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Abstract

Supervised learning algorithms for spiking neuromorphic hardware

Analog neuromorphic hardware allows highly accelerated and, in terms of dissipated power,

efficient emulations of spiking neural networks (SNNs) compared to simulations on conventional

computers. This thesis presents a supervised learning algorithm for hardware emulated feed-

forward SNNs with limited resolution of their synaptic efficacies. Training is done in conjuction

with an abstract software model of the network which is used to perform the parameter updates

based on the recordet network ativity of the SNN. Despite inherently present noise in analog

circuitry, the introduced algorithm was succesfully tested on two classification problems—on

the classical XOR problem and on a subset of the MNIST dataset—where a good classification

performance could be achieved. The performance could, however, be improved if the variations

of the hardware would be on a smaller scale, as it has been shown in a software simulation of

the SNNs.

Überwachte Lernalgorithmen für spikende neuromorphe Hardware

Analoge neuromorphe Hardware ermöglicht, im Vergleich zu Simulationen mit konventionellen

Computern, eine sehr energieeffiziente und schnelle Emulation von spikenden neuronalen Netz-

werken (spiking neural networks, SNNs). In der vorliegenden Arbeit wird ein überwachter Lern-

algorithmus für spikende neuronale Netzwerke, welche auf neuromorpher Hardware emuliert wer-

den, präsentiert. Das Lernen der Netzwerke wird in Verbindung mit einem abstrakten Software-

modell des Netzwerkes ausgeführt, welches basierend auf der Aktivität im Netzwerk die Parame-

ter Aktualisierung durchführt. Trotz inhärent vorhandenem Rauschen in analogen Schaltkreisen

konnte der vorgestellte Algorithmus erfolgreich auf zwei Klassifizierungsprobleme angewendet

werden – auf das klassische XOR-Problem und auf einen Teil des MNIST Datensatzes – bei

welchen eine gute Performance erzielt wurde. Wie eine Softwaresimulation des spikenden neuro-

nalen Netzwerkes gezeigt hat, könnte diese jedoch verbessert werden, wenn sich die Variabilität

zwischen den einzelnen Hardware Komponenten in einem kleineren Bereich befände.
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1
Introduction

Artificial neural networks (ANNs) achieve human-level performance on a wide range of classi-

fication tasks [1]. This, however, requires large models with multiple layers of computational

units between their input and output layer. Training of such large networks is a highly compu-

tationally intensive task which requires large training sets and a vast amount of training time.

To do so, they require power-hungry computing hardware, such as graphics processing units

(GPUs). In contrary, the human brain seems to perform such tasks with ease while requiring

extremely low power.

In the last years, a new type of computing hardware which shares properties with networks

of neurons in the brain was developed. Similar to neurons in the brain, these so-called neuro-

morphic chips use discrete events—comparable to spikes—for computation and communication.

Although the concept of networks which use spiking neurons is not new, in fact these networks

known as spiking neural networks (SNNs) have been successfully applied to various computa-

tional tasks and have at least the same computational power as sigmoidal neural networks of the

same size [2], emulating them on hardware brings several advantages over simulating them on

conventional computers, particularly in terms of speed and energy consumption. The low energy

consumption is due to their event based communication—they consume energy only when neces-

sary. In contrast to the fully digital spike-based neuromorphic design of e.g., the TrueNorth chip

of IBM [3], mixed-signal neuromorphic chips like the one integrated in the Spikey neuromorphic

hardware use digital event-based communication while implementing neurons and synapses by

analog circuits in continuous time. This allows the design of highly accelerated chips since the

characteristic time constants (e.g., membrane and synapse time constants) can be chosen much

smaller than typical corresponding biological values.

While artificial neural networks (ANNs) are typically trained by backpropagation, which is a

supervised learning algorithm which propagates high precision error values through the layers of

the network, a similar powerful learning algorithm for networks of spiking neurons is not known.

A quiet big step in this direction was recently made by Esser, Merolla, Arthur, et al. [4]. They

demonstrated, by introducing two constraints into the learning rule—binary-valued neurons with

approximate derivatives and trinary-valued synapse—the successful training of neural network

on the TrueNorth chip through the backpropagation algorithm. The algorithm was tested on

several difficult benchmark data sets for classifying visual or auditory inputs where close to

state-of-the-art performance could be achieved. The TrueNort chip is a fully digital spike-based
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1 Introduction

neuromorphic chip, which means that each parameter, activations of neurons, and their gradients

are accessible through an exact software model.

Courbariaux, Bengio, and David [5] have showed—although they aimed at a different goal,

that is the reduction of fixed-point multiplications in GPUs, it is worth to mention here—that

deep neural networks (DNNs) can achieve nearly state-of-the-art results on several benchmark

tests when trained with binary activation functions and weights. They claim that this acts as

a variant of Dropout, in which instead of randomly setting a number of activations to zero,

activations and weights are binarized.

In contrast to fully digital neuromorphic hardware, the neurons and synapses in analog hard-

ware are not as precisely controllable and, in the case of the Spikey system, the internal state

of the neurons is not accessible through measurements (to be precise, it is only accessible for

one neuron at a time). This makes the exact mapping between the network emulated in hard-

ware and its software model difficult. Moreover, neurons and synapses on analog neuromorphic

hardware are subject to various types of noise which makes the mapping even more challenging.

This work demonstrates the successful training of a feed-forward spiking neural network which

is emulated on analog neuromorphic hardware. The used hardware is the Spikey neuromorphic

system. This system is a mixed-signal neuromorphic architecture with analog neuromorphic

circuits and digital, event based communication. Training is done in conjunction with an ab-

stract model of the feed-forward spiking neural network. More precisely, each spiking neuron is

approximated by an artificial neuron with a binary activation function. In each training step,

the network activity is recorded in hardware and is then used to perform the parameter updates

in the software model via backpropagation—using high precision values. The high precision

values are then quantized at 4 bit to match the low-precision synaptic weights in hardware.

This thesis is basically divided into three parts. Chapter 2 introduce the reader to spiking

neuron models, models of synaptic plasticity. In Chapter 3 the utilized neuromorphic hardware

system Spikey, which was developed within the FACETS1 project by members of the Electronic

Vision(s)2 group at the Kirchhoff Institute for Physics in Heidelberg, is presented and the devia-

tions of some neuron and synapse parameters, caused by variations of electronic components and

imperfections in the production process, are stated and analyzed. In Chapter 4 the author’s con-

tribution to this topic is presented. In particular, a supervised learning algorithm for hardware

emulated feed-forward SNNs is implemented and tested on two classification problems.

1 FACETS: Fast Analog Computing with Emergent Transient States
2 http://www.kip.uni-heidelberg.de/vision/
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2
Spiking Neuron Models

In a attempt to capture fundamental aspects of neural computation in the brain, McCulloch

and Pitts [6] proposed a neuron model—which is today referred to as McCulloch-Pits neuron—

over seventy years ago. The first generation of neural networks is based on this rather simple

neuron model. The neuron can only give two output signal: a binary “high” signal if the sum

of its weighted input signals is above a certain threshold value and a binary “low” if this sum is

below the threshold value. Therefore this neuron is often referred to as threshold gate. Despite

their simplicity, these neurons have been successfully applied in powerful ANNs like multi-layer

perceptrons. For example, every Boolean function can be computed by a multi-layer perceptron

with a single hidden layer [7].

More biologically realistic neuron models use continuous functions, e.g., sigmoid and hyper-

bolic tangent, to compute their output signals. The functions allow for both continuous input

and output signals which enables networks comprising of these neurons to approximate any

analog function arbitrary well. Just like networks of the first generation they are also universal

for digital computations if one applies thresholding at the output layer [8]. Typical examples of

ANNs consisting of neurons of this type are feed-forward and recurrent neural networks.

First- and second-generation neuron models do not send out short pulses as real neurons do

but their output signal is typically bounded between 0 and 1. These signals can be interpreted

as the normalized firing frequency of a biological neuron within a certain time period, where

higher firing rates correspond to higher output signals. Since real spikes can be seen as a

binary event, i.e., there is a spike, or there is no spike, this so-called rate coding requires an

averaging mechanism. It is known that real neurons fire at various frequencies which lie between

their minimum and maximum frequency. Continuous activation functions can model these

intermediate output frequencies. Hence, neurons of the second generation are more powerful

and biologically realistic than neurons of the first generation [9].

Changing the strength of the connections between neurons can alter the information flow

through a neural network. If the strengths of incoming signals are altered it is likely that the

output signal will also change. This is a fundamental basis for learning. A simple but still

powerful learning algorithm is the backpropagation algorithm. This algorithm requires that the

activation function of each neuron is differentiable which again emphasizes the superiority of the

second-generation neuron models.

The third generation of neuron models are even more biologically realistic. These neuron
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2 Spiking Neuron Models

models use individual spikes which allows the integration of spatial-temporal information in

communication and computation, just like real neurons do [10]. The transmitted information

of these neurons is usually encoded in the spike rate (rate coding) and/or in the timing of the

spikes (pulse coding). If the spike timings are known, the average firing rate can be computed.

Hence, rate coding can be considered as a special case of pulse coding. Thorpe, Delorme, and

Van Rullen [11] showed that humans can analyze and classify visual input within 100 ms. It

takes at least 10 synaptic steps from the retina to the temporal lobe which leaves about 10 ms

processing time per neuron. They pointed out that this time window is too short to allow an

averaging mechanism like rate coding and that, when speed is an issue, pulse coding is favored

over rate coding.

The following sections give some information about the biological background of real neurons

(Section 2.1), introduce the reader to the leaky integrate-and-fire (LIF) model (Section 2.2) and

to the spike response model (SRM) (Section 2.3), and present some aspects of synaptic plasticity

(Section 2.4).

2.1 Biological Background

In general, incoming action potentials from various pre-synaptic neurons alter the internal state,

i.e., the membrane potential, of a post-synaptic neuron. The postsynaptic neuron sends out an

action potential itself at the time instance its membrane potential exceeds a threshold value.

Due to the form and nature of these action potentials, i.e., a short-lasting event in which the

membrane potential of the neuron rapidly rises and falls, they are commonly termed as spikes.

A spike train consists of a temporal sequence of spikes. The membrane potential of a neuron

rapidly decreases immediately after the firing of an output spike. This is known as repolarization

[12]. After this repolarization phase the neuron’s membrane potential is held at a value lower

than the resting potential for a certain amount of time, known as refractory period. This is

known as hyperpolarization [12]. This makes it difficult for the neuron to emit another spike

during the time period of the hyperpolarization phase.

The generated spike travels through the soma (or cell body) and traverses down a fiber called

the axon. Spikes cannot just hop from one neuron to neuron to the other. They have to be

processed by a quite complicated part of the neuron: the synapse [13], which is formed by the

pre-synaptic end of the axon (the axon terminal), the synaptic cleft, and the first part of a

dendrite. In short, when a spike arrives at the axon terminal it causes the rapid opening of

calcium ion channels in the membrane of the axon which allows calcium ions to flow inward

across the membrane. The increase in calcium concentration causes synaptic vesicles filled

with a neurotransmitter to fuse with the axon’s membrane and empty their contents into the

extracellular fluid which fills the synaptic cleft. The neurotransmitter then binds to a matching

receptor on the post-synaptic side of the cleft and activates it. Its activation leads to an opening
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2.2 Leaky Integrate-and-Fire Model

of ion-specific channels of the post-synaptic membrane through which cations and anions flow

according to their concentration gradient [12]. This process induces a postsynaptic potential

(PSP) which can either be positive and called excitatory postsynaptic potential (EPSP) or

negative and called inhibitory postsynaptic potential (IPSP). A post-synaptic neuron usually

receives spikes from multiple pre-synaptic neurons, each with multiple spikes, which induces

multiple PSPs over time. These PSPs are integrated over time which results in the overall

post-synaptic potential of the neuron.

In contrast to action potentials, which are all quite similar, postsynaptic potentials differ in

their amplitude. This is caused by various biological processes including ion channel mechanisms,

in short, the synaptic efficacy [12], [14].

2.2 Leaky Integrate-and-Fire Model

The LIF neuron model [14] is probably one of the simplest spiking neuron models, but still quite

popular due to the ease with which it can be simulated and analyzed. In its simplest form it

can be modeled by a circuit consisting of a capacitor C in parallel with a resistor R which is

driven by some current I(t). The current I(t) can be written as sum of the current which passes

through the resistor R and the current which charges the capacitor C, therefore one can write

I(t) = IR(t) + IC(t). The current IR(t) is given by Ohm’s law as IR(t) = V (t)
R where V (t) is the

voltage across the resistor. The second term IC(t) can be defined as the rate of flow of charge

Q(t), i.e.,

IC(t) =
dQ(t)

dt
= C

dV (t)

dt
. (2.1)

Therefore one gets with τm = RC as the membrane time constant of the neuron the standard

form of a “leaky integrator” that is

τm
dV (t)

dt
= −V (t) +RI(t), (2.2)

where V (t) is referred to as the membrane potential.

In this neuron model the form of the action potential is not described explicitly. Instead,

when the membrane potential V (t) reaches a certain threshold Vth, it is instantaneously set to

the so-called reset potential Vreset < Vth. For t > t(f), where t(f) : V (t(f)) = Vth is the firing time,

the dynamic is again given by Eg. 2.2 until the next threshold crossing occurs. The combination

of leaky integration and reset defines the basic LIF model [15].

In its general form, an absolute refractory period trefrac is considered. The neuron’s dynamics

given by Eg. 2.2 are interrupted at t = t(f), i.e., the time at which the neuron’s membrane

potential reaches the threshold Vth, and restarted after trefrac at t(f) + trefrac with the new initial

condition Vreset.

– 11 –



2 Spiking Neuron Models

The time course of the membrane potential V (t) as a function of any time varying input

current I(t) can be expressed for t > t̂+ trefrac by

V (t) = Vreset exp

(
− t− t̂− trefrac

τm

)
+

1

Cm

∫ t−t̂−trefrac

0
exp

(
− s

τm

)
I(t− s) ds, (2.3)

where t̂ is the time of the last output spike. The function is valid until V (t) crosses the threshold.

At this point the membrane potential is reset to Vreset and the integration restarts after the

refractory period trefrac.

Assuming that the input current I(t) of a post-synaptic neuron i is a sum of post-synaptic

currents caused by pre-synaptic spikes, that is

I(t) =
∑

j

wi,j
∑

f

α
(
t− t(f)

j

)
, (2.4)

where α
(
t− t(f)

j

)
is the input current pulse and wi,j is the synaptic efficacy from neuron j to

the post-synaptic neuron i, Eq. 2.3 can be written as

Vi(t) = Vreset exp

(
− t− t̂i − trefrac

τm

)
+
∑

j

wi,j
∑

f

1

Cm

∫ t−t̂i−trefrac

0
exp

(
− s

τm

)
α
(
t− t(f)

j − s
)
ds.

(2.5)

Typical choices for α include the alpha-shaped function, i.e.,

α(t) =
t

τ
exp

(
−t
τ

)
H(t), (2.6)

found in e.g., Shelley, McLaughlin, Shapley, et al. [16] and Kumar, Schrader, Aertsen, et al. [17]

or the bi-exponential function, i.e.,

α(t) =
τ2

τ2 − τ1

[
exp

(
−t
τ1

)
− exp

(
−t
τ2

)]
H(t), (2.7)

where τ , τ1, and τ2 are the time constants of the synapse and H(t) is the Heaviside step function.

– 12 –



2.3 Spike Response Model

Stimulation by a Constant Input Current

Assuming a constant input current I(t) = I0 and t̂i = 0 as time of the last spike of the neuron

the time t2 of the next spike can be derived from Eg. 2.3 as follows:

Vi(t) = Vreset exp

(
− t− trefrac

τm

)
+

I0

Cm

∫ t−trefrac

0
exp

(
− s

τm

)
ds

= Vreset exp

(
− t− trefrac

τm

)
+

I0

Cm

[
−τm exp

(
− s

τm

)] ∣∣∣∣∣

t−trefrac

0

= exp

(
− t− trefrac

τm

)(
Vreset −

I0τm

Cm

)
+
I0τm

Cm
.

The next spike of the neuron will occur at t = t2, when the membrane potential Vi(t) reaches

the threshold potential Vth, hence

Vth = exp

(
− t2 − trefrac

τm

)(
Vreset −

I0τm

Cm

)
+
I0τm

Cm

− t2 − trefrac

τm
= ln

(
CmVth − I0τm

CmVreset − I0τm

)

Solving the last equation for t2, the time of the next spike can be expressed by

t2 = −τm ln

(
CmVth − I0τm

CmVreset − I0τm

)
+ trefrac. (2.8)

Due to the constant input current I0, the integrate-and-fire neuron spikes periodically with a

period T = t2 given by Eq. 2.8.

2.3 Spike Response Model

The SRM is a generalization of the leaky integrate-and-fire model [14]. The evolution of its

membrane potential depends on the time since the last output spike and can be expressed as an

integral over the past. Let t̂i be the time since the last spike of neuron i, then the evolution of

its membrane potential Vi(t) is given by

Vi(t) = η
(
t− t̂i

)
+
∑

j

wi,j
∑

f

εi,j

(
t− t̂i, t− t(f)

j

)
+

∫ ∞

0
κ
(
t− t̂i, s

)
Iext(t− s) ds, (2.9)

where t
(f)
j ∈ Fj is the spike time of pre-synaptic neuron j and wi,j is the synaptic efficiency

from neuron j to the post-synaptic neuron i. The spike times (or spike train) of a pre-synaptic

neuron j can be formally written as

Fj =
{
t
(1)
j , t

(1)
j , . . . , t

(n)
j

}
, (2.10)

– 13 –



2 Spiking Neuron Models

with t
(n−1)
j < t

(n)
j < t. The two sums in Eq. 2.9 run over all pre-synaptic neurons and over all

firing times. One has to note that each term depends on the time of the last output spike of

neuron i, that is max(Fi). The reset kernel η models the time course of the action potential and

the after-potential. The response kernel ε models the postsynaptic potential (PSP) and the κ

kernel models the linear response of the membrane potential to an input current Iext(t).

Contrary to the threshold value Vth in the LIF model, the threshold in the SRM is not constant

and may also be a function of the last output spike. The neuron fires whenever the membrane

potential Vi(t) reaches the dynamic threshold Vth(t − t̂i) from below. The points in time at

which the neuron i spikes can therefore be defined as the set

Fi =

{
t

∣∣∣∣∣ Vi(t) = Vth(t− t̂i),
dVi(t)

dt
> 0

}
. (2.11)

While the leaky integrate-and-fire model is due to its simplicity more suitable for simulations

(in particular in the context of large networks), the spike response model has its advantages in

its level of biological realism. However, several characteristics of real neurons are not considered

in this model. As an example, the opening of many ion channels leads to a smaller membrane

resistance which results in smaller membrane time constants, see [18].

2.4 Models of Synaptic Plasticity

Synaptic plasticity, i.e., the synapse’s ability to change its strength, is a fundamental property

for learning and information processing. Many of today’s models of synaptic plasticity, which

describe how connections between neurons should be modified, are based on Donald O. Hebb’s

postulate [19]:

“When an axon of cell A is near enough to excite cell B or repeatedly or persistently

takes part in firing it, some growth process or metabolic change takes place in one

or both cells such that A’s efficiency, as one of the cells firing B, is increased.”

This theory is often summarized by the famous phrase: “Cells that fire together, wire together.”

[20]. Which is, however, quite loosely formulated since Hebb [19] emphasized that a cell needs

to—take part—in firing another cell. Which is, in terms of causality, not possible if they fire

at the exact same time. This temporal aspect was nicely shown by experiments of Bi and Poo

[21]. They found that the change in direction and in the absolute value of the synaptic strength

depends crucial (on a millisecond time-scale) on the relative timing of pre- and post-synaptic

spikes. The change in synaptic efficacy only takes place if the pre-synaptic spike at time t
(f)
j is

sufficiently close to the post-synaptic spike at time t
(f)
i . The synaptic connection is strengthened

if the pre-synaptic spike precedes the post-synaptic one, i.e., if t
(f)
i − t

(f)
j > 0. On the other

hand, if t
(f)
i − t

(f)
j < 0 the synaptic efficacy between pre- and post-synaptic neurons is weakened.
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2.4 Models of Synaptic Plasticity

Spike-Timing Dependent Plasticity

This spike-timing dependent plasticity (STDP) [22], which specifies the change W (∆t) of the

synaptic weight, is commonly modeled by a so-called learning window of the form

W (∆t) =





A+ exp
(
−∆t
τ+

)
if ∆t > 0,

−A− exp
(
−∆t
τ−

)
if ∆t < 0,

(2.12)

where the positive constants A+ and A− scale the strength of potentiation and depression,

respectively. The time constants τ+ and τ− define the width of the positive and negative part

of the learning window. The time difference between pre- and post-synaptic spike is given by

∆t = t
(f)
i − t

(f)
j . The resulting change in the synaptic weight wi,j between a pre-synaptic neuron

j and a post-synaptic neuron i for a certain pre-synaptic spike train Fj and post-synaptic spike

train Fi is usually modeled by the application of the learning window given in Eg. 2.12 to all

spike pairings, that is

[
d

dt
wi,j(t)

]

STDP

=

∫ ∞

0
W (τ)Sj(t)Si(t− τ) dτ +

∫ ∞

0
W (−τ)Sj(t− τ)Si(t) dτ, (2.13)

where Si(t) and Sj(t) are given by

Si(t) =
∑

t
(f)
i ∈Fi

δ
(
t− t(f)

i

)
and Sj(t) =

∑

t
(f)
j ∈Fj

δ
(
t− t(f)

j

)
, (2.14)

respectively [23].

Short-Term Plasticity

Changes in synaptic strengths induced by STDP are usually permanent. Another plasticity

mechanism which acts on the timescale of hundred milliseconds is known as short-term plasticity

(STP) [24], [25]. It is distinguished between short-term depression and short-term facilitation.

In the latter, the synaptic strength increases which each pre-synaptic spike and in the former it

decreases. In the absence of pre-synaptic activity the synaptic efficacy will quickly return to its

original value.

A simplified explanation of the underlying biological mechanism can be given as follows: Each

spike which has to be processed by the synapse leads to the release of neurotransmitters at the

axon terminal (as briefly described in Section 2.1). If the pre-synaptic neuron fires at a high

rate a depletion of these neurotransmitters can occur which weakens the synapse. On the other

hand, short-term facilitation is a result of calcium influx into the axon terminal after spike

generation, which increases the release probability of neurotransmitters [26]. Which can again
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lead to short-term depression.

Since the whole physiological process underlying STP is rather complex, some simplified

models have been created, e.g., see Markram, Wang, and Tsodyks [27], Abbott, Varela, Sen, et

al. [28], and Tsodyks, Pawelzik, and Markram [29].

The model described in Tsodyks, Pawelzik, and Markram [29] uses a normalized variable

0 ≤ R(t) ≤ 1 which denotes the fraction of remaining resources after neurotransmitter depletion.

This models the effect of short-term depression. The short-term facilitation effect is modeled

by a utilization parameter u(t) which represents the fraction of available resources ready for use

(release probability of the neurotransmitters). After each pre-synaptic spike at time t
(f)
j , u(t)

increases with f [1 − u(t)] due to the calcium influx into the axon terminal. A fraction of the

available resources is then consumed according to u(t)R(t) due to the pre-synaptic spike. In the

absence of spikes, u(t) follows an exponential decay to the baseline release probability U with

time constant F and R(t) recovers with a time constant D back to one. This process can be

modeled by the differential equations

dR(t)

dt
=

1−R(t)

D
− u(t−)R(t−)δ(t− t(f)

j ) (2.15)

and

du(t)

dt
=
U − u(t)

F
+ f [1− u(t−)]δ(t− t(f)

j ). (2.16)

The notation t− emphasize that these equations should be evaluated in the limit approaching

the spike time t
(f)
j from below.

One can obtain depressing synapse dynamics, facilitating synapse dynamics, or a combination

of both by varying the model parameters θ =
[
D F U f

]T
.

Stating Eq. 2.15 and Eq. 2.16 as recurrence relation gives the advantage of faster numerical

simulations. This can be done by integrating the above equations between spikes n and n + 1

which yields [30]:

Rn+1 = 1− [1−Rn(1− un)] exp

(
−∆tn

D

)
(2.17)

un+1 = U + [un + f(1− un)− U exp

(
−∆tn

F

)
, (2.18)

where ∆tn is the inter-spike interval.

As a conclusion on can say that STP can alter neural information transmission by modifying

the synaptic efficacy based on the history of pre-synaptic spikes. If the effect of short-term de-

pression is stronger in a certain synapse, then it favors somehow information which is transferred

at low firing rates. In contrary, if short-term facilitation is more pronounced, the synapse works
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2.4 Models of Synaptic Plasticity

best with information transferred at high rates.
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3
The Spikey Neuromorphic System

Spikey is a highly configurable neuromorphic hardware system developed within the FACETS

project by members of the Electronic Vision(s) group at the Kirchhoff Institute for Physics

in Heidelberg, Germany. The core of this system is a mixed-signal chip with analog imple-

mentations of neurons and synapses and digital transmission of action potentials. The analog

approach allows highly accelerated and, in terms of dissipated power, efficient emulations of

networks compared to simulations on conventional computers. Its configurability enables the

realization of almost arbitrary network topologies with a wide verity of neuron and synapse pa-

rameters. The associated software provides researchers and non-expert users with an easy-to-use

tool for building and emulating neuronal network models.

The following sections give an overview of the hardware system (Section 3.1) and present the

incorporated neuron model (Section 3.2) and synapse model (Section 3.3). Furthermore, details

on model parameters, their possible configurations, network topologies and their restrictions are

given in Section 3.4. Noise is inherently present in analog circuitry and since this can be a major

issue under certain circumstances, a closer look at its range and effects is taken in Section 3.5.

Finally, the neuronal modeling language and the low-level software interface is briefly described

in Section 3.6.

This chapter aims to summarize the most important properties of the Spikey system and does

not claim to be comprehensive nor does it contain all information. For further information on

the neuron and synapse model see Pfeil, Scherzer, Schemmel, et al. [31]. Detailed information

about the analog implementation of the neuron model, STP and STDP is given in Indiveri,

Linares-Barranco, Hamilton, et al. [32], Schemmel, Bruderle, Meier, et al. [33] and Schemmel,

Grubl, Meier, et al. [34], respectively. For the documentation of the digital part of the chip see

Grübl [35].

3.1 System Overview

The Spikey chip is fabricated in a CMOS3 VLSI4 manufacturing process. While neuron and

synapse circuitries are mostly implemented in analog technique, communication to the host

3 Complementary metal-oxide-semiconductor
4 Very-large-scale integration (VLSI) is the process of creating an integrated circuit by combining thousands of

transistors into a single chip.
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computer and the transmission of action potentials is established by digital circuits. Since the

time constants on the chip are approximately 104 times smaller than in biology, emulations of

networks on Spikey are accelerated.

The total number of neurons on the chip is 384 with a maximum number of 256 synapses

each. The neurons are distributed evenly over two neuron blocks. Each line of synapses in these

blocks, i.e., 192 synapses, is driven by one of the 256 so-called synapse drivers. The 192 synapses

in each line share, for technical reasons, the same configuration. As a consequence, all synapses

in one line can be either excitatory or inhibitory. Each synapse driver can be configured to

receive input from either external spike sources (e.g., generated on the host computer), from

on-chip neurons in the same block, or from on-chip neurons in the opposite block. A synaptic

weight with a 4 bit resolution can be individually assigned to each of the 256 · 192 = 49152

synapses in one block. The spike output of every neuron can be fed to either one specific

synapse driver in the same block, to the corresponding synapse driver in the adjacent block, to

a digital recording unit, or to every possible combination of those three targets. While spike

times can be recorded simultaneously from all neurons during network emulations, the recording

of membrane potentials is limited to a single but arbitrary neuron. For a schematic diagram of

the chip see Fig. 3.1.

The hardware implementations of neurons and synapses are inspired by the conductance-based

LIF neuron model using synapses with an alpha-shaped conductance course. A description of

the implemented neuron model is given in Section 3.2 and Section 3.3 provides some information

on the incorporated synapse model.
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Figure 3.1: Numbering of neurons (circles) and synapse drivers (squares). The total number of 384 neurons are
split into two blocks of 192 neurons with 256 synapses each (filled circles). Each line of synapses in these blocks,
i.e., 192 synapses, is driven by a synapse driver. The upper 64 synapse drivers are reserved for external inputs
only. All synapses in one line can be configured to be either excitatory or inhibitory. The synaptic weight can be
set individually for each of the 98304 synapses with a 4 bit resolution.

3.2 Neuron Model

The evolution of the membrane potential Vm,i(t) of a Spikey chip neuron i is given by the

differential equation

−Cm
dVm,i(t)

dt
= gL(Vm,i(t)−EL)+

∑

k

gexc
k (t) (Vm,i(t)− Eexc)+

∑

l

ginh
l (t) (Vm,i(t)− Einh) , (3.1)

where the indices k and l run over all excitatory and inhibitory synapses, respectively. When

Vm,i(t) reaches the threshold potential Vth a spike is generated and Vm,i(t) is held to the reset

potential Vreset for a refractory period of trefrac. The total current flow across the membrane is

determined by the membrane capacitance Cm, the leak reversal potential EL, excitatory Eexc

and inhibitory Einh reversal potentials, the leak conductance gL, excitatory gexc
k (t) and inhibitory

ginh
l (t) synaptic conductances. Post-synaptic conductances gk(t) and gl(t) are modified by the

occurrence of excitatory or inhibitory input events from one of the pre-synaptic neurons at time

t
(f)
j by

gexc|inh(t) = w̃i,j
∑

f

ε
(
t− t(f)

j

)
, (3.2)
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where t
(f)
j is the spike time of pre-synaptic neuron j and w̃i,j is the synaptic efficacy from neuron

j to a post-synaptic neuron i. The sum runs over all spike times t
(f)
j < t of neuron j. The ε-kernel

defines the shape of the post-synaptic conductance course and is described in Section 3.3.

If no spikes arrive Vm,i(t) will converge towards EL. The time constant of this exponential con-

vergence is determined by Cm and gL

(
τm = Cm

gL

)
. For information on the analog implementation

of this neuron model see Indiveri, Linares-Barranco, Hamilton, et al. [32].

3.3 Synapse Model

The Spikey chip implements conductance-based synapses. Due to their voltage-dependency they

offer a more realistic impact on their post-synaptic membrane potentials as e.g., purely current-

based approaches [36]. The synaptic conductance course implemented in the hardware is very

similar to a alpha-shaped function, i.e.,

ε(s) =
s

τexc|inh
exp

(
−s

τexc|inh

)
H(s), (3.3)

with s = t − t(f)
j where t

(f)
j is the spike time of the pre-synaptic neuron j. The synaptic time

constant is denoted by τexc|inh and H(·) indicates the Heaviside step function.

Besides the alpha-shaped synapse dynamics, a quantal increase followed by an exponential

decay is also supported by the hardware’s synapse drivers. This, however, requires a proper

configuration of the driver. For a detailed description regarding this topic see Brüderle [36].

3.3.1 Short-Term Plasticity (STP)

It has been shown that the synaptic efficiency changes with pre-synaptic activity on the timescale

of hundred milliseconds. This mechanism is known as short term depression and short term

facilitation. The hardware implementation of STP is described in Schemmel, Bruderle, Meier,

et al. [33] and follows the ideas developed in Tsodyks and Markram [37] and Markram, Wang,

and Tsodyks [27].

In the case of depressing STP the synaptic weight decreases with each pre-synaptic spike and

in the case of facilitating STP it increases. The weight is recovered in the absence of pre-synaptic

spikes within the recovery period trec. Each synapse driver of the Spikey chip supports both

modes of STP. However, they do not support both modes simultaneously as allowed by the

original model.
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3.3.2 Spike-Timing Dependent Plasticity (STDP)

The Spikey chip offers besides STP another synaptic plasticity mechanism, namely STDP. While

the change in synaptic strength induced by STP is not permanent (it recovers in the absence of

pre-synaptic spikes), STDP leads to a persistent change in synaptic efficiency. The implemented

STDP model is based on Song, Miller, and Abbott [22] and Bi and Poo [21] and is described in

Schemmel, Grubl, Meier, et al. [34].

In short, the STDP process adjusts the synaptic strength on the relative timing of a particular

neuron’s pre- and post-synaptic action potentials, i.e., spikes. Causal spike pairs (tpre < tpost)

strengthen the synapse and acausal spike pairs (tpre > tpost) weaken it. Pre- and post-synaptic

spike times are denoted by tpre and tpost, respectively. Since the Spikey chip only offers discrete

changes in synaptic strengths (i.e., weights) and since their resolution is relatively low, induced

weight changes of multiple causal and acausal spike pairs are accumulated until a certain thresh-

old is exceeded. For further information on how the weight updates are performed see Schemmel,

Grubl, Meier, et al. [34].

3.4 Configurability

One advantage of the Spikey chip is its high configurability. Most of the model parameters are

adjustable for each individual neuron or synapse. Due to a trade-off made in the size of the

current-voltage conversion circuitry, which was necessary in the design of the chip (see Pfeil,

Grübl, Jeltsch, et al. [38]), the leak reversal potential EL, the inhibitory reversal potential Einh,

the threshold voltage Vth, and the reset potential Vreset are shared between all even/odd-indexed

neurons in a neuron block. The capacity of the membrane is realized with a physical capacitor

and hence it it fixed an identical for all neurons. However, since the leak conductance gL can

be individually adjusted for each neuron and since the membrane time constant τm is given by

τm = Cm
gL

, it follows that τm is also individually adjustable. For a list of neuron and synapse

parameters, their default values, and their possible range of values see Table 3.1.

In addition to the possibility of controlling neuron and synapse parameters, the Spikey chip

offers an almost arbitrary configurability of the network topology. The maximum fan-in is 256

synapses per neuron, which can be composed of up to 192 synapses from on chip neurons and

up to 256 synapses from external spike sources. One has to consider that connections made

from external inputs reduce the number of possible connections from on chip neurons. Due

to the fact that the number of neurons exceeds the number of possible inputs per neuron, an

all-to-all connection is not possible. Furthermore, all synapses driven by the same synapse

driver are either excitatory or inhibitory. The synaptic weight of each synapse can be configured

individually with a 4 bit resolution.

Most of the restrictions on connectivity and synapse configurations are considered by the pro-

vided software interface in the process of mapping the neurons defined in the modeling language
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to hardware neurons (see Section 3.6). However, it is , for example, possible—without receiving

any error message—to make an excitatory and an inhibitory connection from one external spike

source to one or more arbitrary on chip neurons. This is, however, not supported by the chip

and results in the fact that both synaptic connections are tacitly made excitatory. Furthermore

it was found that results differ depending on how one deals with synaptic connections with a

weight of zero. The decision of setting these types of connections either as excitatory, inhibitory,

or not making a connection at all is left to the user and is not properly handled by the software.

Table 3.1: List of neuron and synapse parameters. Each with the corresponding model parameter names, their
default values, and their possible range of values. Parameters denoted with i are individually controllable for
each of the 384 neurons (subscript n), 256 synapse line drivers (subscript l), and 98305 synapses (subscript s).
Parameters denoted with s are shared between all even/odd neurons or synapse line drivers, respectively. The
capacitance of the neuron’s membrane is realized with a physical capacitor and is fixed and identical for all
neurons. Electronic parameters that have no direct translation to model parameters and parameters related to
STP and STDP are not stated. Adapted from Pfeil, Grübl, Jeltsch, et al. [38].

Scope Name Type Description Value

Default Range

Neurons

gL in Leak conductance 20 nS 6 nS to 64 nS

Cm gn Capacity of the membrane 0.2 nF n/a

trefrac in Duration of the refractory period 1 ms 1 ms to 10 ms

EL sn Leak reversal potential −75 mV −55 mV to −80 mV

Einh sn Inhibitory reversal potential −80 mV −55 mV to −80 mV

Eexc gn Excitatory reversal potential 0 mV n/a

Vth sn Firing threshold voltage −55 mV −55 mV to −80 mV

Vreset sn Reset potential of the membrane −80 mV −55 mV to −80 mV

Synapse
line drivers

τinh il Rise time of the inhibitory synaptic alpha function 5 ms n/a

τexc il Rise time of the excitatory synaptic alpha function 5 ms n/a

Synapses w̃ is
4 bit weight of each individual inhibitory synapse n/a 0 nS to 60 nS

4 bit weight of each individual excitatory synapse n/a 0 nS to 15 nS

3.5 Fixed-pattern and Temporal Noise

Emulations on hardware are, in contrast to software simulations, subject to noise. A significant

amount of the overall noise of these systems is introduced by imperfections in the production

process. The manufacturing process of CMOS VLSI devices does not allow the production of

perfect copies of electronic components (e.g., transistors, resistors, capacitors) and therefore in-

troduces unavoidable variations in the electrical characteristics of these components [39]. These

variations are expected to be Gaussian distributed and they stay unchanged once a device is pro-

duced. Noise introduced by imperfections in the production process is, due to its static nature,
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sometimes referred as fixed-pattern noise and it can be reduced by calibration. Furthermore,

other, not neglectable sources of noise are introduced by temporally changing electronic variables

due to temperature fluctuation and differences in chip utilization, and electronic noise. These

types of noise are hardly predictable and lead to different results in consecutive emulations of

the same network.

In the following two sections the effect of static noise on the efficiency of synapse drivers

and electronic noise which appears on the membrane potential of the neurons is analyzed and

explained in more detail. For a complete list of noise sources and their effects, including variation

on the resting potential, firing threshold, digital crosstalk, spontaneous ghost events, etc., see

Brüderle [36].

3.5.1 Variations of the Synapse Drivers’ Efficacies

The strengths of synapse drivers of the Spikey chip vary strongly from synapse driver to synapse

driver despite identical settings. This is caused by the variations of electronic components and

imperfections in the production process which result in different PSP amplitudes and synaptic

time constants [36]. This is to be expected and could, in principle, be compensated—at least

to a satisfying degree—by calibration routines. In addition to this, there is also an activity-

dependent effect which makes the efficiency of the synapse driver unpredictable. This only

influences excitatory drivers and is caused by voltage drops of the excitatory reversal potential

Eexc. The amount of voltage loss depends on the number of synapses connecting this potential

to leaky membranes. The time-dependence of the synapse drivers’ efficiency is analyzed and

explained in a more detailed manner in Brüderle [36].

An analysis of spatially-dependent variations of PSP amplitudes and time constants for various

synapse drivers in combination with different neurons is shown in the following. The analysis is

conducted by calculating the PSP-integral based on recordings of the membrane trace. This

analysis gives, however, no evidence on whether the variations are caused by varying PSP

amplitudes or variations of the time constants. But since the overall synaptic strengths, or

rather their variations, are of greater interest throughout this thesis, an analysis of their cause

was omitted. The analysis is performed as follows: All considered synapse drivers excite each

considered neuron with one PSP of the same weight (the weight is set to the hardware weight

factor of 15, i.e., conductances of the excitatory and inhibitory connections are set to 7 nS and

60 nS, respectively). In detail, all combinations of synapse drivers and neurons are simulated

and analyzed one by one in order to exclude the activity-dependent effects which were mentioned

above. The onset of the PSP is at 50 ms in each simulation with a total simulation time of 160 ms

(biological time). The first 480 samples of the recorded membrane trace, i.e., the samples of the

membrane potential at rest before the onset of the PSP, are used to estimate the leak reversal

potential EL individually for each neuron. The estimates of EL are then used to correct the

recordings of the membrane traces such that they have a mean of zero (when excluding the
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PSP). Based on the resulting data, the PSP-integrals are estimated by means of the trapezoidal

rule with a uniform step size of one sample, i.e., a step size of ≈ 0.1 ms. The PSP-integrals are

average over 10 independent hardware runs for all combinations of synapse drivers and neurons

in order to reduce the influence of statistical errors.

The absolute values of the PSP-integrals for 15 excitatory and 15 inhibitory drivers in com-

bination with 15 different hardware neurons are shown in Fig. 3.2A and Fig. 3.2B, respectively.

The overall mean of the PSP-integrals of excitatory connections is 142.17 mV ms with a stan-

dard deviation of 52.75 mV ms and 38.36 mV ms with a standard deviation of 28.95 mV ms of

inhibitory connections. The standard deviation of the integrals over the 10 hardware runs, which

gives an estimate for the trial-to-trial variability of the synapse drivers’ efficiency, is shown in

Fig. 3.2C and Fig. 3.2D. The mean standard deviation of excitatory drivers and inhibitory drivers

is 16.80 mV ms and 3.59 mV ms, respectively. While the trial-to-trial variability for both config-

urations of the synapse drivers, i.e., excitatory and inhibitory, is relatively low and similar, the

variations between different synapse drivers are in general higher and furthermore the variations

of synapse drivers in inhibitory configuration are higher than those of excitatory synapse drivers.

In addition to the PSP-integrals the absolute values of the PSP heights and their variations

across different drivers and neurons and across different hardware runs are analyzed. The overall

mean of the PSP heights of excitatory connections is 8.95 mV with a standard deviation of 3.9 mV

and 2.49 mV with a standard deviation of 1.63 mV of inhibitory connections. The mean standard

deviation of the PSP heights over the 10 hardware runs is 0.88 mV for excitatory drivers and

0.26 mV for drivers in inhibitory configuration.

Figures 3.3A and 3.3B show the membrane traces of one neuron receiving Poisson stimuli over

synapses driven by different synapse drivers. The neurons receive an excitatory Poisson stimulus

from 0.1 s to 0.9 s, an inhibitory Poisson stimulus from 1.1 s to 1.9 s, and from 2.1 s to 2.9 s they

receive simultaneously an excitatory and inhibitory Poisson stimulus. The mean firing rate of the

stimulus in each interval is 20 Hz. The synaptic conductances of the excitatory and inhibitory

connections are set to 7 nS and 60 nS, respectively. For comparison, a NEST simulation with the

same configuration is also shown. These figures nicely illustrate the effect of the variability of the

strengths of different synapse drivers. While both synapse drivers (excitatory and inhibitory)

utilized to generate the results shown in Fig. 3.3A are relatively weak, the results gathered

by the use of a different pair of synapse drivers do quite well match the results of the software

simulation (see Fig. 3.3B). However, there is still a noticeable discrepancy between the membrane

trace recorded from the hardware run to that of the software simulation. This is especially true

for synapse drivers which are configured to be inhibitory.
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Figure 3.2: Average PSP-integrals and their standard deviation for various driver-neuron combinations. Results
are shown for 961 combinations of line drivers and neurons with the neuron ID varying on the x-axis and the
driver ID on the y-axis. PSP-integrals are averaged over 10 independent hardware runs. A Integrals of exci-
tatory postsynaptic potentials. The mean of the average EPSP-integrals across all driver-neuron combinations
is 142.17 mV ms with a standard deviation of 52.75 mV ms. B Integrals of inhibitory postsynaptic potentials.
The mean of the average IPSP-integrals across all driver-neuron combinations is 38.36 mV ms with a standard
deviation of 28.95 mV ms. C Standard deviation of the EPSP-integrals over the 10 hardware runs. The mean
standard deviation is 16.80 mV ms. D Standard deviation of the IPSP-integrals over the 10 hardware runs. The
mean standard deviation is 3.59 mV ms.
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Figure 3.3: Comparison of the membrane potential Vm(t) of a Spikey chip neuron to the membrane potential of
a neuron simulated in NEST (gray line). The neurons receive an excitatory Poisson stimulus from 0.1 s to 0.9 s,
an inhibitory Poisson stimulus from 1.1 s to 1.9 s, and from 2.1 s to 2.9 s they receive simultaneously an excitatory
and inhibitory Poisson stimulus. The mean firing rate of the stimulus in each interval is 20 Hz. The synaptic
conductances of the excitatory and inhibitory connections are set to 7 nS and 60 nS, respectively. Note that a
value of 60 nS corresponds to the maximum possible value for synaptic conductances of inhibitory connections on
the Spikey chip. An offset value is added to the recorded membrane trace such that the resting potential is equal
to that of the NEST simulation. A Recorded membrane trace of the hardware neuron with ID 1. B Recorded
membrane trace of the same neuron but the connecting synapses are driven by different line drivers.
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3.5 Fixed-pattern and Temporal Noise

3.5.2 Noise on the Membrane Potential

The neuron’s membrane potential on the Spikey chip is superimposed with some temporal noise

ν(t). This electronic noise is caused by a mixture of physical effects [39]. The most important

types of noise are Johnson–Nyquist noise, 1/f -noise, shot noise, and noise caused by the activity

of neighboring circuit elements.

In the following the frequency content of ν(t) is analyzed and an estimate of its power is given.

This is done by calculating the sample power spectral density (PSD) Ŝν,N (f) of ν(t) utilizing

Welch’s method with a Hann window with 50 % overlap. The segment length M is chosen to be

1024 samples. The PSD is estimated with N = 105 samples (sampled at a rate of fs1 = 9.6 kHz)

of Vm(t) at rest. The DC average of Vm(t), i.e., the leak reversal potential EL, and a possible

trend is removed by subtracting the result of a linear least-squares fit of each segment. The noise

power P̂ν is obtained by averaging the spectral density over the signal bandwidth. In addition

to that, the root mean square (RMS) voltage V̂ν,RMS of the noise, which is equal to one standard

deviation of ν(t), is computed.
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Figure 3.4: Sample PSD of the noise ν(t) on the membrane potential Vm(t) of the Spikey chip neurons and
the sample PSD of its approximation ν̂(t) which is used in the NEST simulations. The PSD are estimated with
N = 105 samples by using Welch’s method with a Hann window with 50 % overlap. The DC average of Vm(t), i.e.,
the leak reversal potential EL, and a possible trend is removed by subtracting the result of a linear least-squares
fit of each segment with length M = 1024. A Average PSD over 10 neurons of the Spikey chip (black line). The
two gray lines show the PSD of ν(t) for the two neurons with the lowest and highest power in the shown frequency
range. Note that the frequencies are stated in the biological time domain. B PSD of ν̂(t) for one neuron simulated
in NEST.

The average PSD over 10 neurons of the Spikey chip is shown in Fig. 3.4A. One can see that

ν(t) consists of sinusoidal components at different frequencies and white noise. The estimate of

the mean noise power of ν(t) is ≈ 2.2 µV2 Hz−1 with a standard deviation of ≈ 0.29 µV2 Hz−1.

The mean RMS voltage of ν(t) is ≈ 0.11 mV with a standard deviation of ≈ 7.6 µV. Two things

need to be considered in this analysis: firstly, the PSD is calculated based on the measured data

obtained from the readout circuit and therefore, it is not clear if the noise is already present at

the neuron or if it is imposed by the subsequent measurement circuit, i.e., the connecting wire,

analog-to-digital converter (ADC), etc. However, since the RMS voltage is only approximately

0.11 mV, and since there are imprecisions on much larger scales (see Section 3.5.1), the noise
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on the membrane voltage is of minor importance. Secondly, the stated frequencies are given

in the biological time domain. As a consequence, one can say that the peaks in the spectrum

are imposed by noise sources which operate on frequencies 104 times larger than the frequencies

shown in the PSD.

In NEST, the noise ν(t) is approximated by injecting a pseudo random white Gaussian noise

current µ̂(t) and sinusoidal currents with different frequencies and amplitudes into the neurons.

Therefore, one can write the total induced current iν̂(t) as a sum of the individual current

sources, that is,

iν̂(t) = µ̂(t) +
∑

i

Ai sin(2πfit). (3.4)

Due to the low-pass character of the neuron’s membrane, the noise voltage ν̂(t) on the membrane

potential Vm(t) can be written as

ν̂(t) = h(t) ∗ iν̂(t), (3.5)

where h(t) indicates the impulse response of the neurons membrane.

For simplicity, only sinusoidal components with Ŝν,N (f) > 5.0 µV2 Hz−1 (where Ŝν,N (f) is the

mean noise power over the 10 considered Spikey neurons) are considered in the approximation

of the noise ν(t). Hence, the index i in Eq. 3.4 runs over all

(A, f)i ∈ {(44 pA, 420 Hz), (39 pA, 830 Hz), (126 pA, 4375 Hz), (90 pA, 4800 Hz)}.

The noise current µ̂(t) is independently drawn for each neuron from a Gaussian distribution

with zero mean and a standard deviation of 33 pA. The resulting sample PSD Ŝν̂,N (f) of ν̂ is

estimated with N = 105 samples (sampled at a rate of fs2 = 10 kHz) from the resting membrane

potential of one neuron simulated in NEST and is shown in Fig. 3.4B. Due to the inherent low-

pass filtering the spectral distribution of the power is different than that of ν(t). However, the

amplitudes of the noise currents µ̂(t) and Ai are chosen such that P̂ν̂ = P̂ν and V̂ν̂,RMS = V̂ν,RMS.

3.6 Software Interface

The model parameters mentioned in Section 3.4 are almost all represented by voltages and cur-

rents on the hardware. In order to emulate neural networks on the Spikey chip, an abstractly

described neural network must be mapped to the appropriate hardware resources while consider-

ing the hardware specific constraints, and all biological model parameters have to be translated

to the corresponding analog voltage and current parameters. Moreover, hardware parameters

which have no translation to model parameters and parts of the chip circuitry which do not

belong to the actual network, e.g., measurement circuits for the membrane potential, need to
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3.6 Software Interface

be set, configured, and operated.

In order to hide these technical details from the user, a software package in multi-layer archi-

tecture was developed by the Electronic Vision(s) group. The software operating the hardware

can be divided into the Python package PyNN5, the hardware abstraction layer (HAL), and the

low-level code [40]. In the following a short summary of this topic based on Bill [40] is given.

For a more detailed explanation see the aforementioned source or Müller [41].

3.6.1 PyNN

The PyNN-project (Davison, Brüderle, Kremkow, et al. [42]) aims for the development of a

simulator-independent language for building neuronal network models. PyNN is developed

within the FACETS project and currently supports NEST (Gewaltig and Diesmann [43]), PC-

SIM (Pecevski, Natschläger, and Schuch [44]), NEURON (Hines and Carnevale [45]), Brian

(Goodman and Brette [46]), and the Spikey6 hardware.

The PyNN application programming interface (API) includes functions for creating neurons

and making connections between them (e.g., create() and connect()), classes for generating stim-

uli (e.g., SpikeSourceArray), and functions to acquire simulation results (e.g., record()). Beside

this procedural API, which gives a view of a model that is centered more on individual neurons

and connections, the PyNN high-level API implements classes for the management of popula-

tions of neurons and projections between them (e.g., Population and Projection).

The functions of the pyNN.hardware.spikey module communicate with the lower software layer,

i.e., the hardware abstraction layer.

3.6.2 Hardware Abstraction Layer

The hardware abstraction layer PyHAL (Brüderle, Grübl, Meier, et al. [47]) is implemented

in the Python programming language and is used to store and organize the commands and

network configurations received from the PyNN-layer. This layer’s functionality is organized in

two submodules, namely config and buildingblocks. The buildingblocks module contains classes

for managing neurons, networks and their topology. The assignment of abstract neurons to

hardware neurons, the translation of biological parameters to hardware parameters, and the

communication to the low-level software is done by the config module.

3.6.3 Low-Level Code

The low-level, hardware specific code of the Spikey software package is implemented in C++. It

communicates directly with the hardware and it provides functions to configure the hardware,

5 PyNN (pronounced “pine”) is a simulator-independent language for building neuronal network models, see
http://neuralensemble.org/PyNN/

6 The Spikey module is not included in the release of the PyNN package, since it cannot be used without the
hardware.
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3 The Spikey Neuromorphic System

to send external input spike trains to the chip, and to read back the spike events from on chip

neurons.
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In-the-loop Training of Neuromorphic Hardware

In this chapter a method for training a feed-forward spiking neural network which is emulated on

the Spikey neuromorphic hardware is presented. The utilized algorithm, i.e., backpropagation,

can be roughly divided into a two phase cycle, propagation and weight update. The input data

is converted into discrete events, i.e., spikes, and is then presented to the network where it

propagates through the subsequent layers until it reaches the output layer. The spike events of

all neurons during this forward propagation are recorded and interpreted as output values of

corresponding artificial neurons which use a binary activation function. An error value which

represents the discrepancy between the desired network output and the actual network output

is computed—using a loss function—for each artificial output neuron and is then propagated

backwards, starting from the output layer, until each artificial neuron has an associated error

value which represents its contribution to the overall error. The gradient of the loss function

with respect to the weights in the network is then computed by using the obtained error values.

Finally, an optimization algorithm aims to minimize the loss function by calculating an update

value for each weight which is proportional to the obtained gradient. Note that only the forward

propagation is carried out by the spiking neural network while the computation of the error, the

backward propagation of errors, and the calculation of the new weights is done in an abstract

model of the network, which comprises the artificial neurons, implemented in TensorFlow [48].

A detailed description of the learning algorithm and the utilized network model is given in

Section 4.1.

In order to test the capability of the algorithm to train a spiking neural network—it is beyond

question that it works for ordinary artificial neural networks—it is applied on two classification

problems. A binary classification problem defined by the XOR logical function is presented

in Section 4.2. In this task it is evaluated whether a spiking neural network trained by the

presented algorithm is able to successfully perform the classification of non-linearly separable

data. In Section 4.3 a network is trained to classify a subset of the MNIST hand written digit

data set. Both tasks are carried out by a feed-forward spiking neural network emulated on

Spikey and, for comparison, on a software model of the network simulated in NEST.
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4 In-the-loop Training of Neuromorphic Hardware

4.1 The Learning Algorithm

This section gives a detailed description of the training steps. It includes the initialization of

weight and bias values, their quantization, and their mapping to synaptic conductances, the

forward propagation step which is carried out by the spiking neural network, the backward

propagation step including an explanation of the abstract software model including the artificial

neuron’s activation function and its approximate derivative, and finally the weight update step.

An illustration of the training procedure is shown in Fig. 4.1.
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Figure 4.1: Schemata of the spiking network (left) and the TensorFlow model (right). The input layer, hidden
layer, and the output layer are labeled with x(0), y(1), and y(2), respectively. The input spikes are presented to
the spiking network which implements the forward pass. The spike events of the hidden neurons and the spike
events of the output neurons are then extracted and interpreted as output of the corresponding artificial neuron
in the TensorFlow model. The backpropagation step is then performed in the TensorFlow model based on the
imposed hidden and output layers outputs. Finally, ∆w is used to update the weights in both networks.

Weight Initialization and Quantization

In each run a different set of initial weigh values wi,j are used. The weights are independently

drawn from a Gaussian distribution N (µ, σ) with a certain mean µ and standard deviation σ

where values whose magnitude is more than two standard deviations from the mean are dropped

and re-picked. The values µ and σ are chosen according to the task in question (see Section 4.2

and Section 4.3). Bias values bj are all initialized to the same value.

The weight and bias values are then quantized at n = 4 bit according to a uniform mid-tread

quantizer with a step size of ∆ = 1/(2n−1) according to the quantization function Q(wi,j), that

is

Q(wi,j) = ∆

⌊
wi,j
∆

+
1

2

⌋
, (4.1)

where b·c is the floor function. The corresponding staircase transfer function is shown in

Fig. 4.2A. The quantized values are then mapped to synaptic conductances w̃i,j according to
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4.1 The Learning Algorithm

w̃i,j =





gmin
inh

1
∆Q(−wi,j) if wi,j < 0,

gmin
exc

1
∆Q(wi,j) if wi,j ≥ 0,

(4.2)

where gmin
exc = 1 nS and gmin

inh = 4 nS are the minimum excitatory and inhibitory conductances, re-

spectively. The mapping of the quantized weight values to synaptic conductances w̃i,j is depicted

in Fig. 4.2A. Note that in the NEST simulations, conductances {w̃i,j | Q(wi,j) ∈ [−15∆, 0)} are

multiplied with −1 to meet the requirement of negative synaptic strengths of inhibitory con-

nections in NEST. This is in contrast to the Spikey chip where these values have to be greater

or equal to zero. The obtained synaptic conductances are then used as initial values for the

strength of synaptic connections in the spiking neural network.
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Figure 4.2: Weight quantization and the mapping of quantized weights to synaptic conductances. A Quanti-
zation function Q(w) according to Eq. 4.1. The high precision values w ∈ [−1, 1], which are obtained from the
TensorFlow model after each weight update (or from the weight initialization step), are quantized to 31 distinct
values. B Mapping of the quantized weights to synaptic conductances w̃ according to Eq. 4.2. Note that in the
NEST simulations, conductances {w̃ | Q(w) ∈ [−15∆, 0)} are multiplied with −1 to meet the requirement of
negative synaptic strengths of inhibitory connections in NEST.

Forward Propagation

A detailed scheme of the spiking neural network which carries out the forward propagation is

shown exemplary in Fig. 4.3. Since neurons of the Spikey chip can only make outgoing con-

nections which are either all excitatory or inhibitory, it is necessary to use two populations of

neurons, i.e., one excitatory and one inhibitory population, in the input layer and in each hid-

den layer. A pair of an excitatory neuron and the corresponding inhibitory neuron is hereafter

referred to as a “unit”. This network topology gives rise to two problems: one the one hand, it

makes learning more complex since twice as much weights in the input layer and in the hidden

layers have to be learned, on the other hand, it makes the network more prone to variations in
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4 In-the-loop Training of Neuromorphic Hardware

the strength of the synapse drivers and in neuron parameters (see Section 3.5 for more details

on these variations). The latter could in principle be compensated by the learning algorithm,

provided that the weight resolution is small enough. The constraint on neurons of the Spikey

w̃
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Figure 4.3: Detailed scheme of the used network topology on Spikey demonstrated with a network with two
input units, two hidden units, and two output neurons. Each unit of the input and the hidden layer consists of an
excitatory neuron (large circles) and an inhibitory neuron (large shaded circles). The bias in the hidden layer(s)
and the output layer is realized with one excitatory neuron (small circles) and one inhibitory neuron (small shaded
circles) per layer. The weights are learned separately for each connection.

chip that outgoing connections have to be of the same type does not apply to neurons simulated

in NEST. For simplicity, the networks simulated in NEST are therefore comprised of only one

neuron per unit.

The input vector x ∈ {0, 1}n×1 is converted into spike events of the input neurons. The

excitatory neuron y
(0)
i and the inhibitory neuron y

(0)
i+1 of the input layer emit one spike at time

t
(f)
0 if xdi+1

2 e = 1 where i ∈ {2k + 1 | k ∈ N0, k < n}. Note that excitatory neurons are odd-

indexed and inhibitory neurons are even-indexed. Setting the spike times of the bias neurons of

the output layer is not straightforward since the exact spike times of the neurons in the hidden

layer depend on the synaptic weight. For simplicity, it was chosen that the bias neurons in the

output layer spike at t
(f)
0 + d, where the delay d is empirically determined.

These spike events are transmitted via synaptic connections to a post-synaptic neuron of the

subsequent layer l ∈ {1, 2, . . . , L} where they modify excitatory gexc(t) and inhibitory ginh(t)

synaptic conductances of this neuron. The time course of this conductance change is given by

gexc(t) = gmin
exc

1

∆
Q

(
w

(l)

di+1
2 e,j

)∑

f

ε
(
t− t(f)

i

)
if w

(l)

di+1
2 e,j

> 0 (4.3)

and

ginh(t) = gmin
inh

1

∆
Q

(
−w(l)

di+1
2 e,j

)∑

f

ε
(
t− t(f)

i

)
if w

(l)

di+1
2 e,j

< 0, (4.4)

respectively. The sum runs over all spike times of excitatory y
(l−1)
i and inhibitory y

(l−1)
i+1 pre-
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synaptic neurons and w
(l)

di+1
2 e,j

is the synaptic efficiency from a pre-synaptic neuron to a post-

synaptic neuron y
(l)
j in the subsequent layer. The sum can be omitted if the pre-synaptic neuron

is an input neuron, i.e., y
(0)
i and y

(0)
i+1, since each input neuron emits at most one spike for each

input vector. The ε-kernel defines the shape of this post-synaptic conductance course which is

described in Section 3.3.

Note that the indices of the pre-synaptic neurons are restricted to i ∈ {2k+1 | k ∈ N0, k <
m
2 }

where m is the number of neurons (including excitatory and inhibitory neurons) in that layer.

This is necessary since either excitatory or inhibitory connections are made between two nodes.

The membrane potential Vm,j(t) of a post-synaptic neuron y
(l)
j depends on gexc(t) and ginh(t).

Its evolution is is given by the differential equation

−Cm
dVm,j(t)

dt
= gL(Vm,j(t)−EL)+

∑

s∈Sexc

gexc
s (t) (Vm,j(t)− Eexc)+

∑

s∈Sinh

ginh
s (t) (Vm,j(t)− Einh) ,

(4.5)

where the sum runs over all excitatory Sexc and inhibitory Sinh synapses, respectively. For a

detailed description of this neuron model see Section 3.2.

If Vm,j(t) reaches the threshold potential Vth a spike is generated and Vm,j(t) is held to the

reset potential Vreset for a refractory period of trefrac. After trefrac the neuron might emit one or

more further spikes depending on the amplitude and time course of its synaptic conductance. If

neuron y
(l)
j is in the output layer the forward propagation step is completed.

Backward Propagation

The backward propagation step is performed in an abstract software model of the spiking neural

network. The output o
(l)
j of an abstract neuron j of a unit in layer l is the weighted sum of

outputs o
(l−1)
i of neuron i in the previous layer l − 1.

o
(l)
j = ϕ

(
n∑

i=1

w
(l)
i,jo

(l−1)
i

)
, (4.6)

If neuron j is in the first layer after the input layer, then o
(l−1)
i is simply xi. Note that w

(l)
i,j are

the high precision weight value between neuron i and neuron j. The artificial neurons use the

nonlinear activation function

ϕ(x) = H(x− θ), (4.7)
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where H(x− θ) is the shifted unit step function, i.e.,

H(x− θ) =





0 if x < θ,

1 else.

(4.8)

The threshold θ is set to 8∆ where ∆ is the quantization step size (see Eq. 4.1). This corresponds

to a synaptic conductance w̃ of 8 nS. The threshold potential Vth of the Spikey chip neurons is

set such that the neuron spikes if it receives a pre-synaptic spike with synaptic efficacy of 8 nS.

Since the derivative of H(x− θ) is given by

d

dx
H(x− θ) = δ(x− θ), (4.9)

where δ(·) is is the Dirac delta, which is not suitable for backpropagation, the derivative of the

activation function ϕ(x) is instead defined as

d

dx
ϕ(x) := max(0, 1− |x− θ|). (4.10)

The activation function ϕ(x) and its derivative is shown in Fig. 4.4A and Fig. 4.4B, respectively.
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dϕ(x)
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θ + 1θ − 1

Figure 4.4: Activation function ϕ(x) of the artificial neurons used in the TensorFlow model. Since the derivative

of ϕ(x) is not suitable for backpropagation, its derivative is instead defined as dϕ(x)
dx

:= max(0, 1 − |x − θ|). A
threshold value θ > 0 is necessary in order to prevent, under consideration of an appropriate mapping between θ
and the threshold potential Vth, the neurons in the spiking network to emit spikes in the absence of an activation,
i.e., when their membrane potential Vm(t) is at the resting potential. A Activation function ϕ(x) according to
Eq. 4.7. B Approximation of the derivative of ϕ(x) as defined in Eq. 4.10.

For each output neuron the error is defined as the squared error function, that is

E =
1

2

(
ti − ô(L)

i

)2
, (4.11)

where E is the squared error, t is the target output, and ô
(L)
i is assumed to be the output of an
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artificial neuron of the output layer and is set to one if the corresponding neuron in the spiking

neural network emitted at least one spike during the forward propagation. Otherwise it is set

to zero. The gradient of the error with respect to a weight w
(l)
i,j is

∂E

∂w
(l)
i,j

=
∂E

∂ô
(l)
j

∂ô
(l)
j

∂
∑

iw
(l)
i,j ô

(l−1)
i

∂
∑

iw
(l)
i,j ô

(l−1)
i

∂w
(l)
i,j

, (4.12)

where

∂
∑

iw
(l−1)
i,j ô

(l−1)
i

∂w
(l)
i,j

= ô
(l−1)
i . (4.13)

If the neuron is in the first layer after the input layer, i.e., if l = 1, then ô
(l−1)
i is just xi. The

derivative of the output ô
(l)
j of neuron j with respect to its activation is per definition

∂ô
(l)
j

∂
∑

iw
(l)
i,j ô

(l−1)
i

= max
(

0, 1−
∣∣∣
∑

i

w
(l)
i,j ô

(l−1)
i − θ

∣∣∣
)
. (4.14)

The partial derivative of the error with respect to the output of neuron j is

∂E

∂ô
(l)
j

=
∂E

ô
(L)
i

= ô
(L)
i − ti, (4.15)

if neuron j is in the output layer. If neuron j is in an inner layer one has

∂E

∂ô
(l)
j

=
∑

k


 ∂E

∂ô
(l+1)
k

∂ô
(l+1)
k

∂
∑

j w
(l)
j,kô

(l+1)
k

w
(l)
j,k


 , (4.16)

where the sum runs over all neurons k which receive input from neuron j. Hence, the derivative

with respect to ô
(l)
j can be calculated if all derivatives with respect to the outputs ô

(l+1)
k of the

next layer, i.e., the one closer to the output, are known.

Finally, the gradient of the error E with respect to the weights is

∂E

∂w
(l)
i,j

= δ
(l)
j ô

(l−1)
i , (4.17)

with

δ
(l)
j =





(ô
(L)
i − ti) max

(
0, 1−

∣∣∣
∑

iw
(l)
i,j ô

(l−1)
i − θ

∣∣∣
)

if j is an output neuron,

(∑
k δ

(l+1)
k w

(l)
j,k

)
max

(
0, 1−

∣∣∣
∑

iw
(l)
i,j ô

(l−1)
i − θ

∣∣∣
)

if j is an inner neuron.

(4.18)
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The change in weight is then computed according to the Adam optimizer [49], i.e.,

∆w
(l)
i,j = −λn

mn√
vn + ε

, (4.19)

where λ is the learning rate, m is the 1st moment estimate, v is the 2nd moment estimate, and

ε = 1× 10−8. In each time step n, λ, m, and v are updated according to

λn = λ

√
1− βn2

1− βn1
(4.20)

mn = β1mn−1 + (1− β1)
∂E

∂w
(l)
i,j

(4.21)

vn = β2vn−1 + (1− β2)

(
∂E

∂w
(l)
i,j

)2

(4.22)

with initial values m0 = 0, v0 = 0. The exponential decay rate for the 1st moment estimate

is β1 = 0.9, and the exponential decay rate for the 2nd moment estimate is β1 = 0.999. The

learning rate λ is chosen according to the task in question. The new weights are then clipped

to the interval [−1, 1] and quantized according to Eq.4.1. The propagation and weight update

cycle is repeated until the error is sufficiently small.

4.2 XOR Classification Task

The XOR function is a typical example of a not linearly separable Boolean function. The

function is of the form f : B2 → B, where B = {0, 1} is the Boolean domain consisting of

exactly two elements whose interpretations include false and true. The truth table of the XOR

function is shown in Table 4.1. The function computes the logical exclusive or, which yields true

if and only if the two inputs have different truth values. One can also define the XOR function

Table 4.1: Truth table of the XOR function. The value of the output variable y is only true when the inputs x1
and x2 differ, i.e., if one is true and the other is false.

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0
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in the form f : B2 → B2. In this case, the two output variables y1 and y2 encode the logical

operation of its inputs in a one-hot manner. Consequently, the output is considered as false if

y1 is true and y2 is false and is considered true if y1 is false and y2 is true (see the truth table

in Table 4.2).

Table 4.2: Truth table of the XOR function with one-hot encoding of the output. The logical operation outputs
true only when the inputs x1 and x2 differ, i.e., if one is true and the other is false.

x1 x2 y1 y2

0 0 1 0
0 1 0 1
1 0 0 1
1 1 1 0

The neural networks utilized to produce the truth tables shown in Table 4.1 and Table 4.2 are

illustrated in Fig.4.5A and Fig.4.5B, respectively. The network shown in Fig.4.5A consists of

two input units, two hidden units, one bias unit associated to the hidden and the output layer,

and one output neuron. The network depicted in Fig.4.5A has a similar topology but the output

layer consists of two neurons in order to represent the two output variables shown in Table 4.2.

In each training step of the network the full batch is used for training, i.e., the input data set

is

x =

[
0 0 1 1

0 1 0 1

]T

(4.23)

and the targets are t =
[
0 1 1 0

]T
and t =

[
1 0 0 1

0 1 1 0

]T

, respectively.

– 41 –



4 In-the-loop Training of Neuromorphic Hardware
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Figure 4.5: Topologies of the feed-forward neural networks which are used in the XOR classification task. The
networks consist of one input layer, one hidden layer, and one output layer. A bias unit (small circles) is associated
to the hidden and output layer. A Minimal network which is required to model the XOR problem. The network
consists of two input units, two hidden units, and one output neuron. B Similar network as in A but the label
layer consists of two neurons. This enables one-hot coding of the target output.

4.2.1 Results of the XOR Classification Task—NEST

In the following, the NEST simulation results of the XOR task are shown. Training is performed

for 400 epochs with a learning rate λ of 0.01. The individual training examples are presented

to the network every 100 ms starting at t = 50 ms. The required simulation time for one epoch

is therefore 400 ms. The initial weights are drawn from a Gaussian distribution with a mean of

0.3 and a standard deviation of 0.1. The bias values are uniformly initialized to 0.1.

The average evolution of the training error for both of the considered network topologies

over 20 independent runs in which the network output agrees with the target output within

400 epochs of training (each with a different initial set of weight and bias values) is shown in

Fig. 4.6A and Fig. 4.6B, respectively. On average, the network with one neuron in the output

layer correctly computes the XOR function after about 200 epochs of training while the network

with two neurons in the output layer, i.e., the network which encodes the class labels in a one-hot

fashion, needs for the same task about 300 epochs. Based on these results, it was chosen that

the output layer of the networks which are emulated on Spikey and trained to classify the XOR

function include only one neuron.
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Figure 4.6: Evolution of the error during the training epochs. In each training step the full batch is used for
training and the error is defined as the fractions of examples (in one batch) for which the output of the network
does not agree with the target classification. A Classification error as a function of the training epoch. Shown is
the mean error (black line) ±1 standard deviation (shaded area) over 20 independent runs in which the network
output agrees with the target output within 400 epochs of training. B Same as in A but the output layer of the
network consists of two neurons, i.e., the target output is encoded in one-hot manner.

XOR Task with Binary Encoding of the Class Labels

Figure 4.7 shows the evolution of the weight and bias values during training in a specific run.

Shown are the quantized values. Weight and bias values of the hidden layer are shown in

Fig. 4.7A and Fig. 4.7B shows the weight and bias values of the output layer. In this run, a

training accuracy of 100% was reached after about 120 epochs. This can also be seen in the

convergence of the weights.

Figure 4.8 shows the spike events of the input layer’s neurons y
(0)
i , the hidden layer’s neurons

y
(1)
j , and the output neuron y

(2)
1 in the same run during training. In the left panel the first five

epochs of training is shown and the right panel shown the last five epochs of training.

The time course of the membrane potential of the first hidden neuron, the second hidden

neuron, and the output neuron in the test run is shown in Fig. 4.9, Fig. 4.10, and Fig. 4.11,

respectively. In addition, the excitatory and inhibitory synaptic conductance course is shown in

the bottom panel of these figures. Figure 4.11 nicely shows the effect of temporal summation of

post-synaptic conductances due to the two pre-synaptic spikes of neuron y
(1)
1 between t = 150 ms

and t = 200 ms (see Fig. 4.9). This, however, could be a problem during training since it is not

considered by the artificial model.
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Figure 4.7: Evolution of the weight and bias values as a function of the training epoch for one specific run. A
Quantized weight (top panel) and bias values (bottom panel) of the hidden layer. B Quantized weight (top panel)
and bias values (top panel) of the output layer.
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Figure 4.8: Spike raster plot of the neural activity of the input layer’s neurons x
(0)
i , the hidden layer’s neurons

y
(1)
j , and the output neuron y

(2)
1 during training. The left panels show the neural activity in the first 5 training

epochs and the right panels show the neural activity in the last 5 training epochs. One epoch corresponds to a
NEST simulation time of 400 ms.
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Figure 4.9: Membrane potential Vm(t) (top panel) and synaptic conductance course gexc|inh(t) (bottom panel) of

neuron y
(1)
1 of the hidden layer during the test run.
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Figure 4.10: Membrane potential Vm(t) (top panel) and synaptic conductance course gexc|inh(t) (bottom panel)

of neuron y
(1)
2 of the hidden layer during the test run.
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Figure 4.11: Membrane potential Vm(t) (top panel) and synaptic conductance course gexc|inh(t) (bottom panel)

of neuron y
(2)
1 of the output layer during the test run.

XOR Task with One-Hot Encoding of the Class Labels

Figure 4.12 shows the evolution of the weight and bias values during training in a specific run.

Shown are the quantized values. Weight and bias values of the hidden layer are shown in

Fig. 4.12A and Fig. 4.12B shows the weight and bias values of the output layer. In this run, a

training accuracy of 100% was reached after about 300 epochs. This can also be seen in the

convergence of the weights.

Figure 4.13 shows the spike events of the input layer’s neurons y
(0)
i , the hidden layer’s neurons

y
(1)
j , and the output neurons y

(2)
1 and y

(2)
2 in the same run during training. In the left panel the

first five epochs of training is shown and the right panel shown the last five epochs of training.

The time course of the membrane potential of the first hidden neuron, the second hidden

neuron, and the output neurons in the test run is shown in Fig. 4.14, Fig. 4.15, Fig. 4.16, and

Fig. 4.17, respectively. In addition, the excitatory and inhibitory synaptic conductance course

is shown in the bottom panel of these figures.
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Figure 4.12: Evolution of the weight and bias values as a function of the training epoch for one specific run. A
Quantized weight (top panel) and bias values (bottom panel) of the hidden layer. B Quantized weight (top panel)
and bias values (top panel) of the output layer.
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Figure 4.13: Spike raster plot of the neural activity of the input layer’s neurons x
(0)
i , the hidden layer’s neurons

y
(1)
j , and the output neurons y

(2)
1 and y

(2)
2 during training. The left panels show the neural activity in the first 5

training epochs and the right panels show the neural activity in the last 5 training epochs. One epoch corresponds
to a NEST simulation time of 400 ms.
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Figure 4.14: Membrane potential Vm(t) (top panel) and synaptic conductance course gexc|inh(t) (bottom panel)

of neuron y
(1)
1 of the hidden layer during the test run.
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Figure 4.15: Membrane potential Vm(t) (top panel) and synaptic conductance course gexc|inh(t) (bottom panel)

of neuron y
(1)
2 of the hidden layer during the test run.
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Figure 4.16: Membrane potential Vm(t) (top panel) and synaptic conductance course gexc|inh(t) (bottom panel)

of neuron y
(2)
1 of the output layer during the test run.
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Figure 4.17: Membrane potential Vm(t) (top panel) and synaptic conductance course gexc|inh(t) (bottom panel)

of neuron y
(2)
2 of the output layer during the test run.
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4.2.2 Results of the XOR Classification Task—Spikey

In the following, the Spikey emulation results of the XOR task are shown. Training is performed

for 800 epochs with a learning rate λ of 0.01. The individual training examples are presented to

the network every 100 ms starting at t = 50 ms. The required simulation time for one epoch is

therefore 400 ms (biological time). The initial weights are drawn from a Gaussian distribution

with a mean of 0.3 and a standard deviation of 0.1. The bias values are uniformly initialized to

0.1.

The average evolution of the training error over 20 independent hardware runs in which the

network output agrees with the target output within 800 epochs of training (each with a different

initial set of weight and bias values) is shown in Fig. 4.18. In each of the test runs, the network

was able to correctly classify the XOR function (which was most likely just luck). However, no

stable solution could be found as can be seen in Fig. 4.18. Even if training is performed for 1600

epochs, the classification error never stayed at zero. The cause for this fluctuation in the error

lies probably in the trial-to-trial variability (see Section 3.5) which the training algorithm (in

combination with the limited resolution of the synaptic weights) could not compensate.

Figure 4.19 shows the evolution of the weight and bias values during training in a specific run.

Shown are the quantized values. Weight and bias values of connections from input neurons to

excitatory neurons in the hidden layer are shown in Fig. 4.19A and Fig. 4.19B shows the weight

and bias values of connections from input neurons to inhibitory neurons in the hidden layer.

Fig. 4.20 shows the evolution of the weight and bias values over training.

Figure 4.21 shows the spike events of the excitatory input layer’s neurons y
(0)
i , the excitatory

hidden layer’s neurons y
(1)
j , and the output neuron y

(2)
1 in the test run.

The time course of the membrane potential of the output neuron in the test run is shown in

Fig. 4.22.
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Figure 4.18: Evolution of the error during the training epochs. In each training step the full batch is used for
training and the error is defined as the fractions of examples (in one batch) for which the output of the network
does not agree with the target classification. Shown is the mean error (black line) ±1 standard deviation (shaded
area) over 20 independent runs in which the network output agrees with the target output within 800 epochs of
training.
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Figure 4.19: Evolution of the weight and bias values of the hidden layer as a function of the training epoch for
one specific run. A Quantized weight values of connections from input neurons to excitatory hidden neurons (top
panel) and quantized bias values between the bias neuron of the hidden layer and excitatory neurons in the hidden
layer. B Quantized weight values of connections from input neurons to inhibitory hidden neurons (top panel) and
quantized bias values between the bias neuron of the hidden layer and inhibitory neurons in the hidden layer.
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Figure 4.20: Quantized weight (top panel) and bias values (bottom panel) of the output layer as a function of
the training epoch for one specific run.
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Figure 4.21: Spike raster plot of the neural activity of the input layer’s neurons x
(0)
i , the hidden layer’s neurons

y
(1)
j , and the output neuron y

(2)
1 in the test run. The activity of the inhibitory neurons is not show.
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Figure 4.22: Membrane potential Vm(t) of neuron y
(2)
1 of the output layer during the test run.
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4.3 MNIST Hand Written Digits Classification Task

The classification task presented her is base on the MNIST data set [50]. The data set consists

of a training set of 60000 images and a test set of 10000 images of the handwritten digits 0 to 9.

The resolution of these gray-level images is 28× 28. The images used in this task are generated

from the original images by extracting the 20× 20 pixel box which contains the “actual” image.

The resolution is then reduced to 8 × 8 pixels by bi-cubic interpolation. Finally, a threshold is

applied in order to convert the gray-level images into binary images. The threshold is calculated

individually for each image by utilizing Otsu’s method [51]. In short, this method computes

a threshold value such that the intra-class variance (foreground pixels and background pixels)

is minimal. The resulting image Ii is then used as network input xi = vec(Ii). Examples of

original MNIST images of a “0”, “1”, “4”, “6”, and “7” are shown in the top row of Fig. 4.24

and the bottom row of this figure shows their binarized version.

The topology of the feed-forward network which is utilized in this task is shown in Fig. 4.23.

It consists of an input layer where the number of units is equal to the number of pixels of the

input image, two hidden layers, and an output layer. The number of output neurons is equal to

the number of classes the network is trained to classify.

. . .

. . .

. . .

. . .

y
(3)
1 y

(3)
m

Figure 4.23: Topology of the feed-forward neural network with one input layer, two hidden layers and one label
layer. The number of input units is equal to the number of pixels of the input image. The bias units associated
to each of the hidden layers and to the output layer are not shown. The number of output neurons is equal to
the number of classes the network is trained to identify.

The test accuracy in the NEST simulations on 5 classes is 96.3%. On Spikey only 3 classes

are used. The accuracy on the test set is 91.5%. Training is done with mini-batches of certain

size (for details see Section 4.3.1 and Section 4.3.2). A digit is considered as correctly classified

if the corresponding output neuron emits at least one spike after the presentation of the image
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while all other output neurons remain silent.
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Figure 4.24: Examples of original MNIST images of a “0”, “1”, “4”, “6”, and “7” (top row) and the images
which are used as network input (bottom row). The images used as input data are generated from the original
images by extracting the inner 20× 20 pixel box, reducing the resolution to 8× 8 pixels by bi-cubic interpolation,
and finally applying a threshold in order to convert the gray-level images to binary images. The threshold value
is calculated individually for each image by utilizing Otsu’s method.

4.3.1 Results of the MNIST Hand Written Digits Classification Task—NEST

In the following, the NEST simulation results of the MNIST task are shown. Training is one

on a modified subset (as described above) of the MNIST data set. All images from 5 classes

(“0”, “1”, “4”, “6”, and “7”) are used. This results in a training set of 28062 images and a test

set of 5083 images. Training is performed for 1370 steps with mini-batches of size 1024. The

individual training examples are presented to the network every 100 ms starting at t = 50 ms.

The initial weights are drawn from a Gaussian distribution with a mean of 0.0 and a standard

deviation of 0.1. The bias values are uniformly initialized to 0.1.

The used network is has two hidden layers with 25 units each. The final test accuracy is 96.3%

with a standard deviation of 0.56%.

Figure 4.25 shows the evolution of the classification error as a function of the training steps.

Shown is the mean training error over 10 independent runs. Examples of correctly and wrongly

classified digits are shown in Fig. 4.26. The top rows show their original version.

The spike raster plot of the neural activity of the input layer’s neurons x
(0)
i , the neurons y

(1)
j of

the first hidden layer, the neurons y
(2)
k of the second hidden layer, and the output layer’s neurons

y
(3)
l for 10 digits in a specific test run is shown in Fig. 4.27. Figure 4.28 shows the activity of

the neurons for 100 digits in the same test run. Spike events of an output neuron corresponding

to a wrong class are colored in red. As can be seen from Fig. 4.27 the output neurons emit in

the most cases only one spike for each class.

– 54 –



4.3 MNIST Hand Written Digits Classification Task

A histogram of the quantized weight and bias values after training is shown for the first

hidden layer, the second hidden layer, and the output layer in Fig. 4.29, Fig. 4.30, and Fig. 4.31,

respectively.
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Figure 4.25: Classification error per batch as a function of the training step. Training is done for 1370 steps
with mini-batches of size 1024. The error is defined as the fraction of examples (in one batch) for which the output
of the network does not agree with the target classification. Shown is the mean error (black line) ±1 standard
deviation (shaded area) over 10 independent runs.
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Figure 4.26: Examples of correctly and wrongly classified digits in the test run. The top row shows the original
MNIST images and the bottom row shows their binarized version which are used as network input. A Three
examples of correctly classified digits. B Three examples of wrongly classified digits.
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Figure 4.27: Spike raster plot of the neural activity of the input layer’s neurons x
(0)
i , the neurons y

(1)
j of the

first hidden layer, the neurons y
(2)
k of the second hidden layer, and the output layer’s neurons y

(3)
l for 10 digits

in the test run. A digit is considered as correctly classified if the corresponding output neuron emits at least one
spike after the presentation of the image while all other output neurons remain silent.
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Figure 4.28: Spike raster plot of the neural activity of the input layer’s neurons x
(0)
i , the neurons y

(1)
j of the

first hidden layer, the neurons y
(2)
k of the second hidden layer, and the output layer’s neurons y

(3)
l for 100 digits

in the test run. A digit is considered as correctly classified if the corresponding output neuron emits at least one
spike after the presentation of the image while all other output neurons remain silent. Spike events of an output
neuron corresponding to a wrong class are colored in red.
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Figure 4.29: Histogram of the quantized weight and bias values of the first hidden layer after training. A
Histogram of the quantized weighs. B Histogram of the quantized bias values.
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Figure 4.30: Histogram of the quantized weight and bias values of the second hidden layer after training. A
Histogram of the quantized weighs. B Histogram of the quantized bias values.
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Figure 4.31: Histogram of the quantized weight and bias values of the output layer after training. A Histogram
of the quantized weighs. B Histogram of the quantized bias values.
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4.3.2 Results of the MNIST Hand Written Digits Classification Task—Spikey

In the following, the Spikey emulation results of the MNIST task are shown. Training is done

on a modified subset (as described above) of the MNIST data set. All images from 3 classes

(“0”, “1”, “4”) are used. This results in a training set of 16930 images and a test set of 3079

images. Training is performed for 131 steps with mini-batches of size 1024. The individual

training examples are presented to the network every 100 ms starting at t = 50 ms. The initial

weights are drawn from a Gaussian distribution with a mean of 0.0 and a standard deviation of

0.1. The bias values are uniformly initialized to 0.1.

The used network is has two hidden layers with 25 units each. The final test accuracy is 91.5%

with a standard deviation of 3.24%.

Figure 4.32 shows the evolution of the classification error as a function of the training steps.

Shown is the mean training error over 10 independent runs. Examples of correctly and wrongly

classified digits are shown in Fig. 4.33. The top rows show their original version.

The spike raster plot of the neural activity of the input layer’s excitatory neurons x
(0)
i , the

excitatory neurons y
(1)
j of the first hidden layer, the excitatory neurons y

(2)
k of the second hidden

layer, and the output layer’s excitatory neurons y
(3)
l for 10 digits in a specific test run is shown

in Fig. 4.34. Figure 4.35 shows the activity of the neurons for 100 digits in the same test run.

Spike events of an output neuron corresponding to a wrong class are colored in red. As can be

seen from Fig. 4.34 the output neurons emit in the most cases only one spike for each class.

A histogram of the quantized weight and bias values after training is shown in Fig. 4.36 to

Fig. 4.38.
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Figure 4.32: Classification error per batch as a function of the training step. Training is done for 131 steps with
mini-batches of size 1024. The error is defined as the fraction of examples (in one batch) for which the output
of the network does not agree with the target classification. Shown is the mean error (black line) ±1 standard
deviation (shaded area) over 10 independent runs.
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Figure 4.33: Examples of correctly and wrongly classified digits in the test run. The top row shows the original
MNIST images and the bottom row shows their binarized version which are used as network input. A Three
examples of correctly classified digits. B Three examples of wrongly classified digits.
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Figure 4.34: Spike raster plot of the neural activity of the input layer’s neurons x
(0)
i , the neurons y

(1)
j of the

first hidden layer, the neurons y
(2)
k of the second hidden layer, and the output layer’s neurons y

(3)
l for 10 digits

in the test run. A digit is considered as correctly classified if the corresponding output neuron emits at least one
spike after the presentation of the image while all other output neurons remain silent.
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Figure 4.35: Spike raster plot of the neural activity of the input layer’s neurons x
(0)
i , the neurons y

(1)
j of the

first hidden layer, the neurons y
(2)
k of the second hidden layer, and the output layer’s neurons y

(3)
l for 100 digits

in the test run. A digit is considered as correctly classified if the corresponding output neuron emits at least one
spike after the presentation of the image while all other output neurons remain silent. Spike events of an output
neuron corresponding to a wrong class are colored in red.
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Figure 4.36: Histogram of the quantized weight and bias values of the first hidden layer after training. A
Quantized weight values of connections between input neurons and excitatory neurons of the first hidden layer. B
Quantized bias values between the bias neuron of the first hidden layer to excitatory neurons of the first hidden
layer. C Quantized weight values of connections between input neurons and inhibitory neurons of the first hidden
layer. D Quantized bias values between the bias neuron of the first hidden layer to inhibitory neurons of the first
hidden layer.

– 62 –



4.3 MNIST Hand Written Digits Classification Task

A

−1.0 −0.5 0.0 0.5 1.0

Q
(
w

(2)
j,k

)
0

20

40

60

80

100

120

co
u
n
t

B

−1.0 −0.5 0.0 0.5 1.0

Q
(
b
(2)
k

)
0

2

4

6

8

10

12

co
u
n
t

C

−1.0 −0.5 0.0 0.5 1.0

Q
(
w

(2′)
j,k

)
0

20

40

60

80

100

120

140

160

co
u
n
t

D

−1.0 −0.5 0.0 0.5 1.0

Q
(
b
(2′)
k

)
0

2

4

6

8

10

12

co
u
n
t

Figure 4.37: Histogram of the quantized weight and bias values of the second hidden layer after training. A
Quantized weight values of connections between neurons of the first hidden layer and excitatory neurons of the
second hidden layer. B Quantized bias values between the bias neuron of the second hidden layer to excitatory
neurons of the second hidden layer. C Quantized weight values of connections between neurons of the first hidden
layer and inhibitory neurons of the second hidden layer. D Quantized bias values between the bias neuron of the
second hidden layer to inhibitory neurons of the second hidden layer.
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Figure 4.38: Histogram of the quantized weight and bias values of the output layer after training. A Histogram
of the quantized weighs. B Histogram of the quantized bias values.
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5
Discussion

It has been shown that a feed-forward spiking neural network can be successfully trained by

backpropagation in conjunction with a rather coarse software model of the network. The back-

propagation algorithm which uses gradient based optimization requires differentiable activation

functions. Despite the nondifferentiability of the artificial neuron’s activation function, that is

the unit step function, the backpropagation algorithm could be successfully applied. This was

possible by using an approximate derivative of the activation function.

The spiking neural networks in question were emulated on an accelerated analog neuromorphic

hardware chip—The Spikey neuromorphic chip. While action potentials on this chip are trans-

mitted by using digital communication, neurons and synapses are implemented in hardware.

This analog approach allows the design of highly accelerated chips.

The network can only fully benefit from the hardware acceleration factor when classification

is performed. It was found that in the training phase the limiting factor is the initialization

of the chip. However, since the input data was not rate-coded but its binary values where

directly translated into single spikes of the input neurons, the time between the presentation of

the individual examples can be chosen quiet low. The only limiting factor is that one has to

allow the membrane potential to decay before the presentation of the next input. The chosen

delay of 100 ms would allow, by considering the hardware acceleration factor of about 104, the

classification of 100000 MNIST digits within 1 s.

Analog hardware is inherently subject to noise, distortions in neuron and synapse dynamics

need to be taken into account. These quite high variations could not successfully be compensated

by the utilized learning algorithm. This might be due to the limited resolution in synaptic weight.

Also the trial-to-trial variability is quiet a big issue as seen in the XOR task.

Since the activation function used in the artificial neurons allows only binary output values

the mapping of temporal effects is not possible. If and how this is compensated by the learning

algorithm would require further analysis. To address the issue of the rather high variability in

neuron and synapse parameter one could use a rate-coded approach. This would make the model

more robust for ”dead” neurons. Another possibility could be to perform population averaging.

However, since the size of the networks considered in this work is already at the capacity limit

of the Spikey chip this is not practicable. When performing the averaging over multiple runs

one could not take full advantage of the hardware acceleration which is also not preferable.

The obtained results in the MNIST task are quiet far away from state-of-the-art results. How-
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5 Discussion

ever, at least in the NEST simulations it was shown that the abstract model of the spiking neural

network in combination with the utilized learning algorithm is functioning. The performance

could possible be further increased. One option would be to simply increase the network size.

Fine tuning of certain learning parameters could also be taken into account.
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