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Abstract

Cluster perturbation methods are a viable tool in dealing with non-equilibrium
calculations on large models. It is the main goal of this thesis to study such meth-
ods, by applying them on a suitable model. Therefore a finite one-dimensional
tight-binding Hubbard-chain was the model of choice. At first, the system was
analyzed thoroughly, using cluster perturbation theory. Fermionic bath chains
were attached to the thight-binding chain, to obtain a dissipation mechanism to
surpress occurring Bloch-oscillations. Driven out of equilibrium by an external
electric field, the current through the tight-binding chain was calculated for dif-
ferent interaction parameters, according to the Hubbard-model.

Finally the variational cluster approximation was introduced, by adding aux-
ilary bath sites to the central region. The alteration of the self-energy leads to a
different behaviour at non-zero interaction parameters. The variational parame-
ters used, were the on-site energy of the auxiliary bath sites as well as the hopping
strength into these bath sites.
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Chapter 1

Introduction

The treatment of large correlated systems in non-equilibrium conditions has been
one of the most studied topics of many-body physics for the past decades. The
development of numerical techniques to solve such systems is a foundation to
the understanding of all kinds of materials and mechanisms like magnetism and
super-conductivity.
However, before it is possible to solve macroscopic systems, like a solid block of
metal, these numerical techniques have to be tested and further developed on
small systems. Common models like the one-dimensional Hubbard model pro-
vide solvable systems, which gives a good description of experimentally found
behaviours.
The specific numerical method to treat systems like the Hubbard model used in
this thesis is the cluster perturbation theory and especially the improved ver-
sion of it, the variational cluster approximation. As already mentioned, a one-
dimensional Hubbard model will be investigated. The thesis is restricted on
a finite system of a tight-binding model, populated by electrons, and spinless
fermions in the last chapter.
In this first chapter, a brief overview of the most important methods used in this
thesis, is given. In chapter 2 the electronic transport through a finite tight-binding
chain is analysed, using CPT. In chapter 3 the variational cluster approximation
is introduced and applied to the tight-binding chain. The final chapter deals with
spinless fermions, inhabiting a quantum dot.

1.1 Green Function formalism

1.1.1 Introduction

One of the main interests of the quantum mechanical approach to many-body
physics is to understand a physical system in terms of quantities that are experi-
mentally observable. The measured variables of interest are

1. The eigenvalues of observables

2. The expectation values of observables
〈
Â(t)

〉
,
〈
B̂(t)

〉
, ...

3. The correlation function between observables
〈
Â(t) · B̂(t)

〉
...

With the methods of statistical mechanics the calculation of measured variables
of the types 2 and 3 is possible if the partition function of the system has to
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be known, which requires the knowledge of the eigenvalues and eigenstates of
the Hamilton-operator. In the case of many-body-calculations, the calculations
of those can, in general, not be taken as granted. The method of Green func-
tions gives a, in most cases, approximated calculation of correlation functions
and expectation values, without the knowledge of the partition function of the
system. [30]
The connection of a Green function to an experiment, as sketched briefly in [9] is
the following: One considers an experiment, where the system is put under the
influence of a disturbance, controlled by an external field F(r, t). It is spoken of
a linear response if the response depends linear on the perturbation, which is the
case if the applied field F(r, t) is weak. The given system can be described by the
Hamilton operator

H = H0 + V (1.1)

with H0 being the Hamiltonian of the unperturbated system and V the perturba-
tion term. The external field shall be coupled with observable B̂:

V = B̂F(t) (1.2)

where now only the time dependence of the field is considered.
Further Â is a not explicit time dependent observable with expectation value

〈
Â
〉

.

It is of interest how
〈
Â
〉

reacts to a perturbation V .
Following [30] we find the reaction of the system to perturbation V to be

∆At =
〈
Â
〉
t
−
〈
Â
〉

0
= − i

~

t∫
−∞

dt′F(t′) 〈[ ÂD(t), B̂D(t′) ]−〉0 (1.3)

with the two operators in the Dirac picture. We now define the

RETARDED GREEN FUNCTION

Gret
AB(t, t′) = 〈〈A(t);B(t′) 〉〉ret = −iΘ(t− t′) 〈[ Â(t), B̂(t′) ]−〉0 . (1.4)

Types of Green functions Giving only the retarded Green function is not suffi-
cient for the full Green function formalism. In fact, two more functions need to
be defined:
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ADVANCED GREEN FUNCTION

Gav
AB(t, t′) = 〈〈A(t);B(t′) 〉〉av = +iΘ(t− t′) 〈[ Â(t), B̂(t′) ]−〉0 (1.5)

CAUSAL GREEN FUNCTION

Gc
AB(t, t′) = 〈〈A(t);B(t′) 〉〉c = −i 〈Tε (A(t)B(t′))〉 (1.6)

Tε is Wick’s time-order operator that sorts operators after their time arguments:

Tε (A(t)B(t′)) = Θ(t− t′)A(t)Bt′) + εΘ(t′ − t)B(t′)A(t). (1.7)

There are other types of Green functions like the important Keldysh Green func-
tion, which will be discussed later in this thesis.

1.1.2 The Lehmann represantation of the Green function

As shown in [38] once the groundstate of a Hamiltonian H is known, the zero-
temperature Green function Gµν(ω) can be expressed as

G′µν(ω) = G′µν,e(ω) +G′µν,h(ω) (1.8)

G′µν,e(ω) = 〈Ω| cµ
1

ω −H + E0

|Ω〉 (1.9)

G′µν,h(ω) = 〈Ω| cµ
1

ω +H − E0

|Ω〉 (1.10)

with Ω the groundstate and E0 the groundstate energy. Inserting completeness
relations gives

G′µν(ω) =
∑
m

〈Ω| cµ |m〉
1

ω −H + E0

〈m| c�ν |Ω〉+
∑
n

〈Ω| c�ν |Ω〉
1

ω +H − E0

〈n| cµ |Ω〉

(1.11)
µ = (R, σ) concludes both the site as well as the spin. Now one can introduce a
further notation to simplify this expression:
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Q(e)
µm = 〈Ω| cµ |m〉 (1.12)

Q(h)
νn = 〈Ω| c�ν |n〉 (1.13)
ωem = Em − E0 (1.14)
ωhn = E0 − En, (1.15)

which leads to

G′µν(ω) =
∑
m

Q
(e)
µmQ

(e)∗
νm

ω − ωem
+
∑
n

Q
(h)
µnQ

(h)∗
νn

ω − ωhn
(1.16)

Building up matrices

Q =

(
Q(e)

Q(h)

)
(1.17)

and
g(ω) =

1

ω − Γ
(1.18)

with Γrs = δrsωr and ωr =
(
ω(e) ω(h)

)
gives us the

LEHMAN REPRESANTATION OF THE ZERO-TEMPERATURE GREEN FUNCTION [22]

G(ω) = Qg(ω)Q∗ (1.19)

1.1.3 The many-body real-time Green function

Following [27], the starting point to derive an expression for the retarded many-
body real-time Green function is chosen to be the n-body real-time time-ordered
Green function

G(n)(α1t1, ..., αntn|α′1t′1, ..., α′nt′n) = (−i)n
〈
T
[
c(H)
α1

(t1)...c(H)
αn

(tn)c
(H)�
α′
n

(t′n)...c
(H)�

α′
1

(t′1)
]〉
.

(1.20)
The creation and annihilation operators c(H)

αi (t) and c(H)�
αi (t) are represented in the

Heisenberg picture and αi denotes a state, including spin and site. The T de-
scribes a time ordered product and the brackets a thermal average. To treat the
Green function further, a thermodynamic ensemble has to be chosen. As in the
canonical ensemble, the number of particles N in a system is fixed, it is no practi-
cal to be used. A more suitable solution is found in the grand canonical ensemble,
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as it allows the exchange of particles of the system with the environment. When
talking about the grand canonical ensemble it is necesarry to introduce the chem-
ical potential µ, which leads to a transformation of the Hamilton-Operator

H → H − µN (1.21)

To simplify any further calculations the Hamiltonian will still be written as H but
has to be understood as H − µN . The definition of an expecation value of an
operator is

〈O〉 =
tr
(
Oe−βH

)
)

tr (e−βH)
(1.22)

applying that onto 1.20 gives

G(n)(α1t1, ..., αntn|α′1t′1, ..., α′nt′n) =
(−i)n

Z
Tr
(
e−βHT

[
c(H)
α1

(t1)...c(H)
αn

(tn)c
(H)�

α′
n

(t′n)...c
(H)�

α′
1

(t′1)
])

(1.23)
with Z = Tr(e−βH) being the grand canonical partition function. Following [27],
now the creation and annihilation operators will be replaced with the correspond-
ing field operators Ψ(x, t)

Ψ(x, t) = eiHtΨ(x)e−iHt=̂eiHtcαi
e−iHt (1.24)

yields the result for the annihilation operator calphai . The same transformation
holds also for the creation operator c�αi

. With the represantation of the operators
in second quantization and the grand canonical ensemble, the expression for the
many-body Green function can now be written as

G(n)(x1t1, ..., xntn|x′1t′1, ..., x′nt′n) = (−i)n
〈
T
[
Ψ(x1, t1)...Ψ(xn, tn)Ψ�(x′n, t

′
n)...Ψ�(x′1, t

′
1)
]〉
,

(1.25)
where the angular brackets denote the expecation value again. Having the cre-
ation and annihilation operators written in second quantization also solves the
problem of both, imaginary and real time appearing in 1.23. Imaginary times
appeared in the exponential functions of the creation and annihilation operators.
If one takes the ground state expecation value, the so-called zero-temperature
Green function can be obtained from 1.25:

G(n)(x1t1, ..., xntn|x′1t′1, ..., x′nt′n) = (−i)n
〈
ψo
∣∣T [Ψ(x1, t1)...Ψ(xn, tn)Ψ�(x′n, t

′
n)...Ψ�(x′1, t

′
1)
]∣∣ψ0

〉
(1.26)

1.1.4 The single-particle zero-temperature Green function

Many physical properties can be described conveniently by single-particle Green
functions which shall now be introduced. First a more compact notation is brought
in, where space-time points {xntn} are replaced by n, so 1.25 becomes
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G(n)(1, ..., n|1′, ..., n′) = (−i)n
〈
ψo
∣∣T [Ψ(1)...Ψ(n)Ψ�(n′)...Ψ�(1′)

]∣∣ψ0

〉
(1.27)

and in case of a single particle (n=1)

G(1|1′) = (−i)
〈
T
[
Ψ(1)Ψ�(1′)

]〉
, (1.28)

where the superscript (n=1) has been, and will be in the following definitions,
neglected. With only two wave functions left in the single-particle Green function
there are only two time-ordering possiblities left as well: t1 > t1′ and t1 < t1′ .
These two time orders can be distinguished by the following

G(1|1′) = Θ(t1 − t1′)G>(1|1′) + Θ(t1′ − t1)G<(1|1′), (1.29)

introducing the

GREATER GREEN FUNCTION

G>(1|1′) = −i
〈
Ψ(1)Ψ�(1′)

〉
(1.30)

and the

LESSER GREEN FUNCTION

G>(1|1′) = −iζ
〈
Ψ�(1′)Ψ(1)

〉
, (1.31)

which has been defined for Bosons (ζ = 1) and Fermions (ζ = −1).
Combining the greater and the lesser Green function leads to the already known

ADVANCED GREEN FUNCTION

Gav(1, 1′) = (G<(1|1′)−G>(1|1′))Θ(t1′ − t1) (1.32)

= i
〈[

Ψ(1)Ψ�(1′)
]
−ζ

〉
Θ(t1′ − t1) (1.33)
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and the

RETARDED GREEN FUNCTION

Gret(1, 1′) = (G>(1|1′)−G<(1|1′))Θ(t1 − t1′) (1.34)

= −i
〈[

Ψ(1)Ψ�(1′)
]
−ζ

〉
Θ(t1 − t1′) (1.35)

which has also been defined for bosons, using the commutator [A,B]+ ≡ [A,B]
as well as fermions, using the anti-commutator [A,B]− ≡ {A,B}. Furthermore it
has to be noted that the retarded Green function is only non-zero for t1 > t1′ and
the advanced Green function is only non-zero for the opposite case t1′ > t1.

1.2 Cluster perturbation theory

CPT is a method to solve quantum multi-body problems by dividing larger, or
even infintely large systems into smaller clusters, which can be solved exactly e.g.
by Exact Diagonalization methods (ED). These solved clusters can then gradually
be connected to or embedded in the full lattice. As the CPT approach naturally
only considers short-range correlations it can only be seen as exact in the non-
interacting limit. To represent best the effect of the surrounding infinite (or full)
lattice, additional fields, or bath degrees of freedom are added to the cluster [38].
Following [38] the derivation of the central equations used in CPT is sketched in
this chapter. The underlying model is the one-band Hubbard model on a lattice γ.
The sites shall be labelled by position vectors (r, r’, ...). The destruction operator
for an electon on site r with spin σ is crσ and the number operator is nrσ. The
Hamiltonian for the lattice then reads as

H =
∑
r,r’,σ

tr,r’c
�
rσcr’σ + U

∑
r

nr↑nr↓ − µ
∑

r

nr (1.36)

with tr,r’ the hopping matrix, µ the chemical potential and U the one-site Coulomb
repulsion.

1.2.1 Cluster decomposition

Dividing the full lattice γ into identical clusters with L sites inside, corresponds
to introducing a superlattice Γ. The sites of the superlattice Γ form a subset of the
lattice γ and are labelled by vectors rΓ. The sites of the cluster will be labelled by
capital vectors R. Now every site r of the original lattice γ can be reached by a
linear combination r = rΓ + R.
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rΓ

R

r

FIGURE 1.1: Cluster decomposition of a 2D lattice into 4-site clusters

With this cluster tiling the Hamiltonian now is written as

H = H ′ + V, (1.37)

with H ′ the cluster Hamiltonian, with hoppings strictly inside a certain cluster
and V the matrix of inter-cluster hopping, i.e. the hopping from one cluster to
another. Taking another look at V in second quantization gives

V =
∑
rΓ,rΓ′

∑
a,b

T r
Γ,rΓ′

a,b c�
rΓ,a

crΓ′ ,b. (1.38)

The hopping matrix T r
Γ,rΓ′

a,b only has non-zero entries for inter-cluster hoppings.
According to the notation used it describes the hopping between sites a and b of
two different clusters rΓ and rΓ′ . Using strong-coupling perturbation theory [37]
[39] it can be shown that the lowest order result for the lattice Green function then
is
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THE CENTRAL EQUATION FOR CPT

G−1(ω) = G−1
0 (ω)− T, (1.39)

with G0(ω) the exact Green function of the cluster and T the inter-cluster hopping
matrix. Looking at the matrices G, G0 and T it is important to point out that they
are in the space E = γ⊗B, with γ the lattice and B the band and spin states. B will
be ignored, due to spin-symmetry of the systems in this thesis. The exact Green
function of the cluster G0 is identical for all clusters.
The fully interacting Green function of the isolated cluster can also be written in
terms of a self-energy Σ [8]:

G−1
0 (ω) = (G0

0)−1(ω)− Σ0(ω), (1.40)

with (G0
0)−1(ω) the Green function of the non interacting isolated cluster, i.e.

U = 0 and Σ0(ω) the self-energy of the cluster. The Green function of the non
interacting isolated cluster further is

(G0
0)−1(ω) = ω − T0, (1.41)

which leads to

G−1
0 (ω) = ω − T0 − Σ0(ω). (1.42)

The same thought about the non-interacting Green function of the full latice gives

(G0)−1(ω) = ω − Ttot = ω − (T + T0), (1.43)

with T the hopping matrix of the inter-cluster hoppings and T0 the hopping ma-
trix of intra-cluster hoppings.
Plugging those equations into 1.40 yields

G−1
0 (ω) = (G0)−1(ω) + T− Σ0(ω), (1.44)

giving another Dyson equation for the whole system

G−1(ω) = (G0)−1(ω)− Σ(ω), (1.45)

with Σ(ω) the self-energy of the whole system, yields another form of
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THE CENTRAL EQUATION FOR CPT IN TERMS OF SELF-ENERGY

G−1(ω) = G−1
0 (ω)− T− (Σ(ω)− Σ0(ω)), (1.46)

Characteristics of CPT CPT is derived with the help of strong-coupling pertur-
bation theory. It is therefore an approximation and needs not to be exact. How-
ever, there are some limiting cases for which CPT gives exact results:

1. U→ 0: The self-energy disappears in this case and CPT gives exact results.

2. Strong-coupling limit trr′
U
→ 0: In this case trr′ describes the hopping be-

tween neighboring atoms. Considering the case trr′ = 0 gives the simple
atomic problem, it is obvious that CPT gives the exact results in this case.

3. Infinite cluster size: The whole lattice would be solved by ED. Depending
on the system’s size such an approach is possible or not.

Furthermore, CPT cannot describe broken-symmetry cases. However, this can be
achieved by using VCA which will be discussed later in the present work.
Finally, CPT gives an approximate lattice Green function for arbitrary wave vec-
tors which makes it a usefull tool when comparing with ARPES data. While CPT
does not have self-consistency, that is for example given in DMFT approaches, it
does allow for the best momentum resolution at fixed computing resources.

1.3 Keldysh formalism

When doing transport calculations the Keldysh nonequilibrium Green function
formalism (KNEGF) is an important tool. To get a full grasp one could read the
book by Haug and Jauho [15].
The following considerations are based mainly on the lecture notes of Jauho [17]
as well as [34]. As it is not sufficient anymore to treat the Green functions in
the equilibrium case, it is therefore necessary to expand the equilibrium Green
function formalism further into the so-called Keldysh space. The KNEGF is often
also referred to as Contour ordered Green function technique and was named
Keldysh formalism after the work of Keldysh in 1964 [18].
The starting point shall be the zero-temperature single-particle Green function
1.28

G(x, t;x′, t′) =
−i
~
〈ψ0|T{ψH(x, t)ψ�

H(x′, t′)} |ψ0〉
〈ψ0|ψ0〉

, (1.47)

where the space-index x will be surpressed, as well as ~ = 1
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G(t|t′) = −i〈ψ0|T{ψ(t)ψ�(t′)} |ψ0〉
〈ψ0|ψ0〉

, (1.48)

The Hamiltonian of the considered system can be written as

H = H0 +H1(t) (1.49)

where H0 describes the non-interacting system and H1(t) contains all the many-
body aspects of the problem. It is convenient to set

H1(t) = e−η|t|V (t) (1.50)

with η being a positive infinitesimal, and V (t) describing the perturbation of the
system.
Taking a look at what happens when approaching infinite negative times gives

lim
t→−∞

H1(t) = 0→ lim
t→−∞

H(t) = H0, (1.51)

which is convenient because the exact ground state of a system |ψ0〉 now corre-
sponds to the ground state of the non-interacting system ϕ0 in the limit t→ −∞.
Now the S-matrix is introduced, that changes the wave function from ψ(t′) to
ψ(t):

ψ(t) = S(t, t′)ψ(t′). (1.52)

So S can be written in terms of the unitary operator U :

S(t, t′) = U(t)U �(t′). (1.53)

It is important to point out that the S-matrix obeys the following group property

S(t, t′) = S(t, t′′)S(t′′, t′). (1.54)

As the ground state is one of the quantities one wants to calculate with the Green
function formalism, the definition 1.47 yields the problem of having the ground
state within the definition itself. Therefore it is necessary to express the exact
ground state |ψ0〉 in terms of known quantities, for example the non-interacting
ground state |ϕ0〉. The Gell-Mann and Low theorem gives [8]:

|ψ0〉 = S(0,−∞) |ϕ0〉 1 (1.55)

Using the expression for the groundstate 1.55, the identity (S(0,−∞) |ϕ0〉)∗ ≡
〈ϕ0|S(−∞, 0) and applying both onto the zero-temperature Green function 1.48
yields

G(t|t′) = −i
〈ϕ0|S(−∞, 0)T

[
ψ(t)ψ�(t′)

]
S(0,−∞|ϕ0〉

〈ϕ0|S(−∞, 0)S(0,−∞) |ϕ0〉
(1.56)

1This equation is justified significantly by 1.51
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The operators as well as the wave functions unto this point were depicted in the
Heisenberg picture. Now they shall be represented in the interaction picture with
respect to H0, giving

|ΨI,H0〉 = S(t,−∞) |Ψ〉 = S(t,−∞) |ϕ0〉 (1.57)

O(H)(t) = S(−∞, t)OI,H0(t)S(t,−∞) (1.58)

Applying these transformations onto eq. 1.56 and taking advantage of the group
properties of the S-Matrix gives

G(t|t′) = −i
〈ϕ0|S(−∞, t)T

[
S(t,−∞)ψ(t)ψ�(t′)

]
|ϕ0〉

〈ϕ0| |ϕ0〉
(1.59)

Note: S(t,−∞) was pulled inside the argument of the time-ordering operator T .
S(−∞, t) cannot be pulled inside, because it does not feature the required time-
order due to t > −∞. It is possible to solve this problem in the equilibrium case,
by introducing the ground state in the distant future, however since this chapter
focuses on the non-equilibrium, the derivation is left out.

1.3.1 Non-equilibrium case

In the non-equilibrium case a new technique to solve the problem has to be intro-
duced: The Contour Ordered Green function technique. This requires the intro-
duction of the so-called Keldysh contour. To do so eq. 1.59 has to be changed a
little by inserting an identity 1 = S(t,∞)S(∞, t) in front of T .

G(t|t′) = −i
〈ϕ0|S(−∞,∞)T

[
S(∞,−∞)ψ(t)ψ�(t′)

]
|ϕ0〉

〈ϕ0| |ϕ0〉
(1.60)

Now to handle the S(−∞,∞) term a closed path, the Keldysh contour is intro-
duced. This corresponds to an evolution of the system from t → ∞ to t → ∞
in forward time direction and back again, along different contour branches. This
situation is depicted in 1.2

C

t

t = +∞

t = -∞

+ Branch

- Branch

FIGURE 1.2: The Keldysh Contour

This goes hand in hand with the necessity of extending the time-ordering opera-
tor T to the contour-ordering operator TC according to

TC [OA(t1, C1)OB(t2, C2)] =

{
OA(t1, C1)OB(t2, C2), for{t1, C1} > {t2, C2}
OB(t2, C2)OA(t1, C1), for{t2, C2} > {t1, C1}

(1.61)
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times on the + branch appear earlier in the sense of the Keldysh contour than
times on the - branch. This allows to order all operators inside the argument of
the contour-ordering operator TC along a particular contour, which allows for
S(−∞,∞) to be pulled inside said operator:

G(t1C1|t2C2) = −i
〈ϕ0|TC

[
S(−∞,−;∞)S(∞;−∞,+)ψ(t1, C1)ψ�(t2C2

]
|ϕ0〉

〈ϕ0| |ϕ0〉
(1.62)

The contour-ordered Green function now contains four different functions:

G(t1|t2) =

(
GC(t1|t2) G<(t1|t2)

G>(t1|t2) GC̃(t1|t2)

)
(1.63)

with the introduction of four Green functions:

THE TIME-ORDERED GREEN FUNCTION

GC(1|2) = −i
〈
T
[
ψ(1)ψ�(2)

]〉
(1.64)

THE GREATER GREEN FUNCTION

G>(1|2) = −i
〈
ψ(1)ψ�(2)

〉
(1.65)

THE LESSER GREEN FUNCTION

G<(1|2) = −iζ
〈
ψ�(1)ψ(2)

〉
(1.66)
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THE ANTITIME-ORDERED GREEN FUNCTION

GC(1|2) = −i
〈
T̃
[
ψ(1)ψ�(2)

]〉
(1.67)

Remark: The quantum number n that combines time-, space-, spin-, ... coor-
dinates has been used again. The angle brackets, again, denote an expecation
value concerning the ground state |ϕ0〉 of the non-interacting system. ζ = −1 for
Fermions and ζ = 1 for Bosons.
The retarded/advanced Green function can be described in terms of the Lesser/Greater
Green function:

Gr(1|2) = (G>(1|2)−G<(1|2))Θ(t1 − t2) (1.68)
Ga(1|2) = (G<(1|2)−G>(1|2))Θ(t2 − t1). (1.69)

The four components are not linearly independent

GC(1|2) +GC̃(1|2) = G<(1|2) +G>(1|2) := GK(1|2) (1.70)

introducing the Keldysh Green function GK . Due to this linear dependence it is
possible to perform a rotation in Keldysh space:

G(1|2) =

(
GC(1|2) G<(1|2)

G>(1|2) GC̃(1|2)

)
→
(
Gr(1|2) GK(1|2)

0 Ga(1|2)

)
:= G̃(1|2) (1.71)

1.3.2 Electrical current densitiy for interacting systems

With the Keldysh formalism it is now possible to calculate the steady-state elec-
trical current density jnn′ between neighboring sites n and n′. Steady-state means
the physical situation, where the initial correlations can be neglected due to the
interactions.
In this work all the electrical field driven currents are due to a linear increasing
potential from left to right. The current density between sites n and n′ is given by

jnn′ = i
e

~
tnn′

〈
c�ncn′ − c�n′cn

〉
(1.72)

with e the electronic charge and ~ the reduced Planck constant, that will be both
set to 1 in the following derivations.
Using the commutator relation for fermions

[
ci, c

�
j

]
= δij on eq. 1.72 gives
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jnn′ = itnn′

〈
c�ncn′ − c�n′cn

〉
= i

tnn′

2

〈(
c�ncn′ + c�ncn′

)
−
(
c�n′cn + c�n′cn

)〉
= i

tnn′

2

〈(
c�ncn′ + c�n′cn + δnn′

)
−
(
c�n′cn + c�ncn′ + δn′n

)〉
=
tnn′

2

(
i
〈
c�ncn′

〉
+ i
〈
cn′c�n

〉
− i
〈
c�n′cn

〉
− i
〈
cnc

�
n′

〉)
(1.73)

using the definitions of the Greater and Lesser Green function (eq. 1.30 and eq.
1.31) gives

jnn′ =
tnn′

2
(G<

nn′ −G>
n′n −G<

n′n +G>
nn′)

=
tnn′

2

(
GK
nn′ −GK

n′n

)
(1.74)

where eq. 1.70 was used.
Eq. 1.74 simplifies with the relationship GK = −(GK)� further to

jnn′ =
tnn′

2

[
GK
nn′ + (GK

nn′)�
]

= tnn′<{GK
nn′(t, t)} (1.75)

with the introduction of the explicit time-dependency. Fourier transforming this
equation with respect to the time t into frequency space finally yields

jnn′ =
tnn′

2

∞∫
−∞

dω<{GK
nn′(ω)}. (1.76)
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Chapter 2

Electronic transport in a
one-dimensional tight-binding
Hubbard chain

2.1 Introduction

The behaviour of solids, driven out of equilibrium, by external fields has been
one of the major topics of condensed matter physics for the past decades [3]. Its
understanding is crucial to the development of nanotechnological applications
like resistive transitions. [23] The theoretical approach contains developing and
improving new and old numerical methods and approximations to treat and de-
scribe models for said systems. This work builds up to treating a relatively simple
model with the variational cluster approximation method.
In this chapter we look at the electronic transport in a finite one-dimensional
chain, by using cluster perturbation theory (CPT). The chain underlies a homoge-
nous electric field to create a current flowing, so the system will be out of equi-
librium and corresponding methods have to be used. In detail, the keywords are
cluster perturbation theory (CPT) and Keldysh non-equilibrium Green function
formalism (KNEGF). In the later chapters of this thesis the variational cluster ap-
proximation (VCA) will be introduced to furthermore improve the results in the
interacting case.
The model for these calculations is a finite one-dimensional tight-binding Hub-
bard chain which will be explained in the next section. It has to be stated that
calculations on an infinite one-dimensional tight-binding Hubbard chain have
been done previously on the institute of theoretical physics at the TU Graz [29].
These results were taken as a comparison for the calculations done on the finite
model.
Felix Bloch [4] and Clarence Zener [43] predicted (in 1929 by Felix Bloch and 1934
by Clarence Zener) that electrons, captured in periodic potentials in the presence
of a homogenous electric field, will be forced to oscillate around a central po-
sition, rather than being moved uniformly in the direction of the electric field.
These so-called Bloch oscillations were finally observed nearly 70 years later in
semiconductor superlattices by optical investigations [7]. However, these Bloch
oscillations are very hard to observe in solids. This derives from the scattering of
electrons with acoustic phonons and impurities in real crystal structures. As in
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the models treated in this work, phonon interations as well as impurities are com-
pletely neglected due to simplicity, dissipation mechanisms of some form have to
be implemented to the models.
The suppression of Bloch oscillations due to dissipation mechanisms, like peri-
odical driven systems [41] became an important topic when dealing with non-
equilibrium transport calculations in strongly correlated systems.
In this work the dissipation mechanism used is to couple fermionic bath chains
to the physical sites of a tight-binding chain which is in fact a rather common
method [13] [2]. It has been stated that this model is a rather simple one [13], but
although it is not as sophisticated as other approaches it provides a good minimal
setup for studying non-equilibrium transport calculations.

2.2 Model and Methods

E

FIGURE 2.1: A finite Hubbard chain with correlated electrons in a
homogenous E field attached to leads

As depicted in 2.1 the system can be partioned into several segments. The blue
parts are two semi-infinite tight-binding chains with hopping parameters tll. These
semi-infinite chains are coupled to the central region (the black part) with hop-
ping parameter tlc for the left and tcl for the right lead. Each physical site in the
central region is coupled to a semi-infinte tight-binding chain (red part) with a
hopping parameter tcb. The hopping in those bath chains is tbb. Finally the hop-
ping parameter in the central region is tcc. The leads as well as the bath chains
do not suffer from a correlation i.e. the Hubbard interaction U = 0 at all times.
Electrons in the central region are correlated with a hubbard interaction U that
can be nonzero.
The Hamiltonian of the system can therefore also be separated into the following
parts:

Hcc = −tcc
Ncc∑
<i,j>

(ĉ�i ĉj + h.c.) + U
∑
i,j

n̂in̂j (2.1)

Hbb = −tbb
∞∑

<i,j>

(ĉ�i ĉj + h.c.) (2.2)

Hll = −tll
∞∑

<i,j>

(ĉ�i ĉj + h.c.) (2.3)
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Hcl = −tcl(ĉ�cNcc
ĉl1 + h.c.) (2.4)

Hlc = −tcl(ĉ�cl1 ĉNcc
+ h.c.) (2.5)

2.3 1-site cluster

To solve the system, the solution for the cluster has to be found first. The cluster
consists of a few of the physical bath sites (in this case a few actually means just
one), which then is coupled via CPT to the corresponding heat baths. The re-
sulting Green function, with the baths already coupled to the central cluster shall
be denoted by gcc as oposed to the isolated cluster gcc0 . The Dyson equation then
yields

gcc = gcc0 + gcc0 t
cbgbc

gbc = gbb0 t
bcgcc

The index b includes a sum over all connected bath sites. Following the notation
already stated, gbb0 is the Green function of the isolated bath chains at the first site
of the half infinte chain which is connected to the central cluster. This makes gbb0
a diagonal matrix gbb0 = diag{g(b)

j }, where g(b)
j is the local GF at the first site of the

isolated bath chain which is attached to the physical site with index j.
So

CLUSTER GF ALREADY COUPLED TO BATH

gcc = gcc0 + gcc0 Γgcc

Γij(ω) = δij
(
tcb
)2
gbj(ω)

To connect the clusters along the chain direction the cluster Green function has to
be shifted by ∆xn,

gccn (ω) = gcc(ω − E∆xn)

The retarded and advanced part of the cluster Green function follows directly
from
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RETARDED/ADVANCED PART OF CLUSTER GF
COUPLED TO BATH

(
gcc.a

)−1
=
(
gcc.a0

)−1 − Γa . (2.6)

To obtain the Keldysh component, the Kadanoff-Baym [3] relation is used

gcc.K = gcc.r
{(
gcc.r0

)−1
gcc.K0

(
gcc.a0

)−1
+ ΓK

}
gcc.a . (2.7)

Since g0 is an equilibrium Green function

gcc.K0 (ω) =

(
2f(ω|µ)− 1

)[
gcc.a0 (ω)− gcc.r0 (ω)

]
The first part in eq. 2.7 yields

(
gcc.r0

)−1
{(

2f(ω)− 1
) [
gcc.a0 − gcc.r0

]}(
gcc.a0

)−1

=
(
2f(ω)− 1

){(
gcc.r0

)−1 −
(
gcc.a0

)−1
}

= 2i0+
(
2f(ω)− 1

)
In the limit 0+ → 0 the first part vanishes, so

gcc.K = gcc.rΓKgcc.a . (2.8)

Now eq. 2.7 is applied to the bath Green function

ΓK(ω) = diag
(
tcb
)2
{
gb.Kj (ω)

}
gb.Kj (ω) = 2i

(
f(ω|µj)− 1

)
=
(
gb.aj (ω)

)
The chemical potential is defined as

µj = −Ej + ∆µj

so
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gb.Kj (ω) = 2i

(
f(ω − Ej|∆µj)− 1

)
=
(
gb.a0 (ω − Ej)

)
= gb.K0 (ω − Ej|∆µj)

So for the

KELDYSH PART OF CLUSTER GF
COUPLED TO BATH

gcc.K = gcc.rΓKgcc.a (2.9)

ΓK(ω) =
(
tcb
)2 diag

{
gb.K0 (ω − µj|∆µj)

}
(2.10)

gb.K0 (ω|∆µj) = 2i

(
f(ω|∆µj)− 1

)
=
(
gb.a0 (ω)

)
(2.11)

It has to be pointed out that the translational invariance in the form gj(ω) = g(ω−
Ej) is violated for ∆µj 6= 0. ∆µj was introduced to suppress particle flow into
the heat baths.
The chemical potential in this work was chosen in a way to describe the Hubbard
model at half filling. In detail this means that the total number of fermions in the
system is exactly the number of lattice sites and the chemical potential µ = U

2
.

As the Green functions of the bath chains are equivalent to each other (apart from
an energy-shift), they only have to be calculated once. There are two different
approaches for the Green function of one of those bath chains used in this work.

SEMI-INFINTE TIGHT-BINDING CHAIN [6]

gb.a0 (ω) =
ω

2t2bb
± 1

tbb

√
(
ω

2tbb
)2 − 1 (2.12)

WIDE-BAND LIMIT

gb.a0 (ω) = iΓ (2.13)
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tbb denotes the next-neighbour hopping inside the bath chain and Γ =
t2bc
tbb

is the so-
called damping parameter, occuring in the wide band limit, with tbc the coupling
strength of the bath chain to the central region. As the name wide-band limit
suggests this approach is suitable for high hopping parameters, which gives a
wide bandwidth. Further analysis of the range of application of the wide-band
limit will be discussed later on in this chapter.

2.3.1 Left and right half-infinite chain

After having coupled the isolated central cluster to its heat bath, the chain can be
built up by coupling the Green functions via CPT. The coupling can be performed
from the left as well as the right. In fact one has to build both chains first.

Building the lead Green functions

When constructing the Green function of the leads, one has to keep in mind how
to treat the chemical potential when shifting the Green function in energy space.

E

FIGURE 2.2: The position of the chemical potential in the energy
space is denoted by the red line. The band is half-filled in that case,
meaning the chemical potential is fixed relative to the band. When

the whole lead is shifted in energy, the band stays half filled.

As shown in the picture above, the band of the leads stays half-filled for all values
of E. So one expects a non-zero current, when the half-filled parts of the bands
overlap.

Left to right

Starting with the left lead and iteratively adding clusters gives the left half-infinite
chain. Let Gn := G(n,n) be the cluster GF of a chain that consists of the left lead
plus the first n clusters, so G0 is the local GF of the contact point of the left lead.
For the first step

G11 = g11 + g11T 10G01

G01 = g00T 01G11

Iteratively coupling via the GFs via Dyson equation gives
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Gnn = gnn + gnntn,n−1G
n−1,n

Gn−1,n = gn−1,n−1tn−1,nG
nn

Gnn = gnn + gnntn,n−1g
n−1,n−1tn−1,nG

nn .

The notation shall now be simplified by abbreviating Gnn with Gn and gnn with
gn. Furthermore, the fact is used, that gn−1,n−1 = Gn−1,n−1, so

Gn = gn + gn
(
tn,n−1G

n−1tn−1,n

)
Gn

Gn = gn + gn
(
t2
n− 1

2
Gn−1

)
Gn

tn− 1
2

:= tn,n−1 = tn−1,n

Looking closely at tn− 1
2
, one finds that for n = 1 t 1

2
:= t1,0 = tcl which describes

the hopping from the lead to the central region. For n = 2, ..., L, tn− 1
2

:= tn,n−1 =

tcc, one finds the hopping inside the central region. Finally for n = Ncc + 1 the
hopping is tNcc+ 1

2
:= tNcc+1,Ncc = tcl, which describes the hopping from the central

region to the right lead.
Starting from n = 0 with the GF of the left lead G0, Dyson equation is used to
compute the next GFs Gn for n = 1, ..., L. It is convenient to introduce a different
GF, for numerical reasons:

G̃n(ω) := Gn(ω + ε0n), (2.14)

with ε0n, the potential energy due to the electric field.
Then

G̃n(ω) = gn(ω + ε0
n) + gn(ω + ε0

n)
(
t2
n− 1

2
Gn−1(ω + ε0

n)
)
Gn(ω + ε0

n)

= g(ω − εn + ε0
n) + g(ω − εn + ε0

n)
(
t2
n− 1

2
G̃n−1(ω − ε0

n−1 + ε0
n)
)
G̃n(ω)

= gn(ω) + gn(ω)
[
t2
n− 1

2
G̃n−1(ω + ∆ε0

n− 1
2
)
]
G̃n(ω)

∆ε0
n− 1

2
:= ε0

n − ε0
n−1

LEFT TO RIGHT ITERATION
OF HALF INFINITE CHAIN

G̃n(ω) = gn(ω) + gn(ω)
[
t2
n− 1

2
G̃n−1(ω + ∆ε0

n− 1
2
)
]
G̃n(ω) (2.15)

(2.16)
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The potential energy due to the electric field is

ε0
n = −E · {0, 0, 1, 2, . . . , Ncc} for n ∈ {0, 1, . . . , Ncc}

so the first physical site of the central region endures the same potential energy
as the last site of the left lead.
The total bias then is

Vbias = E ∗Ncc

For the advanced and retarded part the GF can simply be inverted as

ADVANCED/RETARDED PART OF LOCAL GF OF HALF-INFINITE SYSTEM

(
G̃n(ω)

)−1
=
(
gn(ω)

)−1 − t2
n− 1

2
G̃n−1(ω + ∆ε0

n− 1
2
) . (2.17)

The Keldysh part is

KELDYSH PART OF LOCAL GF OF HALF-INFINITE SYSTEM

(
G̃n
)K

(ω) =
(
G̃n
)r

(ω)

[((
gn
)r)−1(

gn
)K((

gn
)a)−1

+ t2
n− 1

2

(
G̃n−1

)K
(ω + ∆ε0

n− 1
2
)

](
G̃n
)a

(ω)

or by using Gl. (2.8), i.e. (
gn
)K

= v2
(
gn
)r(

gnb
)K(

gn
)a
.

and get

KELDYSH PART OF LOCAL GF OF HALF-INFINITE SYSTEM

(
G̃n
)K

(ω) =
(
G̃n
)r[

v2
(
gb(ω)

)K
+ t2

n− 1
2

(
G̃n−1(ω + ∆ε0

n− 1
2
)
)K](

G̃n
)a
.
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Right to left

The next step is to construct the Green function for the half-infinite chain, starting
from the right lead. Like for the left chain the iteration equation reads as

Gn = gn + gntn,n+1G
n+1tn+1,nG

n

= gn + gnt2
n+ 1

2
Gn+1Gn .

,
where the iteration starts from N = Ncc and ends with n = 1. Forgetting what
we have learned about the Green function so far G now denotes the GF of the
half-infinte system that extends to the left. This is a different Green function than
the one of the last section.

G̃n(ω) = Gn(ω + ε0
n)

G̃n(ω) = gn(ω + ε0
n) + gn(ω + ε0

n)t2
n+ 1

2
Gn+1(ω + ε0

n)G̃n(ω)

= g(ω − εn + ε0
n) + g(ω − εn + ε0

n)t2
n+ 1

2
G̃n+1(ω − ε0

n+1 + ε0
n)G̃n(ω)

= g̃n(ω) + g̃n(ω)t2
n+ 1

2
G̃n+1(ω −∆ε0

n+ 1
2
)G̃n(ω) .

The iteration begins with n = Ncc. Then

G̃n+1 = Gn+1(ω + ε0
n+1) = Gright lead(ω + ε0

n+1) = Gleft lead(ω)

The onsite energy of the left lead is set to zero. The iteration scheme for the right,
as well as the left half-infinte system starts with Gleft lead(ω). Due to inversion
symmetry one finds

G
n
(ω) = gn(ω) + gn(ω)t2

(n− 1
2

)
G̃n−1(ω −∆ε0

(n− 1
2

)
)G

n
(ω) .

This is the same equation as that in Gl. (2.15), only the sign of the energy shift
∆εn− 1

2
is opposite. So the same code can be used for ∆εn− 1

2
→ −∆εn− 1

2
and in the

end the indices of the GF are reverted, i.e.

G̃n = GNcc−n .

2.3.2 Connecting the two half-infinite chains at sites n and n+ 1

To formulate the Dyson equation that connects the two Green functions found
in the previous sections one has to distinguish between the left half-infinite GF
and the right half-infinite GF. The local GF at the end point of the left system that
ends at position n is denoted by Ln and similarly the local GF of the right one that
begins at site n is denoted by Rn Then the Dyson equation that connects the left
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half-infinite system that ends at site n and the right one that begins at n+ 1 reads

Gnn = Ln + Lntn,n+1R
n+1tn+1,nG

nn

= Ln + Ln
[
t2
n+ 1

2
Rn+1

]
Gnn(

Gnn
)−1

=
(
Ln
)−1 − t2

n+ 1
2
Rn+1 .

Now the frequency argument of Gn,n is shifted and the tilde GF:

G̃nn(ω) = Gnn(ω + ε0
n)

⇒(
G̃nn(ω)

)−1
=
(
L̃n(ω)

)−1 − t2
n+ 1

2
R̃n+1(ω + ε0

n − ε0
n+1)

=
(
L̃n(ω)

)−1 − t2
n+ 1

2
R̃n+1(ω −∆ε0

n+ 1
2
) .

is introduced.
For Gn,n+1 the Dyson equation is written differently

Gn,n+1 = Gn,ntn+ 1
2
Rn+1 .

The frequency shift is

G̃n,n+1(ω) := Gn,n+1(ω + ε0
n)

= G̃n,n(ω)tn+ 1
2
R̃n+1(ω −∆ε0

n+ 1
2
) .

Only the Keldysh component is needed which is

(
G̃n,n+1(ω)

)K
= tn+ 1

2

[(
G̃n,n(ω)

)K(
R̃n+1(ω −∆ε0

n+ 1
2
)
)a

+
(
G̃n,n(ω)

)r(
R̃n+1(ω −∆ε0

n+ 1
2
)
)K]

.

2.3.3 Current calculation

With the Keldysh component of the connected GF the current can now be calcu-
lated in dependence of the potential energy due to the electric field.

2.3.4 Results and Analysis

To analyze the behaviour of a one-dimensional tight-binding Hubbard chain, the
system was solved for different parameters. As the numerical calculations for
the system built up on single-site clusters are cheaper and faster, it is a good
way to start by doing calculations on that system before getting to bigger cluster
sizes, to get a grasp of the behaviour. In the following section the results are
presented. For all the calculations the hopping inside the leads tll, as well as the
central region tcc was set to 1. The hopping inside the bath chains tbb as well as
the Hubbard interaction U was changed. It has to be noted here that all energy
values, like ω, U , E, etc. are given in units of the nearest neighbour hopping tcc,
which will be set to tcc = 1 as mentioned above. The starting point for the analysis
of the model was to set U = 0.
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Non-interacting case

FIGURE 2.3: Imaginary part of the advanced bath Green function in
dependence of the hopping parameter tbb at U = 0. Semi-infinite

chain (see eq. 2.12)

In figure 2.3 the imaginary part of the bath Green function is depicted. Concen-
trating on the green and purple curve one can see the bandwidth doubling with
twice the hopping strength. The bandwidth is 2tbb. The half-circular behaviour
shown in the figure is typical for a semi-infinte tight-binding chain. In the follow-
ing figure the wide-band limit of the same Green functions are shown:
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FIGURE 2.4: Imaginary part of the advanced bath Green function in
dependence of the hopping parameter tbb at U = 0. Wide-band limit

(see eq: 2.13)

The reason why the limit is called wide-band limit becomes obvious by compar-
ing these two figures. For higher hoppings, i.e. broader bandwidths the wide-
band limit, which is just a constant imaginary Green function, is more exact than
for smaller hoppings.
The system, more precisely the central region, in this thesis is finite. Therefore,
at first, it was important to vary the size of the central region and compare the
results with known results of an infinite system. In particular the work by Jong
E. Han [13] was used to compare the finite system with the infinite tight-binding
chain. Han found an analytical approximation for an electrical field driven cur-
rent through an infinite tight-binding chain coupled to a fermionic bath:

THE HAN FORMULA

jHan ≈
4ΓtccE

π(E2 + 4Γ2)
(2.18)

with E the electric field, tcc the hopping strength in the central region and Γ = 1
tbb

the damping constant of the fermionic bath chain. This formula is only viable in
the strong-coupling limit tcc >> E, tcc >> Γ.
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FIGURE 2.5: Different chain lengths at tbb = 100 in comparison with
the approximated formula by Han eq. 2.18

The Han formula is an approximation for an infinite tight-binding chain. Figure
2.5 shows, that smaller chains do not give the same current as the Han formula.
While all chain lengths show qualitatively more or less the same behaviour, in
terms of one sharp peak, the peak height as well as the position of the peak varies.
As these calculations have been done for U = 0, the chain shows, independently
of its length, a metallic behaviour with a linear response.
Up to this point all calculations were done using the formula for the semi-infinite
tight-binding chain (eq. 2.12) to express the bath chain Green functions. As the
computation time for the wide-band limit is lower, it has to be checked, if the two
different approaches for the bath chain Green functions give comparable results
for the current.
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(A) Semi-infinite chain (see eq. 2.12) (B) Wide-band limit (see eq. 2.13)

FIGURE 2.6: Ncc = 100, U = 0. Current in the center of the chain at
different hopping strengths inside the bath chains.

When comparing figures 2.6a and 2.6b it is imminent that the wide-band limit
is not valid for smaller hoppings anymore. This conclusion is a confirmation for
the statement made previously when comparing the Green functions of the bath
chains directly in the semi-infinite tight-binding and wide-band limit approach
(see figures 2.3 and 2.4).
Although the wide-band limit requires less computation time, the realisation of
fermion reservoir bath chains by using the semi-infinte tight-binding approach
(eq. 2.12) seems to be closer to reality and will therefore mostly be used in this
work, if not indicated otherwise.
It is obvious that different hopping strengths/damping constants in the fermionic
bath chains give different current curves. The position of the maxima changes
as well as the width of the peaks. However, they qualitatively all show a similar
behaviour, with a linear increasing current for lower field energies, one maximum
and a decreasing behaviour at higher energy values. The position of the maxima
as well as the reason for the linear increase and the decrease will be discussed in
this chapter.
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FIGURE 2.7: Zoomed-in picture of the current-field curve at tbb =
100 and tbb = 20, corresponding to Γ = 0.01 and Γ = 0.05 in the

wide-band limit.

From 2.7 one can determine the maxima of the current curve, with respect to
the external electric field. In this figure the hopping strengths in the fermionic
bath chains were chosen to be in the wide-band limit regime. One can see the
maximum of the curve for the tbb = 20=̂Γ = 0.05 is at 0.1 which is 2Γ. The
maximum of the curve with hopping parameter tbb = 100=̂Γ = 0.01 is at 0.02.
This goes in accordance with eq. 2.18. It also ratifies the importance of having
those fermionic bath chains coupled to the physical sites. No bath chain would
mean a damping constant of Γ = 0 which would result in a zero current den-
sity, as the ’maximum’ for the current density would be at E = 0, which gives a
current density of j = 0.
For small values of E, up to the maxima of the curves depicted in 2.7, the current
density shows an Ohm-like linear behaviour j(E) ∝ E. However at bigger values
of E, the current density decreases and does so differently for differing damping
constants Γ. The explanation can be found in the gaining influence of Bloch oscil-
lations at higher electric field strengths. The gain in energy of electrons moving
along the chain is proportional to the electric field strength, however the dissipa-
tion is dependent on the damping parameter. The decreasing current density is
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due to the dissipation mechanism not being able to suppress the Bloch oscillations
at higher field strengths. Comparing the curves for different damping constants
in 2.6b and 2.6a indicates that the different hopping strengths in the bath chains
give in fact weaker or stronger dissipation. The current density decays way faster
for higher hopping parameters, or equivalently weaker damping parameters.
As a summary: A chain length ofNcc = 100 is necessary to achieve results close to
the analytical approximation for an infinite tight-binding chain. The wide-band
limit approach for the reservoir bath chains is only viable for hopping strengths
tbb ≥ 10, or in terms of the damping parameter Γ ≤ 0.1

Interacting case

With the analysis done for the non-interacting case (i.e. U = 0) it is now possible
to examine the system in presence of an interaction. For the non-interacting case
the chain showed, independently of chain size and hopping-strength inside the
fermionic reservoir bath chains, a metallic behaviour.
The first calculation was made with parameters U = 1, tbb = 100=̂Γ = 0.01 and
Ncc = 50. While for the non-interacting case the onsite-energy ε = 0 trivially,
in the case of interacting chains, one has to specify ε0. For the calculations in
this work the onsite energy mostly is set to ε0 = U

2
, if not indicated otherwise.

This corresponds to a half-filled band, meaning there are as many electrons in the
system, as there are lattice sites.
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FIGURE 2.8: Current density with respect to the external electric
field. A damping parameter of Γ = 0.01 was chosen. The chain
length is Ncc = 50. The blue curve is the analytical result for U = 0

Looking at 2.8 two major differences to the non-interacting case are obvious.
Firstly, the current stays zero at small values of E and secondly, there are os-
cillations in the current curve.
As already mentioned before, the dissipation mechanism, provided by the ap-
plication of artificial fermionic bath chains to the physical sites, suppresses the
occuring oscillations. To explain the oscillations it is important to give a brief
understanding of Wannier-Stark resonances.

Wannier-Stark ladder and Zener tunneling

The so-called Wannier-Stark problem deals with single particles in a one dimen-
sional periodic potential under the influence of a static force. [14] [10]
The Hamiltonian is

HW =
p2

2m
+ V (x) + Fx, V (x+ d) = V (x), (2.19)

where F is the static external force, induced by an external field (e.g. an electric
field like in this thesis). The external field destroys the translational symmetry of
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the Hamiltonian (without the force). Given an arbitrary eigenstate, which satis-
fies

Hw |Ψ〉 = E0 |Ψ〉 , (2.20)

one can construct a so-called Wannier-Stark ladder with energies El = E0 +
ldF . Superpositions of the states belonging to these energies have oscillatory
evolutions with the so-called Bloch period

TB =
2π~
dF

. (2.21)

FIGURE 2.9: Schematic illustration of the Wannier-Stark ladder. The
thickness of lines indicates the width of of the levels (their instabil-

ity). Figure taken from [14]

According to [43] [10] [14] [5] the Wannier-Stark model enables resonance tunnel-
ing processes that can be observed for the interacting systems.
While it has been thought that the periodic potential has to meet certain con-
ditions [12] [11] it was shown recently that any periodic potential causes these
resonances [35].
The next step is to look at larger values of U as well as observe the influence of
the hopping inside the fermionic bath chains. As already mentioned the energy
loss due to dissipation is proportional to the damping parameter Γ.



Chapter 2. Electronic transport in a one-dimensional tight-binding Hubbard
chain 34

FIGURE 2.10: Current density for U = 2. The blue curve is the ana-
lytical solution for U = 0.

Looking at figure 2.10 the stronger interaction leads to an even bigger suppression
of the current density. The isolating regime in the beginning is bigger than for the
U = 1 interaction. As shown in the next section the cluster size does have an
influence on the current for U 6= 1.

2.4 2-site cluster

CPT is a great techinque because it allows huge systems to be split up into smaller
ones, which can be solved exactly, and put together again to reproduce the full
system. The bigger the cluster size is the better, as the exact diagonalisation is
used for a greater part of the system. Therefore, the next step will be to solve clus-
ters of two neighbouring physical sites, connected to their respective fermionic
baths and couple them via Dyson equation to build up the finite tight-binding
chain.
The first step is to determine the retarded (or advanced) Green function of the
isolated cluster, consisting of two physical sites of the chain. This is done by
setting up the Hamiltonian for a tight-binding Hubbard model with two sites,
solving it by exact diagonalisation and applying the Lehmann representation eq.
1.19 to calculate the isolated cluster Green function g0(ω). Unlike in the previous



Chapter 2. Electronic transport in a one-dimensional tight-binding Hubbard
chain 35

section, where there was only one site in the cluster, g0(ω) is a 2x2 matrix and not
a vector anymore.

g0(ω1) =

(
g0

11(ω1) g0
12(ω1)

g0
21(ω1) g0

22(ω1)

)
(2.22)

The indices stand for the sites of the cluster. g0
11(ω) is the Green function of the

isolated cluster projected onto the first physical site, inside the cluster, g0
12(ω) is

in-between sites 1 and 2 and so on.
Applying an electric field E yields a potential ε(E) at the cluster sites in the non-
equilibrium, so therefore a correction has to be made to isolated cluster GF.

[g̃0(ω)]−1 = [g0(ω)]−1 −
(
ε1(E) 0

0 ε2(E)

)
(2.23)

g̃0(ω) now is the Green function of the isolated cluster under the influence of the
homogenous electric field. This GF now has to be coupled to its respective bath
chains gb(ω) by using Dyson’s equation. One has to keep in mind that the bath
chains also need to be shifted in energy-space to be correctly connected to their
inherent physical site.
Note: The Green function of the isolated cluster has to be calculated only once.
However the correction has to be made for every value of E. The Dyson equation
to couple the bath chains to the cluster is

[g̃(ω)]−1 = [g̃0(ω)]−1 − T12gb(ω)T21, (2.24)

with

T12 =

(
0 tcb
0 0

)
(2.25)

and

T12 =

(
0 0
tcb 0

)
(2.26)

the coupling matrices that contain the hopping parameters into the bath chain.
gb(ω) is a 2x2 matrix containing the two Green functions for the bath chains,
shifted in energy space, in the diagonal. Similar to the 1-site cluster these GFs
can be calculated by using the analytical formula for the

SEMI-INFINTE TIGHT-BINDING CHAIN [6]

gb.a0 (ω) =
ω

2t2bb
± 1

tbb

√
(
ω

2tbb
)2 − 1 (2.27)

or using the
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WIDE-BAND LIMIT

gb.a0 (ω) = iΓ (2.28)

The Keldysh component can be calculated by using eq. 2.11. Once again it has to
be noted that the chemical potential appears by calculating the Keldysh part, as
the Fermi-function makes an appearence. As before the chemical potential was
set to a value to induce half-filling.
(̃g)(ω) includes the retarded, advanced and Keldysh part:

gb(ω,E) =


(
grb(ω − ε1(E) 0

0 grb(ω − ε2(E)

) (
gKb (ω − ε1(E) 0

0 gKb (ω − ε2(E))

)
0

(
gab (ω − ε1(E) 0

0 gab (ω − ε2(E)

)


(2.29)
With the cluster now coupled to its bath chains the next step will be to start the
iteration to form the whole chain. Once again it is necessary to do an iteration
from left to right as well as from right to left and couple those semi-infinte chains
together.

Left and right iteration

Starting from the left lead, a semi-infinite tight binding chain, the first cluster will
be coupled to the lead. We define the electric field to be zero for the left lead as
well as the first physical site of the chain. The Dyson equation yields

GL
11 = g11 + g11T

L
10G

L
01 (2.30)

GL
01 = g00T

L
01G

L
11, (2.31)

with GL
11 being the Green Function of the central cluster coupled to the left lead,

GL
01 the Green function in between the left lead and the central cluster and g00 the

GF of the boundary site of the left lead. TL01 is the coupling matrix that is zero
everywhere, except for one off-diagonal entry, where the hopping parameter tlc
stands to couple the lead to the central cluster. All hoppings (except for the ones
inside the fermionic bath chain) are set to 1.
Reintroducing the dependency of ω and E and explicitly writing the desired
Green function, the Dyson equation can be written as

[GL(ω,E)]−1 = [g̃(ω,E)]−1 − TL10g
L
00(ω,E)TL01 (2.32)
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One has to note that for the inverted equilibrium cluster Green function [g0(ω)]−1

the Keldysh component can be set to zero, giving the four-component Geen func-
tion

[g0(ω,E)]−1 =

(
[gr0(ω,E)]−1 0

0 [ga0(ω,E)]−1,

)
(2.33)

where gr0(ω,E) is the retarded part of the GF and ga0(ω,E) the advanced. Both of
these Green functions have the dimension 2x2.
When coupling the lead to the central cluster one does in fact gain another semi-
infinite chain that has grown by one cluster. As for the 1-site cluster one can
repeat this process until all physical sites of the chain are iteratively connected.
The important part is to shift the semi-infinte chain by ωshift = 2E before cou-
pling them and demand that the obtained Green function is equal to that of the
unshifted chain.

[GL(ω,E)]−1 = [g0(ω,E)]−1 − T10gb(ω)T01 + TL10g
L
00(ω + ωshift, E)TL01 (2.34)

For the right to left iteration the process is exactly the same however one starts at
the right lead and adjusts the energy shift accordingly.
The last step will be to connect the two chains via Dyson equation:

[G(ω,E)]−1 = [g0(ω,E)]−1−T10gb(ω)T01−TL10g
L(ω+ωshift, E)TL01−TR10g

R(ω−ωshift, E)TR01

(2.35)
which again yields a 2x2 matrix. The current can now be calculated by using eq.
1.76.

2.4.1 Results

As for the 1-site cluster the chain was solved for different parameters.
The hopping inside the lead chains, as well as the central region was once more
set to tlc = tcl = tcc = tll = 1 while the hopping strength in the bath chains varied.
If not indicated otherwise eq. 2.27 was used to calculate the bath Green function
and not the wide-band limit eq. 2.28.

Non-interacting case

First, the non-interacting case, i.e. U = 0, has been calculated. According to [28]
the cluster size only plays a role for values U 6= 0, so the non-interacting case
should look similar to what has been found for the 1-site cluster.
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(A) Semi-infinite chain (see eq. 2.12) (B) Wide-band limit (see eq. 2.13)

FIGURE 2.11: Ncc = 50, U = 0. Current in the center of the chain at
different hopping strengths inside the bath chains.

Like for the 1-site cluster calculations the differences between the wide-band limit
and the semi-infinite tight binding chain for the fermionic bath chains was looked
at. The results are very similar to the 1-site cluster results, in terms of position of
peaks and the behavior of the current. Independent of the hopping strength all
chains show a metallic behaviour, with a linear, ohm-like rise of current for lower
values of the electric field, up unto a maximum value. This behaviour has already
been explained in the previous chapter. Indeed, the cluster size does not seem to
have an influence on the calculations in the non-interacting case.
Future calculations will be done at a strong hopping in the bath (i.e. tbb = 100,Γ =
0.01 as the results for the wide-band limit and the semi-infite tight-binding chain
are the same. Once again the maxima of the current curves are at values 2Γ.
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Interacting case

FIGURE 2.12: Current density for U = 1. The blue curve is the ana-
lytical solution for U = 0.

In the figure above the current calculation for U = 1 is shown for the 2-site cluster.
The interesting region between values of E = 0.04 to E = 0.2 is magnified in the
subplot. Comparing the results with the ones of the 1-site cluster the difference is
striking.
Oscillations do occur, allthough unlike for the 1-site cluster, the chain still shows
metallic behaviour with a linear rise in current for lower values of the electric
field. The maximum is damped as well, compared to the non-interacting result,
however not as much as for the 1 site cluster. The origin of the resonant structures
can be traced back to the occurrence of short-range anti-ferromagnetic order [28].
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For U = 2 the same parameters (Γ = 0.01, all other hoppings set to 1) were used
to calculate the current curve.

FIGURE 2.13: Current density for U = 2. The blue curve is the ana-
lytical solution for U = 0.

Once again it is obvious that the cluster size does play a role. While for the 1
site cluster the current was suppressed essentially, the result for the 2-site cluster
shows an oscillating behaviour, allthough the current is non-zero after the isolat-
ing gap at low energy values.
At bigger cluster sizes the behaviour changes further, allthough this has been
analysed in previous works [28]. In this work however, the influence of self-
energy changes according to VCA is investigated to see if it is possible to deal
with the oscillating behaviour at higher values of U.
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Chapter 3

Variational cluster approximation

3.1 Introduction

As already discussed previously, the understanding of simple systems like the
Hubbard model and especially its behaviour in non-equilibrium conditions has
been a very important part of many-body physics for the last few decades. It has
already been stated that CPT provides a simple, yet viable tool to solve very big to
infinite models, without having to spend a large amount of resources. However,
CPT as applied up to now in this work, faces limitations, like its lack of possibility
to describe broken-symmetry states. [38] Luckily CPT is not the end of the road.
The idea is to upgrade the method by introducing a set of parameters which are
altered self-consistently throughout the calculations. The upgraded method of
CPT is called variational cluster approximation.
Methods have been developed that use the self-energy Σ as a dynamic variable. A
functional Ω(Σ) is constructed which can be shown to be stationary at the physical
self-energy, leading to the self-energy-functional theory (SFT) [32].
It has to be noted that next to VCA there have been many quantum-cluster theo-
ries [26], developed in the past years. Examples are the cluster extansions of the
dynamical mean-field theory, like the dynamical cluster approximation [16] and
the cellular dynamic mean-field theory [20] [24].
Considering a Hamiltonian H = H0(t) + H1(U), with one-particle hopping pa-
rameter t and interaction parameter U , this grand potential is

Ω(Σ) = F (Σ) + Trln(G−1
0 − Σ)−1, (3.1)

with G0 = (ω+µ− t)−1 the free Green function of the original model at frequency
ω and F (Σ) the Legendre transform of the universal Luttinger-Ward functional
[21] [33] [32].
Using the universality the functional can be obtained within the subspace, of self-
energies Σ = Σ(p′), with a modified set of parameters p′ [1].
Now the stationary solution has to be found. This is characerized by the condition

∂Ω

∂p′
= 0. (3.2)

So the VCA alters the self-energy of a (in this case) Hubbard system by intro-
ducing a modified set of parameters p′. This set of parameters could include the
chemical potential, the hopping strength within, or without a Hubbard chain, the
on-site energies and much more.



Chapter 3. Variational cluster approximation 42

The idea of this thesis is to introduce an auxilary bath site to the system, which is
coupled to the physical site within the chain by a hopping parameter ta and has
the on-site energy εa. These two parameters correspond to the set of parameters
p′ mentioned above. The exact method will be discussed later on in this chapter.

3.2 Model and method

The model used for the variational cluster approximation is basically the same as
in chapter 2. The difference between the two models is the addition of a bath site,
coupled to every physical site in the central region.

E

FIGURE 3.1: A finite Hubbard chain with correlated electrons in a
homogenous E field attached to leads. One bath site is coupled to

every physical site in the central region.

The Hamiltonian for this system is

H = H0 +H1 (3.3)

With
H0 = Hcl

0 + TC + TB (3.4)

Hcl
0 is the Hamiltonian of the isolated cluster, consisting of the sites along the

tight-binding chain of the central region, as well as the sites inside the (red) bath
chains. TC is the hopping term along the central region and TB the hopping into
the (red) bath chains.
Now the VCA bath site has to be added via the Hamiltonian HA. As VCA is only
used to alter the self-energy of the system [19], the Hamiltonian HA needs to be
subtracted again. So the Hamiltonian of the unperturbed system reads as

H0 = Hcl
0 +HA + TB + TC −HA. (3.5)

3.5 describes an isolated 2 site cluster, consisting of a physical site and a VCA
bath site. Adding the interaction term of the Hamiltonian the full Hamiltonian of
the system reads as

H = Hcl
0 +HA +H1︸ ︷︷ ︸

⇒gcl

− HA + TB + TC︸ ︷︷ ︸
one−particle−terms

(3.6)

To solve the problem the CPT formalism is used. The central equation to obtain
the Green function of the full system is
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G−1 = (gcl)
−1 +HA − TB − TC (3.7)

As already hinted in 3.6, gcl is the Green function of the physical site and the VCA
bath site, without correction, i.e. the VCA bath site is not subtracted.
To keep track of the Green functions used to obtain the full Green function of the
whole system it is wise to introduce the following notation:

CORRECTED GREEN FUNCTION OF THE ISOLATED CLUSTER

g̃cl =
[
(gcl)

−1 +HA

]−1 (3.8)

CORRECTED GREEN FUNCTION OF THE ISOLATED CLUSTER
COUPLED TO THE SEMI-INFINITE BATH CHAIN

gcl =
[
(g̃cl)

−1 − TB
]−1 (3.9)

FULL GREEN FUNCTION

G =
[
(gcl)

−1 − TC
]−1 (3.10)

The Green function gcl of the isolated cluster can be determined using the Lehmann
representation. The problem at hand is that of a Hubbard-like model with two
sites. The Hubbard-interaction U only acts on the physical site. The hopping be-
tween physical and VCA bath site is t′cb. The on-site energy on the physical site
is ε0 = −U

2
and the onsite energy on the VCA bath site is εb. The Hamiltonian for

this 2-site problem is

Hcl = −t′cb
∑
σ

(ĉ�1σ ĉ2σ + h.c.) + Un̂1↑n̂1↓ + ε0
∑
σ

n̂1σ + εb
∑
σ

n̂2σ (3.11)

As particle-hole-symmetry shall be given, the on-site energy of the VCA bath site
εb must be set to zero.
The cluster Green function gcl is therefore a 2x2 matrix. For future calculations,
the only thing of interest is the Green function of the physical bath site. In terms
of CPT, the Dyson equation for the corrected Green function of the cluster is

g̃cl = gcl + gclHAg̃cl (3.12)
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Multiplying (g̃cl)
−1 from the right side and (gcl)

−1 from the left side yields

(g̃cl)
−1 = (gcl)

−1 +HA. (3.13)

Inversion of 3.13 gives exactly 3.8.
At this point the full 2x2 matrix is not needed anymore for future calculations. g̃cccl
now denotes the corrected Green function of the isolated cluster at the physical
site. The construct g̃cccl is now a vector.
The next step is adding the semi-infinite bath chains to the cluster Green function.
The Dyson equation reads as

gcl
cc = g̃cccl + (g̃clTBgcl)

cc (3.14)

and as the Green functions in 3.14 are vectors, this equation can be written as

gcl
cc = g̃cccl + g̃cccl t

2
cbgcl

cc (3.15)

with tcb the hopping paramter connecting the physical site to the semi-infinite
bath chain.
Finally this construct has to be coupled to the next cluster. Once again the Dyson
equation reads as

Gcl = gcc + gccTCgcc, (3.16)

where again only the part projected on the physical site is of relevance, which is
indicated by using the indices gcc according to the notation above.
VCA demands that the self-energy of the cluster is changed in a way that the
Green function with all many-body effects gets as similar to the Green function
of the isolated cluster as possible. Therefore one needs a

SELF-CONSISTENCY CONDITION [19]

∫
dω

2π
Tr(

∂(g0cc)
−1

∂p
g̃cc −Gcc)

K = 0 (3.17)

or further∫
dω

2π

[
∂((g0cc)

−1)R

∂p
(g̃cc −Gcc)

K +
∂((g0cc)

−1)K

∂p
(g̃cc −Gcc)

a

]
= 0 (3.18)

Instead of deriving the Green function one can also use the self-energy∫
dω

2π

[
∂((Σ)−1)R

∂p
(g̃cc −Gcc)

K +
∂((Σ)−1)K

∂p
(g̃cc −Gcc)

a

]
= 0 (3.19)

The first step in the VCA process is now to calculate the self-energy for the first
time.
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SELF ENERGY

Σ0 = ω + i0+ − (g̃cl(t
′
cb, εb))

−1 + ε0 (3.20)

One has to keep in mind that the Green function g̃cl is calculated by solving the
Hamiltonian of a 2-site tight-binding problem with a hopping of t′cb between the
physical site and the auxilary bath site. The on-site energy of the auxilary site is
εb.
Now the hopping parameter t′cb is changed by a value dtcb and the self-energy
recalculated.

SELF ENERGY
FOR HOPPING PARAMETER t′cb + dtcb

Σp = ω + i0+ − (g̃cl(t
′
cb + dtcb, εb))

−1 + ε0 (3.21)

with the differential of the self energy

dΣt =
Σp − Σ0

dtcb
− (3.22)

The same has to be performed for the other variational parameter εb

SELF ENERGY
FOR ONSITE ENERGY PARAMETER εb + dεb

Σp = ω + i0+ − (g̃cl(t
′
cb, εb + dεb))

−1 + ε0 (3.23)

and the differential of the self energy

dΣε =
Σp − Σ0

dεb
− (3.24)

Now eq. 3.19 can be used to calculate the cost function that has to be minimized
to gain the optimal VCA parameters. To keep the equation clean the integrals are
split up into 4 parts:

(s1)RK =

∫
ω

2π
dΣR

t (ω + dω)GK
cl (ω) (3.25)
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(s1)KA =

∫
ω

2π
dΣK

t (ω + dω)GA
cl(ω) (3.26)

(s2)RK =

∫
ω

2π
dΣR

t (ω + dω)g̃Kcl (ω) (3.27)

(s2)KA =

∫
ω

2π
dΣK

t (ω + dω)g̃Acl(ω) (3.28)

where the differential of the self-energy had to be shifted in energy space to match
the respective position of the cluster Green function. The cost function now can
be written as

fcost = i=
(
(s1)RK − (s2)RK , (s1)KA − (s2)KA

)
(3.29)

Note: R denotes the retarded part, K the Keldysh and A the advanced part of the
function.
The minimum of the cost function has to be found for every value of E and the
corresponding parameters t′cb and εb saved. Theses parameters will then be used
to calculate the Green function and with that the current at a certain value E.

3.3 Results and Analysis

The idea of this thesis was to use VCA on a finite one-dimensional tight-binding
model and see if the altered self-energy due to an auxilary bath site leads to a
different behaviour for values of U 6= 0. In particular, one goal was to see if
metallic chains can be constructed for these values.
For U = 0 the auxilary bath should have no impact on the results. So the starting
point is to look at

U = 0

Before the VCA parameters t′cb and εb were calculated self-consistently, some val-
ues were set by hand to show that for the non-interacting case the results do not
vary from the CPT results.
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FIGURE 3.2: Different values of t′cb for U = 0 give the same current
curve. εb was set to 1.

For all three values of t′cb (indicated as tp in the figure) the current is the same as
for the U = 0 result in the previous chapter. The bath has no influence on the
current results for U = 0.

U = 1

Now that the program has been tested, it is possible to try to gain results for
the interacting case. As the parameters have to be optimized for every value
of electric field E the calculation time is quite intense. So the only system that
could be calculated was a single physical site with the auxilary bath site and the
fermionic heat bath, coupled to the leads.
The results for U = 1 are shown in this section. Before the current curve for this
case is shown, it is interesting to discuss how the optimal VCA parameters are
dependent on the electric field. For that reason the dependence is shown in the
following figure.
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FIGURE 3.3: Dependence of the VCA parameters to the electric field.

The on-site energy of the auxilary bath εb is zero for all values ofE. This is reason-
able, because an on-site energy of zero corresponds to a half-filled band, which
was taken as granted throughout the whole calculation.
Interesting is the behaviour of the hopping parameter into the auxilary bath t′cb.
For values of E < 0.8 the optimal parameter that was found self-consistently is
in the range of [1.2, 0.8]. At E = 0.8 there is a jump and at values E ≥ 0.8, the
hopping parameter t′cb = 0. This means that for values E ≥ 0.8 the VCA results
are the same as the plain CPT results.
So the VCA calculation corresponds to a phase-transition of the one-dimensional
tight-binding Hubbard model.
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FIGURE 3.4: Current density for U = 1

In figure 3.4 the three different results for green: analytic solution, red: CPT result
and blue: VCA result are shown.
At values E ≥ 0.8 the VCA and CPT results overlap, as the hopping into the aux-
ilary bath becomes zero. So the interesting part is for smaller values of E, where
the chain showed a non-metallic behaviour in the CPT calculations. Lookig at fig-
ure 3.4 it is striking that the VCA curve does indeed show a metallic behaviour,
with a less steep curve than the U = 0 results. It appears that the altered self-
energy due to the auxilary bath place changes the behaviour of the tight-binding
chain.
A calculation for a smaller hopping in the fermionic bath chains was done as well:
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FIGURE 3.5: Dependence of the VCA parameters to the electric field.

Comparing these results to figure 3.3 it shows that the behaviour is nearly the
same, but the jump, when the hopping parameter t′cb becomes zero is at E = 1.
The phase-transition occurs at a higher value of the external electric field.
One has to note that the jump to a non-zero value of the on-site energy εb is due
to a convergence problem in the optimization process. For a smaller hopping
inside the fermionic bath chain the on-site energy of the auxilary bath is zero at
all values of E, but due to smaller energy-dissipations the critical value of E,
where the phase-transition happens is shifted.
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FIGURE 3.6: Current density for U = 1

U = 2

For values of U = 2 the VCA calculations were done as well. Keeping in mind
the results from the 1-site cluster CPT calculations (depicted in fig. 2.10) the CPT
calculations gave a rather damped current curve. The optimal VCA parameters
were found and are shown in the following figure.
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FIGURE 3.7: Dependence of the VCA parameters on the electric
field.

The values of the parameters show a similar picture. The on-site energy is zero,
while the hopping parameter starts at a value ≈ 1 and endures a jump to around
zero at values of E = 1. Once again the hopping in the bath chain was set to
tbb = 1.
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FIGURE 3.8: Current density for U = 2 and tbb = 1

Looking at the current curve it is striking that the VCA result once again lies in
between the CPT calculation and the analytical solution for U = 0 (i.e. Han curve
in green). The VCA solution gives a linear, metallic response for values up to
E = 1.
Also the VCA calculation for tbb = 100 was done.
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FIGURE 3.9: Dependence of the VCA parameters on the electric
field.

Like for U = 1 the jump in the hopping strength t′cb is at a lower value of E.
Interesting is the current curve for this case.
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FIGURE 3.10: Current density for U = 2 and tbb = 100

While the VCA again gives a linear response up until the value of E, where
the hopping becomes zero, the current has a higher peak value, than the non-
interacting analytical Han curve!
Summarizing it can be said, that the VCA method indeed achieves different re-
sults, compared to the plain CPT calculations. While the changing on-site energy
does not play a role in the non-interacting case, for values U 6= 0 the behaviour
changes drastically. With the method of VCA there occurs a phase-transition in
the model. Of course it would be more interesting to make calculations for a
longer chain and look at the results there but obtaining metallic results for the
1-site problem is an important and interesting start.
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Chapter 4

Electronic transport through a
quantum dot of spinless fermions

4.1 Introduction

Spinless fermions are, as the name already reveales, modeling particles that obey
the same rules of fermions, as e.g. electrons, but are not assigned with a spin.
Double occupations of sites are therefore forbidden, as two spinless fermions on
one site cannot be discriminated by different internal quantum numbers. The
spin-statistics theorem relates the spin of a particle to the particle statistics it
obeys. [42] This follows naturally from the unification of quantum mechanics and
special relativity, while a correlation between spin and statistics in non-relativistic
quantum mechanics can be seen as an empirical law. [40] However the model of
spinless fermions is a commonly used model e.g. to describe 3d electrons of the
Fe2+ ions which all have the same spin direction because of strong ferrimagnetic
ordering. [25]
In the last chapter of this thesis, spinless fermions are treated with CPT, moti-
vated by the work of Christian Schiegg Michael Dzierzawa and Ulrich Eckern,
who treated the same model with a Hartree-Fock approximation [36]. They state
that the advantages of HF calculations lie within low computational costs and
great flexibility with respect to dimensionality, system size and geometry as well
as finite temperature and type and range of interactions. The goal of this work
is to achieve comparable results with CPT. However it has to be noted that es-
pecially in terms of finite temperature CPT as it is used in this thesis the HF ap-
proach is more promising as only a temperature of zero will be used to calculate
the necessary Green functions. Considering the numerical calculation time the
CPT is a very fast method and the problem of having to find converged steady-
state solutions from time evolutions will not be a problem, while HF results are
vulnerable to mistakeably assumed converged steady-states.
The method will be similar to what has been done in chapter 2, with some small
differences in terms of how the chemical potential will be treated when shifting
Green functions in energy space as well as obviously a different model.

4.2 Model

Considered is a one-dimensional model of spinless fermions with Nc central sites
with nearest neighbor interaction U. The central region is coupled to lead NL on
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the left andNR to the right. The hopping parameter t0 is the same inside the leads
as well as in the central region. The leads are coupled to the central region with a
weaker hopping parameter t′

t0 t0 t′ t0 t′ t0 t0

U′ U U′

1 2 r1 r2l1l2

FIGURE 4.1: Model with Nc = 2. The leads are two semi-infinite
tight-binding chains with hopping parameter t0

The Hamiltonian for the central region reads as

ĤC =
2∑
i=1

{
−t0

(
ĉ�i ĉi+1 + h.c.

)
+ U

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)}
(4.1)

As there are only two sites in the central region an exact solution can be handily
found by exact diagonalisation of the Hamilton-operator, which provides a 2x2
matrix.
The Hamiltonians for the coupling of the left lead to the center region as well as
the coupling of the right lead to the center region read as

ĤLC = −t′
(
ĉ�l1 ĉ1 + h.c.

)
+ U ′

(
n̂l1 −

1

2

)(
n̂1 −

1

2

)
(4.2)

ĤCR = −t′
(
ĉ�2ĉr1 + h.c.

)
+ U ′

(
n̂2 −

1

2

)(
n̂r1 −

1

2

)
(4.3)

Finally the Hamiltonians for the leads read as

ĤL = −t0
l1∑

i=l∞

(
ĉ�i ĉi+1 + h.c

)
(4.4)

ĤR = −t0
r∞∑
i=r1

(
ĉ�i ĉi+1 + h.c

)
(4.5)

The Hamiltonian for the full system then is

Ĥ = ĤL + ĤLC + ĤC + ĤCR + ĤR (4.6)

As the model shall be one of spinless fermions, there cannot occur any double
occupied sites and the base vectors for the Fock-Space are
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|ψ0〉 = |00〉 = |0〉
|ψ1〉 = |10〉 = ĉ�1 |0〉
|ψ2〉 = |01〉 = ĉ�2 |0〉
|ψ3〉 = |11〉 = ĉ�1ĉ

�
2 |0〉 (4.7)

with |0〉 being the vacuum state, giving a rather manageable Hamiltonian in this
base:

H =


|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

|ψ0〉 U
4

0 0 0
|ψ1〉 0 −U

4
t0 0

|ψ2〉 0 t0
−U
4

0
|ψ3〉 0 0 0 U

4

 (4.8)

4.3 Method

To obtain the Green Function of the isolated cluster (i.e. the quantum dot) g0

the groundstate of the Hamiltonian ϕ0 was found by ED and using the Lehmann
representation of the Green function 1.19.
The Green function of the leads gl and gr was calculated using the formula for
semi-infinite tight binding chains, eq. 2.12, with hopping strength t0.
Via Dyson equation the quantum dot was coupled to the left and right lead, which
gives for the advanced/retarded part:

G−1
a/r(ω) = (g0

a/r)
−1 −M lgla/rM

r −M rgra/rM
l (4.9)

with the coupling matrices

M l =

(
0 t′

0 0

)
(4.10)

and

M r =

(
0 0
t′ 0

)
(4.11)

This Green function can easily be inverted

Ga/r =
[
G−1
a(r

]−1

(4.12)

For the Keldysh part the Dyson equation reads as:

G−1
K = −M lglKM

r −M rgrKM
l (4.13)

and finally inverting

GK = −GaG
−1
K Gr (4.14)
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to obtain the Keldysh part of the Green function of the quantum dot, coupled to
the left and right lead. Using eq. 1.76 the current through the quantum dot can
be calculated from the Keldysh part of the Green function.
When calculating the Keldysh part of the lead Green function the chemical po-
tential comes into play. For this chapter the current will not be induced by an
electric field, but rather a bias VB due to the difference in the chemical potential
for the left and right lead is induced. For the analysis of the model the chemical
potential was treated in two different ways:

1. Half-filled leads for all bias values. The chemical potential inside the leads
stays at µ = VB/2

2. The chemical potential is shifted µl/r = ±VB/2

VB

FIGURE 4.2: The position of the chemical potential in the energy
space is denoted by the red line. The band is half-filled in that case,

meaning the chemical potential is fixed relative to band.

VB

FIGURE 4.3: The chemical potential inside the leads is shifted. The
bands are no longer half-filled at VB 6= 0

Both methods to produce a bias voltage will be discussed and depicted in the
next section. The applied method will be indicated.

4.4 Results

To compare the method of CPT on the model of spinless fermions the values of U
were set to 1,−1, 0 according to the results given in [36].
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FIGURE 4.4: Current curve for the quantum dot for t′ = 0.5t0.
The symbols are the data obtained from Hubbard-Stratonovich ap-

proach (taken from [36])

In the above figure a summary of the CPT results for the spinless fermions model
is given. The symbols are the data taken from [36]. The values for U = 0 go
through the points of the respective Hubbard-Stratonovich data, however the re-
sults for U = 1 and U = −1 are off. Not only are they far away from the results,
of the other paper, but they are also qualitatively different. The U = −1 curve is
above the U = 0 curve of the CPT approach, while for the Hubbard-Stratonovich
approach the U = 0 curve starts underneath the U = −1 result, but crosses it at
vaules eV > 2.
To compare the results with the Hartree-Fock approach, a figure from [36] is
shown.
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FIGURE 4.5: Results of the Hartree-Fock approximation (taken from
[36])

It is striking that for the Hartree-Fock approach all the current curves converge
onto the U = 0 curve. This is not the case for the CPT approach. However it is
said in [36] that the collapse of the curves at larger values of eV is an artifact of
the Hartree-Fock approach.
Note: All calculations have been done, shifting the chemical potential of the leads,
as indicated in figure 4.3.
In the following the results for the case of a fixed chemical potential in the leads
(figure 4.2) are shown.
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FIGURE 4.6: Current curve for the quantum dot for t′ = 0.5t0.

Keeping the chemical potential fixed in a way that the leads stay half filled at all
values of eV is how it was treated in chapter 2. When shifting the leads in energy
space there is a finite span of overlap. At a maximum overlap the current curves
show a maximum and when the leads are shifted far enough apart there is no
more overlap, i.e. a zero current at higher values of eV .
Shifting the chemical potential inside the leads gives a saturation current, when
one lead is completely empty and the other one completely filled. The current
does not change anymore, as there are always electrons in the left lead and none
in the right.
Comparing figures 4.4 and 4.6 the order of the curves stays the same. The U = −1
curve shows the highest current, U = 0 is in the middle and U = 1 shows the
lowest current.
With the method of CPT it was not possible to achieve results that fall on the
Hubbard-Stratonovich data. An idea to further improve the method is to make
use of a master equation approach [31]. In this work the ground state falls into a
certain particle sector that either has zero, one, or two particles in it. The idea is
to use a density matrix that combines all the particle sectors to form the ground
state.
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Chapter 5

Conclusion

This thesis deals with nonequilibrium calculations in finite tight-binding chains,
with various cluster perturbation methods leading to the variational cluster ap-
proximation.
To get a feeling for the behaviour of finite tight-binding chains the cluster pertur-
bation theory was used to calculate the current, due to an electric field. The chain
was first devided into clusters of size 1 and later on into clusters of size 2. It was
important to provide a proper dissipation mechanism to the system, therefore an
semi-infinite tight-binding bath chain was coupled to every physical site of the
chain.
The influence of the hopping strength inside those bath chains was analyzed. A
bigger hopping parameter means a lower damping parameter which leads to a
sharp peak in the current curve, while for a lower hopping parameter, the current
density shows a broad curve, without much suppression. Furthermore the chain
shows a metallic behaviour with a linear response for U = 0. This behaviour is
changed to a semiconducting one for larger values of U . It was confirmed that
the cluster size does indeed play a role, in terms of appearing short-range anti-
ferromagnetic order.
Finally the variational cluster approximation was introduced. The idea is to
make the self-energy depending on a set of parameters, that can be found self-
consistently. In this particular thesis the VCA parameters were introduced by
adding an auxilary bath place to each site of the chain. The hopping into that
bath as well as the on-site energy are variational.
For the non-interacting case the results are independent on the VCA parameters.
The results are always the same, as for the CPT calculations. However, when
looking at values U 6= 0 the VCA calculation showed a difference to the CPT
results. It was found that the onsite energy of the auxilary bath is close to zero for
all inspected values of U . The hopping into the bath is around 1 for lower values
of E and jumps down to zero. The jump is at E = 1 for a hopping parameter of
tbb = 1 inside the fermionic bath chain and at a lower value of E for a hopping
tbb = 100.
There is a linear response of the current in the lower energy field regime, making
the chain metallic even at values U 6= 0. The system observed, however is only
one physical site, coupled to an auxilary bath, the fermionic bath chain and two
leads. Bigger system could not be calculated as the computation for this small
system was considerably time-consuming.
The final chapter deals with spinless fermions, sitting on a quantum dot. The
method of CPT was used to obtain a current curve, due to a bias voltage, driven
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by different chemical potentials in the two leads. The results were compared
with a Hartree-Fock approximation as well as a Hubbard-Stratonovich approach.
However, it was not possible to achieve the same results as any of those calcula-
tions with a CPT approach. An idea was to use a master equation calculation to
obtain density matrices for the ground state, and use those in the calculation of
the Green function to do a CPT calculation.
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