S_2 in Form des Sekundärstrahls S_2 reflektiert. Das gleiche vollzieht sich an sonstigen, in schräger Richtung zu S_1 verlaufenden Struktur-

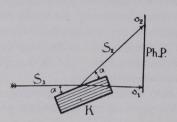


Fig. 546. Reflexion eines Röntgenstrahls.

ebenen des Kristalls. Die Gesamtheit der s-Einstiche auf der photographischen Platte liefert das Muster des Lauediagramms. Die zu jedem Sekundärstrahl gehörige Fläche läßt sich hiernach leicht fest stellen in der Erwägung, daß sie, senkrecht zur Einfallsebene $S_1 S_2$ gelegen, den Winkel zwischen Primärstrahl und dem Sekundärstrahl hälftet. Das

Lauediagramm ist danach eine neue oder doch früher in der kristallographischen Praxis nicht verwendete Projektionsart; es stellt eine »Reflexprojektion« dar.

7. Zonenverband im Lauediagramm.

In Fig. 547 bedeutet Punkt K den Kristall, $S_1 s_1$ den Primärstrahl, welcher die photographische Platte P P in s_1 senkrecht durchsticht, und $K\varepsilon$ eine zunächst zur Zeichenebene der Fig. 547 senkrecht gedachte Strukturfläche des Kristalls. Der Strahl S_1 K wird von ihr unter dem Spiegelungswinkel α als S_2 reflektiert und auf PP in s_2 aufgefangen. Beim Drehen der reflektierenden Struktur-

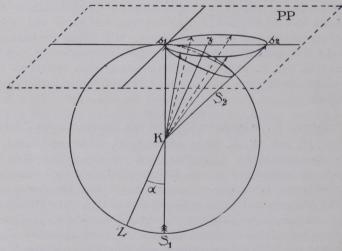


Fig. 547. Zonenverband in der Reflexprojektion.