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Abstract (English)

With the rising popularity of cloud storage services, new challenges on securing and processing out-
sourced data arise. Due to security demands outsourced data needs to be encrypted. But all well known
search algorithms are not suitable to operate on encrypted data. In recent years, different searchable
encryption methods allowing the cloud provider to execute user generated search queries without learn-
ing critical information about the contents have been proposed. In this thesis, a comprehensive survey
of Searchable Symmetric Encryption (SSE) constructions being the currently most efficient searching
method of the ones providing reasonable security guarantees is provided. For this task, several state-
of-the-art SSE schemes selected in a way to achieve best possible diversity are analysed with focus on
security and practical usability. To evaluate their practical performance, all constructions have been im-
plemented and extensively tested using realistic settings. Based on all findings, usage recommendations
that can be seen as a guideline for typical scenarios are derived. The results reveal the different charac-
teristics of schemes and show their suitability for practical usage, especially if the usage scenario can be
well defined.

Key words: keyword search on encrypted data, searchable encryption, searchable symmetric encryption
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Abstract (German)

Mit der stetig steigenden Popularität von Cloud Datenspeicherdiensten entstehen neue
Herausforderungen hinsichtlich der Verarbeitung von sicher ausgelagerten Daten. Aufgrund
der Tatsache, dass ausgelagerte Daten verschlüsselt werden müssen, können alle etablierten
Suchalgorithmen für Klartextsuche nicht angewendet werden. In den letzten Jahren sind verschiedene
Verfahren zum Durchsuchen von verschlüsselten Inhalten entwickelt worden, welche es dem
Cloudanbieter ermöglichen, benutzergenerierte Suchanfragen durchzuführen ohne jegliche vertrauliche
Informationen über den Inhalt zu erhalten. Diese Arbeit umfasst eine umfangreiche Studie der
sogenannten Searchable Symmetric Encryption (SSE) Konstruktionen, die unter den jenen Verfahren
welche effizient genug für praktische Anwendungen sind als sicherste Suchmethode gelten. Für
diese Aufgabenstellung wurden verschiedene moderne, möglichst unterschiedliche SSE Verfahren
ausgewählt und anhand der Schwerpunkte Sicherheit und Praxistauglichkeit analysiert. Um deren
praktisches Leistungsvermögen zu evaluieren, wurden alle Konstruktionen implementiert und unter
der Berücksichtigung von realistischen Anwendungsfällen ausgiebig getestet. Basierend auf den
theoretischen und experimentellen Erkenntnissen sind für typische Anwendungsfälle Empfehlungen für
die Verwendung von SSE Konstruktionen erstellt worden. Die Resultate unterstreichen die typischen
Merkmale der Konstruktionen und zeigen deren Praxistauglichkeit auf, besonders unter genauer
Definition des Einsatzgebietes.

Schlüsselwörter: Suchen auf verschlüsselten Daten, searchable encryption, searchable
symmetric encryption
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Chapter 1
Introduction

1.1. Motivation

Over the last decades, information technologies have established their place in daily routines of people.
While typical average consumer devices have been unconnected a while ago, nowadays a continuously
rising capability of network bandwidth and computational power lead to highly connected devices and
the possibility to share resources with minimal efforts.

Emerging from improved possibilities of using information technology environments, cloud computing
and especially its usage to outsource data gained pervasive practice. As a consequence of the outsourced
data, the cloud provider gains full access to all data leading to potential information leakage. To protect
the privacy of the outsourced data, it has to be encrypted. However, this prevents the use of all well known
search algorithms for unencrypted data.

In search for a solution, searchable encryption techniques that allow searching on encrypted data by using
additional information provided by the user have been proposed.

As motivation for the practical relevance of searchable encryption, CryptDB [Pop+11] and other simi-
lar approaches such as Cipherbase [Ara+13] and Google’s Encrypted BigQuery1 have to be mentioned.
The idea behind CryptDB is to search on encrypted databases using standard Structured Query Lan-
guage (SQL) queries allowing the usage of existing applications without the need of adaptations. For
this task, CryptDB acts as a proxy between application and database management system securing the
queries. Depending on the SQL operations, a lot of different cryptographic approaches mostly based on
Property-Preserving Encryption (PPE) are used, e.g. deterministic encryption, Order-Preserving Encryp-
tion (OPE), homomorphic encryption. To support searches on encrypted text such as the ”like” operator,
the searchable encryption approach from [SWP00] has been adapted.

Coming back to the general ideas of searchable encryption, different methods varying in features and se-
curity level have been proposed over the past few years. First of all, Oblivious Random Access Machines
(ORAMs) [GO96; Nav15] offer a secure and theoretical efficient solution, but their practical perfor-
mance can not compete with special purpose algorithms. Secondly, Functional Encryption (FE) defining
a generalisation of asymmetric encryption can be used to build searchable encryption schemes [BSW11],

1Google Encrypted BigQuery: An experimental version of the BQ client which adds client-side encryption. URL: https://
github.com/google/encrypted-bigquery-client (Accessed 10. December 2016)

1

https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client


Chapter 1. Introduction

but is not as efficient as constructions solely designed for searchable encryption. Fully Homomorphic
Encryption (FHE) [Gen09] supporting arbitrary computations on ciphertexts using encrypted inputs is
another theoretically applicable approach, but the efficiency is not suitable for practical usage. Asymmet-
ric Searchable Encryption offers a specific searchable encryption solution, where everyone in possession
of the public key can add documents but only the owner of the private key can generate search queries.
Several popular Asymmetric Searchable Encryption schemes do exist [Bon+04; BSS08], but they are not
as efficient as symmetric schemes. In modern Searchable Symmetric Encryption (SSE) schemes pictured
in Figure 1.1, typically the user calculates a metadata file called index that is uploaded to the cloud stor-
age together with the encrypted document collection. Later on, the cloud provider is able to execute user
generated search queries without learning anything critical about its content. These constructions offer
a practical tradeoff between performance and security. So far, no successful attacks exploiting the intro-
duced information leakage without using additional knowledge are publicly known, as the later presented
attacks on SSE schemes will indicate.

Cloud StorageUser

Index

Encrypted Search Result

Encrypted Search Keyword

Encrypted Documents

Figure 1.1.: Searchable Symmetric Encryption Setting.

The aim of this thesis is to provide a comprehensive overview of state-of-the-art SSE constructions with
focus on security and practical usability. Therefore, security models for modeling the security guarantees
of SSE schemes are discussed and a fundamental theoretical analysis and practical performance evalua-
tion of selected SSE schemes is provided. The included SSE schemes have been selected by their usability
in practice and their diversity to underline the characteristics of different construction methods.

For measuring their performance in practice, all selected schemes have been implement. To the best of our
knowledge, no other implementations of SSE schemes apart from two fulltext searches2 were publicly
available at the time the implementation was done. At the time of writing, another implementation of
partly different SSE schemes was published3.

1.2. Related Work

Apart from the SSE schemes covered in this thesis [Goh03; CM05; Cur+06; KP13; Cas+13], other
mentionable constructions exist [SWP00; KPR11; KPR12; Oga+13; SPS14; Cas+14; NPG14]. The
full-text scheme from Song et al. [SWP00] was the first published searchable encryption scheme. The
main idea is to construct a ciphertext by encrypting each word and XORing the encrypted word with

2Symmetric Searchable Encryption Library in Pure Java. URL: https://github.com/sashank/jsse (Accessed 10. December
2016)

3The Clusion Library. URL: https://github.com/orochi89/Clusion (Accessed 10. December 2016)

2
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1.2. Related Work

a pseudorandom bit stream relying on hash values. To search for a word, each document has to be
sequentially scanned resulting in a search time linear in the total number of words. This construction
does not achieve an appropriate SSE security notion as considered by state-of-the-art schemes.

Following the idea of using inverted indices in form of obfuscated linked lists stored in scrambled order
proposed in [Cur+06], a lot of similar constructions based on analogous methods were suggested. In
[Oga+13], Ogata et al. presented a space improved version of the non-adaptive scheme from [Cur+06] by
introducing the additional leakage of the total number of keywords in the document collection.

The work of Kamara et al. in [KPR12] can be seen as a precursor of their subsequently suggested scheme
in [KP13] following the same idea of providing a dynamic version of the scheme in [Cur+06]. In
[KPR12], the authors tried to use same data structure as in [Cur+06] to construct a dynamic solution
resulting in an extraordinary complex scheme. The same fundamental ideas have been applied in [KP13]
presenting a much simpler but similar efficient construction which will be covered in this thesis.

The scheme proposed in [Cas+14], which can be seen as the successor of the scheme from [Cas+13]
analysed in this thesis, uses a dictionary based data structure to store entries for each encrypted keyword-
document pair identified by a pseudorandom label. To optimise the search efficiency for dictionaries
stored on disk, the construction can be improved by partitioning the document identifiers associated to
keywords into a fixed number of blocks and encrypting the blocks instead of encrypting each identifier
individually. Additionally, for highly frequent keywords, the encrypted blocks are stored into an array
and corresponding pointers are inserted into the dictionary. In comparison to [Cas+13], boolean queries
are not supported straight away, though the scheme could be extended with the ideas from [Cas+13] to
provide the same functionality.

In [NPG14], Naveed et al. proposed a scheme based on an update-supporting construction called Blind
Storage, where each document is split into blocks stored at pseudorandom locations. In the actual scheme,
instead of inserting the documents, for each keyword in the document collection a plaintext forward
index is generated which is inserted into the Blind Storage. This scheme can be compared to the one in
[KPR12] both proven to be secure in an adaptive setting, but in [NPG14] a better single keyword search
performance is achieved.

Another different approach was presented in [SPS14] using an update-supporting data structure organised
in levels of hash tables. Each level increases in size storing a maximum amount of entries, where each
entry consists of an obfuscated keyword-document pair and additional information to support updates
and efficient searching. Additionally, all levels are sorted by keywords using oblivious sorting and con-
ditions on which level entries are inserted exist. Consequently, this scheme provides fast single keyword
searching, but does not support multiple keyword queries as the scheme in [Cas+13].

As extension of the classical SSE requirements covered in later parts of this thesis, Bost et al. [BFP16]
proposed a verifiable SSE scheme allowing the user to verify that the search result is correct, i.e., no
wrong files are included and no files are missing. The construction follows the ideas from [SPS14], but
instead of using conventional hash tables, a modified construction called verifiable hash table storing
additional information for each entry is applied. Additionally, authenticated encryption is used to encode
all entries. Compared to [SPS14], the overall construction achieves similar asymptotic performance, but
no experimental results are provided to verify that the additional operations do not affect the practical
performance too much.

As one of the representatives of multi-user searchable encryption schemes, the scheme from [RMÖ15]
has to be mentioned. In a multi-user setting, the data owner can grant search permission for specific doc-
uments to other users. In the construction from [RMÖ15] a proxy, which does not have to be trustworthy,
is used to transform a user generated search query into Private Information Retrieval (PIR) [Cho+95]
queries using bilinear pairings. While the authors do not provide experimental implementation results,
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the requirement for pairing computations is expected to result in a significant slower practical perfor-
mance compared to usual SSE schemes.

In [Ish+16], Ishai et al. proposed a construction in a distributed model where two servers are used. In
their construction a B-tree is used as data structure which is stored at one of the servers. To search
for a keyword, the client interacts with both servers to iterate trough the tree. By applying secret sharing
techniques, the data is randomly permuted and none of the participants learns the path that has been taken.
After recovering the tree, PIR queries are used to retrieve the data. Even though the authors included
experimental evaluation results, no practical performance comparison to conventional SSE constructions
is provided leading to the assumption that SSE schemes could be superior in practice.

It needs to be mentioned that searchable encryption is a very active research field so that we do not claim
to provide an exhaustive overview over all existing approaches. However, we have tried to provide a
comprehensive overview.

1.3. Outline of this Thesis

The remainder of this thesis is structured as follows: Chapter 2 introduces basic mathematical founda-
tions, a brief introduction to cryptography, symmetric and asymmetric encryption. Moreover, it includes
a survey of popular security models used to define the security guarantees of modern encryption schemes.
Finally, a description of hash functions and the probabilistic data structure called Bloom filter closes the
overview of basic cryptographic concepts.

Chapter 3 motivates the usability of searchable encryption, in particular of SSE schemes, and provides a
categorisation of these schemes. After providing a mathematical notation and defining an abstract, unified
index-based scheme, state-of-the-art security models for SSE schemes are discussed.

Chapter 4 provides the theoretical part of this thesis in form of an analysis of selected SSE schemes. For
all schemes, a detailed description is presented, followed by an extensive analysis focused on information
leakage and asymptotic performance.

Chapter 5 describes the practical part of the work providing noteworthy details about the implementa-
tion of all selected SSE schemes. Subsequently, Chapter 6 provides a comprehensive evaluation of the
schemes implementation performance underlining the findings of the theoretical analysis.

Chapter 7 includes a guideline for using SSE schemes based on the theoretical and practical findings. For
certain typical situations, recommendations to select the suitable SSE scheme are provided.

Finally, Chapter 8 presents a conclusion and directions for further work, which closes this thesis.
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Chapter 2
Preliminaries

This chapter provides an overview of some basic cryptographic primitives and concepts needed to under-
stand the searchable encryption algorithms presented in later parts of this thesis. Readers that are already
familiar with basic cryptographic concepts including mathematical foundations and security definitions
might skip this chapter.

2.1. Mathematical Foundations

In this thesis, sampling an element x from a set X uniformly is denoted by x $←− X . Given an algorithm
A, its output a is defined as a← A. The concatenation of two values x,y is given by x||y, a bitwise OR
is defined as x | y and a bitwise XOR is denoted by x⊕ y. Given a set S , the number of elements in S
is defined as |S |. Given a matrix M, the element in the ith row and jth column is addressed as M[i, j]. A
security parameter defining the input size of an algorithm in unary representation is denoted as k, a key
is denoted as K. In mathematical definitions and security proofs, one often uses unspecified polynomial
functions. In this thesis, complete unspecified polynomial functions are indicated by poly(·), where
poly(x) indicates an arbitrary polynomial function in one variable x.

Definition 2.1 (Group [Mao03]). A group (G ,◦) is a set G and a binary operation ◦ satisfying the
following conditions:

• Closure: For all x,y ∈ G : x◦ y ∈ G .

• Associativity: For all x,y,z ∈ G : x◦ (y◦ z) = (x◦ y)◦ z.

• Identity: There exists a unique identity e ∈ G such that for all x ∈ G : e◦ x = x◦ e = x.

• Inverse: For all x ∈ G there exits an inverse x−1 ∈ G : x◦ x−1 = x−1 ◦ x = e.

For better readability, a group (G ,◦) is often denoted by G . A group G is called finite if it contains a
finite number of elements, where the number of elements is called the order of the group denoted by |G |.
As widely used example, the set Zn = {0, . . . ,n− 1} with integer n > 1 is a finite group under addition
modulo n.
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Definition 2.2 (Abelian Group [Mao03]). A group (G ,◦) is called abelian if the commutativity axiom
holds:

• Commutativity: For all x,y ∈ G : x◦ y = y◦ x.

Definition 2.3 (Cyclic Group [Mao03]). A group (G ,◦) is called cyclic if there exists an element g ∈ G
denoted as generator 〈g〉 such that for every element x ∈ G , there exists an i ∈ Z such that x = gi.

As important example, Z∗p being a multiplicative, cyclic, abelian group of integers modulo prime p is of
major interest in cryptography.

Definition 2.4 (Field [HMV04]). A field (S ,+, ·) is a set S with two binary operations ”+” (addition)
and ”·” (multiplication) satisfying the following properties:

• (S ,+) is an additive abelian group with identity 0.

• (S , ·) is a multiplicative abelian group with identity 1.

• Distributivity: For all x,y,z ∈ S : x · (y+ z) = x · y+ x · z.

It is a convenience to write F to denote a field. A field is called finite field if it contains a finite number
of elements and the order of a finite field is always a power of a prime. Consequently, a finite field Fq of
order q exists if q = pr with prime p known as characteristic of Fq. Additionally, if r = 1, Fq is called
prime field, otherwise for r ≥ 2 Fq is known as extension field.

In cryptography, prime fields Fp and binary extensions fields F2m , which can be constructed using a
polynomial basis, are widely used.

Definition 2.5 (General Elliptic Curve [HMV04]). An general elliptic curve E over an arbitrary field F
is a smooth curve defined by the affine Weierstrass equation

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6, (2.1)

with coefficients a1,a2,a3,a4,a5,a6 ∈ F.

In literature, the notation E/F is prevailing to emphasise that E is defined over F. The notation E(F)
defines the set of all points (x,y) ∈ F2 that satisfy the Weierstrass equation together with the additional
point ∞, which is the point at infinity serving as identity of the abelian group E(F). Depending on the type
of curve, there exist a lot of different approaches and ongoing researches on computing the basic curve
operations (point addition, point doubling) and their usage in point addition and scalar multiplication
efficiently.

In later parts of this thesis, elliptic curves over prime fields will be used. Consequently, a simplified
form of the Weierstrass equation can be used to describe such special forms of elliptic curves for prime
fields1 Fp with p > 3.

Definition 2.6 (Elliptic Curve Over Prime Fields [HMV04]). An elliptic curve E over a field F with
characteristic 6= 2 or 3 is defined by the equation

E : y2 = x3 +ax+b, (2.2)

where a,b∈F are constants with 4a3+27b2 6= 0, ensuring that the cubic on the right sight of Equation 2.2
has no repeating roots.

1Reader interested in simplified definitions for binary extension fields and more in-depth information on the simplified Weierstrass
equation are referred to [Mil85; Kob87; HMV04].
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Definition 2.7 (Elliptic Curve Discrete Logarithm Problem [HMV04]). Let E be an elliptic curve over
a finite field Fq. Given a point P ∈ E(Fq) and a point Q ∈ 〈P〉, the Elliptic Curve Discrete Logarithm
Problem (ECDLP) is defined as finding the smallest, positive integer x such that:

Q = x ·P. (2.3)

Since elliptic curves with points in Fp are finite groups [Kob87] where the ECDLP is hard, they can be
used to implement asymmetric cryptography. For practical implementations, there exist several standards
providing curves that aim to be secure for usage in elliptic curve cryptography (ECC) [LM10; Nat13].

Definition 2.8 (Probabilistic Polynomial Time [KL14]). An algorithm A is said to be probabilistic
polynomial-time (PPT) if A is allowed to make random choices and if the runtime is polynomial
restricted in the length of the input x ∈ {0,1}∗, i.e., the runtime is bounded by poly(|x|).

Due to the randomness involved in a PPT algorithm, it’s output represents a random variable. In security
proofs, the internal coin toss of a PPT algorithm is often not explicitly stated. On the other hand, if
the randomness is defined by a random variable the algorithm receives as additional input, this random
variable has to be covered.

In practice, the PPT property is often used to define real world adversaries because it is reasonable to
assume that in real world settings, the resources are polynomial bounded and a certain probability for a
successful attack exists. In the security proofs later presented in this thesis, the notation Afunc(·)(x) defines
a PPT adversary A receiving parameter x as input and having oracle access to function func(·).

Definition 2.9 (Negligible Function [KL14]). A function f(x) : N→R≥0 with R≥0 = {x ∈ R : x ≥ 0} is
called negligible if for every positive polynomial poly(·), there exists a number N ∈ N such that for all
n > N with n ∈ N :

f(x)<
1

poly(n)
. (2.4)

Intuitively, this functions can be used to describe security of cryptographic primitives. Considering a
practical environment, it is very reasonable to assume that an adversary is polynomial bounded in all
resources. Consequently, the probability of a successful attack has to be smaller than the inverse of
an arbitrary polynomial. Obviously, this property corresponds to the definition of negligible functions
predestining them for security notations.

Definition 2.10 (Keyed Function [KL14]). A keyed function F : {0,1}k×{0,1}∗→{0,1}∗ is a function
with two inputs, where the first input is called key.

The function F is called efficient if given a key K ∈ {0,1}k and an input message M ∈ {0,1}∗, F(K,M) =
FK(M) can be computed in polynomial time.

Definition 2.11 (Pseudorandom Function [KL14]). Let FK : {0,1}m→{0,1}c be an efficient keyed func-
tion, U f be the set of all functions mapping {0,1}m to {0,1}c and Pr be the probability function. The
function FK is pseudorandom if for any PPT distinguisher D, there exists a negligible function negl(k)
such that ∣∣∣∣∣∣ Pr

K
$←−{0,1}k

[
DFK(·)(1k) = 1

]
− Pr

f
$←−U f

[
D f (·)(1k) = 1

]∣∣∣∣∣∣≤ negl(k). (2.5)
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Informally, an adversary has to distinguish between a pseudorandom function (PRF) and a function se-
lected at random from the set of all functions having the same domain denoted as U f . As noted by
[KL14], it is important to see that the PPT distinguisher, i.e., the adversary, is not given the secret key K
but only the output of the respective functions. By definition, the probability that the adversary is able
to guess correctly has to be negligible. Consequently, PRFs are functions that are indistinguishable from
truly random functions given a polynomial time bounded adversary. In practice, PRFs can be constructed
utilising block ciphers or hash functions [Hal+98].

Definition 2.12 (Pseudorandom Permutation [Hal+98]). A pseudorandom permutation (PRP) is a special
form of a PRF where the mapping is a bijection with identical domain and co-domain.

Following the same reasoning as in the PRF definition, PRPs are permutations that are indistinguishable
from truly random permutations given a polynomial time bounded adversary [KL14]. To provide some
practical realisations, choosing a block cipher in suitable mode or utilising a PRF in multiple rounds are
some possible construction methods [Hal+98; KL14].

Since a basic mathematical foundation has been defined, some fundamentals of modern cryptographic
can be discussed.

2.2. Introduction to Cryptography

Going way back to the ancient world, cryptography is known as the science of protecting information.
The cryptography used a few thousand years ago was based on simple methods to transport informa-
tion, for example about troop movement and war plans. Over the last decades, information technologies
have established their place in daily routines of people. Due to the continuously rising capability of the
pervasive computational power, more complex methods are needed to ensure the confidentiality of data.
Before discussing some of these modern cryptographic approaches, it is necessary to define a general
cryptographic terminology based on the works in [MOV96; Mao03; KL14].

To start with, encryption is the procedure of transforming data in an obfuscated unreadable form which
should be indistinguishable from random data. The input data which shall be encrypted is called plaintext,
while the resulting output data of the encryption process is called ciphertext. As a counterpart, decryption
uses ciphertext as input and transforms it back to the original form, i.e., the plaintext. The set of all en-
cryption and corresponding decryption functions is called cipher and for both encrypting and decrypting,
an additional secret information called key is needed. Furthermore, Kerckhoffs’ principle, stating that the
security relies only on the secrecy of the key and not the algorithm itself, has to be applied.

All these components are needed to provide an expedient cryptosystem. The aim of such a system is to
provide data confidentiality by encrypting the data in order to make it incomprehensible for people which
are not in possession of the key needed to decrypt it.

In modern cryptography, a distinction between symmetric and asymmetric encryption can be made. While
asymmetric encryption schemes need different keys for encrypting and decrypting data, in symmetric
cryptography algorithms the decryption key is either efficiently computable given the encryption key, or
equal to the encryption key [MOV96].
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2.3. Symmetric Encryption

Definition 2.13 (Symmetric Encryption Scheme [KL14]). A symmetric or private key encryption scheme
is a tuple of polynomial-time algorithm (Gen,Enc,Dec) such that:

Gen(1k): The probabilistic key-generation algorithm Gen takes a security parameter k in unary repre-
sentation as input and computes a random secret key K.

EncK(M): The possibly probabilistic encryption algorithm Enc receives a secret key K and a plaintext
message M and outputs a ciphertext C.

DecK(C): The deterministic decryption algorithm Dec takes a secret key K and a ciphertext C and outputs
a plaintext message. In case of a decryption error, the algorithm outputs a generic error symbol ⊥.

Additionally, for all secret parameters k, for all keys K← Gen(1k) and for all plaintext messages M, it is
required that DecK(EncK(M)) = M.

One of the main advantages of symmetric encryption schemes is the high performance of these types
of ciphers. Compared to the asymmetric ones, symmetric ciphers are several orders of magnitude faster
making them suitable for operating on large amounts of data [MOV96]. Since many secret key encryption
schemes are built upon mathematical functions that can be implemented efficiently in software, these
schemes are very versatile usable, for example in searchable encryption schemes.

Another benefit of the symmetric approach are the significant smaller key sizes compared to asymmetric
ciphers without loss of security. According to several guidelines [Bab+12; Nat16], for modern sym-
metric block ciphers a key-length of 128 bits or more is recommended, while the key-length of modern
asymmetric ciphers should be at least 2048 bits, depending on the concrete setting. For elliptic curves, a
key-length of 224 bits ore more is recommended [Nat16].

In symmetric cryptography, for each pair of participants an unique key is needed. As a result, the number
of keys required grows quadratic in the number of participants which makes the usage of symmetric
cryptography for a group of users impractical very soon. Undoubtedly, distributing and managing the
keys are the main challenges of symmetric cryptography.

Examining the construction methods of symmetric ciphers, stream and block ciphers are established
building blocks.

2.3.1. Stream Cipher

In a symmetric stream cipher, the plaintext is encrypted bit by bit. The basic idea is to calculate the
XOR of a pseudo-random key stream and the plaintext. To retrieve the plaintext, the ciphertext has to be
XORed with the key stream. The generation of the pseudo-random key stream depends on the type of
stream cipher. In a synchronous stream cipher, the key stream is only based on the secret key, while in
the asynchronous case the last few ciphertext bits are also utilised. Since synchronous stream ciphers will
always produce identical key streams for the same key, the key has to be changed as often as possible to
avoid correlation attacks.

Regarding the usage of stream ciphers in practice, it has to be mentioned that it is possible to build
stream ciphers based on block ciphers. According to [KL14] and as an outlook to block ciphers, the
confidence in security of dedicated stream ciphers appears to be lower in comparison to block ciphers in
practice. Consequently, Katz et al. recommend the usage of block ciphers in a suitable mode of operation
if possible.
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2.3.2. Block Cipher

While stream ciphers apply bit by bit encryption, block ciphers are defined upon plaintext blocks of fixed
size and encrypt each block at once. Therefore, the plaintext has to be split into blocks before applying
the cipher. If the length of the plaintext is not a multiple of the block size, a padding scheme can be
applied to extend the input to a multiple of the block size.

Given a plaintext, there are different possibilities how a block cipher can be used to compute the cipher-
text. The possible methods of processing single blocks to produce the ciphertext are called modes of
operation. A mode of operation defines how a block cipher is used to encrypt or decrypt an arbitrary
number of blocks.

In the following and based upon a recommendation report provided in [Nat01b], a short overview of the
most common modes for modern block ciphers is provided.

Electronic Codebook Mode: The Electronic Codebook (ECB) mode is the most intuitive and simplest
possible mode. The plaintext is split into blocks and each block is encrypted independently using
the same key. Since this mode maps identical plaintext blocks to identical ciphertext blocks, it is
highly recommended to never use this mode.

Cipher Block Chaining Mode: In the Cipher Block Chaining (CBC) mode, each plaintext block is
XORed with the previous ciphertext block before the encryption. For the first ciphertext block, an
initialisation vector (IV) is used to compensate the non-existing previous ciphertext block.

Cipher Feedback Mode: In the Cipher Feedback (CFB) mode, each plaintext block is XORed with the
encryption of the previous ciphertext block using an IV for the first encryption block. Therefore,
this mode generates a key stream using the last few ciphertext bits that is XORed with the plaintext.
Consequently, the CFB allows operating the block cipher as asynchronous stream cipher.

Output Feedback Mode: In the Output Feedback (OFB) mode, each plaintext block is XORed with
the encryption of the previous encryption output using an IV to compensate the non-existing first
encryption result. Therefore, this mode generates a key stream based solely on the IV and the key.
Consequently, the OFB mode allows operating the block cipher as synchronous stream cipher.

Counter Mode: In the Counter (CTR) mode, an initial counter value is encrypted and XORed with the
first plaintext block to receive the first ciphertext block. For each upcoming plaintext block, the
counter value is increased by one and the same steps are applied. Similar to the OFB mode, a
key stream is generated without using previous ciphertext bits. Therefore, the CTR mode acts as
synchronous stream cipher.

The following review of the currently most popular symmetric cipher completes the survey about sym-
metric encryption.

2.3.3. Advanced Encryption Standard

In 1997, the National Institute of Standards and Technology (NIST) announced the Advanced Encryption
Standard (AES) competition to find a successor of the outdated Data Encryption Standard (DES) [DR02].
In the following, the Rijndael cipher, which was declared as AES after several selection rounds, is briefly
introduced based on the developer’s Rijndael design book [DR02] and the standardisation publication
[Nat01a].

While the original Rijndael cipher was specified upon block sizes being a multiple of 32 bits at a minimum
of 128 bits, the AES is standardised for a fixed block size of 128 bits. The key size of the original Rijndael
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cipher could be specified independently of the block size, in the AES specification key lengths of 128,
192 and 256 bits are defined.

Considering the construction method of the AES, it is an iterative block cipher. These types of ciphers
apply simple operations multiple times on the plaintext in order to compute the ciphertext, where the sim-
ple operations are known as round functions or round transformations. Consequently, a single execution
of a round function is called round or cycle, where for each one a round key is needed. The round keys
are generated by a key scheduling algorithm, which is part of the cryptosystem.

In case of the AES, the key size determines the number of rounds that have to be processed in order to
encrypt or decrypt a given input. Accordingly, Table 2.1 defines all possible combinations of key size and
number of rounds.

Key Size
(Bits)

Block Size
(Bits) Number of Rounds

AES-128 128 128 10
AES-192 192 128 12
AES-256 256 128 14

Table 2.1.: AES: Key Size and Number of Rounds Combinations.

Without going into details, each round - except the last one - consists of four transformations called steps:

SubBytes: Each input byte is substituted by another byte obtained from a lookup table called S-box.

ShiftRows: Some bytes of the intermediate value are shifted cyclically to the left.

MixColumns: The input bytes are grouped to blocks of four bytes which are multiplied by a fixed value.

AddRoundKey: The round key is XORed to the intermediate result.

In the last round, the MixColumns step is skipped and before the first round, an additional AddRoundKey
step is performed. Obviously, the round keys have to be computed by the key scheduling algorithm
before the initial round. All steps are invertible, hence, in the decryption process the inverted functions
are applied. To finalise the high-level description of the AES, a summary of the whole r round enryption
process is given:

1. Key Schedule: Generate Round Keys

2. Initial Round: AddRoundKey

3. Rounds 1, . . . ,r−1: SubBytes, ShiftRows, MixColumns, AddRoundKey

4. Final Round r: SubBytes, ShiftRows, AddRoundKey

To close the survey of the AES, it is fair to say that the AES provides very strong security guarantees.
While there exist attacks given certain assumptions or attacks being slightly better than exhaustive key
searches [BKR11], there are no known attacks that affect the practical security of the AES.

All in all the standardised AES algorithm provides strong security and performance [Sch+99; DPR00] if
applied correctly, making it the currently most popular block cipher.

2.4. Asymmetric Encryption

In asymmetric encryption schemes, two different keys for encrypting and decrypting data are needed. The
encryption key is called public key Kpub, the decryption key is called private key Kpriv and the combination
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of corresponding encryption key and decryption key is known as key pair (Kpub,Kpriv) [MOV96; KL14].
The private and public key are related mathematically, but it should be infeasible in practice to calculate
the corresponding private key Kpriv of a given public key Kpub.

Definition 2.14 (Asymmetric Encryption Scheme [KL14]). An asymmetric or public key encryption
scheme is a tuple of polynomial-time algorithm (Gen,Enc,Dec) such that:

Gen(1k): The probabilistic key-generation algorithm Gen takes a security parameter k as input and com-
putes a key pair (Kpub,Kpriv).

EncKpub(M): The probabilistic encryption algorithm Enc receives a public key Kpub and a plaintext mes-
sage M and outputs a ciphertext C.

DecKpriv(C): The deterministic decryption algorithm Dec takes a private key Kpriv and a ciphertext C and
outputs a plaintext message. In case of a decryption error, the algorithm outputs a generic error
symbol ⊥.

Additionally, it is required that DecKpriv(EncKpub(M)) = M for all valid messages M and key pairs
(Kpub,Kpriv) generated by Gen(1k).

Since the public key is only used for the encryption but not the decryption process, knowledge of the
public key does not affect the confidentiality of the message in any way. If the data shall be decrypted,
the corresponding private key has to be used. Therefore, only the confidentiality of the private key has to
be protected.

One of the main advantages of asymmetric cryptography is that one key pair per participant is sufficient,
while

(n
2

)
are needed for symmetric cryptography. Another advantage of asymmetric cryptography is that

the key pair can be used for a long period without security concerns. While symmetric keys need to be
changed frequently, for example for each file or session, asymmetric keys can often be used for years
[Nat16].

The main disadvantage of asymmetric cryptography is the much worse performance compared to the
symmetric counterpart. Therefore, in practice symmetric encryption is used for larger amounts of data
and asymmetric encryption is typically used to distribute a symmetric key.

For constructing asymmetric cryptosystems, special forms of one-way functions called trapdoor one-way
functions are used. A trapdoor one-way function is, just like a general one-way function, easy to compute
and computationally hard to invert, but given an extra secret information called trapdoor, the inversion
can be computed efficiently.

In practice, a number of popular functions and resulting number theoretical problems are utilised for
building asymmetric cryptosystems. To provide some examples, the integer factorisation problem is
defined as finding the factors of a given integer. If only prime numbers are considered as factors, the
problem is known as prime factorisation. Another famous example is the discrete logarithm problem
already introduced in Section 2.1 for elliptic curve groups.

2.5. Security of Encryption Schemes

Instead of relying on security through obscurity, cryptographic systems need to be designed accordingly
to Kerckhoffs’ principle [Mao03; Nat08; KL14].
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2.5.1. Types of Attacks

Regardless of the type of cryptosystem, attacks on cryptosystems can be classified into several categories.
The following overview of the most common attack types – ordered by powerfulness starting from the
weakest to the strongest one – is based on [KL14].

Ciphertext only: To begin with the simplest type of attack, in a ciphertext only attack the adversary can
only observe one or more ciphertexts. If an attacker should be able to gain information about the
decryption key or the plaintext, the underlying encryption scheme has to be classified as completely
insecure [MOV96].

Known plaintext: In this type of attack, the adversary is in possession of one or more pairs of ciphertext
and corresponding plaintext. Using this information, the attacker tries to gain information about
the decryption key or some other plaintext which has been encrypted with the same key. Obviously,
this attack is only meaningful in the symmetric setting.

Chosen plaintext: In the chosen-plaintext attack (CPA), the attacker has access to a cryptosystem and
is able to chose arbitrary plaintexts and obtain the corresponding ciphertexts. As in the known
plaintext attack, the adversary uses the available plaintext-ciphertext pairs to deduce information.

Chosen ciphertext: In this type of attack, the adversary has the same powers as in a CPA, but is ad-
ditionally allowed to chose ciphertexts and retrieves the corresponding decrypted plaintexts by a
decryption oracle. For security notations, a further distinction can be made whether the adversary
is allowed to use the decryption oracle after the challenge ciphertext is created (adaptive chosen-
chiphertext attack (CCA2)) or not (non-adaptive chosen-chiphertext attack (CCA1)). Again the
attacker tries to gain information using the constructed plaintext-ciphertext pairs.

Regarding the security of a cipher, different notations and definitions exist. Historically, a cipher is called
broken if an attack with better performance than an exhaustive key search exists. In an exhaustive key
search, also known as brute force attack, the attacker tries to find the correct key by trying all possible
ones.

2.5.2. Types of Security Definitions

Due to the lack of significance for modern encryption schemes, more meaningful security notations have
been introducted. Since the majority of security definitions for modern cryptography are either simulation
or game based, the general ideas behind this types of security definitions are summarised now.

Simulation Based Security Definitions: The general idea of this type of definition is to compare the
information leakage in an ideal world with the real world. In the ideal world, the cryptographic
primitive, for example the encryption scheme, is secure per definition. The common way for
achieving this property is to avoid using the primitive in question at all, typically by providing
random output instead of computed one. In the real world, the cryptographic primitive is used as
intended. If the information learned in a real world setting is negligibly different to the ideal world,
the cryptographic primitive is considered secure.

Game Based Security Definitions: These definitions do not compare ideal and real settings, but are
rather based on interactions between two players known as adversary and challenger. As one would
expect, the challenger creates a challenge involving the cryptographic primitive that shall be tested
and the adversary wins the game if the correct output for the specific challenge can be provided.
In this setting, the challenger has full access to all security parameters such as secret keys, while
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the adversary can only access (public) functions and information provided by the challenger. If an
adversary can not achieve a significant better probability of predicting or computing the correct out-
put compared to a trivial adversary which is just guessing, the underlying cryptographic primitive
is considered secure.

Based on these concepts, some of the currently most important security models and definitions for modern
encryption schemes are discussed subsequently.

2.5.3. Perfect Secrecy

Definition 2.15 (Perfect Secrecy [KL14]). Let RVM be a random variable for plaintext messages and RVC
be a random variable for ciphertexts. An encryption scheme with messages space M is said to be perfectly
secret or information-theoretically secure if for all probability distributions over M , all messages M ∈M
and every possible ciphertext C ∈ C , i.e., Pr[RVC =C]> 0:

Pr[RVM = M|RVC =C] = Pr[RVM = M]. (2.6)

From an information-theoretic viewpoint, perfect secrecy for an encryption scheme can be achieved if the
random variables RVM and RVC are independent. The idea behind the given definition is that even with
knowledge of the ciphertext, the adversary does not gain any information about the plaintext, i.e., the a
priori knowledge is equal to the a posteriori knowledge. Intuitively, an encryption scheme achieves perfect
secrecy if an attacker with unlimited computational power is not able to gain any useful information about
the plaintext of a given ciphertext [MOV96; KL14]. According to Shannon’s theorem, perfect secrecy
can only be achieved if the size of key space K is at least as large as the message space M [KL14]. As a
final note, perfect secrecy is equivalent to similar definition known as perfect indistinguishability [KL14].

In practice, a one-time pad could be used to achieve perfect secrecy. A one-time pad encryption is
defined as the XOR of key and plaintext [KL14], where the key is a uniform string of the same length as
the plaintext. Additionally, the key has to be used just once. Since this construction is usually impractical,
security is relaxed to a computational one.

2.5.4. Semantic Security

An encryption scheme achieves semantic security, if any PPT attacker receiving a ciphertext is not able to
learn any useful information about the plaintext2 [Mao03]. Consequently, semantic security is the com-
putational security equivalent to perfect secrecy since the attacker’s resources are polynomially bounded
instead of unlimited.

While semantic security can be defined using a simulation based approach, there exist (in dependence of
the adversary’s power, i.e., the attack type) equivalent game based definitions that are widely used and can
be considered as the current standard definitions for describing the security of symmetric and asymmetric
encryption schemes. To keep things simple and easier to understand, the following security models are
presented for symmetric ciphers based on the works by [Mao03; KL14].

2As stated in [Mao03], the length of the corresponding plaintext is not considered an useful information.
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2.5. Security of Encryption Schemes

2.5.5. IND-CPA

Definition 2.16 (IND-CPA). Let Π = (Gen,Enc,Dec) be an encryption scheme, A = (A1,A2) be a PPT
adversary and k ∈ N be a security parameter. The game based experiment Ind-CPAΠ,A(k) is defined as

Ind-CPAΠ,A(k)

K← Gen(1k)

(stA ,M0,M1)← A1
EncK(·) with |M0|= |M1|

b $←− {0,1}
Cb← EncK(Mb)

b′← A2
EncK(·)(stA ,Cb)

if b′ = b: output 1
else output 0.

An encryption scheme Π = (Gen,Enc,Dec) is said to achieve indistinguishability under chosen-plaintext
attack (IND-CPA) if for all PPT adversaries A = (A1,A2), there exists a negligible function such that

Pr
[
Ind-CPAΠ,A(k) = 1

]
≤ 1

2
+negl(k), (2.7)

where the probabilities are taken over the randomness in A , the internal coin toss of the Gen and Enc

algorithm and over the choice of b which is sampled uniformly from {0,1}.

As formally defined in Equation 2.7, the encryption scheme used in the game based experiment achieves
IND-CPA security if for all PPT adversaries, the probability that the adversary can guess correctly which
of the adversarially chosen messages M0 or M1 has been encrypted is at most negligible better than
random guessing. Informally, it defines that an adversary performing a CPA is not able to distinguish
which of the chosen plaintexts has been encoded, i.e., the ciphertexts are indistinguishable. As stated in
[Mao03], the provided definition of IND-CPA is equivalent to the definition of semantic security.

Taking a closer look at the Ind-CPA experiment, it can be seen that the adversary has oracle access to the
encryption function. Hence, the adversary is allowed to make calls to the encryption oracle before the
plaintext messages M0 and M1 have to be chosen. Therefore, the adversary could encrypt M0,M1 and test
which of these ciphertexts matches Cb. As a consequence, the encryption scheme has to be randomised
to achieve IND-CPA security. If the encryption algorithm Enc is randomised, the oracle returns different
ciphertexts for identical plaintexts with overwhelming probability.

To provide a concrete example, the AES in CBC mode achieves IND-CPA security since a different IV
is used for each encryption. On the other hand, the AES in ECB mode or the textbook Rivest Shamir
Adleman (RSA) encryption scheme are not IND-CPA secure due to their deterministic nature. To achieve
IND-CPA security for RSA, one needs to use a suitable probabilistic padding scheme.

For completeness and use in later parts of this thesis, it has to be mentioned that a very similar definition
called pseudorandomness against chosen-plaintext attack (PCPA) exists. An encryption scheme achieves
PCPA security, if it can not be distinguished whether a chosen plaintext or a random message has been en-
crypted. Consequently, PCPA is slightly stronger than IND-CPA. In practice, common IND-CPA secure
encryption schemes like AES in CTR mode also achieve PCPA security [Cur+06].
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2.5.6. IND-CCA

Definition 2.17 (IND-CCA2). Let Π = (Gen,Enc,Dec) be an encryption scheme, A = (A1,A2) be a PPT
adversary and k ∈ N be a security parameter. The game based experiment Ind-CCA2Π,A(k) is defined as

Ind-CCA2Π,A(k)

K← Gen(1k)

(stA ,M0,M1)← A1
EncK(·),DecK(·) with |M0|= |M1|

b $←− {0,1}
Cb← EncK(Mb)

b′← A2
EncK(·),DecK(·)(stA ,Cb)

if b′ = b: output 1
else output 0.

Additionally, A2 is not allowed to submit Cb to oracle DecK(·).

An encryption scheme Π = (Gen,Enc,Dec) is said to achieve indistinguishability under
adaptive chosen-chiphertext attack (IND-CCA2) if for all PPT adversaries A = (A1,A2), there exists a
negligible function such that

Pr
[
Ind-CCA2Π,A(k) = 1

]
≤ 1

2
+negl(k), (2.8)

where the probabilities are taken over the randomness in A , the internal coin toss of the Gen and Enc

algorithm and over the choice of b which is sampled uniformly from {0,1}.

While the adversary had only oracle access to the encryption function in IndCPA, in the IndCCA2 exper-
iment the adversary is provided with oracle access to encryption and decryption. To exclude the trivial
case of asking the oracle if M0 or M1 has been encrypted, the adversary is not allowed to submit Cb to the
decryption oracle. Since the adversary is allowed to use both encryption and decryption as black box, the
IND-CCA2 security model is more powerful than the IND-CPA one. While the used attack setting seems
to be more of an academic interest at first glance, a practical attack against an older version of Secure
Sockets Layer (SSL) using the RSA cryptosystem showed its practical relevance [Ble98].

For completeness, it has to be mentioned that indistinguishability under non-adaptive chosen-chiphertext
attack (IND-CCA1) is the second security definition for chosen ciphertext attacks known in literature.
The definitions of IND-CCA1 and IND-CCA2 are identical, except that in IND-CCA1 the adversary is
provided with oracle decryption access only until the challenge plaintexts are chosen. Consequently,
IND-CCA1 is weaker than IND-CCA2.

As final note and to close the introduction to cryptography, both IND-CCA1 and IND-CCA2 imply IND-
CPA. Therefore, the previous discussed need of a randomised encryption clearly also applies to these
stronger security models.

2.6. Hash Functions

In the following, the basics of hash functions are discussed following the works of Preneel and Menezes
et al. [Pre93; MOV96].
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2.7. Bloom Filter

A hash function maps an input of arbitrary, possible very long length to a value of fixed, small length out-
put. The output of a hash function is known as message digest, digest, hash value or simply hash. Before
going into more details, it has to be mentioned that hash functions are not only useful in a cryptographic
context, but are often used for addressing data, for example in hash tables.

Definition 2.18 (Hash Function). A n-bit hash function h takes a binary input message of arbitrary length
and maps it to a hash value of n bits, i.e.,

h : {0,1}∗ −→ {0,1}n. (2.9)

Additionally, the hash value y = h(x) has to be efficiently computable for all x ∈ {0,1}∗.

In typical applications, the size of the output (hash value) is much smaller than the size of the input
(message). Therefore, it is possible that two input messages result in the same hash value. Obviously,
the probability of such a collision decreases with increasing the size of the hash value. Since finding a
collision could have significant consequences regarding security, cryptographic hash functions need to
fulfil additional requirements to secure the integrity of data.

For a cryptographic hash function h, three basic security properties exist:

Preimage Resistance: Given a hash value y, it is computationally infeasible to find an input message x,
such that h(x) = y. Functions fulfilling this property are known as one-way functions.

Second Preimage Resistance: Given an input message x and the corresponding hash value h(x), it is
computational infeasible to find a second input message x′ with x′ 6= x, such that h(x′) = h(x). This
property is also known as weak collision resistance in literature.

Collision Resistance: It is computational infeasible to find two distinct input messages x,x′, such that
h(x′) = h(x). In contrary to the second preimage resistance, both messages can be freely chosen.
This property is also known as strong collision resistance in literature.

2.7. Bloom Filter

The following definition and construction method for Bloom filters is based upon the original work in
[Blo70] and their usage in the secure index scheme presented in [Goh03].

A Bloom filter is a probabilistic data structure designed to store a set of elements in way that later testing
if a specific element is part of the set can be done efficiently. It is represented by an array of m bits acting
as the encoding of a set of messages or input elements. As important feature of the underlying array,
it is required that all bits are individually addressable. For encoding a message M, r independent hash
functions h1, . . . ,hr are used. Each of these hash function hi maps an arbitrary input message to one of
the m array bits respectively array positions, i.e., hi = {0,1}∗→ [1,m] for i∈ [1,r]. As a matter of course,
the mapping of messages to array positions should be uniformly random.

Construction

At first, all m bits of the Bloom filter are initialised to 0. For each message M, the corresponding array
positions are computed, i.e., h1(M), . . . ,hr(M). Afterwards, for all computed positions the respectively
bits in the Bloom filter are set to 1. To provide an example, if h1(M) outputs value x, then the xth bit in
the Bloom filter is set to 1.
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Membership Test

To test whether a message M is part of the set M encoded in the Bloom filter, once again the set of
corresponding array positions has to be computed, i.e., h1(M), . . . ,hr(M). Afterwards, all bits at the
computed array positions are tested whether they are set or not. If at least one of the relevant bits is not
set, the message M is certainly not part of the encoded set M . If all relevant bits are set to 1, M is per
definition part of M . Recalling that during the construction process a bit can be set by different inputs,
it is obvious that it can not be distinguished whether a bit was set by a specific message in retrospect.
Consequently, even if all relevant bits indicated by the hash values of a message M are set, it could be the
case that M was not part of the set, i.e., that a collision happened. Therefore, there exists a probability
that false positives occur. In practice, the probability of false positives can be reduced by suitable choices
for r and m appropriate for the concrete usage scenario.

Collisions

Depending on the values of r and m, it is more or less likely that an array position will be set to 1 multiple
times. Such a collision can occur between two or more input messages, but also if only one message is
inserted into the Bloom filter since the output of two hash functions using the same input message could
be identical as well, i.e., hi(M) = h j(M) for i, j ∈ [1,r]. While a collision with just one input message
seems unlikely at first glance, it is not that improbable if the array’s length should not be sufficient larger
than the number of hash functions r. Regardless of the reason for multiple position occurrences while
inserting messages, each bit is set to 1 at first need and will neither be further increased nor be reverted
to 0.

False Positives

According to [MU05], the probability of a false positive f is given as

(1− e−
rn
m )r, (2.10)

where r defines the number of hash functions, n the number of inserted elements and m the size of the
array. For instantiating a Bloom filter in practice, it is usable to define a desired false positive rate fp and
calculate the other parameters accordingly, i.e., r =− log2( fp) and m = nr/ ln2 [Goh03].

Updates

Due to the used encoding, it is not possible to reconstruct the messages contained in the Bloom filter.
Furthermore, the number of encoded messages is hidden in the Bloom filter. While adding new messages
is possible at any time, deleting messages is not possible. The reasoning is the same as in the explanation
why false positives exist: Let x = h1(M) be array position x that was set by message M that shall be
deleted now. The bit x could have been set by a second input message M′. Therefore, it can not be
removed by setting it to 0 because the encoding of M′ would be affected too. Consequently, only the bits
that where set by M exclusively have to be removed. Since it is not possible to find out which bits were
exclusive set by M, it is not possible to delete messages out of an Bloom filter without storing additional
information.
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Chapter 3
Searchable Encryption

This chapter provides a comprehensive survey about searchable encryption. At first, this chapter moti-
vates the usability of searchable encryption and provides a categorisation of different types of searchable
encryption schemes. Then, security models used to investigate the security guarantees of searchable
encryption schemes are presented.

3.1. Introduction

The increasing interest and need for searchable encryption is motivated by the rising popularity and
usage of cloud computing, especially cloud storage services. Considering the prevalent scenario of using
a cloud storage as private digital data safe to backup files of arbitrary types, it is evident that the cloud
provider has full access to all data. As a consequence of the vendor’s capabilities, it would be possible to
process and disclose information without the user’s permission. Even if the cloud provider would be fully
trustworthy, there is still a possibility that the outsourced data is revealed as a result of technical issues or
attacks. To protect the privacy of the outsourced data, it has to be stored in encrypted form.

As usual, it is possible to increase security at the cost of usability and functionality. Considering local
data storages, providing searching capabilities is one of the key requirements. Due to the need that the
outsourced data has to be encrypted, all well known search algorithms for plaintexts are not suitable in
the cloud storage scenario. Obviously, the naive approach of downloading all data, decrypting it locally
and executing a local search on the decrypted data becomes impractical with higher amount of data very
soon. In an ideal solution, the server would search all documents without learning anything about the
search and stored data and would return only the relevant documents.

There are different ways how search on encrypted data can be performed1: If it is known that the amount
of data is very small or if performance should be irrelevant for any other reason, Oblivious Random
Access Machines (ORAMs) provide the most secure solution since the server does not learn anything
about the access pattern and the type of operation [GO96]. Even though ORAMs are asymptotically
efficient, their practical performance is not efficient due to the large constants hidden in the big-O notation
[Goh03; CM05; Nav15].

1How to Search on Encrypted Data: Introduction (Part 1). URL: http://outsourcedbits.org/2013/10/06/
how-to-search-on-encrypted-data-introduction-part-1/ (Accessed 10. December 2016)
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A slightly more practical solution in terms of performance is known as Functional Encryption (FE).
Without going into too much details, FE defines a generalisation for existing asymmetric encryption like
Identity-Based Encryption (IBE) and Attribute-Based Encryption (ABE) that can be used to build search-
able encryption schemes [BSW11]. Because of the public key nature of the underlying cryptographic
functions and the general usability of these primitives, FE is not as efficient as specific searchable encryp-
tion solutions.

In search for a fast solution, using Property-Preserving Encryptions (PPEs), which can be realised with
deterministic encryption [BBO07], appears to be an option. While PPE achieves sub-linear server-side
search performance, it is not as secure as ORAM based solutions because the stored documents and
performed searches leak some information a malicious server could exploit. To provide some leakage
examples, the server learns if documents contain the same words, the frequency in which words appear
and if searches are repeated 2.

For practical usage, specific searchable encryption schemes – in particular symmetric solutions – provide
a reasonable trade-off between security and performance. While state-of-the-art Searchable Symmetric
Encryption (SSE) schemes achieve sub-linear server-side search performance like PPE solutions, they
provide strong security guarantees that are considered secure even in an academic context and seem
hence suitable for practical usage. Obviously, the concrete performance and the supported security model
depend on the specific searchable encryption scheme.

To sum it up, there exist various different approaches how search on encrypted data can be performed.
While most of them are either insecure or do not achieve adequate performance for practical applications,
modern SSE schemes provide strong security and usable performance. The following section provides a
general overview of the different types of searchable encryption schemes and their applications.

3.2. Categorisation

There are several classifiers that can be used to categorise searchable encryption schemes. As an outlook,
it can be distinguished between symmetric and asymmetric schemes, single-user and multi-user schemes
and if searches are performed on the data or on some provided metadata often referred to as index. If an
index is used, one can differentiate between schemes using forward and inverted indices. Furthermore,
schemes can be classified as static and dynamic depending whether updates are possible. Considering the
search process, it can be distinguished whether parallel search queries are supported or if the search has
to be performed in a sequential way. Finally, the types of supported queries and the degree of interactivity
during the search process are another criteria for categorising searchable encryption schemes. In the
following, these categories are discussed in more detail.

Symmetric versus Asymmetric Searchable Encryption. In Searchable Symmetric Encryption (SSE),
only the owner of the private key is able to encrypt data and store it in a searchable way, generate encrypted
search queries and decrypt the retrieved data. Obviously, all other actions like updating the outsourced
files are only feasible in possession of the secret key as well. In an Asymmetric Searchable Encryption
scheme, also known as Public-Key Encryption with Keyword Search (PEKS) [Cur+06], everyone in
possession of the public key is able to encrypt and upload data to the storage, but only the data owner
in possession of the private key is able to generate encrypted search queries and decrypt data. However,
PEKS schemes are far less efficient than SSE solutions and it is fair to say that PEKS are more of a

2How to Search on Encrypted Data: Deterministic Encryption (Part 2). URL: http://outsourcedbits.org/2013/10/14/
how-to-search-on-encrypted-data-deterministic-encryption-part-2/ (Accessed 10. December 2016)
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research interest and currently not the best choice for practical applications. This is one of the reasons
why this thesis focuses on SSE schemes.

Single-User versus Multi-User. Like in many information systems and software architectures, it can
be differentiated whether the construction is of a single-user or multi-user type. In the single-user setting,
only the data owner is allowed to encrypt data, outsource it in a searchable form, generate search queries
and retrieve information. In the multi-user setting, the data owner is still in control of the data, but it
is possible to grant search and other access possibilities to other users. While there exist searchable
encryption solutions solely for the multi-user setting [RMÖ15], it is possible to build multi-user schemes
out of SSE schemes [Cur+06].

Full-Text versus Index-Based Search. Another distinctive feature for schemes is on which data the
search is performed. In a full-text search, each document of an outsourced document collection is repre-
sented as a sequence of words. Later on, documents can be searched by testing each word in the document
against a keyword for equality or some other condition. In the case of SSE, the document has to be en-
crypted in a special way to allow equality tests against keywords. Since the server should ideally not
have any information about the stored contents, it is likely that the whole document collection has to be
searched resulting in a search time proportional to the encrypted document collection size. Quite obvious,
the performance of full-text search based approaches does not scale well with increasing amount of data,
making this approaches impractical very soon.

In contrast, index-based searches perform the search on an additional metadata file often referred to as
index or index file. The index, which is created locally based on the content of a document and uploaded
together with the corresponding encrypted documents, should ideally not reveal any information about
the document collection. The structure of the index does highly depend on the used SSE scheme and
could be based on any data structure, for example on a linked list, look-up table or tree. Considering the
performance, index-based searches have a significantly better performance compared to full-text searches.
Consequently, research has focused on developing fast and secure index-based SSE schemes rather than
schemes for full-text search.

Forward Index versus Inverted Index. While a forward index contains a list of keywords per docu-
ment, an inverted index stores for every keyword a list of pointers to documents containing the keyword.
In the context of searchable encryption and regardless of the index type, the list has to be obfuscated
somehow to prevent leaking information about the document content.

Static versus Dynamic Schemes. A scheme is classified as dynamic if it is efficiently possible to per-
form updates regarding the document content and the associated keywords. If updates are not supported
or only the trivial solution of rebuilding the whole index in case of an update can be applied, the scheme
is categorized as static. Due to the security requirement that information leakage from the stored indices
itself shall be minimized, developing schemes that allow modifying the index is a non-trivial task.

Sequential versus Parallel Search. Depending on the type of the internal data structure used in the
index, schemes can be classified whether the search process is parallelisable or if sequential searching
is needed. As known from search algorithms for plaintext searches, there exist a lot of different data
structures that can be applied. To provide some examples, some possible structures used in conventional
searches are arrays, linked lists, graphs, heaps, various types of trees like binary trees, red–black trees
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and hash based constructions like hash tables or Bloom filters. While some of the constructions require
sequential access (e.g. linked lists) implying a sequential search process, others (e.g. trees) support
parallel operations resulting in a parallelisable search process.

Types of Keyword Queries. As another noteworthy distinguisher, schemes can be labelled by their
support of different query types. In general, it can be distinguished between single keyword and multiple
keyword searches. In both types of queries, the search can be seen as predicate that has to be satisfied
by documents. The simplest type of a search query contains an equality predicate testing for occurrence
of a single keyword in documents. Additionally, some schemes support more complex predicates such
as range queries (e.g. x > 10), subset queries (e.g. x ∈ X ) or conjunctive queries (e.g. query1∧query2).
Clearly, intersecting the results of several single keyword queries can emulate a conjunctive query. While
schemes supporting single keyword searches are able to reproduce simple functions like conjunctions, a
straightforward emulation of complex boolean functions might not be possible. Therefore, if the query
gets more complicated, schemes supporting arbitrary boolean queries have to be considered.

Regardless of the query’s complexity, in terms of efficiency and security, a scheme supporting particular
multiple keyword queries might have some advantages over single keyword schemes. To provide an
example in the basic conjunctive query case, it is easy to see that the server learns the intersection of
single keyword searches and total number of searched keywords if the outcomes of several single keyword
searches are intersected, but it is possible to hide these information in conjunctive queries.

Interactivity. Finally, another distinction can be made by the degree of interactivity between client and
server. While in a non-interactive scheme an interaction is defined as a single user query to the server
resulting in a single answer, in an interactive scheme a larger number of queries and responses is needed
to complete a single interaction.

As motivated by this classification, index-based symmetric schemes provide the best performance and
security guarantees among searchable encryption schemes. Therefore, the rest of this thesis focuses on
SSE schemes.

3.3. Definitions and Notation

In this section and based on the work in [Cur+06], the notation for modelling SSE schemes and existing
security models are introduced. Since this notation is used for all later discussed schemes, it can differ
from the notation used in the respective papers. Special definitions solely required for single schemes are
not covered here and will be introduced at the time of need.

Definition 3.1 (Dictionary). A dictionary ∆ contains d words (w1, . . . ,wd) in lexicographic order, where
each word wi ∈ ∆ is a binary string.

A dictionary defines the universe of words that might occur in documents. Given a security parameter
k, the total number of words d is bounded by an arbitrary polynomial function poly(k) and the length of
each keyword w ∈ ∆ is polynomial in k.

Definition 3.2 (Document Collection). A document collection DDD ⊆ (2∆)n is defined as a collection of
n documents, i.e., DDD = (D1, . . . ,Dn), where 2∆ defines the set of possible documents in respect to the
dictionary ∆ and both - the number of documents n and the number of words in each document - are
bounded by an unspecified polynomial function poly(k).

22



3.3. Definitions and Notation

The set of distinct words in the document collection is indicated as ∆′ = δ(DDD) with ∆′ ⊆ ∆. In order to
label documents, each document D ∈DDD has a unique identifier accessible by id(D). The lexicographic
ordered set of document identifiers of all documents in a document collection DDD containing keyword w is
denoted by DDD(w).

Index-Based SSE Scheme

For a better understanding of the upcoming security requirements and later introduced security models, an
abstract index-based SSE scheme is presented below. Since the definitions of index-based SSE schemes
vary in literature [Goh03; Cur+06; KP13; Cas+13], the successive definition can be seen as unified model
that covers all later presented schemes.

Definition 3.3 (Index-Based SSE Scheme). An index-based SSE scheme is a tuple of algorithm
(KeyGen,BuildIndex,Trapdoor,Search) such that:

KeyGen(1k): This probabilistic algorithm takes a security parameter k as input and outputs a secret
key K.

BuildIndex(K,DDD): This possibly probabilistic algorithm takes a secret key K and a set of documents DDD
as inputs and outputs an encrypted index I .

Trapdoor(K,w): This deterministic algorithm returns the trapdoor τw for a given secret key K and
keyword w.

Search(I ,τw): This deterministic algorithm performs the search for keyword w in a document collec-
tion DDD specified by an encrypted index I given trapdoor τw and outputs a list of found document
identifiers.

Additionally, for all security parameters k ∈ N, for all keys K generated by KeyGen(1k), for all indices I
computed by BuildIndex(K,DDD) for all possible document collections, the property

Search(I ,Trapdoor(K,w)) =DDD(w)

has to hold for all keywords w ∈ ∆.

Additionally, the implications of using a dictionary and the way document encryption is handled have to
be explained.

Dictionary Usage: Depending on the specific scheme, a dictionary might be used by the BuildIndex

algorithm. By using a dictionary, the universe of keywords can be restricted to essential ones to
avoid overspecialised keywords and to prevent using various synonyms as keywords.

Considering dictionary updates, it is possible to delete keywords without updating the index, but
keyword positions can not be reused. If keywords shall be added, the initially defined upper bound
of the total number of keywords can not be exceeded without rebuilding the index. Consequently,
it is not possible to add an unlimited amount of keywords without issues, but it would be possible
to find some workarounds for this problem. For example, one could delay the update if the index
does not contain the new keywords by assuming that all exceeding keywords are not part of the
index. While such simple update approaches are imaginable, the information leakage that specific
keywords are not included would be introduced immediately. From a security perspective, updating
the index would be the only reasonable way to deal with dictionaries extending the initial upper
bound.
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Document Encryption: Obviously, encrypting and decrypting the document collection has to be part
of the searchable encryption solution as well. Since standard cryptographic mechanism can be
used to secure the confidentiality of the outsourced document collection, it is not a major concern
for index-based SSE schemes. Consequently, all well known and established standard encryption
algorithms that are proven to be secure can be used. Hence, information leakage solely from the
ciphertexts does not have to be covered in SSE security notions.

Depending on the specific SSE scheme, the document encryption is either done at first outside the
SSE scheme, or during the BuildIndex algorithm. In both cases, it results in an encrypted index
and an encrypted document collection after the BuildIndex algorithm has been computed.

For a better understanding of the defined algorithms, the typical use case of applying the SSE algorithm
is discussed.

Key Generation: To generate a key K, the KeyGen algorithm is executed client-side by the user.

Index Computation: To build the encrypted index I for a set of documents DDD , the BuildIndex is run
client-side by the user. Depending on the type of scheme, I can either be a forward or inverted
index. Additionally, the documents are encrypted using a standard encryption scheme. Afterwards,
both I and the encryption of DDD can be stored on a server.

Search: To search for a keyword w, the corresponding trapdoor τw has to be computed client-side using
the Trapdoor algorithm and key K. Afterwards, given trapdoor τw, the server runs the Search

algorithm to search for documents using the outsourced index I . To be precise, the Search algo-
rithm computes a sequence of typically lexicographically ordered document identifiers that contain
a keyword w hidden in trapdoor τw using the encrypted index I representing the set of documents
DDD . Given the found document identifiers, the user is able to retrieve and decrypt the corresponding
documents.

For the subsequent discussion of security requirements and models, it is important to stress that all com-
putations, except for the Search algorithm, are run on the client-side by the user.

3.4. Security Requirements and Models

Considering the security requirements for searching on encrypted data, the question which kind of infor-
mation a server is allowed to learn arises. In general, possible information leakage can occur on stored
data or from the interactions between the server and the user’s device.

Stored Data: Regarding all stored data and data received by the server, information could leak from the
encrypted files, the index and the trapdoors. As examples, some of the possible information leak-
ages could be the number of documents, the document sizes, the document identifiers, the number
of keywords in a document, the total number of keywords, the number of keywords documents
share and other similarity disclosures of document sets.

Search Process: The more complex part of information leakage are the implications of the search pro-
cess and other interactions between server and user. Finding security models that deal with all kind
of information disclosures and developing schemes that satisfy the required security grantees has
been of great interest in research over the past decade and is still ongoing. The currently most com-
mon requirement was defined by [Cur+06] stating that nothing should be leaked except the search
and access pattern.

Before defining these requirements and terms formally, the evolution of security models is summarised
to understand the goals of state-of-the-art solutions.
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3.4.1. History of Security Models

According to [CM05; Cur+06], the full-text scheme presented in [SWP00] was the first encryption
scheme targeted for searchable encryption achieving indistinguishability under chosen-plaintext attacks
(IND-CPA) [KP13]. As stated by Curtmola et al., the fundamental issue with IND-CPA for SSE is that
it only attests that the underlying construction is a secure encryption scheme, but it does not prove that
it is a secure searchable encryption scheme [Cur+06]. Considering the full-text scheme published in
[SWP00], not only the ciphertexts have to be protected, but also the trapdoors. In the case of an index-
based SSE scheme, the index and all information involved in the search process have to be taken into
account. Consequently, the notation of IND-CPA is not suitable for SSE schemes.

In [Goh03], Goh defined semantic security against an adaptively chosen keyword attack referred to as
IND1-CKA. In a chosen keyword attack, an adversary can choose keywords and documents and the client
computes the corresponding indices and trapdoors. Informally, the game based IND1-CKA definition
states that an adversary should not be able to gain knowledge about the document content solely from
the index. The idea is if I is indistinguishable, i.e., the probability that an adversary is able to deduce
whether D0 or D1 with D0 6= D1 and |D0|= |D1| has been encrypted is negligible, then deducing at least
one word that appears only in D0 or D1 from I is not possible. However, the information leakage from
search query results and the leakage from encrypted documents are not covered by IND1-CKA.

Later on, Goh introduced a stronger version known as IND2-CKA. In contrast to IND1-CKA, the docu-
ments D0,D1 can be of arbitrary, possibly distinct size as long as there exists at least one word that appears
only in D0 or D1. Aside from the unrestricted choice of documents, the rest of the game based definition
of IND2-CKA is equivalent to IND1-CKA. As a consequence, the document size is also protected in
IND2-CKA.

Between the publication of IND1-CKA and IND2-CKA, Chang et al. proposed a security model known
as IND-CKA [CM05]. Like in IND2-CKA, the documents can be of arbitrary length, but this time they
are not restricted in any way. The simulation based definition states that real search interactions do not
leak more information than the ideal case where no trapdoors and indices are used. Consequently, no
information is leaked from trapdoors and indices making this security model stronger than IND2-CKA.

In the seminal work of Curtmola et al. [Cur+06], all of the above presented security models have been
shown to be incorrect or insecure. To start with the IND1-CKA and IND2-CKA models from [Goh03],
both deal with the problem that they do not take trapdoors into consideration. Since trapdoor security
is not covered, schemes leaking information from trapdoors could still be considered IND1-CKA/IND2-
CKA secure. Consequently, both models are insufficient for measuring searchable encryption security.
In search for a simple solution, introducing an additional formal requirement stating that no information
should be leaked by the trapdoors could be thought of. However, Curtmola et al. claim that simple
extensions can not be done trivially and provide an instantiation that fulfils all requirements but results in
an insecure scheme [Cur+06].

In the IND-CKA model from [CM05], trapdoor security is also considered. As shown by Curtmola et al.,
there are issues with the formalisation of IND-CKA as the definition can be satisfied by any arbitrary,
possibly insecure SSE scheme [Cur+06]. Therefore, none of the so far discussed security models seem
appropriate for describing the desired security of searchable encryption.

The work of Curtmola et al. [Cur+06] not only demonstrated the problems with previous security defini-
tions, but also introduced two new security models that can be seen as de facto standard for describing
security for searchable encryption and are widely adapted for different kinds of SSE constructions.

In order to have all components for describing the new security models from [Cur+06] and to have a basic
vocabulary for describing and analysing the whole search process of all later presented SSE schemes,
some widely used terms have to be formalised.
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3.4.2. Search Process Vocabulary

The following definitions are based on [Cur+06].

Definition 3.4 (History). A history H = (DDD, ŵ) is a tuple containing a document collection DDD and a list
of q keywords ŵ = (w1, . . . ,wq).

Due to the number of keywords, such a history is also called q-query history. Considering a search process
from the user’s perspective, a set of documents has to be tested for occurrence of words. It is easy to see
that searching for q keywords ŵ in a set of documents DDD matches the given notation of a q-query history
H . Obviously, the server shall not learn the keywords a user wants to search for.

Definition 3.5 (Access Pattern). Given a q-query history H = (DDD, ŵ), the access pattern α(H ) is defined
as α(H ) = (DDD(w1), . . . ,DDD(wq)).

While the history defines which keywords and documents have to be searched, the access pattern defines
the result of the search request, i.e., the documents that contain the searched keywords. By reason that
the server should not see the keywords, the access pattern reveals information about the outcomes of
queries without disclosing the keywords. To be precise, a server learns for each query consisting of q
unknown keywords the outcome of the search, i.e., a set of document identifiers corresponding to the
stored encrypted documents. Furthermore, the server learns correlations between multiple query results.
To provide some simple examples, if two single keyword queries for keywords w1,w2 return DDD(w1) and
DDD(w2), it can be seen if two unknown keywords occur in the same document. Assuming two single
keywords queries resulting in |DDD(w1)| = 1 and |DDD(w2)| > 1 with DDD(w1) ⊂DDD(w2), then keyword w1 is
more restrictive than keyword w2. While such results seem unlikely at first glance, they could happen
easily as the simple example of searching for a person in the first query and searching for persons of a
specific gender in the second one shows. Obviously, with larger amounts of queries, the server learns
more and more relations between query results. As a final thought, the access pattern aims only for
correlations of search results, but not for the search queries itself.

Definition 3.6 (Search Pattern). Given a q-query history H = (DDD, ŵ), the search pattern σ(H ) is defined
as symmetric binary q×q matrix such that for 1≤ i, j ≤ q:

σ[i, j] =

{
1 if wi = w j

0 else
. (3.1)

While the access pattern covers information implied by search outcomes, the search pattern indicates the
correlation between queries, in particular of the involved keywords. To be precise, the search pattern
reveals whether identical keywords were used in different queries. In general, the search pattern is leaked
if the server is able to determine multiple occurrences of keywords. Since the majority of SSE schemes
use deterministic trapdoors, it is easy to see that the search pattern can be obtained without further effort.
While the server might learn correlations between used keywords, it has to be emphasised that the actual
keywords are protected because of their encoding in trapdoors during the search request. However, with
increasing amount of searches resulting in a more valuable search pattern, the probability that the server
can calculate partial information about the actual keywords by applying statistical attacks increases.

Definition 3.7 (Trace). Given a q-query history H =(DDD, ŵ) over a document collection of length n= |DDD|,
the trace τ(H ) of history H is defined as τ(H ) = (id(D1), . . . , id(Dn), |D1|, . . . , |Dn|, α(H ), σ(H )).

The trace consists of the document identifiers and lengths of all documents, the access and the search
pattern. As already mentioned, the currently most common informal requirement for SSE security states
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that nothing should be leaked except the search result and the search pattern. In practical scenarios, the
server can most likely learn some metadata about the stored encrypted documents. If no padding or other
techniques are used, this leaked metadata consists of the length and identifier of each document. It is easy
to see that the given definition of a trace contains all the mentioned data that is sacrificed for reasonable
performance and security. Hence, the trace covers all information a server is allowed to learn. As a final
note, from a security perspective, it is necessary that at least one second history H ′ 6= H with the same
trace exists, i.e., τ(H ) = τ(H ′). If such a history H ′ can be found in polynomial time, it is called a
non-singular history.

Definition 3.8 (View). Given a document collection DDD of length n = |DDD| with corresponding index I and
ciphertexts C =(C1, . . . ,Cn) where Ci is the encryption of document Di for i∈ [1,n], the view ν=(I ,C ,T )
consists of the index I , the set of ciphertexts C and a set of trapdoors T .

Intuitively, the notation of a view contains all data a malicious server or any other adversary could access.
Consequently, information leakage based solely on the view has to be prevented.

In the following, formal definitions of the state-of-the-art security models are reviewed.

3.4.3. IND-CKA1

In this section and based on the work in [Cur+06], the non-adaptive security models achieving non-
adaptive indistinguishability for Searchable Symmetric Encryption (IND-CKA1) are discussed. For this
purpose, let stA be the adversary’s state information, i.e., a string storing the state of adversary A .

IND-CKA1 Semantic Security

Definition 3.9 (IND-CKA1 Semantic Security). Let SSE = (KeyGen,BuildIndex,Trapdoor,Search)
be an index-based SSE scheme, A be an adversary, k ∈ N be a security parameter and S be a simulator.
The real world experiment RealSSE,A(k) is defined as

RealSSE,A(k)

K← KeyGen(1k)

(H ,stA)← A(1k)

parse H as (DDD, ŵ)

(I ,C )← BuildIndex(K,DDD)

for 1≤ i≤ q :
τi← Trapdoor(K,wi)

let T = (τ1, . . . ,τq) and ν = (I ,C ,T )

output ν and stA

and the ideal world experiment IdealSSE,A ,S (k) is defined as

IdealSSE,A ,S (k)

(H ,stA)← A(1k)

ν← S(τ(H ))

output ν and stA .
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A SSE scheme SSE is said to be IND-CKA1 semantically secure if for all probabilistic polynomial-time
(PPT) adversaries A , there exists a polynomial time simulator S such that for all PPT distinguishers D,∣∣∣ Pr

[
D(ν,stA) = 1 : (ν,stA)← RealSSE,A(k)

]
−

Pr
[
D(ν,stA) = 1 : (ν,stA)← IdealSSE,A ,S (k)

] ∣∣∣≤ negl(k),
(3.2)

where the probabilities are taken over randomness of the probabilistic KeyGen and BuildIndex algo-
rithm.

In the real world Real, the adversary creates a history H consisting of a document collection DDD and a
sequence of keywords ŵ that the adversary wants to search for. It is important to emphasise that in the
present non-adaptive setting, the history has to be generated at once. Hence, an adversary can not access
data before generating the history is finished. Additionally, the adversary is allowed to save a string stA
providing arbitrary information about its state.

The rest of the experiment works straightforward: The encrypted index I and the encrypted document
collection C = (C1, . . . ,Cn) are built using the BuildIndex algorithm. Next, for each keyword wi ∈ ŵ
of the q-query history H , a corresponding trapdoor τi is computed utilising the Trapdoor algorithm.
Finally, the real world experiment outputs a view ν= (I ,C ,T ) where T is the set of all created trapdoors.
Additionally, the adversary’s state information stA is added to the output.

All in all, the Real experiment covers a situation where an adversary is able to use the SSE algorithms to
generate a view of an arbitrary history. Even though the adversary is allowed to construct the history, the
initial security requirement stating that nothing should be leaked except the search and the access pattern
has to be fulfilled.

Applying the general concept of simulation based proofs, in the ideal world the cryptographic primitive
that shall be tested is not even used. Therefore, Ideal does not apply any functions of SSE. At first the
adversary provides the same q-query history H and the state information stA . Next, the view is generated
by the simulator S receiving the trace τ(H ) of H and Ideal returns the simulated view ν and stA . Since
only the trace of the history was used to generate the output, information that might be leaked from the
simulated view can be seen as uncritical.

Revisiting Equation 3.2, a SSE scheme provides IND-CKA1 semantic security if the view computed in
the real world experiment can not be distinguished from a simulated view generated in the ideal world
experiment with more than negligible advantage. Bearing in mind that the real world view consists of
the encrypted index, the encrypted document collection and the trapdoors, it is obvious that all these data
do not leak any critical information. To be precise, the only information an adversary can learn is the
information included in the trace.
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IND-CKA1 Indistinguishability

Definition 3.10 (IND-CKA1 Indistinguishability). Let SSE =(KeyGen,BuildIndex,Trapdoor,Search)
be an index-based SSE scheme, A = (A1,A2) be an adversary and k ∈ N be a security parameter. The
experiment IndSSE,A(k) is defined as

IndSSE,A(k)

K← KeyGen(1k)

(stA ,H0,H1)← A1(1k)

b $←− {0,1}
parse Hb as (DDDb, ŵb)

(Ib,Cb)← BuildIndex(K,DDDb)

for 1≤ i≤ q :
τb,i← Trapdoor(K,wb,i)

let Tb = (τb,1, . . . ,τb,q)

b′← A2(stA ,Ib,Cb,Tb)

if b′ = b: output 1
else output 0,

where the adversary has to choose H0 and H1 in a way that the traces are equal, i.e., τ(H0) = τ(H1). A
SSE scheme SSE achieves IND-CKA1 indistinguishability if for all PPT adversaries A = (A1,A2),

Pr
[
IndSSE,A(k) = 1

]
≤ 1

2
+negl(k), (3.3)

where the probability is taken over the choice of b which is sampled uniformly from {0,1} and the internal
coin tosses of KeyGen and BuildIndex.

In the Ind experiment, the adversary creates two histories H0 and H1 with identical traces, i.e., τ(H0) =
τ(H1). Consequently, the histories are non-singular. Afterwards, a bit b is sampled uniformly from {0,1}
determining whether history H0 or H1 will be used in the upcoming computations. Depending on b, the
index Ib, the encrypted document collection Cb and a set of trapdoors Tb = (τb,1, . . . ,τb,q) are calculated
as usual, i.e as in the Real experiment of IND-CKA1 semantic security.

Provided with Ib ,Cb, Tb and stA , the adversary has to solve the challenge of determining whether H0 or
H1 has been used. Consequently, Ind models a setting where an adversary A is able to generate inputs
and has to determine which one was used by the SSE scheme.

As formally defined in Equation 3.3 and following the principles of game based definitions (see Sec-
tion 2.5.5 for the similar definition of IND-CPA), the index-based SSE scheme used in Ind achieves non-
adaptive indistinguishability if for all PPT adversaries, the probability that the adversary can determine
correctly if H0 or H1 has been processed is at most negligible better than guessing.
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3.4.4. IND-CKA2

In this section and based on the work in [Cur+06], the adaptive security models known as adaptive indis-
tinguishability for Searchable Symmetric Encryption (IND-CKA2) are discussed.

IND-CKA2 Semantic Security

Definition 3.11 (IND-CKA2 Semantic Security). Let SSE =(KeyGen,BuildIndex,Trapdoor,Search)
be an index-based SSE scheme, A = (A0, . . . ,Aq) with q ∈N be an adversary, k ∈N be a security param-
eter and S = (S0, . . . ,Sq) be a simulator. The real world experiment Real’SSE,A(k) is defined as

Real’SSE,A(k)

K← KeyGen(1k)

(DDD,stA)← A0(1k)

(I ,C )← BuildIndex(K,DDD)

(w1,stA)← A1(stA ,I ,C )

τ1← Trapdoor(K,w1)

for 2≤ i≤ q :
(wi,stA)← Ai(stA ,I ,C ,τ1, . . . ,τi−1)

τi← Trapdoor(K,wi)

let T = (τ1, . . . ,τq) and ν = (I ,C ,T )

output ν and stA

and the ideal world experiment Ideal’SSE,A ,S (k) is defined as

Ideal’SSE,A ,S (k)

(DDD,stA)← A0(1k)

(I ,C ,stS )← S0(τ(DDD))

(w1,stA)← A1(stA ,I ,C )

(τ1,stS )← S1(stS ,τ(DDD,w1))

for 2≤ i≤ q :
(wi,stA)← Ai(stA ,I ,C , t1, . . . , ti−1)

(τi,stS )← Si(stS ,τ(DDD,w1, . . . ,wi))

let T = (τ1, . . . ,τq) and ν = (I ,C ,T )

output ν and stA .

A SSE scheme SSE is said to be IND-CKA2 semantically secure if for all PPT adversaries
A = (A0, . . . ,Aq) with q being polynomially bounded, there exists a polynomial time simulator
S = (S0, . . . ,Sq) such that for all PPT distinguishers D,∣∣∣ Pr

[
D(ν,stA) = 1 : (ν,stA)← Real’SSE,A(k)

]
−

Pr
[
D(ν,stA) = 1 : (ν,stA)← Ideal’SSE,A ,S (k)

] ∣∣∣≤ negl(k),
(3.4)

where the probabilities are taken over the internal coin tosses in KeyGen and BuildIndex.
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The upcoming IND-CKA2 explanation focuses on the differences of the experiment to the IND-CKA1
experiment.

Considering Real’, it can be seen that the history is constructed adaptively instead of at once. To be pre-
cise, the index I and the encrypted document collection C are built as usual, but the set of trapdoors T
is generated adaptively. For this task, the adversary receives stA ,I ,C and all so far computed trapdoors.
Utilising this data, the adversary returns the next keyword, a new stA and the corresponding trapdoor is
computed. This process is repeated until all q trapdoors have been produced. This adaptive generation
corresponds to a practical situation where a document collection is stored at a server and searches are per-
formed one after the other. Regardless of the current number of searches, the initial security requirement
stating that nothing should be leaked except the search and the access pattern has to be fulfilled.

In Ideal’, the general procedure for creating the view ν is the same as in Real’, but tasks where the
SSE scheme has to be used are simulated as usual. Following the same reasoning as in IND-CKA1,
information that might be leaked from the simulated view can be classified as uncritical.

IND-CKA2 Indistinguishability

Definition 3.12 (IND-CKA2 Indistinguishability). Let SSE =(KeyGen,BuildIndex,Trapdoor,Search)
be an index-based SSE scheme, A = (A0, . . . ,Aq+1) with q ∈ N be an adversary and k ∈ N be a security
parameter. The game based experiment Ind’SSE,A(k) is defined as

Ind’SSE,A(k)

K← KeyGen(1k)

(stA ,DDD0,DDD1)← A0(1k)

b $←− {0,1}
(Ib,Cb)← BuildIndex(K,DDDb)

(stA ,w0,1,w1,1)← A1(stA ,Ib,Cb)

τb,1← Trapdoor(K,wb,1)

for 2≤ i≤ q :
(stA ,w0,i,w1,i)← Ai(stA ,Ib,Cb,τb,1, . . . ,τb,i−1)

τb,1← Trapdoor(K,wb,i)

let Tb = (τb,1, . . . ,τb,q)

b′← Aq+1(stA ,Ib,Cb,Tb)

if b′ = b: output 1
else output 0,

where the adversary has to choose DDD0,DDD1 and the keywords in a way that the traces are equal, i.e.,
τ(DDD0,w0,1, . . . ,w0,q) = τ(DDD1,w1,1, . . . ,w1,q). A SSE scheme SSE achieves IND-CKA2 indistinguishability
if for all PPT adversaries A = (A0, . . . ,Aq+1) with q being polynomially bounded,

Pr
[
Ind’SSE,A(k) = 1

]
≤ 1

2
+negl(k), (3.5)

where the probability is taken over the choice of b which is sampled uniformly from {0,1} and the internal
coin tosses of KeyGen and BuildIndex.
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As one might expect, the definitions of IND-CKA1 and IND-CKA2 indistinguishability are quite similar.
Therefore, only the differences of the underlying experiments are clarified in the upcoming paragraph.

While in Ind the non-adaptive history was generated at once, the adversary is allowed to choose an
adaptive constructed history in Ind’. This time, it is required that the adaptive generated histories are non-
singular to prevent trivial distinguishing. Analysing the adaptive history generation process, it can be
seen that the adversary receives stA ,Ib,Cb and all previously constructed trapdoors and has to return two
keywords, one for each document collection. As usual, only the keyword matching the random choice
of b will be encoded and added to the set of trapdoors. To sum it up, Ind’ models a situation where an
adversary A has to determine which of the self created document collections and adaptively generated set
of keywords was encoded. Following the reasoning of IND-CKA1, a SSE scheme is IND-CKA2 secure
if the distinguishing task can not be done better than simple random guessing.

3.5. Known Attacks on Searchable Symmetric Encryption Schemes

While the security models for describing SSE schemes have been established in the year 2006, the in-
troduced information leakage has not been seen as critical back then and the implications have not been
further investigated for a fairly long time and are still not fully understood.

In 2012, the first remarkable attempt to exploit the access pattern leakage was described [IKK12]. In the
attack trying to recover the keywords of the queries, the authors assume that the adversary has knowledge
about the document collection in form of a fixed set of m keywords and a m×m matrix M describing key-
word co-occurrence probabilities. Due to the access pattern leakage of q distinct trapdoors, the adversary
is able to construct a q×q unknown keyword co-occurrence matrix. The attack uses simulated annealing
to find the best match of the observed matrix to a sub matrix in M.

In [Cas+15], an improved keyword recovery attack using similar constraints was presented. Additionally
to the co-occurrence matrix M, the adversary has knowledge of the number of documents matching a
keyword. At first, all keywords matching a unique number of documents are used to build a known query
map. For each remaining query, the set of possible keywords can be build using the initially granted
knowledge. Afterwards, the set of possible keywords is reduced until the keywords can be determined by
testing if the co-occurrences of the keywords candidates are suitable.

Recently, an active keyword recovery attack, where an adversary is able to add documents of own choice
to the document collection, was published, i.e., the adversary sends documents to the client which uses
the SSE scheme as intended to perform the update [ZKP16]. In contrast to the previous attacks, the
adversary has knowledge of a set of keywords ∆ where |∆| defines the number of keywords. The attack
can be modified to be executed under the same leakages as the previously discussed ones, i.e., partial
knowledge of the document collection. In the binary-search attack exploiting the knowledge of ∆, log |∆|
files are injected where the ith file contains all keywords whose ith bit is set. After all files have been
injected, a search for an encrypted unknown keyword returns a subset of the injected documents. Since
the adversary learns for each returned injected file a bit which has to be set in the encoded keyword, the
keyword can be recovered. By splitting the keywords into groups and injecting files in a slightly modified
way, the number of needed document queries can be further improved.

While no attack without a priori knowledge exists at the time of writing, it is fair to say that the implica-
tions of the introduced information leakage are not fully understood so far and will be of great interest in
research for exploiting current SSE schemes and constructing improved ones.
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In this chapter, some of most important Searchable Symmetric Encryption (SSE) schemes are anal-
ysed. As already indicated, we focus on symmetric index-based constructions, i.e., the secure index
scheme [Goh03], the Privacy Preserving Keyword Searches on Remote Encrypted Data (PPSED) scheme
[CM05], the SSE-1 scheme [Cur+06], the keyword red-black (KRB) scheme [KP13] and the Oblivious
Cross-Tags (OXT) scheme [Cas+13]. Readers mainly interested in a comparison of all schemes are re-
ferred to Chapter 7, especially Table 7.1 which provides a compact comparison of asymptotic efficiency.

4.1. Secure Index Scheme

In this section, the secure index scheme developed by Goh is presented [Goh03].

4.1.1. Idea

The idea of the secure index scheme is to build a forward index for each file in the document collection.
The underlying index called Z-IDX is constructed by using pseudorandom functions (PRFs) and Bloom
filters. Consequently, the secure index scheme might produce false positive results, for the benefit of a
remarkable simple construction with space efficient indices.

As an outlook, the secure index scheme using Z-IDX as index requires O(1) search time per document
resulting in a search time linear in the size of the document collection. The space requirements depend
on the desired false positive rate and the estimated number of unique words in the document collection,
but even with a low false positive rate, the resulting index for medium sized documents needs only a few
kilobytes storage space if stored efficiently.

4.1.2. Construction

In typical usage scenarios, one is interested to work with a set of documents rather than with single doc-
uments. Since the secure index scheme is of a forward index type, additional steps have to be performed
if more than one document shall be stored and searched. In the following, the Z-IDX index construction
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building a forward index for document Di ∈DDD with i ∈ [1,n] is provided. Afterwards, the secure index
scheme suitable to work with document collections is presented.

Z-IDX

Let k be a security parameter, m be the size of the Bloom filter, DDD =(D1, . . . ,Dn) be a document collection,
IDid be an index for document D with unique identifier Did = id(D) and τw be a trapdoor for keyword w.
Furthermore, the PRF F is defined as

F : {0,1}k×{0,1}∗→{0,1}k

and the number of used PRFs is denoted by r.

Given this notation, the algorithms involved in the Z-IDX index are specified as follows:

KeyGen(1k): Given security parameter k:

1. Generate a master key K = (K1, . . . ,Kr)
$←− ({0,1}k)r, i.e., a sequence of r PRF keys

BuildIndex(K,D): Given the master key K = (K1, . . . ,Kr) and document D including a unique iden-
tifier Did = id(D) and a list of associated keywords ŵ = (w1, . . . ,wq), initialise a Bloom filter BF
for document D. Perform the following computations:

1. Build the index, i.e., for each unique keyword wi ∈ ŵ:

a) Compute trapdoor: (x1← F(K1,wi), . . . ,xr← F(Kr,wi)) where |xi|= k for i ∈ [1,r]

b) Compute codeword: (y1← F(x1,Did ,), . . . ,yr← F(xr,Did)) where |yi|= k for i ∈ [1,r]

c) Insert the codeword (y1, . . . ,yr) into the Bloom filter BF of document Did

2. Blind the index:

a) Estimate an upper bound u for the number of keywords for D. Since keywords could
be one byte long, u is set to the number of bytes of the encrypted document D, i.e., the
length of D’s ciphertext.

b) Given the number v of unique words in ŵ, set (u− v) · r-times a bit to 1 at a uniformly
random chosen position, each position could potentially be chosen multiple times.

3. Output the index IDid = (Did ,BF ) for document D with unique identifier Did

Trapdoor(K,w): Given the master key K = (K1, . . . ,Kr) and the keyword w, compute and output trap-
door τw← (F(K1,w), . . . ,F(Kr,w)) for keyword w

Search(IDid ,τw): Given index IDid = (Did ,BF ) for document Did = id(D) and the trapdoor τw = (x1 =
F(K1,w), . . . ,xr = F(Kr,w))) for keyword w, document Did can be searched for keyword w:

1. Compute codeword: (y1← F(x1,Did), . . . ,yr← F(xr,Did)) where |yi|= k for i ∈ [1,r]

2. Test if the codeword (y1, . . . ,yr) is stored in BF , i.e., all r bits are set to 1

3. If all relevant bits are set: return 1, else return 0

BuildIndex In the BuildIndex algorithm, the forward index IDid for a given single document with
unique identifier Did = id(D) and associated keywords ŵ = (w1, . . . ,wq) is computed. Instead of inserting
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a keyword directly into the Bloom filter, a trapdoor is computed using the PRF F with r different keys
K1, . . . ,Kr. Afterwards, the trapdoor is blinded utilising the PRF F and the unique document identifier.
Finally, the blinded trapdoor known as codeword is inserted into the Bloom filter BF . Obviously, this
procedure has to be done for each unique keyword wi ∈ ŵ. While the Bloom filter would be perfect
usable after the insertion process, it is blinded by setting (u− v) · r bits at random positions to 1 where u
denotes an upper bound for tokens in D and v represents the number of unique keywords in D. If a bit
position should be randomly chosen more than once, nothing has to be done since it is already set, but
no alternative position is sampled. Hence, this blinding routine produces the same outcome as inserting
u− v random words.

Trapdoor Examining the Trapdoor algorithm, it is easy to see that the trapdoor τw of a given keyword
w is calculated the same way as in the BuildIndex algorithm, i.e., using the PRF F with r different keys
and the keyword w as input.

Search The Search algorithm takes the trapdoor τw for keyword w and searches the index IDid for
occurrence of w in document D with unique identifier Did . For this task, the codeword has to be computed
analogous to the BuildIndex algorithm, i.e., using the PRF F with the trapdoor τw and the document
identifier Did as inputs. Afterwards, it is tested if the resulting codeword (y1, . . . ,yr) is contained in the
Bloom filter. If all r positions computed by the Bloom filter’s hash functions are set, the keyword w is
included in the index, otherwise not.

Secure Index Scheme

Based on Z-IDX, the secure index scheme can be constructed straightforward by computing the
BuildIndex algorithm for all documents of the document collection. Beforehand, suitable parameters
for the Bloom filter have to be chosen, i.e., the number of PRFs and the size of the underlying bit array.
Both values depend on the desired false positive rate and the estimated number of unique words among
all documents. The KeyGen algorithm has to be executed just once and the document collection has to
be encrypted using a conventional encryption algorithm.

To search for a keyword, computing a single trapdoor using the Trapdoor is sufficient since the same
master key and Bloom filter parameters have been used for all indices. Using this trapdoor, the server has
to execute the Search algorithm for all stored documents.

4.1.3. Analysis

In the following, the most important aspects of Z-IDX and the secure index scheme are analysed.

Security

Examining the Z-IDX construction starting with focus on keywords, it can be seen that no dictionary or
other similar concept for numbering and gathering keywords is used. Therefore, the universe of keywords
does not have to be defined beforehand and it is possible to use all valid strings as keywords.

Considering the trapdoor and codeword generation, it can be seen that the keywords are not inserted in
the Bloom filter directly, but the PRF F is used to calculate a codeword out of a trapdoor and a document
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identifier. Hence, the indices for documents associated with the same keywords are different since the
unique document identifier is included in the codeword computation. Therefore, this technique aims to
prevent correlation attacks. Another benefit of this construction is the document independent trapdoor that
can be used for the whole document collection. As usual, the advantage in terms of space requirement
of transmitting such a short trapdoor comes at the price of additional computational effort since given the
trapdoor, the server has to calculate an individual codeword for each document.

Even though the indices for same keywords are always different, the Bloom filter is blinded by adding
random words. While the number of keywords included in the Bloom filter can only be estimated, adding
additional unrelated words further obfuscates both the actual keywords and the number of keywords at
costs of an increased false positive rate.

Regarding the overall security, Goh proved the scheme to achieve semantic security against an adaptive
chosen-keyword attack (IND1-CKA). As already discussed before (see Section 3.4.1), the IND1-CKA
definition has been shown to be insufficient. As stated later [KP13], the secure index scheme achieves the
subsequently introduced non-adaptive indistinguishability for Searchable Symmetric Encryption (IND-
CKA1). Consequently, this scheme is classified as secure in the non-adaptive setting.

Updates

As a consequence of using Bloom filters, updating existing indices is not always possible. If the update
operation consists only of adding keywords, then it is possible to simply add these keywords as the
number of set bits can never decrease. Since the keywords can not be recovered from the index and it is
not known if a bit was set by a specific keyword, it is not possible to delete keywords efficiently. Hence,
in case of an update that includes at least one deletion operation, the whole index has to be rebuild. Since
all indices are independent, adding or deleting whole documents can be done in a straightforward manner.

Efficiency

Examining the efficiency, it can be seen that the index generation takes O(q) time for each document
where q specifies the number of distinct keywords per document, resulting in O(q · n) for a document
collection of n documents. The trapdoor generation for a single keyword can be performed in O(1) and a
single keyword search needs O(1) time per document resulting in O(n) for searching n files. Due to the
forward index construction, all indices can be processed individually allowing a high-grade parallelisation
of the index generation and keyword search. Consequently, the indices can be build in O( q·n

p ) and a single
keyword search can be performed in O( n

p ) parallel search time where p indicates the number of processors
(cores).

Space Requirements

As a result of using Bloom filters of fixed size of m bits in a simple construction, this scheme achieves low
storage costs for indices in typical settings, i.e., O(n) for DDD . Additionally, the index can be compressed
by storing only the relevant bit positions instead of the whole Bloom filter array. Since no dictionary
has to be stored, only a few kilobytes storage space per index for documents containing a few thousand
keywords are needed.
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Summary

While the secure index scheme is clearly not optimal in terms of search time, it provides a simple, space
efficient construction that achieves reasonable security guarantees.

4.2. PPSED Scheme

In this section, the SSE scheme developed by Chang et al. is presented [CM05]. Following the nota-
tion of the defined problem setting as Privacy Preserving Keyword Searches on Remote Encrypted Data
(PPSED), the scheme is called PPSED scheme in this thesis.

4.2.1. Idea

The PPSED scheme can be classified as a symmetric, forward index-based searchable encryption scheme.
The general idea behind this scheme is using a dictionary listing all possible keywords for building a
dictionary based index for each document. In order to avoid information leakage, this index is built using
a pseudorandom permutation (PRP) and masked using PRFs resulting in different indices for identical
documents.

Even though the scheme is based on a remarkable simple constructions, it achieves reasonable security
and efficiency. As an outlook, the PPSED scheme requires search time linear in the document collection
size. The space requirements depends on the dictionary size, but even if a full English dictionary is used,
the resulting index needs only a few kilobytes storage space independent of the document size.

4.2.2. Construction

The construction of the PPSED scheme utilises a dictionary ∆ to build the index. Extending the general
definition of a dictionary from Section 3.3, in the context of the PPSED scheme, ∆ defines d integer-
keyword pairs (i,wi) with i ∈ [d],wi ∈ {0,1}∗ for some constant d ∈ N.

Given a security parameter k, a document collection DDD = (D1, . . . ,Dn) and the dictionary ∆, the PRFs
F,G and the PRP P are defined as following:

F : {0,1}k× [d]→{0,1}k

G : {0,1}k× [n]→{0,1}
P : {0,1}k× [d]→ [d]

In the following, the algorithms involved in the PPSED scheme are defined1.

1Chang et al. have not divided their scheme into different algorithms. To provide a uniform representation and to keep things as
simple as possible, the PPSED scheme is defined in accordance to the unified model for SSE schemes used in this thesis.
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KeyGen(1k): Given security parameter k, generate the master key K = (Ks,Kr) with Ks,Kr
$←− {0,1}k

BuildIndex(K,DDD): Given the master key K = (Ks,Kr) and the document collection DDD = (D1, . . . ,Dn):

1. For all i ∈ [d]: Compute Kri ← F(Kr, i)

2. For each D j ∈DDD with 1≤ j ≤ n:

a) Initialise I j as array of d bits

b) Build the index: For all i ∈ [d]: I j[P(Ks, i)] =

{
1 if document D j contains keyword wi

0 else

c) Mask the index: For all i ∈ [d]: I j[i] = I j[i]⊕G(Kri , j)

d) Output the masked index I j

Trapdoor(K,wλ): Given the master key K = (Ks,Kr) and the keyword wλ:

1. Retrieve the corresponding integer λ from ∆

2. Compute p← P(Ks,λ) and f ← F(Kr, p)

3. Output trapdoor τwλ
= (p, f )

Search(I j,τwλ
): Given index I j for document D j and the trapdoor τwλ

= (p, f ) for keyword wλ, docu-
ment D j can be searched for keyword wλ:

1. Compute X j[p] = I j[p]⊕G( f , j)

2. If X j[p] = 1 then wλ is associated with D j, return corresponding identifier id(D j)

BuildIndex In the BuildIndex algorithm, the forward indices (I1, . . . ,In) for document collection DDD
consisting of n documents each associated with an arbitrary number of keywords from ∆ are built. Each
index has the size of d bits, correlating to the number of d entries in the dictionary. Each keyword in the
dictionary is mapped to a unique pseudorandom position in the index by using a PRP that depends on the
keyword position and the secret key Ks. If the respective keyword is part of the document, the bit is set in
the corresponding index. After all keywords have been processed, the index is masked by XORing each
index bit with a pseudorandom bit that depends on the document number, the keyword position and the
secret key Kr.

Trapdoor The first task of the Trapdoor algorithm is to recover the keyword position from the dictio-
nary. Using the keyword position and the master key, the pseudorandom position in the index and key
used during the blinding process can be computed and output as trapdoor.

Search The trapdoor is used during the Search algorithm to check if the relevant index bit was set.
For this task, the XOR operation done during the build process masking the index is reverted using the
trapdoor to reveal the unmasked bit. As a note, Chang et al. defined the PPSED scheme for searching DDD .
Due to the adapted scheme definition matching the unified model used in this thesis, Search performs a
single index search. If DDD shall be searched, Search has to be invoked n times.
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4.2.3. Analysis

In this section, a brief analysis of the PPSED scheme is provided.

Security

Examining the keyword security, it can be seen that the number of keywords included in the index is
hidden by the masking process, i.e., the XOR operation which depends on PRFs using the document
number, the keyword position and the secret key. Since the document number is included in this process,
the resulting indices of documents containing the same keywords are clearly not identical preventing
correlation attacks. Even though the indices are blinded using the document identifier, the trapdoors
are independent of the document identifier allowing short trapdoors that are usable to search all indices
created under the same master key.

Regarding the overall security, the PPSED scheme was initially proven to achieve the semantic secu-
rity against an adaptive chosen-keyword attack (IND2-CKA) model, but as already mentioned (see Sec-
tion 3.4.1), the IND2-CKA definition has been shown to be not sufficient to obtain secure schemes. As
indicated later [KP13], the PPSED scheme achieves the subsequently introduced IND-CKA1 security.
Consequently, this scheme is classified as secure in the non-adaptive setting.

Updates

It is easy to see that the BuildIndex, Trapdoor and Search algorithm do not use any probabilistic
methods. As consequence of the deterministic construction, keywords can be recovered if the master key
is known. Therefore, assuming the dictionary stays unchanged, it is possible to perform efficient updates
on arbitrary indices. If a keyword should be added or deleted from an index, the specific pseudorandom
bit has to be updated accordingly.

Efficiency

Examining the efficiency, it can be seen that the index creation for a single document depends on d and
the number of keywords in the document. Since the number of keywords in the dictionary is expected to
be much larger than the number of keywords per document, i.e., d� q, BuildIndex needs O(d ·n) for
a document collection of n files. The trapdoor generation for a single keyword can be computed in O(1)
and a single keyword search needs O(1) time per document resulting in O(n) for searching n files. Due
to the forward index construction, both the index generation and the keyword search can be parallelised.
Consequently, building the indices can be done in O( d·n

p ) and a single keyword search needs O( n
p ) time

where p indicates the number of processors (cores).

Space Requirements

Considering the space requirements, a distinction between server and client has to be done. On the
clientside, the dictionary is needed to perform searches. Obviously, the dictionary size depends on the
number of entries and the average keyword length. On the serverside, the storage space for the indices
depends on d, i.e., the number of keywords in the dictionary. Therefore, for a document collection of n
documents, O(d ·n) space is needed.
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To provide an example, a full English dictionary would result in a storage need of about 2 megabytes,
making the additional storage overhead compared to schemes that do not need a dictionary quite negligi-
ble. Using this dictionary, d would be 218 resulting in about 32 kilobytes per index while there are still
more that 37000 free positions for new keywords available. By applying compression techniques, this
index size can be further reduced. If the dictionary storage space should not be available locally, Chang
et al. proposed a slightly modified scheme that avoids this issue at the cost of increased communication
complexity. The modified scheme stores the dictionary on the server, where the keyword of all integer-
keyword pairs is encrypted. For computing a trapdoor, an additional communication round is needed to
retrieve the integer λ corresponding to the encrypted keyword.

Summary

While the upcoming constructions achieve better security guarantees, the PPSED scheme provides a
reasonable tradeoff between space efficiency and search performance.

4.3. SSE-1 Scheme

In [Cur+06] Curtmola et al. present two SSE constructions and the already introduced IND-CKA1 and
IND-CKA2 security definitions that can be seen as a de facto standard (see Sections 3.4.3 and 3.4.4).
While the first construction called SSE-1 achieves non adaptive IND-CKA1 security, the second one
(SSE-2) achieves the stronger IND-CKA2 security notion at a price of increased storage and communica-
tion costs. In the following, the more efficient SSE-1 scheme is presented. Readers interested in the very
similar SSE-2 solution are referred to [Cur+06].

4.3.1. Idea

The SSE-1 scheme can be classified as a symmetric, inverted index-based searchable encryption scheme.
As implied by the inverted index type, the concept behind this scheme is to build an index per document
collection where for each keyword a linked list of corresponding document identifiers is stored. The
inverted index consists of an array storing the linked lists in a scrambled, obfuscated way and of a look-
up table to find the first entry of each linked list. As initially stated, the authors proved this construction
to be IND-CKA1 secure.

Regarding the efficiency, it can bee seen that due to the usage of linked lists for each keyword, only
relevant entries have to be processed, resulting in a sublinear search time. In fact, the search time for
a single keyword search is linear in the number of documents containing the keyword, i.e., O(|DDD(w)|)
which is clearly optimal. As one would might expect, the security and optimal search time comes at a
price of increased storage costs in comparison to other schemes. As an outlook, the size of the inverted
index is linear in the size of the document collection and the number of keywords that might occur, i.e.,
the number of entries in the dictionary.

4.3.2. Construction

Subsequently, for an array A, the function addrA(x) gives the address of an element x in A, i.e., if A[i] = x,
then addrA(x) = i . Furthermore, a linked list L stored into A consists of j nodes Ni = 〈stri,addrA(Ni+1)〉
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with 1 ≤ i ≤ j where stri is an arbitrary string and addrA(Ni+1) denotes the address in A where the next
node is stored. Considering the dictionary ∆, all keywords in ∆ need at most ` bits storage space.

Additionally, let k be a security parameter, s be the size of the encrypted document collection measured
in the smallest possible keyword size (for example one byte), A be an array with s entries and T be a
({0,1}`×{0,1}k+log2 s×|∆|) look-up table. All entries in A are nodes of a linked list, all entries in T are
of the form 〈address,value〉. The PRF F and the PRPs P,Q are defined as following:

F : {0,1}k×{0,1}`→{0,1}k+log2 s

P : {0,1}k×{0,1}`→{0,1}`

Q : {0,1}k×{0,1}log2 s→{0,1}log2 s

Given these definitions and a pseudorandomness against chosen-plaintext attack (PCPA) secure encryp-
tion scheme SKE, the algorithms involved in the SSE-1 scheme are defined as follows:

KeyGen(1k): Generate and output the master key K = (K1,K2,K3) with K1,K2,K3
$←− {0,1}k

BuildIndex(K,DDD): Given the master key K = (K1,K2,K3) and the document collection DDD =
(D1, . . . ,Dn):

1. Initialisation: Compute ∆′= δ(DDD), compute DDD(w) for all w∈∆′ and set global counter ctr to 1

2. Build array A: For 1≤ i≤ |∆′|:
a) Generate key Ki,0← SKE.Gen(1k)

b) For 1≤ j ≤ |DDD(wi)|−1:

i. Let id(Di, j) be the jth document identifier in DDD(wi)

ii. Generate key Ki, j← SKE.Gen(1k)

iii. Create node Ni, j =
〈
id(Di, j)||Ki, j,Q(K1,ctr+1)

〉
iv. Encrypt and store node Ni, j: A[Q(K1,ctr)]← SKE.EncKi, j−1(Ni, j)

v. Increase counter: ctr = ctr+1

c) For the last node, i.e., j = |DDD(wi)|:
i. Create node Ni, j with address of next node set to NULL: Ni, j =

〈
id(Di, j)||0k,NULL

〉
ii. Encrypt and store node Ni, j: A[Q(K1,ctr)]← SKE.EncKi, j−1(Ni, j)

iii. Increase counter: ctr = ctr+1

3. Blind array A: If q′ < s with q′ = ∑wi∈∆′ |DDD(wi)|, then set the remaining s−q′ entries of A to
random values of same size as existing ones

4. Build look-up table T : For all wi ∈ ∆′: T [P(K3,wi)] = 〈addrA(Ni,1)||Ki,0〉⊕F(K2,wi)

5. Blind look-up table T : If ∆′ < ∆, then set the remaining ∆′−∆ entries of T to random values
of same size as existing ones

6. Output I with I = (A,T )

Trapdoor(K,w): Given the master key K and the keyword w: Output trapdoor τw = (P(K3,w),F(K2,w))
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Search(I ,τw): Given index I and the trapdoor τw = (tw,bw) for keyword w:

1. If T [tw] =⊥: Return ⊥, else:

a) Parse T [tw]×bw as 〈adr||K′〉
b) Decrypt all nodes of the linked list starting with node stored at address adr with key K′

c) Output the document identifiers of all processed nodes

BuildIndex At first DDD has to be scanned for unique keywords ∆′ and for each found keyword, a list
of document identifiers corresponding to the keyword’s appearances has to be generated, i.e., DDD(wi) for
all wi ∈ ∆′. This information could be provided or computed in other ways, for example if multimedia
content is included where simple scanning is not possible. Afterwards, for each keyword wi, a linked list
of |D(wi)| nodes is built and stored into the array A in an encrypted way at random positions calculated
by PRP Q. To be precise, for keyword wi, |DDD(wi)| nodes are generated, where each node contains a
document identifier, the key and address of the next node. Each node is encrypted with the key saved in
the previous node and stored at a random address also saved in the previous node. In the last node of
each list, the address of the next node is set to NULL to mark the end of the linked list. Afterwards, if
q′ < s with q′ being the sum over all documents of the number of distinct keywords in each document
and s being the total size of the encrypted document collection measured in minimum keywords size, A
is blinded by inserting s−q′ entries with random values having the same size as the existing ones to A.

To find the first node of the linked list for keyword wi stored in A, a look-up table T is needed. Therefore,
for each distinct keyword wi ∈ ∆′, a look-up table entry storing the address of the first node of the corre-
sponding linked list and the key needed to encrypt the node has to be created. All look-up table entries are
obfuscated by XORing the concatenation of address and key with the output of PRF F(K2,wi) as blinding
value. Additionally, all entries are stored at random positions calculated using PRP P(K3,wi). Similar to
the blinding of A, if |∆′|< |∆|, T is blinded by setting |∆|− |∆′| entries to random values of same size as
the existing ones.

Trapdoor Regarding the search for a keyword, it is quite obvious that the corresponding look-up table
position has to be recovered. Therefore, the Trapdoor algorithm taking keyword w as input needs to
compute the position P(K3,w) in T and the blinding value F(K2,w).

Search The Search algorithm receiving trapdoor τw = (tw,bw) and index I searches the whole docu-
ment collection for keyword w. If an entry at T [tw] is found, the first node address and corresponding key
can be recovered by XORing bw with the value at T [tw]. Afterwards, starting with the found node, the
document identifiers related to the searched keyword can be retrieved by iterating through the linked list
and decrypting all nodes until the node with NULL as next address occurs.

4.3.3. Analysis

In the following, the SSE-1 construction is analysed.
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Security

Examining the array A of the index construction, it can be seen that each encrypted node is stored at a
random position in A computed by PRP Q. As a result, all linked lists are stored in a scrambled form
into A hiding the number of lists and the length of each list. Since the number of lists corresponds to
the number of distinct keywords and the lengths correspond to the number of matching documents, this
information is not leaked from A as long as no relations between the encrypted nodes can be found. To
achieve that nodes can not be correlated, each node is encrypted under a unique key stored in the previous
node of the respective linked list. As final leakage preventing measure, A is blinded by inserting s− q′

entries if the total number of entries in A should be less than the size of the encrypted document collection
measured in minimal keyword length. Without this blinding procedure, an adversary would learn q′ and
a rough estimator on the sum of multiple keyword appearances in DDD , but details would not be leaked,
i.e., which keywords appear more than once, the exact count for each keyword and which documents are
affected.

Regarding the second part of the index, the look-up table T , the position and encryption of all entries
in T depend on the respective distinct keyword wi ∈ ∆′. Hence, the total number of entries is the only
information leaked from T , i.e., |∆′|, the number of distinct keywords in DDD . To avoid this leakage, T is
blinded by inserting |∆|− |∆′| random entries so that the number of entries in T is always |∆|. Since ∆

covers all possible keywords in respect to the maximum keyword length `, the adversary is not able to
learn which and how many keywords actually appear in DDD .

As indicated by the leakage analysis of I = (A,T ), the adversary is only able to learn the access and
the search pattern fulfilling the current most common informal requirement that nothing else should be
revealed. Therefore and as proven by Curtmola et al., the SSE-1 scheme achieves the IND-CKA1 security
notion.

Updates

An examination of the BuildIndex, Trapdoor and Search algorithm reveals that no probabilistic meth-
ods are used implying that keywords can be recovered if the master key is known. However, updating
the index can not be done in a simple way. Considering the simple case of adding documents without
new keywords, new nodes have to be added to the existing linked lists and the last node of the affected
lists have to be updated. Furthermore, suitable positions in A have to be found and since s and q′ have
changed, the blind has to be adjusted. If keywords should be added or deleted or if documents shall be
removed, the updating process would be even more complex. Therefore, updates can be considered as an
expensive operation. Accordingly, Curtmola et al. recommend building a new index in case of an update,
for example by recovering all required information from the original one and reusing it.

Efficiency

Regarding the efficiency of the index generation, it can be seen that for each keyword in each file a node
in A has to be created, i.e O(q′) for DDD respectively O(q) per document where q denotes the number of
keywords in the document. Furthermore, for all keywords in DDD , a look-up table entry has to be created,
i.e., O(|∆′|). Since it can be expected that the sum of all keywords over all documents is much larger than
the number of distinct keywords, i.e., q′� |∆′|, BuildIndex takes O(q′) or roughly O(q ·n) time. Since
each linked list can be computed individually, the index generations can be parallelised, i.e., roughly
O( q·n

p ) time where p indicates the number of processors (cores).
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For the search process, one look-up in T has do be done, i.e., O(1) if an efficient table storage format
is used. Afterwards, all nodes of the found linked list have to be decrypted, i.e., O(|DDD(w)|) operations.
Consequently, Search runs in O(|DDD(w)|) achieving optimal search time proportional to the number of
found documents. As usual, the trapdoor provided by Trapdoor can be calculated in O(1) time.

Space Requirements

After all blindings, A contains s entries with s being the size of the encrypted document collection ex-
pressed in minimal keyword length and T contains d = |∆| entries. Consequently, the index has an
asymptotical space requirement of O(d + s). In practice, depending on the minimum keyword size and
number of documents, it is not unlikely that the index could be larger than the document collection. As
Ogata et al. have shown [Oga+13], if the document collection contains very short keywords but a rather
large amount of files, the ratio |I |\|DDD| could be over 80 in such extreme constellations. As second ex-
periment shown in [Oga+13], a set of nearly 1000 papers presented at information security conferences
achieves a |I |\|DDD| ratio of about 28. Therefore, it is reasonable to assume that the index will be a lot
larger than the document collection.

In search for improvements, a more detailed analysis reveals that A has s entries each having a size of
dlog2 ne+k+dlog2 se bits. The look-up table T has d entries of `+k+dlog2 se bits each. Assuming that
the Advanced Encryption Standard (AES) is used for encrypting the nodes, k is at least 128 bits. If an
anonymous cipher2 would be used to encrypt the nodes, there would not be the need to apply a different
key for each node saving k bits per node, i.e., s ·k bits in total. As final thought and according to [Oga+13],
a lot of space could be saved in average settings if A would not be blinded. Without a blind, A would
contain q′ instead of s entries introducing the leakage of q′ and the knowledge if duplicate keywords in
DDD exist.

Summary

All in all the SSE-1 scheme achieves strong security and optimal search time providing an all-purpose
solution if storage space is not a critical concern. If IND-CKA1 is not sufficient, the very similar SSE-2
construction achieving the stronger IND-CKA2 security at a price of increased storage and communica-
tion costs could be considered. The SSE-2 scheme defines a label for each existing keyword-document
combination by adding a keyword-document specific number to each keyword. Instead of storing all
labels into A, they are stored directly into D at pseudorandom positions. To search for a keyword, n
trapdoors have to be generated since for each keyword-document combination a different label has been
used.

4.4. KRB Scheme

In this section, the tree based scheme developed by Kamara et al. [KP13] is presented. Subsequently, we
call it keyword red-black (KRB) scheme.

2How to Search on Encrypted Data: Searchable Symmetric Encryption (Part 5). URL: http://outsourcedbits.org/2014/
08/21/how-to-search-on-encrypted-data-searchable-symmetric-encryption-part-5/ (Accessed 10. December
2016)
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4.4. KRB Scheme

4.4.1. Idea

The idea of the KRB scheme is to build an inverted index in form of a modified red-black tree called
KRB tree, which is a special type of a height-balanced binary search tree. In this tree, the leaf nodes
store pointers to the files and all internal nodes indicate for all possible keywords if there is at least
one path to a leaf node that represents a file containing the respective keyword. Since subtrees can be
processed individually, the scheme supports parallel search. Additionally, the tree structure allows to
perform updates efficiently.

As an outlook, the KRB scheme achieves sublinear search time slightly above the optimal search time,
i.e., O

(
|DDD(w)|

p · logn
)

where p indicates the number of processors (cores). Additionally, updates can be
done in O(logn) time and the underlying index in tree form needs O(d ·n) storage space. Considering the
overall security, this scheme is proven to be IND-CKA2 secure meaning that the strong adaptive security
model is accomplished.

4.4.2. Construction

Before describing the actual scheme, the KRB tree generation needed for constructing the index has to be
discussed.

KRB Tree

A red-black tree is a binary tree where all nodes are coloured in a way that all leaf nodes are black, the
children of red nodes are always black and all paths from a given node to all its leaves contain the same
number of black nodes. These properties guarantee that inserting, deleting and searching for elements
can always be done in O(logn).

Using this data structure, the BuildTree(DDD) algorithm constructing the unencrypted KRB tree utilising
a document collection DDD and a dictionary ∆ = (w1, . . . ,wd) of d words is defined as following:

BuildTree(DDD): Given the document collection DDD:

1. Order the identifiers of all documents in DDD , i.e., id(Di)< id(Di+1) for i ∈ [1,n−1]

2. Build a red-black tree T on top of the ordered identifiers and store file identifiers and pointers
to the documents at the leaves

3. For each node u, store a d-bit vector datau

4. For each leaf node ` ∈ T representing document Dl :

a) For all wi ∈ ∆: datal [i] =

{
1 if Dl contains keyword wi

0 else

5. For all internal nodes u with left child v and right child z, the datau vector is computed
recursively from lower nodes to the root node by applying the bitwise OR disjunction as
follows:

datau = datav | dataz
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As can be seen in BuildTree, the data vector of each node consists of d bits where each bit represents a
keyword in ∆, i.e., data[i] relates to wi. Consequently, if the ith data bit of an arbitrary internal node u is
set, i.e., if datau[i] = 1, then there is at least one path to a leaf node that contains a document including
keyword wi.

To search for a keyword wi, starting with the root node, the bit at position i has to be checked and if it is
set, the child nodes have to be processed in the same way. At some point, the set of all reached leaf nodes
storing all relevant document identifiers is returned. This search process takes O (|DDD(w)| · logn) time and
since subtrees can be processed individually, it can be done O

(
|DDD(w)|

p · logn
)

time if parallelised where p
indicates the number of processors (cores).

KRB Scheme

Once again, let DDD be a document collection, k be a security parameter and ∆ = (w1, . . . ,wd) be the
dictionary. The PRF F, the PRP P and the random oracle O are defined as following:

F : {0,1}k×{w1, . . . ,wd}→ {0,1}k

P : {0,1}k×{w1, . . . ,wd}→ {0,1}k

O : {0,1}k×{0,1}∗→{0,1}

Furthermore, λ denotes a keyword hash table of d (key,value) tuples where key is from {0,1}k and value
is the encryption of a boolean value.

Given these definitions and an indistinguishability under chosen-plaintext attack (IND-CPA) secure en-
cryption scheme SKE taking an additional randomness as input for the key generation Gen, the algorithms
involved in the KRB scheme are defined as following:

KeyGen(1k): Generate and output the master key K = (K1,K2) with K1,K2
$←− {0,1}k

BuildIndex(K,DDD): Given the master key K = (K1,K2) and the document collection DDD = (D1, . . . ,Dn):

1. Generate unencrypted tree: T ← BuildTree(DDD)

2. Generate keys per keyword: For 1≤ i≤ d : SKi← SKE.Gen(1k,F(K2,wi))

3. Build the encrypted KRB Tree: For all nodes v ∈ T with identifier id(v):

a) Instantiate and store two (k,d) keyword hash tables λ0,v,λ1,v at node v

b) For 1≤ i≤ d:

i. b← O(P(K1,wi), id(v))

ii. λbv[P(K1,wi)]← SKE.EncSKi(datav[i])

iii. Store a random string at λ|1−b|v[P(K1,wi)]

iv. Delete vector datav

4. Output T as index I

Trapdoor(K,w): Given the master key K and w, output trapdoor τw = (P(K1,w),SKE.Gen(1k,F(K2,w))
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Search(I ,τw): Given index I = T and the trapdoor τw = (tP, tSK) for keyword w: Let r be the root node
of T . Call SearchHelper(r), the algorithm SearchHelper(Node u) is defined as follows:

1. b← H(tP, id(u))

2. x← SKE.DectSK (λbu[tP])

3. if x = 0: return, else continue

4. if u is a leaf node add document identifier stored at leaf u to set of found identifiers, else call
SearchHelper(v),SearchHelper(z) with v,z being the children of u

Output the set of document identifiers that have been found by calling SearchHelper(r)

Additionally, the KRB scheme consists of update algorithms BuildUpdate executed clientside and
PrepareUpdate,ApplyUpdate run serverside defined as following:

PrepareUpdate(I ,op, i,C ): Given the index I = T , the type of operation op = {insert,delete}, the
identifier i of the document that shall be added or deleted and the set of ciphertexts C :

1. Perform the structural update on T in respect to the type of operation op and the document
identified by i

2. Let T (u) be the subtree of T that has to been accessed during the structural update of T , i.e.,
T (u) consists of all nodes that were needed to perform the update

3. Output τupdateHel p = (op, i,T (u))

BuildUpdate(K,τupdateHel p,Di): Given the master key K, the update information τupdateHel p =
(op, i,T (u)) and the document Di in case of an insertion:

1. If op = insert encrypt Di as Ci

2. Process the structural update on T (u) and let T ′(u) be the new subtree

3. For all nodes v ∈ T ′(u) that have new or modified ancestors compared to T (u):

a) Change node identifier from id(v) to id(v′)

b) Instantiate and store new two (k,d) keyword hash tables λ0,v,λ1,v at node v

c) For 1≤ i≤ d:

i. b← H(P(K1,wi), id(v′))

ii. λbv[P(K1,wi)]← SKE.EncSKi(datav[i]) where datav[i] is the updated vector

iii. Store a random string at λ|1−b|v[P(K1,wi)]

4. Output τupdate = (T ′(u),Ci)

ApplyUpdate(I ,τupdate): Given the current index I = T and the update token τupdate = (T ′(u),Ci):

1. Copy the new information from T ′(u) to already structural updated tree T

2. Update the set of ciphertexts C
3. Output T as index I
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BuildIndex This algorithm builds the inverted index I in form of a KRB tree for document collection
DDD . At first, an unencrypted KRB tree T is built upon the ordered file identifiers using the previously
discussed BuildTree algorithm. Afterwards, the information stored in the datav vector of each node
v ∈ T is protected as following: At first, two (k,d) keyword hash tables λ0,v,λ1,v are instantiated. For
each keyword, a bit b ∈ {0,1} is computed by a random oracle taking the pseudorandom permutation
of the keyword and the node identifier as inputs. This bit indicates whether λ0,v or λ1,v is used for the
current keyword-node combination. Therefore, for each keyword wi ∈ ∆, λbv stores in encrypted form
if the keyword wi is contained in some reachable leaf node, i.e., the encryption of datav[i] is stored at
a pseudorandom position in λbv. In the other hash table, i.e., λ|1−b|v, a random string is stored at the
same position. After this procedure has been performed for all keywords, the datav has been stored in
encrypted form split upon the two hash tables and has to be deleted now.

Trapdoor Regarding the search for a keyword, the bit b indicating which hash table is valid for the
specific keyword and the position in λbv has to be known. Therefore, the Trapdoor algorithm taking a
keyword w calculates the position tP← P(K1,w), which is also needed to recover b, and tSK ← F(K2,w)
needed as decryption key for the value stored at λbv[tP].

Search The Search algorithm receiving index I = T and trapdoor τw = (tP, tSK) searches the whole
document collection for keyword w. Starting with the root node of T , the bit b for the current node u
is recovered by using the random oracle O, i.e., b← O(tP, id(u)) where tP is the position information
from the trapdoor. Afterwards, the entry at position tP in λbu can be decrypted using tSK as key, i.e.,
x← SKE.DectSK (λbu[tP]). If x should be set, the keyword is contained in the current node u. As a reminder,
x indicates if there is at least one path to a leaf node that contains a document including keyword w. If
u is a leaf, its identifier is added the set of found ones. Otherwise the process is repeated for both child
nodes of u. At some point, all relevant leaf nodes have been visited and the algorithm returns the found
document identifiers.

BuildUpdate The BuildUpdate algorithm run clientside computes new keyword hash tables for all
nodes of the subtree T (u) generated by PrepareUpdate that have new or modified ancestors. For each
relevant node v, the two hash tables λ0,v,λ1,v are computed in the same way as during the index generation,
i.e., the encryption of datav[i] with 1≤ i≤ d is stored at a pseudorandom position in λbv where the bit b
is the output of the random oracle.

BuildUpdate Problem The issue with the textbook BuildUpdate algorithm as defined by Kamara et
al. is that for all nodes which have to be updated, the hash table computations are based on the updated
data vector datav. While datav is obviously available for leaf nodes representing new or updated files, it
has to be remembered that the original data vector has been deleted during the index generation and can
not be recovered efficiently. Hence, datav is not available for all inner nodes. For a better understanding,
a distinction whether a document is added or deleted can be made:

Add Document: If a document is added (or modified), the leaf node’s new (or updated) data vector can
be processed as usual. Afterwards, all hash tables from all nodes following the path from the parent
node to the root have to be updated. However, it is not possible to perform the update because it is
not known which keywords have been set by the other child node.

Delete Document: If a document is deleted, again all hash tables lying on path to the root node have to
be updated. Once again this is not possible since it is not known which keywords are still included
in the other subtree.
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In search for possible solutions, it is mandatory that the plaintext data vector has to be known. Conse-
quently, the simplest solution would be storing the KRB tree built by BuildTree in the first step of the
BuildIndex algorithm in encrypted form on the server and reuse it for updates.

4.4.3. Analysis

In the following, an analysis of the KRB scheme is provided.

Security

Investigating the KRB tree construction done by BuildIndex, it can be seen that all entries of the data
vector built by BuildTree are encrypted and stored at a pseudorandom position in one of the two hash
tables that has been chosen randomly. Additionally, a random string is stored in the unused hash table
at the same pseudorandom position achieving indistinguishability between the two entries. The position
within the table is calculated using PRP P receiving the keyword as input and the hash table is randomly
chosen in dependence of both the keyword and the node identifier. Therefore, even if two unencrypted
vectors datau,datav of nodes u,v are identical, the hash tables (λ0u,λ1u) and (λ0v,λ1v) are completely
different. Consequently, the number of keywords actually contained in DDD , the number of documents
including a keyword and similarities between documents are hidden.

As indicated by the leakage analysis of I , the only information an adversary can learn are the access
pattern and the search pattern. In the case of the KRB scheme, this property persists even if the queries
are generated based on the previous ones. Therefore and as proven by the authors, the KRB scheme
achieves the strong IND-CKA2 security, i.e., security in an adaptive setting.

Updates

While Kamara et al. provide an update algorithm, the need of additional knowledge in form of the initial
KRB tree has been argued. Assuming that all data vectors are available by using the presented or some
other possible problem solution, updates can be performed efficiently in O(logn) and could be parallelised
as well.

Efficiency

Considering the efficiency of the index generation, it can be seen that building the unencrypted KRB
tree using BuildTree takes O(d · n) time. Afterwards, for all nodes u ∈ T , the datau vector has to be
encrypted resulting in q encryptions and q random storage operations per node where q indicates the
number of keywords contained in the document (or combination of documents in case of an internal
nodes). Since the tree contains n leaf nodes and a red-black tree is a special form of a binary search
tree, I contains a total of 2n− 1 nodes. Consequently, the BuildIndex algorithm needs O(q · n) time.
Since each node can be processed individually, the index generation can be performed in O( q

p ·n) where
p indicates the number of processors (cores).

For trapdoor generation, Trapdoor takes O(1) time as usual. In the search process, all paths from the root
node to relevant leaf nodes have to be processed by decrypting a single entry in each hash table. Since the
maximum height of a red-black tree RB is O(log |RB|) with |RB| being the total number of nodes in the
tree [Cor+09], the KRB tree T consisting of 2n− 1 nodes has a height of O(logn). Therefore, Search
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needs O(|DDD(w)| · logn) time where |DDD(w)| accounts for the number of documents containing keyword w,
i.e., the number of paths that have to be searched. As shown by the authors, the search can be performed
in O

(
|DDD(w)|

p · logn
)

parallel search time.

Space Requirements

For each of the 2n−1 nodes, two (k,d) hash tables have to be stored. Therefore, the index I has a space
requirement of O(d · n). While this seems efficient in an asymptotic sense, it has to be considered that
each hash table entry is equal to the block size of the used cipher, resulting in huge indices in practice.

Summary

All together the KRB scheme achieves the strong adaptive IND-CKA2 security and sublinear search time
slightly above the optimal search time. Since this scheme also allows efficient updates, it is suitable for
various settings, as long as the significant space requirements can be tolerated.

4.5. OXT Scheme

Among other things, the work in [Cas+13] presents several SSE constructions. In this section, the Oblivi-
ous Cross-Tags (OXT) scheme supporting boolean queries is presented. Readers interested in the simpler
schemes, suitable for single keyword searches but less secure for boolean queries, are referred to the
original work.

4.5.1. Idea

The intention behind the OXT scheme is to provide a solution for searches over multiple keywords in
form of general boolean queries. For single keyword searches, a special data structure called tuple-set
or T-Set is used. In the T-Set, for each keyword a list of data tuples consisting of document identifier
and trapdoor information is stored. The concrete instantiation of a T-Set is realised as hash tables with a
fixed number of buckets where for each data tuple, both the bucket and the position within the bucket are
chosen randomly. For multiple keyword searches, an additional data set named X-Set is used to check
whether the found documents for the first keyword also satisfy the remaining query.

Even if the search query is of a boolean type and not just a single keyword, the OXT scheme achieves
sublinear search time. To be precise, it is proportional to the number of documents containing the least
frequent keyword which appears to be optimal, i.e., O(q · |DDD(w′)|) where q represents the number of
keywords in the query and w′ indicates the least frequent keyword. Additionally, the search process can
be parallelised. Regarding the security guarantees, the authors have adapted the IND-CKA2 security
definition for their construction meaning that OXT is proven to be secure in the adaptive setting.

4.5.2. Construction

The inverted index of the OXT scheme is based upon a conventional data set named X-Set and a special
purpose data structure called T-Set. Before discussing the actual scheme, the T-Set data structure is
discussed.
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T-Set

The T-Set storing a list of data tuples for each keyword is constructed as a kind of modified hash table
with B buckets each having a size of S. Therefore, a T-Set is an array of size B×S where all entries have
two fields called label and value. The elements in label have a length of k bits, the ones in value are
|s|+1 bits long where s is a string of variable length defined later. As an outlook, in the later presented
OXT scheme value will contain the encrypted document identifiers and information needed to process
boolean search queries.

In the following, let k be a security parameter, k′ be the key space of PRF F, ∆′ = (w1, . . . ,wd′) be the set
of distinct words in the document collection and T be an array such that for all w ∈ ∆′, T [w] contains a
list t = (s1, . . . ,s|T [w]|) of |T [w]| strings. The number of elements in the longest list is denoted by maxw,
i.e., maxw = |T [w]| where |T [w]| ≥ |T [wi]| for all wi ∈ ∆′ \{w}.
Additionally, the PRFs F,G and the random oracle O are defined as

F : {0,1}k′ × [1,maxw]→{0,1}k

G : {0,1}k×{w1, . . . ,wd′}→ {0,1}k′

O : {0,1}k→ [1,B]×{0,1}k×{0,1}|si|+1,

where si is the ith string in T [w].

Given these definitions, a T-Set instantiation (TSetSetup,TSetGetTag,TSetRetrieve) is defined as
follows:

TSetSetup(T,1k): Given array T and security parameter k:

1. Initialise array T Set of size B×S with fields label,value for each entry

2. Initialize array Free of size B where each entry is an integer set initialised to {1, . . . ,S}

3. Generate key KT
$←− {0,1}k

4. For all w ∈ ∆′:

a) stag← G(KT ,w)

b) t = T [w]

c) For i = 1, . . . , |t|
i. Let si be the ith string in t

ii. (b,L,K)← O(F(stag, i))

iii. If Free[b] should be an empty set, restart TSetSetup, otherwise choose j $←− Free[b]
and remove j from Free[b]

iv. Set bit β =

{
1 if i < |t|
0 if i = t

v. Store entry: T Set[b, j].label = L and T Set[b, j].value = (β||si)⊕K

5. Output (T Set,KT )

TSetGetTag(KT ,w): Given the key KT and w, calculate stag← G(KT ,w) and output it as trapdoor τw
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TSetRetrieve(T Set,τw): Given T Set and τw = stag:

1. Initialise t as empty list, β as 1 and counter i as 1

2. While β = 1:

a) (b,L,K)← O(F(stag, i))

b) Search for index j such that A[b, j].label = L

c) Let β be the first bit of A[b, j].value and s the remaining f(k) bits of A[b, j].value

d) Add s to the list t and increment i

3. Output list t

As can be seen in TSetSetup, at first for each keyword appearing in DDD a stag (abbreviation for ”small
tag”) is generated. For all |DDD(w)| documents containing the current keyword w, a random oracle is utilised
to calculate b indicating which bucket is used, L representing the label information and K defining the
round key needed for obfuscating the document identifier. Since the bucket is derived randomly, it could
happen that the specific bucket is already full, i.e., an overflow appears requiring a rerun of TSetSetup
with fresh keys. If there is at least one free slot available, the current string si – which will be a document
identifier and helper information in the OXT scheme – is concatenated to a bit β – indicating if si is the last
element of DDD(w) – and XORed with the round key to calculate the value field. Afterwards, these values
are stored in bucket b at a randomly chosen free slot. Consequently, the lists of strings are randomly
distributed over all buckets at random positions within the buckets.

Considering the TSetGetTag algorithm, the stag information acting as a trapdoor required to find entries
for a keyword is calculated. In the TSetRetrieve algorithm, T Set-entries are searched until an element
with β = 0 is found indicating that the end of the hidden list of strings has been reached. For this task, the
trapdoor τw = stag is utilised to recover the bucket b, the label L within the bucket and the round key K.
Using this values, the stored information can be recovered by searching for the corresponding entry with
label L in bucket b and XORing the found value with K. This procedure is repeated until the end of the
list is reached.

At this point, the probability of bucket overflows and other details are worth contemplating. As shown in
[Cas+13], the probability of a bucket overflow in any of the B bucket is at most B · (e/k)S which equals
q′x
S · (e1−1/x/x)S with q′ = ∑wi∈∆′ |DDD(wi)| and x being the space overhead. By adjusting the choices of B

and S, the probability that TSetSetup has to be restarted can be reduced to be negligible even for small
space overheads. Furthermore, it has to be noted that it is possible that a bucket contains two entries with
the same label L. Therefore, it could be the case that the wrong element is processed resulting in wrong
search results, but the probability of such an event can be estimated as BS22−k which is negligible for
practical instantiations since the key size is expected to be at least 128 bits.

To closure the discussion of the T-Set generation, it has to be mentioned that the T-Set could be used as
replacement for other inverted index constructions, for example in the SSE-1 scheme. In the following,
the OXT scheme based upon the T-Set construction is presented.
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OXT Scheme

Once again, let DDD be a document collection, k be a security parameter, ∆′ be the keywords contained
in DDD and SKE be an IND-CPA secure encryption scheme. The OXT scheme uses a T-Set instantiation
(TSetSetup,TSetGetTag,TSetRetrieve) as described before and two PRFs F,G defined as

F : {0,1}k×{0,1}k→{0,1}k

G : {0,1}k×Z∗p→ Z∗p,

where prime p is the order of a multiplicative written group G generated by g. Given these definitions,
the KeyGen and BuildIndex algorithms are defined as follows:

KeyGen(1k): Generate and output the master key K = (KS,KX ,KI ,KZ) with KS,KX ,KI ,KZ
$←− {0,1}k

BuildIndex(K,DDD): Given the master key K = (KS,KX ,KI ,KZ) and the document collection DDD =
(D1, . . . ,Dn):

1. Initialise T as empty array of d′ = |∆′| elements

2. Initialise XSet as empty set

3. For all w ∈ ∆′:

a) Initialise t to an empty list and counter c to 0

b) Calculate KE ← F(KS,w)

c) For all ind ∈DDD(w) in random order

i. Calculate xind← G(KI , ind), z← G(KZ ,w||c), y = xind · z−1(mod p)

ii. Calculate xtag = gG(KX ,w)·xind and append xtag to XSet

iii. Calculate e← SKE.EncKE (ind) and append (e,y) to t

iv. Increment counter c

d) Set T [w] = t

4. Build (T Set,KT )← TSetSetup(T,k)

5. Update master key K by appending KT

6. Output I = (T Set,XSet)

While KeyGen and BuildIndex follow the standard definition of a SSE scheme, the Search algorithm
requires an interaction between client and server. Additionally, the trapdoor generation is also done
in Search. Obviously it would be possible to provide a separate Trapdoor algorithm, but due to the
interactions between client and server, listing all tasks combined in one algorithm seems to be easier to
present and understand.
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Search(K, ŵ,I ): The client is given the master key K = (KS,KX ,KI ,KZ ,KT ) and a query ŵ =
(w1, . . . ,wq), the server is given the index I = (T Set,XSet)

1. Client: Calculate stag← TSetGetTag(KT,w1) and send stag to the server

2. Server: Receive stag, calculate t← TSetRetrieve(TSet,stag) and send |t| to the client

3. Client: Receive |t| and initialise xtoken as empty array of |t| elements

4. Client: For 1≤ c≤ |t|:
a) For 2≤ i≤ q: Calculate xtoken[c, i] = gG(KZ ,w1||c)·G(KX ,wi)

b) Set xtoken[c] = xtoken[c,2], ...,xtoken[c,q]

5. Client: Send trapdoor τŵ = xtoken to the Server

6. Server: Receive τŵ and for 1≤ c≤ |t|:
a) Retrieve (e,y) from the cth entry in t

b) If for all 2≤ i≤ q: xtoken[c, i]y ∈ XSet then send e to the client

7. Client: Calculate Ke ← F(KS,w1) and for all received e: Output identifier ind ←
SKE.DecKe(e)

BuildIndex Considering BuildIndex, it can be seen that the constructed index consists of two sets
called T Set and XSet. Intuitively, the T Set serves as inverted index for single keyword searches and the
XSet is used for processing queries of arbitrary length. To compute the array T as input for TSetSetup
building T Set, an iteration over all keywords in DDD and all documents containing the current keyword w
is required. Within this process, at first the current identifier ind is obfuscated as xind using Fp. Next,
a blind z ∈ Z∗p is derived based on the keyword and on a counter to ensure that blind values are always
different. Then, xind is blinded as y by applying z−1 and xtag (abbreviation for ”cross tag”) representing
an obfuscated keyword-identifier combination is calculated using a group operation and appended to
XSet. Finally, the current identifier ind is encrypted as e under a keyword specific key and the combination
(e,y) consisting of encrypted identifier and precomputed inverted blind value is appended to T [w]. After
all iterations are completed, TSetSetup is used to build the T Set and the index consisting of (T Set,XSet)
is returned.

Search In the Search algorithm including the trapdoor generation, the first keyword w1 is searched in
the T Set and all found documents are tested on containing the remaining q−1 keywords. Therefore, the
client generates the stag for the first keyword and the server responds with the amount of found identifiers
|t| by using TSetRetrieve. As a reminder, |t| corresponds to the number of documents containing w1,
i.e., |DDD(w1)|. Consequently, the client calculates for each found identifier q−1 trapdoors for all remaining
q−1 keywords and stores them into xtoken[c] with c∈ [1, |t|] being the document counter. Each individual
trapdoor is calculated using the obfuscated first keyword together with the document specific counter, the
obfuscated identifier xind and the keyword specific blind. After receiving the xtoken array, the server has
to check for all previously found documents matching w1 if the remaining keywords are also included.
Therefore, for each of these documents, the precomputed inverse blind y has to be retrieved and applied
to document related trapdoors contained in xtoken. If all q− 1 resulting values are included in XSet,
the document contains all q keywords and the found decrypted identifier is returned to the client for
decryption. Since it might not be clear why the search process is correct at first glance, we present an
example.
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Example 4.1 (OXT Search). Let yc = xind ·z−1
c be the inverted blind value for the cth document containing

keyword wi. The corresponding xtag is computed as xtagwi
= gG(KX ,wi)·xind and appended to XSet. During

the search process, token xtoken[c, i] = gzc·G(KX ,wi) for keyword wi is calculated. The following equation

xtoken[c, i]yc = gzc·G(KX ,wi)·yc

= gzc·G(KX ,wi)·xind·z−1
c

= gG(KX ,wi)·xind

= xtagwi

shows that xtagwi
is recovered correctly by the server and can be tested for occurrence in XSet.

4.5.3. Analysis

In this section, the OXT scheme is analysed.

Boolean Queries

The OXT scheme is able to process arbitrary boolean search queries. The construction provided so far
tests if all keywords of a query are contained, i.e., a simple conjunctive query. This method can be
extended for non-existence of keywords by testing if a keyword is not in XSet. To be precise, the server
receives a boolean formula and inserts true or false depending whether a keyword is contained in XSet
or not. By applying this technique, arbitrary boolean queries can be processed as long as there is at least
one non-negated term needed for TSetRetrieve. For the case of only negated terms, a special field
containing all stored documents can be introduced.

Security

Starting with the T-Set construction done by TSetSetup, it can be seen that all input strings are stored in
random buckets at random positions in obfuscated form. The bucket and the position within the bucket
are calculated using a random oracle receiving the obfuscated stag – which is itself a obfuscation of
the keyword – as input. Consequently, the number of keywords actually contained in DDD , the number of
documents containing a keyword and similarities between documents are hidden. The only information
leaked from the T-Set alone is the total number of entries, which is equal to q′ = ∑wi∈∆′ |DDD(wi)| being the
total number of keywords in DDD .

Considering the OXT scheme, it can be seen that the servers possibilities to reuse and combine trapdoors is
limited. Since the trapdoors for the XSet are constructed in dependence of the first keyword, calculating
the intersection of trapdoors built for the XSet is impossible. As an example, given queries (w1,w2)
and (w′1,w

′
2), calculating the intersection of documents matching (w2,w2′) is prevented. Regarding the

intersection of first keywords, it is possible to compute the intersection of identifiers if two queries have
different first keywords but same remaining keywords. Sticking to the previous example, the intersection
of documents matching (w1,w′1) can be computed if w2 = w′2. In any case, the knowledge whether two
queries have the same first keyword and the number of documents matching the first keyword is always
leaked. As final remark, if a query consists of q keywords, the intersection of documents containing
(w1,wi) for all i ∈ [2,q] can be calculated if the order of trapdoors is not permuted for all documents.
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As indicated before, the only information an adversary can learn are the access pattern, the search pattern
and the conditional intersection pattern emerging from multiple keyword queries. Consequently and as
proven by the authors, the OXT scheme achieves the strong IND-CKA2 security adapted for the setting
of multiple keyword queries.

Updates

Since the list of identifiers matching a specific keyword is split randomly across all buckets and positions
within the buckets, updating the index can not be done without iterating over the lists. Considering the
case of adding new documents, new elements have to be added to the lists and the last element of the
affected lists have to be updated since the bit – indicating that the end of the list is reached – has to be
changed. In case of deleting documents, the elements in the respective keyword list have to be rebuilt
after the found identifier, since the counter has changed for the remaining entries. Consequently, the
update can be run in O(|ŵ| · |DDD(ŵ)|) time where ŵ indicates the keywords in the document affected by
the update.

Efficiency

In the BuildIndex algorithm, for each keyword-identifier combination the entries for T Set and XSet
have to be computed. Afterwards, the T Set is calculated by TSetSetup which creates an entry in T Set
for each input string. Therefore, the index generation can be done in O(q′) time where q′ denotes the sum
over all documents of the number of distinct keywords in each document, i.e., q′ = ∑wi∈∆′ |DDD(wi)|. Since
both the BuildIndex algorithm and the involved TSetSetup algorithm can compute entries individually,
the index generation can be computed in O( q′

p ) parallel time where p indicates the number of processors
(cores).

If the search query consists of more than one keyword, it has to be stressed that the expected least frequent
keyword has to be used as first keyword to reduce the number of found identifiers. Consequently, the
number of trapdoor generations and equality tests can be minimised by choosing the first keyword wisely.
Therefore, the authors recommend to store some information to differentiate whether a keyword is more
or less frequent, for example by using a Bloom filter. Considering the actual search process for a query of
q keywords, TSetRetrieve has to process |DDD(w1)| elements and afterwards q−1 trapdoors and equality
tests have to be done for all found identifiers. Consequently, Search needs O(q · |DDD(w′)|) time for a query
of q keywords where w′ indicates the least frequent keyword. Since both the trapdoor generations and the
equality tests can be parallelised, Search needs O( q·|DDD(w′)|

p ) parallel search time where p indicates the
number of processors (cores) available on client and server. As final thought, for both BuildIndex and
Search some expensive operations are involved during processing the XSet, limiting the performance in
practice.

Space Requirements

Examining the space requirements, it can be seen that the index consists of T Set and XSet. As already
mentioned, T Set contains q′ = ∑wi∈∆′ |DDD(wi)| elements. In XSet, q′ entries are stored where the entry
size depends on the choice of the group. Therefore, the index I has an asymptotic space requirement of
O(q′).
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Summary

All in all the OXT scheme achieves the strong adaptive IND-CKA2 security and optimal search time
for single keyword queries. Furthermore, this scheme supports arbitrary boolean queries in search time
proportional to the number of documents related to the least frequent keyword which appears to be asymp-
totically optimal as well. Since updates can be performed at moderate costs and the space requirements
seem to be reasonable, the overall performance provided by the OXT scheme makes it a suitable choice
for a wide range of practical applications.
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Chapter 5
Implementation and Testing Environment

In the practical part of this thesis, the previously presented Searchable Symmetric Encryption (SSE)
schemes have been implemented to evaluate their usability in practice. This chapter describes the imple-
mentation and test setting used to evaluate the performance.

5.1. Implementation

In order to realise a platform independent implementation that could be integrated into existing frame-
works for building secure cloud storages like Archistar1, Java

TM
has been chosen as programming lan-

guage. As implementation of the required cryptographic functionality, the IAIK Provider for the Java
Cryptography Extension (IAIK-JCE)2 including the IAIK ECCelerate

TM 3 add-on is used as cryptographic
provider. To keep the implementation free from dependencies, no other external Java

TM
libraries are used.

5.1.1. Secure Index Scheme

To determine the Bloom filter parameters r (number of hash functions) and m (size of the Bloom filter),
a desired false positive rate can be specified (set to 0,01 in the test setting). Even though additional
blinding values were applied to the Bloom filter exactly as in the scheme’s description, no false positives
occurred during the tests. As pseudorandom function (PRF) involved in the Bloom filter construction,
F is implemented as HMAC-SHA256 (keyed-hash message authentication code (HMAC) using Secure
Hash Algorithm (SHA) as cryptographic hash function with a hash size of 256 bits). The Bloom filter is
based upon an available implementation4 where unused parameters have been removed.

1ARCHISTAR – A framework for secure distributed storage. GNU General Public License. URL: http://archistar.at
(Accessed 10. December 2016)

2IAIK-JCE. URL: http://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/JCA_JCE (Accessed 10. Decem-
ber 2016)

3IAIK ECCelerateTM. URL: http://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate (Accessed
10. December 2016)

4Java
TM

implementation of a Bloom filter by Magnus Skjegstad. URL: https://github.com/MagnusS/Java-BloomFilter
(Accessed 10. December 2016)
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5.1.2. PPSED Scheme

The PRFs F and G involved in the masking computation are implemented as HMAC-SHA256, where
the least significant output byte of G is XORed with 0x01. The pseudorandom permutation (PRP) P,
computing the position of a keyword within the index, provides a mapping from an integer to another
integer of the same range, i.e., from [1,d] to [1,d]. For implementing P, typical block cipher modes are
not suitable since the output would be a multiple of the block size and a modulo reduction is not possible
because it would invalidate the bijection resulting in a PRF instead of a PRP. In practice, it would be
possible to extend d to the block size (128 bits in case of the Advanced Encryption Standard (AES))
without reduction, but this would result in significantly larger index sizes because d� 2128.

The first implemented solution is using a Knuth shuffle [Knu97], an algorithm taking a set of integers
as input and returning them in shuffled order. To ensure the order is reproducible but not predictable,
a secure random number generator initialised with key Ks is used. While this solution produces a valid
PRP, the permutation has to be recalculated for each Trapdoor invocation or stored and safeguarded
locally.

The second implemented approach adapts an available Java
TM

implementation5 of AES in FFX6 mode
[BRS10], a mode for Format-Preserving Encryption (FPE) to achieve identical plaintext and ciphertext
formants, i.e., the encryption of a n-bit number results in another n-bit number. While AES-FFX does
not allow mapping integers of exactly same range, it reduces the space overhead since the number of
digits stays the same. As a result, a dictionary containing d words results in an index of 10dlog10 de bits
instead of d bits compared to the paper version of the Privacy Preserving Keyword Searches on Remote
Encrypted Data (PPSED) scheme. To optimise the index computation, the masking is calculated for all
used pseudorandom positions and the masking of all unused positions (introduced by the index length
expansion) is set randomly. Therefore, all additional index bits are set randomly avoiding unexpected
information leakage.

In the test setting, AES-FFX is selected as PRP P to minimise the difference between the scheme’s
original definition and implementation.

5.1.3. SSE-1 Scheme

In the SSE-1 scheme, the PRF F computes a blinding value that is XORed with a look-up table entry to
obfuscate it. Since the output of F has to be exactly the same size as the look-up table entry, using HMAC-
SHA256 in a straightforward way as previously is not possible because the entry’s size would be limited
resulting in a low upper limit of the supported size of DDD . Instead, a Password-Based Key Derivation
Function 2 (PBKDF2) [Nat10], which applies a PRF several times to calculate a key of requested length,
could be used. Therefore, F is implemented as PBKDF2 applying HMAC-SHA256 as PRF.

In the paper version of the scheme, the position of the look-up table entry is calculated by PRP P where
the output size depends on the maximum keyword length in DDD . By using AES in Cipher Feedback (CFB)
mode in the implementation, the output is a multiple of 128 bits resulting in a slight space increase of the
look-up table compared to the original version.

Finally, PRP Q computing the next node position in the array defines a mapping from an integer to an
integer of the same range. Following the same reasoning as in the PPSED scheme, Q is implemented
as AES-FFX avoiding a space increase of the index since a Java

TM
int should be used anyway. For

encrypting the nodes, AES-CFB is used as symmetric encryption scheme SKE.
5Java

TM
implementation of AES-FFX by Michael Tandy. URL: https://github.com/michaeltandy/

java-ffx-format-preserving-encryption (Accessed 10. December 2016)
6The name FFX indicates Format-preserving, Feistel-based encryption with multiple parameter parameter choices [BRS10].
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5.1.4. KRB Scheme

The keyword red-black (KRB) tree serving as index is based upon a red-black tree implementation from
Sedgewick and Wayne7. In contrary to the paper version of the scheme, the plaintext data vectors are
never part of the tree but only stored temporary in a separate data structure. Therefore, the KRB tree
never contains any plaintext keyword information superseding the need to delete the plaintext data vectors
preventing accidental information leakage.

The PRF F producing the input for the round key generations has a fixed output size of k bits, matching
the key length of the symmetric encryption scheme SKE that is used to encrypt the plaintext vectors. As
before, SKE is realised as AES-CFB. Consequently, PRF F is implemented as HMAC-SHA256, since k
can not exceed 256.

The PRP P calculating positions within the hash table has the same key and output size, ideally suiting
the straightforward usage of AES-CFB.

As final mentionable design decision, the random oracle O determining the active hash table for the
current keyword-node combination is implemented as SHA256 where the least significant output byte is
XORed with 0x01.

5.1.5. OXT Scheme

For a better readability, the implementations of the T-Set and the actual Oblivious Cross-Tags (OXT)
scheme are discussed separately.

T-Set

The T-Set parameters B (number of buckets) and S (size of each bucket) are calculated by a trial-and-error
approach using a fixed required overflow probability (set to 0,001 in the test setting) and space overhead
(set to 1,1 in the test setting). In the implemented algorithm, S is fixed and B is calculated accordingly. If
the parameters lead to an estimated overflow probability not satisfying the desired one, S is increased in
dependence of the current value (the increase scales with S) and the procedure is repeated. If an overflow
should occur during the T-Set setup, the number of contained keywords is increased by ten percent for
the retry to increase the probability of success.

As PRFs involved in the T-Set construction, the PRF G calculating the stag used as trapdoor and the PRF
F using the stag and current position for calculating the random oracle input are both implemented as
HMAC-SHA256. Per definition, the random oracle O outputs three values, namely b (the bucket), L (the
label) and K (the round key used for blinding the entry). The random oracle is implemented as SHA256,
where for each value a different fixed input prefix is used and the output is converted as intended. Since
the round key K has to be of variable size, i.e., exactly one bit longer than the length of the current entry’s
value, a SecureRandom seeded with the oracle output is used to produce a variable length round key.

7Robert Sedgewick and Kevin Wayne: Algorithms, 4th Edition, Section 3.3 Balanced Search Trees. URL: http://algs4.cs.
princeton.edu/33balanced/ (Accessed 10. December 2016)
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OXT Scheme

In the OXT scheme, the PRF F calculating the round key is implemented as PBKDF2 applying HMAC-
SHA256 to support arbitrary key sizes. For the choice of the group, the prototype described in the original
work [Cas+13] uses elliptic curves. Following the authors choice and fitting to the security level provided
by HMAC-SHA256 and AES-CFB (with 128 bits key length), the National Institute of Standards and
Technology (NIST) P-224 elliptic curve being a recommended curve over Fp with a prime size of 224
bits is used [Nat13]. For PRP P encrypting the current keyword, AES-CFB is used where the output
is reduced modulo the curve order. Once again, the symmetric encryption scheme SKE encrypting the
document identifiers is implemented as AES-CFB.

5.2. Parallel versus Sequential Execution

In our implementation, all algorithms are executed sequentially. However, the index generation of all
schemes and the keyword search of both forward index-based SSE schemes (secure index and PPSED
scheme), the KRB scheme and the OXT scheme could be parallelised. Consequently and apart from the
Trapdoor algorithms, the Search algorithm of the SSE-1 scheme is the only one that has to be executed
sequentially. Therefore, we believe that a sequential execution of all tests provides comparable results, but
it has to be stressed that the search performance of the SSE-1 scheme would not profit from a high-grade
parallelisation.

5.3. Test Setting

In this section, we present the setup for our test environment.

5.3.1. Document Collections

For testing the implemented schemes, the Reuters-21578 collection8 being free to use for research pur-
poses9has been selected as input for defining self-created document collections.

According to the documentation9, the Reuters-21578 collection - in the following called Reuters collec-
tion – contains information that appeared on the Reuters newswire in 1987. Over the years, the collec-
tion’s quality has been steadily improved with the objective of providing a standard test collection for text
categorisation and machine learning classification tasks.

In the current version, a piece of news is specified by several attributes, for example date, title and message
text. While the title can be taken as document identifier and the message text as document content, the
associated keywords have to be extracted from the available information.

For this keyword extraction, the Moby Part-of-Speech word lists10 have been used. Among other things,
the Moby project contains several word lists ordered by word classes such as nouns, adverbs and adjec-
tives.

8The Reuters-21578, Distribution 1.0 test collection is available from http://www.daviddlewis.com/resources/
testcollections/reuters21578. (Accessed 10. December 2016)

9Readme of the Reuters-21578 including the copyright notice. URL: http://www.daviddlewis.com/resources/
testcollections/reuters21578/readme.txt (Accessed 10. December 2016)

10The Moby project created by Grady Ward. URL: http://icon.shef.ac.uk/Moby/ (Accessed 10. December 2016)
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In order to generate simple keywords needed for constructing meaningful test queries, only nouns are
allowed as keywords. Consequently, the message texts of all documents in the Reuters collection are
scanned for nouns which are used as keywords for the respective document. Before the scanning task,
all words in the document content and all words in the Moby noun list are converted to lowercase. This
lowercase conversion ensures a consistent keyword formatting by reducing unintended keyword diversity
due to formatting issues in the Reuters collection.

For a better understanding of the difficulties of keyword extraction, the following example showing raw
input data and the generated keywords is presented:

• Title

ICO PRODUCERS TO PRESENT NEW COFFEE PROPOSAL

• Message Text

International Coffee Organization, ICO,producing countries will present a proposal
for reintroducingexport quotas for 12 months from April 1 with a firmundertaking
to try to negotiate up to September 30 any futurequota distribution on a new
basis, ICO delegates said. Distribution from April 1 would be on an unchanged
basis asin an earlier producer proposal, which includes shortfallredistributions
totalling 1.22 mln bags, they said. Resumption of an ICO contact group meeting
with consumers,scheduled for this evening, has been postponed until tomorrow,
delegates said. Reuter&#3;

• Extracted Keywords

coffee, organization, countries, proposal, quotas, months, april, september,
distribution, basis, producer, resumption, meeting, evening

It is easy to see that the Reuters collection still has some formatting issues making a high quality keyword
extraction a difficult task. While the simple approach of taking all nouns contained in the message text
and the English Moby nouns list could clearly be optimised, we believe that the so obtained quality is
sufficient for this thesis.

In order to test all implemented schemes with document collections of different sizes, the keyword ex-
traction is done for all news in the Reuters collection. However, only a limited amount is used for the
document collections. As shown in Table 5.1, the tests have been performed with document collections
containing between 1000 and 10000 documents, where all documents of smaller collections are contained
in all larger collections, i.e., Reuters1000 is part of Reuters2000 and so on.

In the rest of this thesis, the Reuters1000, Reuters5000 and Reuters10000 representing a small, medium
and large collection are used for analysing the search performances. For the remaining document col-
lections, all details such as queries and search performances are listed in the appendix (see Appendix B
and C).

5.3.2. Queries

To cover a wide spectrum of practical situations, single and multiple keyword queries resulting in all kind
of output sizes have been tested. Since finding multiple keyword queries for smaller document collections
is a time-consuming task and the OXT scheme is the only tested one supporting non-naive multi-keyword
queries, the maximum query length is restricted to three keywords.
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Collection Name Number of Documents Number of Keywords Size [MB]
Reuters1000 1000 2273 0,845
Reuters2000 2000 3176 1,663
Reuters3000 3000 3853 2,470
Reuters4000 4000 4336 3,318
Reuters5000 5000 4794 4,278
Reuters6000 6000 5179 5,124
Reuters7000 7000 5503 5,955
Reuters8000 8000 5835 6,909
Reuters9000 9000 6126 7,812
Reuters10000 10000 6398 8,757

Table 5.1.: Document Collections.

Search Query Reuters1000 Reuters5000 Reuters10000
government 91 405 889

loss 90 448 887
securities 56 371 758
meeting 53 262 569
industry 47 241 503
countries 33 191 441
payments 31 153 310
proposal 23 132 253

brazil 21 97 183
coffee 17 62 102

shipment 8 46 80
strategy 7 37 83

hardware 2 12 22
cancer 1 6 13

laboratory 0 8 14

Table 5.2.: Document Matches for Single Keyword Queries.

Search Query Reuters1000 Reuters5000 Reuters10000
loss, year 54 (90,269) 261 (448,1376) 509 (887,2759)

government, year 44 (91,269) 182 (405,1376) 392 (889,2759)
industry, year 27 (47,269) 117 (241,1376) 251 (503,2759)

offering, securities 14 (43,56) 70 (212,371) 144 (453,758)
meeting, agreement 12 (53,85) 54 (262,402) 121 (569,846)

brazil, countries 8 (21,33) 30 (97,191) 59 (183,441)
crisis, payments 8 (13,31) 23 (50,153) 43 (109,310)

petroleum, energy 1 (18,12) 22 (89,110) 41 (195,252)
law, proposal 1 (11,23) 8 (89,132) 10 (170,253)

strategy, failure 1 (7,8) 4 (37,39) 5 (83,75)

Table 5.3.: Document Matches for Two Keyword Queries.
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As shown in Table 5.2, several single keyword queries have been selected. Quite obviously, the aim
behind the keyword selection is providing a uniform distribution of the output sizes.

Considering the two keyword queries shown in Table 5.3, where the values in parentheses define the num-
ber of documents found for the single keywords, it has to be noted that the keywords within the query are
ordered by frequency, i.e., the least frequent keyword is the first one. In two of the queries (”petroleum,
energy” and ”strategy, failure”) the least frequent keyword changes depending on the document collec-
tion, but the keyword order is fixed in a way that the order is optimal for the majority of collections. The
ordering of keywords is also applied to the three keyword queries shown in Table 5.4

Search Query Reuters1000 Reuters5000 Reuters10000
growth, government, year 12 (47,91,269) 39 (207,405,1376) 75 (446,889,2759)

investment, government,year 10 (63,91,269) 26 (262,405,1376) 64 (547,889,2759)
creditor, payments,debt 9 (16,31,74) 17 (44,153,390) 33 (81,310,774)

quotas, meeting,agreement 8 (16,53,85) 12 (51,262,402) 21 (78,569,846)
brazil, debt, president 7 (21,74,64) 19 (97,390,375) 36 (183,774,783)

growth, investment, government 6 (47,63,91) 20 (207,262,405) 37 (446,547,889)
volume, trading, year 5 (12,48,269) 12 (73,241,1376) 22 (142,511,2759)

outlook, economy, growth 4 (12,32,47) 11 (53,130,207) 21 (94,280,446)
dividend, assets, earnings 3 (32,28,35) 3 (165,158,201) 5 (346,368,429)
dollar, system, industry 2 (34,51,47) 3 (155,225,241) 3 (375,449,503)

Table 5.4.: Document Matches for Three Keyword Queries.

5.3.3. Optimal Keyword Order

Due to using an optimal keyword order within each query, the question arises how the keyword order
can be computed in practice. Considering the general case of documents containing free text, using an
existing frequency list (i.e., a list of all words and their frequency) for the respective language seems to
be suitable. Since the vocabulary is highly depended on the context, this approach is only practical if a
specific frequency list is available. Consequently, an additional data structure storing information about
the keyword distribution is needed.

During the index generation, the client can easily obtain the frequency of each keyword in the document
collection. Following the ideas from [Cas+13], several space-efficient data structures (for example Bloom
filters) can be used to store sets of keyword with different frequencies. For a better understanding, an
example using the Reuters10000 collection, whose keyword frequency and Bloom filter sizes (with a
desired false positive rate of 0,01) are shown in Table 5.5, is presented.

Document Matches Keywords Bloom Filter Size [kB]
≥ 500 23 0,02
≥ 200 101 0,13
≥ 100 226 0,28
≥ 50 423 0,53
≥ 25 762 0,96
≥ 10 1498 1,89

Table 5.5.: Keyword Frequency for Reuters10000.
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In the Reuters10000 collection, about 77% of the keywords are contained in less than 10 documents. By
using a few Bloom filters storing the sets of keywords contained in at least 10, 25, 50, 100, 200 and 500
documents, a total space of less than 4 kilobytes is needed. Consequently, the frequency of a keyword
can be estimated efficiently and using the nearly optimal keyword order in the experiments seems to be
reasonable.

5.3.4. Environment

All test have been performed using the same physical device whose hardware specification and software
configuration is shown in Table 5.6.

Item Details
Processor Intel R© Xeon R© X5690 @ 3.47GHz
Memory 192 GB RAM
Operating System Debian GNU/Linux Stretch (testing status)
Kernel Version 4.6.4-1 (2016-07-18)
Java

TM
Version 1.8.0 92 (64-Bit Server VM)

Table 5.6.: Hardware and Software Configuration.
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Chapter 6
Experimental Results

In this chapter, the experimental results are discussed. For all tests and schemes, the security parameter k
has been set to 128, i.e., a key length of 128 bits is used.

6.1. BuildIndex Performances and Index Sizes

The results of all BuildIndex algorithm represent the average of 50 executions. As can be seen in
Table 6.1 and Figure 6.1, there are tremendous differences in the schemes index sizes and building per-
formances.

Secure Index Scheme: By using space efficient Bloom filters for the index construction, the forward
indices are of small size resulting in a space efficiency inverse proportional to the number of docu-
ments. Since the few1 PRF computations are the only time relevant operation, forward indices can
be calculated extremely efficient resulting in an outstanding overall index generation performance.

PPSED Scheme: This scheme maps each keyword in ∆ to a bit in the forward index, producing an
overall index being a lot smaller compared to the other ones. While the pseudorandom mapping
can be pre-calculated efficiently, all keywords have to be tested in all documents and an individual
masking has to be calculated. Due to the extensive amount of operations, the forward index calcu-
lation is time-consuming resulting in a slow overall index generation performance proportional to
the number of documents.

SSE-1 Scheme: Starting with array A, both the index size and generation time depend on the number
of nodes, where the number of nodes depends on the total number of keywords in the document
collection. In contrary, for the look-up table T the size of the dictionary is important. Since the
used document collections are structurally related, both the index size and generation time show
the expected linear dependency of the document collection size. In comparison to other schemes,
it has to be noted that the SSE-1 construction hides q′ and the number of keywords contained in DDD
by blinding A and T . Without this blinding, the index generation time would be significantly faster
(but still slower than the secure index scheme) and the index sizes would be a lot smaller (but still
larger than the secure index scheme).

1For the desired false positive rate of 0,01 used in the test setting, the number of hash functions r = d− log2(0,01)e= 7.
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KRB Scheme: In the KRB scheme, each node contains two hash tables both having an encrypted entry
for all keywords in ∆. Since the hash table key needs k bits and the value is of block size length,
each hash table needs |∆| · 128 · 128 bits in the test setting2. Since the total number of nodes is
2n− 1, the KRB scheme produces indices of tremendous size. Moreover, the index generation
involves a lot of encryptions resulting in a slow index generation performance.

OXT Scheme: The index construction stores two small size entries for each document-keyword combi-
nation without the need to add any blinding values. Consequently, the index sizes are much smaller
compared to other inverted index schemes and scale very well with increasing amount of docu-
ments. Since the total number of involved computations is very low, the index can be build very
efficiently, even though time consuming asymmetric cryptography is involved.

Document Collection Secure Index PPSED SSE-1 KRB OXT
Reuters1000 2,915 1,254 117,116 236,533 3,191
Reuters2000 8,103 2,507 230,456 661,218 6,331
Reuters3000 14,714 3,761 342,235 1203,196 9,420
Reuters4000 22,053 5,015 459,981 1805,231 12,602
Reuters5000 30,454 6,269 573,330 2495,532 16,279
Reuters6000 39,451 7,523 711,434 3236,062 19,517
Reuters7000 48,884 8,777 826,690 4011,530 22,672
Reuters8000 59,215 10,031 959,989 4861,622 26,279
Reuters9000 69,908 11,285 1086,270 5742,012 29,748

Reuters10000 81,114 12,539 1217,668 6663,235 33,323

Table 6.1.: Index Size [MB].
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Figure 6.1.: BuildIndex Performances.

2If stored to disk, for each node it is sufficient to store each hash table key just once since the hash tables differ only in the values.
This optimisation has been applied to the indices shown in Table 6.1
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6.2. Single Keyword Searches

To obtain meaningful results, all experiments represent the average of 100 executions. Obviously, this
test procedure has also been applied to the later discussed multiple keyword queries.

As can be seen in Figure 6.2, there already exist search time differences for single keyword queries on a
rather small document collection. With increasing amount of documents resulting in search performances
shown in Figures 6.3 and 6.4, the characteristics of the schemes become more evident.

First of all, the search performance of the forward index-based SSE schemes (secure index and PPSED
scheme) is proportional to the number of documents, as the example of the PPSED scheme taking about
20 ms for Reuters5000 and 40 ms for Reuters10000 illustrates.

In contrary, the search performance of the inverted index-based SSE schemes (SSE-1, KRB and OXT
scheme) is proportional to the number of documents containing the keyword. Since the output sizes of
the search queries are almost proportional to the number of documents, the search performances of all
schemes scale quite similar.

Secure Index Scheme: For each document, a fixed amount of HMAC-SHA256 computations are re-
quired to compute the codeword. By reason of the non-occurrence of false positives in the applied
test setting, the amount of bits that have to be tested decreases if a codeword is not contained in the
Bloom filter. However, the HMAC-SHA256 computations are the far more time consuming task,
resulting in a search performance being almost constant in the number of documents. Since the
number of computations is much higher compared to other schemes, the inefficient search perfor-
mance can not compete with any of them.

PPSED Scheme: Since each keyword is related to one index bit, the search performance solely de-
pends on the number of documents resulting in almost constant search times for each collection.
Consequently, the forward index construction limits the scheme’s usability for larger document
collections.

SSE-1 Scheme: The search performance clearly depends on the number of found documents, since for
each one an encrypted node in the hidden linked list has to be processed. Since iterating through
the linked list is time expensive, the subsequent schemes outperform the SSE-1 scheme if more
nodes have to be processed, i.e., more documents are found.

KRB Scheme: Depending on the number of found documents, only a part of the tree has to be searched.
Since only one entry in each relevant node has to be processed, the total number of computations
is lower compared to other schemes resulting in a superior search performance.

OXT Scheme: In the case of single keyword searches, the X-Set does not need to be accessed but only
the T-Set is used. Consequently, time consuming elliptic curve computations are avoided, which
results in an excellent search performance.
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Figure 6.2.: Search Performance Reuters1000: Single Keyword Queries.
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Figure 6.3.: Search Performance Reuters5000: Single Keyword Queries.
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Figure 6.4.: Search Performance Reuters10000: Single Keyword Queries.

6.3. Two Keyword Searches

Since forward index-based SSE schemes process each document individually, they reduce the amount
of keyword searches in multiple keyword queries because there is no need to continue searching the
document once a keyword is not contained. Therefore, for both forward index-based schemes, the search
performance is based on excluding documents quickly which is improved by using the optimal keyword
order within each query. As can be seen by the comparison of Figure 6.7 and Figure 6.8 (having a
logarithmic scale), if the keywords are in the suboptimal order, i.e., the most frequent keyword is the first
keyword in the query, the search performances of the forward index-based schemes and the OXT scheme
are affected. Following this finding, all tests are done using optimal ordered keyword queries.

In the case of conventional inverted index-based schemes (SSE-1 and KRB scheme), the index con-
structions do not allow reducing the document collection efficiently. Consequently, two separate single
keyword queries are executed and the intersection of the result sets is calculated optimally, i.e., the smaller
result set is fixed for the computation.

Secure Index Scheme: Since a fixed amount of HMAC-SHA256 operations are required to compute
the codeword of a keyword, the scheme benefits from optimal keyword order since total number
of HMAC-SHA256 computations can be reduced. While the optimal ordering affects the practical
performance for queries containing a highly frequent keyword, the total amount of operations is
much higher compared to other schemes resulting in an inefficient search performance regardless
of the keyword order.

PPSED Scheme: Quite similar to the single keyword case, the PPSED scheme achieves almost con-
stant search times depending mostly on the number of documents. While the number of keyword
tests is reduced as in the secure index scheme, the performance impacts are insignificant since the
number of bits that have to be checked is reduced by at most one. Consequently, the keyword order
is not of a major concern. With increasing number of documents, the difference to the fast KRB
scheme is reduced, but in comparison to the KRB scheme providing the adaptive indistinguishabil-
ity notion (IND-CKA2), the PPSED leaks more information and achieves the weaker non-adaptive
indistinguishability notion (IND-CKA1).
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SSE-1 Scheme: Due to treating a multiple keyword query as multiple single keyword queries, the same
reasoning as in the single keyword case applies. Since the three queries with the most overall doc-
uments found include the very frequent keyword ”year” included in about 27%3 of all documents,
these queries result in a moderate search performance.

KRB Scheme: Similar to the SSE-1 scheme, the reasoning of the single keyword queries can be applied.
While the search time of each single keyword query increases proportional to the number of found
documents, the overall performance is still excellent due to the outstanding single keyword search
times.

OXT Scheme: The OXT scheme uses the first keyword, which is expected to be the least frequent one,
to search for possible document identifiers in the T-Set whose containment of the second keyword is
then checked using the X-Set. Processing the X-Set is the performance limiting factor in practice,
since computations on the NIST P-224 elliptic curve are far more time consuming compared to
the simple HMAC-SHA256 operations involved in the T-Set processing. Consequently, the overall
search time highly correlates to the X-Set involvement, which itself depends on the output size of
the T-Set search. Therefore, the search performance depends on the number of documents found
for the first keyword, but is independent on number of documents found for both keywords.

To provide an example, the queries q1 =”meeting, agreement” and q2 =”industry, year” are consid-
ered for Reuters10000. While executing q1 returns 121 documents and q2 outputs 251 documents,
q1 needs 514 ms where q2 takes only 453 ms. Since the keyword ”meeting” is contained in 569
documents and ”industry” in 503, it is easy to see that the search time solely depends on the first
keyword. Therefore, the second keyword and the number of found documents for the query are
entirely irrelevant regarding the search time.

As final note toward the OXT multiple keyword performance, it has to be emphasised that the
comparison with schemes leaking all single keyword results is delusive. If the OXT scheme would
leak all single keyword results by using only the T-Set, the search performance would be similar to
the KRB scheme, as the single keyword results have proven.
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Figure 6.5.: Search Performance Reuters1000: Two Keywords per Query.

326,9% in Reuters1000; 27,52% in Reuters5000 and 27,59% in Reuters10000
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Figure 6.6.: Search Performance Reuters5000: Two Keywords per Query.
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Figure 6.7.: Search Performance Reuters10000: Two Keywords per Query.
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Figure 6.8.: Search Performance Reuters10000: Two Keywords per Query with Most Frequent Keyword First.

6.4. Three Keyword Searches

As can be seen in Figures 6.9, 6.10 and 6.11, the outcome of the three keyword queries shows expected
performance results with respect to the previously discussed two keyword queries.

While the forward index-based schemes already benefited from reducing the number of actual keyword
searches in the case of two keyword queries, this reduction becomes more advantageous the more key-
words are contained in the query. Consequently, the performance of the PPSED scheme and the KRB
scheme converges, but the KRB is still able to outperform all schemes regardless of the number of found
documents. If the lengths of the query would be further extended, the PPSED scheme would achieve
better multiple keyword search performance than the KRB scheme at some point. Regarding the keyword
order within queries, it can be seen in Figure 6.12 (having a logarithmic scale) that mainly the OXT per-
formance heavily depends even more on the first keyword being the least frequent one than in the two
keyword tests.

All in all, the keyword searches need proportionately more time compared to the two keyword searches
and the same patterns can be identified.
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Figure 6.9.: Search Performance Reuters1000: Three Keywords per Query.
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Figure 6.10.: Search Performance Reuters5000: Three Keywords per Query.
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Figure 6.11.: Search Performance Reuters10000: Three Keywords per Query.
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Figure 6.12.: Search Performance Reuters10000: Three Keywords per Query with Most Frequent Keyword First.
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Chapter 7
Findings

In this chapter, the findings of the theoretical analysis of the selected Searchable Symmetric Encryption
(SSE) schemes and the implementation results will be combined to an overall comparison and some
recommendations regarding the use of the schemes will be provided.

7.1. Asymptotic Overview

Based on the findings of the previously presented comprehensive analysis of individual schemes, Ta-
ble 7.1 shows a comparison of the asymptotic performances, where all the variables are defined in Ta-
ble 7.2.

Scheme Security Updates BuildIndex Search Storage

Secure Index [Goh03] IND-CKA1 Yes O
(

q·n
p

)
O
(

n
p

)
O(n)

PPSED [CM05] IND-CKA1 No O
(

d·n
p

)
O
(

n
p

)
O(d ·n)

SSE-1 [Cur+06] IND-CKA1 No O
(

q·n
p

)
O(|DDD(w)|) O(d + s)

KRB [KP13] IND-CKA2 Yes O
(

q·n
p

)
O
(
|DDD(w)|·logn

p

)
O(d ·n)

OXT [Cas+13] IND-CKA2 Yes O
(

q′
p

)
O
(
|DDD(w′)|

p

)
1 O(q′)

1 The OXT scheme takes O
(

q·|DDD(w′)|
p

)
for a query of q keywords. For a better comparison, the single keyword case is shown in

the table.

Table 7.1.: Comparison of SSE Schemes.

7.2. Usage Recommendations

In this section, recommendations for certain typical practical SSE requirements are provided. While these
recommendations are founded on both the theoretical analysis and implementation results, it has has to
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Notation Meaning
DDD document collection
n number of documents
d number of entries in the dictionary
q number of distinct keywords per document
q′ sum over all keywords in DDD , i.e., q′ = ∑wi∈∆′ |DDD(wi)|
|DDD(w)| number of documents containing keyword w
|DDD(w′)| number of documents containing the least frequent keyword w′

s size of DDD expressed in smallest possible keyword size
p number of processors (cores)

Table 7.2.: Notation for SSE Schemes.

be noted that they are partly a matter of personal preference.

7.2.1. Search Performance

The requirement that will most likely be the most common in practice is that keyword searches have to
be as efficient as possible without leaking critical information. While all presented schemes provide rea-
sonable security guarantees and acceptable search performances, the keyword red-black (KRB) scheme
outperforms all other ones in almost every test case done in this thesis. Since the search process could
be parallelised to further improve the performance, the KRB scheme is recommended in settings where
optimal search efficiency is needed.

If the significant space requirements of the KRB scheme should be a deal-breaker, the SSE-1 scheme,
achieving asymptotically optimal search time proportional to the number of found documents for single
keyword queries, has to be considered. The performance related issue with the SSE-1 scheme is that it
does not process queries containing a high frequent keyword as efficient as some other schemes, a draw-
back which comes into place mainly if such a keyword is part of a multiple keyword query. Additionally,
it is not possible to parallelise the search process of the SSE-1 scheme.

If it is known that most of the time multiple keywords queries are executed and the KRB scheme can not
be applied, the Privacy Preserving Keyword Searches on Remote Encrypted Data (PPSED) scheme bene-
fiting from its forward index-based construction is a good choice in such settings. If only single keyword
queries are applied, the Oblivious Cross-Tags (OXT) scheme provides almost equal search performance
as the KRB scheme since only the T-Set but not the X-Set has to be processed. If all types of queries are
equally likely to appear and the available resources require a sequential execution of search queries, the
SSE-1 scheme seems to be the best all-round alternative to the KRB scheme .

7.2.2. Security

In search for a SSE scheme providing the best possible security while still being practical, the strong
adaptive security (IND-CKA2) has to be achieved. Therefore, the KRB scheme and the OXT scheme
providing IND-CKA2 security are suitable choices.

As a recall of the IND-CKA2 definition, the leaked information contains the access pattern covering
the result of a search request. Since the OXT scheme is able to non-naively handle arbitrary multiple
keyword queries, it only leaks the query’s result and not all single keyword search results as the KRB
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scheme does. While the OXT scheme achieves the best security guarantees, its search performance for
multiple keyword queries can not compete with the other presented SSE schemes in practice due to
the involvement of asymmetric cryptography. Consequently, it is advisable to use the OXT scheme if
minimising the information leakage is the most important issue, but increased search times for multiple
keyword queries can be tolerated.

If it is known that only single keyword queries are executed, the OXT and KRB schemes provide the same
security level. In this case, using the KRB scheme instead of the OXT scheme would provide slightly
increased search performance at the drawback of immense storage needs. Therefore, the OXT scheme is
recommended in all settings aiming to prevent information leakage.

7.2.3. Space Efficiency

In a setting where only a very limited amount of storage space is available, the PPSED scheme, the secure
index scheme and the OXT scheme are possible candidates as the implementation results reveal.

If space efficiency has to be achieved regardless of other performance indicators, the PPSED scheme
should be chosen since its indices are less than half the size of the next smaller one for all tested document
collections. One of the drawbacks of the PPSED scheme is that building the indices takes a lot more time
compared to the other candidate schemes, especially compared to the secure index scheme. Additionally,
it has to be recalled that the PPSED scheme utilises a dictionary, a characteristic that might precludes
using this scheme.

With the condition that using a dictionary is not possible, the OXT scheme achieves the best space effi-
ciency of the remaining schemes. While the OXT scheme’s storage space is linear in the total number of
keywords in the document collection, the secure index requires space linear in the number of documents.
As indicated by the implementation results, the OXT scheme needs less space for medium and large
document collections (Reuters4000 upwards), but the secure index scheme produces smaller indices if
the number of documents is rather low (until Reuters3000). Consequently, the OXT scheme is the better
choice for space efficiency considering arbitrary document collections, but building the OXT index takes
a lot more time compared to the secure index scheme. Therefore, if low storage costs are desirable but
not at the expense of the index generation performance, the secure index scheme provides a reasonable
trade-off of all index related requirements.

7.2.4. Index Generation Efficiency

Assuming a setting where many clients are very limited in their computational power, the client’s opera-
tions being the index and trapdoor generation have to be as efficient as possible. As expected, all schemes
are able to compute the trapdoors efficiently making the index generation performance the primary selec-
tion criteria. Consequently, the secure index scheme is the best choice for such an environment.

If an inverted index-based scheme is desired, the SSE-1 and OXT scheme have to be considered. Even
though the SSE-1 scheme is able to build the indices more efficiently, using the OXT is recommended
since it produces much smaller indices and the clients will most likely be limited in memory as well.

7.2.5. Efficient Updates

In a setting where updates of the document collection occur frequently, a dynamic SSE scheme should be
used. Depending on the specific type and complexity of the update, the secure index scheme, the KRB
scheme and the OXT scheme have to be considered.
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At first, a distinction has to be made whether most of the time existing documents are updated or merely
new document are added. In the much simpler latter case, the secure index scheme provides the advantage
that due to its forward index construction, no update has to be done at all. Since the secure index scheme
outperforms all other tested schemes in the index building process, adding new documents can be done
very efficiently. While the secure index scheme also supports efficient document updates in form of
adding keywords, it is not possible to delete keywords efficiently requiring a complete index rebuilding.

Considering the KRB scheme supporting arbitrary updates, it has been argued (see Section 4.4.2) why
the update algorithm needs additional knowledge of the initial data vectors that could be provided by
encrypting the initial KRB tree. While this solution is asymptotically efficient, it has to be considered
that building the index takes a lot of time compared to other candidate schemes. Consequently, if a lot
of documents have to be updated (regardless of the number of updated keywords within each document),
the update performance converges towards the index generation performance resulting in updates being
slower than the index generation of other schemes. Therefore, the KRB scheme provides reasonable
update performance for all kind of updates, as long as it affects only a limited amount of documents.

Regarding the OXT scheme, again all types of updates are supported. Similar to the secure index scheme,
adding documents can be done very efficiently, but deleting documents is the more expensive operation.
While the other schemes’ update performances scale with the number of involved documents, the OXT
update times depend on the number of contained keywords. In the worst case, i.e., deleting a document
that contains all keywords appearing in other documents, the update time takes about half the time of the
index generation since half of the T-Set has to be rebuild if the lists have been randomised. In situations
where only a very limited amount of keywords is contained in an update, the OXT scheme is able to
perform updates efficiently.

All in all, the secure index scheme is recommended in settings where updates have to be performed
efficiently, especially if it is known that deleting keyword operations rarely occur. If large document
collections with frequent arbitrary updates have to be processed, the expected update performance will
converge towards the index generation performance, which would still outperform all presented static
schemes and the KRB scheme. If updates typically involve only a few keywords, using the OXT scheme
would grant the benefits of achieving a stronger security model and smaller index size for larger document
collections.

7.2.6. All-round Performance

In a situation where none of the above discussed requirements is significantly outstanding or everything
is equally important, a scheme achieving a reasonable performance in all aspects without having major
drawbacks is desirable. Combining the findings of the asymptotic overview and the implementation
results, it can be seen that the SSE-1 provides reasonable overall performance with the sequential search
process being the only substantial weakness.

While the SSE-1 indices are larger than most other ones, they are nowhere close to the huge KRB ones
and can be generated very efficiently. As discussed before, only the secure index scheme is able to
generate indices faster. Considering the search performance, the SSE-1 scheme achieves the third best
efficiency for both single and multiple keyword queries. While for all specific settings – for example
small document collections with single keyword searches or large document collections with multiple
keyword searches – schemes providing better search performance do exist, the SSE-1 scheme is able to
keep up in all scenarios and has no major lack of search efficiency regardless of the situation.
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Chapter 8
Conclusion and Further Work

In this thesis, the importance and usability of Searchable Symmetric Encryption (SSE) has been motivated
on the basis of a fundamental theoretical analysis and practical performance evaluation of selected SSE
schemes.

As the analysis has shown, a lot of different construction methods exist, varying in achieved tradeoff
between security and performance. The comparison of schemes revealed that the forward index-based
construction apply simpler construction methods, but leak more information resulting in non-adaptive
security (IND-CKA1). The inverted index-based construction are typically more complex, but often hide
more information achieving the stronger adaptive security (IND-CKA2).

According to the practical performance evaluation, inverted index-based scheme are superior in most
practically relevant situations. Even though the forward index constructions can not compete with the
fasted inverted index ones, it is fair to say that their performance is good enough for using them in prac-
tice. Nevertheless, depending on the concrete usage scenario, in most situations using a state-of-the-art
inverted index-based scheme is advisable due to the better security guarantees and practical performance.

Since this thesis provided an overview about searchable encryption with focus on SSE, it layed a starting
point for possible future research. In the following, some of the possible challenges that could investigated
in the future are discussed.

Evaluation of Parallelised Performance: All performance tests have been sequentially executed. As
important further work, the implementation could be adapted to allow a parallelised index genera-
tion and keyword search.

Evaluation of Update Performance: So far, all schemes have been implemented without update capa-
bilities. For those supporting efficient updates, the update algorithm could be implemented. If a
scheme does not support updates, the trivial solution of rebuilding the index could be used to get a
comparison value for the performance evaluation.

Extension of Tested Schemes: While the scheme selection was motivated by providing an overview
about different fundamental constructions, it could be interesting to include other schemes, for
example some of the schemes mentioned in the introduction. Obviously, the SSE-2 scheme could
be added for a practical comparison to the already implemented SSE-1 scheme.

Evaluation of Other Document Collections: Even though different document collections in terms of
sizes and contained keywords were tested, the general structure of all collections was related. As
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possible extension of the test setting, using other document collections which have a different
ratio of keywords to number of documents, very small or large size and a different distribution of
keywords could be tested.

Evaluation on Devices with Limited Resources: All performance tests have been done on the same
physical device provided with a reasonably up-to-date processor and a lot of memory. While it
is foreseeable that limiting the memory would exclude the usage of some schemes for larger doc-
ument collections, it could be investigated how the index generation performance relates to the
powerfulness of the processor.

Extension of Search Queries: Due to time-consumption of finding meaningful multiple keyword
queries, the search query lengths have been limited to three keywords. As obvious further work,
tests with longer queries could be made to emphasise schemes’ search behaviour.

Integration into a Cloud Storage Framework: The implementation done during this thesis can be con-
sidered as a library for SSE schemes that could be integrated into an existing framework for build-
ing secure cloud storages to evaluate the security and performances of cloud storages on a more
comprehensive basis.
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Appendix A
List of Acronyms

ABE Attribute-Based Encryption
AES Advanced Encryption Standard
CBC Cipher Block Chaining
CCA1 Non-adaptive chosen-chiphertext attack
CCA2 Adaptive chosen-chiphertext attack
CFB Cipher Feedback
CPA Chosen-plaintext attack
CTR Counter
DES Data Encryption Standard
ECB Electronic Codebook
ECC Elliptic Curve Cryptography
ECDLP Elliptic Curve Discrete Logarithm Problem
FE Functional Encryption
FHE Fully Homomorphic Encryption
FPE Format-Preserving Encryption
HMAC Keyed-hash message authentication code
IAIK-JCE IAIK Provider for the Java Cryptography Extension
IBE Identity-Based Encryption
IND-CCA1 Indistinguishability under non-adaptive chosen-

chiphertext Attack
IND-CCA2 Indistinguishability under adaptive chosen-chiphertext

Attack
IND-CKA Indistinguishability against an adaptive chosen-keyword

attack
IND-CKA1 Non-adaptive indistinguishability for Searchable Sym-

metric Encryption
IND-CKA2 Adaptive indistinguishability for Searchable Symmetric

Encryption
IND-CPA Indistinguishability under chosen-plaintext attack
IND1-CKA Semantic security against an adaptive chosen-keyword

attack
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Appendix A. List of Acronyms

IND2-CKA Semantic security against an adaptive chosen-keyword
attack

IV Initialisation vector
KRB Keyword red-black
NIST National Institute of Standards and Technology
OFB Output Feedback
OPE Order-Preserving Encryption
ORAM Oblivious Random Access Machine
OXT Oblivious Cross-Tags
PBKDF2 Password-Based Key Derivation Function 2
PCPA Pseudorandomness against chosen-plaintext attack
PEKS Public-Key Encryption with Keyword Search
PIR Private Information Retrieval
PPE Property-Preserving Encryption
PPSED Privacy Preserving Keyword Searches on Remote En-

crypted Data
PPT Probabilistic polynomial-time
PRF Pseudorandom function
PRP Pseudorandom permutation
RSA Rivest Shamir Adleman
SHA Secure Hash Algorithm
SQL Structured Query Language
SSE Searchable Symmetric Encryption
SSL Secure Sockets Layer
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Appendix B
Queries

In order to make the upcoming tables showing all search queries more compact, the Reuters1000 collec-
tion is denoted by R1, the Reuters2000 by R2 and so on. As in the main part of this thesis, the values in
parentheses define the number of documents found for the single keywords being part of the respective
multiple keyword query.

B.1. Single Keyword Queries

Search Query R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
government 91 156 226 309 405 504 596 693 792 889

loss 90 169 248 345 448 541 625 725 805 887
securities 56 122 213 291 371 442 523 610 686 758
meeting 53 101 152 199 262 310 354 422 483 569
industry 47 91 139 190 241 301 345 397 452 503
countries 33 79 114 153 191 232 270 338 383 441
payments 31 58 90 119 153 180 209 244 281 310
proposal 23 49 73 99 132 160 186 209 236 253

brazil 21 40 57 70 97 111 128 146 166 183
coffee 17 30 39 47 62 67 77 84 90 102

shipment 8 19 27 35 46 49 56 62 71 80
strategy 7 13 19 27 37 43 53 65 74 83

hardware 2 7 10 10 12 13 15 18 20 22
cancer 1 2 3 5 6 8 11 11 12 13

laboratory 0 1 5 5 8 9 9 11 13 14

Table B.1.: Document Matches for Single Keyword Queries.
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Appendix B. Queries

B.2. Two Keyword Queries

Search Query R1 R2 R3 R4
loss, year 54 (90,269) 102 (169,562) 148 (248,798) 207 (345,1075)

government, year 44 (91,269) 79 (156,562) 100 (226,798) 134 (309,1075)
industry, year 27 (47,269) 43 (91,562) 70 (139,798) 94 (190,1075)

offering, securities 14 (43,56) 26 (83,122) 48 (139,213) 62 (180,291)
meeting, agreement 12 (53,85) 23 (101,161) 34 (152,239) 42 (199,311)

brazil, countries 8 (21,33) 19 (40,79) 20 (57,114) 23 (70,153)
crisis, payments 8 (13,31) 11 (23,58) 15 (32,90) 18 (40,119)

petroleum, energy 1 (18,12) 5 (36,31) 10 (49,56) 15 (61,86)
law, proposal 1 (11,23) 2 (27,49) 5 (47,73) 8 (66,99)

strategy, failure 1 (7,8) 2 (13,16) 2 (19,20) 3 (27,26)

(a) R1 - R4

Search Query R5 R6 R7
loss, year 261 (448,1376) 310 (541,1659) 358 (625,1925)

government, year 182 (405,1376) 231 (504,1659) 270 (596,1925)
industry, year 117 (241,1376) 145 (301,1659) 170 (345,1925)

offering, securities 70 (212,371) 85 (251,442) 103 (308,523)
meeting, agreement 54 (262,402) 59 (310,474) 65 (354,550)

brazil, countries 30 (97,191) 32 (111,232) 39 (128,270)
crisis, payments 23 (50,153) 25 (58,180) 29 (72,209)

petroleum, energy 22 (89,110) 24 (101,143) 27 (118,170)
law, proposal 8 (89,132) 8 (108,160) 8 (125,186)

strategy, failure 4 (37,39) 4 (43,42) 4 (53,47)

(b) R5 - R7

Search Query R8 R9 R10
loss, year 412 (725,2201) 463 (805,2478) 509 (887,2759)

government, year 308 (693,2201) 355 (792,2478) 392 (889,2759)
industry, year 191 (397,2201) 222 (452,2478) 251 (503,2759)

offering, securities 119 (361,610) 131 (412,686) 144 (453,758)
meeting, agreement 90 (422,659) 100 (483,747) 121 (569,846)

brazil, countries 46 (146,338) 53 (166,383) 59 (183,441)
crisis, payments 40 (87,244) 43 (96,281) 43 (109,310)

petroleum, energy 32 (141,194) 39 (167,231) 41 (195,252)
law, proposal 9 (146,209) 10 (162,236) 10 (170,253)

strategy, failure 4 (65,52) 5 (74,61) 5 (83,75)

(c) R8 - R10

Table B.2.: Document Matches for Two Keyword Queries.
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B.3. Three Keyword Queries

B.3. Three Keyword Queries

Search Query R1 R2 R3
growth, government, year 12 (47,91,269) 20 (78,156,562) 23 (119,226,798)

investment, government,year 10 (63,91,269) 14 (98,156,562) 19 (153,226,798)
creditor, payments,debt 9 (16,31,74) 12 (25,58,139) 14 (31,90,230)

quotas, meeting,agreement 8 (16,53,85) 10 (28,101,161) 10 (35,152,239)
brazil, debt, president 7 (21,74,64) 8 (40,139,137) 13 (57,230,214)

growth, investment, government 6 (47,63,91) 10 (78,98,156) 13 (119,153,226)
volume, trading, year 5 (12,48,269) 7 (28,84,562) 8 (42,131,798)

outlook, economy, growth 4 (12,32,47) 7 (26,59,78) 9 (36,80,119)
dividend, assets, earnings 3 (32,28,35) 3 (63,64,70) 3 (92,96,100)
dollar, system, industry 2 (34,51,47) 3 (60,95,91) 3 (88,139,139)

(a) R1 - R3

Search Query R4 R5 R6
growth, government, year 29 (155,309,1075) 39 (207,405,1376) 45 (260,504,1659)

investment, government,year 20 (207,309,1075) 26 (262,405,1376) 34 (317,504,1659)
creditor, payments,debt 16 (35,119,299) 17 (44,153,390) 21 (52,180,454)

quotas, meeting,agreement 10 (41,199,311) 12 (51,262,402) 14 (59,310,474)
brazil, debt, president 13 (70,299,274) 19 (97,390,375) 20 (111,454,442)

growth, investment, government 14 (155,207,309) 20 (207,262,405) 23 (260,317,504)
volume, trading, year 9 (53,185,1075) 12 (73,241,1376) 13 (89,285,1659)

outlook, economy, growth 10 (45,101,155) 11 (53,130,207) 12 (61,155,260)
dividend, assets, earnings 3 (134,117,150) 3 (165,158,201) 3 (204,197,247)
dollar, system, industry 3 (120,173,190) 3 (155,225,241) 3 (184,279,301)

(b) R4 - R6

Table B.3.: Document Matches for Three Keyword Queries.
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Search Query R7 R8
growth, government, year 55 (303,596,1925) 63 (356,693,2201)

investment, government,year 41 (366,596,1925) 48 (431,693,2201)
creditor, payments,debt 24 (58,209,538) 28 (70,244,624)

quotas, meeting,agreement 14 (62,354,550) 15 (65,422,659)
brazil, debt, president 22 (128,538,532) 27 (146,624,617)

growth, investment, government 25 (303,366,596) 32 (356,431,693)
volume, trading, year 14 (96,332,1925) 16 (110,388,2201)

outlook, economy, growth 13 (66,178,303) 16 (80,219,356)
dividend, assets, earnings 4 (247,237,293) 4 (275,266,335)
dollar, system, industry 3 (211,332,345) 3 (251,398,397)

(c) R7 - R8

Search Query R9 R10
growth, government, year 70 (403,792,2478) 75 (446,889,2759)

investment, government,year 57 (487,792,2478) 64 (547,889,2759)
creditor, payments,debt 31 (76,281,708) 33 (81,310,774)

quotas, meeting,agreement 16 (69,483,747) 21 (78,569,846)
brazil, debt, president 35 (166,708,704) 36 (183,774,783)

growth, investment, government 34 (403,487,792) 37 (446,547,889)
volume, trading, year 19 (123,446,2478) 22 (142,511,2759)

outlook, economy, growth 20 (90,246,403) 21 (94,280,446)
dividend, assets, earnings 5 (311,315,387) 5 (346,368,429)
dollar, system, industry 3 (299,445,452) 3 (375,449,503)

(d) R9 - R10

Table B.3.: Document Matches for Three Keyword Queries (continued).
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Appendix C
Experimental Results

C.1. Single Keyword Searches
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C.2. Two Keyword Searches
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Figure C.-1.: Single Keyword Searches on All Document Collections.
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C.3. Three Keyword Searches
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Figure C.-2.: Two Keyword Searches on All Document Collections.
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Figure C.-3.: Three Keyword Searches on All Document Collections.
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