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Abstract

A sensorimotor rhythm (SMR) controlled brain-computer interface (BCI) is a communica-
tion system that allows severely impaired users to control interactions with their environment
through motor imagery (MI), e.g. imagination of hand or feet movement. In co-adaptive BCIs,
a closed-loop learning process for control is established: users learn from the feedback of the
system while the system recurrently adapts to the user’s specific brain signals. Present-day MI
based BCIs usually guide the user’s interaction with the system in a laboratory environment.
In real-life BCI applications, however, the system cannot know the user’s intent beforehand
and therefore no true labels of the intended action are available for classification. The aim of
this work was to find options for implementing semi-supervised learning, learning with both
true-labeled and unlabeled data, in an adaptive BCI system. The hypothesis that such a semi-
supervised learning system works as good as a standard supervised BCI should be verified.
In first offline simulations, filterbank CSP filters and both an sLDA and a Random Forest clas-
sifier were employed in an adaptive two-class BCI scenario updating itself every time five new
trials per class were available. Seven different approaches to create a training data pool for semi-
supervised learning were tested. Only trials that exhibit a high classification certainty should
be included for the retraining of the classifier.
The most suitable method was thereafter selected and implemented in an online two-class BCI
system, using fbCSP to maximize class discriminability, a statistical outlier rejection to exclude
artefact-contaminated trials and an sLDA for classification. A separate optimizer instance re-
currently calculated updates of the filters and classifiers.
In a supporting comparative study, two groups of ten subjects each were recorded in a three-
hour measurement including three breaks. One group was measured using a standard supervised
adaptive system while the other group was used to test the semi-supervised approach.
Results of the study show that there is no statistically significant difference in performance be-
tween the two groups. The hypothesis is thus accepted.
In future, the promising results of this work can be used to further establish semi-supervised
learning for BCI systems both in the lab and, more importantly, outside of it.
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Kurzfassung

Ein sensormotorisch-rhythmisch kontrolliertes Brain-Computer Interface (BCI) ist ein Kom-
munikationssystem, das es schwer beeinträchtigten Personen ermöglicht, Interaktionen mit ihrer
Umgebung durch Vorstellung von verschiedenen Bewegungen, z.B. Hand- oder Fußbewegungen,
zu kontrollieren. In co-adaptiven BCIs wird ein geschlossener Lernkreislauf geschaffen: Be-
nutzer lernen vom System durch das erhaltene Feedback, während das System sich wiederholt
an die spezifischen Gehirnsignale des Benutzers anpasst. Heutige SMR basierte BCIs leiten
den Benutzer normalerweise in einer Laborumgebung durch seine Interaktionen mit dem Sys-
tem. In realen BCI-Applikationen kennt das System jedoch die Absicht des Benutzers nicht
im Vorhinein, daher ist keine richtige Kennzeichnung der beabsichtigten Aktion für die Klas-
sifizierung verfügbar. Das Ziel dieser Arbeit war es, Möglichkeiten zur Implementierung von
semi-supervised learning, also Lernen mit sowohl gekennzeichneten als auch ungekennzeichneten
Daten, in einem adaptiven BCI-System zu finden. Die Hypothese, dass ein semi-supervised Lern-
system gleich gut wie ein gewöhnliches supervised BCI funktioniert, sollte verifiziert werden.
In ersten Offline-Simulationen wurden Filterbank CSP-Filter und sowohl ein sLDA- als auch ein
Random Forest-Klassifikationsalgorithmus in einem adaptiven zwei Klassen BCI-Szenario ver-
wendet, das immer wenn fünf neue Trials pro Klasse verfügbar waren upgedatet wurde. Sieben
verschiedene Ansätze, um einen Trainingsdatenpool für semi-supervised learning zu generieren,
wurden getestet. Nur Trials mit einer hohen Klassifikationssicherheit sollten für das Update
berücksichtigt werden.
Die am besten geeignete Methode wurde danach ausgewählt und in einem online zwei Klassen
BCI-System implementiert. Verwendet wurden fbCSP-Filter, um die Klassendiskriminabilität
zu maximieren, eine auf statistischen Parametern beruhende Artefakt-Erkennung, um Trials mit
Artefakten auszuschließen, sowie eine sLDA zur Klassifikation. Eine separate Optimierungsin-
stanz berechnete wiederholt Updates für die Filter und den Klassifizierer.
In einer begleitenden Vergleichsstudie wurden zwei Gruppen mit je zehn Teilnehmern in einem
dreistündigen Experiment mit drei Pausen aufgenommen. Eine Gruppe wurde mit einem super-
vised adaptiven Standardsystem gemessen, die andere testete den semi-supervised-Ansatz.
Die Ergebnisse zeigen, dass es keine statistisch signifikanten Unterschiede in der Leistung zwis-
chen den beiden Gruppen gibt. Die Hypothese ist damit akzeptiert.
In Zukunft können die vielversprechenden Resultate dieser Arbeit verwendet werden, um semi-
supervised learning weiter für BCI Systeme im Labor und, noch wichtiger, außerhalb des Labors
zu verankern.

Schlüsselwörter: BCI, adaptiv, semi-supervised learning, LDA, RF
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Online Adaptation of a Brain Computer Interface using semi-supervised learning techniques

1
Introduction

A brain-computer interface (BCI) is defined as a communication system that provides a user
with a new output channel independent from the usual nervous and muscular paths. Many
different diseases as well as trauma can impair a person’s neural pathways and motor functions
and a BCI can be a means to restore these functions. It allows users to interact with their
surroundings only by thought or by attention to certain stimuli through the use of brain signals
[1]. The beginnings of BCI research go as far back as 1973 [2], and since then, a large number
of different methods and approaches to measure and classify brain function has evolved.

There are generally two different ways of measuring brain activity - invasive and noninvasive
approaches. In the invasive approach, patients are subjected to brain surgery and electrodes
are placed directly on the cortex. Different methods such as recording the electrocorticogram
(ECoG) on the cortex [3] or placing electrode arrays within the cortex [4] have been researched.
A variety of possibilities for obtaining brain signals noninvasively is available of which the elec-
troencephalogram (EEG) is the most wide-spread for BCIs.
The EEG records cortical potentials of the brain by placing electrodes on the scalp. Neurons
in the cortex of the human brain generate action potentials that in turn result in postsynaptic
potentials (PSP). The potential differences of the PSP of large groups of neurons are measured
in the EEG, the resulting signals ranging in the microvolt scale [5]. Among these potentials,
rhythmic oscillations can be found in different frequency bands [6]. There are several advantages
of using the EEG for BCIs: Recording the EEG is noninvasive, which means that no dangerous
and costly surgery is necessary. Electrodes are placed on the scalp and the system is ready in a
short timespan. In addition, the EEG provides a good temporal resolution in the range of mil-
liseconds, allowing for fast reaction of the system. Moreover, it is an comparatively inexpensive
method.
However, the major disadvantage of the EEG is the bad spatial resolution it exhibits, because
one electrode records the activity of millions of neurons. Furthermore, the skull and tissue be-
tween the cortex and the electrodes attenuate the signals considerably, resulting in a poor signal
to noise ratio [7].

To be able to control a BCI with EEG signals, voluntary changes and modulation of the
recorded potentials must be possible. After an internal or external stimulus, frequency specific
changes of the brain activity occur. This leads to a power decrease or increase in distinct fre-
quency bands of the EEG, such as the µ (8-13 Hz) or the β band (13-30 Hz). A relative power
decrease within a specific frequency band of the signal stems from a desynchronisation of the
activity of underlying neural tissue during e.g. a movement or preparation for a movement.
Desynchronisation is therefore associated with action. Similarly, a power increase happens due
to a synchronisation of neural activity after the movement and is associated with rest. These phe-
nomena are called event-related desynchronisation/synchronisation (ERD/ERS) [8]. Depending
on the nature of the activity, different areas of the brain are stimulated. EEG patterns of senso-
rimotor areas are connected, amongst others, to movement and can be used as control signals in
BCIs. Interestingly, these ERD/ERS patterns appear not only during actual movement, but also
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1 Introduction

when the movement is only imagined [9]. Such motor imageries (MIs) cause ERD/ERS activity
in different areas of the sensorimotor cortex, depending on the type of imagined movement, e.g.
right or left hand or foot movement (see Figure1.1) [10].

motor cortexsomatosensory cortex

Figure 1.1: Areas of the somatosensory (a) and motor (b) cortex with respect to their represented body parts,
modified from [11].

ERD/ERS brain patterns are time-locked to an event. They can be quantified in an estab-
lished procedure starting with bandpass filtering in the respective frequency range and subse-
quent squaring and averaging of samples to retrieve the signal power. Afterwards, the averaged
reference signal power before the event is subtracted from the result and divided to obtain the
relative changes in brain activity [8] [12].

A standard BCI system consists of several components, as shown in Figure 1.2. Ideally, the
BCI system is a closed-loop system, which provides fast feedback to the user’s input.
The first step is signal acquisition which involves measuring the subject’s brain activity invasively
or noninvasively. The recorded signal can be classified as evoked by some external stimuli or
spontaneous. In a standard EEG-based BCI, the input is recorded by electrodes on the subject’s
scalp before being amplified and digitised using appropriate hardware. After signal acquisition,
the recorded activity is processed in several signal processing steps. The preprocessing block
consists of various techniques applied to ameliorate the subsequent feature extraction and classi-
fication process. Amplification, filtering and noise and artefact removal procedures are employed
to optimally prepare the signal for further use. The feature extraction block aims to retrieve
features that best describe the properties of the brain signals and encode the user’s command.
This is important to further simplify the process of classification. The goal is to maximize the
difference between the separate task-related patterns, e.g. motor imageries. Here, a common
approach is to use bandpower features in the frequency ranges of interest, e.g. µ and β bands.
Numerous other techniques are, however, available. In the next step, a classifier assigns a class
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1 Introduction

(e.g. a certain motor imagery task) to the previously computed features of brain activity to
distinguish between the different MI tasks. Training the classifier with individual training data
of the user is an important step in order to achieve a good classification performance. Various
classification algorithms with different properties have been adapted for BCIs, such as Linear
Discriminant Analysis (LDA) [13] or, more recently, Random Forests (RF) [14]. The classifier’s
output is transformed into a control signal and consequently operates the application interface.
To close the loop of the BCI, feedback is generated by the application interface and observed by
the user [1] [7] [12] [15] [16].

Signal Acqusition

Preprocessing Feature Extraction Classification

Application Interface

Application
Feedback

Signal Processing

Figure 1.2: Standard model of a BCI system.

Current BCI systems generally use this framework (see Figure 1.2), although every system
has its own modifications and adaptations to serve a certain purpose. Often the system needs a
relatively long training period during which the user receives no feedback about his input. This
can have a considerable negative effect on the user’s motivation and concentration. Furthermore,
the EEG signal has been shown to be non-stationary [17, 18]. There are changes in the brain
patterns both between the calibration and feedback phases in a standard BCI experiment as
well as throughout the experiment due to the user’s motivation and fatigue. The BCI system’s
ability to adapt to these modifications is important for the user’s performance [17].
First work in researching reliable co-adaptive BCIs has been done by Vidaurre et al. ([19] and
[20]). In their experiment, they provided feedback for the user throughout the whole session,
starting with a standard classifier trained on data of a large number of subjects, and subse-
quently adapting the system to the specific user.
Faller et al. [21] later implemented a different adaptive approach for training the feature extrac-
tion and classification blocks of an MI-based BCI. The goal was to reduce the training period
without feedback significantly. The system consists of a standard BCI system with an LDA
classifier and an “Optimizer Instance”. The optimizer recurrently receives recorded EEG data
from the system and uses this data to retrain the system’s classifier. Instead of using a classifier
trained on many subjects’ data for first feedback, a small initial amount of trials from the specific
user were used for first training the system. The updated classifier is then applied on subsequent
trials, before the next update takes place. Thus, the subject’s training period without feedback
is shortened to only a few minutes. Results show a mean peak accuracy of over 75 % for 12
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users.
Schwarz et al. [22] introduced a co-adaptive BCI system, based on the same ideas as Faller et
al [21], but employing a Filterbank Common Spatial Pattern (CSP) for feature extraction and
a Random Forest classifier. Again, recorded training data was sent to the optimizer to retrain
classification and adapt the system to the current input of the user. Therefore, feedback could
be provided to the subject within minutes. A supporting study with 13 participants yielded an
overall peak accuracy of 88.6 %, outperforming the results of Faller et al.[21] significantly.

Semi-supervised learning is a special kind of machine learning algorithm for cases where the
amount of data with true class labels is small. It is a combination of supervised learning, which
is currently in use for standard BCI systems, and unsupervised learning. Data is present in two
different sets. One set consists of observations whose true class labels are known while the other
set’s observations are unlabeled. In a self-training algorithm, the classifier is first trained only
on the labeled data set and then used to label the first part of the unlabeled data. The classifier
is thereafter recurrently retrained on both the labeled and unlabeled data sets, using its own
predictions as labels for the latter [23] [24].
Several approaches to employ semi-supervised learning in BCI systems have been proposed, e.g.
using semi-supervised learning with a Support Vector Machine classifier in a BCI speller system
[25], an adaptive MI-based BCI with a semi-supervised Naive Bayesian Parzen Window classifier
[26] or a Spectral Regression Kernel Discriminant Analysis classifier [27].

1.1 Motivation and Aim

Present-day standard BCI systems are usually tested in a laboratory environment and based on
supervised learning algorithms. In a standard paradigm, the user is guided through the session,
performing specific tasks at specific times. System calibration and classification is performed
using the true class labels of the subject’s input that are known due to the nature of the exper-
iment. On the contrary, the system cannot know the user’s intent beforehand in a real-world
application of a BCI and therefore, no true labels would be available for the supervised learning
of the classifier.
The idea of this work was to combine a state-of-the-art adaptive BCI system with the concept
of semi-supervised learning. After a short initial supervised training period, only the output of
the classifier should be used as labels for the data in further retrainings of the system.
In a first step, seven different approaches based on two classifiers (LDA and RF) were proposed.
The aim of these approaches was to filter trials that exhibit a high certainty of correct classifica-
tion and should therefore be used for the system’s retrainings. These methods were tested offline
on data of Schwarz et al. [22] using an adaptive BCI scenario. After analysing and comparing
the results, the most promising approach was selected and implemented in an online adaptive
BCI system similar to Schwarz et al. [22]. It was evaluated in a comparative online study with
two groups of ten able-bodied participants each. One group was recorded using the standard
supervised system, the other one was used to test the semi-supervised approach.
The hypothesis is that the system employing a semi-supervised approach works as good as the
supervised adaptive BCI system.
Furthermore, the online experiment for both groups was designed to be comparatively long,
including three breaks of 20 minutes each. Apart from performance differences between the two
groups, we wanted to test possible fatigue among all subjects.
Chapter 2 of this thesis gives an overview of the concept design of this work as well as detailed
information about the applied technologies and the comparative study. In chapter 3, findings
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of the offline analysis as well as results of the online study are presented. Chapter 4 discusses
these results in various aspects and points out possible topics for further investigation. Section
5 concludes the thesis. In the Appendix, important parts of the computational framework and
ERD/ERS maps of all subjects are displayed.
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2
Methods

2.1 Concept Design

The goal of the first part of this thesis was to find a suitable method that filters trials with high
classification certainty. For this purpose, seven different methods for the creation of a data pool
with reliable classification predictions that could be used in semi-supervised learning of a BCI
system were contrived and subsequently investigated. An offline adaptive BCI scenario with two
classes was implemented for testing purposes. It includes a filterbank CSP (FBCSP) filter before
the extraction of logarithmic bandpower features and both a Linear Discriminant Analysis and
a Random Forest classifier to try out these different approaches. EEG data of Schwarz et al.
[22] was used for offline testing. This offline BCI scenario uses the same basic framework as the
later developed online system. Figure 2.1 shows this structure; in the case of the offline analysis
only the feedback part is naturally not implemented.
After a performance analysis of the offline results, the most suitable semi-supervised method to
work with was selected and implemented in an online system for the second part of this work.
The two-class online BCI system uses motor imagery of the right hand and both feet as control
signals, derived from multichannel EEG signals. Again, an FBCSP was employed to increase
the discriminability of the afterwards calculated logarithmic bandpower features. The features
are thereafter classified by a shrinkage LDA (sLDA) classifier. The classifier model is repeatedly
updated in a separate optimizer instance to adapt to the user’s input over time. For the update,
recorded data that passes the semi-supervised exclusion criterion is taken into account with its
predicted labels. Additionally, the classifier output is used for the calculation of feedback for
the user, to keep motivation and focus on a high level. A schematic overview of the online BCI
system is shown in Fig. 2.1.

multi-channel
EEG data

sLDA

Preprocessing

Classification

logarithmic
bandpower

Feature
Extraction

.

.

.

6 - 8 Hz

7 - 9 Hz

32 - 37 Hz

35 - 40 Hz

Bandpass filtering

.

.

.

CSP 1

CSP 2

CSP 14

CSP 15

fbCSP

Optimizer Instance 
for recurrent update

Feedback
for userClassifier

Figure 2.1: Schematic overview of the system’s structure for both offline analyses and online execution.
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In the supporting study for the proposed system, two separate groups of subjects were mea-
sured. For one group, the classifier update was calculated using all available data with their true
class labels (supervised learning), while the other group’s classifiers were updated with first a
baseline of data using true labels and apart from that only with data that passed the exclusion
criterion for semi-supervised learning. For this second part of the training data, the predictions
of the classifier output were used as class labels.

2.2 Preprocessing and Feature Extraction

2.2.1 Common Spatial Pattern

In order to improve the results of classification, preprocessing of the signal is performed in
all standard BCI systems. The raw EEG data suffers from a poor spatial resolution because
of volume conduction of the scalp. It is therefore imperative to prepare the signals before
classification in a way that the greatest possible class discrimination is achieved [28]. Features
which are most effective in preserving class separability should be chosen. This is done by
searching for the data subspace that best retains class separability in the lowest dimensional
space [29].
The idea to use the common spatial pattern method for filtering of EEG data was first introduced
by Ramoser et al. [28]. The goal is to maximize the signal variance under one condition and
simultaneously minimize it for the other one. Basically, multi-channel EEG data is linearly
transformed into a low-dimensional spatial subspace using a projection matrix. Each row of this
matrix consists of weights for the individual EEG channels. Thereby, the variance of two-class
signal matrices can be maximized. Both covariance matrices of the two classes are simultaneously
diagonalized [30].
In a more detailed description, XH and XF can be seen as the matrices of EEG data for two
different classes (hand and foot motor imagery). Each matrix has the dimensions N×T , where N
is the number of channels and T is the number of samples per channel. Then the two normalized
covariance matrices of the EEG data can be calculated as

RH =
XHX

T
H

trace(XHXT
H)

(2.1)

and

RF =
XFX

T
F

trace(XFXT
F )
. (2.2)

XT stands for the transpose of the data matrix X and trace() is the sum of the diagonal
elements of a matrix.
In a next step, these covariance matrices are averaged over all trials of their class to receive
the averaged covariance matrices RF and RH . By summing the two, they can be factorized as
follows:

R = RF +RH = U0ΣU
T
0 , (2.3)

where U0 is the eigenvector matrix and Σ is the diagonal matrix of eigenvalues. A whitening
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transformation matrix

P = Σ−
1
2UT

0 (2.4)

equalizes the variances in the space extended by UT
0 . With this, the average covariance

matrices can be transformed to

SH = PRHP
T and SF = PRFP

T . (2.5)

The matrices SH and SF now have shared eigenvectors and the sum of their eigenvalues is
always one, as shown in 2.6.

SH = UΣHU
T , SF = UΣFU

T , ΣH + ΣF = 1. (2.6)

It now becomes apparent that the eigenvectors with the largest eigenvalues for SF have the
smallest eigenvalues for SH and vice versa. This property makes the eigenvectors U useful for
maximizing discriminability of two distributions. When projecting the transformed EEG data
onto the first and last eigenvectors of U, i.e. the largest eigenvalues for each class, optimal
feature vectors for the discrimination of two EEG classes can be obtained. This projection
matrix is given by

W = UTP. (2.7)

Using W, the EEG data can be decomposed into uncorrelated components:

Z = WX. (2.8)

By determining the inverse matrix of W, W−1, the original EEG data X can be reconstructed
from Z, which is a matrix of common and specific EEG source elements for the two different
tasks. The columns of W−1 are the common spatial patterns and can be considered as EEG
source distribution vectors. The first and last columns are most important since they explain
the largest variance of one and the smallest variance of the other class [28] [30] [31].

2.2.2 Filterbank CSP

The performance of the common spatial pattern method greatly depends on the frequency range
of the selected EEG data. Selecting an inappropriate scope of frequencies for the calculation of
CSP features leads to low resulting accuracies of the system. Often a very broad or manually
chosen, subject-specific frequency band is used to ensure functionality of the CSP method. Sev-
eral algorithms are available for the choice of specific frequency ranges, such as Common Sparse
Spectral Spatial Patterns (CSSSP) [32], Common Spatio-Spectral Pattern (CSSP) [33], Sub-
band Common Spatial Pattern (SBCSP) [34] or Filterbank Common Spatial Pattern (FBCSP)
[35].
In this work, the filterbank CSP approach was applied. First, the EEG signal is bandpass fil-
tered into certain frequency bands in the frequency ranges of interest using IIR filters. Next,
each of these bands is used to calculate optimized signal projections with the common spatial
pattern algorithm [35].
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In this work, a filterbank of 15 bandpasses was used to filter EEG data in the areas most inter-
esting for motor imagery - especially µ-bands. In Table 2.1, the upper and lower cutoff frequency
for each of the 15 filters can be seen. The butterworth IIR bandpass filters were of fourth order.

Table 2.1: Cutoff frequencies for the 15 filterbank bandpasses.

bandpass 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lower cut-off [Hz] 6 7 8 9 10 11 12 14 17 20 23 26 29 32 35

higher cut-off [Hz] 8 9 10 11 12 13 14 19 22 25 28 31 34 37 40

Each bandpass filtered signal was used to create patterns with the CSP algorithm. Of these,
only the six most discriminative common spatial patterns, in accordance with Schwarz et al.
[22], were taken, which corresponded to the first and last three columns of the matrix W−1,
thus resulting in a total number of 15 filtered signals × 6 columns = 90 features for further
classification.

2.2.3 Logarithmic Bandpower Features

In the last step before classification, features have to be extracted from the CSP-filtered signals.
Changes in signal power resulting from variations in signal amplitude and frequency, which for
their part stem from brain activation due to the motor imagery task, are commonly used. To
calculate signal power, the recorded data samples are squared and a moving average filter over
one second is applied. In a final step, the calculated band power is logarithmized and the re-
sulting features fed into the classifier.

2.3 Classification and Classifier Updates

For the actual classification of the extracted features, two different methods are used in the
offline analyses of this work. These classification algorithms are the Linear Discriminant Anal-
ysis and the Random Forest. For the experimental part in the online system, only the LDA
classification is operated.

2.3.1 Accumulated Training Data vs. Sliding Window Algorithm

In the offline adaptive BCI scenario for testing the semi-supervised approaches, training data
for the classifier update is gathered in two different ways. In the first one, all available data that
has accumulated up to the time of an update is taken as possible training data for the classifier
that has to be filtered by the semi-supervised exclusion criterion. Consequently, the amount of
training data increases over time. For the second option, a sliding window algorithm is imple-
mented. Only a certain constant amount of the available data is considered for the classifier
update by sliding a window over all available trials, adding the newly accumulated ones while
at the same time discarding the oldest ones.
In the online system, all available data is taken into account for updating the classifier (accu-
mulative algorithm).
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2.3.2 (shrinkage) LDA

Linear Discriminant Analysis is a method of linear classification, which means that the decision
boundary between the regions of different classes is a linear function. In the two class case, it is
defined by a one-dimensional hyperplane.
A discriminant function is used to directly assign every input to a class. The simplest linear
discriminant function is

y(x) = wTx + w0, (2.9)

where w is the so-called weight vector and w0 is a bias.
In the case that the discriminant function y(x) ≥ 0, the input sample is assigned to class 1,
otherwise to class 2. The decision boundary is located at y(x) = 0.
The vector w is orthogonal to every vector within the decision surface, and determines the
orientation of the surface. The normal distance from the origin to the decision surface is

wTx

||w||
=

w0

||w||
. (2.10)

It is evident that the bias determines the location of the decision surface.

r =
y(x)

||w||
. (2.11)

gives a signed measure of the distance r from the point x to the decision surface.

In a two class problem, the input vector is projected down to one dimension with

y = wTx. (2.12)

Because of the considerable loss of information occurring with the down-projection, the data
of the two classes is now likely to overlap. It is therefore necessary to adjust the components of
the weight vector to select a projection that maximizes class separation.
This process starts with the calculation of the mean vectors of the two classes using

m1 =
1

N

∑
n∈C1

xn and m2 =
1

N

∑
n∈C2

xn. (2.13)

N1 is the number of points of class C1, N2 the number of point of class C2.
The easiest method of class separation is the separation of these projected means, so the weight
vector w is chosen in a way that maximizes

m2 −m1 = wT (m2 −m1). (2.14)

mk = wTmk (2.15)
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is the mean of the projected data of each class Ck.
Additionally, w has to be constrained to have unit length so that this measure will not get very
large.

However, there is still the problem of overlapping because of strongly non-diagonal covariances
of the class distributions. Therefore, a function that maximizes the between-class variance while
at the same time minimizing the within-class variance has to be found. The within-class variance
is calculated as

s2k =
∑
n∈Ck

(yn −mk)2, (2.16)

where yn = wTxn, for each class.
The total within-class variance for the whole data set is then

s21 + s22. (2.17)

The ratio of between-class variance and within-class variance is defined as the Fisher criterion:

J(w) =
(m2 −m1)

(s21 − s22)
. (2.18)

It can also be written in a form to highlight the dependence on w as

J(w) =
wTSBw

wTSWw
, (2.19)

where SB is the between-class covariance matrix, given by

SB = (m2 −m1)(m2 −m1)
T , (2.20)

and SW is the within-class covariance matrix, given by

SW =
∑
n∈C1

(xn −m1)(xn −m1)
T +

∑
n∈C2

(xn −m2)(xn −m2)
T . (2.21)

Through differentiation with respect to w it can be shown that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (2.22)

Here, scalar factors can be dropped, since only the direction of w is important. Consequently,

w ∝ S−1W (m2 −m1). (2.23)

If the within-class covariance matrix is isotropic, w is proportional to the difference of the
means.
In Fisher’s linear discriminant, the projected data (projected onto one dimension) is used to find

– 18 –



2 Methods

a discriminant function, constructing a threshold y0 [13] [24] [36].
Linear Discriminant Analysis is the optimal classification method for Gaussian distributions
with the same covariance matrix for all classes. However, this is only true if following three as-
sumptions are fulfilled: 1) The features of each class are Gaussian distributed. This is satisfied
for logarithmic bandpower features. 2) The Gaussian distributions of all classes have the same
covariance matrix, which means that the data is linearly separable. Even when this criterion is
not met, the LDA is still quite robust. 3) The true class distributions are known. Obviously,
the third assumption is never fulfilled in real life and leads to particularly great errors if the
amount of training data is small compared to the dimensionality of the features.
As described above, a classification function assigns a class label to a given input based on y(x).
A linear classifier trained on spatial features can be seen as a spatial filter. A spatial filter is used
to determine a source from a signal. Spatial filters depend not only on the scalp distributions
of the source, but also on the distributions of the other sources and, additionally, noise.
In this sense, a linear classifier can be interpreted as a backward model to recover a signal from
sources. The result is that every EEG channel is weighted by a weight vector and summed up
[13] [24] [37].

The empirical covariance is normally used to estimate the covariance matrix in the calculation
of weights for the LDA, due to its good and unbiased properties. However, in cases of high data
dimensionality and few data points, these estimates can get too imprecise. Large eigenvalues are
estimated too large and small ones too small, which leads to a systematic error and a decline of
classification performance. Therefore, a form of regularisation called shrinkage can be applied.
A tuning parameter γ is introduced to counteract the estimation error, so that the covariance
matrix is defined as

S̃ = (1− γ)S + γµI, (2.24)

where µ is the average eigenvalue trace.
Since S is positive semidefinite, an eigenvalue decomposition can be carried out:

S = VDVT . (2.25)

Applying this formula to the former calculation of S̃, the result is

S̃ = (1− γ)VDVT + γµI = V((1− γ)D + γµI)VT . (2.26)

S and S̃ have the same eigenvectors (the columns of V). It is apparent that large eigenvalues
are shrunk and small ones elongated depending on γ, so they fit better to the average. If γ is
zero, the formula yields the unregularised LDA, whereas with γ = 1, the covariance matrix is
spherical. For features in BCI studies, this corresponds to controlling the weight vector between
the two extremes of a spatial filter with the spatial structure of the noise and a spatial pattern.
In case the covariance of the noise is known, the unregularised version brings the best result.
The optimal value for the parameter γ can be calculated analytically [37].
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2.3.3 Random Forest

A random forest classifier is a classification method introduced by Leo Breiman [14]. It is defined
as a classifier consisting of a collection of tree-structured classifiers {h(x,Θk)}, where the {Θk}
are independent identically distributed random vectors and each tree gives a unit vote for the
most popular class at input x [14].
Random forests are based on decision trees and a randomisation technique called bagging. They
are a combination of tree predictors, in a way that each tree is only dependant on the values
of a random vector sampled independently and with the same distribution for all trees in the
forest.
With the use of decision trees, the feature space can be divided into a set of regions and a
simple model can be fitted into each of those regions. The splitting of regions continues until
some stop condition is fulfilled. At the top of the tree, there is the full dataset. Features that
fulfill the condition of the first junction are assigned to the left branch, the others to the right
one. For every branch, additional conditions can be introduced and the features will be split
further. Different criteria such as the misclassification error or the Gini index can be used to
determine node impurity and hence decide if a region should be split further or not. In the end,
every terminal leaf represents one region (in our case this means a set of training data of the
same class).
The proportion of observations of a class k in a node m, which represents a region Rm with Nm

observations, is given by

p̂ =
1

NM

∑
xi∈Rm

I(yi = k). (2.27)

The observations in node m are classified to the majority class of this node.
Bagging, which stands for bootstrap aggregation, is a way to reduce the variance of an esti-
mated prediction function. It works particularly well for procedures with high variance and low
bias. The idea is to average over many models with noise that are unbiased and such decrease
variance. Random forests employ a modification of bagging by constructing a large ensemble of
decorrelated trees and then averaging them.
Decision trees are known to be relatively unbiased if they are grown deep enough, but contain a
lot of noise and can thus be improved through averaging. Since every decision tree in bagging is
identically distributed, the average expectation of a collection of trees is the same as the expec-
tation of each one of the trees. This means that also the bias of the tree ensemble is the same
as the bias of the individual trees. A performance improvement of the classifier can therefore
only be realised through decreasing of variance. The variance of the average of B identically
distributed variables is given by

ρσ2 +
1− ρ
B

σ2, (2.28)

where ρ is the positive pairwise correlation between the variables and σ2 is the variance of
each variable. As can be seen in 2.28, increasing B decreases the second term of the equation.
The first term remains, resulting in the size of the pairwise correlation of the bagged trees being
the limiting factor for the reduction of variance through averaging.
Decision trees are already typically quite different from each other even when they are con-
structed with similar training sets. A small variability in the data set results in a great differ-
ence in the prediction models. However, the correlation between trees can be further decreased.
The concept in random forests is to reduce the correlation between the trees to improve the
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variance reduction of bagging without increasing variance too much. This can be accomplished
by random selection of the input variables in the tree growing process. Before each split during
the growth of the tree, m ≤ p of the input variables are randomly selected for splitting, where
m is typically

√
p. After a number of B such trees {T (x; Θb)}B1 , every tree gives a classification

prediction. The classification output is obtained through a majority vote of the individual tree
predictions in the random forest. Reducing m will also reduce the correlation between trees and
subsequently improve variance of the average according to 2.28.

The random forest algorithm can be outlined as following:

1. for every tree b = 1 to B:

(a) draw a bootstrap sample of size N from the training data. (bootstrapping)

(b) grow a random forest tree Tb to the bootstrapped data, by recursively carrying out
these steps for each terminal node of the tree until the minimum node size is reached:

i. select m variables at random from the p variables available.

ii. pick the best variable/split-point among the m.

iii. split the node into two daughter nodes.

2. output the collection of trees {Tb}B1 .

To make a classification prediction at a point x, let Cb(x) be the class prediction of the b-th
random forest tree. Then, CB

rf (x) = majority vote{Cb(x)}B1 [14] [24] [36] [38].
There are two parameters of random forests that have a great influence on their performance:
the number of trees that are to be constructed and the number of randomly chosen data di-
mensions in every node [14]. It is necessary to build a sufficient number of trees to reduce the
average variance, whereas a large number of trees also increases the computational effort of the
classification. For this trade-off, Steyrl et al. [38] have carried out extensive tests on BCI data
sets and concluded that a number of 1000 tree classifiers and

√
#number of features should be

used. These recommendations were followed in the offline data analysis of this work.

2.4 Artefact Removal - Outlier Rejection

Artefacts are unwanted potentials in EEG data that can modify the neurological control signal
of a BCI. It is even possible that they act as the unwanted BCI control signal themselves in-
stead of the desired brain pattern. Artefacts can be separated into two groups: physiological
and nonphysiological artefacts. Nonphysiological artefacts stem from sources in the hardware or
surroundings, e.g. 50 Hz power line noise, impedance changes of the electrodes or quantification
and amplifier noise. They are normally well controlled by technical measures such as filters,
shielding, etc. Physiological artefacts arise from various sources within the subject itself and
include heart activity (electrocardiogram - ECG), respiration, eye movement (electrooculogram
- EOG) or body movement (electromyogram - EMG).
EOG artefacts involve blinking or eye rolling and appear as high-amplitude sequences in the
EEG. EMG artefacts, on the other hand, usually generate bigger disturbances in a large fre-
quency range. They can be caused by e.g. swallowing, teeth grinding or head movements.
Although users are usually instructed not to blink or swallow during trials, it is not possible
to completely exclude the occurrence of physiological artefacts. To ensure proper function of
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a BCI and prevent artefacts from influencing the classifier, it is necessary to recognize and ex-
clude them [39]. Therefore, a statistical outlier rejection is applied both in offline simulations
and online sessions of this work, based on Delorme et al. [40], which was also used by Schwarz
et al. [22] and Faller et al. [21].
Before using recorded trials in retrainings of the classifier, they were automatically checked for
being outliers. Data was evaluated with four different approaches to detect artefacts:

1. Rejection by amplitude: Trial data is inspected and rejected depending on standard thresh-
olding. If any sample in a trial exceeds a certain threshold value, the whole trial is dis-
missed. Especially EOG artefacts such as blinking can easily be detected with this method.
The threshold was set to ±100 µV.

2. Rejection by variance: The variance of every channel was calculated and trials were rejected
when more than five times the standard variance was exceeded.

3. Rejection by probability: Artefact-afflicted trials often have an unusual course over time
and are therefore unexpected. By determining the joint-probability of a trial’s values and
comparing it to the probability distribution of all trials.

4. Rejection by kurtosis: This is a second method to find unusual data distributions. The
kurtosis of all values in a trial is calculated and evaluated. Highly positive or negative
results for the kurtosis measure indicate physiological or nonphysiological artefacts, re-
spectively. A threshold is introduced to reject trials with extreme kurtosis values [41].

2.5 Semi-Supervised Learning Algorithms

Semi-supervised machine learning is a mixture of supervised and unsupervised learning. A
small part of the data used for training the classifier is labeled with their known class labels
(supervised), whereas the other, larger, part of the data does not possess true class labels (unsu-
pervised). For this part of the samples, the classifier’s own prediction is taken as their label. In
a first classifier training, only data with true labels is used. This classifier then predicts classes
for the following data. Both data sets are then taken into account for further trainings of the
classifier [23] [24].
The amount of initial trials that were used with their true class labels was set to 35 trials per
class (TPC) in the offline testing on data of Schwarz et al. [22], after results for simulations
with different amounts of starting trials were evaluated. For convenient application in the online
study, 40 TPC were included with their true class labels in classifier training before starting the
semi-supervised learning update. Moreover, results of Vidaurre and Blankertz [42] show that
around 40 TPC is sufficient for initial calibration.
To ensure high classification performance it is important that only trial data that exhibits
a highly reliable classification prediction is taken into account for retraining of the classifier.
Therefore, samples with a high uncertainty in the class prediction should be rejected. How-
ever, it cannot be completely ruled out that trials with a wrong class label are still included in
retraining. The resulting pool of reliable trial data along with an initial amount of trial data
with known true labels can then be used to recurrently adapt the classifier. In this work, five
methods employing an sLDA classifier and two for an Random Forest (RF) classifier to select
data with high certainty classification predictions were developed and tested.
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2.5.1 sLDA-based Methods

Boxplot Methods

For the first boxplot method, the class probabilities of the recorded trials are collected and their
mean values calculated. Then, the first and third quartile (the 25%- and 75%-boundaries) of
these means are determined. Similar to creating a boxplot graph, only trials whose mean class
probabilities are within the limits between the first and third quartile are taken into account for
further retraining. All other trials whose mean values lie outside these boundaries are rejected.
In the second boxplot approach, peak values of class probabilities of the trials are taken into
account. As in the first method, first and third quartiles of the peak values of all trials are
determined and trials sorted accordingly.
A schematic of both procedures is shown in Figure 2.2.

Figure 2.2: Boxplot methods to filter data.

With these techniques, it is intended to filter trials in a way that outliers on both ends, very
good as well as rather bad trials, could be rejected and average ones with most useful informa-
tion kept.

Cumulative Method

In the third technique, a cumulative vote is implemented. Predicted class labels for every sample
in the feedback period of the recorded trials are counted and summed up. The class label of
the majority of samples in a trial is then assigned to that trial. To sort out unwanted uncertain
trials, a threshold is introduced. Only trials whose difference in counts of the both class labels
is above this threshold are considered for further retrainings. All other trials are dismissed. For
the threshold, several different options were tried out. Finally, a difference between the two
class counts of 20% had to be reached for a trial not to be rejected. A schematic graph of this
method is shown in Figure 2.3.
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Figure 2.3: Concept of the cumulative method.

Mean and Peak Method

In another approach, the mean values of the class probabilities of the trial data are computed.
A threshold is introduced which has to be reached by a trial’s mean class probability to be
included in further classifier trainings.
Similar to this, in a fifth approach, peak values of the class probabilities are determined and
evaluated. Trials whose peaks pass a certain threshold are considered for retraining of the clas-
sifier.
Figure 2.4 shows an overview of these methods.

Figure 2.4: Mean and Peak Methods for data pool creation.

2.5.2 Random Forest-based Methods

Cumulative Method

Analogous to the cumulative method using an LDA classifier, also for the RF, a majority vote is
implemented. Trials whose decision tree counts of the two class labels reaches a certain difference
are deemed to be reliable and therefore added to the training data. For a schematic figure of
this method, see Fig. 2.3 above.
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Gini Method

This method, in contrast to the aforementioned, does not use the classifier’s predictions, but
instead the signal features for sorting. The features of the classifier are sorted by importance ac-
cording to the Gini index and, subsequently, only the best 90% are kept for further training data.

After evaluating the simulation results obtained with all the aforementioned approaches, the
boxplot peak method was selected for use in the supporting online study and subsequently
implemented in the online system.

2.6 System Setup

Based on the system models of Faller et al. [21] and Schwarz et al. [22], the proposed BCI system
is divided into two main parts. The online system framework works as standard BCI system
including preprocessing and classification of trials, as well as giving feedback to users based on
their actions. In addition, the framework sends all acquired trial data to the optimizer. The
separate optimizer is used to collect trial data and recurrently retrain the classifier at certain
times, including the newly accumulated data that has passed the outlier rejection. The updates
for both the CSP filters and the classifier model are sent back to the system.
These two main components are implemented in Simulink/Matlab each, and communicate via
TCP/UDP [43]. They can run on two different computers as well as on two different Matlab
instances on the same PC. Figure 2.5 shows the schematic structure of this extended system.

Feedback

Signal
Acquisition

Filterbank CSP logarithmic
bandpower

sLDA

BCI online system Optimizer

collect data

reject outliers

semi-supervised:
reject bad trials

train CSP
and sLDA

Figure 2.5: Schematic overview of the proposed online system including the separate optimizer instance.
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2.6.1 Software and Toolboxes

Following software and toolboxes were used for simulation with offline data and realization of
the online study:

1. Matlab 2013a (Mathworks Inc., Natick, USA) for implementing and running the complete
online system.

2. Matlab 2015b (Mathworks Inc., Natick, USA) for statistical analysis of the results.

3. Random Forest mex implementation for Matlab [44]

4. TCP/UDP/IP Toolbox 2.0.6 [43]

5. Fast Serialize [45]

6. TOBI SignalServer + Client [46]

7. Graz BCI libraries [47]

2.6.2 Online System and its Components

Both, the adaptive BCI system and the optimizer instance are implemented in Matlab, using
Graz BCI libraries. A more detailed overview of the system is shown in Figure 2.6. Figure 2.7
shows the Simulink model of the online system.

Signalserver

supplies the raw
EEG data

15 band-
passes

extract 90
bandpower

features
sLDA

provides time
course and event

codes

collects
- raw signal
- fb signal
- events
- true labels
- predicted
  labels
- class
  probabilities
- semi-flag

sends collected
data to Optimizer,
receives updates

calculates and
visualizes feedback

saves data in 
.gdf file

Paradigm
Generator

Filterbank CSP & BP Classifier

Feedback
Generator

Data storage

MUX-Collector

COM-Interface

Figure 2.6: Schematic overview of the online system as implemented in Simulink.

First, the Tobi Signalserver [46] feeds raw EEG data recorded from the 13 electrode channels
into the system. The signals are then processed in the 15 bandpass filters of the filterbank,
resulting in a total of 195 signals (13 for every bandpass), and afterwards passed on to the CSP
block, where every filterbank input is handled by its own specifically trained CSP filter. In the
end, 90 signals are extracted by taking the first and last three columns of every CSP-filtered
signal. 90 features are thereafter extracted through calculation of logarithmic bandpower. The
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sLDA classifier then assigns a class label to these inputs. Classification happens 16 times per
second.
The paradigm generator determines the time course of the experiment by creating events in a
specific order. Changes in the paradigm, e.g. length of one run or number of classes, can be
made in the paradigm .xml-file that contains all information for events over the course of one
trial (succession, time points, class labels, length) as well as one run. This block sends informa-
tion about true class labels to the feedback generator and event codes to the MUX section that
collects data for the optimizer.
Feedback is provided by the feedback generator which compares true class labels from the
paradigm generator with the predicted labels generated by the classifier. The result is visualised
as a red feedback bar on the user’s screen. The user receives feedback on his/her performance
as soon as the classifier is trained for the first time.
Data is saved to a .gdf-file for every run. This file consists of raw EEG data, outputs of the
classifier (predicted class label and class probabilities), true class labels and event codes provided
by the paradigm generator.
The link between the BCI system and the optimizer instance is an s-function for sending and
receiving trial data. Raw EEG data, signals of the filterbank, the classifier’s output (predicted
label and two class probabilities), event codes, true class labels and a flag indicating the learning
type (supervised or semi-supervised) are collected and sent to the optimizer via the s-function.
Moreover, the s-function receives updates for the classifier and the CSP filters from the opti-
mizer.
The BCI system and the optimizer communicate via TCP/IP. Figure 2.8 shows a diagram of
the workflow of the interface.

50

2

read data,
store update

trial start
event?

trial
finished?

add label &
semi flag

send trial
package

yes

yes

no

no

open
connection READY check

flag

Figure 2.8: Schematic of the workflow of the interface for communication between the BCI system and the
optimizer.

Different flags indicate different actions. After the interface first opens the connection to the
optimizer, it waits for further cues. If it receives ‘flag 50’, an update for the classifier and CSP
model is accepted, read and stored for use in the BCI system. Apart from that, the interface
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checks the incoming data stream for the trial start event which originates from the paradigm
generator. Upon finding this event, data is stored until the trial is finished. The length of every
trial is defined by the paradigm generator. After collecting EEG data from the start trigger
until the end of the fixed trial length, the trial’s class label and a flag to indicate supervised or
semi-supervised learning is added to the data. Afterwards, ‘flag 2’ and subsequently the whole
package are sent to the optimizer.
Since parts of the system work at different rates (e.g. 256 Hz EEG data stream, 16 Hz classifi-
cation), multiple rate transitions are built into crucial junctions of the model.

Optimizer

The separate optimizer communicates with the BCI system through a TCP/IP connection. The
optimizer is realized as a Matlab function. A detailed overview of the optimizer’s structure is
depicted in Figure 2.9.

After the optimizer is started for the first time in a session, it remains active and ready until
it is shut down again. In this readystate, incoming flags are checked and, depending on the
flag’s number, following actions are executed:
For ‘flag 0’, the connection to the BCI system is closed and the optimizer shut down, after data
in the optimizer’s workspace is saved. This trigger is usually sent after a user’s session has
finished.
In case of ‘flag 1’, the connection is closed and all the stored data saved from the workspace to
a separate file. This is the normal procedure after one run is finished, but the session still goes
on. In this manner, the optimizer instance is not shut down and newly recorded data of every
run is added to the stack of already accumulated data, making it possible to collect trials over
multiple runs without any losses.
Both for flags 0 and 1, all data from the optimizer’s workspace is saved in a separate file in case
the optimizer shuts down unexpectedly during a session. In such a case, the optimizer function
can be started again and the data file is loaded into the workspace. This means that the session
can be continued from the point of interruption without any data loss or need to repeat parts
of the recording.
During a run, trials are sent from the system to the optimizer. ‘Flag 2’ indicates an incoming
trial package and opens the connection between system and optimizer. Data is received and
added to the already stored trials, after being separated into EEG data, class label, predicted
label, class probabilities and the learning mode flag. The total amount of accumulated trials
per class is then checked and compared to the minimum number of trials per class necessary for
the next retraining. If enough trials are collected, the outlier rejection controls all data and dis-
misses trials that are afflicted with artefacts. The following step depends on the number of trials
that have already been gathered. For an initial period of 40 TPC, the next move is checking
the amount of trials left after the outlier rejection and subsequently deciding to re-train again
or not. If this initial amount of trials has already been recorded and the learning mode flag is
set to semi-supervised learning, the exclusion criterion for the training data pool (boxplot peak
method) is applied. Thereafter, the algorithm again examines the number of remaining trials.
Retraining of the CSP filter and the sLDA classifier is performed if enough data has accumulated
and passed the outlier rejection and exclusion criterion. For the CSP filter, features from the
feedback period (second 4.75 to second 7.75) of every trial are used. The sLDA is trained on
features at second 2.5 after presentation of the visual cue in the paradigm (following [22]).
The update for CSP and sLDA is then packaged using the Fast Serialize toolbox [45] and sent
to the system (‘flag 50’), which upon arrival immediately starts to apply it to newly incoming
EEG data. Furthermore, every new CSP and classifier model is separately saved in a .mat file
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Figure 2.9: Structure of the separate optimizer.

by the interface.
With reference to Faller et al. [21] and Schwarz et al. [22], the classifier is trained for the first
time after 10 TPC have passed the outlier rejection, providing the user with feedback after only
a few minutes of recording. Further retrainings of the classifier happen every time that 5 new
TPC pass the outlier rejection. After an initial phase of data recording (40 TPC), the system
can be switched into semi-supervised learning mode. From then on, all newly added trials are
filtered with the aforementioned boxplot peak method to decide if they should be added to the
training data or not. Following every retraining, the number of TPC necessary for the next
training is updated to be again checked before and after an outlier rejection and possible exclu-
sion criteria are performed.
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2.7 Paradigm and Experimental Setup

The online part of this work was tested on 20 healthy volunteers, dividing them in two groups
of ten subjects to make a comparison between the semi-supervised approach and the normal
supervised system possible.

2.7.1 Participants

Twenty healthy volunteers participated in the online study. They were assigned into two in-
dependent groups. The first group was trained with supervised learning while for the second
group, semi-supervised learning started after the initial training phase.
The supervised learning group comprised of 10 healthy subjects, 4 female and 6 male, between
ages 18 and 26 (median age 24). Three subjects (2 male, 1 female) of this group were non-naive
users.
For the semi-supervised learning group, 10 healthy subjects, 5 male and 5 female, from ages 20
to 35 (median age 24) were measured. Four subjects of this group, 2 male and 2 female, were
non-naive users.

2.7.2 Paradigm and Feedback

The standard Graz-BCI paradigm [9] with two classes was used for the experiment. Each trial
in the paradigm takes 8 seconds. A detailed overview of it is shown in Figure 2.10.

seconds0 2 3 4 8 10-11

cross break

beep cue feedback

motor imagery

Figure 2.10: Overview of the Graz BCI paradigm.

At second 0, the trial starts with the appearance of a white cross on the black screen, in
front of which the user is seated. At second 2, an auditory cue in the form of a beep is given
to get the subject’s attention and focus on the subsequent task. Then, at second 3, the visual
cue appears to indicate which motor imagery task should be performed. An arrow to the right
signals motor imagery of the right hand, whereas an arrow down means motor imagery of both
feet. The arrow disappears after 1.25 s. The motor imagery task should still be performed until,
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at second 8, the cross disappears as well.
For right hand motor imagery, users were instructed to imagine repeated opening and closing
of the whole hand, like they are squeezing a small ball. For motor imagery of both feet, users
should imagine repeated lifting and lowering of their toes and forefeet from the ground (repeated
plantar flexion/extension of their feet).
Feedback is shown starting from second 4.25 (when the cue arrow vanishes) in form of a red bar
that evolves along the direction of the previous cue arrow. The length of the bar depends on the
strength of the user’s performance, resulting from comparing true and predicted class labels of
the EEG data. Only positive feedback is shown: if the number of correct classifications during
the last second is more than half of the total amount of classifications in that period, a red bar
appears, its length depending on the ratio of correct classifications and total classifications. If
less than half the classifications are correct, the bar disappears. The calculation of feedback is
updated 16 times per second. The feedback bar is only presented after the classifier has been
trained for the first time. Figure 2.11 shows the user’s screen with fully positive feedback. In
case of a worsening performance, the red bar shortens accordingly.

Figure 2.11: Feedback for good performance of feet (left) and hand (right) motor imagery.

Between consecutive trials, there is a randomised break of 2 to 3 s. During trials, the user is
instructed not to blink or swallow as far as possible. These movements can be performed during
the breaks to avoid artefacts [9].

2.7.3 EEG Recording

All experiments were carried out in the laboratory environment of the Institute of Neural Engi-
neering at Graz University of Technology. Subjects were comfortably seated in a shielded dark
measurement box at about 80 cm distance from a computer screen. The paradigm was shown
on the screen and two speaker boxes were placed at its sides to present the auditory cues.
To record EEG data, a g.tec GAMMA electrode cap (g.tec, Graz, Austria) was mounted with
13 active g.tec Ladybird electrodes (g.tec, Graz, Austria) according to the international 10-20-
system [48]. Positions of the electrodes can be seen in Figure 2.12 and in Table 2.2. The ground
and reference electrodes were placed on AFz and the left ear lobe, respectively.

A g.tec GAMMA box and g.tec USBamp (g.tec, Graz, Austria) amplified the signal and con-
nected the electrodes with the computer. The USB-Amp allowed for filtering data with both a
notch filter (50 Hz) and a bandpass filter between 0.1 and 100 Hz.
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Table 2.2: Positions of the electrodes in the online experiment.

Electrode 1 2 3 4 5 6 7 8 9 10 11 12 13 GND Ref.

FC3 FCz FC4 C5 C3 C1 Cz C2 C4 C6 CP3 CPz CP4 AFz left ear lobe

Figure 2.12: International 10-10 electrode setup. Electrode positions in the online experiment are indicated
in red, including ground and reference electrode ([48], modified from [49]).

The sampling rate of EEG data was 256 Hz.
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2.7.4 Experimental Design and Session Course

The two groups of ten healthy volunteers each were measured in the online study. Subjects
were randomly assigned to one of the two groups. The first group was trained with supervised
learning while for the second group, semi-supervised learning started after the initial training
phase.

We extended the length of the measurement sessions by incorporating 20 minute breaks to
make inferences about the adaptation of system and user over a longer time span.
Every session started with preparation of the subject (e.g. mounting of the electrode cap and
starting of the system), which took approximately 10 to 15 minutes. Afterwards, the course of
the session and the paradigm was explained. Every user was instructed about the tasks which
should be performed. The instructions took about another 10 to 15 minutes.
After completing these preparations, the experiment was started. A schematic of one session
can be seen in Figure 2.13.

TPC

breakinitial training evaluation 1 break breakevaluation 2 evaluation 3

40 90 140 19010

start
feedback

Figure 2.13: Course of one session, including an initial training phase, three evaluation periods and three
breaks in between.

Figure 2.14 shows the whole experimental design including the split into two groups of sub-
jects: First there is the initial training phase, then the first break, followed by three consecutive
evaluation periods with two breaks in between.

training period

40 TPC

BREAK

BREAK

BREAK

BREAK

BREAK

evaluation period 1

evaluation period 1 evaluation period 2

evaluation period 2 evaluation period 3

evaluation period 3

50 TPC

50 TPC50 TPC

50 TPC

50 TPC

50 TPC
1 2 3 4

5 6 7 8 9

5 6 7 8 9

10 11 12 13 14

10 11 12 13 14

15 16 17 18 19

15 16 17 18 19

SEMI SUPERVISED

SUPERVISED

Figure 2.14: Overview of the experimental setup for two groups of subjects (supervised and semi-supervised).

Recording was started with an initial training phase of the system, consisting of 4 consecutive
runs with 10 TPC each. One run lasted about 4 minutes. After every run, the subject was
checked upon and it was made sure that users still felt comfortable. Feedback started after the
first run, after 10 TPC had passed the outlier rejection.
After this first phase, there was a break of 20 minutes in which the subject watched a nature
documentary on the screen in the measurement box. Subjects were allowed to sit back, relax and
drink while watching. The goal of these breaks was to distract subjects from the MI tasks and
change their mindset to something completely different, so that possible performance changes
afterwards could be examined. For further analysis, EEG data was also recorded during the
breaks.
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The first evaluation period started after the first break, dividing the subjects in two groups: for
one group, classification updates were continued with supervised learning, while for the other
one, the classifier’s updates were switched to semi-supervised learning. In the first evaluation
period, 5 consecutive runs á 10 TPC were recorded.
The second break also lasted 20 minutes. Subjects continued to watch the previously started
nature documentary and again, EEG data was recorded throughout.
For the second evaluation period, again 50 TPC were collected in 5 runs, before starting a third
break of 20 minutes. During this last break, one episode of the TV show “The Simpsons” was
watched by the users. In the last evaluation period, as before, 5 runs were recorded, resulting
in 50 TPC.
Altogether 190 TPC were recorded per subject. Every session took around three hours, includ-
ing preparation time.
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Online Adaptation of a Brain Computer Interface using semi-supervised learning techniques

3
Results

The results of this work are divided into two sections: One section for the offline simulations to
find the best semi-supervised learning data pool approach and one section for the online study
conducted thereafter.

3.1 Offline Analysis

Simulations for testing different approaches for a semi-supervised learning BCI system were per-
formed using EEG data of 18 subjects recorded in Schwarz et al [22].

3.1.1 Accumulative Training Data Algorithm

Table 3.1 shows the peak, mean and median accuracies over all subjects for all semi-supervised
methods as well as the supervised system using the accumulative algorithm for training data
selection. Mean and median accuracies for every subject were calculated from the feedback
period of second 4.5 to 7.5 of each trial. Additionally, semi-supervised learning was also tested
without any preceding exclusion criteria to examine if the application of exclusion methods is
even meaningful. Furthermore, the average number of retrainings for all approaches is shown.

Table 3.1: Results for offline simulations of all methods using accumulative data algorithm. Results showing
statistically significant differences to ground truth are indicated with a star.

method peak in % mean in % median in % retrainings

LDA boxplot mean 87.53 74.21 75.75* 4

LDA boxplot peak 89.61 75.55 77.81 3

LDA mean threshold 87.62 74.68* 76.36* 6

LDA peak threshold 86.18 74.42* 76.26* 7

LDA cumulative 90.41 77.00 79.03 2

LDA without exclusion 86.32 74.51* 76.43* 7

ground truth: supervised LDA 88.84 77.37 79.47 7

RF gini index 66.99* 57.10* 57.22* 7

RF cumulative 90.63 76.14 78.09 2

RF without exclusion 87.02* 75.90 77.86* 7

ground truth: supervised RF 91.30 78.42 80.21 7

Statistical significance of the results was tested with a Wilcoxon signed rank sum test at a
significance level of α = 0.05. Results that are statistically significantly different from the ground
truth (supervised LDA/RF) are marked with a star. Other results show no significant difference
from the supervised method.
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Mean accuracies over all subjects and trials were calculated for the offline results. Figure 3.1
shows accuracies for the different LDA-based methods over the trial length of 8 seconds. The
supervised ground truth is displayed in black. At second 3, the black vertical line indicates the
appearance of the visual cue and the start of the motor imagery.

Figure 3.1: Mean accuracies for all semi-supervised LDA-based methods and the supervised ground truth
(black) for accumulative training data algorithm.

Results for the RF-based methods are shown in Figure 3.2, where again the ground truth is
indicated in black and the black vertical line shows the onset of motor imagery.
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Figure 3.2: Comparison of mean accuracies of RF-based semi-supervised methods with ground truth (black)
for accumulative training data algorithm.

3.1.2 Sliding Window Training Data Algorithm

The results for offline simulations using a sliding window algorithm on the training data are
shown in Table 3.2. Again, peak, mean and median accuracy values over all subjects for all
methods are displayed along with average numbers of trainings. Mean and median accuracy
were calculated from second 4.5 to 7.5 of the trial (feedback period).

Table 3.2: Offline simulation results for sliding window algorithm. Results with a star indicate statistically
significant difference to ground truth.

method peak in % mean in % median in % retrainings

LDA boxplot mean 87.45 74.09* 75.53 4

LDA boxplot peak 89.96 75.32 77.21 3

LDA mean threshold 88.09 75.08* 76.68* 6

LDA peak threshold 87.31 74.63* 76.11* 6

LDA cumulative 90.23 76.54 78.75 2

LDA without exclusion 87.36 74.74* 76.11* 7

ground truth: supervised LDA 89.89 77.80 79.34 7

RF gini index 63.72* 54.92* 55.06* 7

RF cumulative 91.09 76.94 79.02 1

RF without exclusion 85.86* 75.07* 76.49 7

ground truth: supervised RF 90.79 78.69 80.45 7

The results were tested statistically using a Wilcoxon signed rank sum test at a significance
level of α = 0.05. All methods that showed significant differences in peak, mean or median
accuracies compared to the ground truth supervised LDA or RF are indicated by a star.

Mean accuracies over all subjects and trials were calculated for the sliding window algorithm.
Results for the LDA-based methods for the sliding window algorithm are shown in Figure 3.3,
where the supervised LDA is displayed as the black curve and the black vertical line marks the
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appearance of the visual cue in the trial.

Figure 3.3: LDA-based semi-supervised methods and ground truth for the sliding window algorithm.

Figure 3.4 shows the offline mean accuracy results for the RF-based approaches, again high-
lighting the supervised classification method in black and the onset of the visual cue with the
black vertical line.

Figure 3.4: Semi-supervised RF-based methods and ground truth for the sliding window algorithm.

Based on the findings of the offline simulation analysis, the boxplot peak LDA-based semi-
supervised learning method was implemented for testing in the online system.
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3.2 Online Study

Results of the online experiment include subject accuracies (mean, peak, median), statistical
tests of accuracies to determine significant differences between groups and stages, numbers of
classifier retrainings, power spectral density plots and ERD/S maps. Detailed accuracy results
for all individual subjects of both groups are shown as well as overall results in the first part of
this section.

3.2.1 Accuracies and Statistical Testing

To get an understanding of the comparative quality of subjects’ performances, the accuracy for
the system working at chance level was calculated. For subjects to perform better than chance
level in 180 recorded trials per class, they had to exceed a classification accuracy of 54.31%,
e.g. achieve more than 196 correct classifications (determined at a significance level of α = 0.05,
using adjusted Wald interval).
First, accuracies for both groups were calculated and plotted.
Figure 3.5 shows mean accuracies over all experiment stages for every subject (grey graphs) and
over all subjects (red graph) for the supervised learning group. The black dotted line indicates
chance level and the black vertical line marks the appearance of the visual cue.
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Figure 3.5: Mean subject’s and overall accuracies over all experiment stages for the supervised learning
group.

Accuracies for all four experiment stages of the supervised learning group are shown in Figure
3.6. Again, grey graphs indicate individual subject accuracies while graphs in colour mark the
mean over all subjects.
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Figure 3.6: Mean accuracies (colour) and individual subject accuracies (grey) for all four experiment stages
for the supervised group: top left calibration phase, top right evaluation phase one, bottom left
evaluation phase two and bottom right evaluation phase three.

Accuracy results for the semi-supervised group were calculated in the same way for all indi-
vidual stages of the experiment as well as one overall accuracy.
Figure 3.7 shows the individual subject’s (grey) and mean (colour) accuracies over all four stages.
Chance level is marked by the dotted black line, while the vertical black line indicates the ap-
pearance of the visual cue in the trial.

A plot of subject and mean accuracies of all four experiment stages for the semi-supervised
learning group is shown in Figure 3.8. Grey curves are individual subject accuracies while graphs
in colour mark the mean over all subjects.

Results for peak, mean and median accuracies in the feedback period from second 4.5 to
second 7.5 of the trials, including the standard deviation, were calculated for the two groups
and are displayed in Table 3.3.

Table 3.3: Peak, mean and median accuracies and standard deviations over all experiment periods for each
group.

group peak in % mean in % (4.5-7.5s) median in % (4.5-7.5s)

supervised 71.88 ± 13.26 66.06 ± 12.80 66.40 ± 13.12

semi-supervised 80.03 ± 15.90 74.69 ± 16.04 74.92 ± 16.23
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Figure 3.7: Mean accuracies over all experiment phases for individual subjects (grey) and over all subjects
(red).
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Figure 3.8: Mean accuracies (colour) and separate subject accuracies (grey) of all experiment stages for the
semi-supervised learning group: top left the calibration phase, top right first evaluation period,
bottom left the second evaluation phase and bottom right the third evaluation period.
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For a more elaborate analysis of the different phases of the experiment, peak, mean and me-
dian accuracy values were also determined separately for every stage. Table 3.4 shows these
results for both groups.

Table 3.4: Peak, mean and median accuracies (in feedback period) of all session stages for both subject
groups.

group experiment period peak in % mean in % (4.5-7.5s) median in % (4.5-7.5s)

supervised initial calibration 70.50 ± 13.15 59.96 ± 14.58 60.33 ± 14.55

evaluation 1 76.70 ± 12.27 66.55 ± 13.75 66.70 ± 14.35

evaluation 2 77.00 ± 12.91 68.52 ± 13.94 68.90 ± 14.13

evaluation 3 75.60 ± 12.50 66.89 ± 13.12 67.70 ± 13.39

semi-supervised initial calibration 82.17 ± 17.32 74.29 ± 19.20 74.33 ± 19.41

evaluation 1 83.10 ± 14.54 75.31 ± 15.66 75.60 ± 15.90

evaluation 2 83.60 ± 14.28 75.75 ± 15.40 76.20 ± 15.28

evaluation 3 81.20 ± 15.53 73.23 ± 16.12 73.10 ± 16.47

For statistical testing, a two-sample t-test was performed first to determine statistically signif-
icant differences between the overall mean and peak accuracies of the two groups. Assumptions
of normal distribution and equal variances of the samples were verified using a Shapiro-Wilk
and an F-test, respectively. The two-sample t-test showed that there was no significant differ-
ence between the supervised and the semi-supervised overall mean accuracies in the feedback
period of 4.5 to 7.5 s of the trials (significance level α = 0.05, p = 0.2003). Additionally, no
significant difference between the supervised and the semi-supervised learning group in overall
peak accuracies was found (significance level α = 0.05, p = 0.2293).
Boxplots of the mean accuracies of the feedback period and the peak accuracies for both groups
are shown in Figure 3.9. The red line indicates the median and the boundaries of the blue box
mark the second and third quartile.

Figure 3.9: Boxplots of mean and peak accuracies for each group.
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A mixed Analysis of Variance (ANOVA) (one between-subjects factor: group, one within-
subjects factor: stage) was carried out to detect any statistically significant differences between
the mean (of feedback period) and peak accuracies of the individual stages of the two groups.
Before performing this test, the sphericity assumption was assessed using a Mauchly test.
There was no significant difference in mean accuracies of the feedback period (second 4.5 to
second 7.5) in any of the experiment stages for the two groups (F3,54 = 2.058, p > .05). Fur-
thermore, there was no significant difference in peak accuracies in any of the experiment stages
for the two groups (F3,54 = 1.22, p > .05).

To investigate possible differences in mean (feedback period) and peak accuracies between
the individual experiment stages, every stage (4 in total) was analysed against every other one,
resulting in 6 tests in total, for each of the groups separately. A one-way repeated measures
Analysis of Variance (ANOVA) was used to determine statistical significance at a significance
level of α = 0.05. Again, a Mauchly test was performed in advance to check for sphericity of
data and p-values of the results were corrected for accordingly.
Results show that there is no statistically significant difference in mean accuracies of the feed-
back period (4.5 to 7.5 seconds of the trials) between the four different phases of the supervised
learning group (F3,27 = 3.165, p > .05).
Additionally, no statistically significant differences could be reported in peak accuracies of the
four stages for the supervised learning group (F3,27 = 2.027, p > .05).
For the semi-supervised learning group, there also were no significant differences in mean (feed-
back period) accuracies between any combination of stages (F3,27 = 0.731, ns). Furthermore,
no significant differences of peak accuracies between any of the four stages were detected (F3,27

= 0.635, ns).

Group 1 - supervised learning algorithm

Detailed results for peak, mean and median accuracies for every subject in this group are shown
in Table 3.5.

Table 3.5: Peak, mean and median accuracies over all stages for every subject of the supervised group.

subject peak in % mean in % (4.5-7.5s) median in % (4.5-7.5s)

A1 60.56 56.31 56.39

A2 78.06 72.01 72.78

A3 91.67 85.81 87.22

A4 59.67 52.23 52.32

A5 61.94 56.15 56.67

A6 61.67 56.01 56.11

A7 55.56 51.76 51.94

A8 79.72 76.65 77.22

A9 85.23 74.11 72.22

A10 84.72 79.58 81.11

average ± std 71.88 ± 13.26 66.06 ± 12.80 66.40 ± 13.12

Figure 3.10 shows the accuracies for the individual experiment stages for subjects A1, A2,
A3, A4 and A5.

Accuracies for all experiment stages of subjects A6, A7, A8, A9 and A10 are shown in Figure
3.11.
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A1 - A2

A3 A4
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Figure 3.10: Mean accuracies for all stages for subjects A1, A2, A3, A4 and A5.

Group 2 - semi-supervised learning algorithm

The results in peak, mean and median accuracies for all subjects of the semi-supervised group
is displayed in Table 3.6.

Figure 3.12 displays overall accuracies of all experiment phases for subjects B1, B2, B3, B4
and B5.

In Figure 3.13, overall accuracies of all stages for subjects B6, B7, B8, B9 and B10 are shown.
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Figure 3.11: Overall accuracies for all stages for subjects A6, A7, A8, A9 and A10.
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Table 3.6: Peak, mean and median accuracies over all stages for every subject of the semi-supervised group.

subject peak in % mean in % (4.5-7.5s) median in % (4.5-7.5s)

B1 53.33 48.92 48.89

B2 96.39 92.24 93.06

B3 60.56 57.73 57.78

B4 86.94 81.02 82.22

B5 98.89 96.95 97.22

B6 70.00 61.89 62.78

B7 85.56 79.83 79.72

B8 91.71 85.63 85.91

B9 89.44 81.05 80.56

B10 67.50 61.66 61.11

average ± std 80.03 ± 15.90 74.69 ± 16.04 74.92 ± 16.23
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Figure 3.12: Overall accuracies for all experiment stages for subjects B1, B2, B3, B4 and B5.
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Figure 3.13: Overall accuracies for all experiment stages for subjects B6, B7, B8, B9 and B10.
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3.2.2 Retrainings

For evaluation of the amount of trials dismissed in the semi-supervised learning algorithm, a
comparison of numbers of retrainings in the two groups is displayed in Table 3.7. A retraining
of the classifier happens every time 5 new TPC pass the outlier rejection and, for the semi-
supervised group, the boxplot peak exclusion criterion. The average number of retrainings for
each group is shown in the bottom row.

Table 3.7: Number of classifier retrainings for all subjects and on average for both groups.

subject retrainings supervised group retrainings semi-supervised group

A1/B1 27 7

A2/B2 29 15

A3/B3 31 13

A4/B4 29 10

A5/B5 29 18

A6/B6 22 8

A7/B7 27 11

A8/B8 25 13

A9/B9 28 12

A10/B10 23 7

average 27 12

For the supervised learning group, the classifier was retrained 27 times on average. On the
contrary, classifier retrainings happened 12 times on average in the semi-supervised learning
group.

3.2.3 Power Spectral Density

Power spectral density was calculated for every subject for channels C3, Cz and C4 using Lapla-
cian derivation in the feedback period (4.5 - 7.5 s). Figure 3.14 shows the results for subjects
of the supervised group. In Figure 3.15, PSD estimations of channels C3, Cz and C4 are shown
for every subject of the semi-supervised group.
Blue graphs mark motor imagery of the right hand while green graphs depict MI of both feet. Dif-
ferences in power between the individual channels are related to event-related (de)synchronisation
for the two classes. Event-related desynchronisation and a subsequent power decrease of class
hand is mainly apparent in channel C3 (see e.g. subjects A3 in Figure 3.14 and B5 in Figure
3.15), the cortical area connected with the right hand. ERD and the corresponding power de-
crease for class feet is visible especially for channel Cz (see e.g. subjects A10 in Figure 3.14 and
B5 in Figure 3.15), indicating the activated cortical area for MI of both feet.
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PSD of channels C3, Cz, C4 for subjects of supervised learning group
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Figure 3.14: Power spectral density of channels C3, Cz and C4 for the supervised learning group. The
abscissa shows frequencies [Hz], the ordinate depicts power in dB for the individual channels.

PSD of channels C3, Cz, C4 for subjects of semi-supervised learning group
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Figure 3.15: Power spectral densities for channels C3, Cz and C4 for subjects of the semi-supervised learning
group. The abscissa shows frequencies [Hz], the ordinate depicts power in dB for the individual
channels.

3.2.4 ERD/ERS Maps

Time-frequency maps were calculated for all subjects for channels C3, Cz and C4. Figure 3.16
shows one exemplary result of subject B2 (semi-supervised group) for class hand. The time-
frequency plot for class feet of the same subject is shown in Figure 3.17. Yellow to red colours
indicate weak to strong ERD, green to blue colours mark ERS. The ordinate shows frequency
[Hz], while time [s] is plotted on the abscissa. The zero-point in the abscissa indicates the start
of the MI period.
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The reference period shows no clear ERD/ERS, indicating that there were no artifacts in this
period. Distinct event-related desynchronisation patterns can be observed in the µ-band around
10 Hz for MI of the right hand. ERD is strongest in channel C3, which is the cortical area
correlated with right hand MI. Weaker ERD patterns are also evident in the frequency range
about 20 Hz (see Figure 3.16).
The time-frequency map for class feet shows less clear patterns, although ERD in the µ-band is
visible for channels Cz and C4.
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Figure 3.16: ERD/ERS map of subject B2 for class hand.

In Figure 3.18, the time-frequency map for class hand of subject A4 is depicted (supervised
group). The ERD/ERS map for class feet of the same subject is shown in Figure 3.19. For this
subject, no distinct patterns in either class are evident.

ERD/ERS maps of all other subjects are attached in the Appendix section.
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Figure 3.17: Time-frequency plot of subject B2 for class feet.
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Figure 3.18: ERD/ERS map of class hand for subject A4.
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Figure 3.19: ERD/ERS map of class feet for subject A4.
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4
Discussion

In this thesis we could show that implementing semi-supervised learning in an adaptive BCI
system yields results comparable to those of a standard adaptive system. There was no signifi-
cant difference in subjects’ performances between the semi-supervised system and the standard
supervised one in any experiment stage (F3,54 = 2.058, p > .05, F3,54 = 1.22, p > .05). This
outcome is a first step towards further testing of real-life BCI applications in which the user’s
intent is not available to the system.
Apart from subjects’ performance, we analysed power spectral densities and time-frequency
maps to confirm performance results also from a neurophysiological point of view.
Regarding possible fatigue due to the long session duration, no significant performance drops
over the course of the experiment could be found, although subjects reported exhaustion and
difficulties to concentrate in later stages of the session.

4.1 Offline Results

A statistically significant difference in accuracies between a semi-supervised exclusion criterion
and the supervised ground truth indicated that an approach was inadequate for further pursuit,
since the goal was to find a solution which should yield approximately the same results as the
supervised learning system.
Firstly, results for semi-supervised learning without any exclusion criteria suggest that imple-
menting a suitable approach to sort out uncertain trials before every retraining is reasonable
and necessary to achieve good classification performance.
In all semi-supervised approaches, it is still possible that trials with a wrong class label are
included in the training.
Both the accumulative and the sliding window training data algorithm give similar results for all
techniques, as evident in Tables 3.1 and 3.2. For example, the boxplot peak LDA-based method
yields a peak and mean accuracy of 89.61 % and 75.55 %, respectively, for the accumulative
training data algorithm, and a peak and mean accuracy of 89.96 % and 75.32 %, respectively,
using the sliding window algorithm. However, the total amount of available recorded data (80
TPC) together with the number of initial training data (35 TPC) was generally not large enough
to eventually remove all true-labeled trials from the training pool with only predicted-labeled
data remaining for training. Therefore, the good performance of the sliding window algorithm
could not be assessed for larger amounts of training data, as would be recorded for the online
study. Moreover, comparable studies ([22] , [21]) also did not use a sliding window algorithm
for training data selection.
When comparing the tested methods and ground truths in Tables 3.1 and 3.2, differences in the
number of classifier trainings are noticeable. This was to be expected, since the approaches for
semi-supervised learning, apart from removing outliers, also exclude data from the training pool
that shows small classification certainty. This results in less available trials for the classifier than
for the ground truths. It is also evident that the better the results of a semi-supervised method
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are, the less trainings of the classifier take place. The best-performing semi-supervised method,
the cumulative approach, in fact trains the classifier only two times on average, while for the
mean threshold method, yielding significantly worse accuracies, the classifier is trained six times,
nearly as much as for the ground truth. There seems to be a trade-off between the strictness
of the method that rejects unreliable trials and the performance of the system. Apparently,
approaches that perform better dismiss a larger number of trials from trainings, which means
that less data is available for the classifier. Interestingly, a higher training number seemingly
cannot compensate the inclusion of ‘bad’ trials in the training. Still, for the adaptive approach
of fitting the classifier to the specific user input, recurring training is necessary.
As a compromise between high classification performance and number of classifier trainings, we
chose the boxplot peak LDA-based method in an accumulative training data algorithm to be
implemented in an online BCI system and tested in a comparative study of two groups.

4.2 Online Results

4.2.1 Hardware

Implementations and tests of the offline analysis as well as all online measurement sessions were
conducted using a notebook with Windows 10 as operating system, an Intel Core i5 processor
and a RAM of 8GB. No performance issues with this setup occurred during both offline analysis
and recordings. The proposed BCI system therefore can be operated by most standard note-
books without need for special equipment, making it possible to transfer recordings out of a
laboratory environment easily.

4.2.2 Software

The software of the proposed BCI system is based on Schwarz et al. [22] and Faller et al. [21].
Communication between the BCI system and the optimizer instance happens via TCP/IP. In
this online study, both the BCI system and the optimizer were running on the same notebook
in two different Matlab instances.
In the BCI online system, the classifier mode (LDA or RF) as well as the learning mode (su-
pervised or semi-supervised) can both be changed easily in one variable each by the operator,
resulting in high flexibility of the system.
Both the optimizer and the online system were tested thoroughly before the start of the mea-
surement sessions.
The whole system setup proved to be robust and unaffected even by unforeseen computer restarts
that were necessary during two recording sessions.

Optimizer

The separate optimizer instance of Schwarz et al. [22] was modified and extended to include the
possibility of semi-supervised learning of the classifier. Switching between supervised and semi-
supervised learning is done by a flag sent to the optimizer from the online system. Additionally,
saving of the optimizer workspace was added after every close-down. This should prevent any
loss of data and proved to be very useful indeed when the whole system unexpectedly had to be
restarted in the middle of a measurement session. None of the already recorded data and trained
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filter and classifiers were lost and the session could be continued from the point of interruption
after a short time. On the other hand, the time needed for saving of the optimizer workspace
increased significantly during the course of a session, due to the growing amount of stored data.
Towards the end of a session, this process could take up to one to two minutes after a run.
However, improved robustness and compliance of the optimizer instance surpass possible short
delays of the recording process.
Since the amount of available data in a session was quite large, outlier rejection and retrainings
of the filters and classifier could take more time (up to 50 s) towards the end. However, no tri-
als were lost and communication between the online system and the optimizer worked without
problems.

4.2.3 Performance

To verify the hypothesis of this work and be able to make valid comparisons, two independent
groups of subjects were tested: One group was measured using the ‘ground truth’ supervised
learning system and one group used the semi-supervised learning approach. Both groups con-
sisted of approximately the same ratio of non-naive and naive subjects to ensure that training
effects had no impact on a group’s results.
The subjects themselves did not know which group they were assigned to and the overall exper-
iment setup was the same for both groups to make results comparable.

Accuracies

The supervised group reached an overall peak accuracy of 71.88 ± 13.26%, while the overall peak
accuracy of the semi-supervised group was 80.03 ± 15.90%. Mean overall accuracies for the two
groups were 66.06 ± 12.80% and 74.69 ± 16.04%, respectively, which both lies well above the
calculated chance level of 54.30%. Generally, subjects in the semi-supervised group turned out
to achieve better BCI control. Although differences in overall peak and mean accuracies between
the two groups seem quite large, a two sample t-test showed no significant differences: This is a
first indication that the starting hypothesis that the semi-supervised system would perform as
good as the supervised one could be accepted.
For more elaborate testing, the separate stages’ peak and mean accuracies of the two groups were
compared in an ANOVA test. Again, no significant differences were found. Therefore, it can
be stated that the semi-supervised learning system works as well as the standard system with
supervised learning. In the semi-supervised learning approach, trials are sorted out not only by
the outlier rejection, but also by the boxplot peak exclusion criterion. Therefore, less trials are
included in classifier trainings, and apart from the initial calibration phase, only trials with a
high information content are used. This basically corresponds to an optimization procedure of
the normal supervised system.
Apparently, most trials included in the retrainings are labeled correctly, although it is still possi-
ble that data with the wrong class label passes all criteria and influences the training. However,
it seems that the boxplot peak exclusion criterion for the semi-supervised learning method dis-
misses trials with low information content well enough for the classifier to be trained on mostly
correctly classified data (additional to the true-labeled initial training data amount). This can
be seen as a first step towards a real-life MI-based BCI application in which information about
the true label, e.g. the user’s intentions, is not available.

Furthermore, we were interested in a possible impact of the duration of the experiment on the
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subjects’ performances. Considering Table 3.4, it seems that accuracies generally still improve
after the calibration phase, but decline again during the third evaluation period. Mean accu-
racy plots for the individual subjects (Figure 3.10 - 3.13) on the one hand show an increase in
performance after the calibration phase for e.g. subjects A2 and B4, while other subjects, such
as A9 or B9, display a higher accuracy during the calibration phase and a performance decrease
in evaluation periods two and three, respectively. To evaluate statistical significance of these
observations, both groups were tested separately for differences in peak and mean accuracies
of the four stages of the experiment using an ANOVA test. Neither group showed statistically
significant differences between any combination of two stages (six combinations in total), which
confirms that all aforementioned observations are not statistically relevant. On the contrary,
most subjects reported that they felt tired after their recording session and that the duration
of the experiment was exhausting. Particularly subjects who did not achieve high classification
accuracies described a loss of motivation over the course of the session. Apparently, fatigue was
experienced subjectively by the users, but could not be found by statistical tests. Although this
is a good result regarding the system’s performance over an extended period of time, the users’
personal feelings concerning this matter cannot be disregarded and dismissed easily.

A more detailed look at the individual subjects’ results shows diverse outcomes. Not all of the
subjects were able to achieve a mean classification performance better than random. Although
the calculated chance level of 54.30% was outperformed by every subject for at least part of the
feedback period, three of them could not achieve a better-than-random mean accuracy through-
out the whole feedback period after presentation of the visual cue.
The best-performing subjects were subjects B2 and B5. Subject B2 achieved a peak and mean
accuracy of 96.39% and 92.94%, respectively, while subject B5 reached a peak and mean ac-
curacy of 98.89% and 96.95%, respectively. By contrast, subject A7 only obtained a peak and
mean accuracy of 55.56% and 51.76%, respectively. The mean accuracy over the feedback period
of 51.76% also clearly lies beneath chance level.
Regarding possible differences of naive and non-naive users it is evident that both factions are
comprised of well-performing and badly-performing subjects. The results do not show that all
non-naive subjects achieve high classification accuracies.

Looking at Figures 3.5 - 3.8 showing the accuracy curves of the two groups, it is evident that
some subjects exhibit a high accuracy peak immediately after the appearance of the visual cue,
but cannot maintain this accuracy level over the whole feedback period. This short-lived brain
state can be induced by the visual cue and can be interpreted as a priming effect. To achieve
high classification performance over a longer time, a conscious effort in motor imagery has to
be made, so that longer lasting brain patterns develop [50].

When looking at Tables 3.3 and 3.4, the relatively high values of standard deviation for overall
mean, peak and median accuracies in both groups stand out. For example, the standard devia-
tion in median overall accuracies for all experiment stages is 13.12% in the supervised group and
even 16.23% in the semi-supervised group. In comparison, Faller et al. [21] reported a slightly
lower standard deviation of overall median accuracies of 11.3%. In Schwarz et al. [22], standard
deviations for overall median accuracies of 7.3% were found, which is considerably lower than
in the current study. It seems that subjects participating in the study of this work incidentally
covered a broader spectrum of BCI control abilities than subjects of the studies of Faller et
al. [21] and Schwarz et al. [22]. Since the performance quality of naive BCI users is unknown
beforehand, these differences are unpredictable.
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Retrainings

As expected and already verified in the offline analysis, an obvious decrease of times the classifier
was retrained during the experiment occurred in the semi-supervised group. This is due to a
decreased amount of available training data, since the exclusion criterion dismisses some trials
that pass the outlier rejection. While in the supervised learning group, the CSP filters and LDA
classifiers were retrained 27 times on average over the four experiment stages, re-trainings hap-
pened only 12 times on average for the semi-supervised group. This is a decrease in retrainings
by approximately 55%, illustrating the strict trial dismissal of the semi-supervised exclusion
criterion. As discussed for the offline results, only this strict sorting out of trials with low in-
formation content ensures that the classification performance of the system does not suffer. On
the other hand, less retrainings of the classifier also induce less possibility for adaptation of the
system to the user. It seems, however, that a careful selection of trials for the training data is
more important for classification performance than a higher number of retrainings over the long
course of the session. In addition, the initial amount of true-labeled training data is imperative.

PSD

The power spectral density describes the distribution of signal power in the frequency domain
[51]. Power spectral density estimations for positions C3, Cz and C4 (Laplacian derivation)
were calculated for every subject to investigate differences between the two classes hand and
feet. Since event-related desynchronization and synchronization cause fluctuations of the brain
signals in specific frequency ranges [8], power distributions that show more or less distinct peaks
for frequencies of the MI regions (µ- and β-band) are to be expected. Results show that these
peaks are linked with performance: Subjects exhibiting more pronounced peaks, such as B2 or
B4 of the semi-supervised group, generally achieve a good classification performance (96.39%
and 86.94% peak accuracies, respectively), which is in accordance with the findings of [52].
Moreover, a small-banded difference between power distributions for the two classes hand and
feet allows the classifier to better distinguish between classes, resulting in a good performance.

ERD/ERS Maps

Time-frequency maps for both classes were calculated for every subject. In Figure 3.16 and 3.17,
distinguishable brain patterns for classes hand and feet can be observed. For class hand, sub-
ject B2 shows strong narrow-banded event-related desynchronization in the µ-band frequency
range particularly in position C3. This is conform with studies concerning ERD of right hand
MI [8]. For class feet, it is evident that focal ERD is accompanied by ERS of the surrounding
areas. Apparently, areas involved in the motor imagery are activated, while regions that are
not involved in the task are deactivated simultaneously [8]. Comparing time-frequency maps of
both classes for this subject shows large differences in patterns. Classification performance for
subject B2 peaks at 96.39%, confirming findings that high classification performance is linked
to good discriminability of brain patterns between the classes [28].
On the contrary, ERD/ERS maps of subject A4 in Figures 3.18 and 3.19 show no pronounced
event-related desynchronization for any class. According to Blankertz et al. [52], BCI perfor-
mance can be predicted by the distinctiveness of the power peak of SMRs. Motor imagery leads
to a decrease of SMR (event-related desynchronization) and the strength of this ERD determines
BCI performance. For subject A4, PSD estimations show no discernible peaks, and also event-
related desynchronization is very weak, as can be seen in the ERD/ERS maps. This coincides

– 59 –



4 Discussion

with a poor classification performance of 59.67% peak accuracy.

4.3 Possible Improvements

Several points for further improvements and enhancements of the current system can be ad-
dressed.
As a first step, testing the proposed semi-supervised BCI system with a smaller amount of initial
training data would be of interest. Preliminary tests in the offline analysis showed a preferred
initial true-labeled training data amount of 30 to 40 TPC. For this online study, 40 TPC were
recorded in the calibration phase. A reduction of this amount to 30 TPC, or even less, would
decrease the duration of the calibration phase considerably by at least one run. This would be
an advantage for studies with shorter session times, as in most common BCI studies.
In this study, all recording sessions were conducted in a shielded laboratory environment. Any
real-life BCI applications, however, would not be used in such an environment. Therefore, it is
important to transfer BCI use out of the laboratory to test it under real-life circumstances. Due
to the small setup and robust and simple system operation of the proposed BCI system, this
could be done quite easily.
Furthermore, subjects reported a definite increase in motivation for the task when receiving
feedback. The time period in which the subject does not receive any feedback yet was rather
short, which was pointed out as advantageous and convenient by several subjects.
Contrary to this, many subjects described increasing monotony and dullness of the experiment
over the course of the session. Some amount of fatigue and decreasing concentration was to be
expected for such a long experiment. However, this phenomenon was amplified by the nature of
the paradigm, as some subjects declared. A more interesting and engaging paradigm could help
to keep the motivation and concentration of users high even in such a long session. Moreover,
a broader variety of break activities, e.g. reading, playing a computer game or having a conver-
sation, instead of only watching TV, could also provide more distraction and diversion for the
users.
Another point is the selection of the semi-supervised exclusion criteria. Only a small amount of
possible options were tested in this work. Different methods could still be found and evaluated
for further performance boosts.
For real-life applications, a change of the two used classes in the system could be advantageous:
Instead of two motor imagery classes, one motor imagery class and a rest condition could be
introduced, making it possible for the system to distinguish between a default non-action condi-
tion and an action condition indicating activation of the application. In this regard, EEG data
recorded during the breaks of the online study of this work could be analysed in a first step to
evaluate classification of idle background brain patterns and possibly introduce a classification
threshold that has to be exceeded in order to trigger some action.
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5
Conclusion

The goal of this thesis was to find an approach to implement a semi-supervised learning algo-
rithm in an adaptive online MI-based BCI system. The hypothesis to be tested was that such
a system using semi-supervised learning works as good as a standard supervised BCI.
Several different methods for selecting training trials with a high information content for the
classifier were tested offline. The boxplot peak method presented promising results and was
therefore implemented in an online adaptive BCI. To evaluate online performance, two groups
of subjects were tested in an online study: One group was examined using a standard super-
vised adaptive system, while the semi-supervised approach was analyzed with the other group.
Results of the two groups show that the starting hypothesis can be accepted: There were no
significant differences in mean or peak accuracies between the two groups in any stage of the
experiment (F3,54 = 2.058, p > .05, F3,54 = 1.22, p > .05). This outcome confirms that employ-
ing semi-supervised learning in an adaptive BCI works efficiently, allowing for further testing of
BCI systems where the user’s intent is not known to the system.
Due to the long duration of the experiment, subjects reported increased exhaustion. However,
no significant performance drops could be found. Still, options on how to keep the subject’s
motivation high throughout the experiment should be considered, such as starting feedback even
earlier or changing activities during the breaks.
All in all, results of this thesis are a full success and can benefit further developments of real-life
BCI applications for severely impaired users.
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Online Adaptation of a Brain Computer Interface using semi-supervised learning techniques

A
Appendix

A.1 Online System - Implementation

In the following graphs, the implementation of the online system and some important com-
ponents are displayed. Critical code parts are integrated as s-functions into the model. The
interface to the optimizer is ddepicted in figure A.1.

Figure A.1: Ths interface that connects the online system with the optimizer.

A.2 ERD/ERS Maps

The following figures show ERD/ERS maps for class hand and feet for all subjects apart from
B2 and A4, which were already included in the Results section.
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(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.2: ERD/ERS maps of subject A1.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.3: ERD/ERS maps of subject A2.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.4: ERD/ERS maps of subject A3.

– 67 –



A Appendix

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.5: ERD/ERS maps of subject A5.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.6: ERD/ERS maps of subject A6.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.7: ERD/ERS maps of subject A7.
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(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.8: ERD/ERS maps of subject A8.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.9: ERD/ERS maps of subject A9.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.10: ERD/ERS maps of subject A10.
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(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.11: ERD/ERS maps of subject B1.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.12: ERD/ERS maps of subject B3.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.13: ERD/ERS maps of subject B4.
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(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.14: ERD/ERS maps of subject B5.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.15: ERD/ERS maps of subject B6.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.16: ERD/ERS maps of subject B7.
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(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.17: ERD/ERS maps of subject B8.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.18: ERD/ERS maps of subject B9.

(a) ERD/ERS Hand (b) ERD/ERS Feet

Figure A.19: ERD/ERS maps of subject B10.
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