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Abstract

In this work we tackle the problem of semantic image segmentation with a combination of

convolutional neural networks (CNNs) and conditional random fields (CRFs). The CRF

takes contrast sensitive weights in a local neighborhood as input (pairwise interactions)

to encourage consistency (smoothness) within the prediction and align our segmentation

boundaries with visual edges. We model unary terms with a CNN which outperforms non-

data driven models. We approximate the CRF inference with a fixed number of iterations

of a linear-programming relaxation based approach. We experiment with training the

combined model end-to-end using a discriminative formulation (structured support vector

machine) and applying stochastic subgradient descend to train it.

Our proposed model achieves an intersection over union score of 62.4 in the test set

of the cityscapes pixel-level semantic labeling task which is comparable to state-of-the-art

models.
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Kurzfassung

In dieser Arbeit wird die Problemstellung der semantischen Segmentierung mittels einer

Kombination aus convolutional neural networks (CNNs; zu Deutsch etwa faltende neu-

ronale Netzwerke) und conditional random fields (CRFs; zu Deutsch bedingte Zufalls-

felder) behandelt. Das CRF verwendet kontrastsensitive Gewichte, die aus einer lokalen

Nachbarschaft im Bild ermittelt werden, als Eingangsgröße. Dadurch wird die Kontinuität

der Vorhersage (Klassenzugehörigkeit) innerhalb eines Objektes erhöht und die Objekt-

grenzen werden an den Bildkanten ausgerichtet. Weiteres wird von einem CNN ein unärer

Eingang für jeden Bildpunkt bereitgestellt. Die Inferenz im CRF wird mit einer fixierten

Anzahl an Iterationen eines auf relaxierter linearer Programmierung basierten Ansatzes

angenähert. Zu Letzt wird das kombinierte Modell von Anfang bis Ende unter Verwen-

dung eines structured support vector machine Ansatzes (zu Deutsch etwa strukturierte

Stützstellen Maschine) gemeinsam trainiert. Dazu wird ein stochastischer Subgradienten

Abstieg angewandt.

Unser vorgeschlagenes Modell erzielt eine Wertung von 62.4 IoU (intersection over

union) auf dem Test Set des Cityscapes Datensatzes in der entsprechenden Kategorie

(pixel-level semantic labeling task). Das Modell ist damit vergleichbar mit dem aktuellen

Stand der Forschung.
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Introduction

Contents

1.1 From Sparse to Dense Predictions . . . . . . . . . . . . . . . . . 1

1.2 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The Flaws of Dense Predictions . . . . . . . . . . . . . . . . . . . 2

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

In this chapter, we motivate the challenging task of semantic segmentation first. We

follow this up with sketching our contribution to the field and outlining the content of this

thesis.

1.1 From Sparse to Dense Predictions

In classical image classification, the aim is to predict the content of images. For instance,

given a picture of a cat we want some mathematical model to tell us, that the picture

contains a cat. Obviously there exist more useful applications of such a model, e.g .,

character recognition [3, 6] or classifying street signs [12, 54]. Nowadays, deep learning

approaches have become exceptionally good at classifying images [34]. The most severe

flaw of such models is that they assume a single label to be sufficient enough to describe

the content of an image. In other words, the input is restricted to only contain a single

object which is typically not the case.

In a more general setting, we allow multiple objects within a scene and try to detect

and classify all of them. A rather straight forward approach would be to split the image

into smaller regions and predict the content in each subregion. While this does not solve

the problem of multiple objects occurring in a single subregion, it lowers the chances of

that scenario happening.

1



2 Chapter 1. Introduction

(a) Image classification. One label per image.

(b) Semantic segmentation. One label per pixel (color encoded).

Figure 1.1: Abstract comparison of image classification and semantic segmentation to illustrate
the different expected outcomes.

Developing this idea further suggests the question regarding the size of such a sub-

region. Intuitively, smaller regions are preferable since they have a lower probability to

contain more than one object. The smallest regions in discrete images would be just in-

dividual pixel. With this, the problem can be reformulated to predict the content of each

individual pixel in each image. The result is then called a dense prediction.

1.2 Semantic Segmentation

The task of semantic segmentation is to calculate dense predictions, i.e., compute a class

label for each pixel in the image. For street scenes such as the ones used in this work,

classes can be e.g ., car, street, pedestrian. Solving this problem with hand-crafted methods

is difficult.

However, recent improvements in computer hardware and the work of Krizhevsky et

al . [34] made it possible to train deep convolutional neural networks (CNNs) with millions

of parameters on graphic processing units (GPUs) for image classification. Since then the

knowledge of image classification slowly translated to semantic segmentation making it a

feasible task.

1.3 The Flaws of Dense Predictions

State of the art CNN architectures for image classification try to map a given input image

to a single output label. To do so, a model needs to abstract the high dimensional input and

compress the information into a low dimensional space. Deep layered neural networks like
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CNNs use special operations (see section 3.5) which lower the spatial resolution to do so.

This is beneficial for image classification, because it allows to learn a robust and abstract

representation of the given classes. However, it is detrimental for semantic segmentation

due to the loss of spatial information.

1.4 Contribution

Simply upscaling a coarse solution obtained from a CNN is often visually not pleasing due

to blurred edges. A common way to compensate for this is to use a conditional random

field (CRF) as a post processing method.

CRFs allow to incorporate knowledge about real-world processes (prior) into a model

in terms of a regularizer. For semantic segmentation, such knowledge could be that label

discontinuities typically only occur across object boundaries. This prior helps to align

the predicted segmentation- with actual object boundaries in the image to obtain sharp

results.

In this work, we investigate a hybrid CNN+CRF architecture to combine good seman-

tic reasoning (CNN) with sharp object boundaries (CRF). Instead of using the CRF as a

post-processing step for the output of the CNN, we are tackling the challenging problem of

training this CNN+CRF combination jointly. If the CNN is used for post processing, the

CNN is trained to directly predict class labels. The basic idea is, that directly predicting

labels might not be the optimal input to a CRF and that there exists an input representa-

tion which gives better results after the CRF inference. By training the model jointly, we

optimize for a sharp prediction which allows the CNN to shift some of its responsibility

regarding segmentation boundaries to the CRF and focus on other parts of the problem.

We show how to compute a gradient for training our hybrid model jointly using a

structured output support vector machine (SSVM) approach in a non-linear setting.

1.5 Outline

To present the reader an overview of the topics covered in this thesis, we want to discuss

the content of the following chapters briefly in this section.

Chapter 2 discusses the current state of the art in semantic segmentation. We cover

various approaches which mostly use a CNN or a combination of CNN and CRF as those

appear to work best. Additionally, we review works which focus on end-to-end training of

such a hybrid model and how those methods relate to our approach.

Chapter 3 gives the reader a wide overview over the field of neural networks. By

observing biological networks, we motivate the introduction of a mathematical model

which approximates its biological inspiration. We outline how nowadays commonly used

artificial concepts are resembled in natural networks throughout the chapter.
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Besides the biological roots of certain ideas, we mainly focus on the artificial neural

networks and their characteristics. Starting with the definition of single neurons, we

continue to gather individual units in layers which are then stacked to form deep networks.

Next we introduce the idea of convolution to propagate information through the network

as this has many applications in state-of-the-art computer vision models. Additionally,

we discuss the concept of abstraction in this context. At last we sketch a special type of

model architecture which got a lot of attention in the community in recent years and is

used as a subpart of this works proposed model as well.

Chapter 4 focuses in detail on the task of deep learning. We discuss common concepts

and derive learning rules to automatically obtain the model parameter values through

observing labeled data. We discuss different metrics that can be optimized in this context.

At last we cover commonly used strategies to speed up and improve learning in general

deep networks.

Chapter 5 covers the fundamentals behind the second building block used in this thesis,

namely conditional random fields. Again, we motivate the interpretation of CRFs as an

energy minimization problem that consists of two terms. We then elaborate on those

terms in the following. At the end of this chapter we discuss gradient estimation of the

CRF which is useful in the later chapters where we train a CNN and a CRF together. To

this end, we review the structured support vector machine. This allows us to formulate

a structured learning problem and derive a gradient approximation. We conclude this

chapter with a graphical interpretation of said approximation.

Chapter 6 introduces the proposed combination of the previously defined CNN and

CRF. We start with an explicit definition of the used CNN which we call unary network

in this context. Then we develop model priors that guide the model particularly along

object boundaries. Finally, we plug all pieces together to obtain the CNN+CRF model

which is then used in the following sections.

Chapter 7 gives a detailed overview of the performed joint training. We provide reasons

for initializing our model with existing work rather than starting from scratch first. Sec-

ondly, we discuss the pre-training of the unary network and thirdly we append a CRF for

post processing purposes. In a final stage, we then train the whole model in an end-to-end

manner.

Chapter 8 contains the main experiments conducted in this work. We utilize the

Cityscapes dataset which is used for training and evaluation first. Then we review the

intersection-over-union score, as this is the most prominent evaluation method in the

field. Finally, we report both, qualitative and quantitative results of our work. We com-
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pare different modes of our model with each other, as well as discuss its relation to similar

state-of-the-art approaches.

Chapter 9 concludes this thesis by discussing the outcome as well as giving insights

into future work.





2
Related Work

Contents

2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 7

2.2 Conditional Random Fields . . . . . . . . . . . . . . . . . . . . . 9

2.3 End-to-End Learning . . . . . . . . . . . . . . . . . . . . . . . . . 10

This section briefly outlines the current state-of-the-art in semantic segmentation. See

chapters 3 to 5 for a detailed analysis of the fundamental building blocks used in this

section.

Our model consists of two such building blocks. First, we use a CNN to extract suitable

features for semantic segmentation from data. The output of the CNN is then used as

unary costs in a CRF formulation. In a final step, the CRF optimizes the joint energy of

the data-cost and a consistency-enforcing smoothness prior.

The present work uses a hybrid architecture and training method similar to [30], where

the authors applied it to the stereo reconstruction problem. The setting in this thesis is

different in the CRF model interactions (classification versus depth), CNN architecture

(deep model versus shallow in [30]) and the final application loss (intersection over union

versus truncated l1).

2.1 Convolutional Neural Networks

CNNs are among the top performing models for computer vision tasks like image classi-

fication [34, 56], object detection [18, 40, 49] and semantic segmentation [5, 39, 41, 70]

for the last couple of years. Backed by steadily increasing computational power learning

models with millions of parameters became manageable. In image classification, striding

or pooling is used to create abstract, low resolution representations of images to obtain

a single label per input image in the end. In contrast to classification, the difficulty in

7
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Figure 2.1: Illustration of a 1-dimensional feature extraction. (a) Convolution on sparse data
(e.g ., after pooling). (b) Atrous convolution on dense input. Figure taken from [5].

semantic segmentation is to assign a label to every pixel in an image to obtain a so called

dense prediction. Loosing spatial information throughout the model makes correct predic-

tions at object boundaries difficult. Nonetheless, abstract representations are important

and many approaches to semantic segmentation use a network trained for classification

such as [56] as a starting point [5, 17, 39, 41, 45, 63, 68, 70].

2.1.1 Atrous Convolutions

Deep CNNs mostly use pooling or striding at consecutive layers of the network to obtain

abstract and spatially invariant representations. For dense predictions, it is a common

approach to use upsampling or deconvolution to reconstruct high resolution predictions

[41]. In contrast to that, Atrous convolutions (or later called dilated convolutions [68])

were originally developed for efficient computation of the undecimated wavelet transform

[24]. By filling filters with holes (trous in French) this enables large receptive fields without

increasing the number of parameters. Figure 2.1 illustrates the convolution. This approach

was used by [19, 46, 53] to obtain dense features via a CNN. Using multi-scale context,

the works [5, 68] applied spatial pyramid pooling to further increase the performance of

such models.

2.1.2 Residual Networks

In the work of He et al . [22], the effects of stacking more layers in convolutional networks are

investigated. The authors reason that in general, any model is contained in a model with

more layers if the added layers just perform an identity mapping. However, current solvers

are not capable to find equally good or better solutions in very deep architectures. The

introduced residual network accounts for said difficulties by adding skip connections which

explicitly perform an identity mapping. Figure 2.2 illustrates the described architecture.
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Figure 2.2: The skip connections perform an identity mapping which is then added to convolu-
tional layers output. F(x) is the learned representation which models the residual representation.
Figure taken from [22].

Thus, the convolution layers learn to model the residual feature representation. The

authors of [22] reason that in an extreme view, it is easier for a solver to drive all weights

in a layer towards zero than to find the identity.

While [38] argue that residual models can be interpreted as recurrent ones, the authors

of [64] and [66] investigate the relation of residual networks to model ensembles. Latter of

which report state-of-the-art results for various image classification and semantic segmen-

tation challenges. They do so by formulating a shallow architecture which outperforms its

deeper siblings significantly. Further research trends involve more branching and merging

[1, 67, 69] or forming fractal structures that skip over multiple residual sections [57].

2.2 Conditional Random Fields

CRFs are probabilistic models that incorporate relations between nodes in a graph [37]. In

the most general case the graph is fully connected. The nodes represent discrete random

variables, defined over the set of possible labels, that are conditioned on the input image.

The edges in the graph (pairwise terms) model label consistency over node pairs. In the

context of semantic segmentation, nodes typically correspond to image pixels or super-

pixels.

As we discuss in more detail in chapter 5, the CRF defines an energy term for each

position which is then seen as a probability distribution. Finding the most probable label

corresponds to minimizing the defined energy. Therefore, the CRF computation can be

interpreted as an energy minimization problem.

To solve this problem for a fully connected graph, [32] reformulates the computation of

the model (mean field approximation [31]) as high dimensional filtering. This formulation

is advantageous because it allows the filtering scheme [2] to be applied to the problem.

This approach is often used as a post processing method, e.g ., for semantic segmentation

[5].

Reducing the edges in the graph to a four-connected neighborhood, [55] provides a

heavily parallelized GPU implementation. The methods inference is fast enough to be

performed during the training stage instead of as post processing afterwards. We use [55]
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to incorporate the CRF into the learning procedure and train our model in an end-to-end

fashion. By doing so, the preceding CNN can adopt to the capabilities of the CRF and

hence provide richer feature representations. In this setting the CRF can be seen as a

specialized network layer.

2.3 End-to-End Learning

The hybrid training of CNNs and CRFs for structured predictions has been explored by

others as well in recent history. Lin et al. [39] approximate the gradient of a low resolu-

tion CRF using the piecewise training method [60]. In piecewise training, the marginal

probability modeled in a CRF is approximated with the product of individual potentials

which allows for a simpler gradient computation.

Zheng et al. [70] unrolled the mean field iterations of [32] in a recurrent neural network.

They did this by expressing a single iteration in the mean field inference of their CRF as

a sequence of standard convolutions. This approach requires the pairwise terms to be

modeled with high dimensional Gaussian filters but in turn allows for training their model

with the exact gradient through back-propagation. This contrasts with our approach where

use a structured support vector machine formulation in a nonlinear setting to approximate

the gradient of the CRF [50, 62].
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This chapter aims to give a qualitative discussion of general neural networks as they are

part of the mathematical model used in this thesis. Therefore, we will develop the model

bottom-up, starting with the model of a single neuron. Then we extend that concept to

groups of neurons (layers) and later flesh that idea out to a full network.

3.1 Biological Roots

As with many ideas, the concept of neural networks was inspired by nature as the human

brain consist of roughly 1011 neurons which form complex networks [23].

In biology, there are several different kinds of neurons which receive input from many

other neurons. Simply put, the higher the accumulated input to a neuron, the more likely

the neuron is to spike, i.e., produce an output which then stimulates other neurons to be

more likely to spike as well. Depending on the thickness and position of the connections

between neurons, the importance of an input to the neuron can vary.

11
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Figure 3.1: (A) contains a detailed model of a single neuron. (B) shows the simplified model
which is used in following figures.

3.2 A Simple Model

We first describe the mathematical model of neurons and then form larger networks that

can solve complex problems. In the context of computer vision, such models are usually

much simpler than the biological counterpart. We define that each neuron j has a single

output aj . In contrast to biology, where the output is encoded in the frequency in which

the neuron produces voltage spikes, in a time discrete setting we use a continuous valued

variable to approximate that frequency. This output forms the input to other neurons.

The dependence of neuron j on the output of neuron i is described with a weight wji
to model position and thickness of the connection. The weighted sum of inputs is called

activation zj . The models output aj is then obtained through a non-linear transformation

f(.) of the activation, which approximates the non-linear behavior of biological neurons.

The model is now given as

zj = bj +
∑
i∈I

wjiai, (3.1)

aj = f (zj) (3.2)

where bj is called bias and I denotes the set of input indices connected to neuron j.

Figure 3.1 contains a visualization of the described model.

3.2.1 The Source of Non-Linearity

An important part in the previously described model (equation (3.2)) is the activation

function f . It fulfills an important role in the model as it is the only source of non-linearity

in the neural network. The universal approximation theorem states, that a feed-forward

network can approximate any nonlinear function arbitrarily well with a finite number of

parameters under mild assumptions. Formally, let f be a non-constant, bounded and

monotonically increasing function. We further denote the output of the model as F . Then

any continuous function F̂ can be approximated universally up to small constant ε > 0
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Figure 3.2: Comparison of common activation functions used in neural networks.

such that ∣∣∣F (x)− F̂ (x)
∣∣∣ < ε, (3.3)

for all inputs x in a compact subset of IRn. One of the first proves of this theorem

was given for sigmoid functions by Cybenko [9]. Later, Hornik [25] showed that not the

specific choice of function, but the model structure gives neural networks the universal

approximation property.

The theorem only guarantees the existence of a solution. It does not say anything

about how to find a suitable solution. Naturally not all activation functions are equally

attractive choices, therefor we want to discuss the most relevant characteristics in the

following.

• Non-linear: If there were only linear functions in the network, i.e., f(x) = ξx, the

whole model would merely compute a linear combination of the input. Therefore, in

order to model highly complex representations, a non-linear model is necessary.

• Differentiable: As we will see in section 4.3, the gradient of the activation function

needs to be computed frequently during training. Because of this, we are interested

in functions which are (sub)differentiable and efficient in terms of computational

power requirements.

• Bounded Output: With a bounded output range, a gradient-based training ap-

proaches tends to be more stable. However, recent work neglects this property to

speed up the overall computation [42, 44].

We cover the most relevant functions for our purpose in the following.
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Sigmoid Commonly used sigmoid functions include the logistic- and hyperbolic tangent

functions. Both are bounded, monotonically increasing and continuous. The logistic

function

f(z) =
1

1 + e−z
, (3.4)

has the neat property that its derivative can easily be calculated as

f ′(z) =
∂

∂z

1

1 + e−z

=
e−z

(1 + e−z)2

=
1

1 + e−z

(
1− 1

1 + e−z

)
= f(z) (1− f(z)) . (3.5)

The hyperbolic tangent function

f(z) = tanh(z) =
2

1 + e−2z
− 1, (3.6)

has a similarly simple derivative

f ′(z) = tanh′(z) = 1− f(z)2, (3.7)

as it is a scaled and shifted version of the logistic function. Figure 3.2a contains exemplary

plots of both sigmoid functions.

Rectified Linear Unit (ReLU) The ReLU [44] neither has a bounded output range

(limx→∞ f(x) = ∞) nor is its derivative continuous. However still, it is used in many

state-of-the-art models in computer vision mainly because its computation

f(z) =

{
z if z > 0,

0 else
, (3.8)

f ′(z) =

{
1 if z > 0,

0 else
, (3.9)

is very simple. The well-known property that the gradient vanishes for negative inputs is

usually referred to as the dying ReLU problem. Various extensions such as leaky ReLU

[42], parametrized ReLU [21] and exponential linear unit [7] were proposed to tackle this

problem by introducing a small non-zero function for negative inputs. Figure 3.2b contains

exemplary plots of the ReLU function and some of its extensions.

While it is still not fully understood why ReLUs work, they are heavily used today

as their theoretical flaws seem not to be as severe in practical usage. A way to interpret
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Figure 3.3: Simplified model of a feed forward network. Each layer can contain a different number
of neurons. The first layer typically contains the input while the last is considered the networks
output. Intermediate layers are denoted as hidden layers and indicated as dashed arrows.

ReLUs is to consider the active units (non-zero output) in the model to form a linear

subsystem. ReLUs allow to model many such systems within a network which altogether

is then highly non-linear.

3.3 Forming Layers

While a single neuron itself can only do rather simple computation, the combination of

multiple neurons can, in theory, approximate arbitrary non-linear functions [9, 26]. Here,

combination of neurons means that they are connected through weights and form a graph.

In the context of feed forward neural networks, which are used in this thesis, we assume

that the graph is directed and acyclic. This means, that the information flow in the graph

is directed from input to output and no loops are allowed. Thus, we group neurons in

layers and restrict each group to see the preceding layers output only.

Figure 3.3 illustrates the abstract concept of a feed forward network which is structured

into several layers. The first and last layers are considered the input and output of the

network respectively. In semantic segmentation, the input is typically the given image and

the output a probability distribution which yields the models prediction.

So far, we considered each neuron to be connected to all neurons of the previous layer.

While this is reasonable in theory, it becomes difficult to handle in practice due to the high

number of variables (weights and biases for each neuron). Thus, special layers with less

variables are used in this thesis which will be investigated in more detail in the following

sections.

3.4 From Fully Connected- to Convolutional Layers

In a fully connected layer, each neuron can see all neurons in the preceding layer. This

allows them to become specialist not just for patterns in the data, but also for their
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respective position.

With increasing complexity of a given problem, the number of neurons in these layers

must increase as well in order to capture the complexity of the processed data. Having

many neurons and their respective parameters (weights to previous neurons and a bias

term) increases the dimensionality of the parameter space and therefore also the learning

problem becomes more complex. Thus, to maintain a reasonable representation of the

parameter space, which is needed to compute and minimize the cost, exponentially more

data is needed. In practice the amount of data required cannot be provided and the

model will over-fit on the data, i.e., specialize too much on the training data and learn

noise patterns that are not present in unseen data.

Convolutional Layer To overcome the problem of high dimensionality in the param-

eter space, convolutional layers enforce two restrictions on the previously described fully

connected layers. Both restrictions were also found to be present in the visual processing

pathway of cats by Hubel and Wiesel [27] and reduce the number of parameters in each

layer drastically. With less parameters that need to be learned, stacking multiple layers

to form deep networks becomes practically feasible.

• The first restriction regards the receptive field of neurons. In the visual processing

pathway, the perceptive field (i.e., connections to the preceding layer) of neurons

is limited to its local environment. For artificial neural networks, this translates to

neurons only seeing a subset of the previous layer. Figure 3.4 illustrates this.

• The second observation is, that the brain contains a lot of redundancy in the sense

that similar connection patterns occur scattered over the visual field. If we treat

similar as equal, this means that multiple neurons (at different locations) can share

their weights. Further we approximate scattered with a regular grid which allows to

formally express the computation of the output as a convolution of the input with a

group of filters.

The one-dimensional discrete convolution [10] of an image I (just a line for 1D) with a

filter f , where f has a finite support set {−K,−K + 1, . . . ,K − 1,K}, can be written as

(I ∗ f)x =

K∑
k=−K

Ix−kfk. (3.10)

This can easily be extended to two dimensional images where the kernel has the same

support set in both dimensions

(I ∗ f)x,y =

K∑
m=−K

K∑
n=−K

Ix−m,y−nfm,n. (3.11)



3.5. Enforcing Abstraction 17

(a) Neuron fully connected to the pre-
ceding layer.

(b) Neuron connected to a subregion in
the preceding layer.

Figure 3.4: Difference in receptive field between a neuron in a fully connected- and a convolutional
layer.

Hence the parameter in a convolutional layer are the filter values. By stacking multiple

such layers on top of each other, highly nonlinear transformations can be obtained while

still having a reasonably small parameter space.

These simplifications only yield good results if the initial assumptions are valid, i.e.,

(i) having only local features in each layer is sufficient to represent the data and (ii) these

local features can occur at any position in the image. If the assumption about locality

or position of occurrence is wrong, then a convolutional network will most likely not be

suitable. Empirically, they seem to be suitable in the case of visual data which is indicated

by the huge success of convolutional neural networks in recent history (see chapter 2).

3.5 Enforcing Abstraction

As motivated during the introduction of this thesis, in a typical image classification model,

the high dimensional input image needs to be mapped to a sparse output, e.g ., a vector

containing a probability for each label. In this process the spatial resolution needs to

be reduced. The most prominent way to do so are pooling operations which aggregate

information over a wider spatial range.

Pooling We consider the neurons in a layer to have a spatial dimension of h × w and

c being the number of channels. To pool information means to take a subregion in the

spatial domain and merge the contained information into a single output. The idea is, that

in order to produce good results, the model has to learn abstract features that contain

information about their surroundings. If the model succeeds, merging a subregion into
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(a) Filtering at every position (n = 1). (b) Filtering at every 2nd position (n = 2).

Figure 3.5: Filtering a one-dimensional input (lower row) with a 3×1 filter (same color indicates
the same weight). Different strides n are used to illustrate how increasing strides reduce spatial
resolution.

a single neuron preserves the abstract information about the region. The most intuitive

merging operation is the arithmetic average of the subregion. However, in practice it turns

out that the maximum operation is sufficient and due to the cheaper computational cost,

this is usually the used pooling operation.

Application to Semantic Segmentation In the case of semantic segmentation where

dense predictions are desired, it is questionable whether using pooling is reasonable. The

main argument to do so is, that it allows to use a model trained for image classification

as a starting point by keeping the models structure. Considering how simple it is to get

a single label for an image as opposed to a dense prediction, it becomes clear that there

are simply sparser than densely labeled images available. Therefore, models trained for

sparse predictions are used as a starting point and extended to keep spatial information

[41] or to directly learn a refinement [17]. For this thesis, we follow [34] and use 2 × 2

subregions for each of multiple pooling stages and follow [41] to cope with the reduced

resolution. Typically, two to three convolutional layers are followed by a pooling layer,

slowly decreasing the spatial resolution throughout the model.

Striding Instead of having explicit pooling layers in the model that are responsible for

compressing the information, striding layers merge convolution and data compression.

They can be seen as a convolutional layer followed by a subsampling operation. After the

subsampling, only every n-th element is preserved. In this context n is called stride. This

means that the max or mean value computed in pooling layers is simplified to sampling.

The recent work of [58] suggests, that neural networks can learn a form of pooling if

forced to by the model architecture. For obvious reasons, it is useless to compute output

which is then dropped at the sampling stage. Therefore, in a practical implementation,

those elements would not be computed in the first place. This means, opposed to usual

convolutional layers where the input is filtered at every position, striding filters leave

out n − 1 positions which is illustrated in figure 3.5. For the same reasons as with the
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Figure 3.6: Illustration of the core ideas in the fully convolutional network of [41]. Conv are
convolution-, Pool are pooling- and Deconv are deconvolution layers. Together they form multiple
branches at different spatial resolutions which are combined in the end to obtain the output.

pooling layer, reducing spatial resolution encourages the model to find abstract features

that condense information contained in their surroundings. As a result, the model learns

its own form of pooling, possibly in a better way than the predefined maximum operation.

3.6 A Fully Convolutional Network

In the recent work of [41], the model solely consists of convolution-, pooling- and de-

convolution layers. The model has not just one forward path but instead has so called

skip-connections or -branches. Those branches are used to achieve fine grained predictions.

Figure 3.6 shows the architecture of the unary network. The fundamental concept is,

that if the data passes sequentially through pooling layers (indicated as Pool boxes in the

first row), the spatial resolution is reduced step by step. As discussed earlier, this helps

to enforce an abstract representation at the cost of a low spatial resolution. Additionally,

the model branches out at earlier stages to skip some pooling operations and therefore

preserve a higher spatial resolution. Thus, the semantic confidence will drop due to a

less abstract view. Several such branches are then up-sampled or deconvolved at the

end (Deconv blocks) to match the input resolution. The last operation is to fuse the

information of all branches through linear combination and obtain the desired output.

3.6.1 Obtaining Predictions

The output of figure 3.6 is a score volume with dimensions h × w × c for height, width

and channels/labels respectively. To obtain an output which can be interpreted as a

probability, a soft-max operation is applied to that volume. Thus, for each pixel, the

exponentials of scores of all labels are normalized to sum up to one. This is then treated

as the desired probability distribution over the set of possible labels.

We consider zx,y to be the score vector in the volume at the spatial position (x, y) and
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zx,y,k to be the score at that position for a particular label k. With this, the probability

for a pixel in the image Ix,y to be assigned a label k is

p(Ix,y = k) =
exp (zx,y,k)∑
k′ exp

(
zx,y,k′

) , (3.12)

which defines the soft-max operation.

The predicted label Px,y is then obtained by selecting the most likely label

Px,y = arg max
k

p(Ix,y = k). (3.13)

In later sections, we use these predictions as a baseline and extend the model through a

CRF. To avoid confusion, we denote the predictions obtained solely from the convolutional

network as CNN only.
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Traditional hand crafted approaches to computer vision tasks involve manually design-

ing algorithms and rules to solve problems. For instance, to detect a bicycle, one could

count the number of wheels and pedals and conclude from that through various manually

defined rules that there is a bicycle.

The approach of machine learning is fundamentally different. If we see a bicycle, we

immediately know what we look at. Neuroscience has not fully unraveled the reasons for

this by now. However, a key observation is that we can learn from repetition, i.e., learning

how a bicycle looks by seeing hundreds of them throughout our lives. In principle, we can

learn to distinguish a given pattern from others through repetition, which slowly causes

the neural connections in our brains to change. Note that this is not the only learning

process in human brains, but the only one relevant for this thesis.

We want to do something very similar, namely learn to perform semantic segmentation

from given data. Instead of manually designing every individual aspect of the model, we

use a neural network architecture which models a nonlinear mapping from input to output.

The actual modeled function is dependent on millions of parameters (filter weights in the

network layers) which are changed during a learning phase to yield reasonable results.

21
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By using pairs of images and known labels (training data), we can define a learning

procedure which allows our abstract model to continuously adapt and change given new

data input.

4.1 Learning as an Optimization Problem

While defining how a neural network is build we have assumed that the computation

performed by the network makes sense. However, at the beginning all the weights and

biases in the network are initialized randomly. As a result, the output is just noise as well.

Assume a given cost function J(θ), where θ is a vector holding the model parameters. We

further assume the cost function to be high for bad models and low for good ones. To train

a network means to figure out how the parameters need to be changed to reduce that cost.

Ideally we would like to compute the global minimum of J in a closed form. Since

neural networks are highly non-linear, the shape of the cost function J(θ) is complex (in

fact non-convex) as well. For this reason, no closed form solution exists and an iterative

optimization approach needs to be adopted. The gradient of the cost function with respect

to a parameter indicates in which direction that parameter needs to be changed to raise

the cost. In other words, moving the parameters slightly into the opposite direction will

reduce the produced cost. This procedure performs a descent on the gradient and is

therefore called gradient descent. The update performed for each network parameter θ at

every iteration can be formulated as

θt+1 = θt − λ · ∂J
∂θ
, (4.1)

where λ denotes a usually small learning rate.

It must be pointed out that this approach can never guarantee to find the global

minimum, but only a local one. Later, in sections 4.4 to 4.7, we will outline possible ways

to escape local minima as well as discuss how to improve learning in general.

In the following we want to define a reasonable cost function for classification problems

such as semantic segmentation. Then we revisit the error back-propagation scheme of [51]

since it is fundamental for this thesis. The algorithm describes how to obtain gradients

of the cost function with respect to every model parameter in a computationally efficient

manner.

4.2 A Suitable Cost Function

So far our model was designed to predict a label for each pixel. More explicitly we obtain

a discrete probability distribution over the finite set of labels for each pixel. Now we use

this prediction and compare it with ground truth knowledge (typically humans labeled

the data beforehand) to compute a cost value.
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Categorical Cross Entropy If a soft-max layer is used to obtain a probability measure

at the end of the network, then the categorical cross entropy (CCE) is most commonly

used as a cost function. It averages the cross entropy H(p, q) over all pixel and samples

in a batch. The cross entropy is a measurement of distance between two probability

distributions p and q. In a discrete setting, H(p, q) is defined as

H(p, q) = −
∑
k

pk log qk, (4.2)

where k ranges over the discrete set of possible labels in both distributions. We can

consider the ground truth label t for a single pixel as the probability distribution p which

is one at the corresponding tth position and zero elsewhere. The distribution q is then the

prediction of the network. With this, the cost is

J =
1

N

∑
n

H(pn, qn), (4.3)

where pn and qn denote probability distributions at a given pixel location n.

If p is fixed as it is the case here, then minimizing H(p, q) is equivalent to minimizing

the Kullback-Leibler divergence DKL(p‖q) [36] because they are equal up to an additive

constant [20]. Therefore, the DKL is sometimes used in related literature instead of the

cross entropy.

Mean Squared Error The mean squared error (MSE) is commonly used for regres-

sion where the prediction is continuous valued. While it is not exclusively restricted to

regression, using it for classification over the CCE is not beneficial though.

Considering that the last layer in the network is computing the soft-max of equa-

tion (3.12), the error is then computed as the MSE between prediction and target

JMSE =
1

2K

∑
k

(pk − qk)2 , (4.4)

using the previously introduced naming conventions.

For a more in depth discussion on why this is undesirable in our case see section 4.3.1.

4.3 Error Back-Propagation

What has been left out so far is the question of how to calculate the gradient of the cost

function with respect to all the parameters in the network. To address this issue, recall
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the definition of neural computation of section 3.2

alj = f(zlj), (4.5)

zlj =
∑
k

wljka
l−1
k + blj , (4.6)

where alj denotes the output of the activation function f for the j-th neuron in the l-th

layer given that neurons weighted input zlj . wljk denotes the weight between the k-th

neuron in layer l − 1 and neuron j in layer l and blj is the bias for that neuron.

Given the activations aLj of the final layer L, the cost J can be computed as shown in

previous sections. For now, an intermediate variable δlj will denote the error for neuron j

in layer l

δlj =
∂J

∂zlj
. (4.7)

Calculating gradients ∂J/∂wljk given that error is easy using 4.6, 4.7 and the chain

rule for partial derivatives

∂J

∂wljk
=
∂J

∂zlj

∂zlj

∂wljk

= δlj
∂zlj

∂wljk

= δlj
∂

∂wljk

∑
k̃

wl
jk̃
al−1
k̃

+ blj


= δlja

l−1
k . (4.8)

We recall that al−1k is not dependent on wljk, therefore its partial derivative w.r.t. that

weight is one. Similarly, ∂J/∂blj is obtained as

∂J

∂blj
= δlj

∂

∂blj

∑
k̃

wl
jk̃
al−1
k̃

+ blj

 = δlj . (4.9)

The remaining question is how those errors are computed. Again, we start by applying

the chain rule

δlj =
∑
k

∂zl+1
k

∂zlj

∂J

∂zl+1
k︸ ︷︷ ︸

δl+1
k

. (4.10)
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With ∂zl+1
k /∂zlj being

∂zl+1
k

∂zlj
=

∂

∂zlj

∑
j̃

wl+1
kj̃

al
j̃

+ bl+1
k


= wl+1

kj

∂alj

∂zlj

= wl+1
kj f

′(zlj), (4.11)

equation 4.10 can be simplified to

δlj =
∑
k

wl+1
kj δ

l+1
k f ′(zlj). (4.12)

This yields a convenient way of computing a layer’s errors given the following ones. By

starting at the last layer and propagating the errors backwards through the network, all

gradients w.r.t. parameters can be computed given a single forward and backward path.

The only layer that has no following layer is obviously the last one. Therefore, δLj is

δLj =
∂J

∂aLj

∂aLj

∂zLj

=
∂J

∂aLj
f ′(zLj ), (4.13)

which completes the set of equations needed for the famous back-propagation algorithm

of [51] that allows for an efficient parameter update (equation (4.1)).

4.3.1 Vanishing Gradients

It is probably more intuitive to start with the MSE as the used cost function first. To

stay in line with the notation introduced in section 4.3 we denote the prediction for label

j as aLj in the following.

A partial derivative of the MSE in equation (4.4) with respect to an arbitrary model

parameter θ is then
∂JMSE

∂θ
=

1

K

∑
k

(
pk − aLk

) ∂aLk
∂θ

. (4.14)

For label predictions, aLk is typically the output of a soft-max layer. In that case, the

remaining partial derivative is small if the model is very wrong at predicting a label [20].

This effect is called saturation. In turn, this causes the gradient to be small as well in

those cases. Thus, the learning is slow at the beginning of the training which is typically

unwanted. However, by smartly choosing a cost function in which this is not the case,

we can obtain strong gradients also when the model is very wrong which speeds up the
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training process significantly [20]. We rewrite the soft-max function in equation (3.12) to

aLj =
exp aLj∑
k exp aLk

, (4.15)

whose partial derivative is

∂aLj
∂zLm

=

aLj
(

1− aLj
)

for m = j,

−aLj aLm for m 6= j.
(4.16)

With this, the CCE

J = −
∑
k

pk log aLk , (4.17)

where p again denotes the one-hot encoding of the ground truth, can be differentiated

w.r.t. the soft-max input zLm at label position m as

∂J

∂zLm
= −pm

1

aLm

∂aLm
∂zLm

−
∑
k 6=m

pk
1

aLk

∂aLk
∂zLm

= −pm
(
1− aLm

)
+ aLm

∑
k 6=m

pk

= −pm + aLm
∑
k

pk = aLm − pm. (4.18)

The resulting gradient does not suffer from saturating or vanishing gradients when the

model is wrong the most. For this reason, CCE is used over MSE in models which end on

a soft-max layer.

4.4 Momentum

As mentioned in the previous section, gradient descent modifies the network parameters

in small steps towards the opposite direction of the strongest gradient of the cost function.

The closer the cost of the current model is to a stationary point, the smaller becomes the

magnitude of its gradient (assuming smoothness in the close vicinity). Thus, the model

will not change significantly for a long period of time. This leaves us with two problems:

First, since the gradient gets smaller as we approach a local minimum, getting to the

bottom takes long. Second, we stop training if the model did not change for a long period

and therefore get stuck in such a minimum or saddle points.

Momentum helps with escaping spurious local minima and saddle points [47]. At its

core, the idea is to not change parameters directly with gradient updates, but instead

model a velocity vθ of the parameters as they move on the cost-surface. This movement

is similar to a physical ball with mass that rolls down a hill [47]. It accumulates gradients
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Figure 4.1: Example of trajectories on the cost surface with and without momentum.

and therefore increases its speed. Mathematically, this can be expressed by extending

equation (4.1) to

vt+1
θ = µ · vtθ − λ ·

∂J

∂θ
, (4.19)

θt+1 = θt + vt+1
θ . (4.20)

The factor µ can be seen as a damping or viscosity constant that is similar to the fric-

tion between ball and surface. It ranges from 0 to 1 where low values correspond to a

higher damping as the previous velocity is forgotten sooner. Confusingly, this is commonly

referred to as momentum as it resembles the physical model [47].

Figure 4.1 shows a simple example of a two-dimensional cost surface where thin lines

indicate equal cost potentials. The green line is the trajectory of the gradient descent

process without momentum and the blue and red line show training with momentum.

To show the difference in convergence speed, all lines were drawn solid for the first 30

iterations and dashed afterwards. Note how the movement of the green line almost stops

once the vertical center is reached. Using low damping leads to overshooting which causes

the movement to oscillate around the local minima, possibly escaping it and discovering

lower valleys.

Nowadays not local minima but saddle points are considered as the main problem when

training deep neural networks [11]. The reason is that in a very high dimensional space,

it is sufficient if a good fraction of dimensions has reached a local minimal to shrink the

magnitude of the gradient significantly. Meaning that there are dimensions left in which

the optimization could still improve, but the overall gradient is just weak and we do not

make enough progress in time. Using a momentum term that accumulates the velocity of
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Figure 4.2: Visualization of a neural network before and after applying dropout. (a) An ex-
emplary neural network with two hidden layers. (b) Tinned model after dropping some neurons
randomly. Crossed units are dropped. Figure taken from [59].

the trajectory helps to escape from saddle points.

4.5 Regularization

Regularization is referred to as an extension of the cost function by a prior on the param-

eters, i.e., having a small norm of the weights in the network. The most commonly seen

regularization in the context of neural networks is weight decay which assigns a cost to

the magnitude of the model parameters. First introduced by [65], the cost J is extended

with weight decay term
˜J(θ) = J(θ) +

µ

2

∑
i

θ2i (4.21)

to explicitly account for too high parameters θ in the network. This new cost reduces

model complexity by limiting the growth of weights [35].

One way of interpreting weight decay is that it changes the cost-surface we optimize

on. Whereas momentum affects the path we take on the cost-surface towards a (local)

optimum.

4.6 Dropout

While momentum and regularization were brought up a long time ago, dropout is a rather

new idea. In statistics, it is commonly known that there is a relation between the number

of model parameters and data samples. The conception is that one needs more data than

parameters in a statistical model [29]. Traditionally the amount of model parameters was

restricted to match the amount of training data available by a certain ratio. However

nowadays, neural networks which are used in computer vision have a lot more parameters

than the number of data samples they are trained on.

The work of [59] tries to address this issue. They argue that in a Bayesian sense,
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Figure 4.3: Theoretical example of error development throughout the training procedure.

the optimal way of regularizing a fixed-sized model, is to use multiple models and weight

each setting with its posterior probability given the training data [59]. As this requires

high computational power, they approximate it by sharing weights between the models.

Instead of generating multiple networks, they define a probability for each neuron to be

excluded (dropped out) from the forward computation. The remaining neurons form a

sub-model. Since in each training trial, a new sub-model is drawn, an exponential number

of such networks is trained. During test time, no neurons are dropped, hence the full

network computes an equally weighted geometric mean of all previously trained models

[59]. Figure 4.2 gives an example of a sub-model drawn from the full network through

applying dropout.

4.7 Recognizing Overfitting

If we train a neural network by gradient descent, we gradually become better in terms of

minimizing the cost function. Methods like stochastic gradient descent and momentum

might skew or soften that statement a bit, but in principle, we always know how to improve.

However, this also implies that we typically do not know when the model is simply learning

noise in the data. This is problematic because we want to apply the network to unseen

data and let it predict labels we did not know beforehand.

Through gradient descent the model becomes better on the data it trains on, but at a

certain point any advance on the training set might not translate to unseen data anymore.

To realize when overfitting takes place, we keep a subset of data on holdout and do not

use it for training. We can then use that subset and validate our models performance

on unseen data regularly during training. Figure 4.3 shows a theoretical example of such
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error behavior over the training process measured in epochs. The two curves show the

progress on the training- and validation set. The vertical line marks the lowest validation

error. After this point, the model does not improve on unseen data any longer. In fact, it

can even happen that the model concentrates on the noise in the training data so much

that it is misled on unseen data. Thus, the model can get worse on the validation set if

the training continues. Due to that we should stop the training once the model does not

improve on unseen data any more.

Now we can decide when to stop training based on a validation set. However, this

introduces a bias towards that set. To be able to access an objective measure of the

models capabilities on unseen data, we need a third set that is never used for any decision.

That set is then called test set. Common public challenges like [8] keep that sets labels

secret to ensure a bias-free evaluation.
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In this chapter, we focus on conditional random fields (CRFs) as they are a main

building block of our proposed model.

We will define the CRF first, then we show how to combine it with a convolutional

neural network (CNN) and train them together. A major challenge in this context is the

gradient computation w.r.t. the model parameters. Because of this, the used gradient

estimation is covered at the end of this chapter.

5.1 Optimization Problem

The CRF consists of a set of random variables that are conditioned on the given input

image I and the model parameters θ. Each variable is defined over the finite set of possible

labels L = {l1, l2, . . . , lN}. The random variables form an energy function f(x|I, θ) which

is interpreted as a Gibbs distribution

P (x|I, θ) =
1

Z(I, θ)
exp (−f(x|I, θ)) , (5.1)

where Z(I, θ) is the partition function [37]. The distribution describes the likelihood of

a particular label assignment given the known image. In this sense, we want to pick the

most likely labeling as our prediction.

While the images are given, we can change the model parameter. Since the energy

function is also dependent on those parameters, we can interpret learning as the search

31



32 Chapter 5. Conditional Random Fields

for the parameter setting which most accurately assigns a high probability to a correct

labeling. The energy of a particular assignment x ∈ L|V| is composed of unary terms ψi
and pairwise interactions ψi,j and can be written as

f(x|I, θ) =
∑
i∈V

ψi(xi) +
∑
i,j∈E

ψi,j(xi, xj), (5.2)

where V is the set of variables in the input I and E is the set of edges between variables.

It is noteworthy that E in this definition is not just a local neighborhood but in general

can be any arbitrary set of connections between any two variables.

Having defined our model, we note that finding the most likely labeling x̄ is equivalent

to maximizing the Gibbs probability and therefor the same as minimizing the CRF energy

of equation (5.2)

x̄ ∈ arg min
x
f(x|I, θ). (5.3)

In the following we will investigate the CRF energy in more detail and define the

unary- and pairwise terms explicitly.

5.1.1 Unary Terms

In the energy model (5.2), ψi are unary terms which model each variable individually,

i.e., they express our belief in a nodes class belonging, independent of the other nodes

it is connected to. The unary terms are derived from the probability distribution over

all possible labels. See chapter 6 for more details on how we use a CNN to provide that

distribution for each pixel in the image. For clarification, the distribution describing the

unary terms is not the same as the one in equation (5.1).

With pi(xi) being the xi-th element of that probability distribution at location i, we

define

ψi(xi) = −pi(xi). (5.4)

The idea behind this, is that state-of-the-art CNNs are exceptionally good at semantic

reasoning such that in regions where they are confident on their prediction, we consider

them trustworthy. Therefore, we assign a low energy (negative sign) to likely label. How-

ever, the CNN used in this thesis struggles around object boundaries to sharply align its

prediction. Thus, the likelihood is lower and we rely more on prior knowledge which is

modeled as pairwise interactions.

5.1.2 Pairwise Terms

We defined ψi,j as pairwise interactions which incorporate prior knowledge about our mod-

eled data explicitly. That is, that real world objects/structures are bound to consistency

in terms of labeling across their spatial expansion. By defining the pairwise terms in a way

that penalizes label inconsistencies in regions where label jumps are unusual in terms of
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prior knowledge, while encouraging them where suitable we guide the predicted solution.

We use a contrast-sensitive weighting of pixel neighbors in this thesis since it fits visual

data. See section 6.2 for more details on the implementation used in this work.

5.2 Gradient Estimation

To train the full model, we need to propagate gradients of the loss functions though the

CRF to the CNN. Despite our final evaluation criterion being the intersection over union

score, we start by optimizing the Hamming loss. Given the predicted solution x̄ and the

ground truth labeling x∗, the Hamming loss is

l(x̄, x∗) =
∑
i∈V

Jx̄i 6= x∗i K. (5.5)

Note that in previous chapters we considered this as the cost function J(θ). The goal is

to optimize this loss in parameters subject to x̄ being a minimizer, i.e., satisfies (5.3). In

a discrete setting, minimizing w.r.t. x is non-trivial since the solution only changes if the

parameters pass certain breakpoints. Therefore, the gradient is zero almost everywhere

which makes training impossible. Instead we relax the problem to an upper bound of

the loss and minimize that instead. This approach is known as structured support vector

machine with margin rescaling [50, 62] and will be reviewed next.

5.3 The Structured Support Vector Machine

Without further restrictions we consider a weighted loss γl(x̄, x∗) hereafter.

The predicted label assignment x̄ has the lowest energy f(x̄) and is therefore either

equal to the energy of the true label f(x∗) (in the case where x̄ = x∗) or smaller than that

energy. Note that in the latter case, the model is making a false prediction. By extending

that to all labels that have a lower energy, we can bound from above

γl(x̄, x∗) ≤ max
x∈{x|f(x)≤f(x∗)}

γl(x, x∗). (5.6)

Knowing now that for all considered x, f(x∗)− f(x) ≥ 0 (per definition), we can further

estimate

≤ max
x∈{x|f(x)≤f(x∗)}

γl(x, x∗) + f(x∗)− f(x). (5.7)

Now we can extend that statement to all x because even if f(x∗)−f(x) < 0, the maximum

will remain the same (or get larger)

≤ max
x

γl(x, x∗) + f(x∗)− f(x) = l̄(x∗), (5.8)

which yields the upper bounded loss l̄(x∗).
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The value l̄(x∗) can be also equivalently written as finding the minimum ξ such that

∀x : γl(x, x∗) + f(x∗)− f(x) ≤ ξ, (5.9)

which reveals the margin property, i.e., in the separable case the energy f(x∗) should

be smaller than any other energy by at least γl(x, x∗). If this is not possible, then the

statement is relaxed by the slack variable ξ. Here, γ weights the margin against the energy

barrier.

5.3.1 Gradient Calculation

Since the input to the CRF is provided through a CNN, our goal is to compute a gradient

of the upper bounded loss in equation (5.8) with respect to the CNN parameters. The

CNNs output forms the unary terms used in the energy volume f(x) of equation (5.2).

Therefore, we derive ∂
∂f(x) l̄(x

∗) in the following. To do so, let us first rewrite l̄(x∗) as

l̄(x∗) = f(x∗) + max
x

γl(x, x∗)− f(x),

= f(x∗)− min
x
f(x)− γl(x, x∗)︸ ︷︷ ︸

x̂∈argminx f(x)−γl(x,x∗)

,

= γl(x̂, x∗) + f(x∗)− f(x̂), (5.10)

where x̂ ∈ arg minx f(x) − γl(x, x∗) is a solution (among possibly many) of the loss

augmented inference problem. Since we can perform inference only approximately, we take

x̂ to be an approximate solution resulting after a fixed number of iterations. With this,

the gradient at location i is

∂

∂fi(xi)
l̄(x∗) =

∂

∂fi(xi)
γl(x̂, x∗)︸ ︷︷ ︸

=0 (const.)

+
∂

∂fi(xi)
f(x∗)︸ ︷︷ ︸

=

1 if xi = x∗i

0 else

− ∂

∂fi(xi)
f(x̂)︸ ︷︷ ︸

=

1 if xi = x̂i

0 else

,

=


1 if (x = x∗) ∧ (x∗ 6= x̂),

−1 if (x = x̂) ∧ (x∗ 6= x̂),

0 else.

(5.11)

This can elegantly be denoted as

∂

∂fi(xi)
l̄(x∗) = Jx∗i = xiK− Jx̂i = xiK, (5.12)

using the previously introduced Iverson bracket. Using the chain rule we obtain gradients
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for ψi(xi) as
∂

∂ψi(xi)
l̄(x∗) =

∂l̄(x∗)

∂fi(xi)
· ∂fi(xi)
∂ψi(xi)︸ ︷︷ ︸

=1

=
∂

∂fi(xi)
l̄(x∗), (5.13)

which are back-propagated to the CNN in the learning phase.

Because of minimizing the upper bound of the loss function, we eventually also lower

the actual loss. Another way of interpreting this is that we repeatedly increase the energy

of whichever label violates the constraint in equation (5.9) the most while reducing the

energy of the correct label at the same time. We will further explain this approach

graphically in the next section.

5.3.2 A Graphical Interpretation

To give an intuitive understanding of the above described procedure, we want to give a

graphical interpretation of the gradient estimation in the following. Figure 5.1 shows an

exemplary plot containing the CRF-energy distribution over a set of possibly assigned

labels. Additionally, we plot the margin which in our case is the Hamming loss of equa-

tion (5.5). The loss is zero for the true label and a constant γ elsewhere. γ was introduced

in section 5.3 to weight the margin against the energy barrier.

The models prediction is the label which yields the lowest energy evaluated relatively

to the margin as seen in figure 5.1a. The arrows indicate the obtained gradients in this

example.

The relative energy distribution is shown in figure 5.1b where the margin was sub-

tracted from the energy values to visualize the difference. Finding the relative minimal

energy is then considered as the loss-augmented inference problem of equation (5.12).

In the limiting case where γ approaches zero, the margin is flat. As it can be seen

in equation (5.12), we only obtain a non-zero gradient if the predicted and true label are

distinct (figure 5.2a). This is only the case as long as the predictions corresponding energy

value is slightly lower than the true label ones. Once this is not the case the positive and

negative peak cancel each other out and the overall gradient vanishes. Thus, the learning

stops for that data sample. As visualized in figure 5.2b, this gives poor results - even for

training data - as the correct label yields just slightly lower energy than the other possible

label candidates. It is intuitive that such a model is weak to input noise. In general, we

obtain gradients until the true label is better than any other label by the margin γl(x̄, x∗).
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(a) Prediction relative to the margin.

Label

fi(xi)
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Prediction
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(b) Prediction after loss augmentation.

Figure 5.1: CRF energy over the set of possible labels for a single output variable. The red dot
indicates the models prediction while the blue dot denotes the ground truth label. The gradient
of the CRF layer (indicated as arrows) is estimated relatively to the loss-proportional margin
(dashed blue). Alternatively, this can be interpreted as a loss-augmentation where each energy
value is reduced by its corresponding margin.

Label

fi(xi)

Prediction

True Label

(a) Prediction without a margin. We still obtain
a graident here.

(b) Prediction without a margin. Gradient van-
ishes once the true lable is slightly better than
the second most probable one.

Figure 5.2: Corner case of the gradient estimation in which the loss-augmentation is neglected
due to a small weighting γ.
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In this chapter, we introduce a combination of convolutional neural network (CNN)

and conditional random field (CRF). In the following we will explain the model which was

used in later sections to perform the experiments.

6.1 Unary Network

We build on the fully convolutional network architecture of [41]. In this work, we call

this model unary network, because it computes the unary- or data costs in our conditional

random field formulation (defined in (5.2)). The network is based on the prominent VGG16

model of [56] which was trained for image classification. It is then extended with skip-

connections and up-sampling layers in order to achieve fine grained predictions.

Figure 6.1 shows the architecture of the unary network. Conv blocks indicate multiple

convolutional layers as described in section 3.4. They are used to extract trainable feature-

maps from the given input. The output of each convolution layer is activated using the

ReLU function. Stacking multiple layers together allows to learn features of different

abstraction. A convolution can be seen as filtering the data with a (typically small)

kernel. As a result, each output neuron only sees a small subset of the input called

receptive field. Pool blocks indicate max-pooling layers. They reduce the spatial resolution

by aggregating information of nearby pixels. This allows the network to learn hierarchical

features at different levels of detail. When information is propagated down through the

model, the representation of the data passes more and more pooling layers. Each of

37
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Figure 6.1: Detailed visualization of the unary network. The model produces a predicted label
assignment as well as unary input to the subsequent CRF. Conv boxes represent multiple convo-
lutions while Pool indicates max-pooling. Up are upsampling stages that rescale the predictions
to the original image resolution.

these layers halves the spatial resolution. The representation at the end of the lowest

branch has passed the most pooling layers and therefore has the lowest resolution. By up-

sampling that representation bi-linearly, using an up-layer, we obtain a full-scale prediction

with poor segmentation borders but high confidence within objects. In other words, the

network is very certain about the semantic content of the image, e.g ., certain to see a car or

pedestrian, but is uncertain about the precise position and boundaries of said content. In

mathematical terms this means that at the borders of objects, the probability distribution

does not clearly suggest a particular label.

Following [41] we add skip branches to the network. As seen in figure 6.1, these

branches bypass pooling operations to preserve finer details at the cost of having a less

abstract (and therefore less noise resistant) representation of the data. Meaning that those
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Figure 6.2: Contrast sensitive weighting under various parameter settings. Weights are evaluated
over a range of illumination changes. Best viewed in color.

branches are less sure about the semantic content but know the actual object boundaries

better. We fuse those branches through a linear combination and let the model learn in

a training stage how to combine those branches to obtain good predictions. Thus, the

skip-branches guide the low-resolution prediction along object boundaries.

6.2 Pairwise Relations

While in the neural network, the relations between individual output neurons is given by

the overlap in their receptive fields, CRFs allow to model certain prior knowledge explicitly.

As outlined before, we can incorporate prior knowledge about natural images into our

model in the form of a penalty. We can reasonably assume, that given a neighboring

pair of pixel, the assigned labels should only differ if the visible object has changed. In

other words, we assume that label discontinuities only occur across object borders. While

modeling those borders is difficult in practice we can approximate this by restricting label

jumps to visual edges in the image.

We use the Iverson bracket J·K notation

JcondK =

{
1 if cond is true,

0 else,
(6.1)

in the following. With this, we define the locally weighted Potts model [48] as

ψi,j(xi, xj) = wi,jJxi 6= xjK, (6.2)

where weights wi,j depend on the image I. If xi and xj are assigned the same label,

ψi,j(xi, xj) is zero and wi,j otherwise. We choose weights that discourage label jumps
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Figure 6.3: The illustration contains an abstract representation of our used model containing its
main building blocks. The input is used to compute weights for the pairwise interactions in the
CRF. Simultaneously a CNN computes unary potentials which are used in the CRF to produce
the final output. No further pre- or postprocessing is performed.

in homogeneous regions (high weight) and encourage them across borders (low weight).

Thus, the solution of equation (5.3) is more likely to align its segmentation boundaries

with visual edges in the input image I. In that sense, we define contrast sensitive weights

[4] as

wi,j = λ exp
(
−α‖Ij − Ii‖β

)
, (6.3)

where λ weights unary against pairwise terms and α and β are parameters of the model.

Furthermore, we restrict the weights to be symmetric i.e., wi,j = wj,i. Figure 6.2 shows

various such weighting functions for different parameter settings.

6.3 Joint Model

After introducing the unary model, we combine it with a CRF to pair good semantic

reasoning of the CNN with sharp prediction-borders implied by the prior of the CRF. In

a first step, we use a CRF for post-processing which is commonly used in state-of-the-art

models such as [5]. Second, we will use the joint training procedure discussed in section 5.2

to train the unary model while the CRF is actively contribution to the model such that

the whole model is trained in an end-to-end fashion.

In the formulation of equation (5.2), the CRF takes unary and pairwise terms as its

input. The unary terms consist of per-pixel independent data-costs and the pairwise terms

guide the smoothing of the final output. We use the linear programming relaxation based

method of [55] for CRF inference. This method performs a dual block-coordinate descent

algorithm whose main advantage is its massively parallel implementation. We use the

publicly available code provided by the authors in our experiments. With a small number
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of iterations (15 in our case), the inference scheme yields results that are comparable to

the best sequential algorithms while consuming less computation time [55].

The main idea of this thesis is that in a final learning phase, the CNN is not trained to

predict labels directly but receives error gradients from the CRF which does the labeling

instead. Thus, the CNN can move some of its responsibilities regarding semantic segmen-

tation (e.g ., sharp boundaries) to the CRF. This procedure allows the CNN to deviate

from a model that predicts a labeling directly towards providing richer features for the

CRF hence increasing the overall performance of the method.

Figure 6.3 shows an abstract representation of our used model. The unary input to the

CRF is generated through the unary model. The pairwise interactions are modeled with

a nonlinear transformation of the image gradients, the contrast sensitive weighting intro-

duced in equation (6.3). These pairwise interactions encourage label discontinuities across

strong object boundaries while discouraging them within objects. To prevent confusion,

we call predictions obtained from the joint model CNN+CRF where the CRF is used as

a post-processing method. Furthermore, we add joint in brackets if the predictions were

the result of a jointly trained model.
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In the following chapter, we outline how we use stochastic gradient descent to train our

model throughout different stages. We start by motivating the used initialization, followed

by the performed pretraining of the CNN only network. Finally, we add the CRF, outline

the performed parameter search, and discuss the joint training of our proposed hybrid

model.

7.1 Initialization

When observing the groundtruth data in figure 8.1, we can assume that creating these

labels involves considerable effort, i.e., drawing the polygons around each class instance

or cluster. Therefore it seems intuitive that labeled data for dense predictions, when

compared to sparse data, is expensive to obtain. On the other hand, obtaining just a single

label is comparably cheap. They can even by obtained (almost) for free by outsourcing

the actual labeling task to a crowd, e.g ., users on the internet through captchas [13]. As

a result we currently have a lot more sparsely- than densely labeled data at our hands.

The VGG16 model of [56] was originally trained on approximately 1.3M images for the

ImageNet Challenge [52] which is a popular classification competition. Training on such

large datasets induces a high noise robustness to the model, particularly in the early stages

of processing. This robustness is usually lacking when learning a model from scratch on

significantly less data. Since common datasets for semantic segmentation consist of far less
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data samples, a common approach in state-of-the-art work (see chapter 8) is to initialize

the segmentation model (partially) with the VGG16 network or similar architectures that

are publicly available on the internet. In this thesis, we use this network as well to initialize

our model.

7.2 Pretraining the Model

Due to the fixed magnitude of the gradients in equation (5.12) and the consequential

slow convergence rate, training our model with the CRF in use right from the start is

impracticable. As explained before, we consider the prominent VGG16 model of [56] as

a suitable initialization for our purpose. The model is then extended following [41] to fit

the semantic segmentation task. By doing so we transform the last fully connected layers

to convolutional ones and add two skip-branches as shown in figure 6.1.

We use the training parameters of the Pascal model of [41] but adjust the unnormalized

learning rate to match the larger images in the dataset. The used parameters are gathered

in table 7.1. As we add more branches to the model, we simultaneously decrease the

learning rate.

Parameter Value

No skip 6× 10−11

Learning rate One skip 6× 10−13

CNN only 6× 10−15

Momentum 0.99
Weight decay 5× 10−4

Table 7.1: Parameters used for pretraining the CNN only model. The three different learning
rates are used in the three training stages respectively.

7.2.1 Staged Training

We now use stochastic gradient descend to pretrain our unary model (no pairwise inter-

actions in the CRF) in three stages. Stochastic in this context means that the gradient is

not averaged over all training samples but rather over a small subset. Due to hardware

limitations we use a single image per training iteration. This procedure stochastically

approximates the gradient that is computed on all samples [16].

At the first stage, we do not use any skip branches and train the low-resolution predic-

tion. Then we add one skip branch at a time and repeat the fine tuning with a decreasing

learning rate.

Figure 7.1 contains the confusion matrices obtained after evaluating the model at the

end of each training stage on the Cityscapes’ validation set (see section 8.1.1). We report

the normalized intersection over union (IoU; see section 8.1.2) on the 19 classes that are
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(c) CNN only model.

Figure 7.1: Confusion matrices of the CNN only model when using no-, one- or all skip branches.
This resembles also the networks performance throughout the pretraining stages. This results were
estimated on the validation set of the Cityscapes dataset [8].
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Figure 7.2: Training progress evaluated on the validation set. The IoU is printed for classes
and categories (groups of classes). Vertical lines mark the beginning of a new training stage. Skip
indicates that additional skip branches are added. CRF marks the joint training of CNN and
CRF.

used for training as well as the public test server. We observe that the model is already

quite good in simple categories like road or sky after the first stage (figure 7.1a). However,

classifying fine structures, e.g ., the class pole is very difficult to detect and likely to be

confused with building or vegetation. After adding all skip branches (figure 7.1c), we see

that the model is now more capable of handling finer structures and improves on classes

such as poles. Generally, we notice two bright vertical regions that indicate that many

classes are more likely to be confused with building and vegetation than with other classes.

This is probably due to those two classes being very prominent in the data. These side

effects diminish with added skip branches. Note that we subsample the data by a factor of

2 due to hardware limitations which speeds up the process, but limits the overall accuracy

of the model.

After adding the CRF and finding useful model parameters, we jointly train CNN and

CRF. To that end we use the gradient of section 5.2 and update parameters with a fixed

and normalized learning rate of 1× 10−10 to account for the previously outlined gradient

magnitude.

Figure 7.2 shows the training progress by displaying the IoU over the training epochs.

The score is evaluated in the validation set (which was not used for learning) of the

Cityscapes dataset (see section 8.1). Each stage is trained until convergence before altering

the architecture. The start of the next stage is marked as a vertical line in the plot (skip1,

skip2 and crf ).
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Figure 7.3: Estimated IoU on the Classes as defined in section 8.1.2 over various parameter
settings.

7.3 Incorporating Pairwise Interactions

To find an suitable parameter setting for equation (6.3), we perform an exhaustive grid

search. Figure 7.3 shows the estimated IoU for various parameter settings. While this

estimate seems to favor high values for α and λ, it turns out in practice, that choosing

them too high hinders the learning process later on as the non-linearity increases (see

figure 6.2). Therefore, we opt for a setting within the plateauing region and let the model

learn from there as listed in table 7.2.

Parameter Value

λ 2.5
α 35
β 0.9

Table 7.2: Parameters used when the CRF is used for post-processing. This setting is also used
to start the joint training process.

7.4 End-to-End Training

At last, our network is jointly trained by back-propagating the gradients (equation (5.12)).

For this, the loss augmented inference problem must be solved for each training iteration.

We can see the slight performance gain at the vertical crf line in figure 7.2.
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Figure 7.4: Confusion matrices of the CNN+CRF model after the joint training. This results
were estimated on the validation set of the Cityscapes dataset [8].

The confusion matrix associated to this final model is shown in figure 7.4. When

comparing it to figure 7.1c, we see that the model does improve on e.g ., the classes pole

and motorcycle. Although the benefits might seem small, chapter 8 shows that this is still

a valuable improvement over the CNN alone.
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Using the Caffe [28] and Theano framework [61] to implement our models, we inves-

tigate the impact of CRFs and joint training on semantic segmentation. We consider two

models: our unary- and combined network. We fixate the hyper parameters to the ones

determined in table 7.2 throughout the rest of this section and want to give a qualitative

comparison of both models. Before that, we introduce the used dataset, as well as the

corresponding scoring method which is used to compare different approaches.

8.1 Benchmark

Various research groups across the world pursue different approaches to the task of se-

mantic segmentation. In order to estimate how well a particular approach performs, an

common score is beneficial. This is particularly important when it comes to answering the

question of where to put research effort.

For visual data, it seems to be a natural choice to agree on a common dataset to train

and evaluate on. One of the most used, publicly available datasets is the Pascal Visual

Object Classes Challenge [15] which provided various challenges from years 2005 to 2012.

The set also got various extensions over the years, e.g ., Pascal-Context [43]. The most

recent database for semantic segmentation from that set contains overall approximately

10 thousand images containing objects from 20 different classes. Figure 8.2 contains some

examples of the Pascal VOC 2012 challenge that overall contained almost ten thousand

images.
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Method
Cityscapes Dataset Intersection over Union

Coarse Stereo Half Res. Classes Categories

CNN only ∗ 63.8 81.5
CNN+CRF ∗ 64.1 81.2

CNN+CRF ( joint) ∗ 64.4 81.9

Ours ∗ 62.4 82.3
[45] ∗ ∗ 64.8 81.3

DeepLab [5] ∗ 63.1 81.2
CRF as RNN [70] ∗ 62.5 82.7

FCN 8s [41] ∗ 61.9 -

LRR-4x [17] ∗ 71.8 88.4
Adelaide [39] 71.6 51.7
DeepLab [5] 70.4 86.4

Dilation10 [68] 67.1 86.5
[33] ∗ 66.3 85.0

FCN 8s [41] 65.3 85.7
[63] ∗ 64.3 85.9

Table 8.1: Comparison of different approaches to the pixel level semantic segmentation task
on the cityscapes dataset [8]. Ours indicates the score of the jointly trained CNN+CRF model.
Italicized methods were evaluated in the validation set, other ones on the test set. The results for
other models on this data were taken from their respective paper if available or from [8] otherwise.
The score for FCN 8s [41] on half sized images was taken from the supplementary material of [8]
where no IoU score for categories is listed.

8.1.1 The Cityscapes Dataset

Nowadays, datasets with more challenging content, i.e., images containing many more dif-

ferent objects, are used. One particularly tailored to urban street scenes is the Cityscapes

dataset. Its advantages over, e.g ., the Pascal challenges, are (i) the higher image resolu-

tion, (ii) the more complicated and therefore more challenging content. Additionally, the

recordings show traffic scenes which are particularly interesting for applications such as

autonomous driving.

For those reasons, we use the Cityscapes Dataset [8] to train and evaluate our models.

This recently released database consists of 5.000 images with high quality fine annotations.

The samples were taken in 50 different cities across Germany throughout the year to reduce

biases in the data. See figure 8.1 and appendix A.1 for exemplary pictures.

The set is split into subsets of size 2.950, 500, 1.250 for training, validation and test

respectively. The 19 different classes in the database represent various things e.g ., cars,

humans, streets or vegetation. The dataset provides 20.000 additional images with coarse

annotations which are not used in this work.
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Figure 8.1: Comparison of the CNN only model and the combination of CNN and CRF. All label
assignments are blended over the input image to better show the errors around object borders.
Column (a) contains the ground-truth image (note that red indicates the ignore-label). Column (b)
displays the results obtained without a CRF layer while the last column shows the results of the
joint model (CNN followed by a CRF). For better visualization, we marked four regions (A to C )
and enlarged them in figure 8.4.

8.1.2 Score

While we discussed the need for an objective comparison previously, the actual used scoring

function was left out so far. This section aims to close this gap. It seems intuitive to use the

classification rate, i.e., average rate of correctly labeled pixels in the set, for comparison,

since it is used for image classification as well. However, if we measure areas with right

or wrong label assignment in an image, then usually most regions are classified correctly.

The real difficulty in semantic segmentation arises in recovering fine details and structures

around object boundaries. The classification rate is usually good if most labels are correct

even if the boundaries are not. Imagine a scene in which most content is either street or

sky : missing those few pixels that correspond to pedestrian do not lower the classification

by a lot since the area is small, but the impact is rather critical. If the classification rate

was used, probably most state-of-the art approaches would yield almost equal, close to

perfect, scores which makes an objective comparison difficult. What is used instead is a

score that penalizes smaller mismatches in object boundaries stronger.

The primary used measurement of prediction quality on the dataset is the PASCAL

VOC intersection-over-union (IoU) [14] which is also known as the Jaccard index. The

measure is defined with true-positive- (TP), false-positive- (FP) and false-negative (FN)
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(c) Original image. (d) Semantic labeling.

Figure 8.2: Examples of the semantic segmentation task in the Pascal VOC 2012.

FPTP

Figure 8.3: Exemplary illustration of the Intersection-Oover-Union score.

pixel predictions for each class as

IoU =
TP

TP + FP + FN
. (8.1)

Figure 8.3 shows an example of those three areas for an arbitrary cat-labeling. The red

contour indicates the predicted area while the black one encircles the ground-truth.

The final score is then computed as the average of the individual class scores. This

metric penalizes false-positive predictions, e.g ., classifying all pixel as car, as opposed to

only considering the average classification rate. Note that IoU Classes is computed as the

average over individual classes while IoU Categories denotes the average over groups of

classes e.g ., vehicle = {car, bus, bicycle, . . . }.
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8.1.3 Results

Table 8.1 shows the score of our approach on the Cityscapes dataset and compares it

to current state-of-the-art models. CNN only is our unary network which disregards

pairwise interactions. CNN+CRF indicates our combined model of CNN and CRF. The

lines containing joint training in brackets indicates that the model was jointly trained as

compared to just using the CRF for post processing. Lines containing validation were

evaluated locally on the validation set while the test line is taken from the public test

servers of [8]. Columns coarse and stereo indicate if a model additionally used weakly

labeled (coarse) or stereo data for training respectively. There is an obvious gap between

models operating on half sized images and ones that use the full data resolution. We expect

that retraining our model on full scale images will give a similar performance increase.

8.2 A Comparison of our Models

To illustrate the benefits of the combined model over the unary network, we provide a

comparison of our models. In the first group of models in table 8.1, we compare the three

stages of our approach (unary network, CRF for post processing, joint training) on the

validation set. We can observe that the use of a CRF as well as the joint training steadily

increase the score for the IoU Classes task.

In the following, we provide a qualitative comparison of the unary network and the

trained combined model based on a few exemplary predictions. Figure 8.1 shows the de-

sired groundtruth (a) as well as predictions of the unary network (b) and the combined

model (c). We mark four regions (A to C) which are enlarged in figure 8.4 and further

discussed next. In figure 8.4 we additionally print the pairwise interactions in column (e).

Hereby, dark regions correspond to low energy which encourages label jumps while bright

regions indicate high energy and therefore discourages label discontinuities. For instance,

the weights in row A show low cost for a label jump around the head of the person in the

center. Thus, the CRF energy is lower in that region and the segmentation boundary is

moved towards it. Note that the low-cost region is wide enough to allow multiple bound-

aries. Due to the four-connected neighborhood in our CRF implementation, the model

tends to prefer grid-aligned solutions. We believe that by extending the neighborhood

of the CRF to model diagonal or sparse long range connections can lower that tendency.

Row B shows similar effects around the front wheel of the bicycle. Additionally, it con-

tains an example of how the CRF enforces consistency (smoothness) of the solution. We

can observe that small outliers (visible in the CNN prediction within the pink region) are

removed because the corresponding pairwise costs are too high. Finally, row C contains

an example of how fattened foreground and curvaceous boundaries become aligned with

the true objects in the combined model.

It is noteworthy that we can observe a staircasing effect in the obtained solution after

the CRF. We argue that this is mostly due to definition of the four-connected neighborhood
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Figure 8.4: Scaled versions of marked regions in figure 8.1. The first three columns contain the
groundtruth labeling, the prediction of the CNN model and the results of our CNN+CRF model
respectively. The last column shows the pairwise costs of neighboring pixel. Best viewed in color.

in the CRF and could be addressed by extending it.

8.3 Comparison with the State-of-the-Art

To justify our usage of the locally connected CRF implementation of [55] over the com-

monly used fully connected CRF of [32], we compare our model against the work of [70].

The authors of [70] also use the FCN-8s network of [41] to provide unary terms to the fully

connected CRF of [32] which is unrolled and interpreted as layers in a recurrent network.

Additionally, they also operate on half sized images. An advantage of that approach is

that it allows to directly compute the exact gradient instead of an approximation. Their

model is restricted to formulate the pairwise interactions as high dimensional Gaussian

filters. In contrast to that, our model approximates the gradient of the CRF using a SSVM

formulation which in turn allows for arbitrary definition of pairwise potentials. Table 8.1

shows that both approaches achieve similar improvements over the FCN-8s model and

yield almost identical IoU scores, even though our model is simpler.
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Discussion

9.1 Conclusion

In this thesis, we discussed basic concepts in state-of-the-art neural network architectures.

The task of semantic segmentation was tackled using the combination of convolutional

neural network and conditional random field. A structured support vector machine for-

mulation allows for joint training of both model building blocks. The combined model

allowed the CNN to adapt to the CRFs capabilities and hence improved the quality of

the output. We showed how pairwise interactions encouraged label discontinuities across

visual edges in the input image. The predicted segmentation boundaries were more likely

to align with the true object borders because of that. In the end, the proposed architecture

was evaluated on the challenging Cityscapes dataset.

9.2 Future Work

In following work, we want to replace gradient-based pairwise weights with a second CNN.

While we already experimented with this, a satisfying training scheme is yet to be found.

In general, we believe that contrast sensitive weights have room for improvement and that

moving pairwise interactions towards penalizing label jumps within objects is reasonable.

Furthermore, we intend to extend the current Potts model to general label compatibilities

such that e.g ., the label pair {car, street} is more likely than {car, bicycle}. Other ideas

are to tackle the staircasing artifacts discussed in section 8.2 directly by choosing the

pairwise-neighborhood in the CRF differently. Possible changes could include to model

non-symmetric, diagonal and/or sparse long-range interactions. We expect this to be

beneficial for semantic segmentation. Another direction could be to investigate different

training methods and loss surrogates, possibly addressing IoU score more directly, within

the SSVM approach.
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Appendix

A.1 Additional Results

This section provides additional results on a larger scale than figure 8.1. We provide a

qualitative comparison of the CNN only model and the combination of CNN and CRF,

jointly trained. All label assignments are blended over the input image to better visualize

the boundary alignment around object borders. The images are all contained in the

validation set of [8], i.e., were not seen by the model before. In the groundtruth images,

red color denotes regions which are ignored during training and evaluation. Thus, the

model can predict anything in those regions.
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Figure A.1: Comparison of the CNN only model and the combination of CNN and CRF.
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Figure A.2: Comparison of the CNN only model and the combination of CNN and CRF.
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Figure A.3: Comparison of the CNN only model and the combination of CNN and CRF.
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Figure A.4: Comparison of the CNN only model and the combination of CNN and CRF.
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Figure A.5: Comparison of the CNN only model and the combination of CNN and CRF.
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Figure A.6: Comparison of the CNN only model and the combination of CNN and CRF.





B
List of Publications

My work at the Institute for Computer Graphics and Vision led to the following peer-

reviewed publication. For the sake of completeness of this Thesis, it is noted here along

with its abstract.

B.1 End-to-End Training of Hybrid CNN-CRF Models for

Semantic Segmentation using Structured Learning

Aleksander Colovic, Patrick Knöbelreiter, Alexander Shekhovtsov and Thomas Pock

In: Proceedings of Computer Vision Winter Workshop

February 2017, Retz, Austria

(Accepted for oral presentation)

Abstract. In this work, we tackle the problem of semantic image segmentation with

a combination of convolutional neural networks (CNNs) and conditional random fields

(CRFs). The CRF takes contrast sensitive weights in a local neighborhood as input (pair-

wise interactions) to encourage consistency (smoothness) within the prediction and align

our segmentation boundaries with visual edges. We model unary terms with a CNN

which outperforms non-data driven models. We approximate the CRF inference with a

fixed number of iterations of a linear-programming relaxation based approach. We ex-

periment with training the combined model end-to-end using a discriminative formulation

(structured support vector machine) and applying stochastic subgradient descend to it.

Our proposed model achieves an intersection over union score of 62.4 in the test set

of the cityscapes pixel-level semantic labeling task which is comparable to state-of-the-art

models.
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