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Abstract

The Web is a central part of modern everyday life. Many people access it
on a daily basis for a variety of reasons such as to retrieve news, watch
videos, engage in social networks, buy goods in online shops or simply to
procrastinate. Yet, we are still uncertain about how humans navigate the
Web and the potential of factors influencing this process. To shed light on
this topic, this thesis deals with modeling aspects of human navigation
on the Web and the effects arising due to manipulations of this process.
Mainly, this work provides a solid theoretical framework which allows to
examine the potential effects of two different strategies aiming to guide
visitors of a website. The framework builds upon the random surfer model,
which is shown to be a sufficiently accurate model of human navigation on
the Web in the first part of this work. In a next step, this thesis examines
to which extent various click biases influence the typical whereabouts of
the random surfer. Based on this analysis, this work demonstrates that
exploiting common human cognitive biases exhibits a high potential of
manipulating the frequencies with which the random surfer visits certain
webpages. However, besides taking advantage of these biases, there exist
further possibilities to steer users who navigate a website. Specifically,
simply inserting new links to a webpage opens up new routes for visitors
to explore a website. To investigate which of the two guiding strategies
bears the higher potential, this work applies both of them to webgraphs
of several websites and provides a detailed comparison of the emerging
effects. The results presented in this thesis lead to actionable insights
for website administrators and further broaden our understanding of how
humans navigate the Web. Additionally, the presented model builds the
foundation for further research in this field.
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Kurzfassung

Das Web ist ein wesentlicher Punkt unserer modernen Gesellschaft. Men-
schen in der ganzen Welt verwenden es täglich aus einer Vielzahl von
Gründen. Dazu gehört unter anderem das Ansehen von Videos in online
Mediatheken, die Kommunikation in sozialen Netzwerken, das Kaufen von
Produkten in online Shops, oder einfach nur als Zeitvertreib. Dennoch
wissen wir nicht exakt, wie Menschen im Web navigieren und wie hoch
das Manipulationspotential von Faktoren, welche diesen Prozess beein-
flussen, ist. Um das Wissen in diesem Bereich zu verbessern, behandelt
diese Doktorarbeit Aspekte der Modellierung von menschlicher Navigati-
on im Web und die Effekte, welche durch Manipulation dieses Prozesses
auftreten könnten. Vorwiegend präsentiert diese Arbeit ein solides theo-
retisches Konzept, welches es erlaubt, die potentiellen Effekte von zwei
verschiedenen Manipulationsstrategien, beide mit dem Ziel Besucher einer
Webseite zu steuern, zu untersuchen. Das präsentierte Konzept beruht
auf dem ”Random Surfer“-Model, welches im ersten Teil dieser Arbeit
als ausreichend genaue Imitation von menschlicher Navigation im Web,
überprüft wird. Im darauffolgenden Teil beschäftigt sich diese Doktorarbeit
mit dem Ausmaß an Einflüssen von sogenannten ”Klick-Biases“ auf den
Random Surfer. Basierend auf den dafür durchgeführten Analysen wird
gezeigt, dass menschliche kognitive Biases ein hohes Potential aufweisen,
welches die Frequenz mit welcher der Random Surfer bestimmte Webseiten
besucht, zu manipulieren. Jedoch gibt es auch noch weitere Methoden um
das Surfverhalten von Benutzern einer Website zu steuern. Im Speziellen
können einfach neue Links in die Webseite eingebaut werden. Dies eröffnet
den Benutzern neue Pfade über welche sie die Webseite erkunden können.
Um herauszufinden welche der beiden Methoden das höhere Potential
zur Manipulation von Surfverhalten besitzt, wurden beide auf empirische
Webgraphen angewandt und die dabei aufgetretenen Effekte detailliert
verglichen. Die daraus gewonnenen Einsichten in das menschliche Surf-
verhalten im Web führten zu praxisrelevanten Erkenntnissen, welche von
besonderem Interesse für Webseiten-Administratoren sind. Zusätzlich bil-
det das in dieser Arbeit präsentierte Model die Grundlage für weitere
Forschungsarbeiten auf diesem Gebiet der Wissenschaft.
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1. Introduction

1.1. Motivation

In 1989, Tim Berners-Lee, a scientist employed at CERN in Switzerland,
devised an information system to facilitate communication among scientists
at the institution. His proposed system made use of the recently established
Internet to construct an information space, which allowed users to access
various resources. Specifically, he built his system upon a technology
called hypertext, which has displayed resources (i.e., text) on a screen, and
further, allowed to directly connect, and thus relate, resources to each
other through so-called hyperlinks [Berners-Lee et al., 1992, 2000]. He
named his information system the World Wide Web or just the Web.

Over the last 30 years, engineers and scientists have improved many
components of this technology and resolved some of its shortcomings, such
as the lack of built-in search engines. However, the basic concepts have
remained the same. In particular, we still employ web browsers to access
the World Wide Web and still click on hyperlinks to navigate through the
available resources (i.e., webpages). Today, we look back at the invention
of the web browser as one of the most important steps towards making the
Web as successful and popular as it is now. Nowadays, millions of people
around the world not merely know the Web, but also utilize web browser to
access it on a daily basis for various purposes, such as, communication with
friends, online shopping, or sometimes just to watch videos of cats.

With an increasing user base, the Web has also experienced a vast growth
in terms of numbers of online webpages. In 2005 there were over 11.5 billion
indexable webpages online [Gulli and Signorini, 2005] and today, merely
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1. Introduction

ten years later, the Web is estimated to be over 40 billion pages in size1.
An important reason for this enormous growth has been the simplicity with
which everyone could add new resources (i.e., websites) to the system. As a
consequence of the enormous growth and the decentralized structure of the
system (i.e., no central index), it has become increasingly more challenging
to retrieve resources and satisfy information needs. Hence, the need for
web search engines became progressively more urgent, which is why many
scientists and engineers have come up with various ways to tackle the
problem of providing a searchable index which contains all currently online
webpages. Over the years, web search engines have become so powerful
that Google, the company offering the most popular search engine, has
become one of the most valuable companies in the world2.

Despite the increasing popularity of search tools, a large part of human nav-
igation on the Web can be still attributed to following existing links [Gleich
et al., 2010]. Moreover, it has been shown that humans are extremely
efficient at navigating through large hypertext systems without even uti-
lizing search engines [Helic, 2012; West and Leskovec, 2012a]. To examine
and simulate human navigation on the Web, several models have been
developed. Some of these models, such as the famous random surfer which
follows links chosen uniformly at random, even influenced how search
engines rank the results of search queries [Brin and Page, 1998].

Although the proposed models differ in various aspects, most of them have
one characteristic in common: They mostly rely on the link structure of
the Web, and not on the content of webpages. Specifically, they are based
on the so-called webgraph, in which each page represents a node and each
hyperlink is modeled as a directed edge (i.e., the source page contains a
hyperlink towards the target page). These webgraphs should model the
basic constraint of humans navigating the Web, that is, we can only click
on existing links.

However, there are further properties, such as the layout of webpages, that
influence how humans navigate the Web [Blunch, 1984]. For example, it
has been shown that humans navigating the Web exhibit a strong bias

1http://www.worldwidewebsize.com/
2http://www.forbes.com/powerful-brands/list/
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1.2. Human Navigation on the Web

towards links that are located at the top of a page [Joachims et al., 2005;
Murphy et al., 2006; Craswell et al., 2008; Yue et al., 2010; Lerman and
Hogg, 2014; Dimitrov et al., 2016; Lamprecht et al., 2016]. In other words,
links that are positioned at the top of a webpage will more likely be
followed than those located at the bottom of the same webpage. Despite
our knowledge of such human biases, to date there is no model which
incorporates this kind of information.

However, a deeper understanding of such effects is crucial to efficiently
guide users navigating the Web. Understanding those biases better would,
for example, enable us to adjust the layout of webpages to facilitate
navigation. Furthermore, it is currently not known whether human biases
or the Web’s link structure exhibit a larger potential to guide users on the
Web.

In this thesis I am going to tackle those open questions and strive to get a
deeper understanding of factors on which human navigation builds upon.
Furthermore, I shed light onto the potential effects of exploiting human
biases to guide them and how effects of other guiding techniques compare
to them.

To that end, in Section 1.2 I provide a short overview of how humans typi-
cally navigate the Web, what their navigational traces look like, and how
their biases influence their link selection process. Furthermore, I explain
the basic concepts of models commonly used to simulate human navigation
on the Web in Section 1.3. An overview of the problem statement, the
objectives and main approach of this thesis is provided in Section 1.4. Sub-
sequently, in Section 1.5 I list the specific research questions. A collection
of the main publications of this cumulative thesis is shown in Section 1.6
and my contributions to each of them are emphasized in Section 3.1. In
Section 1.7 further publications to which I have contributed during my
time as a PhD student are listed. The contributions and implications
of this thesis are summarized in Section 1.8. Finally, the entire thesis is
outlined in Section 1.9.
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1. Introduction

Graz
Arnold 

Schwarzenegger
Gold‘s Gym Venice Beach

Figure 1.1.: Illustrative Human Click Trail. The figure depicts an
exemplary click trail of a user navigating an online encyclope-
dia. In particular, the user starts to navigate at the article
about Graz—the second largest city of Austria and wants
to retrieve information about Venice Beach—a world-famous
beach located on the coast of Los Angeles. In the first step,
the user clicks on the link guiding her to the article about
Arnold Schwarzenegger—a celebrity born near Graz who in
his adulthood became the governor of California, USA. Sub-
sequently, the user clicks on the link leading to the article
about the famous Gold’s Gym—often called “the mecca of
bodybuilding“—which is located in Venice, California. In the
next step the user clicks on the link towards the article about
Venice Beach and, consequently, arrives at the target article.
The chronologically sorted sequence of the pages visited by
the user is called click trail. The short click trail shown here
also includes a characteristic pattern typically observed in real
user navigation. That is, in the first step the user navigates
to a popular webpage—in that case an article about a famous
person—followed by a click towards an article less famous
but more similar to the target article—a Gym located in
Venice. The former part of the pattern is often referred to as
the “zoom-out” phase, whereas the latter is often called the
“zoom-in” phase [Helic, 2012; West and Leskovec, 2012a].

4



1.2. Human Navigation on the Web

1.2. Human Navigation on the Web

In this dissertation I analyze how humans navigate the Web and study the
effects emerging through manipulations of this process. Humans navigating
the Web leave behind click trails, which can be exploited to study their
behavior. Typically, these trails are extracted from logfiles, or any other
machine-readable formats, and allow to reproduce the chronologically
sorted sequence of pages visited by a user. In other words, click trails are
sequences of webpages a user consecutively visited in the past. An example
of such a click trail produced by a human navigating Wikipedia—a large
online encyclopedia—is depicted in Figure 1.1.

Most of the time, humans who navigate the Web possess various biases,
such as the visual bias towards links on the top of a webpage. Further-
more, it has been discovered that it is possible to exploit these biases to
manipulate a user’s decision about which link to click on next [Lerman
and Hogg, 2014]. As a consequence, steering users by means of their
biases could potentially trigger changes in their typical whereabouts on
the Web—which is why we want to guide (i.e., steer) them in the first
place.

However, it is currently unknown how these changes emerge. In this thesis,
I present a first stepping stone towards an answer to this question. To
that end, I use a model-based approach, which can be summarized as
follows. First, I utilize correlation analysis methods to evaluate existing
models of human navigation on the Web (i.e., search algorithms). After
determining that the random surfer is an appropriate model, I present an
approach that allows me to intuitively incorporate biases into the model
(i.e., proxies of known human biases). Subsequently, I conduct an in-depth
analysis of the effects emerging due to the performed adjustments. Finally,
I compare these effects to those triggered by structural modifications of
the webgraph.

5



1. Introduction

Start

A

B

Target

Figure 1.2.: Illustrative Decentralized Search Example. The figure
depicts an exemplary step during a typical decentralized search
process. In the presented scenario the algorithm—a search
agent—aims to navigate from the “Start” node to the “Target”
node in as few steps as possible. The difficulty of this task
lies in the information available to the agent. In particular, it
does not have access to global information about the structure
of the system. Thus, only local information can be exploited.
In the first step, the search agent has to decide whether to
move forward to node “A” or “B”, since these two nodes are
the only ones accessible over a direct link from its current
position. To decide which way to take, the agent exploits
two different sources of available, local information: (i) the
popularity of each neighboring node (represented by the node
size) and (ii) the similarity of each neighboring node to the
target (represented by node color). Hence, node “A” depicts a
popular node, whereas node “B” is more similar to the target
node. Depending on which of the two properties the search
agent relies its decision on, it will greedily move forward to
either “A” or “B”. Because of this property, the algorithm is
classified as a deterministic algorithm. Independent of the
information source, the algorithm does not know which of
the two options minimizes the distance to the target most.
Consequently, the algorithm can not ensure that the decision
it makes is optimal.
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1.3. Models of Human Navigation on the Web

A well-known model of human navigation on the Web is decentralized
search [Kleinberg, 2000a; Adamic et al., 2001; Helic et al., 2013]. This model
builds upon the fact that during a navigation session, global information
about the network is usually not available. Examples of such conditions
include, but are not limited to, huge networks for which even state-of-the-
art hardware is not able to provide global information, such as the shortest
path between all pairs of nodes. Another example of such a situation is
constituted by networks which exhibit a constantly changing structure,
such as peer-to-peer networks or online social networks. In those case,
it is impossible to provide accurate, global information about the entire
structure of such networks. Consequently, there exists no possibility to
create a centralized search engine which would enable immediate access
to nodes. To tackle this problem, search algorithms implemented in such
environments have to exploit local information to be able to perform search
tasks efficiently.

In practice, humans face a similar problem while navigating the Web. In
particular, the sheer number of webpages available on the Web and its
constantly changing structure, make it impossible for them to memorize
the entire webgraph. Thus, web users have to rely on information readily
available to them, namely the information provided locally by the current
webpage.

In general, humans and algorithms tackle such situations by utilizing
a decentralized search approach. They first collect information about
neighboring webpages and then use it to decide which link to click on next.
Subsequently, they repeat this procedure till they either find the page they
were looking for (i.e., target page) or decide to stop searching. Commonly
exploited information in this process are (i) homophily (e.g., any kind
of similarity to the target page [Pirolli, 1997; Kleinberg, 2000a]) and (ii)
popularity (e.g., number of incoming and/or outgoing hyperlinks [Adamic
et al., 2001; West and Leskovec, 2012a]). Figure 1.2 illustrates an exemplary
step of such a process.
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In the case of human navigation on the Web, available local information
consists of a mix of background knowledge and intuitions associated with
a link’s anchor text (i.e., the text which represents a hyperlink on a
webpage). By analyzing click trails, researchers discovered that humans
who navigate through an online encyclopedia base their decisions about
where to navigate next in the initial phase of a session mostly on the
popularity of neighbors. After this so-called “zoom-out” phase humans
start to rely more on the similarity between neighboring pages and the
information they are searching for. This second phase is often referred to
as the “zoom-in” phase [Helic, 2012; West and Leskovec, 2012a].

Another characteristic of human navigation is, that the human link se-
lection process—the process in which they decide which link they will
click on next—involves a large degree of randomness [Helic et al., 2013].
Consequently, the process is stochastic, meaning that the same situation
can lead to different results for repeated runs. This is in stark contrast
to decentralized search, where the same situation always leads to the
same outcome (i.e., it is deterministic). To account for the randomness
involved in human navigation on the Web, accurate models need to include
stochastic procedures [Helic et al., 2013]. The simplest example of such a
non-deterministic model is the so-called “random walk”.

In a random walk model an agent—the “random surfer”—selects the next
link to traverse uniformly at random out of all outgoing links. This step is
repeated until the agent reaches the target node or it stops searching due
to a predefined number of maximally allowed steps. Despite the model’s
simplicity, it provides a strong baseline for search algorithms. Furthermore,
this model provides the basis for PageRank—the famous algorithm used
by Google to rank the results of its search queries. Although it is often
assumed that the random surfer is a well-fitting, or at least sufficient,
model of human navigation on the Web, there is relatively little previous
work that proves this with empirical data [Chierichetti et al., 2012; Singer
et al., 2014b].
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1.4. Problem Statement, Objectives and General
Approach

Problem Statement. Human navigation on the Web includes many
unknown variables, such as the background knowledge and intuition of an
individual user and their effects on link selection. Consequently, predicting
the specific link a user will click on next represents a difficult task. Having
such a model of human navigation on the Web would equip website
administrators with a valuable tool to better arrange important information
on a page, or to display products in a way that enhances attention of their
customers and subsequently increases sale. Moreover, a model of human
navigation would be an important foundation to answer a multitude of
related research questions.

While the task of accurately predicting the next click is complex, more
simple models are valuable and sufficient for a range of applications.
Website administrators are often interested in estimating the distribution
of page views (i.e., the relative frequency with which a page gets visited
by users), especially when adjusting parts of the site structure or the
user interface. In practices, this is especially important in the case of
unpublished websites for which no empirical data is available yet. Likewise,
scientists can exploit these simpler models to analyze and compare page
view distributions of various empirical, or even synthetic, websites without
the need to gather real user data.

Feature selection for this modeling task is a critical part, as initially
promising variables such as the history of previously clicked links can
actually be neglected in modeling [Singer et al., 2014b]. Some human
cognitive biases, on the other hand, have been shown to strongly affect
link selection [Blunch, 1984; Joachims et al., 2005; Murphy et al., 2006;
Craswell et al., 2008; Yue et al., 2010; Dimitrov et al., 2016; Lamprecht
et al., 2016]. As an important example, the well-known position bias can
be actively exploited to steer users [Lerman and Hogg, 2014].

Based on this insight, website owners could experiment with various layouts
of their website to potentially redirect the typical whereabouts of users
and thus use biases for their advantage (e.g., increase visits to a specific
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product page). From a scientific point of view, investigating the potential
of various biases and the effects triggered by them would be an important
step towards a deeper understanding of human navigation on the Web.
This is especially true in the case of Lamprecht et al. [2015a], where the
authors present a system which recommends to reposition specific links to
improve the navigability of Wikipedia. However, research so far has only
demonstrated how we can actively manipulate the link selection process of
users but has given little insight into the consequences emerging from this
intervention. A model which incorporates various biases would thus be of
great relevance and importance for website administrators and scientists
alike.

Human cognitive biases are a prime example of an approach to influence
human navigation on the Web. However, there exist further properties
which can be capitalized on to this end. For example, it is common practice
to introduce new links to a website, such in the case of interlinking related
articles on Wikipedia or creating new friendships in online social networks.
This action has a high potential to manipulate how users explore a website
by providing new connections. Despite the frequent use of this method in
practice, the potential effects of these modifications of the webgraph have
not yet been investigated, and any potentially undesired ramifications
have not been explored.

Furthermore, it is also not clear how the manipulation of the link selection
process with biases (i.e., click biases) compares to the method of link
insertion in terms of efficiency with which users are steered. The former
action increases the probability with which users follow links towards
selected pages, while the latter creates new paths to access these pages.
Thus, both methods potentially increase user visits of the selected pages.
Consequently, knowing more about these effects would help website admin-
istrators to decide better which of the two manipulation strategies—link
insertion or click biases—possesses the higher efficiency to steer users
towards specific pages. Moreover, the answer to this question lays out the
basis for further research in the field of web science.

In summary, the effects of human biases and the comparison between
link insertion and click biases represent a scientifically interesting prob-

10



1.4. Problem Statement, Objectives and General Approach

lem with many real-world applications of utmost importance for website
administrators.

Objectives. This thesis strives to shed light on the potential effects of
click biases and to compare the consequences, implications and effectiveness
of click biases and link insertion. As a first step towards this goal, an
appropriate model of human navigation on the Web needs to be established.
Based on such a model, this thesis aims to investigate global effects of click
biases on the typical whereabouts of users on a website. Additionally, a
major part of this thesis analyzes how click biases and inserting new links
compare in terms of efficiency with which users are steered. A practically
relevant goal of this thesis is to equip website administrators with a
powerful tool that supports them in making decisions about potential
modifications to steer their visitors.

General Approach. The general approach of this thesis is based on the
random surfer model, which serves as a proxy for human navigation on
the Web. In particular, I use the stationary distribution of the random
surfer, which describes the probability of finding the random surfer on a
specific node of the webgraph in the limit of infinitely large navigational
sessions. In a first step, I validate that the selected model is a sufficiently
good approximation of human navigation on the Web, by comparing it to
empirical data gathered from an online encyclopedia. Second, I present an
approach that allows me to incorporate click biases into the model. Based
on this extend model, I utilize the models’ stationary distribution as a
proxy for the relative frequency with which a webpage gets visited by users.
This allows me to provide an in-depth analysis of effects emerging due
to various modeled biases. In the last part of this dissertation, I expand
the model with the ability to simulate link insertion, which enables me
to conduct several experiments comparing the effects of click biases to
those of link insertion. An illustrative overview of the general approach is
depicted by Figure 1.3.
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Model Validation

Model Extension to Support Click Biases

Analysis of Effects of Click Biases

Model Extension to Support Structural Modifications

Comparision of the Effects of Click Biases and Structural Modifications

Figure 1.3.: General Approach. The figure outlines steps of the general
approach of this thesis. First, I conduct experiments which
validate the random surfer as an appropriate model of hu-
man navigation on the Web. Second, I extend the random
surfer model in such a way, that it allows to incorporate click
biases. Subsequently, I analyze the effects emerging due to
various click biases. Based on insights gathered throughout
this analysis, I further improve the model’s support for click
biases. After several iterations of this two steps, this thesis
continues to extend the model further. Specifically, I enhance
the model by introducing the support of targeted structural
modifications of the webgraph. Again, I use an iterative ap-
proach to extend and analyze the model. However, in this
case, the analysis aims to compare the efficiency of click biases
and structural modification in terms of user guidance.
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1.5. Research Questions

In this thesis, I utilize a model-based approach which allows me to shed
light onto various effects of human biases on typical whereabouts of users
on the Web. In the first part, I examine if the random surfer model is able
to approximate user navigation on the Web (RQ1). Subsequently, I extend
the random surfer model to examine the effects of induced biases (RQ2)
and structural modifications (RQ3). In particular, based on the results
presented in this thesis I answer the following research questions.

RQ1: Can we model human navigation using random surfers?

Problem. The Web has become an integral part of everyday life and serves
a variety of purposes. A huge, diverse population of users around the globe
uses the Web for a vast amount of reasons, such as to retrieve information,
socialize, buy goods or simply to procrastinate. When using the Web,
users base their decision about which link to follow next on assumptions
originating from their constantly varying background knowledge and their
current goals. All these variables and their complex interactions make
the prediction of how a specific user will navigate the Web a hard task.
What makes this task even more complicated is, that human navigation
on the Web has been shown to include a large degree of uncertainty (i.e.,
randomness). However, for many tasks it is sufficient to know the relative
frequency with which a page gets visited by users, such in the case of
estimating which page will receive most attention of users.

Approach. To tackle this research question, it is necessary to compare
empiric page views to those generated by the model under investigation.
In particular, in Geigl et al. [2015] we incorporate empiric transition
probabilities (i.e., relative frequencies with which humans follow outgoing
links of a webpage) stemming from an online encyclopedia into the well-
known random surfer model. Subsequently, we measure the correlation
between the stationary distribution of the unmodified random surfer and
the random surfer which acts according to the empiric data. Based on the
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observed correlation, we then determine whether or not the random surfer
is a valid model of human navigation on the Web.

Findings and Contributions. To answer the research question, we present
an intuitive method to compare models of human navigation to actual
humans browsing the Web [Geigl et al., 2015]. We find that on a macro-
scopic scale (i.e., distribution of page views) the random surfer exhibits
strong similarities to empirical user data. However, these commonalities
diminish as soon as humans use search engines while navigating the Web.
The reason for this is that search engines allow users direct access to
the page they are searching for. Consequently, pages on the top of a
website’s hierarchy (e.g., home page) receive fewer views, while specific
pages, which are typically further down in the hierarchy, get visited more
frequently.

RQ2: How can we model navigational biases of humans?

Problem. Although we know that the link selection process of humans is
influenced by cognitive biases such as the position of links [Blunch, 1984;
Joachims et al., 2005; Murphy et al., 2006; Craswell et al., 2008; Yue et al.,
2010; Dimitrov et al., 2016; Lamprecht et al., 2016], we still do not know
how such biases affect the typical whereabouts of users on the Web. In
other words, we know that, for example, by altering link positions, we
can actively manipulate a user’s decision about which link to click on
next [Lerman and Hogg, 2014]. However, the macroscopic effects caused
by such modifications are still unknown.

Approach. In Geigl et al. [2015] we have shown that the random surfer
model is, from a macroscopic point of view, capable of mimicking human
navigation on the Web. To tackle this research question, we use a mod-
ification of the random surfer model to examine the potential effects of
biases affecting the link selection process. In particular, we simulate biases
towards popular, unpopular, similar, and dissimilar pages on empirical
webgraphs. Subsequently, we provide and in-depth analysis of global effects
triggered by these biases [Geigl et al., 2016b].
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Findings and Contributions. The first contribution is the formalization
of a solid theoretical framework which allows to analyze consequences of
navigational biases on the browsing dynamics of humans. In particular, we
investigate changes in visit probabilities of specific webpages of a website.
Applying this approach to several empirical datasets, we find that, contrary
to undirected networks [Sinatra et al., 2011], on (directed) webgraphs all
biases under investigation increase the certainty of the random surfer
when selecting a link. Additionally, we observe significant side effects of
certain biases. These effects suggest that administrators should carefully
decide whether or not to exploit a bias to actively steer users on their
website. Furthermore, these severe side effects underline the value of our
approach, which is, that it allows for an offline evaluation of several types
of biases.

RQ3: How do navigational biases compare to structural
modifications of networks?

Problem. In Geigl et al. [2016b] we have shown that manipulated transi-
tion probabilities of existing links (i.e., click biases) drastically influence
the relative frequency with which humans visit pages of a website. In that
case, we did not alter the underlying link structure of the website in any
way. However, structural modifications of webgraphs is a common practice,
such in the case of creating new friendships in online social networks or
interlinking related Wikipedia articles. Yet, the emerging effects of this
action have not been investigated until today.

Approach. To find an answer to this question, we base our approach
on the insights obtained in Geigl et al. [2015]. Specifically, we utilize
the random surfer as a valid model of human navigation. In a next
step, we randomly pick subsets of pages (i.e., target sets) of several
websites. Subsequently, our aim is to increase visit probabilities of the
pages contained in these sets. Furthermore, we want to determine which
of the two manipulation strategies under investigation—link insertion
or click bias—should be preferred over the other in terms of efficiency
of steering the random surfer. As a first stepping stone towards this
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goal, we present a method that allows us to compare the performance
of both strategies in a fair manner. Afterward, we apply this method to
several empirical webgraphs to examine which of the two manipulation
strategies is more efficient in increasing the visit probabilities of the target
set. Additionally, we vary the size of the target set to investigate whether
or not the performance of any of the two strategies is influenced by this
variable [Geigl et al., 2016a].

Findings and Contributions. From a methodological point of view, we
present a novel approach for measuring and fairly comparing the potential
of click biases and link insertion. We find that, depending on the size of
the target set, the optimal link modification strategy varies. In particular,
for smaller sets of target pages, link insertion constantly outperforms
click biases. This observation is especially prominent in the case in which
the set of target pages consist mainly out of pages with almost no visits
in the initial unmodified state. However, with an increasing number of
target pages, click biases become progressively more efficient and start
to outperform link insertion strategies. These findings can aid website
administrators in their decision about which method to pick, based on
their current situations and goals. Additionally, the generality of the
presented framework makes it easy for website administrators to test their
scenario in an offline simulation. The simulation tool can be adapted and
extend by anyone as it is available as open-source on GitHub3.

1.6. Main Publications

This cumulative thesis consists of the following three publications:

• Article 1: [Geigl et al., 2015] Geigl, F., Lamprecht, D., Hofmann-
Wellenhof, R., Walk, S., Strohmaier, M. and Helic, D. (2015). Ran-
dom Surfers on a Web Encyclopedia. 15th International Conference
on Knowledge Technologies and Data-driven Business

3https://github.com/floriangeigl/RandomSurfers
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1.7. Further Publications

• Article 2: [Geigl et al., 2016a] Geigl, F., Lerman, K., Walk, S.,
Strohmaier, M. and Helic, D. (2016). Assessing the Navigational Ef-
fects of Click Biases and Link Insertion on the Web. 27th Conference
on Hypertext and Social Media

• Article 3: [Geigl et al., 2016b] Geigl, F., Walk, S., Strohmaier,
M. and Helic, D. (2016). Steering the Random Surfer on Directed
Webgraphs International Conference on Web Intelligence

1.7. Further Publications

Furthermore, I contributed to the following publications during my time
as a PhD student:

• Journal 1: [Walk et al., 2016] Walk, S., Helic, D., Geigl, F. and
Strohmaier M. (2016). Activity Dynamics in Collaboration Networks.
ACM Transactions on the Web

• Journal 2: [Hasani-Mavriqi et al., 2016] Hasani-Mavriqi, I.,
Geigl, F., Pujari, S., Lex, E., and Helic, D. (2016). The Influence
of Social Status and Network Structure on Consensus Building in
Collaboration Networks. Social Network Analysis and Mining

• Article 1: [Hasani-Mavriqi et al., 2015] Hasani-Mavriqi, I., Geigl, F.,
Pujari, S., Lex, E., and Helic, D. (2015). The Influence of Social Sta-
tus on Consensus Building in Collaboration Networks. International
Conference on Advances in Social Networks Analysis and Mining

• Article 2: [Lamprecht et al., 2015a] Lamprecht, D., Geigl, F., Karas,
T., Walk, S., Helic, D., and Strohmaier M. (2015). Improving Recom-
mender System Navigability Through Diversification: A Case Study
of IMDb. 15th International Conference on Knowledge Technologies
and Data-driven Business
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• Article 3: [Helic and Geigl, 2015] Helic, D. and Geigl, F. (2015). Im-
portance of Network Nodes for Navigation with Fractional Knowledge.
38th International Convention on Information and Communication
Technology, Electronics and Microelectronics

• Workshop Article 1: [Ambite et al., 2017] Ambite, J., Lerman,
K., Fierro, L., Geigl, F., Gordon, J. and Burns, G. (2017). BD2K
ERuDIte: The Educational Resource Discovery Index for Data
Science 4th WWW Workshop on Big Scholarly Data

• Workshop Article 2: [Geigl and Helic, 2014] Geigl, F. and Helic,
D. (2014). The Role of Homophily. 2nd International Workshop on
Dynamic Networks and Knowledge Discovery

• Poster 1: [Geigl et al., 2017] Geigl, F., Moik, C., Hinteregger, S. and
Goller, M. (2017). Using Machine Learning and RFID Localization
for Advanced Logistic Applications. 11th Annual IEEE International
Conference on RFID

1.8. Contributions and Implications

The major scientific contribution of this thesis consists of an extension of
the well-known random surfer model, enabling researchers to easily and
intuitively formalize click biases and link insertion. From an empirical and
practical point of view, I apply this method to several real-world scenarios
and provide subsequent actionable insights for website administrators on
how to efficiently guide their users.

Specifically, this thesis makes the following contributions:

• First, I use empirical data to validate that, on a macroscopic scale,
the random surfer is a valid model of human navigation on the Web.

• Second, I extend the well-known random surfer model in such a
way, that it is capable of mimicking the effects of (i) several types of
biases, and (ii) structural changes made to the underlying network
structure. Furthermore, the presented extension of the model enables
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us to compare the two presented manipulation strategies in a fair
manner.

• Third, I design a model that can be used for various scenarios.
Specifically, I contribute a solid theoretical framework for further
theoretical, empirical and practical analyses of human navigation on
the Web.

• Fourth, from a practical point of view, I create an open-source tool
that aids website administrators in the offline evaluation of several
user-steering strategies. Furthermore, the presented tool can notify
its users (e.g., website administrator) about probably unintended
side effects potentially arising due to a specific manipulation strategy.

The results of this thesis indicate that exploiting human biases to manipu-
late the link selection process leads to drastic changes in the distribution
of visits over the pages of a website. I find that due to some specific biases,
such as the bias towards popular webpages, unforeseen and thus potentially
unintended side effects may arise. Website administrators should be aware
of these likely unwanted effects. Concerning the comparison between click
biases and link insertion to efficiently steer humans on the Web, I find that,
based on a few simple characteristics of a situation, there exists a rule of
thumb about which manipulation strategy to prefer over the other.

1.9. Structure of this Thesis

The remainder of this thesis is structured as follows: In Chapter 2 I sum-
marize the most relevant related work for this thesis . An important part
of this is the concept of network search algorithms discussed in Section 2.1
and models of human navigation on the Web outlined in Section 2.2. A
short overview of factors which are known to influence the link selection
process of humans is given in Section 2.3. The central part of this cumula-
tive thesis is Chapter 3, which includes all main publications as listed in
Section 1.6. My personal contributions to each of those publications are
described in Section 3.1, whereas detailed answers to the research questions
tackled by this dissertation and the consequential findings are explained
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in Section 4.1. Table 1.1 lists the main publications, their related research
questions, topics, and main contributions. Additionally, Figure 1.4 pro-
vides the reader an illustrated structural overview of the research questions
as well as the interdependencies between them. Implications and potential
applications of the presented results are discusses in Section 4.2, whereas
known limitations of this work are explained in Section 4.3. Finally, the
last section of this thesis, Section 4.4, describes ideas and potential avenues
for future work.

RQ 1: Can we model human navigation using random surfers?
Article 1 [Geigl et al., 2015]

RQ 2: How can we model navigational biases of humans?
Article 3 [Geigl et al., 2016b]

RQ 3: How do navigational biases compare to 
structural modifications of networks?

Article 2 [Geigl et al., 2016a]

Figure 1.4.: Structure of This Thesis. This figure provides a structural
overview of the research questions this thesis is tackling. It
shows that the answer to the first research question—RQ 1—
lays out the foundation for the other two research questions. In
particular, it tackles the question whether or not the random
surfer model can mimic human navigation on the Web. In a
next step, to answer the question if and how we can model
navigational biases of humans navigating the Web (RQ 2), I
extend the random surfer model in such a way that it allows
me to incorporate various biases. Subsequently, in RQ 3 I
investigate and compare manipulation strategies regarding
their efficiency in steering humans on the Web.
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Table 1.1.: Tabular Overview of the Main publications. This table gives an overview of all publications, their
scientific contributions and connection to the tackled research questions.

Article RQ Topic Main Contributions

Article 1
[Geigl et al., 2015] RQ 1 analyzing models of human naviga-

tion on the Web

Validating the random walk as an appropriate
model of human navigation on the Web from a
macroscopic point of view.

Article 2
[Geigl et al., 2016a] RQ 2

exploring the effects of click biases
onto the random surfers’ typical
whereabouts

Formalization of an approach to analyze conse-
quences of navigational biases on the visit prob-
abilities of specific pages of a website. Providing
a solid theoretical model for further theoretical,
empirical and practical analysis of human nav-
igation on the Web. Applying the approach to
empirical datasets to improve our understanding
of the effects triggered by different biases.

Article 3
[Geigl et al., 2016b] RQ 3 comparison of click bias and link in-

sertion

Formalization of an approach to make click bias
and link insertion comparable in an equitable
manner. Utilizing the approach to evaluate both
manipulation strategies on empiric datasets.
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2. Related Work

In this chapter, I provide an overview of topics related to this thesis.
A major part of the presented work is based on the concept of various
search algorithms, which I briefly discuss in Section 2.1. In general, we
categorize search algorithms into two groups. First, decentralized search—
a deterministic model in which a search agent navigates through a network
by greedily exploiting local information—and second, stochastic models—
models that include any kind of randomness. Work related to the former
model I discuss in Section 2.1.1, whereas models belonging to the latter
are summarized in Section 2.1.2. Finally, in Section 2.2 I give a brief
overview of how humans typically retrieve information from the Web, and
how deterministic and stochastic navigation models have been used so
far to imitate this process. Last but not least, in Section 2.3 I review
literature dealing with biases that influence the link selection process of
humans.

2.1. Network Search Algorithms

The goal of network search algorithms is to find a target node in a network
by just traversing over existing edges. For evaluation of such algorithms
pairs of randomly picked start and target nodes are passed to the algorithm.
In the next step, the algorithm tries to find paths between each of the
received pairs of nodes. Finally, the performance of the algorithm is
measured as the so-called delivery time—that is the number of hops the
algorithm needed to reach the target node.
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2.1.1. Decentralized Search

Decentralized search algorithms try to solve this problem by greedily
exploiting knowledge locally available to them. Hence, these algorithms
can be categorized as deterministic models. Typical information locally
available to these algorithms includes, for example, the neighboring nodes’
popularity and/or similarity to the target node.

Kleinberg was the first scientists who conducted experiments investigating
the importance of homophily (i.e., the probability that, based on the
similarity between two nodes, there exists a direct link connecting them)
for decentralized search [Kleinberg, 2000a,b, 2001]. In particular, he
developed an efficient search algorithm for small-world networks that
exploits information of the neighboring nodes’ degree. Informally, the
term “small-world networks” refers to networks in which the path lengths
between all pairs of nodes is exponentially smaller than the number of
nodes. In experiments conducted by Kleinberg [2000a] the author has
used a slightly modified version of the well-known Watts and Strogatz
model [Watts and Strogatz, 1998].

In particular, instead of starting out with a ring layout as in the original
model, Kleinberg’s method starts with a two-dimensional lattice. Addi-
tionally, the links within the model are directed, meaning that they can
only be traversed in one direction. Moreover, Kleinberg introduced a new
parameter p with which he manipulated the process of randomly inserting
edges. Specifically, in the original Watts and Strogatz model nodes located
next to each other on the underlying circular layout have been connected
to each other. However, in Kleinberg’s modified version we can connect
some randomly picked nodes by setting p to a value higher than zero. For
example, setting p = 1 results in a random graph in which each node
becomes, independent of the ring layout, randomly connected to another
node of the network.

To consider the distance between two nodes on the underlying lattice,
Kleinberg’s modified version of the Watts and Strogatz model includes
another new model parameter named r. This parameter allows to ma-
nipulate the likelihood of connecting two nodes in such a way, that it

24



2.1. Network Search Algorithms

is proportional to the distance of these two nodes on the lattice. In his
work, Kleinberg referred to the distance on the lattice as the geographic
distance or lattice distance. Mathematically, he defined this distance d(u, v)
between two nodes u and v as the Manhattan distance between them on
the underlying grid. Consequently, the probability of creating an edge
from node u to v is proportional to d(u, v)−r. To obtain a probability
distribution Kleinberg normalized this value by the appropriate constant∑
v d(u, v)−r. Thus, setting r to zero results in the original Watts and

Strogatz model, whereas with increasing value of r the insertion of links is
biased towards pairs of nodes possessing a smaller lattice distance to each
other. In other words, r controls how widely “networked” the underlying
society of nodes is.

Utilizing this network generation method, Kleinberg investigated how well
homophily, modeled as the lattice distance, can be exploited to efficiently
solve search tasks in the network. Specifically, the information available to
his search algorithm is the distance to the target node from (i) the current
node, (ii) all its neighbors and (iii) all previously visited nodes. Based on
this knowledge, the algorithm greedily navigates to the neighbor node that
minimizes the lattice distance to the target. Exploring different values for
r, Kleinberg found that with increasing values the algorithm is able to
better exploit the geographic distance, while at the same time, long-range
connections become less useful. Consequently, there exists a sweet spot for
which the trade-off is optimal for the algorithm. In particular, Kleinberg
has showed that this sweet spot is located at r = 2. Thus, Kleinberg
stated the following Theorem:

Theorem 1 There is a decentralized algorithm A and a constant α, inde-
pendent of the number of nodes, so that when r = 2 and p = q = 1, the
expected delivery time of A is at most α(logn)2.

Consequently, the presented algorithm based on homophily is particularly
efficient in terms of delivery times in networks exhibiting a clustering
exponent r = 2. In a next step, Kleinberg demonstrated that this property
generalizes to networks generated on a d dimensional grid if the clustering
exponent is set to r = d.
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In the same year, Adamic et al. [2001] examined another important prop-
erty for efficient decentralized search processes, namely the degree of
neighbors. In particular, Adamic argued that in peer-to-peer file sharing
networks (i.e., ad-hoc networks), the name of the file one is searching for is
known. However, the location of the peer holding the file is unknown until
we execute a real-time search. Consequently, during the search process, it
is not possible for the algorithm to determine whether or not a certain step
reduces the distance to the target peer. The naive approach implemented
in such peer-to-peer networks was to perform a breadth-first search. Specif-
ically, the algorithm asks all neighbors if they have the file, and if not,
they should ask all their neighbors and so forth and so on. With the aim
of improving this process, Adamic started out by comparing several search
algorithms which made use of the knowledge that the degree distribution
of such networks follows a power-law distribution [Kan, 2001].

Analyzing this property, she found, that despite the natural gravity of
simple random walks towards high degree nodes, an explicit bias towards
high degree nodes increases the performance drastically. In particular,
Adamic numerically integrated the expected degree of the richest node
among all neighbors and plotted the ratio between the degree of a node
and the expected degree of the richest neighbor. For low degree nodes, the
probability of having a connection to a node exhibiting a higher degree is
very high. However, this probability drops when the node’s degree increases.
The exact point at which the probability of having high degree neighbor
drops, is strongly dependent of the power-law exponent τ of the network’s
degree distribution. Thus, Adamic stated that to increase the efficiency
of the search processes the algorithm should simply follow the degree
sequence. In other words, the algorithm navigates towards the highest
degree neighbors till it reaches the highest degree node of the network.
Subsequently, by avoiding the highest degree node, it navigates towards
nodes exhibiting approximately the second highest degree. Consequently,
the algorithm quickly climbs towards the network’s highest degree node
followed by navigating down the degree sequence. However, Adamic also
showed that this procedure only works if the network is sufficiently small,
or if the power-law exponent of the degree distribution is close to 2 (i.e.,
2 < τ < 2.3). Moreover, she proved that this is the most efficient way
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to perform this type of sequential search [Adamic et al., 2001]. Precisely,
she has found out that, the number of hops needed to find randomly
picked targets in a power-law network scales sub-linearly with its number
of nodes.

Based on the experiments conducted by Adamic and Kleinberg, the logical
next step has been to combine both algorithms to create an even better
one. Simsek and Jensen [2005] investigated this performance increasing
opportunity. In their work, they formulate the search task as a decision-
making task under uncertainty, in which the target is to minimize the
expected path length l to the target. Furthermore, Simsek and Jensen
define the expected path length luv from neighbor u to the target node v
as the following series:

E(luv) =
∑
∀i
iP (luv = i) (2.1)

Subsequently, they approximate the entire series by calculating just the
first two terms under the assumption that the algorithm has access to the
following information: (i) a list of already visited nodes, (ii) properties,
such as degree and all attributes which are necessary to calculate the
similarity between neighbors and the target node, and (iii) the relationship
between the probability of observing a link and the similarity feature (i.e.,
homophily). In their paper they argue that the first two terms of the
series denoted in Equation 2.1 capture enough information because they
do not need to know the exact value of the estimation—only which of
the neighbors possess the highest one. The estimation becomes zero if
one of the neighbor nodes is the target node, whereas the second term of
the series becomes zero if the neighbor has been visited previously. The
latter is the case because previously visited nodes cannot have a link to
the target—otherwise the algorithm would have found the target the first
time it visited that node. In summary, we can explain the algorithm as
following: If one of the current neighbors is the target node, navigate to
it. Otherwise, navigate to the neighbor having the highest probability of
being directly connected to the target node. Simsek and Jensen called this
method expected-value navigation—or short EVN.
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A nice property of EVN is, that if the algorithm has no information about
the network’s homophily, it reduces to the algorithm proposed by Adamic
et al. [2001]. On the other hand, if no degree information is available
EVN behaves equally to the algorithm introduced by Kleinberg [2000a].
Consequently, the algorithm performs at least equal to Adamic’s as well as
Kleinberg’s algorithm. Please note that this algorithm is still deterministic
as it does not involve any randomness.

2.1.2. Stochastic Search Models

Contrary to the algorithms reviewed in the last section, the following
section deals with non-deterministic—stochastic—search models. The
most simple and basic model belonging to this category is the random
walk. In this model, an agent navigates the network by randomly traversing
links until it finds the node it was looking for [Lovász, 1993; Woess, 1994].
Although that this is a very simplistic model, it proves to be a strong
baseline for network search and lays out the basis for further research
in the area of stochastic search models. Moreover, this model influenced
many other areas of network science. For example, Blum et al. [2006] has
based his webgraph generation model on random walks. Beside of that,
in the area of community detection in networks, the random walk plays
an important role [Pons and Latapy, 2005; Rosvall and Bergstrom, 2008;
Zlatić et al., 2010]. In that case, scientists counted how often the random
surfer traversed each link of the network. Many community detection
algorithms are then based on the fact that nodes belonging to the same
community are strongly interlinked to each other, whereas nodes outside
of the community do not exhibit as many links to nodes of the community.
In general, this characteristic represents the definition of communities in
networks. Consequently, if the random surfer visits a node belonging to
a certain community, it will most likely visit another node of the same
community next, since most outgoing links point towards nodes belonging
to the same community. Thus, frequently visited links indicate that the
nodes connected by this link belong to the same community. Certainly,
the opposite is also true.
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Probably the most famous application of the random surfer has been
presented in 1999, when Page and Brin [Brin and Page, 1998; Page et al.,
1999] used the model to rank nodes of a network regarding their importance.
The algorithm became famous under the name PageRank and was the
foundation of Google, which is at the time of writing one of the largest and
highest valued companies of the world. Page and Brin had the random
surfer navigate the network for a very long time without a particular target.
To avoid dead ends (i.e., nodes with incoming but not outgoing links)
during the navigation, they introduced teleportation. This method allows
the model to jump in each step with a small probability to a randomly
picked node of the network. While the model was navigating the network,
they counted how often each node gets visited by the random surfer. Based
on these counts, Page and Brin calculated the probabilities for all nodes
of being the one visited next by the random surfer. After letting the
random surfer navigate long enough through the entire network, those
probabilities converge to a state in which every node possesses a visit
probability strictly higher than zero. By setting the model’s teleportation
probability to zero, this probability distribution over nodes becomes equal
to the stationary distribution of a simple random walk. After applying this
algorithm to webgraphs of the entire Web, Brin and Page used the derived
probability distribution as a proxy for a website’s popularity. Subsequently,
they exploited this measure to rank the results of their web search engine.
Indeed, this turned out to be an excellent idea.

At approximately the same time when Page and Brin invented PageRank,
Kleinberg [1999] came up with a very similar idea of ranking nodes of a
network. He called his algorithm HITS. Kleinberg’s algorithm was able
to rank nodes based on two properties: hubs and authorities. The former
property is high if a node points towards many nodes that have a high
authority. On the other hand, the authority value of a node is high, if many
nodes that exhibit a high hub value link towards them. As a consequence
of this definition, these two properties are directly dependent on each other.
Thus, we need to calculate them in parallel. In particular, in the initial
phase, the algorithm assigns each node a hub and an authority value of
exactly 1. In the next step, the algorithm updates the authority values of
all nodes by summing up the hub values of all neighbors pointing towards
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them. After that, HITS calculates the hub values of all nodes by summing
up the authority values of all outgoing neighbors (i.e., neighbors to which
they have an outgoing link). Subsequently, the algorithm normalizes
both measurements and starts over by calculating the authority values.
This process HITS repeats until both measurements, namely the hubs
and authorities vectors, converge. Although this algorithm seems more
sophisticated than the one Page and Brin came up with, it never became
as famous as PageRank did.

Overall, both methods were not intended to perform network search tasks
efficiently, but rather to exploit the random surfer to generate rankings
of nodes of a network. To examine the performance of stochastic search
models we have evaluated such models in our own previous work [Geigl
and Helic, 2014]. In particular, we conducted experiments in which we
measured the performance of an algorithm, that bases its decision about
where to navigate next on a convex mixture of homophily and popularity.
Based on these mixtures, the algorithm weighted randomly picked the
link to traverse next. While experimenting with various weightings of the
two information sources used to calculate the convex mixture, we found
that a ratio of 9 : 1 of homophily and popularity respectively performs
best. Our explanation for this finding is as following: At the beginning of
each search task, it is unlikely that any neighbor exhibits a high similarity
to the target node. Consequently, in that case, the homophily feature
distribution over neighbors is similar to a uniform distribution. However,
it seems that already minor information about popularity can help to
steer the agent towards high degree nodes faster. Being on such a high
degree node, it is very likely that at least one of the neighbors exhibits
a high similarity to the target node. Thus, thenceforward homophily
becomes more valuable than information about popularity. Based on this
observation, we introduced a dynamical switch which changes the weights
of the two features during the navigation. In particular, the agent starts
by relying solely on the feature describing the popularity of neighboring
nodes. However, as soon as it observes a small entropy in the homophily
feature of neighbors (i.e., some neighbors are significantly more similar to
the target than the others) it omits the influence of popularity and bases
its decision solely on homophily. In experiments which we have conducted
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on various empirical datasets, we observed that this method was able to
outperform all the others examined in our work.

2.2. Search Algorithms Modeling Human Navigation

In the last section, we saw that we can utilize both, deterministic and
stochastic, models to solve network search tasks efficiently. However, in
practice, humans often perform such search tasks on their own. The
following section reviews how humans usually navigate and retrieve infor-
mation from the Web and by which search algorithms this process has
been modeled so far. In the first part, I give a broad overview of the
computational cognitive models used in the literature. Subsequently, I
outline how deterministic (i.e., decentralized search) and stochastic (i.e.,
random surfer) models have been used to model this process.

2.2.1. Human Information Retrieval

A famous model which describes human information retrieval is called
information foraging [Pirolli, 1997; Pirolli and Card, 1999]. Pirolli intro-
duced this model in the late 90’s. He based his idea on observations he
made in nature. In particular, he took a look at how animals search for
food. He stated, that animals that, for example, mostly consume cherries
as food, have to decide for how long they stay at a certain tree eating
its berries before they move on to the next one. The animals’ decision
whether or not to move on to the next tree is based on the number of
remaining berries on the tree they are currently consuming food from.
As the tree’s berries get fewer and fewer—because of the animals eating
them—there comes the point where there are still some berries left on the
tree but it might take too long to find them. Hence, it makes sense to
move on to the next tree which carries berries to abound. From the point
of view of process optimization this means, that animals are minimizing
the time it takes them to eat as many berries as possible, which, of course,
makes sense as they would die without eating enough.

31



2. Related Work

We can transfer the concept behind this process directly to information
retrieval of humans on the Web. In particular, in 2001 Chi et al. [2001]
assumed that humans are guided by the so-called information scent. This
means that they have an expectation of which information will be available
on a certain webpage, based on information available to them prior to
visiting the site (e.g., title of a webpage or the anchor text of a link towards
the page). Subsequently, humans decide whether or not it makes sense for
them to forage this particular webpage for information. In the case they
decide to not follow the link, they continue searching for another webpage
having a high probability of containing information they are looking for,
based on the information scent. On the other hand, if they visit the page,
they start to collect information. Subsequently, as the type of information
satisfying their needs becomes sparse, there comes the point at which they
decide to move on to the next webpage.

Later, Fu and Pirolli [2007] successfully have used the idea of information
scent to create the so-called SNIF-ACT. The abbreviation stands for
“Scent-based Navigation and Information Foraging in the ACT cognitive
architecture”. The aim they pursued with this model was to predict as
accurately as possible the outcome of the link selection process of humans.
In other words, they wanted to forecast which links humans click on next.
However, the SNIF-ACT models navigation between webpages, which is
why other researchers started to examine models of inter page navigation.
Soon, Kitajima et al. [2000] invented CoLiDes—Comprehension-Based
Linked Model of Deliberate Search—which accurately modeled the inter
page navigation of humans. Later, researchers combined both models and
further included information about webpages visited previously by users
with the aim to increase the accuracy with which they could predict the
next click of a human surfing the Web [Juvina et al., 2005; Kitajima et al.,
2007].

Beside of information foraging, scientists also examined other phenomena
observed in nature to model human information retrieval. In particular,
as berries do not only grow in bunches (e.g., on trees) there also exists a
model which assumes that they grow on bushes. The important difference
is that on bushes there is not a single particular place where one finds a
bunch of berries, but rather they can be found distributed over larger areas.
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Consequently, one has to constantly and dynamically adapt where to look
next to find more berries. The cognitive model describing this process re-
garding human information retrieval is suitably called berrypicking [Bates,
1989].

Another model of human navigation on the Web is called orienteer-
ing [O’Day and Jeffries, 1993]. The model itself is to some extent similar
to berrypicking. It describes the process of humans looking for information
on the Web as a session dependent process. In other words, they pick only
the most relevant information before they move on to the next webpage
which probably looks at the same topic from a different angle.

Nevertheless, all those models are complex and thus computationally
expensive. Furthermore, to be able to conduct experiments with them, one
needs to have access to a vast amount of data (e.g., user sessions, webpage
content). The complexity of these models, which further makes them hard
to interpret and extend, and the need for appropriate empirical data were
the reasons why I did not consider them in my thesis as models for human
navigation. Moreover, it turned out that simpler models mimic human
navigation on the Web accurately enough for the experiments conducted
for this thesis [Geigl et al., 2015].

2.2.2. Decentralized Search

The idea to model human navigation behavior by using decentralized search
algorithms started out with a nowadays famous experiment conducted
by Stanley Milgram in 1969 [Travers and Milgram, 1969]. He came up
with the idea of letting people forward letters through the United States
of America with the purpose of investigating how humans perform on this
task. In particular, he asked a few randomly picked people living in Omaha,
Nebraska and Wichita, Kansas to forward a letter to a stockbroker living
in a suburb of Boston, Massachusetts. Those cities he chose purposefully
because they were considered especially distant regarding their geography
as well as socially. Each of the randomly picked persons received a letter
asking them to participate in the study. Furthermore, they were asked
whether they knew the stockbroker by first-name and if so they could
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directly forward the letter to him. The rest, all participants who did
not know the stockbroker personally, were asked to send the letter to
one of their friends of whom they tough that she or he might know the
stockbroker by first-name, or at least has a friend who does know him
personally. Conceivably, it took a while until the first letters finally made
it to the target person living in Boston. The remarkable result of the
experiment was that the average number of forwards till the letter finally
reached the stockbroker was less than six. Based on this result the famous
“Six-degrees of separation” phenomena was discovered. It states that every
person living in the United States of America is, on average, separated
by just 6 persons to everyone else. The experiment also emphasized how
efficient humans are in routing information (e.g., in the form of a letter)
across their social network of which they only possess local and thus,
compared to the entire network, very limited knowledge. These findings
have been validated again in a study conducted in 2003 by Dodds et al.
[2003].

Furthermore, Leskovec and Horvitz [2008] examined this phenomenon in
a slightly more modern experiment in which they measured the average
length of connection chains between users of an online messaging network.
They found out that in this huge network, which consists of millions of
users, the average connection chain between two randomly picked users
was only 6.6.

In 2012, Helic [2012] analyzed click trails of users playing a game on
Wikipedia in which they were challenged to navigate from a randomly
picked article to another randomly selected article with as few clicks as
possible. Please note that this is the same target function which the
decentralized search algorithms presented in Section 2.1.1 are trying to
minimize. Back then the English Wikipedia consisted of around 10 million
articles connected through roughly 250 million links. Helic found that,
despite the vast amount of pages available on Wikipedia, human navigation
patterns were similar to those observed in the experiment conducted by
Milgram. Remarkably, the average path length was just 6.27—suggesting
that certain commonalities exist between navigation of humans in social
and information networks. Furthermore, this result again underlines how
efficient humans can navigate through network-based systems.
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Based on all those fascinating insights scientists began to examine char-
acteristics of humans navigating the Web. One direction in this field of
research has been to estimate the teleportation probability of humans
while they were surfing the Web. In this case, teleportation represents
the action of manually typing in a web address or clicking on a previously
stored bookmark. To juxtapose, we call it navigation, if a user clicks on
any link of a webpage. In 2010, Gleich et al. [2010] empirically measured
this probability by analyzing click trails of humans. They reported an
estimated damping factor (i.e., how likely a human keeps clicking on links
available on the current webpage) between 0.6 and 0.72 for the entire Web.
In other words, on the Web humans tend to click on links available on a
webpage with a probability between 60% and 72%, whereas they teleport
to any other page with a probability between 28% and 40%. Gleich et al.
[2010] furthermore measured the damping factor of humans on Wikipedia
and found that it was drastically less than the one observed on the entire
Web (i.e., 0.33 and 0.43). One reason for this observation might be the
way how humans access Wikipedia. Specifically, users often utilize search
engines to navigate directly to the article of interest on Wikipedia. Con-
sequently, there is no need to further navigate on Wikipedia, since users
mostly find all required information on the page suggested by the search
engine.

The results reported by Gleich et al. [2010] suggest that still a significant
amount of all clicks made by humans on the entire Web can be classified
as navigation. Hence, researchers directed their focus on the link selection
process of humans. Specifically, they were interested which factors poten-
tially influence this process. In 2012, West and Leskovec [2012a] manually
designed various features they thought would play an important role in
the link selection process of users. In a next step, they used machine
learning techniques to find out the impact of each feature on the link
selection process by fitting models to click trails of humans. The click
trails analyzed by them originated from the same Wikipedia navigation
game used in Helic [2012]. To prevent users from leaving Wikipedia or
using search engines the game embedded all articles into its own interface
which disabled all those disallowed options. By analyzing the feature
importance of their machine learning method West and Leskovec [2012a]
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found that the link selection process of humans could mostly be explained
by popularity and similarity properties of neighboring nodes. Interestingly,
those are the same characteristics used by Kleinberg [2001] and Adamic
et al. [2001] in the node finding task to outperform the simple random
surfer model.

Another study shedding light onto the process of humans navigating
complex networks was conducted in the same year by Sudarshan Iyengar
et al. [2012]. By utilizing network analysis methods, they found convincing
evidence of why humans were able to perform navigation in such networks
sufficiently efficient (but not necessarily optimal) for them. In particular,
the authors showed that after the identification of a set of landmarks
in the network, the performance in exploring it increased drastically.
Furthermore, the landmarks were identified to mostly be popular nodes.
This suggests that humans use a potentially similar method to the one
utilized by Adamic et al. [2001] to generate an efficient search algorithm.
Further evidence for this can be found in the work of Helic [2012] and
West and Leskovec [2012a]. Both studies highlighted that empirical click
trails of humans tend to include a so-called zoom-out phase in which they
mostly navigate towards popular nodes of the network.

In 2013, Helic et al. [2013] applied stochastically biased random surfers with
the purpose of modeling human navigation in information networks. They
applied well-established decentralized search algorithms which initially
were developed for social networks to information networks. Specifically,
they compared paths generated by the models to empirically observed click
trails of humans. In particular, they examined greedy, ε-greedy, softmax
rule and inverse distance rule methods. The presented greedy algorithm
consists of a search agent which strictly navigates to the neighboring node
with the shortest distance to the target. In contrast to Kleinberg [2000b]
the authors based the distance between nodes on information derived from
hierarchies extracted out of the network. They performed the extraction of
those hierarchies using the algorithm introduced in Muchnik et al. [2007].
The presented method is deterministic under the assumption that the
hierarchy is fixed and that a tie is always processed in the same way (e.g.,
fixed enumeration of neighbors and always favoring the first one exhibiting
the smallest distance). However, as human navigation potentially involves
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randomness, they presented an ε-greedy algorithm which introduces some
variance into the process. Specifically, in this method the agent reacts
greedy with a probability of 1− ε, whereas in the remaining cases it simply
performs a random walk. Helic et al. [2013] performed a parameter search
over a wide range of values for ε and determined that the one producing
most human-like paths is 0.15. In other words, the model producing paths
which exhibit the highest similarity to those of humans, performed in 15% of
all hops a random walk. While going into further detail, the authors found
that there was still space for improvement. Specifically, they found that
the link selection process of humans is especially random at the beginning
of their navigation. They conclude that users might need some time to
gain orientation in the network before they can efficiently explore it—this
observation is in line with the results presented in Sudarshan Iyengar et al.
[2012].

Nevertheless, some findings presented in Helic et al. [2013] might also
be caused by an artifact of the investigated empirical dataset (i.e., click
trails of the same Wikipedia navigation game used by West and Leskovec
[2012a]). In the game users started at an article selected uniform at random
out of a vast amount of articles available in the dataset. Hence, it is very
likely that the user has never seen the article (and the contained links)
before. Consequently, randomly clicking on any of the links might be the
action taken by the user. To account for this situation, Helic et al. invented
a new method called decaying ε-greedy which adapted ε based on the path
length. For example, the algorithm started out with ε = 0.8 and after one
hop it divided ε by 2. In that case ε would evolve with the path length as
follows: 0.8, 0.4, 0.2, 0.1 and so forth and so on. Using this algorithm they
were able to further increase the similarity of the generated paths to those
of humans. Finally, they concluded that their method produced paths
possessing characteristics which are similar to those generated by humans.
This result highlights that the process of humans navigating the Web
includes much randomness—especially if users explore new areas of the
Web (i.e., webpages they have not visited in the past). A study conducted
by Lamprecht et al. [2015b] further underlines the value of these results.
In particular, they have shown that the idea to model the background
knowledge of humans using hierarchies (i.e., ontologies) is a valid method
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to generate human-like paths on Wikipedia. Specifically, they used various
biomedical ontologies, such as the ICD-10, as the information source for
a decentralized search algorithm. The informed search agent then had
to solve search tasks on a subset of Wikipedia (i.e., all articles about
biomedicine related topics). Their findings have shown that this approach
was able to outperform simple random surfers, and more importantly, that
the paths generated by the informed search agent exhibited characteristics
similar to the one observed in empirical data.

Later, Singer et al. [2014b] were interested to what extent human navigation
is influenced by previously visited pages. Technically speaking, they
investigated whether human navigation is Markovian, meaning that the
next click of a user is only dependent on the most recent click. In their
experiments, they used several methods for model selection (i.e., to find
the appropriate order of the Markov chain). Specifically, they applied
Maximum Likelihood, Bayesian Inference, Akaike information criterion,
Bayesian Information Criterion and simple Cross Validation. In their
experiments, all methods showed a similar picture, namely that one specific
model explains the observed empirical data best. In particular, the authors
found that a Markov chain of first order fits the data best. Consequently,
the probabilities on which link users might click next are independent
of the links they had previously clicked on. This insight indicates that
stateless models (i.e., memoryless) are not only sufficient but rather the
best to go with for modeling human navigation on the Web.

To be able to explore even more hypotheses about human behavior Singer
et al. [2014a] presented a Bayesian approach capable of testing various
hypotheses against each other. The method presented in the article
allows to investigate whether specific factors may have had an influence
on humans navigating through different systems. The system to which
the authors applied this method to included, but were not limited to,
yelp—a online restaurant recommender—and last.fm—an online music
platform. In their experiments they formulated domain-specific hypotheses
which they subsequently compared to a uniform (i.e., random surfer)
hypothesis. They found that for click trails stemming from the Wikipedia
navigation game (the same data analyzed by West and Leskovec [2012a] and
Helic et al. [2013]) one such domain-specific hypothesis is more plausible
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than the one suggesting a random-walk-like behavior. In particular, the
hypothesis describing a preferred navigation over semantically related
topics was the most plausible one. This is in line with previous research
in this field [White and Huang, 2010; West and Leskovec, 2012a; Singer
et al., 2013]. Furthermore, it reflects the idea of exploiting homophily for
decentralized search proposed by Kleinberg [2000b]. Nevertheless, for this
thesis the model itself cannot be used as it only allows to investigate the
plausibility of various hypothesis, but it cannot be utilized to generate
new synthetic data.

2.2.3. Random Surfers as Model of Human Navigation

In the literature, the random surfer model has often been assumed to mimic
human navigation on the Web accurately. Even the famous PageRank
algorithm introduced by Brin and Page [1998] builds its basic idea upon
this assumption. Nevertheless, only a few studies tried to validate this
assumption on empirical data [Chierichetti et al., 2012; Singer et al.,
2014b]. This might mainly be due to the fact, that in the past user data
was not available and also not processable on a large scale. As both became
available in recent years, researchers seem to have skipped this step in favor
of more sophisticated models powered by machine learning, or similarly
complex approaches [Kitajima et al., 2000; Chi et al., 2001; Juvina et al.,
2005; Kitajima et al., 2007; West and Leskovec, 2012a]. Nevertheless, in
other research areas which investigate human behavior, such as human
traveling behavior, slightly modified random walks seem to be capable of
accurately modeling human behavior [Brockmann et al., 2006].

2.3. Influencing Factors in Human Navigation

Researchers have demonstrated that there are a few factors, such as
similarity or popularity, that play an important role in the link selection
process of humans while they are navigating the Web [West and Leskovec,
2012a; Helic, 2012; Singer et al., 2014a]. However, many of these factors are
not easy to shape if the aim is to manipulate a user’s link selection process
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actively. For example, one cannot alter the entire content of an article on
Wikipedia just to increase its semantic similarity to other articles. If we
attempt to exploit the popularity of articles to steer visitors, we might
encounter a similar problem, that is, potentially connecting unrelated
articles on Wikipedia. While the latter problem might be tackled by
implementing boxes on the webpage such as article of the month, the
former problem is not easy to solve. Naturally, the question arises if other
extrinsic factors can be exploited to actively steer users navigating the
Web. In the past, scientists invested a lot of effort into answering this
question. One of the most prominent factors known to influence user
navigation is the so-called position bias of humans which has been subject
of many scientific articles in the past [Blunch, 1984; Joachims et al., 2005;
Craswell et al., 2008; Buscher et al., 2009; Yue et al., 2010; Lamprecht
et al., 2016].

The first study investigating the effect of the human position bias onto their
behavior was conducted in 1984. In the experiments, Blunch examined
how a user’s decision about which answer to select in a multiple-choice
questionnaire is influenced by the sorting (i.e., position) of the answers. He
concluded that the leverage of an answers position is quite strong. Many
years later Joachims et al. [2005] took advantage of modern technical
equipment to further analyze these findings. Specifically, they utilized
eye-tracking techniques to analyzes the sequence in which users look over
a webpage. Even though the experimental setting was different to those
utilized by Blunch, the results were in line with the findings of Blunch.
The authors concluded that users typically read pages from top to bottom,
resulting in more clicks onto links positioned at the top of a page. Buscher
et al. [2009] conducted a similar study in which 20 participants had to
engage in information foraging and page recognition tasks on 361 webpages
while their visual focus was logged using an eye-tracking system. They
found out that users start skimming the webpage in the left upper corner
before looking at content located towards the bottom of the page. Further,
Craswell et al. [2008] compared click position bias models to each other
and analyzed which of them could best explain empirically observed data
gathered from various search engines. Their conclusion was that not only
the position but also the link’s information sent plays an important role. In

40



2.3. Influencing Factors in Human Navigation

other words, users start reading from the top and consequently prefer links
on the top over the those positioned further down on the page. However,
if the anchor text of a link does not look promising to lead them to a
page containing the information they are looking for, they consider the
next click in the same manner. Thus, there is a trade-off between the
position of the link and its information scent. In general, strong evidence
suggests that the position of a link drastically influence whether or not
users click on them. Furthermore, the major advantage of this bias is,
that it only requires altering the positions of already existing links on a
webpage. This makes it especially easy to be implement in already existing
webpages.

In further studies, the position bias was exploited to manipulate human
behavior actively. In particular, Lerman and Hogg [2014] showed that
by altering the position of items they were able to change the way peer
recommendation worked. Exploiting this effect the authors steered user
attention so as to improve the outcomes of peer recommendations. This
insight is of utmost relevance for this thesis as it proves that there are
ways to manipulate the link selection process. Furthermore, Lamprecht
et al. [2016] already presented a recommendation system that provides
suggestions about the repositioning of links. In particular, the authors of
this study explored what happens if users click on only a few links on the
top of articles on Wikipedia. They concluded that by doing so, users get
stuck on just a few articles of the entire encyclopedia. Subsequently, they
presented a system that recommends specific repositioning of links within
an article to improve the system navigability for humans.

In summary, scientist found that we can exploit various biases to actively
steer user navigation and the community already started to introduce
frameworks capable of exploiting these findings to reach a certain goal
(e.g., increased navigability). However, the effects thereof have not been
investigated until today. Consequently, the examined effects arising due
to various induced biases in experiments of this thesis are of practical
relevance for website administrators considering to actively steer their
visitors. Furthermore, scientists investigating human navigation behavior
on the Web should keep in mind the existence of such effects.
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3.1. Contributions to the Main Publications

The following section lists all of my contributions to the main publications
of this cumulative thesis.

• Article 1: [Geigl et al., 2015] Geigl, F., Lamprecht, D., Hofmann-
Wellenhof, R., Walk, S., Strohmaier, M. and Helic, D. (2015). Ran-
dom Surfers on a Web Encyclopedia. 15th International Conference
on Knowledge Technologies and Data-driven Business

In this article I was responsible for designing the approach. Specifically,
my task was to provide a framework for all experiments, execute them
and examine all results. The framework was written by myself in Python.
Furthermore, with the purpose of making the presented results repro-
ducible for everyone, I made the framework available as open-source on
Github1.

The ideas for the experiments and employed methods were developed dur-
ing discussion between Daniel Lamprecht, Simon Walk, Markus Strohmaier,
Denis Helic and myself. Rainer Hofmann-Wellenhofer was responsible for
preprocessing the data used for all experiments. He also produced the
basic statistics of the dataset as seen in the article. All authors contributed
to the writing of the article itself.

• Article 2: [Geigl et al., 2016a] Geigl, F., Lerman, K., Walk, S.,
Strohmaier, M. and Helic, D. (2016). Assessing the Navigational Ef-
fects of Click Biases and Link Insertion on the Web. 27th Conference
on Hypertext and Social Media

1https://github.com/floriangeigl/RandomSurfers
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In this work, I was responsible for the design of the entire approach. This
included the extension of my Python framework used in Geigl et al. [2015].
This extension is publicly available as open-source on Github2. Addition-
ally, I carried out all experiments and produced the visual representations
of the corresponding results.

The ideas for this paper and decisions about the applied methods originated
in discussions held in conjunction with Kristina Lerman, Simon Walk,
Markus Strohmaier, Denis Helic. All authors contributed to writing the
paper.

• Article 3: [Geigl et al., 2016b] Geigl, F., Walk, S., Strohmaier,
M. and Helic, D. (2016). Steering the Random Surfer on Directed
Webgraphs International Conference on Web Intelligence

My contribution to this article was the design of the approach as well as
the execution of the experiments and visual representation of the obtained
results. Part of this work was to expand my existing Python framework
to handle and process the new biasing methods introduced in this article.
The updated version of the framework is publicly available as open-source
on Github3.

The concept for the paper and the development of the employed methods
stem from discussions between Simon Walk, Markus Strohmaier, Denis
Helic and myself. In the writing process of the paper itself all authors
were involved.

3.2. Contributions to Further Publications

• Journal 1: [Walk et al., 2016] Walk, S., Helic, D., Geigl, F. and
Strohmaier M. (2016). Activity Dynamics in Collaboration Networks.
ACM Transactions on the Web

To this journal I mostly contributed by providing an efficient data prepro-
cessing and visualization pipeline written in Python. This was particularly

2https://github.com/floriangeigl/RandomSurfers
3https://github.com/floriangeigl/RandomSurfers
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relevant for the design of the model presented in this journal as we needed
to get deeper insights into empirical data. Applying this onto large Stack-
exchange4 datasets enabled us to integrate knowledge derived thereof into
our model. Furthermore, I have been involved in discussions about the
concept of the paper and the development of the model.

• Journal 2: [Hasani-Mavriqi et al., 2016] Hasani-Mavriqi, I.,
Geigl, F., Pujari, S., Lex, E., and Helic, D. (2016). The Influence
of Social Status and Network Structure on Consensus Building in
Collaboration Networks. Social Network Analysis and Mining

My major contribution to this paper was the development of the framework
used for the experiments. In particular, this involved the basic architecture
of the software. Moreover, a considerable part of my work for this paper was
devoted to improving the framework to be capable of executing complex
simulations within a reasonably short period of time. Besides, I was
actively involved in the iterative process of developing the presented model
and dealing with the interpretations of the results in the discussions.

• Article 1: [Hasani-Mavriqi et al., 2015] Hasani-Mavriqi, I., Geigl, F.,
Pujari, S., Lex, E., and Helic, D. (2015). The Influence of Social Sta-
tus on Consensus Building in Collaboration Networks. International
Conference on Advances in Social Networks Analysis and Mining

As the Journal [Hasani-Mavriqi et al., 2016] was an extension of this paper,
my contributions to this paper are the same as the one listed above.

• Article 2: [Lamprecht et al., 2015a] Lamprecht, D., Geigl, F., Karas,
T., Walk, S., Helic, D., and Strohmaier M. (2015). Improving Recom-
mender System Navigability Through Diversification: A Case Study
of IMDb. 15th International Conference on Knowledge Technologies
and Data-driven Business

I contributed to this article mostly by providing valuable feedback during
discussions held between Daniel Lamprecht, Tomas Karas, Simon Walk,
Denis Helic, Markus Strohmaier and me. Furthermore, I was involved
in the writing process of the article and all discussions held about the
development of the utilized framework.

4https://archive.org/details/stackexchange
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• Article 3: [Helic and Geigl, 2015] Helic, D. and Geigl, F. (2015). Im-
portance of Network Nodes for Navigation with Fractional Knowledge.
38th International Convention on Information and Communication
Technology, Electronics and Microelectronics

The ideas for this work stem from discussions between Denis Helic and
myself. Initial experiments and results executed by me were important
stepping stones for the presented article. Furthermore, I have been involved
in the final writing process of the article itself.

• Workshop Article 1: [Ambite et al., 2017] Ambite, J., Lerman,
K., Fierro, L., Geigl, F., Gordon, J. and Burns, G. (2017). BD2K
ERuDIte: The Educational Resource Discovery Index for Data
Science 4th WWW Workshop on Big Scholarly Data

In this workshop article, I was responsible for the execution of a large part
of the presented experiments. A major part of this was to find a reasonable
good machine learning method for automated tagging of learning resources
dealing with data science topics. Most of the experiments I executed
during my time as a visiting PhD-Student at the Information Science
Institute of the University of Southern California. During this time I was
also an active part of all discussions dealing with this topic. Moreover, I
developed the foundations for the portable and easy to extend automated
crawling system needed to acquire new resources from the Web. I applied
this framework on two different web portals to increase our dataset. Last
but not least, I investigated experimental methods to automatically detect
prerequisites between resources.

• Workshop Article 2: [Geigl and Helic, 2014] Geigl, F. and Helic,
D. (2014). The Role of Homophily. 2nd International Workshop on
Dynamic Networks and Knowledge Discovery

First and foremost, I developed the framework in Python which allowed
us to conduct all necessary experiments. Furthermore, I was responsible
for gathering and preprocessing the data used in our experiments. Also,
I ran all the experiments and produced all the numerically and visually
presented results. The ideas for this work, which includes the used methods,
originated in discussions with Denis Helic. The interpretation of the
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results, their discussion and the writing of the article itself stem from the
collaboration with Denis Helic.

• Poster 1: [Geigl et al., 2017] Geigl, F., Moik, C., Hinteregger, S. and
Goller, M. (2017). Using Machine Learning and RFID Localization
for Advanced Logistic Applications. 11th Annual IEEE International
Conference on RFID

In this poster, I was responsible for executing and visualizing all presented
experiments. The synthetic data used in this article were created by Stefan
Hinteregger, who also published an own article describing this procedure
in detail [Hinteregger et al., 2017]. The ideas for the article origin from
discussions held between all authors. Furthermore, all authors contributed
to writing the article.
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3.3. Random Surfers on a Web Encyclopedia

The following article tackles the first research question of this thesis by
comparing empirical click trails to those produced by a random surfer.
Moreover, it provides an in-depth description of the process used to analyze
differences and commonalities between synthetic and empirical data. The
article starts with a detailed explanation of the preprocessing steps applied
onto logfiles of a large online encyclopedia to retrieve click trails of humans
as accurately as possible. This process includes, for example, a detailed
description of the rules determining wheter or not to merge consecutive
sessions of a user into a single session. Furthermore, we provide a statistical
overview of the processed click trails used for the experiments.

With the experiments conducted in preparation of the article, co-authors
and I were specifically interested in determining whether or not the random
surfer is capable of producing human-like navigation patterns—postulating
that researchers can use the model to conduct further experiments about
human navigation on the Web.

Specifically, this article presents a method that allows to incorporate
empirical transition probabilities derived from click trails into the random
surfer model—resulting in a biased random surfer. To account for lateral
access, that is users arriving directly from webpages that are not part
of the website under investigation (e.g., search engine), we additionally
investigate page views gathered by the website. To measure how good
the random surfer can simulate empirical data we correlate the stationary
distribution of the random surfer with (i) the random surfer made biased
with empirical data, and (ii) the normalized page views.

The results presented in the article indicate that the random surfer is a
valid model of human navigation on the Web. However, as soon as users
utilized search engines (i.e., lateral access) this was not true anymore.
Specifically, my co-authors and I found that due to the lateral access
the skewness of the stationary distribution decreases. In other words,
search engines allow users to directly access very specific pages of a website
without the need to navigate the website’s hierarchical structure from top
to bottom.
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3.3.1. Abstract

The random surfer model is a frequently used model for simulating user
navigation behavior on the Web. Various algorithms, such as PageRank,
are based on the assumption that the model represents a good approxi-
mation of users browsing a website. However, the way users browse the
Web has been drastically altered over the last decade due to the rise
of search engines. Hence, new adaptations for the established random
surfer model might be required, which better capture and simulate this
change in navigation behavior. In this article we compare the classical
uniform random surfer to empirical navigation and page access data in
a web encyclopedia. Our high level contributions are (i) a comparison of
stationary distributions of different types of the random surfer to quantify
the similarities and differences between those models as well as (ii) new
insights into the impact of search engines on traditional user navigation.
Our results suggest that the behavior of the random surfer is almost similar
to those of users—as long as users do not use search engines. We also find
that classical website navigation structures, such as navigation hierarchies
or breadcrumbs, only exercise limited influence on user navigation anymore.
Rather, a new kind of navigational tools (e.g., recommendation systems)
might be needed to better reflect the changes in browsing behavior of
existing users.

3.3.2. Introduction

The last decades have seen immense growth of the Web, which now has
an approximate size of over a billion webpages5. The Web provides people
around the world with access to a host of information resources and serves
uncountable use cases, such as gathering information, studying, making
financial transactions, shopping, or booking hotels. To find relevant
information in this huge information system, web users apply various
information retrieval techniques. A very common—and probably the most
basic and straight-forward—strategy consists of simply navigating between
webpages by traversing the provided hyperlinks from one webpage to

5http://www.internetlivestats.com/
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another. In many cases, users also jump directly to other webpages by
typing the URL of the new target page in the browser address bar or
by using a search engine and following one of the search results. These
cases are typically referred to as teleportation, as users “teleport” from the
current webpage to another one [Brin and Page, 1998].

The importance of web navigation is even further amplified by an alter-
native informational retrieval strategy—web search. Ranking algorithms
used by search engines are based on variants of PageRank, which assigns
weights based on hyperlinks [Brin and Page, 1998]. These ranking ap-
proaches assume a so-called random surfe—a model of a user who traverses
the Web by following hyperlinks uniformly at random with a small chance
of teleporting at each navigation step. In their original paper, [Brin and
Page, 1998] suggested a damping factor of 0.85, meaning that, for each
step, users traverse hyperlinks with a probability of 85%, while exhibiting
a probability of 15% of teleporting to a page selected uniformly at ran-
dom. The number of visits of an indefinitely navigating random surfer to
each particular page is then a direct measure of page importance for web
navigation and is used to rank search results.

Problem. Although the random surfer model has proven to be extremely
useful in practice, only a few studies have analyzed the capabilities of this
model to imitate real user behavior in different contexts. Moreover, most
of these studies concentrated on empirically analyzing the damping or
teleportation factor (such as Gleich et al. [2010]). In this work, we compare
clickstream data of real users with the random surfer model. In particular,
we are interested in analyzing how real users assess the importance of
webpages for navigation and how that assessment compares to that of the
random surfer. Moreover, we also study to what extent the navigation
of human users is influenced by the modern search engines. To this end,
we analyze page view counts, which also account for landing pages from
search engines.

In particular, we are interested in answering the following research ques-
tions:
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RQ1 Comparison of a random surfer with real users. To what extent
does a random surfer with teleportation imitate user navigation
behavior?

RQ2 Influence of search engines. How do search engines affect how users
access and navigate websites?

Approach & Methods. For our analysis, we first calculate the station-
ary distributions of a uniform random surfer, traversing the information
network uniformly at random with a teleportation probability of 15%. We
then compare this stationary distribution with the stationary distribution
of a pragmatic random surfer, who selects the links with a probability
that is proportional to the transition counts from empirical data (human
users). For the pragmatic random surfer we again use 15% teleportation
probability. Finally, we compare stationary distributions of both uniform
and pragmatic random surfer with the stationary distribution (normalized
page view count distribution) of a lateral random surfer, which accounts
for the lateral access from a search engine to a given website.

For the distribution comparison we calculate linear correlation factors
and Gini coefficients to investigate the alignment of distributions, and the
distributions’ inequality, respectively.

Contributions. Our high-level contribution is a better understanding of
human navigation behavior and how it compares to a navigational model
such as the random surfer model.

Methodologically, we compute and analyze stationary distributions using
a set of standard measures with a clear interpretation in the context of
web navigation.

Empirically, we provide evidence that, despite its simplicity, a random
surfer model is a very accurate model of basic human navigation behavior
in our dataset. Our results suggest that the general navigation behavior of
users is very much in line with the random surfer model—both assess the
navigational page importance in a similar and highly skewed way, meaning
that just a few pages are extremely important. These results also hold
for cases where website operators decide to provide specific navigational
structures (as in our dataset) such as navigational hierarchies. Users, as
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well as the random surfer, do not make any particular distinction between
different types of links present on the website. However, the lateral access
from search engines reduces the imbalances, at least for human users, and
need therefore to be taken into account when modeling user navigational
behavior.

3.3.3. Related Work

Our work relies heavily on the random surfer model, which is a simple but
well-studied model for modelling navigation on the Web [Lovász, 1993;
Woess, 1994]. Apart from navigation, the random surfer model has also
been applied to a variety of different problems such as graph generation
and graph analysis. In particular, [Blum et al., 2006] used the model
for the creation of webgraphs while Pons and Latapy [2005], Rosvall and
Bergstrom [2008] and Zlatić et al. [2010] have applied the model to detect
community structures in networks.

Algorithms such as PageRank [Brin and Page, 1998; Page et al., 1999] or
HITS [Kleinberg, 1999], use the random surfer as the basis for calculating
node centralities in networks. PageRank includes a parameter to define
the probability of teleportation for the random surfer. This parameter
is often referred to as the damping-factor α, representing the probability
that the random surfer traverses one of the links pointing away from
the current node. With probability 1 − α it jumps to a network node
chosen uniformly at randomly and continues surfing from there. In 2010,
researchers have empirically measured this factor by analyzing clicktrails
of humans and reported an estimated damping factor between 0.6 and
0.72 for the entire Web [Gleich et al., 2010]. In contrast, the damping
factor for Wikipedia has been determined to be between 0.33 and 0.43.
This difference in damping factors might be caused by the way users
access Wikipedia—they use search engines that point them directly to the
article of interest, rendering additional navigational efforts unnecessary.
Researchers additionally investigated the connection between the damping
factor and the convergence rate of the PageRank algorithm and found
that it converges very fast for a value of 0.85 [Haveliwala and Kamvar,
2003; Kamvar et al., 2003]. However, in this paper we investigate the
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influence of the damping factor onto the stationary distribution of the
random surfers.

Qiu and Cho [2006] presented a framework that was able to personalize
PageRank on a very small set of user-based clickdata for websites. Addi-
tionally, Al-Saffar and Heileman [2007] compared these personalized and
topic-sensitive PageRank results with results from the unbiased (original)
PageRank and came to the conclusion, that both ways of personalizing
the PageRank produce a considerable level of overlap in the top results.
In particular, the authors conclude that biases, which do not rely on the
underlying link structure of the network under investigation, are needed
to further improve the personalization of PageRank. In this paper we
are interested in the stationary distribution of PageRank personalized by
observed user transitions.

Researchers also looked closely into modeling human navigation behavior,
using this biased random surfer model. For example, West and Leskovec
[2012b] investigated human click trails of a navigation game played by
humans on Wikipedia. Participants were asked to navigate from a given
start article in Wikipedia to a specific target article, using as few clicks
as possible. Using the results of this study, West and Leskovec [2012a]
designed different features for steering a probabilistic random surfer. They
also compared paths produced by the biased random surfer with those
of humans and found that navigation of humans was based mostly on
popularity and similarity biases. Helic et al. [2013] compared click trail
characteristics of stochastically biased random surfers with those of hu-
mans. They concluded that biased random surfers can serve as valid
models of human navigation. Furthermore, Singer et al. [2014b] conducted
experiments to find out whether human navigation is Markovian, meaning
that the next click of a user is only dependent on the most recent click.
They showed that on a page level, human navigation can be best explained
by first-order Markov chains. This finding is particularly relevant for us,
as it allows us to use simple biases which do not consider previously visited
nodes of the random surfer for our experiments.
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3.3.4. Materials & Methods

Dataset

Austria-Forum. In this paper we use change and click data from Austria-
Forum6, an Austrian oline encyclopedia which was initially created more
than two decades ago and restructured in 2009. Austria-Forum tries
do distinguish itself from other well-established web encyclopedias by
providing mechanisms to counteract some specific drawbacks: For instance,
Austria-Forum tries to fight against the apparent (personal) biases of
anonymous contributions by having (and enforcing) approved and named
authors as the only contributors to the knowledge base. Authors are
mostly academics well-established in their field, which has the positive
aspect of thoroughness since they exhibit a personal interest not to produce
literature of low quality. As the name suggests, the information published
is geographically limited to all things concerning the country of Austria.
Compared to other resources on the Web, Austria-Forum tries to transmit
the knowledge on a more granular level. Not only does it provide users with
several differently scoped articles, but also with entire digitized books as
web books on a variety of different cultural and historical aspects of Austria.
In order to increase the amount of displayed content, Austria-Forum added
the capability of including entire pages from different external domains
into their Wiki (e.g., of the German Wikipedia).

Most of the interactions of a user with an encyclopedia are limited to single
page views, usually generated by direct requests via a search engine. For
other users, who are interested in browsing the website and learning more
about Austria, Austria-Forum has divided its content into several different
categories, such as culture, people, scenery, nature and more, with the
ultimate goal of keeping users engaged and increasing their session lengths
as well as clicks on the website. The link structure of Austria-Forum
mostly forms a huge hierarchy. Arriving at the main page users can choose
one of 22 main categories and start navigating the hierarchy downwards to
a specific topic (e.g., main page/nature/fossils/amber). Overall, nearly 90

6http://www.austria-forum.org
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percent of all links within Austria-Forum can be categorized as hierarchical
links.

Log Data. For our analysis we use data that was gathered by log-
ging HTTP-Requests on http://www.austria-forum.org, as well as
other domains—such as the outdated http://www.austria-lexikon.at—
which link to it. The observation period of our logs consisted of 59 days
in April, May, and June of 2015.

Table 3.1 lists the parts of the HTTP-Requests, which were logged and
provides a typical example HTTP-Request of a successful access request
to Austria-Forum.

As we are mainly interested in user navigational behavior, we have ex-
tensively filtered the logs. First, we filtered the Content-Type to only
include human-readable HTML pages, eliminating XML, templates and
attachments. Second, Referrers and Targets indicating admin or irregular
user behavior, were removed. The removed logs included previewing an
edit for a page, pressing the upload button to attach files to articles, or
RSS-Feed-Requests. Third, we have only kept Requests which successfully
transmitted a page to the user, indicated by the Response Code. There-
fore, we have removed all Requests with Response Codes other than 200
(OK).

Table 3.1.: HTTP-Request Log Entry. The table shows the HTTP
parameters which were logged and an example query entry
where the user came from Google and visited the page of
Waltraud Klasnic which was successfully transmitted.

Date 2015-04-12 23:22:13,893
Method GET

Response Code 200
Server Name austria-forum.org

Target [...]/Biographien/Klasnic, Waltraud
Request-Query None
Content-Type text/html;charset=UTF-8

Session-ID DC8F6B58BE968C906740853F4E6D4F41
Remote-IP 1.1.1.1 (for anonymity)

User-Name-Hash None
Referrer https://www.google.at/

User-Agent Mozilla/5.0 (iPad; CPU OS 8 2 like Mac OS [...]
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Figure 3.1.: Dataset Description. The figures depict characteristics
of our dataset as well as the highly skewed heterogeneous
distribution of the resulting sessions. The y-axis of Figure 3.1a
represents the number of sessions, while the x-axis represents
the Time Delta—the maximum time a user can spend between
two clicks without creating a new session. We identified 30
minutes to be a good compromise between numbers of sessions
and session lengths. Figure 3.1b depicts the average clicks
a user makes per session (y-axis) over different Time Deltas
(x-axis). We highlighted the chosen Time Delta of 30 Minutes
in both figures (Figure 3.1a and Figure 3.1b). As can be seen,
increasing the Time Delta would only result in a very small
increase of session lengths. Figure 3.1c visualizes the session
lengths (y-axis) over the total number of observed sessions
of specific length (x-axis). In our dataset we have many
sessions of short lengths. With increasing session lengths, the
number of observed sessions decreases, following a power-law
distribution with alpha = 1.52 [Alstott et al., 2014].

In order to be able to identify pages with multiple URLs, Requests were
normalized by removing the “www.” prefix as well as trailing slashes “/”
when applicable. We stripped the data of all entries created by well-known
User-Agents of crawlers, such as GoogleBot, or whenever the User-Agent
contained a specific substring, such as crawl, slurp, spider or bot, which
suggested bot activities. Furthermore, to identify bots which do not want
to be recognized as such, we removed all entries which had the same
Target as Referrer, which is abnormal behavior as standard page-refreshes
usually retains the last Referrer. As many bots leave the Referrer in their
Requests empty, all sessions with 4 clicks and more (47, 312) that had more
than half of its Referrers missing were removed. Using this procedure, we
removed a little over half (24, 293) of those sessions.
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The specific method that was used on the server to generate Session-IDs
is unknown to us. As we assume that the Remote-IP as well as cookies are
likely considered for generating sessions, it is no simple task to combine,
split, recreate and aggregate HTTP-Requests into navigational sessions.
The number of Session-IDs exceeds the number of Remote-IPs by a large
margin, which we presume is due to static IPs of some users such as
schools using the same IP for all students, and users with browser add-ons
to increase anonymity (so that no Session-ID can be mapped to that
specific user). To make sure that sessions by the same user in different
periods could be recognized as such, we introduced a time delta which—if
exceeded between two requests—indicates the start of a new session. Hence,
a smaller delta increases the number of sessions (Figure 3.1a). Decreasing
delta too far would split sessions at pages where users spent a lot of time,
even tough in reality the users were still active in their sessions.

Meiss et al. [2009] showed that separating HTTP-Requests (which they
gathered on the entire Web) into sessions, can not be done in a clean
way solely based on timeouts. Hence, they introduced the concept of
logical sessions. In particular, users can have multiple logical session
at the same time. For example: browsing domains consisting of mostly
images in one tab while navigating on encyclopedias in others. Depending
on the domain, average time spent per page varies greatly, as images
can be consumed much faster than textual content. In their research
they identified a timeout of 15 minutes as a good approximation of a
logical user session. Since users tend to browse Austria-Forum for research,
information, self-improvement, or just to educate themselves further, their
sessions can be seen as logical as long as the time between two requests is
not exceedingly long. It can be assumed that the time users spend on a
page in an encyclopedia can be substantially longer than on an average
webpage, due to long (and possibly) complex articles. Taking these factors
into consideration, we found that setting our delta to 30 minutes still split
several sessions while granting our users enough time for longer page visits.
With delta set to 30 Minutes, the average session was 1.95 clicks long
(Figure 3.1b).

The distribution of sessions can be seen in Figure 3.1c. It is apparent that
the distribution is highly skewed and heterogeneous, indicating many short
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sessions of few clicks (portrayed by many sessions which are situated low
on the y-axis) and a few very long sessions (represented by a few sessions
in the upper left corner). The short sessions are mostly users who were
referred to Austria-Forum by a search engine and either instantly found
the information they needed or ceased looking for the needed information
on Austria-Forum.

Crawling the Link Structure. To compare the navigation behavior
of website visitors to the random surfer, we have crawled the whole link
structure of Austria-Forum. To this end, we have developed a simple web
crawler that we pointed towards the main page of the website, and which
then recursively crawled and followed all encountered (internal) links by
pursuing a breadth-first strategy. Some of the encountered links were
removed, such as all requests to display the raw Wiki sources for each page
that are easily identified by the skin=raw parameter in the URLs. Further,
links to binary files, such as .mp3, .mp4, .jpg, and many more, have been
removed as well, as we are only interested in the navigation behavior of
users while browsing and exploring the underlying website.

Limitations. We were not able to include the clicks of users within the
web books of Austria-Forum in our study. Further, to simplify the data
preprocessing, we cut off active sessions at midnight.

Random Surfer

Preliminaries. Mathematically, a random surfer is represented by a
random walk on a weighted directed graph. Thus, we start by introducing
some basic notion for such random walks.

Let A be the weighted adjacency matrix of a directed and weighted graph
G with Aij > 0 if node j points to node i and 0 otherwise. The value of Aij
represents the weight of the link from j to i. The weighted out-degree k+

i

of a node i is defined as the sum over the weights of outgoing links:

k+
i =

n∑
j=1

Aji. (3.1)
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Let D be a diagonal matrix of weighted out-degrees, so that dii = k+
i if

k+
i > 0, otherwise we set dii = 1. The matrix P , defined as

P = AD−1, (3.2)

is than a transition matrix of a random walk on the weighted directed
graph G. An element Pij of the matrix defines the probability of a random
surfer moving from node j to node i.

A stationary distribution of a random walk is defined as a probability
of finding a random walker at a particular page in the limit of infinitely
many steps. Algebraically, the stationary distribution is equal to the right
eigenvector corresponding to the largest eigenvalue of the transition matrix
P . If the graph G is strongly connected and the transition matrix does
not allow only periodic returns to a given state, then the largest eigenvalue
of the matrix P is 1, and the stationary distribution is unique. In the case
of a graph G that is not strongly connected, teleportation represents a
simple technical solution as it connects each page to every other page with
small weight. Teleportation also guarantees that there are not exclusively
periodic returns to any given state in the network since there is a constant
small probability to remain at the current page after teleporting the surfer
to exactly that page. Thus, we therefore include teleportation in our
calculations and calculate PageRank vectors of pages from G.

The calculation of the PageRank vector of the weighted adjacency matrix
simplifies to (details are given in e.g., Newman [2010]):

π = D(D − αA)−11, (3.3)

where α ∈ [0, 1] is the damping factor.

Uniform Random Surfer. For the uniform random surfer we use the
graph G, that we crawled from Austria-Forum. We do not set weights to
hyperlinks for the uniform random surfer, thus we set Aij = 1 if node j
points to node i and 0 otherwise.

Pragmatic Random Surfer. To create a weighted adjacency matrix
containing information of user transitions we first filter out teleportations,
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meaning transitions which are not present in the adjacency matrix of the
network. Afterwards we account for user transitions that we observed
in the network adjacency matrix. For that purpose, we apply sublinear
scaling to the transition counts, which is a common scaling technique in the
field of information retrieval—a word which occurs, for example, 20 times
in an document is not assumed to be 20 times more significant than a word
occurring only once. For navigation we can make an analogous assumption,
meaning that 20 observed transitions from page A to page B does not
make this transition 20 times more significant than a single transition
from, for example, page A to page C. In many cases there are several links
between any two pages and some of these links are prominently presented
in the user interface (e.g., in the navigation bar) inducing bias to the link
selection process by users.

Therefore, sublinear scaling seems to be an appropriate approach to account
for such situations. We scale the transition counts in the following way.
Let tij be the number of transitions between pages j and i. We then
calculate scaled transition count cij as:

ci,j =

1 + ln ti,j if ti,j > 0
0 otherwise

(3.4)

After scaling down the transition counts we calculate the weighted adja-
cency matrix for the pragmatic random surfer in the following way. Let C
be a matrix containing scaled transition counts, with Cij being the scaled
number of transitions between pages j and i. Further, we define a vector v
which is a binary vector with vi = 1 if the page i has been visited at least
once by any of the users. Otherwise we set vi = 0. Finally, let V be a
diagonal matrix with vector v on the diagonal. Then the adjacency matrix
of a directed network weighted with the scaled user transition counts can
be calculated as follows:

A = V (Au +C)V , (3.5)

where Au is the adjacency matrix of the unweighted graph as used for the
uniform random surfer. After removing all rows and columns consisting
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of only zeros this results in the adjacency matrix of the induced sub
graph, which only includes nodes visited at least once by any user and
all edges between those nodes (independent if traversed by any user or
not). Now, the stationary distribution π may be calculated as given by
Equation 3.3.

Lateral random surfer. We represent the lateral random surfer only
through its stationary distribution. The stationary distribution of the
lateral random surfer we calculate by simply normalizing page views we
directly obtained from the server access logs. Specifically, we do not have a
random surfer in this case, but observe the resulting stationary distribution
of an underlying random navigation process.

Gini coefficient

The Gini coefficient is a metric for measuring inequality of a distribution.
It computes the area between the Lorenz curve [Gastwirth, 1971] and
the uniform distribution. Higher values indicate a larger difference and
higher inequality. For our analyses, we calculate the Gini coefficient for
the stationary distributions of all three random surfer types.

3.3.5. Results & Discussion

In our experiments we are interested in comparing and analyzing the
differences and commonalities between the uniform random surfer model,
the pragmatic random surfer model and the lateral random surfer model
(cf. Section 3.3.4). We use the power iteration method to calculated the
PageRank vector [Brin and Page, 1998]. In the first experiments we set
α to a fixed value of 0.85. This correspond to teleportation probability
of 15%, analogously to the original PageRank algorithm [Brin and Page,
1998]. Hence, the damping factor corresponds to the probability of a user
to keep navigating over adjacent pages at each step. In later experiments
we analyze the influence of various values for α. Figure 3.2 depicts the
different correlations between the stationary distributions of all three
random surfer models. In particular, the Pearson correlation coefficient
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(a) Uniform - Pragmatic (b) Uniform - Lateral (c) Pragmatic - Lateral

Figure 3.2.: Correlation Scatter. This figure depicts the correlation of
the stationary distributions of all three random surfer models
on a log-log scale. It shows binned elements of a scatter plot
using a heat map. Colors refer to the amount of elements
falling into a bin. Note that the color range is also on a log
scale. We identified the strongest correlation between the
uniform and pragmatic random surfer (Figure 3.2a) with a
Pearson correlation coefficient of ρ =0.98. In contrast, the
correlation between the uniform and lateral random surfers
(Figure 3.2b) is rather low with ρ =0.38. Figure 3.2c depicts
the correlation of pragmatic and lateral random surfer with a
Pearson correlation of ρ =0.47.

between the uniform and pragmatic random surfer of ρ =0.98 indicates
nearly perfect positive correlation. Thus, this correlation analysis shows
that there is a considerable overlap between the behaviors of the uniform
and pragmatic random surfer models. In conclusion, the uniform random
surfer model appears to be a very good approximation of the pragmatic
random surfer—which in our case represents a proxy for user behavior—on
Austria-Forum.

On the other hand, the uniform (ρ =0.38) and pragmatic (ρ =0.47) random
surfer models exhibit only weak levels of correlation to the lateral random
surfer. Further, the heat maps depicted in Figure 3.2 strengthen our
findings, as the lateral random surfer, representing users entering the
website from for instance search engines, exhibits higher probabilities to
visit pages which are rated as unimportant by the uniform or the pragmatic
random surfer. In other words, they are pointed directly to specific pages
without the need to navigate the hierarchy of the website. Thus, search
engines appear to reduce the need for users to navigate (hierarchical)
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Decrease Neutral Increase

(a) Uniform - Pragmatic (b) Uniform - Lateral (c) Pragmatic - Lateral

Figure 3.3.: Ratio of Stationary Probabilities. The figures depict the
ratio between stationary probabilities of pages for uniform,
pragmatic and lateral random surfer. It contains basically the
same information as Figure 3.2 transformed to ratios between
values of the two stationary distribution under investigation.
Figure 3.3a shows the ratio between the uniform random
surfer (as baseline) and pragmatic random surfer. Pages that
are important for the uniform random surfer appear to be less
important for the pragmatic random surfer. However, this
difference is not significant (corroborated by a high correlation
between those two random surfers), meaning that both surfers
rate (nearly all of) the same pages as the most important
ones. The ratio between the uniform random surfer and
lateral random surfer (3.3b) shows that the latter strongly
emphasizes pages with low stationary distribution values of the
uniform random surfer. Thus, users have a higher tendency to
visit just one page—nested deeper in the hierarchical network
structure—of the Austria-Forum. Similar observations can be
made for the pragmatic and lateral random surfers (3.3c).

website structures and therefore are an important factor to include in
(future) analyses of user navigation behavior.

Finding 1: Uniform random surfer is a very good model of user
navigational behavior in our dataset. It correlates almost perfectly
with the pragmatic random surfer constructed from the clickstream
data. On the other hand, both uniform and pragmatic random surfer
significantly differ from the lateral random surfer, which also reflects
user visits from search engines.
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In further experiments we varied α (damping factor of PageRank) and
found that with lower values of α (e.g, α = 0.2) the correlation between
uniform and lateral random surfer increases from ρ =0.38 to ρ = 0.49,
which suggests that higher teleportation probabilities better capture the
lateral user access from search engines. However, at the same time the
correlation between the pragmatic and the lateral random surfer decreases
from ρ =0.47 to ρ = 0.29 for α = 0.2 while the correlation between the
uniform and the pragmatic remains stable and above 0.9. This result
suggests that the lateral access to a website can not be solely captured
by a random surfer with teleportation. Rather we need to extend this
basic model. For example, we could use the basic model to also model
navigational sessions. In this model teleportation probability increases
with every new click to account for an increased likelihood of switching to
a new session as the user makes progress in the current session.

Finding 2: To capture the lateral access to a website from a search
engine we need a new kind of random surfer model.

Furthermore, we calculated and compared the ratios of stationary proba-
bilities for each page and between all combination of three random surfer
models to investigate commonalities and differences between them (see
Figure 3.3). Although the uniform and pragmatic random surfer models
exhibit a Pearson correlation coefficient of almost ρ = 1, there are a
few pages with a ratio of 10 or 0.1. This means that those pages are 10
times more (less) important for the pragmatic random surfer than for
the uniform random surfer. Figure 3.3a depicts a specific trend showing
that pages with a low value in the stationary distribution of the uniform
random surfer often obtain much higher values with the pragmatic random
surfer. This difference is compensated by somewhat smaller importance
for the pragmatic random surfer of the mid and high important pages for
the uniform random surfer.

When comparing the ratios of the uniform and lateral random surfer models,
we can see even stronger tendencies than in our previous analysis. The
general shape of the differences remains the same, meaning less important
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pages for the uniform random surfer become more important for the lateral
one, but the magnitude of the differences is larger now and goes in some
cases up to 100. Similar observation can be made for the most important
pages for the uniform random surfer, which now become less important
also in some cases by a factor of 100 (see Figure 3.3b). Finally, Figure 3.3c
depicts the ratios of the pragmatic random surfer compared to the lateral
random surfer. Again, we make a very similar observation as in the case
of differences between the uniform and the lateral random surfer.

Finding 3: Although the assessment of individual page importance
between the uniform random surfer and the pragmatic random surfer
differs in some cases by a factor of 10, the assessments are generally
very well aligned. The differences in assessments between the uniform
and the pragmatic on the one side, and the lateral random surfer on the
other side are often very large (factor of 100). The general alignment
in the assessment between the lateral and other two models is not
given in our dataset.

The Lorenz curves of the stationary distribution of all three random
surfers are shown in Figure 3.4. The uniform random surfer achieves
a Gini coefficient of 0.96. With a value of 0.83, the pragmatic random
resulted in a lower coefficient. This means that the inequality in the
stationary distribution of the pragmatic random surfer is lower than that
of the uniform random surfer. In other words, the imbalances in the
individual page importance are reduced as low importance page become
more important, and vice versa highly important pages are less important
for the pragmatic random surfer. Finally, the lateral random surfer exhibits
the comparatively lowest Gini coefficient of 0.7. Due to the bias towards
more specific pages located in lower levels of the website hierarchy in the
lateral random surfer, this type of the random surfer is less likely to be
directed towards highly popular pages as compared to the uniform random
surfer.
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Uniform Random Surfer Pragmatic Random Surfer Lateral Random Surfer Unif.
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Figure 3.4.: Lorenz-curves. The plot depicts the Lorenz-curves of all
three stationary distributions. We obtained the highest Gini
coefficient of 0.96 for the uniform random surfer, followed
by the pragmatic random surfer with 0.83. The lateral ran-
dom surfer achieved the lowest Gini coefficient (0.7). Thus,
search engines (or other in-going links from external pages)
likely point users to very specific pages of the Austria-Forum,
tackling the problem of directing users to high importance
pages, helping to mitigate the influence of popular websites
on navigation behavior.

Finding 4: The imbalances in the relative page importances are
reduced for the pragmatic random surfer (only slightly) and for the
lateral random surfer (significantly) as compared to the uniform random
surfer. Direct lateral access from search engines towards more specific
pages reduces the degree to which a random surfer is directed towards
high importance pages.
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3.3.6. Conclusions & Future Work

In this paper we presented new insights into the commonalities and dif-
ferences between a uniform random surfer, a user clickstream biased
(pragmatic) random surfer and a page visits biased (lateral) random surfer.
We compared the navigation behavior of these three different random
surfer models in an online encyclopedia, namely Austria-Forum. Using
empirical user data we showed that the random surfer represents a good
approximation of navigational user behavior for the investigated website—
allowing researches to conduct user navigation experiments using a simple
random surfer without the need to collect user clickstreams. Due to the low
correlation between uniform and lateral random surfer we conclude, that
the hierarchical structure of a website does not play such an important in
role in terms of user navigation as it did before the rise of search engines.
The majority of users enter the website using a search engine and leave
after consuming the landing page. Hence, the uniform random surfer
model is a good approximation of user navigation as long as no search
engines are involved. However, hierarchical structures are needed for most
search engines to rank the results of search queries. Nevertheless, the
observed behavior leads to the question if website administrators should
additionally provide page recommendations to keep users navigating their
page.

Further experiments with varying teleportation probabilities (i.e., lower
α) for the random surfer show that we can increase the correlation of
stationary distributions between the uniform and lateral random surfer,
but at the same time decrease the correlation between the pragmatic and
the lateral random surfer. These differences in modeling navigational
user behavior with and without search engines represent the directions for
future work for modeling and hence optimizing navigational potential of a
website.

Our results represent important insights for website administrators, search
engine providers and researchers who want to broaden their understanding
of user navigation and the models thereof. The contributions of this paper
may serve as an interesting input to modify the models and for example
link recommendation algorithms to influence navigational behavior of users.
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With this work we contribute to the analysis of user navigational behavior
by (i) providing a comparison of random surfer model data with clickstream
data, (ii) a thorough analysis of the differences between these random
surfer models on a web encyclopedia and (iii) presenting a methodology
that allows us to estimate the optimization potential of a website in terms
of keeping users navigating on the website as long as possible.

Future Work. In future work, we plan to verify our results on other
websites where user clickstreams are available (e.g., the English Wikipedia).
Furthermore, we want to use our model to test different types of biases
introduced into the front end (e.g., recommendations of other pages) of a
website to analyze to which extent such biases are able to influence users in
their navigation. Another idea is to modify the order of recommendations
in a recommendation network and analyze—based on the assumption
that recommendations on the top are clicked more often [Blunch, 1984;
Joachims et al., 2005; Murphy et al., 2006; Craswell et al., 2008; Yue
et al., 2010; Lerman and Hogg, 2014; Dimitrov et al., 2016]—the influence
thereof.
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3.4. Steering the Random Surfer on Directed
Webgraphs

The following article strives to give an answer to the second research
question. To that end, the article presents a method to explore the effects
arising due to various human biases which influence the link selection
process. We use the random surfer as a valid model of human navigation
on the Web [Geigl et al., 2015] to present a novel method which allows to
encode biases into the random surfer model intuitively. In the remainder
of the article, we use this method to explore the effects of typical biases,
such as the bias towards similar webpages.

First and foremost, the results gathered in this work indicate that all
investigated biases increase the certainty of the link selection process.
Second, we find that, from a macroscopic point of view, click biases are
capable of drastically altering the typical whereabouts of users. Last but
not least, the conducted in-depth analysis shows that in some extreme
cases strong side effects emerge and spread throughout the entire website.
Specifically, my co-authors and I found that some biases lead to a situation
in which large fraction of webpages enter a so-called “ground-state”. In
this state, the probability that these sites are visited by the random surfer
is essentially zero.

The insights described in this article suggest that website administrator
should carefully decide whether or not to exploit such biases on their
websites. To further aid them in their decision-making process we open-
source the presented framework so that they can examine the potential
effects of biases in an offline setting.
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3.4.1. Abstract

Ever since the inception of the Web website administrators have tried to
steer user browsing behavior for a variety of reasons. For example, to be
able to provide the most relevant information, for offering specific products,
or to increase revenue from advertisements. One common approach to
steer or bias the browsing behavior of users is to influence the link selection
process by, for example, highlighting or repositioning links on a website. In
this paper, we present a methodology for (i) expressing such navigational
biases based on the random surfer model, and for (ii) measuring the
consequences of the implemented biases. By adopting a model-based
approach we are able to perform a wide range of experiments on seven
empirical datasets. Our analyses allows us to gain novel insights into the
consequences of navigational biases. Further, we unveil that navigational
biases may have significant effects on the browsing processes of users
and their typical whereabouts on a website. The first contribution of
our work is the formalization of an approach to analyze consequences of
navigational biases on the browsing dynamics and visit probabilities of
specific pages of a website. Second, we apply this approach to analyze
several empirical datasets and improve our understanding of the effects
of different biases on real-world websites. In particular, we find that
on webgraphs—contrary to undirected networks—typical biases always
increase the certainty of the random surfer when selecting a link. Further,
we observe significant side effects of biases, which indicate that for practical
settings website administrators might need to carefully balance the desired
outcomes against undesirable side effects.

3.4.2. Introduction

Millions of people access the Web on a daily basis to conduct a variety of
different tasks, such as maintaining social contacts, buying products in
webshops, gathering information, or just passing time. While surfing the
Web, users usually either traverse static (e.g., breadcrumb navigation) or
dynamic (e.g., personalized recommendations) links, type in the URL of
a website, or use a search engine to find their desired resource. Previous
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research has already established that users exhibit a 65% probability
of exploring websites through static links [Gleich et al., 2010]. Many
researchers already directed their efforts towards these 65% of clicks,
analyzing different aspects of the navigational behavior of users, such as
estimating the probability of a user to traverse a given link by analyzing
user click and interaction trails [West and Leskovec, 2012a,b; Helic et al.,
2013; Singer et al., 2014b; Walk et al., 2014, 2015, 2016]. Granka et al.
[2004] demonstrated how specific user behaviors directly influence which
links are selected for browsing a website. Furthermore, Lerman and
Hogg [2014] showed that users can be steered towards certain links by
manipulating the interface (e.g., the position of links). In practice, website
administrators often modify the interface to steer visitors towards certain
pages. For example, owners of online shops might want to steer visitors
towards best-sellers to increase revenue by modifying the probability that
those pages are visited (e.g., by highlighting or repositioning links towards
them).

Problem & Approach. Website administrators are typically not aware
of the exact effects and implications of a particular modification. Moreover,
such modifications may also affect the selection of other links and may
trigger unpredictable and complex side effects. In fact, we still know
very little about the (potentially) complex impacts of modifications and
manipulations of linking structures on websites. In this paper we set
out to close this knowledge gap. Specifically, we aim at assisting website
administrators in estimating the consequences of inducing specific biases
on their website. In addition, we seek to increase our understanding of
the emerging effects through biased link selection processes.

To this end, we present an approach for assessing the impact of differ-
ent navigational biases on visit probabilities and browsing dynamics on
directed webgraphs. We adopt a model-driven approach, based on the
well-established random surfer model [Brin and Page, 1998], to simulate
users browsing a website. Although the model itself is very simple and
straightforward, it provides a good approximation of actual user browsing
behavior [West and Leskovec, 2012a,b; Helic et al., 2013; Geigl et al.,
2015].
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In particular, we are interested in answering the following research ques-
tions:

Website Coverage. Can certain biases increase the effective number of pages
visited by the random surfer or do they trap the surfer within specific
(small) parts of a website?

Surfer Guidance. Given a specific bias, what is the degree of guidance
(i.e., certainty) induced by that bias? How many options (on average) are
random surfers confronted with when they select the next link to follow?
In other words, to what extent are browsing decisions purely random and
to what extent do they adhere to a certain structure?

Webpage Response. How do visit probabilities of webpages respond to a
given bias and how do such responses propagate through a network? For
example, are those responses coupled and how? Specifically, what is the
coupling between neighboring pages?

Contributions. In this paper we extend our framework7 for simulating
biased random surfers on networks [Geigl et al., 2016a] by analyzing,
comparing and modeling the impact of unbiased and biased random
surfers on directed webgraphs. In particular, we study real-world, empirical
networks to obtain new insights into the global and local effects of different
biases on the random surfer. Our results suggest that we can strongly and
specifically influence the effective website coverage by using certain biases.
Furthermore, we show that typical biases, such as popularity biases, always
increase the certainty of the link selection process (i.e., provide a better
guidance for the random surfer). Finally, we analyze potentially unwanted
side effects that occur when inducing different biases, which affect a large
proportion of all webpages of a website.

3.4.3. Related Work

The random surfer is a simple but well-established model, which has
already been extensively investigated by researchers in the past [Lovász,
1993; Woess, 1994]. It also represents the basis for the calculation of more

7The framework is available as open-source software at https://github.com/
floriangeigl/RandomSurfers
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complex node properties such as PageRank [Brin and Page, 1998; Page
et al., 1999] or HITS [Kleinberg, 1999]. The PageRank model includes a
parameter for the probability of the random surfer to teleport to a different
node. This parameter is also often referred to as the damping factor α,
which is the probability that the random surfer continues to follow links
at the current node. Conversely, with probability 1− α the random surfer
“jumps” to a randomly selected node and continues traversing links from
there. Gleich et al. [2010] empirically analyzed human click trails and
estimated that the damping factor is in range between 0.6 and 0.725 for
the Web.

Researchers have also manipulated the random surfer by applying different
biases on the model to influence the link selection process [Goldhirsch
and Gefen, 1987; Hill and Häder, 1997; Qiu and Cho, 2006; Fronczak and
Fronczak, 2009]. In such cases, the links are weighted and the link selection
is not uniformly at random anymore. Instead, the link selection probability
is proportional to the link weights. Richardson and Domingos [2001] used
biased random surfers in the field of information retrieval. In their work
they were able to outperform PageRank in terms of quality of the results.
Despite an increase in computational costs and memory requirements, the
authors argue that the algorithm is still reasonably feasible for large-scale
search engines.

Al-Saffar and Heileman [2007] later compared personalized and topic-
sensitive PageRank with the original formula and came to the conclusion
that both ways of personalization produce a considerable level of overlap
in the top results. The authors conclude that new biases, which should
not rely on the underlying link structure, are needed to improve the
personalization of modified PageRank algorithms. In this paper we are not
interested in improving the personalization of a node ranking algorithm.
Instead, we want to broaden our understanding of the effects of different
biases on the stationary distribution of a random surfer.

West and Leskovec [2012b] investigated human click trails from a Wikipedia
navigation game. Based on the results of this study, they designed different
features for steering a probabilistic random surfer [West and Leskovec,
2012a]. In their work they compared paths produced by the biased random
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surfer with those of humans. They found that human navigation was mostly
based on popularity and similarity of articles. To further investigate this,
we focus in this paper on the effects of popularity biases.

Helic et al. [2013] compared click trail characteristics of stochastically
biased random surfers with those of humans. Their conclusion was that bi-
ased random surfers can serve as valid models of human navigation. In our
previous work, we validated this finding by showing that the result vector
of PageRank and click data biased PageRank have a strong correlation for
the example of an online encyclopedia [Geigl et al., 2015].

Regarding the number of pages which are effectively visited by random
surfers, Hwang et al. [2012] investigated the probability of returning to the
start node of random surfers in scale-free networks. They found that this
probability depends on the degree of the starting node, and thus the total
distribution is similar to a power-law distribution. By investigating the
stationary distribution of the random surfer, we circumvent this problem
as the distribution is independent of the starting point.

In previous work we have investigated how biases towards different sub-
groups of nodes influence the visit probability of the random surfer and
how such biases compete with link insertion [Geigl et al., 2016a]. In this
paper we extend our methodology to allow for the simulation of biases
based on structural properties of nodes, expanding the arsenal of tools to
analyze the effects of biases on random surfers.

3.4.4. Methodology

First, we introduce a basic notion for random surfers on a directed graph.
Let W ∈ Rn×n be the adjacency matrix of a directed graph with Wij = l

where l is the number of links that point from node j to node i (i.e., 0
if there are no links). The out-degree k+

i of a node i is defined as the
number of outgoing links, that is k+

i = ∑n
j=1Wji. Further, let D ∈ Rn×n

be a diagonal matrix of weighted out-degrees (i.e., dii = k+
i ). Then the

equation

P = WD−1 (3.6)
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defines the transition matrix P with elements Pij equal to the probability
of a random surfer moving from node j to node i.

If we think about nodes as states and links as transitions between states,
the transition matrix P defines a first-order Markov chain. If a Markov
chain is irreducible (i.e., any state can be reached from any other state
with a non-zero probability) and aperiodic (i.e., returns to all states occur
at irregular times), the chain has a unique stationary distribution π. This
distribution represents the probability of finding a random surfer on a
given node in the limit of large number of steps. To ensure that the
Markov chain P is irreducible we only use the largest strongly connected
component from our datasets. On the other hand, a random walk on a
connected directed graph is aperiodic if and only if there is no integer
greater than 1 that divides the length of every cycle in the graph. Thus,
it suffices to show that there is at least one cycle of length 2 and one cycle
of length 3 in a directed graph for it to be aperiodic. We find that in all
our datasets.

An algebraic solution for the stationary distribution yields π = Pπ.
Thus, the stationary distribution is an eigenvector of the transition matrix
P , corresponding to the largest eigenvalue 1. In related literature, the
stationary probability of a node is often referred to as the energy of
a node [Langville and Meyer, 2004; Bianchini et al., 2005; Geigl et al.,
2016a]. As the random surfer is a conservative process [Ghosh and Lerman,
2012], the system total energy is constant and equals 1. However, the
distribution of energy over nodes is dependent on the link selection process
of the random surfer under investigation.

Inducing Bias. In practice, we can influence the link selection process
of users by, for example, repositioning links [Lerman and Hogg, 2014].
In our analysis, we bias the random surfer by weighting links in a given
network to achieve similar effects. To that end, we investigate different
structural properties of nodes and weight all links pointing towards nodes
proportional to a given structural property. For example, to induce a
popularity bias we weight links according to the popularity (i.e., degree)
of the target node.
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Algebraically, we represent a bias as a diagonal matrix B ∈ Rn×n with
node weights b ∈ Rn on its diagonal. Matrix W ′ is then the weighted
adjacency matrix of the biased network, which we calculate as the product
of B and W :

W ′ = BW . (3.7)

Using the weighted out-degree diagonal matrix D′ of W ′ we calculate the
corresponding biased transition matrix P ′ as:

P ′ = W ′D′−1 . (3.8)

As before, we have the stationary distribution satisfying the right eigenvec-
tor equation (i.e., π′ = P ′π′), where we use π′ to denote the stationary
distribution of the biased random surfer. Note that this methodology
adapts and extends our previous work [Geigl et al., 2016a]. However, in
this paper we do not bias towards groups of nodes but rather set the proba-
bility of traversing a link proportional to structural properties of its target
node. Hence, all links of the network are affected by the induced bias as
opposed to our previous work, where only links pointing towards selected
nodes were affected. In practice this would mean that we highlight each
link proportional to a property of the target page (e.g., popularity).

3.4.5. Experimental Setup

Website Coverage. In general, biases allow us to manipulate the link
selection process of random surfers and influence the visit probabilities
of specific nodes. To investigate the bias effects on the effective number
of visited pages (i.e., pages with practically relevant visit probability) we
calculate three properties of the stationary distribution. First, we analyze
the visit probability of the most visited page of each website to see and
compare how likely the random surfer can be found on just this single
page. In all our datasets we find that the most visited page is always
the home page (i.e., main/entry page) of the website. Second, we use
the complementary cumulative distribution function of the stationary
distribution (i.e., CCDF (π)) to determine the number of pages on which
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the random surfer can be found with a probability higher than 95%. Third,
we analyze the entropy of the stationary distribution H, which measures
the uncertainty in the current location of the random surfer. We calculate
H as:

H = −
∑
i

πi log2 πi . (3.9)

Surfer Guidance. To analyze the dynamics of the link selection process
we calculate the entropy rate of the random surfer. Entropy rate is the
average entropy of all decisions made by the random surfer in the limit of
a large number of steps. Thus, it measures average uncertainty in all the
decisions made by a random surfer. We calculate the entropy rate Hrate

as:
Hrate = −

∑
ij

πjPij log2 Pij . (3.10)

Note that the entropy of each node is weighted with the corresponding
value of the stationary distribution. Thus, the uncertainty of the random
surfer at a highly visited page has a greater impact on the entropy rate
than the one from a less frequently visited page.

Webpage Response. To improve our understanding of changes in the
visit probabilities of the random surfer due to different biases, we investigate
how each individual page is affected on a microscopic level. We do that by
analyzing heat maps which are based on log-scaled scatter plots between
stationary distributions of unbiased and biased random surfers.
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Figure 3.5.: In-Degree and Out-Degree Distributions of our Datasets. The figure depicts the in-degree (top)
and out-degree (bottom) distributions of all datasets. The in-degree distributions are skewed towards few
pages with a very large in-degree, which is typical for webgraphs. In contrast, the out-degree distributions
are more homogeneously distributed, except for the Wikipedia datasets (WFS, BW ). This is due to the
way the websites are designed. In webshops (TG, GD and MS) and online media libraries (ORF and
DEM ) most pages are similarly structured and thus contain roughly the same number of outgoing links.
On Wikipedia pages widely vary in their length, which is why the out-degree varies more strongly.
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3.4.6. Biases

In this section we introduce the investigated biases and the intuitions
behind them.

Popularity Bias. With this bias we steer the random surfer towards
popular nodes. For example, in webshops operators may want to increase
visits (and thus potentially sales) of frequently visited products. In ency-
clopedias and media libraries, operators may have an interest in further
increasing the visibility of popular articles or movies. For popularity we
use the degree of webpages as a proxy and set bi = ki, where ki is the total
degree (in and out) of node i.

Unpopularity Bias. To dampen the natural attraction of popular nodes
we may want to induce an unpopularity bias. As a webshop operator, this
could be used in a strategy to clear out stocks by increasing the visibility
of unpopular items. In encyclopedias or media libraries operators may
want to ease-up and diversify navigation to specific (mostly unpopular)
pages and decrease the visibility of popular pages. For unpopularity bias
we use the inverse degree and set bi = 1/ki for all i.

Eigenvector Centrality. A bias proportional to eigenvector centrality
of a node has already been investigated by researchers on unweighted,
undirected networks [Parry, 1964; Demetrius and Manke, 2005; Delvenne
and Libert, 2011; Sinatra et al., 2011]. In such networks the eigenvector
centrality bias produces the highest possible entropy rate[Sinatra et al.,
2011]. Therefore, we include this bias in our experiments as a baseline.
Eigenvector centrality is the right eigenvector of the adjacency matrix of
a network and satisfies Wv = κ1v, where W is the weighted adjacency
matrix of the network and κ1 the largest eigenvalue of W . Thus, we
introduce the eigenvector centrality bias by setting bi = vi for all i.

3.4.7. Datasets

To simulate navigational biases “in the wild”, we have crawled webgraphs
of seven different websites. In particular, we collected data from three
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Table 3.2.: Network Statistics. The table displays the basic statistics of
our datasets, with n being the number of nodes, m the number
of edges, and d the network diameter.

Dataset Category n m d

ThinkGeek (TG) webshop 3, 884 1, 002, 226 3
GetDigital (GD) webshop 8, 258 2, 101, 254 21
Milan-Spiele (MS) webshop 21, 566 3, 128, 693 70
Wikipedia for Schools (WFS) encyclopedia 6, 796 646, 646 4
Bavarian Wikipedia (BW) encyclopedia 32, 734 1, 324, 839 9
ORF TVThek (ORF) media library 9, 799 301, 844 10
Das Erste Mediathek (DEM) media library 70, 063 3, 448, 513 2274

webshops that deal with “geeky” gadgets or board games (ThinkGeek8,
GetDigital9 and Milan-Spiele10), two online encyclopedias (Wikipedia for
Schools11 and Bavarian Wikipedia12), as well as two online media libraries
(ORF TVThek13 and Das Erste Mediathek14). In the remainder of the
paper we will refer to the datasets using the abbreviations of their names
denoted in Table 3.2. The degree distribution of all datasets are depicted
in Figure 3.5.

Concerning the crawling process itself, our web crawler recursively ex-
tracted and followed all links, starting from the main page of each website.
Note that we did not fully render each page individually, resulting in the
omission of links generated via (client-rendered) AJAX queries and Flash
content. In a post-processing step we have removed self-loops—links from
a webpage to itself. Further, we preprocessed and removed links that
coincide with several different redundant actions, such as links containing
?sessid= or ?oCsid= for session identifiers, action=review for displaying
the “write a review” box, as well as “add to shopping cart”, or “log-in”
personalized user account links and parameters. From the cleaned datasets
we constructed the corresponding webgraphs.

8http://www.thinkgeek.com
9http://www.getdigital.eu

10http://www.milan-spiele.de
11http://schools-wikipedia.org/
12https://bar.wikipedia.org
13http://tvthek.orf.at/
14http://mediathek.daserste.de/
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Table 3.3.: Website Coverage and Surfer Guidance. This table depicts the results of our experiments for all
biases (columns) and all datasets (rows). The highest values for each dataset in each of the four sections
(i.e., Home page, 95%, Stationary Entropy, and Entropy Rate) are highlighted in blue, and the lowest are
marked in red. All three Website Coverage measurements indicate that a popularity bias (pop.) decreases
website coverage, whereas the unpopularity bias (unpop.) is able to increase it. Hence, a bias towards
popular pages traps the random surfer within a few pages, while the unpopularity bias allows random
surfers to effectively visit more pages. The Surfer Guidance is represented by the Entropy Rate, which is
the uncertainty of the random surfer when selecting a link to traverse. All biases are able to increase the
certainty of the random surfer.Furthermore, eigenvector centrality biases (e.c.) in directed networks do not
produce the highest entropy rate in our datasets, which is caused by the weak correlation between nodes
in- and out-degrees.

Website Coverage Surfer Guidance

Home Page 95% Stationary Entropy H Entropy Rate Hrate

unb. pop. unpop. unb. pop. unpop. unb. pop. unpop. unb. pop. unpop. e.c.
TG 0.01% 0.00% 0.01% 1547 (39.83%) 184 (4.74%) 2431 (62.59%) 8.78 7.16 10.66 7.64 6.86 6.41 6.76
GD 2.88% 5.82% 0.29% 177 (2.09%) 68 (0.80%) 1165 (13.74%) 6.86 5.40 9.93 6.38 5.31 5.01 5.35
MS 1.00% 1.17% 0.13% 599 (2.78%) 65 (0.30%) 4082 (18.93%) 7.94 5.99 11.32 6.11 5.61 4.02 5.67
WFS 3.13% 13.04% 0.09% 3229 (47.51%) 22 (0.32%) 4348 (63.98%) 9.65 4.79 12.01 5.61 4.24 4.68 4.16
BW 5.59% 21.62% 0.05% 4563 (13.94%) 23 (0.07%) 14751 (45.06%) 9.28 4.05 13.54 4.98 3.49 2.61 3.51
ORF 12.06% 36.00% 0.13% 1398 (14.27%) 11 (0.11%) 3321 (33.89%) 7.56 3.25 11.04 4.76 2.83 3.03 3.61
DEM 1.41% 1.94% 0.03% 446 (0.64%) 38 (0.05%) 2812 (4.01%) 7.55 5.11 10.75 5.60 4.63 1.94 5.15
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For the actual simulations we extracted the largest strongly connected
component of the network (i.e., the largest subset of nodes in which every
node can be reached from all other nodes) so that the random surfer does
not get stuck on pages without outgoing links.

3.4.8. Results & Discussion

Website Coverage

The left part of the Table 3.3 depicts the results for Website Coverage.
For almost all datasets the popularity biased random surfer achieves (i)
the highest probability of being on the home page, (ii) the lowest number
of nodes needed to reach an aggregated energy of 95% and (iii) the lowest
stationary entropy. These results indicate a low website coverage, meaning
that with a high probability we will find the random surfer on just a few
nodes of the network. In other words, the random surfer is trapped on just
a few pages of the website. On the other hand, we observe the opposite
behavior for the unpopularity biased random surfer (cf. Table 3.3). These
results follow our intuition. We expect that in a network with an initially
skewed stationary distribution, where just a few top nodes possess an
aggregated energy of almost 1, adding an additional bias towards these top
nodes increases the skewness. The more skewed the distribution becomes,
the likelier the random surfer gets trapped within the most popular nodes.
On the other hand, a bias towards less popular nodes reduces the skewness
of the stationary distribution.

Findings & Implications. The popularity bias decreases the website
coverage, whereas the unpopularity bias is able to increase it. To raise
the effective website coverage we should counteract the natural skewness
of the stationary distribution of a webgraph. We can achieve this by, for
example, inducing an unpopularity bias. Such a bias makes particularly
sense in the case of online encyclopedias, where users should be able to
easily explore the whole content of the website. However, in cases in which
website administrators want to reduce costs (e.g., keep just a few movies
on expensive, fast accessible storage devices in media libraries such as
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ORF or DEM ), a bias towards popular webpages represents a suitable
method.

Surfer Guidance

The second column of Table 3.3 (Surfer Guidance) depicts the entropy
rate of all combinations of datasets and biases. We find that the unbiased
random surfer consistently exhibits the highest entropy rate across all
datasets. This means that the guidance (i.e., certainty in link-selection
decisions) of this surfer is low. Note that this is not the case in undirected,
unweighted networks, where the eigenvector centrality bias generates the
highest (maximum) entropy rates. Random surfers biased by eigenvector
centrality exhibit similar entropy rates to the ones biased by popularity
across all datasets except for ORF and DEM. Across all tested biases we
achieve the lowest entropy rate for almost all datasets with the unpopularity
bias. As steering the random surfer towards unpopular nodes decreases
the average number of possible next hops a lower entropy rate is to be
expected. However, for WFS the eigenvector centrality bias and for ORF
the degree bias result in the lowest entropy rates.

Both effects—lowest entropy rate for one of the two biases towards popular
nodes in WFS and ORF and the unobserved maximum entropy rate of the
eigenvector centrality bias—are caused by specifics of webgraphs topologies.
In particular, in our datasets we do not observe a strong correlation between
in-degree and out-degree of a node. A possible explanation for this behavior
is based on a specific information architecture on the Web and usability
considerations. More specifically, websites tend to have a few pages with
many incoming links. For example, on many websites all pages contain
the website logo on the top, which is linked to the home page. In all our
datasets we confirm this assumption by measuring an unweighted in-degree
of n− 1 for the home page, where n is the number of pages of a website.
On the other hand, the majority of other pages have only a few incoming
links. Thus, there is a high variability in the number of incoming links.
On contrary, the number of outgoing links is much more stable and in a
typical cases limited due to usability reasons.

85



3. Publications

As a consequence of such network topology, the unbiased random surfer
often visits nodes with a high in-degree. However, these nodes are often
not the ones with the highest out-degree (e.g., the home page of websites
often contains only very few outgoing links towards other very popular
pages). Consequently, the random surfer has to choose between a few links
only. This in turn keeps the uncertainty and the entropy rate low.

Note that in the case of undirected networks the random surfer often
visits high-degree nodes, which bear decisions with the highest number
of possible outcomes, resulting in highest entropy rates. To find further
evidence in favor of our hypothesis we biased the random surfer with node
out-degree. This experiment resulted in entropy rates higher than the one
of the unbiased random surfer in most datasets.

Findings & Implications. Both popularity and unpopularity bias re-
duce the entropy rate and at the same time increase certainty for random
surfers on directed webgraphs. Consequently, both biases can serve as a
way to increase the guidance throughout the website. This finding is in a
stark contrast to undirected networks where the popularity biases increase
the entropy rate.

Webpage Response

In this experiment we investigate the response of individual pages to a
bias. In the case of the popularity bias the majority of pages yields a
part of their energy to just a few top pages (see Figure 3.6a and 3.6c).
On the other hand, in the case of the unpopularity bias we observe a
flow of energy from the top pages towards pages with a low initial energy
(see Figure 3.6b and 3.6d). For the popularity bias we observe a slightly
left-oriented v-shape in the scatter plots for some datasets (i.e., MS and
DEM ). This observation is particularly pronounced for DEM (Figure 3.6c).
In general, this means that pages with a low initial energy (which are
typically more distant to the top pages) are less affected (relatively) by
the bias than, for example, pages with an average initial energy (which
are closer to the top pages). Note that we can only observe such v-shapes
for datasets with a very high (pseudo) diameter (cf. Table 3.2).
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(b) TG inverse degree
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(c) DEM degree

10-24 10-18 10-12 10-6 100

unbiased energy

10-24

10-18

10-12

10-6

100

u
n
p
o
p
u
la

ri
ty

 b
ia

se
d
 e

n
e
rg

y

100

101

102

(d) DEM inverse degree

Figure 3.6.: Webpage Response. The heat maps depict the absolute
energy gains and losses of all nodes due to an induced bias.
The x-axes correspond to the unbiased energy of a node,
whereas the y-axes denote the biased energy. Color refers to
the number of nodes observed in that area. The white dashed
diagonal marks perfect correlation (i.e., the energy of nodes on
this line did not change). For the TG dataset (top) all biases
result in the expected change of the stationary distribution. A
popularity bias increases the energy of popular nodes while it
decreases the energy of all other nodes. The opposite is true
for the unpopularity bias. However, in some datasets, such as
DEM (bottom row), we can see a slightly left-oriented v-shape,
where nodes with average initial energies are most affected
(relatively) by the bias in the form of decreased energy.

In Figure 3.7a we plot the initial stationary distribution against the one
from the popularity biased random surfer. We mark top pages as pages
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Figure 3.7.: DEM Energy Concentration. These plots describe how
energy diffuses when a bias is induced. The left plot depicts
the stationary distribution of the unbiased random surfer (x-
axis) against the one of the popularity biased random surfer
(y-axis). We mark pages which increased their energy due to
the bias as top pages and color each page based on its shortest
distance from any of the top pages. All pages further away
than 6 hops from top pages slide into the ground state of the
system—meaning that they will almost never be visited by the
random surfer. The minimal increase in energy (≈ 10−20) of
pages marked as low is likely caused by numerical inaccuracies.
The right plot depicts groups of pages based on their shortest
distance from top pages (x-axis) and their aggregated energy
(left y-axis). Additionally, we show the fraction of pages (right
y-axis; dashed black line with stars) for each distance and
the range of expected sessions lengths based on the damping
factors α. The colored areas refer to the probability of users
reaching nodes of a certain distance, if they start navigating
from the home page (i.e., green: very likely, yellow: likely and
red: unlikely). We see that, due to the unpopularity bias, a
large amount of energy diffuses towards pages being 2 to 3
hops away from top pages. In contrast, all popularity biases
(i.e., degree,

√
degree and degree2) concentrate the energy on

just a few pages while pushing many other pages into the
ground state. This means that small increases in energy of
the top pages lead to many other pages being pushed into the
ground state.
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with an increased energy due to the induced popularity bias (see top in
Figure 3.7a). We then color nodes based on their shortest distance to
any of these top pages. The figure shows that these distances have a
decisive effect on the biased page energy. A possible explanation for this
behavior is that the top pages exhaust energy from all other pages, that
is, the energy flows from all other pages towards top pages. The strength
of the flow seems to be inversely proportional to the distance from the
top nodes—the further away pages are from the top pages, the smaller
the flow of energy towards top nodes. After a certain distance (i.e., 6 for
DEM in Figure 3.7a) some pages reach the lowest possible state of energy
and fall into a ground state (see ground state in Figure 3.7a). A page
in this ground state practically loses all of its energy and thus its visit
probability. The pages depicted around the low circle in Figure 3.7b were
able to minimally increase their energy (≈ 10−20 in DEM ). We attribute
this negligible effect to numerical inaccuracies.

To further analyze the energy flow in a network we group all nodes
according to their shortest distance from the top nodes and calculate the
energy as a function of this distance. We introduce two new popularity
biases. First a bias proportional to square degree and second a bias
proportional to square root degree of a node. We assume that the flow
of energy towards top nodes must be the fastest in the case of the square
degree, followed by the degree bias and then by the square root degree. In
Figure 3.7b we see that all popularity biases concentrate the energy on
just a few nodes and hence result in most of the other nodes falling into
the ground state. We are also able to confirm our energy flow assumption
since the flow is strongest for the square degree (the nodes at distance 4
fall into the ground state), followed by the degree bias (the ground state
is reached at distance 6). The square root and inverse degree distribute
the energy more uniformly over distances (the ground state is reached at
distance 8).

To get a better understanding of practical implications of these results
we also calculate the expected browsing session length using empirically
measured damping factors (i.e., 0.6 ≤ α ≤ 0.725 [Gleich et al., 2010]). In
particular, we can model session length as a random variable following
geometric distribution with the parameter 1 − α. The expected session
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length equals then to α/(1− α). Using empirical damping factors the ex-
pected session length lies between 1.5 and 2.64 clicks. Assuming that users
start browsing on the home page of a website, the pages that they are
expected to visit are within the distance of the expected session length.
We mark the range of the expected session length as vertical lines in
Figure 3.7b. Only pages that are at distance shorter than the expected
session length and have a practically relevant stationary probability can
be visited by users. Pages that are further away or are close but are fallen
to the ground state will not be visited. Thus, in practice we may be able
to increase the visibility of, for example, popular pages but because of
a fast energy flow many other pages will practically become invisible to
users. Therefore, biasing link selection process includes a trade-off between
desirable outcomes and (possibly) unwanted side effects.

Specifically, in Figure 3.7b the upper left area (i.e., aggregated energy
higher than 10−3 and distance from top nodes smaller than 3) is the most
interesting one for a website administrator. Pages in that area have a
reasonable probability to be visited while not being too far away from the
home page. Website administrators can now utilize our methodology to
test different biases and identify the one that best meets their requirements.
For example, if the aim is to keep visitors of DEM close to the top pages
but still enable them to easily explore other pages up to a distance of
2, the squared degree bias would exactly fulfill these requirements (cf.
Figure 3.7b).

Please note that in all our calculations the values for the damping factors
that we used apply for the general Web and may not hold for a particular
website. However, for a given website the operators can determine the
damping factors from the actual logfiles.

Findings & Implications. Due to a popularity bias some nodes slide
into a ground state in which they are almost never visited by the random
surfer. The distance from top nodes determines the final energy of a node.
Contrary, the unpopularity bias increases the flow of energy towards nodes
with an initially very low energy. This means that an induced popularity
bias increases the visibility of already frequently visited nodes and at the
same time it shifts many other pages into the ground state. Pages in that
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state will hardly be visited. If the aim of a website is to be easily explorable
(e.g. Wikipedia datasets WFS and BW ) this should be taken into account.
The same applies for webshops, such as MS, for which administrators
might expect to increase sales of the top products by inducing a popularity
bias. However, this will only increase the visits of popular pages—which
we find to be mostly overview pages such as games for 5 players 15—while
putting many actual product pages into the ground state. Nevertheless,
taking into account the expected session length of users, it can make sense
to concentrate their attention on the top nodes, as they are unlikely to
visit nodes further away from the home page.

3.4.9. Conclusions and Future Work

In this paper we presented an approach for measuring the impact of and
between biased random surfers and applied it to seven empirical datasets
to highlight practical implications for different kinds of networks.

The results gathered from our experiments broaden our understanding of
the impact of intrinsic biases for the random surfer on directed webgraphs.
Additionally, we found that some combinations of measures and biases
(e.g., penalization of popular pages decreases the probability of trapping
the random surfer) perform consistently over all datasets. On the other
hand, some results highly vary across experiments (e.g., the entropy rate
of some biases depend on the structure of the network).

Regarding the Website Coverage, we conclude that all used biases highly
influence visit probabilities of the random surfer. In particular, we find a
consistent pattern based on the type of the bias: Popularity biases tend to
trap the random surfer within just a few webpages of the website, whereas
biases penalizing popular pages are able to increase website coverage.

The changes in Surfer Guidance, due to different biases, are more dependent
on the network structure than on the type of the bias itself. However, all
biases were able to decrease the entropy rate, which further indicates an
increase in guidance.

15http://www.milan-spiele.de/nach-anzahl-fuenf-spieler-c-93_98.html
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For the Webpage Response, in networks with a large diameter we observed
a strong side effect. Specifically, the bias puts many pages into a so-
called ground state. Pages in that state are barely visited by the random
surfer. Thus, website administrators should take these side effects into
account.

For future work we plan on analyzing the influence of similarity-based
as well as extrinsic biases on random surfers, such as text similarity
or categorical mappings between articles (encyclopedias) or products
(webshops). Further, we are interested in coloring nodes regarding their
type (e.g., product pages, administration pages, types/categories of article
pages) and analyzing which type of nodes are favored by different types of
biases.
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3.5. Assessing the Navigational Effects of Click
Biases and Link Insertion on the Web

With the following article I am answering the third research question. In
particular, my co-authors and I compare the differences and commonalities
between the emerging effects of click biases and link insertion. To be able
to conduct experiments that are capable of answering this question we
introduce a method that allows for an equitable comparison between click
biases and link insertion. In the experiments conducted for this work we
then apply the method to several empirical datasets.

The presented article is based on the assumption that the random surfer is
a valid model of human navigation on the Web [Geigl et al., 2015]. In the
first step of the experiments we pick uniformly at random a set of target
nodes. Subsequently, we try to increase the set’s visibility, measured as its
sum of visit probabilities over all contained nodes, by either using click
biases or link insertion. We incorporate the biases used for the experiments
into the model in a similar fashion to the method presented in Geigl et al.
[2016b]. With the purpose of modeling link insertion, my co-authors and
I introduce a novel approach for this kind of experiments. Specifically,
we present a method which inserts new links, with the aim of increasing
visits to the set of target nodes, while being still fairly comparable to the
method of modeling click biases.

The results gathered in the experiments show, that there seems to be a
rule of thumb about when to prefer one manipulation strategy over the
other. In particular, if the set of targeted pages has initially had a low
cumulative visit probability, link insertion should be preferred over click
biases. However, as soon as the initial visit probability of the target set
increases, the amplifying effect of click biases starts to work more efficiently.
Consequently, in these situations click biases are able to outperform link
insertion. Furthermore, we find that for larger initial visit probabilities of
the target set click biases lead to more robust effects than those triggered
by link insertion. Thus, in terms of reliability, click biases should be
preferred over link insertion if, based on the initial situation, both methods
are considered to deliver equal results.
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3.5.1. Abstract

Websites have an inherent interest in steering user navigation in order to,
for example, increase sales of specific products or categories, or to guide
users towards specific information. In general, website administrators
can use the following two strategies to influence their visitors’ navigation
behavior. First, they can introduce click biases to reinforce specific links on
their website by changing their visual appearance, for example, by locating
them on the top of the page. Second, they can utilize link insertion to
generate new paths for users to navigate over. In this paper, we present a
novel approach for measuring the potential effects of these two strategies
on user navigation. Our results suggest that, depending on the pages for
which we want to increase user visits, optimal link modification strategies
vary. Moreover, simple topological measures can be used as proxies for
assessing the impact of the intended changes on the navigation of users,
even before these changes are implemented.

3.5.2. Introduction

Millions of people use the Web on a daily basis to buy products in online
shops, perform financial transactions via online banking, or simply browse
information systems, media libraries or online encyclopedias, such as IMDb,
Netflix or Wikipedia. To find and access relevant information on the Web,
people either search, navigate, or combine these two activities. A recent
study presented by Gleich et al. [2010] found that 35% of all visits to
a website can be attributed to teleports, which are the direct result of
clicks on search engine results, navigation through manually typed URLs,
or clicks on browser bookmarks. The remaining 65% of the clicks can
be attributed to the task of navigating a webpage. In this paper, we
direct our attention towards these 65% of actions and tackle the question
of what potential effects we can expect if we influence the link selection
process of website visitors by simple link modifications. In particular, we
are interested in the effects of different link modification strategies on
(stochastic) models of web navigation.
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Problem. By inserting new links between webpages of a website, we
alter the link structure. This has the potential to change user browsing
behavior, since new links create new paths for users to explore the website.
Alternatively, without changing the link structure of the website, we
might be able to influence the link selection process of visitors. Studies
have shown that the decisions of users for where to navigate next can be
influenced by the layout and the position of the links on a webpage. In
particular, due to position bias users are more likely to select links higher
up on webpages [Blunch, 1984; Joachims et al., 2005; Murphy et al., 2006;
Craswell et al., 2008; Yue et al., 2010; Lerman and Hogg, 2014; Dimitrov
et al., 2016]. As a result, inducing click biases, such as repositioning links
on a webpage, highlighting the links, or even making them visually more
appealing, can affect the users’ decision of where to click next on a website,
similar to the way that adding new links affects browsing.

In this paper we are particularly interested in investigating and comparing
the potential consequences of inserting new links and modifying already
existing links on the navigational behavior of users. These newly obtained
insights are of a significant practical relevance for website owners, as
they can be used, for example, by owners of media libraries to increase
visits of specific media files in order to reduce the number of different
files that need to be cached on fast storage devices. Another example
includes online encyclopedias, where operators may want to guide users
towards articles of a specific category over some period of time (e.g., the
birthday of an inventor). In some of these cases, link insertion might
be more time-consuming than simply changing the layout of the website
to increase visibility of specific links and vice versa. Theoretically, we
would like to analyze and compare the effects of such link modification
endeavors. Practically, new tools are needed to assist website operators
in deciding which of the two strategies they should deploy to achieve the
desired effects.

Methods. In this paper we study the impact of link modifications on the
random surfer, which we apply as a proxy for real user behavior. In the
past, a user’s decision to click on a link on a webpage was successfully
modeled using the random surfer [Brin and Page, 1998; West and Leskovec,
2012a; Helic et al., 2013]. In this model, a user selects one of the links on a
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webpage uniformly at random and navigates to the page to which the link
points. Apart from the huge success of the Google search engine, whose
ranking algorithm is based on the random surfer model, empirical studies
have shown that this model provides a very precise approximation of real
browsing behavior in many situations and for a variety of applications [Brin
and Page, 1998; Geigl et al., 2015]. An important property of a random
surfer is its stationary distribution, which is the probability distribution of
finding a random surfer at a specific webpage in the limit of large number
of steps.

In particular, we investigate how the random surfer’s stationary distribu-
tion of a subset of pages (i.e., target pages) of a given website changes
as a consequence of (i) modifying already existing links towards them,
(ii) introducing new links towards them, or by (iii) combining these two
approaches. To that end, we introduce a click bias, and a link insertion
strategy. We model the effects of click biases on the intrinsic attractiveness
of a link to the user by increasing the weight of that link. In practice, we
may introduce such click biases, for example, by locating the corresponding
link on the top of a page. With link insertion, we simply introduce new
links between webpages of a website, for example, by linking towards a
given target page from the starting page.

We introduce quantitative measures that allow us to address the following
research questions:

Navigational Boost. How stable is the stationary distribution with respect
to the proposed modification strategies, and what are the limits of sta-
tionary distributions that can be achieved for a given set of webpages?
Is it (theoretically) possible to achieve a given stationary probability dis-
tribution for an arbitrary subset of webpages of a website? What is the
connection between simple topological measures of the website network
and stationary probability?

Influence Potential. What is the relative gain of the stationary probabilities
compared to their unmodified counterparts. This provides us with an
answer to the “guidance” potential of a set of webpages, defining to what
extent it is possible to increase the relative stationary probabilities as
compared to the initial unmodified values.
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Combinations. Finally, we are interested how combinations of the two
proposed link modification strategies perform in terms of increased sta-
tionary probabilities of selected subpages. In particular, we investigate
the performance of certain combinations across several different networks
and/or selected subpages.

Contributions & Findings. We find that intuitions about how either
modification strategy affects navigation are not always correct. Further, our
experiments show that the size of a set of targeted subpages is not always a
good predictor for the observed effects. Rather, other topological features
often better reflect the consequences of a modification. Practically, we
provide an open-source framework16 for website administrators to estimate
the effects of link modifications on their website.

3.5.3. Related Work

The random surfer model has received much attention from the research
community [Lovász, 1993; Woess, 1994]. While the model is very simple,
it became well-established over the last years. It was applied to a vari-
ety of problems from graph generators over graph analysis to modeling
user navigation. Furthermore, the model has been applied to calculate
structural node properties in large networks. HITS [Kleinberg, 1999] and
PageRank [Brin and Page, 1998; Page et al., 1999] rank network nodes
according to their values in the stationary distribution of the random surfer
model. Especially for the later there exists a detailed analysis ranging from
the efficiency of its calculation towards its robustness [Langville and Meyer,
2004; Bianchini et al., 2005]. Bianchini et al. [2005] provided an in-depth
analysis of how to tweak the cumulative PageRank of a community of web-
sites. They found that splitting up the content of pages onto more highly
interlink pages increases the community’s cumulative PageRank—since the
community is larger it consists of more pages which are able to trap the
random surfer for a longer period of time. Moreover, they suggest to avoid
dangling webpages (i.e., pages without links to other pages). In this paper
we are also interested in the sum of the random surfers visit probabilities in
a community, however we do not use (i) teleportation as in the PageRank

16https://github.com/floriangeigl/RandomSurfers
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model, and (ii) do not modify the network in its size (i.e., number of pages).
On the contrary we modify the transition probabilities of certain links
and insert new links into the network. Moreover, since all our datasets
are strongly connected, we do not face the problem of unwanted high visit
probabilities of usually unimportant pages (i.e., dangling nodes) [Bianchini
et al., 2005].

A random surfer can be steered towards specific nodes in the network by
increasing the probability of traversing links towards those nodes. This can
be accomplished by biasing random surfer’s link selection strategy so that
it is not uniformly random anymore, but biased towards specific nodes.
For instance, in the field of information retrieval Richardson and Domingos
[2001] successfully applied biased random surfers to increase the quality of
search results compared to those achieved using a simple PageRank. At
the same time Haveliwala [2003, 2002] biased PageRank towards topics
retrieved from a search query to rank the query results. Utilizing this
technique the results where more accurate than those produced using a
single, generic PageRank. Moreover, Gyöngyi et al. [2004] successfully
used trust as bias to detect and filter out spam pages of search results.
However, Al-Saffar and Heileman [2007] showed that biased PageRank
algorithms generate a considerable overlap in top results with a simple
PageRank. Concerning this problem their main suggestion was to use
external biases which do not rely onto the underlying link structure of the
network. In our paper we randomly decide towards which nodes we bias
the random surfer. This allows us to explore the borders of changes in
stationary distributions caused by a bias.

In 2013, Helic et al. [2013] compared click trails characteristics of stochas-
tically biased random surfers with those of humans. Their conclusion was,
that biased random surfers can serve as valid models of human navigation.
Further, Geigl et al. [2015] validated this by showing that the result vector
of PageRank and clickdata biased PageRank have a strong correlation
in an online encyclopedia. This is especially interesting, since it creates
the connection of our simulation to real human navigation on the Web.
Additionally, Lerman and Hogg [2014] already showed that it is possible to
bias the link selection of users. In particular, they came to the conclusion
that users are subject to a position bias, making the selection of links
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higher up on webpages up to a factor of 3.5 more likely [Blunch, 1984;
Joachims et al., 2005; Murphy et al., 2006; Craswell et al., 2008; Yue
et al., 2010; Lerman and Hogg, 2014; Dimitrov et al., 2016]. Hence, it is
of practical relevance to investigate also the effects of biases in the link
selection process onto the stationary distribution.

Concerning link insertion there already exists work in literature which
makes use of statistical methods to suggest new links in network structures
to, for instance, increase the performance of chip architectures [Ogras
and Marculescu, 2006]. In particular, the authors use a standard mesh
and insert long-range links, converting the network into a small-world
network. This reduced packet latency results in a major improvement in
throughput. Another field of research where link insertion is of interest
are recommender systems for social friendship networks [Li and Chen,
2009; Silva et al., 2010; Moricz et al., 2010; Bian and Holtzman, 2011].
For example, Xie [2010] characterized interests of users in two dimensions
(i.e., context and content) and exploited this information to efficiently
recommend potential new friends in an online social network. In this paper
we focus on the effects of inserted links onto the typical whereabouts of
the random surfer.

3.5.4. Methodology

We base our methodology on the calculations of the stationary distribution
of a random surfer on the original and manipulated networks. The networks
consist of nodes, which represent webpages and directed links between
nodes, which represent hyperlinks between webpages. We first calculate the
transition matrix and the stationary distribution for the original network
as a baseline for comparing the effects of link modifications. Second, we
increase the statistical weight of a random surfer visiting a set of predefined
nodes (i.e., target pages or target nodes). We do that either by increasing
the link weights towards selected nodes (click bias) or by adding new
links pointing towards those nodes (link insertion). Third, we compute
the corresponding transition matrix for the modified network. Fourth,
we calculate the stationary distribution of the new transition matrices.
Finally, we compare the modified stationary distribution with the original
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stationary distribution to gain insights into the effects of the different link
modifications. Figure 3.8 illustrates these steps on a toy example.

Preliminaries

In what follows we formalize our approach algebraically. We represent a
website as a directed network with a weighted adjacency matrixW ∈ Rn×n,
where n is the number of webpages in the website under investigation. We
define the element Wij of the weighted adjacency matrix W as the sum
of edge weights of all links pointing from node j to node i. For example,
Wij = 1 if there is a single link from page j to page i with weight 1, and
Wij = 3 if there are three links pointing from page j to page i each with
weight 1.

For our analysis we introduce target nodes as the nodes whose station-
ary probability we want to increase. We use vector t ∈ Rn to specify
them:

ti =

1 if i is a target node
0 otherwise.

(3.11)

We further define φ as a fraction of target nodes with respect to the total
number of nodes n:

φ =
∑
i ti
n

(3.12)

Hence, φ = 0.1 means that 10% of nodes from the network are target
nodes.

Stationary Distribution

The stationary distribution is a probability distribution over nodes that
assigns a probability of finding the random surfer on a given node in the
limit of large number of steps. To compute the stationary distribution
we first need to construct a diagonal out-degree matrix D, with the
weighted node out-degrees on its diagonal. Using diag(v) to denote
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Figure 3.8.: Modeling Click Bias and Link Insertion - Illustrative
Example (Caption Part 1 of 2). We intend to use different
link modification strategies to steer the random surfer towards
the red colored node 1 more often. Hence, our target nodes
vector consists of only one node: node 1 (t =

(
1 0 0 0

)ᵀ
).

In each row we visualize the corresponding network of the
website, where nodes represent webpages and links represent
hyperlinks between the webpages. Further, for each of them
we show how we calculate its stationary distribution. This
involves (from left to right) the weighted adjacency matrix
W (unmodified network) or W ′ (modified networks), the cor-
responding transition matrix P (unmodified network) or P ′

(modified networks) and finally the corresponding stationary
distribution π (unmodified network) or π′ (modified networks).
The blue links in the graphs and the blue matrix elements in
bold show the link modifications and their effects on the adja-
cency and the transition matrix. The red vector elements show
the effects of the modifications on the stationary probability
(energy) of node 1. Top row. Here we depict the original and
unmodified network. Middle row. We modify the network
with a click bias. We double the statistical weights of links
towards target nodes (bias strength b = 2). To calculate the
modified adjacency matrix we first construct the diagonal bias
matrix B and then compute W ′ = BW . We see an increase
in energy of node 1 from 0.18 in the unmodified network to
0.24. (Caption is continued on the next page)
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Figure 3.8.: Modeling Click Bias and Link Insertion - Illustrative
Example (Caption Part 2 of 2). Caption continued from
last page. Bottom row. We insert a new link from node 4
to 1 (i.e., blue link in graph and blue element in W ′) into
the original network. Due to the link insertion the energy
of node 1 increases from 0.18 in the unmodified network to
0.22 in the modified network. Thus, in this toy example the
effects of the click bias are stronger than those of link insertion.
Additionally, we see that also elements in the out-component
of node 1 (i.e., node 4) profit of an increased energy of node 1
since a significant amount of 1’s increased energy flows into
node 4.

diagonal matrices with elements of a vector v on their diagonal we define
D as:

D = diag
(

n∑
i=1

Wij

)
. (3.13)

Using D matrix we can calculate the transition matrix P , which is a left
stochastic matrix of W as P = WD−1 (in fact this is PageRank matrix
without teleportation). The stationary distribution π now satisfies the
(right) eigenvalue equation for the matrix P : π = Pπ.

Click Bias

To introduce click biases that influence the link selection strategy of the
random surfer, we reweigh the links pointing towards target nodes by
multiplying their weight by a constant scalar b, which we call bias strength.
For example, a bias strength of b = 2 doubles the weight of all links towards
target nodes. The final probability of the random surfer to traverse a link
is then directly proportional to its weight.

Algebraically, we induce biases with a diagonal bias matrix B which we
define as B = I + (b − 1) · diag(t). The adjacency matrix of a biased
network is W ′ = BW . To compute the stationary distribution of the
biased network, we first calculate the new transition matrix P ′ = W ′D′−1

and then its stationary distribution π′.
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Please note that from the technical perspective, inducing a bias is the same
as inserting parallel links towards target nodes—it increases the value of
specific elements (i.e., those representing links towards target nodes) in
the adjacency matrix. The total weight of newly added parallel links l(b)
due to an induced bias b is given by:

l(b) =
∑
ij

W ′ij︸ ︷︷ ︸
# links in W ′

−
∑
ij

Wij︸ ︷︷ ︸
# links in W

(3.14)

To allow for a fair comparison between the click bias and the link insertion
strategy we insert exactly l(b) new links with weight 1 in the latter
case.

Link Insertion

The second link modification strategy consists of inserting new links
towards the target nodes from a given set of source nodes. This strategy
represents the case where a website administrator inserts links towards
target nodes from important subpages of their website. We define the
importance of a webpage as its stationary probability in the original
network.

To insert a given number l(b) of new links we proceed as follows. We start
by sorting nodes by their stationary probability in a descending order. In
the next step we insert new links from the top l(b)/(n · φ) nodes to all
target nodes. Here n · φ is the number of target nodes and we always ceil
the calculated number of source nodes to ensure that there are enough
pairs of nodes. If one of the target nodes is itself designated as a source
node we do not insert self-loops—from the practical point of view, it does
not make sense to link a webpage to itself. In the rare case where we have
connected all possible combinations of source and target nodes but did
not reach the required number of links, we simply reiterate the list of the
source nodes resulting in parallel links between nodes. Please note that we
insert parallel links if a link between a source and a target node has already
existed in the original network. However, this happens extremely rarely
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because all of our networks are sparse. In fact, in all our experiments the
fraction of inserted parallel links was on average less than 1%.

Combinations

Finally, we can combine the two link modification strategies and study the
effects of such combinations on the stationary distribution and investigate
if an optimal combination of strategies exists, which outperforms the
individual approaches. From the practical point of view this means that
for optimally steering website users, we combine both, the click bias and
link insertion mechanisms.

To create a combined link modification method we first introduce α ∈ [0, 1],
which we call the mixing factor. The mixing factor determines how many
of the l(b) links are inserted by the click bias. Then, 1 − α defines how
many links are inserted by the link insertion strategy:

l(b) = α · l(b)︸ ︷︷ ︸
# biased links

+ (1− α) · l(b)︸ ︷︷ ︸
# inserted links

(3.15)

With a combined strategy we cannot bias all links towards target nodes—
again, we need to select a subset of links towards target nodes. In analogy
to the link insertion method we again preferably select links between nodes
having higher stationary probability in the unmodified network. Thus,
we first compute the probability distribution over the eligible links in the
form of matrix L, where ∑ij Lij = 1. We define matrix L as:

L = diag(π) · diag(t) ·W · diag(π). (3.16)

The probability of selecting a link is directly proportional to the product of
the unmodified stationary probability of its source and target node. Note
that due to the multiplicative factor diag(t) ·W only links towards target
nodes have a non-zero probability. With L in place we sample α · l(b) links
without replacement and multiply their value in W ′ by b to induce the
click bias. To insert the remaining (1− α) · l(b) links we adopt the link
insertion strategy on the matrix W ′ as described previously.
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Measuring the Effects

To measure the effects of link modification strategies we quantify how
the stationary probabilities of given target nodes change as a function
of the modification. In the remainder of this paper we will refer to a
node’s stationary probability using the, in the literature established, term
energy [Bianchini et al., 2005]. To that end, we calculate the energy of
target nodes (π′t), which is the sum of the modified stationary probabilities
of target nodes, as following:

π′t =
∑
i

π′i · ti , (3.17)

where π′ is the stationary distribution of the modified adjacency ma-
trix.

We further measure the influence potential, which is the relative increase
in the energy of target nodes due to the modification, as a factor τ :

τ = π′t
πt
, (3.18)

where πt is the energy of target nodes of the unmodified network (i.e.,
πt = ∑

i πi · ti).

3.5.5. Datasets

For our experiments we use three datasets: an online encyclopedia
Wikipedia for Schools17 (W4S) and two online media libraries ORF
TVthek18 (ORF) and Das Erste Mediathek19 (DEM ).

We collected the data by crawling the corresponding websites. Starting
from the main page of a website we recursively crawled all subpages by
following all outgoing links from a given webpage. Note that we did not
follow external links, meaning that we skipped links to pages not belonging

17http://http://schools-wikipedia.org/
18http://tvthek.orf.at/
19http://mediathek.daserste.de/
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to a given website. Further, we did not follow links generated via Flash,
AJAX or any other client-rendered content.

After collecting the data, we removed self-loops, which are links from a
webpage to itself, and special links such as “log-in”, “write a review”, and
all other links that require a session-id. In the next step, we represented
each dataset as a directed network—webpages are represented as nodes
connected by directed links. For calculating the stationary distribution,
we extracted the largest strongly connected component (SCC) of each
network, so that in the final network it is possible to navigate from any
given node to any other node in the network. These final networks have
4, 051 nodes and 111, 795 links (W4S), 9, 799 nodes and 301, 844 links
(ORF), and 70, 063 nodes and 3, 448, 513 links (DEM ).

3.5.6. Experimental Setup

To investigate the effects of manipulating links we first generate sets of
target nodes. For this purpose we draw the desired number of nodes
uniformly at random from the network without replacement, creating a
synthetic set of nodes of a specified size. Note that those sets can consist
of unconnected webpages. We conduct all of our experiments with the
same initially generated target nodes to reduce the influence of the random
node selection process. For making the number of webpages selected as
target nodes comparable between datasets we refer to the size of target
nodes as φ, which is the fraction of target nodes. To generate target nodes
we use several values for φ which range from 0.01 to 0.2. For each dataset
and each φ we generate 100 different synthetic sets of nodes (i.e., target
nodes).

Limiting (High) Bias Behavior. In our first experiment we are in-
terested in analyzing the impact of an increasing bias strength on the
energy of target nodes using either a click bias on already existing links or
inserting new links in an informed way. We use bias strengths reaching
from b = 2 to b = 200 to investigate their effects. Note that for the
link insertion strategy the number of inserted links is defined by the bias
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strength b using Equation 3.14. This ensures a fair comparison between
the two methods.

Realistic (Lower) Bias Strengths. In this experiment we investigate
practically relevant values for the bias strength b [Lerman and Hogg, 2014;
Hogg and Lerman, 2015]. In particular, we iterate over the range 2 to 15
as bias strengths. With this experiment we gain insights into the effects of
the proposed modifications, which can be implemented in websites. After
the modification of the adjacency matrix we measure the energy of target
nodes π′t. This allows us to investigate the efficiency of both methods for
a given bias strength.

Relative Increase in Stationary Probability. With the previous
experiments we analyze changes in the energy of target nodes in absolute
terms. For instance, we may learn that for a given set of target nodes we
may achieve an energy of π′t = 0.5. However, we do not know what the
relative increase in their energy is. For example, the set of target nodes
may have had πt = 0.49 in the unmodified network rendering our efforts
futile in relative terms. Thus, in this experiment we use τ to measure the
influence potential. A higher value for τ means a larger relative increase
in the energy of target nodes. Again, we compare the results for a given
bias strength between our two methods.

Combination of Strategies. Finally, we are interested in investigating
if and to what extent the energy of target nodes changes if we combine
click biases and link insertion. We vary the mixture factor α from 0 to 1
in steps of 0.1 and measure the energy of target nodes π′t of the modified
networks.

3.5.7. Results & Discussion

Saturation

Figure 3.9 depicts the effects of link modifications in our datasets with
increasing values of bias strength b and varying fractions of target nodes
φ (0.01, 0.1 and 0.2).
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Figure 3.9.: Saturation. The plots depict the connection between bias
strength (x-axis) and the increased energy of target nodes due
to an induced click bias (left) or link insertion (right). Each
marker type and color refers to one dataset. Dashed, solid and
dotted line styles refer to fraction of target nodes φ 0.01, 0.1
and 0.2 respectively. We can observe that both link modifica-
tion strategies reach a certain level of saturation—meaning
that further increases in bias strength do not result in an
increase in energy of target nodes. Therefore, for both strate-
gies we identify two phases: a (i) navigational boost phase in
which we observe a rapid increase of the stationary probability
(blueish region with small values of the bias strength), and a
(ii) saturation phase (reddish region with larger values of the
bias strength).

In the case of click bias we observe the following situation. For small values
of b the energy of target nodes π′t increases very quickly (navigational
boost phase, which we analyze in more detail in Section 3.5.7)—this
energy saturates for larger values of b (i.e., b > 35). This holds for larger
φ values (0.1 and 0.2), whereas for a smaller φ, for example φ = 0.01, the
initial growth as well as the saturation are significantly slower and lower
respectively. Further, for higher φ (0.1 and 0.2) π′t saturates at an almost
identical and very high level (> 0.8)—if the click bias is strong enough
we can increase the energy of any fraction of target nodes larger than
φ > 0.1.
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Figure 3.10.: Influence of Target Nodes Degree Ratio onto the
Saturation of Their Energy. The plots depict the due
to link insertion achieved energy of target nodes pi′t as the
function of their degree ratio. Each line depicts the results for
a given φ. For increased readability we group data points into
six equally sized bins according to their degree ratio (x-axes).
Values on the y-axes represent the averages of the data points
falling into the corresponding bin. Top row. In the top row
we show the distribution of the target nodes degree ratios (in
bins; x-axes)—the y-axes denote the number of data points
(N) falling into each bin. Middle row. Here, we depict
the results for medium and large fractions of target nodes.
Bottom row. For readability we depict small fractions
of target nodes separately. Over all datasets and all φ we
consistently observe a negative correlation between degree
ratio and energy π′t. This means that with an increasing
ratio—an increasing out-degree and a decreasing in-degree—
the drain of energy increases and this leads to the saturation
of the energy of target nodes.

An interesting question in this respect is the height of the energy saturation
level. Theoretically, this level is close to 1.0 but as Figure 3.9 shows, in
empirical networks this level can not be fully reached. Essentially, due to
the directed nature of the network, the target nodes out-component (i.e.,
the nodes with incoming links from target nodes) will always act as a drain
that will take some energy from the target nodes. That amount depends
on the size of the out-component as well as its connectivity with other
parts of the network—in particular the existence of back-links towards
target nodes. This situation is depicted in our toy example Figure 3.8 in
the middle row. Node 4, which has an incoming link from node 1, profits
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from an induced click bias towards node 1 (cf. original π4 = 0.27 and
modified π′4 = 0.29). Thus, although π′1 increases with increasing bias
strength, node 1 would never reach energy values close to 1.0 because node
4 attracts a certain amount energy to itself.

In the case of the link insertion strategy the results are more diverse (cf.
Figure 3.9b). For DEM dataset we observe a quick saturation for all values
of φ. Differently from the click bias the saturation level is significantly
lower for this dataset (i.e., 0.6). For the ORF dataset we do not observe
saturation but a monotonous increase in the energy of target nodes for
increasing values of φ. Finally, for the W4S dataset and larger φ (0.1 and
0.2) we can observe saturation at levels higher than 0.9.

As previously, the size of the out-component of the target nodes, combined
with the size of their in-component (i.e., the source nodes which point
towards target nodes), as well as the ratio of these two quantities provide
a possible explanation for this behavior. Basically, we can calculate the
average number of newly inserted links as l(b) = d · n · φ · b, where d is the
average degree (i.e., in a directed network average degree d corresponds
to both, the average in-degree and average out-degree) and n, φ, b are
as before. Thus, in the networks with a higher average degree we insert
more new links. For smaller values of bias strength (blueish region in
Figure 3.9b) these new links lead to a navigational boost, resulting in a
quick increase in the energy π′t of target nodes. The navigational boost is
higher in networks with a higher average degree—we observe the highest
increase in π′t in DEM with d = 49.22, the second highest in ORF with
d = 30.8, and the lowest in W4S with d = 27.6. As mentioned before, in
Section 3.5.7 we analyze this navigational boost in more detail. However,
for larger values of bias strength (reddish region in Figure 3.9b) the effects
of the drain due to the larger size of the out-component become visible—
the networks with a higher increase for smaller bias strengths lose their
energy now more quickly. Thus, the ordering of the saturation levels for
higher bias strengths is reversed to the navigational boost in energy for
lower bias strengths, resulting in W4S to now have the highest saturation
level, followed by ORF and then by DEM.
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To confirm our intuition about the saturation for the link insertion strategy
we performed the following analysis. First, we calculated some structural
properties for the target nodes. In particular, based on the insights of Ding
et al. [2002, 2004], we define the in-degree of target nodes as the sum of the
weights of links pointing towards target nodes d−t = ∑

ij ( diag(t) ·W )ij .
The out-degree of target nodes is the sum of the weights of outgoing links of
target nodes d+

t = ∑
ij (W · diag(t))ij . Finally, the degree ratio of target

nodes is a ratio between the previous two measurements (i.e., drt = d+
t /d

−
t ).

Although, it has been shown that properties, such as the simple count
of in-links of a node, are bad approximations for PageRank on a large
scale [Pandurangan et al., 2002], they proved to be a good indicator for
the random surfer behavior on our datasets.

In our experiments, DEM has on average by one order of magnitude higher
both target node in-degree and out-degree than the other two datasets.
This explains a quick increase of π′t for smaller bias strengths. However,
degree ratio is typically larger in DEM target nodes than in ORF or
W4S target nodes and this explains a higher drain of energy and a lower
saturation level in the DEM dataset (cf. Figure 3.10).

Finding 1: For larger fractions φ of target nodes their energy π′t
achieved through a click bias quickly saturates across all datasets
at very high levels (> 0.8). Boost and saturation of the energy is
significantly slower for smaller fractions φ. The saturation level is
determined by the out-degree of the target nodes and reciprocity of
outgoing links from the target nodes. For link insertion saturation
existence, speed, and levels vary between datasets and φ values. The
average degree of the original networks as well as the ratio between
out-degree and in-degree of target nodes significantly influences those
effects.

Implications. In case of medium (φ = 0.1) and large (φ = 0.2) fractions
of target nodes we reach high saturation levels with both link modification
methods even with small bias strengths. For example, if we would like to
increase visibility of a large category in, for example Wikipedia, we can
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achieve this by either slightly increasing the font size of the links towards
the articles of that category or by simple creating some new links towards
those articles. Click bias reaches very high visibility levels consistently
across several different datasets, whereas link insertion is dependent on
the network structure—in datasets with a smaller average number of links
we can achieve larger changes. This follows our intuition—in a network
with a smaller number of links, each new link affects the network more
significantly. However, to match the effects of the click bias we need to
insert a very large amount of new links. On the other hand, in case of
small (φ = 0.01) fractions of target nodes, we can achieve larger changes
by using link insertion—we are able to reach higher saturation levels more
consistently and more quickly regardless of the dataset. Again, we can
explain this intuitively—small fractions of target nodes have, on average,
only few links pointing towards them. Hence, inserting a new link from a
top webpage achieves larger changes than highlighting an existing (and
probably negligible) link.

Navigational Boost

The blueish region from Figure 3.9b corresponds to smaller and more
realistic bias strengths. In practice, increasing the visibility of a link (e.g.,
by repositioning or highlighting) by more than a factor of 15, meaning that
it would receive 15 times more clicks than before, seems quite unrealistic.
In particular, users position bias is estimated to be lower than 3.5 [Lerman
and Hogg, 2014; Hogg and Lerman, 2015]. Hence, we focus on bias
strengths ranging from 2 to 15 (the blueish region in Figure 3.9b) where
we can observe a phase of quick increase in the energy of target nodes. We
call this phase navigational boost phase. The results for all bias strengths
from 2 to 15 are quite similar and therefore we report only the results for
bias strength b = 5.

For click bias we observe a robust performance across datasets, see Figure
3.11. The energy of target nodes π′t increases almost linearly with the
fraction φ of target nodes. However, at higher φ (i.e., 0.15 ≤ φ ≤ 0.2) the
linear trend tends to flatten. This is due to a transition to the stationary
phase (cf. Section 3.5.7). Further, we observe a rather high variance of π′t
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Figure 3.11.: Navigational Boost. Left center figures depict the energy
of target nodes after modifying the network through either
inducing a click bias or link insertion respectively. The x-
axes correspond to the fraction φ of target nodes, whereas
on the y-axes we denote the energy of target nodes π′t. Each
line represents the average of 100 samples for each φ of one
dataset. The areas filled with the same color denote the
corresponding standard deviations. Left. Inducing a click
bias is robust across datasets. However, the variability within
values of φ is rather high. The high variance is caused by the
presence or absence of one or more nodes with high original
energy in the target nodes. Thus, in cases where such nodes
are present in target nodes (depicted as point A in the plot)
even smaller fractions of target nodes are able to outperform
larger fractions of target nodes without such a top node
(depicted as point B in the plot). Center. On the contrary,
the performance of link insertion varies over datasets but
is stable across various φ values, which is signified by the
low standard deviation suggests over φ. Right. We plot the
Lorenz curve of the datasets’ original stationary distributions.
We can observe that for different datasets these distributions
are differently skewed. In particular, in DEM the energy of
just a few nodes is close to 1, whereas in ORF and W4S we
need far more nodes to reach the same level (i.e., 0.4 and 0.7
respectively). This explains why we can achieve the highest
effect with link insertion in DEM, followed by ORF and W4S.
Thus, the performance of link insertion depends on the initial
stationary distribution of the network, whereas click biases
are robust across datasets. Moreover, for smaller fractions
of target nodes link insertion constantly outperforms click
biases.
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over φ and different sets of target nodes. For example, we measure the
following average standard deviations over φ: W4S = 0.023, ORF = 0.103
and DEM = 0.068. This high variance can be attributed to situations in
which smaller fractions of target nodes are often able to outperform larger
ones. We depict one such extreme situation of two outlier samples marked
as A and B in Figure 3.11. Target nodes depicted with A with φ = 0.1
reach an energy that is almost twice as high as those of the target nodes
depicted with B with φ = 0.2.

One potential explanation for these observations is that if the energy of
target nodes of the unmodified network is already quite high, that is, the
target nodes include one or more nodes with a substantial energy, then
the click bias acts as an amplifier further magnifying the energy of target
nodes. On the other hand, target nodes with a small unmodified energy
receive indeed the amplifying effect but are never able to reach the same
(high) levels of the modified energy. Therefore, it is possible for smaller
fractions of target nodes with one or more nodes with high starting energy
to outperform larger fractions of target without such nodes. This can
be further attributed to the target nodes structural properties, such as
out-degree, in-degree and degree ratio, which we introduced in the previous
sections. Basically, starting energy positively correlates with in-degree of
target nodes, and therefore we can expect that the click bias is able to
amplify target nodes with a higher in-degree more than the target nodes
with a lower in-degree. In particular, to confirm this finding we conducted
a similar correlation experiment as depicted in Figure 3.10, but used a
combination of the target nodes in-degree and energy achieved due to a
click bias. However, due to limitations in space, we do not report the
experimental details here.

Finding 2: The fraction φ of target nodes does not have a decisive
effect on navigational boost. Often, smaller φ exhibit larger effect sizes.
Click bias acts as an amplifier that only magnifies what is already
present in the target nodes.
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In the case of link insertion, navigational boost appears to be highly
dataset dependent (see Figure 3.11b). However, the variance of each
dataset individually is very low with average standard deviations of 0.017
for W4S, 0.029 for ORF and 0.034 for DEM. Across all datasets we can
observe a quick increase in the energy of target nodes with an increasing
fraction of target nodes, which then experience a transition towards a
stable saturation phase.

To explain the difference in performance between different datasets we have
plotted the Lorenz curves of the stationary distributions of our datasets
(see Figure 3.11c). We see that for W4S, a very small fraction of top nodes
(0.01) only possesses 0.4 of energy. Diversely, for ORF and DEM the same
fraction of top nodes already possesses energy higher than 0.85. As the
out-component of a specific set of nodes acts as a drain for the energy of
source nodes, connecting source nodes with high energy to target nodes
leads to a flow of energy from those source nodes towards target nodes.
Thus, the initial energy of source nodes plays a crucial role in this process.
Through link insertion from top source nodes towards target nodes we
attach the target nodes as drains to such top nodes. Consequently, target
nodes receive a huge amount of energy and experience a large navigational
boost (i.e., ORF and DEM). In other words, we can say that link insertion
induces diffusion of the energy of top nodes towards target nodes. Given
the average degree of the network and the fraction of source nodes (which
increases with the fraction φ of target nodes), we can use the Lorenz
curves to approximately predict the point where the performance across
datasets becomes similar. For example, the Lorenz curves of DEM and
ORF meet around a fraction of 0.4 of source nodes and we can expect
that the performance of those two datasets will become similar for all
fractions of source nodes larger than 0.4. In the case of W4S, we need
a larger fraction of source nodes (0.7) to reach a similar behavior (cf.
Figure 3.11c).

Comparing link insertion with click bias we find that the former outper-
forms the latter for smaller fractions φ of target nodes. For example, in
the DEM dataset, link insertion reaches four times higher energy values
for the target nodes with φ = 0.01. However, for higher values of φ the
click bias exhibits a similar performance as link insertion. Further, in the
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case of the W4S dataset, the click bias even outperforms link insertion
(see W4S in Figure 3.11a and Figure 3.11b) at φ = 0.2).

Finding 3: The performance of link insertion varies across the datasets
and depends on the skewness of the initial stationary distribution in
a dataset. Inserting links from other important webpages towards a
given set of webpages results in a higher navigational boost than with
the click bias. This is due to the induced diffusion of the energy from
top nodes towards target nodes.

Implications. If it is possible to insert new links on a website (especially
if the fraction of target nodes is small) we should prefer the link insertion
over the click bias. However, creation and insertion of such links may be
problematic in practice. For example, on Wikipedia it may be difficult and
semantically unjustified to insert new links to completely unrelated articles
since this may have opposite and contrasting effects on the navigational
behavior of users, such as confusion and dissatisfaction. In those cases
we may rather choose to increase the transition probability of an already
existing link by, for example, highlighting that link (i.e., using CSS20) or
repositioning it to the webpage’s top area. In some other scenarios (i.e.,
birthdays of famous inventors) implementing a banner which contains links
towards a given set of webpages may be an easy way to insert thousands
of new links instantly. In those cases, such user interface modifications
may prove to have higher lasting effects on the stationary probability than,
for example, highlighting links.

Influence Potential

Figure 3.12 depicts the effects of link modifications strategies on the
relative increase of the energy of target nodes (i.e., influence potential).
Again, we concentrated in this experiment on realistic settings for the
bias strength from the interval [2, 15]. Since we got comparable results

20cascading stylesheets
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Figure 3.12.: Influence Potential. The figure depicts the relative in-
crease in the energy of target nodes τ with a fixed bias
strength of b = 5 over different φ and datasets. Left. In-
ducing a click bias performs robustly and similarly over all
datasets (curves for different datasets overlap each other in
the plot). Influence potential correlates negatively with the
fraction of target nodes, that is, the relative increase in energy
is higher for small fractions of target nodes than for large
fractions. Right. With link insertion, we find a significant
variance in performance across our datasets. This confirms
our findings from the previous section—the skewness of the
original stationary distribution determines the effectiveness
of the link insertion strategy in a dataset. Similarly to the
click bias, the influence potential decays with an increasing
fraction of target nodes.

over that complete interval we present only the results for bias strength
b = 5.

The performance of the click bias is robust across datasets and different φ
with a low variance in both dimensions (cf. Figure 3.12a). We observe a
negative correlation between influence potential and fraction φ of target
nodes, meaning the smaller fractions of target nodes profit more from an
induced click bias than larger fractions. Our calculations of the influence
potential confirm once more the results from the previous section, in which
smaller fractions with top energy nodes are able to outperform larger
fractions of target nodes without top nodes. We once more depict two such

117



3. Publications

examples from Figure 3.11a. Target nodes depicted by A with φ = 0.1
reach an energy that is almost twice as high as those depicted by B with
φ = 0.2. However, nodes A start with a larger initial energy and nodes
B with a smaller one. Therefore, in relative terms nodes B have a higher
influence potential than nodes A (cf. Figure 3.12a).

Performance of link insertion is again strongly dependent of the dataset.
However, similarly to the click bias we observe over all datasets that
smaller fractions of target nodes profit significantly more from the link
insertion than the larger ones. For example, in DEM dataset for φ = 0.01
we measure an average influence potential of more than 100, whereas for
φ = 0.2 influence potential is less than 4 (cf. Figure 3.12b). A similar
decay, although not as pronounced as in DEM can be seen in the other two
datasets. Similarly to the navigational boost this high influence potential
of smaller fractions of target nodes in the case of link insertion can be
explained through the skewness of the initial stationary distributions (cf.
Figure 3.11c).

As previously, we investigated more closely the relation between influence
potential of small fractions of target nodes and their structural properties
such as in-degree, out-degree and degree ratio. Target nodes with a high
degree ratio (i.e., a small in-degree, a large out-degree or both) have the
largest influence potential. Intuitively, such target nodes start with a
very small initial energy and therefore can achieve a significant relative
increase. On contrary, in absolute terms such target nodes keep a rather
small energy even after the modification, whereas target nodes with a
large initial energy (a low degree ratio) are experiencing a significant
navigational boost in absolute terms but possess relatively low influence
potential.

Finding 4: The influence potential of small fractions of target nodes
is very high regardless of the link modification strategy. For click bias
the influence potential is limited by the bias strength, whereas for link
insertion we do not observe such a limit and influence potential can
become as high as 100. With increasing fraction of target nodes the
influence potential decays drastically.
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Figure 3.13.: Combinations of Link Modification Strategies. The
plots depict average results of 100 sets of target nodes of
W4S for three φ: 0.01 small on the left, 0.1 medium in the
middle, and 0.2 large on the right. On the x-axes we denote
α, which defines the combination of the two link modification
strategies, whereas on the y-axes we denote the energy of
target nodes. We see that for smaller values of φ α = 0
(100% link insertion) outperforms all the others over all used
bias strengths. However, for medium and large φ values with
higher bias strengths this sweet spot shifts towards higher
combinations (α = 0.7). In the other two datasets we can
observe similar results.

Implications. As previously, if possible we should prefer link insertion
over click bias in cases where we are interested in utilizing the influence
potential of the target nodes. Our findings suggest that in practice there is
a trade-off that we need to make between optimizing for influence potential
and for navigational boost. For the former, we need to aim at target nodes
with a high degree ratio and for the latter at target nodes with a low
degree ratio.

Combinations

In the previous experiments we found that in some situations link insertion
should be preferred over click bias (e.g., small fraction φ of target nodes),
whereas sometimes the opposite represents an optimal approach (e.g., large
φ). For that reason we want now to shed more light onto combinations
of both strategies, that is, we are interested in the navigational effects of
simultaneously applying click bias and link insertion to varying extent.
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Figure 3.13 depicts the results of this experiment. We find consistent best
performing mixtures over all datasets. In particular, we observe that for
small fractions φ of target nodes, exclusive link insertion outperforms any
other combination (see Figure 3.13a). For medium sized target nodes
(i.e., φ = 0.1) we observe a shift of best performing combinations towards
α = 0.9 for higher bias strengths (i.e., b = 5 and b = 15). This combination
consist of 90% click bias and 10% link insertion. For combinations of large
fractions of target nodes (i.e., φ = 0.2) and small bias strengths (b = 2)
the best performing combination is around α = 0.5 (50% click bias and
50% link insertion) and further shifts towards α = 0.9 (90% click bias and
10% link insertion) with an increased bias strength.

These results confirm our insights from the previous experiments. Thus,
click biases act as an amplifier and only work well if target nodes initially
possess valuable incoming links. This is highly likely for larger and medium-
sized fractions of target nodes, and very unlikely for the case of smaller
fractions of target nodes. On the other hand, link insertion diffuses a
large portion of the energy of top nodes towards target nodes. Hence, it
works especially well for combinations of small fractions of target nodes
and datasets with a highly skewed stationary distribution.

Finding 5: For small fractions of target nodes with initially low energy,
pure link insertion should be preferred over any other combination.
However, with increasing bias strength and larger fraction of target
nodes, combinations consisting of 90% click bias and 10% link insertion
performs best.

Implications. Smaller sets of webpages (i.e., small φ) should focus on
introducing new links to achieve the highest browsing guidance. The bigger
the set of webpages and the used bias strength becomes, the more this
preference shifts towards a combination of 0.9, meaning that 90% of the
modifications should be invested in increasing the transition probability of
already existing links towards target nodes (e.g., highlighting in the user
interface). The remaining 10% should be used to insert new links towards
target nodes.
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Stationary Versus Transient User Behavior

The random surfer which navigates forever (stationary behavior) may
look like a rather unrealistic behavior of users. More realistically, a single
user visits a website clicks a couple of times on various links and leaves
the website again (transient behavior). However, our calculations of the
stationary distribution show that, at least on the networks that we have
investigated in this paper these two behaviors are quite similar to each
other.

The stationary distribution is calculated with the power-iteration intro-
duced by method Golub and Van Loan [2012]. Thus, we initialize a
probability vector representing an initial probability to find a random
surfer on each particular node in the network. We initialize this vector (i)
with a uniform distribution and (ii) by setting the visit probability of the
home page to 1. The former initialization accounts for the assumption that
initially each page is equally likely to be visited by users, whereas the latter
models users entering the website over the home page. Afterwards, we
iterate by recalculating the probabilities for the next click of the random
surfer. Thus, one iteration step of the power-iteration method can be
interpreted as a step or a click performed by the random surfer moving
from the current node to one of its neighbors. Hence, the number of
iteration steps that are needed until there are no significant changes in
the node probabilities, that is, the convergence rate of the power-iteration
method, can be interpreted as the number of clicks needed to model the
stationary user behavior. In other words the random surfer does not need
to navigate forever—it only needs to navigate through the network until
the point where the next click does not change the observed stationary
distribution.

In all our datasets, all networks that we generated and modified for these
datasets, all combinations of fractions of target nodes φ and the bias
strength b our calculations converge within 8 iterations regardless of the
initialization. Thus, the stationary user behavior is in fact a behavior
of users who navigate 8 pages in a website at most. We believe that
these 8 clicks are within realistic boundaries for user behavior in the
cases in which users decide to explore and browse a website. However,
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since many users leave a website immediately upon arrival or within only
a single or a small number of clicks this still represents a limitation in
our work. This limitation can be easily remedied by introducing a small
teleportation probability of jumping to an arbitrary page without following
the underlying network structure (i.e., calculating PageRank vector instead
of the stationary distribution). We have already experimented with the
calculations of PageRank and our first results are quite similar to results
that we have presented in this paper. However, we plan to address this
question in more details in our future work.

3.5.8. Conclusions

In this paper we have analyzed the effects of two link modification strategies
used to influence the typical whereabouts of the random surfer. We
investigated how an induced click bias towards a set of webpages changes
the stationary distribution (i.e., energy) of those pages. Additionally,
we compared those effects with the consequences of altering the network
structure by inserting new links. We find that both strategies have a
high potential to modify the stationary distribution and that for certain
situations there exist constantly high performing link modification strategy.
In particular, click biases work well on sets of webpages containing already
highly visible webpages, whereas link insertion should be preferred for sets
of webpages consisting of pages with low visibility. Further, we showed
that a simple structural property of target nodes, namely degree ratio,
provides a valuable basis for the estimation of the effects of both link
modification strategies.

Assuming that the random surfer is a realistic model of user behavior on
the Web—which previous studies seem to confirm [Helic et al., 2013; Geigl
et al., 2015]—website operators can use our approach and open-source
framework to determine the best strategy for their settings without having
to implement and test all the different strategies. Such strategies include
but are not limited to altering link positions (bias [Blunch, 1984; Joachims
et al., 2005; Murphy et al., 2006; Craswell et al., 2008; Yue et al., 2010;
Lerman and Hogg, 2014; Dimitrov et al., 2016]) or creating new links using
a recommender systems [Herlocker et al., 2004] (link insertion).
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An important practical issue that we have not addressed in this paper is
usability. Usability considerations limit the number of new links that we
can insert or how we can reposition links. In future, we plan to account
for usability by extending our model and investigating limitations induced
by various usability restrictions. Also, including the existing user link
selection bias derived from user clickstreams into the model would further
improve the practical relevance of our method.
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The World Wide Web has seen an enormous growth over the last decades.
Starting with the first version of this technology created by Tim Berners-
Lee in 1989, the number of websites and users has been steadily increasing.
Today, due to the sheer number of websites available on the Web, its
constantly changing structure, and the lack of a centralized index, the
number of websites on the Web can only be estimated. At the time
of writing, the website WorldWideWebSize.com1 estimates the Web to
encompass 4.5 billion pages. The popularity of the Web has led it to be an
important business factor, and commercial websites constantly compete
to attract as many visitors as possible. Moreover, companies strive to
steer users towards certain webpages on their own website to, for example,
increase sales of a specific product in a webshop, or just to facilitate
navigation and assist users in accomplishing their objectives.

Previous studies have shown that humans exhibit certain biases while
browsing the Web, such as the well-known position bias [Blunch, 1984;
Joachims et al., 2005; Murphy et al., 2006; Craswell et al., 2008; Yue
et al., 2010; Lerman and Hogg, 2014; Dimitrov et al., 2016; Lamprecht
et al., 2016]. However, the potential effects of such biases had not been
investigated until recently. Furthermore, it had been unclear which of the
two basic manipulation strategies, namely click biases and link insertion,
should be preferred over the other regarding their efficiency to steer users
on a website.

In this thesis, I have investigated, if human navigation can be approximated
by the random surfer model and how click biases and link insertion affect
this model. To that end, I have shown that, from a macroscopic point of
view, the random surfer is able to imitate human navigation on the Web

1http://www.worldwidewebsize.com/
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(i.e., stationary distribution). Extending the model to incorporate click
biases has allowed me to investigate their effects on the typical whereabouts
of users on several empirical datasets. The extension of the model consists
of a theoretical solid way to incorporate click biases and link insertion
into the random surfer model. Additionally, to broaden our understanding
about how to steer visitors of a website more efficiently, I have presented a
method that allows to fairly compare click biases and link insertion.

The remainder of this chapter is structured as follows. In Section 4.1 I give
an overview of the results and contributions of this thesis. Subsequently,
in Section 4.2 implications of this work are summarized before discussing
the limitations in Section 4.3. Finally, in Section 4.4 I provide ideas and
potential new avenues for future work.

4.1. Results and Contributions

In the following section I answer the research questions stated in Sec-
tion 1.5.

4.1.1. Can we model human navigation using random surfers?

The analysis of human navigation on the Web has been the focus of a great
deal of research attention, and has been studied in many details. The
analyzes range from investigations on a microscopic level (e.g., whether
or not a user’s link selection process is influenced by previously visited
webpages [Singer et al., 2014b]) to experiments conducted on a macroscopic
level (e.g., distribution of path lengths [Gleich et al., 2010; Helic et al., 2013;
Lamprecht et al., 2015b]). However, website administrators are often solely
interested in the number of visits each of their websites’ pages receives.
Put differently, they want to know the typical whereabouts of their visitors.
Yet, it is often the case that no empirical data (e.g., number of page views)
has been collected to answer these kinds of questions. Examples of such
situations include, but are not limited to, newly published websites for
which no data exists.
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To tackle this question, I have compared the stationary distribution of
the random surfer to empirical data [Geigl et al., 2015]. In particular, I
have investigated the webpage visits of humans navigating through an
online encyclopedia. By conducting various experiments, I have found that
the stationary distribution of random walks strongly correlates with the
distribution derived from empirical user data. However, this only holds
true when the landing pages included in the empirical dataset are not
being considered. This means that the random surfer is not capable of
mimicking humans who utilize search engines and frequently reach specific
subpages on a website directly. To the advantage of the presented model,
previous research has shown that, despite the increased usage of search
engines, the larger fraction of clicks on the Web still originates from users
following static links [Gleich et al., 2010]. Consequently, the findings of
the conducted experiments are of utmost relevance and show that human
navigation can be meaningfully modeled using random surfers.

4.1.2. How can we model navigational biases of humans?

Based on the answer to the first research questions we now know that the
random surfer produces human-like distributions of page views. However,
from a practical perspective, it is not only interesting how we can synthesize
human behavior, but rather if and how we can steer this process. To answer
this question, I have analyzed random surfers biased towards two properties
observed in empirical data, namely homophily and popularity [West and
Leskovec, 2012a].

In a first step, I have presented a novel approach that allows modeling
arbitrary biases towards specific pages while not altering the underlying
link structure. More specifically, the method increases the transition
probabilities towards pages based on a predefined property of the target
page (e.g., popularity). As a second step, I have applied this approach to
several websites obtained by a web crawler to shed light on the efficiency
of click biases and their effects.

The results of these experiments indicate that click biases can drastically
alter the distribution of visits over pages of a website, and are thus an
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effective means to steer users. Furthermore, I have found that click biases
potentially give rise to unintended side effects, such as drastically reducing
the visit probabilities of the majority of webpages to a state in which users
barely view them [Geigl et al., 2016b]. This suggests that we need to
carefully evaluate the introduction of these biases with reference to both
the target objectives and the accompanying ramifications.

Moreover, I have found that, contrary to undirected graphs [Sinatra et al.,
2011], on directed webgraphs all investigated biases increase the certainty
in the random surfer’s decisions. I believe that these results are of utmost
importance for website administrators wishing to actively manipulate the
link selection process of users navigating their website. The circumstance
that we already know how to implement such biases on websites (e.g.,
positioning of links [Blunch, 1984; Joachims et al., 2005; Murphy et al.,
2006; Craswell et al., 2008; Yue et al., 2010; Lerman and Hogg, 2014;
Dimitrov et al., 2016; Lamprecht et al., 2016]) further underlines the
practical relevance of these results.

4.1.3. How do navigational biases compare to structural
modifications of networks?

In the second research question I have shown that click biases have a high
potential to alter the distribution of visits over pages of a website. Apart
from click biases, alternative ways to increase the visibility of webpages
exist. One such method is the insertion of new links leading to these pages.
This action enables users to reach the targeted webpage, that is the page
of which one wants to increase the visit probability, from a larger subset
of other pages. Based on these considerations, I have investigated which
of the two manipulation strategies—click biases or link insertion—bears
the higher potential in steering users towards a predefined subset of pages
of a website.

As a first step to tackle this question, I have presented an approach that
allows for a fair and intuitive comparison of the two manipulation strategies
under investigation. To analyze the effects triggered by each method, the

128



4.2. Implications and Potential Applications

approach measures the relative and absolute increase in visit probabilities
of the targeted subset of webpages.

I have executed several experiments on a range of real-world datasets to
explore the differences and commonalities between the two manipulation
strategies across datasets. The findings show that the visibility of targeted
pages with an initially low visit probability can be increased more efficiently
when utilizing link insertion. However, as the initial visit probability of
targeted pages increases, click bias start to outperform the method of link
insertion. Contrary to link insertion, the effects of click biases showed a
rather robust performance. Overall this indicates that the decision about
which of the two manipulation strategies to apply is strongly dependent
on the initial state of the targeted subset of webpages. To allow website
administrators and researchers to account for this, I have open-sourced the
tool2 used to produce the presented results. Website administrators can
use this tool to encode and set up their initial situation. Subsequently, the
tool simulates both manipulation strategies to provide actionable insights
about which strategy should be preferred.

4.2. Implications and Potential Applications

To aid website administrators in structuring and creating websites tailored
to their needs, a better understanding of how humans navigate the Web
is essential. The effects arising from the manipulation of this process are
relevant for website owners as well as scientists who study human behavior
on the Web. With this thesis, I have provided a first stepping stone towards
this larger goal. I believe that the results of this thesis provide important
and actionable insights, and that the obtained knowledge provides a
valuable basis for further research in this area. The remainder of this
section discusses direct implications of the presented results and possible
applications of the methods developed in this thesis.

2https://github.com/floriangeigl/RandomSurfers
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4.2.1. Random Surfers as Model of Human Navigation on the
Web

In the literature, a great amount of work has been dedicated to finding
a method that models the decisions of humans navigating the Web as
accurately as possible. However, in practice it is often sufficient to analyzes
the typical whereabouts of users. Showing that the random surfer is a
sufficient model for this task equips researchers with a computationally
cheap and easily extensible approach for further research in this area.
From a practical point of view, the approach allows website administrators
to investigate effects emerging due to structural changes of their website
without the need to execute tests that potentially disperse valuable visitors.
For example, A/B testing a feature could confront some users with a new
structure that is not to their liking and potentially drive them away.

4.2.2. A Method for the Simulation and Comparison of Click
Biases and Link Insertion

Extending the well-studied random surfer model to simulate click bi-
ases [Geigl et al., 2016b] and structural changes [Geigl et al., 2016a] of
a website enables researchers to study various effects arising due to this
manipulation. The model of human navigation is simple, computationally
cheap and yet suffices for many use cases. I firmly believe that the sim-
plicity of the presented model and the theoretical solid way how to encode
different scenarios can assist researchers who study human behavior on
the Web in their work. Furthermore, to the best of my knowledge, the
model is the first of its kind that allows for a direct comparison between
click bias and link insertion, all while doing so in a fair manner.

4.2.3. Side Effects of Click Biases

Implementing interface changes on a website to exploit human biases,
such as the well-known position bias, has already been shown to be an
efficient method to manipulate a user’s decision of which link to follow
next [Lerman and Hogg, 2014]. In this thesis, I have shown that such
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click biases affect not only the targeted pages but also the pages these
pages link to. In some cases, this effect can spread throughout the entire
website—leading to an unintended and drastic change in the distribution
of visits over pages of a website. To increase the awareness of website
owners for such pitfalls, this thesis has presented an approach that allows
to simulate click biases in an offline setting.

4.2.4. Click Biases Versus Link Insertion

The application of our method to several empirical datasets has shown
that there exists a rule of thumb stating when to prefer one method over
the other. In particular, I would recommend website administrators to
prefer link insertion over click biases if the pages for which they want to
increase visits are barely visited by users. However, if the targeted pages
are already frequently visited, they should exploit the amplifying effect
of click biases to outperform the method of inserting new links while also
achieving more robust results.

4.3. Limitations

This chapter discusses the limitations entailed by the analysis conducted
in this thesis.

• Generality of Empirical Findings. Commercial and privacy
concerns did not allow me to get access to logfiles from all of the
websites I have investigated in this thesis. For this reason, many of
the empirical results are based on datasets that I have crawled inde-
pendently. Some of these automatically crawled websites included
content rendered on the client side (e.g., flash & JavaScript), which I
was not able to incorporate into the crawling process. Consequently,
the crawled link structures might not cover all links a user is able
to actually click on when visiting the website in a browser which
supports rendering of such content. However, based on a substantial
amount of time spent on manually inspecting the websites used in

131



4. Conclusions

the experiments, I am confident that any missing links are few and
far between, and therefore very likely negligible.

• Restrictions Based on the Choice of Datasets. The first part
of this thesis has validated the random surfer as a model of human
navigation on the Web. The results were obtained using data from
an online encyclopedia. Consequently, it is not clear whether or
not this holds true for other websites, or even the entire Web. Yet,
the experiments have been conducted on a large set of user click
trails which, in my belief, makes them still relevant and sufficient
for further research in this area.

• Methodological Restrictions. The methods presented by this
thesis allow to examine the emerging effects of click biases and
link insertion on the typical whereabouts of humans browsing a
website. However, in the conducted experiments, I did not consider
the inherent biases arising from the layout of a website. Thus, the
initial state assumes that each outgoing link of a webpage is selected
with equal probability. According to the literature in this field,
the positioning of links on a webpage drastically influences a user’s
decision about which link to follow. Hence, this inaccuracy should be
addressed in future experiments. Based on the current state of the
presented model, this can be easily incorporated if one has access to
empirical click trails of users and/or the exact positions of all links.

• Availability of Datasets. As a consequence of crawling many of
the datasets, I am not permitted to make them publicly available for
research purpose. This problem stems from the fact that Austrian
law permits to crawl such datasets to conduct studies, but prohibits
sharing them with others. Nevertheless, whenever I have used such
datasets I additionally provided a detailed explanation on how I
crawled them. Consequently, everyone can implement a similar
crawler to gather the same datasets and validate the presented
results.
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4.4. Future Work

To conclude this thesis, I want to discuss new avenues for potential future
work in this section.

4.4.1. Random Surfer as a Model of Human Navigation

To further validate the assumption that the random surfer is an appropriate,
or at least sufficient, model of human navigation on the Web, further studies
on empirical datasets should be conducted. Specifically, experiments
using empirical data from other types of websites (e.g., webshops, movie
platforms and blogs) are an interesting new direction for future work. This
would also improve the understanding of the model’s validity.

4.4.2. Calculation of Biases

At the time of writing, the presented method of inducing various biases
into the random surfer model is missing a way to fit it to empirical data.
Such a method would permit to measure to what extent humans are
biased while navigating the Web. Moreover, the resulting bias of these
experiments would directly represent the modeling error of the random
surfer model as compared to real humans navigating the Web. A good
starting point in this direction would be the article presented by Kumar
et al. [2015].

4.4.3. New Types of Biases

The research presented by this thesis has modeled biases using properties
derived from webgraphs, such as the degree of a node (i.e., number of in-
and outgoing links of a webpage). However, these characteristics are only
proxies of information exploited by users during navigation. An interesting
path for future research to get a better understanding of human biases
would be to model extrinsic biases, such as the semantic similarity between
pages. Additionally, this would provide us with insights about whether
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or not proxies derived from the network structure are able to reflect the
corresponding extrinsic biases correctly.

4.4.4. Microscopic Analysis

The experiments conducted throughout this thesis have mostly covered
the macroscopic view of typical whereabouts of users. However, it would
be of practical relevance to examine the results on a more fine-grained
level. An example of this would be to categorize pages and analyze which
categories profit from click biases most. An interesting question in this
context would be whether or not a general pattern across various empirical
datasets exists.

4.5. Closing Words

I hope that with this thesis I encourage and facilitate future research
investigating human navigation on the Web. Furthermore, I am confident
that website administrators and researchers can benefit from the open-
source tool developed for this thesis. Finally, it is my own long-term vision
that this thesis will lay out the basis for a deeper understanding of the
effects of navigational human biases on the Web.
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Meiss, M., Duncan, J., Gonçalves, B., Ramasco, J. J., and Menczer, F.
(2009). What’s in a session: Tracking individual behavior on the web. In
Proc. of the 20th ACM conference on Hypertext and hypermedia, pages
173–182. ACM.

Moricz, M., Dosbayev, Y., and Berlyant, M. (2010). Pymk: Friend
recommendation at myspace. In Proc. of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’10, pages
999–1002, New York, NY, USA. ACM.

Muchnik, L., Itzhack, R., Solomon, S., and Louzoun, Y. (2007). Self-
emergence of knowledge trees: Extraction of the wikipedia hierarchies.
Phys. Rev. E, 76:016106.

Murphy, J., Hofacker, C., and Mizerski, R. (2006). Primacy and recency
effects on clicking behavior. Journal of Computer-Mediated Communi-
cation, 11(2):522–535.

Newman, M. (2010). Networks: An Introduction. Oxford University Press,
Inc., New York, NY, USA.

O’Day, V. L. and Jeffries, R. (1993). Orienteering in an information
landscape: How information seekers get from here to there. In Proc.
of the INTERACT’93 and CHI’93 conference on Human factors in
computing systems, pages 438–445. ACM.

Ogras, U. Y. and Marculescu, R. (2006). ” it’s a small world after all”: Noc
performance optimization via long-range link insertion. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 14(7):693–706.

146



Bibliography

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-66,
Stanford InfoLab. Previous number = SIDL-WP-1999-0120.

Pandurangan, G., Raghavan, P., and Upfal, E. (2002). Using pagerank
to characterize web structure. In Computing and Combinatorics, pages
330–339. Springer.

Parry, W. (1964). Intrinsic markov chains. Transactions of the American
Mathematical Society, 112(1):pp. 55–66.

Pirolli, P. (1997). Computational models of information scent-following in
a very large browsable text collection. In Proc. of the SIGCHI conference
on Human factors in computing systems, CHI ’97, pages 3–10, New York,
NY, USA. ACM.

Pirolli, P. and Card, S. (1999). Information foraging. Psychological Review,
106(4):643–675.

Pons, P. and Latapy, M. (2005). Computing communities in large networks
using random walks. In International Symposium on Computer and
Information Sciences, pages 284–293. Springer.

Qiu, F. and Cho, J. (2006). Automatic identification of user interest for
personalized search. In Proc. of the 15th international conference on
World Wide Web, pages 727–736. ACM.

Richardson, M. and Domingos, P. (2001). The intelligent surfer: Prob-
abilistic combination of link and content information in pagerank. In
NIPS, pages 1441–1448.

Rosvall, M. and Bergstrom, C. T. (2008). Maps of random walks on
complex networks reveal community structure. Proc. of the National
Academy of Sciences, 105(4):1118–1123.

Silva, N., Tsang, I.-R., Cavalcanti, G., and Tsang, I.-J. (2010). A graph-
based friend recommendation system using genetic algorithm. In Evolu-
tionary Computation (CEC), 2010 IEEE Congress on, pages 1–7.

147



Bibliography

Simsek, O. z. and Jensen, D. (2005). Decentralized search in networks
using homophily and degree disparity. In Proc. of the 19th International
Joint Conference on Artificial Intelligence, IJCAI’05, pages 304–310,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
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