

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

 i

Acknowledgment

First I want to thank Ass. Prof. Dipl.-Ing. Dr. techn. Bernd Eichberger for supporting and helping me

with this work. I also want to thank Dipl.-Ing. Dr. techn. Manfred Pauritsch for working together for

more than seven years and the gained experience. Dipl.-Ing. Michael Ganzera has to be highlighted,

which helped me a lot with this work. I also thank my family and friends for enabling the study and

supporting me all the time.

 ii

Abstract

Radio Frequency Identification (RFID) becomes more and more important in our everyday life. Most

Smartphones and credit cards as well as electronic passports or ID cards support this technology. This

opens doors for lots of different applications. As multiple RFID standards are available on the market,

which are quite different, a broad knowledge is required to bring this technology into new products

and applications. This means that many customer specific modules are needed in order to simplify

their development, to shorten the time to market and to reduce the software development costs.

This requires a flexible and highly integrated firmware architecture and command set.

The goal of this master thesis is the creation and implementation of such a highly flexible and

scalable firmware architecture. The software shall support market leading RFID High Frequency (HF;

13.56 MHz) front-ends and tags. It has to be easily portable for different hardware platforms and

compilers. A simple to use and powerful command set enables the fast integration of this technology

without the need of intense data sheet studies. Common host interfaces based on the Universal

Serial Bus (USB) are also included to comply with customer demands. This includes the Chip Card

Interface Device (CCID) and the Communication Device Class (CDC) protocols as well as the

implementation of the Human Interface Device (HID) class. USB-HID emulates a keyboard and

provides the possibility to read data from a tag automatically and send it as ASCII (American Standard

Code for Information Interchange) character keystrokes to a host.

 iii

Table of Content
1. Introduction to Radio Frequency Identification (RFID) ... 1

Antenna Near-Field ... 1

Antenna Far-Field .. 1

Low Frequency (LF) RFID ... 2

High Frequency (HF) RFID .. 2

Ultra High Frequency (UHF) RFID .. 2

2. RFID System ... 3

Idea of Operation .. 3

Host ... 4

Communication Interface .. 5

Universal Asynchronous Receiver Transmitter (USART) ... 6

Universal Serial Bus (USB) ... 9

Chip Card Interface (CCID) ... 14

Communications Device Class (CDC) ... 17

Human Interface Device (HID) ... 18

Keyboard ... 19

Reader ... 21

Front End / Reader IC .. 22

All in One Solution ... 22

Antenna ... 23

Air Interface ... 24

ISO 14443 A/B.. 27

ISO 15693 .. 30

FeliCa ... 31

ISO 18000-3M3 .. 32

Tag ... 33

3. Firmware Architecture .. 35

Programming Language and Integrated Development environment (IDE) 36

Hardware Abstraction Layer (HAL) .. 37

Minimum Hardware requirements ... 37

Host ... 38

Reader ... 40

Protocol Abstraction Layer (PAL)... 42

 iv

Standards ... 42

Tags .. 43

Extended Abstraction Layer (EAL) ... 45

Cryptography ... 45

NDEF Library .. 51

Data stream generation .. 52

Data mapping .. 53

Command Abstraction Layer (CAL) ... 55

Application Layer (AL).. 66

4. Hardware ... 69

Development Platform .. 69

Microcontroller.. 69

Reader ICs .. 71

Implemented Products .. 74

Sangoma MSMA Multi Standard Multi -Antenna.. 74

Sangoma NFC-Wizard .. 76

Sangoma DocTrack .. 78

Bicycle Demo ... 79

Tag ... 79

Reader ... 80

Tablet ... 81

5. Conclusion ... 82

6. Bibliography ... 83

7. Shortcuts ... 87

8. List of Figures ... 90

1

1. Introduction to Radio Frequency Identification (RFID)
The Radio Frequency Identification (RFID) technology can be split up into different frequency ranges.

Each of them reacts differently due to the influence of the different wavelength and coupling.

Antenna theory distinguishes between the near-field and the far-field. In terms of RFID this results in

different coupling behavior which has high impact on the reading distance and robustness.

The correlation between the frequency and wavelength is given as followed:

𝒄 = 𝝀 ∙ 𝒇 (1)

Where c is the speed of light (299 792 458 m/s).

The transition zone between near-field and far-field is approximately given by the following

equation:

𝒓 =
𝝀

𝟐𝝅
 (2)

Where 𝜆 is the wavelength of the signal, and r is the radian sphere, which can be considered as a

border between near-field and far-field (The border is not exactly defined due to the fact that the

electromagnetic field changes gradually). This equation is only valid for small antennas (D<<𝜆), which

is the case for Low and High frequency RFID technologies.

In case that D>𝜆 (the dimension of the antenna is much bigger than the wavelength of the signal) the

following estimation can be used for calculating the radian sphere:

𝒓 =
𝟐𝑫𝟐

𝝀
 (3)

This estimated radian sphere is used to distinguish between near-field and far-field.1

Antenna Near-Field
The Tag is powered by energy from a magnetic field. This magnetic field is the result of an inductive

coupling between the Tag and the Reader. For the data transfer this field is modulated which can be

detected by both, the reader and the Tag side.

Antenna Far-Field
In this domain capacitive coupling is used for supplying the Tag. The reader sends energy and data to

the Tag, which uses backscattering for communication. One big advantage of this technology is, that

read/write ranges are very huge.

1 Compare Harvey Lehpamer Ef. D, RFID Design Principles, Second Edition, Artech House Books, 2012, ISBN-13:
978-1608074709, Chapter 5, p134-p135

2

Figure 1: Overview of the different frequency ranges of RFID 2

Low Frequency (LF) RFID
This quite common technology uses frequencies from 125 kHz up to 134 kHz. As the communication

is based on magnetic coupling, metal and water have almost no influence. This is one of the main

reasons why this technology is mainly used for animal tracking. The standard for this application is

defined in ISO 14223 and ISO/ICE 18000-2. It is also used for access control, especially in the United

States of America (USA). The read distance is typically smaller than 50 cm. The antennas are typical

wire wound coils, which are more expensive in comparison to other technologies.

High Frequency (HF) RFID
This technology includes frequencies from 3 MHz to 30 MHz, but the typical frequency is 13.56 MHz.

As the frequency is higher (but is still within the range of the nearfield) than for LF RFID, the

surrounding, especially metal, influences the system much more. This also results in higher

development effort and less reusability, as the antenna design and matching has to be done

application specific. As described above the higher frequency decreases the robustness of the

system, but the operating range increases to up to 1 m depending on the used standard and

modulation. The data transfer rate is also much higher compared to LF RFID. As this is a good trade-

off between ruggedness and distance, it is the most widespread RFID technology for consumer

devices. This is the reason why this thesis focuses on the different standards based on the physical

HF RFID definition at 13.56 Mhz. Typical applications are e-passports, banking cards, electronic ID

credentials or even simple public transport tickets. Mainly a simple printed loop antenna is used on

tag and reader side.

Ultra High Frequency (UHF) RFID
The frequency range of this technology is country-dependent, but most common is the range from

860 MHz to 960 MHz. A detailed description can be found in the EPCglobal Gen2 (ISO 18000-6C)

standard. As this technology uses capacitive coupling and backscattering, the maximum read/write

distance goes up to 15 m and the data rate is also much higher in comparison with HF RFID and LF

RFID. As the ultra high frequency results in a very short wavelength (≈34.86 cm at 860 MHz), this

means that the radiated signal gets absorbed and reflected. Because of the high range, this

technology is mainly used for goods tracking and logistics. Different types of dipole antennas are

used for the communication.

2 Picture taken from Dipl.-Ing. Michael Ganzera, lecture “Identification and System Integration”, Campus 02,
2016

3

2. RFID System

Idea of Operation
A typical application consists of a sender (reader/writer) and a receiver (tag) part. These two

components have different names according to the different standards.

The host communicates with the reader via different interfaces. The reader creates a radio frequency

field. This field couples to the tag via inductive or capacitive coupling. The tag obtains energy and

extracts data transmitted by the reader. The tag influences the field, by modulation for instance. The

reader can detect and interpret this change according to a standard.

Figure 2: Topology of a typical RFID solution

As illustrated in Figure 2 multiple components have to work together to realize a RFID system. Each

interface indicates the use of different standards according the given application.

As most of these components are application dependent and change quite often, a powerful

architecture is needed to stay flexible and reduce the development time and cost. As can also be

seen in Figure 2 the architecture has to define the communication interface. As most of the hardware

has different communication interfaces, which are usually not compatible, an abstraction is required

to enhance the portability. To implement the physical elements, a HF reader front end is used. As the

number of different Air Interface standards is huge, this component is application specific. This

results in a high coverage of different Integrated Circuits (IC) of different manufacturers. But the

overall size of the framework is still limited due to the fact that low cost and low performance

microcontrollers are mainly used. The Air interface standards define the used analog frontend on one

hand, but also the suitable tags. As the memory structure, memory size, encryption and commands

are various, most applications are limited to one kind of tag, or even disregard the capabilities of the

tags. In recent years this has become even more important because of highly increased complexity of

the tags. In addition to state of the art cryptography and the enhancement of the memory size,

multiple applications can be stored on one tag. This results in a complex file system architecture,

which is hard to implement and handle for consumer applications.

Many manufacturers want to make use of the new possibilities opened by RFID, but as this

technology is changing quickly, manufacturers often are in need of special solutions. They are neither

interested in deeply understanding the technology nor do they have the time to do so. As a result the

need for dedicated add-on modules is high. It can be distinguished between customer specific

automated solutions and generic modules. The former one handles all necessary steps to perform a

customer specific action (like reading a sector of a tag for example), where the general module

implements a set of (highly abstracted) commands, which can be used by the customer for enabling

all tag features.

Host Communication Interface Air Interface Reader Tag

4

Host
This component is usually given and defined by the application. The properties can vary from high

performance high power architectures to low performance low power systems. This means that the

RFID system has to cover all the different aspects of the host and its capabilities.

Typical architectures of host systems are:

 Intel x86 / x64 (high power 32Bit or 64 Bit systems with a high amount of interfaces)

 ARM architecture (single core low power CPU to Quad core high performance)

 Microcontroller (limited interface options, computation power and power consumption)

Not only the hardware varies, but also its Operating System (OS). This has to be considered especially

for the communication interface, which is described later. A list of common Operating Systems and

their fields of use:

 Windows (x86/x64)

o Commercial consumer and enterprise applications

o Wide spread

 Embedded Windows

o Especially for embedded applications

o Commonly used within the industrial domain

 Linux

o Standard and embedded applications

o Scalable for specific requirements

 MAC

o Mainly consumer applications

o Only for specific vendor and hardware

 Real Time Operating Systems

o Safety and security critical, mainly embedded applications

o Low size and usually scalable

Application dependent power requirements are also important to be considered. Especially for

applications like battery operated RFID door locks, the power consumption and therefore the overall

lifetime is important. On the other hand standalone applications, like RFID-based time recording in

companies, which are always connected to the power supply, have less stringent power consumption

requirements.

Also the host language, has to be considered, as it influences USB-HID devices. This is necessary as

languages and fonts differ. This can result in wrong interpretations of the transmitted data. As most

semitic scripts are read from right to left, where Latin scripts are read from left to right, the

languages have a huge influence on the data representation and overall communication process.

5

Communication Interface
The choice of the host system also influences the available communication interfaces. As even simple

microcontrollers support interfaces like Universal Serial Bus (USB), the number of widespread

interfaces is quite limited.

Most Common interfaces within the embedded domain are:

 Ethernet

 USB

 RS232 / Universal Asynchronous Receiver Transmitter (USART)

 IIC

 Serial Peripheral Interface (SPI)

In the domain of commercial Personal Computers (PCs) the first three interfaces are state of the art

and nearly everywhere (OS independent) available. On the other hand IIC and SPI are commonly

used in the embedded field. Most of the interfaces shown above do not cover the aspect of supplying

the device. This leads to a higher effort for the hardware design and restricts the operating range.

For supporting most embedded hosts on one hand, but also to cover most PCs the implementation of

USB is a good choice. For reasons of economy cheap microcontrollers (mainly working with the

internal oscillator) do not support USB. For such cheap solutions the USART interface is quite

widespread. As the same protocol, but other physical properties are used for the RS232 interface,

which is today still widespread within embedded devices, this interface might be a good alternative

for connecting cheap microcontrollers. Another advantage is that there are lots of different interface

converters available on the market which allow a simple conversion between USART and different

protocols like RS232, RS484 or USB. This increases the number of covered interfaces quickly, but

keeps the firmware implementation simple.

Another important aspect for selecting a communication interface is the transfer speed, which

depends on the application itself and the used components. The integrated USB interface (mainly

version 2.0) of microcontrollers is a bottleneck, as the transfer rate from the microcontroller to the

Tag is much slower. Interfaces like USART have an adjustable baud rate, which can be changed

application dependent.

To cover not only the physical part of the host, but also the software related part, a driver is needed

to communicate with the OS. As shown above, there are many drivers available. As the architecture

is quite different and the driver is always hardware related, the support of different operating

systems result in a huge amount of different drivers. As this is a well-known problem, standardized

drivers, mainly for USB, are commonly available. These so called USB protocols are available on most

platforms, even smartphones. This fact increases the need of implementing the standardized USB

interface, as the effort for writing drivers can be avoided. As shown later, some of the on-board USB

protocols allow to simplify everyday applications considerably and this results in an automated

behavior of the module.

6

Universal Asynchronous Receiver Transmitter (USART)

The USART handles the signals of a serial port, which allows full duplex operation. The history of this

type of connection goes back to the early days of modems. The standard defines the communication

between a Data Terminal Equipment (DTE) and a Data Communication Equipment (DCE). The idea

behind the protocol looks always the same but the physical layer differs. This means that multiple

converters are available. These convert the USART signal, which has mostly 3.3V levels, into RS232,

RS485 or other standards. Typically a DB9-Connector is used for connecting two devices using a serial

port. For the basic communication only three physical lines are required: Transmit Data (TxD),

Receive Data (RxD) and the common Ground (GND). 3 It is important to connect the TxD line of one

device with the RxD line of the second to ensure the correct functionality. Two additional lines,

Request To Send (RTS) and Clear To Send (CTS) can be added for hardware handshake. The support

of this feature is manufacturer dependent and not available on all microcontrollers. Mainly in the

industrial domain the use of hardware handshake is important to enhance the transmission

reliability. The full serial port specification includes other signals, too. The types and their

descriptions can be found within the related standards.

Most microcontrollers provide at least one USART interface. This peripheral unit converts byte

oriented data into a serial bit stream, a process which is called framing.3 As this interface is

asynchronous, there is no clock line, and a time based synchronization is used. For detecting the start

and end of a serial frame additional start and stop bits are added. The specification allows the

following settings:

 1 start bit (always fixed)

 1 stop bit

 1.5 stop bits (not common)

 2 stop bits

For a simple bit flip detection a parity check is also part of the standard.3 These settings are defined:

 None, no parity bit is added

 Even, if the number of bits with a logical ‘1’ is even, ‘1’ is added as parity bit, else ‘0’

 Odd, if the number of bits with a logical ‘1’ is odd, ‘1’ is added as parity bit, else ‘0’

 Mark, a bit which is equal to ‘1’ is added to the frame

 Space, a bit which is equal to ‘0’ is added to the frame

The receiver performs the same calculation depending on the settings and checks its correctness. In

case of a failure the upper layer (application) is informed.3

The number of sent data bits can also be defined. From 4 to 8 data bits can be sent within one frame

and the order within the frame is from the Least Significant Bit (LSB) to the Most Significant Bit

(MSB).

A complete USART frame is illustrated below:

3 Compare Lava Computer MFG Inc., RS232: Serial Ports, June 10, 2002, (Accessed: 27.1.2017):
http://lpvo.fe.uni-lj.si/fileadmin/files/Izobrazevanje/OME/rs_232_serial_ports.pdf

4 to 8 Data Bits 1 Start Bit 0 - 1 Parity Bit 1 – 2 Stop Bit

Figure 3: USART Frame

http://lpvo.fe.uni-lj.si/fileadmin/files/Izobrazevanje/OME/rs_232_serial_ports.pdf

7

The bitrate can also be configured and influences the maximum usable cable length. Typical Baud

rates are 9600 bits/s or 115 200 bit/s. Modern high performance microcontroller even support

bitrates up to 1 Mbit. The limiting factor is the cable length.

As the maximum cable length of the specification has been replaced by a maximum load capacitance

of 2500 pF the maximum length strongly depends on the cable properties itself.4 The higher the

length of the cable, the mutual capacitance of the cable must be reduced.

As discussed above, additional signal lines, RTS and CTS can be used for a handshake. The standard

allows either the use of this hardware handshake, software handshake (XON XOFF) or none. The

main purpose for this is to reduce the risk of losing data at high transfer rates. Especially if the

receiver needs more time for storing the data or even doing some pre-processing. If the sender

cannot recognize such situations and continuously sends, data is lost. The extra lines are used to

signal the sender that the receiver is not ready to process new data.5

The connection of two devices using hardware handshake is shown below:

Figure 4: Two devices connected with hardware handshake 5

Each device uses the input of the CTS signal to determine if the other device is ready to receive new

data and sets the appropriate RTS signal.

There is another way of interpreting the RTS and CTS handshake. This legacy hardware flow control is

illustrated below:

Figure 5: Legacy method for hardware handshake 5

The names of the signal for these methods are the same but they are used in a different way. The

DTE acts as a master and asserts the RTS signal, which results in change of the CTS signal, executed

by the slave (DCE). The DCE can halt the communication by changing the level of the CTS line.5

4 Compare Dallas Semiconductor, Application Note, 83, Fundamentals of RS–232 Serial Communications, March
9, 1998, p8
5 Compare Silicon Laboratories Inc., Application Note, AN0059, UART Flow Control, September 16, 2013, p3-p4

Device A
 RXD

 TXD

 RTS
 CTS

Device B
RXD
TXD

RTS
CTS

Device A
(DTE)

 RXD
 TXD

 RTS
 CTS

Device B
(DCE)

RXD
TXD

RTS
CTS

8

As most microcontrollers support only one of these two methods, the hardware based handshake

has to be implemented via software (setting the level of the signal manually).

In contrast the software handshake doesn’t need additional lines and is quite easy to be realized

based on the American Standard Code for Information Interchange (ASCII) control. The XON (ASCII

0x11) and XOFF (ASCII 0x13) symbols are some of this kind. The handshake works as follows: if a

receiver needs a break, it sends the XOFF character. The Transmitter recognizes this special character

and stops sending until a XON character is received.6

Consequently, it is important that both, the sender and receiver, are configured using the same

parameters. A misconfiguration results in misinterpretation of the data.

There are techniques which allow Automatic Baud Rate (ABR) detection. This can be extremely useful

for many applications. An example presented by Texas Instruments shows such an algorithm. It

needs just one single Carriage Return (CR) ASCII symbol for detecting baud rates between 115 200

and 14 400 baud and a second one for detecting baud rates from 9 600 to 1 200 baud.7

The algorithm is based on the bit interpretation of the ASCII CR symbol. Depending on the bitrate the

resulting/encoded value differs. The receiver gets configured for 115 200 baud and receives one CR

symbol. This can be seen in the following figure:

Figure 6: Bit patterns of CR for baud rates from 115 200 baud to 9 600 baud 7

As only a comparison with these values is required, the implemtation of this method is easy. If a zero

is received, the bitrate of the signal is lower and the receiver has to be reconfigured to 9600 baud

and another CR has to be transmitted. More details about that can be found at 7. For selecting a

suitable character for this algorithm, the variation of the lower bits is important.

6 Compare Silicon Laboratories Inc., Application Note, AN0059, UART Flow Control, September 16, 2013, p4
7 Compare Chuck Farrow, Texas Instruments, Application Report, SLAA215, Automatic Baud Rate Detection on
the MSP430, October 2004, p4

9

Universal Serial Bus (USB)

The Universal Serial Bus (USB) is the most common peripheral interface these days. Especially in the

computer domain, most accessories are connected via this interface. Over the years several versions

with different power and speed capabilities were standardized. The latest versions of USB (3.0 or

even 3.1) have data rates up to 4 Gbits/s. In the domain of microcontroller mainly USB 2.0 is

supported. As all USB versions are backward compatible this is no problem.8

Within the USB standard different speed modes are defined:

 Super SpeedPlus (10 Gbit/s)

 Super Speed (5 Gbit/s)

 High Speed (470 Mbits/s)

 Full Speed (12 Mbit/s)

 Low Speed (1.5 Mbit/s)

For achieving such high data rates SuperSpeed and SuperSpeedPlus lines are reqired. These extra

lines operate independently from the typical lines (Data + and Data -).9

Lower communication speeds do not always lead to poorer system performance. For data transfers

in typical RFID systems, a communication speed of 1.5 Mbit/s is sufficient, because the data rate

between tags and reader are 848 kBaud/s at most. Another reason for lower data rates is, that these

modes are less susceptible to Electromagnetic Interference (EMI). This results in lower costs for

ferrite beads and resonators as they can have a higher tolerance.10 For high volume products, cost

reduction is essential. Most microcontroller support Low and Full Speed mode. The former one

usually without an external oscillator.10

The Bus itself is single host controlled. As there is no multi-master mode specified within the

standard an extension called On-The-Go (OTG) introduces a host negotiation protocol. This allows

the devices to negotiate their roles.10

The topology of the USB is a tiered star and therefore hubs are needed to extend the network. Such a

topology has some advantages. In comparison of daisy chaining a tiered star topology allows to

monitor the power consumption of each device. This additional information can be used for disabling

malfunctioning appliances.10

The standard allows up to 127 devices per host.8 As the bandwidth is split amongst these devices a

typical computer features one host for each port. This leads to a higher overall performance.10

The physical connection of this serial bus is realized using 4 shielded wires. Two of them are used for

powering the devices (+5V and GND). The other two (D+ and D-) are used for the differential

communication and are twisted.10 The need for twisted pair cables is given as the high data rate

results in a higher EMI level. The typical cable length is up to 5 m but decreases with higher data

rates. For USB 3.1 the cable length is reduced to about 1 m and two additional signal pairs are added

(SSTX+ / SSTX- and SSRX+ / SSRX -).8

8 Compare Craig Peacock, Beyond Logic, USB in a NutShell, 2007, Beyond Logic, Chapter 3: USB Protocols
9 Compare Terry Moore, MCCI, USB 3.0 Technical Overview, October 8, 2009
10 Compare Craig Peacock, Beyond Logic, USB in a NutShell, 2007, Beyond Logic, Chapter 1: Introduction

10

A Non Return to Zero Inverting (NRZ) scheme is used to encode the signal. To ensure adequate

transitions bit stuffing is added. Additional information about the voltage levels and timings can be

found within the USB standard.11

Plug and play are also supported by this bus. This means that the necessary drivers for the connected

device are loaded dynamically. It also detects the removal of a device and unloads its driver. This is a

user-friendly feature, which prevents the need for rebooting the host computer before using a new

attached device.11

Within the last years multiple different connectors have become available. The naming scheme

remains the same. Connectors from type A are mainly considered to be used for a host device, where

type B sockets are used for devices. Various form factors are available to fit different application

needs.

The physical connection is also used for selecting the device speed capabilities. As this is mainly

highly integrated within the microcontroller the details can be found in the USB standard.

Any attached device can take power from the bus, but there are three classes of devices:

 Low power / bus powered

 High power / bus powered

 Self-powered

Each device defines its class and the amount of used current (in 2 mA steps) in its descriptor. Low

power devices are bus powered and cannot draw more than 100 mA (1 unit load). Such devices also

have to deal with a bus voltage from 4.4 V to 5.25 V. High power devices may use up to 500 mA (5

unit loads), but until they are configured only 100 mA can be used. For enumeration and

configuration the device has to deal with a bus voltage down to 4.4 V. After that stage the voltage

range is from 4.75 V to 5.25 V. Self-powered devices are externally supplied and are not allowed to

draw more than 100 mA from the bus.11 The values described above refer to USB 2.0. Newer

standards allow higher currents. If the device consumes more power than defined, the host switches

it off, independently from the used USB class.

The standard also defines power safe options such as the suspend mode.

For enhancing the robustness of the bus some common techniques are used. Differential drivers and

receivers together with the shielding support the signal integrity. A Cyclic-Redundancy-Check (CRC) is

generated and appended for detecting bit flips. It “gives 100% coverage on single- and double-bit

errors”12 Self-recovering protocols and flow control are also implemented for increased robustness.

11 Compare Craig Peacock, Beyond Logic, USB in a NutShell, 2007, Beyond Logic, Chapter 2: Hardware
12 Compare Universal Serial Bus Specification, Revision 2.0, April 27, 2000, p19

11

The protocol of USB is based on polling. Each transaction is initiated by the host and most

transactions consist of three packets:13

 Token Packet

 Data Packet

 Status Packet

The host sends a token packet which describes the type, direction, device address and endpoint

number. The addressed device decodes the token packet and depending on the direction it either

receives a data packet or sends one. If there is no data to send, this is also indicated via the data

packet. The destination typically confirms a successful transfer with a status packet.14

Figure 7: USB connection 14

As shown above each device gets an address assigned during enumeration. Each unassigned device

reacts to address zero, which results in an address from 1 to 127.13 During this enumeration and

configuration phase descriptors are shared between the host and the device. There are multiple

types of descriptors like:

 Device Descriptor:

Identifies the device by providing the Vendor and Product ID (VID and PID). It also defines the

supported USB Version and the number of different configurations with the configuration

descriptors.

13 Compare Craig Peacock, Beyond Logic, USB in a NutShell, 2007, Beyond Logic, Chapter 3: USB Protocols
14 Compare Universal Serial Bus Specification, Revision 2.0, April 27, 2000, p18-p19

USB Device

Host

Addr = 2

EP0 In

EP0 Out

EP1 In

EP1 Out

Device

Function

USB Device

Addr = 3

EP0 In

EP0 Out

EP1 In

EP1 Out

Device

Function

EP2 In

EP2 Out

[Addr, EP, Direction]

12

 Configuration Descriptor:

For each different configuration a configuration descriptor has to be provided (for the

devices). The host can decide during enumeration which configuration to enable, but only

one at a time. This means that if a High power and a Low power configuration are available, a

host can decide based on its power management which configuration is used. Typical

information within these descriptors are the power class, power consumption and number of

interfaces. Most devices support just one configuration.

 Interface Descriptor:

This type of descriptor mainly defines the features of the device. Typically each device class,

like Human Interface Device (HID), which is described later, is one interface. Each interface

consists of several endpoints and multiple interfaces can be featured at the same time. This

allows the combination of multiple functions, like a keyboard and mouse, within one device.

It is even possible to switch an interface via a host command. It also links to all class

depended descriptors.

 Endpoint Descriptor:

This descriptor defines the type of each endpoint and its capabilities. The different endpoint

types are described later.

 String Descriptor:

This optional type of descriptor is used for additional human readable information using

Unicode strings for supporting multiple languages. They are typically used for naming the

device, vendor or configuration.

15 There are much more descriptor types defined within the different USB classes.

The topology of the different descriptors can be seen below:

Figure 8: USB descriptor topology 15

As can be seen in Figure 8 the number of descriptors needed by a device might be huge.

15 Compare Craig Peacock, Beyond Logic, USB in a NutShell, 2007, Beyond Logic, Chapter 5: USB Descriptors

Device

Descriptor

Configuration

Descriptor

Interface

Descriptor

Endpoint

Descriptor

String

Descriptor

for each configuration

for each interface

for each endpoint

13

This has to be considered for chosing the storage capabilities of microcontroller based applications.

Each device uses the device address and its endpoints for communicating, but on higher levels so

called pipes are used. These pipes represent a connection between the host and one or many

endpoints. A distinction is made between Message- and Stream-pipes. The first has in contrary to the

second, a defined USB format. They also define their capabilities related to bandwidth, direction,

data flow and maximum packet/buffer size.16 The control pipe is available for all devices and is

responsible for exchanging the descriptors.

The USB standard defines four different types of endpoints / data transfers:

 Control Transfers:

Mainly used for configuring the device, like sending the descriptors.

 Bulk Data Transfers:

Is ideal for large non-time critical data transfers, as there is no guaranteed latency. Typical

scenarios are data transfers of Mass Storage Devices. This type is not available for Low Speed

devices. Additional CRC 16 is used for error detection.17

 Interrupt Data Transfers:

Time critical data can be transferred with this type. As each transmission is initiated via the

host, there is a (fix) latency for this transfer type.

 Isochronous Data Transfers:

This type “occupies a prenegotiated amount of USB bandwidth with a prenegotiated delivery

latency”.18 This transfer type can be used for streaming applications. Like the Bulk Data

Transfer it is not available for Low Speed devices and also protected with a CRC.

The number of available endpoints is limited. Most microcontroller support about 5 logical

endpoints, which is enough for most applications. It must be considered, that endpoint 0 is reserved

for device configuration. The maximum number of endpoints per device is defined in the standard.

As the bit size for the endpoint field within a typical USB frame is limited to 4 bit, up to 16 endpoints

can be addressed.16

The USB standard also describes a number of predefined classes. Most of them are application

specific like the Mass Storage device class. Each class has defined numbers and types of endpoints.

Some standards related to the application of a RFID reader are described below.

16 Compare Craig Peacock, Beyond Logic, USB in a NutShell, 2007, Beyond Logic, Chapter 3: USB Protocols
17 Compare Craig Peacock, Beyond Logic, USB in a NutShell, 2007, Beyond Logic, Chapter 4: Endpoint Types
18 Compare Universal Serial Bus Specification, Revision 2.0, April 27, 2000, p20

14

Chip Card Interface (CCID)

This USB class is especially considered for the use of Integrated Circuit Cards (ICC) like Smart Cards.

The specification considers all necessary aspects for exchanging frames. The advantage of this kind of

implementation is, that the CCID-driver can be used that for the physical communication. The

interpretation of the frames can be application specific, which enhances the capabilities. In general

the Personal Computer / Smart Card (PC/SC) protocol is on top of the CCID class.

The CCID standard defines the class number, properties and endpoints. For enumeration and sharing

the descriptors the control pipe is used, as well as for each USB class. Class specific are the use of the

following pipes:

 Interrupt In

This type is used for detecting the insertion or removal of Cards or reporting hardware

errors. This endpoint is not mandatory as there are devices with integrated Smart Cards

which cannot be removed.19

 Bulk In and Out

These endpoints are used for sending the frames. In and Out always refer to the Host

direction, so the Bulk In endpoint sends data from the device to the host. The Bulk out

endpoint is used for sending frames to the device.

This results in a total number of two to three endpoints, as the interrupt endpoint is optional. As Bulk

based endpoints are mandatory, this class cannot be implemented on USB Low Speed devices.

One CCID device can handle multiple Slots at the same time, but just one card per slot. The number

of such slots is defined within the descriptor.

The data exchanged is mainly based on the common standard for contact Smart Cards (ISO 7816),

which defines Application Protocol Data Units (APDUs) and Transport Protocol Data Unit (TPDUs).

Details about this can be found within the ISO 7816 standard.

A so-called smart-card descriptor is also defined and part of this class. This specific descriptor defines

physical properties of the device, like supported voltages or clock speed. This information is mainly

used for checking if whether a technology is supported or not, but for customer specific information

they can be ignored. This class defined descriptor is linked at the interface descriptor.

For the Interrupt In endpoint only two messages are defined: 20

 RDR_to_PC_NotifySlotChange

This message is always transmitted from the device to the host if a change of any slot is

detected. 2 bits are used for each slot to signalize its current state and if the slot status has

changed.

 RDR_to_PC_HardwareError

If the device detects a hardware issue, like overcurrent on a specific slot, (the slot gets

disabled) this frame is sent to inform the host.

19 Compare Universal Serial Bus Device Class: Smart Card, CCID, Specification for Integrated Circuit(s) Cards
Interface Devices, Revision 1.1, April 22, 2005, p11
20 Compare Universal Serial Bus Device Class: Smart Card, CCID, Specification for Integrated Circuit(s) Cards
Interface Devices, Revision 1.1, April 22, 2005, p56-p57

15

For contactless operation the implementation of this additional endpoint is a must as the number of

tags within the field changes over time.

The following are the most important messages defined for the Bulk Out endpoint (PC to reader):21

 PC_to_RDR_IccPowerOn / PC_to_RDR_IccPowerOff

This command can be used to change the voltage for a contacted slot. In general it is possible

to use this for enabling or disabling a slot or even the whole Reader (if there is just one slot).

In the domain of RFID it could be used for enabling or disabling the RF Field.

 PC_to_RDR_GetSlotStatus

Forces the reader to return the status of one specific slot.

 PC_to_RDR_XfrBlock

This command is the most important one as it is used for transferring the APDU or data in

general.

 PC_to_RDR_Escape

If for adding extended features for the CCID manufacturer.

 PC_to_RDR_IccClock

With this command the reader can be forced to stop or start the clock for the connected

card.

 PC_to_RDR_Secure

This can be used for exchanging a Personal Identification Number (PIN).

 PC_to_RDR_Mechanical

Some contact card reader support physical features for the card. This can be either the

ejection or capturing of a card.

 PC_to_RDR_Abort

This can be used to abort any current transfer.

The device is not committed to support all commands, but some of them are quite useful. There is an

implementation from NXP Semiconductors, which also omits some messages. The implementation

also shows a typical mapping from data frames to APDUs.22

Each bulk message consists of a 10 byte header and message specific data. This approach makes it

easier to filter the different messages as a constant offset can be used. Each Bulk Out message

causes at least one Bulk-In response.

Some of the commands, supported by the Bulk In endpoint are:

 RDR_to_PC_DataBlock

Is used whenever the command sent by the PC contains data.

 RDR_to_PC_SlotStatus

For slot related commands this answer is sent.

 RDR_to_PC_Escape

Reader to PC response for the escape command.

21 Compare Universal Serial Bus Device Class: Smart Card, CCID, Specification for Integrated Circuit(s) Cards
Interface Devices, Revision 1.1, April 22, 2005, p26
22 Compare NXP, User Manual, UM10915, Revision 1.0, March 9, 2016, p25

16

An example of a CCID communication can be seen in the following figure:

Figure 9: Simple example of a CCID application 23

As illustrated in Figure 9 the communication flow is quite simple. The XfrBlock command can also be

used to build an own protocol on top. The PC/SC standard covers this aspect, which results in a high

number of devices supporting the PC/SC standard. Further details and implementation hints can be

found either within the PC/SC standard or in the example from NXP, which was mentioned above.

23 Compare Universal Serial Bus Device Class: Smart Card, CCID, Specification for Integrated Circuit(s) Cards
Interface Devices, Revision 1.1, April 22, 2005, p59

USB Host CCID Device

New Card detected
Interrupt In Endpoint:
RDR_to_PC_NotifySlotChange

Bulk In Endpoint:
RDR_to_PC_DataBlock

Bulk In Endpoint:
RDR_to_PC_DataBlock

Bulk Out Endpoint:
PC_to_RDR_IccPowerOn

Bulk Out Endpoint:
PC_to_RDR_XfrBlock

.
.
.

17

Communications Device Class (CDC)

Since the early years lots of devices have featured the RS232/USART interface. Nowadays most

modern computer do not support this interface by default, which leads to issues for developers who

need a COM port. The solution is a subset of the USB Communication Device Class (CDC), called

Abstract Control Model, which allows to emulate such a virtual COM port.

The main aspect for this subclass class is to connect legacy products, like old modems, to state of the

art devices.24 The Abstract Control Model supports the standard communication via the TxD and RxD

pin and additional features like the break symbol (which can be used for synchronization).

For implementing this class three endpoints are required:25

 Interrupt

Used for notification from the device to the host.

 Bulk In and Bulk Out

Like for CCID these endpoints are used for the data transmission. As the Bulk endpoint mode

is not supported by the USB Low speed standard, this class cannot be used for such devices.

This class features many request commands. The most important onces are:26

 SEND_ENCAPSULATED_COMMAND

Sends Data via the transmission channel.

 GET_ENCAPSULATED_RESPONSE

Reads Data received over the transmission channel.

 SET_LINE_CODING

This command is for setting the bus specific settings like data rate, number of stop-bits,

parity and data length for the DTE. More details about this settings can be found above

where the USART is described.

 GET_LINE_CODING

Requests the current settings of the communication channel.

 SET_CONTROL_LINE_STATE

Can be used to tell the DCE that the DTE is present and ready.

 SEND_BREAK

For synchronization purposes a special carrier modulation is defined within the RS232

standard. This command triggers this feature.

Some microcontrollers provide such device classes as a predefined Read Only Memory (ROM)

Application Programming Interface (API). That speeds up the development time and reduces the

code size. An implementation example can be found here 27.

As USB to USART converters are quite expensive, a firmware integration is very common. As it is an

USB class, the driver comes preinstalled for each modern OS.

24 Compare Universal Serial Bus Class Definition for Communication Devices, Version 1.1, January 19, 1999, p15
25 Compare Silicon Laboratories Inc., Application Note, AN758, Implementing USB Communication Device Class
(CDC) on SiM3U1xx MCUs, Revision 0.1, March 2013, p5
26 Compare Universal Serial Bus Class Definition for Communication Devices, Version 1.1, January 19, 1999, p27
27 Compare Silicon Laboratories Inc., Application Note, AN758, Implementing USB Communication Device Class
(CDC) on SiM3U1xx MCUs, Revision 0.1, March 2013

18

Human Interface Device (HID)

The idea behind the Human Interface Device class is to create custom devices without any need of

writing dedicated drivers. As it can be seen from its name the focus of this class is the interaction

between humans and computer systems.28 Typical devices using this class are:

 Keyboard

 Mouse

 Pointing devices

 Front panels

 Custom devices with low data communication

In general this class can be used for developing products that do not fit into other USB classes.29

There are some requirements for using this class, for example, each transferred data has to be

formatted as report. The structure of this report is shared with the host via a Report Descriptor (HID

class defined descriptor). An optional feature of HID is a physical descriptor to provide information

about the physical part of the human body to use the device.30

The link between the different descriptors is illustrated below:

Figure 10: Topology of USB and HID descriptors 31

In general the functionality of the device is mapped to the specific descriptors.

In general a HID device requires beside the Endpoint 0, which is always needed for configuration,

only one Interrupt In endpoint. Optional the class supports an Interrupt Out endpoint for

28 Compare Universal Serial Bus Device Class Definition for Human Interface Devices (HID), Version 1.11, June
27, 2001, p1
29 Compare Silicon Laboratories Inc., Application Note, AN249, Human Interface Device Tutorial, Revision 0.5,
March 2011, p2
30 Compare Universal Serial Bus Device Class Definition for Human Interface Devices (HID), Version 1.11, June
27, 2001, p4-p5
31 Compare Universal Serial Bus Device Class Definition for Human Interface Devices (HID), Version 1.11, June
27, 2001, p6

Device

Descriptor

Configuration

Descriptor

Interface

Descriptor

Endpoint

Descriptor

HID

Descriptor

Report

Descriptor

Physical

Descriptor

String

Descriptor

19

communication to the device.32 This means that such a device can also be implemented using an USB

Low Speed device.

In general the HID class is considered to transfer low data rates. Depending on the report setting data

can be transmitted either via so-called short items, or long items. The former features up to 4 bytes

of data. Long items can be used for exchanging up to 255 bytes of data.33

The direction of the data can also be described within the report. This allows also the request of data

like the LED status for a keyboard.

Within the HID class some common devices are predefined. An example of such a device is a

keyboard. Especially in the RFID and trading domain this kind of device can be much more than a

simple keyboard.

Keyboard

In everyday life it is typically used as an input device for the PC. For several years this technology has

also been used for barcode readers to input the read barcode as ASCII characters to the PC. This

removes the need of installing drivers and enhances the portability. As it is not possible to send data

to a keyboard (beside information for the LEDs for caps lock etc.) the scanner is used for configuring

the device, too. So a special manufacturer defined barcode is used to define the interface and the

encoding type.34 As can be seen from this example new doors are opened with this idea. In the

domain of RFID this could be used for automatically reading a Tag and writing its content to the PC.

The implementation of a HID keyboard is very simple. Just one Endpoint is needed for the

communication. An example for the report descriptor can be found here 35. It is also possible to

report the change of multiple keys with one frame. If defined within the report descriptor the host

sends the status of the LEDs (like caps lock etc.) whenever it changes. It is also possible to define the

device as Boot Keyboard, which allows the usage even in the BIOS. This could be used for entering a

BIOS password. Also the number of keys supported by the device can be defined to simplify the

development.

This approach seems to be very generic and comfortable, but there are several pitfalls:

 Language

As mentioned at the beginning a wrong language results in misinterpretation of the

transferred data. On one hand it is possible to define a country code for the device, which

can indicate the supported language, but on the other as it is not mandatory, it is very

common to ignore this information.36

32 Compare Universal Serial Bus Device Class Definition for Human Interface Devices (HID), Version 1.11, June
27, 2001, p20
33 Compare Universal Serial Bus Device Class Definition for Human Interface Devices (HID), Version 1.11, June
27, 2001, p36-p37
34 Compare IDAutomation, Programming Manual, SC7USB 2D, p12
35 Compare Universal Serial Bus Device Class Definition for Human Interface Devices (HID), Version 1.11, June
27, 2001, p69
36 Compare Universal Serial Bus Device Class Definition for Human Interface Devices (HID), Version 1.11, June
27, 2001, p53

20

It is more common not to define the mapping for each language on the device as the

operating system does this in an easier way.37

This can lead to troubles if the attached scanner for instance has a different language than

the normal keyboard and both are used.

 Speed

The transfer speed of a HID keyboard is good enough for typing or normal usage. But for

transferring the content of a whole Smart Card it might be too slow.

 Multiple keyboards

As most OS support just one keyboard language, which is used for all attached keyboards,

multiple keyboards with different languages lead to interpretation failures. This problem can

only be solved by supporting all languages within the device.

Some operating systems like MAC force the user to press a special key combination to detect the

language of the keyboard. The implementation of this can solve some of the described problems.

37 Compare Universal Serial Bus HID Usage Tables, Version 1.12, October 28, 2004, p53

21

Reader
There are many different topologies for the reader which are strongly application dependent. In

general a reader consists of at least one communication interface and a RF frontend, implementing

at least one RFID standard. It typically converts the commands sent by the host into standardized

RFID commands. Some solutions go far beyond by adding intelligent commands that perform

multiple actions, which simplifies the application implementation.

Two approaches are mainly used within domain of RFID:

 Simple device

For simple applications a RFID front end is directly connected to the host. This is mainly done

through bus systems like SPI, UART or IIC. The advantage of this solution is that it is very

cheap, simple, small and easy to change. The huge disadvantage is, that it is strongly

platform dependent, as these bus systems are not available on all systems. The user

application creation effort is higher, as everything has to be implemented there. This results

in either using an API or implementing the whole workflow. As most APIs are strongly

manufacturer dependent and not easily portable a generic solution is hard to achieve.

 Complex device

For standalone applications or more complex solutions the reader consists of a

microcontroller and a RFID frontend. This enhances the flexibility and reusability, as the

communication interface to the host can always be the same, but the type of microcontroller

can be easily changed. For typical applications inexpensive ARM Cortex M0 microcontrollers

are sufficient. For high end solutions integrated computers such as a Raspberry Pi can be

used instead. As this kind of topology is very common, some companies provide frameworks

for such devices.38 These frameworks are mainly limited by their support for different

frontends, microcontrollers and tags. As they are considered for developers knowing the

details of RFID and its standards, they do not ease the usage of standards or tags itself.

Another limitation is the connection between the microcontroller and front end. Multiple

interfaces are supported by the silicon but not within the APIs. As the time to market is often

very high, integrated flexible modules, which provide more flexibility and capabilities than an

API, are therefore needed. This helps to reduce the complexity of the application

development and usability by integrating multiple interfaces into the devices and their

firmware.

As the idea of such a complex device is no secret, some companies simply combined a

microcontroller and a front end solution on one silicon chip.39 Such a one-chip solution is described

later.

Another approach is the use of CCID RFID reader ICs. They are fully compliant to the standard and are

mainly a single chip solution, with a small form factor. The disadvantage on the reader side are the

higher costs for the IC and a fixed USB interface. On the host side, no driver has to be developed, as

they are part of many operating systems already, but the CCID stack must be implemented. For the

application development detailed knowledge about the RFID standards is a must, as the CCID and

38 Compare NXP, User Manual, UM10663, NXP Reader Library User Manual based on CLRC663 and PN512
Blueboard Reader projects, Revision 1.2, July 24, 2013, p3
39 Compare NXP, Datasheet, PN7462, Revision 3.3, December 21, 2016, p1

22

upper layer only cover the communication and configuration but neither the protocol nor the tag

handling.

Front End / Reader IC

Generally, it can be distinguished between front ends and so called reader ICs. The former one, often

called booster, amplifies the given RF signal. This reduces the antenna size and enhances the read

range.40 As such a solution needs an additional digital part for signal generation it is not used in

general designs.

Reader ICs fulfill typical system requirements like:

 Support of different RFID standards

 State of the art communication interface

 Small form factor

Multiple vendors offer different solution for this IC. The selection should be based on the application

requirements, as the front end also defines the supported standards.

Each reader IC consists of an analog front end a digital part for the RFID protocol handling and at

least one communication interface.

All in One Solution

Consist of RFID frontend and a freely programmable micro controller in one package, which allows

reduced component costs and less Printed Circuit Board (PCB) space.

An example of such a device is the PN7462 from NXP. Its basic characteristic is:41

 32 bit ARM Cortex M0 microcontroller

 High power RFID solution (HF RFID) (also available with a contacted Smartcard peripheral

interface)

 Operating frequency up to 20 MHz

 Up to 160 kB Flash memory

 Several host interfaces like USB, USART, IIC and SPI

 Support of all common RFID Standards

In addition to its impressive feature set, the pitfall is within its details. The use of such an integrated

solution reduces some flexibility, as the microcontroller and its features are given. Such a device may

become a bottleneck in case of medium- to high-level applications, for example cryptographic

operations have to be calculated within the microcontroller without a crypto unit, where the low

internal operating frequency can become the bottleneck for fast transaction times.

For simple applications this approach is groundbreaking and brings many benefits. Future products of

this type might comprise a more powerful microcontroller with a reader IC to remove the discussed

issue.

40 Compare Austriamicrosystems, FS_AS39230 (Accessed: 27.1.2017):
http://ams.com/eng/content/view/download/382456
41 Compare NXP, Datasheet, PN7462, Revision 3.3, December 21, 2016, p1

http://ams.com/eng/content/view/download/382456

23

Antenna

For connecting the reader with the tag over the air, interface antennas are needed. Mainly loop

antennas are used within the HF RFID domain. The transformer principle is used for energy

transmission.42 This is illustrated below.

Figure 11: Principle of energy transmission in HF RFID 43

A current through the antenna of the reader creates a magnetic flux φ. This flux induces a voltage V

within the tag. Figure 11 shows the principle of an RFID system with two antennas of a different size.

For achieving power matching, a matching circuit is needed. This transforms the rectangular signal,

generated by the reader, into a sine wave with the correct frequency. A typical example for a

matching network is shown next:

Figure 12: Example of a matching network commonly used 44

As this technology operates within the nearfield, the surrounding has a high impact on the system.

Therefore it is necessary to match each device application and environment specifically.

Some companies offer reader ICs with an integrated auto tune feature, which allows to compensate

the influence of the environment within specified limits. An example of such a device is the AS3911

from Austriamicrosystems.

This principle of powering the tags is equal for all HF standards and is based on magnetic coupling.

42 Compare NXP, Application Note, AN78010, Revision 1.0, November 2002, p6
43 Picture taken from Dipl.-Ing. Michael Ganzera, lecture “Identification and System Integration”, Campus 02,
2016
44 Compare NXP, Application Note, AN11535, Measurement and tuning of a NFC and Reader IC antenna with a
MiniVNA, Revision 1.1, November 3, 2014, p12, figure 9

Reader Antenna Tag Antenna

24

Air Interface
This part defines the data transfer between the tag and the reader. For this purpose commonly the

following techniques are used:

 Amplitude Shift Keying (ASK)

The idea behind this digital modulation is that a bit stream is represented by different

amplitudes of the signal. The simplest form of these techniques is called On-Off-Keying. This

can be seen as an AND connection between the signal and the bit stream. This technique

results in high data rates, but low noise immunity.45

Figure 13: Functional principle of ASK 46

As such a modulation of 100% (Signal on vs. Signal off) reduces the power, transmitted to the

tag most standards use a lower modulation index. In general the modulation depth (MD) can

be calculated using the following equation:47

𝑴𝑫 =
𝒎𝒐𝒅𝒖𝒍𝒂𝒕𝒆𝒅 𝒔𝒊𝒈𝒏𝒂𝒍 𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆

𝑢𝑛𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
 (4)

Another specified value is the modulation index, which can be calculated using:

𝑴𝑰 =
𝒑𝒆𝒂𝒌 𝒔𝒊𝒈𝒏𝒂𝒍 𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆−𝒎𝒊𝒏𝒖𝒎𝒖𝒎 𝒔𝒊𝒈𝒏𝒂𝒍 𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆

𝒎𝒊𝒏𝒖𝒎𝒖𝒎 𝒔𝒊𝒈𝒏𝒂𝒍 𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆+𝒑𝒆𝒂𝒌 𝒔𝒊𝒈𝒏𝒂𝒍 𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆
 (5)

For enhancing the read range, a technology called active load modulation can be used. This

technology enhances the range of RFID systems by not reducing the amplitude. This means

that even for a system with small antennas (or in general a low coupling factor) good

performance can be achieved. The IC manufacturer austriamicrosystems provides such a

solution, which permits the use of a 100 times smaller antenna.48 Such devices are used in

the domain of smartphones, as their internal space for the antenna is limited. Even

inconvenient materials, like metal, are used.

45 Pete Sorrells, Microchip Technology Inc., Application Note, AN680, Passive RFID Basics, 1998, p4
46 N. Vlajic, Analog Transmission of Digital Data: ASK, FSK, PSK, QAM, Fall 2010, (Accessed: 27.1.2017):
 https://web.stanford.edu/class/ee102b/contents/DigitalModulation.pdf , p6
47 Atmel, Application Note, Requirements of ISO/IEC 14443 Type B Proximity Contactless Identification Cards,
Rev. 2056B-RFID, November 2005, p5
48 Nicolas Cordier, Austriamicrosystems, Technical Arcticle, How new ‘boostedNFC’ technology enables mobile
phones and wearable devices to emulate contactless cards reliably, p3

 X

Oscillator
Modulated signal

Carrier signal

1 0 1 1 0

https://web.stanford.edu/class/ee102b/contents/DigitalModulation.pdf

25

 Frequency Shift Keying (FSK)

This technique requires two signals with different frequencies. In general the carrier

frequency and a second signal, derived from the carrier frequency (subcarrier) are used. In

comparison the previous described ASK, the energy transmission to the tag is not being

affected. On the other hand the demodulator is more complex, as it has to distinguish

between two different signals. It is also more reliable than ASK, as the amplitude can be

unintentionally influenced more easily than the frequency. The following figure illustrates

this technique:

Figure 14: Principle functionality of FSK 49

As can be seen in Figure 14, the data information is coded within the frequency. This also

leads to lower data rates in comparison to other techniques.

 Phase Shift Keying (PSK)

This technology is similar to FSK with one difference. Just one carrier is used. The data

information is coded within the phase of the signal. Commonly, two approaches of this

technique are used:50

o The phase is changed for a ‘0’

o The phase is changed for a transition (‘0’ to ‘1’ or ‘1’ to ‘0’)

In comparison to FSK higher data rates are possible and the reader design is moderate. Also

the noise immunity is fairly good.50 The topology of PSK is shown below:

Figure 15: PSK system topology 51

49 N. Vlajic, Analog Transmission of Digital Data: ASK, FSK, PSK, QAM, Fall 2010, (Accessed: 27.1.2017):
 https://web.stanford.edu/class/ee102b/contents/DigitalModulation.pdf , p9
50 Pete Sorrells, Microchip Technology Inc., Application Note, AN680, Passive RFID Basics, 1998, p4
51 N. Vlajic, Analog Transmission of Digital Data: ASK, FSK, PSK, QAM, Fall 2010, (Accessed: 27.1.2017):
 https://web.stanford.edu/class/ee102b/contents/DigitalModulation.pdf , p12

Modulated signal

Carrier signal 2

Carrier signal 1

1 0 1 1 0

Bitstream

 X

Oscillator
Modulated signal

Carrier signal

1 0 1 1 0

https://web.stanford.edu/class/ee102b/contents/DigitalModulation.pdf
https://web.stanford.edu/class/ee102b/contents/DigitalModulation.pdf

26

These digital modulation techniques have the advantage that on top of this “physical” layer the data

can be encoded.

Different encoding algorithms enhance the error recovery, bandwidth, synchronization capabilities

and much more. Some of the most popular methods used within the domain of RFID are:52

 Non Return to Zero (NRZ)

 Differential Biphase

 Manchester

The basic principle is shown below:

Figure 16: Overview of different coding used within RFID systems 52

In general the encoding, modulation and bitrate are different for each standard. Even the

communication from reader to tag and conversely can differ.

For supporting most tags within the HF RFID technology it is strongly necessary to cover the following

standards. In general a RFID system does not support all of them together as the reader IC limits the

number of standards.

Some manufacturer still deny any access to their own (not standardized) RFID technology. Some of

them are reversed engineered by universities or security companies. The LEGIC Prime hack, is one

popular example for that. It shows once again that security by obscurity is a bad approach.53

52 Compare Pete Sorrells, Microchip Technology Inc., Application Note, AN680, Passive RFID Basics, 1998, p3
53 Compare Henryk Plötz and Karsten Nohl, Legic Prime: Obscurity in Depth, December 28, 2009

27

ISO 14443 A/B

Like most standards, ISO14443 consist of several parts. Defining the physical characteristics, radio

frequency, power and signal interface, initialization and anti-collision, and a transmission protocol.

This standard defines the reader as a Proximity Coupling Device (PCD) and the tag as Proximity

Integrated Circuit Card (PICC). The physical characteristics like size of a tag can be found in part 1 of

the standard. Part 2 is much more important for an implementation as it defines the carrier

frequency, encoding modulation and all signal related properties for both directions (PCD->PICC and

PICC->PCD).

In general two different signal interfaces are defined known as Type A and Type B. Both have a

carrier frequency of 13.56 MHz, but the modulation mode and coding is different, as is illustrated in

the following figure:

Direction Type A Type B
PCD to PICC 100% ASK

Modified Miller
106 kbit/s

10% ASK
Non Return to Zero (NRZ)

106 kbit/s

PICC to PCD Load Modulation
Subcarrier fc/16

On-Off-Keying (OOK)
Manchester
106 kbit/s

Load Modulation
Subcarrier fc/16

Binary Phase Shift Keying (BPSK)
Non Return to Zero-Level (NRZ-L)

106 kbit/s
Figure 17: Signal details for the ISO 14443 A and B standard 54

As most reader ICs have to be configured according to these values, this knowledge about each

standard is a must. More specific details like the bit representation or timings can be skipped as this

has to be fulfilled by the reader IC.

Both types support four different bitrates: 106 kBit/s, 212 kBit/s, 424 kBit/s and 848 kbit/s. It must be

considered that for compatibility reason only the lowest bitrate can be used for the initialization and

anti-collision.55

In general each communication is initiated by the reader, which leads to a master slave topology. The

standard also defines a command set which has to be implemented for the reader and the tag. Each

tag has a specific ID called Unique Identifier (UID). This ID was considered to be unique but within the

recent years None Unique Identifiers (NUID) and even Random Identifiers (RID) are available on the

market. The size of this ID is defined from 4 to 10 bytes.

One of the problems with RFID systems is that multiple tags can share the same medium (RF-Field)

concurrently. Therefore an addressing scheme is important. This scheme based on the ID of the tag is

called anti-collision and is different for Type A and B.

54 Compare ISO/IEC 14443-2, Identification cards — Contactless integrated circuit(s) cards — Proximity cards —
Part 2: Radio frequency power and signal interface, July 2001, p9
55 Compare ISO/IEC 14443-3, Identification cards — Contactless integrated circuit(s) cards — Proximity cards —
Part 3: Initialization and anticollision, Novembre 20, 2008

28

 Bit oriented anti-collision used for Type A:

This procedure is split up in several steps. The principle technology is based on collision

recognition. The PCD transmits a command which requests all tags within the field to reply

with their complete ID. As some parts of this bit stream will be identical, collisions might

occur. The reader has to detect them (bit position within the answer) and resolves the

collision by sending a special frame. This frame indicates the number of valid bits (number of

bits before the collision) and only PICCs that fulfill these requirements send an answer. This

procedure can be performed up to 32 times.

This means that two PICCs with the same ID, used within one RFID system, lead to problems,

as they cannot be differentiated.

Most reader ICs do not handle all these steps within the hardware, so this must be

implemented in software. The standard also provides detailed additional information like a

flowchart.56

 Timeslot anti-collision used for Type B:

This anti-collision sequence uses a number of slots (N) defined by the first command (REQB)

sent by the PCD. If the number is one, all PICCs response to the command else, a random

number in the range of one to N. As the number of bits for the slot count is limited to 4, up

to 16 slots are possible within one activation round. The reader uses a slot marker command

to raise the current slot number. Each PICC notices this and is only allowed to response

(transmit ATQB) within one slot (When slot number is equal to its random number). If

multiple PICCs have the same random number, a collision will occur. The reader detects this

collision and activates all other slots / tags. As activated PICCs do not react on the REQB

command, all inactivated tags generate a new random number and the procedure is started

again.

If just one slot is available, the concurrent use of multiple PICCs is impossible. An example of

this sequence is shown below:

Figure 18: Timeslot anti-collision sequence with a different amount of slots 57

As is illustrated above, the slot based anti-collision is straight forward as the reader must

only detect a collision but not the bit position. This common method is also used for other

standards. For an application using mainly one card, it can be a good approach to start with a

slot counter of 1, as the overall time needed for processing all slots is avoided.

56 Compare ISO/IEC 14443-3, Identification cards — Contactless integrated circuit(s) cards — Proximity cards —
Part 3: Initialization and anticollision, Novembre 20, 2008, p9-p12
57 Compare Atmel, Application Note, Requirements of ISO/IEC 14443 Type B Proximity Contactless
Identification Cards, Rev. 2056B-RFID, November 2005, p12

29

 Probalistic anti-collision used for Type B:

This approach is like the timeslot method, but the generated number is used in another way.

This means that only the PICC with a generated random number ‘1’ is allowed to send its

response. A higher number of available slots lead to a higher probability, that just one PICC

has the randomly generated number ‘1’. An example of this anti-collision sequence is shown

below:58

Figure 19: Functionality of the probalistic anti-collision sequence 58

The meaning of the different commands and Tags can be found as additional information within the

standard.

Part 4 of the standard describes a protocol extension including a transmission protocol.59 It is

important to know that this extension is optional and not implemented for all tags. This is the only

possibility to enhance the data rate as all previous communication is fixed to 106 kbit/s.

58 Compare Atmel, Application Note, Requirements of ISO/IEC 14443 Type B Proximity Contactless
Identification Cards, Rev. 2056B-RFID, November 2005, p13
59 Compare ISO/IEC 14443-4, Identification cards — Contactless integrated circuit(s) cards — Proximity cards —
Part 4: Transmission protocol, March 19, 2007

30

ISO 15693

This standard names the reader Vicinity Coupling Device (VCD) and the tag Vicinity Integrated Circuit

Card (VICC). As most standards it consists of several parts where part 1 describes properties like the

maximum and minimum field strength or operating temperature.60

Within the second part the signal and transfer characteristic is defined. The operating frequency is

13.56 MHz and each transmission is initiated by the VCD.

The standard allows the PCD the use of either 10% or 100% ASK modulation.61 As in general most

VICCs support just one of those settings, both have to be implemented for full compatibility.

Pulse position modulation is defined for encoding the data. The VCD can decide either to use the 1

out of 256 or 1 out of 4 coding. The VICC on the other hand should support both, which is in general

not the case.

The VICC detects the used modulation and bit encoding within the start of frame symbol, which is

sent first by the VCD. Besides that the VCD can also select if the VICC shall either use one or two

subcarriers and high or low data rates.62

Data Rate Single Subcarrier Dual Subcarrier
Low 6,62 kbit/s 6,67 kbit/s

High 26,48 kbit/s 26,69 kbit/s
Figure 20: Overview of the different configuration chosen by the VCD

As you can see the number of possible settings is huge. As most VICCs support just specific

combinations a generic solution is hard to achieve. Figure 20 also shows the maximum bit-rates of

about 26 kbit/s.

For communicating with multiple VICCs within the field, each tag has a UID. In comparison with the

previous described standard the length is fixed to 8 bytes. It is also defined, that the MSB is set to

0xE0.

The anti-collision mechanism is also based on timeslots. Instead of a random numbers a mask and

the UID is used to for selecting the appropriate slot. Further details can be found within part 3 of the

standard.

In comparison to the previous standard ISO15693 also defines principles for additional VICC usage

like reading, writing or locking. This leads to a defined limitation, as only a fixed number of bits is

reserved for addressing. In general this standard limits the memory size to 8 kBytes. As this is not

enough for modern applications some manufacturers build their own tag handling commands on top

of this standard. This enhances the address range and capabilities.

60 Compare ISO/IEC 15693-1, Identification cards — Contactless integrated circuit(s) cards — Vicinity Integrated
Circuit(s) Card Part 1: Physical characteristics, p3-p5
61 Compare ISO/IEC 15693-2, Identification cards — Contactless integrated circuit(s) cards — Vicinity cards
Part 2: Air interface an initialization, p3
62 Compare ISO/IEC 15693-2, Identification cards — Contactless integrated circuit(s) cards — Vicinity cards
Part 2: Air interface an initialization, p8

31

FeliCa

This standard, defined by Sony cooperation, has become more relevant within the last years.

The communication properties are given with a carrier frequency of 13.56 MHz, ASK modulation and

Manchester coding. The data rate can be either 212 kbit/s or 424 kbit/s. 63

The standard also consists of a data link layer, which in contrast to the other standards, defines a

fixed packet format. Such a frame consists of a preamble (6 bytes), sync code (2 bytes), data length (1

byte), packet data and CRC (2 bytes).64 Which results in 11 byte additional data per frame.

On top of the datalink layer the application layer defines different packet types and a list of

commands. As FeliCa tags are highly security related, even authentication commands are defined.

FeliCa also defines something similar to the UID. It is called Manufacture ID (IDm) and Manufacture

Parameter (PMm).

For handling multiple tags simultaneously three different anti-collision methods are available:65

 Time slot method

Is almost equal to the ISO 14443 Type B timeslot method. The goal of these methods is to

reduce the probability of collisions by using multiple slots. In the end all tags within the field

shall be activated after this procedure.

 Identification of communication target by IDm

Using the IDm the reader can communicate mutually with this tag. For applications where

always a fix card is used or the IDm is known, this might simplify the communication flow.

 Identification of communication target in secure communication

During a secure communication each tag calculates a Message Authentication Code (MAC).

As each tag is able to receive such a command, only the tag with the correct one can

interpret the command and vice versa.

FeliCa also features a definition of a file system, which has not been mentioned in the previous

standards. This system consists of four components:

 System

 Area

 Service

 Block Data

They are managed together as a “Block”. The filesystem itself is very complex and no reader available

on the market offers a built-in support. In general, FeliCa is used in the domain of public transport

systems and security related entry systems, especially in Japan.

63 Compare SONY, FeliCa Card User's Manual Excerpted Edition, Version 2.01 No. M617-E02-01, p8
64 Compare SONY, FeliCa Card User's Manual Excerpted Edition, Version 2.01 No. M617-E02-01, p9
65 Compare SONY, FeliCa Card User's Manual Excerpted Edition, Version 2.01 No. M617-E02-01, p15-p19

32

ISO 18000-3M3

This standard, which is especially used for item management, consists of 6 parts, but only part 3 is

related to HF RFID, as all other parts consider other frequencies. Within part 3 three different non-

interfering modes are described. Each for a different purpose. MODE 1 is based on the ISO 15693

standard, MODE 2 defines a high speed interface and MODE 3 is based on the EPC (electronic

product code) HF standard.

In general, these rather new technology is not widely common. One reason for that is a low number

of tags supporting this standard. Within this domain the reader is named interrogator and same as

for all RFID standards the interrogator initiates each transmission.

The reader communicates with the tag using a Double Sideband ASK (DSB-ASK) and Pulse Interval

Encoding (PIE). This encoding technique guarantees that at least 50% of the overall power is

delivered to the tag, even if a bit stream has only zeros. This is achieved by coding a zero with equal

high and low pulses.66

Figure 21: Pulse Interval Encoding bit definition

The communication from the tag to the interrogator is based on ASK and load modulation. Several

methods for data encoding are defined like Miller – or Manchester with sub carrier. The reader also

determines the frequency of the used subcarrier, which can be either 424 kHz or 848 kHz. 67

This approach allows the use of more tags simultaneously. Therefore typical applications are

document tracking or in general logistic solutions.

The standard also defines a very fast anti-collision sequence, which allows to scan about 800 tags/s.

The data rate from the interrogator to the tag is typically between 26kbit/s and 100kbit/s. The tag

can respond with 53 kbit/s up to 848 kbit/s.

The anti-collision sequence is based on the timeslot approach and an implementation is provided by

NXP.68

The memory size of these tags are mainly defined in bits, which is enough for tracking applications.

Especially for libraries this technology has become important within the last years.

66 Compare ISO/IEC 18000-3, Information technology — Radio frequency identification for item management
— Part 3: Parameters for air interface communications at 13,56 MHz, 2010, p52
67 Compare NXP, Datasheet, SL2S1412; SL2S1512; SL2S1612 ICODE ILT-M, Rev. 3.2, October 8, 2013, p9
68 Compare NXP, Application Note, AN11402, How to implement the ICODE ILT anti-collision, Rev. 1.0, October
23, 2013

33

Tag
The air interface is used to communicate with a counterpart to the reader, mainly called tag.

A tag consists of the RFID chip mounted on an antenna – this combination is called inlay. Further

covering layers on top and bottom for artwork and / or a sticky bottom define an RFID tag. The

features of such tags can vary a lot. In general the tag comes with a Unique Identifier (UID) and an

application-dependent amount of memory and security features. Within the last years these

capabilities have grown continuously, which enhanced the complexity of the tags. Several encryption

standards, counters or even flexible file systems are available.

Tags not only differ with their standards or features, there are also two main technologies using

active and passive tags. Active tags incorporate an internal power source (battery), which leads to a

bigger and more costly form factor. Passive tags are powered by the reader’s RF field. These

topologies also differ concerning the operating range. Active powered tags have a much higher

operating range as the signal sent back from the tag can be stronger than the signal from passive

tags.

Different form factor and technologies allow an application specific choice of suitable tags. The form

factors vary from credit card sized tags to very small round stickers with about 6mm diameter. Key

rings, wristbands and watches are only some other form factors, which have become popular

recently.

For selecting appropriate tags the used standard and its benefits and physical limitations must be

considered. Another important parameter is the memory size. Depending on the technology the size

varies from several bits up to multiple kBytes. In general tags with higher memory capabilities also

offer more commands and features. This increases the development effort and this is one of the

major reasons why in general, RFID modules only support simple low-level commands. This leads to

features being unused.

As RFID tags are used in security related applications like e-passports or credit cards, several different

encryption algorithms are supported. In the beginning NXP with their self-made MIFARE Crypto 1

algorithm invented the first encrypted tags. As the encryption was not public, it took a while until

researchers hacked this algorithm.69 It turns out that the system is based on security by obscurity

which, in general, is a bad approach. Today the manufacturer added state of the art cryptography

like AES, ECC or 3DES. These open standards enhance the security while complexity is increased.

As many tags are used in security critical applications, not every information is available for public

use. This means that for implementing all security related and more complex features special

datasheets and implementation guidelines are necessary. NXP for example offers these documents

to registered and verified users via its so-called doc-store.70 According to a given security level the

user is allowed to download tag specific additional information. It is strictly forbidden to publish or

share them as this information provided only after signing an NDA (Non-Disclosure Agreement). The

same applies to other silicon manufacturers.

69 Compare Márcio Almeida, Hacking Mifare ClassicCards, (Accessed: 28.1.2017):
https://www.blackhat.com/docs/sp-14/materials/arsenal/sp-14-Almeida-Hacking-MIFARE-Classic-Cards-
Slides.pdf
70 (Accessed: 28.1.2017): https://www.docstore.nxp.com/flex/DocStoreApp.html

https://www.blackhat.com/docs/sp-14/materials/arsenal/sp-14-Almeida-Hacking-MIFARE-Classic-Cards-Slides.pdf
https://www.blackhat.com/docs/sp-14/materials/arsenal/sp-14-Almeida-Hacking-MIFARE-Classic-Cards-Slides.pdf
https://www.docstore.nxp.com/flex/DocStoreApp.html

34

A special type of tag is quite new, they are called connected tags.71 These special purpose tags are

designed to add RFID technology easily to embedded systems and devices. Connected tags provide

RFID tag functionality and a wired interface such as SPI or IIC. This can be used for bidirectional

communication and data transfer. Another feature of such devices is that an internal circuitry allows

energy harvesting for the supply of external electronic circuits such as sensors and microcontrollers.

The energy for the supply is taken from the RF field.

Most RFID modules available on the market only implement the ISO standard specific commands.

Which results in a complex implementation of each application. In general, all tags have different

commands, which are based on the standard. Some manufacturers extend this functionality by own

commands, which have different frames or timings.

A complete coverage of all available tags is nearly impossible. To enhance the capabilities of such a

reader/writer module it might be a good solution to implement the commands of the most common

tags.

Since Smartphones became RFID enabled, developers have been looking for new application fields.

One solution is the simple paring process for a Bluetooth connection. To simplify this process, tags

can be used. A special tag format called Near Field Data Exchange Format (NDEF) is used.72 This

standardized format allows each reader to interpret the content of a tag. For using this feature the

tag needs a specified memory format. The format itself supports a long list of different actions like:

 Calling a telephone number

 Sending a SMS

 Creating a contact

 Pairing with a Bluetooth device

 Pairing with a Wi-Fi device

This enhances the usability and is a good alternative for QR codes. A typical application for this is a

visiting card (vCard). This allows a customer to call the person by simply scanning the card instead of

typing its number.

Such an encoding included in a module is barely available. As this format is quite complex, an

implementation of such a feature increases the time to market significantly.

As the price for such tags is very low, the number of RFID enabled devices increases strongly.

71 Compare NXP, Connected Tag Solutions, (Accessed: 28.1.2017):
http://www.nxp.com/products/identification-and-security/nfc-and-reader-ics/connected-tag-
solutions:MC_1429877262080
72 Compare NFCForum, NFC Data Exchange Format (NDEF) Technical Specification NFC Forum, NDEF 1.0
NFCForum-TS-NDEF_1.0, July 24, 2006

http://www.nxp.com/products/identification-and-security/nfc-and-reader-ics/connected-tag-solutions:MC_1429877262080
http://www.nxp.com/products/identification-and-security/nfc-and-reader-ics/connected-tag-solutions:MC_1429877262080

35

3. Firmware Architecture
For covering all the described aspects the firmware architecture consists of multiple layers. This

topology has multiple advantages like:

 Easily extendable, as only the specific layer has to be modified.

 Easily portable, only the hardware related layer has to be changed.

 Same structure for each project, allows to upgrade former projects with new features by

simply replacing the necessary files.

 Revision history per file and not per project.

 Only the used components have to be added to the project.

The following figure shows the layers of the implemented architecture:

Figure 22: Overview of the implemented abstraction layer

Each layer implements at least one functionality. The interaction between these layers is realized by

using a function pointer concept, which will be described later in this document. In comparison to

other state of the art libraries like the NXP Reader library, this implementation has two additional

levels. The command and extended level are used to simplify the use of the underlying plains. As the

solution, provided by NXP, is confusing and not easily extendable, it was decided to start from

scratch. Another reason for this decision is the fact that the Hardware Abstraction Layer (HAL) of the

available reader libraries is mainly considering the communication between the Reader IC and the

Host controller. This means that it does neither allow to change the microcontroller family nor the

communication interface. The implemented approach covers this by including an abstraction for the

microcontroller and the reader IC.

Compared to other solutions and to enhance the usability the number of necessary files is also

strongly reduced. This allows new users to get a fast overview of the structure and features of the

framework.

Application
Layer

Command
Abstraction Layer

Extended Abstraction
Layer

Protocol Abstraction Layer

Hardware Abstraction Layer

36

Programming Language and Integrated Development environment (IDE)

Especially within the last years C++ compiler have become more widespread in the domain of ARM

microcontrollers. But as there are still mainly C compiler available for most microcontrollers, C was

chosen as programing language.

For developing microcontroller based applications multiple IDEs are available, which differ in their

compilers and feature set. Even code completion or automatic code generation features are

available. Some of them are for free, others can only be used for non-commercial use or for a license

fee. After some research the LPC Xpresso IDE from NXP has been chosen.

This IDE is available with different licensing options. It can be used for commercial use as well as for

private use. For activating the free version an account on LPCWare is necessary. This free account can

be easily created. After installation this guide shows the steps to activate the free license:

https://www.lpcware.com/content/faq/lpcxpresso/activating-lpcxpresso-free-edition

(Accessed: 28.1.2017).

In contrast to the PRO-license, which costs around 500€ per PC, the free version has a debug code

limit of 256 kB. The IDE allows to compile projects with a bigger code size, but it is not possible to

load them to the target device using this IDE. The PRO version also features technical support and

enhanced trace and profiling features.

As this limitation is not affecting most projects the free version of the LPC Xpresso has been used.

The latest version of the IDE can be downloaded here: https://www.lpcware.com/lpcxpresso/home

(Accessed: 28.1.2017).

It comes with a simple installer and multiple example projects for microcontroller from NXP and

Freescale (now a part of NXP). The IDE itself is based on Eclipse, which also allows the user to add

lots of helpful tools via the Eclipse Market place. In general this IDE comes with the GCC compiler,

which supports C and C++ as well was ASM commands.

For enhancing the portability and reusability even for other platforms, the use of American National

Standards Institute (ANSI) C is a must. It is also important not to use compiler specific commands.

“Defines” shall also not be used for enabling or disabling code segments, as this leads to a higher

level of confusion. For compatibility reasons the latest C standard (C11) should not be used.

This multiplatform IDE supports all common operating systems like MAC OS, Windows (7 and later)

and Linux. This allows to support a wide range of development platforms.

Another advantage for the use of this IDE is the fact, that most microcontroller development boards

from NXP feature a hardware debugger. This allows to flash firmware and debug the device. The

necessary drivers for this tool are installed automatically during the installation process of the IDE.

During the development process a GIT based subversion system was used. This allows to track the

changes and development process. It also reduces the effort of releasing a version of the framework.

Such kind of submission projects can be either hosted on a local GIT server or on platforms like

GITLab. Such tools are also very helpful for parallel software development as it automatically detects

the changes and merges it together. It can also be used to track known bugs.

https://www.lpcware.com/content/faq/lpcxpresso/activating-lpcxpresso-free-edition
https://www.lpcware.com/lpcxpresso/home

37

Hardware Abstraction Layer (HAL)
This layer is mainly hardware dependent and has to be implemented for any new hardware. In

contrast to typical RFID libraries, this solution also covers the aspect of using different

microcontrollers. Therefore this layer consists of a host and reader related part.

Minimum Hardware requirements

As not all microcontrollers have the same peripherals and capabilities, some minimum requirements

for the used host controller have to be defined:

 One SPI Interface must be available for communicating with the reader IC. This can be

realized using a Hardware peripheral or via Software. The Speed of this Interface shall be

typically 10 MHz, but not more. The Chip select line must be implemented according the SPI

standard. The signal levels have to be 3.3 V.

 At least one USART or USB connection must be available. This is needed for interfacing with

the external host application. The supported bitrates for the USART communication may be

platform dependent. The USB Peripheral must support at least 3 Endpoints and must feature

USB full speed.

 At least one timer is necessary for implementing a common time base. It must be capable to

count with a frequency of 1 MHz.

 For the code protection a manufacturer programmed unique serial number is needed. This is

used to limit program updates only for specific microcontrollers and permits the use within

non-authorized hardware.

 A volatile memory of at least 256 bytes is needed to permanently store configuration data.

This can be either an Electrically Erasable Programmable Read-Only Memory (EEPROM) or

the internal flash.

 A Code Read Protection (CRP) mechanism must be available for protecting the code.

 The size of the flash and Static Random-Access Memory (SRAM) has to be defined application

specific. In general 32 kB flash and 4 kB SRAM fulfill the requirements for a standard

application.

For the Reader side the following minimal requirements have to be fulfilled:

 A SPI interface to the host controller shall be used. This interface is chosen, because of the

high data rate.

 There is no upper limit for the number of supported standards, but at least one RFID

Standard must be supported.

 The signal level of the interface signals shall be 3.3 V.

 Distinct product ID. This is used for auto detecting the attached reader IC and enhances the

usability as the reader IC can be changed dynamically during production.

For typical applications the following additional features are supported by the library but are not

required:

 Three independent Pulse Width Modulation (PWM) channels for driving a RGB LED.

Or: two GPIOs for driving a red and a green LED.

 One independent PWM channel for driving a Buzzer.

 Four GPIOs for driving Antenna switches for supporting multiple antennas at the same time.

38

 The possibility to enter the Flash Mode via the program.

These additional features allow to easily enhance the user experience and are mainly used on the

upper most layer.

Host

This part of the HAL only considers the microcontroller. Most part manufacturers offer libraries for

their microcontrollers. These are quite useful for fast prototyping and reduce the development

effort. A huge disadvantage of this approach is, that these libraries often increase the latency

dramatically. The size of these libraries can be enormous. To overcome these problems such libraries

should not be used. The implemented framework only uses the given startup files and register

definitions. This reduces the latency dramatically, but enhances the development effort, as every

functionality has to be implemented in low level.

A general problem of a layer based architecture is the interaction between the layers. As all other

layers are based on the HAL, a standardized interface is needed. This is achieved by defining and

describing all functions that have to be implemented for each hardware. For reducing the

development effort the number of these functions shall be kept at a minimum.

The following functions are used to connect the HAL with all upper layers. If the functionality is not

available, the function has to be defined but not implemented. This file (uc_hal) looks the same for to

all hardware.

 UC_HAL_SystemInit

This function configures the microcontroller and peripheral like its watchdog and clock

settings.

 UC_HAL_SPI_Init

To configure the SPI interface to the reader, this function must be called.

 UC_HAL_SPI_Exchange

The Reader part of the HAL and all other upper layer use this function for transferring data to

the Reader IC.

 UC_HAL_UART_Init / UC_HAL_UART_DeInit / UC_HAL_UART_Send_String /

UC_HAL_UART_Receive_String

These UART related functions are used by the application to communicate with the external

host system, if the USART is used as communication interface. An automatic baud rate

detection, according to the principle shown in the first part, is implemented.

 UC_HAL_USB_Init / UC_HAL_USB_DeInit / UC_HAL_USB_Keyboard_SendString /

UC_HAL_USB_Keyboard_SendChar / UC_HAL_USB_Send_String /

UC_HAL_USB_Receive_String / UC_HAL_USB_CCID_Task

If the USB interface is used, the following functions provide the whole USB functionality. The

application can specify the mode of operation with the USB_Init function. Abstracted

functions allow the application to easily send a String via the VCOM interface or Keyboard

emulation. Even the CCID-Handling is abstracted. As the Endpoint management is different

for most microcontrollers this has to be done controller specific.

 UC_HAL_WAIT_Init / UC_HAL_WAIT_MilliSeconds / UC_HAL_WAIT_MicroSeconds

All time related functionality is based on this functions.

39

 UC_HAL_GREEN_LED / UC_HAL_TOGGLE_GREEN_LED / UC_HAL_RED_LED /

UC_HAL_TOGGLE_RED_LED / UC_HAL_SET_ANTENNA / …

For user interaction these functions are used. They provide simple access to the LEDs, buzzer

and other peripherals.

 UC_HAL_RESET / UC_HAL_ReadSerialNumber / UC_HAL_ReadStorage /

UC_HAL_WriteStorage / …

These kinds of functions are used on upper layers for hardware related operations like

storing data, or requesting the system to perform a reset.

As the function name is equal for each platform, the main program can also be easily changed. It also

simplifies the change of the hardware platform as only the uc_hal and the linked register definition

files have to be swapped.

For checking the correct behavior of the HAL a specific main program is written. This calls each of the

provided functions and easily allows the verification of each function. Therefore an oscilloscope is

needed to perform the timing checks.

As the names are always the same, this test case can be easily used for verifying each new hardware

architecture. Verification at this level is very important as all upper layers rely on the correctness of

this functionality.

As the hardware configuration and connection is not always the same, the PIN and PORT number can

be easily adapted using defines. As these defines are only used locally within the uc_hal files, it is not

confusing. It is a good approach to define a connection diagram for each microcontroller. This means

that the connection for each possible peripheral is defined and will not change afterwards.

As can be seen above such an abstraction is always a tradeoff. On one hand it allows to easily swap

the target technology but on the other special function might be left unused. This is the case for

crypto engines. As in the segment of low power, low cost microcontrollers such as peripherals are

still not widespread. Therefore the cryptographic functionality has to be implemented in software.

This leads to a performance gap as a software implementation cannot be as efficient as a hardware

module.

The current version of the library offers the support of different microcontrollers mainly

manufactured by NXP. The low cost and low performance microcontroller series LPC11xx is

supported as well as the mid power LPC11u6x series, which features a USB interface and enhanced

capabilities.

The performance of these microcontrollers is sufficient for applications like a USB reader. As there

was no application which required a higher capabilities high end microcontrollers are not

implemented by now.

40

Reader

The reader abstraction is served by the HAL. In comparison to the host abstraction, this part is not

compiler related. This means that the interaction can be realized much simpler and more generically.

Therefore function pointers are used. The idea behind this approach is to dynamically change the

used reader IC without changing any line of code. This can be useful for applications where only a

preprogrammed microcontroller is sold. The disadvantage of this solution is, that the abstraction of

each reader IC has to be included to the binary, which increases the code size. This can be omitted by

directly defining the related functions.

In general this approach allows to change the used reader IC easyily with minimum effort. In contrary

to the host abstraction an additional file is needed to connect the different layers. This interaction is

shown below.

Figure 23: Interaction between the different parts of the HAL

The reader IC functions are implemented within a specific file for each device. As the name of the

uc_hal functions are always the same, no specific link is required. The reader IC functions only use

the SPI_Exchange and WAIT commands, provided by the uc_hal.

The PCD file is responsible to link the upper layers to the corresponding reader functions. This means

that this file has to be modified for each new added reader IC.

The following functions are included in the PCD file and are used by all upper layers:

 PCD_Reset

This function is used to reset the reader IC.

 PCD_InitTypeA / PCD_InitTypeB / PCD_InitTypeF / PCD_InitISO15693 / PCD_InitISO180003

The upper layer calls these functions to initialize the reader for a specific protocol.

 PCD_FieldReset / PCD_Field

The status of the RF field can be modified using these functions.

 PCD_GetVersion

For detecting the connected reader IC this function returns the ID of the IC.

 PCD_Exchange_TypeA / PCD_Exchange_TypeB / PCD_Exchange_TypeF /

PCD_Exchange_ISO15693 / PCD_Exchange_ISO180003

These functions are called to exchange a frame according to the given standard.

A special function, called PCD_GetReaderIC, allows the upper application to either automatically

detect or define the connected reader IC. This is realized by reading the reader chip ID and setting

the function pointer accordingly. All functions are preset to dummy functions which return an error if

called. This ensures that a call for an unsupported technology can be detected.

PCD functions

Reader IC 1 functions

Reader IC 2 functions

Reader IC n functions

…
.

uc_hal functions

41

The overhead of this approach is limited. About only 15 function pointers are (globally) needed with

no significant size impact. If the function pointers are set using the auto detect feature, the code size

is increased as the compiler adds all functions according to the type of the function pointer.

The complexity of the reader related abstraction file strongly depends on the capabilities of the used

reader IC. In general it has to set all register settings according to the provided standard. It is also

responsible for interacting with the tag.

The reader abstraction requires detailed knowledge about the different RFID standards, as the

registers have to be set correctly. Most ICs do not feature any mechanism to autoload the correct

values. It must be also considered that some settings are antenna specific and might need changes

according to the application and hardware design.

As the reader ICs mainly differs in the number of supported standards, the created test script verifies

all of them. As described above an unavailable standard is represented by a dummy function and is

skipped during this process. This half automated verification requires at least two tags for each

standard. This is needed, as otherwise the anti-collision sequence cannot be verified.

The following NXP Semiconductor reader ICs are supported and implemented by the framework:

 CLRC663

 CLRC663 plus

 CLRC631

 MFRC630

 SLRC610

 PN512

 MFRC522

 MFRC523

They cover most of the state of the art standards and fulfill all requirements for most RFID

applications. Most of them also feature the MIFARE crypto, which allows to read the widespread

MIFARE Classic tags.

For the communication between the protocol and this layer, a structure is used. This struct defines

not only exchange parameters like the data stream, but also settings like CRC or number of

transmitted bits can be defined.

42

Protocol Abstraction Layer (PAL)
This layer consists of all implemented standards. The interconnection to the previous described HAL

is done by using the pcd functions. All upper layers use the functions provided by the specific

protocol.

The following figure shows the topology of this layer:

Figure 24: Topology of the lower two layers

Standards

At the moment the following RFID standards and features are implemented:

 ISO 14443 A / B:

The current implementation allows the exchange of all different frame types for all different

data rates. It also covers all Commands defined within the standard like:

o REQA / B

o HALT A / B

o Select

o Anti-collision

o …

The implementation of the anti-collision sequence also allows the use of multiple tags

concurrently. For type B this sequence is implemented using the time slot approach. The

anti-collision for type A is implemented as described in part two. For high sophisticated users

this functionality is enough to cover these standards.

 ISO15693:

The implementation of this standard does not only cover the defined commands but also

manufacturer related commands, like from NXP and ST Microelectronics to enhance

capabilities.

It also supports all different kinds of option flags and bitrates. This allows to support all

available ISO15693 tags.

Some of the most important functions are:

o Inventory

o Select

o Read Single Block

o Write Single Block

o Authenticate

o …

Standard 1, Standard 2 … Standard n

PCD functions

Reader IC 1 functions

Reader IC 2 functions

Reader IC n functions
…

.

uc_hal functions

43

The implementation also features the whole slot based anti-collision sequence. The details

can be found within the standard or at part two.

 FeliCa:

The implementation of this standard also covers the anti-collision sequence and all standard

related functions. As this tag type is not that common and features lots of complex features,

the functions are provided directly for the users.

 ISO180003:

The most important thing for this implementation is the anti-collision sequence, as this

standard provides the capabilities to read the ID of many tags at the same time. The

implementation has been tested and verified using NXP Icode ILT Tags. Depending on the

used tags (antenna and coupling factor) up to 65 tags can be read simultaneously. This can

be enhanced by tuning the antenna and varying some register settings.

It must be considered that these components only work for reader ICs with the appropriate

capabilities. It is not possible to send ISO 15693 frames if the reader IC does not support this

standard.

As the interaction with the specific tags is also protocol dependent, the implementation of the

different tags is also handled within this layer.

For the implementation all commands supported by the tags are implemented using the timing

definitions within the datasheet, user manuals and standards. This results in a complete coverage of

a high number of available tags.

Tags

The following ISO14443 Tags are completely implemented:

o Entire NTAG family including NTAG I2C connected tags

o MIFARE Ultralight including all generations and sizes

o MIFARE Ultralight C

o MIFARE Classic including all sizes and generations including EV1

o MIFARE Plus

o TOPAZ family

o Infineon MY-d series

o MIFARE DESFire all generations including EV2

The following ISO15693 tags are completely implemented:

o Entire ICODE family

o Austriamicrosystems Sensor Tags

o ST Microelectronics Sensor Tags

The following ISO180003 Tags are also completely implemented:

o ICODE ILT family

To support most other tags, special exchange commands are available for all implemented standards.

These commands allow to exchange all commands to a tag according the selected standard.

44

As the number of available tags grew over time, it became more complicated to distinguish the exact

type or family member of the read tag. Most companies did not care about this fact for years. This

leads nowadays to a high effort for detecting the exact tag type. Newer tags support special

getversion commands to achieve this goal. It took a while until all different tag generations and

variants could be distinguished based on a complex decision tree.

The development procedure of this layer will probably never stop, as it will have to be modified for

each new tag family. On one hand this will lead to a lower number of files, but on the other hand the

version counting will become very important.

Based on the large list above it can be surmised, that this layer requires most of the effort, needed

for the whole framework. Not only the implementation of all standards is done here, also the

different types of tags have to be analyzed and implemented.

For using the properties and information of a tag in different layers, a special structure is used. It

collects all features, advantages and information and reduces the number of parameters passed to

each function. The size of this struct is about 50 bytes and has to be reserved for the number of

concurrently used tags. This results in a limitation of concurrently used tag for microcontrollers with

a low amount of SRAM.

Most RFID libraries available on the marked only include the different standards, which leads to a

high effort supporting all the different standards. Manufacturer related libraries like the NXP reader

library support only standards used by their manufactured tags. Which can lead to problems for

applications using tags from other companies.

45

Extended Abstraction Layer (EAL)
In comparison to other libraries this implementation offers additional features which simplify the

usage of most common features and allow an easy integration without any additional information.

Most but not all of these extensions are directly related to underlying layers. For example the whole

cryptography is needed for using the encryption of a tag, but is not directly related to the protocol-

or hardware abstraction layer.

The following figure shows the overall topology:

Figure 25: System topology from HAL to Extended Abstraction layer

As illustrated in Figure 25 this layer mainly implements cryptographic algorithms and the NDEF

library.

Cryptography

As most low cost microcontroller do not feature an appropriate crypto unit, this part is totally

implemented in software.

In general symmetric and asymmetric cryptography are distinguised. Symmetric cryptography uses

the same key for en-, and de-cryption, while asymmetric cryptography requires two different private

and public keys. Most common algorithms here are RSA and ECC.

Asymmetric cryptography cannot only be used for en- and de-crypting it is also possible to create

digital signatures. Within the last years this approach has even taken place for tags.

Standard 1, Standard 2 … Standard n

PCD functions

Reader IC 1 functions

Reader IC 2 functions

Reader IC n functions

…
.

uc_hal functions

Cryptography algorithm 1
Cryptography algorithm 2

 …
Cryptography algorithm n

Other features

NDEF library

46

The following figure shows a comparison between these two methods:

 Advantages Disadvantages

Symmetric cryptography
Fast

One key

Key derivation
One key

No generation of signatures

Asymmetric cryptography
Simple key derivation

Two keys / increased security
Signature generation possible

Slow
Two keys

Figure 26: Comparison of asymmetric and symmetric cryptography

It is also possible to combine the advantages of both methods to achieve an easy exchange of

symmetric keys via an asymmetric encrypted channel.

To cover most state of the art tags with their cryptographic features, the following algorithms are

necessary:

 MIFARE Classic Crypto 1

This algorithm is only necessary for MIFARE Classic tags. It is implemented in many reader

ICs, but requires a license fee. Therefore at an early point in time the decision has to be

made, if this kind of tag is used within the target application.

As some researchers hacked this algorithm some years ago, it should not be used in security

critical environment.

 eXtended Tiny Encryption Algorithm (XTEA)

This is an extension to the Tiny Encryption Algorithm (TEA), which eliminates two common

weaknesses.73

In general this algorithm is not broken, if correctly used and the number of rounds is chosen

wisely. This algorithm is provided for fast and simple encryption of the configuration

parameters, if the AES algorithm does not fit into the flash memory because of the size of its

pre-calculated tables.

 Data Encryption Standard (DES)

This standard is mainly used within old MIFARE DESFire tags. Modern computers allow to

find the used DES key with a brute force attack within hours.74 This is one of the reasons why

it is not used for modern tags.

 Triple Data Encryption Standard (3DES)

The main problem of the DES is the short key length of 56 Bits.74 To overcome this weakness,

this algorithm uses the DES three times. This results in a higher computation time, which also

leads to a higher power consumption needed by the tag.

73 Compare Roger M.Needham and David J.Wheeler, Tea extensions, October 1996, (Accessed: 2.2.2017)
http://www.cix.co.uk/~klockstone/xtea.pdf , p1
74 Compare Karthik .S, Muruganandam .A, Data Encryption and Decryption by Using Triple DES and
Performance Analysis of Crypto System, November 11 2014, ISSN (Online): 2347-3878 Volume 2 Issue 11,
November 2014, International Journal of Scientific Engineering and Research

http://www.cix.co.uk/~klockstone/xtea.pdf

47

For encryption the DES algorithm is used as follows:

𝒄 = 𝑬(𝑫(𝑬(𝒎))) (6)

The following equation shows the decryption procedure:

𝒎 = 𝑫(𝑬(𝑫(𝒄))) (7)

Where E means encryption and D decryption, m is the message and c the cipher text. As can

be seen in the equations above, the DES algorithm is used three times.

To overcome the problem with the short key length, a different key can be used for each

calculation. This leads to a theoretical key length of 168 bit, but 112 bit in practical due the

reason of the meet in the middle attack. It is also possible to select the same key for the first

and third time, which decreases the key length to 112 bits. The use of the same key for all

three times is not common, as this leads to the same key length as for DES.

This cryptographic algorithm is used for MIFARE DESFire and Ultralight C tags for example.

The power consumption of these tags is quite high as the cryptographic procedure requires

lots of energy. This results in shorter read/write ranges.

Generally this method is still used in a huge number of products and applications.

 Advanced Encryption Standard (AES)

This very new algorithm is much faster and more secure in comparison to the previous

described methods. It does not only reduce calculation time, but also power consumption

and therefore it is widely used in mobile applications. Another advantage is its easy

implementation.

Three different key lengths are defined namely: 128 bit, 192 bit and 256 bit.75 In the domain

of RFID Tags mainly the 128 bit version is used.

This round-based algorithm requires about 2 kByte of flash for storing additional lookup

tables.

The algorithms mentioned above are all symmetric cyphers, as these are used for a secure data

transmission to the tag. The user must know the corresponding key used by the tag. Depending on

the tag this leads to the following problem:

The user wants to write data to an encrypted tag using a set key. For authentication reasons, this key

must be sent to the tag. Depending on the implementation of the tag, this transaction is either done

in plaintext or by using specific methods.

It is not a good idea to transmit the password of a tag in plain text, as the transmission medium-air is

not secure. It is quite easy to log the transaction from a tag to the reader. Even an oscilloscope is

good enough to reveal this information.

To overcome this problem, the authentication is implemented using a handshake mechanism. These

differ for most tags, but the principle is always the same.

The figure below shows the implementation of this handshake used by the MIFARE Ultralight C tag.

75 Compare Uli Kretzschmar, Texas Instruments, Application Report, SLAA397A, AES128 – A C Implementation
for Encryption and Decryption, July 2009, p1

48

Figure 27: Basic principle of a key derivation for RFID Tags

As usual in the RFID domain, the reader initiates the authentication procedure. The tag generates a

random number called RandB and encrypts it using the secret key. The reader receives this

information and generates another random number called RandA. The received encrypted RandB

and RandA are concatenated and encrypted by the reader using the same secret key. This result is

sent to the tag. It is now able to decrypt the received data packet and verifies its previous generated

RandB. This ensures that both parts know the secret key. As a last step, the RandA, which has been

successfully decoded, is encoded using the secret key, and sent back to the reader. There it is

compared to the previous generated RandA.

This method requires the use of random numbers, which sounds much simpler than it is. A

deterministic environment is not ideal for non-deterministic behavior. Most microcontrollers do not

feature a true random number generator. Therefore a pseudo random number generator has to be

implemented. There are lots of different approaches for creating them, but most of them are neither

good nor easy to implement. The typical approach of reading random values using an Analog to

Digital Converter (ADC) leads to problems if the hardware is not safe from being modified, for

example soldering the ADC pin to ground. It is also possible that a low-end microcontroller does not

feature an ADC or that the ADC is reserved for the application.

In general three simple rules have to be followed:76

 Never use system generators like rand.

On one hand these generators are not always available for microcontroller applications, but

on the other they are flawed.76 This results in the need of a self-made random generator.

 Add a good random generator to your code.

Randomness cannot be achieved by an algorithm as it is always deterministic. There are tools

available that verify the randomness of a random generator.77

The simplest generator that passes these tests is the Keep It Simple Stupid (KISS) generator

developed by G. Marsaglia. The basic implementation has a period of about 1037.78 An

analysis of this algorithm showed that it shall not be used for cryptographic related

76 Compare David Jones, UCL Bioinformatics Group, Good Practice in (Pseudo) Random Number Generation for
Bioinformatics Applications, May 7, 2010, p1
77 Compare PIERRE L’ECUYER and RICHARD SIMARD, TestU01: A C Library for Empirical Testing of Random
Number Generators, August 2007, p3
78 Compare David Jones, UCL Bioinformatics Group, Good Practice in (Pseudo) Random Number Generation for
Bioinformatics Applications, May 7, 2010, p2

Reader Tag

Authentication Command

E(RandB)

E(RandA || RandB)

 E(RandA)

Verify RandA

49

applications.79 Modified versions of this algorithm with a much higher period length are

much more suitable.

For cryptographic related applications like the generation of keys more complex techniques

must be used. These are cryptographically secure pseudo-random number generators

(CSPRNG) and not pseudo-random number generators (PRNG). As these are much more

complex, they are not suitable for microcontroller applications. An analysis has shown that

simple microcontrollers cannot be used for seeding a PRNG.79

To overcome these problems a microcontroller with a true random generator has to be used

for each really security related reader like used for payment transaction.

For applications like a time recording system, a good implemented PRNG is sufficient.

 Seed your generator properly.

This complex topic is one of the main problems in the domain of microcontrollers. Mainly the

system time is used for seeding the generator, but this is predictable and not appropriate for

multiple concurrent transactions.

Some libraries like the standard C++ library offer functions like rand_s(), which can be used

for seeding.

As a conclusion it can be said that for high security applications the use of an internal true random

number generator is a must. For all other applications a PRNG is added to the framework. This is

based on the KISS approach, which will be discussed below.

The KISS generator consists of three independent parts, which only generate pseudo random

numbers in this combination, the linear congruential generator, the Xor – Shift operations and

Multiply with Carry. David Jones modified the KISS generator and verified its implementation. The so-

called JKISS is also used within this framework. It is easy to implement and to use.

Figure 28: JKISS generator used as PRNG 80

As can be seen above, this PRNG does not require much memory to be fast. It is very important to set

the Seed values (x,y,z,c) dynamically. This is done by using a systick counter, which is set at 1 MHz.

This aggravates the predication of the random number.

79 Compare Greg Rose, KISS: A Bit Too Simple, 2011
80 Compare David Jones, UCL Bioinformatics Group, Good Practice in (Pseudo) Random Number Generation for
Bioinformatics Applications, May 7, 2010, p3

50

Recently several manufacturers have also begun to implement asymmetric cryptography in their tag

ICs. One reason for that is the growing number of Chinese tag IC copies. Therefore this technique is

mainly used to verify the originality of the tag. For this approach, a special command must be sent to

the tag. The response is the UID encrypted with the private key. NXP offers the public key of this

system, which allows the decryption of this data stream. If it matches the UID read during the

activation process, the originality is verified.

Only the following asymmetric algorithm is used:

 Elliptic Curve Digital Signature Algorithm (ECDSA)

This algorithm was developed as a counterpart to a handwritten signature.81 It is based on

the fact that everybody can use the same algorithm and the public key to decode a secret.

Afterwards the correctness can be proven by a comparison of the decryption result and a

known property. In the domain of document verification, this can be done by protecting the

hash value of a document. If the encrypted hash does not match the calculated hash, the has

been changed.

The security relies on the difficulty to retrieve one key by knowing the other. Therefore the

key generation is very important. For the tag related applications this is already done and

only the verification has to be performed.

The Elliptic Curve Discrete Logarithm Problem (ECDLP) is the reason for this difficulty. It also

depends on the chosen curve. This means that the following properties must be known to

verify such a signature:

o Public key

o Curve parameter

o Which information was encrypted

NXP for instance offers this information only for registered members of their Doc-store.

Newer tags like the NXP ICODE DNA allow to program a customer specific signature. This could be

used to brand all tags used for a special application or customer.

Most of these cryptographic algorithms provide at least a pseudo code in their definitions, or are

available as open source implementation. In general, it is not a good idea to start developing these

from scratch. Implementation issues might lead to a total security loss. There are also lots of

optimized license free implementations available.

Therefore the implementation for this framework is realized by using verified implementations. To

enhance the calculation times these algorithms were optimized for microcontrollers.

Even with the optimized ECDSA algorithm the verification of a tag signature takes about 400 ms. It

cannot be compared to other libraries, as this feature is only supported by this framework.

It is important to know that lots of tags support a so-called password protection. This sounds quite

good but in reality, the password is exchanged in plain. So for security related applications the

security supported by the tag, does not have to be considered.

81 Compare Don Johnson and Alfred Menezes, The Elliptic Curve Digital Signature Algorithm (ECDSA), July 27,
2001, Springer-Verlag 2001, DOI: 10.1007/s102070100002, p1

51

NDEF Library

Another part of this layer is the NDEF library. It allows an easy use of the advantages given by the

NDEF (NFC data exchange format) definition.

The idea behind this format is to trigger actions by reading a tag. Therefore the data has to be

written in a special format and procedure to a tag.

It must be considered, that most tags differ in their memory layout, arrangement and size. Therefore

this library is split into two parts.

 Data stream generation

 Data mapping

The first part can be used for all tags. After this data stream is generated, the mapping has to be

done related to the specifics of the destination tag.

The technical documentation of the NDEF standard describes lots of different actions. The created

library supports the following:

 Text

 URI

 Smart Poster

 vCard

 vCalender

All other NDEF messages can be sent to a tag using the normal write data command, which is

described later.

The structure of an NDEF message is shown next:

Figure 29: Structure of a NDEF message

As it can be seen in Figure 29 each message can consist of several records and each record consists of

a header and the payload. The following flags are defined and used in the first byte of the header:

 Message Begin (MB) is only set for the first record within a NDEF Message.

 Message End (ME) is the counterpart to the MB and is only set for the last record within a

NDEF Message.

 Chunk Flag (CF) this is used to indicate if it’s the middle or first part of a chunked record.

 Short Record (SR) if this bit is set, the payload length field is limited to 8 bits, otherwise it

consists of 32 bits.

NDEF Message

NDEF Record 1 NDEF Record 2 NDEF Record n

Header Payload

Type

Length

Payload

Length

ID

Length
Type ID Flags

52

 ID Length (IL) indicated that the ID Length field is available. Can be unused for typical

applications.

 Type Name Format (TNF) this three bit long field defines the interpretation of the type field.

Several different types are defined. Mainly used are “well known” and “URI”.

For correct functionality these flags as well as the following bytes have to be set correctly. Additional

information can be found in the specification.

The implemented framework simplifies this process by offering high level functions for the most

common NDEF messages. To get an overview of this process, an NDEF vCard is created step by step

next.

Data stream generation

On a higher level the user only has to call the provided function like:

WritevCard(“Forename,Surname,Bday,Company,Email,Homepage,TelPriv,TelFirma”);

After passing and processing the given data the result can be seen below:

7 6 5 4 3 2 1 0
MB = 1 ME = 1 CF = 0 SR = 1 IL = 0 TNF = 0x02

Type Length = 0x0C

Payload Length = Len(Payload)

ID Length is not present

Type = “text/x-vCard”

ID is not present

Payload = “BEGIN:VCARD\r\n
 VERSION:3.0\r\n

 N: Surname; Forename;;;\r\n
 FN:Vorname\r\n

 ORG: Company \r\n
 URL:http://Homepage\r\n

 BDAY:Bday\r\n
 EMAIL;PREF;INTERNET:Email\r\n

 TEL;HOME;VOICE: TelPriv\r\n
 TEL;CELL;VOICE: TelFirma\r\n

 END:VCARD\r\n”
Figure 30: Example of creating a vCard using the implemented NDEF library

As shown in the figure above, the NDEF format enhances the length of the data dramatically. The

vCard record even defines the possibility to add a picture. This is not really applicable as the memory

size of RFID tag is quite limited.

The provided framework function stores the whole NDEF message in a temporary buffer. This is

necessary because the mapping looks different for most tags. On one hand this additionally required

memory limits the capabilities of the framework, but on the other hand it is sufficient for most

applications. There are multiple NDEF libraries available for platforms like android or windows, which

are ideal for creating more complex NDEF messages.

Independent from the source of the data stream the NDEF message has to be written to the tag as a

final step.

53

Data mapping

This part brings the different kind of tags and the previously generated data stream together. In

general not all types of tags can be used for NDEF messages. Four different tag types are defined by

the NFC Forum:82

 NFC Forum Type 1 Tag (Innovision Topaz)

 NFC Forum Type 2 Tag (NXP MIFARE Ultralight NXP MIFARE Ultralight C)

 NFC Forum Type 3 Tag (Sony FeliCa)

 NFC Forum Type 4 Tag (NXP DESFire, NXP SmartMX,..)

 NFC Forum Type 5 Tag (based on ISO15693 tag ICs)83

As the memory conditions differ, the mapping is especially defined for all of them. Therefore the

framework checks if a tag is available in the field. If this is the case, the exact type has to be verified.

In case of multiple tags, the process is aborted as the framework cannot know which tag to use. If the

memory size of the verified tag is sufficient for storing the NDEF message the mapping and

programming is performed.

An example how this mapping can be performed is shown below. It considers only NFC Forum type 2

tags, but is used to get an overview.

Type 2 Tags are general structured as follows:

Byte
Number

0 1 2 3 Page / Block

UID UID0 UID1 UID2 UID3 0

UID / Internal UID4/Internal UID5/Internal UID6/Internal Internal 1

Internal / Lock Internal Internal Lock0 Lock1 2

OTP OTP0 OTP1 OTP2 OTP3 3

Data Data0 Data1 Data2 Data3 4

… … … … … …

Data Data44 Data45 Data46 Data47 15
Figure 31: Basic structure of a NFC Forum Type 2 tag

As shown above, the memory layout of a type 2 tag features 48 bytes of user data. Four additional

One Time Programmable (OTP) bytes fulfill the changeable memory space. One Time Programmable

does not mean that the whole byte can only be changed once. It only prevents a set bit of being

reset. It also must be considered that some manufacturers include the OTPs to their user memory

calculations.

Before the data stream is written to the tag, it must be formatted. The idea behind this procedure is

that it can be easily decided where the tag includes a NDEF message or not. For this purpose the

OTPs are used. This also means that if a tag is formatted once, it cannot be reset. Depending on the

used tag it is also possible that the OTPs are already pre-set as required for an NDEF application.

82 Compare NXP, NFC Forum Type Tags, White Paper V1.0, April 1, 2009, p21
83 Compare NFC Forum, New NFC Forum Technical Specifications Broaden Tag Support and Enhance
Interoperability, October 14, 2015, (Accessed: 28.1.2017)
http://nfc-forum.org/newsroom/new-nfc-forum-technical-specifications-broaden-tag-support-and-enhance-
interoperability/

http://nfc-forum.org/newsroom/new-nfc-forum-technical-specifications-broaden-tag-support-and-enhance-interoperability/
http://nfc-forum.org/newsroom/new-nfc-forum-technical-specifications-broaden-tag-support-and-enhance-interoperability/

54

The standard defines that the lowest byte of the OTP has to be set to 0xE1h, which is also called

magic word. The second byte defines the version of the NFC Forum Type 2 Tag operation

specification (upper four bits for the major and lower four bits for the minor version). The next and

most important byte defines the memory size of the tag. Therefore this value multiplied by 8 shall be

equal to the number of available memory (excluding the OTPs). For the example above this value is

set to (48/8) 0x06h. The last byte of the OTPs defines the read and write capabilities of the OTPs and

data segment (the upper 4 bits indicate the read access and the lower 4 bits the write access). This

value is initially set to 0 (neither the read nor the write access is prohibited)

It must be considered that this read and write protection has no physical influence. It is just a

definition, that according to the last byte of the OTP, the content is read or write protected. Most

tags offer additional features for read and write protection, which takes place on the physical level.

As a next step the data stream has to be packed in a Tag Length Value (TLV) block. It starts with a

specific NDEF Message TLV (0x03). Then the length of the whole NDEF Message is coded into either

one or three bytes. After that the data stream, which was generated before, is inserted. These TLV

block is completed with a terminated TLV (0xFE).

This means that the data mapping procedure increases the size of data stream by 7 to 9 bytes. This

must be taken into account before the writing procedure starts. As seen in the previous vCard

example, this requires more memory than available on some type 2 tags.

The last step is the writing procedure. In general the command for this also depends on the used tag,

which increases implementation complexity.

For other tag types the formatting procedure is different. For example, tags with encryption have to

be encrypted with a defined key to ensure consistency.

The higher the complexity of the tag the more effort is needed to map a NDEF message onto it. Tags

like the MIFARE DESFire, which offers a flexible file system, require the generation of specific files

with special access rights and format and contain NDEF messages. Detailed information about this

can be found in the specification.

55

Once created, a counterpart has to perform the following actions for detecting and parsing an NDEF

enabled tag:

Figure 32: Procedure for detecting and parsing a NDEF enabled tag

In general the implementation of NDEF messages requires knowledge about the data stream format

on one hand but also detailed information about the tag and its memory structure. The implemented

simple library overcomes these aspects by providing an easy to use interface for the most common

types of NDEF messages and tag types.

Command Abstraction Layer (CAL)
To allow an easy access to all the functionality, provided by the previous described layers, simple

commands are added to the library. Before they are described, a general overview can be seen

below:

Figure 33: Firmware topology from HAL to the simple commands

Tag is in range

OTPs defined for NDEF

Read as many bytes as defined at the TLV length byte(s)

Parse read data and trigger action

n/y

n/y

n/y

Standard 1, Standard 2 … Standard n

PCD functions

Reader IC 1 functions

Reader IC 2 functions

Reader IC n functions

…
.

uc_hal functions

Cryptography algorithm 1
Cryptography algorithm 2

 …
Cryptography algorithm n

Other features

NDEF library

Simple Commands

56

As this layer has to interact at least with parts of the underlying layers, it is important that the

interaction is clearly defined. As mentioned before, this is mainly done by strictly defined function

names and definitions.

Before the command set can be defined an overview of other simple RFID solutions is made:

 Identive NFC Reader/Writer Module Family

This very common solution offers a lot of different features. Not only multiple form factors

are available, but also the number of supported host interfaces is enormous. Also industry

related interfaces like Wiegand are available.

It can be used in two different modes to cover most application scenarios:

o NXP protocol

As these modules use more integrated RFID controllers, the command set provided

by the manufacturer (NXP) can be used to communicate directly with the module.

It must be considered that these low level commands require special knowledge

about the overall RFID technology.

o EasyCommunication protocol

This feature requires a module with equipped microcontroller. It simplifies the use of

the RFID technology as all commands related to the supported commands are

implemented. This is supplemented by the support of different tags and

cryptographic algorithms.

The commands also allow the configuration of the host interface, controlling two

LEDs, a buzzer and storing data at the internal EEPROM.

As it was one of the first modules with such an integrated intelligence, it opened

doors for lots of applications. The development effort can be reduced as the

implementation of the standards and tag related commands are provided. But as the

number of tags and their possibilities grow fast, only the basic commands are

implemented via this simple interface. For any advanced features, like the locking of

a tag, everything has to be implemented via the low level commands.

It is also important to know, that the commands provided for the tag handling, still

require the knowledge of the basic concept, described within the standard. This

leads to the problem, that lots of customers use the commands exactly as provided

in the user manual, including the default crypto keys, which is terrifying.

As each tag type has its special read/write commands, the user needs to use the

correct commands related to the attached tag.

Unfortunately Identiv discontinues the development of RFID modules. Therefore lots of

former customers are in need to replace products to overcome this gap.

 Sonmicro SM130 series84

These low-cost modules offer the basic functionality for the most common ISO 14443 A tags.

This includes only the MIFARE Classic and MIFARE Ultralight tags. This restriction is one of the

most common problems of these modules. For a new application, where no tags are

currently in the field, this might be a good and cheap solution. But keep in mind, that neither

the MIFARE Classic nor the MIFARE Ultralight offer real security.

This module also offers a windows based software, which allows to investigate the memory

content of an attached tag and the control of the module.

84 Compare SonMicro, User Manual, SM130, Revision A.2, June 2006

57

The features of the command set can be compared to the identive approach, which means

that it reduces the implementation effort, but still requires special knowledge. In comparison

to the previous described module, only IIC and UART can be used as host interface. It also

does not feature any cryptography as it is not required for the supported tags. There is also

only one form factor available which limits the field of application.

 Jinmuyu JMYseries like the JMY504C85

This product supports the ISO14443 A and ISO14443 B protocol and in comparison to the

previous module the number of supported tags is increased. Also more secure tags like the

MIFARE DESFire are supported. It also provides UART and IIC interface for communicating

with the device. But also these modules only implement the basic functionality and no

extended features. Another disadvantage is the use of an external antenna module, which

might lead to problems for mounting this module in an application.

The type B functionality is just given with two commands, card request and card halt. This

only allows the reading of the UID which is not really sufficient for typical applications.

 Ubisys 13.56 MHz RFID USB READER86

In comparison to the previously described modules, this one is based on a modern

microcontroller supporting the USB standard. This enabled new possibilities like, CDC, HID

and CCID.

All these features are currently implemented in their module. The CDC functionality can be

used for AT-like commands. A closer investigation shows that these commands, only support

the default commands, defined in the standard. Beside FeliCa, all common standards are

supported. But an abstraction of the commands to simplify the usage is missing.

The HID feature allows to read the UID and write the content using the emulated keyboard

automatically. This is a very useful feature, but as it just reads the UID it cannot be used for

security related applications.

The included CCID feature supports most common tags. But its use requires a host

application supporting the PC/SC standard.

Unfortunately the CDC based commands do not support state of the art tags like MIFARE

DESFire or the NTAG family.

It can be said that this module covers most aspects of a simplified RFID module, but there is

still some room for improvement.

The summary above shows that there are multiple different approaches available on the market, but

most of them are not very intuitive and therefore not really easy to use. To overcome this, the

command set of the implemented firmware architecture, performs combined multiple actions. This

allows to use the tags as wireless memory cards supporting most of the features. Another missing

aspect of the modules mentioned before is the support of the connected tags. In the last years its

field of application has grown. Therefore also this sector has to be included. It can also be seen that

none of the modules above feature any NDEF support.

85 Compare Jinmuyu Electronics Co. LTD, User Manual, JMY504C User’s Manual, Revision 3.42, June 28, 2011
86 Compare ubisys, 13.56 MHz RFID USB READER REFERENCE MANUAL

58

For cost reasons the use of integrated RFID controllers, like done for the identive module, is not

feasible. The support of different, much cheaper, reader IC makes much more sense, as the

appropriate and cheapest IC can be selected for the target application.

For changing, adapting or disabling commands, a good program structure is essential. Therefore I

decided to use the following architecture:

Figure 34: Architecture for the commands

Each command is implemented using the same transfer parameters. Namely the receive buffer, the

length of the received data and a pointer to the structure where all tag related information are

stored. The return parameter is used to return an error code.

This approach is useful as they can be selected or deselected very easily. A struct, including a

function pointer and a character pointer for the name, is used to manage the commands.

Therefore an array of this structure has to be implemented in the main program. Each used

command is defined afterwards. As the name of the command can be set here, an application

specific command set can be easily created and modifies.

This approach is shown next:

Figure 35: Command structure used in the main program

As described in Figure 35 the link to a command is very simple. Only the function pointer and the

name have to be set. The required space for the command struct is negligible.

This created pattern is also very comfortable for parsing the input and calling the appropriate

command. The responsible function is shown next:

59

Figure 36: Function for processing and calling the appropriate command

As can be seen above the function requires the use of ring buffers. This functionality is given by the

uc_hal, which depending on the selected interface, either fills the ring buffer with data received via

USB or USART. Depending on the memory capabilities of the microcontroller, the size of this buffer

has to be adapted. Additional transfer parameters are the command struct, its number of commands

and a pointer to the tag structure.

After the ring buffer is read, a loop over the number of available commands is processed. One typical

problem is that the start and stop characters are also used within the message. To overcome this, a

sanity check is performed on the entire received frame. Therefore the prefix, start of the message

and postfix is compared with predefined values.

If this matches, it is ensured that the structure and name of the command are correct. Else, the same

is performed for the next command.

The call of the appropriate command function is done via the function pointer, which is stored in the

command struct. It also allows to only transfer the payload to the command. This elegant way is easy

to use and quickly adaptable. It also separates the used interface and command.

The structure and an example of such a command can be seen below:

Start of
Frame

Command
Name

Payload
End of
Frame

\x2 WT 1,Test123\r\n\x2\x3 \r\n\x3
Figure 37: Structure of a command used for the firmware architecture

The example provided above might lead to a typical parsing problem. As the End of Frame is checked

without touching the payload, it is not a problem for the used architecture.

The size of the available SRAM can be seen as a limitation. This can be overcome by using shorter

commands.

60

As most commands have to send a response, send functions are provided. These are automatically

selected according to the used interface using function pointers. The response format is defined as

follows:

Start of
Frame

Status code
End of
Frame

\x2 OK \r\n\x3
Figure 38: Response format for the implemented commands

As can be seen above, each frame starts with the STX (0x02) ASCII character and ends with the ETX

(0x03).

Some of the implemented response codes are listed next:

Status code Description
OK Command executed properly

IP Invalid Parameters are transmitted

PE Protocol Error

MT Multiple Tags are in the field – command not executed

NS Not supported

AE Authentication Error – probably the used key is wrong

… …
Figure 39: Overview of the response codes

These codes can be easily modified and extended. The handling of multiple tags is supported, but to

ensure that the command is executed for the right tag, it either has to be specified, or just one tag is

allowed to be used concurrently for that command.

As mentioned above, the goal of this architecture are commands that are simple to use. This can only

be achieved by executing multiple tag dependent steps for one command. How complex this can be

is shown by the example of the “Tag Info” command.

This command can be used to verify the type and name of all tags currently available in the RF field,

including all supported technologies. Therefore the following simplified actions have to be

performed.

61

Frame from Host to the module:

Start of
Frame

Command
Name

Payload
End of
Frame

\x2 TI \r\n\x3

Frame received by the Host module:

Start of
Frame

Status code
End of
Frame

\x2

UID: 042f0002e53f85
NFC Forum type: 2

Tag type: NTAG213 144Bytes User Memory
UID: 04ff0002

NFC Forum type: 4
Tag type: MIFARE DESFire EV1

…
OK

\r\n\x3

Figure 40: Overview of the Tag Info command

The picture above gives an idea about the overall complexity and interaction. It can also be seen that

the connection between the different layers is important. The involved layers differ concerning the

used command.

Other commands like for reading or writing the tags are way more complex as also the different tag

related commands and memory layouts must be considered. This enhanced complexity is the main

reason why most available modules do not offer such a support.

Receive data and call appropriate command function using CMD_Process

Check if payload is empty and do the following for all

supported technologies:

1. Initialize reader IC

2. Apply protocol settings

3. Enable RF Field

4. Go through the anti-collision sequence and activate all tags

5. Detect the type family and capabilities for each tag

6. Store related information in the TagStruct

7. Disable RF Field

For each found tag the basic information have to be

prepared and send to the host

62

The following variations and problems must be considered for more complex commands like reading

or writing tags:

 Are multiple tags available and if they are how to deal with them

o Cancel the command

o Write to all

o Write to one (first detected wins)

o Select which tag shall be written to

 Technology used by the tag (which standard)

o Switch through all standards

o Let the user define which standard to use

 Type of the Tag (Sensor Tag, Connected Tag, Memory Tag)

 Memory layout (what are the sector and overall sizes, where are data regions, …)

o Different sector size

o Different memory regions

 Authentication (does the tag support or even require any authentication, which encryption

algorithm is used)

o To make this process more user-friendly, it is possible to specify the key within the

command parameters.

o As an alternative it is possible to preset a list of keys.

o How to handle partially locked tags? Therefore the authentication must be redone

for all sectors depending on the used tag.

o Some tags features a counter which can be used to destroy itself if a wrong

authentication key is used too often. So the number of retries must be configurable.

 Permission rights (are the memory regions accessible)

o In case of NDEF the none physical locking behavior must be satisfied

 Which commands can/must be used (each tag defines other commands)

o For increasing the read/write speed some tags provide fastread/fastwrite options

which should be used if available

 In case of NDEF usage check if the tag is formatted properly / enough size available

 (optional) Verification (read back the written data to ensure correct behavior)

o What shall be done if the tag was removed during the writing procedure

As it can be seen above a simple write command for example has to deal with a lot of different

possibilities. Therefore the user has lots of possibilities to control the behavior. The command also

maps the whole user memory (which can consist of multiple separate memory regions) to one linear

accessible memory. It also allows to specify the start position of these commands with a byte offset.

This makes it possible to use the memory of a tag like a file, which is not possible with any other

known module. All the user has to do is sending a simple command like shown below:

Start of
Frame

Command
Name

Payload
End of
Frame

\x2 RT 1,10 \r\n\x3
Figure 41: Example for reading from a memory tag

The user can easily specify the byte offset to start the reading procedure and the number of bytes to

read.

63

A list of the most important simple commands is shown next:

Command Description

RT
Reads the memory of a tag using the given offset and optional

parameters like an authentication key.

WT
Writes the provided data to a tag. Options for setting an

authentication key or byte offset are available.

WV
The Write Verify command automatically performs a read back

and comparison of the written data

ET Encrypts the given tag with a given key.

LT
The Lock Tag command enables the read and or write

protection for the tag

OC
This command performs an originality check based on the

ECDSA algorithm or a predefined list of Chinese clones.

TI
The Tag Info command returns the available information for the

detected tags. This includes the name, tag type, UID and
memory size.

TT
As for some applications only the name of the tag is used this

command returns this information.

WO
This command allows to write data to the OTP memory of a tag.

This is separated to avoid unintentional use.

… …
Figure 42: Summary of important commands

The command set covers the most important aspects. In comparison to the commands of other

modules, the implementation supports also the use of different encrypted tags. This can be used to

overcome one of the most common security problems in the domain of RFID. The use of the chip

serial number as a unique identifier. Lots of RFID based systems rely on the uniqueness of this

identification number. As some tags provide the possibility of changing its UID, this approach is

totally outdated. The simple use of encrypted tags can lead to a higher level of security without

enhancing the effort.

In general, most tags provide a physical locking option, but the implementations are very different.

One reason for that are the various memory layouts. This results in different positions of the bytes

used for holding the locking information. Depending on the tag the locking can be performed for the

whole tag, per sector or per byte.

The implemented originality check is also unique. It not only uses the described ECDSA algorithm

with special read operations and a comparison with a list of known Chinese clones, it is also possible

to differentiate them from original tags. Some of these clones that can be detected are:

 Fudan FM310

 Fudan FM284

 Giantec GT5640AM1D

 HuaHong HHIC2405

These tags are unlicensed copies of the famous MIFARE Classic tag. Which means that even the

broken Crypto1, which is not public, has been copied.

64

Another part of the simple command set is related to the hardware and for example allows to control

the LEDs or the buzzer. But also interface related settings can be defined here. An overview of these

commands is shown next:

Command Description

SB
This command allows to change the baud rate for the serial

interface (USART or CDC).

SL
The sleep command allows the module to enter power saving
mode. As this feature is not available for all microcontrollers it

might not be supported for all platforms

SK
This command can be used to store a given key in the internal

storage.

… …
Figure 43: Hardware related commands implemented by the firmware architecture

The standardized HAL allows a simple implementation and extension of these commands. It can also

be seen that the latency of this function is very low as there are no additional layers inbetween.

The limitation of these commands is given by the capability of the used hardware. Therefore the

available features have to be selected for each application especially. This is provided by the use of

the previous described CMDStruct.

Another aspect is the testing procedure of such a library. The implemented command pattern eased

this, as test cases can be easily en- or disabled. For fast debugging and error detection each layer has

a special value range for their error codes.

In recent years RFID was added in many devices. Some of them need the capability to use tags at

different positions. In general this approach requires the use of multiple RFID modules. This increases

the system cost and space and is not accessible in many applications.

A more cost efficient way is to reuse the microcontroller and attach multiple RFID reader ICs, which is

shown next:

Figure 44: System topology using multiple reader ICs

The approach, shown in Figure 44, needs an adapted version of the firmware architecture as multiple

reader ICs must be handled concurrently. In case of a SPI connection, additional chip select

connections, which are marked red are required. The use of multiple reader ICs, usually the most

costly component also increases the form factor size and costs of such a module.

Microcontroller Reader IC 1 Antenna 1

Reader IC 2 Antenna 2

Reader IC n Antenna n

65

Therefore the idea of a switchable multiple antenna RFID module was born.

It reduces the costs and can be easily integrated. An overview of this approach is shown below.

Figure 45: Topology of a multi antenna RFID module

Only a few modifications are needed to support this feature:

 Antenna switches are needed, which can be controlled by the host

 Each command has to be extended to either

o Specify which antenna shall be used

o Or performed the same command for all antennas consecutively

The simple structure of the commands makes this modification very easy. The only disadvantage of

this solution is, that the switching frequency is limited by:

 The number of antennas

 The number of used standards

 The data transfer size per tag

To achieve a good performance the number of attached antennas is limited to four. This approach is

a trade-off between performance, cost and design flexibility. Even the form factor is smaller as the

antenna switches typically requires less space than additional reader ICs.

Such a solution allows the integration in even more applications. An example of a device using this

feature is shown later in the thesis.

In addition to these simple commands it is also possible to exchange standard frames via this

command set. Therefore the exchange command is implemented as follows.

Start of
Frame

Command
Name

Payload
End of
Frame

\x2 EX 1,\x30\x22\x02 \r\n\x3
Figure 46: Example for exchanging an ISO14443 A frame

The first parameter of the example shown above, defines the used standard. The data is sent to tag

afterwards. It must be considered that most standards provide different framing and CRC options. As

the number of variations is huge, the advanced user has to prepare the frames correctly. With this

feature almost all tags are covered by this framework.

Microcontroller Reader IC Switches

Antenna 1

Antenna 2

Antenna n

66

Application Layer (AL)
This topmost layer covers application related features and fulfills the aspect of this framework. The

correlation between all described layers is shown in the following figure:

Figure 47: Overview of the overall firmware architecture

As shown above, the whole functionality of the underlying layers is available here. The main parts are

the implemented command set, the different standards and the hardware related functions.

In general complex microcontroller related firmware is hard to debug. Because multiple peripherals

like a watchdog or even the USB communication are strongly time-dependent. This layer is

implemented for providing and coding snippets for target applications. This reduces the

development effort, as lots of typically application related functions can be reused. Another

advantage of these snippets is, that the verification process has to be done once and not for each

application.

The defined interface structure also allows to use the same application code for different platforms.

Therefore only the HAL (and maybe the IDE or compiler) has to be changed. This means that an

existing application, can be reused easily.

This layer also defines the size of the compiled application, because most compilers only include the

used functions in the resulting binary. Different compiling options which can be used for optimizing

the resulting code are also very common. Some of these options exacerbate the debugging

procedure, which results in the use of a debug and a release build.

Standard 1, Standard 2 … Standard n

PCD functions

Reader IC 1 functions

Reader IC 2 functions

Reader IC n functions

…
.

uc_hal functions

Cryptography algorithm 1
Cryptography algorithm 2

 …
Cryptography algorithm n

Other features

NDEF library

Simple Commands

Application

67

One example for such an implemented and verified code snippet is the firmware protection

mechanism. In state of the art applications a firmware upgrade via USB or another interface is a

must. This leads to the problem that a compiled version of the binary has to be given to the

customer.

To prevent other companies from reusing this firmware for their self-made/copy hardware, a

solution had to be found. As the capabilities of microcontroller vary a lot, it is hard to find a generic

way. A typical approach is the use of a bootloader. As this strongly hardware related software cannot

be reused easily for multiple platforms, another way must be found.

A more generic solution is the use of a signature. Therefore a special application which generates an

ECDSA signature was written. This signature is stored in the internal storage at a specific location

where it will not be overwritten during the flash programing procedure. Only if this signature exists

and is valid, the firmware executes.

The signature generation and verification procedure is shown below:

Figure 48: Procedure for generating and verifying the signature

The advantage of the idea shown above, is the easy implementation. All required functions, like the

generation of a signature, are available on underlying layers. But for using these features the used

microcontroller has to feature a unique serial number, which is used for the signature generation.

Without this uniqueness the generated signature could be copied and the protection mechanism

would fail.

Additionally, this approach requires a special software, which is used during production, for creating

and writing this signature. This additional effort is also needed for the bootloader alternative.

It must also be considered that the verification procedure during startup takes some time. For the

hardware module originality check, about 200 ms are needed.

Read Unique ID

Sign the ID with the private

key using ECDSA

Verify the correctness by

using the public key

Store the Signature and

public key internally

Read Unique ID

Read Signature and public

key from the internal storage

Decode the signature using

ECDSA

Check if result matched the

read unique ID

68

The application layer also provides USB related snippets. These allow to easily use the following

features:

 Descriptor

In general each USB device consists of unique descriptors. These define the name,

capabilities and much more. As they are independent from the hardware, easy to modify

descriptors are implemented. For changing the product, only some adaptions like changing

the product name and ID are required.

The implemented descriptors allows the use of the following configurations

o HID Keyboard only

o HID Keyboard and CDC (composite device)

o HID Keyboard and CCID (composite device)

o CDC only

o CCID only

A combination of CCID and CDC is not available, as the required number of endpoints is

higher than available on most microcontroller.

 CDC

The snippet provides simple read and write functions, which use a ring buffer. These non-

blocking functions allow a fast and easy use of this interface. As the same technique is also

implemented for the USART functions, the change of the interface is simple.

 HID Keyboard

The implementation allows to write a string using the keyboard emulation. Therefore a

default character mapping is defined. As mentioned in the beginning, the language of a USB

keyboard cannot be defined in general and it does not make sense to store all different

language mappings internally. But the implemented English layout should fit for most

common applications.

 CCID

The basic CCID stack is also included and provided. This allows the communication with the

host system via the CCID protocol.

In general it makes no sense to feature simple commands and CCID at the same device. The

use of CCID needs lots of special knowledge and therefore simple commands make no sense.

Either simple commands or CCID are used depending on the field of application.

In general, this layer is, as can be extracted from its name, application specific. But the implemented

framework offers additional features for reducing the effort of the whole application development.

The implementation and verification is not possible without the use of real hardware. Therefore the

used components are described next.

69

4. Hardware
Two different kinds of hardware were used for this implementation, the development platform and

final products. The former one is needed for the developing and debugging process. Therefore this

architecture has to be very flexible and easy to use with different kinds of microcontrollers and

reader ICs.

After implementing and testing the framework, it was used in many different products which are

described later.

Development Platform
For implementing and verifying the framework, hardware is needed. NXP offers with the LPC Xpresso

Boards a flexible platform for a huge product range. One advantage is the common LPC Xpresso

expansion connector, which allows an easy integration of external hardware like the reader ICs.

The development platform in general consists of a microcontroller and a reader part. As the demo

boards for the RFID reader also feature this LPC Xpresso connector, an easy way for combining

different systems was found.

Microcontroller

At the moment two different microcontroller are supported:

 LPC111x87

o Low cost low power

o 32-Bit ARM Cortex M0

o Up to 64k flash

o Up to 8k SRAM

o 12MHz internal oscillator

o Up to 50MHz

o IIC

o 2x SPI

o USART

 LPC11u6x88 with the LPC Xpresso boards OM13035/ OM13087

o Med power

o 32-Bit ARM Cortex M0+

o Up to 256 k flash

o Up to 32 k SRAM

o 4 k EEPROM

o 12 MHz internal oscillator

o Up to 50 MHz

o IIC

o 2x SPI

o USART

o USB with several predefined ROM driver

87 Compare NXP, Datasheet, LPC1110/11/12/13/14/15 Datasheet, Rev. 9.2, March 26, 2014
88 Compare NXP, Datasheet, LPC11u6x Datasheet, Rev. 1.3, September 7, 2016

70

The LPC Xpresso boards OM13035 and OM13087 feature the LPC1115, which is the high-end version

of the LPC11x family. As the whole family is pin compatible, different members of the same family

could be used with the same hardware.

The following figure shows the used OM13035 demo board:

Figure 49: OM13035 demo board

As can be seen, this LPC Xpresso board not only consists of the microcontroller itself, but also covers

the aspect of an easy debugging interface. Therefore the LPC-Link, which is a hardware debugger, is

also part of the demo board.

The LPC11u6x family is covered by the OM13058 LPC Xpresso board. It features the LPC11u68, which

is also the high-end version of the family.

Figure 50: OM13058 demo board

As can be seen above, this demo board also features the LPC-Link hardware debugger. The required

external wiring, for using the USB peripheral, is also available.

As the LPC Xpresso extension connector is the same for all LPC Xpresso Boards, this development

platform can be easily extended with newer or more specific microcontroller. NXP also offers lots of

additional material, like the schematics, the layout or even code examples for their demo boards.

71

Reader ICs

Several reader ICs platforms are offered by NXP. In this case, the PN512 and RC663 platform and its

derivatives are used. Each platform consists of multiple family members. These differ in their

integrated features and capabilities.

The PNEV512 demo board from NXP features the PN512 and is shown next

Figure 51: PNEV512 demo board

This demo board features the LPC Xpresso extension connector and allows to easily mount and

unmount this board compared to other microcontroller boards.

For supporting all derivatives of this family, multiple boards, assembled with different reader ICs, are

used. This allows the verification of the implemented auto detect algorithm and other features.

The CLEV663B demo board is used to cover the RC663 family. As described before, multiple boards

assembled with different reader ICs are used.

Figure 52: CLEV663B demo board

The CLEV663B board also features the LPC Xpresso extension connector.

Both boards support the use of different interfaces like IIC, SPI or even USART. As described at the

beginning, SPI is used.

It must be considered, that the pinning of both boards is different. This leads to the problem, that

either the use of the PNEV512 or the CLEV663B is possible. To overcome this issue, all CLEV663B

boards are modified. This modification maps all pins to the same positions, as defined for the

PNEV512 boards.

72

This modification is shown below:

Figure 53: Modified version of the CLEV663B

The modification, shown above, ensures the correct mapping of the following pins:

 +5V

 GND

 CS

 MISO

 MOSI

 SCK

 nRESET/PDOWN

This completes the used hardware platform. In general also parts from other manufacturers can be

easily used, as only the mentioned Pins have to be connected properly. It should be considered, that

the cable length has to be kept as short as possible, due the fact that the SPI frequency is 10 MHz.

For enhancing the debug functionality the LPC-Link289 debug probe in combination with the

LAPTOOL90 from Embedded Artists is used. This not only allows to program and debug the devices,

also the following features are included:

 11 channel digital signal generator

 11 channel logic analyzer

 2 channel oscilloscope

 2 channel analog signal generator

The included windows based software also allows to easily decode common communication

standards like IIC, SPI or USART.

89 Compare NXP, OM13054: LPC-Link2, (Accessed: 28.1.2017):
 http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc3000-
arm9-mpus/lpc-link2:OM13054
90 Compare Embedded Artists, LABTOOL, (Accessed: 28.1.2017):
http://www.embeddedartists.com/products/app/labtool.php

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc3000-arm9-mpus/lpc-link2:OM13054
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc3000-arm9-mpus/lpc-link2:OM13054
http://www.embeddedartists.com/products/app/labtool.php

73

The whole development platform with all components is shown below:

Figure 54: Used development platform

It consists of several PNEV512 and CLEV663B boards as well as the OM13058 and OM13035 LPC

Xpresso Boards. Also the described combination of LPC-Link2 and LABTOOL is shown.

74

Implemented Products
The implemented firmware architecture is not only used on the development platform. The following

products are also realized using this implementation.

Sangoma MSMA Multi Standard Multi -Antenna

This product is realized using the already described approach for using multiple antennas with only

one reader IC. The product implements the LPC11u68 microcontroller and the RC663 reader IC.

Antenna switches allow the use of up to four antennas. Multiple different antennas are available and

can be used with this product. This allows new applications where tags must be used on different

locations.

Figure 55: Top and bottom view of the Sangoma MultiAntenna module

As can be seen in Figure 55, the antennas can be easily mounted or unmounted. Twisted pair cables

are used to connect the module with different antennas:

75

Figure 56: Different available antennas for the MutiAntenna module

These different form factors enhance the field of application.

The module is powered and connected to the host via USB. This allows an easy integration. The

commands are sent to the module over the USB CDC interface. They also allow to specify the

antenna number for each command.

Such a module is unique on the market because it combines the easy to use approach with a

groundbreaking concept for using multiple antennas.

This CE and FCC certified module is already in use in an industrial application.

76

Sangoma NFC-Wizard

This easy to use desktop reader offers all features of this framework. Different form factors and

configuration levels are available. In general, it is based on the LPC1115 low cost microcontroller in

combination with the PN512 reader IC. For covering different host interfaces the following interface

options are available:

 USB

 RS232

 USART (3.3 V level)

It also features LEDs and a Buzzer. The following figure shows the Reader:

Figure 57: Topview of the Sangoma NFC-Wizard

As can be seen above, a CP2102 is used for converting the USART signal of the LPC1115 to USB. A

host device can be either connected via the Mini-USB connector or over a specific USB cable.

This reader is also available with a case, which is shown below:

Figure 58: Sangoma NFC-Wizard with case

77

Beside this configuration also the following OEM versions are available.

Figure 59: Sangoma Mini with USB and RS232 option

Figure 60: Top and Bottom view of the Sangoma Micro

As can be seen above, these products can be easily integrated into most existing applications.

Beside this, also a LPC11u68 version is available. This provides additional features like a RGB LED.

All modules feature the simple command set with different capabilities. As the SANGOMA Mini

features the same dimension as former Identiv modules, they can be used as a replacement.

78

Sangoma DocTrack

For applications like document tracking in libraries, this reader can be used. It provides a huge

antenna which has a read/write range of up to 25 cm. LEDs around the reader allow to signalize

current behavior. The LPC11u68 in combination with the RC663 is used within this product.

This reader is also ideal for RFID based document scanning. Its implemented HID-Keyboard emulation

can be used for typing, the UID or special parts from the user memory.

Figure 61: Sangoma DocTrack

The implemented firmware offers lots of possibilities. The implemented anti-collision allows to easily

use multiple tags concurrently. The simple commands also feature a fast support to configure the

used tags.

79

Bicycle Demo

This application was especially implemented for NXP. The goal is to show the capabilities of the

NTAG-I2C connected tag family in a difficult environment. Therefore the position as well as the force

on the pedals have to be monitored on the chain wheel. This data is transferred to the reader using

the NTAG I2C connected tag. The reader itself is mounted on the bicycle frame, processes these data

and sends them to a tablet via Bluetooth.

The difficulties for that application are the reaction time of the system as well as the power

consumption of the monitoring module. As the bicycle is made of steel, the antenna matching is very

important. It must be considered that the measurement of the force requires strain gauge strips

connected to a bridge and a high performance ADC. This all requires much energy which has to be

provided by the NTAG I2C, which is powered by the HF field.

The whole system consists of three parts:

Tag

This part of the system is mounted on the chain wheel and includes the low power microcontroller

LPC812, a high precision ADC AD7780, an accelerometer LIS2DH12 and the NTAG I2C.

To minimize noise on the power supply lines, lots of capacitors are used. The PCB is shown next:

Figure 62: Top and bottom view of the Tag part

The Antenna is realized putting a wire on a Plexiglas circle. The strain gauge strips are glues on the

crank using a special glue. The connection is done using thin wires. The assembled chain wheel is

shown next:

Figure 63: Chain wheel with antenna and tag PCB / reader mounted on frame

80

Reader

The reader itself consist of an LPC11u68 microcontroller a RC663 reader IC and a Bluetooth module.

A power bank, which is mounted under the saddle, is used for powering the device. The module is

shown next:

Figure 64: Top and bottom view of the reader part

The antenna, like on the tag side, is implemented using Plexiglas and wires. The whole reader part is

shown next:

Figure 65: Reader PCB with used antenna

As can be seen, this module can easily be mounted on the frame of the bicycle.

The firmware is based on this architecture, which allows a fast and easy implementation. USART is

used for the host interface, as the Bluetooth module acts as a transparent converter.

81

Tablet

For illustrating the monitored data an android application was used.

Figure 66: Screenshot of the Android App

As can be seen in the figure above, a chart is used to display the force. The position of the pedals is

shown in a circle.

This android based application was provided by Martin Hollerweger from NXP.

A magnetic bicycle trainer is added to the whole system to simulate different resistances. The whole

application is shown next:

Figure 67: Picture of the whole application at the Electronica 2016

This demo was also shown on the Electronica 2016 in Munich.

82

5. Conclusion
This work shows the different types of RFID and their fields of applications. The topic is very complex,

which aggravates the easy use in applications.

Therefore state of the art approaches of RFID libraries were analyzed. Based on this information a

firmware architecture was created to cover and extend these typical approaches.

Additional implemented features are:

 Support for different microcontroller architectures

 Adding cryptographic algorithms

 Covering the NDEF format

 Implementing most common available tags

 Originality check

In contrast to available libraries the available command set not only implements the commands

defined in the standards. The highly abstracted command set performs multiple commands

consecutively to enhance the usability.

The overall size of the framework is strongly application specific. This makes a comparison very hard.

The reader library from NXP needs about 12 kBytes of flash memory in a scaled version.91 The

implemented firmware takes about 15 kBytes (compiled with optimization for size). Additional

features like the cryptographic architecture need more memory.

This results in the fact that even simple microcontroller can be used for this architecture.

The used development platform offers a simple changeable development platform, which covers lots

of different components that can be combined very easily.

The products based on the created architecture feature the easy to use approach and are available in

different form factors and capabilities.

This work shows the need for simple modules to overcome the complexity of the RFID technology

and its different standards. It also provides an easy to use solution which covers these aspects.

In the future the UHF and the LF RFID standards could be included in this library to also cover these

RFID technologies.

91 Compare NXP, Application Note, AN11342, How to Scale Down the NXP Reader Library, Rev. 1.0, March 11,
2013

83

6. Bibliography

[1] Harvey Lehpamer Ef. D, RFID Design Principles, Second Edition, Artech House Books,

 2012, ISBN-13: 978-1608074709

[2, 43] Dipl.-Ing. Michael Ganzera, lecture “Identification and System Integration”, Campus

02, 2016

[3] Lava Computer MFG Inc., RS232: Serial Ports, June 10, 2002, (Accessed: 27.1.2017):

http://lpvo.fe.uni-lj.si/fileadmin/files/Izobrazevanje/OME/rs_232_serial_ports.pdf

[4] Dallas Semiconductor, Application Note, 83, Fundamentals of RS–232 Serial

Communications, March 9, 1998

[5, 6] Silicon Laboratories Inc., Application Note, AN0059, UART Flow Control, September

16, 2013

[7] Chuck Farrow, Texas Instruments, Application Report, SLAA215, Automatic Baud Rate

Detection on the MSP430, October 2004

[8, 10, 11, Craig Peacock, Beyond Logic, USB in a NutShell, 2007, Beyond Logic
 13, 15, 16,
17]

[9] Terry Moore, MCCI, USB 3.0 Technical Overview, October 8, 2009

[12, 14, 18] Universal Serial Bus Specification, Revision 2.0, April 27, 2000

[19, 20, 21, Universal Serial Bus Device Class: Smart Card, CCID, Specification for
23] Integrated Circuit(s) Cards Interface Devices, Revision 1.1, April 22, 2005

[22] NXP, User Manual, UM10915, Revision 1.0, March 9, 2016

[24, 26] Universal Serial Bus Class Definition for Communication Devices, Version 1.1, January

19, 1999

[25, 27] Silicon Laboratories Inc., Application Note, AN758, Implementing USB

Communication Device Class (CDC) on SiM3U1xx MCUs, Revision 0.1, March 2013

[28, 30, 31, Universal Serial Bus Device Class Definition for Human Interface
 32, 33, 35, Devices (HID), Version 1.11, June 27, 2001
 36]

[29] Silicon Laboratories Inc., Application Note, AN249, Human Interface Device Tutorial,

Revision 0.5, March 2011

[34] IDAutomation, Programming Manual, SC7USB 2D

[37] Universal Serial Bus HID Usage Tables, Version 1.12, October 28, 2004

[39, 41] NXP, Datasheet, PN7462, Revision 3.3, December 21, 2016

http://lpvo.fe.uni-lj.si/fileadmin/files/Izobrazevanje/OME/rs_232_serial_ports.pdf

84

[38] NXP, User Manual, UM10663, NXP Reader Library User Manual based on CLRC663

and PN512 Blueboard Reader projects, Revision 1.2, July 24, 2013

[40] Austriamicrosystems, FS_AS39230 (Accessed: 27.1.2017):

http://ams.com/eng/content/view/download/382456

[42] NXP, Application Note, AN78010, Revision 1.0, November 2002

[44] NXP, Application Note, AN11535, Measurement and tuning of a NFC and Reader IC

antenna with a MiniVNA, Revision 1.1, November 3, 2014

[45, 50, 52] Pete Sorrells, Microchip Technology Inc., Application Note, AN680, Passive RFID

Basics, 1998

[46, 49, 51] N. Vlajic, Analog Transmission of Digital Data: ASK, FSK, PSK, QAM, Fall 2010,

Accessed: 27.1.2017):

https://web.stanford.edu/class/ee102b/contents/DigitalModulation.pdf

[47, 57, 58] Atmel, Application Note, Requirements of ISO/IEC 14443 Type B Proximity

Contactless Identification Cards, Rev. 2056B-RFID, November 2005

[48] Nicolas Cordier, Austriamicrosystems, Technical Arcticle, How new ‘boostedNFC’

technology enables mobile phones and wearable devices to emulate contactless

cards reliably

[53] Henryk Plötz and Karsten Nohl, Legic Prime: Obscurity in Depth, December 28, 2009

[54] ISO/IEC 14443-2, Identification cards — Contactless integrated circuit(s) cards —

Proximity cards — Part 2: Radio frequency power and signal interface, July 2001

[55, 56] ISO/IEC 14443-3, Identification cards — Contactless integrated circuit(s) cards —

Proximity cards — Part 3: Initialization and anticollision, Novembre 20, 2008

[59] ISO/IEC 14443-4, Identification cards — Contactless integrated circuit(s) cards —

Proximity cards — Part 4: Transmission protocol, March 19, 2007

[60] ISO/IEC 15693-1, Identification cards — Contactless integrated circuit(s) cards —

Vicinity Integrated Circuit(s) Card Part 1: Physical characteristics

[61, 62] ISO/IEC 15693-2, Identification cards — Contactless integrated circuit(s) cards —

Vicinity cards Part 2: Air interface an initialization

[63, 64, 65] SONY, FeliCa Card User's Manual Excerpted Edition, Version 2.01 No. M617-E02-01

[66] ISO/IEC 18000-3, Information technology — Radio frequency identification for item

management — Part 3: Parameters for air interface communications at 13,56 MHz,

2010

[67] NXP, Datasheet, SL2S1412; SL2S1512; SL2S1612 ICODE ILT-M, Rev. 3.2, October 8,

2013

http://ams.com/eng/content/view/download/382456
https://web.stanford.edu/class/ee102b/contents/DigitalModulation.pdf

85

[68] NXP, Application Note, AN11402, How to implement the ICODE ILT anti-collision, Rev.

1.0, October 23, 2013

[69] Márcio Almeida, Hacking Mifare ClassicCards, (Accessed: 28.1.2017):

https://www.blackhat.com/docs/sp-14/materials/arsenal/sp-14-Almeida-Hacking-

MIFARE-Classic-Cards-Slides.pdf

[71] NXP, Connected Tag Solutions, (Accessed: 28.1.2017):

http://www.nxp.com/products/identification-and-security/nfc-and-reader-

ics/connected-tag-solutions:MC_1429877262080

[72] NFCForum, NFC Data Exchange Format (NDEF) Technical Specification NFC Forum,

NDEF 1.0 NFCForum-TS-NDEF_1.0, July 24, 2006

[73] Roger M.Needham and David J.Wheeler, Tea extensions, October 1996, (Accessed:

2.2.2017)

http://www.cix.co.uk/~klockstone/xtea.pdf

[74] Karthik .S, Muruganandam .A, Data Encryption and Decryption by Using Triple DES

and Performance Analysis of Crypto System, November 11 2014, ISSN (Online): 2347-

3878 Volume 2 Issue 11, November 2014, International Journal of Scientific

Engineering and Research

[75] Uli Kretzschmar, Texas Instruments, Application Report, SLAA397A, AES128 – A C

Implementation for Encryption and Decryption, July 2009

[76, 78, 80] David Jones, UCL Bioinformatics Group, Good Practice in (Pseudo) Random Number

Generation for Bioinformatics Applications, May 7, 2010

[77] PIERRE L’ECUYER and RICHARD SIMARD, TestU01: A C Library for Empirical Testing of

Random Number Generators, August 2007

[79] Greg Rose, KISS: A Bit Too Simple, 2011

[81] Don Johnson and Alfred Menezes, The Elliptic Curve Digital Signature Algorithm

(ECDSA), July 27, 2001, Springer-Verlag 2001, DOI: 10.1007/s102070100002

[82] NXP, NFC Forum Type Tags, White Paper V1.0, April 1, 2009

[83] NFC Forum, New NFC Forum Technical Specifications Broaden Tag Support and

Enhance Interoperability, October 14, 2015, (Accessed: 28.1.2017)

http://nfc-forum.org/newsroom/new-nfc-forum-technical-specifications-broaden-

tag-support-and-enhance-interoperability/

[84] SonMicro, User Manual, SM130, Revision A.2, June 2006

[85] Jinmuyu Electronics Co. LTD, User Manual, JMY504C User’s Manual, Revision 3.42,

June 28, 2011

[86] ubisys, Refernce Manual, 13.56 MHz RFID USB READER REFERENCE MANUAL

[87] NXP, Datasheet, LPC1110/11/12/13/14/15 Datasheet, Rev. 9.2, March 26, 2014

https://www.blackhat.com/docs/sp-14/materials/arsenal/sp-14-Almeida-Hacking-MIFARE-Classic-Cards-Slides.pdf
https://www.blackhat.com/docs/sp-14/materials/arsenal/sp-14-Almeida-Hacking-MIFARE-Classic-Cards-Slides.pdf
http://www.nxp.com/products/identification-and-security/nfc-and-reader-ics/connected-tag-solutions:MC_1429877262080
http://www.nxp.com/products/identification-and-security/nfc-and-reader-ics/connected-tag-solutions:MC_1429877262080
http://www.cix.co.uk/~klockstone/xtea.pdf
http://nfc-forum.org/newsroom/new-nfc-forum-technical-specifications-broaden-tag-support-and-enhance-interoperability/
http://nfc-forum.org/newsroom/new-nfc-forum-technical-specifications-broaden-tag-support-and-enhance-interoperability/

86

[88] NXP, Datasheet, LPC11u6x Datasheet, Rev. 1.3, September 7, 2016

[90] Embedded Artists, LABTOOL, (Accessed: 28.1.2017):

http://www.embeddedartists.com/products/app/labtool.php

[89] NXP, OM13054: LPC-Link2, (Accessed: 28.1.2017):

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-

cortex-m-mcus/lpc3000-arm9-mpus/lpc-link2:OM13054

[91] NXP, Application Note, AN11342, How to Scale Down the NXP Reader Library, Rev.

1.0, March 11, 2013

http://www.embeddedartists.com/products/app/labtool.php
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc3000-arm9-mpus/lpc-link2:OM13054
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-cortex-m-mcus/lpc3000-arm9-mpus/lpc-link2:OM13054

87

7. Shortcuts

RFID Radio Frequency Identification

LF Low Frequency

HF High Frequency

UHF Ultra High Frequency

USB Universal Serial Bus

CCID Chip Card Interface Device

CDC Communication Device Class

HID Human Interface Device

ASCII American Standard Code for Information Interchange

USA United States of America

IC Integrated Circuit

OS Operating System

PC Personal Computer

PCB Printed Circuit Board

USART Universal Asynchronous Receiver Transmitter

SPI Serial Peripheral Interface

DTE Data Terminal Equipment

DCE Data Communication Equipment

TxD Transmit Data

RxD Receive Data

GND Ground

RTS Request To Send

CTS Clear To Send

LSB Least Significant Bit

MSB Most Significant Bit

ABR Automatic Baud Rate

88

CR Carriage Return

EMI Electromagnetic Interference

OTG On-The-Go

NRZI Non Return to Zero Inverting

CRC Cyclic-Redundancy-Check

ICC Integrated Circuit Cards

APDUs Application Protocol Data Units

TPDUs Transport Protocol Data Units

PIN Personal Identification Number

API Application Programming Interface

ROM Read Only Memory

ASK Amplitude Shift Keying

FSK Frequency Shift Keying

PSK Phase Shift Keying

NRZ Non Return to Zero

PCD Proximity Coupling Device

PICC Integrated Circuit Card

OOK On-Off-Keying

BPSK Binary Phase Shift Keying

NRZ-L Non Return to Zero-Level

UID Unique Identifier

NUID None Unique Identifier

RID Random Identifier

VCD Vicinity Coupling Device

VICC Vicinity Integrated Circuit Card

NFC Near Field Communication

MAC Message Authentication Code

NDEF Near-Field Data Exchange Format

89

PIE Pulse Interval Encoding

DSB Double Sideband

NDA Non-Disclosure Agreement

IDE Integrated Development Environment

ANSI American National Standards Institute

SRAM Static Random-Access Memory

EEPROM Electrically Erasable Programmable Read-Only Memory

CRP Code Read Protection

PWM Pulse Width Modulation

AES Advanced Encryption Standard

DES Data Encryption Standard

RNG Random Number Generator

PRNG Pseudo Random Number Generator

CSPRNG Secure Pseudo Random Number Generator

ADC Analog to Digital Converter

ECDSA Elliptic Curve Digital Signature Algorithm

ECDLP Elliptic Curve Discrete Logarithm Problem

OTP One Time Programmable

90

8. List of Figures

Figure 1: Overview of the different frequency ranges of RFID .. 2

Figure 2: Topology of a typical RFID solution .. 3

Figure 3: USART Frame .. 6

Figure 4: Two devices connected with hardware handshake .. 7

Figure 5: Legacy method for hardware handshake .. 7

Figure 6: Bit patterns of CR for baud rates from 115 200 baud to 9 600 baud 8

Figure 7: USB connection ... 11

Figure 8: USB descriptor topology .. 12

Figure 9: Simple example of a CCID application ... 16

Figure 10: Topology of USB and HID descriptors .. 18

Figure 11: Principle of energy transmission in HF RFID .. 23

Figure 12: Example of a matching network commonly used ... 23

Figure 13: Functional principle of ASK .. 24

Figure 14: Principle functionality of FSK ... 25

Figure 15: PSK system topology ... 25

Figure 16: Overview of different coding used within RFID systems ... 26

Figure 17: Signal details for the ISO 14443 A and B standard .. 27

Figure 18: Timeslot anti-collision sequence with a different amount of slots 28

Figure 19: Functionality of the probalistic anti-collision sequence .. 29

Figure 20: Overview of the different configuration chosen by the VCD ... 30

Figure 21: Pulse Interval Encoding bit definition .. 32

Figure 22: Overview of the implemented abstraction layer ... 35

Figure 23: Interaction between the different parts of the HAL .. 40

Figure 24: Topology of the lower two layers ... 42

Figure 25: System topology from HAL to Extended Abstraction layer .. 45

Figure 26: Comparison of asymmetric and symmetric cryptography ... 46

Figure 27: Basic principle of a key derivation for RFID Tags.. 48

Figure 28: JKISS generator used as PRNG ... 49

Figure 29: Structure of a NDEF message ... 51

Figure 30: Example of creating a vCard using the implemented NDEF library 52

Figure 31: Basic structure of a NFC Forum Type 2 tag .. 53

Figure 32: Procedure for detecting and parsing a NDEF enabled tag ... 55

Figure 33: Firmware topology from HAL to the simple commands .. 55

Figure 34: Architecture for the commands ... 58

Figure 35: Command structure used in the main program ... 58

Figure 36: Function for processing and calling the appropriate command .. 59

Figure 37: Structure of a command used for the firmware architecture.. 59

Figure 38: Response format for the implemented commands ... 60

Figure 39: Overview of the response codes .. 60

Figure 40: Overview of the Tag Info command ... 61

Figure 41: Example for reading from a memory tag ... 62

Figure 42: Summary of important commands .. 63

Figure 43: Hardware related commands implemented by the firmware architecture 64

Figure 44: System topology using multiple reader ICs .. 64

file:///D:/Uni/Masterarbeit/Masterthesis_1V2.docx%23_Toc475302012

91

Figure 45: Topology of a multi antenna RFID module ... 65

Figure 46: Example for exchanging an ISO14443 A frame .. 65

Figure 47: Overview of the overall firmware architecture .. 66

Figure 48: Procedure for generating and verifying the signature ... 67

Figure 49: OM13035 demo board ... 70

Figure 50: OM13058 demo board ... 70

Figure 51: PNEV512 demo board .. 71

Figure 52: CLEV663B demo board ... 71

Figure 53: Modified version of the CLEV663B ... 72

Figure 54: Used development platform .. 73

Figure 55: Top and bottom view of the Sangoma MultiAntenna module .. 74

Figure 56: Different available antennas for the MutiAntenna module .. 75

Figure 57: Topview of the Sangoma NFC-Wizard .. 76

Figure 58: Sangoma NFC-Wizard with case ... 76

Figure 59: Sangoma Mini with USB and RS232 option .. 77

Figure 60: Top and Bottom view of the Sangoma Micro .. 77

Figure 61: Sangoma DocTrack ... 78

Figure 62: Top and bottom view of the Tag part .. 79

Figure 63: Chain wheel with antenna and tag PCB / reader mounted on frame 79

Figure 64: Top and bottom view of the reader part ... 80

Figure 65: Reader PCB with used antenna .. 80

Figure 66: Screenshot of the Android App .. 81

Figure 67: Picture of the whole application at the Electronica 2016 .. 81

	Masterstudien: [Master's degree programme: Information and Computer Engineering]
	Institutsname: Institute of Electronic Sensor Systems
	Di: [Diplom-Ingenieur]
	First name and surname, university degree already held, e:
	g:
	 BSc: Thomas Pichler, BSc

	Title and subtitle of the thesis: Development of a novel highly scalable RFID reader/writer firmware architecture
	MASTER'S THESIS: MASTER'S THESIS
	to achieve the university degree of: to achieve the university degree of
	Graz University of Technology: Graz University of Technology
	submitted to: submitted to
	optional field:
	Graz, month and year: Graz, February 2017
	Supervisor: Supervisor
	University degree, first name and surname of the supervisor: Ass. Prof. Dipl.-Ing. Dr. techn. Bernd Eichberger

