
Bernd Bachofner

Unsupervised learning and
reinforcement learning for

goal-directed decision making on
high-dimensional input spaces

MASTER’S THESIS

to achieve the university degree of
Diplom-Ingenieur

Master’s degree programme: Telematics

submitted to

Graz University of Technology

Institute of Theoretical Computer Science (IGI)
Inffeldgasse 16b/I, 8010 Graz

Thesis Advisor
Assoc.Prof. Dipl.-Ing. Dr.techn. Robert Legenstein

Graz, May 2016

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angege-
benen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnom-
menen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist
mit der vorliegenden Masterarbeit/Diplomarbeit identisch.

Ort Datum Unterschrift

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either literally
or by content from the used sources.

Place Date Signature

Contents

Contents ii

List of Figures iv

List of Tables v

List of Listings vii

Acknowledgements 1

1 Introduction 5

2 Feature Extraction 7
2.1 Slow Feature Analysis . 7

2.2 The Learning Problem . 8

2.3 The SFA Algorithm . 8

2.4 SFA implementation details . 9

2.5 Hierarchical SFA networks for high-dimensional data 10

2.6 Compact representations of visual scenes . 10

3 Model Based Learning 11
3.1 Reinforcement Learning . 11

3.2 Markov Decision Process . 12

3.3 Value Functions . 13

3.4 What is a Model . 13

3.5 The R-Max Algorithm . 14

3.6 Value Iteration . 15

3.7 Monte Carlo Methods . 17

3.8 Combining model and planning . 19

4 Feature Extraction Practical Section 23
4.1 Slow Feature Analysis (SFA) . 24

4.2 Hierarchical SFA networks for high dimensional data 28

4.3 Simple 2D hierarchical SFA network . 29

4.4 3D hierarchical SFA network . 49

i

5 Model Based Learning Implementation 57
5.1 From Features to Environment . 58

5.2 The R-Max Model . 59

5.3 The Value Iteration Algorithm . 61

5.4 The Upper-Confidence-Bound applied to trees Algorithm 65

5.5 Model Based Agent . 70

5.6 Experiments and Results . 73

6 Outlook 107
6.1 General Trends . 107

6.2 Ideas for Future Work . 107

7 Concluding Remarks 109

ii

List of Figures

3.1 ModelAndPlanning . 21

4.1 Input signal x1 . 35

4.2 Input signal x2 . 36

4.3 Input signal x2 . 37

4.4 Normalized input signal . 38

4.5 Non-linear expansion . 39

4.6 Sphered signal . 40

4.7 Time derived signal . 41

4.8 Output signal . 42

4.9 Simplel Maze 60x60 . 43

4.10 Train32X . 44

4.11 Train32Y . 44

4.12 Test32X . 45

4.13 Test32Y . 45

4.14 Train64X . 46

4.15 Train64Y . 46

4.16 Test64X . 47

4.17 Test64Y . 47

4.18 3DNetwork . 48

4.19 Test64Y . 51

4.20 Test64Y . 51

4.21 3DTrain32X . 52

4.22 3DTrain32Y . 52

4.23 3DTest32X . 52

4.24 3DTest32Y . 53

4.25 3DTrain64X . 53

4.26 3DTrain64Y . 54

4.27 3DTest64X . 54

4.28 3DTest64Y . 55

4.29 3DTest64XNoise . 55

4.30 3DTest64YNoise . 56

4.31 3DNetwork . 56

iii

5.1 Environment 3D . 76

5.2 Model base learner overview . 79

5.3 QValues Value Iteration left . 79

5.4 QValues Value Iteration up . 80

5.5 QValues Value Iteration right . 80

5.6 QValues Value Iteration down . 81

5.7 Environment 3D . 82

5.8 QValues UCT left . 83

5.9 QValues UCT up . 83

5.10 QValues UCT right . 84

5.11 QValues UCT down . 84

5.12 Environment 3D . 85

5.13 Environment 3D . 87

5.14 QValues Value Iteration left 3D . 88

5.15 QValues Value Iteration up . 89

5.16 QValues Value Iteration right . 89

5.17 QValues Value Iteration down . 90

5.18 Environment 3D . 90

5.19 QValues UCT left 3D . 92

5.20 QValues UCT up . 93

5.21 QValues UCT right . 93

5.22 QValues UCT down . 94

5.23 Environment 3D . 94

5.24 Environment 3D . 97

5.25 QValues Value Iteration left 3D . 98

5.26 QValues Value Iteration up . 98

5.27 QValues Value Iteration right . 99

5.28 QValues Value Iteration down . 99

5.29 Environment 3D . 101

5.30 QValues Value Iteration left 3D . 103

5.31 QValues Value Iteration up . 103

5.32 QValues Value Iteration right . 104

5.33 QValues Value Iteration down . 104

5.34 Environment 3D . 106

5.35 Environment 3D . 106

iv

List of Tables

5.1 Value-Iteration parameters . 75

5.2 UCT parameters . 76

5.3 Q-Values for Value-Iteration in 2D . 77

5.4 Q-Values for UCT in 2D . 78

5.5 Value-Iteration parameters . 88

5.6 Q-Values for Value-Iteration in 3D . 91

5.7 UCT parameters . 92

5.8 Q-Values for UCT in 3D . 95

5.9 Value-Iteration parameters . 97

5.10 Q-Values for Value-Iteration in 3D . 100

5.11 Value-Iteration parameters . 102

5.12 Q-Values for Value-Iteration in 3D . 105

v

vi

Listings

3.1 Pseudo code of the R-Max algorithm . 15

3.2 Pseudo code of the Value-Iteration algorithm . 16

3.3 Pseudo code of the UCT algorithm . 18

4.1 Simple reference implementation of the SFA algorithm 31

4.2 Linear SFA train reference implementation . 32

4.3 Linear SFA execute reference implementation . 33

4.4 Quadratic SFA train reference implementation . 33

4.5 Quadratic SFA execute reference implementation . 33

4.6 Linear Regression, to evaluate the SFA network . 34

vii

viii

Acknowledgements

I want to thank my advisor, Robert Legenstein, for his immediate attention to my questions and hours of
toil in correcting draft versions of this thesis.

I also want to thank my family, without their support and understanding this thesis would not have
been possible.

Special mention goes to Werner Trobin, who was a great help in finalizing this thesis. Without his
help I never would have developed the knowledge to implement such a project.

Bernd Bachofner
Graz, Austria, May 2016

1

2

Abstract

The focus of this thesis is to evaluate if an unsupervised image processing system can provide relevant
information for a goal-directed decision making system. We use agent-based navigation in a 3D envi-
ronment to demonstrate how the decision system works. The visual input to the system is pre-processed
by the image-processing system. For this purpose a synthetically generated image sequence of a 3D
environment serves as input. The system should be able to extract the most important information out of
the image sequence. This information is then given as input to the decision system. The decision system,
a so called agent, should be able to make decisions based on data provided by the image processing
system, to achieve some goal. We discuss the steps which are necessary to setup such an unsupervised
image processing system and we will show how its output is used in the decision making system. A
hierarchical Slow Feature Analysis (SFA) network is used to process the high-dimensional input data.
The network contains four layers, each layer servs as an input to the next layer. The first layer processes
the input data, while the final layer provides us the low dimensional output. The output of the final layer
is then processed using Independent-Component-Analysis (ICA) which removes the remaining redun-
dant information. We then discretize the data (or features) calculated in the ICA step which serve as
an input for the decision making system. The decision making process is based on a so called model
based learning system. This means a model of the environment (state space) is used to support the agent
during the decision making process. The model is an abstraction of the environment and keeps statistics
and probabilities for each state. In this thesis we compare two algorithms for the learner or decision
maker, Value-Iteration and UCT. Both methods belong to the category of Reinforcement Learning (RL),
this means the algorithms try to maximize a reward value. Both Value-Iteration and UCT try to attain
a high reward by devising an optimal decision policy. The Value-Iteration method is based on dynamic
programming methods, while UCT uses Monte Carlo Tree Search (MCTS). Both algorithms perform
pretty well in archiving a certain goal; for our specific problem Value-Iteration performs better.

3

4

Der Zweck dieser Diplomarbeit ist es die folgende Frage zu beantworten: Ist es möglich ein nicht
überwachtes (Unsupervised) Bildverarbeitungssystem einzusetzen, welches die relevanten Informatio-
nen für ein zielorientiertes Entscheidungssystem extrahiert. Um zu demonstrieren wie ein solches Ent-
scheidungssystem funktioniert, implementieren wir ein Navigationssystem, welches einen Agent in einer
3D Welt steuert. Der visuelle Input für dieses Navigationssystem wird so aufbereitet, dass das System
in der Lage ist jede beliebige Position in der 3D Welt zu finden. Diese Aufgabe wird von unserem
Bilderverarbeitungssystem übernommen. Es wurde eine Sequenz von künstlichen 3D Bildern erzeugt,
diese Sequenz dient als Input für das Bildverarbeitungssystem. Dem System sollte es möglich sein, die
wichtigsten Informationen aus dieser Sequenz zu extrahieren, welche dann als Input für das Entschei-
dungssystem dienen. Das Entscheidungssystem sollte in der Lage sein Entscheidungen auf der Basis der
Daten zu treffen, die vom Bildverarbeitungssystem zu Verfügung gestellt wurden. Im Folgenden zeigen
wir was nötig ist, um ein solches Bildverarbeitungssystem zu implementieren. Das System verwendet
ein sogenanntes hierarchisches Slow Feature Analysis (SFA) Netzwerk, dies besteht aus vier Schichten
(Layer), jede Schicht dient als Input für die nächste. Die erste Schicht verarbeitet die visuellen Daten
unserer künstlichen 3D Welt, während die letzte Schicht die auf das Wesentliche reduzierten Informa-
tionen liefert. Der Output der letzten Schicht dient als Input für den Independent-Component-Analysis
(ICA) Algorithmus, diese Methode entfernt die verbleibenden redundanten Informationen. Nach der Dis-
kretisierung der Daten (Features), werden diese als Input für das Entscheidungssystem verwendet. Die
Diskretisierung dient dazu die vom Bildverarbeitungssystem zur Verfügung gestellten Informationen
in ein für das Entscheidungssystem verwendbares Format umzuwandeln, mit anderen Worten wird ein
sogenannter Zustandsraum (State Space) erzeugt. Das Entscheidungssystem wird von einem Agenten re-
präsentiert. Dieser Agent trifft Entscheidungen mithilfe eines Modells der Umgebung. Das Model enthält
Informationen über jeden Zustand im Zustandsraum (Model-Based-Learning). Das Entscheidungssystem
verwendet zwei Algorithmen aus der Kategorie Reinforcement Learning (RL), Value-Iteration und UCT.
Reinforcement Learning bedeutet dass die Algorithmen versuchen ihre Belohnung (Reward Value) zu
maximieren. Der Value-Iteration Algorithmus verwendet Methoden aus dem Gebiet des dynamischen
Programmierens, während der UCT Algorithmus auf Monte Carlo Tree Search (MCTS) basiert. Beide
Algorithmen sind in der Lage die an ihnen gestellten Aufgaben zu erfüllen, jedoch ist Value-Iteration für
die in dieser Arbeit gestellten Aufgaben die bessere Wahl.

Kapitel 1

Introduction

The goal of this thesis can be described in one sentence: Create a system which is able to plan an agent’s
behavior based on high-dimensional visual input in 2D or 3D environments. The system can be broken
down into two main parts:

• The visual system: A system that is able to extract the most important information out of the image
data. This implies some kind of information compression from high dimensional input data (the
image) to low dimensional data (features) to simplify further processing.

• The planning system: A system that is able to build a representation of the environment using
data provided by the visual system. Based on this representation a so called agent explores the
environment to find optimal actions.

The visual system, or feature extraction system, receives a temporal sequence of images, which means
that the first image represents the input at time t0 the second the input at time t1 and so on until tn.
The feature extraction system uses these high dimensional input data, to generate a low dimensional re-
presentation of minimal redundant information. One goal of this thesis is to use unsupervised learning
systems for this feature extraction. For the visual system the decision was made to use the so called
„Slow Feature Analysis “(SFA) method. This algorithm has been used successfully in similar situations.
SFA has been used to create spatial maps from 3D movies [4]. It has also been used as preprocessing
for a reinforcement learning system on simple 2D movies [25]. In the latter work, a simple model-free
reinforcement learning algorithm was applied. In this thesis we show that SFA can be used as a visual
preprocessing system (visual system) for a model-based planner on pseudo realistic 3D movies. A com-
plete description of the algorithm can be found in Chapter 2, the results of the method when applied to
simple binary images and 3D images from a simulated environment can be found in Chapter 4.

The planning system: This system is based on ’model-based reinforcement learning’. The data provi-
ded by the visual or feature extraction system are used to generate a model of the environment. The
agent uses this model to plan its actions on it. This approach is very popular in computer science at the
moment, since a lot of scientists think that this is a good way to emulate how the human brain works
when we are learning, like for example running. This example sounds strange, how to learn running?!,
but when a human tries to run a long distance for the first time, most likely he or she will fail, not only
because of the physical strain, but the human also needs to learn how to run such long distances (reward
system) and also needs to get familiar with the track (model). Exactly for such situations a so called
reward system comes into mind, the first time a human tries to run up a hill he or she most likely runs
too quickly, so the consequence is that the human has to slow down. To a runner this is some kind of
punishment, the runner is not able to run the complete distance. The next time the human already knows
the track and so he or she will run up the hill a bit slower and then will succeed because the runner is

5

6 1. Introduction

able to run the complete distance, so the human gets a reward.
Similar systems can be used in the world of artificial intelligence. The agent gets a reward when it for
example doesn’t hit a wall or gets punished when it hits a wall. A description of the theoretical ideas
and the algorithms can be found in Chapter 3. How the different algorithms were implemented and the
results of the different experiments can be found in Chapter 5.
The final chapter of this thesis provides an overview of potential future work, based on the different
findings that have been made during creation of this thesis also some points of improvement have been
discovered.
The final chapter 6 also contains some references to papers and web-sites that have been used to create
this thesis. A lot of code or programs have been written during the work to create a simulation envi-
ronment in which all the algorithms can be tested in different situations. A manual on how to use these
programs can be found in the attached source code in the ’Readme.txt’ file.

Kapitel 2

Feature Extraction

In artificial intelligence or machine learning, a feature is a measurable property of an observed event
[1]. As already explained in the introduction of this thesis, the input data to the visual system are high
dimensional. This means that the images contain a lot of redundant data, which hamper further processing
and can be neglected. The purpose of the feature extraction system is to provide discriminative and
independent features. Quite a lot of algorithms are available to perform dimensionality reduction like
Principal Component Analysis (PCA) [2], Independent Component Analysis (ICA) [3] etc. Because one
of the goals of this Master Thesis was to use only unsupervised learning methods the decision was
made to use the so called „Slow Feature Analysis (SFA)“ [4]. SFA is based on learning invariances
from temporal input sequences. In our case this means that we have a sequence of images that represent
the agent’s movement through a synthetically generated 3D world based on the „Two rooms problem“
introduced by Todd Hester and Peter Stone [7]. The main idea of SFA [4] is that localized properties
of an environment vary quickly (e.g.: small parts of a image sequence where a bird flies through) while
the overall scene (e.g.: the whole image sequence) varies slowly. SFA exploits this fact and picks slowly
varying features to obtain an invariant representation of the environment. In contrast to most other feature
extraction methods like ICA, where the input signal is processed directly, the SFA algorithm can use
linear or nonlinear expansions of the input signal. Further processing can be performed, e.g., by Eigen-
decomposition or PCA on the signal, which leads to an solution that provides (if intended) a large number
of decorrelated features, that are ordered by their degree of invariance. Another advantage of SFA is, that
so called SFA-Nodes can be grouped in a hierarchical network that represents a simple model of the
visual system, which on the one hand simulates biological behaviour and on the other hand enables
to massive parallelism. All nodes on the same hierarchical level are independent and can therefore be
calculated in parallel. Such a hierarchical network exactly fits our problem of extracting relevant features
from a large amount of image data produced in this thesis. In the following section a precise explanation
of the SFA algorithm is given as well as some experiences which were made during the work with the
algorithm on image data. Results of trainings and test data are then presented in a practical section.

2.1 Slow Feature Analysis

The basic idea behind feature extraction and object recognition algorithms is to generate an invariant
representation of the sensory inputs (e.g. retina or camera). Consider for example three different objects
(Letters) which move through the visual field (whole image) with different directions and speeds. From
a high level point of view each of the signals can be represented by three time dependent variables. The
first variable indicates the object (which letter is currently visible), the second and third variables indicate
the vertical and horizontal location of the object. The receptive field (the object covers many sensors)
represents one sensor, that only provides signals of localized features of the objects, such as gray values,
dots or edges. These sensors respond to localized features, this means their output signals change quickly.

7

8 2. Feature Extraction

The output contains information like object identity and location in an implicit way. The vast majority of
the calculated input-output functions would generate quickly varying output signals, only small fractions
of the generated functions will generate slowly varying output signals.

2.2 The Learning Problem

As mentioned above, Slow Feature Analysis is all about selecting slowly varying features from a large
number of input signals. In order to implement such a feature selection algorithm, we first state SFA as a
machine learning problem. „ Given a vectorial (potentially high dimensional) input signal x(t), the goal
is to find an input-output function g(x) such that the output signal y(t) := g(x(t)) varies as slowly as
possible. “ [4]
Consider the high dimensional input signal x(t). To find the input-output functions gj(x) the following
steps are performed. The jth output yj(t) of the SFA algorithm is defined as some function gj of the
input signal

yj(t) := gj(x(t)). (2.1)

The objective of the optimization is to minimize

∆(yj) := 〈ẏ2j 〉t, (2.2)

where ẏ is the derivative of y with respect to time and 〈.〉t denotes the temporal average. The ∆ value
defined by equation (2.2) is the objective of the learning (optimization) problem and measures the slow-
ness of the output signal. A low value indicates small variations over time, and therefore slowly-varying
signals. To avoid trivial solutions such as yj(t) = const the output is constrained to have zero mean and
unit variance. Hence, the optimization is performed constrained to

〈yj〉t = 0 (2.3)

〈y2j 〉t = 1 (2.4)

Additionally, decorrelation and order is imposed via the constraints

〈yiyj〉t = 0 ∀i < j. (2.5)

This constraint guarantees that different output signal components carry different information. The cons-
traint also yields an order such that y1(t) is slower varying than y2(t) which means that y1(t) is the
better output signal than y2(t). Constraints 2.3 and 2.4 could be dropped and replaced by a single step

procedure
〈ẏ2j 〉

〈(yj−〈xj〉)2〉 explained in [8] to reduce computational complexity.

The algorithm presented in the following section solves the problem under the constraints (2.3) and
(2.4). The problem however is, that the reference algorithm is computationally expensive and therefore,
the implemented version differs in some points from the reference version. These changes are minimal
and will be explained in the practical section.

2.3 The SFA Algorithm

Given an I-dimensional input signal x(t)= [x1(t), ..., xI(t)]
T consider an input-output function g(x) =

[g1(x), ..., gJ(x)]T each component of which is a weighted sum over a set of K non-linear functions
hk(x), i.e. gj(x) :=

∑K
k=1wjkhk(x). Applying h = [h1, ..., hK]T to the input signal yields the non

linear expanded signal z(t) = h(x(t)). After applying the non linear expansion the problem can be
handled as linear in the expanded signal components zk(t). The weight vectors wj = [wj1, ..., wjK]T are
then learned and the jth output signal component is given by yj(t) = gj(x(t)) = wT

j h(x(t)) = wT
j z(t).

2.4. SFA implementation details 9

As mentioned above the objective of this learning problem is to minimize equation 2.2 which means we
have to optimize the weights. This is shown in the following equation

∆(yj) = 〈ẏ2j 〉 = wT
j 〈żżT 〉wj . (2.6)

The non linear function hk is chosen in a way such that the expanded signal z(t) has zero mean and a
unit covariance matrix. Such a set hk of non-linear functions can be found by a method called sphering
(which is the normalization of the expanded z(t) signal). Zero mean and unit variance of the output
signals yj are then fulfilled automatically if the weight vectors are constrained to be an orthonormal set
of vectors (if they are all unit vectors and orthogonal with respect to each other),

〈yj〉 = wT
j 〈z〉 = wT

j × 0 = 0 (2.7)

〈y2j 〉 = wT
j 〈zzT 〉wj = wT

j Iwj = 1 (2.8)

∀j′ < j : 〈yj′yj〉 = wT
j′〈zzT 〉wj = wT

j′wj = 0 (2.9)

To find the solution of equation (2.6), we can reformulate the problem to find the normalized weight
vector that minimizes ∆(y1), which means the solution is the normalized eigenvector of matrix 〈żżT 〉
that corresponds to the smallest eigenvalue. The next pair of eigenvectors and eigenvalues with larger
eigenvalue produces components of the input output function with next higher delta-values, and so on.

2.4 SFA implementation details

In the following a high level description of the building blocks which are used to create the SFA algorithm
is given. A detailed description including Matlab code follows in the practical section.

• Normalization: As already mentioned above the input signal needs to be normalized to a zero-
mean signal with unit variance
xi(t) = x̃i(t)−〈x̃i〉√

〈(x̃i−〈x̃i〉)2〉
, where x̃i(t) is the input signal.

There are other methods to normalize the input signal, which are not as computationally expensive
as this one. One of these methods is used and explained in the practical section, see Chapter: 4.
The normalization fulfills the constrains of 〈xi〉 = 0 (zero mean) and 〈x2i 〉 = 1 (unit variance).

• Expansion: The expansion is used to transform a non-linear problem to a linear one. This can
be done by applying non-linear functions h(x) to generate an expanded signal. Linear functions
h(x) can be obtained from any monomials of degree one which results in a so called Linear-SFA.
Non-linear functions can be obtained from monomials of degree one and two including mixed
terms which then results in a so called quadratic-SFA. The quadratic version of the SFA algorithm
for a two-dimensional input signal x(t) = [x1(t), x2(t)]

T uses to following expansion: z(t) =
[x1, x2, x

2
1, x1x2, x

2
2]
T .

• Sphering or whitening: This is the normalization of the expanded signal z(t) and can be done with
Principal Component Analysis (PCA) [2]. Sphering of z(t) assures that the constraints 2.3-2.5 are
fulfilled for orthogonal weight vectors. After sphering the resulting signal z(t) has unit variance in
all directions. The sphered signal ż(t) is computed from a signal z̃t as
z(t) := S(z̃(t) − 〈z̃〉), where S is the so called sphering matrix which can be calculated using
PCA.

10 2. Feature Extraction

• PCA [2]: This can be done as follows: To calculate the PCA the so called Singular Value Decom-
position (SVD) algorithm can be used. It is also possible to use Eigen decomposition [10] but in
this thesis the SVD was used.

• Time derivative: Here the temporal derivative of the sphered signal z(t) is calculated. This can be
done with the following formula:
ż(t) = z(x0+h)−z(x0−h)

2h , where h is the step-size, which is the approximation of the derivation
along the time axis.
Another way is to use the integrated Matlab function „filter“, this function is used in the practical
section 4.

• Extract the slowest varying direction: The goal here is to find the direction in which the time
derivative of the sphered signal varies most slowly. To find this direction one can use Eigen de-
composition to find the eigenvector corresponding to the smallest eigenvalue 〈żżT 〉.

2.5 Hierarchical SFA networks for high-dimensional data

Non linear SFA, like the quadratic version of the SFA, require a significant amount of resources (memory,
computation time) due to the high dimensionality. The expanded function space increases quickly with
the number of the input signals. This is especially problematic with high dimensional data like visual
data, that are heavily used in this thesis. For example the quadratic SFA of an input image with the size
100× 100 yields a dimensionality of 50.015.000, which is a problem even for modern computers.
One way to overcome this is to apply the SFA only on small sub-parts of the input, extract the slowest
varying features for each sub-part and then use these outputs as input for another iteration of the SFA
[5]. This would solve the problem of dimensional explosion. It should be mentioned here that the final
slow features extracted, may not be identical with the results of the SFA which has the whole data as
input. The splitting of the input data relies on the locality of feature correlations which holds for natural
images.
Hierarchical networks with feed-forward organization can be composed to represent a complex visual
system. Refer to practical section of the SFA Chapter 4 for a schematic representation of a SFA network.
This approach seems to have a lot of advantages. For example the more layers are used, the larger the
receptive filed size gets, which means that even complex structures like whole objects can be recognized.
Another advantage is that in each layer all SFAs can be calculated in parallel which fits well to modern
CPU architecture. It is also possible to split the calculation to a network of computers and then in a final
step concatenate the different results. As mentioned above, image data are heavily used in the thesis and
so hierarchical SFA networks were used. A detailed explanation of the used network will be given in the
practical section.

2.6 Compact representations of visual scenes

For the representation of visual scenes two features are important. First of all the object identities, which
provides the information to recognize an object. Second the configuration of an object, which provides
information about the object’s position and orientation. All these features are typically slow features and
so they will usually be selected by the SFA. So after training a hierarchical SFA network with visual input,
the network should be able to extract features like object identity and configuration. Another advantage
of hierarchical networks is that for “simple”situations it is capable to retrieve individual features, since
they are independent of each other. For example: One feature represents the object’s identity while the
other feature represents the object’s position.

Kapitel 3

Model Based Learning

3.1 Reinforcement Learning

Model Based learning is one approach in a large research field called Reinforcement Learning (RL). So
before we can go to Model Based learning the expression Reinforcement Learning needs to be explained
in more detail. Reinforcement Learning learns, how to map situations to actions and maximizes a reward
value or signal [6]. The learning system is not told which actions to take, as it is the case in supervised
learning, instead it must discover which actions yield the most reward by trying them out. In situations
like in this thesis this means that actions may not only affect the immediate reward but also the next
actions and rewards. The properties of RL can be summarized in three main characteristics:

1. It is a closed loop problem, this means the systems actions influence its later inputs.

2. The system does not have instructions on which action to take next.

3. The consequences of taking an action and receiving a reward is played out over a extended time
period.

In our case this means that an agent (learner or decision maker) must be able to sense the current state
of the environment and then perform actions on this environment to achieve a goal. RL tries to maximize
a reward value.

3.1.1 The Agent-Environment Interaction

The agent interacts with the outside world, the environment. In our case a OpenGL generated 3D world
is used as input to the feature extraction system. The feature extraction system then provides features
or states, this is the environment of the agent. The agent and the environment interact at each point in
time t = 0, 1, 2, 3, ...n. At each time step the agent gets information about the environment’s state st,
s ∈ S, where S is a set of possible states (in our case these are the independent features provided by
the SFA). Depending on the current state the agent selects an action at, a ∈ A, where A is a set of all
possible actions (in our case this means Left, Up, Right and Down). One time step later the agent receives
a numerical reward rt+1 ∈ R, and finds itself in a new state. At each time step the agent calculates
probabilities of selecting each possible action. This is called the agent’s policy πt, where πt(a|s) is the
probability that at = a if st = s. The change of the policy depends on the experiences the agent made in
the environment. The goal of the agent is to maximize the total reward it receives over the time period.

11

12 3. Model Based Learning

3.1.2 Discount rate

At each time step the agent receives a reward r. This means the agent receives a sequence of rewards t,
rt+1, rt+2, rt+3, ..,. We want to maximize the so called ’expected return’, whereGt is defined as function
of the reward sequence. In a simple scenario the return is the sum of all rewards, Gt = rt+1 + rt+2 +
... + rT , where T is the final step. A problem with the above formula appears when for example the
environment interaction does not stop after a finite number of time steps, but instead continues without
limit. In this case the return which we try to maximize could itself be infinite. To overcome the problem
a discount rate or factor γ is used. The agent tries to select actions that maximize the sum of discounted
rewards. In other words it chooses at to maximize the expected discounted reward ,Gt = rt+1+γrt+2+
γ2rt+3+... =

∑∞
k=0 γ

krt+k+1, where γ is a parameter, 0 ≤ γ ≤ 1, called discount rate. The discount rate
represents the value of future rewards. This means a reward received k time steps in future is treated as
γk−1 times what is worth it received immediately. When choosing γ < 1 the reward sum is finite, as long
as the reward sequence is limited. When γ = 0 the agent tries to maximize its immediate rewards, this
means the agent maximizes only rt+1 (this is called a myopic agent). When γ = 1 the agent is focused
on maximizing its future rewards (this is called a farsighted agent). The agent decides on what do to
next, by comparing different sequences of rewards. This is done by converting a sequence of rewards to
a number called the value of the cumulative reward. The agent combines an immediate reward with other
rewards in the future. For example the agent receives the following sequence of rewards: r1, r2, r3, r4,....
Three ways exist to combine rewards into a value V ′:

• Total reward: V =
∑∞

i=1 ri. Here the value is the sum of all of the rewards, this works if the
sum is finite. This is only the case when a stopping state exists and when the agent always has a
probability > 0 of entering the stopping state.

• Average reward: V = lim
n→∞

(r1 + ...+ rn)/n. Here the value is the average of its rewards, ave-
raged over each time period. When the reward is finite, the average will also be finite. However
when the total reward is finite, the average reward is zero. The result is that the agent will not be
able to choose an action since each has a zero average reward.

• Discounted reward: V = r1 + γr2 + γ2r3 + ... + γi−1ri + ..., where γ, the discount factor, is a
number in the range of 0 ≤ γ ≤ 1. Future rewards are weighted less than the current reward. If
γ = 1, this would have the same effect as using total reward, and when γ = 0, the agent would
ignore all future reward. 0 ≤ γ ≤ 1 ensures that the reward is finite, then also the total value will
be finite.

3.1.3 Episodic Tasks

A task is called ’Episodic’ if the agent-environment interaction breaks down into a sequence of separated
episodes. Mathematically this means that each action affects only a finite number of rewards subsequently
received during an episode. Instead of only one long sequence of time steps, an episodic-task can be seen
as a series of episodes each of which consists of a finite sequence of time steps.

3.2 Markov Decision Process

The Markov Decision Process (MDP) is the most important mathematical construct to understand rein-
forcement learning. Almost every algorithm which is used in RL is based on MDPs. In this thesis the
so called ’Finite MDP’ is used which means the state and actions spaces are finite. The MDP is defined
by state and action sets and by the one-step dynamics of the environment. Given a state s and an acti-
on a, the probability of each possible pair of next state s′ and reward r is calculated with P (s′, r|s, a)
where P is for example the probability that st+1 = s′, this means that the next state is the specific

3.3. Value Functions 13

state s′. Given the above formula one can calculate the state transition probabilities the following way,
P (s′|s, a) =

∑
r∈R P (s′, r|s, a).

• P (s′|s, a), specifies the probability of transitioning to state s′ given that the agent is in state s and
performs the action a

• R(s, a, s′), gives the expected immediate reward for doing action a and a transitioning to state s′

from state s

3.3 Value Functions

The value function estimates the best action to perform in a state or in other words how good is it to
perform a given action in a given state. To describe what ’how good’ means, one can say, that it is the
future rewards that can be expected. Value functions are defined with respect to particular policies, a
policy π, is mapping from a state s and an action a to the probability π(a|s), of taking action a when in
state s. Consider Vπ(s) as the value of state s under the policy π, for MDPs Vπ(s) the so called ’state-
value function for policy π’ is calculated as, Vπ(s) = Eπ[Gt|st = s] = Eπ[

∑∞
k=0 γ

krt+k+1|st = s],
where Eπ[Gt|st = s] is the expected value of Gt, given that st = s and the agent follows policy π. Gt is
the function of the reward sequence. The ’action-value function for policy Qπ(s, a)’, which is the value
of taking action a in state s under policy π can be calculate as Qπ(s, a) = Eπ[Gt|st = s, at = a] =
Eπ[

∑∞
k=0 γ

krt+k+1|st = s, at = a].

3.4 What is a Model

A model of the environment can be seen as a resource that the agent can use to predict how the environ-
ment will respond to the actions it performs [6]. When the agent performs an action a from state s, the
model should be able to predict the next state, s′ and the reward, r the agent receives by taking this action.
In a stochastic model there exist several possible next states and rewards, each with some probability of
occurring.
The usual way to learn a model is to learn a tabular maximum likelihood model. The tabular maximum
likelihood algorithm maintains a count, C(s, a), of times an action a was taken form state s. Furthermore
the algorithm maintains a count, C(s, a, s′), of the number of times that each next state s′ was reached
from (s, a) and the transition probability T (s, a, s′) that the next state is s′ when performing action a in
state s.
The probability of outcome s′ is then:

P (s′|s, a) = T (s, a, s′) = C(s, a, s′)/C(S, a) (3.1)

The algorithm keeps statistics about the sum of rewards it has received from each transition,Rsum(s, a),
and computes the expected reward for a particular state action to be the mean reward received from that
state action:

R(s, a) = Rsum(s, a)/C(s, a) (3.2)

The tabular model learning is easy to use and also easy to implement. It is used in model based algo-
rithms like R-Max [12], which is used in this thesis to generate the model out of the environment. The
algorithm is sample efficient and produces good results that can easily be used by planning algorithms
like Value-Iteration. A detailed description about R-Max will follow in its own section.

14 3. Model Based Learning

3.5 The R-Max Algorithm

The R-Max algorithm [12] is a model based method, which learns a tabular maximum likelihood model.
The advantage of using model based methods compared to model free ones is that they can provide better
sample efficiency.
The expression ’sample efficiency’ refers to the number of actions that an algorithm needs to learn an
optimal policy. Kakade [9] proved a lower bound for sample complexity of
O(NA

ε(1−γ) log 1
δ),

for stochastic domains, where N is the number of states, A is the number of actions, γ is the discount
factor. The algorithm finds an ε-optimal policy (this means the actions chosen by the policy, differ only
in the boundaries of some ε value over a period in time) with probability 1− δ.
As already mentioned model based methods can be more sample efficient than model free approaches.
The question is how many actions are needed to learn an accurate good model. Here a second algorithm
namely Explicit Explore or Exploit E3 is used. This algorithm serves as reference for the R-Max algo-
rithm, because it was the first algorithm that proves to be a near optimal policy in polynomial time.
Before digging deeper into the E3 algorithm two important expressions needs to be explained.

1. Exploration: Is the process of gathering statistics and knowledge about the environment.

2. Exploitation: Is the process of maximizing the rewards after the agents knows ’enough’ about the
environment.

E3 keeps track of visits to each state and treats states with fewer than m visits as unknown. Whenever
the agent reaches an unknown state it performs balanced wandering (taking the action that has the lowest
probability from that state). By doing this, the agent learns more about the unknown state and the state
may become a known state after a couple of visits by the agent. If the agent reaches a known state it
performs an exploration policy that gets to an unknown state as quickly as possible. If the probability
to reach an unknown state is greater than ε

2∗Rmax (where Rmax is the maximum reward), this policy is
followed, if not, it was proven that planning an optimal policy must result in a policy that is within ε
optimal. This means the algorithm plans then an approximate optimal policy and follows it.
„With probability no less than 1− δ, the E3 algorithm will return a value greater than the optimal value
– ε, in a number of steps polynomial in N , T , Rmax, 1

ε and 1
δ .“ [7].

Both E3 and R-Max have proven bounds on sample efficiency. They learn a tabular maximum likelihood
model and keep counts about known and unknown states. The main difference to E3 is that the R-Max
algorithm replaces unknown transitions in the model with so called transitions to an absorbing state.
An absorbing state is a state where all actions of an agent leave the agent in this absorbing state and
provides the agent with the maximum reward Rmax. The R-Max algorithm is simpler to understand and
to implement than the E3 algorithm, and it employs an implicit explore or exploit mechanism rather than
explicitly deciding between the two policies as E3 does.
A pseudo code implementation of the R-Max algorithm can be seen below, the real implementation is
explained in the practical section.

Definition of the input variables for the R-Max algorithm:

• S is defined as a set of states of the world.

• A is defined as a set of actions for example: up, right, down, left.

• m is a threshold that defines when a state can be considered as ’known’. This means that as long
as the number of visits to a state is less than m the state is considered to be unknown.

• Rmax is the maximum reward.

3.6. Value Iteration 15

Listing 3.1: Pseudo code of the R-Max algorithm

Algorithm R_Max (Inputs S, A, m, Rmax)
// Initialize sr as absorbing state with reward Rmax
for all a in A do

R(sr ,a) <- Rmax
T(sr ,a, sr) <- 1

end for
Initialize s to a starting state in the MDP
loop

// Sample an action from the policy pi
Choose a = pi(s)
Take action a, observe r, s_dash
// Update model
Increment C(s,a, s_dash)
Increment C(s,a)
RSUM(s,a) <- RSUM(s, a) + r
if C(s,a) >= m then

// Known state, update model using experience counts
R(s,a) <- RSUM(s, a) / C(s, a)
for all s_dash in C(s, a, .) do

T(s,a, s0) C(s,a, s0)/C(s,a)
end for

else
// Unknown state, set optimistic model transition to absorbing

state
R(s, a) <- Rmax
T(s,a, sr) <- 1

end if
// Plan policy on updated model
Call VALUE-ITERATION || UCT
s <- s_dash

end loop

3.6 Value Iteration

3.6.1 Value of a Policy

One of the main goals of this thesis is to implement an agent based system which can be used to solve
problems like path-finding. As mentioned earlier, the states on that the system operates on, are provided
by the feature extraction process called the SFA algorithm. The problem for the agent is to decide in
each and every state which action to perform, the resulting state depends on both the previous state and
the current performed action. To model such problems the so called MDP is used. In the following an
explanation of the model is given plus an algorithm (Value-Iteration) is presented to solve this problem.
A reward system is the only feedback guiding this process. Depending on the actions the algorithm
performs either a reward or punishment is given. Negative rewards are called punishments.

3.6.2 Value of an Optimal Policy

The main task in solving a reinforcement learning problem is to find a policy that yields a high reward
over a given time span. For finite MDPs the definition of an optimal policy can be stated as, π ≥ π′, where
π′ is any other possible policy. A optimal policy π is better or at least as good as any other policy π′ if
its expected return (reward) is greater than or equal to that of π′ for all states. Or using value functions,
Vπ(s) ≥ Vπ′(s)∀s ∈ S, where S denotes the complete state space. There exists at least one policy that
is better than or equal to all other policies, this is then called an optimal policy [6]. Consider the optimal

16 3. Model Based Learning

state-value function as V ∗ that is defined as V ∗(s) = max(Vπ(s)), ∀s ∈ S. The optimal action-value
function is defined as Q∗(s, a) = max(Qπ(s, a))∀s ∈ S and a ∈ A, where A denotes the all possible
actions. The optimal policy is then denoted as π∗ and is defined as π∗(s) = argmaxaQ

∗(s, a), where
argmaxa is a function of state s, and its value is one of the actions a that result in the maximum of
Q∗(s, a).

3.6.3 Value-Iteration Algorithm

The Value-Iteration method is a procedure for computing an optimal MDP policy and its value. The algo-
rithm uses an arbitrary endpoint, from this endpoint the algorithm works backward, refining an estimate
of either Q∗orV ∗ [11].
Let us define Vk as the state-value function, after the kth update. Qk is defined to be the Q-function. Vk
and Qk can be defined recursively. The value iteration algorithm starts with an arbitrary function V0 and
makes use of the following equations to get the functions for k + 1 episode.

Qk+1(s, a) =
∑

s′
P (s′|s, a)(R(s, a, s′) + γVk(s

′)) for k ≥ 0 (3.3)

Vk(s) = max
a

Qk(s, a) for k > 0 (3.4)

Definition of the input variables, for the Value-Iteration algorithm:

• S, is defined as the set of all states.

• A, is defined as a set of actions for example: up, right, down, left.

• P , is defined as state transition function specifying P (sdash|s, a).

• R, is defined as the reward function R(s, a, sdash).

• Theta, is a threshold θ > 0, it is the termination condition of the algorithm.

Definition of the output variables, provided by the Value-Iteration algorithm:

• pi[s], is defined as the approximately optimal policy π(s), for state s.

• V [s], is defined as the approximately optimal action-value function Vπ(s), for state s.

The pseudo code of the Value Iteration can be found below.

Listing 3.2: Pseudo code of the Value-Iteration algorithm

Value_Iteration(S,A,P,R, Theta)
Local

real array Vk[S] is a sequence of value functions
action array pi[S]

assign V0[S] arbitrarily
k <- 0
repeat

k <- k + 1
for each state s do

Vk[s] = max(sum(
P(s_dash|s,a) (R(s,a,s_dash) + gamma * Vk-1[s_dash])))

until for all s abs(Vk[s] - Vk-1[s]) < Theta
for each state s do

pi[s] = argmaxa(sum(P(s_dash|s,a) (R(s,a,s_dash)+ gamma*Vk[s_dash]))
return pi,Vk

3.7. Monte Carlo Methods 17

The algorithm converges no matter what the initial value function V0 is. A good initial value function,
which is a close approximation of V ∗ clearly results in a much faster converges than a poorly estimated
initial function. The common way for creating an initial function, is to use some heuristic methods or
simply use random values, which are used as an initial seed for the value iteration.

Another version of the algorithm is the so called asynchronous value iteration. This version makes
use of the multi-core processor technology which has been introduced by the processor vendors in the
last years. Instead of sweeping through the states to create a new value function, the asynchronous ver-
sion updates the states one at a time in any order, and stores the values in a single array. Ideally this
algorithm converges faster than the synchronous version, but locking mechanisms may introduce some
overhead and the number of states may influence the performance. The more states the model has, the
more beneficial the asynchronous version is.
Implementation details and considerations which algorithm version for this thesis was chosen, are ex-
plained in the practical section of this document.

3.7 Monte Carlo Methods

In the previous chapter a policy based method has been shown to find the actions that provide the most
reward. One possibility for learning such a policy is to use ’Value-Iteration’, another option is to use
’Monte-Carlo’ methods in particular ’Monte Carlo Tree Search’ (MCTS).
The Value-Iteration algorithm is based on dynamic programming methods, this means it needs a complete
probability distribution of all possible transitions. The assumption is made, that the model has complete
knowledge of the environment. In contrast Monte-Carlo methods may only require sample sequences of
states, actions and rewards from the environment. Monte-Carlo methods solve the RL problem based on
averaging sample returns (or rewards), therefore Monte-Carlo methods must be used in episodic tasks.
An episode is a sequence of state, action and reward tuples, that is obtained by using the model of the
environment [13]. When an episode is finished the value estimates and policies are updated. MCTS
algorithms build a tree of visited state-action pairs starting from the current state. Such a tree enables
the algorithm to reuse knowledge from previously visited states. Simple MCTS algorithms take greedy
actions to a specific depth in the tree, then the method takes random actions from there until the episode
is finished. Value updates are only performed on states that have been visited between the agent’s current
state and the end of the so called roll-out. A roll-out is a trajectory of experience from the start state to
the end of an episode or to a maximum search depth. This means at each state the algorithm selects an
action, leading them to a next state, which is on level deeper in the tree. The action values get updated
towards the received rewards following a trajectory that leads to a terminal. A terminal in this case maybe
a state or the maximum depth of the tree. As already mentioned such methods can be more efficient due
to the fact that dynamic programming methods need to plan over the complete state space [7].
Each roll-out of MCTS consists of four steps:

1. Selection: Starting from root R, recursively select child nodes until leaf node L is reached.

2. Expansion: If L is the terminal state, we are done, otherwise create one or more child nodes and
select one C.

3. Simulation: Play a random play-out form node ’C’ until a result is achieved.

4. Backpropagation: Update the move sequence (trajectory) with the simulated result.

The original MCTS algorithm can be used in all scenarios which have only positions with finitely
many moves and finite length simulation time. In a state all possible moves are determined, for each
one k-random simulations are performed until they reach terminal state or maximum depth, and the
cumulative rewards are recorded. The action with the highest reward is chosen.

18 3. Model Based Learning

3.7.1 Upper-Confidence-Bound Action Selection

A problem in selection an action is the fact, that at the point when an certain action is selected, it is
not clear if the chosen action is optimal. For example greedy actions look best at present, but some other
actions may yield better overall results. One solution to this is to introduce the so called upper confidence
bound (UCB) [14],

at = argmax[Qt(a) + c

√
log t

Nt(a)
] (3.5)

where Qt(a) is the action-value estimate, Nt(a) denotes as the number of times that action a has been
selected prior to time t, c controls the degree of exploration whit c > 0. If Nt(a) = 0, then action a is
considered to be a maximizing action. The square root term in the equation is a measure of the uncertainty
in the estimate of the value of a. Each time the action a is selected the uncertainty is reduced, Nt(a) is
incremented and the overall uncertainty term is decreased. In the case that action a is not selected t is
increasing which results in a higher uncertainty value. The log ensures that the increase gets smaller
over time. The above formula is based on the one-armed bandit or slot machine problem, since a slot
machine has only one state, no state dependent variables are necessary. This makes the formula easier to
understand, the state dependent variables are introduced in the UCT algorithm subsection.

3.7.2 UCT (Upper-Confidence-Bound applied to trees)

The main problem with MCTS based algorithms is their runtime. The deeper the search tree gets, the
slower the algorithm performs. To reduce this problem several methods have been introduced, one of
these is the so called UCT algorithm [13]. UCT is a roll-out based algorithm that builds its tree by
repeatedly sampling episodes from the start state. UCT selects it’s actions based on upper confidence
bounds using the UCB1 algorithm [14]. Essentially, MCTS + UCB1 yields the UCT algorithm.

3.7.3 The UCT Algorithm

The ideas of the previous section are now used to develop the UCT algorithm. Equation (3.3) can be
adapted as follows:

a = argmaxaQ
d(s, a) + 2Cp

√
log(C(s, d))

C(s, a, d)
(3.6)

whereQd(s, a) denotes as the action-value function at a certain depth d in the tree. Cp denotes a constant
based on the reward range of the environment. C(s, d) is a count of visits to each state s at a given depth
d in the search tree. C(s, a, d) is a count of the number of times an action a was taken from state s at
depth d. By using the equation (3.4) the algorithm samples good actions, it also performs exploration
when other actions have a higher upper confidence bound. The UCT algorithm, pseudo code can be seen
below, starts from the agent’s current state s, with a depth d of 0. Furthermore the algorithm needs a lear-
ning rate α and the variable Rrange provides the value of one step rewards in the domain. The algorithm
returns the updated Q-Value of the current state s in depth d of the tree. By closely looking at the pseudo
code, one can see that the most important line is number six, where the algorithm recursively calls the
UCT method, to sample an action at the next state one level deeper in the tree.

Listing 3.3: Pseudo code of the UCT algorithm

UCT (Inputs s, d, alpha, rrange)
1: if TERMINAL or d == MAXDEPTH then
2: return 0
3: end if

3.8. Combining model and planning 19

4: a <- argmax(Q_d(s, a_dash) + 2 * rrange * sqrt(log(c(s, d)) / c(s, a_dash, d)
))

5: (s_dash, r) <- SAMPLENEXTSTATE(s, a)
6: retval <- r + UCT(s_dash, d + 1, alpha)
7: c(s, d) <- c(s, d) + 1
8: c(s, a, d) <- c(s, a, d) + 1
9: Q_d(s,a_dash) <- alpha * retval + (1 - alpha)* Q(s ,a_dash, d)
10: return retval

Some properties of MCTS based algorithm:

• As mentioned above MCTS algorithms have been proven to converge to the min-max evaluation,
but the basic version of MCTS can take quite a long time to converge.

• The UCT version of the algorithm should reduce this problem.

• The algorithm generates asymmetrical trees, since the method concentrates on searching its more
promising parts.

• Furthermore MCTS algorithms can be used in light or heavy play-outs. Light play-outs are based
on random moves, while heavy play-outs use some kind of heuristics to choose what the best
move is. The heuristics can be based on previous play-outs, or on some deep knowledge of the
environment.

• A further improvement to the algorithm can be made by using domain specific knowledge while
building the tree.

In this thesis some of the above mentioned methods are used to improve the performance, detailed
description of the used methods will follow in the practical section.

3.8 Combining model and planning

Calculating a policy using a model is called planning [7]. In this chapter the interaction between the
model and the planner is explained. There are many ways of how the two parties communicate with each
other. In the following a few of them are highlighted.

• A common way of performing this communication is that the agent directly interacts with the
environment, the model gets updated at every time step with the latest transition, < s, a, r, s′ >.
Every time the model gets updated (for example when a new state is added), the algorithm re-
plans on, see 3.1. The disadvantage of this approach is that the learning of the model is very time
consuming due to the computational complexity. On the other hand this method has the advantage
to be very efficient in finding an optimal action from one state to another, once the model was
learned. This is one reason why this method is used in the thesis. Details about the implementation
and the performance of the algorithm will follow in the practical section.

• A way to reduce the computational complexity is to perform so called batch updates. This means
that after k actions an agent performed, the model gets updated. The disadvantage of this approach
is that the model is less accurate than the model produced by the previous suggestion. So the
optimal action from on state to another is not always found.

• The following approach is somehow a combination of the first and second one. The so called
DYNA [16] [17] algorithm is a reactive RL architecture. With this algorithm the agent starts either
with a real action in the world or with saved experience. For example dynamic programming
methods like Value-Iteration need knowledge of the complete state space. In contrast the DYNA

20 3. Model Based Learning

method randomly updates selected states. The DYNA algorithm performs the model updates and
the action loop separately. This means in theory, fewer model updates are required than in the
direct approach, explained in the first point, with an equal result in performance of the algorithm.
Practical tests showed that nevertheless the DYNA algorithm requires many model based updates
for the policy to become optimal, so the theoretical advantage of the method compared to the first
method is not as significant as expected.

• Another alternative method, which is based on the DYNA algorithm is called Prioritized Sweeping
[18]. It can be seen as an improvement of the DYNA method. The difference is that the selection
to update a state action pair is handled by priority instead of doing it randomly. The algorithm
performs the update based on the expected change in their value, instead of iterating over the
entire state space. From a programming point of view this approach is very expensive and leads to
dynamic programming techniques. By using dynamic programming a value function is computed
for the entire state space after the model has changed. Once the value function was computed it
needs then to be recomputed only when the model changes. In contrast to sample based methods
like the first one which needs to perform computations on each and every state this approach is
more efficient.

• The DYNA-2 [19] method is an advanced version of DYNA and extends the idea of updating
its value function using both real and simulated experience to using sample based planning. The
algorithm uses two different linear function approximators, one is used for the calculation of the
permanent value function (long time memory) and the other is used to calculate the transient (short
time memory) value function. The permanent value function is updated through real experiences
in the world. Between the actions, the transient value function is updated using UCT on the agent’s
model of the world. The transient value function calculation is focused on a smaller or local part
of the state space and it is used to enhance the global value function. This means that the selection
of an action is based on the transient and permanent value functions. DYNA-2 has more or less
the same problems as the previous methods, the model update and planning can take a significant
amount of time.

• The threaded architecture [15] for real-time model based reinforcement learning uses the advanta-
ge of multi-threading to put model learning, planning and acting in three different threads. In such
multi-threaded architectures the communication between the different threads is very important.
For this purpose four shared data structures are used. All data structures have to be thread safe to
work as expected. This is very important, without these protections the outcome of this method is
in best case completely random and not deterministic. The ’list of experiences’ to be added to the
model is the first shared data structure. The other data structures contain the model which is used
by the planner, the current state of the planner and the policy of the agent. The model learner thread
runs in one loop, the same is true for the planning thread. It is important to note here that some kind
of synchronization between the two threads is necessary, otherwise one of the threads may run out
of data. The model learner removes experiences from the ’list of new experiences’ and updates the
model with these experiences. The planning thread then uses these updated experiences provided
by the synchronized data structure to run a sample based planning algorithm like UCT. The action
thread adds the latest experience to the update list, sets the agents current state and returns the best
action for that state. This approach is very flexible, for example the action thread is able to return
an action at every update frequency that is required. By using this method it is possible to simulate
a real-time behaviour of the agent.

3.8. Combining model and planning 21

Environment

Update
Model

PlanModel Policy

Agent

Abbildung 3.1: The typical interaction between the agent and the environment.

22 3. Model Based Learning

Kapitel 4

Feature Extraction Practical Section

In this section we describe in detail how the feature extraction was realized. As already mentioned for
feature extraction the Slow Feature Analysis (SFA) algorithm was used. The following description out-
lines how the algorithm was implemented and which design decisions were made to provide a fast and
scalable implementation. To guarantee that the SFA algorithm was implemented correctly, a reference
version of the algorithm in Python was used which also served as a benchmark for correctness and perfor-
mance of out implementation. Techniques like Test Driven Development (TDD) were used to guarantee
that the implementation is done in the right way. Since the algorithm is an optimization problem the
memory consumption is a mayor concern. Especially when dealing with a large amount of data like in
image processing, some ’tricks’ must be used. All this considerations will be described in the following
sections. Since SFA is mainly based on ’simple’ linear algebra, it is crucial to perform operations like
matrix multiplications or eigenvalue and eigenvector computations very efficiently. A third party library
was used which is highly optimized in the sense of using hardware features provided by modern CPUs.
We also considered to use the GPU for such calculations, but the implementation effort to realize an im-
plementation which is more powerful than the CPU calculation was not feasible. Due to the huge amount
of data, it was not possible to process all the data with a single SFA. In our case a so called ’Hierarchical
SFA network’ is necessary to process high dimensional data like them which are used in this thesis. The
data structures which are needed to create such networks, are also explained in the following sections, to
make things easier, the high level constructions of such networks are very similar to the reference Python
implementation. For feature extraction problems like the one in this thesis, it makes sense to put very
little Gaussian noise on top of the input data, this helps to avoid the singular matrix problem when sol-
ving the eigenvalue and eigenvector problem which is used by the SFA. For such cases an additional data
structure is used, a so called SFA-Node, this allows the user of the SFA algorithm to compose different
pre and post calculation (like adding noise, quadratic expansion and clipping) which often improves the
result of the SFA. The most important section of this chapter is dedicated to the tuning of the parameters,
which results in an optimal feature set, therefore a large set of training and test data were used to find the
correct parameters for example for the Gaussian noise, the clipping, the receptive field size and so on.
An important part was also the creation of the training and test data for the SFA, but since this is more
a programming related problem than an algorithmic or thesis related one, the section is rather brief. All
the relevant code can be found attached to this thesis, it is written completely in C++ (C++11/C++14)
for platform independence, the GUI elements (including the 3D environment) are created using Qt 5.5
[20]. For linear algebra operations the open source Eigen-Library [21] was used. The complete feature
extraction process can be performed in parallel, for this a also free available library called ’Threading
Building Block’ (TBB) [22] which was created by Intel was used. For high level matrix calculations
which are not time critical, the matrix library from boost was used, since this library is open source and
highly adaptable due to the heavily used ’Generic Programming’ model, it was a perfect choice to solve
matrix related problems.

23

24 4. Feature Extraction Practical Section

4.1 Slow Feature Analysis (SFA)

In this section we outline how the SFA algorithm was implemented and how it differs from the original
version which was introduced in 2. We also illustrate how the SFA algorithm was tested how it compares
to the reference implementation. For this purpose the Matlab-like pseudo code from the reference and
the code from real implemented is compared. During this comparison the differences are highlighted and
reason why they differ is explained.

4.1.1 Simple implementation

The reference implementation of the SFA algorithm follows the suggestions and the pseudo code of the
paper [4]. This simple version and implementation of the SFA algorithm were then used as a starting
point to develop a more sophisticated version of it, which will then be described in the next section.

The source code in listing 4.1, shows a naive implementation of the SFA algorithm, which is based
on the example in the theory section of this thesis. The listing is separated in different sections which are
marked by comments. These comments are used to describe what the different parts of the code are doing.

In block 1 the input signals for the algorithm are generated, two sources are used x̃1(t) := sin(t) +
cos2(11t) (see 4.1) and x̃2(t) := cos(11t) (see 4.2), these signals are in the range of [0, 2π] and vary
very quickly. The two signals which have been created above, are not direct inputs to the algorithm,
instead these signals will be mixed to generate one fast varying signal (see 4.3), the algorithm should
then find the slowest varying signal which is common to both of the input signals x1 and x2. At the end
of most of the blocks a plot is drawn, to show how the code influences the signals. In the following all
the remaining sections in the code will be described and references to the theory section will be made to
exactly show how the algorithm was implemented.

In block 2 of listing 4.1, the normalization of the input signals is performed, this procedure full fills
the constrains of zero mean and unit variance. The results of these operations can be seen in 4.4.

In block 3 of listing 4.1, the non-linear expansion takes place, this simple implementation is on-
ly able to perform a so called quadratic SFA which means a quadratic expansion is performed, for this
thesis also the linear SFA is necessary. The non-linear expansion then results in the following output 4.5.

In block 4 the normalization of the expanded signal is performed, this process is also known as sphe-
ring or whitening. Sphering can be done by using the Principal Component Analysis (PCA) which was
already mentioned in the theory section, but for simplicity this calculation is performed manually using
the ’eig’ command. As it will be shown in the advanced version of the algorithm (where the PCA is
used), PCA provides more stable results and also gives an advantage in the sense of performance over
the naive algorithm. Since there is no need to sort the eigen-values when using the PCA. The signal after
sphering looks like the following 4.6.

In block 5 the temporal variation in the normalized space is measured. This is done by performing a
time derivation of the sphered signal z(t). This step is necessary to determine the direction of minimal
variance or the slowest varying signal. The result of the deviation can be seen in figure 4.7.

In block 6 the slowest varying directions of the previously determined directions is extracted. This
means finding the direction of least variance in the time derived signals. Again this can be done by
using the PCA, the directions are then principal components with the smallest eigenvalues. As already
mentioned, due to simplicity,this approach is again done manually by using the ’cov’ and the ’eig’ com-

4.1. Slow Feature Analysis (SFA) 25

mands. Conveniently the ’eig’ function yields sorted eigenvalues so that the first eigenvector is equal to
the weight vector with the minimum variance. The final step is then to project the sphered signal (see
section 4) on to the direction of the smallest variance, which result in the slowest signal generated by the
two input signals. The result y(t) can then be seen in figure 4.8.

4.1.2 Advanced implementation

As already mentioned in the previous section, one of the problems with the simple implementation of
the SFA algorithm, is that it only supports the quadratic version of the SFA (Quadratic SFA). For the
problem that needs to be solved in this thesis the liner version of the SFA is also required. To solve this
problem, the advanced version of the algorithm was implemented in a way to support both, linear and
quadratic SFA. A further improvement of the advanced version is, that the algorithm is able to perform
a training phase as well as an execution phase. This means in the training phase a large training-set is
provided to the algorithm, to learn the important features. In the execution phase a smaller test-set is
provided to the algorithm, the important features learned in training phase are then used to extract the
slow features of the test-set. This means the algorithm is once trained with a large trainings-set (which
can take a substantial amount of time) and than executed on any test-set to provide a fast and very good
approximation, since there is no need to solve the computational expensive eigenvalue problem in the
execution phase.

Linear Slow Feature Analysis

The source code in 4.2, shows the linear version of the SFA algorithm. The listing is separated in dif-
ferent blocks which are marked by comments. These comments are used to describe what the different
parts of the code is doing.

In section 1 the covariance matrix of the input signal is calculated. This version of the algorithm ta-
kes a few short cuts compared to the simple version, for example the normalization of the input signal is
skipped, this works as long as a numerical stable version of the algorithm for calculation the covariance
matrix is used. The algorithm used to calculate the covariance matrix is called ’Sample mean and sample
covariance’ [23]. Also no expansion of the input signal is performed since the liner version of the SFA
is described here. The calculation of the covariance matrix also allows us to skip the explicit ’Sphering’
calculation which was done in the simple version.

In block 2 the temporal variation of the input signal is calculated. In the simple version of the al-
gorithm the differentiation was done by a simple numeric approximation, in this version the Matlab
integrated filter function with the filter coefficients 1,−1 was used to perform the calculation.

In block 3 the slowest varying signal is extracted. The Matlab integrated ’eig’ function which takes
two parameters and is known as eigenvalue-decomposition is used to perform this step. The function ta-
kes the temporal variation (section 2) as first parameter and the covariance matrix (section 1) as second.
With this approach it is possible to perform two calculations (Sphering and slowest varying signal) in
one step. This is an advantage compared to the simple version, since fewer calculation steps are needed,
and the method is generic in the sense of the size of the input signal. After the eigenvalues and eigen-
vectors have been calculated, they are sorted in descenting order, so that the smallest eigenvalue and the
associated eigenvector are stored at position one of the respective two vectors.

In block 4 the eigenvectors are normalized between −1 and 1. After the normalization, the eigenvec-
tors are stored in the eigen_vectors variable which is return by the function as well as the eigenvalues.

26 4. Feature Extraction Practical Section

Next, we outline the execution phase of the algorithm. As mentioned above this part of the imple-
mentation is executed after the trainings phase. The execution phase produces the output signal y(t)
which represents the projection of sphered signal on to the direction of the smallest variance, which
was already explained in the theory part and in the previous section. The source code in 4.3, shows
the Matlab implementation of the execution phase. Since the code is very simple and also very short,
the description won’t be split in different sections, instead the implementation will be described in the
following. The ’LinearSFAExecute’ function takes two parameters, the first one is the input signal, and
the second one are the pre-calculated eigenvectors from the training phase. The input is then normalized
to zero mean and unit variance and then the output function is calculated. Since these calculations are
not very computational expensive, the performance compared to the simple version is better and when
implemented in a correct way this version can be used for any kind of input data for example gray scale
images, color images, ... the only limitation comes from the computer on which the algorithm is executed.

Quadratic Slow Feature Analysis

In this section the implementation of the Quadratic SFA is explained. As already explained to solve the
problems in this thesis Linear SFA and Quadratic SFA are used, the difference between the two types
is more or less the non-linear signal expansion. In the Linear SFA no expansion is used, the Quadratic
SFA uses polynomials of degree two to expand the input. Putting the input signal in a higher dimensional
space makes it easier to find a good separation of the different features, this can be compared with the
so called ’Kernel-Trick’ used by Support-Vector-Machines. The problem with the quadratic version is
that the memory usage compared to the linear version increases dramatically, which means it is limited
due to availability of memory, on the machine that we used. The machine we used to create the result
for this Thesis has 16 GB of RAM. It was not possible to use all CPU-Cores to parallel calculate as
many Quadratic SFAs as cores are available. This is a massive disadvantage of the SFA, but this problem
usually occurs during training phase not during execution phase. The training phase is critical because a
huge amount of data is necessary to find a good set of weight functions (eigenvectors) that can be used
during execution phase. Nevertheless all the problems also occurred during the creation of this thesis and
have been solved, some of them elegant and some of them not so elegant...

The source code in 4.4, shows the quadratic version of the SFA algorithm. The listing is separated
in different sections which are marked by comments. These comments are used to describe what the
different parts of the code are doing.

In block 1 the covariance matrix of the input signal is calculated. This step is actually the same ap-
proach as for the linear version of the SFA (see 4.1.2 section 1).

In block 2 the so called whitening is performed. This approach can be seen as normalization of the
under section 1 calculated covariance matrix. The whitening matrix is obtained by executing the Princi-
pal Component Analysis (PCA) on the covariance matrix. This whitening matrix represents the principal
component coefficients of the covariance matrix.

In block 3 the quadratic expansion of the normalized input signal is calculated. First of all the mean
of the input signal is subtracted from the input signal, this satisfies the constraint of the SFA algorithm
that the input signal must have zero mean. Then the zero mean subtracted input signal is multiplied with
the whitening matrix to satisfy the constraint of unit variance which is also required by the SFA algo-
rithm. The last step is to perform the quadratic expansion like it is explained in the theory section.

4.1. Slow Feature Analysis (SFA) 27

In block 4 the covariance matrix of the expanded input signal is calculated as well as the mean of the
expanded input signal, the mean will then be used later in the execution part of the quadratic SFA.

In block 5 the temporal variance of the expanded input signal is calculated. It is exactly the same
approach as in the linear version of the SFA, using the filter function provided by Matlab allows to cal-
culate a numerically stable time derivative of the expanded input signal.

The blocks 6 and 7 do exactly the same as the sections 3 and 4 of the linear version, the only diffe-
rence is that in the quadratic version the expanded signal is used instead of the normal input signal in the
linear version.

In the following the execution phase of the algorithm is explained, as mentioned above this part of
the implementation is executed after the trainings phase. The execution phase then produces the output
signal y(t) which represents the projection of sphered signal onto the direction of the smallest variance,
which was already explained in the theory part and in the previous section. The source code in 4.5, shows
the Matlab implementation of the execution phase. Since the code is pretty short and also not too hard
to understand, the separation in different sections was skipped. The function ’QuadraticSFAExecute’ has
five input parameters:

1. input: The input signal

2. eigenvectors: The eigenvectors calculated in training phase

3. whitening matrix: The whitening matrix calculated using the PCA during the training phase

4. mean of input: The mean of the input signal

5. mean of expanded input: Them mean of the non linear expansion calculated during the training
phase

The first line of the Matlab source code performs the normalization of the input signal using the
whitening matrix determined during the training phase. In the next line the non-linear expansion of
the normalized input signal is performed, this is the same step as in the training phase and the same
calculation is used.
Then the expanded input signal is normalized to again satisfy the constrains of zero mean and unit
variance.
The final step is then to calculate the output signal y(t) which represents the projection of the sphered
signal on to the direction of the smallest variance.
As it can be seen the execution phase does not contain computationally expensive calculations therefore
the performance of this phase is pretty good. It should also be mentioned that the memory consumption
of this code is by far not as high as during the training phase, this means we can use multi-threading to
further increase the performance of this algorithm.

28 4. Feature Extraction Practical Section

4.2 Hierarchical SFA networks for high dimensional data

This chapter describes how to create a so called ’Hierarchical SFA network’. The problem with high
dimensional data like in image processing is the handling of the very large amount of data. Even with
modern computers it is not possible to perform a feature extraction (like the SFA) in one single shot. For
example a RGB image with a resolution of 300 × 300 pixels consumes 270.000 slots of an array, for
feature extraction algorithms it is recommended to use precise data types like float or double (common
types for programming languages like C/C++, C# or Matlab), on 64-bit machine this means every single
slot of the above array reserves 8 bytes. This means for one single image we use 2.160.000 bytes. Since
we need between 100.000 and 150.000 images during training, with all the processing like expansion,
eigenvalue, eigenvector calculations and so on, we can not train the algorithm with one single instance of
a SFA, because of the limitations of the computer where the algorithm is executed on. One of the possible
solutions is to create a ’Hierarchical SFA network’ [5]. The network processes only small chunks of an
image for example a region of 10× 10 pixels, this is the so called ’receptive field’ of the SFA. Using this
technique it is much easier to perform a feature extraction on almost any resolution of an input image
sequence. Sadly it is not sufficient to only use the SFA/SFA2 algorithm in the calculation nodes, this
would lead to incorrect features or even worse ’singular matrix’ errors, so some pre-processing as well as
some post-processing is necessary to get reasonable results. In the following the post- and pre-processing
algorithms are explained.
As already mentioned one node does not only contain one algorithm like the SFA, instead it contains up
to six different algorithms to perform the correct feature extraction of the image chunk (receptive-field).

1. Additive-Noise: This step generates Additive-Gaussian-Noise. This means that noise is added to
the input signal, which helps to avoid problems like ’singular matrix’ errors during eigenvalue
calculation. This error can occur if the pixels within a receptive-field have the same values, adding
random noise to these values reduces that chance to run in this problem. The noise can be adjusted
by changing the mean and deviation of it.

2. Linear-Slow-Feature-Analysis: Please refer to 4.1.2.

3. Quadratic-Slow-Feature-Analysis: Please refer to 4.1.2.

4. Clipping: This algorithm limits the input signal to specified maximum and minimum value. So for
example if a input signal has a peak with the value of 10 and the maximum value given to the
algorithm is 4, the peak is reduced to 4. The same is true for minimum values.

5. Independent Component Analysis (ICA): This algorithm is most likely used in the final step of
the hierarchy, this means it is a so called post-processing step, which allows to reduce the feature
space to really important and independent features. This means all features appear only once after
the algorithm was executed.

4.3. Simple 2D hierarchical SFA network 29

4.3 Simple 2D hierarchical SFA network

In this chapter a proof of concept of the presented algorithms and structures is given. The objective is to
extract the relevant features of a simple 2-D maze (see 4.9) The maze has a size of 60 × 60 pixels, the
green pixel in the upper left corner is the agent, the two gray boxes are considered to be walls, which
means that they are obstacles to the agent. The red pixel is the destination which should be reached by
the agent, for the feature extraction it is not important how to reach the finish point, this is explained in
the model learner chapter under 3. The agent explores the maze randomly, every pixel the agent moves
generates one image, this means for example when the agent moves 10 steps to the right, 10 images are
generated. For the first test 100.000 images have been generated, this seems to be a large number, but
the SFA algorithm does not perform very well with fewer images. The generated images of this maze
are then saved as simple binary images which reduces the calculation effort, that’s why the hierarchical
SFA output can be calculated pretty quickly and adaptations to the algorithm itself and to the parameters
of the algorithm can be done easily. The structure of the hierarchical network, that was used to perform
these test can be seen in figure 4.18.
Quite a lot of parameters needs to be adapted to find a solution that produces features of high quality.
Luckily there exists very good papers like [25], which can help a lot to find the correct network structure,
the Gaussian-noise and the clipping parameters.
As reference for the completed implementation the ’Modular toolkit for Data Processing’ [27] was used.
The structure shown in this thesis is based on this toolkit and tries to use the same structure for the nodes
and the network.

4.3.1 Node structure

As already mentioned earlier in this chapter the SFA network is assembled using the so called SFA-
Nodes. Each SFA-Node contains different algorithms which are executed sequential on a section of the
image (receptive field). The node structure which was used to extract the features of the simple 2-D maze
contains the following algorithms:

4.3.2 Network structure

The network contains four layers see figure 4.18, the first layer directly maps to input image, the last
layer (4) provides the extracted features which are then used for further processing.

1. Layer 1: As already shown (see figure 4.9), the input images has 60× 60 pixels, the receptive field
has a size of 8 × 8 pixels with an overlap of 4 pixels and a channel dimension of 1. The channel
dimension for example is used to distinguish between binary images which have only one color
information (0 or 1) ’channel dimension = 1’ or rgb images which have three color information
’channel dimension = 3’. The output of the first layer contains 32 features, these output serves as
input to the next layer.

2. Layer 2: Due to the dimensional reduction of layer 1 the input images has the size of 14 × 14
pixels. The receptive field of this layer has as size of 4× 4 with an overlap of 2 pixels, the channel
dimension is set to 32 since the output of layer 1 gives us 32 features. The output of this layer
provides again 32 features.

3. Layer 3: The images size now is reduced to 6 × 6 pixels. The receptive field size of this layer
has now 4 × 4 pixels with an overlap of 2 pixels. The channel dimension is again set to 32 since
the output of the previous layer contains 32 features. As the previous layer the output provides 32
features.

30 4. Feature Extraction Practical Section

4. Layer 4: The final layer of the network, gets an input of size 2×2 pixels which results in a receptive
field size of 2 × 2 and no overlap. The output of the final layer contains 64 features. This should
be sufficient for further processing like ICA, to provide good data for model based algorithms.

4.3.3 Results

In this section some training and test results are presented and explained, methods like linear regression
were used to generate these results, for this purpose Matlab was used. All the relevant algorithms and
graphical tools are directly integrated and available. In the following we distinguish between 32 features
and 64 features generated in the last layer of the network. The number of features is the most important
parameter, since the difference can be significant. For example it may be sufficient to use 32 features
and the test results confirm this, in a later step where a discretization of the feature space is necessary,
the process simply fails because too few features were used. Such problems are very unfortunate since a
lot of time is wasted, but there is no 100% reliable measure to be sure that the generated data are good
enough for further processing. Therefore the decision was made of using too many features even when
the test process was successfully with fewer features. It will be also shown that the noise parameters are
crucial for good test results, the advantage in finding the noise parameters compared to the number of
features is that a wrong noise parameter can be found during the test process. To generate the training
data the agent performs random exploration of the maze (see figure 4.9), this was already mentioned, for
evaluation of the test data the agent performs a systematic walk through the maze (see figure 4.9). In our
case this means the agent moves from left to right and from top to bottom. Using this method we can
ensure that every point of the maze has been visited which is very important to evaluate the trained SFA
network. To perform the tests the linear regression algorithm was used (see listing 4.6), this procedure
is simple and fast. As input to the algorithm the path of the agent through the maze is required and the
extracted features calculated by the SFA network as well. Then the linear regression is calculated and the
output is compared to the real path of the agent through the maze. The results are plotted separately for
the x and y coordinates, the closer the two lines (real path and path calculated by the SFA network) are,
the better the result, this can also be measured via the mean square error (MSE).

4.3.4 Test on the Small Feature Set

In this section the final layer (4) of the SFA network produces 32 features, all the predecessor layers
also generate 32 features. The first plot (see figure 4.10), shows the evaluation of the training data in
x-direction. This means the training path in x-direction of the agent is compared to the path calculated
by the SFA network also in x-direction. To keep the plot simple and clear only the first 1000 time frames
are shown in this plot. The second plot (see figure 4.11), shows the evaluation of the training data in
y-direction. In this plot as we also only show 1000 frames. As it can be seen the results line up nicely
which means the parameters of the Additive-Noise algorithm and the number of features used in all four
layers are well chosen.

The node and network structure stays untouched, so it’s the same as for the training section. The
difference is that the input data are much smaller than for the training phase. During the test phase
only 2820 time frames are used compared to the 100.000 during the training phase. The result for the
x-coordinate can be seen in figure 4.12, this shows that the test results are not as good as expected the
spikes between time frame 50 and 75 is very high and not only this single spike can be seen, we have a
lot of them going to time frame 600. This indicates that something is wrong with the network (maybe too
less features or not sufficient enough training data). For the y-coordinate see figure 4.13, the situation is
slightly better, but miss classifications can also bee seen during the first time frames.

4.3. Simple 2D hierarchical SFA network 31

4.3.5 Test on the Large Feature Set

Based on our observations about the test results in the previous section some changes have been made to
the SFA network. In this section the last layer (4) of the SFA network produces 64 instead of 32 features,
all the predecessor layers stay the same and generate 32 features. All the input data also stay the same. In
figure 4.14, we can see small improvements over the 32 features version, the calculated path of the SFA
network follows the real path of the agent much closer than in the 32 feature version. The same is true
for y-coordinate, see figure 4.15, so this network structure now looks much more promising than the one
in the previous section.

As before the node and network structure stays untouched, so it’s the same as for the training sec-
tion. The test set contains 2820 images or time frames. The result for the x-coordinate can be seen in
figure 4.16, the spikes are smaller than before and even the huge spike between time frame 50 and 75
was reduced by 50% the classification was improved so the SFA network follows the path of the agent
much better than in the 32 feature version. The same is true for the y-coordinate which can be seen in
figure 4.17, the path calculated by the SFA network is almost the same as the real path which was taken
by the agent.

4.3.6 Additive Noise

Usually these parameters can be adapted easier than the network topology. Choosing the wrong para-
meters for the Gaussian noise usually can be seen during the training phase when a singular matrix
error occurs, or later during training data evaluation when the linear regression fails. An example of an
incorrectly selected noise value effects the evaluation can can be found in the 3D section of this thesis.

Matlab Code

Listing 4.1: Simple reference implementation of the SFA algorithm

1 clear all;
2 close all;
3 clc;
4

5 % 1. Input signal:
6 t = 0:0.01:2*pi;
7 x1w = sin(t) + power(cos(11*t),2);
8 x2w = cos(11*t);
9 figure; plot(x2w, x1w);

10 title(’SFA Mixed input signal’);
11 xlabel(’time’);
12 ylabel(’amplidude’);
13

14 % 2. Input signal normalization:
15 meanx1w = mean(x1w);
16 meanx2w = mean(x2w);
17 x1 = (x1w - meanx1w)/(sqrt(mean(power((x1w-meanx1w),2))));
18 x2 = (x2w - meanx2w)/(sqrt(mean(power((x2w-meanx2w),2))));
19 figure; plot(x2, x1);
20 title(’SFA Normalized input signal’);
21 xlabel(’time’);
22 ylabel(’amplidude’);
23

24 % 3. Non-linear expansion:
25 hw = [x1; x2; x2.*x2];
26 figure; plot3(hw(2,:),hw(3,:),hw(1,:));

32 4. Feature Extraction Practical Section

27 title(’Non-linear expansion’);
28 xlabel(’HW1(t)’);
29 ylabel(’HW2(t)’);
30 zlabel(’HW3(t)’);
31

32

33 % 4. Sphering
34 for i=1:size(hw,1)
35 hw(i,:) = hw(i,:)-mean(hw(i,:));
36 end
37 C = cov(hw’);
38 [V,D] = eig(C);
39 S = inv(sqrt(D))*V’;
40 z = S*hw;
41 figure; plot3(z(2,:),z(3,:),z(1,:));
42 title(’Sphered signal’);
43 xlabel(’Z1(t)’);
44 ylabel(’Z2(t)’);
45 zlabel(’Z3(t)’);
46

47 % 5. Temporal variation
48 z_dot = z(:, 2:end) - z(:, 1:end - 1);
49 figure; plot3(z_dot(2, :), z_dot(3, :), z_dot(1, :));
50 title(’Time derived signal’);
51 xlabel(’Z1(t)’);
52 ylabel(’Z2(t)’);
53 zlabel(’Z3(t)’);
54

55 % 6. The slowest signal is extracted
56 C = cov(z_dot’);
57 [V,D] = eig(C)
58 w = V(:,1);
59 g = w’*z;
60 figure; plot(g)
61 title(’Output signal’);
62 xlabel(’t’);
63 ylabel(’y(t)’);

Listing 4.2: Linear SFA train reference implementation

1 function [eigen_values, eigen_vectors] = LinearSFATrain(input)
2

3 n = size(input, 2);
4 sfa_range = 1:n;
5

6 % 1. Calculate the covariance matrix of the input
7 covariance_matrix = cov(input);
8

9 % 2. Perform time differentation of the imput signal
10 filtered_input = filter([1 -1], 1, input);
11 filtered_input = filtered_input(2:size(filtered_input, 1), :);
12 differentiated_input_signal = filtered_input’ * filtered_input;
13

14 % 3. Determine the eigen-values and eigen-vectors
15 [v, d] = eig(differentiated_input_signal, covariance_matrix, ’qz’);
16

17 eigen_values = diag(d);
18 [values, idx] = sort(eigen_values);
19 eigen_values = values;
20 eigen_vectors = v(:, idx(sfa_range))’;
21

22

4.3. Simple 2D hierarchical SFA network 33

23 % 4. Normalize eigen-vectors between [-1, 1]
24 [rows, ~] = size(eigen_vectors);
25 colMax = max(abs(eigen_vectors), [], 1);
26 eigen_vectors = eigen_vectors./repmat(colMax, rows, 1);
27 end

Listing 4.3: Linear SFA execute reference implementation

1 function [y] = LinearSFAExecute(input, eigen_vectors)
2

3 mean_of_input = sum(input) / size(input, 1);
4 normalized_input = input - repmat(mean_of_input, size(input, 1), 1);
5 y = normalized_input * eigen_vectors’;
6

7 end

Listing 4.4: Quadratic SFA train reference implementation

1 function [eigen_values, eigen_vectors, whitening_matrix, mean_of_input ,
mean_of_expanded_input] = QuadraticSFATrain(input)

2

3 n = xp_dim(size(input,2));
4 sfa_range = 1:n;
5

6 % 1. Calculate the covariance matrix of the input
7 covariance_matrix = cov(input);
8

9 % 2. Perform principal component analysis & whitening
10 [whitening_matrix, ~, ~, ~] = PCA(covariance_matrix);
11

12 % 3. Perform expansion
13 mean_of_input = sum(input) / size(input, 1);
14 expanded_input = input - repmat(mean_of_input, size(input, 1), 1);
15 temp = expanded_input * whitening_matrix’;
16 expanded_input = QuadraticExpansion(temp);%cat(2, temp, temp.^4);
17

18 % 4. Calculate the covariance matrix of the expanded input
19 expaned_input_covariance_matrix = cov(expanded_input);
20 mean_of_expanded_input = sum(expanded_input) / size(expanded_input, 1);
21

22 % 5. perform time differentation of the imput signal
23 filtered_input = filter([1 -1], 1, expanded_input);
24 filtered_input = filtered_input(2:size(filtered_input, 1), :);
25 differentiated_input_signal = filtered_input’ * filtered_input;
26

27 % 6. Get the eigen-values and eigen-vectors
28 [v, d] = eig(differentiated_input_signal, expaned_input_covariance_matrix);
29

30 eigen_values = diag(d);
31 [values, idx] = sort(eigen_values);
32 eigen_values = values;
33 eigen_vectors = v(:, idx(sfa_range))’;
34

35 % 7. Normalize eigen-vectors between [-1, 1]
36 [rows, ~] = size(eigen_vectors);
37 colMax = max(abs(eigen_vectors), [], 1);
38 eigen_vectors = eigen_vectors./repmat(colMax, rows, 1);
39 end

Listing 4.5: Quadratic SFA execute reference implementation

34 4. Feature Extraction Practical Section

1 function [y] = QuadraticSFAExecute(input, eigen_vectors, whitening_matrix,
mean_of_input ,mean_of_expanded_input)

2

3 normalized_input = (input - repmat(mean_of_input, size(input, 1), 1)) *
whitening_matrix’;

4 expanded_input = QuadraticExpansion(normalized_input);
5 normalized_expanded_input = expanded_input - repmat(mean_of_expanded_input, size(

expanded_input, 1), 1);
6 y = normalized_expanded_input * eigen_vectors’;
7

8 end

Listing 4.6: Linear Regression, to evaluate the SFA network

1 clear all;
2 close all;
3 clc;
4

5 timeFrames = 3255;
6

7 trainPath = textread(’TestPath_2D.txt’);
8 trainData = textread(’TestOutput_2D_64_C++.txt’);
9

10 trainData = trainData(1:timeFrames,1:64);
11 trainPath = trainPath(1:timeFrames,1:2);
12

13 SFA_train = [trainData, ones(size(trainData,1),1)];
14 wx = pinv(SFA_train)*trainPath(:,1);
15 wy = pinv(SFA_train)*trainPath(:,2);
16

17 x_t = trainPath(:,1);
18 y_t = trainPath(:,2);
19

20 x_pred = SFA_train*wx;
21 y_pred = SFA_train*wy;
22

23 mse_x = mean(mean((x_pred-x_t).^2))
24 mse_y = mean(mean((y_pred-y_t).^2))
25

26 figure; plot(x_pred(1:timeFrames));
27 hold on; plot(x_t(1:timeFrames),’r’)
28

29 figure; plot(y_pred(1:timeFrames))
30 hold on; plot(y_t(1:timeFrames),’r’)

4.3. Simple 2D hierarchical SFA network 35

0 100 200 300 400 500 600 700
−1

−0.5

0

0.5

1

1.5

2
SFA Input signal x1

time

am
pl

id
ud

e

Abbildung 4.1: The first input signal.

36 4. Feature Extraction Practical Section

0 100 200 300 400 500 600 700
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
SFA Input signal x2

time

am
pl

id
ud

e

Abbildung 4.2: The second input signal.

4.3. Simple 2D hierarchical SFA network 37

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2
SFA Mixed input signal

time

am
pl

id
ud

e

Abbildung 4.3: The mixed input, which is then used by the algorithm.

38 4. Feature Extraction Practical Section

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
SFA Normalized input signal

time

am
pl

id
ud

e

Abbildung 4.4: The normalized version of the input signal.

4.3. Simple 2D hierarchical SFA network 39

−2
−1

0
1

2

0

1

2

3
−2

−1

0

1

2

HW1(t)

Non−linear expansion

HW2(t)

H
W

3(
t)

Abbildung 4.5: The non-linear expansion of the signal.

40 4. Feature Extraction Practical Section

−2
−1

0
1

2

−2

−1

0

1

2
−2

−1

0

1

2

Z1(t)

Sphered signal

Z2(t)

Z
3(

t)

Abbildung 4.6: The sphered signal.

4.3. Simple 2D hierarchical SFA network 41

−0.2
−0.1

0
0.1

0.2

−0.4

−0.2

0

0.2

0.4
−0.4

−0.2

0

0.2

0.4

Z1(t)

Time derived signal

Z2(t)

Z
3(

t)

Abbildung 4.7: The time derivative of the sphered signal.

42 4. Feature Extraction Practical Section

0 100 200 300 400 500 600 700
−1.5

−1

−0.5

0

0.5

1

1.5
Output signal

t

y(
t)

Abbildung 4.8: The slowest varying output signal.

4.3. Simple 2D hierarchical SFA network 43

Abbildung 4.9: A simple maze (60x60)

44 4. Feature Extraction Practical Section

Abbildung 4.10: Comparison between real and SFA extracted path of the agent in x-direction on
the trainings set.

Abbildung 4.11: Comparison between real and SFA extracted path of the agent in y-direction on
the trainings set.

4.3. Simple 2D hierarchical SFA network 45

Abbildung 4.12: Comparison between real and SFA extracted path of the agent in x-direction on
the test set.

Abbildung 4.13: Comparison between real and SFA extracted path of the agent in y-direction on
the test set.

46 4. Feature Extraction Practical Section

Abbildung 4.14: Comparison between real and SFA extracted path of the agent in x-direction on
the trainings set.

Abbildung 4.15: Comparison between real and SFA extracted path of the agent in y-direction on
the trainings set.

4.3. Simple 2D hierarchical SFA network 47

Abbildung 4.16: Comparison between real and SFA extracted path of the agent in x-direction on
the test set.

Abbildung 4.17: Ccomparison between real and SFA extracted path of the agent in y-direction on
the test set.

48 4. Feature Extraction Practical Section

Abbildung 4.18: The SFA network used for the 2D environment

4.4. 3D hierarchical SFA network 49

4.4 3D hierarchical SFA network

In this section the real use case of our feature extraction system is described, in the previous section
simple binary images were used as input for the feature extraction system. In real life situations binary
images are pretty rare. To evaluate if the system can handle more complex image structures a 3D OpenGL
environment was implemented. This 3D system simulates a first person view (see figure 4.19) like it is
known from popular ego shooter games (Doom, Quake, ...). To explain how this was exactly done is not
part of this thesis, but we invite the interested reader to have a look at the attached source code. It should
be mentioned here that a good knowledge of C++11/14 and Qt-5 is expected to understand what the
code is doing. As in the simple 2D environment, the agent explores the 3D world randomly and for each
step the agent performs an image is generated and saved for later processing. In the basic 2D example
100.000 images for the training phase were enough, in a 3D environment 200.000 combined images were
necessary to get good results. A combined image (see figure 4.20) is an image which is assembled from
four images, this means the agent performs a movement in one direction and rotates around the z-axis in
90°steps, so for a complete turn four images are produced. Next one combined image is generated out
of the four images. This is a very important step, without doing this the feature extraction is not able to
extract the precise location of the agent. This technique comes from image processing, for example in
robotics this method is used to exactly determine the position of the robot in a 3D environment. In the
paper [5] this method is described. The difference to this thesis is that the author of the paper suggested to
produce images with a 320°view instead of 360°which is used here. The decision to use 360°views was
made during experiments, since 360°views lead to better results than the suggestion made in the paper.
This means for 200.000 combined trainings images 800.000 single images need to be rendered, which
is quite an effort and requires several hours of computation. The same number of parameters need to be
adapted as for the 2D version of the feature extraction system, also the node structure (see figure 4.31)
stays the same. The only differences are the size of the receptive fields and the overlapping size of the
first Linear-SFA nodes in the structure.

4.4.1 3D SFA nodes

Five different nodes are used to get the feature extractions system running. These nodes are the same as
in the simple 2D experiment.

1. Additive-Noise: That is the first component in the node. To avoid problems like singular matrix
errors, some noise is added to the input signal. The parameters of the algorithm are the ’mean’ and
the ’standard deviation’, which were chosen to be the same as in the simple 2D version.

2. Linear-SFA: This algorithm is the first step to reduce the high dimensional input, to a output of 32
features.

3. Quadratic-SFA: In this step a quadratic expansion of the incoming data is mapped with a basis
of the space of polynomials with degree up to two. In addition to the original data, all quadratic
combinations are added to the data block.

4. Linear-SFA: A second Linear-SFA is applied to the expanded data. The output of this step is
equivalent to the output of a SFA in the space of polynomials up to degree two.

5. Clipping: In this step the clipping algorithm is performed, the min parameter is set to -4 and the
max parameter is set to +4. This procedure removes the extreme values that can occur on data due
to the high influence the quadratic functions for large values.

50 4. Feature Extraction Practical Section

4.4.2 Network structure

The network contains four layers see figure 4.31. The first layer directly maps to the input image, the
final layer (4) provides the extracted features which are then used for further processing.

1. Layer 1: As already shown (see figure 4.20), the input images have 360× 40 pixels, the receptive
field has a size of 15 × 15 pixels with an overlap of 5 × 5 pixels and a channel dimension of 3.
The channel dimension is used to distinguish between binary images which have only one color
information (0 or 1) ’channel dimension = 1’ or RGB images which have three color information
’channel dimension = 3’. The output of the first layer contains 32 features, this output serves as
input to the next layer.

2. Layer 2: Due to the dimensionality reduction of layer 1 the input images have the size of 70 × 6
pixels. The receptive field of this layer has as size of 4× 4 with an overlap of 2 pixels, the channel
dimension is set to 32 since the output of layer 1 provides 32 features. The output of this layer
again generates 32 features.

3. Layer 3: The images size now is reduced to 32 × 2 pixels. The receptive field size of this layer
has now 2 × 2 pixels with an overlap of 2 pixels. The channel dimension is again set to 32 since
the output of the previous layer contains 32 features. As the previous layer the output provides 32
features.

4. Layer 4: The final layer of the network, gets an input of size 17 × 1 pixels which results in a
receptive field size of 17 × 1 and no overlap. The output of the final layer contains 64 features.
This should be sufficient for further processing like ICA, to provide good input data for model
based algorithms.

4.4.3 Results

In this section some training and test results are presented and explained. Methods like linear regression
were used to generate these results. For this purpose Matlab was used since all the relevant algorithms
and graphical tools are directly integrated and available. In the following we distinguish between 32
features and 64 features generated in the final layer of the network. For evaluating the training data the
agent performs random exploration of the 3D world (see figure 4.20). For producing the test data, the
agent performs a systematic walk through the 3D environment (see figure 4.20). This means the agent
moves from left to right and from top to bottom. To perform the tests the linear regression algorithm
was used (see figure 4.6). As input for the algorithm the path of the agent through the world and the
extracted features calculated by the SFA network are necessary. Then the linear regression is calculated
and the output is compared to the real path of the agent. The results are plotted separately for the x and
y coordinates. The closer the two lines (real path and path calculated by the SFA network) are, the better
the result. This can be quantified by using the mean square error (MSE).

4.4.4 Test on the Small Feature Set

In this section the final layer (4) of the SFA network produces 32 features, and all the predecessor layers
also generate 32 features. The first plot (see figure 4.21), shows the evaluation of the training data in
x-direction. This means the training path in x-direction of the agent is compared to the path calculated
by the SFA network also in x-direction. To keep the plot simple and clear only the first 1000 time frames
are shown. The second plot (see figure 4.22), shows the evaluation of the training data in y-direction. In
this plot we also only show the first 1000 time frames. As it can be seen, the curves align nicely which
means the parameters of the Additive-Noise algorithm and the number of features used in all four layers
are well chosen.

4.4. 3D hierarchical SFA network 51

Abbildung 4.19: A first person view of the simulated 3D environment.

Abbildung 4.20: A combined image of the 3D environment.

The node and network structure stays untouched, so it’s the same as for the training section. The
difference is that the input data are smaller than for the training phase. During the test phase only 4248
time frames are used compared to the 200.000 during the training phase. The result for the x-coordinate
can be seen in figure 4.23. The outcome is not bad, only the spike starting at time frame 0 are pretty high.
For the y-coordinates see 4.24, the situation is better, considering only the y results, it would be fine to
stick to 32 feature for this experiment.

4.4.5 Test on the Large Feature Set

Because of the test results in the previous section, especially the x coordinate plot, the number of features
in the final layer (4) has been increased to 64 for this experiment. All the predecessor layers stay the same
and generate 32 features. The input data also stay the same. In figure 4.25, we can observe improvements
compared to the 32 features version. The calculated path of the SFA network follows the real path of
the agent much more closely than in the 32 feature version. The same is true for y-coordinate (see
figure 4.26).

As before the node and network structure stays untouched, so it’s the same as for the training sec-
tion. The test set contains 4248 images or time frames. The result for the x-coordinate can be seen in
figure 4.27. Compared to the 32 feature version, the SFA system has improved in following the real path
of the agent. The same observation is true for the y-coordinate which can be seen in figure 4.28.

4.4.6 Additive Noise

Same conditions for selecting this value hold as for the 2D version. An example of how an incorrectly
selected noise value affects the evaluation can be seen in figure 4.29 and in figure 4.30. Especially the plot
for the x-coordinate shows large spikes. Compared to the version with correctly selected noise parameters
this plot is completely wrong, and does not follow the path of the agent at all. The y-coordinate plot shows
a very noisy behaviour especially at the top and bottom edges of the graph but spikes can also be seen
at the bottom at time frame 700 and 950. This example shows how only small changes to one single
parameter can destroy the complete feature extraction system. It also shows that building and adapting a
feature extraction system based on SFA, for real life situations is a very difficult and impractical approach,
luckily there are other much more powerful feature extraction algorithms, like deep learning networks
[24] that can be used in such real world scenarios.

52 4. Feature Extraction Practical Section

Abbildung 4.21: Comparison between real (red line) and SFA extracted path (blue line) of the
agent in x-direction on the trainings set in a 3D environment.

Abbildung 4.22: Comparison between real (red line) and SFA extracted path (blue line) of the
agent in y-direction on the trainings set in a 3D environment.

Abbildung 4.23: Comparison between real (red line) and SFA extracted path (blue line) of the
agent in x-direction on the test set in a 3D environment.

4.4. 3D hierarchical SFA network 53

Abbildung 4.24: Comparison between real (red line) and SFA extracted path (blue line) of the
agent in y-direction on the test set in a 3D environment.

Abbildung 4.25: Comparison between real (red line) and SFA extracted path (blue line) of the
agent in x-direction on the trainings set in a 3D environment.

54 4. Feature Extraction Practical Section

Abbildung 4.26: Comparison between real (red line) and SFA extracted path (blue line) of the
agent in y-direction on the trainings set in a 3D environment.

Abbildung 4.27: Comparison between real (red line) and SFA extracted path (blue line) of the
agent in x-direction on the test set in a 3D environment.

4.4. 3D hierarchical SFA network 55

Abbildung 4.28: Comparison between real (red line) and SFA extracted path (blue line) of the
agent in y-direction on the test set in a 3D environment.

Abbildung 4.29: Comparison between real (red line) and SFA extracted path (blue line) of the
agent in x-direction on the test set in a 3D environment, wrong selected additive
noise.

56 4. Feature Extraction Practical Section

Abbildung 4.30: Comparison between real (red line) and SFA extracted path (blue line) of the
agent in y-direction on the test set in a 3D environment, wrong selected additive
noise.

Abbildung 4.31: The SFA network used for the 3D environment

Kapitel 5

Model Based Learning Implementation

This chapter provides implementation details for the different methods used to generate a model out of an
environment. Moreover, we outline the exploration of the environment using model learning algorithms.
Furthermore all the relevant data structures are presented, along with an explanation how all information
is kept up-to-date. The final part of this chapter describes how all the different components are put to-
gether to finally generate a complete model based learning system. The programming language used to
implement the above explained structures is C++11/14. This advanced version of C++ was a good fit for
the complex algorithms. Additionally this programming language provides some kind of platform inde-
pendence and very good performance compared to other high level languages. All the used algorithms
and their pseudo code can be found in the theoretical section of this thesis. It should be mentioned that
no source code is added or explained in this thesis, a high level view is presented instead. Class and flow
diagrams are used to show how the different components work together. For a deeper understanding on
how something specific was implemented one can take a look to the attached source code. The model
based learning structure is build out of three main modules: the environment, the model and the planning
module. All these components communicate with each other during the learning phase. The communi-
cation itself and the three modules are explained in the following. After the implementation section a
data analysis section follows, some experiments with different environments are shown as well as the
differences in performance between Value-Iteration and UCT algorithms. Then we present an experi-
ment where the reward state (terminal state) is dynamically changed during execution. We then compare
the results between Value-Iteration and UCT. In the final section some possible future work is discussed
which can improve the performance of the overall system.

57

58 5. Model Based Learning Implementation

5.1 From Features to Environment

In this section it is shown how to transform features generated by the SFA algorithm to discrete states
to represent the environment. The first step after the SFA is to perform an ICA (as already explained
in chapter 4). The algorithm calculates a set of independent or unique features (states) which are used
by the environment class to create a discrete map of states see figure 5.1. The algorithm to discretize a
feature space is pretty simple, the following input data are required:

• The ICA output, which contains in the columns the features and in the rows the different time
frames.

• The positions of the agent during the SFA test phase, this means the position of the agent at a
specific point in time.

• The start state coordinates.

• The terminal state coordinates.

With this information in place the algorithm iterates through all positions the agent visited. The method
first obtains the feature output at the specific point in time (for example 64 features at position 10) the so
called feature vector. Then the index of the feature with largest value in the feature vector is determined.
This is a state or a part of a state in the discretized matrix. Then the current position of the agent is
compared to the start respectively terminal state, and if one of those matches the state is marked as start
or terminal state. The pseudo code can be seen below.

1 timeIdx = 0;
2 discretizedMatrix = createMatrix(rows, columns);
3

4 foreach (position in agentPositions)
5 {
6 featureVector = icaInput(timeIdx++);
7 maxIdx = max_element_idx(featureVector);
8

9 discretizedMatrix(position.x, position.y) = maxIdx;
10

11 if (position == startStateCoordinate)
12 startState = position;
13

14 if (position == terminalStateCoordinate)
15 terminalState = position;
16 }

As it can be seen in the pseudo code the algorithm is simple and can be used for any number of
features and image sizes.
This is not the only reason why the so called ’Environment’ class exists it also helps the model based
agent or planner to explore its environment in a way that the agent at any point in time exactly knows
where it is and what happens when it performs a certain action in the environment. To provide the agent
with this information it is necessary to implement some methods that allow the agent to access the
information it needs. The following methods are used to establish a communication between the agent
an the environment:

• CurrentState: The state in which the agent is located at the moment.

• Apply: When an action was selected by the agent this function applies this action to the environ-
ment and returns the reward.

• IsTerminal: Returns true when the agent reached the terminal state otherwise false.

5.2. The R-Max Model 59

• Reset: Sets the start position of the agent on some random state, this method is used for random
exploration of the environment.

The above mentioned methods are the most important ones. There are a few more but these are mainly
used for the graphical representation of the environment.

5.2 The R-Max Model

The R-Max algorithm generates a model of the real world. The ’Environment’ class represents the ’real’
world. The R-Max model has no direct connection to the environment, it gets the required information
from the agent. The agent is the only instance that directly communicates with the environment. How
exactly this works is explained in the agent section of this chapter. As already mentioned in the intro-
duction of this chapter pseudo code does not always fit the real world needs, exactly this is the case for
the R-Max algorithm. The real implementation splits the algorithm in an update phase, where the agent
provides its experience form the real world to the model and the ’get action’ phase where the model pro-
vides the agent with information on how to plan the next action. Internally the algorithm uses some data
structures to keep information about the model, for example an associative container (map) is used to
store information of each and every state. This is done by using a struct named ’StateInfo’ which stores
information like number of visits for each action, an outgoing transitions count to each state reached with
a specific action, and so on. The following methods are used to establish a communication between the
agent an the model:

• UpdateWithExperience: This method is called when the agent performed an action on the environ-
ment. The method updates all the different counts, checks if the model has changed and determines
if the state is ’known’. The return value indicates whether the model was changed by the update or
not. The parameters of the method are:

– CurrentState: The state where the agent is located now.

– Action: The action the agent performed from the last state.

– NextState: The state where the agent goes next.

– Reward: The reward the agent received when performing the action.

– IsTerminal: Determines whether the current state is a terminal state or not.

• GetStateActionInfo: This method is called by the agent to get information about the current state.
The method calculates transition probabilities, the reward predictions and the terminal probabili-
ties. The parameters of the method are:

– State: The current state (position) of the agent.

– Action: The action that was performed by the agent to reach the current state.

– StateActionInfo: The parameter is a pointer to a struct which contains all relevant information
about the current state (is the state already know, the reward, the terminal probability and the
transition probabilities for each action).

The above methods are the most important ones, they are only used by the agent (planner) to update
the model and get information of the current state of the model. Other methods exists but they are not
important to operate the algorithm, they are only used to get information out of the model for graphical
representations.
A description of the above mentioned methods in pseudo code now follows, to give a idea what exactly
is done by these methods:

60 5. Model Based Learning Implementation

1 bool UpdateWithExperience(
2 int currentState,
3 Action action,
4 int nextState,
5 double reward,
6 bool isTerminal)
7 {
8 currentStateInfo = stateData[lastState];
9

10 % If the state is already know -> model has not changed
11 if (currentStateInfo->known[action])
12 return false;
13

14 % Update visit count for action just executed
15 currentStateInfo->visits[action]++;
16

17 % Update termination count
18 if (isTerminal)
19 currentStateInfo->terminations[action]++;
20

21 % Update reward sum for this action
22 currentStateInfo->Rsum[action] += reward;
23

24 % Update transition count for outcome that occurred
25 % First get transitions for all actions
26 transitionCounts = currentStateInfo->outCounts[currentState];
27

28 % Only update state transition counts for non-terminal transitions
29 if (!isTerminal)
30 transitionCounts[action]++;
31

32 % Check if current state becomes known
33 if (!currentStateInfo->known[action] &&
34 currentStateInfo->visits[action] >= numVisits)
35 {
36 currentStateInfo->known[action] = true;
37 }
38

39 % Model changed
40 return true;
41 }

1 void getStateActionInfo(
2 int state,
3 Action action,
4 StateActionInfo *stateActionInfo)
5 {
6 info->transitionProbabilities.clear();
7 currentStateInfo = getInfo(state);
8

9 % Unknown state
10 if (currentStateInfo->visits[action] == 0)
11 {
12 % Set StateActionInfo to defaul values
13 return;
14 }
15

16 % Calculate transition probabilities
17 foreach (outCount in outCounts)
18 {
19 T(s, a, s’) = C(s, a, s’) / C(s, a);
20 }
21

5.3. The Value Iteration Algorithm 61

22 R(s, a) = Rsum(s, a) / C(s, a);
23 TermProb = Term(s, a) / C(s, a);
24 }

C(s, a)... number of times an action a was taken from state s.
C(s, a, s′)... number of times that each next state s′ was reached form (s, a).
T (s, a, s′)... probability of outcome s′.

5.3 The Value Iteration Algorithm

Value-Iteration is a so called planning algorithm. It plans the optimal policy or action from one state to
another. All the details on how to find the optimal policy and how the algorithm works can be found in
the theoretical section of this thesis. In grid world based problems normally one cell represents exactly
one state, which is not true in the real world problem. In the real world problem one state can be spread
out across multiple cells therefore it is important to define a so called step-width for the agent. When the
agent performs an action it moves, for example, three cells to the left direction instead of a single cell.
The Value-Iteration algorithm communicates with the model (R-Max) as well as with the environment
(the real world). The model provides the agent with the necessary information on how to decide which
action to take from the current state, the environment provides the reward for the chosen action. After
each action the model gets updated by the agent with the real world experience. In this section the
communication between the agent and the model is described. The communication between agent and
environment is described in the section 5.5. Internally the Value-Iteration algorithm uses some structures
to keep the information about each and every state. It also keeps a pointer to the model class to access
and update the model. The agent (ValueIteration class) provides the following methods to perform its
calculations:

• PlanOnNewModel: This method is called whenever the model (R-Max) is updated with new ex-
periences, so for example a new state was added during the last exploration step. The method then
calls the following two private methods:

– UpdateStateActionFromModel: This method accesses the underlying model (in this case R-
Max) to get all necessary information of the current state and the current action.

– CreatePolicy: This method performs the value-iteration algorithm. The method itself calls
some helper functions to perform all calculations, which will be described by the pseudo
code.

• UpdateModelWithExperience: This method is called after the agent performed an action on the real
environment (the Apply() method of the Environment class was called). All information collected
by the agent in the previous step is stored in the model. The parameters of the method are:

– LastState: The state of the agent before applying an action.

– Action: The action from the previous state to the current state.

– CurrentState: The state in which the agent is now.

– Reward: The reward the agent received for moving from the previous state to current state.

– IsTerminal: Determines if the current state is a terminal state or not.

• GetBestAction: This method is called by the model based agent class see section 5.5, whenever
the agent enters a new state this method is called to determine which action to perform to get the
maximum reward. The parameter of the method is:

– State: The current state of the agent.

62 5. Model Based Learning Implementation

The listed methods are the most important ones, there exist other public methods like load() and save(),
which allow the user of the class to load respectively save the learned parameters from or to a file. These
additional methods are not explained in this thesis, because they are not relevant for the functionality of
the algorithm. The interested reader is invited to take a look at the attached source code. In the following
a description of the above mentioned methods in pseudo code follows. The intention is to provide the
reader with an understanding of what the methods exactly do and how they do it.
The first method to be described is ’PlanOnNewModel’:

1 void PlanOnNewModel()
2 {
3 % Update model info
4 UpdateStateActionFromModel();
5

6 % Run value iteration algorithm
7 CreatePolicy();
8 }

As already mentioned above this method simply calls two private methods to get the job done.
The private method ’UpdateStateActionFromModel’ will be explained next:

1 void UpdateStateActionFromModel()
2 {
3 % Get information’s of the state
4 stateInfo = stateData[previousState];
5

6 % Update stateInfo - get state action info from the model
7 model->GetStateActionInfo(
8 previousState,
9 previousAction,

10 stateInfo->modelInfo[previousAction]);
11 }

The above method is used to update the internal data structure of the Value-Iteration algorithm. Infor-
mation like visit counts and Q-Values are stored in the model, these information are used by the Value-
Iteration algorithm to plan the next action.
Now the method ’CreatePolicy’, which performs the value iteration algorithm is explained:

1 void CreatePolicy()
2 {
3 while (maxError > MinError)
4 {
5 % Loop over all states
6 foreach(state in states)
7 {
8 % Execute the Value-Iteration algorithm
9 % The return value contain the error

10 errorValue = PerformValueIterationAlgorithm(state);
11

12 if (errorValue > maxError)
13 maxError = errorValue;
14 }
15 }
16 }

The ’CreatePolicy()’ method maintains an error value which is returned by the Value-Iteration algorithm
to decide when to leave the update loop. Beside that it’s a very simple method which iterates over all
available states in the state-space and performs calculations on each and every state. The calculations
performed by the method ’PerformValueIterationAlgorithm’ are explained next:

1 double PerformValueIterationAlgorithm(int state)
2 {

5.3. The Value Iteration Algorithm 63

3 % Get information of the state
4 stateInfo = stateData[state];
5

6 % Loop over all available actions
7 for (action in actions)
8 {
9 % Get the model data for the current state and action

10 modelInfo = stateInfo->modelInfo[action];
11

12 % Calculate the Q-Value for the current state
13 qValue = CalculateTransitionProbabilities(
14 currentState,
15 stateInfo,
16 modelInfo);
17

18 % Calculate the difference between new and old Q-Value
19 error = abs(stateInfo->qValues[action] - qValue);
20

21 % Update the state information with the new Q-Value
22 stateInfo->qValues[action] = qValue;
23 }
24

25 % Return the error
26 return error;
27 }

The ’PerformValueIterationAlgorithm’ method simply iterates over all actions for the current state and
calculates a new Q-Value according to the updated information in the model. Then the absolute difference
between the old Q-Value and the new Q-Value is calculated (error) and returned by the method. The
helper function ’CalculateTransitionProbabilities’ determines the new Q-Value and is explained next:

1 double CalculateTransitionProbabilities(
2 int currentState,
3 StateInfo *stateInfo,
4 StateActionInfo *modelInfo)
5 {
6 % Q = R + discounted value of the next state
7 % First part of the Q-Value calculation -> the R part
8 newQ = modelInfo->reward;
9 probabilitySum = modelInfo->termProbability;

10

11 % For all next states, add discounted value appropriately.
12 % Loop through next state’s that are in this state-actions list.
13 for (transition in modelInfo->transitions)
14 {
15 % The probability must be between ->
16 % 0 < transitionProbability < 1
17 transitionProbability = (
18 1.0 - modelInfo->termProbability) *
19 modelInfo->transitionProbabilities[nextState];
20

21 % Used for plausibility check
22 probabilitySum += transitionProbability;
23

24 % Update q values for any next states
25 nextStateInfo = stateData[next];
26

27 % Get maximum Q-Value
28 maxQValue = max_element(nextStateInfo->qValues);
29

30 % Calculate the new Q-Value
31 newQ += (gamma * transitionProbability * maxQValue);

64 5. Model Based Learning Implementation

32 }
33

34 % probabilitySum must be 1
35 if (probabilitySum < 0.9999 || probabilitySum > 1.0001)
36 return some error condition
37

38 return newQ;
39 }

The above method is the last helper method in the process of calculating all relevant data for the Value-
Iteration algorithm. It should be mentioned that not all parameters of the method are used in the pseudo
code description, since the intention of pseudo code is to keep things as simple as possible.

1 bool UpdateModelWithExperience(
2 int lastState,
3 Action action,
4 int currentState,
5 double reward,
6 bool isTerminal)
7 {
8 % Get information of the state
9 stateInfo = stateData[lastState];

10

11 % Update the state visit count
12 stateInfo->visits[action]++;
13

14 % Create the experience class and fill it with all necessary information
15 Experience experience(lastState, action, reward, currentState, isTerminal

);
16

17 % Update the model
18 return model->updateWithExperience(experience);
19 }

The method ’UpdateModelWithExperience’, updates the model with the information from the previous
action the agent performed. As it can be seen in the above pseudo code the ’Experience’ struct is filled
with the information from the agent’s previous step, and then the model is updated with the new ex-
perience. The model returns a simple boolean to inform the caller whether the model has changed. If
the model has changed the method ’PlanOnNewModel’ gets called which triggers a recalculation of the
QValues and state transitions.

1 Action GetBestAction(int state)
2 {
3 % Get information of the state
4 stateInfo = stateData[state];
5

6 % Get Q values
7 qValues = currentStateInfo->qValues;
8

9 % Choose an action
10 auto maxQValueIdx = max_element_idx(qValues.begin(), qValues.end());
11

12 return (Action)(maxQValueIdx)
13 }

The above method determines the best action from the current state. To achieve that, the maximum Q-
Value for the current state is chosen, which is then mapped to an action. Each index of the Q-Value array
represents an action. In our implementation, for example, the index two means ’Up’. The caller receives
the best action which is applied to the environment, which is done by the class ’ModelBaseAgent’ and is
explained later in this section.

5.4. The Upper-Confidence-Bound applied to trees Algorithm 65

5.4 The Upper-Confidence-Bound applied to trees Algorithm

Upper-Confidence-Bound applied to trees (UCT) is quite similar to the Value-Iteration algorithm, but
instead of an array, which is used by the Value-Iteration algorithm to keep track of all the calculated
value functions for each state, the UCT algorithm uses a search tree to calculate the best possible action
based on the states that the agent most likely visits soon. An explanation on how this works can be found
in the theoretical part of this thesis. In this section we focus on how the algorithm was implemented and
how it differs from the pseudo code version presented in the theory section. The communication between
model, planner and environment stays the same as for the Value-Iteration algorithm, but to make this
section self-contained the communication between the different modules is explained again. The UCT
algorithm communicates with the model (R-Max) as well as with the environment (the real world). The
model provides the agent with the necessary information on how to decide which action to perform from
the current state. The environment then provides the reward for the chosen action and after this the model
gets updated with the real world experience. In this section the communication between the agent and the
model is explained, the communication between agent and environment is described in the section 5.5.
Internally the UCT algorithm uses a tree data structure (std::map) to keep the information about each
state and it also keeps a pointer to the model class to access and update the model. Additionally a pointer
to the previous state is maintained, which keeps all the information of the state where the agent came
form. The agent (UCT class) provides the following methods to perform its calculations:

• PlanOnNewModel: This method is called whenever the model (R-Max) is updated with new ex-
periences, for example when a new state was added during the last exploration step. The method
then calls the following two private methods:

– ResetUCTCounts: This method accesses the internal search tree. In this tree each and every
state is stored. The method iterates over all these states and resets their statistic back to default
values.

– UpdateStateActionFromModel: This method updates the previous state data structure. The
parameters of the method are:

* PreviousState: The state before the current state.

* PreviousAction: The action performed to enter the current state.

* PreviousStateInfo: A pointer to data structure which keeps all the information of the
previous state.

• UpdateModelWithExperience: This method is called after the agent performed an action on the real
environment (the Apply() method of the Environment class was called). All information collected
by the agent in the previous step is stored in the model. The parameters of the method are:

– LastState: The state of the agent before applying an action.

– Action: The action from the previous state to the current state.

– CurrentState: The state in which the agent is now.

– Reward: The reward the agent received for moving from last state to current state.

– IsTerminal: Determines if the current state is a terminal state or not.

• GetBestAction: This method is called by the model based agent class see section 5.5. Whenever
the agent enters a new state this method is called to determine which action to perform to get the
maximum reward. The parameter of the method is:

– State: The current state of the agent.

The method then calls the following private method:

66 5. Model Based Learning Implementation

– UctSearch: This method is the UCT algorithm itself. It performs all the steps that are outlined
in the pseudo code of the theoretical section. The parameters of the method are:

* CurrentState: The current state.

* Depth: The search depth of the algorithm, i.e., how deep the tree can get when perfor-
ming the search.

The method then calls the two private methods SelectUCTAction and SimulateNextState:

* SelectUCTAction: This method selects the best action depending on the current state.
The parameter of the method is:

· StateInfo: Statistics of the current state.

* SimulateNextState: This method calculates, depending on some statistics, the next state
to be visited in the MC search tree. The parameters of this method are:

· CurrentState: The current state in the search tree.
· StateInfo: The statistics of the current state.
· Action: The action to perform from the current state to the next state
· Reward: A pointer to the reward, the method returns the reward that can be expected

when performing the passed in action to the next state.
· Terminal: A pointer that informs the caller if the next state is terminal or not.

The above mentioned methods are the most important ones, but there are other public methods like load()
and save(), which allow the user of the class to load respectively save the learned parameters from or to
a file. These additional methods are not explained in this thesis, because they are not relevant for the
functionality of the algorithm. The interested reader is invited to take a look at the attached source code.
Next, we explain the mentioned methods using pseudo code. The intention is to provide the reader with
an understanding of what the methods exactly do and how they do it.
The first method to describe is ’PlanOnNewModel’:

1 void PlanOnNewModel()
2 {
3 % Reset visit counts, qValues....
4 ResetUCTCounts();
5

6 % Update the previous state information
7 UpdateStateActionFromModel(previousState, previousAction,

previousStateInfo);
8 }

As already mentioned above this method simply calls two private methods.
The next method to describe is ’ResetUCTCounts’

1 void ResetUCTCounts()
2 {
3 % Iterate over all states in the tree
4 foreach(state in states)
5 {
6 % Get information about the current state
7 stateInfo = getStateInfo(state);
8

9 % If number of visits larger than some default values
10 % Set the visits count back to default
11 if (stateInfo->visits > (minVisits * numberOfActions))
12 stateInfo->visits = minVisits * numberOfActions;
13

14 % Iterate over all actions
15 foreach(action in actions)
16 {

5.4. The Upper-Confidence-Bound applied to trees Algorithm 67

17 % If number of visits for the current
18 % action are larger then some default value.
19 % Set back to default value.
20 if (stateInfo->uctActions[action] > minVisits)
21 stateInfo->uctActions[action] = minVisits;
22 }
23 }
24 }

The above method resets all statistics maintained by the search tree. The ’minVisits’ constant can be set
by the user of the class.
Now the description of the method ’UpdateStateActionFromModel’ follows

1 void UpdateStateActionFromModel(
2 int previousState,
3 Action previousAction,
4 StateInfo* previusStateInfo)
5 {
6 % Get model information from the previous action
7 *modelInfo = &prevStateInfo->historyModel[previousAction];
8

9 % Update the state information with data from the model
10 model->getStateActionInfo(previousState, previousAction, modelInfo);
11 }

The above method first gets all the information from the previous state, which depends on performed
action. Next, this information gets updated with data from the model, since the variable ’modelInfo’ is a
pointer to the data which are stored in the ’historyModel’ and can be used for the next tree search step.
The next method to explain is ’UpdateModelWithExperience’

1 bool UpdateModelWithExperience(
2 int lastState,
3 Action action,
4 int currentState,
5 double reward,
6 bool isTerminal)
7 {
8 % Keep track about the state and action history
9 previousState = lastState;

10 previousAction = lastAction;
11

12 % Get information of the state
13 stateInfo = stateData[lastState];
14

15 % Create the experience class and fill it with all necessary information
16 Experience experience(lastState, action, reward, currentState, isTerminal

);
17

18 % Update the model
19 return model->updateWithExperience(experience);
20 }

The method ’UpdateModelWithExperience’, updates the model with the information from the last action
the agent performed. In the pseudo code above the global variables ’previousState’ and ’previousAction’
are set to valid values, which is necessary since the algorithm needs information about the past. After this
the ’Experience’ struct is filled with the information from the agent’s previous step, and then the model
is updated with the new experience. The method returns a boolean to inform the caller whether the model
has changed. If the model has changed the method ’PlanOnNewModel’ is called which triggers an update
on the underlying model as well as a reset of the statistics used by the UCT algorithm.
As next method ’GetBestAction’ is explained:

68 5. Model Based Learning Implementation

1 Action GetBestAction(int state)
2 {
3 % Perform a specific number of MC rollouts
4 for (rollout to maxRollouts)
5 UctSearch(state, 0)
6

7 % Get information about the current state
8 currentStateInfo = stateData[state];
9

10 % Get maximum QValue index
11 maxQValueIdx = max_element_idx(currentStateInfo->qValues);
12

13 % Return the action
14 return (Action)(maxQValueIdx);
15 }

The above method first performs a user specified number of Monte Carlo (MC) roll-outs. This means the
algorithm performs a roll-out, starting from the agent’s current position or state to a user defined depth.
At each state an action is selected which leads to the next state one level deeper in the search tree. After
reaching the maximum number of roll-outs or after reaching a terminal state, the values of the taken
actions are updated recursively towards the start state. Then the state information of the current state is
used to determine the optimal action from the current state to the next one. Depending on the number of
states and the selected number of roll-outs this process can take quite a long time. There are methods to
traverse multiple search trees at the same time in parallel, but these methods are difficult to implement
and that’s why they where not used in this thesis.
As next method ’UctSearch’ is explained:

1 double UctSearch(currentState, depth)
2 {
3 % Maximum depth reached -> nothing do to here
4 if (depth > maxDepth)
5 return maxQValue of current state
6

7 % Call helper function ’SelectUCTAction’
8 action = SelectUCTAction(currentStateInfo);
9

10 % Call helper function ’SimulateNextState’
11 nextState = SimulateNextState(
12 currentState,
13 currentStateInfo,
14 action,
15 reward
16 terminal);
17

18 % Terminal state reached?
19 if (terminal)
20 {
21 currentState->qValue[action] =
22 learnRate *
23 (reward - currentState->qValue[action]);
24

25 currentState->visits++;
26 currentState->uctActions[action]++;
27

28 return reward;
29 }
30

31 % Terminal state not reached
32 % Recursively calculate QValue
33 newQ = reward + UctSearch(nextState, depth + 1);
34

5.4. The Upper-Confidence-Bound applied to trees Algorithm 69

35 % Update QValue and visits statistics
36 currentState->qValue[action] =
37 learnRate * newQ +
38 (1 - learnRate) * currentState->qValue[action];
39

40 currentState->visits++;
41 currentState->uctActions[action]++;
42

43 return newQ;
44 }

The above function performs the UCT roll-out. At first the method checks if the maximum search tree
depth defined by the user was reached. If so the maximum QValue of the current state is returned. If the
maximum depth has not been reached yet the helper function ’SelectUCTAction’ is called. This function
determines the best action from the current state to next one. Then the helper function ’SimulateNext-
State’ is called to calculate the transition probabilities from the current state to the next one using the
action provided by the method ’SelectUCTAction’. If the function ’SimulateNextState’ determines that
a terminal state was reached, the Q-Value of the state, the statistics for the visit and the action counts
are updated. If no terminal state was reached the method ’UctSearch’ is called recursively with the ’next
State’ value and the incremented ’depth’ as parameters. Finally, as already explained for the case a ter-
minal state was reached, the Q-Value and the statistics for visit and action counts are updated.
Now the helper method ’SelectUCTAction’ is explained:

1 Action SelecteUCTAction(stateInfo)
2 {
3 foreach(action in actions)
4 {
5 qValues[action] = qValues[action] + rewardBound *
6 2 * sqrt(log(visits) / uctActions[action];
7 }
8

9 return maxQValueIdx;
10 }

The method ’SelecteUCTAction’ iterates through all available actions and calculates the Q-Value for
each action using the formula:
argmaxa′(Q

d(s, a′) + 2 ∗ rrange ∗
√

log(c(s, d)/c(s, a′,d))).
Then the action with the maximum Q-Value is returned.
Next we explain the helper method ’SimulateNextState’

1 int SimulateNextState(
2 currentState,
3 stateInfo,
4 action,
5 reward,
6 terminal)
7 {
8 % Create a random uniform distribution
9 uniform_real_distribution uniformDistribution

10

11 terminal = uniformDistribution() < terminalProbability;
12

13 if (terminal)
14 return currentState;
15

16 randomProbability = uniformDistribution();
17

18 % Iterate over all transition probabilities
19 foreach (probability in probabilities)
20 {

70 5. Model Based Learning Implementation

21 probabilitySum += probability;
22

23 if (randomProbability < probabilitySum)
24 {
25 nextState = probability->state:
26 break;
27 }
28 }
29

30 return nextState;
31 }

First a uniform random distribution object is created. The constructor is called without any parameters,
so the distribution covers the range 0 to 1. In the case that the simulation determines that the current
state is not terminal, the algorithm loops through all transition probabilities of the current state. Again a
random uniform distribution is generated to determine which state to visit next. The probabilities contai-
ner which is used in the ’foreach’ loop contains a so called key-value pair, the ’key’ is the state and the
’value’ is the probability of entering the state.

The outlined methods or functions represent the UCT algorithm implementation. The pseudo code des-
cription of the different methods show a very high level point of view, but hopefully provide the reader
with enough understanding on how the algorithm works and help to understand the real implementation
of the attached source code.

5.5 Model Based Agent

In this section of the document the ’ModelBasedAgent’ class is described and explained. This class com-
bines the model, the planning algorithms, and the real world (environment) to learn a model of the real
world and to act on the learned model to find a way from the start state to the terminal state. The class can
be seen as a container where all necessary parts to create a model based learning system are registered.
Using a small example we illustrate how the different parts of the ’ModelBasedAgent’ interoperate and
how the user can set up experiments. To get an overview on how the different components work together
please have a look to figure 5.2. As illustrated in figure 5.2, first of all the feature extraction (in this case
SFA) is performed, which yields a user defined number of output features (already explained in the SFA
sections). Then these features are used the create a discretized state space, this is done by the ’Environ-
ment’ class. Next the state space is used by the model based agent to provide information like rewards,
next states and so on. It can be also seen that the model as well as the planner directly communicate with
the model based agent, which is necessary to keep all the data up to date. Now a pseudo code section
illustrates how the model based agent communicates with the different modules. The class provides three
public methods to the caller, which are sufficient to perform all operations that are necessary to drive a
model based learning system.

• FirstAction: This method is the entry point for each model learning phase. The method is called
only once, at the beginning of the process. The method returns the best action to take from the start
state to the next state, and it takes a single parameter:

– StartState: The start state of the agent.

• NextAction: This method usually gets executed in a loop. It returns the best action from the current
state. The method calls a function to update the model based on the experiences in the real world.
The methods takes two parameters:

– Reward: The reward returned from the environment.

5.5. Model Based Agent 71

– CurrentState: The current state of the agent.

• LastAction: This function is called after the terminal state was reached. The method updates the
underlying model with the experiences of the last move to the terminal state. The method takes
one parameter:

– Reward: The reward returned from the environment when entering the terminal state.

The first method to describe is ’FirstAction’:

1 Action firstAction(int startState)
2 {
3 % Call the planners method ’getBestAction’
4 action = planner->getBestAction(startState);
5

6 % Set global members for later processing
7 previousState = startState;
8 previousAction = action;
9

10 % Return the selected action
11 return action;
12 }

The above method uses the access to the planner (ValueIteration or UCT) class to retrieve the best action
for the current state. Then the function sets some global variables for internal use, and it returns the
selected action to the caller.
The following pseudo code describes the method ’NextAction’:

1 Action NextAction(double reward, int currentState)
2 {
3 % Update the underlying model
4 modelChanged = planner->UpdateModelWithExperience(
5 previousState,
6 previousAction,
7 currentState,
8 reward,
9 false);

10

11 % Update the model?
12 if (modelChanged)
13 planner->PlanOnNewModel();
14

15 % New Action
16 action = planner->getBestAction(currentState)
17

18 % Set global members for later processing
19 previousState = startState;
20 previousAction = action;
21

22 % Return the action
23 return action;
24 }

The function above is used to retrieve the best action from the current state. The method has two parame-
ters the ’reward’ and the ’currenState’, which are passed directly from the ’Environment’ class. First the
function updates the underlying model, this is done by calling the function ’UpdateModelWithExperi-
ence’ which is provided by the planner. That way the model always gets the information of the real world,
while it is explored by the agent. If the model has changed in the previous update step (for example if
a new state was explored), the planner needs to consider this, which is why the function ’PlanOnNew-
Model’ is called. The planner (or agent) then tries to determine the best action for the current state, and

72 5. Model Based Learning Implementation

returns it to the caller. All the functions called by the above method are explained in the planning and
model sub-sections of this chapter.
The next method is ’LastAction’:

1 void LastAction(double reward)
2 {
3 % Update the underlying model
4 modelChanged = planner->UpdateModelWithExperience(
5 previousState,
6 previousAction,
7 currentState,
8 reward,
9 false);

10

11 % Update the model?
12 if (modelChanged)
13 planner->PlanOnNewModel();
14 }

The purpose of the above method is to update the underlying model with the experience of the agent
after it found the terminal state. The function uses the same mechanism for updating the model as the
previous one.
The final step is now to show how the class is used to perform a simulation run. A helper function which
is created by the user of the class can be used to put all the components together, alternatively a method
by the ’ModelBasedAgent’ class itself can be used. In this case a helper function created by the caller
was used, since it’s easier to adapt parameters and it makes the model learning process a bit clearer to
the reader, since the process is not hidden inside the class.

1 void PerformSimulation()
2 {
3 % Get the start state.
4 currentState = environment.GetState();
5 action = agent.FirstAction(currentState);
6 reward = environment.Apply(action);
7

8 % Terminal state reached?
9 while(!environment.IsTerminal() && steps < maxSteps)

10 {
11 currentState = environment.GetState();
12 action = agent.NextAction(currentState);
13 reward = environment.Apply(action);
14 ++steps;
15 }
16

17 % Terminal/last state
18 if (environment.isTerminal())
19 {
20 agent.LastAction(reward);
21 }
22 }

The above function shows how to use all the described classes and methods to perform a simulation run
for a model based learning system. The function first gets the start state from the environment, then the
agent calculates the best action for the start state, the action is then applied to the environment calling
the ’Apply’ method. The ’Apply’ method returns the reward the agent received by performing a certain
action on the real environment. The while loop performs these steps until as the terminal state is reached
or a user defined ’maxSteps’ value is reached. This step limit avoids the system for hanging in an infinite
loop forever in the case the terminal state cannot be reached. The final step is to update the model with
the reward gathered from the terminal state, but only in the case the terminal state was reached.

5.6. Experiments and Results 73

5.6 Experiments and Results

In this section we perform a number of experiments and discuss our findings. The series of experiments
starts with the theoretical example we already explained in the feature extraction section of the thesis.
This simple 2D example is used to verify if the algorithms work properly. This phase can be seen as
a proof of concept of the used methods and the implementation. Then an artificial 3D world is used to
prove that the implemented algorithms can be used in a real environment. The implementation of the
3D environment is only described from a high level point of view since the generation of a 3D world in
OpenGL is not part of the thesis. For the main part of the experiments the so called two room problem
was chosen (explained in the feature extraction practical section). For the 3D environment a version
with a smaller door was used to see the performance difference between the standard and the advanced
version. Later an experiment with a moving terminal state is tested, to evaluate if the algorithms are able
to handle this. All experiments are performed twice, using the two different planning algorithms Value-
Iteration and UCT. The performance differences of the two algorithms are shown, and we conclude our
experiment by discussing which algorithm performs best in the different situations.

5.6.1 2D Environment

In this section the proof of concept version of the two room problem is presented. This version of the
environment is constructed in a way that all the used algorithms should perform reasonably well and
the terminal state is found in every situation. The input to the feature extraction system can be found
in the practical section of the SFA: see figure 4.9. The green rectangle shows the agent’s start state and
red rectangle shows the agent’s terminal state. As it can be seen in the plot, it’s a simple two room
problem and the connection between the two rooms is pretty large, which should simplify the job of the
algorithms to find their way to the terminal state. The images are saved in binary format. This means the
pixel of the current position of the agent is one ’1’, all the other pixels are set to zero ’0’. After the feature
extraction process a 64 large feature space is available. This feature space needs to be discretized, which
is done by the ’Environment’ class described earlier in this chapter. The result can be seen in figure 5.1.
As it can be seen there are exactly 64 discretized states available, some of them are ambiguous, but the
differnt algorithms should be able to handle this problem. The planner (or agent) now needs to find its
way through the different states. This is achieved by the reward system. This means if the agent performs
a step (or action) in one direction it receives a reward of -1. If the agent hits the wall it receives a reward
of -2. When the agent finds the terminal state it receives a reward of 0. This is a so called negative reward
system. In all experiments the agent is able to perform four different actions (up, right, down and left).
As already mentioned in all the different reference papers one step of the agent represents exactly one
state, this is not the case here. We decided to perform three steps per movement, which leads to pretty
good results and also shows that the agent is able to find his way even in very large states.

Value-Iteration Results

In this subsection the results of the Value-Iteration algorithm are presented. The following table lists the
different parameters to the algorithm. Please see table 5.1 for the results of the experiments. It should be
mentioned here that the Value-Iteration algorithm supports one additional parameter which is not listed
in the table. The so called discount factor, which is set to 0.99, and stays for all experiments the same. By
setting this value we tell the algorithm that we want to maximize the future rewards. As it can be seen in
the table the differences between the experiments (or lines) is not as significant as expected. For example
the first two lines of the table use a lot of iterations during the train phase, but the ’StepsToTerminal’
value in the last column does not improve so significantly that the effort of increasing the train value
by the factor of eight (comparing the first and the fifth line), is worth the effort. As visible in the first
column, a state is usually considered as ’known’ after 50 visits. For some cases 25 visits where sufficient

74 5. Model Based Learning Implementation

but with 50 visits the results where much more stable. That’s quit a good value, especially when the agent
operates in large state space environments, since reducing the value reduces the computational effort. To
increase the value of the ’MaxSteps’ does not make a lot of sense, since the maximum number of states
is 64 even lower values than 100 should work fine, which is confirmed by the fourth experiment. It is also
interesting that the algorithm independently of the parameters always finds the optimal or nearly optimal
path to the terminal state.

In the next experiment the Q-Values for the different directions are calculated and plotted.

• Q-Values of direction left, please refer to figure 5.3.

• Q-Values of direction up, please refer to figure 5.4.

• Q-Values of direction right, please refer to figure 5.5.

• Q-Values of direction down, please refer to figure 5.6.

It can be seen in the plots that they are pretty similar, this is the case because of very small differences
in the Q-Values for the different directions. The values most likely differ at the third of fourth position
behind the decimal point, but for the algorithm these small differences are enough to decide which action
to take. By taking a closer look at the plots, a trend to right bottom of the plot can be seen, this is ex-
actly what can be expected since the terminal state is exactly located in the right bottom corner of the plot.

The final experiment in the Value-Iteration section is to get the maximum Q-Value of each and every
state, which represents the best action taking form the current to the next state. A table is shown that
represents the agent’s path from the start to the terminal state, please see table 5.3. Finally a plot is
presented which shows a direction vector in each state, this should lead to a path from the start to the
terminal state, please see figure 5.7.

UCT Results

In this subsection the results of the UCT algorithm are presented. The following table lists the different
parameters to the algorithm. A huge disadvantage of the UCT method is the runtime, since this algorithm
is based on recursive calls. The execution time compared to the Value-Iteration method is much higher
for the same parameters. The problem is that the UCT algorithm explores the state space more preci-
se than Value-Iteration algorithm. The exploration can be controlled by the learning-rate parameter, the
higher the value the less exploration. During the different experiments it surfaced that for our problem
a small value provides better results. The decision was made to select the value 0.01 and keep it for all
experiments. Please refer to table 5.2 for the results of the experiments. As it can be seen in the table,
the results of the different runs are more or less the same, there is no difference in the results between
40000 iterations and 2750 iterations. It should be noted that the Value-Iteration algorithm is able to find
the terminal state with fewer iterations than the UCT method (line 12 in table 5.1 for Value-Iteration
and line 9 in table 5.2 for UCT). Both algorithms need 50 visits to consider a state as known which
means that this value represents the smallest possible number of visits, which enables the agent to find
the terminal state. This value is more determined by the underlying model, than by the model finding
algorithms. When comparing Value-Iteration with UCT, Value-Iteration is clearly the preferred way to
go in this setup. Value-Iteration requires fewer iterations to find the terminal state, the execution time is
much lower than UCT’s and Value-Iteration is a iterative algorithm and not a recursive one. All the above
results and findings are based on the simple 2D maze. The image data used to represent this 2D maze are
binary, which means the feature extraction methods produce a very clean separated state space. This can
be an advantage for Value-Iteration method. In the following a more realistic 3D world is used, maybe
these scenario changes the findings which have been made in this chapter.

5.6. Experiments and Results 75

NumberOfVisits NumberOfActions NumberOfEpisodes MaxSteps StepsToTerminal
1000 4 40000 1000 36
500 4 20000 500 36
100 4 10000 100 37
100 4 10000 70 37
50 4 5000 100 37
50 4 5000 70 37
25 4 5000 70 37
50 4 4500 70 37
25 4 4500 70 37
50 4 2500 70 37
25 4 2500 70 Not reached
50 4 1000 70 37
25 4 1000 70 Not reached
50 4 500 70 Not reached

Tabelle 5.1: The different parameters of the Value-Iteration algorithm. The last column of the table
shows the performance of the algorithm depending on the parameters.
NumberOfVisits: How many visits are necessary to consider a state as known.
NumberOfActions: The number of actions (left, up, right and down).
NumberOfEpisodes: Can be considered as train phase, how often should the algo-
rithm be executed on the state space.
MaxSteps: The maximum number of steps from the start to the terminal state.
StepToTerminal: Performance measurement, how many steps does the algorithm
need to reach the terminal state.

In the next experiment the Q-Values for the different directions are calculated and plotted.

• Q-Values of direction left, please refer to figure 5.8.

• Q-Values of direction up, please refer to figure 5.9.

• Q-Values of direction right, please refer to figure 5.10.

• Q-Values of direction down, please refer to figure 5.11.

It can be seen that the plots differ much more than the plots of Value-Iteration. The absolute difference
between the Q-Values of all action is higher than the differences calculated for the Value-Iteration me-
thod. For example in figure 5.8 it can be seen on the left room, that it makes absolutely no sense to take
the left action, since the terminal state is on the right. In contrast it can be seen in figure 5.10, to perform
action right in the left room makes perfect sense, only for the states that are directly located to the wall,
it can be seen that action right is not the correct choice, since a hit to the wall is punished with a -2 reward.

The final experiment in the UCT section is to get the maximum Q-Value of each state, which corre-
sponds to the best action taking from the current to the next state. A table is shown that represents the
the agent’s path from the start to the terminal state, please see table 5.4. Finally a plot is presented which
shows a direction vector in each state, this should lead to a path from the start to the terminal state, please
see figure 5.12.

5.6.2 3D Environment, Two Room problem

In this section a more realistic scenario is used to test the performance of the model based learning
system. As already mentioned in the feature extraction practical section, an 3D OpenGL generated en-

76 5. Model Based Learning Implementation

NumberOfVisits NumberOfActions NumberOfEpisodes MaxSteps StepsToTerminal
1000 4 40000 1000 37
500 4 20000 500 37
100 4 10000 100 37
50 4 5000 100 37
50 4 5000 70 37
50 4 4500 70 36
50 4 3500 70 37
50 4 3000 70 37
50 4 2750 70 37
50 4 2500 70 Not reached
25 4 5000 70 37
25 4 4500 70 Not reached

Tabelle 5.2: The different parameters of the UCT algorithm. The last column of the table shows
the performance of the algorithm depending on the parameters.
NumberOfVisits: How many visits are necessary to consider a state as known.
NumberOfActions: The number of actions (left, up, right and down).
NumberOfEpisodes: Can be considered as train phase, how often should the algo-
rithm be executed on the state space.
MaxSteps: The maximum number of steps from the start to the terminal state.
StepToTerminal: Performance measurement, how many steps does the algorithm
need to reach the terminal state.

Ambiguous

Ambiguous

Abbildung 5.1: The discretized state space of the simple 2D two room problem. Each colored
shape represents one state. We also show an example for an ambiguous states.

5.6. Experiments and Results 77

State Q-Left Q-Right Q-Up Q-Down Action
11 -31.4234 -30.5706 -31.7274 -30.2933 Down
11 -31.4234 -30.5706 -31.7274 -30.2933 Down
38 -30.925 -29.6499 -30.5897 -29.8019 Right
38 -30.925 -29.6499 -30.5897 -29.8019 Right
48 -29.7116 -28.8952 -29.7173 -28.5135 Down
48 -29.7116 -28.8952 -29.7173 -28.5135 Down
48 -29.7116 -28.8952 -29.7173 -28.5135 Down
18 -29.1643 -27.9821 -29.4087 -28.225 Right
61 -27.9262 -26.5824 -27.3141 -27.6254 Right
61 -27.9262 -26.5824 -27.3141 -27.6254 Right
40 -26.7166 -27.1971 -27.4441 -25.8638 Down
59 -25.7389 -24.5087 -26.1854 -24.36 Down
59 -25.7389 -24.5087 -26.1854 -24.36 Down
20 -25.7411 -24.0545 -25.2844 -24.6619 Right
55 -23.5448 -21.8476 -23.4235 -22.2545 Right
55 -23.5448 -21.8476 -23.4235 -22.2545 Right
55 -23.5448 -21.8476 -23.4235 -22.2545 Right
25 -21.5254 -20.2276 -21.283 -20.3177 Right
25 -21.5254 -20.2276 -21.283 -20.3177 Right
25 -21.5254 -20.2276 -21.283 -20.3177 Right
58 -20.076 -18.522 -19.5551 -18.4357 Down
58 -20.076 -18.522 -19.5551 -18.4357 Down
37 -19.3703 -17.6292 -18.9553 -17.5109 Down
37 -19.3703 -17.6292 -18.9553 -17.5109 Down
8 -16.4301 -14.5474 -16.6001 -15.2918 Right
8 -16.4301 -14.5474 -16.6001 -15.2918 Right
57 -13.9803 -12.2669 -14.0973 -12.2089 Down
57 -13.9803 -12.2669 -14.0973 -12.2089 Down
19 -12.2708 -10.9611 -12.884 -10.856 Down
19 -12.2708 -10.9611 -12.884 -10.856 Down
60 -11.1732 -9.45067 -10.9618 -9.55183 Right
62 -10.1415 -8.21746 -9.86225 -8.42557 Right
62 -10.1415 -8.21746 -9.86225 -8.42557 Right
45 -8.00643 -5.56179 -7.99474 -6.33354 Right
45 -8.00643 -5.56179 -7.99474 -6.33354 Right
3 -6.51228 -5.71372 -6.48607 -4.11445 Down
3 -6.51228 -5.71372 -6.48607 -4.11445 Down
3 -6.51228 -5.71372 -6.48607 -4.11445 Down

Tabelle 5.3: The current state of the agent, the Q-Values (calculated by the Value-Iteration algo-
rithm) for each action and the selected action in the state.

78 5. Model Based Learning Implementation

State Q-Left Q-Right Q-Up Q-Down Action
11 -52.7719 -48.305 -48.6411 -34.9494 Down
11 -52.7719 -48.305 -48.6411 -34.9494 Down
38 -45.5855 -34.3515 -42.6424 -38.677 Right
38 -45.5855 -34.3515 -42.6424 -38.677 Right
48 -48.6529 -48.3843 -48.7664 -31.041 Down
48 -48.6529 -48.3843 -48.7664 -31.041 Down
48 -48.6529 -48.3843 -48.7664 -31.041 Down
18 -45.7466 -32.0732 -39.3385 -36.0233 Right
61 -43.9362 -29.4498 -43.6385 -45.2208 Right
61 -43.9362 -29.4498 -43.6385 -45.2208 Right
40 -35.4065 -44.5903 -43.4532 -28.2769 Down
59 -39.3007 -38.879 -40.1988 -28.2524 Down
59 -39.3007 -38.879 -40.1988 -28.2524 Down
20 -38.3297 -29.4198 -37.1129 -32.5523 Right
55 -35.8879 -24.4549 -36.2118 -30.0549 Right
55 -35.8879 -24.4549 -36.2118 -30.0549 Right
55 -35.8879 -24.4549 -36.2118 -30.0549 Right
25 -34.5633 -26.2622 -33.476 -24.0556 Down
25 -34.5633 -26.2622 -33.476 -24.0556 Down
53 -33.2424 -27.7707 -32.6924 -21.2243 Down
53 -33.2424 -27.7707 -32.6924 -21.2243 Down
22 -33.1675 -19.9209 -33 -35.0255 Right
5 -29.3997 -17.2767 -27.7963 -31.6041 Right
5 -29.3997 -17.2767 -27.7963 -31.6041 Right
8 -27.4565 -16.7121 -27.2437 -29.9018 Right
8 -27.4565 -16.7121 -27.2437 -29.9018 Right
57 -24.0737 -12.5562 -23.9108 -17.3104 Right
57 -24.0737 -12.5562 -23.9108 -17.3104 Right
57 -24.0737 -12.5562 -23.9108 -17.3104 Right
52 -18.841 -13.311 -19.2579 -9.70704 Down
52 -18.841 -13.311 -19.2579 -9.70704 Down
28 -20.2079 -14.1007 -21.8276 -9.31729 Down
28 -20.2079 -14.1007 -21.8276 -9.31729 Down
45 -12.2276 -1.25022 -12.1266 -7.6499 Right
45 -12.2276 -1.25022 -12.1266 -7.6499 Right
3 -14.4983 -19.3478 -14.6594 -0.0079222 Down
3 -14.4983 -19.3478 -14.6594 -0.0079222 Down
3 -14.4983 -19.3478 -14.6594 -0.0079222 Down

Tabelle 5.4: The current state of the agent, the Q-Values (calculated by the UCT algorithm) for
each action and the selected action in the state.

5.6. Experiments and Results 79

Abbildung 5.2: Overall architecture of the implemented model based learning system

Abbildung 5.3: The Q-Values in left direction after trainings phase for the Value-Iteration algo-
rithm. Each colored shape represents one state.

80 5. Model Based Learning Implementation

Abbildung 5.4: The Q-Values in up direction after trainings phase for the Value-Iteration algo-
rithm. Each colored shape represents one state.

Abbildung 5.5: The Q-Values in right direction after trainings phase for the Value-Iteration algo-
rithm. Each colored shape represents one state.

5.6. Experiments and Results 81

Abbildung 5.6: The Q-Values in down direction after trainings phase for the Value-Iteration algo-
rithm. Each colored shape represents one state.

vironment is used to create a 3D version of the two room problem. The state space differs significantly
from the artificial 2D version, in the sense that the state space itself is smaller (less than 64 features) but
the states are larger, which means that the number of pixels covered by one state is lager compared to the
2D version. In the following the performance of the two algorithms will be compared, and the question
will be answered if the two algorithms are even able to find a path in this difficult environment. The
feature extraction process again provides 64 features, which are discretized by the ’Environment’ class
described earlier in this chapter. As it can be seen in figure 5.13 even if the feature extraction system
was configured to provide 64 features. Fewer features were generated, which means that the informa-
tion produced by 3D environment does not change so much from one point in time to the next. So the
information stays more or less the same, that’s why fewer features are necessary to represent them. The
difficulty for the model learning algorithms is now to find an optimal path in an environment with fewer
states, but these states are larger compared to the 2D version.

Value Iteration Results

In this subsection the results of the Value-Iteration algorithm are presented. The following tables show
the different parameters to the algorithm and how the different parameters influence the performance of
the algorithm. Please see table 5.5 for the results of the experiments. The number of visits column is
not very surprising, 50 visits are necessary to create an accurate model of the environment, just like for
the 2D example. The main difference between 2D and 3D environment can be seen in the number of
episodes column. For the 2D world it was sufficient to perform 2500 episodes to generate a model which
is able to find the path to the terminal state. In contrast 10000 steps were necessary in the 3D world. This
result seems to be unexpected because of the relative small size of the state space (64 states in the 2D
world and only 17 in the 3D world). The reason for the large number of episodes compared to the 2D
environment, is the expansion of the different states, so for example in the 3D world the start state (4)
contains 134 pixels, which is pretty large compared to 33 pixels in the 2D world. To produce comparable
results the decision was made to not change the step width of the agent across all experiments, hence the
agent performs three steps per action in the 2D world as well as in the 3D world. However, the perfor-

82 5. Model Based Learning Implementation

Abbildung 5.7: The Q-Value vectors, calculated by Value-Iteration algorithm, beginning at the
start state, following these vectors the agent finally reaches the terminal state. Each
colored shape represents one state.

5.6. Experiments and Results 83

Abbildung 5.8: The Q-Values in left direction after trainings phase for the UCT algorithm. Each
colored shape represents one state.

Abbildung 5.9: The Q-Values in up direction after trainings phase for the UCT algorithm. Each
colored shape represents one state.

84 5. Model Based Learning Implementation

Abbildung 5.10: The Q-Values in right direction after trainings phase for the UCT algorithm. Each
colored shape represents one state.

Abbildung 5.11: The Q-Values in down direction after trainings phase for the UCT algorithm.
Each colored shape represents one state.

5.6. Experiments and Results 85

Abbildung 5.12: The Q-Value vectors, calculated by UCT algorithm, beginning at the start state,
following these vectors the agent finally reaches the terminal state. Each colored
shape represents one state.

86 5. Model Based Learning Implementation

mance of the algorithm is quite impressive: only 10000 steps are necessary, in a difficult state space, to
produce very good results, which means the good performance of the Value-Iteration algorithm observed
in the 2D world can also be seen in the 3D world.

In the next experiment the Q-Values for the different directions are calculated and plotted.

• Q-Values of direction left, please refer to figure 5.14.

• Q-Values of direction up, please refer to figure 5.15.

• Q-Values of direction right, please refer to figure 5.16.

• Q-Values of direction down, please refer to figure 5.17.

As already observed in the 2D experiment the Q-Values for the different actions only have small absolute
differences. The values differ most likely at the third or fourth position behind the decimal point, but for
the algorithm these small differences are sufficient to decide which action to take. By taking a closer
look to the plots, a trend to the right bottom corner of the plot can be seen, which is exactly what can be
expected since the terminal state is exactly located in the right bottom corner of the plot.

The final experiment in the Value-Iteration section is to get the maximum Q-Value of every state, which
represents the best action form the current to the next state. A table is shown that represents the path of
the agent from the start to the terminal state, please see table 5.6. Finally a plot is presented which shows
a direction vector in each state, this should lead to a path from the start to the terminal state, please see
figure 5.18.

UCT Results

In this subsection the results of the UCT algorithm are presented. Based on our 2D results, the expecta-
tion for the UCT algorithm is that the performance is worse than for the Value-Iteration. The only open
question is: how will the UCT algorithm perform in a state space with only a few large states. It will be
interesting to see whether UCT algorithm is able to outperform the Value-Iteration method in that case.
Please see table 5.7 for the results of the experiments. It is interesting to see that the Value-Iteration algo-
rithm needs at least 10000 epochs (or iterations) to find the solution, compared to UCT algorithm which
only needs 6500 epochs to find the way from start to terminal state. Our results indicate that the UCT
method is more convenient for state spaces with fewer large states (in the sense of number of pixels used
by one state) than the Value-Iteration algorithm. However, the problem remains that the UCT algorithm
is a recursive approach and as already mentioned the execution time compared to iterative methods (like
Value-Iteration) is much higher. In other words the UCT method needs for 6500 episodes: 1950 sec or
32.5 min, where the Value-Iteration algorithm only requires 17 sec to execute 10000 episodes.

In the next experiment the Q-Values for the different directions are calculated and plotted.

• Q-Values of direction left, please refer to figure 5.19.

• Q-Values of direction up, please refer to figure 5.20.

• Q-Values of direction right, please refer to figure 5.21.

• Q-Values of direction down, please refer to figure 5.22.

In the 2D section of this chapter we discussed that the UCT method produces Q-Values, which differ
much more than the Q-Values generated by Value-Iteration. This observation is also true for the 3D en-
vironment. So for example in figure 5.19, it can be seen that there is no reason for the algorithm to take

5.6. Experiments and Results 87

Abbildung 5.13: The discretized state space of the 3D two room problem. Each colored shape
represents one state.

the left action on the left side of the room. In contrast in figure 5.21, it can be seen that taking the right
action on the left hand side of the room makes sense, since the terminal state is on the right bottom in the
right side of the room. For states that are directly located next to the wall, it can be seen that taking the
right action is not the preferred action, since hitting the wall is punished with a -2 reward.

The final experiment in the UCT section is to get the maximum Q-Value of each state. This value re-
presents the best action form the current to the next state. table 5.8 illustrates the agent’s path from the
start to the terminal state. Finally a plot is presented which shows a direction vector in each state, this
should yield a path from the start to the terminal state, please see figure 5.23.

5.6.3 3D Environment, Two Room Problem With Smaller Passage

The following experiment is a slightly modified version of the 3D two room problem discussed in the
previous section. In contrast to the normal two room problem the overall environment is larger, and the
passage between the two rooms is narrower. Due to limitations of the OpenGL image generation system,
the wall segments always have the same size. It was necessary to make the overall environment larger,
to make the passage smaller. Otherwise we would have seen two separated rooms with no passage. One
consequence of these changes is that the agent needs more steps to reach the terminal state. The main
question is: does the narrow passage between the two rooms impact the performance of the agent, or is it
even possible for the agent to reach the terminal state? In the following these questions will be answered,
using the two approaches Value-Iteration and UCT. As usual the performance of the two algorithms is
compared and plots and tables are used to visualize the results. The SFA again provides 64 features and
this feature space needs to be discretized, which is done by the ’Environment’ class described earlier in
this chapter. Figure: 5.24 illustrates that even if the feature extraction system was configured to provide
64 features, fewer features are generated, as we already discussed in the previous section. As usual the
Value-Iteration method is the one to start with.

Value-Iteration Results

In this section the results of the Value-Iteration algorithm are presented, the following table lists the
different parameters to the algorithm and how the different parameters influence the performance of the
algorithm. Please see table: 5.9 for the results of the experiments. The most important observation regar-

88 5. Model Based Learning Implementation

NumberOfVisits NumberOfActions NumberOfEpisodes MaxSteps StepsToTerminal
1000 4 40000 1000 34
500 4 20000 500 34
100 4 10000 100 34
100 4 10000 70 34
50 4 5000 70 Not reached
50 4 7500 70 Not reached
50 4 10000 50 34
25 4 10000 50 Not reached

Tabelle 5.5: The different parameters of the Value-Iteration algorithm in a 3D two room environ-
ment. The last column of the table shows the performance of the algorithm depending
on the parameters. The agent performs three steps per action.
NumberOfVisits: How many visits are necessary to consider a state as known.
NumberOfActions: The number of actions (left, up, right and down).
NumberOfEpisodes: Can be considered as train phase, how often should the algo-
rithm be executed on the state space.
MaxSteps: The maximum number of steps from the start to the terminal state.
StepToTerminal: Performance measurement, how many steps does the algorithm
need to reach the terminal state.

Abbildung 5.14: The Q-Values in left direction after trainings phase for the Value-Iteration algo-
rithm in a 3D environment. Each colored shape represents one state.

5.6. Experiments and Results 89

Abbildung 5.15: The Q-Values in up direction after trainings phase for the Value-Iteration algo-
rithm in a 3D environment. Each colored shape represents one state.

Abbildung 5.16: The Q-Values in right direction after trainings phase for the Value-Iteration algo-
rithm in a 3D environment. Each colored shape represents one state.

90 5. Model Based Learning Implementation

Abbildung 5.17: The Q-Values in down direction after trainings phase for the Value-Iteration al-
gorithm in a 3D environment. Each colored shape represents one state.

Abbildung 5.18: The discretized state space of the 3D two room problem and the Q-Value direc-
tion vectors. Each colored shape represents one state.

5.6. Experiments and Results 91

State Q-Left Q-Right Q-Up Q-Down Action
4 -65.0699 -64.5594 -65.1099 -64.5352 Down
4 -65.0699 -64.5594 -65.1099 -64.5352 Down
4 -65.0699 -64.5594 -65.1099 -64.5352 Down
4 -65.0699 -64.5594 -65.1099 -64.5352 Down
55 -63.7058 -63.1574 -63.8259 -63.4648 Right
55 -63.7058 -63.1574 -63.8259 -63.4648 Right
55 -63.7058 -63.1574 -63.8259 -63.4648 Right
55 -63.7058 -63.1574 -63.8259 -63.4648 Right
40 -62.8383 -61.9384 -62.6737 -62.2499 Right
40 -62.8383 -61.9384 -62.6737 -62.2499 Right
40 -62.8383 -61.9384 -62.6737 -62.2499 Right
40 -62.8383 -61.9384 -62.6737 -62.2499 Right
40 -62.8383 -61.9384 -62.6737 -62.2499 Right
61 -63.6803 -62.9199 -63.7264 -62.8662 Down
61 -63.6803 -62.9199 -63.7264 -62.8662 Down
61 -63.6803 -62.9199 -63.7264 -62.8662 Down
61 -63.6803 -62.9199 -63.7264 -62.8662 Down
61 -63.6803 -62.9199 -63.7264 -62.8662 Down
19 -58.5149 -57.1015 -58.1675 -57.7705 Right
19 -58.5149 -57.1015 -58.1675 -57.7705 Right
29 -41.8817 -29.375 -38.7228 -35.2022 Right
29 -41.8817 -29.375 -38.7228 -35.2022 Right
29 -41.8817 -29.375 -38.7228 -35.2022 Right
29 -41.8817 -29.375 -38.7228 -35.2022 Right
29 -41.8817 -29.375 -38.7228 -35.2022 Right
29 -41.8817 -29.375 -38.7228 -35.2022 Right
23 -24.2909 -22.1191 -23.6713 -23.3179 Right
23 -24.2909 -22.1191 -23.6713 -23.3179 Right
23 -24.2909 -22.1191 -23.6713 -23.3179 Right
52 -23.5992 -20.923 -22.7599 -21.5981 Right
52 -23.5992 -20.923 -22.7599 -21.5981 Right
41 -19.8421 -17.696 -18.7469 -18.7991 Right
41 -19.8421 -17.696 -18.7469 -18.7991 Right
41 -19.8421 -17.696 -18.7469 -18.7991 Right
41 -19.8421 -17.696 -18.7469 -18.7991 Right

Tabelle 5.6: The current state of the agent, the Q-Values (calculated by the Value-Iteration algo-
rithm) for each action and the selected action in the state.

92 5. Model Based Learning Implementation

NumberOfVisits NumberOfActions NumberOfEpisodes MaxSteps StepsToTerminal
1000 4 40000 1000 34
500 4 20000 90 34
100 4 10000 90 35
100 4 10000 70 35
50 4 7500 70 34
50 4 6500 50 34
50 4 5000 70 Not reached

Tabelle 5.7: The different parameters of the UCT algorithm in a 3D two room environment. The
last column of the table shows the performance of the algorithm depending on the pa-
rameters. The agent performs three steps per action.
NumberOfVisits: How many visits are necessary to consider a state as known.
NumberOfActions: The number of actions (left, up, right and down).
NumberOfEpisodes: Can be considered as train phase, how often should the algo-
rithm be executed on the state space.
MaxSteps: The maximum number of steps from the start to the terminal state.
StepToTerminal: Performance measurement, how many steps does the algorithm
need to reach the terminal state.

Abbildung 5.19: The Q-Values in left direction after trainings phase for the UCT algorithm in a
3D environment. Each colored shape represents one state.

5.6. Experiments and Results 93

Abbildung 5.20: The Q-Values in up direction after trainings phase for the UCT algorithm in a 3D
environment. Each colored shape represents one state.

Abbildung 5.21: The Q-Values in right direction after trainings phase for the UCT algorithm in a
3D environment. Each colored shape represents one state.

94 5. Model Based Learning Implementation

Abbildung 5.22: The Q-Values in down direction after trainings phase for the UCT algorithm in a
3D environment. Each colored shape represents one state.

Abbildung 5.23: The discretized state space of the 3D two room problem and the Q-Value direc-
tion vectors. Each colored shape represents one state.

5.6. Experiments and Results 95

State Q-Left Q-Right Q-Up Q-Down Action
4 -176.786 -57.0736 -180.125 -170.365 Right
4 -176.786 -57.0736 -180.125 -170.365 Right
4 -176.786 -57.0736 -180.125 -170.365 Right
4 -176.786 -57.0736 -180.125 -170.365 Right
61 -167.608 -76.7687 -178.374 -173.87 Right
28 -170.341 -175.475 -193.089 -81.6427 Down
28 -170.341 -175.475 -193.089 -81.6427 Down
61 -167.608 -76.7687 -178.374 -173.87 Right
28 -170.341 -175.475 -193.089 -81.6427 Down
40 -166.466 -74.3111 -168.636 -171.423 Right
28 -170.341 -175.475 -193.089 -81.6427 Down
40 -166.466 -74.3111 -168.636 -171.423 Right
40 -166.466 -74.3111 -168.636 -171.423 Right
61 -167.608 -76.7687 -178.374 -173.87 Right
61 -167.608 -76.7687 -178.374 -173.87 Right
61 -167.608 -76.7687 -178.374 -173.87 Right
61 -167.608 -76.7687 -178.374 -173.87 Right
57 -123.319 -115.718 -115.76 -44.7235 Down
57 -123.319 -115.718 -115.76 -44.7235 Down
29 -119.338 -49.0702 -121.521 -126.362 Right
57 -123.319 -115.718 -115.76 -44.7235 Down
29 -119.338 -49.0702 -121.521 -126.362 Right
29 -119.338 -49.0702 -121.521 -126.362 Right
57 -123.319 -115.718 -115.76 -44.7235 Down
29 -119.338 -49.0702 -121.521 -126.362 Right
23 -123.463 -35.1656 -125.034 -142.071 Right
52 -124.892 -132.724 -128.609 -25.8431 Down
23 -123.463 -35.1656 -125.034 -142.071 Right
23 -123.463 -35.1656 -125.034 -142.071 Right
52 -124.892 -132.724 -128.609 -25.8431 Down
23 -123.463 -35.1656 -125.034 -142.071 Right
41 -119.768 -0.599535 -112.482 -119.07 Right
41 -119.768 -0.599535 -112.482 -119.07 Right
41 -119.768 -0.599535 -112.482 -119.07 Right
41 -119.768 -0.599535 -112.482 -119.07 Right
41 -119.768 -0.599535 -112.482 -119.07 Right

Tabelle 5.8: The current state of the agent, the Q-Values (calculated by the UCT algorithm) for
each action and the selected action in the state.

96 5. Model Based Learning Implementation

ding table 5.9 is that the algorithm is able to find the terminal state. The performance is comparable to
the original 3D two room problem, except that the algorithm requires more steps to reach the the termi-
nal state. However, the reason for this is not the smaller passage, it’s the larger environment. As already
mentioned the results are comparable to the previous two room problem, which is not very surprising
since the problem to solve does not differ so much from the previous one. One important observation is
that the algorithm is able to handle ambiguous states very well, even if they are pretty large.

In the next experiment the Q-Values for the different directions are calculated and plotted.

• Q-Values of direction left, please refer to figure 5.25.

• Q-Values of direction up, please refer to figure 5.26.

• Q-Values of direction right, please refer to figure 5.27.

• Q-Values of direction down, please refer to figure 5.28.

The results of the Q-Value plots reflect the observations that have been made for the two room problem
in the previous section. Small differences in the Q-Value plots, but these small differences are enough to
find the path from the start to the terminal state. For a more detailed discussion of the results please refer
to the Value-Iteration section.

The final experiment in the Value-Iteration section is to get the maximum Q-Value of each and every
state, which represents the best action form the current to the next state. A table is shown that represents
agent’s path from the start to the terminal state, please see table 5.10. Finally a plot is presented which
shows a direction vector in each state, this should lead to a path from the start to the terminal state, please
see figure 5.29.

UCT Results

This experiment showed that the UCT algorithm simply was not able to find the terminal state. A lot
of different parameters were tested even absurd search tree depths like 1000 but none of them were
successful. A problem with UCT method and testing a lot of different parameters is the time consumption
of the algorithm. Experiments with quite a lot of iterations or high search tree depths easily take 10 hours
or more, which is not very practical. The reasons why the method is not able to find the terminal state
is may be that one of the states is ambiguous or that the states are too large, but both of the problems
already occurred in earlier experiments, where UCT algorithm successfully found the terminal state. In
the previous two room problem we observed that the UCT method behaves better in situations where the
state space is small but the single states are larger, but only if there were no ambiguous states present.
Maybe this is the reason for the algorithm’s failure in this example. However the conclusion is that
the overall performance of the Value-Iteration method seems to be better than the performance of the
UCT method. Aside from the fact that the Value-Iteration algorithm was able to find the terminal state
in every experiment, it also was the much faster method (no experiment took more than 30 minutes,
even these with an absurdly high number of iterations), and the task to find good parameters was much
easier compared to UCT algorithm. The overall outcome of all these experiments is that the combination
Value-Iteration algorithm and R-Max model fit best for solving the different two room problems of this
thesis.

5.6.4 3D Environment, Two Room problem with movable terminal state

In this section we first train on the standard 3D two room problem, after the terminal state is found, the
terminal is moved to a different state. The question now is: Is the algorithm able to find the new terminal

5.6. Experiments and Results 97

Abbildung 5.24: The discretized state space of the 3D two room problem with smaller passage.
Each colored shape represents one state.

NumberOfVisits NumberOfActions NumberOfEpisodes MaxSteps StepsToTerminal
2000 4 60000 1000 41
1000 4 40000 500 41
500 4 20000 350 41
100 4 10000 350 41
50 4 10000 250 41
50 4 10000 150 41
50 4 10000 100 Not reached
50 4 7500 150 41
50 4 5000 150 Not reached
25 4 7500 150 Not reached

Tabelle 5.9: The different parameters of the Value-Iteration algorithm. The last column of the table
shows the performance of the algorithm depending on the parameters.
NumberOfVisits: How many visits are necessary to consider a state as known.
NumberOfActions: The number of actions (left, up, right and down).
NumberOfEpisodes: Can be considered as train phase, how often should the algo-
rithm be executed on the state space.
MaxSteps: The maximum number of steps from the start to the terminal state.
StepToTerminal: Performance measurement, how many steps does the algorithm
need to reach the terminal state.

98 5. Model Based Learning Implementation

Abbildung 5.25: The Q-Values in left direction after trainings phase for the Value-Iteration algo-
rithm in a 3D environment. Each colored shape represents one state.

Abbildung 5.26: The Q-Values in up direction after trainings phase for the Value-Iteration algo-
rithm in a 3D environment. Each colored shape represents one state.

5.6. Experiments and Results 99

Abbildung 5.27: The Q-Values in right direction after trainings phase for the Value-Iteration algo-
rithm in a 3D environment. Each colored shape represents one state.

Abbildung 5.28: The Q-Values in down direction after trainings phase for the Value-Iteration al-
gorithm in a 3D environment. Each colored shape represents one state.

100 5. Model Based Learning Implementation

State Q-Left Q-Right Q-Up Q-Down Action
10 -44.9324 -44.1206 -44.9424 -44.182 Right
10 -44.9324 -44.1206 -44.9424 -44.182 Right
10 -44.9324 -44.1206 -44.9424 -44.182 Right
10 -44.9324 -44.1206 -44.9424 -44.182 Right
10 -44.9324 -44.1206 -44.9424 -44.182 Right
30 -42.6643 -42.3558 -42.755 -41.8445 Down
30 -42.6643 -42.3558 -42.755 -41.8445 Down
30 -42.6643 -42.3558 -42.755 -41.8445 Down
42 -42.2162 -41.2058 -42.0225 -41.5538 Right
30 -42.6643 -42.3558 -42.755 -41.8445 Down
42 -42.2162 -41.2058 -42.0225 -41.5538 Right
42 -42.2162 -41.2058 -42.0225 -41.5538 Right
59 -40.2316 -38.9601 -40.1095 -38.9535 Down
59 -40.2316 -38.9601 -40.1095 -38.9535 Down
59 -40.2316 -38.9601 -40.1095 -38.9535 Down
59 -40.2316 -38.9601 -40.1095 -38.9535 Down
59 -40.2316 -38.9601 -40.1095 -38.9535 Down
16 -37.7407 -35.925 -38.1956 -38.2203 Right
16 -37.7407 -35.925 -38.1956 -38.2203 Right
16 -37.7407 -35.925 -38.1956 -38.2203 Right
16 -37.7407 -35.925 -38.1956 -38.2203 Right
31 -29.9563 -27.617 -28.8193 -28.3391 Right
31 -29.9563 -27.617 -28.8193 -28.3391 Right
31 -29.9563 -27.617 -28.8193 -28.3391 Right
31 -29.9563 -27.617 -28.8193 -28.3391 Right
31 -29.9563 -27.617 -28.8193 -28.3391 Right
31 -29.9563 -27.617 -28.8193 -28.3391 Right
13 -19.7823 -18.5192 -21.6426 -17.7701 Down
13 -19.7823 -18.5192 -21.6426 -17.7701 Down
40 -18.1304 -17.0969 -17.9954 -17.6703 Right
40 -18.1304 -17.0969 -17.9954 -17.6703 Right
40 -18.1304 -17.0969 -17.9954 -17.6703 Right
58 -15.2636 -13.6749 -15.2058 -14.473 Right
58 -15.2636 -13.6749 -15.2058 -14.473 Right
58 -15.2636 -13.6749 -15.2058 -14.473 Right
58 -15.2636 -13.6749 -15.2058 -14.473 Right
58 -15.2636 -13.6749 -15.2058 -14.473 Right
33 -11.7452 -10.4358 -11.5325 -9.19171 Down
33 -11.7452 -10.4358 -11.5325 -9.19171 Down
33 -11.7452 -10.4358 -11.5325 -9.19171 Down
33 -11.7452 -10.4358 -11.5325 -9.19171 Down
33 -11.7452 -10.4358 -11.5325 -9.19171 Down

Tabelle 5.10: The current state of the agent, the Q-Values (calculated by the Value-Iteration algo-
rithm) for each action and the selected action in the state.

5.6. Experiments and Results 101

Abbildung 5.29: The discretized state space of the 3D two room problem and the Q-Value direc-
tion vectors. Each colored shape represents one state.

state, and if so, how many iterations are necessary to find it. We first outline how the model algorithm
has to be changed to account for this new requirement:

1 void SetAllStatesToUnknown(int additionalVisits)
2 {
3 % Loop through all states
4 foreach (state in states)
5 {
6 state.known = false;
7 }
8

9 % Increase the visits count
10 numberOfVisits += additionalVisits;
11 }

As it can be seen in the above code, a new method was introduced, namely ’SetAllStatesToUnknown’.
The method has one parameter the ’additionalVisits’, which is selected by the caller and determines how
many additional visits are necessary to treat a state as known. The method first, rests all states to ’un-
known’, otherwise the algorithm would consider all the states as known and no Q-Value updates would
be performed, which in turn would mean that the new terminal state would never be reached. Next, the
’numberOfVisits’ counter is increased, this variable is used to determine when a state should be conside-
red as known. For example if the user sets the ’numberOfVisits’ variable to 50, the algorithm treats a state
as known after 50 visits. By increasing this number the algorithm is able to extend the exploration phase,
which means the possibility to find the new terminal state is pretty good. Another possibility would be
to set the ’visits’ counter maintained for each and every state back to zero, but this some how fakes an
incorrect behaviour, that’s why we decided to increase the ’numberOfVisits’ count instead.
Now it is time for some results of the Value-Iteration algorithm, in the following a table is shown see 5.11,

102 5. Model Based Learning Implementation

NumberOfEpisodes StepsToTerminal
5000 31
2500 31
1000 31
500 31
250 Not reached

Tabelle 5.11: The settings for the most important parameter for this task and the performance of
the algorithm.
NumberOfEpisodes: Can be considered as train phase, how often should the algo-
rithm be executed on the state space.
StepToTerminal: Performance measurement, how many steps does the algorithm
need to reach the new terminal state.

that contains the ’NumberOfIterations’ and the ’StepsToTerminal’ columns. These are the only adapted
parameters, all the other parameters stay the same as for the first terminal state. It can be seen that the
algorithm is indeed able to find the new terminal state. The same is true as for the first terminal state,
when the algorithm is able to find the terminal state then the result is nearly optimal, no matter how many
iterations were performed.

In the next experiment the Q-Values for the different directions are calculated and plotted. These plots
show the Q-Values after the terminal was changed to a different state.

• Q-Values of direction left, please refer to figure 5.30.

• Q-Values of direction up, please refer to figure 5.31.

• Q-Values of direction right, please refer to figure 5.32.

• Q-Values of direction down, please refer to figure 5.33.

In plot 5.30, we can see that it does not make sense to go to the left, marked with dark blue. In contrast it
makes perfect sense to go to the right see plot 5.32, which is illustrated by the slightly paler shade of blue.

The final experiment in the Value-Iteration section is to get the maximum Q-Value of every state. This
value represents the best action form the current to the next state. A table is shown that represents the
agent’s path from the start to the new terminal state, please see table 5.12. Finally a plot is presented
which shows a direction vector in each state, this should lead to a path from the start to the new terminal
state, please see figure 5.34.

5.6.5 Important note to number of features

One of the central parameters of these models is the number of features extracted in the SFA step. Even if
the problem was already discussed in the practical section of the SFA, it again popped up in this chapter,
especially when it comes to discretization of the state space. During the experiments we observed that
after the ICA was performed on the state space, the number of states was reduced significantly. This could
indicate that the number of features in the feature extraction process is too high and could be decreased.
However, a quick experiment indicates that the discretization impacts the result significantly. Plot 5.35
depicts, the state space of the 3D world with small passage after discretization, where only 32 features
were extracted. It can be seen that the state space is ambiguous and a lot of small states appeared. The
consequence of this is, that the model learning system is not able to find a path from the start to the
terminal state. We conclude that it makes sense to extract more features, even if the ICA drops a few of
them.

5.6. Experiments and Results 103

Abbildung 5.30: The Q-Values in left direction after terminal state was changed for the Value-
Iteration algorithm in a 3D environment. Each colored shape represents one state.

Abbildung 5.31: The Q-Values in up direction after terminal state was changed for the Value-
Iteration algorithm in a 3D environment. Each colored shape represents one state.

104 5. Model Based Learning Implementation

Abbildung 5.32: The Q-Values in right direction after terminal state was changed for the Value-
Iteration algorithm in a 3D environment. Each colored shape represents one state.

Abbildung 5.33: The Q-Values in down direction after terminal state was changed for the Value-
Iteration algorithm in a 3D environment. Each colored shape represents one state.

5.6. Experiments and Results 105

State Q-Left Q-Right Q-Up Q-Down Action
4 -31.0097 -30.1007 -31.0847 -31.3726 Right
4 -31.0097 -30.1007 -31.0847 -31.3726 Right
4 -31.0097 -30.1007 -31.0847 -31.3726 Right
4 -31.0097 -30.1007 -31.0847 -31.3726 Right
28 -31.6011 -32.2261 -32.4498 -31.419 Down
28 -31.6011 -32.2261 -32.4498 -31.419 Down
61 -29.5614 -26.6882 -28.458 -27.2938 Right
28 -31.6011 -32.2261 -32.4498 -31.419 Down
40 -31.7423 -30.5262 -31.2163 -31.1403 Right
28 -31.6011 -32.2261 -32.4498 -31.419 Down
40 -31.7423 -30.5262 -31.2163 -31.1403 Right
40 -31.7423 -30.5262 -31.2163 -31.1403 Right
61 -29.5614 -26.6882 -28.458 -27.2938 Right
61 -29.5614 -26.6882 -28.458 -27.2938 Right
61 -29.5614 -26.6882 -28.458 -27.2938 Right
61 -29.5614 -26.6882 -28.458 -27.2938 Right
57 -19.4599 -16.4675 -17.2113 -17.531 Right
57 -19.4599 -16.4675 -17.2113 -17.531 Right
57 -19.4599 -16.4675 -17.2113 -17.531 Right
57 -19.4599 -16.4675 -17.2113 -17.531 Right
57 -19.4599 -16.4675 -17.2113 -17.531 Right
57 -19.4599 -16.4675 -17.2113 -17.531 Right
52 -13.8549 -12.0452 -12.7355 -12.6899 Right
52 -13.8549 -12.0452 -12.7355 -12.6899 Right
52 -13.8549 -12.0452 -12.7355 -12.6899 Right
44 -9.9055 -7.76167 -8.79869 -9.35722 Right
44 -9.9055 -7.76167 -8.79869 -9.35722 Right
44 -9.9055 -7.76167 -8.79869 -9.35722 Right
35 -9.49864 -8.25061 -7.88041 -8.22505 Up
44 -9.9055 -7.76167 -8.79869 -9.35722 Right
35 -9.49864 -8.25061 -7.88041 -8.22505 Up

Tabelle 5.12: The current state of the agent, the Q-Values (calculated by the Value-Iteration algo-
rithm) for each action and the selected action in the state.

106 5. Model Based Learning Implementation

Abbildung 5.34: The discretized state space of the 3D two room problem and the Q-Value direc-
tion vectors. Each colored shape represents one state.

Abbildung 5.35: The discretized state space of the 3D two room problem and the Q-Value direc-
tion vectors. Each colored shape represents one state.

Kapitel 6

Outlook

6.1 General Trends

In computer science especially in the field of machine learning, the approach of using unsupervised
methods, like the Slow Feature Analysis for feature extraction used in this thesis is very popular. These
methods are a step in the right direction to simulate the human learning behaviour in much situations,
so for example to recognize when the noise of a car sounds strange, for a human this is a unsupervised
learning process. A lot of other examples exist, and for science it’s the only way to simulate biological
behaviour accurate. But one question stays open: To build a complete self learning and self organizing
computer system, is the way to archive this, trying to simulate biological behaviour, or should science
try to find other solutions for this?
The same question arises for reinforcement learning, it makes perfectly sense to use this approach to
simulate the human learn process and a lot of these methods and algorithms provide great results in
doing so. All these algorithms rely on statistics and probability theory, so if only one of these statistic
measurements fail the outcome of these methods most likely is completely wrong, and finding the mistake
is very hard. So for scenarios like this, its easier to use supervised methods, because finding a problem
in such a system is easier compared to unsupervised or reinforcement learning systems.
It’s hard to say what the future of artificial intelligence will bring, but it’s clear that both supervised and
unsupervised systems will be heavily used, and maybe it will be a combination of both systems, what
finally brings the success.

6.2 Ideas for Future Work

A lot suggestions for improvements have been made in the previous chapters of this thesis, but some of
these will be outlined here, because these seem to be the most important for future work.
The ’Slow Feature Analysis’ system which is used to extract important features from the input data, for
example. One major drawback of the method is that all image data need to be available for the training
of the system. In this thesis between 100.000 and 200.000 training images were used. This is a huge
amount of data and not each computer has enough memory to handle this. Even after the system was
trained successfully, the computational resources to execute a SFA network are quit high. In days were it
is very popular to use embedded systems like smart phones, which still have limited resources compared
to modern desktop computers, it would be very hard to execute the SFA algorithm on such devices. In-
cremental Slow Feature (ISFA) Analysis [26] could be a solution for the above mentioned problems, but
this is out of the scope of this thesis.
The ’UCT’ algorithm suffers from comparable problems. The difference is that the algorithm does not
have problems due to memory consumption, the problem here is the execution time. As described in the

107

108 6. Outlook

previous chapters the UCT method is based on recursive programming. This is a problem, since recursive
algorithms are slower than their iterative counterparts. A solution would be to use of dynamic program-
ming techniques to transform UCT to a iterative algorithm, but due to the use of a decision tree, it’s not
clear if this potential improvement is practicable.

The above mentioned two points are the most important ones, and an improvement would increase the
chance of using these algorithms not only in theoretical scenarios, but also in real world applications.

Kapitel 7

Concluding Remarks

In this section the results of the whole thesis is shortly summarized, the focus is on the results of the
following chapters: ’Feature Extraction Practical Section’ 4 and ’Model Based Learning Practical Secti-
on’ 5.
In the SFA practical section, the main goal was to find a system which is able to handle all kinds of diffe-
rent inputs. This goal was reached since the feature extraction system is able to generate useful features
on simple binary images as well as on real world RGB images. The implementation provides a good
performance compared to the ’Modular toolkit for Data Processing (MDP)’ [27] as well as a platform
independent implementation since C++ was used. The user of the implementation is able to combine
different algorithms like Linear-SFA, Quadratic-SFA, Additive-Noise,... in one single SFA-Node. This
node then can be used in a hierarchical SFA-Network, this feature is the same as the one provided by the
MDP toolkit. The results in section 4 proof that the implementation works. A drawback of the imple-
mentation is that the memory consumption is pretty high, an improvement on the implementation or the
algorithm itself for a better performance would be welcome.
In the model based learning practical section, the goal was to implement a model based learning system
which is able to find a path from a user defined start state to a also user defined terminal state. The state
space is generated out of the features extracted by the SFA method, then two different planning algo-
rithms (Value-Iteration and UCT) were used to find the path. As the name already says, it is a model
based learning system, hence the planner algorithm (Value-Iteration or UCT) uses a model to make its
decisions. For this case the so called R-Max algorithm was implemented to generate such a model. The
results in the section 5 proof that the methods work. The referenced chapter also confirms the Value-
Iteration is the better performing algorithm, not in the sense that it finds the better way, but the overall
performance is better. This means that Value-Iteration executes faster than UCT. The reason for this is
that UCT is a recursive algorithm while Value-Iteration is iterative. The other reason why Value-Iteration
outperforms UCT is that Value-Iteration was able to find a path in each experiment, while UCT was not.
So the conclusion is that when building a model based learning system for tasks similar to those consi-
dered in this thesis, the best choice is to use R-Max model in combination with Value-Iteration planning
algorithm.

109

110 7. Concluding Remarks

Literaturverzeichnis

[1] Christopher M. Bishop, Pattern Recognition an Machine Learning, Springer-Science+Business Me-
dia, 2006.

[2] Jonathon Shlens, A Tutorial on Principal Component Analysis, Google Research, Mountain View,
CA 94043, April 7, 2014, Version 3.02.

[3] Aapo Hyvärinen and Erkki Oja, Independent Component Analysis: Algorithms and Applications,
Neural Networks Research Centre Helsinki University of Technology, P.O. Box 5400, FIN-02015
HUT, Finland

[4] Laurenz Wiskott and Terrence Sejnowski, Slow Feature Analysis: Unsupervised Learning of Inva-
riances, Computational Neurobiology Laboratory

[5] Mathias Franzius, Henning Sprekeler, Laurenz Wiskott, Slowness and Sparseness Lead to Place,
Head-Direction, and Spatial-View Cells, Institute for Theoretical Biology, Humboldt-Universität zu
Berlin, Germany

[6] Richer S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, Second edition,
The MIT Press Cambridge, Messachusetts, London, England

[7] Todd Hester and Peter Stone, Learning and Using Models, Department of Computer Science, The
University of Texas at Austin

[8] Becker, S. and Hinton, G. E., A self-organizing neural network that discovers surfaces in random-dot
stereograms, Department of Computer Science, The University of Texas at Austin

[9] Kakade S (2003), On the sample complexity of reinforcement learning, PhD thesis, University Col-
lege London

[10] Erwin Kreyszig, Advanced Engineering Mathematics, Ohio State Univerity Columbus, Ohio, John
Wiley and Sons, INC.

[11] David Poole, Alan Mackworth, Artificial Intelligence Foundations of Computational Agents, http:
//artint.info/html/ArtInt.html, Accessed at: 16.06.2015.

[12] Brafman R, Tennenholtz M (2001), R-Max - a general polynomial time algorithm for near-optimal
reinforcement learning, Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI)

[13] Levente Kocsis and Csabe Szepesvari Bandit bases Mote-Carlo Planning Computer and Automa-
tion Research Institute of the Hungarian Academy of Scien ces, Kende u. 13-17, 1111 Budapest,
Hungary

[14] Auer P, Cesa-Bianchi N, Fischer P. Finite-time analysis of the multiarmed bandit problem Machine
Learning 47(2):235-256

111

http://artint.info/html/ArtInt.html
http://artint.info/html/ArtInt.html

112 Literaturverzeichnis

[15] Hester T, Quinlan M, Stone P (2011), A real-time model-based reinforcement learning architecture
for robot control, ArXiv e-prints 11051749

[16] Sutton R (1990), Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming, Proceedings of the Seventh International Conference on Machine
Learning (ICML)

[17] Sutton R (1991), Dyna, an integrated architecture for learning, planning, and reacting., SIGART
Bulletin 2(4):160-163

[18] Moore A, Atkenson C (1993), Prioritized sweeping: Reinforcement learning with less data and less
real time, Machine Learning 13: 103-130

[19] Silver D, Sutton R, Müller M (2008) Sample-based learning and search with permanent and tran-
sient memories., Proceedings of the Twenty-Fifth International Conference on Machine Learning
(ICML)

[20] Qt-Developers, http://www.qt.io/developers

[21] Eigen C++ template library for linear algebra, http://eigen.tuxfamily.org/index.php?

title=Main_Page

[22] Intel Threading Building Blocks, https://software.intel.com/en-us/intel-tbb

[23] Sample mean and covaraince, https://en.wikipedia.org/wiki/Sample_mean_and_

covariance

[24] Deep Learning, An MIT Press bock http://www.deeplearningbook.org/

[25] Robert Legenstein, Niko Wilbert, Laurenz Wiskott (2010) Reinforcement Learning on Slow Featu-
res of High-Dimensional Input Streams, Institute for Theoretical Computer Science, Graz University
of Technology, Graz, Austria

[26] Varun Raj Kompella, Matthew Luciw, and Jürgen Schmidhuber Incremental Slow Feature Analysis,
IIDSIA, Galleria 2 Manno-Lugano 6928, Switzerland

[27] Modular toolkit for Data Processing, http://mdp-toolkit.sourceforge.net/

http://www.qt.io/developers
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://software.intel.com/en-us/intel-tbb
https://en.wikipedia.org/wiki/Sample_mean_and_covariance
https://en.wikipedia.org/wiki/Sample_mean_and_covariance
http://www.deeplearningbook.org/
http://mdp-toolkit.sourceforge.net/

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	1 Introduction
	2 Feature Extraction
	2.1 Slow Feature Analysis
	2.2 The Learning Problem
	2.3 The SFA Algorithm
	2.4 SFA implementation details
	2.5 Hierarchical SFA networks for high-dimensional data
	2.6 Compact representations of visual scenes

	3 Model Based Learning
	3.1 Reinforcement Learning
	3.2 Markov Decision Process
	3.3 Value Functions
	3.4 What is a Model
	3.5 The R-Max Algorithm
	3.6 Value Iteration
	3.7 Monte Carlo Methods
	3.8 Combining model and planning

	4 Feature Extraction Practical Section
	4.1 Slow Feature Analysis (SFA)
	4.2 Hierarchical SFA networks for high dimensional data
	4.3 Simple 2D hierarchical SFA network
	4.4 3D hierarchical SFA network

	5 Model Based Learning Implementation
	5.1 From Features to Environment
	5.2 The R-Max Model
	5.3 The Value Iteration Algorithm
	5.4 The Upper-Confidence-Bound applied to trees Algorithm
	5.5 Model Based Agent
	5.6 Experiments and Results

	6 Outlook
	6.1 General Trends
	6.2 Ideas for Future Work

	7 Concluding Remarks

