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Abstract: Fast Regularized Reconstruction for dynamic MR Imaging using Infimal

Convolution of TV Type Functionals

Dynamic Magnetic Resonance Imaging (dMRI) aims to visualize time-dependent
physiological processes within the human body. Important examples are functional
cardiac imaging, dynamic contrast-enhanced (DCE) MRI or time-resolved angiography
among others. Since fast acquisition schemes already reached physical admissible
limits in terms of nerve stimulation and SAR, in-vivo applications are always bounded
by a trade-off between spatial and temporal resolution or spatial coverage depending
on the time-scale of the motion under investigation. In order to improve the described
limitations, undersampling strategies in combination with recent advances in iterative
MRI reconstruction based on compressed sensing and parallel imaging are applied.

This project focuses on the fast implementation of a novel reconstruction technique
termed ”Infimal Convolution of Total Generalized Variation functionals (ICTGV)” as
sophisticated regularization functional in a variational setting to recover diagnostically
valuable image quality from undersampled dMRI data. The software presented in
this work utilizes GPU functionality by CUDA to accelerate an existing MATLAB
implementation in a fast parallel manner.

Two clinical relevant imaging scenarios are examined to compare the performance of
the software to the MATLAB based CPU reference implementation. Furthermore, the
utilization of a new vendor independent MRI raw data format is demonstrated, to
facilitate integration into the clinical work-flow. The results in terms of GPU execution
time exhibits clinical acceptable reconstruction times and possible speedups up to a
factor of 40. In conclusion usage limitations are discussed and further improvements
are proposed.

Keywords: Dynamic MRI, Regularized Reconstruction, ICTGV, CUDA, Cardiac CINE,
DCE Perfusion
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Kurzfassung: Schnelle regularisierte Rekonstruktion von dynamischen MR Daten

unter Verwendung der Infimalen Faltung von TV-Typ Funktionalen.

Die Darstellung dynamischer Vorgänge, wie u.a. der Herzfunktion, kontrastverstärk-
ter Perfusionsbilder oder zeitaufgelöster angiografischer Daten, stellt einen wichti-
gen klinischen Aspekt der dynamischen Magnetresonanztomografie dar. Die An-
wendung dieser Modalitäten erfordert jedoch, in Abhängigkeit der benötigten Auf-
nahmegeschwindigkeit, eine Abstimmung der räumlichen und zeitlichen Auflösung
bzw. eine Einschränkung der abgebildeten Bildregion. Da neueste Bildgebungsse-
quenzen bereits an den Grenzen der erlaubten peripheren Nervenstimulation und
SAR-Aufnahme implementiert sind, werden moderne Unterabtaststrategien in Kom-
bination mit auf Compressed Sensing und Parallel Imaging basierenden iterativen
Rekonstruktionen zur Verbesserung der genannten Einschränkungen verwendet.

Diese Arbeit setzt eine neue Methode der dynamischen Regularisierung unter Ver-
wendung von Variationsmodellen ein, der sogenannten ”Infimal Convolution of Total
Generalized Variation functionals (ICTGV)”, um diagnostisch wertvolle Bildinforma-
tion aus den unterabgetasteten dynamischen Daten zu gewinnen. Die daraus erstellte
Software ist eine schnelle Implementierung eines bestehenden MATLAB Projekts unter
Einsatz von GPU Funktionalitäten mittels CUDA.

Die Software wird anhand zwei klinisch relevanter Anwendungsfälle evaluiert und
anhand der Rekonstruktionszeiten mit der CPU Referenzlösung verglichen. Zusätzlich
wird die Verwendung eines herstellerunabhängigen Datenformats präsentiert, das
die Integration in den klinischen Workflow ermöglicht. Die Ergebnisse zeigen klin-
isch implementierbare Beschleunigungen im Vergleich zur Referenz von bis zu 40.
Abschließend werden grundlegende Anwendungseinschränkungen diskutiert und
mögliche Verbesserungenvorschläge gegeben.

Keywords: Dynamisches MRT, Regularisierte Rekonstruktion, ICTGV, CUDA, MR-
Herzbildgebung, DCE Perfusionsbildgebung
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1 Introduction

This chapter gives an introduction to the basic principles of dynamic Magnetic Res-
onance Imaging (dMRI) and to two basic acquisition strategies, which are typically
implemented in clinical practice. In this context, variational reconstruction techniques
are introduced and the aim of this work, a fast implementation of a novel reconstruction
technique for dMRI, is presented.

1.1 Dynamic MRI

Dynamic MRI aims the visualization of dynamically changing processes within the
clinical context, ranging from the morphological motion of the beating heart or its
valves to the visualization of organ perfusion by the use of contrast enhancing agents
and the general application of Magnetic Resonance Angiography (MRA).

All these imaging types require the acquisition of a time series with a high temporal
resolution, in order to suppress motion artifacts due to respiration or patient move-
ment. Since MRI scan times are restricted by physiological, in terms of peripheral
nerve stimulation an specific absorption rate (SAR), and hardware limits, modern
subsampling strategies have to be applied in order to leverage the speed of current
acceleration techniques like fast acquisition sequences and parallel imaging. Recent
implementations in the field of dMRI are found in the application of the well-known
SENSE framework [1] to the time domain as shown in [2]–[4], the application of
compressed sensing techniques considering the time domain [5], [6] and further the
application of low-rank and sparse (L+S) reconstructions [7].

Generally, the overall acquisition time in dMRI is aimed to be as short as possible to
allow clinical feasible acquisitions which can be performed during a single breath-hold
(10-15 seconds) and with best motion artifact suppression. In case of uncooperative
patients, breathing and motion artifacts have to be corrected with retrospective reg-
istration strategies. In both cases, accelerated acquisition strategies help to improve

1



1 Introduction

the spatio-temporal resolution and image quality. This work refers to two common
imaging techniques in this setting, namely cardiac CINE imaging and dynamic contrast
enhanced perfusion, whose fundamentals are presented in the following two sections.
The application of data subsampling strategies, which largely violate the Nyquist
theorem, requires sophisticated regularization techniques in order to compensate ar-
tifacts introduced by undersampling. Section 1.3, Page 7 gives an overview of the
regularization functions employed in this work.

1.1.1 Cardiac CINE

The capturing of a time-series (movie) of the functional heart motion is referred to as
cardiac CINE imaging [8]. The movement during a heart beat is divided into multiple
subsequent phases (frames), which are composed to be viewed as a movie. Since the
motion of a single heart beat is considerably faster than the acquisition of sufficient
k-space lines for each phase, the k-space has to be filled by collecting data of several
subsequent cardiac cycles. In order to synchronize the acquisition to the heart motion
electrocardiogram (ECG) triggering is applied prospectively or retrospectively in the
sense of ECG gating.

Figure 1.1 depicts the process of a cardiac CINE acquisition. The first row shows
an ECG signal with several time-slots denoting the different phases of the heart-
beat. Typically, the acquisition is triggered by the detection of the distinctive R wave.
Depending on the implemented pulse sequence interleaved Cartesian or non-Cartesian
lines are acquired, while non-Cartesian trajectories, e.g. radial spokes, are considered
to be less prone to motion artifacts. In this figure the subsequent collection of k-space
lines for only the first cardiac phase is presented. The acquisition of the distinct phases
is performed analogously.

After reconstruction of all phases the data can be viewed as a looped movie, to simulate
the periodicity of the beating heart. The CINE can give different functional informa-
tion like cardiac wall movement during contraction, valve behavior and chamber
perfusion.

1.1.2 Dynamic Contrast-Enhanced Perfusion

Dynamic contrast-enhanced (DCE) perfusion imaging is the visualization of an intensity
variation over time by using contrast enhancing agents [9]. In general, acquisitions

2
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Figure 1.1: Cardiac CINE: Explanation of the interleaved acquisition of multiple phases (here 7 frames)
during the cardiac cycle. The ECG-triggered acquisition shows that multiple cardiac cycles
are required to fill the k-space for each phase. The middle row shows the collection of
Cartesian and the bottom row of radial acquisitions solely to fill the k-space for the first
cardiac phase. Every cardiac phase is acquired analogously.
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1 Introduction

are performed before, during and after the application of the contrast agent. Since
many applications need to evaluate the first-pass of the contrast agent through the
investigated tissue or organ, a high temporal resolution is mandatory for best image
quality.

Typically, the DCE perfusion evaluates the distribution of the contrast agent over time
in order to support diagnosis. The difference compared to cardiac CINE imaging is
that no repetitive acquisition of the same signal phase can be performed, since the
contrast agent is usually applied only once. The temporal resolution largely depends
on the amount of necessary k-space readouts per time-frame, in contrast to the need of
an sufficiently acquired spatial k-space for good image quality, hence there exists a
definite trade-off between spatial and temporal resolution.

In case of cardiac perfusion imaging, multiple slices are acquired simultaneously,
where in general three short-axis views and one four-chamber view time-frames are
fully sampled during one heart beat, but with low spatial resolution. The main benefit
of undersampling strategies lies in the possibility to increase spatial resolution and the
spatial coverage during on heart beat (e.g. seven short-axis views) in order to improve
the analysis for perfusion defects. In contrast to that, DCE applications within the
abdomen, e.g. to detect HCC liver tumors, benefit from increased temporal resolution,
which enables a better characterization of tumor lesions.

1.2 Sampling Strategies

Apart from the implementation of the various fast imaging sequences, vendors typically
offer similar enhanced k-space filling options, in order to reduce the total number
of acquisitions and hence the acquisition time. This section gives a short overview
of three methods, which are considered in this work, namely the rectangular field
of view (FOV) method, the Partial-Fourier sampling and the Asymmetric Echo (AE)
acquisition.

1.2.1 Rectangular FOV

The rectangular FOV method uses different sampling rates in phase and frequency
encoding direction, where typically the phase encoding step size (gradient increment)
is increased and hence the total amount of acquired lines is decreased. This leads

4



1 Introduction

to a rectangular shaped acquisition matrix (Nx 6= Ny) and a reduced FOV in the
corresponding direction. Since the FOV relates to the sampling rate in k-space as

FOVx =
1

∆ kx

FOVy =
1

∆ ky

(1.1)

the FOV is reduced by the reciprocal of the change of ∆ k in phase encoding direction.
For example, a doubled step size halves the FOV in the corresponding direction.
The image resolution (∆ y = FOVy/Ny) is not affected by the rectangular acquisition.
Figure 1.2 shows an example k-space employing the rectangular FOV method with a
reduced amount of lines in the phase encoding direction (ky) resulting in a rectangular
shaped acquisition matrix.

Typically, the rectangular FOV phase encoding is applied in directions where the
anatomy fits into smaller matrix sizes and does not lead to backfolding artifacts.
Frequency encoding is chosen in directions where the anatomy extends over the matrix
size (FOV) and backfolding is additionally suppressed by oversampling the read-out
in this direction.

1.2.2 Partial Fourier

The Partial Fourier method uses the assumption of redundancy in k-space, in order
to partially fill the k-space and synthesize missing data by conjugate symmetry and
advanced phase correcting algorithms, like Homodyne detection, the Cuppen imple-
mentation or projection onto convex sets (POCS) [10]. Similarly to the rectangular FOV
method, the main focus is to reduce the total number of acquisitions and therefore to
reduce overall scan time.

Figure 1.3 shows an example of a partially filled k-space. The bright dots indicate not
acquired but synthesized k-space points. The fact that field inhomogeneities and phase
errors always occur in practice, requires symmetric sampling of the contrast regions
in the k-space center. According to that and depending on the synthesizing method,
Partial Fourier images can be acquired by measuring as far as only 60% of the full
k-space.

5
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kx 

ky 

Figure 1.2: Rectangular FOV acquisition. A decreased k-space sampling rate in the phase encoding
direction ky reduces the imaged FOV in the corresponding direction, but the rectangular-
shaped matrix size leads to an accelerated total acquisition time.

1.2.3 Asymmetric Echoes

While the Partial Fourier method reduces the total number of acquired phase encoding
lines, the Asymmetric Echo method reduces the amount of samples in frequency
encoding direction by not sampling the full signal (echo) symmetrically around the
k-space center. Figure 1.4 depicts this strategy, where an asymmetrically acquired
k-space is shown (dark dots). In order to be less error prone, again only a small fraction
around the k-space center is acquired symmetrically. In general, this approach reduces
the echo time (TE) of each readout, since the dephasing readout gradient is not applied
in the full extent.
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kx 

ky 

Figure 1.3: Partial Fourier acquisition. The k-space is filled partially in phase encoding direction (ky).
Slightly more than one half of the lines are acquired (dark dots) while the missing parts
(bright dots) are synthesized by using conjugate symmetry assumptions.

1.3 Variational Reconstruction Techniques

1.3.1 Overview

Variational reconstruction techniques gained more and more importance in the field
of MRI. Starting with the application of the theory for nonlinear noise removal [11],
particularly the application of variational regularization functions is found widely
spread in undersampled reconstructions, like shown in [12]–[14]. This section gives a
short introduction to the application of variational methods in the field of regularized
dynamic MRI reconstruction of undersampled data.

Considering the dynamic setting, this work employs three different regularization
methods, namely the spatio-temporal Total Variation (TV, [11]) functional, the Sec-
ond Order spatio-temporal Total Generalized Variation (TGV2, [15]) and the Infimal
Convolution of TGV type functionals (ICTGV, [16]).
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kx 

ky 

Figure 1.4: Asymmetric Echo acquisition. The echo time is reduced by acquiring asymmetrically around
the k-space center in frequency encoding direction (kx). The dark dots indicate the acquired
samples, while the skipped and synthesized fractions are shown as bright dots.

1.3.2 Infimal Convolution Of TV type Functionals

Regarding to the regularization method proposed in [16], its concrete application to the
dynamic MRI setting [17] is considered. Generally, it is aimed to solve the following
basic optimization problem:

min
u

λ

2
‖Ku− d‖2

2 +R(u) (1.2)

where u is the unknown image data, K the MR specific forward Fourier operator, d
the measured multi-coil data, λ the basic regularization parameter and R the applied
regularization function in the image domain.

Following [18] the Total Variation (TV) regularization term in the discrete setting is
defined as:

R(u) = TVβ (u) =
∥∥|∇ u|β

∥∥
1 (1.3)

8
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Additionally, an extra regularization parameter β = ds
dt is introduced to the derivative

operator, which defines the scaling between spatial and temporal derivatives:

TVβ (u) =
∥∥|∇ u|β

∥∥
1 =

√
(dsδx u)2 + (dsδy u)2 + (dtδt u)2 (1.4)

The Second Order Total generalized variation (TGV2) in the discrete setting is expressed
as:

R(u) = TGV2
β1,β2

(u) = min
v

α1
∥∥|∇ u− v|β1

∥∥
1 + α0

∥∥|E v|β2

∥∥
1 (1.5)

where E v is defined as a symmetric derivative operator:

E v =
1
2

(
∇ v +∇ vT

)
(1.6)

While TV and TGV2 basically compromise different weighting of spatial and temporal
domain with extra regularization parameter β, the newly introduced ICTGV2 func-
tional finds a good trade-off between spatial consistence and high temporal resolution
in dynamic parts of the image by utilizing the Infimal Convolution of two differently
scaled TGV2 functions, defined as:

R = ICTGV2
β,γ (u) = min

v
γ1TGV2

β1
(u− v) + γ2TGV2

β2
(v) (1.7)

Here, γ1 weights the influence of the temporal inconsistent, dynamic image parts (mov-
ing foreground) and γ2 the image regions with time constant content (background).

1.3.3 Dynamic MRI Reconstruction

This section shows the application of the above mentioned regularization functions
to the setting of dynamic MRI reconstruction. Equation (1.2) can be extended to the
following form, where the unknown image sequence u is derived by solving the
following optimization problem

u∗ = arg min
u

λ

2
‖Ku− d‖2

2 +R(u) (1.8)

and using the following definitions:

9
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– u ∈ CNxMxT Image sequence
– c ∈ CNxMxC Estimated coil sensitivities
– d ∈ CÑxM̃xCxT Multi-channel k-space data
– K MR operator
– F : CNxM → CNxM Cartesian Fourier operator
– F̃ : CNxM → CÑxM̃ Non-Cartesian Fourier operator
– Mt ∈ {0, 1}NxMxT Sampling pattern of time frame
– N, M Image dimensions
– T Number of time frames
– C Number coil channels
– Ñ, M̃ K-space encoding dimensions, Cartesian: (N, M) = (Ñ, M̃)

Here, K is defined as the MR forward operator, consisting of the masked forward
Fourier operation of multi-coil images per time frame for the Cartesian case or of the
non-uniform Fourier transform (NUFFT, [19]) in case of non-Cartesian sampling:

K : (u, ci)t 7→ MtF
{

ci · ut

}
i=1... C,t=1... T

K : (u, ci)t 7→ F̃t

{
ci · ut

}
i=1... C,t=1... T

(1.9)

Thus, the Fourier operator for a certain time point t = ti transforms the sensitivity
corrected time frame to the multi-coil data domain including the application of the
k-space sampling pattern Mti :

Ft=ti(uti , c) :=Mti

(
F
{

uti · c1

}
, · · · ,F

{
uti · cC

})
= dti (1.10)

1.3.4 Primal-Dual Algorithm

Regarding to [18] and following the successful application of primal-dual algorithms
to MRI reconstructions [12], the basic nonlinear optimization problem is assumed to
be in the form of

min
x∈X

F(Kx) + G(x) (1.11)

10
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where F and G are a convex lower-semicontinuous functions and K is a linear operator.
Equation(1.11) can be transformed to the saddle-point formulation

min
x∈X

max
y∈Y
〈Kx, y〉+ G(x)− F∗(y) (1.12)

in order to be solved with an efficient algorithm presented in [18]. Its outline is
given in Algorithm 1. Here, F∗(y) denotes the convex conjugate of F(x), i.e. F∗(y) =
sup

x
〈x, y〉 − F(x).

Algorithm 1 General formulation of the Primal dual algorithm by Chambolle-Pock [18]
1: Initialize:
2: (x0, x̄0, y0) σ, τ ≥ 0 θ ∈ [0, 1]
3: while Stopping criteria are not met do:
4: Dual Update:
5: yn+1 ← (I + σδ F∗)−1(yn + σKx̄n)

6: Primal Update:
7: xn+1 ← (I + τδ G)−1(xn − τ K∗ yn+1)

8: Extragradient step:
9: x̄n+1 ← xn+1 + θ(xn+1 − xn)

A common case is to choose θ = 1. In order to apply the primal-dual algorithm
successfully, the resolvent operators (proximal maps) for F∗ and G have to be defined
by

x = proxτ F (y) = (I + τδ F)−1(y)

= arg min
x

‖x− y‖2

2τ
+ F(x)

(1.13)

and typically are considered to be easy computable in a closed form solution. The
convergence of the iterative reconstruction can be monitored with the computation of
the so-called primal dual gap, defined as:

G(x, y) = F(Kx) + G(x) + (G∗(−K∗ y) + F∗(y)) (1.14)

The concrete algorithms for the different considered regularization problems are
derived in Section 2, Page 13.
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1.4 GPU computation for dMRI

In recent years many iterative algorithms in the field of undersampled MRI reconstruc-
tions have been implemented. One common problem is that the reconstruction times are
long by trend without further improvements and not fitting clinically acceptable time
limits. Therefore, the utilization of GPUs for parallelized image reconstruction gained
more and more importance. The fact that comparable cheap commodity graphics
hardware can be utilized to perform hundreds of computations in parallel is exploited
to speed up time-consuming reconstruction steps or to perform whole reconstructions
on graphics devices.

In order to implement a reconstruction in parallel (either as a CPU multi-core or GPU
solution), some basic requirements have to be met. Therefore, it is only sensible to
consider parallel design if computations can be performed independently in parallel
or if the effort for merging single results is small compared to the computational cost
of each single computation.

As shown in [12], the application of iterative primal-dual solvers for GPU-based MR
reconstructions suit well for these requirements, since many operations can be per-
formed on a per-element (pixel) basis. Finite differences or fundamental vector algebra
functions are some basic examples to mention in this context. Only the evaluation
of vector measures like norm computations or the computation of the MR operator
require synchronized data access. One major drawback of primal-dual solvers is that
depending on the problem size a huge amount of memory, thus memory that has to
be available on the GPU device, is required.

This work employs the Compute Unified Device Architecture (CUDA) developed and
supported by NVIDIA (NVIDIA Corporation, Santa Clara, USA), in order to port
a MATLAB (The MathWorks Inc., Natick, USA) based dMRI reconstruction to C++
utilizing GPUs. Section 2.4, Page 28, gives more details on memory limitations and on
the parallelization strategy.
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2 Methods

This section comprises the derivation of the primal-dual formulations and the corre-
sponding algorithms for the different regularization methods explained in Section 1,
Page 1. Moreover, the necessary model parameters are introduced and an explanation
of the coil calibration method used in this work is presented. Subsequently, details to
the CUDA implementation and the testing environment are given.

2.1 dMRI Regularized Reconstruction

In order to derive the algorithms for the three different regularization methods (TV,
TGV2 and ICTGV) the optimization problems are transformed into the primal-dual
form of (1.12). For the sake of simplicity, the mentioned spatio-temporal scaling β of
the derivative operator described in (1.3) is disregarded.

2.1.1 TV regularization

u∗ = arg min
u

λ

2
‖Ku− d‖2

2 + TVβ (u)

= arg min
u

λ

2
‖Ku− d‖2

2 + ‖∇ u‖1

(2.1)

Putting (2.1) in the form of (1.12) with F(Kx) = ‖∇ u‖1 and G(x) = λ
2 ‖·‖2

2 the problem
is given as

u∗ = arg min
u∈X

max
p∈Y
−〈u, divp〉 − δP(p) +

λ

2
‖Ku− d‖2

2 (2.2)
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where X : {x ∈ CNxMxT} and representing the domain of the derivative operator
∇ : X → Y with Y : {y ∈ X3}. The convex conjugate F∗(y) of ‖·‖1 is the so-called
indicator function δP, defined as:

δP(p) =

0, if p ∈ P

∞, if p /∈ P
(2.3)

where the convex set P is defined as: P = {p ∈ Y : ‖p‖∞ ≤ 1}

In the discrete setting, the infinity norm is defined as ‖p‖∞ = max
i,j
|pi,j| Furthermore,

the following identity is used:

〈∇ u, p〉 = −〈divp, u〉 (2.4)

The functional part G(x) needs also to be dualized, since due to the undersampling the
proximal operator (I + τG)−1(x− . . .) can not be computed in a closed form solution.
This yields the final form of the primal-dual problem with TV regularization as:

u∗ = arg min
u∈X

max
p∈Y,r∈ Z

−〈u, divp〉 − δP(p) + 〈Ku− d, r〉 − 1
2λ
‖r‖2

2 (2.5)

with Z : {z ∈ CÑxM̃xCxT} and the convex conjugate G∗(r) derived as:

G∗(r) = sup
r̃
〈r, r̃〉 − G(r̃) = sup

r̃
〈r, r̃〉 − λ

2
‖r̃‖2

2

→ r− λ‖r̃‖2 = 0→ r̃ =
r
λ

→ G∗(r) =
〈r, r〉

λ
− 1

2λ
‖r‖2

2≤
1

2λ
‖r‖2

2

(2.6)

Proximal operators

In order to apply the primal-dual algorithm, the resolvent operators for F∗ and G∗

have to be defined following Equation 1.13 as:
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proxσ F∗ ( p̃) = (I + σδ F∗)−1( p̃)

= projσ F∗( p̃) =
p̃

max
(

1, | p̃|σ

) (2.7)

proxσ G∗ (r̃) = (I + σδ G∗)−1(r̃)

= min
r

‖r− r̃‖2
2

2
+

σ

2λ
‖r‖2

2 ⇒ r =
r̃

1 + σ
λ

(2.8)

Algorithm

Collecting all information from above, Algorithm 2 shows the complete outline of the
dMRI-TV regularization problem.

Algorithm 2 Primal dual algorithm to solve the dMRI-TV regularization problem
1: Initialize:
2: (u0, ū0, p0, r0) σ, τ ≥ 0

3: while Stopping criteria are not met do:
4: Dual Update:
5: pn+1 ← projσ F∗(pn + σ(∇ūn))

6: rn+1 ← proxσ G∗(rn + σ(Kūn − d))

7: Primal Update:
8: un+1 ← un − τ(−div(pn+1) + K∗ rn+1)

9: Extragradient step:
10: ūn+1 ← 2un+1 − un

2.1.2 TGV2 regularization

u∗ = arg min
u

λ

2
‖Ku− d‖2

2 + TGV2
β (u)

= arg min
u,v

λ

2
‖Ku− d‖2

2 + α1‖∇ u− v‖1 − α0‖E v‖1

(2.9)

Putting (2.9) in the form of (1.12) results in
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u∗ = arg min
u∈X,v∈Y

max
p∈Y,q∈W,r∈ Z

〈∇ u− v, p〉 − 1
α1

δP(p) + 〈E v, q〉 − 1
α0

δQ(q)

+ 〈Ku− d, r〉+ 1
2λ
‖r‖2

2

= arg min
u∈X,v∈Y

max
p∈Y,q∈W,r∈ Z

− 〈u, divp〉 − 〈v, p〉 − 1
α1

δP(p)

− 〈v, divE q〉 − 1
α0

δQ(q)

+ 〈Ku− d, r〉+ 1
2λ
‖r‖2

2

(2.10)

with the domain of the symmetric derivative E : Y → W with W : {w ∈ X6}. The
following identity in the discrete setting is used:

〈E v, q〉 = −〈v, divE (q)〉 (2.11)

Algorithm

An algorithmic outline of the dMRI-TGV2 regularization problem is given in Algo-
rithm 3.

2.1.3 ICTGV regularization

u∗ = arg min
u

λ

2
‖Ku− d‖2

2 + ICTGV2
β,γ (u) (2.12)

In order to derive the primal-dual algorithm, (2.12) is transformed to

u∗ =min
u,v

λ

2
‖Ku− d‖2

2 + ICTGV2
β,γ (u)

= min
u,v,w1,w2

λ

2
‖Ku− d‖2

2

+ γ1α1‖∇(u− v)− w1‖1 + γ1α0‖Ew1‖1

+ γ2α1‖∇ v− w2‖1 + γ2α0‖Ew2‖1

(2.13)
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Algorithm 3 Primal dual algorithm to solve the dMRI-TGV2 regularization problem
1: Initialize:
2: (u0, ū0, v0, v̄0, p0, q0, r0) σ, τ ≥ 0

3: while Stopping criteria are not met do:
4: Dual Update:
5: pn+1 ← projσ F∗(pn + σ(∇ūn − v̄n))

6: qn+1 ← projσ F∗(qn + σ(E v̄n))

7: rn+1 ← proxσ G∗(rn + σ(Kūn − d))

8: Primal Update:
9: un+1 ← un − τ(−div(pn+1) + K∗ rn+1)

10: vn+1 ← vn − τ(−divE (qn+1))

11: Extragradient step:
12: ūn+1 ← 2un+1 − un

13: v̄n+1 ← 2vn+1 − vn

and by additionally dualizing the data term the full form results in:

min
u,v,w1,w2

max
p1,q1,p2,q2,r

〈∇ (u− v)− w1, p1〉+ 〈E w1, q1〉 −
1

γ1 α1
δP(p1)−

1
γ1 α0

δQ(q1)

+〈∇ v− w2, p2〉+ 〈E w2, q2〉 −
1

γ2 α1
δP(p2)−

1
γ2 α0

δQ(q2)

+〈Ku− d, r〉 − 1
2λ
‖r‖2

2

(2.14)

Algorithm

The algorithm to solve the dMRI-ICTGV regularization problem is outlined in Algo-
rithm 4.
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Algorithm 4 Primal dual algorithm to solve the dMRI-ICTGV regularization problem
1: Initialize:

2: while Stopping criteria are not met do:
3: Dual Update:
4: pn+1

1 ← projσγ1α1 F∗(pn
1 + σ(∇ (ūn − v̄n)− w̄1

n))

5: qn+1
1 ← projσγ1α0 F∗(qn

1 + σ(E w̄1
n))

6: pn+1
2 ← projσγ2α1 F∗(pn

2 + σ(∇ v̄n − w̄2
n))

7: qn+1
2 ← projσγ2α0 F∗(qn

2 + σ(E w̄2
n))

8: rn+1 ← proxσ G∗(rn + σ(Kūn − d))

9: Primal Update:
10: un+1 ← un − τ(−div(pn+1

1 ) + K∗ rn+1)

11: vn+1 ← vn − τ(−div(pn+1
1 )− div(pn+1

2 ))

12: wn+1
1 ← wn

1 − τ(−pn+1
1 − divE (qn+1

1 ))

13: wn+1
2 ← wn

2 − τ(−pn+1
2 − divE (qn+1

2 ))

14: Extragradient step:
15: ūn+1 ← 2un+1 − un

16: v̄n+1 ← 2vn+1 − vn

17: w̄1
n+1 ← 2wn+1

1 − wn
1

18: w̄2
n+1 ← 2wn+1

2 − wn
2
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2.2 Reconstruction parameters

2.2.1 Regularization parameters

The basic regularization parameter λ in the above presented optimization prob-
lems (2.1), (2.9) and (2.12) controls the balancing between the fit to the measured
data and noise regularization. Following [20], a strict separation between regulariza-
tion and model parameters is applied in this work.

While the model parameters can be tuned to the expected image structure, the regu-
larization parameter is automatically adapted to the expected noise level. The work
in [20] shows that a robust method can be defined to linearly depend the regularization
value on the amount of subsampling or reduction factor R in the acquired data set
as:

λ(R) = kR + d (2.15)

using the parameters k and d, which basically depend on the image structure and have
been evaluated by numerical experiments in [17]. See Table 2.1 for explicit values.

2.2.2 Model parameters

The model parameters introduced by the TV regularization functionals are aimed to
be tuned for expected image structures, e.g. for cardiac CINE or perfusion imaging
respectively.

Time-Space Weighting in TV/TGV2 functionals

As already mentioned in (1.4) and (1.5) the derivative operators introduce an extra
parameter β for time-space weighting. In the case of ICTGV regularization, each TGV
term uses its specific time-space weights β1 and β2. These weights are automatically
normalized in a manner that the elliptic integration over all possible gradient directions
equals 1. Given a time-space ratio β = ds

dt the values for ds and dt are computed by
defining the integral:
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1
2π

π∫
0

2π∫
0

√
(ds sinθ cosφ)2 + (ds sinθ sinφ)2 + (dt cosθ)2δφδθ = 1 (2.16)

The solution is implemented numerically following the methods in [21], Sec 17.6.

Inherent TGV parameters

Independently from the parameters above and following [12] the parameters α0 and
α1, used for the application of the TGV2 norm, are defining the weighting between
first and second order derivative and are set to the constant ratio of 1√

2
, thus α0 =

√
2

and α1 = 1.

The definition of the ICTGV norm in (1.7) introduces a further trade-off between the
two TGV2 functionals with the parameters γ1 and γ2, which are defined by normalized
convex combination:

γ1(α) =
α

min(α, 1− α)

γ2(α) =
1− α

min(α, 1− α)

(2.17)

using α ∈ (0, 1) as trade-off parameter between the two functionals. See Table 2.1 for
explicit parameter values.

2.2.3 Reconstruction parameters

The application of the primal-dual algorithms, as shown in Section 2.1, Page 13,
requires the definition of two step-size parameters σ and τ, used in the dual ascend
and primal descent steps respectively. In order to speed-up the convergence of the
algorithm the step sizes are adapted during the iterative reconstruction. Following [17]
the step sizes are updated like:

S(στ, η) =


η θστ ≥ η
√

θστ στ ≥ η ≥ θστ
√

στ else

(2.18)
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The parameter η is computed per iteration by utilizing the differences in the primal
variables after computing the primal descent step. The computed differences are
denoted as:

ξ =


du
dv

dw1

d2

 =


un+1 − un

vn+1 − vn

wn+1
1 − wn

1

wn+1
2 − wn

2

 (2.19)

Using ξ the update parameter is then computed as:

η =
‖ξ‖2

‖H(ξ)‖2
(2.20)

with H(ξ) defined as:

H(ξ) =(∇ (du− dv)− dw1) + (E dw1)

+(∇ dv− dw2) + (E dw2) +Kdu
(2.21)

Non-Uniform Sampling

In case of non-uniform acquisition the parameters for the utilized NUFFT toolbox [22]
in case of CPU and gpuNUFFT [23] in case of GPU reconstruction respectively, are
shown in Table 2.2, with OS denoting the oversampling ratio, KW the interpolation
kernel width in grid units and SW an GPU implementation specific parameter, which
defines the size of parallel computed sectors. See [23] for more details.

2.2.4 Stopping criteria

Throughout the experiments, 500 iterations turned out to yield sufficient convergence
according to the primal-dual gap Section 1.3.4, Page 10. Thus, the primary stopping
criterion is selected to be the total number of iterations.
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Table 2.1: Regularization and model parameters overview and selected values

Symbol Denomination Chosen value
Model parameters ICTGV Func. Perf.

α0/α1 Ratio of TGV weights 1/
√

2 1/
√

2
ds/dt→ β1 Spatio-temporal weight 1st comp. 4 4
ds/dt→ β2 Spatio-temporal weight 2nd comp. 0.5 0.5
α→ γ1,2(α) Weighting between 1st and 2nd comp. 0.5 0.6423

Model parameters TGV Func. Perf.

α0/α1 Ratio of TGV weights 1/
√

2 1/
√

2
ds/dt→ β Spatio-temporal weight 6.5 6.5

Model parameters TV Func. Perf.

ds/dt→ β Spatio-temporal weight 6.5 6.5

Regularization parameters

k Slope 0.34 0.08
d Intercept 4.57 1.56

Table 2.2: Parameter values used at application of the (gpu)NUFFT to compute the forward and back-
ward non-Cartesian MR operation.

Parameter Value

OS 2.0
KW 3.0
SW 8
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2.3 Coil Sensitivity Estimation

2.3.1 Strategy

In case no coil sensitivities are present, an iterative coil construction algorithm as
described in [20] is implemented in this work. The basic assumptions are that the coil
sensitivities are constant over the time series and that a nearly full k-space coverage
is acquired considering the accumulation of the whole time series into one dense
k-space.

2.3.2 Iterative Reconstruction

The basic steps used to construct the coil sensitivities are:

– Time-averaged, coil-wise reconstruction (v, u0)
– Generation of absolute values of sensitivities by H1-regularization
– Iterative reconstruction of coil sensitivities and phase image generation
– Post processing

In order to compute the time-averaged reconstruction, the acquisitions over all time
frames are accumulated and weighted by the sum of the k-space trajectories of all
frames:

vk = arg min
v̄

T

∑
t=1

1
2
‖dk,t −MtF (v̄)‖2

2

⇒ v̄k = F
(

1
M̄

T

∑
t=1

dk,t

) (2.22)

with M̄ =
T
∑

t=1
Mt. The phase corrected sum-of-squares combination of all coil images

of v is defined as u0:

u0 =

√√√√ C

∑
k=1
|vk| · exp

(
i

C

∑
k=1

6 vk

)
(2.23)
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The per coil absolute value of the sensitivity is computed by H1-regularization of the
coil-reconstruction image:

|bk| = arg min
b

µ

2
‖bu0 − |vk|‖2

2 + ‖∇ b‖2
2

⇒ (µ u0 + ∆)|bk| = (µ u0 − |vk|)
|bk| = (µ u0 + ∆)−1(µ u0 − |vk|)

(2.24)

Additionally, the absolute values |bk| of each coil are normalized by the sum-of-squares
combination of all coils:

bk =
|bk|

C
∑

k=1
|bk|2

(2.25)

The phase of the sensitivities is computed in an iterative manner. First, the coil recon-
struction vk with the largest L2-norm value is chosen and its phase bk0 is initialized with
a zero phase. Additionally, the image phase uk0 is computed by TGV-regularization:

bk0 = |bk0|
uk0 = arg min

u
ν TGV(u) + ‖bk0u− vk0‖2

2
(2.26)

Repeatedly, the coil with the maximum overlap with the already computed coil
reconstructions is chosen, in order to compute its corresponding sensitivity and to
update the phase image u:

Repeat for k = 2 · · · C

w =
k

∑
l=1
|ujl|

jk = max
jk
|bjk · vjk−1 | (find coil with maximum overlap)

6 bjk = arg min
b̄

µ

2

∥∥∇ b̄
∥∥2

2 +
1
2

∥∥w(b̄|bjk−1 |ujk−1 − vjk)
∥∥2

2

bjk = |bjk | · exp i 6 bjk

ujk = arg min
u

ν TGV(u) +
k−1

∑
i=0

∥∥bji u− v0k

∥∥2
2

(2.27)

Post process sensitivities by:

(bj)j = arg min
(bj)j

µ∗

2 ∑
j

(∥∥∇ bj
∥∥2

2 +
1
2

∥∥ubj − vj
∥∥2

2

)
(2.28)
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2.3.3 Algorithms

This section explains the used algorithms in order to solve the coil construction
problems described above. Subsequently, these are a CG solver to compute the inverse
of the problem stated in (2.24), a primal-dual solver for TGV2 denoising and a L2− H1
optimizer as required in (2.26)-(2.28).

CG Solver

The problem described in (2.24) is considered as linear system of equations in the form
of A · x = b and is solved by application of the common iterative Conjugate Gradient
(CG) method [24]. This method is already implemented in the AGILE library [25],
while the linear operator A has to be defined as:

A(x) = µ u0 x + div(∇ x) (2.29)

See the Appendix for an outline of the CG algorithm.

PD L2-H1 subproblem

The quadratic regularization of the gradient function, also known as L2− H1 problem,
again is solved by application of the primal-dual solver by [18]. The outline of the
algorithm is shown in Algorithm 5, while the required proximal operator for F∗ is
defined equivalently to (2.8) and G∗ is derived as:

proxτ G∗ ( p̃) = (I + τδ G∗)−1( p̃)

= min
p

‖p− p̃‖2
2

2
+

τ

2
‖w(p|bjk |ujk−1 − vjk)‖

2
2

⇒ p =
p̃ + τ vjk bjk ujk−1w2

1 + τ (wbjk ujk−1)
2

(2.30)
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Algorithm 5 Primal dual algorithm to solve the L1− H2 regularization problem
1: Initialize:
2: u0, ū0, σ, τ

3: while Stopping criteria are not met do:
4: Dual Update:
5: pn+1 ← proxσµ F∗(pn + σ(∇ūn))

6: Primal Update:
7: un+1 ← proxτ G∗(un − τ(−div(pn+1)))

8: Extragradient step:
9: ūn+1 ← 2un+1 − un

PD TGV2 denoising subproblem

Equations (2.26) and (2.27) show another application of the TGV norm as a regulariza-
tion function. In this case the TGV norm is applied in a denoising sense as has been
shown in [12]. The algorithm to solve the problem is presented in Algorithm 6.

The proximal mapping G∗ is defined as:

proxτ G∗ (ũ) = (I + τδ G∗)−1(ũ)

= min
u

‖u− ũ‖2
2

2
+

τ

2

k−1

∑
i=0
‖bji u− v0k‖

2
2

⇒ u =

ũ + τ
k−1
∑

i=0
vji bji

1 + τ
k−1
∑

i=0
bji bji

(2.31)

2.3.4 Parameters

Explicit parameter values used in the algorithms explained above are depicted in
Table 2.3.
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Algorithm 6 Primal dual algorithm to solve the TGV2 denoising problem
1: Initialize:
2: u0, ū0, σ, τ

3: while Stopping criteria are not met do:
4: Dual Update:
5: pn+1 ← projσνα1 F∗(pn + σ(∇ūn − v̄n))

6: qn+1 ← projσνα0 F∗(qn + σ(E v̄n))

7: Primal Update:
8: un+1 ← proxτ G∗(un − τ(−div(pn+1)))

9: vn+1 ← vn − τ(−divE (qn+1))

10: Extragradient step:
11: ūn+1 ← 2un+1 − un

12: v̄n+1 ← 2vn+1 − vn

Table 2.3: Parameters used in algorithms of the coil construction process. Primal dual L1-regularization
parameters in the first row and primal dual TGV2 denoising parameters in the second row.
µ∗ and maxIt∗ denote the values used in the coil post-processing step.

Method Parameter value
µ (µ∗) ν τ σ α0 α1 maxIt (maxIt∗)

PD-L2-H1 2.0(0.1) - 1√
8

1√
8

√
2 1 500(1000)

PD-TGV - 0.2 1√
12

1√
12

√
2 1 100
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2.4 CUDA Implementation

This section presents the basic parallelization approach of the CUDA accelerated C++
implementation built in this work. Good introductions to the principles of CUDA
programming are given in [26]–[28].

2.4.1 Parallel approach

The mentioned algorithms and operations perfectly fit the requirements for single
instruction, multiple data (SIMD) architectures, since a large amount of the necessary
vector operations is on a per-element basis. Therefore, the CUDA-based AGILE C++
library [25] is most suitable as the primary used framework to utilize GPUs for
processing.

Figure 2.1(a) shows the basic CUDA organization of a kernel call with parallel executed
threads and blocks of threads, further arranged in a grid of blocks. It can be seen
that every block and every thread is associated with an index. These indices can be
exploited to organize contiguous data access and therefore, each thread can be seen
to be processing computations only for its corresponding data point (e.g. per pixel).
Depending on the hardware architecture and the amount of available on-device stream
multiprocessors (SM), thread-blocks are further processed in parallel. The actual
arrangement and the number of blocks and threads-per-block are usually defined
at compile time and depend on the problem dimensions. Figure 2.1(b) shows the
automatic scaling of parallel executed thread blocks depending on the actual number
of available SMs. Currently, typical high-end graphics devices contain 16-24 SMs (each
consisting of 128 CUDA cores) and 4-6GB of available device memory.

2.4.2 Memory layout

As mentioned above a vast amount of the operations can be computed on a per-element
basis and therefore, the straight forward to use memory access pattern is linear access.
Figure 2.2 depicts an example of consecutive memory access of 8 threads of 2 thread-
blocks on linear memory. Since the amount of data is typically larger than the total
amount of threads, all memory locations are processed by shifting the thread-blocks in
an interleaved manner.
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(a)

(b)

Figure 2.1: (a) Organization of parallel executed thread-blocks into an execution grid. Each thread-block
runs its threads in parallel and each thread can be seen to be independently processing com-
putations for its corresponding data point. (b) Hardware-specific scale of parallel executed
thread-blocks depending on the actual amount of stream-multiprocessors (SM) on the device.
Images taken from [26]
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Block:   0 

Threads: 

0 1 2 3 4 5 6 7 

Data: 

Block:   1 

Threads: 

0 1 2 3 4 5 6 7 

Block:   0 

Threads: 

0 1 2 3 4 5 6 7 

Block:   1 

Threads: 

0 1 2 3 4 5 6 7 

... 

... 

Figure 2.2: Thread-wise parallel access on linear memory array locations. Every thread of the two
thread-blocks processes its corresponding data element. All memory locations are processed
by linearly shifting the thread-blocks in an interleaved manner.

Basically, depending on the computational need read-access is possible to any arbitrary
global memory location, but whenever multiple threads require simultaneous write
access to a memory location, more sophisticated thread and memory strategies, such as
atomic write operations and shared memory, have to be applied. The basic components
of the AGILE library are low-level element-wise linear vector operations, like vector
addition, scaling, etc., hence see the above mentioned literature for more details on
complex patterns.

For example, the memory layout for the image sequence is defined as:



u0,0,t=0

u0,1,t=0

· · ·
uN−1,M−1,t=0

u0,0,t=0

· · ·
uN−1,M−1,t=T



T

(2.32)

and for the b1 data as:



b10,0,chn=0,t=0

b10,1,chn=0,t=0

· · ·
b1N−1,M−1,chn=0,t=0

b10,0,chn=1,t=0

· · ·
b1N−1,M−1,chn=C,t=T



T

(2.33)
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In order to access an element (x, y) of coil c at a certain time point t the memory
location index is computed as:

ind(x, y, c, t) = x + y · (M) + c · (N · M) + t · (N · M · C) (2.34)

2.4.3 Numerical computations

Apart from the implementation of the MR forward and backward operators, which is
described in the next section, a central part, in all different kinds of reconstructions, is
the computation of the gradient and divergence operators. Numerically, the gradient
operations (3D and symmetrical 2nd derivative) are computed as forward differences
and the divergence operations as backward differences respectively. These functions
have been added to the ‘low-level‘ package of the AGILE library. The latest version of
the AGILE library has been designed basically for 2D applications, so extensions to
support large 3D data-sets, in the sense of time series data, have been developed and
integrated. These extensions basically comprise:

– Refactoring to support latest CUDA architecture
– Finite forward and backward differences for 3D data vectors
– Forward and backward FFT operations for vector based data sets
– Extended vector utilities (l1/l2-norm, min-max element computation, element-

wise compare)
– Extended thread assignment for large data sets

2.4.4 MR Operator

In case of Cartesian acquisition a masked FFT operator supporting time-series data has
been added to the AGILE library. In its back end, the well-known CUFFT [29] library
is utilized.

In case of non-Cartesian reconstruction the capabilities of the gpuNUFFT [23] library
are used. Since the gpuNUFFT library initially has been created for large 3D data
sets, the performance of the 2D Gridding and inverse Gridding processes has been
optimized by computing multiple coils at once per Gridding operation. The amount
of simultaneously computed coils is derived during runtime by querying the amount
of available global device memory. The gpuNUFFT’s C++ API has been extended
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to support input data that is already residing in GPU memory, in order to allow an
optimal integration with data managed by the AGILE library.

2.4.5 Memory Estimation / Hardware Limits

One major drawback of the implementation of primal dual algorithms is the huge
memory consumption in order to keep the state of all vectors. The overall GPU memory
consumption can be a limiting factor for large problems. Table 2.4 contains rough
memory estimates for problems of the dimension (M, N, C, T).

Table 2.4: Amount of data variables in problem dimensions and required memory estimation for the
different regularization functions. The first column describes the type and dimensions of
necessary distinct data vector variables. For the purpose of demonstration, the required
memory for a Cartesian data set with the dimensions (N=nEnc,M=nRO,C,T): 256, 256, 32, 30
and for a non-Cartesian (N,M,C,T,nRO,nEnc): 256, 256, 32, 30, 384, 192 is shown.

Cartesian Non-Cartesian

# Vectors

(Dimension)
TV TGV ICTGV TV TGV ICTGV

# image (N ·M · T) 12 36 58 12 36 58

# kspace

(nRO · nEnc ·C · T)
3 3 3 3 3 3

# b1 (N ·M · C) 1 1 1 1 1 1

# complex values 214E+6 262E+6 305E+6 238E+6 285E+6 328E+6

Required memory

(MB)
1.636 1.996 2.326 1.816 2.176 2.506

2.5 Software Integration

2.5.1 Data Formats

The current software version created in this work supports two different input and
three output formats. Input data can either exist in the native binary format of the
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AGILE library (extension used in this context is ”.bin”) or the multivendor-capable
common raw data format called ISMRMRD (”.h5”, [30]). Reconstruction results can
be stored either by using the two formats mentioned above or by using the de-facto
medical imaging standard DICOM [31]. The use of DICOM embedded measurement
data as input is currently not supported by the software.

AGILE Binary

The AGILE library supports an own implementation of a binary data type, in order to
allow communication with other software, e.g. MATLAB. The library supports both
import and export routines for the use within MATLAB. See the Appendix for further
details and demos how to perform the data exchange.

ISMRMRD (HDF)

The preferred format for raw input data is the new ISMRMRD format developed
by a committee of the ISMRM community. Its main aspect is the introduction of a
non-proprietary file standard containing all necessary meta-information and data, in
order to be able to reconstruct images from any MRI experiment [30]. Various tools
exist 1, which automatically convert vendor-specific raw measurement data to the
independent ISMRMRD format.

The file format is based on the well-known Hierarchical Data Format (HDF5 [32]),
which is intrinsically also used by MATLAB. Thus, ”.h5” files can directly be opened
and managed within the MATLAB environment. See the Appendix for an example of
how to load data from ”.h5” files.

DICOM

Apart from the two mentioned formats for input and output data, reconstruction results
can also be stored in the industry standard DICOM format. In order to generate these
images the DICOM Toolkit [33] is utilized.

1https://github.com/ismrmrd
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Data Flow

Figure 2.3 sketches the basic data flow implemented in this work. It shows that the
reconstruction can either be started without the use of the coil construction part, if b1
and u0 data is already available, or with a preliminary data normalization and coil
construction step based on raw scanner data, e.g. raw measurement data converted to
ISMRMRD.

Raw-Data-Preparation 

Coil-Construction 

TV/TGV/ICTGV  

dMRI Reconstruction 

ISMRMRD raw 

data, mask, w 

DICOM AGILE 

bin 

ISMRMRD 

b1, u0 

AGILE bin 

b1, u0, data, mask, w  

AGILE bin 

data, mask, w 

Output 

Figure 2.3: Data flow showing different data processing paths depending on available input data.

2.5.2 Raw Data Processing

The data preparation step considers the different acceleration methods implemented
and manifested in the raw measurement data, and prepares and reshapes the data
arrays, in order to be used in the image reconstruction part. This section gives an
overview of the required meta information and schematically describes the core
features of the preparation step.
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Meta Information

In order to successfully perform the raw data preparation and coil construction steps,
some fundamental information has to be provided either in form of command line
arguments or encoded in the raw data meta information. Basically, the necessary
content consists of:

– Encoding space dimensions (readouts, encodings, coils, frames)
– Reconstruction space dimensions (width, height)
– Type of trajectory (Cartesian, radial or arbitrary)
– Total number of acquisitions
– Acquisition details:

– Number of samples
– Line number or k-space location of every sample in case of non-uniform

acquisition
– Center line
– Center column
– Oversampling

Apart from the basic problem dimensions, details about the acquired number of sam-
ples per line and the defined center column give information about partial Fourier and
asymmetric echo acquisitions. Potential oversampled or rectangular FOV acquisitions
are further derived from the ratio between the reconstruction and encoding space
dimensions.

Data Completion

The partial Fourier acquired data is currently completed by the most basic compensa-
tion method, namely zero filling. Although this consequently leads to artifacts in case
of large skipped k-space portions, it is the method of choice for the first version, but
primary offers a defined interface to employ more sophisticated methods, as described
in Section 1.2.2, Page 5.

Zero-filling is also implemented to complete asymmetrically acquired echo data.
Nevertheless, artifacts do not affect the results with large extent, since most vendors
implicitly implement a twofold readout oversampling in frequency encoding direction.
Furthermore, the readout oversampling is automatically removed for each line by

35



2 Methods

inverse FFT, data cropping (halving) in image domain and again followed by forward
FFT.

Automatic Trajectory Generation

In case no trajectory information is provided in the raw measurement data files, the
k-space sampling mask in case of Cartesian sampling or a basic radial trajectory
can be generated automatically, if the meta information conveys at least the type of
trajectory.

Normalization

For best reconstruction results and in order to maintain an expected value scale, the
input data is automatically normalized to the range of approximately [0, 255]. In the
Cartesian case, this is done performing a time-averaged reconstruction, i.e. the k-space
summation of all time frames into a dense k-space and the sum-of-squares multi-coil
reconstruction of it, followed by the evaluation of the normalization factor.

The normalization factor is defined as the median value of all elements larger than
90% of the maximum absolute value of the time-averaged reconstruction image.

The evaluation of the normalization factor in the Non-Cartesian case is performed
slightly different. Initially estimated coil sensitivities are applied to the time-averaged
reconstruction before sum-of-squares combination, which leads to a more robust
normalization factor.

Fourier shift preparation

A further data preparation step, which can additionally be applied for Cartesian
data sets, is the point-wise multiplication of the k-space data with a so-called ”Chop”
function Fc that eliminates the need for explicit FFT-shift calls during the iterative
reconstruction and thus reduces the overall computation time. The function is derived
from the Fourier shift theorem by [N

2 , M
2 ] and is defined as:
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f
(

x− N
2

, y− M
2

)
FT←→ F(k, l)e−j(2π k( N

2 )/N)−j(2π l( M
2 )/M)

←→ F(k, l) e−jπ (k+l)︸ ︷︷ ︸
Fc(k,l)

Fc(k, l) = −1k+l

(2.35)

Coil Reconstruction

The coil sensitivity reconstruction and the estimation of the initial solution are imple-
mented as described in Section 2.3, Page 23. The results are automatically exported to
the output directory, in order to be reused in upcoming image reconstructions.

Reconstruction and Parameters

After all preprocessing steps are completed, the dMRI TV, TGV2 or ICTGV recon-
structions can be started. Reconstruction results are automatically exported to the
user-defined results directory.

The reconstruction can be parametrized either by command line arguments or by a
parameter configuration file. See the Appendix, Page 73 for a README on setup,
program options and command line arguments.

2.5.3 Test environment

The project has been developed and measurements of both CPU and GPU performance
have been recorded on the following LINUX-based system:

– Intel Core i5-3350P, 3.10 GHz
– 16GB RAM
– openSUSE 12.2, 64bit
– Matlab 2013a
– NVIDIA GeForce GTX 770, 4095MB, Driver Version: 340.46

– CUDA Toolkit 6.5
– GCC 4.7.1
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2.6 Performance evaluation

2.6.1 Reconstruction times

The main focus of this work is the implementation of a fast and flexible dMRI re-
construction solution. Hence, the most important evaluation criterion is the overall
reconstruction time of the algorithm considering differently scaled and acquired input
data sets.

The reconstruction times of the three dMRI regularization functions (TV, TGV2, ICTGV)
were recorded separately for the initialization and the algorithmic reconstruction parts.
The times have been evaluated by the use of C++ system timers and by using MAT-
LAB’s tic− toc timing functions respectively.

2.6.2 Convergence

In order to be able to analyze the convergence behavior depending on the regularization
method and the acceleration factor, the primal-dual gap was evaluated at every 10
iterations during reconstruction.

2.6.3 Reference implementation

The CPU reference solution consists of a MATLAB package, fully capable to reconstruct
the mentioned regularization and precomputation steps and is the result of the work
presented in [34]. Non-Cartesian Fourier transformations are implemented by using
the well-known nonuniform FFT MATLAB toolbox (NUFFT, [22]) and an identical
parameter configuration (Table 2.1) has been applied in both the CPU and GPU
reconstructions. Both CPU and GPU reconstructions have been performed in single
precision floating point format.

In order to give an estimate of the similarity of the GPU and CPU reconstruction the
root mean square error (RMSE) of the normalized difference images is computed as:

RMSE(x, y) =

√√√√√ N
∑

k=1
|xk − yk|2

N
(2.36)
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2.7 Test Data Sets

For evaluation purposes of the reconstruction times for the CPU and GPU solutions,
the following Cartesian and non-Cartesian data sets were acquired and analyzed
with respect to different acceleration factors (R) on a whole-body MRI scanner (3T,
Skyra, Siemens Healthcare, Erlangen, Germany). The applied sequences are standard
sequences implemented by the manufacturer.

The acquired data sets have been converted with the ISMRMRD provided tool
siemens to ismrmrd2. Each data set is characterized by the shape of its trajectory, the
acceleration factor R, the number of coils (C), time frames (T) and slices (S), the amount
of phase encoding lines and readout (RO) samples per frame and the dimensions of the
reconstruction matrix size. All acquisitions have been performed automatically with
twofold oversampling in the readout direction, which has been removed automatically
in the raw data preparation step.

2.7.1 Cardiac CINE

CINE imaging is demonstrated with Cartesian and and non-Cartesian data sets. Both
have been acquired with different undersampling factors R. In case of Cartesian
acquisition this has been controlled by the TPAT (Siemens) factors R ∈ {1, 2, 4, 6, 8},
while R = 8 means that only every eighth line has been recorded. Radial data has
been undersampled by R ≈ {1, 2, 4, 8, 18}, which corresponds to the number of radial
spokes per frame as {216, 108, 54, 27, 12}. Table 2.5 summarizes the characteristics of
the cardiac CINE data sets.

2https://github.com/ismrmrd/siemens to ismrmrd
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Table 2.5: Overview of CINE imaging test data sets, characterized by number of encodings (Enc),
readouts (RO), coils (C) and frames (T).

Data Set Dimensions

Name Trajectory R
Enc/

Frame
RO/
Enc

C T
Total
Acq.

Recon
Matrix

CINEcart
Cartesian
TPAT

1 192 448 26 23 4.416

[224,186]
2 96 448 26 24 2.304

4 48 448 26 24 1.152

6 36 448 26 24 864

8 24 448 26 24 576

CINEradial Radial

1 216 448 26 22 4.752

[224,224]
2 108 448 26 22 2.376

4 60 448 26 22 1.320

8 24 448 26 22 528

18 12 448 26 22 264

2.7.2 DCE Perfusion

The DCE perfusion data set has been recorded as a fully sampled Cartesian k-space
for three simultaneously acquired slices. In order to allow a detailed comparison,
artificial TPAT undersampling R ∈ {1, 2, 4, 6, 8} has been applied in an additional data
preparation step. Table 2.6 contains the detailed data set descriptions.

Table 2.6: Overview of the DCE Perfusion test data sets, characterized by number of encodings (Enc),
readouts (RO), coils (C), frames (T) and slices (S).

Data Set Dimensions

Name Trajectory R
Enc/

Frame
RO/
Enc

C T S
Total
Acq.

Recon
Matrix

Per fcart
Cartesian
TPAT

1 128 256 5 70 3 26.880

[128,128]
2 64 256 5 70 3 13.440

4 32 256 5 70 3 6.720

6 22 256 5 70 3 4.620

8 16 256 5 70 3 3.360
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2.7.3 Raw Data Integration

Two extra data sets have been analyzed, aimed to show the capabilities of the built
software to support special vendor-specific accelerated acquisition techniques: Rectan-
gular FOV, Partial Fourier and Asymmetric Echo acquisition. Table 2.7 comprises the
acquisition details.

Table 2.7: Overview of the raw data integration test data sets, characterized by number of encodings
(Enc), readouts (RO), coils (C) and frames (T).

Data Set Dimensions

Name Trajectory R
Enc/

Frame
RO/
Enc

C T
Total
Acq.

Recon
Matrix

CINEp f
Cartesian TPAT,
Partial Fourier

8 24 448 26 24 577 [224,186]

CINEp f ,ae

Cartesian TPAT,
Partial Fourier,
Asym. Echo

8 24 352 26 25 601 [224,186]
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3.1 Cardiac CINE

The following section presents the reconstruction results for the Cardiac CINE data
sets CINEcart and CINEradial .

Figures 3.1 and 3.2 show reconstructed absolute coil sensitivities after the initialization
step for selected coils. The absolute values of three selected coils are depicted with
respect to different data subsampling factors R.

1

10

18

R = 1 R = 2 R = 4 R = 6 R = 8

Figure 3.1: Sample absolute coil images (rows) of the CINEcart data set for the coils 1, 10, 18. The
reconstructed absolute coil images are presented for different data subsampling factors R
(columns).

The Figures 3.3 -3.6 contain reconstructed frame images of the CINEcart and CINEradial data
sets with differently applied regularization methods (left column: TV, center: TGV,
right: ICTGV). The displayed image region of interest is zoomed as displayed in the
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1

10

18

R = 1 R = 2 R = 4 R = 8 R = 18

Figure 3.2: Sample absolute coil images (rows) of the CINEradial data set for the coils 1, 10, 18. The
reconstructed absolute coil images are presented for different data subsampling factors R
(columns).
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presented full reference frame. The basic undersampling artifacts are shown in a simple
reference image after direct sum-of-squares (SOS) reconstruction.

The results of the applied GPU reconstruction in contrast to the reference CPU solution
are presented as normalized absolute differences in Figures 3.7 and 3.8. Moreover, the
root-mean-square-error (RMSE) per frame is depicted as an additional error estimate.
The displayed differences are rescaled for better visibility.

3.1.1 Reconstruction Times

The comparisons of the initialization and reconstruction times are given in Figures 3.9
and 3.10. Each figure shows the CPU and GPU initialization times and speedup in
the left column and the reconstruction times and reconstruction speedups in the
right column. Table 3.1 summarizes the reconstruction times and speedups for the
CINEcart data set for all applied undersampling factors R.

3.1.2 PD Gaps

In order to show the convergence of the GPU and CPU algorithms, the progress of
the Primal Dual Gap (PD-Gap) during the reconstruction of the CINEcart (left column)
and the CINEradial (right colum) data sets with different regularization methods is
depicted in Figure 3.11. The plot is drawn logarithmically and as a reference the
O(1/N) function is additionally shown.
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Full reference frame     

5

SOS recon     

5

CINE TPAT reconstruction, R=1

5

8

11

14

17

ICTGV2 TGV2 TV

Figure 3.3: Reconstructed frame images (rows) of the CINEcart data set with differently applied regu-
larization methods (left: ICTGV, center: TGV, right: TV). The displayed image region of
interest is zoomed as displayed in the full reference frame (top left). The basic undersampling
artifacts are shown in the SOS reference image (bottom left).
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Full reference frame     

5

SOS recon     

5

CINE TPAT reconstruction, R=4

5

8
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14

17

ICTGV2 TGV2 TV

Figure 3.4: Reconstructed frame images (rows) of the CINEcart data (R = 4) set with differently applied
regularization methods (left: ICTGV, center: TGV, right: TV). The displayed image region of
interest is zoomed as displayed in the full reference frame (top left). The basic undersampling
artifacts are shown in the SOS reference image (bottom left).
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Full reference frame     

5

SOS recon     

5

CINE Radial reconstruction, R=1
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14

17

ICTGV2 TGV2 TV

Figure 3.5: Reconstructed frame images (rows) of the CINEradial data set with differently applied reg-
ularization methods (left: ICTGV, center: TGV, right: TV). The displayed image region of
interest is zoomed as displayed in the full reference frame (top left). The basic undersampling
artifacts are shown in the SOS reference image (bottom left).
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Full reference frame     

5

SOS recon     

5

CINE Radial reconstruction, R=8

5
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11

14

17

ICTGV2 TGV2 TV

Figure 3.6: Reconstructed frame images (rows) of the CINEradial (R = 8) data set with differently applied
regularization methods (left: ICTGV, center: TGV, right: TV). The displayed image region of
interest is zoomed as displayed in the full reference frame (top left). The basic undersampling
artifacts are shown in the SOS reference image (bottom left).
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CINE TPAT absolute normalized difference GPU−CPU, R=1

5

8

11

14

17

ICTGV2 TGV2 TV

RMSE=1.3e−04 RMSE=5.7e−06 RMSE=5.8e−06

RMSE=1.4e−04 RMSE=5.7e−06 RMSE=5.7e−06

RMSE=1.5e−04 RMSE=5.7e−06 RMSE=5.8e−06

RMSE=1.4e−04 RMSE=5.8e−06 RMSE=5.8e−06
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Figure 3.7: Comparison of CPU and GPU reconstructions of the CINEcart data set with different regular-
ization methods (left: ICTGV, center: TGV, right: TV). The differences are given for selected
frames (rows) and rescaled for better visibility and the RMSE is depicted.
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Figure 3.8: Comparison of CPU and GPU reconstructions of the CINEradial data set with different
regularization methods (left: ICTGV, center: TGV, right: TV). The differences are given for
selected frames (rows) and rescaled for better visibility and the RMSE is depicted.
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Figure 3.9: Cardiac CINE TPAT: Initialization (left) and reconstructions times (right) for the CPU (top
row) and GPU (middle row) algorithms depending on the data subsampling factor R. The
speedup against the subsampling factor is depicted as ratio between CPU and GPU in the
bottom row.
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Figure 3.10: Cardiac CINE radial: Initialization (left) and reconstructions times (right) for the CPU (top
row) and GPU (middle row) algorithms depending on the data subsampling factor R. The
speedup against the subsampling factor is depicted as ratio between CPU and GPU in the
bottom row.
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Figure 3.11: Development of the PD-Gap per iteration during the CPU and GPU reconstruction of the
CINEcart (left) and the CINEradial (right) data sets with different regularization methods
(rows). The Gap is plotted on a logarithmic scale.
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3.1.3 Reconstruction Times Summary

Table 3.1: CPU and GPU computation times and speedup factors (SU) for coil reconstruction and TV, TGV and ICTGV regularization methods for
CINEcart and CINEradial test cases. Speedup factor (SU) as ratio between CPU and GPU times.

Coil TV TGV ICTGV

Data Set R CPU GPU SU CPU GPU SU CPU GPU SU CPU GPU SU

- s s - s s - s s - s s -

CINEcart

1 217.0 26.0 8.3 778.4 60.7 12.8 1 028.5 65.9 15.6 1 511.3 73.2 20.7

2 194.2 21.5 9.0 787.9 63.4 12.4 1 053.0 68.7 15.3 1 559.9 76.3 20.5

4 183.0 19.3 9.5 779.4 63.3 12.3 1 046.5 68.8 15.2 1 539.4 76.3 20.1

6 177.9 18.3 9.7 775.4 63.3 12.3 1 050.7 68.8 15.3 1 541.3 76.2 20.2

8 175.9 17.9 9.9 772.6 63.3 12.2 1 041.1 68.7 15.2 1 538.5 76.3 20.2

CINEradial

1 462.8 48.4 9.6 5 862.5 392.9 14.9 6 210.8 398.6 15.6 6 656.2 400.2 16.6

2 437.9 40.5 10.8 4 378.6 336.1 13.0 4 754.3 344.9 13.8 5 151.3 348.4 14.8

4 418.1 37.5 11.2 3 724.5 310.0 12.0 4 015.2 317.0 12.7 4 475.4 323.7 13.8

6 412.4 34.8 11.9 3 240.0 261.0 12.4 3 547.4 266.9 13.3 4 022.1 275.7 14.6

8 432.0 40.4 10.7 3 060.5 236.2 13.0 3 402.2 243.0 14.0 3 815.3 250.4 15.2
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3.2 DCE Perfusion

The following section presents the reconstruction results for the DCE Perfusion data
set Per fcart . Figure 3.12 shows reconstructed absolute coil sensitivities after the initial-
ization step for selected coils. The absolute values of three selected coils are depicted
with respect to different data subsampling factors R.

1

3

5

R = 1 R = 2 R = 4 R = 6 R = 8

Figure 3.12: Sample absolute coil images (rows) of the Per fcart data set for the coils 1, 3, 5. The re-
constructed absolute coil images are presented for different data subsampling factors R
(columns).

The Figures 3.13 and 3.14 contain reconstructed frame images of the Per fcart data sets
with differently applied regularization methods (left: ICTGV, center: TGV, right: TV).
The displayed image region of interest is zoomed as displayed in the presented full
reference frame and the undersampling artifacts due to the acquisition strategy are
shown in a simple reference image after direct sum-of-squares (SOS) reconstruction.

The results of the applied GPU reconstruction in contrast to the reference CPU solu-
tion are presented as normalized absolute differences in Figures 3.15 and the root-
mean-square-error (RMSE) per frame is depicted as an additional error estimate. The
displayed differences are rescaled for better visibility.
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Figure 3.13: Reconstructed frame images (rows) of the Per fcart data set with differently applied regu-
larization methods (left: ICTGV, center: TGV, right: TV). The displayed image region of
interest is zoomed as displayed in the full reference frame (top left). The basic undersam-
pling artifacts are shown in the SOS reference image (bottom left).
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Figure 3.14: Reconstructed frame images (rows) of the Per fcart (R = 4) data set with differently applied
regularization methods (left: ICTGV, center: TGV, right: TV). The displayed image region of
interest is zoomed as displayed in the full reference frame (top left). The basic undersampling
artifacts are shown in the SOS reference image (bottom left).

57



3 Results

Perfusion TPAT absolute normalized difference GPU−CPU, R=1, slice=0

15

20

22

30

55

ICTGV2 TGV2 TV

RMSE=1.1e−05 RMSE=6.3e−06 RMSE=6.2e−06

RMSE=1.1e−05 RMSE=6.3e−06 RMSE=6.2e−06

RMSE=1.2e−05 RMSE=6.8e−06 RMSE=6.4e−06

RMSE=1.1e−05 RMSE=8.0e−06 RMSE=7.8e−06

RMSE=1.1e−05 RMSE=8.4e−06 RMSE=8.4e−06

Figure 3.15: Comparison of CPU and GPU reconstructions of the Per fcart data set with different reg-
ularization methods (left: ICTGV, center: TGV, right: TV). The differences are given for
selected frames (rows) and rescaled for better visibility and the RMSE is depicted.
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3.2.1 Reconstruction Times

The comparisons of the initialization and reconstruction times for one slice are given
in Figure 3.16. Each figure shows the CPU and GPU initialization times and speedup
in the left column and the reconstruction times and reconstruction speedups in the
right column. Table 3.2 summarizes the reconstruction times and speedups for the
Per fcart data set for all applied undersampling factors R and slices.

3.2.2 PD Gaps

In order to show the convergence of the GPU and CPU algorithms, the progress
of the Primal Dual Gap (PD-Gap) during the reconstruction of the Per fcart data sets
with different regularization methods is depicted in Figure 3.17. The plot is drawn
logarithmically and as a reference the O(1/N) function is additionally shown.
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Figure 3.16: DCE perfusion test case: Initialization (left) and reconstructions times (right) for the CPU
(top row) and GPU (middle row) algorithms depending on the data subsampling factor R.
The speedup against the subsampling factor is depicted as ratio between CPU and GPU in
the bottom row.
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Figure 3.17: Development of the PD-Gap per iteration during the CPU and GPU reconstruction of
the Per fcart data set with different regularization methods (rows). The Gap is plotted on a
logarithmic scale.
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3.2.3 Reconstruction Times Summary

Table 3.2: CPU and GPU computation times and speedup factors (SU) for coil reconstruction and TV, TGV and ICTGV regularization methods for all
slices of the Per fcart test case. Speedup factor (SU) as ratio between CPU and GPU times.

Coil Recon TV TGV ICTGV

Data Set R CPU GPU SU CPU GPU SU CPU GPU SU CPU GPU SU

- s s - s s - s s - s s -

Per fcart

slice 0

1 73.0 10.5 6.9 261.0 15.1 17.3 614.9 20.9 29.5 1 138.2 28.8 39.6

2 44.5 9.2 4.8 256.0 15.2 16.8 625.5 21.0 29.9 1 150.8 28.8 39.9

4 30.1 8.6 3.5 257.7 15.0 17.2 594.3 20.9 28.4 1 138.2 28.8 39.6

6 25.5 8.3 3.0 246.2 15.2 16.2 598.2 21.0 28.5 1 128.6 28.5 39.6

8 23.2 8.2 2.8 259.1 15.1 17.2 588.9 21.0 28.1 1 160.2 28.6 40.6

Per fcart

slice 1

1 71.1 10.6 6.7 257.3 15.2 16.9 609.6 20.9 29.2 1 175.4 28.8 40.8

2 44.2 9.2 4.8 244.2 15.0 16.3 592.0 20.9 28.3 1 122.9 28.9 38.8

4 30.1 8.5 3.5 256.4 15.0 17.1 590.3 20.8 28.4 1 124.1 28.8 39.0

6 25.8 8.3 3.1 257.1 15.0 17.1 578.8 20.9 27.7 1 119.4 28.6 39.2

8 23.4 8.1 2.9 246.9 15.1 16.4 590.0 20.9 28.2 1 144.7 28.7 39.9

Per fcart

slice 2

1 71.1 10.5 6.7 271.4 15.0 18.0 635.2 21.1 30.2 1 102.7 28.7 38.5

2 43.8 9.2 4.7 261.1 15.2 17.2 615.2 20.9 29.4 1 102.9 28.8 38.3

4 30.4 8.5 3.6 239.9 15.1 15.9 649.0 20.8 31.2 1 115.4 28.7 38.8

6 25.7 8.3 3.0 236.5 15.1 15.6 660.3 20.8 31.7 1 161.3 28.9 40.2

8 23.3 8.2 2.9 234.3 15.2 15.4 727.0 20.9 34.8 1 119.4 28.7 39.0
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3.3 Raw Data Integration

The reconstructed frame images of the CINEp f and CINEp f ,ae data sets with differently
applied ICTGV, TGV and TV regularization methods are shown in Figures 3.18

and 3.19. The displayed image region of interest is zoomed as displayed in the presented
full reference frame.
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Figure 3.18: Reconstructed frame images (rows) of the CINEp f data set with differently applied regu-
larization methods (left: ICTGV, center: TGV, right: TV). The displayed image region of
interest is zoomed as displayed in the full reference frame (middle left).
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Figure 3.19: Reconstructed frame images (rows) of the CINEp f ,ae data set with differently applied
regularization methods (left: ICTGV, center: TGV, right: TV). The displayed image region
of interest is zoomed as displayed in the full reference frame (middle left).
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4 Discussion

4.1 Reconstruction performance

According to the results presented in Section 3, Page 42, it can be seen that a significant
speedup between CPU and GPU is reached in comparing both the initialization and
the reconstruction times. Depending on the data set, speedup factors from 10-20 in
case of cardiac CINE imaging and 15-40 in case of DCE perfusion imaging can be
reached.

4.1.1 Initialization

A possible maximum speedup of the initialization phase of approx. 10 can be seen,
which enables fast and independent estimations of coil sensitivities. The coil images
presented in Figures 3.1, 3.2 and 3.12 depict that the method results in a very robust
estimation of sensitivities, also in case of large undersampling factors.

In common, the results depend on the time averaged coverage of k-space during
all acquisitions. In case of shifted TPAT (CINEcart and Per fcart ) a nearly 100 percent
coverage can be reached, whereas the acquisition of the CINEradial data set did not
employ a shifted or rotated pattern, resulting in notable defective coil estimations at
larger undersampling factors.

The initialization effort basically depends on the total amount of acquired data, because
every single acquisition is prepared accordingly and hence the computation time
decreases depending on the undersampling factor. Except the initialization of the
radial data set slightly increases at R = 18 (Figure 3.10), because of an increased
regularization effort (amount of iterations until convergence) during the coil estimation
process.
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4.1.2 Cardiac CINE

Reconstruction times

The Cardiac CINE overall ICTGV GPU reconstruction times (Table 3.1) of less than 2
minutes for Cartesian and less than 10 minutes for the non-Cartesian data set compared
to 30 minutes and 2 hours on the CPU respectively, show that the presented algorithm
allows reconstructions within the limits of clinical feasibility.

The largest speedup between CPU and GPU can be observed for the ICTGV recon-
structions with a factor of 20 (Figure 3.3). The computational complexity leads to the
best GPU utilization, in contrast to for example the less complex TV regularization,
where the required effort is minor compared to synchronization and memory access
costs.

Impact of undersampling

The TPAT undersampling factor has nearly no impact on the reconstruction times
presented in Figure 3.9, since all operations of the MR operator, e.g. point-wise scaling
or FFT, are based on the same matrix dimensions. It can be seen that the reconstruction
of the fully sampled data set R = 1 is slightly faster, because the applied acquisition
sequence only captured 23 compared to 24 frames (see Table 2.5).

In contrast, the radial CINE reconstruction times show a dependency on the sub-
sampling factor (Figure 3.10), since basically the Gridding step (interpolation) in the
non-uniform FFT computation is depending on the total amount of k-space samples.

Image reconstruction

The presented frame images of the CINE test sets show qualitatively good perfor-
mances of the TV, TGV and ICTGV reconstructions, while ICTGV and TGV provide
superior image quality and method-given less staircasing artifacts compared to the TV
regularized images.

Less spatial resolution can be observed in the radial results, due to the above mentioned
missing rotation in the acquisition pattern, no homogeneous coverage of the k-space
has been recorded during time. A detailed image quality and parameter comparison
has not been focus of this work and thus is topic of current research, like in [17].
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The presented difference images in Figure 3.7 furthermore confirm the equivalence of
the CPU and GPU reconstructions and show that the maximum RMSE is negligible in
terms of the data scale of [0, 255].

PD Gap

The PD Gap progression in Figure 3.11 shows that both CPU and GPU reconstructions
converge at the same rate and thus can been seen as computationally equivalent within
the floating point precision. The TV reconstruction shows the fastest progress and
after about 200 iterations convergence within the numerical limits. The comparison to
the theoretical O(1/N) convergence rate [18] shows that all algorithms are basically
well formulated on the presented data sets.

The radial data set shows different behavior, due to numerically different implementa-
tions between gpuNUFFT and the Fessler NUFFT. Both methods are self-adjoint, but
the numerical results are not normalized in case of gpuNUFFT, leading to differently
adapted step sizes during reconstruction. This may also be the cause that the PD Gap
slightly exceeds the O(1/N) limit during the iterations.

4.1.3 DCE Perfusion

Reconstruction times

The DCE Perfusion ICTGV GPU reconstruction times for all three slices (Table 3.2) are
less than 2 minutes, compared to approx. 1 hour on the CPU, and also support the
clinical feasibility of the presented method.

In case of DCE Perfusion imaging, multiple slices (views) and a large amount of time
frames have to be acquired, in order to guarantee the total capture of the contrast
dynamics in the imaged region.

The data set description in Table 2.6 shows that this large temporal resolution can
only be achieved by reduction of the spatial resolution leading to small reconstructed
matrix sizes of [128, 128]. Therefore and the fact that less receiver coils have been used,
considerably fast overall reconstruction times can be reached.
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Impact of undersampling

Similarly to the results of the Cardiac CINE TPAT data sets, no strict dependency
on the undersampling factor can be observed in the overall reconstruction times
(Figure 3.16).

Image reconstruction

The reconstructed frame images show a good quality at TV, TGV and ICTGV recon-
structions, although artifacts are slightly more manifested in case of undersampled
reconstruction (Figure 3.14). Again, staircasing artifacts are more perceptible in the TV
reconstruction images.

PD Gap

The PD Gap progress also shows identical convergence of the CPU and GPU recon-
structions and the resulting difference images prove equality within floating point
precision.

4.2 Integration

The easy integration of any vendor specific raw data played a crucial role during
development. In order to support arbitrary vendor data, the ISMRMRD raw data and
interchange format has been selected, since it already provides predefined conversion
scripts to transform arbitrary data to the standardized file format.

The file format uniformly encapsulates any required meta information, hence it is
possible to describe every kind of (vendor-specific) accelerated raw data acquisition.

The two integration tests presented in Figures 3.18 and 3.19 show that Siemens acquired
raw data with encoded Asymmetric Echoes, Partial Fourier and Rectangular FOV
acceleration is supported and can be reconstructed with the presented software.
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4.3 Implementation

As mentioned above, the primary C++ framework used in this work is the AGILE
library, which is a well-defined CUDA template library with support for basic linear
algebra functions. Furthermore, basic algorithms such as CG reconstructions, 2D
forward/backward differences have already been integrated into the library. The
modularity of the library allowed an easy expansion to the 3D case, and the benefit of
reusable code in an already defined library structure.

Despite this, the AGILE data format is not sufficient for the requirements to describe
the complex acquired raw data completely, since AGILE binary vectors do not support
any additional meta information, for example to encode the data dimensions. Therefore,
the use of the ISRMRMRD C++ library extends the framework very well and allows to
scale the information arbitrarily, where no limits of meta information are given, due to
the hierarchical data structure of h5 files. Furthermore, a built-in Matlab support for
h5 files is given, which allows easy import/export functionality for existing Matlab
projects and data sets.

The non-uniform FFT operator is computed by utilizing the gpuNUFFT library, which
was seamlessly integrated to the reconstruction pipeline by the use of the provided
generic C++ API.

The industry standard DICOM is supported as further output format, to provide
subsequent console services with reconstruction images in the corresponding format.
The DICOM files are generated by AGILE functionality.

4.4 Limitations and Outlook

As mentioned above the software presented in this work is currently only supported
on Linux platforms. In order to being able to run on alternative operating systems, a
port of the AGILE and other dependencies would be necessary.

Memory

The basic limitation for the use of the software is given by the required amount of
global GPU device memory, which can be derived by the problem dimensions and
the size of the acquired raw data. Table 2.4 shows the minimum amount of GPU
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memory required for a given problem dimension. Currently, it is necessary that the
whole problem solver (primal and dual vectors) and reconstruction data fits inside
GPU memory.

It can be seen that the ICTGV PD method requires about 1.5 times the memory of the
TV solver, nevertheless, the presented clinical protocols for cardiac CINE and DCE
perfusion could be reconstructed without limitations.

A possible extension to support larger data sets or even 3D-t multi-coil datasets
may exceed the available memory on current GPU models. It may be an interesting
task to adapt the software to also support huge datasets, by only performing active
computations on the GPU and by utilizing so-called streams to overlap memory-
transfer operations and active computations.

Performance

The main bottleneck of performance in case of non-Cartesian imaging is the evaluation
of the non-uniform FFT. The gpuNUFFT provides good results, although it is not
perfectly optimized for 2D reconstructions. The method has been initially designed
for large 3D datasets, and is implemented to perform the Gridding step in a memory-
optimized online fashion. In contrast, less memory-intensive 2D data would allow to
totally precompute the Gridding interpolation and keep the results on the GPU.

This would lead to less online computational effort and the precomputed interpolation
values could be reusable especially for multi-coil data sets. This may further enhance
the overall non-Cartesian reconstruction times.

Furthermore, the gpuNUFFT is not yet designed for temporal datasets, hence currently
one gpuNUFFT instance has to be initialized per time frame, which leads to an extra
memory overload. It may be interesting to extend the gpuNUFFT, in order to support
time space data sets (2D-t) and to perform operations simultaneously on multiple time
frames or in batched manner, like batched FFT computation, see [29] for more details.
This may also hold for the FFT computation per frame for Cartesian data sets.

Online computation

The software provides an extensive C++ API, which would basically allow the integra-
tion into an online reconstruction pipeline, like the Yarra framework or the Gadgetron
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4 Discussion

pipeline [35], [36]. Moreover, the existing project may further be extended to be used as
a ICTGV, TGV or TV undersampled reconstruction framework for time-independent
pure 3D data sets.

The presented work allows fast reconstruction times of very challenging imaging
modalities, as has been shown in the results section. The necessary reconstruction
times are within clinical feasible limits and may lead to shortened cardiac protocols
and hence to reductions of patient ”table-times” in practice. In conclusion it can be
noted that the software is ready to accelerate further research in the interesting field
of dynamic MRI and to support the studies of the novel regularization concept of
ICTGV.
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Algorithms

Algorithm 7 CG algorithm to solve linear system of equations
1: Initialize:
2: x0 = 0, r0 = b, p0 = r

3: while ‖rn‖ > tol do:
4: αn ← rT

n · rn
pT

n · A · pn

5: xn+1 ← xn + αn · pn

6: rn+1 ← rn − αn · A · pn

7: βn ← rT
n+1· rn+1

rT
n · rn

8: pn+1 ← rn+1 + βn · pn

Code snippets

AGILE binary import/export

Listing 1: Import and export of AGILE binary format using MATLAB

1 %read AGILE binary file

2 addpath(’/path/to/AGILE/include/agile/io’);

3 data = readbin vector(’ictgv recon 384 384 42.bin’);

4 % reshape to problem dimensions

5 % and compensate column−major(Matlab)/row−major (CPP) order

6 data = permute(reshape(data, [384 384 42]),[2 1 3]);

7

8 %write AGILE binary file

9 %again convert column−major to row−major order

10 writebin vector(permute(data,[2 1 3]),’test.bin’);

ISMRMRD (h5) import/export

Listing 2: Import and export of H5 (ISMRMRD) format using MATLAB

1 % Load H5 file and ISMRMRD meta information

2 filename = ’/path/to/ISMRMRDfile.h5’;

3 header = ismrmrd header2struct(h5read(filename,’/dataset/xml’));

4 % Pull Matrix size from header

5 Nx = str2num(header.encoding.reconSpace.matrixSize.x.Text);

6 Ny = str2num(header.encoding.reconSpace.matrixSize.y.Text);

7

8 % Read the raw data
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9 raw data = h5read(filename,’/dataset/data’);

10

11 % Write h5 file

12 h5write(’test recon.h5’,’/dataset/recon’,recon);

Source Code

The software created in this work is available as open-source on the community
platform GitHub:

https://github.com/IMTtugraz/AVIONIC

Installation

Basically, the software can be compiled by using the CMake utility. The project has the
following external dependencies:

– CMAKE 2.8
– CUDA Toolkit
– g++
– gpuNUFFT
– GoogleTest (Testing framework)
– Doxygen (for code docs)
– DCMTK (DICOM generation)

For more build instructions follow the README on the code repository.

Program Usage

Usage: avionic [options] [-d w:h:nRO:nEnc:c:f \

<kdata> <mask/traj> | -r <rawdata>] <output>

Required:

Either: -d problem dimensions (see below)

kdata acquired k-space data file

mask/traj k-space sampling pattern (trajectory)
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or: -r enable raw data import (see below)

rawdata acquired rawdata file/directory

output reconstructed output image

Allowed options:

-h [ --help ] show help message

-g [ --debugstep ] arg (=10) flag to export PDGap

-v [ --verbose ] verbose console output

-d [ --dims ] arg Data dimensions conforming to

width:height:readouts:enc:coils:frames

-n [ --nonuniform ] flag to indicate nonuniform data

-e [ --extradata ] flag to enable export of additional

result data

-a [ --adaptlambda ] flag to enable dynamic adaptation of

lambda depending on [adaptlambda]

configuration paramters (k,d)

-w [ --dens ] arg density compensation data.

-p [ --params ] arg parameter configuration file

-s [ --sens ] arg coil sensitivity data.

-u [ --uzero ] arg initial image u0.

-r [ --rawdata ] flag to indicate raw data import

-f [ --forceOSRemoval ] flag to force OS removal in raw data

preparation

-t [ --tpat ] arg (=1) artifical TPAT interleave

-z [ --slice ] arg (=0) slice to reconstruct

Example usage

Perform reconstruction (sensitivity estimation and ICTGV reconstruction) on pure
ISMRMRD raw data file - enable automatic adaptation of lambda parameter ’-a’:

./avionic -r path/to/data/test_tpat.h5 -a result_tpat.h5

Perform reconstruction (sensitivity estimation and ICTGV reconstruction) on pure
radial ’-n’ ISMRMRD raw data file and store result as DICOM file. Enable automatic
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adaptation of lambda parameter ’-a’, pass parameter to use configuration file for
non-Cartesian reconstruction ’-p’ and explicitly overwrite parameter ’coil.uH1mu’:

./avionic -r path/to/data/test_radial.h5 -a -n -p default_noncart.cfg \

--coil.uH1mu=5E-1 result_tpat.dcm

Perform TGV2 reconstruction based on AGILE binary vectors (e.g. exported from
Matlab data) by passing the problem dimensions ’-d’, the required sensitivities ’-s’,
density compensation ’-w’, u0 estimate ’-u’ and the required kspace data and trajectory
vectors:

./avionic -d 384:384:384:14:12:42 -n -s b1.bin -w w.bin -u u0.bin \

--maxIt 500 -p default_noncart.cfg -m TGV2 \

data.bin trajectory.bin output.bin

Example source code

Example usage of raw data preparation

Listing 3: Raw data preparation

1 void PerformRawDataPreparation(Dimension &dims, OptionsParser &op,

2 CVector &kdata, RVector &mask,

3 RVector &w)

4 {
5 bool completeData = true; //check for asymmetric echoes

6 //and partial fourier

7 bool removeReadOutOS = true;//remove readout oversampling

8 bool normalizeData = true;//normalize raw data

9 bool applyChop = true;//prepare cartesian data with chop function

10

11 RawDataPreparation rdp(op, completeData, removeReadOutOS,

12 normalizeData, applyChop);

13

14 std::cout << ”INFO: Loading RAW data from file/directory: ”

15 << op.kdataFilename << std::endl;

16 std::string outputDir = utils::GetParentDirectory(op.outputFilename);

17

18 rdp.PrepareRawData(kdata, mask, w, dims);

19

20 // Extract dicom raw data and prepare it

21 if (op.nonuniform)

22 {
23 ExportAdditionalResultsToMatlabBin(outputDir.c str(), ”w.bin”, w);

24 }
25

26 ExportAdditionalResultsToMatlabBin(outputDir.c str(), ”mask.bin”, mask);

27 ExportAdditionalResultsToMatlabBin(outputDir.c str(), ”kdata.bin”, kdata);

28 }

Example usage of Cartesian and non-Cartesian coil construction

Listing 4: Coil construction

1 void PerformCartesianCoilConstruction(Dimension &dims, OptionsParser &op,

2 CVector &kdata, CVector &u,

3 CVector &b1, RVector &mask,

4 communicator type &com)

5 {
6 // Create MR Operator

7 CartesianOperator ∗cartOp = new CartesianOperator(

8 dims.width, dims.height, dims.coils, dims.frames, mask, false);

9 CartesianCoilConstruction coilConstruction(

10 dims.width, dims.height, dims.coils, dims.frames, op.coilParams, cartOp);

11 coilConstruction.SetVerbose(op.verbose);

12

13 coilConstruction.PerformCoilConstruction(kdata, u, b1, com);

14 delete cartOp;

15 }
16

17

18

19 void PerformNonCartesianCoilConstruction(Dimension &dims, OptionsParser &op,

20 CVector &kdata, CVector &u,

21 CVector &b1, RVector &mask,
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22 RVector &w, communicator type &com)

23 {
24 unsigned nFE = dims.readouts;

25 unsigned spokesPerFrame = dims.encodings;

26 unsigned int nTraj = dims.frames ∗ spokesPerFrame ∗ nFE;

27

28 NoncartesianOperator ∗noncartOp = new NoncartesianOperator(

29 dims.width, dims.height, dims.coils, dims.frames,

30 spokesPerFrame ∗ dims.frames, nFE, spokesPerFrame, mask, w);

31

32 NoncartesianCoilConstruction nonCartCoilConstruction(

33 dims.width, dims.height, dims.coils, dims.frames, op.coilParams,

34 noncartOp);

35

36 nonCartCoilConstruction.SetVerbose(op.verbose);

37 nonCartCoilConstruction.PerformCoilConstruction(kdata, u, b1, com);

38 delete noncartOp;

39 }

Example usage of ICTGV PD solver

Listing 5: ICTGV solver usage
1 agile::GPUEnvironment::allocateGPU(0);

2 agile::GPUEnvironment::printInformation(std::cout);

3 agile::GPUEnvironment::printUsage(std::cout);

4

5 unsigned int height = 384;

6 unsigned int width = 384;

7 unsigned int coils = 12;

8 unsigned int frames = 42;

9

10 unsigned int nFE = 384;

11 unsigned int nSpokesPerFrame = 14;

12 unsigned int N = width ∗ height ∗ frames;

13

14 // data

15 std::vector<CType> data;

16 agile::readVectorFile(”data 384 14 12 42.bin”, data);

17 CVector data gpu(nFE ∗ nSpokesPerFrame ∗ frames ∗ coils);

18 data gpu.assignFromHost(data.begin(), data.end());

19

20 // b1 map

21 std::vector<CType> b1;

22 agile::readVectorFile(”b1 384 384 12.bin”, b1);

23 CVector b1 gpu(width ∗ height ∗ coils);

24 b1 gpu.assignFromHost(b1.begin(), b1.end());

25

26 // kspace mask

27 std::vector<RType> traj;

28 agile::readVectorFile(”mask 384 14 42.bin”, traj);

29 unsigned int nTraj = frames ∗ nSpokesPerFrame ∗ nFE;

30 RVector ktraj(2 ∗ nTraj); // x + y coord

31 ktraj.assignFromHost(traj.begin(), traj.end());

32

33 // density data

34 std::vector<RType> wHost;

35 agile::readVectorFile(”w 384 14 42.bin, wHost);

36 RVector w(nTraj);

37 w.assignFromHost(wHost.begin(), wHost.end());

38

39 // u0

40 std::vector<CType> u0;

41 agile::readVectorFile(”u0 384 384.bin”, u0);

42 CVector u0 gpu(width ∗ height);

43 u0 gpu.assignFromHost(u0.begin(), u0.end());

44

45 CVector x gpu(N);

46 for (unsigned frame = 0; frame < frames; frame++)

47 {
48 agile::lowlevel::scale(1.0f, u0 gpu.data(),

49 x gpu.data() + frame ∗ width ∗ height,

50 width ∗ height);

51 }
52

53 BaseOperator ∗nonCartOp = new NoncartesianOperator(

54 width, height, coils, frames, nSpokesPerFrame ∗ frames, nFE,

55 nSpokesPerFrame, ktraj, w, b1 gpu);

56

57 ICTGV2 ictgv2Solver(width, height, coils, frames, nonCartOp);

58

59 ictgv2Solver.SetVerbose(true);

60 ictgv2Solver.IterativeReconstruction(data gpu, x gpu, b1 gpu);

61

62 // get result

63 std::vector<CType> result(N);

64 x gpu.copyToHost(result);

65

66 agile::writeVectorFile(”ictgv recon.bin”, result);

67 delete nonCartOp;
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