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Abstract

Structure Prediction at Organic/Inorganic Interfaces
using Machine Learning

Michael Scherbela
Institute of Solid State Physics, Graz University of Technology

Many properties of thin films, such as their solubility or conductivity, depend strongly on the
crystal structure of the adsorbed molecules. A major step towards designing new materials is
therefore understanding and predicting the crystal structures that form at interfaces.

This could in principle be done by finding low energy structures using ab-initio methods.
However, the many degrees of freedom lead to a rich polymorphism that prohibits an exhaustive
search for the global minimum using expensive ab-initio calculations. In this work it is shown
on the example of tetracyanoethylene (TCNE) on coinage metal surfaces that this challenge
can be tackled with a combination of coarse-graining and machine learning:

First the adsorption geometries that isolated molecules would adopt on the substrate are
found. Supercells with multiple molecules per unit cell are built by combining these isolated
adsorption geometries to generate a set of possible “guess polymorphs”. This discretizes the
configurational space to a huge, but finite size. Using optimal design methods a small, repre-
sentative subset is selected and its energies calculated using Density Functional Theory (DFT).
By training a Gaussian Process Regression model on these first-principle calculations, effective
interactions between adsorbates are obtained. This provides an efficient and accurate energy
prediction for all remaining guess polymorphs which is exploited by sampling the energetically
most promising structures and iterated relearning.

Using this method we explore the potential energy landscape of TCNE on Cu(111) and
Ag(100) and show that the machine learning model can achieve the accuracy of the expensive
DFT calculations after having been trained only on a small fraction of the total dataset.



Kurzfassung

Struktursuche an Organisch-/Inorganischen
Grenzflachen mittels Machine Learning

Michael Scherbela
Institut fir Festkorperphysik, Technische Universitit Graz

Viele Eigenschaften von Materialien von organischen Diinnschichten héngen stark von der
Kristallstruktur der adsorbierten Molekiile ab. Um neue Materialien mit gewiinschten Eigen-
schaften zu designen ist es daher von groflem Vorteil die Struktur ohne Experimente - lediglich
durch theoretische Berechnungen - bestimmen zu koénnen.

Im Prinzip kénnten thermodynamisch stabile Phasen durch Suche von niederenergetischen
Strukturen mittels ab-initio Rechnungen bestimmt werden. In der Praxis dagegen fiihren die
vielen Freiheitsgrade zu einer riesigen Vielzahl an moglichen Polymorphen die eine vollstandige
Suche nach dem globalen Minimum mittels teurer ab-initio Rechnungen unmoglich macht.
In dieser Arbeit wird an Hand des Beispiels von Tetracyanoethen (TCNE) auf Miinzmet-
alloberflichen gezeigt, dass sich dieses Konfigurationsproblem durch eine Kombination aus
Diskretisierung und Machine Learning Methoden l6sen lasst:

Zuerst werden die Adsorptionsgeometrien von einzelnen adsorbierten Molekiilen auf dem
Substrat bestimmt. AnschlieBend werden diese Adsorptionsgeometrien zu Superzellen mit mehr
Molekiilen pro Einheitszelle kombiniert um eine Liste aller méglichen Polymorphe aufzustellen.
Dadurch wird der Konfigurationsraum auf eine sehr grofle, aber endliche Anzahl an Strukturen
diskretisiert. Mittels Optimal-Design-Methoden wird ein reprasentatives Subset an Konfigu-
rationen ausgewdhlt und deren Energien mittels Dichtefunktionaltheorie (DFT) berechnet.
Anschlielend wird ein Gauf3-Prozess-Modell mit diesen Energien trainiert um effektive Wechsel-
wirkungen zwischen den Molekiilen zu bestimmen. Diese Wechselwirkungen bilden ein effizientes
und genaues Modell der Adsorptionsenergien fiir alle verbleibenden Polymorphe und erlaubt es
kostengiinstig die energetisch niedrigsten Strukturen zu finden.

Mit diesem Modell werden in dieser Arbeit die Energien fir Strukturen von TCNE auf
Cu(111) und Ag(100) ermittelt. Das Machine Learning Modell liefert fiir diese Systeme Genauigkeiten,
die mit den teuren DFT Rechnungen vergleichbar sind, obwohl es lediglich auf einem kleinen
Bruchteil des gesamten Datensatzes trainiert wurde.



Life is full of mysteries, yeah,
but there are answers out there
and they won’t be found

by people sitting around

looking serious

and saying isn’t life mysterious?

TIM MINCHIN
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1 Introduction

1.1 Polymorphism

Thermodynamics states that a material will form the structure of lowest free energy, but in
many cases several competing low energy structures exist. These competing polymorphs can
either become stable at different external conditions, like pressure or temperature, or be kinet-
ically trapped out of equilibrium phases. Changing the structure of a molecule or crystal can
dramatically alter its properties: While both diamond and graphite consist purely of carbon,
their different crystal structures lead to completely different optical, mechanical and electrical
properties. This strong dependence of properties on the crystal structure is also true for molec-
ular crystals: As an example, the organic semiconductor rubrene has an extraordinarily high
charge carrier mobility, but exhibits this desirable property only in one of four different poly-
morphs [1]. Finding polymorphs is therefore a necessary step to fully understand the possible
properties and applications of any material.

While polymorphism and structure search has been extensively studied for 3D materials,
limited progress has been made for surface structures. However thin molecular films on substrates
are of great interest, in particular for the development of organic electronics, such as OLEDs
and OFETs. In particular the structure of the first monolayer of deposited material on the
substrate can crucially impact the properties of the material. On the one hand, this can be a
direct effect of the monolayer, such as a change in workfunction leading to possible tuning of
band alignments for organic electronic devices [2]. On the other hand the first monolayer can act
as a template for subsequent layers and can change their structure and orientation: Pentacene,
another organic semiconductor, can form a polymorph on surfaces that is not observed in bulk
samples and controlling its crystallinity and structure has a critical impact on properties like
the charge carrier mobility. It is hypothesized [3] that templating by the first monolayer plays
the dominant role in the formation of this surface induced phase.

1.2 Motivation behind Structure Search

To find new materials and combinations of materials that show promising properties for future
applications such as organic photovoltaics or more efficient fuel cells it is crucial to guide research
efforts towards promising candidate materials. A long standing goal of materials science is
therefore to calculate structures and properties for a large class of materials in a high-throughput
manner and automatically search the results for desirable properties. Although this has not yet
been achieved, rapid progress is made in this field [4] and the continuous improvements in
ab-initio methods and computational power make ever more complex systems accessible.

As outlined in Sec. 1.1, calculated properties do strongly depend on the geometric structure
of the system. Therefore accurate structure prediction is the crucial first step when calculating
the properties of any new material or material combination. The aim of this work is to build
a structure prediction algorithm for molecules adsorbed on surfaces and test it exemplary for
the adsorption of tetracyanoethylene on coinage metal surfaces.

1.3 Configurational Explosion

Structure search is the search for the configuration with lowest free energy F. A typical search
procedure consists of two basic steps: At first a structure must to be proposed and then in
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a second step its energy needs to be evaluated. For simple systems, that depend on very few
degrees of freedom, generating structures is easy: For example, the geometric structure of any
diatomic molecule only depends on a single degree of freedom, the bond length d. To generate
structures one could try a grid of bond distances within reasonable limits d,,;, and d,,qz.
However for systems that have more degrees of freedom, for example crystal structures with
several molecules per unit cell, the configurational space grows too fast to allow simple grid
based searches in practice.

While low energy polymorphs could in principle be found by exhaustively calculating the
energy of all possible crystalline polymorphs this is computationally unfeasible. The impossi-
bility of brute-forcing all possible polymorphs can readily be seen when looking at the example
of a crystalline 2D structure with three molecules per unit cell. Since we constrain the molecules
to be on the surface, each molecule has two translational degrees of freedom and at least one
rotational (around the axis perpendicular to the surface). If we roughly discretize each degree
of freedom by ten steps this yields a total number of (10-10-10)? = 10° configurations for this
unit cell, which is clearly far beyond what can be calculated on a quantum mechanical level.
Since this configurational space grows exponentially with the number of molecules per unit cell
it is imperative to limit the configurational space to the regions of interest.

1.4 Structure Search: Generating Structures

There is a wide variety of different techniques to propose structures in the configurational space,
many of which are in active use, as can be seen from the submissions for the Crystal Structure
Prediction Blind Test 2016. [5]. This section will give a brief outline of a few commonly used
algorithms to search for low energy configurations in the parameter space.

1.4.1 Grid Search

For a sufficiently small parameter space it can be feasible to discretize each parameter and
exhaustively try all parameter combinations. This approach is limited to systems where there
are few degrees of freedom, because the total number of grid points grows exponentially as a
function of the number of degrees of freedom.

Grid searches have a second disadvantage: If a parameter turns out to be irrelevant, all
calculations that only vary this parameter generate redundant information. This can be seen
in Fig. 1 for the grid search: When the grid points are projected along one of the axis, the
points accumulate densely on discrete point along the remaining axis and poorly cover the
lower dimensional subspace.

1.4.2 Random Search

In a random search, values for each degree of freedom are chosen at random in the hope of
covering a large part of the configurational space in an unbiased way. If values for each degree
of freedom are chosen independently, also any lower dimensional projection will yield randomly
distributed points, in contrast to the grid approach. For the crystal structure prediction blind
test in [5], several groups preoptimized molecular geometries and then used random translations
and rotations of these preoptimized molecules to build the full unit cell consisting of multiple
molecules.
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Figure 1: 100 points (blue) generated by a uniform random distribution, a quasi-random Sobol sequence

and a reqular grid. The Sobol sequence leaves fewer "unexplored holes" in the configurational
space compared to the uniform random distribution, just like the regular grid. When projected
onto one of the coordinates (red) the Sobol sequence and the uniform distribution still give
a uniform distribution in 1D while the grid gives a sharply peaked distribution.

1.4.3 Quasi-Random Sobol Sequence

When independently drawing random points, in many cases some areas of the configurational
space will be covered more densely than others, leading to an uneven exploration and risking
oversight of energetically low minima. Quasi-random Sobol sequences generate points that are
correlated and more evenly distributed throughout space. Furthermore the points are also still
evenly distributed when projected onto a lower-dimensional subspace, as can be seen in Fig.
1 where 100 uniformly distributed random points in the 2D plane are compared to 100 quasi
random points from a Sobol sequence and 100 points on a regular grid. Sobol sequences try to
combine the best features of grid searches - even coverage of parameter space - with the best
features of random searches - unbiased search and good distribution of projections.

1.4.4 Markov-Chain-Monte-Carlo Simulated Annealing

Grid-searches or random searches sample the parameter space independently of the value of the
objective function. If the parameter space is high dimensional, an increasingly large fraction of
function evaluations are spent on regions that are of little interest. To improve convergence of
the optimization it is desirable to spend more time in regions of the parameter space that are
targeted by the optimization, e.g. low energy polymorphs. A possible way to do so is given by
the family of Markov-Chain Monte-Carlo algorithms. The basic idea is to have a "walker" that
moves through the parameter space and preferentially walks towards regions of low energy. At
every iteration a random movement of the walker is proposed and its resulting change in energy
AF is evaluated. If the change in energy was favorable, AE < 0, the walker moves to this new
position. If AE > 0, the walker moves to this new position with a probability that decreases
with larger energy changes. A common choice of probability function is given by the Boltzmann
weight:

AE

T (1)
The "temperature" parameter T" defines the energy scale at which changes in energy are consid-
ered to be too large to accept. Choosing large values of 7' will allow large movements of the

Paccept = €
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walker in parameter space, even if these movements lead to intermittent energetically unfavor-
able points. Low values of T" prevent large increases in energy and lead to convergence to the
closest local minimum.

Simulated annealing exploits this behavior by changing this "temperature" during the opti-
mization. Starting at high values of T' fast exploration of the parameter space is possible. The
temperature is then gradually decreased to focus more and more on local optimization of the
potential energy surface.

1.4.5 Basin Hopping

One significant problem for Monte Carlo methods, described in Sec. 1.4.4, are energetic barriers
between local minima. If the walker is trapped in a local minimum surrounded by high energetic
barriers it is unlikely that this minimum can ever be left. Any proposed step out of this minimum
will result in a large increase in energy F and therefore a small acceptance probability p. To
address this problem of getting stuck in local minima, Basin Hopping combines a Monte-Carlo
approach with a local optimization. For each proposed point in the parameter space a local
optimization (e.g. gradient descent) is conducted and the energy assigned to the point is given by
the local minimum [6]. This effectively transforms the potential energy surface into a staircase of
energies that correspond to the energies of the local minima, as depicted in Fig. 2. Alternatively
one can also move the position of the walker to the position of the local minimum that was
found by the optimization, so that subsequent steps start from a low energy configuration.

—— full potential
—— basins

energy

coordinate

Figure 2: Schematic of Basin-Hopping transformation. The original, full potential is transformed into
a staircase of minima energies, allowing faster traversal of the potential energy landscape.

Basin Hopping can in some cases vastly improve the speed at which the potential energy
surface can be sampled, compared to traditional Monte-Carlo methods, due to faster traversal
between local minima. Basin Hopping has been applied to the problem of structure search for
Lennard-Jones Clusters [6] and the structures of Si and Cu clusters [7]. While Basin Hopping
aims to facilitate faster transitions between local minima, it can still suffer from often revisiting
the same energetic basin many times. This will happen in particular if a basin is very large in
the parameter space, so that many random moves will land in it. In many cases wide basins are
also particularly "deep" and thus of interest, but there are also cases where a wide, and thus
often visited, basin does not lead to the global minimum. Several techniques have been tried
to minimize revisits of already known basins, for example by energetically penalizing regions of
the parameter space that have already been visited.
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1.4.6 Genetic Algorithm

Genetic Algorithms (GA) are inspired by nature and its evolutionary improvement of species by
mutations and natural selection. In a Genetic Algorithm a set of possible configurations in the
parameter space is seen as a “population”. In each iteration the following steps are performed:

1. Evaluation of fitness: The quality of each member of the population is evaluated. For
the case of structure search a simple, exemplary fitness function is given by fitness = —FE.

2. Selection: Members with low fitness are removed from the population. The selection
can be a sharp thresholding or a probabilistic choice that gives a higher chance to be
eliminated to low-fitness-configurations.

3. Crossover: High-fitness members of the population are now paired to create “offspring”.
The exact way of combining two members to create a new one depends on the application.
Since members of the next generation consist of combinations from high-fitness "parents",
their average fitness should be higher than the average fitness of the previous generation.

4. Mutation: To bring new features into the population, some members of the new gener-
ation are randomly altered by performing variations on part of their descriptors.

These steps are iterated until the population converges to a high-fitness solution of the optimiza-
tion problem. Compared to traditional Markov-Chain-Monte-Carlo methods, genetic algorithms
benefit from two important differences: Crossovers and mutations can lead to large movements
in the parameter space, allowing faster escape from local minima. Secondly, crossovers can
combine the best traits of two configurations, leading to faster convergence towards the global
optimum. Mutations ensures that the population stays diverse during the optimization and
should prevent getting stuck in local minima. Genetic algorithms alone are not well suited for
fine tuning of parameters and can therefore be coupled with local optimization steps, referred
to as hybrid-GA.

Like any stochastic optimization algorithm, also Genetic Algorithms do not guarantee to find
the global optimum but they have been successfully employed to find sufficiently good solutions
to difficult optimization problems. Genetic Algorithms have been applied to a wide range of
problems, often involving large parameter spaces: Folding of proteins [8], tuning of parameters
to make simulations fit experimental results [9] and automated design of a special antenna for
the NASA space mission ST5 [10].

1.5 Calculating Energies

Each of the optimization methods outlined in Sec. 1.4 relies on being able to evaluate the
function value at any point in the parameter space. A central part in structure search - and
in many cases the computationally most demanding one - is therefore a routine that yields the
total energy of a given geometry. This section will briefly list a few common computational
methods for obtaining energies and follows closely the book Introduction to Computational
Chemistry: Second Edition by Frank Jensen [11].

1.5.1 Force-Fields

Force-field methods solve the problem classically (i.e. not quantum mechanically) by treating a
molecule as a set of atoms that are connected by bonds. Deforming a molecule causes the bonds
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to stretch, twist and deform, all contributing towards the energy of a system. The parameters to
describe this energy model are usually obtained by experiments or ab-initio quantum chemistry
methods. A typical force-field, like the AMBER force-field [12] calculates the energy as:

E = Estretch + Ebend + Etorsion + Ecoloumb + EvdW (2)

The first term FEg.ere, models the energy required to change a bond length [. A common choice
is

k
Estretch = EO + §(l - l0)2 (3)

which describes a harmonic potential with "spring constant" k, equilibrium bond length [y and
equilibrium bond energy Fjy. This can be viewed as the lowest contributing terms of a Taylor
expansion of the true bond potential. This model can be refined further by introducing higher
order terms like k,(l —lp)™ at the expense of introducing additional parameters. As opposed to
the exact bond potential, any polynomial expansion will not converge towards zero for | — oo
and therefore will only be valid for small perturbations of the bond length. A potential that
does obey the correct boundary conditions is for example the Morse potential

E=E (1- )" - B, (4)

The second term FEjy.,q describes distortions from equilibrium bond angles (e.g. the 6 =
104.45° for the water molecule). As for the stretching energy, a common choice is a quadratic
expansion around the minimum:

kbend
2

Ebend = E(l))end + (9 - 90)2 (5)

The torsion energy arises in a system of four atoms A-B-C-D when there is a rotation around
the B-C axis. It is characterized by an angle w which, as opposed to bond angles, often has
several minima and in some cases deviates strongly from the equilibrium value. Therefore, the
energy associated with the angle must correctly obey the rotational symmetry that adding a
rotation of 360° to w should not alter the energy. This property can automatically be enforced
by expanding the energy in a periodic Fourier series:

Eiorsion = Y _ By cos (n(w - wg)) (6)

While the energies Fgeten, Fpenda and Ejiorsion Only appear for atoms that are connected
by bonds, there are also non-bonded energy contributions between all pairs of atoms. The
Coulomb energy describes the electrostatic attraction or repulsion between fully or partially
charged atoms. The monopole contribution between atoms 7 and j is given by

Ecoloumb - 4 (7)

ij

where ¢; and ¢; denote their electric charges in atomic units. The charges can be obtained by
fitting the electrostatic potential generated by these point charges to the potential calculated
by an ab-initio method. The electrostatic potential can be further refined by including higher
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order contributions beyond the monopole, in particular the dipole and quadrupole moments of
the electrostatic potential.

The last energy term is the van der Waals energy F,qy which is a quantum mechanical
interaction arising from charge density fluctuations. For large distances the interaction between
atoms is attractive and decays as r=%. At very small distances the wavefunction of atoms start
to overlap, leading to Pauli repulsion. Since this repulsion is not yet included in any of the other
energy terms, it is often included as a repulsive part of the van der Waals energy. A popular
energy function describing these behaviors is given by the Lennard-Jones potential:

rar - (1) ()

This function has a minimum at r = ry of depth £ = Ej; and decays to zero for large distances.

Force-field methods are computationally cheap and therefore widely used when more accurate
methods are computationally unfeasible. They have for example been applied to large organic
molecules and in the field of protein folding. Because force-fields and other empirical methods
rely on parametrization on known datasets, it is fundamentally difficult or even impossible to
properly address new or rare interactions.

1.5.2 Wave Function Based Methods

Wave function based methods use the time-independent Schrodinger equation as their starting
point:

Hé(R,r) = EY(R,T) (9)

Here H denotes the Hamiltonian of the system and ¢ and E are its eigenfunctions and eigen-
values respectively. The wavefunction 1) depends on the position of all nuclei R and all electrons
7. The square of the wavefunction ||? gives the probability density of finding the nuclei at R
and the electrons on r. For a non-relativistic treatment, neglecting spin, the Hamiltonian of a
molecule in atomic units is given by:

o yipoy Ly iyt ]
= ;2V¢ 26132J\4QV“+227~--+2Z

i#£j ' a#b Tab

ZaZb

I (10

Here indices i,j denote electrons and indices a,b correspond to nuclei. The terms in the
Schrodinger Equation describe the kinetic energy of the electrons and the kinetic energy of
the nuclei, the Coulomb repulsion between nuclei-nuclei, electrons-electrons and the attrac-
tion of electrons to the nuclei. Solving this equation does yield all possible eigenstates 1) -
the groundstate as well as all excited states - and their corresponding energies. However for a
system consisting of NV particles (nuclei and electrons) the wavefunction is a complex 3N dimen-
sional function, the determination of which is unfeasible even for systems of moderate size. To
simplify the problem, several approximations are being made, with the first one usually being
the Born-Oppenheimer approximation: In the Born-Oppenheimer approximation the nuclei are
not treated quantum-mechanically but as classical particles having a well defined position.
Only the electrons that move in the electrostatic potential of these fixed nuclei are then treated
quantum-mechanically. The approximation is in many cases well justified, because the nuclei
are heavier then the electrons by about four orders of magnitude and appear quasi-stationary to
the fast electrons. Treating the nuclei classically turns the kinetic energy of the nuclei and their
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electrostatic repulsion into constants that can be removed from the Hamiltonian and added to
the eigen-energies after solving the Schrodinger equation.

Even in the Born-Oppenheimer approximation the wavefunction does still depend on 3 Njectrons
coordinates and is difficult to calculate. The main difficulty arises from the electron-electron
repulsion that correlates the movement of electrons. If the electron-electron interaction is
neglected, the total Hamiltonian becomes a sum of Hamiltonians that only act on one of the

electrons. g
ﬁ:_z@vg_zr#):zﬁi (11)

7 a

This Hamiltonian can immediately be solved by a product ansatz:

Y(r) = d1(r1)p(r2)...0(TN) (12)

where the orbitals ¢; are solutions to the noninteracting Hamiltonian h:
hé; = Ei¢; (13)

Since electrons are fermions, the electronic wavefunction must additionally be antisymmetric
with respect to the permutation of electrons. This can be achieved by using a so called Slater
determinant as ansatz instead of the simple product state:

¢1(r1)  d2(r1) .. on(ra)

| a(r2)  da(r2) . dn(ra)

= (14)

br(rn) alr) . on(rn)

Expanding this determinant as a sum of permutations does include the simple product ansatz
from Eq. 12 but also adds all possible permutations with the corresponding sign of the permu-
tation. To find the full wavefunction in this non-interacting approximation, it is now possible to
just solve the Hamiltonian h for a single electron, which is identical for all electrons, determine
its eigenfunctions ¢; and construct the full wavefunction as a Slater determinant of the orbitals
that have the lowest energy.

Fully neglecting the electron-electron interaction ignores a large part of the Hamiltonian and
therefore yields very poor results for most materials, it is therefore necessary to include the

Coulomb repulsion:
1

|ri — 7]

9ij = (15)
When including the Coulomb repulsion in the total Hamiltonian, the Slater determinant (Eq.
14) is no longer an eigenstate of the total Hamiltonian, however it can be used as a variational
ansatz. An approximate solution can be found by minimizing the energy E = <1p ‘ H ‘ w>
as a function of the orbitals ¢;. When evaluating the energy of a given Slater determinant,
constructed out of orthonormal orbitals, only terms that have different orbitals in at most two
coordinates contribute, while all other terms are zero due to the orthonormality of the orbitals.
The energy of a Slater determinant is given by:
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In the last two steps the Coulomb operator J and the exchange operator K have been intro-
duced:

i 16i(1)) = (6;(2) | §12 ] 95(2)) |di(1)) (22)
i loi(1)) = (05(2) | Gn2 | 61(2)) 16;(1)) (23)

Defining
ﬁ:a+;z@_& (24)

does formally lead to a problem of independent particles

E = Z <¢z’ F, <Z5z'> (25)

The orbitals that minimize Eq. 25 are the eigenstates of F , however the operator F' itself does
depend on the orbitals ¢; via the Coulomb and exchange operators J and K. Therefore Eq. 25
is usually solved self-consistently: Starting with an initial guess for the orbitals ¢ (e g. starting
with the non-interacting orbitals) the operator F' is constructed. By diagonalizing F a new set
of orbitals ¢; is obtained. This scheme is iterated until a self-consistent solution for the orbitals
¢; and F is found. This approach is called the Hartree-Fock method and yields the best possible
(i.e. lowest in energy) wavefunction that can be obtained by a single Slater determinant.

To obtain better wavefunctions that lower the total energy further it is necessary to generalize
the ansatz of Eq. 14 by writing the wavefunction as a sum of multiple determinants. Different
determinants can be constructed from the orbitals ¢ by using orbitals with higher energy than
the lowest IV orbitals to construct the determinant. If all possible orbitals - which there are
infinitely many of - and all possible combinations of these were used to construct all possible
Slater determinants, this ansatz would be fully general and yield the exact wavefunction. In
practice the number of orbitals is limited by the number of basis functions that are used to
construct the orbitals. Furthermore in most cases only a subset of all possible Slater deter-
minants is included, for example only the Hartree-Fock determinant and the doubly excited
determinants. This ansatz of a truncated sum of excited determinants of the Hartree-Fock
orbitals is known as Configurational Interaction (CI).
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1.5.3 Semi-Empirical Methods

To evaluate the electron-electron interaction energy of a slater determinant in Hartree-Fock the
following integral, besides others, must be evaluated:

1 1
=35k

i#]

w> (26)

Since the operator only acts on two (r; and r;) out of all the electron coordinates all other
coordinates can immediately be integrated, thus leaving only the orbitals dependent on the
coordinates r; and r;. The general form of these remaining two-electron integrals is therefore:

Vi = [ [ 6206300 ox(ri)outrs) (21)

If the orbitals are expanded in M basis functions than there are O(M?) of these two-electron
integrals that need to be evaluated, leading to a large computational cost at increasing system
size.

Semi-empirical methods provide a computationally cheaper approach by neglecting all these
two-electron integrals. This large simplification introduces errors than can partly be compen-
sated by turning the remaining integrals into parameters that are fitted to experiments or
more sophisticated computations. Further computational time can be saved by only treating
the (chemically most interesting) valence electrons of a system by combining the core electrons
together with the nucleus to a new nucleus that has a reduced effective electric charge. As with
Force-Field methods also semi-empirical methods can only give reliable results for classes of
materials that they have been parametrized for. An example of such a semi-empirical method
is the AM1 method, which has been parametrized for small organic molecules. [13].

1.5.4 Density Functional Theory

In wavefunction based methods, as described above, the central object is the all-electron wave-
function which is complex and depends on 3N electron coordinates. Once the groundstate
wavefunction is known, all groundstate properties can be calculated as expectation values of
this wavefunction. Hohenberg and Kohn have shown that also the electron density is sufficient
to calculate all groundstate properties of any system. This is in principle advantageous for calcu-
lation of properties, because the electron density is a much simpler object, being real valued
and, more importantly, only dependent on three coordinates, independently of the number of
electrons in the system.

If the external potential is fully known, for example the electrostatic potential generated by
the nuclei, the Hamiltonian of the system is known, which - for a non-degenerate groundstate
- uniquely defines the groundstate wavefunction, as depicted in Eq. 29. Integrating the square
of the wavefunction over all but one coordinate yields the electron density:

n(,r,) — /w*w d3N73 (28)

V(r) — H—¢— n(r) (29)
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If it was possible to reverse Eq. 29, obtaining the potential from the electron density, then
the wavefunction - and thus all groundstate properties - would be determined by the electron
density.

The Hohenberg-Kohn theorem states that the potential can be inferred from the density and
can be proven by reduction ad absurdum: Assume there are two different external potentials
Vi(r), Vo(r) with different, non-degenerate groundstate wavefunctions 4,1, that give rise to
the same density n.

Vi(r) — 1 — n(r)

Valr) — s — n(r) (30)

The expectation value of the energy of a wavefunction ¢ with respect to the Hamiltonian
can be written as a sum of kinetic energy 7', external potential V' and electron-electron inter-
action U. Since 1 is the groundstate, and thus the state of lowest energy, of the Hamiltonian
corresponding to V; it holds that:

(1| Hy 1) < (o | Hy | 12)
(1| T+ U [91) +/V1(r)n(r) EPr < (Y2 | T+ U | o) +/V1(r)n(r) d’r (31)
(U1 | T+ U 1) < (b2 | T+ U |12)

However, the same argument can be made when calculating the expectation value of H, leading
to the contradiction:

(| T+ U [Y1) < (2| T+ U |thg) < (1 [T+ U |9) (32)

This proves that the assumption in Eq. 30 must have been wrong: It is not possible that two
different potentials lead to the same ground state density. Therefore the groundstate density n
uniquely determines the external potential V.

While the Hohenberg-Kohn-Theorem is a remarkable result, it is by itself of very limited
use for practical applications: It proves that all groundstate properties, for example the total
energy, of the system are a functional of the electron density, but unfortunately this functional
is not known. Because the exact functional is not known, approximate functionals are used. In
the development of orbital-free Density Functional Theory (DFT) the aim is to explicitly find
the full functional that yields the energy for a given groundstate electron density. Some parts
of the functional are known exactly, for example the potential energy of the electrons in the
external potential V:

Eln] = [ V(r)n(r)d*r (33)

However another large contribution to the total energy is given by the kinetic energy of the
electrons, for which only approximate functionals such as the Thomas-Fermi functional exist:

E[n] x /n(r)gd?’r (34)
Because the kinetic energy is a large part of the total energy of a system, making rough

approximations for it introduces large errors in the results. For this reason most DF'T codes use
the Kohn-Sham equations. In Kohn-Sham-DFT auxiliary orbitals ¢ are introduced that form
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a system of noninteracting electrons giving rise to the same electron density as the original,
interacting system:

n(r) =3 66 (35)

The kinetic energy is then given by the kinetic energy of these non-interacting auxiliary particles
T = —; > / 6 V20 d*r (36)
The energy of the electrons in the external potential and the Coulomb repulsion is given by
Epotentiat = [ Veas(1) + Viartree(r)] n(r) dr

Viartree(r) = [ 0

n(r’

) o
e
Using the Kohn-Sham orbitals, the only remaining unknown part of the energy functional is the
exchange- and correlation-energy E,.. The exact form of this functional is not known and a large
variety of different approximate functionals exist. The advantage of the Kohn-Sham approach
over orbital-free DF'T is that the exchange and correlation energy typically only accounts for a
small fraction of the total energy and even crude approximations can give acceptable accuracies
for the total energy.

1.5.5 DFT Exchange-Correlation Functionals

Different exchange-correlation-functionals can be classified according to Perdew’s Ladder [14]
which ranks functionals from basic and computationally cheap versions, to more sophisticated
and computationally expensive functionals.

1. LDA: In the Local Density Approximation E,. is given by an integral over d*r of a
function that only depends on the electron density n(r). This exchange functional is
exact for a uniform electron gas and the approximation is therefore good for systems that
have a slowly varying electron density, such as the valence electrons of alkali metals. LDA
does perform poorly for strongly varying electron densities, as they occur in molecules.
Common parametrizations are for example given by Vosko-Wilk-Nusair (VWN-LDA) [15]
or Perdew-Wang (PW-LDA) [16].

2. GGA: In the Generalized Gradient Approximation (GGA) the exchange-correlation poten-
tial depends also on % in addition to n, improving the accuracy for electron densities
that vary in space. A common functional of this kind was developed by Perdew, Burke

and Ernzerhof (PBE) [17].

3. Meta-GGA: Meta-GGA functionals take the logical next step after GGA by including
the second derivative of the electron density in the exchange-correlation potential, or
equivalently by including the kinetic energy density =, [V¢;|?. A recent example of this
class is given by the SCAN functional [18].

4. Hybrid-Functionals: Hybrid functionals mix a certain fraction of Hartree-Fock like
exchange to the exchange-correlation functional. This comes at the cost of having a non-
local exchange potential that depends not only on the density and its derivatives at
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position 7, but on the density in the entire space, requiring an additional integration.
While LDA and GGA typically underestimate band-gaps in semiconductors they are
typically overestimated in Hartree-Fock calculations. Including of Hartree-Fock exchange
allows tuning of the functional to fit experimental values. Such an empirical Hybrid-
Functional that has shown to give good results for molecules is the B3LYP functional,
which mixes LDA, GGA and Hartree-Fock exchange [19]. Another common functional
is PBEO which mixes 25% of Hartree-Fock exchange to the PBE functional, justified by
perturbation theory results [20].

5. RPA: The random phase approximation (RPA)is the highest tier of Perdew’s Ladder and
additionally also includes information from the unoccupied Kohn-Sham Orbitals. While
it has the advantage of being able to directly include van der Waals interactions, its
computational cost is currently prohibitive for all but the smallest systems.

Density Functional Theory at or above the level of GGA functionals has been shown to yield
good accuracies for a wide class of materials ranging from molecules to solids. A drawback of
DFT, compared to wavefunction based methods, is that there is no clear and systematic way
to converge towards an exact solution. While adding additional Slater determinants in a CI
calculation is guaranteed to monotonically converge towards the exact total energy, moving
through the rungs of Perdew’s Ladder does not necessarily do so.

1.5.6 Van der Waals Corrections

Most DFT exchange-correlation functionals below the RPA level do not properly describe van
der Waals (vdW) interactions. To get reliable interaction energies for systems where van der
Waals interactions are dominant, such as physisorbed molecules on surfaces, ad-hoc van der
Waals corrections are used. Since it is known that vdW interactions between atoms are propor-
tional to 7~ for long distances r, many vdW schemes add a pairwise interaction energy between
all atoms to the total energy: -
ij
Buw =% (3)
i#j ij
Grimme proposed multiplying an additional damping function to the =% distance dependency
[21]. The Cj coefficients are either fitted empirically [22] or can be determined from the electron
density as proposed by Tkatchenko and Scheffler (T'S) [23]. This TS-vdW correction has also
been adapted to give good results for hybrid organic-inorganic interfaces [24]. All these van
der Waals corrections are applied after the DFT self consistency cycle has converged and are
computationally cheap since they only involve summation over pairs of atoms.

Another approach to van der Waals effects is given by the Many Body Dispersion (MBD)
vdW correction which calculates the dynamic atomic polarizabilities by mapping the problem
to coupled quantum harmonic oscillators sitting at each atomic site [25]. This more fundamental
type of van der Waals correction comes at an increased computational cost, but has been shown
to closely match experimental results when paired with the hybrid functional HSE [26].

1.6 Machine Learning

Ab-initio methods are computationally demanding, which can make it difficult to sample a
sufficiently large part of the configurational space with any of the methods outlined in Sec.
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1.4. However it is observed that the results of quantum mechanical calculations can often be
explained in much simpler terms than the full electron density or the all-electron wavefunction:
Many concepts of chemistry, for example chemical bonds or partial atomic charges, are not
strict observables of the Hamiltonian but are rather descriptors that efficiently explain results
for large classes of materials. The aim of machine learning methods is to find such descriptors
from a given training set in an automated fashion. Once these descriptors and their correlation
to material properties are known, this simplified model can be used to predict properties for
samples that were not in the training set.

The following section will give a brief outline of a few commonly used machine learning
methods and their application to the materials sciences.

1.6.1 Sparse Subset Selection

One straightforward way to find good descriptors is to simply build a large list of possible
descriptors and then select a subset of these that give the best property prediction for a given
training set. This has been done by Ghiringhelli et al [27] for the prediction of crystal structures
of semiconductors. To build the list of possible descriptors they start with a few basic descriptors
of each training sample (e.g. atomic radii, electronegativities, etc.) and expand this list of
descriptors by combining theses simple descriptors by a variety of functions (adding descriptors,
multiplying them, etc.). Once all N descriptors have been calculated for all training samples
and stored in a matrix D, they select the subset of n descriptors that gives the best linear fit for
the target properties p of the training set, in their case the energy difference between crystal
structures. They show that even small descriptor sets with n = 5 can yield high prediction
accuracies.

Because there are (JZ ) possible ways to select n descriptors from a list of N possibilities it
is unfeasible to try all possible descriptor sets until the best one has obtained. This problem is
circumvented by using an L1-regularized linear regression: Instead of performing linear fits on
subsets, searching for the best subset, a linear fit is performed using all descriptors. To enforce
sparsity of the model - only n out of N properties should have a nonzero fit coefficient - the L1
norm of the fit coefficients is added as regularization:

arg min [|p — Dell; + e (39)

Here ||c||; denotes the L1 norm of the vector ¢:

lefls = > el (40)

2

This procedure is known as LASSO [28]: Least Absolute Shrinkage and Selection Operator.
Because the fit model is sparse, it is often particularly well interpretable since the fit function
is only given by a sum over few nonlinear functions of basic properties.

1.6.2 Artificial Neural Networks

Building the functions that map basic descriptors of training samples to their properties is
difficult because the properties can depend on the input in a highly nonlinear fashion. Instead
of finding a one-step solution to this regression problem, Artificial Neural Networks attempt
to model a system layer by layer. The basic structure of a Feed-Forward-Neural-Network is
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Figure 3: Example of a feed-forward artificial neural network consisting of three layers: And input layer
with two nodes, a hidden layer with 8 nodes and the output layer with one node. Each node
receives input from previous layers and outputs the value of a function of the weighted sum
of inputs.

depicted in Fig. 3. Each neuron (represented by a circle in Fig. 3) receives inputs z; from all
nodes of the previous layer. The output of each node is then calculated as:

= (L) .

where w; are weights that can be different for each node and input and f is some nonlinear,
usually saturating function. Common choices for f(x) include f(x) = tanh(x), the sigmoid
function f(z) = efil or the rectifying linear unit f(x) = max(0, z).

Supervised training of neural networks is typically done using the backpropagation algorithm:
A batch of training samples is fed trough the neural network and its output is computed for
each training sample. Then the mean residual R between the prediction and the exact result
is calculated. Using the chain rule of differentiation, the partial derivatives of the residual with
respect to all parameters w of the model can be calculated. The weights are then updated to

minimize the residual, for example by a steepest descent procedure:

Wiy = Wy — T]VwR (42)

Due to the large number of parameters and their nonlinear structure neural networks are
very flexible and can yield very good prediction accuracies given enough training data. Deep
neural networks applied to large training sets have obtained unprecedented success in a variety
of applications, such as recognition of handwritten digits [29], image classification [30] and even
playing the board game Go.

For these classification tasks Deep Neural Networks, consisting of many hidden layers, have
performed extremely well. One of the reason for the success of neural networks is their layered
structure that extracts specific features at each layer of the network, forming an increasingly
abstract representation of the input data. For the example of image classification the input
data might simply be the intensity at each pixel of an image. The first layers of a multilayer
network could then for example perform edge detection, the next layers might recognize basic
shapes (circles, rectangles), the consequent layers more abstract concepts such as cars or faces.

Training these deep networks with the traditional backpropagation algorithm is hard because
of the vanishing gradient problem: Small changes at the first layers of the network only weakly
influence the final output of the network, in particular if some nodes of the network are in the
saturated regime of the nonlinear function. This has partly been addressed by efficient GPU
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implementations of the backpropagation algorithm that are orders of magnitude faster than
traditional CPU implementations and allow far more training iterations. This can eventually
lead to convergence of the network despite small and noisy gradients.

A second problem of deep neural networks is that they contain a very large number of param-
eters: the input weights for all nodes. To avoid over-fitting onto the training dataset, usually
large datasets are used to train neural networks. While large datasets are readily available for
many classification challenges, for the problem of structure search generating large training sets
might be computationally prohibitive.

1.6.3 Gaussian Process Regression

Gaussian Process Regression uses Bayes’ theorem to derive a probability distribution for predic-
tions, given some known training samples. For the prior distribution a multivariate Gaussian
distribution is assumed, which is characterized by its mean value p and its covariance C. Prior
knowledge about the system can be encoded into in these quantities to achieve accurate predic-
tions using few training samples. Gaussian Process Regression (GPR) and the closely related
Kernel Ridge Regression (KRR) both employ regularization to avoid overfitting of the model.
As opposed to neural networks that are extremely flexible but need large training sets to avoid
overfitting, GPR can yield good results at smaller training sets at the expense of limited flex-
ibility. While training on very large training sets (> 100.000 samples) is straightforward and
routinely done for neural networks, training a Gaussian Process can become computationally
challenging. GPR and KRR have been successfully applied to the problem of predicting the
atomization energies of small organic molecules [31] and been shown to achieve better prediction
accuracies than neural networks [32], in particular for small training set sizes.

Gaussian Process Regression to predict interaction energies lies at the heart of this work and
is described in detail in Sec. 2.6.

1.6.4 Cluster Expansion

Cluster Expansion is a method that has originally been developed to model the energy of binary
alloys. It maps a crystal onto an effective, generalized Ising-like model where the type of atom
present on lattice site i is described by a "spin" variable ;. If the site is occupied by atom type
A, o0 = +1, if the site is occupied by B, ¢ = —1. The energy of any configuration of atom
types is fully determined by specifying all "spin" variables and is given by a sum of all possible
correlation functions [33]:

E(O’) = JO+ZJ101 Z JijO'iO'j—i‘ Z JijkO'iO'jO'k;‘i"" (43)

sites pairs triplets

A classical Ising model is obtained if triplets and higher contributions are omitted, and the
pair-sum only runs over nearest neighbor atoms. Including all terms of the sum does in principle
yield an exact model but becomes quickly unfeasible as the number of possible correlations
rises quickly with the number of atoms considered within it. Therefore two approximations are
typically made:

e Only correlations up to a maximum number of atoms within it are considered (e.g. stop-
ping at quadruplets)
e Only correlations within a certain distance cutoff are considered.
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This truncates this energy expansion to a finite number of fit coefficients J that must be
determined by fitting to training data.

In many cases even this truncation leaves more open fit coefficients than number of training
samples available. To avoid over-fitting it is therefore necessary to either further truncate the
number of effective cluster interactions J or to introduce regularization. Selecting the expansion
coefficients J has been done using Genetic Algorithms [33] or compressive sensing techniques
exploiting the promotion of sparse solutions by the L1 norm [34].
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2 Method for Efficient 2D Structure Search

To find low energy configurations for molecules on surfaces we use a three step procedure: At
first we build a large list of guess configurations as outlined in Sec. 2.1 - 2.2. In a second step
we calculate the energies of a few selected configurations from this list and train the machine
learning model described in Sec. 2.3 - 2.7 on these configurations. As a last step we can then
use the machine learning model to cheaply predict the energy of all remaining configurations.

2.1 Generating Guess Configurations

When molecules crystallize on a periodic substrate, there are in principle two distinct, periodic
lattices: The lattice vectors of the substrate L, and the lattice of the adsorbate L,. The two
sets of lattice vectors are related by the so called epitaxy matrix E:

L, = FEL, (44)

If E has only integer elements, then the lattice vectors of the adsorbate are an integer multiple
of the substrate lattice vectors. Theses structures are called commensurate and have the same
periodicity as the adsorbate crystal structure. If the epitaxy matrix has non-integer elements
there is no common periodicity for both systems and it is therefore not possible to describe the
entire structure with periodic boundary conditions. This difference between commensurate and
non-commensurate structures is shown for a 1D example in Fig. 4. Since accurate description of
periodic substrates requires periodic boundary conditions, only commensurate structures can
be simulated with any bandstructure code package. We can therefore, without loss of generality,
restrict our structure search to commensurate structures, i.e. structures where the substrate
provides a registry for the adsorbate.

Additionally we assume that the adsorbate-adsorbate interaction is weak compared to the
adsorbate-substrate interaction. Under this assumption, molecules in a close-packed monolayer
assume geometries that are similar to the geometries of isolated molecules on this substrate. It
is therefore possible to build the monolayer structures in a two-step procedure: At first we find
the local adsorption geometries that an isolated molecule assumes on the substrate.

For the example of TCNE on Cu(111) eleven different local adsorption geometries can be
found, three of which are depicted in Fig. 5. In a second step we combine these local adsorption
geometries to larger structures with multiple molecules per unit cell. A systematic method for
exhaustively combining the local adsorption geometries to larger structures is described in Sec.
2.2. When the inter-molecular interactions are weak, this combination of isolated geometries
provides a good guess structure that can be further refined using traditional, local geometry
optimization.

Adsorbate G GID @G L1 1 1 1

Substrate 0 0 0000 00000000

Figure 4: The left, blue adsorbate has an epitaxy "matriz" of E = 2: The system is periodic every
two substrate atoms. The right, red, adsorbate has an epitaxy matriz of E' = 5: There is no
common periodic unit-cell.
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Figure 5: Three out of eleven distinct local adsorption geometries of TCNE on Cu(111): The first two
molecules lie flat on the surface, the third one is standing upright.

Figure 6: Collision between two TCNE molecules on an Ag surface: The red molecule cannot be placed
on its position because it is too close to the other TCNE molecule already present.

2.2 Building Guess Polymorphs: TETRIS

When constructing guess polymorphs, a lot of configurations can immediately be dismissed
due to collisions between adsorbates as seen in Fig. 6. To only generate configurations that are
physically plausible the algorithm depicted in Fig. 7 is used.

Like in the 80s video game TETRIS, we build structures out of a few basic building blocks.
As in TETRIS, we can rotate our molecules by discrete amounts and obtain different, but
symmetrically equivalent geometries. Combining all these symmetrically equivalent geometries
builds our complete list of local adsorption geometries. To exhaustively build a list of all possible
configurations, we build up a tree (depicted in Fig. 8) that contains an increasing number of
molecules per unit cell at every layer. The first layer consists of all configurations with one
molecule per unit cell, the second layer all configurations with two molecules per unit cell
and so forth. Each node contains a list of all possible configurations consisting of the given
geometry indices. Consecutive layers of the tree are built by adding molecules to configurations
from previous layers. When adding geometries to a configuration from a previous layer, only
geometries having an index larger or equal to the highest geometry already present in the
configuration are added. This ensures that the list of geometries contained is always ordered
and therefore excludes permutations of the geometries that would lead to the same structure.
When adding a molecule to a parent configuration, it is checked that the new molecule does
not collide with any of the molecules already being present in the parent configuration. If a
collision is detected this configuration is discarded. To speed up these collision checks, a table of
all possible collisions between two molecules is precalculated so that the collision check is only
a lookup within this dictionary. Finding the possible configurations of an individual node is
independent of all other nodes within this layer and only depends on the parent node, therefore
building the layers can easily be parallelized.
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Figure 7: Flowchart for generating configurations using the “TETRIS” algorithm.

0 Molecules per
Unit Cell

Empty Unit Cell

1 Molecule per
Unit Cell

2 Molecules per

Unit Cell 11 1,2 1,3 2,2 2,3 3,3

Figure 8: Search tree for the TETRIS algorithm. Fach box represents a sublist of configurations,
containing fized geometry indices. Fach node only adds geometry indices that are larger
or equal to the largest parent geometry index.
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Figure 9: Examples of three structures that are equivalent by rotational or translational symmetry.

Several configurations that are found in this way might be equivalent by symmetry (Fig. 9). In
particular translations, as well as rotational and inversion symmetry are exploited to reduce the
total number of configurations. Due to the periodicity of the substrate, for every given structure
there exist many other adsorbate structures that only differ by translation of all molecules by a
multiple of the substrate lattice vectors (e.g. Fig. 9). To uniquely choose one structure among all
its symmetry equivalent siblings a unique identifier called the “hash” is introduced. The hash is
a list of numbers that fully determines a configuration. It consists of the shape of the substrate
unit cell - given as a 2x2 epitaxy matrix - the indices of the local adsorption geometries used, as
well as their positions. If multiple equivalent structures exist, the one that yields the smallest
hash (interpreted as an integer number) is chosen. By applying all possible symmetry operations
to all configurations found and selecting the equivalent configuration which minimizes the hash,
a list of all symmetrically distinct configurations can be built.

The TETRIS procedure of eliminating colliding structures and exploiting substrate symme-
tries can in many cases reduce the configurational space by orders of magnitude, compared to
a brute-force approach of putting every molecule in every rotation on every possible position.
In particular eliminating colliding structures vastly decreases the search space as can be seen in
Fig. 10. As more and more molecules are put into the unit cell the number of possible configu-
rations rises exponentially at first, causing the straight line in the log-plot. But with increasing
coverage more and more collisions eliminate configurations, decreasing the final number of
configurations.

2.3 The Energy Model

Although the TETRIS approach outlined in 2.2 significantly reduces the size of the config-
urational space, compared to naively trying every combination of molecules on every lattice
position, it is still unfeasible to exhaustively calculate the energies of all configurations using
accurate quantum mechanical calculations. At this point, one could in principle resort to compu-
tationally cheaper methods such as force field based approaches, but since these models are
usually not parametrized for the specific system at hand, their accuracy is not sufficient to find
the subtle differences between various low energy structures. Instead, we want to perform a few,
selected, highly accurate calculations and use the results to train a model that can then cheaply
predict the energy of all remaining configurations. In this work, the high accuracy calculations
were done using van der Waals corrected Density Functional Theory (DFT), as outlined in
appendix A.1, but any other method that provides accurate energies for given configurations
can be used as well. There are several properties that we would like to see in our energy model:
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Figure 10: Number of configurations for TCNE in a Ag(100) unit cell with 60 surface atoms and a
diagonal epitaxy matriz of 15 x 3. With increasing number of molecules per unit cell the

number of possible configurations initially rises exponentially (note the logarithmic scale)
but is then decreasing again as configurations are ruled out due to collisions.

e Cheap evaluation: Making predictions with the model should be computationally signif-
icantly cheaper than calculating the energy with the input method, e.g. DFT.

e Accuracy: Given enough training data, the model should be able to predict energies with
an accuracy that is close to the accuracy supplied by the input method.

e Efficiency: The method should achieve this accuracy given as little training data as
possible, thus minimizing computational effort for computing the training energies.

e General Model: The model should work for a wide class of molecules and substrate and
not be specific to certain molecules or certain predominant interactions.

e Adaptive Learning: It should be possible for the model to incorporate the energies of
all configurations that are calculated, including additional results after the initial training
phase. Training the model should not require specific calculations that are only used for
training but should preferably use energies of real configurations.

e Interpretability: The results and fitting parameters of the model should be human
interpretable to allow the user to generate insights for a wider class of materials.

There is a large variety of possible energy models that could be used: Some simple models
- such as an electrostatic model with fitted charges, dipole moments, etc. - can be readily
interpreted but might not offer the flexibility to accurately predict energies of systems with
varying or unknown interactions. Complex models, such as neural networks, have been shown
to be highly accurate given enough training data, but their parameters, the input weights within
the network, are difficult to interpret and they suffer from overfitting when trained on small
datasets.

For this work a middle ground is chosen: We combine a well interpretable model, pairwise
interactions between molecules, with a highly flexible model to describe these interactions. To
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model the energy of any configuration, we split the interaction into two parts: The interac-
tion between the adsorbates and the substrate E; and the pairwise interactions between the
adsorbates Es.

Econfig = Z E(II + Z Eg (45)
adsorbates pairs
a P

Note that to fully take into account all possible interactions one must in principle also include
higher order terms, like triplets of molecules. But for the systems investigated, we show in 4.7
that pairwise interactions suffice to describe the energy of the configurations with high accuracy.

The interaction strengths F;, Es are a not known a priori. One could try to model them
using a parametrized physical model, for example electrostatics, but to keep the model flexible
we leave all interactions open as fit coefficients. If a certain interaction appears n times within
a configuration, the total energy of a configuration is given by:

Eeonfig = Y_naba+ ) B, (46)
adsorption pairs
geometries p

a

In Eq. 46 the sums now run over all possible adsorption geometries and all possible pairs
of molecules. To limit the second sum to a finite number of terms, only pairs within a certain
cutoff radius d,,,, are included. By combining the fit coefficients E; and Es into a vector of fit
coefficients E and the multiplicities n into a matrix N, the energies for multiple configurations
can be written in compact form:

Econfigs =NE (47)

If there are n. configurations and ng fit coefficients then N is a matrix of shape [n. X ngl.
Since for any given configuration usually only a few interactions contribute, the matrix N is
mostly sparse.

2.4 Naive Least-Square Inversion

Equation 47 is an inhomogeneous linear system of equations with known energies E., ;s and
unknown energies E. In principle one could obtain a least squares fit for E by minimizing the
residual:

i | Eep i — NE|? (48)

This approach is problematic since obtaining ng fit coefficients requires at least ng data points.
For a typical case there will be on the order of a thousand different pairwise interactions, thus
requiring a thousand DFT calculations. While this can already be a large improvement over
the millions of configurations that we started with, it is still unsatisfying. Furthermore, if the
system of equations is ill-conditioned, small errors in the computed energies Ecopfigs Will lead
to large errors in the interaction energies E.

2.5 Introducing Prior Knowledge

Although Eq. 47 has in principle ng fit coefficients, we can introduce additional (prior) knowl-
edge that allows to solve the system, despite having fewer than ng data points. Even without
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knowledge about the specific interactions, there are very general assumptions that can be made,
which should hold for a large class of materials:

1. Interaction decay: Interactions decay to zero at large distances: If molecules are in
close proximity their interactions might be large or small, but as the distance between
the molecules increases, the interaction must decay to zero.

2. Smoothness: The potential energy surface will be somewhat smooth. In particular if
molecules are far apart, small variations in their distance and orientation will only cause
small changes in the interaction.

3. Molecule-substrate interactions: Molecule-substrate interactions in a densely packed
monolayer will be similar to the adsorption energy at low coverage. While surrounding
molecules will somewhat change the adsorption energy - for example via depolarization -
it will still be relatively similar to the original adsorption energy at low coverage.

2.6 Gaussian Process Regression

This prior knowledge can be incorporated into the fit using Gaussian Process Regression (GPR).
GPR builds on Bayes’ theorem:

p(BJ]A)p(A)
p(B)

Here p(A|B) denotes the probability for A given B, called the a posteriori probability. The
term p(B|A) is the probability to obtain B given A, and is called the likelihood. The term
p(A) is the probability for A without any additional information and is therefore called the
prior probability. The denominator p(B) serves to normalize the probability and is of little
relevance for us: We will from now on only refer to it as Z. For our application, the probability
distribution of the fit coefficients’ values E, given the energies of some observed configurations
E ontigs, is thus given by:

p(A|B) = (49)

p<E|Econfigs) - ;p(Econfigs|E> p(E) (50)
Once we have calculated the distribution p(E|Econfigs) We can find the most likely values for
the fit coefficients E. The probability distributions on the right hand side, the likelihood and the
prior, are not known exactly but we can model them using multivariate Gaussian distributions.
The likelihood is the probability to obtain certain energies for configurations, assuming we knew
the fit coefficients E. Since our energy model is not exact - because it only includes interactions
to the substrate and pairwise interactions - the results we obtain using DFT will deviate from
the results of our model. The likelihood is therefore expressed as:

2
1
— 557 || Beongig—NE|
M

P(Eecontig| E) x € (51)
The likelihood is maximal for E,,tig being exactly as predicted by the model, but still yields
large probabilities as long as the residual is small compared to the expected uncertainty of the
model oj;. For the systems investigated typical values are on the order of o)y =1 — 10 meV.
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Figure 11: Prior energy distributions for molecule-substrate-interactions (a) and molecule-molecule-
interactions (b).

Also the prior is assumed to be a multivariate Gaussian distribution, which in the most

general case is given by:
p(E) e~ 3(E—Ep)"C™ ! (E~Ep) (52)

The prior in Eq. 52 is fully specified by its mean values E, and covariance matrix C. Using
this mean and covariance we can encode the general prior assumptions we stated in 2.5. The
mean values E, encode our best guess for the fit coefficients before including any data from
the periodic DF'T calculations. Since we assume no particular type of interaction we do a-priori
not know any interaction strengths, not even whether they are repulsive (positive) or attractive
(negative). We therefore choose the prior mean E, to be zero for all pairwise interactions.

For the molecule-substrate interactions however we have a reasonable guess - the adsorption
energies obtained for a single molecule - and we can therefore encode assumption 3 by setting
E, = E, for the entries of the vector that describe the molecule-substrate interactions (see
Fig. 11a). The diagonal of the covariance matrix contains our uncertainty of our prior guess
for each fit coefficient. For the molecule-substrate interactions we are not certain that they will
exactly be the same as in the isolated case (E, = E,4s) but we assign a certain energy width
o1 to the probability distribution.

Implementing assumption 1 - interactions decay to zero at large distances - can be done
by choosing a different variance for each fit coefficient. For fit coefficients that describe long-
distance interactions, where we are certain that the interaction will be close to zero, we can
thus assign a small variance to it (see Fig. 11b). For fit coefficients that describe short distance
interactions we expect potentially large values and are thus very uncertain that our initial
guess E = 0 is correct: we assign a large variance to it. For our implementation we used an
exponentially decaying prior variance as a function of inter-molecular distance d:

di=dmin 2
Ci' = (0'26_ A ) (53)

Here o5 is the typical interaction strength we expect at close packing, when the molecules have
a distance of d,,;, and A is the typical length scale on which the interactions decay to zero. For
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the investigated system of TCNE, typical values for these priors are interaction strengths of
09 ~ 100 meV at d = 2.6 A and decay lengths of A ~ 3 A.

The remaining values to be specified are the off-diagonal elements of C' which describe the
correlation between pairs of interactions. Assumption 2 vaguely states that “similar pairs of
molecules have similar interactions”. To put this more formally we need a distance measure
between pairs of molecules. This distance is not a physical distance, e.g. measured in A, but
rather a mathematical concept to measure the dissimilarity of two pairs of molecules. Given
such a distance r, we can express the off-diagonal elements of the covariance matrix C' as:

Cij = \/Cz‘z‘cjje_g (54)

If pairs of molecules are very similar and thus have a distance » — 0, the correlation will become
maximal. The interactions will be fully correlated, meaning that large values of one interaction
also necessitate large values of the other interaction. There is no unique way to construct such
a distance r and the choice of distance function does have a crucial impact on the machine
learning. One possible way to build such a distance function is discussed in Sec. 2.7.

Now that prior and likelihood are specified, Eq. 50 can be used to calculate the posterior
distribution. Combining Eq. 51 and 52 yields:
2 (Beonfig—NE)" (Beongig—NE)

207 efé(Epr)TC‘l(Epr) (55)

p(E|Econfigs) X 6_
Calculating the logarithm of the probability and expanding the squares yields:

1] 1 _
logp(E|Econfigs) = 3 [(Econfig - NE)T(Econfig - NE) + (E - Ep)TC l(E - Ep)]
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Here R contains all the terms that do not depend on E and can therefore be moved into a new
normalization Z. The posterior distribution for the fit coefficients FE is thus again a Gaussian

distribution with mean interaction energies E;,; and covariance A.

NTN
Alt=——+C (56)
OMm
NTEcon )
Ejp = A (ClEp + 2“) (57)
O\

E;,; is therefore the most likely set of fit parameters given the prior knowledge and input
data. Once the interaction energies E;,; are known, the energies for unknown configurations,
can immediately be calculated. Just as the training samples were described by the occurring
interactions via the matrix N, the new configurations can be described by a matrix N. Just as
for the test data, each row corresponds to one configuration and each column lists how often a
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Figure 12: Similarity between two pairs of molecules, A and B, is calculated as the distance between
their feature vectors &.

specific interaction occurs within each configuration. The energies for the configurations to be
predicted can then simply be calculated via:

Epredict - NEint (58)

2.7 Feature Vectors

To be able to enforce smoothness of the inter-molecular potential energy surface it is necessary
to obtain a numerical representation for each pair of molecules. Once a pair of molecules is
numerically represented by a feature vector x, the distance between two different pairs of
molecules, A and B, can be calculated with any norm, such as the L; norm r = |x4 — xp|.
This idea is sketched in Fig. 12.

There are several properties which are desirable for the numeric representation of a molecular
pair:

e Uniqueness: Pairs that are physically different should map to different feature vectors.

e Symmetries: Pairs that are equivalent by symmetry should map to the same feature
vectors. These symmetries include rotation and inversion, but also relabeling the atoms
within the molecules. Changing the order in which the atoms are stored should not impact
the feature vector.

e Smoothness: Similar pairs should map to similar geometries. Discontinuities in the repre-
sentation can deteriorate the fit quality.

One possible feature vector that has been used for the representation of molecules is the
Coulomb Matrix [35]. In this representation all inter-atomic distances r;; are calculated and
the molecule is represented as the matrix X:

Z2; .
) f
X, = { or 1 #j

TZ]

29
05234 for i=j (59)

This has been applied successfully to predict the atomization energies of small molecules [35].
Since unitary transformations (inversion, rotation) do not affect distances, the Coulomb Matrix
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Figure 13: The feature vector is built as a list of inter-molecular atom distances. For TCNE we only
consider the distances between the (blue) nitrogen atoms.

is invariant under these symmetries. However reordering the atoms within the molecule does
also reorder the entries of the matrix and thus causes an unwanted change in the feature vector.
This problem has been addressed by various means: One can sort the matrix, for example by the
norm of the rows, to ensure that the final feature vector is independent of the original order of
atoms. This does however introduce discontinuities whenever the sorting order changes. One can
also augment the training data by training the model with multiple, randomly sorted Coulomb
Matrices which has been shown to be effective in combination with algorithms that deal well
with large training sets, such as artificial neural networks [32].

To represent pairwise interactions between two molecules, A and B, we use a representation
similar to the Coulomb Matrix: We compute the inter-atomic distances between the atoms of
molecule A and the atoms of molecule B. We do not include the interatomic distances within
each individual molecule since these do not carry information about the relative arrangement
of the molecules. For the investigated molecule of TCNE we also only compute the distances
between the four “cornerstones” of the molecule, which are the four nitrogen atoms, as depicted
in Fig. 13. The distances are than sorted to avoid the aforementioned ambiguity that arises
from permuting atoms. This yields a vector of 4 x 4 = 16 elements. Instead of choosing r~! as
a feature vector, we choose 2 which empirically did improve the prediction accuracy.

Choosing the feature vector to be proportional to a negative power of the interatomic
distances is useful, because it yields high resolution at small distances - small changes in the
distance cause large changes in the feature vector - and more smoothness at larger distances.
As a last step we optionally truncate the feature vector from its full size of 16 elements to a
feature vector length of smaller length. In some cases this could be useful since the relative
arrangement of the molecules is already well determined using only some of the smallest inter-
atomic distances and additional elements in the feature vector might rather add noise than
useful information.

2.8 Choosing the Training Samples

In traditional machine learning applications the training of the model is done after a training
dataset has been acquired. This is in particular the case when benchmarking new machine
learning models on existing datasets, such as the MNIST database for image classification
of handwriting or the QM7 dataset for the atomization energies of small molecules. On the
contrary, when searching for low energy structures of a specific system, training data is usually
not available and must be supplied by the user. The training structures could be chosen
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randomly out of all possible structures to avoid biasing the machine learning algorithm towards
a certain model. However it might be advantageous to use the liberty of choice of training set
to explicitly select the data-points which offer the “highest gain of information” and are thus
most useful for the following machine learning procedure. To put this more formally we define
a loss function that we aim to minimize by systematically selecting highly informative training
samples.

The goal of Gaussian Process Regression for our application is to accurately estimate the
fit coefficients E;,; which in turn will allow accurate prediction of energies of configurations.
The uncertainty of the fit coefficients is given by the covariance matrix A of the posterior
distribution (Eq. 56). Minimizing A (or alternatively maximizing A~!) will therefore lead to a
small uncertainty for the fit parameters E;,;. Since A is a matrix, there is no unique definition
for a loss function, but instead there is a variety of different optimality-criteria in the field of
Optimal Design Theory. Some popular criteria are:

e A-optimality: Minimizes the trace of A and therefore minimizes the average of the variance
of the fit parameters. The variance for each parameters is given by the diagonal elements
of A and thus captured by tr(A).

e D-optimality: Minimizes the determinant of A. This criterion also takes into account the
off-diagonal elements of A, which contain the correlation between fit coefficients.

e E-optimality: Minimizes the largest eigenvalue, corresponding to the direction and size
of the maximum uncertainty, of A. Since it only minimizes the largest eigenvalue this
criterion focuses on "worst-case" performance.

For this work the criterion of D-optimality was used to select the training data-set. Minimizing
the determinant of A by selecting 7,4, structures from a list of N candidates is a challenging
task, even for relatively small ns..;, and N. The number of possible choices is given by the
binomial coefficient (mi m) For a typical example of choosing 50 configurations out of 10000

possible ones there are approximately 1013 possible choices. It has been proven that optimal
subset selection for regression is in fact NP-hard [36] but heuristic algorithms can yield satis-
factory results for practical applications [37]. One particular method is Fedorov’s algorithm
[37], which starts with a random subset selection and iteratively improves this initial guess by
greedily swapping training samples if this swap increases the determinant of A=!. The general
structure of the algorithm is depicted in Fig. 14.

The core part of the algorithm is to check whether exchanging one row in the matrix N for
a different row increases the determinant of B = A~! = NTN. Calculating the determinant of
a matrix is computationally demanding, but calculating the relative change that arises from a
small change to the matrix can be calculated much more efficiently. If a row 7 is appended to
the matrix N, the matrix B becomes B’ = NTN + rr?. Equivalently, removing a row 7’ from
the matrix N leads to a new matrix B’ = NTN — rr?. Exchanging row r for a different row ’
can be interpreted as appending r’ and removing . Using the matrix determinant lemma, B’
can then be calculated by:

|B'|=|B+rr"| =B (1+£7"B'r) (60)
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Figure 14: Flowchart for choosing optimal training samples Nipqin from a matriz of possible training
samples Ny by mazimizing the determinant |th1:ainNtrain‘- Fedorov’s algorithm semi-
greedily swaps rows until no further improvement is found.

Calculating B~! at every step would be expensive, but by using the Sherman-Morrison-
Formula also updating the inverse of a matrix can be done cheaply:
-1 , B7'reTB™!
<B+TT ) =B - 1+ rTB-1p (61)
Combining Eq. 60 and Eq. 61 allows to evaluate the change of the determinant by simple
matrix multiplications. Since in our application any configuration typically only consists of a
few interactions, the matrix N is usually sparse, which further accelerates the implementation
of Eq. 61.

The algorithm is non-deterministic, because the initial training samples are chosen at random
and can converge towards local maxima of the determinant. To improve performance, the
algorithm can be restarted with different initial guesses and the best design matrix achieved is
chosen for the final selection. When implementing this algorithm in practice, it can be difficult to
calculate the initial determinant of the matrix, because the determinant can quickly become too
small for standard floating point arithmetic. To avoid this underflow problem one can instead
calculate the logarithm of the determinant by summing up the logarithms of the eigenvalues of
the determinant:

log |A] = loga; (62)

2.9 Hierarchical Search Strategy

When searching for low energy periodic structures there are several unknowns: The coverage
(i.e. the number of molecules per substrate area), the shape of the unit cell (angles and aspect
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Figure 15: Flowchart for selecting configurations from increasingly larger unit cells.

ratio), the size of the unit cell and the positions and orientations of the molecules within the
unit cell. In this work the coverage and shape of the unit cell are restricted to values obtained
from experiment. Extending the algorithm to arbitrary unit cell however is straightforward.

For example, for the case of TCNE on Ag(100) the search space is restricted to rectangular
unit cells that have a coverage of two TCNE molecules per 15 surface substrate atoms. This
does still leave a variety of possible unit cells that need to be explored, ranging from small unit
cells with few molecules in it, to large cells with many molecules in it. Because smaller unit cells
are computationally much cheaper than large unit cells with many atoms in it, it is preferential
to generate as much information as possible on smaller unit cells, before moving to cells with
many molecules in it.

To systematically search for low energy structures in different unit cells the following search
strategy, depicted in Fig. 15 is used:

1. Initial training: At first, configurations from the smallest unit cells are selected using
Fedorov’s algorithm in small batches of about 10 configurations. After each training batch
the quality of the fit is assessed by checking the Root Mean Square Error of the prediction.

2. Unconstrained search: Once a good prediction accuracy for a set of unit cells is
obtained, or the configurational space for small unit cells is exhausted, the next biggest
set of unit cells is tackled. We select a training batch of configurations from all possible
configurations from this next unit cell and all previous unit cells and continue to monitor
progress by calculating the RMSE.

3. Low energy search: Because we search for low energy structures, we prefer good predic-
tion accuracy for low energy structures at the expense of higher uncertainty for high energy
configurations. To improve the prediction for low energy structures we now only select
training data from the configurations that are predicted to be within a fixed threshold of
the predicted minimum energy structure. When high accuracy for the current set of unit
cells is reached we continue with step 2 on the next biggest set of unit cells.
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These steps are iterated up to a given maximum size of the unit cell. At this point high prediction
accuracy should be obtained that can now be exploited by evaluating the energy predictions
for all configurations.

The rationale behind splitting the training phase in an unconstrained search and a low energy
search is a trade-off between exploration and exploitation: Quickly focusing on the low energy
structures will often yield faster improvements of the energy predictions for the configurations
of interest, but risks oversight of potentially attractive interactions. Therefore a training batch
from the complete set of configurations is calculated whenever configurations from a new unit
cell shape are included.

Since the energy model is purely aperiodic - it only consists of pairwise interactions, but
does not include periodic features - the generated models should perform equally well, indepen-
dent of the unit cell size. It is therefore possible to train on small, cheap unit cells and make
predictions for large, expensive unit cells that were not part of the training set. This possibility
to extrapolate the predictions from small unit cells to larger unit cells is extraordinary and is
demonstrated for the system of TCNE on Ag(100) in Sec. 5.

The explicit focus on low energy configurations is introduced by restricting the search space
for Fedorov’s algorithm during selection of the training samples. Another, in principle more
elegant way, might be to explicitly encode this importance of low energy configurations into
the utility function during training set selection. The current loss function that is minimized
during training set selection is the variance of the interaction energies (see Sec. 2.8). It might
be advantageous to assign different weights to the interaction energy variances based on their
expectation value. Low energy interactions could be assigned a high weight and large energy
interactions could be assigned smaller weights, so that the algorithm tries to maximize infor-
mation gain for low energy interactions which presumably lead to low energy configurations.

Another possibility would be to minimize the variance of the prediction energies, instead of the
variance of the model parameters. Also in this case, one could opt for high prediction accuracies
for low energy configurations while tolerating larger uncertainties for the less interesting part
of the configurational space.
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3 Summary of Assumptions

The training procedure outlined in Sec. 2 does at several points make assumptions and choices
that can influence the results obtained. The purpose of this short section is to clearly outline
the parameters and justify their choice.

3.1 Limitations of the Model

The TETRIS approach to generating guess structures only allows structures that have (unre-
laxed) inter-molecular distances larger than a cutoff distance d,,;,. Since it assembles structures
out of local adsorption geometries it can also not find structures that are purely stabilized by
the molecule-molecule interaction. For example the structure of a classical house of cards could
not be found using the TETRIS approach, because the necessary buildings blocks - tilted cards
- are not stable local geometries on their own.

The energy model only includes interactions of one molecule with the substrate and pairwise
interactions between molecules. It does not include three-body interactions (e.g. one molecule
perturbs the interaction between two other molecules) and higher order terms and can therefore
never fully model all effects, even when presented with an arbitrarily large training set. However
in Sec. 4.7 it can be seen that (at least without substrate) higher order effects are small for the
studied systems. Furthermore only interactions within a distance d,,.. are considered by the
model.

3.2 Choice of Feature Vector

To encode the pairwise interactions a feature vector is assigned to each pair of molecules. The
choice of feature vector implicitly specifies the underlying assumptions about smoothness of
the interaction potential. In this work inter-atomic distances have been used to construct the
feature vectors but other representations could in principle be used.

Note that when modeling the interaction between molecules we do only include the relative
position of the molecules with respect to each other, but do not include the local adsorption
sites. For example two parallel molecules sitting at a fixed distance, each on a "top" site, are
assumed to have the same interaction as two parallel molecules, both sitting on a "hollow site"
as long as their relative position is identical.

On the contrary, for dealing with standing and lying molecules we explicitly break this simi-
larity by effectively constructing three different potential energy surfaces: One for the interac-
tion between lying-lying, one for lying-standing pairs and one for standing-standing molecule
pairs. The rationale is that standing molecules might show qualitatively different interactions
compared to flat lying molecules, for example due to different charge transfer. We therefore
explicitly set to zero any correlations between these three classes of interactions.

When choosing inter-atomic distances, additionally several choices have to be made:

e Atoms: The distance between which atoms is used? All inter-atomic distances? Only
the "cornerstones" of the molecule? Should different atoms be assigned a different weight
in the feature vector? For TCNE we have only used the distances between the nitrogen
atoms of different molecules.

e f(d): When choosing inter-atomic distances d as a features, any function f(d) may be
used as well. Decaying functions have been found to be advantageous, because they put
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more weight at closer distances where interaction strengths are stronger and the potential
energy surface is usually less smooth. When f(d) = d=", the power n has to be chosen.

e Cutoff: When generating a list of all feature vectors, many of them will be equivalent
by symmetry and the number of fit coefficients can be reduced by removing redundant
feature vectors. When f(d) = d™", feature vectors decay to zero at large distances d and
are therefore always equivalent (even if not by symmetry) for long distances. A sensible
cutoff must therefore be chosen that specifies when to consider two feature vectors to be
equivalent.

The feature vector used in this work is currently not immediately transferable to other
systems, since it only includes the distances between the cornerstones of the TCNE molecule
which are the nitrogen atoms. To apply this method to other systems a modified feature vector
must be designed.

3.3 Hyperparameters for Prior Distribution

The design of the covariance matrix as outlined in Sec 2.6 requires several choices of hyperpa-
rameters, in particular:

e 01, 02: The expected interaction strengths for 1-body and 2-body interactions respec-
tively. Typically values of 100 meV per TCNE molecule were chosen.

e o The expected deviation of the DF'T results from the pairwise-interactions-model. For
TCNE on metal surfaces this was typically chosen as a few meV. Small values of o,; put
emphasis on exactly fitting the training data, which can lead to over fitting.

e Interaction decay length \: Typical length scale of the pairwise interactions, which
for the case of TCNE is typically a few A.

e Correlation length «: Length scale in (normalized) feature space at which pairwise
interactions are correlated. For the investigated systems this is typically around 0.1 -
0.5 for features normalized to [0, 1]. Large correlation lengths lead to smoother potential
energy surfaces.
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4 Results for TCNE on Cu(111)

As a first test system we choose to search for the structure of TCNE on Cu(111). As outlined
in Sec. 2 we will at first find the local adsorption geometries, then list all possible configura-
tions and train the machine learning model on a small subset calculated via Density Functional
Theory. The model will then make predictions that can be validated using further DFT calcu-
lations.

4.1 Local Adsorption Geometries on Cu(111)

The TETRIS algorithm needs as input a list of possible local adsorption geometries. In this
work the local adsorption geometries were calculated using a brute-force approach, but in
principle more advanced methods that have been developed could be used. To find all local
energy minima on the Cu(111) surface, geometry optimizations were started from a variety of
different starting positions and orientations of the molecule. The following parameters of the
starting geometry were varied:

1. Orientation: The molecule was put onto the surface in 3 distinct orientations. Lying flat,
standing upright with the C=C bond vertical and standing with the C=C bond parallel
to the surface.

2. Position: The molecule was initially placed on all 4 symmetry distinct adsorption sites:
top, bridge, fcc hollow and hcep hollow.

3. Angle: The molecule was rotated around the z-axis (perpendicular to the substrate) by
4 different angles: 0°, 15°, 30°, 45°.

This yields a total of 48 starting points for the geometry optimization which was performed in
a 6x6 supercell to minimize interactions between molecules of neighboring supercells. The 48
starting points converged towards the 11 distinct local adsorption geometries depicted in Fig.
16. There are 3 flat lying configurations, 4 wide (C=C bond parallel to the substrate) standing
geometries and 4 tall standing geometries (C=C bond perpendicular to the substrate).

The adsorption energies of these single molecules are depicted in Fig. 17. The adsorption is
strongest when the molecule lies flat on the surface, because this maximizes the van der Waals
interactions with the substrate. Geometries 1 and 2 are especially advantageous because they
place the cyano groups directly on top of Cu atoms which act as strong docking sites.

The stability of the found energetic minima was confirmed by applying a small perturbation
to the geometries and confirming that a subsequent geometry optimization would indeed lead
back to the same minimum.

4.2 Building supercells for TCNE/Cu(111)

To limit the search space we only consider supercells with a coverage of 1 TCNE molecule per 12
surface Cu atoms which was taken from experimental data. Since the local adsorption geometries
of flat lying molecules are significantly lower in energy than their standing counterparts we
only include the three flat lying geometries and optionally one of the standing geometries into
the search procedure. Additionally we limit the supercell shapes to cells that have a diagonal
epitaxy matrix and consider supercells with one to three molecules within it. This yields the



4 Results for TCNE on Cu(111) 36

Figure 16: Local adsorption geometries of TCNE on Cu(111). The geometries in the first row lie flat
down, the second row is standing upright with the C=C bond parallel to the surface, the last
row has the C=C bond perpendicular to the surface. Adsorption strength (Fig. 17) decreases
from top to bottom and from left to right.

Table 1: Considered supercells for TCNE on Cu(111). The unit cell shape is given in multiples of the
primitive (1x1) substrate unit cell.

TCNE / supercell | Supercell shapes | Nr of config. (flat only) | Nr of config. (flat + 1 wide)
1 3x4 ) 8
2 3x8, 6x4 143 604
3 6x6 218 2873

supercells listed in Tab. 1. For the TETRIS assembly of configurations with multiple molecules
per supercell we choose a distance threshold of 2.6 A between TCNE molecules. This distance
is about 10 % smaller than twice the van der Waals radius of nitrogen which is approximately
1.55 A [38].

4.3 TCNE monolayer in Vacuum

In Sec. 4.8 we will apply the developed method to the problem of TCNE on the Cu(111) metal
surface, but to benchmark and study the quality of the energy prediction we will first test it
on a computationally much cheaper system: A monolayer of TCNE without a metal substrate.
This system does not exist in nature but it is an interesting model system for two reasons:
First, it is computationally very cheap since we do not have to calculate the electron density of
the substrate. For typical coverages of TCNE on Cu(111) around 95% of the electrons in the
system belong to the substrate. Omitting the substrate speeds up the calculation by about a
factor of 40x when using the FHI-aims DFT code. The second reason are periodic boundary
conditions: In order to properly model the metallic substrate, periodic boundary conditions are
used. This makes it computationally expensive to accurately calculate the interaction energy
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Adsorption geometry

Figure 17: Adsorption energy of a single molecule for each local adsorption geometry found. Low values
correspond to strong adsorption. Blue: flat lying, Red: C=C bond parallel to surface, Green:
C=C bond perpendicular to surface.

between a pair of molecules, since this would require setting up a very large supercell to eliminate
the interaction with the periodic replicas in neighboring cells. Once the metallic substrate is
removed, there is no fundamental need to use periodic boundary conditions. One can easily
do nonperiodic calculations of TCNE-dimers (in the gas phase) and calculate their interaction
energies. This allows to directly validate the underlying model that is generated by the fitting
procedure, because the fit coefficients directly describe pairwise interaction energies.

To set up the configurations we will start with TCNE on Cu(111). We use the configurations
listed in the previous section and simply remove the Cu substrate. We then perform two sets of
calculations: A large set of periodic configurations that we will train and validate our machine
learning algorithm on. A second set of nonperiodic calculations of TCNE dimers will be used
to compare the pairwise energies assigned by the machine learning model to the dimer energies
obtained as fit coefficients. In total about 6000 periodic and 5000 nonperiodic single-point DFT
calculations were performed with TCNE in vacuum. All DFT calculations were done using the
FHI-aims code package [39] with the settings outlined in the Appendix A.1.

4.4 Interactions in Vacuum

The model prior assumes a Gaussian distribution of the interaction energies centered around
E = 0 with a variance that decreases as the distance between molecules increases. To validate
this assumption one can analyze the energies of TCNE dimers at various relative orientations
and positions. Figure 18 shows the distribution of interaction energies for TCNE dimers for
small and large distances. For both long and short distances the distribution is peaked around
E = 0. As assumed by the prior it is broad for short distances but narrow for larger distances.
Overlayed are Gaussian prior distributions for different distances as assumed in the Gaussian
Process Regression model. The most notable deviation between the prior assumption and the
observed distribution of interaction energies is that the observed distribution for short distances
is significantly skewed towards repulsive, positive interaction energies which is not captured in
the prior distribution.

As a next step it is of interest to see how well the interaction strengths can actually be inferred
by the Gaussian Process Regression model from periodic DFT calculations. To check this we
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Figure 18: Distribution of interaction energies in vacuum for pairs of molecules that are close to each
other (distance d < 4 A, left) and far apart (right). Interactions at large distances are
clustered around 0, while interaction energies at close distances can have large magnitudes.
This fact is encoded in the prior distributions that are plotted for various inter-molecular
distances and become narrower with increasing intermolecular distance d

trained the model on 50 and 300 periodic configurations of a TCNE monolayer sampled from the
supercells listed in Tab. 1. The obtained fit coefficients - which represent pairwise interactions
between TCNE molecules - are then compared to their reference values obtained by the dimer
DFT calculations. This is shown in Fig. 19: For a small training set the model only predicts
very few interactions to deviate significantly from its prior assumption of £ = 0. When adding
more training samples the model correctly learns all interaction energies without significant
outliers. Note that the model was never directly given any of the interaction energies but only
linear combinations of these interactions in the form of energies of periodic configurations.

4.5 Inspection of the Interaction Potential

Every point in Fig. 19 corresponds to one fit coefficient of the model and thus to one pairwise
interaction energy. We can use this information to plot the discrete potential energy surface
of the interaction between two molecules for fixed rotational angles. This is shown in Fig. 20:
One molecule is held fixed at the origin, and a second molecule is moved around, at each point
depicting the energy necessary to put the second molecule at this position.

When both molecules lie flat (Fig. 20 - top left) interactions are mainly repulsive, and partic-
ularly large when the intermolecular distance between atoms becomes small, justifying the
initial assumption for only considering configurations with a certain minimum distance between
molecules. When the molecules stand upright and parallel to each other, as in Fig. 20 - top right,
large attractive interactions arise. The cause for these interactions is probably a combination of
van der Waals and electrostatic interactions. Note that the interaction is particularly favorable
in a staggered configuration where the negatively charged cyano-groups come close the posi-
tively charged center of the molecule. Bringing the cyano-groups of one molecule close to the
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Figure 19: Pairwise interaction energies in vacuum predicted from periodic calculations compared to
reference dimer interaction energies for different training set sizes.

cyano-groups of another molecule leads to strong electrostatic repulsion as can be seen in the
top right figure as well as the bottom right figure where repulsive interactions of 200 meV are
observed. Also in the bottom figures it is consistently observed that interactions mainly depend
on the relative positions of the cyano-groups. These observations on the one hand explain why
the chosen type of feature vector performs well in practice, but also hints at the possibility of
improved fit convergence by including an electrostatic model as the prior assumption for the
pairwise interactions.

4.6 Cross-Validation of Periodic Energies

Finally one can take a look at the actual problem of interest: Given the energies of nyqqin
out of N;ya periodic configurations, how well can we predict the remaining energies? This
is shown in Fig. 21 where the predicted energies for configurations are plotted against the
energies calculated by DFT, both for the data that was selected for training (red), as well as
all other samples that were used for validation (blue). Ideally we want all points to fall onto
the dashed line were the prediction energy equals the first-principles energy. The top left image
of Fig. 21 shows the results obtained using zero training data and therefore relying pureley
on the prior mean information: Local adsorption energies for the 1-body terms and zero for
the interaction energies. As expected this leads to a very poor prediction accuracy. As the
number of training samples rises, the fit quality improves, until a near perfect fit is reached
using 200 training samples, which only make up about 3 % of the entire sample population.
This rapid improvement in fit quality can also be seen in Fig. 22 where the Root Mean Square
Error (RMSE) of the prediction is plotted as a function of training sample size. The RMSE is
calculated as

1N
RMSE = J v 2= (Boredicti = Eorrs)” (63)

i=1
Depicted in red is the RMSE for the data points that were used during training. The prediction
error is low, which is unsurprising, since the model has already seen these data points. More
interesting however is the RMSE for the testing data that were not presented to the model
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Figure 20: Pairwise potential energy surfaces. These images show the interaction energy between two
molecules as a function of their relative position: One molecule is held fixed at the origin
a second molecule is (virtually) moved around it. Their interaction energy is depicted by
the color-code. Additional molecules are drawn for the position of maximum and minimum
energetic position of the second molecule. Note the varying energy scale.

during training. It can be seen that the mean error per molecule drops rapidly as the number
of training samples rises and levels off at a few meV. As a reference scale, thermal energy kT
at room temperature (300 K) is about 25 meV.

4.7 Validation of Pairwise Interaction Model

Fig. 21 shows that high prediction accuracy can be obtained using about 200 training samples.
When using many training samples the accuracy will ultimately be limited by a basic assump-
tion of the model: the assumption that the energy of any configuration can be expressed as a
sum of 1-body and 2-body interactions. For this model system of a TCNE monolayer without
substrate all pairwise interaction energies can also be calculated directly using DFT. When
we split a periodic configurations into pairs of molecules and sum up their interaction energies
from the dimer calculations (as indicated in Fig. 23), how close can we come to the DFT energy
from the periodic calculations? The answer to this question is depicted in Fig. 24.
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Figure 21: Predicted energies per molecule compared to reference DF'T energies for increasing number
of training samples. The model already gives a near perfect fit after having been trained on
only 200 samples (= 3 %) of the total 6288 configurations.

It can be seen that (at least for the vacuum case) the model can reach accuracies of a few meV
per molecule. Higher order effects and (very) long range interactions that span distances larger
than the cutoff distance are shown to lead to deviations of only a few meV. The distribution of
residuals in Fig. 24 shows a notable bimodal structure: For the majority of the configurations
the model fits well and gives mean energy errors of about +2 meV . However for a minority
of configurations the model does systematically underestimate the periodic energy by about
7 meV'. This might be attributed to long range interactions beyond the cutoff radius or higher
order effects.

This comparison shows the limit of prediction accuracy that can be achieved as the number
of training sample increases. No matter how much training data we present to the machine
learning algorithm, it will be fundamentally limited by the underlying model and no accuracy
better than the one depicted in Fig. 24 can be reached. The only exception to this are the fit
coefficients of the molecule-substrate interactions that are also left open as fit parameters in
the full model, but were held fixed for this validation.
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Figure 24: Left: comparison of the energies of periodic configurations (in vacuum) and the sum of
interaction energies obtained from dimer calculations. Right: Histogram of the energy devi-
ation between the two energies in left figure. The histogram shows a doubly peaked structure:
Most configurations are very well described by the model while a few configurations show a

small bias of about 7 meV.
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4.8 Predictions for TCNE on Cu(111) surface

We now apply the method to the real physical system: TCNE adsorbed on the copper (111)
surface. For these calculations we use the configurations listed in Tab. 1 as starting points for a
local geometry optimization. Because the configurations proposed by the TETRIS algorithm lie
close to the local energetic minima, these local optimizations usually converge within less than
10 geometry steps. When training the model we learn the relationship between the unrelaxed
configuration and the relaxed adsorption energy. The model therefore does not only have to
learn the interactions for the given geometry but also how these interactions will change upon
geometry optimization. This will of course only work if the geometric changes occurring during
the local geometry optimization are small, as they are in our case.

Figure 25 shows the fit quality obtained after training on 100 configurations and how it evolves
as a function of training sample size. The prediction quality initially improves rapidly, mostly
due to more accurate determination of local adsorption energies. Then the prediction quality
improves more slowly towards a prediction uncertainty of about 10 meV, being significantly
below thermal energies at room temperature.
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Figure 25: Left: Predicted adsorption energies for configurations of TCNE/Cu(111) compared to their
energies given by DFT. Right: Root Mean Square Error of predictions as a function of
number of training samples.
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5 Results for TCNE on Ag(100)

As a second system to study we chose tetracyanoethylene on Ag(100). TCNE on the silver
(100) surface presents an interesting system to test the structure search code on because it
forms crystalline structures with multiple molecules per unit cell in it. This can be seen from
the STM image in Fig. 26.

Experimentally, diagonal stripes of molecules are reported on clean parts of the surface that
easily form chevrons of varying size: In regions with many defects the chevrons contain only two
molecules per unit cell but in other regions chevrons with up to eight molecules per unit cell
were found [40]. This provides an interesting system for our structure search method. Particular
questions we would like to answer are: Can we find from first principles the experimentally
observed structures? How can we treat large unit cells with up to eight molecules per unit cell
where even very few DFT calculations might be computationally prohibitive?

5.1 Local Adsorption Geometries on Ag(100)

According to our TETRIS approach we start by finding the local adsorption geometries. The
local adsorption geometries for TCNE on Ag(100) were determined with the same procedure as
for the Cu(111) surface by optimizing the adsorption geometry of a single molecule from multiple
starting points. As opposed to TCNE/Cu(111), for this system only flat lying molecules were
considered. The found adsorption geometries and their corresponding adsorption energies are
depicted in Fig. 27 and Fig. 28 respectively.

Figure 26: STM image of TCNE on Ag(100) surface, adapted from [40]. The orange lines highlight the
chevron structure of the adsorbed molecules.
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Figure 27: Local adsorption geometries Figure 28: Adsorption energies for TCNE on
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adsorption.

The three geometries depicted in the top row have one symmetry equivalent geometry each
(90° rotation), the geometries in the bottom row have 3 symmetry equivalent geometries each.
Geometry 1, with the molecule sitting on a top site, corresponding to the top left image in Fig.
27, is bound significantly stronger to the substrate than all other local adsorption geometries.

As for the system of TCNE/Cu(111), also here we restrict our search space by two assump-
tions: We only include configurations that have the experimental coverage of 2 molecules per
15 surface substrate atoms and we only allow rectangular supercells. This still leaves several
different supercell shapes as listed in Tab. 2.

Table 2: Considered supercells for TCNE on Ag(100). The supercell shape is given in multiples of the
substrate unit cell.

Molecules per supercell | Supercell shapes Number of configurations
2 3x5 8
4 3x10, 6x5 243
6 3x15, 5x9 3997
8 3x20, 4x15, 5x12, 6x10 199324

5.2 Validation in Vacuum

As for the system of TCNE on Cu(111) in Sec. 4.3 we also validate our machine learning
approach by calculating energies for monolayers of TCNE molecules without any substrate
underneath. This hypothetical system can be cheaply calculated and serves to test the predic-
tion accuracies that can be obtained. We have already validated that the pairwise interaction
energies, obtained by the model, accurately represent real interaction energies (Sec. 4.7). We
now want to see whether it is possible to accurately predict the energies of large unit cells, with
many molecules in them, from training data that only contains few molecules.

All considered unit cells with 2, 4 or 6 molecules in them generate a combined number of 4248
configurations when enforcing a minimum distance between the molecules of 2.6 A. The single
point energies of all these configurations were calculated using DFT for validation purposes.
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Figure 29: Predicted energies per molecule compared to DFT energies for increasing number of training
samples for a molecular monolayer without substrate on a 100 grid. Even when training only
on small unit cells reasonable prediction accuracies can be obtained for configurations in
large unit cells (blue).

Then training batches consisting of 10 configurations each were selected using Fedorov’s algo-
rithm (Sec. 2.8). For these training samples only the configurations consisting of 2 or 4 molecules
per unit cell were initially allowed, no configurations with 6 or more molecules per unit cell
were proposed for training.

The machine learning model was trained on an ever increasing number of training batches
and its performance was evaluated by comparing its prediction to the DFT energies calculated
for the remaining configurations. Just as for the case of TCNE/Cu(111) a rapid improvement
of the prediction quality as a function of training dataset size is observed (Fig. 29). Note that
in Fig. 29 the prediction quality for configurations with 4 molecules per unit cell becomes
almost exact after training on about 100 configurations. Even more remarkable, however, is
that also the prediction for configurations with 6 molecules per unit cell improves drastically
and yields reasonable results after only training on configurations with 4 or fewer molecules
per unit cell. The root mean square error (RMSE) for all predictions (which is dominated by
the much larger sample size of configurations with 6 TCNE/UC) is 8 meV and no extreme
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Figure 30: Prediction error distribution for different unit cell shapes. In the left plot the model was
only trained on unit cells with 2-4 molecules in it. For the right plot unit cells with up to 6
molecules in it where used for training.

outliers are observed. Additionally including training samples with 6 molecules per unit cell
further improves the prediction quality to a RMSE of 3 meV. Training the model only on
small unit cells and using the model’s predictions for larger unit cells is thus a viable strategy
although significantly lower accuracy for unit cells that were not part of the training set has
to be accepted. Training the model further including also unit cells with 6 molecules allows to
improve this prediction accuracy at the expense of more expensive training data.

To gain more insight, it is instructive to further differentiate the configurations according to
their unit cell shape. Figure 30 shows the distribution of residuals - the differences between
predictions and DFT reference energies. For this plot not only all configurations with 2-6
molecules per unit cell were considered but also a random selection of 500 configurations for
each unit cell with 8 molecules within it. Figure 30 shows that the prediction accuracy differs
widely between different unit cell shapes. For all long and narrow unit cells (10x3, 15x3, 20x3)
excellent prediction accuracies of about 5 meV are obtained, independent of the number of
molecules within this cell. Other unit cell shapes yield poorer prediction accuracies but are
unbiased: their average prediction is centered around the correct energy. The notable exception
is the unit cell of shape 15x4 with 8 TCNE/UC which shows a bias of -20 to -40 meV, depending
on the number of training samples used. One possible explanation is the fact that the 15x4 unit
cell is the only unit cell shape that is not a multiple of the primitive 5x3 unit cell: All other
unit cells in the considered test set can be described by stacking of this minimal 5x3 cell, while
this is not possible for the 15x4 unit cell.

5.3 Prediction for TCNE on Ag(100)

For TCNE on Ag(100) a systematic training on increasingly large unit cells as described in
Sec. 2.9 was done. As opposed to the case of TCNE/Cu(111) the proposed geometries were not
relaxed but only single-point calculations of their energies were performed. This simplification
was done because geometry optimization proved to be difficult for this system compared to
TCNE/Cu(111): Using the BFGS trust radius method implemented in FHI-aims, many config-
urations required significantly more than 10 steps to even converge to relatively crude remaining
forces of 0.1 eV/ A. In most cases geometry optimization did not significantly perturb the struc-
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Figure 31: Energy ranking for all configurations with 2-6 molecules per unit cell for TCNE/Ag(100).
Green wvalidation structures lie close to the predicted energies in violet across the entire
energy range.

tures obtained by the TETRIS assembly but in some cases geometry optimization transformed
a starting geometry to a different configuration obtained by TETRIS. Since geometry opti-
mization did in the cases tested only introduce energy deviations of about 50 meV between the
configurations it was not done for the system of TCNE/Ag(100) to reduce the computational
costs.

At first the model was trained (exhaustively) on all 8 configurations with only 2 molecules per
unit cell. Then four training batches consisting of 10 configurations each were selected according
to Fedorov’s algorithm from all configurations with 4 molecules per unit cell. Two additional
batches were chosen from all configurations that had at this point a predicted energy that was
lower than 200 meV per TCNE molecule above the predicted energy minimum. A final training
batch of four configurations with 6 molecules per unit cell was calculated.

At this point an energy prediction for all configurations with 2-6 molecules per unit cell was
evaluated. To validate the prediction quality, the energy of 16 configurations was calculated:
8 configurations evenly distributed from low energy to high energy configurations and the 8
configurations that were predicted to be lowest in energy. The RMSE of these 16 configurations
is 5.5 meV. The result of this prediction is shown in Fig. 31: All configurations are ranked
according to their energy per molecule, ranging from low energy structures on the left via
defect structures to high energy structures on the right.

Of most interest however is the low energy region which should contain the structures domi-
nant at thermal equilibrium. Fig. 32 shows a zoom into the low energy region of Fig. 31.
As expected the energy prediction is even better in the low energy region, compared to the
prediction across the entire energy rage, yielding a RMSE of 2.1 meV. It is particularly notable
that the algorithm correctly predicts six configurations to be lower in energy than the lowest
configuration present in the training data-set.
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Figure 32: Energy ranking of the lowest structures with 2-6 molecules per unit cell according to predic-
tion and DF'T.

5.4 Predicted Low-Energy Structures on Ag(100)

Some of the low energy structures predicted by our algorithm are depicted in Fig. 33. All of these
structures consist of alternating columns of top and bridge molecules. They are offset relative
to each other to form diagonal lines. Introducing kinks in the diagonal lines to form chevron
or zig-zag patterns is a low energy defect costing only a few meV. In all predicted low energy
structures the backbones of the molecules are parallel to each other. Rotating a molecule from
its parallel to an orthogonal orientation relative to its neighbors only appears as a defect of the
ground state structure. Introducing this defect by rotating one molecule by 90° has an energy
cost of about 100 meV. These predictions do qualitatively agree with the structure determined
by Scanning Tunneling Microscopy [40]: Also the experimental study finds diagonal lines of
molecules that can easily be perturbed to form zig-zag structures. They observe chevrons of
varying size with the largest one consisting of eight molecules per unit cell (Fig. 26), while
the smallest ones only consist of two molecules forming a simple zig-zag pattern. It is found
that large chevrons form in pristine regions, while defects within the monolayer (e.g. missing
molecules) lead to smaller structures. These findings are consistent with our prediction that
introducing kinks costs very little energy and can thus easily be observed.

On the other hand, the experiment does also show some features that clearly differ from our
prediction: While we predict the TCNE-backbones to be parallel to each other, the experiment
observes alternating orientations of the TCNE molecules. While we predict the structures to
consist of columns of molecules that alternate between bridge and top site, the experimental
structure shows this alternating behavior only for the smallest structure consisting of two
molecules per unit cell. Larger chevrons (with 4 or 8 molecules per unit cell) are formed by only
placing one in four molecules on a top side and the remaining 3/4 on a bridge site.
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Figure 33: Four examples of low energy structures. a: Diagonal stripes, b-d: Chevrons consisting of
2-6 molecules per unit cell. All these configurations are similar in energy according to DFT
within 5 meV / molecule.

At this point it has to be stressed that these deviations do not constitute a shortcoming of the
machine-learning procedure, but rather a lacking accuracy of the energies calculated by DFT.
There are several possible reasons for this discrepancy between Density Functional Theory and
the experiment:

e Accuracy of DFT functional: Although Density Functional Theory is in principle
exact, the functionals used for any practical calculation (in our case PBE + vdW correc-
tions) are not. As opposed to wavefunction based methods there is unfortunately no
systematic way to improve upon the results obtained by DFT to check the quality of
the approximations made. Using a more sophisticated functional (e.g. hybrid-functionals)
might shed more light on this issue.

e Local Relaxation: While the structures proposed by the TETRIS algorithm have shown
to be good guess configurations, there will always be some additional relaxation of the
structures once they are assembled on the surface. It might be necessary to feed the
energies of locally optimized structures into the machine learning algorithm as opposed
to single-point energies. However, we have seen this not to significantly alter the energetic
ordering, in particular it does not affect the energy difference between orthogonal and
parallel TCNE molecules.

e Vibrational Enthalpy: Even at 7" = 0, the total energy is not the only contribution
that must be considered to find the ground-state structure. The zero point energy of the
vibrational modes might be necessary to accurately rank the molecules. This is supported
by the observation of Wegner et al [40] that the TCNE molecules show a shift of their
vibrational frequencies depending on their adsorption site and surrounding.
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e Temperature: Although the STM images were recorded at low temperatures (7' = 7 K)
the deposition of the monolayer was done at room temperature. It is thus conceivable
that a phase, other than the T" = 0 ground-state, formed at room temperature and was
"frozen in" when cooling to 7 K.

e Kinetics: The assumption that a phase of minimal free energy forms relies on the system
to be in thermal equilibrium. Depending on the growth conditions this assumption might
not hold for many experiments. It might therefore be of interest to study the dynamics of
crystal growth on the surface. The fact that our method does not only yield the energy
of the lowest energy structure but gives in fact an energy prediction for all local energy
minima with an accuracy that comes close to the one obtained by DFT, should provide
a good starting point for kinetic Monte Carlo simulations.
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6 Summary and Outlook

In this work an efficient machine learning model to learn the adsorption energies of TCNE
on metal surfaces has been developed and extensively tested on Cu(111) and Ag(100). At the
current stage the model shows high prediction accuracy for a large dataset of configurations
given a few hundred training data samples. Taking this work as a starting point, several ques-
tions will have to be addressed in the future:

Varying the supercell and coverage

At the current stage the code still needs experimental input in the form of the lattice parameters
and coverage since we currently restrict the search space to configurations that show the exper-
imental coverage. Introducing arbitrary supercell shapes should in principle be straight-forward
since the code can already deal with configurations with different supercell sizes. However two
important questions will have to be answered: How transferable are the learned interaction ener-
gies to configurations with a different coverage and how well are they transferable to supercell
shapes that have never been trained on?

Better default model

A second large question is whether the prior assumptions used in the model could be improved.
The model currently assumes zero interaction strength between the molecules if no DFT data
is available but a computationally cheap physical model, such as electrostatics combined with
empirical van der Waals interactions, might be able to yield a far better default guess. In systems
that are dominated by interactions that can be described by simple, parametrized models this
could help to further reduce the number of training samples needed.

Marginalization of hyper-parameters

Several parameters of the model are currently picked by hand and are thus in principle prone
to human error and arbitrariness. For future work it is desirable to minimize the number of
user picked hyper-parameters by determining their values self-consistently within the Bayesian
framework. This should bring the additional benefit of more reliable posterior-covariances and
thus access to error-bars for the predictions which were not discussed in this thesis.

Training data selection

Currently the training samples are initially only selected from small supercells before going to
larger supercells. This is to steer the algorithm towards extracting information initially from the
smaller, and thus cheaper, supercells before doing expensive calculations on large supercells. It
might be advantageous to directly encode this difference in cost into the data selection process.
Instead of asking Fedorov’s algorithm to gain maximum information from exactly ny.q; DFT
calculations, one could alter the algorithm to gain maximum information from a given number
of CPU hours.

Additionally it could be desirable to also change the objective function that is optimized:
Instead of minimizing the uncertainty of the interaction energies it might be better to directly
minimize the prediction uncertainty obtained for the configurations of interest.
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Bridging the gap to experiment

The case of TCNE on Ag(100) shows that the predicted structures do not always match exper-
imental observations. It is currently not fully clear where this discrepancy is coming from: It
might be a shortcoming of the first-principles method used to calculated the energies or a contri-
bution currently not considered in the energy ranking such as vibrational and configurational
entropy. It could however also be an experimental problem such as kinetically trapped struc-
tures or artifacts during STM imaging. For the future it will be necessary to gauge the influence
of the various approximations made, in order to obtain reliable prediction uncertainties.

Simulating larger domains

Since the method outlined in this thesis cheaply yields energy predictions for any given config-
uration it is ideally suited to perform Monte Carlo simulations of larger domains. In particular
if transition barriers between the predicted polymorphs were available one could use Kinetic
Monte Carlo simulations to estimate the stability and lifetime of polymorphs and study their
evolution and growth. This might eventually even allow to study phases which are not in ther-
modynamic equilibrium.
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A Appendix

A.1 Computational Settings for TCNE on Cu(111)

For the DFT calculations of TCNE on Cu(111) a periodic 4 layer slab was used with a lattice
constant of 2.553 AFor geometry optimization all layers except the top two Cu layers were held
fixed. The following computational settings (control.in) were used for the FHI-aims code:

xc pbe

vdw__correction hirshfeld .true.
vdw__pair_ignore Cu Cu

relativistic atomic_ zora scalar
RI method 1vl fast

charge 0

spin none

use__dipole_correction .true.
compensate_ multipole errors .true.

# Define convergence
sc_accuracy_rho le—2
sc_accuracy_etot le—H
sc_accuracy_ forces le—2
sc_iter_ limit 100

# Geometry Optimization
relax__geometry trm 1.5e—1
max_ relaxation_steps 10
output_level MD_ light

occupation_type gaussian 0.01 # occupation_type type width,
broadening scheme to define Fermi level and occupation of KS—eigenstates
k grid 3 2 1 # k_point grid nl n2 n3

collect eigenvectors .false.
evaluate work function

# optimized for 3 flat TCNE on 4 layer Cu 6x6
preconditioner kerker 2.2
charge_ mix_param 0.15

# FHI-aims code project
# Volker Blum, Fritz Haber Institute Berlin, 2010
# Suggested "tight' defaults for Cu atom (to be pasted into control.in file)

LU L ) ) ) )]

T i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i it

species Cu
hirshfeld param 59 10.9 2.4 #dW surf
#
nucleus 29
mass 63.546
1 hartree 6
cut__pot 4.0 2.0 1.0
basis__dep_ cutoff le—3
#

radial base 53 7.0
radial_multiplier 1
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specified

grids

angular

50
110
194
302
434

0.3478
0.6638
0.9718
1.1992
1.5920

division

division

division

division

division

590
770
974

1.8557
2.0466
2.0877

division

division

division

2.4589 1202

division

FFHFH 3

434

HHH L)

T T T T iy

#

_grid

outer

basis

"minimal"

HLUA
T e i eI

valence basis states
valence

#

ion occupancy

valence
valence
ion_ occ

ion_occ

ion occ

For production calculations,

uncomment them one after another (the most important basis functions are

listed first).

# Suggested additional basis functions.

7*
#
#
#*

4.0 Ang

2.2, 3.0,

1.8,

# Constructed for dimers:

HUA
I

—9.17 meV

—211.42 meV to

"First tier" — improvements:

hydro 4 f 7.4

ionic 4 p auto
hydro 3 s 2.6

hydro 3 d 5

hydro 5 g 10.4

# FHI-aims code project

# Volker Blum,

2009

Fritz Haber Institute Berlin,

# Suggested "tight" defaults for C atom (to be pasted into control.in file)

HHH L)

T T T T T T i rririray

species

definitions

species

global
nucleus
mass

##

12.0107

hartree

1

pot 4.0 2.0 1.0
_dep__cutoff le—4

cut
basis

34 7.0
2

__base

radial

multiplier

radial

5

61|# Definition of

71

81|

91

101| £
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angular_grids specified
division 0.2187 50
division 0.4416 110
division 0.6335 194
division 0.7727 302
division 0.8772 434
# division 0.9334 590
# division 0.9924 770
# division 1.0230 974
# division 1.5020 1202
# outer_grid 974
outer__grid 434

# Definition of "minimal' basis

#

LU ) ) gy g g ) ) ) ) ) g ) ) ) ) ) g ) ) ) ) g g g ) ) ) g ) g g ) ) g g ) g g ) g ) ) ) ) ) g ) ) ) ) ) ) ) ) )

T T T T e i ririruy

# valence basis states
valence 2 s 2.
valence 2 p 2.

# ion occupancy
ion_occ 2 s 1.
ion__occ 2 p 1.

# Suggested additional basis functions. For production calculations ,

# uncomment them one after another (the most important basis functions are
# listed first).

# Constructed for dimers: 1.0 A, 1.25 A, 1.5 A, 2.0 A, 3.0 A

# "First tier" — improvements: —1214.57 meV to —155.61 meV
hydro 2 p 1.7
hydro 3 d 6

4.9
r" — improvements: —67.75 meV to —5.23 meV

hydro 2
# "Second ¢t
hydro 4
hydro 3
3
5
3

W N o

hydro
hydro
hydro

# FHI-aims code project
# Volker Blum, Fritz Haber Institute Berlin, 2009
# Suggested "tight" defaults for N atom (to be pasted into control.in file)

LU g ) g g ) g ) ) g ) ) g g g ) g g ) g g g g ) ) g g g g g ) ) ) g g ) g g ) g g ) g g ) ) g ) g g ) ) g g ) ) g ) ) ) L ) ) ] ]

T T T T T T i rririray

species N
# global species definitions
nucleus 7
mass 14.0067
1 hartree 6
cut__pot 4.0 2.0 1.0

basis__dep_ cutoff le—4

radial base 35 7.0
radial _multiplier 2
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angular_ grids specified
division 0.1841 50
division 0.3514 110
division 0.5126 194
division 0.6292 302
division 0.6939 434
# division 0.7396 590
# division 0.7632 770
# division 0.8122 974
# division 1.1604 1202
+# outer__grid 974
outer__grid 434

# Definition of "minimal' basis

#UUHHNNNNNNNNNNNNNNNNNHHHUUUUUUUUUUUUUUUUUHHNNNNNNNNNNNNNNNNNHHUUUUUUUUUUUUUUUUU
T i i i rrIrira
# valence basis states

valence 2 s 2.

valence 2 p 3.
# ion occupancy

ion_occ 2 s 1.

ion_occ 2 p

# Suggested additional basis functions. For production calculations ,

# uncomment them one after another (the most important basis functions are
# listed first).

# Constructed for dimers: 1.0 A, 1.1 A, 1.5 A, 2.0 A, 3.0 A

# "First tier" — improvements: —1193.42 meV to —220.60 meV
hydro 2 p 1.8
hydro 3 d 6.8
hydro 3 s 5.8
# "Second tier" — improvements: —80.21 meV to —6.86 meV
hydro 4 f 10.8
hydro 3 p 5.8
hydro 1 s 0.8
hydro 5 g 16
hydro 3 d 4.9
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A.2 Convergence Tests for TCNE on Ag(100)

To converge the computational settings for TCNE on Ag(100) at first a baseline adsorption
energy was calculated. This was done for a flat lying TCNE molecule in a 4x4 Ag supercell on
a b layer Ag slab with default FHI-aims tight settings and 16x16 k-points. For the Ag substrate
tier 1 basis functions were used. For the organic adsorbate a tier 2 basis set was used. For the
Ag slab a primitive lattice constant of 3.957 A was used which deviates by about 3 % from
the experimental lattice constant of 4.08 A. Tests on a few selected configurations showed no
significant influence of the lattice constant on the adsorption energies.

Using this baseline, several parameters were varied and their effect on adsorption energy and
runtime tabulated in Tab. 3. For the calculations presented in Sec. 5 a k-point density of 30

Table 3: Convergence tests for TCNE/Ag100: All changes relative to baseline calculation

|

Parameter

\ AE,.4 |/ meV \ A SCF-time / % \ Accepted ‘

Radial multiplier Ag 2 — 1 0 -8 yes
wave threshold 1e-6 — le-5 0 -2 yes
cut pot Ag 4.0 — 4.3 2 3 no
4 layers Ag slab -68 -37 no
6 layers Ag slab 67 51 yes
7 layers Ag slab -67 121 no
remove Ag 5g basis function 13 -35 yes
remove Ag 4d basis function 11 -18 yes
remove Ag 5g+4d basis function 27 -50 yes
remove Ag 5p basis function -1539 -13 no
remove Ag 4f basis function 68 -27 no
remove Ag 4f+5g basis function 69 -56 no

was used: The number of k-points times the length of the supercell measured in multiples of
the Ag unit cell was 30. The full control file used for the FHI-aims DFT code is listed below:

xc pbe

vdw__correction hirshfeld .true.
relativistic atomic zora scalar

RI _method 1vl fast

charge

0

spin none

use_dipole_correction .true.
evaluate work function
compensate_multipole_errors .true.
sc_accuracy_rho le—2
sc_accuracy_etot le—H
wave_threshold le-5

sc_iter_ limit 250

max_ relaxation_ steps 20
output__level MD_ light

occupation_type gaussian 0.01
k_grid 6 5 1
collect__eigenvectors .false.

# FHI-aims code project




¥

N

Appendix 64

# Volker Blum, Fritz Haber Institute Berlin, 2009
# Suggested "tight" defaults for Ag atom (to be pasted into control.in file)

species Ag
hirshfeld param 122 15.4 2.57 #dW surf
# global species definitions
nucleus 47
mass 107.8682
#
1 hartree 6
cut__pot 4.0 2.0 1.0
basis__dep_ cutoff le—4
#
radial__base 62 7.0
radial_multiplier 1
angular_grids specified
division 0.3947 50
division 0.7739 110
division 1.1156 194
division 1.3117 302
division 1.5936 434
# division 2.0830 590
# division 2.2341 770
# division 2.8497 1202
# outer__grid 974

outer_grid 434

LU f ) g g ) g ) ) ) g ) ) g g g ) ) g g ) g ) g g ) ) g g ) ) g g ) g ) g g g g ) g g ) g ) ) g ) g g ) ) g g ) ) g ) ) ) g ) ) ) ]

T T T T T iy

# Definition of "minimal' basis

# valence basis states
valence 5 s 1.
valence 4 p 6.
valence 4 d 10.

# ion occupancy
ion_ occ 5 s 0.
ion_occ 4 p 6.
ion_occ 4 d 9.

LU g ) g g ) g ) ) g ) g g g ) g g ) g g g ) g g g g g ) ) g ) g g g ) ) g g ) g g ) ) g ) ) g ) ) g g ) g ) ) ) g ) ) ) ]

T T T T T T iy

# Suggested additional basis functions. For production calculations ,
# uncomment them one after another (the most important basis functions are
# listed first).

#
# Constructed for dimers: 2.1 A, 2.45 A, 3.00 A, 4.00 A

# "First tier" — max. impr. —144.99 meV, min. impr. —3.42 meV
ionic 5 p auto
hydro 4 f 7.6
hydro 3 s 2.6

# hydro 5 g 9.8

# hydro 4 d 8.4

# FHI-aims code project
# Volker Blum, Fritz Haber Institute Berlin, 2009
# Suggested "tight" defaults for C atom (to be pasted into control.in file)
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#

species

nucleus
mass

1 hartree

cut_ pot

C
global species

basis__dep_ cutoff

radial base

radial_multiplier
angular_grids specified
0.2187
0.4416
0.6335
0.7727
0.8772

division
division
division
division
division
division
division
division
division

outer_ grid
outer_ grid

0.9334
0.9924
1.0230
1.5020
974
434

definitions

6
12.0107

4.0 2.0
le—4

34 7.0
2

50
110
194
302
434

590

770

974
1202

# Definition of "minimal' basis

S L

# Suggested additional basis functions.

7

THA T it i i i i i i it

valence basis stat
valence 2 s
valence 2 p

ion occupancy
ion_occ 2 s
ion_occ 2 p

listed first).

es
2.
2.

# Constructed for dimers:

)
LU L L)L L

T i i i i it
improvements:

#

/

1]/

"First tier"

hydro 2 p 1.
hydro 3 d 6

hydro 2
"Second t
hydro 4
hydro 3
hydro 3
hydro 5
hydro 3

7

improvements:

FHI-aims code project

Volker Blum, Fritz Haber Institute Berlin,
defaults for N atom (to be pasted into

S L )

Suggested "tight'

-/ /
77

77

77

species

global species

N

T i i i i i i i i i 7

definitions

For production calculations,
# uncomment them one after another (the most important basis functions are

—67.75 meV to —5.23 meV

L L L
T rT
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66

nucleus 7

mass 14.0067

1 hartree 6

cut__pot 4.0 2.0 1.0

basis_dep_ cutoff le—4

#

radial_base 35 7.0

radial _multiplier 2

angular_ grids specified
division 0.1841 50
division 0.3514 110
division 0.5126 194

0.6292
0.6939

302
434

division
division

# division 0.7396 590
# division 0.7632 770
# division 0.8122 974
# division 1.1604 1202
# outer__grid 974

outer_ grid 434

LU ) )

T it I/ T T

# Definition of

"minimal" basis

# valence basis states
valence 2 s 2.
valence 2 p 3.
# ion occupancy
ion_ occ 2 s 1.
ion_ occ P 2.
/II/ /’II/ /’II/ /’II/ /’II/ /’II/ III/ III/ III/ II// II/lI//lI’I//I/III///I//II//II//I /II /II /l! //'II/l!I/l'II//'II/III/III/II//II//I/IIII/lIIIIIIIIII/II/ /II/ /II/ /I/I /I/I /II/ /’II/ /’II/ /’II/ /’II/ I’II/ I’Il I/I/ I’/lI//l //I’I/lI’I/lI’I/II’I/II’I/II'I/II'III/IIII'//II'//I /l!I//'II/l/III'II/III/I/III/III///I/III/III///I/III/ /II/ /I/I /I/I /II/ /II/ /l'
# Suggested additional basis functions. For production calculations,
# uncomment them one after another (the most important basis functions are

# listed first).

# Constructed for dimers: 1.

0 ) ) ]" ) )
I,/,I,/,I,/I/////I/I/I/I/I/I/I/I/I/IIIIII/I/I,/,I/I/,I/I/I/I/I/I////////////I/I/I/I,/I,/,I,///////////////,I/,I/,I/,I/,I/,II,II,II,II,/I,/,I,/,I///////////////////,I/,I/,II,II,II,II,/I,/I,/,I,/,I/,I/
T T T T T iy

n n
# First tier" — improvements: —1193.42 meV to —220.60 meV

hydro 2 p 1.8
hydro 3 d 6.8
hydro 3 s 5.8
# "Second tier' improvements: —80.21 meV to
hydro 4 f 10.8
hydro 3 p 5.8
hydro 1 s 0.8
hydro 5 g 16
hydro 3 d 4.9

—6.86 meV
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