͹tan ʹʹ.͸ͻ = ૚. ૡ૙ 

sin ʹʹ.͸ͺ = Ͳ.͵ͻ ൒ ͳ − ʹ ∙ Ͳ.͵Ͳͺ = Ͳ.͵ͻ ܵ݋ܨ =  ͳͲ.ͷ͸ = tan ͵͹tan ʹʹ.͸ͺ = ૚. ૡ૙ 

sin ʹʹ.͸ͻ = Ͳ.͵ͻ ൒ ͳ − ʹ ∙ Ͳ.Ͷ = Ͳ.ʹͲ ܵ݋ܨ =  ͳͲ.ͷ͸ = tan ͵͹tan ʹʹ.͸ͻ = ૚. ૡ૙ 
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 sin ʹʹ.͸͸ = Ͳ.͵ͺ ൑ ͳ − ʹ ∙ Ͳ.ʹ = Ͳ.͸Ͳ ܵ݋ܨ = ͳͲ.ͷͷ = tan ͵͹tan ʹʹ.͸͸ = ૚. ૡ૚ 

sin ʹʹ.͸ͻ = Ͳ.͵ͻ ൒ ͳ − ʹ ∙ Ͳ.͵Ͳͺ = Ͳ.͵ͻ ܵ݋ܨ =  ͳͲ.ͷ͸ = tan ͵͹tan ʹʹ.͸ͻ = ૚. ૡ૙ 

sin ʹʹ.͹Ͳ = Ͳ.͵ͻ ൒ ͳ − ʹ ∙ Ͳ.Ͷ = Ͳ.ʹͲ ܵ݋ܨ =  ͳͲ.ͷ͸ = tan ͵͹tan ʹʹ.͹Ͳ = ૚. ૡ૙ 

V
a
ri

a
ti

o
n

 3
: 

K
0 

p
ro

ce
du

re
 +

 
N

il-
st

e
p 

+
 s

af
et

y 
ph

a
se

 

   

sin ʹʹ.͸͵ = Ͳ.͵ͺ ൑ ͳ − ʹ ∙ Ͳ.ʹ = Ͳ.͸Ͳ ܵ݋ܨ = ͳͲ.ͷͷ = tan ͵͹tan ʹʹ.͸͵ = ૚. ૡ૚ 

sin ʹʹ.͸͹ = Ͳ.͵ͻ ൒ ͳ − ʹ ∙ Ͳ.͵Ͳͺ = Ͳ.͵ͻ ܵ݋ܨ =  ͳͲ.ͷͷ = tan ͵͹tan ʹʹ.͸͹ = ૚. ૡ૙ 

sin ʹʹ.͸͹ = Ͳ.͵ͻ ൒ ͳ − ʹ ∙ Ͳ.Ͷ = Ͳ.ʹͲ ܵ݋ܨ =  ͳͲ.ͷͷ = tan ͵͹tan ʹʹ.͸͹ = ૚. ૡ૙ 
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sin ʹʹ.͸Ͷ = Ͳ.͵ͺ ൑ ͳ − ʹ ∙ Ͳ.ʹ = Ͳ.͸Ͳ ܵ݋ܨ = ͳͲ.ͷͷ = tan ͵͹tan ʹʹ.͸Ͷ = ૚. ૡ૚ 

sin ʹʹ.͸ͷ = Ͳ.͵ͻ ൒ ͳ − ʹ ∙ Ͳ.͵Ͳͺ = Ͳ.͵ͻ ܵ݋ܨ =  ͳͲ.ͷͷ = tan ͵͹tan ʹʹ.͸ͷ = ૚. ૡ૚ 

sin ʹʹ.͹Ͳ = Ͳ.͵ͻ ൒ ͳ − ʹ ∙ Ͳ.Ͷ = Ͳ.ʹͲ ܵ݋ܨ =  ͳͲ.ͷ͸ = tan ͵͹tan ʹʹ.͹Ͳ = ૚. ૡ૙ 
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Tab. 56 Slope 2 - SRFEA (’ = ’): Failure points and safety factors for the several  

  = 0.2 mod = 0.267 choice = 0.4 
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   sin ʹ͹.ͺͶ = Ͳ.Ͷ͹ ൑ ͳ − ʹ ∙ Ͳ.ʹ = Ͳ.͸Ͳ ܵ݋ܨ = Ͷʹ.ͺͲ = tan ͵͹tan ʹ͹.ͺͶ = ૚. ૝૜ 

sin ʹ͹.ͺ͹ = Ͳ.Ͷ͹ ൒ ͳ − ʹ ∙ Ͳ.ʹ͸͹ = Ͳ.Ͷ͹ ܵ݋ܨ =  ͳʹ.ͺͳ = tan ͵͹tan ʹ͹.ͺ͹ = ૚. ૝૜ 

sin ʹͺ.Ͳʹ = Ͳ.Ͷ͹ ൒ ͳ − ʹ ∙ Ͳ.Ͷ = Ͳ.ʹͲ ܵ݋ܨ =  Ͷʹ.ͺʹ = tan ͵͹tan ʹͺ.Ͳʹ = ૚. ૝૛ 
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7.2 Influence of K0 on the FoS

In 7.1 the K0 value and the Poisson’s ratio got modified in a simultaneous manner, 

according to Eq. 52. The following study can be considered isolated from the  -  

inequality and should clarify the effect from the K0 value on the FoS. The two slopes of 

the previous chapter are object to further SRFEA with associated and non-associated 

plasticity. To prove if the K0 value influences the FoS, the variations 1 to 3 are considered 

for both slopes again. By keeping the Poisson’s ratio ( = 0.2) constant, the initial stress 

distribution is established for a K0 value equal to 0.25 and 0.40. The first value results 

from Eq. 52 while the latter one corresponds to the default value K0 = 1 - sinφ’. An 

overview of all the calculations is found in appendix 10.6. As Tab. 57 shows, the initial 

stress state does not affect the obtained safety value. For an explanation of this 

behaviour, slope 1 with associated plasticity will be utilized. 

Tab. 57 SRFEA results (FoS) according to associated and non-associated plasticity 

 Slope 1 Slope 2 

 ’ = 0° ’ = ’ ’ = 0° ’ = ’ 

K0 0.25 0.40 0.25 0.40 0.25 0.40 0.25 0.40 

Variation 1: 

Construction 
1.72 1.72 1.80 1.80 1.37 1.37 1.43 1.43 

Variation 2: 

Excavation 
1.72 1.71 1.81 1.81 1.37 1.37 1.43 1.43 

Variation 3: 

Nil-step 
1.70 1.71 1.81 1.81 1.36 1.36 1.43 1.43 

Variation 4: 

Gravity load. 
1.72 1.81 1.37 1.43 

 

In order to gain a better understanding of the stress distribution, the ratio of minor 

principle stress ’3 over major principle stress ’1 for the several variations and phases 

is plotted in Tab. 58. Due to the fact that no rotation of the principle stresses occurs in a 

K0 procedure, the illustrated ratio is equal to K0. As it can be clearly seen, the ratio is 

constant for the whole domain (as it is an input to the analysis). In phase 2, the different 

initial stress conditions cause divergent ’3 / ’1 ratios. It is notable that all three variations 

with an initial K0 value equal to 0.25 are in exceptional agreement with the initial phase 

of variation 4 (gravity loading). The second phases based on K0 = 0.4 are in good 

agreement as well. Variation 2 leads to higher ratios below the toe of the embankment. 
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Due to the excavation, the minor principle stresses rotate and become relatively large 

compared to the diminishing major principle stresses. The followed strength reduction 

analyses show that the ratios of principle stresses are almost the same for all the 

variations. The exception here is again variation 2 with an initial K0 = 0.4. The reason for 

this is the same as discussed above. 

Tab. 58 Slope 1 - SRFEA (’ = ’): ’3 / ’1 

  Phase 1: 

Initial phase (K0 
procedure, gravity load.) 
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To demonstrate that the initial stress distribution does not affect the factor of safety, the 

stress paths of point A and B are considered in more detail. Both points are located within 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
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the failure mechanism, as it is shown in Fig. 92. The corresponding stress paths for 

variations 1 to 4 are shown in Fig. 93 and Fig. 94. However, it must be said that the 

starting points of each stress path are marked by an orange node. Equal factors of safety 

must result in stress paths reaching the same Mohr-Coulomb failure criterion. By looking 

at Fig. 93 and Fig. 94, it becomes clear that the stress paths always end at the same 

Mohr-Coulomb failure criterion, unaffected by their starting point. 

 
Fig. 92 Location of point A and point B 

 
Fig. 93 Stress paths of point A 
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Fig. 94 Stress paths of point B 
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8 Conclusion 

The results presented in this thesis confirm that the limit equilibrium analysis (LEA), the 

finite element limit analysis (FELA) and the strength reduction finite element analysis 

(SRFEA) assuming associated plasticity are in good agreement with each other. At the 

same time it is shown, that by using an adaptive mesh refinement, it is possible to 

remarkably reduce the number of elements. It has been determined in Griffiths & Lane 

(1999) that a priori knowledge of the failure mechanism is required in order to avoid an 

overestimation of the factor of safety. Cases with ’ ≠ ’ demonstrated a lower FoS 

provided by the SRFEA compared to a LEA. It should be noted that for steep slopes with 

a high degree of non-associativity ( = ’ - ’), the failure mechanism changes during a 

 - c reduction. As a consequence, no clear definition of the FoS is possible. 

The numerical instabilities of non-associated displacement based finite element 

analyses can be avoided by using the Davis approach with reduced strength parameters 

in combination with an associated flow rule. The original concept (Davis A) leads to very 

conservative results when the factor of safety is expressed by strength parameters. For 

the enhanced procedures Davis B and Davis C, the reduction factor is not constant 

anymore. It was established that three iterative determinations of  are in general 

sufficient that the safety factor remains the same. These stability analyses on two 

reinforced slopes as well as on six examples (Griffiths & Lane 1999) showed that the 

modified procedures lead to slightly conservative results too but are in better agreement 

with the non-associated SRFEA. 

Further parameter studies have proven that an increasing friction angle ’, cohesion c’ 

and degree of non-associativity  lead to larger differences between Davis A and the 

standard SRFEA. The dilatancy angle is kept constant in a standard strength reduction 

until the reduced friction angle amounts to the same value. Once ’red. equals ’, both 

strength parameters are simultaneously reduced. Therefor a user-defined SRFEA has 

been used, on the other hand, where the friction and dilatancy angle are reduced 

concurrently from the beginning. Since the difference of the friction angle ’ to the 

dilatancy angle ’ characterizes the amount of non-associativity, the latter method is 

considered to be more appropriate. It should be noted that the differences between Davis 

B and the user-defined SRFEA as well as between Davis C and the standard SRFEA 

are approximately the same. While the degree of non-associativity  has a noticeable 

influence on those differences, a change in the cohesion c’ shows no effect. 
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It should be mentioned that Davis B and Davis C do not always have to be conservative 

compared to non-associated SRFEA. E.g. in the case of a vertical pile where the 

confined situation of the boundary value problem leads to the mobilisation of normal 

forces along the skin. Such a scenario where the FoS obtained with non-associated 

plasticity is smaller than the FoS obtained with the modified Davis approach was never 

achieved in this study. 

In a further section, it was proved that the  -  inequality does not influence the factor 

of safety. Small differences in the FoS arising from the variation of  are related to varying 

failure mechanism. The Poisson’s ratio , however, plays an important role for the 

amount of failure points. It appears that the amount of failure points diminishes with an 

increasing . 

Final analyses proved that the initial stress state has no impact on the FoS. If a point 

which is situated along the failure mechanism is considered, it is of no importance where 

the stress path starts (in the initial phase), failure will always occur at the same reduced 

strength parameters (’mob., c’mob.), thus Mohr-Coulomb criterion. 
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10 Appendix 

10.1 Safety analysis of Optum G2 

10.1.1 FELA (Optum G2) 

 
Fig. 95 FELA - Optum G2: Strength Reduction (in Solids) with (a) Lower and (b) Upper element 

type 

 
Fig. 96 FELA - Optum G2: Limit Analysis (Multiplier: Load) with (a) Lower and (b) Upper 

element type 

 
Fig. 97 FELA - Optum G2: Limit Analysis (Multiplier: Gravity) with (a) Lower and (b) Upper 

element type  
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10.1.2 SRFEA (Optum G2) 

Tab. 59 Strength reduction in the soil (according to Krabbenhøft et al. 2016) 

 Parameters reduced 

Mohr-Coulomb c’, tan’ 

Drucker-Prager K, M 

Tesca cu 

Hoek-Brown ci, mi 

GSK c’, tan’1, tan’2 

Modified Cam Clay tan’ 

Hardening Mohr-Coulomb (HMC) c’, tan’ 

 

Tab. 60 Strength reduction in structural elements (according to Krabbenhøft et al. 2016) 

 Parameters reduced 

Beams NP, MP (Set A) or 0 (Set B) 

Geogrids NP (Set A) or 0 (Set B) 

Fixed-End Anchors NP (Set A) or 0 (Set B) 

Connectors NP (Set A) or 0 (Set B) 

 

 
Fig. 98 SRFEA - Optum G2: (a): Strength reduction in the soil (Solids), (b) strength reduction in 

the structural elements (Struts)  
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10.2 Reinforced embankment 

10.2.1 Influence of construction steps on the FoS 

 
Fig. 99 Construction in one step 

 
Fig. 100 Construction in three steps 

 
Fig. 101 Construction in five steps 

  

Construction step 1 Initial stresses 

Initial stresses 

Initial stresses 

Construction step 1 

Construction step 1 

Construction step 2 

Construction step 2 

Construction step 3 

Construction step 3 Construction step 4 Construction step 5 
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Tab. 61 Influence of construction steps on the factor of safety: Overview of the safety factors 

SRFEA (’ = 0°) 

 Construction in 1 step Construction in 3 steps Construction in 5 steps 

LC1 1.52 1.52 1.53 

LC2 1.42 1.41 1.42 

LC3 1.28 1.27 1.27 

 

10.2.2 Safety analyses on modified cross section 1 and cross section2 

Tab. 62 Modified cross section 1: Comparison of SRFEA and LEA 

LEA, SRFEA 

 Loading condition 1 Loading condition 2 Loading condition 3 

LEA (M-P) 1.59 1.49 1.37 

SRFEA (’ = ’) 1.54 1.45 1.33 

SRFEA (’ = 0°) 1.40 1.31 1.17 

Tab. 63 Modified cross section 1: Differences between SRFEA and LEA 

% Differences 

 Loading 
condition 1 

Loading 
condition 2 

Loading 
condition 3 

LEA (M-P) - SRFEA (’ = ’) 

= 100 (LEA (M-P) - SRFEA (’ = ’)) / 
LEA (M-P) 

3.1 2.7 2.9 

LEA (M-P) - SRFEA (’ = 0°) 

= 100 (LEA (M-P) - SRFEA (’ = 0°)) / 
LEA (M-P) 

11.9 12.1 14.6 

Tab. 64 Modified cross section 2: Comparison of SRFEA and LEA 

LEA, SRFEA 

 Loading condition 1 Loading condition 2 Loading condition 3 

LEA (M-P) 1.62 1.51 1.33 

SRFEA (’ = ‘) 1.56 1.46 1.28 

SRFEA (’ = 0°) 1.42 1.33 1.14 
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Tab. 65 Modified cross section 1: Differences between SRFEA and LEA 

% Differences 

 Loading 
condition 1 

Loading 
condition 2 

Loading 
condition 3 

LEA (M-P) - SRFEA (’ = ’) 

= 100 (LEA (M-P) - SRFEA (’ = ’)) / 
LEA (M-P) 

3.7 3.3 3.8 

LEA (M-P) - SRFEA (’ = 0°) 

= 100 (LEA (M-P) - SRFEA (’ = 0°)) / 
LEA (M-P) 

12.3 11.9 14.3 

 

10.2.3 Cross section 2: Influence of strength parameters ’ and c’ on FoS 

A non-associated flow rule (’ = 0°) is used for the calculations. In addition, it should be 

noted that 400 steps are used to perform the  - c reduction. 

Tab. 66 Cross section 1: Influence of strength parameters ’ and c’ on FoS 

SRFEA (’ = 0°) 

 Loading condition 1 Loading condition 2 Loading condition 3 

’ = 35°; c’ = 2 kPa 1.16 1.04 1.04 

’ = 35°; c’ = 5 kPa 1.48 1.36 1.23 

’ = 37°; c’ = 2 kPa 1.22 1.16 1.13 

’ = 37°; c’ = 5 kPa 1.52 1.42 1.28 

 

10.2.4 Influence of extensional stiffness and tensile strength Np on FoS 

Tab. 67 EA = 750 kN/m²: Variation of tensile strength 

SRFEA (’ = 0°) 

 Linear 
elastic 

Np =  
50 kN/m 

Np =  
15 kN/m2 

Np =  
10 kN/m 

Np =  
5 kN/m 

Loading condition 1 1.53 1.53 1.53 1.53 1.50 

Loading condition 2 1.42 1.43 1.43 1.43 1.40 

Loading condition 3 1.24 1.23 1.23 1.23 1.24 
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Tab. 68 EA = 500 kN/m²: Variation of tensile strength 

SRFEA (’ = 0°) 

 Linear 
elastic 

Np =  
50 kN/m 

Np =  
10 kN/m2 

Np =  
5 kN/m 

Np =  
2.5 kN/m 

Loading condition 1 1.57 1.57 1.54 1.49 1.33 

Loading condition 2 1.43 1.44 1.44 1.40 1.26 

Loading condition 3 1.25 1.24 1.23 1.21 1.18 

 

10.2.5 Mesh study: Safety values for SRFEA and FELA 

Tab. 69 SRFEA (’ = ’): Plaxis 2D - no adaptive mesh refinement 

15-noded 6-noded 

No of elements FoS15-noded No of elements FoS6-noded 

62 1.92 62 2.23 

75 1.89 75 2.18 

103 1.81 103 1.99 

213 1.74 213 1.91 

406 1.70 406 1.83 

637 1.70 637 1.82 

821 1.70 821 1.81 

1060 1.69 1060 1.78 

1537 1.69 1696 1.76 

3056 1.68 3056 1.73 

4992 1.67 4992 1.71 

10913 1.66 10913 1.69 
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Tab. 70 SRFEA (’ = ’): Optum G2 - no adaptive mesh refinement 

15-noded 6-noded 

No of elements FoS15-noded No of elements FoS6-noded 

495 1.72 483 1.94 

588 1.72 580 1.88 

687 1.72 673 1.85 

757 1.69 759 1.81 

883 1.69 880 1.79 

971 1.69 969 1.78 

1065 1.69 1057 1.78 

1142 1.69 1132 1.78 

1269 1.69 1279 1.78 

1327 1.69 1324 1.78 

 

Tab. 71 SRFEA (’ = ’): Optum G2 - adaptive mesh refinement 

15-noded 6-noded 

No of elements FoS15-noded No of elements FoS6-noded 

359 1.71 371 1.85 

591 1.69 583 1.77 

637 1.68 635 1.74 

772 1.67 780 1.71 

916 1.66 964 1.70 

1071 1.66 1127 1.69 

1273 1.66 1333 1.68 
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Tab. 72 FELA: Optum G2 - no adaptive mesh refinement 

Lower-bound Upper-bound 

No of elements FoSLB No of elements FoSUB 

495 0.68 483 2.06 

588 1.16 580 2.00 

683 1.29 673 1.97 

757 1.34 759 1.89 

955 1.46 969 1.88 

1065 1.52 1057 1.84 

1142 1.48 1132 1.84 

1269 1.50 1279 1.84 

1327 1.48 1324 1.84 

5120 1.60 5120 1.75 

 

Tab. 73 FELA: Optum G2 - adaptive mesh refinement 

Lower-bound Upper-bound 

No of elements FoSLB No of elements FoSUB 

359 0.83 371 1.96 

583 1.41 573 1.85 

626 1.54 649 1.79 

784 1.59 748 1.75 

916 1.60 956 1.72 

1105 1.91 1149 1.72 

1246 1.62 1302 1.71 

4453 1.63 5201 1.68 
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10.3 Upstream slope 

10.3.1 Input parameters for modelling soil nails and Maccaferri grid 

Tab. 74 Input parameters for the Maccaferri grid 

 Plaxis 2D Optum G2 

Set type Geogrids Geogrids 

Material type Elastoplastic Elastoplastic 

EA (kN/m) 2000 2000 

Np (kN/m) 40 40 

 

Tab. 75 Input parameters for the soil nails 

 Plaxis 2D Optum G2 2 

Set type Embedded beam row Nail Rows 

Material type Elastoplastic Elastic 

E’ (MPa) 200000 200000 

 (kN/m³) 7850 - 

D (cm) 2.7 2.7 

LSpacing (m) 2; 2.5; 3 2; 2.5; 3 

Np (kN) 104 - 

Tskin,axial (kN/m) 34 (start, max = end, max) 34 

Tskin,lateral (kN/m) 5 (start = end) 5 
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10.3.2 Excavation steps for SRFEA 

Tab. 76 Single phases for SRFEA performed in Plaxis 2D 

K0 procedure Nil-step Excavation 1 

   

Excavation 2 + installation of 
structural elements 

Excavation 3 + installation of 
structural elements 

Excavation 4 + installation of 
structural elements 

   

Excavation 5 + installation of 
structural elements 

Excavation 6 + installation of 
structural elements 

Excavation 7 + installation of 
structural elements 

   

Excavation 8 + installation of 
structural elements 

Excavation 9 + installation of 
structural elements 

Excavation 10 + installation of 
structural elements 

   

Excavation11 + installation of 
structural elements 

Excavation 12 + installation of 
structural elements 

Excavation 13 + installation of 
structural elements 

   

Excavation14 + installation of 
structural elements 

Excavation 15 SRFEA – case 1 

   

Excavation16 Removing geogrids and soil nails 
(upper area) 

Excavation 17 
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Removing geogrids and soil nails 
(lower area) 

Excavation 18 SRFEA – case 2 

   

10.3.3 Additional studies on the upstream slope 

 Original water table, without modifying the water pressure in Optum G2 

Tab. 77 Original water table (no modifications in Optum G2): Comparison of total displacements 
and mesh refinements 

SRFEA (’ = ’)  
Total displacements (Plaxis 2D) 

SRFEA (’ = 0°) 
Total displacements (Plaxis 2D) 

Davis A (’ = 0°) 
Total displacements (Plaxis 2D) 

   

FELA lower-bound 
Mesh refinement (Optum G2) 

FELA lower-bound 
Total dissipation (Optum G2) 

FELA upper-bound 
Mesh refinement (Optum G2) 

   

FELA upper-bound 
Total dissipation (Optum G2) 

Davis A: FELA lower-bound 
Mesh refinement (Optum G2) 

Davis A: FELA lower-bound 
Total dissipation (Optum G2) 

   

Davis A: FELA upper-bound 
Mesh refinement (Optum G2) 

Davis A: FELA upper-bound 
Total dissipation (Optum G2) 

Davis B: FELA lower-bound 
Mesh refinement (Optum G2) 
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Davis B: FELA lower-bound 
Total dissipation (Optum G2) 

Davis B: FELA upper-bound 
Mesh refinement (Optum G2) 

Davis B: FELA upper-bound 
Total dissipation (Optum G2) 

   

Tab. 78 Original water table (no modifications in Optum G2): Comparison of SRFEA results 

SRFEA  

 ’ = ’ 

Plaxis 2D 

’ = 0° 

Plaxis 2D 

Davis A (’ = 0°) 

Plaxis 2D 

FoS 1.29 1.19 1.10 

Tab. 79 Original water table (no modifications in Optum G2): Comparison of FELA results 

FELA 

 ’ = ’ 

Optum G2 

Davis A (’ = 0°) 

Optum G2 

Davis B (’ = 0°) 

Optum G2 

FoSMean 1.35 1.15 1.21 

 

 Horizontal water table 

Tab. 80 Horizontal water table (no modifications in Optum G2): Comparison of total 
displacements and mesh refinements 

SRFEA (’ = ’)  
Total displacements (Plaxis 2D) 

SRFEA (’ = 0°) 
Total displacements (Plaxis 2D) 

Davis A (’ = 0°) 
Total displacements (Plaxis 2D) 

   

FELA lower-bound 
Mesh refinement (Optum G2) 

FELA lower-bound 
Total dissipation (Optum G2) 

FELA upper-bound 
Mesh refinement (Optum G2) 

   

FELA upper-bound 
Total dissipation (Optum G2) 

Davis A: FELA lower-bound 
Mesh refinement (Optum G2) 

Davis A: FELA lower-bound 
Total dissipation (Optum G2) 
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Davis A: FELA upper-bound 
Mesh refinement (Optum G2) 

Davis A: FELA upper-bound 
Total dissipation (Optum G2) 

Davis B: FELA lower-bound 
Mesh refinement (Optum G2) 

   

Davis B: FELA lower-bound 
Total dissipation (Optum G2) 

Davis B: FELA upper-bound 
Mesh refinement (Optum G2) 

Davis B: FELA upper-bound 
Total dissipation (Optum G2) 

   

Tab. 81 Horizontal water table (no modifications in Optum G2): Comparison of SRFEA results 

SRFEA  

 ’ = ’ 

Plaxis 2D 

’ = 0° 

Plaxis 2D 

Davis A (’ = 0°) 

Plaxis 2D 

FoS 1.55 1.49 1.33 

Tab. 82 Horizontal water table: Safety factors according to FELA 

FELA 

 ’ = ’ 

Optum G2 

Davis A (’ = 0°) 

Optum G2 

Davis B (’ = 0°) 

Optum G2 

FoSMean 1.55 1.33 1.43 

Tab. 83 Horizontal water table (no modifications in Optum G2): Comparison of Davis A and 
Davis B with SRFEA (’ = 0°) 

% Difference 

Davis A 

= 100 (FELA (Davis A) - SRFEA (’ = 0°)) / 
FELA (Davis A) 

Davis B 

= 100 (FELA (Davis B) - SRFEA (’ = 0°)) / 
FELA (Davis B) 

- 12.0 - 4.2 
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 No water table 

Tab. 84 No water table: Comparison of total displacements and mesh refinements 

SRFEA (’ = ’)  
Total displacements (Plaxis 2D) 

SRFEA (’ = 0°) 
Total displacements (Plaxis 2D) 

Davis A (’ = 0°) 
Total displacements (Plaxis 2D) 

   

FELA lower-bound 
Mesh refinement (Optum G2) 

FELA lower-bound 
Total dissipation (Optum G2) 

FELA upper-bound 
Mesh refinement (Optum G2) 

   

FELA upper-bound 
Total dissipation (Optum G2) 

Davis A: FELA lower-bound 
Mesh refinement (Optum G2) 

Davis A: FELA lower-bound 
Total dissipation (Optum G2) 

   

Davis A: FELA upper-bound 
Mesh refinement (Optum G2) 

Davis A: FELA upper-bound 
Total dissipation (Optum G2) 

Davis B: FELA lower-bound 
Mesh refinement (Optum G2) 

   

Davis B: FELA lower-bound 
Total dissipation (Optum G2) 

Davis B: FELA upper-bound 
Mesh refinement (Optum G2) 

Davis B: FELA upper-bound 
Total dissipation (Optum G2) 

   

Tab. 85 No water table: Comparison of SRFEA results 

SRFEA  

 ’ = ’ 

Plaxis 2D 

’ = 0° 

Plaxis 2D 

Davis A (’ = 0°) 

Plaxis 2D 

FoS 1.52 1.44 1.30 
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Tab. 86 No water table: Comparison of FELA results 

FELA 

 ’ = ’ 

Optum G2 

Davis A (’ = 0°) 

Optum G2 

Davis B (’ = 0°) 

Optum G2 

FoSMean 1.52 1.30 1.39 

Tab. 87 No water table: Comparison of Davis A and Davis B with SRFEA (’ = 0°) 

% Difference 

Davis A 

= 100 (FELA (Davis A) - SRFEA (’ = 0°)) / 
FELA (Davis A) 

Davis B 

= 100 (FELA (Davis B) - SRFEA (’ = 0°)) / 
FELA (Davis B) 

- 10.8 - 3.6 
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10.4 Slope stability analyses based on six paper examples 

10.4.1 Example 1 

Tab. 88 Example 1: Check calculations 

Parameters SRFEA (’ = 0°) 
(Plaxis 2D) LEA (Slide) 

  ~200 elements ~1000 elements M-P 

  15-n 6-n 15-n 6-n Circular 

Set 1: 
H = 5 m 

 = 16 kN/m³ 
c' = 4 kN/m² 

E' = 104 kN/m² -  = 0.25 1.35 1.39 1.35 1.36 

1.37 
E' = 104 kN/m² -  = 0.35 1.35 1.39 1.34 1.36 

E' = 106 kN/m² -  = 0.25 1.35 1.39 1.35 1.36 

E' = 106 kN/m² -  = 0.35 1.35 1.39 1.34 1.36 

Set 2: 
H = 5 m 

 = 20 kN/m³ 
c' = 5 kN/m² 

E' = 104 kN/m² -  = 0.25 1.35 1.39 1.35 1.36 

1.37 
E' = 104 kN/m² -  = 0.35 1.35 1.39 1.34 1.36 

E' = 106 kN/m² -  = 0.25 1.35 1.39 1.35 1.36 

E' = 106 kN/m² -  = 0.35 1.35 1.39 1.34 1.36 

Set 3: 
H = 10 m 

 = 16 kN/m³ 
c' = 8 kN/m² 

E' = 104 kN/m² -  = 0.25 1.35 1.39 1.35 1.36 

1.37 
E' = 104 kN/m² -  = 0.35 1.35 1.39 1.34 1.36 

E' = 106 kN/m² -  = 0.25 1.35 1.39 1.35 1.36 

E' = 106 kN/m² -  = 0.35 1.35 1.39 1.34 1.36 

Set 4: 
H = 10 m 

 = 20 kN/m³ 
c' = 10 kN/m² 

E' = 104 kN/m² -  = 0.25 1.35 1.39 1.35 1.36 

1.37 
E' = 104 kN/m² -  = 0.35 1.35 1.39 1.34 1.36 

E' = 106 kN/m² -  = 0.25 1.35 1.39 1.35 1.36 

E' = 106 kN/m² -  = 0.35 1.35 1.39 1.34 1.36 

 

Tab. 89 Example 1: Further calculations for set 1 - part 1 

Parameters SRFEA (’ = 0°)) 
(Plaxis 2D) 

SRFEA 
(’ = ’)  

(Plaxis 2D) 

Davis A 
SRFEA 

(Plaxis 2D) 

Davis B 
SRFEA 

(Plaxis 2D) 

SRFEA 
(’ = ’)  

(Optum G2) 

  
~200 

elements 
~1000 

elements 
~1000 

elements 
~1000 

elements 
~1000 

elements 
~900 

elements 

  15-n 6-n 15-n 6-n 15-n 6-n 15-n 6-n 15-n 6-n 15-n 6-n 

Set 1 

E' = 104 kN/m² 
-  = 0.25 

1.35 1.39 1.35 1.36 1.38 1.39 1.30 1.30 1.33 1.34 1.37 1.38 

E' = 104 kN/m² 
-  = 0.35 

1.35 1.39 1.34 1.36 1.38 1.39 1.29 1.30 1.33 1.34 1.37 1.38 

E' = 106 kN/m² 
-  = 0.25 

1.35 1.39 1.35 1.36 1.38 1.39 1.30 1.30 1.33 1.34 1.37 1.38 

E' = 106 kN/m² 
-  = 0.35 

1.35 1.39 1.34 1.36 1.38 1.39 1.29 1.30 1.33 1.34 1.37 1.38 
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Tab. 90 Example 1: Further calculations for set 1 - part 2 

Parameters FELA (Optum G2) Davis A - FELA 
(Optum G2) 

Davis B - FELA  
(Optum G2) 

LEA 
(Slide) 

   ~900 elements ~900 elements ~900 elements M-P 

    Lower Upper Mean Lower Upper Mean Lower Upper Mean Circ. 

Set 1 

E' = 104 kN/m² 
-  = 0.25 

1.36 1.38 1.37 1.28 1.30 1.29 1.31 1.33 1.32 

1.37 

E' = 104 kN/m² 
-  = 0.35 

1.36 1.38 1.37 1.28 1.30 1.29 1.31 1.33 1.32 

E' = 106 kN/m² 
-  = 0.25 

1.36 1.38 1.37 1.28 1.30 1.29 1.31 1.33 1.32 

E' = 106 kN/m² 
-  = 0.35 

1.36 1.38 1.37 1.28 1.30 1.29 1.31 1.33 1.32 
 

10.4.2 Example 2 

Tab. 91 Example 2: Check calculations 

Parameters SRFEA (’ = 0°) 
(Plaxis 2D) 

LEA 
(Slide) 

  ~250 elements ~1000 elements M-P 

  15-n 6-n 15-n 6-n Circular 

Set 1: 
H = 5 m 

 = 16 kN/m³ 
 c' = 4 kN/m² 

E' = 104 kN/m² -  = 0.25 1.33 1.39 1.32 1.35 

1.37 
E' = 104 kN/m² -  = 0.35 1.33 1.39 1.33 1.35 

E' = 106 kN/m² -  = 0.25 1.33 1.39 1.32 1.35 

E' = 106 kN/m² -  = 0.35 1.33 1.39 1.33 1.35 

Set 2: 
H = 5 m 

 = 20 kN/m³ 
 c' = 5 kN/m² 

E' = 104 kN/m² -  = 0.25 1.33 1.39 1.32 1.35 

1.37 
E' = 104 kN/m² -  = 0.35 1.33 1.39 1.33 1.35 

E' = 106 kN/m² -  = 0.25 1.33 1.39 1.32 1.35 

E' = 106 kN/m² -  = 0.35 1.33 1.39 1.33 1.35 

Set 3: 
H = 10 m 

 = 16 kN/m³ 
 c' = 8 kN/m² 

E' = 104 kN/m² -  = 0.25 1.32 1.39 1.32 1.35 

1.37 
E' = 104 kN/m² -  = 0.35 1.32 1.39 1.33 1.35 

E' = 106 kN/m² -  = 0.25 1.33 1.39 1.32 1.35 

E' = 106 kN/m² -  = 0.35 1.33 1.39 1.33 1.35 

Set 4: 
H = 10 m 

 = 20 kN/m³ 
 c' = 10 kN/m² 

E' = 104 kN/m² -  = 0.25 1.33 1.39 1.32 1.35 

1.37 
E' = 104 kN/m² -  = 0.35 1.33 1.39 1.33 1.35 

E' = 106 kN/m² -  = 0.25 1.33 1.39 1.32 1.35 

E' = 106 kN/m² -  = 0.35 1.33 1.39 1.33 1.35 

 

  



 10 Appendix 

  

122 Institute of Soil Mechanics and Foundation Engineering 

Tab. 92 Example 2: Further calculations for set 1 - part 1 

Parameters 
SRFEA 
(’ = 0°) 

(Plaxis 2D) 

SRFEA  
(’ = ’) 

(Plaxis 2D) 

Davis A 
SRFEA 

(Plaxis 2D) 

Davis B 
SRFEA 

(Plaxis 2D) 

SRFEA  
(’ = ’) 

(Optum G2) 

  
~250 

elements 
~1000 

elements 
~1000 

elements 
~1000 

elements 
~1000 

elements 
~900 

elements 

  15-n 6-n 15-n 6-n 15-n 6-n 15-n 6-n 15-n 6-n 15-n 6-n 

Set 1 

E' = 104 kN/m² 
 = 0.25 

1.33 1.39 1.32 1.35 1.36 1.37 1.28 1.29 1.31 1.32 1.36 1.37 

E' = 104 kN/m² 
 = 0.35 

1.33 1.39 1.33 1.35 1.36 1.37 1.28 1.29 1.31 1.32 1.36 1.37 

E' = 106 kN/m² 
 = 0.25 

1.33 1.39 1.32 1.35 1.36 1.37 1.28 1.29 1.31 1.32 1.36 1.37 

E' = 106 kN/m² 
 = 0.35 

1.33 1.39 1.33 1.35 1.36 1.37 1.28 1.29 1.31 1.32 1.36 1.37 

 

Tab. 93 Example 2: Further calculations for set 1 - part 2 

Parameters FELA 
(Optum G2) 

Davis A 
FELA 

(Optum G2) 

Davis B 
FELA 

(Optum G2) 

LEA 
(Slide) 

  ~900 elements ~900 elements ~900 elements M-P 

  Lower Upper Mean Lower Upper Mean Lower Upper Mean Circ. 

Set 1 

E' = 104 kN/m² 
 = 0.25 

1.35 1.38 1.36 1.27 1.29 1.28 1.30 1.33 1.31 

1.37 

E' = 104 kN/m² 
 = 0.35 

1.35 1.38 1.36 1.27 1.29 1.28 1.30 1.33 1.31 

E' = 106 kN/m² 
 = 0.25 

1.35 1.38 1.36 1.27 1.29 1.28 1.30 1.33 1.31 

E' = 106 kN/m² 
 = 0.35 

1.35 1.38 1.36 1.27 1.29 1.28 1.30 1.33 1.31 
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10.4.3 Example 3 

Tab. 94 Example 3: Overview of the calculations 
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10.4.4 Example 4 

Tab. 95 Example 4: Overview of the calculations 
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10.4.5 Example 5 

Tab. 96 Example 5: Check calculations 
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Tab. 97 Example 5: Further calculations for set 2 
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10.4.6 Example 6 

Tab. 98 Example 6: Overview of the calculations - part 1 

 

Tab. 99 Example 6: Overview of the calculations - part 2 
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10.4.7 Comparison of Davis A, Davis B and Davis C 

Tab. 100 Study 1 - slope 1: Overview of the calculations 

 

Tab. 101 Study 1 - slope 2: Overview of the calculations 
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Tab. 102 Study 2 - slope 1: Overview of the calculations 
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Fig. 102 Study 1 - slope 2: Standard SRFEA, user-defined SRFEA, Davis A, Davis B as well as 

Davis C results for different  and ’ 
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Fig. 103 Study 1 - slope 2: Differences between Davis A and standard SRFEA, Davis B and user-

defined SRFEA as well as Davis C and standard SRFEA for different  and ’ 
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10.5  -  inequality 

Tab. 103 Case 1: Overview of the calculations 
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Tab. 104 Case 2: Overview of the calculations 
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10.6 Influence of the initial stress condition on the FoS 

Tab. 105  -  inequality with K0 procedure: Overview of the calculations 

 

Tab. 106 Influence of K0 on FoS: Overview of the calculations with K0 = 0.25 

 

Tab. 107 Influence of K0 on FoS: Overview of the calculations with K0 = 0.4 

 


