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Preface 

This work was carried out at JOANNEUM RESEARCH – HEALTH from October 2012 to March 

2016. It summarizes four peer-reviewed journal publications, one book chapter and one patent 

application which I published as first-author and co-author. In addition, several previously 

unpublished analyses are presented. For easier readability and to guide the reader through the 

development process, I decided not to just reprint my already published publications but rather 

decided to arrange the published and unpublished content in a way to present the “big picture” of my 

scientific work. 

Therefore, some chapters or sub-chapters include reprints of the original manuscripts or parts of the 

original manuscripts which I clearly state at the beginning of each chapter. 

This work is based on the following publications: 

JOURNALS 

K. Donsa, P. Beck, J. Plank, L. Schaupp, J. K. Mader, T. Truskaller, B. Tschapeller, B. Höll, S. Spat, and T. R. 

Pieber, “A toolbox to improve algorithms for insulin-dosing decision support.”, Applied Clinical Informatics, 

vol. 5, no. 2, pp. 548–56, 2014. 

L. Schaupp*, K. Donsa*, K. M. Neubauer, J. K. Mader, F. Aberer, B. Höll, S. Spat, T. Augustin, P. Beck, T. R. 

Pieber, and J. Plank, “Taking a Closer Look-Continuous Glucose Monitoring in Non-Critically Ill Hospitalized 

Patients with Type 2 Diabetes Mellitus Under Basal-Bolus Insulin Therapy.”, Diabetes Technology and 

Therapeutics, vol. 17, no. 9, pp. 611–8, 2015. 

*The first two authors contributed equally to this study 
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Evaluation and improvement of an insulin dosing algorithm for application 

in a computerized decision and workflow support system 

DI Klaus Donsa, BSc 

Doctoral Thesis 

ABSTRACT 

Type 2 diabetes mellitus (T2DM) is a chronic disease which highly affects the individual patient and 

also represents a global health burden with a large financial impact. T2DM patients are common in 

hospitals and their therapy requires complex and interdisciplinary cooperation of health care 

professionals (HCPs). Improvement in diabetes management is related to lower rates of hospital 

complications, but recent evidence suggests that especially therapy regimens involving insulin are 

prone to error. Driven by the reported medical benefit of improved inpatient glycemic control, the 

development of GlucoTab® - a computerized workflow and decision support system - was initiated to 

support HCPs in diabetes management. This thesis is embedded in the development of GlucoTab® and 

focuses on the evaluation and enhancement of an insulin dosing algorithm for T2DM patients, by 

using retrospective statistical analysis and simulation.  

Important parts of this work address the following topics: 1) development of a framework for data 

processing, simulation and statistical analysis to evaluate and improve insulin dosing algorithms; 2) 

evaluation and simulation of modifications/improvements of insulin dosing algorithms; 3) testing the 

capability of continuous glucose monitoring to assess the clinical impact and safety of basal-bolus 

insulin therapy; 4) estimating the impact of errors in diabetes management when using either paper-

based or computerized decision and workflow support; 5) identification of parameters and methods to 

select optimal therapy settings and preliminary considerations for the use of machine learning and 

decision support in the personalization of diabetes therapy. 

Computerized algorithm-based decision support systems directly influence clinical practice and have 

the potential to achieve significant and clinically relevant improvements. The data analyses in this PhD 

thesis show that such systems reduce errors and therefore decrease the probability of patients 

experiencing hypo- and hyperglycemia, but a potential for errors still remains. Ways to further reduce 

error potential and to further improve insulin dosing algorithms in computerized diabetes 

management systems are discussed. 
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CHAPTER I 

Introduction – Setting the scene 

This chapter provides an introduction and is setting the scene for my scientific endeavors to 

evaluate and improve inpatient treatment of type 2 diabetes mellitus patients using a 

computerized workflow and decision support system. It also describes the objectives of this 

PhD thesis and how this work contributed to the development of GlucoTab® 
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1. Inpatient diabetes management is in the need of improvement 

Diabetes mellitus (DM) is a chronic illness of the metabolic system leading to high blood glucose (BG) 

levels. DM can be classified into two main clinical categories. Type 1 diabetes mellitus (T1DM) is 

caused by the loss of β-cells which are responsible for the storage and release of insulin and it mainly 

occurs in children, adolescents and young adults. In contrast, type 2 diabetes mellitus (T2DM) is 

determined by insulin resistance and develops due to a progressive insulin secretory defect, mostly in 

elderly people with overweight or obesity [1]. In both conditions continuous medical care is required 

to minimize the risk of acute (e.g. ketoacidosis) and long-term complications (e.g. diabetic foot 

syndrome, nephropathy, retinopathy, cardiovascular diseases or stroke) [2]. T1DM can only be treated 

with insulin, whereas a wide range of therapeutic options are available for patients with T2DM [1]. 

Adhering to therapy in chronic diseases like DM requires active participation and is often very 

burdensome for patients. Long-term complications take years to develop and the effects of a poor 

controlled disease are not immediately evident in T2DM. Unfortunately, this does not promote the 

adherence to therapy. [3] 

DM is a growing global disease which highly affects the individual patient and also represents a global 

health burden with financial impact on national health care systems. In 2013 approximately 382 

million people were suffering from diabetes. It is estimated that in 2035 this number will reach 592 

million. In the United States of America, the total estimated costs for diabetes were $174 billion for the 

year 2007. The largest component of medical expenditures attributed to diabetes is hospital inpatient 

care ($58 billion). [4], [5] 

Around 20% of hospital inpatient days occur in patients having DM [5]. Over 90% of DM patients 

admitted to hospitals have T2DM [6]. According to estimates from the United Kingdom, inpatients 

with recorded DM stay up to 100% longer on average, are 50% less likely to be treated as day cases and 

are almost 100% more likely to be readmitted as an emergency [4]. These patients require a higher 

intensity of care which causes considerable additional costs [7]. The higher intensity of care is partly 

attributable to higher severity of illness, as patients with diabetes often have several comorbidities 

which leads to an increased risk to experience adverse events during hospital stay [8]–[10].  

Observational and randomized controlled studies indicate that improvement in diabetes management 

results in lower rates of hospital complications in general medicine and surgery wards [11], [12]. 

However, in-hospital diabetes management is often flawed. In a recent diabetes inpatient audit, 37% of 
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diabetes patients experienced at least one diabetes medication error during hospitalization and were 

more than twice as likely to have one or more severe hypoglycemic episodes [6].  

Diabetes management requires complex and interdisciplinary cooperation of health care professionals 

(HCPs) involving ordering doses and correction schemes, BG measurement and timely administration 

of resulting insulin doses. To support this complex process recently published guidelines and studies 

recommend the use of computerized decision support systems (CDSS) [8] and medication order entry 

systems for diabetes therapy in hospitalized patients [13]–[15]. The combination of medication order 

entry systems and CDSS has proven to reduce medication errors but clear evidence that this 

combination reduces clinical adverse drug events is still missing [16]. 

Current evidence supports proactive, scheduled insulin regimens for any patient with consistent 

hyperglycemia, not only patients with known diabetes and/or who were taking insulin before 

hospitalization [17]. Therefore, international diabetes experts recommend a structured approach and 

an algorithm-driven basal-bolus insulin regimen in hospitalized T2DM patients [1]. This regimen 

involves long-acting insulin to supplement basal insulin requirements during periods of fasting and 

separate injections of rapid-acting insulin to prevent rises in BG levels resulting from meals. Insulin 

dosing algorithms aim to achieve BG levels in a desired range by accounting for meals and 

unphysiological BG levels.  

At present, personalization of T2DM therapy in hospitals plays a secondary role due to three factors: 1) 

A short length of stay does not allow the empiric development of patient-specific factors which are 

crucial for the personalization of diabetes therapy. 2) Rigid hospital workflows and excessive workload 

of HCPs often prohibit the implementation of individualized diabetes therapies. 3) Diabetes therapy 

regimens allowing personalization are complex and very often hospital wards are lacking the know-

how to implement them safely and effectively. Therefore, a sliding-scale insulin therapy regimen is still 

often used in hospitals, because it is easy and convenient for the medical staff to administer, even 

though it is known that it does not control BG very well [18]. Management of T2DM is therefore very 

generic and is designed to operate safely for the majority of patients. Nonetheless, aside from these 

restrictions personalization is possible to some extent and is recommended by current guidelines [1].  
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2. Start of the GlucoTab® development process 

Although considerable efforts have been made to improve glycemic management, an adequate insulin 

therapy in clinical practice is still lacking in many hospitals despite its recommendation by diabetes 

experts and guidelines [19]. Contradictory to these recommendations, the management of T2DM in 

hospitals with insulin compares poorly to non-insulin therapy options by using different outcome 

measures. Comparing these diabetes management options is problematic because they target different 

patient populations, but recent evidence demonstrated that by using insulin in T2DM therapy, patients 

had significantly more medication errors, more hypoglycemic episodes and poorer glycemic control 

[6].  

As part of the 7th European Commission framework-program project REACTION (Remote 

Accessibility to Diabetes Management and Therapy in Operational healthcare Networks) inpatient 

diabetes management was identified as important field for improvement. Therefore ways for 

improvement were sought and as consequence the development process of a mobile computerized 

workflow and decision support system was initiated. In an initial clinical data review an insulin dosing 

regimen for basal-bolus insulin therapy in hospitalized T2DM patients was identified which 

demonstrated good glycemic control in non-critical care [20], [21]. This regimen involved 

subcutaneous insulin injection of long- and rapid-acting insulin. Insulin dose calculations were based 

on four BG measurements (three pre-meal and one bedtime) and consisted of insulin for meals and 

supplemental insulin for high BG levels. It furthermore included a structured rule-based therapy 

initialization and a daily rule-based therapy adjustment. The therapy protocol used in the original 

study is provided in Appendix III – Supplemental Material (Initial insulin treatment protocol). 

This basal-bolus insulin regimen was customized to account for complex processes during inpatient 

care and was then integrated into the workflow of a general internal medicine ward [22]. In a proof-of-

concept study the efficacy, workflow integration and usability of a paper-based protocol for basal-

bolus insulin therapy in T2DM patients was assessed, and it served as data basis for improvements of 

the insulin dosing algorithm. The workflow-integrated algorithm for basal-bolus therapy was effective 

in establishing glycemic control compared to standard care and was well accepted by medical staff, but 

room for improvement was discovered. 

In an interdisciplinary development process the paper-based protocol was translated into a 

computerized system for workflow and decision support. This system aims to overcome shortcomings 
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of manual procedures. Specifically in preventing input-, calculation- and double data-entry- errors, 

and providing automated therapy visualizations and traceable real-time documentation for time-

critical tasks.  

The result of this development process is GlucoTab® - a mobile computerized client-server system, 

supporting HCPs in diabetes management of hospitalized T2DM patients directly at the point of care. 

The main function of the system is the provision of insulin dose recommendations for basal-bolus 

insulin treatment of T2DM patients. GlucoTab® is a CE marked medical device software (Class I, risk 

class C according to IEC 62304). It comprises the following functionalities which aid physicians and 

nurses: 1) medication order entry with insulin dosing decision support for physicians, 2) workflow 

management for physicians and nurses, 3) data entry at the bedside and 4) drug administration 

support including insulin dose calculation for nurses. The GlucoTab® process is displayed in Figure 1. 

The mobile system assists in organizing the treatment workflow, including display for open tasks, 

facilitating documentation and providing visualization of BG values, nutrition and insulin doses. 

 

Figure 1: The GlucoTab® process - therapy workflow for basal-bolus therapy in hospitalized T2DM patients. The 
BG measurement and the potential supplemental bolus insulin injection at night are not displayed 

In the GlucoTab® process dosing decisions are based on four daily capillary BG finger-stick 

measurements (three pre-meal and one bedtime measurement). Additional BG measurements are 

performed if deemed necessary by HCPs. The system is used to calculate the initial total daily dose 



Chapter I: Introduction – Setting the scene 

 
- 6 - 

(TDD) of insulin based on the patient’s weight, age and renal function (serum creatinine level) as well 

as to calculate a new TDD for the next 24 hours based on the previous TDD and BG values of the 

preceding 24 hours. The calculated TDD is either accepted or modified by the physicians and is then 

divided into a 50% daily basal and a 50% daily bolus insulin dose. The bolus dose is distributed among 

the three meals (breakfast, lunch, dinner). In case pre-meal BG values are below the target range the 

insulin bolus is reduced, whereas BG values above the target range induce an increased bolus dose. In 

most patients the basal-bolus insulin algorithm aims for fasting and pre-meal BG levels of 100 – 140 

mg/dL. In case of supplemental insulin suggested due to high BG, the algorithm further adjusts the 

dose using an insulin sensitivity parameter. Insulin sensitivity (sensitive, normal and resistant) is 

assessed by the attending physician during each morning round. Additional bolus injections are 

performed if deemed necessary by the HCPs. This diurnal interdisciplinary workflow, the standard 

measurement times and time of interventions are displayed in Figure 2. In the GlucoTab® process 

continuous glucose monitoring (CGM) is not used routinely but was used in a subgroup of patients to 

investigate the patients’ glycaemia in more detail.  

 

Figure 2: Diurnal interdisciplinary treatment workflow of GlucoTab®. BG POCT…Blood Glucose Point of Care 
Testing, CGM … Continuous Glucose Monitoring 

In the course of the development of GlucoTab® several areas of improvement were identified. These 

areas ranged from - improvement of technical components of the system, like user management 

integration from the hospital active directory etc. - to the support of new therapy regimens using 

different insulin analogues. A central area for improvement was the decision support component of 
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GlucoTab® and its’ underlying rule-based insulin dosing algorithm. In combination with the workflow 

management component there were many already known and unknown factors influencing the 

performance of the system regarding safety and effectiveness. The analyses in this PhD thesis target the 

evaluation and improvement of the insulin dosing algorithm used in GlucoTab®, by using simulation 

and retrospective statistical analysis of data from clinical studies. 

3. Objectives and research questions 

The analyses in this PhD thesis were targeting in a holistic way the evaluation and improvement of the 

insulin dosing algorithm used in GlucoTab®. Therefore the objectives of this thesis were structured as 

follows: 

Development of a framework for data processing, simulation and statistical analysis: Reusable tools 

and methods had to be developed to import and pool data from different studies for evaluation of 

safety and effectiveness of the GlucoTab® system and to allow a standardized integration of data from 

future clinical studies. This framework had to be able to test and evaluate modifications/improvements 

of the insulin dosing algorithm prior to implementation into GlucoTab® using a workflow simulator. 

The impact of the modification on the patients’ BG levels had to be estimated and displayed. As part of 

this PhD thesis following research questions were addressed: How to measure glycemic control? How 

to measure the performance of an insulin dosing algorithm?  

Evaluating modifications of the insulin dosing algorithm: The impact of modifications of the insulin 

dosing algorithm had to be evaluated using simulation and retrospective statistical analysis. As part of 

this PhD thesis following research question was addressed: Did the implemented modifications of the 

insulin dosing algorithm have the intended beneficial effect on the patients’ diabetes therapy regarding 

safety and effectiveness? 

Testing the capability of continuous glucose monitoring (CGM) to assess the clinical impact and 

safety of basal-bolus insulin therapy: A four point daily glucose profile is capable of safely running a 

basal-bolus insulin algorithm. However, it does not picture the diverse glucodynamics of patients with 

diabetes, in particular during the patient’s reconvalescence with various factors influencing the 

carbohydrate metabolism. CGM could be useful to display the complete diurnal glycemic profile and 

detect patterns of responsiveness to therapeutic efforts using GlucoTab®. As part of the dissertation 

following research questions were addressed: Are we missing something by solely using BG spot 
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measurements for therapy decisions? Is a four point measurement scheme and the standard 

measurement times (pre-meal and bedtime) adequate for decision making? Could the use of CGM be 

justified for running a basal-bolus insulin algorithm for T2DM patients on a clinical ward?  

Evaluation of the workflow and decision support system regarding safety, efficacy and usability: 

The final version of GlucoTab® was evaluated in a clinical study on different wards. Additionally, the 

diabetes management was investigated on a patient subgroup level. As part of this PhD thesis following 

research question was addressed: Are there subgroups of patients where the diabetes management is 

not working well using GlucoTab®? 

Clinical benefits of computerized workflow and decision support: In the course of the GlucoTab® 

development, a basal-bolus insulin regimen was first tested in a paper-based way and was then 

implemented into GlucoTab®. The research questions addressed by this PhD thesis targeted the 

investigation of medication errors in paper-based and computerized clinical decision and workflow 

support. The analysis of medication errors related to inpatient diabetes management should lead to the 

detection of possible improvements and should justify the use of computerized systems for insulin 

dosing. 

Personalization of the GlucoTab® algorithm - Preliminary considerations: Patient-centered care 

and standardized algorithmic management are conflicting approaches. Individualization of the 

patient’s diabetes therapy is often in conflict with the rigid workflows on clinical wards. The 

investigations in this PhD thesis targeted the identification of parameters and methods to select 

optimal therapy settings in diabetes therapy. Preliminary considerations for the use of machine 

learning and decision support for personalization of diabetes therapy were performed. 

4. Structure of the thesis 

This thesis is organized in the following structure, addressing the objectives of this scientific work in 

distinct chapters. Each chapter is based on peer-reviewed articles published as first-author or as co-

author and is discussed in a summary section at the end of each chapter. My work started with data 

processing and initial statistical analyses of data from clinical studies related to the development of 

GlucoTab®. Already in an early phase of my work the necessity to develop a framework for data 

processing, simulation and statistical analysis was evident. Chapter II explains the purpose and 

benefits of this framework. Chapters III to V summarize evaluations of the insulin dosing algorithm 
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improvements in different stages of the development. Chapter III deals with evaluations of algorithm 

modifications and Chapter IV summarizes evaluations testing additional CGM for assessing the 

clinical impact of a basal-bolus insulin regimen. Chapter V demonstrates the results of a study 

investigating safety, efficacy and usability of using the current version of GlucoTab® on different 

clinical wards. The clinical benefit of computerized workflow and decision support is investigated by a 

post-hoc analysis of a before and after study comparing medication errors in paper-based and 

computerized workflow and decision support in Chapter VI. Chapter VII addresses preliminary 

considerations for the use of machine learning and decision support for personalization of diabetes 

therapy. In the end the results of the previous chapters are discussed and directions of future research 

are outlined (Chapter VIII).  

  



- 10 - 



11 

CHAPTER II 

Development of a framework for data processing, 
simulation and statistical analysis 

This chapter is partly taken from a previously published article (Donsa et al. 2014, [23]) and 

is complemented by so far unpublished data. Here, the developed framework which is basis 

for further analyses presented in this PhD thesis is described. 
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1. How to measure the level of glycemic control? 

The purpose of diabetes therapy is to mimic physiological BG profiles as close as possible which means 

to avoid unphysiologically high and low BG levels. There are several ways to measure the success of 

diabetes therapy (the level of glycemic control) using short- and long-term parameters or metrics. All 

short-term parameters and metrics are also usable as long-term measures if averaged over a certain 

period of time. This section provides the most common parameters and metrics and describes why the 

development of new ways for measuring the level of glycemic control was necessary in improving the 

insulin dosing algorithm used in GlucoTab®. 

Long-term parameters: A measure of compliance with diabetes therapy is provided by the level of the 

patients’ glycated hemoglobin (HbA1c). It is a laboratory parameter which serves in specific situations 

as a biomarker for the average BG levels in patients over the previous 2 to 3 months prior to the 

measurement. Several analyses have shown a strong correlation between HbA1c and the patients’ 

average BG levels, with each 1% (10.9 mmol/mol) change in HbA1c corresponding to a change of ~35 

mg/dL (1.9 mmol/L) [24]. In DM, higher average BG levels have been associated with increased risk 

for microvascular complications (nephropathy, retinopathy) and to a lesser extent with macrovascular 

complications [3]. Even though HbA1c serves as a good indicator for average BG levels based on pre-

meal BG levels it does not provide any information on short-term hypo- and hyperglycemia [24]. 

Short-term parameters and metrics: The level of appropriate glycemic control and therefore the BG 

targets of diabetes therapy are strongly influenced by the setting in which the therapy occurs. For non-

critically ill hospitalized DM patients a target BG of less than 140 mg/dL (7.8 mmol/L) for pre-meal BG 

levels and less than 180 mg/dL (10.0 mmol/L) for a random BG measurement is recommended by the 

American Diabetes Association (ADA) if patients are treated with insulin. More stringent targets may 

be appropriate in stable patients with previous tight glycemic control. Less stringent targets may be 

appropriate in those with severe co-morbidities. Therapy targets should only be realized if these targets 

can be safely achieved [1]. The ratio of BG measurements in a well-defined target range (e.g. 100 – 140 

mg/dL) serves as measure for glycemic control. 

Hypoglycemia is feared by patients as well as HCPs and must be avoided in safe and effective diabetes 

therapy. A plan for preventing and treating hypoglycemia should be established for each patient and 

episodes in the hospital should be documented and tracked [1]. Documented symptomatic- and 

asymptomatic hypoglycemia are defined as occurring at a plasma glucose concentration of <70 mg/dL 
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(3.9 mmol/L) [25]. This BG level remains a common threshold for defining hypoglycemia, but there 

are also other thresholds defined. Frequent hypoglycemia serves as an indicator for the necessity to 

adjust the therapy. 

Glycemic Variability (GV) is the fluctuation of the patients’ BG values and it is used as an indicator for 

the quality of diabetes management, as a high GV leads to increased risk of hypo- and hyperglycemic 

episodes [26]. Numerous metrics have been defined in the last decades, especially for CGM. Most 

notably are: (1) SDT (total variability in a data set), (2) SDw (the average of the SDs within each day), or 

(3) MAGE (average amplitude of up-strokes or down-strokes with magnitude greater than 1 SD), as a 

measure of within-day variability, and (4) SDb hh:mm (average of all SDs for all times of day), or (5) 

MODD (mean difference between glucose values obtained at the same time of day on two consecutive 

days under standardized conditions) as a measure of between-day variability. [27] 

Good diabetes days (GDD) are a relatively new concept for measuring the level of glycemic control and 

the “quality” of the BG measurement process. In the national diabetes inpatient audit in Great Britain 

a good diabetes day is defined as when the frequency of BG monitoring was appropriate, there was no 

more than one BG measurement of 11 mmol/L (198 mg/dL) or greater and no BG measurements of 

less than 4 mmol/L (72 mg/dL). Appropriate BG testing was defined as four or more times a day for 

patients who are unwell or have unstable diabetes or who are on a basal-bolus insulin regimen; twice a 

day or more for patients on insulin, Exenatide, Sulphoyurea or more than one oral hypoglycemic agent 

including DPP4-inhibitors and Glitazones; once a day or more for patients on Metformin or diet 

management alone; or once a week or more for long stay patients with stable control [28]. 

A comprehensive assessment of the level of glycemic control was a prerequisite for seeking 

improvements of the insulin dosing algorithm used in GlucoTab®. While these already established 

long- and short-term parameters or metrics serve as a good basis for investigating the overall level of 

glycemic control they were not designed to measure the performance of an insulin dosing algorithm. 

The link between cause (algorithm component: e.g. bolus insulin dose calculation) and effect (e.g. 

hypo- and hyperglycemia or GV) is often difficult to establish. Therefore new metrics for evaluating 

safety and effectiveness of the insulin dosing algorithm had to be developed.  
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1.1 From individual to pooled evaluation of safety and effectiveness of diabetes 

therapy 

Graphical interpretation of glucose and insulin therapy proofed to be very helpful for individual 

assessment of the patients’ diabetes therapy. Especially at the beginning of the GlucoTab® 

development, safety and effectiveness of diabetes therapy were discussed with diabetes experts on a 

patient individual basis. Figure 3 displays glycemic and therapy information of one patient day of a 

patient treated with the initial version of the GlucoTab® algorithm. A graphical demonstration of the 

patients’ diabetes therapy systematically displays the level of glycemic control and the impact of the 

therapy is immediately observable. Unfortunately, graphical demonstration lacks the objective 

interpretation using single metrics or parameters for measuring the level of glycemic control. 

Therefore, a penalty scoring system proofed to be a valuable tool for investigating the level of 

individual glycemic control. The penalty scoring system evaluates the therapy of each patient 

considering the average BG levels, hypo- and hyperglycemic events and GV. If the patient’s glycaemia 

was within the target range the scoring system rewards credit points whereas BG values outside the 

target range are given penalty points. Penalty points are weighted according to the severity of hypo- or 

hyperglycemia. Hypoglycemia has a higher impact on the score. For comparisons of safety and 

effectiveness of different versions of insulin dosing algorithms using retrospective workflow 

simulations and BG estimations (see chapter 2.3 – Simulation), the impact of algorithm modifications 

is measurable with a single score for each patient. The score is very sensitive to hypoglycemic events 

which reduces this blind spot which is present for example by evaluating glycemic control using only 

the patients’ average BG. 
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Figure 3: Diurnal glycemic profile and course of diabetes therapy. (a) Green crosses indicate scheduled BG 
measurements; red crosses indicate additional control measurements. The continuous course of BG is 
displayed with continuous glucose monitoring. (b) Basal insulin administration is shown as text and blue circles 
indicate scheduled bolus injections. The knife and fork symbol indicates if a meal was planned 

This penalty scoring system worked very well to detect potential safety issues by “in-silico”-testing new 

versions of the insulin dosing algorithm, but it lacks the level of detail for providing overall 

information of the level of glycemic control. For this purpose the already established parameters and 

metrics were very helpful. Figure 4 shows the diurnal glycemic profile of a patient cohort treated with 

GlucoTab® and monitored with additional CGM. This graphical presentation of glycemic control was 

inspired by the recommendations of Bergenstal et al. for standardizing the analysis and presentation of 

glucose monitoring data [29].  

a) 

b) 
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Figure 4: Diurnal continuous glucose monitoring (CGM) profiles and reference blood glucose (BG) 
measurements (35 T2DM patients). CGM values are median – interquartile range (25–75% [Q25/75%] and 10–
90% [Q10/90%]). BG values are median – interquartile range (25–75%), displayed as bars. Black dots indicate 
hypoglycemic events (<70 mg/dL). Data from Neubauer et al. 2015 [30]. Q … quantile; h … hour 

Figure 5 demonstrates BG levels in predefined ranges as a function of treatment days. This method 

allows a very comprehensive evaluation of the progress of diabetes management and therefore to 

measure the level of glycemic control. In the course of this PhD work a multitude of customized 

graphic output functions has been developed or adapted to evaluate the safety and effectiveness of 

diabetes therapy using GlucoTab®.  

 

Figure 5: Distribution of BG values in predefined ranges of 37 T2DM patients treated with the initial version of 
the insulin dosing algorithm (<70, 70-100, 100-140, 140-180, 180-300, >300 mg/dL) as a function of the 
treatment days. Data from Mader et al. 2013 [22] 
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1.2 Evaluation of safety and effectiveness of the insulin dosing algorithm 

A method was developed to evaluate the “success” of individual decision support steps and to interpret 

them in an aggregated form, Figure 6. The focus of this development was to investigate safety and 

effectiveness of GlucoTab® in general, and specifically to investigate the algorithm component 

calculating supplemental insulin (correction insulin) for too high BG levels. The intervention borders 

of the supplemental insulin scheme are displayed on the x-axis. Higher BG levels are associated with 

an increase of the supplemental insulin dose. For each intervention border the patients’ BG levels at 

the start and at the end of the observation period are demonstrated on the y-axis. Each line 

demonstrates two BG measurements and one decision support suggestion. By including additional 

information such as the BG measurement interval (e.g. morning-noon etc.) the data is accessible in an 

aggregated form for the interpretation of trends. The proportion of “successful” titrations into the 

extended target range (ETR) ranging from 70 to 180 mg/dL is additionally demonstrated. Especially 

for subgroup analyses this method provides very detailed information on the level of glycemic control.  

 

Figure 6: Target range approach: Evaluation of safety and effectiveness of the insulin dosing algorithm: The red 
line is the mean of all lines within an intervention border. Supplemental insulin dose according to blood glucose 
intervention border (mg/dL) and insulin sensitivity [sensitive / normal / resistant]; IU … Insulin Unit, ETR … 
Extended Target Range (70-180 mg/dL)  

121 patients 
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2. A toolbox to improve algorithms for insulin-dosing decision support 

[Donsa et al. 2014] 

The aims of this framework/toolbox development were: to improve the GlucoTab® algorithm which in 

its initial form lacked flexibility, to test and optimize new ideas and hypotheses for algorithm 

modifications to draw maximum benefit from future clinical studies, and to identify individualized 

algorithm and workflow improvements for specific patient subgroups. We have now incorporated 

several heterogeneous clinical data sources and implemented a standard procedure for statistical 

analysis. This section summarizes the methods and technologies and the iterative process used to 

develop the toolbox for improving algorithms for insulin-dosing decision support. 

The toolbox consists of three main components (Figure 7): 

1. Data preparation: Data from several heterogeneous sources is extracted, cleaned and stored in 

a uniform data format. 

2. Analysis: The algorithm performance is measured and visualized for all patients or patient 

subgroups. 

3. Simulation: Modified versions of the algorithm are applied in simulations of the treatment 

workflow, based on real data from clinical studies. 

2.1 Data preparation 

The purpose of this component is to extract, transform and load (ETL) data from clinical studies and 

other sources into a uniform data structure in a standardized process. One major challenge in the 

performance of pooled data analyses is the varying structure of data from different clinical studies. We 

designed a multi-step process to monitor and clean the data: the first steps are performed routinely as 

part of clinical study data management according to Good Clinical Practice (GCP) and International 

Conference on Harmonization (ICH) [31]. In each clinical study data is extracted from the sources and 

transformed into a standardized format according to standard data management: data is first checked 

for consistency and quality; applying for example summary statistics and row checks in the form of if-

clauses. Inconsistent, implausible or missing values are discussed with the clinical study team in the 

database release meeting to achieve a clean dataset for statistical analysis. As part of the toolbox, during 

the data preparation step, the data is extracted, cleaned and stored in a uniform data format for pooled 

statistical analyses. Type and unit conversions as well as preparations for the simulations and analyses 
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are performed in this step. Patient-specific profiles with baseline characteristics, concomitant 

diagnoses and medications, overall glycemic information (mean BG levels, glucose variability, hypo- 

and hyperglycemic events) and information on the algorithm version used are generated. “Virtual 

insulin sensitivity” profiles are also generated which are required for BG estimations, performed in the 

simulation component (see section 2.3 Simulation). 

 

Figure 7: Structure of the toolbox for improving algorithms for insulin-dosing decision support. ETL … Extract, 
Transform and Load 

2.2 Analysis 

In the analysis component, different methods of the toolbox (e.g. patient hazard analysis, what-if 

analysis) are combined depending on the specific research question. Results from the analysis 

component are summarized in a reporting tool. The following use cases demonstrate the possibilities 

of the toolbox by using data from three clinical studies and comprise datasets from the following data 

sources: 

- GlucoTab® server: 5,218 BG measurements (Roche Accu-Chek) from 166 patients on 1,124 

patient days, suggested and confirmed bolus and basal insulin doses and information on 

consumption of meals and insulin sensitivity 
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- Clinical study data management system (OpenClinica): Diagnoses, medications and baseline 

characteristics of 166 patients 

- Laboratory information system: Hospital laboratory data of 99 patients 

- Continuous Glucose Monitoring (CGM): 14,140 hours recorded with CGM (Medtronics 

iPro®2) of 97 patients 

Pooled data: The first use case demonstrates methods for the retrospective analysis of pooled patient 

data. It aims to detect the quality of glycemic control when using the GlucoTab® system by identifying 

individualized versions of insulin-dosing algorithms for specific patient subgroups. A penalty scoring 

system evaluates the therapy of each patient considering the average BG levels, hypo- and 

hyperglycemic events and glucose variability. If the patient’s glycaemia is within the target range the 

scoring system rewards credit points whereas BG values outside the target range are given penalty 

points. Penalty points are weighted according to the severity of hypo- or hyperglycemia. Hypoglycemia 

has a higher impact on the score. Subgroup analyses using hierarchical clustering allow the detection 

of “responder” or “non-responder” patient subgroups and their distinctive properties. 

Algorithm modification: The second use case aims to evaluate algorithm modifications. In what-if 

analyses, outcomes regarding BG levels and suggested insulin doses are investigated and visualized for 

interpretation by clinical specialists. Patient hazard analyses for patients with low glycemic events are 

performed to identify the safest version of the modified algorithm: insulin dose calculations are 

simulated by using new variants of the algorithm. To detect potentially dangerous changes in the 

algorithm, a potential increase of insulin doses prior to a low-glycemic event is investigated. Patient 

hazard analyses are discussed with diabetes specialists to ensure that only safe variants of a new 

algorithm are finally implemented. 

Continuous glucose-monitoring data: The third use case considers additional input from continuous 

glucose monitoring (CGM) data for algorithm evaluation. The clinical standard for monitoring the 

patient’s BG levels is point of care testing (POCT) [32]. However, POCT provides only a snapshot of 

the patient’s glycemic profile. With the use of CGM we investigated if these snapshots are sufficient for 

the patient’s therapy. We identified low- and high glycemic episodes using CGM data. Another aim is 

to relate CGM to the algorithm: in a subsequent what-if analysis the patient’s outcome is investigated 

regarding suggested insulin doses and patient hazard. 
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The reporting tool generates automated PDF reports using the R-project for Statistical Computing 

[33] with Sweave and LaTeX. A multitude of customized graphic output functions has been developed 

using ggplot and ggplot2 packages. Results can be reported as text, tables or figures by using the 

customizable PDF reports. 

2.3 Simulation 

Simulation aims to estimate the effect of insulin dose changes on BG values due to algorithm 

modifications. Simulations are performed with a simulator application implemented in Java which 

integrates and uses original components from the GlucoTab® server implementation. This approach 

was chosen because building on the original and well tested medical device software components is 

much more reliable and resource-effective compared to completely rebuilding the entire workflow and 

decision support algorithm in its full complexity in statistics software and keeping it in 

synchronization with future modifications of the server. Furthermore, the source code developed for 

the simulation is already available for implementation into the GlucoTab® system, in case of adopting 

algorithm modifications after the simulation. After additional reviews and testing, the code can be 

included in the medical device software.  

Simulations are performed in two steps, with real patient data from the GlucoTab® clinical studies, 

Figure 8. In the first step, the simulator uses BG measurements and insulin dose calculations, as well as 

therapy adjustments, based on the original entries into the GlucoTab® system by the clinical personnel. 

Sequentially new insulin dose calculations are performed by using the new algorithm. In a second step 

BG estimations are performed. We identified several methods for BG estimations from a structured 

literature research (see section 3.1 – Structured literature search). Neural networks (NN) have been 

shown to be the most promising technologies [34], [35]. However, NN could not be used to achieve 

accurate BG estimations using our data. The GlucoTab® approach for T2DM does not involve exact 

carbohydrate counting. Therefore, exact amounts of carbohydrates consumed were not available and 

could account for the inaccurate estimations achieved with NN.  
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Figure 8: Steps performed in the workflow simulation for testing different versions of the insulin dosing 
algorithm 

Thus we developed a new method for BG estimations in the toolbox by using “virtual insulin 

sensitivity” profiles. “Virtual insulin sensitivity” was defined as the difference between two BG 

measurements divided by the injected insulin dose. A "virtual insulin sensitivity" value is estimated for 

every measurement interval (e.g. noon to evening) for every patient on each hospital day. The 

simulator uses the “virtual insulin sensitivity” profile of the patients and calculates the estimated BG 

value for the next interval alongside the new insulin dose. An example of how BG estimations due to 

algorithm modifications are performed is illustrated in Figure 9. 

 

Figure 9: Example of blood glucose estimations due to algorithm modifications. IU … Insulin Unit 

A patient with a noon BG level of 200 mg/dL, an evening BG level of 160 mg/dL received 10 insulin 

units (IU) injected at noon, and thus has a “virtual insulin sensitivity” of 4 mg/dL/IU. In this example, 

one IU lowers the BG level by 4 mg/dL. In the simulation the patient receives 15 IU at noon, following 

the dose suggestion of the modified algorithm. Considering the “virtual insulin sensitivity” of the 
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patient, the simulation estimates that the additional 5 IU would have lowered the BG level by 

additional 20 mg/dl resulting in an evening BG level of 140 mg/dl.  

All records resulting from the simulations are stored in the relational GlucoTab® database, and are 

then extracted by the data preparation component and prepared for pooled statistical analysis in the 

analysis component. 

3. Blood glucose estimations 

Parallel to the development of the toolbox suitable methods for the estimation/simulation of the effect 

of insulin dosing algorithm modifications on the patients’ BG level were searched. Therefore a 

structured literature search was carried out in February 2013. The aim was to identify methods for BG 

estimation, which are: applicable in T2DM patients on intensified insulin therapy using subcutaneous 

insulin injections, for long-term BG estimations to the next meal, and which use input parameters also 

available in our data base. Identified methods were evaluated in terms of expectable results (accuracy), 

reliability and feasibility. 

3.1 Structured literature search 

Sources used: 

- PubMed (National Center for Biotechnology Information) 

- IEEE Xplore (Institute of Electrical and Electronics Engineers and Institution of Engineering 

and Technology) 

- Google Scholar (Google Inc.) 

- Google Web (Google Inc.) 

Search strategy: 

Initially, most recent review articles, PhD and master theses or books were searched. Based on the 

identified overview works, individual studies were identified and their abstracts were screened. 

Relevant sources were identified for critical appraisal. To identify also the most novel work a keyword 

search was performed. Again, abstracts were screened and relevant sources were included for critical 

appraisal.  
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Search results: 

Two master theses, 3 PhD theses and one book chapter were initially identified. The identified 

overview work included state of the art analyses until 2012. 28 relevant published publications were 

selected for critical appraisal. The search results were categorized according to:  

- Prediction algorithm/technology 

- Diabetes type 

- Glycemic source: CGM or capillary BG data 

- Forecast period 

- Method tested in a clinical trial 

- Data base (subjects) 

Twenty-one published new articles were identified meeting the keyword search criteria. For critical 

appraisal 10 new articles were additionally selected. The keyword queries and the critical appraisal are 

listed in Appendix III – Supplemental Material (Structured Literature Search: Critical Appraisal). 

3.2 Identified methods for BG estimation 

Models of glucose dynamics for predictive purposes can mainly be divided into two categories: 

physiologically-oriented models and data-driven methodologies. The latter category can furthermore be 

divided into time-series analysis using auto-regressive models and machine learning (ML) 

methodologies (e.g. neural networks (NN), support vector regression). Combinations of data-driven 

methods incorporating physiological sub-models present an additional approach. 

Forecast period: The forecast period can be divided into three ranges according to the identified 

literature: 

1. Short-term predictions (10 to 30 minutes) 

2. Post-prandial predictions (30 to 120 minutes) 

3. Long-term predictions(>120 minutes or to the next meal/interval) 

Short-term predictions target especially online closed loop insulin systems using insulin pumps. Post-

prandial and long-term predictions could also be used for basal-bolus insulin therapy. 

Data input: The identified forecast methodologies significantly differ in the used input variables. The 

major difference is if glycemic monitoring was performed with a quasi-continuous data source (CGM) 
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or with point of care glucose testing, e.g. four times a day in case of a basal-bolus therapy. Additional 

information like consumed carbohydrates, physical activity, level of stress and relevant medications is 

often used in the predictive models. 

3.2.1 Physiologically-oriented models 

Previous work in this field dates back to the early 1960s. A historical background and summary of 

previous work can be found in Cescon (2011) and Stahl (2012) [36], [37]. Physiologically-oriented 

models are based on differential equations and are exclusively used for short-term glucose predictions. 

For example, a predictive capacity with a root mean square error (RMSE) of 4 mg/dL for a prediction 

horizon of 15 minutes was achieved [38]. The main advantages are that the models require no training 

and that their output is continuously explainable. But then, these models are only valid for T1DM and 

only achieve good prediction performance in short-term glucose predictions. No individualization of 

the used models is possible if they are not explainable with the model parameters. Therefore, 

physiologically-oriented models cannot “simply” be trained for different patients. 

3.2.2 Data-driven methodologies 

Glucose forecasting using data-driven methodologies is relatively new compared to physiologically-

oriented methodologies. These technologies advanced in the late 1990s, similar to the development of 

the personal computer. Data-driven methodologies applied for glucose forecasting can be roughly 

divided into: 

1. Time series analysis 

a. Regression (linear models and higher order polynomial models) 

b. Regression with learning components (exogenous inputs) 

2. Machine learning methods 

a. Neural networks 

b. Support vector regression 

c. Gaussian processes 

Gani et al. developed an auto-regressive (AR) model which is able to yield 30 minutes ahead glucose 

level predictions with a RMSE of 1.8 mg/dL and 60 min ahead glucose level predictions with a RMSE 

of 12.6 mg/dL [39]. One disadvantage using AR or auto-regressive moving average (ARMA) methods 

is that exogenous input, such as injected insulin or consumed carbohydrates does not influence the 
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prediction, which excludes them from being used in a model-based control framework. An extension 

to the AR concept is to include exogenous inputs, transforming these models into ARX or ARMAX 

models (X stands for exogenous input). In Percival et al. they demonstrated that a 3 hour look ahead 

with a RMSE of 26 mg/dL is possible using a multi-parametric model predictive control algorithm in 

virtual patients [40]. 

Neural networks (NN) are an additional option for glucose predictions. In Daskalaki et al. a NN model 

was compared to AR and ARX models on a dataset with 30 patients. The NN outperformed AR and 

ARX models in this study. The NN had a RMSE of 4.9 mg/dL versus 29 mg/dL (AR) and 26 mg/dL 

(ARX) for 45 minute glucose predictions. [41] 

Long-term predictions with different NN topologies were performed in T1DM patients. In Quchani 

and Tahmai, the study aimed the prediction of the glucose concentration before lunch. The data were 

obtained from 10 T1DM patients treated with a conventional subcutaneous insulin regimen. The 

results showed that the Elman recurrent NN outperformed the multilayer perceptron network (mean 

absolute error 10.4 mg/dl vs. 24.15 mg/dl) [35]. Zainuddin et al. compared wavelet NN against other 

NN topologies. The system outperformed others for morning, noon, evening and night BG predictions 

with a RMSE < 0.04 mmol/L (<1 mg/dL) [34]. 

The biggest advantage, but the biggest disadvantage is that data-driven models can and have to be 

trained. Therefore no complex physiological model has to be developed to model the influence of 

parameters according to e.g. complex metabolic processes. The “nature” of these models is very 

patient-specific. However, the validity of the prediction is dependent on the quality of the training data 

(garbage in, garbage out problem). Furthermore, for exact predictions in the critical low-glycemic 

range the model has to be trained also with low BG values. Because low-glycemic events are rare, the 

training-dataset has to be very large.  

3.3 Discussion  

Reliable physiologically-oriented models for BG estimation are only available for short-term 

predictions in T1DM. Data-driven methodologies provide a broad array of options also for T2DM, but 

also primarily for short-term predictions. None of the identified methods for long-term predictions 

has been validated in clinical studies with T2DM patients. NN approaches using very detailed sets of 

data from T1DM showed very promising results [34]. Unfortunately, NN could not be used to achieve 

accurate BG estimations using our less detailed dataset of hospitalized T2DM patients. The GlucoTab® 
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approach for T2DM does not involve exact carbohydrate counting. Therefore, exact amounts of 

carbohydrates consumed were not available and could account for the inaccurate estimations achieved 

with NN. Patients were on average only for 8 days in the hospital in our studies testing the insulin 

dosing algorithms. By having only this short period of time available, the development and test of a 

patient-specific NN was problematic. Additionally, the development of a generic NN model using a 

pooled data source would probably not sufficiently take into account intra- and inter-personal 

variations and should therefore not be used for BG estimations. 

Because of the lack of suitable methods for long-term BG level estimation in T2DM patients by using 

our data source, a rather simple but explainable and reliable method was developed – “virtual insulin 

sensitivity” profiles. For analyses of the impact of possible modifications of the insulin dosing 

algorithm on the patients’ BG levels a linear relationship between the magnitude of the insulin dose 

and the effect on BG levels was used [42]. Most bolus insulin calculators work according to this 

principle. By using this approach also unreported events, e.g. unreported snacks and stress are 

automatically considered in the retrospective what-if estimation of the potential impact on the 

patients’ individual BG level. Like in Zainuddin et al. “estimators” were developed for individual 

intervals (bedtime to morning, morning to noon, noon to evening, evening to bedtime) [34].  

The accuracy of the BG estimation method using “virtual insulin sensitivity” profiles may be limited by 

the non-linearity of the BG lowering effect of insulin across the patients’ BG range. In the 

normoglycemic range insulin sensitivity can be considered as a constant [43], [44], but the BG 

lowering effect may be amplified in hypoglycemia and dampened in hyperglycemia. In a clamp study 

performed in T1DM patients the BG lowering effect increased by 75% when BG dropped from 90 to 50 

mg/dL and decreased by 10% when BG was increased from 100 to 200 mg/dL [45]. However, no data is 

available to support these findings in T2DM patients. The vast majority of simulations were performed 

with BG levels in a range were the BG lowering effect of insulin can be considered as linear. Therefore, 

the validation of the BG estimations was demonstrating a good agreement between simulation and 

clinical data, (Chapter III). Future versions of the BG estimation component could use non-linearity of 

the insulin lowering effect, providing reliable data for T2DM are available. 
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4. Summary 

Especially for comparison with other studies already established parameters and metrics for the 

evaluation of the level of glycemic control have been identified, and were incorporated into the 

analysis component of the toolbox as reusable methods. Furthermore, newly developed methods, 

measures and metrics provide detailed insight into individual and pooled analyses of the level of 

glycemic control and allow the evaluation of safety and effectiveness of insulin dosing algorithms.  

In the course of this PhD work a framework/toolbox was developed incorporating methods for: 1) data 

preparation of heterogeneous data sources from clinical studies; 2) analysis and evaluation of the 

performance of insulin dosing algorithms; and 3) simulation and estimation of the impact of 

modifications of insulin dosing algorithms. The toolbox currently comprises data of 258 patients. 92 

additional patients have been included into the database since the publication of Donsa et al. 2014 [23]. 

Furthermore, new methods for reporting of analyses and simulation have been developed and the 

reporting tool was changed from Sweave/LaTeX to Markdown. By using Markdown it is now possible 

to create reports in different file formats, including PDF, Microsoft Word and HTML. Markdown as 

the newer technology facilitates the development of interactive documents and graphs.  

The use of “virtual insulin sensitivity” profiles allows simple but explainable and reliable estimations of 

BG levels. In combination with the workflow simulator it is possible to investigate modifications of 

insulin dosing algorithms “in-silico” prior to testing them in a clinical study. Chapter III provides 

validations of simulation results using clinical data of patients treated with modified versions of the 

insulin dosing algorithm.  

Also in repeatedly performing the literature keyword search to identify the most novel methods for BG 

estimation, no studies were identified testing long-term BG estimation methodologies in a clinical 

study in T2DM patients. However, the main focus of this work was not the estimation of BG levels, but 

the evaluation and improvement of an insulin dosing algorithm. For the purpose of estimating the 

impact of modifications of the insulin dosing algorithm on the patients’ BG levels the used method 

proofed to be sufficient.  
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CHAPTER III 

Evaluating modifications of the insulin dosing algorithm 

This chapter is based on data and analyses of previously published articles (Donsa et al. 2014; 

Schaupp*, Donsa* et al. 2015; Neubauer, Mader, Höll, Aberer, Donsa et al. 2015) and is 

complemented by so far unpublished investigations. 

Methods for data processing and statistics are described in detail in the original articles. 

 

* Both authors contributed equally to this study. 
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1. Evaluation of the initial version of the insulin dosing algorithm – 

Room for improvement 

The initial version of the insulin dosing algorithm used in GlucoTab® was tested in a proof-of-concept 

study using a paper-based protocol for basal-bolus insulin therapy [22]. Seventy-four T2DM patients 

were either assigned to algorithm-based treatment with a basal-bolus insulin therapy or to standard 

glycemic management. The following investigations were performed with data from 37 T2DM patients 

on algorithm-based diabetes therapy. Detailed clinical characteristics on admission, preexisting 

diabetes therapy and admission diagnosis are provided in the originally published study [22]. 

Glycemic control: 

The percentage of BG values in the target range (100 – 140 mg/dL) was significantly higher in the 

algorithm group compared to the standard glycemic management group (34% vs. 23%, p<0.001) [22]. 

The number of BG readings in the desired range 100 – 140 mg/dL increased during the progression of 

the therapy in the algorithm group, (Figure 5, Chapter II). In the course of the therapy, the mean daily 

BG levels in the algorithm group were significantly reduced from 204±65 mg/dL (baseline) to 148±32 

mg/dL (last 24h), p<0.001. But 30% of the patients in the algorithm group had at least one low 

glycemic event (<70 mg/dL) which indicated room for improvement to establish a safer and more 

effective glucose management. 

More detailed analysis of the patient’s glycaemia, including additional CGM data, revealed on average 

high BG levels at noon and an increased number of low glycemic events (<70 mg/dL) in the afternoon, 

Figure 10. CGM profiles were stable during night, but glucose levels at noon were frequently outside 

the target range. This was presumably caused by an elevated morning BG excursion which was not 

satisfactorily controlled by the administered morning bolus insulin dose. Also a rise of BG levels in the 

early morning hours (4:00 - 7:00) indicated an additional insulin need in the patients treated with the 

basal-bolus insulin regimen. To fit into the workflow of the clinical ward, basal insulin was 

administered at noon and therefore fading basal insulin action in the morning could also have 

contributed to elevated BG levels at noon [46]. As a consequence elevated BG values at lunch required 

higher bolus insulin doses and could have caused hypoglycemia in the afternoon [22]. Although there 

are hurdles regarding CGM accuracy which are discussed in Chapter IV [47], CGM data provided 

information that would not have been recognized by only using capillary BG measurements. 
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Figure 10: Diurnal glycemic profile of patients treated with the initial version of the insulin dosing algorithm. 
CGM values are median – interquartile range (25–75% [Q25/75%] and 10–90% [Q10/90%]). BG values are 
median – interquartile range (25–75%), displayed as bars. Black dots indicate hypoglycemic events (<70 mg/dL). 
Q …quantile, h … hour 

Basal-bolus insulin therapy: 

The basal-bolus insulin regimen in T2DM patients targets a 50:50 ratio of basal and bolus insulin. 

Figure 11 shows the development of the basal and bolus insulin as a function of treatment days. 

Especially in the first days of therapy some patients required significant amounts of supplemental 

insulin to account for high BG values disregarding this 50:50 ratio, Figure 11a. On the first day the 

displayed average amount of bolus insulin is lower because patients were enrolled at different times of 

the day and did not receive all 3 planned bolus insulin injections. By investigating the diurnal bolus 

insulin distribution a proportional higher supplemental insulin requirement at noon was discovered, 

Figure 11b. Sixty-four percent of mealtime bolus insulin doses were adjusted for too high or too low 

BG values, and the majority of positive corrections of bolus insulin doses were performed at noon. 

Only 11% of bolus doses at noon were reduced in the patient cohort. A negative correction is, if the 

mealtime bolus insulin dose is reduced by 50% when the patients’ BG level is between 70 and 100 

mg/dL, or if the bolus is withheld when the BG level is below 70 mg/dL. 

Also a detailed investigation of “correction patterns” revealed that a large proportion of bolus insulin 

calculations were supplemented by additional corrective insulin, Table 1. This indicated that some 

patients required more insulin than the algorithm initially provided to account for high BG levels. 

Furthermore, although some patients were constantly in the need of supplemental bolus insulin 
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compensating high BG levels, the patient’s TDD was not increased by the insulin dosing algorithm due 

to morning and evening BG values slightly below 100 mg/dL, Table 2. In 14% (29 of 204) of “therapy 

patterns” the TDD was increased two times in a row, but in only 18% (42 of 235) of all therapy 

adjustments the TDD was decreased. 
 

  

Figure 11: a) Composition of the injected insulin. Mean injected bolus insulin (blue) and mean injected basal 
insulin (red) as a function of study days. b) Composition of the bolus insulin and frequency of bolus corrections 
over the day. The error bars are the standard error of the mean 

 

 

Table 1: Correction pattern histogram (top 10): Sequence of adjustments of bolus insulin doses to compensate 
for high and low BG levels in patients treated with the initial version of the insulin dosing algorithm. (+) 
indicates additional corrective insulin; (-) indicates a decrease of the bolus dose suggestion; (0) indicates no 
bolus adjustment. In total 235 correction patterns and 59 unique patterns 

Correction pattern 
Correction bolus Frequency 

1. Noon 2. Evening 3. Night 4. Morning n % 

++++ + + + + 27 11.5 
+000 + 0 0 0 18 7.7 
++00 + + 0 0 13 5.5 
++0+ + + 0 + 12 5.1 
+-00 + - 0 0 11 4.7 
+0++ + 0 + + 11 4.7 
+-0- + - 0 - 10 4.3 
0000 0 0 0 0 10 4.3 
+0+0 + 0 + 0 8 3.4 
+00+ + 0 0 + 8 3.4 

a) b) 
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Table 2: Therapy pattern histogram (top 10): Sequence of adjustments of mealtime bolus insulin doses and 
adjustments of the patients’ TDD to compensate for high and low BG levels in patients treated with the initial 
version of the insulin dosing algorithm. (+) indicates additional corrective insulin; (-) indicates decrease of bolus 
dose suggestion; (0) indicates no bolus adjustment; (n) indicates a missed insulin injection; (UP) indicates a TDD 
increase; (==) indicates no adjustment of the TDD; (DW) indicates a decrease of the TDD. In total 204 therapy 
patterns and 83 unique patterns 

Correction pattern 0. TDD 
adjustment 

Correction bolus 4. next TDD 
adjustment 

Frequency 
1. Noon 2. Evening 3. Morning n % 

UP+++UP UP + + + UP 17 8.3 
==+++UP == + + + UP 13 6.4 
==+00== == + 0 0 == 12 5.9 
==+-0== == + - 0 == 10 4.9 
==000== == 0 0 0 == 10 4.9 
==+--DW == + - - DW 7 3.4 
==++0== == + + 0 == 6 2.9 
==00-== == 0 0 - == 6 2.9 
==+0+== == + 0 + == 5 2.5 
==n++UP == n + + UP 5 2.5 

 

2. Evaluating the impact of modifications of the insulin dosing algorithm 

After the initial evaluation of the first version of the insulin dosing algorithm different approaches for 

improvement were identified, simulated and evaluated. This section provides an overview of the 

sequence of implemented algorithm improvements and provides evaluations based on simulations and 

validations with real patient data. Finally, a comparison regarding safety and effectiveness of the initial 

insulin dosing algorithm with the currently used version was performed. 

2.1 Redistribution of daily bolus insulin 

The use of the first version of the insulin dosing algorithm resulted in frequent relatively high BG 

values at noon, requiring significantly more corrective bolus insulin which resulted in an increased 

number of hypoglycemic episodes in the afternoon. The first step for improving the insulin dosing 

algorithm was to redistribute the amount of bolus insulin over the day. Originally, each meal 

(breakfast, lunch and dinner) was accounted for with an equally large bolus insulin dose in relation to 

the patients’ TDD. Because of high BG levels at noon the idea was to increase the morning bolus 

insulin dose to account for additional insulin need. For safety reasons the TDD was not increased and 

therefore the amount of insulin was reduced for the other two boluses. The in Chapter II described 

framework for workflow simulation was used to estimate the effect of redistributing daily bolus insulin 
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on the patients’ BG levels. Therefore several combinations of redistributing the daily bolus insulin 

were simulated and patient hazard was investigated by using what-if analyses. The amount of bolus 

insulin at noon was reduced to lower the risk of potentially dangerous insulin stacking leading to 

hypoglycemia in the afternoon. The final distribution of bolus insulin over the day resulted in 45% for 

breakfast, 25% for lunch and 30% for dinner of half of the patients’ TDD, and the other half was still 

administered as basal insulin at noon. Workflow simulations with BG estimations were indicating no 

additional BG levels below 70 mg/dL by redistributing daily bolus insulin accordingly. 

Figure 12a shows the initial problem of high BG levels at noon in data of 52 patients treated with the 

initial version of the insulin dosing algorithm. Figure 12b demonstrates the results of the simulation 

with the proposed change of the daily bolus insulin distribution. The simulation predicted a reduction 

of BG levels at noon without causing additional hypoglycemia. Results of the simulation were validated 

using data of the first 15 patients treated in a clinical study with the redistributed daily bolus insulin, 

Figure 12c. In these patients the predicted significantly reduced noon BG levels were confirmed, 

p=0.014. [23] 

 

 

Figure 12: Diurnal distribution of average blood glucose levels per hospital stay – clinical data and simulation 
results. Data from Donsa et al. 2014 [23] 

 

2.2 Modification of the TDD adjustment (therapy adjustment) 

In some patients the need for insulin was noticeable higher than initially calculated at the start of the 

therapy, and moreover the adjustment of the therapy was not dynamic enough to adjust the TDD to 

the required amount of insulin during the patients’ short hospital stay. The therapy pattern analysis of 
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the initial insulin dosing algorithm revealed that in some patients, therapy adjustments resulted in no 

increase of the TDD even though they became significant amounts of supplemental insulin. The 

additional supplemental insulin requirement compensating high BG levels is not considered in the 

adjustment of the TDD for safety reasons. To make the method for adjusting the TDD more dynamic 

without compromising safety, different versions were simulated by using the framework for workflow 

simulation described in Chapter II. Consequently, patient hazard analyses were performed to identify 

safe and effective modifications. 

Description of potential new versions for adjustment of the TDD: 

• Version 1 (V1): In addition to the initial therapy adjustment scheme (see Table 3), the TDD is 

increased when the morning and evening BG values are >100 mg/dL and additionally the 

mean/median BG value of all four standard measurements is >140 mg/dL, Table 3 

• Version 2 (V2): In addition to the initial therapy adjustment scheme, the TDD is increased 

when the morning and evening BG values are >70 mg/dL and additionally the mean/median 

BG value of all four standard measurements is >140 mg/dL, Table 4 

• Version 3 (V3): In addition to the initial therapy adjustment scheme, the TDD is increased 

when all four standard BG measurement values are >100 mg/dL and additionally the 

mean/median BG value of all four standard measurements is >140 mg/dL, Table 3 

 
Table 3: Adjustment of the TDD (initial, version 1 and version 3): Initially the adjustment of the TDD was based 
on morning and evening BG values and considered if the patient had any BG value <70 mg/dL. Version 1 of the 
proposed new methods for TDD adjustment would increase additionally the TDD by 10% in the green marked 
fields in the table if the mean/median of all 4 standard BG measurements is >140 mg/dL. Version 3 requires all 
4 available BG standard measurements >100 mg/dL and the mean/median >140 mg/dL to increase the TDD. 
The availability of morning and evening BG measurements is obligatory for adjustment of the TDD 

  Morning  

 Range (mg/dL): <70 70 – 100 101 – 140 141 – 180 >180 
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<70 -20 % -20 % -20 % -20 % -20 % 

70 – 100 -20 % -10 % ± 0 % ± 0 % ± 0 % 

101 – 140 -20 % ± 0 % ±0%/+10% ±0%/+10% + 10 % 

141 – 180 -20 % ± 0 % ±0%/+10% + 10 % + 10 % 

>180 -20 % ± 0 % + 10 % + 10 % + 20 % 
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Table 4: Adjustment of the TDD (version 2): The proposed new method for TDD adjustment would increase 
additionally the TDD by 10% in the green marked fields in the table if the mean/median of all 4 available 
standard BG measurements is >140 mg/dL. The availability of morning and evening BG measurements is 
obligatory for adjustment of the TDD 

  Morning  

 Range (mg/dL): <70 70 – 100 101 – 140 141 – 180 >180 
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<70 -20 % -20 % -20 % -20 % -20 % 

70 – 100 -20 % -10 % ±0%/+10% ±0%/+10% ±0%/+10% 

101 – 140 -20 % ±0%/+10% ±0%/+10% ±0%/+10% + 10 % 

141 – 180 -20 % ±0%/+10% ±0%/+10% + 10 % + 10 % 

>180 -20 % ±0%/+10% + 10 % + 10 % + 20 % 

 

To determine the effect of modifications of the above described versions for adjustment of the patients’ 

TDD, workflow simulations were performed with data from the initial pilot study (37 patients, 235 

adjustments of the TDD). Table 5 shows a summary of the frequency of the TDD adjustments based 

on initial and recalculated modified versions. 

 

Table 5: Recalculations of the TDD based on different versions for adjustment of the TDD. The numbers 
indicate the frequency of TDD adjustments and the sign and number implies the increase/decrease and 
percentage of change of the TDD. (+10%n) are dose adjustments according to the new rules 

Type 
Initial  

TDD adjustment 

TDD adjustment (new) 

V1 Mean V1 Median V2 Mean V2 Median V3 Mean V3 Median 
+-0% 118 81 88 75 83 84 90 
+10% 60 60 60 60 60 60 60 

+10%n 0 37 30 43 35 34 28 
+20% 15 15 15 15 15 15 15 
-10% 13 13 13 13 13 13 13 

-20% 29 29 29 29 29 29 29 

 

Potential patient hazard (hypoglycemia) was analyzed to evaluate the safety of the new versions for 

adjustment of the TDD. Therefore, if a TDD prior to a hypoglycemic event would have been increased 

was investigated. Additionally, the impact of increased insulin as calculated by the new version of TDD 

adjustment was investigated, and the in Chapter II described BG estimation methodology was used to 

identify potential additional hypoglycemia.  
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Four cases were identified where the new versions for adjustment of the TDD would increase the 

insulin dose prior to a hypoglycemic event, Table 6. The impact of increased doses on hypoglycemia 

and the impact of modified rules for adjustment of the TDD on insulin dose calculations are shown in 

Table 7. Only few BG values were influenced by additional 10% of daily insulin and lowering the BG 

levels below 70 mg/dL. The average change of the TDD was small and comparable between the 

different versions. The maximum of additional insulin was lower in version 3 compared to the other 

versions. It has also to be considered that the 10% increase of the TDD is not a single insulin injection, 

but is divided into a basal and a bolus part, and the bolus part is furthermore divided into 3 meal 

boluses. Therefore, the amount of additional insulin is relatively small. In most cases the basal dose 

would only be increased by 1-2 IU and the bolus accordingly. 

According to this analysis, version 3 (mean) of the proposed new methodologies for adjustment of the 

patients TDD was implemented into the final version of GlucoTab®. Analyses and simulations 

confirmed that it is safe and it is more dynamic compared to the initial methodology. By considering 

all 4 BG measurements and their mean, this method is increasing in complexity and therefore it is only 

advisable to use this method in a computerized system to prevent user calculation errors.  

 

Table 6: Increased TDD adjustments prior to hypoglycemic events. The numbers demonstrate the amount of 
insulin for the initially calculated TDD and the recalculation with the proposed modified versions. The bottom 
row indicates how many calculations were deviating from the original TDD calculation 

Subject 
ID 

TDD 
initial V1 mean V1 median V2 mean V2 median V3 mean V3 median 

Insulin Units (IU) 
119 22 24 22 24 22 22 22 
135 46 50 50 50 50 50 50 
135 36 39 39 39 39 39 39 

136 46 46 46 50 50 46 46 

  3/4 2/4 4/4 3/4 2/4 2/4 
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Table 7: Effect of the modified adjustment of the TDD on hypoglycemia and calculation of insulin doses. The 
average difference between originally calculated and recalculated TDD is demonstrated as mean±SD and as 
median and range. Impact of increased doses on hypoglycemia (<70 mg/dL) was investigated by using the BG 
estimation process described in Chapter II 

Version Events <70 mg/dL Mean±SD Median Range 
 n Insulin Units (IU) 

Original 31 – – – 
V1 mean 32 4.3±2.3 4 1 – 11 
V1 median 31 4.6±2.1 4 1 – 11 
V2 mean 34 4.3±2.4 4 1 – 11 
V2 median 33 4.6±2.4 4 1 – 11 
V3 mean 31 4.2±1.9 4 1 – 7 
V3 median 31 4.6±1.6 4 1 – 7 
 

2.3 Safety features 

Insulin on board: 

Insulin on board is a safety feature used in modern bolus insulin calculators to protect DM patients 

from potentially dangerous insulin stacking. Basal-bolus insulin therapy allows flexibility by frequent 

injections of small precise doses at any time that a need arises. As a consequence, this may result in an 

overlap of insulin action times. In determining how much insulin from earlier boluses is still “active”, 

the calculation of subsequent bolus insulin calculations is influenced. The still remaining “active” 

insulin is estimated and subtracted from the current bolus calculation according to the 

pharmacodynamics of the used insulin. In many cases a linear relationship for insulin on board over 

time is used. [42], [48] 

The use of computerized workflow and decision support systems allow the handling of time-critical 

calculations such as the reduction of bolus insulin due to still “active” insulin on board. GlucoTab® 

automatically subtracts still “active” insulin when calculating a new bolus insulin dose.  

In a post-hoc analysis using data from Neubauer et al. [30] the frequency of bolus reduction due to 

insulin on board was investigated. Even in a highly standardized environment under study conditions 

18.8% of bolus insulin calculations were reduced by at least one IU due to the insulin on board safety 

feature. The average reduced bolus insulin dose was 3.2±3.0 IU (mean±SD). 
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Reduced insulin for belated basal insulin administration: 

The GlucoTab® approach for basal-bolus insulin therapy in T2DM patients requires basal insulin 

administration at noon. Because of patients enrolling to therapy e.g. in the afternoon, or workflow 

deviations due to larger medical procedures it is sometimes necessary to administer basal insulin 

belated. GlucoTab® supports automated handling of belated basal insulin administration by reducing 

the amount of insulin according to a formula.  

2.4 Comparison of the initial with the refined insulin dosing algorithm 

Both versions of the insulin dosing algorithm were tested in clinical studies and have been thoroughly 

evaluated [22], [30]. The initial dosing algorithm was tested in a paper-based way in a pilot study. 

Results regarding efficacy and usability were published by Mader et al. 2014 [22] and additionally so 

far unpublished investigations have been presented in the previous sections of this PhD thesis.  

After integration of the redistribution of daily bolus insulin, modification of the method for daily 

insulin dose adjustment and implementation of safety features, the refined insulin dosing algorithm 

was tested in a computerized way on 4 hospital wards [30]. Results of this study regarding safety, 

efficacy and usability can be found in Chapter V. 

The aim of this section is to compare the already published results of both versions of the insulin 

dosing algorithm and to complement analyses by so far unpublished data. Originally published results 

are clearly marked. The patient population did not differ in any relevant parameters between patients 

treated with the initial and the refined version of the insulin dosing algorithm. 

Glycemic control: 

Overall glycemic control was comparable between the groups, Table 8. As the simulation predicted 

(section 2.1, [23]), the redistribution of the daily bolus insulin resulted in significantly lower BG levels 

at noon. The use of the refined algorithm did not increase hypo- or hyperglycemia. There is a trend 

towards a reduction of hypoglycemia when using the refined algorithm. This may have two different, 

but unfortunately inseparable explanations: Insulin dosing errors due to manual insulin dose 

calculation have a strong influence on the likelihood to experience hypoglycemia ([6], Chapter VI). As 

the refined computerized algorithm prohibits manual dose calculation errors, the rate of hypoglycemia 

may be reduced in this group. Additionally, the refined algorithm with redistributed daily bolus insulin 
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and safety features may have prevented hypoglycemia. Unfortunately, it is not possible to measure one 

effect without the other and the impact cannot be considered separately.  

Table 8: Glycemic control established with the original and the refined algorithm. The rate of values <70 mg/dL 
of the initial algorithm was published in Mader et al. 2014 [22] and the glycemic profile of the refined algorithm 
was published in Neubauer et al. 2015 [30] 

Profile Initial 
algorithm 

Refined 
algorithm 

p-
value 

Patients (n) 37 99  
Mean daily BG and SD (mg/dL) 
   Mean prebreakfast 
   Mean prelunch 
   Mean predinner 
   Mean bedtime 

155±46 
138±21 
190±40 
147±41 
144±37 

154±35 
147±43 
170±54 
153±39 
153±39 

0.475 
0.861 

0.014* 
0.805 
0.932 

<70 mg/dL (%) 3.0 1.9 

>0.2 
70-180 mg/dL (%) 72.9 72.5 

100-140 mg/dL (%) 32.5 33.0 

>180 mg/dL (%) 23.5 25.6 

*statistically significant difference (p<0.05) 

 

In a subgroup of patients additional CGM was performed. CGM data processing is described in 

Chapter IV [47]. By using CGM data the diurnal distribution of glucose levels on the last treatment 

day was investigated and compared between patients treated with the initial and refined insulin dosing 

algorithm, Table 9 and Figure 13. In patients treated with the refined version of the insulin dosing 

algorithm a reduction of the patients’ mean daily glucose on the last treatment day was observed 

(CGM: 145.1±37.3 mg/dL vs. 132.6±34.0 mg/dL, p=0.081). The refined algorithm led to less glucose 

values in the range >180 mg/dL and an increase of glucose values in the extended target range 70 – 180 

mg/dL.  

Using only information from capillary BG measurements for comparisons would detect a higher 

proportion of BG values <70 mg/dL in patients treated with the refined insulin dosing algorithm on 

the last day of treatment. The detected low glycemic events (<70 mg/dL) were all during nighttime. A 

previous study demonstrated that during nighttime the number of low glycemic events detected by 

CGM was 15-fold higher than the number detected with capillary BG measurements [47]. By using 

additional information from CGM the rate of low glycemic events on the last day of treatment was 

comparable between patients treated with the initial and the refined version of the insulin dosing 

algorithm. 
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Figure 13: Last full treatment day with continuous glucose monitoring (CGM): a) Initial algorithm b) refined 
algorithm. CGM profiles and reference blood glucose (BG) measurements. CGM values are median – 
interquartile range (25–75% [Q25/75%] and 10–90% [Q10/90%]). BG values are median – interquartile range 
(25–75%), displayed as bars. Small black dots indicate hypoglycemic events (<70 mg/dL). Q …quantile, h … hour 

 

a) Initial algorithm 

b) Refined algorithm 



Chapter III: Evaluating modifications of the insulin dosing algorithm 

 
- 42 - 

Table 9: Ambulatory glucose profile of patients on the last study day under basal-bolus insulin therapy. 
Comparison between continuous glucose monitoring (CGM) and capillary blood glucose (BG) measurements for 
patients treated with the initial and refined insulin dosing algorithm. Data from Schaupp, Donsa et al. 2015 
[47]. 

Profile 
Initial algorithm Refined algorithm 

CGM BG CGM BG 

Patients (n) 28 28 35 35 

Glucose values (n) 7,601 100 9,846 140 

Mean daily glucose (mg/dL) 145.1 149.0 132.6 143.9 

Glucose variability SD (mg/dL) 37.3 40.6 34.0 64.5 

Coefficient of variation CV (%) 25.7 27.2 25.6 44.8 

<50 mg/dL (%) 1.18 0.00 0.02 0.00 

<60 mg/dL (%) 1.66 0.00 0.56 1.43 

<70 mg/dL (%) 2.62 0.00 3.31 2.86 

70-180 mg/dL (%) 74.92 78.00 82.96 84.29 

100-140 mg/dL (%) 39.65 39.00 40.84 36.43 

>180 mg/dL (%) 22.46 22.00 13.73 12.86 

>250 mg/dL (%) 4.41 5.00 1.98 1.43 

>350 mg/dL (%) 0.16 1.00 0.24 0.71 
 

Basal-bolus insulin therapy: 

The progression of the patients’ starting bolus and basal insulin over the study period was significantly 

different between patients’ treated with the initial and refined version of the insulin dosing algorithm, 

Figure 14a. The investigation of the progression of the TDD over the study period by including an 

interaction relationship with the used version of the insulin dosing algorithm in a linear regression 

model confirmed these differences, p<0.05. The refined version of the insulin dosing algorithm 

constantly increased the average TDD compared to patients treated with the initial version, Figure 

14b. This is probably due to the new more dynamic methodology for adjustment of the TDD described 

in section 2.2.  
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Figure 14: a) Progression of basal (red) and bolus (blue) insulin in patients using the initial (squares and solid 
lines) and the refined (circles and dashed lines) insulin dosing algorithm. b) Progression of the total daily insulin 
dose and linear regression line of patients treated with the initial (red squares) and refined (black circles) 
algorithm.  

 

Evaluation of safety and effectiveness of the insulin dosing algorithms: 

Individual decision support steps of the insulin dosing algorithms were evaluated using the method 

described in Chapter II (section 1.2). The initial problem of high BG levels at noon and the increased 

number of hypoglycemic events in the afternoon is also evident in Figure 15a. However, already a high 

proportion of calculated insulin doses resulted in BG levels in the extended target range (ETR) using 

the initial insulin dosing algorithm. Additionally, the impact of algorithm modifications is observable, 

Figure 15b. There are proportionally fewer dosing decisions resulting in hypoglycemia using the 

refined algorithm, especially in the noon-evening interval. The increased bolus insulin dose in the 

morning resulted in a better control of noon BG values, Figure 16. A small number of BG values in the 

hypo- and hyperglycemic range limit the interpretation of the average correctness of BG level 

“titrations” with supplemental insulin. 

a) b) 
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Figure 15: Target range approach: Evaluation of safety and effectiveness of the initial (a) and the refined (b) 
insulin dosing algorithm: The red line is the mean of all lines within an intervention border. Supplemental 
insulin dose according to blood glucose intervention border (mg/dL) and insulin sensitivity [sensitive / normal / 
resistant]; IU … Insulin Unit, ETR … Extended Target Range (70-180 mg/dL) 

a) 37 patients 

b) 99 patients 



Chapter III: Evaluating modifications of the insulin dosing algorithm 

 
- 45 - 

 

Figure 16: Average correctness of BG level “titrations” with supplemental insulin. Initial insulin dosing 
algorithm (solid lines) and refined insulin dosing algorithm (dashed lines). The red line is the mean of all lines 
within an intervention border. Numbers indicate the amount of underlying data for calculation of the averages. 
Supplemental insulin dose according to blood glucose intervention border (mg/dL) and insulin sensitivity 
[sensitive / normal / resistant]; IU … Insulin Unit 

 

3. Summary 

Evaluations of the already implemented modifications of the insulin dosing algorithm confirmed their 

safety and effectiveness. Moreover, the results of the “in-silico” simulations of modifications of the 

insulin dosing algorithm were confirmed with clinical data. Results of the “in-silico” simulation of the 

redistribution of the daily bolus insulin were validated using clinical data of the first 15 patients treated 

in a clinical study with the redistributed daily bolus insulin, but might have also been affected by the 

difference in glycemic control prior to the clinical study [23]. HbA1c in patients treated with the initial 

version of the insulin dosing algorithm was 76±30 mmol/mol compared to 62±18 mmol/mol in 

patients treated with the modified version. However, the amount of the by the simulation predicted 

BG reduction was once more confirmed in 42 patients on an Endocrinology ward with on average 
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poor glycemic control prior to the study (HbA1c: 70±24 mmol/mol) [30]. Modification of the 

methodology for adjustment of the patients TDD significantly changed the overall progression of the 

amount of daily injected insulin. Despite on average more ordered insulin due to the modified more 

dynamic adjustment of the TDD, no additional hypoglycemia was caused when compared to the initial 

insulin dosing algorithm. Glycemic control on the last study day was improved by using the refined 

insulin dosing algorithm. The patients’ mean daily BG level was lower and the percentage of high BG 

levels was reduced compared to patients treated with the initial insulin dosing algorithm. Furthermore, 

the insulin on board safety feature in GlucoTab® reduced 18.8% of bolus insulin calculations which 

highlights the need for more elaborate workflow and decision support even under study conditions.  

The comparisons of diabetes management were performed in best practice clinical studies. Both, the 

initial and the refined insulin dosing algorithm showed at least similar BG control without an increase 

of hypoglycemic episodes compared to computerized [13], [15] and paper-based [21], [49], [50] best 

practice studies. 

Even though the insulin dosing algorithm compared similar or superior to best practice studies room 

for improvement was detected. Especially the detailed evaluation of safety and effectiveness of 

individual decision support steps of the insulin dosing algorithms revealed that there were still bolus 

injections resulting in BG levels outside the extended target range. The vast majority of BG values 

outside the extended target range was in the hyperglycemic range, and potentially resulted from too 

small insulin doses not covering the patients’ meal BG rise. Especially in the first days some patients 

received too little insulin calculated by the insulin dosing algorithm. For these patients the safety 

measure of restricting the TDD increase by 20% limited the optimal dose finding during the patients’ 

short hospital stay. Therefore, improvement in dose finding at the patients’ therapy enrollment would 

significantly improve the patients’ diabetes therapy.  

The methodology for calculating the first TDD is very generic and therefore based only on the patients’ 

weight, age and serum creatinine level. This rule based methodology is based on the initial treatment 

protocol of Umpierrez et al. [21]. By comparing the patients’ insulin starting dose with the dose on the 

6th study day and relating age and serum creatinine in a linear regression model, no significant 

relationship between these parameters and the patients’ “true” insulin demand could be established. In 

this preliminary and unpublished investigation, “true” insulin demand was defined as the insulin dose 

on the 6th study day, because the TDD on the 6th study day had sufficient time to develop into a steady 

state and to achieve a 50:50 basal to bolus ratio. Validations of age and serum creatinine in the model 
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did not confirm the rules for therapy initialization by Umpierrez et al. using clinical data. However, to 

minimize the risk for hypoglycemia in elderly patients the insulin starting dose is reduced, which is 

also recommended by Pozzilli et al. [51]. Future versions of the insulin dosing algorithm should target 

to improve this insulin dose finding process at the start of the diabetes therapy and should incorporate 

more relevant and patient-specific parameters.  

Unfortunately, also by using the refined version of the insulin dosing algorithm in some patients mild 

hypoglycemic events occurred indicating that these patients received too much insulin. Hypoglycemia 

occurred during all times of the day and was not only emerging from patients with already low BG 

levels, but also occurred in patients with initially high BG values. The initial problem of an increased 

probability to experience hypoglycemia in the afternoon was reduced by redistributing the daily bolus 

insulin. Reasons for hypoglycemia may be manifold and my investigations to derive predictors failed. 

However, one reason for too much insulin in some patients could be the generic supplemental insulin 

scheme. In patients with a small TDD the rigid scheme results in proportionally larger supplemental 

insulin doses than in patients with a high TDD. Furthermore, only few HCPs modified the insulin 

sensitivity parameters in GlucoTab® and left out possibilities for personalization of the patients’ 

therapy. That may be reasons for insufficiently controlled hyperglycemia, but may also be reasons for 

too much insulin resulting in hypoglycemia. Figure 16 indicates that on average the amount of 

supplemental insulin in the higher glycemic regions was not sufficient to control hyperglycemia. But 

by additionally considering the individual dosing decisions in these regions, a few patients received too 

much insulin which resulted in hypoglycemia, Figure 15. Assisted selection of the patients’ parameter 

for insulin sensitivity may be a way to achieve safer and better control by using the current 

supplemental insulin scheme. For example, if on two days in a row the glycemic targets were not 

achieved with additional corrective insulin the treating physician gets a suggestion to adjust the 

parameter of the patients’ insulin sensitivity. Individualization of the supplemental bolus insulin 

scheme, e.g. by using corrective bolus insulin in relation to the patients’ TDD could also potentially 

increase safety and effectiveness of the therapy. 

Personalization of diabetes therapy is key to further improve the patients’ diabetes therapy. However, 

many factors are affecting the therapy of T2DM patients and especially in institutional care 

personalization only plays a secondary role due to the patients’ short hospital stay and rigid workflows. 

Chapter IIV discusses relevant parameters for personalization of diabetes therapy and how decision 

support systems could support this process. Future work for improving the insulin dosing algorithm 
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should focus especially on deriving robust parameters for dose finding on the first therapy day, and to 

identify problematic patients in advance, e.g. to increase the BG measurement interval and to make 

HCPs aware of factors for therapy personalization.  
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CHAPTER IV 

Testing the capability of continuous glucose monitoring to assess 
the clinical impact and safety of basal-bolus insulin therapy 

This chapter is partly taken from a previously published article (Schaupp*, Donsa* et al. 2015 

[47]) and is complemented by so far unpublished data. For the first time we investigated 

safety and clinical impact of an algorithm driven basal-bolus insulin therapy using CGM in a 

large sample of hospitalized T2DM patients to derive improvements for insulin dosing. 

Glucose values in the published article (Schaupp*, Donsa* et al. 2015) are displayed in 

mmol/L. All other investigations in this PhD thesis are displayed in mg/dL. Conversions 

between the units are provided where necessary. 

 

* Both authors contributed equally to this study. 
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1. Taking a Closer Look - Continuous Glucose Monitoring in Non-

Critically Ill Hospitalized Patients with Type 2 Diabetes Mellitus Under 

Basal-Bolus Insulin Therapy [Schaupp, Donsa et al. 2015] 
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2. Use of CGM for insulin dosing decisions – What-if analysis 

This chapter provides analyses investigating the effect on insulin dose calculations based on glycemic 

information from CGM instead of BG measurements obtained by hospital glucose monitoring devices. 

The previous section already provided detailed analysis on the performance of the used CGM system 

(iPro®2 system; Medtronic Minimed, Northridge, CA). Clarke error grid analysis was performed to 

assess the clinical accuracy. Numerical point accuracy for different glycemic ranges was assessed, 

expressed by mean absolute difference, mean absolute relative difference and median absolute relative 

difference. Additionally, characteristics for the CGM system to detect episodes for different thresholds 

were derived. However, theses analyses do not relate the effect of deviating glucose information on the 

calculation of insulin doses. 

The following analyses aim to investigate if the used CGM system could be used for running a basal-

bolus insulin regimen. Different methods were developed to display the effect of insulin dose 

calculations based on CGM when comparing them to reference calculations. Recalculations of insulin 

doses were performed with the framework for workflow simulation described in Chapter II. 

For analysis, all patients (n=59) treated with the initial version of the insulin dosing algorithm and 

where additional CGM was performed were included. In 13 patients the redistribution of the daily 

bolus insulin (Chapter III, section 2.1) was already tested. However, this did not influence the 

following investigations.  

Recalculation of supplemental bolus insulin: 

Recalculations of the supplemental bolus insulin dose using CGM data at the time of capillary BG 

measurement were possible for 84% of dose calculations. For the remaining supplemental insulin 

calculations was no CGM information available. The used supplemental insulin scheme is described in 

Table AIII-2 in Appendix III.  

Thirty-one percent of supplemental bolus insulin calculations were deviating from the reference 

calculations based on capillary BG, Table 10. The “degree of deviation” indicates if the insulin dose 

calculation based on CGM would have been in a higher or lower intervention border according to the 

used supplemental insulin scheme. A positive “degree of deviation” indicates an insulin dose increase 
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and a negative “degree of deviation” indicates a reduction. The supplemental insulin scheme is also 

demonstrated on the axes of Figure 17. 

Table 10: Frequency of supplemental insulin calculations deviating from reference calculations based on 
capillary BG. The “degree of deviation” indicates if the insulin dose calculation based on CGM would have been 
in a higher or lower intervention border according to the used supplemental insulin scheme. Supplemental 
insulin dose according to glucose intervention border and insulin sensitivity [sensitive/normal/resistant]. All 
bolus insulin calculations; IU … Insulin Unit 

Degree of 
deviation 

Change of supplemental 
insulin dose n % 

+3 +6/8/10 IU 2 0.1 
+2 +4/6/8 IU 27 1.8 
+1 +2/4/6 IU 204 13.8 
±0 ±0/0/0 IU 1,015 68.6 
-1 - 2/4/6 IU 220 14.9 
-2 - 4/6/8 IU 12 0.8 
Total  1,480  

 

To assess the potential clinical impact of the deviating supplemental insulin calculations, an error grid 

was developed in cooperation with diabetes experts, Figure 17. The area “unacceptable treatment” 

indicates deviations resulting in ineffective treatment but unlikely potential patient harm. The area 

“major violations” indicates deviations resulting in very ineffective treatment or into moderate 

potential patient harm. The area “life threatening” indicates deviations leading to potential patient 

harm. The frequency of deviating mealtime bolus insulin calculations according to their potential 

clinical impact is demonstrated in Table 11. 

Table 11: Potential clinical impact of calculations of mealtime bolus insulin based on CGM and compared to 
calculations based on capillary BG (reference). Areas according to the error grid indicate the severity of 
deviation from the reference calculation. 

Area according to error grid: 
Deviations 

n % 
Acceptable treatment 830 81.9 
Unacceptable treatment 59 5.8 
Major violation 110 10.8 
Life threatening 15 1.5 
Total 1,014  
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Figure 17: Error grid for evaluation of the potential clinical impact of bolus insulin calculations based on CGM. 
Areas indicate the severity of deviation. Only mealtime bolus insulin calculations displayed. Supplemental 
insulin dose according to glucose intervention border and insulin sensitivity [sensitive/normal/resistant]  

Recalculation of the adjustment of the TDD: 

Recalculations of the TDD using CGM data were possible for 78% of TDD calculations. For the 

remaining TDD adjustments no CGM information was available. The methodology for recalculation 

and analysis is illustrated in Figure 18 and the procedure for adjustment of the TDD is described in 

Chapter III (section 2.2). The patients’ TDD was recalculated in a what-if analysis using glycemic 

information from CGM and was compared to the originally calculated TDD based on capillary BG 

measurements.  
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Figure 18: Methodology for recalculation and analysis of the adjustment of the TDD based on two different 
sources of glycemic information (CGM: continuous red line; BG: finger prick test symbol). Standard 
measurement times are demonstrated on the x-axis. BG values <70 and >250 mg/dL on the following day were 
used to detect potential patient hazard 

A detailed comparison of the frequency of the TDD increase or decrease based on the used source of 

glycemic information is displayed in Table 12. Thirty-one percent of TDD calculations were deviating 

from the reference calculations. Thirty-two percent of TDD calculations would have been increased 

and 68% would have been decreased compared to the original calculations. The mean positive 

deviation was 6.5±3.3 IU (mean±SD) and the median positive deviation and range were 6 (1 – 14) IU. 

The mean negative deviation was 9.3±6.9 IU (mean±SD) and the median negative deviation and range 

were 7 (1 – 28) IU. 

Table 12: Adjustment of the TDD based on glycemic information from CGM or capillary BG (reference). 
Numbers indicate the frequency. Sign and number imply percentage of TDD increase or decrease 

TDD adjustment 
Based on capillary BG 

-20% -10% ±0 +10% +20% 

Ba
se

d 
on

 C
GM

 +20% 1 0 0 1 18 

+10% 1 0 10 62 3 

±0 13 5 130 12 0 

-10% 2 3 0 0 0 

-20% 15 5 38 8 2 

Potential patient hazard was investigated by relating glycemic information (hypoglycemia and 

hyperglycemia) of the following day to the recalculation of the TDD, Figure 19. For this analysis the 

patients’ last study day was excluded because on the last day no patient hazard analysis was possible. 

The recalculation of the adjustment of the TDD based on glycemic information from CGM for days 
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with hypo- or hyperglycemia is displayed in Table 13. Up to 14 additional IU (25.9% of the reference 

TDD calculation) would have been additionally ordered on days with hypoglycemia. Up to 28 IU 

(20.6% of the reference TDD calculation) would have been withheld on days with hyperglycemia. In 

22.9% of days with hypoglycemia the use of glycemic information from CGM would have increased 

the insulin dose. In 26.9% of days with hyperglycemia the use of glycemic information from CGM 

would have decreased the insulin dose. 

Table 13: Recalculation of the adjustment of the TDD based on glycemic information from CGM for days with 
hypoglycemia (<70 mg/dL) or hyperglycemia (>250 mg/dL) 

 

Hypoglycemia on the 
following day 

Hyperglycemia on the 
following day 

Days with TDD calculation based on CGM and hypo- or 
hyperglycemia: (n) 35 52 

Reduced TDD compared to reference calculation: n / (%) 6 / (17.1%) 14 / (26.9%) 

Increased TDD compared to reference calculation: n / (%) 8 / (22.9%) 3 / (5.8%) 

Maximum additionally ordered: IU / (% of reference TDD) 14 / (25.9%) 9 / (27.3%) 

Maximum withheld: IU / (% of reference TDD) 28 / (20.6%) 25 / (20.2%) 
 

 

Figure 19: Difference of calculating the TDD based on CGM and capillary BG measurements over the reference 
TDD calculation. Patient hazard analysis by relating glycemic information of the following day.  
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3. Summary 

A remarkable consistency was found between parameters that evaluate the performance of the basal-

bolus therapy based on glycemic information from CGM and capillary BG measurements, even 

though the number of CGM values was 70-fold higher than the number of BG measurements. Pre-

meal and bedtime BG measurements described the overall patients’ glycaemia under basal-bolus 

insulin therapy sufficiently. 

However, the amount of detected hypo- and hyperglycemic episodes differed significantly between the 

two methods. Especially during nighttime, a substantial additional number of glycemic events below 

70 mg/dL were detected using CGM. These episodes lasted longer during nighttime, which may be 

explained by the fact that these episodes were not realized by the patient (asymptomatic 

hypoglycemia), and that there is a longer period without any BG measurement to correct for low 

glycaemia. This suggests that a high number of possibly clinically relevant episodes are missed. Staff 

shortages and inconvenience for the patients restrict more frequent capillary BG monitoring, and 

CGM could therefore be an attractive alternative to BG measurements or could be used as a 

supplementary method.  

Although promising, CGM alone is not recommended for diabetes management by clinical guidelines 

[11], [52]. Also according to the investigations performed in the work of this PhD thesis, including 

analyses of the accuracy of the used sensor system and the effect of sensor inaccuracy on insulin dose 

calculations, the use of CGM for insulin dosing decisions in hospitals is currently not recommended. 

Although the overall performance of the CGM system was acceptable as demonstrated with the Clarke 

error grid analysis and numerical point accuracy, sensitivity to identify episodes <70 and >250 mg/dL 

were only 47.3% and 81.5%. Only every second episode <70 mg/dL would have been detected and if 

the system would have been used for alarming, every second alarm would have been false. This system 

performance is inacceptable from a clinical point of view.  

Also in the what-if analysis recalculating insulin dosing decisions based on glycemic information from 

CGM, several potentially dangerous deviating insulin calculations were identified by comparing them 

to the reference calculations based on capillary BG measurements. Although this investigation is only 

hypothetical because the used CGM system was calibrated retrospectively and therefore no real-time 

use would have been possible, the sensor performance was comparable to sensor systems available at 
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the time of the clinical study [53]. For the evaluation of the potential impact of differences in 

calculation of insulin doses based on glycemic information from CGM, two methods were developed 

in collaboration with clinical diabetes experts. The first method is an error grid which categorizes 

deviations of bolus insulin calculations and relates their potential clinical impact. The use of CGM 

would have resulted in potentially life threatening insulin dose calculations (1.5%) and ineffective 

treatment (16.6%). The second method illustrates the deviation of calculating the patients’ TDD based 

on CGM and BG measurements and relates glycemic information of the following day (hypo- and 

hyperglycemia).  

Thirty-one percent of adjustments of the TDD were deviating from the reference calculations based on 

capillary BG measurements. By using CGM the TDD would have been decreased more often 

compared to the reference calculations, Table 12. This could have resulted in less insulin and 

potentially cause less hypoglycemia. But the investigation of the effect of the adjustment of the TDD 

based on CGM for days with hypoglycemia revealed, that only on few days with hypoglycemia the 

TDD would have been decreased. More often, in 22.9% of days with hypoglycemia, the use of glycemic 

information from CGM would have increased the insulin dose leading to potential patient harm. In 

26.9% of days with hyperglycemia the use of glycemic information from CGM would have decreased 

the insulin dose leading to potentially ineffective treatment.  

Hence, the results of these investigations highlight both opportunities and challenges for wider 

implementation of CGM, particularly if diabetes treatment and early hypoglycemia detection are the 

main drivers. Even though single point accuracy is limited, the information of glucose trends may still 

provide value [54]. In a randomized controlled trial at an intensive care unit (ICU) with 124 patients, 

hypoglycemia was reduced from 11.5% to 1.6% (p=0.03) when using real-time CGM compared to 

blinded CGM, with no difference in mean glucose levels [55]. This reduction in hypoglycemia was 

attributed to the use of the rate of change in glucose level to adjust the insulin infusion. In the 

recalculations of the patients’ insulin doses no information of glucose trends was considered. The 

combination of BG measurements with high accuracy and CGM systems with high measurement 

frequency and trend information could also be beneficial for non-critically ill hospitalized patients 

with unstable glycaemia on a basal-bolus insulin regimen. The development of smart insulin dosing 

algorithms that consider glycemic trend information from CGM could improve insulin dosing and 

reduce hypo- and hyperglycemia. 
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By considering that CGM systems need frequent calibration based on capillary BG measurements and 

frequent sensor replacement, and additionally their high additional costs and their current lack of 

accuracy, the benefit of using CGM is limited in the majority of hospitalized T2DM patients [56]. New 

technological advances in this field, such as the introduction of a flash glucose monitoring device 

(FreeStyle® Libre™, Abbott Diabetes Care, Alameda, CA), providing high accuracy without the need of 

calibration by the user and a two week period of constant use, raise hopes that in near future these 

sensors will be approved for calculation of insulin doses [57].  
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CHAPTER V 

Evaluation of the workflow and decision support system regarding 
safety, efficacy and usability – A clinical study 

This chapter reprints the study findings as originally peer-reviewed published by Neubauer, 

Mader, Höll, Aberer, Donsa et al. 2015 [30]. Safety, efficacy and usability of GlucoTab® – a 

computerized workflow and decision support system – were investigated in a clinical study 

on different wards. 
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1. Standardized Glycemic Management with a Computerized Workflow 

and Decision Support System for Hospitalized Patients with Type 2 

Diabetes on Different Wards [Neubauer, Mader, Höll, Aberer, Donsa et al. 

2015] 
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2. Summary 

The study reported in this chapter was the first application of GlucoTab® on more than one hospital 

ward. The aim of the clinical study was to investigate efficacy, safety and usability of the system which 

was used for glycemic management in non-critically ill T2DM patients. The overall patients’ mean BG 

level was 154±35 mg/dL and 72.5% of BG measurements were within the accepted extended target 

range for analysis (70-180 mg/dL). Only 1.9% of BG measurements were below 70 mg/dL and these 

low glycemic events were evenly distributed in the patient population and did not occur clustered. 

There was no severe hypoglycemic episode below 40 mg/dL. The adherence to the insulin dosing 

decision support by HCPs was high (96.5% for bolus insulin, 96.7% for basal insulin). Also the 

adherence to the planned workflow was high which is reflected in the high performance of expected 

BG measurements and insulin injections. 

Comparing the primary endpoint of the study (“% BG measurements in the range 70 to 140 mg/dL) 

revealed statistically significant differences between the study sites. To further investigate these 

differences, a multiple regression model to predict the mean daily BG value over all study days, except 

study day 1, was developed. Following predictor variables of the model had significant influence on the 

patients’ mean daily BG: 

- High HbA1c at admission was associated with higher mean daily BG 

- Patients with preexisting home insulin therapy at admission had higher mean daily BG  

- A higher first insulin TDD per kilogram body weight was associated with lower mean daily BG 

- Type of admission (acute or planned) had a significant influence on mean daily BG 

Patients with preexisting home insulin therapy had on average higher (+26 mg/dL) mean daily BG 

values, than patients without preexisting home insulin therapy. Particularly on the Cardiology ward, 

the type of admission had a strong impact on the mean daily BG. Acutely admitted patients on the 

Cardiology ward had on average higher mean daily BG values (+30 mg/dL) than patients with acute 

admissions at the other wards (only +4 mg/dL). A 0.1 IU higher first insulin dose per kilogram of body 

weight was associated with a 5 mg/dL lower mean daily BG level, and a 10 mmol/mol lower HbA1c 

value at admission was associated with a 4 mg/dL lower mean daily BG level. Surprisingly, renal 

function estimated by the patients’ serum creatinine level did not influence the model, even though the 

laboratory parameter is used in the calculation of the patients’ initial TDD. In patients with a serum 
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creatinine level above or equal 2 mg/dL the initial TDD is decreased. It was assumed that the lower 

first total daily insulin dose in patients on the Nephrology ward may be responsible for the higher 

mean daily BG levels. 

Subgroup analyses revealed that although mean daily BG was higher for some patient subgroups, the 

occurrence of BG values below 70 mg/dL was comparable in all subgroups. The insulin dosing 

algorithm in its current form was safe in all patient subgroups, but was not equally effective for all 

patients. 



81 

CHAPTER VI 

Clinical benefit of computerized workflow and decision support 

This chapter presents the findings of a previously published article (Donsa et al. 2016 [58]). 

In this post-hoc analysis a comparison of error rates was performed when using a paper-

based and a computerized way of clinical decision and workflow support. Furthermore, this 

chapter elaborates on clinical benefits of using computerized workflow and decision support. 
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1. Impact of errors in paper-based and computerized diabetes

management with decision support for hospitalized patients with type 2 

diabetes. A post-hoc analysis of a before and after study [Donsa et al. 2016] 
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2. Summary 

The post-hoc analysis of a before and after study reported in this chapter was investigating frequency 

and clinical impact of errors in BG documentation and user-related calculation errors as well as 

workflow deviations in diabetes management. This analysis is based on two previously published 

clinical studies and was comparing a paper-based protocol to a computerized medication management 

system combined with clinical workflow and decision support. Using data from several sources 

different categories of errors were analyzed in a very detailed way and their effects on medication 

dosing decisions and clinical relevance were estimated. The outcome of this analysis show that even in 

a highly standardized environment under study conditions, errors in diabetes management occur. 

Computerized systems reduce errors, but a potential for errors still remains. The benefit of 

computerized diabetes management and ways to further reduce error potential were discussed. 

Examples for sources of error were falsely remembered or temporarily falsely noted BG values during 

manual transfer from the POCT device to the medication order entry. Here, the immediate availability 

and automated handling of BG values from medical devices directly at the point of care has the 

potential to reduce errors. In contrast to the current version of GlucoTab®, nursing assistants did not 

have access to directly input BG values into the system which may have contributed to BG 

transmission errors. It is essential to include all relevant people in medication management of diabetes 

using a basal-bolus insulin regimen. Access to therapy relevant information should be available to all 

HCPs on duty, at all times and at multiple locations. Currently, a web-frontend is under development 

to allow access from a web browser e.g. in a nurses station, to facilitate an improved integration into 

hospital workflows. Initially during system integration, problems with system performance were due 

to low Wi-Fi signal strength. The system stayed connected to a Wi-Fi access point with a weak signal 

even though access points with better signal strength were available. Therefore, a routine was 

developed which continuously measures signal strength and automatically switches to the strongest 

signal. 

Manual insulin dose calculations were the major source of error in the paper-based group and had a 

particularly strong influence on hypoglycemia. User calculation errors were entirely excluded by using 

GlucoTab®. Computerized systems furthermore facilitate the safe use of more complex algorithms with 

additional safety features, without compromising usability or inducing additional sources of error. In 

the computerized group, missed or delayed tasks had a significant effect on hyperglycemia, whereas 
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the use of BG measurements older than 30 minutes for insulin dose calculation was clinically less 

relevant. Only data provided by GlucoTab® enabled detailed investigations of clinical workflows, and 

to investigate the clinical impact of workflow deviations. Unfortunately, a lack of precision of 

documentation times limited analysis of workflow deviations in the paper-based group. In our setting 

and probably also in general, paper-based documentation is not suitable to analyze errors of time-

critical tasks. 

Insulin dosing errors and workflow deviations led to measurable changes in clinical outcome. Due to 

the complexity of inpatient diabetes management, diabetes management systems including decision 

support should aid nurses as well as physicians in a computerized way. Such systems reduce the 

frequency of errors and therefore decrease the probability of patients experiencing hypo- and 

hyperglycemia. 
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CHAPTER VII 

Personalization of the GlucoTab® algorithm 
- Preliminary considerations 

This chapter presents the book chapter “Towards Personalization of Diabetes Therapy Using 

Computerized Decision Support and Machine Learning: Some Open Problems and 

Challenges” by Donsa et al. 2015 [59]. 



Chapter VII: Personalization of the GlucoTab® algorithm - Preliminary considerations 

 
- 96 - 

1. Towards Personalization of Diabetes Therapy Using Computerized 

Decision Support and Machine Learning: Some Open Problems and 

Challenges [Donsa et al. 2015] 
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2. Summary 

Individualized glycemic management of diabetes patients using insulin or oral antidiabetic drugs is 

only possible due to recent advances in diabetes therapy, which increased the therapy safety and 

effectiveness. The predictable behavior of the insulin analogs BG lowering effect is probably the most 

noteworthy achievement. As a result, personalization of the patients’ DM therapy is recommended by 

guidelines and diabetes organizations. There are several patient-specific, but also institutional factors 

which have to be considered in diabetes therapy. T1DM can only be treated with insulin, whereas for 

patients with T2DM a wide range of therapeutic options are available. These options include lifestyle 

changes, such as change of diet and an increase of physical activity, but also administration of oral or 

injectable antidiabetic drugs. The diabetes therapy, especially with insulin, is complex and therapy 

decisions include various medical and life-style related information. 

Computerized decision support systems aim to improve diabetes therapy in patient´s self-

management, but also in institutional care. Every health care sector has different goals for the patients’ 

diabetes therapy and therefore different strategies for personalization. Personalization of the patient´s 

diabetes treatment is possible at different levels. It can provide medication support and therapy 

control, which aid to correctly estimate the personal medication requirements and improves the 

adherence to therapy goals. It also supports long-term disease management, aiming to develop a 

personalization of care according to the patient´s risk stratification. Personalization of therapy is also 

facilitated by using new therapy aids like food and activity recognition systems, lifestyle support tools 

and pattern recognition for insulin therapy optimization. 

Latest innovations in sensor technology (CGM, clothes integrated movement sensors, smartphone-

based image recognition) together with improved documentation effort of medical history in 

electronic patient records, diabetes-related patient diaries or tele-monitoring systems provide large 

and valuable datasets for therapy-related decision making. Considering these large and detailed 

datasets machine learning is regarded to be a helpful technology, but currently plays only a minor role 

in diabetes therapy, especially in inpatient diabetes therapy.  

There are several challenges associated with the introduction of new technologies for personalization 

of the diabetes therapy by using computerized decision support and machine learning. New glucose 

sensors and activity or food recognition systems have to be very accurate to be eligible for insulin 

dosing decision support. For example, artificial pancreas systems are not limited by the reliability of 
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predictive control algorithms, but by the accuracy of the currently available CGM systems. 

Furthermore, because of the special requirements of the users there has to be a strong focus on the 

usability of such systems. Devices for patient self-management have to be developed for elderly, or 

unexperienced or less motivated patients to prevent therapy overload. In institutional care, systems 

have to be developed to perfectly fit into workflows to achieve maximum acceptance by HCPs. As 

machine learning is a data-driven method, quality of model output depends on the quality of available 

data. Very low BG levels are adverse events and consequently data is sparse, which leads to 

unsatisfactory prediction performance in these critical situations. An additional challenge is the 

development according to the standards of the Medical Device Directive. Many developers try to avoid 

these regulatory challenges. Especially, many software apps were developed in a “grey area”, where it is 

not certain if they are regulated by the standards of the Medical Device Directive. Given the rapid 

expansion and broad applicability of mobile apps, the FDA was recently issuing guidance to which the 

FDA intends to apply its authority. It is only a matter of time until the European Commission catches 

up with the FDA and closes these regulatory uncertainties. 
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1. Conclusions and Outlook 

Driven by the reported medical benefit of improved inpatient glycemic control, the development of 

GlucoTab® - a computerized workflow and decision support system - was initiated to support HCPs in 

diabetes management. This thesis was embedded in the development of GlucoTab® and focused on the 

evaluation and enhancement of an insulin dosing algorithm for T2DM patients. This chapter 

summarizes the main findings of this PhD thesis. Detailed technical and methodological discussions 

can be found in the previous chapters and in the individual publications. 

A toolbox to improve algorithms for insulin dosing decision support: 

Work for this PhD thesis created a framework/toolbox to evaluate and to “in-silico” test potential 

modifications of insulin dosing algorithms and to simulate their potential impact on the patients’ BG 

levels. Novel methods for detailed investigations of the performance of the used insulin dosing 

algorithms were developed. These methods aim to identify ways to make insulin dosing algorithms 

safer and more effective for all patients. The framework facilitates a standardized integration of data 

from clinical studies which will facilitate more detailed analysis with larger patient subgroups. The 

developed framework has successfully been used to derive modifications of a treatment algorithm from 

clinical data in an effective and reproducible way. The combination of simulation, evaluation and new 

clinical studies facilitates an improved development process of insulin dosing algorithms. The most 

promising algorithms can be identified by using simulation before they are being implemented in 

medical device software and are being tested in expensive clinical studies. For certain modifications of 

the insulin dosing algorithm a clinical study can be avoided altogether by performing simulations and 

evaluations with data from previous clinical studies. 

Evaluation - Simulation - Improvement: 

Evaluations of the patients’ glycemic control were performed by using clinical data that describe a 

diabetes management performance comparable to best practice clinical studies. Therefore, 

improvements of the insulin dosing algorithm were performed on an already high level. The initial 

paper-based version of the insulin dosing algorithm already improved diabetes therapy considerably 

compared to standard care: Average BG levels were significantly reduced and a significantly higher 

percentage of BG values were in the target range in patients treated with the insulin dosing algorithm 

compared to standard care [22]. However, detailed investigations of the initial insulin dosing 
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algorithm using retrospective statistical analysis with additional CGM data and therapy pattern 

analysis revealed room for improvement, (Chapter III). The potentially safest and most effective 

versions of modifications of the insulin dosing algorithm were identified by using simulation and 

patient hazard analysis.  

By redistributing the daily bolus insulin a statistically significant reduction of the patients’ relatively 

high noon BG levels and simultaneously reduced afternoon hypoglycemia was achieved. The amount 

of BG reduction at noon that was predicted by the simulation was confirmed in two clinical studies.  

The therapy pattern analysis performed in the work for this PhD thesis detected in some patients a 

higher need for insulin than initially calculated at the start of the therapy. Moreover, the adjustment of 

the therapy was not dynamic enough to adjust the TDD to the required amount of insulin during the 

patients’ short hospital stay. Even though the patients received significant amounts of supplemental 

insulin to correct for high pre-meal BG values, the TDD was not increased. To achieve a more 

dynamic adjustment of the TDD, different versions for adjustment of the TDD were simulated and the 

impact of the modifications on the patients’ BG level was estimated. The finally selected version 

demonstrated a more dynamic and safe adjustment of the patients’ TDD, (Chapter III, section 2.4). 

Taking a closer look by using additional CGM: 

One aim of the work for this PhD thesis was to test the capability of CGM to assess the clinical impact 

and safety of a basal-bolus insulin therapy. Overall a remarkable consistency was found between 

parameters that evaluate the performance of the basal-bolus therapy based on glycemic information 

from CGM and capillary BG measurements. Pre-meal and bedtime BG measurements seemed to 

describe the overall therapy sufficiently, but the amount of the detected hypo- and hyperglycemic 

episodes differed significantly between CGM and capillary BG measurements. CGM can be used to 

describe the overall daily routine such as the rise of BG levels after meals and the impact of the applied 

diabetes therapy [47]. Although there were hurdles in sensor accuracy, CGM provided information 

that would not have been recognized by solely using capillary BG measurements. Especially during 

nighttime a substantial additional number of glycemic events below 70 mg/dL was detected using 

CGM which suggests that a high number of possibly clinically relevant episodes are missed by using 

only standard BG measurements. Staff shortages and inconvenience for the patients restrict more 

frequent capillary BG measurements especially at night and CGM could therefore be an attractive 

alternative or could be used as a supplementary method. 
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The analyses in this PhD thesis also aimed to identify if the sole use of CGM could be justified for 

running a basal-bolus insulin algorithm for T2DM patients on a clinical ward. Therefore, methods to 

evaluate the potential impact of CGM sensor inaccuracies on insulin dose calculation were developed 

in collaboration with clinical experts, (Chapter IV, section 2). Potential patient hazard was revealed in 

what-if analyses that recalculated the patients’ insulin doses when using glycemic information from 

CGM. According to these analyses the use of a CGM system with the observed sensor accuracy could 

lead to potentially life threatening insulin dose calculations and to ineffective treatment.  

Even though CGM sensor accuracy is currently limited, the information of glucose trends could still be 

useful. However, in the recalculations of the patients’ insulin doses no information of glucose trends 

was considered. The combination of BG measurements with high accuracy and CGM systems with 

high measurement frequency and trend information could be beneficial for hospitalized patients with 

unstable glycaemia on a basal-bolus insulin regimen. The development of smart insulin dosing 

algorithms that consider glycemic trend information from CGM could improve insulin dosing and 

reduce hypo- and hyperglycemia. 

Although promising, the sole use of CGM is not recommended for diabetes management by clinical 

guidelines. The benefit of using CGM is currently limited for the majority of hospitalized T2DM 

patients, because CGM systems need frequent calibration based on capillary BG measurements and 

frequent sensor replacement, and additionally CGM is limited by high additional costs and lack of 

sensor accuracy. But, new technological advances in this field could soon lead to accurate sensors 

approved for insulin dosing. 

Towards personalization of diabetes therapy:  

By developing a multiple regression model to predict the patients’ mean daily BG value per hospital 

stay, significant predictor variables were identified that influence the level of glycemic control, 

(Chapter V). Especially noteworthy predictors are HbA1c, preexisting home insulin therapy, and the 

type of admission (acute or planned). Subgroup analyses revealed that although mean daily BG was 

higher for some patient subgroups, the occurrence of BG values below 70 mg/dL was comparable in all 

subgroups. The insulin dosing algorithm in its current form was safe in all patient subgroups but was 

not equally effective for all patients [30]. 

Personalization of the patients’ diabetes therapy is recommended by guidelines and diabetes 

organizations. In a state of the art review relevant parameters to personalize diabetes therapy were 
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identified, (Chapter VII, [59]). There are several patient-related but also institutional factors which 

have to be considered in diabetes therapy. Especially therapy of T2DM patients has a wide range of 

different therapeutic options and their therapy is very individual and influenced by e.g. the patients’ 

insulin resistance, the progression of the chronic disease, prevailing risk of hyperglycemia, co-

morbidities, age etc. Additionally, the setting in which the therapy is performed also strongly 

influences therapy targets. Patients in a nursing home or at home have less stringent therapy targets 

than patients admitted to an ICU. 

Therefore, computerized decision support systems aim to improve the treatment process in patient’s 

self-management but also in institutional care. Latest innovations in sensor technology (clothes 

integrated movement sensors, smartphone-based image recognition) together with improved 

documentation effort of medical history in electronic patient records, diabetes-related patient diaries 

or tele-monitoring systems provide large and valuable datasets for therapy-related decision making. 

Considering these large and detailed datasets, machine learning is regarded to be a helpful technology, 

but currently plays only a minor role in diabetes therapy. Machine learning could be helpful for 

diabetes therapy that applies methods requiring predictive analytics. The identification of relevant 

patient-specific parameters influencing therapy and the optimization of the patients’ therapy by 

pattern recognition could also be fields of application using our pooled data source. 

Clinical benefit of computerized workflow and decision support: 

The clinical benefit of computerized systems for medication order entry and clinical decision support 

is controversially discussed [60], [61]. There is clear evidence that systems for medication order entry 

and clinical decision support reduce medication errors, but clear evidence that the combination of 

these systems reduce clinical adverse drug events is still missing [16]. However, recently published 

guidelines and studies recommend the use of CDSS and medication order entry systems for diabetes 

therapy in hospitalized patients [8], [13]–[15]. 

One aim of the work performed in this PhD thesis was to investigate the frequency and clinical impact 

of errors in BG documentation and manual insulin dose calculation as well as workflow deviations in 

diabetes management. In the course of the GlucoTab® development, diabetes management was first 

tested in a paper-based way and was then implemented into GlucoTab® [22], [30]. Medication errors in 

the two previously published studies were compared in a post-hoc analysis of a before and after study, 

(Chapter VI). By using data from several sources, different categories of errors were analyzed in a very 
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detailed way and their effects on medication dosing decisions and clinical relevance were estimated. 

The outcome of this analysis show that even in a highly standardized environment under study 

conditions, errors in diabetes management occur. Computerized systems reduce errors, but a potential 

for errors still remains. The benefit of computerized diabetes management and ways to further reduce 

error potential were discussed. 

Insulin dosing errors and workflow deviations led to measurable changes in clinical outcome in this 

study. The analyses show that manual dose calculations are prone to error and increase the risk of 

hypoglycemia in diabetic patients. These errors could be entirely excluded by using computerized 

systems. The use of medication order entry with decision support including dose calculations reduces 

the risks in diabetes management considerably, although data transcription of BG measurements still 

may lead to improper insulin doses. Therefore the immediate availability and automated handling of 

BG values from medical devices directly at the point of care has the potential to reduce errors. 

Implementing a computerized system into the complex workflow of a hospital is challenging and a 

large number of special cases have to be considered without compromising usability. But if the 

implementation is performed thoroughly, computerized systems facilitate the use of more advanced 

insulin dosing algorithms without inducing potential user-errors. An example for a safety feature of an 

insulin dosing algorithm which requires computerized handling is “insulin on board” in GlucoTab®, 

which frequently led to insulin dose reductions even under study conditions, (Chapter III, section 2.3). 

Additionally, the need for computerized assistance in diabetes management is evident in the high 

number of user-related calculation errors performed by HCPs using paper-based insulin dosing 

algorithms, (Chapter VI).  

Outlook - Improvement in diabetes therapy: 

The desired predicted behavior of the simulated modifications of the insulin dosing algorithm was 

confirmed in clinical studies. Even with these promising results there still remains room for 

improvement especially at an individualized level. The preliminary investigations of the used rules for 

calculating the patients’ starting TDD, based on age and serum creatinine level, demonstrated that they 

have to be questioned and that more relevant patient-specific parameters have to be derived. Future 

versions of the insulin dosing algorithm should improve this dose-finding process at the start of the 

patient’s diabetes therapy to enable a safer and more effective therapy start.  
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Additionally, the detailed evaluation of safety and effectiveness of the insulin dosing algorithm 

revealed that even with the refined algorithm in some patients the glycemic targets were not 

accomplished. One reason for too much or too little insulin in some patients could be the generic 

insulin scheme. In patients with a small TDD the rigid scheme results in proportionally larger 

supplemental insulin doses than in patients with a high TDD. Furthermore, only few HCPs modified 

the insulin sensitivity parameters during the patients’ diabetes therapy. That may be reasons for 

insufficiently controlled hyperglycemia, but may also be reasons for too much insulin resulting in 

hypoglycemia. On average patients with high BG levels needed more supplemental insulin than 

currently is provided, but in a few patients this could lead to hypoglycemia. Unfortunately we are 

currently not able to classify these patients in advance. In a first step, assisted selection of the patients’ 

parameters for insulin sensitivity may be a way to achieve safer and better control by using the current 

supplemental bolus insulin scheme. In a subsequent step, individualization of the supplemental bolus 

insulin scheme, e.g. by using corrective bolus insulin in relation to the patients’ TDD could also 

potentially increase safety and effectiveness of the therapy.  

The GlucoTab® approach in its current version requires the injection of long-acting insulin around 

noon and the insulin dosing algorithm is adjusted to this. However, it is foreseeable that on some 

wards, the administration of long-acting insulin will be favored in the evening or in the morning. 

Additionally, there are also medical reasons for the injection of the long-acting insulin at other 

daytimes than noon. The requirement of insulin to control high BG levels is highest in the morning-

noon interval. This is physiologically normal in patients, but is also partly attributable to a fading basal 

insulin action in the morning because of the administration of long-acting insulin at noon [46]. To 

compensate this fading basal insulin action the bolus insulin dose in the morning was increased. Here, 

the administration of long-acting insulin at other daytimes than noon would prevent a fading basal 

insulin action in the morning and could help to control high BG levels in the morning-noon interval. 

However, by preventing fading basal insulin action in the morning by changing the time of long-acting 

insulin administration, in some patients the increased bolus insulin dose in the morning could result 

in hypoglycemia around noon. Before testing this feature in a clinical study, “in-silico” simulation and 

evaluation of the impact of this modification should be performed and again fine-tuning of the daily 

bolus insulin distribution should be considered. 

The consideration of relevant patient-related and institutional factors in the insulin dosing algorithm 

could furthermore improve the therapy in patient subgroups. Hypoglycemia did not occur clustered in 
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patient subgroups, but a significant relationship with the patients’ average daily BG and factors such as 

HbA1c, preexisting insulin home therapy or type of admission was observed. In future versions of the 

insulin dosing algorithm fine-tuning of algorithm parameters according to the impact of these 

predictive factors could improve the therapy.  

The ADA recently released a new guideline for diabetes care in hospitals [62]. Compared to the more 

stringent target range of 100 – 140 mg/dL recommended in previous years, a target range of 140 – 180 

mg/dL is currently recommended for non-critically ill patients treated with insulin. However, this 

recommendation is only based on supportive evidence from poorly controlled or uncontrolled studies 

or on conflicting evidence with the weight of evidence supporting the recommendation. The current 

version of the GlucoTab® system aims for therapy targets of 100 – 140 mg/dL, but customizable 

therapy targets are already planned to achieve them safely in all patients. 

The successful implementation of computerized decision support systems in clinical wards is often 

impaired by acceptance problems of HCPs with new devices or new procedures. Especially in diabetes 

management which requires complex and interdisciplinary cooperation of HCPs, a strong focus 

during the development of decision support systems should be placed on usability and workflow 

integration. A better integration of the GlucoTab® system into hospital workflows, facilitated through 

better accessibility of the system by using a web-frontend, and the automated availability of BG 

measurements from POCT devices, has the potential to reduce errors. Additionally, the support of 

other therapy regimens, such as basal-only and basal plus, is under development. In combination, with 

the already planned algorithm-supported therapy regimen for pre-mixed insulin, features like 

discharge management, and the integration into the hospital electronic medical record, this should 

maximize the acceptance of the GlucoTab® system on clinical wards. 

The insulin dosing algorithm used by GlucoTab® proofed to be very adjustable, and additional 

modifications are already planned. In the future it may be necessary to modify the insulin dosing 

algorithm to support: long-acting insulin analogues with a duration of action longer than 24 hours, the 

combination of insulin with GLP-1 analogues, insulin pumps in the hospital, or insulin dosing with 

additional BG trend information from CGM. Additionally, the discovery of new biomarkers which 

predict for example the patients’ insulin sensitivity could lead to modifications of the insulin dosing 

algorithm. Linear regression models to identify relevant predictor variables for diabetes therapy were 

limited by potential nonlinear or random dependencies in our data source. Future versions of the 
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GlucoTab® insulin dosing algorithm could be improved by the use of more complex regression models 

which are found for example in mixed-effects models or machine learning. 

The combination of the evaluation and simulation process with the very adjustable insulin dosing 

algorithm provides a good preparation for necessary future modifications. Algorithm based 

computerized decision support systems directly influence clinical practice and have the potential to 

achieve significant and clinically relevant improvements. 
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1. Initial insulin treatment protocol 

Table AIII-1: Initial insulin treatment protocol 
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Table AIII-2: Initial insulin treatment protocol – Supplemental insulin scale 
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2. Structured Literature Search: Critical Appraisal 
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IEEE Xplore metadata search: 

(glucose prediction OR predicting glucose OR glucose estimation OR estimating glucose OR glucose 
forcast* OR forcasting glucose) AND diabetes 
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Table AIII-3: Overview work: theses/books 

Thesis / Book Prediction algorithm 
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type 
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Forecast 
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clinical trial 
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2004 Peter Kok Predicting blood glucose 
levels of diabetics using artificial neural 
networks (Master Thesis) 

NN 1 capillary BG Next 
measurement No 1 

2011 Matthew T Wiley Machine Learning for 
Diabetes Decision Support (Master thesis) 

Support Vector Regression, 
Autoregressive Integrated Moving 
Average 

1 CGM 30, 60 min No / pilot 
study 10 

2011 Marzia Cescon Linear Modeling and 
Prediction in Diabetes Physiology (PhD 
thesis) 

Autoregressive moving average with 
exogenous inputs, state-space 
models 

1 capillary BG Up to 120 min No 9 

2009 David Duke Intelligent Diabetes 
Assistant (PhD thesis) Linear and Gaussian kernel 1 + 2 capillary BG 2h post 

prandial 
No / pilot 
study 16 

2012 Frederik Stahl Diabetes Mellitus 
Glucose Prediction by Linear and Bayesian 
Ensemble Modeling (PhD thesis) 

Autoregressive model, ARMA 1 CGM 20,40,60 min No 47 

2011 Georga et al. Glucose Prediction in 
Type 1 and Type 2 Diabetic Patients Using 
Data Driven Techniques (Book chapter) 

Compartment model + Support 
Vector Regression 1 + 2 CGM 15, 30, 60, 120 

min No 7 
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Table AIII-4: Critical appraisal: selected publications 

Publication Prediction algorithm 
/technology 
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type 

Glycemic source: 
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BG data 

Forecast period Algorithm 
tested in a 
clinical trial 

Subjects 

(Albisser, Baidal, et al. 2005) 
(Albisser, Sakkal, et al. 2005) 
(Albisser 2005) 

Prediction engine in software: 
random walk techniques, 
mathematical models, simulation 
procedures. The methods are 
similar to the dynamic systems used 
in weather research and forecasting 

1 capillary BG Next interval Yes 54 

(Baghdadi & Nasrabadi 2007) Radial basis function NN 1 capillary BG Next interval No 1 

(Balakrishnan 2012) multi-input single-output time 
series models 1 CGM Short No 12 children 

(Bremer & Gough 1999) Linear, non-linear, compartment 
model 1 CGM 10, 30 min No Summary of 

papers 

(Briegel & Tresp 2002) 

Non-linear state space model, NN, 
Monte-Carlo generalized 
EM(expectation maximization) 
algorithm 

1 CGM  - No 1 

(Chemlal et al. 2011) 
(Chemlal et al. 2010) 

Fit high order polynomial, Log-
normal and Weibull distribution, 
Learning algorithm 

2 - Short No - 

(Chernetsov et al. 2012) 
(Chernetsov et al. 2009) NN 1 CGM 20,40,60,80, 

100, 120 min No 1 

(Daskalaki et al. 2012) AR, ARX, NN 1 CGM 30, 45 min No Virtual patients  

(Eren-Oruklu et al. 2009) AR, ARMA, forgetting factor 1+2 CGM 20, 30 min No 

30 healthy, 7 
glucose-
intolerant, 25 
type II  

(Eskaf et al. 2008) NN 1 CGM 30 min No 1 
(Gani et al. 2009) AR  1 CGM <60 min No 9 

(Gani et al. 2010) AR modelling universal models 1+2 CGM 30 min No Type I: 9 + 12 
children 
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Publication Prediction algorithm 
/technology 

Diabetes 
type 

Glycemic source: 
CGM or capillary 
BG data 

Forecast period Algorithm 
tested in a 
clinical trial 

Subjects 

Type 2: 7 

(Georga et al. 2012) Random Forests 1 CGM 15, 30, 60, 120 min No 27 
(Georga et al. 2013) Support Vector Regression 1 CGM 15, 30, 60, 120 min No 27 

(Hovorka et al. 2004) Physiologic-oriented model 1 CGM Up to 240 min No 15 clinical 
experiments  

(Iancu et al. 2009) NN 1 CGM Short No 22 + 8 healthy 
subjects 

(Lu et al. 2011) AR 1 +2 CGM 20 min No 34 
(Mougiakakou et al. 2005) Hybrid model, compartment + NN 1 capillary BG Next measurement No 1 
(Otto et al. 2000) Neural network, fuzzy system 1 capillary BG Next measurement No - 
(Pappada et al. 2011) NN 1 CGM 75 min No 10 

(Percival et al. 2011) multi-parametric model predictive 
control 1 CGM 3h No 14 virtual 

patients 
(Quchani & Tahami 2007) NN, MLP, Elman 1 capillary BG Long time No 10 

(Robertson et al. 2011) NN 1 capillary BG Next measurement No 28 datasets from 
AIDA 

(Rollins et al. 2010) Block-oriented Wiener network 2 CGM NA No 1 
(Shanthi 2012)  NN 1+2 CGM 30, 45 60 min No 2 data sets 
(Sparacino et al. 2007) AR 1 CGM Max 30 min No 28 

(Stahl & Johansson 2010) Combined compartment system 
(glucose, insulin) 1 CGM  20, 40, 60 min No 1 

(Stahl & Johansson 2012) Combination of multiple plasma 
glucose predictors 1 CGM Up to 60 min No Simulated 20 

data sets 

(Stahl et al. 2012) Bayesian combination of multiple 
plasma glucose predictors 1 CGM 20,40,60 min No 12 

(Valletta et al. 2009) Gaussian processes 1 CGM 25, 60, 240 min No 19 

(Zainuddin et al. 2009) NN, Wavelet, principal component 
analysis 1 capillary BG Next interval No 1 

(Zecchin et al. 2012) NN 1 CGM Short No 9 + 20 simulated 
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Publication Prediction algorithm 
/technology 

Diabetes 
type 

Glycemic source: 
CGM or capillary 
BG data 

Forecast period Algorithm 
tested in a 
clinical trial 

Subjects 

(Zhao et al. 2012a) Latent-variable-based statistical 
method 1 CGM 30 min No 7 

(Zhao et al. 2012b) Multivariate statistical analysis 1 CGM 30 min  No 26 
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