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Introduction

This thesis deals with real numbers whose expansions to a base are random (in a sense

made precise below). The introduction is aimed at giving a short overview over the field

and an outline of our work in that area. We do not wish to give an exhausting review of

all existing literature but rather refer to the books [42, 59, 82] for further reference. We

devote two small sections to normal numbers in the theory of computing as well as to a

fractal-geometric perspective on normal numbers as an invitation for the reader to further

pursue these topics.

In Chapter 2, I briefly describe the results I have obtained. This is followed by the

original research papers [18,25,91,113–115].

1.1. Definition and first results. Normal numbers have been defined by Borel in 1909.

His original definition is as follows. A real number x ∈ [0, 1) is called simply normal to

base b, b > 2 an integer, if in its b-ary expansion

x =
∑
n>1

anb
−n, an ∈ {0, . . . , b− 1}

every digit d ∈ {0, 1, . . . b − 1} appears with the expected frequency 1
b
. The number x is

called normal to base b if each of x, bx, b2x, . . . is simply normal to every base b, b2, b3, . . . .

We will work the following equivalent definition (for these formulations see e.g. Bugeaud’s

book [42, Chapter 4]).

The number x is called normal to base b, b > 2 an integer, if in its b-ary expansion all

finite combinations of digits appear with the expected frequency, i.e. if for all k > 1 and

all d ∈ {0, . . . , b− 1}k,

(1.1) lim
N→∞

1

N
|{1 6 n 6 N : (an, . . . , an+k−1) = d}| = 1

bk
.

Another equivalent formulation is due to Pillai [107] who showed that x is normal to

base b if and only if it is simply normal to every base b, b2, b3, . . . .
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A real number is called absolutely normal, if it is normal to all integer bases b > 2. Borel

showed that almost all real numbers (with respect to Lebesgue measure) are simply normal

to all bases b > 2, thus absolutely normal.

The two main problems on normal numbers are the following.

(1) Find explicit examples of absolutely normal real numbers.

(2) Show that explicit numbers such as
√

2, ln 2, e, π, . . . are normal.

Only little progress has been made on the second question. This thesis constitutes a

modest contribution to the first question.

Question (1) has been solved if asked for normality to only one base. The first explicit

example of a normal number is due to Champernowne in 1935 [47]. He showed that the real

number constructed by concatenating the expansions in base 10 of the positive integers,

i.e.

(1.2) 0, 1 2 3 4 5 6 7 8 9 10 11 . . . ,

is normal to base 10. This construction has been extended in various directions (including,

but not limited to, Besicovitch [29], Erdős and Davenport [53], Copeland and Erdős [48]

Schiffer [116], Nakai and Shiokawa [98], Madritsch, Thuswaldner and Tichy [92]).

Most of these and other constructions of numbers normal to one base essentially depend

on the choice of the base and therefore no immediate information on the digital expansions

of the produced number to other bases is available. It is however unknown whether for

example Champernowne’s number (1.2) is normal to bases other than powers of 10 or not.

All known examples of absolutely normal numbers have been established in the form of

algorithms that output the digits of this number to some base one after the other. The

first such constructions are due to Sierpinski [123] (from 1917) and Lebesgue [83] (which

appeared in 1917 but dates back to 1909). Sierpinski’s construction was made computable

by Becher and Figueira [11] who gave a recursive formulation of his construction. Other

constructions of absolutely normal numbers in the form of algorithms are due to Turing

[128] (see also Becher, Figueira and Picchi [13]), Schmidt [117], Levin [84] (see also Alvarez

and Becher [2]), Becher, Heiber and Slaman [17], Figueira and Nies [64] and Lutz and

Mayordomo [88].

Exceptions to this scheme are numbers in the spirit of Chaitin’s constant arising as

halting probabilities in the theory of Turing machines. These numbers are almost by

definition absolutely normal, but non-computable. See Section 1.4.

1.2. Generalizatons of normality. The concept of normality can be generalized in many

ways as it is in principle the same as the concept of genericity of dynamics: A point is

generic if it satisfies a given almost-everywhere property in a dynamical system. However,
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being motivated by representations of numbers by a sequence of digits having dynamical

origins, the most natural generalizations of normality we deal with in this thesis are with

respect to expansions to non-integer bases, and to continued fractions.

1.2.1. Normality for expansions to non-integer bases. As initiated by Rényi [112] and Parry

[103], it is possible to represent real numbers x ∈ [0, 1) to a base β that is not necessarily

integer by expanding x as a power series

∞∑
n=1

anβ
−n

where the digits 0 6 an < β are chosen in increasing order of n as large as possible.

We say x is β-normal or normal to base β if the orbit of x under the map Tβ : x 7→ βx

(mod 1) is uniformly distributed with respect to the unique Tβ-invariant entropy maximiz-

ing measure µβ. In case β is an integer larger than or equal to 2, the β-expansion is just

the expansion of x to base b, and equidistribution is with respect to Lebesgue measure.

The most well-studied case in the theory of β-expansions is if β is a Pisot number.

These are real algebraic integers β > 1 such that all its conjugates lie inside the open unit

disc. We call a real number absolutely Pisot normal if it is normal to all bases that are

Pisot numbers. Since there are only countably many Pisot numbers, the Birkhoff ergodic

theorem implies that almost all real numbers are in fact absolutely Pisot normal.

Normal numbers to non-integer bases have been constructed in [78] and [28].

A number absolutely normal with respect to a countable set of real numbers has been con-

structed by Levin using Weyl’s theorem for equidistribution. We contribute with our con-

structions in [115] and [91] to this topic and obtain some ancillary results on β-expansions

that might be of independent interest. See Section 2.2.

1.2.2. Normality for continued fraction expansions. A real number x ∈ [0, 1) is called

continued fraction normal if the orbit {T nG(x)}n>0 of x under the Gauss map

TG : [0, 1)→ [0, 1), x 7→ 1

x
(mod 1), x > 0, x 7→ 0, x = 0,

is equidistributed with respect to the Gauss-Kuzmin measure µG on [0, 1), given by

µG(A) =

∫
A

1

log 2

1

1 + x
dx

for any Borel set of [0, 1).

Equivalently, x is continued fraction normal, if and only if in its continued fraction

expansion

x = [a0; a1, a2, . . .]
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all finite blocks of positive integers d1 . . . dk appear with asymptotic frequency

µG({x ∈ [0, 1) : a1(x) = d1, . . . , ak(x) = dk}).

Explicit examples of continued fraction normal numbers have been given by Postnikov

and Pyateckĭı [109], Adler, Keane and Smorodinsky [1], Madritsch and Mance [90] and

Vandehey [129] by concatenating suitable strings of partial quotients. For example, in [1]

it is shown that the number with continued fraction expansion

[0; 2, 3, 1, 2, 4, 2, 1, 3, 5, . . .]

is continued fraction normal. This number is obtained by concatenating the (finite) ex-

pansions of the positive rational numbers, when ordered according to denominator.

In [114] I give a solution to an open problem by Bugeaud and Queffélec [42, Ch. 10]

and [110] by giving a construction of an absolutely normal number that is also continued

fraction normal. My construction is based on ideas of Sierpinski [123] and Becher and

Figueira [11] and gives rational approximations to such a number by giving its digits to

base 2 one after the other. However, to obtain a more explicit example of such a number

is desirable and continues to be an open problem.

1.2.3. Generic points in dynamical systems. Let X be a topological space, B a Borel σ-

algebra, µ a probability measure on (X,B) and T : X → X a map, ergodic and measure-

preserving with respect to µ. Then Birkhoff’s point-wise ergodic theorem can be applied

and we call x ∈ X generic if the conclusion of Birkhoff’s theorem is satisfied, i.e. if for all

compactly supported continuous functions f on X,

(1.3) lim
N→∞

1

N

N−1∑
n=0

f(T n(x)) =

∫
X

f(x)dµ(x).

If T is uniquely ergodic then 1.3 holds for all x, so there is no problem in finding generic

points. The maps ×b, ×β and x 7→ { 1
x
} are all examples of measure-preserving ergodic

transformations on the unit interval that are not uniquely ergodic. For all of them there

is a natural choice of measure with respect to which one defines normality. In these cases

points satisfying (1.3) can thus all be seen as natural generalizations of the terminology of

being normal.

1.3. Discrepancies of normal numbers. The discrepancy of a sequence (xn)n>1 of real

numbers is defined as

DN(xn) = sup
I

∣∣∣∣ 1

N
]{1 6 n 6 N : xn mod 1 ∈ I} − λ(I)

∣∣∣∣ ,
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where the supremum is extended over subintervals I ⊆ [0, 1) and where λ denotes the

Lebesgue measure. A sequence is uniformly distributed modulo 1 if its discrepancy tends

to zero as N →∞.

Wall [130] showed that x is normal to base b if and only if the sequence (bnx)n>1 is

uniformly distributed modulo 1, i.e. if DN(bnx)→ 0 as N →∞.

In this thesis we are interested in quantitative estimates of DN(bnx) for absolutely normal

numbers x.

Gaal and Gál [69] and Philipp [106] showed that for almost every x ∈ [0, 1), for every

integer b > 2, DN(bnx) = O(
√

log logN/N). Fukuyama [67] completed this study by

explicitly giving the implied constants, i.e. he showed that

lim sup
N→∞

DN(bnx)
√
N√

log logN
= c(b)

for almost every x for some explicit positive constant c depending on b.

For the case of general sequences of real numbers, Schmidt [119] showed that there is

an absolute constant c > 0 such that for any sequence (xn)n>1, DN(xn) > c logN
N

holds

for infinitely many N . Schiffer [116] showed that the discrepancies of constructions of

normal numbers in the spirit of Champernowne satisfy bounds of order Ω( 1
logN

). Levin [85]

constructed for any integer b > 2 a real number α such that DN(bnα) = O( (logN)2

N
). It is

an open question whether there exist an integer b > 2 and a real number x with optimal

discrepancy bound DN(bnx) = O( logN
N

).

For absolute normality there seems to be a trade-off between the complexity of the algo-

rithms and the speed of convergence of the corresponding discrepancies. The discrepancies

satisfy upper bounds of the order O(N−1/6) (Sierpinski), O(N−1/16) (Turing), O( 1
(logN)

)

(Schmidt) and O(N−1/2(logN)3) (Levin). All algorithms, except the one due to Schmidt,

need double exponential many mathematical operations to output the first N digits of the

produced absolutely normal number. Schmidt’s algorithm requires exponentially many

mathematical operations. Becher, Heiber and Slaman’s construction [17] is polynomial in

time and of discrepancy O( 1
logN

).

No construction of an absolutely normal number x is known such that the discrepancy

DN(bnx) for some b > 2 decays faster than what one would expect for almost all x.

However, together with Verónica Becher and Theodore Slaman we were able to construct

an absolutely normal number with discrepancy to each base as good as almost any number,

including Philipp’s constants. This slightly improves Levin’s work. See Section 2.1.2.

1.4. Normal numbers in the theory of computing. A real number in called random

when its expansion to each integer base b is unpredictable by any program running on a
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Turing machine. The original definition of randomness for real numbers is due to Martin-

Löf [94] and has several equivalent formulations.

The area of studying random numbers is now known as algorithmic randomness and the

two very reference books are [57,102].

The concepts of randomness and normality do not coincide. Randomness implies normal-

ity [7, 45], but normality does not imply randomness: Random numbers are by definition

not computable, i.e. their fractional expansion is not obtainable by a computer program.

In contrast, there are evidently computable normal numbers (e.g. Champernowne’s num-

ber is in fact given by a computable construction). In particular, there exist computable

absolutely normal numbers as mentioned above.

Another way of seeing that randomness and normality do not coincide is with a result

from descriptive set theory. The set of random numbers as a subset of all real numbers is

Π0
2-complete while the set of absolutely normal numbers is Π0

3 and also Π0
3-complete [16,19]

(see also [81] for base 2).

Random real numbers can be characterized as being precisely those numbers whose

sequences representing its expansions to integer bases can not be compressed by any algo-

rithm run on a Turing machine [46] (see also [57,102] and the references therein). A similar

characterization theorem in terms of incompressibility holds for normal numbers. Instead

of using Turing machines it uses finite-state automata which are the simplest possible com-

puting machines. This result follows from a seminal paper by Schnorr and Stimm [120]

from the early 1970’s. They show that a real number is normal to a given base if and only

if every martingale definable with a finite-state automata only takes bounded function val-

ues on the prefixes of the expansion of the number to this base. Martingales are functions

on finite sequences whose function values depend in a natural way on the prefixes of the

sequence and can be understood as ‘betting strategies’ on infinite sequences.

Schnorr and Stimm’s result was generalized in [51] where degrees of profits obtainable

by finite-state martingales were considered (this is known as the theory of finite-state di-

mension). The results of [51] together with the work of [35] connect unpredictability by

finite-state martingales with incompressibility by finite-state automata. A direct proof

of the characterization of normal numbers as being precisely those whose expansions are

incompressible by finite-state automata was given by Becher and Heiber in [15]. This char-

acterization is robust in the sense that it remains true even if we consider non-deterministic

finite-state automata or add a counter [9].

Since randomness implies normality, every random number is an example of an absolutely

normal number. One family of random numbers is given by Chaitin’s Omega numbers [46].

These are halting probabilities of universal Turing machines and are as such defined as the
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limit of an infinite sum involving non-computable values. Other relevant works in this

direction include [10,12,14,43].

As indicated above, progress has recently been made on the fast computation of abso-

lutely normal numbers. In particular, polynomial-time constructions have been given by

Becher, Heiber and Slaman [17] using elementary methods and Figueira and Nies [64] and

Lutz and Mayordomo [88] using martingale methods. It is as of yet unclear whether Lutz

and Mayordomo’s construction can be used for practical implementation.

With the analysis of the constructions of absolutely normal numbers by Schmidt, Turing

and Becher, Heiber and Slaman and with our algorithm with Becher and Slaman, we

contribute in this thesis to the open question whether good convergence to normality (for

every base) necessarily implies large complexity.

Some early analysis of the space and time complexity of computing normal numbers was

made by Strauss [126].

Martin Epszteyn [63] has carried out computer simulations and computed discrepancies

of classical normal numbers expressed in bases multiplicatively independent to the base in

which the number was constructed. His results clearly indicate that for example Champer-

nowne’s number when constructed to base 10 shows in fact the worst random behaviour to

base 10, but behaves very random when the same real number is expressed e.g. to base 2.

He also implemented Becher, Heiber and Slaman’s polynomial-time algorithm to output

an absolutely normal number.

Other digit-statistics experiments can be found in [6, 101].

1.5. Normal numbers in fractals. In this section we give an overview of existence results

of normal numbers in fractals. We focus on normal numbers to base r with missing digits

in base s, where r and s are multiplicatively independent; normal numbers with missing

continued fraction digits; and continued fraction normal numbers with missing digits to

integer bases. There has been recent progress, notably by Hochman and Shmerkin [76] and

by Simmons and Weiss [124], such that we now know that in each of these cases almost all

numbers (with respect to the corresponding natural Cantor measure) are normal.

In this section the following notation is used.

Let Λ ⊂ N>2 be set. Denote by CΛ = {x ∈ [0, 1) : ai(x) ∈ Λ, i > 1} the set of real

numbers in [0, 1) whose partial quotients only lie in Λ. Let BA =
⋃

Λ⊂N>2 finite CΛ be the set

of badly approximable numbers and let WA = [0, 1)rBA be the set of well approximable

numbers, i.e. the set of real numbers whose continued fraction expansion has unbounded

partial quotients.
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Let b > 2 be an integer. For a subset B ⊂ {0, 1, . . . , b − 1}, let C
(b)
B = {x ∈ [0, 1) :

the base-b expansion of x has digits only in B}. For example, C
(3)
0,2 is the standard middle

third Cantor set.

1.5.1. Normal numbers to base r in C
(s)
S . Going back to works of Cassels [44], Schmidt [117,

118], Pearce and Keane [104], Brown, Moran and Pearce [39–41], Pollington [108], Host [77],

Becher and Slaman [19], Becher, Bugeaud and Slaman [8] and others, we know that nor-

mality (or simple normality) to base s and normality (or simple normality) to base r are

completely independent, in the sense that as long as there is no multiplicativity relation

between the bases, the set of numbers normal (or simply normal) to bases s in a set S and

not normal (or simply normal) to bases r in a set R has full Hausdorff dimension.

Methods involve constructing measures with quickly decaying Fourier-transformation

(see next section), methods from ergodic theory and Schmidt games. See [42, Ch. 4-7].

1.5.2. Normal numbers to base b in CΛ, Fourier-techniques. Let µ be a probability measure

on R. The Fourier transform of µ is

µ̂(ζ) =

∫
R
e−2πiζxdµ(x)

for ζ ∈ R.

If µ is such that µ̂(ζ) � |ζ|−α for some α > 0, then µ-almost any x ∈ R is absolutely

normal.

Theorem 1.1 (Daveport, Erdős, LeVeque [54]). Let µ be a probability measure on [0, 1)

and (sn)n>1 a sequence of natural numbers. If

∞∑
N=1

1

N3

N∑
n,m=1

µ̂(k(sm − sn)) <∞

for any k ∈ Zr {0}, then (snx)n>1 equidistributes modulo 1 with respect to µ for µ-almost

every x.

If µ̂(ζ)� |ζ|−α for some α > 0 then µ-almost every x is absolutely normal.

For example, there is such a measure with polynomial decay on the set of well-approximable

numbers. However, the existence of such a measure on a set implies that this set has di-

mension at least 2α > 0. Hence e.g. there can not be any such measure on the set of

Liouville numbers, as they have dimension 0.

Let BN = C{1,2,...,N} be the set of real numbers in [0, 1) with partial quotients bounded

by N .

Theorem 1.2 (Kaufman [80] (N > 3), Queffélec and Ramaré [111] (N > 2)). There is a

probability measure µ on BN with polynomial decay of µ̂(ζ) as |ζ| → ∞.
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Furthermore, Queffélec and Ramaré showed the existence of a probability measure whose

Fourier-transformation decays polynomially on CΛ for any |Λ| > 2 provided the dimension

of CΛ is larger than 1
2
. Hensley [74] calculated the corresponding Hausdorff dimensions,

but for example dimC{5,6} <
1
2
.

For a good review of these techniques, and a very interesting paper in general, see Jordan

and Sahlsten [79]. Note that it seems to be an intrinsic obstruction of these techniques

that they do not extend beyond dimension 1
2
. This seems to be a summability condition

to achieve convergence. Jordan and Sahlsten [79] comment on this issue.

However, using different techniques, it has been shown by Hochman and Shmerkin [76]

that almost all numbers in CΛ are absolutely normal, for any Λ ⊂ N>2, provided it has at

least two elements.

1.5.3. Normal numbers to base b in CΛ, approach and solution by Hochman and Shmerkin.

Hochman and Shmerkin [76] use the so-called scaling flow as developed by Furstenberg.

The scaling flow can be thought of as a continuous sequence (i.e. a flow) of probability

measures supported on smaller and smaller neighbourhoods of a point x. Typical results

on the scaling flow establish ergodic properties along the continuous variable for almost all

points x. The scaling flow goes back to Furstenberg [68] and has for example been studied

in several works by Hochman.

Hochman and Shmerkin’s results apply to more general fractals and in fact include the

results by Cassels and Schmidt on normal numbers in integer-base Cantor sets, as well

as the Fourier-technique results by Kaufman and others on normal numbers in continued

fraction Cantor sets. However, Hochman and Shmerkin point out that their techniques

do not yield almost everywhere continued fraction normality in integer-base Cantor sets

due to the non-linearity of the Gauss-map. They proved among other things the following

result.

Theorem 1.3 (Hochman, Shmerkin [76]). Let Λ ⊂ N be a finite set with at least two

elements and let µ be the natural Hausdorff measure on CΛ. Then µ-almost all numbers in

CΛ are absolutely normal.

Sketch of proof. The proof uses a certain measure classification theorem, just as the ap-

proaches by Einsiedler, Fishman and Shapira, and Simmons and Weiss do (see next sec-

tions). Let n > 2 be an integer. Hochman and Shmerkin take a µ-generic point, look at

its forward orbit under Tn (the multiplication by n map on [0, 1)) and look at the sequence

of normalized counting measures supported at the first N points of this orbit. Since we

are working on the compact unit interval, there will be a weak? convergent subsequence of

the sequence of these measures and the limit measure ν will automatically be Tn-invariant.
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Hochman and Shmerkin show that this limit measure ν has to have Hausdorff dimension 1

which implies that it is the Lebesgue measure since this is the unique Tn-invariant measure

of maximal dimension.

The proof uses the concept of resonance of measures. Two Borel probability measures

on R are said to resonate, if dimµ ∗ ν < min(1, dimµ + dim ν), and dissonate, if < is

replaced by >. Here, the convolution of measures can be thought of as the probability

distribution of the sum of two random variables whose probability distributions are µ and

ν, respectively.

Hochman and Shmerkin proceed by means of contradiction. They show by construction

that any Tn-invariant measure other than the Lebesgue measure λ resonates with measures

of arbitrary large dimension (this step uses the piece-wise linearity of Tn and according

to Hochman and Shmerkin seems to fail for the Gauss map TG). Then they show that

if a µ-generic x distributes along a subsequence with respect to a measure ν, then ν in

fact dissonates with all measures of sufficiently large dimension. Furthermore, they show

that any such limit measure must have positive dimension (this step uses results on the

scaling flow). This implies that ν must have dimension 1, hence ν has to be the Lebesgue

measure. �

1.5.4. Almost all points in the middle third Cantor set are well-approximable. Einsiedler,

Fishman and Shapira [61] show that almost all numbers in base-b fractals (for the natural

Hausdorff measure) are in WA and in fact have continued fraction expansions in which all

finite patterns appear.

Theorem 1.4 (Einsiedler, Fishman, Shapira). With respect to the natural Hausdorff mea-

sure, almost every number in the middle third Cantor set C
(3)
0,2 contains all finite patterns

in its continued fraction expansion.

Central to the considerations both by Einsiedler, Fishman and Shapira and Simmons

and Weiss is a classical correspondence between geodesics in the hyperbolic upper half-

plane (which are either vertical lines or half-circles orthogonal to the real line) and the

continued fraction expansion of the base-points at which the geodesics intersect the real

line. Since Sl2(Z) acts by Mobius transformation on the upper half-plane, geodesics can

naturally be lifted to the standard fundamental domain for this action (the strip of complex

number with real part between −1
2

and 1
2

from which the disc of radius 1 around 0 has

been removed). Any geodesic in the upper half-plane corresponds under this lift to a set of

geodesic pieces in the fundamental domain. Since there is a natural probability measure on

the (tangent space of the) fundamental domain when viewed as a (non-compact) manifold,

one can speak of equidistribution of a geodesic in the fundamental domain. Note that the

tangent space to this manifold can be identified with PGl2(R)/PGl2(Z).
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These considerations lead to the following theorem as taken from Simmons and Weiss [124]

that goes back to Artin [3] (see also Series [121]) that constitutes the fundamental link be-

tween homogeneous dynamics and diophantine approximation.

Theorem 1.5. Let x ∈ [0, 1) and suppose that the geodesic corresponding to x is equidis-

tributed in PGl2(R)/PGl2(Z) with respect to Haar measure. Then the orbit {T nG(x)}n>1 is

equidistributed with respect to the Gauss measure.

Note that it does not matter which geodesic ending in x one takes. Two different such

geodesics approach each other towards x and thus have the same asymptotic behaviour.

The converse of this theorem is not true. By changing the continued fraction expansion of

a normal continued fraction on a subsequence of digits of zero density, one can allow for

very large partial quotients without affecting the normality property. The corresponding

geodesic will reflect this behaviour by visiting ∞ too long and will consequently not be

equidistributed with respect to Haar measure on PGl2(R)/PGl2(Z).

Sketch of proof of Theorem 1.4. Note that if a geodesic is dense in PGl2(R)/PGl2(Z) (as

opposed to equidistributed), then the continued fraction expansion of the endpoint contains

all finite patterns (as denseness implies that any finite geodesic piece can be approximated

arbitrarily closely which corresponds to finite patterns in the continued fraction expansion).

The main idea is to lift the natural measure on the middle-third Cantor set via the

above described correspondence to PGl2(R)/PGl2(Z) and then even further to an adelic

extension of this group. In this situation it is possible to apply a deep measure classification

theorem by Lindenstrauss concerning measures invariant under the geodesic flow. By a

construction, this measure classification theorem can be used to give a contradiction to

the assumption that the set of points in the middle-third Cantor set with non-dense orbits

under the Gauss map had less than full measure. �

1.5.5. Continued fraction normality in Cantor sets. Using different methods, Simmons

and Weiss [124] recently completed this study by showing that well-approximability in

Einsiedler, Fishman and Shapira’s theorem can be replaced by normality.

Theorem 1.6 (Simmons, Weiss). Almost every real number in the middle-thirds Cantor

set is continued fraction normal.

Their proof uses results from the theory of random walks on groups by Benoist and

Quint [26]. Such a random walk can for example be thought of as fixing a set of, say,

two elements of a group G and assigning them both a probability (such as 1
2
). Then one

observes the trajectory of an element of the group if one repeatedly multiplies it from the
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left with one of those two elements as drawn according to the probabilities assigned to

them.

In this context, one studies stationary measures (see e.g. [61, p. 272]). Such measures

should be thought of as being invariant under the ‘random walk’ on the group. Any G-

invariant measure is stationary. Invariant measures need not always exist but stationary

measures do.

Sketch of proof of Theorem 1.6. As before, we work in PGl2(R)/PGl2(Z). We let

g0 =

(√
3 0

0 1/
√

3

)
and g2 =

(√
3 2

√
3

0 1/
√

3

)
be two elements of this space and wish to multiply the unit element of PGl2(R)/PGl2(Z)

repeatedly with one of each of g0 or g2, drawn with equal probability. The first part of

the main theorem of Simmons and Weiss asserts that in this situation for almost any

sequence of gi’s (according to the product measure on the space of all such sequences),

for any element x of the group, the trajectory of the random walk gngn−1 . . . g1x will be

distributed according to a stationary measure. The second part of their theorem says that

there is only one such stationary measure - the natural Haar measure. Simmons and Weiss’

work goes back to work of Benoist and Quint, which by my understanding greatly extends

a classical theorem by Breiman [37].

We write g0 = au0, g2 = au2 where

a =

(√
3 0

0 1/
√

3

)
and ux =

(
1 x

0 1

)
.

Let i = (i1, i2, . . .) be a random sequence of indices in ∈ {0, 2} and denote by e the unit in

PGl2(R)/PGl2(Z). We have gi1e = aui1e and

gi2gi1e = aui2aui1e = a2

(
1 i1 + i2/3

0 1

)
e.

Note that i1 + i2/3 with i1, i2 ∈ {0, 2} already resembles the ternary expansion of a number

in the middle-third Cantor set. Inductively,

gin · . . . · gi1e = anus|ne

where s|n are the first n digits of the base 3 expansion of a real number s = i1 + i2/3 +

i3/3
2 + . . .. We have

anus|n = anus|n−sus = anus|n−sa
−nanus =

(
1 (
√

3)2n(s|n − s)
0 1

)
= uO(1)a

nus.
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This is because s|n − s = O(3−n). By construction, s lies in C3
0,2, and the probability

measure on the sequence space {0, 1}N corresponds exactly to the natural measure on

the middle third Cantor set. The statement in the theorem follows if we establish that

equidistribution of {uO(1)a
nuse}n>0 implies equidistribution of the full diagonal action of

{diag(et, e−t)}t>0 on {uO(1)use} which is corresponds to the geodesic starting at s and thus

implies the theorem in view of Theorem 1.5. �





Description of my Work

2.1. Absolutely normal numbers.

2.1.1. Quantitative simultaneous equidistribution. In [114], I solved a question by Bugeaud

and Queffélec [42, Chapt. 10] on absolutely normal well-approximable numbers. In fact, I

showed that there is a computable absolutely normal number that is also continued fraction

normal. The construction is based on ideas of Sierpinski [123] and Becher and Figueira [11].

A sequence of digits ω of length n is called (ε, k)-normal or (ε, k, µ)-normal, if for all

sequences d of length k, the number of times d appears in ω lies between n(µ(d)− ε) and

n(µ(d) + ε). If the measure µ is ergodic with respect to underlying the shift map, the

Shannon-McMillan-Breimann theorem implies that the µ-measure of the set of non-(ε, k)-

normal numbers of length n decays exponentially in n. This consequence is not explicit, in

the sense that one has no information on the magnitude of the implied constants. However,

using a large deviation theorem for mixing random variables, I could give explicit estimates

of these constants. This is necessary to establish a completely deterministic construction.

In the context of β-expansions for β a Pisot number, together with Manfred Madritsch

and Robert Tichy [91], we also could make these constants completely explicit. This al-

lowed us to give an algorithmic construction, realizable only with elementary mathematical

operations, of a real number simultaneously normal to every Pisot number.

2.1.2. Speed of computation and convergence to normality. In [113] I showed that work

by Schmidt [117] on numbers normal to multiplicatively independent bases can be made

effective to yield an algorithmic construction of an absolutely normal number. I further-

more showed that this algorithm can be optimized with respect to speed of convergence

to normality to generate an absolutely normal number that in each base converges faster

to normality than all known constructions by concatenation of blocks of numbers normal

only to a single base.

To make Schmidt’s algorithm fully explicit, I gave explicit upper bounds for constants

appearing in an exponential sum estimate in his work. This is of independent interest for
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applications to problems involving digital representations to multiplicatively independent

bases.

In [113] and [91], we analyzed the computable versions of constructions of Sierpinski,

Turing, and the algorithm of Becher, Heiber, Slaman and my explicit version of the con-

struction of Schmidt. Our main conclusion is that the faster an algorithm computes the

digits of the absolutely normal number that it outputs, the slower convergence to nor-

mality seems to be. In particular, the polynomial time algorithm by Becher, Heiber and

Slaman [17] is as fast as other constructions by concatenation of blocks of digits. It is still

unclear whether this trade-off is a defect of the existing constructions so far or if this is a

natural behaviour to expect.

Together with Verónica Becher and Theodore Slaman we showed that it is possible to

adapt Sierpinski’s ideas to give a constructive proof of Philipp’s result. This allows to com-

pute an absolutely normal number, digit-by-digit, with discrepancy to each base as good

as almost any number, including Philipp’s constants. This improves Levin’s construction

in terms of rate of convergence to normality (and also in terms of computability - our

construction is elementary and does not use exponential sums). We are however not sure

whether or not it is possible to give this construction in linear time, or how to extend it

to include the optimal constants as given by Fukuyama.

2.2. β-expansions.

2.2.1. On expansions to Pisot bases. Much of the arithmetic properties of β-expansions are

encoded in the orbit of 1 under the map Tβ. This is a finite set when β is a Pisot number.

In [91] we obtained an upper bound for the number of points in this orbit. This is also

an upper bound for the number of zeros occurring in the modified β-expansion of 1 and

as such gives quantitative information about the specification property of the underlying

dynamical system (Tβ, µβ). The proof uses some basic algebraic number theory and a

result from the geometry of numbers.

Applying similar methods, in [115] I could give an estimate for the length of the β-

expansion of a positive real number.

2.2.2. β-normal numbers from polynomials along primes. It was known that the most basic

construction of numbers normal to an integer base, namely Champernowne’s number,

has analogues for β-numeration systems. However, it was not known whether or under

which assumptions on the base other constructions of normal numbers have an analogue

to real bases. I was especially interested in polynomial constructions: real numbers whose

expansion to base β is obtained by concatenating the β-expansions of values of a non-

constant positive integer-valued polynomial along the natural numbers or the primes, i.e.
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0, f(1)f(2)f(3) . . . or 0, f(2)f(3)f(5) . . .. In [115] I proved that under natural finiteness

assumptions on the base these constructions in fact do yield normal numbers.

The proof is based on a combinatorial cutting and pasting trick together with results on

normal numbers to real bases by Bertrand-Mathis and Volkmann [27].

2.3. Diophantine equations.

2.3.1. On squares with three non-zero digits. A classical result of Besicovitch [29] that

the concatenation of squares is normal implies that in an average sense only few integer

squares have few non-zero digits. I was interested in ‘local’ results, i.e. in this case to

classify explicitly which squares have few digits. My work with Michael Bennett can be

seen as a study of local techniques for polynomial sequences. This continues work on

the digital representation of perfect powers as initiated by Bennett, Bugeaud, Mignotte,

Corvaja and Zannier and others. In particular, we determined all integers n such that n2

has at most three digits in base b for b ∈ {2, 3, 4, 5, 8, 16}. More generally, we showed that

all solutions to equations of the shape

Y 2 = t2 +M · qm +N · qn,

where q is an odd prime, n > m > 0 and t2, |M |, |N | < q, either arise from ‘obvious’

polynomial families or satisfy m 6 3. Our arguments rely upon Padé approximants to the

binomial function, considered q-adically.





Normality in Pisot Numeration Systems

Adrian-Maria Scheerer1

Abstract. Copeland and Erdős [48] showed that the concatenation of primes when

written in base 10 yields a real number that is normal to base 10. We generalize this

result to Pisot number bases in which all integers have finite expansion.

1. Introduction

Let x be a real number and b > 2 a positive integer. Then x has a b-adic representation

of the form

x = bxc+
∞∑
i=1

εib
−i

where εi ∈ {0, 1, . . . b− 1} are the digits of x and bxc is the integer part of x, the biggest

integer less than or equal to x. We call x normal to base b, if any block d = d1d2 . . . dk
of k > 1 digits occurs with the expected frequency in the b-adic representation of x. This

means that

lim
n→∞

1

n
Nd(x, n) =

1

bk
,

where Nd(x, n) counts the occurrences of the block d within the first n digits of x. A real

number x is called absolutely normal if it is normal to every base b > 2.

The terminology of a normal number can be extended to the context when the underlying

base is no longer an integer. Rényi [112] introduced and Parry [103] studied numeration

systems with respect to real bases β > 1. Each real number x has a representation of the

form

x =
−∞∑
i=L

εiβ
i,

with digits εi ∈ {0, 1, . . . , dβe − 1}. One way to produce the digits is the so-called greedy

algorithm using the transformation Tβ : x 7→ βx (mod 1) on the unit-interval. In a natural

way, Tβ corresponds to the shift-operator on the set W∞ of right-infinite sequences over

{0, 1, . . . , dβe−1} and each x corresponds to its sequence of digits. A sequence ω in W∞ is

called µ-normal for a given shift-invariant measure µ on W∞, if all possible finite patterns

of digits occur in ω with asymptotic frequency given by µ. Consequently, the real x is called

1This article appeared in [115]
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µ-normal if its sequence of digits is µ-normal. Details will be made clear in the next section.

From a modern approach, using Birkhoff’s point-wise ergodic theorem, it is immediate

that almost all numbers are normal to a fixed2 base b. The map Tb : x 7→ bx (mod 1) on the

unit-interval is the underlying ergodic transformation which preserves Lebesgue-measure.

Knowing this, the existence of normal numbers to base b is in a certain sense not very

surprising. However, in this context, there are two observations that make the study of

normal numbers interesting.

First: The explicit construction of normal numbers. The study of normal numbers dates

back to Borel [34], who in 1909 showed that Lebesgue-almost all numbers are absolutely

normal. However, the first explicit example of a normal number is due to Champernowne

[47] in 1933. He showed that the concatenation of integers, when written in base 10,

0, 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . ,

is normal to base 10. Copeland and Erdős [48] showed that

0, 2 3 5 7 11 13 17 19 . . . ,

i.e. the concatenation of primes in base 10 is normal to base 10. Besicovitch [29] showed

that the decimal formed by concatenation of the squares in base 10 is normal to base

10. This construction was extended to general integer-valued polynomials by Davenport

and Erdős [53] and by Schiffer [116] and Nakai and Shiokawa [98], [99] to more general

polynomial settings. Nakai and Shiokawa [100] also evaluated polynomials at primes, and

Madritsch [89] showed that numbers generated by pseudo-polynomial sequences along the

primes are normal. Further constructions of normal numbers in the spirit of Copeland and

Erdős and Erdős and Davenport include [93] and [92].

These constructions, most notably the one due to Champernowne, have subsequently

been generalized to other number systems. To mention are the works by Ito and Sh-

iokawa [78] who generalized the Champernowne-construction to real bases β > 1, and by

Madritsch and Mance [90] who modified the construction to produce normal sequences in

general symbolic dynamical systems. Bertrand-Mathis and Volkmann [27] give a general-

ized Copeland-Erdős construction to symbolic dynamical systems.

In this paper we prove a polynomial Copeland-Erdős-construction to bases which are

not integers. We use results from the work of Bertrand-Mathis and Volkmann [27] which

2Borel’s result also follows, but for the moment we want to restrict the discussion to one single base.
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in turn is extending the original work of Copeland and Erdős [48].

Second: Not all numbers are normal (almost all cannot be improved to all, hence Tb is

not uniquely ergodic), so the ergodic theorem is strict. This can be seen in context of the

following ‘test’ for ergodicity.

Theorem 1.1 (See Theorem 1.4 in [32]). Let F0 be a field3 generating F . If T respects4

every A in F0, then T is ergodic.

Hence normal numbers, or rather the existence of non-normal numbers, can be used to

test the underlying transformation for unique ergodicity. Although the Lebesgue-measure

is not the only Tb-invariant probability measure on the unit-interval, it is the only one

that maximizes entropy (see the following section). Accepting this for the moment as a

definition of uniqueness, it is possible to study normality in greater generality with respect

to a given transformation that can be different from Tb.

2. Preliminaries

In the following we present a condensed introduction to β-expansions, Pisot numbers

and symbolic dynamical systems - the context in which we want to state our result.

Let β > 1 be a fixed real number. A β-expansion of a non-negative real number x is a

representation of x as a sum of integer powers of β of the form

(2.1) x =
−∞∑
i=L

εiβ
i,

where the digits εi ∈ {0, 1, . . . dβe− 1} are obtained by the following greedy algorithm. Let

L ∈ Z such that βL 6 x < βL+1 and put εL = bx/βLc and rL = {x/βL}. For L > i > −∞,

define recursively εi = bβri+1c and ri = {βri+1}. β-expansions have been introduced and

studied by Rényi [112] and Parry [103].

Let Tβ be the β-transformation Tβ : [0, 1) → [0, 1), x 7→ {βx}. The digits in the β-

expansion 2.1 are given by εi = bβT i−1
β (x)c. Rényi [112] showed that there is a unique

normalized measure µβ on [0, 1) that is invariant under Tβ and equivalent to the Lebesgue

measure. This measure also maximizes the entropy of the corresponding symbolic dynam-

ical system and we use it to define normal numbers in base β, see below.

3The underlying sigma-field F is in our case the Borel sigma-algebra which is generated by b-adic

intervals.
4Almost every orbit under T visits A with the expected asymptotic frequency.
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A Pisot number β is a real algebraic integer β > 1 such that all its conjugates have

absolute value less than 1. For a Pisot number of degree d, we denote its conjugates by βi,

i = 2, . . . , d, and the corresponding conjugations by σi.

We work with Pisot numbers such that every positive integer has finite β-expansion. A

criterion for when this is the case can for example be found in [65].

In our notation concerning symbolic dynamical systems we follow Bertrand-Mathis and

Volkmann [27].

Let A be a finite alphabet. A∗ is the set of all finite (possibly empty) words over A and

AN is the set of all (right-)infinite words over A. We call a subset L of A∗ a language. L∗

denotes the set of all finite concatenations of words from L. Let W (L∗) be the set of all

non-empty factors of words in L∗. For a finite word ω we let ‖ω‖ be its length. A language

L is said to be connecting5 of order j > 0 if for any two words a, b ∈ W (L∗) there is a word

u = u(a, b) ∈ W (L∗) of length j such that aub ∈ W (L∗). For each a, b ∈ W (L∗) we choose

one u = u(a, b) and introduce the notation a ⊕ b := aub. In the applications we have in

mind, this intermediary word will simply consist of 0’s. We write W (L∗) =
⋃
n>1 Ln where

Ln is the subset of words in W (L∗) of length n. Also denote by L′n the subset of W (L∗) of

words of length less or equal to n. For a language L we denote by W∞ = W∞(L) the set of

all infinite words generated by L, i.e. the set of all ω = a1a2 . . . such that aiai+1 . . . ak ∈ L
for all 1 6 i < k <∞.

We introduce the discrete topology on the alphabet A and the corresponding product

topology on the set of sequences AN. With each language L we associate the symbolic

dynamical system

SL = (W∞,B, T, I),

where W∞ = W∞(L); B is the σ-algebra generated by all cylinder sets of AN, i.e. sets of

the form

c(ω) = {a1a2 . . . ∈ AN | a1a2 . . . an = ω}

for some word ω ∈ A∗ of length n. T is the shift operator and I is the set of all T -invariant

probability measures µ on B. We will write µ(ω) instead of µ(c(ω)) for a finite word ω.

With each symbolic dynamical system SL we associate the entropy

h(W∞) = sup
µ∈I

h(µ),

5A symbolic dynamical system having a connecting language is also said having the specification

property.
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where h(µ) denotes the entropy of the measure µ (cf. Chapter 2 of Billingsley [32]). In

the context of the symbolic dynamical system generated by a β-expansion the measure µβ
is precisely the (unique) measure with maximum entropy equal to log β (cf. [75] and the

work by Bertrand-Mathis and Volkmann [27]). In the following, we will work with this

maximal measure.

For an infinite word ω = ω1ω2 . . . ∈ W∞ and a block d = d1d2 . . . dk ∈ L we denote with

Nd(ω, n) the number of occurrences of d within the first n letters of ω. If the word ω is

finite, we denote by Nd(ω) the occurrences of d in it. An infinite word ω ∈ W∞ is called

µ-normal or µ-normal sequence if for all d ∈ W (L∗)

lim
n→∞

1

n
Nd(ω, n) = µ(d).

We note that a non-negative real number x is µβ-normal if and only if the sequence of

digits in its β-expansion is a µβ-normal sequence.

In this terminology, the main result of Bertrand-Mathis and Volkmann [27] is the fol-

lowing

Theorem 2.1. Let L be a connecting language and a1, a2, . . . a sequence of different ele-

ments of W (L∗), ‖a1‖ 6 ‖a1‖ 6 . . ., satisfying the generalised Copeland-Erdős condition:

∀ε > 0 ∃n0(ε) ∀n > n0 ]{aν | ‖aν‖ 6 n} > |L′n|1−ε.

Then the infinite word a = a1a2 . . . ∈ W∞ is normal.

The symbolic dynamical system generated by the β-shift (or corresponding to the β-

expansion) arises naturally when viewing the β-expansions of real numbers x ∈ [0, 1)

as infinite words over the alphabet {0, 1, . . . dβe}. W∞ is the set of these right-infinite

sequences, B the σ-algebra generated by all cylinder sets, T the shift operator (it corre-

sponds to the β-transformation Tβ), and I the set of all T -invariant probability measures

on B. We work with the unique entropy-maximizing measure µ in I. It corresponds to µβ
on [0, 1) in the sense that for a finite word ω the measure of the cylinder set µ(ω) is the

same as the measure µβ(ω̃) of the set ω̃ of all real numbers in [0, 1) whose β-expansion

starts with ω. We allow us to speak of these two concepts interchangeably.

For a given Pisot number β, denote by (n)β the word over {0, 1, . . . dβe − 1} that cor-

responds to the β-expansion of the positive integer n. We prove the following polynomial

generalization of [48].
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Theorem 2.2. Let β be a Pisot number such that all integers have finite β-expansion

and let the measure µβ be as before. Let f be a polynomial of degree g that maps positive

integers to positive integers. Then

(f(2))β ⊕ (f(3))β ⊕ (f(5))β ⊕ (f(7))β ⊕ (f(11))β ⊕ . . .

is a µβ-normal sequence.

In the context of the dynamical system generated by the β-shift, the entropy is log β.

Hence by Lemma 2 of [27], we have bounds on the number of words of length n in W (L∗).

For n sufficiently large we have βn � |Ln| � βn, where the implied constants do not

depend on n. Therefore

(2.2) |L′n| =
n∑
ν=1

|Lν | � βn

for all large n.

3. General Case

First we need upper and lower bounds of the length of the β-expansion of integers. Under

the assumption of β being a Pisot number such that all integers have finite β-expansions

we can in fact show that the lengths of these expansions are asymptotically of logarithmic

order of magnitude.

Note that if n =
∑−R(n)

i=L(n) εiβ
i we call

∑L(n)
i=0 εiβ

i its integer part and
∑−R(n)

i=−1 εiβ
i its

fractional part. In the following we will think of n as fixed and omit writing the dependency

on it in the lengths L and R.

Lemma 3.1. Let β be a Pisot number of degree d such that all natural numbers have finite

β-expansion. For the length R(n) of the fractional part of n upper and lower bounds of the

following form hold, for sufficiently large n:

δ log n 6 R(n) 6 δ′ log n

where δ is a positive constant (specified in the proof) and the difference δ′ − δ > 0 can be

chosen to be arbitrarily small.

Proof. We have n
βL+1 ∈ [0, 1). Following an argument of Proposition 3.5 Frougny and

Steiner [66], for a certain number k the number T kβ ( n
βL+1 ) is an element of the finite set

Y = {y ∈ Z[β] ∩ [0, 1) | |σj(y)| < 1 +
bβc

1− |σj(β)|
for 2 6 j 6 d}.
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To see this, let the β-expansion of n for the moment be ε1ε2 . . . and put z := n
βL+1 . Then

for all k > 0,

T kβ (z) = βT k−1
β (z)− εk = . . . = βkz −

k∑
l=1

εlβ
k−l.

Hence for all k > 0 and 2 6 j 6 d,

|σj(T kβ (z))| = |σj(β)kσj(z)−
k∑
l=1

εlσj(β)k−l| < |σj(β)|k|σj(z)|+ bβc
1− |σj(β)|

.

Let k be equal to

max
26j6d

⌈
−

log |σj( n
βL+1 )|

log |σj(β)|

⌉
= L+ 1 + max

26j6d

⌈
log n

log |σj(β)−1|

⌉
which we write as

k = L+ 1 + δ log n+O(1), where δ := max
26j6d

1

log |σj(β)−1|
.

Note that the O(1) constant coming from the ceiling lies in [0, 1). For this choice of k,

T kβ ( n
βL+1 ) ∈ Y .

Let W be the maximum length of the β-expansions of the elements in Y . We therefore

obtain asymptotic bounds of R,

δ log n 6 R 6 W + 1 + δ log n 6 δ′ log n,

where δ′ > δ can be chosen arbitrarily close. �

In the course of the proof of Theorem 2.2 we deal with a problem caused by a constant

coming from the length of the words we want to patch together. This issue can be cir-

cumvented by dividing the words into smaller subwords and glueing them back together

afterwards. The following lemma ensures normality of the resulting word when patched

back together.

Lemma 3.2. Let v = v1v2v3 . . . and w = w1w2w3 . . . be µ-normal words such that ‖vi‖ =

‖wi‖, ‖vi‖ → ∞ and assume that the quantities ‖vN+1‖
‖v1‖+...+‖vN‖

and N
‖v1‖+...+‖vN‖

tend to zero

as N tends to infinity. Then the word

u = v1w1v2w2v3w3 . . .

is µ-normal.

Proof. We work with a fixed finite string d = d1 . . . dk of length k. Since v is µ-normal,

we have

Nd(v, n) =
N∑
i=1

Nd(vi) +O(N) +O(‖vN+1‖) −→ µ(d)n
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as n → ∞, where N is chosen such that ‖v1‖ + . . . + ‖vN‖ 6 n < ‖v1‖ + . . . + ‖vN+1‖.
The O(N) contribution comes from possible occurrences in-between two words vi and vi+1.

Hence by the assumptions
N∑
i=1

Nd(vi) −→ µ(d)n

as n→∞. Then, by arguing similarly,

Nd(u, n) =
N∑
i=1

Nd(vi) +
N∑
i=1

Nd(wi) +O(N) +O(‖wN+1‖) = µ(d)
n

2
+ µ(d)

n

2
+ o(n).

Here, N is chosen such that ‖v1‖+ ‖w1‖+ . . .+ ‖vN‖+ ‖wN‖ 6 n < ‖v1‖+ ‖w1‖+ . . .+

‖vN+1‖+ ‖wN+1‖. This shows the normality of u. �

To verify the conditions of Lemma 3.2 in our application, we need some basic number

theoretic input.

Lemma 3.3. Denote by pN the N-th prime number. We have for N →∞

(1)
log pN+1

log p1 + . . .+ log pN
−→ 0, and (2)

N

log p1 + . . .+ log pN
−→ 0.

Proof. This is a consequence of the prime number theorem. We have
pN∑
i=1

log pi = θ(pN) ∼ pN ∼ N logN.

�

With these preliminaries we can prove our theorem.

Proof of Theorem 2.2. The polynomial f(n) = agn
g + . . .+ a1n+ a0 behaves asymptot-

ically like agn
g. Hence for any ε > 0 and any n large enough

f(n) 6 (1 + ε)agn
g and f(n) > (1− ε)agng.

Thus a consequence of Lemma 3.1, we have the upper bounds

R(f(n)) 6 R((1 + ε)agn
g)

6 δ′(log(1 + ε) + log ag + g log n)

6 C ′ log n

for some constant C ′ > δ′g arbitrarily close and n large enough. Similarly we obtain lower

bounds of the form

R(f(n)) > C log n,



DOCTORAL THESIS 27

where C < δg is a positive constant and can be chosen arbitrarily close if n is assumed to

be large enough.

A direct consequence is an asymptotic upper bound for the total length of f(n) when

written in base β:

‖(f(n))β‖ = L(f(n)) + 1 +R(f(n))

6 L((1 + ε)agn
g) + 1 +R((1 + ε)agn

g)

6
g log n+ log ag

log β
+O(1) + C ′ log n

6 C
log n

log β
,

for some (other) constant C. Note that C only depends of f and β.

However, applying Theorem 2.1 directly does not work as we do not have control of

the size of the constant C. This can be avoided by choosing an integer m > 0 such that

C/2m 6 1 and dividing the words (f(n))β in 2m words of (almost) equal length. Then we

can apply Theorem 2.1 to show normality of the concatenations of those shorter words.

They can subsequently be patched back together applying Lemma 3.2 multiple times. Note

that the lower bounds for R enable us to use Lemma 3.2.

For a prime number p we have ‖(f(p))β‖ 6 C log p
log β

, so ‖(f(p))β‖ 6 N is implied by

C log p
log β
6 N . This is equivalent to

p 6 βN/C .

Thus, counting primes below βN/C ,

π(βN/C) ∼ βN/C

N/C log β
>

C

log β
βN(C−1−ε),

for any ε < 1 arbitrarily close and N large enough. Here we see why we require C 6 1,

namely so that the condition of Theorem 2.1,

π(βN/C) > (βN)1−ε

for any ε′ > 0, is implied by βN(C−1−ε) being eventually greater than (βN)1−ε. Inserting

the intermediary word to obtain admissibility in base β does not destroy the normality of

the sequence since we are inserting a word of constant length. �

4. Final Remarks

Let ϕ = 1+
√

5
2

be the golden ratio, i.e. the dominating root of the polynomial x2 −
x − 1. All positive integers have finite ϕ-expansion (see for example Theorem 2 of [65]).

Considering this special case is interesting insofar that we can provide an exact formula
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on the length of the fractional part. Let n be a positive integer and denote by L + 1 and

R the lengths of its integer and fractional part when written in base ϕ. From the greedy

algorithm we already know that

ϕL 6 n < ϕL+1 ⇒ L = b log n

logϕ
c.

In [70] it is proved that the fractional part R of n satisfies R = L or R = L+ 1, depending

on whether L is even or odd. However, even with such an exact formula it is not possible

to establish the normality to base ϕ of the word

(2)ϕ0(3)ϕ0(5)ϕ0 . . .

by directly applying the generalized Copeland-Erdős criterion Theorem 2.1. Moreover, the

method employed in [70] does not seem to yield an exact formula for the length of the

fractional part when the underlying base is a Pisot-number of degree greater than two. It

seems to be an interesting open problem to obtain such a formula.
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Computable Absolutely Normal Numbers and

Discrepancies

Adrian-Maria Scheerer6

Abstract. We analyze algorithms that output absolutely normal numbers digit-by-

digit with respect to quality of convergence to normality of the output, measured by

the discrepancy. We consider explicit variants of algorithms by Sierpinski, by Turing

and an adaption of constructive work on normal numbers by Schmidt. There seems to

be a trade-off between the complexity of the algorithm and the speed of convergence

to normality of the output.

1. Introduction

A real number is normal to an integer base b > 2 if in its expansion to that base all

possible finite blocks of digits appear with the same asymptotic frequency. A real number

is absolutely normal if it is normal to every integer base b > 2. While the construction

of numbers normal to one base has been very successful, no construction of an absolutely

normal number by concatenation of blocks of digits is known. However, there are a number

of algorithms that output an absolutely normal number digit-by-digit. In this work, we

analyze some of these algorithms with respect to the speed of convergence to normality.

The discrepancy of a sequence (xn)n>1 of real numbers is the quantity

DN(xn) = sup
I⊂[0,1)

∣∣∣∣]{1 6 n 6 N | xn mod 1 ∈ I}
N

− |I|
∣∣∣∣ ,

where the supremum is over all subintervals of the unit interval. A sequence is uniformly

distributed modulo one, or equidistributed, if its discrepancy tends to zero as N tends to

infinity.

The speed of convergence to normality of a real number x (to some integer base b > 2)

is the discrepancy of the sequence (bnx)n>0. A real x is normal to base b if and only if

(bnx)n>0 is uniformly distributed modulo one [130]. Consequently, x is absolutely normal

if and only if the orbits of x under the multiplication by b map are uniformly distributed

modulo one for every integer b > 2. It is thus natural to study the discrepancy of these

sequences quantitatively as a measure for the speed of convergence to normality.

6This article appeared in [113]
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A result by Schmidt [119] shows that the discrepancy DN(xn) of any sequence (xn)n>1

of real numbers satisfies DN(xn) > c logN
N

for infinitely many N , where c is some positive

absolute constant. The study of sequences whose discrepancy satisfies an upper bound of

order O( logN
N

), so-called low-discrepancy sequences, is a field in its own right. It is an open

problem to give a construction of a normal number to some base that attains discrepancy

this low. The best result in this direction is due to Levin [85] who constructed a number

normal to one base with discrepancy O( log2N
N

). It is known [69], that for almost every real

number (with respect to Lebesgue measure), for every integer base b, the sequence (bnx)n>0

has discrepancy DN(bnx) = O(
√

log logN
N1/2 ). For more on normal numbers, discrepancies and

uniform distribution modulo one see the books [42], [59] and [42].

A construction for absolutely normal numbers was given by Levin [84] where he con-

structs a real number α normal to countably many specified real bases λi > 1, i > 1,

such that the discrepancy of (λni α)n>0 satisfies DN(λni α) = O( (logN)2ω(N)

N1/2 ). The implied

constant depends on λi and ω is a function that can grow very slowly (it determines the

bases to be considered at each step of the construction). Recently, Alvarez and Becher [2]

analyzed Levin’s work with respect to computability and discrepancy. They show that

Levin’s construction can yield a computable absolutely normal number α with discrepancy

O( (logN)3

N1/2 ). To output the first N digits of α, Levin’s algorithm takes exponentially many

(expensive) mathematical operations. Alvarez and Becher also experimented with small

modifications of the algorithm.

In this work the following algorithms are investigated.

Sierpinski. Borel’s original proof [34] that almost all real numbers with respect to Lebesgue

measure are absolutely normal is not constructive. Sierpinski [123] gave a constructive

proof of this fact. Becher and Figueira [11] gave a recursive reformulation of Sierpinski’s

construction. The resulting algorithm outputs the digits to some specified base b of an

absolutely normal number ν, depending on b, in double exponential time. The sequence

(bnν)n>0 has discrepancy O( 1
N1/6 ). The calculation does not appear in [11]. We give it in

Section 4.1.

Turing. Alan Turing gave a computable construction to show that almost all real numbers

with respect to Lebesgue measure are absolutely normal. His construction remained un-

published and appeared first in his collected works [128]. Becher, Figueira and Picchi [13]

completed his manuscript and showed that Turing’s algorithm computes the digits of an

absolutely normal number α in double exponential time. The discrepancy of the sequence

(bnα)n>0, for integer bases b, is O( 1
N1/16 ). This calculation does not appear in [13], we give

it in Section 4.4.
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Schmidt. In [117], Schmidt gave an algorithmic proof that there exist uncountably many

real numbers normal to all bases in a given set R and not normal to all bases in a set S

where R and S are such that elements of R are multiplicatively independent of elements of

S and such that R∪S = N>2. In his construction he requires S to be non-empty. However,

in a final remark he points out that it should be possible to modify his construction for S

empty.

The main purpose of this paper is to carry out the details of Schmidt’s remark explicitly

to give an algorithmic construction of an absolutely normal number ξ. We show that

to output the first N digits of ξ to an integer base b it takes exponentially in N many

(expensive) mathematical operations. The discrepancy of (bnξ)n>0 is O( log logN
logN

). A small

modification of the algorithm allows for discrepancy O( 1
(logN)B

) for any fixed real number

B > 0, but the output (i.e. ξ) depends on B. For B > 1 this convergence is simultaneously

faster than the speed of convergence to normality of most constructions of normal numbers

(to a single base) by concatenations of blocks (see for example [59] and [116]).

Schmidt’s main tool is cancellation in a certain trigonometric sum related to multiplica-

tively independent bases (Hilfssatz 5 in [117] and Lemma 2.1 here). Schmidt’s lemma does

not make explicit the magnitude of the involved constants. In Lemma 3.1 we present the

detailed calculation and make these constants explicit. The elucidation of the constants in

Schmidt’s lemma can be of interest independent to the present work.

Becher, Heiber, Slaman [17] gave an algorithm that computes the digits of an absolutely

normal number X to some designated base b in polynomial time. The algorithm depends

on a parameter function f that controls the speed of convergence to normality. Becher,

Heiber and Slaman optimize in f to achieve a polynomial time algorithm. The resulting

discrepancy of (bnX)n>0 was not analyzed but has been recently presented in [91].

Notation. For a real number x, we denote by bxc the largest integer not exceeding x. The

fractional part of x is denoted as {x}, hence x = bxc + {x}. Two functions f and g are

f = O(g) or equivalently f � g if there is a x0 and a positive constant C such that

f(x) 6 Cg(x) for all x > x0. We mean limx→∞ f(x)/g(x) = 1 when we say f ∼ g and

g 6= 0. We abbreviate e(x) = exp(2πix). Two integers r, s are multiplicatively dependent,

r ∼ s, when they are rational powers of each other.

In our terminology, mathematical operations include addition, subtraction, multiplica-

tion, division, comparison, exponentiation and logarithm. Elementary operations take a

fixed amount of time to be computed. When we include the evaluation of a complex number

of the form exp(2πix) as a mathematical operation we refer to it as being expensive.
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2. Schmidt’s Algorithm

In this section we present an algorithm to compute an absolutely normal number. We

derived this algorithm from Schmidt’s work [117]. Schmidt’s construction employs Weyl’s

criterion for uniform distribution and as such uses exponential sums. The following esti-

mate for trigonometric series is his main tool.

Lemma 2.1 (Hilfssatz 5 in [117]). Let r and s be integers greater than 1 such that r 6∼ s.

Let K, l be positive integers such that l > sK. Then

(2.1)
N−1∑
n=0

∞∏
k=K+1

| cos(πrnl/sk)| 6 2N1−a20

for some positive constant a20 only dependent on r and s.

In Section 3 we give an explicit version of Lemma 2.1.

2.1. The Algorithm. We begin by stating Schmidt’s algorithm. In Schmidt’s notation

we are specializing to the case R = N>2 and S = ∅. We considered Schmidt’s indications

on how to modify the construction to produce absolutely normal numbers.

Setup. LetR = (ri)i>1 = N>2 (in non-decreasing order) and let S = (sj)j>1 be a sequence of

integers s greater than 2 such that sm 6 ms1 and such that for each r ∈ R there is an index

m0(r) such that r 6∼ sm for all m > m0(r). Let βi,j = a20(ri, sj) from Lemma 2.1 and denote

by βk = min16i,j6k βi,j. We can assume that βk <
1
2
. Let γk = max(r1, . . . , rk, s1, . . . , sk).

Schmidt assumes that the sequences R and S are such that βk > β1/k
1/4 and that

γk 6 γ1k holds. This can be achieved by repeating the values of the sequences R and S
sufficiently many times. Set ϕ(1) = 1 and let ϕ(k) be the largest integer ϕ such that the

conditions

ϕ 6 ϕ(k − 1) + 1, βϕ >
β1

k1/4
and γϕ 6 γ1k

hold. Then modify the sequences R and S according to r′i = rϕ(i), s
′
i = sϕ(i). Note that

(up to suitable repetition) S can be chosen to be the set of positive integers bigger than 2

that are not perfect powers. In principle, using the explicit version of Hilfssatz 5, Lemma

3.1, one could write down R and S explicitly.

Following Schmidt, we introduce the following symbols where m is a positive integer.

Let 〈m〉 = be
√
m + 2s1m

3c, denote 〈m;x〉 = b〈m〉/ log xc for x > 1 and let am = 〈m; sm〉,
bm = 〈m+ 1; sm〉.
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Algorithm. Step 0: Put ξ0 = 0.

Step m: Compute am, bm, sm. We have from the previous step ξm−1. Let σm(ξm−1) be

the set of all numbers

ηm(ξm−1) + csmam+1s
−am−1
m + . . .+ csmbm−2s

−bm+2
m

where the digits c are 0 or 1, and where ηm(ξm−1) is the smallest of the numbers η = gs−amm ,

g an integer, that satisfy ξm−1 6 η.

Let ξm be the smallest of the numbers in σm(ξm−1) that minimize

(2.2) A′m(x) =
m∑

t=−m
t6=0

∑
i6m

m0(ri)6m

∣∣∣∣∣∣
〈m+1;ri〉∑
j=〈m;ri〉+1

e(rji tx)

∣∣∣∣∣∣
2

The following lemma establishes cancellation in the sums A′m in order for Weyl’s criterion

to apply.

Lemma 2.2. There exists a positive absolute constant δ′1 such that

(2.3) A′m(ξ) 6 δ′1m
2(〈m+ 1〉 − 〈m〉)2−βm

Proof. Schmidt’s proof of Hilfssatz 7 in [117] can directly be adopted. The inner sum in

A′m over j is essentially the same as in Schmidt’s function Am. The outer sums over ri and

t are evaluated trivially and contribute a constant factor times m2. �

Remark 2.3. Following the constants in Schmidt’s argument shows that δ′1 = 36 is ad-

missible.

Schmidt shows that the sequence (ξm)m>1 has a limit ξ that is normal to all bases in the

set R, i.e. absolutely normal. We have the approximations

(2.4) ξm 6 ξ < ξm + s−bm+2
m .

2.2. Complexity. We given an estimate for the number of (expensive) mathematical op-

erations Schmidt’s algorithm takes to compute the first N digits of the absolutely normal

number ξ to some given base r > 2.

Note that from inequality (2.4), the representation of ξM in base sM agrees on the first

bM − 2 digits with the base sM representation of ξ. These bM − 2 digits of ξ to base sM
determine the first (bM − 2) log sM

log r
digits of ξ to base r. Thus we want to find M such that

(2.5) (bM − 2)
log sM
log r

> N.
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We find that bM − 2 > e
√
M

log sM
for M large enough. Thus, for N large enough, any M that

satisfies

e
√
M > N2

also satisfies inequality (2.5). Hence, to compute first N digits of ξ to base r, N large

enough, it is enough to carry out 4(logN)2 many steps of the algorithm.

Naively finding the minimum of A′m in each step m 6M by calculating all values A′m(x)

for x in the set σm(ξm−1) costs O(em
1/2

) computations of a complex number of the form

e(rji tx) for each of the 2bm−am−2 = O(2e
m1/2

) elements x in σm(ξm−1). Hence in each step

m we need to perform em
1/2 · 2em

1/2

= O(N2N) mathematical operations. Carrying out

M = 4(logN)2 many steps, these are in total

O(N2N4(logN)2) = O(eN)

many (expensive) mathematical operations.

2.3. Discrepancy. We fix a base r > 2 and t shall denote a non-zero integer. For a

large natural number N , using Schmidt’s Hilfssatz 7, the Erdős-Turán inequality, and via

approximating N by a suitable value 〈M ; r〉 we can find an upper bound for the discrepancy

DN({rnξ}).

Theorem 2.4. The discrepancy of Schmidt’s absolutely normal number ξ is

(2.6) DN({rnξ})� log logN

logN

where the implied constant and ‘N large enough’ depend on the base r.

Proof. For a given N large enough, let M such that 〈M ; r〉 6 N < 〈M + 1; r〉. Such an M

satisfies a lower bound of the form M � (logN)2 if N is large enough.

We split the Weyl sum
∑N

n=1 e(r
ntξ) according to

(2.7)
N∑
n=1

e(rnξt) =

〈M ;r〉∑
n=1

e(rnξt) +
N∑

n=〈M ;r〉+1

e(rnξt).
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An estimate for the first sum
∑〈M ;r〉

n=1 e(rnξt) in equation (2.7) can be obtained from

equation (2.2) and yields

〈M ;r〉∑
n=1

e(rntξ) =
M−1∑

m=m0(r)

〈m+1;r〉∑
n=〈m;r〉+1

e(rntξ) +O(1)

�
M−1∑

m=m0(r)

m(〈m+ 1〉 − 〈m〉)1−βm
2

6M
M−1∑
m=1

(〈m+ 1〉 − 〈m〉)1−βM
2

< M2

(
M−1∑
m=1

〈m+ 1〉 − 〈m〉

)1−βM
2

which is equal to M2〈M〉1−
bM
2 . Using the decay property βM > β1M

−1/2, the first sum in

equation (2.7) is thus

�M2eM
1/2−β1

2
M1/4

.(2.8)

For the error of approximation of N via 〈M ; r〉 we calculate for fixed r, s1, and M large

enough,

(2.9) 〈M + 1; r〉 − 〈M ; r〉 � e
√
M

(
e

1

2
√
M − 1 +

M2

e
√
M

)
where the implied constant depends on s1 and r. We used

√
M + 1−

√
M = 1/(

√
M + 1+√

M) 6 1/2
√
M . For M large enough we have e1/2

√
M 6 1 + 1√

M
, hence the right-hand

side of estimate (2.9) is

6 e
√
M

(
1√
M

+
M2

e
√
M

)
.

Thus,

(2.10) 〈M + 1; r〉 − 〈M ; r〉 = e
√
M ·O

(
1√
M

)
= 〈M ; r〉 ·O

(
1√
M

)
.

By the choice of M , 〈M ; r〉 6 N and M � (logN)2. Thus equation (2.10) is

� N

logN
,

hence the second term in equation (2.7) dominates the first.
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The Erdős-Turán inequality applied to the sequence {rnξ}n>0 is

(2.11) DN({rnξ})� 1

H
+

H∑
t=1

1

t

∣∣∣∣∣ 1

N

N∑
n=1

e(rnξt)

∣∣∣∣∣
where H is a natural number. Splitting the exponential sum as before and upon putting

H = logN , we thus obtain

DN({rnξ})� log logN

logN

where the implied constant depends on the base r. �

2.4. Modifying Schmidt’s Algorithm. We show that it is possible to modify Schmidt’s

algorithm for a given real number B > 0 to output an absolutely normal number ξ,

depending on B, with discrepancy DN({rnξ}) = Or(
log logN
(logN)B

) to base r, where the implied

constant depends on r, thus exponentially lowering the discrepancy associated to Schmidt’s

algorithm by exponent of B.

Proposition 2.5. Fix 0 < c < 1. Schmidt’s algorithm still holds when the function 〈m〉
is replaced by the function

〈m〉 = bemcc.

Note that the functions 〈m; r〉, am and bm and also the construction of the sets σm have

to be modified accordingly. The algorithm works in exact the same way, but the output

depends on c.

Proof. We need to show that the estimate (2.3) for A′m is still valid with this choice of

〈m〉. In course of the proof of this estimate, Schmidt evaluates the inner sum over j in A′m
trivially on a range of size O(m). This range constitutes only a minor part of the full sum

over j since m 6 δ(〈m + 1〉 − 〈m〉)1−ε for some δ > 0 and some 0 < ε < 1. This can be

seen from

e(m+1)c − emc = em
c (
e(m+1)c−mc − 1

)
> em

c

((m+ 1)c −mc)

� cmcαmc−1

since em
c � mcα for any α > 0. Choosing α = 2

c
− 1 + η for some η > 0 gives

〈m+ 1〉 − 〈m〉 � cmcαmc−1 = cm1+η

which establishes our claim. �
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The discrepancy of ξ = ξc can be estimated the same way as before. Note that any N

large enough can now be approximated by the function 〈M〉 with error

O(〈M + 1〉 − 〈M〉)� eM
c 1

M1−c

which with M of order (logN)1/c is

N

(logN)
1−c
c

.

Hence the discrepancy of the sequence {rnξ}n>0 satisfies

(2.12) DN({rnξ})� log logN

(logN)B

with 0 < B = 1−c
c
<∞.

3. The Constants a20 in Schmidt’s Hilfssatz 5

In this section we prove the following explicit variant of Schmidt’s Hilfssatz 5 in [117].

Lemma 3.1 (Explicit variant of Lemma 2.1). Let r and s be integers greater than 1 such

that r 6∼ s. Let K, l be positive integers such that l > sK and denote m = max(r, s). Then

for

(3.1) N > N0(r, s) = exp(288 · (12m(logm)4 + 8(logm)3 + (logm)2))

we have

(3.2)
N−1∑
n=0

∞∏
k=K+1

| cos(πrnl/sk)| 6 2N1−a20

for some positive constant a20 as specified in equation (3.25) that satisfies

(3.3) a20 =
1

6

π2

2
· 0.007 · 1

s4

1

log s

(
1

log s
− 1

s

)
.

Remark 3.2. The statement of Lemma 3.1 holds true for all N with

(3.4) a20 = min

(
1

N0 logN0

,
− log cos( π

s2
)

2 logN0

)
as specified in equation (3.27) where N0 = N0(r, s) as in equation (3.1).

This enables us in principle to give an explicit description of the sequences (ri)i>1 and

(sj)j>1 after the repetition of the entries via the function ϕ as suggested by Schmidt.

Lemma 3.1 might also be of independent interest as its non-explicit variant has been used

by several authors, see e.g. [8] and [19]. We do not claim optimality of the bounds in

Lemma 3.1.
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Proof. The proof is basically a careful line-by-line checking of Schmidt’s proof of Lemma

2.1. The reader might find it helpful having a copy both of [118] and [117] at hand.

We follow Schmidt’s notation and his argument in [117].

Let h be the number of distinct prime divisors of rs and let

r = pd11 · . . . · p
dh
h ,

s = pe11 · . . . · p
eh
h

be the prime factorizations of r and s with di and ei not both equal to zero. We assume

the pi to be ordered such that
d1

e1

> . . . >
dh
eh
,

with the convention that d
0

= +∞. This implies that dkel − dlek > 0 for all k > l.

Let b = maxi(di) ·maxi(ei). Schmidt denotes by li numbers not divisible by p2b
i .

For 1 6 i 6 h, let

ui = (pd11 . . . pdii )ei(pei1 . . . p
ei
i )−di

vi = (p
ei+1

i+1 . . . p
eh
h )di(p

di+1

i+1 . . . p
dh
h )−ei ,

where empty products (for i = h) are 1. These numbers are integers, and ti = ui
vi

is not

equal to 1 since r 6∼ s. We have ti = rei

sdi
, hence, when writing ti in lowest terms, the prime

pi has been cancelled.

Let fi = pi− 1 if pi is odd, and fi = 2 otherwise. There are well-defined integers gi such

that

tfii ≡ 1 + qip
gi−1
i (mod pgii )

with pi - qi (especially qi 6= 0). We have gi > 1 by the small Fermat theorem and for pi = 2

we even have gi > 2 since squares are congruent 1 modulo 4. To give an upper bound

for gi, note that pgii can be at most equal to tfii . Hence gi 6 bfi log ti
log pi
c + 1. Since naively

log pi > log 2, log ti = ei log r − di log s 6 ei log r 6 log r log s
log 2

and pi 6 max(r, s), a trivial

upper bound on gi, valid for all i, is

gi 6 12 max(r, s) log r log s.

Let a1 = max(g1, . . . , gh). Then

(3.5) 2 6 a1 6 12 max(r, s) log r log s.

Assume k > a1, ei > 0. The constant a2 is such that at most a2(s/2)k of the numbers lit
n
i

fall in the same residue class modulo sk if n runs through a set of representatives modulo

sk (Hilfssatz 1 in [117]). At most p2b
i p

gi
i of the numbers tni li fall in the same residue class

modulo pki if n runs through a set of representatives modulo pki . If pi|s, then there are
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at most (s/2)k elements in a set of representatives modulo sk that are congruent to each

other. Hence a2 = maxi,ei>0 p
2b+gi
i . Naive upper and lower bounds on a2 are thus

(3.6) 8 6 a2 6 max(r, s)8 log(max(r,s))+12 max(r,s) log r log s.

The constant a4 (named α3 in [118]) is chosen such that

(3.7) (s2 − 2)a4 < 21/4+2a4aa44 (1− 2a4)1/2−a4 .

The right-hand side of inequality (3.7) as a function of a4 (denote it by f(a4)) can be

numerically analyzed. It is a strictly decreasing continuous function on the interval (0, 1/16]

with values f(0+) = 4
√

2 ≈ 1.19 > f(1/16) ≈ 1.028 > 1. Hence any a4 in (0, 1/16) that

satisfies

(3.8) (s2 − 2)a4 6 f(1/16)

also satisfies inequality (3.7). Note that a4 < 1/16 is no proper restriction as a4(2) ≈
0.055 < 1/16 and since a4 is decreasing in s. Now, inequality (3.8) is easy to solve and

gives

a4(s) >
c

log(s2 − 2)

for c = log(f(1/16)) ≈ 0.028. This constitutes a non-trivial (i.e. positive) lower bound on

the values of a4 that are admissible. To simplify matters we continue with this value for

a4, i.e. we put

(3.9) a4 =
0.028

log(s2 − 2)
.

The constant a3 also comes from the earlier Schmidt paper [118] and was called α4 there.

Schmidt counts the number blocks of digits in base s with few ‘nice’ digit pairs. These are

successive digits not both equal to zero or s− 1. He derives the proof of Lemma 3 in [118]

that the number of combinations of k base s digits with less than α3k(= a4k) nice digit

pairs, counting only non-overlapping pairs of digits, does not exceed

(3.10) k

(
k
2

ba4kc

)
(s2 − 2)ba4kc2k/2−ba4kc.

With the approximation

√
2πnn+1/2e−n 6 n! 6 enn+1/2e−n
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we find that the quantity (3.10) is

6 k
e

2π

(
k
2

)k/2+1/2

(a4k)a4k+1/2
(
k
2
− a4k

)k/2−a4k+1/2
(s2 − 2)a4k2k/2−a4k2−1

=
e

2π

1
√
a4

√
1− 2a4

1

2
· 1

(2a4)a4k(1− 2a4)(1/2−a4)k
.(3.11)

In [118], Schmidt denotes the constant factor by α5,

α5 =
e

4π
√
a4(1− 2a4)

.

Using a4 6 0.055 and a4 > c
log(s2−2)

with c ≈ 0.028 we obtain the upper bound

(3.12) α5 6 1.87
√

log s ≈ 2
√

log s.

Finally, a3 is such that if k > a3, and respecting the choice of a4, then

α5k
(s2 − 2)a4k2(1/2−a4)k

(2a4)a4k(1− 2a4)(1/2−a4)k
< 23/4·k

holds. The left-hand side is equal to

α5k

(
(s2 − 2)a4

f(a4)
23/4

)k
= α5k

(
f(1/16)

f(a4)
23/4

)k
6 α5k20.74k

by the choice of a4 and since f(a4) > f(0.055) > f(1/16). Using log(x) 6 x1/2 for all

x > 0,

α5k20.74k < 23/4·k

is satisfied for all k larger than

(3.13) a3 = 120
√

log(s).

Let N > max(sa1 , sa3+1) (hence certainly N > s2 since a1 > 2) and let k be such that

sk 6 N < sk+1. The constants a7 and a5 in Hilfssatz 2 in [117] are such that

a2(s/2)ks23k/4 < a7N
1−a5 .

With k > logN
log s
− 1 the left-hand side is

< a2sN
1− log 2

4 ( 1
log s
− 1

logN )

which is

(3.14) 6 a2sN
1− log 2

8 log s

due to N > s2. Hence a7 = a2s. We want quantity (3.14) to be < N1− log 2
16 log s , hence

(3.15) a5 =
log 2

16 log s
> 0.



DOCTORAL THESIS 41

This happens, if
log(a2s)

logN
<

log 2

16 log s

which is satisfied when N > NHS2
0 , where

(3.16) logNHS2
0 = 288m(logm)4 + 192(logm)3 + 24(logm)2

where we denoted m = max(r, s). Note that in particular N is much larger than es.

The constant a6 is such that a4k > a6 logN . With a4 > 0.028
log(s2−2)

> 0.014
log s

and k > logN
log s
−1

and due to N > es, we have

a4k > logN
0.014

log s

(
1

log s
− 1

s

)
.

This is a positive value for all s. Hence

(3.17) a6 =
0.014

log s

(
1

log s
− 1

s

)
> 0

is an admissible choice for a6.

Recall that h was defined as the number of distinct prime divisors in rs so that r =

pd11 · . . . · p
dh
h , s = pe11 · . . . · p

eh
h are the prime factorizations of r and s with di and ei not

both equal to zero. Recall that b = maxi(di) ·maxi(ei).

In Hilfssatz 3 in [117], Schmidt divides the set numbers lrn in at most hb subsets each

of which contains a certain number of consecutive lrn. If the number of elements in such

a subset is 6 N1/2, he counts trivially. If the number of elements in such a subset is larger

than N1/2, he uses Hilfssatz 2 with this N . Hence the N in Hilfssatz 3 needs to be large

enough such that N1/2 is large enough for Hilfssatz 2. Thus, for

(3.18) N > NHS3
0 = (NHS2

0 )2 = exp(2 · (288m(logm)4 + 192(logm)3 + 24(logm)2))

there are at most hbN1−a5 numbers of the lrn having less than a6 log
√
N nice digit pairs.

Hence

(3.19) a9 =
a6

2
=

0.007

log s

(
1

log s
− 1

s

)
.

We have the trivial bound is h 6 log2(rs) 6 2 logm
log 2

with m = max(r, s). Another trivial

bound is b = maxi(di) ·maxi(ei) 6 (log2(m))2. Thus with N > e288m, we have

hbN1−a5 6 7(logm)3N1−a5 6 N1−a8

with

(3.20) a8 = a5 −
log 7 + 3 log logm

288m
=

log 2

16 log s
− log 7 + 3 log logm

288m
.
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Recall from Schmidt’s paper that zK(x) denotes the number of nice digit pairs ci+1ci of

x with i > K where the c are the digits of x in base s.

In Hilfssatz 4, Schmidt begins with the restriction n > N2/3 log s/ log r which reduces a14

to a value less than 1/3. The remaining numbers lrn are divided in at most 2N2/3 many in-

tervals of length bN1/3c which are analyzed separately. The restriction n > N2/3 log s/ log r

implies lrn > sK+bN1/3c2 .

Denote by n0 a number N2/3 log s/ log r 6 n0 < N . Schmidt wants to apply Hilfssatz 3

to intervals N2/3 log s/ log r 6 n0 6 n < n0 + bN1/3c of length bN1/3c. However, he makes

one further preliminary reduction in showing that one can assume that zK(l) is less than
a9
2

logN .

Denote by n1 the least n > N2/3 log s/ log r such that zK(lrn) < a9
2

logN . Replace lrn

for n > n1 by l∗rn−n1 where l∗ = lrn1 . All lrn with N2/3 log s/ log r 6 n < n1 are by

the choice of n1 such that zK(lrn) > a9
2

logN . As Schmidt’s version is not explicit, he

can assume N to be large enough, and apply Hilfssatz 3 to the interval n1 6 n < N (or

0 6 n < N − n1 for numbers l∗rn).

To make things explicit, we distinguish three cases for the size of n1. We write M =

bN1/3c for the number of lrn under consideration. We want to find explicit lower bounds

on M such that we can apply Hilfssatz 3.

Case 0: n1 does not exist at all. Then the number of lrn with zK less than a9 logM is

trivially less than M1−a for any 0 < a < 1.

Case 1: n1 is large such that the number of lrn with zK(lrn) < a9 logM can be trivially

estimated by M − n1 6M1−a8 . This is the case when n1 >M −M1−a8 .

Case 2: n1 < M − M1−a8 . We need the interval M − n1 to be large enough to be

able to apply Hilfssatz 3 to obtain cancellation, i.e. M − n1 > NHS3
0 which holds if

M > M0 = (NHS3
0 )

1
1−a8 . Thus by Hilfssatz 3 the number of lrn, n0 6 n < n0 + M , with

zK(lrn) < a9 logN is at most (M − n1)1−a8 6M1−a8 .

Schmidt uses a reduction to count only zK instead of all nice digit pairs. This reduction

looses at one point 2 digit pairs, i.e. after an application of Hilfssatz 3 one finds numbers

with at most a9 logM − 2 nice digit pairs. This is 6 a9
2

logM for

(3.21) logM >
4

a9

.

Also, Schmidt’s reduction works if

(3.22) M
log r

log s
<

⌊
M2 − 1
a9
2

logM

⌋
− 1.

Note that inequalities (3.21) and (3.22) do not pose further restrictions on M .
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Finally, from M > (NHS3
0 )

1
1−a8 , M = bN1/3c, and since we may assume that a8 <

1
2
, the

requirement

(3.23) N > NHS4
0 = (NHS3

0 )6 = exp(288 · (12m(logm)4 + 8(logm)3 + (logm)2))

for the original N follows. We established that in each subsequence of length bN1/3c there

are at most bN1/3c1−a8 elements lrn with zK(lrn) < a9
2

logbN1/3c.
In total, since there are at most 2N2/3 many intervals for n of length bN1/3c, we obtain

(for logN > 6 log 3
a8

) that there are at most

N2/3 log s

log r
+ 2N2/3 · bN1/3c1−a8 6 3N1−a8/3 6 N1−a8/6

elements lrn, 0 6 n < N , with zK(lrn) < a9
2

logbNc1/3 6 a9
6

logN . Thus

(3.24) a14 =
a8

6
, a15 =

a9

6
.

From Hilfssatz 5 follows that a20 = min(a14, a22) where a22 = −a15 log a21 with a21 =

cos(π/s2). We have − log a21 = − log cos( π
s2

) > π2

2
1
s4

. Plugging in the values of a14 and a15

shows that min(a14, a22) = a22. Hence

(3.25) a20 =
1

6

π2

2
· 0.007 · 1

s4

1

log s

(
1

log s
− 1

s

)
where the constant factor is approximately 0.0057.

To find a20 such that Lemma 3.1 holds for all N , we need to replace a14 and a15 by

sufficiently small constants such that Hilfssatz 4 holds for all N . This can be achieved by

redefining

a14 = min(a14, 1−
log(N0 − 1)

logN0

), and a15 = min(a15,
1

2 logN0

)

where we denoted N0 = NHS4
0 . We have aold

14 ≈ 0.007 1
log s

and 1− log(N0−1)
logN0

6 2
N0 logN0

which

decays worse than exponentially in m. Furthermore, aold
15 ≈ 0.001 1

log s
and 1

2 logN0
is worse

than linear with in m a large constant. Note also 1− log(N0−1)
logN0

> 1
N0 logN0

. Hence Hilfssatz

4 holds true for all N with constants

(3.26) a14 =
1

N0 logN0

, and a15 =
1

2 logN0

with N0 = NHS4
0 as in equation (3.23).

The constant a20 then modifies according to

(3.27) a20 = min(a14, a22) = min

(
1

N0 logN0

,
− log cos( π

s2
)

2 logN0

)
.



44 A.-M. SCHEERER

For large m, a20 equals a14 but since a22 > π2

4
1

s4 logN0
, for small m we have a20 = a22.

Explicitly, with a14 6 1
em1728m

we have

(3.28) a20 =
1

N0 logN0

for m > 7 were we denoted m = max(r, s) and N0 = NHS4
0 as given in equation (3.23). �

4. Algorithms by Sierpinski and Turing

4.1. Sierpinski’s Algorithm. In this section we estimate the runtime and discrepancy

of the effective version of Sierpinsk’s algorithm [123] by Becher and Figueira [11]. This

algorithm outputs the digits to some specified base b of an absolutely normal number ν,

depending on b, in double exponential time such that the sequence (bnν)n>0 has discrepancy

O( 1
N1/6 ).

Let 0 < ε 6 1
2

be a rational (or computable real) number that remains fixed throughout

the algorithm. We also choose in advance a base b > 2. The algorithm computes the digits

to base b of an absolutely normal number ν. The output (i.e. ν) depends on the choice of

ε and b.

Notation. Let m, q, p be integers such that m > 1, q > 2 and 0 6 p 6 q − 1 and put

nm,q = b24m6q2

ε
c+ 2.

Let ∆q,m,n,p be the interval (0.b1...bn−1(bn−1)
qn

, 0.b1...bn−1(bn+2)
qn

) where the string b1 . . . bn is

such that the digit p appears too often, i.e. |Np(b1...bn)

n
− 1

q
| > 1

m
where Np(b1 . . . bn) denotes

the number of occurrences of the digit p amongst the bi.

Let

∆ =
∞⋃
q=2

∞⋃
m=1

∞⋃
n=nm,q

q−1⋃
p=0

∆q,m,n,p,

and denote a truncated version of ∆ by

∆k =
k+1⋃
q=2

k⋃
m=1

k·nm,q⋃
n=nm,q

q−1⋃
p=0

∆q,m,n,p.

The complement of ∆ in [0, 1) is

E = [0, 1) r ∆.

Sierpinski’s algorithm computes the digits to base b of a number ν ∈ E. This number is

absolutely normal as shown by Sierpinski and in Theorem 7 in [11].

The truncated sets ∆k approximate ∆ in the sense that if a number is not in ∆k for

large enough k, then it is also not in ∆. Becher and Figueira’s algorithm computes the

digits of ν such that the n-th digit ensures that ν is not in some ∆pn , where pn →∞.
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The Algorithm. First digit: Split the unit interval in subintervals c1
d = [d

b
, d+1

b
) for 0 6 d <

b. Put p1 = 5 · (b − 1). Compute the Lebesgue measure of ∆p1 ∩ c1
d for all d. The first

digit b1 of ν is chosen such that it is (the smallest among) the d such that the Lebesgue

measure of ∆p1 ∩ c1
b1

is minimal among the ∆p1 ∩ c1
d.

n-th digit: Split the interval [0.b1 . . . bn−1, 0.b1 . . . (bn−1 + 1)) in subintervals

cnd = [0.b1 . . . bn−1d, 0.b1 . . . bn−1(d+ 1))

for all 0 6 d < b. Put pn = 5 · (b− 1) · 22n−2. The n-th digit bn of ν is the (smallest of the)

d that minimize the Lebesgue measure of the ∆pn ∩ cnd .

4.2. Runtime. For fixed q, m, n and p, writing down all strings b1 . . . bn of length n

of digits 0 6 bi < b that satisfy the conditions of ∆q,m,n,p takes exponential time in n.

Naively estimating gives the complexity of computing ∆k as being exponential in k. So,

since pn grows exponentially in n, the computation of ∆pn takes doubly exponentially many

elementary operations.

4.3. Discrepancy. We give an estimate for the discrepancy of (qnν)n>1, valid for any

ν ∈ E and any base q > 2, not taking into account that the algorithm might in fact

construct an element with better distributional properties.

The family of intervals
⋃q−1
p=0 ∆b,m,n,p contains all real numbers with expansion to base b

not simply normal regarding the first n digits. The union

∆q,m =
∞⋃

n=nm,q

q−1⋃
p=0

∆q,m,n,p

contains all real numbers whose base-q expansion is not simply normal regarding any large

enough number of digits. Hence any ν not in ∆q,m satisfies∣∣∣∣]{n 6 N | {qnν} ∈ I}
N

− |I|
∣∣∣∣ < 1

m

for all N > nm,q and I of the form I = [p
q
, p+1

q
) , p = 0, . . . , q − 1.

Inverting the relation betweenN andm and using Sierpinski’s choice for nm,q = b24m6q2

ε
c+

2 ≈ 24m6q2

ε
, we find that

sup
p=0,...q−1

∣∣∣∣∣]{n 6 N | {qnν} ∈ [p
q
, p+1

q
)}

N
− |I|

∣∣∣∣∣ 6
(

24

ε

)1/6
q1/3

N1/6
+O

(
1

N1/3

)
�ε q

1/3 1

N1/6

where the implied constant depends on ε but not on q.
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Fix I ⊂ [0, 1), δ > 0 and k such that 2
qk
< δ. Choose l,m such that I ⊂ [ l

qk
, m
qk

) and

|I| < m−l
qk

+ 2
qk

. Then

]{n 6 N | {qnν} ∈ I}
N

6
]{n 6 N | {qnν} ∈ [ l

qk
, m
qk

)}
N

� m− n
qk

+O

(
(qk)1/3 1

N1/6

)
< |I|+ δ +O

(
(qk)1/3 1

N1/6

)
= |I|+ δ +Oδ

(
1

N1/6

)
.

Since δ and I were arbitrary, this shows that

DN({qnν})� 1

N1/6

for any ν ∈ E and any base q.

4.4. Turing’s Algorithm. Since Turing’s algorithm has been very well studied in [13], we

restrict ourselves to presenting their result in our terminology. Becher, Figueira and Picchi

[13] show that Turing’s algorithm computes the digits of an absolutely normal number α

in double exponential time. With respect to the speed of convergence to normality Becher,

Figueira and Picchi note (Remark 23 in [13]) that for each initial segment of α of length

N = k22n+1 expressed to each base up to eL all words of length up to L =
√

logN/4 occur

with the expected frequency plus or minus e−L
2
. Here, k is a positive integer parameter,

and n is the step of the algorithm.

The discrepancy of {bnα} for some base b > 2 can then be calculated as follows. Fix

some arbitrary ε > 0 and an subinterval I ⊂ [0, 1). Let n be large enough, such that
2
bL
< ε. Approximate I by a bL-adic interval [ c

bL
, d
bL

) such that [ c−1
bL
, d+1
bL

) ⊃ I ⊃ [ c
bL
, d
bL

).

Then

]{0 6 m < N | {bmα} ∈ I}
N

<
]{0 6 m < N | {bmα} ∈ [ c

bL
, d
bL

)}
N

6
d− c+ 2

bL
+O(e−L

2

))

6|I|+ ε+O

(
1

N1/16

)
.

Since I and ε were arbitrary this means that {bnα} is uniformly distributed modulo one

with discrepancy bounded by O( 1
N1/16 ).
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Squares with three nonzero digits

Michael Bennett, Adrian-Maria Scheerer7

Abstract. We determine all integers n such that n2 has at most three base-q digits

for q ∈ {2, 3, 4, 5, 8, 16}. More generally, we show that all solutions to equations of the

shape

Y 2 = t2 +M · qm +N · qn,
where q is an odd prime, n > m > 0 and t2, |M |, N < q, either arise from “obvious”

polynomial families or satisfy m 6 3. Our arguments rely upon Padé approximants

to the binomial function, considered q-adically.

1. Introduction

Let us suppose that q > 1 is an integer. A common way to measure the lacunarity of the

base-q expansion of a positive integer n is through the study of functions we will denote

by Nq(n) and Sq(n), the number of and sum of the nonzero digits in the base-q expansion

of n, respectively. Our rough expectation is that, if we restrict n to lie in a subset S ⊂ N,

these quantities should behave in essentially the same way as for unrestricted integers, at

least provided the subset is not too “thin”. Actually quantifying such a statement can

be remarkably difficult; particularly striking successes along these lines, for S the sets of

primes and squares can be found in work of Mauduit and Rivat [95] and [96].

In this paper, we will restrict our attention to the case where S is the set of integer

squares. Since (see [55])∑
n<N

Sq(n) ∼ 1

2

∑
n<N

Sq(n
2) ∼ q − 1

2 log q
N logN,

it follows that the ratios
Sq(n

2)

Sq(n)
and

Nq(n
2)

Nq(n)

are infrequently “small”. On the other hand, in the case q = 2 (where Sq(n) and Nq(n)

coincide), Stolarsky [125] proved that, for infinitely many n,

N2(n2)

N2(n)
6

4 (log log n)2

log n
,

7This article appeared in [25]
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a result that was subsequently substantially sharpened and generalized by Hare, Laishram

and Stoll [72]. Further developments are well described in [73] where, in particular, one

finds that

#
{
n < N : N2(n) = N2(n2)

}
� N1/19

and that the set {
n ∈ N, n odd : N2(n) = N2(n2) = k

}
is finite for k 6 8 and infinite for k ∈ {12, 13} or k > 16.

In what follows, we will focus our attention on integers n with the property that Nq(n
2) =

k, for small fixed positive integer k. Classifying those integers n in the set

Bk(q) =
{
n ∈ N : n 6≡ 0 mod q and Nq(n) > Nq(n

2) = k
}

is, apparently, a rather hard problem, even for the case k = 3 (on some level, this is the

smallest “nontrivial” situation as those n with Nq(n
2) < 3 are readily understood). There

are infinitely many squares, coprime to q with precisely three nonzero digits base-q, as

evidenced by the identity

(1.1)
(
1 + qb

)2
= 1 + 2 · qb + q2b.

There are, however, other squares with three nonzero digits, arising more subtly. For

example, if n = 10837, then, base q = 8, we have

10837 = 2 · 84 + 5 · 83 + 1 · 82 + 2 · 8 + 5

while

108372 = 7 · 88 + 7 · 8 + 1.

On the other hand, a result of Corvaja and Zannier [49] implies that all but finitely many

squares with three base-q digits arise from polynomial identities like (1.1), and, further,

that B3(q) is actually finite. The proof of this in [49], however, depends upon Schmidt’s

Subspace Theorem and is thus ineffective (in that it does not allow one to precisely de-

termine B3(q) – it does, however, lead to an algorithmic determination of all relevant

polynomial identities, if any). Analogous questions for Bk(q) with k > 4 are, as far as we

are aware, unsettled, except for the case of B4(2) (see [50]).

In this paper, we will explicitly determine B3(q) for certain fixed values of q. We prove

the following theorem.

Theorem 1.1. The only positive integers n for which n2 has at most three nonzero digits

base q for q ∈ {2, 3, 4, 5, 8, 16} and n 6≡ 0 mod q are as follows :

q = 2 : n ∈ {1, 5, 7, 23} or n = 2b + 1,

q = 3 : n ∈ {1, 5, 8, 13} or n = 3b + 1,
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q = 4 : n = t or 2t for t ∈ {1, 7, 15, 23, 31, 111}, or t = 4b + 1 or 2 · 4b + 1,

q = 5 : n ∈ {1, 4, 8, 9, 12, 16, 23, 24, 56, 177} or n = 5b + 1, 2 · 5b + 1 or 5b + 2,

q = 8 : n 6 63, n ∈ {92, 111, 124, 126, 158, 188, 316, 444, 479, 508, 10837}
or n = r · 8b + s for r, s ∈ {1, 2, 4}

and
q = 16 : n = t, 2t or 4t for t 6 100, t ∈ {111, 125, 126, 127}

or t = r · 16b + s where either r, s ∈ {1, 2, 4, 8} or the set

{r, s} is one of {1, 3}, {2, 3}, {3, 8}, {2, 12}, {4, 12} or {8, 12}.
Here, b is a nonnegative integer.

This immediately implies

Corollary 1.2. We have

B3(2) = {7, 23}, B3(3) = {13}, B3(4) = {23, 30, 31, 46, 62, 111, 222},

B3(5) = {56, 177}, B3(8) = {92, 111, 124, 126, 158, 188, 316, 444, 479, 508, 10837}
and

B3(16) = {364, 444, 446, 500, 504, 508, 574, 628, 680, 760, 812, 888, 924, 958,

1012, 1016, 1020, 1022, 1784, 2296, 3832, 3966, 4088, 10837, 15864, 43348} .

We note that the case q = 2 of Theorem 1.1 was originally proved by Szalay [127] in

2002, through appeal to a result of Beukers [30]. This latter work was based upon Padé

approximation to the binomial function (as are the results of the paper at hand, though

our argument is quite distinct). In 2012, the first author [20] treated the case q = 3 in

Theorem 1.1. We should point out that there are computational errors in the last two

displayed equations on page 4 of [20] that require repair; we will do this in the current

paper.

Our main result which leads to Theorem 1.1 is actually rather more general – we state

it for a prime base, though our arguments extend to more general q with the property that

q has a prime-power divisor pα with pα > q3/4. We prove

Theorem 1.3. If q is an odd prime, if we have a solution to the equation

(1.2) Y 2 = t2 +Mqm +Nqn,

in integers Y, t,M,N,m and n satisfying

(1.3) t, Y,N > 1, |M |, N, t2 6 q − 1 and 1 6 m < n,

then either n = 2m and Y = qm · Y0 ± t, for integers t and Y0 with max{Y 2
0 , 2tY0} < q, or

we have m 6 3.
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In the special case t = 1,M = ±1, N = 1, a sharper version of this result already appears

as the main theorem of Luca [87]; the proof of this result relies upon primitive divisors in

binary recurrence sequences and does not apparently generalize. It seems likely that the

last upper bound in Theorem 1.3 can be replaced by m 6 2; indeed our argument can be

sharpened to prove this for “many” pairs (m,n), though not all. We know of a number of

families of solutions to (1.2), with, for instance, (m,n) = (2, 6), q = r2 + 1 prime, r ∈ Z :

(1.4)

(
1

2
r(r6 + 5r4 + 7r2 + 5)

)2

= r2 + (r2 − 1)q2 +

(
r2 + 4

4

)
q6

and (m,n) = (1, 5), for q = 64r2 + 1, corresponding to the identity(
r(32768r4 + 1280r2 + 15)

)2
= 9r2 − (40r2 + 1)q + q5.

Further families with (m,n) = (1, 3), (2, 3) and (1, 4) are readily observed (as are many

more examples with (m,n) = (1, 5)). Beyond these, we also know a few (possibly) sporadic

examples, with (m,n) = (1, 6), (1, 7) and (2, 7) :

4306833652 = 92 − 51 · 311 + 205 · 3116,

63429186412 = 252 − 97 · 673 + 433 · 6736,

493937816432 = 342 − 875 · 1229 + 708 · 12296,

5592 = 12 − 4 · 5 + 4 · 57,

5745882 = 32 + 13 · 31 + 12 · 317,

18152 = 22 + 72 + 4 · 77

and

209582 = 22 − 11 · 132 + 7 · 137.

For a fixed odd prime q, Theorem 1.3 provides an effective way to completely solve

equation (1.2) under the conditions of (1.3). Indeed, given an upper bound upon m, say

m0, solving (1.2) with (1.3) amounts to treating at most O(q5/2m0) “Ramanujan-Nagell”

equations of the shape

(1.5) Y 2 +D = Nqn where D = −(t2 +Mqm).

These can be handled efficiently via algorithms from Diophantine approximation; see Pethő

and de Weger [105] or de Weger [131] for details. Alternatively, if n ≡ n0 mod 3, where

n0 ∈ {0, 1, 2}, we may rewrite (1.2) as

(1.6) U2 = V 3 + k,

where

(1.7) U = Nqn0Y, V = q
n+2n0

3 N and k = N2q2n0
(
t2 +Mqm

)
.
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We can therefore solve the equation (1.2) if we are able to find the “integer points” on at

most O(q5/2m0) “Mordell curves” of the shape (1.6), where we may subsequently check to

see if any solutions encountered satisfy (1.7). The integer points on these curves are known

for |k| 6 107 (see [24]) and are listed at http://www.math.ubc.ca/~bennett/BeGa-data.

html. For larger values of |k|, one can, in many cases, employ Magma or a similar compu-

tational package to solve equations of the shape (1.6). For our purposes, however, we are

led to consider a number of values of k for which approaches to solving (1.6) reliant upon

computation of a full Mordell-Weil basis (as Magma does) for the corresponding curve are

extremely time-consuming. We instead choose to solve a number of equations of the form

(1.5), via lower bounds for linear forms in p-adic logarithms and reduction techniques from

Diophantine approximation, as in [105]. An alternative approach, at least for the equations

we encounter, would be to appeal to strictly elementary properties of the corresponding

binary recurrences, as in a paper of Bright [38] on the Ramanujan-Nagell equation.

It is probably worth mentioning that similar problems to those discussed in this paper,

only for higher powers with few digits, are treated in a series of papers by the first author,

together with Yann Bugeaud [21] and with Bugeaud and Maurice Mignotte [22], [23]. The

results therein require rather different techniques than those employed here, focussing on

lower bounds for linear forms in logarithm, p-adic and complex.

2. Three digits, without loss of generality

Suppose that q > 1 is an integer and that we have a square y2 with (at most) three

nonzero base-q digits. If q is either squarefree or a square, it follows that y is necessarily a

multiple by some power of q (or
√
q if q is a square) of an integer Y satisfying a Diophantine

equation of the shape

(2.1) Y 2 = C +M · qm +N · qn,

where C,M,N,m and n are nonnegative integers with

(2.2) C,M,N 6 q − 1 and 1 6 m < n.

If q is neither a square nor squarefree, we may similarly reduce to consideration of equation

(2.1), only with weaker bounds for M and N .

The machinery we will employ to prove Theorems 1.1 and 1.3 requires that, additionally,

the integer C in equation (2.1) is square. Whilst this is certainly without loss of generality

if every quadratic residue modulo q in the range 1 6 C < q is itself a square, it is easy

to show that such a condition is satisfied only for q ∈ {2, 3, 4, 5, 8, 16}. If we have the

somewhat weaker constraint upon q that every least positive quadratic residue C modulo

q is either a square or has the property that it fails to be a quadratic residue modulo qk for



54 A.-M. SCHEERER

some exponent k > 1, then we may reduce to consideration of (2.1) with either C square,

or m bounded. This weaker condition is satisfied for the following q :

q = 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 28, 30, 36, 40, 42, 44, 48, 54, 56,

60, 66, 70, 72, 78, 84, 88, 90, 102, 120, 126, 140, 150, 156, 168, 174, 180, 210, 240,

330, 390, 420, 462, 630, 660, 840, 2310.

Of these, the only ones with a prime power divisor pα with pα > q3/4 (another requirement

for our techniques to enable the complete determination of squares with three base-q digits)

are

q = 2, 3, 4, 5, 8, 16, 18, 22 and 54.

The principal reason we restrict our attention to equation (2.1) with C square is to

guarantee that the exponent n is relatively large compared to m, enabling us to employ

machinery from Diophantine approximation (this is essentially the content of Section 3).

This might not occur if C is nonsquare, as examples like

454542 = 13 + 22 · 235 + 13 · 236

and

97300602 = 46 + 96 · 1315 + 18 · 1316

illustrate.

3. Three digits : gaps between exponents

For the next few sections, we will restrict attention to the case where the base q is an

odd prime. Let us now suppose that we have a solution to (1.2) with (1.3). In this section,

we will show that necessarily the ratio n/m is not too small, except when Y = qm · Y0 ± t
for small Y0. Specifically, we will prove the following result.

Lemma 3.1. If there exists a solution to equation (1.2) with (1.3) and m > 4, then either

n = 2m and Y = qm · Y0 ± t, for integers t and Y0 with max{Y 2
0 , 2tY0} < q, or we have

n > 10m− 10.

Let us begin by considering the case where M = 0 (where we will relax the condition

that n > 2). Since q is an odd prime, we may write

Y = qn · Y0 + (−1)δt,

for some positive integer Y0 and δ ∈ {0, 1}, whence

N = qn · Y 2
0 + (−1)δ2t · Y0.

Since 1 6 N, t2 6 q − 1, if n > 2, it follows that

q − 1 > q2 − 2
√
q − 1,
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a contradiction since q > 3. We thus have n = 1, so that

N = q · Y 2
0 + (−1)δ2t · Y0,

whence N < q implies that Y0 = δ = 1, corresponding to the identities

(q − t)2 = t2 + (q − 2t)q.

It is worth observing that whilst there are no solutions to (2.1) with (2.2), q an odd prime

and M = 0, provided C is square, this is not true without this last restriction, as the

identity

323306912 = 182 + 157 · 3675

illustrates.

We may thus, without loss of generality, suppose that M 6= 0 in what follows and write

Y = qm · Y0 + (−1)δt,

for some positive integer Y0 and δ ∈ {0, 1}, so that

(3.1) qmY 2
0 + 2(−1)δt · Y0 = M +Nqn−m.

We thus have

qm − 2q1/2 < qn−m+1 − qn−m + q.

If n 6 2m− 2 (so that m > 3), it follows that qm− 2q1/2 < qm−1− qm−2 + q, an immediate

contradiction. If n = 2m− 1, then

qm−1 < q + 2q1/2,

and so m = 2, n = 3, whereby (3.1) becomes

q2Y 2
0 + 2(−1)δt · Y0 = M +Nq 6 (q − 1)q + q − 1 = q2 − 1.

We thus have Y0 = 1 and δ = 1. Since q | M − 2(−1)δt = M + 2t, it follows that either

M = −2t or M = q−2t. In the first case, we have that q | N , a contradiction. The second

corresponds to the identity

(3.2) (q2 − t)2 = t2 + (q − 2t)q2 + (q − 1)q3.

Otherwise, we may suppose that n > 2m. From the series expansion

(t2 + x)1/2 = t+
x

2t
− x2

8t3
+

x3

16t5
− 5x4

128t7
+

7x5

256t9
− 21x6

1024t11
+

33x7

2048t13
− 429x8

32768t15
+ · · · ,

and (1.2), it follows that

Y ≡ (−1)δ
(
t+

Mqm

2t

)
mod q2m,
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so that

2tY ≡ (−1)δ
(
2t2 +Mqm

)
mod q2m.

If 2tY = (−1)δ (2t2 +Mqm), then

n = 2m,
M2

4t2
= N and |Y0| =

∣∣∣∣M2t
∣∣∣∣ ,

corresponding to the identity

(3.3)
(
qm · Y0 + (−1)δt

)2
= t2 + ((−1)δt2Y0) · qm + Y 2

0 · q2m,

where max{t2, Y 2
0 , 2tY0} < q.

If we are not in situation (3.3), we may write

(3.4) 2tY = κq2m + (−1)δ(Mqm + 2t2),

for some positive integer κ, so that

(3.5) 4t2 ·N · qn−2m = κ2q2m + 2κ(−1)δ
(
Mqm + 2t2

)
+M2.

We rewrite this as

(3.6) 4t2 ·N · qn−2m =
(
κqm + (−1)δM

)2
+ κ(−1)δ4t2.

If n = 2m, this becomes

4t2 ·N =
(
κqm + (−1)δM

)2
+ κ(−1)δ4t2,

the left-hand-side of which is at most 4(q − 1)2. Since the right-hand-side is at least

(κqm − q + 1)2 − 4(q − 1),

it follows that m = 1 and κ ∈ {1, 2}. If κ = 1, we have

q + (−1)δM ≡ 0 mod 2t,

say q = 2tq0 − (−1)δM , for q0 a positive integer with N = q2
0 + (−1)δ, with corresponding

identity

(3.7)
(
q0q + (−1)δt

)2
= t2 + (−1)δ(2tq0 − q)q + (q2

0 + (−1)δ)q2,

where t, q0 <
√
q. If κ = 2, then M is necessarily even, say M = 2M0, and

q + (−1)δM0 ≡ 0 mod t,

say q = tq0 − (−1)δM0. This corresponds to

(3.8)
(
q0q + (−1)δt

)2
= t2 + (−1)δ2(tq0 − q)q + (q2

0 + 2(−1)δ)q2,

where we require that q/2 < tq0 < 3q/2, t <
√
q and q0 <

√
q − 2(−1)δ.
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With these families excluded, we may thus assume that n > 2m + 1 and that (3.6) is

satisfied. For the remainder of this section, we will suppose that m > 4. Then, since the

right-hand-side of (3.5) is

(3.9) κ2q2m

(
1 + (−1)δ

(
2M

κ
q−m +

4t2

κ
q−2m

)
+
M2

κ2
q−2m

)
,

and we assume that |M | < q and t <
√
q, we have

(3.10) N · qn−2m >
1− 2q1−m − 4q1−2m

4
q2m−1.

Since N < q, m > 4 and q > 3 this implies that

qn−2m+1 >
2021

8748
q2m−1

and hence n > 4m− 3 > 3m+ 1. We thus have

Y ≡ (−1)δ
(
t+

Mqm

2t
− M2q2m

8t3

)
mod q3m,

whence

8t3Y ≡ (−1)δ
(
8t4 + 4t2Mqm −M2q2m

)
mod q3m.

If

8t3Y = (−1)δ
(
8t4 + 4t2Mqm −M2q2m

)
,

then

64t6 ·N · qn−3m = M4qm − 8t2 ·M3,

an immediate contradiction, since n > 3m+ 1 and q is coprime to tM .

We may thus assume that

8t3Y = κ1q
3m + (−1)δ

(
−M2q2m + 4t2Mqm + 8t4

)
,

for a positive integer κ1, whereby

(3.11)
64t6Nqn−3m = κ2

1q
3m +M4qm − 8t2M3

+(−1)δ (−2κ1M
2q2m + 8t2κ1Mqm + 16t4κ1)

and so

(3.12) 64t6Nqn−3m > q3m − 2M2q2m − 8t2|M |qm.

This implies that

(3.13) 64qn−3m+4 > q3m
(
1− 2q2−m − 8q2−2m

)
.

For q > 7, we therefore have

qn−3m+4 >
1

67
q3m,
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so that n > 6m− 4 if q > 67. If q = 3, we obtain the inequality n > 6m− 4 directly from

(3.12). For each 5 6 q 6 61, (3.13) implies that n > 6m − 6. In every case, we may thus

assume that n > 6m− 6 > 4m, so that

Y ≡ (−1)δ
(
t+

Mqm

2t
− M2q2m

8t3
+
M3q3m

16t5

)
mod q4m

and hence

16t5Y = κ2q
4m + (−1)δ

(
16t6 + 8t4Mqm − 2t2M2q2m +M3q3m

)
for a nonegative integer κ2, whence

(3.14)
256t10Nqn−4m = κ2

2q
4m + (−1)δ (32κ2t

6 + 16κ2t
4Mqm

−4κ2t
2M2q2m + 2κ2M

3q3m) + 20t4M4 − 4t2M5qm +M6q2m.

If κ2 = 0,

256t10Nqn−4m = 20t4M4 − 4t2M5qm +M6q2m,

contradicting the fact that q 6 | tM . We therefore have that

(3.15) 256t10Nqn−4m > q4m − 2|M |3q3m − 4t2M2q2m

and so

(3.16) qn−4m+6 >
1

263
q4m,

whence n > 8m − 8 unless, possibly, q ∈ {3, 5}. If q = 3, since t = 1 and |M |, N 6 2,

inequality (3.15) implies a stronger inequality. If q = 5, t 6 2, |M |, N 6 4 and inequality

(3.15) again yield n > 8m − 8 and hence we may conclude, in all cases that, provided

m > 4, we have n > 8m− 8 > 6m.

From (3.14), we have

(3.17) (−1)δ8κ2t
2 + 5M4 ≡ 0 mod qm.

If this is equality, we must have δ = 1 and so (3.14) becomes

256t10Nqn−5m = κ2
2q

3m − 16κ2t
4M + 4κ2t

2M2qm − 2κ2M
3q2m − 4t2M5 +M6qm.

It follows that

(3.18) 4κ2t
2 +M4 ≡ 0 mod qm.

Combining (3.17) and (3.18), we thus have

7M4 ≡ 0 mod qm,

contradicting the fact that m > 4, while 0 < |M | < q.

We thus have

(3.19) (−1)δ8κ2t
2 + 5M4 = υqm
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for some nonzero integer υ. If υ is negative, necessarily κ2 >
qm

8t2
. If υ > 6, we have that,

again, κ2 >
qm

8t2
. Let us therefore assume that 1 6 υ 6 5. Now (3.14) is

256t10Nqn−5m = κ2
2q

3m + 4t4υ + (−1)δ (16κ2t
4M

−4κ2t
2M2qm + 2κ2M

3q2m)− 4t2M5 +M6qm

and so, since n > 6m,

t2υ + (−1)δ4κ2t
2M −M5 ≡ 0 mod qm.

From (3.17), we therefore have

(3.20) 5υ + (−1)δ28κ2M ≡ 0 mod qm.

Since 1 6 υ 6 5, the left hand side here is nonzero and so

28κ2|M | > qm − 25.

For qm > 375, it follows immediately that

(3.21) κ2 >
qm−1

30
,

whilst the inequality if trivial if q = 3 and m = 4. If q = 3 and m = 5, we check that for

|M | ∈ {1, 2} and 1 6 υ 6 5, the smallest positive solution to the congruence (3.20) has

κ2 > 17, whereby (3.21) is again satisfied.

Combining this with (3.14), we have that

(3.22) 256t10Nqn−4m >
1

900
q6m−2 − 1

15
|M |3q4m−1 − 2

15
t2M2q3m−1 − 8

15
t4|M |q2m−1,

whence

qn−4m+6 >
1

4802
q6m−2

(
1− 60q4−2m − 120q4−3m − 480q4−4m

)
.

It follows that

(3.23) n > 10m− 10

if q > 23.

We note that, combining (3.19) and (3.20), we have

(3.24) 2υt2 ≡ 7M5 mod qm−δ5 ,

where δ5 = 1 if q = 5 and 0 otherwise. For q = 3, we have t = 1, M = ±1,±2, and find

that υ ≡ ±37 mod 81 if |M | = 1 and υ ≡ ±31 mod 81 if |M | = 2. In all cases, from

(3.19), we have

κ2 >
1

8
(31 · 3m − 80) >

15

4
3m.



60 A.-M. SCHEERER

Together with (3.14), we find, after a little work, that, again, n > 10m − 10. If q = 5,

congruence (3.24) implies that |υ| > 13, so that (3.19) yields, crudely,

κ2 >
1

32
(13 · 5m − 1280) >

1

3
5m,

which again, with (3.14), implies (3.23). Arguing similarly for the remaining values of q

with 7 6 q 6 19, enables us to conclude that inequality (3.23) holds for all q > 3 and

m > 4. This concludes the proof of Lemma 3.1.

4. Padé approximants to the binomial function

We now consider Padé approximants to (1 + x)1/2, defined, for n1 and n2 nonnegative

integers, via

(4.1) Pn1,n2(x) =

n1∑
k=0

(
n2 + 1/2

k

)(
n1 + n2 − k

n2

)
xk

and

(4.2) Qn1,n2(x) =

n2∑
k=0

(
n1 − 1/2

k

)(
n1 + n2 − k

n1

)
xk.

As in [4], we find that

(4.3) Pn1,n2(x)− (1 + x)1/2 Qn1,n2(x) = xn1+n2+1 En1,n2(x),

where (see e.g. Beukers [30])

(4.4) En1,n2(x) =
(−1)n2 Γ(n2 + 3/2)

Γ(−n1 + 1/2)Γ(n1 + n2 + 1)
F (n1 + 1/2, n1 + 1, n1 + n2 + 2,−x),

for F the hypergeometric function given by

F (a, b, c,−x) = 1− a · b
1 · c

x+
a · (a+ 1) · b · (b+ 1)

1 · 2 · c · (c+ 1)
x2 − · · · .

Appealing twice to (4.3) and (4.4) and eliminating (1 + x)1/2, the quantity

Pn1+1,n2(x)Qn1,n2+1(x)− Pn1,n2+1(x)Qn1+1,n2(x)

is a polynomial of degree n1 + n2 + 2 with a zero at x = 0 of order n1 + n2 + 2 (and hence

is a monomial). It follows that we may write

(4.5) Pn1+1,n2(x)Qn1,n2+1(x)− Pn1,n2+1(x)Qn1+1,n2(x) = cxn1+n2+2.

Here, we have

c = (−1)n2+1 (2n1 − 2n2 − 1)Γ(n2 + 3/2)

2(n1 + 1)! (n2 + 1)! Γ(−n1 + 1/2)
6= 0.
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We further observe that (
n+ 1

2

k

)
4k ∈ Z,

so that, in particular, if n1 > n2, 4n1Pn1,n2(x) and 4n1Qn1,n2(x) are polynomials with integer

coefficients.

4.1. Choosing n1 and n2. For our purposes, optimal choices for n1 and n2 are as follows

(we denote by [x] the greatest integer not exceeding a real number x and set x = [x]+{x}).

Definition 1. Define

(n1, n2) =

([
3n

4m

]
+ δ −∆1,

[ n
4m

]
− δ + ∆2

)
where δ ∈ {0, 1},

∆1 =

{
1 if

{
n

4m

}
∈ [0, 1/4] ∪ [1/3, 1/2] ∪ [2/3, 3/4]

0 if
{

n
4m

}
∈ (1/4, 1/3) ∪ (1/2, 2/3) ∪ (3/4, 1),

and

∆2 =

{
1 if

{
n

4m

}
> 0

0 if
{

n
4m

}
= 0.

Note that for these choices of n1 and n2, we may check that

(n1 + n2 + 1)m = n+

(
∆2 −∆1 + 1−

{ n

4m

}
−
{

3n

4m

})
m > n.

Further, we have

n1(m+ 1) =
3n

4
+

3n

4m
+ κ1(m,n, δ)

and

n2(m+ 1) + n1 − n2 +
n

2
=

3n

4
+

3n

4m
+ κ2(m,n, δ),

where

κ1(m,n, δ) = (m+ 1)
([

3
{ n

4m

}]
+ δ −∆1 − 3

{ n

4m

})
and

κ2(m,n, δ) = −(m+ 3)
{ n

4m

}
+
[
3
{ n

4m

}]
+ (∆2 − δ)m+ δ −∆1.

A short calculation ensures that, in every situation, we have

(4.6) max{n1(m+ 1), n2(m+ 1) + n1 − n2 + n/2} 6 3n

4
+

3n

4m
+m− 5

4
,

where the right-hand-side is within O(1/m) of the “truth” for δ = 0, ∆1 = ∆2 = 1.

Note that the fact that n > 10m− 10 implies that we have n2 > 2, unless

(m,n) ∈ {(4, 30), (4, 31), (4, 32), (5, 40)},
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where we might possibly have n2 = 1. In all cases, we also have

(4.7) |n1 − 3n2| 6 3.

4.2. Bounds for |Pn1,n2(x)| and |Qn1,n2(x)|. We will have need of the following result.

Lemma 4.1. If n1 and n2 are as given in Definition 1, where m > 4 and n > 10m − 10

are integers, then we have

|Pn1,n2(x)| 6 2 |x|n1 and |Qn1,n2(x)| 6 2n1+n2−1

(
1 +
|x|
2

)n2

,

for all real numbers x with |x| > 16.

Proof. Arguing as in the proof of Lemma 1 of Beukers [31], we have that

|Qn1,n2(x)| 6
n2∑
k=0

(
n1

k

)(
n1 + n2 − k

n1

)
|x|k =

n2∑
k=0

(
n2

k

)(
n1 + n2 − k

n2

)
|x|k.

Since n1 > n2 and
(
n1+n2−k

n2

)
6 2n1+n2−k−1, it follows that

|Qn1,n2(x)| 6 2n1+n2−1

(
1 +
|x|
2

)n2

.

Next, note that, since n1 > n2, |Pn1,n2(x)| is bounded above by

n2+1∑
k=0

(
n2 + 1

k

)(
n1 + n2 − k

n2

)
|x|k +

n1∑
k=n2+2

(n2 + 1)!(k − n2 − 1)!

k!

(
n1 + n2 − k

n2

)
|x|k.

The first sum here is, arguing as previously, at most

2n1+n2−1

(
1 +
|x|
2

)n2+1

.

For the second, we split the summation into the ranges n2 +2 6 k 6
[
n1+n2

2

]
and

[
n1+n2

2

]
+

1 6 k 6 n1. In the second of these, we have n1 + n2 − k < k and so(
n1 + n2 − k

n2

)
<

(
k

n2

)
,

whence
n1∑

k=[n1+n22 ]+1

(n2 + 1)!(k − n2 − 1)!

k!

(
n1 + n2 − k

n2

)
|x|k <

n1∑
k=[n1+n22 ]+1

n2 + 1

k − n2

|x|k.

Appealing to Definition 1, we may show that 2n2 6
[
n1+n2

2

]
+ 2 and hence n2+1

k−n2
6 1, so

that
n1∑

k=[n1+n22 ]+1

n2 + 1

k − n2

|x|k 6
n1∑

k=[n1+n22 ]+1

|x|k < |x|
|x| − 1

|x|n1 ,
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provided |x| > 1. Since

[n1+n22 ]∑
k=n2+2

(n2 + 1)!(k − n2 − 1)!

k!

(
n1 + n2 − k

n2

)
|x|k <

[n1+n22 ]∑
k=n2+2

(
n1 + n2 − k

n2

)
|x|k

and
[n1+n22 ]∑
k=n2+2

(
n1 + n2 − k

n2

)
|x|k 6

[n1+n22 ]∑
k=n2+2

2n1+n2−k−1 |x|k <
[n1+n22 ]∑
k=n2+2

|2x|k,

we may conclude that |Pn1,n2(x)| is bounded above by

2n1+n2−1

(
1 +
|x|
2

)n2+1

+
|x|
|x| − 1

|x|n1 +
|2x|
|2x| − 1

|2x|
n1+n2

2 .

Since |x| > 16 and, via (4.7), n1 > 3n2 − 3, checking values with n2 6 10 separately, we

may conclude that

|Pn1,n2(x)| < 2 |x|n1 .

This concludes our proof. �

5. Proof of Theorem 1.3

To prove Theorem 1.3, we will, through the explicit Padé approximants of the preceding

section, construct an integer that is nonzero and, in archimedean absolute value “not too

big”, while, under the assumptions of the theorem, being divisible by a very large power

of our prime q. With care, this will lead to the desired contradiction.

Setting η =
√
t2 +Mqm, since (1 + x)1/2, Pn1,n2(x) and Qn1,n2(x) have q-adic integral

coefficients, the same is also true of En1,n2(x) and so, via equation (4.3),∣∣∣∣tPn1,n2

(
Mqm

t2

)
− η Qn1,n2

(
Mqm

t2

)∣∣∣∣
q

6 q−n.

On the other hand, from the fact that η2 ≡ Y 2 mod qn, we have

η ≡ (−1)δ1Y mod qn,

for some δ1 ∈ {0, 1}, and hence∣∣∣∣tPn1,n2

(
Mqm

t2

)
− (−1)δ1Y Qn1,n2

(
Mqm

t2

)∣∣∣∣
q

6 q−n.

Equation (4.5) implies that for at least one of our two pairs (n1, n2), we must have

tPn1,n2

(
Mqm

t2

)
6= (−1)δ1Y Qn1,n2

(
Mqm

t2

)



64 A.-M. SCHEERER

and hence, for the corresponding pair (n1, n2), we have that

(2t)2n1 Pn1,n2

(
Mqm

t2

)
− (−1)δ1Y 22n1 t2n1−1Qn1,n2

(
Mqm

t2

)
is a nonzero integer, divisible by qn, and so, in particular,

(5.1)

∣∣∣∣(2t)2n1 Pn1,n2

(
Mqm

t2

)
− (−1)δ1Y 22n1 t2n1−1Qn1,n2

(
Mqm

t2

)∣∣∣∣ > qn.

From Lemma 4.1 and the fact that Y < q(n+1)/2, we thus have

(5.2) qn 6 22n1+1|M |n1qmn1 + 23n1+n2−1q(n+1)/2t2n1−1

(
1 +
|M |qm

2t2

)n2

.

From the inequalities

|M |, t2 < q and
|M |qm

2t2
>

81

2
,

it follows from (5.2) that

(5.3) qn 6 22n1+1 · q(m+1)n1 + 23n1−1qn/2+(m+1)n2+n1−n2 (83/81)n2 ,

and hence, since n > 10m− 10 and m > 4, we may argue rather crudely to conclude that

(5.4) qn < 9n1 · qmax{n1(m+1),n2(m+1)+n1−n2+n/2}.

Inequality (4.6) thus implies

qn < 9
3n
4m

+1 · q
3n
4

+ 3n
4m

+m− 5
4 ,

whence

(5.5) q1− 3
m
− 4m

n
+ 5
n < 9

3
m

+ 4
n .

Since m > 4, if n is suitably large, this provides an upper bound upon q. In particular, if

(5.6) n >
4m2 − 5m

m− 3
,

then

(5.7) q < 3
6n+8m

mn−3n−4m2+5m .

Since m > 4 and n > 10m− 10, (5.6) is satisfied unless we have m = 4 and 30 6 n 6 44.

Excluding these values for the moment, we thus have

q < 3
68m−60

6m2−35m+30 .

Since q > 3, it follows, therefore, that, in all cases, m 6 16. If q > 5, we have the sharper

inequality m 6 12.
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5.1. Small values of m. To treat the remaining values of m, we argue somewhat more

carefully. For fixed q and m, equation (1.2) under the conditions in (1.3) can, in many

cases, be shown to have no solutions via simple local arguments. In certain cases, however,

when the tuple (t,M,N,m) matches up with an actual solution, we will not be able to find

such local obstructions. For example, the identities

(qm · Y0 ± t)2 = t2 ± 2tY0q
m + Y 2

0 q
2m

imply that we cannot hope, through simple congruential arguments, to eliminate the cases

(here n ≡ n0 mod 3)

(5.8) (t,M,N, n0) = (t,±2tY0, Y
2

0 , 2m mod 3),

where max{t2, Y 2
0 , 2tY0} < q. For even values of m, we are also unable to summarily

dismiss tuples like

(5.9) (t,M,N, n0) = (t, Y 2
0 , 2tY0,m/2 mod 3).

Additionally, the “trivial” identity

t2 = t2 −M · qm +M · qm

leaves us with the necessity of treating tuples

(5.10) (t,M,N, n0) = (t,−N,N,m mod 3)

via other arguments. By way of example, if q = m = 5, sieving by primes p with the

property that the smallest positive t with 5t ≡ 1 mod p divides 300, we find that all

tuples (t,M,N, n0) are eliminated except for

(1,−2, 1, 1), (1,−1, 1, 2), (1, 2, 1, 1), (1,−2, 2, 2), (1, 1, 2, 1), (1,−3, 3, 2),

(1,−4, 4, 1), (1,−4, 4, 2), (1, 4, 4, 1), (2,−4, 1, 1), (2,−1, 1, 2), (2, 4, 1, 1),

(2,−2, 2, 2), (2,−3, 3, 2) and (2,−4, 4, 2).

These all correspond to (5.8) or (5.10), except for (t,M,N, n0) = (1, 1, 2, 1) which arises

from the identity 562 = 12 + 2 · 5 + 55.

For the cases where we fail to obtain a local obstruction, we can instead consider equa-

tions (1.6), with the conditions (1.7). Our expectation is that, instead of needing to treat

roughly 6(q − 1)5/2 such equations (for a fixed pair (q,m)), after local sieving we will be

left with on the order of O(q) Mordell curves to handle.

By way of example, let us begin with the case where q = 3. Here, from (5.2),

3n 6 23n1+13mn1 + 23n1+n2−1(82/81)n23mn2+(n+1)/2.
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Since max{mn1,mn2 + (n + 1)/2} 6 3n
4

+ m + 1
4
, and n2 > 2 (provided n > 40), we thus

have

3n 6 23n1+n2(82/81)n23
3n
4

+m+ 1
4 ,

so that

3n/4−m−1/4 6 23n1+n2(82/81)n2 .

We check that n2 6 n
4m

+ 1 and 3n1 + n2 6 5n
2m

+ 3
2
, whence either n 6 40, or we have

3
n
4
−m− 1

4 6 2
5n
2m

+ 3
2 (82/81)

n
4m

+1.

In this latter case, if m > 12, the fact that n > 10m−10 leads to a contradiction, whilst, for

8 6 m 6 11, we have that n 6 157. A short calculation ensures that there are no solutions

to equation (1.2) with (1.3), if q = 3, 8 6 m 6 11 and 10m− 10 6 n 6 157. For q = 3 and

4 6 m 6 7, we are led to equation of the shape (1.6), where now |k| 6 324 (1 + 2 · 3m) 6
1417500. As noted previously, the integer points on the corresponding Mordell curves are

known (see [24]) and listed at http://www.math.ubc.ca/~bennett/BeGa-data.html. We

check that no solutions exist with U and V as in (1.7).

We may thus suppose that q > 5 and hence it remains to treat the values of m with

4 6 m 6 12. If m = 12, appealing to (5.7), we have, from the fact that n > 110, necessarily

110 6 n 6 118 and q = 5. A short calculation ensures that there are no corresponding

solutions to equation (1.2) with (1.3). Similarly, if m = 11, we have that either q = 5 and

100 6 n 6 125, or q = 7, 100 6 n 6 103. If m = 10, q = 5 and 90 6 n 6 139, or q = 7

and 90 6 n 6 109, or q = 11 and n = 90. For m = 9 we have, in all cases, n 6 172 and

q 6 19. For m = 8, n 6 287 and q 6 47. A modest computation confirms that we have no

new solutions to the equation of interest and hence we may suppose that 4 6 m 6 7 (and

that q > 5).

For small values of q, each choice of m leads to at most 2q5/2 Ramanujan-Nagell equations

(1.5) which we can solve as in [105]. In practice, the great majority of these are eliminated

by local sieving. By way of example, if q = 5, after local sieving, we are left to treat

precisely 32 pairs (D,N) in equation (1.5), corresponding to

D ∈ {−312498,−15624,−15623,−12498,−2498,−1249,

−624, 1251, 2502, 6251, 12502, 31251, 312502} , if N = 1,

D ∈ {−156248,−31248, 3126, 15626}, if N = 2,

D ∈ {−234374,−234373,−46874,−46873,−1873, 31252}, if N = 3

and

D ∈ {−312499,−62498,−2499,−2498, 627, 2501, 12501, 15627, 62501} if N = 4.
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For these values of (D,N), we find that equation (1.5) has precisely solutions as follows

D N n D N n

−312499 4 7 2501 4 2

−312499 4 14 2501 4 8

−234374 3 7 3126 2 1

−46874 3 6 6251 1 10

−15624 1 6 12501 4 10

−2499 4 4 15626 2 3

−2499 4 8 31251 1 12

−1249 1 8 62501 4 3

−624 1 4 62501 4 12

1251 1 8

In all cases, these solutions correspond to values of m that have either m > n or n = 2m.

More generally, implementing a “Ramanujan-Nagell” solver as in [105], in conjunction

with local sieving, we completely solve equation (1.2) with (1.3), for m ∈ {4, 5, 6, 7} and

5 6 q 6 31. No new solutions accrue. If we appeal again to inequality (5.7), using that

q > 37, we find that 60 6 n 6 81 (if m = 7), 50 6 n 6 109 (if m = 6) and 40 6 n 6 499

(if m = 5). After a short computation, we are left to consider the cases with m = 4 and

q > 37.

For the value m = 4, proceeding in this manner would entail an extremely large com-

putation, without additional ingredients. By way of example, in case m = 4 and n = 45,

inequality (5.7) implies an upper bound upon q that exceeds 10144 (and no upper bound

whatsoever for 30 6 n 6 44). To sharpen this and related inequalities, we will argue as

follows. Notice that if we have

(5.11) tPn1,n2

(
Mqm

t2

)
= (−1)δ1Y Qn1,n2

(
Mqm

t2

)
,

then

t2P 2
n1,n2

(
Mqm

t2

)
− (t2 +Mqm +Nqn)Q2

n1,n2

(
Mqm

t2

)
= 0.

From our construction, it follows that∣∣∣∣t2P 2
n1,n2

(
Mqm

t2

)
− (t2 +Mqm)Q2

n1,n2

(
Mqm

t2

)∣∣∣∣
q

6 q−m(n1+n2+1).

and hence, if (n1 + n2 + 1)m > n and (5.11), then

(5.12) q(n1+n2+1)m−n divides Q2
n1,n2

(0) =

(
n1 + n2

n2

)2

.
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In particular, if m = 4 and 30 6 n 6 32, then we have (n1, n2) ∈ {(5, 2), (6, 1)} and

hence, since q > 37, (5.12) fails to hold. We thus obtain inequality (5.1) for both pairs

(n1, n2), rather than just for one of them, provided n ∈ {30, 31} (if n = 32, we have

(n1 + n2 + 1)m = n). Choosing (n1, n2) = (5, 2), it follows from (5.4) that, if n = 30, we

have q2 < 310, so that q 6 241, while n = 31 implies q5/2 < 310, i.e. q 6 79. If n = 32, the

worse case corresponds to (n1, n2) = (6, 1), where we find, again from (5.4), that q2 < 312

and so q 6 727. Continuing in this fashion, observing that the greatest prime factor
(
n1+n2

n2

)
is bounded above by roughly n/4, and that 4(n1 + n2 + 1) = n precisely when 4 | n, we

have, via (5.4), an upper bound upon q of the shape q < minδ∈{0,1}{32n1/(n−µ)}, if 4 6 | n,

and q < maxδ∈{0,1}{32n1/(n−µ)}, if 4 | n, where

µ = max{n1(m+ 1), n2(m+ 1) + n1 − n2 + n/2}.

Here, we exclude the cases where µ > n, corresponding to (n1, n2) = (5, 3) if n = 33 or

34 and (n1, n2) = (9, 2) if n = 45; in each of these, the other choice of (n1, n2) leads to a

bound upon q. For n 6 1000, we find that q < 310, in case n = 36, q < 328/3 (if q = 41),

q < 38 (if n = 52 or n = 57) and otherwise q < 3155. A painful but straightforward

computation finds that we have no additional solutions to equation (1.2) with (1.3) for

n 6 1000. Applying once again inequality (5.7), we may thus assume that q 6 1021.

After local sieving and solving corresponding equations of the shape (1.5), we verify that

equation (1.2) has no unexpected solutions with (1.3), for m = 4 and 37 6 q 6 1021. This

completes the proof of Theorem 1.3.

Full details of our computations are available from the authors upon request.

6. Proof of Theorem 1.1

For q ∈ {3, 5}, we may apply Theorem 1.3 to conclude that either n = 3b + 1 (in case

q = 3) or that n ∈ {5b + 1, 2 · 5b + 1, 5b + 2} (if q = 5), for some positive integer b, or that

we have either

(6.1) n2 = 1 +M · 3m +N · 3n, n2 = 1 +M · 5m +N · 5n or n2 = 4 +M · 5m +N · 5n,

with m ∈ {1, 2, 3}, n > m and 1 6 M,N 6 q − 1. Checking the corresponding solutions

to (1.6) (all available at http://www.math.ubc.ca/~bennett/BeGa-data.html), we find

that the only solutions to (6.1) are with

n ∈ {4, 5, 8, 9, 12, 13, 16, 23, 24, 56, 177},

as claimed. Adding in the “trivial” solutions with n ∈ {1, 2}, completes the proof of

Theorem 1.1 in case q ∈ {3, 5}.
Our argument for q ∈ {2, 4, 8, 16} follows along very similar lines to the proof of Theorem

1.3, only with slight additional complications, arising from the fact that none of (1 +x)1/2,
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Pn1,n2(x) or Qn1,n2(x) have 2-adic integral coefficients. On the other hand, (1 + 4x)1/2,

Pn1,n2(4x) and Qn1,n2(4x) do have 2-adic integral coefficients and so we can proceed as

in Section 5, taking x = Mqm/t2, where now q = 2α for α ∈ {1, 2, 3, 4}. Under mild

assumptions upon m (m > 5 is satisfactory), the arguments of Sections 3 and 5 go through

with essentially no changes. We are left to treat a number of equations of the shape (1.5),

to complete the proof of Theorem 1.1. We suppress the details.

7. Concluding remarks

In this paper, we have focussed our attention on equation (2.1) in case C is square and

q is prime. Even in this very restricted situation, we have been able to use our results to

completely determine B3(q) only for q ∈ {2, 3, 5}. We conclude with some speculations

upon the structure of the sets B3(q). Let us write

Bk(q) =
∞⋃
j=k

Bk,j(q),

where

Bk,j(q) =
{
n ∈ N : n 6≡ 0 mod q, Nq(n) = j and Nq(n

2) = k
}
.

If q = r2 + 1 is prime for r an integer, since we have

1

2
r(r6 + 5r4 + 7r2 + 5) = r + r · q2 +

r

2
· q3,

identity (1.4) implies that B3,3(q) is nonempty for such q. Further, for odd prime q, we

can find examples to verify that B3,4(q) is nonempty for (at least)

q = 7, 11, 17, 23, 31, 47, 101, 131, 151,

amongst the primes up to 200. We observe that

35864 ∈ B3,5(11).

We know of no other value in B3,j(q) for j > 5 and q prime. Perhaps there are none.
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Computable Absolutely Pisot Normal Numbers

Manfred G. Madritsch, Adrian-Maria Scheerer, Robert F. Tichy8

Abstract. We analyze the convergence order of an algorithm producing the digits

of an absolutely normal number. Furthermore, we introduce a stronger concept of

absolute normality by allowing Pisot numbers of arbitrary degree as bases.

1. Introduction

In this paper we are interested in simultaneous normality to several bases. In particular,

we analyze the order of convergence to normality of an absolutely normal number generated

by an algorithm of Becher, Heiber and Slaman (Section 2) and are concerned with normality

to non-integer bases. We give an algorithmic construction of a real number that is normal

to each base from a given sequence of Pisot numbers (Section 3 and Section 4).

1.1. Normality to a single base. A real number x ∈ [0, 1) is called simply normal to

base b, b > 2 an integer, if in its b-ary expansion

x =
∑
n>1

anb
−n, an ∈ {0, . . . , b− 1}

every digit d ∈ {0, 1, . . . b − 1} appears with the expected frequency 1
b
. The number x is

called normal to base b if each of x, bx, b2x, . . . is simply normal to every base b, b2, b3, . . . .

This is equivalent (see e.g. [42, Chapter 4]) to the property that all digital blocks of arbitrary

length k appear with the expected frequency, i.e. if for all k > 1 and all d ∈ {0, . . . , b−1}k,

(1.1) lim
N→∞

1

N
|{1 6 n 6 N : (an, . . . , an+k−1) = d}| = 1

bk
.

Furthermore, Pillai [107] has shown that x is normal to base b if and only if it is simply

normal to every base b, b2, b3, . . . .

Normal numbers were introduced by Borel [34] in 1909. He showed that almost all

real numbers (with respect to Lebesgue measure) are simply normal to all bases b > 2,

thus absolutely normal (see Section 1.3). It is a long standing open problem to show

that important real numbers such as
√

2, ln 2, e, π, . . . are normal, for instance in decimal

expansion. There has only been little progress in this direction in the last decades, see

e.g. [5].

8This article appeared in [91]
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However, specifically constructed examples of normal numbers are known. Champer-

nowne in 1935 [47] has shown that the real number constructed by concatenating the

expansions in base 10 of the positive integers, i.e.

0, 1 2 3 4 5 6 7 8 9 10 11 . . . ,

is normal to base 10. This construction has been extended in various directions (cf. Erdős

and Davenport [53], Schiffer [116], Nakai and Shiokawa [98], Madritsch, Thuswaldner and

Tichy [92], Scheerer [115]).

1.2. Discrepancy of normal numbers. The discrepancy of a sequence (xn)n>1 of real

numbers is defined as

DN(xn) = sup
J

∣∣∣∣ 1

N
|{1 6 n 6 N : xn mod 1 ∈ J}| − λ(J)

∣∣∣∣ ,
where the supremum is extended over subintervals J ⊆ [0, 1) and where λ denotes the

Lebesgue measure. A sequence is uniformly distributed modulo 1 if its discrepancy tends

to zero as N →∞.

It is known [130] that x is normal to base b if and only if the sequence (bnx)n>1 is

uniformly distributed modulo 1. Hence x is normal to base b if and only if DN(bnx) → 0

as N → ∞. It is thus a natural quantitative measure for the normality of x to base b to

consider the discrepancy of the sequence (bnx)n>1.

Answering a question of Erdős, in 1975 Philipp [106] has shown a law of the iterated log-

arithm for discrepancies of lacunary sequences which implies DN(bnx) = O(
√

log logN/N)

almost everywhere. Recently, Fukuyama [67] was able to determine

lim sup
N→∞

DN(bnx)
√
N√

log logN
= c(b) a.e.,

for some explicit positive constant c(b). Schmidt [119] showed that there is an absolute

constant c > 0 such that for any sequence (xn)n>1 of real numbers DN(xn) > c logN
N

holds for

infinitely many N . Schiffer [116] showed that the discrepancies of constructions of normal

numbers in the spirit of Champernowne satisfy upper bounds of order O( 1
logN

). Levin [85]

constructed for any integer b > 2 a real number α such that DN(bnα) = O( (logN)2

N
). It is

an open question whether there exist an integer b > 2 and a real number x with optimal

discrepancy bound DN(bnx) = O( logN
N

).

1.3. Absolute normality and order of convergence. A number x is called absolutely

normal if it is normal to any integer base b > 2. Since normality to base b is equivalent to

simple normality to all bases bn, n > 1, absolute normality is equivalent to simple normality

to all bases b > 2.
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Since most constructions of numbers normal to a single base b are concatenations of the

b-ary expansions of f(n), n > 1, where f is a positive-integer-valued increasing function,

they essentially depend on the choice of the base b. Therefore they cannot be used for

producing absolutely normal numbers.

All known examples of absolutely normal numbers have been established in the form of

algorithms9 that output the digits of this number to some base one after the other. The

first such construction is due to Sierpinski [123] from 1917. This construction was made

computable by Becher and Figueira [11] who gave a recursive formulation of Sierpinski’s

construction. Other algorithms for constructing absolutely normal numbers are due to Tur-

ing [128] (see also Becher, Figueira and Picchi [13]), Schmidt [117] (see also Scheerer [113])

and Levin [84] (see also Alvarez and Becher [2]).

There seems to be a trade-off between the complexity of the algorithms and the speed

of convergence of the corresponding discrepancies. The discrepancies satisfy upper bounds

of the order O(N−1/6) (Sierpinski), O(N−1/16) (Turing), O((logN)−1) (Schmidt) and

O(N−1/2(logN)3) (Levin). All algorithms, except the one due to Schmidt, need double

exponential many mathematical operations to output the first N digits of the produced

absolutely normal number. Schmidt’s algorithm requires exponentially many mathematical

operations.

No construction of an absolutely normal number x is known such that the discrepancy

DN(bnx) for some b > 2 decays faster than what one would expect for almost all x.

In Section 2 we are interested in another construction of an absolutely normal number which

is due to Becher, Heiber and Slaman [17]. They established an algorithm which computes

the digits of an absolutely normal number in polynomial time. We show (Theorem 2.8)

that the corresponding discrepancy is slightly worse than O( 1
logN

), and that at a small loss

of computational speed the discrepancy can in fact be O( 1
logN

).

1.4. Normality to non-integer bases. Section 3 of the present article treats normality

in a context where the underlying base is not necessarily integer. Let β > 1 be a real

number. Expansions of real numbers to base β, so-called β-expansions, were introduced

and studied by Rényi [112] and Parry [103] and later by many authors from an arithmetic

and ergodic-theoretic point of view.

In the theory of β-expansions it is natural to consider Pisot numbers β, i.e. real algebraic

integers β > 1, such that all its conjugates lie inside the (open) unit disc. A real number x

is called normal to base β, or β-normal, if the sequence (βnx)n>1 is uniformly distributed

9With the exception of Chaitin’s constant, which is absolutely normal but not computable [46].
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modulo 1 with respect to the unique entropy maximizing measure for the underlying trans-

formation x 7→ βx mod 1 (see Section 3.1). A real number is called absolutely Pisot normal

if it is normal to all bases that are Pisot numbers. Since there are only countably many

Pisot numbers, the Birkhoff ergodic theorem implies that almost all real numbers are in

fact absolutely Pisot normal.

The main result of Section 3 is an algorithm that computes an absolutely Pisot normal

number. More generally, for a sequence (βj)j>1 of Pisot numbers, we construct a real

number x that is normal to each of the bases βj, j > 1 (Section 3.3 and Theorem 3.6).

Bearing in mind that the set of computable real numbers is countable, we thus show that

there is in fact a computable real number that is βj-normal for each j > 1.

Our algorithm constructs in each step a sequence of finitely many nested intervals,

corresponding to the first finitely many bases considered. This is also the essential idea of

the construction of an absolutely normal number by Becher, Heiber and Slaman [17]. We

need to establish lower and upper bounds for the length of β-adic subintervals in a given

interval to control the number of specified digits when changing the base. However, the

equivalence (absolute normality) ⇔ (simple normality to all bases) does not hold for non-

integer expansions. Instead, we argue with the concept of (ε, k)-normality as introduced

by Besicovitch [29] and studied in the case of Pisot numbers by Bertrand-Mathis and

Volkmann [27].

Our algorithm should be compared to the one due to Levin [84]. While his construction

is not restricted to Pisot numbers, it uses exponential sums and is as such not realizable

only with elementary operations. The algorithm we present in Section 3 is completely

elementary.

In Section 4 we give explicit estimates of all constants that appear in our algorithm. We use

a theorem on large deviations for a sum of dependent random variables to give an estimate

for the measure of the set of non-(ε, k)-normal numbers of length n (Proposition 4.3).

Our approach gives all implied constants explicitly, and as such makes a consequence of

the ineffective Shannon-McMillan-Breimann theorem effective. The results of this section

might be of independent interest.

1.5. Notation. For a real number x, we denote by bxc the largest integer not exceeding

x. The fractional part of x is denoted as {x}, hence x = bxc+ {x}. We put dxe = −b−xc.
Two functions f and g are f = O(g) or equivalently f � g if there is a x0 and a positive

constant C such that f(x) 6 Cg(x) for all x > x0. We mean limx→∞ f(x)/g(x) = 1 when

we say f ∼ g and g 6= 0.
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When we speak of words, we mean finite or infinite sequences of symbols (called letters)

of a certain (specified) set, the alphabet. Blocks are finite words. The concatenation of

two blocks u = u1 . . . uk and v1 . . . vl is the block u1 . . . ukv1 . . . vl and is denoted by uv or

u ∗ v. If ui for i 6 m are blocks, ∗i<mui is their concatenation in increasing order of i. The

length of the block u = u1 . . . uk is denoted by ‖u‖ and is in this case equal to k.

We denote by λ the Lebesgue measure.

For a finite set, | · | means its number of elements.

Mathematical operations include addition, subtraction, multiplication, division, compar-

ison, exponentiation and logarithm. Elementary operations take a fixed amount of time.

The cost of mathematical operations depends on the digits of the input or on the desired

precision of the output. Addition or subtraction of two n-digit numbers takes O(n) elemen-

tary operations, multiplication or division of two n-digit numbers takes O(n2) elementary

operations, and to compute the first n digits of exp and log takes O(n5/2) elementary

operations. These estimates are crude but sufficient for our purposes.

The complexity of a computable function f is the time it takes to compute the first N

values f(i), 1 6 i 6 N . The algorithm we analyze outputs the digits of a real number X

to some base. By the complexity of the algorithm we mean the time it takes to output the

first N digits of X to some base.

2. Discrepancy

In this section, we analyze the speed of convergence to normality of the absolutely normal

number produced by the algorithm by Becher, Heiber and Slaman in [17]. We follow the

notation and terminology therein.

2.1. The Algorithm.

Notation. A t-sequence is a nested sequence of intervals I = (I2, . . . , It), such that I2 is

dyadic and for each base 2 6 b 6 t − 1, Ib+1 is a (b + 1)-adic subinterval of Ib such that

λ(Ib+1) > λ(Ib)/2(b+ 1).

Let xb(I) be the block in base b such that 0.xb(I) is the representation of the left endpoint

of Ib in base b. In each step i, the algorithm computes a sequence Ii = (Ii,2, . . . , Ii,ti) of

nested intervals Ii,2 ⊃ . . . ⊃ Ii,ti . If b 6 ti, let xb(Ii) = xi,b be the base b representation of

the left endpoint of Ii,b and let ui+1,b = ub(Ii+1) be such that xi+1,b = xi,b ∗ ui+1,b.

If u is a block of digits to base b, the simple discrepancy of u in base b is defined as

D(u, b) = max06d<b |Nd(u)/‖u‖ − 1/b| where Nd(u) is the number of times the digit d

appears in the block u.

Let k(ε, δ, t) be the function

k(ε, δ, t) = max(d6/εe, d− log(δ/(2t))6/ε2e) + 1.
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From Lemma 4.1 and 4.2 of [17] we further have a function h that counts the number of

mathematical operations needed to carry out one step of the algorithm. See also Lemma

2.5.

Input. A computable non-decreasing unbounded function f : N → R such that f(1) is

known and satisfies f(1) > h(2, 1).

First step. Set t1 = 2, ε1 = 1
2
, k1 = 1 and I1 = (I1,2) with I1,2 = [0, 1).

Step i + 1 for i > 1. Given are from step i of the algorithm values ti = v, εi = 1
v

and a

ti-sequence Ii.

We want to assign values to ti+1, εi+1. If i + 1 is a power of 2, then we carry out the

following procedure.

• We spend i computational steps on computing the first m values of f , 1 6 m 6 i.

• We put δ = (8ti2
ti+v+1ti!(v + 1)!)−1.

• We try to compute k( 1
v+1

, δ, v + 1) and h(v + 1, 1
v+1

) in i steps each. If we succeed

in computing these values, and if additionally

(2.1) h(v + 1,
1

v + 1
) < f(m)

and for each b 6 ti

(2.2)
dlog2(v + 1)ek(1/(v + 1), δ, v + 1) + d− log2(δ)e

‖xi,b‖
<

1

v + 1
,

then we define ti+1 = v + 1 and εi+1 = 1
v+1

. Otherwise, we let ti+1 = ti = v,

εi+1 = εi = 1
v
.

If i+ 1 is no power of 2, then define ti+1 = ti = v, εi+1 = εi = 1
v
.

Furthermore, we compute δi+1 = (8ti2
ti+ti+1ti!ti+1!)−1 and

ki+1 = max(d6/εi+1e, d− log(δi+1/(2ti))6/ε
2
i+1e) + 1.

Then we find a ti+1-sequence Ii+1 by means of the following steps.

• We let L be a dyadic subinterval of Ii,ti such that λ(L) > λ(Ii,ti)/4.

• For each dyadic subinterval J2 of L of measure 2−dlog2 tieki+1λ(L), we find J =

(J2, J3, . . . , Jti+1
), a ti+1-sequence starting with J2.

• Finally we choose Ii+1 to be the leftmost of the ti+1 sequences J considered above

such that for each b 6 ti, D(ub(J), b) 6 εi+1.

Output. Let X be the unique real number in the intersection of the intervals of the se-

quences Ii. In base b we have X = limi→∞ 0.xi,b = 0. ∗i>1 ui,b. It is the content of Theorem

3.9 in [17] that X is absolutely normal.
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2.2. Speed of convergence to normality. In this section we estimate the discrepancy

DN(bnX) for integer b > 2. Two factors play a role: How many digits in each step are

computed, and how rapidly εi decays to zero. By virtue of the algorithm, at least one digit

is added in each step, and εi can decay at most as fast as O( 1
log i

). As can be expected

from the algorithm, the discrepancy depends both on growth and complexity of f .

It was shown in [17] that to output the first N digits of X, the algorithm requires time

O(N2f(N)).

We begin our analysis by first showing that in each step of the algorithm not too many

digits are attached.

Lemma 2.1 (Lemma 3.3 in [17]). For an interval I and a base b, there is a b-adic subin-

terval Ib such that λ(Ib) > λ(I)/(2b).

Lemma 2.2. If i is large enough, then 1 6 ‖ui,b‖ � (log i)A for A > 3. Thus i� ‖xi,b‖ �
i(log i)A.

Proof. We assume the base b to be fixed and i large enough such that ti+1 > b. In step

i+ 1 we have the following sequence of nested subintervals:

(2.3) Ii,b ⊃ . . . ⊃ Ii,ti ⊃ L ⊃ Ii+1,2 ⊃ . . . ⊃ Ii+1,b.

By Lemma 2.1, and the choice of Ii+1,2, we know the following lower bounds on the measures

of the intervals in (2.3). We have λ(Ii,ti) > λ(Ii,b)/(2
ti−bti!/b!), λ(L) > λ(Ii,ti)/4, λ(Ii+1,2) =

2−dlog2 tieki+1λ(L) and λ(Ii+1,b) > λ(Ii+1,2)/(2bb!). Combining inequalities yields λ(Ii+1,b) >
λ(Ii,b)/(2

2+ti2dlog2 tieki+1ti!). Hence in stage i+ 1 we are adding at most O(ti + (log ti)ki+1 +

log ti!) many digits in base b. The way the algorithm is designed only allows for ti =

O(log i). The growth of ki+1 can be analyzed and is O(t3i log ti). Hence in stage i + 1 at

most O(ti + (log ti)ki+1 + log ti!) = O((log i)A) digits are added to the b-ary expansion of

X, where A > 3 to accommodate all double-log factors.

The lower bound on the number of digits added comes from the fact that by the choice

of Ii+1,2, Ii+1,b is strictly smaller than Ii,b, so at least one digit is added in each stage. �

Next, we investigate the conditions involving k and h that are responsible for how fast

ti →∞ and εi → 0 with step i of the algorithm. We start by showing that condition (2.2)

on k always holds, provided i is large enough. This involves estimating the growth as well

as the complexity of k.

Recall that k(ε, δ, t) = max(d6/εe, d− log(δ/(2t))6/ε2e) + 1.
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Lemma 2.3. Let v > 2 be an integer and δ = (8v22v+1v!(v + 1)!)−1. Then the growth of

k( 1
v+1

, δ, v+1) is O(v3 log v). Furthermore, k( 1
v+1

, δ, v+1) can be computed in O(v2(log v)2)

elementary operations.

Proof. We have for the growth

k(
1

v + 1
, δ, v + 1) = max(d6(v + 1)e, dlog(2(v + 1)8v22v+1v!(v + 1)!)6(v + 1)2e) + 1

6 6(v + 1)2 (log(16v(v + 1)) + (2v + 1) log 2 + log v! + log(v + 1)!) + 2

= O(v2(log v + v + v log v))

= O(v3 log v).

Since in the expression for k we are rounding, the most relevant part is the computation

of the significant digits of log(16v(v + 1)22v+1v!(v + 1)!). The argument of this expression

is computable with O(v2(log v)2) elementary operations and has O(v log v) many digits.

We only need to compute O(log v) many digits of the logarithm, which takes another

O((log v)5/2) elementary operations. In total this are O(v2(log v)2) many elementary oper-

ations. �

Corollary 2.4. For i to be large enough, condition (2.2) on k is always satisfied, i.e. for

each b 6 ti
dlog(v + 1)ek(1/(v + 1), δ, v + 1) + d− log(δ)e

‖xi,b‖
<

1

v + 1

where v is such that ti = v = 1/εi.

Proof. This is a consequence of k(1/(v + 1), δ, v + 1) = O(v3 log v), log(1/δ) = O(v log v),

‖xi,b‖ � i and v = ti = O(log i) by the way the algorithm is designed. �

Now we investigate condition (2.1) on h involving f . The function h counts the number of

mathematical operations needed to carry out one step of the algorithm. We want to know

an upper bound for the growth of h.

Lemma 2.5. With ti = 1
εi

= O(log i) we have

h(ti, εi) = O(ilog4 i).

This upper bound for h can be computed with i elementary operations, provided i is large

enough.

Proof. The function h decomposes as h = h∗(h1g+h2 +h3 +h4)h0 as can be seen from the

proof of Lemma 4.2 in [17]. Here:
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• g (from Lemma 4.1 in [17]), is the minimum number of digits sufficient to represent

all the endpoints of the intervals that we are working with in one step (squared).

We know from Lemma 2.2 that g = O(i2(log i)2A) for A > 3.

• It takes h1g many mathematical operations to find a ti+1-sequence for each J2. We

have h1 = ti+1.

• h2 is the number of mathematical operations needed to compute the base b repre-

sentation ub(J) for each 2 6 b 6 ti. We have h2 6 dlog2 tieki+1.

• h3 counts the number of mathematical operations needed to compute thresholds of

the form (1/b+ εi+1)‖ub(J)‖. We have h3 = ti.

• h4 comes from counting occurrences of digits in ub(J) and comparing with the

previously computed thresholds. We have h4 � ti(dlog2 tieki+1)2.

• h∗ is the maximum number of iterations it takes to find a suitable ti+1-sequence.

There are 2dlog2 tieki+1 many different subintervals J2 of L, hence h∗ = 2dlog2 tieki+1 .

With ki+1 = O(log4 i) we obtain h∗ = O(ilog4 i).

• Finally, the function h0 is the number of elementary operations needed to carry out

each mathematical operation in one step of the algorithm. Since all values that

appear in the calculations of one step of the algorithm are at most exponential in

ti which is at most of order log i, and because the number of elementary operations

involved depends only on the number of digits of the numbers involved, h0 is at

most of order poly(log i).

These bounds can be seen from Lemma 4.1 and Lemma 4.2 in [17]. Combining them

gives h = O(ilog4 i).

Remark that, when ti is bounded by a slower growing function in i such as log log i, then

the significant term in h comes from g and is a power of i. Otherwise h∗ is the significant

term.

For the complexity of the upper bound for h, note that ilog4 i can be computed in a power

of log i many elementary operations, so certainly with i elementary operations when i is

large enough. �

Lemma 2.5 has the following two immediate corollaries for the speed of convergence to

normality of Becher, Heiber and Slaman’s algorithm.

Proposition 2.6. Becher, Heiber, Slaman’s algorithm achieves discrepancy of DN(bnX) =

O( 1
logN

) for f computable in real-time with growth f � ilog4 i. In this case, the complexity

is O(i2+log4 i).

Proposition 2.7. If f is a polynomial in i of degree d, then the complexity of X is O(Nd+2)

but the discrepancy of (bnX)n>0 is DN(bnX) = Od(
1

(logN)1/5
).
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Proof. These corollaries follow by observing that the complexity of f is such that f is for

large enough i computed up to the actual value f(i) (i.e. m = i) and that either the

condition on h, (2.1), is satisfied, hence the discrepancy is optimal, or that condition (2.1)

is only satisfied for e(log i)1/5 of the values that it is checked for. �

In a similar manner, using Lemma 2.5, one can show quantitatively how growth and com-

plexity of f influence the discrepancy (and the complexity) of Becher, Heiber, Slaman’s

algorithm. This can be done for example by measuring complexity and growth of f in the

following (crude) way. We denote by log(k) and exp(k) the k times iterated logarithm or

exponential where exp(k) = log(−k), and exp(0) = log(0) = id . Let c be the integer such that

in i elementary operations f can be computed up to a value f(m) with m ∼ log(c) i. Let g

be the integer such that f grows as f ∼ exp(g) i. We allow g ∈ Z but c is non-negative.

Theorem 2.8. Assume f is such that the integers c and g above can be defined. Then

Becher, Heiber, Slaman’s algorithm computes an absolutely normal number X such that

for any base b > 2,

(2.4) DN(bnX) = O

(
1

(log(1−g+c) N)1/5

)
if 1− g + c > 0, and

(2.5) DN(bnX) = O

(
1

logN

)
otherwise.

Proof. We have h � max(poly(i), et
5
i ) and ti � log i by the way the algorithm is defined.

ti only increases if i is a power of two and if h 6 f(m). The latter condition is satisfied

for all i large enough if g − c > 1, and for all i (that are powers of two) that satisfy

i � exp((expg−c−1(i))1/5). With 1/ti = εi this gives in this case an upper bound for the

discrepancy of order 1/(log(1−g+c) N)1/5. �

3. Absolutely Pisot Normal Numbers

In this section, we give an algorithmic construction of a real number that is normal to each

base from a given sequence of Pisot numbers. For more information about β-expansions

and β-normal numbers see for example the book [42]. We have partly followed the notation

in [27].
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3.1. β-expansions of real numbers. Let β > 1 be a real number. Then each real

number x ∈ [0, 1) has a representation of the form

(3.1) x =
∞∑
i=1

εiβ
−i,

with integer digits 0 6 εi < β. One way to obtain such a representation is the following.

Let Tβ be the β-transformation Tβ : [0, 1)→ [0, 1), x 7→ βx (mod 1). Then εi = bβT i−1
β (x)c

for i > 1.

Rényi [112] showed that there is a unique probability measure µβ on [0, 1) that is equiv-

alent to the Lebesgue measure and such that µβ is invariant and ergodic with respect to

Tβ and has maximum entropy. The measure µβ satisfies (1− 1
β
)λ 6 µβ 6

β
β−1

λ.

Let c(d) be the cylinder set corresponding to the block d, i.e. the set of all real numbers

in the unit interval whose first ‖d‖ digits coincide with d. A β-adic interval is a cylinder

set c(d) for some d.

Let W∞ be the set of right-infinite words ω = ω1ω2 . . . with digits 0 6 ωi < β that

appear as the β-expansions of real numbers in the unit interval. Let Ln be the set of all

finite subwords of length n of words ω ∈ W∞ and let W =
⋃
n>1 Ln. We call the words in

W admissible.

We have βn 6 |Ln| 6 β
β−1

βn for the number of elements of Ln.

For an infinite word ω = ω1ω2 . . . ∈ W∞ and a block d = d1d2 . . . dk of digits 0 6 di < β

we denote by Nd(ω, n) the number of (possibly overlapping) occurrences of d within the

first n letters of ω. If the word ω is finite, we write Nd(ω) for Nd(ω, ‖ω‖).
An infinite word ω ∈ W∞ is called µβ-normal if for all d ∈ Lk,

lim
n→∞

1

n
Nd(ω, n) = µβ(c(d)).

A real number x ∈ [0, 1) is called normal to base β or β-normal, if the infinite word ε1ε2 . . .

defined by its β-expansion (3.1) is µβ-normal.

For fixed ε > 0 and positive integers k, n, a word ω ∈ Ln is called (ε, k)-normal if for

all d ∈ Lk
µβ(c(d))(1− ε)‖ω‖ < Nd(ω) < µβ(c(d))(1 + ε)‖ω‖.

The set of all (ε, k)-normal numbers in Ln will be denoted by En(ε, k) and its complement

by Ec
n(ε, k).

A Pisot number β is a real algebraic integer β > 1 such that all its conjugates have

absolute value less than 1, and as usual we include all positive integers b > 2 in this

definition. All Pisot numbers smaller than the golden mean were found by Dufresnoy and

Pisot [60]. In particular, they showed that the smallest one is the positive root of x3−x−1

(called the plastic number) which is approximately 1.32471 > 3
√

2.
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3.2. Preliminaries.

Lemma 3.1 ( [27, Lemma 3]). Let β > 1 be Pisot. For every ε > 0 and positive integer

k there exist η = η(ε, k), 0 < η < 1, C = C(ε, k) > 0 and n0 = n0(ε, k) such that for the

number of non-(ε, k)-normal words of length n

|Ec
n(ε, k)| < C |Ln|1−η

holds for all n > n0.

In Section 4.2 we give explicit estimates for n0, C and η.

The following Lemma contains the underlying idea of our construction.

Lemma 3.2 ( [27, Lemma 4]). Let a1, a2, . . . be a sequence of finite words an ∈ W such

that a = a1a2 . . . ∈ W∞ and ‖an‖ → ∞ as n → ∞. Suppose that for any ε > 0 and

any positive integer k there exists an integer n0(ε, k) such that all an with n > n0(ε, k) are

(ε, k)-normal. If

(3.2) n = o (‖a1a2 . . . an‖) and ‖an+1‖ = o(‖a1a2 . . . an‖),

then the infinite word a = a1a2 . . . is µβ-normal.

Proof. Let ε > 0 and d ∈ Lk. It suffices to show that, as N →∞,

µβ(c(d))(1− ε)N < Nd(a,N) < µβ(c(d))(1 + ε)N.

We have Nd(a,N) = Nd(a1a2 . . . an, N), where n is such that ‖a1a2 . . . an−1‖ < N 6
‖a1 . . . an‖. Then, for N large enough,

Nd(a1 . . . an, N) 6 Nd(a1 . . . an0(ε,k)) + n(k − 1) +Nd(an0+1) + . . .+Nd(an)

6 const(ε, k) + n(k − 1) +
n∑

i=n0+1

µβ(c(d))(1 + ε)‖ai‖.

Dividing by N gives the desired result, assuming conditions (3.2). The calculation for the

lower bound for Nd(a,N) is similar. �

Lemma 3.3. Let β > 1 be Pisot. There exists M > 0 such that for all n > 1 and all

d ∈ Ln the Lebesgue measure of the cylinder set c(d) satisfies

(3.3) β−(M+1)β−n 6 λ(c(d)) 6 β−n.

Proof. This is Proposition 2.6 of [86]. �
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Following the argument in [86], one can take M to be the size of the largest block of con-

secutive zeros in the modified β-expansion of 1 (see Section 4.1). We give an explicit upper

bound on M in Proposition 4.1.

We wish to control the lengths when changing the base. The following is an analogue to

Lemma 3.3 in [17]; see also Lemma 2.1.

Lemma 3.4. Let β be Pisot and M as above. For any interval I there is a β-adic subin-

terval Iβ of I such that λ(Iβ) > λ(I)/2βM+4.

Proof. We can assume λ(I) > 0. Let m be the smallest integer such that β−m < λ(I).

Thus λ(I)/β 6 β−m < λ(I). If there exists an interval of order m in I, then let Iβ be this

β-adic interval and we have λ(Iβ) > λ(I)/β.

Otherwise there must be a word a ∈ Lm such that π(a) ∈ I but neither π(a−) nor π(a+)

is in I, where a− and a+ are the lexicographically previous or next elements of a of the

same length and where π(a) is the real number in the unit interval whose β-expansion

starts with a. Then by Lemma 3.3 we have that λ(I) < 2β−m. Since β−m < λ(I) and the

smallest Pisot number is bigger than 21/3, we get that 2β−m−3 < λ(I). Thus there must

be a β-adic interval Iβ of order m+ 3 in I and we have

λ(Iβ) >
1

βM+1+m+3
=

1

2βM+4
· 2

βm
>

λ(I)

2βM+4
.

�

3.3. The Algorithm.

Notation. Let (βj)j>1 be a sequence of Pisot numbers. Let t be a positive integer. A

t-sequence is a sequence of intervals I = (I1, . . . , It) such that for 1 6 j 6 t, Ij is βj-adic,

such that for 1 6 j 6 t − 1, Ij+1 ⊂ Ij, and such that λ(Ij+1) > λ(Ij)/2β
Mβj+1

+4

j+1 . If we

have two β-adic intervals J ⊂ I then uβ(J) means the block of digits that is added to the

base β expansion of the numbers in I to obtain the β-expansion of numbers in J . The

notation uj(J) for a t-sequence J shall mean uβj(Jj). We denoted the dependence on βj of

all appearing constants M , n0, C and of Ln explicitly with an βj.

Input. Given are values ε1 = 1, k1 = 1, t1 = 1 and a sequence (βj)j>1 of Pisot numbers βj.
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First step. Let I1 be a t1-sequence such that I1 = (I1,t1), with I1,t1 = [0, 1). Repeat the

bases βj according to conditions

max
16j6ti

βj 6 β1i,(3.4)

max
16j6ti

Mβj 6 (Mβ1 + 1)(1 + log i),(3.5) ∑
16j6ti

(Mβj + 4) log βj 6 (Mβ1 + 4) log β1(1 + log i).(3.6)

Step i+1 for i > 1. From step i, we have a ti-sequence Ii of nested intervals Ii,1 ⊃ . . . ⊃ Ii,ti
where each Ii,j is βj-adic.

Let

ti+1 = dlog(i+ 1)e, εi+1 =
1

ti+1

, ki+1 = ti+1,

δi+1 =
1

2

1

2β
Mβ1

+4

1

1

ti

1

2ti
∏

j6ti
β
Mβj

+4

j

1

2ti+1
∏

j6ti+1
β
Mβj

+4

j

.

Choose ni+1 to be the least integer such that

(3.7) ni+1 > max
j6ti+1

(
nβj(εi+1, ki+1)

)
,

and such that for all 1 6 j 6 ti+1

(3.8) λ(Ec
n(εi+1, ki+1)) < δi+1.

Furthermore, let

vi =

⌈
max
j=1,...,ti

log βj
log β1

⌉
.

Then we perform the following steps.

• Take L to be a β1-adic interval of Ii,ti of length λ(L) > λ(Ii,ti)2
−1β

−(Mβ1
+4)

1 .

• For each β1-adic sub-interval J1 of L with u1(J1) = vini+1 find a

ti+1-sequence J = (J1, . . . , Jti+1
).

• Choose the “leftmost” of the ti+1-sequences J such that uj(J) is (εi+1, ki+1)-normal

for 1 6 j 6 ti.

Output. The unique real number X in the intersection of all Ii,j.

We need to show that the algorithm is well-defined and that the produced number is in

fact βj-normal for all j > 1.

Proposition 3.5. This algorithm is well-defined.
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Proof. We have to show that in each step i + 1 there exists at least one ti+1-sequence J.

Let S be the union of the intervals Jti+1
over the |Lβ1vini+1

| many ti+1-sequences J. By

definition of the interval L we have that λ(L) > λ(Ii,ti)2
−1β

−(Mβ1
+4)

1 . Furthermore for

each sequence we have that λ(Jti+1
) > 2−ti+1

∏ti+1

j=1 β
−(Mβj

+4)

j λ(J1). Since the sub-intervals

J1 ⊂ L form a partition of L we have that λ(S) > 2−ti+1
∏ti+1

j=1 β
−(Mβj

+4)

j λ(L). Combining

these inequalities yields

λ(S) > 2−ti−ti+1−1

ti∏
j=1

β
−(Mβj

+4)

j

ti+1∏
j=1

β
−(Mβj

+4)

j λ(Ii,1).

Now we calculate the measure of the set N of non-suitable intervals and show that it is

less than λ(S). For the length of the added word we have ‖u1(J)‖ > vini+1 and for each

2 6 j 6 ti+1 we have ‖uj(J)‖ > ni+1. By the choice of ni+1, the subsets of Ii,j, where uj(J)

is not (εi+1, ki+1)-normal, have Lebesgue measure less that δi+1λ(Ii,j), and hence less than

δi+1λ(Ii,1). Since we consider ti many bases, we obtain λ(N ) < tiδi+1λ(Ii,1).

Combining the estimates of N and S we obtain λ(N ) < λ(S). Since N ⊂ S there must

be a ti+1-sequence J such that uj(J) is (εi+1, ki+1)-normal for each 1 6 j 6 ti. �

Theorem 3.6. Let (βj)j>1 be a sequence of Pisot numbers. Then the real number X

generated by this algorithm is βj-normal for each j > 1.

Proof. We need to verify the growth and normality assumptions of Lemma 3.2 on the words

that correspond to the digits added in each considered base in each step of the algorithm.

To find bounds for the number of added digits in step i+1 in base βj, for j 6 ti, consider

the chain of intervals

Ii,j ⊃ . . . ⊃ Ii,ti ⊃ L ⊃ J1 ⊃ . . . ⊃ Jj

which is considered in step i+ 1. We find a lower bound on the Lebesgue measure of Jj in

the form of

λ(Jj) >
1

2ti
1

βM1+1
1

1

β
vini+1

1

ti∏
l=1

1

β
Mβl

+4

l

· λ(Ii,j).

Thus, Lemma 3.3 implies for the number ‖u(i+1)
j (J)‖ of digits added in base βj, j 6 ti, in

step i+ 1 of the algorithm, that

log

(
1

Fi+1

1

β
Mβj+1

j

)
log βj

6 ‖u(i+1)
j (J)‖ 6

log 1
Fi+1

log βj

where Fi+1 = 2−tiβ
−(M1+1)
1 β

−vini+1

1

∏ti
l=1 β

−Mβl
−4

l .
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Hence ‖u(i+1)
j (J)‖ ∼ log 1/Fi+1 with implied constants only depending on βj. We thus

need to show that

log 1/Fi+1 = ti log 2 + (vini+1 +M1 + 1) log β1 +

ti∑
l=1

(Ml + 4) log βl

satisfies assumptions (3.2) of Lemma 3.2.

We now look at the growth of ni+1. In light of Proposition 4.3, condition (3.7) requires

(3.9) ni+1 >Mβj + ki+1

for all 1 6 j 6 ti+1. We have εi+1 = 1/ti+1 → 0 and ki+1 = ti+1 →∞ as ti+1 →∞. Thus

also ni+1 tends to infinity at least logarithmically in i.

Since λ 6 β
β−1

µβ, βk 6 |Lk| 6 β
β−1

βk, and because of Proposition 4.3, condition (3.8) on

ni+1 is satisfied, if for all j 6 ti,

4

(
βj

βj − 1

)2

βkj β
ni+1η(εi+1,ki+1)
j < δi+1.

With η from equation (4.3), this translates into the requirement that for every j 6 ti,

(3.10) ni+1 >
(Mβj + 1) log βj + log

βj
βj−1

εi+1 min(
εi+1β

ki+1
j

16
, 3

4
)

(
log

(
4

(
βj

βj − 1

)2

β
ki+1

j

)
+ log

1

δi+1

)
,

where

log
1

δi+1

=2 log 2 + log ti + (ti + ti+1) log 2 + (Mβ1 + 4) log β1

+ 2
∑

16j6ti

(Mβj + 4) log βj +
∑

ti<j6ti+1

(Mβj + 4) log βj

(where the last sum is empty if ti = ti+1).

Properties (3.4) and (3.6) on the sequence (βj)j>1 imply

(3.11)

max
16j6ti

(
(Mβj + 1) log βj + log

βj
βj − 1

)
6

(
(Mβ1 + 4) log β1 + log

β1

3
√

2− 1
+ 1

)
(1 + log i).

Conditions (3.4) - (3.6) can be achieved by suitably repeating the bases βj. All conditions

are satisfied in step 1, and the process of repeating the bases is possible computably.

Properties (3.4) - (3.6) and (3.11), together with ti+1 = ki+1 = 1/εi+1 ∼ log i, imply that

for i large enough

ni+1 > O

(
log i

1/ log i

(
log i+ (log i)2 + log log i+ log i+ log i

))
= O

(
(log i)4

)
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where the implied constant only depends on β1. Hence ni+1 grows at least as O(log i) and

at most as O((log i)4), where the implied constants depend only on β1. Thus log 1/Fi+1

and hence also ‖u(i+1)
j (J)‖ growths at least as O(log i) and at most as O((log i)4), where

again the implied constants only depend on β1. Thus ‖u(i+1)
j (J)‖ satisfies conditions (3.2)

of Proposition 3.2. Hence the number X produced by this algorithm is βj-normal for every

j > 1. �

Remark. The choices of how ti, εi and ki change with the step i of the algorithm and

the conditions on the sequence of bases (βj)j>1 are rather arbitrary. There is a lot of

freedom to optimize for other quantities, such as done in Becher, Heiber, Slaman [17]

where computational speed is optimized. This is not taken into account here.

Remark. Following these lines, an extension of Becher, Heiber, Slaman’s algorithm to a

countable set of real bases that are β-numbers is possible, provided these bases are bounded

away from 1 and such there is a uniform bound on the length of the periodic part in their

orbit of 1.

A β-number is a real number β such that the orbit of 1 under Tβ is finite. Pisot numbers

are β-numbers. It is not known under which conditions Salem numbers are or are not β-

numbers (a Salem number is a real algebraic integer β > 1 such that all its conjugates have

absolute values at most equal to one, with equality in at least one case). Salem numbers

of degree 4 are β-numbers, but there is computational and heuristic evidence that higher

degree Salem numbers exist that are no β-numbers, see for example [36].

Note that β-numbers satisfy the specification property - one can always use a block

of zeros to make the concatenation of two admissible blocks admissible. This is because

admissible words can be characterized as precisely the subwords of the lexicographic largest

word in the β-shift. Since the orbit of 1 is finite, this word will be eventually periodic and

hence the lengths of subwords consisting of only zeros is bounded. Thus Lemma 3 in [27]

on the number of (ε, k)-normal admissible words is valid and can be used as an existence

criterion for a ti sequence J in each step of the algorithm.

Note also that β-numbers also satisfy Proposition 2.6 of [86] needed to control the decay

of the length of subintervals. However, we are looking for a lower bound for the measure

of cylinder intervals of the form (3.3) that is uniform for all bases β under consideration.

This can achieved by requiring that there is a uniform bound on the length of the period

of the orbit of 1 under Tβ for each β under consideration.

When adapting the proof of Lemma 3.4 to β-numbers, we moreover need to require that

the set of β-numbers under consideration is bounded away from 1, as above with the plastic

number.
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4. Explicit Estimates for β-expansions

In this section we make explicit the constants in Lemma 3.1 using large deviation estimates

for certain dependent random variables. This requires us to provide an upper bound for

the length of the largest block of zeros appearing in the modified β-expansion of 1 for a

Pisot number β.

4.1. Number of zeros in the expansion of 1. Let β be a Pisot number and denote

by dβ(1) = 0.ε1ε2 . . . the β-expansion of 1, i.e. ε1 = bβc and εi = bβT i−1
β (1)c for i > 1.

Let d∗β(1) be the modified β-expansion of 1, i.e. d∗β(1) = dβ(1) if the sequence ε1ε2 . . .

does not end with infinitely many zeros, and d∗β(1) = 0.(ε1ε2 . . . εn−1(εn − 1))ω when dβ(1)

ends in infinitely many zeros and εn is the last non-zero digit. It is known that d∗β(1) is

purely periodic or eventually periodic if β is Pisot. We reprove this fact here and give an

explicit upper bound for the preperiod length v and period length p and take v + p as a

trivial upper bound for the size of the largest block of zeros in d∗β(1). Note that d∗β(1) is

(eventually) periodic if the orbit of 1 under Tβ is finite, and that the number of distinct

elements in this orbit is precisely v + p.

Proposition 4.1. Let β be a Pisot number of degree d with r real conjugates β = β1, β2, . . . , βr
and 2s complex conjugates βr+1, . . . , βd. Then the orbit of 1 under the map Tβ, i.e. the set

{T kβ (1) | k > 0},

is finite and its number of elements is bounded by

(4.1) M = d! det(B)−12r+s−1πsCr+2s−1 + d

where

(4.2) B =


1 β . . . βd−1

1 β2 . . . βd−1
2

...
...

...

1 βd . . . βd−1
d


and where

C = 1 +
bβc

1− η
with η = max26j6d |βj| < 1.

Proof. For k > 0, T kβ (1) is an element of Z[β], hence there is a unique representation

T kβ (1) = p
(k)
0 + p

(k)
1 β + . . . + p

(k)
d−1β

d−1 with p
(k)
i ∈ Z. Denote by σj, 1 6 j 6 d, the j-th
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conjugation, ordered such that the first r are real, and σr+i = σ̄r+s+i for 1 6 i 6 s. We

have

T kβ (1) = βk

(
1−

k∑
l=1

εlβ
−l

)
hence for 2 6 j 6 d

|σj(T kβ (1))| 6 1 +
bβc

1− η
where η = max26j6d |βj| < 1.

Note that

B


p

(k)
0

p
(k)
1
...

p
(k)
d−1

 =


T kβ (1)

σ2(T kβ (1))
...

σd(T
k
β (1))


where B is as in (4.2) and has determinant detB =

∏
16i<j6d(βj − βi) 6= 0. Now, since the

vector of T kβ (1) and its conjugates can be canonically embedded in a compact convex set in

Rr+2s of volume 2r+s−1πsCr+2s−1, we can count the Zd-lattice points in a compact convex

set in Rd of volume det(B)−12r+s−1πsCr+2s−1. By loosing a factor of 2, we can make this

set additionally centrally symmetric if we allow T kβ (1) (formally) to take on values in the

interval [−1, 1]. Then we can use a result by Blichfeldt [33] and bound the number of

Zd-lattice points in B−1Y by

|B−1Y ∩ Zd| 6 d! det(B)−12r+s−1πsCr+2s−1 + d

with C = 1 + bβc
1−η and hence obtain an upper bound for the number of distinct points in

the orbit of 1 under Tβ which is also a trivial upper bound for the maximum number of

consecutive zeros in the modified β-expansion of 1 as explained above. �

4.2. Number of not (ε, k)-normal numbers. Let β be a Pisot number and let Ln be

the set of all admissible words of length n. Fix ε > 0 and a positive integer k. We wish

to find explicit estimates for the number of non-(ε, k)-normal words of length n for fixed

ε > 0 and k such as given in Lemma 3.1 (Lemma 3 in [27]). The method in [27] uses

methods of ergodic theory and the authors are not aware of a method to make the implied

constants explicit. Therefore we use a probabilistic approach by viewing the digits to base

β as random variables and using a variant of Hoeffding’s inequality for dependent random

variables to bound the tail distribution of their sum. This approach automatically gives

all involved constants explicitly. We use the following Lemma due to Siegel (Theorem 5

in [122]).
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Lemma 4.2. Let X = X1 + X2 + . . . + Xl be the sum of l possibly dependent random

variables. Suppose that Xi, for i = 1, 2, . . . , l, is the sum of ni mutually independent

random variables having values in the interval [0, 1]. Let E[Xi] = nipi. Then for a > 0

P(X − E[X] > a) < exp

(
− a2

8(
∑

i

√
pi(1− pi)ni)2

)
+ exp

(
− 3a

4
∑

i(1− pi)2

)
.

Proposition 4.3. Let β be a Pisot number. The µβ-measure of the set of not (ε, k)-normal

words of length n satisfies

µβ(Ec
n(ε, k)) 6 4|Lk||Ln|−η

for n >M + k with η > 0 as in equation (4.3) and M as in equation (4.1).

Proof. Let d ∈ Lk and for n > M + k, let X1, . . . , XM+1 : Ln → R be random variables

where Xi(ω) denotes the number of occurrences of the word d in ω = ω1 . . . ωn at positions

ωi+j(M+1)ωi+j(M+1)+1 . . . ωi+j(M+1)+k−1

for 0 6 j 6 b n−k
M+1
c. The Xi are dependent, but each is a sum of ni = b n−k

M+1
c+1 independent

identically distributed random variables Y
(i)
j that take value one if and only if the word d

appears in ω starting at digit ωi+j(M+1) and zero otherwise. We have E[X] = nµβ(c(d))

and E[Xi] = niµβ(c(d)). Denote by Ēn(ε, k) the set of words of length n for which there

is a subword d of length k that appears more often than n(µβ(c(d)) + ε) times and let

Ēn(ε, d) be the set of words of length n for which the subword d appears more often than

n(µβ(c(d)) + ε) times. We apply Lemma 4.2 with l = M + 1, ni as above, pi = µβ(c(d))

and a = nε and obtain

µβ(X > n(µβ(c(d)) + ε)) = µβ(Ēn(ε, d))

< exp

(
− (nε)2

8µβ(c(d))(1− µβ(c(d)))(M + 1)2(b n−k
M+1
c+ 1)

)

+ exp

(
− 3nε

4(M + 1)(1− µβ(c(d)))2

)
.

Using cβ−k 6 µβ(c(d)) 6 β−k and n >M + 1, this is

< exp

(
− ε2n

16(M + 1)β−k

)
+ exp

(
− 3εn

4(M + 1)

)
< 2 exp

(
− εn

M + 1
min(

ε

16β−k
,
3

4
)

)
.

Finally, since µβ(Ēn(ε, k)) 6
∑

d∈Lk µβ(Ēn(ε, d)) and using that βn 6 |Ln| 6 β
β−1

βn we

obtain

µβ(Ēn(ε, k)) 6 |Lk|2 exp

(
− εn

M + 1
min(

ε

16β−k
,
3

4
)

)
6 2|Lk||Ln|−η
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with

(4.3) η =
εmin( ε

16β−k
, 3

4
)

log( β
β−1

) + (M + 1) log β
> 0.

Using the same argument with Y = n − X gives a symmetrical upper bound for the

number of words ω of length n in which the word d appears less than nµβ(c(d))−εn times.

Thus we obtain an upper bound for the number of not (ε, k)-normal words of length n of

the form

4|Lk||Ln|−η

for n >M + k with η as in (4.3). �

Corollary 4.4. The number of not (ε, k)-normal words of length n satisfies

|Ec
n(ε, k)| 6 C|Ln|1−η

for n > M + k with η > 0 as in equation (4.3), M as in equation (4.1), and where

C = 4|Lk|βM+1 β
β−1

.

Proof. Since the Parry measure µβ satisfies(
1− 1

β

)
λ 6 µβ 6

β

β − 1
λ

with respect to the Lebesgue measure λ, and due to the bounds on the Lebesgue measure

of β-adic cylinder intervals from Lemma 3.3, the bound from Proposition 4.3 on the µβ
measure of the set of non-(ε, k)-normal words of length n implies for the number of such

words

(4.4) |Ec
n(ε, k)| 6 C|Ln|1−η,

where C = C(β, k) = 4|Lk|βM β
β−1

and η = η(β, ε, k) as given in equation (4.3) and where

we used that βn 6 |Ln| 6 β
β−1

βn. �
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On the continued fraction expansion of absolutely

normal numbers

Adrian-Maria Scheerer10

Abstract. We construct an absolutely normal number whose continued fraction

expansion is normal in the sense that it contains all finite patterns of partial quo-

tients with the expected asymptotic frequency. The construction is based on ideas of

Sierpinski and a large deviation theorem for sums of mixing random variables.

1. Introduction

Consider a real number x in the unit interval [0, 1). Let b > 2 be a positive integer and

consider the maps Tb : [0, 1)→ [0, 1), x 7→ bx mod 1 and the Gauss map TG : [0, 1)→ [0, 1)

defined by TG(x) = 1
x

mod 1 if x > 0 and TG(0) = 0. Then x is called normal to base b, if

for all real numbers 0 6 a < b < 1

(1.1)
1

n

n−1∑
i=0

χ[a,b)(T
i
b (x))→ b− a

holds, as n tends to infinity. Here, χA is the characteristic function of the set A. x is called

continued fraction normal, if for all 0 6 a < b < 1

(1.2)
1

n

n−1∑
i=0

χ[a,b)(T
i
G(x))→ µG([a, b)),

where µG is the Gauss-Kuzmin measure on [0, 1), given by

µG(A) =
1

log 2

∫
A

1

1 + x
dx

for any Borel set A.

The maps Tb are invariant and ergodic with respect to the Lebesgue measure and the

Gauss map TG is invariant and ergodic with respect to µG. An application of the point-wise

ergodic theorem thus shows that with respect to Lebesgue measure almost all real numbers

in the unit-interval are simultaneously normal to all integer bases b > 2 (such numbers are

called absolutely normal) and continued fraction normal. The aim of this note is to exhibit

an example of such a number by means of describing its binary expansion one digit after

the other using a recursive construction.

10This article appeared in [114]
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Our construction is based on ideas of Sierpinski and Becher and Figueira and can be

described as follows. We consider a suitable large subset Ω of [0, 1) as our ambient set.

This set contains all real numbers whose partial quotients grow at a controlled rate (see

Section 3). We wish to exclude from this set from the set of all non-normal numbers

and do so by collecting these numbers in a set E. This set will in fact have positive

but arbitrarily small measure. Part of the proof is showing that this set is ‘small’. The

corresponding calculations are carried out in Sections 2 and 4. The main new ingredient

is the use of a large deviations theorem for sums of mixing random variables to control

deviations in (1.2). In Section 6 we compute the binary expansion of a number ν in ΩrE.

This is done starting with the interval [0, 1) and then considering recursively both halves

of the preceding interval and deciding which half is ‘best’, i.e. contains more of Ω r E.

To make this construction computable, we actually work with finitary versions of Ω and

E, at the cost of a small but controllable error. Finally, in Theorem 6.1 we show that ν

is computable and indeed simultaneously normal to every integer base b > 2, as well as

continued fraction normal.

It is in fact enough to consider in definitions (1.1) and (1.2) so-called cylinder sets. These

are intervals, all of whose elements share the same beginning in their base b expansion or

continued fraction expansion. This way we recover the more familiar definition of normality

via the expected behaviour of the asymptotic frequencies of all finite digit patterns.

Normal numbers originated in work of Borel from 1909, and much has since been writ-

ten about them. The reader is best advised to have a look at Bugeaud. The problem of

constructing an absolutely normal number that is also continued fraction normal is also

mentioned there. Although there exist many constructions of normal numbers (to a single

base), no easy construction of a number normal to two multiplicatively independent bases

is known. However, recently constructions of absolutely normal numbers via recursively

formulated algorithms have received much interest. If ‘easy’ is interpreted from a compu-

tational viewpoint, the problem has been solved by Becher, Heiber, Slaman, who gave a

polynomial time algorithm for computing the digits (to some base) of an absolutely normal

number.

existence/almost all properties of normality in cantor sets both for integer bases and

cf-defined cantor sets. recently simmons, weiss. However these constructions do not seem

to be constructive.

2. Large Deviation Estimates

2.1. Non-normal numbers for integer bases. Let b > 2 be an integer. A word ω =

ω1 . . . ωn of n digits 0 6 ωi 6 b − 1, 1 6 i 6 n, is called (ε, 1)-normal of length n, if for
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each digit 0 6 d 6 b− 1,

n
1

b
(1− ε) < N(d, ω) < n

1

b
(1 + ε),

where N(ω, d) is the number of i, 1 6 i 6 n, such that ωi = d. Let Eb(ε, n) be the set of

all real numbers x ∈ [0, 1) such that the first n digits of the b-ary expansion of x form an

(ε, 1)-normal word of length n. Denote the complement of Eb(ε, n) in [0, 1) by Ec
b(ε, n).

Fix a digit d, 0 6 d 6 b−1 and consider the random variables Xi : [0, 1)→ R, for 1 6 i 6
n, defined by Xi(x) = 1 if the i-th digit in the b-ary expansion of x equals d, and Xi(x) = 0

otherwise. The Xi are independent and have expectation 1
b
. Let Sn = X1 + . . .+Xn. Then

Hoeffding’s inequality for the sum of n i.i.d. random variables bounded by 0 and 1 yields

P
(∣∣∣∣Snn − E

(
Sn
n

)∣∣∣∣ > t

)
6 2 exp(−2nt2).

In our case, the probability measure is the Lebesgue measure λ on the unit interval. With

t = ε
b
,

λ

({
x ∈ [0, 1) :

∣∣∣∣ 1n] {1 6 i 6 n : Xi(x) = d} − 1

b

∣∣∣∣ > ε

b

})
6 2 exp

(
−2ε2

b2
n

)
.

Hence, for the number of non-(ε, 1)-normal numbers of length n,

λ (Ec
b(ε, n)) 6 2b exp

(
−2ε2

b2
n

)
.

If we define (ε, 1)-normality as n(1
b
− ε) < N(d, ω) < n(1

b
+ ε), then

λ(Ec
b(ε, n)) 6 2b exp(−2ε2n).

2.2. Non-normal numbers for continued fractions. Let A be a Borel subset of [0, 1)

and denote the Gauss measure of A by µG(A) = 1
log 2

∫
A

1
1+x

dx. Let ε > 0 and let k,D, n be

positive integers. A word ω = ω1 . . . ωn of length n of digits ωi ∈ {1, . . . D} will be called

(ε, k,D, n)-CF-normal, if for all words d = d1 . . . dk of length k of digits dj ∈ {1, . . . , D},

(2.1) (n− k + 1)µG(∆d)(1− ε) < N(d, ω) < (n− k + 1)µG(∆d)(1 + ε)

holds, where N(d, ω) is the number of i, 1 6 i 6 n−k+1, such that ωi . . . ωi+k−1 = d1 . . . dk
and where ∆d is the set of all real numbers in [0, 1) whose continued fraction expansion

coincides on the first k digits with d.

The set of real numbers x ∈ [0, 1) whose first n partial quotients form a word that is

(ε, k,D, n)-CF-normal will be denoted by ECF(ε, k,D, n). We denote its complement in

[0, 1) by Ec
CF(ε, k,D, n).
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We also require a notation for the set of x ∈ [0, 1), where the number of occurrences

of only one specific d of length k of digits in {1, . . . , D} satisfies (2.1). This set will be

denoted by ECF(ε,d, D, n).

Similarly, we introduce the sets ECF(ε, k, n) and ECF(ε, d, n).

Fix a word d of length k composed from positive integers. For i > 1 we have the random

variables ai : [0, 1)→ R and derived random variables Xi : [0, 1)→ R. The ai are defined

by ai(x) = ai when the continued fraction expansion of x is x = [0; a1, a2, . . . , ai, . . .]. The

Xi are defined to be 1 − µi if the string d appears in the continued fraction expansion of

x starting at ai, and −µi if not. The numbers µi are chosen such that E[Xi] = 0.

A sequence (Xi)i>1 of random variables Xi : [0, 1)→ R is called strongly mixing, if

(2.2) α(n) := sup
l>1

α(Ml, Gl+n)→ 0

as n → ∞. Here Ml = σ(Xi, i 6 l) and Gl+n = σ(Xi, i > l + n) are the σ-algebras

generated by Xi, for i 6 l, and by Xi, for i > l+n. The α-mixing coefficients α(Ml, Gl+n)

are defined by

α(Ml, Gl+n) = sup
A∈Ml,B∈Gl+n

|P(A ∩B)− P(A)P(B)|.

We know the following mixing property of (ai)i>1 with respect to the Gauss map µG on

[0, 1).

Theorem 2.1 (Philipp (1988)). The ai are exponentially strongly mixing. In fact we have

for some 0 6 ρ < 0.8

(2.3) |µG(A ∩B)− µG(A)µG(B)| 6 ρnµG(A)µG(B)

for all A ∈ σ(ai, i 6 l) and B ∈ σ(ai, i > n+ l).

The constant ρ has been subject to later improvements. We worked here with ρ = 0.8.

From Theorem 2.1 we can derive exponential strong mixing for the random variables

Xi with respect to the Gauss measure µG. We look at |µG(A ∩ B) − µG(A)µG(B)|
where A ∈ σ(X1, . . . , Xl) and B ∈ σ(Xl+n, Xl+n+1, . . .). Since σ(Xi) = X−1

i B(R) is

generated by {∅, [0, 1), T−iG (d) = a−1
i (d1) ∩ a−1

i+1(d2) ∩ . . . ∩ a−1
i+k−1(dk), [0, 1) r T−iG (d)}

where TG is the Gauss map on [0, 1), we have that σ(Xi) ⊂ σ(ai, . . . , ai+k−1) and hence

σ(X1, . . . , Xl) ⊂ σ(a1, . . . , al+k−1). Consequently σ(Xl, Xl+1, . . .) ⊂ σ(al, al+1, . . .). Thus

any mixing coefficient α(n − k + 1) for the ai is a valid mixing coefficient α(n) for the

Xi, for n > k. For smaller values of n, note that in general α(n) 6 1
4
. Hence the Xi are

strongly mixing with α-mixing coefficient α(n) 6 exp(−2nc) for all n > 1 with

(2.4) c = − log 0.8

2k
.
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We have thus shown that there is an explicit c > 0 such that (Xi)i>1 is a sequence of

strongly mixing centred real-valued bounded random variables with α-mixing coefficient

α(n) satisfying α(n) 6 exp(−2cn). As such the Xi satisfy the assumptions of the following

large deviation theorem.

Theorem 2.2 (Corollary 12 of Bernstein inequality..). Let (Xi)i>1 be a sequence of centered

real-valued random variables bounded by a uniform constant M and with α(n) satisfying

α(n) 6 exp(−2nc) for some c > 0. Then for all n > 2 ·max(c, 2) and x > 0

(2.5) P(|Sn| > x) 6 exp

(
− x2

n(log n)4CM2 + 4Mx(min(c, 1))−1

)
,

where C = 6.2K + (1
c

+ 8
c2

) + 2
c log 2

, with K = 1 + 8
∑

i>1 α(i).

Here Sn denotes again the sum X1 +X2 + . . .+Xn.

The following theorem is thus a corollary of Theorem 2.2.

Theorem 2.3. Fix a string d of positive integers of length k. We have for N > 2(k + 1)

µG(Ec
CF(ε, d,N)) 6 exp

(
− (εµG(∆d))

2

16(C + (εµG(∆d))/c)

N

logN

)
.(2.6)

Proof. We set x = εµG(∆d)n, P = µG, n = N−k+1 andM = 1. Hence |Sn| > x is the same

as |
∑N−k+1

i=1 Xi−(N−k+1)µG(∆d)| > εµG(∆d)(N−k+1) which is equivalent to the defining

condition of non-(ε, d,N)-CF-normality from (2.1). We have 0.09 < − log 0.8 < 0.1, so for

any k, max(c, 1) = 1 and Theorem 2.2 can be applied provided N − k + 1 > 4 holds. To

estimate the exponent we used N − k + 1 > 1
2
N , valid for N > 2(k− 1). The requirement

N > 2(k + 2) meets both conditions on N . �

We put

η̃CF(ε, d, k) =
(εµG(∆d))

2

16(C + (εµG(∆d))/c)

and wish to simplify this expression by bounding it from below. This can be achieved by

straight-forward calculations, noting that c 6 1/20 < 1 for any k, and that NµG(∆d)(1 +

ε) 6 N , so that µGε 6 1− µG 6 1.

We obtain

(2.7) η̃CF(ε, d, k) > ηCF(ε, d, k) =

(
εµG(∆d)

900k

)2

.

From here on, we will work with ηCF defined by this equation as the constant from Theo-

rem 2.3.
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Remark. The bound obtained in Theorem 2.3 bounds a set of certain real numbers with a

priori no restrictions on their partial quotients. Since Ec
CF(ε, d,D,N) ⊂ Ec

CF(ε, d,N) the

bound (2.6) is also valid for this smaller set. Note that Ec
CF(ε, d,D,N) is a union of finitely

many intervals with rational endpoints and thus can be computed, as well as its Lebesgue

measure.

The bound from (2.6) is valid for the Lebesgue measure of Ec
CF(ε, d,N) with an additional

factor of 1
log 2

.

3. Restricting partial quotients

Fix f : N→ N and denote

ΩN = {x ∈ [0, 1) | ai(x) 6 f(i), 1 6 i 6 N}

Ω =
⋂
N>1

ΩN = {x ∈ [0, 1) | ai(x) 6 f(i), i > 1}.

By appropriately choosing f , Ω has measure arbitrarily close to 1.

Proposition 3.1. Let f(i) = A2i − 2 with a positive integer A. Then

λ(Ω) > 1− 2

A
, and λ(ΩN r Ω) 6

1

A

1

2N+1
.

Proof. Since log(2)µG 6 λ 6 2 log(2)µG and the invariance of µG under the Gauss map we

have

λ(Ω) = λ{x ∈ [0, 1) | ai(x) 6 f(i), i > 1} = 1− λ

(⋃
i>1

{x ∈ [0, 1) : ai > f(i) + 1}

)

> 1− 2 log(2)
∞∑
i=1

µG{ai > f(i) + 1} = 1− 2 log(2)
∞∑
i=1

µG{a1 > f(i) + 1}

> 1− 2
∞∑
i=1

λ{a1 > f(i) + 1} = 1− 2
∞∑
i=1

1

f(i) + 2
.

Choosing f(i) = A2i − 2 with a positive real numbers A gives

λ(Ω) > 1− 2

A
.

For the second assertion,

ΩN r Ω =
⋂

16i6N

{x ∈ [0, 1) : ai(x) 6 f(i)} ∩
⋂

i>N+1

{x ∈ [0, 1) : ai(x) > f(i) + 1}.
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Thus

λ(ΩN r Ω) 6 λ({x ∈ [0, 1) : aN+1(x) > f(N + 1) + 1})

=
1

A2N+1
,

since the measure of the intersection of a number of sets can be trivially bounded above

by the measure of one of the intersecting sets. �

Let ω = 2
A

and ωN = 1
A

1
2N+1 so that λ(Ω) > 1− ω and λ(ΩN r Ω) 6 ωN .

Note that ΩN in [0, 1) is a union of cylinder intervals with rational endpoints and is thus

computable, as well as its Lebesgue measure λ(ΩN).

4. A set containing all non-normal numbers

Let β > 0 be a parameter such that 1−ω−β > 0. β will be used to control the measure

of a set E which contains all non-normal numbers.

Let

E =
⋃
b>2

⋃
m>1

⋃
N>Nb(m)

Ẽc
b(1/m,N) ∪

⋃
d

⋃
m>1

⋃
N>NCF (m,d,k)+1

Ẽc
CF (1/m, d,N)

Here, the tilde shall indicate that we take each interval of which the Eb and ECF consist

to be three times the length.

We further introduce a finite version of E. For a positive integer k, let

Ek =
k⋃
b=2

k⋃
m=1

kNb⋃
N=Nb(m)

Ec
b(1/m,N) ∪

k⋃
m=1

⋃
d,|d|6k,di6k

kNCF⋃
N=NCF (m,d,k)+1

Ec
CF (1/m, d, f(N), N)

Trivial upper bounds for the Lebesgue measure of E and Ek are

λ(E) 6
∑
b>2

∑
m>1

∑
N>Nb(m)

λ(Ec
b(1/m,N)) +

∑
d

∑
m>1

∑
N>NCF (m,d,k)+1

λ(Ec
CF (1/m, d, f(N), N))

and

λ(Ek) 6
k∑
b=2

k∑
m=1

kNb∑
N=Nb(m)

λ(Ec
b(1/m,N))+

∑
d,|d|6k,

di6k,16i6k

k∑
m=1

kNCF∑
N=NCF (m,d,k)+1

λ(Ec
CF (1/m, d, f(N), N))

The starting lengths Nb and NCF are chosen such that λ(E) 6 β. In the integer case,

they are allowed to depend on the base and ε = 1/m and in the continued fraction case on

ε = 1/m and on the word d. The function f ensures computability of the set Ek and its

measure.

Let rk = λ(E r Ek).
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Proposition 4.1. We have λ(E) 6 β and rk 6 1
k
.

Proof. We show that for Nb(m) = 1
2
C1b

4m3 with C1 = 3

√
48
β

(4.1)
∑
b>2

∑
m>1

∑
N>Nb(m)

λ(Ec
b(1/m,N)) 6

β

6
,

and that for NCF(m, d, k) = C29008µG(∆d)
−8k8m6d2

k · . . . · d2
1 with C2 = 384

β

(4.2)
∑
d

∑
m>1

∑
N>NCF(m,d,k)+1

λ(Ec
CF (1/m, d, f(N), N)) 6

β

6
.

We treat sum (4.1) first. We have∑
b>2

∑
m>1

∑
N>Nb(m)

2be−
2

m2b2
N = 2

∑
b>2

b
∑
m>1

e−
2

m2b2
Nb(m) 1

1− e−2/(m2b2)
.

Note that (1 − e−2/(m2b2))−1 6 2m2b2 for all m > 1, b > 2 and that
∫∞

0
x2e−cxdx = 2

c3
for

c > 0. Hence this is

6 4
∑
b>2

b3
∑
m>1

m2e−C1b2m 6 4
∑
b>2

b3 2

C3
1b

6
=

8

C3
1

∑
b>2

1

b3
<

8

C3
1

.

This is 6 β
6

for C3
1 >

48
β

.

For continued fractions we use

λ(Ec
CF (1/m, d, f(N), N)) 6 λ(Ec

CF (1/m, d,N)) 6 e−ηCF(ε,d,k)N1/2

instead of the better term e−ηCF(ε,d,k) N
logN which is more difficult to work with. We also use

ηCF(ε, d, k) =

(
εµG(∆d)

900k

)2

from equation (2.7).

We have N
logN

> N1/2 for all N > 1 and that e−ηN
1/2

is strictly decaying for N > 0. Also

note that ∫ ∞
x0

e−ηx
1/2

dx =
2

η2

ηx
1/2
0 + 1

eηx
1/2
0

.

We have

(4.2) 6
∑
d

∑
m>1

∑
N>NCF+1

e−η(m,d,k)N1/2

6
∑
d

∑
m>1

4

η(m, d, k)
e−

1
2
η(m,d,k)

√
NCF(m,d,k),
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where we used that ηN1/2 + 1 6 2ηN1/2 for N > 1
η2

. Put NCF(m, d, k) = NCF(d, k)m6 and

set η(m, d, k) = η(d, k)m−2 with η(d, k) = (µG(∆d)/(900k))2 independent of m. Use again∫∞
0
x2e−cxdx = 2

c3
. Then∑

d

∑
m>1

4m2

η(d, k)
e−

1
2
η(d,k)
√
NCF(d,k)m 6

∑
d

64

η(d, k)4NCF(d, k)3/2

6 64
∑
k>1

∑
dk>1

· · ·
∑
d1>1

1

η(d, k)4NCF(d, k)
,

where we split up the sum over all d into
∑

k>1

∑
d,|d|=k =

∑
k>1

∑
dk>1 · · ·

∑
d1>1. Put

NCF(d) = C2
9008

µG(∆d)8
k8d2

k · . . . · d2
1 for some positive constant C2 only dependent on β. Then

the previous term is

6
64

C2

∑
k>1

∑
dk>1

· · ·
∑
d1>1

1

k2d2
k · . . . · d2

1

.(4.3)

Since
∑

n>1 n
−2 < 1, this is just

6
64

C2

,

which is 6 β
6

for C2 > 384
β

.

We continue showing that rk 6 1
k
. Since rk = λ(E r Ek), rk can be bounded above by

the sum an upper bound (4.4) of the integer part and an upper bound for the continued

fraction part (4.5),

rk 6 (4.4) + (4.5).

We tread the integer-base part first.

(4.4)

(
k∑
b=2

k∑
m=1

∞∑
N=kNb

+
k∑
b=2

∞∑
m=k+1

∞∑
N=Nb

+
∞∑

b=k+1

∞∑
m=1

∞∑
N=Nb

)
2be−

2
m2N .

Recall Nb(m) = 1
2
C1b

4m3 with C1 = 3

√
48
β

. We have for the first sum in (4.4),

k∑
b=2

k∑
m=1

∞∑
N=kNb+1

2be−
2

m2b2
N 6 4

k∑
b=2

b
k∑

m=1

m2e−
2

m2b2
kNb 6

8

C3
1

k∑
b=2

b3 1

b6k3

For the second sum in (4.4),

k∑
b=2

∞∑
m=k+1

∞∑
N=Nb

2be−
2
m2N 6 4

k∑
b=2

b3

∞∑
m=k+1

m2e−
2

m2b2
kNb 6 4

k∑
b=2

(
kb

C1

+
2

C2
1kb

+
2

C3
1k

3b3

)
e−C1b2k2

6 20k
k∑
b=2

e−C1b2k2 6 40ke−C1k2 ,
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where we used that
∫∞
x0
x2e−cxdx = (x2

0/c+ 2x0/c
2 + 2/c3)e−cx0 .

For the third sum in (4.4),

∞∑
b=k+1

∞∑
m=1

∞∑
N=Nb

2be−
2

m2b2
N 6 4

∞∑
b=k+1

b3

∞∑
m=1

m2e−
2

m2b2
Nb 6 4

∞∑
b=k+1

b3 2

C3
1b

6
<

8

C3
1k

2
.

Thus

(4.4) 6
8

C3
1k

3
+ 40ke−C1k2 +

8

C3
1k

2
.

The continued fraction part of rk can be bounded above by

 ∑
d,|d|6k,

di6k,16i6k

k∑
m=1

∞∑
N=kNCF+1

+
∑

d,|d|6k,
di6k,16i6k

∞∑
m=k+1

∞∑
N=NCF+1

+
∑

d,|d|6k,∃16i6k:di>k+1,
or d,|d|>k+1

∞∑
m=1

∞∑
N=NCF+1


e−

1
2
η(d,m)

√
NCF(d,k,m)

(4.5)

The first sum in (4.5) decays linearly in k with constant C2 replaced by kC2.

The second sum of (4.5) requires some care. As before, we have

∑
|d|6k,di6k

∞∑
m=k+1

∞∑
N=NCF+1

e−
1
2
η(d,m)

√
NCF(d,k,m) 6

∑
all d

∑
m>k+1

4m2

η(d)
e−

1
2
η(d)
√
NCF(d)m

Note that x2e−cx is strictly decaying for x > 2
c
. Thus

∑
m>k+1 6

∑
m>max(k+1,2/c), where

c = 1
2
η(d)

√
NCF(d).

We have
∫∞
k
x2e−cxdx 6

∫∞
k
e−

1
2
cxdx = 2

c
e−

1
2
ck for c > 2. In our case c = 1

2
η(d)

√
NCF(d)

= 1
2
µG(∆d)

−1900l2dl · . . . ·d1

√
C2. Here l is the length of d, and C2 is larger than 1. Thus

c is at least 800, so large. We thus have x2 6 e−
1
2
cx for all x > 1.

Thus the last term is

6 4
∑
d

4

η(d)2
√
NCF(d)

e−
1
4
η(d)
√
NCF(d)k
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6 16 · 1600
∑
l>1

F 2
l

∑
al>1

· · ·
∑
a1>1

el
2al·...·a1k 6 16 · 1600

∑
l>1

2l2le−l
2k

6 25600
∑
l>1

e2l−l2k

6 25600(e2−k + e4−4k +
∑
l>3

e−lk)

6 25600(e2−k + e4−4k + 2e−3k)

6 2560000e−k

In the last sum of (4.5), the sum over the restricted range of words d splits up according

to ∑
l>k+1

∑
|d|=l

+
∑

16l6k

 ∑
dl>k+1

∑
di>1,16i6l−1

+
∑

16dl6k

∑
dl−1>k+1

∑
di>1,16i6l−2

+ . . .+
∑

16di6k,l>i>2

∑
d1>k+1


The term that is summed over is 64/C2 · (l2dl · . . . · d1)−2 by choice of NCF (see (4.3)). Any

sum over an unrestricted range of di > 1 gives a convergent term less than 1. The sums

over the restricted range di > k+ 1 are bounded above by 1
k
. Finally, the restricted ranges

1 6 di 6 k contribute at most (π
2

6
− 1 − 1

k+1
) which is less than 0.7. Thus the last sum

in (4.5) can be bounded above by

6
64

C2

(
1

k
+

1

k

∑
16l6k

1

l2

(
l−1∑
i=0

0.7i

))

This expression converges and is

6
214

C2k
.

�

5. Set-theoretic Lemmas

In the following, let c be an interval and M < N , k < l positive integers and Ω, ΩN , E,

Ek, rk, ωN and ω as before.
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Proposition 5.1. We have

λ(E r Ek) 6 rk(5.1)

λ(El r Ek) 6 rk(5.2)

λ((Ω r E) ∩ c) > λ((Ω r Ek) ∩ c)− rk(5.3)

λ((ΩN r E) ∩ c) > λ((ΩN r Ek) ∩ c)− rk(5.4)

λ((Ω r El) ∩ c) > λ((Ω r Ek) ∩ c)− rk(5.5)

λ((ΩN r El) ∩ c) > λ((ΩN r Ek) ∩ c)− rk(5.6)

Proof. λ(E r Ek) 6 rk is immediate from the definition of Ek and rk.

λ(El r Ek) 6 rk is also immediate since El r Ek ⊂ E r Ek.

We have

(Ω r E) ∩ c = ((Ω r Ek) ∩ c) r ((E r Ek) ∩ c).

Hence

λ((Ω r E) ∩ c) > λ((Ω r Ek) ∩ c)− λ(E r Ek ∩ c)
> λ((Ω r Ek) ∩ c)− λ(E r Ek)

> λ((Ω r Ek) ∩ c)− rk.

The same argument works with Ω replaced by ΩN and E replaced by Ek which gives the

remaining inequalities. �

Lemma 5.2. We have

λ((Ω r Ek) ∩ c) > λ((ΩN r Ek) ∩ c)− ωN
λ((ΩN r Ek) ∩ c) > λ((ΩM r Ek) ∩ c)− ωM

Proof.

(ΩN r Ek) ∩ c = ((Ω t (ΩN r Ω)) r Ek) ∩ c
= (Ω r Ek t (ΩN r Ω) r Ek) ∩ c
= (Ω r Ek) ∩ c t (ΩN r Ω) r Ek ∩ c.

Consequently,

λ((Ω r Ek) ∩ c) = λ((ΩN r Ek) ∩ c)− λ((ΩN r Ω) r Ek ∩ c)
> λ((ΩN r Ek) ∩ c)− λ(ΩN r Ω)

> λ((ΩN r Ek) ∩ c)− ωN .
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The second inequality follows using the same argument applied to ΩM = ΩN t ΩM r ΩN .

�

6. Algorithm

6.1. First (binary) digit. We choose N1 and k1 to be such that

1

2
(1− ω − β)− 2ωN1 − rk1 >

1

4
(1− ω − β) > 0

This can be achieved for example with N1 and r1 such that ωN1 6
1
8
(1− ω − β) and let r1

be such that rk1 6
1
8
(1− ω − β). Such values for N1 and r1 are computable.

We have

λ((ΩN1 r Ek1) ∩ [0, 1/2)) + λ((ΩN1 r Ek1) ∩ [1/2, 1)) = λ(ΩN1 r Ek1)

> λ(ΩN1)− λ(Ek1)

> 1− ω − β

which is > 0 if we assume that ω + β < 1. The last lower bound is independent of N1 and

k1, because λ(ΩN) > λ(Ω) > 1− ω for any N and λ(Ek) 6 λ(E) < β for any k.

Hence there is an interval c1 ∈ {[0, 1/2), [1/2, 1)} such that

λ((ΩN1 r Ek1) ∩ c1) >
1

2
(1− ω − β) > 0.

Since the Lebesgue measure of (ΩN1 r Ek1) ∩ c1 can be computed, the interval c1 can be

computably obtained.

We have

λ((Ω r E) ∩ c1) > λ((Ω r Ek1) ∩ c1)− rk1
> λ((ΩN1 r Ek1) ∩ c1)− ωN1 − rk1

>
1

2
(1− ω − β)− ωN1 − rk1 .

Hence λ((Ω r E) ∩ c1) > 0, so there are numbers in Ω ∩ c1 outside E, i.e. whose first

binary digit is given by c1.

6.2. Second digit. Let N2 and k2 be such that εN2 6
1
32

(1−ω−β) and rk2 6
1
32

(1−ω−β).



106 A.-M. SCHEERER

We have

λ((ΩN2 r Ek2) ∩ c1
2) + λ((ΩN2 r Ek2) ∩ c2

2) = λ((ΩN2 r Ek2) ∩ c1)

> λ((ΩN2 r Ek1) ∩ c1)− rk1
> λ((ΩN1 r Ek1) ∩ c1)− ωN1 − rk1

>
1

4
(1− ω − β)

> 0

by the choice of N1 and k1 from step 1. Hence one half c2 of c1 satisfies

λ((ΩN2 r Ek2) ∩ c2) >
1

8
(1− ω − β) > 0.

Which half of c1 to choose can be computed.

Finally, we have

λ((Ω r E) ∩ c2) > λ((Ω r Ek2) ∩ c2)− rk2
> λ((ΩN2 r Ek2) ∩ c2)− ωN2 − rk2

>
1

8
(1− ω − β)− ωN2 − rk2

>
1

16
(1− ω − β)

> 0.

Hence there are numbers in Ω∩c2 outside E, i.e. whose binary expansion starts with digits

given by c1, c2.

This algorithm produces the binary digits of a real number ν.

Theorem 6.1. The number ν is computable. It is furthermore absolutely normal and

continued fraction normal.

Proof. All values Ni, ki, ωNi , rki and all appearing measures can be computed, hence ν is

computable.

Suppose ν was not absolutely normal and continued fraction normal. Then ν is an

element of E, i.e. ν is contained in an interval I ∈ E of positive measure. Since ν by

construction lies in all ci, for some i it holds that ci ⊂ I, hence ci ⊂ E. This implies that

(ΩrE)∩ci = ∅, a contradiction since we choose ci to be such that λ((ΩrE)∩ci) > 0. �
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On absolutely normal numbers and their

discrepancy estimate

Verónica Becher, Adrian-Maria Scheerer, Theodore Slaman11

Abstract. We construct the base 2 expansion of an absolutely normal real number x

so that for every integer b greater than or equal to 2 the discrepancy modulo 1 of the

sequence (b0x, b1x, b2x, . . .) is essentially the same as that realized by almost all real

numbers.

For a real number x, we write {x} = x − bxc to denote the fractional part of x. For

a sequence (xj)j>1 of real numbers in the unit interval, the discrepancy of the N first

elements is

DN((xj)j>1) = sup
06u<v61

∣∣∣∣#{j : 1 6 j 6 N and u 6 xj < v}
N

− (v − u)

∣∣∣∣ .
In this note we prove the following.

Theorem 0.1. There is an algorithm that computes a real number x such that for each

integer b greater than or equal to 2,

lim sup
N→∞

DN({bjx}j>0)
√
N√

log logN
< 3Cb,

where

Cb = 166 + 664/(
√
b− 1) is Philipp’s constant.

The algorithm computes the first n digits of the expansion of x in base 2 after performing

triple-exponential in n mathematical operations.

It is well known that for almost all real numbers x and for all integers b greater than

or equal to 2, the sequence {bjx}j>0 is uniformly distributed in the unit interval, which

means that its discrepancy tends to 0 as N goes to infinity. In [69], Gál and Gál proved

that there is a constant C such that for almost all real numbers x,

lim sup
N→∞

DN({2jx}j>0)
√
N√

log logN
< C.

Philipp [106] bounded the existential constant C and extended this result for lacunary

sequences. He proved that given a sequence of positive integers (nj)j>1 such that nj+1/nj >

11This article appeared in [18]
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θ for some real number θ > 1, then for almost all real numbers x the sequence {njx}j>1

satisfies

lim sup
N→∞

DN({njx}j>1)
√
N√

log logN
< 166 + 664/(

√
θ − 1).

Finally, Fukuyama [67] explicitly determined, for any real θ > 1, the constant C ′θ (see

[67, Corollary]) such that for almost all real numbers x,

lim sup
N→∞

DN({θjx}j>0)
√
N√

log logN
= C ′θ.

For instance, in case θ is an integer greater than or equal to 2,

C ′θ =


√

84/9, if θ = 2√
2(θ + 1)/(θ − 1)/2, if θ is odd√
2(θ + 1)θ(θ − 2)/(θ − 1)3/2, if θ > 4 is even.

The proof of Theorem 0.1 is based on the explicit construction of a set of full Lebesgue

measure given by Philipp in [106], which, in turn, follows from that in [69]. Unfortunately

we do not know an explicit construction of a set with full Lebesgue measure achieving the

constants proved by Fukuyama [67]. If one could give such an explicit construction one

could obtain a version of Theorem 0.1 with the constant 3Cb replaced by C ′b.

The algorithm stated in Theorem 0.1 achieves a lower discrepancy bound than that in

Levin’s work [84]. Given a countable set L of positive real numbers greater than 1, Levin

constructs a real number x such that for every θ in L there is a constant C ′′θ such that

DN({θjx}j>0) < C ′′θ
(logN)3

√
N

.

The recent analysis in [113] reports no constructions with smaller discrepancy.

For L = {2, 3, . . .}, Levin’s construction produces a computable sequence of real numbers

that converge to an absolutely normal number [2]. To compute the n-th term it requires

double-exponential in n many operations including trigonometric operations. In contrast,

the algorithm presented in Theorem 0.1 is based just on discrete mathematics and yields the

expansion of the computed number by outputting one digit after the other. Unfortunately,

to compute the first n digits it performs triple-exponential in n many operations. Thus,

the question raised in [17] remains open :

Is there an absolutely normal number computable in polynomial time having

a nearly optimal discrepancy of normality ?

Finally we comment that it is possible to prove a version of Theorem 0.1 replacing the set

of integer bases by any countable set of computable real numbers greater than 1. The proof

would remain essentially the same except that one needs a suitable version of Lemma 1.2.
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1. Primary definitions and results

We use some tools from [69] and [106]. For non-negative integers M and N , for a

sequence of real numbers (xj)j>1 and for real numbers α1, α2 such that 0 6 α1 < α2 6 1,

we define

F (M,N,α1, α2, (xj)j>1) =
∣∣#{j : M 6 j < M +N : α1 6 xj < α2} − (α2 − α1)N

∣∣.
We write µ to denote Lebesgue measure.

Lemma 1.1 ( [13, Lemma 8], adapted from Hardy and Wright [71, Theorem 148]). Let b

be an integer greater than or equal to 2. Let m and N be positive integers and let ε be a

real such that 6/bN/mc 6 ε 6 1/bm. Then, for any non-negative integer M and for any

integer a such that 0 6 a < bm,

µ{x ∈ (0, 1) : |F (M,N, ab−m, (a+ 1)b−m, {bjx}j>0)| > εN}

is less than 2b2m−2m e−ε
2Nbm/(6m).

The next lemma is similar to Lemma 1.1 but it considers dyadic intervals instead of

b-adic intervals.

Lemma 1.2. Let b be an integer greater than or equal to 2, let k and N be positive integers

and let ε be a real such that
√

6k/N 6 ε 6 1/2k. Then, for any pair of integers M and a

such that M > 0 and 0 6 a < 2k,

µ
{
x ∈ (0, 1) : F (M,N, a2−k, (a+ 1)2−k, {bjx}j>0) > εN

}
is less than 9 · 22(k+2)(k + 2)e−ε

2Nbk+2/(6(k+2)).

Proof. For b = 2 let m = kand apply Lemma 1.1.

For b > 3, let I = (a/2k, (a + 1)/2k) and consider the partition of I in J , K and L as

follows. Let

m = dk/ log2 be+ 1, d = dab2−{k/ log2 b}e, p = (a+ 1)b2−{k/ log2 b} − dab2−{k/ log2 b}e

and define

K = (a/2k, d/bm], J = (d/bm, (d+ p)/bm), L = [(d+ p)/bm, (a+ 1)/2k).

Notice that

µK + µJ + µL = µI = 2−k,

with

(b− 1)/bm 6 µJ 6 b2/bm, 0 6 µK 6 1/bm, and 0 6 µL 6 1/bm.
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Thus,

F (M,N, a2−k, (a+ 1)2−k, {bjx}j>0) =|#{j : M + 1 6 j 6 N : {bjx} ∈ I} −NµI|

6|#{j : M + 1 6 j 6 N : {bjx} ∈ J} −NµJ |

+ |#{j : M + 1 6 j 6 N : {bjx} ∈ K} −NµK|

+ |#{j : M + 1 6 j 6 N : {bjx} ∈ L} −NµL|.

Let z1, z2, . . . be the expansion of µK in base b, that is
∑

j>1 zjb
−j = µK. Let y1, y2, . . . be

the expansion of µL in base b, that is
∑

j>1 yjb
−j = µL. Then, by Lemma 1.1,

µ{x ∈ (0, 1) : F (M,N, a2−k, (a+ 1)2−k, {bjx}j>0) > εN}

6 p µ{x ∈ (0, 1) : F (M,N, db−m, (d+ 1)b−m, {bjx}j>0) > εN}

+
∑

h>m+1

µ{x ∈ (0, 1) : F (M,N, yhb
−h, (yh + 1)b−h, {bjx}j>0) > εN}

+
∑

h>m+1

µ{x ∈ (0, 1) : F (M,N, zhb
−h, (zh + 1)b−h{bjx}j>0) > εN}

6 p µ{x ∈ (0, 1) : F (M,N, db−m, (d+ 1)b−m, {bjx}j>0) > εN}

+ 2
∑

h>m+1

max
06c<bh

µ{x ∈ (0, 1) : F (M,N, cb−h, (c+ 1)b−h, {bjx}j>0) > εN}

6 p b2m−2me−ε
2Nbm/(6m) + 2

∑
h>m+1

2b2h−2he−ε
2Nbh/(6h)

6 b2 b2m−2me−ε
2Nbm/(6m) + 4b2(m+1)−2(m+ 1)e−ε

2Nbm+1/(6(m+1))
∑
h>0

e−h

6 b2mme−ε
2Nbm/(6(k+2)) + 8b2mme−ε

2Nbm/(6m)

6 9 · 22(k+2)(k + 2)e−ε
2Nbk+2/(6(k+2)).

�

Remark 1.3. In [106], Philipp proves a proposition more general than Lemma 1.2. His

result yields the same order of magnitude but does not make explicit the underlying constant

while Lemma 1.2 does.

Clearly, for arbitrary reals α1, α2 such that 0 6 α1 < α2 6 1, for any sequence (xj)j>1

and for any non-negative integers M , N and k,

|F (0, N, α1, α2, (xj)j>1)| 6 N/2k−1 +
k∑

m=1

max
06a<2m

|F (0, N, a2−m, (a+ 1)2−m, (xj)j>1)|.
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Lemma 1.4 ( [106, Lemma 4], adapted from [69, Lemma 3.10]). Let b be an integer greater

than or equal to 2, let N be a positive integer and let n be such that 2n 6 N < 2n+1. Then,

there are integers m1, . . . ,mn with 0 6 m` 6 2n−` − 1 for ` = 1, . . . , n, such that for any

positive integer h and any a, with 0 6 a < 2h,

F (0, N, a2−h, (a+ 1)2−h, {bjx}j>0) 6 N1/3 + F (0, 2n, a2−h, (a+ 1)2−h, {bjx}j>0)

+
n∑

`=n/2

F (2n +m`2
`, 2`−1, a2−h, (a+ 1)2−h, {bjx}j>0).

Let η and δ be positive reals. For each integer b greater than or equal to 2 and for each

positive integer N let

C̃b = 1/2 + 2/(
√
b− 1),

ϕ(N) = 2(1 + 2δ)C̃b(N log logN)1/2,

T (N) = blogN/ log 4c+ 1.

For integers b, n, a, h, ` and m such that

b > 2, n > 1, 0 6 a < 2T , 1 6 h 6 T (2n), n/2 6 ` 6 n, and 1 6 m 6 2n/2,

define the following sets

G(b, n, a, h) ={x ∈ (0, 1) : F (0, 2n, α1, α2, {bjx}j>0) > 2−h/8ϕ(2n)},

where α1 = a2−(h+1), α2 = (a+ 1)2−(h+1), if 1 6 h < T (2n);

and α1 = a2−T (2n), α2 = (a+ 1)2−T (2n), if h = T (2n).

H(b, n, a, h, `,m) ={x ∈ (0, 1) : F (2n +m2`, 2`−1, β1, β2, {bjx}j>0) > 2−h/82(`−n−3)/6ϕ(2n)},

where β1 = a2−(h+1), β2 = (a+ 1)2−(h+1), if 1 6 h < T (2`−1);

and β1 = a2−T (2`−1), β2 = (a+ 1)2−T (2`−1), if h = T (2`−1).

Gb,n =
T⋃
h=1

2h−1⋃
a=0

G(b, n, a, h),

Hb,n =
T⋃
h=1

2h−1⋃
a=0

n⋃
`=n/2

2n−`⋃
m=1

H(b, n, a, h, `,m).

Lemma 1.5. Let η and δ be positive real numbers. For each n > e6/(δ log 2) and for every

b > 2,

µ(Gb,n) = n−1−4δ, µ(Hb,n) = 2n−1−3δ,
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and there is n0 = n0(η, δ) such that

µ

( ⋃
n>n0

(Gb,n ∪Hb,n)

)
< η

and such that for every real x outside
⋃
n>n0

(Gb,n ∪Hb,n),

lim sup
N→∞

DN({bnx}n>0)
√
N√

log logN
< (1 + 4δ)Cb,

where Cb is Philipp’s constant, Cb = 166 + 664/(
√
b− 1).

Proof. To bound µGb,n we apply twice Lemma 1.2, first with N = 2n, k = (h + 1) and

ε = 2−T/8ϕ(2n)2−n, and then with N = 2n, k = T and ε = 2−T/8ϕ(2n)2−n. We write

exp(x) to denote ex. Assuming n > 10,

µGb,n 6 µ

2T−1⋃
a=0

G(b, n, a, T )

+
T−1∑
h=1

µ

2h−1⋃
a=0

G(b, n, a, h)


6

T−1∑
h=1

2h9 · 22(h+1)(h+ 3) exp

(
−2−h/4ϕ2(2n)2−nbh+1 b2

6(h+ 3)

)
+ 2T9 · 22(T+2)(T + 2) exp

(
−2−T/4ϕ2(2n)2−nbT

b2

6(T + 2)

)
6 9 · 23T+5(T + 2) exp

(
−2−T/4 log log(2n)4(1 + 2δ)2bT+2 1

6(T + 2)
C̃2
b

)
6 n−(1+4δ).

To bound µHb,n we apply twice Lemma 1.2 first letting N = 2`−1, k = (h + 1) and

ε = 2−h/8ϕ(2n)2−n, and then letting N = 2`−1, k = T and ε = 2−T/8ϕ(2n)2−n. Assuming

log log(2n) > 8/δ2,

µHb,n = µ

 T⋃
h=1

2h−1⋃
a=0

n⋃
`=n/2

2n−`⋃
m=1

H(b, n, a, h, `,m)


6

n∑
`=n/2

2n−`
T−1∑
h=1

9 23h+6(h+ 3) exp

(
−2−h/4bh+322(n−`)/3 log log(2n)(1 + δ)2 4

6(h+ 3)
C̃2
b

)

+
n∑

`=n/2

2n−`9 23T+4(T + 2) exp

(
−2−T/4bT+222(n−`)/3 log log(2n)(1 + δ)2 4

6(T + 2)
C̃2
b

)
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6
n∑

`=n/2

2n−` exp

(
−2−1/422(n−`)/3 log log(2n)(1 + 4δ)

b4

24

) T−1∑
h=1

2−h

+
n∑

`=n/2

2n−`9 23T+4(T + 2) exp

(
−2−T/4bT+222(n−`)/3 log log(2n)(1 + δ)2 1

6(T + 2)

)

6 exp

(
−2−1/4 log log(2n)(1 + 3δ)

b4

24

) n∑
`=n/2

2n/2−`−1

+ exp

(
−2−T/4bT+2 log log(2n)(1 + 3δ)

1

6(T + 2)

) n∑
`=n/2

2n/2−`−1

6 2 n−(1+3δ).

Thus, there is n0 such that for every integer b greater than or equal to 2,

µ

( ⋃
n>n0

(Gb,n ∪Hb,n)

)
<
∑
n>n0

(
n−1−4δ + 2n−1−3δ

)
< η.

It follows from Philipp’s proof of [106, Theorem 1] that for every real x outside
⋃
n>n0

(Gb,n ∪Hb,n),

lim sup
N→∞

DN({bjx}j>0)
√
N√

log logN
< (1 + 4δ)Cb,

where Cb = 166 + 664/(
√
b− 1). �

2. Proof of Theorem 0.1

We give an algorithm to compute a real outside the set
⋃
b>1

⋃
n>n0

(Gb,n ∪Hb,n). The

technique is similar to that used in the computable reformulation of Sierpinski’s construc-

tion given in [11].

The next definition introduces finite approximations to this set. Recall that by Lemma 1.5,

for every integer b > 2, provided δ > 1/2 and n0 = n0(η, δ) > e6/(δ2 log 2),

µ

( ⋃
n>n0

(Gb,n ∪Hb,n)

)
6
∑
n>n0

n−(1+4δ) + 2n−(1+3δ) 6
∑
n>n0

n−2 < η.

Definition 2.1. Fix δ = 1/2 and fix η 6 1/8. Let

∆ =
∞⋃
b=2

∞⋃
m=zb

(Gb,m ∪Hb,m),

s =
∞∑
b=2

∞∑
k=zb

1

k2
,
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where, for each base b, zb is the least integer greater than e6/(δ log 2) = e12/ log 2 such that

∞∑
k=zb

1

k2
<

η

2b
.

Observe that by the first condition on zb, µ(∆) < s < η. Furthermore define for each n,

bn = max(2, blog2 nc),

∆n =
bn⋃
b=2

n⋃
m=zb

(Gb,m ∪Hb,m),

sn =
bn∑
b=2

n∑
k=zb

1

k2
,

rn =s− sn =
bn∑
b=2

∞∑
k=max(n+1,zb)

1

k2
+

∞∑
b=bn+1

∞∑
k=zb

1

k2
,

pn =22n+2.

The following propositions follow immediately from these definitions.

Proposition 2.2. For every n, µ (∆−∆n) 6 rn.

Proposition 2.3. For every n and q such that n 6 q, µ (∆q −∆n) 6 rn − rq.

Proposition 2.4. For any interval I and any n, µ (∆ ∩ I) 6 µ (∆n ∩ I) + rn.

The proof of Theorem 0.1 follows from the next lemma.

Lemma 2.5. There is a computable sequence of nested dyadic intervals I0, I1, I2, . . . such

that for each n, µIn = 2−n and µ(∆ ∩ In) < 2−n.

Proof. Proposition 2.4 establishes, for any interval I and any m,

µ (∆ ∩ I) < µ (∆m ∩ I) + rm.

Then, to prove the lemma it suffices to give a computable sequence of nested dyadic

intervals I0, I1, I2, . . . such that for each n, µIn = 2−n and µ (∆pn ∩ In) + rpn < 2−n. We

establish

pn = 22n+2.

This value of pn is large enough so that the error rpn is sufficiently small to guarantee that

even if all the intervals in ∆ −∆pn fall in the half of In that will be chosen as In+1, In+1

will not be completely covered by ∆. We define the I0, I1, . . . inductively.
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Base case, n = 0. Let I0 = [0, 1). We need to check that µ (∆p0 ∩ I0) + rp0 < 20. Since

p0 = 22·0+2 = 4, bp0 = 2 and zb = 22/η > 25,

∆p0 =

bp0⋃
b=2

p0⋃
n=zb

(Gb,n ∪Hb,n) = ∅.

Since I0 = (0, 1) and ∆p0 = ∅, ∆p0 ∩ I0 = ∅. Then,

rp0 = s =
∞∑
b=2

∞∑
k=zb

1

k2
.

We conclude µ (∆p0 ∩ I0) + rp0 = 0 + s < η < 1.

Inductive case, n > 0. Assume that for each m = 0, 1, . . . , n− 1,

µ
(
∆pm ∩ Im

)
+ rpm <

1

2m

(
η +

m∑
j=1

2j−1 · rpj
)
,

where pm = 22m+2. Note that for m = 0,
∑m

j=1 is the empty sum. We split the interval

In−1 in two halves of measure 2−n, given with binary representations of their endpoints as

I0
n = [0.d1 . . . dn−1 , 0.d1 . . . dn−11] and I1

n = [0.d1 . . . dn−11 , 0.d1 . . . dn−1111111 . . .] .

Since I0
n ∪ I1

n is equal to interval In−1, we have

µ
(
∆pn ∩ I0

n

)
+ µ

(
∆pn ∩ I1

n

)
= µ (∆pn ∩ In−1) .

Since pn > pn−1, we obtain

µ
(
∆pn ∩ I0

n

)
+ µ

(
∆pn ∩ I1

n

)
6 µ

(
∆pn−1 ∩ In−1

)
+ rpn−1 − rpn .

Adding rpn + rpn to both sides of this inequality we obtain(
µ
(
∆pn ∩ I0

n

)
+ rpn

)
+
(
µ
(
∆pn ∩ I1

n

)
+ rpn

)
6 µ

(
∆pn−1 ∩ In−1

)
+ rpn−1 + rpn .

Then, by the inductive condition for m = n− 1,(
µ
(
∆pn ∩ I0

n

)
+ rpn

)
+
(
µ
(
∆pn ∩ I1

n

)
+ rpn

)
<

1

2n−1

(
η +

n∑
j=1

2j−1 · rpj
)
.

Hence, it is impossible that the terms

µ
(
∆pn ∩ I0

n

)
+ rpn and µ

(
∆pn ∩ I1

n

)
+ rpn

be both greater than or equal to

1

2n

(
η +

n∑
j=1

2j−1 · rpj
)
.
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Let d ∈ {0, 1} be smallest such that

µ
(
∆pn ∩ Idn

)
+ rpn <

1

2n

(
η +

n∑
j=1

2j−1 · rpj
)

and define

In = Idn.

To verify that In satisfies the inductive condition it suffices to verify that

η +
n∑
j=1

2j−1 · rpj < 1.

Developing the definition of rpj we obtain

n∑
j=1

2j−1 · rpj =
n∑
j=1

2j−1

 bpj∑
b=2

∞∑
k=max(zb,pj+1)

1

k2
+

∞∑
b=bpj+1

∞∑
k=zb

1

k2


=

 n∑
j=1

2j−1

bpj∑
b=2

∞∑
k=max(zb,pj+1)

1

k2

+

 n∑
j=1

2j−1

∞∑
b=bpj+1

∞∑
k=zb

1

k2


<

 n∑
j=1

2j−1bpj

∞∑
k=pj+1

1

k2

+

 n∑
j=1

2j−1

∞∑
b=bpj+1

η

2b


<

(
n∑
j=1

2j−1 bpj
pj + 1

)
+

(
n∑
j=1

2j−1 η

2bpj

)

<

(
n∑
j=1

2j−1 2j + 2

22j+2 + 1

)
+

(
n∑
j=1

2j−1 η

22j+2

)

<
3

4
+
η

4

<
7

8
.

Then, using that η < 1/8 we obtain the desired result,

µ (∆pn ∩ In) + rpn <
1

2n

(
η +

n∑
j=1

2j−1 · rpj
)
<

1

2n

(
η +

7

8

)
<

1

2n
.

�
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2.1. Algorithm. Computation of the binary expansion d1d2 . . . of a number x such that

for every integer base b, lim supN→∞DN({bjx}j>0)(N/ log logN)1/2 < 3 Cb, where Cb =

166 + 664/(
√
b− 1).

F (M,N,α1, α2, (xj)j>1) =
∣∣#{j : M 6 j < M +N : α1 6 xj < α2} − (α2 − α1)N

∣∣,
ϕ(N) =

(
2 + 8/(

√
b− 1)

)√
N log logN,

T (N) = blogN/ log 4c+ 1,

G(b, n, a, h)={x ∈ (0, 1) : F (0, 2n, α1, α2, {bjx}j>0) > 2−h/8ϕ(2n)},

where α1 = a2−(h+1), α2 = (a+ 1)2−(h+1), if 1 6 h < T (2n);

and α1 = a2−T (2n), α2 = (a+ 1)2−T (2n), if h = T (2n).

H(b, n, a, h, `,m)={x ∈ (0, 1) : F (2n +m2`, 2`−1, β1, β2, {bjx}j>0) > 2−h/82(`−n−3)/6ϕ(2n)},

where β1 = a2−(h+1), β2 = (a+ 1)2−(h+1), if 1 6 h < T (2`−1);

and β1 = a2−T (2`−1), β2 = (a+ 1)2−T (2`−1), if h = T (2`−1).

Gb,n =

T (2n)⋃
h=1

2h−1⋃
a=0

G(b, n, a, h),

Hb,n =

T (2`−1)⋃
h=1

2h−1⋃
a=0

n⋃
`=n/2

2n−`⋃
m=1

H(b, n, a, h, `,m).

For each base b fix zb > 12/ log 2 such that
∑∞

k=zb
1/k2 < 1/(8 · 2b)

I0 = [0, 1)

n=1

repeat

I0
n is the left half of In−1 and I1

n is the right half of In−1

pn = 22n+2

bpn = 2n+ 2

∆pn =

bpn⋃
b=2

pn⋃
k=zb

(Gb,k ∪Hb,k)

rpn =

bpn∑
b=2

∞∑
k=max(zb,pn+1)

k−2 +
∞∑

b=bpn+1

∞∑
k=zb

k−2

if µ(∆pn ∩ I0
n) + rpn < 2−n then

dn = 0

In = I0
n

else
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dn = 1

In = I1
n

n=n+1

forever

Let’s see that the number x = 0.d1d2d3 obtained by the next Algorithm 2.1 is external

to

∆ =
∞⋃
b=2

∞⋃
n=nzb

(Gb,n ∪Hb,n)

Suppose not. Then, there must be an open interval J in ∆ such that x ∈ J . Consider

the intervals Id11 , I
d2
2 , I

d3
3 , . . . By our construction, x belongs each of them. Let j be the

smallest index such that I
dj
j ⊂ J , which exists because the measure of Idnn goes to 0 as

n increases. Then I
dj
j is fully covered by ∆. This contradicts that in our construction at

each step n we choose an interval Ibnn not fully covered by ∆, because as ensured by the

proof of Lemma 2.5,

µ(∆ ∩ Idnn ) < 2−n.

We conclude that x belongs to no interval of ∆. Recall that we fixed δ = 1/2; thus, by

Lemma 1.5, for for each integer b greater than or equal to 2,

lim sup
N→∞

DN({bnx}n>0)
√
N√

log logN
< 3Cb,

where Cb is Philipp’s constant.

Finally, we count the number of mathematical operations that the algorithm performs

at step n to compute the digit dn in the binary expansion of x. To determine dn, the

algorithm tests for dn ∈ {0, 1} whether

µ(∆pn ∩ Idnn ) + rpn < 2n.

The naive way to obtain this is by constructing the set ∆pn =
⋃bpn
b=2

⋃pn
k=zb

Gb,k ∪Hb,k, for

b = 2, 3, . . . , bpn . The more demanding is Gbpn ,pn which requires the examination of all the

strings of digits in {0, . . . , bpn − 1} of length 2pn . Since bpn = 2n + 2 and pn = 22n+2, the

number of strings to be examined is

bpn∑
b=2

b2pn < 2b2pn
pn = (2n+ 2)22

(2n+2)

.

Thus, with this naive way, the algorithm at step n performs in the order of

(2n+ 2)22
2n+2

many mathematical operations.
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An incremental construction of the sets Gb,n and Hb,n can lower the number of needed

mathematical operations, but would not help to lower the triple-exponential order of com-

putational complexity.
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