
Filzmaier Josef, BSc

Design and Implementation of Pikrit: A
Home Automation Source Routing

Protocol for Wireless Networks

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Institute for Technical Informatics

 Diplom-Ingenieur

Supervisor

Graz, April 2017

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

Abstract

Im Bereich der Heimautomatisierung steigt das wirtschaftliche Interesse an ka-
bellosen Sensor- und Aktornetzwerken stetig. Besonders im Anwendungsgebiet
der Heimautomatisierung wurden in einer relativ kurzen Zeitspanne eine große
Menge an Innovationen voran getrieben. Ziel ist hierbei meist eine Vereinfachung der
alltäglichen Aufgaben im Haushalt. Zur Realisierung dieser Aufgaben existieren viele
generische Protokolle, allerdings wird der fehlende Kommunikationsstandard für
Entwickler solcher Systeme zum Stolperstein. Es gibt eine Vielzahl an generischen
Protokollen, jedoch sind diese meist untereinander Inkompatibel. Die Abstimmung
auf einen allgemein gültigen Standard erweist sich als besonders schwierig, da jede
Firma seine eigene Kreation als Norm für zukünftige Systeme deklariert wissen
will.

Diese Masterarbeit stellt eine neue Protokollspezifikation namens Pikrit vor. Pikrit
wurde für ein spezielles Anwendungsgebiet entwickelt und versucht, im Gegensatz
zu den meisten kommerziell verwendeten Protokollen, keine allgemeine Lösung für
alle Produkte zu sein. Der Designfokus liegt auf statisch montierte Sensoren und
Aktoren in der Heimautomatisierung. Grundsätzlich versucht Pikrit ein besonders
ressourcenschonendes Protokoll zu sein um eine Paketweiterleitung über mehrere
Teilnehmer auch für eingebettete Systeme effizient zu gestalten. Es wird dabei
die Prämisse ausgenutzt, dass alle Netzwerkteilnehmer statisch montiert sind und
sich innerhalb des Gebäudes nicht bewegen. Ein weiteres Ziel von Pikrit ist es,
erweiterbar zu sein, um es Anwendungsentwicklern zu ermöglichen ihre eigenen
Protokolle aufbauend auf dem Pikrit Protokoll zu realisieren. Anhand einer Referen-
zimplementierung wird die Performanz mit anderen gängigen Routingprotokollen
verglichen. Basierend auf Simulationen wird gegen Ende der Arbeit auf die Vor-
und Nachteile des Protokolls eingegangen und es wurde gezeigt, dass das Protokoll
die Designziele erfüllt.

3

Abstract

Wireless sensor and actor networks are steadily gaining public interest. Especially
within the home automation line of business there is a plethora of innovations to
be found within a relatively short time period. Typically the goal is to trivialize
housekeeping. A big problem innovators are facing when designing new home
automation products is which communication standard to use. There are a lot of
general purpose standards currently in use which are mostly incompatible with
each other. So the vision to make housekeeping a unified and simple experience is
hindered until a common standard is agreed upon. Achieving this is a very hard
task because there is a lot of competitive interest between companies to have their
standards declared as the norm.

This thesis introduces a new protocol specification named Pikrit. Contrary to the
desire of many companies Pikrit does not try to be a general purpose solution.
Instead it centers design focus around statically mounted sensors and actors within
home automation. The basic idea behind Pikrit is to be very lightweight in order to
allow for a reliable low latency communication even when using multi-hop routing
on embedded devices. To achieve this it makes use of the premise that participants
are generally non-moving parts. Extensibility is also a key design goal to allow
developers to realize their own higher level applications using the Pikrit stack.
Simultaneously to drafting a specification a reference implementation has been
built to perform a direct comparison with competitors. Real world and simulation
experiments were performed to showcase the protocols strengths and weaknesses
and to prove that the protocol fulfills its design goals.

4

Acknowledgement

At this juncture I want to express my gratitude to my supervisor Ass.Prof. Dipl.-
Ing. Dr.techn. Christian Steger for the useful comments, remarks and engagement
throughout the process of creating this thesis. Furthermore I would like to thank
Manuel Stanglechner, Dipl.-Ing. (FH) Wolfgang Profer and all other involved em-
ployees and stakeholders at HELLA for tendering this thesis, the active involvement
and giving me the opportunity to work on this exciting topic.

As a very important part of my life I also want to thank my friends which kept me
sane throughout the years. Their continuous endorsement enriched my personal life
by keeping a good balance to my professional life. They also helped me overcome
setbacks and find new motivation. I greatly value all of my friendships.

Most importantly, I want to thank my lovely family which has been supportive,
motivational and inspiring for the duration of my whole life. I am especially grateful
to my parents, Josef and Ramona Filzmaier. Their fairness and dedication was
very influential, they backed my time at university and are my close friends.

Without all of you this thesis would not have been possible.

Thank you.

5

Contents

Abstract 3

Acknowledgement 5

Contents 6

1 Introduction 8
1.1 Motivation . 8
1.2 Challenges within digital culture 9
1.3 Partner . 13
1.4 Outline . 15

2 Wireless sensor and actor networks 16
2.1 Introduction . 16
2.2 Networks and routing . 20
2.3 Modern mesh network designs . 22
2.4 Popular operating systems for IoT 29
2.5 Simulators for Wireless Sensor Networks 35

3 Design 39
3.1 Requirements . 39
3.2 Introducing the core Pikrit protocol 45
3.3 Addressing . 49
3.4 Pikrit frame specification . 50
3.5 Core Application Domain ID definitions 53
3.6 Coordinator Protocol Extensions 61
3.7 Examples of important protocol messages 65

4 Implementation 68
4.1 Pikrit integration into Contiki . 68
4.2 Developer interface . 70
4.3 Embedding Pikrit into the Contiki network stack 75

5 Evaluation 78
5.1 Platform introduction . 78
5.2 Contiki Rime mesh . 79

6

CONTENTS 7

5.3 RPL . 82
5.4 Pikrit . 84
5.5 Pikrit design . 86

6 Conclusion and future work 90
6.1 Future of Pikrit . 90
6.2 Conclusion . 92

List of Acronyms 93

List of Figures 96

List of Tables 97

List of Equations 97

Listings 98

Index 102

Chapter 1

Introduction

“Perplexity is the beginning of knowledge”1

1.1 Motivation

Humanity is the most influential species on planet Earth, measured by the amount
of space we control and call our own. The population steeply increases since
centuries and we do not generally fear natural predators, besides ourselves. People
have discovered and surveyed almost all places on earth and there are even plans
to conquer space and other planets. Stubbornness, curiosity and problem solving
instincts are, besides from anatomical and cognitive advantages, some peoples
strong points which led to this dominance. We are by nature experts at identifying
potential for improvement, adapting to our environment and inventing tools to
generalize and solve arising problems. Even though the solution to a problem can
seem impossible at times, people are resilient enough to keep on trying until it is
solved. These human properties shaped the world we live in today, especially when
focusing on the topic of technology.

The advancements in this very matter have fundamentally changed our lifestyle,
and are doing so at an accelerated pace as of the past few decades. Traveling
around the globe has been trivialized by cars, air planes and other vehicles. But
the need to travel dwindles as more and more tasks can be done over the internet.
Borders between the real world and imagination are melted when using special
virtual reality headsets which allow for an immersive dive into imaginary worlds.

The promise of a lot of these products is to make solving every day tasks in life
easier, or even automated, and more efficient. Technology also helps people with

1Khalil Gibran

8

CHAPTER 1. INTRODUCTION 9

disabilities improve their lives and let them do things which they would not be
able to do otherwise. In general a lot of investigation is made in order to simplify
day to day living.

Recent developments also increasingly automate the lifestyle within our living area.
Many helpful components inside and around the house are equipped with sensors
and actors which are connected to the internet. On the one hand such components
can easily automate things like switching off the lights if they are not needed in
order to save energy. On the other hand people can always check the status of
their components from everywhere over the internet using their smartphone. This
enables a new, ideally easier and more secure way of living.

So the motivation for me is being able to interconnect things using technology
and making peoples lifes easier. It also feels like an interesting topic as it has just
started emerging and is still in its infancy. Manufacturers are unconsolidated about
which communication standard to use and a lot of things are up in the air. These
uncertainties and the continuous changes through improvements in technology in
combination with new ideas that frequently arise are exciting to me, and are in
part reason why I chose to work on this topic.

1.1.1 Goals

A primary goal of this thesis is to clarify the trade-off between developing a custom
application-adapted routing protocol and using already established protocols within
wireless embedded mesh routing. In order to shed some light on this essential
question the requirements of embedded devices within building automation are
refurbished. Given this context a basic protocol design shall be forged and then
translated into a reference implementation example. Reasoning on why and in
which areas the suggested protocol is better than already available ones is also
important. Last but not least some critical impacts of the digital lifestyle shall be
discussed as sometimes the more important question is the ’why?’ as opposed to
the ’how?’.

1.2 Challenges within digital culture

As software is getting central in the way we communicate with each other and
interact with our environment, I think it is important to stress the cultural impli-
cations of the modern digital lifestyle. Technology makes the life easier in a variety
of ways but it is also abused on a regular basis in unfair or unethical ways, which
a lot of users do not even notice. Major companies often take advantage of their
monopoly position, enforcing certain restrictions on the user, and sometimes even

CHAPTER 1. INTRODUCTION 10

spy on and monitor their customers behavior. This topic is in itself a rather large
one, so I will only broach some concerning topics.

1.2.1 The value of privacy

Throughout the history of mankind there has never been a time where data about
individuals were so widely available as in the present. Data collection, indexing and
calculating metrics from it is trivialized through advancements in technology. The
journal article [Ste+12, p. 1755] describes an hypothetical “highly-tracked” day in
the life of an individual person, from leaving the house in the morning to going to
bed in the evening. We are almost at the point where every activity throughout the
day could be recorded by diverse connected devices. In addition to this continual
data collection our society grew into one which voluntarily broadcasts a lot of
personal information. Personal photos, opinions, locations, activities, major life
events and even trivialities like what food was served for dinner or some mundane
thoughts form a stream of data which represents our life online. The combination
of the tracked and voluntarily shared data draws a stunningly detailed picture of
an individual life. This information is very valuable for governments and businesses
alike as described in the following Sections.

1.2.2 Government and security agencies

Governments use personal data in order to detect illegal activities or knowing early
about the possibilities of terroristic activity from certain people. While this sounds
like a security enrichment to our society, data collection and indexing can also be
dangerous depending on the form of usage of the data. It is important to keep a
good balance between security and the collection of private data. In the second
world war, as an extreme example, the Gestapo (German secret service) collected
lists identifying homosexual people. The lists were later used to chase these people
in order to castrate them or commit them to psychiatric institutions. At this time
it was not very easy to gather such lists, but with today’s technology such data
acquisition could easily be misused to chase minorities. Hopefully humanity has
learned its lesson from history and embraces basic human rights like privacy and
many others.

1.2.3 Trading privacy for corporate controlled services

The financial model of software companies has evolved over time. In the beginnings
fixed prices were charged for snapshots of software implementations. But as anyone
knows who has had some experience in programming, software can always be

CHAPTER 1. INTRODUCTION 11

improved and there is no such thing as a “final” product. Some companies provided
a set of updates for their already sold products and then eventually released an
overhauled version for which users were charged again. While this pricing model is
still widely used today, a lot of new ways of charging for software have been explored.
Product as a service, where the updates are free but the user pays monthly in order
to use the product, or micro transactions within products, where the product itself
is free but advanced features, templates, assets or even only cosmetic changes have
to be paid for, are some common examples.

A more controversial payment method, which especially pertains social interaction
services, is the trade of private information for products. These products are usually
completely free of charge, but not without cost as they enforce you to provide
basic private data like name or birthday, and encourage you to define and share all
your social contacts, your hobbies, your habits, which things you enjoy and dislike
amongst other personal information. Every bit of personal information given to
these companies is very valuable for them. As the information is indexed and easily
available, advertisements can be placed much more precisely to a target audience.
Other companies take advantage of this and spend huge amounts of money in order
to advertise their product to the most relevant target groups. Many users of such
services are not even aware that all their activities are being monetized, because
most people aren’t lawyers who read the End-User License Agreement (EULA),
they accept it blindly. From this point of view private information can be seen as
currency with which the service is paid for.

1.2.4 Free and proprietary software models

Software licenses can be fundamentally differentiated between free (often also called
“libre” or “open”) and proprietary licenses. In the very early days of computing
the source code of algorithms was shared by university students, researchers and
companies. Companies then proposed the proprietary model, where the source
code to the software is only available to the company and the sold product is
the compiled executable binary. Using this proprietary model is very beneficial to
companies as development costs are usually nonrecurring and the distribution of
software is very inexpensive. While most customers are satisfied with this way of
distributing software, there are also a lot of concerns among developers and people
with a certain amount of know-how. If the source code is not available, users can
not actually know if the program is just doing what it is supposed to do or if there
are some malicious features baked in. Also, the company providing the executables
has complete control over the things a customer can do with his computer. So what
can be achieved with a computer is limited by the bundled software, which implies
a restriction on the users freedom.

CHAPTER 1. INTRODUCTION 12

This lead to mistrust within parts of the technical community which then decided
to author licenses which embraced this kind of freedom and the availability of
source code. Developing software this way encouraged a lot of people around the
globe to participate, which lead to some very dynamic development processes.
Openness attracted new developers to projects who might contribute free of charge.
Since it was created this open way of distributing software has had the issue that
companies struggled to find a way to earn money because the available source
code made it easy to create an executable binary by the users themselves. Some
companies had success in selling support for their products and in recent history
this method is being well received by the maker community and companies alike.
Both, proprietary and open source software models have examples for very good
and very bad software maturity. When developing a software product it is often
easier, cheaper (or even free) and less restrictive to join or fork open projects.
Proprietary solutions shift the responsibilities to external companies which can also
be advantageous.

1.2.5 Digital divide between cultures

The adoption rate of cutting edge technology is not equally spread throughout the
different cultures of our planet. A good overview for this topic is given in [PS16],
which explains and compares four common theories about unevenness in access to
information and telecommunication technologies between individuals and culture
groups. As an excerpt two out of the four theories are summarized here:

• Adoption-Diffusion Theory
This theory is not directly bound to the digital divide, but is rather a general
approach to analyze processes, like the introduction of innovation within a
single social system, as a local market. Once a new and innovating technology
product is released for the public, early adopters and innovators are among
the first to acquire it. Those people are very influential in that they tend to
form “diffusion cells” over small neighborhood areas. The trend of buying this
product therefore increases over time as the knowledge about its existence
spreads among the people. After this period the demand for the product
begins to dwindle as only laggards are left to acquire the product. In other
words the market share will eventually reach saturation.

CHAPTER 1. INTRODUCTION 13

• Theory of Digital Technology Access and Societal Impacts
A 10 year long study shows the connection between initial personal and
positional background of a person and the therefore resulting access to
resources. Here personal background among others refers to human properties
like age, gender and health while positional background relates to labor,
education, nation and household. The better the initial condition within this
system, the more resources are generally available. Resources which provide
skill and material access to information and communication technology. This
access also leads to more participation within society, as activity within social
networks, politics and other.

1.2.6 Information and disinformation

Sharing information is easier than ever. The speed, breadth and ease of spreading
knowledge has opened up unprecedented possibilities. Most of those opportunities
have had widespread positive impacts on the lives of billions of people around
the globe. But the ease of distributing data also led to its misuse. Frequently,
false information is ably disguised and presented as the truth. Such messages,
also often called hoax as described in [KWL16], do play a detrimental role in our
culture. Reasons for people to spread misinformation vary. A goal of spreading
misinformation can be to let people believe in irrefutable theories which may
corruptly bend their view on reality. Other times people denote false facts to
deliberately deceive or betray an audience. If misinformation about some fact gains
wide spread adoption or even acceptance the implications can be fatal. Myths
about medical issues can be dangerous to victims of such false claims. Another
more extreme example would be incorrect political propaganda which can polarize
communities and in the worst case can lead to deadly attacks, revolts or even wars.

1.3 Partner

This Master thesis is done in cooperation with HELLA, sun- and weather protection
systems Gesellschaft mit beschränkter Haftung (GmbH). The official Logo of the
company can bee seen in Figure 1.1. HELLA is located in Abfaltersbach in East
Tyrol and has, as of this writing, about 1200 employees. The product palette
includes blinds, awnings and roller shutters.

Figure 1.1: Official HELLA logo

CHAPTER 1. INTRODUCTION 14

1.3.1 Problem statement

HELLA is developing a home automation solution called ONYX. It is a solution
with focus on convenient brightness control throughout the house. Other use cases
are planned for the future. In order to be easily extensible for current houses it
uses wireless communication. This product is already available on the market with
the following components:

• ONYX.CENTER
As the heart of processing commands from clients it sends the corresponding
commands wirelessly to other participants. It also is responsible for calculating
and prioritizing commands that are generated from automatic scenarios.

• ONYX.NODE
This piece is placed between the power supply of a motor for sun blocking
components like raffstores, roller shutters or awnings. It receives commands
from ONYX.CENTER, executes them and gathers information about the
state of the product it controls.

• ONYX.CONNECTOR
Is a similar component to ONYX.NODE but with a special form factor
allowing it to be placed within the frame of shading products.

• ONYX.WEATHER
In order to react to changes within the environment ONYX.WEATHER
provides data like temperature, brightness and wind speeds and reports those
back wirelessly to a ONYX.CENTER.

Figure 1.2: Small house using ONYX

Additionally the product involves intuitive smartphone apps for all major platforms.
The system is generally being well received from its customers. However, a problem
that is reported frequently is the lack of communication range for larger buildings.

CHAPTER 1. INTRODUCTION 15

Figure 1.3: Large house using ONYX

Consider a small single family house as shown in Figure 1.2. The area highlighted
in green represents the wireless communication range of an ONYX.CENTER. This
range is heavily influenced by blocking objects, reflection and general position of
the box within the house. As shown in the figure in this case there are no problems
with the communication range as the green area stretches across the whole house.

Where there do arise a lot of problems is within larger buildings as shown in
Figure 1.3. Compared to Figure 1.2 one can see that the green highlighted wireless
range is not covering up the whole building. This scenario can occur in larger
buildings with thick ferroconcrete walls. Such large buildings often have a lot of
components installed which all directly communicate with the ONYX.CENTER
component. The idea is to let all those devices spread throughout the building
communicate with each other in order to route the necessary data to its destination.

The basic problem to solve is to extend the range of wireless communication
partners in home automation devices by using their resources more efficiently.

1.4 Outline

The remainder of this thesis is structured as follows. In Chapter 2, a brief introduc-
tion including a history of embedded wireless mesh networks is given. Also, popular
tools for developing and simulating wireless sensor and actor networks are explored.
The requirements and design aspects of Pikrit are discussed in Chapter 3. With
these requirements in mind, Chapter 5 evaluates simulations of diverse protocols
like Routing Protocol for Low power and Lossy Networks (RPL) and Contiki Rime
mesh regarding their performance in comparison to Pikrit. A reference implementa-
tion of Pikrit is demonstrated in Chapter 4 and the conclusion of this thesis with a
discussion about the achieved results including an outlook for possible developments
in the future is shown in Chapter 6.

Chapter 2

Wireless sensor and actor
networks

“All of the biggest technological inventions created by man says little about his
intelligence, but speaks volumes about his laziness.”1

2.1 Introduction

Transferring data from one place to another requires some sort of medium to
establish a transmission channel on. There are currently three competitive data
transfer mediums. The first is the electrical method, where the impulse of electrons
in conducting metal alloys is used to carry information. Secondly there are optical
solutions, where the information is transferred via light modulation. Light is an
electromagnetic wave which has a wavelength close to the wavelengths visible to the
human eye. But the most relevant option for this thesis are wireless communication
channels. Here electromagnetism is used in different modulations in order to transfer
data. While both light and wireless transmissions are based on electromagnetism
their wavelengths differ greatly which gives them unique properties.

Each of these mediums have their own unique set of technical, economical and
convenience related advantages and disadvantages, depending on the requirements
to the communication system. A big problem when choosing the electrical solution
is upgradability, despite being a very reliable choice otherwise. If cables have to be
laid subsequently this often implies infeasible costs. Optical solutions have basically
the same problem, with the exception of a few special cases where line of sight is
granted between the communication partners.

1Mark Kennedy

16

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 17

2.1.1 Wireless Communication

Due to this fact a lot of companies focus on wireless solutions, which do not share this
drawback. Wireless solutions are easily upgradable and have additional positional
flexibility. However, the spatial range is restricted by physical limitations and the
allowed transmission power is regulated by legal entities. Especially in constructions
with shielding elements, for example buildings with thick and ferroconcrete walls or
underfloor heatings, the desired communication distance often cannot be reached.

2.1.2 Mesh Networking

One promising idea is to solve this problem by using what is called mesh networking
or routing. The idea behind a meshed network is that there are often more than
one communication devices in range, but not all devices can talk to each other
directly. Figure 2.1 shows an example mesh network. The circles with imprinted
identifiers represent communication partners (nodes), while the arrows between
two nodes in the network indicate that those communication devices can talk to
each other directly. So there is no way for node A to share data with node D using
direct communication channels only.

A B C

D E F

Figure 2.1: Example mesh network

When using a mesh network node A has the possibility to to ask node B if it can
forward its data to node D. Node D will respond to node B which then in turn
forwards the response to node A. By using this concept, node A is able to talk to
all participants of the network, even though only node B is in direct communication
range. So the spatial range problem is solved by an improved utilization of the
available resources and redistributing the transmission task to other participants
in the network. There are a lot of possibilities and ideas on how to establish these
routes, which will be discussed in later sections.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 18

2.1.3 Embedded devices

Embedded devices are application specific computers which are part of a larger
system or device. In order for the device to fulfill its purpose the components of the
system often need to communicate with each other. An ongoing trend is to embed
wireless transmission devices into larger systems to form a network of embedded
devices. Systems designed with embedded devices do offer a lot of benefits:

• Low unit cost
Microcontroller units (MCUs) are very generic and can solve a wide range
of problems. Therefore they are built in large quantities which reduces the
production cost of a single MCU significantly.

• Flexibility
Software written for a MCU architecture can usually be replaced easily by
another one. This comes in handy when fixing bugs or introducing new
features. Also, if one embedded device is faulty it can be easily replaced.

• Small size and low weight
Because embedded devices often consist merely of some input and output pins,
a power supply and a network interface they are very small and lightweight
and can be used in space constrained constructions.

A lot of the time there are special constraints which limit the designer’s options, as
described in [CD11, p. 1].

• Power and energy
Embedded devices often operate in places where a power supply is not available
or only available with a significant financial investment. Sometimes they are
even powered by battery or solar cells. Especially battery supplied embedded
devices need to reduce their power consumption as much as possible, because
it is inconvenient for the user to change the batteries frequently and empty
batteries also have environmental shortcomings.

• Size and weight
Mobile application are becoming exceedingly important. The smaller and less
weight a device has, the better is its mobility. This is also very important in
automotive systems, as computing in cars is often very space constrained and
the less weight a car has the better it is for acceleration, braking and fuel
efficiency.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 19

• Environmental
The environment in which embedded devices are used may vary vastly. There
can be extreme temperatures, water, strong vibration, or even spark plugs
which generate radio frequency that can interfere with the electronics.

2.1.4 History and Applications

The first concepts for creating a technical device for communicating wirelessly over
larger distances were smoke signals, drums and beacons. While they did use very
primitive communication channels, the encoding of information is in some ways
similar to modern concepts. Most of the time these prehistoric methods were used
to signalize an upcoming dangerous situation.

The next step in wireless communication was the Photophone, invented by Alexan-
der Graham Bell and Charles Sumner Tainter in 1880. In Alaxander Graham Bells
journal article [Bel80, p. 404] it is described that modulated light was used, in
contrast to regular cable telephones, to transfer the analogous sound information
wirelessly. Incremental improvements to the concept were made in order to gain
more wide spread adoption, but the advantages of long distance radio transmission
eventually took over the wireless communication.

The beginning of the 20th century marks the discovery of electromagnetic radiation
as a communication medium. It has first been formally described by James Clerk
Maxwell and has been attested by Heinrich Rudolf Hertz. Ever since it has gained
attraction as it allows communication without necessarily having line of sight
between the communication partners. In the early 20th century it was used primarily
for analog audio transmission. But as time passed it has gotten more widespread
adoption in audio and video broadcasting, (mobile) telephony, two-way radios,
alarm systems, home and commercial building automation and many more. The
beginning of the 21st century is characterized by the invention and wide spread
adoption of the internet. As described in report of Adam Lella [Lel14, p. 4] around
60 percent of the people in the United States of America (U.S.) are accessing the
internet with their mobile phone or tablet, which are most commonly connected
wirelessly. Also, a lot of laptops and desktop computers are connected via Wireless
Local Area Network (WLAN), so it is safe to say that most of the communication
of computer end users is happening without the use of cables.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 20

2.2 Networks and routing

The term routing describes the process of selecting paths in a network. A network
is a collection of interconnected nodes, which is more theoretically explained in
Section 2.2.1. In most cases the ideal route from one node in the network to another
is as cheap as possible, by the means of time it takes until the node is reached and
reliability in reaching it. There are numerous concepts for routing data in a network,
most of them are either link-state or distance-vector protocols which discussed in
Section 2.2.2 and 2.2.3 respectively. Some protocols share some principles of both
worlds and are therefore called hybrid protocols.

2.2.1 Graph theory

Mathematically speaking, a network can be described as a graph. A Graph G is
an ordered pair G = (V,E) comprised of vertices V and edges E. Most commonly,
one edge is related to two vertices. There are a multitude of different properties
which graphs can have. All the properties which are used throughout this thesis
will be explained here.

• Weighted
The edges or vertices of a weighted graph are given a value which is called
weight. For example, the weight of an edge in a network can describe its
average latency.

• Directed or undirected
In a directed graph the edges between vertices V1 and V2 are only allowed to
have one specific order (Figure 2.2b). Edges in undirected graphs do not dif-
ferentiate between the possible orders of the associated vertices (Figure 2.2a).

V1 V2
E

(a) Undirected graph

V1 V2
E

(b) Directed graph

Figure 2.2: Directed and undirected graphs

• Simple
Simple graphs do not allow loops, which means that an edge E is not allowed
to connect from and to a single vertex V1. Also multiple edges E1 and E2 are
not allowed between two vertices V1 and V2.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 21

• Acyclic
A graph is acyclic if there is no route from one vertex V1 over one or more
other vertices {V1, . . . VN} which leads back to the vertex V1 itself.

2.2.2 Distance-vector routing

Every node in a routing protocol of the distance-vector family limits its knowledge
about the network to the distance to possible destinations and directions which
have to be taken to reach them. So a routing table entry for a specific destination
node contains the fields route, cost (sometimes called distance) and direction. The
route entry in the lookup table is used to determine where the packet needs to be
sent in order to be delivered successfully. Once the destination address has been
found the corresponding direction does give information about where to send the
packet next in order for it to be delivered eventually. There are numerous different
ways in which the cost can be interpreted, as described in [Lu+03, p. 2]. Reaching
from the number of hops to the latency of links along the path or other metrics, all
can be interpreted as cost, depending on the application. It does not matter if such
a packet originates from the node itself or has been received by a secondary node.
Figure 2.3 shows an example of two routers, A and B with the addresses 3 and 25
respecctively. Router A’s table shows that it has knowledge about the distance to
router B which can be reached directly (1 hop). The table entry also shows that
there is a third destination C with address 14 which A can also directly reach. But
if router B wants to send a message to C it knows that it has to send the message
towards A and that A will have to forward it.

Route Cost Dir

25 1 25

14 1 14
...

Route Cost Dir

3 1 3

14 2 3
...

A(3) B(25)

Figure 2.3: Distance-vector topology visualisation

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 22

2.2.3 Link-state routing

Contrary to the minimalistic approach of distance-vector routing protocols link-
state protocols have more overhead when propagating routing information in the
network. The reason for this is that every node requires complete information about
the topology of the network. Links between nodes are weighted and propagated
throughout the complete network as described in [AK06, p. 1]. So, every node
knows all possible routes and can therefore calculate the optimal route to a specific
destination. A problem this approach faces is the enormous amount of network
traffic required to process the Link State Advertisement (LSA) when there are lots
of nodes in the network. Figure 2.4 shows an example router A with address 3 that
stores the route to every accessible network participant. It also remembers the link
weights in order to calculate good paths. A similar algorithm as described in 3.6.2
is needed in order to calculate optimal paths to routes.

A

12

73

52

4

17

84

2513

99

15 2736 50

55

45

5

1

3

9

7

6

23

5

4

62 8
1

2

6

A(3)

Figure 2.4: Link-state topology visualisation

2.3 Modern mesh network designs

Focusing on the topic at hand, there are already some implementations for routing
in wireless networks for low power embedded devices. This section offers a short
summary of the most important specification details of the more popular ones in
order to have a good understanding of some common approaches.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 23

2.3.1 RPL

The RPL is specified by the Internet Engineering Task Force (IETF) and concep-
tually follows a distance-vector approach. It extends the Internet Protocol version
6 (IPv6) specification to be the standard routing protocol for Low Power and
Lossy Networks (LLNs). RPLs objective, according to [CHP11, pp. 365 sq.], is to
support a network comprised of thousands of nodes with constrained resources,
while being managed by few central root nodes. Figure 2.5 shows a Destination
Oriented Directed Acyclic Graph (DODAG), wich is the basic theoretic construct
which RPL relies upon. Node A represents a root node. In a converged LLN each
node has identified a list of parents, including one preferred parent (indicated by
P), which are potential next-hops towards a root node. In order to propagate
routing information throughout the network each node emits DODAG Information
Object (DIO) messages. These messages indicate the respective rank of the node in
the network, which is some kind of metric explaining the distance to a root node
(e.g. hop count).

A

B

C

D

E

F

G

H IJ

P P

P

P

P P

P

P
P

Figure 2.5: DODAG, where P indicates the preferred parent

The root node initiates the DODAG formation, as it is initially the only node
participating, and spreads the information to gradually cover the whole LLN. Nodes
send out DIOs and choose their parents and preferred parents. Once the DODAG
creation process has been finished the network is optimized for multipoint to point
routes, as all the nodes know a way to the root node. This is also called upward
routing as the communication using this technique can only happen from standard
nodes to the root node. In order to achieve a communication from the root node
to one of the other nodes (downward routing) RPL uses so called Destination
Advertisement Object (DAO) messages. These messages describe which prefix
belongs to and can be reached via which Node in the network. All nodes in the
network must work in either of two modes of operation

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 24

• Non-storing mode
The DAOs messages are created by a RPL router and advertise information
about one or more of its parents. This information is then unicast to a
DODAG root. Once the root node has collected information about all nodes
between itself and the desired destination it can use source routing for reaching
destinations inside the LLN. So here the root is the only network participant
which is storing routes to destinations in the LLN.

• Storing mode
Here every node in the path between the root node and the originator of the
DAO stores a route to the prefixes advertised in the DAO and the next hop
towards these prefixes. Using this method a node can maintain its routes to
all destinations in its created sub-DODAG. When this operation is complete,
the node forwards the DAO to its preferred parent.

Trickle

RPL nodes generate messages to update their routes based on timers and on the
amount of communication done by their neighbors. This procedure is called Trickle.
The root node is able to configure the back-off intervals which define when timers
are triggered and DIO messages are sent. Trickle’s goal is to minimize the duration
it takes for the network to converge, which means that there are as little updates
via DIOs as possible and every node in the network has correct and up to date
information about its parents. In order to reach this state the amount of DIO
traffic a node recognizes about its neighbors and a back-off time given by the root
node are essential, as it could be redundant for a node to send out its DIO if all
neighbors already know the necessary information.

While RPL is generally a very promising standard for LLNs there are some scenarios
in which it does not perform optimal. Especially the use of DAO messages for
bi-directional and point to point traffic which has to be sent through the root node
can be detrimental for certain applications.

ZigBee

The most popular use of RPL is within one of the currently three available ZigBee
specifications, namely ZigBee IP. (Excerpt from [All14, p. 6]). ZigBee is being
created and maintained by the ZigBee Alliance which is a collaboration of over
230 companies. It can be seen as an extension of the Institute of Electrical and
Electronics Engineers (IEEE) 802.15.4 protocol that widens its functionality by
routing and secure key exchange. Figure 2.6 gives an overview of its used layers

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 25

which are mostly standardized by IEEE and IETF. Design-wise it is closely related
to the internet protocol. The core differences are the use of IPv6 over Low power
Wireless Personal Area Networks (6LoWPAN), a lightweight IPv6 variant, as
well as the use of RPL. A lot of options are available in the higher layers like
encryption using Transport Layer Security (TLS), automatic service discovery
using Multicast Domain Name System (mDNS) or Domain Name System - Service
Discovery (DNS-SD) and many more.

Link Layer (IEEE 802.15.4 MAC/PHY)

6LoWPAN adaptation Layer

Network Layer
(IPv6, ICMPv6, ...)

Routing
(RPL)

Network Layer (Transport Layer (TCP, UDP))

TLS
mDNS,

DNS-SD
PANA MLE

Applications

Figure 2.6: ZigBee IP protocol layers

2.3.2 Z-Wave

A popular american standard for home automation is Sigma Design’s Z-Wave
protocol. For a very long time only paid premium members could access the official
documentation but as of recently the specification has been partially opened up.
Unlike ZigBee, Z-Wave’s network stack has a more lightweight design. In order to
uniquely identify a node within Z-Wave there are two separate IDs:

• Home ID
Common identification scheme of all nodes that belong to a logical Z-Wave
network. It is 4 bytes in size which allows for 24·8 = 4294967296 distinct
networks.

• Node ID
The address of a single node within a network. It has a size of 1 byte which
allows for 28 = 256 members corresponding to a Home ID.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 26

Z-Wave knows two different kinds of network participants: Controllers and Slaves.
A controller’s job is to deliver orders to slaves. Controllers are provided with
unique Home ID built in as factory defaults. Slaves are given their Node ID from
a controller. The routing strategy of Z-Wave follows a source routing approach
with up to 5 hops within a network. In case no route to a node is found, an
exploration frame can be sent which is propagated throughout the network as a
last resort to check whether the desired device can be found. A single network can
support multiple controllers, which can be statically placed or embedded within
portable remote controls. Using controllers within remote controls, however, does
not guarantee that all nodes can be reached due to possible attenuations caused by
surrounding objects.

2.3.3 LOADng and related concepts

LLN On-Demand Ad hoc Distance-vector - next generation (LOADng) is building
upon the foundations of Ad Hoc on demand Distance Vector (AODV). Therefore,
AODV will be explained beforehand.

AODV

AODV is a highly popular ad-hoc network specification based on Distance-vector
routing (Section 2.2.2) formulated in 1999. As described in [PR99, p. 2] it is a pure
on-demand route acquisition system, which means that nodes which are not on
active paths in the network do not participate in any periodic routing exchanges.
Every node maintains a Node Sequence Number and a Broadcast ID. Also, it does
not maintain any routes to other nodes until the need to communicate arises. When
a node is in need of communication and it does not know any routing information
to the desired destination, a Route Request (RREQ) is broadcasted. A RREQ
consists of the following fields:

• Source address
• Source sequence number
• Broadcast ID
• Destination address
• Destination sequence number
• Hop count

The pair (Source Addreess, Broadcast ID) uniquely identifies a RREQ. Local
neighbors either satisfy the RREQ and respond with a Route Reply (RREP)
or rebroadcast the RREQ to its own local neighbors after increasing the Hop

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 27

count. Nodes which receive the same RREQ have to check if the Broadcast ID in
combination with the Source Address was used recently. If this is the case, the
RREQ is dropped in order to avoid redundant RREQs. There are two mechanisms
in order to assure that a communication channel is eventually found between two
nodes in a network:

• Reverse Path Formation
As a RREQ travels from a specific source to various destinations in order
to find the desired Destination Address it automatically determines the
reverse path from all nodes back to the source, which are stored by each
node separately. The reverse path route entries are stored long enough for a
RREQ to traverse through the network and send a reply to the originator of
a message.

• Forward Path Formation
The RREQ will eventually arrive at either the destination directly or at
another intermediate node which knows a up to date route to the destination.
In the latter case, in order to figure out if the route to the destination is
current, the intermediate node compares its stored Destination sequence
number with the one from the RREQ. If the stored Destination sequence
number from the intermediate node is smaller than the one from the RREQ
the node must not use its recorded route to respond to the RREQ. Instead it
has to continue to broadcast the RREQ as if it had no idea about the route.
Otherwise it unicasts a RREP back to the sender from which it received the
RREQ.

Nodes which are not on the Forward path will timeout eventually and delete their
reverse route. If there are multiple routes, the RREPs will be triggered again if a
route has a smaller Hop count. This way a communication channel to an arbitrary
node in the network can be established.

LOADng

AODV is a rather successful and mature protocol which is widely used, but it is
still particularly performance intensive especially for the case of more recent trends
like low power embedded mesh networks. In an effort to modernize AODV the
LOADng specification was developed, as mentioned in [CYV12, p. 2]. The main
area of improvement is the better support of more constrained environments, by
the means of computational power and energy consumption. LOADng inherits the
basic properties of AODV, like RREQs for discovering a route, RREPs when the
desired destination of a RREQ has been detected and unicast forwarding of RREPs

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 28

to the originator (Subsection 2.3.3). It can be seen as a set of extensions to and
simplifications of the older AODV approach. The extensions include:

• Modularity
LOADng has a flexible packet format which permits the addition of arbitrary
attributes and information via Type-Length-Value (TLV) fields.

• Optimized flooding
This reduces the overhead incured by RREQ forwarding. Jitter reduces the
probability of packet loss due to collision on lower layers.

• Variable Address lengths
The length of addresses in LOADng are supported to be between 1 and 16
octets. Requirement for this to work is that within a given routing domain
all addresses are of the same length.

• Metrics
Link information can be better represented due to a variety of available
metrics.

The simplifications include:

• Disallow intermediate RREPs
The destination node is exclusively allowed to answer a RREQ, all other
nodes are prohibited to do so. All messages by a given node share a single,
unique and increasing sequence number. This simplification is reasoned with
reduced complexity of protocol operation and smaller message sizes. The
paper [CYV12, p. 3] states that this simplification come without significant
influence on performance.

Other improvements of LOADng over AODV include the maintenance of routes.
If a route failure is detected, for example when a specific node cannot be reached
anymore, a Route Error (RERR) message is sent as a unicast along the route to the
source of the packet. In AODV, all neighbor nodes contained in the precursor list
are informed about the route failure, which causes a lot of transmission overhead.
So overall, LOADng can be seen as a simplified and gentrified version of AODV
with special focus on constrained environments.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 29

2.4 Popular operating systems for IoT

In order to achieve networking on any device it is advisable to make use of already
existing operating systems largely reducing implementation expenses. There is a
wide variety of systems tailored at diverse use cases. The focus of this section is on
operating systems for networked, memory constrained, low power wireless Internet
of Things (IoT) devices. A lot of the available operating systems fall short of this
requirement, but there is still a hand full of choices.

2.4.1 Contiki OS

Contiki Operating System (OS) is a popular operating system for these kind
of embedded environments. It is also the chosen base operating system for the
reference implementation of the routing protocol this thesis introduces, as described
in Chapter 4. This fact qualifies a closer look into the internals of this operating
system.

Contiki is an open source, portable, multi-tasking friendly, networked embedded
operating system with a very low memory footprint. As [PK09, p. 1] states, a typical
configurations of Contiki uses about 2 kb of RAM and 40 kb of ROM. It features
an event driven kernel, where processes can be dynamically loaded and unloaded
at run time. The programmer has the choice of different network protocols, which
is chosen at compile time. These choices include IPv6 using 6LoWPAN, IPv4, and
the Contiki specific Rime stack.

Process

In Contiki a process is basically a composition of the process control block and
the process thread. The control block, as shown in Listing 2.1, which is stored in
Random Access Memory (RAM) only, provides information about a process, such
as the process name, a reference to its thread and its internal state. It is designed to
be only for internal use and should never be directly accessed by a process. Contiki
is using a linked list of processes in order to schedule them. This is why there is a
reference to the next process in the definition of a process.

Process thread

A process thread contains a pointer to the code which shall be executed. It can be
seen as a single protothread which is invoked by the scheduler. Listing 2.2 shows a

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 30

1 struct process {

struct process* next;

3 const char* name;

int (* thread)(struct pt*,

5 process_event_t ,

process_data_t);

7 struct pt pt;

unsigned char state , needspoll;

9 };

Listing 2.1: Contiki process control block

bare bone implementation of a process thread. The actual code which is executed
is encapsulated by the PROCESS_BEGIN(); and PROCESS_END(); macro keywords.

Protothread

Multitasking is a core requirement of modern operating systems. Most of them
use a process and thread model, where a process is started with its own context
and can have one or more threads which all share this context. One downside to
this approach is that every process needs to have its own context and stack, which
implies a rather large memory overhead when used in constrained environments.
Contiki makes use of the concept of protothreads in order to achieve a lower
memory footprint while still providing an environment which is similar to threads.
protothreads share a common memory stack in RAM, which is contrary to usual
multithreading where each thread provides its own stack. Another design principle
which is defining protothreads is an event-driven model for context switching. Also,
protothreads can be advised to wait for certain events (see Section 2.4.1) before
continuing their execution.

Events

Events are constructs which inform processes that a certain circumstance has
occured and can be posted synchronously or asynchronously to an event queue.
There are numerous predefined events like timer, poll, continue and message

events. Listing 2.2 shows a Contiki process named example_process with a pro-
tothread which is defined in the closure of the PROCESS_THREAD(...) body brack-
ets. AUTOSTART_PROCESSES(&example_process) is a macro function that instructs Con-
tiki to automatically start the protothread corresponding to the process. The
PROCESS_WAIT_EVENT() macro suspends (schedules another process) the protothread
until any event occurs. There are also other macros where you can specify event
IDs to wait for.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 31

#include "contiki.h"

2
PROCESS(example_process , "Example process");

4 AUTOSTART_PROCESSES (& example_process);

6 PROCESS_THREAD(example_process , ev , data)

{

8 PROCESS_BEGIN ();

10 while (1) {

PROCESS_WAIT_EVENT ();

12 printf("Got event number %d\n", ev);

}

14
PROCESS_END ();

16 }

Listing 2.2: Example Contiki process waiting for an event

Network stack

As networking is an important part for many embedded device applications, Contiki
provides a modular network stack. Figure 2.7 provides a high level overview of the
five layers that form the stack. There are several implementation options to choose
from for every layer.

A short description of the steps to take for an outgoing packet in order to be sent
by the radio module:

• Network Driver
This is the stage which defines the addressing scheme. It contains higher level
operations such as routing, providing a callback to the application to inform
about received data or preparing the packetbuf for a new outgoing packet.
The possible options which Contiki provides for this layer are IPv6 using
6LoWPAN, the modular and extensible Rime stack and there also exists
an Internet Protocol version 4 (IPv4) implementation. Pikrit is the network
driver which will be introduced in this thesis in Chapter 3.

• Link-Layer Security
More Recent versions of Contiki provide a separate security layer in the
stack that is responsible for the encryption of sent data, as well as for the
avoidance of possible replay attacks. While some radio modules already
provide built-in encryption, not all of them do. So this layer provides a
more modular approach to security within Contiki. Encryption is, as of the
time of this writing, a relatively new addition to Contiki, so there are not
many implementation options. Besides the nullsec implementation, which

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 32

In
co
m
in
g
P
ac
ke
t

O
u
tg
oi
n
g
P
ac
ke
t

Network Driver

Link-Layer Security

Media Access Control

Radio Duty Cycling

Radio Driver

CC2420 RF232 RF212

nullrdc sicslowmac contikimac

Framer

nullmac csma

nullsec noncoresec

Pikrit Rime IPv6

Figure 2.7: Overview of the Contiki network stack

does nothing, there is also the noncoresec implementation. This is a security
implementation, standardized by IEEE 802.15.4, which uses a network-wide
key, that has to be distributed to every network participant in a secure
manner.

• Media Access Control (MAC)
A problem which frequently occurs when sending data, especially in a wireless
medium, is if two network participants send out a packet at the same time,
which creates a so called collision. This corrupts the transmitted data of both
senders. The MAC-layer is dedicated to avoiding such collisions as good as
possible. There is no guarantee in avoiding collisions, as a sender can never
know when another network participant sends out data. Contiki provides a
generic Carrier Sense Multiple Access (CSMA) implementation as well as the
nullmac driver which does nothing. CSMA checks the medium before sending
packets. If the medium is busy at this moment it backs off the sending.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 33

• Radio Duty Cycling (RDC)
Many embedded devices are using batteries as their power source, so it is
critical to save as much power as possible to achieve a long network lifetime.
Just using power efficient network hardware is often not enough, as it is
usually the most power consuming part of the device. In order to improve
the situation the operating system should disable the network hardware as
much as possible. While the network hardware is disabled, no data packets
can be transmitted or received. The network hardware is enabled periodically
to sense incoming packets. If data transfer is detected, the network hardware
is kept on for a larger amount of time in order to receive consecutive packets.
Some RDC implementations also synchronize their wake-up frequencies in
order to increase the chance of receiving a packet. For outgoing packets the
hardware is enabled on demand. Contiki provides a few implementations for
RDC, such as nullrdc, where the duty cycling is disabled, sicslowmac which
is the default RDC mechanism for 6LoWPAN and contikimac, the default
contiki RDC implementation. Beside the actual duty cycle this layer is also
responsible for delivering the data to the so called framer, which is an optional
part in Contiki and handles the parsing and filling of the packetbuf. Each
network stack can define its own modular framer (like IPv6), or handle the
filling and parsing of the packetbuf themselves.

• Radio Driver
Contiki provides an interface with a fixed set of functions which should be
supported by the network hardware. The implementation of this interface for
different radio hardware is a radio driver. A lot of drivers for different radio
hardware is already provided by Contiki itself but it is also modular enough
to provide own implementations for radio drivers.

Packetbuf

The whole stack is centered around the concept of a unique packet buffer which
is internally called “packetbuf”. In order to save memory, all layers of the stack
operate on this buffer, as stated in [RS13, pp. 6 sq.]. This design approach has
some inherent disadvantages such as potential packet loss when accessing the buffer
while a packet arrives or the disability to properly handle queues.

Besides the actual buffer which stores and manages the header and data contents of
the payload the packet buffer also provides an interface for storing attributes and
addresses. Both of them are handled with key-value pairs which are defined at com-
pile time. Keys are defined in an enum and values are of the type packetbuf_attr_t

which is a two byte unsigned int. They are used in order to attach information to
the package which can be read by different layers of the stack.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 34

Addresses are defined within the same enum from the bottom to the top. Their
values are of the type linkaddr_t which are explained in detail in Section 4.3.2.
Contiki’s Rime stack uses the additional addresses extensively to store multiple
addresses, for example recepient address, receiver address or additional addresses
within mesh networks.

2.4.2 RIOT

RIOT is a more recent alternative operating system designed for Wireless Sensor
Networks (WSNs). It aims at bridging the gap between operating systems designed
for WSNs and traditional, full-fledged ones, as stated in [Bac+13, p. 2]. Historically,
RIOT is based upon FireKernel from which it inherited its modular microkernel
architecture which allows the use of standard multi threading with standard
Application Programming Interfaces (APIs). Advanced features like real time
scheduling and the support for C++ are included while having a minimum RAM
usage of about 1.5 kB and a minimum Read Only Memory (ROM) usage of about
5 kB. Since RIOT is rather young (its rebranding happened in 2013) the support
for newer MCUs with 16- or 32-bit architectures is great, but the support for older
8-bit architectures is lacking. Using the Lesser GNU General Public License (LGPL)
it also advertises itself as a free and open operating system where everybody is
invited to contribute to.

2.4.3 Zephyr

Another alternative is the Zephyr kernel which is backed by the Linux foundation
and tailored at wearable and IoT devices. A special concept of Zephyr is the use of
a microkernel with underlying nanokernel. Application developers have the choice
to use either only the nanokernel or both, the micro and nanokernel. The former
is a high-performance execution environment, uses only a very limited amount of
RAM and is capable of scheduling multiple threads. On top of that, the optional
microkernel adds supplementary functionality like operating on multiple tasks
which is not possible with the nanokernel only.

Zephyr differentiates between tasks and fibers. Tasks should be used to perform
lengthy and complex calculation operations, while fibers are designed to be light-
weight and should be used for device drivers or performance critical work. Fibers
do support priority based multithreading and are generally preferred over tasks.
Zephyr is free and open source software and uses the Apache License 2.0.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 35

2.4.4 TinyOS

TinyOS is an operating system for embedded devices with a history dating back
to the 1999s. Since then it has gotten quite popular. It features nesC, a dialect
of C which is specifically customized for building component based and event
driven programs as stated in [McI09]. The philosophy of TinyOS is fueled by the
idea of components which interact with each other and with the underlying base
system. Programs are a composition of modules and configurations. Modules are
for implementing specific functionality and configurations provide a connection
between different components. In nesC each component has one or more interfaces
which are composed of commands and events. Commands are used for requesting
that a component should perform some service. Events can have two meanings,
either it informs a component that an activity has been completed, or that an
external phenomenon has occurred, like an interrupt. A component can either
be an interface provider or an interface user and has to implement the required
functionality for this interface. The configuration component then wires interface
providers with interface users. A simple task scheduler maintains a First In First
Out (FIFO) queue which is executed if the processor is not occupied (e.g. by an
interrupt). Synchronous tasks in TinyOS run in a non-preemtive manner that
run tasks until completion, therefore tasks are atomic in respect to each other.
Using interrupts can trigger unsynchronous events, which is why nesC also provides
atomic code blocks. For this reason it can be difficult to make TinyOS applications
reliable, because developers using multiple tasks with interrupts must consider
all possible interleavings of concurrent activities. A recommended way of testing
the application before shipping is either via using a simulator, which is covered in
Section 2.5, or via actual testing laboratories.

2.5 Simulators for Wireless Sensor Networks

Real world scenarios of Wireless Sensor Networks (WSNs) are often complex and
difficult to test. There are a lot of different circumstances which can occur. In
building automation there can be thick ferroconcrete walls degrading the signal
quality of wireless actors, or large distances between actors within large buildings.
Other areas have to deal with problems like moving actors or sensors which
frequently leave and enter the communication range. It would be a huge and costly
effort to build a real world testing area to test all real world problems. This is why
many embedded operating system developers also provide simulation tools for their
product. The following sections discuss a few popular embedded IoT simulators
and shed some light on their internal workings.

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 36

2.5.1 Cooja

Within the Contiki project there are a few useful tools that help with simulating
complex scenarios. Most of these tools are centered around the Cooja network
simulator, which has been developed as part of Contiki but can be run independent
of Contiki and therefore allows for broader use as described in [RSZ16, p. 2].
This means that also RIOT binaries can effortlessly be simulated in Cooja. It
provides a wide range of functionality for simulating WSNs. Figure 2.8 shows
the network plugin, where nodes can be placed in a two dimensional graphical
plane. In this specific case node 9 is sending out a message, and nodes {8,10,11,12}
are receiving it, as they are in transfer range. The transfer ranges for node 2 are
displayed as the green (transfer range) and gray (interference range) circles centered
around it. Configuration options like disturbers and a different radio mediums with
corresponding random seeds do exist in order to simulate a realistic radio medium.

At its core Cooja is providing a graphical user interface, simulation of a radio
medium and an extensible framework, with which it can be extended to simulate
very different scenarios. The simulators are their own products and are integrated
as plugins within the Cooja simulator. There are currently two simulators available,
Avrora and MSPSim.

Figure 2.8: Cooja network visualisation

As a more advanced feature Cooja has a built-in javascript editor that can directly
affect simulation. This is very handy when trying to create complex simulation
scenarios with specific events happening at defined times. For this thesis such scripts
have also been used in order to compare different protocols by automatically sending

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 37

frames over certain routes and measuring the response time. After measuring mean
values and standard deviation were also calculated using javascript.

Avrora

Responsible for handling the simulation of the AVR-MCU families produced by
Atmel and Micaz is the Avrora Cooja interface. Avrora provides a java interface
for experimentation, profiling and analysis without having to flash a real MCU.
This greatly increases productivity when developing for certain MCUs. Its feature
set includes, but is not limited to, the following properties:

• Simulation
AVR-MCU programs can be simulated with cycle-accurate execution times.

• Monitoring
In order to better understand the execution behavior of the program and to de-
tect possible performance bottlenecks the provided monitoring infrastructure
can be utilized.

• Debugging
The GNU Project Debugger (GDB) tool can be used to stop the execution of
a program at runtime, monitor its state and step by step browse through the
execution routine. Error-prone behavior in programs can easily be located
using this method.

MSPSim

The second simulation interface for Cooja is the MSPSim emulator for the MSP430
microprocessor series. Suitable firmware files can be loaded directly and its feature
set also includes simulation, monitoring and debugging as the Avrora simulator.

2.5.2 TOSSIM

TinyOS (see Section 2.4.4) is providing a simulator called TOSSIM. It provides, as
discussed in [Asi+09, p. 2], a discrete event queue where simulated events can be
placed in a specific order. Ticks are used in order to emulate the passing of time
within TOSSIM and those can be modified as needed. Python and C++ can be used
as programming interfaces in order to control the simulation dynamically. In order
to debug an error-prone program, debugging messages have to be written in the

CHAPTER 2. WIRELESS SENSOR AND ACTOR NETWORKS 38

original source code as there is no debugging functionality. A downside compared
to Cooja is that executable files have to be compiled separately for simulation
and that the simulator currently only supports the micaz platform. Without the
usage of plugins the simulation is text-based only and described using python in
combination with a topology text file. Fake sensor data can be input as text files
which can then be periodically read out and manual insertion of packets in the
network traffic is also possible. A large downside of using TOSSIM is that all nodes
are required to run with the exact same executables.

Chapter 3

Design

“Strive not to be a success, but rather to be of value.”1

3.1 Requirements

The application domain for connected devices is growing day by day. Applications
which previously did not have any kind of networking in mind are now continuously
integrated within the world wide web. It is difficult to find one specification which
fits all needs perfectly as the requirements as such networks differ substantially.
In order to provide a network specification which is well suited for the building
automation use case, this chapter focuses on determining and defining the properties
of components used within this application domain.

3.1.1 Network sizes

The largest computer network on earth is the internet, often called the “network of
networks”. It is a connection of a multitude of Wide Area Networks (WANs) and uses
the internet protocol suite to link billions of devices worldwide. Those WANs can also
be separated into smaller subdivisions like Metropolitan Area Networks (MANs),
Local Area Networks (LANs) or Personal Area Networks (PANs). Each of these
network size categories differ in requirements. The desired protocol shall handle
data transmission wirelessly over rather small areas, like the area occupied by
single-family houses, hotels or small companies. Therefore it can be categorized as
a solution for LAN or PAN sized networks.

1Albert Einstein

39

CHAPTER 3. DESIGN 40

3.1.2 Conflicting intercorporate networking standards

At the time of this writing manufacturers of different connected automation products
do not generally share a common networking standard. This situation is not ideal as
there needs to eventually be a standard to let products communicate with each other
in order to provide unified and simple user experience. But until a common standard
is defined which is approved by most manufacturers, new protocol specifications
will arise and existing specifications will be improved. All these protocols have
their respective strengths and weaknesses, depending on their use case. It would
be convenient to use an already defined standard but the requirements regarding
transmission performance were not met when testing diverse existing protocols. As
there is nearly no compatibility value to be gained in using an already existing
protocol the decision was made to design a new protocol with this thesis.

3.1.3 Internet gateways

Accessing the actors and sensors from outside the own network happens with
special gateways, which routes traffic from the internet to the WSN and vice
versa. Complementary to the conflicting networking standards is also the fact that
manufacturers often produce their own gateway which is only able to support their
chosen standard. Some projects are providing a multi protocol gateway where the
needed wireless transceivers can be added or removed as necessary. Conceptually
this sounds like a good solution but practically the setup and maintenance of such
devices can be cumbersome. Also problematic for this approach is that the different
gateways expect the information processing in different locations. There are two
solutions:

• Cloud processes information
This approach keeps the gateway as minimalist as possible. It only transfers
the information from the sensors and actors to a central server within the
internet. The server then processes the information and performs the needed
tasks. While the production cost of such a minimalist gateway are very low
there are some disadvantages with this solution. Customers have to register
themselves within a cloud platform and therefore have to offer the company
some private information. If the user forgets its registration data he might
not be able to control its own devices anymore. Offline operation is not
possible, which implies that internet failure causes all sensors and actors to
be inoperative, as they are very dependent on the online service.

• Gateway processes information
The second method is to let the gateway do all the processing itself. Doing so
needs a few additional components like storage and also a faster processor in

CHAPTER 3. DESIGN 41

order to provide the needed functionality, which increases retail cost. However,
there is no need to register to a service which better respects the users privacy.
While this method doesn’t have to have a central server it certainly can.
Such server enables the possibility to access the system from outside the
local network and can also be used to store configuration backups or provide
automatic updates. In case the internet connection is terminated the system
still remains fully functional within the local network. So it is the more
expensive but therefore also more robust and flexible solution.

The desired protocol shall contain a special component called coordinator (See
Section 3.2.2), which is expected to have a good computational performance. So it
is advisable to combine the task of the gateway with the task of the coordinator in
practical use which reduces complexity and cost.

3.1.4 Identifying properties of building automation com-
ponents

First and foremost the protocol should be specifically designed for building au-
tomation. The variety of automation potential in buildings makes this topic rather
difficult. In order to easily upgrade existing buildings the protocol is designed for
wireless networks, as no wires have to be laid out subsequently. Analysing a chosen
set of home automation products reveals some interesting information:

• Intelligent shading
The goal is to optimally distribute the light in and around the building,
depending on wind, outdoor light intensity, time and astronomical occurrences.

• Climate control
Climate control shall give the user the possibility to always be informed about
weather conditions and set the right temperature throughout the house.

• Automatic light dimming
The building should be aware if there are people in or around the house to
provide ideal lightning conditions and save power if no light is needed.

• Security and access control
The building should be able to ask the owner for permission to let people
enter the house and inform the police in case an intruder is detected.

• Fire alarm sensors
Alarms the user and the fire department in case of a fire.

CHAPTER 3. DESIGN 42

All these products have in common that they are statically bound to their lo-
cation once they are mounted. This means that it is not important to focus on
moving objects when thinking about a protocol for building automation. It is not
expected that network participants frequently change their neighbors, which is a
core information when designing the specification.

3.1.5 Confidentiality

The topic of this thesis does not directly cover message encryption, as this is a
rather large topic in itself. Data privacy and security, however, plays an increasingly
important role throughout all network specifications. So confidentiality, authen-
ticity and integrity are very important requirements when designing a network
specification and therefore should be discussed. There are several things to consider
when implementing an encryption mechanism within an embedded mesh network.

Encryption algorithm

A huge variety of algorithms have been developed to keep networks secure, but all
algorithms can be categorized as either symmetrical or asymmetrical. Symmetrical
algorithms are much faster but the key exchange is a major point of vulnerability
because the key has to be delivered safely to the recipient before any communication
can occur. Asymmetrical algorithms provide a secure key exchange method. There
are two keys, one public and one private - the public key is used to encrypt- and
the private key is used to decrypt data. The public key can easily be distributed as
it is not necessary to hide it from possible burglars. One significant downside to
asymmetric encryption is that longer messages are computationally very expensive
to encrypt. Very common are hybrid algorithms which use asymmetrical encryption
to exchange the key for the faster symmetrical encryption. Each of these encryption
categories has a multitude of actual implementations with different mathematical
concepts backing them.

Hardware or software encryption

Especially for hardware constrained environments, like embedded devices, software
encryption can be very expensive and delay the actual operation significantly.
So the choice might be to use special purpose integrated circuits which provide
hardware accelerated encryption like Advanced Encryption Standard (AES) out
of the box. This is a rather large commitment, as the encryption can only be
changed by replacing hardware components which might be very costly. Many
radio chip hardware manufacturers do however already include state of the art

CHAPTER 3. DESIGN 43

encryption algorithms in their products. Software encryption, on the other hand
has the advantage of being more flexible but is only feasible when using performant
processors and optimized compilers.

Key distribution

Within WSNs the symmetrical approach of encryption is the most popular choice.
Asymmetrical as well as hybrid approaches have the drawback of being computa-
tionally and message count-wise too expensive. The most prominent problem when
using symmetrical approaches is key distribution, as the key has to be delivered to
the participants in a secure way. But without using some kind of encryption key
distribution is unsafe as an attacker could also gain knowledge of the key by sniffing
the data traffic. Some companies approach the problem using a single master key
for encryption, so the key does not have to be delivered to the participants at all
as they already expect the master key. This method works as long as no untrusted
third party has knowledge about the key. If someone somehow determines the
master key, all encryption efforts are in vain as messages could be decrypted easily.

Key rotation and replay attack safety

Another problem of using a single master key are replay attacks. Simply recording
and re-transmitting of messages could be used in order to gain gradual control over
a system. One way of solving this problem could be to add systematic “salt” to the
end of the message before encrypting, and the node only accepts messages with
the correct salt number. An additional possibility would be to rotate the used key
periodically. The same problems as within the initial key distribution apply here.
Exchanging the keys, however, additionally increases security as replay attacks are
even harder to execute.

An alternative to peridocially exchanging keys are one-time passwords. Lamport
describes in [Shi+15, p. 3] an iterative one-time function approach for authenticity.
Prover A choses a one way function h with a limit t and sends ht(k) to a verifier
B. Here k is the chosen key and a one way hash function is applied t times to k
as shown in equation (3.1). The i-th identification from A to B is then calculated
using the function y = ht−i(k). B then varifies that h(y) = hi−1 is true. If this is
the case B accepts the message and stores y as the new hi = y. This way the key
is never actually exchanged while the verifier can still be assured that the prover
does know the key.

ht(k) = h(h(· · ·h(k)))︸ ︷︷ ︸
t times

(3.1)

CHAPTER 3. DESIGN 44

Resetting participants

Functionality-wise resetting the keys of participants should be possible, although
only if physical access to the nodes exists. This is needed so that participants can
still be reused in other systems. There are different ideas how to reset a node. A
dedicated hardware button for resetting could be used. Other vendors sometimes
also use the power supply for resetting nodes. In this case the key can be resetted
within the first few minutes after the participant is powered on.

3.1.6 Data integrity

In order to ensure correct data delivery a Cyclic Redundancy Check (CRC) function
should be used to assure data integrity. If corrupt data is accepted on nodes this
can lead to incorrect behavior of the product and potentially, depending on the
use case, also be dangerous to surrounding people. So every data frame should be
verified assuring its contents integrity.

3.1.7 Platform independence

Protocol specifications should always be platform independent. This is of special
importance if the design goals for the protocol include to be of value for different
kinds of applications as well as being future proof. In Chapter 5 a reference platform
is used for comparison purposes. This reference platform is as of this writing the
most important platform for this protocol, as it might be the first real world use
case, and should therefore be discussed here.

Reference implementation platform

The reference platform is the system ONYX which is developed by HELLA as
described in Section 1.3.1. In more detail the ONYX.NODE, ONYX.WEATHER,
ONYX.CONNECTOR and ONYX.CENTER hardware family is predestinated in
being the first products to use this protocol specification. Hardware-wise these
products use the components described in the following sections for wireless com-
munication.

CHAPTER 3. DESIGN 45

• Main compontents
The heart of the mainboard is an Atmel ATmega 1284p microcontroller. This
chip features 128 kb of flash memory, 16 kb RAM and an internal Electrically
Erasable Programmable Read-Only Memory (EEPROM) with 4 kb. So the
protocol has to be able to run on resource-constrained systems. In order to
reliably provide over the air software updates an external EEPROM is used
in combination with a bootloader section within the flash memory.

• Radio chip
The used Radio chip is an Atmel AT86RF212b low power 800 Mhz transceiver.
It features an AES 128 bit hardware accelerator in order to speed up the
encryption process. Data buffering of up to 128 byte is supported using the
built in FIFO Static random-access memory (SRAM) storage. IEEE 802.15.4
support is built in, but optional. The radio chip can be configured to disable
IEEE 802.15.4 support by using an undefined frame control field within
the header of a frame. Using this technique enables implementing custom
protocols.

ARM processors

Computing hardware continuously improves since its invention. One more recent
driving factor behind this advancement is the great success of mobile phones which
are mostly powered by Advanced RISC Machines (ARM) processors. This led to
ARM processors being available cheap and therefore gaining widespread adoption.
The advantage of ARM processors is that they come with an efficient instruction
set which optimizes execution speed and power consumption. As of the time of
this writing, cheaper ARM processors can be acquired at similar prices as some
microcontrollers while having much more computational power. So ARM processors
are also gradually entering the market of IoT devices.

3.2 Introducing the core Pikrit protocol

As the thesis title implies, this document introduces a routing protocol named
Pikrit. The core ideas are drafted in this chapter which shall represent the protocols
initial design specification. Pikrit is directly tailored to match the requirements
defined in Section 3.1 and can generally be seen as a source routing protocol. Source
routing means that each address, from the sender to the receiver, is stored within
the header of each transferred message. In order to achieve this, a lot of knowledge
about the network has to be determined beforehand, which is primarily done by the
coordinator (See Section 3.2.2). The design provides different kinds of addressing

CHAPTER 3. DESIGN 46

Network layer

Transport layer

Core protocol layer

Custom protocol layer (ADID)

CRCFlags Size

Routed
message

Direct
message

Search
request

Vicinity
discover

...

Figure 3.1: Conceptual model of different layers within Pikrit

for a variety of supported network participants. In general the route is restricted to
a statically bounded number of hops which is defined at compile time. Currently, a
hop count of four is considered enough for the target network size. Figure 3.1 shows
a conceptual model of the whole stack to get a better overview of the protocol
internals. On the bottom there is the network layer which wraps the content in
basic functionality and sets the necessary flags. This layer is the closest layer to the
actual hardware. Building on top of this foundation is the transport layer which
defines the style of addressing within Pikrit. Once addressing is handled, the core
protocols, as described in Section 3.4.4, define the context and application which is
supposed to receive the data. If the core protocol layer is not enough, a custom
layer can added by application developers.

3.2.1 Definition of network participants

Not all network participants are expected to work the same. Pikrit’s design therefore
includes a few special use cases. Coordinators, sometimes also called supervisors
or orchestrator throughout this thesis, are central for enabling sensible routing
of messages. Active participants can route packets through the network and can
be coupled with so called passive participants. Passive participants are primarily
designed for energy constrained environments. Those three fundamentally different
network attenders are supported in the initial design draft.

CHAPTER 3. DESIGN 47

3.2.2 Coordinators

The component which maintains the networks routing information is the coordinator.
Each Pikrit network is allowed to have exactly one of them. They are expected
to have enough computing power to solve the Single-source shortest path (SSSP)
problem with 253 vertices and their respective positively weighted edges. Often
coordinators are also the gateway into the internet, receiving commands and routing
them to the necessary active network participant. When adding new components
to the network, the coordinator is the main actor as it knows all routing addresses
of all current network participants and generates new addresses or recycles old
addresses in case an active participant has been added or removed. It has to be told
which devices are expected in the network via direct addresses (See Section 3.3.1)
and keeps a table with a mapping from direct addresses to routing addresses after
it has set the nodes routing address successfully. Pikrit will work without the use
of a coordinator, however figuring out how to route a message through the network
is facilitated substantially when using using one.

3.2.3 Active participants

Most commonly small actors or sensors in networks are called nodes or motes.
Their responsibilities within the network can be seen as a subset of the ones the
coordinator. In order to deliver a message to an active participant two different
kinds of addresses can be used: Routed addressing and Direct addressing (See
Section 3.3). Upon receival of a routed message it checks within the message
header if it is the target destination. In case it is, a callback is triggered delivering
information about the addresses and Application Domain IDs (ADIDs). Otherwise
the message header is updated in order to route the packet to the next active
participant in the source routing queue. If an active participant receives a routed
message or its routing address is set, it stores the reverse route in its EEPROM.
This is important if the node wants to send notifications to the coordinator in case
of occurring events, like the push of a button coupled via a passive participant
or value updates of a sensor component. Active participants are intended to be
the most common component of a Pikrit network and they are optimized for the
powered sensor and actor use case.

3.2.4 Passive participants

Special actors with even smaller responsibilities than active participants are the
passive participants. It is assumed that they are very power constrained or even
autark systems. They do not directly communicate with the coordinator as they
are coupled with active participants. The targeted use case for this category of

CHAPTER 3. DESIGN 48

devices are sensors or switches, which are in a permanent deep sleep mode except
if they detect an action which the network should be notified about. Then they
send a message to their coupled partner which forwards it to the desired target
participant, usually being the coordinator.

3.2.5 Adding network participants

There is deliberately no automatic procedure to discover unknown neighbors
in Pikrit. Also things like neighbor solicitation are not part of the design. The
only component which has knowledge of other components in the network is the
coordinator. Only participants that the user explicitly adds via its hardware address
are recognized by the coordinator. This is done because the user should be the
entity that decides which components are part of the network and which ones are
not. After adding a device to the coordinator, it searches for the node throughout
the network using search requests (See Section 3.4.4). Upon finding the node the
coordinator sets its routing address. Once the routing address is set the node
stores the route back to the sender and is then considered a participant within the
network.

3.2.6 Participant limit

Address spaces are always finite, bounded by the length of the representing integer
number. As there are direct and routed messages, which each have a different
size, there are two possible network participant limits. The direct addressing space
is calculated by using the 4 byte hardware address. So there are theoretically
2(4·8) = 4,294,967,296 possible devices within the network which can be sent a
direct message.

Routed addressing is much more limited, as the address is only 1 byte in size.
The theoretical limit for routed messages is therefore 28 = 256 devices within one
network. Practically there are a few unusable addresses that are used for network
administration purposes, which Section 3.3.2 lists.

3.2.7 System separation

Pikrit is intended to be used in production with encryption enabled. An analysis of
encryption properties required within home automation systems can be found in
Section 3.1.5. The reason encryption is referred here is that Pikrit intends to solve
the system separation problem using the chosen encryption key. System separation
means that if one node is added to a coordinator using the search request control

CHAPTER 3. DESIGN 49

message (see Section 3.4.4), it should not be able to be controlled by another
coordinator. Each coordinator provides its own random and ideally periodically
changed encryption key Ki. The idea is that Ki is sent with the initial search
request and then updated as needed. This process is not defined at the time of
this writing but will be once Pikrit is used in a real world environment. As soon
as a node knows its encryption key it is bound to the system and will not accept
messages from other coordinators. The assigned coordinator can revoke its key so
that the node can be re-used within other systems.

3.3 Addressing

A basic design goal of Pikrit is to allow communication without having to set
routing addresses. This allows for things like coupling of passive participants,
easier debugging and easy communication between nodes, if needed. In order for
this to work there are two possible addressing schemes. Each Pikrit frame has to
provide information about which kind of addressing to expect within the header,
as described in Section 3.4. Addresses have the following properties:

• Size of addresses is chosen at compile time
• All network participants must have been compiled with equal hop count,

direct and routed message size
• Then the equation (3.2) allows for the calculation of the size of direct messages:

sizeof(routing address) =
sizeof(direct address)

hop count
(3.2)

Where it is assumed that direct address size and the hop count is divisible
without a remainder.

3.3.1 Direct addressing

Nodes are expected to have a 4 byte long hardware specific address, namely direct
address (also called hardware address), which are not allowed to have duplicates
globally. So all manufactured devices are required to have a unique number (e.g.
serial number) and the direct address is immediately derived from this number.
These addresses can be used by all nodes at any point in time to try and reach
a specific node. However, routing is not defined when using these addresses as
this would significantly increase the frames header size. It would theoretically be
possible to use a custom ADID (See Section 3.4.4) in order to enable routing with
direct addresses but this functionality is not part of the core specification.

CHAPTER 3. DESIGN 50

3.3.2 Routed Addressing

On the other hand there are so called routing addresses. Coordinators are responsible
for distributing routing addresses within the network. As the name suggests they
can be used to forward packets along a route. If a node has not set its routing
address it can not participate as part of a route in a Pikrit network. Generally
route addresses are smaller than direct addresses, Pikrit specifies them with a size
of 1 byte. Table 3.1 shows the reserved addresses of the Pikrit protocol. These
addresses are assigned a special meaning and can not be used in order to route
addresses.

Address Reserved for
0x00 Unset routing address
0x01 Address of coordinator
0xFF Magic number

Table 3.1: Reserved routed addresses

3.4 Pikrit frame specification

A frame is a digital data transmission unit which is bound in size. The bound is
also often referred to as the Maximum transmission unit (MTU) which specifies
how much information can be fit in a single frame. Table 3.2 showcases the Pikrit
frame upon which core and custom protocols rely. The MTU of a frame is often
specified through the hardware and its properties. In order to transmit a basic
routed frame successfully, Pikrit needs an overhead of merely 9 bytes in the minimal
case. Depending on the ADID (See Section 3.4.4) various protocols are specified
which might alter the required frame size.

Header
Properties

Front
Flags ADID

Frame Size
Addressing

Scheme
Payload CRC

ENC DM
Application

Identifier
Length

Dependent
on DM flag

Data Check

1 bit 1 bit 6 bit 2 byte 6 or 8 byte Fill 2 byte

Table 3.2: Core Pikrit frame

CHAPTER 3. DESIGN 51

3.4.1 Header

The header is the first part of each Pikrit frame and consists of two properties and
the addressing scheme. The properties can again be split up into the front and the
ADID.

Property: Front

The front is the first part of the header and is a sequence of combinations of flags
and ADIDs and has a total length of one byte. Two flags precede the ADID which
control how the frame is perceived. They are one bit in size each and can have the
boolean value true or false. Following the flag value, the ADID specifies which
content is expected within the payload.

• ENC - Encryption flag
In order to allow for identifying encrypted payloads a special flag ENC is
introduced which is an abbreviation for Encryption. If this flag is set the
payload is expected to be encrypted. As encryption is not part of the initial
Pikrit specification (1.0) and therefore not part of this thesis, this flag is a
precaution for further Pikrit specification updates and will not be discussed
in-depth.

• DM - Direct Message flag
The direct Message flag is responsible for determining which addressing
scheme (see Section 3.4.1) is used. This is either routed message addressing
where routing addresses are used in static source routing to transfer frames
over multiple endpoints or direct message addressing where the full hardware
address is used to directly communicate with neighbours.

• ADID - Application Domain ID
The ADID field is interpreted as a 6 bit wide unsigned integer with a special
application assigned. Using 6 bits, up to 26 = 64 unique applications can be
specified. As 64 applications might not be sufficient for all use cases, only the
core application areas such as control messages or important general purpose
data transfer methods are modeled using these 6 bits. Those 64 core ADIDs
are all reserved and should not be used to incorporate custom protocols as
subsequent updates to the Pikrit specification will make use of these reserved
IDs. However, there is a special ADID which allows for creating own protocols.
Section 3.4.4 describes this, as well as the specification of core ADIDs (control
messages), in more detail.

CHAPTER 3. DESIGN 52

Property: Frame size

This frame property summarizes the size of the whole frame including header,
payload and CRC sum into a two-byte field.

Addressing Scheme

As the only dynamic field of Pikrit properties, addressing schemes have a huge
variety of responsibilities. Functions and size of the addressing scheme is determined
by the used flags. They are configured using the direct message and search request
flags within the header part of the properties. The direct message bit within the
front switches between the following addressing schemes:

• Direct message scheme
If the direct message flag is set to true the addressing scheme part in Table 3.2
contains the addresses defined in Table 3.3. This table solely contains the full
address of the node sending the message as well as the full address of the
desired destination. If the destination address is not available or not in range,
the frame can not be delivered, as frames with the direct message flag set
cannot be routed.

Full source address Full destination address
4 byte 4 byte

Table 3.3: Direct message addressing scheme

• Routed message scheme
The second and more important addressing scheme of Pikrit is the routed
message scheme which is enabled when setting the direct message flag to
false. Routing is enabled in this scheme and the header is as small as possible
in order to allow for a large payload. Table 3.4 shows the fields which are
added to the addressing scheme part of Table 3.2. All addresses in this scheme
are routing addresses. If a node detects that it should forward a message to

Route
Sender address Origin

address
Destination route addresses

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte

Table 3.4: Routed message addressing scheme

another node it writes its own routing address in the Sender address field.

CHAPTER 3. DESIGN 53

Contrary to this approach the origin address field always contains the routing
address of the first, original sender. These pieces of information allows a node
to determine if the frame has to be routed to another node or if the receiving
node should consume the frame. Destination route addresses are four static
fields which contain all the nodes that are part of the route. Unnecessary
destination route addresses are filled with the reserved address 0x00, as
described in Table 3.1.

3.4.2 Payload

The remaining bytes of a frame are free to be filled with a payload. This can be
data filled in by application developers, information of higher level protocols or
any other kind of data. More specifically the ADID is the defining property upon
which data to expect within the payload field.

3.4.3 CRC

CRCs provide integrity by detecting transmission errors and they are two bytes in
size. If an error is detected, the Pikrit protocol is not responsible for re-transmission
of the frame. Protocols which are higher in the stack can do this if reliable message
transfer is needed.

3.4.4 Custom and core Application Domain ID

The use of ADIDs is what makes the Pikrit protocol very versatile. This identifier
allows endpoints to recognize incoming data, similar to a “port” in the popular
Transfer Control Protocol (TCP) and Unified Datagram Protocol (UDP) protocols
used within the internet. As Pikrit is trimmed to be as lightweight as possible, by
the means of data overhead, the protocol reserves 63 predefined application IDs.
These are used for control messages, essential core applications as well as custom
definable ADIDs as listed within Table 3.5.

3.5 Core Application Domain ID definitions

The following sections highlight some of the core ADID protocols and reveal the
intended value they provide.

CHAPTER 3. DESIGN 54

ID Application Protocol Type
0x00 Search request Control message
0x01 Node vicinity discovery Control message
0x02 Ping frame Control message
0x03 Solid data frame Core protocol

0x04 - 0x05 Multi-frame bulk data transfer (MFBD) Core protocol
0x06 - 0x3E Reserved Reserved

0x3F Custom application domain Custom protocols

Table 3.5: Control Message / core ADIDs

3.5.1 Search request control message

An ADID of 0x00 expects the payload to contain a search request control message
frame. Essentially, such a frame adds a new node into the network. All necessary
information to make a new node part of the network is transmitted. Requests are
described in Table 3.6. The appended field is the direct address of a node which is

Payload
Hardware address Encryption Key

4 byte not specified

Table 3.6: Search request content

searched by the coordinator within a network. Important to note is that this control
message is initially only specified for routed message usage. A new routing address
is generated and inserted as the last valid destination route address. Targets of
this control message are identified by the direct address and update their routing
address to the last valid entry in the destination route address. In order to provide
encryption throughout the network this frame is used to deliver an encryption key
to the nodes. As encryption is not part of the initial specification the encryption
key field is not used.

3.5.2 Node vicinity discovery request

With a node vicinity discovery frame a network participant can be asked to reveal
their local neighborhood. Each node within Pikrit listens for data transfer and if it
receives a frame from another node it stores this node’s Link Quality Indicator (LQI)
into a neighbor lookup table. The tasks of the node vicinity discovery are:

• Let another network participant know all routing addresses that are part of
the nodes local neighborhood.

CHAPTER 3. DESIGN 55

• Retrieve information about how good the link quality is to this node.

A node vicinity discovery frame is defined with an ADID of 0x01. Node vicinity
discoveries are only defined with direct message flag set to false. Otherwise the
behavior is currently undefined which might change with future versions of Pikrit.
The last routing address within a node vicinity discovery frame’s destination route
addresses defines the node which shall respond with information about its local
neighborhood.

Table 3.7 shows the payload structure. The offset and length fields represent a
range of routing addresses for which the coordinator wants to know the LQIs. After
a node receives a request for a node vicinity discovery it responds with sending out
all LQIs values it knows for the given range of routing addresses. If the node never
received a message for a routing address it fills those gaps with the magic number
0x00.

Payload
Offset Length
1 byte 1 byte

Table 3.7: Node vicinity discovery response content

Node vicinity discovery response

Responses to the node vicinity discovery message contain either a snippet or the
full neighbor list, depending on the length value of the request. If the amount of
LQI values exceeds the MTU of a frame, the coordinator has to repeat the request
with adjusted offset and length values. Node vicinity discovery responses look as
described in Table 3.8. An example is with parameters length = 5 and offset = 7 is

Payload
Neighbor with routing

address offset
· · · Neighbor with routing

address offset + length
Size: 1 byte each

Table 3.8: Node vicinity discovery response

given in Table 3.9.

CHAPTER 3. DESIGN 56

Payload
Routing
address

7 8 9 10 11 12

LQI 0 0 0 85 91 77

Table 3.9: Node vicinity discovery response example

3.5.3 Ping frame

A ping frame is a convenience frame for detecting whether a given address is
reachable. At first a request frame is sent to the address in question. If the node
using this address is reachable and receives the ping request, it sends out a ping
response using the inverse route. Once the response is received by the original
sender the reachability test was successful. The request and response frames in
detail:

• Request
The payload of a ping request starts with the four American Standard Code
for Information Interchange (ASCII)-characters “ping” and is then followed
by a random ASCII character sequence of length 60. So the overall payload
has a size of 64bytes.

• Response
Similar to the request payload the response payload starts with the four
ASCII-characters “echo” and is then followed by a random ASCII character
sequence of length 60.

Within the reference implementation discussed in Chapter 4 the random ASCII
character sequence is starting with the character ’a’ and is then followed by
subsequent characters within the ASCII standard up until 60 characters are reached.

3.5.4 Multi-frame bulk data transfer core protocol

A lot of use cases for building automation, especially the control of smart devices,
can be covered with quite small payloads so that the MTU size is not exceeded. But
many applications do need functions where the size of the data to transmit exceeds
the MTU bounds quite substantially. For example, the upload of a firmware file in
order to provide software updates will usually exceed the MTU size. The MFBD
protocol is introduced as a connection oriented protocol to cover such use cases.
It has its own header which can be seen in Figure 3.2. Three ADIDs are reserved
for using MFBD. A transfer operation is always bound to a specific ADID which

CHAPTER 3. DESIGN 57

cannot be used otherwise during transmission. In case a recepient of a MFBD has
already bound an active data transfer to an ADID, an error frame is returned
indicating that the communication cannot be established.

Pikrit payload
MFBD header

Stage ID Transfer to check (TTC) ratio Data regulation
Data

3 bit 5 bit
1 byte

up to 4 byte fill

Figure 3.2: Header of a MFBD frame

Stage ID description

There are four different types of frames within MFBD. To differentiate these frames
the stage ID is used. The four stages are:

• Initiation Frame
The first frame when trying to send bulk data is the initiation frame. When
this flag is set the data regulation section has a size of 4 byte and contains
the total length of the data to transfer. This results in a maximum size of
4 Gb. The receiver of this frame remembers the frame size and expects to
receive frames on this ADID until all data is transmitted.

• Transfer Frame
Actual data is delivered by transfer frames which also have a data regulation
section size of 4 bytes. This section is filled with the offset of the currently
transmitted data. The data section does contain the actual data to transfer
and fills the frame until the MTU size is reached. A transfer unit in this
context is referred to as a block of TTC consecutive transfer frames.

• Checksum Frame
In order to provide data integrity checksum frames are periodically sent back
to the originator after TTC transfer frames. The data regulation section
in this case is 2 bytes in size and contains the CRC sum over the previous
transfer frames until the last checksum frame. If the checksum for one transfer
unit is not valid, the whole transfer unit has to be re-transmitted. This should
prevent errors due to the following scenarios:

– Data corruption while transferring
Depending on the signal strength and quality, radio wave information can
be misinterpreted by the recipient. If there are no checks in place for data
integrity the consequences might be unacceptable. For example when

CHAPTER 3. DESIGN 58

receiving a corrupt firmware image for microcontrollers and flashing it,
the microcontroller might be unusable afterwards.

– Packet loss
In case a frame is not detected by the radio chip the data transmission
can get out of sync and could corrupt data this way. While this is already
handled with the offset field of a transfer frame, the checksum frame
further improves communication reliability.

• End Frame
The end frame is a special case of a checksum frame. After all transfer frames
have been sent and the offset is equal to the size of the received data, an end
frame is sent to the originator. The end frame contains the checksum for the
bulk data within the data regulation section. Here a well suited CRC function
shall be used to calculate a checksum over the entirety of the transferred file.
Well suited in this context means that the underlying hash function has very
good collision resistance.

• Error Frame
In case of a fatal situation, the response is an error frame. The data regulation
size and data sections do not matter in this case. A fatal situation occurs if
an initiation frame is sent while a MFBD transmission is already executed
on the given ADID. Upon receiving an error frame a good idea might be to
try to transfer data over a different ADID.

Transfer to check rate setting

The sender of a MFBD frame chooses how many transfer frames are delivered
before the recipient should respond with a checksum frame. For varying sizes of
data this setting can be adjusted to achieve a good balance between integrity and
transmission speed. As an example, a TTC setting of 1 would mean there are
equally as many transfer frames as there are checksum frames. A TTC setting of 0
disables intermediate checksum frames.

CHAPTER 3. DESIGN 59

Data regulation section

The data regulation section within the MFBD header is dependent on the stage
ID.

• Initiation (Size: 4 bytes)
Contains the whole length of the data transfer.

• Transfer (Size: 4 bytes)
Contains the offset value for the currently transmitted frame.

• Checksum (Size: 2 bytes)
Contains the CRC sum of the previous transmission unit.

• End (Size: 4 bytes)
Contains a suitable CRC checksum over the whole data block.

• Error
Not defined.

Retransmissions

Given a transmission problem of either one of the following types:

• Timeout
The frame has been sent but the expected response has not been received
within an estimated window of opportunity. A good time estimation algorithm
is presented in Section 3.5.4 Round Trip Time.

• Invalid Checksum
The checksum contained within the checksum frame does not match the
expected value.

If one of these situations occurs the previous transmission unit has to be re-
transmitted. A recipient can determine from the transmission frame’s data regula-
tion section, which is filled with the data offset, whether a frame is re-transmitted
or not. In case a single re-transmission is repeated 5 times the whole file transfer is
cancelled.

CHAPTER 3. DESIGN 60

Round Trip Time

The Round Trip Time (RTT) is the time it takes for a node to receive a response
to a request over a given route. Pikrit does not support congestion control and
therefore only participants with the same transmission speed are considered. Using
this knowledge in combination with the source routing nature of the protocol the
RTT can easily and accurately be calculated before sending a frame. Equation (3.3)
shows how to calculate the RTT in dependence of the data length d. The variables
and their respective meaning are:

d · · · Frame length
trt(x) · · · RTT in dependence of data length x

N · · · Hop count
tst(x) · · · Single transmission time in dependence of data length x

r · · · Reference data length
rMTU · · · MTU data length

tc · · · Central Processing Unit (CPU) processing time

trt(d) = N
tst(r)

r
(d+ rMTU) + (2N − 1) · tc (3.3)

Consider Figure 3.3 for a short explanation on how Equation 3.3 comes about.
Imagine sending a frame of data length d over a route with N = 2 hops. The initial
sending time from the origin takes tst(d). This time is followed by the computing
time tc of Node 1 to figure out that it should route the just received frame to Node
2. So the time tst(d) is needed again, which is also followed by the processing time
tc. As we do not know how large the response frame from node 2 will be, we assume
the worst case time tsc(dMTU), which is the time for a frame with the size of the
MTU. In order for the message to return to its originator, it has to pass by Node 1
again and tc is needed for the third time. When counting and generalizing the just
discovered times the tst(d) and tst(dMTU) times are used N times while the time tc
is used N − 1 times.

To get the time tst(x), a node has to empirically evaluate the duration of a ping
frame. Therefore it has to send a ping message with a reference length r, where it
is known that the response message is of the same length. The amount of time this
procedure takes is measured and assumed to be tmeasured = 2 · tsc(r) + tc. Under the
assumption of a constant tc, which has to be estimated, tst(r) can be calculated
using equation (3.4). Assuming the transmission time is proportional to the data
length, the time for all data lengths d can be linearly interpolated.

tst(r) =
tmeasured − tc

2
(3.4)

CHAPTER 3. DESIGN 61

tst(d) tst(d) tst(dMTU) tst(dMTU)

tc tc tc

tresp

Origin Node 1 Node 2 Node 1

Figure 3.3: Quintessential time diagram of a 2-hop data transmission

3.5.5 Solid data frame

Solid is a control protocol for HELLA automation products. One ADID is reserved
for sending such frames.

3.5.6 Custom application domain

Pikrit allows application developers to introduce their own application domains.
Their IDs are not directly part of the header like it is the case with core Pikrit
ADIDs. Instead, the ADID is set to 0x3F . If this is the case, the first two bytes of
the payload are used to create up to 216 = 65535 custom application domains.

3.6 Coordinator Protocol Extensions

The core Pikrit protocol specification does define neither a way of retrieving
information about the link states within a network nor a method for calculating
shortest paths within the network. Every Pikrit protocol coordinator implementation
can handle these features as desired. Recommended solutions for these problems,
however, are provided via what is called coordinator protocol extensions. There are
two protocol extensions attached to the core protocol specification, called Peridoic
Link-State Retrieval (PLSR) and Weighted undirected shortest path (WUSP).

CHAPTER 3. DESIGN 62

Routing
Addresse

1 2 3 4 · · ·

1 0 0 0 0
2 0 0 0
3 0 0
4 0
...

. . .

Figure 3.4: Adjacency matrix representing link states

3.6.1 PLSR

Coordinators within Pikrit networks are usually responsible for finding routes to
a node within a network. But in order to transfer such a frame, the coordinator
needs information about the interconnections between single nodes. As coordinators
know the direct address of all network participants (see Section 3.2.2), they can
use this information as input for an algorithm which searches for nodes that can
only be contacted indirectly. An example algorithm for this is called Periodic
Link-State retrieval. It is responsible for filling a data structure in order to easily
apply searching for shortest paths, as seen in Section 3.6.2. The data structure of
choice is a symmetrical adjacency matrix which is filled with a reliability metric
called link rank as seen in Figure 3.4. Being a symmetrical data structure only
one half of the matrix has to be stored as a data transfer can be assumed to be
direction independent. All links to a network participant itself are also not stored
as sending messages to oneself will not increase efficiency of a routing algorithm.

Link rank

The link rank lr is determined via the LQI and the packet loss ratio plr. An initial
version can be seen in Equation (3.5). It is a non-negative combination of the signal
quality weighted by the success ratio of the last NR frames which have been sent
over this exact route R. As long as the amount of frames sent over this exact route
has not reached NR, plr is always 1. Otherwise plr is calculated as the ratio of
successful frames transferred via the route R in dependence of the total number of
frames transferred via R. A good value for NR has to be determined by a longer
testing phase, an initial value of NR = 5 is being used.

lr(n) =

{
lqi · plr If n ≥ NR

lqi otherwise
(3.5)

CHAPTER 3. DESIGN 63

lqi · · · Link Quality Indicator
plr · · · Packet loss ratio
lr · · · Link rank
NR · · · Frames sent over route R

Algorithm

Listing 3.1 shows a java oriented pseudo-code for the PLSR function plsr(). Its
signature consists of a list with direct addresses which have to be found, an adjacency
matrix as discussed above, the actual route to search (initially [0, 0, 0, 0]) as well
as the current depth, starting with 1. The function appendNextFreeRouteAddress(...)

takes the route and current depth as argument. It gets an unused node address
if available and appends it at the current depth within the route and returns it
for convenience. Next step is iterating over all direct addresses, as this algorithm
makes use of breadth-first search, because it can be expected that a lot of nodes are
already found at depth 1. Excluding the directly approachable nodes reduces time
complexity for building the adjacency matrix significantly. Each direct address is
searched for over the given route which is implied via the function vicinityDiscover

(...). In order to provide a simple explanation of the algorithm this method is
assumed to be blocking until a response occurs. Real world implementations should
avoid this blocking or at least handle it in its own thread. If a response is retrieved
successfully, the link rank of all neighbors are written to the adjacency matrix
applied via the addLink(from, to, rank) function. Directly after that, the direct
address is removed from the field of searched addresses as we have found it. The
routeAddress is from now on in use and cannot be reused by the coordinator until
explicitly invoked otherwise. So a new route address for the next hardware address
has to be acquired as shown in line 26.

Once the addresses array is empty we are done and can return. Otherwise, if we
have no routes at given depth available anymore, we need to increase the depth
and call the algorithm recursively to search at a deeper level (lines 34− 38). Note
that this is just pseudo-code delivering the conceptual idea of this algorithm.

3.6.2 WUSP path calculation

As a last step to achieve a self-organizing routing mechanism the link state in-
formation is used to calculate the shortest path to a desired node. Shortest, in
this context, is due to respect of the link rank as described in Section 3.6.1. This
resembles the classical SSSP with positive weights problem within graph theory
which has been widely discussed and therefore is a rather large topic at hand. The
currently fastest algorithm with respect to time complexity was presented in 1999

CHAPTER 3. DESIGN 64

static void plsr(Collection <HardwareAddress > addresses ,

AdjacencyMatrix adjMatrix , int[] route , int depth) {

2
if (route == null)

4 return;

int routeAddress = appendNextFreeRouteAddress(route , depth);

6
for (HardwareAddress hwAddress : addresses) {

8 //For simplicity assume vicinityDiscover is blocking.

Response response = vicinityDiscover(hwAddress , route);

10 if(response.isSuccess ()) {

adjMatrix.addLink(

12 lastNonZeroAddress(route),

routeAddress ,

14 response.getRank ()

);

16 Collection <Neighbour > neighbours = response.getNeighbours ();

for (Neighbour neighbour : neighbours) {

18 adjMatrix.addLink(

routeAddress ,

20 neighbour.getRouteAddress (),

neighbour.getRank ()

22);

}

24 addresses.remove(hwAddress);

setRouteAddressInUse(routeAddress);

26 routeAddress = appendNextFreeRouteAddress(route , depth);

}

28 }

30 if (addresses.isEmpty ()) {

return;

32 }

else {

34 boolean routesAvailable = getUnusedRoute(route , depth);

if (! routesAvailable) {

36 depth ++;

}

38 plsr(addresses , adjMatrix , route , depth);

}

40 }

Listing 3.1: PLSR Pseudocode

CHAPTER 3. DESIGN 65

and is described in detail in [Tho99], accomplishing the task within linear time
boundaries O(n). However, it needs to store a lot of additional information to do
so. Other viable options for calculating shortest paths with non-negative weights
are the popular Dijkstra algorithm or the A* algorithm.

3.7 Examples of important protocol messages

In this section the most essential Pikrit control messages are demonstrated in
detail. Important to note is that all numbers and addresses presented in this section
are hexadecimal numbers. Some parts of the message is composed of wildcards
(Represented via x) as they are dependent on the actual payload.

3.7.1 Direct Message

Beginning with the simplest example, a direct message is illustrated in Figure 3.5.
This example sends a payload from the node with hardware address 0x0D to the
node with hardware address 0x0C.

42︸︷︷︸
Front

xxxx︸︷︷︸
Frame
Size

Direct Message
Addressing Scheme︷ ︸︸ ︷

0000000D︸ ︷︷ ︸
Source

Address

0000000C︸ ︷︷ ︸
Destination

Address

· · ·︸︷︷︸
Payload

Figure 3.5: Frame of a direct message in Pikrit

3.7.2 Routed Message

A bit more interesting is the routed message example. Figure 3.6 shows a message
from node 04 to node 01 via a route, indicating the current sender node via the
“Frame” label. The routing addresses of the involved nodes are, in order of execution,
04 as the origin of the example frame, 03 as routing node, 08 as the current sender,
05 as routing node and the destination 01. Sending a message along this route is
done with the Pikrit header described in Figure 3.7.

The first element is the Front which is defined with the ADID of a Solid data frame
(02). As this message is currently sent by node 08 and was originally sent by node
04 they are the sender and origin address respectively. Next up is the four byte
route, which describes along which path the payload shall be sent.

CHAPTER 3. DESIGN 66

04

03

08

05

01

Fram
e

Figure 3.6: Sending some payload via a route

02︸︷︷︸
Front

xxxx︸︷︷︸
Frame
Size

Routed Message
Addressing Scheme︷ ︸︸ ︷

08︸︷︷︸
Sender
Address

04︸︷︷︸
Origin

Address

03080501︸ ︷︷ ︸
Destination

route
address

· · ·︸︷︷︸
Payload

Figure 3.7: Example of a routed message in Pikrit

3.7.3 Search request control Message

Search requests were already defined in 3.4.4 and its purpose is discussed there.
This section provides an example for how to set the routing address of a node
with a given hardware address. Figure 3.9 shows a small setup with a few nodes,
represented by circles which have their already set routing address imprinted. One
node, however, is missing its routing address, indicated by the ? sign. Its hardware
address is 8 and its desired routing address is AB. Assuming that node 0D is a
coordinator, it decides to update the unset routing address using a search request
as illustrated in Figure 3.8.

00︸︷︷︸
Front

xxxx︸︷︷︸
Frame
Size

Routed Message
Addressing Scheme︷ ︸︸ ︷

07︸︷︷︸
Sender
Address

0D︸︷︷︸
Origin

Address

070305AB︸ ︷︷ ︸
Destination

route
address

Payload︷ ︸︸ ︷
00000008︸ ︷︷ ︸

Direct
Address

Figure 3.8: Example for setting a routing address in Pikrit

The addressing scheme is very similar to the addressing scheme of a routed message
with one exception. Only the last valid entry in the destination route address does
not actually describe the destination but the new routing address which shall be set
by the receiving node. In order to figure out which node should update its routing
address, the hardware address of that node is appended within the payload after
the addressing scheme, in our case it is the node with hardware address 8.

CHAPTER 3. DESIGN 67

A

Z

0D

07

03

05

?

04

Fr
am

e Hardware
address 8

Figure 3.9: Example for search requests and vicinity discoveries

3.7.4 Node vicinity discovery

Figure 3.10 showcases a request for a vicinity discovery based on example Figure 3.9.
It is assumed that the node marked with the question mark has already received the
routing address AB as described in Section 3.7.3. The front includes the ADID 01,
which is the vicinity discovery. Followed by the frame size and addressing scheme,
which are very standard within the header. As before, the example message is sent
from node 07. Specified by the node vicinity discovery application ID, the payload
is filled with the two fields offset and length which request a specific part of the
neighbor lookup table for node AB.

01︸︷︷︸
Front

xxxx︸︷︷︸
Frame
Size

Addressing Scheme︷ ︸︸ ︷
07︸︷︷︸

Sender
Address

0D︸︷︷︸
Origin

Address

070305AB︸ ︷︷ ︸
Destination

route
address

Payload︷ ︸︸ ︷
05︸︷︷︸

Offset

07︸︷︷︸
Length

Figure 3.10: Example request for a node vicinity discovery

The payload of the response contains a list of LQIs values for each neighbor address
which the node has already recognized, or 0 otherwise, as Figure 3.11 shows.

01︸︷︷︸
Front

xxxx︸︷︷︸
Frame
Size

Addressing Scheme︷ ︸︸ ︷
AB︸︷︷︸

Sender
Address

AB︸︷︷︸
Origin

Address

0503070D︸ ︷︷ ︸
Destination

route
address

Payload︷ ︸︸ ︷
0︸︷︷︸

LQI

0︸︷︷︸
LQI

0︸︷︷︸
LQI

85︸︷︷︸
LQI

91︸︷︷︸
LQI

77︸︷︷︸
LQI

Figure 3.11: Example response for a node vicinity discovery

Chapter 4

Implementation

“When you translate a dream into reality, it’s never a full implementation. It is
easier to dream than to do.”1

4.1 Pikrit integration into Contiki

Designing a protocol without continuously testing the credibility based on real
world implementations likely leads to unforeseen problems. To avoid such teething
problems Pikrit has been implemented as a network layer within Contiki. The
process of testing ideas before finalizing them within a specification can be very
revealing of unexpected design flaws. Important to note is that Pikrit has been
designed with hardware and platform independence in mind. The Pikrit driver
consists of three logically separated units, shown in Figure 4.1, which will be
explained in the order of an outgoing frames point of view.

At first there is the application section that consists of the Pikrit functions which
can be invoked as application developer with their respective callbacks. After
invoking such a function, the Pikrit driver processes the frame which is then sent
down the Contiki network stack (see Section 2.4.1). Lastly, within the RDC-layer
of the Contiki stack, there is the Pikrit Framer, which handles creating and parsing
frames as well as calculating header and data sizes. The primary programming
language used in Contiki is C and therefore the reference implementation of Pikrit
is also written in C.

1Shai Agassi

68

CHAPTER 4. IMPLEMENTATION 69

A
p
p
lic
at
io
n

D
ri
ve
r

I/O

Network driver

Link Layer Security

Media Access Control

Radio Duty Cycling

Radio Driver

Contiki Network Stack

Packetbuf

Antenna

Routed driver Direct driverCore ADID handler

Vicinity Discover

Update address

...

Pikrit
Send routed Send direct

Send
Discover

Search
Request

Custom
ADID

Callback

ADID interface

Figure 4.1: High level overview of the Pikrit integration within Contiki

CHAPTER 4. IMPLEMENTATION 70

void send_direct_message(

2 linkaddr_t addr ,

const pkrt_payload payload ,

4 uint8_t adid

);

Listing 4.1: Direct message signature

4.2 Developer interface

As a Pikrit application developer the following functions and the corresponding
callbacks are essential. This section describes their signatures, explains how to use
them and sheds some light on their implementation within the Pikrit driver unit.

4.2.1 Sending direct messages

Listing 4.1 shows the function signature of the function which is responsible for
sending a direct message. The first parameter of the signature is the address to which
the message shall be sent. It is of type linkaddr_t, which is a union that is shared with
the routed messages and its definition can be found in Section 4.3.2. Direct messages
use the four-byte interpretation of the union. As a second parameter, the payload
has to be specified. Payloads in Pikrit are generally of type pkrt_payload. The reason
for this is explained in Section 4.3.3. Lastly, the uint8_t adid parameter within the
direct message signature specifies the used ADID as described in Section 3.4.4.

Implementation

As Listing 4.2 shows, the packetbuf is a core mechanism in Contiki, which is loosely
explained in Section 2.4.1. The function packetbuf_copyfrom(...) copies the contents
of the payload.payload pointer with length payload.length to the packetbuf, so the
payload is retained in memory even if the current stack returns. Secondly, the packet
is attached the necessary front using a packetbuf_attr_t, which will be evaluated
by the framer to create the correct header. To generate the correct front part of the
header, the function create_pkrt_front() is used. It takes as parameters whether the
frame shall be encrypted, if it is a direct or routed message and the corresponding
ADID. Before sending the data frame, the address is also assigned to the packetbuf,
in order to create the proper header within the framer, as explained in Section 4.3.4.
The last function pikrit_output() just initiates the data transfer within the Contiki
network stack and activates a callback upon successful invocation if a callback is
defined.

CHAPTER 4. IMPLEMENTATION 71

void send_direct_message(linkaddr_t addr , const pkrt_payload

payload , uint8_t adid) {

2 packetbuf_copyfrom(payload.payload , payload.length);

4 uint8_t front = create_pkrt_front(pkrt_encrypted , 1, adid);

packetbuf_set_attr(PACKETBUF_ATTR_FRONT , front);

6
packetbuf_set_addr(PACKETBUF_ADDR_PKRT_RECEIVER , &addr);

8 packetbuf_set_addr(PACKETBUF_ADDR_PKRT_SENDER ,

&linkaddr_node_addr);

10
pikrit_output ();

12 }

Listing 4.2: Direct message framework implemenatation

void send_routed_msg(

2 linkaddr_t addr ,

const pkrt_payload payload ,

4 uint8_t adid

);

Listing 4.3: Routed message signature

4.2.2 Sending routed messages

Similar to sending a direct message routed messages can be sent using a single
function. Its signature is shown in Listing 4.3. While also containing an address of
type linkaddr_t this address is interpreted differently than the address when sending
direct messages. As it is a union which defines an array of length LINKADDR_SIZE it
can be accessed byte wise. Each of these bytes represents a routing address.

So the address should be filled with up to LINKADDR_SIZE many routing addresses.
The pkrt_payload payload and uint8_t adid parameters are used the same way as
in direct messages, see Section 4.2.1.

Implementation

The implementation for sending routed messages is more complex, as it is responsible
for various application domains. Listing 4.4 shows that there are two function
calls, override_origin(...) and send_routed_msg_origin(...). Overriding the origin
address means that this node is the original sender of the frame and it has not
forwarded this frame from somewhere else. This function is mainly responsible for
copying the payload into the packetbuf and deletes previous packetbuf data in the

CHAPTER 4. IMPLEMENTATION 72

void send_routed_msg(linkaddr_t addr , const pkrt_payload payload ,

uint8_t adid) {

2 override_origin(payload);

uint8_t front = create_pkrt_front(pkrt_encrypted , 0, adid);

4 send_routed_msg_origin(addr , front);

}

Listing 4.4: Routed message framework implemenatation

process.

Sending the message while keeping the current packetbuf origin address is invoked
with the function send_routed_msg_origin(...). If the origin would not be overridden
before calling this function the current origin stored in the packetbuf would be
reused. This mechanism is used for routing packets throughout the network. When
receiving a packet the current nodes address is checked and if it does not match the
last routing address in the received packetbuf address the send_routed_msg_origin

(...) function would be invoked after just updating the sender address. So this
function is used for forwarding and sending messages, depending on whether the
origin has been overridden or not. The implementation of this function is very
similar to the direct message send_direct_message(...) implementation, except it
sets the flags differently.

4.2.3 Search Request: Update a nodes routing address

The control message to update a nodes routing address relies heavily upon the
routed message implementation. To use this control message Listing 4.5 shows the
function signature. Two parameters need to be passed. At first the route upon
which the new node should be searched is provided. Important to note here is
that the last valid routing address within that route is already the new routing
address for the node. Secondly, the parameter hardware_address is the hardware
address of the searched node. Upon invoking this function the hardware address is
searched upon the path which is specified by route. If a node with the corresponding
hardware address receives this frame it responds with an empty frame. This will
change with future specifications of Pikrit as encryption will be introduced. In case
no response is received, another path within the network might be used to search
for the given hardware address.

Implementation

To signalize that the current node is the actual sender, the origin address within
the packetbuf is overridden. The searched hardware address is set as packetbuf

CHAPTER 4. IMPLEMENTATION 73

void search_request(

2 linkaddr_t route ,

linkaddr_t hardware_address

4);

Listing 4.5: Update node routing address signature

void search_request(linkaddr_t route , linkaddr_t hardware_address)

{

2 pkrt_payload payload = {. payload = (char*)& hardware_address ,

.length = sizeof(linkaddr_t)};

send_routed_msg(route , payload , SEARCH_REQUEST);

4 }

Listing 4.6: Update node routing address implementation

address which is then used in lower network layers to create the corresponding
frame. Lastly, the shared send_routed_msg_origin(...) function is used to send out
the control message.

4.2.4 Callback structure

Upon initialization of Pikrit within Contiki an optional callback parameter can be
defined. It is implemented as a struct with three function pointers, as demonstrated
in Listing 4.7. Once the callback interface is implemented and registered using
the Pikrit initialization the network stack will invoke callback actions depending
on what happens within the network stack. The (*sent)() function is called by
the framework if a frame has been sent successfully, regardless of whether it is
a routed message or a direct message. If an incoming direct message is detected,
the function (*recv_dm)(pkrt_dm_hdr header) is called, which provides the header in
order to get additional metadata. Similarly, if a routed message is detected the
function (*recv_rt)(pkrt_rt_hdr header) with the corresponding header is invoked.
This is not the case for core ADIDs that are handled by the driver. Access to
the data is always provided by the packetbuf_dataptr() and packetbuf_datalen()

functions.

typedef struct {

2 void (*sent)();

void (* recv_dm)(pkrt_dm_hdr header);

4 void (* recv_rt)(pkrt_rt_hdr header);

} pkrt_callback;

Listing 4.7: Pikrit callback definition

CHAPTER 4. IMPLEMENTATION 74

struct network_driver {

2 char *name;

4 /** Initialize the network driver */

void (* init)(void);

6
/** Callback for getting notified of incoming packet. */

8 void (* input)(void);

};

Listing 4.8: Contiki Network driver interface

static void input() {

2 const pkrt_flags flags = (pkrt_flags)packetbuf_attr(

PACKETBUF_ATTR_FLAGS) & 0xF0;

4 if (pkrt_flag_direct_message(flags) &&

!pkrt_flag_search_request(flags)) {

6 input_direct_message ();

}

8 else if (!(pkrt_flag_direct_message(flags) &&

pkrt_flag_search_request(flags))) {

10 input_routed_message ();

}

12 }

Listing 4.9: Input implementation

4.2.5 Common I/O operations

As Figure 4.1 illustrates, all Pikrit operations share a common input/output unit.
This unit is mainly implementing the Contiki network_driver (see Listing 4.8)
interface. Besides the initialization ((* init)(void)), which is called when Contiki
starts up, the network driver interface is only responsible for handling incoming
packets.

The Pikrit implementation of the input is shown in Listing 4.9. It parses the flags
in order to determine which code path to choose. In the reference implementation
these code paths are either input_direct_message() for handling direct messages or
input_routed_message() for handling routed messages. pkrt_flag_direct_message()

and pkrt_flag_search_request are C preprocessor specific defines which access the
corresponding bits within the flags.

A main part of input output operations is also sending packets. After filling the
packetbuf with all necessary information, sending packets can be uniformly done
throughout all of Pikrit by the function pikirt_output(), which is explained in
Listing 4.10. The NETSTACK_LLSEC stands for Netstack Link Layer Security and is

CHAPTER 4. IMPLEMENTATION 75

int pikrit_output () {

2 char routed = pkrt_flag_direct_message(packetbuf_attr(

PACKETBUF_ATTR_FLAGS) & 0xF0);

4 NETSTACK_LLSEC.send(packet_sent , &routed);

6 return 0;

}

Listing 4.10: Output of a Pikrit frame

an exchangeable interface itself. An implementation can be chosen by defining the
implementation as C preprocessor instruction in the project configuration. For the
reference implementation nullsec (no software encryption) is chosen. When sending
a packet through the Contiki netstack an optional void* parameter can be attached.
Pikrit uses this pointer to determine whether the send callback should be triggered
or if it is only forwarding routed packets.

4.3 Embedding Pikrit into the Contiki network

stack

All networking implementations within Contiki are written with modularity in
mind. Not all areas are perfectly separated in order to be as memory-efficient as
possible. This is why some important Contiki network files have to be modified
in order to integrate a new network stack. Most importantly, to allow packetbuf
usage, the linkaddr_t union has to be used. The packetuf is used throughout the
whole network stack so it is advisable to be compatible with this concept.

4.3.1 Packetbuf usage

Almost all network layers are accessing the packetbuf, as already described in
Section 2.4.1. This section describes how the packetbuf had to be extended in the
process of integrating Pikrit into Contiki. The most notable part of the packetbuf
is an enum which enumerates all possible attribute and address keys. Using a few C
preprocessor instructions, those key values are only used for compiling if the Pikrit
make flag is set.

CHAPTER 4. IMPLEMENTATION 76

typedef union {

2 unsigned char u8[LINKADDR_SIZE];

#if LINKADDR_SIZE == 2

4 uint16_t u16;

#endif

6 #if LINKADDR_SIZE == 4

uint32_t u32;

8 #endif

} linkaddr_t;

Listing 4.11: linkaddr t definition

typedef struct {

2 char* payload;

uint16_t length;

4 } __attribute__ ((__packed__)) pkrt_payload;

Listing 4.12: Pikrit payload definition

4.3.2 Link address type

Contiki’s Rime addresses use a union called linkaddr_t. Pikrit borrows some of the
properties of Rime’s linkaddr_t and extends them slightly. This is done to ensure
compatibility with the rest of the network stack. The definition of the linkaddr_t

is a union which is explained in detail in Listing 4.11. Unions are a way to store
different kinds of data very efficiently with the advantage of being flexible as the
data contents can be semantically interpreted in different ways. So a linkaddr_t

can either be interpreted as an array of size LINKADDR_SIZE with one byte fields or
as a variable of the size LINKADDR_SIZE itself. Pikrit primarily uses a LINKADDR_SIZE

of four bytes.

4.3.3 Pikrit payload

Payloads in C are usually handled with pointers that point to allocated spaces
within memory. One fundamental problem to solve when dealing with pointers in
C is to determine the size of the content the pointer describes. In case of a C-style
char[] string the last byte within the string is generally a ’\0’ byte, so the string
can be iterated until this end of string character is reached. When dealing with
an unspecified payload it is advisable to separately remember the length of the
payload. The structure called pkrt_payload is introduced in listing 4.12 to deal with
this exact problem. It consists of a pointer to unspecified, character-sized payload
data as well as the corresponding length of the data. The size of a single data frame
is not expected to exceed a size of 216 = 65 536 byte.

CHAPTER 4. IMPLEMENTATION 77

struct framer {

2
int (* length)(void);

4 int (* create)(void);

int (* parse)(void);

6
};

Listing 4.13: Framer interface definition

4.3.4 Pikrit framer

The framer is an optional part of Contiki which is responsible for constructing
and parsing the header of frames. Listing 4.13 shows the interface for a framer. A
framer has three common operations:

• Calculating the length of the message header
• Creating the corresponding data structure on outgoing frames
• Parsing the header data structure on incoming frames

In order to sanity check headers which are received, Pikrit has its own framer which
is called by the RDC-Layer of the Contiki network stack. If the framer detects
wrong or incomplete headers, it automatically cancels the network operation.

Chapter 5

Evaluation

“Are you living in a simulation?”1

5.1 Platform introduction

In order to theoretically compare the performance of Pikrit with other protocols,
a series of tests using RPL and Rime on the same virtual hardware has been
executed. Simulator of choice was Contikis Cooja simulator, described in more
detail in Section 2.5.1. All simulation cycles were performed on virtual devices,
which resemble the properties of the zolertia z1 wireless module for IoT and WSN.
This choice was made mainly because Cooja provides a reasonably good simulation
environment for this platform out of the box. It features a 16 MHz, 16 bit Reduced
Instruction Set Computer (RISC) CPU with 8 kb of RAM, 92 kb of flash memory
and a 2.4 GHz transceiver.

The main criteria of performance is the time it takes to send out and receive a
response to a small payload (e.g. ping). Each of a total of five consecutive pings will
be measured and their response times are logged. Of these five pings an average
time to reach a node in the network and its corresponding standard deviation will
be calculated. To simplify the simulation a node either has 0% packet loss rate
when performing a ping if it is in range of the receiver or 100% packet loss rate
otherwise.

1Nick Bostrom

78

CHAPTER 5. EVALUATION 79

5.2 Contiki Rime mesh

The Rime stack is a basic network stack for systems with limited resources that
are not able to use the Contiki µIP stack. It is designed with modularity in mind
and can therefore be used for various different tasks as stated in [Pre+14, p. 223].
In this simulation the Rime mesh implementation is tested, which sends packets
using multi-hop routing to a specified receiver. Important to note here is that
the Rime mesh implementation follows a very passive approach because it is not
pre-calculating anything when the network is idle. If the Rime stack receives an
order to send out a message to a given address it first simply broadcasts this
message to its local neighbors. Given that the searched address is not one of its
local neighbors it then acquires two additional channels which are responsible for
searching the desired address within the network. “Channel” does not refer to the
physical radio medium in this instance. A channel is an abstraction within the
Rime network stack in order to handle data transmissions with multiple recipients.

5.2.1 Participants and Simulation Script

Ten z1 nodes were placed randomly into the radio environment, starting with the
Rime linkaddr_t-address 1.0 numbered ascending up to address 10.0. The node
with the address 1.0 is sending out five pings each to all other nodes sequentially.

Node one is programmed to send out a ping message to node two upon pressing
its virtual button initially. After the virtual button has been pressed five times, it
increases the target address by one, so the node with address 3.0 will be pinged.
When node 10.0 has been pinged five times, the simulation script ends pressing the
button.

Cooja comes with a javascript-based scripting interface. This can be used to
automatically simulate node input and analyze node output. Triggering a button
press is simulated repeatedly by the script and it waits until the node prints out
that it has received a response. Both event times, when sending and when receiving
a message, are recognized by the script and are used to calculate data like the
average ping time and its standard deviation.

5.2.2 Topology

Figure 5.1 shows where the nodes are placed within the radio medium. All nodes
which are within the green highlighted area around node one are within transmission
range and have 0% packet loss ratio. Matrix 5.1 clarifies which nodes are in range
of each other as showing all ranges from all nodes in the figure would be quite

CHAPTER 5. EVALUATION 80

Figure 5.1: Topology for simulating Contikis Rime mesh network implementation

confusing. The topology is held as similar as possible throughout all the different
simulations in order to receive comparable data.

5.2.3 Measuring response time

Table 5.2 shows the measured response times and whether the ping was successful
or not. Each cell entry shows two different metrics written one above another. The
upper entry in each table cell represents the average time, over the course of five
pings, it took until a response was received and the lower entry is the standard
deviation of the measured times.

Even transmissions without any hops are quite slow, in the best case it took 158.4 ms
to receive the response ranging up to 337.5 ms. Results are getting worse when
routing a message. For three hops the average time was 1248.2 ms and the standard
deviation is quite large with 1836.5 ms. The main reason for the huge variance lies
within the fact that there is no layout information within the network. So when
pinging a device which is out of local neighbor range, two searching channels are

CHAPTER 5. EVALUATION 81

2 X
3 X X
4 X X X
5 × X X ×
6 × X X X X
7 × × × X × X
8 × × × × X × ×
9 × × × × X X × ×
10 × × × × × × × × X
ID 1 2 3 4 5 6 7 8 9

Table 5.1: Matrix describing reachability between Rime nodes

ID
Hops

0 1 2 3 Success

2
190.1 ms
129.5 ms

5/5

3
174.7 ms
99.9 ms

5/5

4
175.0 ms
100.0 ms

5/5

5
549.9 ms
540.4 ms

5/5

6
575.0 ms
650.8 ms

5/5

7
717.2 ms
809.3 ms

4/5

8
875.0 ms
999.6 ms

5/5

9
1049.8 ms
1099.8 ms

5/5

10
2747.1 ms
3002.4 ms

3/5

Table 5.2: Average response times and standard deviations for Rime

acquired which are searching for the node, what takes time. After a route has been
found the procedure is sped up, but for the first ping it can take a rather long time
until a response is received.

CHAPTER 5. EVALUATION 82

5.3 RPL

RPL is already introduced in Section 2.3.1 as a suggested de-facto standard by
the IETF for routing packets in WSNs. Contiki provides an implementation of this
protocol which shall be simulated in order to compare it to the Pikrit protocol.
Noteworthy is that the simulation here is performed after the DODAG has been
completely established. This prerequisite is necessary in order to properly compare
it to the static Pikrit protocol which already knows its routes when sending out
packages.

5.3.1 Participants

This time, 11 z1 nodes are placed within the network. Ten nodes are running as
UDP clients (Node ID 2 to 11) and one node is running as UDP server (Node ID 1).
This is needed as the UDP server implementation is the root node for generating
the DODAG, as described in 2.3.1. The other UDP clients are used for replying
to ping frames. Addresses share the local prefix fe80::c30c:0:?, where the ?

character is replaced with the node ID shown within Figure 5.2. For this simple
simulation example the IPv6 prefix is hidden as the node ID is sufficient to identify
where a frame is sent. Node 1 is not used for simulation as its main use is repairing
and building the DODAG.

5.3.2 Topology

The nodes are not positioned exactly the same as within the Rime simulation as
seen in Figure 5.2 but this does not affect the simulation result as the time it takes
for a frame to travel from one node to another can be neglected. More important
than exact positioning is the amount of hops it takes to reach other nodes within
the network as this is where the routing performance can be compared sensically.

5.3.3 Measuring response time

The achieved response times using the RPL protocol are shown in Table 5.4.
An important improvement is that no packet loss has occurred, all packets are
successfully transferred throughout the network. Also the response times are
considerably lower with a drastically reduced standard deviation. So the data
transfer when using RPL is faster and more reliable over Contiki Rime Mesh.

CHAPTER 5. EVALUATION 83

Figure 5.2: Topology for simulating a Contikis RPL implementation

2 X
3 X X
4 X × X
5 × X × ×
6 × X X X X
7 × × × X × X
8 × × × × X × ×
9 × × × × × X × ×
10 × × × × × × × × X
ID 1 2 3 4 5 6 7 8 9

Table 5.3: Matrix describing reachability between RPL nodes

CHAPTER 5. EVALUATION 84

ID
Hops

0 1 2 3 Success

2
24.7 ms
1.8 ms

5/5

3
23.5 ms
0.2 ms

5/5

4
24.3 ms
1.8 ms

5/5

5
42.5 ms
2.4 ms

5/5

6
51.1 ms
16.3 ms

5/5

7
42.7 ms
1.7 ms

5/5

8
61.1 ms
2.2 ms

5/5

9
60.6 ms
1.7 ms

5/5

10
77.0 ms
1.6 ms

5/5

Table 5.4: Average response times and standard deviations for RPL

5.4 Pikrit

The third candidate for simulation is the Pikrit protocol which is introduced with
this thesis. Important to note here is that the routes to the given nodes must
already be determined, similar to the DODAG creation in RPL. To achieve this it
is recommended to use the neighbor route discovery protocol extension explained
in Section 3.6.

5.4.1 Participants

Very similar to the previous two simulations there are 10 nodes as shown in
Figure 5.3. All nodes are pre-configured to have the same route address as hardware
address. The addresses are the same as the node ID’s shown in the Figure.

CHAPTER 5. EVALUATION 85

5.4.2 Topology

The nodes are not positioned exactly the same as within the previous two simulations
as seen in Figure 5.3 but this does not affect the simulation result as the time
it takes for a frame to travel from one node to another can be neglected. More
important than exact positioning is the amount of hops it takes to reach other
nodes within the network as this is where the routing performance can be compared
sensically which should by very similar to the previous two simulations. Table 5.5
additionally shows the reachability between nodes.

Figure 5.3: Topology for simulating the Pikrit network stack

5.4.3 Measuring response time

The achieved response times using the Pikrit protocol are shown in Table 5.6. Like
RPL all responses were received successfully which implies 0% packet loss ratio.
The time it takes to route messages is further reduced by using the Pikrit protocol
with an almost negligible standard deviation.

CHAPTER 5. EVALUATION 86

2 X
3 X X
4 X X X
5 × X X ×
6 × X X X X
7 × × X X × X
8 × × × × X × ×
9 × × × × × X × X
10 × × × × × × × × X
ID 1 2 3 4 5 6 7 8 9

Table 5.5: Matrix describing reachability between Pikrit nodes

ID
Hops

0 1 2 3 Success

2
11.3 ms
< 0.1 ms

5/5

3
11.3 ms
< 0.1 ms

5/5

4
11.3 ms
< 0.1 ms

5/5

5
16.5 ms
< 0.1 ms

5/5

6
16.5 ms
< 0.1 ms

5/5

7
16.5 ms
< 0.1 ms

5/5

8
21.6 ms
< 0.1 ms

5/5

9
21.6 ms
< 0.1 ms

5/5

10
27.0 ms
< 0.2 ms

5/5

Table 5.6: Average response times and standard deviations for Pikrit

5.5 Pikrit design

Developing a protocol is a challenging task where good design is in the eye of the
beholder. There are always compromises to make in one way or another. General
purpose protocols try to find a good balance between the most common use cases
while special purpose ones, lean in favor of managing certain tasks especially well
at the cost of some restrictions in other areas. While not all building automation
tasks are time-critical, some of them can certainly be. One example would be wind

CHAPTER 5. EVALUATION 87

sensors measuring wind speeds that are well beyond the theoretical maximum that
is allowed for fragile surface mounted objects like awnings. Automatic retraction
of awnings as fast as possible is necessary to circumvent physical damage to the
product and more importantly any harm that could be imposed to humans by an
awning breaking off its mounted surface. Communication speed is very important
in such cases and is part of the reason why Pikrit is focusing on timely data
transmission. Table 5.7 shows other advantages and disadvantages of Pikrit and
compares it with selected protocols discussed in this thesis.

5.5.1 Compared to RPL

RPL and Pikrit differ greatly in design, scope and target application. RPL assumes
more powerful network participants as it uses IPv6 addresses and therefore supports
a vast amount of participants within a single network. Upward routing uses a clever
DODAG based algorithm as described in Section 2.3.1 that achieves very good
routing results. When using downward routing, however, RPLs approach has its
weaknesses. Application developers have two options on how to counteract these.
Firstly, the non-string mode uses source routing like Pikrit. But IPv6 addresses have
a huge overhead in comparison to Pikrit routing addresses and therefore this mode
reduces payload sizes due to large headers. Secondly, the storing mode assumes that
nodes have a lot of memory to remember routes and directions similarly as described
in Section 2.2.2. This means RPL focuses on being a sensor-friendly network as
upward routes are handled elegantly. Downward routes on the other hand have
their own separate mechanism which might imply organizational, computational,
as well as data overhead and therefore the protocol is not very attractive when
creating mostly actor-based networks.

5.5.2 Compared to Z-Wave

Pikrit and Z-Wave both share a common basis in terms of design. They are both
source routing protocols and statically limit the maximum hop count. This is where
the similarities end, though. While Pikrit provides up to 65535 custom ADIDs the
Z-Wave protocol specification has a large collection of command classes for different
device types. The primary controller of Z-Wave might also be a portable device.
Exploration frames are sent in the emergency case that a node is not found which
takes a lot of time exactly when the user is expecting an action to occur. For this
reason, mobile coordinators are not supported by Pikrit. Also, Pikrit focuses more
on having reliably fast connections for urgent, safety related control commands
to be dealt with in a timely manner. Network separation is another differentiator.
Z-Wave uses a separate unique home ID to identify which network a node is part
of, while Pikrit will handle separation with the randomly generated encryption key.

CHAPTER 5. EVALUATION 88

5.5.3 Compared to LOADng

LOADng is a project which tries to modernize and improve the AODV protocol to
enable its use in resource-constrained environments. For a generic way to handle
data communication this protocol is very potent. But the potentially lengthy time
in order to broadcast a RREQ when trying to route frames makes it unsuitable for
time critical tasks.

5.5.4 Compared to Contiki Rime

While Contiki’s Rime protocol is an easy to-use and flexible protocol built into the
Contiki OS its main disadvantage clearly is the timely delivery of routed frames.
As shown in Section 5.2, the time it takes to reach a certain node when using
the Rime mesh implementations is rather long and varies greatly. On the other
hand, no configuration is required for Rime in order to provide a routing algorithm.
Therefore in cases where the timeliness of actions is not tight, it can be an easy
applicable solution to extend the range of a wireless network.

5.5.5 Source routing protocols

Usually source routing protocols have a footprint which is growing linearly with
the hop count needed. As it does not have a high priority to route over distances
greater than 400 m within home building automation, the distance is restricted
to 4 hops. Nodes can be designed with very low cost components on both, the
storage and computation front, because they just route the frame according to
the static route which takes constant (O(1)) for bounded hop counts. The small
design of the routing address of 1 byte allows for a small footprint while supporting
up to 254 devices within one network. Compatability with widely used protocols
like TCP/IP is not directly given within Pikrit, but if the coordinator is chosen
sufficiently powerful, it can act as a gateway for TCP/IP.

CHAPTER 5. EVALUATION 89

Pikrit
RPL

(ZigBee
IP)

Z-Wave Loadng
Contiki

rime

Supports
moving
parts

no partially partially yes yes

Footprint
size

constant,
small (hop

limit)

const.
downward,

pot. lin.
upwards

constant,
medium

(hop limit)
large

constant,
small

Routing
speed

very fast fast

very fast
(not for
moving
parts)

slow (on
demand)

very slow

Determinis-
tic response

time
yes no

not for
moving
parts

no no

Self-
Organizing

with Co-
ordinator

with root
node

with
primary

controller
yes yes

Hop count
statically
defined

unlimited
(in theory)

statically
defined

unlimited
(in theory)

unlimited
(in theory)

Data
Integrity

built in
built-in

or custom
built in

not
handled
directly

not
handled
directly

Confiden-
tiality

To be de-
termined

built-in
or custom

built in
not

handled
directly

not
handled
directly

Table 5.7: Feature matrix for comparison between popular protocols

Chapter 6

Conclusion and future work

“Ich vermute, dass wir nur sehen, was wir kennen.”1

(“I suspect that we only see what we know.”)

6.1 Future of Pikrit

The successful conclusion of this thesis is the starting point for further investigation
in including Pikrit into real world devices. Figure 6.1 shows an estimated timeline
of the inclusion of Pikrit within the home automation product ONYX. Ultimately
the goal is to finish this process within a timeframe of one year from the time this
thesis is done. This would result in a first finished product at the beginning of
the year 2018. Most of the steps which are required to release a finished product
are already fully or in partially defined with this thesis. Of course details of their
specification could change during the process of integration within ONYX, but
the fundamental ideas are finished. The MFBDs specifications for example, can be
seen can be seen in Section 3.5.4 and the node integration, which uses Contiki, is
schematically described in Chapter 4.

6.1.1 Pikrit confidentiality plans

Further time has to be invested to achieve a sensible, lightweight and attack-resistent
encryption mechanism. Confidentiality is intended to be an integral property of
Pikrit. Foundations for this inclusion have already been laid out. There is, for
example, the encrypted flag within the header of the protocol which indicates to
participants whether the frame has to be decrypted. While this flag is intended to not

1[Nie+84]

90

CHAPTER 6. CONCLUSION AND FUTURE WORK 91

2017 2018

Core
protocol

MFBD

Sconsole
(debug tool)

Node
Integration

Coordinator
Integration

PLSR

WUSP

Firmware
Update

Data confidentiality, au-
thenticity and integrity

Testing,
Release

M
ar

ch

A
pr

il
M

ay
Ju

ne
Ju

ly

A
ug

us
t

Se
pt

em
be

r

O
ct

ob
er

N
ov

em
be

r

D
ec

em
be

r

Ja
nu

ar
y

Fe
br

ua
ry

Figure 6.1: Timeline for Pikrit adoption within ONYX

be encrypted, the remainder of the message frame will be. Search requests currently
do not have a defined payload. It is intended to include encryption information
within this core Pikrit function. This initial key exchange is a particularly crucial
part and has to be well thought out. But this alone is not sufficient because there
are many stages in data transmission which can be abused to extract information.

6.1.2 Protocol enhancements

In order to widen the protocol to suite for a larger audience there are still a lot
of areas to improve. The following list shall give a vague overview of possible
improvements.

• Broadcasting
In some circumstances it is convenient to send out a single frame which will
be consumed by every participant in the network. Especially within wireless
networks this should only be used for routing information in a single direction
as responses could cause a lot of conflicts.

• Multicasting
Similar to broadcasting, but with the ability to select a range of recipients to
which information is broadcast.

• Stream transport
A stream transport protocol allows an unspecified amount of data to be
delivered over a route. Such a connection-oriented protocol only indicates
with a single frame whether a channel is established or closed. In case of

CHAPTER 6. CONCLUSION AND FUTURE WORK 92

connection problems a timeout might be necessary in order to help with
cleaning up allocated resources.

6.2 Conclusion

Specifying a protocol is an effortful task which requires thoughtful iteration in
order to achieve a usable implementation. It should be weighted carefully whether
creating a custom protocol is worth the effort and the loss of compatibility. This
thesis shows that the large amount of protocols currently available within the
wireless embedded IoT device sector and the fragmentation they produce, justifies
the creation of a new application-specific protocol. Focusing on being lightweight
and reliably fast widens the ability to use Pikrit in more time critical applications.
There is more to a protocol than being fast and reliable. Like many protocols in
this area, Pikrit needs a coordinator in order to manage and maintain routes within
a network. During maintenance work (PLSR), a huge amount of data transmission
can occur, hindering regular data transfer. Choosing the right time to do this
maintenance work is crucial for providing a seamless experience for users and safety
applications alike. Other protocols, like RPLs trickle algorithm, spread out this
maintenance work continuously throughout lifetime of the protocol. Maximizing
the actual real world performance of Pikrit is, like most software implementations,
an act of precise, astute and balanced tuning of the protocol’s properties and its
maintenance algorithms.

The future of IoT and embedded wireless devices looks very promising. Things
are changing at a fast pace and innovations come and go day by day. Sooner or
later developers will agree upon a common de-facto standard for wireless embed-
ded routing. Such unification will simplify the life of end users, distributors and
developers as the focus can be shifted more towards the actual communication of
devices and not how they communicate. Only time can tell which protocol this
will be, but challenging the existing proposals and implementations is a thrilling
and enlightening undertaking. Generally speaking, this thesis highlights that the
creation of a custom protocol in this area is a sensible choice for the time being.

Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Networks 25

ADID Application Domain ID . 47

AES Advanced Encryption Standard. .42

AODV Ad Hoc on demand Distance Vector . 26

API Application Programming Interface . 34

ARM Advanced RISC Machines . 45

ASCII American Standard Code for Information Interchange 56

CPU Central Processing Unit. .60

CRC Cyclic Redundancy Check . 44

CSMA Carrier Sense Multiple Access. .32

DAO Destination Advertisement Object . 23

DIO DODAG Information Object . 23

DNS-SD Domain Name System - Service Discovery . 25

DODAG Destination Oriented Directed Acyclic Graph . 23

EEPROM Electrically Erasable Programmable Read-Only Memory 45

EULA End-User License Agreement . 11

FIFO First In First Out . 35

GDB GNU Project Debugger . 37

GmbH Gesellschaft mit beschränkter Haftung . 13

IEEE Institute of Electrical and Electronics Engineers . 24

IETF Internet Engineering Task Force . 23

IPv4 Internet Protocol version 4 . 31

IPv6 Internet Protocol version 6 . 23

IoT Internet of Things .29

LAN Local Area Network . 39

93

94

LGPL Lesser GNU General Public License . 34

LLN Low Power and Lossy Network . 23

LOADng LLN On-Demand Ad hoc Distance-vector - next generation.26

LQI Link Quality Indicator . 54

LSA Link State Advertisement . 22

MAC Media Access Control . 32

MAN Metropolitan Area Network . 39

MCU Microcontroller unit .18

MFBD Multi-frame bulk data transfer. .54

MLE Mesh Link Establishment

MTU Maximum transmission unit . 50

OS Operating System . 29

PANA Protocol for Carrying Authentication for Network Access

PAN Personal Area Network . 39

PLSR Peridoic Link-State Retrieval. .61

RAM Random Access Memory . 29

RDC Radio Duty Cycling . 33

RERR Route Error . 28

RISC Reduced Instruction Set Computer . 78

ROM Read Only Memory . 34

RPL Routing Protocol for Low power and Lossy Networks 15

RREP Route Reply . 26

RREQ Route Request . 26

RTT Round Trip Time . 60

SRAM Static random-access memory. .45

SSSP Single-source shortest path . 47

TCP Transfer Control Protocol . 53

TLS Transport Layer Security . 25

TLV Type-Length-Value . 28

TTC Transfer to check . 57

U.S. United States of America . 19

UDP Unified Datagram Protocol . 53

WAN Wide Area Network . 39

95

WLAN Wireless Local Area Network . 19

WSN Wireless Sensor Network . 34

WUSP Weighted undirected shortest path . 61

mDNS Multicast Domain Name System . 25

List of Figures

1.1 Official HELLA logo . 13
1.2 Small house using ONYX . 14
1.3 Large house using ONYX . 15

2.1 Example mesh network . 17
2.2 Directed and undirected graphs . 20
2.3 Distance-vector topology visualisation 21
2.4 Link-state topology visualisation 22
2.5 DODAG, where P indicates the preferred parent 23
2.6 ZigBee IP protocol layers . 25
2.7 Overview of the Contiki network stack 32
2.8 Cooja network visualisation . 36

3.1 Conceptual model of different layers within Pikrit 46
3.2 Header of a MFBD frame . 57
3.3 Quintessential time diagram of a 2-hop data transmission 61
3.4 Adjacency matrix representing link states 62
3.5 Frame of a direct message in Pikrit 65
3.6 Sending some payload via a route 66
3.7 Example of a routed message in Pikrit 66
3.8 Example for setting a routing address in Pikrit 66
3.9 Example for search requests and vicinity discoveries 67
3.10 Example request for a node vicinity discovery 67
3.11 Example response for a node vicinity discovery 67

4.1 High level overview of the Pikrit integration within Contiki 69

5.1 Topology for simulating Contikis Rime mesh network implementation 80
5.2 Topology for simulating a Contikis RPL implementation 83
5.3 Topology for simulating the Pikrit network stack 85

6.1 Timeline for Pikrit adoption within ONYX 91

96

List of Tables

3.1 Reserved routed addresses . 50
3.2 Core Pikrit frame . 50
3.3 Direct message addressing scheme 52
3.4 Routed message addressing scheme 52
3.5 Control Message / core ADIDs . 54
3.6 Search request content . 54
3.7 Node vicinity discovery response content 55
3.8 Node vicinity discovery response 55
3.9 Node vicinity discovery response example 56

5.1 Matrix describing reachability between Rime nodes 81
5.2 Average response times and standard deviations for Rime 81
5.3 Matrix describing reachability between RPL nodes 83
5.4 Average response times and standard deviations for RPL 84
5.5 Matrix describing reachability between Pikrit nodes 86
5.6 Average response times and standard deviations for Pikrit 86
5.7 Feature matrix for comparison between popular protocols 89

List of Equations

3.1 Lamports scheme: Iterated one-time functions 44
3.2 Showcase the correlation between routing and direct address 49
3.3 RTT calculation . 60
3.4 Empirial reference time calculation . 61
3.5 Equation for calculating the link rank. 62

97

LISTINGS 98

Listings

2.1 Contiki process control block . 30
2.2 Example Contiki process waiting for an event 31
3.1 PLSR Pseudocode . 64
4.1 Direct message signature . 70
4.2 Direct message framework implemenatation 71
4.3 Routed message signature . 71
4.4 Routed message framework implemenatation 72
4.5 Update node routing address signature 73
4.6 Update node routing address implementation 73
4.7 Pikrit callback definition . 73
4.8 Contiki Network driver interface 74
4.9 Input implementation . 74
4.10 Output of a Pikrit frame . 75
4.11 linkaddr t definition . 76
4.12 Pikrit payload definition . 76
4.13 Framer interface definition . 77

Bibliography

[AK06] A. Anand and R. K. Kiran. “Optimized and adaptive link state routing
strategy.” In: GCC Conference (GCC), 2006 IEEE. Mar. 2006, pp. 1–5.
doi: 10.1109/IEEEGCC.2006.5686178 (cit. on p. 22).

[All14] ZigBee Alliance. ZigBee IP Specification. 095023. Revision 34. ZigBee
Alliance. 2014 (cit. on p. 24).

[Asi+09] M. Asikainen, K. Haataja, R. Honkanen, and P. Toivanen. “Designing
and Simulating a Sensor Network of a Virtual Intelligent Home Using
TOSSIM Simulator.” In: Wireless and Mobile Communications, 2009.
ICWMC ’09. Fifth International Conference on. Aug. 2009, pp. 58–63
(cit. on p. 37).

[Bac+13] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt.
“RIOT OS: Towards an OS for the Internet of Things.” In: Computer
Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Con-
ference on. Apr. 2013, pp. 79–80 (cit. on p. 34).

[Bel80] A. G. Bell. “Upon the production and reproduction of sound by light.”
In: Telegraph Engineers, Journal of the Society of 9.34 (1880), pp. 404–
426. doi: 10.1049/jste-1.1880.0046 (cit. on p. 19).

[CD11] James M Conrad and Alexander G Dean. Embedded Systems: An Intro-
duction Using the Renesas Rx62n Microcontroller. Micrium Press, 2011
(cit. on p. 18).

[CHP11] T. Clausen, U. Herberg, and M. Philipp. “A critical evaluation of the
IPv6 Routing Protocol for Low Power and Lossy Networks (RPL).”
In: 2011 IEEE 7th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob). Oct. 2011,
pp. 365–372. doi: 10.1109/WiMOB.2011.6085374 (cit. on p. 23).

[CYV12] T. Clausen, J. Yi, and A. C. de Verdiere. “LOADng: Towards AODV
Version 2.” In: Vehicular Technology Conference (VTC Fall), 2012
IEEE. Sept. 2012, pp. 1–5. doi: 10.1109/VTCFall.2012.6399334
(cit. on pp. 27, 28).

99

https://doi.org/10.1109/IEEEGCC.2006.5686178
https://doi.org/10.1049/jste-1.1880.0046
https://doi.org/10.1109/WiMOB.2011.6085374
https://doi.org/10.1109/VTCFall.2012.6399334

BIBLIOGRAPHY 100

[KWL16] Srijan Kumar, Robert West, and Jure Leskovec. “Disinformation on
the Web: Impact, Characteristics, and Detection of Wikipedia Hoaxes.”
In: Proceedings of the 25th International Conference on World Wide
Web. WWW ’16. Montréal, Québec, Canada: International
World Wide Web Conferences Steering Committee, 2016, pp. 591–602.
isbn: 978-1-4503-4143-1 (cit. on p. 13).

[Lel14] Adam Lella. The U.S. Mobile App Report. Tech. rep. 2014 (cit. on
p. 19).

[Lu+03] Yi Lu, Weichao Wang, Yuhui Zhong, and B. Bhargava. “Study of
distance vector routing protocols for mobile ad hoc networks.” In:
Pervasive Computing and Communications, 2003. (PerCom 2003).
Proceedings of the First IEEE International Conference on. Mar. 2003,
pp. 187–194. doi: 10.1109/PERCOM.2003.1192741 (cit. on p. 21).

[McI09] A. I. McInnes. “Using CSP to Model and Analyze TinyOS Applications.”
In: Engineering of Computer Based Systems, 2009. ECBS 2009. 16th
Annual IEEE International Conference and Workshop on the. Apr.
2009, pp. 79–88 (cit. on p. 35).

[Nie+84] F. Nietzsche, G. Colli, V. Gerhardt, M. Montinari, and M.L. Haase.
Nachgelassene Fragmente Juli 1882 - Winter 1883/84. Walter De
Gruyter Incorporated, 1984. isbn: 9783110079050 (cit. on p. 90).

[PK09] T. Paul and G. S. Kumar. “Safe Contiki OS: Type and Memory Safety
for Contiki OS.” In: Advances in Recent Technologies in Communication
and Computing, 2009. ARTCom ’09. International Conference on. Oct.
2009, pp. 169–171. doi: 10.1109/ARTCom.2009.126 (cit. on p. 29).

[PR99] C. E. Perkins and E. M. Royer. “Ad-hoc on-demand distance vector
routing.” In: Mobile Computing Systems and Applications, 1999. Pro-
ceedings. WMCSA ’99. Second IEEE Workshop on. Feb. 1999, pp. 90–
100. doi: 10.1109/MCSA.1999.749281 (cit. on p. 26).

[Pre+14] T. Preiss, M. Sherburne, R. Marchany, and J. Tront. “Implementing
dynamic address changes in ContikiOS.” In: Information Society (i-
Society), 2014 International Conference on. Nov. 2014, pp. 222–227
(cit. on p. 79).

[PS16] J. Pick and A. Sarkar. “Theories of the Digital Divide: Critical Com-
parison.” In: 2016 49th Hawaii International Conference on System
Sciences (HICSS). Jan. 2016, pp. 3888–3897 (cit. on p. 12).

[RS13] Kévin Roussel and Ye-Qiong Song. A critical analysis of Contiki’s
network stack for integrating new MAC protocols. Research Report
RR-8776. INRIA Nancy, Dec. 2013, p. 13 (cit. on p. 33).

[RSZ16] Kévin Roussel, Ye-Qiong Song, and Olivier Zendra. “Using Cooja
for WSN Simulations: Some New Uses and Limits.” In: EWSN 2016 -

https://doi.org/10.1109/PERCOM.2003.1192741
https://doi.org/10.1109/ARTCom.2009.126
https://doi.org/10.1109/MCSA.1999.749281

BIBLIOGRAPHY 101

NextMote workshop. Ed. by Kay Roemer. ACM. Graz, Austria: Junction
Publishing, Feb. 2016, pp. 319–324 (cit. on p. 36).

[Shi+15] V. L. Shivraj, M. A. Rajan, M. Singh, and P. Balamuralidhar. “One time
password authentication scheme based on elliptic curves for Internet
of Things (IoT).” In: 2015 5th National Symposium on Information
Technology: Towards New Smart World (NSITNSW). Feb. 2015, pp. 1–6.
doi: 10.1109/NSITNSW.2015.7176384 (cit. on p. 43).

[Ste+12] K. D. Stephan, K. Michael, M. G. Michael, L. Jacob, and E. P. Anesta.
“Social Implications of Technology: The Past, the Present, and the
Future.” In: Proceedings of the IEEE 100.Special Centennial Issue (May
2012), pp. 1752–1781. issn: 0018-9219 (cit. on p. 10).

[Tho99] Mikkel Thorup. “Undirected Single-source Shortest Paths with Positive
Integer Weights in Linear Time.” In: J. ACM 46.3 (May 1999), pp. 362–
394. issn: 0004-5411 (cit. on p. 65).

https://doi.org/10.1109/NSITNSW.2015.7176384

Index

Address, 20, 48
Addressing Scheme, 51
AODV, 25
Authenticity, 42

Building Automation, 40

Cloud Computing, 39
Compile, 32
Compiler, 42
Confidentiality, 41
Contiki, 28
Cooja, 34, 77
Coordinator, 45

Direct Message, 69
Distance-vector, 20

Embedded device, 17
Event Queue, 29

Gateway, 39
Graph, 19
Graph Theory, 62

Integrity, 43

Javascript, 35

Link Rank, 61
Link-state, 21
Linked List, 28
LOADng, 25

Mesh, 16

Network, 19, 38
Node, 16, 20, 35, 43

Packet Buffer, 32, 74
Path, 19, 20
Privacy, 9
Process, 28
Protothread, 29

Radio Duty Cycling, 31
Routed Message, 70
Router, 20
Routing, 16
RPL, 22

Search Request, 71
Security, 9, 30
Simulation, 34, 36
Source Routing, 44
System Separation, 47

Thread, 28
Trickle, 23

Wireless, 15, 18

Z-Wave, 24
ZigBee, 23

102

	Abstract
	Acknowledgement
	Contents
	Introduction
	Motivation
	Challenges within digital culture
	Partner
	Outline

	Wireless sensor and actor networks
	Introduction
	Networks and routing
	Modern mesh network designs
	Popular operating systems for IoT
	Simulators for Wireless Sensor Networks

	Design
	Requirements
	Introducing the core Pikrit protocol
	Addressing
	Pikrit frame specification
	Core Application Domain ID definitions
	Coordinator Protocol Extensions
	Examples of important protocol messages

	Implementation
	Pikrit integration into Contiki
	Developer interface
	Embedding Pikrit into the Contiki network stack

	Evaluation
	Platform introduction
	Contiki Rime mesh
	RPL
	Pikrit
	Pikrit design

	Conclusion and future work
	Future of Pikrit
	Conclusion

	List of Acronyms
	List of Figures
	List of Tables
	List of Equations
	Listings
	Index

