
Ralph G. Samer, BSc

Construction of a Recommender System for
Catrobat's Collaborative Web Community

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Univ.-Prof. Dipl-Ing. Dr. techn. Wolfgang Slany

Institute for Software Technology

 Master of Science

Supervisor

Co-Supervisor
Bernadette Spieler, MSc.

Graz, May 2017

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be found
online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Abstract

The introduction of the Internet to billions of users worldwide has led to an
unprecedented trend in the digitalization of data, resulting in a growth of data
that has expanded exponentially across cyberspace. Today, a huge amount
of that data is generated by users via collaborative software, which is largely
represented by social platforms like Facebook, Twitter, and Google+. With the
increasing amount of produced collaborative data in such platforms, finding
relevant pieces of information becomes a challenging task for a user. Hence,
there is a significant demand for solutions that help users in finding desired
content within those huge data masses. Recommender Systems represent
one common scientific approach to tackle this problem. These systems are
the main research topic of this Master’s thesis. Since the research area of
recommender systems is very broad and multi-disciplinary, the research scope
of this thesis has to be narrowed down to only the most relevant examples of
these systems. Thereby, this thesis primarily focuses on the practical use of
collaborative filtering recommender techniques for the Catrobat project.

During the project portion of this thesis, three basic recommender approaches
were implemented and evaluated. The first two approaches are based on a
collaborative filtering technique and the third approach is a content-based
recommender system which shows a graph of content-similar items (i.e.,
Catrobat programs). All approaches make use of either collaborative remixing
data or collaborative data from like ratings which had to be collected by
the system. The more collaborative data the system collects about its users,
the better the system knows them. Therefore, user profiles containing an
appropriate amount of user data are essential for making good user-specific
recommendations. Moreover, the quality of these recommendations needs to
be evaluated. Consequently, the main goal of this thesis is to use the results of
the evaluation to advise the Catrobat project on how to improve the quality of
the recommendations in order to increase overall user activity.

v

The main conclusion of this thesis is that recommendations based on a col-
laborative filtering technique have a positive impact on both download and
remixing activity. Moreover, the findings reveal that the collected like rating
data appears to be the preferred input source for a collaborative filtering
approach in the context of Catrobat. The obtained results also indicate that
the recommendations generated by a content-based recommender system can
improve the navigation through a set of content-related items in Catrobat. Fi-
nally, these findings have been the basis for the suggestions given to Catrobat,
which include the adaption of the existing system to a hybrid combination of
both collaborative filtering approaches, the active promotion of the Scratch
converter project, the inclusion of acknowledgement information in the de-
tail data of remixed programs, and further statistical investigations of the
implemented approaches.

vi

Kurzfassung

Seit der Einführung des Internets steigt die Menge an digitalen Daten weltweit
kontinuierlich an. Den Großteil dieser Daten stellen heutzutage jene Daten dar,
die durch Benutzer und Benutzerinnen mit Hilfe von kollaborativer Software
erzeugt werden. Repräsentative Beispiele für kollaborative Softwaresysteme
sind vor allem soziale Plattformen wie etwa Facebook, Twitter oder Google+.
Mit der rasant wachsenden Menge an solchen “kollaborativ-erzeugten” Daten
wird es für Benutzer/innen immer schwerer, relevante Inhalte darin zu finden.
Folglich steigt auch die Nachfrage nach passenden Lösungsmöglichkeiten zum
Suchen solcher relevanten Informationen stark an. Ein bekannter Ansatz zur
Lösung dieses Problems sind Recommender Systeme, die auch den primären
Forschungsgegenstand dieser Masterarbeit darstellen. Aufgrund der großen
Vielfalt an verschiedenen Einsatzmöglichkeiten von Recommender Systemen
und des weitreichenden interdisziplinären Forschungsgebiets dieser Systeme
ist es erforderlich den Fokus dieser Masterarbeit einzuschränken. Diese Mas-
terarbeit beschäftigt sich daher mit dem praktischen Einsatz von Empfehlungs-
diensten im Catrobat Projekt und legt den Fokus vor allem auf das kollaborative
Filtern von Inhalten.

Im Rahmen dieser Arbeit wurden drei Varianten von Empfehlungsdiensten
implementiert. Dabei basieren die ersten beiden Varianten auf der kollabo-
rativen Filtermethode. Als dritte Variante wurde ein inhaltsbasiertes Recom-
mender System implementiert, das als Ergebnis einen Graphen mit inhaltlich
zusammenhängenden Objekten (Catrobat-Programme) abbildet. Diese zusam-
mengehörigen Catrobat-Programme werden dann als Empfehlungen dem/der
Benutzer/in vorgeschlagen. Alle drei Varianten verwenden dabei als Grund-
lage für ihre Empfehlungen vom System gesammelte kollaborative Daten.
Dies sind entweder extrahierte Remixing-Daten von Catrobat-Programmen
oder die gesammelten Bewertungsdaten der Benutzer und Benutzerinnen.
Dabei ist vor allem die Menge an verfügbaren Daten von entscheidender

vii

Bedeutung für die Qualität der Empfehlungen. Je mehr solcher kollaborativer
Daten einem Recommender System zur Verfügung stehen, desto genauer
kann es die Empfehlungen an die individuellen Vorlieben der Benutzer/innen
anpassen. Daher ist das Erstellen von detaillierten Benutzerprofilen essentiell
für die Generierung von userspezifischen Empfehlungen. Ferner spielt auch
die Evaluierung der Empfehlungen eine bedeutende Rolle. Daher wurden
die drei implementierten Varianten im Rahmen dieser Masterarbeit genauer
untersucht. Aufbauend auf den erhaltenen Evaluierungsergebnissen ist das
Ziel dieser Masterarbeit Lösungsvorschläge und Ideen für Catrobat zu präsen-
tieren, um die Qualität der Empfehlungen zu verbessern und die Benutzerak-
tivität zu erhöhen.

Die grundlegende Erkenntnis dieser Masterarbeit ist, dass jene Empfehlungen,
die auf der kollaborativen Filtermethode beruhen, einen positiven Einfluss
auf die allgemeine Download- und Remixingaktivität der Benutzer und Be-
nutzerinnen hat. Dabei deuten die Ergebnisse darauf hin, dass die Bewertungs-
daten der Benutzer und Benutzerinnen eine hervorragende Eingabequelle
für die in Catrobat eingesetzten Empfehlungsdienste darstellen. Eine weit-
ere wichtige Beobachtung zeigt, dass die Empfehlungen des inhaltsbasierten
Recommender Systems positiven Einfluss auf die Navigation innerhalb der
inhaltlich zusammenhängenden Objekte hat. Basierend auf diesen Erkennt-
nissen werden dann Vorschläge an Catrobat gemacht. Diese umfassen unter
anderem den Umstieg auf eine hybride Kombination beider vorhandener
kollaborativer Varianten, die Förderung des Scratch Konverter Projekts, die
Aufforderung zur Angabe eines Anmerkungs- bzw. Danksagungstextes vor
dem Hochladen eines remixten Catrobat Programms, sowie eine erneute de-
taillierte Untersuchung aller implementierten Varianten nach Erreichen einer
gewissen Datenmenge.

viii

Contents

Abstract v

Kurzfassung vii

1. Introduction 1

2. Glossary 5

3. Collaborative Software 7
3.1. Collective Intelligence . 7

3.1.1. Principles of Collective Intelligence 9

3.1.2. Collective Intelligence on the Web 11

3.2. Classification of Collaborative Software 14

3.2.1. Time/Space Classification of Groupware 15

3.2.2. The 3C Model . 17

3.3. Examples of Collaborative Software 20

3.3.1. Blogs . 20

3.3.2. Wikis . 21

3.3.3. Social Networks . 22

3.3.4. Media Sharing Services 22

3.4. Collaborative Learning and Remixing 23

4. Recommender Systems 27
4.1. Motivation and Principle of Recommender Systems 27

4.2. Input Sources . 31

4.2.1. Explicit Feedback . 31

4.2.2. Implicit Feedback . 32

4.2.3. Comparison: Explicit vs. Implicit Feedback 32

4.3. User-Specific vs. Non-Personalized Recommendations 33

ix

Contents

4.4. Recommendation Methods . 34

4.4.1. Content-based Recommenders 34

4.4.2. Collaborative Filtering . 36

4.4.3. Challenges of Collaborative Filtering Approaches 47

4.4.4. Comparison: Content-based vs. Collaborative Filtering . 50

4.4.5. Hybrid Approaches . 51

4.5. Evaluation Methods . 52

4.5.1. Offline Evaluation . 52

4.5.2. Online Evaluation . 55

4.5.3. User Studies . 56

4.5.4. Comparison of Evaluation Methods 56

5. Catrobat Project 59
5.1. About the Organisation and the Project 59

5.2. Catrobat: The Programming Language 60

5.3. Pocket Code App . 61

5.4. Catrobat’s Community Website 62

5.5. Scratch to Pocket Code Converter 64

6. Implementation and Evaluation 67
6.1. Implementation of Remixing . 67

6.1.1. The Remix Graph . 68

6.1.2. The Process of Remixing in Catrobat 69

6.1.3. Implementation of Remix Model and Visualization . . . 79

6.2. Implementation of Like Rating System 92

6.3. Integration of Recommender System 94

6.3.1. Precomputation of User Similarities 95

6.3.2. Framework of the Recommender System 97

6.3.3. Implementation of Recommendation Approaches 98

6.3.4. Common Challenges . 105

6.4. Evaluation of Recommendation Approaches 106

6.4.1. Test Scenario I . 106

6.4.2. Test Scenario II . 109

6.4.3. Test Scenario III . 110

x

Contents

7. Results 113
7.1. General Statistics of the Community Website 113

7.1.1. Key Performance Indicators of Catrobat 113

7.1.2. Distribution of Catrobat Programs 114

7.2. Evaluation Results . 115

7.2.1. Results of Test Scenario I 115

7.2.2. Results of Test Scenario II 118

7.2.3. Results of Test Scenario III 121

7.3. Discussion of Results . 125

7.3.1. Discussion of Test Scenario I 125

7.3.2. Discussion of Test Scenario II 127

7.3.3. Discussion of Test Scenario III 128

8. Conclusion 131
8.1. Outcome . 131

8.2. Future Work . 132

A. List of Abbreviations 137

B. Web API Reference 139

C. Code Snippet of User Similarity Computation 143

Bibliography 147

xi

List of Figures

3.1. Ant workers searching for food 8

3.2. Example of collective intelligence on the Internet 12

3.3. Basic example of a simple “webgraph” 13

3.4. Time/Space Groupware Matrix 16

3.5. The 3C classification model . 18

4.1. The “long tail” phenomenon . 29

4.2. Phases of the recommendation process 30

4.3. Basic principle of a content-based recommender 35

4.4. The collaborative filtering process 37

4.5. User-based vs. item-based collaborative filtering 42

5.1. Visualization of two head bricks and their corresponding action
bricks as part of an object named “Cape” 61

5.2. Pocket Code’s IDE listing the objects of a Catrobat program . . 62

5.3. Mobile version of the Pocket Code’s community website 63

5.4. Conversion flow of Scratch Converter 65

6.1. Example of a remix graph . 69

6.2. Sequence diagram describing the process of remixing 71

6.3. Example of an acyclic remix graph 73

6.4. Example of a remix graph with cycles 76

6.5. Example of a remix graph including a converted program and
its original Scratch program . 78

6.6. Relations between database tables of the remix graph model . . 82

6.7. Zoomed-in view of a remix graph 91

6.8. Detail page of a Catrobat program 93

6.9. Database relations between like, program and user table 94

6.10. Database relations between user similarity tables 97

xiii

List of Figures

6.11. Home page of Catrobat’s community website hiding (a) and
showing (b) the section of recommended programs 108

6.12. Program detail page of Catrobat’s community website hiding
(a) and showing (b) the “Show Remix Graph” button 111

7.1. Distribution of Catrobat programs based on remixes 114

7.2. Number of downloads over time (test scenario I) 116

7.3. Comparison of conversion rates (test scenario I) 118

7.4. Comparison of click-through and conversion rate (test scenario II)120

7.5. Number of uploads over time (test scenario III) 123

xiv

List of Tables

6.1. Matrix of the first A/B test’s allocation setting 107

6.2. Matrix of the second A/B test’s allocation setting 109

6.3. Matrix of the third A/B test’s allocation setting 110

7.1. Key performance indicators of Catrobat’s online community . . 114

7.2. User activity of each version in test scenario I 117

7.3. Comparison of uplift and confidence levels (test scenario I) . . 118

7.4. User activity of each version in test scenario II 119

7.5. Comparison of uplift and confidence levels based on the num-
ber of clicks (test scenario II) . 120

7.6. Comparison of uplift and confidence levels based on the num-
ber of conversions (test scenario II) 121

7.7. User activity of version B in test scenario III 122

7.8. Uploaded programs and remix-programs (test scenario III) . . 124

7.9. Uplift and confidence level (test scenario III) 124

xv

1. Introduction

With the introduction of the first personal computers in the 1970s and the
invention of Arpanet, the early predecessor of today’s Internet, a revolutionary
new age of information was born. In this completely new era of human history,
technology has drastically changed the way how people communicate and
share information. The transition from the industrial age to the information
age has gone hand in hand with the increasing digitalization of data and
the growing importance of communication networks, like for example, the
Internet. As a consequence, the need to collect, group and store information
on servers has increased significantly as well.

In particular, huge masses of collaborative user data are created on common
social platforms, like Facebook, Twitter, or Google+. Beyond that, there also
exist other kinds of social platforms such as media sharing services which
provide executable or playable content. Examples of media sharing platforms
include Youtube, Netflix, Spotify, Apple iTunes Store, Google Play, Apple App
Store, and many others.

Another example of media sharing platform is Catrobat’s educational com-
munity website1, which hosts programs created by children and teenagers on
their mobile smartphones or tablet devices (see Section 5.4). These programs
are called Catrobat programs. Unlike a typical app store, uploaded Catrobat
programs can not only be commented and rated by other users, but also
modified and uploaded again as new versions. This collaborative learning
approach is called remixing and is explained in Section 3.4.

As the number of users is growing rapidly, so does the amount of Catrobat
programs and thus the amount of collaborative data. This makes searching
for programs more relevant and essential to users. Consequently, the demand

1Catrobat’s Community Website: http://share.catrob.at

1

http://share.catrob.at

1. Introduction

for finding a desired piece of information becomes a crucial obligation for a
software collaboration system like Catrobat’s community website.

Therefore, modern collaborative software systems strive to use collective intelli-
gence to fully take advantage of their collaborative data. Furthermore, these
collaborative applications can be extended with recommender systems in such
a way that they are able to support their users in the finding process before the
users even start searching. In other words, an important task is to recommend
yet unseen items to users which might be of interest to them. The difficulty is
not so much to figure out the preferences of users, but to automatically draw
correct conclusions.

This Master’s thesis aims to tackle this problem and focuses on the use of
collaborative data in order to enhance the quality of results generated by
recommender systems. Essentially, the fundamental goal of this thesis is to
answer the following research questions:

• Research Question 1:
Do recommendations of Catrobat programs have a positive impact on the overall
download activity?

• Research Question 2:
Can a user-based recommendation approach based on collaborative filtering
produce recommendations of higher quality compared to those generated by
naive recommendation approaches? Which of the two implemented user-based
collaborative filtering approaches performs best: (a) the first approach, which
is based on remixing data, or (b) the second approach, which is based on like
ratings?

• Research Question 3:
Given the set of Catrobat programs remixed by all users, can these remixed
programs be used to generate high quality content-based recommendations for
other users in order to increase the overall remixing activity?

This thesis is structured into the following chapters. Chapter 2 defines the
most important technical terms used in this thesis. Chapter 3 highlights dif-
ferent aspects of collaborative software and emphasises the deep relationship
between collective intelligence and collaboration. In addition, an overview

2

of the large spectrum of collaborative software is given and approaches on
how to classify such software are presented. At the end of this chapter, the
focus moves towards collaborative learning and the aforementioned remixing
learning approach is discussed in depth. Chapter 4 presents those systems and
appropriate modes for predicting and recommending undiscovered programs
based on collaborative data gathered by such collaborative systems. In partic-
ular, the focus lies on collaborative recommendation approaches, which are
also referred to as collaborative filtering recommendation approaches. Chapter 5

introduces the Catrobat organisation and project. This chapter initiates the
practical part of this Master’s thesis. Chapter 6 discusses the implementation
of the practical project of this thesis and the used evaluation techniques. This
chapter concentrates on the implementation of two different collaborative
filtering recommendation approaches and also assesses the performance of
an alternative content-based recommendation approach which is based on
remixing. At the end of the chapter, online tests are described which have
been conducted in order to evaluate the performance of the implemented
approaches. Chapter 7 presents the evaluation results of these tests and dis-
cusses the significance of these findings. Finally, Chapter 8 provides a brief
recapitulation of all previous chapters, emphasizes the outcome of this thesis,
and provides ideas for future work.

3

2. Glossary

This chapter defines relevant technical terms used in this thesis.

Ajax: As described by Garrett, 2005, the term Ajax is a combination of
several different technologies. It consists of a standards-based presentation
using XHTML and CSS, dynamic display and interaction using the Document
Object Model, data interchange and manipulation using XML and XSLT,
asynchronous data retrieval using XMLHttpRequest, and JavaScript binding
everything together.

Algorithm: In computer programming, an algorithm defines a function
which implements a sequence of operations in order to perform a task (Terms,
2017a). In its simplest form, an algorithm can be a primitive operation, such as
adding two numbers. Normally, an algorithm has more complex instructions,
such as playing a compressed multimedia file.

Click-Through Rate: The Click-Through Rate (CTR) is a measure that de-
scribes the ratio of the number of clicks (for example, on a link) to the number
of page impressions as described by OnPageWiki 2017.

Conversion Rate: According to Nielsen Norman Group 2017, the conversion
rate is the percentage of users who take a desired action. A typical example of
the conversion rate defines the percentage of website visitors who buy some-
thing on the site. Other examples are: buying something on an e-commerce
site, becoming a registered user, downloading software, etc.

5

2. Glossary

Hyperlink: As defined by Terms, 2017b, a hyperlink can represent an image,
a phrase, or a single word which can be clicked on in order to jump to a
different section on a page or different page. Hyperlinks, which are also
known as “links”, allow users to navigate within a website and can be found
in almost every web page.

Overfitting: According to Techopedia, 2017a, overfitting is an effect that
occurs in situations where a model tries to find a trend in data which is
extremely noisy. This means that the model is unable to generate any gen-
eral and reliable predictions. Often the reason for overfitting is that data is
represented by a very complex model with too many model parameters. The
predictions of an overfitted model are inaccurate since the model does not
reflect the real trend in the data.

Programmable Media: According to Monroy-Hernández, 2007, programmable
media refers to media content (such as audio files, videos, images, and text)
which is controlled by a certain behavior. An example is an image of an animal
for which an behavior is defined like “move the animal 10 steps forward when
the space key is pressed”. Examples of platforms for creating programmable
media content include Scratch and Catrobat.

Representational State Transfer: As described by Techopedia, 2017b, repre-
sentational state transfer, often abbreviated as REST, is a distributed framework
which uses web technologies and web protocols. Its architecture supports
server and client interactions which accomplish the transfer of resources. REST
is a programming paradigm often used in the context of web services.

Web 2.0 According to Terms, 2017c, Web 2.0 is the second generation of the
world wide web and provides a variety of new functionality and features for
user interaction on the web. With the introduction of Web 2.0 in 2004, web
pages have become more dynamic. Web 2.0 allows users to collaboratively
work together and interact with others in real-time on the web. Examples
include wikis, blogs, social networking and web applications.

6

3. Collaborative Software

The main goal of this chapter is to shed light on the different aspects of
collaborative software. At the beginning of this chapter, the concept collective
intelligence is examined and its importance in the context of the web as a result
of a knowledge-based human superorganism is discussed in more detail. This
leads to classification approaches and examples of collaborative software tools
which aim to exploit the full potential of the collective intelligence process
behind this human superorganism. Finally, a collaborative learning method
for (group) project work, called remixing, is presented which forms the basis
for later chapters of this thesis.

3.1. Collective Intelligence

In 1911, the entomologist William Morton Wheeler (Wheeler, 1911) made
the observation that individual ants worked as part of a cooperating single
working unit, namely the colony, which represented a “superorganism” that
was indistinguishable from a single organism.

Figure 3.1 shows an experiment conducted by researchers at Princeton Univer-
sity (Reid et al., 2015). The experiment illustrates an example on how columns
of ants can instinctively co-operate to intelligently bypass obstacles in order
to forage for food or supplies.

The scientific findings of Wheeler can be understood as a predefinition of
the term collective intelligence, which has since been redefined and further
developed by many other sociologists like Durkheim, 1912 or Wells, 1938. For
example, Durkheim interpreted society as the sole source of human logical
thought. In fact, a lot of people’s knowledge originates from several sources,
e.g., from books, scientific papers, seminars, etc. Obviously, these sources

7

3. Collaborative Software

Figure 3.1.: Ant workers searching for food (Army ants’ "living" bridges span collective intelligence,
"swarm" robotics 2015)
Source: https://blogs.princeton.edu/research/2015/11/24/army-ants-living-bridges-span-collective-intelligence-swarm-

robotics-pnas

are based on other people’s knowledge, which perfectly demonstrates the
presence of a human superorganism.

More precisely, according to Levy, 1997, p. 13:

“Collective Intelligence is a form of universally distributed intelligence,
constantly enhanced, coordinated in real time, and resulting in the effec-
tive mobilization of skills. [...] The basis and goal of collective intelligence
is mutual recognition and enrichment of individuals rather than the cult
of fetishized or hypostatized communities.”

8

3.1. Collective Intelligence

3.1.1. Principles of Collective Intelligence

Tapscott and Williams, 2006 interpreted collective intelligence as some kind
of mass collaboration. In their book the authors also introduced the term
Wikinomics, which describes a new way of doing business in a revolutionary
collaborative context. The basic idea behind this concept is, that people work
independently on a joint project, meaning their work has to be organized indi-
vidually by themselves and hence no central work hierarchies exist (Tapscott
and Williams, 2006). Examples are the social contribution of users to social
networks like Facebook or Twitter, the development of open source software
projects such as the Linux kernel, the sharing of knowledge on various collab-
orative platforms such as video platforms like YouTube, online encyclopedias
like Wikipedia, or the knowledge contribution to scientific projects such as
the human genome project.

According to Tapscott and Williams, 2006, Wikinomics consists of the following
four central concepts.

i. Openness:
The Openness principle references the willingness of individuals to co-
operate and share ideas and intellectual property.
For example, big internet companies like Google, eBay, Facebook, or
Amazon open up their platforms to extend the scope and accelerate the
process of innovation. These platforms can be enriched with information
by millions of customers and partners to take advantage of synergy
effects (Tapscott and Williams, 2006).

ii. Peering:
In order to exploit the full potential of human ingenuity and human
skills, individuals need to be able to freely modify and extend content
created by others. Consequently, peering encourages self-organization,
leading to better results for certain tasks compared to those results
achieved by hierarchically organized work. For example, IBM invests a
large amount of money every year to support the Linux community1. In
return, the company saves a vast amount of development costs and earns
billions in revenue with the use of Linux-related software each year. This

1Members of Linux Foundation: https://www.linuxfoundation.org/members/corporate

9

https://www.linuxfoundation.org/members/corporate

3. Collaborative Software

way, the Linux community can be seen as an additional extension added
to IBM’s human capital, whereas IBM is unable to control what the
developers in the community actually do (Tapscott and Williams, 2006).

iii. Sharing:
In contrast to the secrecy of all intellectual property, the exchange of
some valuable ideas with the community may open up new horizons
for a company, e.g., market expansion, lowering costs or building new
communities. Moreover, a high willingness of a number of organizations
and individuals to share ideas results in powerful share-communities.
Another important aspect in the context of sharing is licensing.
Examples of popular licenses for open source software projects include
Apache license, BSD license, GNU General Public license, MIT license,
and many others. By choosing the appropriate license one can, for
instance, protect the freedom of the project, but open it for use, redistri-
bution and modification. Nowadays, a countless number of smart firms
makes use of sharing their ideas, but still keeps their potential patent
ideas secret. For example, after the company Lego opened up and shared
the source code for their Lego Mindstorm products, some customers
made valuable contributions to the project (Tapscott and Williams, 2006).

iv. Acting Globally:
The invention of the Internet, the expansion of communication infras-
tructures such as mobile networks and the increased personal mobility,
has literally pushed globalization forward. Furthermore, the communi-
cation afford and costs to operate businesses across the globe decreased
significantly. The globalization process leads on to blurred economic
and geographic borders that previously insulated companies and gov-
ernments. Moreover, global alliances enable businesses to access new
markets and to benefit from new ideas and technologies (Tapscott and
Williams, 2006). This way, acting globally results in economic growth,
makes companies more competitive and facilitates collaboration between
people across many different businesses or business units (Tapscott and
Williams, 2006).
For example, in 2003 Boeing2 announced to replace its producer-supplier

2Boeing: http://www.boeing.com

10

http://www.boeing.com

3.1. Collective Intelligence

relationship hierarchy with a network of technological partners from
several different countries for designing and building their new “Boeing
787 Dreamliner” aircraft3. Having a global network decreases develop-
ment costs for Boeing and reduces the risks of this large-scale project
while collaboration with the partners is close.

3.1.2. Collective Intelligence on the Web

Although collective intelligence is not limited to the web, today’s human
collective intelligence is almost totally driven by data collected on the web.
In this context it can be understood as some piece of shared intelligence that
relies on online data generated by user activities. Examples of user activities
on the web include creating websites, writing blog posts, submitting search
requests, making online purchases, visiting web pages, watching videos online,
listening to online music, user actions on a specific web page, etc. As described
by Segaran, 2007, these user actions can be recorded, collected and used to
automatically derive valuable information without having to ask the user
explicit questions.

The two key aspects that enabled the development of collective intelligence
on the web are first hyperlinking and second the switch from static HTML
pages to dynamic Web 2.0 applications (see Section 3.3). On the one hand, as
new web content is created by users, hyperlinks can be used to connect to
already existing content (see also Jaindl, 2016). On the other hand, Web 2.0
technologies allow user collaboration in real-time.

The search engine Google 4, as depicted in Figure 3.2, is a well-known example
of collective intelligence on the web. Like any other search engine, Google uses
so-called web crawlers (also known as spiders or Internet bots) to automatically
browse the web and analyze hundreds of millions of websites created by peo-
ple from all over the world. Thereby, the crawlers extract relevant information
from the visited websites and collect this data in order to build a search index.
Whenever Google receives a search request from a user, the search engine has
to look up the search index to find those web pages that best match the user’s

3Article of the Boeing 787 Dreamliner 2017.
4Google Search Engine: http://www.google.com

11

http://www.google.com

3. Collaborative Software

input. This look-up process requires very powerful and optimized algorithms.
Such algorithms aim to exploit the full potential of collective intelligence. In
case of Google, the key factor of their success was their Page Rank algorithm
which precomputes the ranking order of all web pages in advance based on
their relative importance (Page et al., 1999). The relative importance of a single
web page is measured by the quality and number of hyperlinks referring to it
(see Facts about Google and Competition 2011). Thereby, a graph, referred to as
the webgraph, is introduced that models web pages as nodes and hyperlinks
as edges (see Example in Figure 3.3).

Figure 3.2.: Example of collective intelligence on the Internet (The Google Search Engine 2017)

The Page Rank algorithm then uses this graph as input in order to compute
the importance of each single web page (i.e., node). Page et al., 1999 have
shown that this algorithm works well on large scale graphs like the webgraph.
For the sake of brevity, the mathematical details of the Page Rank algorithm
are not explained in this thesis (see more Page et al., 1999).

On a very abstract level, both the search index of the web and its corresponding
webgraph represent a large collection of knowledge which has been created
by a human superorganism. Furthermore, the search engine provides an

12

3.1. Collective Intelligence

Figure 3.3.: Basic example of a simple “webgraph” (see Article about "PageRank Algorithm"
2017). Each node in the graph represents a single web page and is assigned an
importance value determined by the Page Rank algorithm (Page et al., 1999). Page
C has only one incoming link but a higher rank value than page E. This is because
this single incoming link comes from page B, which has high importance, hence
page C is of high importance too.
Source: https://en.wikipedia.org/w/index.php?title=PageRank&oldid=774470009

interface for users to directly communicate with the “brain” behind this kind
of collective intelligence.

Another typical example of collective intelligence on the web is the online
encyclopedia Wikipedia5. It is a collaborative wiki tool that allows users to
freely create new and edit existing articles. Wiki tools are typical examples of
collaborative software and are discussed in Section 3.3.2. Basic taxonomies on
how to classify collaborative software are presented in the next Section 3.2.

5Wikipedia: http://wikipedia.org

13

http://wikipedia.org

3. Collaborative Software

3.2. Classification of Collaborative Software

Group work is proven to be an efficient form of cooperation in businesses and
has also been successfully applied across different company boundaries many
times in the past. Nowadays, this form of collaborative work is becoming more
and more popular in companies where an increasing amount of work is done
via software. In practice, group work is also often performed over spatial and
temporal distances. In order to meet today’s demands of cooperative group
work, collaborative software is used.

The objective of collaborative software, also known as groupware6, is to assist
groups of users while they work on a common task or goal. Thereby, these
systems provide an interface to a shared work environment for its user
groups (Ellis, Gibbs, and Rein, 1991). Richman and Slovak, 1987 describe
groupware as a revolutionary working concept that places the computer
directly into the middle of the communications among a group of users.
In other words, collaborative software systems are tools used to perform
computer-supported cooperative work (Carstensen and Schmidt, 1999).

Computer-supported cooperative work (CSCW), also known as computer-supported
collaborative work, is an umbrella term coined by Greif and Cashman at a
workshop in 1984 (Sarin and Greif, 1984; Grudin, 1994). It defines a broad
concept that constitutes an interdisciplinary research area for a variety of
different disciplines including computer science, economics, media science,
psychology, sociology, and many other disciplines. Due to its large research
spectrum, a detailed description and analysis of CSCW would be beyond the
scope of this Master’s thesis. However, a brief introduction of the concept is
given.

Basically, CSCW addresses cooperative group work and collaboration. Fur-
thermore, it involves all information and communication technologies that
support group work as well as evaluation methods used to assess them (Ellis,
Gibbs, and Rein, 1991). Moreover, CSCW tries to answer the arising question
of how computer systems can coordinate and support collaborative activi-
ties (Carstensen and Schmidt, 1999). Hence, a groupware system can be seen
as a CSCW tool aiming to improve the productivity of a user group. One

6Groupware is a portmanteau term that comprises the words group and software.

14

3.2. Classification of Collaborative Software

important thing is that the decision of which groupware system to choose
needs to be made very carefully. Basically, this selection mainly depends
on the context and individual requirements of the user group, and the col-
laborative tasks that have to be performed by that group. For that reason,
many different taxonomies exist in order to classify groupware. Two main
classification approaches are briefly explained below.

3.2.1. Time/Space Classification of Groupware

Based on the context of a collaborative software system’s use and the notions
of time and space, groupware can be classified into four categories (Johansen,
1988; Ellis, Gibbs, and Rein, 1991; Baecker, 1995). Figure 3.4 shows a matrix
which is attributed to Johansen, 1988.

15

3. Collaborative Software

Figure 3.4.: Time/Space Groupware Matrix (Johansen, 1988)
Source: https://en.wikipedia.org/w/index.php?title=Computer-supported_cooperative_work&oldid=765868253

1. Same Place and Same Time:
The upper left quadrant of the matrix describes groupware that lets
users of a working group interact face to face with the system. Thereby,
the collaborative work takes place in the same room (i.e. same place) at
some specific moment in time (i.e. same time). Examples of face-to-face
groupware include meeting room systems such as digital whiteboards,
wall displays, shared tables, single display groupware, group decision
support systems, roomware, electronic meeting systems, and many oth-
ers.

2. Same Place and Different Times:
A collaborative software system which falls into the upper right cell
of the matrix allows its users to work on an ongoing task in the same
room but at different times. Typical examples of groupware for such
continuous tasks are large public displays, team rooms, and shift work

16

3.2. Classification of Collaborative Software

groupware.

3. Different Places and Same Time:
The lower left quadrant of the matrix represents groupware which al-
lows users to interact remotely with the system. Examples include video
conference solutions, electronic meeting software, real-time groupware,
instant messaging groupware (SMS, chat, etc.), and many others.

4. Different Places and Different Times:
Groupware which falls into the lower right group of the matrix supports
coordinated communication. Typical examples are email, version control
systems, wikis, blogs, group calendars, and asynchronous conferencing
solutions.

In summary, according to Ellis, Gibbs, and Rein, 1991, a smart collaborative
software system should fit the different needs of all four matrix cells. To
name an example, Google’s online office suite “G Suite”7 (which includes
applications such as Google Docs, Sheets, and Slides) is able to switch between
online (real-time mode with multiple users at same time) and offline (non-
real-time mode with only one active user) editing while the user interface and
basic functionality remains the same.

As of today, many features of Catrobat’s community website, an online collab-
orative software system for sharing Catrobat programs (see Section 5.4), fall
into the lower right quadrant of the time/space matrix shown in Figure 3.4.

3.2.2. The 3C Model

The 3C model was first coined by Teufel et al., 1995 and up to now it has
also appeared in many other books (e.g. see Borghoff and Schlichter, 2000).
Thereby, communication, coordination and cooperation define the three C’s of the
model’s name and represent the three centers of the triangle’s corners shown
in Figure 3.5. Each of these three terms expresses the degree of intensity of
collaboration within a group (Teufel et al., 1995):

7Google’s Office Suite: http://gsuite.google.com

17

http://gsuite.google.com

3. Collaborative Software

• Coordination expresses the coordination of task-related activities.
• Cooperation involves solving common tasks together.
• Communication describes a reliable and sufficiently fast exchange of

information between the users of a group.

Usually, groupware implements a variety of different functions and can there-
fore not be clearly assigned to one these three C’s. Consequently, groupware
is classified depending on whether it primarily supports communication, cooper-
ation or coordination. To phrase it differently, depending on the extent to which
the functional areas are supported by a collaborative software system, the
system can be located at different positions within the triangle. Furthermore,
the different groupware systems can be grouped into four (overlapping) system
classes (see ellipses in Figure 3.5):

Figure 3.5.: The 3C classification model (Teufel et al., 1995)

18

3.2. Classification of Collaborative Software

• Communication class:
The main task of a communication system is to allow the explicit ex-
change of information between different communication partners and to
automatically bridge spatial distances and temporal differences. Typical
examples are email systems, bulletin board systems, and video confer-
encing systems.

• Shared Information Spaces class:
This class provides a shared information space for a user group in which
relevant information is maintained, modified and stored over a long
period of time. Thereby, the access to this information is protected with
appropriate access mechanisms. The shared information spaces class in-
cludes distributed hypertext systems, bulletin board systems and special
databases whose data can be fetched simultaneously by different users.

• Workflow-Management class:
Workflow management encompasses all tasks that must be performed
during the modeling, execution, control and simulation of workflows.
Basically, workflows are organization-wide work processes that in-
volve a large number of actors. Typical examples of the workflow-
management class are email systems, workflow management tools, and
special database systems.

• Workgroup-Computing class:
Workgroup computing systems aim to support the co-operation of in-
dividual users who work in teams and have to solve tasks which are
hard to divide and structure. In other words, groupware that falls into
this category typically provides functionality to users in order to col-
laboratively work together on a common task. This class includes, for
example, planning systems such as scheduling systems, group editors,
and decision-making and meeting support systems.

It is obvious that the 3C model provides a clear overview of various forms of
groupware. Moreover, the aforementioned system classes completely cover
the whole area of known groupware applications. However, similar to the
time-space approach (see Section 3.2.1), the 3C model can not completely
avoid overlaps.

19

3. Collaborative Software

In terms of Catrobat’s community website (see Section 5.4), considering the
3C model, there are many features such as remixing (see Section 3.4) which fall
into different system classes. However, the entire system itself as a distributed
website, also referred to as distributed hypertext system, would therefore most
likely be placed rather into the middle of the triangle in Figure 3.5.

3.3. Examples of Collaborative Software

Due to the increasing importance of team work, a large number of software
vendors for groupware and a huge variety of collaborative software applica-
tions already exists today. Typical examples of modern groupware applications
include email systems, video conferencing software, workflow systems, distributed
websites, group calendars, version control systems, and many others. Since the
beginning of the Web 2.0 era in 2003, which provided the foundation for the
development of interactive and collaborative web applications, an increasing
number of collaborative web applications have been developed. Today, these
Web 2.0 applications, also known as social software, represent the majority of
collaborative software applications. They can be directly run in web browsers
without any software installations and enable collaboration among different
users over the Internet. As a result, the user not only consumes available con-
tent, but also produces new content as a so-called “prosumer” (Fuchs, 2011,
Toffler, 1980, p. 267). To limit the scope of this thesis, only a few representative
examples of web 2.0 applications will be presented in more detail now.

3.3.1. Blogs

Blogs, also known as weblogs, are publicly accessible web diaries or journals.
Basically, an online blog is a collection of many blog entries, also referred
to as blog posts. Blog posts are written by an author, the blogger, and usually
contain discussions or individual thoughts about specific threads or topics.
The term blogosphere describes the entire collection of all weblogs and their
interconnections on the web.

Sometimes a blog contains posts created by many bloggers or same blog
posts of the blog have been edited by different bloggers. Such blogs are called

20

3.3. Examples of Collaborative Software

collaborative blogs or group blogs and are an example of a collaborative software
system. In particular, collaborative blogs have become more popular over the
last several years. For example, one of the largest blog providers, Tumblr8,
supports group blogs.

Another growing type of blogs worth mentioning are microblogs. In contrast
to the typically verbose posts written in normal blogs, posts of microblogs
are very short. For example, Twitter, one of the most popular providers of
microblog services, allows only 140 characters per message.

3.3.2. Wikis

A wiki9 is a collaborative website made up of multiple wiki entries, which
are article pages. The visitors of a wiki can read and directly edit these
entries from their web browser. Different articles can be connected by using
hyperlinks which have to be embedded into the article’s text. Usually, authors
elaborate texts, which may be supplemented with images, animations, or
any other type of media. This way, articles written by one author can be
extended or modified by other users. Wikis are used to collect experience,
knowledge, and information, or to phrase it differently, wikis are collaborative
software tools that strive to take advantage of collective intelligence (see
Section 3.1). The articles of a wiki system are the result of collaborative work
which has been made possible by allowing users to freely edit and reuse
existing content (Richardson, 2006, pp. 55-58).

The most popular example of a wiki is Wikipedia. It is the largest encyclopedia
on the web and relies entirely on user contributions. Wikipedia is based on the
MediaWiki10 system, which is a free open-source software project. Catrobat
also provides a wiki11 for its users, which is based on MediaWiki. At the time
of writing this thesis, the wiki is used only internally. However, it is intended
to allow users to write and edit tutorials, and to describe components of the
Catrobat programming language such as bricks, scripts, etc. (see Section 5.2)
in the future.

8Tumblr: http://www.tumblr.com
9The term wiki comes from the Hawaiian word wikiwiki and means fast.

10MediaWiki: http://www.mediawiki.org
11Catrobat Wiki: http://wiki.catrob.at

21

http://www.tumblr.com
http://www.mediawiki.org
http://wiki.catrob.at

3. Collaborative Software

3.3.3. Social Networks

The most popular example of social applications are social networks such as
Facebook, Twitter, Google+, LinkedIn, or XING. The basic idea of a social
networking service is to group related users into clusters which are created
based on the relationship between the users, e.g., friendships, acquaintances,
workmates, or individuals who share similar interests. Thereby, each user
creates a user profile by answering a series of questions once she or he joins
the social network (Boyd and Ellison, 2007). The profile stores this personal
data about the user in a structured way. Such personal data typically includes
user information such as name, age, location, interests, and a short description
about the user (Boyd and Ellison, 2007). One of the key characteristics of
social networks is that they allow instant communication and exchange of
multimedia content between users over any arbitrary distance (Jaindl, 2016).

Apart from typical social networking platforms, there are many other types
of social applications such as online communities, social news websites, web
forums, instant messaging platforms or media sharing services. To limit the
scope of this Master’s thesis, these examples are not described in detail.
However, media sharing services are relevant for this thesis and are hence
briefly discussed below.

3.3.4. Media Sharing Services

Media sharing services, also referred to as content sharing services, are platforms
that allow users to upload and share media files like music, photos, videos or
any other type of media content. Usually, a provider of such a service, hosts
these media files on a central server or on a cloud network. Sometimes, such
media sharing services are part of social networking platforms (Gadea et al.,
2011). For example, the social networking sites Facebook or Twitter allow their
users to upload photos and videos. The largest sharing platform on the web
is YouTube, a video hosting service. Other well-known examples are Vimeo,
Netflix, Spotify, Dropbox, Google Drive, Apple iTunes Store, Apple Music,
Google Play Music, and Wikipedia (see also Section 3.3.2).

A special type of a media sharing service is a controlled digital distribution
service. Such a controlled service specializes in hosting security sensitive or

22

3.4. Collaborative Learning and Remixing

high-quality content such as executable software and buyable content. In
order to guarantee reliable quality and security of the provided content, these
platforms only allow a small set of creators (e.g., mobile app developers) or
employed editors to upload and maintain digital content. Often, after content
gets uploaded by a user, it is also automatically tested and checked with
special tools again. Typical examples include the Google Play Store and the
Apple App Store. Both are so-called app store platforms that host applications
which were programmed for mobile devices (also referred to as mobile apps)
by software companies or private software developers.

In contrast to such commercial app stores, there also exist free e-learning
platforms for sharing programmable media content such as Scratch (Monroy-
Hernández, 2007) and Catrobat’s community website (see Section 5.4) on the
Internet. In the case of Catrobat, its community website represents a sharing
platform quite similar to Scratch. Both platforms let their users easily upload
and share programmable media projects.

3.4. Collaborative Learning and Remixing

Collaborative learning has become an emerging elearning concept in online
education over the last several years (Dalsgaard, 2006). In general, collabora-
tive learning is about learning together in groups and can either happen offline
(e.g., in classrooms of schools, at the workplace, etc.) or online (also known as
collaborative online learning or collaborative e-learning). The main goal of collabo-
rative learning is to increase the learning outcome for each member of a group
by combining the unique strengths of each individual. Moreover, collaborative
learning can be seen as a counter-concept to contests or competitions. While
members of a group try to beat each other in competitions, collaborative
learning aims to find a consensus through group collaboration (Laal and
Ghodsi, 2012). Further, collaborative learning has many other advantages
over competitive work or work performed by individuals. It is a supportive
learning process that may result in increased productivity, higher achievement,
and more social competence (Laal and Ghodsi, 2012). Collaborative learning
activities include group projects, solving common problems or creating a
product together, cooperative writing, completing a common task, etc.

23

3. Collaborative Software

Due to its increasing importance, and to limit the scope of topics to those
relevant to this thesis, the remainder of this section only focuses on collab-
orative online learning. Actually, collaborative online learning is a special
form of computer-supported cooperative work which has already been discussed
in Section 3.2. Such collaborative work can be performed by using collabo-
rative software systems. In an online educational context, these systems are
also referred to as collaborative e-learning systems or social (e-learning) software.
Basically, a collaborative e-learning system is an online learning solution that
supports its users (e.g., students and teachers) by letting them (intuitively)
interact with each other and allowing them to share and exchange learned
knowledge (Marusteri et al., 2015).

While traditional non-collaborative e-learning approaches such as learning
management systems, in which learning is organized as courses, have some
limitations (e.g., learners cannot individually control the learning process,
interaction is limited, etc.), collaborative e-learning views the learning process
as a collaborative, problem-based, and self-governed social process (Dalsgaard,
2006; Du et al., 2013). Typical examples of groupware used in collaborative
e-learning are wikis, blogs, social networks, social bookmarking websites, and
many others (see Dalsgaard, 2006).

In the context of the project of this thesis (see Chapter 6), Catrobat’s community
website, described in Section 5.4, represents a collaborative e-learning platform
which enables its users to develop and work on joint programmable media
projects. This e-learning platform tries to facilitate the collaborative learning
process by introducing a new powerful e-learning technique called remixing
which is discussed in more detail below.

Remixing: The basic idea of remixing in Catrobat consists in creating a
refined or extended version of an existing media project. The main advantage
of remixing is the reuse of existing work. Thereby, users (called “remixers”)
download existing projects created by other users from Catrobat’s community
website and modify them. Once changes are made to the project, a copy of
the original (i.e. existing) project is automatically created in the background
in order to avoid conflicts. In other words, this copy is now a remix of the
original project. After all modifications are finished, the “remixer” can upload
the copy to share it on the community website. Later on, other “remixers” may

24

3.4. Collaborative Learning and Remixing

create remixes of this remixed project. This cycle of remixing continues as soon
as other users create other remixes based on these new remixed remixes.

It is important to be aware that Scratch follows a very similar remixing
approach; it acted as a source of inspiration for Catrobat. Dasgupta et al.,
2016, show how remixing in Scratch encourages novice users to learn how to
program and demonstrate that highly active remixers usually achieve more
advanced and extended programming skills through remixing.

In conclusion, this chapter discussed the fundamental concepts of collabora-
tive software. At the beginning of this chapter, the underlying relationship
between collaborative software and collective intelligence was described and
different classification approaches were presented. Subsequently, an overview
of examples of collaborative applications was given. Finally, the focus moved
towards collaborative learning and remixing. Remixing is a key feature for
collaborative learning in online environments such as the Catrobat commu-
nity platform. Remixing lets users build upon work from others, thereby
enhancing the collaborative learning process. This learning process can be
further improved, supported, and promoted by using recommender systems.
Chapter 4 provides an overview of recommender systems and gives the neces-
sary background knowledge needed for the following practical part of this
thesis.

25

4. Recommender Systems

This chapter gives an overview of basic concepts and ideas for Recommender
Systems, which form the basis for the next chapters of this thesis. Moreover,
common issues (such as the “Cold Start Problem”), which frequently occur
in the context of recommender systems, are briefly discussed. Finally, the
chapter concludes with the presentation of various methods for evaluating
the performance of such a system.

4.1. Motivation and Principle of Recommender
Systems

Recommender systems are a very popular research area in the field of com-
puter science. Every year many international conferences about recommender
systems take place in different parts of the world and are supported by many
big companies. One of the largest scientific conferences is the well-known
ACM RecSys conference1.

According to Ricci et al., 2010; Mahmood and Ricci, 2009; Burke, 2007; Resnick
and Varian, 1997, a recommender system is a combination of several software
techniques and software tools which makes suggestions for items that are
relevant to a user. The so-called “items” represent kinds of objects, e.g., buyable
goods, news articles, music albums, holiday trips, or any other arbitrary kind
of an intangible product. In the context of this thesis, “items” are always
programs created by users on mobile devices, including smartphones and
tablets, which are then uploaded to the Catrobat community website (see
Chapter 5).

1The ACM Conference Series on Recommender Systems: http://recsys.acm.org

27

http://recsys.acm.org

4. Recommender Systems

Usually, a recommender system mainly focuses on recommending a specific
type of item as described by Ricci et al., 2010. Many e-commerce platforms
(e.g. web shops) and online collaborative software systems (such as Facebook,
Youtube, Google Play Store or Catrobat’s community website) often have to
deal with a huge number of items and a fast growing number of users.

Moreover, many e-commerce systems such as Amazon or Netflix, tend to
reveal only a small number of very popular products (e.g. top 100 most
purchased books) and a majority of less favoured items (i.e. niche products).
This is known as the “long tail” phenomenon, which can be approximated by
using the Pareto principle (Brynjolfsson, Y. (Hu, and Simester, 2011; Yin et al.,
2012).

Figure 4.1 shows the curve of a typical long tailed sorted popularity distri-
bution of products. It is obvious that the overall popularity is mainly driven
only by the most popular items located in the “head” (orange-colored area).
However, even though the contribution of a single niche product to the total
revenue may not be significant, the vast amount of these items (i.e. the com-
plete blue-colored area) can have an impact on the total revenue in aggregate
as explained by Anderson, 2006. Due to the high popularity of the items
in the “head”, these products would consequently be suggested more often
by a recommender system that does not pay close attention to niche items.
Therefore, exploiting the full potential of these niche items is an important
optimization task for a recommender system in order to increase diversity of
recommendations and, consequently, the number of sales.

The great variety of different interests is another important aspect that has to
be taken into account, as each user represents an individual person with their
own preferences. Moreover, many users also lack competence or sufficient
personal experience to evaluate the overwhelming set of items (Ricci et al.,
2010; Resnick and Varian, 1997). Thus, automatically searching for and finding
the right items that are of interest for a single user is a vital challenge for such
platforms. This is exactly where recommender systems now come into play in
order to tackle this kind of search task.

The main goal of a recommender system is to separate and recommend
only those items which are relevant to the respective user from an otherwise
overwhelming set of items (Resnick and Varian, 1997). In other words, these
suggested items are expected to be tailored to the preferences and personal

28

4.1. Motivation and Principle of Recommender Systems

Figure 4.1.: The “long tail” phenomenon
Source: http://blog.softcube.com/?p=17

tastes of the individual user. Basically, in order to make such user-specific
decisions, a recommender system must: (1) identify the user; (2) collect data
about the user’s preferences over a sufficiently long period of time; and (3)
structure the information to finally create a user profile.

More precisely, according to Isinkaye, Folajimi, and Ojokoh, 2015, the recom-
mendation process consists of three different phases. Figure 4.2 illustrates the
three basic steps of the recommendation process.

29

http://blog.softcube.com/?p=17

4. Recommender Systems

Figure 4.2.: Phases of the recommendation process (Isinkaye, Folajimi, and Ojokoh, 2015)

30

4.2. Input Sources

The three phases of the recommendation process are:

i. Information Collection Phase:
This is the initial phase of the recommendation process. During this
phase relevant information about the user is collected and a user profile
or model is created for the prediction phase. User data includes user
behavior, relevant characteristics about the user, and the content of the
resources the user has accessed. There are two different types of input
data (explicit and implicit feedback) which are discussed in Section 4.2.

ii. Learning Phase:
Once enough data has been collected, appropriate learning algorithms
can be applied. These algorithms remove non-relevant data and try to
extract useful features from the existing feedback.

iii. Prediction/Recommendation Phase:
In the final prediction phase (also known as recommendation phase),
those items which the user most likely prefers are predicted and sug-
gested. The suggestions are either based on the data gathered in the
information collection phase (model- or memory-based, see Section 4.4.2)
or based on observed data from past user activities.

4.2. Input Sources

The overall performance of the recommender process heavily relies on the
quantity and quality of its input data. Defined below are explicit and implicit
feedback, the two fundamental types of input sources.

4.2.1. Explicit Feedback

Explicit feedback is obtained from explicit data such as ratings, personal
interests, or user preferences. Since it directly reflects the user’s opinion, it is
of high-quality. Therefore, the majority of the recommender system’s literature
focuses on examining explicit feedback data. However, in some scenarios no
explicit data is available, or it cannot be collected at all, e.g., due to system

31

4. Recommender Systems

limitations. In such cases, implicit feedback is often used for recommendation
purposes instead.

4.2.2. Implicit Feedback

Contrary to explicit data, implicit feedback is extracted from observed user
behavior and then used to make indirect conclusions about possible prefer-
ences of the user (Oard and Kim, 1998). A few examples for implicit feedback
are the user’s purchase history, items visited by the user, the duration the user
spends viewing individual web pages, search patterns, or even mouse clicks
and mouse movements.

Although implicit information can be an appropriate alternative input source
for recommender systems, in comparison to explicit data, it has some draw-
backs as described by Y. Hu, Koren, and Volinsky, 2008. These drawbacks, as
well as some benefits, are briefly discussed below.

4.2.3. Comparison between Explicit and Implicit Feedback

Explicit feedback requires the willingness of the users to disclose their prefer-
ences. However, not every user wants to supply a moderate amount of private
information about themselves, if any at all. Consequently, explicit data such
as rating data is often very rare and sparse. On the one hand, this can be seen
as a benefit as well, since it makes the recommendation process more trans-
parent, resulting in an increased recommendation quality and more confident
suggestions (Isinkaye, Folajimi, and Ojokoh, 2015; Buder and Schwind, 2012).
On the other hand, no explicit user input is needed in order to record implicit
signals and therefore this kind of data can be gathered automatically. Hence,
the amount of implicit data can be huge, which can have a positive impact on
the recommendation quality.

Implicit data represents positive-only feedback, since negative feedback can
not be correctly inferred from past user-behavior observations. For example,
just because the user has not viewed a certain item does not necessarily mean
that she or he dislikes it. Perhaps the reason is a different one, e.g., that she or
he did not have enough time to look at it or does not know about the item

32

4.3. User-Specific vs. Non-Personalized Recommendations

at all. Another downside is that implicit feedback may be noisy, due to the
fact that user behavior is passively tracked. The resulting inferred conclusions
about user preferences can only include rough estimations, which may be
less accurate than those based off of purposeful selection. Moreover, implicit
feedback includes confidence users have placed in certain items but is unable
to describe the level of preference. On the contrary, in the case of explicit
feedback, users are able to express how much they like or dislike an item,
e.g., by simply choosing a different number of stars in a star rating system.
Finally, the evaluation of a recommender system using implicit data differs
from those using explicit feedback in such a way that alternative measures
are needed. Due to these drawbacks, it is necessary to interpret implicit data
very carefully.

4.3. User-Specific vs. Non-Personalized
Recommendations

Based on the collected user data, a recommender system is able to make
user-specific suggestions by applying several recommendation techniques (see
Section 4.4). The more data the system collects about its users, the better the
system knows them. Therefore, user profiles containing an appropriate amount
of user data are essential for making good user-specific recommendations. To
phrase it differently, user-specific suggestions are based on the past behavior of
the respective user. This past behavior can also be used to calculate similarities
between users or items (see Section 4.4.2).

In sharp contrast to this method of compiling past behaviors to formulate new
suggestions, there also exist very specific application areas of recommender
systems where no user data can be collected at all. Various examples include
recommendations featured in newspapers, magazines, or on TV shows. In
this case, recommender systems are forced to propose only non-personalized
recommendations. They can either be based on automatically aggregated data
(e.g. top selling books, most trending movies, etc.) or manually created by
editors (e.g. a list of featured products). Non-personalized advices are general
item-references that are independent of the user and are based on the average
feedback of other users (Schafer, J. Konstan, and J. Riedl, 1999). As there is

33

4. Recommender Systems

no relation to the user, such non-personalized suggestions are typically very
straight-forward to create and are therefore rarely considered by recommender
systems research as described by Ricci et al., 2010.

However, in practice, they might be quite useful and are needed in certain
situations where no user data is available. For example, former research by
Tsuji et al., 2012, shows that Amazon’s state-of-the-art non-personalized book
recommendations can outperform evaluation results of recommendations
based on collaborative filtering methods.

4.4. Recommendation Methods

Recommender Systems can be broadly classified into the three categories:
content-based, collaborative filtering and hybrid systems. In addition, there
are also some other alternative approaches, such as knowledge-based (Burke,
2000; Felfernig et al., 2014), time-aware (Campos, Diez, and Cantador, 2014),
context-based (Adomavicius and Tuzhilin, 2008) or demographic (Wang, Chan,
and Ngai, 2012) recommender systems. Since these alternative approaches
would be outside the scope of this thesis, they are not discussed in more
detail.

4.4.1. Content-based Recommenders

The content-based recommendation technique is usually best applied to the
recommendation of text documents, such as newspaper articles, publications,
newsgroup messages, web pages, etc. (Pazzani and Billsus, 1997; Meteren and
Someren, 2000; Pazzani and Billsus, 2007). It can also be successfully used in
any other application domain where items are characterized by attributes (e.g.
keywords, tags, metadata, title, author, words of description, etc.).

This technique aims to suggest items to users that are similar to the ones
they preferred in the past. Figure 4.3 shows the basic principle of a content-
based recommender. The underlying algorithm extracts feature values from
the content of those items the user has previously highly rated or liked. In
order to do so, a user profile needs to be created. The user profile describes

34

4.4. Recommendation Methods

what kind of items appeal to the user (Pazzani and Billsus, 2007) and can be
understood as a model explaining the user’s interests based on the features of
their rated items.

Figure 4.3.: Basic principle of a content-based recommender
Source: https://www.ntt-review.jp/archive_html/200804/images/le1_fig02.gif

The profile is gained by using an appropriate learning model such as, e.g.,
Nearest Neighbour, decision trees, Bayesian Classifiers, neural networks, clus-
tering, etc. (Pazzani and Billsus, 1997). In other words, the problem is treated
as a classification problem where the model is fitted to training data by the
algorithm. Since there is no general rule of thumb, deciding which learning
model to choose depends on the concrete application’s use case as well as
on the given context. After the user profile is computed, content-features
of other items are then used to find similar ones the user has not rated yet.
More formally expressed, the correlation between the preferences of a user’s
profile and the item’s features is analyzed. Finally, the most similar items are
recommended to the user. Such content-based suggestions in terms of movies
can be, e.g., other movies with the same actor, director, or genre as the ones
the user has previously liked.

35

https://www.ntt-review.jp/archive_html/200804/images/le1_fig02.gif

4. Recommender Systems

4.4.2. Collaborative Filtering

Since content-based prediction techniques can only be applied in some do-
mains where items are associated with a decent amount of content, research
focuses primarily on collaborative filtering methods (Ekstrand, J. T. Riedl,
and J. A. Konstan, 2011; Goldberg et al., 1992; J. A. Konstan et al., 1997). The
authors of Tapestry (Goldberg et al., 1992; Resnick, Iacovou, et al., 1994), the
first online recommender system, introduced the term collaborative filtering as
a concept based on social collaboration between users. Tapestry was designed
to recommend documents from newsgroups in order to help users to find
relevant articles in a large collection of documents.

Basically, a recommender system based on collaborative filtering represents
nothing else than a collaborative software system which aims to exploit the
full potential of collective intelligence (see Chapter 3). Thereby, collaborative
filtering can be easily integrated into all possible forms of applications, which
are able to observe and capture relationships between users. This includes
explicit feedback (e.g. user ratings or likes) as well as implicit information (e.g.
purchase history of users). The collaborative filtering approach has become the
most popular recommendation method since it was promoted by Resnick and
Varian, 1997. Nowadays, many big internet companies like Netflix, Facebook,
YouTube, and Twitter make use of this approach to recommend unseen items
(e.g. movies, friends, web pages) to their users.

In short, the aim of collaborative filtering is to model the concept of word-
of-mouth suggestions between humans. In everyday life, people tend to base
their decisions on recommendations from other persons they know and trust,
apart from their own experiences. Thereby, the algorithm follows this concept
by introducing a rating matrix R (Definition 4.1), also known as user-item
matrix, describing the user preferences for items.

R =

r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rm1 rm2 · · · rmn

 (4.1)

36

4.4. Recommendation Methods

R is a m× n matrix, where m denotes the total number of users and n the total
number of items. We define the item i as an element in the set of all items I
(formally, i ∈ I) and the user u as an element of the set of all users U (formally,
u ∈ U). The individual element ru,i of the m × n matrix R, represents the
rating of the item i by user u. For simplicity reasons, we make the assumption
that only non-negative integer values for ratings (e.g. 5 star rating) are allowed
(i.e. ru,i ∈ Nn

0) and the rating value of the corresponding matrix element is
always zero for items the user has not rated yet.

Figure 4.4 gives an overview of the collaborative filtering process as described
by Yao and Cai, 2015. The goal of the algorithm is to predict an item-rating
rua,ij for the active user ua and a specified item ij which has not yet been rated
by the active user. In the picture the item-rating rua,ij represents the black cell
within the rating matrix. Depending on the concrete collaborative filtering
method the algorithm either uses the user-vector (highlighted row) or item-
vector (highlighted column) in order to compute and return the rating value
for item ij. Another task of the algorithm can be to recommend a so-called
“top-N list” of unrated items to the active user ua. In this case, the prediction
step is repeated for every other unrated item in the active user’s row. Finally,
no more cells in the row of the active user are empty and then the algorithm
returns a sorted list of unrated items containing the highest prediction values.
These are the “top-N recommendations”.

Figure 4.4.: The collaborative filtering process as described by Yao and Cai, 2015

Source: https://www.semanticscholar.org/paper/User-Based-and-Item-Based-Collaborative-Filtering-Yao-

Cai/c4b2363ba7c15c67a2c6b2d079e325f1a33d6b75

37

4. Recommender Systems

Basically, there exist two different collaborative filtering methods which are
described below.

Memory-based Collaborative Filtering

The memory-based (or neighbourhood-based) approach generates recom-
mendations by heuristically analyzing the rating matrix (Definition 4.1). It
aims to find neighbour users that share similar tastes with the active user.
Memory-based systems use various algorithms to group cohesive preferences
of different neighbour users and then generate top-N recommendations or pre-
dictions for the user. There are two types of approaches which are described
as follows.

User-based: User based filtering is the simplest implementation of this
method (Schafer, Frankowski, et al., 2007). It suggests items based on user-to-
user correlation. This way, users receive recommendations of items that other
like-minded users have previously expressed interest in (“rating history”). To
phrase it differently, the main idea is to find those users, who share similar
taste with the active user, and predict ratings for all items the active user has
not rated yet. The prediction is achieved by calculating weighted averages of
the ratings of all similar users. Subsequently, the top-N predicted items are
recommended to the active user.

Under the hood the algorithm computes the similarity value between the
active user’s matrix row and the row of another user. This process is repeated
for all other users in order to obtain all similarity values between the active
user and the other users.

More formally expressed, an item-rating r̂u,i for the active user u and an
unrated item i is predicted (Yao and Cai, 2015; Zhao and Shang, 2010):

• In the first step, every individual similarity factor simu,v between the
active user u and the other user v is computed for all other users. The
similarity factor simu,v is determined by a similarity function s (see defi-
nition and examples in Section 4.4.2) which expresses how similar the
active user u is to the other person v.

38

4.4. Recommendation Methods

• Given these similarity values, the predicted value r̂u,i (see Formula2
4.2)

is then calculated by iterating over each3 other similar user v ∈ V and
summing up the products of the similarity factor simu,v (between the
active user u and the similar user v) and his/her rating value rv,i

4. Finally,
the sum is divided by the absolute sum of all same similarities in order
to correctly consider dissimilarities (i.e. negative similarities) between
items as well.

r̂u,i =

∑
v∈V

(simu,v ∗ rv,i)

∑
v∈V
| simu,v |

(4.2)

Formula 4.2 defines a basic example of an aggregation function for user-based
predictions. It weights the ratings of other similar users with their similarity
factor. However, different users tend to have other “baselines” around which
their ratings may vary (Garcin, Faltings, Jurca, et al., 2009), meaning their
average rating of an item can differ. Therefore, a slightly adapted function
(Formula 4.3) is commonly used which takes this aspect into account.

r̂u,i = r̄u +

∑
v∈V

(simu,v ∗ (rv,i − r̄v))

∑
v∈V
| simu,v |

(4.3)

In practice, the application does not only need the prediction value for a single
unrated item, but often explicitly requests a top-N recommendation list. In
order to create such a list, the two steps shown above have to be repeated for
all other unrated items. This then iteratively replaces all zero cells of the active
user’s row in the matrix with predicted values for the corresponding item.
Thereafter, the unrated items can be sorted to a list of top-N recommendations
according to their predicted values and presented to the active user.

2Note: V ⊂ U \ {u} ↔ ∀v ∈ V : simu,v 6= 0.
3In case there are too many similar users, this is often limited to k most similar users.
4If the similar user did not rate the item the product will yield zero, since rv,i = 0.

39

4. Recommender Systems

Item-based: Item-based algorithms have become very popular since Ama-
zon heavily promoted this approach (Linden, Smith, and York, 2003). For
example, in the case of Amazon, as soon as a user places a product in the
shopping basket, similar products are suggested, which have been purchased
by other users who have also bought this product. In contrast to user-based
filtering, the item-based approach recommends items based on item-to-item
correlation, meaning the similarity between two items given the rating matrix
are computed for each item-item pair.

The basic idea of the item-based approach is to find items, which have been
rated similarly by users, and predict ratings for all items the active user has
not rated yet. The prediction is achieved by calculating weighted averages
of the ratings of all similar items. Afterwards, the top-N predicted items are
recommended to the active user.

An item-rating r̂u,i for the active user u and an unrated item i is predicted in
the following way (Yao and Cai, 2015; Zhao and Shang, 2010):

• First, every similarity factor simi,j between the unrated item i of the
active user and another evaluated item j is computed for all other evalu-
ated items of the active user. The similarity factor simi,j is determined by
the similarity function s (see Section 4.4.2) which expresses how similar
the rated item i is to the other item j.

• Given these similarity values, the predicted value r̂u,i (see Formula 4.4)
is then calculated by iterating over each5 other similar item j ∈ S and
summing up the products of the similarity factor simi,j (between the
unrated item i and the evaluated similar item j) and the active user’s
rating value rv,j for the similar item j. Finally, the sum is divided by
the absolute sum of all same similarities in order to correctly consider
dissimilarities between items as well.

Formula 4.4 gives a basic example of an aggregation function for item-based
predictions, where S is defined as a set of items similar to item i. In practice,
S is often very large and therefore reduced to the k most similar items of
item j that has been rated by user u. According to J. Herlocker, J. A. Konstan,

5In case there are too many similar items, this should be limited to k most similar items.

40

4.4. Recommendation Methods

and J. Riedl, 2002, setting the size of the neighbourhood k between 20 and 50

provides enough neighbours to average out extremes.

r̂u,i =

∑
j∈S

(simi,j ∗ ru,j)

∑
j∈S
| simi,j |

(4.4)

In order to recommend a top-N recommendation list to the active user, the
two steps described above have to be repeated for all other unrated items.

User-based vs. Item-based: Figure 4.5 graphically illustrates the difference
between user-based and item-based collaborative filtering with a basic example
for binary, positive-only feedback. For instance, binary feedback can represent
explicit user likes or implicit feedback such as the user purchased an item. In
this example, we consider the binary feedback as explicit positive-only ratings.
That is, all elements of a user vector are either 0 (i.e. user has not rated the
item) or 1 (i.e. user likes the item). More formally expressed, ru,i ∈ {0, 1}.

In Figure 4.5 there are three users who like four different items. The directed
black-colored lines indicate which person likes which item. For the sake
of simplicity, we make the assumption that all likes are equally important,
meaning we have binary ratings. The task is to recommend items to the last
user based on the individual ratings, first by using user-based and then by
using item-based collaborative filtering. As a measure of similarity, we use the
Jaccard distance (see Formula 4.17), which is suitable for binary evaluations.

On the left side of the image a user-based example is shown. The topmost
user denoted as u1 prefers item 1 (i1), item 2 (i2), item 3 (i3) and item 4

(i4), i.e. Ru1 = {ru1,i1 , ru1,i2 , ru1,i3 , ru1,i4} = {1, 1, 1, 1}). The user in the middle
has only rated item i2 (i.e. Ru2 = {ru2,i1 , ru2,i2 , ru2,i3 , ru2,i4} = {0, 1, 0, 0}) and
the bottommost user u3 likes item i3 (i.e. Ru3 = {ru3,i1 , ru3,i2 , ru3,i3 , ru3,i4} =
{0, 0, 1, 0}). In order to keep this example simple, we assume that only items
from the most like-minded person are recommended.

Using the Jaccard distance the taste-overlap between u1 and u3 is:

J(Ru1 , Ru3) =
| {Ru1 ∩ Ru3} |
| {Ru1 ∪ Ru3} |

=
| {1, 1, 1, 1} ∩ {0, 0, 1, 0} |
| {1, 1, 1, 1} ∪ {0, 0, 1, 0} | =

1
4

(4.5)

41

4. Recommender Systems

Figure 4.5.: User-based vs. item-based collaborative filtering

Consequently, the user-similarity between u2 and u3 is:

J(Ru2 , Ru3) =
| {Ru2 ∩ Ru3} |
| {Ru2 ∪ Ru3} |

=
| {0, 1, 0, 0} ∩ {0, 0, 1, 0} |
| {0, 1, 0, 0} ∪ {0, 0, 1, 0} | = 0 (4.6)

Since the taste-overlap between user u1 and user u3 (1
4) is greater than the

overlap between u2 and u3 (0), the bottommost user u3 will receive recom-
mendations of all other items the topmost user u1 has liked (see green link in
Figure 4.5). These are item i1 and item i4 (indicated by a red-colored dashed
line).

On the right side of the figure the item-based approach is visually expressed.
In this case, the topmost user u1 now prefers item i1, item i3 and item i4, the
user in the middle u2 likes item i1 and item i3 and the bottommost user u3
has only evaluated item i3. For reasons of simplicity, we assume that only the
most similar item is recommended.

42

4.4. Recommendation Methods

In terms of items we now have the following four rating sets:

Ri1 = {ru1,i1 , ru2,i1 , ru3,i1 , ru4,i1} = {1, 1, 0} (4.7)

Ri2 = {ru1,i2 , ru2,i2 , ru3,i2 , ru4,i2} = {0, 0, 0} (4.8)

Ri3 = {ru1,i3 , ru2,i3 , ru3,i3 , ru4,i3} = {1, 1, 1} (4.9)

Ri4 = {ru1,i4 , ru2,i4 , ru3,i4 , ru4,i4} = {1, 0, 0} (4.10)

Because the last user has only evaluated item i3, we only need to consider all
item similarities between i3 and the other items. By using the Jaccard measure
for calculating the similarities to item i3, we obtain the following values:

J(Ri3 , Ri1) =
| {Ri3 ∩ Ri1} |
| {Ri3 ∪ Ri1} |

=
| {1, 1, 1} ∩ {1, 1, 0} |
| {1, 1, 1} ∪ {1, 1, 0} | =

2
3

(4.11)

J(Ri3 , Ri2) =
| {Ri3 ∩ Ri2} |
| {Ri3 ∪ Ri2} |

=
| {1, 1, 1} ∩ {0, 0, 0} |
| {1, 1, 1} ∪ {0, 0, 0} | = 0 (4.12)

J(Ri3 , Ri4) =
| {Ri3 ∩ Ri4} |
| {Ri3 ∪ Ri4} |

=
| {1, 1, 1} ∩ {1, 0, 0} |
| {1, 1, 1} ∪ {1, 0, 0} | =

1
3

(4.13)

Obviously, a quick inspection reveals that the maximal Jaccard-correlation
between item i3 and all other items is the similarity between i3 and i1, meaning
that item i1 is the most similar to i3 (see green link in Figure 4.5). In other
words, the item-pair (i3, i1) has been rated by a larger common user group
than the item-pairs (i3, i2) and (i3, i4). Thus, item i1 is recommended to user
u3.

Comparison: Although item-based collaborative filtering is more popular
than user-based collaborative filtering, the decision of which to choose greatly
depends on the number of items and users the system has (J. L. Herlocker
et al., 2004). On most websites (e.g. Amazon, Netflix, etc.) the number of
users is much higher than the number of items. Under these conditions item-
based collaborative filtering will expectably perform better. This is due to
the fact that the vector of an item contains the ratings from all users that
have rated this item regardless of whether they are similar to the active user
u or not. Contrary to user-based filtering, the calculation for an item-based

43

4. Recommender Systems

recommendation takes only item-vectors (instead of user-vectors) into account.
Hence, the item-based approach finds similar items even if the user is new and
has not rated any items before (see Section 4.4.3). Therefore, an item-based
approach will produce better and more stable recommendations for newly
registered users that have rated or purchased only a few products so far.

However, in the case of the project of this Master’s thesis, no such huge
difference between the number of users and items exists. Therefore, a user-
based collaborative algorithm will be a more appropriate algorithm for the
project’s implementation (see Section 6.3).

Similarity Functions

For the calculation of user-user similarities a similarity function is defined
by s : U ×U 7→ R, where U ∈Nn

0 denotes the set of all possible user-vectors
(i.e. possible row vectors of the rating matrix) containing only positive integer
rating values (including zero for non-rated items).

In case of item-item similarities, both user vectors are simply replaced with
two item vectors. For the sake of brevity, only the user-based method is
described in the following. There is a great variety of different similarity
functions which can be chosen depending on the given rating data. In order
to limit the scope of this thesis, only the most relevant are explained below.

The Pearson correlation (Garcin, Faltings, Jurca, et al., 2009) is a statistical
measure and expresses the linear correlation between two statistical variables
which are in this case two user-vectors ~u and ~v. Let Iuv be the set of items
that have been rated by both users. Then the Pearson correlation coefficient is
defined as:

s(~u,~v) =
∑

i∈Iuv

(ru,i − r̄u)(rv,i − r̄v)√
∑

i∈Iuv

(ru,i − r̄u)2 ∑
i∈Iuv

(rv,i − r̄v)2
(4.14)

44

4.4. Recommendation Methods

Another typically used similarity function is the cosine similarity which
describes the angle between two user vectors (~u and ~v) in Euclidean space:

s(~u,~v) = cos(~u,~v) =
~u ·~v

||~u|| × ||~v|| =
∑

i∈Iuv

ru,irv,i√
∑

i∈Iu

r2
u,i

√
∑

i∈Iv

r2
v,i

(4.15)

The above Formula 4.15 does not consider the fact that users tend to have
other “baselines” around which their ratings may vary. Therefore, the adjusted
cosine similarity (Formula 4.16), which is a slightly modified version of this
formula, should be used instead. The formula subtracts each of both user’s
individual average of all their ratings from each rating of that user.

s(~u,~v) =
∑

i∈Iuv

(ru,i − r̄u)(rv,i − r̄v)√
∑

i∈Iu

(ru,i − r̄u)2
√

∑
i∈Iv

(rv,i − r̄v)2
(4.16)

All aforementioned similarity measures return a scalar value that ranges
between −1 and 1, meaning −1 ≤ s(~u,~v) ≤ 1. This scalar result describes
either how similar (0 < s(~u,~v) ≤ 1) or dissimilar (−1 ≤ s(~u,~v) < 0) the
user u is to the user v. If s(~u,~v) = 0, then both users are neither similar nor
dissimilar.

Although these measures are very popular for calculating the similarity be-
tween two users, they do not always work well for binary feedback which
includes explicit positive-only ratings and various kinds of implicit feedback
(see Section 4.2). In case of binary feedback the user vector is a bit-vector
containing only 1’s for liked items and 0’s for unseen or unrated items (i.e.,
ru,i ∈ {0, 1}). Since no negative likes are available, only a positive similarity
correlation between two users can be determined. An appropriate similarity
measure for binary feedback is the Jaccard distance (Liu et al., 2014; Candillier,
Meyer, and Fessant, 2008), which measures the taste-overlap of the rating set
Ru of the user u and Rv of the user v:

s(Ru, Rv) = J(Ru, Rv) =
| {Ru ∩ Rv} |
| {Ru ∪ Rv} |

(4.17)

45

4. Recommender Systems

The set Ru defines the set of all items liked by user u. The result of the Jaccard
distance ranges between 0 and 1 (0 ≤ J(Ru, Rv) ≤ 1) and can only describe
how similar the user u is to the user v. In contrast to the previous formulas, a
dissimilarity between both users (i.e. negative similarity) can not be obtained
from positive-only feedback.

As the Pearson coefficient (Formula 4.14) does not consider the number of
items two users have in common, a more suitable version for non-binary rat-
ings exists that combines it with the Jaccard similarity measure (Formula 4.17)
(Candillier, Meyer, and Fessant, 2008; Garcin, Faltings, Jurca, et al., 2009):

s(Ru, Rv,~u,~v) =
| {Ru ∩ Rv} |
| {Ru ∪ Rv} |

∗
∑

i∈Iuv

(ru,i − r̄u)(rv,i − r̄v)√
∑

i∈Iuv

(ru,i − r̄u)2 ∑
i∈Iuv

(rv,i − r̄v)2
(4.18)

Model-based Collaborative Filtering

In practice, the rating matrix R (see Definition 4.1) is expected to be very
sparse, meaning the majority of elements (or cells) in the matrix is set to zero6.
This is simply due to the fact that the number of items in a system is often
usually so huge (sometimes thousands or even millions of items) that most
users have evaluated a few items and only a small fraction of users have seen
and rated almost all items. As soon as the data volume of the rating matrix
becomes very large, memory-based recommender systems often reach their
limits of scalability and speed. This can lead to several problems when it
comes to real-time recommendations.

Instead of a memory-based system, a model-based technique can be used. The
basic idea of the model-based approach consists in building a model based
on the rating matrix, which is then used to make recommendations (Breese,
Heckerman, and Kadie, 1998). More precisely explained, relevant pieces of
information are extracted from the rating data in order to learn or estimate a

6Note: In literature these empty cells are often left blank instead of set to zero.

46

4.4. Recommendation Methods

model. These pieces reveal latent factors in the rating matrix which encapsulate
the existing ratings (Koren, 2010), but omit all these zeros at the same time.
This model is pre-computed and then used to make recommendations to
the user. Once this model is built, the complete rating matrix is not needed
anymore to generate recommendations. To phrase it differently, the prediction
algorithm later operates on a compressed version of the rating matrix which
is represented by the model. Hence, model-based recommender systems are
usually faster and more scalable. Compared to memory-based approaches,
the recommendations produced by model-based systems are often of similar
quality.

From a probabilistic point of view, the process of collaborative filtering can be
considered as the estimation of the expected value of a rating, given all the
information about the active user we have collected so far (Breese, Heckerman,
and Kadie, 1998). The goal is to build a model that can predict these rating
values for items the user has not evaluated yet.

In order to generate a model, a data mining or machine learning technique is
applied on the training data. Some examples of such techniques include latent
semantic analysis, singular value decomposition, association rules, restricted
Boltzmann machines, Bayesian networks, decision trees, and clustering (Hof-
mann, 2004; Brand, 2002; Salakhutdinov, Mnih, and Hinton, 2007; Miyahara
and Pazzani, 2000). In case the rating matrix contains binary, positive-only
ratings (i.e. zeros and ones), or more appropriate algorithms, e.g., specially
adapted matrix factorization techniques, Bayesian Personalized Ranking or
more probabilistic models have to be used (Y. Hu, Koren, and Volinsky, 2008;
Verstrepen, 2015; Johnson, 2014; Rendle et al., 2009; Mnih and Teh, 2011).

Even if model-based recommender systems have many benefits as explained
above, there are also some drawbacks. These are mainly the high costs to
create the model in advance, the difficult interpretability of the predictions,
and the loss of useful information due to the data reduction process.

4.4.3. Challenges of Collaborative Filtering Approaches

In this section, some of the major challenges of implementing a recommender
system as described by Su and Khoshgoftaar, 2009 are briefly discussed. Since

47

4. Recommender Systems

most systems are based on collaborative filtering, including the implemen-
tation of the project of this thesis, the problems explained in the following
subsections mainly focus on such systems but may also be relevant for other
kinds of recommender systems.

Data Sparsity

In practice, there are often situations where not enough rating data is available
for the items. Usually, in these contexts the rating matrices can get very
large and sparse. Especially in case of collaborative filtering based systems,
the quality of the predictions depends on the number of ratings made by
other users. If an item does not have enough ratings, then it is probably not
recommended very often by a collaborative filtering system. However, the
rating matrices are often very large and therefore enough recommendable
items can still be found for which a decent amount of ratings exists.

Scalability and Limited Computational Power

The computational complexity of neighbourhood-based techniques such as
memory-based collaborative filtering approaches often grows with the number
of items and users in the rating table. Many e-commerce websites often have
hundreds of thousands or millions of users and items, but require real time
feedback from a recommender system. In such cases, even algorithms with
linear or polynomial time complexity will work very slowly. Therefore, several
model-based collaborative filtering techniques (e.g., incremental singular value
decomposition) exist that perform dimensionality reduction in advance using
existing users and are able to generate suggestions of comparable accuracy
more quickly (Sarwar et al., 2002).

Cold Start Problem

Besides having sparse rating matrices, there is the cold start problem which
particularly affects recommender systems based on collaborative filtering. One

48

4.4. Recommendation Methods

can distinguish two types of the cold start problem, the new item problem and
the new user problem (Yu et al., 2004; Adomavicius and Tuzhilin, 2005).

The new item problem occurs every time a new item is introduced. New items
are added as a new empty column to the rating matrix, meaning no user has
rated that item yet. Thus, a collaborative filtering algorithm can not predict
any ratings of this item for a user since there is no rating of any other user
yet. As a consequence, the new item can not be recommended to anyone until
some users have rated it. One way to fix this issue would be to use a different
approach, e.g., a content-based recommender which finds similar items based
on attributes instead of ratings (see Section 4.4.1).

Another type of the cold start problem is the new user problem. It occurs every
time a new user is added to the system by appending a new empty row to
the rating matrix. Similarly to the previous problem, collaborative filtering
systems are unable to predict any ratings for a new user since no rating data
and no purchase history of that user exists. In this case, even a content-based
approach, which recommends items based on a user’s preferences, will not
produce reasonable predictions either. Therefore, more appropriate techniques
(e.g., knowledge-based recommender systems) have to be used in order to
solve this kind of problem.

Shilling attacks

In recommender systems where the predictions are solely based on user
ratings, undesired side effects may happen. This is because users may rate all
their own items positively and those items from their competitors negatively. In
particular for collaborative systems, it is therefore often necessary to introduce
sophisticated precautions in order to discourage such shilling attacks (Lam
and J. Riedl, 2004; Resnick and Varian, 1997).

Similar and Duplicate Items

In systems with a large number of items, it is very likely that there are
many identical or very similar items that have different names or duplicate
items. There will also be duplicates of the same item that share the same

49

4. Recommender Systems

name but have a different identifying number (ID) than the original item. If a
recommender system does not take this fact into consideration, such a system
would treat these items as different ones. Consequently, this would have a
negative impact on the overall performance of the system. A naive approach
to tackle this problem would be, for example, the automatic use of a thesaurus
to find alternative phrases. However, even similar terms and synonyms may
have different meanings. Possible solutions that can overcome this problem in
a more intelligent way are latent discovering algorithms such as latent semantic
indexing (Deerwester et al., 1990) (see also Section 4.4.2).

Gray and Black Sheep

The term gray sheep describes a user whose opinion does not overlap with any
other group of people in terms of similarity or dissimilarity. As collaborative
filtering approaches are based on finding similar users or items, they can not
make useful recommendations to such gray sheep users (Claypool et al., 1999).
However, other techniques such as content-based recommender systems can
be applied instead. A black sheep in turn is a user who shares the same opinion
with too many different user groups. In other words, their taste completely
varies and thus, making predictions for a recommender system very difficult.
Even though this can be interpreted as an issue of a recommender system, it
is not a problem specific to recommender systems as it also affects people in
real life who want to recommend something orally to other people.

4.4.4. Comparison between Content-based and Collaborative
Filtering

Many content-based recommender systems generate suggestions based on
keywords. Consequently, these content-based suggestions tend to be more
understandable for users (Aggarwal, 2016). In particular, such content-based
systems are usually good at recommending new items for which no sufficient
rating data exists (cold start problem for new items, see Section 4.4.3), but are
not as appropriate for recommendations to new users (cold start problem for
new users, see Section 4.4.3) who have not rated many items yet (Aggarwal,

50

4.4. Recommendation Methods

2016). In order to achieve high-quality results and to avoid overfitting, the
system normally needs a high number of ratings of the active user.

In contrast to content-based approaches, which clearly represent the indi-
vidual character of a user, collaborative methods focus on the user as an
interacting individual which makes this technique more attractive for certain
use cases. However, since content-based methods only take similarities be-
tween the user’s profile and other not yet rated items into account, their major
benefit is that they are not required to have a user community, as opposed to
collaborative filtering. On the other hand, collaborative filtering completely
relies on user ratings and can still be used in situations where no content
information about the items is available.

Furthermore, a collaborative filtering system, unlike a content-based one, is
able to discover and recommend relevant “serendipitous” items to the user
even without having related content in a user’s profile (Schafer, Frankowski,
et al., 2007). Relevant “serendipitous” items are unseen items in the collec-
tion that are rarely liked or bought by other users (see “niche products” in
Figure 4.1) and may have high relevance to the active user. However, in case
of a content-based system, if a user has never seen an item that is mapped to
several keywords, a related item with the same keywords can not be recom-
mended. This is because the content-based model only sees the active user’s
preferences, but does not include other interests of similar users, resulting in
reduced diversity of recommended items (Aggarwal, 2016).

4.4.5. Hybrid Approaches

After the strengths of the aforementioned approaches have been presented, the
question arises whether they can be combined into one single recommender
system which is able to exploit the synergy potential. A hybrid system aims to
tackle this challenge by using various recommendation techniques to achieve
higher prediction accuracy (Burke, 2002). In other words, a hybrid recom-
mender system is made up of several subsystems (or components) having
different advantages and disadvantages and disparate types of input.

A common example in practice is the combination of a content-based and a
collaborative filtering system. In this case, the content-based subsystem could

51

4. Recommender Systems

act as a fallback system for the collaborative subsystem to find content-related
items whenever the cold start problem for a new item occurs. The collaborative
component may in turn reveal “serendipitous” items rated by similar users
which would not have been recognized by the content-based approach. There
are also hybrid system which use the same recommendation approach in each
subsystem (e.g. different models of collaborative-based recommenders).

Based on their approach, hybrid systems can be classified into weighted,
switching, mixed, feature combination, feature augmentation, cascade, and
meta-level systems (for further information see Burke, 2002). Cunningham
et al., 2001 show a basic and easy-to-install hybrid system that consists of a
collaborative filtering and a content-based component.

4.5. Evaluation Methods

In order to study the quality and effectiveness of a recommender system, its
predictions have to be evaluated. Basically, there are three classes of evaluation
methods which are briefly covered in this section.

4.5.1. Offline Evaluation

Offline testing allows the designers of a recommender system to evaluate the
performance of the recommender system by using historical user data (e.g.,
user ratings or purchase history) of an online system. The offline evaluation
method is primarily intended to be used to efficiently preselect a small set of
candidates from a large set of different recommendation algorithms (Shani
and Gunawardana, 2009). This is mainly because, unlike other evaluation
techniques, offline evaluation runs very quickly on huge data sets and does
not require real users to be involved in the testing process. Instead the user
behavior and interaction with the recommender system is simulated by using
the historical data.

Usually, the dataset is either split randomly or based on the temporal order
of the data (if the timestamps of user interactions/ratings are available), into
two disjoint subsets, a training set, and a test set. During the training phase,

52

4.5. Evaluation Methods

the model of the recommender system is fitted to the training data by using
an algorithm from the set of available candidates. It is necessary to ensure
that both, the training set and the test set, do not overlap (i.e. disjoint sets) in
order to avoid model overfitting. After training, the trained model is used to
make predictions for all instances of the test set. Then, the accuracy of these
predictions is measured based on the expected results in the test set. In the
next step, the parameters of the model are tuned and the updated model is
retrained and retested in the next iteration. The prediction quality is measured
again and again after each iteration until the accuracy increases to a certain
maximum value. At the end, the same sequence of actions is repeated with
the next algorithm from the set of available candidates. This model selection
process can be further improved by using more sophisticated validation
techniques such as k-fold cross validation or leave-one-out cross validation (see Wit,
2008).

According to J. L. Herlocker et al., 2004, there are three different classes of
accuracy metrics: predictive accuracy metrics, classification accuracy metrics, and
rank accuracy metrics. For the sake of brevity, only some of the most frequently
used metrics are listed below.

Predictive Accuracy Metrics

Predictive accuracy metrics aim to evaluate the accuracy of the predicted
ratings. The mean absolute error (MAE) is a widely used predictive accuracy
metric and computes the deviation between the predicted ratings (denoted as
r̂u,i) and the actual ratings (denoted as ru,i).

MAE =
1
n

n

∑
i=1
|r̂u,i − ru,i| (4.19)

The root mean square error (RMSE) is another well-known predictive accuracy
metric. In contrast to MAE, it puts more emphasis on larger deviations between
the predicted and actual ratings by squaring the differences.

RMSE =
1
n

n

∑
i=1

(r̂u,i − ru,i)
2 (4.20)

53

4. Recommender Systems

Classification Accuracy Metrics

In many recommender systems, the focus is not on increasing the prediction
accuracy, but on relevance of the proposed items. The goal of classification
accuracy metrics is to evaluate how relevant the items in the recommended
list are. Some of the very often used measures for such problems are typical
information retrieval evaluation metrics such as precision, recall, and the
F1-measure.

Precision defines the fraction of received predictions that are relevant. It ex-
presses how many of the given recommendations are relevant.

precision =
|{relevant_predictions} ∩ {received_predictions}|

|{received_predictions}| (4.21)

Recall represents the fraction of relevant predictions that are successfully
received and explains how many relevant recommendations of all expected
recommendations are received.

recall =
|{relevant_predictions} ∩ {received_predictions}|

|{relevant_predictions}| (4.22)

The F1 measure combines precision and recall and describes the harmonic
mean between them:

F1 = 2 ∗ precision ∗ recall
precision + recall

(4.23)

Rank Accuracy Metrics

In many applications, instead of showing a small list of top-N recommended
items, a very long list of items is divided into multiple pages. Users can
then browse through these pages. Thereby, rank accuracy evaluation metrics are
introduced. These metrics evaluate the order or ranking of the items based on
the preferences of the respective user. Examples of rank accuracy metrics are
the normalized distance-based performance measure and the half-life utility metric.
For more details, see J. L. Herlocker et al., 2004.

54

4.5. Evaluation Methods

4.5.2. Online Evaluation

The underlying goal of testing an recommender system online is to moni-
tor and investigate the reaction and the change in user behavior whenever
users receive recommendations generated by different recommender algo-
rithms (Shani and Gunawardana, 2009). In contrast to offline evaluation, the
online method records and statistically examines live interactions from real
users. The online evaluation is directly integrated into an active environment
of different recommender systems equipped with distinct recommendation al-
gorithms. Typically, the online test randomly splits the set of active users of an
online application into multiple user groups, each receiving recommendations
from a different recommender system (i.e. different recommender algorithm).
Apart from the different suggestions, the online method usually presents
the exact same user interface of the application to all user groups. Hence,
users do not notice that they participate in a “hidden” online experiment.
This online testing approach is also named A/B testing or split testing (Kohavi
and Longbotham, 2015). According to Kohavi and Longbotham, 2015, A/B
Testing is a data mining technique that allows establishing a causal relation-
ship with high probability. In a controlled experiment, users are randomly
split between different variants7 in a persistent manner. Thereby, “A” refers to
the control version and “B” to the variation, whereby both provide the exact
same user experience but a different list of recommendations. It is important
to be note that A/B testing is not limited to two versions A and B. There
can also be further versions C, D, E, etc. In practice, version A is typically
used to define a baseline against which all other versions are compared. The
online interactions of the users are then instrumented and key evaluation
metrics such as click-through rate or the conversion rate are computed. In terms
of recommender systems, system designers of these systems can utilize this
evaluation technique to form a hypothesis of the form “If a specific change in
the recommendation algorithm is introduced or a recommendation algorithm
is replaced by another, will it improve the key evaluation metrics?” and evalu-
ate it online with real users (Kohavi and Longbotham, 2015). The results of
the online evaluation are then used to conclude which recommender system
performs best.

7In this specific use case different variants mean different recommender algorithms.

55

4. Recommender Systems

4.5.3. User Studies

Similar to online evaluation, user studies evaluate the behavior and feedback
of real users for various recommender versions (Ricci et al., 2010; Shani and
Gunawardana, 2009). Besides the fact they can be run offline, these tests
are specifically designed to be applied in more constrained and controlled
environments. In contrast to online evaluation, the number of users is often
much smaller and each user is given a bunch of tasks in order to assess each
recommender system. User studies allow researchers to select a specific target
group of users. In addition to that, users can be asked further quantitative
and qualitative questions related to their tasks (Ricci et al., 2010; Shani and
Gunawardana, 2009). For example, users may be asked how they liked the
user experience or whether the suggestions were relevant to them or not.
Moreover, in some cases the physical behavior of the user (e.g., tracking the
movement of the user’s eyes via webcam) can be captured as well. Obviously,
it is no secret that user tests, unlike online and offline evaluation approaches,
possess the potential to reveal allegedly latent factors.

4.5.4. Comparison of Evaluation Methods

Besides its efficiency and simplicity, offline evaluation methods have some
serious shortcomings (Shani and Gunawardana, 2009; Wit, 2008). For exam-
ple, offline testing is unable to fully cover user satisfaction as well as the
recommender system’s influence on the behavior of the user. Furthermore,
the offline evaluation only allows the designers of a recommender system
to evaluate predictions for items which have been rated or purchased by
users in the past. In practice, a large amount of unrated/unpurchased items
exists which can not be accounted for by this evaluation approach. Moreover,
Beel and Langer, 2015 and Garcin, Faltings, Donatsch, et al., 2014 show that
results of offline evaluations and online evaluations or user studies do not
correlate and are sometimes contradictory. Instead of offline evaluation, more
sophisticated approaches such as online evaluation or user studies have to
be applied. For example, an online test lets thousands or even millions of
users participate simultaneously in the online experiment. Since online and
user studies do not have to simulate user behavior, they can evaluate direct
feedback from real users and are therefore able to measure user satisfaction.

56

4.5. Evaluation Methods

Furthermore, the evaluation also includes the recommender system’s influence
on the user behavior of the user. All these things can not be achieved in an
offline setting.

In practice, however, running online experiments could be risky sometimes (Shani
and Gunawardana, 2009). For instance, in case a group of users receives in-
appropriate recommendations produced by an algorithm under test, some of
them may stop using the application forever. Therefore Shani and Gunawar-
dana, 2009, propose to first perform extensive offline tests in order to find a
small set of promising candidates, then conduct a user study with some test
users and finally run the online experiment.

To sum up, this chapter gave an overview of the broad research area of Recom-
mender Systems. It described the recommendation process and discussed the
difference between user-specific and non-personalized recommendations as
well as the disparity between explicit and implicit input data. Finally, several
recommendation approaches and evaluation methods that define the founda-
tion for the practical part of this Master’s thesis, were explained. Now that all
essential background knowledge and relevant methods have been presented,
this sentence marks the end of the theoretical part of this thesis.

57

5. Catrobat Project

The focus in the subsequent chapters now lies on the practical relevance of
the Catrobat project. In this chapter the Catrobat project is introduced and an
overview of the organisation’s core projects is given.

5.1. About the Organisation and the Project

The Catrobat organisation1 was founded in 2010 with the aim of promoting
the development of free educational apps for children (12 year olds and above),
teenagers, and other novices. The main idea of the Catrobat project consists
of improving young people’s computational thinking skills by sharing their
self-created apps. Catrobat is the name of a free and open source software
(FOSS) project and also the official name of the project’s visual programming
language.

The Catrobat project has already won a number of awards, including the
Austrian National Innovation Award 2013

2 in the category of Multimedia and
the Regional Award Europe 2016

3 at the Reimagine Education Awards from
the Wharton School of the University of Pennsylvania. Moreover, the Catrobat
project got honored with the Austrian “Internet for Refugees” award4 in 2016

for the ongoing development of a Right-to-Left language version of its Pocket
Code app (see Section 5.3). This app version supports Right-to-Left languages
such as Arabic or Farsi, and particularly focuses on refugees and children in
crisis or development areas.

1http://www.catrobat.org
2http://www.ffg.at/content/sieger-des-staatspreises-multimedia-und-e-business-2013
3http://www.reimagine-education.com/awards/reimagine-education-2016-honours-list/
4http://www.tugraz.at/en/tu-graz/services/news-stories/tu-graz-news/singleview/

article/preis-internet-for-refugees-fuer-programmier-app-der-tu-graz

59

http://www.catrobat.org
http://www.ffg.at/content/sieger-des-staatspreises-multimedia-und-e-business-2013
http://www.reimagine-education.com/awards/reimagine-education-2016-honours-list/
http://www.tugraz.at/en/tu-graz/services/news-stories/tu-graz-news/singleview/article/preis-internet-for-refugees-fuer-programmier-app-der-tu-graz
http://www.tugraz.at/en/tu-graz/services/news-stories/tu-graz-news/singleview/article/preis-internet-for-refugees-fuer-programmier-app-der-tu-graz

5. Catrobat Project

Catrobat currently participates in the “No One Left Behind”5 research project
funded by the Horizon 2020 program of the European Union. Google is also
supporting the Catrobat project by featuring it on Google Play for Education.
It has accepted it six times for the Google Summer of Code program6 so far.

5.2. Catrobat: The Programming Language

The visual programming language of the Catrobat project is especially de-
signed for mobile platforms, such as smartphones, tablets, and mobile web
browsers. It has been inspired by Scratch7, a programming environment
created by the Lifelong Kindergarten Group at the MIT Media Lab.

Similar to Scratch, the programming elements of the Catrobat language are
graphical building blocks, called “bricks”. The language also supports event-
driven programming with multiple objects. There are two different types of
bricks: action bricks and head bricks. Action bricks describe a basic instruction
(e.g., move an object 10 steps forward) which is performed when the brick
is executed during runtime. These bricks are arranged in head bricks which
represent scripts and receive events and look slightly different from action
bricks (see Figure 5.1). In other words, each action brick is assigned to a
dedicated head brick. By using many head bricks for the same event in an
object, users are able to create very powerful interactive programs like games
or animations. Figure 5.1 visually demonstrates two head bricks and their
corresponding action bricks as part of an object of a Catrobat program.

In order to create such multimedia programs the Pocket Code programming
environment is used and asset files (i.e. images & sound files) can be created
or imported to the program. The entire Catrobat program is compressed to a
single ZIP-archive containing the serialized code in an XML file and its asset
files. All programs created with Pocket Code are licensed under the GNU
Affero General Public License (AGPL)8 and can be freely reused, extended, or
modified by other users.

5No One Left Behind: http://no1leftbehind.eu
6Google Summer of Code: http://developers.google.com/open-source/gsoc
7Scratch: http://scratch.mit.edu
8AGPL: http://www.gnu.org/licenses/agpl-3.0.en.html

60

http://no1leftbehind.eu
http://developers.google.com/open-source/gsoc
http://scratch.mit.edu
http://www.gnu.org/licenses/agpl-3.0.en.html

5.3. Pocket Code App

Figure 5.1.: Visualization of two head bricks (shown as orange hat-shaped bricks) and their
corresponding action bricks (see blue and green colored bricks) as part of an object
named “Cape”

5.3. Pocket Code App

The Catrobat programming environment is part of the mobile app “Pocket
Code”. It consists of a programming language interpreter for the Catrobat
language and a visual integrated development environment (visual IDE). The IDE
is responsible for automatically transforming the underlying code parsed
from the XML file into visual brick elements and vice versa. It allows users to
modify or create new programs by simply adding and putting brick elements
together via drag and drop.

In Figure 5.2 objects of a Catrobat program are visually displayed through
Pocket Code’s IDE.

61

5. Catrobat Project

Figure 5.2.: Pocket Code’s IDE listing the objects of a Catrobat program

The Pocket Code app is available on Google’s Play Store for Android 9 and is
expected to be released soon on the Apple App Store for iOS 10.

5.4. Catrobat’s Community Website

Part of Pocket Code is also a mobile version of the community website11,
which is seamlessly integrated as a webview into the app. The web application
of the community website is developed as an independent project and named
Catroweb. It provides an online platform for users to download and upload
programs, share them with other users, search for programs, and express
feedback on them (e.g. post a comment, rate the program, report the program

9Pocket Code app on Google Play Store: https://catrob.at/pc
10Apple iOS App Store: http://www.apple.com/appstore
11Catrobat’s Community Website: http://share.catrob.at

62

https://catrob.at/pc
http://www.apple.com/appstore
http://share.catrob.at

5.4. Catrobat’s Community Website

as inappropriate, etc.). The web application is based on the Symfony Web
Framework12 and implemented in PHP, a web programming language. The
data is stored in a relational MySQL database13 and it uses Doctrine14 as an
object-relational mapping tool.

Figure 5.3 shows a screenshot of the mobile version of the community website
revealing its latest programs (see “newest programs”). The programs are
presented as small, clickable images.

Figure 5.3.: Mobile version of the Pocket Code’s community website

12Symfony Web Framework: http://symfony.com
13MySQL: http://www.mysql.com
14Doctrine: http://www.doctrine-project.org

63

http://symfony.com
http://www.mysql.com
http://www.doctrine-project.org

5. Catrobat Project

5.5. Scratch to Pocket Code Converter

Apart from Pocket Code for Android/iOS and the community website, Catro-
bat has many other smaller subprojects that are either part of Pocket Code
(e.g. several projects for controlling robots via Catrobat bricks) or are partial
implementations of Pocket Code for other platforms (for instance, Catrobat’s
HTML5 project). Although explaining all of them would go beyond the aims
of this thesis, the Scratch Converter15,16 subproject should be mentioned here
due to its relevance to the project’s goals. Since the Catrobat programming
language is strongly influenced by Scratch, converting Scratch programs into
Catrobat programs is possible without any major restrictions. At the time of
writing this thesis, Scratch is a Flash-based17 visual programming environ-
ment which is supposed to be used in desktop web browsers. This stands
in contrast to Catrobat, which is tailored to mobile devices. However, both
programming languages provide similar functionality and features. Moreover,
at the time of writing this thesis, Scratch has over 22 million programs (or
also labelled as Scratch projects) with over 18 million registered users18 and
hence provides a rich set of high-quality media programs. Therefore, there
is great interest in bridging the gap between Scratch and Catrobat. One ap-
proach to achieve this is the Scratch Converter project, which deals with the
aforementioned challenges. The converter project refers to a conversion tool
which is directly integrated into Pocket Code. In addition to that, users can
also directly search for and convert Scratch programs within Pocket Code.

Figure 5.4 illustrates the conversion process which takes place in several
successive steps. First, the code of the Scratch program is compiled into
Catrobat code. Second, the code is then serialized to a new XML document.
Third, some necessary metadata is added to the XML document as well and
finally, the file is persisted to disk. Such metadata includes, for example, extra
information about the original Scratch program, relevant remix data, and
much more. The remix data is especially important here. It is needed to keep
track of the remix relationship between the converted Catrobat and original
Scratch program within the Catrobat ecosystem.

15Scratch Converter: http://scratch2.catrob.at
16Github Project of Scratch Converter: http://github.com/Catrobat/ScratchToCatrobat
17Adobe Flash Player: http://www.adobe.com/software/flash/about
18Scratch Statistics: http://scratch.mit.edu/statistics

64

http://scratch2.catrob.at
http://github.com/Catrobat/ScratchToCatrobat
http://www.adobe.com/software/flash/about
http://scratch.mit.edu/statistics

5.5. Scratch to Pocket Code Converter

Figure 5.4.: Conversion flow of Scratch Converter

It is important to be aware of that the remix data in the XML is also used for
another purpose, which is to link a modified version of a Catrobat program
with its original version. The remix information in the XML defines the basis
of the remix functionality in the next Chapter 6.

To summarize, this chapter gave an overview of the Catrobat organisation
and the Catrobat programming language. Moreover, the most important
subprojects which are relevant to the project of this thesis, including the Pocket
Code app, community website, and Scratch converter, were introduced and
briefly discussed. The next chapter, Chapter 6, describes the implementation
part of this thesis.

65

6. Implementation and Evaluation

This chapter describes the implementation and evaluation of different collabo-
rative recommendation approaches within the practical part of this thesis. A
basic recommender system was built and directly integrated into Catrobat’s
collaborative web system, the community website (see Section 5.4). In addition,
a variety of features to collect data from users was added to the web system.
This collaborative information serves as input for the recommender system.
Moreover, basic functionality to present a list of recommended Catrobat pro-
grams to the user, as well as to graphically visualize connections between
remix-related Catrobat programs, was implemented. These visualization tools
are intended to assist the users in the finding process. Finally, the used A/B
tests are explained which were conducted to evaluate the performance of
the different recommendation approaches. The aim of the evaluation was to
answer the research questions which are defined in Chapter 1.

6.1. Implementation of Remixing

This section gives an overview of the implementation of the remixing feature
in Catrobat. The Pocket Code app makes it very easy for its users to download
programs from Catrobat’s community website and to remix them. All remixing
data is automatically stored in the XML file of the downloaded program and
remains there when the program is modified. This guarantees no remix
information between remix-related programs can get lost. The main idea
behind remixing is described in Section 3.4. With the implementation of
the remixing feature on the server side, Catrobat’s community website is
able to track the collaborative remixing activity of all users and to collect
important data. The remixing data is then used in Section 6.3 as an input for
a collaborative recommendation approach.

67

6. Implementation and Evaluation

Before the beginning of this Master’s thesis, essential parts of the remix
implementation on the client-side and server-side already existed, including
support for Remixing without Merging (see Section 6.1.2) and Merged Remixing
(see Section 6.1.2). All information was completely stored in the XML files,
meaning no database model existed. Furthermore, the merge implementation
accidentally combined wrong or invalid remix relations. One main goal of this
thesis was to address and fix this merge issue, and to provide support on the
server-side for new features such as Support for Program Updates (Section 6.1.2),
Remixing of Scratch Programs (Section 6.1.2) and Remix Graph Visualization
(Section 6.1.3).

6.1.1. The Remix Graph

Before the implementation can be discussed in more detail, a structure to de-
scribe the remix-relationship must be introduced and the process of remixing
should be explained as well. In the context of this thesis, mathematical graphs
are used to model the remix-relationship between Catrobat programs. Such
graphs are named remix graphs. Thereby, a node in a remix graph represents a
Catrobat program (or a Scratch program, see Section 6.1.2) and is connected
via directed edges with its remixed Catrobat programs, its child programs. A
directed edge is an arrow which points from the parent program to the child
program (i.e., remixed program). Directed edges are used to describe immedi-
ate relationships between two nodes. Furthermore, more distant relationships
between two nodes can be explained by using directed paths in a graph. A
directed path defines a sequence of successively connected edges which are
directed in the same direction. The shortest possible directed path is a directed
edge and describes the aforementioned parent to child relationship in a remix
graph. Longer directed paths are used to express more distant relationships
such as grandparent to grandchild, great-grandparent to great-grandchild,
etc.

Figure 6.1 shows an example of a remix graph. The nodes (i.e., programs)
are arranged in chronological order from top to bottom. Each program to
which an arrow points (i.e., incoming link or incoming directed edge) is a
child program (i.e., remix) of another program (i.e., its parent program). In
this graph, there are two programs, “Five Nights” and “JonnetPelaa”, which

68

6.1. Implementation of Remixing

have no incoming link and hence are not remixed programs. Such programs
are named root programs or base programs. The reason why they are shown is
that they have been remixed, meaning they are parents of another program.
In addition, directed paths can be used to express the remix relationship
between two immediately/directly related programs. For example, the path
between the root program “Five Nights” and the program “Logos” describes
a great-grandfather to great-grandchild relationship.

Figure 6.1.: Example of a remix graph. The yellow cycle highlights the current program.

The structure of the remix graph depends on the order in which the programs
were remixed. In the following, the process of remixing Catrobat programs
and different ways of remixing are presented.

6.1.2. The Process of Remixing in Catrobat

This section describes the entire use case of remixing in Catrobat. Thereby, the
communication takes place between the app (client-side) and the community
website (server-side). As previously mentioned, the remixing information is

69

6. Implementation and Evaluation

stored in the XML file of an uploaded program. The header of each program’s
XML file contains many fields. Only two of them are relevant to remixing:
these are the two fields url and remixOf.

Figure 6.2 visualizes the process of remixing a single or multiple programs in
a sequence diagram. The case of remixing more than one program is called
merging or merged remixing. Merging is described in Section 6.1.2 and appears
as an optional step in the sequence diagram. The process is best explained as
follows:

i. Download:
The user downloads a program from the community website within the
Pocket Code app. The downloaded program represents a copy of the
original program. The url field of the downloaded program contains
the URL of the original program and the remixOf field contains the URL
of the original’s parent program.

ii. Merging (optional):
The user merges a second program into the downloaded program by
using the Pocket Code app (see Section 6.1.2). Thus, the merged program
is now a remix of two parent programs. Now, the app appends the URL
of the second program to the existing URL in the url field of the XML.
This step can be repeated many times in order to remix more than two
parent programs.

iii. Remixing:
The downloaded (or merged) program is opened and modified by the
user via the Pocket Code app. It is important to be aware that the values
of both XML fields are not updated by the app.

iv. Upload:
The user uploads the modified program via the Pocket Code app. The
server of the community website copies the URLs of all parent programs
to the remixOf field in order to preserve them. In addition, the server
generates a “Catrobat-wide” unique ID for the uploaded program and
assigns a unique URL based on the generated ID to the url field of the
uploaded program’s XML header.

70

6.1. Implementation of Remixing

Figure 6.2.: Sequence diagram describing the process of remixing
Generated by: http://www.websequencediagrams.com

This organized process ensures that the XML header of the uploaded program
contains the URL of all parent programs in the remixOf field as well as the
URL for itself in the url field after upload. If another user downloads the
uploaded program and remixes it some time later, the Pocket Code app of this
user can reliably assume that the remixing information in the XML is already
up to date. To phrase it differently, the app never needs to update the two
XML fields, as this is already handled entirely on the server.

Remixing without Merging

Remixing without merging refers to remixing a single Catrobat program.
Thereby, a child program is based on exactly one parent program. Such a
remixed child program can be uploaded and remixed again by other users.
Subsequently, the same can happen repeatedly to its child programs again.
This remixing process continues as long as other users create other remixes

71

http://www.websequencediagrams.com

6. Implementation and Evaluation

based on these new remixed remixes and so on. This way, a hierarchical tree
structure consisting of remixed programs is created. In general, a tree structure
is a special form of an acyclic graph, where each child node must have exactly
one parent node. Consequently, a tree must have exactly one root program. In
the context of remixing, this tree is referred to as the remix tree.

According to the remix flow explained in Section 6.1.2, remixing without
merging covers all steps of the sequence diagram except merging (step ii.).
Listing 6.1 shows the XML header of an unmerged, remixed Catrobat program
after upload. The remixOf and url fields (marked in red color) contain the
URL of the parent program (ID is 817) and the URL of the remixed child
program (ID is 2576).

<program>
<header>

<applicationName>Pocket Code</applicationName>
<ap p l i c a t i o nV e rs i on> 0 . 9 . 1 4 </ap p l i c a t i o nV e rs i o n>
<catrobatLanguageVersion> 0 . 9 2 </catrobatLanguageVersion>
< d e s c r i p t i o n >Three in one win . However , . . . </ d e s c r i p t i o n >
<platform>Android</platform>
<programName>Tic−Tac−Toe Master</programName>
<remixOf> h t t p : //pocketcode . org/ d e t a i l s /817</remixOf>
<screenHeight>960</screenHeight>
<screenMode>STRETCH</screenMode>
<screenWidth>540</screenWidth>
<url > h t t p : //pocketcode . org/ d e t a i l s /2576</ url >
<userHandle>fusuy</userHandle>
< !−− . . . −−>

</header>
< !−− . . . −−>

</program>

Listing 6.1: XML Header of a remixed program (without merging)

Figure 6.3 illustrates an example of a remix tree. At the top of the tree one can
find the original root program, which is not a remix of any other program.
The directed edges are shown as arrows pointing from the parent program to
the remixed program. All other programs represent remixes which have only
one incoming link, meaning they are solely based on one parent program.

72

6.1. Implementation of Remixing

Figure 6.3.: Example of a remix tree, a special form of a directed acyclic remix graph

Merged Remixing

Merged remixing, also referred to as merging, allows users to remix multiple
programs by merging them together. It is intended to support different users
in group work by simply merging two programs together into one Catrobat
program. In contrast to remixing without merging, where remixes are based
only on a single parent program, merged programs can combine resources
from many different programs. To phrase it differently, merged programs
have multiple parents (at least two). The main idea of merging consists in
further improving the collaborative e-learning process by enabling users to
combine multiple ideas at once.

According to the remixing flow discussed in Section 6.1.2, merged remixing
covers all steps of the sequence diagram (also including step ii.). Listing 6.1

73

6. Implementation and Evaluation

shows the XML header of a merged Catrobat program after upload. The
remixOf and url fields (marked in red color) contain the URL of both parent
programs (IDs are 817 and 211) and the URL of the merged child program
(ID is 201112).

<program>
<header>

<applicationName>Pocket Code</applicationName>
<ap p l i c a t i o nV e rs i on> 0 . 9 . 1 4 </ap p l i c a t i o nV e rs i o n>
<catrobatLanguageVersion> 0 . 9 2 </catrobatLanguageVersion>
< d e s c r i p t i o n >Three in one win . However , . . . </ d e s c r i p t i o n >
<platform>Android</platform>
<programName>Merged t e s t program</programName>
<remixOf>

Tic−Tac−Toe [h t t p : //pocketcode . org/ d e t a i l s /817] ,
Test program [h t t p : //pocketcode . org/ d e t a i l s /211]

</remixOf>
<screenHeight>960</screenHeight>
<screenMode>STRETCH</screenMode>
<screenWidth>540</screenWidth>
<url > h t t p : //pocketcode . org/ d e t a i l s /201112</ url >
<userHandle>john_doe</userHandle>
< !−− . . . −−>

</header>
< !−− . . . −−>

</program>

Listing 6.2: XML Header of a merged program

Once a program is merged and uploaded to the server, the merge-relations
between the programs cannot be modeled by a remix tree any more. As a
consequence, the remix tree has to be automatically converted into a directed
graph.

In case the merged program is uploaded for the first time, a directed acyclic
graph is created. Basically, a directed acyclic graph is a limited type of a
graph which contains no cycles. In the context of the remix graph, this acyclic
limitation means that no remixed program can ever become a parent of any of
its ancestor programs (including parent, grandparents, great-grandparents,
etc.).

74

6.1. Implementation of Remixing

As a side note, the combination of both features, merged remixing and remixing
without merging (see Section 6.1.2), transforms the entire collaborative Catro-
bat environment (including the Pocket Code app and Catrobat’s community
website) into a powerful version control system. These two features empower
Catrobat’s users to collaboratively work together on large and complex pro-
grams such as games, animations, etc. Compared to Git1 which is a version
control system for software development, in Catrobat, each regular remix (i.e.,
remix without merging) defines a contribution which can be viewed as an
equivalent to a single commit in Git. Likewise, a merged remix in Catrobat
can be understood as a merge commit in Git.

Support for Program Updates

Sometimes a creator of a program wants to make changes to his/her program
or fix errors in the program after she or he has uploaded the program. Catro-
bat’s community website supports this use case and allows users to re-upload
their programs. However, in this use case, it appears to be very tricky to model
the modified remix-connections correctly by a remix graph. There are three
different scenarios that had to be implemented:

Case 1: Unchanged Acyclic Remix Graph

Unless a user does not merge another program into the already uploaded
program and re-uploads it, the parents of the modified program will remain
the same. Thus, the directed acyclic remix graph remains untouched after
upload.

Case 2: Extended Acyclic Remix Graph

If the user merges the updated program with one of its ancestor programs
(e.g., parent, grandparent, great-grandparent, etc.) or any other (yet) unrelated
program, then the program receives a new parent. Consequently, the directed
acyclic remix graph has to be extended with a new incoming link.

1Git Version Control System: http://git-scm.com

75

http://git-scm.com

6. Implementation and Evaluation

Case 3: Remix Graph with Cycles

However, in case the author merges the uploaded program with one of
its descendant programs (e.g., child program, grandchild, great-grandchild,
etc.) and uploads it again, the situation becomes more complex. Now, the
uploaded program has received a new parent which is one of its descendant
programs. This means, in addition to the existing directed path from the
uploaded program to the descendant program, a new link and hence a new
path between the descendant program and the uploaded program has been
added to the graph. More precisely, before upload, the uploaded program
and the descendant program were already connected once (only forwardly)
and after upload, they are connected twice (forwardly and backwardly). In
other words, a cycle was added to the previously directed acyclic remix graph.
As a consequence, the remix graph is not acyclic any more. That means that
the graph now contains a forward path from the uploaded program to its
descendant program as well as a backward path from the descendant to
the uploaded program. It is important to note that this is the only possible
known-scenario when such a cycle can arise.

Figure 6.4.: Example of a remix graph with cycles

Figure 6.4 visualizes such an example of a cyclic remix graph. In this example,
the program “Five Nights” has been merged with its grandchild “Play Game”

76

6.1. Implementation of Remixing

and then re-uploaded. After the merge happened, the grandchild program
“Play Game” suddenly became a parent of its grandparent program “Five
Nights”.

Remixing of Scratch Programs

As described in Section 5.5, the Scratch converter is a tool which is directly
integrated into Pocket Code. It allows users to convert Scratch programs
into Catrobat programs. Such converted programs are like normal Catrobat
programs and can be uploaded to and shared by users on the community
website. As a consequence, the community website has to ensure that valuable
information about the original Scratch program (e.g., name of the Scratch
user, attached copyright information, acknowledgements, etc.) is included
in the information shown on the detail page of every converted program.
Additionally, in terms of remixing, a converted Scratch program can be seen
as a remix of the original Scratch program. Therefore, a converted program is
a copy of the original Scratch program that can be edited by using the Pocket
Code app.

Consequently, including the Scratch program in the remix graph of a converted
program was an important task of the remix graph implementation. Every
time a user converts a Scratch program, the converter tool automatically
adds the hyperlink of the Scratch program to the XML file of the converted
program. This hyperlink uniquely identifies the Scratch program and refers
to the detail page of the original Scratch program. The task thereby was to
extract this reference from the XML file and to support more complex merge
use cases, such as the merging of two converted Scratch programs or merging
a converted Scratch program into a normal Catrobat program.

Listing 6.3 lists the XML header of a converted Scratch program after upload.
The remixOf and url fields (marked in red color) contain the URL of the origi-
nal Scratch program (Scratch-ID is 17828107) and the URL of the converted
program (Catrobat-ID is 1808).

77

6. Implementation and Evaluation

<program>
<header>

<applicationName>Pocket Code</applicationName>
<ap p l i c a t i o nV e rs i on> 0 . 9 . 9 </ap p l i c a t i o nV e rs i on>
<catrobatLanguageVersion> 0 . 9 2 </catrobatLanguageVersion>
< d e s c r i p t i o n >Made with ScratchToCatrobat . . . </ d e s c r i p t i o n >
<platform>Android</platform>
<programName>DJ Scra tch Cat remix</programName>
<remixOf> h t t p : // s c r a t c h . mit . edu/ p r o j e c t s /17828107</remixOf>
<screenHeight>360</screenHeight>
<screenMode>MAXIMIZE</screenMode>
<screenWidth>480</screenWidth>
<url > h t t p : //pocketcode . org/ d e t a i l s /1808</ url >
<userHandle>chwt</userHandle>
< !−− . . . −−>

</header>
< !−− . . . −−>

</program>

Listing 6.3: XML Header of a converted Scratch program

Figure 6.5.: Example of a remix graph including a converted program and its original Scratch
program (prefixed with “[Scratch]”)

78

6.1. Implementation of Remixing

Figure 6.5 depicts a simple remix graph which includes the original Scratch
program (see root program prefixed with “[Scratch]”). In this example, the
program in the middle and the bottommost program are Catrobat programs.
The program in the middle is the converted Scratch program; this is shown
as a remix of the original Scratch program (i.e., direct child) at the top. The
bottommost program is a regular remix of the Catrobat program in the
middle.

Due to the nature of the remixing behavior in Catrobat, Scratch programs
always appear as root programs in a remix graph, meaning they can only have
outgoing links but no incoming links. Furthermore, a converted Scratch pro-
gram is always represented as the direct (Catrobat) child of its corresponding
original (Scratch) program. These fundamental facts simplify the design and
implementation of the database model which is described in Section 6.1.3.

Remixing is also a key feature in Scratch and likewise, Scratch also allows its
users to remix their Scratch programs (Monroy-Hernández, 2007). However,
at the time of writing this thesis, unlike Catrobat, Scratch does not support
merged remixing of their programs; therefore, inter-Scratch remix relations
can always be modeled as remix trees. These Scratch remix trees are not included
in Catrobat’s remix graphs. However, the hyperlink referring to the original
Scratch program is shown on the detail page of every converted program on
Catrobat’s community website. Thus, Catrobat users can easily click on this
hyperlink and then have direct access to the link referring to the Scratch remix
tree web page.

6.1.3. Implementation of Remix Graph Model and Visualization

In order to visualize large remix graphs very quickly, a database model for fast
data accesses had to be designed and implemented. Before the visualization
of the graph can be discussed in more detail, the database model has to be
explained first.

79

6. Implementation and Evaluation

Database Model of Remix Graph

As the XML files of the respective Catrobat programs already keep track of the
relevant remix relations between them (including potential Scratch programs,
see Section 6.1.2), it is sufficient to just extract the parent remix URLs from
each program’s XML file and convert this data into a more suitable data
model. This data model should be a graph representation of all remix graphs.
In addition, to support program updates (see Section 6.1.2), it is also necessary
to sync the updated remix data in the XML file with this data graph model.

There are many possible ways to model such graph data, e.g., graph databases (Vick-
nair et al., 2010). However, the web application of Catrobat’s community
website (see Section 5.4) already stores all of its data in a relational MySQL
database and uses Doctrine as an object-relational mapping tool. Furthermore,
introducing a new technology to the web application would increase the costs
of maintenance and testability. Therefore, the author of this thesis decided to
create an self-developed solution for the remix graph model which perfectly
fits into the existing relational database solution.

As already discussed throughout this chapter, it is required to support two
types of graphs in order to cover all possible remixing scenarios in Catrobat.
These are directed acyclic graphs and directed graphs with cycles. The easiest way
to model a graph with a relational database would be to use a single many-
to-many relationship table. However, fetching a complete graph in MySQL,
which does not support recursive SQL queries, requires using a sequence of
successive SQL queries. This solution would be very slow for large graphs
and would require using MySQL specific stored procedures.

Thus, the implemented solution follows a more efficient and abstract approach
which uses redundant information. Like the whole implementation of the
community website’s web application, this approach is based on Doctrine and
hence works with other relational database systems as well. This way, the web
application is kept independent of the underlying MySQL database system.
Basically, the implemented approach views all graphs as they were directed
acyclic graphs, including those which actually contain cycles. Thereby, the
implementation uses closure tables to model these directed acyclic graphs and
a separate table to store all cycles of those graphs which are not acyclic. This
way, each cyclic remix graph is divided into its acyclic part and its cyclic part.

80

6.1. Implementation of Remixing

As described by Karwin, 2010, a closure table is a simple and elegant way of
storing data hierarchies in a database table. It can be used to store all paths
(i.e., not only those with a direct parent-child relationship) of any directed
acyclic graph. In the context of the implementation of the database model, a
path consists of three fields: an ancestor program field, a descendant program
field, and a depth field. The depth field describes the distance between the
ancestor program and the descendant program. For example, the distance
between a parent program and its child remix is 1, the distance between a
grandparent and its grandchild is 2, etc. Moreover, a closure table normally
contains self-referencing relations. A self-referencing relation is a path where
the ancestor is equal to the descendant, meaning the distance (or depth) is 0.
This implementation also makes use of self-referencing relations in order to
simplify the database queries (see Section 6.1.3). The same argument applies
to all those redudant paths where depth > 1.

This implemented solution introduces the following three relational database
tables to model all remix relations:

• program_remix_relation defines the closure table
• program_remix_backward_relation was used to store the cycles
• scratch_program_remix_relation contains all Scratch-Catrobat relations

Figure 6.6 shows an extract of the database model. To give a better overview,
the program table was added to the diagram. It contains the records of all
uploaded Catrobat programs and already existed before the project of this
thesis. It should be noted that a new boolean field remix_root was added to
the program table. This field is necessary to distinguish between root programs
and remixed programs (see Section 6.1.1). Another implementation detail is
that this field is also set to true for those converted programs which only have
(one or many) Scratch programs but no Catrobat programs as parents. This
simplifies the visualization algorithm described in Section 6.1.3.

The program_remix_relation closure table has three primary keys ancestor_id,
descendant_id, and depth. This triple uniquely identifies the relationship
between an ancestor program (ancestor_id is a foreign key referring to id
field of the program table) and a descendant program (descendant_id is also a
foreign key referring to id field of the program table). As already mentioned
before, the depth field is needed to describe the distance between the ancestor

81

6. Implementation and Evaluation

Figure 6.6.: Relations between database tables of the remix graph model
Created with MySQL Workbench: http://www.mysql.com/products/workbench/

program and the descendant program. For example, directed edges which
describe a parent-child relation have a depth of 1, relations between grandpar-
ents and grandchilds are of depth 2, etc. It should be mentioned that a single
descendant program may occasionally have multiple paths with different
lengths to the same ancestor program. In this case, multiple records with the
same ancestor_id and descendant_id but with different depth values have
to be added to avoid loosing any relevant path information of the directed
acyclic graph.

The program_remix_backward_relation table contains only the backward path
of a cycle, which is always only a directed edge (i.e., depth is 1). Therefore,
this table does not need a depth field. The backward edge is identified by two
primary keys: parent_id and child_id. Both are foreign keys, each referring
to the ID field of the program table. The forward path is part of the directed
acyclic graph, meaning the relations of the forward path are stored in the
program_remix_relation closure table.

82

http://www.mysql.com/products/workbench/

6.1. Implementation of Remixing

The scratch_program_remix_relation contains all remix relations between the
converted programs and their corresponding original Scratch program. Sim-
ilar to the program_remix_backward_relation table, it only stores direct edges
(depth is 1) and acts as an extension to the closure table. This separation
decouples Scratch programs from Catrobat programs in the database and
simplifies the model but requires additional queries in the remix graph
fetching code (see next Section 6.1.3). The table contains two primary keys:
scratch_parent_id and catrobat_child_id. While the scratch_parent_id
field is only an integer field which contains the ID of the original Scratch
program, the catrobat_child_id field is a foreign key which refers to the ID
field of the converted program in the program table.

As already mentioned before, the implementation is based on Doctrine. Instead
of designing the database model for the MySQL system, Doctrine provides a
convenient way to model system-independent database models by defining
entities. Basically, an entity is a PHP class which describes a database table
by using annotations (declared with the ORM prefix). The Doctrine system
provides tools which then check for all entity classes and automatically map
them to the corresponding database table. To give an impression of how such
an entity is implemented, a shortened version of the closure table entity’s PHP
code is shown in Listing 6.4.

83

6. Implementation and Evaluation

<?php
/* *

* @ORM\ E n t i t y
* @ORM\HasLi fecyc leCal lbacks
* @ORM\Table (name=" program_remix_relat ion ")
* @ORM\ E n t i t y (r e p o s i t o r y C l a s s =" E n t i t y \ProgramRemixRepository ")
*/

c l a s s ProgramRemixRelation
{

/* *
* @ORM\Id
* @ORM\Column (type =" i n t e g e r " , n u l l a b l e = f a l s e)
*/

protec ted $ances tor_ id ;

/* *
* @ORM\ManyToOne(t a r g e t E n t i t y =" E n t i t y \Program " ,

inversedBy =" ca t robat_remix_descendant_re la t ions " ,
f e t c h ="LAZY")

* @ORM\JoinColumn (name=" ances tor_ id " , referencedColumnName=" id ")
* @var \Catrobat\AppBundle\ E n t i t y \Program
*/

protec ted $ances tor ;

/* *
* @ORM\Id
* @ORM\Column (type =" i n t e g e r " , n u l l a b l e = f a l s e)
*/

protec ted $descendant_id ;

/* *
* @ORM\ManyToOne(t a r g e t E n t i t y =" E n t i t y \Program " ,

inversedBy =" c a t r o b a t _ r e m i x _ a n c e s t o r _ r e l a t i o n s " ,
f e t c h ="LAZY")

* @ORM\JoinColumn (name=" descendant_id " ,
referencedColumnName=" id ")

* @var \Catrobat\AppBundle\ E n t i t y \Program
*/

protec ted $descendant ;

/* *
* @ORM\Id
* @ORM\Column (type =" i n t e g e r " , n u l l a b l e = f a l s e ,

opt ions ={ " d e f a u l t " = 0 })

84

6.1. Implementation of Remixing

*/
protec ted $depth = 0 ;

/* *
* @param \Catrobat\AppBundle\ E n t i t y \Program $ances tor
* @param \Catrobat\AppBundle\ E n t i t y \Program $descendant
* @param i n t $depth
*/

publ ic funct ion _ _ c o ns t r u c t (Program $ancestor , Program
$descendant , $depth)

{
$ t h i s−>setAncestor ($ances tor) ;
$ t h i s−>setDescendant ($descendant) ;
$ t h i s−>setDepth ($depth) ;
// [. . .]

}

/* *
* @param \Catrobat\AppBundle\ E n t i t y \Program $ances tor
*/

publ ic funct ion setAncestor (Program $ances tor)
{

$ t h i s−>ances tor = $ances tor ;
$ t h i s−>ance s tor_ i d = $ancestor−>get Id () ;

}

/* *
* @param \Catrobat\AppBundle\ E n t i t y \Program $descendant
*/

publ ic funct ion setDescendant (Program $descendant)
{

$ t h i s−>descendant = $descendant ;
$ t h i s−>descendant_id = $descendant−>get Id () ;

}

/* *
* @param i n t $depth
*/

publ ic funct ion setDepth ($depth)
{

$ t h i s−>depth = (i n t) $depth ;
}

}

Listing 6.4: PHP Code of the closure table’s entity class

85

6. Implementation and Evaluation

Data Retrieval and Visualization

This section discusses the visualization of remix graphs. Basically, remixing
can be understood as a concept which relies on basing a remixed program
on a single or multiple parent programs. Consequently, the remixed program
automatically inherits the complete remix history of these parent programs
(including parts of their content) as well. Thus, all remix-related programs
(including parent to child, grandparent to grandchild, etc.) are very likely to
contain similar content.

Remix graphs are mathematical structures which describe all relations between
remix-similar programs and hence can be viewed as clusters of content-similar
programs. Each cluster (i.e., remix graph) contains programs which are similar
to each other but also dissimilar to most programs from other clusters. That
means programs of remix graphs contain relevant information which can be
used for user recommendations. In other words, users who are interested
in a program might also be interested in its remixed programs and vice
versa. From a recommender systems perspective, this corresponds to a content-
based recommendation approach (see Section 4.4.1). Hence, it would be quite
desirable for Catrobat’s community website to visualize these remix graphs
and present their remix-related programs to the user. Actually, this approach
was implemented as part of the project of this thesis.

The implementation is divided into two parts: a server part and a web client
part. The server provides a REST API for the web client and is responsible
for fetching the relevant graph data from the database. A code snippet of the
implemented REST API method is presented in Appendix B. The web client
sends a HTTP request to the REST API and is responsible for visualizing the
delivered data.

Server Part As already mentioned in Section 6.1.3 the database model di-
vides each remix graph into its acyclic forward paths and, if existing, the back-
ward paths of its cycles. The acyclic part is stored in the program_remix_relation
closure table and the backward paths in the program_remix_backward_relation
table. In addition, the scratch_program_remix_relation table contains direct edges
to Scratch parents. The records of these three tables can be retrieved either via
MySQL-specific SQL queries or via platform-independent Doctrine queries.

86

6.1. Implementation of Remixing

In order to keep the implementation platform-independent, the latter variant
was chosen. The aforementioned closure table contains not only direct edges
but also redundant paths, including all forward paths (i.e., depth > 1) and a
self-referencing path for every Catrobat program (i.e., depth = 0).

Considering all this redundancy, the algorithm for fetching a complete cyclic
remix graph can be kept very clear and simple. After fetching the complete
remix graph, the data is returned. Thereby, the Doctrine queries of the al-
gorithm take full advantage of the forward and self-referencing paths. For
reasons of clarity and comprehensibility, a (slightly) simplified version of the
algorithm is described. In contrast to the implemented version, this simplified
version does not cover very flat graphs. Given any program of the remix graph
as start program, the simplified algorithm works as follows:

i. Retrieve its root programs:
Use the ID of the given start program and retrieve all of its Catrobat
ancestor programs by only taking the acyclic part of the graph from
the program_remix_relation table into account. Some (at least one) of
these ancestors must be root programs. Root programs can be found by
checking which of these ancestor programs are marked as true in the
remix_root boolean field of the program table (see Section 6.1.3). Both
steps can be combined in one single query (costs: 1 Doctrine query).
Even in the case that the start program is already a root program, this
will still work since the query would only return the self-referencing
query which contains the given program as a root program.

ii. Fetch all Catrobat programs of the complete graph:
Find all Catrobat programs of the graph. These are nothing less than
the descendant programs of all retrieved root programs. Thus, these
descendants can be fetched with a single Doctrine query by simply
passing the root program IDs to the query (costs: 1 Doctrine query).
Again, the self-referencing relations are quite useful here as well, as the
root programs are automatically included in the query result, meaning
the result contains every path and every Catrobat program of the full
graph.

87

6. Implementation and Evaluation

iii. Get direct forward edges:
In order to visualize the remix graph, the directed forward edges be-
tween all Catrobat programs have to be determined. This requires an-
other query (costs: 1 Doctrine query).

iv. Fetch direct backward edges:
Given all the IDs of the previously fetched Catrobat programs, the back-
ward edges of each program can be retrieved from the program_remix_backward_relation
table via a single query (costs: 1 Doctrine query). In case the graph is
acyclic, the result will be empty. It is critical to note that these direct
backward edges can never contain any new Catrobat programs as a
backward edge can only exist if a forward path exists as well.

v. Fetch Scratch programs:
Some programs in the graph might be converted programs which are a
remix-child of a Scratch program. Given all the IDs of all Catrobat pro-
grams, any directed edge between a converted program and an original
Scratch program can be fetched from the scratch_program_remix_relation
table via a single query (costs: 1 Doctrine query). In case no Catrobat
program is a converted Scratch program, the result will be empty.

vi. Compose and return the data:
Finally, all retrieved programs and paths are composed and returned to
the client (no queries needed).

Overall this simplified algorithm constantly requires only five database queries
in order to fetch the complete graph regardless of whether the graph is very
small (e.g., only one node) or very big (hundreds or thousands of nodes).
Listing 6.5 shows a shortened version of the simplified algorithm implemented
in PHP. Additional comments were added to the code which mark each of the
above described steps.

88

6.1. Implementation of Remixing

<?php
// [. . .]
publ ic funct ion getFullRemixGraph ($program_id)
{

$ c a t r o b a t _ i d s = [$program_id] ;
$prev_descendant_ids = $ c a t r o b a t _ i d s ;

// Step (i .) − Retr ieve root programs
$ r o o t _ i d s = $remix_reposi tory−>getRootProgramIds ($ c a t r o b a t _ i d s) ;

// Step (i i .) − Fetch a l l Catrobat programs of complete graph
$ c a t r o b a t _ i d s = $remix_reposi tory−>getDescendantIds ($ r o o t _ i d s) ;

$diff_new = a r r a y _ d i f f ($ ca t ro ba t _ i ds , $prev_descendant_ids) ;
$ d i f f _ p r e v i o u s = a r r a y _ d i f f ($prev_descendant_ids , $ c a t r o b a t _ i d s) ;
$ d i f f = array_merge ($diff_new , $ d i f f _ p r e v i o u s) ;
s o r t ($ c a t r o b a t _ i d s) ;

// Step (i i i .) − Get d i r e c t forward edges
$ca t robat_ forward_edge_re la t ions = $ t h i s
−>program_remix_repository
−>getDirectEdgeRelationsBetweenProgramIds ($ c a t r o b a t _ i d s) ;

$catrobat_forward_edge_data = array_map (funct ion ($r) {
re turn [

’ a nces to r_ id ’ => $r−>getAncestorId () ,
’ descendant_id ’ => $r−>getDescendantId () ,
’ depth ’ => $r−>getDepth ()

] ;
} , $ca t robat_ forward_edge_re la t ions) ;

// Step (iv .) − Fetch d i r e c t backward edges
$catrobat_backward_edge_relat ions = $ t h i s
−>program_remix_backward_repository
−>getDirec tEdgeRela t ions ($c a t r ob a t _ id s , $ c a t r o b a t _ i d s) ;

$catrobat_backward_edge_data = array_map (funct ion ($r) {
re turn [

’ a nces to r_ id ’ => $r−>getParent Id () ,
’ descendant_id ’ => $r−>getChi ldId ()

] ;
} , $catrobat_backward_edge_re lat ions) ;

// Step (v .) − Fetch Scra tch programs

89

6. Implementation and Evaluation

$ s c r a t c h _ e d g e _ r e l a t i o n s = $ sc ra tch _r em ix _r ep os i to ry
−>getDirectEdgeRelat ionsOfProgramIds ($ c a t r o b a t _ i d s) ;

$scratch_node_ids = array_values (array_unique (array_map (
funct ion ($r) {

re turn $r−>ge t S cr a tc h P ar e n t I d () ;
} , $ s c r a t c h _ e d g e _ r e l a t i o n s

))) ;

s o r t ($scratch_node_ids) ;

$scratch_edge_data = array_map (funct ion ($r) {
re turn [

’ ances t or_ id ’ => $r−>ge t Sc r a tc h P ar e n t I d () ,
’ descendant_id ’ => $r−>getCatrobatChi ldId ()

] ;
} , $ s c r a t c h _ e d g e _ r e l a t i o n s) ;

// Step (vi .) − Compose and return the data
re turn [

’ catrobatNodes ’ => $ ca t r o ba t _ i ds ,
’ scratchNodes ’ => $scratch_node_ids ,
’ catrobatForwardEdgeRelat ions ’ => $catrobat_forward_edge_data ,
’ catrobatBackwardEdgeRelations ’ => $catrobat_backward_edge_data ,
’ sc ra tchEdgeRela t ions ’ => $scratch_edge_data

] ;
}

Listing 6.5: Implementation for fetching the complete remix graph

Client Part The web client was implemented in JavaScript. It uses the pop-
ular jQuery 2 library to fetch the graph data from the server’s REST API
via AJAX requests and the vis.js 3 library to visualize the graph. In addition,
jQuery contextMenu4, a jQuery plugin for showing context menus, was used.
To limit the scope of this thesis only the implementation of the visualization
part is briefly discussed in the following sections.

The visualization is completely taken over by the very powerful vis.js library.

2jQuery library: http://jquery.com
3vis.js library: http://visjs.org
4jQuery contextMenu: http://swisnl.github.io/jQuery-contextMenu/index.html

90

http://jquery.com
http://visjs.org
http://swisnl.github.io/jQuery-contextMenu/index.html

6.1. Implementation of Remixing

Vis.js provides a rich set of powerful features and configuration settings. The
configuration options can be used to define the style, order, and arrangement
of the nodes and edges in a graph. Furthermore, the library provides con-
trol buttons and already supports scrolling and zooming. In addition, event
listener methods can be implemented in order to adapt the behavior of a
graph. These event listener methods receive events which are basically user
interactions detected by the library. For the project of this thesis, some event
listener methods had to be implemented. The library had to be configured
appropriately and the retrieved data of the remix graph had to be prepared
and converted into a suitable format for the library.

Figure 6.7.: Zoomed-in view of a remix graph

Figure 6.7 demonstrates a zoomed-in view of the visualization after the user
clicked on a program-node of the graph. At the bottom of the figure, the

91

6. Implementation and Evaluation

library shows control buttons for navigation (arrow buttons) and for zooming
(plus, minus, and reset zoom buttons). The figure also shows a popped up
context menu that is presented to the user after the program-node is clicked. It
contains detailed information about the clicked program and provides options
to select which action should be performed next.

6.2. Implementation of Like Rating System

Another task of the practical part of this thesis was to implement a like rating
system for Catrobat’s community website. The goal of the rating system is
to collect user preferences which will later serve as an input source for an
alternative collaborative filtering approach in Section 6.3. Basically, a like rating
system is a popularity measuring system that offers only a single option to the
user, i.e. to like an item. In contrast to a like/dislike system which also allows
users to dislike an item, a like rating system collects only positive feedback.
Such like-only rating systems are quite common on social networks, where
dislike ratings could have a negative impact on the overall user satisfaction.
A good example of a like-only rating system can be found on Facebook5.
In addition to a normal like button which is shown as a “thumbs up” icon,
Facebook supplements its thumbs up button with a variety of different emoji
buttons.

The implementation of the like rating system in Catrobat’s community website
is mainly based on Facebook’s idea and follows a similar approach. The like
buttons are shown on the detail page of every uploaded Catrobat program.
Thereby, the implemented system lets its users give feedback for a Catrobat
program by using one of four different emoticon buttons, including “thumbs
up”, “laugh”, “love”, and “wow”.

Figure 6.8 gives an impression of how the rating system is presented to
the user. The four different buttons are shown below the screenshot of the
Catrobat program. In this example, the logged-in user has liked the program
“Minecraft” by clicking on the “thumbs up” button (see white-colored button).
The total number of likes (i.e. the sum of all “thumb up”, “laugh”, “love”, and
“wow” clicks) is shown on the right-hand side of the figure (in this case, it

5Facebook: http://www.facebook.com

92

http://www.facebook.com

6.2. Implementation of Like Rating System

is 52). Below, the number of people is shown who also clicked on the same
button as the logged-in user (in this case, it is 32 and refers to the number of
people who gave thumbs up on the Minecraft program).

Figure 6.8.: Detail page of a Catrobat program showing the 4 different like buttons

In order to track users’ likes, a new Doctrine entity (PHP class) was added to
the web application of the community website. This entity class introduces
a new database table called program_like which models a many-to-many
relationship between the program table and Symfony’s user table, labeled
as fos_user table. For reasons of brevity, the code of the entity class is not
presented and only the program_like table is briefly described.

Figure 6.9 shows the relations between these database tables. The program_like
table has two primary keys called program_id and user_id. Both primary keys

93

6. Implementation and Evaluation

are also foreign keys; the program_id field refers to the id field of the program
table and the user_id field refers to the fos_user table.

Figure 6.9.: Database relations between program_like, program and fos_user table
Created with MySQL Workbench: http://www.mysql.com/products/workbench/

6.3. Integration of Recommender System

Now that all functionality for gathering collective user data has been explained,
the implementation of the two different recommendation approaches can be
discussed. Both approaches are based on user-based collaborative filtering,
which has been described in Section 4.4.2. The first approach is based on the
active user’s remixes (introduced in Section 6.3.3) and the second is based on
the active user’s likes (introduced in Section 6.3.3).

94

http://www.mysql.com/products/workbench/

6.3. Integration of Recommender System

The reasons for using a user-based collaborative approach was mainly based
on the following aspects:

• Collaborative Data:
Catrobat’s community website is a groupware system primarily driven
by collaborative user data. Hence, a collaborative filtering system would
be a suitable approach.

• Serendipitous Programs:
According to Schafer, Frankowski, et al., 2007, a collaborative filtering
approach would be able to discover more “serendipitous” items, i.e.
Catrobat programs.

• Number of Users vs. Number of Programs:
The difference between the number of users and the number of Catrobat
programs on the community website is very small. Hence, a user-based
approach would be more appropriate than using an item-based tech-
nique.

• Small Amount of Descriptive Content:
Due to the nature of content-based approaches, they would either re-
quire existing keywords/tags or descriptive content information. Usually,
Catrobat programs do not contain much descriptive data (mainly, pro-
gram title, username, and short description).

The implemented approaches recommend yet unseen Catrobat programs to
the active user which have been liked by other taste-similar users. These
recommendations are shown on the home page of the community website
(see A/B Tests in Section 6.4).

6.3.1. Precomputation of User Similarities

Taste-similar users are those users who share a similar remix taste (i.e., first
approach; see Section 6.3.3) or similar like taste (i.e., second approach; see also
Section 6.3.3) with the active user. Thereby, a binary user vector is analyzed
where each vector element refers to a Catrobat program and indicates whether

95

6. Implementation and Evaluation

a program has been remixed/liked (i.e., 1) or not (i.e., 0). This type of binary
input data can be treated as implicit data (see Section 4.2) regardless of the
used approach. In order to find such taste-similar users, the similarity between
the user vectors of each user pair has to be computed first. User similarities can
be computed by using an appropriate metric formula. A variety of different
metrics to measure similarities between two users has been discussed in
Section 4.4.2. Most metrics are intended to be used primarily for non-binary
data. However, the implemented approaches have to deal with binary datasets
and hence, a more suitable measure for binary data is needed. One such
metric is the Jaccard distance (defined in Formula 4.17), which has been used
by both implemented user-based recommendation approaches. In case of
the first approach, the Jaccard distance is calculated based on the common
remixed programs of two users for each single user pair. In contrast to the
first approach, the second approach uses the Jaccard metric to compute the
similarity based on the common liked programs of two users for each single
user pair.

An illustrative example on how the Jaccard distance computation works for
the second approach has been given in Figure 4.5 of Section 4.4.2. The example
under discussion is the one depicted on the left side of the figure and described
as “user-based collaborative filtering”.

At the time of implementing the recommender system, there were more
than 30,000 registered users on the Catrobat community website and hence
about 450 million similarities of potential user pairs that would have to be
calculated (i.e., (30000

2) ≈ 450 million). However, in practice, only users who
have remixed (first approach) or liked (second approach) at least one Catrobat
program can be similar and hence only these users are relevant. This also
drastically reduces the number of user pairs. Even though the computation
of all relevant user pairs might be somewhat manageable, it would still take
a great length of time to complete. This makes the recommender system
ineligible for generating instant recommendations every time a user sees the
home page of the community website. Hence, a cronjob script had to be
implemented in order to precompute the similarities and store the results for
later use. For reasons of performance, the similarity computation was directly
implemented in Java. The Java application is automatically executed by the
script and the script is supposed to be run in the background periodically
in order to keep the similarities up to date. To give an impression of the

96

6.3. Integration of Recommender System

Java implementation a short code snippet was extracted and is shown in
Appendix C.

After the Java program is finished, the generated SQL file is imported into
the MySQL database of the community website. For this purpose, two new
Doctrine entity classes were added to the web application which define two
database tables, user_remix_similarity_relation and user_like_similarity_relation.
Figure 6.10 visualizes the used database model. Aside from the different
table names, both tables are identically equal. Each of them has two primary
keys, first_user_id and second_user_id, which uniquely identify a user pair
and are both foreign keys referring to the id field of the fos_user table. In
addition, the similarity field contains the decimal value of the calculated
Jaccard distance of the respective user pair and the created_at field stores
the timestamp when the distance was last updated (i.e, time of last run of
cronjob).

Figure 6.10.: Database relations between user_remix_similarity_relation,
user_like_similarity_relation and fos_user table
Created with MySQL Workbench: http://www.mysql.com/products/workbench/

6.3.2. Framework of the Recommender System

Basically, the implemented recommender system itself can be viewed as a
small framework which allows a dynamic switch between different recom-

97

http://www.mysql.com/products/workbench/

6. Implementation and Evaluation

mendation algorithms. Both implemented recommendation approaches were
directly integrated into this framework. Unlike the precomputation of similar-
ity values, the recommender system and both recommendation approaches
were realized in PHP. For this task, a REST API was implemented for the
Server and the JavaScript code of the community website’s home page had
to be properly adapted and extended. Both the implementation details of the
server-side REST API as well as the client-side JavaScript code are not relevant
for this thesis and are hence not discussed. However, a brief overview of the
communication flow is given.

The API provides unique URLs for each recommendation approach, which can
be called via AJAX requests by the JavaScript client to invoke the algorithm
of the corresponding approach. A reference to the implemented REST API
method is given in Appendix B. The respective algorithm then generates a list
of recommended Catrobat programs based on the used approach and returns
the results to the recommender. Then, the recommender serializes this list to
JSON data and sends it to the client. Finally, the recommended list of Catrobat
programs is presented to the active user by the JavaScript client (see figures in
Section 6.4).

As already mentioned before, the framework is able to dynamically switch
between different recommendation algorithms. In the following sections, the
algorithms of the two recommendation approaches are discussed in more
detail.

6.3.3. Implementation of Recommendation Approaches

User-based Collaborative Filtering Approach based on Remixing

The first implemented approach represents a user-based collaborative filtering
algorithm. This approach generates a list of Catrobat programs for the active
user which have been remixed by other remix-similar users. The approach
is based on a collaborative filtering approach which has been previously
proposed for Scratch by Fessakis and Dimitracopoulou, 2009.

Listing 6.6 presents the PHP code of the implemented algorithm which is
called by the recommender system. The code was slightly reformatted and

98

6.3. Integration of Recommender System

comments were added in order to increase the readability. Given the pre-
computed remix similarity values from Section 6.3.1 for all relevant user
pairs, users who are similar to the active user can be easily determined by
the recommendation algorithm in time. This can be achieved by fetching the
user-pairs with the highest similarities from the user_remix_similarity_relation
table where first_user_id or second_user_id is equal to the active user’s ID
(see Figure 6.10). Each of these obtained user-pairs contains the ID of another
remix-similar user. These remix-similar user IDs are then used in order to find
a list of such Catrobat programs which have been remixed by these similar
users but have not been remixed by the active user yet. Then weights for each
list’s program are determined based on how similar the remix-similar user is
to the active user. In cases where more than one similar user have remixed the
same program, the similarity value of each user is added to the weight of that
program. This weighting scheme is based on Formula 4.2 for non-binary user
vectors. In contrast to the Formula 4.2, the formula which is actually used
ignores the denominator. Finally, the list is sorted based on these weights and
returned to the recommender system.

99

6. Implementation and Evaluation

<?php
// [. . .]

publ ic funct ion recommendProgramsOfRemixSimilarUsers ($user , $ f l a v o r)
{

// Find remix−s i m i l a r users and add t h e i r user ID
// and s i m i l a r i t y to the $similar_user_mapping array
$ u s e r _ s i m i l a r i t y _ r e l a t i o n s = $ t h i s

−>u s e r _ r e m i x _ s i m i l a r i t y _ r e l a t i o n _ r e p o s i t o r y
−>getRe la t ionsOfS imi larUsers ($user) ;

$similar_user_mapping = [] ;

foreach ($ u s e r _ s i m i l a r i t y _ r e l a t i o n s as $r) {
$ i d _ o f _ s i m i l a r _ u s e r = ($r−>g e t F i r s t U s e r I d () != $user−>get Id ())

? $r−>g e t F i r s t U s e r I d ()
: $r−>getSecondUserId () ;

$similar_user_mapping [$ i d _ o f _ s i m i l a r _ u s e r] = $r−>g e t S i m i l a r i t y () ;
}

// Fetch a l l programs remixed by the a c t i v e user and add t h e i r
// program IDs to the $excluded_ids_of_remixed_programs array
$parent_re la t ions_of_a l l_remixed_programs_of_user = $ t h i s

−>program_remix_repository
−>getDirectParentRelat ionDataOfUser ($user−>get Id ()) ;

$ i d s _ o f _ s i m i l a r _ u s e r s = array_keys ($similar_user_mapping) ;
$excluded_ids_of_remixed_programs = array_unique (array_map (

funct ion ($data) {
re turn $data [’ anc es tor_ id ’] ;

} , $parent_re la t ions_of_a l l_remixed_programs_of_user)
) ;

// Fetch a l l programs remixed by s i m i l a r users and exclude a l l
// programs t h a t appear in $excluded_ids_of_remixed_programs
$ r e l a t i o n s _ o f _ d i f f e r i n g _ p a r e n t s = $ t h i s
−>program_remix_repository
−>getDirectParentRelat ionsOfUsersRemixes (

$ i d s _ o f _ s i m i l a r _ u s e r s ,
$user−>get Id () ,
$excluded_ids_of_remixed_programs ,
$ f l a v o r) ;

100

6.3. Integration of Recommender System

// Weight the fe tched programs based on how s i m i l a r
// the s i m i l a r user i s to the a c t i v e user
$weights = [] ;
$programs_remixed_by_others = [] ;
foreach ($ r e l a t i o n s _ o f _ d i f f e r i n g _ p a r e n t s as $ p a r e n t _ r e l a t i o n) {

$key = $ p a r e n t _ r e l a t i o n−>getAncestorId () ;
a s s e r t (! in_array ($key , $excluded_ids_of_remixed_programs)) ;

i f (! a r r a y _ k e y _ e x i s t s ($key , $weights)) {
$weights [$key] = 0 . 0 ;
$program = $ p a r e n t _ r e l a t i o n−>getAncestor () ;
$programs_remixed_by_others [$key] = $program ;

}

$ i d _ o f _ s i m i l a r _ u s e r = $ p a r e n t _ r e l a t i o n
−>getDescendant ()
−>getUser ()
−>get Id () ;

$weights [$key] += $similar_user_mapping [$ i d _ o f _ s i m i l a r _ u s e r] ;
}

// Sor t the weights
a r s o r t ($weights) ;

// Sor t and return the l i s t of recommended programs
return array_map (

funct ion ($program_id) use ($programs_remixed_by_others) {
re turn $programs_remixed_by_others [$program_id] ;

} , array_keys ($weights)
) ;

}

Listing 6.6: Implementation of user-based collaborative filtering based on remixing

101

6. Implementation and Evaluation

User-based Collaborative Filtering Approach based on User Likes

The second implemented approach represents a user-based collaborative fil-
tering algorithm based on common likes between the active user and other
users. Listing 6.7 shows the PHP code of the implemented algorithm called
by the recommender system. Similarly to the first approach, the precom-
puted remix similarity values from Section 6.3.1 for all relevant user pairs
are used to quickly find like-minded users. Thereby, the user-pairs with
the highest similarities are fetched from the user_like_similarity_relation table
where first_user_id or second_user_id is equal to the active user’s ID (see
Figure 6.10). Each of these obtained user-pairs contains the ID of another like-
similar user. Based on the liked programs of these similar users, a program
list is created which includes Catrobat programs that have not been liked by
the active user yet. Subsequently, weights for each program are computed
based on how similar the like-similar user is to the active user. In cases where
more than one similar user have liked the same program, the total weight of
that program includes the similarity value of each of these users. To phrase
it differently, the described weighting scheme uses Formula 4.2 but ignores
the denominator. Finally, before the list can be returned to the recommender
system, it has to be sorted based on these weights.

102

6.3. Integration of Recommender System

<?php
// [. . .]

publ ic funct ion recommendProgramsOfLikeSimilarUsers ($user , $ f l a v o r)
{

// Fetch a l l programs l i k e d by the a c t i v e user and add t h e i r
// program IDs to the $excluded_ids_of_l iked_programs array
$ a l l _ l i k e s _ o f _ u s e r = $ t h i s

−>program_l ike_reposi tory
−>findBy ([’ user_id ’ => $user−>get Id ()]) ;

$excluded_ids_of_l iked_programs = array_unique (array_map (
funct ion ($ l i k e) {

re turn $ l i k e−>getProgramId () ;
} , $ a l l _ l i k e s _ o f _ u s e r)

) ;

// Find l i k e−s i m i l a r users and add t h e i r user IDs
// to the $ i d s _ o f _ s i m i l a r _ u s e r s array
$ u s e r _ s i m i l a r i t y _ r e l a t i o n s = $ t h i s

−>u s e r _ l i k e _ s i m i l a r i t y _ r e l a t i o n _ r e p o s i t o r y
−>getRe la t ionsOfS imi larUsers ($user) ;

$similar_user_mapping = [] ;

foreach ($ u s e r _ s i m i l a r i t y _ r e l a t i o n s as $r) {
$ i d _ o f _ s i m i l a r _ u s e r = ($r−>g e t F i r s t U s e r I d () != $user−>get Id ())

? $r−>g e t F i r s t U s e r I d ()
: $r−>getSecondUserId () ;

$similar_user_mapping [$ i d _ o f _ s i m i l a r _ u s e r] = $r−>g e t S i m i l a r i t y () ;
}

$ i d s _ o f _ s i m i l a r _ u s e r s = array_keys ($similar_user_mapping) ;

// Fetch a l l programs l i k e d by s i m i l a r users and exclude a l l
// programs t h a t appear in $excluded_ids_of_remixed_programs
$ d i f f e r i n g _ l i k e s = $ th i s−>program_l ike_reposi tory−>getLikesOfUsers (

$ i d s _ o f _ s i m i l a r _ u s e r s ,
$user−>get Id () ,
$excluded_ids_of_l iked_programs ,
$ f l a v o r

) ;

103

6. Implementation and Evaluation

// Weight the fe tched programs based on how s i m i l a r
// the s i m i l a r user i s to the a c t i v e user
$weights = [] ;
$programs_liked_by_others = [] ;
foreach ($ d i f f e r i n g _ l i k e s as $ d i f f e r i n g _ l i k e) {

$key = $ d i f f e r i n g _ l i k e −>getProgramId () ;
a s s e r t (! in_array ($key , $excluded_ids_of_l iked_programs)) ;

i f (! a r r a y _ k e y _ e x i s t s ($key , $weights)) {
$weights [$key] = 0 . 0 ;
$recommended_program = $ d i f f e r i n g _ l i k e −>getProgram () ;
$programs_liked_by_others [$key] = $recommended_program ;

}

$ i d _ o f _ s i m i l a r _ u s e r = $ d i f f e r i n g _ l i k e −>getUserId () ;
$weights [$key] += $similar_user_mapping [$ i d _ o f _ s i m i l a r _ u s e r] ;

}

// Sor t the weights
a r s o r t ($weights) ;

// Sor t and return the l i s t of recommended programs
return array_map (

funct ion ($program_id) use ($programs_liked_by_others) {
re turn $programs_liked_by_others [$program_id] ;

} , array_keys ($weights)
) ;

}

Listing 6.7: Implementation of user-based collaborative filtering based on likes. The PHP code
was slightly reformatted and comments were added in order to increase readability.

104

6.3. Integration of Recommender System

6.3.4. Common Challenges

The implemented system aims to tackle some of the most common challenges
that have been discussed in Section 4.4.3.

• Scalability and Limited Computational Power:
The computation of the user similarities has been decoupled from the
web application of Catrobat’s community website and was implemented
in Java. The computation can be performed in advance and periodically
as a cronjob task (see Section 6.3.1). Moreover, the Java implementation
already takes advantage of efficient data structures and can be still be
adapted for parallel computation.

• Cold Start Problem:
A very common problem for recommender systems is the cold start
problem. Due to the nature of the two implemented recommendation
approaches, both work only when the active user is logged-in on the
community website. This is because remixing data and like ratings only
exist for logged-in users. This user scenario describes the new user
problem. The same also applies to newly registered users who have
not liked or remixed any programs before. As already mentioned in
Section 6.3.2, the recommender system is able to dynamically switch
between different algorithms. In order to tackle the “new user” cold
start problem, the system recommends the most remixed or most like
programs to its guest or newly registered users. This is a very simple
and more general recommendation approach.

• Shilling attacks:
By using positive-only ratings, shilling attacks are very unlikely to hap-
pen in Catrobat. However, the like rating system has been limited to
allow only logged-in users to like a Catrobat program. Further, multiple
ratings per program are not possible, meaning each program can only
be liked once by a user.

• Similar and Duplicate Items:
The Pocket Code app plans to restrict its users from uploading remixes
that are identical equal to the downloaded parent program. This should

105

6. Implementation and Evaluation

reduce the amount of duplicate programs. However, there is still plenty
of room left for improvement. More efforts would also be needed to fur-
ther reduce the amount of similar programs on the community website.

6.4. Evaluation of Recommendation Approaches

Basically, there are three evaluation methods for recommender systems: offline
evaluation, online evaluation, and user studies (see Section 4.5.2). In order
to evaluate the research questions, three A/B tests have been conducted (see
Section 4.5.2). The reason for using A/B testing over other evaluation methods
was mainly based on the arguments explained in Section 4.5.4. The online
experiment was conducted from March 7th, 2017 to May 7th, 2017. Each of
the A/B tests used consisted of different versions: version A, version B, and
version C. As a result, the version shown to each user was solely based on the
preconfigured language of the user’s browser.

6.4.1. Test Scenario I

The first test scenario was designed to answer the first research question:

“Do recommendations of Catrobat programs have a positive impact on
the overall download activity?”

In this scenario, an A/B test with three different versions was implemented:
version A, version B, and version C. Basically, the goal of this test was to mon-
itor the download activity of version A (no recommendations), of version B
(recommendations based on likes), and of version C (recommendations based
on remixes). The controlled variable of this test was a new section (named as
“Recommended programs”) which was added to the community website’s
home page (see Figure 6.11). The new section was filled with recommended
Catrobat programs and is described as the recommender system’s framework
in Section 6.3.2. In this test, version A acts as the control version, refers to
the original version of the community website’s home page, and hides the
section. Version B and version C are both variation versions and show the

106

6.4. Evaluation of Recommendation Approaches

section but include a list of different recommendations in the section. Version
B uses the second recommendation approach (see Section 6.3.3) to include
a list of Catrobat programs liked by like-minded users. Finally, the first rec-
ommendation approach which was discussed in Section 6.3.3), recommends
Catrobat programs in version C which have been remixed by remix-similar
users. The user’s allocation to the different versions was based on the browser
language of the respective user; the used allocation setting is summarized in
Table 6.1.

Version A Version B Version C
Recommendations no yes, based on

likes
yes, based on
remixes

Browser Language Russian German any, except
Russian, French,
and German

Table 6.1.: Matrix of the first A/B test’s allocation setting

As has already been discussed in Section 6.3.4, it is important to note that user-
based recommendations in version B and C can only be made to logged-in
users who have like-similar (version B) or remix-similar users (version C). This
requires having at least one Catrobat program being remixed or liked by the
active user. In addition, this program must also be remixed/liked by another
user who has remixed/liked other programs (i.e., programs that can be
recommended) as well. In all other cases during this online experiment, users
received general recommendations (most liked programs in version B and
most remixed programs in version C; see Cold Start Problem in Section 6.3.4).

107

6. Implementation and Evaluation

(a) Home page without rec-
ommendations

(b) Home page with recom-
mendations

Figure 6.11.: Home page of Catrobat’s community website hiding (a) and showing (b) the
section of recommended programs

108

6.4. Evaluation of Recommendation Approaches

6.4.2. Test Scenario II

This scenario tackles the second research question:

“Can a user-based recommendation approach based on collaborative fil-
tering produce recommendations of higher quality compared to those
generated by naive recommendation approaches? Which of the two im-
plemented user-based collaborative filtering approaches performs best: (a)
the first approach, which is based on remixing data, or (b) the second
approach, which is based on like ratings?”

In other words, the goal of the second test scenario was to show which of the
two recommendation approaches performs best and to measure the quality of
the recommendations. Although this can be achieved by using the same A/B
test as described in test scenario I (see Section 6.4.1), it would be reasonable
to define a baseline and to conduct a second A/B test. In this A/B test, the
baseline was a naive recommendation approach which recommends random
Catrobat programs. The A/B test was based on the A/B test of test scenario
I, however, version A of the previous test had to be replaced by the baseline
version. In order to avoid influencing the results of other tests, the baseline
version was only shown to French-speaking users. The used allocation setting
used is shown in Table 6.2.

Version A Version B Version C
Recommendations yes, random pro-

grams (baseline)
yes, based on
likes

yes, based on
remixes

Browser Language French German any, except Rus-
sian, French,
and German

Table 6.2.: Matrix of the second A/B test’s allocation setting

109

6. Implementation and Evaluation

6.4.3. Test Scenario III

The last test scenario intended to answer the third research question:

“Given the set of Catrobat programs remixed by all users, can these
remixed programs be used to generate high quality content-based rec-
ommendations for other users in order to increase the overall remixing
activity?”

To phrase it differently, the goal was to figure out whether or not the rec-
ommendation of remix-related Catrobat programs made by the remix graph
visualization tool represents an appropriate recommendation alternative to
promote remixing in Catrobat. These suggested remixed programs can be
viewed as content-based recommendations (see Section 6.1.3). The imple-
mented A/B test used two versions: version A and version B. In this test, a
“Show Remix Graph” button on the program detail page acted as a control
variable or to phrase it differently, the button was shown (version A) or hid-
den (version B) on the detail page of every Catrobat program. Every time a
user clicked on the “Show Remix Graph” button, the implemented JavaScript
function of the graph visualization tool (see Client Part in Section 6.1.3) was
triggered and it opened a view of the current program’s remix graph in
fullscreen which includes all remix-related Catrobat and Scratch programs of
the current program. Even though, Scratch programs were also shown in the
remix graph, the focus of this A/B test was only on Catrobat remixes.

Figure 6.12 shows the program detail page with and without the button. The
used allocation setting is summarized in Table 6.3.

Version A Version B
Recommendations no yes, remix graph
Browser Language Russian any, except Russian, French and German

Table 6.3.: Matrix of the third A/B test’s allocation setting

110

6.4. Evaluation of Recommendation Approaches

(a) Program detail page without “Show
Remix Graph” button (version A)

(b) Program detail page with “Show
Remix Graph” button (version B)

Figure 6.12.: Program detail page of Catrobat’s community website hiding (a) and showing (b)
the “Show Remix Graph” button

111

6. Implementation and Evaluation

To summarize, this chapter explained important implementation details of
the practical part of this Master’s thesis. It discussed all relevant parts of
the implemented source code and the designed database models which were
necessary to collect collaborative input data for the recommender system.
Subsequently, the implementation of two recommendation approaches, the
first one based on like ratings and the second on remix data, was described in
more detail. Finally, the last section of the chapter presented the conducted
online tests which were needed to solve the research questions and to evaluate
the performance of both approaches.

112

7. Results

Given the research goals and the used evaluation protocol specified in Chap-
ter 6, the following sections of this chapter are intended to present the final
evaluation results of this project. To better understand the achieved evalu-
ation results, general statistics about Catrobat’s community platform (see
Section 5.4) and the used online experiments are given below. Subsequently,
all evaluation results of the conducted A/B tests are presented. The results
are discussed in more detail at the end of this chapter.

7.1. General Statistics of the Community Website

This section explains key characteristics of Catrobat’s community website and
provides the foundation for the rest of the chapter. Key performance indicators
of Catrobat’s online community are listed in the following section.

7.1.1. Key Performance Indicators of Catrobat

Table 7.1 summarizes the characteristic data which was directly retrieved from
MySQL database of the community website at the time of writing this thesis.
At that time, the community website had over 30, 000 registered users and
over 28, 000 uploaded Catrobat programs. As described in Chapter 6, user
preferences were collected via like ratings and remix data was extracted from
uploaded Catrobat programs. Thus far, a total of 1047 users (about 3.4% of
all users) have liked 1996 programs in total and 3663 users (about 11.9%)
have remixed 6866 Catrobat programs. Moreover, 27 users have converted and
uploaded a Scratch program (i.e., remix of a Scratch program).

113

7. Results

Number of users 30713
Number of programs 28439
Number of downloads 298037
Number of Catrobat remixes 6866
Number of Scratch remixes 49
Number of likes 1996
Number of users engaged in remixing 3663
Number of users engaged in like ratings 1047

Table 7.1.: Key performance indicators of Catrobat’s online community (last update: 2017-05-07)

7.1.2. Distribution of Catrobat Programs

Figure 7.1 illustrates the distribution of all uploaded Catrobat programs based
on remixes. About 75.7% of all Catrobat programs are not based on any other
program, 24.1% of all programs are Catrobat remixes, and 0.2% represent
converted Scratch programs.

Figure 7.1.: Distribution of Catrobat programs based on remixes

114

7.2. Evaluation Results

7.2. Evaluation Results

This section presents the results of all test scenarios described in Section 6.4.
All online experiments were run over a two month period, starting on March
7th, 2017, and ending on May 7th, 2017.

7.2.1. Results of Test Scenario I

In order to evaluate the impact of recommendations on the overall download
activity, an A/B test was conducted. The A/B test consists of three different
versions (version A, B, and C) and is described in Section 6.4.1. At the end of
the test period, the following measures were obtained for each version:

• Number of visits of the community website’s home page
• Number of conversions

The number of conversions was defined as the number of downloads. This
number includes all downloads of Catrobat programs. Both of these measures
were separated by the language of the user’s browser corresponding to the
respective version (A, B, or C) of the test and stored for each version. The
number of visits were automatically tracked via Google Analytics1. Further,
the number of downloads was kept up to date by the web application of the
community website. Figure 7.2 depicts three diagrams; each diagram shows
the number of downloads/conversions of the corresponding version on the
y-axis and the date on the x-axis. The first graphic represents the number of
downloads of version A, the second graphic shows the number of downloads
of version B, and the third graphic represents the number of downloads of
version C. In addition, all graphs include a dotted line which best fits all
individual data points. This linear line reflects the long-term movement of
the downloads in the given time series and is hence called the trend-line. The
calculation of the trend-line is based on linear regression. The slope of version
A’s trend-line is slightly negative to stagnant throughout the full test period. In
sharp contrast, the trend-lines of version B and C indicate a noticeable increase
of the number of downloads/conversions throughout the test period.

1Google Analytics: http://analytics.google.com

115

http://analytics.google.com

7. Results

Figure 7.2.: Number of downloads over time for version A, B, and C of test scenario I

116

7.2. Evaluation Results

Moreover, a comparison of the different conversion rates of each version
over the complete test period is given in Table 7.2. Here, the conversion rate
is defined as the number of conversions (i.e., downloads) divided by the
number of visits. It is important to note that this definition can be made since
nearly every user has to visit the home page first before she or he can find
and download a Catrobat program. Visiting the home page first is the only
possible way for a user to download the Catrobat program, especially when
downloading a program directly within the Pocket Code app. Since each
version has a different number of visits, the number of conversions can not
be directly compared. Instead the conversion rate can be used to compare
versions against one another in order to find the best solution.

Measure Version A Version B Version C
Number of visits 9454 8213 32732
Number of conversions 3565 3238 19672
Conversion rate (in %) 37.71 39.43 60.10

Table 7.2.: User activity of each version in test scenario I

Figure 7.3 illustrates the comparison of the conversion rates listed in Table 7.2.
The conversion rates achieved by version B and C are higher than the conver-
sion rate of version A. Furthermore, there is a remarkable difference between
the conversion rates of version C and version B.

In order to ensure that the differing conversion rates of the evaluated A/B
test are representative and can be used for making reliable conclusions, the
statistical significance of the A/B test has to be calculated as well. This was
done by calculating the confidence level of a chi-squared test, which was based
on the number of conversions. The obtained results are presented in Table 7.3.
For reasons of clarity, the versions are viewed as three separate version-pairs,
or to phrase it differently, the pairs are viewed as three individual A/B tests
consisting of only a control version and a variation version. The table shows a
positive uplift of the conversion rate as well as high confidence for version B
and C when compared to version A (also see Figure 7.3). This also holds for
version C when version B is used as control version.

117

7. Results

Figure 7.3.: Comparison of conversion rates of version A, B, and C (test scenario I)

Control version Variation version Uplift (in %) Confidence (in %)
Version A Version B 4.55 98.06

Version A Version C 59.37 > 99.99

Version B Version C 52.44 > 99.99

Table 7.3.: Comparison of uplift and confidence level between each version of test scenario I

7.2.2. Results of Test Scenario II

This section shows the results of the second test scenario. It measures the
click-through rate and the conversion rate of all three versions. As already ex-
plained in Section 6.4.2, the test compares the two implemented recommender
approaches (i.e., version B and C are same as in Test scenario I), but introduces
a random recommender approach which defines a baseline and is represented
by version A. At the end of the test period, the following measures were
obtained:

118

7.2. Evaluation Results

• Number of visits of the community website’s home page
• Number of clicks on recommended programs on the home page
• Number of conversions

In this test scenario, the number of conversions was defined as the number of
downloads of recommended programs. This number includes only downloads
of programs which have been recommended on the home page. This requires
two steps from the users; first they have to click on the recommended program
on the home page and then they must click on the download button of this
recommended program. Otherwise the download will not be counted as a
“recommended download”.

Each of the aforementioned measures was separated by the language of the
user’s browser corresponding to the respective version (A, B, or C) of the test
and stored for each version. The number of visits was automatically tracked
via Google Analytics2. The number of clicks was collected via JavaScript
and sent to the server via AJAX requests. In order to keep track of the
connection between a click on a recommended program and the download
of this recommended program, the user context had to be tracked. This
was attained by appending a parameter to the URL such that the server
could easily figure out whether the user had discovered the program via a
recommendation or not.

Table 7.4 summarizes the retrieved information of each version. The click-
trough rate and conversion rate of each version were calculated and added to
the table as well. They are also visualized in Figure 7.4.

Measure Version A Version B Version C
Number of visits 952 8213 32732
Number of clicks on recom-
mended programs

86 1447 5106

Number of conversions 37 579 2101
Click-through rate (in %) 9.03 17.62 15.60
Conversion rate (in %) 3.89 7.05 6.42

Table 7.4.: User activity of each version in test scenario II

2Google Analytics: http://analytics.google.com

119

http://analytics.google.com

7. Results

Figure 7.4.: Comparison of the click-through rate and conversion rate of version A, B, and C
(test scenario II)

Since the conversion rate and click-through rate would not provide a reliable
basis for making meaningful conclusions, the statistical significance of the
A/B test had to be proved as well. Thereby, the statistical confidence levels
were computed by two two-sided chi-squared test which were (a) based on the
number of clicks and (b) based on the number of conversions. For the sake of
clarity and simplicity, the versions are viewed as three separate version-pairs,
or to phrase it differently, each of these pairs is viewed as an individual A/B
test consisting of only a control version and a variation version. Table 7.5 lists
the result of the uplift and the confidence level between the two versions of
each version-pair for the case (a). These results are based on the number of
clicks.

Control version Variation version Uplift (in %) Confidence (in %)
Version A Version B 95.03 > 99.99

Version A Version C 72.68 99.99

Version C Version B 12.94 99.99

Table 7.5.: Comparison of uplift and confidence level based on the number of clicks for case (a)
between each version of test scenario II

120

7.2. Evaluation Results

In addition, the results of case (b) were determined and are shown in Table 7.6.
Again, the uplift and confidence level, based on the number of conversions
between the two versions of each version-pair, are given. Version B and C
achieve a positive uplift with a high confidence when version A is used as
control version. Moreover, the same holds true for version C when compared
to version B.

Control version Variation version Uplift (in %) Confidence (in %)
Version A Version B 81.38 99.97

Version A Version C 65.15 99.84

Version C Version B 9.83 96.12

Table 7.6.: Comparison of uplift and confidence level based on the number of conversions for
case (b) between each version of test scenario II

7.2.3. Results of Test Scenario III

The A/B test of the third test scenario used two versions, i.e. versions A and B
(see Section 6.4.3). Before the remixing activity is compared, it is advisable to
have a look at the usage data of the remix graph visualization tool first. The
following data has been measured:

• Number of visits of remix graphs
• Number of clicks on recommended programs
• Number of conversions

Since the “Show remix graph” button was hidden in version A, this data is
only available for version B. The number of visits of remix graphs refers to
the number of clicks on the “Show Remix Graph” button (see Section 6.4.3),
which is shown on the detail page of every Catrobat program in version
B. This number has been tracked via JavaScript in the same way as in test
scenario II. The measured number of clicks is exact since a click on the
aforementioned button is the only possible way for a user to get to see a
program’s remix graph. Furthermore, the number of clicks on recommended
programs refers to the number of clicks on the open button of the context-
menu of any remixed program in a remix graph (see Figure 6.7 in Section 6.1.3).
All remixed programs are interpreted as recommended programs due to their

121

7. Results

content-similarity to the original program (see Section 6.4.3). Finally, in this test
scenario, the number of conversions is defined as the number of downloads of
such recommended programs found in the remix graph of another program.
Again, all clicks were captured and the downloads of recommended programs
were tracked via JavaScript in the exact same manner as the number of visits.

Table 7.7 shows the results retrieved from the MySQL database. In addition,
the click-through rate and the conversion rate was calculated. Even though
the click-through rate is quite high, the number of conversions is remarkably
low.

Measure Version B
Number of visits 1751
Number of clicks on recommended
programs

354

Number of conversions 25
Click-through rate (in %) 20.22
Conversion rate (in %) 1.43

Table 7.7.: User activity of version B in test scenario III

However, for a detailed investigation, the overall impact on the remixing
activity of this new visualization feature should be measured. Since a positive
increase in the remixing activity always implies a growth in the number of
uploads, a first approach would be to take a look at the temporal development
of the number of uploads. Thus, the number of uploads was examined over
time for both versions and the temporal movement of this data is shown in
Figure 7.5 for the complete test period. Each diagram presents the number of
uploads of the corresponding version on the y-axis and the date on the x-axis.
The blue line shows the number of uploads of version A and the orange line
represents version B. A trend-line was computed for both diagrams by using
linear regression and is visualized as a linear dotted line in the diagrams. The
upper diagram of version A shows a slightly decreasing trend-line throughout
the test period, whereas the trend-line of version B in the lower diagram
indicates a noticeable increase of the number of uploads throughout the test
period.

122

7.2. Evaluation Results

Figure 7.5.: Number of uploads over time for version A and B of test scenario III

For a more detailed and reliable analysis of the change in remixing activity,
the number of remixed uploads has to be taken into account; the statistical
significance must be proven as well. Since the “Show remix graph” button was
hidden in version A and hence the visualization was not available to users of
version A, comparable measures had to be defined, which were:

• Number of uploaded Catrobat programs
• Number of remixes of these uploaded programs

123

7. Results

The census of these two numbers did not require any additional implemen-
tation since both can be easily inferred from the data stored in the MySQL
database. Table 7.8 presents the results for the duration of the full test period.
As the number of uploaded programs differs between both versions, the remix
rate was used for comparison purposes. The remix rate is the quotient between
the number of uploaded remixes and the number of uploaded programs. As
a result, version B achieved a higher remix rate than version A.

Measure Version A Version B
Number of uploaded programs 572 1422
Number of uploaded remixes 124 411
Remix rate (in %) 21.68% 28.86%

Table 7.8.: Uploaded programs and remix-programs of each version in test scenario III

However, the difference in both remix rates could have been the result of a
fluke in the experiment; therefore, the statistical significance of this A/B test
needed to be proven. Hence, the statistical confidence levels were computed by
a two two-sided chi-squared test, which was based on the number of remixes.
Table 7.9 shows the result of the uplift and the confidence level between the
variation version B and control version A. Version B achieved a noticeable
uplift of 33.32% with a confidence level of 99.90%.

Control version Variation version Uplift (in %) Confidence (in %)
Version A Version B 33.32 99.90

Table 7.9.: Uplift and confidence level based on the number of remixes between version B and
control version A of test scenario III

124

7.3. Discussion of Results

7.3. Discussion of Results

The three A/B tests were conducted over a two month long test period. Before
the tests were evaluated, key characteristics of Catrobat’s online community
were examined in more detail at the end of the test period. According to the
data shown in Table 7.1 and the diagram depicted in Figure 7.1, remixing
appears to be a popular feature in Catrobat. At the time of writing this theses,
about one out of four uploaded Catrobat programs represented a remix of
another Catrobat program and about 11.9% of all users have remixed at least
one Catrobat program. Although these numbers are quite high, it is important
to take into account that this feature is already in action for many years.
However, the number of converted Scratch programs is quite low and only
contributes 0.2% to the total number of uploaded programs. This is mainly
due to the reason that Catrobat’s Scratch converter subproject (see Section 5.5)
is still in the beta phase and hence has not been promoted by the Catrobat
organization. In contrast to remixing, the like rating system (see Section 6.2)
was implemented as part of the practical part of this thesis. It was released
a few weeks before the start of the test period. Nevertheless, it achieved a
remarkably high user adoption rate (compared to remixing) and broke the
barrier of 1, 000 different users, who have given a like on at least one Catrobat
program, within that short period of time (see Table 7.1). Thus, the like feature
appears to be very appealing to Catrobat’s user community.

7.3.1. Discussion of Test Scenario I

The aim of the first test scenario was to prove the hypothesis which was
defined at the beginning of this thesis:

“Do recommendations of Catrobat programs have a positive impact on
the overall download activity?”

The trend-lines in Figure 7.2 of Section 7.2.1 show a positive trend for user-
based recommendations based on like ratings (version B) and user-based
recommendations based on remixing (version C). In contrast, the slope of the
trend-line of the unmodified home page (control version A) which does not
show any recommendations at all, even indicates a negative trend. Since a

125

7. Results

viewable increase of the download activity only occurred in both versions
which recommended programs, the recommendations might be the underlying
reason for this increase. However, this assumption is not sufficient to answer
the first research question. Hence, the number of visits has to be taken into
account as well as tests for statistical significance are required. Due to the
nature of this A/B test, the number of clicks on recommended programs as
well as the number of downloads of recommended programs can not be used
to compare all versions. This is mainly because, version A does not show any
recommendations, meaning both values would always be zero and hence no
reasonable comparison can be made. Instead, all downloads of a version were
included in the calculations for the respective version (i.e., overall download
activity of the respective version). The results of the conversion rates which
are listed in Table 6.1 and visualized Figure 7.3, can expressly underline the
previous findings and also provide a more detailed look at the performance
of all three versions. Table 7.3 presents the uplift and confidence level of each
version pair. Again, the obtained results confirm the previous observations. It
is remarkable, that all confidence levels of all version pairs are higher than
95%. This consequently means that the uplifts are statistically significant.

Based on these confidence levels and the uplift results, the following conclu-
sions can be made:

• The home page of version C which included user-based recommen-
dations based on remixes was able to significantly outperform both
competitor versions, i.e. the original home page (version A) as well as
the home page of version B which generated user-based recommenda-
tions based on like preferences (very high significance: both confidence
levels are > 99.99%).

• Likewise, version B still performed significantly better than version A
(significant result with 98.06% confidence).

As a consequence, the hypothesis is most probably true for both imple-
mented recommendation approaches. In addition, the investigations of this
test scenario also show that the recommendations produced by the first rec-
ommendation approach in version C have a higher impact on the overall
download activity than the recommendations generated by the second recom-
mendation approach (see Section 6.3.3). However, this does not say anything

126

7.3. Discussion of Results

about the performance of version B and C. Consequently, a different A/B
testing approach is needed to examine the quality of the two recommendation
approaches. Actually, test scenario II represents such a testing approach.

7.3.2. Discussion of Test Scenario II

The second test scenario tried to tackle the second research question of this
thesis which was defined as follows:

“Can a user-based recommendation approach based on collaborative fil-
tering produce recommendations of higher quality compared to those
generated by naive recommendation approaches? Which of the two im-
plemented user-based collaborative filtering approaches performs best: (a)
the first approach, which is based on remixing data, or (b) the second
approach, which is based on like ratings?”

In contrast to the first test scenario, all three versions produced recommenda-
tions in the second test scenario. Therefore, the number of clicks on recom-
mended programs and the number of downloads of recommended programs
can be measured for all versions (A, B, and C). Moreover, the click-through
rate based on the number of those clicks and the conversion rate based on
the number of such downloads can be computed and directly compared
among each other. This allows more accurate conclusions about the quality of
the implemented recommendation approaches, since the click-through rate
and conversion rate only take the user activities in terms of recommended
programs into consideration.

Given the comparison in Figure 7.4 and the results in Table 7.5 and 7.6, the
click-through rate and the conversion rate of both implemented recommen-
dation approaches (i.e. version B and C) performs significantly better than
the naive recommendation approach which was based on random recom-
mendations. The uplift of the click-through rate and conversion rate between
version B and A as well as between version C and A are quite high and also
have a very high confidence level. In addition, there is also an uplift of the
click-through rate and conversion rate between version C and B. However,
this uplift is small but is still significant.

Based on these results, one can conclude that:

127

7. Results

• The quality of the recommendations produced by both user-based col-
laborative filtering approaches outweighs the baseline of the naive rec-
ommendation approach (high statistical significance of uplift based on
“recommended” clicks as well as “recommended” downloads/conver-
sions; all over 99%).

• The second recommendation approach which is based on like ratings
generates and suggests more valuable recommendations to the user than
the first recommendation approach which is based on remixing data.

The bottom line is that a user-based recommendation approach based on col-
laborative filtering can produce recommendations of higher quality compared
to those random suggestions generated by a naive recommendation approach.
Furthermore, the second recommendation approach performs significantly
better in terms of “recommended” clicks and “recommended” downloads
than the first recommendation approach. This stands in contrast to the re-
search finding of the first test scenario, where the first approach reached better
results in terms of overall download activity than the second approach. Con-
sidering all theses findings, it would be particularly advisable for Catrobat to
migrate the existing recommender system to a hybrid solution, which suggests
a combination of the Catrobat programs recommended by both approaches.
Such a hybrid system would be able to combine the strengths and minimize
the weaknesses of both approaches (see Section 4.4.5). Besides that, with an
increasing amount of collaborative remix and like data and a growing user
community, the quality and performance of both recommendation approaches
are expected to automatically improve as time goes by.

7.3.3. Discussion of Test Scenario III

The last test scenario deals with the third research question of this thesis:

“Given the set of Catrobat programs remixed by all users, can these
remixed programs be used to generate high quality content-based rec-
ommendations for other users in order to increase the overall remixing
activity?”

128

7.3. Discussion of Results

Unlike the previous two test scenarios, the third test scenario used an A/B
test which consisted of only two versions (version A and B) and was active on
the detail page of every Catrobat program. It is based on the A/B test of the
first test scenario and uses the same version A and its version C as version
B. The results of version B in Table 7.7 show an acceptable click-through
rate of 20.22%, meaning that the remixed programs were clicked quite often.
However, version B could only achieve a very low conversion rate of 1.43%.
This means that the remixed programs presented by the visualization tool
might not represent an appropriate approach for content-based recommenda-
tions. Hence, the third research question has to be rejected/negated for the
content-based approach on the detail page.

Since all tests were ran at the same time, this test is also deeply related to
the impact of the first test which generated user-based recommendations on
the home page. Therefore, the activity of the uploads was studied in both
versions. By looking at the trend-lines in Figure 7.5, one can spot a latent trend
of the upload activity throughout the test period. The trend-line in version A
indicates a negative trend whereas the trend-line of version B shows a positive
trend. In addition, version B achieved a higher remix rate and a decent uplift
of 33.32% (see Table 7.8 and Table 7.9) which are very significant (confidence
level: 99.9%).

Consequently, one can conclude that remixed programs can be used as recom-
mendations in order to increase the overall remixing activity. However, the
content-based recommendations generated by the visualization tool are not a
accurate enough to achieve an acceptable number of downloads/conversions.
Instead, the increase of the remixing activity in version B most probably hap-
pened because of the recommendations on the home page. Nevertheless, the
quite high click-through rate of the content-based recommendations indicate
a certain user demand for this feature. Therefore, it can still be suggested to
Catrobat to continue providing this feature to the users but to not view it as a
standalone recommender system.

129

7. Results

In conclusion, this chapter presented general statistics about Catrobat’s com-
munity website and the results of the evaluated A/B tests. Furthermore,
answers were given to all research questions. The investigations were ex-
plained in more detail and suggestions based on the scientific outcome were
made to Catrobat.

130

8. Conclusion

This thesis concludes with a recapitulation of the most essential findings
and provides suggestions for improvement which are given to Catrobat. The
thesis was structured into a theoretical part and a practical part which was
built upon the theoretical part. The chapters of the theoretical part conveyed
important background knowledge about collaborative software and recom-
mender systems. In the practical part of this thesis, the integration of a basic
recommender system into Catrobat’s collaborative e-learning system, the com-
munity website (see Section 5.4), was discussed. Two user-based collaborative
filtering approaches, which have been implemented as part of the practical
part of this thesis, were studied. In addition, a content-based recommender
approach, which had been designed to visualize the remix graph of a Catrobat
program, was investigated as well.

8.1. Outcome

All obtained results, which were presented in Chapter 7, show that both
user-based collaborative filtering approaches represent a great benefit to the
users of the community website. Both of these user-based approaches are
easy to understand and readily comprehensible since they are built upon
simple mathematical foundations. It is important to mention that the remixing
feature was available for a considerably longer period of time when compared
to the like rating system. This is because the like rating system has been
released only a few weeks before the start of the test period. Consequently,
more remixing data was available than like rating data. Therefore, the first
approach which was based on remix ratings, could use more data in order to
generate predictions when compared to the second approach which was based
on like rating data. Nevertheless, the second approach performed significantly

131

8. Conclusion

better in terms of number of clicks and number of downloads. Although the
like rating system was released only a few weeks before the test period, the
new like rating feature showed an immense user adoption rate. Since that
time, more than one thousand users have already liked at least one Catrobat
program. In addition, the collaborative approach, which was based on like
ratings, also performed significantly better in terms of click-through rate and
conversion rate than the other approach which was based on remixing data.

According to the results in Chapter 7, the content-based recommender of
the remix graph achieved a satisfactory click-through rate but a very low
conversion rate in terms of downloads. The click-through rate and the high
number of visits shows that the visualization tool of the remix graph is
primarily used to find and navigate through remix-related Catrobat programs.
The combination of a high click-through rate and a low conversion rate means
that a large number of users appears to be interested in discovering remix-
related programs but many of these users could probably not find what they
were actually looking for and hence did not download the program after
seeing the detail page of the clicked program. Nevertheless, in retrospect, the
visualization tool had a significant positive impact on the overall remixing
activity.

At the time of writing this thesis, about one of four uploaded programs
are remixes which is a quite acceptable remix rate. Moreover, less than one
percent of all uploaded programs on the community website have been Scratch
remixes. This is largely due to the status of the Scratch converter, which is still
in a beta phase and has not yet been actively promoted.

8.2. Future Work

Based on the outcome of the evaluation results, it is suggested that Catro-
bat adopts both implemented recommendation approaches for ongoing use.
Although the approaches are already performing quite satisfactorily, fur-
ther development of the recommender system and the adaption to more
advanced recommendation algorithms is advisable. Moreover, further statisti-
cal investigations would be advantageous for Catrobat in order to maintain a
well-developed, progressive application. In particular, research in the area of

132

8.2. Future Work

recommender systems shows that hybrid recommender solutions have proven
to perform very well in practice. As a result, it is proposed that Catrobat pro-
ceeds with the migration to a hybrid recommender system which combines
the suggestions of both implemented collaborative filtering approaches. It
must be stressed, that the quality of a collaborative filtering approach depends
heavily on the amount and quality of collaborative data. Even though Catro-
bat already has a very active community with many users, the performance
of both implemented approaches will greatly improve with an increasing
amount of collaborative data and a growing number of users. In particular,
the high user adoption rate of the new like feature reveals great potential of
the collaborative like rating data to act as a more appropriate input source for
future collaborative filtering approaches. However, as the number of Catrobat
programs and the number of users grows, so does the factor of sparsity of
a rating matrix. Therefore, a model-based collaborative filtering algorithm
would be a more appropriate process in terms of performing dimensionality
reduction and discovering latent factors within the data (see Model-based
Collaborative Filtering in Section 4.4.2). Although research about model-based
collaborative filtering systems primarily focuses on non-binary data, there
still exist some approaches which can be applied on binary data. For example,
Koren, Bell, and Volinsky, 2009 propose a collaborative filtering algorithm
which is based on a matrix factorization technique and tailored for implicit
feedback. The approach is also optimized to be efficiently used in parallel
computing environments. An implementation of this parallel algorithm can
be found, for example, in Apache Spark’s Machine Learning Library1. In
general, matrix factorization approaches achieved great success during the
Netflix Prize competition2. Thus, moving from the existing memory-based
technique to such a matrix factorization approach in order to improve and
optimize the performance and prediction accuracy of the community website’s
recommender system would be another possible option for Catrobat.

Concerning the results of the content-based recommender system, there is also
plenty of room left for improvements. An alternative approach, especially for
very large remix graphs (with hundreds of programs), would be to view each
remix graph as a web graph and to apply, for example, Google’s Page Rank
algorithm on the graph. The Page Rank algorithm and web graph have been

1Apache Spark MLlib: http://spark.apache.org/mllib
2Netflix Prize: http://www.netflixprize.com

133

http://spark.apache.org/mllib
http://www.netflixprize.com

8. Conclusion

briefly described in Section 3.1.2 (also see Figure 3.3). As with the original web
graph, the remix graph also consists of nodes which refer to pages (i.e., the
detail page of the respective Catrobat program) and of edges which describe
the connection between two program detail pages. Those Catrobat programs
(i.e., nodes) that received the highest weights by the algorithm can then be
easily recommended to the user. However, in order to encourage more users
to take advantage of the remixing feature and to raise the conversion rate,
a higher remix rate is indispensable. Monroy-Hernández, 2012 showed that
the engagement of users in remixing particularly depends on the presence or
absence of self-written acknowledgement notes or manual attributions given
to the user who created the source program which has been remixed. In the
context of Catrobat, this would consequently mean that an increase in the
engagement in remixing and hence a higher remix rate could probably be
achieved by prompting users to enter a short acknowledgement text within
the Pocket Code app whenever they attempt to upload a remixed Catrobat
program. It is important to note that this makes sense only for those remixed
programs that originated from other users. In conclusion, it could be suggested
to highlight this text on the community website and to automatically promote
these programs. Furthermore, another possible option for Catrobat could be
to adapt the recommender system in such a way that more preference is
automatically given to such programs.

Concerning the number of converted Scratch programs, this number reveals
a great need for improvement within the system. Since the Scratch platform
hosts millions of Scratch programs, it offers huge potential for Catrobat too.
Therefore, active promotion of the Scratch converter is recommended to
Catrobat as soon as the Scratch converter leaves its beta state.

Finally, it should be acknowledged that there are numerous ways to improve
the quality of the recommendations and the data collection process. Further-
more, enhancements towards dealing with problematic situations, such as the
cold start problem, could also positively affect the overall performance of a
recommender system. However, considering and discussing all of these cases
would have been beyond the scope of this thesis and hence they were not
covered in this thesis.

134

Appendix

135

Appendix A.

List of Abbreviations

Abbreviation Explanation
ACM Association for Computing Machinery
AJAX Asynchronous JavaScript and XML
API Application Programming Interface
App Application
BSD Berkeley Software Distribution
CTR Click-Through Rate
GNU Name of a collection of software and the GNU Operating System
FOSS Free and Open Source Software
MIT Massachusetts Institute of Technology
CSS Cascading Style Sheets
CSCW Computer-supported Cooperative Work
E-Learning Electronic Learning
E-Commerce Electronic Commerce
HTTP Hypertext Transfer Protocol
HTML Hypertext Markup Language
ID Identifying Number
IDE Integrated Development Environment
ORM Object-relational Mapping
REST Representational State Transfer
SQL Structured Query Language
PHP Hypertext Preprocessor
XML Extensible Markup Language
XSLT Extensible Stylesheet Language Transformation
URL Uniform Resource Locator
ZIP archive Compressed file archive

137

Appendix B.

Web API Reference

Finally, a brief overview over the two implemented server-side REST API
methods is given below. The overview includes the HTTP method, the address
URL, a short description, the corresponding PHP Class, method name, method
parameters and a code snippet of the implemented API method.

API of Recommender System

HTTP Request:
GET /api/projects/recsys_general_programs.json

PHP Class, Method and Parameters:
ProgramController::listRecsysGeneralProgramsAction()

Description:
Shows user-based recommendations generated by the recommender system. The rec-
ommendations are either based on the remixes of the active user, based on the like
ratings of the active user or random suggestions. The decision which these three
recommendation approaches is chosen depends on the browser language settings of the
active user (see A/B tests in Section 6.4.1, Section 6.4.2, and Section 6.4.3).

139

Appendix B. Web API Reference

Code:
<?php
// [. . .]
publ ic funct ion l is tRecsysGeneralProgramsAct ion (Request $request)
{

$ l i m i t = i n t v a l ($request−>query−>get (’ l i m i t ’ , 20)) ;
$ o f f s e t = i n t v a l ($request−>query−>get (’ o f f s e t ’ , 0)) ;

$program_manager = $th i s−>get (’ programmanager ’) ;
$ f l a v o r = $request−>getSess ion ()−>get (’ f l a v o r ’) ;

$ l o c a l e = s t r t o l o w e r ($request−>getLocale ()) ;
$programs_count = 0 ;
$programs = [] ;
$ is_user_speci f ic_recommendat ion = f a l s e ;

i f (subs t r ($ l o c a l e , 0 , 2) == ’ de ’) {
$user = $th i s−>getUser () ;
i f ($user != n u l l) {

$recommender_manager = $t h i s−>get (’ recommendermanager ’) ;
$al l_programs = $recommender_manager

−>recommendProgramsOfLikeSimilarUsers ($user ,
$ f l a v o r) ;

$programs_count = count ($al l_programs) ;
$programs = a r r a y _ s l i c e ($all_programs , $ o f f s e t , $ l i m i t) ;

}

i f (($user == n u l l) || ($programs_count == 0)) {
$programs_count = $program_manager

−>getTotalLikedProgramsCount ($ f l a v o r) ;

$programs = $program_manager
−>getMostLikedPrograms ($f lavor , $ l i m i t , $ o f f s e t) ;

} e l s e {
$ is_user_speci f ic_recommendat ion = true ;

}
} e l s e i f (subs t r ($ l o c a l e , 0 , 2) == ’ f r ’) {

$programs_count = count ($program_manager
−>getTotalPrograms ($ f l a v o r)) ;

$programs = $program_manager
−>getRandomPrograms ($f lavor , $ l i m i t , $ o f f s e t) ;

} e l s e {
$user = $th i s−>getUser () ;

140

i f ($user != n u l l) {
$recommender_manager = $t h i s−>get (’ recommendermanager ’) ;
$al l_programs = $recommender_manager

−>recommendProgramsOfRemixSimilarUsers ($user ,
$ f l a v o r) ;

$programs_count = count ($al l_programs) ;
$programs = a r r a y _ s l i c e ($all_programs , $ o f f s e t , $ l i m i t) ;

}

i f (($user == n u l l) || ($programs_count == 0)) {
$programs_count = $program_manager

−>getTotalRemixedProgramsCount ($ f l a v o r) ;

$programs = $program_manager
−>getMostRemixedPrograms ($f lavor , $ l i m i t , $ o f f s e t) ;

} e l s e {
$ is_user_speci f ic_recommendat ion = true ;

}
}
re turn new ProgramListResponse ($programs , $programs_count , true ,

$ is_user_speci f ic_recommendat ion) ;
}

Listing B.1: PHP Code of the Recommender System’s API method

141

Appendix B. Web API Reference

Data Retrieval API of Remix Graph

HTTP Request:
GET /api/program/remixgraph/{id}

PHP Class, Method and Parameters:
RecommenderController::programRemixGraphAction($id)

Description:
Returns the list that includes all nodes and edges of the complete remix graph
of a program. The {id} parameter specifies the ID of the desired program and is
automatically passed as $id parameter to the programRemixGraphAction method by
the Symfony Framework.

Code:

<?php
// [. . .]
publ ic funct ion programRemixGraphAction (Request $request , $id)
{

$remix_graph_data = $ th i s−>get (’ remixmanager ’)
−>getFullRemixGraph ($id) ;

$ s c r e e n s h o t _ r e p o s i t o r y = $th i s−>get (’ s c r e e n s h o t r e p o s i t o r y ’) ;
$catrobat_program_thumbnails = [] ;
foreach ($remix_graph_data [’ catrobatNodes ’] as $node_id) {

i f (! a r r a y _ k e y _ e x i s t s ($node_id ,
$remix_graph_data [’ catrobatNodesData ’])) {
$catrobat_program_thumbnails [$node_id] =

’/images/ d e f a u l t / n o t _ a v a i l a b l e . png ’ ;
continue ;

}
$catrobat_program_thumbnails [$node_id] = ’/ ’ .

$screenshot_repos i tory−>getThumbnailWebPath ($node_id) ;
}
// [. . .]
re turn new JsonResponse ([

’ id ’ => $id ,
’ remixGraph ’ => $remix_graph_data ,
’ catrobatProgramThumbnails ’ => $catrobat_program_thumbnails ,

]) ;
}

Listing B.2: PHP Code of the Data Retrieval API method

142

Appendix C.

Code Snippet of User Similarity
Computation

The code snipped in Listing C.1 describes the computation of user similarities
based on either likes or remixes. Although some variables in the code contain
the word “like”, the same code snippet can be used without any modifications
in order to calculate the similarities based on remixes.

The shown code demonstrates the efficient implementation by using ap-
propriate data structures from Java’s class library such as HashSets and
HashMaps. These data structures are used for determining the intersec-
tion (see variable numOfSameProgramsLikedByBoth) and union (see variable
numOfAllProgramsLikedByAnyOfBoth) from both user sets. At the end of each
loop iteration, the distance result of the respective user pair is packed into
a MySQL-specific SQL statement and stored into a SQL file. It is important
to mention, since Doctrine can not be used by Java, this small part of the
implementation is not platform-independent.

143

Appendix C. Code Snippet of User Similarity Computation

[. . .]

publ ic s t a t i c void c o m p u t e S i m i l a r i t i e s (. . .) {
i n t userCounter = 0 ;
i n t totalNumOfRemixedUsers = us erL ikeR e la t ion s . s i z e () ;
Set <Str ing > alreadyAddedRelations = new HashSet < >() ;
w r i t e r . wri te (" use " + sqlDbName + " ;\n") ;
Map. Entry <Integer , Set <Integer >> entry ;

f o r (entry : use rL i keRe la t ions . e n t r yS e t ()) {
I n t e g e r f i r s t U s e r I d = entry . getKey () ;
Set <Integer > idsOfProgramsLikedByFirstUser = entry . getValue () ;
++userCounter ;
Map. Entry <Integer , Set <Integer >> secondEntry ;

f o r (secondEntry : use rL i keRe la t ions . e n t r yS e t ()) {
I n t e g e r secondUserId = secondEntry . getKey () ;
Set <Integer > idsOfProgramsLikedBySecondUser =

secondEntry . getValue () ;

S t r i n g key = f i r s t U s e r I d + " _ " + secondUserId ;
S t r i n g reverseKey = secondUserId + " _ " + f i r s t U s e r I d ;

i f ((f i r s t U s e r I d . intValue () == secondUserId . intValue ()) ||
alreadyAddedRelations . conta ins (key)
|| alreadyAddedRelations . conta ins (reverseKey)

) {
continue ;

}

alreadyAddedRelations . add (key) ;

Set <Integer > idsOfSameProgramsLikedByBoth = new
HashSet<Integer >(idsOfProgramsLikedByFirstUser) ;

idsOfSameProgramsLikedByBoth . r e t a i n A l l (
idsOfProgramsLikedBySecondUser) ;

Set <Integer > idsOfAllProgramsLikedByAnyOfBoth = new
HashSet<Integer >(idsOfProgramsLikedByFirstUser) ;

idsOfAllProgramsLikedByAnyOfBoth . addAll (
idsOfProgramsLikedBySecondUser) ;

i n t numOfSameProgramsLikedByBoth =
idsOfSameProgramsLikedByBoth . s i z e () ;

144

i n t numOfAllProgramsLikedByAnyOfBoth =
idsOfAllProgramsLikedByAnyOfBoth . s i z e () ;

i f (numOfSameProgramsLikedByBoth == 0) {
continue ;

}

f l o a t jaccardSim = ((f l o a t) numOfSameProgramsLikedByBoth)
/ ((f l o a t) numOfAllProgramsLikedByAnyOfBoth) ;

i f (jaccardSim < 0 . 0 1) {
continue ;

}

w r i t e r . wri te ("REPLACE INTO " + sqlTableName
+ " (f i r s t _ u s e r _ i d , second_user_id , s i m i l a r i t y , "
+ " c r e a t e d _ a t) VALUES (" + f i r s t U s e r I d + " , "
+ secondUserId + " , " + jaccardSim + " , NOW()) ;\n") ;

}
}
w r i t e r . wri te ("\n") ;

}

Listing C.1: Java implementation of user similarity computation

145

Bibliography

Adomavicius, Gediminas and Alexander Tuzhilin (2005). “Toward the Next
Generation of Recommender Systems: A Survey of the State-of-the-Art
and Possible Extensions.” In: IEEE Trans. on Knowl. and Data Eng. 17.6,
pp. 734–749. issn: 1041-4347. doi: 10.1109/TKDE.2005.99. url: https:
//doi.org/10.1109/TKDE.2005.99 (cit. on p. 49).

Adomavicius, Gediminas and Alexander Tuzhilin (2008). “Context-aware
Recommender Systems.” In: Proceedings of the 2008 ACM Conference on
Recommender Systems. RecSys ’08. Lausanne, Switzerland: ACM, pp. 335–
336. isbn: 978-1-60558-093-7. doi: 10.1145/1454008.1454068. url: http:
//doi.acm.org/10.1145/1454008.1454068 (cit. on p. 34).

Aggarwal, Charu C. (2016). Recommender Systems: The Textbook. 1st. Springer
Publishing Company, Incorporated. isbn: 3319296574, 9783319296579 (cit.
on pp. 50, 51).

Anderson, Chris (2006). The Long Tail: Why the Future of Business Is Selling Less
of More. 1st ed. New York: Hyperion, p. 238 (cit. on p. 28).

Army ants’ "living" bridges span collective intelligence, "swarm" robotics (2015).
url: https://blogs.princeton.edu/research/2015/11/24/army-ants-
living-bridges-span-collective-intelligence-swarm-robotics-pnas/
(visited on 02/22/2017) (cit. on p. 8).

Article about "PageRank Algorithm" (2017). url: https://en.wikipedia.org/
w/index.php?title=PageRank&oldid=774470009 (visited on 04/10/2017)
(cit. on p. 13).

Article of the Boeing 787 Dreamliner (2017). url: https://en.wikipedia.org/
wiki/Boeing_787_Dreamliner (visited on 04/08/2017) (cit. on p. 11).

Baecker, R.M. (1995). Readings in Human-computer Interaction: Toward the Year
2000. Interactive Technologies Series. Morgan Kaufmann Publishers. isbn:
9781558602465. url: https://books.google.at/books?id=gjm6FpMUTXgC
(cit. on p. 15).

147

http://dx.doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1145/1454008.1454068
http://doi.acm.org/10.1145/1454008.1454068
http://doi.acm.org/10.1145/1454008.1454068
https://blogs.princeton.edu/research/2015/11/24/army-ants-living-bridges-span-collective-intelligence-swarm-robotics-pnas/
https://blogs.princeton.edu/research/2015/11/24/army-ants-living-bridges-span-collective-intelligence-swarm-robotics-pnas/
https://en.wikipedia.org/w/index.php?title=PageRank&oldid=774470009
https://en.wikipedia.org/w/index.php?title=PageRank&oldid=774470009
https://en.wikipedia.org/wiki/Boeing_787_Dreamliner
https://en.wikipedia.org/wiki/Boeing_787_Dreamliner
https://books.google.at/books?id=gjm6FpMUTXgC

Bibliography

Beel, Joeran and Stefan Langer (2015). “A Comparison of Offline Evaluations,
Online Evaluations, and User Studies in the Context of Research-Paper
Recommender Systems.” In: Research and Advanced Technology for Digi-
tal Libraries: 19th International Conference on Theory and Practice of Digital
Libraries, TPDL 2015, Poznań, Poland, September 14-18, 2015, Proceedings.
Ed. by Sarantos Kapidakis, Cezary Mazurek, and Marcin Werla. Cham:
Springer International Publishing, pp. 153–168. isbn: 978-3-319-24592-8.
doi: 10.1007/978-3-319-24592-8_12. url: http://dx.doi.org/10.1007/
978-3-319-24592-8_12 (cit. on p. 56).

Borghoff, Uwe M. and J. H. Schlichter (2000). Computer-Supported Cooperative
Work: Introduction to Distributed Applications. Secaucus, NJ, USA: Springer-
Verlag New York, Inc. isbn: 3540669841 (cit. on p. 17).

Boyd, Danah M. and Nicole B. Ellison (2007). “Social Network Sites: Definition,
History, and Scholarship.” In: Journal of Computer-Mediated Communication
13.1, pp. 210–230. issn: 1083-6101. doi: 10.1111/j.1083-6101.2007.00393.
x. url: http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x (cit. on
p. 22).

Brand, Matthew (2002). “Incremental Singular Value Decomposition of Uncer-
tain Data with Missing Values.” In: Proceedings of the 7th European Confer-
ence on Computer Vision-Part I. ECCV ’02. London, UK, UK: Springer-Verlag,
pp. 707–720. isbn: 3-540-43745-2. url: http://dl.acm.org/citation.cfm?
id=645315.649157 (cit. on p. 47).

Breese, John S., David Heckerman, and Carl Kadie (1998). “Empirical Analysis
of Predictive Algorithms for Collaborative Filtering.” In: Proceedings of
the Fourteenth Conference on Uncertainty in Artificial Intelligence. UAI’98.
Madison, Wisconsin: Morgan Kaufmann Publishers Inc., pp. 43–52. isbn:
1-55860-555-X. url: http://dl.acm.org/citation.cfm?id=2074094.
2074100 (cit. on pp. 46, 47).

Brynjolfsson, Erik, Yu (Jeffrey) Hu, and Duncan Simester (2011). “Goodbye
Pareto Principle, Hello Long Tail: The Effect of Search Costs on the Con-
centration of Product Sales.” In: Manage. Sci. 57.8, pp. 1373–1386. issn:
0025-1909. doi: 10.1287/mnsc.1110.1371. url: http://dx.doi.org/10.
1287/mnsc.1110.1371 (cit. on p. 28).

Buder, Jürgen and Christina Schwind (2012). “Learning with Personalized
Recommender Systems: A Psychological View.” In: Comput. Hum. Behav.
28.1, pp. 207–216. issn: 0747-5632. doi: 10.1016/j.chb.2011.09.002. url:
http://dx.doi.org/10.1016/j.chb.2011.09.002 (cit. on p. 32).

148

http://dx.doi.org/10.1007/978-3-319-24592-8_12
http://dx.doi.org/10.1007/978-3-319-24592-8_12
http://dx.doi.org/10.1007/978-3-319-24592-8_12
http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x
http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x
http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x
http://dl.acm.org/citation.cfm?id=645315.649157
http://dl.acm.org/citation.cfm?id=645315.649157
http://dl.acm.org/citation.cfm?id=2074094.2074100
http://dl.acm.org/citation.cfm?id=2074094.2074100
http://dx.doi.org/10.1287/mnsc.1110.1371
http://dx.doi.org/10.1287/mnsc.1110.1371
http://dx.doi.org/10.1287/mnsc.1110.1371
http://dx.doi.org/10.1016/j.chb.2011.09.002
http://dx.doi.org/10.1016/j.chb.2011.09.002

Bibliography

Burke, Robin (2000). “Knowledge-Based Recommender Systems.” In: ENCY-
CLOPEDIA OF LIBRARY AND INFORMATION SYSTEMS. Marcel Dekker,
p. 2000 (cit. on p. 34).

Burke, Robin (2002). “Hybrid Recommender Systems: Survey and Experi-
ments.” In: User Modeling and User-Adapted Interaction 12.4, pp. 331–370.
issn: 0924-1868. doi: 10.1023/A:1021240730564. url: http://dx.doi.org/
10.1023/A:1021240730564 (cit. on pp. 51, 52).

Burke, Robin (2007). “The Adaptive Web.” In: ed. by Peter Brusilovsky, Al-
fred Kobsa, and Wolfgang Nejdl. Berlin, Heidelberg: Springer-Verlag.
Chap. Hybrid Web Recommender Systems, pp. 377–408. isbn: 978-3-540-
72078-2. url: http://dl.acm.org/citation.cfm?id=1768197.1768211
(cit. on p. 27).

Campos, Pedro G., Fernando Diez, and Ivan Cantador (2014). “Time-aware
Recommender Systems: A Comprehensive Survey and Analysis of Exist-
ing Evaluation Protocols.” In: User Modeling and User-Adapted Interaction
24.1-2, pp. 67–119. issn: 0924-1868. doi: 10.1007/s11257-012-9136-x. url:
http://dx.doi.org/10.1007/s11257-012-9136-x (cit. on p. 34).

Candillier, Laurent, Frank Meyer, and Françoise Fessant (2008). “Designing
Specific Weighted Similarity Measures to Improve Collaborative Filtering
Systems.” In: Proceedings of the 8th Industrial Conference on Advances in
Data Mining: Medical Applications, E-Commerce, Marketing, and Theoretical
Aspects. ICDM ’08. Leipzig, Germany: Springer-Verlag, pp. 242–255. isbn:
978-3-540-70717-2. doi: 10.1007/978- 3- 540- 70720- 2_19. url: http:
//dx.doi.org/10.1007/978-3-540-70720-2_19 (cit. on pp. 45, 46).

Carstensen, Peter H. and Kjeld Schmidt (1999). “Computer Supported Co-
operative Work: New Challenges to Systems Design.” In: In K. Itoh (Ed.),
Handbook of Human Factors, pp. 619–636 (cit. on p. 14).

Claypool, Mark et al. (1999). Combining Content-Based and Collaborative Filters
in an Online Newspaper (cit. on p. 50).

Cunningham, Padraig et al. (2001). “WEBSELL: Intelligent Sales Assistants for
the World Wide Web.” In: KI 15.1, pp. 28–32 (cit. on p. 52).

Dalsgaard, Christian (2006). “Social software: E-learning beyond learning
management systems.” In: European Journal of Open, Distance and E-Learning
(EURODL). url: http://www.eurodl.org/materials/contrib/2006/
Christian_Dalsgaard.htm (cit. on pp. 23, 24).

Dasgupta, Sayamindu et al. (2016). “Remixing As a Pathway to Computational
Thinking.” In: Proceedings of the 19th ACM Conference on Computer-Supported

149

http://dx.doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1023/A:1021240730564
http://dl.acm.org/citation.cfm?id=1768197.1768211
http://dx.doi.org/10.1007/s11257-012-9136-x
http://dx.doi.org/10.1007/s11257-012-9136-x
http://dx.doi.org/10.1007/978-3-540-70720-2_19
http://dx.doi.org/10.1007/978-3-540-70720-2_19
http://dx.doi.org/10.1007/978-3-540-70720-2_19
http://www.eurodl.org/materials/contrib/2006/Christian_Dalsgaard.htm
http://www.eurodl.org/materials/contrib/2006/Christian_Dalsgaard.htm

Bibliography

Cooperative Work & Social Computing. CSCW ’16. San Francisco, California,
USA: ACM, pp. 1438–1449. isbn: 978-1-4503-3592-8. doi: 10.1145/2818048.
2819984. url: http://doi.acm.org/10.1145/2818048.2819984 (cit. on
p. 25).

Deerwester, Scott et al. (1990). “Indexing by latent semantic analysis.” In:
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
41.6, pp. 391–407 (cit. on p. 50).

Du, Zhao et al. (2013). “Interactive and Collaborative E-Learning Platform
with Integrated Social Software and Learning Management System.” In:
Proceedings of the 2012 International Conference on Information Technology
and Software Engineering: Software Engineering & Digital Media Technology.
Ed. by Wei Lu et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 11–
18. isbn: 978-3-642-34531-9. doi: 10.1007/978-3-642-34531-9_2. url:
http://dx.doi.org/10.1007/978-3-642-34531-9_2 (cit. on p. 24).

Durkheim, EC (1912). The Elementary Forms of the Religious Life, trans. Karen
Fields (cit. on p. 7).

Ekstrand, Michael D., John T. Riedl, and Joseph A. Konstan (2011). “Collabo-
rative Filtering Recommender Systems.” In: Found. Trends Hum.-Comput.
Interact. 4.2, pp. 81–173. issn: 1551-3955. doi: 10.1561/1100000009. url:
http://dx.doi.org/10.1561/1100000009 (cit. on p. 36).

Ellis, Clarence A., Simon J. Gibbs, and Gail Rein (1991). “Groupware: Some
Issues and Experiences.” In: Commun. ACM 34.1, pp. 39–58. issn: 0001-
0782. doi: 10.1145/99977.99987. url: http://doi.acm.org/10.1145/
99977.99987 (cit. on pp. 14, 15, 17).

Facts about Google and Competition (2011). url: https://web.archive.org/web/
20111104131332/https://www.google.com/competition/howgooglesearchworks.
html (visited on 11/04/2011) (cit. on p. 12).

Felfernig, Alexander et al. (2014). “Basic Approaches in Recommendation Sys-
tems.” In: Recommendation Systems in Software Engineering. Ed. by Martin P.
Robillard et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 15–
37. isbn: 978-3-642-45135-5. doi: 10.1007/978-3-642-45135-5_2. url:
http://dx.doi.org/10.1007/978-3-642-45135-5_2 (cit. on p. 34).

Fessakis, Georgios and Angelique Dimitracopoulou (2009). “Proposing "Col-
laborative Filtering" to Foster Collaboration in ScratchR Community.”
In: Proceedings of the 9th International Conference on Computer Supported
Collaborative Learning - Volume 2. CSCL’09. Rhodes, Greece: International
Society of the Learning Sciences, pp. 168–170. isbn: 978-1-4092-8598-4.

150

http://dx.doi.org/10.1145/2818048.2819984
http://dx.doi.org/10.1145/2818048.2819984
http://doi.acm.org/10.1145/2818048.2819984
http://dx.doi.org/10.1007/978-3-642-34531-9_2
http://dx.doi.org/10.1007/978-3-642-34531-9_2
http://dx.doi.org/10.1561/1100000009
http://dx.doi.org/10.1561/1100000009
http://dx.doi.org/10.1145/99977.99987
http://doi.acm.org/10.1145/99977.99987
http://doi.acm.org/10.1145/99977.99987
https://web.archive.org/web/20111104131332/https://www.google.com/competition/howgooglesearchworks.html
https://web.archive.org/web/20111104131332/https://www.google.com/competition/howgooglesearchworks.html
https://web.archive.org/web/20111104131332/https://www.google.com/competition/howgooglesearchworks.html
http://dx.doi.org/10.1007/978-3-642-45135-5_2
http://dx.doi.org/10.1007/978-3-642-45135-5_2

Bibliography

url: http://dl.acm.org/citation.cfm?id=1599503.1599560 (cit. on
p. 98).

Fuchs, Christian (2011). “Web 2.0, Prosumption, and Surveillance.” In: Surveil-
lance & Society 8.3. FWF (Austrian Science Fund) Project "Social Network-
ing Sites in the Surveillance Society", project number P22445-G17, pp. 288–
309 (cit. on p. 20).

Gadea, C. et al. (2011). “A Collaborative Cloud-Based Multimedia Sharing
Platform for Social Networking Environments.” In: 2011 Proceedings of 20th
International Conference on Computer Communications and Networks (ICCCN),
pp. 1–6. doi: 10.1109/ICCCN.2011.6006079 (cit. on p. 22).

Garcin, Florent, Boi Faltings, Olivier Donatsch, et al. (2014). “Offline and
Online Evaluation of News Recommender Systems at Swissinfo.Ch.” In:
Proceedings of the 8th ACM Conference on Recommender Systems. RecSys
’14. Foster City, Silicon Valley, California, USA: ACM, pp. 169–176. isbn:
978-1-4503-2668-1. doi: 10.1145/2645710.2645745. url: http://doi.acm.
org/10.1145/2645710.2645745 (cit. on p. 56).

Garcin, Florent, Boi Faltings, Radu Jurca, et al. (2009). “Rating Aggregation in
Collaborative Filtering Systems.” In: Proceedings of the Third ACM Confer-
ence on Recommender Systems. RecSys ’09. New York, New York, USA: ACM,
pp. 349–352. isbn: 978-1-60558-435-5. doi: 10.1145/1639714.1639785. url:
http://doi.acm.org/10.1145/1639714.1639785 (cit. on pp. 39, 44, 46).

Garrett, Jesse James (2005). Ajax: A New Approach to Web Applications. url: http:
//adaptivepath.org/ideas/ajax- new- approach- web- applications/
(visited on 02/28/2017) (cit. on p. 5).

Goldberg, David et al. (1992). “Using Collaborative Filtering to Weave an
Information Tapestry.” In: Commun. ACM 35.12, pp. 61–70. issn: 0001-
0782. doi: 10.1145/138859.138867. url: http://doi.acm.org/10.1145/
138859.138867 (cit. on p. 36).

Grudin, Jonathan (1994). “Computer-Supported Cooperative Work: History
and Focus.” In: Computer 27.5, pp. 19–26. issn: 0018-9162. doi: 10.1109/2.
291294. url: http://dx.doi.org/10.1109/2.291294 (cit. on p. 14).

Herlocker, Jon, Joseph A. Konstan, and John Riedl (2002). “An Empirical
Analysis of Design Choices in Neighborhood-Based Collaborative Filtering
Algorithms.” In: Inf. Retr. 5.4, pp. 287–310. issn: 1386-4564. doi: 10.1023/A:
1020443909834. url: http://dx.doi.org/10.1023/A:1020443909834 (cit.
on p. 40).

151

http://dl.acm.org/citation.cfm?id=1599503.1599560
http://dx.doi.org/10.1109/ICCCN.2011.6006079
http://dx.doi.org/10.1145/2645710.2645745
http://doi.acm.org/10.1145/2645710.2645745
http://doi.acm.org/10.1145/2645710.2645745
http://dx.doi.org/10.1145/1639714.1639785
http://doi.acm.org/10.1145/1639714.1639785
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://dx.doi.org/10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867
http://dx.doi.org/10.1109/2.291294
http://dx.doi.org/10.1109/2.291294
http://dx.doi.org/10.1109/2.291294
http://dx.doi.org/10.1023/A:1020443909834
http://dx.doi.org/10.1023/A:1020443909834
http://dx.doi.org/10.1023/A:1020443909834

Bibliography

Herlocker, Jonathan L. et al. (2004). “Evaluating Collaborative Filtering Recom-
mender Systems.” In: ACM Trans. Inf. Syst. 22.1, pp. 5–53. issn: 1046-8188.
doi: 10.1145/963770.963772. url: http://doi.acm.org/10.1145/963770.
963772 (cit. on pp. 43, 53, 54).

Hofmann, Thomas (2004). “Latent Semantic Models for Collaborative Filter-
ing.” In: ACM Trans. Inf. Syst. 22.1, pp. 89–115. issn: 1046-8188. doi: 10.
1145/963770.963774. url: http://doi.acm.org/10.1145/963770.963774
(cit. on p. 47).

Hu, Yifan, Yehuda Koren, and Chris Volinsky (2008). “Collaborative Filtering
for Implicit Feedback Datasets.” In: Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining. ICDM ’08. Washington, DC, USA:
IEEE Computer Society, pp. 263–272. isbn: 978-0-7695-3502-9. doi: 10.
1109/ICDM.2008.22. url: http://dx.doi.org/10.1109/ICDM.2008.22
(cit. on pp. 32, 47).

Isinkaye, FO, YO Folajimi, and BA Ojokoh (2015). “Recommendation systems:
Principles, methods and evaluation.” In: Egyptian Informatics Journal 16.3,
pp. 261–273 (cit. on pp. 29, 30, 32).

Jaindl, Stefan (2016). “Social Media Software Integration for the Symfony
Web Framework and Android and iOS Versions of the Catrobat Project.”
MA thesis. Graz University of Technology (cit. on pp. 11, 22).

Johansen, Robert (1988). GroupWare: Computer Support for Business Teams. New
York, NY, USA: The Free Press. isbn: 0029164915 (cit. on pp. 15, 16).

Johnson, Christopher C. (2014). “Logistic Matrix Factorization for Implicit
Feedback Data.” In: (cit. on p. 47).

Karwin, Bill (2010). SQL Antipatterns: Avoiding the Pitfalls of Database Program-
ming. 1st. Pragmatic Bookshelf. isbn: 1934356557, 9781934356555 (cit. on
p. 81).

Kohavi, Ron and Roger Longbotham (2015). “Online Controlled Experiments
and A/B Tests.” In: Encyclopedia of Machine Learning and Data Mining (cit.
on p. 55).

Konstan, Joseph A. et al. (1997). “GroupLens: Applying Collaborative Filtering
to Usenet News.” In: Commun. ACM 40.3, pp. 77–87. issn: 0001-0782. doi:
10.1145/245108.245126. url: http://doi.acm.org/10.1145/245108.
245126 (cit. on p. 36).

Koren, Yehuda (2010). “Factor in the Neighbors: Scalable and Accurate Col-
laborative Filtering.” In: ACM Trans. Knowl. Discov. Data 4.1, 1:1–1:24. issn:

152

http://dx.doi.org/10.1145/963770.963772
http://doi.acm.org/10.1145/963770.963772
http://doi.acm.org/10.1145/963770.963772
http://dx.doi.org/10.1145/963770.963774
http://dx.doi.org/10.1145/963770.963774
http://doi.acm.org/10.1145/963770.963774
http://dx.doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.1145/245108.245126
http://doi.acm.org/10.1145/245108.245126
http://doi.acm.org/10.1145/245108.245126

Bibliography

1556-4681. doi: 10.1145/1644873.1644874. url: http://doi.acm.org/10.
1145/1644873.1644874 (cit. on p. 47).

Koren, Yehuda, Robert Bell, and Chris Volinsky (2009). “Matrix Factorization
Techniques for Recommender Systems.” In: Computer 42.8, pp. 30–37. issn:
0018-9162. doi: 10.1109/MC.2009.263. url: http://dx.doi.org/10.1109/
MC.2009.263 (cit. on p. 133).

Laal, Marjan and Seyed Mohammad Ghodsi (2012). “Benefits of collaborative
learning.” In: Procedia - Social and Behavioral Sciences 31, pp. 486–490.
issn: 1877-0428. doi: http://dx.doi.org/10.1016/j.sbspro.2011.
12.091. url: http://www.sciencedirect.com/science/article/pii/
S1877042811030205 (cit. on p. 23).

Lam, Shyong K. and John Riedl (2004). “Shilling Recommender Systems for
Fun and Profit.” In: Proceedings of the 13th International Conference on World
Wide Web. WWW ’04. New York, NY, USA: ACM, pp. 393–402. isbn: 1-
58113-844-X. doi: 10.1145/988672.988726. url: http://doi.acm.org/10.
1145/988672.988726 (cit. on p. 49).

Levy, Pierre (1997). Collective Intelligence: Mankind’s Emerging World in Cy-
berspace. Cambridge, MA, USA: Perseus Books. isbn: 0306456354 (cit. on
p. 8).

Linden, Greg, Brent Smith, and Jeremy York (2003). “Amazon.Com Recommen-
dations: Item-to-Item Collaborative Filtering.” In: IEEE Internet Computing
7.1, pp. 76–80. issn: 1089-7801. doi: 10.1109/MIC.2003.1167344. url:
http://dx.doi.org/10.1109/MIC.2003.1167344 (cit. on p. 40).

Liu, Haifeng et al. (2014). “A New User Similarity Model to Improve the
Accuracy of Collaborative Filtering.” In: Know.-Based Syst. 56, pp. 156–
166. issn: 0950-7051. doi: 10.1016/j.knosys.2013.11.006. url: http:
//dx.doi.org/10.1016/j.knosys.2013.11.006 (cit. on p. 45).

Mahmood, Tariq and Francesco Ricci (2009). “Improving Recommender Sys-
tems with Adaptive Conversational Strategies.” In: Proceedings of the 20th
ACM Conference on Hypertext and Hypermedia. HT ’09. Torino, Italy: ACM,
pp. 73–82. isbn: 978-1-60558-486-7. doi: 10.1145/1557914.1557930. url:
http://doi.acm.org/10.1145/1557914.1557930 (cit. on p. 27).

Marusteri, Marius et al. (2015). “Challenges in the Design and Development of
a ?Third Generation? E-Learning/Educational Platform.” In: Encyclopedia
of Information Science and Technology, Third Edition. IGI Global, pp. 1369–
1379 (cit. on p. 24).

153

http://dx.doi.org/10.1145/1644873.1644874
http://doi.acm.org/10.1145/1644873.1644874
http://doi.acm.org/10.1145/1644873.1644874
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/http://dx.doi.org/10.1016/j.sbspro.2011.12.091
http://dx.doi.org/http://dx.doi.org/10.1016/j.sbspro.2011.12.091
http://www.sciencedirect.com/science/article/pii/S1877042811030205
http://www.sciencedirect.com/science/article/pii/S1877042811030205
http://dx.doi.org/10.1145/988672.988726
http://doi.acm.org/10.1145/988672.988726
http://doi.acm.org/10.1145/988672.988726
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1016/j.knosys.2013.11.006
http://dx.doi.org/10.1016/j.knosys.2013.11.006
http://dx.doi.org/10.1016/j.knosys.2013.11.006
http://dx.doi.org/10.1145/1557914.1557930
http://doi.acm.org/10.1145/1557914.1557930

Bibliography

Meteren, Robin van and Maarten van Someren (2000). “Using Content-Based
Filtering for Recommendation.” In: (cit. on p. 34).

Miyahara, Koji and Michael J. Pazzani (2000). “Collaborative Filtering with
the Simple Bayesian Classifier.” In: Proceedings of the 6th Pacific Rim Interna-
tional Conference on Artificial Intelligence. PRICAI’00. Melbourne, Australia:
Springer-Verlag, pp. 679–689. isbn: 3-540-67925-1. url: http://dl.acm.
org/citation.cfm?id=1764967.1765055 (cit. on p. 47).

Mnih, Andriy and Yee Whye Teh (2011). “Learning Item Trees for Probabilistic
Modelling of Implicit Feedback.” In: CoRR abs/1109.5894 (cit. on p. 47).

Monroy-Hernández, Andrés (2007). “ScratchR: Sharing User-generated Pro-
grammable Media.” In: Proceedings of the 6th International Conference on
Interaction Design and Children. IDC ’07. Aalborg, Denmark: ACM, pp. 167–
168. isbn: 978-1-59593-747-6. doi: 10.1145/1297277.1297315. url: http:
//doi.acm.org/10.1145/1297277.1297315 (cit. on pp. 6, 23, 79).

Monroy-Hernández, Andrés (2012). “Designing for Remixing: Supporting
an Online Community of Amateur Creators.” PhD dissertation. Mas-
sachusetts Institute of Technology (cit. on p. 134).

Nielsen Norman Group (2017). url: http : / / www . nngroup . com / articles /
conversion-rates/ (visited on 02/28/2017) (cit. on p. 5).

Oard, Douglas and Jinmook Kim (1998). “Implicit Feedback for Recommender
Systems.” In: in Proceedings of the AAAI Workshop on Recommender Systems,
pp. 81–83 (cit. on p. 32).

OnPageWiki (2017). url: https://de.onpage.org/wiki/Click-Through-Rate
(visited on 02/28/2017) (cit. on p. 5).

Page, Lawrence et al. (1999). The PageRank Citation Ranking: Bringing Order to
the Web. Technical Report 1999-66. Previous number = SIDL-WP-1999-0120.
Stanford InfoLab. url: http://ilpubs.stanford.edu:8090/422/ (cit. on
pp. 12, 13).

Pazzani, Michael J. and Daniel Billsus (1997). “Learning and Revising User
Profiles: The Identification ofInteresting Web Sites.” In: Mach. Learn. 27.3,
pp. 313–331. issn: 0885-6125. doi: 10.1023/A:1007369909943. url: http:
//dx.doi.org/10.1023/A:1007369909943 (cit. on pp. 34, 35).

Pazzani, Michael J. and Daniel Billsus (2007). “Content-Based Recommen-
dation Systems.” In: The Adaptive Web: Methods and Strategies of Web
Personalization. Ed. by Peter Brusilovsky, Alfred Kobsa, and Wolfgang
Nejdl. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 325–341. isbn:

154

http://dl.acm.org/citation.cfm?id=1764967.1765055
http://dl.acm.org/citation.cfm?id=1764967.1765055
http://dx.doi.org/10.1145/1297277.1297315
http://doi.acm.org/10.1145/1297277.1297315
http://doi.acm.org/10.1145/1297277.1297315
http://www.nngroup.com/articles/conversion-rates/
http://www.nngroup.com/articles/conversion-rates/
https://de.onpage.org/wiki/Click-Through-Rate
http://ilpubs.stanford.edu:8090/422/
http://dx.doi.org/10.1023/A:1007369909943
http://dx.doi.org/10.1023/A:1007369909943
http://dx.doi.org/10.1023/A:1007369909943

Bibliography

978-3-540-72079-9. doi: 10.1007/978- 3- 540- 72079- 9_10. url: http:
//dx.doi.org/10.1007/978-3-540-72079-9_10 (cit. on pp. 34, 35).

Reid, Chris R. et al. (2015). “Army ants dynamically adjust living bridges in
response to a cost?benefit trade-off.” In: Proceedings of the National Academy
of Sciences 112.49, pp. 15113–15118. doi: 10.1073/pnas.1512241112. eprint:
http://www.pnas.org/content/112/49/15113.full.pdf. url: http:
//www.pnas.org/content/112/49/15113.abstract (cit. on p. 7).

Rendle, Steffen et al. (2009). “BPR: Bayesian Personalized Ranking from Im-
plicit Feedback.” In: Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence. UAI ’09. Montreal, Quebec, Canada: AUAI Press,
pp. 452–461. isbn: 978-0-9749039-5-8. url: http://dl.acm.org/citation.
cfm?id=1795114.1795167 (cit. on p. 47).

Resnick, Paul, Neophytos Iacovou, et al. (1994). “GroupLens: An Open Ar-
chitecture for Collaborative Filtering of Netnews.” In: Proceedings of the
1994 ACM Conference on Computer Supported Cooperative Work. CSCW ’94.
Chapel Hill, North Carolina, USA: ACM, pp. 175–186. isbn: 0-89791-689-1.
doi: 10.1145/192844.192905. url: http://doi.acm.org/10.1145/192844.
192905 (cit. on p. 36).

Resnick, Paul and Hal R. Varian (1997). “Recommender Systems.” In: Commun.
ACM 40.3, pp. 56–58. issn: 0001-0782. doi: 10.1145/245108.245121. url:
http://doi.acm.org/10.1145/245108.245121 (cit. on pp. 27, 28, 36, 49).

Ricci, Francesco et al. (2010). Recommender Systems Handbook. 1st. New York,
NY, USA: Springer-Verlag New York, Inc. isbn: 0387858199, 9780387858197

(cit. on pp. 27, 28, 34, 56).
Richardson, W. (2006). Blogs, Wikis, Podcasts, and Other Powerful Web Tools

for Classrooms. Annales. Nouv. sér. Sciences, medecine. SAGE Publica-
tions. isbn: 9781412927673. url: https://books.google.at/books?id=
6PFjF9BQe2AC (cit. on p. 21).

Richman, Louis S. and Julianne Slovak (1987). “Software Catches the Team
Spirit.” In: Fortune Magazine, pp. 128–136 (cit. on p. 14).

Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton (2007). “Restricted
Boltzmann Machines for Collaborative Filtering.” In: Proceedings of the 24th
International Conference on Machine Learning. ICML ’07. Corvalis, Oregon,
USA: ACM, pp. 791–798. isbn: 978-1-59593-793-3. doi: 10.1145/1273496.
1273596. url: http://doi.acm.org/10.1145/1273496.1273596 (cit. on
p. 47).

155

http://dx.doi.org/10.1007/978-3-540-72079-9_10
http://dx.doi.org/10.1007/978-3-540-72079-9_10
http://dx.doi.org/10.1007/978-3-540-72079-9_10
http://dx.doi.org/10.1073/pnas.1512241112
http://www.pnas.org/content/112/49/15113.full.pdf
http://www.pnas.org/content/112/49/15113.abstract
http://www.pnas.org/content/112/49/15113.abstract
http://dl.acm.org/citation.cfm?id=1795114.1795167
http://dl.acm.org/citation.cfm?id=1795114.1795167
http://dx.doi.org/10.1145/192844.192905
http://doi.acm.org/10.1145/192844.192905
http://doi.acm.org/10.1145/192844.192905
http://dx.doi.org/10.1145/245108.245121
http://doi.acm.org/10.1145/245108.245121
https://books.google.at/books?id=6PFjF9BQe2AC
https://books.google.at/books?id=6PFjF9BQe2AC
http://dx.doi.org/10.1145/1273496.1273596
http://dx.doi.org/10.1145/1273496.1273596
http://doi.acm.org/10.1145/1273496.1273596

Bibliography

Sarin, Sunil K. and Irene Greif (1984). “Software for Interactive On-line Con-
ferences.” In: Proceedings of the Second ACM-SIGOA Conference on Office
Information Systems. COCS ’84. New York, NY, USA: ACM, pp. 46–58. isbn:
0-89791-140-7. doi: 10.1145/800023.808333. url: http://doi.acm.org/
10.1145/800023.808333 (cit. on p. 14).

Sarwar, Badrul et al. (2002). “Incremental SVD-Based Algorithms for Highly
Scalable Recommender Systems.” In: 5th International Conference on Com-
puter and Information Technology (ICCIT), 2002. University of Minnesota,
Minneapolis, MN 55455, USA (cit. on p. 48).

Schafer, J. Ben, Dan Frankowski, et al. (2007). “The Adaptive Web.” In: ed. by
Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. Berlin, Heidelberg:
Springer-Verlag. Chap. Collaborative Filtering Recommender Systems,
pp. 291–324. isbn: 978-3-540-72078-2. url: http://dl.acm.org/citation.
cfm?id=1768197.1768208 (cit. on pp. 38, 51, 95).

Schafer, J. Ben, Joseph Konstan, and John Riedl (1999). “Recommender Systems
in e-Commerce.” In: Proceedings of the 1st ACM Conference on Electronic
Commerce. EC ’99. Denver, Colorado, USA: ACM, pp. 158–166. isbn: 1-
58113-176-3. doi: 10.1145/336992.337035. url: http://doi.acm.org/10.
1145/336992.337035 (cit. on p. 33).

Segaran, Toby (2007). Programming Collective Intelligence. O’Reilly Media (cit.
on p. 11).

Shani, Guy and Asela Gunawardana (2009). Evaluating Recommender Sys-
tems. Tech. rep. url: https://www.microsoft.com/en- us/research/
publication/evaluating-recommender-systems/ (cit. on pp. 52, 55–57).

Su, Xiaoyuan and Taghi M. Khoshgoftaar (2009). “A Survey of Collaborative
Filtering Techniques.” In: Adv. in Artif. Intell. 2009, 4:2–4:2. issn: 1687-7470.
doi: 10.1155/2009/421425. url: http://dx.doi.org/10.1155/2009/
421425 (cit. on p. 47).

Tapscott, Don and Anthony D. Williams (2006). Wikinomics: How Mass Collabo-
ration Changes Everything. Portfolio Hardcover. isbn: 1591841380 (cit. on
pp. 9, 10).

Techopedia (2017a). Technology Dictionary. url: http://www.techopedia.com/
definition/32512/overfitting (visited on 05/08/2017) (cit. on p. 6).

Techopedia (2017b). Technology Dictionary. url: http://www.techopedia.com/
definition/1312/representational-state-transfer-rest (visited on
05/08/2017) (cit. on p. 6).

156

http://dx.doi.org/10.1145/800023.808333
http://doi.acm.org/10.1145/800023.808333
http://doi.acm.org/10.1145/800023.808333
http://dl.acm.org/citation.cfm?id=1768197.1768208
http://dl.acm.org/citation.cfm?id=1768197.1768208
http://dx.doi.org/10.1145/336992.337035
http://doi.acm.org/10.1145/336992.337035
http://doi.acm.org/10.1145/336992.337035
https://www.microsoft.com/en-us/research/publication/evaluating-recommender-systems/
https://www.microsoft.com/en-us/research/publication/evaluating-recommender-systems/
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1155/2009/421425
http://www.techopedia.com/definition/32512/overfitting
http://www.techopedia.com/definition/32512/overfitting
http://www.techopedia.com/definition/1312/representational-state-transfer-rest
http://www.techopedia.com/definition/1312/representational-state-transfer-rest

Bibliography

Terms, Tech (2017a). The Tech Terms Computer Dictionary. url: http://techterms.
com/definition/algorithm (visited on 05/08/2017) (cit. on p. 5).

Terms, Tech (2017b). The Tech Terms Computer Dictionary. url: http://techterms.
com/definition/hyperlink (visited on 05/08/2017) (cit. on p. 6).

Terms, Tech (2017c). The Tech Terms Computer Dictionary. url: https : / /
techterms.com/definition/web20 (visited on 05/08/2017) (cit. on p. 6).

Teufel, Stephanie et al. (1995). Computerunterstützung für die Gruppenarbeit.
Bonn: , Addison-Wesley. isbn: 3-89319-878-4 (cit. on pp. 17, 18).

The Google Search Engine (2017). url: http://www.google.com (visited on
02/22/2017) (cit. on p. 12).

Toffler, A. (1980). The Third Wave. Morrow. isbn: 9780688035976. url: https:
//books.google.at/books?id=ViRmAAAAIAAJ (cit. on p. 20).

Tsuji, Keita et al. (2012). “Use of Library Loan Records for Book Recom-
mendation.” In: Proceedings of the 2012 IIAI International Conference on
Advanced Applied Informatics. IIAI-AAI ’12. Washington, DC, USA: IEEE
Computer Society, pp. 30–35. isbn: 978-0-7695-4826-5. doi: 10.1109/IIAI-
AAI.2012.16. url: http://dx.doi.org/10.1109/IIAI- AAI.2012.16
(cit. on p. 34).

Verstrepen, Koen (2015). “Collaborative Filtering with Binary, Positive-only
Data.” PhD thesis. University of Antwerpen (cit. on p. 47).

Vicknair, Chad et al. (2010). “A Comparison of a Graph Database and a
Relational Database: A Data Provenance Perspective.” In: Proceedings of the
48th Annual Southeast Regional Conference. ACM SE ’10. Oxford, Mississippi:
ACM, 42:1–42:6. isbn: 978-1-4503-0064-3. doi: 10.1145/1900008.1900067.
url: http://doi.acm.org/10.1145/1900008.1900067 (cit. on p. 80).

Wang, Yuanyuan, Stephen Chi-Fai Chan, and Grace Ngai (2012). “Applicabil-
ity of Demographic Recommender System to Tourist Attractions: A Case
Study on Trip Advisor.” In: Proceedings of the The 2012 IEEE/WIC/ACM Inter-
national Joint Conferences on Web Intelligence and Intelligent Agent Technology
- Volume 03. WI-IAT ’12. Washington, DC, USA: IEEE Computer Society,
pp. 97–101. isbn: 978-0-7695-4880-7. doi: 10.1109/WI-IAT.2012.133. url:
http://dx.doi.org/10.1109/WI-IAT.2012.133 (cit. on p. 34).

Wells, Herbert George (1938). World Brain. isbn: 1568493827 (cit. on p. 7).
Wheeler, William Morton (1911). “The ant-colony as an organism.” In: Journal

of Morphology 22.2, pp. 307–325 (cit. on p. 7).

157

http://techterms.com/definition/algorithm
http://techterms.com/definition/algorithm
http://techterms.com/definition/hyperlink
http://techterms.com/definition/hyperlink
https://techterms.com/definition/web20
https://techterms.com/definition/web20
http://www.google.com
https://books.google.at/books?id=ViRmAAAAIAAJ
https://books.google.at/books?id=ViRmAAAAIAAJ
http://dx.doi.org/10.1109/IIAI-AAI.2012.16
http://dx.doi.org/10.1109/IIAI-AAI.2012.16
http://dx.doi.org/10.1109/IIAI-AAI.2012.16
http://dx.doi.org/10.1145/1900008.1900067
http://doi.acm.org/10.1145/1900008.1900067
http://dx.doi.org/10.1109/WI-IAT.2012.133
http://dx.doi.org/10.1109/WI-IAT.2012.133

Bibliography

Wit, Joost de (2008). Evaluating recommender systems : an evaluation framework to
predict user satisfaction for recommender systems in an electronic programme
guide context. url: http://essay.utwente.nl/59711/ (cit. on pp. 53, 56).

Yao, Guanwen and Lifeng Cai (2015). “User-Based and Item-Based Collabora-
tive Filtering Recommendation Algorithms Design.” In: (cit. on pp. 37, 38,
40).

Yin, Hongzhi et al. (2012). “Challenging the Long Tail Recommendation.”
In: Proc. VLDB Endow. 5.9, pp. 896–907. issn: 2150-8097. doi: 10.14778/
2311906.2311916. url: http://dx.doi.org/10.14778/2311906.2311916
(cit. on p. 28).

Yu, Kai et al. (2004). “Probabilistic Memory-Based Collaborative Filtering.” In:
IEEE Trans. on Knowl. and Data Eng. 16.1, pp. 56–69. issn: 1041-4347. doi:
10.1109/TKDE.2004.1264822. url: http://dx.doi.org/10.1109/TKDE.
2004.1264822 (cit. on p. 49).

Zhao, Zhi-Dan and Ming-sheng Shang (2010). “User-Based Collaborative-
Filtering Recommendation Algorithms on Hadoop.” In: Proceedings of the
2010 Third International Conference on Knowledge Discovery and Data Mining.
WKDD ’10. Washington, DC, USA: IEEE Computer Society, pp. 478–
481. isbn: 978-0-7695-3923-2. doi: 10.1109/WKDD.2010.54. url: http:
//dx.doi.org/10.1109/WKDD.2010.54 (cit. on pp. 38, 40).

158

http://essay.utwente.nl/59711/
http://dx.doi.org/10.14778/2311906.2311916
http://dx.doi.org/10.14778/2311906.2311916
http://dx.doi.org/10.14778/2311906.2311916
http://dx.doi.org/10.1109/TKDE.2004.1264822
http://dx.doi.org/10.1109/TKDE.2004.1264822
http://dx.doi.org/10.1109/TKDE.2004.1264822
http://dx.doi.org/10.1109/WKDD.2010.54
http://dx.doi.org/10.1109/WKDD.2010.54
http://dx.doi.org/10.1109/WKDD.2010.54

