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Abstract 

This master thesis is about performing numerical simulations of a series of 

hydraulic laboratory tests on bulb turbine intakes. These laboratory tests are 

presented in a paper entitled “Hydraulic Model Studies on Bulb Turbine Intakes” 

which was carried out by the U.S. Department of the Interior in 1983. The purpose 

of the study was to investigate possible simplifications in design of the intake flow 

passages for bulb turbines, and to determine head losses associated with these 

simplifications. Four intakes with different shapes were investigated in order to 

determine fluid flow behaviour in bulb turbine intake regions. Numerical 

simulations were conducted with the ANSYS CFX software, a commercial 

computational fluid dynamics (shorter CFD) software. The objective of this thesis 

is to compare and cross-validate results gained through the numerical analysis 

with the results from the original physical model study. It is of great interest to 

represent the velocity distribution and head losses for each intake individually. At 

first, the 3D geometries were created using Auto CAD 3D, afterwards the start of 

numerical modelling follow. Numerical modelling includes geometry 

establishment, grid generation, boundary condition assessment and solution of 

fluid flow equations. The grid generation process was performed using the 

ANSYS Meshing. In CFX–Pre, boundary conditions and fluid properties were 

selected in order to solve the system of partially differential equations with the 

CFX–Solver. In order to save computing time and memory a model simplification 

was introduced. Numerical model results show similar velocity distributions as 

laboratory results for all four intakes. It is also visible that intake 4, the shortest 

intake with the greatest opening curves on the top and sides continued with 

straight planes, has least head losses and a desirable velocity distribution.  
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Kurzfassung 

 

Diese Masterarbeit beschäftigt sich mit dem Durchfuhren numerischer 

Simulationen einer Reihe von hydraulischen Laborversuchen über Einläufe von 

Rohrturbinen. Diese Laborversuche sind zusammengefaßt in der 

wissenschaftlichen Publikation „Hydraulic Model Studies on Bulb Turbine 

Intakes“ welche vom U.S. Department of the Interior im Jahre 1983 durchgeführt  

wurden. Der Zweck dieser Forschung war, mögliche Vereinfachungen in dem 

Einlaufbereich bei Rohrturbinen zu ermitteln und die dadurch verursachten 

lokalen Verluste zu bestimmen. Vier verschiedene Einlaufgeometrien wurden in 

diesen Laborversuchen geprüft. Numerische Simulationen wurden mit ANSYS 

CFX, einer kommerziellen Computational Fluid Dynamics (oder kürzer CFD) 

Software durchgeführt. Die Zielsetzung dieser Masterarbeit, ist numerische und 

physikalische Ergebnisse zu prüfen und miteinander zu vergleichen. Es ist von 

großem Interesse, die Geschwindigkeitsverteilungen und lokalen Verluste für 

jede Einlaufsgeometrie einzeln darzustellen. Erstmal wurden die Geometrien mit 

Hilfe von Auto CAD 3D erstellt, nachdem der Prozess der numerischen 

Modellierung begonnen werden konnte. Numerische Modellierung beinhaltet die 

Erstellung der Geometrie, Netzerstellung, Einfügung von Randbedingungen, und 

Lösung von den Strömungsgleichungen. Die Netzerstellung erfolgte durch 

Nutzung von ANSYS Meshing, Randbedingungen und Fluideigenschaften 

wurden in CFX-Pre gewählt und das System der differentiellen und partiellen 

Gleichungen wurde danach in CFX-Post gelöst. Um Rechenzeit und 

Speicherplatz zu sparen, wurde eine Modelvereinfachung eingeführt. 

Numerische Simulationen zeigen gleiche Ergebnisse wie die Laborversuche. 

Durch den Ergebnisvergleich ist es eindeutig, dass Einlauf 4, der kürzeste Einlauf 

mit dem größten Eingangskrümmungen, die geringste lokalen Verluste aufweist 

und vorzügliche Geschwindigkeitsverteilungen ergibt.  
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1.  Introduction 

1.1 Introduction 

This master’s thesis is about performing numerical simulations of a series of 

hydraulic laboratory tests on bulb turbine intakes. These laboratory tests are 

presented in a paper entitled “Hydraulic Model Studies on Bulb Turbine Intakes” 

[1] which was carried out by the U.S. Department of the Interior in 1983. The 

purpose of the study was to investigate possible simplifications in design of the 

intake flow passages for bulb turbines, and to determine head losses associated 

with these simplifications. Four intakes with different shapes were investigated in 

order to determine fluid flow behaviour in bulb turbine intake regions. In this 

current study, geometries from the original model study will be used to generate 

numerical models. Furthermore, the physical and numerical results will be 

compared and cross-validated. Numerical simulations were conducted with the 

ANSYS CFX [7] software, a commercial computational fluid dynamics software.  

1.2 Overview 

For better understanding of the reasons behind the numerical modelling 

performed in this master’s thesis, it is important to analyse the development of 

the original hydraulic laboratory model. Second chapter “The Physical Model 

Study”, introduces these laboratory test. To comprehend the concept of 

numerical fluid flow modelling, it is necessary to review numerical methods and 

mathematical tools required for fluid flow simulations. Afterwards, fundamentals 

of the numerical method used in this thesis will be introduced. The fourth chapter 

provides the insight into numerical modelling including geometry establishment, 

grid generation, boundary condition assessment and solution to fluid flow 

equations. Numerical model geometry was developed through the use of 

AutoCAD 3D [8] with the goal of rebuilding the physical model’s geometry. The 

rebuilt geometry was imported in the ANSYS Design Modeller [7], and the grid 

generation process was performed on the geometry using the ANSYS Meshing 

[7]. In CFX–Pre, boundary conditions and fluid properties were determined in 

order to solve the system of partially differential equations with the CFX–Solver. 
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In the fifth chapter, the results were presented and discussed. The final chapter 

provides the conclusions. 

1.3 Objective 

The objective of this research is to compare and cross-validate results obtained 

through the numerical analysis with the results from the original physical model 

study. It is of great interest to obtain the velocity distribution and head losses for 

each intake individually. The flow and velocity distributions obtained through 

validated results, can later be used to optimise the intake geometries of bulb 

turbines. It is also of interest to assume simplifications regarding the numerical 

modelling in order to save time, cost and ease the future investigations on similar 

topics. 

An example of bulb turbine usage in run-of-river power plants is “Kraftwerk Melk” 

in Lower Austria. The figure below shoves a schematic representation of this 

power plant. 

 

Figure 1: Example of bulb turbine usage; schematic representation of Power Plant Melk [9] 
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2. The Physical Model Study 

2.1 Introduction 

Hydraulic model study on bulb turbine intakes research was performed by the 

U.S. Department of the Interior, in Bureau of Reclamation’s Engineering and 

Research Center’s hydraulic laboratory in 1983. Figure below shows some 

images from the physical model paper: overall view of the test apparatus (left 

insert), draft tube and velocity measurements (right insert) and intake 1 with 

piezometer taps (middle insert). The Model itself, intake geometries, measured 

results and the study purpose will be shown later in this chapter.  

   

Figure 2: Physical model study from 1983 [1] 

2.2 The Model 

An air model was used in the original study. Air model can be used to study 

hydraulic problems in which the flow is governed by inertia and viscosity effects. 

The criterion of similarity for this type of flow is the well-known Reynolds Model 

Law (equation 2.1). 

𝑅𝑒𝑦𝑛𝑜𝑙𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑅 =  
𝑣∙𝐷

𝜈
          (2.1) 

Where: 

𝑣 = velocity [m/s] 

𝐷 = a characteristic length [m] 

𝜈 = kinematic viscosity [m2/s] 

 

 



The Physical Model Study  Master Thesis, Kostić 

4 
 

Air models have several advantages over water models, such as:  

 

 Flexible and easy model construction. 

 Minor leakage problems.  

 The ability to conduct rapid measurements.  

 

Disadvantage of air modelling is that it required delicate measurement apparatus. 

Another disadvantage is the difficulty of transferring obtained model results to 

natural size prototype results. This is due to the fact that the kinematic viscosity 

for air is 10 to 20 times greater than the kinematic viscosity for water, meaning 

that the air model velocities need to be 10 to 20 times greater than the prototype 

water velocities in order to obtain the Reynolds Model Law similarity. In this 

hydraulic model study air velocity is limited to less than 50 m/s to avoid 

compressibility effects. Therefore, for obtaining the same Reynolds number for 

the same size model with water, velocity has to be between 2.5 m/s and 5 m/s. 

This velocity is acceptable, however, problems occur by downscaling air models 

in relation to real size water prototypes. For example, an air model reduced 5 

times, demands model velocities 50 to 100 times greater than prototype velocities 

in order to obtain the Reynolds Model Law similarity. This, and the fact that the 

air velocity has to be limited to avoid compressibility effects, makes air models 

unsuitable for scaling the physical model test results to the prototype. However, 

the goal of the physical model test was not to analyze hydraulic models and 

similarity laws, but to compare different intake geometries and not to scale the air 

model results to real-size prototypes. This means that the use of air, instead of 

water in the physical model is justified, however, water is used as the fluid in the 

numerical analysis. Using water as the governing fluid in the numerical modelling 

makes future investigations regarding this topic easier and it simplifies scaling 

numerical results to real size prototypes results. In order to compare the velocities 

from physical model tests to numerical results, all the velocities were represented 

by the velocity coefficient (local velocity divided by mean velocity) for all intakes. 
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The test apparatus consist of an air supply pipe, including blower and orifice for 

discharge measurement, a stilling chamber and the intake models. Figure 3 

shows the schematic diagram of the test apparatus. 

 

Figure 3: Schematic diagram of the test apparatus [1] 

2.3 Purpose of the Study 

The purpose for the original study was to reduce cost of low-head hydropower 

plants without introducing additional head losses.  

Intakes for bulb and rim generator turbines are very large in relation to their runner 

diameters. Savings could be achieved by replacing curved surfaces with flat 

surfaces and by shortening intake lengths. Reducing the intake size would result 

in additional savings in trash racks, bulkheads, entrances, gates, and the 

associated operating equipment [6]. 

A desirable property of turbine intakes is that the velocities in the intake section 

should be evenly distributed throughout the whole intake surface. Irregular flow 

and flow separation in the intake section leads to uneven flow distribution on 

guide vanes and runner blades. Comparing the velocity distribution of the various 

intakes is also one of the purposes of the original study. 

2.4 Intake Models 

A model of a typical bulb turbine installation was built with using dimensions that 

correspond to standard flow passage dimensions used by a major manufacturer. 

[1] 
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 Figure 4: Bulb turbine geometry (with intake 1 shown) 

 

 

  

C 

C 
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All dimensions are given in terms of the runner diameter, D1. Figure 4 shows the 

bulb turbine flow passage with intake 1, where section A–A represent a 

horizontal, and section B–B a vertical cross-section. 

 

The model contains four different intake sections (figures 5 – 8), the flow passage 

downstream from the intake section including the draft tube, bulb, piers 

supporting the bulb and the wicked gates. Runner blades were not included in 

the model because the focus of the study was the effect of changes on the intake 

flow passage geometry. The wicket gates opening angle θ was made adjustable 

from 00 to 600, with 00 being fully open. 

 

Intake 1 (figure 5) is the traditional intake with a smooth bellmouth-type top curve. 

Intake 2 (figure 6) is slightly shorter than intake 1, and the top curve is replaced 

with two straight planes. Intake 3 (figure 7) has the simplest geometry shape, 

including only straight planes with no curvature. Intake 4 (figure 8) is the shortest 

intake, with an entrance curvature continued with straight planes.  

 

 

Figure 5: Geometry of intake 1 
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Figure 6: Geometry of intake 2 

 

Figure 7: Geometry of intake 3 

 

Figure 8: Geometry of intake 4 
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2.5 Results 

The hydraulic mode study points out, that for wicket gate angles less than 450, 

the velocity distributions for a given intake design were very similar, and for 450 

and 600 wicket gates angles, the profiles were very erratic and unsymmetrical. 

The study also points out that velocity distribution is very similar for different 

velocities. 

Physical model results include velocity distributions and head losses 

measurement for each intake. Velocity measurements were conducted in a 

vertical plane upstream from the bulb (in figure 4 and 43). 

                             

Figure 9: Representation of velocity measurement results for intake 1: original results represented with 
local velocities [m/s] (left) and modified results in PYTHON represented with the velocity 

coefficient [-] (right) 

The representation of the measured velocity distribution for intake 1 is shown in 

figure 9 (left side). The original laboratory results were rearranged using the 

PYTHON programming language in order to make them look more similar to the 

numerical results from ANSYS CFX [7]. The measured velocities (figure 8, left) 

were divided by the mean velocity for each intake, so that all the velocities are 

represented by a velocity coefficient (local velocity divided with mean 

velocity)  𝑣 �̅�⁄ . Values between the measured velocities were interpolated. The 

results were imported into PYTHON from only one half of the velocity distribution 

diagram, because the results were estimated to be symmetrical. A colour scale 
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similar to the one used in ANSYS CFX [7] was imported into PYTHON. In figure 

9 (right), the modified velocity results for intake 1 are shown. 

In the physical model study, head losses were represented with the Euler 

number. The Euler number is a dimensionless ratio which relates inertia forces 

to pressure forces (equation 2.2). 

𝐸𝑢𝑙𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝐸 =  
𝜌∙𝑣2

∆𝑝
          (2.2) 

Where: 

𝜌 = fluid density [kg/m3] 

∆𝑝 = pressure drop [m] 

𝑣 = velocity measured at the runners [m/s] 

In incompressible fluids and in absence of other forces (such as viscosity and 

gravity), the Euler number is exclusively a function of the geometry of the flow 

boundaries. [1] 

The Reynolds number in the laboratory test were about 104 to 105. At these 

Reynolds number, viscosity has little effect and the Euler number could be 

considered as a constant. 

 

 

 

 

 

 

 



Introduction to Computational Fluid Dynamics  Master Thesis, Kostić 

11 
 

3. Introduction to Computational Fluid Dynamics 

3.1 Introduction 

Computational Fluid Dynamics (CFD) is a computer-based tool for simulating the 

behaviour of systems involving fluid flow, heat transfer, and other related physical 

processes. CFD operates by solving the equations of fluid flow (in a special form) 

over a region of interest, with specified (known) conditions on the boundary of 

that region. Commercial CFD packages (including ANSYS CFX) use highly 

developed user interfaces to input problem parameters and to obtain results. All 

CFD codes consist of three main elements: pre-processor, solver and post-

processor. 

3.1.1 Pre-processor 

With the pre-processor operations the user is able to input flow and geometry 

problems to a CFD program. The operations at the pre-processing stage include: 

 

 Geometry definition of the region of interest (the computational domain). 

 Grid generation – the sub-division of the domain into a number of smaller, 

non-overlapping sub-domains. 

 Selection of the physical phenomena that need to be modelled. 

 Definition of fluid properties. 

 Specification of appropriate boundary conditions at cells which coincide 

with or touch the domain boundary. 

       

The input data are later subsequently transformed into a form suitable for use by 

the solver. The solution to a flow problem (velocity, pressure etc.) is defined at 

nodes inside each cell. In general, the larger the number of cells the better the 

solution accuracy. The accuracy of a solution and its cost in terms of necessary 

computer hardware and calculation time are both dependent on the fineness of 

the grid. Optional meshes are often non-uniform: finer in areas where larger 
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variations occur from point to point and coarser in regions with relatively little 

change (see chapter 4.2.3). 

3.1.2 Solver 

Numerical methods are used in CFD for solutions of fluid flow problems rather 

than analytical methods. Numerical analysis uses techniques that give 

approximate but accurate solutions of mathematical models. All numerical 

methods that form the basis of the solver perform the following steps: 

 

 Approximations of the unknown flow variables by means of simple 

functions. 

 Discretization by substitution of the approximations into the governing 

flow equations and subsequent mathematical manipulations. 

 Solution of the algebraic equations.   

          

There are several methods of discretization used in CFD such as: finite element 

method, spectral element method, finite difference method, finite volume method 

etc. Finite volume method (FVM) is a special type of the finite difference 

formulation. FVM has an advantage in memory usage and solution speed, 

especially for large problems, high Reynolds number and turbulent flows. In the 

finite volume method, the governing equations of fluid flow are expressed in a 

conservative form, and then solved over discrete control volumes. 

This discretization guarantees the conservation of fluxes through a particular 

control volume. The FVM is central to most of the main commercial available CFD 

codes (including CFX), hence this master thesis will be solely concerned with this 

discretization method. 

 

 

3.1.3 Post-processor 

With the post-processor the user is able to see the visualized results from the 

previous steps. These include: 

https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Reynolds_number
https://en.wikipedia.org/wiki/Discretization
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 Domain, geometry and grid display. 

 Vector plots. 

 Streamline plots. 

 Particle tracking. 

 Plots of variables such as velocity, pressure etc. 

 

For good understanding of the numerical solution algorithm, there are 

mathematical concepts used to determine the success of these algorithms: 

convergence, consistency and stability. 

 Convergence is the property of a numerical method to produce a 

solution which approach the exact solution as the grid spacing, control 

volume size or element size is reduces to zero. [2] 

 Consistent numerical schemes produce system of algebraic equations 

which can be demonstrated to be equivalent to the original governing 

equation as the grid spacing tends to zero. [2] 

 Stability is associated with damping of errors as the numerical method 

proceeds. If a technique is not stable even round off errors in the initial 

data can cause wild oscillations or divergence.  [2]     

3.2 Conservation Laws of Fluid Motion 

3.2.1 Governing equations of fluid flow 

The basic principles that govern the implementation of CFD are the governing 

equation of fluid flow. Those principles represent mathematical statements of the 

conservation laws of physics which are: (1) mass conservation and (2) 

momentum equation. 

 

(1) Mass conservation in three dimensions 

This law of physics states that the mass of a fluid is conserved. It says that the 

rate of increase of mass in a fluid element is equal to the net rate of flow of mass 

into the fluid element 
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.  

The rate of increase of mass in the fluid element for an incompressible fluid (with 

constant density) is:   div(𝐮) = 0      (3.1) 

 

or in longhand notation:  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0     (3.2) 

 

Equation (3.1) is the steady, three-dimensional mass conservation or continuity 

equation at a point in an incompressible fluid. The term on the left side describe 

the net flow of mass out of the element across its boundaries and is called the 

convective term. 

 

(2) Momentum equations in three dimensions 

Newton’s second law states that the rate of increase of momentum of a fluid 

particle equals the sum of force done on a fluid particle. We distinguish two types 

of forces on a fluid particle: surface forces (pressure and viscous forces) and 

body forces (gravity, centrifugal, Coriolis and electromagnetic forces). Usually, 

the surface forces are represented as separate terms in the momentum equation 

and the body forces are introduced as source terms. 

 

The rate of increase of x -, y -, z - component of momentum equation (momentum 

per unit volume of a fluid particle) are given by:  

 

𝜌
𝐷𝑢

𝐷𝑡
=

𝜕(−𝑃+ 𝜏𝑥𝑥)

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
+ 𝑆𝑀𝑥     (3.3a) 

𝜌
𝐷𝑣

𝐷𝑡
=

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕(−𝑃+ 𝜏𝑦𝑦)

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝑆𝑀𝑦     (3.3b) 

𝜌
𝐷𝑤

𝐷𝑡
=

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕(−𝑃+ 𝜏𝑧𝑧)

𝜕𝑧
+ 𝑆𝑀𝑧      (3.3c) 

 

On the left side of equations (3.3a-c) is the rate of increase of x-, y-, or z- 

momentum per unit volume of a fluid particle. The right hand side of this equations 

describes total forces in x-, y- or z- direction on the element due to surface 



Introduction to Computational Fluid Dynamics  Master Thesis, Kostić 

15 
 

stresses (pressure and shear stresses) plus rate of increase of momentum due 

to sources. The convention of the pressure term is opposite to that associated 

with the normal viscous stress, because tensile stresses are usually considered 

to be positive normal stresses, so the pressure, which is by definition a 

compressive normal stress, has a minus sign. The source terms 𝑆𝑀𝑥, 𝑆𝑀𝑦 and 𝑆𝑀𝑧 

include contribution due to body forces only (for example, for gravity: 𝑆𝑀𝑥 = 0,  

𝑆𝑀𝑦 = 0,  𝑆𝑀𝑧 =  −𝜌 ∙ 𝑔). 

3.2.2 Navier-Stokes equations 

Under the assumption of a Newtonian fluid (which is valid for almost all gases 

and most liquids), the components of a shear stress tensor 𝜏 are linear dependent 

on the deformation of the fluid. The three-dimensional form of Newton’s law of 

viscosity for incompressible flows involves two constants of proportionality: the 

(first) dynamic viscosity, 𝜇, to relate stresses to linear deformations, and the 

(second) kinematic viscosity, 𝜈, to relate stresses to volumetric deformation. The 

system of equations describing the motion of fluids (the continuity equation and 

the three momentum equations) is referred to as the Navier-Stokes equations in 

CFD applications. The Navier-Stokes equations can be written in the most useful 

form for the development of the finite volume method: 

 

𝜌
𝐷𝑢

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥
+ div(µ grad u) + 𝑆𝑀𝑥            (3.4a) 

𝜌
𝐷𝑣

𝐷𝑡
= −

𝜕𝑝

𝜕𝑦
+ div(µ grad v) + 𝑆𝑀𝑦                   (3.4b) 

𝜌
𝐷𝑤

𝐷𝑡
= −

𝜕𝑝

𝜕𝑧
+ div(µ grad w) + 𝑆𝑀𝑧     (3.4c) 

3.2.3 Conservative form of the governing equations of fluid flow 

To summarize, the conservative or divergence form of the system of equations 

which governs the three-dimensional steady state fluid flow of a incompressible 

Newtonian fluid are given below: 
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Mass:     div(u) = 0                      (3.1) 

x- momentum: div(u𝐮) =  −
1

𝜌

𝜕𝑃

𝜕𝑥
 +  div(𝜈 grad u)  +  𝑆𝑀𝑥          (3.5a) 

y- momentum: div(v𝐮) =  −
1

𝜌

𝜕𝑃

𝜕𝑦
 +  div(𝜈 grad v)  +  𝑆𝑀𝑦         (3.5b) 

y- momentum: div(w𝐮) =  −
1

𝜌

𝜕𝑃

𝜕𝑧
 +  div(𝜈 grad w)  +  𝑆𝑀𝑧        (3.5c) 

 

The terms of the momentum equations (3.5a-c) represent: convection 

acceleration on the left hand side; and pressure gradient, viscosity and the source 

term respectively on the right hand side. 

3.2.4  Classification of physical behaviour and fluid flow equations 

There are two principal categories of physical behaviour: equilibrium problems 

and marching problems. 

 

Transient heat transfer, all unsteady flows and wave phenomena are examples 

of the marching or propagation problems. These problems are governed by 

parabolic or hyperbolic equations. This type of physical behaviour will not be 

analysed further in the text, because it is irrelevant for the development of this 

master thesis.  

 

Equilibrium problems are steady state situations (like the problem in this 

research), these are governed by elliptic equations. The prototype elliptic 

equation is Laplace‘s equation which describe the irrotational flow of an 

incompressible fluid and steady state conductive heat transfer. In two dimensions 

we have: 

𝜕2∅

𝜕𝑥2 +
𝜕2∅

𝜕𝑦2 = 0          (3.6) 

 

An important feature of elliptic problems is that a disturbance in the interior of the 

domain changes the solution everywhere else, causing solutions to physical 

problems described by elliptic equations to always be smooth even if the 
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boundary conditions are discontinuous. To guarantee that informations 

propagate in all directions, the numerical methods for elliptic problems must allow 

variables at each point to be effected by all its neighbour’s. Elliptic problems are 

boundary-value problems, while parabolic and hyperbolic problems are initial-

boundary-value problems. Solution domain of equilibrium problems is a closed 

domain (in contrary to marching problems, where the domain is open), and the 

solution of this problems is always smooth.  

3.3 Turbulence Modelling 

The Navier-Stokes equations are applicable for both laminar and turbulent flows 

because there are gained through setting up the instantaneous balance of forces 

on a differential fluid element. In laminar flows, significant simplifications are 

possible, while the turbulent flows are always three-dimensional and unsteady 

even in very simple geometries. Because of this, the N-S equations have to be 

adjusted in order to be used on turbulent flows. In order to simplify the mathematic 

description of turbulent flow, the fluid properties and flow characteristics (for 

example, the velocity 𝑢′(t)) can be decomposed into a steady mean value (U) and 

a fluctuating value (𝑢′(t)) where u(t) = U + 𝑢′(t). The fluctuating values are 

consider as random values and are analysed with statistic methods. 

  

With the statistic approach of turbulent flow problems, the forces on a fluid 

element are also considered with respect to a time interval and with the mean 

fluid flow value. The set of adjusted N-S equations are called time-averaged or 

Reynolds-averaged-Navier-Stokes equations (RANS): 

 

div(U𝐔) = −
1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝜈 div grad U + [−

𝜕𝑢′2̅̅ ̅̅ ̅

𝜕𝑥
−

𝜕𝑢′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑦
−

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
] (3.7a)   

div(V𝐔) = −
1

𝜌

𝜕𝑃

𝜕𝑦
+ 𝜈 div grad V + [−

𝜕𝑢′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑥
−

𝜕𝑣′2̅̅ ̅̅ ̅

𝜕𝑦
−

𝜕𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
] (3.7b) 

div(W𝐔) = −
1

𝜌

𝜕𝑃

𝜕𝑧
+ 𝜈 div grad W + [−

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑥
−

𝜕𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
−

𝜕𝑤′2̅̅ ̅̅ ̅̅

𝜕𝑧
]                                                                                         

(3.7c) 
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The RANS equations can be solved numerically with the FVM. The set of 

equations (3.7a-c) has more unknowns than equations, so it is necessary to 

introduce additional equations – the turbulence model equations, which generally 

give equations for Reynold stresses in equations (3.7a-c). There are different 

turbulence models used in CFD.  

 

For a turbulence model to be useful in general purpose CFD code it must have 

wide applicability, be accurate, simple and economical to run. The most common 

turbulence models are: 

 

Classical models:  Based on (time-averaged) Reynolds equations: 

1. Zero equation model – mixing length model 

2. Two-equation model – k-𝜀 model 

3. Reynolds stress equation model 

4. Algebraic stress model 

Large eddy simulation: Based on space-filtered equation   [2] 

 

Large eddy simulation are turbulence models where the time-dependent flow 

equation are solved for the mean flow and the largest eddies and where the 

effects of smaller eddies are modelled. The mixing length model is cheap, easy 

to implement but completely incapable of describing flows with separation and 

recirculation, so it won’t be mentioned further in this text. The most widely 

represented turbulence model in CFD is the k- 𝜀 model so the focus of this chapter 

will be on it. 

3.3.1 The k- 𝜀 model 

Two transport (partial differential) equations are solved in the k- 𝜀 model: one for 

the turbulent kinetic energy k, and the other for rate of dissipation of turbulent 

kinetic energy 𝜀. The k- 𝜀 model is sophisticated and general, but also more costly 

(than, for example the mixing length model). The model allows describing the 

effect of transport of turbulence properties by the mean flow and diffusion, also 

for the production and destruction of turbulence. 
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The underlying assumption of this model is that the turbulent viscosity µt is 

isotropic, in other words, that the ratio between Reynolds stress and mean rate 

of deformation is the same in all directions (this assumption fails in many 

categories of flow). [2] 

 

The k- 𝜀 model focusses on the mechanisms that affect the turbulent kinetic 

energy. Some preliminary definitions are required first. The instantaneous kinetic 

energy k(t) of turbulent flow is the sum of the mean kinetic energy 

K = 
1

2
 (U2 + V2 + W2) and the turbulent kinetic energy k = 

1

2
 (𝑢′2̅̅ ̅̅  + 𝑣′2̅̅ ̅̅  + 𝑤′2̅̅ ̅̅̅);            

k(t) = K + k. The governing equation for mean flow kinetic energy K is: 

  

div(K𝐔) = div(−P𝐔 + 2ν𝐔𝐸𝑖𝑗 − 𝐔𝑢′
𝑖𝑢

′
𝑗

̅̅ ̅̅ ̅̅ ̅) − 2νU𝐸𝑖𝑗 ∙ 𝐸𝑖𝑗 +

𝑢′
𝑖𝑢

′
𝑗

̅̅ ̅̅ ̅̅ ̅ ∙ 𝐸𝑖𝑗              (3.8) 

 

in words for the mean kinetic energy K we have: 

 

 =   -   +                                                                                                                         

 

 

The governing equation for turbulent kinetic energy k is: 

 

div(k𝐔) = div (−𝑝′𝒖′̅̅ ̅̅ ̅̅ + 2ν𝒖′𝑒′
𝑖𝑗̅̅ ̅̅ ̅̅ ̅ −

1

2
𝑢′

𝑖 ∙ 𝑢′
𝑖
𝑢′

𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) −

2ν𝑒′
𝑖𝑗 ∙ 𝑒′

𝑖𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑢′

𝑖𝑢
′
𝑗

̅̅ ̅̅ ̅̅ ̅ ∙ 𝐸𝑖𝑗          (3.9) 

 

in words we have: 

 

 =   -   +                                                                                                                         

 

 

Transport 

of K by 

convection 

Rate of 

dissipation 

of K 

Turbolence 

production 

Transport of K by 

pressure, viscous 

stresses and 

Reynolds stresses 

Transport 

of k by 

convection 

Rate of 

dissipation 

of k 

Turbolence 

production 

Transport of k by 

pressure, viscous 

stresses and 

Reynolds stresses 
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In equation (3.8) and (3.9) the rate of deformation of a fluid element in a turbulent 

flow  𝑒𝑖𝑗(𝑡) is decomposed into a mean and fluctuating component, 𝑒𝑖𝑗(𝑡) = 𝐸𝑖𝑗 + 

𝑒′𝑖𝑗. In the standard k- 𝜀 model k and 𝜀 are used to define velocity scale ϑ and 

length scale l representative of the large scale turbulence as follows:  ϑ = 𝑘1/2
  

and    l = 
𝑘3/2

𝜀
. 

 

The standard model uses the following transport equation for k and 𝜀: 

div (k𝐔) = div [
𝜇𝑡

𝜎𝑘
 𝑔𝑟𝑎𝑑 𝑘] + 2𝜇𝑡𝐸𝑖𝑗 ∙ 𝐸𝑖𝑗– ρε                (3.10) 

div (𝜀𝐔) = div [
𝜇𝑡

𝜎ε
 𝑔𝑟𝑎𝑑 ε] + 𝐶1ε

ε

𝑘
2𝜇𝑡𝐸𝑖𝑗𝐸𝑖𝑗– 𝐶2ε𝜌

𝜀2

𝑘
     (3.11) 

 

In words the equations are: 

 

=   +        -                                                                                                                       

 

 

where the eddy viscosity is: 𝜇𝑡 = C ∙ 𝜌 ∙  𝜃 ∙ 𝑙 = 𝜌 ∙  𝐶𝜇  ∙  
𝑘2

𝜀
 

The equations (3.10) and (3.11) contain five adjustable constants: 𝐶𝜇, 𝜎𝑘, 𝜎𝜖, 𝐶1𝜀 

and 𝐶2𝜀. The standard values for those constants for a wide range of turbulent 

flows are: 

𝐶𝜇 = 0.09, 𝜎𝑘 = 1.00, 𝜎𝜖 = 1.30, 𝐶1𝜀 = 1.44, 𝐶2𝜀 = 1.92. 

 

Generally, there are advantages and disadvantages of the k- 𝜀 model, some of 

them will be listed below: 

 

 Advantages: 

-  Simplest turbulence model for which only initial and/or boundary 

condition need to be supplied. 

- Excellent performance for many industrial relevant flows. 

Transport 

of k or 𝜀 by 

convection 

Rate of 

dissipation 

of k or 𝜀 

Rate of 

destruction 

of k or ε 

 

Transport of k 

or 𝜀  by 

diffusion 
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- Well established: the most widely validated turbulence model 

 Disadvantages: 

- More expensive to implement than mixing length model (two 

additional PDEs). 

- Poor performance in a variety of important cases such as: some 

unconfined flows, flows with large extra strains, rotating flows, fully 

developed flows in in non-circular ducts. 

Some other turbulence models which will be shortly discussed in this text are the 

Reynolds stress equation model (RSM) and the algebraic stress equation model 

(ASM). The RSM model (ore the second order closure model) is the most 

complex classical turbulent model. RSM is potential the most general of all 

classical turbulent models, very accurate calculation of mean flow properties and 

all Reynolds stresses can be performed with this turbulence model. 

Disadvantages of the RSM are that the computing cost is very large (seven extra 

PDEs), this model is not as widely validated as the mixing length and k-ε models 

and the performance of this model in some flows is poor as of the k-ε. The ASM 

solves the anisotropy of Reynolds stresses without going to the full length of 

solving the Reynolds stress transport equations. This is a more economical 

method than RSM, but the ASM is not widely validated as the mixing length and 

k-ε models. 

3.3.2 Near Wall Modelling 

All walls from the numerical model are considered smooth and as no slip walls 

(see chapter 4.3 Boundary Conditions).  

Near a no-slip wall, there are strong gradients in the dependent variables. In 

addition, viscous effects on the transport processes are large. The representation 

of these processes within a numerical simulation raises the following problems: 

 How to account for viscous effects at the wall. 

 How to resolve the rapid variation of flow variables that occurs within 

the boundary layer region.             [3] 
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The near-wall region can be subdivided into two layers. The so-called viscous 

sublayer next to the wall, where the flow is almost laminar-like, and where the 

(molecular) viscosity plays a dominant role. Further away from the wall, in the 

logarithmic layer, turbulence dominates the mixing process. Between the viscous 

sublayer and the logarithmic layer, there is a so-called buffer layer, where the 

effects of molecular viscosity and turbulence are of equal importance. The figure 

below illustrates these subdivisions of the near-wall region.  

 

Figure 10: Subdivisions of the near-wall region [3] 

The logarithmic velocity distribution near the wall provides a means to numerically 

compute the fluid shear stress as a function of the velocity at a given distance 

from the wall, which is known as a ‘wall function’. The logarithmic nature of the 

near wall fluid behaviour yields the well- known ‘log law of the wall.’ The wall 

function method is one approache to model flow in the near-wall region. It uses 

empirical formulas that force suitable conditions near the wall without resolving 

the boundary layer. The major advantages of the wall function approach is that 

the high gradient shear layers near walls can be modeled with relatively coarse 

meshes, leading to savings in CPU time and storage. In CFX, scalable wall 

functions is used for the k-𝜀 turbulence model. Advantage of scalable wall 

functions is that they can be applied on arbitrarily fine meshes. 

One of the most essential problems for the optimal performance of turbulence 

models is the proper resolution of the boundary layer. Criteria for judging the 

quality of a mesh is the minimum spacing between nodes in the boundary layer, 
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which is the required near wall mesh spacing, ∆𝑦, expressed in terms of 

Reynolds number, running length, L, and a ∆𝑦+ target value. This target value 

depends on the flow type and the turbulence model in use (that is, on the near-

wall treatment in use). Yplus (y+) is the dimensionless distance from the wall. It 

is used to check the location of the first node away from a wall. The formula for 

calculating ∆𝑦 is prescribed in the ANSYS Modeling Guide [3] and given in the 

equation (3.12): 

∆𝑦 = 𝐿 ∙ ∆𝑦+√74𝑅𝑒𝐿
−13/14

       (3.12) 

This equation allows us to set the target ∆𝑦+ value at a given x location and 

obtain the mesh spacing, ∆𝑦 for nodes in the boundary layer. 

3.4 Methodology of the Finite Volume Method 

The finite volume method is a special form of the finite difference method (FDM), 

as said before. The approach of the FDM is to discretize the region of interest 

whit a grid and with nods connecting the grid elements. The values at every nod 

are calculated by substitution of fluid flow approximations in the integral 

equations. The fault of this kind of approach is that the mass inflow must not be 

equal to the mass outflow, therefore the law of mass conservation is not obtained. 

In the FVM, the region of interest is also divided with a grid and nods, but in 

contrary to the FDM, an entire section is added around each point where the flux 

of a fluid flow property is calculate. This approach is very good at conservation of 

mass in the whole region of interest. The numerical algorithm of FVM consists of 

three main steps: 

 Formal integration of the governing equations of fluid flow over all the 

(finite) control volumes of the solution domain. 

 Discretization involves the substitution of a variety of finite-difference-

type approximations for the terms in the integrated equation representing 

flow processes such as convection, diffusion and sources. This converts 

the integral equations into a system of algebraic equations. 

 Solution of the algebraic equations by an iterative method.            
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The first step, the control volume integration, express the (exact) conservation 

of relevant properties for each finite size cell. This distinguishes the FVM from 

all other CFD techniques. The conservation of a general flow variable ∅, for 

example a velocity component, within a finite control volume can be expressed 

as a balance between the various processes tending to increase or decrease it. 

In words we have: 

 

 

=    +      + 

 

 

 

While solving physical phenomena occurring in CFD, an iterative approach is 

necessary due to nonlinear and complex nature of the equations. For each 

iteration an error, or residual is reported as a measure of the overall conservation 

of the flow properties. For further insight of the FVM methodology refer to 

Appendix A where an example of solving convection-diffusion problem of a 

general flow variable ∅ is shown.  

3.5 Discretisation Schemes in Finite Volume Method 

Discretization schemes are generally divided in central differencing scheme, 

upwind differencing scheme, downwind differencing scheme and hybrid 

differencing scheme (combination between the central and upwind differencing 

schemes). These schemes can also be first or higher order.  

 

Numerical solutions may be indistinguishable from the exact solution of the 

transport equation when the number of computational cells is infinitely large 

irrespective of the differencing method used. However, in practical calculations 

we can only use a finite-sometimes quite small-number of cells and our numerical 

results will only be physically realistic when the discretization schemes has 

certain properties. [2] 

Rate of change 

of ∅ in the control 

volume with 

respect to time 

Net flux of ∅ due 

to convection 

into the control 

volume 

Net flux of ∅ due 

to diffusion into 

the control 

volume 

Net rate of 

creation of ∅  

inside the 

control volume 
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The most important ones are: (1) Conservativeness, (2) Boundedness and (3) 

Transportiveness. 

 

(1) To ensure conservation of ∅ for the whole solution domain, the flux of ∅ 

leaving the adjacent control volume through the face must be equal to 

the flux of ∅ entering the adjacent control volume through the same face. 

To accomplish this, the flux trough a common face must be represented 

by one and the same expression in adjacent control volumes. 

 

(2) Boundedness states that in the absence of source the internal nodal 

values of the property ∅ should be bounded by its boundary values. For 

example, in a steady state conduction problem without sources and with 

boundary temperatures of 5000 C and 2000 C all interior values of T 

should be less than 5000 C and greater than 2000 C. A desirable feature 

for satisfying the boundedness criterion is the diagonal dominance of the 

matrix of “coefficients of the discretized equations” (net deviation of every 

equation in the set of algebraic equations that needs to be solved at each 

nodal point). 

Another essential requirement for boundedness is that all coefficients of 

the discretized equations should have the same sign (usually all 

positive). Physically this implies that an increase in the variable ∅ at one 

node should result in an increase in ∅ at neighbouring nodes. 

 

(3) Transportiveness can be described as the directionality of influencing of 

a property ∅ in dependence of the Peclet number Pe (measure of relative 

strengths of convection and diffusion; for Pe = 0 no convection and pure 

diffusion, for Pe = ∞ no diffusion and pure convection). 

 

 



Introduction to Computational Fluid Dynamics  Master Thesis, Kostić 

26 
 

3.5.1 The Advection Term 

There are several discretisation schemes included in ANSYS CFX [7]. Which 

one is used in the numerical simulation is dependent on the advection term. The 

advection term requires the integration point values of ∅ to be approximated in 

terms of the nodal values of ∅. The advection schemes have the general form: 

∅ 𝑖𝑝 = ∅ 𝑢𝑝 + 𝛽 div(∅)  ∙ ∆𝑟            (3.13) 

where ∅ 𝑢𝑝 is the value at the upwind node, and 𝑟 is the vector from the upwind 

node to the ip. Particular choices for 𝛽 and div(∅) yield different schemes as 

described below. 

A value of 𝛽 = 0 yields the first order upwind scheme. This scheme is a very 

popular, simple and robust used mostly in steady fluid flow. With the central 

difference scheme, 𝛽 is set to 1 and div(∅) is set to the local element gradient. 

The first order upwind differencing scheme, unlike central differencing, is able to 

identify flow direction. The value of property  ∅ at a west cell face is always 

influenced by both ∅𝑃 and ∅𝑊 in central differencing, which is unsuitable because 

the west cell face should receive much stronger influencing from node W than 

from node P. In the upwind or “donor cell” differencing scheme takes that the 

convected value of  ∅ at a cell face is taken to be equal to the value at the 

upstream node. The upwind differencing scheme has the properties of 

conservativeness, boundedness and transportiveness which makes this scheme 

very popular. A major drawback of the first order upwind discretisation scheme is 

that it produces erroneous results when the flow is not aligned with the grid lines 

(figure 11). The scheme causes the distributions of the transported properties to 

become smeared in such problems as shown below. 
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Figure 11: Discretization errors of the first upwind scheme that tend to smear steep spatial gradients [3] 

 

ANSYS CFX [7] uses high resolution schemes by default, which is the case in 

the simulations done in this research. This means that a special nonlinear term 𝛽 

is used at each node, which is computed to be as close to 1 as possible. The 

advective flux is then evaluated using the values of 𝛽 and div(∅) from the upwind 

node. The recipe for 𝛽 is based on the boundedness principles used by Barth and 

Jesperson [5]. At first, values of ∅ 𝑚𝑖𝑛 and ∅ 𝑚𝑎𝑥 are computed at each node using 

a matrix involving adjacent nodes (including the node itself). Next, for each 

integration point around the node, the equation (3.13) is solved for 𝛽 to ensure 

that it does not undershoot ∅ 𝑚𝑖𝑛 or overshoot ∅ 𝑚𝑎𝑥. 

3.6 Solution of the Discretised Equations 

There are two families of solution techniques for linear algebraic equations: direct 

methods and indirect or iterative methods. Example of direct methods are 

Cramer’s rule matrix inversion and Gaussian elimination. Iterative methods are 

based on large number of repetitions of simple algorithms leading to eventual 

convergence. Well-known examples are the Jacoby and Gauss-Seidel point-by-

point iteration methods. Iterative methods are generally much more economical 

than direct methods. 

 

If we focus on solving the Navier-Stokes equations (3.1) and (3.5a-c) we will find 

that this set of equations presents us with two problems: 
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- Non-linearity contained in the momentum equations 

- Every velocity component appears in each equation (in all momentum 

equations as well as in the continuity equation) causing all the 

equations to be coupled together. The most complex problem to 

resolve is Pressure. It appears in all momentum equations, but there 

is no (transport or other) equation for pressure. 

Both the problems associated with the non-linearity in the equation set and the 

pressure-velocity linkage can be solved by adopting an iterative solution strategy. 

3.6.1 Solution strategy – the coupled solver 

The coupled solver solution strategy solves the momentum equations first by 

using a guessed pressure and an equation for pressure corrections. Because of 

the ‘guess-and-correct’ nature of the linear system, a large number of iterations 

are typically required. 

 

ANSYS CFX [7] uses a coupled solver, which solves the hydrodynamic equations 

(for u, v, w, p) as a single system. This solution approach uses a fully implicit 

discretization of the equations at any given time step. For steady-state problems, 

the time-step behaves like an ‘acceleration parameter’, to guide the approximate 

solutions in a physically based manner to a steady-state solution. This reduces 

the number of iterations required for convergence to a steady-state, or to 

calculate the solution for each time step in a time-dependent analysis. [3] 

 

The flow chart shown below illustrates the general field solution process used in 

the CFX-Solver. The solution of each set of field equations consist of two 

numerical operations for each time step: 

1. Coefficient Generation: The nonlinear equations are linearized and 

assembled into the solution matrix. 

2. Equation Solution: The linear equations are solved using an 

Algebraic Multigrid method.      [3] 
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Figure 12: General solution process used in the CFX- Solver [3] 

 

3.6.2 Linear equation solution 

The process of linear equations solution can be improved by the use of a 

technique called Multigrid (MG). The multigrid process performs early iterations 

on a fine mesh and subsequently increase the mesh size with later iterations. The 

results are then transferred back from the coarsest mesh to the original fine mesh. 
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ANSYS CFX [7] uses a Multigrid accelerated Incomplete Lower Upper (ILU) 

factorization technique for solving the discrete system of linearized equations. It 

is an iterative solver whereby the exact solution of the equations is approached 

during the course of several iterations. [3] 

The linearized system of discrete equations can be written in the general matrix 

form: 

[𝐴][𝜑] = [𝑏]        (3.14) 

Where [𝐴] is the coefficient matrix, [𝜑] the solution vector and [𝑏] is the right 

hand side. 

 

The above equation can be solved iteratively by approximating the starting 

solution, 𝜑𝑛, that has to be improved by a correction, 𝜑’ ,to obtain a better 

solution, 𝜑𝑛+1, which is: 𝜑𝑛+1 = 𝜑𝑛 + 𝜑’ ; where the correction 𝜑’ is a solution of: 

A ∙  𝜑′ = 𝑟𝑛 ;  and 𝑟𝑛 is the residual (error), obtained from:  𝑟𝑛 = b – A ∙ 𝜑𝑛. By 

repeating this algorithm, solution of desired accuracy can be acquired.  

 

The performance of Iterative solvers such as ILU tend to rapidly decrease as the 

number of mesh elements increases. Performance also slowes down if there are 

large element aspect ratios present. 

3.6.3 Implementation of Boundary Conditions 

Only by implementation of boundary conditions the system of algebraic equation 

can be solved. Boundary conditions enter the system of equation by cutting of 

the link to the boundary side and changing the source terms. The appropriate 

coefficient of the discretised equation is set to zero and the boundary side flux is 

introduced trough source terms. It is the boundary conditions that produce 

different solutions for a given geometry and set of physical models, therefore, it 

is important to set boundary conditions that accurately reflect the real situation to 

enable you to obtain accurate results. 

 



Introduction to Computational Fluid Dynamics  Master Thesis, Kostić 

31 
 

Types of boundaries available in ANSYS CFX [7] are: 

- Inlet 

- Outlet 

- Opening 

- Wall 

- Symmetry Plane 

The boundary condition should be suitable configured so that the fluid flow 

problem is neither over-specified nor under-specified. The most robust 

configuration is to place mass flow or velocity condition at an inlet and static 

pressure at an outlet. The inlet total pressure is then an implicit result of the 

prediction. Placing total pressure at an inlet and mass flow/velocity at an outlet is 

also robust enough, but all other options (such as pressure at inlet and outlet) 

should be avoided in boundary condition implementation.  

 

In the numerical simulations that were conducted for this master thesis normal 

speed is chosen as a condition at the inlet. The magnitude of the inlet velocity is 

specified and the direction is taken to be normal to the boundary. The direction 

constraint requires that the flow direction, is parallel to the boundary surface 

normal, which is calculated at each element face on the inlet boundary. 
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4. Numerical Modelling 

This chapter provides insight in the procedures of numerical modelling. In chapter 

3.1 it was said that every CFD code consist of three main elements: pre-

processing, solver and post-processing. This chapter describes the first two 

steeps, the pre-processing and solver, while the post-processing is described in 

the fifth chapter. The pre-processing consist from geometry modelling, grid 

generation, boundary condition and fluid properties determination. Geometry 

modelling is described in the chapter 4.1, grid generation (meshing) in the chapter 

4.2 and boundary condition including fluid properties determination in chapter 4.3. 

The solver is described in the chapter 4.4 CFX–Solver. 

4.1 Geometry 

The geometries generated in this master’s thesis were modelled in AutoCAD 

Mechanical 2015 [8] using the geometries and dimensions from the physical 

model study (figure below).  

      

     

Figure 13: Geometries of the four intakes 

Intake 1 
Intake 2 

Intake 3 
Intake 4 



Numerical Modelling  Master Thesis, Kostić 

33 
 

4.1.1 3D Geometry 

3D geometry of the bulb turbine model was generated by recreating figure 3 in 

AutoCAD 3D [8]. Figure 14 shows: a 3D view (left insert), a side view (right insert, 

top) and view from top (right insert bottom). Red areas represent the solid 

domains of the model: the bulb, wicket gates and the bulb supporting piers, while 

the remaining areas represent fluid domains. The solid regions from figure 14 

were segregated from the 3D geometry before their import into ANSYS CFX [7], 

because only the fluid region (where water can flow) is required for the numerical 

procedure. 

 

 

 

 

 

Figure 14: Geometry of bulb turbine model, with intake 1 shown and wicket gates opening angle of 300 

 

4.1.2 Intake Models 

The four intake models were also created in AutoCAD 3D [8], using the geometry 

and dimensions from figures 5 – 8. The models are visible in figures 15 – 18. 

 

 

 

3-D view Side view 

View from top 
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Figure 15:  Geometry model for intake 1 

 

 

 

Figure 16: Geometry model for intake 2 

 

 

 

Side view 
3-D view 

View from top 

Side view 
3D view 

View from top 
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Figure 17:  Geometry model for intake 3 

 

 

 

 

Figure 18: Geometry model for intake 4 

Side view 

3D view 

View from top 

3D view 

Side view 

View from top 
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4.1.3 Stilling Chamber 

Figure 3 shows the schematic diagram of the test apparatus. In the numerical 

model, there is no need for stilling and measuring apparatus because the velocity 

of the fluid flowing into the model can be introduced as a boundary condition in 

ANSYS CFX [7] software. However, for simulating the laboratory conditions as 

best as possible, it is necessary to create a chamber from which the fluid can flow 

into the bulb turbine model. The solution is to create a boxlike stilling chamber 

attached with the turbine model. The first vertical plane of the stilling chamber will 

be used as inlet boundary condition of the numerical model, which allows 

assigning desirable velocities to it.  

Figure 3 is the only figure of the stilling chamber from the physical model paper 

and it shows uncertainties regarding its geometry. For instance, the high and 

depth of the stilling chamber, and the gap between intake models and vertical 

planes are unclear. Further investigations were made to estimate the stilling 

chamber geometry. These investigations are more detail described in the 

sensitivity analysis in chapter 4.2.4. Figures 19, 20 and 21 show the stilling 

chamber approximation.  

 

Figure 19: 3D view of the whole model including the stilling chamber with intake 1 shown 
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Figure 20: Side view of the whole model including the stilling chamber with intake 1 shown 

 

Figure 21: View from top of the whole model including the stilling chamber with intake 1 shown 

The 3D geometry from Auto CAD [8] was later exported as a STEP file, and 

imported in ANSYS Design Modeller [7] where further geometry adaption are 

possible. Figure below shows the 3D geometry opened with ANSYS Design 

Modeller [7].   

 

Figure 22: 3D Geometry imported in ANSYS Design Modeller 
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4.2 Grid Generation 

The next step in the numerical modelling process is grid generation. Before 

continuing with the meshing process, it is desirable to adjust some geometry 

faults in the Design Modeller in order to improve the meshing quality. For 

example: merging surfaces and repairing hard edges. Figure 23 shows an 

example of merging surfaces on the top curve of intake 1, and figure 24 shows 

an example of hard edges repairing. 

  

Figure 23: Example of surface merging; before merging (left) and after merging (right) 

 

  

Figure 24: Example of hard edges repairing; before repairing (left) and after repairing (right) 
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4.2.1 Meshing Process 

Meshing for the earlier described geometry is done in ANSYS Meshing [7]. In 

figure below, the meshed geometry with intake 1 and wicket gates opening of 300 

is shown. It is visible that the mesh around the wicket gates is finer than in other 

regions due to small openings and gaps in this area. Using a model with wicket 

gates in the numerical procedure causes increase of element numbers and 

nodes. It is of interest to reduce the element numbers, and with it the computing 

time, so a model simplification is introduced. 

 

 

Figure 25: Meshed geometry for intake 1 (left) and mesh around the wicket gates (right) 

4.2.2 Model Simplification 

In the simplified model geometry, the wicket gates and draft tube are left out and 

the model is cut in half in flow direction with applying a symmetry plane (figure 

26). This simplification is justified because the focus of this thesis is on bulb 

turbine intake structures and not the flow around the runner blades. Figure 28 

shows that the velocity distribution for the full model and the simplified model are 

almost the same. The number of elements and nodes are reduced with 

introduction of the simplification. Number of elements drop from 6.6 Mio to 2.7 
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Mio and number of nodes drop from 1.4 Mio to 581 thousand, which reduces the 

computing time of the numerical simulations nearly four times for using the same 

PC with the same number of CPU-s. 

 

Figure 26: Simplified geometry model for intake 1 

 

 

 

 

 Full Model Simple Model 

Model Description Whole model, with wicket 

gates and draft tube 

Model cut in flow direction, no 

wicket gates, no draft tube 

Nr. of Elements 6.6 Mio 2.7 Mio 

Nr. of Nodes 1.4 Mio 580 K 

Total computing Time 3 h 35 min 

Table 1: Comparison between the simple and full model with intake 1 
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Figure 27: Mesh representation of the full (left) and simplified model (right) around the bulb 

 

Figure below represent the comparison of velocity distributions for simplified and 

original geometry. Velocities for both models were measured on a vertical plane 

upstream from the bulb (see figure 43), and the same global mesh size of 0.01 

meters was used for both of them. Velocities were presented by means of the 

velocity coefficient (local velocity divided with mean velocity)  𝑣 �̅�⁄ . The two 

velocity distributions shown in figure below are almost identical. Difference is that 

for the full model, the velocities are not completely symmetrical, due to the 

rotational flow caused by the wicket gates. The differences are so small that they 

can be neglected, and the simplified model can be used in further investigations. 

  

                

Figure 28: Velocity distribution for the full model (left) and simplified model (right) 

𝑣 /�̅� 

Full model Simplified model 



Numerical Modelling  Master Thesis, Kostić 

42 
 

4.2.3 Meshing Details 

Mesh for the 3D bulb turbine model consist of tetrahedrons, the only way to 

discretise an irregular geometry like the one used for this research. The global 

mesh size for the model is set to maximal 0.01 meters and the mesh growth rate 

is 1.1. ANSYS Meshing [7] defines finer mesh around corners, geometry changes 

and curvatures automatically. In figure below, change of mesh size on the 

simplified geometry for global mesh size of 0.02 m is shown. The figure shows 

the geometry for mesh size 0.02 and not 0.01 meters, because the mesh change 

on curvature is hardly visible on the finer mesh. 

 

                   

 

Figure 29: Mesh details (left) and inflation layers (right) for the simplified geometry 

 

Right side of figure 29 show inflation layers near the wall. Inflation layers are 

added to record near-wall fluid flow. These layers should be adapted so that the 

difference between the last inflation layer and the layer next to it is not significant. 

Inflation is added on all surfaces except the inlet, outlet and symmetry surfaces. 

The inflation method is the “first layer thickness”, with seven inflation layers, the 

first layer high of 0.001 meters and growth rate of 1.2. For the whole model, 4 

inflation layers were used instead of seven in order to prevail overcrossing of the 

inflation layers in the small gaps between the wicket gates elements.  

 

 

 

  

Finer mesh 
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4.2.4 Sensitivity Analysis 

It was mentioned before that the dimensions of some geometry parameters from 

the original study were unclear. Figure below displays the unknown geometry 

values shown on the simplified numerical model. The unknown values are model 

height, model depth and offset between the intakes and the vertical wall. Tests 

with different geometry values were made to estimate the unknown parameters. 

 

 

 

 

Figure 30: Geometry uncertainties shown on the simplified numerical model 

Velocity distributions were compared for every test, and the geometry with results 

closest to the physical model results were chosen for further investigations. 

Velocity distribution for every test were shown in the vertical plane upstream 

from the bulb (figure 43). The velocities are represented with means of the 

velocity coefficient (local velocity divided with mean velocity)  𝑣 �̅�⁄ . All tests were 

conducted on intake 1, but the resulting model geometry parameters were 

applied for other three intakes as well as for the first one. 

Figure 31 shows two examples of sensitivity tests with change of model depth. 

It is visible that lower and middle region of the measurement plane are 

influenced by the change of model depth. Velocities in the lower region are 

reducing, and in the middle region increasing for greater bottom depth. After a 

series of test, it is chosen to leave the bottom depth at 0 m (figure 26). 

Model height 

Model depth 

Offset between intake 

and vertical wall 
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Figure 31: Examples of sensitivity analysis test: bottom depth 10 mm (left) and bottom depth 3 mm (right) 

 

Figure 32 shows tests for addition of extra model height. The upper region of the 

velocity measurement plane are most affected by increase of model height. It is 

visible that, with increase of the model height, the velocities in the top region 

decrease. The highest velocities in the top region are achieved with no extra 

model height (figure 30 right). Velocity distribution for the geometry without extra 

model height is the one most closest to the physical model results, but it is not 

realistic to cut the model just above the intake, so an additional model height of 

5 mm is chosen in further investigations (figure 26). 

  

Figure 32: Examples of sensitivity analysis test: model height 10 mm (left) and no extra model high (right) 
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The figure below shows velocity distributions for change of the offset between 

intake and vertical plane (figure 30 right). The velocities in the side region are 

more shifted towards the middle with addition of wall offset, and closer to the wall 

through decreasing it. The offset between the intake and wall is chosen to be 15 

mm (figure 26). 

  

Figure 33: Examples of sensitivity analysis test: wall offset 25 mm (left) and no wall offset (right) 

 

After determining the unknown geometry parameters, the global mesh size has 

to be estimated in order to continue the numerical modelling process. Test with 

the same geometry (simplified with intake 1) and different global mesh size for 

each test were made. Head losses (∆h) were Calculated and compared for each 

test. Head losses were determined in terms of the total pressure loss (see chapter 

5.5). Table 2 shows calculated head losses for geometries with different global 

mesh size. The coarsest global mesh size analysed is 0.08 m, and the finest one 

is 0.0075 m. Figure 34 show the convergence of the head losses with change of 

mesh size. It is visible that the loss does not change much for the mesh size of 

0.02, 0.01 and 0.0075, so the global mesh size of 0.01 m is chosen for further 

analysis. This global mesh size is representative for all four geometry intakes. 

 

Figure 35 shows two geometries with different global mesh size, 0.06 on the left 

and 0.01 on the right. 
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Table 2: Head losses for different global mesh size on simplified geometry with intake 1 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Figure 35: Simplified geometry with intake 1: global mesh size 0.06 (left), global mesh size 0.01 (right) 

Global Mesh Size [m] Dh [m] 

0.08 0.42 

0.06 0.41 

0.04 0.36 

0.02 0.34 

0.01 0.32 

0.0075 0.32 

Figure 34: Convergence of head losses with decrease of global mesh size 
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4.3 Boundary Conditions 

The last steps of the pre-process are generated in CFX–Pre where the boundary 

conditions and fluid flow properties are determined. In Analysis Type, steady state 

is chosen as the fluid flow regime. In Default Domain, water is chosen as the only 

domain fluid (it is a single phase simulation), heat transfer is excluded from fluid 

models, k-epsilon model is chosen as the turbulence model and the wall function 

is chosen to be scalable. With excluding the heat transfer, the solution equation 

system is smaller for two PDE’s (the energy equation and the equation of state) 

and therefore the computing time is shorter. The chosen k-epsilon turbulence 

model is described in chapter 3.3.1.  

 

Figure 36: Boundary conditions for the whole model with intake 1 and wicket gates opening of 300 

The boundary conditions chosen for the full model with intake 1 and wicket gates 

opening of 300 are displayed in figure 36. The boundary condition configuration 

in this model is placed velocity condition at the inlet and relative pressure at the 

outlet. The inlet of the fluid domain is set at the vertical plane 1 (with the black 

arrows pointing the flow direction), where the fluid enters the domain with a 

normal speed of 0.5 m/s. It was mentioned before that velocity distribution is very 

1 

2 
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similar for different velocities, so the 0.5 m/s inlet velocity is chosen in order to 

gain velocities of nearly 1 m/s in the intake regions. The inlet flow regime is set 

to be subsonic and the turbulence intensity is adjust to medium (= 5 %). The 

outlet of the fluid domain is set at the vertical plane 2. Boundary type at the outlet 

is chosen to be an opening condition, which means that the fluid can flow in an 

out through this boundary. Relative pressure at the outlet is set to be 0 Pa. At 

first, the boundary type at the outlet of the full model was chosen as outlet 

boundary condition, but there was backflow registered in the draft tube, just 

before the plane 2. The CFX solver reported this problem (figure 37), so the outlet 

boundary condition was changed to opening. All the other surfaces from figure 

36 were set as walls. The walls are defined as smooth and no-slip walls. Smooth 

walls means that the wall friction is neglected and no-slip walls means that the 

velocity of fluid particles on the border with the wall have a velocity of zero m/s. 

The boundary conditions for the simplified geometry with intake 1 is shown in 

figure 38. The vertical plane 3 represent the symmetry plane. 

 

Figure 37: Report from CFX – Solver to suggest replacing outlet boundary condition with an opening 

 

The outlet boundary condition for the simplified model is set to outlet with static 

pressure of 0 Pa, not opening, because the simplification does not include the 

draft tube where the backflow occurs, so CFX solver does not report any 

problems. It is important to remark that the boundary conditions are the same for 

all four intakes, meaning that the normal speed at the inlet is always 0.5 m/s and 

the static pressure at the outlet is 0 Pa. 
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Figure 38: Boundary conditions for the simplified model with intake 1 

4.4 CFX-Solver 

This chapter describes solution of discretised equation in ANSYS CFX [7]. 

Solution strategy used in CFX–Solver are described in chapter 3.6., so it will not 

be explained in this chapter.  

A measure of how well the solution is converged can be obtained by plotting the 

residuals for each equation at the end of each timestep. A reasonably converged 

solution requires a maximum residual level, in this case it is 0.00001. Typically, 

the RMS (Root Mean Square) residual will be an order of magnitude lower than 

this. The RMS residual is obtained by taking all of the residuals throughout the 

domain, squaring them, taking the mean, and then taking the square root of the 

mean. This should present an idea of a typical magnitude of the residuals. The 

Maximum Residuals and/or the RMS Residuals can be displayed in the 

convergence history plots by selecting a specific monitor in Monitor Setting [3]. 

Figure 39 describes the convergence of RMS mass and momentum equations 

for the simplified version of intake 1. The next figure show the maximum values 

of the same equations. Figure 41 displays the convergence of turbulence 

3 

1 

2 
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equations, and figure 42 shows the convergence of pressure and velocity at some 

random points in the fuid domain.  

 

Figure 39: Convergence of RMS values of mass and momentum equations for intake 1 

 

Figure 40: Convergence of maximum values of mass and momentum equations for intake 1 
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Figure 41: Convergence of RMS values for turbulence equations (k and epsilon) for intake 1 

 

 

Figure 42: Convergence of velocity and pressure of three monitor points shown on the right side of the 
figure 

 

Point 1 

Point 2 

Point 3 
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5. Results 

In this chapter, the post-processing on the bulb turbine model is done. This is the 

last step of the numerical modelling procedure, where the 3D models, boundary 

condition etc. from the previous chapter are used to gain results in terms of 

velocity distributions and pressure losses. All velocity measurements were 

conducted on a vertical plane (showed in red in figures 43) for the physical as 

well as for the numerical models for all intakes. The offset of this plane from the 

bulb is uncertain and not mentioned in the physical study paper, however, for the 

numerical model this offset is chosen to be 12.85 mm. This particular offset value 

has proven to give numerical results closest to the physical model results. 

 

 

Figure 43: Velocity measurement plane; 3D view (top) and side view (bottom) for intake 1 
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The numerical results visible in this chapters are made for the simplified versions 

of the four intakes and compared with the physical model results for the wicket 

gates opening of 300.  

 

The average velocity, �̅� was different for each intake; however, flow distribution 

is not affected by the actual values of velocity [1].  

 

It is obvious from comparing the velocity contours that the intake shape has a 

significant effect on velocity distribution (see figures 4 – 7 for intake shapes). The 

velocity distributions for all intakes show the flow stagnation in front of the bulb 

and flowing around it to the sides. Figure 44 show the streamlines for whole and 

simplified models. 

 

 

Figure 44: 3D views of streamlines for the whole (top) and simplified model (bottom) for intake 1 
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5.1 Intake 1 

In intake 1, the velocities are high around the top, due to the smooth, bellmouth-

type top curve, and low near the bottom, with a steep transition from top to bottom. 

Figure 45 shows the comparison between the numerical and measured velocity 

results. The numerical results (left) are gained with ANSYS CFX [7], while the 

measured results (right) are accessible through the hydraulic study model paper 

and modified with PYTHON. The velocities are represented with the velocity 

coefficient  𝑣 �̅�⁄ . 

  

    

 

 

 

  

Figure 45: Velocity distribution of the numerical model (left) and physical model (right) for intake 1 

 

Figure 46 show the velocity distribution over the second column (left side of the 

figure) for the numerical and physical model. The following figures show velocity 

vectors, velocity distribution over 2 quadrants of the intake and a vertical and 

horizontal section through the intake model including the stilling chamber.  

In the vector distribution, it can be seen how the velocities decrease before the 

bulb and increase on the side of it. In the horizontal section b–b on the cross 

section of the bulb and stilling chamber, a slight flow separation is visible. 

𝑣/�̅� 
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Figure 46: Velocity distribution in line a–a (column 2) for CFD and measured results 

 

 

 

     

Figure 47: Velocity vector distribution for Intake 1 (left), and tangential projection of the vectors (right) 

a 

a 

y 

a 

a 

Measured Result CFD Result 

70 mm 
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Figure 48: Velocities for two quadrants of intake 1 (the other two are considered to be symmetrical) 

 

  

 

 

 

 

 

 

  

Figure 49: Vertical and horizontal section through intake 1 including the stilling chamber 

𝑣/�̅� 

𝑣/�̅� = 1.09 

𝑣/�̅� = 0.91 

b b 

 

a 
a 

Section b – b  

Section a – a  
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5.2 Intake 2 

In intake 2, the velocities were fairly uniform over the whole profile, and the local 

velocities did not vary greatly from the average velocity. Figure 50 shows the 

comparison between the numerical and measured velocity results. The numerical 

results (left) are gained with ANSYS CFX [7], while the measured results (right) 

are accessible through the hydraulic study model paper and modified with 

PYTHON. The velocities are represented with the velocity coefficient  𝑣 �̅�⁄ . 

 

    

Figure 50: Velocity distribution of the numerical model (left) and physical model (right) for intake 2 

 

Figure 51 show the velocity distribution over the second column (left side of the 

figure) for the numerical and physical model. The following figures show velocity 

vectors, velocity distribution over 2 quadrants of the intake and a vertical and 

horizontal section through the intake model including the stilling chamber.  

The vector distribution show that the vectors are directed more central than in 

intake 1. In the horizontal section b–b of the cross section of the bulb and stilling 

chamber, a flow separation something bigger than in intake 1 is visible, and in 

vertical section a–a  an slight flow separation is visible. 

𝑣/�̅� 



Results  Master Thesis, Kostić 

58 
 

 

 

 

 

 

Figure 51: Velocity distribution in line a–a (column 2) for CFD and measured results 

 

 

            

Figure 52: Velocity vector distribution for Intake 2 (left), and tangential projection of the vectors (right) 

 

Measured Result CFD Result 

70 mm 

a 

a 

a 

a 
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Figure 53: Velocities for two quadrants of intake 2 (the other two are considered to be symmetrical) 

 

 

 

 

 

Figure 54: Vertical and horizontal section through intake 2 including the stilling chamber 

𝑣/�̅� 

𝑣/�̅� = 1.03 

𝑣/�̅� = 0.97 

Section a – a  

Section b – b  

b b 

a a 



Results  Master Thesis, Kostić 

60 
 

5.3 Intake 3 

Intake 3 has no entrance curves and the corners are squares. The effect of the 

square corners is visible in the velocity profiles. The velocities are high through 

the centre and very low at the edges and corners of the intake. Figure 55 shows 

the comparison between the numerical and measured velocity results. The 

numerical results (left) are gained with ANSYS CFX [7], while the measured 

results (right) are accessible through the hydraulic study model paper and 

modified with PYTHON. The velocities are represented with the velocity 

coefficient  𝑣 �̅�⁄ .  

     

Figure 55: Velocity distribution of the numerical model (left) and physical model (right) for intake 3 

Figure 56 show the velocity distribution over the second column (left side of the 

figure) for the numerical and physical model. The following figures show velocity 

vectors, velocity distribution over 2 quadrants of the intake and a vertical and 

horizontal section through the intake model including the stilling chamber.  

The vector distribution show rotating flow in the upper corners and different vector 

angles on the vertical edges. In the horizontal section b–b of the cross section of 

the bulb and stilling chamber, a great flow separation is visible, and in vertical 

section a–a another flow separation and flow stagnations are visible. 

𝑣/�̅� 
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Figure 56: Velocity distribution in line a–a (column 2) for CFD and measured results 

 

 

 

          

Figure 57: Velocity vector distribution for Intake 3 (left), and tangential projection of the vectors (right) 

Measured Result CFD Result 

70 mm 

a
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Figure 58: Velocities for two quadrants of intake 3 (the other two are considered to be symmetrical) 

 

 

 

 

 

 

 

 

 

Figure 59: Vertical and horizontal section through intake 3 including the stilling chamber 

𝑣/�̅� 
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5.4 Intake 4 

Intake 4 has high velocities in the top but otherwise the flow distribution is fairly 

uniform. This intake did not indicate flow separation as intake 3, nor a steep 

gradient from top to bottom as intake 1. The overall velocity distribution was the 

most uniform in intake 4. Figure 60 shows the comparison between the numerical 

and measured velocity results. The numerical results (left) are gained with 

ANSYS CFX [7], while the measured results (right) are accessible through the 

hydraulic study model paper and modified with PYTHON. The velocities are 

represented with the velocity coefficient  𝑣 �̅�⁄ .  

 

     

Figure 60: Velocity distribution of the numerical model (left) and physical model (right) for intake 4 

Figure 61 show the velocity distribution over the second column (left side of the 

figure) for the numerical and physical model. The following figures show velocity 

vectors, velocity distribution over 2 quadrants of the intake and a vertical and 

horizontal section through the intake model including the stilling chamber.  

In the vector distribution, it can be seen how the velocities decrees before the 

bulb and increase on the side of it. In the horizontal and vertical section of the 

bulb and stilling chamber, it is visible that intake 4 has almost no flow separation. 

𝑣/�̅� 



Results  Master Thesis, Kostić 

64 
 

 

 

 

 

 

Figure 61: Velocity distribution in line a–a (column 2) for CFD and measured results 

 

 

    

Figure 62: Velocity vector distribution for Intake 4 (left), and tangential projection of the vectors (right) 
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Figure 63: Velocities for two quadrants of intake 4 (the other two are considered to be symmetrical) 

 

 

 

 

 

  

Figure 64: Vertical and horizontal section through intake 4 including the stilling chamber 
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5.5 Head Losses 

It is of great interest to calculate head losses for each intake and to cross-validate 

them. Friction losses are not included in the loss calculation due to the surface 

roughness. The only losses calculated in this research are the local losses, which 

are dependent only on geometry changes in the model. Local losses appear by 

energy dissipation happening because flow irregularities caused by geometry 

change. The head losses for each intake model were determined by calculating 

the difference of total pressure on the inlet and outlet, and dividing this difference 

with 𝜌 ∙ g. This calculation is performed in CFX-Post, the formula for calculation 

of head losses is inserted under Expressions: 

 (areaAve(Total Pressure)@Inlet - areaAve(Total 

Pressure)@Outlet)/(1000[kg/m^3]*9.81[m/s^2]) 

The total pressure, 𝑝𝑡𝑜𝑡, is defined as the pressure that would exist at a point if 

the fluid was brought instantaneously to rest such that the dynamic energy of the 

flow converted to pressure without losses. [3] 

For incompressible flows, the total pressure is given by Bernoulli’s equation: 

 𝑝𝑡𝑜𝑡 =  𝑝𝑠𝑡𝑎𝑡 +  
1

2
 𝜌(𝑈 ∙ 𝑈)        (5.1) 

which is the sum of the static and dynamic pressures. 

It is also of interest to represent ζ values for each intake, which is a common 
indicator of the head losses. ζ value is given by equation: 

𝜁 =
∆ℎ

𝑣2

2𝑔

            (5.2) 

where v is the average velocity at the outlet.  

Head losses and ζ values for all intakes are shown in table 3. 
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Table 3: Head losses and ζ values for all intakes and compared to intake 1 

Intake ∆h [m] ∆hi/∆h1 ζ𝑖/ζ1 

1 0.32 1 1 

2 0.32 0.98 0.95 

3 0.33 1.01 1.22 

4 0.28 0.88 0.94 

 

5.6 Velocity Comparison 

Velocities for all four intakes are shown in five vertical lines (figure below). 

Distances of vertical lines a-a, b-b, c-c, d-d and e-e from intake centre are 

respectively: 0, 40, 80, 120 and 150 mm for all intakes. Velocity distributions for 

all intakes are represented to have the same centre (from the bulb), because the 

measurement plane height (figure 43) is not same for all intakes. 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 65: Measurement lines and plane for intake 1 (right) and velocity distribution on line a-a for all 
intakes 
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Images of velocity distributions show that intake 3 has lower velocities in the 

upper region (except for line b-b) than the other intakes. This is due to the square 

corners and lack of entrance curves of the third intake. However, it is visible in 

line b-b, c-c and a-a that intake 3 has the highest velocities in the middle and 

lover region of the measurement domain.  Intake 1 and 4 have similar velocity 

distributions. They have lower velocities in the bottom region of line d-d and e-e, 

and higher velocities in the upper region of every line, due to the top curvature of 

both intakes, however intake 4 shows more uniform velocity distribution in 

comparison whit intake 1. Finally, intake 2 has the most uniform velocity 

distribution of all intakes, the distributions differ little from line to line. 

 

 

 

Figure 66: Velocity distribution on line b-b and c-c for all intakes 
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Figure 67: Velocity distribution on line d-d and e-e for all intakes 

 

It is important to represent velocities for all four quadrants for each intake. With 

the assumption of symmetrical flow distribution, it is necessary to represent only 

the velocities in the upper and lower quadrants. Velocities for each quadrant are 

displayed as deviations from the mean velocities of the whole area, visible in table 

4. 

 

Table 4: Velocity deviation from mean velocity for all quadrants and intakes 

Quadrant 
Deviation of quadrant velocities from total mean velocity 

[%] 

Intake 1 Intake 2 Intake 3 Intake 4 

Upper quadrants +9 +3 +2 +6 

Lower quadrants -9 -3 -2 -6 
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6. Conclusion 

It has been shown that results obtained with the numerical results for all intakes 

are similar to the laboratory test results, despite uncertainties regarding the 

geometry. Differences of the numerical and measured results are insignificant, 

regardless to the several assumptions included in the geometry of the model and 

the finite volume method technique used to solve fluid flow equations in this 

research. RANS equations generate more smeared results compared to realistic 

turbulent behaviour, however, using more complex turbulent modelling, such as 

Large Eddy simulation would be significantly more time consuming. Other factors 

that influence numerical results are numerical errors, which are inevitable in CFD. 

Furthermore, a mesh sensitivity analysis has been carried out to obtain the results 

which are independent of the grid size. The objective of this thesis is to investigate 

application of CFD for preliminary design of the hydro-power intakes. 

Furthermore, current study showed that it is possible to save computing time by 

introducing simplification in the numerical model. 

The introduction of the model simplification leads to saving in computing time and 

memory storage. The similarity of velocity distributions of full and simplified model 

is significant, however, there are some small differences visible. Slightly rotational 

flow in the velocity distribution of the full model is visible. This is caused by the 

wicket gates which guides the fluid flow into a rotational motion, thus, the 

velocities to have a slightly unsymmetrical distribution in the whole model, 

contrary to the simplified model, where symmetrical flow distribution is assumed. 

The simplified model results are not identical to the full model result, but they are 

significantly close to accept the simplification in further research and for other 

three intake models. 

Dimensions of some geometry parameters from the original study were unclear. 

Tests with different geometry values were made to estimate the unknown 

parameters. Velocity distributions were compared for every test, and the 

geometry with results closest to the physical model results were chosen for 

further investigations. 
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Results show velocity distributions (figure 68) and head losses for each intake 

individually. Findings from comparison of the results:  

 Intake 1 has a steep velocity gradient from top to bottom due to the 

bellmouth-type top curve. 

 Intakes 2 and 4 have the most uniform velocity distributions. 

 Intake 3 has the most erratic velocity distributions due to square corners.  

 Finally, intake 4 has the lowest head losses and ζ values. In contrast, 

intake 3 shows the highest head loss. Furthermore, intakes 1 and 2 

showed similar head loss values.  

 

    

Figure 68: Recall of velocity distributions for all intakes 

 

Through the application of CFD on modelling a series of laboratory tests, it is 

shown that it is possible to use numerical simulations to approximate complex 

fluid flow behaviour, which can lead to cost saving in design of approach flow 

channels and many other hydraulic engineering problems.  

 

𝑣/�̅� 

Intake 1 Intake 4 Intake 3 Intake 2 
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Appendix A – FVM for Convection-Diffusion Problems 

The methodology of the FVM will be shown on convection-diffusion transport of 

a general fluid flow variable ∅. Pure diffusion does not occur in problems 

contained in this thesis, but it is necessary to understand pure diffusion first in 

order to solve convection-diffusion problems. For further development of this 

problem, it is necessary to introduce the general transport equations in differential 

and integral forms.  

If we introduce a general variable ∅, the conservative form of steady state 

incompressible fluid flow equations can be written in following form: 

 

div(∅u) = div (
𝐺

𝜌
 grad ∅) +  𝑆∅               (A.1) 

 

The equation (A.1) is known as the steady state transport equation for property ∅. 

It describes the various transport processes: convective term on the left hand 

side and the diffusive term (G = diffusion coefficient) and the source term on the 

right hand side. Integration of this equation over a three-dimensional control 

volume (CV), and applying Gauss divergence theorem gives: 

 

∫ 𝑛(∅u)dA
 

𝐴
= ∫  𝑛 (

𝐺

𝜌
 grad ∅) dA + ∫ 𝑆∅

 

𝐶𝑉
dV 

 

𝐴
            (A.2) 

 

In words we have: 

 

 =        + 

 

 

 

 

 

Net rate of  

decrease of ∅ due to 

convection across 

the boundaries 

Rate of increse 

of ∅due to 

diffusion across 

the boundaries 

Net rate of 

creation of 

 ∅ 
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The simplest transport process of all is pure diffusion in steady state. The 

governing equation of steady diffusion ca be derived from the general transport 

equation for property ∅ (A.1) by deleting the convective terms. This gives: 

 div (
𝐺

𝜌
 grad ∅) + 𝑆∅ = 0               (A.3) 

 

With the control volume integration, which forms the key step of the FVM that 

distinguishes it from all other CFD techniques, the above equation can be written 

as: 

 

∫ 𝑑𝑖𝑣
 

𝐶𝑉
(

𝐺

𝜌
 grad ∅) dV + ∫ 𝑆∅ 

 

𝐶𝑉
𝑑𝑉 = ∫ 𝑛 (

𝐺

𝜌
 grad ∅) dA +

 

𝐴

∫ 𝑆∅ 
 

𝐶𝑉
dV = 0          (A.4) 

 

One-dimensional steady state diffusion of a property ∅  is governed by:  

𝑑

𝑑𝑥
(G 

𝑑∅

𝑑𝑥
)  + S = 0; where G is the diffusion coefficient and S is the source term. 

Boundary values of ∅ at points A and B are prescribed. 

 

 

Figure: Solution domain for one dimensional steady state diffusion 

 

(1) Grid generation 

The first step in the FVM is to divide the domain into discrete control volumes. A 

number of nodal points will be placed between A and B. The boundaries (or faces) 

of control volumes are positioned mid-way between adjacent nodes, so each 

node is surrounded by a control volume or cell. Control volumes near the domain 
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edges are usually set in such a way that the physical boundaries coincide with 

the control volume boundaries. Figure below shows the control volume. 

 

 

 

Figure Control volume for solving one dimensional steady state diffusion 

 

(2) Discretization 

The key step of the FVM is the integration of the governing equation(s) over a 

control volume which gives a discretized equation of the nodal point P. For the 

control volume defined above this gives: 

 

∫
𝑑

𝑑𝑥

 

∆𝑉
(G 

𝑑∅

𝑑𝑥
) dV + ∫ 𝑆

 

∆𝑉
𝑑𝑉 = (GA 

𝑑∅

𝑑𝑥
)𝑒 − (GA 

𝑑∅

𝑑𝑥
)𝑤 + 𝑆̅∆V = 0      (A.5) 

 

This upper equation states that diffusive flux of ∅ leaving the east face minus the 

diffusive flux of ∅ entering the west face is equal to the generation of ∅. The 

equation (A.5) represent a balance equation for ∅ over the control volume. 

Linear approximation is the simplest way of calculating interface values and 

gradients of the discretized equations. In a uniform grid linearly interpolated 

values for 𝐺𝑒  and 𝐺𝑤  are given by: 

𝐺𝑤 =
(𝐺𝑊+𝐺𝑃)

2
 ; 𝐺𝑒 =

(𝐺𝑃+𝐺𝐸)

2
     (A.6) 

And the diffusive flux terms are evaluated as: 
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(𝐺𝐴
𝑑∅

𝑑𝑥
)𝑒 = G𝑒 ∙ 𝐴𝑒(

∅𝐸−∅𝑃

𝛿𝑥𝑃𝐸
); (𝐺𝐴

𝑑∅

𝑑𝑥
)𝑤 = G𝑤 ∙ 𝐴𝑤(

∅𝑃−𝑊

𝛿𝑥𝑊𝑃
)    (A.7) 

In practical situations, the source term S may be a function of variables, in which 

case the FVM approximates the source term by means of a linear form: 

𝑆∆̅𝑉 = Su + SP ∅P      (A.8) 

By identifying the coefficients ∅W and ∅E as aW and aE and the coefficient ∅P as 

aP, the steady diffusion equation can be written as: 

  aP ∅P = aW ∅W + aE ∅E + Su     (A.9) 

Where: 

 

 

 

 

 

The two equations (A.8) and (A.9) represent the discretized form of the equation 

(A.3). This type of discretized equation is central to the FVM. 

 

(3) Solution of equations 

Discretized equations of the form (A.9) must be set up at each of the nodal points 

in order to solve a problem. Boundary conditions are considered by modifying the 

general discretized equation (A.9) for control volumes that are adjacent to the 

domain boundaries. The resulting system of linear algebraic equations is then 

solved to obtain the distribution of the property ∅ at al nodal points. The matrix 

solution of the discretized equations is described in the chapter 3.6. 

 

The methodology used in deriving discretized equations in one dimensional case 

can be easy extended to two- or three-dimensional problems. For instance, 

steady state diffusion in a three dimensional situation is governed by: 

   

𝜕

𝜕𝑥
(G 

𝑑∅

𝑑𝑥
) +

𝜕

𝜕𝑦
(G 

𝑑∅

𝑑𝑦
) +

𝜕

𝜕𝑧
(G 

𝑑∅

𝑑𝑧
) + 𝑆 = 0   (A.10) 

 

aW aE aP 

𝐺𝑤

𝛿𝑥𝑊𝑃
  Aw 

𝐺𝑒

𝛿𝑥𝑃𝐸
 Ae aW - aE - 

SP 
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Now a three-dimensional grid is used for subdivision of the domain. A typical 

control volume is shown in the figure below. 

 

 

Figure: A cell in three dimensions and neighbouring nodes 

 

The discretized equation in three dimensions for interior nodes have the form: 

 

𝑎𝑃∅𝑃 = 𝑎𝑊∅𝑊 + 𝑎𝐹∅𝐹 + 𝑎𝑆∅𝑆 + 𝑎𝑁∅𝑁 + 𝑎𝐵∅𝐵 + 𝑎𝑇∅𝑇 + 𝑆𝑢      (A.11) 

 

where: 

 

Boundary conditions can be introduced by cutting links with the appropriate 

faces(s) and modifying the source term.  

 

 

 

aW aE aS  aN  aB aT aP 

𝐺𝑤∙𝐴𝑤

𝛿𝑥𝑊𝑃
                                                                                                                                                                                                                                                                                                                                                                                                                                                          

𝐺𝑒∙𝐴𝑒

𝛿𝑥𝑃𝐸
                                                                                                                                                                                                                                                                                                                                                                                                                                                          

𝐺𝑠∙𝐴𝑠

𝛿𝑦𝑆𝑃
                                                                                                                                                                                                                                                                                                                                                                                                                                                          

𝐺𝑛∙𝐴𝑛

𝛿𝑦𝑃𝑁
                                                                                                                                                                                                                                                                                                                                                                                                                                                          

𝐺𝑏∙𝐴𝑏

𝛿𝑧𝐵𝑃
                                                                                                                                                                                                                                                                                                                                                                                                                                                          

𝐺𝑡∙𝐴𝑡

𝛿𝑧𝑃𝑇
                                                                                                                                                                                                                                                                                                                                                                                                                                                          aW + aE + aS + aN       

+ aB + aT – SP 
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Diffusion always occur alongside convection in nature so it is necessary to predict 

combined convection and diffusion. The steady convection-diffusion equation is 

the transport equation for a general property ∅ :  

 

div(∅u) = div (
𝐺

𝜌
 grad ∅) +  𝑆∅ = 0       (A.1) 

 

This equation represent the flux balance in a control volume. The main problem 

in the discretization of the convective term is the determination of the value of 

transport property ∅ at control volume faces and its convective flux across these 

boundaries.  

 

The integrated convection-diffusion equation for steady state are derived the 

same way as steady diffusion equation. One dimensional integrated convection-

diffusion equation can be written as: 

 

 Fe ∅e – Fw ∅w = De (∅E - ∅P) – Dw (∅P- ∅W)   (A.12) 

 

And the continuity equation as: 

 

 Fe – Fw = 0          (A.13) 

Where F and D are two variables which represent the convective mass flux per 

unit area and diffusion conductance at cell faces:   F = 𝜌𝑢  and D = G/∂x. It is also 

assumed that the velocity field is “somehow known”, which takes care of the 

values of Fe and Fw. In order to solve equation (A.12) the transport property ∅ 

need to be calculated at the e and w faces. 
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Recommendations 

One of the essential part of this research is the influence of the model 

simplification on the numerical results. It would be interesting to further 

investigate these simplifications on other intake structures examples as well.  

Another finding of the numerical model tests is that intake 4, the shortest intake 

with the greatest opening curves shows least head losses. Another possible 

research topics includes optimisation of this intake geometry, possibly combining 

it with intake 1.  

If any further numerical simulations are to be done using geometries obtained in 

this thesis, it would be of interest to dedicate more attention to the grid generation. 

The objective of this thesis was to compare numerical and physical results, 

therefore detail mesh generation, which is a huge topic itself, was not part of the 

research. 

 

 

 


