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Abstract (English)

In recent years the amount of software within automobiles has increased up
to 100 Million Lines Of Code in modern day premium vehicles. Virtually all
innovations in automotive engineering in the last decade include software
components. Parallel to this increasing amount, testing becomes more vital.
Automotive software development follows restrictive guidelines in terms of
coding standard, language limitations and processes. Traditionally testing is
a core part of automotive development, but the raising number of features
increases the time and money required to perform all tests. Repeating
them multiple times due to programming errors might jeopardises a cars
introduction on the market. Software Fault Prediction is a new approach
to forecast bugs already at time of commit, thus to guide test engineers
upon defining testing hotspots. This work reports on the first successful
application using model driven and code generated automotive software as
a case study and a success prediction rate up to 97% upon a bug or fault free
commit. A compiled and published dataset is presented along with analysis
upon the used software metrics. Performance data achieved using different
machine learning algorithms is given. An indepth analysis upon factors
preventing Cross-Project Fault Prediction is conducted. Further usage and
practical application areas will conclude the work.
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Zusammenfassung (Deutsch)

Der Anteil an Software im Automobil hat in den vergangen Jahren deutlich
zugenommen und umfasst in modernen Oberklassenfahrzeuge bis zu 100

Millionen Codezeilen. Nahezu alle Innovationen des Automobilbaues im let-
zten Jahrzehnts beinhalten Software Komponenten. Einhergehend mit dieser
Zunahme wird das Freitesten jener Komponenten wesentlich wichtiger. Die
Softwareentwicklung in der Automobilindustrie ist sehr strengen Entwick-
lungsrichtlinien in Form von Codingstandards, Einschränkungen im Funk-
tionsumfang der Programmiersprache sowie Prozessvorschriften unterwor-
fen. Traditionell ist das Testen eine Kernaufgabe der Automobilentwicklung,
jedoch mit der zunehmenden Anzahl an Softwarefunktionen steigt sowohl
der monitäre als auch zeitliche Aufwand alle Systeme frei zu testen. Müssen
Tests mehrfach aufgrund von Programmierfehlern wiederholt werden kann
dies die Markteinfürung eines neuen Modelles gefährden. Die Software
Fehler Vorhersage ist eine neue Methode um Fehler bereits zum Commit
Zeitpunkt vorherzusehen und damit Test Ingenieuren eine Möglichkeit zu
bieten ihre Testschwerpunkte zu definieren. Dies ist die erste Arbeit zur
Vorhersage von Fehlern welche Model basiert entwickelte und automatisch
Code generierte Software als Fallstudie verwendet. Bei 97% der commits
kann korrekt zwischen fehlerfrei und fehlerbehaftet unterschieden werden.
Das erstellte und veröffentlichte Datenset wird gemeinsam mit einer Analyse
zu den verwendeten Software Metriken und den erreichten Genauigkeiten
unterschiedlicher maschineller Lernmethoden beschrieben. Im Anschluss
erfolgt eine genaue Untersuchen der Ursachen die zur nicht Anwendbarkeit
der projektübergreifenden Fehlervorhersage führen. Abschließend werden
weitere Anwendungsfelder für die praktische Anwendung des Systems
präsentiert.
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1. Introduction

This chapter will start with a general motivation 1.1 to automotive software
engineering as a computer science research field, continuous with the iden-
tified problems 1.2 and research questions on software testing within the
automotive industry, presents an overview to the thesis contribution 1.3 and
concludes with the thesis organization 1.4.

1.1. Motivation

Within the last decade Software gained importance in cars. A modern day
premium car, example given the 2015 Audi A4 [1] may be equipped with
up to 90 Electronic Control Unit (ECU), two high resolution displays, two
Subscriber Identification Module (SIM) cards, 11 communication networks
(Controller Area Network (CAN), FlexRay, Media Oriented Systems Trans-
port (MOST)) and up to six antenna systems (radio, Keyless Entry Start and
Exit System (Kessy), WiFi, etc.) ensuring wireless communication between
the car and various infrastructure. From a computer scientist’s perspective
a modern day car is a heterogeneous network of embedded computers
performing local and distributed tasks. In addition to transport capabilities
customers demand up to date entertainment (including music, video or
online streaming) and comfort(climate control, massage seats, etc.) in a
modern day car. Various features, example given Advanced Driver Assis-
tance Systems (ADAS), rely on data fusion between multiple sensors and
pre calculated values on various ECU. A wide range of sensors starting
from simple switches or rotary encoders to advanced Global Positioning
System (GPS) Antennas or Radar Sensors will be used to sense the car’s
environment or interact with the driver. Realizing innovative ADAS like
Adaptive Cruise Control (ACC) or Matrix headlamps requires fusioning pre
processed measurement data from a camera sensor and a radar sensor as
well as a lookup from the road traffic database. This requires four ECU to

1



1. Introduction

(a) Audi A8 Electric wires diagram. Picture
extracted from [3]

(b) Audi A4 Electric wires diagram. Picture
extracted from [1]

Figure 1.1.: Audi A4 and A8 schematic showing the electric wiring harness

work together in realizing one specific driving function. Figure 1.1 shows
two modern day premium cars with all their electronic systems and wires,
which sum up to 2.5 km in total length, leaving a modern day car to be
one of the most technical places within a humans daily live. Following
Pretschner et al. [2] a 2007 BMW 7 Series contained about 270 software based
functions and 67 ECU powered by 65 megabyte of data, the 2010 Model has
been expected to contain one gigabyte of software.

The amount of software required to operate a car or an aircraft has in-
creased during past years, even putting the automotive domain in the lead.
Robert Charette [4] compares the complexity between an aircraft and a
car demonstrating that it requires more Lines Of Code (LOC) to operate a
typical car than an aircraft. Dvorak et al. [5] states that software realized
functionality within a military aircraft raises from below 10% on an 1960is
F-4 to 80% on a modern day F-22. Similarly the author states a represen-
tative car from General Motors (GM) rises from 100.000 LOC within the
1970is up to 1.000.000 LOC in 2010. Broy [6] states modern day premium
cars can contain up to 100.000.000 LOC. In previous works Broy [7] reveals
electronics and software development consumes up to 40% of the whole
development budget nowadays. This is in line with a forecast by Siemens
released in 2005, see Aschenbrenner [8]. Similarly a market research from
Ehmer [9] states that 20% of the car’s total development budget in 2000 will
increase to 35% by 2010. They will be distributed among 2% basic software,

2



1.1. Motivation

8% operating system and 28% application software.

A car recall costs money. Whenever a malfunction within a car is a threat
to human life, the law forces an Original Equipment Manufacturer (OEM)
to perform repairs. In terms of software this means developing a hotfix and
distributing it. Most OEM do not equip their cars with over the air update
capabilities this means the car has to be moved into a workshop. Within
recent years there have been multiple recalls, compare Figure 1.2. The total
number can be extracted by querying the National Highway Traffic Safety
Administration (NHTSA) database [10], the amount of software related re-
calls can been extracted counting each entry containing the terms ”software”
or ”program” within the recall description or required repair action. The
number of sold vehicles can be gathered from Wards Auto [11]. The majority
of recalls were due to mechanical deficits, but the share of software related
recalls is increasing. Within the automotive industry such a recall can cost
millions, as an OEM has to pay for contacting the customer, maybe a rental
car and the workshop to replace the software. In addition, National Auto-
mobile Dealers Association (NADA) published a Whitepaper [12] analysing
the impact of recalls on a cars (retail)value. They recognized an increasing
number of affected vehicles by recalls within the last decade. Analysing an
OEM’s average car price compared to competitors they found clear impacts
of a recall on achievable market prices, example given Toyota dropped by
-20% after the 2009 recall on self accelerating models. The authors conclude
avoiding a recall will be of economic interest.

Finding bugs later costs more money. A recent Whitepaper from Kloc-
work [14] stated that finding bugs in early development phases might cost
25$, in a later phase this could climb up to 16.000$. The authors values are
based on standard software. Tassey [15] presents multiple analysis concern-
ing the costs when finding bugs in different development stages. The author
states 70% of all errors are introduced during the requirements phase but
50% of all bugs will be discovered during the integration testing phase.
Further the authors analysed the cost of fixing bugs, see Figure 1.3. In line

1Model-year is the first year where a car type is introduced. If a recall is reported in
2008 and 2010, but the car was lunched in 2004, the recall will always bee counted for
Model-year 2004. One car can be affected by multiple recalls during its lifetime. The recall
data is available via NHTSA [10], the sale statistic via Wards [11].

3



1. Introduction

Figure 1.2.: NHTSA recall statistics on Model-year 2000 - 2014, comparing recalls in total
with software caused recalls and sales 1. One can see more recalls than sold ve-
hicles within multiple years. The graphic has been extracted from Altinger et al.
[13].

with Capers [16] the later a defect is detected, the more expensive it is to fix
it. In terms of the automotive industry the numbers will be even higher, as
the law forces antecedent tests to be repeated. The majority of tests requires
expensive hardware and personnel example given to ride prototype cars for a
defined mileage.

Within a software’s Product Life Cycle (PLC), maintenance can cause the
highest costs. ISO/IEC 14764 [17] defines software maintenance as the
modification of a product after delivery to a customer. The aim of such a
modification is to correct faults, to improve performance or to adopt other
quality attributes of the product. As analysed by Kozlov et al. [18] 49% to
75% of the total software costs are caused by maintenance. Kozlov et al.
examined data between the 1970s and 1990s. Recent data published by
Confora et al. [19] indicate even more than 80% of the total PLC costs
are caused by maintenance nowadays. Shull et al. [20] states that fixing a
software fault during maintenance caused higher costs than finding and
fixing it during the early phase of the software’s PLC, which is in line with
Capers [16]. Even if concrete figures vary, Shull et al. [20] analysed that

4



1.1. Motivation

Figure 1.3.: Costs to fix detected bugs, the graphic has been adopted from Tassey [15].

the effort increase by 100:1 for critical defects on large projects and 2:1 for
non-severe bugs discovered after release.

Summarizing this chapter’s arguments, the share of software increases,
fixing bugs out in the field (after release) costs huge amount of money
and has a negative impact on the OEM’s reputation. Thus finding bugs
during early development stages is of economic interest.

5



1. Introduction

1.2. Problem Statement

As stated in the previous chapter, developing software is a complex and
expensive task. According to Broy [6] and Aschenbrenner [8] 30-50% from
a car’s total development costs will be dedicated to software by 2030.
Testing has always been a core part of Automotive engineering, as the
W-Development process defines a testing stage for every development
stage, compare Jin-Hua et al. [21]. Indicators where to particular spend
TestCase (TC) are welcome to increase efficiency in testing.

The following research questions are identified:

RQ1: What are the common tools automotive software engineers
use to specify requirements and write their software?

RQ2: Is it possible to use fault prediction within
automotive software projects?
RQ 2.1: Does fault prediction benefit from restrictive

development guidelines (Coding-standards and
development processes)?

RQ 2.2: What are influential parameters for fault prediction
to performing usefully?

RQ 2.3: Do (re)sampling strategies influence the achievable
performance?

RQ 2.4: Is it possible to establish Cross-Project Fault
Prediction (CPFP) within the restrictive development
settings?

RQ3: Which metrics perform best for generated code within
automotive software?
RQ 3.1: Which metrics are independent and share no

correlation with others?
RQ 3.2: Do metrics represent the occurred bugs?

RQ4: What are good fault predicting methods and what
performance can be achieved?

6



1.3. Thesis Statement

1.3. Thesis Statement

Main parts of this thesis were published on international Workshops and
Conferences and are peer reviewed:

• Altinger et al. [13] commits to answer RQ1 by performing a represen-
tative survey upon tools and methods.

• Altinger et al. [22]2presents further insights into software methods and
development procedures within the automotive industry. This work
contributes to answer RQ1.

• Altinger et al. [23] releases an industry grade dataset containing soft-
ware metrics on automotive software projects aiming to answer RQ3
and RQ3.1 by presenting correlation analysis upon those measure-
ments.

• Altinger et al. [24] presents work on Software Fault Prediction (SFP)
and CPFP answering RQ2 by using machine learning classifiers to
predict failures. Comparing the achieved performance values with lit-
erature RQ2.1 will be answered. Correlation analysis and information
ranking will be used to address RQ2.2. Main work will be on RQ2.4
using state of the art literature methods and comparing their perfor-
mance. Finally RQ4 will be answered using a Principle Component
Analysis (PCA) on the metric data.

• Altinger et al. [25] reports on influences of resampling algorithm to
bug prediction performance. This work commits to answer RQ2.3.

• Altinger et al. [26] presents work on bug analysis to response on RQ3.2.

A detailed annotated publication list is given in Section A.1.

2This publication is submitted to review and is not published at date of release of this
thesis
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1. Introduction

1.4. Thesis Organization

The thesis will be organized as follows. Starting with Chapter 2 to present
the automotive industry as the research area and Chapter 3 containing the
related literature with a focus on the field of fault prediction. Chapter 4

reviews a conducted questionnaire survey on tools used to specify, develop
and test automotive software. An analysis upon three real world software
projects is presented in Chapter 5. The obtained results on fault prediction
are contained within Chapter 6. Finally Chapter 7 gives concluding remarks
and a preview to further research topics.

8



2. Field of Study - Automotive
Software Development

This chapter gives a short introduction to the automotive industry 2.1
and clarifies some domain specific environment parameters 2.2 along with
common testing approaches 2.3. This examination will focus mainly on a
computer science perspective.
For a more wider introduction to automotive engineering, including other
disciplines such as computer science, the reader is redirected to Winner et al.
[27], Braess et al. [28] and Crolla [29].

2.1. Automotive domain

Compared to the consumer electronic industry the automotive domain has
a rather long PLC. Volpato and Stoccchetti [30] analysed cars PLC data
between 1970 and 2006. They report on small cars to be redeemed by the
new model after five years, premium cars after eight years, with a strong
trend to shorter cycles. This is in line with Broy et al. [31] where they state
a PLC is roughly seven to eight years, service and spare parts may last
up to 15 years. According to the Kraftfahr Bundesamt (English: German
Federal Motor Transport Authority) (KBA) [32] statistically cars in Germany
are decommissioned after 8,8 years in use. Considering the average three
to four year development phase as reported by Crolla [29], see Figure 2.6,
some components development might be 18 to 20 years ago when a car is
still on the road. Sabadka [33] predicts a reduction of a cars development
time from 40 months to 25 in 2013 and further to 20 months in 2018. Using
the VolksWagen (VW) Golf as a case story he analysis a PLC reduction
from ten years in the late 1970is to three years in late 2000. In contrast,
typical consumer products are replaced every two to three years according
to Andrae and Andersen [34], software might be updated within much

9



2. Field of Study - Automotive Software Development

shorter cycles.

Most software runs on ECU with strict hard real-time constraints, mem-
ory and computing power is always limited. A modern day car can be
seen as a heterogeneous network of up to 90ECU performing local and
distributed computing tasks. Some nodes acquire data via a sensor interface,
some pre-process data and some aggregate data, others control actuators.
The automotive environment is rather harsh, example given the operational
temperature is specified between -40

◦ and +120
◦, shock, Electrostatic Dis-

charge (ESD), vibration, etc. Tils [35] presented a rather good overview to
all physical requirements to car electronics. These limitations may cause
the Central Processing Unit (CPU) to run in throttled computation mode to
fulfil operation requirements.

Hartung et al. [36] addresses the variation diversity within automobiles and
visualizes them with examples. Pretschner et al. [2] uses 80 components
which a customer can order, availability may depend on the country, to
calculate 280 variants an OEM can assemble electronics. During production
the car is equipped with the ECU, but the actual software configuration is
generated and deployed in the production line depending on the configura-
tion the customer ordered. This causes a high number of conditions within
the software, to cover all options. Peleska et al. [37] released an original
software model visualizing the high amount of states and conditions to
realize a simple car’s turn indicator.

The Ultimate time goal: Start Of Production (SOP), the first day when a
new model is built. This day requires all developments to be completed,
all software to be tested and all certificates and accreditation documents
to be issued. Long planning cycles are invested to solve logistic topics,
all components need to pass qualification audits. Crolla [29] gives a brief
overview to these milestones, see Figure 2.6. Once the SOP day is defined,
customers may no longer order the old model, and logistic does not stock
up components from the old model. This means, that from a certain point in
time, it is not possible to extend the production of the old model anymore.
Assuming a cycle time during assembly of about 70 - 90seconds and an
average product price in the five digits regions, a production stop for a day
can easily sum up to millions of EUR.

10



2.2. Development process

Figure 2.1.: The automotive milestone plan with SOP as the ultimate goal. Graphic is a
licensed copy from Crolla [29] copyright granted by Wiley.

2.2. Development process

Automotive engineering uses the V-Model within all disciplines (power-
train, chassis, software, electronics, etc.). A recent survey by Bock et al. [38]
reveals 100% of the interviewee automotive developers are familiar with
this development approach. Schäuffele and Zurawka [39] explain this ap-
plication and its adaptations to automotive in detail. In recent times the
W-Development process, see Figure 2.2, is becoming more popular, as stated
in a survey by Haberl [40]. This is an explicit testing oriented extension to
the well known V-Process. Every specification stage has a corresponding
testing stage. Bock et al. [38] conducted a survey among fifteen automotive
software developers concerning their daily tools and methods usage. He
present Matlab, Matlab/Simulink and TargetLink as the most dominating
tools out of eight commonly known development products. All respondents
are familiar with the V-development process, three quads of them with
AUTomotive Open System ARchitecture (AUTOSAR).

11



2. Field of Study - Automotive Software Development

Figure 2.2.: The W-Development process as an testing oriented enhancement from the
V-Model, originally presented by Jin-Hua et al. [21].

Following Broy et al. [31] and Bock et al. [38] the majority of automotive
software is developed using model driven or graphical programming ap-
proaches, example given Matlab Simulink [41], with automatic code genera-
tion, example given using TargetLink [42]. Acting according to this process
correlating code and model files are available during the development
stages.

In accordance with the Motor Industry Software Reliability Association
(MISRA) Software development guidelines [43], [44] there are various docu-
ments available during all stages:

• specification: functionality, timing, memory, processing time, etc.
• software architecture: modules, target ECU, schedule, etc.
• interface description: network message layout, method signature, etc.
• static code analysis reports: MISRA compliance, coverage, etc.
• code review reports: comments and suggestions
• test reports: TC pass rate, code coverage, etc.
• · · ·

These documents are quite similar to other software engineering disciplines.
A concrete workflow for software development is presented in Section 4.2.

A major difference is a rather strict development schedule containing the
following milestones:

12



2.2. Development process

• interface freeze
Where all network messages and interface (software and hardware)
definitions have to be finalized. Beyond this point there is no change
of communication messages or data-types.

• software freeze
Where all software modules have to be finished and able to be called
upon. There is no need for full functional implementation. Beyond
this point no method signature changes are allowed.

• 100% software
Where all software modules have to be implemented and be able to
pass functional tests. Succeeding this milestone only bug fixes are
allowed to be submitted.

• SOP
Where all software has to be finally tested.

Boogerd and Moonen [45] analysed a non automotive software from NXP Semi-
conductors discovering a similar behaviour. Within the early commits the
bug rate increases where the authors conclude this is common behaviour to
implement all features in the first place and later on to fix bugs.

As outlined by Schäuffele and Zurawka [39] not all modules are developed
by the same company. Some do develop modules or components which
they deliver as linkable binary. As stated by Pretschner et al. [2] an OEM
may not even own a full Whitebox specification for third party modules.
Another company might be responsible to integrate various modules to-
gether with an Operationg System (OS) to be executed at the target ECU.
The AUTOSAR standard hosts abstraction layers and defines interface de-
scriptions for all modules to communicate or use services provided by
the OS to interact with the ECUs I/O. Figure 2.3 shows a simplified ar-
chitectural layout. Several vendors offer AUTOSAR OS and basic software
components via configurable code generators. The ECU manufacturer needs
to implement the hardware drivers, whereas the OEM or system vendor
only develops the application modules. As analysed by Dersten et al. [46]
introducing the AUTOSAR standard to automotive has been beneficial to
all software developing parties due to reduced costs on implementation
and reuse capabilities. In addition standardized interfaces and Run Time

13



2. Field of Study - Automotive Software Development

Figure 2.3.: The AUTOSAR architecture schematic as described by [47].

Environment (RTE) enabled developers to simulation and verify their appli-
cation. The lower layer realizes access to hardware components and provides
basic functionality example given logging and diagnosis services. Figure 2.3
visualises the architecture. The AUTOSAR RTE provides interfaces similar
to an Application Programming Interface (API) and handles the data-flow.
The application layers hosts the functionality, it might contain decision
logics, controller software, etc.
As outlined by Schäuffele and Zurawka [39] the software is organized in
modules partially hosting the functionality. A module can consist of a single
or multiple software model. An application will assemble all modules and
provide the external interfaces.

Developing a car in general requires to follow guidelines and require-
ments defined by laws (worldwide, national and maybe regional), in ad-
dition there are several Norms to be considered. Figure 2.4 lists the most
common Norms. ISO/IEC 15504-2: 2003 (Automotive Software Process Im-
provement and Capability Determination (SPICE)) [48], delivers process
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documents, ISO 26262, ”functional safety”, [49], guides analysis of hardware
and software and is a core part of every architectural decision. Projects are
grouped into Automotive Safety Integrity Level (ASIL) QM and A to D,
representing the severity of a failure’s consequence, see equation 2.1. Sever-
ity will range between ”no injuries” and ”life threatening” caused by fatal
injuries, Exposure ranges from ”incredibly unlikely” to ”high probability”
when cases occur under normal operations, Controllability ranges between
”controllable” to ”difficult or unable to control”. A system classified as ASIL
D will cause harm to human life if it fails in which a highly likelihood
of situations occur. A visual example of such a system might be a highly
automated car leaving the road due to a software flaw and injuring its
passengers in the case of a crash. An ASIL QM functionality will cause no
harm in case of failure example given a satellite navigation system.

Risk = Severity · (Exposure · Likelihood) (2.1a)
ASIL = Severity · (Exposure · Controllability) (2.1b)

2.3. Testing process

Testing a car is a complex task guided by multiple regulations and defined
by detailed processes. Following the W-Model, see Figure 2.2, various testing
stages have been applied in recent times. Parallel to writing functional re-
quirements dedicated test engineers write test specifications. Every module
has to pass multiple tests on test benches prior to its integration assembly
in a prototype car.
These are most common the ”in the loop” tests, example given Model in the
Loop (MiL), Software in the Loop (SiL), Hardware in the Loop (HiL). These
test beds realize module tests in various integration levels. Using model
driven approaches example given a Simulink Model is the first deliverable
to be tested using MiL to pass functional tests for sub functions organized
within a single model. These model files are used to derive a generated
code which is put on a SiL test, mainly repeating functional tests to ensure
correct code generator settings. Putting all modules together and running
integration tests is the second part. A SiL will be executed as a simula-
tion running on a computer. Within this stage the interface freeze milestone
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Figure 2.4.: Technical Norms to be known and considered by developers departments as a
result of a Survey by Altinger et al. [13].
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could well be accomplished. MiL and SiL tests are used to test algorithmic
implementations. Various test stimuli will be generated based on white
box testing methods to directly target an implementation. Processor in the
Loop (PiL) is the first integration together with the OS running on the
target CPU which is a component of the ECU. If the ECU is not available
at this time, the tests are executed on an evaluation board or skipped. All
stimuli are realized as direct function calls from a test environment as the
external communication (example given CAN) might not be available at this
point of integration. HiL tests are executed on the test bench containing
multiple ECU and communication simulators, often actuators are present
too. See Figure 2.5 for a representative HiL test bench at Audi AG. The
software needs to run on the target ECU, the test stimuli is generated via
communication messages, example given a CAN message or an electric sig-
nal simulating a switch or a sensor value. These communication messages
might be automatically extracted from the message databases for CAN and
FlexRay where scripts can extract desired messages for each specific ECU as
the System Under Test (SUT). As Bergmann [50] explains, classic HiL were
extended to ”connected HiL” where the cars whole electronic environment
is installed and tested. The system needs to pass real driving scenarios
where even sensor inputs are simulated as presented by Müller et al. [51]
and Pfeffer et al. [52]. Within this stage the 100% software milestone could
be accomplished. HiL test’s stimuli will focus on realistic interaction, this
means a TC might look like: ”turn on indicator and wait for 30 seconds”.
Figure 4.13 visualises tools and input data related to this ”in the loop” tests.
The final testing stage is a prototype car, where the ECU is integrated along
with the target sensors and input devices. Another task at this stage is to test
power consumption and sleep respective wake up time. The car is required
to pass a number of user interaction tests and perform a defined mileage per
driving scenario as required by the law. If a bug is discovered all prior test
cases and stages have to be executed again, which is one of the reasons for
higher testing costs if a bug is discovered late.

A comprehensive overview to development and testing activities on an
ADAS will be given by Müller et al. [51]. The authors describe a distributed
system and the challenges on designing a test application to qualify the
system. The authors explain in detail testing approaches starting at the
environment simulation and generate input data to be fed into real sensors
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Figure 2.5.: Exemplar picture showing a classic HiL test bench, copyright AUDI AG

Figure 2.6.: Exemplary project plan containing milestones when developing an ADAS.
The graphic is a licensed copy from Müller et al. [51] copyright granted by
ATZextra/Springer.
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mounted at a HiL test-bed. They use video screens to visualize the scenery
which can be captured by the car’s camera. Further they generate ultrasonic
sound according to simulated distances for every ultrasonic sensor. These
sound waves are captured by the original sensors and processed by the
target ECU. Figure 2.6 is a licensed copy from this publication. It shows the
milestones required to set up the HiL and test the ADAS starting 23 months
prior SOP. The required time to implement the ACC feature is estimated to
12 months, which is the same time required to perform all defined TC.
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3. Review of Related Work

This chapter provides an overview of literature related to Software Fault
Prediction (SFP) on public available software metric repositories. A com-
plete chronological overview about this chapters work can be extracted
from Table 3.1. The following subsections cover dedicated research topics.
Most of the publications cover a multitude of these topics, thus there is no
complete review of a single work. A majority of the papers will be partly
reviewed within multiple subsections. Each section will present the reviews
in chronological order. This chapter contains primary literature sources but
also reports about summaries stated by three systematic literature reviews.

The first part 3.2 introduces available software metrics and their limitations,
the second part 3.3 presents reports concerning fault prediction, the third
part 3.4 lists datasets capable to perform SFP with public access, the fourth
part 6.1 presents work on SFP and reviews different methods from the last
30 years. The Fifth part 6.3 consists of reviews on a recent field of study,
CPFP, whereas the sixth part presents the imbalanced class distribution.
The final part 3.8 will be an overview to prior analysis on error distributions
within software projects.

3.1. Empirical Evidence upon Automotive Testing
Methods and Tools

Zhang and Pham [68] reports upon 32 factors to influence software reli-
ability. The authors conducted a survey with 22 responses. Their data is
based on a survey with 22 responses among them one automotive company.
Their analysis states testing coverage, testing effort and testing environment
do have significant influence, testing tools are centrally ranked. According
to the data testing is correlated with requirements and working standards
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Table 3.1.: A timeline representing the reviewed literature between 1996 and 2016

1976 • Mccabe [53]
1977 • Halstead [54]
1979 • Curtis et al. [55]
1981 • Basili and Phillips [56]
1984 • Adams [57]
1985 • Sherif et al. [58]
1987 • Boehm [59]
1994 • Chidamber and Kemerer [60], Fenton [61]
1996 • Khoshgoftaar et al. [62]
1997 • Khoshgoftaar et al. [63], Pfleeger et al. [64]
1999 • Fenton and Neil [65]
2000 • Fenton and Ohlsson [66], Graves et al. [67]

• Zhang and Pham [68], Japkowicz [69]
2001 • Boehm and Basili [70]
2002 • Briand et al. [71], Denaro and Pezze [72], Ostrand et al. [73]
2003 • Menzies et al. [74], Drummond et al. [75]
2004 • Guo et al. [76]
2005 • Do et al. [77], Ostrand et al. [78], Sayyad and Menzies [79]

• Vipindeep and Jalote [80], Wagner et al. [81]
2006 • Bell et al. [82], Broy [7], Kim et al. [83]

• Li et al. [84], Nagappan et al. [85], Tomaszewski and Damm [86]
2007 • Broy et al. [31], Krisp et al. [87], Menzies et al. [88]

• Mizuno and Kikuno [89], Ostrand et al. [90], Pretschner et al. [2]
• Weyuker et al. [91], Zhang and Baddoo [92], Zimmermann et al. [93]

2008 • Boogerd and Moonen [45], Gondra [94], Jiang et al. [95]
• Kamei et al. [96], Lessmann et al. [97], Lincke et al. [98]
• Moser et al. [99], Vandecruys et al. [100]

2009 • Boogerd and Moonen [101], Catal and Diri [102], Catal and Diri [103]
• Hall et al. [104], Herraiz et al. [105], Mende and Koschke [106]
• Mockus [107], Schneidewind [108], Singh et al. [109]
• Turhan et al. [110], Zimmermann et al. [111]

2010 • Causevic et al. [112], Dambros et al. [113], Menzies et al. [114]
• Mizuno and Hata [115], Khoshgoftaar et al. [116]

2011 • Haberl et al. [40], Posnett et al. [117]
2012 • Dambros et al. [118], He et al. [119], Rahman et al. [120]

• Rommel and Girard [121]
2013 • Herbold [122], Mathworks [123], Nam et al. [124]

• Radjenovic et al. [125], Weiss [126]
2014 • Abaei and Selamat [127], Jus et al. [128], Zhang et al. [129]
2015 • He et al. [130], Menzies et al. [131]
2016 • Bock et al. [38], Klaus [132]
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(norms, coding standard, etc.). A single programmer’s skills or the target
hardware is not reported to correlate to testing effort.

Several white-papers exist, example given Krisp [87] or Mathworks [123],
reporting about one tool with its successful application. Within the majority
of these publications the tool vendor and the publisher are from the same
company or the author is closely related and the scope is very limited.
Market research reports like [121] can give quantitative data but most of the
time they do not report the number of respondents or contacted persons or
present an outlook to future trends.

Haberl et al. [40] reports about an annual survey conducted within the
Austrian, Swiss and German software industry with no specific focus on the
automotive sector. During the 2011 edition they collected 1.623 responses
where they asked all participants to answer 100 test related questions. The
data presentation is divided into three groups: managers, developers and
testers. More than 40% of the participants are either software testers or test
managers. More than a third of the projects uses the V, 14% the W, up to
10% the waterfall model. The majority of small1 companies applies agile,
mainly Scrum, projects. Large enterprises2 may use agile methods in up to
19% of their projects. Roughly half of the participants report of some defects
discovered after the software has been released, only 3% list severe defects
report to the customer, thus the authors claim software quality and testing
efforts do work as up to 65,7% report upon dedicated testing and quality
engineers and only 2-5% software developers do act as quality engineers too.
More than 80% of the TC are clearly designed with up to 50% formulated in
free text or oral form even containing in up to 72% of cases pre calculated
response values. TC are execute in dedicated testing environments in up
to 84,1% of the cases, however, 24,1% still use the real live system. Three
dominating TC performance metrics are reported with requirements coverage
at 75%, TC execution rate by 60% and code coverage in 25% of the cases where
in 77,8% the test activities are finished when each requirement has been
checked at least once. More than 80% of the TC are executed as regression
tests. The authors report of a high usage of test automation and test exe-

1up to 100 employees
2more than 1.000 employees
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cution tools, but do not list any. Static code analysis is used in up to one
third of the projects, where more than 50% perform tool supported coding
standard checks. Tests following the black box methodology are dominant
in 92% of the tests, white box at 82%. Compared to the authors survey in
1997 testing gained more importance and is performed in a more systematic
way (dedicated testers, pre designed TC, certified testing processes).

Another industrial survey is reported by [112] covering 83 respondents
origin in the IT industry with no further limitations. The authors cate-
gorize three different views: job description (tester/none tester), type of
application (safety critical/none critical) and development target (desk-
top/web/embedded development target). Upon their analysis a common
team size is between one and ten engineers. They present unweighed free
text answers by some testers regarding their tool usage. The majority uses
tools to execute regression tests or an Integrated Development Environ-
ment (IDE) to perform debugging and manual testing. The majority of tools
listed is open source and dedicated to run on a computer. They presents a
list of dissatisfying topics among the developers: Changing requirements
during coding phase is top listed, begin of coding phase before finishing
design and no comprehensive documentation are high ranked as negative
influences. Surprisingly test driven development is no in use in practice, but
participants wish it to be practice.

3.2. Software Metrics

Every engineering domain requires objective measurement to rate and eval-
uate processes and systems. In terms of computer science this refers to the
topic of software metrics. This section introduces their origins and tools to
measure them. Originally used as indicators for quality aspects and project
monitoring software metrics are among the oldest research area connected
to fault prediction.

Curtis et al. [55] performed tests inviting 54 professional developers with six
years of experience on average to analyse Fortran code snippets. The partici-
pants where requested to find bugs within the presented code. The study
used different code styles and analyses their influence upon time required

24



3.2. Software Metrics

to find bugs. The participants were guided with software metrics which
they could use as an indicator. Upon the studies results LOC, Cyclomatic
Complexity by McCabe (CC)1 and Halstead Effort (HE)2 perform similar on
small subroutines. If the code is longer the power of LOC decreases where
HE is the best indicator. The authors analysed Halstead effort to perform
better as a prediction for psychological complexity.

Boehm [59] released a list of common development issues within industrial
software and their representative metrics. The author reports only of his
experience as a test engineer and presents no evidence, but this remains one
of the very few publications of its kind.

Radjenović et al. [125] presented an overview to metrics and their success on
SFP. LOC is powerful at the pre release stage, CC1 might be good for big
projects and becoming strong in the post release phase. Halstead metrics3

might be good at pre release state, but overall weak. Strong predictors
performing well within pre & post release and small & big code bases are
code chrun, file and change history. Their overall analysis on the usage of
metrics showed the majority of publications uses Object Orientated (OO)
metric like Chidamber Kemerer [60] OO metric (CK) by 49%, classic source
code metrics like LOC & CC by 27%, but the smallest occurrence by 24% is
to process metrics like code chrun.

This review focuses mainly on metrics suitable for function orientated
programming languages as the analysed software, see Section 5.1, has been
written in C. Therefore OO metric suites, example given the CK metric suite
defined by Chidamber and Kemerer [60], or software reliability & quality
metrics are not considered. A full introduction onto this topic is given by
Schneidewind [108].

1see equation 3.1
2see equation 3.2f
3see equation 3.2d - 3.2f
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3.2.1. Presentation on selected Software Metrics

LOC is the easiest and oldest software metric which exists in various forms:
total LOC, LOC with or without comments, number of comment lines,
number of executable statements, number of variables, etc. Within most of
the reviewed literature LOC is used in total or as statement count as all
other forms (number of statements, number of comments, etc.) are highly
correlated.

McCabe et al. [53] present their graph theoretic complexity measure, CC.
A core part is to be independent from the program’s size, which means
adding or removing a simple statement does not affect the measurement
value. The CC is calculated according to equation 3.1.

v = e− n + 2p (3.1)

Where v is CC, e is the number of edges, n the number of vertices3 and p the
number of connected components4. The authors list typical programming
elements and their CC: sequence: 1, if then else: 2, while-loop: 2, Main pro-
gram with two subroutines: 6, see Figure3.1 for illustration. Overall CC can
be interpreted as the mental effort a developer has to invest to understand
all possible decision paths within a program.

Halstead et al. [54] claim a similarity to physics stating a software algorithm
containing characteristics which are measurable, thus they present complex
metrics based on the number of operators5 and operands6.

• η1: the number of unique operators
• η2: the number of unique operands
• N1: the total number of operators
• N2: the total number of operands

With these acquired values the performance figures can be calculated:

3the number of states within a state diagram
4example given a subroutine called from a main program counts as p = 2
5example given +, -, –¿, printf(), method calls, etc.
6example given variables, static numbers, format instructions for printf, etc.
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Figure 3.1.: example to CC: A main program as a sequence with two sub routines as
if then else branches

Program vocabulary:

η = η1 + η2 (3.2a)

Program length

N = N1 + N2 (3.2b)

Program length calculated

N̂ = η1 log2 η1 + η2 log2 η2 (3.2c)

Program Volume

V = N · log2η (3.2d)

Program Difficulty

D =
η1

2
· N2

η2
(3.2e)

Program Effort

E = D ·V (3.2f)
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Basili et al. [56] has been among the first to publish work on software metrics
and development effort. They analysed a NASA ground support software for
satellites written in Fortran. HE and CC are compared against weekly time
table reports collected from the developers. Among their Pearson correlation
analysis Halstead effort is highly (0,6774) correlated to the time required to
write the code. In addition they present a strong (0,654) correlation between
Halstead effort & CC and an even stronger correlation between executable
statements with Halstead (0,8301)& CC (0,9116). Overall the correlation
between the single metrics and the number of errors is between 0,4861 and
0,5837, which is a weak correlation. Using a combination of their metrics
they could archive a correlation against the error count up to 0,6227.
A full list, as available by 1985, of software metrics and their interpretation
is given by Sherif et al. [58]. The authors present an extensive literature
review upon software metrics to measure programs distributed along the
full software live cycle.
Fenton et al. [61] evaluated software metrics upon their measurement fun-
damentals. They request to obey measurement theory principles when
measuring software as in is common to all other scientific domains. Those
principles are listed as the request of a measurement model, a scale and
the ability to represent an absolute order of measurement data. The au-
thors claim that software complexity may not be expressed in a single ∈ R

number with ordinal order as there is no general expression possible for
Software complexity. They advise to use multiple internal attributes to de-
rive measurement, a single attribute is misleading. The authors stress that if
a developer adds one LOC the complexity can not decrease, which needs
to be considered in the metrics. Upon their analysis CC and HE satisfy this
requirement.Pfleeger et al. [64] releases a report on the usage of software
metrics among practitioners. Within their analysis they state that developers
might use whatever metric they have a standard spreadsheet for, even if the
method is not correct.

3.2.2. Performance

Zhang and Baddoo [92] report on work on performance comparison be-
tween HE and CC metrics using only bug fix updated on the Eclipse JDT
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Open Source repository. The authors perform Pearson correlation analysis
between the metric values and the number of bugs. In general HE and CC
are both positively correlated to the number of bugs, CC might be stronger
than HE. Eclipse follows the OO development approach, containing a high
amount of small statements due to the encapsulation and inheritance fea-
tures. This implies that a single component may contain a lower number
of operands and operators. Which may cause HE to perform lower than in
function orientated programs. In addition they list a correlation between
LOC, CC and HE against the number of bugs. Within their findings neither
complexity nor code volume (LOC) are the single source of bugs. An in-
depth analysis of single files supports their thesis on more complex files not
necessarily containing more bugs. Summarizing, they state HE performs
better in larger software than CC or LOC, yet all three metrics types are
strongly correlated to each other. Their final remark: ”Therefore using Mc-
Cabe’s cyclomatic complexity metric and Halstead’s effort metric should be
a good combination of metrics for capturing the complexity of a software
system.”

Jiang et al. [95] analysed the influence between two categories of met-
rics, code metrics (LOC, Halstead E,V,D, etc.) and design metrics (edge
count, node count, CC, branch count, etc.) seeking their capability to pre-
dict failures. The authors based their evaluation upon the NASA metric
data program [133] (NASAMDP) where they selected 13 projects writ-
ten in C,C++,Java and Perl. All code metrics were originally supplied by
the dataset, design metrics needed to be reverse engineered using the
source code. According to the authors’ comments, this is a common ap-
proach. Within their experiment they created three groups for each dataset:
code metric only, design metric only and all available metric. As the pre-
diction model they selected five machine learning algorithm from the
WEKA toolkit [104]: Random Forest, Bagging, Logistic regression, Boosting,
and Näive Bayes (NB). The results have been evaluated using a ten fold cross
validation. According to their analysis no single machine learning algorithm
performs best among all datasets and groups, Random Forest (RF) among
the top for 9 out of 13 datasets. Using design and code metrics performs
overall best, whereas the code metrics only group performs in 7 out of 13

cases identical to the all metrics group. Summarizing their work they state
code metrics outperform design metrics, but using all available metrics
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might be the best. Based on the performance data,choosing the correct set
of metrics (and the program to calculate them) is more important than the
decision upon the model building (aka machine learner) algorithm.

Moser et al. [99] evaluate if code metrics archive the same fault prediction
accuracy than change metrics. Their datasource is based on the Eclipse
bug dataset provided by Zimmerman et al. [93]. Their analysis is designed
very similar to Jiang et al. [95], but they are using change metrics (code
chrun, file and bug history, etc.) instead of design metrics. The performance
reports a code metric only prediction is outperformed by a change metric
only prediction which are outperformed by a combination of both. This is
a consistent finding upon Menzies et al. [88] and Jiang et al. [95]. All three
publications are using machine learning approaches.

Posnett et al. [117] investigated the influence of different aggregation levels.
In terms of software metrics and their application to SFP this refers to mea-
suring at the file or the package level. The authors gather data from eighteen
Apache projects written in Java, measuring LOC, number of authors per file,
number of active7 authors, number of improvements, number of new fea-
tures, code chrun and the file history. All metrics have been acquisitioned at
file and at component8 level. They build up a Logistic Regression (LR) based
predictor and use Area Under Curve (AUC) as the predictive measurement.
Overall the file level based metrics report better AUC values. Within their
findings multiple metrics show no significance at the package level, but a
high one at the file level (example given the number of active developers).
Their analysis unveils that looking at module level is too coarser and might
remove precision in terms of AUC when performing SFP. Some metric show
even different tendency at package and file level.

3.2.3. Tools to Collect Metricdata

There exists only one report evaluating different metric gathering tools by
Lincke et al. [98] evaluated ten tools to derive OO software metrics, but

7an active author did commit code changes during the actual commit
8a component might consist of multiple files, one file might contain multiple methods

or classes
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include volume metrics (LOC, etc.). They report on a case study using 100

random Java programs between 5 and 500 source code files with an active
user base and a high ranking, all programs are hosted on SourceForge.net.
They presented obvious measurement differences, some measured metrics
differ between 6% and 80% among the various analysed tools. The concrete
numerical values strongly depend on tool implementation and may not
be comparable. Their analysis does not cover Halstead metrics, but rather
suggests a similar behaviour.

3.2.4. Summary

There exists a wide range of software metrics, most of them correlated with
LOC. Work by Moser et al. [99] and Jiang et al. [95] empirically demonstrates
the power of selecting multiple types of metrics when using machine learn-
ing predictors. This correlates with the suggestions made by Menzies et al.
[88], where the author states using all available data when applying machine
learning algorithms. Thus the selection of metrics is more crucial than the
choice of fault prediction algorithm as demonstrated by Jiang et al. [95].
Weyuker et al. [91] state change metrics (file and fault history) are strong
fault indicators if the software is more mature. This statement is supported
by D’Ambros et al. [113] and He et al. [130]. Following Lincke et al. [98]
the tool selection is important as there are significant numerical differences
between various tool implementations. Posnett et al. [117] suggest measuring
metrics at the file level due to better predictive performance. Fenton and
Neil [65] discuss differences between academic metric selection (complex,
multiple metrics, mathematical valid, etc.) and industrial (LOC only, use
whatever an available tool provides).

3.3. Case Studies

Within recent years there have been two types of SFP and CPFP case studies,
one group using industrial code bases, see Section 3.3.1, the other group
uses code metric datasets collected on open source software repositories,
see Section 3.3.3.
Catal et al. [103] released a systematic literature review in the field of SFP.
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They discovered an increasing number of publications after the 2005 re-
lease on the Promise dataset by NASA. This has been the first time that a
dataset has been publicly available containing code metrics and bug data.
Upon their analysis they identified more machine learning approaches after
2005. In general the research field is rather young, starting with the first
publications in 1990 and finding its first peak after 2005. In their opinion it
is not possible to transfer a statistical model specialized for one project or
company for another project or company, which defines the field of CPFP.
Radjenović et al. [125] released a systematic literature survey reviewing 106

publications issued between 2001 and 2011. In their work they identify 105

different software metrics executed on 106 datasets. The authors complain
that only a fifth of the studies uses publicly available data, all others might
not be repeatable. Only half of the datasets contain an adequate (size, type
of software, distribution, purpose, programming language, etc.) description.
During their review they identified three types of metrics: traditional (LOC,
CC, etc.) - used within 27% of the studies, process (file and fault history,
code chrun, etc..) - used within 30% of the studies, and OO (number of
classes, etc.) used within 43% of the studies. All reviewed studies have been
evaluated on hand written code.
Common to all industry case studies, the authors never released their metric
data and most of them do not even name the analysed software products by
names or used arbitrary indicators. Overall the reported prediction perfor-
mance is better on industrial code than on open source software. Table 3.2
shows a summary of all used case stories presented within Section 3.3.1
and 3.3.3. The reviewed work has been selected due to multiple publica-
tions using the same dataset. An initial publication reports on prediction
performance (example given Ostrand et al. [73]), a later one analyses fault dis-
tribution (example given Bell et al. [82]) or uses different prediction methods
(example given Ostrand et al. [78]).

3.3.1. Industrial with a Private Dataset

First work on industrial fault prediction has been presented by Khoshgof-
taar et al. [62] where they analysed a Telecom software with 1,3 Million LOC.
The authors focused on code metrics as they were collected from standard
quality metrics. The values have been normalized before used within their
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model. In their analysis the authors state that new modules tend to contain
more faults than unchanged modules from the previous release. They used
a discriminant analysis where they added variable (metric) to model starting
with the highest significance to faults. Summarizing their work it is possible
to predict faults, but every project needs to derive its own model. Using
their derived models they could achieve a rather high performance (31,1%
misclassification) on prediction.
Their work has been followed up by Graves et al. [67] using the same
Telecom software as a case study. The state of the code has been changed
roughly a 130.000 times performed by a few hundred developers within a
two year period. On peak faulty modules contain 120 bugs per year. Their
focus is on module9 change history as other metrics are too strong related to
LOC. They introduced new measurements: number of past faults, average
age of code as representative share between new added code within the last
commit & existing code and a weighted time damp symbolising the number
and size of recent changes to the file. Within their analysis the number
of developers is a minor bug indicator as well as CC and the number of
simultaneous changed modules per commit. Their strongest indicator has
been weighted time damp and the number of past faults. To predict faulty
modules they used Generalized Linear Models (GLM) with a Poisson error
distribution. The authors mainly present a rating representing the influence
of various metrics to predict the number of faults, but never evaluated the
precision of their models.
Ostrand et al. [73] performed SFP on Telecom software at AT&T Labs sum-
ming up to 0,5 Million LOC. They observed that highly faulty files may
not stay faulty within the next release, which might be caused by a more
intense testing on previously known buggy files. In their observations a
few number of files contain a high percentage of faults. If the software is
more mature (in terms of higher release number), the concentration may be
even higher due to a more concentrated development on specific modules.
Newly added files might contain more faults than older ones, which might
be caused by a more intense testing at early commit stages. Larger modules
contain a lower fault density than smaller modules.
This work was continued by Ostrand et al. [78] three years later. They
present a use case study on two industrial applications from the Telecom

9a module contains multiple files
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sector originally developed at AT&T Labs. Again they state that 20% of
files contain 80 to 93% of faults. They used a Negative Binomial Regres-
sion (NBR) model to predict failures. Their aim has been to suggest in which
code regions testing would be more beneficial than a strategy of how best to
select TC. They used two types of metric, code metrics (Halested, ln(LOC),
CC) and change metrics (new or old file, the file has been changed within
actual commit, number of commits since the initial as representative to
file age,

√
f aulsprev where f aultsprev being the number of faults within all

previous commits). They discovered CC to be too similar to LOC. During
their work they set up two predictors, one using the full set of metrics,
the other having been reduced to LOC only. In their opinion the simple
model delivers a reasonable performance with 70% of all detected faults
compared to an average of 83% on the full model. During their analysis they
discovered the full model performed better if the code is mature (which
they define as containing less errors due to a higher number of commits).
During their analysis they defined a commit affecting one to three files as a
bugfix, if it affects many files it might be a feature enhancement or interface
change or a code revert. Overall they discovered a significant influence to
fault proneness by the developing language.

Their work has been followed up by Bell et al. [82] who also conducted a
user case story on industrial Telecom code developed at AT&T. Four differ-
ent projects have been analysed, written in various programming languages,
however, not all of them have been released on a fixed schedule, leaving
shipment whenever a module has been finished. They confirm LOC metrics
perform well, but are outperformed by change metrics. They state that fault
proneness decreases with the file’s age, meaning the longer a file is within
the repository, the less likely it is to contain faults. During their performance
analysis they found fault history to be usable to predict faults, but less
powerful than file change history. One of the most influential parameter is
called file exposure, referring to the time a file has been used within the
analysed software system. Along with Ostrand et al. [73] and [78] they found
the LOC only (using log(LOC) and an indicator if the file is new) model
has only got a 10% lower performance than the full model (LOC, file age,
log(exposure),

√
number o f changes last Month and a coefficient for

the programming language). They report on using binomial regression once
again, however, they split their data into a training and testing set.
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Nagappan et al. [85] performed a use case study with five object oriented
products10 developed by more than 250 engineers at Microsoft. Their focus
has been on post release failures. Similar to findings by Bell et al. [82] they
state that the past fault history can be used to predict future (post release)
faults. They used linear and logistic regression to build up their models.
Their main input has been on static metrics (number of classes, number of
functions, etc..). Their strongest fault indicators are the number of classes,
the number of functions and the number of variables, CC and classes with a
coupling to C methods. Overall they report on low prediction performance
but scattering with the actual project. They state that software development
methods have influence if the selected metrics correlate with failures. One
of their analysed projects did monitor various metrics and kept them below
a certain threshold. This leads to none of the metrics correlating with the
failure rate which prohibit the usage of SFP. Further the authors made initial
tests on CPFP stating that prediction models may be transferred to other
projects if these are similar, but no single software metric suite exists to
predict failure for all projects.

Zimmermann et al. [111] continued and extended the work of Nagap-
pan et al. [85]. They analysed four Open and eight closed source projects
hosted and developed at Microsoft. Their main focus has been on CPFP
where they are one of the first to report performance data. Overall they
achieved a low success rate. Only 3,4% of 644 cross project experiments
successfully predicted failures using a model trained on another project.
This sums up to a weak CPFP. They only considered a successful CPFP
if the recall was above 0,75, precision and accuracy was good. They used
typical static volume code metrics (LOC, CC, etc.), change metrics (defined
as code chrun, measuring LOC added, LOC removed or the number of LOC
changed) and process metric (number of developers, file age, etc.) similar to
Ostrand et al. [73], [78], Bell et al. [82] and Nagappan et al. [85]. In contrast
to those publications Zimmermann et al. [111] used logistic regression and
normalized their metrics values using LOC. They name a better prediction
performance when using normalized values. Within their analysis they state
that CPFP is only possible if the project settings are similar. They list factors

10using C, C++, C#
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influencing similarity, among them tool settings (example given compiler,
editor, static code checkers, etc.), software development processes, target OS
platform and code reviews. Their analysis shows that some projects tend to
be more related than others. The authors define a similarity vector between
two projects to a derived decision tree if CPFP is possible.

3.3.2. Industrial with a Public available Dataset

Within this section reports on SFP using a public available dataset are pre-
sented. Thus these experiments are repeatable. The only industrial available
dataset has been released by NASAMDP and the PROMISE repository.
Menzies et al. [88] has been the first to use machine learning approaches to
build up defect prediction models. To predict error prone software modules
they use three different machine learning algorithms (OneR, J48, and NB)
included in the WEKA [104] toolkit. To evaluate their prediction they used
the NASAMDP and the PROMISE repository of software engineering data.
Within their analysis statistical Methods (NB) outperform others leading
to the statement that the choice of learning algorithms clearly is more im-
portant than the selection of metrics. They could find no clear deviance
that single metrics outperform others or that LOC is the ultimate metric.
Their suggestion is to use multiple metrics, at minimum three, at best all
available. During their experiments they were limited to static metrics due
to the used datasets. Their performance is high, as they report upon finding
71% of defects with a false positive rate of 25%, which is clearly better than
other methods they list in comparison, example given manual code review
discovers 60% of defects.
Using a similar technique Gondra [94] presents work on performance com-
parison between neuronal networks and other machine learning approaches.
They analysed the sensitivity of software metrics on fault prediction using
the NASAMDP. Within their results LOC performs best but CC is listed as
the third strongest indicator. Comparing their performance reports Support
Vector Machine (SVM) outperform Neural Network (NN) with 87,4% to
72,61% of true positives. They claim this is due to defect predictions nature
as binary classification problem which is the SVM domain.
Vandecruys et al. [100] presents work on the NASAMDP. They present
AntMiner+ a data mining tool based on the Ant Colony Optimization (ACO)
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algorithm which is inspired by biological ant colonies. A path’s weight is
determined using the number of ants previously travelled. The more ants
used a path the more likely other ants would follow this. The authors claim
a novel application of ACO to fault prediction. As available by the dataset
they use LOC, CC, Halstead (error, effort, etc.) and call statistics as their
input metric. The main focus has been put on comparing ACO to C4.5, lo-
gistic regression and SVM using the WEKA toolkit [104]. Bare performance
values suggest a lower detection rate by AntMiner+ compared to C4.5 but
equally to SVM. AntMiner+ main benefit is to extract a small rule set for
classification between faulty and bug free commits. Within the rules the
authors list Halstead content and LOC metric as the most important ones.
Summary: SFP seems to work within industrial settings as early studies re-
port successful application (Ostrand et al. [73], [78]) using statistic binomial
regression, later (Menzies et al. [88]) using machine learning. Models based
on LOC metrics seem to perform well, additional metrics (code chrun, devel-
oper, file and fault history) slightly enhance prediction performance. Using
logarithmic or normalized metric values seems to be beneficial. Menzies
claims to use all available data when applying machine learning algorithms.
Some applications on CPFP exist (Nagappan et al. [85],Zimmermann et al.
[111]) but report a low performance when transferring defect models. Both
state that a similarity between projects is beneficial for CPFP. Transferring
defect models between releases of the same software seems to perform well
as reported by Zimmerman et al. [93].

3.3.3. Open Source

A series of SFP using open source software exists. In contrast to previously
introduced industrial case studies 3.3.1 the source code is available for fur-
ther inspection and reproduction upon the reported experiments.
Zimmerman et al. [93] present work on an Eclipse dataset covering releases
2.0, 2.1 and 3.0. They use linear regression to predict faults within one
release and cross release. Initially they performed the Spearman correlation
analysis to figure out the size of a file11 and the number of method calls
is a strong predictor. In general they state that building up a predictor is
more powerful on the package than on the file level. Within their analysis

11in terms of LOC
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the discovered average and maximum values for all metrics share a similar
correlation to defects, whereas the total sum has the highest correlation.
Above all they discovered that a defect model based on a previous release
can be used to predict fault prone modules on a later release.
Kamei et al. [96] present work on Eclipse core platform revision 3.0 and 3.1.
The authors claim a precision of 0,583 a recall of 0,179 and an F1 of 0,274

with their hybrid model approach using LR and association rule mining.
Moser et al. [99] performed analysis upon the Eclipse bug dataset from the
PROMISE repository [131]. Within their analysis change metrics (file and
bug history, code chrun, etc.) clearly outperform static metrics (LOC, CC,
etc.). The authors claim a 75% true positive rate and a recall >80% calculated
using a 10 fold cross validation. They state a simple LOC only model might
be good enough which represents similar findings like Ostrand et al. [78]
and Bell et al. [82].
D’Ambros et al. [118] published an extensive performance comparison
between different approach methods: process metric (code chrun, etc.), pre-
vious defects (bug history), static metrics (LOC, CC, etc.), Entropy of change
(CC on code chrun) and Entropy. They used five public available datasets:
Eclipse JDT Core, Eclipse PDE UI, Equinox framework, Mylyn and Apache
Lucene summing up to 5885 classes and 1923 reported defects. They re-
produced multiple defect classification experiments using their collected
dataset and report AUC. Within their results classic code metrics (LOC, CC,
etc.) perform best, followed by process metrics (code chrun, etc.).
Zhang et al. [129] presents work on mining 1.395 open source projects
hosted on SourceForge and GoogleCode. Their aim has been to address
CPFP building up a database of similarity. They introduced a four step
approach including performing a partitioning, clustering, ranking and con-
verting raw data. They identified six context factors (programming language,
issue tracking, LOC, number of files, number of commits and number of
developers) to define the clusters. Based on the correlation between projects
metrics clusters are defined. Following up projects are assigned to those
clusters. They performed SFP and CPFP upon their dataset reporting sim-
ilar AUC values for SFP and CPFP demonstrating their universal defect
predictor as a promising approach. Based on performance results the author
state using all available data is beneficial when using machine learning
algorithms, this is in line with Menzies et al. [88].
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3.3.4. Summary

Within all the reviewed literature LOC is a strong predictor, CC and Hal-
steads metrics seem to be strongly correlated to each other and LOC. Process
and change metrics tend to be better predictors for fault. Within industrial
projects each individual software file seems to be developed by a single
author thus author related metrics are less important than within open
source projects with multiple contributors per file. The overall reported
performance differs between the various publications. In general industrial
SFP tend to report better performance than open source projects which seem
to be related to more reliable fault report data.
The majority of published work prior to 2005 uses statistic methods (NBR,
LR, Discrimant Statistic (DS), etc.). More recent work uses machine learning
(NN, SVM, etc.) approaches. All reports using statistic models (example given
Khosgoftaar et al. [62] or Ostrand et al. [78]) precisely report which metric
to use and discuss upon their influence, machine learning uses maximum
number of data (example given Menzies et al. [88]).
Table 3.2 hosts an overview to all reviewed case studies, more publications
have been examined by Catal et al. [103] and Radjenović et al. [125] within
their systematic literature surveys.
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3.4. Public Available Datasets on Software
Metrics

Within the last decade a number of datasets have been published containing
software metrics, mainly gathered from open source projects. All these
datasets contain at least static code metrics (LOC, CC, etc.) and bug in-
formation. Software revision history in general has been enabled by the
usage of version control systems, e.g. Concurrent Versions System (CVS),
SubVersioN (SVN), GIT, etc.. The authors of all available datasets crawled
the revisions, measured the metrics and enriched the data with bug fix
information from an Issue tracker or a ticket system. Most of the bug com-
mit information has been extracted using the SZZ algorithm enhanced by
Kim et al. [83] or manually annotated. A bug fix commit has either been
introduced by the commit messages, example given”fixed bug”, a link to a
ticket or if two or three files have been changed as suggested by Kim et al.
[83]. The majority of datasets come with a publication where the authors
explain the datasets roots and may show an application with the data.
One of the first public available datasets has been released by the NASA
metric data program [133] (NASAMDP)12. This datasource contains soft-
ware metrics collected at ten different projects rooted within NASA flight
software. This software has been written in C and heavily tested, all data
can be considered as post release due to the spacecraft having already
performed their missions.
PROMISE repository of software engineering data 13 has been founded
and administrated by Sayyad et al. [79] and Menzies et al. [131]. It has orig-
inally started with the NASA Promise code repository and extend to 60

projects usable for SFP. It hosts most of the datasets published within the
working conference on Mining Software Repositories (MSR)14 conference
series.
Software-artifact Infrastructure Repository (SIR) published by Do et al.
[77] can be considered to be the first database on software bugs. It contains
81 projects with a rather small code size ranging from 24 LOC to 8.570 LOC.
The programs are written in C, C++, C# and Java. All Bugs are hand seeded,

12http://mpd.ivv.nasa.gov
13http://promise.site.uottawa.ca/SERepository
14http://msrconf.org
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which give them a high quality.
Kim et al. [83] introduce an algorithm to link a LOC containing a bug
between its initial commit and its bug fixing commit. Their algorithms
core uses diff (between the bug fixing and the prior commit) and svn blame
after removing comments, blanks and format changes from the diff output.
The authors claim to reduce the false positive rate up to 51% compared to
previous algorithm. They validate their approach with data on eclipse and
Columba email client. Noticeable in their report: ”Friday seems to be the most
error prone commit day”, based on analysis from the eclipse commits.
Zimmerman et al. [93] present work on creating a bug database for Eclipse
2.0, 2.1 and 3.0. hosting 25.210 files with 25.585 defects. The authors claim to
be one of the first to include data from the Issue tracking System and parse
commit messages for ”bug fix”, ”bug”, etc.. The dataset contains traditional
(LOC, CC, etc.) and various OO specific values (number of classes, number
of method members, etc.). The authors differ between pre- and post release
defects, only considering none trivial errors.
Kamei et al. [96] present work on Eclipse core platform revision 3.0 and
3.1. Their dataset consists of classic volume metrics (LOC), design metrics
(CC) and OO metrics (methods per class, number of children, etc.). Their
dataset contains 9.726 Java files of whom 16,98% are marked as faulty. The
bug information is based on the developers ticket classification which has
been retrieved via Bugzilla. The metric data has been measured using the
Eclipse metric plugin.
Herraiz et al. [105] reports on an EU founded project collecting software
metrics of 5.000 open source projects. Within their dataset description clas-
sic metrics (LOC, CC, process, chrun, etc.) are gathered along with issue
tracking information. However there have been no recent reports on usage
of this data within the software fault prediction community.
Mockus et al. [107] presents a dataset containing 1.398 projects hosted on
GoogleCode and SourceForge. The authors state the set contains 207.904.557

files in total. As many open source projects recently switched their revision
system the authors state that it is not a trivial task to maintain their dataset.
This dataset has been showcased by Zhang et al. [129] building up their
universal bug predictor.
D’Ambros et al. [113] uses a collected dataset on Bug reports from the
Eclipse JDT Core, Eclipse PDE UI, Equinox framework, Mylyn and Apache
Lucene projects. Their data has been collected between 1.1.2005 to 17.03.2009,
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it contains software consisting of 2.131 classes and containing 1.923 bug
commits.
Jus et al. [128] released a database system with the main focus on software
testing research. The initial commit contains 357 bugs on five open source
Java projects ranging between 22.000 and 96.000 LOC. The authors claim
their database can be easily extended as it provides an API to add defect
data and a full integration of SVN.

3.5. Software Fault Prediction

Software Fault Prediction (SFP) has been introduced in the late 1970is and
early 1980is by work of Curtis et al. [55], Basili & Phillips [56] and Sherfi et al.
[58]. They share a common idea to gather measurement data and guide
engineers upon their decision where to look for bugs by rating the error
sensitivity of single files or modules. According to historical analysis by
Catal et al. [103] and Radjenović et al. [125] early SFP work focused on static
software metric (LOC, CC, Halstead, etc.) and using statistical methods (LR,
NBR, GLM, etc.) but reporting remarkable detection performance. Work past
2005 uses OO metrics (class level, coupling, fan in/out, etc.) and machine
learning (SVM, C4.5/J48, RF, etc..) as the predicting algorithm. According
to Radjenović et al. [125] 68% out of 106 from their analysed studies used
statistic models (see 3.5.1), 24% used machine learning (see 3.5.2) and 8%
used correlation analysis. Upon Abaei and Selamats [127] impression too
few works use OO related metric, even when analysing OO software.

3.5.1. Logistic Regression

Early work used statistic methods to derive probabilities for a file or module
containing a bug. The majority of authors favoured either discriminant anal-
ysis, GLM or NBR. Common to all publications exists a vector15 containing
the measurement (software metric) data ~xi of a file i and a desired result yi
representing either the number of fault or the probability of a file containing
a bug. All authors split their dataset into a model fitting and an evaluation

15to cover consistency the original definition is adopted to fit this sections denotion
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part. The majority of models are designed to describe 95% of the variance.

This section only analyses the prediction method. Additional information
about the dataset, performance, etc. is presented within Section 3.3.1.

Khosgoftaar et al. [62] uses nonparametric discriminant analysis. Classic
volume metrics (LOC, number of loops, number of if/else branches, etc.)
along with design metrics (CC, number of calls, etc.) serve as input data after
standardization to achieve a mean at zero and a variance of one. To overcome
the deficit of correlated metrics16 they used a stepwise discriminant PCA
to extract uncorrelated variables. They define SFP as a two class problem,
assigning fault free files to G1 and faulty to G2, see equation 3.4. πi represents
prior probability to being a member of Gi, ~xi the vector containing the
observations17

f̂k(~xi|λ) =
1
nk

nk

∑
l=1

(~xi| ~xkl, λ) (3.3)

yi =

G1 · · · i f f̂i(~xi)

f̂i(~di)
> π1

π2

G2 · · · otherwise
(3.4)

To tune their model they used a smothering factor λ. The model has been
calculated splitting the series of ~di into a training and a test set. The authors
loop until no improvement in the significance level can be observed. They
report upon their evaluation the best model reports a type II misclassifica-
tion of 3,4%, and a type I of 0%.

Graves et al. [67] reports on using GLM along with a logarithmic transfor-
mation of the metric values. In addition they introduce a files age as defined
by the equation 3.5 where ai represents the number of changed LOC and di
the date of the change in years.

age = ∑n
i=1 aidi

∑n
i=1 ai

(3.5)

16conform Section 3.2.1
17the measured metric data
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They derive various models consisting of different metric types. Their best
performance is of the model described within equation 3.6, denoted as the
model G.

7
100

log(
LOC
103 ) +

95
100

log(
ai

103 )−
44

100
age (3.6)

Within their analysis a files age is a very strong indicator for faultprones.
The factor 44

100 states a exp 44
100 = 0, 64 reduced rate of having an error if the

change occurred in a file containing the same amount of deltas (di) a year
earlier.
Ostrand et al. [78] uses NBR to predict the number of faults within one file
during a release. They assume a poisson distribution among yi with mean
λi as defined by equation 3.7 where ~β represents the regression coefficients
to xi and λi as a random number drawn from a gamma distribution having
a mean of 1 and a σ2 ‘ 0 representing the dispersion coefficient to model the
fault dispersion. β and σ have been tuned using maximum likelihood.

λi = γie
~βT xi (3.7)

3.5.2. Machine Learning

The first application of machine learning onto SFP has been reported by
Khoshgoftaar et al. [63] using Neural Network (NN) to predict failures
within a Telecom software written in PROTEL18 consisting of 7 Million LOC,
organized within 7.000 modules, 14% of them contain more than three faults.
Their metric input consists of design metrics (CC, if/else statements, loops,
procedure calls, etc.). All metric values have been normalized to mean zero
& variance one. Domain metrics have been derived using a PCA. The full
dataset has been split into fit & test (used for DS) and train & validate
(used for NN) sets. The DS has been designed using equation 3.4 19. Their
NN uses a feed forward three layer perceptron network with four inputs,
two20 outputs and a supervised backpropagation training. According to the
authors’ analysis the NN performs slightly better than the DS: recall 0,95 to
0,92, precision 0,86 to 0,88 and accuracy identical at 0,86 but has an overall

18high level language comparable to Pascal
19described at Khosgoftaar et al. [62], see Section 3.5.1
20one for fault and one for none fault prone class
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misclassification error of 0,262 to 0,295. They report upon challenges due to
the low number of bugs at 14% which requested multiple remodels upon
the NN.
Guo et al. [76] uses the NASAMDP dataset to evaluate the applicability of
Random Forest (RF) to SFP. Within their analysis RF are well suited due to
the scalability to large datasets and its ability to report the importance of
single attributes like the metric values. To overcome the drawback of RF to
minimize the overall error, which would result in a high misclassification
in case of a small number of faulty files, the authors adopt the Cuto f f value.
They report an accuracy of up to 0,94 and a true positive of up to 0,87.
Due to the small dataset they used a 10 fold cross validation to validate the
results. Among the attribute analysis LOC and Halstead (effort and volume)
are the strongest metrics related to faults.
Menzies et al. [74] and [88] has been among the first to use machine learning
on fault prediction. They evaluated OneR, J48 and NB using the NASAMDP
dataset. They achieved the best performance using NB with logarithmic
metrics.
Mizuno et al. [115] presents work on Eclipse BIRT and TPTP plugins using
NB, J48, LR, NNge21. Their analysed software contains 10.389 modules
with roughly 40% faulty ones. Their experiments present NB as the best
predicting algorithm archiving a precision up to 0,570 and a recall 0,947

when using the previously presented SPAM filter based metric PTPF.
Recent work on this topic by He et al. [130] where they compare multiple
predictors (J48, LR, NB, Decision Table, SVM and Bayesian Network) using
ten projects from the PROMISE [131] achieve with overall 33%22 of defective
files. In their analysis NB has the highest predictive power with a precision
of 0,49, a recall of 0,588 and an F-measure of 0,496

23. The authors evaluated
the impact upon metric usage between the full set and a selection of five
metrics. According to their analysis there is a slight decrease in the predictive
power in terms of precision, recall and F-measure, thus the authors state
that the slight performance reduction might be acceptable as the model is
much simpler.
Common to the majority of recent machine learning approaches the WEKA

21Nearest-neighbor-like algorithm using non-nested generalized exemplars
22minimum 3.5% and maximum 75%
23all performance is reported as median on all ten projects
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toolkit [104] is used, which reduces the impact of implementation errors and
enabled performance comparison between various publications. A highly
favoured dataset is the NASAMDP which was used within multiple reports.
Among the result reports NB and Random trees perform best (Guo et al.
[76], Mizuno et al. [115]), even within rather simple metric settings (He et al.
[130]). The majority of publications favour the usage of as many as possible
attributes when using machine learning approaches (Menzies et al. [88]), but
the decreased predictive power when using a simple metric set might be
very narrow (He et al. [130]).

3.5.3. Performance

Various studies have been released reporting on SFP performance. The ma-
jority of reports use AUC, recall, precision, True Positive (TP) and False Pos-
itive (FP) as defined within the equation 3.9. There is only the NASAMDP
dataset KC1 used across multiple publications, where the majority reports
on the AUC1 value, see Table 3.3. Other values are given too, but can not be
compared easily as they do not occur within all studies.
A visual explanation defines TP as the number of correctly identified bugs,
True Negative (TN) as the number of correctly identified fault free files.
In contrast FP and False Negative (FN) represent the opposite where fault
free files are classified as bugs and vice versa. The recall figure represent
the share of correctly found bugs. Precision shows the share of correctly
classified bugs out of all reported bugs, F1 is the harmonic mean between
precision and recall. Type I and II represents the share of FP respective
FN out of all reported classes. AUC1 gives an estimate of the predictor’s
performance compared to a random chooser. The ideal predictor shall have
AUC equal to one, the random predictor is supposed to report 0,5.

AUC =
1

m n

m

∑
i=1

n

∑
j=1

1pi>pj (3.8)

1see equation 3.8
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Where:

m : the true datapoints
n : the false datapoints
pi : probability by classifier for true class
pj : probability by classifier for false class

Ostrand and Weyuker [90] discuss performance results from their previous
work regarding Bell et al. [82] and Ostrand et al. [73]. The authors discuss
performance report values and effects causing them to lead to false inter-
pretation. If a dataset contains a very low number of bugs, accuracy2 and
recall3 might be close to 100%, but still the predictor might miss the faulty
files. In such a case the type II misclassification rate4 is near zero.
G-Measure, see Equation 3.9h, is defined by Jiang et al. [134] to adjust
sensitivity in case of imbalanced class problems and still present a measure
to compare different classifiers similar to F1. In an ideal setting the G-
Measure is one. Weiss [126] favours F1 and G-Measure when dealing with
imbalanced class distributions, as all other measures (AUC, accuracy, · · · )
report delusive figures due to a high number of TN rooted in the class
distribution.

2see equation 3.9a
3see equation 3.9b
4see equation 3.9e
5see equation 3.9f
6see equation 3.9c
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Accuracy =
TP + TN

TP + TN + FP + FN
(3.9a)

recall =
TP

TP + FN
(3.9b)

precision =
TP

TP + FP
(3.9c)

TypeI =
FP

TP + TN + FP + FN
(3.9d)

TypeI I =
FN

TP + TN + FP + FN
(3.9e)

F1 = 2
precision · recall
precision + reall

(3.9f)

p f =
FP

TN + FP
(3.9g)

G−Measure = 2 · recall · (1− p f )
recall + (1− p f )

(3.9h)

In their opinion a report on a good working fault predictor should contain a
high accuracy2, a high recall3 and a low type II misclassification4 rate. The
authors did not present F1

5 which represents the harmonic mean between
precision6 and recall3. Ideally F1 is one for a perfect prediction.

Moser et al. [99] presents work on Zimmerman et al. [93] eclipse dataset
stating that change metrics (commit size, file age, refactoring, etc.) clearly
outperform static metrics (LOC, ...). They are using J48 as the predicting
algorithm and achieve an accuracy2 of up to 0,87 and a recall of up to 0,8.
Lessmann et al. [97] compared the predictive performance of six categories
(statistic, nearest neighbour, NN, SVM, decision tree and ensemble) of
classification algorithm in eleven projects from the NASAMDP dataset sup-
plying the available metrics (volume, design and change). The majority of
predictors perform similarly and there is no single method which has a
performance superior over all datasets. Analysing their data one can see a
stronger scattering among the projects than across the learners, thus choos-
ing the prediction algorithm is less important.
Catal et al. [102] evaluates prediction performance in different (sub)selections
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of metrics and machine learning predictors evaluated on the NASAMDP
dataset. Within their analysis RF and NB performs best with an AUC be-
tween 0,79 and 0,84. Table 3.3 presents the reported AUC values from their
experiments in the KC1 project. Using the full metric set (LOC, CC, CK)
performs best (see Experiment 1), only using a subset (see experiment 2

or 4) performs slightly lower. The best overall performance (0.89 AUC) on
the KC1 dataset has been achieved by Singh et al. [109] using SVM and all
available metrics.
D’Ambros et al. [113] presents an intensive study upon predicting perfor-
mance based six different metric categories (change, bug history, static
volume, code chrun, entropy of change & static volume and combined
approaches). The authors report about the Spearman correlation between
predicted and real bugs. Clearly the combined approaches outperform the
single metrics styles. This leads to a consistent statement with Jiang et al.
[95] and Menzis et al. [88] to achieve best performance when combining the
maximum number of metrics.
Menzis et al. [135] and Menzis et al. [114] introduce the ”ceiling effect”,
stating no performance improvements over the last couple of years as ob-
served by nine publications they studied, including Lessmann et al. [97].
All their meta studies report upon AUC values up to peak 0,9 on the same
NASAMDP dataset. Menzis et al. suggests shifting the performance reports
from classic values (AUC, TN, TP, precision, recall, F-measure) to finding
most faults in the smallest number of modules. Rahman et al. [120] uses
the AUCEC performance figure, stating that this is the most cost sensitive
AUC. The calculation is similar to traditional AUC, but the defective files
are ranked according to the predicted defect sensitivity. The idea is to define
a measure ajar finding the most bugs with the lowest number on files to
inspect. This performance value represents the ability to predict bugs when
a tester is only able to inspect a defined share of files or LOC. This scenario
might be represented using AUCEC20, stating the predictive power if a
tester is only able to inspect 20% of all LOC.
Abaei and Selamat [127] report of prediction performance using accuracy24,
recall25 and precision26. It is one of the view works where reviewing au-

24see equation 3.9a
25see equation 3.9b
26see equation 3.9c
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Table 3.3.: AUC performance results on NASAMDP project KC1, empty cells represent not
reported values by the publications
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AIRS1 0,6 0,59 0,6 0,7 0,563

AIRS2 0,57 0,59 0,6 0,71 0,529

AIRS2Parallel 0,61 0,6 0,6 0,68 0,605

Bootstrap aggregating 0,82
CART decision tree 0,69

CLONALG 0,52 0,53 0,52 0,67 0,532

Decision Table 0,785

Decision tree, J48 0,689

Immunos1 0,68 0,71 0,68 0,69 0,681

Immunos2 0,51 0,5 0,49 0,72 0,511

J48 0,7 0,7 0,7 0,75

GLM 0,81

NB 0,79 0,79 0,8 0,76 0,79 0,79
RandomForests 0,79 0,8 0,79 0,79 0,789 0,84
SVM 0,89
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thors have performed experiments on their own and one can rely on the
comparability of performance report values.
Overall all performance studies report of a high prediction ratio when using
a combination of multiple metric suits. AUC values up to 0,89 (Catal et al.
[102]) or accuracy up to 0,87 (Moser et al. [99]) have been reported to be
reached with machine learning approaches. The numeric performance re-
sults between various machine learning algorithm differ slightly, RF and NB
tend to be the best performing (Catal et al. [102]), SVM are achieving similar
or slightly better results (Singh et al. [109]). There is only one dataset used
across multiple studies (NASAMDP KC1) and several studies comparing
performance (D’Ambros et al. [113]) with its own implementations.

3.5.4. Summary

Software Fault Prediction (SFP) utilizes metric data to predict a component’s
(method, module, source file, etc.) failure using a predicting algorithm.
There are multiple literature reviews (Catal et al. [103] and Radjenović et al.
[125]) detecting an increased number of publications after 2005 when the
NASAMDP was released. Early work (Khosgoftaar et al. [62], Ostrand et al.
[78]) uses statistic methods DS, GLM LR, NBR, etc., later (Menzies et al. [74],
D’Ambros et al. [113],He et al. [130]) use machine learning NB, SVM, RF,
etc. mostly using the WEKA [104] toolkit. Various software metrics were
introduced, starting with simple volume as Lines Of Code (LOC) or Hal-
stead [54] and design such as Cyclomatic Complexity by McCabe (CC) [53]
continued by change (code chrun, file and failure history) and measures
like Chidamber Kemerer [60] OO metric (CK). The majority of work ad-
dresses a strong predictive strength to code chrun and file & bug history
(Ostrand et al. [78], He et al. [130]) with empirical evidence by Tomaszewski
and Damm [86] where changed classes or LOC show a 20 to 40 times higher
chance of introducing a failure than newly added classes. Early SFP work
discuss fine grained which metric to use, machine learning approaches use
the maximum available number of metrics, whereas some reports (He et al.
[130]) indicate a minor loss in predictive output accuracy if reducing the
number of metrics in use. Performance reports use recall (equation 3.9b),
precision (equation 3.9c) and accuracy (equation 3.9a) to report upon the
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quality of predictive results. The majority of machine learning approaches
(D’Ambros et al. [113], He et al. [130]) is able to archive precision and recall
beyond 0,8. Lessmann et al. [97] argues the choice of predicting algorithm
is less important which is in contrast to Menzis et al. [114] who states
tuning algorithm has a significant influence on the achievable predictive
performance.

3.6. Cross Project Fault Prediction

The previously introduced Software Fault Prediction (SFP) relies on the
existence of historic metric data. In the early phases of a project this historic
data might be too short. Cross-Project Fault Prediction (CPFP) tries to over-
come this deficit by using available metric data to predict failures within
another (new) project. During this section SFP is used as a synonym for
predicting faults within the same project and CPFP to train from multiple
projects and predict within a target project.

3.6.1. Selected Publication

First work on this topic has been presented by Briand et al. [71] where they
study two commercial developed Java OO: software products xPose and
Jwriter which have been developed at Oracle Brazil. The dataset contains
212 classes and 2,767 methods in total. The authors describe using xPose
as the training set, as it is the bigger system and Jwriter as the evaluation
dataset. As using OO software they collected CK and classic volume LOC
metric. They used two predicting algorithms, LR and Multivariate Adaptive
Regression Splines (MARS). Their overall performance using LR is reported
on recall at 0,45, precision at 0,737 and accuracy at 0,85, compared to the
MARS model which performs slightly better in terms of recall at 0,48 but
lower on precision at 0,68 but comparable at accuracy by 0,84. Still this
means the model misses 40% of the faulty files. The author states that trans-
ferring a fault prediction model between two projects can not be considered
as straight forward, even when the development environment in terms of
coding guidelines, tool usage and company settings is very similar.
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Zimmermann et al. [111] performed a fault prediction transfer study on a
large scale using four Open Source projects (Apache Tomcat, Apache Derby,
Eclipse and Firefox) and eight closed source projects developed by Microsoft
(Direct-X, IIs, Printing, Windows Clustering, Windows File system, SQL
Server 2005 and Windows Kernel) summing up to 35 Million LOC. They
collected volume metric (LOC, CC, etc.), change metric (code chrun, etc.)
and process metric (number of developers, commit and file and bug history,
etc.) which have been used as normalized values together with a LR based
predictor. Between their twelve projects they performed 622 cross project
experiments. A successful prediction is counted if recall, precision and
accuracy are above 0,75. This lead to a very weak success rate at 3,4 %. Upon
their analysis results some projects tend to be more related than others but
the prediction might not be bilateral. The authors define a similarity vector
between two projects to derived a decision tree if cross project prediction is
possible. Their core finding is related to Briand et al. [71] stating that similar
setting between two projects are beneficial to CPFP.
Turhan et al. [110] presents work on seven projects from NASAMDP and
three industrial, all hosted at PROMISE archive. They used classic metrics
(volume and design) as supplied by the projects and NB as the predictor.
They have chosen to use 90% randomly selected data from the project
metrics to train the predictor and the remaining 10% to test their learned
model. Their work aims to compare SFP with CPFP and perform an in
deep analysis upon the predictive performance. Overall they report on high
prediction in CPFP, stating the probability to detect an error goes up to 97%
at the cost of probability for false alarms of up to 100%. In their opinion this
are the best ever reported values, but make the system practically unusable
due to the high number of false alarms. Upon their analysis this effect is
caused by the high number of training samples they can provide when
applying CPFP, which leads to their discovery that a too high number of
training samples increases the variance within the prediction model causing
the high false alarm rate. Second they stress upon their previous findings
to use all available data. Using Infogain ranking among all collected metric
data they discovered similar correlation between single metric values and
the number of bugs, stating there is no perfect metric. To overcome these
effects upon the too large training set, they applied nearest neighbour
filtering to select a maximum of 200 training samples, which decreased the
false positive to 60-65%. Thus they argue that with CPFP it is important
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to select suitable training data between the target project and the training
projects. Overall they conclude SFP still to be the best prediction, but using
the nearest neighbour to select a maximum of 200 training samples is better
than using the full raw data to perform CPFP. )
Rahman et al. [120] claims that CPFP has a similar performance to SFP
when measuring the AUCEC value. They present work on nine Apache
projects yielding CPFP can identify the most fault prone modules but
might still give a high false positive rate. In their definition it is more
important to find some bugs within a strict limited inspection budget,
which is represented by AUCEC. Their case study uses classic change
metrics, number of commits, number of developers, code chrun, number
of new features, number of improvements and classic volume metric LOC.
Their model has been set up using LR and all available metrics data as
suggested by Menzies et al. [88]. Following their definition a file is set as
defective if there is at least one defect report within the corresponding
release.
Herbold [122] presents work following Turhan et al. [110] on enhancing
CPFP by filtering the training data. Herbold selected clustering using the
EM algorithm and nearest neighbour along with a weight schema to select
training. He evaluated his system using thirteen open source projects written
in Java with an average of 34% defective classes per project. The dataset is
available to the public via the PROMISE [131] repository. To predict failures
he used twenty standard static metrics (LOC, CC, code chrun, etc.) and
seven machine learning (LR, NB, Bayes Network, SVM with an radial basis
function kernel, C45, RF and a multilayer Perceptron) predictors. He defines
a successful prediction if recall is ≥ 0,7 and precision ≥ 0,5 which is used
to report on the success rate, see equation 3.10

sucess rate =
number o f sucess f ull experiments

number o f experiments
(3.10)

The training data is filtered using the EM clustering and the nearest neigh-
bour algorithm which leads to an increase in success rate from 0,09 to 0,18

when using CPFP. This is good, but still low compared to SFP with a success
rate of only 0,37. Within their analysis the discovered SVM is said to be the
worst predictor but after applying the training data selection however, SVM
performs the best. Overall Herbold suggests using the nearest neighbour
algorithm with a 50% - 70% neighbourhood when performing CPFP.
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Zhang et al. [129] present a unique approach to CPFP by building up a
database with similarity index between projects. If two projects are similar,
the learned predictor can be reused, which leads to a universal defect pre-
dictor if the database contains enough datasets. During their evaluation they
gathered data from 1.398 projects hosted at SourceForge.net and Google
code containing between 20% and 60% defective files. More than 60% of
the datasets projects apply to issue tracking, which forces the authors to
classify defective data based on a regular expression statement on the com-
mit messages. They collected classic static metrics (LOC, CC, file and fault
history, code chrun, etc.) and CK metrics. The authors claim to achieve 70%
of successful predictions using the same criteria as Herbold [122] (≥ 0,7 and
precision ≥ 0,5 and equation 3.10). Their context aware rank transformation
approach tries to overcome the observed distribution of variance between
different project contexts. Every projects metrics set is: 1.) partitioned into
six none overlapping context groups27, 2.) clustered 3.) ranking function is
derived 4.) the ranking function is applied, which ensures values to be at
the same scale. Every project has been tested using SFP with the ranking
function against a classic log model evaluated using a ten fold cross valida-
tion. The authors report on similar to better performances in terms of AUC,
recall and precision, using their ranked transformation with the cost of a
higher false positive rate.
He et al. [130] gathered metric data from ten open source projects from the
PROMISE archive. Within their setting they used metrics collected from
previous releases of the same project (refer to their scenario two) or from
different projects (refer to their scenario three). Upon their analysis the best
predictive algorithm is different, Decision Tables perform best at recall 0,674

and precision 0,549. Compared to their SFP analysis the reduced metric set
performs 10-15% lower than the full set. Overall the predictive performance
between the ”within project fault prediction”, even across multiple releases,
has got a more similar sound than the CPFP across all ten analysed projects.
The overall predictive power is lower on CPFP than on SFP.

27programming language, issue tracking in use, LOC, number of files, number of
commits, number of developers
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3.6.2. Summary

The overall reported performance on CPFP is significantly lower than on
SFP when evaluated on the same dataset. Performance values range between
Briand et al. [71], where they miss more than 40% of faults up to Zhang et al.
[129] who claims to predict up to 70% of all faults. Large scale experiments
by Zimmermann et al. [111] and Zhang et al. [129] state that CPFP benefits
from similar project settings (tools, development guidelines, etc.). Analysis
by Turhan et al. [110] states using too big training data harms the perfor-
mance. Work by Turhan et al. [110] indicates pre filtering training data before
applying CPFP to increase predictive performance. This has been evaluated
by Herbold [122] who reports upon doubling the success rate when using
nearest neighbour filtering on the training data. He et al. [119] perform a
similar study supporting Turhan et al. [110] and Herbold [122] observation
regarding the selection of training data for successful CPFP. The majority
of studies uses data from PROMISE and NASAMDP archives which offer
standard static metrics (LOC, CC, code chrun, etc.). Similar to Section 6.1 NB,
RF and SVM are the dominating predictors, but the predictive performance
differs only slightly.

3.7. Imbalanced Class Distribution

If the classes within a dataset are not equally distributed this is known as
”imbalanced class problem”. Weiss [126] differs between low (1:10), mid
(1:100) and strong (1:1000 and beyond) imbalanced datasets. The author
argues multiple classifiers having problems with learning from the minority
class or even over fitting them. He outlines ”divide and conquer” based
algorithms, such as SVM or trees, might lead to fragmented data. It might
happen as single leaves or class split decisions are based on a minority
sample which might not be representative, thus it is advised not to use them
on such a dataset.
Japkowicz [69] presents under- and oversampling as methods to overcome
the imbalanced class problem. The author study an artificial dataset with
binary class distribution. Upon their results both strategies are valid to
increase the predictive performance.
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Drummond et al. [75] is among the first to address influences of minority
classes when applying C4.5 learners. They suggest to use undersampling to
overcome this deficits.
Khoshgoftaar [116] presents work on an Eclipse dataset dealing with im-
balanced class distribution. They focus on reducing the number of input
dimensions (software metrics) by applying feature ranking. Within their
analysis the reduced set performs better than the full set. In addition they
discovered sampling the data has no significant impact on the resulting
performance.
An empirical evaluation by Posnett et al. [117] reports on problems when
dealing with imbalanced class distributions. Their applied machine learning
algorithms can not achieve good performance.

3.8. Software Error Analysis

Not every bug leads to a failure and not all failures are severe. Various
reports studied the roots of bugs and techniques to prevent the genesis of
them. This Section presents some of these reports and guidelines.

3.8.1. Selected Publication

Adams [57] conducted a survey on large IBM software products between
1975 and 1980 collecting issue reports and the associated bug fixes. He dis-
covered that large portions of failures never lead to software errors, but less
than 2% of the known faults cause the significant errors in operation. This
work is mainly based on discovering the probability for defect to occur. If a
bug needs hundreds of thousands of hours to occur, the testing team might
not be able to discover them all. Most of the none discovered defects occur
only on rare system settings. The author claims that service is necessary for
every software product.
Fenton and Neil [65] and Fenton and Ohlsson [66] present eight theses,
four of them with empirical evidence, concerning the occurrence of soft-
ware faults. They state that the majority of faults are discovered within a
small number of modules this is supported by Denaro and Pezze’s [72] and
Bell et al.’s[82] work. Secondly they state that the fault density broadly stays
similar during the development and testing stages across different projects
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if they are developed within the same environment (company, tools, etc.).
Further fault densities are comparable among multiple releases for similar
testing and operation phases.
Boehm and Basili [70] released their top ten fault reduction list compiled
upon their experience and prior empirical work. They state that fixing bugs
later costs more, 80% of revision is caused by 20% of the bugs although 50%
of files might even be bug free and up to 90% of downtime are caused by
only 10% of the bugs. In their opinion disciplined developers can reduce the
risk of defect introduction by 75%. Not all fault prevention methods work
on different bugs, multiple of them guard the same error class (example given
clean room development and peer review) leading to a potential save on
money without quality drawbacks.
Wagner et al. [81] present work on types of bugs discovered by static code
checkers, testing and manual code inspection. They performed a case study
on five industrial projects from the Telecom sector and one academic. All
software is written in Java realizing web information systems, in total those
five projects consisting of 1882 classes and 123.000 LOC. In conclusion,
they state that static analysers find a subset of bugs discovered by code
reviews, dynamic tests finds completely different bugs. This means there
is no overlap on bugs discovered using these two methods which makes
them complement each other. The authors note that static analysis tools
only search for specific patterns which might trigger false alarms, example
given if a developer uses two different methods upon opening or closing a
database connection.
Vipindeep and Jalote [80] present a literature survey concerning well
known programming failures and techniques to prevent them. They cat-
egorize bugs as Catastrophic, a system may crash or lose functionality or
expose security issues, Major, malfunction or loss of data, Minor, displaying
information in the wrong format and no effect like typographic errors,
however they do not present statistics upon their occurrence.
Li et al. [84] analyse bug fix traditions of open source software by review-
ing and categorizing 29.000 Bug reports from Open source software. The
reviewed software Mozilla and Apache consist of 4 Million LOC in total.
Overall the authors conclude that bugs are different than within the past
ten years. One insight concerns less memory related bugs which may be
due to the recent heavy usage of leak checkers. Null pointer errors are
still common which could be prevented by static code checkers. Semantic
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bugs which range from missing cases or features, to wrong control flows
and false data processing to simple typos in messages. They account for
81,1% - 86,7% of all bugs which represent a major problem. The number of
discovered security related issues rises as there are more attacks on software.
The software’s core functionality and Graphical User Interface (GUI) area
are the most error prone regions, but the most fault causes lead to incorrect
functionality (75,2%), minor to crashes (13%) or hang ups (2,5%).
Boogerd and Moonen [45] present work on MISRA 2004 rule violations and
the coding standards ability to prevent faults. They conducted an indus-
trial case story about a Secure Digital Driver software developed at NXP
where they queried the issue tracking and version repository to establish
a link between fault and rule violation. The studied software did not use
MISRA checks during development, thus it is possible to establish a link
between faults and rule violation28. The authors are using LR to analyse
correlation between faults and rule violations. Upon their findings there is
a strong positive correlation between bugs and rules violations for 22 out
of 72 MISRA rules. Compared to randomly selected files the rule checks
are better fault predictors. Rule violations are discovered using static code
analysers, commonly suffering from a too high false positive alert rate. The
authors state that a too high number of reported rule violations can cause
software to be less reliable as developers tend to ignore them. Thus selecting
the correct subset of rules is important.
Boogerd and Moonen [101] continue their work with another embedded
software by NXP representing a mature television platform system. Compa-
rable to the other study they identify ten out of 88 MISRA rules to show a
positive correlation with faults reported within the issue tracking system.
In contrast the correlating rules are different expect for one. As the two
analysed software projects are very different the authors conclude that rule
violations and bug correlation is domain dependant. Further files with a
higher rule violation density tend to be more error prone, at least regarding
ten MISRA rules. The authors do not present characteristic of the use case
stories code (LOC, CC, structure, etc.). As static code checkers produce a
high rate of noise due to false alarms the authors suggest starting with a
minimal set of rules and add new rules during development. Illustrating

28if developers use MISRA checks they have to fix violations prior to testing stage which
influence the correlation analysis
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this, they state that 30% of their used case software LOC trigger a rule
violation warning.

3.8.2. Summary

Their exist multiple works stating that only 20% of the files/modules contain
80% of the bug, compare Bell et al. [82] and Menzies et al. [88]. Adams [57]
state that less than 2% of the known bugs cause significant problems. Similar
Li et al. [84] discovered that a small amount of faults (15,5%) lead to crashes
or software hang ups. Boogerd and Moonen [45], [101] discovered a positive
correlation between the number of bugs and the coding standard rule
violation density within files, suggesting a rule violation might be a useful
fault predictor, but the selection of fault indicating rules scatter with the
projects domain. Wagner et al. [81] back the usage of static code analysers
and dynamic tests as complement methods. There are no reports concerning
the type of faults occurring within industrial projects or empirical evidence
of the fault preventing power of coding standards. Wagner et al. [81] give
limited insights into this by the error classes’ static code checkers identify.
Boehm [59] and Vipindeep and Jalote [80] present common occurring faults
without listing empirical statistic.
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4. Development Tools and
Methods used within the
Automotive Industry

This chapter presents an overview of the tools and methods used during
the automotive software development process. The presentation starts at the
specification stage and finishes when the software is released to customers.
The presented content is based on work by Altinger et al. [13], Altinger et al.
[22]1and Altinger et al. [23].

4.1. Questionnaire Survey

Upon best knowledge no reliable data in literature about tools used within
the automotive domain, refer to Section 3.1, therefore a questionnaire survey
has been conducted. This survey consists of 24 questions and covers 68

responses from developers within the automotive industry class divided
into Research (RU), Pre Development (PD) and Series Development (SD).
The questions can be extracted from Appendix B or online [136].

4.1.1. Survey Setup and Meta Data

Initially the questions were distributed to 45 persons related to testing and
requirements engineering within the automotive software industry located
in Research and Development (RD) departments. All of them are personally
known to the authors, resulting within the following distribution: OEM 53%

1This publication is submitted to review and is not published at date of release of this
thesis
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2, Supplier (Tier 1-3), engineering service provider, software vendor (SES)
40% 3, university/research facility 7% 4. All receivers were asked to forward
this survey to others, thus it is not possible to calculate the response rate.
Achieving a representative poll was non an objective of this survey, the
main aim was to gain insight into used tools and methods when testing
software. The survey was conducted anonymously, thus it is not possible
to eliminate duplicated answers from identical departments. The questions
were accessible online between 1st of February and 4th of April 2014. In
total 68 responses were given resulting in the following distribution: OEM
37,74%, SES 52,83%, University / Research facility 9,43%. 41,1% of whom
are software developers, 9,6% requirement engineers, 20,5% test engineers,
23,3% managers and 5,5%others (mainly researchers). 17,92% of respondents
belong to RU, 42,45% to PD and 39,62% to SD. All questions offer multiple
choice with the ability to tick all options or state a free text answer.

4.1.2. Survey Results

The results of the analysis are conducted among three groups: testing, spec-
ifications and personal. All interpretation and Figures 4.1 to 4.12 are split
into three departmental categories: Series Development (SD), Pre Develop-
ment (PD) and Research (RU). Following the explanation by Crolla [29] and
Altinger et al. [13] RU performs research in which the main aim is to inves-
tigate algorithms and innovations, they may present their work by proof
of concepts, displaying limited functions, not considering any limitations
by embedded systems, regulatory laws, etc. PD uses the output of RU and
adopts their findings to automotive limitations example given sensors field of
view, limited CPU power, environmental hazards like weather conditions
etc. They may also conclude their work by proof of concept demonstrations,
however, they may also consider norms example given ISO26262 [49]. SD is
responsible in developing the actual car, implying they have to carry out the
majority of tests and consider all safety and reliability requirements defined
by either the company or regulatory laws and norms.

2
10 companies: AUDI, BMW, Daimler, Fiat, Ford, Mitsubishi, Scania, Toyota, Volvo, VW

3
16 companies, among them Bosch, Continental and Magna

4
3 universities: KTH Royal Institute of Technology, Graz University of Technology,

Frauenhofer ESK
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4.1. Questionnaire Survey

Figure 4.1.: Languages used as a result of a Survey by Altinger et al. [13]
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Figure 4.2.: Code Access by RD departments as a result of a Survey by Altinger et al. [13]

Collective to all three department types Matlab Simulink [41] is the most
common tool to design models, refer Figure 4.1. These findings match work
by Broy et al. [31] and Bock et al. [38]. A similar share goes to imperative
native languages like C and C++.

Adjacent to the programming language, access to the source code or model
is requested. As automotive development is distributed between multiple
companies, see Broy [7], Figure 4.2 adds the terms OEM and SES. Blackbox
denotes no knowledge of the implementation including source code, algo-
rithms, state-machines, etc. The tester may only know the interfaces and
requirements as defined when instructing the software development. White-
box denotes full access to the source code, Grey box represents knowledge
about algorithm and coding structures but not to the actual source code. PD
and RU received the highest access rate to source code, in contrast SD got
the highest Blackbox testing, noteworthy SES got more access to structures
and algorithms where the majority of OEM SD departments perform Black-
box tests based on the specification, this matches statements by Crolla [29]
where SES develops the software and OEM only performs the final testing
based on the specifications written within the requirements document.

As explicitly stated within Section 2.2, 4.2 and Figure 2.2 the specifications
are a core part of the development process. Figure 4.3 presents the usage of
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Figure 4.3.: Tool categories to write specifications as a result of a Survey by Altinger et al.
[13]
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Table 4.1.: tools in use to write specifications

name of tool vendor [%] citation
Rational Doors IBM 38 [137]

Word Microsoft 17

Integrity PTC 13 [138]
Excel Microsoft 11

Enterprise Architect SparxSystems 7 [139]

”requirement management systems” as the dominating tool category within
PD and SD which matches the prominent tools listed in Table 4.1. According
to the survey IBM Doors [137] is the most common tool with which to write
specifications, however the Microsoft Office Suite (MsOffice) family is the
second most influential, which belongs to the ”text editor” tool category.
Noteworthy RU prefers text and diagram editors which may match the
department’s definition which does not require tracking and fulfilling all
norms and laws.
IBM Doors [137] is a database tool to write and track specifications. It is
possible to state textual and graphical requirements, organize them hierar-
chically or link them to matching specifications. Editing authors are traced,
resulting documents can be exported into various document standards.
In addition it is possible to establish a forward and backward reference
between the textual requirement and actual source code.

PTC Integrity [138] is an application PLC system which offers an integrated
Issue Tracking System (ITS) commonly used to track specifications. In addi-
tion it offers an interface to IBM Doors, which may be a common way of
interacting with the requirements system.

Sparx Enterprise Architect [139] is a Unified Modeling Language (UML) editor
which offers to write and maintain specifications in a graphical manner
following the well known UML notations. Also, it is able to connect with
IBM Doors and act as a graphical editor or exchange requirements.

The dominating testing method in RU is manual testing which represents
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Figure 4.4.: Tool license in use as a result of a Survey by Altinger et al. [13]
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Table 4.2.: test automation tools

name of tool vendor [%] citation
Exact Audi Electronics Venture GmbH (AEV) 7 [140]

Polyspace the mathworks 7 [141]
EXAM MicroNova 6 [142]

self developed 6

TPT PikeTec 5 [143]
CANoe Vector Informatik 4 [144]
QA-C QA Systems 4 [145]

the manual execution of TC according to Figure 4.5. This may be caused by
the high number of functional changes and the innovative character of the
department where less formal requirements are specified. In terms of SD
and PD manual TC execution may refer to tests of the prototype car where
it is necessary for a human driver to execute certain road test scenarios.
Automated testing and test suite management are mainly used together with
SiL and HiL tests, which are the most performed test stages see Figure 4.9.
These results suit the popular5 test automation tools listed in Table 4.2.
EXact, Exam and TPT offer the automated execution of regression tests but
still need manual TC specification. CANoe offers a scripting interface to
automate test execution, Polyspace and QA-C are static code analysers.
Fitting data from Table 4.2 and Figure 4.5 the tool usage as presented in
Figure 4.6 shows the majority upon test automation with a specific interest
on code coverage by the TC within SD departments as this is a required
performance ratio. More recently, static code analysis gained interest as a
more industrial grade and easy to use tools became available example given
Polyspace [141]. About a quarter of the cases code review is performed
where Shull et al. [20] state to find on average 60% of the defects. On
contrast RU seems to apply more mature methods as static code analysis is
performed more often and even formal methods seem to be in use.
The main approach of testing is model based as Figure 4.7 shows. This may
be caused by a high number of MiL tests already performed on the Matlab

5as a result of the surveys question upon the test automation tool in used
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Figure 4.5.: Methods to automate testing as a result of a Survey by Altinger et al. [13]
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Figure 4.6.: Test tool usage as a result of a Survey by Altinger et al. [13]
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Simulink models. It is worth mentioning that a high share of unit tests are
performed across all three department domains. One might see an ECU as
a unit and all tests example given HiL which target one single ECU (compare
Figure 4.10) might be considered as unit testing. Modern testing approaches
like fuzzy, mutation or random testing are hardly in use which could be
caused by norm requirements example given ISO26262 [49] which forces tests
to be deterministic.
There is a general idea that when designing a TC, ”positive testing” denotes
checking for the desired output which may be specified by the requirements
or feeding valid input data, ”negative testing” means specifying a test to
use invalid input data and checking for a correct error statement. ”Outside
specification testing” is only possible if certain input value ranges are
specified as this method tests for input values which are not defined. This
may be something like if a function is specified to be available if the speed is
below 12km/h a TC tests with a negative speed or something huge example
given 3.000km/h, which is clearly outside the specifications of a passenger
car. Figure 4.8 shows a roughly equally distributed arrangement among
these three basic ideas. This means that automotive TC covers desired and
none desired behaviour of specifications.
As described in Section 2.3 ”in the loop” tests are specific to automotive
software engineering. As visualized within Figure 4.9 HiL and SiL are the
dominating test execution platforms at SD and PD. Noteworthy SD need
to qualify the processors and ensure correct runtime even prior the desired
ECU is not available, thus PiL account to a rather high share. Overall three
domains ”whole vehicle” testing is important, specially within RU where
all functions need to be demonstrated running on an actual car. Simulation
seems to gain attraction as it is the second highest ranked method in PD and
RU seems to simulate every component prior to testing in the lab car. This
may be the result as more complex functionality might require more time
to Setup and prepare a prototype car or specific environmental conditions
are hard to reproduce.
Testing software libraries seems to have an equal share among the SD,PD
and RU, a clear difference is the high share of ECU testing at SD and whole
vehicle testing at RU. This is in line with Figure 4.9 where RU performs a
clearly higher share of tests in the car than on test beds.
As shown in Figure 2.4 SPICE and ISO 26262 [49]are the most dominant
process Norms, AUTOSAR the most dominant implementation relevant
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Figure 4.7.: Testing approaches as a result of a Survey by Altinger et al. [13]
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Figure 4.8.: General type of testing as a result of a Survey by Altinger et al. [13]
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Figure 4.9.: Test time along the milestones as a result of a Survey by Altinger et al. [13]
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Figure 4.10.: Development target as a result of a Survey by Altinger et al. [13]
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norm. SPICE defines the type of process to consider and the reports to
exemplify, ISO 26262 [49] influences the way a TC needs be defined and the
functionality it covers. In terms of TC definitions the AUTOSAR standard
influences the way a TC can interact with the SUT, as AUTOSAR mainly
defines interfaces and standard architectures to considers.

The majority of TC designers and execution engineers within the SD de-
partments are from a third party which lead to the statement that testing
is a dedicated job, compare Figure 4.11. RU and PD seem to highly share
developer and tester. This fits together quite well, as the majority of tests are
performed manually and the test’s scope is mainly on the whole car (aka.
full system) for those two department domains. This may be a result of the
required test report effort being lower than in SD and the number of norms
and laws to consider is even lower.

The final question has been to the participant’s opinions concerning the
usefulness of software testing, refer Figure 4.12. There is a clear statement
upon the usefulness of testing (Q1) and the chance upon Return Of Invest-
ment (ROI). Q5 and Q3 are in line with Bock et al. [38]. New tool chains
cost too much time as less than 20% think the time to design TC is less
than implementing the actual software. Q4 can be seen as undecided as the
median is more than 50% which can be interpreted as ”do not know” or
”no plans yet”.

4.1.3. Summary

Learning from Figure 4.12 the majority of survey participants thinks testing
is an important work and the time invested is worth it. In general there
are differences between the three department domains RU, PD and SD, the
most obvious between SD and PD on one side and RU on the other side.
Clearly SD need to consider laws and norms and spend more time to Setup
unit and ”in the loop” tests for delimited functions blocks, see Figure 4.9
and 4.10. RU seems to apply a high amount of simulation which is equally
ranked as whole vehicle tests, see Figure 4.9. Modern testing methods like
fuzzy, random or mutation are rare, compare Figure 4.7, however, more
tools using mature testing and analysing approaches are being applied, at
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Figure 4.11.: Personnel to design TC as a result of a Survey by Altinger et al. [13]
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Figure 4.12.: Opinion about ecologically worthwhile of testing results from Survey by
Altinger et al. [13]. Questions could be answered similar to school grades from
1 as total agree to 5 as do not agree at all. Starting with red on the left side it
represents a full disagree and ending with dark green on the right side as a
full agree.

least at RU see Figure 4.6. The majority of TC is designed and even a high
share of them is executed manually, see Figure 4.5. This matches the top five
list of test automation tools according to the survey participants which can
be extracted from Table 4.2. The personnel to write specifications, design
TC and implement the software is dedicated and different, see Figure 4.11,
at least for SD departments.

Matlab Simulink is the most dominating tool to develop software within
the automotive domain. Dedicated personnel is responsible for writing
specifications, developing the code and defining the TC. A free TC
budget is available and spent according to an engineer’s experience.
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4.2. Development Workflow

As presented by Broy et al. [31], Altinger et al. [13] and Bock et al. [38] Matlab
Simulink is among the most common development systems within the
automotive software industry. Altinger et al. [23] and Kiffe and Bock [146]
present a workflow using model driven approaches by Matlab to develop
embedded automotive software systems. Figure 4.13 visualizes the involved
tool chains as used by AEV.
Requirements are composed using IBM Rational Doors [137], a database
system to manage structured requirements with the ability to export and
link them to various documents including Matlab Simulink models and
source code. This feature enables the workflow to establish a direct link
between graphs within the model and the dedicated textual requirement,
upon request in full detail. These requirements will be used by either the
developer when designing the model or the test engineer when writing the
test specification.
Models are designed by dedicated model engineers using Matlab Simulink [41]
and indexed using a Source Control Management (SCM) system, in this case
PTC Integrity [138]. This SCM system offers services comparable to SVN,
but go further. A core feature enables the project manager to set commit
policies like forcing documentation or a link between the new revision and
an ITS ticket. As well as PTC Integrity offers an integrated ITS which is used
to report and track bugs but even to plan releases and feature commits.
Embedded systems still need a native code which can be compiled from
C code using a target platform compiler. This required C code is to be
automatically generated using dSpace TargetLink [42] and operated by a
dedicated code generation engineer. Such a code generator uses customiz-
able patterns to translate model blocks and elements into source code.
To ensure coding standard conformity according to MISRA a static code
analyser like Mathworks Polyspace [141] is used. Prior to the model level
conformity checks to ensure compatibility to Mathworks Automotive Ad-
visory Board (MAAB) modelling guidelines [147] are performed using
Model Engineering Solutions MXAM [148]. The SCM system can be con-
figured with policies to enforce coding standard checks before accepting a
commit.
Requirements may be updated or changed during development if they are
misleading or developers and tests discover missing conditions or unin-
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tended behaviour. Models may be updated more frequently than generated
code, thus every source code commit has a corresponding model commit
but not vice versa.

Kiffe and Bock [146] describe the EntwicklungsProzess Verbesserung, ger-
man: Development Process Improvement (EnProVe) collection as a workflow
process and a framework to incorporate various development tools. This
process also performs the tool qualification as required by ISO26262 [49]
which is a prerequisite for every tool allowed during automotive software
development for safety critical systems, obversely developers are not free to
choose whatever tools suits them.

A recent study by Bock et al. [38] upon tool’s usage and the developer’s
association with processes evidences 100% usage of the V-development
process, where Kiffe and Bock [146] present a suiting EnProVe tool for every
stage.

After the initial start of a project, the tool suite isn’t changed until the final
release at SOP of a car, thus there is not even an update of compilers, check-
ers, IDE, etc. on minor or major releases. Even configuration settings like
the code generator templates or compiler options are not changed after an
initial tuning phase. This realizes static development settings and ensures
reproducibility during tests as required by various standards and norms
like ISO 26262 [49].
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5. Analysis of real world
Automotive Software Projects

The NASA metric data program [133] (NASAMDP) [133] and the PROMISE
repository [131] host a wide range of datasets, as outlined in Section 3.4,
however none of them originated within automotive industry or developed
using model based techniques. This chapter describes a dataset aggregated
from three automotive embedded software projects including analysis of the
data and its ability to be used for SFP. The dataset is publicly available for
download at [149]. Section 5.1 introduces the origin of the data, Section 5.2
explains the datasets creation process and the available software metrics,
Section 5.3 presents correlation analysis of the data, Section 5.4 presents the
bugs distribution and Section 5.5 gives an overview to the types of errors
discovered during development and their influence upon the metric data.

5.1. Unique Dataset

This section presents a unique dataset from the automotive domain offering
source code and model metric data along with bug information for three
real world automotive software projects developed in-house at AEV. Fol-
lowing the definition by Radjenović et al. [125] the dataset is midium-sized
containing metrics on 59.104 LOC in total. To date this is the only public
available data from the automotive domain. The presented content is based
on Work by Altinger et al. [23] and Altinger et al. [26]. The advertised dataset
is free of charge and can be downloaded following [149].

The code is developed using Matlab Simulink [41] to design the algorithms
and the overall model, state machines and decision trees are realized using
Stateflow [150]. The actual source code is generated using dSpace Tar-
getLink [42] and has no manual code changes, thus the code is a one on one
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translation from the model. The complete development process is described
within Section 4.2 and illustrated in Figure 4.13.

All projects follow the MISRA 2004 coding standard [44] and the MAAB
model guidelines [147]. Both set of rules are checked with tool support
and their correctness is enforced by policies on the SCM system. The de-
veloper is not able to commit his work as long as the tools report coding
or model standard violations. Thus the code it self represents a very high
development quality. In contrast, public available datasets, see Section 3.4,
are mainly aggregated from open source software. Following the analysis
by Stamelos et al. [151] where not all projects conform to such high stan-
dards, the presented dataset is unique in terms of coding guidelines. For
confidentiality reasons, the projects are named A,K and L and no further
information concerning the actual functionality or the car where they have
been released first can be given. The software is out on the roads and there
is no single report upon misfunction or failure over a period of many years.
Thus one can argue all relevant errors have been found and the bug history
is complete.
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Table 5.2.: Projects fault distribution overview, the number of commits is reported

commits fault
Project feature bugfix free buggy bug rate

A 1894 14 1820 88 4,61%
K 2448 71 2144 375 14,89%
L 2880 12 2816 76 2,63%

Table 5.1 presents an overview of the project’s characteristics, listing the size
in terms of LOC and the number of requirements. Each project consists of a
main module and a number of sub modules. These are developed and tested
independently and integrated into the full system. All three projects are
realized as software components defined within the AUTOSAR standard.
Consequently this indicates there are no low level functions as device access
drivers or micro code maintaining a processor’s interruption or similar. The
development team was constant over the full project’s time as well as the
development tools. K is the most mature project by terms of the number
of requirements, team size, LOC and number of sub projects. L and K are
rated as safety relevant classified as ASIL B which raises the effort required
to test the software as one can see in the number of test cases.
Peleska et al. [37] did release a comparable model for a car’s turn indicator.
This visualized the root causing a high number of boolean conditions, where
the presented model is otherwise simpler than the analysed project. One
can see a frequent boolean condition ensuring no false activation of the turn
indicator, even the overall system description is rather easy ”if the driver
activates the related indicator lever, flash the front and rear turn light”.

Table 5.2 lists the buggy and fault free commits of the three projects illus-
trating the low fault density. Only 0,7 - 3% of the commits were explicit bug
fixing, others are feature commits. As identified by the SZZ Algorithm 2,61%
- 14,89% of all commits are containing a bug. The only publicly available
and comparable1 data is the NASAMDP project PC1 and CM1 contain 7%
and 10% of faulty commits. Other datasets, example given Eclipse by Zimmer-

1in terms of programming language, restrictive development settings and safety rele-
vance
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Table 5.3.: Operator overview: Preprocessor statements

Preprocessor statements

A K L
% Operator % Operator % Operator

16,86% #define 20,56% #define 16,91% #define
16,86% #ifndef 14,65% #ifndef 16,91% #ifndef
66,28% #include 64,79% #include 66,18% #include

man et al. [93], originated from development history with more than 30% of
defective files. This dataset suffers from a class distribution around 2:100 -
14:100, using the definition by Weiss [126] the presented dataset represents
a mid-class imbalanced two class problem. Machine learning algorithms are
known to have problems on such datasets, compare Khoshgoftaar et al. [116].

An analysis of the used operators can be extracted from Tables 5.3 to 5.8. Due
to the project’s nature, the source code consists mainly of logic operators,
compare Table 5.1. This is a good indicator upon the types of software
errors which are possible by the used programming language features, see
Section 5.5. Bearing in mind the huge number of requirements, where the
majority is related to preventing misuse cases or defining value condition
ranges, and the structure which can be seen within the turn indicator model
by Peleska et al. [37], causes a high number of conditional operators to be in
the code too.

The dataset offers typical software metrics as used in SFP literature like
Graves et al. [67], Ostrand et al. [78] or Menzies [88]. Amongst others volume
metrics such as LOC, Halstead (Volume, Effort and Difficulty) and a number
of functions. Furthermore code structure metric as CC, change metric as code
chrun (LOC add and LOC remove), file and commit history as a number of
commits and age of commits. But most importantly every commit is marked
as either fault free or containing a bug. Table 5.9 presents the full set of
source code metrics and Table 5.10 the full list of change metrics.

In Addition the dataset contains metrics on the Matlab Simulink Models
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Table 5.4.: Operator overview: Logic and comparator

Logic and comparator

A K L
% Operator % Operator % Operator

3,59% ! 12,39% ! 0,24% !
2,12% ! = 2,00% ! = 6,49% ! =
2,74% & 9,02% & 3,49% &
6,60% && 15,14% && 10,33% &&

76,38% = 46,17% = 43,88% =

1,69% == 6,87% == 19,78% ==

0,32% | 2,38% | 2,03% |
2,90% | 5,07% | 5,43% |
0,27% >= 0,13% >= 3,30% >=

0,29% <= 0,06% <= 0,35% <=

1,25% < 0,41% < 1,51% <

1,80% > 0,32% > 1,72% >

0,05% ∼ 0,00% ∼ 1,44% ∼
0,05% ˆ

Table 5.5.: Operator overview: Variable change

Variable change

A K L
% Operator % Operator % Operator

100,00% >> 1,07% >> 54,44% >>

85,59% << 45,56% <<

13,34% ++
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Table 5.6.: Operator overview: Flow control

Flow control

A K L
% Operator % Operator % Operator

17,55% break 3,40% break 12,27% break
14,12% case 2,62% case 9,04% case
3,43% default 0,79% default 3,24% default

24,91% else 34,42% else 24,73% else
1,06% for 0,70% for

35,31% if 55,49% if 47,46% if
0,08% return 1,53% return
3,43% switch 0,79% switch 3,26% switch
0,12% while
0,00% ? 0,27% ?

Table 5.7.: Operator overview: Datatypes

Datatypes

A K L
% Operator % Operator % Operator

95,38% static 95,90% static 99,06% static
4,62% struct 0,29% struct 0,94% struct

1,91% unsigned
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Table 5.8.: Operator overview: Mathematical

Mathematical

A K L
% Operator % Operator % Operator

23,37% + 22,98% + 88,17% +
37,86% - 4,34% - 11,30% -

4,44% %
18,49% * 55,19% * 0,52% *
20,28% / 13,05% /

which are described by Altinger et al. [23] in detail. As they are not part of
this Thesis work the reader is redirected to this publication.
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Table 5.9.: table containing source code metrics

fieldname comment tool

filename filename python
project name subproject name python

hash md5 file hash python
lm LOC LOC [152]

lm SLOCP Physical Executable LOC [152]
lm SLOCL Logical Executable LOC [152]
lm MVG CC [153]
lm BLOC Blank LOC [152]

lm CNSLOC Code and Comment LOC [152]
lm CLOC Comment Only LOC [152]

lm CWORD Commentary Word [152]
lm HCLOC Header Comment LOC [152]

lm HCWORD Header Commentary Words [152]
h N1 number of total operators [153]
h N2 number of total operands [153]
h n 1 number of unique operators [153]
h n 2 number of unique operands [153]
h V Halsted volumen [153]
h D Halsted difficulty [153]
h E Halsted effort [153]

last modified date TargetLink generation time python
src mdl file hashes hash from mdl python
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Table 5.10.: table containing change metrics

fieldname comment

filename filename
project name o subproject name

author authors name [surename.firstname]
filetype type of file (header or source)

project rev PTC Integrity revision number
date date of entry

svnrev SVN revision number
num bugs trace number of buggy lines

pot bugs number of ’bug’, ’error’ in commit message
num bugs number of fixed bugs
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5.2. Creation of the Dataset

Figure 5.1.: Workflow to create the Datasets, adopted from Altinger et al. [23]

5.2. Creation of the Dataset

The dataset is created using a number of python scripts to automate data
collection, the presented content is based on Work by Altinger et al. [23]. An
overall visualization of the datasets creation process can be extracted from
Figure 5.1. The following passage explains the single steps and tools in use.

The core script uses an API supplied by the SCM system PTC Integrity [138].
For every single project all committed revisions are checked and re-committed
into an SVN repository maintaining a direct link between PTC Integrity
and SVN revision number without effecting any file and commit history.
This is a required step as PTC Integrity does not offer a command similar
to ”svn annotate” which reports the revision number since a selected line
exists without any changes. Using the same API another script queries the
PTC Integrities ITS to gather all tickets classified as a ”trouble ticket” with
a sub category ”real code bug”. Every ticket is associated with a revision
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Figure 5.2.: Visualization of the SZZ Algorithm by Kim et al. [83] applied to the dataset

where the bug is fixed. Figure 5.2 shows the next stage, using Step one
to four from the SZZ-Algorithm by Kim et al. [83]. This determines which
revision contains a bug and mark them. Scooter Software Beyond Com-
pare [154] is used to generate a file diff between the bug fixed revision and
its predecessor unveiling the buggy lines and the required code changes
to eliminate them. Beyond Compare is chosen among its ability to report
changed lines as eXtensible Markup Language (XML) and apply regular ex-
pressions (regex) filters. The metric data is calculated using public available
open source tools LocMetric [152] and cMetric [153], see Table 5.9 for an
exact mapping between metric and tool. All meta data as file name, authors,
etc. is collected using python scripts and regex queries. All data is stored
within a MySQL [155] database to enable further data processing. Code
chrun and file & commit history is calculated using Structured Query Lan-
guage (SQL). Further python scripts are used to generated export Formats
as WEKA’s ARFF and CSV.
The original release of the dataset by Altinger et al. [23] contains descending
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sorted chronological metric and bug data. This is corrected by Altinger et al.
[25] when using ascending sorted data. In contrast to Altinger et al. [24]
Altinger et al. [25] achieves significantly higher SFP results.

5.3. Metric data Analysis

To determine which software metrics to use and ranking their influence
upon fault prediction correlation analysis is performed. The presented con-
tent is based on Work by Altinger et al. [23].

Demšar [156] argues bug data is non Gaussian therefore it is required
to use a non parametric correlation tests. A Shapiro-Wilk [157] test per-
formed on all three projects and all metric data resulted in p-values below
0.05, which proves non-Gaussian distribution of the input data. Based
on these insights one need to use none parametric tests when analysing
the data. Tomaszewski et al. [86], Turhan et al. [110], Menzies et al. [114]
and D’Ambros et al. [118] suggest using the Mann-Whitney U [158] test.
Olague et al. [159] uses Kendall τ [160], Tomaszewski and Damm [86],
Mende and Koschke [106], D’Ambros et al. [113] apply Pearson [161] or
Spearman rank [162] as both a known to deliver comparable values. Follow-
ing these suggestions Tables 5.11, 5.13 and 6.11 present the obtained results
which were calculated using pythons scipy2 library.

Table 5.11 presents the Kendall τ and Pearson measure. Clearly one can
see a high correlation between static volume metrics as LOC and Halstead
(volume, difficulty and effort) and even code structure metrics as CC. This
behaviour is reported multiple times in literature by others. Overall there is
a remarkably weak correlation around zero to the committing author. This
may be caused by the fact that the code is not written by hand and the
code generator derives the code in exactly the same way for every author.
Furthermore the MISRA coding standard and MAAB model guidelines
reduce the variance in building up models alongside the authors, so there
is no room for a ”personal coding style”. Code chrun (LOC add and LOC
remove) shows a weak correlation tendency to which might be caused by

2https://www.scipy.org/
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5. Analysis of real world Automotive Software Projects

an average of 25 LOC added and 15 LOC removed per commit over the full
dataset. In total there is a weak correlation to bugs by all measured metrics.
This is similar to values reported from the NASAMDP datasets, example
given Pearson correlation between LOC and Bug on the PC1 project is weak
too, compare Table 5.12.

As suggested by literature work (example given Menzies et al. [114]) the
Mann-Whitney U test is applied to the test set as well as the Spearman
correlation, see Table 5.13. The results are comparable to Table 5.11 and
Table 5.12 with a weak correlation between any metric and bug data. Within
the reported metrics Halstead and LOC as well as CC and ”number of
functions” are highly correlated.

In addition to the analysis from Table 5.11 and 5.13 where there is no sig-
nificant correlation between the metrics and bug data Table 5.14 presents
an analysis using InfoGain to rank the metrics influence. The most dom-
inating are LOC, Halstead Volume (HV) and HE which are known to be
correlated. Code chrun and author information carry a low information gain.

Based on the analysis presented in Table 5.11 and 5.13 the dataset shows
similar behaviour than others reported in literature, thus it is expected
to enable SFP studies.
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5.4. Bug Distribution

Figure 5.3.: Bug distribution within project A, 0 represents bug free, 1 is a faulty commit

There is no clear correlation between the recorded software metrics and
the number of bugs occurring. Furthermore there is little correlation
between the dedicated metric categories (static, code chrun and authors).

5.4. Bug Distribution

The dataset was created in chronological order, representing the time of
commit. This causes non equally distributed bugs in all three projects, see
Figures 5.3, 5.4 and 5.5. From the development history a first release mile-
stone exists after one and a half years when the first version is delivered to
the HiL test department.

Project A’s first release milestone is after around 50% of the commits, so
analysing Figure 5.3 one can see the majority of bugs is already fixed at the
first release.
Project K’s first release milestone is after around 40% of the commits, so
analysing Figure 5.4 one can see the majority of bugs is discovered and
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Figure 5.4.: Bug distribution within project K, 0 represents bug free, 1 is a faulty commit

fixed during testing phase.
Project L’s first release milestone is from around 50% of the commits, so
analysing Figure 5.5 one can see the equal distributed bugs prior to and
after the first release.

5.5. Bug Analysis and Effects upon Preventive
Measurements

Section 5.1 presents a dataset which is described by its software metrics, this
section analysis the operators occurring within the source. The presented
content is based on Work by Altinger et al. [26].

In total the dataset contains nine different categories of bugs, occurring in
483 error prone files. Project K, being the biggest consisting of the longest
commit history, contributes the majority of faults. Table 5.16 lists all the
bugs which occurred within the three projects. Due to the nature of the
projects, see Table 5.1, the majority of bugs is boolean logic related, thus
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Figure 5.5.: Bug distribution within project L, 0 represents bug free, 1 is a faulty commit

fixing them contributed changed arithmetic or added boolean conditions.
The majority of these changes does not effect any metric value, thus no bug
causes the directly related change of a metric value. This is consistent with
a comprehensive study by Fenton et al. [163] where the author states that
bugs are not necessarily represented by software metrics. This may be a
reason for the low correlation between bugs and metric values as presented
in Table 5.11 and 5.13.

Further investigations unveil all condition statements ranging between one
and eleven (mostly) boolean operands. 75% of the conditions affected by
bugs have one to four operands with no tendency to one group, see Table 5.5.
Hence there is no observable tendency of being buggy dependant on the
number of operands.

As outlined in Section 4.2 the source code follows strict enforced MISRA
guidelines which result in a limited feature set of the C language. Thus no
pointers, no dynamic memory and no pointer operations are in use. Still
the list of used operators, see Tables 5.3 to 5.8, would enable a broad range
of possible error classes example given while and for loop bound errors, flow
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Table 5.15.: Number of Boolean Operands from Observed Buggy Condition and their
Occurrence Distribution

#operands %

1 34,92

2 6,35

3 15,87

4 17,46

5 1,59

6 3,17

7 3,17

8 7,94

9 4,76

10 1,59

11 3,17

control, wrong value assignment.

Further there need to be more than removed language features to prevent
multiple bug categories. The following rules are identified to guard typical
errors:

• Rule 13.5: “The three expressions of a for statement shall be concerned
only with loop control”.

• Rule 13.6: “Numeric variables being used within a for loop for iteration
counting should not be modified in the body of the loop”.

Further rules like 14.8, 15.1, 15.2, 15.3 and 15.4 define the structure of a
switch/case statement. This performs to prevents example given a missing
break.
MAAB [147] guidelines force every Simulink block to enumerate its input
signal and generate a case port for every possible value. Another guideline
forces to connect every port, which guides a developer to condition every
case.
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The following MISRA rules prevent memory issues by forbidding dynamic
memory:

• Rule 20.4: “Dynamic heap memory allocation shall not be used”

The only known comparable study was performed by Wagner et al. [81] on
industry OO software from the Telecom sector written in Java.

The existing analysed code development guidelines successfully prevent
specific categories of bugs which could possibly occur, based on the
utilized operators.

There is no clear correlation between the number of boolean conditions
within a statement and the probability for a bug to occur.
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6. Fault prediction and Analysis
upon Cross Project Prediction

Software Fault Prediction is a young research area with promising potential
to advise spending of free TC budget across a software project. In general
this method uses historic data to estimate a probability on an actual commit
upon containing a bug or being fault free. The accuracy of the prediction
strongly depends on the quality of the measurement data.
Rakesh et al. [164] analyse the automotive software PLC, stating SFP is
helpful and applicable to the domain. They suggest multiple points in time
where to apply SFP and which metric can be acquired. In their opinion SFP
using software metric data is available during ”functional development”
and ”integration” & ”testing” phase, prior to these phases they suggest the
usage of expert opinions and transfering knowledge about common faults
from similar projects.
Section 6.1 reports work on predicting fault within the same project as the
software metrics, the actual measurement data, is acquired. To overcome
deficits if the project contains too few faults Section 6.2 presents work on
handling these imbalanced class problems. As there are projects with a
short or no history at all, Section 6.3 presents results from reusing a trained
predictor on another project denoted as CPFP.
The following sections use the previously introduced dataset from Sec-
tion 5.1. As motivated in Section 5.4 the projects are split into test and
training data according to the first release milestone, see Table 6.1 for the
distribution data.

6.1. Within Project Prediction

If applying SFP within the same project as the metric data is collected, it is
denoted as ”within project prediction”. All the reported results are acquired
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6. Fault prediction and Analysis upon Cross Project Prediction

Table 6.1.: Projects split overview

Split train test total
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A 50 50 596 48 1.313 40 4,61%
K 40 60 941 252 1.579 123 14,89%
L 50 50 1.517 44 1.376 32 2,63%

using the dataset presented in Section 5.1, all Experiments were performed
using the WEKA toolkit [104] and python scripts to automate the process.
The presented content is based on Work by Altinger et al. [23].

The main motivation behind it is to establish a realistic setting when ap-
plying SFP to real world data. This requires considering the chronological
order of the commits, thus when evaluating any predictor the test set is not
allowed to randomly draw samples. The training set can be exposed to every
resampling, filtering, etc. method known. Assuming historic data is available
when starting SFP, as represented by the training set, and new commits
are submitted over time, as represented by the chronological ordered test
set. This ensures a correct simulation with the supplied dataset. Figure 6.1
shows the chosen experimental Setup. The dataset is split into test and
training data, where the test data remains untouched.

From Section 5.4 the distribution of bugs is known. Therefore, splitting the
dataset from Project A and L into 50% for training and 50% for testing is
a valid approach, the same applies to project K at 40% training and 60%
testing. A realistic utilisation allows starting SFP after an initial project
development phase with already executed tests and bug fixes.

All reported performance values are described within Section 3.5.3, refer-
ing to equations 3.8, 3.9a, 3.9b,3.9c, 3.9d, 3.9e, 3.9f and 3.9h. Based on the
definition by Weiss [126] the dataset suffers from a class distribution above
1:10, thus it is considered to be an imbalanced class problem. Following his
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6.1. Within Project Prediction

Figure 6.1.: Experimental Setup to evaluate SFP

arguments using F1 and G measure to compare the predictors performances
is advised.

Assuming a simple predictor, set to always output ”bug free”, achieves a
TPrate of 0,974, a precision of 0,939, an recall at 0,969 and AUC to be 0,5
when evaluated on project L. This is misleading, but possible due to the low
number of bugs within the dataset as of its imbalanced class distribution
nature. Thus it is important to limit measuring TP to the smaller class which
should be taken into consideration when calculating the results.

Kim et al. [165] reports NB to be very robust against noisy data and multiple
other publications (Menzies et al. [88], DÁmbros et al. [118]) list NB as the top
performer. As presented in Table 3.3 NB along with RF and SVM achieve the
highest AUC values upon the reviewed literature. Based on these findings
Tables 6.2, 6.3 and 6.4 present the result of conducted experiments, using the
dataset presented in Section 5.1 and these three well performing predictors
among others. All experiments were carried out using the implementation
supplied by WEKA [104] with no specific parameter tuning on a single
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6. Fault prediction and Analysis upon Cross Project Prediction

Table 6.2.: Predictive performance on project A using 50% to train and 50% to test.

Project A, 50/50% Split
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Ada Boost M1 NB 0,987 0,95 1 0,25 0,05 0 0,4 0,974

Ada Boost M1 RF 0,995 0,952 1 0,258 0,048 0 0,41 0,975

SVM 0,776 0,983 0,563 0,5 0,009 0,007 0,529 0,717

LR 0,896 0,873 0,563 0,073 0,119 0,007 0,129 0,686

NB 0,952 0,875 1 0,119 0,125 0 0,212 0,932

RF 0,987 0,952 1 0,258 0,048 0 0,41 0,975

xgBoost 0,979 0,921 1 0,176 0,079 0 0,299 0,958

classifier.

Comparing these results, one can see that predictors in project A perform
best in terms of AUC, accuracy and recall, whereas precision is rather
low for project A and L. These results are slightly above other literature
reports (see Table 3.2). This is mainly due to good measurement data
as the prediction model is straight forward from the machine learning
framework. Worth mentioning is that RF performs consistently on all
three datasets, which is in line with other literature reports. In general
the performance depends on the data, which is in line with Menzies [114]
stating the choice of algorithm is strongly application dependant.

Table 6.5 reports on a 10 Fold Cross validation experiment with higher
overall performance results than Tables 6.2-6.4. Some classifiers (RF, Ada
Boost with NB) claim an F1 score close to 1.0, which is near the ideal and
in line with the reported ”ceiling effect” as defined by Menzies et al. [135],
[114]. Critical literature reports by Tan et al. [166] discovered Cross Validation
may result in misleading higher precision when applied to an imbalanced
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6.1. Within Project Prediction

Table 6.3.: Predictive performance on project K using 40% to train and 60% to test.

Project K, 40/60% Split
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Ada Boost M1 NB 0,862 0,92 0,653 0,816 0,024 0,056 0,726 0,781

Ada Boost M1 RF 0,936 0,899 0,588 0,738 0,034 0,067 0,655 0,729

SVM 0,64 0,874 0,294 0,809 0,011 0,115 0,431 0,453

LR 0,909 0,883 0,608 0,648 0,054 0,064 0,627 0,737

NB 0,917 0,875 0,747 0,59 0,084 0,041 0,659 0,816

RF 0,936 0,905 0,584 0,777 0,027 0,068 0,667 0,728

xgBoost 0,879 0,865 0,624 0,577 0,074 0,061 0,6 0,741

dataset. In addition, Cross validation does not represent the aimed realistic
evaluation as defined earlier.

To compare findings the NASA KC2 dataset from the PROMISE reposi-
tory [131] is treated the same way as the dataset from Section 5.1. Table 6.6
lists the achieved performance values. As there is no information of the
chronological order or development milestones associated with the dataset
the split share is set to 50% train and 50% testing, as these are common
values reported in literature working with this NASA K2 dataset.

Recent work on a self tuning plugin called Auto-WEKA by Thornton et al.
[167] it is very easy to optimize a machine learning algorithm which feeds
the ”ceiling effect” defined by Menzies et al. [135], [114]. During the majority
of the experiments it performs quite well choosing meta learners for the
presented automotive dataset. Thus this implementation makes it very easy
to apply SFP to new projects even with little or no knowledge about machine
learning algorithms.
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6. Fault prediction and Analysis upon Cross Project Prediction

Table 6.4.: Predictive performance on project L using 50% to train and 50% to test.

Project L, 50/50% Split

A
U

C

A
cc

ur
ac

y

R
ec

al
l

Pr
ec

is
io

n

ty
pe

I

ty
pe

II

F1 G
-M

ea
su

re

Ada Boost M1 NB 0,973 0,958 0,083 0,2 0,011 0,03 0,118 0,154

Ada Boost M1 RF 0,983 0,961 1 0,462 0,039 0 0,632 0,98

SVM 0,656 0,977 0,313 1 0 0,023 0,476 0,476

LR 0,989 0,961 1 0,457 0,039 0 0,627 0,979

NB 0,969 0,938 1 0,35 0,062 0 0,519 0,967

RF 0,984 0,961 1 0,462 0,039 0 0,632 0,98

xgBoost 0,980 0,958 1 0,444 0,042 0 0,615 0,978

6.2. Increasing Performance by Up-sampling
Training Data

The previous Section 6.1 introduced SFP with no further modification of
the training data. This section analysis of the predictive performance can be
improved using over- and undersampling methods. The presented content
is based on work by Altinger et al. [25].

The idea is inspired by literature as applying undersampling is suggested
by Drummond et al. [75] and Khoshgoftaar et al. [116] to handle imbalanced
class distribution. Further Japkowicz [69] studies an artificial two class
dataset and presents over- and undersampling to overcome the imbalanced
class problem.

6.2.1. Experimental Setup and Boundary Conditions

To handle modification of data the experimental Setup up is extended from
Figure 6.1 to Figure 6.2 by adding a sampling filter between the training
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6.2. Increasing Performance by Up-sampling Training Data

Table 6.5.: Predictive performance on project K using 10 Fold Cross Validation

Project K, 10 Fold Cross Validation
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Ada Boost M1 NB 0,996 0,986 0,942 0,965 0,005 0,009 0,954 0,967

Ada Boost M1 RF 1 0,993 0,975 0,979 0,003 0,004 0,977 0,986

SVM 0,714 0,909 0,437 0,899 0,007 0,083 0,588 0,607

LR 0,909 0,894 0,438 0,747 0,023 0,083 0,552 0,604

NB 0,947 0,842 0,908 0,484 0,145 0,014 0,631 0,867

RF 1 0,993 0,973 0,979 0,003 0,004 0,976 0,984

xgBoost 0,975 0,948 0,712 0,915 0,01 0,043 0,801 0,828

data and the evaluation. As known from Section 5.3 the metric data is non
Gaussian distributed, thus the WEKA packages ”unsupervised instance
resampling” filter need to be used, as the ”supervised” instance relies on
Gaussian distribution. Table 6.8 the parameters for the under- and over-
sampling. Further the SMOTE filter by Chawla et al. [168] is applied as it is
designed specifically for imbalanced class problems.

Table 6.7 lists the classifiers used to predict bugs. LR is added for com-
parability reasons as multiple literature (example given Ostrand et al. [78],
Weyuker et al. [91], Zimmermann et al. [93]) use this learner, though the
data is non Gaussian and using LR is not advised. Weiss [126] recommends
disclaiming the ’conquer and divide’ based classifiers, such as SVM or trees,
as they are affected by the imbalanced class distribution. Their data is frag-
mented and contains rare samples which might lead to over interpreting
them. Despite their good performance reports in other studies (Singh et al.
[109], Hsieh et al. [169]) rbfSVM1 and dcSVM are evaluated. RF is reported to
be very robust (Guo et al. [76]) along with NB (Catal et al. [102]). Early work

1SVM with radial basis function kernel
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6. Fault prediction and Analysis upon Cross Project Prediction

Table 6.6.: Predictive performance on project NASA KC2 using 50% to train and 50% to
test.

Project NASA KC2
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Ada Boost M1 NB 0,591 0,678 0,208 0,84 0,015 0,307 0,333 0,343

Ada Boost M1 RF 0,633 0,651 0,129 0,813 0,011 0,337 0,222 0,228

SVM 0,533 0,636 0,079 0,8 0,008 0,356 0,144 0,147

LR 0,536 0,667 0,198 0,769 0,023 0,31 0,315 0,328

NB 0,723 0,678 0,208 0,84 0,015 0,307 0,333 0,343

RF 0,674 0,651 0,129 0,813 0,011 0,337 0,222 0,228

xgBoost 0,591 0,678 0,218 0,815 0,019 0,303 0,344 0,356

by Drummond et al. [75] reports on successfully using C4.5 for imbalanced
class problems. WEKA offers an implementation of C4.5 called J48.
The majority of classifiers implementation is used from the WEKA toolkit,
the others are implemented in R and being bridged into WEKA using
the rJava plugin. This ensures a constant workflow as the automation is
implemented using WEKA’s Java API. To keep the results transferable no
specific tuning is performed for a single classifier, thus all settings are
default as defined by WEKA.
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6.2. Increasing Performance by Up-sampling Training Data

Fi
gu

re
6

.2
.:

Ex
pe

ri
m

en
ta

lS
et

up
to

ev
al

ua
ti

ng
ov

er
-

an
d

un
de

rs
am

pl
in

g
ef

fe
ct

s
on

SF
P

117



6. Fault prediction and Analysis upon Cross Project Prediction

Table 6.7.: Overview to used classifiers and their origin.

Learner Implementation Literature

Ada Boost NB WEKA [104]
Ada Boost RF WEKA [104]

dcSVM R, Package SwarmSVN [169]
J48 WEKA [104]
Jrip WEKA [104]
LR WEKA [104]
NB WEKA [104]

random tree WEKA [104]
rbfSVM WEKA [104]

RF WEKA [104]
rPART R, Package rPart [170]

xgBoost R, Package xgBoost [171]

The ’unsupervised’ resampling filter adds or removes samples by randomly
copying and respectively deleting, entries from the input data. It does expect
a share as parameters, see Table 6.8. Using 50% means to cut in half, 300%
means to triple the number of samples from the original dataset. 100%
represents the same amount as in the input data, but the distribution may
be affected by the resampling algorithm.
The experiments implementation generates the data samples first and eval-
uates the exact same data on all classifiers, thus there is no influence upon
random drawn sample sets, see Algorithm 1.

6.2.2. Results

As suggested by Weiss [126] the F1 score, see Equation 3.9f, is used to report
the classifiers performance. F1 is based on recall and precision which can
be targeted to the minority class and is not deformed by the number of TP,
rooted in the imbalanced class distribution, such as AUC or TPrate. The
same is valid for the G-measure 3.9h as it favours the FP measurement.
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6.2. Increasing Performance by Up-sampling Training Data

Algorithm 1 The experiments pseudo-code
1: input f iles . the projects data
2: Classi f iers . the classifiers to evaluate
3: resample f ilter . none, Resample, SMOTE
4: resample settings . none, Resample share
5: foreach f ile ∈ input f iles do
6: orig data← open( f ile)
7: train data← split(orig data, split percentage)
8: test data← split(orig data, 1− split percentage)
9: foreach f ilter ∈ resample f ilters do

10: foreach settings ∈ resample settings do
11: sample train data← sampleData( f ilter, settings, train data)
12: foreach classi f ier ∈ Classi f iers do
13: train(classi f ier, sample train data)
14: evaluate(classi f ier, test data)
15: end foreach
16: end foreach
17: end foreach
18: end foreach
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6. Fault prediction and Analysis upon Cross Project Prediction

Table 6.8.: Parameters and their ranges used during experiments.

Parameter min step max

undersampling % 0 10 100

oversampling % 200 100 900

oversampling % 1.000 500 3.500

oversampling % 4.000 1.000 10.000

G-measure is not reported as its resulting graphs are very similar to F1.

Table 6.9 summarises our findings compiled from figures 6.3 to 6.5. Using
u means it is undesirable as the performance is noisy over the sampling
sweep which is the case for most of the boosting algorithms. A positive
influence, marked with p, represents a consistent result, higher than when
using the original data. A negative influence, marked with n, is set if the
performance is lower than on the original data. If there is neither a better nor
a worse performance through the sampling sweep 0 is set. In total, strong
undersampling (20 - 30%) is negative across all classifiers and projects. In
comparison, there is no overall single classifier to benefit all datasets and
sampling settings. Table 6.10 sums up the decision of Table 6.9 and presents
an even distribution between u - undesirable and 0 - no effect, but also a
similar number of p - positive effects.

Figure 6.3 reports the F1 performance of all nine predictors on project A.
Clear dcSVM achieves the highest performance, but is heavily influenced by
under- and oversampling. rPART and xgBoost benefit from high oversam-
pling, LR delivers the lowest performance only increasing marginally above
the original data setting. Overall SMOTE archives equal to slightly better
results across all classifiers than the untouched data, but never the highest
values. The majority of classifiers (Ada boost, random trees, etc.) becomes
unpredictable as their results strongly depend on a single setting.
In contrast to project A results presented in Figure 6.3 the results for project
K in Figure 6.4 dcSVM and rbfSVM are the worst performing predictors.
NB along with rPart increase performance with inclining oversampling. The
other classifiers suffer from a lot of noise, hence their predicting performance
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6.2. Increasing Performance by Up-sampling Training Data

Table 6.9.: Results Overview to Classifiers performance on over- and undersampling

Undersampling Oversampling Oversampling
40 - 90% 200 - 1000% > 1000%

classifier A L K A L K A L K

Ada Boost NB u u u u n u u p u
Ada Boost RF u u 0 u p 0 u p 0

dcSVM p n n p n p p n n
J48 u n 0 p u 0 p u 0

Jrip u 0 n p 0 u p 0 u
LR n p 0 p 0 0 0 0 0

NB n n n 0 p p p p p
random tree u u u u u u u u u

rbfSVM p n p p p n p p n
RF n 0 0 p 0 0 p 0 0

rPART u n n 0 0 p p 0 p
xgBoost u 0 n u 0 0 u 0 0

strongly depending on the Resample settings.
Similar to Project A in Figure 6.3 the best performing classifiers on project L
in Figure 6.5 are the SVM based algorithms. In contrast to Project A and K
LR achieves a better performance than most of the other classifiers. Despite
random trees, Ada boosting and J48 the majority of classifiers delivers stable
performance figures.
Selecting a single classifier NB Figure 6.6 displays the dedicated perfor-
mance measurements defined in Equation 3.9. Clearly one can see recall and
precision can not be improved at the same time. One has to choose which of
them to increase by over- or undersampling the training data. Performance
ratios as F1 and G-measure building on top of recall and precision show
this tendency in comparison to AUC which remains constant.

Summarizing all results there is no clear overall trend on performance
improvements for all classifiers and projects. It is possible to specifically
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6. Fault prediction and Analysis upon Cross Project Prediction

Figure 6.3.: Performance overview for Project A, using 50% to train and 50% to test

Figure 6.4.: Performance overview for Project K, using 40% to train and 60% to test
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6.2. Increasing Performance by Up-sampling Training Data

Figure 6.5.: Performance overview for Project L, using 50% to train and 50% to test

Figure 6.6.: Performance NB on project K, using 40% to train and 60% to test
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6. Fault prediction and Analysis upon Cross Project Prediction

Table 6.10.: Summary to Table 6.9

Undersampling Oversampling Oversampling
40 - 90% 200 - 1000% > 1000%

type A L K A L K A L K Sum

u 7 3 2 4 2 3 4 2 3 30

p 2 1 1 6 3 3 7 4 2 29

n 3 5 5 0 2 1 0 1 2 19

0 0 3 4 2 5 5 1 5 5 30

improve one classifier for a given dataset by applying (higher) oversam-
pling. Recall and precision can not be tuned at the same time by only
applying resampling.

6.3. Cross Project Fault Prediction

At the early stages of every project there may not be enough historic data
to set up a SFP, thus reusing the data from a similar project to train the
predictor leading to the definition of ’Cross Project Prediction’, CPFP. The
presented content is based on Work by Altinger et al. [24].

The experiments Setup is adopted from Figure 6.2 to Figure 6.7, the eval-
uation process is extended from Algorithm 1, by adding the selection of a
different project as training data, which leads to Algorithm 2. Pre filtering is
performed by SMOTE and the ’unsupervised Resample’ filter with a share
sweep identical to Section 6.2.1, see Table 6.8. As literature (Herbold [122],
Zimmerman et al. [111], Turhan et al. [110]) on CPFP uses LR, NB, SVM, etc.
the same classifiers as in the previous section are used, see Table 6.7. In total
2.304 experiments are performed and evaluated.
All conduced CPFP settings perform rather poorly, although as suggested by
Zimmermann et al. [111] using most similar project settings (tools, methods,
reporting, ...) are fulfilled for the used dataset. If the criteria is lowered to
require recall and precision above 0.65, there are 27 successful of whom
rPART delivers half of them. Still this is a very low success rate of 1.17%
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6.3. Cross Project Fault Prediction

Algorithm 2 The CPFP experiments pseudo-code
1: input f iles . the projects data
2: Classi f iers . the classifiers to evaluate
3: resample f ilter . none, Resample, SMOTE
4: resample settings . none, Resample share
5: foreach f ile ∈ input f iles do
6: foreach comp f ile ∈ input f iles do
7: if f ile 6= comp f ile then
8: train data← open( f ile)
9: test data← split(comp f ile)

10: foreach f ilter ∈ resample f ilters do
11: foreach settings ∈ resample settings do
12: sample train data← sampleData( f ilter, settings, train data)
13: foreach classi f ier ∈ Classi f iers do
14: train(classi f ier, sample train data)
15: evaluate(classi f ier, test data)
16: end foreach
17: end foreach
18: end foreach
19: end if
20: end foreach
21: end foreach
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6. Fault prediction and Analysis upon Cross Project Prediction

Figure 6.7.: Experimental Setup to evaluating over- and undersampling effects on CPFP

where K is always used to train and L to test. Figure 6.8 presents the F1 score
for all evaluated classifiers on this setting. Clearly there is no overall best
performing classifier. rPart and J48 remain consistent with higher sampling,
boosting algorithm showing a negative tendency, all other classifiers deliver
unpredictable performance across the resampling sweep.
Similar to Section 6.2.2 Figure 6.9 visualises recall and precision can not
be increased at the same time, one either needs to decide which of these
performance measures to favour and improve resampling. The overall per-
formance increases with higher sampling, but might not be consistent. This
is in line with findings by Turhan et al. [110] where they discovered no
increasing predictive performance with larger trainings sets.

Following the definition used by Zimmerman et al. [111] where recall
and precision need to be above 0,75 to count the experiment as positive,
none of the conduced experiments are successful.

To gain insight, a Kendal τ correlation analysis similar to Section 5.3 between
project A and K is performed, see Table 6.11. As project K and L perform
better in CPFP, a Kendal τ correlation analysis is performed between these
two, see Table 6.12. Clearly there is a higher number of correlating factors
between project K and L than between K and A. This is a similar result to
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6.3. Cross Project Fault Prediction

Figure 6.8.: CPFP using Project K to train and project L to test, all classifiers F1 performance.

Figure 6.9.: CPFP using Project K to train and project L to test, rPART as classifier.
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Section 5.3 where significant correlation between software metrics and the
bugs indicate whether SFP can be successful or not.
Altinger et al. [24] performed a PCA to gain insight into the bug distribution
across the software metrics between the projects, see Figure 6.10. Clearly
the bugs occur in separate metric regions, thus resulting in similar findings
than the correlation analysis in Tables 6.11 and 6.12.
As suggested by Herbold [122], Altinger et al. [24] perform nearest neighbour
filtering between the datasets to pre filter the training data. Even applying
all recommended methods, it is not possible to extend the CPFP results
beyond 0,36 F1.

CPFP achieves a very low performance, thus it is not applicable, al-
though the project settings (development guidelines, tools, company
settings, etc.) are the most similar they can be. This may be caused
by non-correlating software metrics between the projects and the non-
overlapping regions where bugs occurred.
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Figure 6.10.: The PCA is performed with all data from project A and K. The first two
principle components explain between 89%-92% of the variance. Figure taken
from Altinger et al. [24]
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7. Conclusion

This chapter summarizes the presented work in Section 7.1, it presents
Threats to Validity in Section7.2 and finishes with further research questions
in Section 7.3.

7.1. Summary

This work presents analysis of software development within the automotive
industry. A conducted survey presents Matlab Simulink to be the most
common tool in designing models which will be used to automatically
derive code (RQ1). The existing restrictive coding standards successfully
prevent typical bug categories. Gathering software metric data from model
derived source code is possible. Further extracting bug information from an
ITS system and tracing bugs across multiple revision benefits from restrictive
development guidelines and small code changes between revision. A public
available dataset was compiled from three real world software projects being
the first to offer software metrics enabling SFP from the automotive industry.
The conduced correlation analysis between the metrics and the bugs did
not show any connection (RQ3, RQ 3.2) between those. Software volume
metrics do correlate with each other, but author information or code chrun
metrics are independent (RQ 3.1). The applied SFP study benefits from high
quality measurement data (RQ 2.1) as the bug information from the ITS is
very reliable. The achieved predictive performance is higher than reported
in literature although using standard settings for all used classification
algorithms (RQ2). There is no clear best performing classifier across all
conducted experiments, although RF and NB seem to be more stable and
achieve true positive rates beyond 0.95 (RQ4). These results still need to
consider the strong imbalanced datasets, where even a simple predictor will
achieve similar values. Further the predictive performance can be increased
using higher oversampling (RQ 2.3), but the results strongly depend on
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7. Conclusion

the project and the used classifiers as not all of them perform stable when
applying an under- and oversampling sweep. A conduced CPFP experiment
does not perform well (RQ 2.4) as there is only one setting where a project
successfully predicts bugs within another one as the metric correlation is
weak and the bug distribution scatters too far.

7.2. Threats to Validity

Following Perry et al. [172] one should give three threats to validity: Con-
struct validity, internal validity and external validity.
The presented questionnaire survey (Section 4.1) consists of a limited num-
ber of questions, thus only covering a narrow scope of tools and methods.
The findings are related to the automotive industry and should not be
generalized to other software industries. The number of respondents at
68 is rather low, thus the survey is not representative. Furthermore the
respondents were asked to distribute the questionnaire among their col-
league, hence no initial company distribution is known. The answers were
collected anonymously, therefore double responses can not be neglected. As
the author’s contact details are related to one OEM specific ”tuned” answers
to company dependent processes are possible.

The presented (Section 5.1) and further used dataset only contains data from
three projects. Typical to automotive projects they cover very specific topics,
therefore influences and limitations can not be excluded, thus the scope is
limited. As the software is automatically generated using a template based
code generator a major release upgrade may just influence the code metrics
as the generated code significantly changes. Thus the generalizability of the
findings is limited.
As the dataset contains a proprietary code the repeatability of the Error class
analysis (Section 5.5) is limited. The discovered findings may be influenced
by the nature of the studied projects as they mainly consist of boolean logic
statements.
According to the SFP and CPFP studies (Section 6) no single classifier tuning
is performed. Thus the used classifiers may not use their full potential and
other researchers can achieve better overall performances. As CPFP is not
a core focus of this thesis only tests with state of the art methods were
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performed, thus the ”non-applicable assumption” could be disproved by
another method.
The best performance on the resampling experiments (Section 6.2) is achieved
using high oversampling. This is computationally possible as the case stud-
ies dataset is small, thus the findings may not be transferable to others due
to computational limits.

7.3. Further Research

Zheng et al. [129] present a database hosting trained classifiers for a very
wide range of software projects. The authors use a similarity metric to select
the best fitting training set. This seems to be a very promising approach to
CPFP, which requires adding more automotive datasets to publicly avail-
able databases. The connected research question: Are imbalanced datasets
similar enough to share trained predictors?
The presented dataset from Section 5.1 suffered from an inverse chrono-
logical order, still Altinger et al. [23] was able to achieve successful SFP
predictions. Altinger et al. [25] use a fixed dataset and achieves a remark-
able higher prediction. This leads to another research question: Is time
dependant between the measurement updates on matter in SFP?
Le et al. [173] presents work on automated software repair which suffers
from high computation requirements with low success rates as all possible
mutations of statements need to be processed. SFP may help in identifying
possible errors and limit the scope in searching for repair mutations. This
leads to a research question: Can SFP predict bugs at a sufficient precision
to successfully guide software repair to pass TCs?
Many agile software projects use nightly builds compiled of multiple new
code contributions. If the build fails there is no information upon the
hook causing the failure. A simple approach would be to incrementally
revert the changes and repeat the build and rerun the test suite. This is
a computationally exhaustive method. This leads to the last new research
question: Can SFP predict which commit is the most likely to contain the
fault? Thus the revert can be set to its prior revision which will reduce the
computational efforts.
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Appendix A.

Publication List

As requested by the curriculum and the statutes of the doctoral school this
chapter will list all publications and their relation to this thesis.

A.1. Authors Publications Relevant to this Thesis

This section presents this thesis author’s work related to the thesis content,
an overview can be extracted within Table A.1. The following four publi-
cations were presented at international workshops and conferences, all of
them are peer reviewed.

Altinger et al. [13]: main work by me, Wotawa supported in defining the
formulation of the questions, other authors contributed single phrases and
performed reviews.
Altinger et al. [23], main work by me, Dajsuren supplied the Matlab Simulink
Model measurement tool and help upon model metric data interpretation,
other authors contributed single phrases and performed reviews.
Altinger et al. [24], main work by me, Herbold conducted the PCA and
executed the CPFP along with discussing the research questions and results,
other authors contributed single phrases and performed reviews.
Altinger et al. [26], main work by me, other authors did contribute single
phrases and performed reviews. Altinger et al. [22]1: main work by me and
Bock, where Bock contributed the second survey and the associated analysis.
Wotawa and German contributed single phrases and performed reviews.

1This publication is submitted to review and is not published at date of release of this
thesis
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Altinger et al. [25]: main work by me, Herbold supported with defining
the research questions and result interpretations, other authors contributed
single phrases and performed reviews.
During all publications Professor Wotawa worked as a interlocutor to dis-
cuss the research questions and performed reviews and minor textual
formulations.

A.2. Authors Publications not Relevant to this
Thesis

During my work on RoboCup Middle Size Liege:
Altinger et al. [174] together with my fellow student colleague and ”Mostly
Harmless” team mate Stephan Mühlbacher-Karrer. He worked on the elec-
tronic circuit design, I worked on the measurement software, both of us
performed the experiments, other authors contributed single phrases and
performed reviews.
Kollar et al. [175] during which my ”Mostly Harmless” team mate Michael
Kollar set up the system and performed the experiments, I assisted on the
research questions and the publications structure.

During my work on self driving cars at AUDI AG:
Altinger [176] as my master thesis where I developed the system, set up
the car and conducted the experiments. Wotawa and Steinbauer served as
supervisors and interlocutor to define the research questions.
Altinger et al. [177] where I act as the author and presenter of the publication
along with contributing to the implementation along with a team of ten
engineers.
Ibisch et al. [178], Ibisch et al. [179], Ibisch et al. [180] is work by my col-
league André Ibisch where I supported the implementation of the presented
system and helped in defining the research questions and conducting the
experiments along with the result interpretations.
Sippl et al. [181] is work by my colleague Christoph Sippl where I served as
a spinning partner to derive the presented system and define the research
questions. In addition I wrote parts of the related work and conducted
reviews.
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A.2. Authors Publications not Relevant to this Thesis

During my work on Simulink model analysis:
Olszewska et al. [182] where I conducted reviews and supplied measurement
data along with their interpretation.

During my work on organizing Workshops:
Together with my colleagues Yanja Dajsuren and Miroslaw Staron I orga-
nized the Workshop on Automotive Software Architectures (WASA) 2015

and 2016 during the WICSA/CompArch conference. Kruchten et al. [183]
hosts the proceedings where I performed reviews.
Together with my colleague Bernhard Peischl I did organize the workshop
on Digita Eco Systems held at the ICTSS conference in 2016.

Patents during my work at AUDI AG:
Togehter with my working colleague Florian Schuller I released two patents,
Altinger and Schuller [184] and Schuller and Altinger [185] covering parts
of our work on self driving cars. The core Ideas were developed during
discussions and implementations as joint work between the two of us. The
patents Editor is LINDNER and BLAUMEIER and patent agent from Mu-
nich.

Invited Talks:
Altinger [186] is an invited talk covering the presented work within this
thesis and my work on self driving cars at AUDI AG.
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Table A.1.: Annotated list of pulications. Chapters refer to this thesis.

Citation
contributor

Others Chaptersmain support
[13] Altinger Wotawa review, comments 4.1
[23] Altinger Dajsuren review, comments 4.2, 5.1, 5.2, 5.3
[24] Altinger Herbold review, comments 6.1, 6.3
[26] Altinger review, comments 5.5
[25] Altinger Herbold review, comments 6.2
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Questions from the Survey

The questions used during the questionnaire survey are listed below. They
are available as pdf, see http://www.ist.tugraz.at/_attach/Publish/AltingerHarald/
Survey_automated_testing_enu.pdf, and online via Surveymonkey®, see
https://de.surveymonkey.com/s/survey_testautomation.
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Survey on automated Testing @ automotive domain

The results from this question form will be used to set up a survey on the 
use of automated testing methods within the automotive domain. The survey 
will be handed in for publication on IEEE intelligent vehicle symposium 2015.

For all questions it is possible to check multiple options if applicable or / and 
use the other field to add comments. Some questions have embedded help 
text to clarify or explain their answer choices. 
All collected data will be treated anonym, it is not required to name any 
company name, department, etc.

This form is fillable, please send it back to the author via email. 
If you have any questions, please do not hesitate and contact the author via 

e-mail: harald.altinger@student.tugraz.at or harald.altinger@audi.de

Company 
definition

OEM
Supplier (Tier 1-3), engineering service provider
University / Research facility
Other

What is the area 
of work within 

your 
department?

Research
Pre development
Series development
Other

What is your job 
description?

What is the 
purpose of your 

department?

Pure software development
Pure hardware development
Soft- & and hardware development
Testing
Other

Which 
development 

target(s) is your 
department 

using?

Whole car (integration)
ECU (or embedded controller)
Software library
PC / smartphone / commercial devices
Rapid prototyping devices, e.g. AutoBox
Other

Which time 
response does 

your target 
application 

require?

Hard real time
Soft (or firm) real time
None
Other



if the department is software related:

Which type of 
software is your 

department 
developing?

Algorithmic
Control program
Function development
Other

Which 
languages are in 

use to create 
models or 
develope 

software within 
your 

department?

C/C++
Java / C#
Spark / ADA / B / Z
Scade
Modelica
Matlab / Simulink
LabView
UML / SysML
Other

Does your 
department use 

development 
frameworks?

Commercial
Open source
Self developed (within department or company)
Name of framework

The following questions are testing related:

Which kind of 
code access 

does your 
department have 

while testing?

White box
Black box
Grey box
Other

Which type of 
testing method 
is in use within 

your 
department?

Fuzzy testing
Model driven testing / model based testing
Mutation testing
Random testing
Test driven development
Unit testing
Other

Which test 
automation 

methods are in 
use within your 

department?

Automated test case generation
Automated testing / automated testcase execution
Test-suite management
Manual testing
Other

Name of test 
automation tool



The following questions are related to tools in use:

Which type of 
license do the 
implemented 
testing tools 

have?

Open Source
Commercial
Self developed

What is your 
department's 

application area 
for those tools?

Static code analysis
Code review
Code coverage
Formal methods
Test automation
Other

The following questions are related to specification (requirements)

How does your 
department 

compose 
requirements? 

please do 
answeare this 

even if your 
department only 

receives 
requirements. 

Textual - natural language
Textual - natural language (reduced vocabulary, e.g. templates)
Textual - formal language (mathematical, logics, ...)
Textual - pseudo code
Graphical - functional diagrams
Graphical - state diagrams
Graphical - sketches
Other

Which kind of 
tools is in use 

when composing 
requirements?

Requirement management system
Word processing (any editor)
Diagram editor
Other

name of tool

The following questions are related to technical standards

Which standards 
have to be 
considered 

when developing 
software within 

your 
department?

ISO 26262
ISO 9001
SPICE
AUTOSAR
Other



The following questions are related to the work distributed among the personnel.

Which person 
performs the 

testing?

Performed by developer
Performed by specifier
Performed by 3rd party
Other

The following questions are related to testing stages

When 
performing 

testing, what is 
the primary 

scope?

Unit (module) testing
Integration testing
(whole) System testing
User acceptance testing
Other

During which 
development 

stage(s) is 
testing 

performed within 
your 

department?

Simulation
MiL ... Model in the Loop
SiL ... Software in the Loop
PiL ... Processor in the Loop
HiL ... Hardware in the Loop
Car final test
Other

What is the 
basic testing 

characteristic in 
use?

Positive testing
False testing
System behavior outside specification testing



The following questions are related to experience gained when using testing (automated or manual) 
and based on your outlook about testing.

 

Strongly 
Disagre

e

Disagre
e

Neutral Agree Strongly 
Agree

The costs (time & money) of testing are 
worth it (improve code-quality, reduce bugs, 
etc.)

The ROI on testing is possible (less 
maintenance due to bugs, reduced 
development time, etc.)

Evaluating and setting up automated 
testing tool(chains) takes too much time.

We plan on (increasing our) investing in 
testing automation within the next year.

Creating Models, defining constraints and 
testing parameters requires more time than 
the actual implementation.

Is there anything 
you would like to 
add or clarify for 

your answers?



Appendix C.

Acronyms

ACC Adaptive Cruise Control

ACO Ant Colony Optimization

ADAS Advanced Driver Assistance Systems

AEV Audi Electronics Venture GmbH

API Application Programming Interface

ASIL Automotive Safety Integrity Level

AUC Area Under Curve

AUTOSAR AUTomotive Open System ARchitecture

CAN Controller Area Network

CC Cyclomatic Complexity by McCabe

CVS Concurrent Versions System

CPFP Cross-Project Fault Prediction

CPU Central Processing Unit

DS Discrimant Statistic

DT Decision Trees

ECU Electronic Control Unit
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EnProVe EntwicklungsProzess Verbesserung, german: Development
Process Improvement

ESD Electrostatic Discharge

FN False Negative

FP False Positive

GM General Motors

GLM Generalized Linear Models

GPS Global Positioning System

GUI Graphical User Interface

HE Halstead Effort

HV Halstead Volume

HiL Hardware in the Loop

IDE Integrated Development Environment

ITS Issue Tracking System

KBA Kraftfahr Bundesamt (English: German Federal Motor
Transport Authority)

CK Chidamber Kemerer [60] OO metric

Kessy Keyless Entry Start and Exit System

LOC Lines Of Code

LR Logistic Regression

MiL Model in the Loop

MAAB Mathworks Automotive Advisory Board

MARS Multivariate Adaptive Regression Splines
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MISRA Motor Industry Software Reliability Association

ML Machine Learning

MOST Media Oriented Systems Transport

MsOffice Microsoft Office Suite

MSR working conference on Mining Software Repositories

NADA National Automobile Dealers Association

NASAMDP NASA metric data program [133]

NB Näive Bayes

NBR Negative Binomial Regression

NHTSA National Highway Traffic Safety Administration

NN Neural Network

OEM Original Equipment Manufacturer

OO Object Orientated

OS Operationg System

PCA Principle Component Analysis

PD Pre Development

PiL Processor in the Loop

PLC Product Life Cycle

RD Research and Development

regex regular expressions

RF Random Forest

ROI Return Of Investment
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Appendix C. Acronyms

RTE Run Time Environment

RU Research

SCM Source Control Management

SD Series Development

SES Supplier (Tier 1-3), engineering service provider, software
vendor

SFP Software Fault Prediction

SiL Software in the Loop

SIM Subscriber Identification Module

SIR Software-artifact Infrastructure Repository

SOP Start Of Production

SQL Structured Query Language

SVM Support Vector Machine

SVN SubVersioN

SUT System Under Test

SPICE Software Process Improvement and Capability Determination

TC TestCase

TN True Negative

TP True Positive

UML Unified Modeling Language

VW VolksWagen

XML eXtensible Markup Language
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