
Pius Sonnberger BSc.

A Functional Lifting Approach for spatio-temporal
Image Processing Problems and Applications to

Image-Sequence Reconstruction

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Technical Mathematics

submitted to

Graz University of Technology

Supervisor:
Univ.-Prof. Dipl.-Math. Dr. Kristian Bredies

Institute for Mathematics and Scientific Computing
University of Graz

Graz, May 2016





EIDESSTATTLICHE ERKLÄRUNG

AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,
andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten
Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht
habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden
Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. The text
document uploaded to TUGRAZonline is identical to the present master‘s thesis.

Datum/Date Unterschrift/Signature





Abstract

In this thesis we would like to investigate a higher order regulariser with application
on image sequences using a functional lifting approach. The presented methods do
not only take the image gradient into account, but also curvature information of the
level sets. The theory developed operates on continuous time-dependent problems
and is independent of the problem dimension. Existence theorems in the resulting
continuous function spaces for the derived approach are presented as well. Since the
derived theory works on continuous domains, we also investigate a discretisation of
the introduced approaches. A primal-dual algorithm is used to solve the upcoming
minimisation problems. Further we give results for image sequences concerning
denoising and inpainting problems.
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1. Introduction

In image processing it has to be dealt with degraded images that are biased by noise,
blurring, data-losses or other effects.
In this work we would like to discuss well-known and frequently-used approaches
and their theories to overcome these issues. Further, a recent method will be in-
troduced that showed very promising results in 2D image reconstruction [4]. The
novelty in this work is that this theory is extended to higher dimensional problems
(dimension greater or equal 3), to make this idea applicable on image sequences
(e.g. videos) or moving 3D image data. We will treat the time dependence of these
problems with special care. This will lead to an improvement of the results in com-
parison to standard approaches that treat the time dependence in the same way as the
spatial dependence of the problem. Further some discretisation steps are remodelled
in comparison to [4] to make the introduced approach working in higher dimensions.
The task of image processing tools is, to improve the "quality" of degraded im-
ages (e.g. deblurring, denoising, inpainting) or extract information from images
(e.g. segmentation, registration). An often used approach to deal with these tasks
is to measure how natural an image is, in some sense. Obviously, the answer to the
question if an image is natural is neither easy nor unique. This leads to a wide range
of different image processing approaches.
To make any kind of image-processing tool work, we first have to discuss how images
can be modelled in an abstract mathematical framework. Therefore we define an
image as a function, mapping a certain domain to a colour space [3].
The domain can be a continuous or a discrete set. A typically example for a contin-
uous domain would be some bounded subset of R2 or R3. Examples for discrete
domains would be a 2D domain that is composed of a finite amount of pixels or a
3D domain that is composed of a finite amount of voxels.
The colour space is also either continuous or discrete. An often used colour space is
the grey-value space, where the image maps into the interval [0, 1] or a reasonable
discretisation of it. Another colour space is the RGB space, where each of the colours
red, green and blue is represented as a value in the interval [0, 1] or a discretisation

1



1. Introduction

of this interval. This would mean, that the image maps to the set [0, 1]3. It has to be
mentioned, that there are a lot more possibilities to represent colours (e.g. CMYK-
space).
Anyhow, this work will focus only on images mapping on the grey-value space.
Although it is fairly easy to come up with ideas to extend approaches for grey-valued
images to coloured images, the results may not be as good as expected, since it is
hard to model the colour perception of the human eye.
Further it has to be mentioned, that all theory developed in this work is done for
a continuous domain and is then transferred to discrete settings using reasonable
discretisations.
With this given basic setting of an image we can again ask the question, how to
measure the naturalness or regularity of an image. In the history of image processing
first-order regularisation was the common way to treat image processing problems
[2, 11, 14, 17]. First-order regularisation means that the image gradient is penalised
in some sense. Therefore, regions with the same intensity values would be preferred.
For example, Total Variation regularisation (TV) [17] is a common first-order ap-
proach in image processing. Deblurring and denoising results obtained by TV-
Regularisation, using a Primal-Dual Algorithm [6], can be seen in Figure 1.1 and
Figure 1.2.

(a) given image (ground
truth)

(b) blurred image (c) Reconstruction

Figure 1.1.: Reconstruction of a blurred image using a TV-Regulariser.

As it can be seen first-order-regularisation has its drawbacks, since it leads to the
so-called staircasing effect in the reconstructed image. Other first-order approaches
overcome the problem of this artefacts, at the cost of blurry edges at object bound-
aries.
This gives the intuition, that first-order approaches may not be the best way to
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(a) given image (ground
truth)

(b) noisy image (c) Reconstruction

Figure 1.2.: Reconstruction of a noisy image using a TV-Regulariser.

treat imaging problems. Some publications (e.g. [13]) are also giving evidence that
curvature information is important for the human perception, what would lead to
second-order approaches, which makes the study of higher-order regularisers rele-
vant.
In this work we would like to discuss a class of functionals that deals with the
curvature of object boundaries using a functional lifting approach. The idea of this
functional lifting approach is presented in [7] for two dimensional images. There, the
direction of the absolute image gradient is lifted to the so-called three dimensional
rototranslation space. This means, that the gradient direction of an image is "lifted"
in the third dimension. Having the lifted gradient provides not only its absolute value
but also its direction in every point. This can be interpreted by the transformation
of the image gradient to the polar coordinate system, where the polar angle of the
absolute gradient is represented as the third dimension of the rototranslation space.
We want to adapt this idea to higher dimensional problems. For example, the lifting
of three dimensional problems will lead to objects in a five dimensional rototransla-
tion space, since two further dimensions are necessary to encode the direction of the
derivative.
In a recent paper [4] a curvature-penalising functional was derived for two dimen-
sional images using functional lifting. The continuation of this theory in higher
dimensions was mentioned as an open problem. Here we want to derive a theory that
is independent of the problem dimension, using the ideas presented in [4]. Further-
more we want to develop reasonable numerical approaches and give results for three
dimensional objects as well.
In Chapter 2, the needed mathematical concepts are explained to get a basic under-
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1. Introduction

standing of mathematical image processing. This Chapter should provide a funda-
mental knowledge to get easier access to the content of the further Chapters. The
required theroy for first-order-regularisers and tools for verifying solvability and
convergence properties of the used numerical methods are presented as well. In
Chapter 3, a class of curvature penalising functionals is derived which works in
higher dimensions. Since the focus is on image sequences, the time-axis is always
one dimension of the problem and is treated with special care. We want to point out
again that the investigation of these functionals for higher dimensional problems, as
well as the special treatment of the time dependence of the problems are the main
novelties in this work. In Chapter 4, a discretisation approach for the continuous
theory developed in Cahpter 3 is presented. Further numerical methods to solve the
resulting minimisation problems are derived in this Chapter. The numerics is done
for image sequences and has its own specialties at some point. In the Appendix we
will discuss discretisation methods for two dimensional, time-depended problems.
This means that the considered problems have one spatial and one time component.
Further we present an approach that allows refinement of the discretisation for the
two dimensional case.
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2. Mathematical Fundamentals of
Image Processing

In this chapter we will provide the mathematical background to handle a wide range
of image processing problems. First we will again discuss the model of an image in
a mathematical sense and how regularisers could look like, which operate on this
images. We will see, that variational methods are the key to discuss existence of
solutions for the upcoming equations. The fundamental ideas to model first-order-
regularisers for continuous domains will be given and therefore the required tools of
Functional Analysis and Measure Theory will be introduced.
Further theory about Duality and Saddle-Points will be presented, what provides
an appropriate way to make the derived formulations computable. Convergence
theorems for the derived algorithms will be given as well.

2.1. Mathematical Model of Images and Image
Regulariser

To deal with images in a mathematical sense let us first discuss the mathematical
model of an image [3]. An image can be interpreted as a function u out of some
function space X that is defined on a domain Ω. The domain Ω is usually a bounded
subset of Rn or an appropriate discretisation of those subsets. This discretisations
lead to the concepts of pixels for 2D images and voxels for 3D images or image
sequences, respectively.
The image function u maps to some colour space F , following the notation presented
in [3]. As already mentioned in the introduction, the colour space in this work will
always be the interval [0, 1], since we are only dealing with grey-scale images. It
has to be mentioned that other subsets of R are also common to describe grey-scale
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2. Mathematical Fundamentals of Image Processing

images, e.g. the interval [0, 256].
Given this setting an image u ∈ X can be written as

u : Ω → F ,

what simplifies for the special case of grey-scale images to

u : Ω → [0, 1].

We want to motivate the upcoming theory on the example of noisy images. Let us
assume that noise is purely additive and uniformly distributed on the whole image
domain Ω. For a ground truth image u† and a noise function η the resulting noisy
image u0 is given as

u0 = u† + η.

The expectations that

• u† has some kind of structure, like connected regions with the same grey value
and

• η is a function with no structure,

motivates the properties of regularisers.
The idea of variational denoising approaches is to quantify the local noise information
on the one hand and the global regularity on the other hand, using real valued
functions.
Therefore we introduce a real-valued function φ that measures the local noise. For
example, such a function can be given as φ : X → R∞,

φ(u − u0) =

∫
Ω
|u − u0|qdx, (2.1)

for some q > 1 with R∞ := R∪ {∞}. The function φwill be denoted as the data term.
It is clear that the data term has to change, if the problem type changes. Examples
for different problem types are deblurring problems where the given image is out of
focus or inpainting problems where several image data is lost.
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2.2. The Direct Method

To measure the regularity of an image, a real-valued function ψ : X → R∞ is
introduced that takes the structure of the image into account. A reasonable example
for this function is

ψ(u) =
∫

Ω
|∇u|pdx, (2.2)

for some p > 1. The function ψ will be denoted as the regulariser.
Adding up these two functionals using a weight λ > 0 lead to the formulation

F(u) := λ · φ(u − u0) + ψ(u).

The idea is to search for the image u∗ ∈ X that minimises this formulation leading to
the minimising problem

min
u∈X

F(u). (2.3)

In the next section we want to present the needed conditions that ensure existence of
a minimiser u∗ ∈ X, fulfilling

F(u∗) = min
u∈X

F(u).

2.2. The Direct Method

A well established method to prove the existence of a minimiser for (2.3) is the direct
method. Subsequently an overview of the required definitions and theorems is given.
For further details see [3, 20].

Definition 1. A Banach Space X is called reflexive if its canonical mapping into the
bidual space is surjective. The canonical mapping ι is defined as

ι(x) : X∗ 7→ K, (ι(x))(x∗) = x∗(x)

where X∗ is the dual space of X.

In this work K will always be R.

Remark 2. The canonical mapping ι is an element of the bidual space X∗∗.
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2. Mathematical Fundamentals of Image Processing

Definition 3. Let X be a Banach Space. A sequence {un}n in X converges in a weak
sense if

< ξ, un >→< ξ, u >, ∀ξ ∈ X∗.

A weakly convergent sequence is denoted by un ⇀ u.

Definition 4. Let X be a Banach Space. A sequence {un}n in X∗ converges in a
weak* sense if

< ξ, un >→< ξ, u >, ∀ξ ∈ X.

A weakly* convergent sequence is denoted by un
∗
⇀ u.

Definition 5. Let X be a Banach Space, F : X → R∞ be a functional.

(a) The domain of F is defined as

dom(F) =
{
u ∈ X|F(u) < ∞

}
.

(b) F is called proper, if dom(F) , ∅.
(c) F is called coercive if F(u)→ +∞ holds for ‖u‖X → ∞.
(d) F is called lower semi-continuous, if

F(u) ≤ lim inf
n→∞

F(un)

holds for every sequence {un}n in X with un → u as n→ ∞.
(e) F is called weak lower semi-continuous, if

F(u) ≤ lim inf
n→∞

F(un)

holds for every sequence {un}n in X with un ⇀ u as n→ ∞.
(f) Let G : X∗ → R∞ be a functional. G is called weak* lower semi-continuous,

if
G(u) ≤ lim inf

n→∞
G(un)

holds for every sequence {un}n in X∗ with un
∗
⇀ u as n→ ∞.

Theorem 6 (Theorem of Eberlein-Šmulyan). A Banach space X is reflexive if and
only if every bounded sequence {un}n in X has a weak convergent subsequence.

Proof. see [8]. �
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2.3. Sobolev Spaces

Theorem 7 (Direct Method). Let X be a reflexive Banach Space. The functional
F : X → R∞ is a proper, coercive, lower semi-continuous functional that is bounded
from below. Then, F has a minimiser in X.

Sketch of the proof. Since F is bounded from below it follows that there exists a
sequence {un}n with F(un)→ infu∈X F(u).
Using the coercivity of F it is clear that a bounded subsequence {unk}k can be chosen.
Otherwise ‖un‖X → ∞ would lead to F(un)→ ∞.
According to Theorem 6, there exists a weakly convergent subsequence {unkl

}l and an
element u∗ ∈ X that fulfils unkl

⇀ u∗. Weak lower semi-continuity gives the desired
minimiser. �

Remark 8. To prove existence of a minimiser for the problem given at (2.3) one
has to make sure that the conditions of Theorem 7 are satisfied. To show lower
semi-continuity it is sufficient to investigate data term and regulariser separately
since

lim inf
n→∞

F(un) +G(un) ≤ lim inf
n→∞

F(un) + lim inf
n→∞

G(un)

holds for F and G lower semi-continuous.

2.3. Sobolev Spaces

In this section we want to discuss the needed function spaces to apply the direct
method. As already indicated in (2.2), we want to integrate over the derivative of
an image. This leads to the concept of weak derivatives and the theory of Sobolev
Spaces. The application on the denoising problem is shown as well.

Definition 9. The space L1
loc(Ω) is defined as

L1
loc(Ω) =

{
u ∈ L0(Ω)

∣∣∣ ∫
Ω

u · φ dx < ∞, ∀φ ∈ D(Ω)

}

where L0(Ω) is the equivalence class of all measurable functions u : Ω → R that
are identical almost everywhere and D(Ω) � C∞C (Ω) is the set of all test functions
in Ω.
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2. Mathematical Fundamentals of Image Processing

For further informations about the space L1
loc(Ω) see [10].

Lemma 10 (Fundamental Lemma of Variational Calculus). For u ∈ L1
loc(Ω) and∫

Ω u · φ dx = 0 for all φ ∈ D(Ω) it follows that

u = 0

almost everywhere in Ω.

Proof. see [12]. �

With Lemma 10 it is possible to define derivatives in the weak sense.

Definition 11. Let u ∈ L1
loc(Ω), α ∈ Nd be a multi-index. Then v ∈ L1

loc(Ω) is
called the weak derivative of u if∫

Ω
v · φ dx = (−1)|α|

∫
Ω

u · ∂αφ dx,

for all φ ∈ D(Ω). The weak derivative is denoted as v := ∂αu.

Lemma 12. The weak derivative is unique almost everywhere.

Proof. Let u ∈ L1
loc(Ω), v1 = ∂αu and v2 = ∂αu. Applying the definition for the

weak derivative leads to∫
Ω

v1 · φ dx = (−1)|α|
∫

Ω
u · ∂αφ dx

and ∫
Ω

v2 · φ dx = (−1)|α|
∫

Ω
u · ∂αφ dx.

This gives ∫
Ω

v2 · φ dx =

∫
Ω

v1 · φ dx,

what leads to ∫
Ω
(v2 − v1) · φ dx = 0.

With the Fundamental Lemma of Variational Calculus (Lemma 10) v1 = v2 holds
almost everywhere. �
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2.3. Sobolev Spaces

Definition 13. Let 1 ≤ p ≤ ∞ and m ∈N. The Sobolev Space is defined as

Hm,p(Ω) =
{
u ∈ Lp(Ω)

∣∣∣∂αu ∈ Lp(Ω) for |α| ≤ m
}

.

With the norm

‖u‖m,p =

 ∑
|α|≤m

‖∂αu‖pp


1/p

,

Hm,p(Ω) becomes a Banach Space.

Theorem 14. For 1 < p < ∞, the Sobolev Space Hm,p(Ω) is reflexive.

Proof. see [1]. �

This setting delivers the right function space to solve problems of type (2.3). For
denoising problems this can be summarised with the following theorem.

Theorem 15. Let 1 < p ≤ q < ∞, λ > 0 and u0 ∈ Lq(Ω). Then the functional
F : Lq(Ω)→ R∞

F(u) =

λ
∫

Ω |u − u0|q dx +
∫

Ω |∇u|p dx if u ∈ H1,p(Ω)

∞ else

has a minimiser.

Proof. Since H1,p(Ω) is reflexive according to Theorem 14 it has to be shown that
F is proper, coercive and lower semi-continuous (see [3]). Consequently, Theorem 7
provides a minimiser u∗ ∈ H1,p(Ω). �

However it is well known, that a regularisation with p > 1 leads to blurry edges in
the solution, which is not wanted in most applications. Accordingly, one might wish
for a minimiser in the space H1,1(Ω). The problem here is that the space H1,1(Ω)
is not reflexive anymore. Another problem is, that u 7→ |u|1,1 =

∫
Ω |∇u| dx is not

(weak) lower semi-continuous in Lq(Ω), as it is shown in Example 16. Therefore,
the Direct Method (Theorem 7) can not be applied and existence of a minimiser can
not be achieved (see [3]).

11



2. Mathematical Fundamentals of Image Processing

Example 16. Let Ω =]0, 1[. Set

ψ(u) =


∫

Ω |∇u| dx if u ∈ H1,1(Ω)

∞ else

and un(x) = max(min(n(x − 1
2), 1),−1) which leads to the weak derivative accord-

ing to Definition 11

(un)′ (x) =

n if |x − 1
2 | ≤

1
n

0 else.

The limit u := limn→∞ un is given as

u(x) =

1 if x ≥ −1
2

−1 else.

Therefore u < H1,1(Ω), what is leading to ψ(u) = ∞. This contradicts with the
lower semi continuity, since ψ(un) ≤ 2, giving ψ(u) > lim infn→∞ ψ(un) .

2.4. Bounded Variation

To cope with this problem the space H1,1 is extended in a way that the weak derivative
of a functional may be a measure as well. This will lead to functions with bounded
variation and the total variation (TV) measure. TV is a reasonable and often used
first-order regulariser, that makes the existence of sharp edges possible. The new
approaches developed in Chapter 3 and 4 will be tested against results achieved with
TV-regularisation. Since the theory used for the method introduced in Chapter 3 has
its starting point in measure theory as well, some deeper concepts will be discussed
in subsection 2.4.2.

Definition 17. Let X be a set. The systemA ⊂ P(A) is called a σ-Algebra of X if

1. X ∈ A,
2. E ∈ A ⇒ X\E ∈ A,

3. En ∈ A, n = 1, 2, . . . ⇒
∞⋃

n=1
En ∈ A.
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2.4. Bounded Variation

Definition 18. The Borel σ-Algebra is the smallest σ-Algebra containing all open
sets of a set Ω. The Borel σ-Algebra of Ω will be denoted as B(Ω).

Definition 19. Let Ω ⊂ Rd be open. A function µ : B(Ω) → Rn is called vector-
valued Radon Measure if

1. µ(∅) = 0.
2. For pairwise disjoint sets Ei ∈ B(Ω), i ∈N the equality

µ

( ⋃
i∈N

Ei

)
=

∑
i∈N

µ(Ei) holds.

Definition 20. The total variation of a measure |µ| : B → R of a Radon Measure µ
is defined as

|µ|(A) = sup

∑
i∈N

∣∣∣µ(Ai)
∣∣∣ ∣∣∣∣∣∣ A =

⋃
i∈N

Ai, Ai ∈ B(Ω) disjoint

 ,

where the supremum is taken over all decompositions
⋃

i∈N
Ai = A, with Ai ∈ B(Ω)

being disjoint.

Remark 21. The setM(Ω, Rn) of all Rn-valued Radon Measures, with the norm

‖µ‖M = |µ|(Ω)

is a Banach Space (see [18]).

2.4.1. Function of Bounded Variation

It will turn out, that the space of functions with bounded variation is the correct
function space to search for solutions of the minimisation problem (2.3), if TV-
regularisation is used. It will also be the function space used for the new concepts
discussed in Chapter 3.

Utilising the Riesz Representation Formula (see [19]) we get C0(Ω, Rn)∗ =M(Ω, Rn)
(see [3]), with

C0(Ω, Rn) =
{
u : Ω → Rn

∣∣∣ u ∈ C(Ω, Rn),

∀ε > 0, ∃K ⊂ Ω compact, s.t. |u| ≤ ε on Ω \ K
}
.

13



2. Mathematical Fundamentals of Image Processing

Definition 22. Let Ω ⊂ Rd be open and non empty. The measure µ ∈ M(Ω, Rd) is
called the weak derivative of u ∈ L1

loc(Ω) if∫
Ω

u · divφ dx = −

∫
Ω
φ dµ

holds for all test functions φ ∈ D(Ω, Rd). The weak derivative µ is then written as
µ = ∇u.
The total variation of u is denoted by

TV(u) = ‖∇u‖M.

Lemma 23. The weak derivative inM(Ω, Rd) is unique and it holds that

TV(u) = sup
{∫

Ω
u divφ dx

∣∣∣ φ ∈ D(Ω, Rd), ‖φ‖∞ ≤ 1
}

.

Proof. see [3]. �

Definition 24. Let Ω ∈ Rd be bounded. Then

BV(Ω) =
{
u ∈ L1(Ω)

∣∣∣∇u ∈ M(Ω, Rd)
}

is called the space of Functions with Bounded Variation, with the norm

‖u‖BV = ‖u‖1 + TV(u).

Lemma 25.

1. BV(Ω) is a Banach Space.
2. TV is proper, convex and weak lower semi-continuous on Lq(Ω) for 1 ≤ q < ∞.

Definition 26 (Hausdorff measure). Let k ∈ R, k ≥ 0 and denote by ωk the volume
of the k dimensional unit ball.
Define

Diam(A) = sup
{
|x − y|

∣∣∣ x, y ∈ A
}

Diam(∅) = 0.

The k-dimensional Hausdorff measure of a set A ⊂ Rd is defined as

H(A) = lim
δ→0

ωk

2k inf

 ∞∑
i=1

Diam(Ai)
k
∣∣∣ A ⊂

∞⋃
i=1

Ai, Diam(Ai) < δ

 .

14



2.4. Bounded Variation

Remark 27. With the Hausdroff measure it is possible to measure k-dimensional
objects in d-dimensional spaces for k ≤ d. For example, for a closed curve in 2D the
Hausdorff measure will give the perimeter of the curve. In case k = d, the Hausdorff
measure and Lebesgue measure deliver the same value.

Example 28. Let Ω′ ⊂ Ω ⊂ Rd be a bounded Lipschitz domain and f ∈ L1(∂Ω′)
with respect toHd−1. Then,

µ(A) =
∫

A∪∂Ω′
f dHd−1

is a Radon measure.
Notation: µ = fHd−1x∂Ω′.
Example 29. Let Ω′ ⊂ Ω be a Lipschitz domain and u = χΩ′ be the characteristic
function of Ω′. Then∫

Ω
u divφ dx =

∫
Ω′

divφ dx =

∫
∂Ω′

φ · ν dHd−1,

where ν is the outer normal of Ω′, what leads to

∇u = −ν
(
Hd−1x∂Ω′

)
.

For u ∈ BV(Ω), the total variation TV(u) =
∫
∂Ω′ 1 dHd−1 = Per(Ω′) gives the

perimeter of Ω′.

2.4.2. Absolute Continuity of Measures

In this section, the concept of absolute continuous measures, the Lebesgue Decompo-
sition Theorem, Theorem of Radon Nikodym and Polar Decomposition are discussed.
We will make heavy use of these theorems in Chapter 3. A very deep look into these
and other ideas of measure theory are given in [18].

Definition 30. Let µ : M → [0,∞] be a positive measure on some σ-AlgebraM
and λ be a positive or vector-valued measure onM. Then

1. λ is called absolutely continuous with respect to µ if

µ(E) = 0⇒ λ(E) = 0, ∀E ∈ M.

Notation: λ � µ.

15



2. Mathematical Fundamentals of Image Processing

2. λ is called concentrated on A ∈ M, if λ(E) = λ(E ∩ A), ∀E ∈ M.
3. λ1 is called singular with respect to λ2 if there exist A, B ∈ M disjoint, such

that λ1 is concentrated on A and λ2 is concentrated on B. Notation: λ1 ⊥ λ2.

Proposition 31. Let µ be a positive measure onM and λ, λ1, λ2 be measures onM.
Then

1. λ concentrated on A ⇒ |λ| concentrated on A.
2. λ1 ⊥ λ2 ⇒ |λ1| ⊥ |λ2|.
3. λ1 ⊥ µ and λ2 ⊥ µ ⇒ λ1 + λ2 ⊥ µ.
4. λ1 � µ and λ2 � µ ⇒ λ1 + λ2 � µ.
5. λ � µ ⇒ |λ| � µ.
6. λ1 � µ and λ2 ⊥ µ ⇒ λ1 ⊥ λ2.
7. λ � µ and λ ⊥ µ ⇒ λ = 0.

Theorem 32 (Lebesgue’s decomposition theorem). Let µ be a positive, σ-finite
measure and λ be a complex measure onM.
Then there exist unique complex measures λa and λs onM such that λ = λa + λs,
λa � µ and λs ⊥ µ.

Theorem 33 (Theorem of Radon-Nikodym). Let µ be a positive, σ-finite measure
and λ be a complex measure onM. Let λa and λs be defined as in Theorem 32.
Than there exists a unique h ∈ L1(µ) such that λa(E) =

∫
E h dµ, ∀E ∈ M.

Proof. (Proof of both Theorems by J. von Neumann). see [15]. �

Corollary 34. Let µ be a positive, σ-finite measure, λ � µ. Then there exists a
unique h ∈ L1(µ) with λ(E) =

∫
E h dµ.

Theorem 35 (Polar Decomposition). Let µ be a complex measure. There exists a
measurable function h with |h(x)| = 1 for all x ∈ X, such that

dµ = h d|µ|

holds.

Proof. Since µ � |µ| holds Theorem 33 provides h ∈ L1(|µ|) such that

dµ = h d|µ|

16



2.4. Bounded Variation

is fulfilled. Define the set Ar =
{
x ∈ X

∣∣∣ |h(x)| < r
}

for r > 0 arbitrary but fix. Let
{E j} be an arbitrary partitioning of Ar. Than

∑
j

|µ(E j)| =
∑

j

∣∣∣∣∣∣
∫

E j

h d|µ|

∣∣∣∣∣∣ ≤∑
j

r|µ|(E j) = r|µ|(Ar).

Taking the supremum over all partitions of Ar returns the total variation measure,
which leads to

|µ|(Ar) = sup
{E j }partition of Ar

∑
j

∣∣∣µ(E j)
∣∣∣ ≤ r · |µ|(Ar).

Accordingly for r < 1 follows that |µ|(Ar) = 0. This means |h| ≥ 1, |µ|− almost
everywhere.

On the other hand, for |µ|(E) > 0∣∣∣∣∣∣ 1
|µ|(E)

∫
h d|µ|

∣∣∣∣∣∣ =
∣∣∣∣∣∣ µ(E)|µ|(E)

∣∣∣∣∣∣ ≤ 1

can be obtained for all E ∈ M. This leads to h ≤ 1, |µ| − a.e..
Overall it follows |h| = 1, |µ| − a.e..
Since

{
x ∈ X

∣∣∣ h(x) , 1
}

is a set of |µ|-measure zero, we can set h(x) = 1 everywhere
on X. �

Remark 36. Theorem 35 provides existence of a function h ∈ L1(|µ|) such that

µ(E) =
∫

E
h d|µ|

holds for all E ∈ M(X).

Remark 37. The results of Theorem 33 and Theorem 35 can be applied to vector
valued measures as well, if the Radon-Nikodym-Property is fulfilled. Since the
considered functions have bounded variations, this property holds.

17



2. Mathematical Fundamentals of Image Processing

2.5. Subdifferential, Convex Duality and
Saddle-Point Problems

In this section we want to derive the needed theory that rewrites the minimisation
problem (2.3) as a saddle point problem, to ease computation of solutions. Very
detailed theory is given in [3].

Definition 38. Let X be a normed space and F : X → R∞ be convex. Then ξ ∈ X∗

is called subgradient of F at u ∈ X, if

F(u) + 〈ξ, v − u〉 ≤ F(v) ∀v ∈ X (2.4)

holds.
The mapping ∂F : X → P(X∗) that maps u ∈ X onto the subgradient is called
subdifferential.

Remark 39. It has to be mentioned that Definition 38 is a generalisation of the
derivative and therefore ∂F is a multivalued function.

Theorem 40. Let X be normed and F : X → R∞ be a convex mapping. Then u∗ is a
minimiser of F if

0 ∈ ∂F(u∗)

holds.

Proof.

u∗is a minimiser ⇐⇒ F(u∗) ≤ F(u) ∀u ∈ X
⇐⇒ F(u∗) + 〈0, u∗ − u〉 ≤ F(u) ∀u ∈ X
⇐⇒ 0 ∈ ∂F(u∗).

�

Lemma 41. Let X, Y be normed spaces, F, G : X → R∞ be proper and convex and
let A : Y → X be linear and continuous. Then

1. ∂(λF) = λ∂F ∀λ > 0.
2. ∂

(
F(·+ u0)

)
(u) = (∂F)(u + u0) ∀u, u0 ∈ X.

18
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3. ∂F + ∂G ⊂ ∂(F +G).
If there exists u0 ∈ domF ∩ domG where F is continuous, then

∂F + ∂G = ∂(F +G)

holds.
4. A∗ ◦ ∂F ◦ A ⊂ ∂(F ◦ A).

If there exists u0 ∈ domF ∩ range(A), then

A∗ ◦ ∂F ◦ A = ∂(F ◦ A).

holds.

Proof. see [3], Satz 6.51. �

Definition 42. Let X, Y be vector spaces and C ⊂ X, K ⊂ Y be subsets of these
vector spaces. Let L : C × K → R be a mapping.
The pair (u∗, φ∗) ∈ C × K is called a saddle point if

u∗ ∈ arg min
u∈C

L(u, φ∗),

φ∗ ∈ arg max
φ∈K

L(u∗, φ)

holds.

Remark 43. An equivalent formulation of (u∗, φ∗) being a saddle point, is given by

L(u∗, φ) ≤ L(u∗, φ∗) ≤ L(u, φ∗) ∀(u, φ) ∈ C × K.

Lemma 44. The pair (u∗, φ∗) is a saddle point of L if and only if

min
u∈C

sup
φ∈K

L(u, φ) = max
φ∈K

inf
u∈C

L(u, φ) = L(u∗, φ∗).

Proof. see [3], Bemerkung 6.72. �

Remark 45. According to Lemma 44, for a given saddle point problem we define
F(u) = supφ∈K L(u, φ) and G(φ) = infu∈C L(u, φ). Accordingly we define

min
u∈C

F(u)
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2. Mathematical Fundamentals of Image Processing

as the primal problem and
max
φ∈K

G(φ)

as the dual problem of the saddle point problem according to L.
We further get the equivalence

(u∗, φ∗) is a saddle point ⇐⇒

u∗ = arg minu∈C F(u) and
φ∗ = arg maxφ∈K G(φ).

Definition 46. Let X be a Banach space and F : X → R∞ be proper. Then the
Fenchel Conjugate F∗ : X∗ → R∞ is defined as

F∗(ξ) = sup
u∈X

(〈ξ, u〉X∗×X − F(u)) .

Further let G : X∗ → R∞ be proper. The Fenchel Conjugate G∗ : X → R∞ is
defined as

G∗(u) = sup
ξ∈X∗

(〈ξ, u〉X∗×X −G(ξ)) .

Lemma 47 (Fenchel inequality). For u ∈ X and ξ ∈ X∗ we get the inequality

〈ξ, u〉 ≤ F∗(ξ) + F(u)

Proof. see [3], Bemerkung 6.61. �

Lemma 48 (Fenchel equality). Let F : X → R∞ be proper, convex and lower semi
continuous. Then

ξ ∈ ∂F(u) ⇐⇒ 〈ξ, u〉 = F(u) + F∗(ξ)
⇐⇒ u ∈ ∂F∗(ξ).

Proof. If 〈ξ, u〉 = F(u)+F∗(ξ) holds, we get for v ∈ dom F according to Definition 46

〈ξ, u〉 ≥ F(u) + 〈ξ, v〉 − F(v)
⇒ F(u) + 〈ξ, v − u〉 ≤ F(v)
⇒ ξ ∈ ∂F(u).
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Vice versa for ξ ∈ ∂F(u) we get

⇒ 〈ξ, u〉 ≥ F(u) + 〈ξ, v〉 − F(v) v ∈ dom F
⇒ 〈ξ, u〉 ≥ F(u) + F∗(ξ)

Nevertheless the Fenchel inequality (Lemma 47) still holds. Therefore, we get

〈ξ, u〉 = F(u) + F∗(ξ).

The second equivalence

〈ξ, u〉 = F(u) + F∗(ξ) ⇐⇒ u ∈ ∂F∗(ξ)

follows analogously. �

Lemma 49. Let X be a Banach space and F : X → R∞ be proper. Then

1. For λ ∈ R :
(F + λ)∗(ξ) = F∗(ξ) − λ.

2. For λ > 0 :
(λF)∗(ξ) = λF∗

(
ξ
λ

)
.

3. For u0 ∈ X, ξ0 ∈ X∗(
F(·+ u0) + 〈ξ0, ·〉

)∗
(ξ) = F∗(ξ − ξ0) − 〈ξ − ξ0, u0〉.

4. Let Y be a Banach space and A : Y → X be linear, continuous and continuous
invertible with A−∗ = (A−1)∗. Then
(F ◦ A)∗(ξ) = F∗(A−∗ξ).

5. Let Y be a Banach space and G : Y → R∞. For H : X × Y → R∞ with
H(u, v) = F(u) +G(v) we get
H∗(ξ, ζ) = F∗(ξ) +G∗(ζ) for (ξ, ζ) ∈ X∗ × Y∗.

Proof. see [3], Lemma 6.65. �

For the further considerations let us specify the minimisation problem (2.3).
Let X, Y be Banach spaces, A : X → Y be linear and continuous. F : X → R∞,
G : Y → R∞ should be proper, convex and lower semi continuous. In imaging the
resulting minimisation problem can often be rewritten as

min
u∈X

F(u) +G(Au). (2.5)
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Example 50. Given the theory of Fenchel Conjugates the discrete version for TV-
Denoising problems can be reconsidered. Therefore let A be a discretisation of ∇.
According to equation (2.5) the mappings F and G are given as

F(u) =
λ

2
‖u − u0‖2,

G(v) = ‖v‖1.

Utilising the Fenchel Conjugate, the Operator G is rewritten as

G(Au) = sup
ξ∈Y∗
〈Au, ξ〉 −G∗(ξ),

which transforms (2.5) to the saddle point formulation

min
u∈X

sup
ξ∈Y∗
〈Au, ξ〉+ F(u) −G∗(ξ).

Let us assume that we are allowed to interchange min and sup, we get for equation (2.5)

min
u∈X

F(u) +G(Au) (primal problem)

=min
u∈X

sup
ξ∈Y∗
〈Au, ξ〉+ F(u) −G∗(ξ)

=max
ξ∈Y∗

inf
u∈X
〈Au, ξ〉+ F(u) −G∗(ξ)

=max
ξ∈Y∗
−F∗(−A∗ξ) −G∗(ξ). (dual problem)

The needed tool to make this interchange feasible is provided in the following
theorem.

Theorem 51 (Fenchel-Rockafellar-Duality). Let X, Y be Banach spaces, F : X → R∞,
G : Y → R∞ be proper, convex, lower semi-continuous and A : X → Y be linear
and continuous.
Let u∗ ∈ X be a solution of

min
u∈X

F(u) +G(Au).

If there exists u0 ∈ domF with G(Au0) < ∞ and G continuous at Au0, then

min
u∈X

F(u) +G(Au) = max
ξ∈Y∗
−F∗(−A∗ξ) −G∗(ξ)
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holds and the maximum is achieved.
A pairing (u∗, ξ∗) ∈ X × Y∗ solves the primal-dual problem if, and only if, the
conditions

−A∗ξ∗ ∈ ∂F(u∗),
ξ∗ ∈ ∂G(Au∗)

hold.

Proof. Since u∗ is a solution of the primal problem, Theorem 40 provides

0 ∈ ∂ (F +G ◦ A) (u∗).

Lemma 41 further gives

∂ (F +G ◦ A) (u∗) = ∂F + A∗ ◦ ∂G∂A.

Therefore there exists ξ∗ ∈ Y∗ with ξ∗ ∈ ∂G(Au∗) and −A∗ξ∗ ∈ ∂F(u∗).
The subdifferential inequality (2.4) provides

F(u∗) − 〈A∗ξ∗, v − u∗〉 ≤ F(v) ∀v ∈ X
〈−A∗ξ∗, u∗〉 − F(u∗) ≥ −〈A∗ξ∗, v〉 − F(v) ∀v ∈ X.

By taking the supremum over all v ∈ X we get

〈−A∗ξ∗, u∗〉 − F(u∗) ≥ F∗(−A∗ξ∗). (2.6)

Analogous arguments for ξ∗ ∈ ∂G(Au∗) give

〈ξ∗, Au∗〉 −G(Au∗) ≥ G∗(ξ∗). (2.7)

Adding up the inequalities (2.6) and (2.7) lead to

−F(u∗) −G(Au∗) ≥ F∗(−A∗ξ∗) +G∗(ξ∗)

which implies

min
u∈X

F(u) +G(Au) ≤ −F∗(−A∗ξ∗) −G∗(ξ∗).
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On the other hand, with Lemma 44 we have

min
u∈X

F(u) +G(Au) ≤ −F∗(−A∗ξ∗) −G∗(ξ∗)

and therefore ξ∗ solves the dual problem.

For the second part of the proof we make use of the Fenchel equality (Theorem 48)
and obtain

−A∗ξ∗ ∈ ∂F(u∗) ⇐⇒ 〈−A∗ξ∗, u∗〉 = F(u∗) + F∗(−A∗ξ∗),

as well as
ξ∗ ∈ ∂G(Au∗) ⇐⇒ 〈ξ∗, Au∗〉 = G(Au∗) +G∗(ξ∗).

Adding these two equations leads to

F(u∗) +G(Au∗) = −F∗(−A∗ξ∗) −G∗(ξ∗)

and therefore, the pair (u∗, ξ∗) solves the primal-dual problem. �

2.6. A Primal-Dual Algorithm

In this section we want to briefly discuss a recent method to solve minimisation
problems as given in (2.5). A detailed presentation of this method is given in [6].
Instead of the standard minimisation formulation

min
x∈X

F(x) +G(Kx)

for F, G convex and K linear, primal-dual algorithms operate on the resulting saddle
point formulation

min
x∈X

max
y∈Y

L(x, y) = min
x∈X

max
y∈Y
〈Kx, y〉+ F(x) −G∗(y)

as discussed in the previous Subsection.
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Definition 52. Let L : C1 ×C2 → R be a given saddle point formulation for C1 ⊂ X,
C2 ⊂ Y convex.
For arbitrary x0 ∈ X, y0 ∈ Y define

Ly0 : X → R∞, Ly0(x) =

L(x, y0) if x ∈ C1,
∞ else.

Lx0 : Y → [−∞,∞[, Lx0(y) =

L(x0, y) if y ∈ C2,
−∞ else.

If Ly0 is convex for all y0 ∈ C2 and Lx0 is concave for all x0 ∈ C1 we call

min
x∈C1

max
y∈C2

L(x, y)

a convex-concave saddle point problem.

Definition 53. Let X be a Hilbert space. Let F : X → R∞ be proper, convex and
lower semi-continuous.
The mapping proxF : X → X is defined as

proxF(ū) = arg min
u∈X

‖u − ū‖2

2
+ F(u)

and is called proximity operator.

Remark 54. proxF corresponds to the resolvent (I + ∂F)−1.

Lemma 55. Let L be a convex-concave saddle point problem. Then (x∗, y∗) ∈ C1 ×C2
is a saddle point if, and only if

(i):

x∗ ∈ arg min
x∈C1

Ly∗(x),

y∗ ∈ arg min
y∈C2

Lx∗(y)

and
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(ii): if −Lx∗ , Ly∗ are proper, convex and lower semi continuous. For σ, τ > 0x∗ = proxσ·Ly∗ (x∗),
y∗ = prox−τ·Lx∗ (y

∗)

holds.

Proof. (i): Let (x∗, y∗) be a saddle point. Applying Remark 43 leads to the equiv-
alent formulation

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) ∀(x, y) ∈ C1 ×C2. (2.8)

With Definition 52 we gety∗ ∈ arg miny∈C2
−Lx∗(y),

x∗ ∈ arg minx∈C1
Ly∗(x),

being equivalent to (2.8).
(ii): Since x∗ minimises Ly∗(x) and y∗ minimises −Lx∗(y) respectively, we get

0 ∈ ∂Ly∗(x∗) and 0 ∈ ∂ (−Lx∗) (y∗) as an equivalent formulation, according to
Theorem 40. This can be rewritten as0 ∈ ∂Ly∗(x∗),

0 ∈ ∂ (−Lx∗) (y∗).

⇐⇒

x∗ ∈ x∗ + σ∂Ly∗(x∗),
y∗ ∈ y∗ + τ∂ (−Lx∗) (y∗).

⇐⇒

x∗ ∈ (I + σ∂Ly∗) (x∗),
y∗ ∈ (I + τ∂ (−Lx∗)) (y∗).

Finally Remark 54 delivers the equivalent formulationx∗ = proxσ·Ly∗ (x∗),
y∗ = prox−τ·Lx∗ (y

∗).

�
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Corollary 56. Let X, Y be Banach spaces. Let F : X → R∞, G : Y → R∞ be proper,
convex and lower semi-continuous, K : X → Y be a linear and continuous mapping
and let the Fenchel-Rockafellar-Duality (Theorem 51) hold, i.e.

min
x∈X

F(x) +G(Ax) = max
y∈Y∗
−F∗(−A∗y) −G∗(y).

Then (x∗, y∗) ∈ domF × domG∗ is a saddle point of L : domF × domG∗ → R

L(x, y) = 〈Kx, y〉+ F(x) −G∗(y),

if and only if x∗ = proxσF(x∗ −σK∗y∗),
y∗ = proxτG∗(y∗ + τKx∗)

for some σ, τ > 0.

Proof. Since ∂Ly∗(x) = K∗y∗ + ∂F(x) holds according to Lemma 41 we get

⇐⇒ 0 ∈ K∗y∗ + ∂F(x∗)
⇐⇒ x∗ ∈ x∗ + σK∗y∗ + σ∂F(x∗)
⇐⇒ x∗ −σK∗y∗ ∈ (I + σ∂F) (x∗)
⇐⇒ x∗ = proxσF (x∗ −σK∗y∗) .

With similar arguments we get

∂ (−Lx∗) (y) = −Kx∗ + ∂G∗(y) ⇐⇒ y∗ = proxτG∗(y∗ + τKx∗).

�

Corollary 56 motivates an iterative way to calculate a minimiser by using the prox-
imity operator as an update function. This leads to the so called Arrow-Hurwicz-
Method: xn+1 = proxσF(xn −σK∗yn),

yn+1 = proxτG∗(yn + τKxn).
(2.9)

Additionally we can make use of xn+1 that is calculated in the first step of (2.9). If
an extrapolation step is applied, we get the Arrow-Hurwicz-Method with extrapola-
tion:
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
xn+1 = proxσF(xn −σK∗yn),
x̄n+1 = 2xn+1 − xn,
yn+1 = proxτG∗(yn + τKx̄n+1).

(2.10)

For the Arrow-Hurwicz-Method with extrapolation given in (2.10) a convergence
Theorem can be shown.

Theorem 57. Let X, Y be a Hilbert space, K : X → Y linear and continuous and
F : X → R∞, G : Y → R∞ proper, convex and lower semi continuous.
Let L : domF × domG∗ → R

L(x, y) = 〈Kx, y〉+ F(x) −G∗(y)

have atleast one saddle point.
Then Iteration (2.10) converges for each pair (x0, y0) ∈ X × Y∗ to a saddle point of
L in a weak sense, if στ‖K‖2 < 1 holds.

Proof. see [3], Satz 6.141. �

28



3. Functional Lifting in the Context
of Images and Image Sequences

In this chapter we introduce a regularisation approach that operates on curvature
information of the image gradient. The fundamentals of this idea are given by Citti
and Sarti [7] and were applied to 2D imaging problems in [4], as already mentioned
in Chapter 1.
The idea, presented in [7], is to lift the two dimensional image gradient to the
three-dimensional so-called rototranslation space, where the third dimension corre-
sponds to the direction of the image gradient. A visualisation of this idea is given in
Figure 3.1.

Figure 3.1.: Lifting of a binary octagon to the 3D rototranslation space, mentioning that the third
dimension represents the gradient direction. Picture from [4].

In this chapter we want to extend this lifting approach to images in higher dimensions.
Further we want to treat moving images, which implies that time is always one
dimension of the problem. Therefore image sequences and moving 3D images are
objects of interest. It has to be mentioned that time dependent problems have to be
treated with special care, since object behaviour is different along the time axis in
comparison to its spatial dimensions.

29



3. Functional Lifting in the Context of Images and Image Sequences

Very often we will refer to the ideas given in [4], in order to mention which concepts
are the same and where we have to adapt the existing theory to make this approach
working for higher dimensional problems.

3.1. Introducing a Functional Lifting approach
concerning Velocities

First let us introduce the space-time unit sphere

S n :=
{
x = (x̃, xt) ∈ Rn−1 ×R

∣∣∣‖x̃‖22 + x2
t = 1

}
.

Since we are dealing with space-time problems it is useful to split the unit sphere in
its positive and negative time components. To deal with the case t = 0, we define
this split in a recursive manner.

S 1
+ :={1},

S n
+ :=

{
x = (x̃, xt) ∈ S n

∣∣∣xt > 0∨ x̃ ∈ S n−1
+

}
,

S n
− :=S n \ S n

+.

Remark 58. By definition we have for x̃ ∈ S n−1
+ and x ∈ S n

+ that xt = 0.

For an example of these sets see Figure 3.2.

Here we deviate from the ideas presented in [4]. There the gradient of an image
supported on Ω ⊂ R2, was lifted in the space Ω× S 1. The straight-forward approach
for images supported on Ω ⊂ Rn, with n ≥ 3 would be, to lift the gradient in
the space Ω × S n−1. A more sensible way to perform functional lifting for time
dependent imaging problems can be achieved by introducing the quotient space

Pn := S n/{−1, 1} =
{
{x,−x}

∣∣∣x ∈ S n
+

}
.

By using this quotient space it is possible to identify edge movement in one direction
independent from the contrast.
Consequently we define a mapping between S n and Pn and vice versa.
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S+2
S2
(0,0)
(1,0)

(-1,0)

1

xtx~
Figure 3.2.: Plot of the unit sphere S 2 and the subset S 2

+

Definition 59. Let S n and Pn be defined as above. As a mapping between these sets
we define

j :S n → Pn

x 7→ {x,−x}

as well as its right inverse

j+ :Pn → S n
+

{x,−x} 7→

x if x ∈ S n
+

−x if x ∈ S n
−.

.

Remark 60. With this setting we have j ◦ j+ = idPn .

Further we need to introduce a location function to decide on which sub sphere of
the space-time sphere a vector x ∈ S n is located. For this purpose, we define

sign :S n → {−1, 1}

x 7→

1 if x ∈ S n
+

−1 if x ∈ S n
−.

(3.1)
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3. Functional Lifting in the Context of Images and Image Sequences

Lemma 61. For each x ∈ S n the property

sign(x) · j+( j(x)) = x

can be verified.

Proof. If x ∈ S n
+ we get

sign(x) · j+( j(x)) = 1 · j+({x,−x}) = 1 · x = x.

On the other hand x ∈ S n
− leads to

sign(x) · j+( j(x)) = −1 · j+({x,−x}) = −1 · −x = x.

�

Definition 62. Let u ∈ BV(Ω), |∇u| ∈ M(Ω) be the total variation of ∇u ∈
M(Ω, Rn) and σ ∈ L∞

|∇u|(Ω, Rn) be the density of ∇u w.r.t. |∇u|. The measure
µ ∈ M(Ω ×Pn) is the Functional Lifting for ∇u if∫

Ω×Pn
ϕ(x, τ) dµ(x, τ) =

∫
Ω

sign(σ(x)) · ϕ (x, j(σ(x))) d |∇u|

holds for all ϕ ∈ C0(Ω ×Pn) with C0(Ω ×Pn)∗ =M(Ω ×Pn).

Remark 63. In this setting µ is not necessarily a positive measure, what deviates
from the Definition given in [4].

Remark 64. With Theorem 35 it follows that σ(x) ∈ S n, almost everywhere on |∇u|.

Remark 65. Let µ be the Functional Lifting of ∇u. Then µ indeed preserves the gradi-
ent of u. This can be verified by setting ϕ(x, τ) = ψ(x) · j+(τ) for ψ ∈ C0(Ω ×Pn, Rn).
Definition 62 leads to∫

Ω×Pn
ϕ(x, τ) dµ(x, τ) =

∫
Ω

sign(σ(x)) · ϕ (x, j(σ(x))) d |∇u|

=

∫
Ω

sign(σ(x)) · ψ(x) · j+( j(σ(x))) d |∇u|

=

∫
Ω
ψ(x) ·σ(x)d |∇u|

=

∫
Ω
ψ(x) d∇u.
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3.2. Vertex Penalisation

3.2. Vertex Penalisation

To penalise changes in the direction along the gradient of u we have to think of a way
to calculate a directional derivative in the lifted setting. The directional derivative
has to be calculated at each point of the domain Ω in every possible direction of Pn.
We introduce the tangential plane

Tϑ :=
{
t ∈ Rn

∣∣∣ t ⊥ j+(ϑ)
}

,

for each direction ϑ ∈ Pn (see Figure 3.3). This hyperplane is of dimension n− 1 and
can be described locally for a fixed ϑ with an orthonormal basis t1, . . . , tn−1 ∈ Rn.
Accordingly ( j+(ϑ), t1, . . . , tn−1) forms a orthonormal basis on Rn.
The effort to describe this tangential plane is one of the main novelties compared to
the work done in [4] on two dimensional objects, where a simple counterclockwise
rotation of ϑ is enough. Tϑϑ0

Figure 3.3.: Tangential plane Tϑ for an arbitrary direction ϑ ∈ P2

Now we are able to define the derivative of a function ϕ ∈ C0(Ω ×Pn) in a fixed
point (x,ϑ) and a fixed direction ti in the tangential hyperplane.

Definition 66. Let (x,ϑ) ∈ (Ω ×Pn) be fixed, t1, . . . , tn−1 ∈ Rn be an orthonormal
basis of the hyperplane Tϑ and { j+(ϑ), t1, . . . , tn−1} be the used orthonormal basis of
Rn. Further let Rϑ : Rn → Rn be a rotation matrix that maps the vector (1, 0, . . . , 0)t
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3. Functional Lifting in the Context of Images and Image Sequences

onto j+(ϑ). Then the directional derivative for elements ϕ ∈ C0(Ω×Pn) in direction
ti can be written as

∂ϕ

∂ti
(x,ϑ) = lim

s→0

ϕ(x, j(Rϑ t̂(s, i))) − ϕ(x,ϑ)
s

,

where t̂(s, i) ∈ Rn is defined as

t̂k(s, i) :=


cos(s) if k = 1
sin(s) if k = i
0 else.

A graphical interpretation of Definition 66 is shown in Figure 3.4.

Rϑt(0,i)0 Rϑt(s,i) s ti

j+(ϑ)ti
Figure 3.4.: Interpretation of the directional derivative along the vector ti.

Definition 67. Using Definition 66 we can introduce the directional derivative
∇Tϑϕ(x,ϑ), for ϕ : Ω ×Pn 7→ R, as a linear functional mapping

∇Tϑϕ(x,ϑ) : Tϑ 7→ R

for a fixed point (x,ϑ) ∈ Ω ×Pn. In terms of the orthonormal basis vectors we
introduce

∇Tϑϕ(x,ϑ) (ν) =
n−1∑
i=1

∂ϕ

∂ti
(x,ϑ)(ti(ϑ) · ν)
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3.2. Vertex Penalisation

for ν ∈ Tϑ.
Furthermore, we need a corresponding way to calculate the divergence in this
tangential plane, since differentiation in a weak sense is needed, when variational
methods are used. For this purpose see the theory derived in Chapter 2.
For a vectorfield ψ : Ω ×Pn → Rn s.t. ψ(x,ϑ) ∈ Tϑ for all (x,ϑ) ∈ Ω ×Pn we
define

divTϑψ(x,ϑ) :=
n−1∑
i=1

∂ψ

∂ti
(x,ϑ) · ti. (3.2)

Consequently the derivative ∂
∂ti

is applied in each component of ψ, thus Definition 66
still makes sense.

Next we show that the definitions of gradient and divergence are consistent by
showing that a divergence theorem can be proven in this setting. Since we integrate
on the domain Ω ×Pn we declare∫

Ω×Pn
ϕ(x,ϑ) d(λn ⊗Hn−1) :=

1
2

∫
Ω×S n

ϕ(x, j(t)) d(λn ⊗Hn−1)

for an integrable function ϕ.

Lemma 68. For ϕ ∈ C1
C(Ω ×Pn) and ψ ∈ C1(Ω ×Pn, Rn) s.t. ψ(x,ϑ) ∈ Tϑ the

divergence theorem can be rewritten as∫
Ω×Pn

∇Tϑϕ(x,ϑ) · ψ(x,ϑ) d(x,ϑ) = −
∫

Ω×Pn
divTϑψ(x,ϑ) · ϕ(x,ϑ) d(x,ϑ)

Proof. We compute∫
Ω×Pn

∇Tϑϕ(x,ϑ) · ψ(x,ϑ)d(x,ϑ) =
∫

Ω×Pn

n−1∑
i=1

∂ϕ

∂ti
(x,ϑ)(ti(ϑ) · ψ(x,ϑ))d(x,ϑ)

=
n−1∑
i=1

∫
Ω×Pn

∂ϕ

∂ti
(x,ϑ)(ti(ϑ) · ψ(x,ϑ))d(x,ϑ)

= −
n−1∑
i=1

∫
Ω×Pn

∂ψ

∂ti
(x,ϑ)(ti(ϑ) · ϕ(x,ϑ))d(x,ϑ)
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3. Functional Lifting in the Context of Images and Image Sequences

= −

∫
Ω×Pn

n−1∑
i=1

∂ψ

∂ti
(x,ϑ)(ti(ϑ) · ϕ(x,ϑ))d(x,ϑ)

= −

∫
Ω×Pn

divTϑψ(x,ϑ) · ϕ(x,ϑ)d(x,ϑ).

�

The next step is to apply Lemma 68 to the lifted measure µ and define the directional
derivative in a weak sense. This will make the curvature information accessible in
the lifted setting.

Definition 69. Let µ ∈ M(Ω × Pn) be the Functional Lifting of ∇u. We call
η ∈ M(Ω × Pn, Rn) the directional derivative of µ in the weak sense if the po-
lar decomposition η = ση · |η| obeys ση(x,ϑ) ∈ Tϑ, |η| − a.e. and∫

Ω×Pn
divTϑψ(x,ϑ)dµ = −

∫
Ω×Pn

ψ(x,ϑ) ·ση(x,ϑ)d|η|(x,ϑ)

for all ψ(x,ϑ) ∈ C1
C(Ω ×Pn, Rn) s.t. ψ(x,ϑ) ∈ Tϑ.

We will denote the weak directional derivative with η = ∇Tϑµ.

To get an idea how the weak derivative on the functional lifting works, we look at a
basic 3D example.
Define a binary image where a vertical line distinguishes regions that are equal to
zero and equal to one, respectively. With increasing time, this line moves right with a
constant velocity v1. At the time xt = 0 the velocity should change to v2. Illustrations
of this example are given in Figure 3.5 and more detailed in Figure 3.6.

Example 70. Let the domain be the unit cube Ω = [−1, 1]3 and the image be
u(xx, xy, xt) = u1(xx, xy, xt) + u2(xx, xy, xt) with

u1(xx, xy, xt) =

1 if xx ≥ v1 · xt ∧ xt ≤ 0
0 else

u2(xx, xy, xt) =

1 if xx ≥ v2 · xt ∧ xt > 0
0 else
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xxxy
vi

Figure 3.5.: Sketch of a simple binary image sequence. Velocity changes at xt = 0.

and v1, v2 > 0 (see Figure 3.6).

This image leads to the normal vector

σ =

σ1 if xt ≤ 0
σ2 else

with σ1 := 1√
1+v2

1

(1, 0,−v1)t and σ2 := 1√
1+v2

2

(1, 0,−v2)t. Further we want to

define

ϑ1 := j(σ1) =

 1√
1 + v2

1

(−1, 0, v1)
t ,

−1√
1 + v2

1

(−1, 0, v1)
t


and

ϑ2 := j(σ2) =

 1√
1 + v2

2

(−1, 0, v2)
t ,

−1√
1 + v2

2

(−1, 0, v2)
t


as the corresponding objects in the quotient space Pn.

The Lifting µ of ∇u can then be rewritten as

∫
Ω×P3

ϕ dµ =

∫ 1

−1

∫ 0

−1
−ϕ

(
(v1xt, xy, xt),ϑ1

)
·

√
1 + v2

1 dxt dxy

+

∫ 1

−1

∫ 1

0
−ϕ

(
(v2xt, xy, xt),ϑ2

)
·

√
1 + v2

2 dxt dxy
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3. Functional Lifting in the Context of Images and Image Sequences

xxxt
ϑ1

ϑ2

𝜎1

𝜎2

v1

v21
1

xt=-1
xt=0
xt=1

xx=v1xt

xx=v2xt

xx=-1 xx=0 xx=1
Figure 3.6.: Sketch of u, used at Example 70, in the xx − xt plane (shaded area is equal to 1). With

this setting we have sign(σi) = −1 with i = {1, 2}.

using the Jacobian determinant of the transformation f : (xy, xt) 7→ (vixt, xy, xt).

J f =
√

det ((D f )t · D f ) =

√
det

(
1 v2

i + 1
0 v2

i + 1

)
=

√
1 + v2

i .

For ψ ∈ C1
C(Ω ×P3, R3) the directional derivative of µ along the tangential plane

Tϑ gives

∫
Ω×P3

ψ(x,ϑ) d∇Tϑµ
Def.69
= −

∫
Ω×P3

divTϑψ(x,ϑ) dµ

(3.2)
= −

∫
Ω×P3

n−1∑
i=1

∂ψ

∂ti
· ti dµ
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and leads to

=
√

1 + v2
1

∫ 1

−1

∫ 0

−1

∂ψ

∂t11

(
(v1xt, xy, xt),ϑ1

)
· t11 +

∂ψ

∂t21

(
(v1xt, xy, xt),ϑ1

)
· t12 dxt dxy

+
√

1 + v2
2

∫ 1

−1

∫ 1

0

∂ψ

∂t12

(
(v2xt, xy, xt),ϑ2

)
· t21 +

∂ψ

∂t22

(
(v2xt, xy, xt),ϑ2

)
· t22 dxt dxy.

Note that the subscript of the vectors t j
i refers to the two different velocities and the

superscript identifies the two basis vectors of the tangential planes Tϑi .

We set t1i = (0, 1, 0)t and t2i = 1√
1+v2

i

(vi, 0, 1)t as ONB of the tangential plane. Using

the theorem of Fubini, fundamental theorem of calculus and ψ ∈ C1
C(Ω ×P3, R3)

we get ∫ 1

−1

∂ψ

∂t11

(
(v1xt, xy, xt),ϑ1

)
· t11dxy = 0.

With ψ̃(xt, xy) := ψ

( v1√
1+v2

1

xt, xy, 1√
1+v2

1

xt

)
,ϑ1

 · t21 and a transformation of vari-

ables we get for the second term

∫ 1

−1

∫ 0

−1

∂ψ

∂t21

(
(v1xt, xy, xt),ϑ1

)
· t12 ·

√
1 + v2

1 dxt dxy

=

∫ 1

−1

∫ 0

−

√
1+v2

1

∂ψ

∂t21


(

v1√
1 + v2

1

xt, xy,
1√

1 + v2
1

xt

)
,ϑ1

 · t21 dxt dxy

=

∫ 1

−1

∫ 0

−

√
1+v2

1

∂ψ̃

∂xt
(xt, xy) dxt dxy.

Using again the fundamental theorem of calculus and that ψ̃ is continuous and
compactly supported on the transformed domain we observe

=

∫ 1

−1
ψ̃(0, xy) dxy =

∫ 1

−1
ψ
(
(0, xy, 0),ϑ1

)
· t21 dxy.
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3. Functional Lifting in the Context of Images and Image Sequences

The calculation of
∫ 1
−1

∫ 0
−1

∂ψ

∂t21
t21 +

∂ψ

∂t22
t22 dt dy follows analogously.

Summing up finally leads to∫
Ω×P3

ψ(x,ϑ) d∇Tϑµ =

∫ 1

−1
ψ
(
(0, xy, 0),ϑ1

)
· t21 dxy −

∫ 1

−1
ψ
(
(0, xy, 0),ϑ2

)
· t22 dxy.

In view of the polar decomposition d∇Tϑµ = σηd|η| we obtain for this example

|η| =H1x
{
{0} × {[−1, 1]} × {0} × {ϑ1,ϑ2}

}
ση((xx, xy, xt),ϑ) =


1√

1+v2
1

(v1, 0, 1)t for xx = 0, xy ∈ [−1, 1], xt = 0, ϑ = ϑ1

1√
1+v2

2

(v2, 0, 1)t for xx = 0, xy ∈ [−1, 1], xt = 0, ϑ = ϑ2.

Example 70 leads to the result, that the directional derivative is only supported along
the edge where the vector ϑ changes its direction. Since this is the behaviour we
desired, we are able to think of a method to penalise the directional derivative. The
idea is to take the supremum of a subset of all test functions ψ ∈ C1

C(Ω ×Pn, Rn)
such that the result of ∫

Ω×Pn
ψ(x,ϑ) d∇Tϑµ

measures the change of ϑ of the lifted image.

Definition 71.

Tρ(µ) = sup
ψ∈Mρ(Ω)

∫
Ω×Pn

divTϑψ(x,ϑ)dµ

with

Mρ(Ω) =
{
ψ ∈ C1

C(Ω ×Pn, Rn)
∣∣∣ divTϑψ ∈ CC(Ω ×Pn),ψ(x, ·) ∈ Cρ ∀x ∈ Ω

ψ(x,ϑ) ∈ Tϑ, ∀ϑ ∈ Pn
}

Definition 71 is, up to the different test space of ψ and the resulting application of
the divergence, consistent with the theory presented in [4].
How the directional derivative gets penalised is defined by the set Cρ. In [4] the set
Cρ is generated by a lower semi-continuous metric ρ and rewrites as

Cρ =
{
ϕ ∈ C(Pn)

∣∣∣ϕ(ϑ1) − ϕ(ϑ2) ≤ ρ(ϑ1,ϑ2), ∀(ϑ1,ϑ2) ∈ Pn ×Pn
}

.
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This approach is not applicable in the higher dimensional setting any more since here
the elements of Cρ are mapping into the space Rn. In [4] two special cases of the
used metric ρ are investigated. They show that for these special cases it is possible
to rephrase the set Cρ in a way that only a special norm of ϕ has to be restricted in
the right manner. This motivates to extend the norms used in [4] to vector valued
functions.

Before we investigate these two special cases for Cρ let us give some further defini-
tions since they will be used in the upcoming sections.

Definition 72. For any function ζ : Pn → Rn we define the norm

‖ζ‖∞,p = sup
ϑ∈Pn
|ζ(ϑ)|p.

Definition 73. For any two elements ϑ1,ϑ2 ∈ Pn we define its distance as

dPn(ϑ1,ϑ2) = min
ϑ̃1∈ϑ1,ϑ̃2∈ϑ2

‖ϑ̃1 − ϑ̃2‖Rn

Definition 74. For ϑ1,ϑ2 ∈ Pn we define the geodesic metric as

dgeo(ϑ1,ϑ2) = inf
ϑ∈Θ

∫ 1

0

∣∣∣ϑ′(s)
∣∣∣ ds

for elements (ϑ1,ϑ2) ∈ Pn ×Pn and

Θ :=
{
ϑ(s) : [0, 1] → Pn |ϑ(0) = ϑ1 , ϑ(1) = ϑ2 ,ϑ ∈ C ,ϑ′ ∈ C a.e.

}
.

This is actually a metric, which is verified in the next Lemma.
To get a clearer structure we will use the sets Θ12, Θ23 and Θ13 which have the same
properties as Θ, but with suitable boundary conditions for ϑ(0) and ϑ(1).

Lemma 75. The mapping dgeo(ϑ1,ϑ2) = infϑ∈Θ12

∫ 1
0

∣∣∣ϑ′(s)
∣∣∣ ds is a metric on Pn.

Proof. We verify
(1) Positive Definiteness:
For any pair (ϑ1,ϑ2) ∈ Pn ×Pn we have

dgeo(ϑ1,ϑ2) = inf
ϑ∈Θ12

∫ 1

0

∣∣∣ϑ′(s)
∣∣∣︸ ︷︷ ︸

≥0

ds ≥ 0.
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For ϑ1 = ϑ2 we can choose ϑ̃(s) ≡ ϑ1 ∈ Θ12 for all s ∈ [0, 1] and we get

0 ≤ dgeo(ϑ1,ϑ1) = inf
ϑ∈Θ12

∫ 1

0

∣∣∣ϑ′(s)
∣∣∣ ds ≤

∫ 1

0

∣∣∣ϑ̃′(s)
∣∣∣︸ ︷︷ ︸

=0

ds = 0,

providing ϑ1 = ϑ2 ⇒ dgeo(ϑ1,ϑ1) = 0.
Vice versa we claim dgeo(ϑ1,ϑ2) = 0 and take for this pair (ϑ1,ϑ2) a sequence
ϑn ∈ Θ12 with

lim
n→∞

∫ 1

0
|ϑ′n(s)| ds = inf

ϑ∈Θ

∫ 1

0
|ϑ′(s)| ds = 0.

By making use of ∣∣∣∣∣∣
∫ 1

0
ϑ′n(s) ds

∣∣∣∣∣∣ ≤
∫ 1

0
|ϑ′n(s)| ds→ 0,

we get limn→∞
∫ 1

0 ϑ′n(s) ds = 0 and obtain that the fundamental theorem of calculus
leads to

ϑ(1) − ϑ(0) =
∫ 1

0
ϑ′n(s) ds

which can be rewritten as

ϑ2 = ϑ1 +

∫ 1

0
ϑ′n(s) ds.

By taking the limit we get

ϑ2 = ϑ1 + lim
n→∞

∫ 1

0
ϑ′n(s) ds︸                ︷︷                ︸

=0

= ϑ1.

(2) Symmetry:
Symmetry follows immediately, since for every ϑ ∈ Θ12 we can define ϑ̃(s) :=
ϑ(1 − s) with ϑ̃ ∈ Θ21. Since the equality∫ 1

0
|ϑ′(s)| ds =

∫ 1

0
|ϑ̃′(s)| ds.
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holds, we have dgeo(ϑ1,ϑ2) = dgeo(ϑ2,ϑ1).
(3) Triangle Inequality:
Let ϑn

12 ∈ Θ12 be a sequence with

lim
n→∞

∫ 1

0
|ϑn′

12(s)| ds = d(ϑ1,ϑ2)

and choose ϑn
23 ∈ Θ23 analogously.

Now we define ϑn
13 ∈ Θ13 as

ϑn
13(s) :=

ϑn
12(2s) for s ∈ [0, 1

2 ]

ϑn
23(2s − 1) for s ∈ [1

2 , 1].

With this setting we can verify the inequality

dgeo(ϑ1,ϑ3) = inf
ϑ∈Θ13

∫ 1

0

∣∣∣ϑ′(s)
∣∣∣ ds

≤ lim
n→∞

∫ 1

0

∣∣∣∣ϑn′
13(s)

∣∣∣∣ ds

= lim
n→∞

∫ 1

0
|ϑn′

12(s)| ds + lim
n→∞

∫ 1

0
|ϑn′

23(s)| ds

=dgeo(ϑ1,ϑ2) + dgeo(ϑ2,ϑ3).

�

Now we want to look at some variations of Cρ and calculate how they apply to
Example 70.

3.2.1. Restriction to a Set of Functionals that measures Edge
Length

In this subsection we want to extend the ideas presented in [4, Example 3.7], where
the discrete metric was used to generate the set Cρ, to a higher dimensional setting.
As a reasonable generalisation to vector valued functions we define

C0 :=
{
ψ(x, ·) ∈ C(Pn, Rn)

∣∣∣∣∣ ‖ψ(x, ·)‖∞,2 ≤
1
2

}
.
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With this setting we get for Example 70

T0(µ) = sup
ψ∈M0(Ω)

∫
Ω×Pn

divTϑψ(x,ϑ)dµ

= sup
ψ∈M0(Ω)

{∫ 1

−1
ψ
(
(0, xy, 0),ϑ1

)
· t21 dxy −

∫ 1

−1
ψ
(
(0, xy, 0),ϑ2

)
· t22 dxy

}
≤

∫ 1

−1

1
2
· ‖t21‖2︸︷︷︸

=1

dxy +

∫ 1

−1

1
2
· ‖t22‖2︸︷︷︸

=1

dxy = 2.

In the last line ψ(x,ϑ) ∈ M0(Ω) and the Hölder inequality were used. In order to
get equality here, we search for ψn(x,ϑ) ∈ M0(Ω) which fulfils

lim
n→∞

∫
Ω×Pn

divTϑψn(x,ϑ)dµ = 2.

Therefore we look at the function

ψn(x,ϑ) =
1
2
ξn(x) [η1(ϑ) · s(ϑ) + η2(ϑ) · s(ϑ)] (3.3)

where s(ϑ) is a smooth function that fulfils s(ϑ) ∈ Tϑ with s(ϑ1) = t21 and
s(ϑ2) = t22 respectively. Let ξn be a smooth cutoff function in space, η1 and η2
are smooth localisers at ϑ1 and ϑ2.

s : Pn → Rn,

s(ϑ) =
n−1∑
i=1

ci(ϑ)ti(ϑ),

where ti(ϑ) are basis vectors of Tϑ. Since the t̃i forms a basis the smooth weights
ci(ϑ) can be easily chosen in a way that s(ϑ1) = t21 and s(ϑ2) = t22 hold.

In order to describe η1 and η2 we introduce the smooth cutoff function

η0 : R→ R

η0(x) =

k · exp
(
− 1

1−(2x)2

)
if |x| < 1

2

0 else.
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So we have a function compactly supported in ] − 1, 1[ that fulfils η0(0) = 1 for the
right constant k = e1.
Using η0 and Definition 73 we can define

ηi : Pn → R

ηi := η0

(
dPn(ϑ,ϑi)2

c2

)
for i = 1, 2.

If c > 0 is properly chosen the property supp η1 ∩ supp η2 = ∅ can be easily verified.

Further we get the smooth cutoff function ξn : Ω → R needed for (3.3) by applying
the theorem about partition of unity on the compact set Kn =

{
x ∈ Ω | dist(∂Ω, x) ≥ 1

n

}
,

leading to
lim

n→∞
ξn ((0, xy, 0)t) = 1 ∀xy ∈ (−1, 1)

Therefore we obtain the desired equality

lim
n→∞

∫
Ω×Pn

divTϑψn(x,ϑ)dµ

= lim
n→∞

{∫ 1

−1
ψn

(
(0, xy, 0),ϑ1

)
· t21 dxy −

∫ 1

−1
ψn

(
(0, xy, 0),ϑ2

)
· t22 dxy

}

= lim
n→∞


∫ 1

−1

1
2
ξn ((0, xy, 0)t) · t21 · t

2
1︸︷︷︸

=1

dxy +

∫ 1

−1

1
2
ξn ((0, xy, 0)t) · t22 · t

2
2︸︷︷︸

=1

dxy


=

1
2

∫ 1

−1
lim

n→∞
ξn ((0, xy, 0)t) dxy +

1
2

∫ 1

−1
lim

n→∞
ξn ((0, xy, 0)t) dxy = 2.

This leads to the interpretation, that T0(µ) penalises the edge length of objects.
Therefore the used definition of the set C0 seems reasonable.

3.2.2. Restriction to a Set of Functionals that measure
Curvature

In this subsection we want to extend the ideas presented in [4, Example 3.8] to a
higher dimensional setting. There the geodesic distance was used to generate the
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set Cρ what led to a restriction of ‖∇ϑϕ‖∞. As a reasonable generalisation for vector
valued functions we define the set C1 as

C1 :=
{
ψ(x, ·) ∈ C(Pn, Rn)

∣∣∣ ‖ψ(x, ·)‖∞,2 ≤ α, ‖∇ϑψ(x, ·)‖∞,2 ≤ β
}

.

With this setting we get for Example 70

T1(µ) = sup
ψ∈M1(Ω)

∫
Ω×Pn

divTϑψ(x,ϑ)dµ

= sup
ψ∈M1(Ω)

{∫ 1

−1
ψ
(
(0, xy, 0),ϑ1

)
· t21 dxy −

∫ 1

−1
ψ
(
(0, xy, 0),ϑ2

)
· t22 dxy

}
.

As an upper estimate we get

∣∣∣ψ(ϑ1) · t21 − ψ(ϑ2) · t22
∣∣∣ = ∣∣∣ψ(ϑ1) · t21 − ψ(ϑ1) · t22 + ψ(ϑ1) · t22 − ψ(ϑ2) · t22

∣∣∣
≤

∣∣∣ψ(ϑ1) · t21 − ψ(ϑ1) · t22
∣∣∣+ ∣∣∣ψ(ϑ1) · t22 − ψ(ϑ2) · t22

∣∣∣
≤

∣∣∣ψ(ϑ1) · (t21 − t22)
∣∣∣+ ∣∣∣(ψ(ϑ1) − ψ(ϑ2)) · t22

∣∣∣ .
Now define the set

Θ :=
{
ϑ(s) : [0, 1] → Pn |ϑ(0) = ϑ1 , ϑ(1) = ϑ2 ,ϑ ∈ C ,ϑ′ ∈ C a.e.

}
and apply the fundamental theorem of calculus. We obtain for every curve ϑ(s) ∈ Θ

∣∣∣ψ(ϑ1) · t21 − ψ(ϑ2) · t22
∣∣∣ ≤ ∣∣∣ψ(ϑ1) · (t21 − t22)

∣∣∣+ ∣∣∣∣∣∣
∫ 1

0
∇ψ(ϑ(s)) · ϑ′(s) ds · t22

∣∣∣∣∣∣
≤

∣∣∣ψ(ϑ1) · (t21 − t22)
∣∣∣+ ∣∣∣∣∣∣

∫ 1

0
∇ψ(ϑ(s)) · ϑ′(s) ds

∣∣∣∣∣∣ · ∣∣∣t22∣∣∣︸︷︷︸
=1

≤
∣∣∣ψ(ϑ1) · (t21 − t22)

∣∣∣+ ∫ 1

0

∣∣∣∇ψ(ϑ(s)) · ϑ′(s)
∣∣∣ ds

≤‖ψ‖
∣∣∣t21 − t22

∣∣∣+ ‖∇ϑψ‖∫ 1

0

∣∣∣ϑ′(s)
∣∣∣ ds

≤α ·
∣∣∣t21 − t22

∣∣∣+ β ·

∫ 1

0

∣∣∣ϑ′(s)
∣∣∣ ds.
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Taking the Infimum over all curves ϑ ∈ Θ we obtain

∣∣∣ψ(ϑ1) · t21 − ψ(ϑ2) · t22
∣∣∣ ≤α · ∣∣∣t21 − t22

∣∣∣+ β · inf
ϑ∈Θ

∫ 1

0

∣∣∣ϑ′(s)
∣∣∣ ds

≤α ·
∣∣∣t21 − t22

∣∣∣+ β · dgeo(ϑ1,ϑ2),

where d(·, ·) is the geodesic metric on Pn ×Pn as defined in Definition 74. This
leads to

T1(µ) ≤ 2 ·
(
α ·

∣∣∣t21 − t22
∣∣∣+ β · dgeo(ϑ1,ϑ2)

)
(3.4)

To get a lower estimate as well, we choose a special function ψ ∈ M1(Ω) instead
of taking the supremum. For ease of notation we will calculate this estimate for
the special case n = 3. Furthermore we will denote the vector t21 by t1. The idea
is to construct a function ψ ∈ M1(Ω) with the properties ψ(x,ϑ1) = const · t1,
ψ(x,ϑ2) = 0 and ‖∇ϑψ(x, ·)‖∞,2 ≤ β.
For all calculations on the unit ball it is useful to introduce the Spherical Coordinates.
We will call u the degree of longitude and v will denote the degree of latitude.
Therefore we define the mapping

τ :[−π, π] × [−
π

2
,
π

2
] → S 3

(
u
v

)
7→

cos v · cos u
cos v · sin u

sin v


which maps Spherical Coordinates to Cartesian Coordinates.

Using this we can define the equator as a subset of P3 as

Eq :=

ϑ ∈ P3

∣∣∣∣∣∣∣∃u ∈ [−π, π[ s.t. j
(
τ

(
u
0

))
= ϑ

 (3.5)

Further we rotate the coordinate system, that j
(
τ

(
0
0

))
= ϑ1 holds and j+(ϑ2) lays

on the equator. The mappings j and j+ are given in Definition 59.
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ϑ1ϑ1

ϑ2

ϑ2

|γ1|

|γ2|

ζ1(s)

ζ1(s)
ζ2(s)

ζ2(s)

Figure 3.7.: The equator is parametrised by the paths ζ1(s) and ζ2(s)

Now we want to parametrise the equator of P3. This is equivalent to parametrising the
shortest and the second shortest path between ϑ1 and ϑ2 as shown in Figure 3.7.

In order to define these paths we will first investigate the lengths of these paths. For
the shortest path we define γ1 as the minimiser of

min |γ|

s.t. j
(
τ

(
γ
0

))
= ϑ2.

Clearly this is the correct way to calculate the length of the shortest path since it
measures the length on the great circle between j+(ϑ1) and j+(ϑ2). This minimisa-

tion step is necessary since the mapping j
(
τ

(
·

0

))
is π-periodic.

If this solution is unique (keep in mind that there are two solutions in the case
j+(ϑ1) ⊥ j+(ϑ2)) the length of the second shortest path will be denoted by γ2 and
is the minimiser of

min |γ|

s.t.


j

τ γ0
 = ϑ2,

γ , γ1.
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The parametrisation of the shortest and second shortest path is given by ζ1 : [0, 1] 7→
P3 and ζ2 : [0, 1] 7→ P3 with

ζ1(s) = j
(
τ

(
sγ1

0

))
(3.6)

and

ζ2(s) = j
(
τ

(
sγ2

0

))
. (3.7)

These two parametrisations have the properties

ζi(0) = ϑ1 , ζi(1) = ϑ2 for i = 1, 2.

It is clear that
|γ1| = dgeo(ϑ1,ϑ2) (3.8)

holds, where dgeo(ϑ1,ϑ2) is the geodesic distance on Pn as defined in Definition 74.
For the absolute value of ψ on the equator we want to have a piecewise linear
structure like it is shown in Figure 3.8.

0

ϑ2 ϑ2ϑ1|γ1| |γ2|

Figure 3.8.: Absolute value of ψ on the equator.

Since ψ(ϑ) ∈ Tϑ has to hold we look at the vectors t1 and t2 that characterise the
tangential plane Tϑ for any ϑ ∈ P3. Let us take an arbitrary vector on the unit ball

τ

(
u
v

)
=

cos v · cos u
cos v · sin u

sin v


and derive it in direction u and v to get the desired vectors in the tangential plane.
For c1, c2 , 0 we get
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t1 = c1(u, v) ·
∂τ

∂u
= c1(u, v) ·

− cos v · sin u
cos v · cos u

0

 , (3.9)

t2 = c2(u, v) ·
∂τ

∂v
= c2(u, v) ·

− sin v · cos u
− sin v · sin u

cos v

 . (3.10)

We can easily verify that τ
(
u
v

)
⊥ t1 ⊥ t2. To make sure t1 and t2 form an orthonormal

basis we have to choose c1(u, v) := 1
cos v and c2(u, v) := 1. With this setting we

have

Tϑ = span{t1, t2} = span


− sin u

cos u
0

 ,

− sin v · cos u
− sin v · sin u

cos v


 if ϑ = j

(
τ

(
u
v

))
.

Using the parametrisations ζ1 and ζ2 as defined in (3.6) and (3.7) and their inverses
on the domain of definition we define a function ψ0 on the equator (according to
(3.5)).

ψ0 :Eq→ R3

ϑ 7→ const ·
(
1 − (ζk)−1(ϑ)

)
· t1(ϑ) if ϑ ∈ ζk([0, 1]) for k ∈ {1, 2}.

The constant in the definition of ψ0 will be defined later. (ζk)−1 can be easily
calculated using

(ζk)−1 =
u
γk , if j

(
τ

(
u
0

))
∈ ζk([0, 1]) for k ∈ {1, 2}.

In order to extend this idea to the whole P3 we introduce a projection from P3 onto
the equator.

PEq :P3 → Eq

ϑ 7→ j
(
τ

(
u
0

))
, with ϑ = j

(
τ

(
u
v

))
.
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To make sure that ψ is continuous on P3 we have to define a decay function as
well.

f :P3 → [0, 1]

ϑ 7→ cos v with ϑ = j
(
τ

(
u
v

))
.

Now we can define ψn : Ω ×P3 → R3 by

ψn(x,ϑ) := ξn(x) · [ f (ϑ) · ψ0(Peq(ϑ))] ,

where ξn is chosen in the same way as in Section 3.2.1.
In order to compute ‖∇ϑψ(x, ·)‖∞,2 we have to think of how to differentiate in the
directions t1 and t2. Since {c1t1, c2t2} form an ONB of the Tangential plane, as we
can see in Equation (3.9) and (3.10), the tangential directions can be identified with
the derivatives in direction u and v.
Therefore we get for the following derivatives as the components of ∇ϑψn.

∂

∂t1
(ψn · t1) (x,ϑ) = const · ξn(x) · c1(u, v)︸  ︷︷  ︸

= 1
cos v

·
∂

∂u

cos v ·
(
1 −

u
γk

)
t1 · t1︸︷︷︸
=1


= −const · ξn(x) ·

1
γk

for PEq(ϑ) ∈ ϑ
−1
k ([0, 1]).

∂

∂t2
(ψn · t1)(x,ϑ) = const · ξn(x) ·

∂

∂v
· c2(u, v)︸  ︷︷  ︸

=1

cos v ·
(
1 −

u
γk

)
t1 · t1︸︷︷︸
=1


= −const · ξn(x) · sin v

(
1 −

u
γk

)
for PEq(ϑ) ∈ ϑ

−1
k ([0, 1]).

∂

∂t1
(ψn · t2)(x,ϑ) = const · ξn(x) ·

∂

∂u

cos v · c1(u, v) ·
(
1 −

u
γk

)
t1 · t2︸︷︷︸
=0

 = 0.

∂

∂t2
(ψn · t2)(x,ϑ) = const · ξn(x) ·

∂

∂v

cos v · c2(u, v) ·
(
1 −

u
γk

)
t1 · t2︸︷︷︸
=0

 = 0.
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This leads to

‖∇ϑψn‖∞,2 = sup
(x,ϑ)∈Ω×Pn

√√√√√√√√√√√√√√√√√√√√√const2 · ξn(x)2︸ ︷︷ ︸
≤1

·


1
γ2

k︸︷︷︸
≤ 1
γ2

1

+ (sin v)2︸  ︷︷  ︸
≤1

·

(
1 −

u
γk

)2

︸     ︷︷     ︸
≤1


≤ const ·

√
1
γ2

k

+ 1

and therefore we choose

const ≤
β√

1
γ2

1
+ 1

.

This can be estimated with

β√
1
γ2

1
+ 1
≥

β
1
|γ1|

+ 1

= β ·
|γ1|

1 + |γ1|︸︷︷︸
≤π/2

(3.8)
≥ β ·

1
1 + π/2

· dgeo(ϑ1,ϑ2).

Now we can set

const =
β

1 + π/2
· dgeo(ϑ1,ϑ2),

and if the condition

β

1 + π/2
· dgeo(ϑ1,ϑ2) ≤

β

1 + π/2
·
π

2
≤ α
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is fulfilled we have ‖ψn‖∞ ≤ α and get the estimate

T1(µ) ≥ lim
n→∞

∫ 1

−1
ψn((0, xy, 0),ϑ1) · t1 dxy −

∫ 1

−1
ψn((0, xy, 0),ϑ2) · t2 dxy

≥ lim
n→∞

∫ 1

−1
ξn(x) ·

β

1 + π/2
· dgeo(ϑ1,ϑ2) · t1 · t1︸︷︷︸

=1

· dxy

=
2 · β

1 + π/2
· dgeo(ϑ1,ϑ2).

Together with (3.4) we have

2 · β
1 + π/2

· dgeo(ϑ1,ϑ2) ≤ T1(µ) ≤ 2 ·
(
α ·

∣∣∣t21 − t22
∣∣∣+ β · dgeo(ϑ1,ϑ2)

)
, (3.11)

what leads to the intuition that T1(µ) penalises quantitatively the geodesic distance
between ϑ1 and ϑ2.

Remark 76. We have to mention here, that ψ can be differentiated only almost every-
where. If PEq(ϑ) = ϑ1 or PEq(ϑ) = ϑ2 holds, ψ is continuous but not differentiable
anymore. Anyway we can get rid of this problem by using suitable mollifiers.

3.3. Relaxation

In this section we want to use the theory derived in Section 3.2 to set up regularisers
that are applicable to a larger class of images. We will see that the resulting formu-
lations are non convex and therefore we need to come up with a convex relaxed
expression to make the numerical solution accessible. Later in this section we want
to discuss inpainting and denoising problems using the derived relaxed regulariser.
Using (3.11) and the results of Sections 3.2.1 and 3.2.2 we see how T0(µ) and T1(µ)
work on the special case shown in Figure 3.6. The idea is to transfer this estimate
to the general case of characteristic functions with piecewise linear boundary and
further to extend this theory on images u ∈ BV(Ω). Anyway, the analysis of this
generalisation is beyond the scope of this work, but we are optimistic that this gener-
alisation is possible. Since it was shown for two dimensional problems in [4], we
are confident to say that this assumption is valid. Therefore we want to work with
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functions u ∈ BV(Ω) from now on.
For functions u ∈ BV(Ω) we want to operate on the sublevel sets of u given by the
characteristic function χ{u<s} for an arbitrary s ∈ R. Consequently we will denote the
functional lifting of ∇(χ{u<s}) by µs. Further we want to make use of Definition 62
and the coarea formula (see [3]) to observe∫

Ω×Pn
ϕ dµ =

∫
Ω

sign(σ(x)) · ϕ (x, j(σ(x))) d |∇u|

=

∫
R

∫
∂{u<s}

sign(σ(x)) · ϕ (x, j(σ(x))) dHn−1 ds

=

∫
R

∫
Ω×Pn

ϕ dµs ds.

With the work done so far in this chapter, we are now able to introduce a reasonable
regulariser for functions u ∈ BV(Ω) . We define

Rα,β
ρ (u) :=

∫
R

α‖µs‖M + βTρ(µs) ds, (3.12)

with α, β > 0 and Tρ(µs) as defined in Definition 71. The norm ‖µs‖M corresponds
to the perimeter of the sublevel sets induced by {u < s} as discussed in Example 29.
Due to the non-convexity of the extraction of the sublevel sets {u < s} and the lifting
operator u 7→ µ(∇u) we have to come up with reasonable convex relaxations to make
the introduced ideas computable.
Given (3.12) and Definition 71 we observe for the functional lifting µ of ∇u and an
arbitrary ψ ∈ Mρ(Ω) that∫

Ω×Pn
divTϑψ(x,ϑ)dµ =

∫
R

∫
Ω×Pn

divTϑψ(x,ϑ)dµs ds

≤

∫
R

Tρ(µs) ds

holds. On the other hand we get according to Remark 21 that

‖µ‖M =

∫
Ω×Pn

1 dµ =

∫
R

∫
Ω×Pn

1 dµs ds =
∫

R

‖µs‖M ds,

which leads to
α‖µ‖M + βTρ(µ) ≤ Rα,β

ρ (u). (3.13)
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3.4. Application on imaging problems

Define G∇ :=
{
(u, µ) ∈ BV(Ω) ×M(Ω ×Pn) | µ is the Functional Lifting of ∇u

}
as

the set of all pairs (u, µ) ∈ BV(Ω) ×M(Ω ×Pn) where u 7→ µ(∇u) holds.
To make G∇ computable we have to think of a proper way to relax this set. Therefore
we make use of the necessary condition∫

Ω×Pn
ϕ(x) · j+(τ) dµ =

∫
Ω
ϕ d∇u = −

∫
Ω

u · divϕ dx

that was obtained in Remark 65.
This leads to the set

M∇ =

(u, µ) ∈ L1(Ω) ×M(Ω ×Pn)

∣∣∣∣∣ (3.14)

∫
Ω×Pn

ϕ(x) · j+(τ) dµ+
∫

Ω
u · divϕ dx = 0, ∀ϕ ∈ C∞C (Ω, Rn)


as a reasonable relaxation of G∇.
Now we are able to give a reasonable regulariser of (3.12) that is presented in
Definition 77.

Definition 77. For α, β > 0 and u ∈ L1(Ω) we define the regulariser

R
α,β
ρ (u) = inf

(u,µ)∈M∇
α · ‖µ‖M + β · Tρ(µ).

Remark 78. For the Functional Tρ(µ) we examined the special cases T0(µ) and
T1(µ) in the Sections 3.2.1 and 3.2.2.
We will denote the regulariser R

α,β
ρ0

(u) that is induced by T0(µ) with TVX0 and the

regulariser R
α,β
ρ1

(u) that is induced by T1(µ) with TVX1 to stay consistent with [4].

3.4. Application on imaging problems

In order to apply the developed regulariser to imaging problems we have to examine
if the resulting formulations will have a solution. To show solvability we want to use
the direct method that was presented in Section 2.2. The following proofs can be
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3. Functional Lifting in the Context of Images and Image Sequences

found in [4] for the two dimensional case.
First we want to discuss the differentiation operator of µ that was declared in
Definition 71 and is given by

Tρ(µ) = sup
ψ∈Mρ(Ω)

∫
Ω×Pn

divTϑψ(x,ϑ)dµ

with

Mρ(Ω) =
{
ψ ∈ CC(Ω ×Pn, Rn)

∣∣∣ divTϑψ ∈ CC(Ω ×Pn),ψ(x, ·) ∈ Cρ ∀x ∈ Ω

ψ(x,ϑ) ∈ Tϑ, ∀ϑ ∈ Pn
}

At first we mention that Tρ(µ) can be interpreted as the duality product

Tρ(µ) = sup
ψ∈Mρ(Ω)

〈µ, divTϑψ〉. (3.15)

In the next Lemma we want to investigate some key properties of Tρ, that will be
needed to prove existence of the resulting imaging formulations.

Lemma 79. Tρ :M(Ω ×Pn)→ [0,∞] is weak* lower semi-continuous, positively
homogeneous and satisfies the triangle inequality.

Proof. (see [4, Prop.3.12]) First we want to show that Tρ(µ) ≥ 0 holds for all
µ ∈ M(Ω ×Pn).
With the symmetry of Mρ(Ω) we have for ψ ∈ Mρ(Ω) that −ψ ∈ Mρ(Ω) holds as
well. Therefore we get with equation (3.15)

Tρ(µ) = sup
ψ∈Mρ(Ω)

|〈µ, divTϑψ〉| ≥ 0,

what provides the non negativity.
The weak* lower semi-continuity of Tρ follows immediately, since it is the pointwise
supremum of functions out of CC(Ω ×Pn).
Using the symmetry of Mρ again, we get for λ ∈ R the positive homogeneity with

Tρ(λ µ) = sup
ψ∈Mρ(Ω)

〈|λ| µ, sgn(λ)divTϑψ〉

= |λ| sup
ψ∈sgn(λ)Mρ(Ω)

〈µ, divTϑψ〉

= |λ|Tρ(µ).
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3.4. Application on imaging problems

To prove the triangle inequality we observe for µ1, µ2 ∈ M(Ω ×Pn)

〈µ1 +µ2, divTϑψ〉 ≤ sup
ψ∈Mρ(Ω)

〈µ1, divTϑψ〉+ sup
ψ∈Mρ(Ω)

〈µ2, divTϑψ〉 = Tρ(µ1)+Tρ(µ2).

By taking the supremum on the left hand side we get

Tρ(µ1 + µ2) ≤ Tρ(µ1) + Tρ(µ2).

�

Remark 80. Convexity of Tρ is an immediate consequence of the positive homo-
geneity and the triangle inequality. For λ ∈ [0, 1] and µ1, µ2 ∈ M(Ω × Pn) we
get

Tρ(λ µ1 + (1 − λ) µ2) ≤ Tρ(λ µ1) + Tρ((1 − λ) µ2)

= λTρ(µ1) + (1 − λ) Tρ(µ2).

In the following Lemma we give properties for the relaxed set M∇ given in (3.14).
In [4, Proposition 4.1] these properties were shown for the two dimensional case.

Lemma 81. The relaxed set M∇ derived in (3.14) is non empty and convex. Further
it is sequentially closed with weak convergence in L1(Ω) and weak* convergence in
M(Ω ×Pn).

Proof. With (0, 0) ∈ M∇, the set is clearly non empty.
The convexity follows directly by using the linearity of the constraint. For (u1, µ1) ∈ M∇,
(u2, µ2) ∈ M∇ and λ ∈ [0, 1] we get∫

Ω×Pn
ϕ(x) · j+(τ) d(λµ1 + (1 − λ)µ2) +

∫
Ω
(λu1 + (1 − λ)u2) · divϕ dx

= λ

[∫
Ω×Pn

ϕ(x) · j+(τ) dµ1 +

∫
Ω
λu1 · divϕ dx

]
︸                                                      ︷︷                                                      ︸

=0

+ (1 − λ)
[∫

Ω×Pn
ϕ(x) · j+(τ) dµ2 +

∫
Ω

u2 · divϕ dx
]

︸                                                    ︷︷                                                    ︸
=0

= 0.
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3. Functional Lifting in the Context of Images and Image Sequences

Therefore we have (λu1 + (1 − λ)u2, λµ1 + (1 − λ)µ2) ∈ M∇, which gives the con-
vexity of M∇.
Now consider a sequence (un, µn) ∈ M∇ where {un}n converges weak in L1(Ω) and
{µn}n converges weakly* inM(Ω ×Pn). With (3.14) we get immediately∫

Ω×Pn
ϕ(x) · j+(τ) dµ+

∫
Ω

u · divϕ dx

= lim
n→∞

∫
Ω×Pn

ϕ(x) · j+(τ) dµn +

∫
Ω

un · divϕ dx = 0

for all ϕ ∈ C∞C (Ω, Rn). �

Proposition 82. For elements (u, µ) ∈ M∇, we get that u ∈ BV(Ω) holds.

Proof. This property follows, by restricting the set of all test functions ϕ ∈ C∞C (Ω, Rn)
to ‖ϕ‖∞ ≤ 1. With respect to Remark 21 we get∫

Ω
u · divϕ dx ≤

∫
Ω×Pn

|ϕ(x) · j+(τ)|︸          ︷︷          ︸
≤1

dµ ≤ ‖µ‖M < ∞.

�

The next step is a deeper investigation of the relaxed functional R
α,β
ρ , defined in

Definition 77, like it was done in [4, Proposition 4.4] for the two dimensional case.

Lemma 83. The functional R
α,β
ρ : L1(Ω) → R∞ is proper, bounded form below,

lower semi-continuous and convex. Further we get the properties

R
α,β
ρ (λu) = λR

α,β
ρ (u)

for λ ≥ 0 and

αTV ≤ R
α,β
ρ ≤ Rα,β

ρ .

Proof. First is has to be mentioned that (0, 0) ∈ M∇ provides immediately that R
α,β
ρ

is proper, since ‖0‖M = 0 and Tρ(0) = 0 lead to R
α,β
ρ (0) = 0.
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3.4. Application on imaging problems

To show that R
α,β
ρ (u) = inf(u,µ)∈M∇ α · ‖µ‖M + β · Tρ(µ) is bounded from below we

utilise Lemma 79 where Tρ(µ) ≥ 0 was shown and get

α · ‖µ‖M + β · Tρ(µ) ≥ 0

for all µ ∈ M(Ω ×Pn).
To prove the lower semi-continuity we consider a sequence un → u in L1(Ω). Further
we choose for each {un}n a minimising sequence (µnm) ∈ M(Ω ×Pn) such that
(un, µnm) ∈ M∇ holds. Since {µnm}m is a minimising sequence we get

R
α,β
ρ (un) = α ·

∥∥∥µnm
∥∥∥
M

+ β · Tρ(µnm).

Without loss of generality we assume that the series R
α,β
ρ (un) converges to a finite

value. Further we consider a diagonal sequence {µ̃n}n of {µnm}m, that fulfils

α‖µ̃n‖M + βTρ(µ̃n) ≥ R
α,β
ρ (un) +

1
n

(3.16)

for all n ≥ 1.
With Tρ(µ̃n) ≥ 0 we can show the inequality

‖µ̃n‖M ≤ ‖µ̃
n‖M +

β

α
Tρ(µ̃n)

(3.16)
≤

1
α

(
sup
n≥1

R
α,β
ρ (un) + 1

)
< ∞,

which provides that the sequence {µ̃n}n is bounded inM(Ω ×Pn). This proves the
existence of a subsequence {µ̃nk}k of {µ̃n}n and an element µ ∈ M(Ω ×Pn) with
µ̃nk

∗
⇀ µ. Let us denote this subsequence with µ̂n.

Since Lemma 81 showed that M∇ is closed we get (u, µ) ∈ M∇.
With the weak* lower semi-continuity of ‖ · ‖M and Tρ that was shown in Lemma 79

we get the lower semi-continuity of R
α,β
ρ with

R
α,β
ρ (u) = α · ‖µ‖M + β · Tρ(µ)

≤ lim inf
n→∞

α‖µ̂n‖M + βTρ(µ̄n) = lim
n→∞

R
α,β
ρ (un).

To show convexity of R
α,β
ρ , let u1, u2 be in L1(Ω) with R

α,β
ρ (u1), R

α,β
ρ (u2) < ∞ and

let (µ1)n, (µ2)n be corresponding minimising sequences as it was already used above.
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3. Functional Lifting in the Context of Images and Image Sequences

The convexity of M∇ and Tρ were shown in Lemma 81 and Remark 80. Therefore
we have for λ ∈ [0, 1]

R
α,β
ρ

(
λ u1 + (1 − λ) u2

)
≤ lim inf

n→∞
α
∥∥∥λ (µ1)n + (1 − λ) (µ2)n

∥∥∥
M

+ βTρ
(
λ (µ1)n + (1 − λ) (µ2)n

)
≤ λ

(
lim

n→∞
α
∥∥∥ (µ1)n

∥∥∥
M

+ βTρ
(
(µ1)n

))
+ (1 − λ)

(
lim

n→∞
α
∥∥∥ (µ2)n

∥∥∥
M

+ βTρ
(
(µ2)n

))
= λR

α,β
ρ

(
u1

)
+ (1 − λ)R

α,β
ρ

(
u2

)
.

The positive one-homogeneity of R
α,β
ρ is an immediate consequence of the positive

homogeneity of ‖ · ‖M and Tρ, which was shown in Lemma 79, since (u, µ) ∈ M∇ is
equivalent to (λ u, λ µ) ∈ M∇ for λ > 0.

Finally for u ∈ BV(Ω) and µ ∈ M(Ω ×Pn) with (u, µ) ∈ M∇ and test functions
ϕ ∈ C∞C (Ω, Rn) with ‖ϕ‖∞ ≤ 1 we get in view of Proposition 82

α

∫
Ω

u · divϕ dx ≤ α
∫

Ω×Pn
|ϕ(x) · j+(τ)|︸          ︷︷          ︸

≤1

dµ ≤ α‖µ‖M + βTρ(µ),

since Tρ ≥ 0. By taking the supremum over all ϕ on the left hand side and the
infimum over all µ with (u, µ) ∈ M∇ on the right hand side we get

αTV ≤ R
α,β
ρ

for u ∈ BV(Ω).
The second inequality R

α,β
ρ ≤ Rα,β

ρ is an immediate consequence of equation (3.13). It
hast to be mentioned that all functionals are equal to infinity if u < BV(Ω) holds. �

We are now able to define the final minimisation problem that can be applied on
d-dimensional imaging problems. For a given data term G : L

d
d−1 (Ω) → ] −∞,∞[

that is bounded from below, convex and lower semi continuous the minimisation
problem is given by

min
u∈L

d
d−1 (Ω)

G(u) + R
α,β
ρ (u). (3.17)
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3.4. Application on imaging problems

To prove existence of the minimiser given in (3.17) we want to apply the theory
provided in section 2.2. Therefore we rephrase [4, Theorem 4.7] to prove existence
of (3.17).

Theorem 84. Let G : L
d

d−1 (Ω) → ] −∞,∞[ be a data term that is bounded from
below, convex and lower semi-continuous. Further G(un)→ ∞ should hold if

∣∣∣∫
Ω un dx

∣∣∣→ ∞ and∥∥∥un − |Ω|−1
∫

Ω un dx
∥∥∥ d

d−1
bounded.

The minimisation problem (3.17) has a solution u∗ ∈ L
d

d−1 (Ω) for all α, β > 0.

Proof. For the proof we want to apply the direct method that was presented in
Section 2.2 on the resulting objective function F = G + R

α,β
ρ .

Without loss of generality we want to assume that F is proper.
By assumption F is bounded from below, since G is bounded from below and
Lemma 83 shows that R

α,β
ρ is bounded form below as well.

In the proof of the direct method (Theorem 7) coercivity was used to get a bounded
sequence. Here we make use of the assumptions on G and the Poincaré-Friedrichs
inequality (see [9]) to show existence of a bounded subsequence that converges to u∗

in a weak sense.
With Lemma 83 we get

αTV ≤ R
α,β
ρ ≤ F − inf

u∈L2(Ω)
G(u).

as well as the boundedness of {TV(un)}n. With the Poincaré-Friedrichs inequality
we get the existence of C < ∞ such that∥∥∥∥∥un − |Ω|−1

∫
Ω

un dx
∥∥∥∥∥ d

d−1

≤ C sup
n∈N

TV(un) < ∞.

Since G is bounded, the last inequality implies that
∫

Ω un dx has to be bounded as
well.
Making use of the triangle inequality gives

‖un‖ d
d−1
≤ sup

n∈N
|Ω|−

d−1
d

∣∣∣∣∣∫
Ω

un dx
∣∣∣∣∣+ ∥∥∥∥∥un − |Ω|−1

∫
Ω

un dx
∥∥∥∥∥ d

d−1

< ∞.
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3. Functional Lifting in the Context of Images and Image Sequences

This provides a weakly convergent subsequence that converges to u∗ ∈ L
d

d−1 (Ω).
Finally the lower semi-continuity of G and R

α,β
ρ implies the lower semi-continuity of

F as shown in Remark 8.
Together, Theorem 7 can be applied which proves existence of a solution u∗ ∈ L

d
d−1 (Ω).
�

Remark 85. If the data term G : L
d

d−1 (Ω)→ ]−∞,∞[ is strictly convex, the solution
u∗ ∈ L2(Ω) is unique.

In the following we want to take a closer look on data terms that arise for denoising
and inpainting problems like it is shown in [4, Example 4.9] and [4, Example 4.10].
We will give numerical results for these two problems in the end of Chapter 4. The
mathematical model of the denoising problem was already given in Section 2.1.

Theorem 86. Let u0 ∈ Lp(Ω) be given. The denoising problem

min
u∈Lp

λ

p

∫
Ω
|u − u0|

p dx + R
α,β
ρ (u)

for 1 ≤ p ≤ 2 and λ, α, β > 0 has a minimiser.

Proof. Define the data term

G(u) =
λ

p

∫
Ω
|u − u0|

p dx.

This functional is clearly bounded from below, convex and lower semi-continuous.
Further |

∫
Ω un dx| → ∞ implies G(un)→ ∞, because

‖un − u0‖
p
p ≥ 21−p‖un‖

p
p − ‖u0‖

p
p ≥ (2|Ω|)1−p

∣∣∣∣∣∫
Ω

un dx
∣∣∣∣∣p − ‖u0‖

p
p

holds.
Therefore existence of a solution of the denoising problem utilising Theorem 84 is
given. �

Remark 87. With Remark 85 the denoising problem is unique for p > 1.
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3.4. Application on imaging problems

In the next theorem we want to show existence of the inpainting problem.

Inpainting problems deal with given image data u0 on a non empty set Ω′ ⊂ Ω. The
task is to extend this given image data u0 on the whole domain Ω.
For instance, this kind of problems arise if we want to construct an additional
video frame between two given frames (Interpolation). Another application is image
restoration, where an image supported on Ω is damaged and has to be reconstructed
on the domain Ω′ \Ω.
The idea of inpainting methods is to fix the given image on the domain where the
data is known. On the domain Ω′ \Ω where no image data is given we want to use a
regulariser to calculate a "natural" prolongation of the given image u0.
This motivates the data term

G(u) =

0 if u|Ω′ = f ,
∞ else.

(3.18)

Obviously, this data term fits our model in the context of the minimisation problem
(3.17). Therefore the minimisation problem rewrites as

min
u∈L

d
d−1 (Ω)

u|Ω′= f

R
α,β
ρ (u).

Theorem 88. Let f ∈ L
d

d−1 (Ω). The inpainting problem

min
u∈L

d
d−1 (Ω)

u|Ω′= f

R
α,β
ρ (u).

for α, β > 0 has a minimiser.

Proof. The data term given in (3.18) is clearly proper, bounded from below and
convex. Since u(x) = f (x) on Ω′ forms a closed subset of L

d
d−1 (Ω) we get the

lower semi-continuity.
To make use of Theorem 84 we have to show that G(un) diverges if

∣∣∣∫
Ω un dx

∣∣∣→ ∞ and∥∥∥un − |Ω|−1
∫

Ω un dx
∥∥∥ d

d−1
is bounded.

(3.19)
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3. Functional Lifting in the Context of Images and Image Sequences

Let un be a given sequence where (3.19) and u|Ω′ = f holds for infinitely n.
W.l.o.g. we assume that this holds for all n ∈ N. Now we define vn := un −

|Ω|−1
∫

Ω un dx that has a bounded norm according to (3.19). Therefore we get with∫
Ω un dx = |Ω| (un − vn) the inequality

sup
n∈N

∣∣∣∣∣∫
Ω

un dx
∣∣∣∣∣ = sup

n∈N

∣∣∣∣∣ 1
|Ω′|

∫
Ω′

∫
Ω

un dx dy
∣∣∣∣∣

= sup
n∈N

∣∣∣∣∣ 1
|Ω′|

∫
Ω′
|Ω| (un(y) − vn(y)) dy

∣∣∣∣∣
= sup

n∈N

∣∣∣∣∣ |Ω||Ω′|
∫

Ω′
( f (y) − vn(y)) dy

∣∣∣∣∣
≤ C sup

n∈N
(‖ f ‖ d

d−1
+ ‖vn‖ d

d−1
) < ∞.

This is a contradiction to
∣∣∣∫

Ω un dx
∣∣∣→ ∞ and therefore u|Ω′ = f can only hold for a

finite number of n. This implies G(un)→ ∞. Therefore Theorem 84 can be applied,
which provides a minimiser of the inpainting problem. �
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4. Numerical Realisation

To apply the developed theory to real image data we have to think of a way to discre-
tise this functional lifting approach, since Chapter 3 deals with continuous problems
only. We will see that conventional discretisation ideas fail at some points due to the
special structure of our model. Therefore we will provide different approaches to
overcome this problems. Further we will rewrite the upcoming formulation to saddle-
point problems to be able to apply the methods derived in Section 2.6. At the end
of this chapter we will apply the derived discretisation to denoising and inpainting
imaging problems. The results achieved using the functional lifting approach will be
compared to results obtained using a TV-regulariser.
In this chapter all considerations are done for the dimension n = 3, if not mentioned
differently.
Discretisations for the case n = 2 are given in the Appendix. There, we will also
discuss further ideas that will make the given approaches more sensible according to
the discretisation of the different gradient directions.
In a discrete setting Definition 77 in combination with a data term G(u) can be
rewritten as

min
(u,µ)∈M∇

max
ψ∈Mρ

G(u) + α
∑

Ω×Pn

|µ|+ β〈Bµ,ψ〉, (4.1)

where B is a discrete version of ∇Tϑ established in Definition 67. In the following
sections we will discuss discrete versions of the sets M∇, Mρ and the operator ∇Tϑ .
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4. Numerical Realisation

4.1. Discretisation of M∇

The set

M∇ =

(u, µ) ∈ L1(Ω) ×M(Ω ×Pn)

∣∣∣∣∣∫
Ω×Pn

ϕ(x) · j+(τ) dµ+
∫

Ω
u · divϕ dx = 0, ∀ϕ ∈ C∞C (Ω, Rn)

,

as derived in (3.14), can be interpreted as an additional term in the cost function by
using the indicator functional. The indicator functional I : X → {0, ∞} of a subset
C ⊂ X is defined as

IC(u) =

0 if u ∈ C
∞ else.

This leads to

min
(u,µ)∈L1(Ω)×M(Ω×Pn)

F
(
u
µ

)
= I{∫

Ω×Pn j+(τ) dµ−
∫

Ω ∇u dx=0
}(u, µ)

= I{∫
Ω×Pn j+(τ)µ0(x,τ) d(x,τ)−

∫
Ω ∇u dx=0

}(u, µ).

This Functional interpreted in a discrete setting leads to

min
(u,µ)∈RM·N·T×RM·N·T ·R

F
(
u
µ

)
= I{Au−Dµ=0}(u, µ), (4.2)

and can be rewritten as a saddle-point formulation using Lagrange multipliers,

min
(u,µ)∈RM·N·T×RM·N·T ·R

max
ϕ∈RM·N·T ·3

L
((

u
µ

)
,ϕ

)
= 〈Au − Dµ,ϕ〉. (4.3)

Here, the operator A is a discrete version of ∇u and D is a discrete version of∫
Pn j+(τ)µ0(x, τ) dτ.

Therefore the minimisation problem (4.1) can be rewritten as

min
u,µ

max
ϕ,ψ∈Mρ

G(u) + α
∑

Ω̃×P̃n

|µ|+ β〈Bµ,ψ〉+ 〈Au − Dµ,ϕ〉 (4.4)
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4.1. Discretisation of M∇

where Ω̃ is a discrete version of the domain Ω and P̃n is a discrete version of the
quotient space Pn.

The first thought that comes to mind is to choose A as a standard forward difference
scheme

(Au) j
i1,...,i j,...,iN

=


ui1,...,i j+1,...,in−ui1,...,i j,...,in

h if i j < N j

0 else,

where h denotes the length of one voxel edge and 1 ≤ j ≤ 3.
Dµ can be realised by ∑

τ∈P̃n

j+(τ) · µΩ,τ.

However even for simple images this approach leads to problems. Consider the 2D
example

u0 =

1 if xy > xx,
0 else.

This example would result in a lifting that is concentrated on the line xx = xy with
a constant direction. On the other hand, the discrete version of this problem would
result in a step function which would lead to a detection of two different directions
as shown in Figure 4.1.

xxxy
ϑ

(a) Continuous Ramp

xxxy
ϑ

(b) Zoom

xxxy

ϑ1ϑ2

(c) Discrete Version

Figure 4.1.: Continuous and Discrete 2D ramp example, showing the problems arising if the common
forward difference scheme is used. Note that j+(ϑ1), j+(ϑ2) ∈ S n

+ hold and therefore
sign(ϑ1) = −1 according to (3.1) follows for this example.

This leads to differences in numerical results compared to continuous expectations.
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4. Numerical Realisation

4.1.1. Pattern-supported design of M∇

As a way out we propose the use of patterns to verify the condition∫
Ω×Pn

ϕ(x) · j+(τ) dµ+
∫

Ω
u · divϕ dx = 0, ∀ϕ ∈ C∞C (Ω, Rn).

The idea is to design a small pattern for each discrete direction ϑ ∈ Pn and match
these patterns to the image u. It is useful to keep these patterns as small as possible
in order to get a resulting u with sharp edges. Therefore we propose a pattern size of
2× 2× 2 for problems in 3 dimensions. As a possible discretisation of Pn we choose
two different velocities and a change in spatial direction of π/4.
The chosen discretisation of Pn will model the velocities 0 pixel shift per frame and
1 pixel shift per frame. We will only use this discretisation for the rest of this Chapter.
An approach to get a generic refinement of the pattern-supported discretisation
approach is missing jet and will not be discussed in this work.
It has to be mentioned that it is sufficient to discretise the set S n

+ as defined in the
beginning of Section 3.1 since the mapping j : S n → Pn is applied as defined in
Definition 59.

Remark 89. For ease of notation in the following formulations, ϑ ∈ Pn will be
often written as ϑ ∈ S n

+ which is the corresponding element induced by the mapping
j+ : Pn → S n

+.

As a possible discretisation of ϑ ∈ S n
+ we give

ϑ1 =

 0
1
0

 ϑ2 =

 1
1
0

 ϑ3 =

 1
0
0

 ϑ4 =

 −1
1
0


ϑ5 =

 0
1
1

 ϑ6 =

 0
−1
1

 ϑ7 =

 1
1
1

 ϑ8 =

 −1
−1
1

 (4.5)

ϑ9 =

 0
1
1

 ϑ10 =

 0
−1
1

 ϑ11 =

 1
−1
1

 ϑ12 =

 −1
1
1

 .

It has to be mentioned that these ϑi still needs to be normed to 1. A graphical
interpretation of this discretisation is shown in Figure 4.2.
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4.1. Discretisation of M∇

xx
xy

ϑ1 ϑ2ϑ3ϑ4
(a) Discretisation of S n

+ for xt = 0

xx
xy

ϑ5 ϑ7ϑ9ϑ11ϑ6ϑ8ϑ10ϑ12

(b) Discretisation of S n
+ for xt = 1/

√
2

Figure 4.2.: Discretisation of the half sphere S n
+ that corresponds to the direction of the image

gradient.

The corresponding Patterns are given in Figure 4.3, Figure 4.4 and Figure 4.5.

Now we want to use these patterns to build the desired image u. Therefore the
operator A cuts, for each voxel of the given image u, the corresponding 2 × 2 × 2
blocks. The operator D maps a linear combination of the defined patterns onto the
blocks created from the operator A.
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4. Numerical Realisation

xxxy

xxxy

t = 0

t = 1

(a) ϑ1

xxxy

xxxy

t = 0

t = 1

(b) ϑ2

xxxy

xxxy

t = 0

t = 1

(c) ϑ3

xxxy

xxxy

t = 0

t = 1

(d) ϑ4

Figure 4.3.: Patterns corresponding to the directions ϑ1 to ϑ4, used for a pattern supported design of
the set M∇. Since those patterns are of size 2 × 2 × 2 the two spatial coordinates at time
step 1 are shown in the first line and the spatial coordinates at time step 2 are shown in
the second line.

xxxy

xxxy

t = 0

t = 1

(a) ϑ5

xxxy

xxxy

t = 0

t = 1

(b) ϑ6

xxxy

xxxy

t = 0

t = 1

(c) ϑ7

xxxy

xxxy

t = 0

t = 1

(d) ϑ8

Figure 4.4.: Patterns corresponding to the directions ϑ5 to ϑ8. For a more detailed description see
Figure 4.3.
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4.1. Discretisation of M∇

xxxy

xxxy

t = 0

t = 1

(a) ϑ9

xxxy

xxxy

t = 0

t = 1

(b) ϑ10

xxxy

xxxy

t = 0

t = 1

(c) ϑ11

xxxy

xxxy

t = 0

t = 1

(d) ϑ12

Figure 4.5.: Patterns corresponding to the directions ϑ9 to ϑ12. For a more detailed description see
Figure 4.3.

For a constant extension of u on the boundary this leads to the discrete operator
A ∈ R8·M·N·T×M·N·T

(Au)1
i, j,t = ui, j,t.

(Au)2
i, j,t =

ui+1, j,t if i < M
ui, j,t else.

... (4.6)

(Au)8
i, j,t =



ui+1, j+1,t+1 if i < M, j < N, t < T
ui, j+1,t+1 if i = M, j < N, t < T
ui+1, j,t+1 if i < M, j = N, t < T
ui, j,t+1 if i = M, j = N, t < T
ui+1, j+1,t if i < M, j < N, t = T
ui, j+1,t if i = M, j < N, t = T
ui+1, j,t if i < M, j = N, t = T
ui, j,t else.

It hast to be mentioned that this careful treatment of the boundary is necessary to
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4. Numerical Realisation

minimise boundary effects. We chose a constant prolongation of the image on the
boundary.
Further we get the operator D ∈ R8·M·N·T×M·N·T ·R that maps µ according to the
defined patterns onto the corresponding patch, where R is the number of discrete
elements of Pn and is equal to the number of different patterns as well.
Let us denote the set of all patterns by Λ. The elements of Λ will be called p and have
the index k which refers to the position within the 2× 2× 2 block. The r-th pattern on
position k is then written as pr(k), where r is the index of the corresponding pattern
induced by the discretisation of ϑ ∈ Pn.

(Dµ)1
i, j,t =

R∑
r=1

pr(1) · µi, j,t,r.

...

(Dµ)8
i, j,t =

R∑
r=1

pr(8) · µi, j,t,r.

To make this approach working we have to introduce an additional variable µ̃ ∈ RM·N·T

which corresponds to the mean value of u within a pattern. The corresponding pattern
will be denoted by p0 and has the constant value one (see Figure 4.6).

The needed operator, that maps the mean value on the 2 × 2 × 2 blocks, will be
denoted by E ∈ R8·M·N·T×M·N·T and is defined as

(Eµ̃)l
i, j,t = p0(l) · µ̃i, j,t for 1 ≤ l ≤ 8. (4.7)

Given this additional pattern p0(k), the patterns pr(k) for r = 1, . . . , 8 are not
influenced by the mean value of the cutted image and therefore only correspond to
the edges. The separate treatment of the mean value is necessary, since we want
penalise |µ| but not |µ̃|.
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4.1. Discretisation of M∇

xxxy

xxxy

t = 0

t = 1

Figure 4.6.: Pattern for the average value.

4.1.2. Information Flow in this pattern-supported framework

First let us discuss which structure of µ we expect for a given image u. For ease
of visualisation we want to discuss this on a non moving image that should only
correspond to one pattern. Let u be given by

u =


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

 .

For an image like this, we want to have µ concentrated on the diagonal at the
corresponding direction. For the discretisation described in Section 4.1.1 and in more
detail in Figure 4.3 this would mean

µ(:, :, 2) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (4.8)

and zero everywhere else.
Anyway, the method introduced in section 4.1.1 will not jet deliver the desired result.
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4. Numerical Realisation

The patch that corresponds to µ(:, :, 2) do fit nicely on the main diagonal, but the
blocks on the secondary diagonal are not constant, as shown below.

u =


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

 , u =


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

 .

Since Au = Dµ, as described in (4.2), has to hold µ would not be zero on the
secondary diagonal.
To get the desired µ, given in (4.8), a method to transport information in spatial
direction has to be discussed. Therefore we introduce extended patterns that are
enlarged in space. It has to be mentioned that extended patterns do not mean, that the
block size of 2 × 2 × 2 is changed. We just want to move the block in this extended
pattern to get edge information from neighbouring µ.
Anyway, overlap effects will occur if the information is transported to all neighbour-
ing µ. Therefore an additional mask χ has to be established. The extended patterns
are shown in Figures 4.7, 4.8, 4.9 and 4.10. The mask is visualised with green, red
and cyan coloured boxes.

Given this approach the operator D can be rewritten as

(Dµ)1
i, j,t =

R∑
r=1

∑
xs={0,−1,1}

∑
ys={0,−1,1}

χr(xs, ys) · pr(1, xs, ys) · µi+xs, j+ys,t,r.

... (4.9)

(Dµ)8
i, j,t =

R∑
r=1

∑
xs={0,−1,1}

∑
ys={0,−1,1}

χr(xs, ys) · pr(8, xs, ys) · µi+xs, j+ys,t,r.

with zero Dirichlet boundary conditions.
Given this approach and equation (4.7), the saddle point formulation (4.3) can be
rewritten as

min
(u,µ,µ̃)∈RM·N·T×RM·N·T ·R×RM·N·T

max
ϕ∈RM·N·T ·8

L

 u
µ
µ̃

 = 〈Au − Dµ − Eµ̃,ϕ〉.
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4.1. Discretisation of M∇

xxxy

t = 0

xxxy

t = 1

(a) Extended pattern that cor-
responds to ϑ1.

xxxy

t = 0

xxxy

t = 1

(b) Extended pattern that cor-
responds to ϑ2.

xxxy

t = 0

xxxy

t = 1

(c) Extended pattern that cor-
responds to ϑ3.

Figure 4.7.: Extended patterns to ϑ1, ϑ2 and ϑ3 with the corresponding masks χ. The first line repre-
sents the first time step and the second line represents the second timestep respectively.
The masks are represented by the coloured boxes. Each colour represents one active mask.
Which masks are active for a specific direction ϑr is decided by pure combinatorics.

Further, the saddle point formulation (4.4) becomes

min
u,µ,µ̃

max
ϕ,ψ∈Mρ

G(u) + α
∑

Ω̃×P̃n

|µ|+ β〈Bµ,ψ〉+ 〈Au − Dµ − Eµ̃,ϕ〉. (4.10)

Numerical investigations have shown that a further relaxation of the set M∇ leads
to more stable results and faster convergence rates. Up to now we asked for strict
equality of the necessary condition introduced in (3.14) which led to the indicator
functional in (4.2) and to the saddle point formulations (4.3) and (4.10).
Better results were reached by relaxing the condition of M∇ to

‖Au − Dµ − Eµ̃‖∞,2 ≤ CM∇ (4.11)

for some CM∇ > 0 that is small enough.
The norm ‖ · ‖∞,2 is defined for K dimensional vectors x on the discrete image domain
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4. Numerical Realisation

xxxy

t = 0

xxxy

t = 1

(a) Extended pattern that cor-
responds to ϑ4.

xxxy

t = 0

xxxy

t = 1

(b) Extended pattern that cor-
responds to ϑ5.

xxxy

t = 0

xxxy

t = 1

(c) Extended pattern that cor-
responds to ϑ6.

Figure 4.8.: Extended patterns to ϑ4, ϑ5 and ϑ6 with the corresponding masks χ. For a detailed
description see Figure 4.7.

as

‖x‖∞,2 =

∥∥∥∥∥∥∥∥∥
√√√ K∑

i=1

x2
i

∥∥∥∥∥∥∥∥∥
∞

.

Clearly, K = 8 is used in (4.11).

4.2. Discretisation of the directional derivative ∇Tρ

The next operator of (4.10) which has to be discussed is B as a suitable discretisation
of the derivation along the tangential plane ∇Tϑ . Therefore we have to derive two
linear independent vectors that span the tangential plane Tϑr for 1 ≤ r ≤ R. It has to
be mentioned that the discrete directions ϑr where already fixed in (4.5).
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4.2. Discretisation of the directional derivative ∇Tρ

xxxy

t = 0

xxxy

t = 1

(a) Extended pattern that cor-
responds to ϑ7.

xxxy

t = 0

xxxy

t = 1

(b) Extended pattern that cor-
responds to ϑ8.

xxxy

t = 0

xxxy

t = 1

(c) Extended pattern that cor-
responds to ϑ9.

Figure 4.9.: Extended patterns to ϑ7, ϑ8 and ϑ9 with the corresponding masks χ. For a detailed
description see Figure 4.7.

Let us denote these two vectors by tϑr,1 and tϑr,2. Since tϑr,1 and tϑr,2 are not uniquely
defined we want them to fulfil tϑr,1 = (·, ·, 0)T and tϑr,2 = (·, ·, 1)T as well as the
necessary conditions tϑr,1 ⊥ ϑr and tϑr,2 ⊥ ϑr.
For the discretisation of ϑ introduced in (4.5) we set

tϑ1,1 =

 1
0
0

 tϑ2,1 =

 −1
1
0

 tϑ3,1 =

 0
1
0

 tϑ4,1 =

 1
1
0


tϑ5,1 =

 1
0
0

 tϑ6,1 =

 1
0
0

 tϑ7,1 =

 −1
1
0

 tϑ8,1 =

 −1
1
0

 (4.12)

tϑ9,1 =

 1
0
0

 tϑ10,1 =

 1
0
0

 tϑ11,1 =

 1
1
0

 tϑ12,1 =

 1
1
0

 ,
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(a) Extended pattern that cor-
responds to ϑ10.
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(b) Extended pattern that cor-
responds to ϑ11.
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(c) Extended pattern that cor-
responds to ϑ12.

Figure 4.10.: Extended patterns to ϑ10, ϑ11 and ϑ12 with the corresponding masks χ. For a detailed
description see Figure 4.7.

tϑ1,2 =

 0
0
1

 tϑ2,2 =

 0
0
1

 tϑ3,2 =

 0
0
1

 tϑ4,2 =

 0
0
1


tϑ5,2 =

 0
−1
1

 tϑ6,2 =

 0
1
1

 tϑ7,2 =

 0
−1
1

 tϑ8,2 =

 1
0
1

 (4.13)

tϑ9,2 =

 0
−1
1

 tϑ10,2 =

 0
1
1

 tϑ11,2 =

 −1
0
1

 tϑ12,2 =

 0
−1
1

 .

It can be argued that a restriction like tϑr,1 = (·, ·, 0)T with tϑr,1 ⊥ tϑr,2 ⊥ ϑr is even
more consistent, but results showed that the necessary averaging of voxel-values lead
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4.3. Discretisation of Mρ

to loss of sharp edges.

The resulting operator B ∈ R2·M·N·T ·R×M·N·T ·R is given by

(Bµ)1
i, j,t,r =

µi+tϑr ,1(1), j+tϑr ,1(2),t+tϑr ,1(3),r − µi, j,t,r

|tϑr,1|

(Bµ)2
i, j,t,r =

µi+tϑr ,2(1), j+tϑr ,2(2),t+tϑr ,2(3),r − µi, j,t,r

|tϑr,2|
(4.14)

with Neumann boundary conditions.

4.3. Discretisation of Mρ

The set Mρ for ρ = ρ0 according to Section 3.2.1 is given as

Mρ0 =
{
ψ ∈ CC(Ω ×Pn, Rn)

∣∣∣ ‖ψ‖∞,2 ≤ 1/2
}

. (4.15)

With the measure ρ = ρ1 introduced in Section 3.2.2 the set Mρ can be rewritten
as

Mρ1 =
{
ψ ∈ CC(Ω ×Pn, Rn)

∣∣∣ ‖ψ‖∞,2 ≤ α∧ ‖Cψ‖∞,2 ≤ β
}

, (4.16)

where C is a suitable discretisation of ∇ϑ.
In the following section we set α = 1

2 and β = 1.
To discretise the differentiation in label direction ∇ϑ on Pn in a consistent manner
we introduce a list that describes in which label directions the derivation is done. See
therefore Table 4.1 and Figure 4.11.

Let I(i, r) for i = 1, 2 and r = 1, . . . , R be the index mapping induced by Table 4.1.
The operator C ∈ R2·M·N·T ·R×2·M·N·T ·R, as a discrete version of ∇ϑ, can be written
as
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4. Numerical Realisation

Origin ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7 ϑ8 ϑ9 ϑ10 ϑ11 ϑ12

Direction 1 ϑ5 ϑ7 ϑ9 ϑ11 ϑ7 ϑ8 ϑ9 ϑ10 ϑ11 ϑ12 ϑ6 ϑ5
Direction 2 ϑ2 ϑ3 ϑ4 ϑ1 ϑ1 ϑ1 ϑ2 ϑ2 ϑ3 ϑ3 ϑ4 ϑ4

Table 4.1.: Table of derivation directions that are needed to model the discrete operator corresponding
to the derivation in label direction.

ϑ5 ϑ7ϑ9ϑ11ϑ6ϑ8ϑ10ϑ12
ϑ4ϑ1

ϑ2 ϑ3
ϑ1

ϑ2

ϑ4
ϑ3

Figure 4.11.: Figure of derivation directions that are needed to model the discrete operator corre-
sponding to the derivation in label direction.

(Cψ)1
i, j,t,r =

ψi, j,t,I(1,r) − ψi, j,t,r

ω(1, r)
,

(Cψ)2
i, j,t,r =

ψi, j,t,I(2,r) − ψi, j,t,r

ω(2, r)
, (4.17)

where the weights ω(i, r) are calculated with

ω(i, r) = arccos
 ϑr · ϑI(i,r)

|ϑr| · |ϑI(i,r)|


as a distance measure between two elements ϑi ∈ S n

+.
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4.4. Numerical Optimisation of the resulting Saddle-Point Formulation

4.4. Numerical Optimisation of the resulting
Saddle-Point Formulation

Since every operator of (4.10) is discussed, we want to rewrite this formulation as

min
x∈X

max
y∈Y
〈Kx, y〉+ F (x) −G∗(y) (4.18)

to make the theory established in Section 2.6 applicable. The same approach is used
in [4]. In [16] a diagonal preconditioning method is presented that overcomes the
need of calculating the norm ‖K‖ as shown in Theorem 57.
According to [16] it is sufficient to computed the diagonal preconditioning matrices
T ∈ Rm×m and S ∈ Rn×n, induced by K ∈ Rn×m, that are given as

Tb,b =
1∑n

a=1 |Ka,b|
,

and

Sa,a =
1∑m

b=1 |Ka,b|
.

If the denominator is equal to zero the corresponding value of the preconditioner
is set to one. It has to be mentioned that these entries do not effect the result of the
minimiser.
Further it has been shown in [5] that the convergence rate of (2.10) can be further
improved by applying an additional overrelaxation step at the end. Therefore the
implemented fixed point algorithm is given as



xn+ 1
2 = proxT ,F (xn −T KT yn),

x̂n+1 = 2xn+1 − xn,
yn+ 1

2 = proxS,G∗(yn + SKx̂n+1),
xn+1 = xn+ 1

2 + γ ·
(
xn+ 1

2 − xn
)

,

yn+1 = yn+ 1
2 + γ ·

(
yn+ 1

2 − yn
)

,

(4.19)
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with γ ∈ [0, 1[.
The perturbed proximity operators used in algorithm (4.19) are given as

proxT ,F (x̄) = arg min
x∈X

1
2
〈T −1(x − x̄), x − x̄〉+ F (x), (4.20)

proxS ,G∗(ȳ) = arg min
y∈Y∗

1
2
〈S−1(y − ȳ), y − ȳ〉+G∗(y).

4.4.1. Saddle Point Formulation with TVXα,β
0

The discrete version of the saddle point formulation (4.10) according to the functional
TVXα,β

0 is given by restricting Mρ to Mρ0 as shown in (4.15).
Therefore the saddle point formulation can be rewritten as

min
u,µ,µ̃

max
ϕ,ψ

G(u) + α
∑

Ω×Pn

|µ|+ β〈Bµ,ψ〉+ 〈Au − Dµ − Eµ̃,ϕ〉, (4.21)

s.t. ‖ψi, j,t,r,·‖2 ≤
1
2

.

The dimensions of the variables, for an image sequence of size M × N × T and R
discrete directions of Pn, are u ∈ RMNT , µ ∈ RMNTR, µ̃ ∈ RMNT , ϕ ∈ R8MNT and
ψ ∈ R2MNTR.
Since the algorithm introduced in section 2.6 operates on saddle point formulations
of form (4.18) we define

x := (µ, u, µ̃)T

and
y := (ψ,ϕ)T ,

as well as the operator
K ∈ Rn×m,

with n = 8MNT + 2MNTR and m = MNT + MNTR + MNT that is given as

K =

(
βB 0 0
−D A −E

)
.
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The Functionals F (x) and G∗(y) result in

F (x) = α
∑
i, j,t,r

|µ|+G(u),

G∗(y) =
M,N,T ,R∑
m,n,t,r=1

I{
‖·‖2≤

1
2

} (ψm,n,t,r,·) .

The perturbed proximity operators used in Algorithm (4.19) follow, by solving for
the minimising function in (4.20), with

xn+ 1
2 = proxT ,F (x̄n) ⇐⇒


µ

n+ 1
2

i, j,t,r = max
(
0, |µ̄n

i, j,t,r| − α · (T
µ · 1)i, j,t,r

)
· sign(µ̄n

i, j,t,r)

u
n+ 1

2
i, j,t = proxT u,G(ūn

i, j,t)

µ̃
n+ 1

2
i, j,t = ¯̃µn

i, j,t

and

yn+ 1
2 = proxS,G∗(ȳn) ⇐⇒


ψ

n+ 1
2

i, j,t,r,· =
ψ̄n

i, j,t,r,·

max
(
1, 2·‖ψ̄n

i, j,t,r,·‖2
)

ϕ
n+ 1

2
i, j,t,l = max

(
−1

2 , min
(

1
2 , ϕ̄n

i, j,t,l

))
.

The occurring variables are defined as x̄n := xn −TKT yn and ȳn := yn + SKx̂n+1.
The operator T µ corresponds to the induced block matrices of T . Mention here
again, that the preconditioning matrices T and S are diagonal matrices since this
property was used to calculate the proximity operators.
Clearly, the proximity operator proxT u,G(ūn

i, j,t) depends on the considered imaging
problem. Examples for G will be given later.
If the relaxation step presented in (4.11) is implemented as well, the update of the
dual variable changes to

yn+ 1
2 = proxS,G∗(ȳn) ⇐⇒


ψ

n+ 1
2

i, j,t,r,· =
ψ̄n

i, j,t,r,·

max
(
1, 2·‖ψ̄n

i, j,t,r,·‖2
)

ϕ
n+ 1

2
i, j,t,r,· =

ϕ̄n
i, j,t,r,·

max
(
1,
‖ϕ̄n

i, j,t,r,·‖2
CM∇

) .
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4.4.2. Saddle Point Formulation with TVXα,β
1

The discrete version of the saddle point formulation (4.10) according to the functional
TVXα,β

1 is given by restricting Mρ to Mρ1 as shown in (4.16).
Therefore the saddle point formulation can be rewritten as

min
u,µ,µ̃,ν

max
ϕ,ψ,ζ

G(u) + α
∑

Ω×Pn

|µ|+ β〈Bµ,ψ〉+ 〈Au − Dµ − Eµ̃,ϕ〉+ 〈Cψ − ζ, ν〉,

(4.22)

s.t. ‖ψi, j,t,r,·‖2 ≤
1
2

, ‖ζi, j,t,r,·‖2 ≤ 1.

Here the dimensions of the variables u, µ, µ̃, ψ and ϕ stay the same as described
in section 4.4.1. The dimensions of the newly introduced variables are given by
ζ ∈ R2MNTR and ν ∈ R2MNTR.
Further we define

x := (µ, ν, u, µ̃)T

and
y := (ψ, ζ,ϕ)T ,

as well as the operator
K ∈ Rn×m,

with n = 8MNT + 2MNTR + 2MNTR and m = MNT + 2MNTR + MNTR +
MNT which is given as

K =

βB CT 0 0
0 −I 0 0
−D 0 A −E

 ,

again following the scheme presented in [4].

The Functionals F (x) and G∗(y) of saddle point formulation (4.18) can be rewritten
as
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4.4. Numerical Optimisation of the resulting Saddle-Point Formulation

F (x) = α
∑
i, j,t,r

|µ|+G(u),

G∗(y) =
M,N,T ,R∑
m,n,t,r=1

I{
‖·‖2≤

1
2

} (ψm,n,t,r,·) +
M,N,T ,R∑
m,n,t,r=1

I{‖·‖2≤1} (ζm,n,t,r,·) .

The perturbed proximity operators used in Algorithm (4.19) are given as

xn+ 1
2 = proxT ,F (x̄n) ⇐⇒



µ
n+ 1

2
i, j,t,r = max

(
0, |µ̄n

i, j,t,r| − α · (T
µ · 1)i, j,t,r

)
· sign(µ̄n

i, j,t,r)

ν
n+ 1

2
i, j,t,r,l = ν̄n

i, j,t,r,l

u
n+ 1

2
i, j,t = proxT u,G(ūn

i, j,t)

µ̃
n+ 1

2
i, j,t = ¯̃µn

i, j,t

and

yn+ 1
2 = proxS,G∗(ȳn) ⇐⇒


ψ

n+ 1
2

i, j,t,r,· =
ψ̄n

i, j,t,r,·

max
(
1, 2·‖ψ̄n

i, j,t,r,·‖2
)

ζ
n+ 1

2
i, j,t,r,· =

ζ̄n
i, j,t,r,·

max
(
1, ‖ζ̄n

i, j,t,r,·‖2
)

ϕ
n+ 1

2
i, j,t,l = max

(
−1

2 , min
(

1
2 , ϕ̄n

i, j,t,l

))
with x̄n := xn − TKT yn and ȳn := yn + SKx̂n+1 as already given in the previous
section.
If the relaxation step presented in (4.11) is implemented as well, the update of the
dual variable changes to

yn+ 1
2 = proxS,G∗(ȳn) ⇐⇒



ψ
n+ 1

2
i, j,t,r,· =

ψ̄n
i, j,t,r,·

max
(
1, 2·‖ψ̄n

i, j,t,r,·‖2
)

ζ
n+ 1

2
i, j,t,r,· =

ζ̄n
i, j,t,r,·

max
(
1, ‖ζ̄n

i, j,t,r,·‖2
)

ϕ
n+ 1

2
i, j,t,r,· =

ϕ̄n
i, j,t,r,·

max
(
1,
‖ϕ̄n

i, j,t,r,·‖2
CM∇

) .
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4.5. Application to Image-Sequence
Reconstruction

In this section we want to apply the introduced algorithm on denoising and inpainting
imaging problems in the case of image sequences. For all examples we set α = 0.1
and β = 1. We also used the relaxation of the set M∇ as described in (4.11) with
a constant CM∇ = 1. The discretisation of the directions ϑ is done as described above.

In the case of inpainting problems we deal with a given image f ∈ RMNT that is
only given on some subset of Ω′ ⊂ Ω and unknown on Ω \Ω′. Therefore we want
to fix the image on the set Ω′ and apply the regulariser on the set Ω \Ω′. This leads
to the data term

G(u) =
∑

(i, j,t)∈Ω′
I{ fi, j,t}(ui, j,t),

where I is again the indicator functional.
The proximity operator proxT u,G(ūn

i, j,t) is given as

u
n+ 1

2
i, j,t =

ūn
i, j,t if (i, j, t) ∈ Ω \Ω′,

fi, j,t else.

In Figure 4.12 and Figure 4.14 we see the results of the presented algorithms on
inpainting examples as well as the solution achieved by a standard Total Variation
regulariser like it was derived in Chapter 2. For a better impression of the temporal
evolution of the image sequence we present an animated version of the results in
Figure 4.13 and Figure 4.15.
We can see a clear improvement in terms of sharp edges, if the proposed method is
used in comparison to the results of TV - inpainting. The results achieved by TVX0
and TVX1 are more or less comparable.

In the case of denoising problems we deal with a given image f ∈ RMNT that is
the sum of the ground truth f0 and some noise function η and can be written as
f = f0 + η. In this example we want η to be Gaussian noise, what makes the squared
l2 norm a suitable data term. Thus, we set

G(u) =
λ

2
‖u − f ‖22.
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Figure 4.12.: First row: Ground truth from "http://vision.middlebury.edu/flow/data/". File: Wooden.
Second row: Given data, where two central frames are lost. Third row: Inpainting using
TV-regularisation. PSNR = 28.19 dB Fourth row: Inpainting using TVX0. PSNR =

33.40 dB Fifth row: Inpainting using TVX1. PSNR = 33.03 dB

The proximity operator proxT u,G(ūn
i, j,t) is given as

u
n+ 1

2
i, j,t =

ūn
i, j,t + λT u

i, j,t fi, j,t

1 + λT u
i, j,t

.

In Figure 4.16 and Figure 4.18 we present results on denoising problems. For a better
impression of the temporal evolution of the image sequence we present an animated
version of the results in Figure 4.17 and Figure 4.19.
We see again, that our proposed method is able to outmatch a usual TV regulariser.
The data-term-constant λ was set to 15 for the TV results and λ = 6 was used for
the TVX approaches. Especially, on thin contours our approach delivers way better
results as a TV regulariser.
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Ground truth Input sequence

TV-regularisation TVX0-regularisation TVX1-regularisation

Figure 4.13.: Animated version of Figure 4.12, that can be played with a recent pdf viewer.
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4.5. Application to Image-Sequence Reconstruction

Figure 4.14.: First row: Ground truth from "http://vision.middlebury.edu/flow/data/". File:
Dumptruck. Second row: Given data, where two central frames are lost. Third row:
Inpainting using TV-regularisation. PSNR = 25.32 dB Fourth row: Inpainting using
TVX0. PSNR = 32.38 dB Fifth row: Inpainting using TVX1. PSNR = 32.09 dB
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Ground truth Input sequence

TV-regularisation TVX0-regularisation TVX1-regularisation

Figure 4.15.: Animated version of Figure 4.14, that can be played with a recent pdf viewer.
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Figure 4.16.: First row: Ground truth from "http://vision.middlebury.edu/flow/data/". File: Wooden.
Second row: Given data, with added Gausian noise with a standard deviation ofσ = 0.1.
PSNR = 20 dBThird row: Denoising using TV-regularisation. PSNR = 29.08 dB
Fourth row: Denoising using TVX0. PSNR = 29.30 dB Fifth row: Denoising using
TVX1. PSNR = 29.21 dB

Ground truth Given noisy data

TV-regularisation TVX0-regularisation TVX1-regularisation

Figure 4.17.: Animated version of Figure 4.16, that can be played with a recent pdf viewer.
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Figure 4.18.: First row: Ground truth from "http://vision.middlebury.edu/flow/data/". File:
Dumptruck. Second row: Given data, with added Gausian noise with a standard de-
viation of σ = 0.1. PSNR = 20 dBThird row: Denoising using TV-regularisation.
PSNR = 25.47 dB Fourth row: Denoising using TVX0. PSNR = 25.64 dB Fifth row:
Denoising using TVX1. PSNR = 25.86 dB
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Ground truth Given noisy data

TV-regularisation TVX0-regularisation TVX1-regularisation

Figure 4.19.: Animated version of Figure 4.18, that can be played with a recent pdf viewer.
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Appendix A.

Discretisation in 2D

Here we want to provide methods to discretise the method derived in Chapter 3 also
for the 2D case, since all numerics done in Chapter 4 are only applicable on 3D
image data (image sequences). It has to be mentioned that we still discuss problems
where one dimension is reserved for time, leading to the situation that 2D data has
one spatial dimension and one time dimension. We want to point out again, that not
only the higher order regularisation but also the special treatment of the temporal
component of the problem is the main novelty in comparison to common approaches.
We will see that the main parts of the numerical theory derived in Chapter 4 will stay
more or less the same.
In the second part of the Appendix we want to discuss ideas how the pattern sup-
ported lifting approach can be adapted to deal with a finer resolution of the discrete
directions of ϑ ∈ Pn. This finer discretisation methods will be derived for the 2D
case.

A.1. Pattern-supported design of M∇ in 2D

As already obtained in Section 4.1, numerical difficulties arise when standard dif-
ference schemes are used to describe the set M∇. A graphical interpretation of this
issue was already given in Figure 4.1.
As a way out, pattern-supported design of M∇ was derived in Subsection 4.1.1. For
the 2D case 2 × 2 patterns are used, to stay consistent with the theory of Subsection
4.1.1. In Subsection 4.1.2 the need of information flow in the spatial direction was
discussed. As a sensible way to treat the flow of information, a mask was used to
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describe the arising operator in an instructive way as you can see in equation (4.9).
All these ideas work for the two dimensional case as well and will be presented in
this section.

The patterns needed to cover the velocities v = −1, v = 0 and v = 1, as well as
the additional pattern p0, which deals with the mean value of a pattern, are given in
Figure A.1.

tx
(a) Pattern that corre-
sponds to v = −1

tx
(b) Pattern that corre-
sponds to v = 0

tx
(c) Pattern that corre-
sponds to v = 1

tx
(d) Pattern that corre-
sponds to the mean
value

Figure A.1.: Visualisation of patterns used to model the set M∇ in a 2D setting. The velocities
modelled with the shown patterns are v = {−1, 0, 1}. The pattern that models the mean
value is given as well.

The methods of spatial information flow, that were presented in the beginning of
Subsection 4.1.2, have to be applied in the 2D case as well. Therefore we introduce
the extended patterns and the resulting masks analogously to the 3D case. The
extended patterns are given in Figure A.2. The masks are given with red, green and
cyan coloured boxes.

It has to be mentioned that the green and cyan coloured masks for the pattern given
in Figure A.2(b) can be neglected since they do not contain edge information.

Now we can give the operators A, B, C, D and E, for the 2D case. The corresponding
3D operators are given at (4.6), (4.14), (4.17), (4.9) and (4.7).
Let the image sequence u be of size N × T and let R be the number of discrete
directions.
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tx
(a) Extended pattern and
masks that correspond to
v = −1

tx
(b) Extended pattern and
masks that correspond to
v = 0

tx
(c) Extended pattern and
masks that correspond to
v = 1

Figure A.2.: Visualisation of the extended patterns corresponding to v = {−1, 0, 1}. Further the masks,
which are needed to control the information flow, are shown in red, green and cyan
colour.

The operator A ∈ R4NT×NT that extracts the 2 × 2 patches out of the image can be
rewritten as

(Au)1
i,t = ui, j,t.

(Au)2
i,t =

ui+1,t if i < N
ui,t else.

(Au)3
i,t =

ui,t+1 if t < T
ui,t else.

(Au)4
i,t =


ui+1,t+1 if i < N, t < T
ui,t+1 if i = N, t < T
ui+1,t if i < N, t = T
ui,t else.

The operator D ∈ R4NT×NTR that maps the patterns onto the extracted 2 × 2 patches
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is given as

(Dµ)1
i,t =

R∑
r=1

∑
xshift={0,−1,1}

χr(xshift) · pr(1, xshift) · µi+xshift,t,r.

...

(Dµ)4
i,t =

R∑
r=1

∑
xshift={0,−1,1}

χr(xshift) · pr(4, xshift) · µi+xshift,t,r,

with Dirichlet boundary conditions.
The operator E ∈ R4NT×NT which maps the mean value µ̃ onto the 2 × 2 patches
consequently can be rewritten as

(Eµ̃)l
i,t = p0(l) · µ̃i,t for 1 < l < 4.

In the two dimensional case the implementation of the operator B, which corresponds
to the directional derivative, is far easier. Here the tangential plane presented in
Chapter 3 is a one dimensional object that is simply given by ϑ⊥, like it was used in
[4]. We will give a discrete version of the directional derivative for the discretisation
presented in Figure A.1. The three resulting derivative directions tr = (x, t)t are
given as

t1 =

(
−1
1

)
, t2 =

(
1
0

)
, t3 =

(
1
1

)
.

The operator B ∈ RNTR×NTR can be rewritten as

(Bµ)i,t,r =
µi+tr(1),t+tr(2),r − µi,t,r

|tr|
.

Finally we define the operator C ∈ RNTR×NTR that corresponds to the derivative in
label direction and is needed to set up the regulariser TVX1.

(Cµ)i,t,r =

µi,t,r+1 − µi,t,r if r < R,
µi,t,1−µi,t,R

R−1 else.

Now the theory presented in Section 4.4 can be applied.
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A.2. Refinement of the directional discretisation in
2D using patterns

All the patterns presented in Sections 4.1 and A.1 deal with integer pixel shifts only.
Here we want to derive the needed theory to get a finer resolutions of the discrete
directions in the two dimensional case using our pattern-supported approach. We
will see how this refinement step changes the structure of the discrete operators and
how they have to be adapted to make the presented methods working.

First let us give an example of an image u were an edge moves with the speed v = −1
2

and the desired discrete lifting µ.

u =



1
2 0 0 0 0 0 0 0 0
1 1 1

2 0 0 0 0 0 0
1 1 1 1 1

2 0 0 0 0
1 1 1 1 1 1 1

2 0 0
1 1 1 1 1 1 1 1 1

2


µv=− 1

2
=


1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1


Now let us take a closer look on the patterns that appear, if 2× 2 patches are extracted
on the positions that are suggested by the given µv=− 1

2
.

u =



1
2 0 0 0 0 0 0 0 0
1 1 1

2 0 0 0 0 0 0
1 1 1 1 1

2 0 0 0 0
1 1 1 1 1 1 1

2 0 0
1 1 1 1 1 1 1 1 1

2


u =



1
2 0 0 0 0 0 0 0 0
1 1 1

2 0 0 0 0 0 0
1 1 1 1 1

2 0 0 0 0
1 1 1 1 1 1 1

2 0 0
1 1 1 1 1 1 1 1 1

2


(A.1)

Here we see that two different patterns are needed to design the image created by
a speed of v = −1

2 . These two patterns are given in Figure A.3. In this Figure the
extended patterns are already shown. Since the topic of spatial information flow stays
the same, the theory of section A.1 has to be applied.
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tx
(a) First pattern
that corresponds to
v = − 1

2 .

tx
(b) Second pattern
that corresponds to
v = − 1

2 .

tx
(c) First pattern
that corresponds to
v = 1

2 .

tx
(d) Second pattern
that corresponds to
v = 1

2 .

Figure A.3.: Visualisation of the extended patterns corresponding to v =
{
− 1

2 , 1
2

}
.

Since there are two patterns corresponding to one speed, we have to remodel the
linear operators B and D.
First let us mention, that the need of two patterns that correspond to only one speed
leads to a dimensional increase of the lifted measure µ. For the case of half-valued
speeds we get µ ∈ R2NTR instead of µ ∈ RNTR.
The operator D that maps the patterns onto the 2 × 2 patches can be rewritten as

(Dµ)1
i,t =

2∑
g=1

R∑
r=1

∑
xs={0,−1,1}

χr,g(xs) · pr,g(1, xs) · µi+xs,t,r,g.

...

(Dµ)4
i,t =

2∑
g=1

R∑
r=1

∑
xs={0,−1,1}

χr,g(xs) · pr,g(4, xs) · µi+xs,t,r,g.

Here the variable g iterates over the different patterns corresponding to the same
speed. Since only one pattern is needed for integer speeds, we recommend to set the
second pattern to constant zero. It has to be mentioned, that any other constant-valued
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pattern will work as well.

In view of Figure A.3 we now want to derive the changes that have to be made in the
calculation of the directional derivative (operator B). Since there are two patterns
corresponding to the same speed we need two different differentiation directions for
one speed.
For the speed v = −1

2 , equation (A.1) and Figure A.3 suggest that the differentiation
direction that corresponds to the first pattern, shown in Figure A.3(a), should have
the direction t = (0, 1)T and point on the second µ that corresponds to the speed
v = −1

2 . Vice versa the differentiation direction corresponding to the pattern shown
in Figure A.3(b) has to be t = (−1, 1)T and point to the first µ that corresponds to
the speed v = −1

2 .
Analogously the directional derivatives corresponding to the speed v = 1

2 are given
as t = (0, 1)T and t = (1, 1)T . Therefore the operator B ∈ RNTR×2NTR is given as

(Bµ)i,t,r =
µi+tr,1(1),t+tr(2),r,2 − µi,t,r,1

|tr|

+
µi+tr,2(1),t+tr(2),r,1 − µi,t,r,2

|tr|

for non integer speeds and as

(Bµ)i,t,r =
µi+tr,1(1),t+tr(2),r,1 − µi,t,r,1

|tr|

for integer speeds. Mention that tr,2 for integer valued speeds is not defined, since it
is not used in the calculations.
Accordingly the theory presented in Section 4.4 can be applied to calculate a solution.
In Figure A.4 we present results for the denoising problem with a finer discretisation
of the directional patterns.
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(a) Given noisy image (b) Result using a TV regular-
isation term

(c) Result using a TVX0 regu-
larisation term

Figure A.4.: Results of a two dimensional denoising problem using non integer discretisation of the
directional space.
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