
Marc Slavec, BSc

Integration of controlling Arduino
boards via Bluetooth with Pocket Code
for iOS using test-driven development

MASTER’S THESIS

to achieve the university degree of

Master of Science

Masters degree programme: Telematik

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Institute for Softwaretechnology

Graz, April 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master‘s thesis dissertation.

Date Signature

iii

Acknowledgments

I like to thank everybody, who supported me during my study.
First and foremost, I want to thank my parents Anton and Michaela for

their support.
I thank all my friends for everything what they have done for me and

that I could always depend on them.
Finally, I want to thank Professor Wolfgang Slany and the whole Catrobat

team.

v

Abstract

Catrobat is a visual programming language used on mobile devices to
introduce programming to children in a playful manner. Since the area of
Internet of Things devices is rapidly growing, Catrobat and the Pocket Code
application, which is a mobile IDE for the Catrobat language, have to inte-
grate features allowing to control these devices wirelessly to be able to tackle
these new developments. This thesis deals with implementing a wireless
Bluetooth connection for iOS devices running Pocket Code with Bluetooth
enabled devices, in particular Arduino boards. The implementation will be
complete, but the design of the Bluetooth connection is very open to inte-
grate new BLE enabled devices to Pocket Code without much effort. Every
implementation needs to be tested, that is why the used developing work-
flow will strictly follow the Test-Driven Development principles, aiming for
a well tested and designed code as well as an assurance for not breaking
these code parts, because the tests will immediately show the defects. The
general topic of testing, especially ”Unit Testing” will also be covered. Fur-
thermore, since it is the used workflow, ”Test-Driven Development” will be
discussed, compared with other workflows and analysed.

vii

Kurzfassung

Catrobat ist eine visuelle Programmiersprache, die dazu verwendet wird
um Kindern den Einstieg in die Welt des Programmierens spielerisch zu
erleichtern. Die Sprache wird in Pocket Code, einer Applikation auf mobilen
Geräten, eingesetzt und visualisiert durch das verschieben von Blöcken. Da
heutzutage Geräte im Bereich ”Internet of Things” immer stärker vertreten
sind, wurde bei Pocket Code eine neue Eigenschaft hinzugefügt. Diese bein-
haltet das kabellose steuern von anderen Geräten mit Hilfe von Bluetooth.
Diese Arbeit handelt von der Implementierung der Bluetooth Kommunika-
tion für Pocket Code auf iOS Geräten. Das Steuern von Arduino Geräten
wurde im Zuge dieser Arbeit vollständig implementiert, jedoch durch das
Design der Kommunikation ist es sehr einfach weitere neue Geräte zu in-
tegrieren. Jede Implementierung gehört getestet, deswegen wurde beim
Workflow strikt die Prinzipien der testgetriebenen Entwicklung, welche sich
auf gut getesteten und gut durchdachten Code beruht, eingesetzt. Diese
dazu angelegten Tests dienen auch der fortlaufenden Wartbarkeit des Pro-
gramms, da sie sofort auf neu entstandene Fehler hinweisen. Weiters wird
der Überbegriff Testen, im Speziellen ”Unit Testing” behandelt. Außerdem
wird die testgetriebene Entwicklung, da diese im praktischen Teil benutzt
wurde, erklärt, mit anderen Methoden verglichen und analysiert.

ix

Contents

Acknowledgments v

Abstract vii

1. Introduction 1

I. Theoretical Part 3

2. Catrobat 5
2.1. A Visual Programming Language 5

2.2. History . 6

2.3. Subprojects . 6

2.4. Team Collaboration . 7

2.5. Internationalization . 9

3. Software Testing with Focus on Test-Driven Development 11
3.1. About Software Testing . 11

3.1.1. Why Test? . 12

3.1.2. Testing Models . 13

3.1.3. Who Should Test When? 15

3.1.4. Different Testing Types 16

3.1.5. Principles Of Software Testing 18

3.1.6. Conclusion . 18

3.2. Unit Testing and its applied techniques 18

3.2.1. An Introduction To Unit Testing 18

3.2.2. Refactoring . 22

3.2.3. Dependency Injection 23

3.2.4. Double Patterns . 24

3.2.5. Continuous Integration 25

xi

Contents

3.3. Test-Driven Development . 27

3.3.1. The Idea Behind TDD 27

3.3.2. Test-Driven Development Cycle 29

3.3.3. Patterns . 33

3.3.4. Usage Of Test-Driven Development In A Project 34

3.3.5. Role Of The Documentation 35

3.3.6. Performance And Impact Of Test-Driven Development 37

3.4. Acceptance Test-Driven Development 39

3.5. Testing + iOS Development . 41

3.5.1. Tools For Testing . 42

3.5.2. Writing Tests . 43

3.5.3. Creating Mock Objects In iOS 44

3.6. Testing Especially With Hardware Connection 44

3.6.1. Mocking . 45

3.6.2. Real Environment Hardware Tests 46

3.6.3. Comparison & Conclusion 46

3.7. Test driven development in Catty 48

4. Hardware Background 49
4.1. Arduino . 49

4.2. Bluetooth . 54

4.2.1. Bluetooth Basics . 56

4.2.2. Bluetooth Low Energy 56

4.2.3. Bluetooth And iOS: Core Bluetooth 61

II. Practical Part 63

5. Implementation details 65
5.1. Bluetooth Manager . 65

5.2. Arduino Connection Implementation 69

5.2.1. Firmata Implementation iOS 70

5.3. Integration in Catty . 71

5.4. Occurred Problems And Solutions 75

5.4.1. Bluetooth Sensors Blocking The User Interface 75

5.4.2. Known Bluetooth Devices 78

5.4.3. Resetting The Arduino Board 82

xii

Contents

5.4.4. Arduino Pins, Pin Modes & Pin Naming 83

III. Conclusion 87

6. Conclusion & Outlook 89
6.1. Test Driven Development In Usage 89

6.1.1. iOS Test Driven Development 92

6.2. Future Work . 93

6.2.1. Support other Bluetooth devices 93

6.2.2. Further Arduino-Firmata extensions 94

Bibliography 97

A. Acronyms 101

xiii

List of Figures

2.1. 7

2.2. 8

2.3. 8

3.1. 14

3.2. 26

3.3. 29

3.4. 36

3.5. 40

4.1. 50

4.2. 57

4.3. 58

4.4. 59

5.1. 66

5.2. 73

5.3. 74

5.4. 74

5.5. 79

5.6. 79

5.7. 80

xv

1. Introduction

Catrobat, a visual programming language inspired by Scratch, has its target
to help children come closer to the topic of programming. But programming
needs special syntax to write. Instead of this, visual blocks are arranged
to create the desired behaviour. This programming happens on mobile
devices, which are nowadays widely spread in the target group. Over the
time, Pocket Code, the mobile application, which allows to create and
design programs, has added a lot of features, like face detection or the use
of multiple mobile device sensor values to create more sophisticated and
exciting programs.

To be up to date with the current growth of smart devices and the huge
area of the Internet of Things, Pocket Code has to be further extended. In the
practical part, a Bluetooth connection is introduced for the iOS version. The
created Bluetooth framework has a very open design to add different kinds
of Bluetooth devices to the application easily. Therefore, the application is
ready to control several distributed devices or for example to steer different
kinds of robots via Bluetooth Low Energy.

The first device, which is added to Pocket Code during this thesis, is
Arduino. Due to the open source micro controllers and a huge fanbase, it
has a wide range of usage possibilities. It could be the core of a robot, a
central unit of diverse sensors or anything else the user connects to the
provided pins. Arduino is commonly used for fast prototyping or easily
creating different kinds of hardware functionality.

With visual programming and easy hardware prototyping, the combi-
nation of Pocket Code and Arduino has a very high learning effect for
children in the field of software, hardware and the combination of both.
The tight interconnection between Software and Hardware will gain impor-
tance increasingly. Especially for kids, who are interested in electronics or
informatics, this would be a great starting point.

1

1. Introduction

The most important part of software development is to deliver the right
software, which has the functionality as expected. Unsuccessful software
with error prone code will lead to unsatisfied users and therefore abortive
projects or companies. Over the years, the demand of good tested software
has not dropped. Accordingly, over the past years different approaches to
the

2

Part I.

Theoretical Part

3

2. Catrobat

2.1. A Visual Programming Language

Catrobat [1] is a visual programming language to comfortably learn to code.
It is built on Scratch [2][3] that was introduced the Lifelong Kindergarten
Group (LLK) at the MIT Media Lab [4]. Programming is achieved by sim-
ply choosing so-called blocks and putting those one beneath each other.
Therefore children only have contact with the blocks, perhaps familiar with
playing Lego and do not think about the coding part. It is playing with these
blocks and creating something new, which is in this case a new program,
game or interactive story. This type of programming is less complicated
than writing lines of code, because there is no worrying about a complicated
programming language or syntax errors.

Inspired by this block type programming, Catrobat is also using this
way to quickly and easily create custom programs. Instead of using the
personal computer or laptop, like Scratch does, Catrobat is using its own
mobile applications called Pocket Code [5] to create and execute Catrobat
programs on mobile devices. Due to this fact, more people are reached,
because smartphones and tablets are more widespread than laptops or
personal computers nowadays especially when talking about children. In
that manner, children carry their learn-to-code-tool always with them in their
pocket.

The integrated development environment (IDE) and the interpreter are
grouped in a mobile application called Pocket Code. This implementation is
natively available on Android, iOS and WindowsPhone. Furthermore, there is
a HTML5 version to run Pocket Code in a standard browser. All versions
behave the same in the core Catrobat language. Catrobat is using bricks and
scripts as blocks similar to Scratch. Scripts contain bricks and run from top
to bottom but different scripts can be executed concurrently.

5

2. Catrobat

2.2. History

Catrobat and it’s core Catroid team were introduced at the University of
Technology Graz. The first goal was to port Scratch to Android, therefore
the name Catroid was given, which is a fusion of Catrobat and Android. At
the initial start only few people were working on this project, but after some
time and advancement of the team, it became popular at the university.
More and more students joined the different teams. At this point over 100

people at the university of technology of Graz and external people are
collaborating on the different Catrobat projects. With this influx of young
programmers, a bunch of sub-teams were established and features were
added progressively. In 2012, the iOS team was formed and is since then
working on the iOS version of Pocket Code.

The potential of the project was rapidly identified and therefore Catrobat
was awarded in the year 2013 in the category Multimedia with the Austrian
National Innovation Award. However, the reputation was not only national.
Google chose Catrobat a few times to be part of their ”Google Summer of
Code”1 program, which was a huge success for Catrobat. Recently the team
was also granted the Lovie Award2.

2.3. Subprojects

As mentioned before, a lot of sub-teams were put in place to break down
complexity and to work in a smaller team better together. Here is a short
list, which teams the Catrobat project exists of:

• Catroid - Android core team
• Chromecast
• Drone
• Lego Robot
• Live Wallpaper
• Musicdroid
• NFC
• Phiro

1https://developers.google.com/open-source/gsoc/, visited:22.03.2016..
2http://lovieawards.eu, visited:22.03.2016.

6

2.4. Team Collaboration

Figure 2.1.: Pocket Code for iOS start screen

• Physics Engine
• Rasperino
• Catroweb
• Design
• Education
• HTML5

• iOS
• Paintroid
• Usability
• Windows Phone

In the further thesis the iOS version of Pocket Code is considered because
new bricks will be introduced, which are not supported in all of the other
versions. Currently the iOS version of Pocket Code is in beta-phase and not
available on the iOS AppStore. The current design is shown in Figures 2.1,
2.2, 2.3.

2.4. Team Collaboration

Since so many different teams exist, one can think that each team works
encapsulated on its own. Nevertheless, this is the other way round. There is

7

2. Catrobat

Figure 2.2.: Pocket Code for iOS download projects of other users

Figure 2.3.: Pocket Code for iOS script editor to create and remix projects

8

2.5. Internationalization

an interconnected network between the teams. Coordinators of each team
gather questions and examine these with the other coordinators. Questions
in the chatroom can lead to prompt answers, because all Catrobat members
are reached.

There are not only real sub-teams, for example the usability and the design
team work across all platforms. Accordingly, they are highly embedded in
the development process of every programming team.

This fact is really relevant for a programmer, because he/she only has to
concentrate on programming and not designing or spending too much time
thinking about the detailed usability. In my opinion, this is a good approach
for the workflow, so that everyone can focus on one task and do not have to
“reinvent the wheel”.

2.5. Internationalization

As highlighted previously, the team members are not entirely located in
Graz, since the project is very international and open minded to new con-
tributors. It is an open source project, where everybody is able to check out
the code and commit their changes and additions as long as they follow the
preferred workflow containing test driven development that will be later
described in detail.

Programming is mostly done in English as one can see in the main
programming languages like Java, Swift and others. On account of wanting
to reach as many children to learn to code in a playing manner, it was a
concern from the ground up to support as many languages as possible.
Because learning a language for Pocket Code would distract from the core
concept. Therefore it should be possible that every child uses the application
in their native language, so that no linguistic barriers exist when it comes
to complicated patterns. Not only the language should be familiar to the
children, but the application should match the cultural definitions like left-
to-right or right-to-left reading. Another point would be the mathematical
operators, which differ in some countries. We, at Catrobat, want to reach as
many children as possible, so this mentioned and a lot of other differences
are a big adjoin for us. For reaching that goal, we work together with native
speakers of diverse countries.

9

3. Software Testing with Focus on
Test-Driven Development

3.1. About Software Testing

Written software without tests can be unreliable and there is a high chance
that the program behaves differently under certain circumstances. Since the
beginning of programming in the 1950’s, testing the written lines of code
was part of the development workflow to deliver programs of appropriate
quality. Of course software testing changed over the history, but it was
always an essential part of a development workflow. According to Myers
et al. [6]: “Testing is the process of executing a program with the intent of
finding errors.”

Myers [6] stated that these days, when hardware and machine cycles
were very expensive, double checking the written code to ensure that it
will work afterwards was part of the testing process. This method, called
desk checking, was part of the programmers everyday work. No thoughts
were given letting the machine do the job, because the computing power
was too slow and the costs tremendously high. The computer should not
be utilized to test the program, but to solve the given problem running
the program. This fact changed over the years, because machine cycles
became very inexpensive and it was not difficult to run the code and see
the outcome. Unfortunately, a good discipline was lost. The desk checking
practice fundamentally has advantages, but it just needs too long to work
through it for today’s time schedule. A combination of both could be one
solution, but other more sophisticated models were developed to tackle this
core problem. For example, writing tests using the computer as a resource
and execute them as often as possible to check correctness [6].

11

3. Software Testing with Focus on Test-Driven Development

3.1.1. Why Test?

But why should software be tested? Of course, there are different types of
software. To write software, which is used for security or safety reasons,
is very critical for programmers, because it has to be very reliable. More
precisely, it has to be guaranteed to work and thus it should be sufficiently
tested. As Graham [7] mentioned, concerning other types of software, it is
mostly just about gaining money, without that very critical part. That’s why
testing the product is a kind of increasing the chance to satisfy the customers
so that they will buy the program or application. Testing is therefore helping
the company to reach the goal of making profit. There is a tradeoff between
testing and profit, because if testing in some level of detail is too expensive
and do not improve the quality significantly, then the company should stop
testing that part and go on without whole test coverage. However, this can
only be done if that part is not that important. This fact is based on testing
costs that can excel the profit afterwards. Due to this case the best solution is
to find a balance between creating tests to control the development process
and checking the program to provide confidence that it will work [7].

The interpretation of software testing divides the developers opinions
into two parts. Of course, it is always about testing the code to see if it is
working as expected. On the one hand, some programmers see it as kind of
quality insurance to prove that the program will work afterwards. On the
other hand software testing is seen as finding bugs to be able to fix them,
but the quality measurement is not in first place. It is logical if one bug is
solved that the quality will rise. However, nobody can know how many
additional faults are in that certain lines of code. Obviously, it sounds the
same, but there is a small difference. As mentioned by Meyer [8], “Testing
a program to assess its quality is, in theory, akin to sticking pins into a
doll—very small pins, very large doll.”. He also mentions in his paper that
there are infinite data inputs and a lot of logical ways (even in a tiny, easy
program) that testing is not able to cover everything. According to him,

”A successful test is only relevant to quality assessment if it
previously failed; then it shows the removal of a failure and
usually of a fault.” [8]

Having this in mind compared with the resources and time to market,
it is not feasible to write completely error free code. However, a certain

12

3.1. About Software Testing

amount of well thought out tests can provide confidence that it will work
most of the time. Certainly the focus should be set to critical components
first and moved on to lower ones for the sake of confidence. [7]

3.1.2. Testing Models

According to Graham [7], when a controversial subject arises, different
models and solution approaches are composed. This also applies in the case
of software testing. In the early years, as mentioned before, checking the
code several times by hand or giving the lines of code to another people
to double check them were the common types of testing. However, that
routine was lost and drifted to a “Code and Fix Model”. This model and
the “Waterfall Model” will be covered in this section, because they are even
today widely used workflows.

Code And Fix Model

As the name of this model reveals, the developer writes lines of code, runs
the code and if it is not working as expected, then the written code lines are
edited. This process is iteratively done till the feature is implemented. The
model is based on the previously mentioned fact that testing software on
hardware is nowadays very cheap and fast. That is why, programmers lost
the habit of checking the code to a trial and error system. They are trying
to compile the code and if it does not compile, errors and warnings will
assist them to fix the problem. If it compiles, then the simulator/emulator
is started and the developer checks if it is working as expected or not.
However, the fundamental core of testing is completely set aside with this
approach [7].

Waterfall Model

Another approach would be the Waterfall Model. Managers create product
requirements and specifications, which are then implemented by developers.
According to Graham[7] each part of the process is handled as a complete
phase with an end product to hand over to the next phase. After developers
have written the code, an individual testing team (sometimes called “testing
specialists”) is testing the output. This workflow is shown in figure 3.1 [7].

13

3. Software Testing with Focus on Test-Driven Development

Figure 3.1.: Implementation steps of the waterfall model.[9]

More people are involved in the developing process and there is a higher
chance of finding more “bugs”. Another positive aspect is that since more
people are elaborating, it is more likely that the given specification is fulfilled.
Sometimes programmers misunderstand some ambiguous specifications or
it is difficult to implement the requirements as the customer has required it
[7].

When developers are testing their previously written code, they have
complete insight and knowledge about the concept of the program flow.
Accordingly, there is a high chance that they are using the product in a
different way than ordinary users would do. In this regard, the method
outperforms others, but it also has some negative flaws.

The first and biggest disadvantage would be that the testing happens
at the end of the “waterfall” process. For example, if a tester finds a bug
and reports it to the developers, they have to search for and understand
the error. Perhaps it was a long time ago that this part of the code has been
written, then the problem has to be debugged. Some debugging sessions
are very time consuming and therefore very expensive.

14

3.1. About Software Testing

Another negative aspect is that misunderstood equivocal requirements
are not discovered till the end. This can be expected to result in a complete
redesign of the software.

These two models are not the only ones, but latter were used very often
in the history of software development. New methods have been developed,
for example agile development with its test driven approach, which will be
covered in section 3.3.

3.1.3. Who Should Test When?

As discussed previously, the earlier bugs are found, the cheaper it is to
fix them. Imagine, software is checked at the end, as it happens in the
waterfall model, and then a tester reports that a requirement has been
misunderstood. It is probable that everything concerning this requirement
has to be reimplemented, which is very time consuming and therefore leads
to a rise of the developing costs. So testing and coding have to go side by
side.

Graham [7] says that, “software should be tested all the time” and in the
best case all parts of it, which is not possible, “within reasonable time and
budget constraints” [7].

Modern concepts, like test driven development(Section 3.3), indicate that it
is important to test everything at any given time. This is called “agile” de-
velopment that is managed in short iterations. So after every brief repetition,
the requirements and specifications are reviewed and checked if the code
needs changes or one can continue with the next part. Therefore testing is
done continuously in projects that are following the agile concept. Without
regard to the fact that software was traditionally managed with testing at
the end of the development workflow with beta testers, this type of testing
is just one part of the whole testing process nowadays [7].

As mentioned before it is nice to have different people developing and
testing to gain a higher chance of finding errors in code. These testers can be
specialised for testing reasons to find more errors in a shorter time period.
For internal testing of code parts it is useful to let experienced developers
write the tests instead of starting developers, because writing tests is not
comparable with trivial tasks. Generally said it is virtually impossible to

15

3. Software Testing with Focus on Test-Driven Development

cover all possible ways a user will use the product. According to that fact, a
chance of a user finding an error is always alive [7].

3.1.4. Different Testing Types

As reported by Myers et al. [6] two main different testing strategies have
been proven. The latters are now covered in detail:

Black Box Testing

The first strategy is black box testing, also known as data driven testing. In
this strategy, one part is seen as a black box and the test is checking if there
is the correct output for a given input. Accordingly, the goal is to find input
data where this “black box” is not showing the desired behaviour. With
this method, one should bear in mind that every input is a possible test
case, which is an infinite number of test cases, because all “possible” inputs
have to be tested and not only all valid ones. A user sometimes does not
know anything about the valid inputs. Myers et al. [6] named it “exhaustive
testing” and mentioned that is not feasible to cover every input. Hence one
has to maximize found errors with a limited number of tests [6].

White Box Testing

White box testing (logic-driven testing) has a different approach than black
box testing. This testing type allows to see the structured code inside the box.
So one can see it as a glass box. Each control flow path in the box should
be considered in one test case. This will lead to exhaustive path testing,
because the number of logical paths in a common program is indeed not
infinite, but very high. The same principle holds that one should maximise
found errors with a limited number of tests as described in black box testing
[6].

Though, there might be another source of failures that are not covered by
white box testing. These white box tests should cover “all” implemented
logical paths, but are all paths implemented or are some paths missing in
the implementation? These not implemented tests will remain untested and
ergo a source of possible failures [6].

16

3.1. About Software Testing

More detailed subdivision

White and black box testing are kind of concepts and they are further
divided into special testing techniques:

White Box Testing:

• Unit testing: Each unit (for example class) should behave as expected.
It is mostly done by the developer to check every part of an application
programming interface, if it is working as expected. Unit tests, used in
test driven development, will be covered in Section 3.2.
• Integration Testing: More Units/groups together should produce a

desired output.

Black Box Testing:

• System Testing: The full system is tested in different environments.
• Stress Testing: As the name reveals the program is tested under stress

conditions.
• Usability Testing: The program is tested from usability experts to see

how easy and comfortable it is to use by the end user.
• Acceptance Testing: The system is tested if it meets all the given

requirements.
• Regression Testing: If there is an update of the program, regression

tests will check if all features implemented before are still working.
• Beta Testing: It is done by end users before the software is released. It

should be the last testing before the release and only special cases of
errors should be found.
• Performance Testing: Testing how good the software performs.
• Penetration Testing: Checking if there are security problems.

With this listing, one can see that testing is no longer a trivial subject
and not only about checking lines of code. Several people are involved in
completely testing a software in different ways. There are even special teams,
which are only responsible for usability testing. The importance of testing
can obviously be seen in these examples [6] [7].

17

3. Software Testing with Focus on Test-Driven Development

3.1.5. Principles Of Software Testing

Meyer [8] evolved seven principles of software testing, which will be de-
scribed in this section. These principles are kind of rules that one should
have in mind when developing software and implementing test for it.

• “To test a program is to try to make it fail”[8]
• Tests cannot substitute specifications
• Testing has be an automatic process
• Test success and failure should be detected automatically
• Test cases should be created manually and automatically
• Every testing strategy should be considered
• The number of faults is crucial for a testing strategy

3.1.6. Conclusion

Dijkstra once said that, “Program testing can be used to show the presence
of bugs, but never to show their absence!” (as cited in [8]). Hence, the
intention should be to find bugs to limit errors when testing. Ergo it should
not act as a proof for the complete correctness of the program.

A good way of testing is not done by the developers themselves, because
they know too much about their own implementation. Furthermore, test
cases are interesting and successful if they find an error. Several testing
strategies should be considered to raise confidence about the product. How-
ever, a balanced tradeoff between testing effort and profit should be kept
in mind. Overall testing is very important to deliver good quality products
and accordingly to be successful.

3.2. Unit Testing and its applied techniques

3.2.1. An Introduction To Unit Testing

Nearly all developers agree on that testing can be really helpful during
the program’s evolvement and afterwards if some parts of the code have
to be rewritten. However, some of them do not test, even if it could raise
the software quality, because it needs kind of overcoming to start testing.
According to Osherove [10] this is the fact, because lots of tests are poorly

18

3.2. Unit Testing and its applied techniques

written and then not useful as mentioned in the last section. This will lead
to an unmotivated attitude to testing.

Motivation

Koskela mentioned in his work on Effective Unit Testing [11] that writing
tests is a kind of stopping the developing phase and do not come closer to
the goal in the thoughts of programmers. Of course tests will not add more
functionality to the program, but there are plenty of reasons why testing
should be done.

Unit testing can help to forget about checking the same code lines several
times. Because if tests exist which are checking the correctness of this part,
then just running the tests is easier than checking each code line for several
times. This will improve the overall speed of the development [11].

Another advantage of writing unit tests is that it will help to improve
the whole design and will raise the understanding of the content of this
unit or how it should be organized. Where does the design of the code
fit in this matter? - A poorly code base is very difficult to test, because of
dependencies and methods, which are implementing too much functionality.
Testing will help to encapsulate classes and split methods to have one core
functionality and therefore increase the quality of the design [11].

If the code coverage is very high, then the testing suite turns into a
kind of living documentation. The first thing one will do to understand an
application programming interface (API) is to check some examples, how
to use it properly. These written tests will act as those examples and are
always up-to-date [11].

Projects with an integrated well written test suite are more likely to be
resistant to regression errors. These errors arise, if some parts are rewritten
or refactored (see Subsection 3.2.2) in the code and then a functionality is
not working, which was working before. After each change, only the tests
have to be executed to see if everything is still working as expected. This will
help to speed up the whole refactoring process and improves the workflow
of more people working together on a single project. Therefore, every team
member can refactor, change parts of the code or add new functionality
without thinking about breaking some working service because the tests
will show. The whole confidence about the code is raised without double
checking and accordingly losing valuable time [11].

19

3. Software Testing with Focus on Test-Driven Development

Overall, appropriate testing will require some implementation skills for
tests and therefore some training. It will also take some time to implement
those tests, but afterwards it will help tremendously and will meet the effort
[11].

Definition

The term Unit testing has to be split in two parts to reach a base for under-
standing the definition. Testing is kind of checking if something is working
as desired. A unit has no exact definition in software development, because
it can have more possible meanings. In object oriented programming, when
using the term unit it means a class most of the time. But globally seen unit
is nothing else than a piece (a part) of code. Osherove [10] gives a global
definition of unit testing,

”A unit test is an automated piece of code that invokes the unit
of work being tested, and then checks some assumptions about
a single end result of that unit. A unit test is almost always
written using a unit testing framework. It can be written easily
and runs quickly. It’s trustworthy, readable, and maintainable.
It’s consistent in its results as long as production code hasn’t
changed.” [10]

This is a quite compact definition and ergo complete understanding
cannot easily be reached without knowledge about unit testing in detail.
A unit test will run automatically and checks if this unit (this part of the
code) is executing the expected functionality. Unit testing frameworks are in
place to help writing unit tests. These frameworks contain functionality to
assert code parts that are not working as expected. The implementation of
those tests should be straightforward, if the design is satisfactory thought
through. A very important fact is that the tests should be consistent, which
means without changing the code, there needs to be the same result for
each test run [10].

Another question arises. What should be tested? - According to Osherove
[10] every function/method which has a logic in it should be considered as
a potential error source. If a function includes a control flow instruction ele-
ment, for example an if statement, for loop, or any other type of conditional
structure, then it should be considered.

20

3.2. Unit Testing and its applied techniques

Principles

In the definition, it is written that a unit test should test exactly one single
code part that is completely encapsulated and does not invoke other logic.
A test poses an assumption that needs to be fulfilled. If the assumption is
valid, then the test passes, if not, the test has failed, so one can conclude
that the code does not implement the desired functionality. However, this is
not an instruction for writing effective unit tests, just how they are defined
[10].

If you’re going to write a unit test badly without realizing
it, you may as well not write it at all and save yourself the
trouble it will cause down the road with maintainability and
time schedules [10].

With this statement Osherove [10] describes that badly designed tests will
not help to improve your program, but to cause more troubles. Good unit
tests have to be written, because otherwise there is no need for them to be
implemented. To succeed in writing useful tests it is necessary to follow a
few principles. The tests should

• be automated and repeatable
• easy to implement
• be long-lasting
• run quickly
• be executable for anyone
• be consistent
• be fully isolated
• be easy to debug

In the following paragraph these principle definitions are described in
detail according to Osherove [10]. The computer should do the testing for
us, so the tests need to contain all prerequisites to run for example on
a server without monitoring. If a unit test is difficult to implement then
something is wrong with the design. With long-lasting, it is meant that a
test should be for instance also runnable in a year. That is why it has to be
independent of other services, where a possibility exists that this service is
not provided anymore. This could be for example a network service. Since

21

3. Software Testing with Focus on Test-Driven Development

these tests are only checking minor parts, the execution time is forced to
be low. Everyone, who wants to run the tests, has to be capable to do it.
Therefore, environmental dependencies have to be avoided as far as possible.
As mentioned in the previous section the consistency of the tests needs to be
given in every single test run. It is anticipated that there is no difference in
the result of the tests if they are rearranged. This means that each test should
be fully isolated and run independently of others. If a test fails, it ought to
be clear what was expected and how to change it that the assumption is
fulfilled in a reasonable time [10].

Osherove [10] states that if these principles are integrated in the testing
development process, then there is a high chance to write useful unit
tests. If not, unit tests can cause more trouble than benefit. Furthermore,
a naming convention and a structured hierarchy for unit tests should be
taken into account for easier maintenance of the test suite, like practiced
with the working code directories. If the maintenance for the tests is already
too difficult, then the tests are falling by the wayside and therefore the
same problem arises as before writing tests. There should not be too much
maintenance for unit tests, but since tests are also kind of living documentation
they should have a logical order [10].

3.2.2. Refactoring

Refactoring is the act of changing code without changing the
code’s functionality. That is, it does exactly the same job as
it did before. No more and no less. It just looks different. A
refactoring example might be renaming a method and breaking
a long method into several smaller methods.[10]

This statement by Osherove [10] completely describes what the content
of refactoring. Rewriting the code with the same functionality afterwards,
but improving the design. Without unit tests, refactoring can be a very hard
task, because one cannot be sure about everything is working after rewriting
parts without tests to show the outcome. Unit tests will help to be confident
that everything is still working [10].

Accordingly the goal of refactoring is to make the code cleaner and easier
to read. To achieve the goal, no recipe exists to follow, but it is a good

22

3.2. Unit Testing and its applied techniques

start to follow commonly used patterns. Refactoring is also a part of test-
driven development. The way it is used in test driven development is to
do refactoring in every iteration to end up with clean code without a big
refactoring in the end [10].

Refactoring in terms of testing can be seen to open up private classes
to make them testable. These encapsulated classes have private properties
which are not required by the external components. For testing reasons
some of these properties have to be accessed and that’s why the design
has to be refactored to be fully testable. Sometimes it is claimed that this
opening is a wrong approach, but according to Osherove [10] this is an
acceptable way, if it is used for testing reasons only.

3.2.3. Dependency Injection

Dependencies in code parts, which should be tested, are the biggest barrier
to implement effective unit tests. To have a proper testable class it is neces-
sary that it is independent of other classes or services as far as possible. To
achieve independence, a pattern called dependency injection is applied. There
are several techniques for removing a dependency by injecting something
in its place [12].

The first and probably the starting approach for decoupling classes is
Constructor Injection. As the name already reveals, a dependency is in-
jected in the constructor of a class. This fact gives the programmer the ability
to inject a test example to test the class [12].

Another technique is Property Injection, where the dependency is stored
in a class-own property and the injection takes place by setting the property
accordingly. Of course, this can only be conducted, if the property is public
accessible [12].

If the dependency is only present in one function then Method Injection
would the right solution. For applying this method, the function call holds
the dependency and if it is called, the dependency gets also injected.[12]

These three techniques are commonly used to solve the dependency
testing issue. Which one of these approached is used builds upon how often
the dependency is used and where it is used. It needs some experience
to notice, which one is used in a certain case. Dependency injection is a
core part to succeed in writing unit tests. To avoid it, programming with

23

3. Software Testing with Focus on Test-Driven Development

interfaces of each class can be very useful. If the dependency is another
class, then it is not trivial to encapsulate for testing reasons. This problem is
tackled in the next section with so-called double patterns (Section 3.2.4) [12].

3.2.4. Double Patterns

In this section covers double patterns that are helping to get rid of object
dependencies, where no control is given. This object can be of any kind, for
example a class object, a web service or as later showed in the practical part
a bluetooth connection that is connecting a device with the program. But
there are many other cases, where double patterns are demanded. The only
way to say whether the logic works or not, is to force complete independence
for the unit under test [13].

Globally seen, the dependency is removed by injecting some fake code
that is replacing the actual code in this dependency object. First a few
definitions are required to distinguish between the different double types
[13].

Mocks, Stubs And Fakes

In a recent article, Lazer Walker [13] defined and compared these different
test double types.

The name double was already mentioned. This is a kind of general term
for all “edited” objects.

A stub returns a specific fake value when a method is called. One can
define this fake value before starting the test and see if the test is working as
expected with the given value. For example, one can fake a communication
with a web server using these stubs and just pass back a static server answer.

A mock is very similar to a stub, but a mock can be asserted as well. This
means, one can verify if a method of this mock is called or if it is called with
the right argument. Another difference would be that mocks can have some
expectations beforehand, where the mock “knows” what will or should
happen and verify if the correct behaviour is discovered. The test will fail,
if the method is not called or called with the wrong argument. Mocks are
often used for interaction testing, because these tests can consist of functions
with no return value. So you need a mock to verify the result.

24

3.2. Unit Testing and its applied techniques

Finally, there are fakes. Fakes behave the same as real objects of that class,
with one exception. For example if a class is a data storage connected to a
database, then a fake would remove the database connection and have some
test data entries in-memory.

All of them are used to simplify testing by replacing dependencies, but
each one with other features. Additionally these three terms are often mixed
up and otherwise used. These three approaches can be combined, but one
should bear in mind that a unit test should only test one specific responsi-
bility. So having two mock objects would not fulfil the unit test definition.
More stubs would be ok, because they can’t be asserted. Sometimes identi-
fying what actually should be tested is not that easy and one needs some
experience in it [13].

How to use doubles?

Osherove [10] presents in his work different ways how to use double patterns
in tests. The first approach is to set up all classes with interfaces (in iOS
interfaces are called protocols) and then double objects can implement those
interfaces easily. In Swift, it is suggested to program with protocols. If this
is done from the beginning, then testing will be very straightforward. If
no interface exists or before rewriting all of the code one should use a
framework. There are a lot of frameworks for that particular reason, which
are implementing these double patterns, so that one does not have to do it
for each class. The only thing to do is include the framework and it does the
work of decoupling the classes by creating mocks. These frameworks are
often called Mocking Frameworks, but actually most of them implement all of
the mentioned doubles. The latter greatly facilitate the process of creating
and injecting those double objects, because it is only one function call. But
there is one reason not to use it, since they are helping to test there is a high
possibility that the developers do not give attention to the design of the
code [10].

3.2.5. Continuous Integration

Osherove [10] also mentions Continuous integration (CI) in his is guide
about effective unit testing. CI not only for unit testing, it consists of an
automated build and integration process. Often the continuous integration

25

3. Software Testing with Focus on Test-Driven Development

Figure 3.2.: Basic setup for continuous integration with the help of a server[14]

process is misunderstood and equated with continuous integration servers.
A server is not necessarily needed to use the CI pattern. These servers only
provide the functionality and facilitate the use, because some CI parts are
then done automatically [10].

However, according to Koskela [14] using continuous integration in a
team can be very useful. All team members are constantly changing the
code and pushing those changes to the source repository. This frequent
integration of the developers’ work and the source repository is called
continuous integration. So far, the testing topic was not mentioned. The
code in the source repository is not only meant to integrate and build, but
it should also work as expected, which will be covered by the tests. The
integrated source code is verified by running automated unit tests (certainly
integration and user interface tests will also be executed) [14].

Koskela [14] also mentions that the straightforward approach would be
that developers only test a specific code part themselves and delegate the
testing of the entire test suite to the CI servers. Due to the fact that testing
the whole test suite will take too long and the very likeliness that most of
the tests are not affected, this is a proper way of handling it. In Figure 3.2 a
setup for this approach is illustrated [14].

Osherove [10] states that the servers main job consists of triggering the
building and executing the tests on specific events, for example source code
change or time based events (nightly builds). The second important job is
to notify the developers about the status, build states and the outcome of
the test run. For maintenance, the server can also keep a history with code
snapshots and some metrics [10].

26

3.3. Test-Driven Development

Continuous Integration in combination with a server is about automated
building and testing, which can be a really useful tool in today’s developing
workflow. Several tools exist to set up a continuous integration server, for
example Jenkins or the Apple own implementation called XCode Server.

3.3. Test-Driven Development

3.3.1. The Idea Behind TDD

Kent Beck introduced in his Extreme Programming guide [15] Test-Driven
development (TDD). Sometimes the strategy is also called test first devel-
opment, because according to Beck the main goal would be to write tests
before creating the actual code that indeed is necessary to be tested. He
also mentions that afterwards nearly anybody would write tests, because
developers are striving for implementing functionality. Therefore testing is
often neglected in traditional approaches of development [16].

Koskela [14] defines test-driven development in one sentence,

Only ever write code to fix a failing test [14].

This is the complete thought behind test-driven development. At first
sight it sounds a little unfamiliar, but after understanding the core parts of
TDD it will turn out to be a very useful strategy.

Koskela [14] states that every software development project starts with
specifications, defining what the program should be able to do. These
specifications are then translated to requirements that often tend to be more
specific. In a normal development cycle, the requirements would be split up
into tasks and these will be implemented one after each other. In test-driven
development requirements are formed of tests instead of tasks. These tests
build an acceptance criterion that has to be fulfilled. So all tests should
pass to prove that the code is good enough. The way unit tests created by
developers are written and also their advantages were covered previously
in Section 3.2. That is why tests are only about one specific part and not a
whole functionality or requirement [14].

Koskela [14] also mentions that the biggest problem in software devel-
opment is tantamount to solve the right problem right. This fact has to be
subdivided. The goal consists of solving a given problem that is extracted

27

3. Software Testing with Focus on Test-Driven Development

from the specification. If something is misinterpreted in this translation
phase, then a problem is solved, but it is certainly not the desired one, which
was required by the customer. Writing tests that are easier to understand
for the customer can lead to an earlier discovery of a difference in the
implementation and specification [14].

The second part is to solve the problem right. This can be interpreted in
different ways. According to Koskela[14], right means that the design of the
code should be properly thought through. Poorly designed code has a high
defect rate and lacks to be maintainable. This will slow down progress and
lower the quality of the end product. Both will lead to longer debugging
sessions and therefore longer development phases and higher costs [14].

Therefore Koskela’s [14] solution is to work test driven. The quality of the
overall product will rise and there is a higher chance that the software will
fulfil the customer’s expectations. Except for the external quality increase,
also the code quality will rise, because before typing the code, thoughts
were given to how to solve the problem and how to pass the test properly.
Another advantage will be that less time is devoted to fix defects, because
the tests will show, where the problem is located and therefore it can be
faster corrected. Time for debugging is decreasing dramatically [14].

Test-driven development supports an iterative process of an incremental
developing workflow. New functionality is added after every cycle with
keeping up previous services working correctly. Each cycle consists of three
separated phases. The first phase would be to pick a test of the global test
list, then implement the test, which will fail, because the functionality is not
implemented at the moment. Then write just enough code to pass the test
in the second phase. After all tests are passing try to refactor the written
code parts. Refactoring is the last part of every cycle and then the iterative
process starts over again [14].

According to Graham [7] people tend to achieve better results when
working iteratively on small problems and finish them, before switching
to another context, instead of working on multiple problems with different
contexts at the same time. Test-driven development helps the developer to
focus exactly on one specific task and improve the quality through adequate
testing [7].

Together with the acceptance test driven development, which is covering
the specification tests, described in Section 3.4, confidence is given that the
internal requirements fulfil the external specification. Therefore the software

28

3.3. Test-Driven Development

Figure 3.3.: Test-Driven development cycle compared with traditional development cycle
[14].

will have a higher chance to satisfy the customers needs [14].
Figure 3.3 compares the traditional approach of a development cycle

with the test-driven approach. The phases only changed the order. At first
sight, it feels unfamiliar that the design phase is at the end. However,
design is interpreted in different ways. In the traditional approach the
global design/structure, how to tackle a task, is meant. In the test driven
approach, design is recognised as a refactoring process, where code parts are
redesigned. The structural design is done in the test phase, when defining
the application programming interface (API) for handling the given test.
Stepping through the cycle in detail will raise the awareness of the test
driven way [14].

3.3.2. Test-Driven Development Cycle

The 3 main steps of the development cycle which are iteratively used were
already mentioned:

• Test
• Code
• Design/Refactor

The first part before one can use this cycle would be to decompose the
requirements and set up a test list. This step is not trivial, because the
tests should be more concrete, more example-like, but satisfy the global
specification. This list of tests is a working document, where new tests are

29

3. Software Testing with Focus on Test-Driven Development

added during the developing process, for example to react to different or
new specifications. When everything is set up, a test can be selected and the
test-driven cycle starts [14].

Test First

According to Koskela [14], the first part is tantamount to write the test,
because according to the definition no code is written if no test for this code
exists. The key question would be how to test something that does not exist.
This is where the thought about the implementation design comes in place.
The developer thinks about how it should be organized, how the method
should look like, which arguments does it need and many other factors.
Two different cases exist: On the one hand the code has to be extended, but
parts of it exist and on the other hand no code exists for this part [14] .

Concerning the first case, just writing a test by using the available classes
and see the outcome of the test is enough. Then one would continue with
the next step and implement the extended functionality.

The second case is a little more convoluted, but probably emerges on
occasion. The task would be to write the test just by imagining that the
required class or method exists. Koskela [14] calls this concept programming
by intention, when using code parts, which are not existing at the time of
using them in the tests. Of course, the initial failure would be the compiler
warnings and errors. Nevertheless, this is certainly permitted for the first
round of this cycle. Compiler errors can be interpreted as a test failure.
Therefore, the developer should go on to the next part and implement those
classes and method declarations to satisfy the compiler. Then the software
will compile, but running this freshly written test will fail, because the
method heads that were implemented are not implementing the functional-
ity. This will result in the situation of the first case and the developer can go
on to implement the feature so that the test passes. The iterative process is
clearly shown in this case-example [14].

Graham [7] noted when beginning to use test-driven development, this
part will make the developer think about nothing meaningful has been done,
but according to Koskela [14],“a failing test is progress”. This statement is
founded on the fact that with the failing test, an indicator (the test itself)
exists, which tells the developer if that particular task is finished. The
test passes, when the code behaves like it is supposed to do. Later on the

30

3.3. Test-Driven Development

developer finds out that the implementation time is nearly the same, because
testing first helps to organize and identify which code has to be written [7].

Kent Beck [15] describes this step as “test infection”, because the developer
thinks about the requirement in another way, which covers the questions
how to test the implementation and not about how to debug it, which is
common in the traditional development cycle. If some code part is easily
testable, then there is a high chance of having a good design [7].

Implementation

The second phase of test-driven development is called implementation. We
have given an implemented failing test and the goal is to implement the
functionality to satisfy this test. Adding a new class or implementing a
method would be possibilities for this specific part. Graham [7] mentioned,
“At this stage, it doesn’t really matter how you write the code that imple-
ments your new API, as long as it passes the test.” This means that the code
just needs to provide this certain functionality. The core service should be
stable as quickly as possible, so it is definitely allowed to introduce some
fake values, for example hard coded elements, in the implementation. As far
as the implementation covers the test case it is even advised to implement
the solution as easy and fast as possible [7].

Graham [7] listed an example to understand the way of implementing
using the test first approach according to the given needs. Let’s go through
that example of a method that should return a greeting. For the first test,
which only checks, if a greeting is returned, it is absolutely granted to
return a given hard coded string to satisfy the test (as seen in Listing 3.1).
Of course, afterwards there might be a need for a more open greeting, for
example to dynamically change the name of the person (as seen in Listing
3.2), but this is not covered by this test. According to the definition, the
more general implementation might be too much outlay, because there is a
chance that it is not needed, because the requirement is not demanding the
general version. For the case of a more general version, another test (for a
more open requirement) should be added, which would cover this usage.
This test is added to the test list and can be selected after this current cycle
[7].

31

3. Software Testing with Focus on Test-Driven Development

Listing 3.1: Implementation example: the first cycle (adapted from Graham [7]).

func g r e e t i n g (name : S t r i n g) −> S t r i n g {
return ” Hello , Bob”

}

Listing 3.2: Implementation example: 2nd cycle - dynamic name (Graham [7]).

func g r e e t i n g (name : S t r i n g) −> S t r i n g {
return ” Hello , ” + name

}

Koskela [14] calls this technique of implementing in incremental iterative
phases triangulation. The developer is trying to force the implementation to
be a proper one. However, this triangulation service is spread out over a
few test-driven development cycles. That is why more tests are needed for a
proper use of this technique. This approach can support the developer not
to over-engineer and premature optimise the system and accordingly not to
waste time on something, which is subsequently not required [14].

Design/Refactor

Koskela [14] calls the last stage of this cycle Design, or Refactor. The test is
passing, so it can be assumed that the implementation is correct. To receive
a maintainable design additionally to the testable design, which is already
given, the implementation sometimes must be rewritten. In the second stage,
it was only about a “quick and dirty” solution. Now the goal is to find the
simplest possible design, without breaking the tests. Koskela [14] puts every
important part of this last step into one sentence.

Refactoring is a disciplined way of transforming code from one state
or structure to another, removing duplication, and gradually moving
the code toward the best design we can imagine [14].

Kent Beck [15] also introduced the term “code smell”. If the code “smells”
then it may implement the correct functionality, but something is looking
awkward and not right. It is advised to remove such code parts and to try
to solve it in another way [7].

32

3.3. Test-Driven Development

Refactoring can be achieved in different consecutive steps, but after each
step it should be checked that the software is still working and was not
obviously influenced by those changes.

It can consist of removing a test that appears to be redundant afterwards,
because another test is covering the case as well.

Another step would be to refactor to smaller, more compact methods to
avoid methods with dozens of lines. A method should cover one thing and
it would not be a good design to overload it.

A further step would be to refactor to certain approved patterns. If a
pattern exists that does the right thing, it is advised to use it, instead of
reinventing the wheel.

Refactoring is covering a wide area of topics, which also includes per-
formance refactoring as well. The mentioned steps are the most used ones
in the refactoring stage and which should definitely thought of every time
reaching the refactoring stage [14].

3.3.3. Patterns

Some patterns evolved for test-driven development which can be helpful
to follow. The latter act like guide sentences one should have in mind for a
successful use of the described test-driven development cycle.

Red, Green, Refactor

The first guide called Red, Green, Refactor, introduced by Beck [16], is the
heartbeat of the development cycle in a more memorable way. Red visualises
the stage of writing the failing test. Many integrated development environ-
ments, or IDEs, show a failing test with a big red bar or other red symbolics.
The Green phase is exactly the other way round, where all tests are passing
and the green colour should represent that progress. The refactoring stays
the same. So every developer wants to reach the save green place [7].

”Ya Ain’t Gonna Need It”

According to Graham [7] this mnemonic is about implementing the initial
failing test. It advises to just write the code, which passes this specific test,
because then unused code is never written. Developers tend to think about

33

3. Software Testing with Focus on Test-Driven Development

what can be required later on and therefore write methods very open to
different scenarios, sometimes with a big effort. For test-driven development
one should stick to only pass the test without any other feature, because it
is not needed at the moment, and it could be the case that is not required in
the future as well. Spending time on implementing not required additions
would be a lost effort and lead to unused code. Graham [7] says that, “Test-
driven development encourages building applications from the outside
in.You know that the user needs to do a certain task, so you write a test
that asserts this task can be done”. Just implement what is necessary for the
moment [7].

Fake It(’Til You Make It)

Another mnemonic introduced by Kent Beck[16] is about faking values or
even whole methods. He advises to return the expected constant to support
the test. And then use the previously described technique trianglation, with
writing other tests and fulfilling them to reach the more general goal [16].

Breadth-first, Depth-first

Breadth-first and Depth-first are two different approaches described in Kose-
las [14] work about Practical Tdd, which can be compared to the searching
through for example a decision tree. Breadth-first would cover to first select
all the API concerning tests and just fake the methods to pass those tests,
and then go one step deeper in the hierarchy and implement more func-
tionality for all those tests. Depth-first would be about taking one test and
implement this functionality till reaching the fully integrated functionality
before going on to another test context. Of course, the outcome will be
the same one, but it helps selecting the next test, if strictly following this
concept. The use of these approaches has to be decided in every case itself,
because of the different environment/background conditions [14].

3.3.4. Usage Of Test-Driven Development In A Project

Graham [7] states that test-driven development teaches to incrementally
implement the software. If starting a project and following these rules,
the result would be an architecture of separated components, which are

34

3.3. Test-Driven Development

somewhere linked together. This would not be a proper architecture because
as Graham mentions it only “shares many of the characteristics of concrete”
[7]. No overall structure will be recognisable, and therefore it is difficult to
predict how each feature behaves together with other ones. These ones will
always be separated parts that will not relate to each other.

Graham [7] advises that it would be advantageous to have at least a rough
general idea of the overall structure, before beginning with the test-driven
development cycle. Accordingly, the global design should be defined and
the component’s design will form of the writing of the tests and thinking
about the implementation before writing code parts. The design should
consist of what the general idea is, how each feature fits with the others
and how they will be communicating. This is called Domain Model in object
oriented programming. Thinking about the use of the user, how they would
interact with the services or features at which time and create an architecture
plan of this information. In this plan, the communication or double use of
methods can be defined, so that a rough guide exists to lead the test-driven
development into the right direction [7].

To summarise, the main idea is to have knowledge of the overall structure
and then build up the software with small components fitting perfectly
together using test-driven development.

The general test-driven circle, with its three components (test, implement
and refactor) is just a coarse overview. To use test-driven development effi-
ciently in a project this circle needs to be refined into a concrete workflow,
which every developer has to follow. This workflow must include trian-
gulation, several test runs and an incremental refactoring phase. A more
detailed test-driven development workflow, which was used in the practical
part of this thesis, is shown in Figure 3.4. If this workflow is followed, it
is guaranteed that the test-driven development circle will be maintained
throughout the project development [7].

3.3.5. Role Of The Documentation

Osherove [10] covers the problem that each software documentation has to
be kept up to date. If something is changed in code, then the documentation
needs to be changed accordingly. As mentioned in Section 3.2.1 tests can

35

3. Software Testing with Focus on Test-Driven Development

Figure 3.4.: Test-Driven development workflow used in the practical part.

36

3.3. Test-Driven Development

imitate the role as a living documentation. Since tests are written before
coding the implementation in test-driven development, a huge test base
exists. All tests have to pass to reach a green build. Therefore all tests have to
be up to date. Considering the tests as a documentation, then it is already up
to date after every cycle and nothing needs to be done in addition. Of course,
this kind of documentation is a real technical one. However, to understand
the code it is really useful to consider the tests and see how the code parts
are used properly. Combined with acceptance test-driven development (3.4)
and it’s emerged tests, the functionality will be easy readable, even for non
technical-skillful customers.

In general testing will help to keep pace with a working and useful
documentation, but it should not completely replace a written one. Global
behaviour should be declared in written form and not only by the tests
themselves.

3.3.6. Performance And Impact Of Test-Driven
Development

Is test-driven development really as efficient as it is intended to be? This is
the core question to answer and then to decide if TDD should be used or
not. Koskela [14] listed a few advantages that actually exist and need no
additional proof, because if following the cycle properly then it will behave
as it claims. These advantages contain,

• Written code is testable, because otherwise it would not be imple-
mented
• Effective against regression errors, because of the number of automated

tests in the background
• Deployable version after each cycle
• Fixing defects is less time consuming because of the tests
• Time consumption is nearly equal, when comparing implementing the

feature and writing tests afterwards→ same amount of code
• Living documentation for free

The most important feature in the business would be that there is always
something to deliver, which might not have all features, but something
that is actually working. The structure and design of the testable code is

37

3. Software Testing with Focus on Test-Driven Development

also given by just following the instructions of TDD. Fewer defects will be
introduced and they are easier to locate due to the test suite [14].

Two independent studies have shown the impact of test-driven develop-
ment in comparison to the standard models. The first one, accomplished
by Thirumales [17], is about a one year long empirical study at IBM. Using
the TDD approach about 40% fewer defects were found in comparison of
the baseline prior product without impact of the productivity of this team.
Another study showed that the quality of groups working with TDD was
higher because 18% more black-box tests were passed instead of the control
group, but they took 16% longer for the implementation, so performance
was kind of decreased in the implementation phase [17].

The second study, which was accomplished by Janzen[18], investigated
two different environments. One was at an industry environment and the
other one in academics, more precisely at a university.

Janzen’s study [18] was accomplished by forming three groups, where
each group followed another technique (test-first, test-last, no testing). The
results will be covered now:

For the industry, nearly the same results were discovered as Thirumales
did. The produced code passed 18% to 50% more external tests and the
productivity decreased by 16%, which is minimal according to him. These
results were obtained by letting the same group of developers using both
approaches to solve two different problems. In academic studies different
empirical results were revealed. Two of the five hypothetical studies showed
a big quality improvement and productivity improvement. One correlated
with industrial results and surprisingly two did not show improvements
in quality or productivity. According to him, the reason could be that the
programmers had little or no experience in TDD programming [18].

Generally spoke, covering both environments, the test-first approach
consisted of a lower complexity, fewer defects, fewer statements and more
method parameters. The hypothesis of being more productive than with
the other approaches is likely to be rejected, because the productivity in
these studies were nearly the same or a bit lower in this phase. However,
time savings afterwards will compensate this decrease of productivity. The
test-first and test-last approach produced eventually more code and shorter
methods than the no testing team. The internal quality was further increased
by the test-first way [18].

Janzen [18] also provided a survey that had to answered by the developers

38

3.4. Acceptance Test-Driven Development

afterwards. These surveys showed that over 75% thought that the TDD
produces a simpler design and would be the best approach. 70% thought
that there were fewer defects when writing the tests first. The test first team
was more confident about their code and indicated that they will choose this
method again. The No-Test group would be more confident by using the
Test-Last technique. According to Janzen [18], they are more comfortable
with something they already knew [18].

Test-Last and Test-First provided a higher quality, however Test-First had
some other positive by-products, for example coupling is higher, complexity
is lower and of course the test coverage is higher, because in the Test-Last
technique, tests are not always written, because of laziness. Conforming to
Janzen, proper use of TDD would pay for itself over time and accordingly it
should be used preferably [18].

3.4. Acceptance Test-Driven Development

According to Ambler [19] Acceptance test driven development(ATTD), some-
times also called Behaviour driven development, is based on the same in-
tuition as test driven development, which consists of writing a test and
changing the given construction till it works [19].

However, one big difference exists, because test driven development is
about developer tests (unit tests) that are designed and written by the
programmers themselves. In acceptance test driven development, tests are
easier to be understood by the customer, who defines the specifications.
Therefore, these acceptance tests cover the given specification to extract
some specific requirements that are handed over to the developers, and see
if the implementation covers those as well [14].

According to Koskela [14], “Acceptance test-driven development (accep-
tance TDD) is what helps developers build high-quality software that fulfills
the business’s needs as reliably as TDD helps ensure the software’s technical
quality”.

According to Ambler [19] the main goal, as illustrated in the uml diagram
3.5, is, to get specific requirements, which are then implemented for example
using test driven development. After implementing the functionality using
test driven development, the result is checked against the given specification.
The correctness of the implementation is then covered by TDD and the cor-

39

3. Software Testing with Focus on Test-Driven Development

Figure 3.5.: A combination of acceptance TDD and developer test driven development [19].

40

3.5. Testing + iOS Development

rectness of the functionality itself is covered by acceptance TDD. Combining
both techniques can be a good lead to satisfying the customer [19].

3.5. Testing + iOS Development

According to Graham [7] testing had a hard time to prevail in iOS devel-
opment. In the early years, after the AppStore was introduced the test-
ing process was a variation of the previously mentioned “Trail and error
method”. The testing part was only covering testing the application in the
iOS simulator or on a development enabled iOS device to check if every-
thing is working as expected. Nowadays, the importance of testing also
reached the iOS developers. More and more instructions can be found to
test different specific iOS structures and commonly used pattern to write
unit tests evolved, since iOS development has a huge fanbase [7].

Salibra [20] mentions that even distributing beta versions to beta testers
was a very hard task, because of the capsuled Apple environment that does
not allow to install applications on devices, which are not downloaded from
the own App Store. Therefore the device, on that the app should be running
on, has to be added to the developer account. Then it was allowed to deploy
the app on this peculiar device when it was connected to the Mac via USB
connection. This changed over the years and also pushed programmers to
develop with testing in mind [20].

Schroppe and Eggert [21] mentions that Apple also improved the way
continuous integration is used in iOS projects. When using an Apple server,
which can be installed on every Macintosh, the integration is straightforward.
Within this server, triggers can be defined to check out the code and run
tests automatically. This is all achieved with a simple, but yet powerful,
user interface. After executing the tests, the developers can be informed in
different ways, for example with the dashboard that is providing a good
and clean overview [21].

Further, these tests do not complex the structure of the application code
base, because they are handled in another test suite project, which is linked
to the original one. Therefore a good practice would be to keep up the same
hierarchy in both projects. One extra useful addition allows to exclude tests
from running in different environments. For example, testing the actual
built-in sensors cannot be tested in the simulator without mocking, therefore

41

3. Software Testing with Focus on Test-Driven Development

excluding those in simulator test runs is a good choice. This also holds for
every other connectable hardware if it is not connected. This feature is really
handy for the Bluetooth implementation in the practical part afterwards
[22].

3.5.1. Tools For Testing

Apple is providing useful frameworks to sufficiently test an application. The
most important framework is XCTest [22].

XCTest provides the core functionality for unit testing. These tests are
treated the same way as classes are. Each class subclasses the XCTestcase core
class. This core class provides functionality for setup and tears down code
to improve the performance of testing. Furthermore, since these tests are
like methods in a class, helper methods can be written to avoid duplicating
code parts in tests as well. So what is the difference between helper methods
and test cases? There is a naming convention used to distinguish between
those two types. Every method starting with “test” is considered as a test
case and therefore executed in the test run. If it does not start with “test”,
then it will be excluded and XCTest will skip this method when running
the tests [21].

As Apple [22] mentions in the Testing guide, since iOS 9, two more types
of testing tools/testing improvements have been added. The first one is
about simplifying the beta testing process. Testing devices do not have to be
added to the developer account to run the application anymore. Another
improvement is that distributing to beta testers is now able over the air with
Apple’s own app called “Test Flight”. If a beta tester is enrolled in the testing
process of an application, then the user gets notified to download every
new provided build from the Test Flight app. So developers do not have to
gather all devices, but only upload the build to the iTunes Connect account
to deliver a new beta version to their testers. There is even a communication
connection for beta testers to the developers, which can be very useful if
bugs have been discovered. This is a genuine improvement and can save a
lot of time for developers [22].

The second big enhancement in the iOS testing environment would be
the possibility to create User Interface Tests. This is a giant step forward,
because it was not possible to test the user interface without some third

42

3.5. Testing + iOS Development

party tools that were not officially allowed, before iOS9. Testing the user
interface automatically can lead to a formidable increase in user experience,
because not only the functionality is tested but also the use and interaction
[22].

There are other tools as well, like the Apple server as mentioned before
and additional third party tools to improve the testing process. However,
when using the Apple provided tools properly then sufficient testing can be
reached.

3.5.2. Writing Tests

Writing unit tests in iOS is like creating a class with methods. Each method
starting with “test” is considered as a test case afterwards of the framework.
Before each test case, the setup method is called to execute some setup
functionality. After each test, the teardown method is executed to free some
objects. Therefore you have control about what happens between every
single test case.

According to Schroppe and Eggert [21] it is helpful to use a pattern to
structure each test. They introduced a so called Given-When-Then pattern.
Each test is divided into these three parts. The Given part consists of the
environment setup, like creating objects or setting certain states. The When
part is where the action happens. In this part the code to be tested is called,
which is most likely one method call. The Then section is right after that call
and includes the checking of the test result. Assertions are written to check if
the expectation is fulfilled. With this pattern the reading and understanding
of the tests is simplified [21].

It is really straightforward to “write” those user interface tests provided
by an Apple user interface framework [22]. The only thing to do is to start
the simulator and record clicks and typings on the user interface to create
those tests. If the desired functionality has been recorded the developer has
to add asserts to finish writing a user interface test case. That is why writing
was set under quotation marks. There is just one prerequisite for recording
the tests, which says that the graphical elements have to implement the
accessibility methods. These are certainly pre implemented for all core user
interface elements and therefore for all subclassed versions of it. But if
own user interface elements are designed, one has to concern about the

43

3. Software Testing with Focus on Test-Driven Development

accessibility on your own [22].

3.5.3. Creating Mock Objects In iOS

As mentioned previously when defining unit tests it is sometimes necessary
to create mock objects. There is no built-in functionality for this case but
several good frameworks exist including OCMock1 and Mockito2. Thus far
these frameworks only support Objective-c and not Swift. It is very easy
to use those frameworks, because they are managing the encapsulating of
classes on their own. Accordingly, creating a mock object is mostly just a
line of code when using the frameworks properly [21].

For implementing mocks with swift, a commonly used way would be to
implement every class with a class protocol and create mock classes on your
own. This protocol pattern was also used in the following practical part.

3.6. Testing Especially With Hardware
Connection

Software, which is communicating with other hardware, is exposed to many
influences that the software will not work as expected, for example due
to the communication. That is why it has to be guaranteed that both de-
vices, both software on these devices and the connection are working as
desired. Another point when speaking about communication would be that
this should be working right at that moment when the action happens.
Sometimes no influence is given to control the extra communication partner,
because it is developed by another company or is running a standard soft-
ware to offer the communication and control every feature. In the practical
part, an Arduino device is used, running the standard Firmata software to
enable access to all pins (see Section 4.1). Therefore no control is given to
change the code or behaviour of this communication partner.

As mentioned previously, the second error prone component can be the
communication part itself. The latter can occur in many different ways. The
simplest would be a cable connection, which would be the most reliable

1https://ocmock.org.
2http://mockito.org.

44

3.6. Testing Especially With Hardware Connection

solution. An additional one and perhaps most used solution nowadays
would be the wireless communication. For smartphones and the purpose
of connection to the Arduino, Bluetooth was chosen. Of course wireless is
not that reliable as a wired connection, because messages can be lost due
to the amount of traffic in the transmission medium or due to the distance
between the two devices in that given environment. For example, if there is
no line of sight, then the communication range will shrink accordingly.

So how should such a complex structure be tested? There are two contro-
versial approaches to test, Mocking and Real Environment Hardware Tests. Both
have advantages and disadvantages, which will be clarified and compared
now.

3.6.1. Mocking

The first approach is about Mocking, which is covered in Section 3.2.4 in
general and for specific iOS use in Section 3.5.3. In this special case mocking
has a few different tasks to manage and this should be done separated,
because as mentioned previously, only one specific functionality should be
considered in one test case.

The first one would be to test the Bluetooth communication itself, more
precisely the application programming interface of the Bluetooth communi-
cation. Therefore, mocking a peripheral and letting the software communi-
cate with this faked outlying device should test the right part.

The second part would consist of testing the communication with the
desired device. Accordingly the device is created as a class in the central
device software and is answering with fake values. Together with this
approach, it can be ensured that the software to test is handling the received
values correct and is sending the appropriate commands to the peripheral
device.

There are some advantages using this way, because no additional device
and no real Bluetooth connection is needed. That is why these tests can
be managed by everyone and even on a continuous integration server as
well, since now the peripheral device is mimicked in code, to check if no
regression errors were introduced. Another advantage is the case that these
tests are reliable and are consistent in case of the outcome if not changed.
However, there are some gaps in completely testing the feature. For example,

45

3. Software Testing with Focus on Test-Driven Development

what happens if a message is lost over the Bluetooth connection. Mocking
is only mimicking a seamless environment and connection.

3.6.2. Real Environment Hardware Tests

With mocking, communication is only mimicked as a function call. This
is where Real Environment Hardware Tests comes in place. These tests use
a few prerequisites. First of all, the communication partner needs to be in
range and of course ready to connect. After the connection is established,
the tests can be executed. For sake of independence the tests connection
should be happening in the test setup phase and disconnecting in the test
teardown method accordingly. Now these tests cover the complete structure,
which is also used by the end user. This is the biggest advantage of this
kind of testing. So this would be the perfect approach to test such a complex
structure?

Certainly not only advantages exist with this approach. There is no
consistent behaviour, because it is not guaranteed that the connection is
set up, nor that messages are transmitted properly. This behaviour of test
result inconsistency can lead to confusion and accordingly to debug sessions
even though just some message got lost due to environmental changes. This
would probably be the case when running those tests automatically on
servers with the hardware in range. There is a high chance of some tests
failing randomly. This is the wrong intuition of automated testing and can
lead to more trouble. Another negative point would be that everyone, who
wants to test, has to prepare the setup in advance. Thinking of Arduino,
different hardware implementations exists. To cover every kind of these, one
has to test with all different types of devices, which is certainly not possible.

3.6.3. Comparison & Conclusion

Summarised, both methods cover different parts. Mocking is a good choice
when including the tests into an automated test suite, but it does not cover
the real world behaviour. The double object only replies with mimicked
values, initialised by the developer. Mocking calls the interface and sends
the expected value. Therefore, the only possibility of error could be in the
difference between how the device handles this data compared to how it

46

3.6. Testing Especially With Hardware Connection

actually should behave. Hardware is never entirely reliable. That is why
some additional error handling needs to be implemented.

Implementing tests only with Mocks is no trustworthy advice. One should
have at least some weeks access to the peripheral device to test the interac-
tion with the software. Afterwards mocking can be a good choice to ensure
the functionality is offered at every time.

At this point, only unit tests were considered, but for hardware connec-
tions the value of integration tests should not be underestimated. These tests
cover the whole user experience of the interaction with the other device.

So far, Real Environment Hardware Test were not mentioned, but they would
cover all functionality and the user experience as well. Unfortunately diverse
kinds of hardware and interferences complicate the testing process. This can
lead to uncontrollable behaviour, which is not the right keynote of testing.
This randomly failing of tests could lead to debugging sessions even though
only an interference was blocking a message.

Since different types of hardware exist and not all of them can be tested,
full coverage of Real Environment Hardware Tests is also not given. Accord-
ingly, it is not tremendously better than Mocking speaking about test cover-
age.

When thinking about Apple and iOS testing, then the simulator is not
in a position to communicate over Bluetooth, even though the server has
Bluetooth build in, because Apple has blocked this hardware support a few
years ago. That is why the setup for real hardware tests has to consist of an
iOS device and the communication partner.

In conclusion Mocking would be the preferred solution for testing Blue-
tooth connection as covered in the practical part, because of the possibility to
add those test cases to the automated test suite. However, the best solution
would be to implement both approaches and exclude the Real Environment
Hardware Tests of the automated test suite. So these tests could be executed
every certain time (for example before each release) to check with actual
conditions. Therefore, the Bluetooth setup only needs to be built if running
these test and not every time the automated test suite is executed. Another
advantage would be that the server has consistent test output and there is no
need to install the setup near the continuous integration server, which can
also imply difficulties. When combining the advantages of both approaches
testing hardware can be achieved properly.

47

3. Software Testing with Focus on Test-Driven Development

3.7. Test driven development in Catty

All sub teams of the Catrobat project strive for an agile development work-
flow. As mentioned in the first steps for new contributors at the Catrobat
developer webpage3, it is necessary to agree on the defined way of con-
tributing. This includes strict usage of test driven development and clean
coding. Of course, this is also practiced in the Catty (iOS) sub team. For new
members, located at the university of Technology Graz, we provide kind of
trainings together with senior members to learn how to be productive with
test driven development and of course how to write useful test cases. The
team is also trying to help new members by following the pair programming
concept4, where a senior member helps new members to deal with their
first issues to get confident about the code structure, the workflow and
the whole project. In my opinion, if everyone in the team has kind of fun
developing new functionality or fixing bugs then the quality will rise and
progress can be seen.

Now heading back to the development workflow. The standard workflow
would be that the project has to be forked or a new branch of the core/master
branch of the team has to be created. Afterwards, by using the previously
mentioned techniques, the issue has to be solved, which can be a new
functionality or a known bug. If the implementation is done, which is
accompanied by the newly added tests and all other tests are passing on
the test server, then one can ask for review via a pull request. This request
will be checked by one of the senior members and if everything is working
as expected it will get merged into the master branch.

This workflow uses many techniques of an agile development, starting
with test driven development over continuous integration to double check-
ing the code and its style by other developers. Accordingly, it is granted that
the functionality of the master branch is always preserved. Such workflows,
like the presented one, are commonly used in today’s area of development.

3http://developer.catrobat.org/first˙steps.
4http://c2.com/cgi/wiki?PairProgramming.

48

4. Hardware Background

This chapter contains the theoretical background of Bluetooth and Arduino.
Both components will be used in the practical part (Section 5) for the
integration of controlling Arduino boards with Pocket Code for iOS. The
theoretical background consists of technical details and protocols that are
used later on to communicate with the Arduino board. To understand how
the communication between the two devices is established and messages are
exchanged, it is essential to know the basics about the Bluetooth technology
as well as the differences between the diverse versions and how Apple is
approaching the topic. Additionally, it is advantageous to know how the
Arduino board is working in general. Furthermore, a special and widespread
protocol for Arduino, called Firmata, is used to get access to all functionality
of the connected microcontroller.

4.1. Arduino

When we have an idea, we take a pen and we sketch it down on
a piece of paper. Imagine if we could build things that interact
with the environment just as easily [23].

This statement of Amariei [23] describes exactly the idea behind Arduino.
It should be possible to test a hardware setup and connections to interact
with the environment without big effort. The Arduino founders [24] at Ivrea
Interaction Design Institute (IDII) go a step further and developed Arduino
as an open-source prototyping platform. The goal was to allow fast prototyp-
ing with hardly any knowledge about electronics or in depth programming.
These electronic microprocessor boards interact as an interface between the
environment and the software implementation, because different types of
sensors or other kinds of inputs can be interpreted. The system also allows
to set a bunch of different outputs. This is achieved by interacting with

49

4. Hardware Background

Figure 4.1.: Arduino schematic image [24].

the board using the Arduino programming language. The latter is based
on C/C++ with special extensions for the purpose of microcontrollers. An
Arduino Uno in its original design is illustrated in Figure 4.1.

What exactly defines a microcontroller? Techtopia[25] defines it as fol-
lowed,

A microcontroller is a computer present in a single integrated cir-
cuit which is dedicated to perform one task and execute one spe-
cific application. It contains memory, programmable input/out-
put peripherals as well a processor. Microcontrollers are mostly
designed for embedded applications [25].

As stated by Smith [26] the essential part of developing with Arduino
is to understand that it behaves like a small computer with the built-in
processor, memory and some in- and outputs. Nevertheless, all components
are limited in their functionality for reasons like costs and size.

Since this project was designed as open-source hardware, many people
contributed and therefore the community created different types of boards
adapted to diverse needs, tutorials and hardware sensors especially for
Arduino. As reported by Kushner [27] the project became the leading
open-source hardware microcontroller board and really revolutionized do-
it-yourself (DIY) in electronics. Dale Dougherty, publisher of Make1, stated,
that Arduino is “the brains of maker projects”.

1http://makezine.com.

50

4.1. Arduino

According to the Arduino founders [24], the key to success was the
wide range of Arduino, so that everyone can build interactive projects. It
is feasible to learn for beginners, but very flexible for experts. The founder
Cuartielles also mentioned in an interview to Kushner that “The philosophy
behind Arduino is that if you want to learn electronics, you should be able
to learn as you go from day one, instead of starting by learning algebra”[27].

Furthermore, it runs on Windows, Linux and Mac, so every major op-
eration system is covered out of the box. Kushner [27] found out that this
plug-and-play feature stood out from the competition which was further a
reason for success. With this instant availability for creating things and the
flexibility of Arduino the community used these boards in all kinds of fields
starting with robotics over musical instruments to complete home automa-
tion. With these few examples, the power behind Arduino can be clearly
seen. Consequently, it is very compelling to see what users can achieve with
a smartphone, Pocket Code and a wirelessly connected Arduino device [27].

There are additional microprocessor boards around, nevertheless Arduino
is state of the art for building electronic projects. The founders see some
advantages of Arduino[24]:

• Inexpensive - compared to the other boards
• Cross-platform - as mentioned before it runs on all major platforms
• Intuitive programming environment
• Open source hardware - the plans of the boards are under Creative

Common license
• Open source Software

The standard hardware is based on an Atmel AVR-microcontroller of
the megaAVR-series (for example ATmega328P) operating with 5V. The
clock frequency is 8, 16 or 32 MHz according to the built-in micro-controller.
The boards contain a USB connection for programming with a personal
computer and many inputs/outputs to connect sensors. This is only a small
overview, because there are many extended versions, where some parts of
the hardware are designed for special needs.

Firmata

The main idea behind working with Arduino was key to program the
Arduino controller and let that program run in an infinite loop. For com-

51

4. Hardware Background

munication between the microcontroller and software of another device, a
protocol is needed. A commonly used protocol for this purpose is called
Firmata.

According to Steiner [28], the creator of Firmata, the goal was to “make the
microcontroller an extension of the programming environment on the host
computer in a manner that feels natural in that programming environment”.
An extension is better integrated and therefore preferred by developers
instead of an excluded system with own methods.

Design

As stated in the documentation of Firmata [29], it is using the midi-message
format to create messages with integrated commands. A universal set of
commands, containing

• analog I/O message
• digital I/O message
• report analog/digital pin
• sysex start
• set pin mode(I/O)
• sysex end
• protocol version
• reset system

is used for the Arduino Firmata implementation. An example for a com-
mand message would be as followed. In Arduino, each pin has to be set to
a mode before using it. These modes represent different types, for instance
analog input, digital in/output, PWM output. With Firmata, the developer
can use the set pin mode command and set a pin to the required mode before
acting with the pin itself. Given this example, the structure of the protocol
can be analysed. There is always a command (a specified hexadecimal value)
followed by one or more statements. These statements are kind of parame-
ters in function calls. In Table 4.1 two examples of common commands are
shown. In the first example the command of an analog message would be
0xE0 and the parameters are the pin number, and the value that is split in
least and most significant bits.

Using these commands, it is allowed to control “...as much of the Arduino
[...] as possible from the host computer”[30], which was a main goal of

52

4.1. Arduino

type command MIDI first byte second byte
analog message 0xEO 4(pin) LSB(bits 0-6) MSB(bits 7-13)
report digital port 0xDO 0(port) 1/0 (enabled/disabled) n/a

Table 4.1.: Example Firmata messages

the initiator Steiner [28]. Since this protocol is based on the MIDI protocol,
messages are limited to 1 to 3 bytes. Conforming to the protocol [29],
messages are byte sized with a 7 bit data resolution, 7 bit command space
and 1 bit for the command itself. If there is need to transfer more bytes,
then SysEx messages are used. The idea behind these messages is that a
“start SysEx” tells the receiver that a longer message will be transmitted.
After finishing sending this message an “end SysEx” is introduced to tell the
receiver the end of a message. Therefore the receiver just parses the received
data till an “end SysEx” appears and do not have to know about the length
of the message in advance. For instance SysEx is used for configuration
messages in Firmata (all kinds of queries, for example pin mapping query,
where the state and mode of all pins are transferred).

According to Steiner [28], MIDI was chosen because it is efficient and
comparatively easy to implement. With the new command set and data
types of analog and digital pins the whole Arduino API can be interpreted
with those Firmata-messages.

Usage

To use the Firmata protocol, both communication partners have to imple-
ment the Firmata protocol and therefore the ability to communicate over
this protocol. For Arduino the Standard-Firmata is supplied in the Arduino
integrated development environment and only has to be uploaded to the
Arduino board, sometimes with small changes due to different Bluetooth
modules, when using Bluetooth as a transmission type. As mentioned be-
fore, the other device has to implement the Firmata protocol as well. There
are several Firmata implementations for clients including python, java and
iOS. The whole list can be found on Github2. In listing 4.1 a python example
of Firmata usage is shown, which is straightforward to use. Unfortunately,

2https://github.com/firmata, [accessed 27.11.2015].

53

4. Hardware Background

the iOS version is out of date and uses another outdated Bluetooth frame-
work as well. Accordingly, a Firmata implementation for iOS in Swift was
developed during this thesis. Further details of the implemented Firmata
library are described in Section 5.2.1. The complete and up-to-date protocol
definition is available on GitHub [31].

Listing 4.1: Firmata Python example

import process ing . s e r i a l . ∗ ;
import cc . arduino . ∗ ;
Arduino arduino ;

void setup () {
arduino = new Arduino (t h i s , Arduino . l i s t () [0]) ;
arduino . pinMode (5 , Arduino . INPUT) ;

}

void draw () {
i f (arduino . d ig i ta lRead (5) == Arduino .HIGH)

p r i n t l n (” D i g i t a l pin 5 i s HIGH”) ;
e lse

p r i n t l n (” D i g i t a l pin 5 i s LOW”) ;
print (”Analog pin 0 value i s ”) ;
p r i n t l n (arduino . analogRead (0)) ;

}

4.2. Bluetooth

Bluetooth [32] was introduced with the primary goal to avoid cable connec-
tions and exchange data between different devices without the necessary
of a line of sight. It has been established in 1994 by Nokia and was then
maintained by the Bluetooth Special Interest Group (SIG) [33] [34], a group
of companies, who are creating and selling Bluetooth products. The wireless
network service rapidly became a standard in the mobile device sector
and due to the phenomenal increase of portable equipment devices in the
last couple of years, it was adapted to special needs. Since the release of

54

4.2. Bluetooth

Bluetooth, 4 major versions were published. In Table 4.2, a short overview is
listed.

Version Short description
1.x initial release and some improvements afterwards
2.x higher data-rate, better pairing
3.x introduced a high speed channel
4.x Bluetooth Low Energy, new IP connections, not compatible to < 4.0

Table 4.2.: Major Bluetooth versions [35].

In this document only Bluetooth Low Energy (BLE), also called Bluetooth
Smart, is considered, because Apple is not generally allowing to connect
to all devices that are only supporting Bluetooth version lower than 4.0.
The second argument for only supporting Bluetooth 4.0 and higher would
be that there are some differences in the implementation with previously
defined specifications, called Bluetooth BR/EDR, and the current versions.
This variant of the standard is optimized to low power with extended
duty cycles containing geared limited maximum data size and low cost.
Additionally it builds upon Generic Attributes to enable a more general,
open use of the BLE protocol [36].

According to Townsend [37], after the release of Bluetooth Low Energy in
2010, there was a radical change, because the two wireless communication
specifications are not fully compatible. Bluetooth version 3 is not out of date,
because it is needed for data-heavy tasks like streaming, which would not
be achievable with the new power saving specification [37].

Some manufacturers are implementing chips called Bluetooth Smart Ready,
which are capable of communicating with both standards. Unfortunately
“ready” is an unlucky name because these chips fully support both speci-
fications details. These types of Bluetooth transceivers are built-in today’s
smartphones, so that they have the ability to communicate with all Bluetooth
standards. However, if a connection between a Bluetooth Smart Chip, for
example those in fitness devices, and another device should be established,
then the specification of Bluetooth 4.0 or higher is required. That is why the
Bluetooth receiver needs to be implemented as Bluetooth Smart or Bluetooth
Smart Ready.

Apple has built-in Smart Ready Bluetooth transceivers in their iOS devices,
but there are some restrictions on use, which is covered in Section 4.2.3.

55

4. Hardware Background

4.2.1. Bluetooth Basics

As mentioned in Bluetooth technology basics [38], Bluetooth uses a radio
and accordingly radio waves to communicate with another devices. Owing
to the transmission power, the transmission is limited to a short range.
Piconets, ad hoc networks, are built automatically in the size of two to eight
devices in a certain radio proximity range. One of these devices in a Piconet
acts as a Master, the others as Slaves. To connect more than eight devices,
Piconets can be linked to each other via one slave (then called Bridge). This
Bridge is then communicating with both Masters of the two networks and
thus able to forward messages. These linked Piconets are called Scatternets.
To find additional devices in the 79 different available radio channels, a
hopping algorithm is used, where each device with no Master in range
jumps randomly from one to another channel till a Master is found. When
integrated in a network each device receives the next hop count from the
Master to be able to not to leave the network connection unintentionally,
because of a wrong radio channel. For communication the Master grants
each Slave a certain time to exchange data [38].

4.2.2. Bluetooth Low Energy

As mentioned in Townsend book “Getting Started with Bluetooth Low
Energy” [37], BLE is built upon power efficiency to support devices to be
able to run for a long time on a single charge. This fact is important for
the growing field of Internet of Things (IoT), where small devices do not
have space for larger batteries. Nevertheless, Smart Bluetooth has additional
features, including the connection modes and structure of managing data
values as well.

Bluetooth devices that are only supporting versions lower than Bluetooth
4.0, have to pair each other by sending the pair code to be able to communi-
cate. With the new specification 4.0 and higher, there are two different ways
to reach a communication: broadcasting and connections (Figure 4.2). With
broadcasting, data can be forwarded to any receiving device in listening
range. However, this way only allows to communicate in one direction,
therefore it would be a good choice if it is necessary to send messages to
many device every given time. Connections use another approach, where
data can be sent bidirectional between two devices. This mode is used

56

4.2. Bluetooth

Figure 4.2.: Bluetooth Low Energy different communication types [37].

afterwards in the implementation phase (Section 5), because the application
wants sensor data of the Arduino board and is also setting some outputs.
Therefore, the ability of bidirectional communication needs to be provided.
An overview of the connection mode will be described in the following
sections [37]v:

Building Connection

Townsend [37] states that the Generic Access Profile(GAP) is in charge of
the connection between devices. It makes peripherals visible to the others
by sending out advertising packets in a duty cycle and managing, who is
allowed to connect to each other. GAP defines roles for devices. These two
roles are involved in a connection:

• Central
• Peripheral

The Peripheral, who acts as a slave, sends out advertising packets continu-
ously. The Central is scanning for those packets and can initiate a connection
to a Peripheral. After a connection is established, data is exchanged periodi-
cally as shown in Figure 4.3.

Both devices can be simultaneously connected to other devices if the
Central/Peripheral roles are observed. One big advantage of connections is
the availability of attributes that organise the data provided by each device.
The latter can help to reduce power consumption, because it is not necessary
to send all attributes if they are not needed by the application running on
the central device [37].

57

4. Hardware Background

Figure 4.3.: Bluetooth Low Energy connection [37].

Concept

Townsend [37] also highlights that Bluetooth versions lower than Bluetooth
Low Energy only support special attribute profiles, standardised in the
specification. The revised specification is more exposed to individual profiles
and therefore enabling a more general use of Bluetooth with own protocols.
These profiles and embedded attributes are treated in a Generic Attribute
Profile (GATT). GATT defines a kind of concept how data is exchanged.
Before sender and receiver are able to use this feature a connection has to be
established between them by the Generic Access profile (GAP) as mentioned
before. This generic consists of three attributes which built each other. The
hierarchy is shown in Figure 4.4 and managed as followed:

• Service: each service is a collection of belonging together characteris-
tics.
• Characteristic: each characteristic has a type (a unique UUID identi-

fier), a permission, a specific value and a descriptor if needed. Since
the data consists only of bits, the descriptor or a convention helps
interpreting them.
• Descriptor: a descriptor is an additional information of a characteristic

value for example a unit but is not required.

Each characteristic can have different permissions to have control, which
characteristic is editable or not. Permissions of a characteristic are structured
as followed [37]:

• None
• Readable

58

4.2. Bluetooth

Figure 4.4.: GATT data hierarchy [37].

• Writeable
• Readable and writeable

GATT is using the Attribute Protocol (ATT) to save the attributes internally
in a lookup table. Considering this fact searching an attribute is given
in constant time. All attributes are retrieved by their universally unique
identifier (UUID). Some UUIDs are used for unique attributes and are
defined in the specification [37].

Example

For example, a device has a service to read the battery level, then the
characteristic would have the battery identifier (0x180F [36]), the permission
Readable and the value of the remaining battery life. In this example, the
strength of the data structure can be seen. If the Master device wants to
check particularly the battery life of its partner, the Peripheral just has to
update the battery characteristic value and not sending it all the time or
sending all the other Characteristic values, which are not required by the
central at that specific moment.

59

4. Hardware Background

The master is also able to limit its scan to devices with specific services.
All these features are improvements to increase battery life.

Data exchange

Townsend [37] describes the two different approaches for exchanging data,
which are defined in the case of the connection mode. The peripheral
has to send out periodically an advertisement packet that consists of the
available services. Further, a peripheral has to own at least one service
and characteristic that a central can search for the specific service it and
receive the characteristic value. Receiving a characteristic values is split into
2 approaches. First a central can send a request for a specific value to read
out the value. The second possibility is kind of notification. The central
sends a notification request for a specific characteristic. If the characteristic
changes its value, the value is notified to the central, which is subscribed
for this characteristic.

The value can also be written to by both contributors. The central has a
write request, which can be with or without a response. This is dependable
on the peripheral, which type of writing it is supporting [37].

Key Limitations

With the focus on saving battery life, other limitations arise with Bluetooth
Low Energy. There is still a tradeoff between being very computationally
efficient and power efficiency.

For implementing software for Bluetooth 4.0 and higher it is mandatory
to know that one outgoing data packet is limited to 20 bytes of data. The-
oretically 120 bytes can be sent per connection event and therefore about
0.125 Mbit/s can be reached. However, the central device can be connected
to other devices and thus not capable of reaching this maximum rate. As a
developer, one should bear in mind that the actual data throughput will be
around 10 KB per second. As a result of small data packets low latency can
be reached which is one target of the specification [37].

Another limitation is the operating range. For sending data wirelessly over
a wide range, a high transmission power is required. Sending data is always
very power consuming and the higher the transmission power, the higher the
power consumption. Accordingly the specification of Bluetooth Low Energy

60

4.2. Bluetooth

limits the transmission power to save battery life. Hence communication is
restricted to short range. Hypothetically data can be transmitted in a range
of 30 meters with line of sight. The functional range with a common indoor
environment is about 2 to 10 meters [37].

4.2.3. Bluetooth And iOS: Core Bluetooth

Apple3 is quite restrictive if it comes to connecting Apple hardware to hard-
ware from other manufacturers, because this will break gaps in their closed
environment and therefore they have no influence in the user experience.
The latter is of great importance to Apple because the user experience is
one of the leading arguments to buy Apple products. Before Bluetooth
Low Energy was introduced, Apple only allowed to connect to devices
through Bluetooth, which were registered in their “Made for iPod / Made
for iPhone” (MfI) program. As a manufacturer you have to join this program
for making it possible to connect Apple devices to your bluetooth device
with some limitations, because not all Bluetooth services are accepted. For
special details, Apple published a list [39], which is showing the supported
profiles. This MfI program is subject to a charge and you have to sign some
secrecy papers, so further details are not available.

With the new 4.x specification, Apple changed their mind because al-
lowing this standard will not affect the user experience. This is based on
the fact that the specification is built upon the low power usage and a
small packet size, as mentioned previously. The small packet size ensures a
minimal latency and as a consequence it leads to a fluid user interface (UI).
Accordingly, a robust user experience can be reached. Apple introduced
a Bluetooth framework called CoreBluetooth. This framework exposes an
application programming interface (API) of the built-in bluetooth dongle
to developers. Nearly every Bluetooth Low Energy functionality can be ac-
cessed, for example the iPhone can act as a central device, peripheral device
or even both at the same time. Apple offers a guide for CoreBluetooth which
is covering all implementation details and how to use the framework [40]
efficiently. Nevertheless, the framework has some conceptual shortcomings
in handling devices. Therefore, a new Bluetooth Manager will be introduced
in Pocket Code for iOS, which will serve as an interface for all Bluetooth

3http://www.apple.com.

61

4. Hardware Background

related communications. Details will be discussed in the Bluetooth Manager
implementation covered in Section 5.1.

62

Part II.

Practical Part

63

5. Implementation details

The target of the integration of Bluetooth able Arduino boards into the iOS
application of Pocket Code was encapsulating the feature and use the, as
previously described, test driven development approach (Section 3) for the
software interface as well as the hardware connection. Therefore, several
steps have been executed to be able to communicate and control a con-
nected Arduino board. First of all, the application did not support Bluetooth
communication. Accordingly, the possibility to connect and communicate
with a Bluetooth Smart able device had to be implemented. Furthermore,
the interface for communication especially with an Arduino board had to
be designed. Finally, the integration into Catty, Pocket Code for iOS, was
achieved to be able to connect to the desired board within the application.
Additional bricks were added to control the Arduino board with self made
projects. In the next couple of sections, every distinct part is described
in more detail, with comparison and references to other patterns, which
were used in the implementation to reach a well designed structure. At
some certain code places, it was hard to integrate this new feature because
of the control flow of the application at this time. These problems and
accompanying implemented solutions will be described later in Section 5.4.

5.1. Bluetooth Manager

The first part was to integrate Bluetooth into the existing application. The
goal was the creation of an encapsulated Bluetooth manager, which is
offering a simple application programming interface and is covering and
managing all Apple CoreBluetooth functionality, starting with searching for
devices or storing known devices to connect to a device.

The best way to achieve this encapsulated behaviour was to build a
framework. The framework is called Bluetooth Helper. This helper is built
upon the protocol based approach to be able to create Mock objects, which

65

5. Implementation details

Central

 Peripheral 1

Service 1

Peripheral 2

Service 2

Characteristic 1 Characteristic 2

Figure 5.1.: Visualised structure of the Bluetooth Helper data model.

are very useful in the test driven development approach.
To be consistent with Apple’s CoreBluetooth framework, the same types

of classes were built. These classes cover the Bluetooth central, which is
searching for devices and can be regarded as the master device in the
communication, and the peripheral that is the communication partner.
Furthermore, the peripheral owns services and characteristics. The shared
central manager stores the scanned, known and connected peripherals,
so that every single device is easily accessible. Each peripheral has an
array of advertised services and those services are split into their provided
characteristics, like the BLE specification demands. Looking at this structure,
it is managed like a tree with the central manager at the root and the
characteristics of each peripheral as leaves, visualised in Figure 5.1 .

Each class implements a protocol and contains a helper class for internal
management to split the implementation and the API, to be in a position to
have a quick overview of the provided features. Every function, which is
available to the user of this framework, is defined in those protocols to make
the use and maintainability easy. The implementation of the Bluetooth func-
tions is not accessible for the user and therefore happening automatically,
when using the provided protocol functions.

The Core Bluetooth framework is very powerful, but a straightforward
API is missing. For example searching for devices just returns an instance

66

5.1. Bluetooth Manager

of the peripheral, but nothing about services or characteristics is known
at this time. In the specific case of connecting to an Arduino board, it has
to be assured that the peripheral has a characteristic to receive data from
the smartphone and a second characteristic to send data to the smartphone,
which are called RX and TX characteristics. If those characteristics are not
provided, a connection would not be useful in our case, because of the
need to exchange data bidirectional. Accordingly, the Bluetooth Helper
framework wraps a few Core Bluetooth functionalities and provides the
peripheral combined with its services and associated characteristics using a
single function call (called startScan).

Another big advantage of using the Bluetooth Helper framework would
be the connection process itself. Of course the Apple framework has a
distinct call to connect to a specific device, but it only tries to connect to
the device once and after a long time it just stops the connecting process.
In this thesis a new connection process is introduced, which includes the
option of retrying the connection phase without confusing the end user and
it also introduces a fixed time for the connection timeout. For example, if the
first message in the connection process is lost, then the smartphone tries to
establish a connection again after a given timeout. This is quite convenient if
located in a crowded place with a lot of Bluetooth devices around. Another
useful feature would be the disconnected retry. If, for some reason, the
connection is lost and it was not initiated by the user, the device tries to
reconnect to the device once, without impact to the user experience. If this
reconnection process is not successful the user will be notified, otherwise it
has no effect on the user.

Finally the developer, who is using this framework, can easily decide,
which action should be triggered for every single Bluetooth connection
status. In the case of Pocket Code, this is a very essential feature. Considering
a user is executing a project, which is using the Bluetooth connection, and
the connection gets lost during executing a project. This project would not
behave as it should, because for instance no sensor values are received from
the disconnected Arduino board. Therefore, the user will be informed of
the lost connecting during the project execution.

As mentioned previously, the framework was developed in Swift using
protocols. This strategy was chosen to be able to create Mock objects for the
test suite. As seen in Listing 5.1, it was easy to inject code to make the whole
framework testable, even without real hardware devices. Accordingly, the

67

5. Implementation details

internal Bluetooth implementation can be automatically tested on the test
server with this mocking approach. The following listing is showing a mock
implementation of a peripheral with a fixed name and fictive services.

Listing 5.1: Bluetooth Helper Mock example.

c l a s s T e s t P e r i p h e r a l : PeripheralWrapper {

l e t helper = PeripheralHelper<TestPer iphera l >()

l e t s t a t e : CBPer iphera lSta te
l e t name : S t r i n g

l e t s e r v i c e s : [T e s t S e r v i c e]

i n i t (name : S t r i n g = ”Mock P er i p he r a l ” ,
s t a t e : CBPer iphera lSta te = . Disconnected ,
s e r v i c e s : [T e s t S e r v i c e] = [
T e s t S e r v i c e (uuid :CBUUID(s t r i n g : ” . . . ”) ,

name : ” S e r v i c e Mock−1”) ,
T e s t S e r v i c e (uuid :CBUUID(s t r i n g : ”−−−”) ,

name : ” S e r v i c e Mock−2”)])
{

s e l f . s t a t e = s t a t e
s e l f . name = name
s e l f . s e r v i c e s = s e r v i c e s

}

func connect () {
}

func reconnect () {
}

func cance l () {
i f s e l f . s t a t e == . Disconnected {

CentralQueue . async {
s e l f . helper . d idDisconnectPer iphera l (s e l f)

68

5.2. Arduino Connection Implementation

}
}

}

func disconnect () {
}

func d i s c o v e r S e r v i c e s (s e r v i c e s : [CBUUID] ?) {
}

func didDiscoverServices () {
}

}

This framework is not automatically testing with actual hardware and
the integrated Bluetooth dongle, because the iPhone simulator, which is
running on the xCode server is not capable of Bluetooth interaction. There
is another fact, why testing the Bluetooth dongle itself, is not necessary,
because if the iPhone’s Bluetooth dongle is not working properly, it is not
able to be turned on in the device settings. That is why it is assured that the
hardware is working properly when using the framework.

5.2. Arduino Connection Implementation

The Bluetooth able Arduino board is one type of Bluetooth device, which
is now able to connect to the iPhone running Pocket Code. However, it is
highly likely that other Bluetooth devices will follow. Therefore, the goal
was keeping the integration of a new device into Pocket Code as simple and
fast as possible.

The most suitable structure for this reason is inheritance. A parent class,
called BluetoothDevice, has been introduced. This class is covering all the
basic Bluetooth delegates and methods, which every BLE device requires.
If a new device is added to Pocket Code for iOS, this new device class
only has to be inferred by the mentioned parent Bluetooth device class and
implement the special functionality, which is device specific. The standard

69

5. Implementation details

Bluetooth functionality is already covered and must not be considered.
For Arduino, our Catrobat team decided to use the Standard Firmata as

described previously in Section 4.1. Since it can be possible that more devices
will utilize this Firmata protocol in the future, a new class is introduced.
This class is inherited from the root Bluetooth device class and covers all the
Firmata specific functions, provided by the Firmata specification. Therefore,
a further added Firmata device can inherit from this class and the Firmata
functions are already implemented. Of course, the Arduino class is inherited
from this class and the only thing to implement to properly add this new
device, is to implement the protocol functions, which are covering setting
and getting of analog/digital values. These functions are then used in Pocket
Code to trigger diverse actions.

For the sake of consistency, an array is storing the actual values of the
connected device to retrieve the state of the Arduino board at every certain
time, without overloading the Bluetooth connection.

Very important to bear in mind is, that the Arduino board has to run the
Standard Firmata as well. The Firmata code is integrated as an example in
the Arduino editor. The board needs to be plugged in via USB to the PC
or MAC and then the Standard Firmata has to be uploaded to the board to
use it with Pocket Code afterwards. With some Arduino Bluetooth boards,
this standard Firmata is not working, due to some different internal wiring.
Therefore, these companies provide an own Bluetooth-Firmata code, which
should be uploaded to the Arduino board instead of the Standard Firmata.

5.2.1. Firmata Implementation iOS

As indicated in the theoretical description of Firmata, it is a communication
protocol to easily send instructions to the board to offer the ability to control
it.

Unfortunately, the iOS version of this Firmata is out of date and so a new
version has been developed using the programming language Swift during
this thesis. This Firmata implementation is not entirely complete, but the
most used functions are implemented. It was a little tricky to work with
Swift and the required data modulations to receive the right instructions,
because the strong typed features of Swift.

Firmata was implemented as an encapsulated component using the dele-

70

5.3. Integration in Catty

gate principle of iOS development. Every Firmata device has its own Firmata
component, where it is registered as the delegate and it has to implement
the delegate methods of the Firmata Delegate Protocol. This component
can be seen as an en-/decoder of all the messages sent between the central
device (iPhone) and the Arduino board.

Why is an en-/decoder needed? - First of all, as stated in the specification,
each instruction has a unique prefix. This prefix needs to be added to the
message. The second reason would be that in the CoreBluetooth specification
of Apple only data, more precisely NSData, can be sent over the connection.
Therefore the prefix combined with the message, could be a string, integer
or something else. This has to be converted into this NSData format, before
sending it to the Bluetooth device. Another factor would be that a message
must not exceed 20 bytes of data, using Smart Bluetooth. If larger messages
should be sent to the Arduino board, the splitting of the data has to be
done correctly, so that the Arduino board knows when this message is
finished. This also applies to the communication from the Arduino board to
the iPhone. If the Arduino board sends a message, the Firmata component
has to decode the message differently for each instruction type and then
trigger the appropriate delegate function to pass the message to the internal
Firmata device.

5.3. Integration in Catty

The most difficult task was to integrate the mentioned functionality into
Pocket Code and do not overload the user with too many options and
steps to use the feature. On the one hand, it should be very easy and
straightforward to use this new functionality for the end user and on the
other hand it should be easy to integrate other new Bluetooth devices into
Catty with just a few lines of code.

The integration of this new feature should not change the user behaviour
to control and use the application. Therefore, a way of minimal interaction
with the user has been chosen to control the Bluetooth specific tasks. Only
a few scenarios exist, where the end user has to apply some action to get
the bluetooth communication working. Every time a project is started it is
checked, which resources are required. If a connection with a Bluetooth
device is needed to execute the project, then the user will be asked to select

71

5. Implementation details

a device, which is in range of the smartphone. For sake of convenience,
previously connected devices will be shown first, because it is most probable
that one device will be connected to very often. Accordingly, one does not
have to think about connecting to the device in advance, because Pocket
Code will notice if the iPhone is connected to a suitable device or not. After
stopping the project the connection stays alive till the app is closed or the
user force disconnects the device in the settings screen. This is a really
handy feature for the user because restarting a program will not show the
user the device selection process again.

Of course Bluetooth connection is not always perfectly reliable and even
with the enhancement of reconnecting a suddenly disconnected device, there
is a chance that the connection is completely lost, due to some environmental
reasons (for example to large distance between the two communication
partners). If this rarely case occurs, the user will be notified accordingly.
For example, during an execution of a project that is using the Bluetooth
feature, the execution will be stopped and the user will be asked to connect
to a device, when starting the program again.

The other task was to make sure that the integration process of a new
Bluetooth enabled device can be achieved without much effort. Since a
device hierarchy exists, as shown in Figure 5.2, the new device has to be
inherited from one of the existing devices according to the special needs.
This created class has to implement the functions to control the device. Of
course, new bricks have to be added to the data model and the script editor,
so that the user has access to control these functions within the editing
progress of projects. The final task would be to connect this device to the
BluetoothService class, to be choosable if this device is required in a project.

First of all it has to be added to the requirements to be certain about
that the new bricks are demanding this device to be connected. The next
task would be to ensure that the device is inscribed in the Bluetooth devices
id list. The connection function itself is only a function call with the pe-
ripheral device and the type of this device. Therefore, the concluding part
to implement is to update the selection/connection process. This is very
essential, because otherwise after selecting a Bluetooth device and calling
the mentioned connection function the intern BluetoothService does not know
how to behave with this kind of device type. In most of the cases of new

72

5.3. Integration in Catty

BLE Device

Firmata Device

Arduino

?

?

Figure 5.2.: Current Bluetooth device hierarchy in Pocket Code for iOS. The ? are visualising
that it can be extended easily.

devices, the implementation only consists of a new switch-case with the
same instructions as the existing devices.

Summarising, the most difficult and time consuming part of adding a
new device would be adding the bricks and providing a useful applica-
tion programming interface for controlling the device by using the bricks.
Everything concerning Bluetooth was intended to be straightforward.

In Figure 5.3 and Figure 5.4 the selection workflow is visualized. In the
script editor, bricks that are requesting a Bluetooth connection are added.
These bricks are of type Arduino send digital and are demanding an Arduino
board to be connected to the smartphone. After triggering the play action,
the selection/connection process will be initiated. As shown in Figure
5.4, the Bluetooth manager indicates which device is required to the user.
Firstly, only the known devices are shown, but swiping to the right column
called Search will reveal all connectable devices in the environment. After
making a choice between them, the Bluetooth service is checking if the
device advertises the required services. If everything discovered as expected,
the connection process will be triggered. After a successful connection the
project/program is started automatically.

73

5. Implementation details

Figure 5.3.: Pocket Code for iOS script editor with Bluetooth bricks.

Figure 5.4.: Pocket Code for iOS Bluetooth device selection process.

74

5.4. Occurred Problems And Solutions

5.4. Occurred Problems And Solutions

5.4.1. Bluetooth Sensors Blocking The User Interface

The first and severest problem that occurred in the integration of controlling
the Arduino via Bluetooth with Pocket Code was about threading. To under-
stand the problem, the player engine has to be described a bit in detail. It is
based upon a commonly known strategy that is also used in compilers. The
player engine consists of a front-end, back-end and scheduler. Furthermore,
there is a broadcast handler, but this is not crucial for this specific problem.

When starting a program, the scripts are made available to the player
engine. In the front-end, which is the first step, the bricks of each script
are arranged to an abstract syntax tree, AST. With this hierarchical order,
performance optimisations can be easily applied.

After a couple of optimisations the brick structure is taken over by the
back-end. The back-end is then analysing each brick on his own and is
creating a list (array) of executable instructions. In our case, these instruc-
tions can be SKActions or execution blocks. SKActions are part of the Apple
gaming engine called Spritekit. The latter is offering the whole 2D gaming
functionality, with automatic graphical updates and touching events. The
SKActions have to be defined like an execution block, and then handed over
to Spritekit at the desired time to run this peculiar action. Therefore, each
brick, which needs a graphical update, is handled as a SKAction. After going
through each script, we have several lists of these executable instructions.
These lists are now handed over to the Pocket Code player engine own
scheduler.

The scheduler gathers the bricks with the same instruction type, which
should be executed at this specified time. For each type of instruction,
another action will be initiated. SKActions are grouped together in an
SKGroup and then transferred to Spritekit. After carrying out these actions,
Spritekit calls the completion block, where the schedule method is triggered
again. For own instructions, the execution blocks are executed without
Spritekit and then the schedule mechanism also starts over again.

So where does the threading problem fits in this structure. For setting
values to those bricks, the Catrobat language is using a type called formulas.
These formulas can consist of numbers only, functions, variables, operators
and sensor values. All types, except of sensor values, can be computed

75

5. Implementation details

instantaneously. Computing and interpretation of those formulas expect
a return value in time, so that the execution of the brick instruction can
be done immediately. Therefore, there is no time to wait for the value to
be received. Sensor values of the device-own sensors can be read with just
one getter method. Accordingly, this was no problem before integrating the
Bluetooth service.

The core problem was waiting for the Bluetooth device sending the
desired value. Since the smartphone has to send a request to the device
and then receives the value, the lowest latency for one message would be
about 10 milliseconds, but this time value is not reliable, because of different
factors. It could also take a few tens of milliseconds as well. This time needs
to be doubled to reach the waiting time to receive the sensor value.

Now two different solutions were composed. The first idea was to wait
for the value and block the thread till the value is received. The second one
was about asking every now and then for all sensor values and store them
locally on the device. Of course, each approach has its pros and cons. In
the end and after some tests, the decision was made to await the value to
be able to work with the exact value at this time and not an outdated one.
During the tests, the latency was quite on the lowest barrier, which also
helped to decide between those two approaches. By choosing the first idea,
the implementation consists of semaphores for the waiting process. That is
why the thread is waiting for the semaphore to be signalled, after the sensor
value is received.

In iOS programming, threads are handled with so called queues. Now
The first problem arised, because the scheduler was running on the applica-
tion main queue, which is also handling all the user interaction. Therefore,
waiting on this queue would block the entire user interaction. This fact
would be against the Apple guidelines and accordingly the solution was to
run the scheduler on another queue with high priority. This helped to fix the
blocking of the user interface. After some time of testing different programs,
which were using Bluetooth sensors, two additional problems were recog-
nised. The first and simpler one was the endless waiting on the semaphore if
a Bluetooth message was lost and that is why the program stopped working.
The simple solution was tantamount to add a timeout to the semaphore.
This timeout triggers the signalling process of the semaphore if there was no
answer in given time and the value zero will be returned. The second and
more confusing one was that the user interface was blocked again. After

76

5.4. Occurred Problems And Solutions

hours of debugging the reason for this behaviour was discovered. Spritekit
is also using the same main application queue for executing the SKActions
internally. This fact clarifies that under some conditions the SKActions are
blocking the user interface again. Unfortunately, it is not feasible to dispatch
these events to another queue. Since the Spritekit documentation is not that
sufficient to specific questions or problems, an individual solution has been
taken up. This solution is described in the following paragraph.

Since every brick is analysed and the according instructions are created
in the back-end, this is the entry point of the provided solution. Every
formula of a brick is checked and if it requires a Bluetooth connection. If a
connection is needed, because the formula includes a Bluetooth sensor, then
another Brick is inserted right before this certain brick. This newly inserted
brick, which is invisible for the user, is not stored or has an influence on the
user experience. It is just needed as a “helper brick”. What is this special
brick about? This brick has an own instruction called “FormulaBuffer”, but
holds a reference to the formula of the other brick that is requiring the
Bluetooth device. If the scheduler wants to schedule such an instruction, the
formula of the brick is computed on another standard priority queue, so
that the user interface is not disabled. Now waiting on this queue is possible.
This brick is always executed, no matter which instruction (SKAction or
individual instruction) it is, because only the formula content is important.
After the return value of the Bluetooth device is received, it is saved in a
local formula own variable. Afterwards, the entire instruction is finished and
the scheduler moves on. Nothing of the real brick instruction is executed
till now. The next brick is the brick that is demanding the information that
is stored in the formula own variable during executing the helper brick.
The instruction is executed as there would not be any bluetooth sensor in
it, because during evaluating the formula the local variable is checked, if it
contains a buffered result or if it is empty. If it stores a value, then this one
is returned and the local variable is set back to nil, if not then the formula is
evaluated and we can be sure that no Bluetooth sensor value is required.
Since every time the buffered value is read, it is set back to nil, it can be
assured that the value is always refreshed properly and accordingly, only
used once by the brick after the inserted formula buffer brick.

Of course, this value is not that up to date like evaluating it directly in
the right brick, but the delay is acceptable and far better than overloading
the Arduino board with scheduled requests in terms of efficiency, battery

77

5. Implementation details

life and up to dateness. By introducing this helper brick the user interface is
not disabled anymore, no matter which instruction is called. However, the
scheduler has to manage one brick more, which will lead to a slight slow
down, but this is tolerable in comparison with a disabled user interface.

For reason of understanding, a simple example will visualise how this
buffering is working. In Figure 5.5 on the left side one can see a When
Started-Script with a Wait-Brick and a Set Y to-Brick. Both bricks contain
a formula. In case of the Wait-Brick, the formula is just a number, in this
case 1, and therefore it can be evaluated immediately. The Set Y to-Brick
holds a formula, which consists of a Bluetooth sensor value. Since this
value cannot be evaluated in time and requires the requesting and receiving
of the value via the Bluetooth connection. According to the previously
presented solution a Helper-Brick is inserted right before the Set Y to-Brick,
as presented in Figure 5.5 on the right side. So what does this Helper-
Brick look like? In Figure 5.6 it is visualised that the Helper-Brick holds
the reference of the same formula as the Set Y to-Brick, but has another
instruction. Therefore, it is possible to store the pre-evaluated value in the
Formula own “FormulaBuffer”. The flowchart 5.7 is presenting the sequence,
how the player engine scheduler is handling those bricks. The Helper-Brick
is talking to the Bluetooth device on a different queue than the main queue.
After the result has been received it is stored in the Set Y to-Brick formula
buffer. Then the scheduler moves on, because the whole instruction of the
Helper-Brick is finished. The next brick is the Set Y to-Brick. After checking
the formula buffer, which is not empty, the SKAction is handed over to
Spritekit with the buffered value and the formula own buffer gets cleared.
After Spritekit has finished this action the next brick would be on the series.

5.4.2. Known Bluetooth Devices

Covering known Bluetooth devices, my first intention was to store the
UUID, Universally Unique Identifier, of every Bluetooth device, which
was connected to the smartphone through the Pocket Code application.
Having this information, Apple’s CoreBluetooth framework is providing
the device instances for those UUIDs. These devices are shown to the user,
if the Bluetooth device selection is presented. This should happen without
searching for other devices. Tapping on one known device will start the

78

5.4. Occurred Problems And Solutions

Figure 5.5.: Pocket Code for iOS Bluetooth device selection process - Script editor

Figure 5.6.: Pocket Code for iOS Bluetooth device selection process - Data structure

79

5. Implementation details

Figure 5.7.: Pocket Code for iOS Bluetooth device selection process - Flowchart.

80

5.4. Occurred Problems And Solutions

connection process to this device and after a successful connection starts the
project. No searching for devices means that the application is more battery
efficient and of course faster than searching every time for all devices in the
environment, since it is very likely that the end user will connect to only
one and the same device very often.

Unfortunately this is not working as expected. Everything works fine
until the connection process is triggered. Even if the device is in Bluetooth
range it cannot be connected to. I also did not find a proper solution for
this, therefore I implemented a little workaround, which will be addressed
in the next paragraph.

The first few steps remain the same. The UUIDs are stored in the User-
Defaults and the CoreBluetooth central manager is returning the devices for
those UUIDs. Then the connection status of these devices will be controlled,
because if one is already connected and it is the right type of device it
will be chosen and the project starts. If all known devices are disconnected
the selection view is shown with the known devices on the starting table
view. Swiping to the left will start the scanning process and all devices
in the environment are listed. However, as mentioned before it is highly
probable that the user will choose one of the known devices. So there is
a little workaround after choosing a device. Since just connecting to the
device is unfortunately not possible, the central manager then searches for
devices in the environment only with those services provided by this device.
This method is more efficient than searching for all devices, according to
Apple. If no device is found, the connection process is stopped and the user
will be made aware that a connection is not possible. If one or more devices
are found they are analysed. Since every device has a unique identifier, the
devices are checked against the known device according this identifier. If the
identifiers match then this device is exactly the known device and will be
connected to like all other devices.

This workaround slows down the connection process of known devices a
little bit, but it is more power efficient and more user friendly than do not
provide known devices, because one does not have to scroll through the
scanned devices list to find the right one. This list can be quite long in a
crowded place, because many devices support Bluetooth nowadays and a

81

5. Implementation details

lot of people have this feature turned on all the time.

5.4.3. Resetting The Arduino Board

When working with Arduino boards, the pin states are always preserved till
the Arduino board is resetted, which can be reached by clicking the reset
button on the device or disconnecting the power outlet. After the new boot,
all pins are initially set to 0. In our case, we are working remotely with the
Arduino board and restarting a program in Pocket Code will not reset the
Arduino board in general. This could result in different behaviour of the
executed programs. A simple case would be that some pins are “working”
together to trigger an action to a connected electronic curcuit and then this
could lead to trigger it at a wrong time, because for example a digital pin
was set to 1 in another program before.

Of course, a simple solution would be to advise the user to reset the
Arduino board after each restarting of a program in Pocket Code, but this
will lead to a complete reboot and therefore the Bluetooth connection will
be lost. Accordingly, this does not constitute an optimal solution. A second
solution would be that the user has to take care of resetting the used pins at
the beginning of each program in a Start script. However, this is not a clean
solution, because it is likely that users forget to “program” the resetting
process in Pocket Code.

The approach in Pocket Code for iOS for solving this issue is to reset
the board after leaving the scene. This could be the case by resetting or
quitting the program. If one of these two actions is triggered by the user, the
Bluetooth manager runs a resetting procedure. The first intuition was just to
set all pins of the Arduino board to zero, but this revealed another error. For
some boards this canceled the Bluetooth connection. After some debugging
the cause of this behaviour was unveiled. By setting all pins to zero it could
be the case that one pin, which is responsible for the Bluetooth dongle,
was set to zero in an inappropriate time and that is why the connection
was canceled. The solution for this issue is to analyse each pin to see if the
setting mode is allowed. Every pin, where the setting mode is allowed, is
now set to zero. After this procedure the Arduino board is reset. This means,
all settable pins are on state LOW (zero), and the user triggered action will

82

5.4. Occurred Problems And Solutions

continue. This slowdown is nearly not recognisable for the user.
There is only one problem with cheap versions of Arduino boards, which

have this Bluetooth pin also made available. But combining this fact that
there are only a small percentage of these boards and the situation where
this pin is currently talking to the Bluetooth dongle, it is very unlikely that
the connection will be lost. If it is the case the user just has to select the
device of the known devices in the selection view and it will be connected
again.

Another case where this approach is not working as expected would be
if the connection is lost during executing a program in Pocket Code. If
there is no connection, then the mentioned resetting procedure cannot be
carried out, because the connection is essential for it. That is why the user
is informed that the connection is lost and for a clean start the user should
reset the Arduino board by clicking the reset button on the board. There
would be one solution to run the reset procedure right before starting a
program, but this would lead to a delay of every start. Since this not desired
disconnection is a rare case the slowdown is not appropriate. Unfortunately
there is no better solution to tackle this certain problem.

5.4.4. Arduino Pins, Pin Modes & Pin Naming

Since many different types of Arduino boards with different specifications
exist, the implementation to support those devices should be very general
and open. As mentioned previously in the Arduino hardware section, each
Arduino board has digital and analog pins. The digital pins are split into
digital (I/O) only and PWM, pulse width modulation. Every type of Ar-
duino board has a different number of those pins, so it cannot be assumed
that the board has the standard number of 5 analog pins. The Android
version of Pocket Code is just supporting the standard configuration of
a common Arduino board. When integrating Arduino in the iOS version,
thoughts were given to being more flexible. Therefore, the iOS version is
able to fully support different types of Arduino boards. But the problem
was how to achieve this flexibility.

This is possible because of the use of the Standard Firmata own PinState
Query and Analog mapping query. After connecting to a device these queries
are forwarded to the Arduino board. First the answer is given to the analog

83

5. Implementation details

mapping query. It tells the smartphone how many pins the Arduino board
consists of and which ones of type ”Analog” are. After this is analysed, the
pin state query or capability query is transmitted to the Arduino board.
The answer is very complex, but it includes all the information needed to
support all pins with the matching pin modes. This answer contains each
pin and the matching pin modes. After all pin modes of a pin are read,
there is a 127 byte to signal the end of the first pin. This is repeated till all
modes of all pins are known. This parsed and encoded information is then
stored in an array of dictionaries, where each pin has its own dictionary,
filled with the pin modes that are supported by this specific pin. Now the
smartphone has complete knowledge about the Arduino board.

If the user wants to send a PWM value to a pin, then right before sending
it, Pocket Code is checking if this pin exists and if it has the availability
to process PWM values. If it supports this mode, the message will be
transmitted, if not it will be ignored. This is working for all pins and
therefore, it is guaranteed that pins do not receive wrong commands.

Unfortunately there is the same problem with cheap Arduino versions as
mentioned in the section on resetting the board. It could be the case that
sometimes the pin state query is not working with those Arduino boards. If
this is the case, we pretend that this current connected board is a standard
Arduino board, like the Android version does.

Another problem was detected, which is about the Arduino pin naming.
On some devices, the analog pins are starting to count at zero again. So
there are digital pins with the preface ”D” and analog pins with the preface
”A”. Other boards are counting on, accordingly A0 could be the same as
A14 for example. So what is the user supposed to type in Pocket Code. In
the iOS version, we are handling the analog pins separated from the digital
ones. Therefore we start counting at zero. However, we cannot say that the
user has knowledge about that or typing it as we suggest to. That is why
Pocket Code for iOS is converting the user input of analog pins if there is a
need to. Some cases exist, which will be covered now:

The simplest case would be if the user wants to set an analog Arduino
pin with a number lower or equal than the existing number of pins. Then
this input must not be converted. For example, if there are five analog pins
and the user types in number three everything is ok.

The second case would look like if the user types in a number which
exceeds the total number of pins. Then the input will not be taken into

84

5.4. Occurred Problems And Solutions

account.
The third and most interesting case would be if the user types in a number

which exceeds the number of analog pins but is lower or equal than the total
amount of pins. We know the total count of the pins and the number of true
analog and true digital pins. Therefore, we are just subtracting the number
of digital pins of the input to gain the right analog pin. This method could
lead to another case where subtracting leads to a number smaller than zero.
Then the user has typed in an illegal input, because the input exceeds the
number of analog pins, but is smaller than the total amount of pins and
smaller than the number of digital pins. Accordingly the user wants to send
an analog value to a digital pin, which is not compatible.

With this conversion, it can be guaranteed that both inputs methods of the
user will be accepted and interpreted in the right way. An extension could
be to tell the user that there was a wrong input, so that errors in programs
can be recognised more easily. However, this feature is not implemented by
now.

85

Part III.

Conclusion

87

6. Conclusion & Outlook

6.1. Test Driven Development In Usage

To summarise, testing will help to improve the product quality, but there is
no way to deliver error free software due to the infinite number of different
inputs and extremely large number of logical ways. Everything cannot
be tested in reasonable time and without spending too much money. So
generally said, there is always a chance that the user will find an error in
the product. Testing can be seen as decreasing the chance that a user will
bump into an error.

No general way exists, which will lead to a good tested product, because
every project is special on its own and has other core parts that should be
tested in more detail than other parts. Different approaches exist to tackle
this certain problem and they evolved over the time, but it cannot generally
be testified that one is better than the other. Every approach gets its pros
and cons.

To successfully write unit tests for a whole product, it must be assured
to write code that is designed for tests. Most of the design will grow as
it should be if development is done in a test first way. Overall it is very
important to design an interface instead of the underneath implementation,
because the interface will be used and the concrete functionality should be
working (Tests will check the functionality). Owing to this fact, it will be
possible to replace dependencies by fake objects and to be able to test the
“whole” project. Another advice would be to keep the methods small and
focused on one precise functionality. If a test fails, it should not be difficult
to locate the error, because this is why the tests are written. If a method
would cover more than one task, then the developer has to debug again
with just a little time saving.

In my opinion, the test driven development is a very straight forward
method with excellent results if everyone follows the principles. It is also

89

6. Conclusion & Outlook

covering the mentioned aspects covered in the previous paragraphs. How-
ever, in my point of view it is hard to integrate this workflow into an
existing project by cause of the “untested” code base. While implementing
one functionality after the other, sometimes the point of testable design is
completely left beside. To reach a good code coverage, the existing code has
to be tested afterwards, which is very time consuming and can lead to a lot
of refactoring. I noticed this once, when working on a project and then tried
to adapt to the test driven development cycle. It was very exhausting and
therefore a hybrid workflow had been created for this project.

Such a combined workflow can be a good solution as well, but it has to fit
exactly the products needs, therefore one does not have a single workflow
for different projects, which can lead to a confusion.

Talking about test driven development, it is not just about the three main
principles:

• Test
• Code
• Refactor / Design

These three steps would be easy to adapt to, but the time consuming
part is the iteration of these steps when implementing just one requirement.
Following the cycle strictly, one warning or one error in the test will lead to
one iteration. Accordingly, for one test, dozen of iterations is quite normal.
Of course, the cycle and the thought behind the test driven development are
just guidelines, but the question arises if an amended cycle will lead to the
same results. Personally, I think one should see this strategy as a rush lead,
but it would be perfectly decent to write the whole test, then implement the
functionality to pass the test and afterwards refactor without failing the test
again. The refactoring is of course an iterative phase, which is fine, because
the iteration is just running the test cases to see what happens.

From my point of view, after some time of working with test driven
development, it is my favourite approach to tackle the testing issue. Before
using this strategy, I caught myself after finishing a requirement thinking
about,“Oh it works, so why should I write a test now? ”. I guess, I’m not
the only developer with this thought in mind, that is why I think a lot of
test are not written, because of similar thoughts of certainty that it works at

90

6.1. Test Driven Development In Usage

this time or of course laziness to write lines of code, which are not adding
some new functionality. Writing tests afterwards, no matter how much you
believe it will work, it does not. Following the test driven development cycle,
no thoughts are given and writing the tests are part of the implemented
feature. Do not stop following this principle throughout the project, even if
the feature is that small and easy, but it will have a high chance to fail the
whole project. Testing is part of the progress, so there should be enough
time for doing it, do not forget about it even if you have time constraints.

In my opinion, this approach with its core principles should be the
preferred one to teach, when someone is starting to learn to program.
The following paragraphs summarise some of the previously mentioned
advantages: (3.3)

At first sight using Test Driven Development seems really annoying
and just a waste of time. For the sake of convenience a small method is
written and tested with the previously mentioned trial and error tactic.
Nevertheless, it could be the case that this method is growing over time and
different persons are extending or refactoring it. After some changes, it is
not guaranteed that the initial functionality is furthermore given, because
only the added use case is tested in this Code and Fix model. This is precisely
the point where the test driven development strategy is showing it’s point
of perpetually using it.

Not only this fact but also being sure that one mistake cannot happen
again, because of the tests in the background, should be enough conviction
to use this model or a fitted version for the own developing workflow.

Personally, what really convinced me was that there is always a working
version available. I worked on different projects and the most annoying
thing would be if one wants to add a feature and checks out the current base
and this one is not working. So other people have to be contacted or one
has to fix those errors first, which is really time consuming and therefore
decreasing motivation.

Test driven development is only covering the incessantly correctness if the
requirements are implemented correctly, but it is not meant to show that it
really behaves as the customer wishes. Accordingly, acceptance test driven
development should be used. With this strategy, it could be possible that
tests and methods have to be rewritten, which is resulting in a very large
time investment. To tackle this problem one should have at least a general
overview of the project, as Graham [7] said. If the test driven development

91

6. Conclusion & Outlook

cycle is stiffly applied, the project could end up in a miscellany of small
methods, which are tested, but do not satisfy the global need.

With this fact in mind, test driven development can help to improve the
development workflow and direct the project to a good code base and less
error prone, but it should be utilised intelligently. Wisely use was only
noticed on the edge but in my opinion this is the core fact to succeed in
using test driven development.

Before joining the Catrobat project, I just heard about the basic details of
test driven development, but it was never applied in one of the courses with
real examples. After reading through the code base and starting to develop
with some help of senior members it was quite challenging for me to write
the tests first. The rethinking of the own development workflow takes some
time, because writing tests with errors and warnings that something is not
available is very confusing and difficult at the beginning. However, after
some time, it really helps to think about the interfaces of each method and
how it can be improved before coding it and then rewrite the code again.
The train of thought is much more precise and focused.

6.1.1. iOS Test Driven Development

In some parts of the iOS’s development, it is very hard to integrate the
test driven development cycle. This applies to tightly coupled View and
ViewController handling in the iOS development. Some Views are built with
the internal Interface Builder. One can add subviews, buttons, etc. set their
position with constraints and a lot more. However, this is not really testable.
Since iOS 9, there is a feature to test the user interface (UI). The screen can
be record and clicked on to find out if there is a button and which action is
called. Unfortunately, this feature is not fully reliable till now. I hope that it
will be improved in the future.

But not only the UI is hard to test, when talking about iOS development.
Since Apple is providing a lot of frameworks, which are used frequently, this
is why so many delegate functions exist, which are really hard to change
into a testable design. Mocks are needed for each framework class like
mentioned in the implementation of the Bluetooth Manager in section 5.1.
Apparently this dependency is enforced by the principle of frameworks

92

6.2. Future Work

design but should be converted to a testable design.

Generally, there are some places in the iOS design, where test driven
development cannot be used out of the box. Framework delegates can be
designed and tested with Mock objects, which are a lot of work, but it would
be possible. Test first design cannot be applied to everything covering the
UI and UI related parts. So another approach needs to be practiced then.
In my special case I did fall back to the Code and Fix-model for UI parts
and then tried to add user interface test, but I was not able to cover all user
interface functionality because of the lack provided UI test features.

6.2. Future Work

6.2.1. Support other Bluetooth devices

The Pocket Code for iOS application will be extended throughout the years.
New bricks, scripts and features will be added because smartphones will
change and provide more and more sensors or other useful elements. Since
this thesis is not covering the application itself, but only the special part
concerning the Bluetooth section of the future work will be to catch up
with the Android team and support other Bluetooth devices or in general
wireless connected devices as well.

As mentioned in Section 5, the Bluetooth manager has a fixed application
programming interface to easily integrate and support other Bluetooth
devices. Therefore, it will be straightforward to integrate other BLE devices
into Pocket Code for iOS.

The only thing to do is tantamount to add it to the “Selection Manager”
and implement the actions of the device itself. Everything else is already
implemented by the Bluetooth service.

Concerning other Wireless device, for example over WiFi, one can take
the Bluetooth Manager as a lead and implement an Wifi manager. This Wifi
manager would be very interesting for adding a drone to Pocket Code for
iOS.

93

6. Conclusion & Outlook

6.2.2. Further Arduino-Firmata extensions

Additionally to this thesis, which covered implementing a Bluetooth man-
ager and the standard Arduino Firmata integration into PocketCode for
iOS, an integration of further commands can be implemented. In this thesis
only set digital and set PWM commands were covered. Firmata is providing
several more commands to for example control servo or stepper motors.
These commands can be used to create new bricks in Pocket Code and to
be added to the own iOS Firmata implementation.

94

Appendix

95

Bibliography

[1] Catrobat, Catrobat, 2015. [Online]. Available: http://www.catrobat.
org (visited on 11/21/2015) (cit. on p. 5).

[2] MIT Media Lab Longlife Kindergarten, Scratch, 2015. [Online]. Avail-
able: https://scratch.mit.edu (cit. on p. 5).

[3] M. U. Bers and M. Resnick, The Official ScratchJr Book. 2005, isbn:
9781593276713 (cit. on p. 5).

[4] MIT, Mit media lab longlife kindergarten. [Online]. Available: https:
//llk.media.mit.edu (cit. on p. 5).

[5] Catrobat, Pocketcode. [Online]. Available: www.pocketcode.org (visited
on 11/21/2015) (cit. on p. 5).

[6] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing. 2004,
p. 200, isbn: 9781118133156. doi: 10.1002/stvr.322 (cit. on pp. 11, 16,
17).

[7] L. Graham, Test Driven iOS Development. Addison-Wesley, 2012, isbn:
9780672329166 (cit. on pp. 12–17, 28, 30–35, 41, 91).

[8] B. Meyer, “Seven principles of software testing,” SoftwareTechnolo-
gies, no. August, pp. 99–101, 2008. doi: 10.1109/MC.2008.306 (cit. on
pp. 12, 18).

[9] D. W. W. Royce, “Managing the development of large software sys-
tems,” Ieee Wescon, no. August, p. 2, 1970 (cit. on p. 14).

[10] R. Osherove, The art of Unit Testing. Manning Publications Co., 2014,
p. 294, isbn: 1861891059 9781861891051. doi: 10.1038/nchem.1109 (cit.
on pp. 18, 20–23, 25, 26, 35).

[11] L. Koskela, Effective Unit Testing - A Guide for Java Developers. 2013,
vol. 2001, p. 249, isbn: 9781935182573. doi: 10.1145/358974.358976
(cit. on pp. 19, 20).

97

http://www.catrobat.org
http://www.catrobat.org
https://scratch.mit.edu
https://llk.media.mit.edu
https://llk.media.mit.edu
www.pocketcode.org
http://dx.doi.org/10.1002/stvr.322
http://dx.doi.org/10.1109/MC.2008.306
http://dx.doi.org/10.1038/nchem.1109
http://dx.doi.org/10.1145/358974.358976

Bibliography

[12] J. Reid, Dependency injection. [Online]. Available: https://www.objc.
io/issues/15-testing/dependency-injection/ (visited on 12/02/2015)
(cit. on pp. 23, 24).

[13] M. Lazer Walker, Test doubles: mocks, stubs and more. [Online]. Available:
https://www.objc.io/issues/15-testing/mocking-stubbing/ (vis-
ited on 12/02/2015) (cit. on pp. 24, 25).

[14] L. Koskela, Test Driven: Practical Tdd and Acceptance Tdd for Java De-
velopers. 2007, p. 470, isbn: 1932394850 (cit. on pp. 26–30, 32–34, 37–
39).

[15] K. Beck, Extreme Programming Explained: Embrace Change, c. 1999, p. 224,
isbn: 0201616416. doi: 10.1136/adc.2005.076794. arXiv: 0201616416
(cit. on pp. 27, 31, 32).

[16] ——, Test-Driven Development ‘by Example’. Addison-Wesley, 2003, isbn:
0321146530 (cit. on pp. 27, 33, 34).

[17] N. N. Bhat, Thirumalesh, “Evaluating the efficacy of test-driven de-
velopment : industrial case studies,” Isese’06,, pp. 356–363, 2006. doi:
10.1145/1159733.1159787 (cit. on p. 38).

[18] D. S. Janzen, “Software architecture improvement through test-driven
development,” Companion to the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications -
OOPSLA ’05, p. 222, 2005. doi: 10.1145/1094855.1094945 (cit. on
pp. 38, 39).

[19] S. W. Ambler, Introduction to test driven development (tdd), 2013. [On-
line]. Available: http://agiledata.org/essays/tdd.html (visited on
11/30/2015) (cit. on pp. 39–41).

[20] L. Salibra, A brief history of ios beta testing, 2015. [Online]. Available:
https://blog.pay4bugs.com/2015/02/04/a-brief-history-of-ios-

beta-testing/ (visited on 02/26/2016) (cit. on p. 41).

[21] A. Schroppe and D. Eggert, Real-world testing with xctest. [Online].
Available: https://www.objc.io/issues/15-testing/xctest/ (visited
on 12/02/2015) (cit. on pp. 41–44).

98

https://www.objc.io/issues/15-testing/dependency-injection/
https://www.objc.io/issues/15-testing/dependency-injection/
https://www.objc.io/issues/15-testing/mocking-stubbing/
http://dx.doi.org/10.1136/adc.2005.076794
http://arxiv.org/abs/0201616416
http://dx.doi.org/10.1145/1159733.1159787
http://dx.doi.org/10.1145/1094855.1094945
http://agiledata.org/essays/tdd.html
https://blog.pay4bugs.com/2015/02/04/a-brief-history-of-ios-beta-testing/
https://blog.pay4bugs.com/2015/02/04/a-brief-history-of-ios-beta-testing/
https://www.objc.io/issues/15-testing/xctest/

Bibliography

[22] Apple Inc., Testing with xcode. [Online]. Available: https://developer.
apple.com/library/ios/documentation/DeveloperTools/Conceptual/

testing%7B%5C_%7Dwith%7B%5C_%7Dxcode/chapters/03-testing%7B%

5C_%7Dbasics.html (visited on 02/26/2016) (cit. on pp. 42–44).

[23] C. Amariei, Arduino Development Cookbook. Packt Publishing, 2015,
pp. 1–2, isbn: 9781783982943 (cit. on p. 49).

[24] D. Cuartielles, G. Martino, T. Igoe, and D. Mellis, Arduino.cc, 2015.
[Online]. Available: www.arduino.cc (visited on 11/23/2015) (cit. on
pp. 49–51).

[25] Techtopia, Microcontroller definition. [Online]. Available: https://www.
techopedia.com/definition/3641/microcontroller (visited on 03/16/2016)
(cit. on p. 50).

[26] A. G. Smith, Introduction to Arduino. 2011, p. 1, isbn: 9781463698348

(cit. on p. 50).

[27] D. Kushner, “The making of arduino how fi ve friends engineered a
small circuit board that ’ s taking the diy world by storm,” pp. 1–6,
2011 (cit. on pp. 50, 51).

[28] H.-c. Steiner, “Firmata: towards making microcontrollers act like exten-
sions of the computer,” New Interfaces for Musical Expression, pp. 125–
130, 2009. [Online]. Available: http://archive.notam02.no/arkiv/
proceedings/NIME2009/nime2009/pdf/author/nm090182.pdf (cit. on
pp. 52, 53).

[29] D. Mellis, J. Gautier, P. Stoffregen, F. Gulotta, and J. Hoefs, Firmata
protocol. [Online]. Available: https://github.com/firmata/protocol
(visited on 11/25/2015) (cit. on pp. 52, 53).

[30] Arduino, Firmata, 2013. [Online]. Available: www.firmata.org (visited
on 11/23/2015) (cit. on p. 52).

[31] D. Mellis, J. Gautier, P. Stoffregen, F. Gulotta, and J. Hoefs, Firmata
arduino. [Online]. Available: https://github.com/firmata/arduino
(visited on 11/24/2015) (cit. on p. 54).

[32] I. Bluetooth SIG, Bluetooth. [Online]. Available: http://www.bluetooth.
com/what-is-bluetooth-technology/bluetooth (visited on 11/25/2015)
(cit. on p. 54).

99

https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/testing%7B%5C_%7Dwith%7B%5C_%7Dxcode/chapters/03-testing%7B%5C_%7Dbasics.html
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/testing%7B%5C_%7Dwith%7B%5C_%7Dxcode/chapters/03-testing%7B%5C_%7Dbasics.html
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/testing%7B%5C_%7Dwith%7B%5C_%7Dxcode/chapters/03-testing%7B%5C_%7Dbasics.html
https://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/testing%7B%5C_%7Dwith%7B%5C_%7Dxcode/chapters/03-testing%7B%5C_%7Dbasics.html
www.arduino.cc
https://www.techopedia.com/definition/3641/microcontroller
https://www.techopedia.com/definition/3641/microcontroller
http://archive.notam02.no/arkiv/proceedings/NIME2009/nime2009/pdf/author/nm090182.pdf
http://archive.notam02.no/arkiv/proceedings/NIME2009/nime2009/pdf/author/nm090182.pdf
https://github.com/firmata/protocol
www.firmata.org
https://github.com/firmata/arduino
http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth
http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth

Bibliography

[33] ——, Bluetooth special interest group. [Online]. Available: https://www.
bluetooth.com (visited on 03/16/2016) (cit. on p. 54).

[34] ——, History of the bluetooth special interest group. [Online]. Available:
http://www.bluetooth.com/Pages/History-of-Bluetooth.aspx (vis-
ited on 03/02/2016) (cit. on p. 54).

[35] ——, Bluetooth le specification, 2015. [Online]. Available: https://www.
bluetooth.org/en-us/specification/adopted-specifications (vis-
ited on 11/25/2015) (cit. on p. 55).

[36] BluetoothDeveloperPortal, Gatt specifications. [Online]. Available: https:
//developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

(visited on 11/25/2015) (cit. on pp. 55, 59).

[37] K. Townsend, C. Cufi, and R. Davidson, Getting Started with Bluetooth
Low Energy: Tools and Techniques for Low-Power Networking. O’Reilly
Media, Inc, 2014, p. 180, isbn: 9781491949511 (cit. on pp. 55–61).

[38] I. Bluetooth SIG, Bluetooth technology basics. [Online]. Available: http:
//www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-

basics (visited on 01/01/2011) (cit. on p. 56).

[39] Apple Inc., Ios: unterstützte bluetooth-profile, 2013. [Online]. Available:
https://support.apple.com/de-de/HT204387 (visited on 12/20/2015)
(cit. on p. 61).

[40] ——, “Core bluetooth programming guide,” 2013, [Online]. Available:
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/

Conceptual/CoreBluetooth%7B%5C_%7Dconcepts/AboutCoreBluetooth/

Introduction.html (cit. on p. 61).

100

https://www.bluetooth.com
https://www.bluetooth.com
http://www.bluetooth.com/Pages/History-of-Bluetooth.aspx
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics
http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics
http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics
https://support.apple.com/de-de/HT204387
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth%7B%5C_%7Dconcepts/AboutCoreBluetooth/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth%7B%5C_%7Dconcepts/AboutCoreBluetooth/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth%7B%5C_%7Dconcepts/AboutCoreBluetooth/Introduction.html

Appendix A.

Acronyms

• TDD Test-driven development
• UI User interface
• XP Extreme Programming
• CI Continuous integration
• BLE Bluetooth Low Energy
• PWM Puls width modulation
• I/O Input/Output
• UUID Universally Unique Identifier
• API Application programming interface
• MfI “Made for iPod” / ”Made for iPhone”
• GATT Generic Attribute Profile
• GAP Generic Access profile
• IoT Internet of Things
• IDE Integrated development environment

101

