
Dipl.-Ing. Harald Kraus

Development of an Operation Strategy

for Plug-in Hybrid Electric Vehicles

Long-term Prediction and Adaptation based on

Past Vehicle and Driver Data

Doctoral Thesis

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisors:

Assoc.Prof. Dipl.-Ing. Dr.techn. Arno Eichberger

Institute of Automotive Engineering, Graz University of Technology

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eranda Dragoti-Cela

Department of Optimization and Discrete Mathematics, Graz University of Technology

Graz, May 2016









Acknowledgement

The present thesis was part of my work as a scientific project researcher at the Institute
of Automotive Engineering at Graz University of Technology, Austria. The project was
conducted in cooperation with MAGNA Powertrain AG & Co KG Albersdorf, and I
would like to thank all people involved in this project.

Many people contributed to this work. First of all, I want to thank Univ.-Prof.i.R.
Wolfgang Hirschberg, the former head of the institute, who convinced me to start my
scientific career there.

I would also like to express my heartfelt gratitude to my supervisor, Assoc.Prof. Arno
Eichberger, for his outstanding support and guidance. In our time together, I have
developed a deep appreciation not only for his professional and leadership competence,
but for his social competence as well, and I have greatly enjoyed our collaboration.

I would also like to thank Ao.Univ.-Prof. Eranda Dragoti-Cela, who took the time to
assess the thesis and gave me valuable input for improving it.

Furthermore, I owe a debt of gratitude to Dipl.-Ing. Dr.techn. Jürgen Fabian and Dipl.-
Ing. Martin Ackerl for their valuable input, which improved my thesis. Without the
help of all my graduate students, the development of this work would not have been
possible. In particular, I personally want to thank Dipl.-Ing. Martin Hofstetter. Finally,
I am grateful to all members of the Institute of Automotive Engineering for the pleasant
atmosphere, the fertile environment and their friendly collaboration.

Of course, I am also deeply grateful for the unwavering support of my family, including
my parents, Hermine and Bernhard Kraus, who enabled me to study and supported
me whenever I needed it, as well as my sister, Claudia Kraus, and my grandmother,
Stefanie Mayr, who also contributed to this work. Thank you for your emotional and
mental support throughout the whole project.

Last but not least, my gratitude goes to all of my friends, each of whom contributed in
their own way to help me keep sight of the goal, find new motivation and finish my work.
Many thanks to all of them!

Harald Kraus
Graz, May 2016





Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature





Abstract

The automotive industry is facing significant pressure to drastically reduce in emissions
in the near future in order to meet evolving legal requirements for fuel efficiency and CO2

emissions. Alternative drivetrains, such as hybrid electric vehicles (HEVs), are regarded
as a promising technology to help meet these challenges.

In addition to drivetrain layout, energy management is a crucial factor for achieving low
emissions and high fuel efficiency. Expectations are high regarding two objectives that, at
first glance, seem to be in conflict: fuel efficiency and vehicle performance. Furthermore,
companies must grapple with the increasing difficulty of controlling HEVs that results
from the ever-growing drivetrain complexity.

The present thesis develops an innovative operation strategy for plug-in hybrid electric ve-
hicles (PHEVs), which simultaneously targets increased fuel efficiency and enhanced lon-
gitudinal vehicle performance by using advanced prediction and adaptation algorithms.
Based on three different control paths, a novel holistic energy management controller
that fulfils the driver demand at all times is introduced. This controller can account
for all routes within and beyond the all-electric range (AER), depending on the infor-
mation available. The core of this thesis is the novel prediction and adaptation (P&A)
algorithm, which makes it possible to gather, process and utilise driving data from the
driver’s previous trips in order to increase the long-term prediction accuracy. The al-
gorithm integrates fixed-position information (e.g., speed limits, route curvatures) with
the driver’s individual driving behaviour. Merging past individual driving data with
predicted information enables additional fuel savings for PHEVs in real-world driving
cycles.

Numerical simulations of the novel operation strategy have shown significant fuel sav-
ings up to 11% compared to conventional heuristic operation strategies, while efficiently
utilising the energy content of the battery in real-world driving cycles. Incorporating
individual driving styles into long-term prediction increases total longitudinal vehicle
power, and thereby driving pleasure and vehicle agility, while concurrently improving
fuel efficiency. Additional benefits should include increased customer acceptance, a
higher market share for HEVs, reduced CO2 emissions and other positive effects on
the drivetrain layout.





Kurzfassung

Die Automobilindustrie muss sich mittelfristig mit drastischen Emissionsreduktionen
auseinandersetzen, um künftige gesetzliche Anforderungen an Kraftstoffeffizienz und
CO2-Emissionen erfüllen zu können. Alternative Antriebe, wie z. B. Hybridfahrzeuge,
scheinen eine vielversprechende Technologie darzustellen, mit denen diesen Herausforde-
rungen entgegnet werden kann. Für die Gewährleistung niedriger Emissionen und hoher
Kraftstoffeffizienz spielt das Energiemanagement neben der Antriebsstrangtopologie eine
entscheidende Rolle. An die auf erstem Blick widersprüchlichen Entwicklungsziele des
Kraftstoffeinparungspotentials und der Fahrleistung werden ungeachtet der anspruchs-
vollen Regelung von Hybridfahrzeugen durch die gestiegene Antriebsstrangkomplexität
hohe Erwartungen gerichtet.

In der vorliegenden Arbeit wird eine innovative Betriebsstrategie für Plug-In Hybrid-
fahrzeuge (PHEVs) entwickelt, welche gleichzeitig die Kraftstoffeffizienz, aber auch die
Fahrleistung mittels zukunftsweisender Prädiktions- und Adaptionsalgorithmen steigert.
Ein innovatives, ganzheitliches Energiemanagement, das den Fahrerwunsch stets um-
setzt und auf drei unterschiedlichen Kontrollpfaden basiert, wird vorgestellt. Dieses
berücksichtigt sowohl Strecken innerhalb und außerhalb der rein elektrischen Reichweite
(AER). Die zentrale Funktion der innovativen Betriebsstrategie ist der Prädiktion &
Adaption (P&A) Algorithmus, der die Daten der letzten Fahrten sammelt, verarbeitet
und diese so einsetzt, dass sich die Genauigkeit der langfristigen Prädiktion erhöht. In-
frastrukturgebundene Informationen, wie etwa Geschwindigkeitsbeschränkungen oder
auch Kurvenverläufe, werden ebenso miteinbezogen wie das spezifische Fahrverhalten.
Die Verschmelzung vergangener, individueller Fahrdaten mit prädizierten Informationen
ermöglicht ein verbessertes Kraftstoffeinsparungspotential von Hybridfahrzeugen unter
realen Verkehrsbedingungen.

Numerische Simulationen der neuartigen Betriebsstrategie zeigen, dass durch intelli-
gentes Planen des Energieinhaltes der Batterie signifikate Verbrauchseinsparungen von
bis zu 11 %, verglichen mit einer konventionellen, heuristischen Betriebsstrategie, bei
Realfahrten erreicht werden können. Darüber hinaus ermöglicht das Miteinbeziehen des
individuellen Fahrstils in die langfristige Prädiktion gesteigerte Fahrzeuglängsdynamik
und daher auch mehr Fahrspaß sowie Fahrzeugagilität bei simultan verbesserter Kraft-
stoffeffizienz. Damit gehen steigende Kundenakzeptanz, höhere Marktanteile, reduzierte
CO2-Emissionen und weitere positive Auswirkungen auf das Antriebsstrangdesign ein-
her.
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1
Introduction

1.1. Background and Motivation

In recent years, there has been much debate about passenger vehicles within the automo-
tive industry, as well as among politicians, consumers and society at large. Individual
mobility is an integral part of modern society, and mobility is a key success factor of
economic growth that contributes significantly to quality of life [121]. Nevertheless, in-
dividual traffic is increasingly producing negative effects, such as pollutions and noise
exposure. Tightened fuel and emissions regulations, increased environmental awareness
and rising fossil fuel costs are spurring the development of environmentally friendly ve-
hicles.

Conventional gasoline or diesel-powered vehicles are still predominant [94], [184] due to
their relatively low costs, long driving range and high driving comfort. In Germany,
the total shares of diesel and gasoline-powered vehicles are approximately 31.2 % and
67.2 %. Only the small remainder of about 1.6 % are passenger vehicles with alternative
drivetrains [94]. The Austrian registration statistics in 2014 show a similar trend, but
diesel-driven vehicles have the biggest proportion (see Figure 1.1).

However, conventional drivetrain technology emits pollutants, such as carbon monoxide
(CO), carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons (HC) and particulate
matter (PM), and combustion also creates significant noise. Due to the advanced stage of
technical maturity, further improvements require proportionally high research effort and
costs. In addition to ongoing internal combustion engine (ICE) enhancements, original
equipment manufacturers (OEMs) are combining different approaches to increase the
overall vehicle efficiency and thus reduce the greenhouse gas (GHG) emitted. Common
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Figure 1.1.: Austrian statistics of newly registered motor vehicles in 2014 [11]

In 2014, 56.8 % of the newly registered passenger cars are propelled by diesel engines,
41.7 % are gasoline-driven, and only 1.5 % use alternative drivetrains, cf. Figure (a). Fig-
ure (b) shows the total share of alternative drivetrains. Hybrid electric vehicles (HEVs)
with gasoline are predominat (48.7 %), followed by battery electric vehicles (BEVs) with
28.9 %. The rest are alternative drivetrains with gasoline/ natural gas (bivalent) (11.5 %),
natural gas (6.3 %), diesel HEVs (4.4 %) and fuel cell electric vehicles (FCEV) with less
than 0.1 %.

approaches are reducing the total vehicle mass by intelligently combining different mate-
rials, improving the vehicle’s aerodynamic drag, lower the rolling resistance of tyres, and
increasing the overall drivetrain efficiency by minimising friction and conversion losses.
Despite significant advancements in recent years, conventional ICE-driven vehicles offer
low energy efficiencies.

In addition, vehicles with alternative drivetrain layouts offer high development potential.
They are able to improve energy efficiency and may reduce emissions. Hybrid electric
vehicles (HEVs) are one approach to cope with the aforementioned challenges. They
feature at least two different energy converters and two different energy storage systems
[140] – usually a combination of a conventional ICE-driven drivetrain with an electric
propulsion system. Partially recuperating the kinetic energy during braking and the
additional degree of freedom (DoF) enable significant fuel saving and reduced CO2 emis-
sions – fuel savings of about 10 % (depending on the route driven) have been reported
[127], [190], [214]. Since combining different propulsion technologies increases the sys-
tem complexity and the total weight of the vehicle, operation strategies that faciliate the
efficient coordination of the different propulsion units are crucial for all HEVs, in order
to exploit the maximum potential of such means of transport [183]. The development of
such operation strategies have kept OEMs and scientific researchers busy for years and
is still ongoing.

The development of energy-efficient drivetrain layouts is furthermore affected by a variety

2



1.1. Background and Motivation

of challenges, including those related to economic, social, ecological and political factors.
All of these reasons influence the development of vehicles with alternative drivetrains.

Economic drivers

Although the world demand for oil continues to increase, crude oil reserves are finite
and non-renewable. Figure 1.2(a) shows the steady increase of world oil demand for
different economic growth scenarios. Regardless of the growth scenario, the world crude
oil demand will increase significantly. According to different studies [72], [153] and [188],
oil production will peak in the near future, due to the fast-growing population and
expected increasing mobility level in developing countries, in particular China and India
[121]. Additionally, the costs of extracting and exploiting unconventional resources (e.g.,
heavy fuel oils, oil sand) are higher than those involved with conventional resources [153].
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Figure 1.2.: Economic drivers influencing the development of highly efficient vehicles

Figure (a) shows the outlook for the world’s crude oil demand under three different eco-
nomic growth scenarios until 2040. Regardless of the growth scenario, the global demand
is increasing [184]. Figure (b) shows the development of fuel costs in Germany based on
data from [49], [50].

Moreover, consumer costs for fossil fuels are increasing. Figure 1.2(b) shows the develop-
ment of fuel costs for diesel and gasoline (including all taxes) in Germany over the last 15
years. The increasing costs of producing and consuming fossil fuels provide motivation
for the development of alternative vehicle propulsion systems.

Social drivers

The increase in demand for crude oil anticipated for the near future is closely related to
the increase of the world population, see Figure 1.3(a). In highly developed industrialised
countries, individual traffic has been a basic need for years, resulting in a high mobility
level with a moderate growth rate. In contrast, developing countries, such as China
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1. Introduction

and India, currently have a low degree of mobility. These fast-growing countries will
contribute to an increase of passenger traffic in the future, see Figure 1.3(b).
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Figure 1.3.: Social drivers influencing the development of highly efficient vehicles

Figure (a) shows the world population in 2010 and the prediction for 2100 by continent
[200]. It highlights the increasing world population in future. Figure (b) shows the increase
of passenger cars until 2040 by several regions [184]. An increasing number of additional
passenger vehicles will be registered.

Another important social factor is urbanisation. Due to increasing urban traffic density
and the related pollution, noise exposure and traffic congestion, some cities have intro-
duced low-emission zones (LEZs) or zero-emission zones (ZEZs) [28], [46], [162]. For
example, London established the congestion charging zone in 2003 [160]. Entering this
zone costs a predefined charge per day, and only low-emission vehicles (under 75 g/km
CO2) are excluded from that regulation. Plug-in hybrid electric vehicles (PHEVs) must
also have an all-electric range (AER) of more than 10 miles, and their maximum vehicle
speed must exceed 60 mph. A similar toll system was established in Milan, Italy [118],
and other cities such as Munich, Berlin, Amsterdam, Hong Kong or Singapore also intro-
duced LEZs [82], [158]. Austria has introduced similar environmental zones (marked as
IG-L or Immissionsschutzgesetz Luft, English: Austrian ambient air quality protection
act), which restrict speed limits in order to avoid excessive pollutants [4].

Ecological drivers

The operation of conventional ICEs inherently produces different pollutants. With the
help of specific exhaust-gas catalytic converters and filters, the exhaust components CO,
NOx, HC and PMs are effectively reduced [172]. The amount of CO2 emitted is directly
related to the overall fossil fuel consumption. According to [133], the relation for diesel
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1.1. Background and Motivation

and gasoline engines reads

100
( g

km

)
CO2 =

{
4.24 l/100 km, for gasoline (ρgasoline = 2.36 kg/l)

3.77 l/100 km, for diesel (ρdiesel = 2.65 kg/l)
(1.1)

Since CO2 is a greenhouse gas, it is partially responsible for global warming [194]. Figure
1.4 shows that the GHG emissions from the transport sector have more than doubled
since 1970 and increased at a faster rate than any other energy end-use sector in 2010.
Around 80 % of this increasing trend has come from road vehicles, which contribute about
28 % of the total end-use energy [187]. According to a report by the Intergovernmental
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Figure 1.4.: Ecological drivers influencing the development of highly efficient vehicles

The GHG emissions in GtCO2eq/yr1from road vehicles have more than doubled since 1970
with around 80 % of this increase from the growing transportation sector [187]. Emissions
from other sectors, such as rail, pipeline, hydrofluorocarbons (HFCs) & indirect nitrogens
and indirect emissions from electricity generation, are small compared to the road sector.
Even shipping contributes a small proportion to the total transportation sector.

Panel on climate change (IPCC) [194], global warming risks are widespread and range
from wildfire, increased extinction of wildlife, rising mean sea level and melting glaciers.
The IPCC recommends a dramatic decrease in CO2 emissions.

Political drivers

National, and even international politics are controlling the ecological effects of emis-
sions by introducing different legal requirements. Legal regulations strongly depend on

1Gt CO2 equivalent per year is obtained by multiplying the mass of the gas by the global warming
potential of that gas.
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1. Introduction

the individual vehicle market (e.g., Japan, USA, Europe). In 1995, the European Au-
tomobile Manufacturers’ Association (ACEA, Association des Constructeurs Européens
d’Automobiles) voluntarily agreed to reduce the average CO2 emissions of their new cars
fleets to 140 g/km by 2008, which was not achieved [151]. Figure 1.5 highlights the CO2
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Figure 1.5.: Political drivers influencing the development of highly efficient vehicles

Many countries agreed to significantly reduce CO2 emissions by 2025. The values are nor-
malised according to the NEDC [151]. Although CO2 emission targets are set individually
for different vehicle markets (e.g., China, European Union, Japan, USA), the trend toward
low-emission vehicles is clearly noticeable.

targets for different countries normalised according to the New European Driving Cycle
(NEDC). In 2009 the European Union sets mandatory emissions reduction targets for
new cars [47]. After a 3-year phase-in ending in 2015, the entire new car fleet has to
comply with an average CO2 level of 130 g/km, a target level that is then reduced to
95 g/km for 2020. This corresponds to a fossil fuel consumption of 5.6 l/100 km of gaso-
line or 4.9 l/100 km of diesel in 2015 and 4.1 l/100 km (gasoline) or 3.6 l/100 km (diesel)
in 2020, respectively. Failure to meet these targets results in penalty payments2 for each
vehicle registered. In 2012, the penalty was set at e 5 for the first gram over the limit,
with the penalty for subsequent grams increasing rapidly to e 95 per gram (see Table
1.1). In 2019, this fee scale will be eliminated, and manufacturers will have to pay a flat
fee of e 95 for each and every gram in excess of the limit [47].

The mandatory regulation also supports OEMs building extremely low-emission vehicles
(i.e., below 50 g/km CO2). The registration statistics count such cars as multiple vehicles
(i.e., super credits). Moreover, increasingly stringent emission laws will force car manu-
facturers to develop low-emission vehicles (see Figure 1.6). The emission law covers CO,
HC, and NOx, and also strictly limits the mass (PM) and number of particulates (PN).

2This penalty payment is called excess emissions premium.
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1.1. Background and Motivation

Table 1.1.: Penalties for CO2 emissions in excess of limits, which must be paid for each
car registered. Starting in 2019, there will be a flat fee of e 95 for each gram
in excess of the limits [47].

Excess CO2 Emissions premium in e

For 1st g/km 5
For 2nd g/km 15
For 3rd g/km 25
Each subsequent g/km 95

Table 1.2 shows the thresholds of the currently valid EURO 6 emission directive [140].
The introduction of catalytic converters and NOx traps are important contributions to
the efficient reduction of emissions.
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Figure 1.6.: Development of the European emission standard

The exhaust gas emission limits will be consistently tightened. Currently, the EURO 6
is valid. Compared to EURO 1, pollutant emissions have been reduced by more than
50 %. In recent years, especially the particulate matter (PM) has been drastically limited,
particularly for diesels.

Since national taxation and statutory regulations differ from market to market, OEMs
have to decide which national regulations have to be considered in the vehicle devel-
opment process. A prioritisation can be done by using a CO2 costs-market relevance
analysis [118]. The following political measurements are related to the Austrian vehicle
market.

When initially registering the vehicle, customers have to pay additional taxes (Normver-
brauchsabgabe, NoVA, English: Austrian motor vehicle registration tax) [1]. This tax,
which is strongly related to the overall CO2 emissions of the corresponding vehicle, reads

NoVA =
λCO2 − 90

5
. (1.2)
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Table 1.2.: Thresholds of the European emission standard EURO 6 [140]

Emission limits Unit Diesel Gasoline

CO g/km 0.5 1.0
HC g/km - 0.1
NOx g/km 0.8 0.6
HC + NOx g/km 1.7 -
PM g/km 0.0045 0.0045
PN #/km 6.0 e10 6.0 e10

The NoVA is given in percentage and is added before VAT, with an upper limit of 32 %.
For vehicles exceeding 250 g/km CO2, the total costs increase by an additional e 20 for
each gram of CO2. The average CO2 emission is given by λCO2 in g/km. The total costs
due to the NoVA are reduced by a fixed amount (in 2015: e 400, thereafter e 300 for all
cars). No tax credit is possible [1].

Table 1.3.: Motor vehicle taxation in Austria for vehicles under 3.5 tons. The taxation is
graduated and increases with increasing engine power. The values are based
on a monthly rate and are valid for annual payment [5].

Power range in kW
Additional cost in
e/kW/month

0-24 0
25-90 0.62
91-110 0.66
>110 0.75

In addition, the fuel consumption of ICEs is indirectly regulated by a mineral oil taxation.
According to [2], the taxation is 0.482e/l for gasoline and 0.397e/l for diesel, for all
fuel with a maximum total sulphur of 10 mg/kg and a predefined amount of biofuels.
Moreover, customers have to pay a motor vehicle tax. In Austria, this taxation is
directly linked to the motor vehicle liability insurance and depends on the overall ICE
power [5]. Table 1.3 outlines the progressive costs.

1.2. Fuel Consumption Evaluation

The test procedure for evaluating the overall fuel consumption and exhaust emissions
is statutory. The standard cycles vary by vehicle market. Europe currently uses the
NEDC. Figure 1.7 shows the speed profile of the NEDC and its successor, the world-
wide harmonized light vehicles test procedure (WLTP). Chapter 4.1 summarises the key
characteristics of both driving cycles.
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Figure 1.7.: European legal driving cycle

Figure (a) shows the currently valid driving cycle, the NEDC. Its successor, the WLTP
class 3b, is shown in Figure (b). The WLTP is divided into power-to-mass ratio (PMR)
classes. All vehicles with a PMR above 34 kW/t will be tested with the WLTP class 3b.

The tests are conducted on a chassis dynamometer under predefined operating conditions,
in order to guarantee the reproducibility of the results. The real driving resistances in
real-world test scenarios are first evaluated, followed by an adaptation on the chassis
dynamometer [166]. The exhaust emissions are then collected in samples and evaluated
via dilution equipment (CVS, constant volume sampler) [172]. These samples are used
to evaluate CO2 emissions. The overall fuel consumption C̄CI is then calculated from
the emissions of HC, CO, CO2 [140]. For compression ignition (CI) engines, this formula
reads:

C̄CI =
0.116

ρf
[0.749λHC + 0.429λCO + 0.273λCO2 ] . (1.3)

In Eq. (1.3) λHC, λCO and λCO2 are the measured HC, CO, CO2 emissions in g/km,
and ρf is the density of the test diesel3 fuel at 15 ◦C. This test procedure is adapted to
HEVs and PHEVs.

PHEV legal fuel consumption evaluation

Plug-in hybrid electric vehicles are HEVs which can also be externally charged. Although
short distances within the AER may be performed purely in electric mode, the ICE is
mainly used for longer distances. Legislation seeks to account for that by using the
relation stated in Eq. (1.4).

C̄PHEV =
deC̄1 + davC̄2

de + dav
, (1.4)

where C̄PHEV is the overall fossil fuel consumption in l/100 km, C̄1 and C̄2 are the
fuel consumption in l/100 km with fully charged or empty battery, respectively [140].

3For gasoline engines the coefficients are different, cf. [140].
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Figure 1.8.: Influence of the all-electric range on the fuel consumption of PHEVs [166]

The figure shows the normalised fuel consumption in % based on the fuel consumption of
a conventional ICE-driven vehicle. An AER of 25 km results in a total fuel consumption
reduction of 50 % compared to a conventional ICE-driven vehicle. An AER of 50 km leads
to a significant reduction of 66.6 %.

The parameter dav describes an average distance of 25 km between consecutive charging
cycles, and de is the AER in km. The AER is defined by the distance in the legislative
driving cycle before the ICE has to start the first time due to low battery power.

In Eq. (1.4), the fuel consumption C̄1 = 0 if the AER exceeds the total distance of the
NEDC. However, this does not account for any electricity production costs. Car manu-
facturers may use this to reduce their vehicles’ fuel consumption and the corresponding
CO2 emissions by scaling the energy content of the battery and thus the AER [166]. Fig-
ure 1.8 highlights the decreasing fuel consumption of PHEVs due to an increasing AER.
For example an AER of 25 km reduces the fossil fuel consumption by 50 % compared
to a conventional ICE-driven vehicle. This is an appropriate way to reduce the average
CO2 fleet emission level and avoid additional penalty costs.

HEV legal fuel consumption evaluation

The evaluated CO2 emissions and the calculated fuel consumption are corrected by a
function that considers the energy balance ∆EBAT = 0 at the beginning and end of the
driving cycle [140]. The fuel consumption correction coefficient Kf in l/100 km/Ah is
determined by

Kf =
N ·∑∆QiC̄i −

∑
∆Qi

∑
C̄i

N ·∑∆Q2
i − (

∑
∆Qi)2

, (1.5)

where C̄i and ∆Qi are the fuel consumption and electricity balance – the difference of
the battery’s energy content at the end and beginning of the cycle – measured during
the ith test, and N is the total number of tests. The corrected fuel consumption C̄HEV
reads

C̄HEV = C̄ −Kf ·∆Q, (1.6)
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Figure 1.9.: Different operation modes for PHEVs

PHEVs operate in different operation modes. If the SOC is kept nearly constant, the
PHEV operates in charge-sustaining mode. However, operating in either a combined
charge depleting/sustaining mode or a blended operation strategy enables more fuel saving
potential for PHEVs.

where C̄ is the fuel consumption measured during testing in l/100 km, and ∆Q is the
electricity balance measured during testing in Ah. The CO2 emissions are corrected in a
similar way, but instead of using the fuel consumption C̄i and C̄HEV , the corresponding
emission value λCO2 in g/km has to be inserted. The reason for such a test procedure is
that the electric energy in this case always comes from the fossil fuel.

Fuel consumption evaluation in real-world traffic and simulation

There are two different approaches in the literature for evaluating the overall fuel con-
sumption of HEVs and PHEVs. In simulations, HEVs are often operating in a charge-
sustaining mode [61], [101]. In this case, the energy of the battery at the beginning and
after a certain distance has to be equal. Using appropriate optimisation algorithms en-
sures the energy balance [12]. An equivalence factor is also used to transform the electric
energy difference in fossil fuel consumption. However, finding an appropriate factor is
a challenging task [190], since it depends on the driving conditions along the particular
driving route and therefore must be adapted during real-time operation [183].

For PHEVs a charge-depleting operation strategy is more suitable [6], [61]. Assuming
that the battery can be externally charged after each trip [59], the battery’s energy
content is expected to drop near to the lower state of charge (SOC) level (SOCmin).
Such an operation strategy ensures improved energy efficiency. Figure 1.9 highlights the
different SOC characteristics of PHEV operation strategies. Operating the PHEV in
charge-depleting mode until the lower SOC threshold is reached and then operating in
charge-sustaining mode results in improved fossil fuel consumption. However, a blended
operation strategy for PHEVs enables additional fuel savings [214]. The innovative en-
ergy management strategy proposed here also uses such a blended operation strategy.
Approaching the lower SOC threshold implies knowledge of the desired destination; oth-
erwise, a deviation and an accompanying reduction in fuel consumption potential occur.
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Figure 1.10.: Prognosis for the future Austrian vehicle fleet [3]

Figure (a) shows the future market shares assuming a low crude oil price and no additional
legal interventions. Figure (b) illustrates the opposite scenario – high fossil costs and
political interventions and subventions in favour of electrification.

1.3. Future Trend of Passenger Vehicle Electrification

The study ELEKTRA [3] highlights that the future market shares of different propulsion
systems for passenger vehicles depend on crude oil costs and legal framework conditions.
Figure 1.10(a) depicts the development of the total fleet of passenger vehicles in Austria
with a low crude oil price and no additional political restrictions or subventions. Hybrid
electric vehicles will significantly increase their market share and will form the core of
the future fleet. In this scenario, full-HEVs increase to 10 %, whereas PHEVs and all-
electric vehicles are unable to succeed in the long-term. Moreover, the overall fleet energy
consumption and the GHG emissions decline [3].

Figure 1.10(b) emphasises that high future crude oil costs and additional political inter-
ventions in favour of electrification result in a different development. In the short-term,
the conventional drivetrain is substituted by micro and mild HEVs4. Starting in 2020,
PHEVs and all-electric vehicles gradually replace conventional drivetrains. Nevertheless,
there are no significant market shares before 2025 [3]. In the long-term, the market
shares of electrified vehicles with a high degree of hybridisation (DoH), cf. Chapter 2.1,
grow to 85 %. Both overall energy consumption and GHG emissions will be significantly
reduced by 2050 [3].

The two extremes highlight that micro and mild HEVs will penetrate the vehicle market
regardless of economic and political boundary conditions. However, the competitiveness
of highly electrified vehicles, such as PHEVs, series HEVs and all-electric vehicles, is

4Micro and mild HEVs have a rather low electric power and energy supply for the additional electric
motor and battery, see also Chapter 2.1.
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Figure 1.11.: KPMG’s forecast of electrified powertrain production 2011-2020 [111]

In 2020 less than 5 % of the overall powertrain production volume will be HEVs. However,
the survey respondents believe that PHEVs will generate the most consumer demand of
highly electrified vehicles by the end of this decade [111]. However, mild and full HEVs
will still have the biggest market shares among HEVs.

strongly dependent upon political interventions, such as tax advantages.

According to the KPMG’s Global Automotive Executive Survey 2015 [111], PHEVs will
be the most in-demand electrified propulsion technologies in 2020 (see Figure 1.11).
KPMG operates as a global network of independent member firms offering audit, tax and
advisory services. More than 200 automotive executives from all parts of the automotive
value chain, including OEMs, Tier 1, 2 and 3 suppliers, dealers, and providers of financial
and mobility services, participate in this annual assessment of the current state and
future prospects of the worldwide automotive industry. Battery electric vehicles (BEVs)
remain in the number two position. However, optimising traditional fossil-fuel-based
propulsion technologies is still the top priority of OEMs. Moreover, the survey highlights
that fuel efficiency is clearly seen as the number one purchase criterion in 2020.

A more optimistic study [180] estimates the global share of HEVs between 16-20 %,
depending on the costs of fossil fuel. Once again, the PHEV is seen as a promising
technology. The market shares of PHEVs and all-electric vehicles will be between 1-9 %
in 2020.

1.4. Structure of the Thesis

The present research focuses on the development of an operation strategy for plug-in
hybrid electric vehicles. The hypothesis of the present research is that an intelligent
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combination of route prediction and adaptation to the individual driving style in the
long-term may simultaneously increase the overall fuel efficiency and the longitudinal
vehicle dynamics of HEVs, thus resulting in higher consumer acceptance and increased
market shares. The structure of this thesis is as follows.

Chapter 2 describes the state-of-the-art of HEVs and PHEVs in detail. First, HEVs are
categorized according to their functions and power capability. Furthermore, different
HEV drivetrain topologies with corresponding mass-production vehicles are presented.
Next, the state-of-the-art of HEV and PHEV operation strategies is explained. Three
main types are depicted: rule-based, optimal and suboptimal operation strategies (OSs).
The chapter closes with the main scientific contributions of the present thesis.

Chapter 3 introduces the methodology. It consists of three main parts: modelling, op-
timisation, and prediction & adaptation (P&A). First, two different vehicle modelling
approaches are described, and detailed information about HEV drivetrain component
modelling is then provided. At the end of this part, an innovative energy management
controller for PHEVs is proposed, and the main characteristics of the investigated vehi-
cle are described. The chapter continues with an explanation of the main structure of
the optimisation algorithm. Dynamic programming (DP) is used to solve the optimal
control problem. The author highlights the fundamental concepts of the optimisation
method and explains the implementation issues in detail, such as approximation, compu-
tational effort and performance. The methodology concludes with an introduction of the
innovative P&A algorithms used to approximate future power demand, whereby predic-
tion is based on static information from digital maps. The vehicle position is evaluated
with global navigation satellite system (GNSS) signals, such as global positioning system
(GPS)5, global navigation satellite system (GLONASS)6, Galileo7 and Beidou8. Subse-
quently, the static prediction is adapted to the individual driving style. The integration
of the driver’s particular driving behaviour with static road data enables additional fuel
saving potentials in the long-term.

Chapter 4 discusses the results of numerical simulations of the proposed innovative op-
eration strategy. The fuel saving potential is explicitly determined with a real-world
driving cycle (FTG cycle), recorded in the area of Graz, Austria. In addition, the au-
thor compares the real-world driving cycle used and the legally stipulated driving cycles.
The controller stability to parameter variations is then analysed. The chapter concludes
with a discussion of the fuel saving potential and other positive effects (e.g., enhanced
longitudinal vehicle performance and increased electrical propulsion system availability),
as well as the cost impact for OEMs and customers.

Chapter 5 presents the key findings and a final statement about this research.

5Global navigation system originally developed by the U.S. Department of Defense
6Global navigation system used by the Russian Aerospace Defence Forces
7Global navigation system of the European Union
8Global navigation system of China
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2
State-of-the-Art Hybrid Electric Vehicles

2.1. HEV Classification

According to standards ECE-R83 [140] and SAE J1715 [88], an HEV is a means of
transport that consists of at least two different on-board energy converters, as well as two
different energy storage systems (ESSs). Hybrid electric vehicles combine the advantages
of two drivetrain designs. That is, they have an ICE for long-distance travels, and can
drive short distances “locally emission-free” with the electric propulsion system (i.e., the
vehicle itself produces zero-emissions).

Besides the long-distance capability and the possibility of locally emission-free driving,
there are numerous technical benefits depending on the operation modes implemented,
the system power performance and the drivetrain layout.

The application and usefulness of different operation modes are affected by the compo-
nent and system layout. A distinction can be made with the DoH, which reads [14]

DoH = 1− |PEMG,max − PICE,max|
PEMG,max + PICE,max

(2.1)

where PEMG,max and PICE,max are the rated electric motor/generator (EMG) and ICE
power, respectively. Figure 2.1 shows the relation of the DoH according to the definition
in [14]. In a conventional drivetrain PEMG,max = 0, and consequently the DoH is also 0.
The same holds for an all-electric vehicle. If PICE,max = PEMG,max 6= 0, the DoH is 1.

The present research uses a more straightforward definition of the DoH defined in [66]
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Figure 2.1.: Definition of the degree of hybridisation (DoH) [14]

In conventional drivetrains (PEMG,max = 0) and all-electric vehicles (PICE,max = 0), the
DoH is zero; otherwise, the DoH is calculated using Eq. (2.1) and is greater than zero.

and [81]:

DoH =
PEMG,max

PICE,max + PEMG,max
. (2.2)

Figure A.1 also shows a classification of HEVs by their DoH and battery capacity. De-
pending on the required voltage range and the modification level of the drivetrain, dif-
ferent power levels can be defined [169]. The availability of certain hybrid functions is
strongly related to the DoH (see Figure 2.2). Based on the electric system capability,
HEVs are categorised as:

• Micro-HEV

• Mild-HEV

• Full-HEV

• Plug-in HEV (PHEV)

Figure 2.2 shows the different available hybrid functions for different HEV performance
classes. For a micro and mild HEV, ICE start/stop is available. All other hybrid
functions are limited, and pure electric driving is not possible. A mild-HEV has a voltage
level up to 200 V to increase the effectiveness of certain operation modes. However,
e-drive is still not possible. In a full-HEV, all hybrid functions are available with no
limitation. In HEVs the on-board energy comes from fossil fuel, while PHEVs offer
additional possibilities. A PHEV is in principle a full-HEV with a larger ESS (10-20
kWh) and the additional option of recharging via external outlets. Consequently, PHEVs
share the characteristics of both an HEV (i.e., a battery, electric motor (EM), and ICE)
and an all-electric vehicle (e.g., a plug to connect to the electrical grid). One logical
application of PHEVs is commuting within a short distance, whereby the AER is between
20-50 km [23], [34]. However, the main technical challenges for PHEVs are improving
the ESS capacity of the Li-ion batteries and reducing costs [126].
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Figure 2.2.: Classification of HEVs according to their DoH, adapted from [23], [169]

Depending on the power capability of the electric traction components, different HEV
functions, such as recuperation, boosting, and e-drive, are available. Only highly electrified
HEVs, e.g., full-HEVs and PHEVs, enable all HEV functions.

2.1.1. Operation Modes

Hybrid electric vehicles take advantage of several different operation modes, which enable
additional fuel savings and thus reduced GHG emissions. In general, there are different
operation modes available, depending on the capability of the electric traction system
and the drivetrain layout. The implementation and precise function definition depend
on the corresponding OEM.

ICE start/stop

The start/stop function turns off the ICE when the vehicle stops or shortly before in the
braking phase at quite low speeds. The logic accounts for multiple factors, such as the
electric power demand of the auxiliaries (AUXs), temperatures of the ICE, the catalytic
converter and energy content of the starter battery, in order to ensure a proper and
comfortable operation of the vehicle [23]. Moreover, this feature is often combined with
an intelligent control of the alternator, where the low-voltage battery is charged while
braking, thereby enabling additional fuel saving and increased vehicle performance, since
the ICE has to load the battery only on demand [39]. BMW introduced a combination
of different technologies to save fossil fuel called EfficientDynamics, which includes such
an intelligent control of the alternator, among other factors [117]. The prerequisite for
switching off the engine while braking is that the main auxiliaries are electrified.
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Coasting

Coasting is another method to improve the energy efficiency of the overall vehicle. While
free rolling (i.e., not using the accelerator pedal), the ICE is disengaged by a clutch and
eventually switched off. Auxiliaries such as the power steering pump, brake booster,
heating and air conditioning (A/C) have to be partially electrified. Moreover, the ca-
pability of the on-board battery has to be adapted. The authors in [138] distinguish
between coasting with ICE in idle (idle-coasting) and coasting with a deactivated ICE
(start/stop-coasting). The definition and implementation of this mode depend on the
particular OEM [173]. However, using the author’s own nomenclature, three categories
can be identified:

• Passive coasting :
The ICE is disengaged, and there is no additional EMG torque [26], [51], [107].
Only the driving resistances are acting.

• Constant-speed coasting :
The ICE is decoupled, and the EM supplies traction to maintain a constant driving
speed [173].

• Active coasting :
The EMG reproduces the ICE drag torque [10], [169]. The electric power generated
is used to charge the battery.

E-drive

This operation mode enables the vehicle to drive fully electrically and to operate with
low-noise and zero local emissions (i.e., the vehicle itself produces zero-emissions while
driving). However, the performance depends on the system configuration. A high-power
EM application is able to provide sufficient traction power over a wide operation range,
whereas a low-power design is only active during nearly constant speed with low accel-
eration. A proper implementation requires independent and fully electrified auxiliaries.

Boosting

The hybridisation of conventional drivetrains enables concurrent utilisation of the power
of both propulsion units for specific HEV topologies. This mode results in increased
longitudinal vehicle performance, as long as the SOC level does not drop below a certain
lower threshold.
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Recuperation

Implementing an EMG enables recuperation1. When the brakes are applied, the EMG
converts a portion of the vehicle’s kinetic energy to electrical energy, and the remaining
energy is then dissipated as heat through the conventional hydraulic brake system. The
recuperative potential and additional fuel savings depend on the driving style and the
HEV design [23]. Furthermore, reducing the aerodynamic drag and rolling resistance
increases the effectiveness of regenerative braking. An additional brake force controller
ensures an appropriate brake power distribution.

Load point shifting

Instead of operating in low load areas, the ICE is forced to produce excess power, which
is concurrently used to load the ESS via the electric generator (EG). Load point shifting
results in improved ICE operating efficiencies. The stored energy is used to propel
the vehicle on the upcoming driving profile, which enhances the overall fuel efficiency.
In the case of an almost fully charged ESS, load point shifting to lower loads is not
reasonable [23]. An efficiency-optimised operation strategy requires the consideration
of the entire energy conversion chain [169]. The objective is to charge the battery at
low fossil fuel costs and reuse the stored energy with high efficiency. For HEVs with
no external charging possibility (also called autarkic HEVs), load point shifting is an
effective measure to enhance the overall operating efficiency.

Phlegmatisation

The ICE/EG unit may be disconnected from the drivetrain by a clutch, which enables
operation with rotational speed independent of the rest of the drivetrain. Hence, it can
operate in a steady-state in operation areas with high ICE efficiency. This operation
mode is called phlegmatisation of the ICE. In addition to enabling operation close to the
optimum load point, the exhaust emissions can also be reduced [169]. Furthermore, the
different dynamic response of both propulsion units – ICE and EMG – can be used to
increase the response characteristics of the entire drivetrain. The EMG has the ability
to generate positive torque in a shorter time period than the ICE, due to its almost
immediate response. Consequently, peak loads of the ICE can be avoided by balancing
the volatile change of demanded driving torque with the EMG. The ICE can then be
readjusted slowly, with low fuel consumption and raw exhaust emissions [23]. The almost
instantaneous EMG response not only increases the overall longitudinal vehicle dynamics
but also the driving pleasure of passengers.

Moreover, other vehicle control systems can profit from the rapid response time, such
as electronic stability program (ESP) [164]. In [164], the author developed a vehicle

1Also called regenerative braking [169]
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Figure 2.3.: Schematic representation of a series HEV, adapted from [169]

The ICE is directly connected to the EMGI, which operates as an EG, and there is no
mechanical link to the drive shafts. A second EMGII provides all necessary traction.
Besides the gearbox (GBX), a battery (BAT) and AC/DC power converter (AC/DC) are
parts of the HEV’s drivetrain.

dynamics controller combining the conventional hydraulic friction brake system with
independent wheel hub motors. This guarantees that most of the vehicle dynamics
control actions are performed by utilizing electric traction machines. Consequently, the
almost immediate response of the EMG can enhance the brake response.

2.1.2. HEV Drivetrain Layout

Besides the classification by function, HEVs can also be categorised based on the ar-
rangement of the ICE, EM(s), EG(s), and gearbox (GBX). In general, there are three
different hybrid drivetrain concepts.

Series hybrid electric vehicle

In series HEVs, the ICE is directly connected to an EMGI operating mainly as an EG
(see Figure 2.3). The electric energy produced is either stored in a battery (BAT) or
directly used for propulsion. An additional EMGII provides all necessary propulsion
power. Furthermore, there is no mechanical connection between the ICE and the drive
shaft. This mechanical decoupling allows the ICE to operate in a steady-state in high-
efficiency areas, resulting in low fossil fuel consumption and emissions [169]. Nevertheless,
the need for multiple energy conversions due to the long efficiency chain is a disadvantage.
The system can compensate for the resulting losses if the engine is operating at its best
operation point and a relatively high driving dynamics is predominant [23], such as
permanent stop-and-go traffic in cities. The electric traction motor is solely responsible
for the traction and the maximum speed. Consequently, its dimensions have to be
adapted to the desired performance, which increases costs and technical effort [23]. This
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Figure 2.4.: Schematic representation of different parallel HEVs, adapted from [169]

There are different variations depending on the arrangement of the EMG in the drivetrain.
From left to right, a P1-HEV (a), a P2-HEV (b), a P3-HEV (c) and a P4-HEV (d) are
shown. The conventional drivetrain consisting of internal combustion engine (ICE), clutch
(CL), gearbox (GBX) and final drive (FD) is extended by a battery (BAT), an AC/DC
power converter (AC/DC) and an electric motor/generator (EMG). A torque converter
(TC) can also be integrated.

topology is suitable for independent wheel hub motors or near-to-the-wheel motors [169].
Since the ICE is no longer subject to the driver’s widely varying power demands, the
ICE can be built smaller than the EM [126]. The BMW i3 with range extender (REx)
[38], [197] is a currently available PHEV with series configuration and one central EMG
at the rear axis to drive the wheels.

Parallel hybrid electric vehicle

The main characteristic of parallel HEVs is that both the EM and ICE are mechanically
connected to the drive shaft. The EMG can be connected or disconnected when required.
The relatively modest and cost-efficient assembly is beneficial. Depending on the drive-
train layout, the overall system power is achieved by adding either speed, torque or
traction. According to [23], [169], there are different parallel drivetrain variations, de-
pending on the arrangement and dimensioning of the EMG. The relevant nomenclature
is based on [169] (see Figure 2.4).
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Parallel-1 Hybrid Electric Vehicle (P1-HEV)

Figure 2.4(a) shows a P1-HEV. The EMG is directly driven by the crankshaft. The
degree of modification of the conventional drivetrain is low. The EMG is mounted
between the ICE and the clutch CLI. This configuration enables start/stop, recuperation,
load point shifting and boosting, but pure electric driving is limited. However, the
recuperation potential is reduced by the ICE drag, due to the fixed connection. The
Honda Insight Hybrid with integrated motor assist (IMA) [9] was the first HEV with a P1
topology. A currently available example is the Mercedes-Benz S400 Hybrid [202]. In [196],
two different P1 topologies are discussed – a belt-driven starter generator (BSG) and an
integrated starter generator (ISG). The BSG is integrated in the belt drive of the ICE,
resulting in an easy drivetrain integration (cf. Figure A.2(a) in Appendix A). However,
the system packaging is increased, and this configuration requires an additional 12 V
starter for cold starts and a special belt tensioner to ensure good power transfer between
ICE and BSG (cf. Figures A.2(b) and A.2(c) in Appendix A). The ISG configuration is
directly mounted on the crankshaft between the ICE and the GBX (see Figure A.3 in
Appendix A). The direct power transfer enables higher performance and eliminates the
need for a 12 V starter at low temperatures [196]. Both BSG and ISG operate with a
48 V HEV system. Typically, the power is below 20 kW, and the battery energy content
is below 2 kWh, thus placing such vehicles in the category of mild-HEVs.

Parallel-2 Hybrid Electric Vehicle (P2-HEV)

In Figure 2.4(b), the EMG is installed between the ICE and the GBX. A clutch CLI

between the EMG and the ICE enables independent driving of the EMG. The ICE
is either started by a conventional starter or by a predefined activation of the clutch
[23]. There are variations with and without an additional converter clutch. In the
first variant, the EMG replaces the torque converter (TC), and an additional starter
is used to tow-start the ICE without power sag [169]. The BMW ActiveHybrid5 [64],
the Mercedes-Benz E 300 BlueTec Hybrid [97], the Mercedes-Benz S500 Plug-In Hybrid
[96] and the Mercedes-Benz C350 Plug-In Hybrid [98] are examples of this configuration.
The variation with a TC clutch is applied in the Porsche Panamera S E-Hybrid [23],
[185], the Porsche Cayenne S E-Hybrid, the VW Touareg Hybrid [26], the BMW X5
eDrive Plug-In [10] and the Audi Q7 e-tron 3.0 TDI quattro [107]. In this approach,
an additional starter is not needed [169]. All HEV operation modes can be realised,
including regenerative braking without ICE drag losses. Implementing a second clutch
enables battery charging during standstill [169]. One design approach is that the EMG
can cover low-efficiency areas of the ICE, such as partial-loads [23]. A P2 layout typically
has an EMG power in the range of 20-50 kW and an ESS capacity of about 2 kWh [169].
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Parallel-3 Hybrid Electric Vehicle (P3-HEV)

In this arrangement, the EMG is mounted after the GBX and before the final drive (FD),
as shown in Figure 2.4(c). Gear-shifting without traction interruption and no additional
losses in the gearbox are advantages of this configuration. Moreover, regenerative braking
efficiency is maximised due to the physical location. A conventional starter enables
start/stop. However, the EMG has to operate in a wide rotational speed range, resulting
in low gear ratios and thus a low torque level during start-up [23]. This may be one
reason why such a drivetrain topology is not widespread in the industry. Almost all
HEV functions can be easily implemented, except load point shifting [169]. Moreover,
integration in a conventional drivetrain is straightforward. Typically, the EMG power
range is 20-50 kW [169].

Parallel-4 Hybrid Electric Vehicle (P4-HEV)

This HEV topology has two independently operating drive axles. In Figure 2.4(d) the
front axle is driven by a conventional ICE, while an EMG operates at the rear axle. The
relatively low effort of modification [169] and the temporarily available all-wheel drive
(AWD) are benefits of this topology. Nevertheless, load point shifting is not possible
[169], and the availability of the AWD is limited by the restricted battery energy content.
Moreover, a conventional starter is needed to enable start/stop function, and battery
charging during standstill is not possible. Recently, Volvo introduced a diesel PHEV
with a P4 drivetrain layout [197]. Other examples include the Peugeot 408 Hybrid and
the Peugeot 3008 Hybrid4 [23]. The BMW i8 combines an ICE-driven rear axle with 6-
speed automatic transmission and an electric front axle, including a 2-speed transmission
[38].

Variations of parallel hybrid electric vehicles

Figure 2.5 shows two variations of the conventional parallel HEV layout. Combining two
individual parallel topologies by integrating at least two EMGs enables more flexibility.
For instance, a P12 combines a P1 and a P2 drivetrain layout [169]. The P12-HEVs
combine series and parallel HEV topologies in one drivetrain. One EMGI, mainly oper-
ating as an EG, is directly connected to the ICE, as shown in Figure 2.5(a). A second
EMGII provides the traction torque. The HEV operates in series operation mode if the
clutch CLI between the ICE and gearbox is disengaged. The power of the ICE is used to
provide electric energy via the EG. Moreover, the EG can tow-start the ICE. At higher
loads, the clutch is engaged, and the ICE has a direct connection to the wheels. The
vehicle operates in parallel operation mode and thus avoids multiple conversion losses in
series mode. Load point shifting and boosting are possible. HONDA recently introduced
such a concept with the Accord Hybrid [148]. Another parallel topology is the parallel
torque-split (PTS). This side-by-side hybrid enables the operation of the two propulsion
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Figure 2.5.: Schematic representation of variations of parallel HEVs, adapted from [169]

Figure (a) shows a P12-HEV, which combines the functions of a P1 and P2 layout. De-
pending on the state of the clutch, either series or parallel mode is activated. Figure (b)
shows a parallel torque-split (PTS) configuration, which allows for the combination of both
traction torques at different speed levels. The conventional drivetrain consisting of ICE,
clutch (CLI), gearbox (GBX) and final drive (FD) is extended by electric motor/generators
(EMGs), a traction battery (BAT) and an AC/DC power converter (AC/DC).

units at different speeds, cf. Figure 2.5(b). The advantages are the low modification
effort and no interruption of the traction power during gear-shifting [169].

Power-split hybrid electric vehicle

At least one planetary gear-set (PGS) is used to distribute the mechanical power of the
ICE to both the electrical and mechanical power paths. The electrical path consists
of two EMGs and, in combination with the PGS, represents an electrical continuously
variable transmission (eCVT), as shown in Figure 2.6. Consequently, given a demanded
traction power, the operation strategy determines an efficient operation point for the ICE
by actuating both EMGs. Depending on the power of all propulsion units, all operation
modes can be realised. The advantages of a power-split HEV are the high flexibility
in selecting an appropriate ICE operation point, the reduced overall conversion losses
in the electric power path, and the elimination of the conventional gearbox and clutch
[169]. This topology allows for tow-starting the ICE, and an additional starter is not
required. Nevertheless, system complexity and control effort, vehicle weight and system
costs increase [169]. The rather high reactive power in the electrical path is also a
drawback (cf. Figure A.4 in Appendix A). In an input-split (L1-In), as shown in Figure
A.5, the mechanical path is between the ICE and the ring of the PGS. Figure A.6 shows
an output-split (L1-Out), where the mechanical path is between the planetary carrier and
the FD [169]. Consequently, in an L1-In, one EMG is directly connected to the output
axle, while in an L1-Out, one EMG is connected to the input shaft. A combination of
both is called a compound power-split, where two PGSs are integrated together with two
EMGs [169], cf. Figure A.7. In 2005 BMW, Chrysler, Daimler and GM [31] introduced a
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The mechanical power of the ICE is distributed via a planetary gear-set (PGS) to both
a mechanical and electrical power path. The electrical path consists of two EMGs and,
in combination with the PGS, represents an electrical continuously variable transmission
(eCVT). The battery (BAT) is used for energy storage.

mutually developed two-mode HEV into their respective vehicles. It combines an L1-In
split (i.e., for driving at slow speed and loads) with a compound power-split (i.e., for
driving on rural and highway roads). Moreover, due to the combined actuation of two
additional clutches and brakes, an eCVT with 4 fixed gear ratios for pure ICE drive can
be realised. This complex system results in lower power flows in the electrical path and
thus reduces efficiency losses. Currently available power-split HEVs include the Opel
Ampera and the Chevrolet Volt, which are based on similar drivetrain layouts [63], as
well as the Toyota Prius [146], [176].

2.2. HEV Operation Strategy

The supervisory control strategy of HEVs is a key success factor for outstanding fuel
savings, enhanced longitudinal vehicle performance and a high level of safety and comfort.
The main objective of an operation strategy (OS) is to distribute the demanded driving
power optimally among all propulsion units. Developing efficient control algorithms for
HEVs and PHEVs constitutes a challenging task and has been the focus of research
and development in recent years [183]. The remainder of this chapter gives an overview
of the widespread state-of-the-art operation strategies for different HEV topologies in
recent years. In literature, there are three main groups of control strategies to optimise
fuel economy:

• Rule-based (RB) operation strategy

• Optimal operation strategy

• Suboptimal operation strategy
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Rule-based operation strategy

In RB-OS, also known as heuristic operation strategies, the power is distributed between
all propulsion units with predefined rules and correlations based on the engineering knowl-
edge of experts. These strategies account for certain vehicle states, such as the battery’s
SOC and the temperature levels of different components. In principle, heuristic oper-
ation strategies often ensure high engine operating efficiency by avoiding less efficient
operation points [170]. In these unfavourable regions, the EM provides the traction
torque. Load-levelling enables ICE operating efficiency near its peak value by addition-
ally increasing the demanded power. The excess engine power is then shifted to load the
battery [14]. A second control task is to keep the battery SOC within its desired limits.
In [170] the battery is recharged when the energy content of the battery drops below a
certain limit. If the SOC exceeds a certain upper threshold, the EM is used more often.
In [68] a schematic set of rules is presented, which are inherent to rule-based operation
strategies:

• Pure electric drive at low speed, low power demand and a high SOC-level

• Pure ICE drive at high speed and higher torque request

• Supporting the ICE with the EMG (known as boosting)

• Charging of the battery at low SOC levels (known as load point shifting)

The thresholds strongly depend on the SOC level of the battery. At lower levels the
recharging operation area is adapted in order to increase the energy content of the
battery. The main benefits are the real-time capability and the robustness in different
driving situations.

In [122] an RB-OS for trucks is improved by analysing the optimal results of DP. The
author in [89] introduced an energy management controller, the rules of which are based
on the power demand, the driver’s acceleration command and the SOC. This should
ensure that vehicle components operate at high efficiency by avoiding high power losses.

Furthermore, heuristic operation strategies are the foundation of fuzzy logic energy man-
agement controllers. Fuzzy logic is the generalisation of the Boolean logic, which only
permits conclusions which are either false (0) or true (1), so-called crisp sets. However,
fuzzy logic systems (FLSs) allow truth values within the interval [0 1], thus enabling
partial truth values (see Figure B.1 in Appendix B). Such fuzzy sets are characterised
by membership functions, which assign a degree of membership to a certain input [198].
The membership function of such a fuzzy set may reach arbitrary values within the
normalised closed interval of [0 1]. Figure B.2 shows a schematic example of such a
membership function in detail. The corresponding membership functions are defined
by experts [14]. In general, since the input variables of an FLS belong to crisp sets, a
transformation to fuzzy sets is necessary. Afterwards, the degree of membership has to
be translated back to crisp sets again, in order to obtain crisp outputs. One advantage of
FLSs is that they can be designed without exact knowledge of the plant [7]. For detailed
information, refer to subject-specific technical literature [7], [217].
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In [116], [208] and [209], a fuzzy-logic-based energy management agent is proposed, which
is able to assess the current vehicle state and driving conditions by extracting information
through on-line driving cycle analysis. The fuzzy logic controller consists of four main
components designed to extract the driving information, identify the driving style and
distribute the demanded power in an efficient manner while maintaining the energy
content of the battery. Other fuzzy-logic-based operation strategies are proposed in [14],
[170], [177]. These strategies focus on the improvement of the overall drivetrain efficiency.
Load-levelling is applied to shift the ICE operation within its peak efficiency area.

The fuzzy logic controller implemented in [70] accounts for both future path information
and the battery state of health (SOH). The predictive and protective algorithm [70]
selects an appropriate battery mode according to the additional information obtained
by GPS.

Due to the intuitive selection of operation modes, rule-based and fuzzy-logic-based OSs
are widespread in automotive research [215]. However, heuristic energy management
controllers may not completely realise the optimal fuel economy [61] because real driving
cycles differ from the artificial driving cycles used to create these rules.

Optimal operation strategy – Off-line optimisation

Optimal OSs based on global optimisation algorithms have been used for research and de-
velopment purposes for years. Global optimisation methods assume that the entire driv-
ing cycle and route information are fully known a-priori. However, a perfect knowledge
of the future driving profile is rarely available in practice due to unexpected traffic situ-
ations, such as traffic congestion and accidents. Nevertheless, methods such as dynamic
programming (DP) [15] are often used as performance benchmarks for real-time-capable
operation strategies [183]. Although DP can deal with non-linear and non-convex op-
timisation problems [101], the computational effort increases with the number of state
and control variables (cf. Chapter 3.2.5). However, the generated solution is guaranteed
to be the optimal solution [68].

The publication series [214], [215] and [216] investigated the potential of route-preview
and a real-time implementation with the help of the instantaneous optimisation method
equivalent consumption minimisation strategy (ECMS). Deterministic dynamic program-
ming (DDP) is used as a performance benchmark, as well as to determine an equivalence
factor. A detailed discussion on ECMS follows later. Two different series PHEV oper-
ation strategies are compared in [157] using DDP. One strategy has no restriction on
engine fuel usage, while the second strategy limits the engine operation mode only after
the SOC drops below a certain threshold.

In contrast, stochastic dynamic programming (SDP) is capable of deriving an optimal
solution for a large group of driving cycles by minimizing the expectation of some cost
functional (e.g., fuel consumption). In [123], the power demand from the driver is mod-
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elled as a Markov chain2. A Markov chain is a random process whereby the conditional
probability of a state at any time in the future depends only on the probability of the
previous state and not on the sequence of events that preceded it, as shown in Eq. (2.3):

P̂(Xk+1 = αk+1|Xk = αk, ..., X0 = α0) = P̂(Xk+1 = αk+1|Xk = αk), (2.3)

where P̂(Xk+1 = αk+1|Xk = αk, ..., X0 = α0) and P̂(Xk+1 = αk+1|Xk = αk) are the
conditional probabilities of a sequence of random variablesX0, X1, ..., Xk, which describe
the state of the system at time steps 0,1,..., k, respectively, and αk is the state variable
of the random process at time step k. The optimal control strategy is determined by
using SDP. For a given route, the obtained control law can be directly implemented.
In [92], the stochastic properties of a certain route are used to assess the fuel saving
potential of HEVs by incorporating information from GPS and traffic-flow information
systems. To this end, a Markov process is configured with speed data of the certain route.
Similar research [137] has used a probabilistic distribution of driving cycles to optimise
the PHEVs power-split. The method evaluates the most probable future power demand
based on the current vehicle speed with a Markov chain. Furthermore, it accounts for
the trade-off between fuel and electricity costs by using an appropriate formulation of
the cost functional of the optimisation problem. The authors of this publication propose
the implementation of a static probability map that enables real-time implementation
without requiring knowledge of the entire driving cycle a-priori. The probability of
the next power-split could be estimated with the help of the current vehicle speed and
acceleration, for example.

Another global optimisation approach, the Pontryagin’s minimum principle (PMP), is
used in [35], [99], [182] to solve the optimal control problem of HEVs. In addition to
the fuel costs, the author in [186] also considered battery ageing by applying a damage
accumulation model. The battery ageing is based on the SOC and charge/discharge
rates.

The study in [168] also proposed an energy management controller using PMP. When
accounting for all state and control variable constraints, it was not possible to find an
analytic solution.

Suboptimal operation strategy – On-line optimisation

The main drawback of global optimisation methods is that the entire driving cycle has
to be known a-priori. The ECMS reduces the optimisation problem to an instantaneous
minimisation of an equivalent fuel consumption [155], [182], [183]. An equivalence factor
is used to convert battery power to an equivalent fuel power, which must be added to the
actual fuel power. Its estimation is the most critical aspect of ECMS and a key factor
for obtaining good performance [35]. In general, the equivalence factor depends on the

2Also called Markov process. For detailed description refer to subject-specific technical literature such
as [65].
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driving conditions along a certain route [183]. It is evaluated either with past driving
conditions [139], past and present driving [35], [100], or past, present and future driving
conditions [68], [139], [159], [214].

To ensure improved fuel efficiency with charge-sustaining mode, some approaches [35],
[100], [155] adapt the equivalence factor to the instantaneous deviations of the SOC from
its target value. In [102] the ECMS strategy is also adapted to a possible change of the
vehicle mass. In [42] the ECMS control scheme is augmented by the battery SOH. The
equivalence factors are adapted online with a simple proportional-integral (PI) controller.
The study shows a significant trade-off between fuel economy and battery wear.

Numerous studies have proven that additional information about the route ahead im-
proves the overall fuel efficiency [10], [96], [157], [214], [216]. Due to the recent devel-
opment of intelligent transportation systems (ITSs) based on GNSSs and geographical
information systems (GISs), multiple authors have incorporated these additional infor-
mation sources in the operation strategies of HEVs and PHEVs. For instance, in the
work of [25], [59], [60] and [61], an OS for PHEVs based on DP and trip-modelling is
introduced. If any historical or real-time traffic data from roadside sensors are avail-
able, a simplified prediction algorithm using speed limits and constant acceleration and
deceleration rates, independent of the driving style, is applied.

For PHEVs a SOC drop to the lowest possible level at the end of the trip is desirable
to improve the overall fuel efficiency. This has led many researchers, such as the au-
thor of [91] and [190], to develop multi-level energy management controllers. In [190] a
traffic-data-enabled predictive control framework based on a supervisory battery SOC
planning level and a lower level short-term velocity estimator is proposed. The high-level
SOC planning integrates real-time traffic data obtained from roadside sensors in order
to improve the overall fuel efficiency. The authors in [91] introduced a similar approach
for the efficient control of PHEVs. A high-level on-line stochastic optimisation based
on real-time traffic information determines the optimal SOC trace. The low-level con-
troller operates off-line and determines the optimal power distribution based on historical
driving cycles.

In recent years, model predictive control (MPC) has been used to design energy man-
agement controllers for HEVs and PHEVs. Model predictive control minimises a cost
functional over a short future horizon with a terminal cost. For instance, in the doctoral
thesis of [12], MPC is used to optimise a parallel HEV using driver-independent speed
profiles. In addition, real-time implementation was demonstrated.

In the work of [165], stochastic model predictive control (SMPC) is implemented in a
series HEV. The driver’s future power demand is modelled as a Markov chain, which is
trained off-line. In [33], the control algorithm for series HEVs regulates the transition be-
tween different operating points by using the battery energy to smooth engine transients
in order to improve the powertrain efficiency, rather than the total fuel consumption.
An on-line learning SMPC is introduced in [32]. Here again, a Markov process models
the future power request, but it is learned in real-time and thus allows adjustments to
variations in the driver behaviour. The results show a near-optimum fuel economy in
real-world driving cycles. The authors in [27] proposed two different MPC algorithms
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(linear, non-linear) for controlling a power-split HEV with a different formulation of the
cost functional. The non-linear controller outperformed both the linear MPC and the
baseline strategy implemented in the software tool used.

Another research focus is on enhancing the overall fuel efficiency of HEVs by incorpo-
rating an advanced learning mechanism and the individual driving style. For example,
in [90] driving pattern recognition is used to automatically select a control scheme from
a database of six representative driving modes using artificial neural networks (ANNs).
The authors in [211] propose an on-line driving pattern recognition algorithm for a cer-
tain route, such as commuter routes. The future driving cycle is predicted by using the
previously recorded driving pattern. An on-line, two-step energy management controller
for a power-split PHEVs using ANN is proposed in [36]. The ANNs are trained on six
driving cycles based on the optimised results obtained by DP. The controller selects the
suitable ANN depending on the trip information, such as trip length and duration. The
results show improved fuel economy compared to a simple charge depleting/sustaining
strategy.

The operation strategy of the 2015 BMW X5 eDrive Plug-In [10] incorporates digital
map data with real-time traffic data. An activated route guidance via navigation system
enables route-specific optimisation of the SOC level. The future SOC trace is adapted
to the upcoming route, for example, to ensure a rather low energy level when driving
downhill. In addition, an intelligent function holds back electric energy to guarantee pure
electric driving in low-speed areas, such as inner cities. Audi introduced a similar OS in
the 2015 Audi Q7 e-tron 3.0 TDI quattro [107]. In [96] and [98], Mercedes launched a
route-based operation strategy in their new PHEVs, which ensures pure electric driving
in cities over the entire driving route, while concurrently saving fossil fuel and increasing
comfort.
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2.3. Main Scientific Contributions

State-of-the-art OSs for PHEVs rely on a multi-level energy management controller [91],
[122]. Due to the fact that the best fuel economy for plug-in hybrid electric vehicles
is achieved when the SOC level drops to its minimum threshold at the end of the trip,
the upper-level controller evaluates the optimal SOC trace using several different opti-
misation algorithms. The low-level controller selects appropriate operation modes with
respect to the high-level SOC boundaries. To determine the optimal SOC trajectory,
some researchers rely on the advancements of ITS combined with GPS and GIS [91],
[122]. Others use trip-modelling based on the upcoming speed limits and predefined con-
stant acceleration/deceleration behaviour [25], [61]. Both energy management schemes
result in fuel savings.

There are three main scientific contributions included within the present thesis. First,
based on the ideas of [25] and [61], the fixed-trip model is augmented with the driver’s
individual driving behaviour. Instead of using recorded speed traces from roadside sen-
sors provided by advanced communication technologies such as ITS and GIS, the intel-
ligent energy management controller is based on information about the specific driver’s
past driving tendencies. The innovative, long-term prediction and adaptation (P&A)
algorithm processes fixed-location information, such as speed limits, by using GNSS
signals and digital maps. However, the core functions of the P&A are to gather, pro-
cess and utilise past driving data from the driver’s previous trips in order to increase
the long-term prediction accuracy without using any other information, such as road-
side sensors. Methods for approximating the driver’s individual driving style (e.g., the
acceleration/deceleration behaviour or the maximum lateral vehicle acceleration) are in-
corporated with fixed-position information. The advantage of the P&A algorithm is
that it is able to achieve outstanding fuel efficiency even in areas where no average
speed profile information is available from roadside traffic sensors. Moreover, taking the
driver’s individual driving style into account over a longer period may increase customer
acceptance of HEVs.

Second, a novel holistic energy management controller is proposed here, which is able
to account for different trip scenarios, such as trips both within and beyond the AER.
Depending on additional available route information, the OS uses a baseline strategy
that selects certain operation modes according to predefined rules. If a frequently driven
route is recognised and/or input data from the navigation system and GNSS signals are
available, this information is used to enhance the overall fuel efficiency of PHEVs. Thus,
the controller manages multiple driving routes by selecting an appropriate control path.

Third, all of the effects of the proposed intelligent OS are explicitly presented and dis-
cussed in a dynamic vehicle model. This yields more realistic conclusions regarding fuel
saving potential and improvements of the longitudinal vehicle dynamics, such as full-load
acceleration or vehicle gradeability.
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Methodology

3.1. Modelling and Simulation Environment

The rapidly growing complexity of vehicles and powertrains requires increased interdisci-
plinary coordination in vehicle development, a trend which is driving an accompanying
shift to a more simulation-centric development process [163]. The need to constantly
reduce development time and cost in the highly competitive market of automotive engi-
neering encourages the use of numerical development tools [77].

The development of HEVs, with their growing system complexity [124], wide range of
topologies [78] and strong dependency on the power distribution strategy [126], offers
more DoF in development and constitutes new challenges. Numerical modelling and
simulation approaches are a basic principle to meet these challenges [84]. Furthermore,
simulation models lead to a deeper understanding of the system behaviour and effi-
ciently reduce time, cost and effort during the development process [179]. Compared to
experiment-based engineering, model-based simulations provide vehicle manufacturers
with some competitive advantages, including:

• The initial component design is provided at an early stage of development [124].

• The repeatability of results and technical phenomena is ensured1 [75], [167].

• Conceptual studies and system optimisation can be carried out in rapid iterations
[75], [124].

1However, simulation results may vary depending on the software and hardware used, especially when
performing parallel computing. Thus, reproducibility is not necessarily ensured.
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• Physical limits can be exceeded with no danger [75], [167].

• Disturbances can be controlled [75], [167].

• Difficult measurable values can be derived [75].

• Parameters with low influence can be investigated more easily [75].

The scope of application for numerical models and simulation tools in HEV development
is vast. These tools are used to perform conceptual studies on the drivetrain layout
[191], to realize fuel saving potential [114] and to achieve optimal component sizing
[112], [191]. Moreover, virtual methods are also used to develop and test HEV operation
strategies [106], as well as to investigate drivetrain dynamics [204]. Nevertheless, it is
important that researchers validate simulation results and the vehicle model behaviour
with real-vehicle and component test data frequently.

However, drivetrain modelling should always consider the principle of simplicity: not
as accurate as possible, but rather as accurate as necessary [13]. Consequently, the
detail of modelling depends on the specific research objective. The subsequent chapters
first discuss the two modelling approaches used in the simulation environment and then
provide a description of mathematical models of the HEV’s drivetrain.

3.1.1. Modelling Approaches

The proposed simulation environment deploys two different drivetrain models, depending
on the intended application. The quasi-static vehicle model and the dynamic vehicle
model are described below.

Quasi-static vehicle model

The input variables of the quasi-static vehicle model2, depicted in Figure 3.1, are the
vehicle speed vx, the vehicle acceleration ax and the inclination β of the road of a
predefined driving cycle. The force FT acting on the wheels to follow the given driving
profile is calculated in the vehicle model block by

FT = mV EH · ax︸ ︷︷ ︸
FA

+FD + FR + Fβ, (3.1)

where FA is the acceleration force, mV EH is the total vehicle mass, FD is the air drag,
FR is the rolling resistance, and Fβ is the resistance due to the road inclination β.
Assuming perfect road-tyre contact – thus, no tyre slip is considered – the rotational
speed ωT and the torque TT at the vehicle tyres can be calculated. These values are
constant for each time step ∆ts [69]. Subsequently, the angular speed ωi and the torque
Ti of each powertrain component i are determined backwards to the propulsion units

2Also known as backward-facing model [136]
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Figure 3.1.: Quasi-static vehicle model

The necessary driving torque TT and the angular speed ωT at the tyres are calculated
according to the given driving cycle, defined by its speed vx, acceleration ax and the
road inclination β. The torque and rotational speed of each component are evaluated
backward-facing. The hybrid control unit (HCU) with its operation strategy determines
the propulsion torque share between the ICE and the EMG. The power demanded at the
propulsion units PICE and PEMG results in a consumption of fossil fuel and electric energy,
respectively.

considering component efficiency with the help of multi-dimensional efficiency maps.
The energy consumption of the ICE and the EMG is then evaluated with fossil fuel
consumption maps and electric energy consumption maps, respectively. Since backward-
facing vehicle models run with relatively large time steps, this method operates quickly
and is therefore convenient for optimisation purposes [69], [136]. The main drawback
of the quasi-static method is its “backward” formulation, resulting in a loss of physical
causality and the need to know a driving cycle a-priori [69]. Moreover, this modelling
approach is not capable of considering drivetrain dynamics [136], since only algebraic
equations are calculated. Nevertheless, as long as no drivetrain dynamics have to be
considered, the backward modelling approach is sufficiently accurate [115].

Dynamic vehicle model

In contrast, dynamic vehicle models3 (see Figure 3.2) contain ordinary differential equa-
tions (ODEs) in state-space form:

d

dt
x(t) = f

(
x(t), u(t)

)
, x(t) ∈ Rn, u ∈ Rm. (3.2)

The state variable is denoted by x(t) (e.g., position, velocity, brake pressure), and the
control variable is u(t) (e.g., steering-wheel angle, accelerator pedal position, gear lever
position). Forward-facing models deal with quantities that are measurable in real driv-
etrains and have the correct causality [69], [136]. Moreover, a driver model has to be

3Also called forward-facing models [136]
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Figure 3.2.: Dynamic vehicle model using the example of a parallel HEV drivetrain

A driver model defines the torque demand of the ICE TICE,req and/or the EMG TEMG,req

by comparing the actual vehicle speed vx with the driver’s intended speed vx0 in the
form of a pedal position input pp. The HCU determines a fuel-efficient power distribution
between the two propulsion units. The torque produced by the ICE and EM is transmitted
through the gearbox and final drive. At the wheels, the torque results in a longitudinal
tyre force FT , which causes a vehicle speed vx, which is then propagated back to the
propulsion units as angular speed ωi.

included that provides the control variables u(t) in the form of the desired propulsion
torque of the ICE TICE,req and/or EMG TEMG,req and brake torque, to meet the driver’s
intended speed profile. Consequently, the torque flow starts from the driver input – a
pedal position input pp – and propagates through the different drivetrain components to
the wheels. The resulting traction force FT at the tyres causes a certain vehicle speed vx
and an angular speed ωi at each powertrain component. There will be a small margin
of error between the actual vehicle speed vx and the intended speed vx0 of the driver,
due to the controller characteristics of the driver model. Figure 3.2 shows a schematic
representation of a dynamic vehicle model for a P2-HEV drivetrain. Based on the pedal
position input pp (evaluated by comparing the actual vx with the desired vehicle speed
vx0), the hybrid control unit (HCU) determines a fuel-efficient power distribution of
both propulsion units – the ICE and EMG. The dynamic vehicle model can theoretically
cover all dynamic effects in the drivetrain and capture limits of the physical system. Con-
sequently, the description of the driver-vehicle system is more realistic. However, the
simulation has to run in smaller time steps [136] because of the numeric time-integration
of the ODEs providing different dynamics for each simulated component. Moreover,
higher system complexity and high modelling effort for the control algorithm are disad-
vantageous [115]. Unlike the quasi-static vehicle model, in the dynamic vehicle model
the power transfer is bi-directional, which means the direction of the effort (torque) is
opposite to the direction of the flow (speed) [136], as in real physical systems (cf. Figures
3.1 and 3.2).
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3.1.2. Modelling of Drivetrain Components and Vehicle Model

3.1.2.1. Internal Combustion Engine (ICE)

The ICE converts the chemical energy of fuels via combustion into kinetic energy, which
is used to propel vehicles. Although there are different types of combustion engines,
the most common ones are piston engines. In the automotive area, these engines work
according to the four-stroke principle4: intake, compression and ignition, expansion, and
exhaust. The most frequent powertrain units for passenger vehicles are gasoline and
diesel engines [43], as shown in Figure 1.1. In both working principles, a fuel-air mixture
is ignited either by a spark plug in gasoline engines or by self-ignition at the end of the
compression stroke in diesel engines. The released heat increases the pressure of the pre-
compressed gases, which is rendered into mechanical work at the crankshaft during the
subsequent expansion. According to [131], the reaction equation for complete combustion
of fossil fuels reads

Cm̃HñOp̃ +

(
m̃+

ñ

4
− p̃

2

)
O2 −→ m̃CO2 +

ñ

2
H2O (3.3)

where Cm̃HñOp̃ is the general expression for fossil fuels. The number of moles of carbon
(C), hydrogen (H) and oxygen (O) are denoted by m̃, ñ and p̃, respectively. This means
that during a complete combustion, the fossil fuel is oxidised, and only CO2 and H2O
are produced.

However, real combustion processes are characterised by oxidation with ambient air (air
composition: 21 vol.-% O2, < 1 vol.-% inert gas and ≈ 78 vol.-% N2 [131]) and incomplete
chemical reactions. Consequently, due to incomplete combustion, additional emissions
are produced, such as CO, HC, NOx and PM [20], [44].

The working process of modern ICEs is controlled by numerous electronic control units,
such as mixture and idle speed control [44]. These control algorithms significantly in-
fluence the characteristics of an ICE. Consequently, modelling the behaviour of internal
combustion engines always includes these control algorithms [130].

Mean value model

In combustion engines, the requested torque TICE depends on the current operation point,
which is characterised by the current ICE rotational speed ωICE and the accelerator pedal
position pp.

TICE = f(ωICE , pp). (3.4)

Equation (3.4) can be characterised as a map that is measured on an engine dynamometer
for a given accelerator pedal position pp and engine speed ωICE , as shown in Figure 3.5(a).
However, the present research uses a generic relation between engine torque TICE and

4Two-stroke methods also exist, but they are not popular in automotive engineering.
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Figure 3.3.: Implemented ICE map with its characteristic parameters

The different lines in the map are the areas with a constant brake-specific fuel consumption
(BSFC). The lower the BSFC, the higher the ICE efficiency. Moreover, the idle speed and
the maximum speed of the ICE are highlighted.

the pedal position pp, which assumes that zero pedal position pp = 0 is similar to the
engine’s drag torque TICE,d, and pp = 1 equals the full-load characteristic TICE,max.
Intermediate values are interpolated linearly, as shown in Eq. (3.5) and Figure 3.5(b).

TICE(ωICE , pp) = TICE,d(ωICE) + pp ·
(
− TICE,d(ωICE) + TICE,max(ωICE)

)
. (3.5)

In real ICE maps the accelerator pedal position characteristics are often non-linear [53],
as shown in Figure 3.5(a). The drag torque TICE,d, as seen in Figure 3.5(b), at pp = 0 %,
is defined as negative torque TICE,d < 0, and it increases almost linearly with the engine
speed ωICE [130], [134]. The implemented engine map is shown in Figures 3.3 and 3.5(b).

Using Eq. (3.5), the characteristics of the ICE can be described following the principle
of angular momentum

ΘICE · ω̇ICE = TICE − T̄ICE,out, (3.6)

where ΘICE is the moment of inertia of the ICE, and T̄ICE,out is the actual torque at the
crankshaft, without considering the system response time. The ICE response is modelled
in Eq. (3.7) as first-order lag element G2(s) in combination with a dead-time element
G1(s). These transfer functions account for the combustion delay and the intake process
[103]. Therefore, the engine torque at the crankshaft TICE,out considering the engine
response reads

TICE,out(s) = T̄ICE,out(s) ·
Kp,ICE

1 + Tl,ICE · s︸ ︷︷ ︸
G2(s)

· e−sTt,ICE︸ ︷︷ ︸
G1(s)

, (3.7)
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The ICE dynamic response characteristics are described by a dead-time element G1(s)
and a first-order lag element G2(s). The dead-time element represents the combustion
delay, and the first-order lag element accounts for the intake process. Both time variables
Tt,ICE and Tl,ICE are inversely proportional to the rotational engine speed ωICE [103].
The amplification factor of the PT1-element is described by Kp,ICE . The engine torque
at the crankshaft considering the ICE dynamics is represented by TICE,out.

where Kp,ICE is the amplification factor, Tl,ICE is the first-order lag time of the PT1 ele-
ment, and Tt,ICE is the delay time. In [85], a second-order lag element (PT2) is proposed
to consider the dynamic characteristics of the ICE. According to [130], such a modelling
approach is sufficiently accurate. Nevertheless, this thesis uses a PT1 characteristics with
a dead-time element, as shown in Figure 3.4. Figure 3.3 shows the brake-specific fuel
consumption (BSFC) [44]. The lower the BSFC value, the higher the engine efficiency
ηICE . It reads

BSFC =
ṁf

PICE
=

1

ηICE ·Hu
, (3.8)

where ṁf is the fuel mass flow, PICE is the effective ICE power, Hu is the lower heating
value of the fuel, and ηICE is the efficiency of the ICE defined as

ηICE = f(TICE , ωICE). (3.9)

Emissions which occur during engine operation are not considered in this work, since the
focus of the present work is on fuel efficiency rather than clean combustion. Therefore, an
ideal exhaust gas treatment is assumed. Nevertheless, in practice duty-cycles (permanent
transitions between different operation modes) or engine shut-off at idle causes engine
or catalyst cooling, which increases emissions.

Engine Control Unit (ECU)

The objective of the engine control unit (ECU) is to positively influence drivability5,
fuel consumption and exhaust emissions. To this end, multiple complex control sys-
tems [44] are implemented in modern ICEs. In this thesis, the amount of controllers
is reduced to the idle speed controller, the engine speed limiter, the deceleration fuel

5Drivability describes the objective assessment of driving comfort based on physically measurable cri-
teria [130].
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Figure 3.5.: Schematic representation of an engine map

Figure (a) depicts an engine map with non-linear pedal position pp characteristics based
on [53]. However, the engine map implemented in Figure (b) linearly interpolates between
the drag torque characteristics (pp = 0 %) and the full-load characteristics (pp = 100 %)
of the ICE.

cut-off (DFCO) and an automatic start/stop function. The idle speed is controlled with
a proportional-integral-differential (PID) controller, see also [103]. Its parameters are
empirically evaluated with the help of the open loop method of Ziegler and Nichols [83].
The engine speed limiter is modelled with the help of the engine characteristic map,
which provides zero torque at maximum engine speed, as shown in Figure 3.3. During
engine towing, fuel injection is (partially6) stopped, which results in a lower total fuel
consumption. Modern passenger vehicles are often equipped with a start/stop function,
which switches off the engine during standstill. In the implemented HEV, this function is
extended so that the HEV can operate in pure electric mode, which will further increase
fuel efficiency. The fossil fuel consumed during ICE operation ṁf (t) for each time step
is modelled as a function of the ICE speed ωICE and its load TICE and reads

ṁf (t) = f
(
ωICE(t), TICE(t)

)
. (3.10)

The average fuel consumption over a distance of 100 km C̄ can be written

C̄ =

∫
ṁf (t) dt

ρf · d
· 105 (3.11)

6While towing (e.g., driving downhill) it may occur that the entire drag torque of the ICE is too high to
maintain the desired speed. In this case, the driver has to push the accelerator pedal pp > 0 slightly
to reduce the drag torque. This again results in a fossil fuel injection.
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Figure 3.6.: Implemented clutch model

Figure (a) depicts the simplified clutch model used here, which consists of two inertias;
Figure (b) shows a schematic representation of a multi-disc wet clutch with its main com-
ponents; and Figure (c) highlights a representative µ-characteristics based on [206]. The
µ-characteristic depends on multiple factors, such as the friction pairing or the rotational
speed difference ∆ω.

where ρf is the fuel density in kg/l, and d is the currently driven distance in m.

3.1.2.2. Clutch (CL)

A clutch ensures a comfortable start-up process and enables the propulsion unit to be
disengaged from the remainder drivetrain [110]. Moreover, it allows rotational speed
adaptation between the input and output shafts. While manual transmissions mainly
feature dry clutches, conventional automatic transmissions use wet clutches, see Figure
3.6(b). The transferable clutch torque TCL (cf. Figure C.1) reads [125], [206]

TCL = Npl · rm · µ · Fx,CL, (3.12)

where Fx,CL is the axial contact force, rm is the average friction radius, µ is the friction
coefficient and Npl is the number of clutch plates. The friction coefficient µ depends on
the clutch slip ∆ωCL = ωCL,in − ωCL,out. Moreover, the sliding friction coefficient µsl is
smaller than the static friction coefficient µ0, as shown in Figure 3.6(c).

Modelling a slipping clutch and a locked clutch is numerically complex [130], [212]. The
approach of [212] was chosen, since it performs with high numerical stability. The
fundamental problem of clutch models is that during slipping the two inertias move
independently, and the model therefore behaves as a second-order model, cf. Eq. (3.14).
Nevertheless, if the clutch is fully engaged, the system order is reduced [212], as in
Eq. (3.13).

(ΘCL,in + ΘCL,out) · ω̇CL = TCL,in − TCL,out, ωCL,in = ωCL,out = ωCL, (3.13)

where ΘCL,in/out are the moments of inertia at the input/output shafts, ω̇CL is the
rotational acceleration while the clutch is engaged, and TCL,in/out and ωCL,in/out are

41



3. Methodology

the torques and rotational speeds at the input/output shafts, respectively. If clutch slip
occurs, i.e., ωCL,in 6= ωCL,out, the system equations shown in Figure 3.6(a) read in matrix
form

[
ΘCL,in 0

0 ΘCL,out

]
︸ ︷︷ ︸

M

[
ω̇CL,in
ω̇CL,out

]
︸ ︷︷ ︸

ω̇

=

[
TCL,in
−TCL,out

]
︸ ︷︷ ︸

T

−
[

1
−1

]
︸ ︷︷ ︸

dT

TCL sgn

[1 −1
]︸ ︷︷ ︸

d

[
ωCL,in
ωCL,out

]
︸ ︷︷ ︸

ω

 ,

(3.14)
where M is the rotational mass matrix, ω̇ is the rotational acceleration vector, d is a co-
efficient vector, T is the torque vector, and ω is the rotational speed vector. Introducing
a proper congruent state space transformation decouples the original system into two
independent parallel systems, namely the main dynamics and relative dynamics [212].
The state space congruent transformation matrix K reads

K =

[
1

ΘCL,out
ΘCL,Σ

1 −ΘCL,in
ΘCL,Σ

]
, (3.15)

with ΘCL,Σ = ΘCL,in+ΘCL,out. The generalised speed vector z and the rotational speed
vector ω hold the following relation

ω = Kz. (3.16)

Finally, the system dynamics with generalised speeds can be determined by[
ż1

ż2

]
=

[
1

ΘCL,Σ
1

ΘCL,Σ
ΘCL,out
ΘCL,Π

−ΘCL,in
ΘCL,Π

][
TCL,in
−TCL,out

]
− TCL

[
0

ΘCL,Σ
ΘCL,Π

]
sgn

([
0
1

]T [
z1

z2

])
, (3.17)

with ΘCL,Π = ΘCL,in ·ΘCL,out and the generalised acceleration vector ż = [ż1 ż2]T . The
main dynamics are described with ż1, while the relative dynamics are stated in ż2. Using
the inverse transformation of Eq. (3.15) results in the rotational accelerations of the input
and output shafts. Sliding mode theory7 [7] is applied, in which the coulomb friction
torque TCL is the sliding input variable for the system. If the generalised relative velocity
z2 = 0, the transferable clutch torque starts switching at a finite frequency between±TCL.
Therefore, the system in Eq. (3.17) converges towards the sliding surface ssl = 0. The
required high switching frequency results in a small simulation time step ∆ts, which
concurrently increases the simulation time [212].

A more straightforward approach which neglects detailed processes during clutch actua-
tion is also introduced within this thesis. This model limits the rotational speed change
ω̇CL,sft while shifting. Assuming an average shifting time tsft between 0.7 s to 1.2 s [133]
results in

ω̇CL,sft =
|iγ,hi − iγ,lo|ωCL,in

tsft
, (3.18)

7Sliding mode theory is applied in linear and non-linear control. It toggles between two control rules
depending on its state vector, whereby sliding modes occur [7].
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where iγ,hi and iγ,lo are the gear ratios of the two gears involved. For upshifting, ω̇CL,sft
is negative, while it is positive for downshifting manoeuvres. The immediate torque
change is limited in a similar way.

3.1.2.3. Electric Motor/Generator (EMG)

In conventional pure ICE-driven vehicles, an EMG is used as starter or as an alternator.
In HEVs the electric traction motors are used in order to provide additional propulsion
power. Besides the battery, the EMG is a key component [66]. Depending on the HEV’s
drivetrain layout, the dimensioning and the number of EMGs vary [78], [169]. In a
P2-HEV drivetrain layout (cf. Chapter 2.1), the EMG can operate in different ways.

1. The EMG can convert the electric power of the battery to mechanical power to
support the ICE or drive the vehicle purely electrically.

2. In addition, the electric motor/generator is able to convert the excess mechanical
power of the ICE into electrical power to charge the battery, also known as load
point shifting [169].

3. Transforming the kinetic energy during braking into electrical energy of the battery,
also known as recuperation, is a third typical operation mode of the EMG.

In general, there are two different types of machines: direct current (DC) and alternating
current (AC) motors. Although there are different types available, an EMG always
consists of a stator and a rotor, which is directly connected to the output shaft. In this
thesis, an AC permanent-magnet synchronous motor (PMSM) is used as an additional
traction motor.

Phenomenological EMG model

This model describes the motor characteristics with the help of multi-dimensional maps.
The differential equation of the mechanical part of the EMG reads

ΘEMG · ω̇EMG = TEMG − T̄EMG,out, (3.19)

where ΘEMG is the inertia of the rotor of the EMG, TEMG is the motor torque requested
due to driver or operation strategy input, and T̄EMG,out is the torque at the output shaft
of the EMG without considering the system response. The response time of the EMG
follows a first-order lag element [128]. Consequently, the torque at the output shaft reads
in frequency domain

TEMG,out(s) =
Kp,EMG

1 + Tl,EMG · s
· (TEMG(s)−ΘEMG(s) · s · ωEMG(s)). (3.20)

The parameter Tl,EMG is the time constant, and Kp,EMG is the proportional factor of the
PT1-element. The current required to deliver the output torque TEMG,out is determined
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Figure 3.7.: Schematic representation of a four-quadrant EMG characteristics

The implemented EMG characteristics are assumed to be symmetrical in relation to the
electric motor (EM) and generator (EG) mode. Within the nominal speed area ±ωnom,
there is a constantly high continuous EMG torque Tnom. This area is followed by the
field-weakening range. The EMG can operate in its overload mode for a short time.

using a multi-dimensional efficiency map ηEMG (see Figure 3.8), and the conservation-
of-energy principle, using Eq. (3.21) and Eq. (3.22).

ηEMG = f(ωEMG, TEMG), (3.21)

IEMG =
TEMG · ωEMG

UBAT
· η−sgn(TEMG)
EMG (3.22)

The signum function considers the losses in both EM (TEMG ≥ 0) and EG (TEMG < 0)
mode. The instantaneous battery voltage is given by UBAT . The efficiency ηEMG is
assumed to be symmetric in the first and fourth operation quadrant. Consequently, it
holds that

ηEMG(ωEMG, |TEMG|) = ηEMG(ωEMG,−|TEMG|). (3.23)

Figure 3.7 depicts the motor speed-torque characteristics. The EMG has two different
operation modes. First, in the continuous operation mode, the motor provides its contin-
uous torque Tcont and its continuous power Pcont. This torque is permanently available,
without violating any thermal or mechanical constraints. In contrast, the overload oper-
ation mode allows higher torque Tmax and power Pmax over a limited short-term. The
duration mainly depends on the windings temperature and the mechanical strength [79].
Temperature sensors in the end windings help to control the different operation modes.
Typical overload factors are between 1 to 2.5 [79]. The continuously high torque level
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Figure 3.8.: Schematic representation of an electric motor efficiency

Only the first operation quadrant of the implemented EMG efficiency map is shown, since
a symmetric characteristic is assumed. The EMG is characterised by high operation
efficiencies, depicted by the different lines with constant EMG efficiency ηEMG. Operating
efficiencies above 90 % are possible.

from zero speed to nominal speed ωnom is another advantage of an EMG (cf. Figure
3.7). In this area, the power increases linearly with the motor speed, the current is
proportional to the motor torque, and the motor speed is proportional to the voltage.
At rotational speeds higher than ωnom, the power remains at nearly constant high power,
while the motor torque decreases in indirect proportion to the motor speed. This area
is also known as field-weakening range. In this area, the maximum allowable voltage
is reached, and consequently the magnetic flux has to be reduced in order to keep the
voltage at a high constant level [79]. The shape of the field-weakening range depends on
the type of EMG – synchronous or asynchronous machines.

For the present thesis, this modelling approach is sufficiently accurate and requires no
advanced control algorithm. Nevertheless, electrical parameters are not used. The in-
verter model is assumed to be ideal, which means that no additional losses and time
delays occur. Since the efficiency of the power electronics varies between 0.93 to 0.99
[79], this assumption does not strongly affect the model accuracy.

3.1.2.4. Battery (BAT)

The additional ESS has a major importance in HEVs. There are different types of ESS
(e.g., mechanical, chemical, electrical). Nevertheless, this chapter only discusses battery
HEVs. The fundamental system of a battery is the galvanic cell. This cell enables the
energy conversion from chemically-bounded to electrical energy and vice versa. Figure
3.9 shows the main components of a lithium-ion (Li-ion) battery. The battery consists
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Figure 3.9.: Components of a Li-ion battery [8]

The basic components of a galvanic cell are two electrodes (anode, cathode), a separator,
an electrolyte and an external circuit to power a device. The anode consists of thin hard
carbon layers with Li+-ions in between. Since the separator is commonly designed as a
shut-down-separator, it melts above temperatures of 135 ◦C. The electrolyte is a solvent
mixture with dissolved conducting salt. Solvated Li+-ions develop due to the reaction of
Li+ with the electrolyte. The solid-electrolyte interface (SEI) is formed during the initial
charging and increases the battery’s internal resistance.

of two different electrodes. The anode is a reductant, and the cathode is an oxidant.
A separator prevents any electron transfer between the two electrodes inside the cell.
Moreover, there is an electrolyte that conducts the working ions [62].

During a discharging process, Li+-ions move from the anode, through the electrolyte and
separator to the cathode. Thereby, the electrolyte and the Li+-ions form solvated Li+.
Concurrently, electrons e− flow from the anodes via external circuits to the cathodes,
thereby reducing the anodes. This electron flow enables a current, which can be used
by a power device connected to the external circuit. Thus, during discharge the battery
transforms the stored chemical energy into electrical energy at the load device [62]. The
anode consists of thin hard carbon layers with Li+-ions in between. Since the separator is
commonly designed as shut-down-separator, it melts above temperatures of 135 ◦C. The
electrolyte is a solvent mixture with dissolved conducting salt. Solvated Li+-ions are
developed due to the reaction of Li+ with the electrolyte. The solid-electrolyte interface
(SEI) is formed during the initial charging and increases the battery’s internal resistance.

A battery pack for automotive application consists of several electrochemical cells in
series and/or parallel arrangement. Different types of Li-ion batteries are commonly
used in vehicles [30], [120]. According to [8], the reaction equation of Li-ion batteries
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Figure (a) shows the implemented dynamic model. It is a simplification of the well-known
Randles battery model, the parameters of which are hard to identify exactly [210]. The
simplification arises from ease of parametrisation. It consists of an open-circuit voltage
Uoc and a parallel RC-element. Figure (b) depicts the implemented quasi-static battery
model, which consists of only one internal resistance Ri.

generally reads

LiMO2

charging−−−−−−−⇀↽−−−−−−−
discharging

Li1−xMO2 + xLi+ + xe−, (3.24)

xLi+ + 6C + xe−
charging−−−−−−−⇀↽−−−−−−−

discharging
LixC6, (3.25)

LiMO2 + 6C
charging−−−−−−−⇀↽−−−−−−−

discharging
Li1−xMO2 + LiC6, (3.26)

where LiMO2 are lithium metal oxides, M is a transition metal, often consisting of Cobalt
(Co) and/or Nickel (Ni) and/or Manganese (Mn)8, the anode material is graphite C, and
LiC6 is lithiated graphite. Since the Li-ion battery technology offers high specific energy,
high specific power, high efficiency and little self-discharging effect [120], it is suitable for
application in HEVs. In the literature, different types of battery models are discussed.
Depending on the model requirements, three main groups are distinguished [95], [210]:

• Physical-chemical models

• Equivalent-circuit models

• Mathematical black-box models

An equivalent-circuit model approach enables fast calculation and sufficient accuracy of
the basic dynamic effects. The characteristics of the battery are reproduced by resis-
tances, inductances, and capacitances. The implemented dynamic battery model (see
Figure 3.10) accounts for self-discharging effects, as well as for the dependency of the
open-circuit voltage Uoc on the SOC and temperature effects. The battery model used

8Such a cathode combination is referred to nickel-manganese-cobalt, or NMC.
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represents a simplification of the well-known Randles model [161]. However, the simpli-
fication guarantees an easy parametrisation of the battery with an adequate accuracy,
which is not the case with the Randles model [210], because a clear allocation of the
internal resistances is prohibitively difficult. The open-circuit voltage Uoc is assumed to
be an ideal voltage source, which depends on the current SOC and the current temper-
ature ϑ. The RC-element models battery dynamic behaviour. The internal resistance
Ri(SOC, ϑ) accounts for several different phenomena, as shown in Eq. (3.27),

Ri = Rd +Rct +Ro. (3.27)

The variable Ro is the ohmic resistance, which occurs in the electrolyte, the electrodes
and the current collector. It causes the instantaneous voltage drop at the beginning of
the battery discharge, as shown in Figure 3.11(a). The reaction kinetics occurring at
the electrodes result in the charge-transfer resistance Rct. The diffusion of ions in the
electrolyte is accounted for with the diffusion resistance Rd [66]. The internal resistance
Ri is different for charging and discharging sequences. The capacitance C describes the
capacitive effects of the charge accumulation/separation occurring at the interface be-
tween the electrodes and electrolyte [66]. Using Kirchhoff’s laws, the dynamic behaviour
of the battery model in Figure 3.10(a) reads:

C
d

dt
URC = IBAT −

URC
Ri

, (3.28)

UBAT = Uoc − URC , (3.29)

where IBAT is the battery current, URC is the voltage drop in the parallel RC-branch,
and the parameter C is the capacitance. The current battery’s state of charge SOC(t)
is

SOC(t) = SOC0 −
∫ t

0

IBAT
Qnom

dτ. (3.30)

The initial battery’s SOC is described by SOC0, and Qnom is the nominal battery ca-
pacity.

Battery Monitoring Unit (BMU)

The main task of the battery management system is to ensure the battery’s health
throughout the entire battery life-cycle [41]. The implemented BMU continuously mon-
itors the battery current IBAT , the battery voltage UBAT and the SOC. To guarantee a
high SOH, the battery temperature ϑ has to be monitored as well (cf. Figure 3.12). The
SOH of a battery describes battery ageing effects: at high SOC, electrolyte decomposi-
tion occurs, and at low voltage, arrester corrosion occurs. The BMU limits the maximum
current in order to avoid lithium plating. This phenomenon occurs when metallic lithium
precipitates at the anodes during charging phases and significantly reduces the battery
pack’s capacity and battery performance [109] and may result in short-circuits [213].
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Figure 3.11.: Characteristics of the implemented battery model

Figure (a) shows the decreasing influence of the battery current, expressed by the C-rate9,
on the battery voltage. The C-rate describes the ratio of the maximum battery current
and its capacity. Figure (b) shows the battery’s performance with varying temperature.
It decreases as the temperature decreases.

Since the battery’s performance strongly depends on the cell temperature ϑ, see also
Figure 3.11(b), the battery heating is also included in the model. The amount of heat
to be dissipated EQ [57] is determined by

EQ =

∫ t

0
PQ dτ =

∫ t

0

1

Ri
U2
RC dτ, (3.31)

where Ri is the internal resistance of the battery, and PQ is the heat power. Due to
the assumption of ideal cooling, the entire amount of heat dissipates. Consequently, the
battery model always performs in its optimal temperature range between 20 ◦C to 40 ◦C
[213]. If the temperature is too low, the internal resistances rise significantly, and if the
temperature is too high, thermal decomposition of the electrolytes is followed by cell
inflammation [213]. The monitoring of the cell voltage is also a crucial part of the BMU.
Severe discharging (< 2.5 V) leads to battery capacity loss and higher self-discharging
effects. However, over-voltage (> 4.2 V) results in spontaneous ignition [213]. In addition
to the voltage control, the battery’s SOC is also evaluated. The usable SOC is set to
the almost linear voltage area, see Figure 3.11. The SOH is approximated with the help
of the battery states voltage U , current I and temperature ϑ.

9The C-rate is defined as the ratio of maximum charging/discharging current and the capacity, thus
C-rate = Imax

C
.
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Figure 3.12.: Limited operation area of a Li-ion battery [41]

The operation range is limited by the cell temperature ϑ, cell current I and voltage U .
The safety zone guarantees a sufficient distance to the restricted zone. These thresholds
have to be controlled by the BMU in order to ensure a long life-cycle.

3.1.2.5. Gearbox (GBX)

Gearboxes are essential in automotive drivetrains in order to achieve good vehicle perfor-
mance concerning fuel efficiency and vehicle agility [53]. The main function of the GBX
is to adapt the ICE torque and angular speed to the requested power at the wheels [110].
The GBX enables the ICE to operate over a wide vehicle speed area within its narrow
speed range. The different types of gearboxes include manual automated transmissions,
stepped-automatic transmissions, automated transmissions with hydrodynamic torque
converter (German: Drehmomentwandler), continuously variable transmissions (CVTs)
and dual clutch transmissions (DCTs). In this thesis, a gearbox model that considers
the different gear ratios and the inertias at the input and output shafts is implemented.
The first gear, which has the largest gear ratio, is often chosen to meet the towing re-
quirements for climbing ability. Top speed or fuel economy aspects are the main design
criteria of the highest gear, which has the lowest gear ratio [67]. Furthermore, the total
gear spread ϕs also has to consider packaging limitations in addition to the towing and
top speed requirements [52].

Besides the total gear spread ϕs, there exist two more design parameters. The ratio
between two consecutive gears ratios ϕγ , which reads

ϕγ =
iγ
iγ+1

, γ = 1, ..., Nγ − 1 (3.32)

where typical values for the ϕ1 are in the range of 1.45 through 1.9 [52]. Consequently,
the total gear ratio ϕs reads

ϕs =

Nγ−1∏
γ=1

ϕγ , (3.33)

where γ is the selected gear, and Nγ is the total number of gears. The second design
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Figure 3.13.: Schematic representation of a single gear ratio and the gearbox model

Figure (a) shows a single gear ratio with its characteristic parameters. Figure (b) shows
the gearbox model integrated in the drivetrain. The total moment of inertia of the
vehicle is combined in ΘV EH . The combination of clutch (CL) and gearbox (GBX) is
often called transmission. Figure (c) shows the gear ratios iγ for each individual gear.

criterion is the progression coefficient Ψγ , which reads

Ψγ =
ϕγ
ϕγ+1

, γ = 1, ..., Nγ − 2. (3.34)

This design law avoids excessive gaps between two consecutive gears. If Ψγ = 1, a
geometrical design is used. In practice, a gearbox design with constant progression
factor (Ψγ = const) is often used [52]. Figure 3.13(b) depicts the implemented simplified
transmission model. It consists of a clutch and a gearbox with different gear ratios iγ .

The gear ratio iγ in Figure 3.13(c) reads [52]

iγ =
Tout
Tin

=
ωin
ωout

=
rout
rin

, (3.35)

The variables Tout and Tin define the torques at the output and input shafts of the
gearbox, respectively. The gearbox speeds at the input and output shafts are described
by ωin and ωout. The parameters rout and rin are the radiuses of the corresponding gear.
If the input and output shafts have opposite rotating directions, a negative sign has to
be added.

Applying the conservation of angular momentum on the schematic representation in
Figure 3.13(a) results in

Θin · ω̇in = Tin − Fγ · rin, (3.36)

Θout · ω̇out = −Tout + Fγ · rout, (3.37)
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where Fγ is the gear force. Reformulating Eq. (3.36) and Eq. (3.37) and using the relation
stated in Eq. (3.35) yields

Fγ = (Tin −Θin · ω̇in) · 1

rin
, (3.38)

Tout = −Θout · ω̇out + Fγ · rout. (3.39)

Eliminating Fγ , the torque and the angular speed at the output shaft read

Tout = Tin · iγ−(Θout + Θin · i2γ) · ω̇out, (3.40)

ωout = iγ · ωin. (3.41)

The parameters Θin/out are the moments of inertia of the input/output shafts, and the
force Fγ acts on both contacting tooth flanks. Although this simple model accounts
for changing gear ratios, an overlapping gear-shifting mechanism, which is common in
stepped-automatic and DCTs, cannot be considered [130]. Since analysing the shifting
quality is not part of this thesis, the introduced model is sufficiently accurate. Equation
(3.40) does not account for the gearbox efficiency. By introducing the gearbox efficiency
ηGBX , the torque at the output shaft T̄out is determined by

T̄out =

{
Tout · ηGBX , Tout ≥ 0,

Tout · 1
ηGBX

, Tout < 0
. (3.42)

The gearbox efficiency is assumed to be constant. Typical values are between 0.95 and
0.97 [69], [134]. In real transmissions, losses occur at various component parts, such as
gears, bearings and sealings. These losses strongly depend on the load level, angular
speed, temperature and operating time. Nevertheless, dissipative losses due to friction
play a crucial role. At low loads, the gearbox efficiency is low, and it decreases further as
the angular speed increases. At low speed and high loads, the best efficiency is reached
[53].

Transmission Control Unit (TCU)

The transmission control unit (TCU) is responsible for controlling the GBX components.
In automatic transmissions, the TCU takes over some driver functions, namely selection
of a suitable gear, actuation of the clutch and the interference with the ICE. Since the
interactions of the TCU are complex [53], the focus in this chapter is only on the shifting
strategy. Its main objective is to sense and process all environmental conditions in order
to choose a suitable gear for a certain driving situation. The shifting strategy can either
focus on fuel consumption, traction or driving performance [53]. The main input signals
for a conventional shifting strategy are the accelerator pedal pp and the current vehicle
velocity vx. These inputs are used to determine the most suitable gear in a predefined
gear-shifting map (cf. Figure 3.14). There are at least two different maps for upshifting
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Figure 3.14.: Schematic representation of a conventional shifting strategy

Figure (a) shows an implemented shifting strategy of a real vehicle according to [53].
Figure (b) presents the simplified shifting strategy implemented here. In both cases, the
kick-down function occurs at a pedal position of 80 %.

and downshifting, and the number grows with the number of different shifting modes.
In general, the selected gear γ reads

γ = f(pp, vx). (3.43)

Figure 3.14(a) depicts a conventional shifting strategy according to [53], while Figure
3.14(b) illustrates the simplified strategy implemented here. A hysteresis is implemented
in order to avoid oscillating shifting behaviour. This conventional shifting strategy is
often extended by additional functions [53], such as:

• Kick-down function:
The shifting strategy is optimised to maximum engine power. The TCU detects a
kick-down either by the position and gradient of the accelerator pedal pp or by a
switch. This mode also enables dual-downshifts and an upshift near the engine’s
maximum speed ωICE,max.

• Sport mode:
This mode enables higher engine revolutions; thus, the shifting strategy holds the
gear for a longer time. The sport mode can be selected by the driver via a switch,
or it can be selected by a self-learning algorithm.

• Load detection:
This function detects the current vehicle load and switches to a traction-optimal
shifting strategy. Consequently, gear hunting10 can be avoided.

10Also known as oscillating gear-shifting behaviour
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The final drive balances the wheel speeds of the driven axles ωFD,out,l/r. It is modelled
by four rigid bodies: the crown wheel (CW) and housing, the input shaft with pinion,
and the left and right output shafts with pinion or sun gears (SGs).

• Tyre slip detection:
This mode interacts with the electronic stability program (ESP) and the anti-lock
braking system (ABS) in order to detect spinning or locking wheels.

The implemented shifting strategy covers a kick-down function (realised with the position
of the accelerator pedal pp) and two operating modes (economy and sport mode). To
ensure fast shifting and high shifting quality, the TCU is able to systematically influence
the propulsion torque. Gear hunting is avoided by using a shifting hysteresis between
upshifting and downshifting, see Figure 3.14(b).

3.1.2.6. Final Drive (FD)

The main function of the final drive (cf. Figure 3.15) is to balance the wheel speeds of the
driven axles. The torque distribution is permanently equally distributed. Furthermore,
a gear ratio iFD between 2.6 to 4.5 is often used [110]. If there is no speed difference
between the driven wheels, the pinion gears (sun and planetary gears) of the final drive in
Figure 3.15 do not move. However, if a speed difference occurs, such as during cornering,
unequal dynamic tyre radiuses of the driven axle, or different tyre grip potential (such
as µ-split surfaces11), the pinion gears (sun and planetary gears) start to move, and
mechanical power is shifted [53]. In order to avoid excessive traction losses, mechanically
and electrically actuated differential locks or advanced traction control systems (TCSs)
can be used.

11A road condition where the friction significantly differs between the left and right wheelpaths, e.g., a
wet road which has dried along a central area
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Figure 3.15 shows a schematic illustration of a final drive. It consists of a crown wheel
(CW), sun gears (SGs), planetary gears and a housing. Omitting the masses and inertias
of the planetary gears, the mechanical characteristics of the final drive reads:

[
ΘSG,l + 1

4Θ∗ 1
4Θ∗

1
4Θ∗ ΘSG,r + 1

4Θ∗

] [
ω̇FD,out,l
ω̇FD,out,r

]
=

[
TFD,out,l

1
2 iFDTFD,in

TFD,out,r + 1
2 iFDTFD,in

]
(3.44)

where ΘSG,l and ΘSG,r are the moments of inertia of the left and right sun gears, and
Θ∗ = ΘCW + i2FDΘFD,in combines the inertias of the crown wheel ΘCW and of the input
gear ΘFD,in.

Since the simulation environment only consists of a longitudinal vehicle model, the wheel
speed balancing is neglected and a rigid axle is modelled. Moreover, component inertias
are neglected. Thus, the model yields the following equations:

TFD,out,l/r =
1

2
· iFD · TFD,in · ηFD, (3.45)

ωFD,in =
iFD

2
(ωFD,out,l + ωFD,out,r). (3.46)

The final drive efficiency ηFD is assumed to be in the same range as the transmission
efficiency ηGBX , but a bit lower, since a bevel gear is used [143]. The ratio of the final
drive iFD defines the maximum vehicle speed and is supposed to be in the range of 2.5
to 5.5, according to [142]. Considering the final drive efficiency, the actual output torque
T̄FD,out,l/r reads:

T̄FD,out,l/r =

{
TFD,out,l/r · ηFD, TFD,out,l/r ≥ 0,

TFD,out,l/r · 1
ηFD

, TFD,out,l/r < 0
. (3.47)

3.1.2.7. Tyre

Tyres are the link between the vehicle and the ground and are responsible for transmitting
all forces and torques to the ground. Consequently, in vehicle dynamics modelling, a
sufficient description of the interaction between tyre and road is essential [74]. According
to [75], there are three different tyre models:

• Physical tyre model: RMOD-K [150], FTire [58]

• Semi-physical tyre model: TMeasy [74], TMsimple [73]

• Empirical-mathematical tyre model: Magic Formula [154], IPG-Tire [175]

The tyre model should consider the main tyre characteristics and should allow fast sim-
ulation with a lean parameter set of physical meaning for easier interpretation and
parametrisation. The semi-physical model TMsimple [73] is used in this thesis. The
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Figure 3.16.: Tyre characteristics with their tyre dynamics

Figure (a) shows a free body diagram of the tyre with its characteristic values. It shows
the cutting forces FCz,f/r and FCx,f/r in the tyre centre Cf/r, the torque acting on the
tyres TT , and the rolling resistance torque TR. The rolling resistance torque TR arises due
to the visco-elastic deformation in the tyre contact area. This results in an asymmetric
pressure distribution p(x), which is characterised by the eccentricity e. The transferable
longitudinal tyre force FT,x depending on the vertical tyre load Fz is depicted in Figure
(b). The dotted-dashed line (Fz = 4150 N) represents the static vertical tyre load at the
rear wheels. Higher vertical loads occur during acceleration, whereas deceleration lowers
FT,x at the rear wheels. At the front wheels, the opposite is true.

tyre dynamics according to Figure 3.16(a) are

ΘT · ω̇T = TT − FT,x · rdyn −
TR︷ ︸︸ ︷

Fz · aR︸ ︷︷ ︸
FR

·rdyn, (3.48)

where ΘT is the inertia of the tyre, TT is the torque acting on the tyre, FT,x is the
longitudinal tyre force, rdyn is the dynamic tyre radius, Fz is the vertical tyre load, and
aR is the rolling resistance coefficient. The increasing dynamic tyre radius rdyn due to
higher velocities [75] is neglected. The longitudinal tyre slip sx reads

sx =

{
vs

ωT ·rdyn TT ≥ 0,
vs
vx

TT < 0.
(3.49)

where vs = ωT · rdyn − vx is the slip velocity at the wheel W within the tyre contact
area. The available longitudinal grip potential FT,x only depends on the longitudinal
tyre slip sx and the vertical tyre load FT,z, assuming other influences (e.g., temperature,
road surface, tyre pressure) are kept constant [75]. In the TMsimple approach, the
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longitudinal tyre characteristics are calculated by

FT,x = B1 · sin
[
B2

(
1− e

−|sx|
B3

)
sign(sx)

]
, (3.50)

where the coefficients read

B1 = Fx,max, (3.51)

B2 = π − arcsin
Fx,∞
Fx,max

, (3.52)

B3 =
1

dFx0
B1 ·B2. (3.53)

For a given vertical load Fz, the parameter Fx,max describes the maximum longitudinal
tyre force, Fx,∞ is the saturation value, and dFx0 is the initial longitudinal tyre stiffness.
The degressive influence of the vertical tyre load Fz is considered with the following
approach

Fx,max(Fz) = b1
Fz

Fz,nom
+ b2

(
Fz

Fz,nom

)2

, (3.54)

Fx,∞(Fz) = b3
Fz

Fz,nom
+ b4

(
Fz

Fz,nom

)2

(3.55)

dFx0(Fz) = b5
Fz

Fz,nom
+ b6

(
Fz

Fz,nom

)2

. (3.56)

The coefficients b1 and b2 are calculated by

b1 = 2 · FFz,nomx,max − 0.5 · F 2Fz,nom
x,max , (3.57)

b2 = 0.5 · F 2Fz,nom
x,max − FFz,nomx,max . (3.58)

The same procedure has to be carried out in order to obtain the coefficients b3, b4 and
b5, b6, but instead of using F

Fz,nom
x,max , F

2Fz,nom
x,max , the saturation value Fx,∞ and the initial

tyre stiffness dFx0 at the nominal load Fz,nom and twice the nominal load 2Fz,nom have
to be used. Figure 3.16(b) shows an example of the characteristic longitudinal tyre forces
depending on the vertical tyre load.

Rolling resistance FR

The rolling resistance of tyres is an important factor for increasing the fuel economy of
vehicles. Therefore, many highly environmentally friendly vehicles use rolling-resistance-
optimised tyres [201]. The resulting force FR can be calculated by

FR = aR ·mV EH · g · cosβ. (3.59)
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Table 3.1.: Characteristic values of the rolling resistance coefficient aR, adapted from
[141]

Road surface aR

Smooth asphalt road 0.010
Concrete road 0.011
Rough concrete road 0.014
Good paving 0.020
Rutted road 0.035

The parameter aR describes the rolling resistance coefficient. The rolling resistance
arises due to the visco-elastic deformation in the tyre contact area. This results in an
asymmetric pressure distribution p(x) and causes the rolling resistance [135], cf. Figure
3.16. Equation (3.59) is only valid if the rolling resistance is the same for all tyres. The
rolling resistance coefficient aR is defined by

aR =
e

rdyn
, (3.60)

where e is the eccentricity, which defines the position where the resistance acts. The
coefficient strongly depends on the current road surface and increases with increasing
vehicle speed [76], [135]. In this thesis, the speed dependency of aR is neglected. Tables
3.1 and 4.2 summarise typical values for the rolling resistance coefficient aR.

3.1.2.8. Vehicle Model

The available longitudinal tyre force FT,x at the wheels results in a longitudinal vehicle
acceleration according to Newton’s second law (see Figure 3.17):

mV EH · ax = FT,x − FD − Fβ, (3.61)

where mV EH is the total vehicle mass including the additional weight of the hybrid
system components, ax is the longitudinal vehicle acceleration due to the forces acting
at the vehicle body, FT,x is the total propulsion force of the tyres, FD is the air drag, and
Fβ is the resistance due to the road inclination. The braking force acts directly on the
wheels, whereas the propulsion force FT,x is transmitted through the entire drivetrain.
The rolling resistance FR is considered in the tyre model, see Eq. (3.48).

Air drag FD

The influence of aerodynamics on the performance and fuel efficiency of passenger vehi-
cles increases with increasing vehicle speed. The reduction of the aerodynamic drag is
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Figure 3.17.: The free body diagram of the vehicle model

This figure shows all forces acting on the chassis. The tyre hub Cf,r transmits all forces
of the tyres, shown in Figure 3.16. The air drag FD acts on the chassis. The entire
vehicle mass mV EH is combined in the centre of gravity (CoG). Moreover, the resistance
Fβ due to the road inclination β also acts in the CoG. The CoG is charactersied by the
distances lf , lr and its height hV EH .

one objective in developing low-emission vehicles [174].

FD =
1

2
· cD · ρa ·Ax · vx · |vx|, (3.62)

The flow resistance is described with the dimensionless air resistance coefficient cD, and
ρa is the density of the air, which is assumed to be constant (ρa = 1.199 kg/m3)12. The
parameter Ax represents the frontal area of the vehicle. The lateral and vertical air
resistance properties are not considered in this thesis. The aerodynamic factor mainly
depends on the shape of the vehicle [132]. The chosen reference point is often on the road
surface in the middle of wheelbase and track width [132]. Table 3.2 lists characteristic
values for cD and Ax for different vehicles, adapted from [141].

Resistance due to road inclination Fβ

Currently, legally stipulated driving cycles do not consider any road inclination. Nev-
ertheless, in real-world driving cycles, the height profile cannot be neglected, since it
strongly influences the performance of the vehicle. The resistance due to the road incli-
nation Fβ reads

Fβ = mV EH · g · sinβ, (3.63)

12For an air pressure of 1.013 bar, a relative humidity of 60 % and an air temperature of 20 ◦C [141]
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Table 3.2.: Characteristic values cD and Ax of the air drag FD, adapted from [141]

Vehicle cD Ax in m2 cDAx in m2

Convertible 0.29-0.53 1.58-2.90 0.58-1.54
Mercedes-Benz SL 500

-Open top 0.34 2.00 0.68
-Closed top 0.29 2.00 0.58

Sedan/SUV 0.25-0.39 1.97-2.90 0.5-1.54
Audi A6 Avant 0.31 2.26 0.70
Mercedes-Benz S320 CDI 0.26 2.40 0.62
BMW 645i 0.29 2.15 0.62
Mercedes-Benz ML 280 CDI 0.34 2.81 0.96
Porsche Cayenne Turbo 0.39 2.78 1.09

where g is the acceleration due to gravity, and β is the inclination of the road ahead.

3.1.2.9. Driver Model

In the dynamic vehicle simulation, a driver model is needed to follow a certain desired
speed profile. Modelling the behaviour of the driver is an ongoing research topic, and
different levels of complexity are available. The control behaviour of humans depends on
physical and psychological factors, as well as the current demands of the driving situation.
The individual driving behaviour is often modelled using classical control theory or fuzzy
logic theory [104].

A PID-controller is sufficient to control the vehicle speed [104] in closed-loop vehicle-
driver simulations. The driving task is divided into a longitudinal and a lateral propor-
tion [40]. The implemented driver model uses a control approach which only focuses
on longitudinal driving, e.g., maintaining the predefined acceleration and vehicle speed.
However, human behaviour is not a technical controller. In fact, real drivers have to
manage multiple driving tasks, such as speed control, with frequently changing priori-
ties. These tasks can be compressed into three main activities occurring simultaneously
during a trip. Thus, prioritisation is mandatory [104]:

• Navigation level:
This level involves the choice of the optimal route before the trip starts in or-
der to accomplish the transportation task; for instance, deciding to travel on the
motorway to reach the desired destination.

• Guidance level:
This layer ensures that the driver adapts their driving to the current road and
traffic conditions. Moreover, the driver controls the position, speed and direction
of the vehicle. Thus, at the course guidance level, the driver selects the desired
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trajectory, e.g., drive at 100 km/h and overtake another car.

• Stabilisation level:
This level has the highest priority and controls pedal position or steering-wheel
angel. Moreover, it has to compensate for short-term disturbances, such as stabil-
isation of the vehicle during immediate over-steering.

All three levels are based on the human perception of environment and vehicle. The
implemented controller compares the actual vx with the desired vehicle speed vx0 and
calculates a required accelerator pedal pp or brake pedal position to minimise the speed
difference. In this thesis, the pedal position is within the interval [−1 1], a positive
value accounts for the accelerator pedal position, and a negative value is a brake pedal
signal. Hence, in the implemented model, concurrent activation of the brake and acceler-
ator pedal is not permitted. The values of control parameters of the PID-controller are
determined by empirical methods in order to follow the desired speed profile with suffi-
cient accuracy. These parameters vary with different driving cycles [136]. Furthermore,
a feedforward-controller may be implemented to enable high control dynamics.

In commercially available simulation tools, the structure, parameters and hence the
complexity of the driver models can be adapted to the particular research objectives. In
general, the inputs of a driver model are the pedal position, steering-wheel angle, and
gear choice. For further information, cf. [145], [147].

3.1.2.10. Hybrid Control Unit (HCU)

The HCU has to ensure that the power of the different propulsion units is distributed in
an efficient manner. One key success factor for HEVs is the operation strategy. Besides
determining the power distribution, the operation strategy directly influences drivability
and efficient energy consumption. The simulation environment uses two different kinds
of operation strategies. A rule-based operation strategy (cf. Chapter 2.2), is used as a
baseline strategy. It uses the electric energy in the battery as often as possible, assuming
no constraints are harmed. In the literature, this strategy is known as a charge-depleting
[24] approach. After the SOC of the battery is at its lower allowable threshold SOCmin,
the operation strategy turns to a charge-sustaining [24], [183] strategy. This operation
strategy uses the current driving state in order to select a suitable driving mode. No
additional information about the upcoming driving route is used. Besides the power
distribution, the HCU controls the state of the ICE and the clutch between the ICE and
the EMG. The rule-based operation strategy used here minimises the instantaneous fuel
consumption ṁf by maximising the electric propulsion share. This results in

min
u(t)

ṁf

(
x(t), ud(t), t

)
⇒ maxud(t), (3.64)

where x(t) is the current vehicle state, and ud(t) denotes the power distribution factor –
a specific control variable u(t). Pure electric driving is characterised by ud = 1, pure ICE
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Figure 3.18.: Innovative holistic energy management controller

The controller consists of three control paths, depending on the additional information
available. If no additional information is available, the OS uses its baseline strategy, which
operates according to predefined rules. If a frequently driven route is recognised and/or
input data from the navigation system and GNSS signals are available, this additional
information is used to enhance the fuel saving potential of PHEVs. For distances within
the AER, pure electric driving is selected, as long as no system boundaries are exceeded.
This thesis focuses on the third control path, highlighted in grey. The advanced prediction
and adaptation (P&A) algorithm uses data from the navigation system and GNSS signals
and combines that data with the individual driving behaviour in order to improve the
long-term prediction accuracy.
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driving by ud = 0, and values between indicate hybrid driving. In the charge-sustaining
operation mode, the battery is only charged via recuperated braking energy. It is obvious,
that such an operation achieves fossil fuel savings, but since no additional information
is considered, it does not utilise the entire fuel saving potential. No load point shifting
is considered.

The baseline strategy is also used in the proposed novel holistic energy management
controller (see Figure 3.18). It considers three different information levels, depending on
the data available. If no additional information about the route ahead is available, the
aforementioned RB-OS is used. If a frequently driven route is recognised, the stored data
about the route is used to enable additional fuel saving potential. If input data from a
navigation system and GNSS signals are available, the advanced P&A algorithm further
enhances the fuel efficiency of PHEVs. If both GNSS with digital map data and stored
routes are available, the advanced OS combines both data. For all routes within the AER,
the electric drive mode is used. The focus of the present thesis is on utilising additional
data from a navigation system and GNSS signals, the grey highlighted control path in
Figure 3.18. The route recognition algorithm detects characteristic data during driving
and compares that data with the stored routes [93]. Nevertheless, the route recognition
algorithm is not part of this thesis. It is used to get an idea of how the whole energy man-
agement algorithm works. The structure of the energy management controller enables
the use of other information from advanced communication technologies, such as ITS or
GIS. Nevertheless, this additional information is not required in order to improve the
fuel efficiency. The output of the holistic energy management controller is the requested
EMG and ICE torque TEMG,req and TICE,req based on the power distribution factor ud.

3.1.2.11. Auxiliaries (AUX)

In conventional engine-driven vehicles, the ICE has to guarantee the proper operation
of different AUXs. Although the ICE may be switched off over a long time period in
HEVs, AUXs such as the power steering pump, brake booster, heating and A/C have
to operate properly. Consequently, in HEVs these AUXs are electrified. In addition,
the on-board vehicle electrical system (e.g., interior convenience functions and control
units) has to be modified. A conventional alternator alone may not ensure a constant
power level. The total AUX power depends on the ambient temperature and other
vehicle/driver individual settings. The present thesis does not consider AUXs due to
comparison reasons – their power demand may vary on the same road due to switching
on/off the A/C, for instance.

3.1.3. Quasi-static Vehicle Modelling Approach

The proposed simulation environment uses model-based control with a quasi-static ve-
hicle model. As mentioned in Chapter 3.1.1, this model approach is unable to consider
any drivetrain dynamics and requires information about the entire driving cycle a-priori.

63



3. Methodology

This chapter presents the main differences in the component modelling and describes
the implemented first-order vehicle model. The result of the model-based optimisation
(cf. Chapter 3.2) is the trajectory of the energy content of the battery, which leads to an
optimal fossil fuel consumption. Therefore, the battery’s SOC is used as the only state
variable x.

x(t) ≡ SOC(t) = x0 +
1

Qnom

∫ te

0
(IES + IBAT ) dt, (3.65)

where x0 is the initial SOC = SOC0 of the battery, Qnom is the nominal capacity of the
battery, IES is the vehicle electrical system current, and IBAT is the current needed for
propulsion. Therefore, the first-order vehicle model reads

ẋ(t) = f
(
x(t), u(t), t

)
≡ ˙SOC(t) = f

(
SOC(t), ud(t), t

)
. (3.66)

Figure 3.10(b) shows the quasi-static battery model used here. It consists of an internal
resistance Ri and an ideal open-circuit voltage source Uoc, both of which depend on the
current SOC. Using Kirchhoff’s voltage law yields

Uoc −Ri · IBAT − UBAT+ES = 0. (3.67)

Applying the total electrical power PBAT+ES instead of the voltage UBAT results in

Uoc −Ri · IBAT −
PEMG + PES

IBAT
= 0. (3.68)

Multiplying Eq. (3.68) with IBAT and solving the equation for IBAT results in13

IBAT =
Uoc −

√
U2
oc − 4 · (PEMG + PES) ·Ri

2 ·Ri
(3.69)

A positive current IBAT indicates a discharging process and vice versa.

The EMG is phenomenologically modelled using the same approach as stated in Chapter
3.1.2.3. Nevertheless, the response characteristics and the power flow are adapted to the
quasi-static vehicle model approach. The ICE model is based on a mean value model
with ideal system response. The calculation of the average fuel consumption over 100 km
was described in Chapter 3.1.2.1.

The torque share at the gearbox input shaft is evaluated with the power distribution
factor ud (cf. Chapter 3.2). It reads

ud =
TEMG

TGBX
TGBX 6= 0, (3.70)

where ud defines the share of the EMG on the whole propulsion torque, that is 0 ≤
ud(t) ≤ 1. The case TGBX = 0 is irrelevant, since any propulsion torque has to be split.

13The solution with a “+” before the square root is neglected, since only the equation shown leads to
zero current IBAT when no power is demanded PBAT + PES = 0.
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If ud = 1, the propulsion is provided fully electrically – the ICE is switched off, and the
clutch opens.

In contrast, the gear-shifting logic depends on the rotational speed at the wheels ωT and
the corresponding wheel torque TT . Gear change happens instantaneously, and no delay
is considered. A gear change results in a volatile change of the gear ratio iγ . Therefore,
the engine speed and torque also change abruptly. The gear selection ensures that the
required torque can be accomplished by the ICE only and that the speed limits are not
exceeded. If several gears are applicable, the highest possible gear is chosen. This gear-
shifting strategy is expected to be a good heuristic approach in terms of fuel efficiency
and is sufficiently accurate compared to a more realistic shifting logic implemented in
the dynamic drivetrain model.

Roll, air, slope and acceleration resistance forces act on the vehicle chassis, depending on
the vehicle speed vx, acceleration ax and the road inclination β . To maintain the desired
vehicle speed, the torque at the wheels TT has to be equal to the total driving resistance
torque. Since sufficient contact forces between the tyres and the road are assumed, TT
reads

TT = (FD + FR + Fβ + FA + FB) · rdyn. (3.71)

Furthermore, the backward vehicle model considers the different component efficiencies,
the current limitation of the battery, and the rotational masses of the drivetrain. More
detailed information is given in [80].

3.1.4. Investigated Simulation Model

In this thesis, a medium-sized passenger car with a total curb weight of about 1500 kg
is investigated. Additional weight is added due to the hybrid drivetrain components.
Figure 3.19 shows the investigated HEV model. The conventional drivetrain consists of
a four-cylinder diesel engine. It has a maximum ICE power PICE,max of about 120 kW.
The vehicle also has a six-speed automatic transmission. The conventional drivetrain
is extended by an additional clutch (CLII), a clutch actuator, a power electronic unit,
an EMG and a high-capacity battery (BAT). Since the EMG is mounted between the
ICE and the starting clutch (CLI), a P2 layout is modelled. The clutch (CLI) enables
an additional DoF in controlling the propulsion units and avoids ICE drag losses during
pure electric driving. The hybridisation degree according to [66], [81] is approximately
70 %. The battery pack only uses cells in series layout, and its total energy content
is about 9 kWh. The usable energy content depends on the SOC limits, which should
ensure a long battery life-cycle. The HEV can be recharged by an external outlet. Thus,
the investigated vehicle is a P2-PHEV.
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Figure 3.19.: Investigated PHEV drivetrain layout

A P2 layout where the EMG is mounted between the starting clutch (CLI) and the gear-
box (GBX). An additional clutch (CLII) enables charging the battery during standstill.
Due to the high battery capacity and the possibility to recharge it from external outlets,
the investigated vehicle model is a P2-PHEV.
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3.2. Optimisation – Dynamic Programming

Optimisation is a widespread interdisciplinary field with applications ranging from eco-
nomics to engineering science. It is a powerful tool for comparing the effectiveness of
different decisions. In general, optimisation can be described as a decision making pro-
cess which systematically determines the optimal option while taking into consideration
certain objectives and limitations [156]. The broad field of optimisation can be divided
into analytical and numerical methods. Moreover, practitioners in the field [156] dis-
tinguish between static, dynamic and stochastic optimisation methods. This brief sum-
mary highlights the broad application area and the huge number of different methods
used. However, this thesis focuses on one numerical, dynamic approach called dynamic
programming (DP). Hereafter, all mentions of DP refer to the deterministic dynamic
programming approach.14

Dynamic programming was developed in the 1950s by Richard Bellman and his assis-
tants. It is a flexible and powerful method for solving non-linear, non-convex multi-stage
decision processes. Instead of tackling the whole multi-stage decision process at once,
DP reduces the dimension by introducing a new problem formulation [17]. In the context
of the present thesis, DP is used to solve optimal control problems. Consequently, the
remainder of this chapter focuses exclusively on such control problems.

3.2.1. Introduction

Generally, an optimal control problem needs an optimisation criterion – a cost func-
tional15. Once a suitable cost functional has been chosen, the optimisation algorithm
has to select control variables such that the optimisation criterion reaches its minimum
or maximum16. According to [55], two main approaches can be distinguished in optimal
control theory:

1. Parameter optimisation:
This optimisation problem is characterised by a predefined controller structure.
Only the controller’s parameters are varied to solve the optimisation problem.

2. Structure optimisation:
In contrast to parameter optimisation, there is no predefined controller structure.
The aim of the optimisation problem is to find a control structure that will minimise
the cost functional. Such control problems consist of a mathematical model of the
control process and an objective function.

14Dynamic programming can be divided into deterministic and stochastic approaches.
15Also called cost-to-go, objective function [193], criterion function [18], or return function [16]. The

value of this function is often called return [16].
16Whether it is minimum or maximum depends on the definition of the cost-to-go function. Mathemat-

ically, a minimum can be transformed into a maximum by changing the sign of the cost functional.
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In the following chapters, all mentions of optimisation, and especially dynamic program-
ming, refer to structure optimisation. The continuous-time control process (i.e., dynamic
system) can be written in state space form to:

ẋ(t) = f
(
x(t),u(t), t

)
, t ≥ t0 (3.72)

where x(t) is the state vector, ẋ(t) is the temporal change of the state vector, and u(t) is
the control vector at time t. The initial moment of time is defined as t0. At the terminal
moment of time te, the state vector x(t) has to reach a predefined terminal vector xe.

There are an infinite number of policies (also called control laws) π =
(
µ(t)

)
, which

transform the initial state x0 to the desired terminal state xe. All policies that comply
with the relevant constraints are called admissible, [16] and [22]. Actually, a policy is a
determination of the control vector u(t) as a function of the state vector x(t) and the
time t [16]

u(t) = µ(x, t). (3.73)

With a cost functional J , the many policies are reduced to an optimal policy π∗17. The
selection of J effects the optimisation result. Consequently, there are several different
cost functionals, depending on certain problems (cf. Appendix B.1). With the help of a
predefined dynamic system, see Eq. (3.72), and a cost functional, the general formulation
of a continuous-time optimisation problem COP can be written as an optimal control
problem:

min
u(t)

{
g
(
x(te), te

)
+

∫ te

t0

h
(
x(t),u(t), t

)
dt

}
(3.74)

ẋ(t) = f
(
x(t),u(t), t

)
(3.75)(

COP
)

x(0) = x0 (3.76)

x(te) ∈ Xe ⊆ Rn (3.77)

x(t) ∈ X(t) ⊆ Rn (3.78)

u(t) ∈ U(t) ⊆ Rm, (3.79)

where Eq. (3.75) describes the continuous-time dynamic model, and Eq. (3.76) and
Eq. (3.77) describe the initial and terminal states, respectively. The terminal states
have to be within the terminal space Xe. The constraints of the state vector x(t) and
the control vector u(t) are stated in Eq. (3.78) and Eq. (3.79), respectively. The functions
h( ) and g( ) are defined by the original optimisation problem.

Since dynamic programming is a discrete optimisation method, the continuous-time
model in Eq. (3.75) has to be discretized in time first, see Eq. (3.80). Thus, the discrete-
time optimisation problem is represented by

xk+1 = fk(xk,uk), k = 0, 1, ..., N − 1. (3.80)

17()∗ always denotes values related to the optimal control solution.
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where fk is a specific function depending on the state variables xk and the control vari-
ables uk. The index k indicates that the structure of the function may be different in
different time steps. Its optimal18 cost functional based on the notation in [193] reads

J∗k = min
uk

gN (xN ) + φN (xN )︸ ︷︷ ︸
IN

+
N−1∑
k=0

hk(xk,uk) + φk(xk)︸ ︷︷ ︸
Ik

 (3.81)

where IN represents the final instantaneous cost-to-go at stage k = N with its assessment

of the final states gN (xN ) similar to g
(
x(te), te

)
in Eq. (3.74). The term Ik describes

the instantaneous costs at stage k = 0, 1, ..., N − 1, with the function hk( ) accounting
for the costs of applying the control vector uk at the current states xk. The term
φk(xk) describes a penalty function to fulfil the discrete state constraints xk ∈ Xk at
k = 0, 1, ..., N , see Eq. (3.77) and Eq. (3.78).

The discrete-time system xk+1 in Eq. (3.80) is called a multi-stage decision process if at
each stage k the system undergoes a transformation – also called decision – in its states.
In a conventional optimisation approach19, the entire multi-stage decision process is
considered as essentially one stage. This increases the dimension of the problem. In
contrast, DP reduces the dimension of the process by “understanding” the structure of
the problem [17]. The multi-stage problem is then reduced to a number of single-stage
problems. Multi-stage decision processes have some features in common [55]:

• There is a physical system, see Eq. (3.80), which is described by some state variables
xk at any stage k.

• At each stage k, a number of choices uk can be made in order to transform the
system into other states xk+1.

• The past history of the system is of no importance in determining future actions;
only the current stage is important.

• The purpose of the process is to minimise/maximise some functions of the state
variables.

Before using these features to formulate the dynamic programming algorithm, the ad-
vantages and drawbacks are listed here:

• Dynamic programming is a powerful numerical method for solving optimal control
problems of non-linear, time-variant, partially constrained final-state discrete-time
approximations of continuous dynamic models with fixed final times and time-
variant constraints in the control and the state variables [192], [193].

• The solution is guaranteed to be optimal, regardless of the type of problem [45].

18The word “optimal” is used as the lowest achievable value under consideration of a predefined discreti-
sation grid and its numerical errors.

19Also called enumerative approach [16]
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• Since it is a non-causal optimisation method, all inputs (e.g., a driving cycle) have
to be known in advance [45].

• Special attention needs to be paid to limiting the computational effort [45], [54],
[192], [193].

3.2.2. Principle of Optimality

Dynamic programming utilises a discrete-time dynamic system xk+1 as stated in Eq. (3.80)
with its state vector xk, which reads

xk = [x0,k, x1,k, ..., xn,k]
T , (3.82)

and its control vector uk, which reads

uk = [u0,k, u1,k, ..., um,k]
T , (3.83)

with k = 0, 1, ..., N − 1. The state vector is constrained by an n-dimensional state
space Xk ⊆ Rn, and the control vector is constrained by an m-dimensional control space
Uk ⊆ Rm. Moreover, both the initial state x0 as well as the terminal state xk=N = xN
are given, and it is valid that xN ∈ XN ⊆ Rn. The parameter N defines the number of
stages of the remaining optimisation problem. In order to proceed from a state vector
xk to the terminal state vector xN , the control vector sequence (uk,uk+1, ...,uN−1), or
more precisely the policy π = (µk,µk+1, ...,µN−1), has to be applied. The term µk is a
function vector, which transforms xk to xk+1, cf. [18]

xk+1 = fk

(
xk,µk(xk)

)
, uk = µk(xk). (3.84)

Each policy causes an instantaneous cost-to-go function sequence (Ik, Ik+1, ..., IN−1). It
is assumed that the instantaneous cost-to-go function Ik for each stage k to the next
stage k+1 only depends on the current control vector uk, the previous and adjacent state
vectors xk and xk+1, respectively. Moreover, Ik also considers the state space constraints
with a penalty function φ(xk).

The instantaneous cost-to-go function Ik can be written using the discrete-time model
in Eq. (3.80) as

Ik = h̃k(xk,xk+1,uk) + φk(xk) = hk(xk,uk) + φk(xk), (3.85)

where k = 0, 1, ..., N − 1. Each policy results in a cost functional value Jk, which can be
written as:

Jk = Ik + Ik+1 + ...+ IN−1. (3.86)

At this point, it is important to highlight the difference between Ik and Jk. The in-
stantaneous cost-to-go Ik is the cost of processing from an arbitrary stage k to its next
stage k + 1. However, the cost functional Jk characterises the cumulative cost of the
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Figure 3.20.: Schematic representation of the Principle of Optimality

The solid line shows the optimal state vector sequence (x∗0,x
∗
1, ...,x

∗
N−1,x

∗
N ) with the

corresponding optimal policy π∗. Selecting an optimal state x∗k divides the optimal
trajectory and the optimal control sequence into two parts. Assuming that the cost
functional J̃N < J∗N , the remainder of the cost functional J∗N is then not part of the
optimal solution, which is in conflict with the preliminary statement.

initial stage k to the terminal stage k = N . By using the relation stated in Eq. (3.84),
Eq. (3.86) can be reformulated to

Jk = Jk(xk; uk,uk+1, ...,uN−1) = Jπ(xk). (3.87)

Equation (3.87) highlights that the cost functional Jk for a given policy π only depends
on the policy π itself and the initial state vector xk. Consequently, the optimal control
policy π∗ = (µ∗k,µ

∗
k+1, ...,µ

∗
N−1) is evaluated by minimising the cost functional Jk

min
π∈Π

Jk(xk;µ
∗
k,µ

∗
k+1, ...,µ

∗
N−1) = J∗π(xk). (3.88)

The set of all admissible policies is denoted by Π. The relation in Eq. (3.88) is used to
explain the Principle of Optimality (see also Figure 3.20).

Bellman [18] formulated the Principle of Optimality as follows:

“An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.”

3.2.3. Mathematical Formulation - Bellman Equation

Based on the Principle of Optimality, a successive mathematical formulation, the so-
called Bellman equation20, is derived.

The control sequence (uk,uk+1, ...,uN−1) is given, starting from an arbitrary stage k.
The control sequence (uk+1,uk+2, ...,uN−1) is then the remainder of the given policy π.

20Also called functional equation
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According to Eq. (3.86) and Eq. (3.87), the cost functional Jk can be rewritten as

min
uk,uk+1,...,uN−1

Jk(xk; uk,uk+1, ...,uN−1) = (3.89)

= min
uk,uk+1,...,uN−1

[Ik(xk,uk) + Jk+1(xk+1; uk+1,uk+2, ...,uN−1)]

Determining the optimal policy π∗ using the Principle of Optimality and the mathemat-
ical relation in Eq. (3.88) leads to

J∗k (xk) = min
uk

[
Ik(xk,uk) + J∗k+1(xk+1)

]
. (3.90)

Together with Eq. (3.80), Eq. (3.90) describes the Bellman equation. Dynamic program-
ming evaluates the optimal cost functional J∗k (xk) at every stage k by using the basic
recurrence relation in Eq. (3.90). The optimal policy is then calculated backward in
time. Using the notation introduced in [193], the cost-to-go for the state vector xk in
the discretized state space at the node with time-index k = N and state-index i reads

JN (xi) = gN (xi) + φN (xi). (3.91)

The remainder cost functionals at k = N − 1, N − 2, ..., 1, 0 are

Jk(x
i) = min

uk

{
hk(x

i,uk) + φk(x
i) + Jk+1

(
fk(x

i,uk)
)}

. (3.92)

For clarity, the index k of the state vector xk is omitted in Eq. (3.91) and Eq. (3.92)
and in Figure 3.21. Thus, the term xi denotes the state vector x in the discretized
state-time space Xk at the node with time-index k and state-index i (see Figure 3.21).
The term Jk+1 in Eq. (3.92) is evaluated only at discretized points in the state space.
Moreover, the output of the model function fk(x

i,uk) is a vector with continuous values
in the state space, which may be between the nodes of the state space grid. A method to
determine an approximation of Jk+1 in Eq. (3.92) is explained in the following chapter.
To sum up, in the conventional formulation, the entire multi-stage decision process is
considered as essentially one stage, at the cost of vastly increasing the dimension of the
problem [17]. Replacing the enumerative approach with the problem of solving a system
of recurrence relations involving functions of much smaller dimensions, as in Eq. (3.90),
will yield computational advantages and preserve the single-stage characteristic of the
problem [16], see also Chapter 3.2.5.

3.2.4. Approximation in the Cost Functional and Policy Space

In the implemented DP algorithm adopted from [193], the cost functional Jk+1 in Bell-
man’s equation (3.90) is only solved for discrete state space grid points. Nevertheless, the
output of the model function fk(x

i,uk) is continuous in the state space and, in general,
between the discrete state space grid. Consequently, a proper method has to be selected
in order to evaluate an accurate cost-to-go function Jk+1 at each state space grid point
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xi. In [16], this process is called successive approximation. The algorithm adopted from
[191], [193] applies linear interpolation to determine a proper value of the cost functional
Jk+1. Besides the interpolation within the feasible state, special attention is paid to the
interpolation performance near the state space constraints defining the lower and upper
boundaries of the feasible area. In this thesis, the boundary-line method introduced by
[191] is used.

The basic interpolation near the boundaries results in numerical errors caused by the
discretisation. Since infeasible states have a very high or even infinite cost, these points
are not considered for the solution. The numerical problem arises when the DP algorithm
evaluates the cost-to-go between feasible and infeasible state grid points. Due to the
interpolation, the boundary of the feasible state space is blurred [192]. This leads to
inaccurate results, especially near the boundary. The boundary-line method of [191],
[193] can only handle one state variable. Thus, the general problem formulation in
Eq. (3.80) is reformulated to

xk+1 = fk(xk, uk) = f̃k(xk, uk) + xk. (3.93)

The boundary-line method eliminates these numerical problems for one-dimensional dy-
namic systems, see Eq. (3.93), by determining the lower and upper boundary-lines first.
The lower boundary-line is defined as the lowest state xk,lo at each stage k, which results
in the predefined terminal state xN . Consequently, the lower boundary-line can be de-
termined starting from the final state at stage k = N − 1 and processing to stage k = 0.
An optimisation problem DOPk is solved at each decision stage k = N − 1, ..., 1 in order
to calculate the boundary-line backward in time:

min
xk,lo,uk

xk,lo, (3.94)

f̃k(xk,lo, uk) + xk,lo = xk+1,lo, (3.95)(
DOPk

)
uk ∈ U ⊂ R, (3.96)

xk,lo ∈ X ⊂ R, (3.97)

xN,lo = xN , (3.98)

where xk+1 is the set of optimal solutions of the problem DOPk+1. Equations (3.94) and
(3.95) result in an optimisation problem with constraints as stated in Eq. (3.95) through
Eq. (3.98). It reads

max
xk,lo,uk

f̃k(xk,lo, uk). (3.99)

The upper boundary-line xk,up is evaluated similarly. Next to the state values xk,lo
and xk,up of the boundary-lines, the cost-to-go values Jk,lo and Jk,up are stored at each
stage k. The boundary-lines can now be used in order to improve the interpolation
performance. Near the boundary, interpolation between the finite cost-to-go Jk,lo, Jk,up
and a grid point inside the feasible state space is possible, cf. Figure 3.21. According
to [192], the set of reachable states of the model function fk(x

i, uk) at stage k from a
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Figure 3.21.: Boundary-line method [191]

This approach improves the interpolation performance near the boundaries. Instead of in-
terpolating between a feasible and an infeasible cost functional, the method pre-calculates
the costs directly on the boundary-line. For instance, the cost-to-go for Jk+1(xi) is infinite
using the basic DP algorithm, due to an interpolation of a feasible cost-to-go Jk+2(xi+1)
and infeasible Jk+2(xi). The boundary-line method pre-calculates the lower and upper
boundary-lines, resulting in an interpolation of two feasible cost-to-go values Jk+2(xi+1)
and Jk+2,lo. Thus, the cost-to-go Jk+1(xi) is finite. This prevents the intrusion of the
infeasible area into the feasible one.

given discrete state variable node xi is denoted by Ωi
k. When calculating the cost-to-

go at stage k + 1 and node xi using the recurrence relation (3.92), Jk+1(xi) becomes
infinite if the basic DP algorithm is used, due to the linear interpolation between a finite
Jk+2(xi+1) and an infinite cost functional Jk+2(xi). Consequently, the costs Jk+1(xi)
also become infinite, although the grid point is in a feasible area. This numerical error
propagates, and the infeasible region grows into the actual feasible one [192]. In contrast,
the boundary-line method deployed here utilises the pre-calculated cost-to-go Jk+2,lo

instead of the infeasible cost Jk+2(xi) for interpolation purposes. Therefore, the state
variable node xi at stage k + 1 is feasible. This results in an improved accuracy near
the boundary and avoids blurring the feasible state space. The restriction to a one-
dimensional state variable x is not a limitation for the present thesis, due to the fact
that a one-dimensional dynamic model is used, see Chapters 3.1 and 3.2.5. In [45], the
idea of avoiding numerical errors near the boundaries is extended to an arbitrary number
of state and control variables.

The algorithm first evaluates the lower and upper boundary-lines, and then applies back-
ward in time Eq. (3.90). The output is a map of control signals and the corresponding
cost functional Jk at each feasible node xi, for each stage k. During a subsequent for-
ward calculation, this map is used to find the optimal control sequence u∗k using the
dynamic model in Eq. (3.80). Since the control space Uk is also discrete and only given
for nodes of the discrete state space, the optimal control signal has to be interpolated,
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if the actual state does not match with the points in the state space grid. According to
[16] and [18], this procedure is called approximation in policy space. According to [191],
the application of the boundary-line method concurrently improves the performance of
the forward simulation, since the interpolation of the control signals is then carried out
between feasible grid points and grid points determined on the boundary-line.

3.2.5. Assessing Computational Effort

Computation time is a major issue of DP. In general, the discrete n-dimensional state
space Xk ∈ Rn has at each stage k a predefined number of grid points Nxi in each
dimension, where i = 1, 2, ..., n. The total number of all state space grid points at stage
k is then

Nx =

n∏
i=1

Nxi . (3.100)

The discretisation of the m-dimensional control space Uk ∈ Rm results in a total number
of all control policy space grid points at stage k

Nu =
m∏
j=1

Nuj , (3.101)

where Nuj is the number of grid points at stage k in each dimension of the m-dimensional
control vector, with j = 1, 2, ...,m. Consequently, the estimated computational effort of
the backward calculation TDP for all N stages is

TDP ≈ N ·Nx ·Nu · τ. (3.102)

where τ is the average time of a single step of calculation. The algorithm used with
boundary-line method [192], [193] evaluates a one-dimensional control system with the
same number of grid points at each stage k; therefore, Eq. (3.102) is reduced to

T
(1)
DP ≈ N ·Nx ·Nu · τ. (3.103)

where T
(1)
DP is the total computing time of the backward calculation for a one-dimensional

control system.

Considering the boundary-line method introduced in [191], [192], the total computational

effort T
(1)
DP,line of the one-dimensional control system using the boundary-line method is

estimated by

T
(1)
DP,line ≈ T

(1)
DP − T∞ + TBL, (3.104)

where T
(1)
DP is the total computational time of the one-dimensional control system of the

basic DP algorithm, T∞ is the computational effort for calculations within the infeasible

area, and TBL is the calculation time of the boundary-line method. Therefore, T
(1)
DP is
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enlarged by TBL. Since the infeasible domain is well known, the computation time T∞
for grid points in this infeasible domain can be omitted [12]. According to [191], the

overall computational time for DP with the boundary-line method T
(1)
DP,line is less than

it is when using the basic algorithm T
(1)
DP , and the accuracy of the solution increases as

well.

Equations (3.100) through (3.102) highlight the main factors that influence the compu-
tational effort. The dimension of the state vector21 n and the dimension of the control
vector m have the strongest effect on the computing time. This influence is also known
as the curse of dimensionality [17]. Increasing the number of state or control variables
increases the computing effort at an exponential rate [16]. Furthermore, the number of
decision stages N linearly affects the performance of the algorithm.

Another important performance measure is the memory demand of the optimisation
algorithm. According to Bellman’s equation, at each stage k = 0, 1, ..., N−1 the optimal
control policy uk has to be determined for all state grid points Nx. Moreover, at each
state grid point, an m-dimensional control vector is applied, resulting in a long-term
memory demand M1

M1 = N ·Nx ·m. (3.105)

Furthermore, the algorithm needs to save the current cost functional J∗k and its pre-
decessor value J∗k+1 for the entire discretised state space. Consequently, the required
short-term memory M2 is

M2 = 2 ·Nx. (3.106)

Considering Eq. (3.100) together with Eq. (3.106) points out that the dimension of the
state vector n has a significant influence on the memory allocation.

3.2.6. Relevant Application Aspects

The dimensions of the state vector xk and the control signal uk are crucial for the
performance of DP. Consequently, the optimisation model used in this thesis is limited
to a one-dimensional state vector xk and a single control signal uk. The following chapter
describes this one-dimensional optimisation problem.

3.2.6.1. Selection of a Cost Functional

Chapter 3.2.1 described the criterion functions from a rather general point of view. This
chapter introduces cost functionals that are applied in automotive research.

Jk(xk) = gN (xN ) +

N−1∑
k=0

mk,f (xk, uk), (3.107)

21Also called order or system dimension [54]
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where mk,f represents the instantaneous fuel consumption at each time step k, and
gN (xN ) is the final instantaneous cost-to-go of the terminal state xN at time step k = N .
This approach is used in the present thesis. In the literature, however, Eq. (3.107) is often
modified in order to include other optimisation criteria. In [190], the basic cost functional
in Eq. (3.107) is extended with the ICE state on/off, whereby [61] proposed a cost-to-go
function incorporating fossil fuel consumption and pollutant emissions. Basic drivability
aspects, such as the number of shifting events and engine events, are investigated in [152].
In [204], a sophisticated cost functional including fuel consumption, vehicle performance
and drivability aspects is introduced. The costs of grid electricity are considered in
the criterion function of [137]. A general formulation of a cost functional is given in
Eq. (3.108)

Jk(xk) = gN (xk) +
N−1∑
k=0

 Ξ∑
ξ=1

wξ · hk,ξ(xk,uk)

 , (3.108)

where ξ = 1, ...,Ξ is the number of cost criteria, wξ is the weighting factor of the single
cost criterion hk,ξ. It is obvious that the sum of the weighting factors

∑
wξ = 1. The

weighting factors have a substantial influence on the cost functional Jk [137]. Moreover,
these weighting factors may be different for changing boundary conditions, such as the
length of the route. Furthermore, introducing a weighted cost functional often increases
the dimension of the state variable [152], [190]. For this reason, the present thesis uses
only the basic formulation of the cost functional in Eq. (3.107).

3.2.6.2. Determination of the Discretisation Grid Resolution

For real-time applications, the number of state and control grid points is a critical aspect,
but the total number of decision stages N also has to be chosen properly. In order to
implement DP in automotive applications, an adequate trade-off between accuracy and
computing time has to be found. Figure 3.22 shows a representation of the discretisation
grid and accuracy. To guarantee fast computation, the grid resolution is low, but still
in the area where the fuel consumption does not change significantly [80]. In this thesis,
a discretisation of the one-dimensional state variable xk, which represents the SOC of
the battery, and the single control variable uk, which represents the power distribution
factor ud, are both set to 64. This grid provides sufficient accuracy and speeds up the
optimisation process [115]. Furthermore, the number of decision stages N is defined by
the sample time ∆ts of the backward vehicle model and the total length of the predicted
driving cycle.

3.2.6.3. Enhancing Vehicle Model Performance

Besides considering the computational effort, a proper evaluation of the quasi-static
vehicle model can further improve the total computing time. First, given a known driving
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Figure 3.22.: Analysis of the discretisation grid, computing time and the fuel consump-
tion change

The trade-off between accuracy and number of discretisation grid points: The number of
discrete nodes Nx and Nu in the state space X and the control space U, respectively, are
chosen to be in an area where the fuel consumption does not change significantly. This
guarantees adequate accuracy and low computing time.

cycle22, and thus a known gear selection, the variables torque TGBX,in and angular speed
ωGBX,in of the gearbox are calculated in advance. Since the scalar control variable only
influences the torque distribution ud of the EMG and the ICE before the gearbox, this
pre-calculation is valid. The MATLAB [129] simulation environment used can perform
calculations of matrices once at the beginning of the optimisation process, instead of
doing vector analysis at each stage k.

Moreover, the pre-calculation allows a reduction in the dimension of the characteristic
maps of all components. Because the driving cycle is given, the rotational speeds ω
of all drivetrain components are known23. Consequently, all two-dimensional maps in
the rotational speed ωi and torque Ti can be reduced to one-dimensional maps in the
torque Ti only. The aforementioned actions improve the computing time of the entire
optimisation process. More detailed information about the performance improvement is
provided in [80].

3.2.6.4. Overall Applied Controller Structure

This thesis investigates two different model-based control structures. The first controller
structure is called the one-level dynamic programming approach, and the second one is
called the two-level dynamic programming approach.

22The driving cycle is not exactly known, but is predicted.
23Starting manoeuvres with clutch slip are covered differently.
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Figure 3.23.: Schematic representation of the one-level dynamic programming approach

The closed-loop controller only uses long-horizon prediction and adaptation at low up-
date frequencies. While driving, certain vehicle states y are gathered and processed by
the long-horizon prediction and adaptation algorithm. The predicted input matrix ZP1

consists of the predicted velocity, acceleration and inclination profile. With the help of
dynamic programming that includes cost criterion and system constraints, the optimal
power distribution ud(t) is determined. The power distribution is transformed to the
spatial domain ud(d) and is used as input for the dynamic vehicle model. Moreover,
external disturbances we act on the vehicle.

One-level dynamic programming approach

Figure 3.23 shows the structure of this approach. Taking into account the predefined
system constraints, the cost functional in Eq. (3.107) and the quasi-static vehicle model,

DP determines the optimal torque distribution sequence
(
u∗d(d)

)
=
(
u∗d(dk), ..., u

∗
d(dN )

)
of the predicted driving cycle. This distribution sequence is originally evaluated in the

time domain
(
u∗d(t)

)
, but is then transformed to the spatial domain

(
u∗d(d)

)
. This trans-

formation accounts for discrepancies in the estimated and actual speed profiles. Chapter
3.3 provides detailed information on the prediction algorithm and its transformation.

The predicted input matrix ZP1, which accounts for the future driving states, reads

ZP1 =

v
a
β


P1

, (3.109)

where vP1 = [vk, vk+1, ..., vN ] is the predicted vehicle speed vector, aP1 = [ak, ak+1, ..., aN ]
is the corresponding vehicle acceleration vector, and βP1 = [βk, βk+1, ..., βN ] is a vector
containing the inclination of the remaining route. The input matrix ZP1 is frequently
updated at either fixed time periods ∆tU1 or at a certain deviation of the predicted and

the actual SOC. The torque distribution sequence
(
u∗d(s)

)
is the input of the dynamic

vehicle model. This dynamic vehicle model is affected by external disturbances we, such
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Figure 3.24.: Schematic representation of the two-level dynamic programming approach

This approach combines long-horizon and short-horizon prediction in order to improve
fuel efficiency. In contrast to the short-horizon prediction, the long-horizon prediction is
updated less frequently. The short-horizon prediction uses vehicle states y to generate
the predicted input matrix ZP2 for the quasi-static vehicle model. Together with a
spatial domain transformation, dynamic programming determines the optimal power
distribution u∗d(d). The vehicle model interacts with external disturbances we.

as wind, road or traffic [75]. Other system outputs are summarised in y. The block
long-horizon prediction and adaptation is a main part of this thesis and is explained in
detail later in this chapter.

Two-level dynamic programming approach

The two-level dynamic programming approach uses two different prediction horizons.
The first level has the same structure as the controller proposed above. However, the

output is the state variable sequence
(
x∗P1(d)

)
instead of the control sequence

(
u∗d(d)

)
.

The output of the level-one optimal controller sets the boundary conditions for the
short-horizon prediction. The prediction horizon is limited to the range of on-board
environmental recognition sensors [56], but the prediction is much more accurate due
to the prompt occurrence. Consequently, the predicted input matrix of the short-term
prediction ZP2 is more detailed than ZP1. It holds that

ZP2 =

v
a
β


P2

, (3.110)

80



3.2. Optimisation – Dynamic Programming

which at first glance looks the same as Eq. (3.109), but the time aspect and the degree
of detail are different. While the level-one prediction accounts for the entire driving
route, the level-two controller only accounts for the range of about 250 m [56], [207]

and determines the control sequence
(
u∗d(t)

)
. This control sequence is transformed to

the spatial domain
(
u∗d(d)

)
and provides input for the dynamic vehicle model. The

short-horizon prediction is a closed-loop control with short update intervals ∆tU2, in
contrast to the one-level dynamic programming approach, for which the update interval
is limited by the computing time of the entire remaining driving route. Consequently,
the short-horizon prediction performs better if disturbances we occur.

The discrete-time model part of the long-horizon prediction and adaptation is ultimately
depicted as

xk+1 = f(xk, uk,ZP1). (3.111)

In contrast, the short-horizon prediction discrete-time model is

xk+1 = f (xk, uk,ZP2) . (3.112)

To conclude, the one-level DP approach uses the entire driving route in order evaluate
the power distribution sequence (ud). In contrast, the two-level DP approach determines
the SOC trace over the entire driving cycle first, similar to the one-level DP approach.
This SOC trace is then used as a boundary for the short-time optimisation, which de-
termines the power distribution sequence (ud) for a given prediction horizon, such as
within the environmental recognition sensor range of about 250 m. The two methods
differ significantly in terms of accuracy and computational effort.
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3.3. Prediction and Adaptation Approach

The innovative holistic energy management controller proposed in Chapter 3.2 requires
the upcoming speed profile a-priori. However, the assumption of a known future speed
profile is not realistic. Consequently, the speed profile has to be predicted. It is obvious
that a speed prediction cannot be determined exactly, since it strongly depends on the
individual driving style and other road users. Figure 3.25 shows the complex interaction
of the driver, vehicle and environment.

Navigation

Guidance

Stabilisation

Driver
Vehicle

Environment

VDC

HCU

Traffic

Disturbances

Infrastructure

Transport
task

-

y

w
e

u

Figure 3.25.: Interaction of driver, vehicle and environment, adapted from [21]

The complex interactions of driver, vehicle and environment hamper prediction of the
upcoming power demand. Drivers operate at three different levels in order to accomplish
a transportation task – navigation, guidance and stabilisation. They guide their vehicles
using the vehicle control inputs u. The vehicle reacts to the driver inputs, but also to the
ambient environment we, such as infrastructure, traffic and other disturbances. Vehicle
states y are used by different control units (VDC, HCU, ...) and by the driver. The
former represent the inner closed loop, and the latter comprise the outer closed loop.

The driver acts on three different levels (cf. Chapter 3.1.2.9) – navigation, guidance and
stabilisation – in order to fulfil the desired transportation task. External disturbances
we, such as infrastructure, traffic or other disturbances, influence both the vehicle and
the driver. The vehicle states y are used by different control units, such as the vehicle
dynamics controllers (VDCs) or the hybrid control unit (HCU). They comprise the inner
closed loop of the driver-vehicle-environment system. The driver perceives the environ-
mental influences and the vehicle’s behaviour and reacts with specific vehicle control
inputs u, such as pedal position, steering-wheel angle or selection of gears. Thus, the
driver forms the outer closed loop (cf. Figure 3.25).

This thesis proposes two different levels of speed prediction (cf. Figure 3.26). The short-
term prediction covers all distances ahead of the vehicle which are in the range of on-
board environmental recognition sensors, while the long-term prediction approximates
the speed profile over the entire driving route. Consequently, the two levels differ strongly
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Figure 3.26.: Two levels of speed prediction

The short-term prediction covers all distances ahead of the vehicle which are in the range
of on-board environmental recognition sensors. In contrast, the long-term prediction
predicts the speed profile over the entire driving route. For this reason, the two prediction
levels yield different levels of information detail and processing times.

in terms of information detail and processing time. The present thesis focuses on the
long-term prediction, where the information detail is limited. Nevertheless, with the
help of fixed-location objects and the driver’s individual driving behaviour, a long-term
speed prediction is performed. The implemented prediction and adaptation algorithm
consists of three main parts, which are described in detail in the remainder of Chapter
3.3.

3.3.1. Fixed-location Information

Drivers adapt their travelling velocity to the current driving environment. However, ev-
ery road has its fixed characteristics (e.g., speed limits, height profiles and curvatures),
and these characteristics are used to estimate an initial rough speed profile without in-
cluding the driver’s individual behaviour (cf. Figure 3.27). In addition, this information
is used to perform a better estimation of the remaining driving range considering the
current energy content on-board [71]. One basic requirement is knowledge of the vehi-
cle’s current position and the upcoming driving route, which can be obtained via digital
maps.

Navigation systems in automotive applications

The main objective of a navigation system is to route the driver to the desired destina-
tion using information about the current position and digital maps. The evaluation of
the current position combines two methods. First, the dead-reckoning evaluates a new
absolute position depending on the current position, the differences in heading angle,
path and the elapsed time, using on-board sensors and, if available, GNSS signal. Next,
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Figure 3.27.: Initial rough speed prediction obtained from the available GNSS signals
and digital maps

The solid line represents the definite speed limits of the recorded real-world driving cycle,
and the dashed line depicts a selection of additional position-fixed information with its
initial speed approximation. The innovative P&A algorithm successively adapts this
rough speed profile to the driver’s individual driving style.

a map-matching algorithm adjusts the absolute position data to the data of digital maps
and thus increases accuracy. The determination of the position of on-board navigation
systems is done via GNSS (e.g., GPS) and additional on-board sensors. For instance,
GPS is based on 31 satellites. If signals from four satellites are available, the position
of the receiver can be determined within an accuracy of a few meters [105]. In order
to access information from the navigation system, a standardised information exchange
interface for advanced driver assistance systems (ADASs), called ADASIS24 is currently
being developed [48].

Legal speed limits

Digital maps provide information about the legal speed limits for the upcoming driving
route. The information regarding speed limits is the basis for the implemented innovative
P&A algorithm. Figure 3.27 represents the speed limits of the recorded real-world driving
cycle, introduced in Chapter 4.1. At first, the transition between consecutive speed limits
is volatile. These abrupt speed changes are later replaced by the driver’s individual
acceleration/deceleration behaviour. At rural roads curvatures, limited visibility and
speed limits are the main influences on the travelling speed, while for urban roads, other
road users, speed limits and temporary obstacles are the main factors for speed changes
[178].

24Advanced Driver Assistance Systems Interface Specifications
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Upcoming height profile

Modern digital maps also contain information about the height profile of the route ahead.
This information is included in the P&A algorithm. Just as the speed limits vL, the
height profile h is available as a function of the position or distance d.

vL = v(d), (3.113)

h = h(d). (3.114)

For simulation purposes, real driving tests were conducted, whereby the actual speed
profile, speed limits and the height profile were recorded. Figure 4.2(b) shows the height
profile of the recorded simulation driving cycle. The information about the height profile
is linked to position points, see also Eq. (3.114), which may contain additional informa-
tion, such as speed limits vL or other traffic announcements.

Intersections

Intersections also influence the driver’s speed selection. Depending on the type of inter-
section (e.g., unregulated/regulated, turn left/right or straight on), the average crossing
speed varies. For instance, the probability of stopping a vehicle before turning left is
higher than that for a right-turn manoeuvre at an unregulated intersection. The dif-
ferent crossing speeds are detected, and this additional information is available for the
implemented intelligent P&A algorithm. It is assumed that most drivers adhere to traf-
fic regulations. Consequently, at intersections with a stop sign, the driver stops the
vehicle for a certain time tS . This information is gathered and used for driver-adapted
prediction. Predicting the state of traffic lights at intersections over a longer term is a
challenging task, since the state may be different when the vehicle arrives there. For this
reason, the implemented prediction algorithm does not distinguish between regulated
and unregulated intersections. Furthermore, rail-road crossings and roundabouts are
covered in a similar way. Using advanced communication technology, such as C2X may
improve the prediction accuracy. The term C2X is a hypernym for car-to-car (C2C) and
car-to-infrastructure (C2I) communication [105]. However, this technology is beyond the
scope of this thesis.

Other traffic events

Besides considering position-fixed information about the height profile and different types
of intersections, the algorithm covers many traffic signs, including:

• Overtaking ban

• Pedestrian crossing

• Danger signs (e.g., downhill roads, dangerous curves, roadway narrows)
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• Priority roads

The recorded driving cycle does not support any other traffic signs. Information about
the curvature of the road κ25 is another important factor that is included in the innovative
algorithm developed here. In general, the algorithm extracts as much position-fixed
information as possible. Initially, constant driver-independent (crossing) speeds and
acceleration/deceleration are assumed. Later, these areas are gradually replaced by the
individual driving behaviour and other dynamic information. Even relying on position-
fixed route data alone improves the fuel efficiency of HEVs [12]. However, including the
current driving behaviour further improves its potential. The results of the innovative
operation strategy in Chapter 4.2.2 emphasise this fact in an impressive manner.

3.3.2. Approximation of the Driving Style and other Dynamic Driving
Information

Chapter 3.3.1 proposed a rough speed profile including the speed limits with no speed
transitions and a height profile obtained by navigation systems as an initial approxima-
tion of the upcoming driving profile. However, this approach does not incorporate the
driver’s individual driving style and the interaction with other road users. This chapter
introduces an adaptation algorithm that is able to add such dynamic information. His-
torical data about the current trip and data from on-board environmental recognition
sensors are used to extract this information.

3.3.2.1. Past Driving Data

The implemented long-term P&A is mainly based on collecting and processing past
driving data about the current trip. Figure 3.28 shows the basic principle of the P&A
algorithm. While driving, the developed algorithm periodically collects driver/route
characteristics and driving situations with the help of a driving data gathering process,
which samples the longitudinal vehicle speed vx, accelerator pedal position pp and the
brake pedal position pb with 1 Hz sampling rate, which is within the main frequency range
of longitudinal vehicle dynamics [75]. After a predefined time window ∆tW , relevant data
within this moving time horizon are extracted. First, the recorded data is filtered with
a zero-phase digital filter26. The gathering process determines the average driving speed
without standstill v̄x and the average positive and negative vehicle acceleration āx,±

25Information of the curvature is included in digital maps of state-of-the-art navigation systems.
26Also called finite impulse response (FIR) filter, which processes the input data in both the forward

and backward directions
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Figure 3.28.: Concept of the prediction and adaptation (P&A) algorithm

During driving, the algorithm gathers information about the driver, route and driving
situation in a driving data gathering process. Processing and combining this informa-
tion with position-fixed information, such as digital maps and GNSS signals, enables
the innovative operation strategy of PHEVs to further increase the overall fuel saving
potential.

within the considered window, see Eq. (3.115) and Eq. (3.116):

v̄x(vL) =
1

Nv

Nv∑
i=1

vx,i(vL), (3.115)

āx,±(vx,0) =
1

Na

Na∑
i=1

ax,i(vx,0), (3.116)

where the average driving speed v̄x and the instantaneous vehicle speed vx,i are related
to the current speed limit vL. The average positive and negative vehicle accelerations
āx,± are calculated according to predefined starting speed levels vx,0. The parameters
Nv and Na define the number of time steps within a certain speed limit or starting speed
level, respectively.

The collected and processed data is linked to the available position-fixed information and
is used to predict the future driving states vP and aP , which, in a more general form,
read:

vP (vL) = f
(
v̄x(vL)

)
, (3.117)

aP,±(vx,0) = f
(
āx,±(vx,0)

)
, (3.118)
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where the predicted vehicle speed vP is a function of the average vehicle speed of the
past driving v̄x. The predicted positive and negative vehicle accelerations aP,± depend
on the past average acceleration behaviour āx,±. The speed levels are divided in 10 km/h
steps. Furthermore, the extracted data is linked to position-fixed events. This makes it
possible to determine the average speed for a certain speed limit as stated in Eq. (3.115).
Instead of using the speed limits vL of the route ahead, a driver-adapted speed profile
vP is used. However, there are still volatile speed gradients. The predicted acceleration
aP,± replaces the speed change at speed limit transitions. The starting point for an
acceleration or deceleration manoeuvre at a specific speed limit change depends on the
particular driver. Generally, the manoeuvre does not start exactly at the position of the
speed limit change. An acceleration process may start before the speed limit changes to
a higher level, although deceleration phases do occur later. The P&A process considers
an average time ∆tA and ∆tB for such acceleration and deceleration phases, as discussed
in Chapter 3.3.3.

If no past speed values are stored for a certain speed limit, the current speed limit is
used as an initial speed approximation. Later, a speed correction factor Kv is used to
better approximate missing speed values. This factor is evaluated for each speed limit
by

Kv =
v̄x(vL)

vL
, (3.119)

The same scenario may occur for evaluating the future acceleration behaviour at speed
limit transitions aP,±. In that case, an approach based on the studies in [29] is used to
approximate missing acceleration data. The implemented approximation for acceleration
manoeuvres reads:

aP,+(vx) =
D1

vx +D2
−D3v

2
x, (3.120)

where D1, D2, and D3 are fitting parameters. The first term in Eq. (3.120) accounts for
the maximum traction force. The factor D2 is used to improve the fitting performance.
The second term in Eq. (3.120), which includes D3, considers the air drag. All other
driving resistances are omitted. For braking events, a modified approach based on [29]
is deployed:

aP,−(vx) = D4 · (vx < vL0) +D5 · (vx ≥ vL0), (3.121)

where D4 and D5, are fitting parameters and vL0 is a predefined longitudinal velocity
threshold. Unlike in [29], there are two constant deceleration values, which should ap-
proximately account for the increasing deceleration values at lower speeds [178]. This
means that a braking manoeuvre from 50 km/h to 30 km/h is significantly greater than
a deceleration from 100 km/h to 80 km/h [178]. An analysis of the investigated driving
cycle proves that the deceleration increases with lower vehicle speed (cf. Figure E.1 in
Appendix E). At the beginning of a trip, both acceleration and deceleration values have
to be initialised, which is done with the most recent values saved from the previous trip.
Figure 3.29(a-b) provides a schematic representation of both fitting curves.
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Figure 3.29.: Schematic representation of the acceleration behaviour

Figure (a) depicts the longitudinal acceleration behaviour ax depending on the longitu-
dinal vehicle speed vx, while Figure (b) shows the modified approach for estimating the
deceleration behaviour based on [29]. A speed threshold vL0 is introduced in order to
account for different deceleration behaviour at different speeds. Figure (c) shows the
lateral acceleration behaviour ay as a function of the curvature radius rκ.

When passing fixed-position events (e.g., intersections or railway crossings), the aver-
age speed for such an event is stored separately. These average speed values are used
later for speed prediction in similar driving route events. The algorithm also adapts
the cornering speed to the current driver. According to different scientific studies [29],
[178], the cornering speed is another characteristic value for evaluating different driving
styles. The procedure is similar to the approximation of the longitudinal acceleration be-
haviour. When driving through a curve, the longitudinal vehicle velocity vx is recorded.
In addition, digital maps provide the curvature κ of the road segment [113]. The lateral
acceleration ay of the vehicle can be approximated by

ay =
v2
x

rκ
= κv2

x, (3.122)

where rκ is the radius of the current curve. The information about the curvature κ and
the selected longitudinal velocity vx are used to predict the driver behaviour for similar
curvatures in the upcoming route27. The speed behaviour in curves is predicted based
on [178], where a deceleration phase is followed by a constant speed segment, after which
there is another accelerating. The principle of the third sections of a curve28 is applied.
Thus, the first third of the curve is used to decelerate, the second third is driven at a
constant speed, and in the last third the driver accelerates again, see also Figure E.2.
The deceleration and acceleration are determined by the method described above, and
the constant speed is evaluated by transforming Eq. (3.122).

27It is assumed that the driver is not cutting curves. Thus, the curvature of the road is the intended
curvature of the driver.

28In German: Prinzip der Drittelspunkte einer Kurve
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3.3.2.2. On-board Environmental Recognition Sensors

On-board environmental recognition sensors are used to account for dynamic influences
from the driving environment, which cannot be reliably predicted over the long-term.
For example, it is impossible to accurately predict the status of traffic signal lights or
traffic congestion. Advanced driver assistance systems rely on different kinds of on-
board environmental recognition sensors, see also [21]. Adaptive cruise control (ACC)
frequently uses radar, laser or camera sensors to evaluate the longitudinal distance and
the relative velocity of a vehicle up ahead. Information about whether or not there is
a vehicle up ahead can be used to perform a short-term prediction, and if there is a
vehicle, to adapt the long-term prediction [119]. For instance, if there is a vehicle ahead
which cannot be overtaken, the relative longitudinal velocity decreases steadily, and the
probability of a deceleration manoeuvre increases. Besides radar sensors, automotive
applications often utilise data from camera systems. This technology is able to classify
different traffic objects, such as traffic signs or other road users. However, an accurate
distance evaluation is possible [189], but difficult as discussed in [37]. For this reason,
car manufacturers combine different data sources to increase reliability and accuracy, an
approach which is known as sensor fusion. The present thesis assumes that the vehicle
features on-board environmental recognition sensors that are able to evaluate objects
ahead. Although detailed sensor modelling is not part of this thesis, the sensors enable
the short-term prediction to gather information within a certain sensor range. Based on
state-of-the-art sensors, the implemented sensor range is up to 250 m [56], [207]. The test
vehicle used for the current research was not equipped with any on-board environmental
recognition sensors. For this reason, this thesis assumes that the short-term prediction
performs ideally within its sensor range. This means that within the sensor range, the
speed profile and all additional data is known. Nevertheless, the main contributions
of the present research rely on the advanced long-term prediction and adaptation. For
comparison reasons, all methods use this limitation concerning the short-term prediction.

3.3.2.3. External Source of Information

Since data stored in digital maps and used for navigation in the automotive industry is
static, dynamic influences from the driving environment along the planned route cannot
be considered with that technology alone. Radio data system - Traffic message channel
(RDS-TMC) is used to make additional data available for navigation systems. This data
type can be received by broadcasting systems, such as frequency modulation-radio data
system (FM-RDS) and digital audio broadcasting (DAB), and by mobile telecommuni-
cation systems, such as global system for mobile communication (GSM) and general
packet radio service (GPRS). The RDS-TMC message consists of an event and its loca-
tion [105]. The navigation system may use this information and eventually recalculate
the route. Moreover, vehicles can be used as mobile sensors. This technology is called
floating car data (FCD). By using cellular mobile communication, vehicles are able to de-
tect and send data to a traffic centre network. This method enables the determination of
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the traffic speed on the road network. The collected data can be used to identify factors
such as traffic congestion [195]. Using additional data (e.g., from sensors transmitted
by the vehicle CAN29-Bus, such as vehicle acceleration, or information from ADAS),
can increase the accuracy of this technology, which is called extended floating car data
(XFCD) [19]. In the future, other advanced communication methods, such as C2X com-
munication technology, may provide additional information about the infrastructure and
other road users. However, since the introduction of this technology is challenging, de-
spite intensive research [105], the present thesis does not consider additional information
regarding such external sources.

3.3.3. Time Domain and Spatial Domain Transformation

The data from the navigation system or digital map are based on a certain position,
which is given by its longitude and latitude. A suitable Earth model, such as the world
geodetic system 1984 (WGS84) [87], transforms the geographic coordinates into a plane
coordinate system. For each position point, other entities are saved, such as speed limits,
curvatures and height position. Nevertheless, the optimisation algorithm described in
Chapter 3.2 needs the predicted route information on a time basis. Indeed, although it
is possible to design the optimisation algorithm to work in a position-based manner [60],
many physical quantities (e.g., the power or energy) are defined on a time basis. The
P&A algorithm has to perform a transformation between time and spatial domain, and
vice versa. The position-fixed information is applied on the speed limit profile first, and
the driver’s individual driving behaviour is added later. Both steps are performed in the
spatial domain. Assuming the crossing speed at a certain event vE , cf. Figure 3.30(d),
the starting position d0 and ending position de are determined by

d0 = dE,1 −
1

2
aE,1t

2
E,1 − v0tE,1, (3.123)

de =
1

2
aE,2t

2
E,2 + vEtE,2 + dE,2, (3.124)

where dE,1 and dE,2 are the starting and ending positions of the constant event speed
segment, and aE,1 and aE,2 are the accelerations before and after the event. A constant
positive or negative speed gradient aE is assumed during a certain event. Thus, the time
interval during an event tE,1/2 reads

tE,1 =
vE − v0

aE
, (3.125)

tE,2 =
ve − vE
aE

, (3.126)

where the numerator vE − v0 represents the speed difference ∆v of a deceleration event
with the starting speed v0 and the predicted event speed vE . In contrast, ve − vE is the

29Abbreviation for controller area network
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Figure 3.30.: Schematic representation of evaluated and predicted driving data

The driving data gathering process identifies characteristic data within a certain time
window ∆tW , e.g., the stopping time tS , see Figure (a), or the time delay tB after the
speed limit vL drops, see Figure (b), from the previously driven route. This data is
then used in the P&A algorithm to predict future driving states, such as the predicted
vehicle speed at a certain event vE . For prediction purposes position-fixed data is used.
Figure (c) shows the adaptation of a certain speed limit change. The distance before an
acceleration occurs is described with ∆dA = v0tA, where v0 is the initial speed, and tA
is the average time before an acceleration manoeuvre occurs. Figure (d) depicts a more
general driving event. Although the gathering process is performed on a time basis, the
prediction is done in the spatial domain.

speed difference of an acceleration event with the final speed ve. If the speed difference
∆v is positive, the acceleration aE is positive as well, and vice versa. At speed limit
transitions, where drivers typically accelerate before a speed limit transition occurs and
then decelerate later, the algorithm accounts for this fact with the time intervals tA and
tB, respectively, as shown in Figure 3.30(b). Other data, such as the stopping time,
are also incorporated, cf. Figure 3.30(a). Assuming a nearly constant driving speed v0

before such an event occurs, the event position dE = d0 is evaluated by

d0 = dL − tAv0, (3.127)

where dL is the position of a speed limit change, and tA is the period of acceleration
before the actual speed limit vL changes. In an acceleration manoeuvre, the event speed
vE is equal to the initial speed v0, and the assumed constant event acceleration aE is
predicted with the help of Eq. (3.118). The ending position is determined by Eq. (3.124).
In the case of a braking manoeuvre, Eq. (3.127) is reformulated as

d0 = dL + tBv0, (3.128)
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Figure 3.31.: Schematic representation of the time/spatial domain transformation

First, the future power demand is determined in the spatial domain. For optimisation
purposes, it is then transformed into the time domain using linear interpolation. The
output of the optimisation is a power distribution ud(t) in the time domain, which is
then transformed back into the spatial domain ud(d).

where the braking event position is dE = d0, and tB is the time delay of the braking
manoeuvre. The time period of the event is determined by Eq. (3.126), and the ending
position is calculated using Eq. (3.124). Figure 3.30(c) shows an acceleration manoeuvre
caused by a speed limit change, which is handled in a similar manner. After considering
all driver-relevant data in the long-term prediction, the predicted speed profile vP (s) and
the height profile h(s) are transformed into the time domain. It holds that

∆di = ∆tsvi, (3.129)

d =
N∑
i=1

∆di. (3.130)

The time interval ∆ts is set to a constant 1 s with respect to the optimisation time and
accuracy, see also Chapter 3.2. Moreover, the sample time is in the relevant range of
the longitudinal vehicle dynamics, according to [75]. Performing a linear interpolation
finally results in a predicted speed profile and height profile in the time domain, see
Figure 3.31. The output of the optimisation process is the power distribution ud(t),
which is transformed back into the spatial domain.

The optimisation process described in Chapter 3.2 determines the optimal control for
the predicted power characteristics. The predicted speed profile vP consists of segments
with constant speed or acceleration/deceleration phases. When driving in a steady-
state, no component torque of inertia acts. The recorded driving cycles for different
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drivers show that maintaining a constant exact speed is not realistic. For this reason,
the constant speed segments are combined with a noise, which is assumed to represent
the driver/vehicle behaviour. Thus, the adapted velocity profile within the originally
constant speed segments reads:

vk+1 = vk + νkak(vk)∆ts. (3.131)

The parameter νk is assumed to be normally distributed and varies in the interval
[−1 1], ∆ts is the sampling time, which is set to 1 Hz, and ak is the acceleration. Here
again this arises from the relevant range of the longitudinal vehicle dynamics [75] and
corresponds closely to the recorded data. The acceleration ak again depends on the driv-
ing speed vk at time step k. The optimisation algorithm determines the optimal control
ud(t) and the corresponding state x(t) in the time domain. Since the speed prediction is
different from the actual vehicle speed, different positions occur, even though the same
moment of time is considered. For the long-term prediction, the time-based state x(t)
and control variable ud(t) are transformed to the spatial domain. Figure 3.31 shows the
transformation of the time domain to the spatial domain for the power distribution ud.
For the transformation of the state variable x, a similar approach is applied using the
relation stated in Eq. (3.129) and Eq. (3.130).
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4
Results

4.1. Real-world Driving Cycle

The implemented advanced operation strategy focuses on improving fuel efficiency in
real-world driving situations. Thus, a real-world driving cycle was recorded in the area
of Graz, Austria. The route, which consists of urban, suburban and highway sections,
is referred to hereafter as the FTG cycle. Figure 4.1 shows the distribution of the
route in both the time and spatial domains. The route in Figure 4.2 is about 46 km in
distance, which correlates well with the average driving distance for commuters living in

(a) (b)

Suburban
30%

Suburban
16%

Urban
56%

Highway
42%

Urban
28 %

Highway
28%

Figure 4.1.: Statistical distribution of the real-world driving cycle

The driving route consists of urban, rural and highway sections. Figures (a) and (b) show
the distribution in the spatial and time domains, respectively. The different proportions
of the sections arise from the different mean travelling speeds.



4. Results

Table 4.1.: Comparison of driving cycle characteristics. The characteristic values are
based on [144].

Characteristic Parameter Unit NEDC WLTP FTG Cycle

Total driving time s 1220 1800 3645
Dead time s 333 239 577
Relative dead time % 27.30 13.27 15.63
Distance km 10.93 23.26 46.27
Mean distance between stops2 km 0.78 2.58 1.16
Max. velocity km/h 130.00 131.30 131.10
Mean velocity km/h 32.30 46.52 45.70
Mean velocity of motion km/h 44.40 53.65 54.29
Max. positive acceleration m/s2 1.04 1.75 3.10
Mean positive acceleration m/s2 0.53 0.42 0.51
Max. negative acceleration m/s2 −1.39 −1.50 −3.56
Mean negative acceleration m/s2 −0.82 −0.44 −0.52
Percentage of constant velocity % 62.70 17.16 15.63
Percentage of constant velocity
without standstill

% 36.48 4.55 0.90

Maximum height difference m 0.0 0.0 182.40

Styria [199]. For this reason, and since many people living in the Graz area commute1,
this driving cycle can be considered a typical commuter profile for the Graz area. Unlike
legally stipulated driving cycles (e.g., NEDC or WLTP), the FTG cycle includes a height
profile. The speed profile was recorded via on-road tests with different drivers at different
times of day, in order to take into account different driving styles and environmental
conditions. Although the results presented below are based on one specific driving profile
(see Figure 3.30), the innovative operation strategy can be applied on any other profile
as well. Table 4.1 provides a summary of the characteristic parameters of this individual
driving cycle with one specific driver.

It is evident that the FTG cycle and the WLTP are comparable in many parameters.
Although the currently valid NEDC is not considered representative of real-world driv-
ing scenarios due to its cyclical driving pattern [171], [203], it is nevertheless used for
regulatory work. In contrast, its successor, the WLTP, features higher mean velocity,
deceleration and acceleration, as shown in Table 4.1. The individual FTG cycle is char-
acterized by more aggressive acceleration and deceleration manoeuvres, and almost no
driving at constant speed. According to [144], the key characteristics stated in Table

1More than one-third (36.2 %) of commuters living in Graz work in the surrounding region (known as
“Graz Umgebung”), while 39.3 % of the commuters living in this surrounding region work in Graz. Of
the total number of commuters both into and out of Graz, 45.1 % of them have to travel between
10-19 km daily [199].

2Quotient of the total driven distance and the total number of vehicle stops
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Figure 4.2.: Real-world driving cycle

Figure (a) depicts the driving route in a plane reference system, and Figure (b) shows the
relative height profile and the speed limits depending on the distance. Legally stipulated
driving cycles do not consider a height profile.

4.1 can be used to classify driving cycles. All three cycles are mixed cycles, consisting
of urban, suburban and highway sections. Mixed cycles are characterised by a relatively
low mean velocity but a high maximum speed. Nevertheless, the NEDC is near the
lower threshold of an urban cycle. Similar results are obtained when considering the
relative dead time. According to [144], a relative dead time below 15 % describes a
mixed-driving cycle, while values above this limit indicate an urban driving route. By
comparing the mean velocity and the mean velocity of motion, all cycles can be further
described as urban driving cycles with longer rural areas, according to the classification
in [144]. The NEDC is a modal driving cycle, since the percentage of constant velocity is
high. In contrast, the WLTP and the FTG cycles are stylistic. Using legally stipulated
driving cycles enables the comparison of different vehicles and measurements in order
to enhance vehicle efficiency under standardised conditions (e.g., no auxiliary loads).
However, such legally stipulated driving cycles are not suitable for evaluating real-world
fuel consumption [121]. Although recorded individual driving cycles cannot guarantee
identical driving conditions, they may be closer to real driving behaviour.

The selected speed profile discussed in Chapter 4.1 describes a rather sporty driving
behaviour, due to the high longitudinal acceleration and deceleration manoeuvres (see
Table 4.1). Since it was recorded in the afternoon during rush hour, especially at the
beginning of the driving cycle, many driving situations could not be predicted (e.g.,
traffic congestion).
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4.2. Numerical Analysis of the Investigated PHEV

The following analyses are performed with the predefined P2-PHEV topology shown in
Figure 3.19. Table D.1 shows the topology’s main vehicle parameters. Both drivetrain
modelling approaches are used. The backward-facing vehicle model (see Chapter 3.1.3)
is used in the innovative energy management controller, in order to estimate the future
component loads of the drivetrain. In contrast, the dynamic vehicle model (see Chapter
3.1.2) is used as a realistic vehicle model which obtains the power distribution factor
ud of the innovative operation strategy as a specific control input. Furthermore, unless
otherwise stated, all results below are based on the FTG cycle. First a sensitivity analysis
is performed, followed by a performance investigation of the fuel saving potential and
the effect on the longitudinal vehicle dynamics. At the end of the chapter, the impacts
of the proposed operation strategy are highlighted.

4.2.1. Sensitivity Analysis – Controller Stability

The presented advanced OS uses a model-based optimisation algorithm to improve the
overall fuel efficiency of PHEVs. The implemented quasi-static vehicle model (see Chap-
ter 3.1.3) requires a number of drivetrain parameters from the real vehicle (cf. Chapter
3.1.4 and Table D.1). These parameters must be determined precisely. Nevertheless,
some parameters (e.g., the total vehicle mass or the air drag) may change across several
driving cycles. Other parameters are difficult to evaluate accurately, such as inertias of
the drivetrain components.

Using a sensitivity analysis, the influence of uncertainties in specific input parameters of
the backward-facing vehicle (e.g., the vehicle mass) is related to its effect on a specific
output of the complete simulation model: in this case, the overall fuel consumption of the
dynamic vehicle model. Hence, the following test procedure is conducted to analyse the
influence of imprecisely measured parameters. In the simulation environment, specific
parameters in the backward-facing vehicle model are varied stepwise, whereas parameters
in the dynamic vehicle model remain unchanged. The change in total fuel consumption
is used to measure the effect of imprecise parameters. Figure 4.3 illustrates the influence
of specific parameters.

An imprecise evaluation of the total vehicle mass of the backward-facing model has a
slight influence on the total fuel consumption in the context of the proposed operation
strategy controller. Varying this parameter between curb weight and the maximum
allowed total vehicle weight results in a deviation of less than 1.5 % on the total fuel
consumption. Therefore, the energy management controller does not require an exact
vehicle mass. However, using a vehicle mass estimator, such as in [93], can further
improve the performance of the operation strategy.

Varying the EMG inertia in the model-based optimisation algorithm produces a negligible
effect on overall fuel consumption. The maximum change in fuel consumption is less than
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Figure 4.3.: Parameter sensitivity analysis [115]

The total vehicle mass, the inertia of both propulsion units and the overall drivetrain
efficiency have a minor influence on the performance of the innovative operation strategy.
However, the rolling resistance coefficient and the aerodynamic drag coefficient have to
be determined more precisely. Nevertheless, the innovative energy management controller
shows a robust behaviour to changes in the aforementioned vehicle parameters.

0.5 % over the entire variation range of ± 15 %.

Varying the ICE inertia produces nearly the same result as the variation of the EMG
inertia. Over almost the entire variation range of ± 15 %, the effect on the overall fuel
consumption is limited.

In contrast to the component inertias, the rolling resistance coefficient aR may vary fre-
quently depending on different road surfaces and environmental influences. In Figure
4.3, the reference rolling coefficient is set to 0.01, which represents a good asphalt road.
In the simulation environment, the rolling resistance depends exclusively on the vertical
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4. Results

Table 4.2.: Different rolling resistance coefficients aR on even, ideally stiff roads for con-
stant tyre pressure, adapted from [86]

Road Surface aR

Firm asphalt 0.005-0.015
Firm gravel 0.02-0.03
Tarred gravel 0.04-0.04
Good earth path 0.05-0.15
Wet, soaked surfaces 0.15-0.35

load of the tyres, which is a common approach [86]. In reality, the rolling resistance is
also a function of the vehicle speed. According to [86] and [135], only at low speed is the
rolling resistance approximately constant and near to 0.01. Besides the vehicle speed
and the vertical tyre load, the overall rolling resistance also depends strongly on the
characteristics of the road, the tyre pressure and the tyre temperature. Deformation of
the road surface and water films also increase the rolling resistance. Table 4.2 shows the
rolling resistance coefficient for different road surfaces at a given constant tyre pressure.
Varying the rolling resistance has a strong influence on total fuel consumption. Neverthe-
less, assuming that the vehicle is driven primarily on good asphalt roads and that rain
sensors are able to capture the weather conditions, the rolling resistance coefficient can
be approximated with sufficient accuracy, which limits the variation range. For instance,
if the coefficient varies within the range from 0.005 to 0.015, the sensitivity analysis
shows that the total fuel consumption increases by less than 4 %.

Figure 4.3 highlights the almost linear influence of the aerodynamic drag on the over-
all fuel consumption. Adding various attached parts (e.g., roof racks or even pulling a
caravan) significantly modifies the aerodynamic drag coefficient (see Table 4.3). Beyond
the aforementioned modifications, there are many other factors that influence aerody-
namic drag, such as the state of the radiator grill [181]. Modifying the aerodynamic
drag coefficient within the range stated in Table 4.3 increases the total fuel consumption
by approximately 5 %. A concurrent increase of the total frontal area of the vehicle or
vehicle-caravan combination is not considered within this research.

Evaluating the drivetrain efficiency is a difficult task, since there are many influencing
factors, including the dependency on the rotational speed and the current component
load. The overall powertrain efficiency is successively changed in the range of ±40 %.
An imprecisely determined drivetrain efficiency leads to a nearly constant influence over
a wide variation range. The maximum deviation is less than 2 %.

Figure 4.3 also shows areas where a deviation from the real to a theoretically worse
value leads to a slight improvement of the overall fuel consumption. This phenomenon
can be explained by considering the whole simulation environment. Since the vehicle
models used vary (see Chapter 3.1), the optimal result for the quasi-static vehicle model
is not necessarily the optimum for the dynamic vehicle model. Furthermore, a drift
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Table 4.3.: Change of the aerodynamic drag coefficient cD due to attaching parts accord-
ing to [181]. The values represent the maximum change for each additional
component.

Attaching part Change of cD in %

Reference vehicle 0 %
Ski rack +30 %
Bicycle rack on the roof +60 %
Caravan +300 %

Vehicle setting Change of cD in cD points

Open side window +30
Open sun roof +30

between the two models occurs, especially due to the numerical integrators used to
calculate the cumulative fuel consumption and the SOC of the battery. When parameters
different from the real value are used subsequently, the drift is partly compensated for and
results in a slight fuel consumption improvement. Unlike many studies, [61], [91], [122],
which only determined the fuel saving potential in a quasi-static vehicle model without
considering any dynamics in the drivetrain, the current research evaluated this potential
with a dynamic vehicle model. In summary, an inaccurate parameter determination
does not automatically lead to higher overall fuel consumption. However, especially
the aerodynamic drag coefficient cD and the rolling resistance coefficient aR must be
evaluated precisely or have to be adapted to the current driving situation in order to
ensure the proper functioning of the innovative operation strategy. Nevertheless, the
parameter sensitivity analysis shows the robust behaviour of the proposed method with
respect to changes in the aforementioned vehicle parameters.

4.2.2. Performance Analysis – Fuel Saving, Longitudinal Vehicle Dynamics

The technology of hybrid electric vehicles holds great promise for increasing the overall
fuel efficiency of passenger cars. Simultaneously, this means of transport also offers poten-
tial for improving longitudinal vehicle dynamics, although implementing hybrid electric
components means adding additional weight. The first part of this chapter investigates
the enhancements in longitudinal vehicle dynamics. The measurements commonly used
for the longitudinal vehicle performance are the acceleration capability from 0-100 km/h,
80-120 km/h in the fourth gear, and 80-120 km/h in the fifth gear [114]. Moreover, in
[205], the top speed, stopping distance, gradeability and towing capability are discussed
as performance criteria.
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Table 4.4.: Enhanced longitudinal vehicle performance of the investigated PHEV com-
pared to a conventional ICE-driven vehicle in % [114]

Measurement Continuous power Pulse power

0-100 km/h +30 % +38 %
80-120 km/h, 4th gear +28 % +37 %
80-120 km/h, 5th gear +35 % +44 %

Acceleration performance

Table 4.4 summarises the acceleration improvement the PHEV gains by using its continu-
ous and its pulse battery power compared to the baseline vehicle, which is a conventional
ICE-driven vehicle with no additional weight. The continuous battery power is available
for an indefinite amount of time without damaging or overheating the battery, as long
as sufficient electric energy is available. In contrast, the pulse power supply is limited
to a short time period, but provides a higher power supply. Sufficient grip potential is
assumed.

Although the total vehicle weight increases due to the additional PHEV drivetrain com-
ponents, the accelerations from 0-100 km/h and from 80-120 km/h can be improved up
to 30 % and 35 %, respectively. Using the briefly available pulse power of the battery
enables further longitudinal vehicle performance enhancements. The acceleration from
0-100 km/h is up to 38 % faster than with the conventional passenger car, and the per-
formance from 80-120 km/h increases by up to 44 %. Comparing the results in Table 4.4
highlights the importance of the intelligent planning of the energy content of the PHEV.
If the SOC is not planned, the PHEV may not use the entire potential of the longitudinal
vehicle performance. The performance improvements even when using only the continu-
ous power of the battery are noticeable for drivers. Using the battery’s pulse power can
enhance the performance by an additional 10 % [114]. The high driveaway torque and
the fast response time of the EMG are beneficial for the acceleration performance.

Top speed

The maximum speed of the PHEV depends on the final gear ratio of the gearbox and the
final drive. In addition, the total vehicle power affects the top speed characteristics. At
high speeds on an even road, the air drag is dominant. Moreover, the air drag increases
with the vehicle speed by a power of two, see Eq. (3.62). The top speed is reached if the
total propulsion force at the wheels is equal to all driving resistance forces. The EMG
of the investigated PHEV is able to support the ICE over the entire speed range. This
yields a top speed improvement of about 4 %, as long as there is enough battery power
available and sufficient tyre-road grip.
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Table 4.5.: Relative improvement of the investigated PHEV’s gradeability compared to
the conventional ICE-driven vehicle. The gradeability range of different gears
for a common vehicle is also shown, based on [133].

Gear Improvement of σ in % σ-range in %

1st +0 % 40-95
2nd +0 % 25-60
3rd +45 % 15-45
4th +82 % 10-35
5th +94 % 8-28
6th +101 % 5-22

Gradeability

The gradeability of a vehicle describes the maximum road inclination β a vehicle can
move upwards at a constant speed. Reformulating Eq. (3.71) leads to the gradeability
expression:

sinβ =
1

mV EHg

(
TT
rdyn

− FR − FD
)
, (4.1)

where the acceleration resistance term FA does not appear in the formula due to the
constant speed manoeuvre. The gradeability is often given as a percentage, which reads

σ = 100 · arctanβ. (4.2)

Table 4.5 shows the investigated PHEV’s gradeability improvement over the conventional
ICE-driven vehicle. In the first two gears, the maximal transferable tyre force is reached;
thus, no improvement can be seen. In higher gears, the gradeability is increased by
up to 101 % compared to the baseline vehicle. Additionally, Table 4.5 summarises the
gradeability range of conventional ICE-driven vehicles according to [133]. The baseline
vehicle is within that range.

Similar to the gradeability, the towing capability increases as long as there is enough
electric power left. The towing capability is important when pulling a caravan, for
example. In this case, the total mass, the aerodynamic drag coefficient and the total
frontal area strongly affect the vehicle performance. The braking performance hardly
changes, even though the total vehicle weight has increased.

All investigations of the longitudinal vehicle dynamics – top speed, acceleration perfor-
mance, gradeability and towing capability – emphasise the importance of intelligently
balancing the SOC of the PHEV. Ensuring sufficient energy content of the battery is
important to improve the overall vehicle performance.
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Table 4.6.: Comparison of optimum fuel saving results of the investigated PHEV for
different driving cycles. The fuel saving potential is based on the same PHEV
with its baseline strategy.

NEDC (4x) WLTP (2x) FTG Cycle (1x)

9.7 % 8.2 % 11.7 %

Overall fuel efficiency

Almost all longitudinal vehicle performance criteria can be improved by adding suffi-
ciently powerful hybrid drivetrain components. Nevertheless, the improvement strongly
depends on the available energy content of the battery. The proposed innovative en-
ergy management controller is able to intelligently plan the battery’s energy content and
simultaneously reduce the overall fossil fuel consumption of PHEVs.

Table 4.6 highlights the maximum attainable fuel saving potential of the investigated
PHEV compared to its baseline strategy for different driving cycles. For comparison
reasons, the NEDC is driven four times in a row, and the WLTP is driven two times in
a row, in order to ensure approximately the same driving distance. The results assume
perfect knowledge of the entire driving cycle, which is not actually realistic or causal.
Nevertheless, the results can be used to assess the performance of a causal operation
strategy. First, due to the fixed, predefined rules and the fact that the route ahead is not
considered, the baseline strategy enables different fuel saving performances for different
driving cycles. The difference in the optimal fuel saving potential can be explained by
the different characteristics of the driving cycles. Due to the lower mean velocity (see
Table 4.1), the NEDC has less irreversible drag loss than the WLTP, resulting in higher
theoretical fuel savings. The FTG cycle and WLTP have comparable characteristics, as
shown in Table 4.1, but the real-world driving cycle includes a height profile.

Figure 4.4 represents the SOC traces of different PHEV operation strategies over the
entire driving cycle. The thin dashed grey line depicts the baseline strategy. This
strategy utilises the electric traction motor as often as possible, without considering the
remaining driving route. The lack of route information results in a significant decrease
in the SOC at the beginning of the driving cycle. Thus, the electrical system availability
– a measure that identifies the time period where the electric energy is above a certain
threshold – is low, at only 23.4 %. At about 10 km of distance, the operation strategy
switches to charge-sustaining and maintains the battery’s energy content at a rather low
SOC level. At first, almost no fossil fuel is consumed; however, in charge-sustaining
operation mode, the ICE has to provide almost all traction power. This results in
an increase of +13.3 % in total fuel consumption compared to the optimum operation
strategy.

The solid black SOC characteristic in Figure 4.4 depicts the reference strategy – a predic-
tive operation strategy. The future power demand is predicted with the help of the speed
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Figure 4.4.: Comparison of the SOC traces of different operation strategies

The baseline strategy uses no prediction algorithm. All other strategies utilise additional
information about the upcoming route and driving characteristics to further improve the
overall fuel efficiency.

limits of the upcoming driving route and predefined, driver-independent acceleration
characteristics and information about the future height profile. This reference operation
strategy is able to increase the electrical system availability up to 91.8 %. Although the
overall fuel efficiency is better than the baseline strategy, this strategy consumes +7.3 %
more fuel than the optimum operation strategy. The average predicted power demand
is often higher than the actual one, especially in urban areas, which results in a higher
SOC level at the end of the driving cycle.

The proposed innovative energy management controller, which is called P&A, is repre-
sented by the thick solid grey line in Figure 4.4. This controller can improve performance
by adapting the predicted power demand to the individual driving style. This allows the
operation strategy to end up with a lower SOC level. The electrical system availability
is a bit lower than with the reference strategy, but it is still at a very high level (86.8 %).
Moreover, the overall fuel consumption decreases further, although it remains about
+5.7 % higher than the optimum level. This is equivalent to an increased fuel efficiency
of +1.4 % and 6.7 % compared to the reference and baseline strategies, respectively.

105



4. Results

Table 4.7.: Comparison of different HEV operation strategy results. The fuel consump-
tion of the optimum operation strategy is used for comparison issues; all other
values refer to that optimum.

Characteristic Parameter Baseline Reference P&A Optimum

Electrical system availability3 23.40 % 91.80 % 86.80 % 87.80 %
Fossil fuel consumption 113.30 % 107.30 % 105.70 % 100.00 %
SOCend 31.25 % 32.54 % 31.71 % 31.40 %

The thin grey line in Figure 4.4 shows the optimum result, which can only be achieved if
the entire power demand of the driving cycle is precisely known in advance. Due to the
perfect knowledge of the upcoming speed profile and route, the operation strategy is able
to maintain the energy content of the battery in the most fuel-efficient manner possible.
Especially in the first approximately 15 km, which consist of mainly urban driving, the
SOC is balanced at a higher level than all others. This transpires because of the exact
advanced long-term knowledge about future traffic situations, such as interactions with
other road users, traffic lights and stop-and-go traffic, over the entire driving cycle.
Notice that the driving cycle was recorded during the afternoon rush hour. Consequently,
there were many driving situations which could not be predicted long-term. This explains
the deviation of the SOC trace of the optimum operation strategy and the two other
predictive approaches in Figure 4.4.

Table 4.7 summarises all operation strategies. With very similar SOC levels at the end
of the driving cycle SOCend, different fuel savings and electrical system availabilities can
be achieved. Nevertheless, an accurate prediction of the future driving states enables a
lower SOCend.

To enhance the overall fuel efficiency, the advanced PHEV operation strategy frequently
changes its operation mode (see Figure 4.5). A power distribution factor ud of 1 rep-
resents pure electric driving, whereas ud = 0 corresponds to pure ICE driving. In the
range of 0 < ud < 1 both propulsion units work together. Frequent changes of the op-
eration mode may be advantageous for the overall fuel efficiency. Nevertheless, this can
negatively influence the drivability of the vehicle. Detailed research on the drivability is
not part of this thesis, but a qualitative assessment was done using the switching time be-
tween different driving modes. The detailed representation in Figure 4.5 shows that the
switching time is rarely below 2 s. The implementation of the algorithm allows changes
with a maximum of 1 Hz. The influence of the frequently changing ICE operation mode
– ICE on/off or idling – has to be investigated in detail in future work.

3It is defined as the period of time during which the SOC of the battery is above a certain threshold.
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Figure 4.5.: Power distribution factor characteristics ud of the innovative P&A strategy

A power distribution factor ud = 1 describes pure electric driving, while ud = 0 is pure
ICE driving. If 0 < ud < 1, the PHEV operates in its hybrid mode. It is evident that
duty-cycles below 2 s are infrequent. However, frequently changing operation modes –
especially those where the ICE is switched on/off – influence the overall vehicle behaviour,
such as drivability.

Computing time

Computing time is a crucial issue in vehicle application, and DP applications are known
to be time consuming. However, introducing a multi-level optimisation approach, such as
the two-level dynamic programming approach in Chapter 3.2.6.4, effectively reduces the
computational burden. Moreover, the single-dimension, quasi-static vehicle optimisation
model in combination with an adequate grid resolution contribute to a low computing
effort. Using a consumer notebook (see Table 4.8), the computing time for the long-
horizon prediction optimisation is about 52 s. In contrast, the short-horizon prediction
optimisation takes a maximum of 0.7 s, depending on the travelling speed. Neverthe-
less, state-of-the-art automotive control units, such as [107], have much less computing
capacity.

4.3. Impact of the Proposed Operation Strategy

The operation strategy of HEVs has a significant influence on the vehicle performance.
The proposed intelligent energy management controller is able to concurrently increase
the overall fuel efficiency and enhance the longitudinal vehicle performance of a P2-
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Table 4.8.: The simulation environment used here is based on a consumer notebook.

Component Specification

Operation system Windows 7 Enterprise x64
Central processing unit (CPU) i7-2860 QM
Random access memory (RAM) 16 GB
MATLAB version 7.11.0.584 (R2010b) win32

PHEV drivetrain layout. Performance criteria such as acceleration capability, top speed
and gradeability are improving remarkably.

However, the operation strategy has to intelligently maintain the energy content of the
battery over the entire driving route. High electrical system availability is a prerequi-
site. An electrical system availability of about 87 % of the innovative operation strategy
ensures that the PHEV can use the entire potential of the longitudinal performance.
Moreover, the anticipatory planning of the SOC simultaneously improves overall fossil
fuel consumption. The results show that improvements of up to 11.7 % are theoretically
possible for the pre-described route, compared to rule-based operation strategies.

Besides enhancing the longitudinal vehicle performance, the hybrid electrical system
availability and the overall fuel efficiency, the advanced operation strategy can also reduce
GHG emissions. The European Union emission reduction targets require that in 2015
new cars do not emit more than an average of 130 g/km CO2, and in 2020 the threshold
is lowered to 95 g/km. All thresholds are related to the current legally stipulated driving
cycle, the NEDC. Car manufacturers have to pay an excess emissions premium if the
average CO2 of their fleets exceeds those thresholds. In 2019, these fees can be up to
e 95 for each gram of CO2 exceeding the current threshold. The P2-PHEV studied
with the advanced operation strategy emits about 110 g/km CO2 in a real-world driving
cycle. This is 15 % less than the 2015 emissions target. However, this level exceeds the
desired level for 2020 by about 16 %. Additional costs for OEMs of about e 1,425 for
each car sold will arise in 20194. However, taking into account the total vehicle power
of more than 200 kW, and that the CO2 level is related to a real-world driving cycle,
the proposed operation strategy can help approach future emissions targets, even for
high-power vehicles. In order to clarify the benefits of the innovative operation strategy,
a currently available reference vehicle with comparable performance data is used in
simulation for comparison reasons. It has nearly the same weight-to-power-ratio and
almost the same maximum power. The overall CO2 emissions and thus the total fossil
fuel consumption of the simulated PHEV decrease by about 25 %.

Moreover, comparing the additional potential of the advanced OS, the baseline and the
reference strategy, car manufacturers may use the innovative algorithm in a different way.
Increased efficiency in using the battery’s energy content may motivate OEMs to reduce

4Assuming that the average CO2 level is similar to the investigated vehicle
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4.3. Impact of the Proposed Operation Strategy

the number of cells in the battery pack so that the resulting total fuel consumption level
can be similar to that of the baseline strategy. According to [108], battery costs are the
dominant component as far as production costs are concerned. Reducing the number
of battery cells decreases the overall fuel efficiency, but both weight and cost decrease
as well. In addition, the innovative operation strategy does not cause any additional
material costs, and it can be used in different vehicle types with similar drivetrain layouts.

Reduced production costs may lead to a lower purchasing price for customers. At a
minimum, they will be able to experience the enhanced longitudinal vehicle performance.
In Austria, customers profit from a reduced NoVA tax. Compared to the reference vehicle,
the tax is reduced by up to 7 %. Moreover, the annual vehicle motor tax decreases by
about e 720. This means a cost reduction of about 49 % in annual vehicle taxation. In
2014, the average driving distance per year was about 13,100 km [218], and the average
costs for diesel was e 1.296 per litre [149]. Driving a PHEV with the proposed intelligent
operation strategy enables annual fuel costs savings of about e 70.

The aforementioned examples emphasise that combining the investigated PHEV drive-
train configuration with the proposed innovative operation strategy will yield noticeable
benefits in the form of reduced taxes and costs for both OEMs and consumers as well.
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5
Summary and Conclusion

This thesis addresses the development of highly efficient and more environmentally
friendly vehicles by introducing an innovative operation strategy for PHEVs. This chap-
ter gives a summary of the present research and concludes with a final statement.

Chapter 1: Introduction. This chapter pointed out that individual mobility is a basic
prerequisite that ensures economic growth and increases the standard of living. Although
conventional diesel and gasoline-driven vehicles are still dominant, economic, ecological,
social and political factors are encouraging the development of vehicles with alternative
drivetrains. The Earth’s crude oil reserves, which are finite and non-renewable, stand
in contrast to the increasing world population and the expected increase in mobility in
developing countries. Moreover, GHG emissions from the transportation sector have
more than doubled since 1970 and were still increasing at a faster rate than any other
energy end-use sector in 2010. Hence, vehicles are partially contributing to global warm-
ing, which contributes to rising sea levels. In order to manage these trends, national
and international regulators are tightening fuel consumption and emissions restrictions.
The introduction of low-emission zones (LEVs) and zero-emission zones (ZEZs) in many
cities is one measure to address these problems. Moreover, mandatory emission reduc-
tion targets – in Europe the average CO2 emissions of the entire vehicle fleet has to
reach 95 g/km in 2020 – and additional penalty payments are spurring the development
of more environmentally friendly vehicles. Vehicles with alternative drivetrains are able
to effectively reduce or even eliminate local emissions in urban areas. The present re-
search focused on hybrid electric vehicles (HEVs), which offer the best of both electric
and combustion-engine propulsion (i.e., purely electric urban driving and high operating
range), although the vehicle mass and purchase costs are high.

This chapter also discussed different test procedures for evaluating the overall fuel con-
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sumption and exhaust emissions of conventional vehicles driven by internal combustion
engines (ICEs), HEVs and plug-in HEVs, as well as for evaluating in both real-world traf-
fic situations and simulations. The chapter concluded with different studies about the
future market penetration of vehicles with alternative drivetrains – political interventions
and subventions have a strong influence on their market shares.

Chapter 2: State-of-the-Art Hybrid Electric Vehicles. The present research
focused on the development of an operation strategy (OS) for PHEVs. However, this
chapter started with a classification of HEVs according to their degree of hybridisation
(DoH) – a measure that quantifies the power capability of the electric traction system.
The DoH helps to distinguish between different HEVs, namely micro, mild, full and plug-
in HEVs. Hybrid electric vehicles enable additional operation modes, which efficiently
reduce overall fossil fuel consumption. Operation modes such as ICE start/stop, coasting,
e-drive, boosting, recuperation, load point shifting and phlegmatisation are inherent to
HEVs. However, the effectiveness of these functions depends strongly on the DoH.

The HEV’s drivetrain layout is more complex than that of conventional ICE-driven vehi-
cles. Nevertheless, different HEV drivetrain configurations have become widespread. In
general, there are three main HEV concepts – series, parallel and power-split HEVs. In
series HEVs, there is no direct mechanical connection of the ICE to the drive shafts. An
electric traction motor/generator (EMG) supplies all necessary propulsion power. Such
vehicles offer good fuel saving performance if relatively high driving dynamics are pre-
dominant (e.g., stop-and-go urban traffic), but the required multiple energy conversions
are disadvantageous. In contrast, in parallel HEVs, both propulsion units – ICE and
EMG – are mechanically linked to the drive shaft. Depending on the arrangement and
dimensioning of the EMG, there are different parallel drivetrain variations. The present
thesis investigated a P2-HEV, in which the EMG is mounted between the clutch (CL)
and the gearbox (GBX). The benefit is that the clutch allows for independent driving
of the EMG without ICE drag losses. However, an ICE operation in a steady-state in
areas of high efficiency is not guaranteed. Power-split HEVs are the final main drive-
train layout. At least one planetary gear-set (PGS) is used to distribute the mechanical
power of the ICE to an electrical and mechanical power path. In combination with two
EMGs, the PGS represents an electrical continuously variable transmission (eCVT). On
the one hand, the high flexibility in selecting an appropriate ICE operation point and
the elimination of the conventional GBX and CL are advantageous. On the other hand,
the increased system complexity, vehicle weight and costs are unfavourable.

Besides the drivetrain layout of HEVs, their operation strategy is a key success factor
for outstanding fuel savings, enhanced longitudinal vehicle performance and a high level
of safety and comfort. The state-of-the-art OSs were also discussed in this chapter.
Different OSs are used for on-line applications, as well as for benchmark issues.

Rule-based operations strategies (RB-OSs) are widespread in HEVs. These strategies
consist of predefined rules and correlations based on expert engineering knowledge and
often ensure high ICE operation efficiency by avoiding less efficient operation points.
Moreover, fuzzy logic – a generalisation of rule-based OS – is applied to further improve
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the performance of HEVs. The intuitive selection and the straightforward implementa-
tion are favourable. However, RB-OSs may not completely achieve optimal fuel economy.

In contrast, optimal operation strategies may determine the optimal fuel economy. How-
ever, this approach assumes perfect knowledge of the upcoming route a-priori, which is
rarely possible in real traffic. Nevertheless, methods such as dynamic programming are
often used as performance benchmarks for real-time-capable operation strategies. Deter-
ministic DP (DDP) is used for benchmarking a single driving cycle, whereas stochastic
dynamic programming (SDP) is used to derive an optimal solution for a family of driving
cycles by using probability distributions of selected driving cycles. Pontryagin’s mini-
mum principle (PMP) is also used for benchmarking, but its performance in finding a
solution depends on the problem formulation.

Due to the inherent challenge of knowing the entire driving cycle a-priori, suboptimal op-
eration strategies are developed in order to increase the overall fuel efficiency of HEVs.
The equivalent consumption minimisation strategy (ECMS) reduces the optimisation
problem to an instantaneous minimisation. Prediction of the route ahead enables ad-
ditional fuel savings. Thus, in recent years, researchers have developed OSs that in-
corporate additional information from roadside sensors, intelligent transportation sys-
tems (ITSs) and geographical information systems (GISs). For plug-in HEVs (PHEVs),
multi-level energy management controllers based on model predictive control (MPC) or
stochastic model predictive control (SMPC) are often used. The recent introductions of
PHEVs by established OEMs highlight the potential and future trend of such a means
of transport.

The main scientific contributions of the present thesis – introduction of a holistic energy
management controller, innovative long-term prediction and adaptation (P&A), and an
analysis in a dynamic vehicle model – completed this chapter.

Chapter 3: Methodology. A numeric simulation environment was established to in-
vestigate the benefits of additional information about the route ahead. It consists of a
quasi-static vehicle model, which was used for optimisation in this work. A realistic dy-
namic vehicle model was used to prove the potential of the innovative operation strategy
in real-world driving cycles.

Chapter 3.1 also discussed in detail the difference between the two model approaches
– quasi-static and dynamic vehicle modelling. The chapter then described in depth
the implemented component models, such as the internal combustion engine, clutch,
electric motor/generator, battery, gearbox, final drive, tyre, the holistic vehicle model,
driver model, hybrid control unit and auxiliaries, including their control units and all
relevant assumptions. The innovative holistic energy management controller was then
introduced, which selects an appropriate operation mode path based on the available
information. Subsequently, the difference of the quasi-static model approach to the
dynamic modelling is delineated. Thus, Subchapter 3.1 closed with detailed information
about the implemented P2-PHEV model with its main drivetrain layout and parameters.

Subchapter 3.2 described the applied dynamic programming approach. Dynamic pro-
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gramming is a powerful tool for optimising non-convex and non-linear multi-stage opti-
misation problems with control and state constraints. Its fundamentals – the Principle
of Optimality and the Bellman equation – were discussed in detail with respect to ap-
plications in automotive systems. Moreover, this subchapter highlighted the relevant
implementation aspects, such as approximation, the proper choice of state and control
variables, and the selection of an appropriate cost functional in order to enhance the com-
putation performance. The subchapter concluded with a discussion of the two applied
controller structures, namely the one-level DP and the two-level DP.

The innovative long-term prediction and adaptation approach was the last part of this
chapter. First, it highlighted the complexity of predicting future driving states, due to
the interlaced interactions of the driver-vehicle-environment system. The P&A approach
is based on fixed-location information, such as speed limits or height profile of the up-
coming route obtained from global navigation satellite system (GNSS) signals and digital
maps. However, the core of the innovative long-term prediction algorithm is to gather,
process and utilise driving data from the driver’s previous trips in order to increase the
long-term prediction accuracy, without requiring other information, such as roadside
sensors. Methods to approximate the driver’s individual driving style, such as the accel-
eration/deceleration behaviour depending on the current driving speed or the driver’s
individual sense of comfortable maximum lateral vehicle acceleration, were applied to
incorporate position-fixed information. The chapter concluded with the required trans-
formation between the spatial and time domains and combined the drivetrain modelling,
optimisation, prediction and adaptation parts into one coherent methodology.

Chapter 4: Results. First, this chapter introduced the recorded, institute-specific,
real-world driving cycle, called the FTG cycle, and analysed it in detail. This cycle,
which is very comparable with the upcoming legal driving cycle worldwide harmonized
light vehicles test procedure (WLTP), includes a height profile as well. In addition, a
numerical analysis of the investigated PHEV was performed, including an analysis of
the energy management controller’s stability in the face of sensitivity to variations in
the main vehicle parameters. The sensitivity analysis showed a robust behaviour of the
innovative OS for PHEVs with respect to changes in specific vehicle parameters.

The scope of this thesis was to develop an innovative operation strategy for PHEVs in
order to simultaneously improve the overall fuel economy and enhance longitudinal vehi-
cle dynamics by incorporating information about the upcoming route and the individual
driving style in the supervisory control.

This chapter highlighted that typical performance indices – acceleration performance,
top speed, gradeability and towing capability – for the investigated PHEV drivetrain
layout may outperform the conventional ICE-driven vehicle with less overall vehicle
weight. The acceleration performance improves by up to 44 %, the top speed by 4 %,
and the gradeability in higher gears up to 101 %, assuming there is sufficient electric
energy available from the battery.

In addition, compared to state-of-the-art energy management control, the presented in-
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novative approach is not only based on static digital map data, but also includes the
individual driving style in long-term prediction. The research highlights that the overall
fuel consumption is only 5.7 % higher than the global optimum obtained by DP with per-
fect a-priori information of the driving cycle, even if the long-term prediction is not exact,
which is the case in most driving situations. Moreover, the energy content of the battery
is maintained for the entire trip, ensuring sufficient energy reserves to instantly provide
the total vehicle system power. Compared to a simple charge depleting/sustaining OS,
the electrical system availability increases by up to approximately 3.7 times, from 23.4 %
to 86.8 %. However, there are still uncertainties about future driving situations, such as
the conditions of the surrounding traffic environment. The present research shows that,
especially in urban areas, driving situations are hard to predict in the long-term, which
leads to a deviation from the optimum performance.

The proposed DP-based, two-level supervisory control approach effectively reduces com-
putational time by splitting the optimisation problem into a long-term task and a short-
term task. The reduced first-order vehicle model used for optimisation is based on only
one state and only one control variable – state of charge (SOC) and power distribution
factor ud. Although this reduces the computational burden, the long-term optimisation
is still time intensive. Thus, real-time application is promising, particularly when the
computing power of the HCU is enhanced.

Inputs from advanced information technologies, such as intelligent transportation sys-
tems (ITSs), geographical information systems (GISs) or C2X-communication, can be
included. However, these technologies are not widely available or are not ready for se-
rial production. Therefore, the proposed innovative energy management controller relies
only on past recorded vehicle and driving data, the availability of GNSS signals and
additional information about the upcoming height and route profile. Nevertheless, the
structure of the data processing algorithm allows for the integration of average speed
profiles recorded by roadside traffic sensors.

Finally, it is important to emphasise that, beyond the improved fuel economy and system
availability, the costs for both car manufacturers and consumers may be reduced. The
proposed OS can effectively help to achieve current and future CO2 targets, even in a real-
world driving cycle. Even high-performance vehicles (>200 kW) are able to approach the
goal of an average of 95 g/CO2 across the entire vehicle fleet by 2020.

Final statement: The present research work provides an in-depth analysis of PHEVs,
and especially their OSs. The introduced innovative P&A algorithm, based solely on
the vehicle, the driver’s past trip data and GNSS signals, was able to enhance fuel
efficiency in areas where no average speed profile information is available from roadside
traffic sensors. One novel feature is the long-term prediction and adaptation to driver
behaviour, in order to increase the prediction accuracy and decrease computational effort.
The research has demonstrated that not only fuel efficiency is increased, but also overall
electrical system availability. The OS enables a high level of vehicle performance and
comfort, while keeping fossil fuel consumption at a low level. This will lead to improved
customer acceptance and thus higher market shares for HEVs, which, along with reducing
GHG emissions, should be the primary goal of developing OSs for HEVs.
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HEV Drivetrains

A.1. Classification by DoH and Battery Capacity
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Figure A.1.: Classification of HEVs based on their DoH and battery capacity [66]

Hybrid electric vehicles are classified according to their DoH. The conventional ICE-driven
vehicle (ICE) has a DoH of 0, whereas a battery electric vehicle (BEV) has a DoH of 1.
Micro/mild/full HEVs, plug-in HEVs (PHEVs) and range-extender vehicles (REx) have
a DoH within the interval ]0 1[.
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A.2. Variations of a P1-HEV Drivetrain Layout

(a) (b)

+
_

Tyre

Tyre

FD
BSG

48V BAT

+
_

12V BAT

Starter

DC

DC

Tensioner Tensioner

BSG BSG

CrankshaftCrankshaft

Direction of the belt Direction of the belt

Energy flow Energy flow

(c)

Boosting Recuperation

GBX

CL
I

ICE

Figure A.2.: Schematic representation of a belt-driven starter generator (BSG), adapted
from [196]

The BSG is a variation of a P1-HEV drivetrain topology. It is integrated into the belt
drive of the ICE, see Figure (a). Although the integration into conventional drivetrains
is easy, the system packaging is slightly increased, and an additional 12 V starter for cold
starts is required. Figures (b) and (c) show the necessary belt tensioner, which ensures
good power transfer when the engine and alternator modes are toggled between boosting,
see Figure (b), and recuperation, see Figure (c) [196].
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Figure A.3.: Schematic representation of an integrated starter generator (ISG), adapted
from [196]

The ISG configuration provides higher system performance than the belt-driven starter
generator (BSG), since it is directly mounted on the crankshaft of the ICE. Thanks to
the direct power supply and the higher system performance, no additional 12 V starter is
required to tow start the ICE reliably, even at low ambient temperatures.
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A.3. Characteristics of a Power-split HEV Drivetrain

A.3. Characteristics of a Power-split HEV Drivetrain
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Figure A.4.: Schematic representation of the power flow in a power-split HEV [23]

In a power-split HEV, the power flow in the electrical path is bidirectional. In Figure (a),
the power is transferred from EMGI to EMGII, which represents the common operation
mode. In Figure (b), EMGII transmits power to EMGI. Thus, the power in the mechanical
path is the sum of the ICE and EMGI power. Consequently, the power of the electrical
path has to circuit with losses in the system, without contributing to propulsion. This
partially produces a high reactive power in the electrical path, and thus decreases the
overall vehicle efficiency.
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Figure A.5.: Schematic representation of an input-split (L1-In), adapted from [169]

The input-split is a variation of a power-split HEV. At the gearbox input, the power is
divided into a mechanical part and an electrical part. The ICE is directly connected to
the ring gear, and the EMGI is connected to the sun gear. Both the EMGII and the
planetary carrier are linked with the output drive. Although no battery is required for
setting the gear ratio, one is implemented to save energy.
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Figure A.6.: Schematic representation of an output-split (L1-Out), adapted from [169]

The output-split is a variation of a power-split HEV. At the gearbox input, the power is
divided into a mechanical part and an electrical part. The ICE and the EMGI are directly
connected with the ring gear. The second EMGII is mounted to the sun gear. Only the
planetary carrier is linked with the output drive. Although no battery is required for
setting the gear ratio, one is implemented to save energy.
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Figure A.7.: Schematic representation of a compound power-split, adapted from [169]

The compound power-split is another variation of a power-split HEV. It consists of two
planetary gear-sets (PGSs) and two EMGs. Thus, it has two mechanical paths. The
compound power-split is a combination of an input-split (L1-In) and an output-split (L1-
Out). The ICE is directly connected to the first ring gear. The sun gear of the first PGSI

is linked with the EMGI and the ring gear of the PGSII. The planetary carriers of PGSI

and of PGSII together form the output drive. The second EMGII is connected to the sun
gear of PGSII.
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B
HEV Control Approaches

B.1. Optimisation

Optimisation requires a cost functional J . The following chapter provides a very rough
overview of the most common ones, according to [55].

• Lagrangian cost functional:

J =

∫ te

t0

h
(
x(t),u(t), t

)
dt. (B.1)

Equation (B.1) describes the generalisation of an energy/route/time-optimal cost
functional [55], where h( ) is a function, defined by the problem, x(t) is the state
vector, u(t) is the control vector, and t is the time.

• Cost functional of Mayer1

J = g
(
x(te), te

)
. (B.2)

This only evaluates the terminal state of the dynamic system at time te, where g( )
describes a function defined by the original problem.

• Cost functional of Bolza2

J = g
(
x(te), te

)
+

∫ te

t0

h
(
x(t),u(t), t

)
dt. (B.3)

Equation (B.3) characterises the combination of the cost functionals in Eq. (B.1)
and Eq. (B.2). Consequently, it represents a very general formulation.

1German mathematician (1839 - †1908)
2German mathematician (1857 - †1942)
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B.2. Fuzzy logic
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Figure B.1.: Difference between classical Boolean logic and fuzzy logic [198]

Figure (a) shows the classical Boolean logic, where only two truth values true/false (1/0)
are possible. In contrast, Figure (b), the fuzzy logic permits truth values within the
interval [0 1]. Consequently, an input x is with a certain degree of membership true or
false.
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Figure B.2.: Schematic representation of a membership function of FLS [198]

Two fuzzy sets A and B are given, with their corresponding membership functions µA(x)
and µB(x). These functions assign to each value x0 belonging to the basic set X a degree
of membership µA(x0) and µB(x0) an arbitrary truth value within the interval [0 1]. In
the example given, the degree of membership to the fuzzy set A is µA(x0) = 0.75 and to
fuzzy set B is µB(x0) = 0.25. Thus, the input variable x = x0 belongs concurrently to
both fuzzy sets.
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Figure C.1.: Schematic representation of the transferable clutch torque, adapted from
[206]

The transferable clutch torque TCL, which depends on the axial contact force Fx,CL, the
average friction radius rm, the friction coefficient µ and the number of clutch plates Npl,

reads: TCL = Npl ·rm ·µ ·Fx,CL. The average friction radius is calculated by rm = 2
3

r3a−r
3
i

r2a−r2i
.

This relation is often simplified to rm = ra+ri
2

[206]; ra and ri are the radii of the outer
and inner friction linings, respectively.





D
Model Parameters

Table D.1.: Main parameters of the vehicle simulation model

Parameter Symbol Value Unit

Conventional drivetrain
Total vehicle mass (incl. driver) without
additional weight of HEV components

mV EH 1500 kg

Peak power ICE PICE,max 120 kW
Moment of inertia ICE ΘICE 0.25 kgm2

Aerodynamic drag coefficient cD 0.28 -
Frontal area Ax 2.26 m2

Dynamic tyre radius rdyn 0.31 m
Number of gears Nγ 6 -
Rolling resistance coefficient aR 0.01 -
Efficiency gearbox ηGBX 0.98 -
Gear ratio final drive iFD 3.15 -
Efficiency final drive ηFD 0.96 -

HEV drivetrain
Peak power EMG PEMG,max 81 kW
Total energy content battery EBAT,max 9 kWh
Moment of inertia EMG ΘEMG 0.12 kgm2

Nominal cell voltage Ucell 3.2 V
Number of serial cells Ns 120 -
Number of parallel cells Np 1 -
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Figure E.1.: Analysis of the deceleration behaviour for the investigated driving cycle

The points represent the original acceleration points based on a certain vehicle speed. It
is evident that deceleration decreases with increasing vehicle speed. The line shows the
corresponding linearly fitted curve that confirms the aforementioned effect.
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Figure E.2.: Schematic representation of the principle of third sections of a curve [178]

In the first third of a curve, the vehicle decelerates; in the second third, the driver holds
the vehicle speed approximately constant; and in the last third, the driver accelerates
again.
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