distanz) und ε (Azimut) mit Hilfe eines Zyklometers (nach R. Groß) oder eines Winkelnetzes. x', ε' , ρ , ε hängen mit dem Glanzwinkel α und dem Winkel ϑ , den die Normale der reflektierenden Netzebene (hkl) mit der Horizontalebene einschließt, wie folgt zusammen: x'=r tg $2\alpha\cos\varepsilon$; $\varepsilon'=r$ tg $2\alpha\sin\varepsilon$; $\rho=r$ tg 2α ; $\sin\vartheta=\sin\varepsilon\cos\alpha$. Lettere Beziehung ergibt sich aus dem sphärischen Dreieck mit ε bei P (Fig. 573).

Zu jeder Spektrallinie (bzw. jedem Paar des K-Dubletts) gehört eine zu ermittelnde Negebene ($h\,k\,l$). Im folgenden sei, wie beim Debye-Scherrer-Verfahren, die Ordnungszahl in die Indizes ($h\,k\,l$) einbezogen.

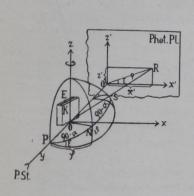


Fig. 573. Geometrische Verhältnisse beim Drehspektralverfahren.

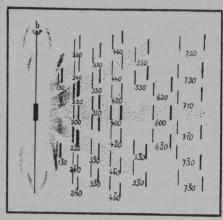


Fig. 574. Drehspektogramm von (100) des Adulars nach E. Schiebold. Drehachse: Achse b. Hauptspektrum von (103). Nebenspektren hko-Flächen. Andeutung des kontinuierlichen Spektrums (punktiert) und der Lemniskaten. K-Strahlung von Molybdän.

Die Auswertung der Spektren erfolgt durch

- 1. Berechnung des Glanzwinkels α und des ϑ -Winkels nach obigen Formeln: tg 2 $\alpha = \rho/r$; sin $\vartheta = \sin \varepsilon \cos \alpha$.
- 2. Berechnung der Röntgenperiode r_{hkl} mit Hilfe von α nach der Braggschen Formel: 2 $r_{hkl} = \lambda/\sin \alpha$ ($\lambda = \text{bekannte Wellenlänge}$).
- 3. Konstruktion des Indizesfeldes zum Spektrogramm. Zu letzterem Zweck ermittelt man nach Einsetzen des bekannten [uvw] (Zonensymbol) der Drehachse für die Werte der Indizeskombination $s=hu+kv+lw=0, \pm 1, \pm 2, \pm 3$ usw. (s. u.) die möglichen Indextripel (hkl). Von den unendlich vielen Werten kommen praktisch

i) Die Ordnungszahl n bestimmt sich mit Hilfe des Indizesfeldes.
F. Rinne, Krist. Formenlehre u. Anleitung z. kristall.-opt. sowie röntgen. Untersuchung. 16