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Abstract

A large part of systems-level and performance critical software is written
in C or C++. Bugs triggering memory safety violations still plague many
C/C++ code bases and can be used by attackers to manipulate the pro-
cess by corrupting its memory. Orthogonal to finding bugs, research and
industry develop mitigation mechanisms, which minimize the impact of a
memory corruption vulnerability. Current mitigation mechanisms mostly
focus on preventing control-flow hijacking attacks. However, data-only at-
tacks must also be considered, because they allow an attacker to elevate
privileges within the application, break existing mitigation mechanisms, or
leak sensitive memory contents.

In this thesis, we evaluate a current mitigation mechanism against data-
only attacks, Write-integrity testing (WIT). We implement WIT within the
LLVM compiler framework and use our implementation to evaluate the
security guarantees of WIT implementations. Our results show that WIT
does indeed offer protection against data-only attacks. Our implementation
can mitigate all vulnerabilities in 33 of 58 programs out of the cyber grand
challenge (CGC) dataset. This thesis presents limitations and caveats for
the protection a WIT implementation can offer. Additionally the evaluation
revealed various common code patterns that severely reduce the security
guarantees of WIT. Furthermore, we show that WIT does not provide
comprehensive protection against counterfeit object oriented programming
(COOP), a modern control-flow hijacking technique.

Keywords: Memory Corruption, Data-Only Attacks, Mitigation Mechanisms, Data-Flow
Integrity, Write-Integrity Testing
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Kurzfassung

Ein Großteil der systemnahen und geschwindigkeitskritischen Software
wird in C oder C++ entwickelt. Man findet häufig Fehler in C/C++ Program-
men, die zu Verletzungen von Memory-Safety führen. Angreifer können
solche Fehler ausnutzen um den Speicher des Prozesses zu beschädigen und
somit das Verhalten des Prozesses zu manipulieren. Neben dem Auffinden
von Fehlern werden Mechanismen erforscht, die den Schaden von Memory-
Corruption-Angriffen minimieren. Diese setzen ihren Fokus auf Control-
Flow-Hijacking-Angriffe. Data-Only-Angriffe müssen ebenso beachtet wer-
den, da sie einem Angreifer ermöglichen, Privilegien zu erhöhen, existierende
Präventationsmechanismen zu umgehen, oder auf sensitiven Speicher zuzu-
greifen.

Diese Arbeit behandelt einen Präventionsmechanismus gegen Data-Only-
Angriffe: write-integrity testing (WIT). Wir implementieren WIT in dem
LLVM Compiler-Framework und verwenden unsere Implementierung um
die Sicherheitsgarantien von WIT zu evaluieren. Unsere Resultate ergeben,
dass WIT tatsächlich Schutz gegen Data-Only-Angriffe bietet. Unsere Imple-
mentierung schützt 33 von 58 Programmen aus dem cyber grand challenge
(CGC) Datensatz gegen alle bekannten Schwachstellen. In dieser Arbeit
werden häufige Muster in Programmcode präsentiert, die dazu führen,
dass WIT nur schwache Sicherheitsgarantien geben kann. Darüber hinaus
zeigen wir, dass WIT keinen umfangreichen Schutz gegen counterfeit ob-
ject oriented programming (COOP), eine moderne Control-Flow-Hijacking-
Angriffstechnik, bietet.

Schlagwörter: Speicherkorruption, Data-Only-Angriffe, Code-Reuse-Angriffe, Präven-
tionsmechanismen, Data-Flow-Integrity, Write-Integrity-Testing
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1 Introduction

We interact almost constantly with some form of Internet enabled device. It
has become the norm that we use a PC or notebook at work. Smartphones
and tablets allow us to use the Internet when we are on our way. In the era
of the Internet of things, even household devices such as TVs, fridges or
vacuum cleaner robots are connected to the Internet. Consequently more
sensitive data is stored and processed in computer systems. Furthermore,
computer systems execute many business-critical processes, often with
minimal human monitoring. A flawless IT operation can decide between
success and failure of a company. While the use of Internet connected
computer systems offers many advantages, it also comes with a significant
security risk: computer systems are susceptible to attacks from anywhere in
the world over the Internet.

Different events in the last years have shown that many parties are interested
in attacking computer systems. Personal computers are regular victims of
malware. The SpyEye malware family, for example, stole online banking
credentials and credit card details, and caused huge financial losses [Gua16].
The latest trend in malware is called Ransomware [FBI15], which encrypts
data on infected computers and only releases the decryption key for a certain
amount of money. Users lacking a proper backup are coerced into paying
the ransom. Even businesses fall pray to this kind of malware [Her16]. Big
companies usually deal with a lot of valuable customer data, which makes
them a valuable target for cyber criminals. In 2016, Yahoo admitted the
compromise of more than 1 billion user accounts [Thi16]. Similarly Dropbox
suffered from a breach in 2012, which resulted in over 68 million email
addresses and passwords being leaked [Gib]. Attacks on computer systems
have even become part of conflicts between nations. The first prominent
example for a presumed nation sponsored malware is Stuxnet and was
discovered in 2010 [Sch10]. Stuxnet was engineered to infect PCs used
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1 Introduction

in industrial control systems and then perform sabotage. It is speculated
that the intended target for Stuxnet were Iranian nuclear power plants.
Since Stuxnet further similarly sophisticated malware has been discovered
[Kus13].

Attacks on computer systems are often made possible by programming
mistakes, commonly called bugs, in the software that runs on the computer
systems. Many big software vendors, such as Microsoft, Google, and Apple,
have realized that and offer rewards for researchers that report errors in their
software, which can be turned into security vulnerabilities. Bugs in operating
systems are handled as especially valuable, because gaining control over
the operating system gives an attacker full control of the computer [Pro16].
Vulnerabilities in web browsers are similar valuable, because users are easily
tricked into opening malicious websites, where an attack against the browser
is started.

Although C/C++ family of programming languages is notorious for its
easiness to introduce bugs that can be turned into security vulnerabilities,
a lot of software is written in C or C++. This is especially true for the
critical components of computer systems, such as web browsers and op-
erating systems. The reason for this choice is the high performance that
can be achieved with optimized C/C++ code. Another reason for using
C/C++ is compatibility with an existing code base. It is unlikely that major
projects will move to memory safe languages, and therefore also the security
problems will prevail.

The lack of integrated memory safety makes programs written in C/C++
prone to security vulnerabilities. The C memory model exposes a very
low-level view on the memory, that is available to the program. Other
programming languages guarantee that a reference to some object never
points to something invalid. In the C family of programming languages,
objects are usually referenced by pointers, which are the address in the
memory of the program. Due to programming mistakes, a pointer can be
corrupted and will contain some other memory address. The program will
dereference the corrupted pointer and treat the bytes at that address the
same way as the bytes at the original address. Errors regarding memory
handling can be turned into a class of vulnerabilities categorized as memory
corruption [V+12].
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1 Introduction

In order to turn a bug into a security vulnerability, an attacker must be able
to abuse the bug to gain access to information that she is not allowed to know
or modify. To exploit a vulnerability the attacker must bring the program
into a state that was not anticipated by the developer. In the case of memory
corruption exploits, the attacker forces the program into an unintended
state by corrupting memory, which the program uses to make a decision.
A typical example is to modify the user name or a list of permissions for
the current user, which would allow an attacker to elevate her privileges. A
common goal of an attacker is to gain arbitrary code execution, meaning
she can execute any sequence of instructions in the context of the attacked
program. With the capability to execute arbitrary code, any data on the
computer system can be accessed in the context of the vulnerable program.
Even if there is no data of value on the attacked system, the ability to abuse
the overtaken system to launch further attacks is enough motivation for an
attack.

Manually searching for memory corruption vulnerabilities in programs
is a time consuming task. A well established technique for finding bugs
is the use of static source code analyzers. They search for patterns in
source code, which can expose problematic behavior. Source code analyzers
aid the developer in identifying and correcting mistakes. While source
code analyzers can identify problematic patterns, they lack the in depth
understanding of the code, which is needed to identify bugs buried deep
inside the code. An active research area is developing more advanced
techniques to automatically identify bugs in programs. For example, formal
verification techniques allow developers to prove that a program has the
memory safety property. If memory safety cannot be proven, then a bug is
identified as counter example. The effort required to use formal verification
to secure a program against memory corruption is very high, making it
infeasible for most software projects.

Memory safety violations can be detected during testing. Testing tools
such as Valgrind [NS07] and compiler based sanitizers, such as the LLVM
Address Sanitizer [Ser+12], detect issues with memory management and
addressing during runtime. A successful strategy for finding edge cases
that are otherwise poorly tested is fuzz testing [Zal]. A fuzzer randomly
mutates a initial set of inputs. It is then observed whether the program
under test can process the randomly mutated inputs without crashing. The
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effectiveness of fuzzing is improved by guiding it by coverage [Zal], by
extracting features with static analysis [Raw+17] or even augmenting it
with symbolic execution [Ste+16]. The downside of testing is that it is not
comprehensive and cannot guarantee the absence of bugs.

Since finding and eliminating all security related bugs is infeasible for larger
software projects another approach must be taken in addition. Instead of
directly correcting the security relevant bugs, the impact of a bug can be
reduced. An attacker is then too constrained to launch an attack with this
bug. If the cost of a successful exploit is bigger than the reward the attacker
gains, it is unlikely that an attack is started. It is desirable to make it as hard
as possible for an attacker to construct a working exploit. The process of
increasing resistance against attacks is called hardening and can by applied
on different levels in a system. Hardening against memory corruption
vulnerabilities is done by introducing exploit mitigation mechanisms. Full
memory safety can be retrofitted into C/C++ programs, but comes at a
significant overhead during compile and runtime [Nag12]. Therefore an
interesting research area is to find mechanisms, which provide a subset of
the guarantees of full memory safety at an acceptable performance cost.

Randomization based approaches make memory corruption exploits non-
deterministic. The probability of a successful exploit is decreased by intro-
ducing randomness in the executed program. Approaches to shuffle around
the pieces of code [Kil+06] and data [BS08; XKI03] have been proposed at
various levels of granularity. The main advantage of probabilistic defenses is
that they usually have low overhead. Because of the probabilistic nature the
defenses can be bypassed as soon as the attacker has knowledge of the ran-
dom values. An attacker can abuse other types of bugs to leak randomized
values or simply launch a brute-force guessing attack.

Deterministic defenses do not rely on randomness but introduce mecha-
nisms to prevent a certain attack technique or limit the attackers capabilities.
Non-executable memory was introduced to counter attacks that injected
executable code into the address space of the attacked program. Subse-
quently this was bypassed by reusing existing code to perform the desired
functionality. Code reuse attacks, such as return-oriented programming
(ROP), were shown to give the attacker similar capabilities as code injection
in common scenarios. To perform computations ROP attacks execute small
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snippets of instructions out of their intended order and chain them together
using return instructions [Sha07].

Both code injection and code reuse attacks require the attacker to hijack the
control flow of the vulnerable program. Control-flow integrity (CFI) is a
concept that tries to limit the capabilities of an attacker, even in the case
the control of the program has been overtaken [Aba+05]. CFI tries to make
sure that the programs instructions can only be executed in their intended
order, which prevents most forms of code-reuse attacks. This approach
severely limits the attacker. However, it was shown that even perfect CFI
leaves an attacker with enough capabilities to construct successful exploits
[Car+15].

Other mechanisms prevent an attacker from taking over the control-flow
of a program in the first place. To take over the control flow of a program
the attacker needs to corrupt a code pointer. Defensive mechanisms, such
as read-only relocations or stack canaries, protect different kinds of code
pointers. One of the first attack techniques was to abuse missing boundary
checks of arrays that are placed on the stack to overwrite the return address
[One96]. Subsequently stack canaries were introduced to detect return
address overwrites by buffer overflows and abort the program [Cow+99].
Code pointer integrity (CPI) generalized the concept of protecting certain
code pointers and introduced memory safety for all code pointers in the
program [Kuz+14].

Since the emergence of the protections against control flow hijacking the
focus of attack techniques has shifted to data driven attacks. These attacks
focus solely on data variables and data pointers. They do not corrupt
code pointers and do not violate CFI. Overwriting a code pointer is not
the only way to influence the behavior of an attacked program. There is
plenty of data which influences the control-flow of a program indirectly,
because the program bases decisions on the data. Examples are loop counter
variables, data pointers in linked data structures, or user names. Data-
oriented programming (DOP) is a data-only attack technique that has been
shown to be Turing-complete, which gives an attacker similar capabilities
as control-flow hijacking attacks [Hu+16]. Furthermore, data-driven attacks
are used to subvert mitigation mechanisms against control-flow hijacks
[Eva+15].
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Data-flow integrity (DFI) and the follow-up write-integrity testing (WIT)
[CCH06; Akr+08] are proposed defense mechanisms that cover both data-
oriented attacks and also aim to protect against control-flow hijacking
attacks. Both enforce restrictions on pointers in the program, thereby making
data-only attacks and code pointer corruption significantly harder. When
a pointer is used to load data, DFI checks whether the pointer is really
pointing to a memory location that matches one of the possible objects to
which the pointer may point to. This set of allowed objects is determined
with static analysis during compile time. DFI instruments store instructions
to propagate a label for the data that is read. WIT is an optimization of
DFI, which performs checks only during memory write operations. This
is in a sense similar to CFI solutions, which check the target of call and
indirect jump instructions. Unlike CFI solutions, DFI and WIT do not restrict
themselves to code pointers, but insert checks for any pointer in the program.
This is especially challenging in the face of dynamic memory management
used extensively in modern programs.

In summary, we argue that it is crucial for future mitigation mechanisms to
consider the data driven approach to attacks. DFI and WIT are expected to
offer protection against data-driven attacks, but it is currently unknown how
far this protection goes and what problems and limitations implementations
of DFI and WIT face.

Contribution

In this thesis we answer the question, how far the protection offered by WIT
goes. We evaluate WIT in regard of security guarantees it offers against mod-
ern attacks like counterfeit object oriented programming (COOP) [Sch+15]
or DOP [Hu+16]. There is no public implementation of WIT or DFI for
user-space programs, therefore we implemented a prototype of WIT within
the LLVM [LA04] compiler framework. We use the same type of points-to
analysis and a similar shadow memory model as described in [Akr+08].
Subsequently we perform the analysis of the security guarantees based
on our prototype. Our results show that while WIT cannot offer the same
protection as a solution that introduces full memory safety, it can offer
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protection against control-flow hijacking and data-driven attacks in many
cases with lower performance overhead than full memory safety.

Furthermore, we present a systematic evaluation of our LLVM-based WIT
prototype (LLWIT) and a comparison with two state of the art mitigation
mechanisms, the CFI solution included in LLVM [Tic+14] and SafeStack
[Kuz+14]. We perform the evaluation based on the dataset that was used
during the cyber grand challenge (CGC) competition. This dataset consists
of programs, which were written for the competition. The programs contain
known memory corruption vulnerabilities. The CGC data set offers a wide
range of different programs with different kinds of vulnerabilities. Many
of the vulnerabilities are modeled after bugs that occurred in real-world
software. We test all the programs from the dataset with different mitiga-
tion mechanisms enabled and check whether they are still functional and
whether their vulnerabilities have been mitigated. We furthermore evaluate
how the coloring of WIT are distributed and whether metrics based on the
colorings are meaningful as indicators for security guarantees. Our imple-
mentation is able to mitigate all vulnerabilities in 33 of 58 usable programs
from the CGC dataset. We do not observe a difference in the number of
colors for programs with mitigated and unmitigated vulnerabilities.

Using the results of the CGC dataset, we look at cases where WIT fails
to mitigate vulnerabilities and cases where CFI offers protection, while
WIT does not. Our results show that WIT offers protection against most
control-flow hijacking and many data-driven attacks. However we identify
several weak spots of WIT and DFI in general. We show that WIT with
a field-insensitive points-to analysis does not cover certain attack vectors.
More concretely we show that WIT restricts, but does not fully prevent
COOP attacks, although WIT was proposed as a countermeasure [Sch+15].
Furthermore, we argue that it is very unlikely that WIT offers adequate
protection against DOP attacks on larger programs, because of the way WIT
constructs the allowed sets of objects per store instruction.

7
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Outline

The remainder of this thesis is structured in the following way: In Chapter 2

we give a more distinctive definition of memory safety and an introduction
to memory corruption attacks. We introduce attack techniques and the
current state of the art in mitigation mechanisms. In Chapter 3 we introduce
the concept of DFI and WIT. We describe our prototype implementation in
Chapter 4. In Chapter 5 we evaluate and compare the security guarantees
of the different mitigation mechanisms and show the shortcomings of WIT.
We end with a conclusion in Chapter 6.
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2 Memory Corruption Attacks and
Defenses

The lack of memory safety in the C and C++ languages makes programs
written in those languages susceptible to memory corruption bugs. An
attacker can abuse memory corruption bugs to modify the state of the
running program. The impact of such an attack ranges from a denial of
service (DoS) by crashing the program to execution of arbitrary code chosen
by the attacker. To achieve the latter an attacker has to carefully craft the
state of the program, so that the code of the attacker is correctly executed.

Over the years several exploit mitigation mechanisms have been developed
and deployed. Following the deployment of new countermeasures, attack
techniques have been created that bypass the mitigation mechanisms. Even
though exploits haven not been completely eradicated, the mitigation mech-
anisms made it significantly harder and subsequently more expensive to
create a working exploit.

In this chapter we introduce a taxonomy of safety issues in C/C++ programs
and give and overview of attack techniques, that are used to exploit memory
corruption vulnerabilities. Furthermore we describe the current state of the
art mitigation mechanisms against memory corruption exploits.

2.1 Spatial and Temporal Memory Safety

The memory model exposed to the programmer in the C and C++ languages
is very low level. The language allows the programmer to handle raw bytes
of memory and to interpret the memory as any type of object. The low
level access to memory is necessary to implement software components that

9



2 Memory Corruption Attacks and Defenses

work with hardware directly or to develop resource efficient software. On
the other hand this flexibility introduces the possibility for memory safety
violations. Depending on the type of bug one can classify it as a violation of
spatial or temporal memory safety. Orthogonal to the problem of memory
safety is the weak type safety offered in C/C++.

Spatial Memory Safety violations happen when a pointer is dereferenced,
that points outside of the bounds of the object associated with the pointer.
Spatial memory safety violations can happen when bounds checks are
missing. Other reasons for spatial memory safety violations are type casts
between incompatible types or dereferencing of invalid pointers, such as
uninitialized or NULL pointers.

Listing 2.1 shows an example of a spatial memory safety violation. Arrays
in the C language are equivalent to pointers to the first object in the array
and the array subscript operator is equivalent to a pointer addition and
dereference. The array object has 8 elements, but the loop will index up
to the 9th element, resulting in a buffer overflow. In the last iteration of
the loop the memory location array + 8 is accessed, which is beyond the
bounds of the array object.

1 char array [8];

2 for (int i = 0; i <= 8; i++) { // off -by -one error

3 array[i] = ’\0’; // last loop will set array [8]

4 }

Listing 2.1: Example of a spatial memory safety violation.

In the C language buffer overflows can occur easily when dealing with
strings or byte buffers, due to absence of automatic bounds checking and
the poorly designed legacy string handling API of the C standard library
[One96].

Temporal Memory Safety is the property that no objects are accessed
before or after they have been allocated. Dangling pointers to unallocated
objects turn into temporal safety violations when the dangling pointer is

10



2 Memory Corruption Attacks and Defenses

1 uint32_t *p, *q;

2 char *u;

3 p = malloc (8); // allocate a uint32_t [2] array

4 q = p + 1; // q references the second uint32_t

5 // ...

6 free(p);

7 u = malloc (8); // likely(p == u)

8 // ...

9 *q = ... // Use -After -Free Bug: modifies u instead

Listing 2.2: Example of a temporal memory safety violation.

dereferenced. This leads to problems when the memory of the freed object
has been reallocated.

Listing 2.2 shows an example of a temporal safety violation. First a allocation
of 8 bytes happens in line 3. A reference to inside the allocated memory is
stored in the pointer q. The allocated memory is then freed and subsequently
another 8 byte chunk is allocated. Typical malloc implementations will reuse
the freed block and return it. So when the q is dereferenced in the last line,
it would actually write to the u object.

Memory-safe languages, such as C# or Java, deal with the problem of
memory safety by automatically introducing checks at various points in the
program or runtime environment. They implicitly associate length fields to
array types and automatically performing bounds checks and do not allow
uninitialized memory reads. To counter temporal memory safety automatic
memory management is used, for example by using garbage collection or
reference counting. This way a memory location is only deallocated when
no reference exists anymore.

Type Safety vs Memory Safety A type system can be used to ensure that
only compatible types are used in expression. If a type systems cannot
decide whether a type is compatible at compile time, the decision can be
postponed to runtime. The C language has no concept of types during
runtime. The C++ object model requires that for certain classes the type of
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1 struct Foo {

2 int a;

3 }; // sizeof(Foo) == 4

4 struct Bar : public Foo {

5 int b;

6 }; // sizeof(Bar) == 8

7 // ...

8 Foo* f = new Foo ();

9 // ...

10 Bar* b = static_cast <Bar*>(f); // invalid downcast

11 b->a = ... // *(b + 0) ok

12 b->b = ... // *(b + 4) out -of -bounds

Listing 2.3: Weak type safety in C/C++ can cause memory safety issues.

an object can be acquired during runtime. The C-style type casting or the
union data structure provide facilities to cast between any types allowing
the programmer to break any guarantees by the type system.

For type safety to hold also during runtime, memory safety must be en-
forced. Otherwise the guarantees of the type system are easily broken
by violating memory safety. For example a dangling pointer can be used
to overwrite data allocated to another type of object, possibly violating
invariants of the type.

The weak type system can also lead to memory safety violations. Listing 2.3
shows an example where the lack of proper type checking results in an out
of bounds access. The class Bar inherits from Foo, so it has the members a

and b. A pointer to a Foo is downcasted by the programmer to the Bar type,
without additional checks. In this case there is actually a Foo object, behind
the pointer, which does not have the b member.

2.2 Attack Techniques

To exploit a memory safety violation an attacker has to corrupt or leak
internal data. The following section gives an overview of the various attack
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2 Memory Corruption Attacks and Defenses

techniques that have been developed. We discuss the goals of each attack,
how the attacks are constructed and what the resulting capabilities of the
attacker are. We classify the attacks according to [Sze+13] into attacks that

• Code corruption – attack modifies existing code
• Control-flow hijacking – attack modifies code pointers
• Data-only attacks – data variables are modified
• Information leaks – attack outputs data variables/pointers

To achieve any of the above, the attacker can corrupt as many data pointers
as needed.

2.2.1 Code Corruption

Once a memory section is executable and writable a memory corruption
attack can be used to modify the contents of the section. The integrity of
the code is not guaranteed anymore and as soon as the process reaches the
corrupted code it is executed. Modern operating systems enforce read-only
page permissions on sections containing code, which is a strong mitigation
against this attack. On systems that do not have a memory management or
protection unit this cannot be adequately enforced.

Programs that include just-in-time (JIT) compilers or bytecode interpreters
are also prone to code corruption. JIT compilers are used to speed up
the execution of domain-specific languages, as is common in modern web
browsers that include a Javascript engine. During code generation the
compiler must necessarily map the code section as writable and as long
the code section is writable it is also vulnerable to code corruption. In a
similar manner bytecode interpreters are prone to code corruption attacks
as long as the bytecode is writable. If the bytecode is corrupted, the attacker
would gain the same capabilities as a legitimate program running inside
the interpreter. In case of general purpose programming languages running
inside an interpreter this would mean the same privileges as the interpreter
process.

13
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2.2.2 Control-Flow Hijacking

Control-flow hijacking summarizes various techniques, that are used by
an attacker to take control of the program control flow. All control-flow
hijacking attacks are initiated by the corruption of a code pointer. When
the corrupted code pointer is used by the program, the control-flow of the
program takes a malicious branch. The program then jumps to an arbitrary
location in the program, which is chosen by the attacker. By providing
the right inputs, the attacker can carefully craft the state of the program
so that it does not crash after the malicious control-flow branch. Instead
the program continues to execute in an unintended way. The attacker can
redirect control-flow to injected code or re-use existing code.

The control-flow graph (CFG) of a program is a directed graph, whose nodes
correspond to the basic blocks of the program, and the edges represent the
control-flow transfers between the basic blocks. A basic block is a list of
consecutive instructions. During execution the program operates within its
normal CFG. During a control-flow hijacking attack the attacker corrupts
a code pointer and forces the program to perform an unintended control-
flow transfer, which is outside of the CFG. Figure 2.1 shows an example of
an CFG (blue nodes). During the attack the attacker forces a control-flow
transfer from basic block D to X, which is not part of the regular CFG.
Control-flow hijacking attacks dynamically add edges and sometimes nodes
to the CFG.

The first and still prominent technique to hijack the control flow was to
overwrite the return address on the call stack. The usual C calling conven-
tions place data and return addresses on the same stack. This makes the
return address prone to be overwritten by stack-based buffer overflows, a
common error in C programs that manipulate strings stored on the stack,
as described in Section 2.1).

Other often targeted code pointers are inside the global offset table (GOT),
a section used by the dynamic linker to store pointers to functions with
addresses unknown at compile time. During the first call of a library function
the dynamic linker is invoked to look up the address of the function and to
store it in the GOT. Any call to a function in a dynamically loaded library
is using the indirection via the GOT. If an attacker can replace a function
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A

B

C D

E

X

Figure 2.1: Example of control-flow graph. The blue nodes are part of the normal CFG. A
unintended control flow transfer from D to X is forced by the attacker.

pointer inside the GOT she can effectively replace a function. For example
the attacker replaces the puts function with the system function. If the
attacker controls any of the strings, which is passed to puts, she can execute
shell commands.

In C++, classes can have virtual methods, which can be overridden by sub-
classes. On a virtual method call the actual target of the call is chosen based
on the actual type of the object during runtime. Since the compiler only
knows the static type of the variable, it does not know which implementa-
tion of the virtual method must be called. To support this feature virtual
calls first perform a lookup in a virtual method table, which is a table of
code pointers to the implementations of the virtual methods. Each class
has its own virtual method table or vtable for short. A pointer to the class’
vtable is usually placed at the beginning of each object. While the virtual
method table itself should be read-only, an attacker can replace the vtable

pointer to point to a different table of code pointers. Therefore not only code
pointers can be abused to hijack control flow, but also pointers pointing to
code pointers.
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Code Injection

Early exploits injected small snippets of machine code into the address
space of the vulnerable program and redirected control flow there to achieve
arbitrary code execution. The code is injected as regular user input and a
code pointer corruption is used to redirect control flow to the location of
the user input. This small snippets of code usually did nothing more to
launch a shell and make it available over the network, so that the attacker
can further use the system. The name shellcode has been established for
these small snippets of code, because of their typical functionality.

Shellcode is usually very constrained in its size and the possible bytes it
might contain. For example shellcode that is processed by C string manip-
ulation functions must not contain zero bytes as this would terminate the
string and stop further processing. Further restrictions might be that the
shellcode cannot contain a newline character or might even be restricted
to alphanumeric characters. All of these restrictions can be bypassed by
cleverly writing the shellcode and avoiding certain kinds of instructions
[rix01]. It has even been shown that a shellcode can mimic English prose
text on x86_64 [Mas+09].

Code-Reuse Attacks

After the injection of shellcode was mitigated by data execution prevention
(DEP) or code-signing schemes a class of attack techniques appeared that re-
use existing code of the vulnerable program in an unintended way. Shellcode
was mostly used to create backdoors into the system by starting a shell
process. To setup such a backdoor the shellcode typically binds the shell
to another network port or connects back to the attacker. The idea of code-
reuse attacks is that the tasks of shellcode can be also performed by code
that is already present in the program.

The first code-reuse attack technique was return to lib(c) (ret2libc). The
idea of ret2libc attacks is to reuse functions that are always present in
the standard libraries. One typical example is the system function, which
executes the command that is passed as parameter. To perform a ret2libc
attack, control over the stack is needed. The return address is overwritten
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with the address of the function she wants to call. Additionally the stack
is prepared in a way that after the return to the target function, attacker
controlled arguments to the function are on the stack as expected by the
called function. Multiple calls can be chained by ensuring that for the return
of the first called function, the stack contains a valid return address and
the parameters for the second function. It was later shown that almost
any computation can be achieved by chaining together libc function calls
[Tra+11].

Return to lib(c) attacks are not so easily possible when calling conventions
are used that pass parameters in register and not on the stack. On the
32-bit Intel x86 architecture the usual calling conventions pass arguments
on the stack. The 64 bit extension x86_64 has switched to a different calling
convention, passing arguments in register. Other architectures such as ARM

and MIPS also pass arguments in registers. To still perform ret2libc attacks
existing chunks of code must be abused to set the register values [Kra05].

Chaining existing chunks of code has been further generalized to return-
oriented programming. Return instruction are used to chain together short
pieces of code, called gadgets. Each gadget typically performs a couple
of instructions and returns to the next gadget. If enough gadgets exist
ROP is Turing-complete. An attacker can use ROP to achieve arbitrary
code execution without injecting shellcode into the address space of the
vulnerable program [Sha07].

Figure 2.2 shows an example of a ROP attack, where the stack on the left
is prepared with gadgets in existing code and data values. The chain of
ROP gadgets performs a function call to write. To achieve this the attacker
corrupts the stack. When the vulnerable function returns in the basic block
0, control passes to the attacker’s ROP chain. Since on x86_64 parameters
are passed in register the ROP chain first sets the registers rdi, rsi and rsi

to the parameters of the call. In Figure 2.2 the gadgets A, B and C are used
to set the register rdi for the first parameter to 1. The gadget D loads the
second parameter, a pointer to a buffer, into the register rsi. Gadget D also
loads the length parameter from the stack, but into the wrong register. The
value is moved in gadget E into the correct rdx register. The last gadget E
then uses a indirect call to invoke the write function.
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...

&A

dummy

&B

&C

&D

&buffer

length

&E

&write

...

xor rax , rax // clear rax

pop rbp // load dummy value

ret // jump to gadget B

mov rdi , rax // rdi = 0

ret // jump to gadget C

inc rdi // rdi = 1

ret // jump to gadget D

pop rsi // rsi = &buffer

pop rbx // rbx = length

ret // jump to gadget E

mov rdx , rbx // rdx = length

pop rax // rax = &write

jmp rax // jump to write

// vulnerable function

// ...

ret // jump first ROP gadget A

// ROP chain is equivalent to

write(rdi=1, rsi=&buffer , rdx=length)

Stack

0

A

B

C

D

E

rsp 0

rsp A

rsp B

rsp C

rsp D

rsp E

Figure 2.2: Example of a short ROP payload, which sets up a call to the write function. On
the left is the corrupted stack and on the right is the control-flow between the
ROP gadgets.
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After ROP it was discovered that also other branching instructions can
be used to chain together existing code snippets. Using pairs of pop reg,
jmp reg instructions one can emulate the return instruction [Che+10]. Also
indirect jumps can be used to achieve something similar to ROP, but is not
necessarily constrained to use the stack to dispatch control-flow transfers
[Ble+11]. Various variants of ROP have been developed in order to create
attack techniques, that are more reliable or resilient against mitigation
techniques. Similar computational expressiveness can also be achieved with
SROP, which abuses UNIX signal handling and the sigreturn syscall to
redirect control flow and set registers [BB14]. Attacks like blind ROP [Bit+14]
and SROP [BB14] provide means for an attacker to perform attacks when
nearly no information is known about the targeted binary. Just-in-time
ROP is an attack technique that systematically discovers the executable
code using an arbitrary read vulnerability and a leak of one code pointer
[Sno+13].

An attack technique specifically targeting C++ code is counterfeit object ori-
ented programming (COOP). This attack does not use the stack to dispatch
control flow transfers. Instead the building blocks of COOP are counterfeit
C++ objects. Specifically COOP uses virtual methods of C++ classes as gad-
gets, called vfgadgets. Each C++ object that contains virtual method has
a pointer to a virtual method table attached. Each call to a virtual method
of the object is performed indirectly by loading the code pointer of the
respective index from the vtable. For COOP attacks, pointers into vtables

and object members are arranged into, possibly overlapping, counterfeit
objects. To direct the control flow to the various gadgets a special dispatcher
gadget is used. This dispatcher gadget iterates over the counterfeit objects
and calls virtual methods on this objects. Virtual methods that call into
two other virtual methods can also be used as recursive dispatcher gadget.
In sufficiently large C++ code bases enough gadgets exist to make COOP
attacks Turing-complete.

Using COOP has several advantages for an attacker. Heap exploits often
have to move the stack pointer into the heap to perform ROP, which can
be avoided by COOP. Furthermore it is harder to defend against COOP
because mitigation mechanisms need to consider C++ semantics and code
pointers are not involved directly, but only indirectly via the vtable [Sch+15;
Cra+15a].
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2.2.3 Data-Only Attacks

For data-only memory corruption attacks, the attacker is only able to change
non-control data, i.e. no code pointers. We consider corrupting pointers to
code pointer tables, such as vtables, not as an data-only attack. Instead of
hijacking the control flow directly via code pointers, the attacker corrupts
other parts of the programs data to indirectly influence the control flow.
Data-only attacks stay inside the legitimate control-flow of the targeted
program.

Every piece of data that influences the control flow of the program is a
possible target for such attacks. The feasibility of such attacks was studied
in [Che+05]. Examples for possible targets of memory corruption are:

• Configuration data contains information on how the program be-
haves. Corrupting file path information is a prime example on how
an attacker can gain access to files, outside the configured file paths.
For example a web server only serves files from a certain directory
or executes dynamic scripts only in another directory. By corrupt-
ing the configured directories the attacker could be able to point the
script directory to the user upload directory and achieve command
execution.
• User identity data is used by the program to decide whether a user is

allowed to perform a certain action. By corrupting a username or user
identifier an attacker can gain access to resources she would not be
allowed to user otherwise.
• User inputs are usually validated by the application to ensure that

the data matches the expectation. If the attacker can corrupt the data
after validation the program might break because certain assumptions
about the user input do not hold anymore. This can lead to further
memory corruption.

Figure 2.3 shows an example from [Akr+08] for a vulnerability that is
exploitable with a data-only memory corruption attack. The short snippet
of C code contains a buffer overflow vulnerability, that allows an attacker
to corrupt configuration data. The code is part of a web server, that can
execute common gateway interface (CGI) scripts. CGI scripts are external
programs, that are called by the webserver to dynamically generate content.
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Depending on the requested uniform resource locator (URL) a different CGI
script is executed by the webserver. The code contains two global variables,
called cgiDir and cgiCmd. Both are arrays of type char, i.e. strings in the C
language. The cgiDir string contains the path to the directory where the
CGI scripts are located. The user is allowed to execute any of the CGI scripts.
Now we assume that the requested URL is controlled by the attacker and the
webserver extracts the last part of the URL to determine which CGI script
to call. So the function ProcessCGIRequest is called with untrusted input
that is controlled by the attacker. Since the size variable is also untrusted
and can be > 64, the snippet is vulnerable to a buffer overflow attack. The
attacker can abuse the buffer overflow from the cgiCmd variable into the
cgiDir variable to change the cgiDir to a different path. This allows the
attacker to execute a program in a different path as a CGI script, leading to a
arbitrary command execution. The attack never corrupts any kind of control
data and is therefore a data-only attack. This example show the severity of
some data-only attacks, as an attacker has gained the same capabilities as
with a shellcode injection attack.

Data-only attacks against configuration data or user identity data are only
examples for interesting targets. Data-only attacks can be generalized to all
data variables, that are used as the condition for a branching instruction.
If a data variable is used as a condition for a branch, it can indirectly
influence the control-flow of a program. For example Kenali [Son+16] is a
defense mechanism against data-only exploits targeting the Linux kernel.
First Kenali identifies a set of critical data variables in syscall handlers. It
then separates the critical set of variables from the non-critical set using
hardware mechanisms. Variables within the critical set are further protected
by introducing instrumentation, similar to write-integrity testing (WIT)
[Akr+08]. To identify the critical set, they perform static analysis on all
syscall handler functions. Every data variable, that is used as condition for
a block that returns an error code, is put into the set of critical variables. In
general it is hard to automatically decide which parts of a program’s data
must be considered as security critical.

Although data-only attacks are known since the first publication of memory
corruption exploits, research on the expressiveness has only currently begun.
Data-oriented programming (DOP) is a data-oriented attack technique,
shown to be Turing-complete [Hu+16]. The requirement for a DOP attack to
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...

showUsers.cgi

/var/www/cgi-bin/

...

Memory before attack

cgiCmd

cgiDir

...

bash;#AAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

/usr/bin/

...

Memory after attack

cgiCmd

cgiDir

0x00..00

0xFF..FF

0x00..00

0xFF..FF

1 // written only by ProcessCGIRequest

2 char cgiCmd [64];

3 // written only by SetCGIDir

4 char cgiDir [64];

5

6 void ProcessCGIRequest(char* curCmd) {

7 // curCmd is untrusted input

8 size_t i = 0;

9 // buffer overflow here

10 while (i < strlen(curCmd )) {

11 cgiCmd[i] = curCmd[i];

12 i++;

13 }

14 // system(strcat(cgiDir , cgiCmd ))

15 ExecuteRequest(cgiDir , cgiCmd );

16 }

17

18 void SetCGIDir(char* newDir) {

19 size_t i = 0;

20 while (newDir[i] && (i < 64)) {

21 cgiDir[i] = newDir[i];

22 i++;

23 }

24 }

Figure 2.3: C snippet that contains a vulnerability, exploitable with a data-only buffer
overflow. The buffer cgiCmd can overflow into cgiDir, leading to arbitrary
command execution.

22



2 Memory Corruption Attacks and Defenses

allow arbitrary computation is that three types of gadgets are available inside
of a dispatcher loop: assignment, dereference and addition. The dispatcher
loop can be either a loop, whose loop condition can be manipulated to run
the whole DOP attack or a repeatedly invoked memory corruption.

Data-only attacks are also used as a first stage in an exploit to set up a
control-flow hijack [Eva+15]. To various extent this is already required on
modern operating systems. Exploit writers need to bypass various mitigation
mechanisms, as discussed in Section 2.3. Vendors of modern web-browsers,
like Google Chrome or Microsoft Edge, have invested significant effort into
introducing mitigation mechanisms. Current research studies the feasibil-
ity of using data-only attacks against hardened web browsers [Gaw+16b;
Rog+]

2.2.4 Information Leaks

An information leak occurs when the attacker gains access to information,
which she is not intended to view. This can happen because of logic bugs,
but also due to memory corruption. Information leaks due to memory
safety violations are out of bounds reads or reading from dangling pointers.
Information leaks can be data-only attacks or can be constructed using a
control-flow hijack attack. Furthermore information leaks are frequently
part of exploits, as they are needed to bypass probabilistic mitigation mech-
anisms. [Sha+04; Sno+13].

If a vulnerability can be used to corrupt a pointer, which is then dereferenced
and sent back to the attacker, a very powerful information leak is created.
This allows the attacker to read almost all contents in the address space of
the program. Listing 2.4 shows an example, where a buffer overflow can be
used to create a powerful information leak. The pointer s can be corrupted
with a buffer overflow, triggered by the gets function. The puts function
dereferences the corrupted pointer and prints the memory contents back to
the attacker.

An prominent example for an information leak is the notorious heartbleed
bug in OpenSSL [Tea]. This bug occurred because of a missing boundary
check. The length of a buffer that was sent back to the client, was taken
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1 char input [128];

2 char *s;

3 // ...

4 if (...)

5 s = "success";

6 else

7 s = "error";

8 gets(input); // triggers buffer overflow

9 // which overflows into s

10 // s is now controlled by the attacker

11 puts(s); // reads string from manipulated s

12 // and prints it back to the attacker

Listing 2.4: Example of a C program with an information leak of arbitrary addresses

without further checks as the length parameter to a call to memcpy. This
buffer was then sent back to the client. Although the buffer over-read was
limited to 64 kB on the heap, the attack has been shown to be powerful
enough to leak private keys and plaintext passwords from production
systems [14; Sha14].

2.3 Mitigation Mechanisms

Soon after the emergence of the first memory corruption exploits the arms
race between attackers and defenders started. On the defensive side, research
has focused on how to stop general classes of attacks or make certain types
of memory corruption bugs unexploitable. For nearly every countermeasure
introduced there were found ways to bypass them. When introducing exploit
mitigation techniques it must be ensured that there are no compatibility
issues with existing code and furthermore to be adopted the mitigation
technique must not introduce too much overhead. In real world systems
when choosing between higher security guarantees and lower overhead, the
latter is usually chosen. This creates gaps in the security guarantees of a
mitigation technique, which can be used by an attacker to bypass it.
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Over the years, mitigation mechanisms have made it into major operating
systems and compilers. This has made exploitation already significantly
harder. Nowadays exploits often abuse more than one bug to bypass the de-
ployed mitigation mechanisms. In the following section, we give an overview
over different approaches to mitigating memory corruption exploits. We
first discuss one of the most widely deployed mitigation mechanisms: non-
executable memory. We describe proposals that introduce full memory
safety. Then we discuss probabilistic approaches. We discuss another widely
deployed defense, called adress space layout randomization (ASLR), and its
shortcomings. Furthermore we elaborate the challenges of more fine-grained
code randomization. Then we describe the concept of control-flow integrity
(CFI). We end with mitigation mechanisms that protect code pointers to
stop control-flow hijacking attacks.

2.3.1 Non-Executable Memory

The first buffer overflow exploits also injected shellcode into the vulnerable
application [One96]. This shellcode is introduced in the address space of
the program via user input, which typically resides in the stack or heap
segments. The attacker then redirects control flow into these segments. On
processors with virtual memory, permission bits are stored in the pagetable
that indicate whether a page is readable or writable. The code segment is
usually mapped as read-only, as code changes rarely during execution of
a program. To counter code injection, a bit for executable was introduced.
This way only the pages explicitly marked as executable can contain code.
For CPUs that did not have this feature, techniques to emulate this behavior
based on segmentation were developed. Depending on the operating system
and CPU vendor this feature is called DEP, No eXecute bit, XD-bit or W^X.

After DEP started to become widely deployed the focus shifted to code
reuse. Having to resort to code reuse attacks is rarely a serious limitation for
an attacker. For example an often targeted function is system in the standard
libc, which is used to execute shell commands. While DEP is easily bypassed
by code-reuse attacks, it is nevertheless useful as a first line of defense. More
advanced mitigation mechanisms often rely on the enforcement of restrictive
memory protections.
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2.3.2 Retrofitting Full Memory Safety

Since the underlying problem of memory corruption exploits is the lack of
memory safety, an apparent mitigation is to introduce full memory safety
into the C/C++ languages. There are various proposals that try to achieve
this. Memory safety approaches are distinguished based on whether they
are object-based or pointer-based [Nag12]. Object-based approaches ensure
that a pointer only points to its intended referent. Pointer manipulations are
checked such that derived pointers stay within the bounds of the original
object. Object-based approaches track bounds-information per object. On the
other hand pointer-based approaches track base and bound information per
pointer. The bound information is updated during pointer arithmetic and
checked at pointer dereference. Pointer-based solutions either attach this
meta-data directly to a pointer (fat pointers) or store it disjointly in a shadow
memory region. Using disjoint meta-data has the advantage of achieving
binary compatibility with unsafe libraries, while having to maintain the
shadow memory region.

SafeCode is an object-based approach and requires minimal changes to
the source code of the program. SafeCode uses a points-to analysis based
technique called Automatic Pool Allocation to reduce the overhead of mem-
ory safety checks [LA05]. For every node in the points-to graph a separate
partition of memory is introduced. First a pointer may never point outside
of its assigned memory pool. Second by pooling memory allocation the
target object associated with a pointer can be looked up more efficiently.
When performing pointer arithmetic they introduce checks that ensure that
the underlying object is still the same [DA06]. Furthermore pool alloca-
tion with type-homogeneous pools provides a natural way to ensure that
dangling pointers never violate type safety guarantees. SafeCode achieves
this by preventing cross-pool memory reuse [Dhu+03; DKA06]. A general
problem with object-based approaches is that out-of-bounds pointers are
allowed in the C language, as long as they are not dereferenced. This is a
pattern that is common in many C programs and needs special handling
in object-based approaches. Furthermore object-based checks have trouble
dealing with sub-object memory corruption, such as overflows inside of a
struct or inside of arrays [Nag12].
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Some pointer-based proposals modify the C languages and restrict the prob-
lematic parts of the language. For example CCured [NMW02] and Cyclone
[Gro+02; Hic+04] introduce a strong type system into the C language. Based
on the strong type system they can decide which pointers are safe to use
and which must be explicitly checked during runtime. They furthermore
tackle temporal safety by introducing some form of automatic memory
management. The disadvantage of these approaches is that they introduce
new language constructs and therefore require source code modifications.

SoftBound [Nag+09] is a highly compatible pointer-based approach for
ensuring spatial safety. For every pointer SoftBound keeps track of a base
and a bound value. This base and bound values are updated during pointer
arithmetic. When a pointer is dereferenced the base and bound values are
retrieved and it is checked whether the pointer still points into the associated
object. Furthermore, when the address of a field inside of a structure is
taken, SoftBound shrinks the base and bound value to the field. This allows
prevention of sub-object spatial memory corruption. Compiler enforced
temporal safety for C (CETS) [Nag+10] is a scheme to ensure temporal
safety, given that the program is free of spatial memory safety violations.
CETS introduces a allocation key and a lock value for each allocation, which
are propagated during pointer arithmetic. To detect dangling pointers CETS
inserts checks that verify that the key and lock value are the same. The
lock value is set to an invalid value during deallocation. Furthermore, a
hash-table is used to keep track of freeable pointers and detect invalid
parameters to calls to free.

MemSafe [SB13] is a hybrid approach that combines pointer-based checking,
similar to SoftBound, and object-based checking. To ensure spatial memory
safety a pointer-based disjoint meta-data approach similar to SoftBound
is used. MemSafe models temporal safety violations as spatial memory
safety violations. On deallocation the pointer and object-based meta-data
is set to an invalid value. This cannot be propagated to pointers to fields
inside structures. Therefore to ensure complete temporal safety MemSafe
also keeps track of object-based meta-data, which allows a lookup from
pointers to fields to the object meta-data. To avoid duplicate bounds-checks
MemSafe relies on safety analysis to allow it to safely eliminate checks.
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2.3.3 Probabilistic Defenses

Probabilistic defenses are mechanisms that introduce some form of random-
ness into the execution of a program, while preserving the semantics of
the original program. This makes exploits non-deterministic and therefore
harder to construct. Probabilistic defenses are by nature not a complete pro-
tection and break down as soon as the randomized values can be inferred by
the attacker. While Probabilistic defenses cannot offer complete protection,
they have several advantages. Many of the proposed probabilistic defense
mechanisms have a low performance overhead and do not suffer from
compatibility issues. This makes them easy to implement and deploy. Fur-
thermore the analysis of the security guarantees of an probabilistic defense
is rather easy: one measures the provided entropy in the randomized values.
This assumes that the randomized value cannot be inferred other than by
brute-force guessing. Some probabilistic schemes also feature a tweakable
security parameter, that allows to configure the introduced entropy. Proba-
bilistic defenses can be applied in many places during the execution of a
program. ASLR randomizes pointer values. Software diversification is used
to create unique binaries, to hide low-level details of the binary from the
attacker. Other schemes introduce blinding by using the XOR operation
with a secret blinding values.

Pointer Randomization

One of the most wide-spread defense mechanisms is ASLR. ASLR random-
izes the address layout of a process during the process creation. Position
independent sections are mapped at randomized virtual addresses. This
means that an attacker does not know the address of the stack or the heap.
This thwarts simple code injection attacks by having the attacker guess the
address of the injected code.

Attacks against ASLR have been widely studied, both by exploit writers and
academia. One of the first attacks against ASLR attacked the low available
entropy on 32-bit address space. For practical reasons ASLR implementa-
tions cannot randomize the full 32-bit of an address and provide at most
an entropy of 25-bit and for some types of mapped memory even less. A
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brute-force attack is therefore possible on 32-bit systems [Sha+04]. Nowa-
days even mobile devices feature 64-bit address space, making ASLR much
more effective on these platforms.

Practical exploits use non-randomized sections to leak or infer addresses
of the randomized sections. For example the code section of an executable
cannot always be mapped to a randomized addresses, because it is com-
mon to compile code to use constant addresses for jump and call targets.
Dynamically linked libraries are compiled in a position-independent way,
because their position is not known at compile time. An attacker can still
use the main executable for code-reuse attacks. Depending on the binary,
there might be enough gadgets available for Turing-complete computation.
Furthermore an attacker can also call all the library functions called from
the main executable. With this capabilities attackers can construct exploits
that first leak the randomized addresses and update their payload to use
the leaked addresses [Str+09]. Usage of position-independent code for main
executables becomes more frequent, to improve the effectiveness of ASLR.
This randomizes all mapped code pages and requires an information leak
of a code pointer, before constructing an attack.

A big problem for ASLR is when an attacker can retry exploits without a
re-randomization of the targeted process’ address space. This is for example
common on forking network servers. A child process inherits the address
space layout from the parent process. Because of performance reasons, the
address space is usually not re-randomized. An attacker can therefore try
her exploit with different addresses until it works. The blind ROP technique
introduced in [Bit+14] allows an attacker to create a working ROP exploit
even when the attacked binary is not known. They perform a brute-force
attack to locate suitable gadgets to execute a small ROP chain. The only
assumption is that the server process forks for each connection and does not
re-randomize the address space. A similar technique can also be applied to
some client applications. The Javascript engines in web browsers often allow
an attacker to execute a crashing exploit in a thread, without crashing the
whole browser process [Gaw+16b]. Using such crash-resistant primitives an
attacker can de-randomize ASLR or perform blind ROP attacks.
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Code Randomization

Because of the relatively low entropy in ASLR more fine-grained random-
ization schemes have been proposed. Address Space Layout Permutation
[Kil+06] re-orders the functions in a binary during program loading. XIFER
randomizes the order and position of basic blocks [Dav+12b]. Compile and
load-time diversification of the executable code already provide a significant
problem for attackers. Simple exploits do not work anymore. Attackers have
to resort to information leaks to gain as much information about the exe-
cuted code as possible. With advanced code-reuse techniques such as blind
return oriented programming (BROP) and just-in-time return oriented pro-
gramming (JIT-ROP) attackers can defeat even fine-grained randomization
schemes.

As a reaction to the JIT-ROP attack, several different approaches have been
proposed to counter information leaks of randomized code. Multivariate ex-
ecution is a technique where the same input is concurrently fed to the same
program, but with different randomization. If the output of the programs
differ, then an information leak happened. Besides the high overhead of exe-
cution a program twice, there are many practical problems with eliminating
all sources of non-deterministic behavior from a program [Gaw+16a]. Shuf-
fler [Wil+16] is a scheme that continuously re-randomizing code sections
during execution. An attacker is forced to complete a JIT-ROP attack before
the re-randomization occurs. This approach imposes a high overhead for
the continuous code randomization.

Other solutions try to prevent information leaks in the first place. For
example [Bac+14] proposed using executable, but not readable, memory for
code pages. Code is typically not read using other instructions, but is only
read by the CPU during instruction fetching. For optimization purposes
compiler sometimes store constants directly into the code segment, for
example for instruction pointer relative loading of constants. This breaks
the assumption of execute-only memory, that code pages are never read. To
use the technique without access to source code workarounds need to be
built in, that also give an attacker opportunities to attack the system.

In contrast to execute-only memory, destructive code reads [TSS15] do not
prevent information leaks of code pages, but render leaked code unusable.
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When code is read, it is destroyed afterwards by overwriting it with some
instruction, that triggers a program abort. An attacker cannot execute an
instruction anymore after it has been read by an information leak of the
attacker. Destructive code reads have been undermined by code inference
attacks [Sno+16]. If code has been mapped twice into the address space of a
program, the attacker can read one copy and execute the other. Even if this
is not possible, then an attacker can leak the first couple of basic blocks to
identify them. The remaining instructions can then be used by the attacker
for code-reuse attacks.

Furthermore fine-grained randomization cannot defeat function-level code
reuse attacks. The semantics of a function must be preserved by code-
randomization schemes. For example on 32-bit x86, where parameters are
usually passed on the stack, an attacker can perform return-to-libc attacks.
First the attacker needs to disclose the addresses of the used functions, to
bypass ASLR. An attacker can leak function pointers, return address or jump
tables to locate existing functions. Fine grained code randomization does not
offer any advantage over plain ASLR against function-level code reuse. The
majority of architectures, such as x86_64, ARM, MIPS, do not pass function
arguments on the stack. An attacker must therefore reuse existing code to set
the function arguments and fine-grained code randomization does impose a
significant challenge to the attacker. Furthermore many code-randomization
schemes can partially re-randomize code on fork [Wil+16], so blind ROP
becomes infeasible. JIT-ROP attacks are still feasible if the arbitrary read
can be triggered without crashing the process. JIT-ROP itself only leaks at
mapped addresses, so it does not crash the process.

COOP is an attack technique that bypasses all the existing code randomiza-
tion schemes and also techniques that prevent code leakage. The attacker
must only leak the addresses of the C++ vtables, which can be achieved by
leaking the contents of objects. Furthermore to perform a COOP attack, the
attacker does not need to know the exact code, but only the semantics of
the C++ virtual methods and the layout of the C++ classes. As a response to
attacks, that disclose code locations, several schemes have been proposed to
hide code references. Oxymoron [BN14] hides all direct references to other
code pages, by turning direct branches into indirect branches. This hinders
JIT-ROP attacks, which use direct branches to discover further code pages.
Oxymoron does not protect against indirect code disclosure by leaking code
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pointers. As shown in [Dav+15] indirect code disclosure is sufficient to
create working exploits. Readactor [Cra+15b] hides return addresses and
function pointers behind execute-only trampolines.

To mitigate COOP attacks Crane et al. proposed to randomize code pointer
tables, such as vtables [Cra+15a]. They hide entries in the code pointer
tables behind execute-only trampolines. This prevents an attacker from
disclosing the address of the randomized virtual methods. This way an
attacker cannot inject fake vtables. To prevent an attacker from guessing
the correct index into a vtable, they introduce “booby traps” into code
pointer tables, which are invalid indices that upon use trigger a program
abort or crash. An attacker would need to guess the randomized index into
a vtable, but is very likely to hit one of the booby trapped indices.

Blinding Schemes

Many schemes introduce secret random values, by blinding data. This is
usually done by applying th XOR operation to the original value and a secret
random value. Blinding schemes are often used to mitigate shortcomings of
code randomization schemes or to achieve low overhead protections. For
example PointGuard [Cow+03] protects all pointers. Many code randomiza-
tion schemes blind return addresses, to mitigate code pointer leaks [Wil+16].
PaX RAP [Tea15] introduces an additional layer of probabilistic protection
on top of a deterministic CFI defense mechanism. Instruction Set Random-
ization is a technique that blinds all instructions inside the code segment of
a program [KKP03]. We discuss general non-control data blinding schemes,
a probabilistic form of data-flow integrity (DFI), in Chapter 3.
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2.3.4 Control-Flow Integrity

CFI is a mitigation mechanism against control-flow hijacking attacks and
was first introduced by Abadi et al. [Aba+05]. CFI is a deterministic pro-
tection that limits the capabilities of an attacker. It both defines a security
policy and enforces this policy by introducing additional checks in the
protected program. The CFI security policy is: during execution a program
must adhere to its CFG, which has been determined before the execution.
During typical control-flow hijacking attacks, such as ROP, there are many
control-flow transfers that violate this policy. Typical ROP attacks consist
mostly of control-flow transfers that are not part of the static CFG. However
an attacker that is aware of the restrictions that CFI impose, can still operate
within the CFG. The assumption is that it is unlikely that an attacker is able
to construct a meaningful exploit with the imposed restrictions.

CFI considers a threat model that assumes correctness of the processor and
an absence of physical attacks. Furthermore it is assumed that the code
protected by CFI cannot be modified, i.e. is mapped read-only. CFI also
assumes that data is non-executable, otherwise an attacker could inject
correctly code bypassing CFI as data. CFI must be considered a defense only
against code-reuse attacks and must be combined with proper enforcement
of memory protections. With this assumptions the attackable control-flow
transfers are those, that happen because of indirect branching instructions.
Direct branches can only have one target in the CFG and therefore use
a constant address as target, which is encoded in read-only instructions.
CFI checks can be omitted for direct branches. Indirect branch instructions
direct control-flow to a variable code pointer, which can be corrupted by an
attacker. Examples for indirect branching instructions on x86 are indirect
jump, call and return instructions.

Forward-edge CFI is considering the protection of indirect call and jump
instructions. Basic block A in Figure 2.4 shows the assembly instructions
for performing an indirect call. First the target code pointer is loaded from
the stack into the rax register. Then rax is used as parameter to the call

instruction. A legitimate transfer would be to a function, that fits the CFG.
The basic block B is a valid call target, as it contains the function prologue
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of a function within the CFG. On the other hand a transfer to X clearly
violates CFI, as it would jump into the middle of a function. To enforce CFI
a check must be inserted in front of the call instruction that verifies the call
target.

// indirect call

mov rax , qword [rbp + 0x18]

call rax

// func:

push rbp

mov rbp , rsp

sub rsp , 0x10

// ...

ret

// ROP gadget

xor rax , rax

pop rbp

ret

A

B X

� ×

Figure 2.4: Forward-edge CFI: On the left a valid transfer and on the right a malicious one.

Backward-edge CFI is concerned with protecting returns from a call. Fig-
ure 2.5 shows an example for a backward control-flow transfer via a return
instruction. The main function calls func and returning from basic-block B
to A is a valid control-flow transfer because the return address points to a
instruction that is preceded by a call to func. On the other hand a return
to a ROP gadget at X is an invalid transfer to a ROP gadget, violating CFI.
To enforce CFI a check must be inserted before the return, that ensures that
the return address is a valid return target.
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// func:

push rbp

mov rbp , rsp

// ...

leave

ret

// main:

call func

mov qword [rbp + 0x10], rax

// ...

mov [rbp -0x8], rax

// ROP gadget

xor rax , rax

pop rbp

ret

A

B

X

� ×

Figure 2.5: Backward-edge CFI: On the left a valid return and on the right a malicious one.

Returns addresses are code pointers that occur much more frequent than
other code pointers. A return address is saved on the stack for every function
call, which means that return addresses are also very likely to be targeted
by an attacker. Unfortunately checking every return address is also very
expensive. Many CFI implementations therefore use shadow/split stack
setups or probabilistic defences to protect them from an attacker and omit
explicitly checking CFI for return addresses [Aba+09; Dav+14].

A CFI implementation as proposed by Abadi et al. [Aba+05] induces a rela-
tively high overhead on the protected program. To decrease the performance
impact of CFI, implementations often use a more coarse-grained security
policy. For example as can be seen in Figure 2.5 the instruction at a return ad-
dress must always be preceded by a call instruction. A very coarse-grained
backward-edge CFI policy could require that valid targets for returns are
only those addresses, which are preceded by some call instruction. kBouncer
is a defense mechanisms against ROP, that implements this policy [Pap12].
According to Schuster et al. [Sch+14] this policy is too coarse-grained to
prevent exploits by an attacker that is aware of the restrictions.
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1 typedef struct msg {

2 char str [64];

3 int (* print_fn )(char *);

4 } msg_t;

5

6 int system(char* cmd) { /* ... executes command */ }

7 int log_stdout(char* s) { /* ... */ }

8 int log_file(char* s) { /* ... */ }

9

10 int main(int argc , char* argv []) {

11 // ...

12 msg_t msg = { .str = {0, }, .print_fn = log_stdout };

13 size_t isz = strlen(user_inp) + 1;

14 memcpy(msg.str ,

15 user_inp , /* <-- attacker controlled */

16 /* this is a buggy length check. */

17 isz < sizeof(msg.str) ? isz : sizeof(msg));

18 // the attack is able to corrupt the function pointer

19 // msg.print_fn and can achieve aribtrary code

20 // execution here:

21 msg.print_fn(msg.str);

22 // ...

23 }

Listing 2.5: Most CFI implementations can be bypassed in this example.

Even the most accurate current CFI implementations suffer from inaccuracy
resulting from the over-approximation of the set of allowed call targets.
Listing 2.5 shows an example where an attacker can manipulate a function
pointer via a spatial memory corruption vulnerability. In this case the
attacker can overwrite the function pointer in the msg_t structure. The first
argument to the print_fn call is also an attacker controlled string. For an
successful exploit the attacker can corrupt the print_fn pointer to point to
the system function. On the last line the call to print_fn is executed and
the attacker gains the ability to execute arbitrary system commands. For this
example we assume that this really is a CFI violation and system is never
assigned to print_fn anywhere in the code.
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Coarse-grained CFI implementations such as Windows Control-Flow-Guard
or Intel Control-flow Enforcement Technology will only prevent calls to
code that is not the beginning of the function. Since in this case the attacker
performs code-reuse on the function level, no CFI violations would be
reported [Dav+14]. Even more fine-grained CFI implementations such as
the forward-edge CFI included in the clang/llvm compiler [Tic+14] or
the forward-edge protection in Pax RAP [Tea15] would not prevent this
exploit. The reason is that both systems do not perform extensive points-to
analysis. Both solutions use an inexpensive type-based analysis to determine
which functions can be called. The function signature of the print_fn

function pointer is exactly the same as the system function signature so
these solutions determine that a control-flow transfer to system is legitimate.
As a result an attacker is able to bypass CFI in this case and transfer control
to the system function and gain access to a system shell.

Practical CFI implementations suffer from over-approximation and coarse-
grained security policies. Many CFI implementations have been proposed
[Aba+05; Dav+12a; Tic+14; PBG15] and ways to bypass them have been
found [Con+15; Gok+14]. Because of the difficulty of evaluating the security
guarantees of CFI, an analysis of a theoretical fully precise static CFI solution
has been performed in [Car+15]. They consider several case studies of real-
world exploits and check whether the vulnerabilities can be abused for
meaningful attacks without violating the fully precise static CFG of the
targeted program.

CFI solutions without the use of shadow stack, allow easy traversing of the
CFG by abusing so-called dispatcher functions. Dispatcher functions are
functions that are able to overwrite their own return address and are called
from many locations. Examples for dispatcher function in [Car+15] are:
memcpy, strcat, printf and fputs, but many more suitable functions exist.
The dispatcher function can be used to return to a large set of destinations,
all those that are preceded by a call to the dispatcher function. Usage of
a shadow stack to protect return addresses is therefore crucial for CFI
solutions [Car+15; Con+15].

Even with the presence of a shadow stack, an attacker can still corrupt other
code pointers to hijack control-flow and traverse the CFG. Listing 2.6 shows
a short snippet of code, in which even fully precise static CFI cannot prevent
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1 int system(char* cmd) { /* ... executes command */ }

2 int deny(char* cmd) { puts("Denied!"); return -1; }

3

4 int main(int argc , char* argv []) {

5 bool is_admin = false;

6 // ...

7 char buf [128];

8 int (*fptr)( const char *);

9 // ...

10 if (is_admin) {

11 fptr = system;

12 } else {

13 fptr = deny;

14 }

15 // fptr can point to both system and deny

16 // ...

17 // calls to gets are vulnerable to buffer overflows

18 gets(buf);

19 // the attacker can corrupt the fptr variable

20 // ...

21 fptr(some_string ); // <-- control -flow hijack

22 // ...

Listing 2.6: Even fully precise static CFI can be bypassed here.

an exploit. A function pointer fptr can be corrupted by a buffer overflow.
In case the user is an administrator, she is allowed to execute arbitrary
commands and therefore fptr is set to the system function. Otherwise fptr

points to the deny function, which ignores requests to execute commands.
We assume that an attacker does not have administrator privileges by default.
In the precise static CFG both the system and deny functions are in the set
of allowed targets of the indirect call via fptr. The attacker can abuse the
buffer overflow to manipulate the fptr function pointer and elevate her
privileges, while staying within the valid CFG. In this example the is_admin

flag cannot be manipulated, but would be an equally interesting target for a
data-only attack.
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In three of the six case studies of real-world vulnerabilities in [Car+15] it was
possible to craft attacks that achieved arbitrary code/command execution
without violating the CFG. This shows that in many real-world programs,
the CFG is permissive enough such that even a severely restricted attacker
can create valuable exploits. It is therefore unlikely that CFI solutions alone
offer enough protection against an sophisticated attacker.

2.3.5 Code Pointer Protection

As can be seen in previous sections, to launch a control-flow hijack an
attacker must overwrite a code pointer. Naturally defenses came up that
prevent or detect corruption of code pointers. First defenses were developed
for specific code pointers and then generalized to all code pointers.

A widely deployed defense mechanism are stack canaries. A canary is a
secret random value that is placed right in front of the return address. Before
returning from a function, the function checks whether the canary has been
modified. If it was modified, it is very likely that also the return address
has been corrupted. This way linear stack-based buffer overflows can be
detected [Cow+99]. Stack canaries are widely deployed and available in
production compilers, such as gcc, llvm and the Microsoft Visual C/C++
compiler.

Shadow or split stack setups save the return address on a different stack
to ensure the integrity of return addresses. Read-only relocations (RELRO)
is a technique that protects the GOT, which is a code pointer table used to
resolve dynamically linked functions. The dynamically linked functions are
resolved during load-time, instead of lazily during runtime, which makes it
possible to map the GOT read-only into the address space.

Cryptographic CFI [Mas+15] is a scheme that protects all code pointers
by computing a message authentication code (MAC) over the pointer and
the pointer location. While the technique is called CFI, it is actually a code
pointer protection scheme. The CFG is not required to be computed before-
hand to implement this scheme and it detects code pointer corruption.
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Code pointer integrity (CPI) [Kuz+14] is a generalization of all code pointer
protection schemes. CPI introduces memory safety for a subset of the vari-
ables in a program: code pointers. Furthermore they extend this recursively
to all pointers pointing to code pointers, for example pointers to C++ virtual
method tables. All code pointers and pointers to code pointers are moved to
a safe region. All accesses into the safe region are instrumented to include
additional checks to ensure memory safety inside the safe region. This ef-
fectively prevents control-flow hijacking attempts, since the attacker cannot
corrupt code pointers anymore.

This scheme is still vulnerable to data-only attacks. So an attacker can try to
use memory corruption of data pointers and variables in the unsafe region,
to corrupt memory in the safe region. Therefore the safe region must be
isolated from the unsafe region. Their prototype for x86 uses segmentation
to isolate both regions. The prototype implementation for x86_64 uses ASLR
to hide the safe region from the attacker. This hiding based approach turned
out to be not effective against data-only attacks [Eva+15]. A software fault
isolation (SFI) based approach has also been proposed, which does not
suffer from this problem, but induces higher overhead.
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Data-flow integrity (DFI) is a mitigation mechanism that enforces limitations
on the data flow during execution of a program. DFI ensures that data is
never written to or read from unintended locations. The policy, which is
enforced by DFI implementations, is based on the data-flow graph that
static analysis computes before program execution. To counter performance
problems, some variants of DFI enforce more coarse-grained policies. DFI
was first introduced in [CCH06]. They use reaching definitions and points-to
analysis [ASU86] to compute the static data-flow graph. The program is
then instrumented to enforce the static data-flow graph. The static analysis
must return an over-approximated result to preserve the soundness of the
analysis. The static analysis can add edges to the data-flow graph, which
are impossible during executions of the program. Enforcing the integrity of
data flow prevents many memory corruption exploits.

The concept and the first implementation of DFI was introduced by Castro,
Costa, and Harris [CCH06]. A variant of DFI with lower overhead and less
security guarantees is write-integrity testing (WIT) [Akr+08]. WIT does not
enforce integrity for load instructions. Instructions that write data are far
less common than instructions that read them. By only instrumenting write
instruction, WIT achieves lower overhead, sacrificing protection against
some information leaks. With data space randomization [BS08] and data
randomization [Cad+08] two probabilistic implementations of DFI have
been proposed concurrently. Both use random values to blind data.

In this chapter, we describe the concept and implementations of DFI. We
discuss the original DFI proposal and probabilistic implementations of DFI,
data randomization, and data space randomization. We then describe how
WIT implements a subset of DFI, write integrity.
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3.1 Data-flow Integrity

A central observation regarding memory corruption exploits is that they
usually start with an unintended data flow. For example, a buffer overflow
stores data not in the intended object, but also in an adjacent object. The
out-of-bounds write, triggered by the buffer-overflow, is a data flow to an
object, which is not intended by the developer. Whether the data flow to
or from an object is valid can be checked by statically determining what
objects may be written or read by certain instructions. Data flows, which an
attacker can corrupt, are those that use pointers to refer to memory locations.
Similar to control-flow integrity (CFI), where only indirect branches need to
be checked, DFI is only concerned with instructions that use pointers. For
example, instructions that perform arithmetic on values stored in registers
can be considered as safe in the context of DFI. To violate data flow between
registers, an attacker would have to hijack control-flow, which DFI mitigates
by also detecting invalid data flows to code pointers.

DFI uses a reaching definitions analysis to compute the static data-flow
graph. A definition of a memory location is an instruction, that writes
to the location. A user of a memory location is an instruction, that reads
from it. First, the sets of defining and using instructions are computed. For
intra-procedural analysis, this is achieved by traversing the single static
assignment (SSA) form of the analysed program. The inter-procedural
analysis is more involved, as points-to analysis is required to decide which
objects can be accessed. A points-to analysis outputs a directed graph, where
a node corresponds to a set of objects, and an edge represents the fact that
a pointer might point to a set of objects. Since pointers can point to other
pointers, which are also objects, we have a points-to graph rather than a
simple mapping between pointers and sets of objects. DFI, as proposed
by [CCH06], uses a field-insensitive inclusion-based points-to analysis also
called Andersen-style points-to analysis. All proposed DFI schemes use
a context-insensitive points-to analysis, which identifies objects by their
allocation site.

DFI keeps track of what instruction defined a memory object. For every
user of a variable, DFI needs to check whether the definition of the variable
is reachable from the user in the static data-flow graph. The way DFI keeps
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track of this information is to store an identifier of the last instruction, that
defined the value. The identifier is stored in a table, called the runtime
definitions table (RDT). Every store instruction is instrumented to record
its identifier in the RDT. Every read instruction is instrumented to verify
that the last instruction that defined the value is actually in the set of
instructions, which are allowed to define the value. DFI extracts the set of
allowed definitions from the static data-flow graph. DFI does not consider
single definitions. It collapses all definitions with the same users into one
equivalence class.

Figure 3.1 shows a simple snippet of C code and the DFI operations. The
value i is defined by the instructions 1 and it is used by the comparison
at 2 . The instructions at 1 define only one value and therefore the users
are also the same, and DFI merges them into an equivalence class. When
the value i is defined, the RDT is updated accordingly. The read instruction
then retrieves the value from the RDT and verifies that the last write was
indeed by an instruction in the set of instructions 1 .

int i;

// ...

if (...)

i = 42;

else

i = 21;

// ...

if (i == 42)

// ...

1

1

2

. . .

i

. . .

RDT[&i]

. . .

Figure 3.1: DFI: Instrumented writes update the RDT and instrumented reads verify the
contents of the RDT.

This way memory corruption attacks can be detected. For example, consider
a buffer overflow that overwrites an adjacent boolean variable. The store
instruction that causes the buffer overflow would update the RDT entry
of the variable accordingly. Upon use of the variable, the RDT entry does
not match the allowed set of instructions and DFI would terminate the
process.
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A major problem with DFI is the high instrumentation overhead. The origi-
nal DFI proposal [CCH06] reported a runtime overhead between 44% and
103% in the Spec 2000 benchmark. Furthermore, the memory overhead is
about 50% for DFI. DFI needs to instrument each store instruction to addi-
tionally update the RDT. Furthermore, the operand of a store instructions
needs to be checked, such that the store cannot write into the RDT. The
overhead for each instrumented load instruction is another load instruction
to fetch from the RDT, the validation of the value in the RDT, and a branch
instruction to abort in the case of a DFI violation.

To counter the performance issues, probabilistic versions of DFI were pro-
posed. Data randomization [Cad+08] and data space randomization [BS08]
were proposed concurrently and both propose probabilistic DFI variants.
Data randomization is implemented as a compiler transformation, which in-
duces a runtime overhead between 0% and 27%. Data space randomization
is implemented using source code rewriting and has a runtime overhead
between 4% and 28%.

Both data randomization and data space randomization offer a probabilistic
version of DFI by blinding all allocated objects with the XOR operation and
a secret random mask. They instrument all load and store instructions to
apply the random mask. If an instruction violates DFI, the wrong mask
would be applied and the value would be garbage. For example, an attacker
abuses a buffer overflow of a buffer b to overwrite a return address. The
buffer b would be masked with mb and the return address r with mr. When
the corrupted return address is read, the actual value would be r′⊕mb⊕mr.
The first mask mb is applied when the user data is written into the buffer.
The second mask mr is applied when the return address is read. If an
attacker has knowledge about the random masks, she would still be able to
conduct the attack. The attacker would overwrite the return address with
r′′ = r′ ⊕mb ⊕mr. The instrumented code would apply mb and mr, leaving
r′ as the used return address.

To make sure that the correct mask is applied to an object, all definitions
and all uses of an object must apply the same mask. If an object is accessed
through a pointer it must also be checked whether the points-to set contains
other objects. All objects, which have at least one use or one definition in
common, must be blinded with the same mask. This creates equivalence
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classes that are computed based on the points-to graph. The equivalence
are the same as in DFI.

3.2 Write Integrity Testing

WIT is a performance optimized variant of DFI, that sacrifices read integrity
for performance. WIT as implemented by Akritidis et al. [Akr+08] induces
a runtime overhead between 7% and 25%. The memory overhead of WIT is
reported to be approximately 12.5%, because of the more compact shadow
memory representation. The definition of the static security policy is very
similar, except that WIT does not enforce integrity on load instructions. WIT
uses a points-to analysis to compute its policy. In contrast to DFI, WIT is
not concerned with users of an object. To enforce write integrity, WIT first
computes the points-to graph for each store instruction. WIT assigns a color
to each store instruction, such that all objects written by the instruction are
colored the same way. If two different store instructions can write to the
same object, then both store instructions are assigned the same color. WIT
computes equivalence classes of stores and objects. Each store instruction is
allowed to write to any of the objects in the associated set of objects.

Figure 3.2 shows an example of the color computation of WIT. First, the
points-to graph is computed. The pointers used by store instructions are
analysed to find the set of objects that may be referenced by the pointer.
The store instruction, which uses that pointer, is assigned the set of objects
writable through that pointer. In Figure 3.2, the store instruction X can write
to the objects A and B. The store instruction Y can write to C and B. Both
store instructions are assigned the same color because an object can only
have one color assigned at a time. The store instruction Y can also write to
object A, although the static analysis could determine that such a data flow
would be illegal. On the other hand, only the store instruction Z writes to
the objects D and E. WIT can enforce that no other store instruction writes
to those objects. An attacker can still exchange the objects D and E if she
manages to corrupt the pointer %6 used in the store instruction Z.

To illustrate the protection that is offered by WIT an example of a data-
only attack thwarted by WIT is shown in Figure 3.3. The figure shows the
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store i8 %1, i8* %2

store i8 %3, i8* %4

store i8 %5, i8* %6

@objA = global i8

@objB = global i8

@objC = global i8

@objD = global i8

@objE = global i8

X

Y

Z

Figure 3.2: Example coloring of WIT stores (in LLVM IR).

same snippet of C code, as shown in Figure 2.3 in Chapter 2. The attacker
again tries to abuse the buffer overflow from cgiCmd to cgiDir to achieve
arbitrary command execution, but WIT will prevent the attack. The WIT
colorings are equal to the enforced equivalence classes. Since cgiCmd is only
written by ProcessCGIRequest and cgiDir is only written by SetCGIDir,
both can be cleanly separated into equivalence classes that do not overlap.
We assign the store instruction in ProcessCGIRequest and cgiCmd the color
green. The store instruction in SetCGIDir and cgiDir are assigned the color
red. The WIT instrumentation colors the objects during program startup.
The assignments in line 14 and 25 are instrumented to check that the objects
they are writing match their assigned color. When the attacker uses the
assignment in line 14 to write out-of-bounds of the cgiCmd object and into
the cgiDir object, WIT catches the color mismatch and aborts execution of
the program.

The lack of read integrity enforcement results in WIT tolerating certain
kinds of information leaks. For example, the infamous Heartbleed [Tea]
vulnerability would be left unmitigated by WIT. Heartbleed was a rather
simple heap-based buffer over-read. Since WIT does not enforce any re-
strictions on load instructions, a vulnerability like Heartbleed cannot be
detected at all. Other information leaks require the corruption of a pointer.
They can be detected by WIT when the attacker corrupts the pointer.
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...

showUsers.cgi

/var/www/cgi-bin/

...

Memory before attack

cgiCmd

cgiDir

...

bash;#AAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA

/var/www/cgi-bin/

...

Memory during attack

cgiCmd

cgiDir

×

0x00..00

0xFF..FF

0x00..00

0xFF..FF

1 // written only by ProcessCGIRequest

2 // WIT color: green

3 char cgiCmd[64];

4 // written only by SetCGIDir

5 // WIT color: red

6 char cgiDir[64];

7

8 void ProcessCGIRequest(char* curCmd) {

9 // curCmd is untrusted input

10 size_t i = 0;

11 // buffer overflow here

12 while (i < strlen(curCmd )) {

13 // WIT color: green

14 cgiCmd[i] = curCmd[i];

15 i++;

16 }

17 // system(strcat(cgiDir , cgiCmd ))

18 ExecuteRequest(cgiDir , cgiCmd );

19 }

20

21 void SetCGIDir(char* newDir) {

22 size_t i = 0;

23 while (newDir[i] && (i < 64)) {

24 // WIT color: red

25 cgiDir[i] = newDir[i];

26 i++;

27 }

28 }

Figure 3.3: Buffer overflow between two data variables is prevented by WIT.
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4 Write Integrity Testing
Implementation

We implemented a prototype of write-integrity testing (WIT) within the
LLVM [LA04] compiler framework. For our prototype, we stayed as close
as possible to the original implementation of WIT [Akr+08]. Based on our
prototype, we evaluated the WIT mitigation mechanism. In this chapter,
we describe the various implementation choices and lessons learned while
implementing our LLVM-based WIT prototype (LLWIT).

In contrast to the original proposal of WIT, we omit several enhancements,
that are not relevant for assessing the security guarantees offered by WIT.
The original WIT performed write-safety analysis to determine, whether a
store instruction can be considered safe. The write-safety analysis tries to
find a proof, that the pointer used by the store instruction, will never go
out-of-bounds for any object in the points-to set. Instrumentation of safe
store instructions can be omitted. This significantly reduces the overhead
of a WIT implementation [Akr+08]. We omit to perform an extensive write-
safety analysis, as this is primarily a performance improvement. We use
the LLVM mem2reg pass to promote stack allocations to LLVM intermediate
values. We can skip instrumentation of stores to primitive types, that are
allocated on the stack. Our prototype then instruments all remaining store
instructions. Furthermore, we omit the special handling of dynamically
linked libraries. We simply link all relevant functions statically. We do not
need to build a special instrumentation for libraries.

The original WIT implementation also included a forward-edge control-flow
integrity (CFI) scheme, that uses the same points-to analysis and colorings.
For each indirect jump, they computed the points-to set and introduced
coloring in the shadow memory. We omit this from our implementation, as
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there is already a CFI implementation in LLVM and it does not impact the
protection against data-only attacks. The CFI scheme included in LLVM is
less precise, as it uses a inexpensive type-based alias analysis for computing
the valid call targets. We consider it out of scope for this thesis to combine
the more precise points-to analysis from WIT with the CFI implementation
in LLVM.

Our compilation pipeline is built in the following way: First, we compile all
source files to LLVM bitcode. We then use the bitcode linker to create one
single bitcode file. Since WIT requires a whole-program points-to analysis,
we must perform analysis on the linked bitcode file. After the points-to
analysis, we start the instrumentation pass. The last step links in our support
library and creates an executable.

In our prototype, we use an Andersen-style points-to analysis, similar to the
original WIT proposal. We adapted a publicly available implementation1

of the Andersen points-to analysis for the LLVM framework. We improved
modeling of external libraries in the points-to analysis. Furthermore, we
had to adapt the points-to analysis to work, when the allocator functions,
like malloc and free, are statically linked functions.

When the points-to analysis fails for a given pointer, it returns a universal
node, which represents the set of all objects. For WIT, this is a disastrous
result, as it would mean that all objects and stores would coalesce into
the same color. Our WIT prototype would still protect target specific data,
such as return addresses and saved registers, but would otherwise be
rather useless. This situation can be handled by skipping instrumentation
of the store, where the points-to analysis has failed. We sacrifice security
guarantees, but we can continue without having the degenerate case of one
color and without introducing compatibility issues.

Listing 4.1 shows an excerpt of LLVM intermediate code, that is anal-
ysed by our WIT prototype. The code is an excerpt from the example
in Figure 3.3 compiled to LLVM intermediate code. We have the two
global variables cgiCmd and cgiDir, both character arrays. In the func-
tion ProcessCGIRequest we have one store instruction. The getelementptr

instruction is used to retrieve an element from a compound data structure.

1https://github.com/grievejia/andersen
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1 @cgiCmd = common global [64 x i8]

2 @cgiDir = common global [64 x i8]

3

4 define void @ProcessCGIRequest(i8* %msg , i32 %sz) #0 {

5 ; ...

6 ; cgiCmd[i] = msg[i];

7 %15 = getelementptr inbounds [64 x i8],

8 [64 x i8]* @cgiCmd ,

9 i32 0, i64 %14

10 ; points-to-set(%15) = {@cgiCmd}
11 store i8 %12, i8* %15, align 1

12 ; ...

13 }

14

15 define void @SetCGIDir(i8* %newDir) #0 {

16 ; ...

17 ; cgiDir[i] = newDir[i];

18 ; points-to-set(%17) = {@cgiDir}
19 %17 = getelementptr inbounds [64 x i8],

20 [64 x i8]* @cgiDir ,

21 i32 0, i64 %16

22 store i8 %14, i8* %17, align 1

23 ; ...

24 }

Listing 4.1: Points-to analysis and derived coloring in LLVM IR

In this case, it computes a pointer into the array cgiCmd. The points-to
analysis determines that the pointer %15 can only point to the cgiCmd object.
We can then partition the objects and store instructions into two different
colors.

After the points-to analysis and the color computation, the next step is to
instrument the code to update and check the coloring information. We store
the color metadata in a shadow memory region. We represent each color
with a numeric value. We instrument all store instructions to fetch the color
of the accessed object from the shadow memory and compare it with the
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color we assigned to the store instruction. If the comparison succeeds we
continue normal execution and otherwise branch to error reporting code.

We use a shadow memory representation similar to the one use by the
AddressSanitizer included in LLVM [Ser+12]. We store one byte of color
information for every 8-byte word. All objects have to be aligned to 8-byte,
otherwise the shadow memory of different objects might overlap. On x86_64

objects on the stack must be 8-byte aligned already and LLWIT does not
introduce further overhead. We ensure this alignment in our instrumentation
pass for all global and stack allocated data. For heap allocated data our
instrumented allocator functions ensure the alignment of allocated memory
blocks. The shadow memory setup works only when the number of colors
is smaller than 255. The color 0 is reserved for target-specific data, that
is not present in the LLVM intermediate code, such as return addresses
or saved registers. To guarantee that we do not use more than 255 colors,
we randomly merge colors until the number of colors is smaller than 255.
Another way to handle larger numbers of colors would be to store 2 or
more bytes of color information per 8-byte word. Akritidis et al. [Akr+08]
reported that they did not encounter more than 255 colors in their tests.
We also did not encounter larger color sizes during our tests on the cyber
grand challenge (CGC) dataset, even though we did not implement write
safety analysis. During program start, we map the shadow memory into the
address space. We rely on the OS to initialize the shadow memory with null
bytes. Furthermore, we require that the OS does not allocate physical pages
for all virtual pages. Most of the shadow memory stays unused during
the execution of the program, but must be mapped. By lazily allocating
physical pages, the actual memory usage induced by the shadow memory
stays low.

Listing 4.2 shows an instrumented store instruction in the LLVM intermedi-
ate code. The first step is to compute the address of the shadow memory
based on the pointer, which is stored in the intermediate value %5. Then the
color information is loaded from the shadow memory. The color informa-
tion loaded from the shadow memory is compared to the color information
associated with the store instruction. The latter is encoded into the compare
instruction as an intermediate. When the comparison succeeds and the col-
oring is the same, the execution continues normally. Otherwise, we branch
to an error handling code. There we call the __llwit_chk_fail function

51



4 Write Integrity Testing Implementation

from our support library. This function then prints an error message and
calls abort to stop the process.

A problem for LLWIT is the static linking of the allocator functions, as
it is the case for binaries in the CGC data set. We cannot instrument the
functions that are used by the allocator functions, as they operate on different
semantics. For example, there might be a helper function that manages
in-place free lists, which necessarily writes to objects that are currently
not allocated. This is not a real temporal safety violation, as the allocator
functions are allowed to do so. Since the CGC binaries cannot link to any
other library, they have to provide a custom implementation of the standard
allocator functions. Furthermore, the allocator might use other standard
functions. For example, an implementation of calloc might use the memset

function to fill the allocated data with null bytes. When calloc calls an
instrumented memset, the effects are not predictable. The instrumented
memset checks the coloring of the passed object, but calloc passes a pointer
to a non-initialized memory object. This has the likely outcome that LLWIT
will report errors during normal usage. On the other hand, a manipulated
call to the memset function might be part of a memory corruption attack, so
it should be instrumented.

To solve this problem we have implemented a heuristic in LLWIT to detect
which functions are used by the allocator. Our heuristic analyses the call
graph provided by LLVM. For each function that is a child node of one of
the standard allocator functions, we check whether this function is called
from another non-allocator function. If the function is only called from
the allocator functions, we consider it part of the allocator implementation
and can skip instrumentation. If the function is called from the allocator
and from other parts of the program, we duplicate the function. There is
one copy of the function for normal usage, that will be instrumented. The
second copy is used solely by the allocator and will not be instrumented.
We currently do not handle indirect calls used by the allocator functions,
which can result in LLWIT producing invalid binaries.
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1 ; assign numeric color 3 to cgiDir

2 @cgiDir = common global [64 x i8], align 16

3

4 define void @SetCGIDir(i8* %newDir) #0 {

5 ; ...

6 %arrayidx5 = getelementptr inbounds [64 x i8],

7 [64 x i8]* @cgiDir , i64 0,

8 i64 %indvars.iv

9 ; 1. load numeric color from shadow memory

10 ; 1.1 compute shadow memory address

11 %2 = ptrtoint i8* %arrayidx5 to i64

12 %3 = lshr i64 %2, 3

13 %4 = or i64 %3, 2147450880

14 %5 = inttoptr i64 %4 to i8*

15 ; 1.2 load color from shadow memory

16 %6 = load i8, i8* %5

17 ; 2. color check

18 %7 = icmp ne i8 %6, 3

19 br i1 %7, label %8, label %14

20

21 ; <label >:8:

22 ; 3. abort program

23 call void @__llwit_chk_fail ()

24 unreachable

25

26 ; <label >:14:

27 ; 3. continue normal execution

28 store i8 %0, i8* %arrayidx5

29 ; ...

30 }

Listing 4.2: LLWIT instrumented store instruction in LLVM IR.
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We evaluated the concept of write-integrity testing (WIT) based on our
LLVM-based WIT prototype (LLWIT). Our evaluation is split into two
parts. First we used the publicly available cyber grand challenge (CGC)
dataset to evaluate LLWIT. We analyse the composition of the colors and
the performance of the points-to analysis in determining a good security
policy. We identify cases in which LLWIT prevents memory corruption
exploits. We compared LLWIT with two mitigation mechanisms included in
LLVM: forward-edge control-flow integrity (CFI) and SafeStack (SST). Based
on this comparison we identify particular cases where LLWIT does not
mitigate memory corruption attacks. In the second part we use the insights
gained from the CGC dataset to identify several code patterns that cannot
be sufficiently protected by WIT and undermine the security guarantees
provided by WIT implementations. We show that the lack of field sensitivity
poses a significant problem. Furthermore, we describe some implementation
issues, that a field-sensitive WIT implementation faces.

5.1 Cyber Grand Challenge Dataset

In the summer of 2016 the, DARPA sponsored, CGC competition ended.
The goal of the competition was to foster research into automatic detection,
exploitation, and patching of memory corruption vulnerabilities. The com-
petition was split into two events, the CGC qualifying event (CQE) and the
CGC final event (CFE). The CQE was used to qualify the top 10 teams for
the final event, which was held in parallel to the DEFCON conference. The
CFE was structured like a capture-the-flag hacking competition. The idea
was to create autonomous systems, called cyber reasoning system (CRS),
that compete in such a contest without human intervention. The winning
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system then competed in the DEFCON capture-the-flag competition against
human teams. Capture-the-flag competitions are a game between rivaling
teams. Each team is provided the same set of services at the beginning
of the game. The services contain vulnerabilities, which can be abused to
retrieve the flags. A flag is simply a unique random string, that proves to
the organizers, that a vulnerability was successfully exploited. When a team
submits a correct flag, the team is awarded points. Usually, there is also
some metric, that rewards teams for patching services and keeping them
available.

To make it possible that the competition can be played by an autonomous
system, the CGC competitions followed a very strict set of rules. First, the
target platform for the vulnerable services was a very limited operating
system, called the DECREE OS. The DECREE OS is a modified GNU/Linux
system. While DECREE features the usual POSIX compatible Linux envi-
ronment, it also features a special loader and interface for the CGC binaries,
called challenge binary (CB). A CB consists of one or more restricted 32-bit
x86 programs. The DECREE OS exposes only 7 system calls to the CBs:
terminate, transmit, receive, fdwait, allocate, deallocate, and random.
There are no system calls that are related to file system usage. The reason
for this is that all CB behave idempotent in respect to their input via existing
file descriptors. As a consequence a CB cannot save state between recurring
executions. The file descriptors are opened by the CB loader. Furthermore,
each CB is completely self-contained, the CBs each contain their own stan-
dard library and only the libcgc is linked to the CB. If a CB consists of
more than one binary, the CB loader sets up file descriptors to allow the
binaries of the CB to communicate with each other [DL16].

Each event featured its own set of programs, written exclusively for the
competition in C and C++. The programs were made publicly available after
the competition. For the CQE the teams only had to find a crashing input
and patch the binary. During the CFE the CRS had to automatically generate
exploits. The CFE featured two types of exploits. The first type of exploit
requires taking control over the instruction pointer and one other general
purpose register. The second type of exploit must leak a particular page
containing random secret data. Since this page is mapped by the operating
system (OS) but is not used by the program, an exploit must usually achieve
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an arbitrary read. The types of vulnerabilities in the programs and the proof
of vulnerabilitys (POVs) mimic real vulnerabilities and attacks.

The CBs are rather small and are statically linked, which makes them a
perfect target for static analysis techniques. Furthermore, each CB comes
with a set of tests, called POLLs, that verify whether the CB is functional.
Each CB also comes with at least one POV, an input that triggers a vulnera-
bility in the program. The CBs are written to compile with the LLVM C and
C++ compiler clang version 3.4. We use the CGC dataset, consisting of all
CBs from the CQE and CFE, for evaluation of mitigation mechanisms. For
our evaluation we use a port1 of the CGC dataset to a normal GNU/Linux
OS. The port includes a test-driver for running the CBs against all available
tests and POVs. We improved2 the test driver by improving compatibility
with modern GNU/Linux distributions, to produce better reports, also in
machine-readable formats and added a mechanism to load and store the
current state of the test driver. We added support for compiling and testing
with different compilation flags, such that we can selectively enable and
disable several mitigation mechanisms.

5.1.1 Test Setup

We ran the tests and POVs on a large part of the released CBs. We had to
disable several CBs because some did not compile with our LLVM toolchain
or are broken operating systems other than DECREE. Especially the pro-
grams written in C++ use a lot of pointers and multiple levels of indirection,
which makes the points-to analysis take longer than feasible. Generally,
because of the small size of the CBs, the points-to analysis is computed
quickly. However, we encountered a couple of CBs, where the points-to
analysis took too long. We aborted compilation and disabled the CB, if the
points-to analysis did not finish in under one hour.

We compiled the CBs in different configurations. In all configurations we
used LLVM version 3.9, and compiled the CBs with clang or clang++. For

1https://github.com/trailofbits/cb-multios
2https://github.com/f0rki/cb-multios/tree/witeval
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the evaluation we use the following five configurations for running the
tests:

• Default: CB compiled with clang and no additional settings
• CFI: CB with forward-edge CFI enabled
• SST: CB with SafeStack enabled
• Skip-WIT: CB with the same compilation pipeline as LLWIT (bitcode

linking), but with the instrumentation pass disabled. This is used to
verify that POVs work.
• WIT: CB with LLWIT instrumentation enabled

We compiled all CBs from the dataset in the variants above. We keep track
of the computed WIT colors during compilation with LLWIT. To verify that
the compiled CBs are still functional, we used the POLLs. The vast majority
of POLLs in the dataset are auto-generated. The generate-polls tool uses a
specification of the state machine of a CB to generate random walks through
the state machine of a CB. We generated 600 POLLs for each CB. For some
of the CBs the tool to generate the POLLs fails and we simply ignore those
CBs for our evaluation. We then tested all the compiled variants against
all POLLs and also all POVs. We test the LLVM CFI and SST mitigation
mechanisms in separate configurations. In reality one would combine the
forward-edge CFI with a backward-edge protection, such as SST. We test
them separately so that we can identify, which of both mechanisms mitigated
a POV.

5.1.2 Overview and Statistics

We compiled the CBs in five variants and tested all POLLs and POVs against
the variants. Table 5.1 shows an overview of the results. The first unfortunate
result is that most of the POVs are broken solely by using a different
compiler version and different optimization flags. Most POVs do not work
against the binaries produced by the Skip-WIT variant, where we compile
with the LLWIT pipeline, but without enabling the instrumentation pass. We
do not use these CBs for the evaluation, except for the analysis of the color
sizes. Some of the CBs lack working POLLs. Those CBs are omitted from
the evaluation, as we cannot verify that the mitigation mechanisms do not

57



5 Evaluation

break the functionality of the tested CBs. When the mitigation mechanism
breaks the functionality of a CB, then the POV might be mitigated, or the CB
program aborts early. This case is not detected, and it is not easily possible
to check whether the vulnerability is actually mitigated in such a case.
We simply ignore all those CBs. Furthermore, some CBs fail to work with
WIT enabled, because of the different compilation pipeline, or because they
contain a WIT violation in their normal functionality. From the 237 CBs, that
compile with LLVM 2.9, 208 have working POLLs. LLWIT instrumentation
breaks the POLLs for another 81 CBs. We use the remaining 127 CBs, with
working POLLs, for analysis of color sizes and statistics over the CBs. The
LLWIT compiler pipeline renders some POVs unusable. Furthermore, CFI
and SST also break POLLs for 20 CBs. In total this reduces the number of
usable CBs to 58, which we use for comparison between LLWIT, CFI, and
SST. Of the 58 CBs, LLWIT protects 33 against all POVs.

Table 5.1: Overview of the CGC Evaluation

CBs with CB count

Available CBs 248

No Compile Errors (Default) 237

Working POLLs (Default) 208

Working POLLs (WIT) 127

Working POVs (Skip-WIT) and POLLs (WIT, CFI, SST) 58

All POVs mitigated by WIT 33

We continued to analyse properties of the CBs. First, we analysed the
code size of the CBs with successful functional tests. We measured the
number of functions and instructions, that are instrumented by LLWIT.
We can see in Figure 5.1 the number of instrumented functions and the
number of instrumented store instructions for the CBs. Most of the CBs
have a rather small code size, in the range of 10 to 20 functions and up
to 100 different store instructions. The CGC dataset does not offer a good
indication, whether an analysis technique scales to large programs.

We analysed the number of colors for each of the relevant CBs. If a program
has a higher color count, the instrumentation of LLWIT can distinguish
between more equivalence classes of objects. Figure 5.2 shows the sizes of
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Figure 5.1: Code size of the CBs measured in the number of instrumented functions and
store instructions.

the largest color per CB. We can see that the vast majority of CBs have a
rather small largest color size. The average size of the largest color is seven
objects and 22 store instructions. Still many CBs feature colors that contain
both a lot of store instructions and many objects. Of the 245 individual
binaries that are part of the CBs, 115 have a color that contains at least
10 store instructions and at least 10 different objects. Note that Figure 5.2
does not include one outlier regarding color size. One color in the FUN CB
consists of 18 store instructions and 11742 objects. The vast majority of these
objects are constant strings. Any write to those objects would be caught by
hardware-enforced read-only memory protection.

An attacker should have fewer opportunities for memory corruption since
it is less likely that two memory locations are in the same color. Figure 5.3
shows the number of separate colors per CBs. For CBs consisting of multiple
binaries we add the number of colors of each binary, e.g. a CB with two
binaries with 2 different colors each would count as a CB with 4 colors. We
distinguish between CBs with mitigated and unmitigated POVs. There is no
significant difference between CBs with mitigated and unmitigated POVs
regarding the size of colors. This suggests that color count alone, can not
be used as a measure of security. The type of vulnerability seems to play a
more important role for WIT.

A problem for LLWIT is when the points-to analysis returns the universal
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Figure 5.2: Number of Objects and Stores of the largest color per CB.

node. This node represents all possible objects and is returned when the
points-to analysis fails to determine a more restricted set. In this case we
simply skip instrumentation, since this would collapse all colors into one.
On the other hand, not instrumenting a store instruction allows it to write
also to control-data. All but four CBs have some store instruction that
LLWIT does not instrument. The average number of non-instrumented store
instructions is 16.33 with a standard deviation of 29.32. The median is 13
non-instrumented store instructions. We can see that the points-to analysis
fails very often and almost all CBs would produce the degenerate case of two
colors when instrumented with LLWIT. We omit instrumentation of these
instructions with LLWIT to avoid this case. In turn, this also crates holes in
the security guarantees that are enforced by LLWIT. All instructions that
are not instrumented can be used by an attacker, without any restrictions.

However, we identified dead code, functions that are never actually called
by the CB, as one of the reasons for the failure of the points-to analysis. 36

CBs have non-instrumented store instructions inside of a memory or string
related helper function, such as memcpy or strcpy. Since these are often
the source for buffer overflow, this would be a worrying result. However,
we found that only 12 of the 36 CBs use one of those functions, the other
are non-instrumented because they are dead code. Another 24 CBs that
have non-instrumented stores within a function, that is related to formatted
printing, such as printf. Interestingly, not one of the CBs calls any of those
functions. The reason for this pattern is, that one group of authors of a
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Figure 5.3: Color count for CBs with mitigated and unmitigated POVs.

subset of the CBs reused the same code for libc functions in all their CBs.
This results in the same non-instrumented code in many of their CBs.

5.1.3 Analysis of Broken CBs

We analysed some of the CBs with broken POLLs. We focused on the CBs,
which have interesting properties, such as large colors. We used this to
identify weak points and bugs in LLWIT. We discovered several problems
with the CGC dataset and also caveats of LLWIT.

CableGrindLlama is one of the programs, with broken functionality when
LLWIT is enabled. The CB implements a packet dissector and heavily uses
function pointers. It uses a function pointer to switch between different
malloc implementations. Our heuristic cannot deal with this and therefore
mistakingly instruments the actual malloc implementations. CableGrindL-
lama is also one of the CBs that take a very long time for the points-to
analysis to finish. LLWIT reports 18 different colors, with the largest colors
having 757 store instructions and 2603 objects. The reason for this huge
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color size is that LLWIT instruments the actual malloc implementation,
which forces a collapse of all heap allocated objects into one color. Without
enabling mitigation mechanisms, this CB only passes a few POLLs. With
LLWIT enabled even fewer POLLs work.

Azurad is a CB written in C++, that implements an interpreter for a simple
scripting language. The script is embedded within the CB as a constant
string. While the analysis of LLWIT separates the program into 66 different
colors, there is one color with 1542 store instructions and 656 different
objects. This color is mostly consisting of the tightly coupled code that
works with the interpreter state. The LLWIT instrumentation breaks the
included parser. The vulnerability is an integer overflow that can be abused
to access invalid array indices. The POV is supposed to abuse the integer
overflow to perform a data-only information leak attack. The provided POV
does not work with LLVM version 3.9. LLWIT would not be able to catch
the vulnerability. One array contains all objects related to the state of the
interpreter, and any write within the array would be legitimate with LLWIT.
Since this is a data-only attack against data on the heap, CFI and SST can
not mitigate this vulnerability.

FASTLANE is a rather small program, that implements a server for a
simple text-based protocol, that mimics HTTP. The vulnerability is a buffer
overflow on the stack, which can be used to partially overwrite a pointer.
This is a vulnerability that is mitigated with SafeStack. The POV should also
be mitigated by LLWIT, but the POLLs are broken with LLWIT enabled.
FASTLANE does not use the malloc function, but allocates memory directly
via the allocate system call.

Some CBs, like FASTLANE, use the allocate system call to allocate pages
and some mix the usage of allocate and malloc. It is not clear what the
semantics of a call to allocate are in the context of WIT since such an
allocate function is not defined in the C standard. The typical usage of
allocate is to use it to allocate memory, which is managed with finer
granularity by malloc. On the other hand the allocated memory can also be
treated as one large buffer. Because the semantics of allocate is not really
clear we simply ignore the allocate function. As a result LLWIT either
breaks the binary, or misses the opportunity to mitigate a vulnerability.
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Similar problems arise when real-world programs use the mmap system call
on POSIX systems or VirtualAlloc on Windows.

5.1.4 Comparison with CFI and SafeStack

To identify weak spots of LLWIT we also ran the tests against the CBs
with LLVM CFI and SafeStack enabled. Not surprisingly LLWIT managed
to mitigate certain vulnerabilities that cannot be mitigated by CFI and
SafeStack. Table 5.2 show an overview of the mitigated POVs. We can see
that LLWIT generally mitigates more POVs, than CFI and SST combined.
Table 5.3 shows a list of CBs, where LLWIT clearly mitigates more POVs
than the other mitigations mechanisms. We performed manual analysis of
some of the CBs from Table 5.3 to identify why LLWIT performed better than
CFI and SafeStack. Some of the POVs from the CQE, do not demonstrate
code execution capabilities. They let the CB crash while accessing some
controlled but arbitrary address, demonstrating the capability to write or
read from an arbitrary addresses. These POV shows the capability to launch
further attacks. Since LLWIT verifies the integrity of the store operands,
such an invalid access can be detected and mitigated. Since the POV only
demonstrates a data-only attack, forward-edge CFI cannot mitigate the
POV.

Table 5.2: Comparison of LLWIT with CFI and SafeStack

CBs with CB count

All POVs mitigated by WIT 33

All POVs mitigated by CFI or SST 22

More POVs mitigated by WIT than CFI and SST 19

More POVs mitigated by SST than WIT 3

More POVs mitigated by CFI than WIT 5
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Multipass is an example for a CB, that is exploited with a data-driven attack.
The program uses a pointer as a “transaction ID”. This leaks the address to
the attacker. Using an unaligned transaction ID, the attacker can dereference
arbitrary pointers. Using a corrupted pointer to write data is caught by
WIT.

FileSys is one of the larger CBs, with 124 instrumented store instructions
in total. It is written in C++. The vulnerability is a use-after-free bug, that
can be exploited by overwriting a vtable pointer. LLWIT catches the invalid
write to an object, with a different color. The POV crashes the binary by
overwriting the vtable pointer, with a controlled value, but not a real pointer
to a pointer. The CB crashes before CFI is able to verify the function pointer
loaded from a vtable.

Table 5.3: CBs where WIT mitigates more POVs than CFI and Safestack

POVs POVs mitigated by
CB Name Working WIT CFI SST

Accel 2 2 0 0

BudgIT 2 2 0 0

CGC Board 3 3 0 0

FablesReport 5 3 0 0

FileSys 1 1 0 0

H20FlowInc 1 1 0 0

HeartThrob 4 4 0 0

LulzChat 2 1 0 0

Multipass 1 1 0 0

SLUR reference implementation 2 1 0 0

Sad Face Template Engine SFTE 2 2 0 0

Simple Stack Machine 3 3 0 0

UTF-late 1 1 0 0

Vector Graphics Format 2 1 0 0

cotton swab arithmetic 2 2 0 0

greeter 4 4 0 0

online job application2 1 1 0 0

reallystream 1 1 0 0

virtual pet 4 4 0 0
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While LLWIT generally mitigates more POVs than CFI and SST, we iden-
tified a few CBs, where LLWIT performed worse than CFI or SST. By
analyzing the vulnerabilities we identified practical limitations a WIT imple-
mentation faces. Table 5.4 shows the CBs, where LLWIT failed to mitigate
the POVs, but either CFI or SST mitigated more POVs.

Table 5.4: CBs where CFI+Safestack mitigate more than WIT

Working POVs mitigated by
CB Name POVs WIT CFI SST

Diophantine Password Wallet 5 4 5 0

HackMan 1 0 1 0

Palindrome 1 0 0 1

RRPN 2 0 2 0

payroll 3 0 3 1

simplenote 1 0 1 1

Palindrome is simple program, with a very typical and easy to spot vul-
nerability. The Palindrome program contains a stack-based buffer overflow,
when reading user input. WIT does not mitigate this issue because the out-
of-bounds access is performed by the kernel, via the receive system call.
Since the kernel is not instrumented with LLWIT and does not know about
the colorings, the kernel can just write out-of-bounds. Forward-edge CFI
does not protect return addresses and fails to mitigate stack-based buffer
overflows. SST on the other hand mitigates this issue by placing the buffer
on the unsafe stack. The buffer overflow cannot touch the return address on
the safe stack.

HackMan contains a use of an uninitialized function pointer. The CB is
constructed in a way, such that during normal usage the function pointer
just happens to be NULL. The attacker can control the value on the stack,
by abusing a previous stack frame to write at the location of the function
pointer. WIT does not mitigate this because uninitialized reads are not
covered at all. CFI, on the other hand, mitigates this attack, because it
enforces restrictions on the function pointer, whether it was initialized or
not.

65



5 Evaluation

payroll contains a buffer overflow within a data structure, which can be
used to corrupt a function pointer. Because LLWIT uses a field-insensitive
analysis, it is impossible to distinguish between objects inside of a struct.
CFI mitigates this attack because it enforces restrictions on the function
pointer upon usage.

RRPN implements a just-in-time (JIT) compiler for a simple calculator
language. The vulnerability allows the stack and the generated code to
collide. The code and the stack are buffers within the same struct. Again
because of field-insensitivity WIT fails to detect the corruption of the code
pages. Assumptions of all tested mitigation mechanisms are broken because
the attacker can corrupt legitimate code pages. Usually, this is mitigated
with non-writeable code pages and non-executable data pages. Furthermore,
the RRPN CB contains 224 store instructions, where the points-to analysis
returned the universal node. LLWIT then skips instrumentation of this store
instruction. Surprisingly the POVs fail when CFI is enabled. This is likely
the case because running with CFI, breaks assumptions of the POVs.

5.1.5 Unmitigated Vulnerabilities

At last we analysed some of the CBs and POVs, that were neither mitigated
by LLWIT, CFI, nor SafeStack. This way we identified mostly data-only
attacks, that were not mitigated. Table 5.5 shows the CBs, with POVs that
were not mitigated by any of the tested mitigation mechanisms. We already
identified the use of the unhandled allocate system call as the reason for
several CBs with broken POLLs. In some cases, the CB stays functional, but
LLWIT fails to mitigate the provided POVs. We marked the CBs, that use
the allocate system call directly in the main source code of the CB. The
POVs for those CBs might be mitigated if LLWIT would treat allocate the
same as malloc.

yolodex contains a buffer overflow within a data structure. The attacker can
corrupt forward and backward pointers of an intrusive linked list. This way
the attacker can dereference arbitrary pointers and as a result, achieve an
arbitrary read and write exploit primitive. Almost all the functionality of the
CB falls within one single color when instrumented with LLWIT. The POV
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does only demonstrate the arbitrary read, dereferencing arbitrary pointers.
Using the vulnerability for an arbitrary write can be caught by LLWIT.
However, almost all objects are collapsed within one color, so data-only
attacks are likely still possible.

WordCompletion is a rather simple CB. It consists of 5 different colors and
the largest one consists of 7 store instructions and 1 object. This CB does not
use malloc, but uses the allocate system call directly to allocate memory.
LLWIT fails to detect an out-of-bounds write, because it does not handle
the allocate system call.

Table 5.5: CBs where neither WIT, CFI nor SafeStack mitigate all POVs.

Working POVs mitigated by uses
CB Name POVs WIT CFI SST allocate

Audio Visualizer 1 0 0 0 no
Enslavednode chat 1 0 0 0 no
FablesReport 5 3 0 0 no
HIGHCOO 1 0 0 0 yes
Loud Square Instant Messaging Protocol LSIMP 1 0 0 0 no
LulzChat 2 1 0 0 no
Movie Rental Service Redux 1 0 0 0 no
Packet Analyzer 2 0 0 0 yes
Particle Simulator 1 0 0 0 yes
QuadtreeConways 1 0 0 0 no
SLUR reference implementation 2 1 0 0 no
Tennis Ball Motion Calculator 1 0 0 0 yes
Vector Graphics 2 2 0 0 0 yes
Vector Graphics Format 2 1 0 0 no
WordCompletion 1 0 0 0 yes
humaninterface 2 0 0 0 no
online job application 1 0 0 0 no
yolodex 1 0 0 0 no

Based on the analysis with the CGC dataset we identified several weak
spots of LLWIT. We conclude that the failures to mitigate the POVs are a
result of the following issues:

• Insufficient modelling of memory allocations (e.g. allocate)
• Lack of field-sensitivity (e.g. overflows within a struct)
• Misuse of the interface to non-instrumented code (e.g. kernel syscalls)
• Uninitialized read vulnerabilities
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We did not observe a POV, which was not mitigated by LLWIT because the
target of a write was a different object, but with the same color. The POVs
included in the CGC dataset are often not very representative because they
were written without considering mitigation mechanisms. An attacker that
is aware of the restrictions, a mitigation mechanism imposes, might be able
to bypass it. We verified that WIT does indeed mitigate a broader class of
vulnerabilities than state-of-the-art mitigation mechanisms, such as CFI and
SafeStack. We saw that programs implementing complex functionality, such
as an interpreter for a programming language or a parser for binary formats,
often contain both a high amount of store instructions and different objects
in the same color.

5.1.6 Defense against DOP

For data-oriented programming (DOP) it is important that enough gadgets
exist to achieve Turing-complete computation. We analysed the sizes of
the largest color for each CB. If a color is large, it is more likely that all
the necessary DOP gadgets exist within one color. A color that is large in
both store instructions and objects is especially attractive to an attacker. The
average number of stores per color per CB is 7.33 and the average number
of objects per color is 4.98. The average is not really a good measure,
since an attacker will try to corrupt data in the largest color available.
Figure 5.2 shows the largest colors of the analysed CBs. The average size
of the largest color is seven objects and 22 store instructions. Given the
size of the equivalence classes created by the coloring, it is very likely that
data-oriented attacks are still possible. Given the rather small code size
of the CBs in the CGC dataset, we expect that larger programs will also
contain larger color sizes.
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5.2 Problematic Code Patterns

The evaluation with the CGC dataset already revealed some problematic
code patterns, where WIT fails to protect against memory corruption attacks.
In this section we provide a more detailed analysis of the problems revealed
by the evaluation. Furthermore, we discuss consequences of problematic
patterns and remaining attack vectors.

When instrumented code interfaces with non-instrumented code, the possi-
bility of undetected memory corruption arises. Every binary interfaces with
the operating system kernel via the system call interface. The kernel does
not know about object boundaries or LLWIT colors. Therefore the kernel
will violate such guarantees when a wrong parameter is passed to a system
call. All system calls, that change the contents of user-space memory are
susceptible to misuse. Example are the read or recv system calls. Another
example for instrumented code that interfaces with non-instrumented code
are JIT compilers. When a binary generates code during runtime, mitigation
mechanisms cannot protect the generated code. Hardening JIT compilers
requires special care and is very specific to the JIT compiler environment
[Ath+15; NT14]. This must be considered out-of-scope for general exploit
mitigation mechanisms, such as CFI or WIT.

We learned that for implementing WIT in practice, certain trade-offs must
be taken. In LLWIT we opted to skip instrumentation of store instructions,
where the points-to analysis failed to return a more specific result than the
universal node. We discovered that almost all tested programs in the CGC
dataset contained at least a couple of non-instrumented store instructions.
These non-instrumented store instructions open up possibilities for an
attacker.

A whole class of vulnerabilities, that is simply out-of-scope for WIT, are
reads from uninitialized memory. In the usual cases a uninitialized read,
might stay unnoticed or result in program crashes. In some cases the at-
tacker is able to control the contents of the uninitialized memory, by abusing
previous program inputs. Depending on the type of the uninitialized read
this can lead directly to an exploitable attack vector or to further mem-
ory corruption. WIT can be combined with a system to protect against
uninitialized reads, such as SafeInit [MBG17].
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We identified the lack of field-sensitivity in the points-to analysis as the
most critical weak point of WIT. All current proposals of data-flow integrity
(DFI)-like schemes use a field-insensitive points-to analysis [CCH06; Akr+08;
Cad+08; BS08]. If no field-sensitivity is enforced then overflows within a
data structure cannot be prevented. We show several problematic code
patterns that result in WIT being unable to detect memory corruptions.

5.2.1 COOP Attacks and WIT

WIT was proposed as a countermeasure against counterfeit object oriented
programming (COOP) attacks [Sch+15]. We show that a field-insensitive
variant of WIT is not an effective defense against COOP. C++ code is struc-
tured in a way that is not favorable for the static analysis performed by WIT.
The object oriented programming model in C++ allows the programmer to
call methods on object instances. The way this is implemented is that each
method is a normal function, that receives a pointer to the object instance
as hidden parameter. This pointer is available as the this pointer from
within the method. Listing 5.1 shows two methods that utilize the this

pointer. Both methods are used on the same object, so the points-to analysis
concludes that the this pointer in both methods can point to the same
object. In general it is very likely that the result of the points-to analysis is
that the this pointer can point to any object of the same type.

1 struct SomeClass {

2 int member;

3 void methodOne ();

4 int methodTwo(int j);

5 };

6 struct SomeSubClass : public SomeClass {

7 int methodThree(int i, int j);

8 };

9 // thiscall calling convention: this is passed implicitly

10 void SomeClass :: methodOne(SomeClass* this)

11 { this ->member ++; }

12 void SomeClass :: methodTwo(SomeClass* this , int j)

13 { return this ->member + j; }

14
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15 int main() {

16 SomeClass cls;

17 cls.methodOne ();

18 cls.methodTwo (2);

19 }

Listing 5.1: Illustration of usage of the this pointer in C++.

Because LLWIT and also the original WIT proposal are field-insensitive,
they cannot distinguish between the individual members of a class. Our
first observation is that all methods of a class, that write to a class member
field, will be allowed to write to all the members of all allocation sites of
objects of this type. Every write to a member field happens implicitly via
the this pointer. If the base class has a non-virtual method that writes to a
non-static member, then there exists a method that can write to any object
that is derived from the base class. Subsequently, WIT is forced to put all
objects into the same color. As a result the whole type hierarchy will be
collapsed into the same color. An attacker can use any method from any
subclass also on a base class without triggering a WIT violation.

The policy enforced by a field-insensitive WIT gives an attacker a lot of
possibilities to create an exploit by abusing all methods and all objects
associated with one type hierarchy. To launch a COOP attack the attacker
must first corrupt a virtual method table (vtable) pointer. The placement
of the vtable pointer is implementation specific and can be chosen by
the compiler. Most compilers place the vtable pointer at the top of the
allocated object. To corrupt the vtable pointer the attack must violate spatial
or temporal safety. WIT can catch many such violations. However, one
problematic pattern are continuous chunks of memory consisting of different
objects, but all of the same color. An attacker could overflow from the first
of the objects into the second or further, without violating the WIT policy.
To demonstrate how severe this problem is, we give an example in which
an attacker can overwrite a vtable pointer. Figure 5.4 shows a listing of
problematic code on the right. This code then produces a memory layout as
shown on the left. The attacker can now overflow from the first object, into
the second object and overwrite a vtable pointer.

Furthermore such continuous memory chunks must not necessarily be
created using a single allocation with malloc. For example the jemalloc
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...

vptr

uint64_t member

char buf[16]

vptr

uint64_t member

char buf[16]

...

OtherClass p {...}

...

0x00..00

0xFF..FF

objs[0]

objs[1]

1 class SomeClass {

2 uint64_t member;

3 // prone to a buffer overflow

4 char buf [16];

5

6 virtual ~SomeClass ();

7 virtual void virtMethod ();

8 }

9 // ...

10 vector <SomeClass > objs;

11 for (size_t i = 0; i < 2; i++)

12 objs.push_back(SomeClass ());

13 OtherClass* p = new OtherClass ();

14 // ...

15 gets(objs [0]. buf);

Figure 5.4: Example for a problematic pattern for WIT, due to adjacent objects with the
same color. WIT would not prevent the vptr overwrite.
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heap implementation does not store meta-data in front of allocated chunks,
but keeps the meta-data in a separate memory area. This is in contrast
to the ptmalloc-based allocators, such as the one in the GNU libc. This
allows jemalloc to put objects right beside each other without any gaps.
An attacker can trigger two allocations of the same size and color and get
a continuous chunk of memory of one color. The allocator used alongside
any DFI implementation should insert red-zones in between objects, such
that it can catch out of bounds accesses.

A possible solution to this was proposed for data space randomization
[BS08]. One can leverage the concept of pool allocation [LA05], but instead
of allocating objects of the same type in the same pool, objects of the
same type and color are allocated in different pools. The pools are then
separated with guard pages. This ensures that objects with the same color
are never allocated in the same memory region and are safe from linear
buffer overflows. The same problem with arrays cannot be as easily solved.
An array type is defined to be a continuous chunk of memory, by the C/C++
language standards. The instrumentation code would have to break this
definition and allocate each array member in a different pool and instrument
all array access operations to redirect to the actual memory location of the
array field. This would break assumptions about the memory layout of
objects and cause incompatibilities with existing code. Furthermore it would
cause a severe performance degradation by breaking data caching of the
CPU.

We identified another problematic pattern: compound data structures. This
problem is not C++ specific, but is also a common pattern in C code. When
data structures are nested then WIT must collapse both types into the same
color, as can be seen in the example in Figure 5.5. Because MyStr is em-
bedded in SomeCls, the init method of MyStr must be allowed to access
data that is stored within SomeCls objects. Because of the field insensitivity,
init is also allowed to write to any other member of SomeCls. Addition-
ally, if the embedded class MyStr is also embedded in a totally unrelated
class OtherCls, this class will also be put into the same color as MyStr

and therefore also SomeCls. The points-to node of the this pointer in the
init method, contains all three objects x, y, z of different types. Under
WIT both store instructions in the init method can therefore write to any
member of all given classes.
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void MyStr ::init(char* x)

{

size_t i = 0;

while (i < 16 && *x) {

this ->data[i] = *x;

i++; x++;

}

this ->size = i;

};

struct MyStr {

size_t size;

char data [16];

};

struct SomeCls {

int i;

MyStr str;

};

struct OtherCls {

char* c;

MyStr str;

};

int main() {

MyStr* x = new MyStr ();

x->init("one");

SomeCls* y = new SomeCls ();

y->str.init("two");

OtherCls* z = new OtherCls ();

z->str.init("three");

// ...

}

MyStr::init this

writes to:
points to:

Figure 5.5: A field-insensitive points-to analysis collapses all fields together, resulting in
impossible points-to nodes.
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Summarizing, WIT does not fully prevent COOP attacks. However, WIT
limits an attacker in her capabilities to construct a COOP attack. The attacker
must operate within the static data-flow graph for all write operations. We
showed, that common C++ code patterns allow an attacker a high degree of
freedom within the enforced security policy of a field-insensitive WIT. While
WIT restricts an attacker from reusing virtual methods from a different WIT
color, C++ makes it very likely that many methods will fall into the same
color. All objects within one type hierarchy and all embedded data structures
will stay within one color. It is then also more likely that an attacker has
all necessary COOP gadgets available. In summary we showed that WIT
alone does not offer comprehensive protection against COOP. It is therefore
crucial that WIT is combined with a precise CFI solution as in the original
WIT proposal [Akr+08] or some other specialized vtable protection method
[PHY15].

5.2.2 Problems with Field Sensitivity

All previous proposals of DFI schemes, such as DFI, WIT, data random-
ization and data-space randomization, used a field-insensitive points-to
analysis and noted that using a field-sensitive points-to analysis is future
work [CCH06; Akr+08; BS08; Cad+08]. Indeed a field-sensitive points-to
analysis would allow WIT to prevent the attacks described previously in
this section. We argue that implementing a field-sensitive version of WIT
faces many compatibility issues and might not be suitable to harden legacy
codebases.

A very nice property about WIT, and all other DFI schemes, is that they do
not suffer from false positives. If WIT detects an error, then the program has
a bug. This makes WIT practical to secure legacy code, by recompiling it.
Techniques that require changes or even annotations to the source code are
mostly not practical for this purposes. Introducing field-sensitivity creates
issues that break compatibility with existing software. For example, the
C/C++ languages guarantee that a simple struct or a “trivially copyable
type”, for example a C++ plain old data type (POD), can be copied from one
memory location to another with memcpy. An object can also be copied into
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an array of type unsigned char as a temporary storage. The language guar-
antees that these copy operations will result in exact copies of these objects
[ISO12; ISO14]. This poses a problem for a field-sensitive implementations
of WIT. To achieve compatibility with the language, the memcpy function
would need to be treated in a special way, as memcpy would be allowed to
copy objects in bulk ignoring the field specific colorings. A simple solution
would be to allow memcpy to completely ignore the coloring. However, this
opens up opportunities for an attacker, as many string handling functions
rely on calling memcpy. A more sophisticated solution would introduce a
special version of memcpy for copying objects. It is questionable whether
this case can always be detected with static analysis. It would actually be
permissible to implement a custom memcpy implementation, which would
be infeasible for static analysis to detect. Furthermore in a field-sensitive
WIT implementation, the data structures would become much bigger. Every
field would have to be aligned to 8 bytes. This would increase memory
usage, much more than WIT does anyway.

5.2.3 Attacks Against Allocators

DFI, WIT and similar schemes usually do not explicitly consider temporal
safety. While it is definitely a bug, it is not clear, whether data-flow to or
from deallocated objects is considered as invalid by DFI schemes. The object
is still the same, although it is technically not existing anymore. Only when
a different object, with a different color, is allocated at the same memory
location, a data-flow integrity violation is clearly happening. In our WIT
prototype we color freed objects with the default color 0, if we can retrieve
the size of the freed object. This way write-after-free bugs can be detected.
Other temporal safety violations cannot be detected by WIT. For example if
a different object, but with the same color, is allocated in the same memory
location, then a temporal safety violation would stay undetected.

Furthermore WIT, and also all other DFI schemes, cannot instrument the
allocator itself. The allocator implementation cannot operate on the same set
of objects as a normal C program, but must manage memory at a different
level. For example the GNU libc allocator writes to freed memory, to manage
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in-place free lists. Subsequently DFI schemes must assume that the allocator
is correct.

Several memory corruption attacks against memory allocators have been
studied [Pha05; bla09; ah12]. These attacks abuse the internals of the allo-
cator’s implementation. Some of these attacks are mitigated by WIT. For
example the traditional unlink technique requires a corruption of a freed
chunk to modify the forward and backward pointers of the allocator free
list. This write to a freed object would be detected by LLWIT. Other attacks
are impossible to detect. For example double free vulnerabilities can cause
an inconsistent state in the allocators internal meta data. Listing 5.2 shows a
snippet of code that illustrates how a double free can make the allocator re-
turn the same address twice. The glibc allocator features only rudimentary
double free detection, that detect only two consecutive calls to free with the
same address.

1 // double free in ptmalloc2 based glibc allocator

2 char* a = malloc (8);

3 char* b = malloc (8);

4 char* c = malloc (8);

5

6 free(a);

7 free(b); // avoid double free detection

8 free(a);

9 // free list: [a, b, a]

10 char* x = malloc (8);

11 // free list: [b, a]

12 char* y = malloc (8);

13 // free list: [a]

14 char* z = malloc (8);

15 // the following holds

16 assert(x == z);

Listing 5.2: Double free vulnerability.

Such attacks cannot be detected by WIT alone. An attacker can use such a
bug to create a condition, where two pointers to logically different objects
point to the same memory location. This scenario is similar to use-after-free
bugs. With LLWIT enabled the attacker is restricted to only use the last
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allocated pointer for writing, since the color of the shadow memory is
determined by the last object allocated at that address. The attacker can
then use the new object to write to the memory location and use the older
object for reading. If both objects happen to have the same coloring, then
the attacker is not restricted at all.

Listing 5.3 shows a snippet of code that would allow an attacker to perform
such an attack. The login function contains a double free bug, similar
to the Listing 5.2. By triggering the login function a second time, the
attacker can make the creds pointer point to the same memory location
as otp_user_token. The attacker can then write to the otp_user_token on
line 14. The attacker now freely controls the credential structure behind the
creds pointer and can set the uid field to zero, to pass the check on line 16.
This is a purely data-oriented attack. But a similar attack can be used to
corrupt function pointers or vtable pointers in C++ objects.

Although this attack is a particular weak spot of WIT, other attacks against
allocators usually require corruption of internal meta-data. The majority
of attack vectors for corrupting heap meta-data is mitigated by WIT, e.g.
writing to a freed chunk can be prevented by WIT. Attacks against allocators
are an example of attacks against non-instrumented parts of the program.
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1 // invoked 2 times in a row by the attacker

2 void login(uint64_t uid) {

3 // 1st malloc

4 creds = malloc(sizeof(creds_t) /* == OTP_SIZE */);

5 creds ->uid = uid;

6 // 2nd malloc

7 another_allocation = malloc(OTP_SIZE );

8 // 3rd malloc - will contain attacker input

9 otp_user_token = malloc(OTP_SIZE );

10

11 if (creds ->uid == 0) {

12 puts("root login disabled");

13 } else {

14 if (verify_token(uid ,

15 // reads malicious input from user

16 otp_user_token )) {

17 if (creds ->uid == 0) {

18 // SUCCESS: root shell

19 // ...

20 } else {

21 // ...

22 }}}

23 free(creds);

24 free(otp_user_token );

25 // BUG: double free

26 free(creds);

27 // freelist: [creds , otp_user_token , creds]

28 }

Listing 5.3: Code that allows an attacker to bypass LLWIT.
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In this thesis, we evaluated the concept of write-integrity testing (WIT). WIT
is an exploit mitigation scheme that enforces a subset of data-flow integrity
(DFI) and promises protection against data-only attacks. We showed that
WIT does indeed protect against control-flow hijacking and data-only at-
tacks. Our LLVM-based WIT prototype (LLWIT) was able to mitigate all
vulnerabilities in 33 of 58 programs. However, we also identified various
code patterns that lead to weak security guarantees offered by WIT. We
showed that a field-insensitive WIT does not offer comprehensive protection
against counterfeit object oriented programming (COOP).

We implemented WIT within the LLVM compiler framework because no
WIT implementation is publicly available. We described the challenges of
implementing WIT. When applying WIT, we opted to use static linking
and whole-program analysis, so that the points-to analysis can track the
points-to information through library functions. We had to implement a
heuristic to separate the allocator implementation from the rest of the code
during whole-program analysis. Based on LLWIT, we performed an analysis
on the security guarantees offered by WIT implementations.

In the first part of our evaluation, we used a set of programs from the cyber
grand challenge (CGC) competition. We compiled all programs with LLWIT
instrumentation enabled, and tested them with the provided functional tests
and the provided proof of vulnerability (POV) exploits. Our first lesson
with the CGC dataset was that most POVs are not functional when a dif-
ferent compiler version is used. We used the remaining programs in the
CGC dataset to evaluate WIT and compare it to state-of-the-art mitigation
mechanisms: control-flow integrity (CFI) and SafeStack. As expected, LLWIT
generally prevents exploitation of more POVs than CFI and SafeStack. Our
implementation mitigates all vulnerabilities in 33 of 58 programs out of
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the CGC dataset. CFI and SafeStack combined, mitigate more vulnerabil-
ities than LLWIT in 6 programs. We saw that WIT is not able to mitigate
uninitialized read vulnerabilities, protect programs that use a just-in-time
(JIT)-compiler, and can have issues when WIT-instrumented code interfaces
with non-instrumented code. The weakest point of WIT lies in the usage of
a field-insensitive points-to analysis.

In the second part of our evaluation, we used the insights gained from
the CGC dataset to identify problematic code patterns. Common code
patterns in C++ programs decrease the security guarantees that are offered
by WIT. We demonstrated that an attack, that abuses double free bugs,
can allow an attacker to violate temporal safety and bypass WIT. WIT
should, therefore, be combined with a hardened allocator, that offers better
double-free detection than the GNU libc heap implementation. We showed
that WIT cannot offer sufficient protection against COOP attacks. The main
problem is again the lack of field-sensitivity. We showed code patterns that
allow an attacker to corrupt the virtual method table (vtable) pointer of an
object, even when protected with WIT. Furthermore, WIT does not restrict
an attacker enough, so that she can still construct useful COOP attacks.
Therefore, it is essential that WIT is also combined with a CFI solution,
which is aware of C++ semantics. However, in big C++ code bases with a
lot of inheritance, an attacker might be able to bypass both WIT and CFI.

We conclude that WIT alone does not offer comprehensive protection against
memory corruption attacks in general. Many of the problems of WIT are
also applicable to other DFI schemes. The problem of mitigating data-only
memory corruption attacks with practical overhead is still an open research
topic.

Future Work

We already identified various code patterns that lead to a weak policy,
enforced by WIT. However, we only analyzed rather small programs in
the CGC dataset. Further analysis on how WIT performs on large code
bases, such as a web browser, is needed. Our results suggest that WIT
would perform even worse when the code base is large. To work with large
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codebases, a faster points-to analysis is needed. Using an Andersen-style
points-to analysis results in a points-to graph with high precision at the cost
of cubic runtime. This precision is not needed because WIT merges points-to
nodes in the color sets. A Steensgard-style points-to analysis would allow
WIT to analyze large code bases in nearly linear time.

We identified field-insensitivity as the main problem of WIT. Other DFI
schemes suffer from similar weaknesses. While a field-insensitive WIT is
highly compatible with existing non-instrumented code, a field-sensitive
version of WIT would have to break certain assumptions and guarantees of
the C/C++ languages. It would be interesting to verify if a field-sensitive
version of WIT could be implemented to work on real-life programs.
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Acronyms

ASLR adress space layout randomization
BROP blind return oriented programming
CB challenge binary
CFE CGC final event
CFG control-flow graph
CFI control-flow integrity
CGC cyber grand challenge
CGI common gateway interface
COOP counterfeit object oriented programming
CPI code pointer integrity
CPU central processing unit
CQE CGC qualifying event
CRS cyber reasoning system
DEP data execution prevention
DFI data-flow integrity
DOP data-oriented programming
DoS denial of service
GOT global offset table
JIT just-in-time
JIT-ROP just-in-time return oriented programming
LLWIT our LLVM-based WIT prototype
MAC message authentication code
OS operating system
POD plain old data type
POV proof of vulnerability
RDT runtime definitions table
RELRO read-only relocations
ret2libc return to lib(c)
ROP return-oriented programming
SFI software fault isolation
SSA single static assignment
SST SafeStack
URL uniform resource locator
vtable virtual method table
WIT write-integrity testing
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