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Abstract

During the last decades, securing embedded systems against attacks has been the topic
of continuous research on the software, as well as on the hardware level. In particular,
fault attacks on hardware implementations of cryptographic functions and their possible
countermeasures have received a lot of attention. However, the equally pressing issue of
countermeasures against fault attacks on processor cores received only moderate atten-
tion. It has been shown that adversaries are able to introduce faults which lead to the
skipping or modi�cation of instructions. This allows for example to circumvent critical
security checks, extract sensible information, or gain privileged access to the device. In
this work, a recently invented protection mechanism against fault attacks on processors,
called Sponge-Based Control-Flow Protection, is implemented for the open-source Ri5CY
CPU-core developed at ETH Zürich. It utilizes a cryptographic sponge, in combination
with control-�ow protection mechanisms originally developed for soft-error detection, to
achieve control-�ow integrity.

As an additional part of this work, the RISC-V privilege-ISA 1.9.1 and an MMU were
implemented for the Ri5CY core. This allows the core to run seL4, an operating system
with a formal proof of security, which was ported to the RISC-V architecture as part of
this work. This helps to mitigate software attacks, which are not preventable by Sponge-
Based Control-Flow Protection, such as attacks on the integrity and con�dentiality of
data.

Finally, cryptographic applications are often subject to side-channel attacks, which aim
to extract secrets from the device by means of e.g. timing- or power-consumption mea-
surements. While software countermeasures such as introducing random delay cycles
or randomizing the sequence of processed data are possible, they are often insu�cient.
Several Keccak/SHA-3 peripherals, which are protected against side-channel attacks of
di�erent attack-orders by applying Domain Oriented Masking, were implemented.

Putting together all the pieces, they can be considered the basic building blocks of a
security module. The security enhanced core, together with the SHA-3 peripherals,
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were integrated and taped-out in an ASIC and the resulting area, runtime and code-size
overhead were analyzed.
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Chapter 1
Introduction

1.1. Problem Statement

Embedded systems, smart cards and IoT devices are often exposed to physical attacks
[54]. Some of the attacks are passive and non-invasive, like measurement of the power
consumption or the electric emanation of a device. It was shown, that it is possible
to recover secret keys and sensible data by means of such side-channel analysis (SCA)
attacks [47, 41, 38].

Fault attacks, on the other hand, are semi-invasive or invasive physical attacks. An
attacker usually uses her control over the voltage, clock-signals, reset signal, external
memories, temperature and other external conditions to alter the device's behavior or
make it malfunction [34, 42, 35]. E.g. in the case of smart cards the voltage, clock and
reset signals are externally available and can thus easily be manipulated by an attacker.
An adversary is also able to mount attacks that sound more exotic, such as depackaging
the chip and utilizing lasers, EM-pulses or directly probe individual on-chip signals to
achieve control over them. Although more expensive to perform, in certain application
domains, like pay-TV systems, such attacks are considered economically feasible [65].

In the case of cryptographic functions, the introduced fault often causes the leakage
of information that can be used to recover sensible information, such as device keys.
Such fault attacks have �rst been applied on RSA [20], and were also applied to other
prominent cryptographic algorithms such as AES [53], SHA-512 [60], or SHA-3 [11] to
name prominent examples. Consequently a range of countermeasures have been proposed
to secure cryptographic algorithms against attacks [18, 66, 32, 46].

However, while countermeasures against attacks on cryptographic algorithms received a
lot of attention, the pressing issue of how to protect other parts of the system, such as the
processor, against fault attacks, received a lot less research. Attacks on the control-�ow
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1. Introduction

aim to introduce faults that aim to skip security checks, (partially) nullify registers, or
execute privileged instructions without permission. Additionally, attacks on instruction
and data memory pose similar threats.

The XBOX-360 hack is a good example of how to use glitches to circumvent security
checks [1]. By applying a glitch on the reset line at the right point in time, it was
possible to bypass a signature veri�cation of a second-stage bootloader. This way a
custom bootloader could be used that was able to run custom kernels. What most likely
happened in this case, was that the reset glitch caused some of the processor's registers
to be cleared. Thus, when applied at the right time, the memcmp function responsible
for the signature check would appear to have returned zero and the check would pass.

Glitches can also be combined with other fault techniques. Korak et al. [43] showed that
faults due to clock glitches can be made more e�ective by additionally varying the supply
voltage at the time the glitch is introduced. By doing so it is even possible to change
the voltage to target di�erent parts of the circuit, because the change in propagation
delay for logic-gates depends on the exact type of the cell. E.g. logic gates with multiple
transistors in series are a�ected stronger by variations of supply voltage [33].

Another very simple, but obviously very powerful attack, is to tap the bus signals of
an external memory. By doing so, basically arbitrary instructions and data can be
inserted, skipped or modi�ed, if no encryption is in place. By using the rowhammer
attack developed by Kim et al. [37], bit �ips in memory can be produced for a huge
amount of DRAM chips in use today. This attack blurs the line between software attacks
and physical fault attacks, and is especially concerning since the attack can be conducted
remotely via Javascript execution [27].

The most powerful attacks are able to �ip individual on-chip signals precisely by means
of optical faults. Selmke et al. [57] showed that it is even possible to precisely control
individual bits in SRAM cells.

1.2. Related Work

Several publications discuss the common solutions of adding redundant circuitry to make
fault-attacks harder [46, 35, 34]. They also discuss the possibility of di�erent approaches
to prevent tampering, such as passive and active shields. However these tampering
countermeasures do not provide full protection as demonstrated by Kömmerling and
Kuhn [42].

Lalande et al. [44] presented a software-only countermeasure against fault attacks which
is able to detect faults that jump over 2 consecutive C-code statements, but faults on
the level of individual instructions cannot be detected reliably.

Hardware approaches to detect control-�ow errors were �rst proposed in the context of
soft-error detection. Building on the principles of Path Signature Analysis (PSA), Wilken
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1. Introduction

and Shen [71] developed Continuous Signature Monitoring (CSM). In their work, they
rely on �signature�1 checks that are inserted into the code. The signature is calculated at
compile-time. A dedicated hardware monitor then computes the intermediate signature
for every encountered instruction. When the signature-check instruction is encountered,
the signature from the hardware monitor, which contains the information about which
code has been executed, is compared against the reference signature computed at compile
time. If they don't match, an error is raised. In order to allow di�erent paths through the
program, the signatures need to be �justi�ed� before a merging point. Since detection of
an error is only possible at the time of signature checks, the scheme was extended to also
provide �horizontal signatures�, and was termed Continuous Signature Monitoring. Hor-
izontal signatures allow for continuous checking by simply associating a short reference
signature of a few bits with every instruction. Again, when the horizontal signature bits
calculated by the hardware doesn't match the reference signature, an error is raised.

Werner et al. [70] have analyzed the Generalized-PSA as well as the CSM scheme for
their suitability in the setting of fault attacks. Their �ndings show, that CSM is very well
suited as protection mechanism against fault attacks, when the attacker has only limited
access to a certain number t of on-chip signals. Their analysis was performed for faults on
the instruction stream. An underlying assumption is, that instruction memory is on-chip
as an attacker would otherwise not be limited in how many bits of an instruction can be
�ipped.

All schemes that rely on explicit checks against some precomputed value, implicitly rely
on the check itself to not be manipulated. An attacker only needs to, directly or indi-
rectly, control just the 1-bit check result in order to thwart these protection mechanisms.
Additionally when o�-chip memory is considered, CSM can't provide any protection and
additional measures, such as encrypting the o�-chip memory, must be taken. In the case
of cryptographic algorithms this was tackled e.g. by Yen et al. [72], but control-�ow
integrity measures still rely on explicit comparisons.

1.3. Fault-Attack Secure Processor Design

The major parts of this work can be summarized as follows and are further motivated
below:

• Port of the seL4 operating system and necessary core modi�cations necessary to
run it

• Implementation of a recently developed, yet to be published, control-�ow integrity
scheme called Sponge-Based Control-Flow Protection (SCFP), which provides pro-
tection against fault-attacks on the control-�ow of a program.

• Side-Channel resilient Keccak peripherals.

1The term signature is used to describe the calculated checksum, not a cryptographic signature
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1. Introduction

It was desired to implement all of the components in the open-source Pulpino platform,
respectively its Ri5CY core [62, 63], which serves as the basis for all modi�cations on the
processor-core site. The Ri5CY core is a RISC-V core particularly suited for low power
applications, featuring a four stage pipeline and several ISA extensions.

seL4. Looking at the security issues faced by embedded system designers in a top-down
approach, it is �rst desirable to secure the software against remote attacks, as the software
tends to be the easiest exploitable component. Obviously, building secure software is a
very application speci�c task, also because what �secure� means is highly application
dependent. However, in many scenarios it is desirable to use a platform that allows for
isolation between tasks to achieve a separation of concerns, hence an operating system is
desired. The seL4 micro-kernel, which has been formally proved to provide con�dentiality
and integrity of data is a good candidate for the software foundation of a secure platform
[40]. In contrast to traditional operating system kernels, in which (potential) security
vulnerabilities are commonly found, the formal proof conducted for seL4 provides a high
assurance that its implementation is sound. This means that the kernel is free of e.g.
classical memory handling errors (use-after-free, double-free, bu�er-over�ow, etc.), which
account for the majority of found security vulnerabilities in traditional kernels such as
the Linux kernel. Since no RISC-V port of the kernel existed that implemented su�cient
functionality prior to this project, it needed to be written as part of this work. The
initial work on a RISC-V port, done by Hesham Almatary [5, 6], for an older release of
seL4 was extended for this purpose.

Core Modi�cations. The seL4 operating system relies on the concept of virtual mem-
ory and page-based memory management to provide isolation between processes and of
resources. Since Pulpino, respectively its Ri5CY core didn't provide either an MMU nor
any concept of a privilege mode which is required for seL4 to work, they also needed
to be implemented. The RISC-V consortium is currently working on a privileged ISA
speci�cation [67]. Although the speci�cation is still in �ux, and during the course of this
work three di�erent versions (1.7, 1.9 and 1.9.1) were available, it made sense to stick to
it as closely as possible, since coming up with a meaningful privilege ISA is a non-trivial
task, which is demonstrated by the many iterations required by the RISC-V consortium.
This has the additional bene�t of not requiring any custom compiler modi�cations and
the RISC-V GCC toolchain can be used.

Keccak. The implemented MMU together with a concept of privilege modes and priv-
ileged instructions, allow to run seL4 on the Ri5CY core. However, although now the
provided platform can be used to write secure software, it is still vulnerable to physical
attacks as stated above. Many secure systems rely on dedicated hardware implemen-
tations of cryptographic accelerators. These accelerators are designed to make physical
attacks on the sensible cryptographic operation su�ciently di�cult for the attacker, such
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that she will search for another way to reach her goal. In the course of this work, the
SCA-resilient Keccak peripherals from Gross et al. [26] were integrated into the system.
They utilize the Domain Oriented Masking scheme [25] to mitigate SCA attacks.

SCFP. A secure operating system and cryptographic accelerators are not enough to
secure the system against physical attacks. As mentioned, the control-�ow of a pro-
gram can be manipulated by a variety of attacks, from glitches over voltage variations
to on-chip bit-�ips. To mitigate attacks on the control-�ow of the processor, a yet to
be published scheme was implemented [69]. It uses a cryptographic sponge to encryp-
t/decrypt code and enters a secure state of random execution upon manipulation of the
control-�ow, instead of requiring explicit checksum or signature checks as it is done by
state-of-the-art countermeasures. The approach ensures the integrity of the instruction
stream from the instruction memory all the way to the instruction-decode stage. It can
also protect against faults that don't in�uence the instructions directly, such as ma-
nipulation of branch decision signals. This scheme, called Sponge-Based Control-Flow
Protection (SCFP), was implemented in the Ri5CY core.

As a �nal step that is missing to create a truly �secure element�, data-integrity needs to
be considered. This was not possible within the time-frame of this project and would
need to be implemented in follow-up work. However, data integrity cannot be achieved
without control-�ow integrity, hence this work lays the necessary foundation.

In Chapter 2 the idea behind Sponge-Based Control-Flow Protection is explained and
a brief description of Keccak is given. In Chapter 3 the implementations of MMU,
privileged ISA, SHA-3 peripherals and SCFP are discussed. Chapter 4 presents the
results of the ASIC implementation, e.g. in terms of runtime, memory, area overhead for
the implemented SCFP, and Chapter 5 concludes this work.
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Chapter 2
Theory / Background

2.1. Sponge-Based Control-Flow Protection

While countermeasures against corruption of the control-�ow have been researched ex-
tensively [71, 23, 36], only very few publications have actually taken into account the
possibility of introducing faults on purpose [10, 70]. Most countermeasures have hence
been developed with a soft-error fault model in mind, in which faults occur randomly.
This is obviously not the case with fault attacks, which can be as precise as �ipping
individual on-chip SRAM cells [57]. Building upon the principles of Continuous Sig-
nature Monitoring (CSM), a new control-�ow protection scheme, called Sponge-Based
Control-Flow Protection (SCFP) has been developed by Werner et al. [69].

Compared to state-of-the art countermeasures, it has a number of advantages:

• No explicit signature checks.
A check with the signature results in a 1-bit value. Unless special measures are
taken, an attacker just needs to gain control over this single 1-bit signal to thwart
the whole scheme.

• Works in case of external memory.
Inline Reference Monitoring (IRM) schemes rely on the correctness of the signature
values [3]. It is hence highly inadvisable to store the instructions or signatures o�-
chip, where an attacker has full control over every instruction and signature.

• Signatures are no longer needed.
The memory overhead can be drastically reduced without the needed signatures.
Furthermore they also don't need to be fetched from memory any more, which
results in smaller runtime overhead.
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2. Theory / Background

• Branch decisions can be protected.
The CSM scheme neglects the problem of the branch decision being unprotected.
Just like results of signature comparisons a branch decision is a 1-bit signal. An
attacker that gets a hold on that signal can control conditional branches to her
liking, without even caring about any signatures checks, since both the branch-
taken as well as the opposite case are valid, this is basically undetectable.

The remainder of this section addresses how each of these advantages is achieved and
what the trade-o�s are.

2.1.1. Encryption/Decryption of a Program

In SCFP the whole program is encrypted at compile-time and decrypted at runtime
using a cryptographic sponge function, which is a relatively new cryptographic primitive,
developed by Bertoni et al. [15] and is used in many cryptographic applications today,
most prominently in the winner of the SHA-3 competition Keccak. Depending on the
actual application of the device, the sponge-state might be big such as to provide actual
encryption of instructions. E.g. by using a Keccak-f[200] with 32-bit instructions,
one would obtain a 168 bit capacity and thus a security of 84-bit [69]. This case is for
example desirable if the instructions are stored in external memory, that is potentially
under control of the attacker.

On the other hand, in the case of on-chip memory, a smaller sponge-state might be su�-
cient, e.g. a Keccak-f[100] which would mean 68-bit capacity and thus 34-bit security.
In such a case the encryption acts more as a scrambling than an encryption of crypto-
graphic strength. However the probability of introducing a fault that would lead to a
collision in the sponge state that would go undetected is low. Since not only any two
collisions would do, the principle of a birthday attack doesn't apply. Given that the rate
is under full control of the attacker (e.g. external memory), but the capacity isn't, the
chance of producing a speci�c collision is bounded by 2−c for a capacity of c bits.

Random Execution as Secure State Decryption of a modi�ed ciphertext, or of
ciphertexts given in the wrong order, results in the output of a random instruction which
the attacker has no control over. Furthermore, the sponge capacity will be random as
well. Unless the attacker is able to precisely control the whole sponge state, the error
will further propagate and cause random instructions. Aside from possibly aborting
the program due to the execution of the random instruction, the attacker will have no
control over code execution. While random execution seems insecure on �rst thought,
the probability for an attacker to gain any information from it are considerably low.

Even in modern very dense instruction sets, such as the RISC-V ISA, there is su�-
cient room for invalid instructions. Additionally, the system itself further constrains the
amount of valid instructions, because some instructions are only executable in a certain
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context/privilege-level, others would access non-existent memory and so on. In most
cases (over 99.9% in our system as will be shown later) a random instruction thus leads
to the triggering of an exception within a few cycles. Using exceptions is more robust than
explicit signature checks, as the attacker needs control over di�erent exception causes, if
she wants to avoid trapping into exception routines continuously.

It should be noted, that even if the exception mechanisms cannot be relied on, the harm
an attacker can cause can be easily limited by further hardware countermeasures. E.g.
it is easy to imagine a gatekeeper mechanism in hardware, in which a certain sequence of
instructions needs to be executed before a certain memory region becomes accessible for
a limited amount of cycles. The con�guration of an MMU would provide another well
suited gate-keeping sequence.

By relying on the low probability of actually revealing sensitive information (which addi-
tionally must be detectable by the attacker as such), SCFP can get rid of the potentially
vulnerable signature comparisons. Indeed, the signatures are not required at all now.
This results in reduced code execution runtime and memory overhead.

Adjusting the Sponge State Similar to how signatures need to be adjusted (�justi-
�ed�) in CSM, the sponge-state needs to be �patched�, such that the decryption is possible
despite having di�erent paths through the program. Since how this patching needs to be
done depends on the used construction it is discussed in Section 2.1.2 .

2.1.2. The Sponge

The used sponge is a variation of the one used in APE [7]. The encryption in APE
is performed as Ci = f(Pi ⊕ Ci−1||SCi), where SC is the sponge capacity. Likewise
the decryption is done as Pi = f−1(Ci ⊕ Pi−1||SCi). A graphical depiction is given in
Figure 2.1 . An obvious advantage of this, when compared to e.g. SpongeWrap [13] is,
that the attacker can't in�uence the plaintext directly by manipulating the ciphertext.
In constructions similar to SpongeWrap, a change in the ciphertext would lead to the
same change in the plaintext (∆C = ∆P ), as can be seen in Figure 2.2 . This is not
ideal, since an attacker can manipulate at least one instruction very precisely before the
next one will be random. APE doesn't heave this weakness.

The used variation di�ers in that the input to the next transformation is not directly
dependent on the previous plaintext during decryption, which can be seen in Figure 2.2 .
This makes the whole construction act like a block cipher, instead of a stream cipher. In
the APE-like construction only the state's capacity needs to be patched, since the state's
rate doesn't have an in�uence on the following transformations. This allows to reduce
the runtime as well as the memory overhead due to fetching the stored patches.
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Figure 2.1.: Original (left) and modi�ed (right) APE mode of operation with f as
decryption function

Figure 2.2.: Decryption and patching of the sponge-state in SpongeWrap (left) in com-
parison to the APE-like mode (right).

Patching the sponge state As brie�y mentioned in Section 2.1.1 , the decryption
requires to �patch� the sponge-state, similar to how signatures in CSM need to be ad-
justed. In contrast to CSM, the patching of the sponge-state when using the APE-like
construction described above, must be done, whenever the control-�ow diverges. This is a
simple consequence of how encryption must be performed in a backwards fashion in APE
in order to allow the decryption to be done forward. This means, that the control-�ow
graph (CFG) is traversed from the end to the beginning, and consequently a collision
happens whenever the CFG diverges (hence the encryption paths converge).

In essence, during encryption the sponge-state of all paths that converge on a certain
basic block are calculated. Either one of the calculated sponge-states, or a completely
di�erent one is used for further encryption of the program. To get to a common sponge-
state, a collision needs to be produced. Doing so by means of trying to produce a collision
after the transformation, is obviously not feasible, but this is not required. By calculating
the di�erence between the sponge states, a patch value can be simply exclusive-ored onto
the current sponge state, which allows to proceed with the encryption, as was already
hinted in Figure 2.2 .

The full procedure from encryption to decryption is now explained for the simple case of
an if-else statement. Figure 2.3 acts as an illustration.

The encryption is performed from the last to the �rst instruction. Hence it starts by
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encryption

S4 (chosen)

Figure 2.3.: Explanation of sponge-state patching for a simple if-then-else control-�ow
graph.

encrypting block %4. The encryption can proceed to encrypt blocks %2 and %3 in
parallel. Note that the last encrypted instruction in %2, resp. %3, is dependent on the
sequence of instructions in block %4, since the sponge capacity links them together. When
starting to encrypt block %1, this can either be done with the sponge-state obtained
from the encryption of %4→%3 or from the encryption of %4→%2. However, only one
encrypted block %1 is desired, hence both encryption paths must be forced to the same
state. This is done by means of the patch value as shown in Figure 2.3 . Either both
edges (%1-%2, %1-%3) are patched such that the resulting state is the same, or one of
the states is chosen as the �real� one and the other state is patched to the �real� state.
Now that the state is the same, the encryption of %1 can continue.

During decryption, the patch value needs to be applied after the last instruction of block
%1, to get to the sponge state at the beginning of block %2, resp. %3. For more
complex control-statements a little more thought is required as to how this can be done
practically, but the principle of patching at the edges of the CFG whenever there is a
con�ict in the sponge-state is exactly the same. How this is implemented is discussed in
detail in Chapter 3 .

2.1.3. Choice of the permutation

The usage of the APE-like mode mandates, that the permutation must either be invertible
or a block cipher must be used, e�ectively creating a keyed sponge [16]. For this prototype
implementation the Prince block-cipher is used as transformation function.

Prince is a lightweight cipher especially designed for area constrained applications [21].
It is in principle possible to use an arbitrary block-cipher which can be used in the
implemented APE-mode.
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encryption

S4 (chosen)

Figure 2.4.: Protecting the branch decision by linking the control-�ow to the processed
data.

Since we already had a working and tested version of the Prince cipher, it was an obvious
choice. For future work, other interesting candidates for a lightweight block cipher might
be Present [19, 55], Klein [24], mCrypton [45] and Hight [29] to name just a few.

2.1.4. Protecting the branch decision

The branch decision of a conditional jump can be seen as a 1-bit value. Either the branch
is taken, or not. In case an attacker gets hold of this value, either by direct manipulation
with e.g. lasers or EM-pules, or by managing to skip the instruction in the EX stage
without a�ecting any signals before the decoder, she can fully control which branch is
chosen for execution. Although this is not as bad as arbitrary code execution, it still
allows to skip vital security checks.

The solution in the SCFP scheme is to link the actual branch decision with the processed
data that led to it. This can be achieved as follows. First, the decision of whether a
branch gets taken or not is precomputed in software. The result of this computation is
then stored in a register. The crucial part is, that, by design, there are only two possible
values for this register, both of which are known at the time of encryption.

For instance, assume that the possible outputs of the software comparison are 0xAAAA5555
and 0x5555AAAA. When the result of the software comparison is, to take the branch,
it outputs 0xAAAA5555 otherwise 0x5555AAAA. During encryption the sponge-state is
adjusted on both CFG edges. This is depicted in in Figure 2.4 . At runtime, when
the code is decrypted, the state is patched with the value in the register, regardless of
the branch decision. When the branch is taken, an additional patch is needed, just as
described previously.
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In case an attacker now manipulates the branch decision, the sponge-state would still get
patched with the register value that indicates the branch decision. Hence the decryption
on the next instruction would fail, resulting in the start of random code execution.

Note that in the context of external memory, it is important that the value of the register
(e.g. 0xAAAA5555 in the previous example) is unknown to the attacker. Otherwise it would
be easy to craft the patch value such that it incorporates the register's value, which would
then reduce the attack complexity to the control of the 1-bit branch decision signal again.
To mitigate this, the patch value itself would need to be encrypted.

2.2. Protection of Cryptographic Accelerators Against
Side-Channel Attacks

In this section, �rst the main properties of the Domain Oriented Masking (DOM) scheme,
developed by Gross et al. [25], which is used to protect the Keccak peripherals against
side-channel-analysis (SCA) attacks, are shown. Afterwards a brief description of Kec-
cak is given. It is then explained how theKeccak permutation can be protected against
SCA-attacks by applying DOM to it.

2.2.1. Brief Description of the Masking Scheme

Domain Oriented Masking (DOM) is a masking scheme [59] that can be applied to protect
cryptographic algorithms against SCA attacks [25]. It is secure in the d-probing model
[31], which means, that tapping less than d signals would not be enough to extract any
information about the processed data.

In contrast to threshold implementations, which rely on at least three component func-
tions, as shown by Nikova et al. [51, 52], DOM only requires two shares, also called
share-domains, for a �rst-order SCA resistant implementation, but is still secure in the
presence of glitches, which have traditionally been a major source of leakage [48]. An
additional bene�t is, that in contrast to threshold implementations, which require a com-
plete redesign, with DOM all the linear parts of a design just need to be replicated, and
only the non-linear parts of the circuit require special attention and re-design. Further-
more, it is possible to extend the DOM-scheme to higher order protection in a generic
manner, meaning that once the algorithm has been adapted for a �rst-order DOM imple-
mentation, it is possible to scale it to an arbitrary-order protection with no adjustments
in the control-path and, dependent on how generically the design was described, with
none to minimal adjustments to the data-path.

The DOM scheme requires an increased amount of randomness compared to a classical
threshold implementation. Compared to the unprotected variant it also requires addi-
tional storage elements, but so does the classical threshold implementation. The fact that
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Figure 2.5.: A 1-bit multiplier (aka AND gate) in a 1st-order DOM protected design.

classical threshold implementations also need �ip-�ops to not leak information, is often
neglected, since it is easy to overlook, that the shared functions cannot be arbitrarily
deeply nested without the possibility of glitches that leak information about all shared
functions, which would allow to reconstruct the processed data. DOM requires N ·(N−1)

2
bits of randomness and N · (N − 1) �ip-�ops for each 1-bit multiplier that must be pro-
tected. This is illustrated in Figure 2.5 for two share domains A and B. The dotted
�ip-�op in the inner-domain path is not mandatory for a functionally correct operation,
but is often bene�cial since it allows to use the DOM-multiplier as a pipeline stage.

Neglecting the problem of randomness generation, it was shown that this scheme performs
very good in terms of required area. A second-order DOM-protected implementation for
AES takes about the same area as a �rst-order threshold implementation with component
functions [25].

2.2.2. Brief Description of Keccak

The very basics of Keccak, which are needed to understand the actual implementation
are given in here. For a more detailed description of Keccak and sponges, the reader
is referred to the work of Bertoni et al. [12, 16, 13].

The members of the Keccak family of sponge functions, di�er in their state size, which
is given by 25 · 2l where l ∈ {0, 1, 2, 3, 4, 5, 6}. These permutations are denoted as Kec-
cak-f[25], Keccak-f[50], up to Keccak-f[1600]. The Keccak-f[1600] member was
standardized in the FIPS-202 (SHA-3) standard [2].
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The sponge-state, is logically divided into a rate r and a capacity c. The rate is considered
public. The capacity is considered secret and must never be part of the output. A
Keccak permutation can be described as Keccak[r,c], which then describes how much
of the permutation is considered as public and how much is considered secret. E.g. the
Keccak[1088,512], instantiation is the sponge function used in SHA3-512 .

The Keccak permutation consists of multiple steps:

• θ - Linear di�usion step

• ρ - Linear step that aims to provide inter-slice dispersion

• π - Linear step that transposes bits inside a slice and provides long-term di�usion

• χ - Non-linear step containing the S-Box lookup

• ι - Linear step, addition of a round constant

These steps are applied in the listed order every round. One permutations consists of
multiple rounds. The exact number is given by 12 + 2 · l for l being the number also
used in the de�nition of the state size above. E.g. for Keccak-f[1600] 24 rounds are
performed per permutation.

2.2.3. Applying DOM to Keccak

In order to apply DOM to Keccak, only the χ step needs special attention. Since all
other steps are linear, they can simply be replicated. This means, that e.g. for a �rst-
order DOM-protected Keccak peripheral, the whole sponge-state is instantiated twice.
Also the linear θ, ρ and π steps are replicated for every domain. The ι step only needs
to be applied to one of the domains, since it is an addition of the round constant.

The χ step is more tricky, because of the additional �ip-�ops in every DOM-AND gate
which e�ectively makes every DOM-AND a sequential element as shown in Figure 2.5 .
Basically there are two possibilities to insert �ip-�ops. Either they are only inserted
on the cross-domain path (the path that combines values from di�erent domains), or
they are inserted in both the inner- and the cross-domain path. Only the �ip-�ops in
the cross-domain paths are mandatory, since they are needed to prevent propagation of
glitches which would lead to a power consumption that depends on a combination of the
share domains. Inserting the additional �ip-�ops in the inner-domain path has a small
area overhead, but by doing so, they can be used as a pipeline stage, so that a result is
available at every cycle, after a latency of one cycle to �ll the pipeline. On the downside,
this has an area overhead of N inner-domain �ip-�ops for every DOM-protected 1-bit
multiplier, where N is the number of shares. So the total number of �ip-�ops for a 1-bit
multiplier increases to N2.

The additional inner-domain �ip-�ops are preferable in applications which only have a
small number of multipliers, but need to achieve a higher throughput. In Keccak the χ
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step can be done in a slice-based manner. This helps to restrict the polynomial increase
in area due to the required N2 �ip-�ops per 1-bit multiplier, since χ is not performed on
the whole state at once, e�ectively reducing the amount of multipliers. This approach
was chosen for the instantiated Keccak peripherals as will be described in Section 3.4

15



Chapter 3
Design Implementation

In this chapter, the implementations of the privileged ISA 1.9.1, the Sponge-Based
Control-Flow Protection (SCFP), the Memory Management Unit (MMU) as well as
the Keccak peripherals are described in dedicated sections. It starts by discussing the
changes to the core, which were needed for the privileged ISA. Then the implementa-
tion of the MMU and the SCFP unit are discussed. Finally the implementation of the
DOM-protected Keccak peripherals are discussed.

3.1. Remus - Privileged ISA and Ri5CY Core Modi�cations

The Ri5CY core developed at the IIS at ETH Zürich served as a basis for all modi�cations
[62].

In order to allow the seL4 port to run, the RISC-V privileged ISA draft 1.9.1, simply
referred to as privileged ISA from now on, was partially implemented. This section
describes the parts of the privileged ISA that were implemented. The MMU is described
separately in Section 3.2 . The SCFP-unit is not part of the privileged ISA, but parts of
this section describe modi�cations required in the core to make the SCFP-unit work and
thus refer to it at several points. See Section 3.3 for a description of the SCFP-unit.

Coarse summary of changes to the core in comparison to the start of the project:

• Modi�ed trap-vector layout

• Support for privilege modes (Machine/Supervisor/User)

� New privilege instructions

� New Control-Status-Registers (CSRs)
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• New load/store/fetch exceptions

• New interrupt interface

• Additionally required stall cases

• Various Controller changes for correct trap-handling and context-switches

• Memory Management Unit (described in Section 3.2 )

• Sponge-Based Control-Flow Protection unit in separate pipeline stage (described
in Section 3.3 )

The resulting core was given the name Remus .

In the remainder of this section, the implementation of the privileged ISA and the nec-
essary modi�cations in the Ri5CY core are described. The privileged ISA speci�cation
itself is only described brie�y. Please refer to the RISC-V manuals for details [68, 67].

3.1.1. Remus - Overview

An overview of the Remus core is given in Figure 3.1 . When the SCFP unit is unused
the whole CFI pipeline stage is bypassed, and the core e�ectively only has 4 pipeline
stages again. The forward-muxes from the LSU to the EX-stage have been omitted for
clarity, but are still present like in the original Ri5CY core.

The MMU is not a dedicated pipeline stage, since the TLB lookups are done combina-
torially. It acts like an external component, which uses the memory protocol of the LSU
and fetch unit when an error must be signaled or a hardware page-table walk must be
performed.

The Ri5CY core already commits certain instructions, including all the newly added
instructions for the privileged ISA, in the instruction decode stage (ID-stage). Most
register-register operations are committed in the execute stage (EX-stage). Only load
and store instructions make it all the way to the write-back stage (WB-stage).

The Ri5CY core has been left mostly unmodi�ed as far as instruction extensions are
concerned. Only the hardware loop instructions (encoding space �custom-3�) and mul-
tiply accumulate instructions (encoding space �custom-2�) were replaced with the SCFP
instructions (see Section 3.3.1 ). Please refer to the RISC-V User Manual [68] for the
description of the available custom encoding spaces. The vector-, bit-manipulation, load-
post and store-post extensions are still present.
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Figure 3.1.: Remus pipeline overview.

3.1.2. Additional CSRs and Instructions

The supported privilege modes are Machine, Supervisor and User (with User-Trap sup-
port). The Control-Status-Registers (CSRs) shown in Table 3.1 have been implemented,
mostly following the privileged ISA 1.9.1 [67]. The Remus core can be con�gured to sup-
port only a subset of the privilege modes. Depending on the con�guration, some CSRs
are not available, or tied to constant values. See the privileged ISA for details [67].

Accessing an unimplemented CSR now raises an illegal instruction exception as mandated
by the privileged ISA. The functionality of Debug/Trace CSRs, are not yet described by
the speci�cation and haven't been implemented. Their addresses are currently occupied
by Ri5CY 's custom performance counter CSRs.

The following new instructions have been implemented to conform to the privileged ISA
1.9.1.

• MRET

• SFENCE.VM (Only valid when Supervisor support is con�gured)
see Section 3.2.5 for a description of the inner workings of this instruction.

• SRET (Only valid when Supervisor support is con�gured)

• URET (Only valid when User-Trap support is con�gured)
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address M-Mode CSRs address S-Mode CSRs address User-Traps CSRs

0x300 MSTATUS 0x100 SSTATUS 0x000 USTATUS

0x301 MISA 0x102 SEDELEG 0x004 UIE

0x302 MEDELEG 0x103 SIDELEG 0x005 UTVEC

0x303 MIDELEG 0x104 SIE 0x040 USCRATCH

0x304 MIE 0x105 STVEC 0x041 UEPC

0x305 MTVEC 0x102 SSCRATCH 0x044 UCAUSE

0x340 MSCRATCH 0x102 SEPC 0x043 UBADADDR

0x341 MEPC 0x103 SCAUSE

0x342 MCAUSE 0x104 SBADADDR

0x343 MBADADDR 0x105 SIP

0x344 MIP 0x180 SPTBR

0xF11 MVENDORID

0xF12 MARCHID

0xF13 MIMPID

0xF14 MHARTID

Table 3.1.: Implemented CSRs.

3.1.3. Traps

Trap Delegation

The trap-delegation mechanism has been implemented, so traps can be handled in su-
pervisor mode directly, without �rst having to go through machine mode code.

The MEDELEG CSR can be used to delegate exceptions to lesser privilege modes. Each bit
in MEDELEG corresponds to an exception cause, with the bit-number equal to the cause
number (see Table 3.2 ). Some bits are unused, because not all exception causes are
meaningful in Remus . The �Environment call from H-mode�, �Store address misaligned�,
�Load address misaligned� and �Instruction address misaligned� exceptions are not used
in Remus , and can't be delegated. They are tied to constant zero.

The MIDELEG CSR can be used to delegate interrupts to lesser privilege modes. Each bit
in MIDELEG corresponds to an interrupt cause, with the bit-number equal to the cause
number (see Table 3.3 ). Only the external interrupts are supported, since software
interrupts are not used in any of the adapted software, and timer interrupts are handled
like ordinary external interrupts. Consequently all bits besides the external interrupt
bits are tied to constant zero.

As described in detail in Section 3.1.6 , only the �Machine external interrupt� can be
used in Patronus , because the event-unit doesn't support multiple privilege levels.
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Exc. Nr. Exc. Description

0 Unused ( Instruction address misaligned )
1 Instruction access fault
2 Illegal instruction
3 Breakpoint
4 Unused ( Load address misaligned )
5 Load access fault
6 Unused ( Store address misaligned )
7 Store access fault
8 Environment call from U-mode
9 Environment call from S-mode
10 Unused ( Environment call from H-mode )
11 Environment call from M-mode
≥ 12 Unused

Table 3.2.: Exception causes.

IRQ Nr. IRQ Description

0-3 Unused ( (U|S|H|M)-mode software interrupt )
4-7 Unused ( (U|S|H|M)-mode timer interrupt )
8 User external interrupt
9 Supervisor external interrupt
10 Hypervisor external interrupt
11 Machine external interrupt
≥ 12 Unused

Table 3.3.: Interrupt causes.
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Additional Exceptions

In addition to the exceptions previously implemented in Ri5CY , three additional excep-
tions are needed for the correct operation of the MMU. First the possibility to signal
errors on the data interface, e.g. load- and store-errors, must be provided. Secondly the
possibility to signal errors on the instruction interface, e.g. fetch-errors, is needed.

While a load/store-error immediately results in a load/store-exception, this is not the
case for fetch-errors. Because a control-transfer in the ID-stage or EX-stage might have
changed the control-�ow and the fetch request which caused the error would actually
never have occurred. As a consequence, when a fetch-error is raised, it is stored as
pending and the fetch-unit stops fetching instructions. When the pipeline runs empty
without changing the control-�ow, the stored fetch-error triggers an exception. In case the
control-�ow changes before the pipeline ran empty, meaning the PC to fetch is changed
by the controller, the fetch-error is cleared and will not trigger an exception.

The privileged ISA 1.9.1 speci�es 'cause' values for fetch-/load-/store-exceptions respec-
tively, so they have been adopted as shown in Table 3.2 . The trap-vector is the same
for all three exceptions and the (M|S|U)CAUSE CSR value has to be investigated inside
the trap handler to determine the exception cause.

Trap Vector Table

SCFP needs a di�erent trap-vector layout, namely it requires eight bytes per vector. Four
bytes are needed for the initial patch value and another four bytes for the unconditional
control-transfer to the actual trap handler. Additionally, a new handler for load-, store-
and fetch- exceptions has been introduced.

The adjusted trap-vector table is depicted in Figure 3.2 .

3.1.4. Controller Modi�cations

Traps are usually handled within a higher privilege level. This also means that the entry
into a trap must already be performed with the access rights of the higher privilege
level.

In the previous implementation of the controller this could not be achieved, since the PC
was changed immediately on trap-entry or exit. To solve this, an intermediate state is
needed. First the signal that a trap is entered or exited is given, such that the context
is prepared. In the next cycle, the PC of the fetch-unit is changed to the trap-handler's
entry address, respectively the trap-return target address. This way the fetch is already
performed within the correct context, e.g. the privilege level is correct and virtual address
translation is con�gured accordingly.
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0x00

0xF8

Interrupt Vector 0

Interrupt Vector 1

Reset Vector

Illegal Instr. Vector

Invalid Memory Access

ECALL Instr. Vector

Interrupt Vector 31

0x108

0x118

0x110

0x100

0x08

Figure 3.2.: Layout of the trap vector table.

Additional Stall Cases

SCFP-patch stall. This stall is needed, because it cannot be assumed, that the patch
value that follows some CFI-instructions is always available to the CFI unit when the
instruction is seen in the Decode-stage. In practice this stall is almost never observed.
In Patronus , it can only happen when the instruction-fetch and load-store unit access
the same memory bank simultaneously, and the fetched instruction would be the patch
value.

CSR stalls. Since it is now possible to write to CSRs which have an e�ect on the
current state of the core in a way, that the following instruction will behave di�erently,
an additional stall case is needed when writing to these CSRs. As an example, consider
a write to the MSTATUS CSR, immediately followed by an MRET instruction. E.g. when
writing to the MPP bits in MSTATUS , it is important that this happens before executing
the MRET instruction, which applies its e�ects in the Instruction-Decode stage already.

New Load/Store stalls. It is possible that a load or store in the EX-stage or WB-
stage might fail, e.g. due to accessing an invalid physical address, or because of a page-
fault in case the MMU is active. In such a case it is important that no instructions
which alter the core's state (can't be replayed) are committed before the load/store
instruction. Concretely, the additional instructions that can cause a load/store stall are
SFENCE.VM, MRET/SRET/URET and ECALL. Additionally, illegal-instruction exceptions as
well as interrupts and instruction access faults must be delayed until it is sure, that no
load/store fault is raised.
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E.g. if an ECALL is executed while a load/store is ongoing, the system would trap to the
ecall trap-handler. When a load/store fault is raised after this is done, the system state
is not what would logically make sense in an in-order pipeline, since for example the
current privilege level isn't the one that actually caused the load/store fault. This can
in general not be worked around in software, and consequently a load/store must cause
a stall, until it is sure that it won't raise an error.

Context-Switches

On a context-switch, e.g. due to interrupts or exceptions, the program counter of the
last instruction that has not started to be executed, meaning that it has not yet applied
any of its e�ects, must be stored. For example on a load/store-exception the PC of the
load/store instruction that causes the exception needs to be saved. Hence the PC is now
passed through the whole pipeline together with the instruction to handle such cases.

Interrupts are treated as exceptions in the ID-stage, SCFP-stage or IF-stage in this
regard, depending on where the �rst not yet executed instruction is in the pipeline. This
means, that on an interrupt, either the PC of the ID-stage, the SCFP-stage, or the
IF-stage gets saved.

Note that instructions in the EX-stage or WB-stage can in general not be replayed,
since they might already be in the process of applying its e�ects. More concretely, think
of load/stores again, for which a bus access gets granted and once done so, the transfer
must be completed. So loads/stores are instructions that apply their e�ects over multiple
cycles and must be completed once they started to do so. Aborting such an instruction
would (in the current implementation) leave the system in an inconsistent state of having
an instruction applied partially. As a consequence, interrupts must be delayed until any
instruction that currently applies its e�ects (and doesn't have a safe way to be aborted)
has been committed.

Further note, that the result of an instruction might be an exception. Since exceptions
cannot simply be switched o�, or stored on a context-switch to be handled at a later point,
they must have higher priority than interrupts once triggered. Otherwise, the exception
gets triggered within the interrupt routine, which is already in a di�erent context (the
kernel usually). E�ectively this would allow the triggering of exceptions within another
context than the one that raised it, which is obviously undesired for sanity reasons.

The controller, which is responsible to stall the core, trigger context-switches and change
the control-�ow, has been adapted to take this into account.

3.1.5. Deactivating RVC when CFI active

When the SCFP-unit is active, the compressed decoder, which is located in the instruction
fetch stage is disabled. Otherwise the compressed decoder would decode ciphertext when
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the two least-signi�cant bits are not '11' by chance. In case the RVC extension is desired
the compressed decoder would need to be located after the SCFP unit, either still within
the SCFP-stage, or already in the ID-stage. While there is no conceptional limitation
that would prohibit this, there is no support for RVC instructions within the SCFP post-
processing tools that would allow to test such a modi�cation. Hence RVC instructions
are not supported with an active SCFP-unit, but can still be used when it is inactive.

3.1.6. Interrupt Line Modi�cations

The external-interrupt interface has been adapted to work with a new event-unit, which
can signal an interrupt request on one of 4-di�erent interrupt lines paired with a 5-bit
number to describe the interrupt. Each interrupt line would correspond to one privilege
level and hence hints which is the least-privileged level that might handle the interrupt.
This would allow to con�gure the event-unit, to signal that certain interrupts may be
handled at lower privilege levels.

All four external interrupts, also those allowed to be handled by lesser privilege levels
according to the event unit, are by default handled in Machine-Mode. The MIDELEG
CSR can be used to delegate them directly to Supervisor-Mode if desired.

Since the Event-Unit wasn't �nished in time for the tape-out, a version that signals
interrupts on a single line paired with a 5-bit number was used in the end. The interrupt
request line is wired to the Machine-Mode external interrupt line of the core. Enabling
of interrupts and delegation can thus be done with the MIE bit in the MSTATUS CSR, and
the corresponding MEIE �eld (bit number 11) in the MIDELEG register. Please note that
only all, or no external interrupts can be delegated in hardware.

3.1.7. Deviations from speci�cation

Context-switch. The context-switch itself works slightly di�erent then described in
the privileged ISA 1.9.1.

On trap entry from privilege mode x to mode y:

yPIE = yIE
yIE = 0
yPP = x
p r i v l v l = y

On trap return from mode y to mode x:

p r i v l v l = yPP
yPP = UMODE
yIE = yPIE
yPIE = 1
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Since there is no User-Traps support in Patronus , and either all or no interrupts are
delegated, this is actually functionally equivalent to what is speci�ed in the privileged ISA
1.9.1. A program adhering to the privileged ISA should work without any modi�cations
in this regard.

Performance Counters. The MCYCLE, MINSTRET, MHPMCOUNTERx,
M(U|S|H)COUNTERENx CSRs were not implemented, as the same functionality is already
implemented in the hardware performance counters. They are hardwired to zero.

Interrupt CSRs. The (M|S)IE and (M|S)IP CSRs are hardwired to zero, as the Event-
Unit is responsible for enabling and signaling individual interrupts.

3.2. Memory Management Unit

The implementation of the MMU at a block-diagram level is shown in Figure 3.3 .

What follows is a short description of the sequence how the TLB hit and miss cases are
handled. The load-store-unit (LSU) is taken as an example, but the sequence for the
prefetch interface is the same.

The LSU sets o� a request with a certain virtual address (vaddr). The tuple of (ASID,
vaddr) forms the tag which is compared against all the valid tags in the TLB.

Hit. On a hit, the translation stored in the TLB that contains the physical page number
and the corresponding access-rights is selected. The access-rights are checked against the
current type and privilege of the access. If successful, the MMU forwards the request with
the translated memory address. If a permission error occurs, the access is not forwarded
and an access-error is signaled to the LSU.

Miss. On a miss, the Page-Table Walker becomes active and loads the page table entries
from memory. If an error occurs it is forwarded to the LSU. If the walk succeeds, the new
entry is stored inside the TLB. The entry to replace is determined by the current state
of the Pseudo-LRU tree. After insertion of the new entry, the TLB signals a hit again,
the PTW becomes inactive and the sequence for a hit as described above is exercised.
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3.2.1. Overview

The implemented Memory Management Unit (MMU) is modeled after the sv32-MMU
as described by the privileged ISA 1.9.1 [68]. The primary purpose of the MMU was to
run the RISC-V port of the seL4 operating system. Not all functionality speci�ed in the
privileged ISA has been implemented, since some of the described features are optional,
and others are not required for the correct operation of the seL4 microkernel. Only
features that are actually supported in the RISC-V port of seL4 are also implemented
in hardware. This makes the MMU less feature-rich, but increases the assurance that
the MMU works as speci�ed, since the vital parts could be tested more extensively.
Deviations from the speci�cation are documented in Section 3.2.7 .

The MMU translates 32-bit virtual addresses into 32-bit physical addresses. It does so
combinatorially, meaning that the MMU could be added to the core without requiring
an additional pipeline stage. It can thus be seen as an extension of the load-store unit
(LSU) respectively the instruction-fetch-unit.

The following list provides an overview of the MMU instantiated in Remus .

• 32-bit virtual address to 32-bit physical address translation via 2-level page tables

• 4-entry data TLB

• 4-entry instruction TLB

• 4kB pages and 4MB �Megapages�

• Hardware Page Table Walker

• Pseudo Least Recently Used (PLRU) page replacement

• Support for the Protect User Memory (PUM) �ag

• Support for the Make eXecutable Readable (MXR) �ag

• Support for the Execute-Only pages

• 1-bit ASID value (to ease porting of seL4)

• Combinatorial address translation without extra pipeline stage
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Figure 3.4.: MSTATUS - Machine mode status register (SSTATUS is a restricted view on this
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Figure 3.5.: SPTBR - Supervisor Page Table Base Register

3.2.2. Parameterization

The MMU provides a few very basic possibilities for con�guration at synthesis time via
parameters.

The size of the data TLB as well as the instruction TLB can be parameterized individually
and can be chosen to be any power of two. Note, that since the TLB is implemented
as a fully associative cache with �ip-�ops as storage elements, the area requirement for
larger powers of two might become substantial and other solutions, such as implementing
the MMU in a dedicated pipeline stage and using fast SRAM blocks for storage, should
be evaluated. The Pseudo Least Recently Used (PLRU) page replacement algorithm is
written generically to work with more TLB entries without any modi�cations.

The number of ASID bits is also parameterizable. Since the RISC-V port of seL4 requires
only a 1-bit ASID, this is what has been chosen as the default and is also instantiated
in Patronus . Using more ASID bits will add to the time required for the TLB lookup,
since more bits need to be checked before a TLB-hit can be signaled. Similarly, since
every TLB entry has an ASID, the TLB size inevitably increases.

3.2.3. Con�guration via CSRs

The MSTATUS and SPTBR CSRs contain multiple bits relevant for MMU con�guration as
described in the privileged ISA 1.9.1 and shown in Figure 3.4 and Figure 3.5 . In MSTATUS

the �elds which are actually supported are shown in bold, while all �elds in brackets are
implemented as constant-zero values.

A short listing and description of the CSRs' contents is given below. Refer to the privi-
leged ISA draft 1.9.1 for more details.
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MSTATUS:

• VM determines the virtual memory mode. If VM[3] is '1' the MMU is active in
S-mode and U-mode.

• Protect User Memory (PUM)
When the PUM bit in the MSTATUS CSR is set, all accesses to a page marked ac-
cessible in U-mode will trigger an exception when translation is performed with
supervisor privilege level. This is e�ectively a kernel-debugging and, to some ex-
tend, a security feature. For instance, in case the kernel would start executing user
code with kernel privilege level, a fetch-error exception will be raised if the PUM bit
is set.

• Make eXecutable Readable (MXR)
By default, loads and stores from/to execute-only pages (i.e. pages that can only
be accessed via the instruction interface) cause a load/store exception respectively.
When the MXR �ag is set, loads from execute-only pages are allowed, but stores
are still forbidden. In case the �ag gets reset although there are still execute-only
pages in the data-TLB, the next load from the execute-only page will trigger a
load-exception again.

SPTBR:

• Physical Page Number (PPN) are the upper 20-bits of the physical address of the
process' page directory.

• Address Space IDenti�er (ASID)
The current ASID gets stored alongside a valid translation whenever a TLB entry
is updated. It is only a 1-bit value and was implemented to ease the porting of
seL4, not to provide improved performance.

Note: the MPRV bit in MSTATUS has not been implemented. See Section 3.2.7 for details.

3.2.4. Interfaces to Core and Memory.

The MMU has been designed to use the memory protocol of the Ri5CY core [62] and
replicated in Figure 3.6 for the sake of completeness. When inactive, all signals just pass
through the MMU. No translation or access-right checks are performed and the hardware
page-table walker (HW-PTW) is inactive. The load-store unit (LSU) and instruction-
fetch unit e�ectively have direct access as if the MMU is non-existent.
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Figure 3.6.: Four memory accesses of the Ri5CY core: A single transfer with immediate
bus response, a single transfer with delayed grant and delayed valid responses
and a back-to-back transfer in which the second access causes an error.

Description of operation. When the MMU is set active by writing to the VM �eld
in the MSTATUS CSR (see Figure 3.4 ), it assumes control over the communication with
memory when the current privilege level is lower than M-mode.

The 'request' signals from the core are no longer directly connected to the bus. The
request is only forwarded to the bus when a valid translation is found, and the access
conforms to the speci�ed access-rights for the page, In case no valid entry could be found
the HW-PTW is started, see Section 3.2.6 for a description.

In case of the instruction-interface, the 'grant', 'valid' and 'rdata' signals are always
forwarded to the core. The MMU is simply responsible for making sure that the requested
virtual address has a valid translation and that the access-type doesn't violate the page's
access-rights.

In case of the data-interface, the 'grant', 'valid' and 'rdata' signals are only forwarded
when the HW-PTW is inactive. The MMU is thus also responsible for arbitrating the
access to the data bus between the LSU and the HW-PTW. The HW-PTW always has
priority, but outstanding transfers must be completed before it can take over.

Access-right errors. In case a valid translation is found in the TLB, but the access-
type violates the speci�ed access-rights (e.g. a write to a read-only page), the MMU
doesn't forward the request to the bus. Since the instruction-fetch and load-store-unit
expect errors to always be signaled together with a 'valid' signal, which must be preceded
with a 'grant', the MMU �rst signals the core that the request would've been granted. In
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Figure 3.7.: Typical memory accesses with the last one causing an MMU access-right
error. The actual bus signal is shown in dashed lines for the erroneous
access.

the following cycle it then asserts the core's 'valid' signal together with the 'error' signal
to complete the protocol with the core.

Figure 3.7 shows a few typical memory accesses with the last access causing an error.
The error cause could be either a bus error, due to a non-existent physical address, or
an MMU translation error, due to an access-right violation, in this case. Both cases look
identical from the viewpoint of the core. In case of an access-right violation, the last
request will not be visible on the actual data bus, but only to the MMU, which adheres
to the protocol to signal an error. The actual signals on the data bus are shown in dashed
lines for the last access. For the other accesses it is identical with the core's view.

Errors signaled by the MMU. Errors that can lead to exceptions are triggered in
the following cases.

• The access doesn't have the appropriate access-rights according to the access-right
bits of a valid translation.

• An invalid PTE is encountered during a page-table walk, hence no valid translation
exists.

• The bus signals an error condition. This can happen already during the page-table
walk, as well as when performing the translated access.

A data-access-error always leads to an exception. The type of exception depends on the
type of access that triggered it. In case of a load-access, a load-exception is triggered. In
case of a store-access, a store-exception is triggered. These are the exceptions standard-
ized by the RISC-V privileged ISA. See Section 3.1.3 for details on how these exceptions
are handled.

An instruction error inside the MMU is equivalent to a fetch-error of the instruction
fetch unit. The fetch-error gets only handled when the pipeline ran empty, since it is
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possible that an instruction in the decode or execute stage actually changed the PC and
the fetch-error would've never been triggered. Likewise, interrupts and load/store errors
have higher priority than fetch-errors.

3.2.5. Data and Instruction TLB

Choice of the TLB sizes. The size of the data- and instruction-TLB make up for
most of the area of the MMU 1.

Usually systems with MMU tend to be a lot bigger and have external memory with long
access times. This makes larger TLBs mandatory, since misses are very costly. E.g. even
the small ARM Cortex-A5 MPCore has a uni�ed main TLB with 128 entries [8].

However, in our case we only have internal memory and the latency for a hardware page-
table walk takes only a few cycles (see Section 3.2.6 ). Additionally what is an appropriate
TLB size is also heavily dependent on the workload, and the general-purpose benchmarks
might not be representative for the intended use cases. Since the point of the MMU is
to be able to run seL4, it was thus conceived reasonable to use the seL4-testsuite as
benchmark.

The hit-rate for di�erent sizes of data- and instruction TLBs was evaluated on the Virtual
Platform (Section 3.2.9 ) for di�erent sizes of TLBs. For a instruction TLB size of 16
entries a 99.6% hit-rate is achieved. Almost no replacements happened in this case,
only the �ushes during context-switches cause the hit-rate to be smaller than one. The
hit-rate with 4 entries it is still as high as 98.6% and drops slightly to 98.1% for two
entries. It was decided, that basically quadrupling the area of the MMU isn't worth
this small increase in hit-rate, especially since memory accesses are not very expensive
in the �rst place. Additionally no signi�cant di�erence in hit-rate could be observed for
an instantiation that uses the LRU instead of a Pseudo-LRU replacement algorithm.

Hence a 4-entry TLB with a Pseudo-LRU replacement algorithm has been chosen. The
evaluation for the data-TLB shows similar results, and the same con�guration (4-entries,
Pseudo-LRU) has been chosen. As an additional con�rmation that this choice is sane,
the RISC-V Rocket Core also has 4-entries per TLB in its smallest con�guration (�Tiny-
Con�g�) [64].

Implementation of the TLB. The data and instruction TLB each have 4 entries.
They act as fully associative caches with a Pseudo Least Recently Used (PLRU) page
replacement algorithm. A single data- and instruction-TLB entry is shown in Fig-
ure 3.8 and Figure 3.9 respectively.

1Synthesis results for MMU with 4-entry data/instruction-TLB: 3.8kGE MMU, including 1.5kGE
instruction-TLB and 1.6kGE data-TLB.

32



3. Design Implementation

ppnW XUVvpnasid

2011120 11

Figure 3.8.: Data-TLB entry
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Figure 3.9.: Instruction-TLB entry

When a translation could not be found, a Pseudo Least Recently Used (PLRU) replace-
ment algorithm is used to determine which entry in a TLB should be replaced next.
Every access to the data- or instruction-TLB updates the respective PLRU tree, whose
state determines the next candidate for replacement.

Flushing the TLBs

The TLBs can be �ushed by means of the SFENCE.VM instruction, with �ner-grained
control given by the current ASID bits of the SPTBR.

Two di�erent kinds of �ushes are possible

• Full �ush - E�ectively �ushing the whole TLB

• ASID �ush - All entries that correspond to the ASID stored in the SPTBR at the time
of executing the �ush instruction are �ushed. Note that the 1-bit ASID in Remus
has been implemented to ease the porting of seL4 from the ARM version that has
a special handling of ASIDs. It explicitly is not intended to increase performance.
During normal execution the ASID should stay at either zero or one. Switching
the ASID between processes is unlikely to have a signi�cant performance gain.

In the current implementation The TLB ignores the virtual address that can optionally
be speci�ed with the SFENCE.VM instructions. Hence a TLB-�ush acts on all mappings
of the current ASID in this case. See Section 3.2.7 for details.

The actual �ush is done by simply invalidating the 'valid' bits of the a�ected TLB
entries.

It is safe to call SFENCE.VM directly after changing the ASID bits in the SPTBR CSR, due
to the CSR-write-stall (see Section 3.1.4 ).

The recommended sequence for �ushing the TLB in Patronus is shown in Listing 3.1 .
Note that the shown sequence will invalidate all entries of the current ASID. Invalidating
all entries of a process with another ASID requires changing the ASID bits in the SPTBR
�rst. This is a limitation of the current speci�cation of the privileged ISA. Note that if
the �ush is done while the MMU is active, the translation for the page from which the
code is executed needs to be re-fetched by means of a hardware page-table walk.
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As a consequence, when �ushing all entries for a user-process with a certain ASID, the
TLB will contain a translation for a kernel page with a user ASID. Since the 'user'-bit
in the TLB entry is not set, this is not a security issue, but the user-process would crash
when trying to access the virtual memory address that the kernel used. In operating
systems in which some of the virtual memory is reserved for the kernel (e.g. everything
>3GB is reserved for the kernel), such as in seL4, this is not a problem.

The only way to circumvent this limitation if accessing the full address space from user
space should be allowed, is, to do the TLB �ush, and the context-switch back to user, in
M-mode software and provide an SBI call for it.

stat ic i n l i n e void f l u s h ( ) {
asm volat i le (

"SFENCE.VM x0 ; "
"NOP; "
"NOP; "
"NOP; "
"NOP; "
) ;

}

Listing 3.1: Recommended procedure for a TLB �ush

Important: Due to a bug discovered only after tape-out, it is important to not change the
fetch address immediately after an SFENCE.VM instruction, which could happen in rare
cases when the prefetch bu�er already contains a jump when SFENCE.VM is executed.
The obvious workaround is to always insert NOPs, or other instructions not in�uencing
the PC, after the SFENCE.VM instruction. This problem was �xed after tape-out. See
Section 3.2.8 for details.

3.2.6. Hardware Page Table Walker

In the following paragraphs, the process of walking through the page-table entries (PTE)
to �nd the correct translation is termed �data page-table walk� (data-PTW) when the
walk is triggered by a data-TLB miss. Likewise, an �instruction page-table walk� (instruction-
PTW) is used when the walk is triggered by a miss in the instruction-TLB.

Description of the Page Table Walk.

Figure 3.10 shows the memory accesses, by means of the handshake signals, for a suc-
cessful page-table walk for a 4kB page translation, and for a page-fault.

The HW-PTW is started when an TLB miss is signaled. In case of an instruction-TLB
miss, any ongoing transfer on the data-memory side needs to be completed before the
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data-TLB miss

PTW-req

PTW-gnt
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LSU-error

Figure 3.10.: Memory accesses of a successful page-table walk for a 4kB page translation
and a failed page-table walk.

HW-PTW can take over. In case a data-TLB and an instruction-TLB miss happen
concurrently, the instruction-TLB miss has priority, hence an instruction-PTW is done
�rst. After successful completion the data-PTW will be started.

The HW-PTW performs a sequence of data-memory accesses in order to �nd the physical
address corresponding to the virtual address that caused the TLB miss. The physical
page number (PPN) of the �rst-level page-table (aka page directory), is taken from the
SPTBR CSR (see Figure 3.5 ). The HW-PTW then repeatedly loads the PTE, checks
the access-rights bits, and calculates the address of the PTE in the next level page-table
until a leaf PTE is reached. If an error is encountered, the HW-PTW is stopped and an
error is propagated to the LSU or instruction-fetch-unit respectively. The translation is
not stored in case of an error during the page table walk. An error during translation
occurs when:

• The bus signals an error (e.g. because the physical address is non-existent).

• The valid bit in the PTE is not set.

• The 'writeable' �ag is set without the 'readable' �ag, since write-only pages are
illegal according to the RISC-V privileged ISA 1.9.1 .

The exact process of the lookup is described in more detail in the privileged ISA [67] and
not replicated here.

Timing. As is already depicted in Figure 3.10 , starting the PTW is done when a TLB-
miss is signaled at the positive clock edge, hence it takes 1 cycle for the PTW to take
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over. In case there is no congestion on the memory side, each page-table lookup takes two
cycles, back-to-back memory transfers are not supported. Hence the total lookup takes
3 cycles for a 4MB page and 5 cycles for a 4kB page translation. On the 4th respectively
the 6th cycle after the request, the new translation is present in the TLB, and the grant
is signaled to the LSU or fetch-unit.

Additional Checks on leaf-PTEs. The leaf-PTEs have additional checks that allow
to save one bit per entry in each of the TLBs.

Any valid entry in the data-TLB must translate to a readable page, since no write-only
pages are allowed according to the RISC-V privileged ISA 1.9.1. By checking that the
page is readable, before the translation is stored in the data-TLB, it is possible to omit
the 'readable'-bit of a TLB entry. Due to the implemented MXR �ag a separate execute-
only bit in the TLB entry is needed, that speci�es whether the page was execute-only
when its translation was stored.

Any valid entry in the instruction-TLB must translate to an executable page. Hence the
'executable' �ag in the instruction-TLB can be omitted, when it is checked before the
translation is stored in the instruction-TLB.

Concurrent accesses to data and instruction memory. While the data-memory
interface is used by the HW-PTW, the instruction-interface can still be used by the
fetch-unit. Translation of instruction-fetches are possible concurrently with loads/stores
on the data-interface. Hence the MMU would work well with an out-of-order pipeline in
this regard. Since the core has an in-order pipeline, only the instruction-prefetch-bu�er
is �lled while a data-PTW is in progress.

3.2.7. Deviations from the privileged ISA draft 1.9.1

The sv32 MMU described by the RISC-V privileged ISA 1.9.1 di�ers slightly in a few
points from the implemented MMU.

Physical address size. The privileged ISA speci�es a physical address of 34 bits. The
virtual address is 32-bit, hence each individual program can only address 32-bit. The 34-
bit physical address is intended for 32-bit systems that provide more than 4GiB physical
address space, up to 16GiB to be precise. Since Patronus itself has a mere 640kiB of
SRAM, and all peripheral memory addresses can easily be mapped into a 4GiB address
space, it consequently also has a 32-bit address bus. The two most signi�cant bits have
hence been dropped in the design already. Note that extending the current version to
support 34-bit is as simple as expanding the page directory base address inside the SPTBR
CSR from 20 to 22-bit and adjusting a few hard-coded bit-widths inside the MMU to use
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the full 12-bit of PPN[1] in the PTE instead of just 10-bit. Also note, that the RISC-V
seL4 version only supports a 32-bit physical address space at the moment.

Flush dependent on virtual addresses. Additionally to the described techniques to
�ush the TLBs, the privileged ISA also describes the optional implementation of �ushing
individual TLB entries by means of a virtual address. When the ASID-bits of the SPTBR
CSR are non-zero, the SFENCE.VM instruction may specify a register which contains the
virtual address of the page to be �ushed. Since this mechanism is optional and not
implemented in the RISC-V port of seL4, this has not been implemented in hardware.
Adding this functionality is trivial and the needed steps are already documented in the
RTL code of the TLBs.

MPRV �ag. This �ag is located in the MSTATUS register and is described by the priv-
ileged ISA as allowing load- and store-operations to be protected by physical memory
protection (PMP) mechanisms as if the current privilege level is set to MPP . Additionally
it also allows to do translations as if the current privilege level is set to MPP . In applica-
tions it is intended to be only used in small parts of machine-mode code for e.g. address
translation in software. Patronus doesn't have any physical memory protection, making
this �ag e�ectively useless for this use-case. The other use-case of using the MMU trans-
lation mechanism from within M-mode software is not used in seL4 and is an inversion
of concerns. M-mode is not required to handle the virtual memory for lesser privilege
modes, hence there is no use-case for this in our target applications. Consequently MPRV

is unused and the system behaves like MPRV is �xed to zero.

Accessed and Dirty bits. Since we don't support swapping, Accessed and Dirty bits
are ignored by the hardware at the moment. The rationale behind this is simplicity
and a small increase in performance, since no memory accesses are wasted to write the
Accessed and/or Dirty bits when �rst writing or reading from a page. It is still possible to
implement all functionality needed for swapping in software, by means of writing invalid
page entries and setting Accessed and Dirty bits in the trap handler, as it is done in
the ARM version of Linux, for example. Hence not implementing the Accessed/Dirty
write-back in hardware simply lowers performance in case the system actually starts to
swap pages often, which should be avoided in embedded systems in the �rst place.

Global bits. The TLB doesn't check whether the Global �ag of a TLB entry is set
or not when �ushing an entry with a non-zero ASID. Since Global �ags are a potential
source of errors the RISC-V seL4 port doesn't use them currently. Consequently the
hardware also doesn't support it.
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3.2.8. Known Problems

The listed problems were �xed immediately after the tape-out of Patronus , but the
Remus core in Patronus is a�ected.

It is possible that a change in the program counter while performing a page-table walk
to get the translation for an instruction page, causes a wrong translation to be stored.
The fetch address was considered immutable after the request has been set o� by the
fetch stage. This is not the case when e.g. a control-transfer instruction is still present
in the prefetch-bu�er, as it can propagate through the pipeline while the PTW is still in
progress. There are three scenarios where this can cause problems.

• When �ushing the TLB, since a PTW is performed directly afterwards in case the
�ush is done in S-mode.

• When the program runs into another page sequentially (not jumping into the page),
this triggers an instruction-PTW and there was a control-transfer directly at the
previous page border.

• An interrupt is triggered during an instruction-PTW

This �rst case can be prevented by either doing TLB �ushes only in M-mode, or inserting
four NOPs after the �ush, so that the prefetch-bu�er won't contain control-transfer
instructions. The others are rare cases, but can't really be prevented in a reasonable
manner.

3.2.9. Virtual Platform Implementation

A functional model of the MMU was �rst implemented on the virtual platform.

The version of the virtual platform is slightly di�erent in functionality from the RTL
implementation. Namely it doesn't support the Protect User Memory (PUM ) and Make
eXecutable Readable (MXR ) �ags. Furthermore, the full 10 ASID bits are theoretically
available in the virtual component as opposed to the 1-bit ASID implemented in the RTL
code. Cropping the ASID to 1-bit is done outside the MMU, by means of not allowing
to write the all ASID bits to the SPTBR CSR. A �ush on speci�c virtual addresses is
also possible in contrast to the RTL implementation, which can only �ush all entries
corresponding to a speci�c ASID (see Section 3.2.5 ).

The virtual component provides several options for customization by means of constants
in the class implementation.

• It is possible to change the replacement algorithm. Least Recently Used (LRU)
and Pseudo-LRU were implemented, in order to compare their e�ectiveness.

• It is furthermore possible to adjust the TLB associativity and number of entries.
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Figure 3.11.: The datapath of the SCFP pipeline stage.

• The interpretation of the virtual page number can be changed to allow more than
two levels of page-tables. The number of o�set bits directly used for physical
address translation and number of page-table o�set bits are adjustable. This feature
is not fully �eshed out, as only the sv32 version is needed, but serves as a starting
point in case e.g. a sv39 MMU should be implemented.

3.3. Sponge-Based Control-Flow Protection

An overview of the implementation is given in Figure 3.11 .

3.3.1. Integration into RISC-V ISA

In order to patch the sponge-state to a known value, to make runtime decryption without
immense code duplication possible, additional CFI instructions are needed. As elaborated
in Chapter 2, the patching of the state must be done at the edges of the control-�ow graph
in the used APE construction, and is desirable to do in the Spongewrap construction in
order to not leak control-�ow information unnecessarily. Therefore, the control-transfer
instructions of the RV32I ISA would now need to be modi�ed, such that they expect an
additional patch value after the instruction. This patch value is not encrypted itself (due
to the obvious chicken-egg problem), but can be considered as Associated Data, whose
manipulation results in an invalid state, consequently leading to random execution. In the
APE-like mode of operation, the patch needs to be absorbed into the sponge's capacity
(the rate is solely given by the ciphertext). The absorption of Associated Data into the
sponge's capacity was shown to be secure [56, 49].
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BPxx rs1, rs2, L1

patch
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j L2
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j L2 (or fall through)

L2:

L0: L1:

Figure 3.12.: Concept of conditional jumps (branches) in the SCFP implementation.

Since the implementation is experimental, with the purpose of evaluating the e�cacy of
the SCFP-concept, it is desirable to minimize the impact on the core and not give new
meanings to already existing instructions. The custom-2 and custom-3 encoding spaces
have been chosen in order to implement instructions that could not be �tted into RV32I
as brown�eld extensions. In the following, the needed ISA extensions and their behavior
is described.

Conditional Jumps

Conditional jumps in the RISC-V ISA are done by means of the branch instructions BEQ,
BNE, BGE, BLT and their unsigned complements BGEU, BLTU. There is no additional compare
instruction and status register like in e.g. the x86 or ARM instruction sets [30, 9]. The
backwards merge point is directly at the branch instruction (see Figure 3.12 ). Since
a branch can only diverge into exactly two paths only one patch value is needed. In
principle it would be possible to have a patch value for both paths, but this would just
be unnecessary overhead if one of the paths can be speci�ed as the default.

In addition to the control-�ow in Figure 3.12 , the sequence of permutations is illustrated
in Figure 3.13 .

In theory it is possible to place the patch value at either the target address or adjacent
to the branch instruction at the next address. Placing it at the target has a small
performance bene�t when the then branch is the one that is likely to get taken, since
the patch value doesn't need to be skipped. An argument against patches at the jump
target address, is, that it complicates the control-�ow when e.g. the target jump address
is reachable by another path. This is the case e.g. for the entry point of a loop, where a
jump into the loop would be required, in order to not execute the patch value.

In (optimized) loops, where the branch is the last instruction in the loop, it is often
better to have the patch value directly next to the branch instruction. Most of the time
the branch condition is true and the branch gets taken (also see the amount of taken
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BPxx

Patch
(if branch taken)

Figure 3.13.: Sequence of permutations for a conditional jump (branch) in the SCFP
implementation.
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Figure 3.14.: Encoding of conditional jumps in the SCFP implementation.

branches in the detailed performance evaluation in Chapter A). In that case, a patch
after the branch is desirable as the patch value has already been fetched and is available
in a previous pipeline stage when the branch instruction is committed.

In order to not change the semantic of the base ISA, new instructions corresponding to
the ones in the base ISA need to be added. However, there is not enough space inside
a 25-bit RISC-V encoding space to specify both variants (patch at target, patch follows
instruction) of the instruction. Spending another encoding space just for the less common
case that a patch at the target would be the more sensible option from a performance
point of view, would be excessive, especially since no toolchain exists that supports this
at the moment. Hence the patch is always placed directly after the branch instruction.

The encoding of the instructions is shown in Figure 3.14 . Conditional SCFP-jumps use
the custom-2 encoding space and mirror the encoding space of usual conditional jumps.

In contrast to (some versions of) the openRISC ISA and the MIPS architecture, RISC-V
doesn't have delay slots. However for SCFP this delay slot could be used meaningfully,
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since it can contain the patch value. Hence when SCFP is implemented for other ISAs,
the relative performance impact for conditional jumps is going to be less than that for
RISC-V.

BPDEQ The BPDEQ instruction doesn't have a pendant in the BRANCH encoding
space. It is used to link the branch decision to the data being processed, as was described
in Chapter 2.

Because the branch instruction actually takes two operands, both possible results of the
software comparison are stored into registers. To build on the example from Chapter 2,
the software comparison outputs 0xAAAA5555 to both registers in case the branch should
be taken. When the result of the software comparison is, to not take the branch, it
outputs 0x5555AAAA to the �rst and 0xAAAA5555 to the second register. The BPDEQ

instruction then operates on those two registers. The sponge-state is patched with the
value in the �rst register, regardless of the branch decision.

The instruction's e�ects are depicted below in algorithmic form. SPC is the sponge
capacity. It is patched with the �rst register operand rs1. Then the branch is either
taken, in which case another patch with the appended patch value is needed to adjust
the state, or not.

SPC ← SPC ⊕ rs1
if rs1 = rs2 then

SPC ← SPC ⊕ patch
PC ← PC + o�set

else
PC ← PC + 4

end

The patching of the state when taking the branch is done concurrently with the patching
of rs1.

Due to the overhead imposed by the software comparison, a trade-o� between security
and performance might be required for some applications. Especially in the not security-
critical parts of the software, it might be required to not use this security feature due to
performance reasons. As a consequence, both the ordinary protected branch instructions
and this new BPDEQ instruction are included in the ISA. This will also allow to measure
performance and e�cacy of the BPDEQ instruction in comparison with the other SCFP
branch instructions.

Direct Function Calls

Function calls are either implemented as direct jumps (JAL) or indirect jumps in the
RISC-V ISA. The return from a function is done by an indirect jump (JALR) with the
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Figure 3.15.: Concept of direct function calls in the SCFP implementation.
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Figure 3.16.: Encoding of JALRP in the SCFP implementation.

return address as the target and the zero register as storage place for this jumps re-
turn address, e�ectively discarding it. The control �ow of a function call in the SCFP
implementation is depicted in Figure 3.15 .

In the simple case of a direct function call, it can be seen that no patching is required when
entering the function, since there is no merge point in backwards direction. Consequently
a standard JAL instruction is used. However, when returning from the function, it is
obvious that patching of the sponge state is needed, since it can potentially return to
multiple di�erent locations. Since the list of possible return targets can be huge and have
variable length, it is easier to locate the patch that needs to be applied at the return target
location instead of appending it to the return instruction. The corresponding instruction
is JALRP which can be implemented as a brown�eld extension within the JALR encoding
space. The encoding of the JALRP instruction is shown in Figure 3.16 .

When a JALRP instruction is encountered, the instruction at the jump target address is
interpreted as a patch value that gets absorbed into the sponge capacity to adjust the
state to the value obtained during encryption. However, this would have a substantial
problem. An attacker that knows multiple possible return points of a function could try
to manipulate the control �ow by returning to one of the other possible return points
instead of the one that actually called the function.

This scenario might be especially bothersome when using external memory, where an
attacker can manipulate the fetch address easily. In order to make this attack harder,
an additional permutation with the jump target address is done, as is depicted in Fig-
ure 3.17 . Since this address is an internal 32-bit value, it is assumed that it is hard
for the attacker to actually control it well enough to change it to the address of another
possible return point.
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jalrp

Figure 3.17.: Sequence of permutations for a return from a directly called function in the
SCFP implementation.

Indirect Function Calls

In addition to direct function calls, indirect function calls need to be considered as well.
Indirect function calls are done via JALR instructions in RISC-V, just like a function
return. Unlike direct function calls however, the called function is in general not known,
and identi�cation of all the possibly callable functions is hard.

One way to handle these cases is, to patch the state capacity to a speci�c value on the
indirect function call. This requires an additional patch value for such indirect calls,
which are placed directly after the jump instruction. Additionally a patch value at
the function entry is required in order to adjust the state to the one obtained during
encryption. Just like it was the case with the return from a directly called function, an
attacker could easily use indirect functions as gadgets this way, since all the functions
that are indirectly callable would have the same intermediate state. Like before this can
be solved, by performing an additional permutation with the jump target address.

There's also a di�erence between a return from a directly called function for indirectly
called function. It follows the same principle as indirect function calls. The state gets
patched to a �xed value before it is permuted with the return target address and patched
again with the patch at the target address.

The full sequence for a indirect function call is depicted in Figure 3.18 and in Fig-
ure 3.19 .

There are cases when a direct function call could also be performed by a JALR instruction,
e.g. because the callee is located in a memory location far away from the caller. So in
essence the JALRP instruction must serve two purposes. A mechanism is needed to tell
apart direct and indirect function calls. This can be achieved without introducing an
extra instruction by simply utilizing an unused bit in the JALR instruction. The LSB of
immediate value of the JALR instruction is also the LSB of the target address in order to
avoid an additional instruction format [68]. Instructions cannot be located on a 1-byte
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Figure 3.18.: Concept of indirect function calls in the SCFP implementation.

jalrp

Figure 3.19.: Sequence of permutations for indirect calls/returns in the SCFP implemen-
tation.
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Figure 3.20.: Encoding of JALP in the SCFP implementation.

boundary, so this bit is unused in practice and is envisioned by the RISC-V designers
to be a place to give implementation speci�c hints for e.g. the branch predictor. In the
context of SCFP, it is used to tell apart direct and indirect function calls and thus we
can use a single JALRP instruction to handle both direct and indirect function calls.

A nice property of doing it like this is, that in case it turns out to be possible to identify all
the indirectly callable functions in a program, the indirect function calls can be handled
just like the returns from directly called functions. It turns out, that no adjustments in
hardware would be needed for this, and is simply a matter of how smart the toolchain
is.

Unconditional Jump

An additional Jump-And-Link-Protected (JALP) instruction is added in order to make the
CFI instructions mirror the control-transfer instructions from the base ISA completely.
Since direct function calls don't require patching when calling, they also don't require a
CFI instruction for the call itself. So in contrast to what the name implies it is not a drop-
in replacement for all JAL instructions used previously. It is used when unconditional
jumps need patching. While a branch instruction with an always-true condition like BEQ
x0,x0,offset is semantically the same, the range of the JALP instruction is bigger. Hence
it is used for unconditional jumps to far-away targets that might require patching. The
patch value is located after the JALP instruction, just like protected branch instructions.

This instruction must be implemented in a dedicated encoding space. The custom-3
encoding space has been chosen for it. The encoding is shown in Figure 3.20

Additional CSRs

The SCFP implementation allows to have di�erent keys for di�erent privilege levels.
This means, that it is possible to have user programs encrypted with a di�erent key
than the underlying kernel. Similarly the kernel and �rmware don't need to share a key.
Table 3.4 gives an overview of the additionally required CSRs.

In a 64-bit RISC-V implementation the CSRs would have a length of 64-bit, in which case
the *KEY0H and *KEY1H CSRs are not required. The USPONGE register is only available
when U-mode traps are supported. Likewise the key CSRs are only implemented when
the respective privilege mode is implemented.

46



3. Design Implementation

CSR address reset value access description

MSPONGE 0x350 0 RW Interrupted task's sponge-state (M-mode trap)
MCFICTRL 0x351 0 RW SCFP con�guration
MKEY0 0x352 0 RW Bits 31..0 of M-mode key-part k0
MKEY1 0x353 0 RW Bits 31..0 of M-mode key-part k1
MKEY0H 0x362 0 RW Bits 63..32 of M-mode key-part k0
MKEY1H 0x363 0 RW Bits 63..32 of M-mode key-part k1
SSPONGE 0x150 0 RW Interrupted task's sponge-state (S-mode trap)
SKEY0 0x152 0 RW Bits 31..0 of key-part k0
SKEY1 0x153 0 RW Bits 31..0 of key-part k1
SKEY0H 0x162 0 RW Bits 63..32 of key-part k0
SKEY1H 0x163 0 RW Bits 63..32 of key-part k1
USPONGE 0x050 0 RW Interrupted task's sponge-state (U-mode trap)
UKEY0 0x052 0 RW Bits 31..0 of key-part k0
UKEY1 0x053 0 RW Bits 31..0 of key-part k1
UKEY0H 0x062 0 RW Bits 63..32 of key-part k0
UKEY1H 0x063 0 RW Bits 63..32 of key-part k1

Table 3.4.: Additional CSRs for SCFP.

01

ET

31

MCFICTRL0

131

Figure 3.21.: SCFP control register

Con�guration. The content of the MCFICTRL is only accessible from within M-mode.
The CSR is shown in Figure 3.21 .

The Encrypt Traps (ET) �eld in the CFICTRL register controls whether the SCFP unit
remains active when a trap is entered, as described in Section 3.3.2 .

ET = 0 . . . Drop to plain execution on trap-entry. (default)
ET = 1 . . . SCFP-unit not switched o� at trap-entry.

Keys. The CSR names correspond to the two parts of the key used in the Prince
block cipher, called k0 and k1 with the full key k = k0||k1. Hence the full key is given as
k = KEY0H||KEY0||KEY1H||KEY1 for 32-bit implementations (as in the case of Remus
) and k = KEY0||KEY1 in case of a (hypothetical) 64-bit implementation. The values
of the key CSRs are used directly without further bu�ering as soon as the corresponding
privilege mode becomes active. Hence the implementation doesn't allow to easily change
keys from within the running privilege mode and consequently M-mode keys can only be
changed when the SCFP-unit is inactive.
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Sponge Backup. The (M|S|U)SPONGE CSRs are used to save the sponge-state, which
corresponds to its capacity in the employed APE-like mode of operation, on trap-entry.
On execution of a (M|S|U)RET instruction, the corresponding (M|S|U)SPONGE CSR is
applied as a patch to the current sponge state (which should, by design, be zero on trap
return) in order to restore the state and continue with the execution of the interrupted
task. By saving the SPONGE and KEY CSRs to (adequately protected) memory, it is
possible to return to di�erent U-mode programs and also to di�erent S-mode programs,
although the later would likely be used less frequently. See Section 3.3.2 for details on
the procedure.

3.3.2. Traps

Trap Entry. A trap entry can be seen as a restart of the program and is illustrated in
Figure 3.22 . The sponge-state is saved into a CSR and set to zero. The further procedure
for trap-entry is similar to the one for the return from a directly called function. It can
be seen as a special case with a patch value of zero for the patch value that would follow a
JALRP instruction. First a permutation with the trap-entry address is performed, before
being patched with the trap-entry patch value, which is needed to get to the initial state
needed for trap decryption.

The sponge-state prior to the permutation with the trap-entry address is saved in the
(M|S|U)SPONGE CSR, dependent on which privilege level the trap handler executes in. If
the trap is not delegated by means of the delegation CSRs [67], but by software, it should
be ensured that the higher privilege mode writes the xSPONGE CSR of the lesser privilege
mode �x� just like it would write e.g. the corresponding xCAUSE or xEPC CSRs.

Because the initial state required for decryption is predetermined by the backwards-
encryption of the APE-like mode, an initial patch value on trap entry is required. In
the case of Remus , a trap-vector table, which contains the jumps to the actual trap-
handlers, is used. Since each vector originally is only 4-byte wide, the patch value doesn't
have space and the width of one table entry needed to be extended to 8-byte. The �rst
4-byte are the patch value, the second 4-byte the (encrypted) jump. This changes the
layout of the trap-vector table as shown in Figure 3.2 .

Trap Return. The sponge-state is zero at the point of return by design (if no fault
occurred) and can thus be patched with the previously saved sponge-state. This is simply
achieved by starting the APE-like encryption with a zero state. A possible advantage is,
that any manipulation inside the trap handler will cause random execution, even when
the trap-handler is left by chance due to a (M|S|U)RET instruction.

On a trap-return by means of an (M|S|U)RET instruction the (M|S|U)SPONGE CSR
gets patched to the current state (which should be zero by design): SPC ← SPC ⊕
xSPONGE. The KEY CSRs are not handled specially as the active privilege level is used
to select which key gets used.
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Figure 3.22.: Concept of handling traps in the SCFP implementation.

Unencrypted Traps. When the ET bit in the CFICTRL CSR is set, the SCFP unit
enters a special state in which no encryption is performed. The SCFP pipeline stage is
e�ectively inactive and the core behaves like a 4-stage instead of a 5-stage pipeline again.
This mechanism has been implemented since at the time of its �rst implementation, traps
could not be properly encrypted by the used toolchain. It has been kept, since it has
been conceived as potentially useful for the purpose of evaluation of the SCFP scheme.

The SCFP-unit becomes active again when a (M|S|U)RET instruction is executed. It is
not possible to have nested unencrypted traps in the current implementation, as it is
not trivially possible to determine whether the executed (M|S|U)RET instruction belongs
to a nested trap (hence returning to unencrypted code) or not. A wake-up mechanism,
which is able to work with unencrypted traps, would need to follow an approach similar
to the xIE bits in the MSTATUS register, which is more complex to implement and was
conceived to provide no bene�t for the intended use-case of evaluation. Note that this
doesn't apply to encrypted traps, which can nested be arbitrarily.

Saved sponge-state for ECALL and illegal instructions. ECALL instructions and
illegal instructions both cause an exception. However in contrast to all other instructions
that cause exceptions, they should not be replayed, because this would cause an in�nite
loop. Hence for these to kind of exceptions, the sponge-state after the instruction passed
through the SCFP-unit is saved. In contrast, load/store exceptions save the sponge-state
before the instruction passed through the SCFP-unit.

The alternative approach would be to save both, the state prior as well as that after the
instruction. The software trap-handler could then decide which one should be used on
trap-return by means of writing the correct one to (M|S|U)SPONGE. Since there is little
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reason for an ECALL or illegal instruction to be replayed, and the alternative would just
require more trap handling code, it was decided to go with the less �exible choice of
handling them specially.

3.3.3. Start Procedure

Since it was desirable to still allow execution without active SCFP-unit, e.g. for testing,
a dedicated start procedure is needed. The SCFP-unit becomes active on the �rst en-
countered JALRP which should signal an indirect function call by having the LSB of the
target address set to one. The instruction is handled exactly like described previously
in Section 3.3.1 : The following patch is applied, then the permutation with the target
address is performed and �nally the patch at the target is applied.

3.3.4. Toolchain limitations

The RISC-V GCC toolchain currently cannot be used to directly emit code for SCFP.
Dedicated post-processing tools, which have been provided by Mario Werner from TU
Graz, must be used on the compiled binary to instrument it.

The SCFP instructions are implemented as assembly macros, which expand to the equiv-
alent control-transfer instruction with NOPs as placeholders for the patch values. This
mostly limits the supported code to handwritten assembly at the moment. However
a simple script that does text-replacement of the standard control-transfer instructions
with the equivalent SCFP assembly macros on intermediate assembly �les turned out to
work very well. By instrumenting a few more complicated parts of a program by hand and
using the text-replacement tool on the intermediate assembly output, it was possible to
translate most of the used benchmarks. Only the Coremark and Dhrystone benchmarks
couldn't be instrumented this way. The emitted jump-tables are the cause for this, since
they don't work well with text-replacement due to the additional patch values required
at the target of indirect jumps. The aggressive inlining used in the other benchmarks
helps in this regard, since jump tables (resp. the case statements) are optimized away in
all cases there.

In a �rst post-processing step, the control-transfer instructions are replaced by the actual
SCFP instruction encodings. In a second step the instrumented assembly is linked to
a binary to get the �nal address locations. The binary is then disassembled again, the
code is encrypted and the NOP placeholders are replaced with the actual patch values.

3.4. Keccak peripherals

The Keccak peripherals should serve the purpose of evaluating the DOM-scheme, with
focus on its applicability on Keccak. Multiple variants of the Keccak peripherals with
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varying orders of SCA-protection were instantiated. All of the instantiated peripherals
use a Keccak-f[1600] permutation, since this is the one that many new constructions use,
e.g. Keyak and Ketje, two of the last-round candidates in the CAESAR competition
[17, 14].

• An unprotected Keccak-f[1600] instance serving as a baseline

• A �rst-order DOM-protected variant

• A �rst-order DOM-protected variant with an additional optimization to reduce the
required randomness

• A second-order DOM-protected variant

The second-order DOM-protected Keccak peripheral is, as far as could be ensured by
thorough search of related literature, the �rst higher-order SCA-protected Keccak variant
taped-out in an actual ASIC.

There is no restriction in hardware as to how much of the state is interpreted as rate and
how much as capacity. It is solely up to the software to decide how much of the state it
writes or reads respectively, which allows for greater �exibility.

A high level view of the Keccak peripherals is shown in Figure 3.23 .
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21 1 1 21
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Figure 3.24.: Control Register

3.4.1. Memory Map / Con�guration Registers

Table 3.5 shows a list of registers that are used to read/write con�guration as well as
data from/to the Keccak peripherals.

Figure 3.24 shows the control register for the Keccak peripherals. Only one peripheral
can be active at any time. Which one is active is determined by the SEL bits in the
control register:

SEL = 0 → unprotected Keccak.
SEL = 1 → 1st-order DOM-protected Keccak.
SEL = 2 → 1st-order DOM-protected Keccak with randomness optimization.
SEL = 3 → 2nd-order DOM-protected Keccak.

Writing to the SQZ bit triggers a permutation of the selected peripheral. The permutation
will get triggered automatically when the full state has been written. SQZ allows to only
write a part of the state (at 32-bit granularity). Since the rate is written �rst, this allows
to e�ectively determine the sponge rate in software.

Writing '1' to CLR clears the sponge-state of the selected peripheral.

Writing to U has no e�ect in the current implementation, but preserves the value that is
written to it.

Writing '1' to RND triggers an update of the LFSR. One LFSR update actually consists
of 150 recursions, thus producing 150-bit of pseudo-randomness per update. The RND
bit is automatically reset after the LFSR update.

The DATA register is used to read/write from/to the Keccak peripheral selected by means
of the SEL bits in the CTRL register. Two counters are used to keep track of how much
data has been read, respectively written. The counters are reset when a permutation is
triggered, the full state has been read/written, or the CTRL register gets written. As soon
as the full state was written a permutation is triggered automatically.

The PRNGx registers are used as the seed value for the PRNG.

The base address of the Keccak peripherals in Patronus is 0x1A102200.
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register o�set reset value access description

DATA 0x00 0 RW Data for selected Keccak peripheral
CTRL 0x1C 0 RW Con�guration register
PRNG0 0x20 1 RW LFSR state bits 31..0 (for seed)
PRNG1 0x24 0 RW LFSR state bits 63..32 (for seed)
PRNG2 0x28 0 RW LFSR state bits 95..64 (for seed)
PRNG3 0x2C 0 RW LFSR state bits 127..96 (for seed)
PRNG4 0x30 0 RW LFSR state bits 159..128 (for seed)
PRNG5 0x34 0 RW LFSR state bits 166..160 (for seed)

Table 3.5.: Register map for Keccak peripherals.

3.4.2. Instantiated variants

The area required for the χ step of the DOM peripherals grows exponentially with the
number of slices processed in parallel in this step. It is desirable to keep the number of
slices which are processed in parallel in the χ step to a minimum. The linear steps do
not see such an exponential increase. When higher throughput is desired, the �rst thing
to increase is the number of slices processed in the linear steps.

For the used IP, it is not possible to choose a di�erent amount of processed slices for the
χ step than in any linear step. The exception is, that all linear steps may be done at
once, and the χ step being allowed to take several cycles. This con�guration was used, as
it allows for higher throughput and minimizes the time spent for the linear steps, which
are not of interest for the intended evaluation, as it is expected that any information
leakage should be extractable faster from the non-linear χ step. Figure 3.25 shows this
con�guration for a Keccak-f[1600] variant utilizing �rst-order masking (two shares).

The amount of slices processed in one cycle inside the χ step was determined by the
randomness available, which was generated with a PRNG (see Section 3.4.3 ). The cho-
sen PRNG is able to generate 150-bit per cycle. In the case of second-order protected
Keccak variants using 150-bit of randomness allows to process two slices in the χ step
in parallel, which increases throughput by x.x times compared to a 1-slice-in-parallel
implementation (not accounting the readout of state, which is not required for the mea-
surements). Likewise, the �rst-order protected variant achieves x.x times the throughput
of a 1-slice-in-parallel implementation.

SCA Considerations (combining/read all state). Recombination of the shares in
order to get the �nal result must only be done when the result gets read. Wiring the
recombination logic directly to the state would be a fatal �aw and provide virtually no
protection against side-channel attacks, apart from an increased noise level. This was
taken into account by using operand-isolation, concretely by only recombining the state
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64 slices

64 slices

roundconstant

Figure 3.25.: Illustration of the instantiated Keccak-f[1600] con�guration for two share
domains
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when the Keccak permutation is �nished and a read from the DATA register is performed
by the APB master. Figure 3.23 also illustrates this.

3.4.3. Random Number Generator (RNG)

The initial sharing requires 1-bit for every added share domain. Hence when absorbing
a 64-bit word of Keccak-f[1600], 64-bit of randomness are required for the �rst-order
protected Keccak variant (two share domains) and 128-bit for a second-order protected
variant (three share domains). For the initial sharing it is also possible to bu�er the
required randomness, making this a secondary issue.

As described by Gross et al. [25], the randomness requirement of the DOM-scheme is
(N2−N)/2 per protected 1-bit multiplier (aka AND-gate), with N being the number of
share domains. The χ step is the only non-linear step in the design. The Keccak S-Box
used in the χ mapping, is a 5-bit S-Box which requires �ve 1-bit multipliers. Each S-Box
operates on a single Row. Since the Keccak instances operate in a slice-based manner.
Since each slice consists of 5 rows, the χ step requires 25 1-bit multipliers. In summary,
the �rst-order protected Keccak needs 25-bit randomness per slice, the second-order
protected variant 75-bit per processed slice.

By using 150-bit of randomness per cycle it is possible to not require an additional bu�er
mechanism for the initial sharing, which requires 128-bit for the second-order variant.
This of course doubles the number of slices that can be processed in parallel in the χ
step to four and two slices for the �rst- and second-order SCA protected Keccak variants
respectively.

However, this randomness requirement is huge. High-throughput True-RNGs only reach
a throughput of typically below 10 Mbit/s [22, 61]. Hence a Pseudo-RNG (PRNG) must
be used. For this purpose a LFSR has been used as a PRNG. While it is not recommended
to use a single LFSR as PRNG in a �nal product, since an attacker might be able to
recover the LFSR state through SCA, it is considered feasible for evaluation purposes.
For �nal products a RNG as described by Sunar et al. [61] should be used.

For the production of (pseudo-) random numbers needed for the DOM protected χ step
of the design, a 167-bit primitive LFSR has been used [4]. The LFSR-recursion is shown
in (3.1). The LFSR-recursion has been unrolled to produce a 150-bit pseudo-random
number every cycle. While it would be possible to use a LFSR with slightly smaller
length, the chosen primitive LFSR is the �rst with a length greater than 150-bit which
only requires a single tap, which decreases the required area, especially when unrolling it.
A single tap also minimizes the noise introduced by the LFSR itself, which is desirable
for SCA evaluation.

S1 ← S161 ⊕ S167 (3.1)
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3.5. seL4

3.5.1. Description

seL4 is a microkernel with a formal proof of security [40, 39], that has its roots in the L4
family of microkernels [28]. More precisely, it provides a proof that the C-implementation
of the kernel adheres to its abstract speci�cation. This speci�cation entails a proof of
integrity, meaning that no kernel data can be modi�ed from userspace directly, and
con�dentiality, meaning that no kernel data is accessible from within userspace [58].
From a security point of view it is important to notice, that as with all proofs, they
prove exactly what is speci�ed, which is not necessarily (but at least very likely) what
was intended.

Parts of the kernel are not covered by the proof. This entails all assembly code and code
that manages the MMU and its TLBs [40]. Furthermore, at the time of this writing, only
the ARM version of seL4 has been fully veri�ed. The proof for this ARM version again
is for one speci�c con�guration of the iMX6 platform, not for all ARM architectures in
general. In contrast the x86 and x86_64 versions of seL4 don't yet have a formal proof
of correctness.

Proving all platforms and even the existing x86 and x86_64 ports is a time consuming
endeavor. Consequently a proof of a seL4 RISC-V port is not within the scope of this
thesis, whose main focus is on securing the system against physical attacks.

The seL4 microkernel manages resources with a capability based approach. The initial
userspace thread receives full capabilities of all (non-kernel) memory and devices. The
capabilities themselves are stored inside the kernel space and modi�cation of the capa-
bilities needs to be done by the kernel. In a secure system, the initial thread will strictly
control to which thread requires which capabilities.

3.5.2. Modi�cations

The RISC-V port has been kept conceptually as close to the ARM version of seL4 as the
architecture permits. Because the implemented MMU relies on 4kB pages, the memory
management parts are however usually closer to the x86 version than to the ARM version.
Apart from memory management, most of the ARM version could be used with small
adaptations.

Since the kernel API has stayed untouched, the reader is referred to the seL4 speci�cation
for any details [50]. The implementation merely adheres to the speci�cation in this
regard.
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Modi�cations in architecture independent code. Currently the full register �le
is considered as User Context. However, this required to increase the maximum message
length by one word from 32 to 33. This part actually a�ects the architecture independent
parts of the kernel as well, and hence other architectures such as ARM and x86.

Further adaptations. While the microkernel is the heart of the seL4 operating system,
it is not very useful on its own, due to the very nature of a microkernel. Hence not
only the microkernel needed porting to the RISC-V architecture, but also most of the
supporting userspace libraries. Again, some of the ports could be based on some work
from Almatary [5], although the whole library ecosystem did change signi�cantly after
this very basic initial port.

The following libraries have been modi�ed to support the RISC-V kernel port.

• seL4_libs

• seL4_util_libs

• seL4_tests

• seL4_tools

• libmuslc

This is basically the full set of libraries required to write a meaningful minimal program
that can run on the seL4 operating system. Again, since no API modi�cations have been
performed, the reader is referred to the documentation [50].

3.5.3. Limitations and further considerations

The RISC-V version of seL4 is functional, but lacks a few features in comparison with
the mature ARM and x86 versions. For once, the IPC fastpath [28] is only partly im-
plemented, which means, that this functionality cannot be used at all currently. Fur-
thermore, not all tests are currently passing. Furthermore a lot more testing is de�nitely
needed before the port can be considered really stable.

The RISC-V seL4 version assumes a sv32 MMU as described in the privileged ISA 1.9.1,
although not every feature is required. It currently doesn't make use of:

• 34-bit physical address space (only 32-bit is supported)

• User memory protection from within supervisor mode (see PUM �eld in MSTATUS)

• The memory privilege functionality (see MPRV �eld in MSTATUS)

• Making execute-only pages temporarily readable (see MXR �eld in MSTATUS)

• Multiple ASIDs (only a 1-bit ASID is used)
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• Fine grained TLB �ushes (always the full TLB is �ushed)

• Global TLB entries

• Accessed and Dirty bits (swapping is unsupported)

The port was done for an older release of seL4 and later updated to the 3.2 release.
However, during the course of this thesis there were two more major releases of seL4.
The impact on the current port has not been analyzed yet, and upgrading to the new
release version might break the port seriously.
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Chapter 4
Results

The implementations of the Remus core and Keccak peripherals, as described in Chap-
ter 3, have been taped out in a UMC65 process. Due to the memory requirement of
the seL4 operating system most of the chip area is occupied by dense RAM macros
(SHKA65_16384X8X4CM16, respectively SHKA65_8192X8X4CM16). Synthesis was performed
with Synopsys Design Compiler 2016.12, which was provided with UMC's low leakage
low-, regular- and high-voltage threshold standard cell libraries (UMK65LSCLLMVBBL_B,
UMK65LSCLLMVBBR_B, UMK65LSCLLMVBBH_B) to choose the gate mappings from. Further
backend design was performed with Cadence Innovus 2016.10. A 10ns clock period and
the worst-case delay corner (1.08V/125◦C) were used as constraints throughout the back-
end design for the Remus core.

An overview of the chip's layout is given in Figure 4.1 . The major parts of the chip have
been colored and annotated.

This chapter focuses on the Remus and Keccak core and neglects all other peripherals,
the µDMA and the other cores (Eeny and ZeroRISC) implemented on the same chip,
which were not directly part of this work.

4.1. Remus - Overview

4.1.1. Area

In the taped-out Patronus chip, the Remus core occupies an area of about 89.5 kGE,
for a clock period constraint of 10ns with worst-case delay corner libraries (1.08V /
125◦C).
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Remus

ZeroRISC

Eeny

Event-Unit,
FC-Timer,

JTAG

Secure SHA-3
peripherals

SPI, UART, Timer,
 I2C, GPIO, SOC-Ctrl

4x 64kB RAM
2x 32kB RAM

Standard-Cell Memory
3kB

4x 64kB RAM
2x 32kB RAM

Standard-Cell Memory
3kB

Figure 4.1.: Patronus layout. Major parts of the design are highlighted and annotated.

IF-stage SCFP-unit ID-stage EX-stage LSU MMU CSRs Total

Area (in kGE) 4.0 25.3 16.7 16.2 2.4 3.8 10.3 79.0
Area (in %) 5.1 32.0 21.2 20.6 3.0 4.8 13.0 100

Table 4.1.: Remus post-synthesis area for worst-case libraries (1.08V,125◦C)

A more detailed analysis of the core is given in Table 4.1 . These values are obtained
post-synthesis with the already mentioned constraints of 10ns clock period, worst-case
delay corner.

As can be observed, the SCFP unit causes an area overhead of roughly 47%. The largest
contributor to this area increase is the used Prince block cipher with 23kGE (91% of
the increase). A more detailed discussion is given in Section 4.2.4 .

4.2. Sponge-Based Control-Flow Protection

4.2.1. Fault Detection

The idea behind Sponge-Based Control-Flow Protection (SCFP), is to use the property
of the decryption, that a modi�ed ciphertext will result in random plaintext. Hence it
de�nes a secure state as execution of random plaintext. Since every ciphertext depends on
the correct decryption of all previous ciphertexts, an error in the ciphertext stream, due
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Figure 4.2.: Cumulative probability of triggering an exception within a certain amount
of instructions for triggering 16483 random code executions due to invalid
sponge states and decryption keys.

to faults, immediately, irreversibly, triggers execution of random plaintext. The program
will need to be restarted in order to behave normally again. The same principle applies if
the attacker manages to either corrupt the capacity or the key of a keyed permutation.

In any case it might still be desirable to detect a corruption. A nice property of SCFP is,
that no explicit comparisons with reference signatures are needed, but this also implies
that detection is not directly part of the scheme. However, as it turns out, the probability
of triggering an exception when executing random instructions is high. In the concrete
implementation in the Remus core the cumulative probability of triggering an exception
within a certain number of executed instructions is given in Figure 4.2 . As can be seen
it is highly likely, that the �rst random instruction will already trigger an exception.
Detection probability then further rises with each executed instruction.

The measurements for these probabilities have been obtained, by changing the sponge
capacity and the key in a random fashion inside a common trap handler. When returning
to the actual program code, decryption will fail, respectively output random plaintext.
How many instructions it takes until an exception gets triggered was measured by simply
setting up the hardware performance counter that measures this metric. Care was taken,
that no conditional branching is performed after setting up the performance counter,
since that would cause invalid measurements.

The minimum value of the performance counter then was con�rmed to correspond to
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an exception at the �rst decrypted instruction. Assuming that the used Prince cipher
doesn't produce output that can be correlated to its input, this approach should yield
representative measurements for faults on ciphertext, sponge capacity and keys. Obvi-
ously this does only cover faults prior to the instruction decode stage, since faults after
the SCFP stage don't result in random code execution and hence are in general not
protected by SCFP and consequently also not detectable.

It should further be noted, that while this detection mechanism is for free, it cannot be
relied on. The reasoning for this is the same as the reasoning why a checking mechanism
might not be considered very reliable. A triggered exception boils down to a one bit
value at some point. If the attacker can get a hold on this signal, detection is no longer
possible. In the concrete case of the Remus core however, it is at least possible that
the random instruction causes di�erent types of exceptions. The possible exceptions are
load-,store-,fetch- and illegal instruction exceptions. Fully controlling multiple of these
signals might be considered infeasible, hence the detection mechanism is arguably slightly
more robust than a comparison which only yields a 1-bit value.

4.2.2. Runtime Overhead

The runtime overhead due to the SCFP unit is shown in Table 4.2 . The overhead ranges
from 3% to 18%, dependent on the relative amount of control-transfer instructions exe-
cuted for the respective benchmark. With an average of 10% overhead for our benchmark
set, the runtime impact of SCFP is considered small when compared to implementations
of signature-checking and software-only approaches.

The implementation of Werner et al. [70] has an overhead of 2% to about 71% when
implementing continuous signature checking for a Cortex-M3. The software approach
from Lalande et al. [44], increases execution time by 48% to 106% for an x86 target
machine and 109% to 400% for a Cortex-M3 processor. However, it is important to
note that a direct comparison to these implementations is not possible, because they
implement their methods for x86 and ARM, but not for RISC-V. In particular, every
processor obviously needs custom tailoring to minimize the overhead of the SCFP pipeline
stage. Furthermore, these methods neglect the protection of the branch decision and the
signature check.

The runtime increase is roughly a direct measure of the amount of branches (uncondi-
tional jumps are comparatively rare in all tests, see Chapter A), scaled by the average
IPC for the respective test. The reason for this direct relation is, that every branch
causes exactly one extra cycle of delay in practice, either directly by skipping the patch
value, or indirectly when attributing the delay due to the additional SCFP pipeline stage
to the branching instruction itself.

In Figure 4.3 the results are shown in a visually more comprehensive way. The short-
running benchmarks are omitted for space reasons. Exact numbers of all benchmarks
are available in Appendix A.
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cycles

Benchmark
SCFP
inactive

SCFP
active

Percentage of
CF-Instructions

Runtime
overhead

aes_cbc 199199 217785 11.13% 9.33%
bubblesort 148946 169186 20.08% 13.59%
conv2d 28312 30020 6.35% 6.03%
Coremark 435468 505134 19.61% 16.00%
crc32 1741517 1873001 9.11% 7.55%
dhrystone 721701 848040 21.85% 17.51%
fdctfst 8583 8959 4.00% 4.38%
�t 243162 260396 8.39% 7.09%
�r 120138 130296 12.05% 8.46%
ipm 17338 19435 16.36% 12.09%
keccak 817094 871456 7.20% 6.65%
matrixAdd 11233 12316 12.63% 9.64%
matrixMul16_dotp 5931 6573 13.51% 10.82%
matrixMul16 800764 871770 11.27% 8.87%
matrixMul32 42320 43572 3.06% 2.96%
matrixMul8_dotp 5927 6574 13.53% 10.92%
matrixMul8 732808 804033 12.63% 9.72%
sha 228109 238388 4.80% 4.51%
stencil 1407 1589 14.39% 12.94%
sudokusolver 190657 225320 25.99% 18.18%
towerofhanoi 60137 63317 6.51% 5.29%

Average 12.12% 9.64%

Table 4.2.: The relative amount of executed control-�ow instructions and resulting run-
time overhead for the used set of benchmarks.
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Figure 4.3.: Runtime overhead for the set of benchmarks.

Score (Iterations/sec) Score / MHz
SCFP inactive SCFP active SCFP inactive SCFP active

Coremark 114 99 2.28 1.98
Dhrystone 69283 58961 0.79 0.67

Table 4.3.: Coremark and Dhrystone benchmark results for Remus with and without
active SCFP unit at a simulation clock frequency of 50MHz.

Due to the popularity of the Coremark and Dhrystone benchmarks, Table 4.3 shows
the runtime scores for them with and without active SCFP unit. The results were
obtained with a simulation clock frequency of 50MHz. The more usual DMIPS measure
for Dhrystone is obtained by dividing the score by 1757, which is the number of iterations
per second on a VAX 11/780 machine, which is nominally a 1 DMIPS machine.

4.2.3. Binary size overhead

Due to the additional patch values inserted after control-transfer instructions, the code
section of the program necessarily increases. Table 4.4 shows the increase of the .text

section. For the used benchmarks, the increase ranges from 5% to 20%, with an average
of 13%.
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Benchmark
Baseline
(in bytes)

SCFP instrumented
(in bytes)

Overhead

�r 3096 3256 5.17%
aes_cbc 7708 8204 6.43%
keccak 5952 6364 6.92%
�t 2516 2716 7.95%
matrixMul16 12412 13408 8.02%
matrixMul32 9876 10860 9.96%
sha 4928 5464 10.88%
matrixMul8 9348 10380 11.04%
ipm 6136 6832 11.34%
towerofhanoi 6588 7604 15.42%
dhrystone 8532 9884 15.85%
sudokusolver 8776 10172 15.91%
crc32 5676 6612 16.49%
coremark 19120 22324 16.76%
stencil 5436 6400 17.73%
matrixAdd 4704 5620 19.47%
bubblesort 4668 5596 19.88%

Average 12.66%

Table 4.4.: Increase of binary .text section due to SCFP.
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4. Results

Area (in kGE)
30ns 20ns 13ns 10ns 6.7ns

IF-stage 3.3 3.6 3.4 4.0 5.5
SCFP-unit 10.9 10.9 13.4 25.3 26.0

Prince (12 rounds) 8.9 8.8 11.4 23.0 23.3
ID-stage 15.3 15.4 16.0 16.7 17.6
EX-stage 14.4 14.5 15.5 16.2 16.7
WB-stage 1.8 1.8 1.9 2.4 3.2
MMU 3.4 3.5 3.7 3.8 3.9

iTLB 1.4 1.5 1.5 1.5 1.6
dTLB 1.4 1.5 1.5 1.6 1.6

CSR 8.9 8.9 9.9 10.3 10.3

Remus Total 58.3 58.8 64.2 79.0 83.6
SCFP Overhead 23.1% 22.8% 26.6% 47.3% 45.4%

Table 4.5.: Remus post-synthesis area requirement for di�erent clock constraints, using
worst-case libraries (1.08V/125◦C).

4.2.4. Area Requirement

The area requirement for the Remus core for di�erent constraints is shown in Table 4.5 .
As can be seen, the area requirement of the SCFP unit depends heavily on the used
constraint. This is expected, since the Prince cipher is fully unrolled. Usage of a
di�erent cipher could potentially yield signi�cant improvements here.

While the Prince cipher is close to, it is never the most critical path, which is always
the path to memory in both typical-case and worst-case scenarios.

4.2.5. Power Analysis

The power analysis was performed for multiple benchmarks of the list given in Table 4.2 .
Short-running benchmarks were preferred as post-layout simulation with exact timing
annotations took a signi�cant amount of time.

For the power analysis itself, the dumped VCD �les from the post-layout simulations
were used. For the simulation, the RC delays were extracted from the layout and used
to back-annotate the simulated netlist. The simulation clock frequency was 50MHz. For
power analysis the typical case view with 1.2V core supply voltage at 25◦C was used.
The VDDIO and VSSIO rails were not considered in this analysis.

The simulation and power analysis was performed for programs with and without active
SCFP unit. The results can be seen in Table 4.6 . On average the power consumption
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Remus Power (in mW) Patronus Power (in mW)
Benchmark SCFP inact. SCFP act. Overhead SCFP inact. SCFP act. Overhead

aes_cbc 7.45 9.25 24.10% 13.59 15.36 13.02%
bubblesort 6.18 8.16 32.13% 13.21 15.05 13.93%
conv2d 7.40 8.97 21.22% 14.48 15.48 6.91%
fdctfst 7.56 9.35 23.68% 13.89 15.55 11.95%
�t 7.31 9.13 24.93% 13.93 15.42 10.70%
�r 6.98 9.20 31.78% 13.45 15.71 16.80%
keccak 7.71 9.57 24.22% 14.52 16.38 12.81%
matrixAdd 7.18 9.06 26.12% 13.54 15.50 14.48%
matrixMul16_dotp 7.56 9.23 22.10% 13.89 15.75 13.39%
matrixMul8_dotp 7.36 9.13 23.97% 13.94 15.68 12.48%
sha 7.88 9.80 24.31% 14.04 15.85 12.89%
stencil 6.71 8.53 27.02% 13.58 15.25 12.30%

Average 7.27 9.11 25.46% 13.84 15.58 12.60%

Table 4.6.: SCFP power overhead for selected set of benchmarks for Remus and Pa-

tronus with 50MHz simulation clock frequency.

overhead of SCFP was determined to be 13% for the whole chip and 25% when only the
Remus core is considered.

4.3. Keccak peripherals

4.3.1. Area requirement

The area requirements of the instantiated Keccak peripherals are shown in Table 4.7 . The
shown numbers are post-synthesis results for a constraint of 10ns clock period and worst-
case delay corner (1.08V/125◦C). In contrast to other parts of the circuit the Keccak
peripherals are hardly in�uenced by more stringent clock constraints, and no signi�cant
di�erence in area could be observed for clock periods between 6.7ns and 30ns.

The biggest contributors to area are the linear steps (θ, ρ, π), since they are applied in a
single cycle and hence operate on the whole 1600-bit state simultaneously. It can be seen
that all the linear parts of the Keccak peripheral (θ, ρ, π, State) are increasing linear
with the protection order, as is expected for a DOM protected peripheral, since they are
basically just replicated for each share-domain [25, 26].

The non-linear χ step operates only on four and two slices respectively for the protected
Keccak instances and hence doesn't contribute as much to the overall area. Due to the
ι ◦ χ steps of the 2nd-order protected peripheral acting only on two slices, in contrast to
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Area (in kGE)
θ π ◦ ρ ι ◦ χ State Total

Unprotected 6.4 2.4 5.6 18.0 32.8
1st-order 13.1 4.2 4.1 36.3 58.0

1st-order (less rand.) 13.0 4.0 3.6 36.1 57.1
2nd-order 19.3 6.3 4.6 54.0 84.6

PRNG 1.9
Bu�er&Control 21.6

Sum 255.9

Table 4.7.: Area requirement of the individual Keccak peripherals in kGE.

the four slices that the 1st-order protected peripherals are operating on, the area required
by ι ◦ χ is roughly equal for the di�erent protection orders.

4.3.2. Throughput

In terms of throughput it was desired, that it would be as high as possible, in order to
get useful measurements in a reasonable time. Sending a data word to the peripheral
takes 3 cycles per 32-bit word. In the end, �lling the whole 1600-bit sponge state thus
takes 150 cycles. Likewise, reading the whole state also requires 150 cycles. As already
noted, it is not required to write the whole state. Writing only part of the state and
triggering a permutation by writing to the control register as described in Chapter 3 is
possible as well.

For the SCA-protectedKeccak variants, the number of cycles for the actual permutation
is limited by the slices that can be processed in parallel in the χ step. An overview is
given in Table 4.8 .

For one round of the �rst-order protected variants, this means 1 cycle for the linear steps
and 16 (= 64/4) cycles for the χ step with one additional cycle to �ll the DOM-pipeline
of the χ step itself. For 24 rounds this results in 432 (= 18 · 24) cycles.

For one round of the second-order protected variant, the linear steps are also done in 1
cycle, but 32 (= 64/2) cycles are needed for the χ step again with one additional cycle
for �lling of the DOM-pipeline. This results in 816 (= 34 · 24) cycles for 24 rounds.

The unprotected variant, used as comparison, does one round per cycle. E�ectively
requiring 24 cycles for a full permutation.
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4. Results

Time for one permutation (in cycles)
θ ◦ π ◦ ρ ι ◦ χ Total (24 rounds)

Unprotected 1/round with lin. steps 24
1st-order 1/round 17/round 432
1st-order (less rand.) 1/round 17/round 432
2nd-order 1/round 33/round 816

Table 4.8.: Area requirement of the individual Keccak peripherals in kGE.
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Chapter 5
Conclusion and Future Work

In this work, a secure processor design was implemented based on the Ri5CY core. It
implements a soon to be published scheme of protecting the control-�ow of programs
against fault-attacks. It was shown that this scheme can be e�ciently implemented with
a minimal runtime overhead that ranges from 3% to 18% and a code size overhead of
5% to 20%, for the set of benchmarks adjusted for the scheme. It requires what can be
considered a reasonable amount of area (�25kGE) which corresponds to an area overhead
of roughly 45%, which is signi�cantly better than approaches that require full redundancy.
However using other sponge permutations and possibly round reduced versions of them
should be considered for future work, since the permutation is the biggest contributor to
the area requirement.

Furthermore a minimal version of the privilege ISA 1.9.1 was implemented. This also
entails a Memory Management Unit (MMU), so the implemented core is now able to run
programs and operating systems which rely on page-based virtual memory for isolation.
The small version of the MMU requires less than 4kGE of area, doesn't require an addi-
tional pipeline stage, has separate instruction- and data-TLBs and provides a hardware
page table walker. MMU and privilege ISA were designed to allow to run a port of the
formally veri�ed seL4 microkernel. This seL4-port for the RISC-V architecture was also
written as part of this work and was based on previous porting e�orts for older versions
of seL4.

Additionally, multiple side-channel-analysis (SCA) resilient versions of Keccak periph-
erals were implemented, which utilize the recently published Domain-Oriented-Masking
(DOM) scheme. The implemented peripherals serve as cryptographic accelerators with
the main purpose of evaluating the e�cacy of the DOM scheme against SCA-attacks in
an ASIC implementation. One of the implemented DOM-protected SHA-3 peripherals is
designed to provide 2nd-order protection against SCA, making it the �rst higher-order
protected implementation of SHA-3 taped-out in an actual ASIC.
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5. Conclusion and Future Work

A variety of things can be considered in potential future work.

5.1. Sponge-Based Control-Flow Protection

It would be possible to not only protect the instruction stream until the decode stage,
but beyond. This can be done by feeding back signals from later stages into the sponge
construction. E.g. signals which indicate the type of instruction make sense in this
regard. The pipeline would likely need modi�cations for this, as it is currently possible,
that the decoding stage executes instructions like unconditional jumps without having
to wait on the execute stage.

Because the Prince cipher, which was used as the sponge's permutation function, turns
out to grow rapidly in area when even decent speed is required, alternative ciphers and
permutations should be evaluated. Additionally, �nding a permutation small enough
to be merged into the instruction decode stage would also be interesting. This would
again require changes in the current pipeline model, as the execution of jumps and other
instructions which are currently committed in the decode stage should be moved into the
execute stage.

The current tooling makes the whole process of writing software that can utilize the
SCFP unit very tedious, as parts need to be implemented in hand-written assembly and
automatic instrumentation of intermediate assembly can be unreliable, which can lead
to decryption failures during runtime. Thus further work on the toolchain is needed to
make this scheme practical for a broader range of applications.

5.2. Keccak / SHA-3 peripherals

While the SHA-3 peripherals are secure against side-channel analysis, they don't provide
protection against fault-attacks. As only few fault-attack resilient implementations of
Keccak have yet been proposed, this would be a potentially interesting research topic.

Furthermore, a true or hybrid random number generator should be implemented instead
of the currently used PRNG.

5.3. seL4

The current RISC-V port of seL4 must be considered as a minimal implementation that
is ine�cient in certain cases (e.g. very conservative �ushing of TLBs) and provides less
functionality than other ports (e.g. no �fastpath� syscalls). Furthermore a new version
of seL4 was released after �nishing the RISC-V port. Bringing the port up-to-date and
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5. Conclusion and Future Work

implementing missing functionality would be desirable. Also, the port is by no means
formally veri�ed, which is a project totally out-of-scope for this work.

5.4. MMU and Privileged Speci�cation

Once the privilege speci�cation's development slows down, a reevaluation of the current
implementation will need to be performed. Especially the current interrupt and exception
mechanisms and the performance counters, which are deviations from the speci�cation
would need to be adjusted.

It should be considered to move the MMU into its own pipeline stage. This not only
simpli�es the design, but would allow to implement versions with increased TLB sizes
that don't severely impact the critical path.
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Appendix A
Detailed Evaluation Results

All performance measurements for the SCFP-unit are given in Table A.1 . The bench-
marks with a �-noc�� su�x do not utilize the SCFP unit, while the ones with the �-c��
su�x do. The amount of instructions di�ers very slightly between the two variants of
a benchmark. This is due to the fact, that the instrumented CFI assembly can't cope
with tail calls. Tail call have thus been substituted with a usual push-call-pop-return
sequence.

74



A. Detailed Evaluation Results
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