
Dissertation

It’s about Time!
Model-Based Mutation Testing

for Synchronous and Asynchronous Timed Systems

Florian Lorber1

Institute of Software Technology (IST)
Graz University of Technology

Austria

Supervisor/First reviewer: A.o. Univ.-Prof. DI Dr. Bernhard K. Aichernig
Second reviewer: Assoc. Prof. Cristina Seceleanu, Docent, Ph.D.

Graz, 10 June 2016

1 E-mail: florber@ist.tugraz.at

© Copyright 2016, Florian Lorber





Dissertation

Modellbasiertes Mutationstesten
von synchronen und asynchronen zeitkritischen

Systemen

Florian Lorber1

Institut für Softwaretechnologie (IST)
Technische Universität Graz
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Abstract

The amount of software in nowadays life is increasing rapidly. This affects various different areas,
including the automotive industry. In 2009, the amount of code in a typical premium-class automobile
was estimated to be hundred million lines of code. This code regulates everything from basic function-
ality to the most safety-critical parts. Many of these functionalities must comply to a strict real-time
behavior. Such systems, where the timing behavior is as important as correct functional behavior, are
called real-time systems. Some examples from the automotive domain are the brakes and the airbag. A
delayed reaction of either might end fatally, and must be prevented at any cost.

Testing has proven to be an effective method for detecting bugs and gaining confidence in a system.
However, the manual creation of high quality test cases is a tedious and error prone task. Consequently,
automated test-case generation is an active and important research area. One of its main fields is model-
based testing, where test cases are derived from a formal specification of the system. These tests are
usually generated according to specified coverage criteria, as for instance transition coverage or state
coverage, in case of graphical models. One special instance of model-based testing is model-based
mutation testing: it is a fault-based approach that alters the correct specification according to predefined
fault models and generates test cases that successfully detect these alterations.

The main goal of this thesis was to extend this model-based mutation testing technique to real-time
systems. This proved to be a rather imprecise goal, given the vast amount of different types of real-time
systems. Thus, the goal was refined to applying the technique to two instances of oppositional types of
models, asynchronous and synchronous models.

As an instance of the first type, timed automata were chosen. They are among the most established
and well-known models for timed systems, and attracted a high volume of research activities in the last
decades. We developed a bounded model-checking algorithm for model-based mutation testing of timed
automata that was implemented via SMT-solving. The approach is restricted to deterministic models,
which is a rather limiting restriction in practice. Thus we also developed a bounded determinization
approach for timed automata. While it is well known that timed automata can not be determinized in
general, this approach still can be applied to non-determinizable timed automata, due to the bounded
setting. Furthermore, we investigated how the mutation-based approach can be used for the localization
and repair of bugs in faulty systems-under-test.

We developed requirement interfaces as an instance of synchronous models. They are a contract
based formalism we propose as a means for easily building traceability between natural language re-
quirements and corresponding parts of the specification. The contracts are composed via conjunction. In
a first step, we developed a test purpose driven test-case generation for untimed requirement interfaces.
Then we integrated model-based mutation testing by generating test purposes leading to the introduced
faults. Finally, we investigated how to model and test real-time constraints with requirement interfaces.

We implemented the techniques both for the asynchronous and the synchronous systems. The two
implementations are called MoMuT::TA and MoMuT::Reqs. We evaluated these tools in several case
studies. The most relevant ones were an airbag chip of Infineon and an adjustable speed limiter of Volvo.

Keywords: Test-Case Generation, Model-Based Testing, Mutation Testing, Timed Automata, Real-
Time Systems, Determinization, Conformance, Timed Input-Output Conformance (tioco), SMT Solving.
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Kurzfassung

Die Menge an Software in modernen Geräten steigt laufend an. Dies zeigt sich unter anderem auch
stark in der Automobilindustrie: Schon im Jahr 2009 enthielt ein durchschnittliches Premiumauto bereits
hunderttausende Zeilen an Code. Die Verifikation dieses Codes ist ein anhaltendes Forschungsthema, da
schon kleine Abweichungen vom geplanten Verhalten zu großen Problemen führen und Menschenleben
gefährden können. Viele dieser Teile sind zusätzlich einem sehr strikt definierten Zeitverhalten unterwor-
fen. Eine Verletzung dieser Zeitbedingungen, wie verzögertes Bremsverhalten oder verspätetes Auslösen
eines Airbags, kann ebenso zu Katastrophen führen wie generelle Fehlfunktionen.

Testen hat sich als eine der wichtigsten Methoden zur Verifikation der korrekten Funktionsweise
solcher Bauteile erwiesen und dient sowohl dem Auffinden von Fehlfunktionen als auch dazu höheres
Vertrauen in die Systeme zu gewinnen. Viele Firmen verwenden jedoch noch manuell erstellte Testfälle,
welche sowohl einen hohen Aufwand fordern als auch sehr fehleranfällig sind. Daher ist die Entwicklung
automatisierter Testfallgenerierungsmethoden ein permanentes und wichtiges Forschungsthema. Modell-
basierte Testfallgenerierung ist eine der prominentesten Methoden dafür. Ausgehend von einem forma-
len Modell, welches das Verhalten des Systems darstellt, werden Testfälle erstellt, bis ein vorbestimmtes
Ziel, wie die Abdeckung aller Zustände im Modell, erreicht ist. In dieser Dissertation wird eine feh-
lerbasierte Methode namens modellbasiertes Mutationstesten zur Testfallgenerierung verwendet. Zuerst
werden automatisiert Fehler in das formale Modell eingebaut, welche typische Programmierfehler mo-
dellieren. Diese fehlerhaften Modelle werden Mutanten genannt. Danach werden Testfälle erzeugt die
gezielt zu den eingebauten Fehlern führen und in der Lage sind äquivalente Fehler in echten Implemen-
tierungen zu erkennen. Das Hauptziel dieser Arbeit war die Kombination von modellbasiertem Mutati-
onstesten und zeitkritischen Systemen. Dabei wurden asynchrone und synchrone Systeme behandelt.

Als Formalismus um asynchrone Systeme zu modellieren wurden Timed Automata gewählt. Für die-
se weit verbreitete Modellierungssprache existiert bereits eine Vielzahl an theoretischen Ergebnissen und
praktischen Tools. Im Rahmen dieser Arbeit wurde eine Methode für Mutations-basierte Testfallgenerie-
rung entwickelt, die auf bounded model-checking und SMT-solving beruht. Diese Methode war vorerst
auf deterministische Systeme eingeschränkt, was für viele praktische Anwendungen ein Hindernis dar-
stellt. Daher wurde auch eine Methode entwickelt, um Timed Automata zu determinisieren, was durch
eine Einschränkung der Länge der Pfade im Automaten möglich wurde. Zusätzlich wurde untersucht,
wie sich Mutanten von Timed Automata dazu einsetzen lassen, Fehler in Programmen zu lokalisieren.

Um synchrone Systeme zu testen, wurde der Formalismus Requirement Interfaces entwickelt. Diese
textuelle Modellierungssprache erlaubt es, einzelne Bereiche des Systems getrennt zu modellieren und
diese Teilmodelle zu einem gesamten Modell zu kombinieren. Außerdem zeichnen sich Requirement
Interfaces dadurch aus, dass sie eine starke Verbindung zu den textuellen Anforderungen an das System
aufbauen. Requirement Interfaces basieren auf Kontrakten, welche für gewisse Zustände das Systems
das Folgeverhalten des Systems garantieren. In einem ersten Schritt wurde eine Testfallgenerierung ent-
wickelt die Testfälle für manuell definierte Testziele erstellt. Danach wurde diese Technik erweitert, um
für Mutanten eines Kontrakts automatisiert Testziele zu entwerfen, mit dem Ziel eingebauten Fehler zu
erkennen. Abschließend wurde untersucht, wie Requirement Interfaces dazu verwendet werden können,
Zeitanforderungen an das System zu modellieren.

Zu beiden Ansätzen wurden Tools entwickelt, die unter den Namen MoMuT::TA und MoMuT::Reqs
in die MoMuT Tool-Familie aufgenommen wurden. Die Evaluierung der Tools wurde anhand mehrerer
industrieller Fallbeispiele durchgeführt, darunter ein Airbag Chip von Infineon und ein Geschwindig-
keitsbegrenzer von Volvo.

Schlagworte: Testfallgenerierung, Modellbasiertes Testen, Mutationstesten, Timed Automata, Echt-
zeitverhalten, Determinisierung, Konformanz, Timed Input-Output Conformance (tioco), SMT-Solving.
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haben, sondern auch während den letzten Jahren immer ein offenes Ohr geboten haben,
mich nach Misserfolgen aufgebaut haben, Erfolge mit mir gefeiert haben und mir immer
ein offenes Zuhause bieten.
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1 Introduction

1.1 Motivation

Almost all industrial applications incorporate more and more software into their products. Especially
in the context of the automotive industry, this is an ever-growing trend. In 2015, Ford announced that
the new Ford GT contains 10 millions lines of ”mission critical” code. Quality assurance of this code
must be among the highest-prioritized tasks during development, but at the same time achieving high
quality for this embedded code is very hard. In cases where the quality assurance fails, this may on one
hand lead to hazardous accidents, and on the other hand, to horrendous sums needed to be spent by the
companies. In 2014, around 700000 cars had to be recalled due to bugs in embedded software.

Testing has proven to be an effective way of assuring the quality of a system. However, traditionally,
all tests were designed manually, which is a labor-intensive, tiresome and error-prone task. Up to now,
many companies still mostly rely on manually created test cases.

Model-based testing, which is a well known testing technique, provides an alternative to automate
that workflow: it enables modeling the system in one compact formal model, which is then used to
automatically generate test suites, according to some coverage criteria on the test model. Model-based
mutation testing, which is the technique applied in this thesis, uses fault models as a coverage criterion,
and aims at producing test suites able to cover a defined set of possible faults in a system. While testing
can never guarantee the total absence of bugs [76], this technique can at least guarantee the absence of
certain bugs.

Real-time systems deployed in cars need special attention. Besides the general challenges during
quality assurance, real-time systems require their timing constraints to be analyzed especially. Even if
such a system works correctly with regards to their functional specification, a slightly delayed reaction of
a brake or an airbag can lead to hazardous events. In the context of real-time systems, there exist several
formalisms that take special account of timing properties, facilitating to model them both clearly and
precisely. In this thesis we will investigate two of these formalisms, to prove their value in the context of
model-based mutation testing and to show their capability for detecting timing-related faults.

1.2 Testing

Testing is one of the main approaches for software verification. Verification tries to verify that a system
works according to the specified requirements. Verification is often compared to validation, where we
try to determine, whether the system satisfies the users needs and actually can perform the tasks it was
designed for. In this thesis, we will investigate verification, focusing on model-based testing.

The goal of testing is to provide a verdict for a system under test, stating whether it behaves correct
or incorrect. The system under test may either be an implementation, a simulation or a physical system.
A system is defined to be deterministic, if it always shows the same behavior for the same input, and
non-deterministic if the same inputs may lead to different outputs.

During the testing process, we trigger the system under test with different sequences of inputs, and
observe the outputs it produces. These outputs are then validated via a test oracle, which provides the
outputs we expect from the system, and is assumed to be correct.

Test cases are sequences of inputs and outputs that contain both the inputs that are applied on the
system under test, and the outputs expected by the test oracle. For deterministic systems, the test cases
are linear sequences, that cover one trace through the system. For non-deterministic systems, test cases
may branch, as the same inputs might lead to different internal states and different outputs.

1
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During test-case execution, we apply the inputs, observe the outputs, and finally issue a verdict. If all
outputs along the test case conformed to the outputs of the test oracle, we return the verdict pass. If an
output of the system deviated from the path we wanted to test, but was still a correct output, we assign
the verdict inconclusive. If, however, one of the outputs did not conform to the test oracle, we assign the
verdict fail, indicating that there was a bug in the system.

We distinguish three terms for bugs [35]: A fault is a static defect in the software. If the fault causes
the system to reach a wrong internal state, it is called an error. If that error propagates to a wrong output,
it is considered a failure. Testing aims at detecting failures in the system.

In model-based testing approaches, a formal model of the system is used as the test oracle. The
system under test is generally considered a black-box. Thus, we do not expect to have access to the
source code and do not know anything of the state and internal transitions of the system. We thus can
only determine its behavior through inputs and outputs. The outputs of the system are used to determine
whether it conforms to the formal model. More details on model-based testing will be given in the
following section.

1.3 Model-Based Testing

Model-based testing [165, 164] is a well-established technique for automated test-case generation. In-
stead of manually producing a test suite, in model-based testing we build a formal model and generate
a test suite, according to that model. Besides its advantages with regards to reduced effort and higher
quality, the main advantage of model-based testing is adaptability. Where previously an update of the
specification required to update each of the test cases individually, now it is possible to simply update
the model, and rerun the test-case generation.

The test suites are generated in order to satisfy certain coverage criteria. For graphical models, this
may be edge coverage or state coverage, where the test suite needs to reach each edge, resp. state, at
least once. More refined coverage criteria, like k-transition coverage where each possible combination
of k transitions must be tested, obviously produce better test suites. In the next section, we will discuss
a fault-oriented coverage criterion, that will be applied in this thesis.

Figure 1.1 gives an overview of the workflow of model-based testing. The formal model is built
independently from the system under test, to ensure that if some requirements were misunderstood during
development, those errors are not integrated into the test model as well. Then, the test-case generation is
performed, according to the selected coverage criteria. This produces a test suite, which can be executed
on the system under test (SUT) by the test driver. The test driver usually needs to adapt the level of
abstraction, so that the usually more abstract test cases fit to the system under test. If the system conforms
to the model, each of the test cases should return the verdict pass. If only one of the test cases fails, there
exists a bug. This bug may be either in the system under test, or in the model.

Model-based testing can be categorized in many ways. One main categorizations we want to point
out especially is the separation into online and offline testing. In online testing approaches, the system
under test and the model are executed simultaneously. The model is used to determine the next inputs to
pass to the system under test. The outputs produced by the system are then validated using the model.
The advantages of this approaches are the high flexibility and the fact that no time and effort needs to
be spent on creating test suites beforehand. On the other hand, offline testing has the advantages of
reusability and reproducibility. The test suite is generated once, and can be run again whenever the
system changes. Additionally, for hard real-time systems online testing might not always be possible, as
the simulation of the model in parallel to the execution may not be fast enough to satisfy all deadlines.
In this thesis, we focus on offline testing, and most of the contributions of this thesis lie in the context of
test-case generation.
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Figure 1.1: Overview of the model-based testing workflow, based on a figure by Elisabeth
Jöbstl [105].

Utting et al. [165] provided a taxonomy for model-based testing, defining three major and six minor
dimensions. We give an illustration in Figure 1.2, and classify where our approaches belong to, by
marking the corresponding classifications in blue.

The dimension labeled by model specification is split into three parts, scope, characteristics and
paradigm. The scope of the specification states whether only the formal model of the SUT is given, or
whether the environment is modeled as well. In our work, we only model the SUT, and do not limit the
behavior of the environment. The characteristics states whether the system contains timing and non-
determinism and whether it is a discrete, a hybrid or a continuous system. As already discussed, the
work in this thesis focuses on timed behavior. We will also provide support for non-determinism. Both
modeling types we use, timed automata and requirement interfaces, are discrete models. Note that timed
automata can be extended to hybrid automata [93]. The paradigm defines what kind of notations are
used, dividing them into pre / post conditions, transition-based, history-based, functional, operational,
stochastic and data-flow notations. Our requirement interfaces are data-flow specifications based on pre/
post conditions, and our timed automata are transition-based.

The test-case generation dimension is split into test-selection criteria and test-case generation tech-
nology, where test-selection criteria are categorized into structural model-coverage, data coverage,
requirements-based coverage, ad-hoc test-case specification, random and stochastic and fault-based cri-
teria and the test-case generation technology defines the used technology and can be categorized into
manual, random, graph search, model-checking, symbolic execution, theorem proving and constraint
solving. We concentrated on fault-based criteria, but did implement a random testing functionality for
timed automata and our requirement interfaces implicitly support ad-hoc test-case specifications via our
test purposes and requirements-based coverage due to the tight coupling of each contract in the require-
ment interfaces to its textual requirements. We use bounded model-checking as our test-case generation
technology, and implement it via SMT-solving.

Test-case execution is differentiated into offline-testing and online-testing, where we focused on
offline-testing.
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Figure 1.2: The taxonomy of model-based testing, based on a figure from Elisabeth
Jöbstl [105], which was based on a figure from Utting et al. [165].
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1.4 Model-Based Mutation Testing

Model-based mutation testing (see e.g. the following publications [136, 6, 60]) is a subclass of model-
based testing, concentrating on the detection of specified faults and using the detection of these faults
as coverage criterion. Starting from a correct specification, we intentionally insert modeling errors ac-
cording to a set of fault models in the form of mutation operators. The mutation operators syntactically
alter the specification model. This produces a set of faulty models, called mutants or model mutants, to
be distinguished from faulty implementations. In our case, each of the mutants contains one fault at one
specific location. They are thus called first-order mutants.

Then, we perform a conformance check between the correct specification and each of the model
mutants. In case the mutant shows any output behavior that is not allowed by the specification, we
consider the mutant killed and generate a test case leading directly to that fault. In the other case we
consider the mutant an equivalent mutant and discard it.

The test suite that is generated by this procedure guarantees to catch all bugs that correspond to any of
the specified mutation operators, as long as the corresponding mutant was not equivalent and the system
under test is deterministic.

Model-based mutation testing is closely related to general mutation testing [103]. However, in clas-
sical mutation testing approaches the source code is mutated instead of the model. These techniques are
usually not used to generate new test suites, but to asses the quality of existing test suites. The test suites
are executed on the implementation mutants, to check how many of them are killed. The results can then
be expressed via the mutation score, which is defined by the number of killed mutants divided by the
number of total non-equivalent mutants.

Model
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Test Case
Generator

Test Case
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Test Cases

Verdicts

Test
Driver

Test
Driver

Mutated
Models

Mutation
Tool

Mutation
Tool

Mutation 
Operators

Requirements

Conformance 
Check

Conformance 
Check

Figure 1.3: Overview of the model-based mutation testing workflow, based on a figure by
Elisabeth Jöbstl [105].
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Figure 1.4: A model specification of a coffee machine and a possible mutant.

We illustrate the typical workflow of model-based mutation testing in Figure 1.3. Like in classical
model-based testing, the formal model and the system under test are developed independently. The
model is then mutated according to the selected mutation operators, producing a set of mutated models.
Then, we perform the conformance check between the original model and all of the mutated ones. For
each mutated model that does not conform to the original, we generate a test case intended to reveal this
non-conformance. The test cases are executed in the same way as in the normal model-based testing
workflow.

Example 1.1. Consider the formal model of a simple coffee machine presented in Figure 1.4(a) as a
labeled transition system with the input transition coin? and the output transition coffee!. After inserting a
coin, it produces a coffee. A typical mutation operator might for instance change the labels of transitions.
Figure 1.4(b) shows such a mutation. In this case, the coffee machine produces tea instead of coffee.
To reveal the mutation, one would simply insert a coin and then observe the wrong behavior. A test
case corresponding to that trace would contain the input coin?, followed by the expected output coffee!.
When executing the test case on a faulty implementation corresponding to the mutant, one would apply
the coin? input, observe the output tea! from the system under test, compare it to the expected output,
and realize that the test case failed. 2

1.5 Real-Time Systems

Real-time systems are systems that operate under strict timing constraints, where any delays may lead to
severe consequences. Some examples that will appear within this thesis are for instance an airbag chip
and a speed limiter for automobiles. The consequences of a delayed airbag or a car still driving at same
pace, even though one already hit the brakes, are obvious.

Real-time systems are divided into two classes. Soft real-time systems, where the missing of a
deadline only degrades the value of the produced output, and hard real-time systems, where missing a
deadline is considered a system failure. We concentrate on hard real-time systems. For testing such
systems, it is not enough to test the functional behavior, but one needs to emphasize testing whether all
of the deadlines are met as well.

In this thesis, we will discuss two types of systems: first, we will discuss asynchronous systems,
where input and output events may appear in any order as long as all interleavings of events conform to
the specification. We will discuss these on the example of timed automata [29], which are finite state
machines extended by real variables for measuring time delays, called clocks. Then, we will discuss
synchronous systems [44]. Synchronous systems are usually reactive systems, which interact with the
environment permanently, at fixed rates that are driven by the environment. At each tick of the exter-
nal clock, all available input signals are processed, and all output signals are assumed to be produced
instantaneously. We will define requirement interfaces for modeling synchronous systems.
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1.6 Problem Statement

The main problem behind real-time systems is their infinite state-space. Assuming dense time, it is not
feasible to perform any non-symbolic operations on these models, and even when assuming discrete
time, the timing adds to the complexity of most approaches. After an initial investigation period of the
problem and the related work, we found several challenges.

The main question intriguing us was whether it is possible to perform model-based mutation testing
on real-time systems. We found several topics that are challenges for both, mutation-based testing and
real-time systems, e.g. silent transitions and non-determinism. During test-case generation these model-
elements increase the complexity, as one can not be sure about the internal state of the specification after
a given trace, and the related work on timed automata showed that they also pose a problem from the
theoretical aspect. Another challenge for mutation-based testing of real-time systems was the design of
mutation operators that reflect timing faults. These challenges led to the definition of our first research
question, Q1.

• Q1: Can real-time systems be tested with model-based mutation testing?

– Q1.1: Can we support non-determinism for model-based mutation testing?
– Q1.2: Can we support internal transitions?
– Q1.3: What kind of mutation operators reflect violated timing properties?

Next, we discussed how to implement the approach. We had several options available, as e.g.
symbolic execution, but finally decided to investigate bounded model-checking [55]. Bounded model-
checking aims at finding counter-examples to given properties, but only inspect the state space up to a
given bound k. This correlates well with test-case generation, as our test cases are bounded anyway. The
technique can be implemented using SAT or SMT solvers. Our decision to use bounded model-checking
led to our second research question, Q2.

• Q2: Can bounded-model checking be applied to test real-time systems?

– Q2.1: How can we encode the conformance check via bounded-model checking?
– Q2.2: How should we implement the bounded model-checking?
– Q2.3: Is bounded model-checking an efficient approach?

As already mentioned, we planned to test both synchronous and asynchronous systems. To achieve
this, we needed to decide on exemplary formalisms for both types. Once the decision was made, we
wanted to analyze their usefulness in the context of real-time systems and find out whether their combi-
nation might provide synergies. These goals are formalized in our third research question, Q3.

• Q3: Can the approach be applied to both synchronous and asynchronous systems?

– Q3.1: What modeling languages should we use as representations for the individual modeling
styles?

– Q3.2: How well do timing properties fit in the individual styles?
– Q3.3: How can the two approaches be combined?

Once all other goals were achieved, we needed to evaluate our approaches. Given the challenges we
already encountered, especially the expected state-space explosion during the conformance checks due
to analyzing all bounded traces of the specifications and mutants, we decided to evaluate the approaches
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based on their runtimes and achievable search depths. To optimize the results, we also planned to inves-
tigated how to reduce the state-space before or during our conformance checks. The concreate goals are
summarized in our last research question, Q4.

• Q4: Can the approach be effectively performed on industrial use cases?

– Q4.1: How big does the state-space of the models become?
– Q4.2: How can we reduce the state-space explosion?
– Q4.3: Are the reachable search depths of our bounded model-checking approach sufficient

for industrial case studies?

1.7 Research Context

The model-based mutation testing approach already is a long-term research topic in our research group.
The extension to timed systems was partly chosen due to personal interest, and partly due to industrial
needs within the ongoing research projects. In the next two subsections we will first discuss the re-
search projects that funded the presented research and then present the MoMuT tool family, to which the
prototypes developed in this thesis belong.

1.7.1 Research Projects

For the first two years, the research done within this thesis was solely driven by the European Artemis
Project MBAT, which stands for model-based analysis and testing. Within this project, we were strongly
collaborating with the Austrian Institute of Technology (AIT), AVL List GmbH and Infineon Technolo-
gies, Austria AG. As already indicated by the name of the project, its main focus was to build a stronger
connection between the often separated tasks of analyzing a system and testing it. While we obviously
focused more on the testing aspect, we also put considerable effort in complying to the standards for data
exchange between the tools, to facilitate the analyzing of our input models and test cases by other tools.

Halfway during the runtime of MBAT, a second research project, the European Artemis Project
CRYSTAL, Critical System Engineering Acceleration, started. The goal of CRYSTAL was to extend
the interoperability between tools even further, and again couple the tools from different verification and
validation tasks even closer. In CRYSTAL, our main cooperation partners were AIT, AVL, Chalmers
University of Technology and Volvo .

Currently, we are also involved in the local research project TRUCONF, where the insights and
expertises gained during this thesis are applied for the testing the real-time aspects of measurement
devices for automobiles.

1.7.2 The MoMuT Tool Family

The MoMuT tool family, which focuses on model-based mutation testing, was created during the com-
pleted local research project MOGENTES, in a collaboration of our research group and AIT. There, and
in the following local research project TRUFAL, they developed the frontend for UML and two back-
ends for action systems, one explicit and one symbolic. This was the first tool of the family, called
MoMuT::UML. The tool suite is presented at www.momut.org, including documentation and related
papers.

The two prototype tools developed by the author of this thesis and discussed in the following chap-
ters, were incorporated into the MoMuT tool family, and named MoMuT::TA and MoMuT::Reqs. Mo-
MuT::TA stands for ”MoMuT for Timed Automata” and MoMuT::Reqs for ”MoMuT for Requirement

www.momut.org
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Interfaces”. MoMuT::TA is available at the homepage for 64bit Windows. The release of MoMuT::Reqs
is planned for the near future.

1.8 Use Cases

In this section we will shortly illustrate the three main industrial use cases that were tested in this thesis.
More details can be found in the results chapters of Part I (Chapter 5) and Part II (Chapter 11).

1.8.1 Car Alarm System

The car alarm system is an industrial use case that was provided by Ford in the previous research project
MOGENTES. While the project is already finished, the case study persisted as a valuable benchmark
example, that was already used in several publications of our research group, e.g. the publications by
Aichernig et al. [5, 13], the publication by Krenn et al. [114] and the master thesis and PhD thesis by
Elisabeth Jöbstl [104, 105].

The car alarm system is responsible for arming the system twenty seconds after all doors are closed
and locked and activating the alarm if the doors are opened afterwards without being unlocked first. The
sound of the alarm is then activated for 30 seconds, and the flash for 300 seconds. Although violations
of any timing constraints are not leading to hazardous events, the timing constraints did pose a problem
when the system was previously verified using action systems [5], and it made sense to analyze them
more thoroughly once we had the means to do so.

We analyzed the car alarm system in several variants, including both asynchronous and synchronous
specifications. The individual results are presented in Chapter 5 and Chapter 11.

1.8.2 Airbag Chip

The airbag chip was a use case in the project MBAT, that was provided by Infineon Austria. The tested
component was, however, not the main airbag chip itself, but a part called the safing engine: if the airbag
chip decides to fire, the safing engine is responsible to evaluate the data from the CPU once more, and
check whether the data really indicated a crash. Only then, the airbag is deployed. This is a very typical
example for a safety-critical real-time system, where both functional faults and timing faults can cost
lives. We modelled the safing engine via requirement interfaces, and present our test-case generation
results in Chapter 11.

1.8.3 Adjustable Speed Limiter

The adjustable speed limiter is a use case in the ongoing project CRYSTAL, provided by Volvo. A
speed limiter is the device for automobiles that allows to set a speed limit and then automatically holds
that speed until it is turned off. The current speed limiter can be manually increased or decreased, and
momentarily overwritten by a kickdown of the gaspedal. Once more, delays in the reaction of the system,
which might be driving at high speed, may lead to catastrophic events. We had several different models
of the speed limiter, including both synchronous and asynchronous models. The individual results are
presented in Chapter 5 and Chapter 11.
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1.9 Contributions and Publications

1.9.1 Contributions

The main contributions achieved within this thesis are summarized below:

• We developed a model-based mutation testing approach for deterministic timed automata. We
developed the theory behind it, and implemented it in the tool MoMuT::TA.

• We introduced and implemented a method for bounded determinization and silent transition re-
moval of timed automata, to enable the processing of non-deterministic systems with our test-case
generation approach.

• To improve the efficiency of the determinization, we developed an on-the-fly algorithm, which sup-
ports networks of timed automata and produces a deterministic bounded unfolding of the product
of all automata in the network, while only going through the state-space once.

• We showed how the model-mutants we create for model-based mutation testing can also be used
for debugging, where we select a subset of mutants that correspond to a faulty system under test.

• We introduced requirement interfaces, which are a synchronous contract-based specification lan-
guage for synchronous data-flow systems and showed how to compose them via disjunction, how
to check their consistency and how to generate tests from them.

• We introduced the consistency checking and test-case generation approach in the tool called Mo-
MuT::Reqs.

• We extended the test-case generation for requirement interfaces, to support model-based mutation
testing, by automatically generating test purposes for mutants.

• We analyzed how time is treated in synchronous languages and how discrete delays can be inte-
grated into requirement interfaces.

• We evaluated both the synchronous and the asynchronous test-case generation on industrial use
cases and reported the empirical results.

1.9.2 List of Publications

The work presented in this thesis was for the most parts already published in various international jour-
nals, conference proceedings and workshops proceedings, that will be listed below. All of these publica-
tions were peer reviewed by at least three anonymous reviewers.

1.9.2.1 Main Publications

• TAP 2013 [17]. The model-based mutation testing for timed automata was published at the Test
and Proofs conference in 2013, where I presented it in Budapest, Hungary. The paper was written
in strong collaboration with Bernhard Aichernig and Dejan Ničković. I implemented the algorithm,
performed all experiments and contributed both to the theory and the writing of the paper.

• SAFECOMP 2014 [10]. We extended the results from the TAP 2013 paper to the area of model-
based debugging. The new content was published at the Computer Safety, Reliability, and Security
conference in 2014, where I presented it in Florence, Italy. I wrote most of the paper myself, under
supervision of Bernhard Aichernig who wrote some parts, and helped me in polishing the rest. I
performed all experiments.
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• QSIC 2014 [12]. The first paper published on requirement interfaces illustrated the airbag chip
case study, focusing on the interoperability of all tools in our use case. It was published at the
International Conference on Quality Software in 2014, where I presented it in Dallas, USA. The
paper was written in collaboration with Bernhard Aichernig, Klaus Hörmaier, Dejan Ničković,
Rupert Schlick, Didier Simoneau, and Stefan Tiran. I implemented the main parts of the tool and
OSLC interface, performed the experiments involving MoMuT::Reqs, organized the writing and
wrote most parts that involved MoMuT::Reqs.

• FORMATS 2015 [123]. Our paper on the bounded determinization and silent transition removal
of timed automata was published at the Formal Modeling and Analysis of Timed Systems in
2015 and I presented it in Madrid, Spain. The paper was written in strong collaboration with
Amnon Rosenmann, who came up with the initial algorithms and the proofs, Dejan Ničković and
Bernhard Aichernig. I implemented the tool, performed all experiments, contributed an algorithm
for determinization that decreases the state space by using diagonal and conjunctive constraints
and collaborated on the silent transition removal. I also contributed strongly to the writing of the
paper.

• A-MOST 2015 [15]. To extend the applicability of our determinization approach for test-case
generation, we then wrote a paper on how to produce partial models conforming to the original
specification during the determinization. It was published at the Workshop on Advances in Model
Based Testing in 2015, where I presented it in Graz, Austria. The paper was written mostly by my-
self, with Bernhard Aichernig supervising the work and helping with proof-reading and polishing.
I came up with most of the presented ideas and performed the experiments.

• FMICS 2015 [11]. Our paper covering the theory on requirement interfaces and the first formal
experiments for MoMuT::Reqs was published at the Formal Methods for Industrial Critical Sys-
tems Workshop in 2015, where I presented it in Oslo, Norway. The paper was written in strong
collaboration with Bernhard Aichernig, Klaus Hörmaier, Dejan Ničković and Stefan Tiran. I con-
tributed to the theory, did most of the implementation, performed most of the experiments and
wrote several sections of the paper.

• Festschrift FdB 2016 [18]. We submitted a paper comparing symbolic execution and bounded
model-checking on timed action systems and timed automata to a Festschrift in honor of the 60th
birthday of Frank de Bour, Theory and Practice of Formal Methods - Essays Dedicated to Frank
de Boer on the Occasion of His 60-th Birthday. Bernhard Aichernig presented it in 2016 in Eind-
hoven, Netherlands. The paper was written in strong collaboration with Bernhard Aichernig and
Martin Tappler. Martin Tappler developed the symbolic execution, and performed all correspond-
ing experiments, while I performed the bounded model-checking experiments with MoMuT::TA.
Together we developed the translation from timed automata to timed action systems. The paper
was written in joint work.

• TASE 2016 [16]. Our newest paper focuses on networks of timed automata, and the on-the-fly
determinization algorithm. It was accepted at the Theoretical Aspects of Software Engineering
Symposium, which will take place in July 2016, in Shanghai, China. I wrote this paper mostly
by myself, supervised by Bernhard Aichernig, who proofread and polished the paper with me. I
developed the theory and implementation, performed the experiments and wrote the paper.

• FMICS and FORMATS Journals. For our two papers at FMICS and FORMATS we were invited
to submit journal versions. Both of them were already submitted, and will hopefully be published
by the end of this year. The FMICS journal version is extended by adding support for model-based
mutation testing and an empirical evaluation of this functionality. The FORMATS journal version
is extended by proofs and by an enhanced empirical study, that adds test-case generation to the
determinization process.
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1.9.2.2 Other Related Publications

In the early stages of this thesis, we wrote two more papers on test-case generation. As they do not cover
real-time systems or model-based mutation testing, they were not included in this thesis:

• TASE 2012 [19]. In the first paper, we showed how to combine model-based testing and analysis,
by performing analysis on the generated test cases. This enables us to determine, whether the test
cases cover all aspects that we demand during analysis. The paper was accepted at the Theoretical
Aspects of Software Engineering Symposium in 2012, where Bernhard Aichernig presented it in
Beijing, China. Bernhard Aichernig wrote most of the paper himself. Stefan Tiran and I mostly
focused on the experiments and the results section.

• MODELSWARD 2014 [20]. The second paper focused on formal test-driven development, where
we once more performed analysis on the generated test cases, before we used them for the devel-
opment. The paper was accepted at the International Conference on Model-Driven Engineering
and Software Development in 2014, where Stefan Tiran presented it in Lisbon, Portugal. Bernhard
Aichernig wrote most of the paper, while Stefan Tiran and I did the experiments.

Additionally, we submitted a paper illustrating the speed limiter use case of the CRYSTAL project
to MODELS 2016, which is currently being reviewed. The paper was driven by Grischa Liebel from
Chalmers University, and written in cooperation with Grischa Liebel, Anthony Anjorin, Eric Knauss and
Matthias Tichy. My contribution to this paper was mainly the execution of the experiments involving the
MoMuT tools.

Finally, I got two abstracts to PhD Symposia accepted, at the PhD Symposia of ICST 2015 [121] and
FM 2015 [122]. I presented them in Graz and Oslo in 2015, receiving a Best Presentation Award for the
second one.

1.10 Structure of this Thesis

The remainder of this thesis is structured as follows: there will be three parts, where Part I will cover
asynchronous systems, Part II will cover synchronous systems and Part III will discuss the conclusions
of the preceding parts.

In Part I we will first give some preliminaries and then discuss our model-based mutation testing
approach for deterministic systems. This will include the mutation operators, the encoding of the tioco-
conformance check as language inclusion and solving the language inclusion check via bounded model-
checking.

Then we will present our approach for bounded determinization and silent transition removal. There
we will first discuss the preprocessing needed, afterwards we will focus on the silent transition removal
and the determinization. Then we will present our on-the-fly algorithm, and how it works for networks
of timed automata, which includes building the product directly into the unfolding.

Then we will discuss the case studies and the empirical results of the asynchronous approach.

Finally, we will discuss some minor contributions, including debugging with timed automata muta-
tions and the pruning of the determinized trees and the translation into timed action systems, to compare
symbolic execution on timed action systems with bounded model-checking on timed automata.

In Part II we will first introduce requirement interfaces, focusing on their syntax and semantics, but
also defining general properties like consistency, refinement and conjunction.

Then we will present our purpose-driven test-case generation for requirement interfaces and the
bounded consistency check. These two operations are the core functionalities of MoMuT::Reqs. We
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will also show how traceability can be provided during test-case generation and present details on the
implementation. Then we present how model-based mutation testing can be integrated into the process,
facilitating the automated generation of test purposes.

We will then demonstrate a typical development workflow using MoMuT::Reqs both for analysis and
the generation of test cases. We present the OSLC integration of MoMuT::Reqs on this use case.

Next, we will discuss the meaning of time in synchronous systems, and how discrete delays may
be added to requirement interfaces, by introducing clocks to measure the delays. We will discuss both
symbolic and explicit delays, and summarize their individual advantages.

We conclude this part by presenting the case studies used for the symbolic approach und discussing
the results we achieved on them.

Part III begins by first comparing the asynchronous and the synchronous approaches and then show-
ing how to combine them, to gain globally asynchronous, locally synchronous systems.

Finally, we conclude the thesis by presenting a summary, the conclusion of the research questions
and an overview of possible future work.
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Part I

Asynchronous Systems

15





Overview

Part I of the thesis shows how to apply model-based mutation testing to asynchronous timed systems,
demonstrated on the example of timed automata. It is split into four chapters.

First, in Chapter 2 we will present preliminaries for timed automata. Then, in Chapter 3, we will show
how model-based mutation testing can be performed on timed automata, by expressing the conformance
check between the specification and the mutant as a bounded model-checking problem and solving it
with an SMT-solver. As this approach is restricted to fully-observable deterministic timed automata,
we will then discuss our bounded determinization approach for timed automata in Chapter 4. Due to
the fact that we bound the traces of the automata, this approach can be applied to all timed automata,
even though determinization of timed automata is not possible in general. Then we will present our case
studies and our experimental results in Chapter 5. Finally, in Chapter 6 we will present some additional
work involving timed automata that has been done in the context of this thesis, including a debugging
methodology, some ways of pruning the search space for test-case generation and a translation from
timed automata to timed action systems, which can be analyzed symbolically.
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2 Timed Automata

Timed Automata were first introduced by Alur and Dill [29] in 1994. Since then, various different
versions and extensions have been developed. A recent survey by Waez et al. [171] lists eleven classes
of timed automata and almost eighty concrete variants belonging to those classes. Within the different
projects of this thesis, we considered different classes of timed automata. We will now define the most
basic form of timed automata, and will afterwards go into detail on the different aspects that will vary in
the remainder of this thesis.

The time domain we consider is the set R≥0 of non-negative reals. We denote by Σ the finite set of
actions of an automaton. A time sequence is a finite non-decreasing sequence of non-negative reals. A
timed trace σ is a finite alternating sequence of actions and time delays of the form t1 · a1 · · · tk · ak,
where for all i ∈ [1, k], ai ∈ Σ and the accumulation of the delays (t1) · (t1 + t2) · (t1 + t2 + t3) · · · is a
time sequence.

Let C be a finite set of clock variables. Clock valuation v(c) is a function v : C → R≥0 assigning
a real value to every clock c ∈ C. We denote by H the set of all clock valuations and by 0 the valuation
assigning 0 to every clock in C. Let v ∈ H be a valuation and t ∈ R≥0, we then have v + t defined by
(v + t)(c) = v(c) + t for all c ∈ C. For a subset ρ of C, we denote by v[ρ] the valuation such that for
every c ∈ ρ, v[ρ](c) = 0 and for every c ∈ C\ρ, v[ρ](c) = v(c). A clock constraint ϕ is a conjunction of
predicates over clock variables in C defined by the grammar

ϕ ::= c ◦ k | ϕ1 ∧ ϕ2,

where c ∈ C, k ∈ N and ◦ ∈ {<,≤,=,≥, >}. Given a clock valuation v ∈ H, we write v |= ϕ when v
satisfies the clock constraint ϕ. We are now ready to formally define basic timed automata (TA):

Definition 2.1
A TA A is a tuple (Q, q̂,Σ, C, I,∆), where Q is a finite set of locations, q̂ ∈ Q is the initial location,
Σ is a finite set of actions, C is a finite set of clock variables, I is a finite set of location invariants, that
are conjunctions of constraints of the form c < d or c ≤ d, where c ∈ C and d ∈ N and each invariant
is bound to its specific location, and ∆ is a finite set of transitions of the form (q, a, g, ρ, q′), sometimes
denoted by q

a,g,ρ−−−→ q′ where

• q, q′ ∈ Q are the source and the target locations;

• a ∈ Σ is the transition action;

• g is a guard, a conjunction of constraints of the form c ◦ d,
where ◦ ∈ {<,≤,=,≥, >} and d ∈ N;

• ρ ⊆ C is a set of clocks to be reset.

Example 2.1. Figure 2.1 shows the timed automaton A = (Q, q̂,Σ, C, I,∆) of simple coffee machine,
that upon receiving a coin first heats up and then either refunds the coin if it is empty, or grains, brews
and releases the coffe. It consists of five locations, thus Q = {q0, q1, q2, q3, q4}. Location q0 is the initial
location, thus q̂ = q0. The set of actions Σ is {coin?, beep!, refund !, coffee!, ε}. The automaton contains
two clocks x and y, thus C = {x, y}, and three invariants bound to the locations q2, q3 and q4, thus
I = {q2 ← (x < 2), q3 ← (y <= 1), q4 ← (x < 4)}. The set of transitions ∆ contains six transitions,
s.t. ∆ = {(q0, coin?, true, {x}, q1), (q1, beep!, 0 < x < 3, {}, q2), (q1, beep!, x = 2, {}, q4), (q2, ε, 1 <
x, {y}, q3), (q3, coffee!, y = 1, {}, q1), (q4, refund !, true, {}, q1)}.

We define |G| to be the number of basic constraints that appear in all the guards of all the transitions
in A, i.e. |G| = Σδ∈∆|Jg|, where δ = (q, a, g, ρ, q′) and g is of the form

∧
j∈Jg cj ◦ dj . We define |I| as

the number of basic constraints that appear in all the invariants of all the locations in A.

19
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Figure 2.1: A timed automata model of a simple coffee machine.

The semantics of a TA A = (Q, q̂,Σ, C, I,∆) is given by the timed transition system (TTS) [[A]] =
(S, ŝ,R≥0,Σ, T ), where S = {(q, v) ∈ Q×H | v |= I(q)}, ŝ = (q̂, 0), T ⊆ S × (Σ ∪ R≥0)× S is the
transition relation consisting of discrete and timed transitions such that:

• Discrete transitions: ((q, v), a, (q′, v′)) ∈ T , where a ∈ Σ, if there exists a transition (q, a, g, ρ, q′)
in ∆, such that: (1) v |= g; (2) v′ = v[ρ] and (3) v′ |= I(q′); and

• Timed transitions: ((q, v), t, (q, v + t)) ∈ T , where t ∈ R≥0, if v + t |= I(q).

A run r of a TA A is the sequence of alternating timed and discrete transitions of the form (q1, v1)
t1−→

(q1, v1 + t1)
δ1−→ (q2, v2)

t2−→ · · · , where q1 = q̂, v1 = 0 and δi = (qi, ai, gi, ρi, qi+1), inducing the timed
trace σ = (t1, a1) · (t2, a2) · · · . We denote by L(A) the language of the automaton, that is the set of
timed traces induced by all runs of A.

2.1 Aspects of Timed Automata

In this subsection, we will define aspects of timed automata, that were relevant within the different
areas of this thesis. The discussed aspects will be silent transitions, input/output transitions, (non-)
determinism, accepting locations, networks of timed automata, diagonal constraints and a form of timed
automata where we weakened some of the restrictions on guards and invariants. Note that we give the
theory and some context on these topics during the remainder of the thesis, and only consider their formal
definition here.

2.1.1 Timed Automata with Silent Transitions

Timed Automata with Silent Transitions (TAε) are a class of TA with an extended set of actions including
silent actions, denoted by ε. These are internal actions that are non-observable from the outside, and we
distinguish them from the actions that are not silent and called observable actions. We call a TA without
silent transitions fully-observable. The definition and semantics of TAε are the same as those of TA, only
that Σ is replaced by Σ∪ ε, also denoted Σε. The timed automaton from Example 2.1 contains one silent
transition (the transition from q2 to q3).

A run r in an TAε may not be fully observable, thus inducing a not fully observable timed trace
σ = (t1, a1) · (t2, a2) · · · (tk, ε) · · · defined over Σε. We can extract an observable timed trace from σ,
by removing all the pairs containing silent actions, while taking into account the passage of time.
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Note that silent transitions can in general not be removed from a timed automaton, without changing
the language of the TAε. Details will be given in Sections 4.2 and Section 13.2.

2.1.2 Timed Automata with Inputs and Outputs

Timed Automata with Inputs and Outputs (TAIO) partition the set of actions Σ into two disjoints sets
ΣI and ΣO of input and output actions, respectively. TAIO are similar to UPPAAL TA, which we use
to illustrate our examples. One difference is that for simplicity of presentation we do not have urgent
and committed locations. However, these types of locations are just syntactic sugar to make modeling
easier, and can be expressed with standard timed automata. We denote by ∆I the set of transitions
labelled by inputs, and by ∆O the set of transitions labelled by outputs. In case a TAIO also contains
silent transitions, we denote it by TAIOε. The timed automaton presented in Example 2.1 is a timed
automaton with inputs and outputs, where ∆I = {coin?} and ∆O = {beep!, refund !, coffee!}.

The partitioning into inputs and outputs allows modeling the communication with the environment.
An input is marked with a question mark, and depicts an event that is received from the environment. An
output, marked with an exclamation mark, is an emission from the system to the environment.

2.1.3 Timed Automata with Accepting Locations

Timed Automata with accepting locations partition the set of locations into accepting and non-accepting
locations. While our test-case generation approach does not take accepting locations into account, we
can use them during the bounded determinization, to prune branches that end in non-accepting locations.
Since we want our test-cases to end with an observation, we could for instance mark locations that are
reached via an input as non-accepting.

2.1.4 (Non-) Deterministic Timed Automata

We say that a TA A is deterministic if for all transitions (q, a, g1, ρ1, q1) and (q, a, g2, ρ2, q2) in ∆, q1 6=
q2 implies that g1 ∧ g2 = false. We denote by A the set of all TA and by Det(A) ⊂ A its deterministic
subset. The timed automaton in Example 2.1 contains non-determinism, as the two transitions labeled by
beep! leaving q1 can be enabled at the same time, contain the same label and lead to different locations.

Note that we differ between non-determinism, where two transitions with the same label leave the
same state, and underspecification, where different outputs may leave the same state. While our test-case
generation does not support non-determinism without preprocessing it first to remove it, it is capable to
process underspecification.

We will denote deterministic TA by DET(TA) and non-deterministic ones by NON-DET(TA). Note
that, as with silent transitions, non-deterministic timed automata are strictly more expressive than deter-
ministic ones, and can thus not be determinized in general.

2.1.5 Networks of Timed Automata

We define a Network of Timed Automata with Inputs, Outputs and Silent TransitionsN = (A,ΣI
e,Σ

O
e ,Σi),

where A = {A1, . . . , An} is a set of TAIOε, n = |A| is the number of automata in the set, and the ob-
servable actions of the automata are split into three disjoint sets where ΣI

e is the set of external input
actions, ΣO

e is the set of external output actions and Σi is the set of internal actions. Internal actions are
exclusively used for synchronization between the TAIOε, and the external output and input actions are
exclusively used for communication with the environment. Formally, the three sets are defined as below:
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ΣI
e = {a | ∃ Am ∈ A : a ∈ ΣI

m ∧ ∀ Am ∈ A : a 6∈ ΣO
m}

ΣO
e = {a | ∃ Am ∈ A : a ∈ ΣO

m ∧ ∀ Am ∈ A : a 6∈ ΣI
m}

Σi = {a | ∃ Am ∈ A : a ∈ ΣI
m ∧ ∃ Am ∈ A : a ∈ ΣO

m}

where ΣI
m and ΣO

m depict the inputs and outpus of the m-th automaton.

Example 2.2. Figure 2.2 shows a network of timed automata specifying three components of a coffee
machine. The first machine handles the payment. It waits for the external input coin? and than triggers
the internal action paid!, which is received by the second automaton. Upon receiving the internal action
paid?, the second automaton waits for the external input button?, where the user may select a drink. Upon
receiving, it triggers one of the internal actions c! and t!, which are received by the third automaton. The
third automaton then brews either the tea or the coffe, and produces the corresponding external output
signal. Then, it triggers the internal signal ready! for the first automaton. Formally, the different actions
of the coffee machine are separated the following way: ΣI

e = {coin, button}, ΣO
e = {coffee, tea},

Σi = {t, c, paid, ready} and ε. 2

2.1.6 Diagonal Constraints

Diagonal constraints denote constraints in the guards or invariants of timed automata, that contain sub-
traction between clocks. Thus, were normally a guard is defined as a conjunction of constraints of the
form c ◦ d, where ◦ ∈ {<,≤,=,≥, >} and d ∈ N, it may now be a conjunction of constraints of the
form f ◦ f where f = d | c | c1 − c2, s.t. d ∈ N and c, c1, c2 ∈ C.

It is known that diagonal constraints do not add to the expressiveness of timed automata and thus can
be removed [29, 50]. However, the standard forward analysis of many tools does not work correctly for
timed automata with diagonal constraints. Bouyer et al. [58] show how the standard analysis produces
erroneous traces and how to patch it.

In the context of this thesis, we produce diagonal constraints during the silent transition removal and
determinization. They do not pose a problem for us, as we work with SMT solving, but the resulting
automata can not be processed by most of the other tools working with timed automata.

q1,1start q1,2 q1,3

(a)
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{x}

paid!
x > 1

ready?

q2,1start

q2,2

q2,3q2,4
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Figure 2.2: An NTA depicting a coffee machine with three components. One for payment,
one for product selection and one for providing the drinks.
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2.1.7 Timed Automata with Disjunction

Classic timed automata only allow the conjunction of constraints, as disjunction-free timed automata
can be encoded in Difference Bound Matrices (DBM), which are supported by many tools. However,
during the determinization process we propose, we gain timed automata with disjunction between the
constraints.

Disjunction can easily be removed from timed automata. Looking at a single transition whose
guard contains disjunction, the disjunction is resolved by generating one new transition for each of its
clauses [50]. However, in our case that would remove the determinism property. Additionally, for model-
checking via SMT-solving the disjunction does not pose a problem. Hence we keep the disjunctions.

2.2 Timed Input-Output Conformance

One of the main conformance relations for testing whether a system conforms to a formal model is the
input-output conformance relation ioco introduced by Tretmans [160]. It considers an additional output,
quiescence, denoting the absence of all other outputs. For real-time systems, this notion is not always
sufficient, given that time delays of the implementations also have to conform to the specification.

Different real-time extensions of the input-output conformance relation ioco were studied and com-
pared by Tretmans [150]. We consider the timed input-output conformance relation introduced by
Krichen and Tripakis [117] and inspired by ioco. Intuitively, AI conforms to AS if for each observ-
able behavior specified in AS , the possible outputs of AI after this behavior is a subset of the possible
outputs of AS . In contrast to ioco, tioco does not use the notion of quiescence, but requires explicit
specification of timeouts. For the conformance check we consider TAIO without silent transitions, thus
all actions are observable. Hence, we present a simplified version of the tioco definition from Krichen
and Tripakis [117], first introducing auxiliary operators illustrated in Equation 2.1.

A afterσ = {q ∈ Q | q̂ σ−→ q}
elapse(q) = {t > 0 | q t−→}
out(q) = {a ∈ ΣO | q a−→} ∪ elapse(q)
out(Q) =

⋃
q∈Q out(q)

(2.1)

Given a TAIO A and σ ∈ L(Σ), A after σ is the set of all locations of A that can be reached by the
sequence σ. Given a location q ∈ Q, elapse(q) is the set of all delays that can elapse from q without
A making any action, and out(q) is the set of all output actions or time delays that can occur when the
system is at location q, a definition which naturally extends to set of locations Q.

Definition 2.2
The timed input-output conformance relation, denoted by tioco, is defined as

AI tiocoAS iff ∀σ ∈ L(AS) : out(AI after σ) ⊆ out(AS after σ)

Hence, an implementation is tioco-conform to a specification, if for all traces in the specification, the
possible outputs of the implementation (including the passage of time) is a subset of the possible outputs
in the specification. An implementation may add additional inputs, leaving the specified area. After that,
every behavior is allowed.

Example 2.3. Figure 2.3 shows an example specification and three implementations. The first imple-
mentation I1 conforms to the specification, even though it produces only a subset of the outputs of the
specification, since it does not introduce new output behavior. The second implementation I2 allows new
input behavior that was not defined in the specification. This is also a conforming specification, because
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Figure 2.3: A specification and three implementations to illustrate the tioco conformance.

tioco only considers the output behavior after all traces of the specification, allowing the implementa-
tions to add new inputs. Implementation I3, however, does not conform to the specification, as it may
produce the output b! already when x = 1, and thus adds new output behavior. 2

Krichen and Tripakis [117] gave a comparison of tioco to other timed conformance relations. Some
of them, like timed bisimulation [154] and timed trace inclusion [108] completely differ from tioco, by
being too restrictive for many applications. E.g., unspecified inputs may not occur in the implementation
and outputs with stricter guards in the implementation than in the specification are not allowed either.
This would reduce our support for partial models, and less abstract implementations. The relativized
timed conformance relation (rtioco) [119] is defined with respect to an environment, which would restrict
the test-case generation, only allowing inputs defined by that environment. This may well be useful, as
some inputs may really be restricted in real tests. E.g. a button may only be pushed at most every second.
However, if the defined environment changes, this might enforce a rerun of the test-case generation.

Another conformance relation that is very close to tioco is vtioco [61]. The relation is very similar,
but they use a notion of quiescence, adding quiescence self-loops to all silent states in the timed transition
system. However, in practice it is not always possible to determine, whether a state is really quiescent,
or whether one just did not wait long enough. They tackle this, by adding an upper bound M to all
outputs, and calling states M -quiescent, if they do not trigger an output within M time units. However,
we preferred tioco as it keeps the timed transition systems used for the conformance check smaller.



3 Test-Case Generation

Parts of this chapter are based on our publication at TAP 2013 [17].

As discussed in Section 1.4, the goal of model-based mutation testing is the generation of a test suite
according to a predefined set of fault models. The test cases are generated in a way that attempts to
“steer” the SUT towards failure, if one exists. Hence, the rationale behind this approach is that if the
mutated model does not conform to its original version, the mutation introduces traces which were not
in the original model, and the non-conformance witness trace serves as the basis to generate a test case.
In case that the mutated model conforms to its original version, the mutation does not introduce new
behavior with respect to the original specification, hence no useful test case is generated. It follows that
test cases are generated only if the mutated model does not conform to its original version. We propose
a TCG algorithm, summarized as follows:

1. Given a deterministic TAIO A, a mutation operator m and a mutation function µm, generate the
mutant M ∈ µm(A);

2. Generate d(A) by demonic completion of A and a(M) by angelic completion of M ;

3. Check M tioco A, by effectively checking L(a(M)) ⊆ L(d(A));

4. If L(a(M)) 6⊆ L(d(A)), generate a test case based on the trace which witnesses non-conformance
of M to A.

In the first step, discussed in Section 3.1, we mutate the original specification model. This creates
a set of faulty models, called mutants, where each mutant contains exactly one fault, introduced at a
specific location. Then, both the original model and the mutants are transformed to become input-
enabled. This will be explained in detail in Section 3.2. The mutants need to be input-enabled during the
tioco-conformance check, and the original model is required to be input-enabled in order to express the
conformance check via language inclusion (as explained in Section 3.3). In the next step, we perform
the k-bounded tioco conformance check: we will first explain, why the tioco-check can be expressed via
language inclusion in Section 3.3.1. Then, in Section 3.3.2 we will show how to perform the language
inclusion check via bounded model-checking using an SMT-sover. If the language of a mutant is included
in the language of the original model, it is considered an equivalent mutant and discarded. Otherwise, we
generate a test case out of the trace we get from the SMT-solver, as discussed in Section 3.4. Once the
methodology is explained, we will give details on the implementation and its restrictions in Sections 3.5
and 3.6.

In the current chapter we consider TAIO, as the separation into inputs and outputs plays an important
role in the context of testing. While some of the mutation operators could also be applied to TA, the tioco-
conformance check strictly relies on the inputs and outputs. Additionally, the approach is restricted to
deterministic TAIO.

3.1 Model Mutation

Mutation of a specification consists in altering the model in a small way, mimicking common implemen-
tation errors. In our setting, a mutation is a function µm : Det(A) → 2A parameterized by a mutation
operator m which maps a deterministic TAIO A into a finite set µm(A) of possibly non-deterministic
TAIOs, where each M ∈ µm(A) is called an m-mutant of A. For our experiments we only created
first-order mutants, i.e., each mutated TAIO covers only one particular mutation.

We now introduce and define specific mutation operators which are relevant to the TAIO model.
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Figure 3.1: Model A (a) and mutants M resulting from: (b) µct(A); (c) µcs(A); (d)
µcg(A).

Definition 3.1
Given a TAIO A = (Q, q̂,ΣI ,ΣO, C, I,∆), its mutants are defined by the following mutation operators:

1. Change action (µca) generates from A a set of |∆I |(|ΣO|) + |∆O|(|ΣO| − 1) mutants, where
every mutant changes a single transition in A by replacing the action labeling the transition by
a different output label. This mimics an implementation fault producing wrong output signals.
A TAIO M ∈ µca(A), if M is of the form (Q, q̂,ΣI ,ΣO, C, I, (∆\{δ}) ∪ {δm}), such that
δ = (q, a, g, ρ, q′) ∈ ∆, δm = (q, am, g, ρ, q

′), am ∈ ΣO and am 6= a;

2. Change target (µct) generates from A a set of |∆|(|Q|− 1) mutants, where every mutant replaces
the target location of a transition in A, by another location in A. This reflects the behavior of an
implementation fault where a signal leads to a wrong internal state. Note that the target location
may also be replaced be the source location, creating a self-loop. A TAIO M ∈ µct(A), if M
is of the form (Q, q̂,ΣI ,ΣO, C, I, (∆\{δ}) ∪ {δm}), such that δ = (q, a, g, ρ, q′) ∈ ∆, δm =
(q, a, g, ρ, q′m), q′m ∈ Q and q′m 6= q′;

3. Change source (µcs) generates fromA a set of |∆|(|Q|−1) mutants, where every mutant replaces
the source location of a transition inA, by another location inA. This expresses an implementation
fault where a signal can be triggered from a state where it should be disabled. A TAIO M ∈
µcs(A), if M is of the form (Q, q̂,ΣI ,ΣO, C, I, (∆\{δ}) ∪ {δm}), such that δ = (q, a, g, ρ, q′) ∈
∆, δm = (qm, a, g, ρ, q

′), qm ∈ Q and qm 6= q;

4. Change guard (µcg) generates from A a set of 4|G| mutants, where every mutant replaces a tran-
sition inA with another one which changes the original guard by altering every equality/inequality
sign appearing in the guard by another one. This covers implementation faults with faulty enabling
conditions. A TAIO M ∈ µcg(A), if M is of the form (Q, q̂,ΣI ,ΣO, C, I, (∆\{δ}) ∪ {δm})),
such that δ = (q, a, g, ρ, q′) ∈ ∆, δm = (q, a, gm, ρ, q

′), g =
∧
i∈I ci ◦i di, gm =

∧
i∈I ci ◦mi di,

◦, ◦mi ∈ {<,≤,=,≥, >}, ◦i 6= ◦mi for some i ∈ I and ◦j = ◦mj for all j 6= i;

5. Negate guard (µng) generates fromA a set of |∆|mutants, where every mutant replaces the guard
in a transition in A, by its negation. This covers implementation faults where the programmer for-
got negating a condition. A TAIOM ∈ µng(A), ifM is of the form (Q, q̂,ΣI ,ΣO, C, I, (∆\{δ})∪
{δm}), such that δ = (q, a, g, ρ, q′) ∈ ∆ and δm = (q, a,¬g, ρ, q′). Note that for the sake of sim-
plicity, we represent δm as a single transition even though ¬g may also have disjunctions. The
guard ¬g can be represented in DNF and every disjunction of the guard can be used as a guard of
a separate transition.

6. Change invariant (µci) generates from A a set of |I| mutants, where every mutant replaces the
invariant of a location with another invariant with 1 added to the right-hand side of the basic
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constraint of the invariant. This mimics an ”off by one”-fault allowing to stay longer in a state than
intended. A TAIO M ∈ µci(A), if M is of the form (Q, q̂,ΣI ,ΣO, C, Im,∆), and there exists
q ∈ Q such that I(q) =

∧
i∈I ci ◦ di, ◦ ∈ {<,≤}, Im(q) =

∧
i∈I ci ◦ dmi , dmi = di + 1 for some

i ∈ I , dmj = dj for all j 6= i and I(q′) = Im(q′) for all q′ 6= q;

7. Sink location (µsl) generates from A a set of |∆| mutants, where every mutant replaces the tar-
get location of a transition in A, by a newly created sink location which models a don’t care
location which accepts all inputs. This expresses a program fault leading to a quiescent state
where every input is accepted, but ignored. A TAIO M ∈ µsl(A), if M is of the form (Q ∪
{sink}, q̂,ΣI ,ΣO, C, I, (∆\{δ})∪{δm}∪∆sink), such that ∆sink = {(sink, a, true, {}, sink) | a ∈
ΣI}, δ = (q, a, g, ρ, q′) ∈ ∆ and δm = (q, a, g, ρ, sink);

8. Invert reset (µir) generates from A a set of |∆||C| mutants, where every mutant replaces a tran-
sition in A, by another transition with the occurrence of one clock flipped compared to the orig-
inal set of clocks. This reflects different timing errors, e.g. the incorrect reseting of a timer.
A TAIO M ∈ µcs(A), if M is of the form (Q, q̂,ΣI ,ΣO, C, I, (∆\{δ}) ∪ {δm}), such that
δ = (q, a, g, ρ, q′) ∈ ∆, δm = (q, a, g, ρm, q

′), and for some c ∈ C either ρm = ρ ∪ {cm} if
cm 6∈ ρ, or ρm = ρ\{cm} if cm ∈ ρ.

Figure 3.1 illustrates mutants resulting from applying some of the above mutation operators to an
example model A. The effectiveness of the mutation operators is analyzed and evaluated in more detail
in Chapter 5.

3.2 Model Completion

Prior to performing the conformance check, both the specification and the model need to be made input-
enabled. The input-enabledness of the mutants is required by the definition of the tioco conformance, as
discussed in Section 2.2. The reason why we need the specification to be input-enabled as well, is given
in the next section. However, input-enabledness can be achieved by two different operations, angelic and
demonic completion and we need to apply a different kind of completion to the specification than to the
mutants.

The specification is supposed to contain all behavior that is supposed to be tested. Even if it is only a
partial model of a more complex systems, we only want to test the specified part. Thus, if an input event
that was not specified by our model occurs during testing, we leave the specified area and cannot predict
the future behavior of the system anymore, meaning that from then on, all inputs and outputs are valid.
Thus, input-enabling of our specification model is done by demonic completion [161, 117]: we create a
new location, called sink state in the automaton, which contains self-loop transitions for every possible
input or output. Thus, in that location any behavior is possible and allowed. Then, for each location in
the automaton and for each input that is not allowed in that location, we create a transition labeled by
that input, leading to the sink state.

The formal definition of demonic completion is the following: given a deterministic TAIO A =
(Q, q̂,ΣI ,ΣO, C, I,∆), its demonic completion d(A) is the input-enabled TAIO d(A) = (Q∪{sink}, q̂
,ΣI ,ΣO, C, Id,∆d), where Id(q) = I(q) and Id(sink) = true and ∆d = ∆∪{(sink, a, true, {}, sink) | a ∈
Σ}∪{(q, a,¬g, {}, sink) | q ∈ Q∧a ∈ ΣI}, such that for each q ∈ Q and a ∈ ΣI , g = (g1∨ . . .∨ gk)∧
I(q), where {gi}i are guards of the outgoing transitions of q labeled by a. Strictly speaking, g contains
disjunctions of constraints, and thus cannot be directly used as a guard on a transition in a TAIO. In fact,
we would need to transform g into a disjunctive normal form, and have a separate copy of the transition
for each disjunction labeled by the appropriate guard. We omit the details of this transformation. It is not
hard to see that

L(d(A)) = L(A) ∪ {σ · t · a · (R≥0 · Σ)∗ | a ∈ ΣI , σ ∈ L(A) ∧ σ · a 6∈ L(A)}
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Figure 3.2: Input completion of TAIO: (a) A; (b) d(A); and (c) a(A).

An example is illustrated in Figure 3.2, where (a) is a specification, (b) shows its demonic completion
and (c) shows its angelic completion. We marked the sink state and the new transitions in red.

We apply angelic completion [161] to the mutants: input output conformance checks are usually
applied between a specification, and its implementation. The implementations are considered input-
enabled, which in praxis means that they do not block any inputs, but simply skip all unexpected inputs.
In our case, the mutants are considered as implementations. Thus, to model undefined inputs, it suffices
to create self-loop transitions for all unspecified inputs in each location.

3.3 Conformance Check

We already introduced the tioco conformance relation in Section 2.2, and discussed several alternatives
and our reasons for choosing tioco. In this section we will first show how tioco can be expressed via
language inclusion, and then how we solve it via SMT-solving.

3.3.1 Conformance Expressed via Language Inclusion

As a short reminder on the definition of tioco, we give an informal definition here: an implementation
AI tioco conforms to its specification AS , if after all observable traces in AS , the set of possible outputs
of AI (including the passage of time) is a subset of the possible outputs of AS .

Krichen and Tripakis. [117] develop a number of theoretical results about the tioco relation. In
particular, they establish that given two TAIO AI andAS , if the set of observable traces ofAI is included
in the set of observable traces of AS , then AI tioco AS , while the converse is not true in general.
However, if AS is input-enabled, then the set inclusion between observable traces of AI and AS also
implies the tioco conformance of AI to AS .

Given an arbitrary TAIO AI and a deterministic specification TAIO AS , considering the demonic
completion d(AS) instead of AS does not affect the conformance relation. Formally, we have the fol-
lowing proposition, proved by Krichen and Tripakis [117].

Proposition 3.1
Given a deterministic TAIO AS and its demonic completion d(AS), for any TAIO AI , AI tioco AS if
and only if AI tioco d(AS).

It turns out that given two TAIOAS andAI , by applying demonic completion d(AS) toAS , checking
tioco of AI to AS is equivalent to checking the language inclusion L(AI) ⊆ L(d(AS)), a result stated
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Figure 3.3: A non-deterministic specification (a), its demonic completion (b) and an im-
plementation (c).

in the next Proposition, and which follows from the work by Krichen and Tripakis [117] (Lemma 3 and
Proposition 3).

Proposition 3.2
Given a TAIO AI and a deterministic TAIO AS , AI tioco AS if and only if L(AI) ⊆ L(d(AS)).

By Proposition 3.2, it follows that one can checkL(AI) ⊆ L(d(AS)) instead of checkingAI tioco AS
when AS is deterministic. In addition, the problem of checking L(AI) ⊆ L(d(AS)) is decidable when
AS is deterministic [29].

Example 3.1. We will now present a short example to show why this does not hold for non-deterministic
specifications. Figure 3.3 shows a non-deterministic specification AS , its demonic completion d(AS)
and an implementation AI . In deterministic systems, for every σ ∈ AS it holds that out(AS after σ) =
out(d(AS) after σ). In our non-deterministic example, the trace a! · 0 · b? is specified in AS , in its
left branch, and it only allows the output c!. However, in the demonic completion of AS , the trace
a! · 0 · b? is also a trace in the right branch, leading to the sink state and thus allowing the output a!.
Thus, out(AS after a! · 0 · b?) = {c!} and out(d(AS) after a! · 0 · b?) = {a!, c!} and thus the demonic
completion of AS is not tioco conform to AS . Now, the language of implementation AI is a subset of
the language of d(AS), but is not tioco conform to AS , which violates Proposition 3.2.

3.3.2 Language Inclusion as a Bounded Model-Checking Problem

We have seen that mutation-based testing is fault-oriented, i.e. test cases are generated only if the mutated
model does not conform to its original version. Consequently, symbolic techniques based on bounded
model-checking (BMC) are well-suited to solve this type of problems. In addition, the language inclusion
problem between two timed automata AI and AS , where AS is deterministic, is PSPACE-complete (This
result was already established by Dill and Alur [29]), hence computationally expensive. In our setting,
we are interested in finding finite counter-example traces witnessing violation of language inclusion.
Missing such a witness, due to an insufficient bound, results in generating less test cases and is a trade-
off between generating a complete test suite and computing it efficiently.
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BMC was already used for the reachability analysis of TA [36, 133], and for checking the language
inclusion between two timed automata [38]. We encode the language inclusion problem as a k-bounded
language inclusion SMT problem. Intuitively, given two TAIO AI and AS such that AS is deterministic
and an integer bound k, we have L(AI) 6⊆k L(AS) if there exists a timed trace σ = t1 · a1 · · · ti · ai such
that i ≤ k, σ ∈ L(AI) and σ 6∈ L(AS). We construct a formula ϕkAI ,AS

that is satisfiable if and only if
L(AI) 6⊆k L(AS).

Let A = (Q, q̂,ΣI ,ΣO, C, I,∆) be a TAIO. We denote by locA : Q → {1, . . . , |Q|} and
actA : Σ→ {1, . . . , |Σ|} functions assigning unique integers to locations and actions inA, respectively.
GivenA and a constant k, we denote byX the set of variables {x1, . . . , xk+1} that range over the domain
{1, . . . , |Q|}, where xi encodes the location of A after the ith step. Similarly, let A = {α1, . . . , αk} be
the set of variables ranging over {1, . . . , |Σ|}, where αi encodes the action in A applied in the ith dis-
crete step. We denote by D = {d1, . . . , dk} the set of real-valued variables, where di encodes the delay
applied in the ith time step. We will call this delay a delay action. Let Ci denote the set of real variables
obtained by renaming every clock c ∈ C by ci. We denote by C =

⋃k+1
i=1 C

i ∪
⋃k+1
i=1 C

∗,i the set of real
(clock valuation) variables, where c∗,i ∈ C∗,i and ci ∈ Ci encode the valuation of the clock c ∈ C after
the ith timed and discrete step, respectively.

We express the effect of applying Resetρ in the ith step of a run to the set C of clocks in A as follows:

doResetiA,ρ(C) ≡
∧
c∈ρ

ci+1 = 0 ∧
∧
c 6∈ρ

ci+1 = c∗,i

We express the ith passage of time in A as follows:

tDelayiA(D,C) ≡
∧
c∈C

(c∗,i − ci) = di

The ith time step in a location q ∈ Q is expressed with:

tStepiA,q(D,X,C) ≡ xi = locA(q) ∧ tDelayiA(D,C) ∧ I(q)[C\C∗,i],

where I(q)[C\C∗,i] is the invariant of q, with every clock c ∈ C substituted by c∗,i. The formula for the
ith discrete step is:

dStepiA,δ(A, X,C) ≡ xi = locA(q) ∧ αi = actA(a) ∧ g[C\C∗,i] ∧
doResetiA,ρ(C) ∧ xi+1 = locA(q′)

where g[C\C∗,i] denotes the guard of δ, where every clock c ∈ C is substituted by c∗,i. We express the
segment of a path in TAIO A from j to k with the following formula:

pathj,kA (A, D,X,C) ≡
k∧
i=j

(
∨
q∈Q

tStepiA,q(D,X,C) ∧
∨
δ∈∆

dStepiA,δ(A, X,C))

The initial state of TAIO A is expressed as follows:

initA(X,C) ≡ x1 = locA(q̂) ∧
∧
c∈C

(c1 = 0)

Let AI = (QI , q̂I ,Σ
I ,ΣO, C, II ,∆I) and AS = (QS , q̂S ,Σ

I ,ΣO, C, IS ,∆S) be two TAIOs such
that AS is deterministic. The general formula ϕkAI ,AS

(i,A, D,XI , XS , CI , CS) specifies the negation of
k-language inclusion:

ϕkAI ,AS
≡

∧k
i=1(di ≥ 0 ∧ αi ≥ 1 ∧ αi ≤ |Σ|) ∧ i ≥ 1 ∧ i ≤ k ∧

initAI
(XI , CI) ∧ initAS

(XS , CS) ∧ path1,i
AI

(A, D,XI , CI) ∧
path1,i−1

AS
(A, D,XS , CS) ∧ ¬pathi,iAS

(A, D,XS , CS)
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Thus, we can find a counter example, if there exists a variable valuation for all di and αi so that (1)
1 ≤ i ≤ k; (2) the initial invariant holds and all clocks are initially reset to 0, (3) there exists a path
up to step i − 1 both in the specification and the implementation and finally (4) there exists an i-th step
in the implementation, but not in the specification. Note that αi can only be an output, as the demonic
completed specification can perform all inputs in all states.

3.4 Generating the Test Case

Given a specification model A and its mutant M , our test-case generation algorithm creates a test only
if M does not conform to A. The generated test follows a test purpose, which is in our case the timed
trace σ which witnesses the non-conformance of M to A and exposes the error caused by the mutation
in M . We denote a test by AT and give it in a form of a deterministic TAIO. The test AT specifies the
execution of real-time traces and provides a verdict after observing at most k combined (timed/discrete)
steps of a trace. The verdict can be:

• Pass (pass) - if the test purpose was successfully reached and the error introduced by the mutant
was not exposed by the SUT during the test execution;

• Inconclusive (inc) - if the test purpose covering the fault introduced by the mutant could not be
reached by the SUT during the test execution. This can happen, as test procedure supports under-
specified models in the sense that several outputs may leave the same state and the system under
test may produce a different output than the one expected by our test purpose;

• Fail (fail) - if the fault introduced by the mutant as part of the test purpose was exposed by the
SUT during the test execution or in the last step.

The skeleton of AT consists of the sequence q1 · δ1 · · · qk · δk of locations and transitions in A which
are executed while observing the witness trace σ = t1 ·ai · · · tk ·ak. This skeleton corresponds effectively
to the test purpose described above. In addition, AT is completed according to Algorithm 1 satisfying a
number of properties described next. After observing a prefix σ′ = t1 ·a1 · · · ti ·ai of σ, AT is in location
qi, where i < k, and can do one of the following:

• Wait if the invariant of qi allows a positive time delay;

• Emit action a if a is an input action equal to ai and the transition δi is enabled, and move to location
qi+1 (this step is implicit in the algorithm, by not entering any of the if-conditions and jumping to
the next step of the for-loop);

• Accept action a if a is an output action equal to ai and the transition δi is enabled, and move to
location qi+1 (this step is implicit in the algorithm, by not entering any of the if-conditions and
jumping to the next step of the for-loop);

• Accept action a if a is an output action different from ai and there exists an enabled transition δ in
A with source location qi and labeled with a, and move to the inc verdict location (Line 7);

• Refuse action a if a is an output action and there are no transitions in A with the source location
qi which is both labeled by a and enabled, and move to the fail verdict location (Lines 12-18).

Finally, when AT is in location qk, it accepts all outputs a such that there exists an enabled transition δ in
A with source location qk and labeled by a, moving to the pass location (Line 9), and it rejects all other
outputs, moving to the fail location (Lines 12-18).

Note that our test AT follows a fixed qualitative sequence of actions, defined by the witness σ. In
particular, it stops following a valid output in the specification A if it differs from the one in the witness
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Algorithm 1 Test-case generation algorithm.
Input: A = (Q, q̂,ΣI ,ΣO, C, I,∆) and δ1 · · · δk
Output: Test automaton AT

1: ∆T ←
⋃k−1
i=1 {δi}

2: QT ← {qi|(qi, a, g, p, q′) ∈ δ1 · · · δk}
3: QT ← QT ∪ {pass, fail, inc}
4: for i = 1 to k do
5: for all (qi, a, g, ρ, q

′) ∈ ∆\{δi} st. a ∈ ΣO do . For all outputs not in δi
6: if i < k then . During test case
7: ∆T ← ∆T ∪ {(qi, a, g, {}, inc)}
8: else . At the end of the test
9: ∆T ← ∆T ∪ {(qi, a, g, {},pass)}

10: end if
11: end for
12: for all a ∈ ΣO st. ∃(qi, a, gj , ρ, q′) ∈ ∆ do . All outputs that are not enabled
13: gT ← (g1 ∨ . . .∨ gn)∧ I(q) st. {gj} are guards of outgoing transitions from qT labeled by a
14: ∆T ← ∆T ∪ {(qi, a,¬gT , {}, fail)}
15: end for
16: for all a ∈ ΣO st. 6 ∃(qi, a, g, ρ, q′) ∈ ∆ do . All unspecified outputs
17: ∆T ← ∆T ∪ {(qi, a, true, {}, fail)}
18: end for
19: end for
20: return AT ← (QT , q̂,Σ

O,ΣI , C, I,∆T )

σ, and returning inc as verdict. It means that the test is not pursued when the SUT deviates from
the test purpose. On the other hand, AT is time adaptive, and the witness σ defines a class of timing
constraints which are allowed by the test. In fact, it is unlikely that an expected output action is preceded
by the exact time delay as defined by the witness trace. Hence, we need the test to be flexible and
accept the expected output in a larger time range defined by the specification model. In addition, if we
allow time flexibility for output actions, we cannot use the strict time delay from the witness trace σ, to
precede an input action either, since it may violate input assumptions of the specification during some
test execution. We illustrate this observation in Figure 3.4, which depicts model A and its mutant M .
The trace σ = 4 · x! · 2 · a? · 2 · y! witnesses non-conformance of M to A and is used as the skeleton
for the test AT . During test execution, the test may observe the prefix σ′ = 2 · x!, which is allowed by
the specification. In that case, if AT requires exactly 2 time units to elapse between observing x! and
emitting a?, the assumptions expressed by A are violated. Hence we keep the time constraints symbolic,
with an elapse of time between x! and a? dependent on previous observations.

q0start q1 q2 q3

c ≤ 4 c ≤ 8
(a)

x!
{c}

a?
{c}

x!
{c}

q0start q1 q2 q3

c ≤ 4 c ≤ 8
(b)

x!
{c}

a?
{c}

y!
{c}

Figure 3.4: Necessity of symbolic constraints on inputs in a test.
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Figure 3.5: Test-case generation framework.

3.5 Implementation

In this section, we present the tool that implements the test-case generation framework. Actually, in
the course of the thesis, the tool was implemented twice. The first prototype implementation was done
in Scala version 2.9.1, the second, more mature, reimplementation was done in Scala version 2.10.3.
Both use standard UPPAAL TA XML format to model TAIO specifications. The (bounded) language
inclusion between two TAIOs is computed using the Z3 (v4.0) SMT solver [73]. The communication
between our implementation in Scala and the Z3 solver relies on the Scala∧Z3 API [110].

The author of this thesis developed the prototype tool, while the reimplementation was done by
Willibald Krenn [113] and became a tool in the MoMuT family of tools, called MoMuT::TA1. The
determinization process introduced in the next chapter was added to the reimplementation be the author
of this thesis. After adding the determinization, the tool consisted of 55 classes and about 20, 000 lines
of code, though that also includes features not discussed within this thesis.

The test-case generation framework, depicted in Figure 3.5, consists of four main steps: (1) parsing
and demonic completion of the TAIO model; (2) mutation of the TAIO model; (3) language inclusion
between the original model and its mutant; and (4) test-case generation. In what follows, we present
more details about these steps.

Specification Parsing and Demonic Completion: the TAIO model specified in the UPPAAL XML
format is parsed with Scala’s parser combinator. We require that the UPPAAL automata do not contain
urgent nor committed locations. It should be noted that modeling style can have important impact on the
number and effectiveness of consecutive generation of mutants and test cases, as shown by Tiran [159] for
UML models. We implemented demonic completion of the model by direct application of the procedure
from Section 3.2.

Mutation of Models: our tool supports all mutation operators introduced in Section 3.1. We store each
mutant as a separate UPPAAL XML model.

Language Inclusion: language inclusion check between a model and its mutant is at core of the TCG
framework. We translate an UPPAAL model and its mutant to a bounded language inclusion problem
expressed as an SMT-LIB2 formula, following the procedure described in Section 3.3. The formula is
fed to the Z3 solver, which looks for the existence of a satisfying assignment to the variables representing
a witness trace violating the language inclusion property.

In addition, we implemented the same TCG algorithm using Z3’s incremental solving feature, with
the aim to improve the computation time of the bounded language inclusion check. Given an SMT
formula expressing the k-bounded language inclusion problem, we first feed the Z3 solver with the sub-
formula for the i-bounded language inclusion problem, starting with i = 1. Z3 checks the satisfiability
of the sub-formula, and if a satisfying assignment is found, the procedure stops. Otherwise, we pop

1https://momut.org/?page_id=355

https://momut.org/?page_id=355
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the sub-formula from the Z3 stack and push the sub-formula expressing the step from i to i + 1. The
procedure is iterated until a witness is found or the k bound is reached.

Test-case generation: if Z3 generates a counter-example which witnesses violation of language inclu-
sion between the specification and its mutant, we use this counter-example together with the specification
model in order to generate a test case. The test-case generation implementation closely follows Algo-
rithm 1.

3.6 Restrictions

The main restriction of the algorithm and tool described in this chapter is the limitation to fully-observable
deterministic automata. By composing different models and hiding their communication, one often pro-
duces non-deterministic specification models. Consequently, non-determinism is a desired model ele-
ment, which can not simply be neglected. Thus, to overcome this restriction, we developed a bounded
determinization procedure, which also removes silent transitions. Details can be found in Chapter 4. The
approach presented in the current chapter does, however, support underspecification in the sense that we
allow states with multiple different outputs. This allows the definition of an underspecified model, which
grants implementation freedom to the designer who actually builds the system. He may then decide
which of the choices will actually be implemented.

Other restrictions are:

• State-Space Explosion. As can be seen in Chapter 5, increasing the bound of the bounded model-
checking significantly increases the runtime of the test-case generation procedure, due to the in-
creasing state-space that needs to be examined. As already mentioned, BMC tackles parts of that
problem, as the search for a concrete counter example needs not necessarily traverse the complete
state-space, if it is found early. Another way to tackle this problem is the usage of partial models,
as tioco supports them and they can be analysed independently. If the system still is too complex,
the search depth needs to be reduced. As already mentioned, this provides a fair tradeoff between
generating a complete test suite and computing it efficiently.

• High Number of Mutants. The high number of mutants may pose a problem for efficiency as
well. By applying all proposed mutations to all transitions/locations in a system one may easily
produce over thousand mutants for small to medium examples. For more complex models there
might rise the need to reduce the number of mutants. Here we refer to the survey by Jia and
Harmann [103], that describes multiple ways of reducing mutants for mutation testing, which can
in general also be applied to model-based mutation testing.

• Limited Modeling Elements. As a last, more technical restriction, we would like to mention that
not all of UPPAALs features are supported by our tool. While the first prototype could process data
variables and parameters, the reimplementation (that was published under the name MoMuT::TA)
does not take them into account. It only works for classic timed automata with inputs and outputs.
While data variables could be added to the test-case generation with comparatively little effort,
the bounded determinization approach presented in the following chapter would still be restricted
to classical timed automata, as data variables might introduce non-deterministic updates. It is
noteworthy, however, that the bounded model-checking approach well with data variables and we
could not observe any performance loss when using data variables. A further restriction of the
test-case generation approach is that none of the tools can handle urgent or committed locations,
though the same behavior can be expressed without using these elements. Finally, we also do not
support urgent transitions, probabilities and the c-like functions that can be used in the declaration
part of UPPAAL models.



4 Bounded Determinization

Parts of this chapter are based on our publications at FORMATS 2015 [123] and TASE 2016 [16].

In the last chapter we showed a mutation-based test-case generation methodology, which is restricted
to deterministic and fully-observable specifications. To overcome this restriction, the current chapter will
investigate the removal of silent transitions and the determinization of timed automata.

The design of modern embedded systems often involves the integration of interacting components I1

and I2 that realize some requested behavior. Figure 4.1 illustrates two components I1 and I2 that realize
the integrated system I . In early stages of the design, I1 and I2 are high-level and partial models that
facilitate considerable implementation freedom to the designer. In practice, this freedom is reflected in
the non-deterministic choices that are intended to be resolved during subsequent design refinement steps.
In addition, the composition of two components involves their synchronization on some shared actions.
Typically, the actions over which the two components interact are hidden and become unobservable to the
user. It follows that the overall specification I = I1 || I2 can be a non-deterministic partially observable
model.

I2

a b c

f g

d

e

I = I1 ‖ I2

I1

Figure 4.1: Embedded components I1 and I2, and their composition I .

The passage from a high-level model towards an implementation consists of an iteration of refinement
steps. In every refinement step, the designer must ensure that the more concrete model I ′ restricts the
output behavior of I (e.g. by resolving some of the non-deterministic choices in I) and does not add
new outputs which I does not admit. It follows that the designer has to check, using for instance model
checking or model-based testing techniques, whether I ′ refines I . When considering non-deterministic
partially observable models, the notion of refinement is often based on trace or alternating trace inclusion.
In practice, checking whether I ′ refines I often requires the determinization of I . Additionally, for many
problems such as model-based testing, observability, implementability and language inclusion checking,
it is desirable and in certain cases necessary to work with the deterministic model.

In contrast to the classical automata theory, determinism and observability play a crucial role in the
theory of timed automata. In particular, deterministic TA (DET(TA)) are strictly less expressive than
the fully observable non-deterministic NON-DET(TA) [29, 162, 86], whereas the latter are strictly less
expressive than timed automata with silent transitions (TAε) [50]. This strict hierarchy of TA with re-
spect to determinism and observability has an important direct consequence - NON-DET(TA) are not
determinizable in general and silent transitions cannot be removed in general without changing the au-
tomaton’s language.

In this chapter, we propose a procedure for bounded determinization of NON-DET(TAε). Given an
arbitrary strongly responsive2 NON-DET(TAε) A and a bound k, our algorithm computes a deterministic

2In model-based testing, strong responsiveness is the requirement that there are no loops consisting of only silent transitions,
otherwise the tester cannot distinguish between deadlocks and livelocks.
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Figure 4.2: Running example for the silent transition removal and the determinization ap-
proach.

automaton DET(A) in the form of a timed tree, such that every timed trace consisting of at most k ob-
servable actions is a trace in A if and only if it is a trace in DET(A). It provides the basis for effectively
applying the model-based mutation testing approach presented in Chapter 3 to non-deterministic specifi-
cations, but also aids other applications, like bounded refinement checking and other test-case generation
procedures.

The proposed algorithms are performed in three steps:

1. we unfold the original automaton into a finite tree and rename the clocks in a way that only needs
one clock reset per transition,

2. we remove the silent transitions from the tree,

3. we determinize it.

Our determinization procedure results in a TA description which includes diagonal [58] and disjunctive
constraints. Although non-standard, this representation is practical and optimized for the bounded setting
– it avoids costly transformation of the TA into its standard form and exploits efficient heuristics in
SMT solvers that can directly deal with this type of constraints. In addition, our focus on bounded
determinization enables us to consider models, such as TA with loops containing both observable and
silent transitions with reset, that could not be determinized otherwise. We implemented the functionality
as an extension to the tool MoMuT::TA.

Running example. The different steps of the algorithms will be illustrated on a running example of a
coffe-machine shown in Figure 4.2. After inserting a coin, the system heats up for zero to three seconds,
followed by a beep-tone indicating its readiness. Alternatively, if there is no coffee or water left, the beep
might occur after exactly two seconds, indicating that the refunding process has started and the coin will
be returned within four seconds. Heating up and graining the coffee together may only take up to two
seconds, indicated by the invariant of the graining location. Then the brewing process starts and finally
the machine releases the coffee after one second of brewing. There is no observable signal indicating the
transition from graining to brewing, thus this transition is silent.

The remainder of the chapter is structured as follows: first, we illustrate the first step of our procedure,
the bounded-unfolding of the automaton and the renaming of clocks (Section 4.1). This is followed by
the second step, the removal of silent transitions (Section 4.2) and the final step, our determinization
approach (Section 4.3). Then, in Section 4.4, we will discuss determinization of networks of timed
automata and in Section 4.5 we will discuss how the individual steps of the silent transition removal and
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determinization can be performed simultaneously in an on-the-fly algorithm. In Section 4.6 we discuss
the limitations of the approach and then in Section 4.7 we discuss our implementation and evaluate the
prototype on some examples.

4.1 Preprocessing

4.1.1 k-Bounded Unfolding of Timed Automata

Algorithm 2 Unfolding of a TAε.
Input: strongly responsive NON-DET(TAε) A, bound k
Output: Uk(A), a tree of depth K and observable depth k

1: CREATE q̂t in Uk(A) . root of the tree
2: P ← {(q̂, q̂t, 0)} . set of locations to process
3: while P 6= ∅ do
4: PICK (q, qt, i) ∈ P
5: P ← P\(q, qt, i)
6: if i < k then
7: for each τ = (q, α, g, ρ, q′) ∈ trans(q) do
8: CREATE q′t in Uk(A) . add target location to tree
9: I(q′t)← I(q′) . copy invariant to new location

10: CREATE τt = (qt, α, g, ρ, q′t) in Uk(A) . add transition to tree
11: if α = ε then . update locations that need to be processed
12: P ← P ∪ {(q′, q′t, i)}
13: else
14: P ← P ∪ {(q′, q′t, i+ 1)}
15: end if
16: end for
17: end if
18: end while

Given a NON-DET(TAε) A which is strongly responsive, its k-prefix language Lk(A) ⊆ L(A) is the
set of observable timed traces induced by all accepting runs ofAwhich are of observable length bounded
by k. That is,

Lk(A) = {w ∈ L(A) | |w| ≤ k}, (4.1)

where |w| depicts the observable length of the trace w. By unfolding A and cutting it at observable level
k, the resulting TA, Uk(A), satisfies

L(Uk(A)) = Lk(A). (4.2)

Algorithm 2 illustrates how to create Uk(A). First, we create an initial location in the tree and create
a state tuple consisting of the initial location of A, the initial location of Uk(A) and a 0 for the current
depth (Line 2). Then, for each state tuple in P , we search for all currently enabled transitons. For each
of these transitions, we create a new location in Uk(A), and copy the transition to Uk(A) with the new
location as target location. Then, we create a new state tuple, were in case of an observable transition,
i is increased, otherwise it stays unchanged. Uk(A) is in the form of a finite tree, where each path that
starts at the root ends after at most k observable transitions, and we may also further cut A by requiring
that all leaves are accepting locations. Note, that if we reach in Uk(A) a copy of an accepting location q
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of A by a silent transition then it will not be marked as an accepting location (but another copy might be
marked as an accepting location if reached by an observable transition).

Figure 4.3(a) shows the unfolding of the coffee-machine up to observable depth three. The left branch
is longer than the right, as it contains a silent transition.

4.1.2 Renaming the Clocks

Every unfolded timed automaton can be expressed by an equivalent timed automaton that resets at most
one clock per transition. This known normal form [39] crucially simplifies the next stages of our al-
gorithm, where we do not need to bother with multiple clock resets in one transition. Additionally, we
benefit from the fact, that each transition of same depth resets the same clock, which simplifies the deter-
minization. The basic idea is to substitute the clocks from the original automaton by new clocks, where
multiple old clocks reset at the same transition are replaced by one single new clock, as they measure
the same time until they are reset again. The substitution of the clocks works straight forward: at each
path from the root, at the i-th observable transition, a new clock xi is introduced and reset, and if this
transition is followed by l > 0 silent transitions then new clocks xi,0, . . . , xi,l−1 are introduced and reset.
A clock x that occurs in a guard is substituted by the new clock that was introduced in the transition
where the last reset of x happened, or by x0 if it was never reset. Let τi and τj be two transitions on the
same path in the original automaton at observable depth i, j, s.t. i < j. Furthermore, a clock x appearing
in the guard of τj , is reset before in τi, but is not reset on any transition in between τi and τj . Then, xi is
introduced and reset at τi and the original clock variable x is substituted by xi in the guard of τj . Clocks
in invariants are updated the same way as guards. Figure 4.3(b) illustrates the clock renaming applied to
the coffee machine. In the guards of the two beep-transitions starting at q1, x is replaced by x1, since
the last reset of x in the original automaton was at depth one, while in the coffee-transition from q3 it is
replaced by x2,0, as x was reset in the first silent transition after depth two.

The concrete algorithm used for renaming of the clocks is presented in pseudo-code in Algorithm 3.
The original clocks are x0, . . . , xn−1. Each new clock has either one index (l1) in case the transition in
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Figure 4.3: Unfolding, clock renaming and integrating of invariants.
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Algorithm 3 Renaming the Clocks.
Input: A ∈ NON-DET(TAε)K , a tree of depth K and observable depth k, clocks C, |C| = n
Output: A ∈ NON-DET(TAε)K , clocks C′, single clock reset per transition, same clock reset at same

(observable, silent) level
1: l1 ← 0 . observable (primary) level
2: l2 ← −1 . silent (secondary) level
3: for i← 0, .., n− 1 do
4: X[i]← x0 . x0 is reset at the initial location
5: end for
6: RENAMECLOCKS(q0, X, l1, l2)
7:

8: procedure RENAMECLOCKS(q,X, l1, l2)
9: I(q)← I(q)[xi ← X[i]] . renaming the clocks in the invariant I(q)

10: for each τ = (q, α, g, ρ, q′) ∈ trans(q) do
11: for i← 0, .., n− 1 do
12: g ← g[xi\X[i]] . renaming the clocks in the guard g
13: end for
14: if α = ε then . silent transition
15: l2 ← l2 + 1
16: x← xl1,l2 . the new reset clock in case of a silent trans.
17: C′ ← C′ ∪ {xl1,l2}
18: else
19: l1 ← l1 + 1
20: l2 ← −1
21: x← xl1 . the new reset clock in case of an observable trans.
22: C′ ← C′ ∪ {xl1}
23: end if
24: for i← 0, .., n− 1 do
25: if xi ∈ ρ then
26: X[i]← x . updating the clock substitution list
27: end if
28: end for
29: ρ← {x} . updating the reset clocks of τ
30: if l1 < k then
31: RENAMECLOCKS(q′, X, l1, l2) . recursive call with the target location
32: end if
33: end for
34: end procedure

which it is reset is observable, or two indices (l1, l2) in case of a silent transition. After the removal of
the silent transitions stage we will be left with clocks with a single index and the same clock reset for the
same level of the tree. The vector X[0..n − 1] holds the clock substitution list: X[i] refers to the new
clock that substitutes the original clock xi. The set of transitions with source location q is denoted by
trans(q).
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Figure 4.4: An example automaton with a silent transition (a) and the corresponding fully
observable automaton with a bypass transition (b).

4.1.3 Integrating Invariants into Guards

In this last preprocessing step, we integrate all location invariants into the guards of all outgoing transi-
tions. When the guards are updated and synchronized during the silent transition removal, this ensures
that the constraints of the invariants are also taken into account in that step. They are added to the
guards via conjunction. The invariants are still kept unchanged in the automaton. Figure 4.3(c) shows
the integrating of the invariants in the running example, where e.g., the guard of the silent transition was
augmented by x1 < 2. Note that the guard of the coffee transition was not modified, as x2,0 = 1 is
already more strict than x2,0 ≤ 1. As no transition can be traversed if the invariant of its source location
is not enabled, adding the invariants to the guards does not change the language of the automaton.

4.2 Silent Transition Removal

In this section we give an algorithm that removes the silent transitions from the NON-DET(TAε) A, which
is in the form of a finite tree with renamed clocks. Thus, at each level i there will be a single clock xi
reset on all transitions of that level. That is, one clock x0 is reset at the initial location. Then, at each path
from the root, at the i-th observable transition the new clock xi is reset, and if this transition is followed
by l > 0 silent transitions then new clocks xi,0, . . . , xi,l−1 are reset. In the next observable transition the
clock xi+1 is reset, and so on. All these clocks are not reset again. After removing the silent transitions,
the new TA, O(A), will have the same one clock reset at all transitions of same level. Algorithm 4 shows
the workflow of the silent transition removal and Figure 4.4 illustrates the general idea.

We remove the silent transitions one at a time, where at each iteration we remove the first occurrence
of a silent transition on some path from the root, until no silent transitions are left (e.g. we can pick a
path and remove all its silent transitions one-by-one, then move to another path, and so on). So, let τs,0
be such a first silent transition found by Line 2 of the algorithm, leading from location qs to location qs,0
with guard gs,0 and reset of clock xs,0. Let qs be reached from location qs−1 with an observable transition
τs and with guard gs. The case where qs is the initial location is simpler, as it does not require building
a bypass transition. In order to remove the silent transition τs,0 after forming a transition that bypasses
it, several steps are carried out, that will be explained in detail in the following subsections. First, we set
an auxiliary lower bound on the clock that is reset on the silent transition by updating the guard (Line 3).
Then, we create the bypass transition using an enabling guard eg(τs,0) which represents the upper bound
until when the silent transition τs,0 is enabled (Line 4). In Line 5 we construct a taken guard tg(τs,0)
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Algorithm 4 Removing the Silent Transitions.
Input: A ∈ NON-DET(TAε)k in the form of a tree of observable depth k with renamed clocks
Output: O(A) ∈ NON-DET(TA)k, such that L(O(A)) = L(A)

1: while there are silent transitions do
2: FIND first (from root) silent transition τs,0 from qs to qs,0
3: SET lower bound to the silent transition
4: CREATE bypass transition with enabling guard
5: AUGMENT transitions from qs,0 with taken guard
6: UPDATE guards on paths from qs,0
7: UPDATE location invariants
8: REMOVE τs,0
9: end while
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Figure 4.5: Fully observable non-deterministic TA.

that ensures that the transitions from qs,0 come after the necessary delay that is enforced by the silent
transition. The taken guard is added to all transitions leaving qs,0. Next, in Line 6 we update all future
guards referring to the deleted clock xs,0. Finally, we update all invariants referring to the deleted clock
(Line 7) and we remove the silent transition τs,0.

4.2.1 Setting a Lower Bound to the Silent Transition.

We set a lower bound to the silent transition by augmenting the guard gs,0 of τs,0 to be g′s,0 = gs,0∧ (0 ≤
xs), where xs is the clock that is reset on the transition τs that precedes the silent transition. This
additional constraint per definition always evaluates to true, but it is used in the next step to compute the
unary constraints of the enabling guard. The guard of the silent transition in Figure 4.3 (c) after setting
the lower bound is 1 < x1 < 2 ∧ 0 ≤ x2.

4.2.2 Creating a Bypass with the Enabling Guard.

The enabling guard eg(τs,0) guarantees that each clock’s constraint that was part of the silent transition is
satisfied at some non-negative delay and that these constraints are satisfied simultaneously, thus at some
point during the bypass transition the silent transition would have been enabled as well. We describe here
how the enabling guards are defined for strict inequalities, as shown in the upper part of Table 4.1. The



Chapter 4. Bounded Determinization 42

other cases are dealt similarly, as seen in the table, and the constraint xi = ni is treated as ni ≤ xi ≤ ni.
For every pair of a lower bound constraint mi < xi and an upper bound constraint xj < nj , where n and
m are constants, i 6= j and xi, xj 6= xs (xs is the clock that is reset at τs), that appear in g′s,0 we form the
enabling guard binary constraint xj − xi < nj −mi as shown in the first line of Table 4.1.

The next two lines consider constraints that involve the clock xs, where xs will be removed as it is
the clock that will be reset on the bypass and is considered of value 0. Note, that for each upper bound
constraint xj < nj we use the lower bound constraint 0 ≤ xs that was added in the previous step of the
algorithm to compute the enabling guard unary constraint xj < nj , which guarantees that at the time
of the bypass xj does not pass its upper bound constraint of the silent transition. An example of such
a unary constraint is marked in red in the transition from q1 to q3 in Figure 4.5. The silent transition
in the original automaton could not have been enabled if x1 had already been greater than two after the
beep-transition, thus the bypass can also only be enabled while x1 is smaller than two. The running
example does not contain any binary constraints.

Note that the upper bound constraints of the invariant of qs were integrated into the guard of the silent
transition. Thus, they are also integrated into the enabling guard. Consequently, the bypass will satisfy
the constraints of the location invariant. The invariant itself remains unchanged, as it remains active for
all traces that pass through qs, but do not take the silent transition.

To create the bypass, we split the paths through qs in the original automaton A into two. Those that
do not take the silent transition τs,0 continue as before from qs−1 to qs and then to some location different
from qs,0. The paths that went through τs,0 are directed from qs−1 to qs,0 and then continue as before.
The bypass τ ′s from qs−1 to qs,0 has the same observable actions as those of τs, the same new clock
reset xs, and the guard g′s which is the guard gs of τs augmented with the enabling guard eg(τs,0) (see
Figure 4.4). Figure 4.5 shows the removal of the silent transition illustrated on the coffee-machine. The
transition from q1 to q3 is the bypass and the transition from q1 to q2 is the original transition. Since the
silent transition was the only transition leaving q2, q2 does not contain any outgoing transitions anymore,
once the bypass is generated.

4.2.3 Augmenting the Taken Guard.

For each transition from qs,0 to qs+1 we augment its guard gs+1 by forming g′s+1 = gs+1 ∧ tg(τs,0) (see
Figure 4.4), where tg(τs,0) is the taken guard. tg(τs,0) is composed of a single constraint: 0 ≤ xs,0,
where xs,0 is the clock that is reset at the silent transition τs,0. In the next stage of the algorithm of
updating the future guards it will be transformed into the conjunction of the lower bound constraints
mi < xi or mi ≤ xi that appear in g′s,0. These constraints make sure that we spend enough time at qs,0
before moving to the next locations, as if we had taken the silent transition. The constraints are also used
for synchronization of the future guards in the next step. In Figure 4.5, the red-marked part of the guard
from transition q3 to q6 shows the taken guard that has already been updated from 0 ≤ x2,0 to 1 < x1.

Silent Trans. Constraints Clock Reset Enabling Guard Constraint
(mi < xi) ∧ (xj < nj) xs xj − xi < nj −mi

(ms < xs) ∧ (xj < nj) xs xj < nj −ms

(mi < xi) ∧ (xs < ns) xs mi − ns < xi
(mi ≤ xi) ∧ (xj < nj) xs xj − xi < nj −mi

(mi < xi) ∧ (xj ≤ nj) xs xj − xi < nj −mi

(mi ≤ xi) ∧ (xj ≤ nj) xs xj − xi ≤ nj −mi

(mi = xi) ∧ (xj = nj) xs xj − xi = nj −mi

Table 4.1: Enabling guard constraints.
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Silent Trans. Constr. Future Constr. Replaced Constr.
mi < xi, {xs,0} ms+j < xs,0 or ms+j ≤ xs,0 mi +ms+j < xi
mi ≤ xi, {xs,0} ms+j < xs,0 mi +ms+j < xi
mi ≤ xi, {xs,0} ms+j ≤ xs,0 mi +ms+j ≤ xi
xi < ni, {xs,0} xs,0 < ns+j or xs,0 ≤ ns+j xi < ni + ns+j
xi ≤ ni, {xs,0} xs,0 < ns+j xi < ni + ns+j
xi ≤ ni, {xs,0} xs,0 ≤ ns+j xi ≤ ni + ns+j
xi = ni, {xs,0} xs,0 ∼ ns+j xi ∼ ni + ns+j

Table 4.2: Update rules for future guards after removing the silent transitions.

4.2.4 Updating the Future Guards.

The removal of the silent transition τs,0 enforces updating of the guards in the paths that start at qs,0 and
that refer to the clock xs,0 that is reset on the silent transition. The constraints that refer to the other
clocks can remain as they are.

The simplest case is when the silent transition guard g′s,0 contains an exact constraint xi = ni,
because then any future constraint of the form xs,0 ∼ l where ∼ is one of the signs =, <, >, ≤ or ≥,
can be replaced by xi ∼ ni + l. In that case we know the exact time of the silent transition, and all
other constraints may be ignored. So, let us assume that the silent transition does not contain an exact
constraint. The rules for updating the future guards are summarized in Table 4.2. Note, that an equality
constraint xs,0 = ns+j in a future guard may be treated as ns+j ≤ xs,0 ≤ ns+j .

Let gs+1, . . . , gs+p be the ordered list of guards of consecutive transitions τs+1, . . . , τs+p along a path
that starts at qs,0. Suppose, for simplicity, that each gs+j contains constraints that refer to xs,0 (if not -
we can ignore gs+j). Then, if gs+j contains the constraint ms+j < xs,0, it is replaced by the conjunction
of constraints of the form mi + ms+j < xi, for each constraint mi < xi that appears in g′s,0. Similarly,
for upper bound constraints. In Figure 4.5, one future guard was updated in the transition from q3 to q6:
The original guard of this transition was x2,0 = 1 (where x2,0 was reset on the silent transition) and the
guard of the silent transition was 1 < x1 < 2. Thus, according to the update rules, the updated future
guard is 2 < x1 < 3 (written in black), conjuncted with the taken guard (marked in red).

These rules ensure that each future constraint on the clock xs,0 separately conforms to and does not
deviate from the possible time range of the silent transition. Yet, we need to satisfy a second condition:
that along each path that starts at qs,0 these future occurrences of xs,0 are synchronized. This is achieved
by augmenting the future guards with constraints of the form that appear in Table 4.3. No transition in
our running example needs synchronization, hence we use a different example: the upper automaton in
Figure 4.6 shows one silent transition followed by two observable transitions. Using only the previous
update rules when removing the silent transition, the first observable transition might occur between
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Figure 4.6: Guard synchronization.
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Constr. of gs+j Constr. of gs+i, {xs+i}, i < j Sync. Constr. of gs+j
ms+j < xs,0 xs,0 < ns+i or xs,0 ≤ ns+i ms+j − ns+i < xs+i
ms+j ≤ xs,0 xs,0 < ns+i ms+j − ns+i < xs+i
ms+j ≤ xs,0 xs,0 ≤ ns+i ms+j − ns+i ≤ xs+i
xs,0 < ns+j ms+i < xs,0 or ki ≤ xs,0 xs+i < ns+j −ms+i

xs,0 ≤ ns+j ms+i < xs,0 xs+i < ns+j −ms+i

xs,0 ≤ ns+j ms+i ≤ xs,0 xs+i ≤ ns+j −ms+i

xs,0 = ns+j xs,0 = ns+i xs+i = ns+j − ns+i

Table 4.3: Synchronization constraints for future guards after removing silent transitions.

three and four seconds, and the second one between five and six seconds. If the first transition occurs
after three seconds and the second one after six, this would not conform to the original automaton which
required exactly two seconds between them. Thus, applying the last synchronization rule of Table 4.3,
the constraint x1 = 4−2 is conjuncted to the second guard. The lower automaton in Figure 4.6 illustrates
the synchronization. Note, we do not need a bypass transition here, since the silent transition starts in the
initial state.

4.2.5 Updating of Location Invariants.

In this last step, we need to update all location invariants that refer to xs,0, the clock that was reset by
the silent transition. Consider an invariant li in any location behind the silent transition (that might be
qs,0, the target location of the silent transition, or any following location). All constraints in li that do not
involve xs,0 can remain unchanged, and we can assume that there is only one constraint for each clock,
as a stronger upper bound subsumes a weaker one. Thus we only consider the constraint xs,0 < m. This
constraint is updated the same way as a future guard that refers to xs,0. The upper bounds of the silent
transition (xi < ni) and the upper bound of the invariant (xs,0 < m) are combined to the new upper
bounds xi < ni + m. Note that it is not necessary to synchronize updated invariants among each other,
as they only contain lower bounds and thus do not interfere with each other. The synchronization of the
future guards with the invariants already happened in the last step, as the constraints of the invariants
were added to the guards of the following transitions. Figure 4.5 shows that the invariant of location q3

was updated from x2,0 ≤ 1 to x1 ≤ 3, according to the upper bound x1 < 2 of the silent transition.

4.2.6 Removing the Silent Transition.

Finally, we can safely remove the silent transition τs,0 from qs to qs,0 after forming the bypass from qs−1

to qs,0 with the necessary modifications to the transition guards.

Theorem 4.1 (Silent Transitions Removal)
L(O(A)) = L(A).

A proof of the theorem can be found in Section 4.8.

4.3 Determinization

Existing determinization algorithms, as e.g. applied by Wang et al. [173], create the powerset of all
transitions to be determinized, and build one transition for each subset in the powerset. We propose an
alternative approach, that reduces the amount of locations and transitions in the deterministic automata,
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Figure 4.7: Modified guards added to future transition.
.

by shifting some complexity towards the guards. Our motivation is the use of SMT solvers for model-
based test-case generation from timed automata. The larger guards can be directly converted into SMT-
LIB formulas, and thus should not pose a problem. The produced automata contain disjunctions, both in
the guards and the invariants. While this does not conform to the standard definition of timed automata,
in the context of SMT-solving the disjcuntions can efficiently be processed and do not hinder test-case
generation.

The approach works under the following prerequisites: after the removal of the silent transitions the
timed automaton A is in the form of a tree of depth k. At each level i the same new clock xi is reset on
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Algorithm 5 Guard-Oriented Determinization.
Input: A ∈ NON-DET(TA)k in the form of a tree of depth k with renamed clocks
Output: D(A) ∈ TAk, such that L(D(A)) = L(A)

1: P ← {(q̂, 0)}
2: while P 6= ∅ do
3: PICK (qi, i) ∈ P ; P ← P\{(qi, i)} . For each tuple in P
4: for each α ∈ Σ do
5: if ∃ τ1(qi, α, g1, {xi+1}, q1) 6= τ2(qi, α, g2, {xi+1}, q2) then . Non-deterministic trans.
6: gacc ← false; g¬acc ← false
7: ADD new locations qacc, q¬acc
8: MERGE TRANSITIONS(A, qi, gacc, g¬acc, qacc, q¬acc)
9: for each transition τi(qi, α, gi+1, {xi+1}, qi+1) do

10: P ← P ∪ {(qi+1, i+ 1)} . Update P
11: end for
12: end if
13: end for
14: end while

each of the transitions of that level. This is the only clock reset on this level, and no clock is ever reset
again.

The basic idea behind the determinization algorithm is to merge all transitions of the same source
location and the same action via disjunction, and to push the decision which of them was actually taken to
the following transitions. The postponed decision which transition was actually taken can be solved later
on by forming diagonal constraints that are invariants of the time progress, and are added via conjunction
to immediately following transitions. Note that the distinction between accepting and non-accepting
locations increases complexity slightly: the determinization of transitions leading to accepting locations
and transitions leading to non-accepting locations cannot be done exclusively by disjunction of their
guards. We therefore need to add an accepting and a non-accepting location to the deterministic tree, and
merge all transitions leading to non-accepting locations and all transitions leading to accepting locations
separately. To ensure determinism for these transitions, we conjunct the negated guard of the accepting
transition to the guard of the non-accepting transition. Additionally, the location invariants of merged
target locations are combined via disjunction.

A pseudo-code description is given in Algorithm 5 and Algorithm 6. Algorithm 5 contains the outline
of the algorithm: the determinization is done in several steps applied to every location q with multiple
outgoing transitions with the same action (Line 5), starting at the initial location (Line 1). First, we add
an accepting and a non-accepting location qacc, q¬acc replacing the target locations of the multiple α
transitions (Line 7). Then we perform the merging of these transitions according to Algorithm 6: let qi
be such a location with multiple α transitions (Line 1). For each τi in the α transitions with guard g from
qi to qi+1, let g′ be the result of subtracting the clock xi+1 that is reset on τi from all clocks that appear in
g (Lines 2-5). Next, g′ is conjuncted to the guards of each transition τi+1 that follows τi and the source
location of τi+1 is set to either qacc or q¬acc, depending on whether qi+1 is accepting or not. Transitions
leaving q¬acc are additionally copied to qacc, in case the guards of α transitions overlap. (Lines 7,8).
Note that g′ evaluates to true in every branch below τi if τi was enabled, thus the conjunction does not
change the language of the automaton. Figure 4.7 illustrates the conjunction of the modified guards
on our running example, marked in red. Note that the determinization did not involve any accepting
locations, thus there was no splitting into qacc and q¬acc. Next, all the α-transitions from q leading to
accepting locations are merged into a transition leading to qacc (Line 19) and all others into a transition
leading to q¬acc (Line 20), by disjuncting their guards (Lines 12,15). The guard of the transition leading
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Algorithm 6 Merging of Transitions.
Input: A, qi, gacc, g¬acc, qacc, q¬acc
Output: A′, with merged transitions

1: for each transition τi(qi, α, gi+1, {xi+1}, qi+1) do . For each α transition
2: g′ ← gi+1

3: for each clock xj in gi+1 do
4: g′ ← g′[xj\xj − xi+1] . Build diagonal constraints
5: end for
6: for each transition τi+1(qi+1, β, gi+2, {xi+2}, qi+2) do . Move transitions leaving qi+1

7: ADD τacc(qacc, β, (gi+2 ∧ g′), {xi+2}, qi+2) . to qacc
8: ADD τ¬acc(q¬acc, β, (gi+2 ∧ g′), {xi+2}, qi+2) . and q¬acc
9: REMOVE τi+1

10: end for
11: if accepting(qi+1) then
12: gacc ← gacc ∨ gi+1; li(qacc) = li(qacc) ∨ li(qi+1) . Merge guards and invariants
13: end if
14: if ¬accepting(qi+1) then
15: g¬acc ← g¬acc ∨ gi+1; li(q¬acc) = li(q¬acc) ∨ li(qi+1) . Merge guards and invariants
16: end if
17: REMOVE τi and qi+1

18: end for
19: ADD transition τacc(qi, α, gacc, {xi+1}, qacc)
20: ADD transition τ¬acc(qi, α, (g¬acc ∧ ¬gacc), {xi+1}, q¬acc) . Add merged transitions

to q¬acc is conjuncted to the negation of the other guard, to ensure determinism (Line 20). Additionally,
in Lines 12 and 15, the location invariants of the different target locations of the merged transitions are
combined via disjunction. Finally, all merged τi and their target locations can be removed (Line 17).
Figure 4.8 shows the determinized coffee-machine. The location q¬acc contains a location invariant that
is a disjunction of the invariants from locations q2, q3 and q4 of the non-deterministic tree.

Theorem 4.2 (Determinization)
The determinization algorithm constructs a deterministic timed automaton D(A) such that L(D(A)) =
L(A).

The proof of the theorem can be found in Section 4.8.

4.4 Networks of Timed Automata

Up to this point, we only considered single timed automata, both for the test-case generation and the
determinization and silent transition removal. In this section, we will first discuss how to build the
product of timed automata with inputs and outputs in a network and then show how to include the
product building directly into the bounded unfolding. The integration of the two steps enables us to
avoid explicitly building the product, which may become very big and complex.

4.4.1 Product of Timed Automata with Inputs and Outputs

To define composition between TAIOε we extend the definition of parallel products between I/O Au-
tomata introduced by David et al. [71], by including silent transitions and hiding communication transi-
tions after the product. The hiding of the communication transitions provides a black-box view on the
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system. Our definition differs from the one by Krichen and Tripakis [117], as our TAIOε do not contain
deadlines. Furthermore, our definition is less restrictive, as we do not require disjoint sets of external
input and output actions, respectively. Thus our product may produce non-deterministic automata, which
will be determinized later on. Note that, in contrast to our definition below, these previous notions of
composition are defined for exactly two automata: in the first definition [71] two synchronizing transi-
tions form a new output transition, that can be used for composition with another automaton. Thus two
different automata can synchronize on the same output transition of a third automaton simultaneously. In
the second definition [117] communication transitions are hidden by the product. Thus, a third automa-
ton could not synchronize with the product anymore, making the product definition not associative. Our
product definition is associative for the closed set of TAIOε it is applied to, but looses this property if an
additional TAIOε is composed afterwards, due to the hiding.

Definition 4.1
The parallel product of an NTA N composed of n TAIOε Ai is the non-deterministic TAIOε A =
(Q, (q̂1, . . . , q̂n),ΣI

e∪ΣO
e ∪{ε}, C1∪· · ·∪Cn, I,∆) whereQ ⊆ (Q1×· · ·×Qn), I : (Q1×· · ·×Qn)→

location invariants s.t. I(q1, . . . , qn) = I1(q1)∧· · ·∧In(qn) andQ and the set of transitions ∆ are defined
by the following inductive rules, where (. . . , qi, . . . )

a,g,ρ−−−→ (. . . , q′i, . . . ) means that only the state of the
i-th automaton changes:

Start

(q̂1, . . . , q̂n) ∈ Q
External

qi
a,g,ρ−−−→ q′i a ∈ ΣO

e ∪ ΣI
e (. . . , qi, . . . ) ∈ Q

(. . . , qi, . . . )
a,g,ρ−−−→ (. . . , q′i, . . . ) (. . . , q′i, . . . ) ∈ Q

Internal
qi

a,g1,ρ1−−−−→ q′i qj
a,g2,ρ2−−−−→ q′j a ∈ ΣO

i a ∈ ΣI
j (. . . , qi, . . . , qj , . . . ) ∈ Q

(. . . , qi, . . . , qj , . . . )
ε, g1∧g2, ρ1∪ρ2−−−−−−−−−→ (. . . , q′i, . . . , q

′
j , . . . ) (. . . , q′i, . . . , q

′
j , . . . ) ∈ Q

Silent
qi

ε, g, ρ−−−→ q′i (. . . , qi, . . . ) ∈ Q
(. . . , qi, . . . )

ε, g, ρ−−−→ (. . . , q′i, . . . ) (. . . , q′i, . . . ) ∈ Q

4.4.2 k-Bounded Unfolding of Networks of Timed Automata

We will now define how to integrate building the product of a network of timed automata directly into
the bounded unfolding, as described in Section 4.1.1. Given an NTA N composed of n TAIOε Ai, that
does not contain any loops consisting purely of silent and internal transitions, Algorithm 7 shows how to
unfold it into a tree-like single automaton of observable depth k.

The main structure of the algorithm is very similar to that of the unfolding algorithm for single timed
automata (Algorithm 2). However, there are a few adaptions: The set P , which stores the tuples that need
yet to be processed, now contains the current locations of all automata in the network, and is initialized
with all initial locations (Line 2).

When a tuple is processed, we iterate through all automata in the network, and investigate all tran-
sitions that are enabled in that automata. For each transition, we distinguish three cases: the first two
cases, external transitions (Lines 9-13) and silent transitions (Lines 14-18), are processed quite similarly
to transitions in the unfolding of single automata. For each of them we create a new location and tran-
sition in the tree and store a new state tuple in P . The current locations of all automata but the one
currently processed stay the same. In the case of external transitions we increase i, otherwise it stays
unchanged.

The third case, internal transitions (Lines 19-25), includes building a new silent transition from two
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communicating transitions. For each enabled output transition of one automaton, we build a new silent
transition for each enabled input transition of another automaton that has the same label. The combined
transition resets the union of the clock resets of the individual transitions, and combines their guards via
conjunction. We then update the current location of both automata, when building the new tuple that is
stored in P .

In all three cases, the invariant of the new location in the tree is the conjunction of the invariants of
all current locations in the network.

Algorithm 7 Unfolding of an NTA.
Input: strongly responsive NTA N composed of n TAIOε Ai, bound k
Output: Uk(A), a tree of depth K and observable depth k

1: CREATE q̂t in Uk(A) . root of the tree
2: P ← {((q̂0 · · · q̂n), q̂t, 0)} . set of locations to process
3: while P 6= ∅ do
4: PICK ((q0 · · · qn), qt, i) ∈ P
5: P ← P\{((q0 · · · qn), qt, i)}
6: if i < k then
7: for each Aj ∈ N do . for each automaton Aj in the network
8: for each τ = (qj , α, g, ρ, q

′
j) ∈ trans(qj) do . for each enabled transition in Aj

9: if α ∈ ΣO
e ∪ ΣI

e then . process observable transitions
10: CREATE q′t in Uk(A) . add target location to tree
11: I(q′t)← I(q′j) ∧

∧
l 6=j(I(ql)) . copy invariants to new location

12: CREATE τt = (qt, α, g, ρ, q′t) in Uk(A) . add transition to tree
13: P ← P ∪ {((q0 · · · q′j · · · qn), q′t, i+ 1)}
14: else if α = ε then . process silent transitions
15: CREATE q′t in Uk(A) . add target location to tree
16: I(q′t)← I(q′j) ∧

∧
l 6=j(I(ql)) . copy invariants to new location

17: CREATE τt = (qt, α, g, ρ, q′t) in Uk(A) . add silent transition to tree
18: P ← P ∪ {((q0 · · · q′j · · · qn), q′t, i)}
19: else if α ∈ ΣO

j then . process internal transitions
20: for each Ah ∈ N s.t. h 6= j ∧ α ∈ ΣI

h do . for each Ah where α is an input
21: for each (qh, α, gh, ρh, q

′
h) ∈ trans(qh) do . for each enabled α transition

22: CREATE q′t in Uk(A) . add target location to tree
23: I(q′t)← I(q′j) ∧ I(q′h) ∧

∧
l 6=j,l 6=h(I(ql)) . copy invariants

24: CREATE τt = (qt, ε, g ∧ gh, ρ ∪ ρh, q′t) in Uk(A) . add silent transition
25: P ← P ∪ {((q0 · · · q′j · · · q′h · · · qn), q′t, i)}
26: end for
27: end for
28: end if
29: end for
30: end for
31: end if
32: end while



Chapter 4. Bounded Determinization 50

Algorithm 8 Deterministic bounded unfolding of NTAN .
Input: NTAN , max. depth k
Output: TAIOA such that Lk(N) = Lk(A)

1: q̂s ← (q̂1 . . . q̂n); q̂t ← new location
2: locationst ← {q̂t}; transitiont ← ∅
3: CR : Clock → Clock = (x 7→ x0)∀x ∈

⋃
Ci . map for clock renaming

4: GU : Clock → Constraint = ∅ . constraints for future guard update
5: GS : Clock → (Clock, Constraint) = ∅ . constraints for future guard synch.
6: NG : {Constraints} = ∅ . constraints to resolve non-determinism
7: P1 ← {(q̂t, q̂m, 0, 0, CR,GU ,GS,NG)};
8: for i ∈ 1..k do
9: Pi+1 ← ∅

10: while Pi 6= ∅ do
11: PICK (qt, qi, i, e, CR,GU ,GS,NG) ∈ Pi
12: Pi ← Pi∪ε-CLOSURE(qt, qi, i, e, CR,GU ,GS,NG)
13: Pi ← Pi∪ INT(qt, qi, i, e, CR,GU ,GS,NG)
14: Pi+1 ← Pi+1∪ EXT (qt, qi, i, e, CR,GU ,GS,NG)
15: end while
16: end for

4.5 On-The-Fly Algorithm

Applying the different steps of the determinization and silent transition removal sequentially requires
traversing the complete state-space of the unfolding several times. Once for the unfolding, once for the
clock-renaming, multiple times for the silent transition removal (where we need to traverse the subtree
beneath each removed silent transition to update the future guards) and once for the determinization.

As the unfolding naturally leads to a huge state-space, this sequential approach is rather ineffective.
Thus, in this section we propose an on-the-fly algorithm that performs at each level of unfolding the
following tasks: building the product3, hiding the communication3, renaming the clocks, removing silent
transitions, and determinizing.

The main feature of the algorithm is the fact that it stores all constraints needed for updating future
transitions, and only needs to explore the state-space exactly once. Additionally, as this algorithm has
access to the original model during the determinization (where the sequential approach only had the
unfolded version), it can merge locations that were the same in the original model and store the same
constraints for the clock updating. Thus, if that optimization is enabled, the resulting automata are
directed acyclic graphs instead of trees, and contain a far lower amount of locations.

The unfolding will be performed on the NTAN = (A,ΣI
e,Σ

O
e ,Σi), where A = {A1..An} and each

Ai = (Qi, q̂i,Σε,i, Ci, Ii,∆i). The approach is restricted to NON-DET(TA) that do not contain loops
of purely silent and communication actions. The NTA may as well only contain one automaton, so
that using the same algorithm for determinization of single automata is possible. The core part of the
algorithm processes state tuples of the form (qt, qi, i, e, CR,GU ,GS,NG), where qt is the location in
the unfolded tree, qi = (q(i,1), . . . q(i,n)) are the current locations in the NTA, i is the current depth and e
is the number of silent transitions already processed at the end of the current trace. CR (clock renaming)
is a partial function mapping clocks to clocks, used for renaming of the clocks. The renaming ensures
the property that in each transition only one clock is reset and that all transitions of same depth reset the
same clock. GU (guard update) is a partial function mapping clocks to constraints, storing the constraints

3These steps are only applied in case of NTA, the algorithm also works for single automata.
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Figure 4.9: An NTA depicting a coffee machine with three components. One for payment,
one for product selection and one for providing the drinks.

of removed silent transitions. Keeping these constraints enables the updating of future guards that refer
to a clock that was reset on a deleted silent transition, to keep the timing constraints valid. GS (guard
synchronization) is a partial function mapping clocks to tuples of clocks and constraints, storing the clock
resets and guards of all transitions that were updated using GU , so these transitions can additionally be
synchronized among each other, to keep the delays between them valid. NG (next guard update) stores
diagonal constraints that are built during the determinization and need to be attached to the guards of all
transitions directly beneath the determinized transitions. These state tuples are stored in k sets Pi.

The main algorithm is shown in Algorithm 8, and the three sub-algorithms it uses are shown in detail
in Algorithm 10–12. P1 is initialized with a single state tuple, containing the initial location of the tree,
qt = q̂t, the initial states ofA, qs = (q̂1, . . . q̂n), 0 as current depth, 0 as number of prior silent transitions,
CR mapping every clock to x0 and GU ,GS and NG being empty (Lines 1–7).

The outermost loop in the algorithm increases the index i from 1 to k. At each step, Pi contains
the state tuples of the current depth, that need yet to be processed. Pi+1 contains the state tuple of
the next observable depth. Then, for every element in Pi three stages are executed. In Line 12, we
process all silent transitions that can be taken in any of the automata Ai in their current location. This
does not produce any new locations or transitions in the tree, but creates new state tuples to be stored
in Pi. Details of this stage can be found in Subsection 4.5.1 and Algorithm 10. The second stage is
performed in Line 13, where communicating transitions between the automata are synchronized. The
synchronization via an action a ∈ Σi is only performed if one of the current locations of an automaton
Ai in the NTA provides a as an output and another automaton Aj accepts it as an input in its current
location. As the synchronized transitions are hidden, they are afterwards processed in the same way as
the silent transitions. Details can be found in Subsection 4.5.2 and Algorithm 11. The third and last step
handles external transitions. This might introduce new locations and transitions in the tree, if one of the
old automata can perform a transition with a label not yet available in the current location of the tree. If
the tree already contains a transition with the same label and source location, the transition is modified,
by adding its guard and the guard of the new transition via disjunction. The state tuples produced in
this step are stored in Pi+1, to be processed in the next depth iteration. This is explained in detail in
Subsection 4.5.3 and Algorithm 12.

Example 4.1. Figure 4.10 shows the first steps of applying the algorithm to the coffee machine example
illustrated in Figure 4.9, that was already introduced in the preliminaries (Section 2.1.5). P1 is initialized
with the state tuple (qt = q1, qi = (q1,1, q2,1, q3,1), i = 0, e = 0, CR = {x 7→ x0, y 7→ x0, z 7→
x0},GU = ∅,GS = ∅,NG = ∅). Starting at the initial state of all three automata, there are no silent
or internal transitions enabled. Thus, we start with processing external transitions, where coin? is the
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Figure 4.10: Different steps of building the determinized unfolding.

only enabled transition. As there is no transition leaving q1 with the label coin? yet, we build a new
location q2 and a transition leading there, labeled by coin? (see Figure 4.10(a)). This step adds the state
tuple (q′t = q2, q

′
i = (q1,2, q2,1, q3,1), i′ = 1, e′ = 0, CR′ = {x 7→ x1, y 7→ x0, z 7→ x0},GU ′ =

∅,GS ′ = ∅,NG′ = ∅) to P2. CR′ is updated, because the processed transition resets the clock x, that
is now mapped to x1. GU ′,GS ′ and NG′ are still empty, as no silent transition or non-determinism was
processed.

P2 only contains the tuple that was just produced. In the current NTA locations of that tuple, only
one internal transition, paid, is enabled, that is an output of the first automaton, with guard x > 1 and an
input of the second, where the clock x is reset. First, we build a combined transition, where both guards
are combined via conjunction (conjunction with true will be omitted), the clock resets are combined by
union and the label is turned into ε. This combined transition is shown in Figure 4.10 (b). This is just
an illustration, actually the transition will be removed again when it is processed. Then, we substitute
the clocks according to CR, changing the guard from x > 1 to x1 > 1 and the clock reset to {x1,0}
(This transition is the first silent transition removed in the current trace on Depth 1, thus we use x1,0. A
second silent transition in the same trace would then reset x1,1). GU , GS and NG are empty and thus
not applied. We update CR to CR′ by adding x 7→ x1,0. Thus, in future guards that refer to x, x will
be substituted to x1,0. We update GU to GU ′ by adding x1,0 7→ x1 > 1. Thus, if a future guard g refers
to x1,0 we build a constraint that refers to x1 instead of x1,0, by combining g and the constraint x1 > 1
from GU ′. Finally, we add all lower bounds occurring in the guard (x1 > 1) to NG′. They will be
attached to the following transitions and ensure they do not occur to soon. Together that gives the state
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tuple (q′t = q2, q
′
i = (q1,3,q2,2, q3,1), i′ = 1, e′ = 1, CR′ = {x 7→ x1,0, y 7→ x0, z 7→ x0},GU ′ =

{x1,0 7→ x1 > 1},GS ′ = ∅,NG′ = {x1 > 1}), added to P2.

For the new tuple, there are two observable transitions with the same label (button?) enabled. First
we process the one without guard, leading to q2,4. There exists no transition with label button? leav-
ing q2 in the tree, thus we add the new location q3 and a transition leading there. Then we add NG
(x1 > 1) to the guard (see Figure 4.10 (c)) and change the clock reset from {y} to {x2}. We up-
date GS ′ by adding x1,0 7→ (x2, x1 > 1), where x2 is the clock that is reset on the current transi-
tion, and x1 > 1 is its guard. If a later transition also refers to x1,0, it can be synchronized with the
current transition, so the delay between them is valid. After adding the transition we update NG′ by
building the diagonal constraint x1 − x2 > 1, subtracting x2 (the clock reset on the current transi-
tion) from all clocks in the current guard x1 > 1. NG′ will be conjuncted to all following transitions,
so these later transitions are only enabled, if x1 was greater than 1 at the time of the button? transi-
tion. The tuple (q′t = q3, q

′
i = (q1,3,q2,4, q3,1), i′ = 2, e′ = 0, CR′ = {x 7→ x1,0,y 7→ x2, z 7→

x0},GU ′ = {x1,0 7→ x1 > 1},GS ′ = {x1,0 7→ (x2,x1 > 1)},NG′ = {x1 − x2 > 1}) is stored in
P3. For the second button? transition there already exists a transition with the same label in the
tree, so the two transitions are determinized after the second transition is updated. The determiniza-
tion works via disjunction, as illustrated in Figure 4.10 (d). The produced state tuple is (qt = q3, qi =
(q1,3,q2,3, q3,1), i = 2, e = 0, CR′ = {x 7→ x1,0, y 7→ x0, z 7→ x2},GU ′ = {x1,0 7→ x1 > 1},GS ′ =
{x1,0 7→ (x2,x1 > 1 ∧ x1 < 3)},NG′ = {x1 − x2 > 1 ∧ x1 − x2 < 3}). The determinization via
disjunction produces a weaker guard, that is enabled if any of the original guards were enabled. The
diagonal constraint stored in NG′ in the two state tuples are later attached to the following transitions
(see Figure 4.10 (e)), to ensure that t! is only enabled, if x1 < 3 was enabled in the combined button?
transition. The combined transition is also enabled for any value x1 ≥ 3, but then only c! can be taken
later on. Note that the c and t transitions in Figure 4.10 (e) are internal, and will be removed when
processed. 2

The next three subsections give details on processing silent, internal and external transitions. Six
operations are equally called in the first step of every of these stages. They are shown in Algorithm 9 and
explained below:
Add invariants to guard: First, we build a conjunction of the invariants of all currently selected loca-
tions in the NTA. This conjunction is added to the guard of the processed transition, to make sure that
traversing the transition is valid in all automata. The invariants are also added to the determinized tree,
after they are updated the same way as guards in the next steps. For simplicity we will not mention them
separately. Thus no trace in the tree can violate any of the original invariants. We only consider traces
ending in discrete steps, neglecting time progress in the leaves of the tree.
Apply NG: NG stores constraints (like the enabling guard) that need to be attached to all transitions

Algorithm 9 Updates needed for all transitions.
Input: (gi, CR,GU ,GS,NG)
Output: {(g′, CR′,GS ′)}

1: Add invariants to guard
2: Apply NG
3: g′ ←substitute according to CR(g)
4: ∀x s.t. x ∈ GS ∧ x ∈ g′ : g′ ← g′∧ apply GS(GS, x, g′)
5: g′ ← substitute according to GU(g′)
6: CR′ ← update CR
7: ∀x s.t. x ∈ GU ∧ x ∈ g′ : GS ′ ← update GS(g′, x)
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directly following the transition that produced it. ApplyingNG is done by conjuncting all its constraints
to the guard.
Update CR: Every clock x that is reset on the currently processed transition will be added to CR. If
the current transition is a silent transition (or one produced by synchronizing two communication transi-
tions) x will in the future be substituted by the clock xi,e, otherwise it will be substituted by xi. Thus, if
for example the two clocks x and y are reset on an observable transition on Depth 5, both x ← x5 and
y ← x5 will be added to CR, where previous entries for x and y are deleted. Note that all clocks xi,e
will be removed in later steps, leaving only the clocks x1–xk in the final automaton.
Substitute according to CR: All clocks that appear in the guard of a processed transition ti need to be
substituted according to the function CR. In the first steps, this means that all clocks are substituted by
x0, later on, as CR will be updated, the substitution may change. This corresponds to the clock renaming
step of Section 4.1.2.
Substitute according to GU : If a clock xj,e is already defined in GU this means it was reset on a silent
transition that was processed earlier in the trace leading to the current transition. If such a clock appears
in the guard g of the currently processed transition ti, the guard constraints referencing xj,e will be up-
dated using the constraints stored in GU(xj,e). This update removes the lower bound xj,e > m from g
and for each lower bound x > n in GU(xj,e) it adds the constraint x > n+m to g via conjunction. Up-
per bounds are treated equally, and = is treated as ≤ and ≥. Note that the built constraint contains strict
inequality as long as one of the original constraints contained strict inequality. This step corresponds to
the updating of future guards from Section 4.2.
Update GS: GS needs to be updated every time we process a transition that refers to a clock that was
reset on an internal or silent transition. It is used (see next item), to synchronize all transitions that refer
to that clock. For these synchronization constraints, GS needs to store the constraints referring to the
clock and the clock that is reset on the current transition.
Apply GS: GS needs to be applied to every transition referring in its guard to a clock xj,e that was reset
by a silent transition (despite the first one, where it is only updated) to synchronize these transitions. The
synchronization is done by building the following constraint: for each upper bound xj,e < n stored in
GS(xj,e), linked to the clock y (the clock reset on the transition from which we extracted xj,e < n) and
each lower bound xj,e > m in the current guard, we build the constraint y > m − n, ensuring that the
time that passed between the two transitions is not larger than the difference between the lower bound of
the first transition and the upper bound of the later one. Assume the constraint 3 ≤ x of one transition,
and the constraint x ≤ 5 at a later transition. Then at most 2 (5− 3) seconds may pass between the two
transitions. Similar constraints are built for the lower bounds in GS(xj,e) and the upper bounds in the
guard. More details on the constraints can be found in Section 4.2, in the step for synchronizing future
guards.

4.5.1 ε-Closure

Given a tuple (qt, qi, i, e, CR,GU ,GS,NG), Algorithm 10 depicts the workflow of processing all silent
transitions that can be taken in any location q(i,j) ∈ qi (Lines 2–3). Most of this workflow correlates to
the step of removing silent transitions presented in Section 4.2. The main difference is that the previous
approach had to traverse the whole subtree beneath each silent transition, to update it. Contrary to that,
we only keep all constraints we need for the updating stored, so we can update the future transitions at
the time we process them during unfolding.
Update transition: In the first step, the guard of the transition is updated according to the constraints of
previous silent transitions or non-determinism. Details are given in Algorithm 9. This step also computes
CR′ and GS ′.
Update GU : Every time a silent transition is processed, we store all upper and lower bound constraints
occurring in its guard, mapped to the clock that was reset on the silent transition. The constraints are
later used to update guards that refer to that clock to ensure that their timing constraints are still valid.
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Algorithm 10 ε-Closure.
Input: (qt, qi, i, e, CR,GU ,GS,NG)
Output: {(qt, q′i, i, e+ 1, CR′,GU ′,GS ′,NG′)}

1: P ← ∅
2: for each location q(i,j) ∈ qi do
3: for each transition ti = (q(i,j), ε, gi, ρi, q(l,j)) do
4: (g′, CR′,GS ′)←update transition(ti)
5: GU ′ ← update GU
6: en← calculate enabling guard(g′)
7: NG′ ← update enabling guard(en) ∪ {taken guard }
8: P ← P ∪{(qt, qi[q(i,j)\q(l,j)], i, e+ 1, CR′,GU ′,GS ′,NG′)}
9: end for

10: end for
11: return P

Calculate Enabling Guard: When removing a silent transition, we can express the upper bound until
when it is enabled via diagonal constraints, by pairwise comparing the upper and lower limits of all
clocks appearing in the guard, to identify the time interval when all clocks are enabled at once. The exact
details on building the constraints can be found in Section 4.2.
Update Enabling Guard: In the approach for single timed automata we built a bypass transition for
every silent transition. That was a copy of the transition preceding the silent one, augmented by the
enabling guard and leading to the target location of the silent transition. During determinization, this
transitions was removed again and only the enabling guard, attached to the following transitions, re-
mained. Now we can avoid building the transition, by immediately attaching the enabling guard to the
following transitions: we create the constraint NG′ by subtracting in the enabling guard the clock that
was reset on the preceding transition from all clocks appearing in the enabling guard. Let x2 < 5 be an
enabling guard, and x3 be the clock reset on the preceding transition, then x2 − x3 < 5 is the processed
enabling guard. This builds a time invariant that, in all following transitions, can decide whether the
enabling guard was enabled at the time of the preceding transition or not. NG′ will be attached to all
transitions that can leave the new target states in the NTA. We also add the taken guard to NG′, that is
a conjunction of all lower bounds in the guard. This ensures that no following transition can be taken
earlier than allowed by the silent transition.
Storing the next tuple: Finally, the next state tuple is created and stored in P , the set of tuples returned
to the main algorithm (Line 8). This tuple reflects the next combination of locations in the NTA that
needs to be processed. As no externally observable transition was processed, it is still linked to the same
location in the tree and i is not increased. In the set of current locations in the NTA, only the location qi,j
in the j-th automaton (the automaton containing the processed silent transition) changes to ql,j . Finally,
e is increased by one.

4.5.2 Internal Transitions

Internal transitions are processed similarly to silent transitions. The main difference is that internal
transitions are only processed pairwise, and only if an action is enabled in one automaton as an input
and in another as an output. Algorithm 11 shows the applied steps. Lines 3-9 collect all input and output
transitions with label a ∈ Σi that are enabled in the different automata. Then, for each combination of
an input and an output transition (Line 10) we build a combined transition t (Line 11), where the action
label is ε, the guard is the conjunction of both guards and the set of reset clocks is the union of the two set
ρi and ρo. This transition is then processed equally to silent transitions, until Line 16, where we update
the current locations of both automata that were involved in the synchronization.
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Algorithm 11 Processing internal transitions in the NTA.
Input: (qt, qi, i, e, CR,GU ,GS,NG)
Output: {(qt, q′i, i, e+ 1, CR′,GU ′,GS ′,NG′)}

1: P ← ∅
2: for each a ∈ Σi do
3: I ← ∅; O ← ∅
4: for each location q(i,j) ∈ qi do
5: for each transition ti = (q(i,j), a, gi, ρi, q(h,j)) do
6: if isOutputTransition(ti) then O ← O ∪ {(ti, j)}
7: else I ← I ∪ {(ti, j)} end if
8: end for
9: end for

10: for each (to, k) ∈ O and each (ti, l) ∈ I do
11: t = (q, ε, go ∧ gi, ρo ∪ ρi, q′)← combine trans.(ti, to)
12: (g′, CR′,GS ′)←update transition(t)
13: GU ′ ← update GU
14: en← calculate enabling guard(g′)
15: NG′ ← update enabling guard(en) ∪ taken guard
16: P ← P ∪ (qt, qi[q(i,k)\q(h,k), q(i,l)\q(h,l)], i, e+ 1, CR′,GU ′,GS ′,NG′)
17: end for
18: end for
19: return P

4.5.3 External Transitions
For each enabled external transition we perform the following steps, as presented in Algorithm 12:
Update transition: First we update the transition according to the constraints of the previous silent
transitions, as done for silent and internal transitions.
External transition in the tree: If there already exists a transition with the same label in the current
location of the tree, we disjunct the current guard to it, to ensure that the transition is always enabled
when the currently processed transition is (Line 7). If it does not yet exist, we create a new location
in the tree (Line 9). Then, we create a new transition leading to this new location, with the label of
the currently processed transition, resetting the clock xi and g (the guard we gain from updating the
transition) as guard (Line 9).
Update NG: We update NG by building diagonal constraints in g. This is done by subtracting xi
from every clock that appears in g. These diagonal constraints can in later transitions decide, whether
g was enabled in the current transition. By attaching them to the following transitions, we can ensure
that even though we possibly disjuncted the guard g to other guards (and thus weakened the guard), the
following transitions will only be enabled iff g was enabled. Details can be found in the section about
determinization (Section 4.3).

4.6 Restrictions

The discussed algorithms face several restrictions. In this section, we want to discuss the most severe
ones:

• State-space explosion. As in the last chapter, the first and most obvious limitation is the state-
space explosion. Due to the explicit unfolding, there is an exponential increase in the number of
locations and transitions. While our on-the-fly algorithm already drastically reduces the amount
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Algorithm 12 Processing external transitions in the NTA.
Input: (qt, qi, i, e, CR,GU ,GS,NG)
Output: {(q′t, q′i, i+ 1, 0, CR′,GU ′,GS ′,NG′)}

1: P ← ∅
2: for each location q(i,j) ∈ qi do
3: for each action a ∈ ΣI

e ∪ ΣO
e do

4: for each transition ti = (q(i,j), a, gi, ρi, q(l,j)) do
5: (g, CR′,GS ′)←update transition(ti)
6: if ∃tt = (qt, a, gt, ρt, q

′
t) then

7: gt ← gt ∨ g
8: else
9: q′t ← new location; tt ← new transition(qt, a, g, {xi}, q′t)

10: end if
11: NG′ ← update NG(g)
12: P ← P ∪ (q′t, qi[q(i,j)\q(l,j)], i+ 1, 0, CR′,GU ,GS ′,NG′)
13: end for
14: end for
15: end for
16: return P

of iterations through the state-space that are needed for the determinization process, the size of the
resulting tree stays the same and may pose an obstacle for further processing.

In Chapter 6 we describe how the tree can be pruned, while still creating tioco-conform partial
models, and we describe a symbolic approach for the test-case generation, that includes building
a symbolic tree and turned out to be efficient. Both approaches help reducing the state-space
explosion.

• Weakening of Timed Automata Definition. By keeping diagonal constraints and disjunction
in our final timed automata, they do not comply to the standard definition of timed automata
anymore. The main drawback of this is that our timed automata cannot be processed by tools that
use Difference Bounded Matrices (DBMs), as for instance UPPAAL.

However, in the context of bounded model-checking with SMT-solvers, neither disjunction nor
diagonal constraints pose any problem, and the model-based mutation testing works well with this
extended form of timed automata.

• Data variables. During the determinization, we merge transitions with the same label. This can be
done, since transitions on same depth of the tree always reset the same clock. However, it restrains
the usage of data variables, as the merged transitions may assign different values to a data variable,
and during the merging, either one of the assignments would be lost or we would need to allow
non-deterministic assignments. Thus, the algorithm is restricted to timed automata without data
variables.

This could only be solved by completely leaving the structure of timed automata, and directly
creating a deterministic SMT-formula for the step relation, that could later be used for e.g. test-
case generation.
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4.7 Implementation

All algorithms discussed in this chapter were implemented as an additional feature of the tool Mo-
MuT::TA. As already mentioned, this is a tool that was originally implemented by the author of this
thesis, and reimplemented by Willibald Krenn [113]. The additional features were added to the reimple-
mentation, but programmed by the author of this thesis.

The algorithms were implemented in Scala (Version 2.10.3). The determinization algorithm uses the
SMT-solver Z3 [73] for checking satisfiability of guards.

4.8 Proofs

4.8.1 Proof of Theorem 4.1 [Silent Transitions Removal]

Given a non-deterministic timed automaton with silent transitions A in the form of a finite tree, we need
to show that our algorithm of removing the silent transitions results in an equivalent timed automaton,
that is, L(O(A)) = L(A). We will show that if A′ is the result of removing one first silent transition
then A and A′ are equivalent: for every timed trace of A there is an equivalent timed trace of A′ and vice
versa, in the sense that the corresponding observable timed traces are identical.

So, let τs,0 be a first silent transition on a path γ that starts at the initial location. Let τs,0 be from
location qs to location qs,0, let qs−1 be the location that leads to qs and let qs+1 be a location that follows
qs,0 on the path. Let A′ be the automaton that results after removing τ and performing the steps as
in Algorithm 8. Clearly, for every run that does not pass through τs,0 there is an identical run in the
other automaton. Thus, we restrict ourselves to runs though τs,0. We will mostly restrict ourselves to
strict inequalities, as the extension to the other cases (strict inequality versus weak inequality or weak
inequality versus weak inequality) is straight forward.

4.8.1.1 L(A) ⊆ L(A′).

Let ρ be a run on A through γ. We need to show that there exists a run ρ′ on A′ with the same observable
trace as of ρ. The run ρ′ will go through the same locations and transitions as does ρ, except for the part
qs−1, τs, qs, τs,0, qs,0 in A which will be replaced by the bypass qs−1, τ ′s, qs,0 in A′ as in Figure 4.4. The
dates of the transitions will also be the same, except for the silent transition that is missing in ρ′. That
is, if ts, ts,0 and ts+1 are the dates of ρ at the transitions τs, τs,0 (the silent transition) and τs+1 then the
corresponding transitions of ρ′ will take place at ts (the time of the bypass) and ts+1.

We first need to show, that the guard of the bypass transition, g′s = gs ∧ eg(τs,0), is satisfied at time
ts. The enabling guard consists of unary constraints and binary constraints. The unary constraints are
simply the upper bound limits of the guard of the silent transition. The time of the bypass ts lies before
the time of the silent transition ts,0, and the upper bounds are satisfied at ts,0. Thus, they also have to be
satisfied at the sooner time ts.

The binary constraints are built by comparing the upper bounds of all clocks with the lower bounds
of all other clocks, where xj < nj and mi < xi build the constraint nj − xj > mi − xi. This constraint
ensures, that at time ts the delay needed to reach the upper bound of xj (which would disable the silent
transition), is higher than the delay needed to reach the lower bound of xi (which enables the silent
transition). As the silent transition is enabled at ts,0, we know that all lower bounds can be be reached,
without violating any of the upper bounds. Thus, the binary constraints are satisfied.

We have seen that all the constraints of eg(τs,0) are satisfied at time ts and so the constraint g′s of ρ′

is satisfied at ts and the transition τ ′s can be taken.
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The next step is to show that the transition τs+1 with guard g′s+1 of ρ′ from location qs,0 to location
qs+1, as well as the next transitions τs+j , j = 2, . . . , p, with guards g′s+j can be taken at the same dates
ts+j on which τs+j are taken in ρ on guards gs+j , j = 1, . . . , p.

If the silent transition happens to be on an exact time: xi = ni then the update of the future guards
that refer to the clock xs,0 that was reset at τs,0 is clear: each occurrence of xs,0 is replaced by xi − ni,
and we are done. Hence, suppose that there are no exact constraints at the silent transition.

We write the guard g′s,0 of the silent transition τs,0 as:

g′s,0 = 0 ≤ xs ∧
∧

i=2,...,r

mi < xi < ni, (4.3)

where for some of the clocks xi there may be only a lower bound or only an upper bound constraint.

The constraints on xs,0 at the transitions τs+j , j = 1, . . . , p contain 0 ≤ xs,0 in τs+1 and are of the
general (strict inequalities) form ms+j < xs,0 < ns+j in τs+j . The corresponding updated constraints
of A′ at time ts+j , j = 1, . . . , p, are∧

i=1,...,r

mi +ms+j < xi < ni + ns+j . (4.4)

First, we need to show that the taken guard tg(τs,0) is satisfied at time ts+1. The taken guard is the
constraint 0 ≤ xs,0. After the update of the future guards this constraint is replaced by the conjunction
of all the lower bound constraints mi < xi of g′s,0. But since these lower bound constraints are satisfied
at the time ts,0 of the silent transition (in ρ) then clearly they are satisfied at ts+1, ts+1 ≥ ts,0, that is, the
updated taken guard tg(τs,0) is satisfied in ρ′.

Let us look at the other updated future constraints. Since at the time of the silent transition xs,0 = 0
and mi < xi then at time ts+j when ms+j < xs,0 we have mi + ms+j < xi. With a similar argument
for the upper bound constraints, we see that the constraints of (4.4) are satisfied in ρ′.

Also the part of the synchronization rules is clear since it refers to the possible minimum and max-
imum time difference between every two transitions on which xs,0 occurs, and since the run ρ goes
through these transitions it assures that these constraints can be satisfied. So, for example, the synchro-
nization constraint ms+j − ns+i < xs+i < ns+j −ms+i that is added to the guard gs+j of τs+j , refers
to the time difference ts+j − ts+i between the transition τs+i and the transition τs+j , i < j.

Note that the synchronization with the constraint 0 ≤ xs,0 of τs+1 results in adding to τs+j , j =
1, . . . , p the constraint xs+1 < ns+j , that is ts+j − ts+1 < ns+j , which clearly is satisfied since ts+j −
ts,0 < ns+j .

We showed that the observable trace of ρ′ is the same as that of ρ and this completes the proof of
L(A) ⊆ L(A′).

4.8.1.2 L(A′) ⊆ L(A).

Let ρ′ be a run on A′ going through the bypass τ ′s. We will show that there exists a run ρ through τs,0 in
A with the same observable trace as of ρ′.

The first thing we need to check is that the silent transition τs,0 can be taken, given that the enabling
guard eg(τs,0) is satisfied at time ts. The unary constraints xj < nj ( xj ≤ nj) of eg(τs,0) guarantee that
each of the constraints in the guard g′s,0 of the silent transition τs,0 can be satisfied separately at some
time that is equal to or is later than ts. Then, in order to show that all the constraints could be satisfied
simultaneously, it suffices to show that the minimum upon the time delays to the upper bound constraints
of the clocks appearing in g′s,0 is greater than the maximum upon the time delays to the lower bound
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constraints in g′s,0 (the ’greater’ should be replaced by ’greater or equal’ in case both the maximum and
minimum come from weak inequalities):

min
j

(nj − xj) > max
i

(mi − xi). (4.5)

But this condition is equivalent to the condition that nj − xj > mi − xi at time ts for every i, j, which
is exactly the conjunction of diagonal constraints∧

i 6=j
xj − xi < nj −mi (4.6)

of eg(τs,0).

Thus, we know that the silent transition τs,0 can be taken in the run ρ at some time ts,0 after a delay
of M = maxi(mi − xi) from ts (this delay is not negative since we introduced the constraint 0 ≤ xs)
and before a delay of N = minj(nj − xj).

It remains to show that the transitions τs+1, . . . , τs+p on guards gs+1, . . . , gs+p of ρ can be taken at
the same dates ts+1, . . . , ts+p as the corresponding transitions on guards g′s+1, . . . , g

′
s+p are taken in ρ′.

To be more specific, it suffices to prove that there exists ts,0 with the following conditions:

1. ts ≤ ts,0 ≤ ts+1;

2. g′s,0 is satisfied at ts,0;

3. the constraints on xs,0 are satisfied at ts+1, . . . , ts+p, with xs,0 reset at ts,0.

For the second condition the constraints of g′s,0 that should be satisfied at time ts,0 are∧
i=1,...,r

mi < xi(ts,0) < ni. (4.7)

Equivalently, at each time ts+j , j = 1, . . . , p:∧
i=1,...,r

mi + ts+j − ts,0 < xi(ts+j) < ni + ts+j − ts,0, (4.8)

or, ∧
i=1,...,r

mi − xi(ts+j) + ts+j < ts,0 < ni − xi(ts+j) + ts+j . (4.9)

For the third condition the constraints on xs,0 that should be satisfied at times ts+1, . . . , ts+p are
ms+j < xs,0(ts+j) < ns+j for j = 1, . . . , p. The constraint here at time ts+1 is 0 ≤ xs,0(ts+1) possibly
conjuncted with other constraints (for convenience we wrote all constraints as strict inequalities). This is
equivalent to ∧

j=1,...,p

ms+j < ts+j − ts,0 < ns+j (4.10)

or ∧
j=1,...,p

−ns+j + ts+j < ts,0 < −ms+j + ts+j . (4.11)

We need to show that the constraints on ts,0 of (4.9) and (4.11) do not define an empty set. This
condition is equivalent to showing that the set S1 of the above expressions to the left of ts,0 is smaller
than the set S2 of the expressions to the right of ts,0 (equivalently that the maximum of S1 is smaller than
the minimum of S2), where

S1 = {mi − xi(ts+j) + ts+j | i = 1, . . . , r, j = 1, . . . , p} ∪ {−ns+j + ts+j | j = 1, . . . , p}, (4.12)
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and

S2 = {ni − xi(ts+j) + ts+j | i = 1, . . . , r, j = 1, . . . , p} ∪ {−ms+j + ts+j | j = 1, . . . , p}. (4.13)

There are two types of expressions in S1 and two types of expressions in S2, hence we need to check that
the following 4 cases are satisfied.

4.8.1.3 Case 1: mi − xi(ts+j) + ts+j < ni′ − xi′(ts+j′) + ts+j′ .

This inequality is equivalent to

mi − xi(ts,0) + ts,0 < ni′ − xi′(ts,0) + ts,0, (4.14)

or to
mi − xi(ts,0) < ni′ − xi′(ts,0). (4.15)

The latter is equivalent to
xi′(ts)− xi(ts) < ni′ −mi, (4.16)

which is (4.6), the enabling guard eg(τs,0) that is satisfied at time ts of the run ρ′.

4.8.1.4 Case 2: mi − xi(ts+j) + ts+j < −ms+j′ + ts+j′ .

This inequality is equivalent to

mi − xi(ts+j′) + ts+j′ < −ms+j′ + ts+j′ , (4.17)

mi − xi(ts+j′) < −ms+j′ , (4.18)

mi +ms+j′ < xi(ts+j′). (4.19)

The last inequality is no other than one of the left inequalities of (4.4), which are the updated future
constraints in A′ of the reset clock xs,0, and thus are given to be satisfied.

4.8.1.5 Case 3: −ns+j′ + ts+j′ < ni − xi(ts+j) + ts+j .

This inequality is equivalent to

−ns+j′ + ts+j′ < ni − xi(ts+j′) + ts+j′ , (4.20)

−ns+j′ < ni − xi(ts+j′), (4.21)

xi(ts+j′) < ni + ns+j′ . (4.22)

The last inequality is one of the right inequalities of (4.4), which are the updated future constraints in A′

of the reset clock xs,0, and thus are given to be satisfied.
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4.8.1.6 Case 4: −ns+i + ts+i < −ms+j + ts+j .

This inequality is equivalent to
ms+j − ns+i < ts+j − ts+i. (4.23)

The inequality certainly holds when i = j. When i < j we can write this inequality with the clock xs+i
that is reset at time ts+i in A′:

ms+j − ns+i < xs+i(ts+j). (4.24)

But the last inequality can be found in the first row of Table 4.3 which contains the synchronization
constraints of the updated future constraints in A′ of the reset clock xs,0.

Similarly, when j < i we need to satisfy the inequality

xs+j(ts+i) = ts+i − ts+j < ns+i −ms+j , (4.25)

which can be found in the fourth row of Table 4.3.

We showed that the set of possible time values ts,0 for the silent transition in ρ is not empty, that is,
there is a solution to the sets of inequalities (4.9) and (4.11) in the indeterminate ts,0 (the extension to
weak inequalities is straight forward).

To complete the proof it remains to show that the solution for ts,0 satisfies the first condition, that
is, that ts ≤ ts,0 ≤ ts+1. Well, the left inequality ts ≤ ts,0 comes from satisfying the inequality
mi − xi(ts+j) + ts+j ≤ ts,0 of (4.9) with xi = xs and mi = ms = 0 (it refers to augmenting the silent
transition guard with the constraint 0 ≤ xs). This inequality is equivalent to 0 − xs(ts) + ts ≤ ts,0 or
ts ≤ ts,0 since xs was reset at time ts.

The right inequality comes from satisfying the inequality ts,0 ≤ −ms+1+ts+1 of (4.11) withms+1 ≥
0, that is, ts,0 ≤ ts+1.

4.8.2 Proof of Theorem 4.2 [Determinization]

The deterministic property of D(A) follows from the fact that when merging α-transitions into τacc and
τ¬acc then the guard of τ¬acc is a conjunction of some guard with the negation of the guard of τacc.
Hence, different runs will induce different time traces.

In general, by merging locations of A in D(A) we may only expand the language and conclude
that L(A) ⊆ L(D(A)). On the other hand, the new constraints introduced in D(A) may restrict the
language. So, let us examine the new transformed constraints and show that they do not impose additional
restrictions. Suppose the guard of transition τ contains the constraint x ∼ n and that y is reset on τ .
Then, at the time t0 of τ , the constraint x(t0)− y(t0) ∼ n holds. But also at time t1 > t0, the constraint
x(t1)− y(t1) ∼ n holds since x and y progress at the same rate. Hence, for any run through τ in A there
exists a corresponding run in D(A) with the same trace because the additional constraints of the form
x− y ∼ n that are added to the future guards are satisfied automatically by all runs in D(A) that satisfy
the guard of τ . Thus, it remains L(A) ⊆ L(D(A)).

To show that the language ofD(A) does not contain accepting traces that are not in the language ofA
it suffices to show that when a transition in a merged location of D(A) is enabled then the corresponding
original transition in A is enabled. But this is indeed the case since for each transition of D(A) we
first copy to its guard the transformed guard of the transition that leads to it, and this transformed guard
contains all the history: the transformed guards of the path that leads to this transition. That is, by
induction one shows that since the record of paths of level n are passed to paths of level n + 1 then it
holds for every level.



5 Case Studies and Results

Parts of this chapter are based on our publications at FORMATS 2015 [123], A-MOST 2015 [15] and
TASE 2016 [16].

This chapter will first present our industrial case studies and then provide experimental results for the
methodologies and algorithms presented in the last chapters. First, we will present results of the basic
test-case generation approach for deterministic systems, when applied to the specification of a car alarm
system. The study will focus on runtime and the ability to catch bugs in real Java implementations.
Next, we will present the performance of the bounded determinization approach, where we will first
show some purely scientific examples, including one that is a network of timed automata, where we only
perform the determinization. Then, we show the complete workflow including silent transition removal,
determinization and test-case generation performed on the two industrial case studies. All experiments
were run on a MacBook Pro with a 2.8 GHz Intel CoreI i7 Processor and 8 GB RAM.

5.1 Industrial Case Studies

In this section we present the two case studies we used for evaluation of the previously defined test-case
generation technique and the silent transition removal approach. We will first present the specification of
a car alarm system that was developed in a previous project of our research group and then present the
specification of an adjustable speed limiter that was developed within CRYSTAL.

5.1.1 Car Alarm System

In this section we present the timed automata specification of a Car Alarm System (CAS) [5, 149].
The car alarm system is a model inspired by Ford’s demonstrator developed in the EU FP7 project
MOGENTES4. We developed the TAIO model of the CAS from the requirements provided by Ford,
given below:

CAS Requirements.

Arming: The system is armed 20sec after the vehicle is locked and the bonnet, luggage compartment
and all doors are closed;

Alarm: The alarm sounds for 30sec if an unauthorized person opens the door, the luggage compartment
or the bonnet. The hazard flasher lights flash for 5min;

Deactivation: The anti-theft alarm system can be deactivated at any time, even when the alarm is sound-
ing, by unlocking the vehicle from outside.

The TAIO model of the car alarm system consists of 16 locations, 25 transitions, 11 invariants and
5 clocks and can be seen on the left-hand side of Figure 5.1. The model contains two mixed states (the
locations labeled with q1 and q2), where inputs and outputs are enabled simultaneously (at the points
in time were c = 20 and e = 300, respectively). These states do not pose a problem during test-case
execution, but if a test case is generated that executes an input at that exact point of time, the system
under test may have already produced the output, forcing the test to deliver an inconclusive verdict, as
the test purpose can not be reached anymore. Thus, in general it makes sense to avoid mixed states,
where possible, e.g. by adding the guard e < 300 to the unlock? transition leaving q2.

4http://www.mogentes.eu
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Figure 5.1: A deterministic and a non-deterministic version of the car alarm system.

Additionally, we developed a non-deterministic version, where we introduced a silent transition that
adds a non-deterministic delay of up to two seconds before the timer of the alarm starts. The concrete
non-deterministic model can be seen on the right-hand part of Figure 5.1. It contains one location and
three transitions more than the deterministic variant.

Both models consist of four inputs (lock?, unlock?, close? and open?) and six outputs (armedOn!,
armedOff!, soundOn!, soundOff!, flashOn! and flashOff?). They use 5 clocks, even though the same
functionality could as well be modeled with one clock. We experimented with both variants and found
that the clocks did not significantly increase the runtimes. Thus we stayed with the multiple clocks, to
show that the capabilities of the approach.

5.1.2 Adjustable Speed Limiter

In this subsection we present an industrial case study, that was provided as a use case by Volvo within
the European Artemis Project Crystal. The use case evolves around an adjustable speed-limiter (ASL),
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Figure 5.2: Deterministic version of the speed limiter, self-loops without variable updates
are omitted.

that limits the actual car speed according to an internally stored value.

The speed limiter can assume three operating states: deactivated, limiting and overridden. In the
limiting state the device is active, and overridden means that the user temporarily deactivated it by a
kickdown of the gas pedal. In its initial state, the ASL is deactivated.

After receiving any of the inputs preset?, plus?, resume? or minus?, the speed limiter switches from
deactivated to limiting. There it stays, until the user either turns it off via the off? input, or overrides it via
a kickdown? input. The kickdown triggers a timed transition back to the limiting state, that is executed
automatically after a certain delay, if there was no manual state change in between.

The current speed limit is stored internally. It can be modified by three inputs: preset? sets it to
a predefined constant value, plus? increases the limit and minus? decreases it. However, plus and
minus only change the limit, if the system is limiting, otherwise they only trigger a state change towards
limiting.

We performed experiments on two models of different levels of abstraction of the speed limiter. The
first version is deterministic, and the second one contains non-determinism and silent transitions.

Deterministic Version.
A timed automata model of the deterministic version can be seen in Figure 5.2. It contains additional

outputs that are activated before each state change, denoting the new state. In this model, the time-
triggered state change from the overridden location back to the limiting state is observable, and labeled
by timeout!. The delay for the timeout was parametrized in the requirements, the delay of 5 chosen
arbitrarily for this model.

Non-Deterministic Version.
For the second series of experiments, we concentrate on the state-change mechanics, neglecting the
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actual value of the current limit. The only important information is whether the limit is zero, lower than
the predefined value that is set by the preset? input, equal to it, or higher. Thus, we applied qualitative
abstraction to the limit and encoded these four value ranges in the locations.

Figure 5.3 gives an impression of the case study. Note that the first column of locations contains the
deactivated states, the second column contains the limiting states and the third contains the overridden
states. The first row indicates that the current limit is higher than the preset, the second row indicates
that it is equal, the third that it is lower and the bottom row indicates that the limit is zero. The figure is a
little simplified for presentational purposes: in the real automaton each state has an ”on entry”-transition.
That is, each state consists of two locations, where all ingoing transitions lead to the first location, and
there is an output transition labeled by the name of the state, leading to the second location. For example,
there is a limiting! output for the limiting state. All outgoing transitions only leave the second location.
These ”on entry”-transitions were neglected in the figure to ease comprehension. Additionally, for every
location besides q7 there exists a transition with label preset? leading to q7, as the preset? input both
turns the state to limiting and sets the limit to the predefined value. These transitions were omitted to
reduce the amount of crossing and overlaying transitions.

In location q10, where the current limit is higher than the preset value, a minus? transition may
non-deterministically stay in q10 or lead to q7, where the current limit equals the preset. The same non-
determinism also appears in q4. In this model we also considered the timeout a silent transition, changed
its lower bound to 8 and gave it an upper bound of 10.
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Figure 5.3: The non-deterministic version of the ajustable speed limiter, simplified for
readability.
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5.1.3 Overview

Table 5.1 shows the summarized characteristics of the different models. Both models have a deterministic
and a non-deterministic variant.

Table 5.1: Characteristics of the two case studies.
Case study # Locations # Transitions # Clocks
CAS (det.) 16 25 5
CAS (non-det.) 17 28 5
ASL (det.) 6 16 1
ASL (non-det.) 12 38 1

5.2 Test-Case Generation from Deterministic Models

In this section we will present our test-case generation on deterministic models, that did not need any
preprocessing. We will first present the results for the car alarm system, and than discuss a study we did
for the CRYSTAL project on the adjustable speed limiter.

5.2.1 Car Alarm System

In the first evaluation of our test-case generation approach, we applied our mutation testing tool to the
CAS example. This experiment was the first one we conducted, and was used to evaluate the mutation
operators and the solving approach, to check which of the techniques we should use in the following
experiments. We first generated all the mutants (1099) and for each mutant checked whether it tioco-
conforms to the original CAS model, by effectively doing the k-bounded language inclusion check. We
set the maximal bound k to 20 for the k-bounded language inclusion check. We generated test cases
from all the non-conforming mutants. The whole procedure took 62.3 minutes and produced a total
of 628 test cases. 471 mutants are tioco conform to the specification and therefore did not produce
any test cases. Table 5.2 shows the runtimes for the language inclusion check applied on the car alarm
system and a single equivalent mutant. The first row presents the results gained using the standard solving
technique of Z3 and the second row shows the results when using the incremental solving capabilities (see
Section 3.5). Given the advantage of the incremental approach, all future experiments were performed
using the incremental approach.

In order to evaluate our mutation testing framework, we used an existing implementation of the
CAS [3], developed in Java. The implementation consists of 4 public methods, open, close, lock and
unlock, and 2 internal methods, setState and the constructor. The CAS implementation simulates time
elapse with a tick method. We also used the 38 implementation mutants of the CAS described by Aich-
ernig et al. [3]. They were produced using the Java mutation tool µJava5. Applying all mutation operators
of µJava to all methods except tick resulted originally in 72 mutants. Some of the mutants were equiv-
alent to the original implementation or to other mutants. After filtering them out, the total of 38 unique
faulty implementations were derived. Table 5.3 shows the total numbers of implementation mutants and
equivalent ones. Both the correct and the 38 faulty CAS implementations were used to evaluate the
effectiveness of the test cases we generated.

We developed a test driver in order to execute generated tests on the CAS implementation. We
integrated quiescence in the test driver, which is responsible to detect prolonged absence of outputs. We

5http://cs.gmu.edu/˜offutt/mujava/

http://cs.gmu.edu/~offutt/mujava/
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Table 5.2: Computation time for k-bounded language inclusion check.
k 5 10 15 20

Standard Solving 0.1s 40.1s 115.2s 279.5s
Incremental Solving 0.1s 0.3s 0.6s 1.0s

set the maximal timeout that the driver is allowed to wait for an output action to 400 time units. If the
timeout is reached without observing an action, the test outputs a verdict pass if the test is in the last
location with the invariant being true or inc otherwise. The test driver immediately emits an input action
when the associated transition becomes enabled. If the timeout is reached before the transition labeled
by the input action becomes enabled, the test driver gives the inc verdict. Note that we executed tests
on a Java implementation which models time passage as discrete ticks. We can currently interface our
test driver to any simulated implementation model with an arbitrary model of time, as long as time is
simulated and communicated in form of time stamps.

We say that a faulty implementation is killed if at least one test case reaches the verdict fail during a
test execution. We analyzed the effectiveness of our mutation operators with respect to their ability to kill
faulty implementations. Table 5.4 summarizes the results on effectiveness of mutation operators, where
each row provides the number of mutants, the number of resulting test cases, the average number of faulty
implementations killed per test case and the mutation score of a mutation operator. The average number
of faulty implementations killed per test case is built by executing all test cases of a mutation operator
on all implementations, checking for each test how many implementations are killed and computing
the average. The tests gained by mutation operator M1 kill an average of 12.5 faulty implementations
per test. Tests that kill many different faulty implementations should be executed first during test-case
execution, to reduce the number of executed tests until a bug is found. Mutation score is the measure
which gives the percentage of faulty implementations killed by mutants resulting of a single mutation
operator. A high value indicates that the tests are rather different to each other, and cover different paths,
thus being able to detect more faults. It is interesting to note, that the tests gained by mutation operators
M1 and M2 kill comparatively few implementations per individual test case, but all tests combined
achieve a very high mutation score. This shows, that they achieve their high mutation score mostly due
to their big number (267 and 165 tests), but the individual tests are not very strong on average.

We achieved a total of 100% mutation score for the combined mutation operators. The highest
mutation score is achieved by the “change target” operator M2, at the price of generating 375 mutants
and 267 test cases. Evaluation results also show that most of the faulty implementations are killed by
M2-mutants which contain self-loops. We also observed that 3 faulty implementations were only killed
by “sink state” mutants (M7).

Following the above observations, we conducted another experiment in which we only applied “sink

Table 5.3: Injected faults into the CAS implementation.
Mutants Equiv. Pairwise Different

Equiv. Faults
SetState 6 0 1 5
Close 16 2 6 8
Open 16 2 6 8
Lock 12 2 4 6
Unlock 20 2 8 10
Constr. 2 0 1 1
Total 72 8 26 38
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Table 5.4: Mutation analysis of mutation operators. The list of mutation operators can be
seen in Section 3.1.

M1 M2 M3 M4 M5 M6 M7 M8 Total
Model Mutants [#] 139 375 375 24 25 11 25 125 1099
TCs [#] 139 267 165 6 3 11 25 12 628
av. Kills per TC [#] 12.5 13.2 12.4 16.3 16.3 17.8 17.8 13.8 13
Mutation Score [%] 71 94.7 92.1 57.9 47.4 60.5 89.5 57.9 100

state” and “self-loop” mutations, resulting in only 50 mutants. All mutants were shown to be non tioco-
conformant to original models, generating 50 test cases in just 56s. In addition, combining the test cases
of these two operators resulted in 100% mutation score. These results indicate that a smart choice of a
small subset of mutation operators can achieve high mutation scores while considerably reducing test-
case generation and execution times. However, we decided to use all mutation operators for the following
experiments, as the good results achieved by this subset may be specific to this use case.

5.2.2 Adjustable Speed Limiter

We used the deterministic model of the adjustable speed limiter for assessing the quality of the test suite
that was already in use at Volvo, by checking which of our model mutants can be killed by the test suite.
Therefor, we translated the already existing test suite into timed automata test cases. As the specified
part is only a subcomponent, and the original test suite was designed to test the whole system, only 9 of
the test cases were relevant to this part.

We then generated the mutants for the ASL and performed conformance checks between the existing
test cases and the mutants. This can be done, by considering the test case as the specification and
the mutants as implementation and checking whether the mutants conform to the test cases. Only for
the mutants that were not yet killed by the existing test cases, we performed the test-case generation.
Analyzing which mutants were already killed took 363 seconds for 393 mutants. The test-case generation
took 49.6 seconds for the unkilled 248 mutants. Details are given in Table 5.5. Processing all 248
mutants took 49.6 seconds, with an average of 0.2 seconds per mutant. The longest equivalence check
for a single mutant tool 0.5 seconds. Thus, the test-case generation was very fast, and there were no
statistical outliers.

The approach produced 11 additional test cases. Grischa Liebel from Chalmers discussed these
additional test cases with engineers at Volvo and identified three main reasons for the additional tests:

• Self-Transitions. As self-transitions were implicitly modeled in the textual requirements, the
provided test cases did not take them into account, and they where thus not tested. If any of
them was implemented wrongly, i.e. setting a wrong target state, or changing the variables, this
was not tested. Six of the new test cases were introduced into the test suite of Volvo for testing
self-transitions.

• Missing Combinations. Three of the test cases contained combinations of events that were not
covered by the original test cases, e.g. triggering the plus? input after the minus? input in the

depth mean min max Q1 Q2 Q3 total
Test-case generation 6 0.2 0.13 0.5 0.18 0.19 0.2 49.6

Table 5.5: Runtimes of the test-case generation for the deterministic adjustable speed lim-
iter. All numbers are given in seconds.
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overridden state. The engineers pointed out, that analyzing the corresponding mutants, to figure
out why the combination makes sense, was very useful.

• Missing Test Cases. Two of the test cases were generated to test the automatic timeout of the
overridden state, that was not covered at all by the existing tests. This was most likely caused by
the level of abstraction we chose and some of the less abstract test cases for the complete system
probably covered the time out behavior. However, the test cases we received for analysis did not.

5.3 Test-Case Generation from Non-Deterministic Models

In this section we present the results of applying our complete workflow to non-deterministic timed au-
tomata specifications. However, the first subsection (Section 5.3.1) will present some scientific examples,
where we only perform the determinization and silent transition removal. The two following subsections
will show results for the non-deterministic versions of the car alarm system and the adjustable speed
limiter. However, since we did not have any non-deterministic implementations, we only performed the
determinization and test-case generation, but could not evaluate the quality of the test suites.

5.3.1 Scientific Studies

We would like to start the evaluation with two small examples that were introduced in related work on
determinization and silent transition removal to show that these operations are not possible in general.
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Figure 5.4: The four timed automata used in Study 1 and Study 2.
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Depth Number of locations Runtime (sec.)
unfolded std. det. new det. on-the-fly ε-removal std. det. new det. on-the-fly

Partial 2
2 8 7 7 7 0.1 0.3 0.1 0.1
5 78 63 63 63 0.4 0.5 0.4 0.2
9 1,278 1,023 1,023 1,023 16,011.2 6.7 7.2 1.0
2 9 8 8 8 0.2 0.2 0.2 0.1
5 177 135 84 63 0.8 0.9 1.3 0.7
9 8,361 4,364 3,609 1,023 20,969.0 71.2 88.3 9.6

Partial 2
2 5 5 4 4 - 0.1 0.1 0.1
5 11 10 8 8 - 0.2 0.3 0.1
10 21 21 16 16 - 0.3 0.3 0.1
25 51 50 38 38 - 0.5 0.9 0.2
50 101 100 76 76 - 0.7 391.6 0.3
2 5 5 4 4 0.1 0.1 0.1 0.01
5 24 26 8 8 0.2 2.1 0.4 0.3
10 140 661 16 16 0.5 1,945.1 2.1 0.5

Table 5.6: Runtime and number of locations for the automata of r Study 1, i.e. the au-
tomata of Fig. 5.4 (a) (first three rows) and Fig. 5.4 (b) (rows 4-6) and Study 2,
i.e. Figure 5.4 (c) (rows 7-12) and Figure 5.4 (d) (last three rows).

The following studies compare the numbers of locations and the runtimes of (a) the silent transition
removal, (b) a standard determinization algorithm that works by splitting non-deterministic transitions
into several transitions that contain every possible combination of their guards (as e.g. the algorithm
applied by Wang et al. [173]), (c) the new determinization algorithm introduced in Section 4.3 and
(d) its on-the-fly version, as introduced in Section 4.5. The runtimes presented in the rows labeled by
determinization do not include the removal of silent transitions.

Study 1. The first example, taken from Diekert et al. [75], is the timed automaton illustrated in
Figure 5.4 (a), where the silent transition cannot be removed, as there is no unbounded observable au-
tomaton with the same language. We then added another α-transition (Figure 5.4 (b)), which causes
non-determinism after removing the silent transition.

Study 2. The second example is taken from Baier et al. [39] and is illustrated in Figure 5.4(c). We
modified the automaton by adding a silent transition (Figure 5.4(d)).

The results of the two studies are shown in Table 5.6, including for both examples the results before
and after modification. As can be seen on both examples, the number of locations is increasing exponen-
tially with the depth of the unfolding, even though the determinization may reduce the number a little, if
transitions can be merged. The on-the-fly algorithm can reduce them even further by building a directed
acyclic graph instead if a tree The advantage of the on-the-fly algorithm with respect to runtime also
shows very well, with a runtime reduction from over 20, 000 seconds to ten seconds, in the most extreme
case.

Networks of Timed Automata. Now we want to analyze the NTA of a coffee machine with three
components, that was already introduced in Chapter 2 in Figure 2.2. It contains non-determinism, as
the buttons for ordering the different drinks are all labeled by ”button” and silent transitions which are
enabled when the preparation of a drink is finished.

Table 5.7 shows the results of applying the on-the-fly algorithm for networks of timed automata in
terms of size of the unfolded network and calculation time for different depths. We extended the 2nd
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Depth Number of locations Runtime (sec.)
2 drinks 3 drinks 4 drinks 5 drinks 2 drinks 3 drinks 4 drinks 5 drinks

NTA 13 16 19 22 - - - -
10 37 93 191 343 0.1 0.1 0.3 0.4
20 381 3,279 16,384 58,593 0.4 1.5 5.3 11.6
30 4,093 147,620 1,747,160 timeout 1.7 26.3 281.5 timeout

Table 5.7: Runtimes of the on-the-fly algorithm for different versions and depths of the
coffee machine NON-DET(TA).

and 3rd automata in the network, to enable selecting a broader variety of drinks (still all buttons are
non-deterministically labeled by button?), producing automata with 2–5 choices. As expected, we ex-
perience an exponential increase in complexity depending on depth and amount of choices (2–5 drinks).
Fortunately, in most realistic cases lower depths are sufficient, e.g. here, Depth 3 covers all observables.

We also performed conformance checks with an equivalent mutant (thus it needs to explore the com-
plete state-space, as there is no counter example allowing an early termination) for the coffee machine
with 2 drinks. It takes 2.3 seconds on Depth 10, 105.8 seconds on Depth 20 and runs into a timeout (2
hours) on Depth 30.

5.3.2 Car Alarm System

We now want to evaluate the approach on the non-deterministic car alarm system that was already pre-
sented in Section 5.1.1. The results of the determinization are given in Table 5.8. We were able to
perform the removal of silent transitions and the new determinization up to Depth 12, and the standard
determinization up to Depth 8. The on-the-fly algorithm still only took ten seconds for Depth 12, but it
also shows a 10− times increased runtime on Depth 12 compared to Depth 8.

However, the size of the determinized automaton is beyond the capabilities of our test-case generation
tool and cannot be processed anymore. We thus split the original model into two tioco-conform partial
models, where the first one captures the different variants of locking, unlocking, closing and opening the
doors, up to the first arming transition. The second one only contains one direct path to the armed state,
but covers the rest of the system. Both partial models are illustrated in Figure 5.5. Most of the branching
is kept in the first smaller system, and the main functionality in the second and larger system.

The runtimes for the determinization of the partial models, performed with the on-the-fly algorithm,
can be seen in Row 2 and 4 of Table 5.9. The approach was very fast, and the times for the individual
mutants were very similar. For the first partial model the determinized mutants consisted of a mean of
242 mutants, with a minimum of 63 locations and a maximum of 1014. For the second partial model, the
determinized mutants consisted of a mean of 44 locations, a minimum of 13 locations and a maximum of
148. The variations manly depended on whether the mutation added early branching to the determinized

Depth Number of locations Runtime (sec.)
unfolded std. det. new det. on-the-fly ε-removal std. det. new det. on-the-fly

2 8 8 8 8 0.108 0.2 0.1 0.0
5 153 139 83 81 0.4 1.0 0.8 0.2
8 2,062 1,973 757 739 4.1 129.0 11.6 0.9
12 78,847 - 14,009 13,545 10,592.3 - 4,832.1 10.2

Table 5.8: Runtime and number of locations for the Car Alarm System, modified by
adding a silent transition causing a 0-2 seconds delay.
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Model Depth # Mutants Test-Case Generation
Mean Max Min Q1 Q2 Q3 total

Det. Partial 1 8 220 0.15 0.53 0.10 0.13 0.14 0.15 32.6
TCG Partial 1 8 - 6.86 55.94 0.21 2.76 5.53 7.62 1, 406.87

Det. Partial 2 12 1263 0.11 0.31 0.1 0.11 0.11 0.12 143.02
TCG Partial 2 12 - 1.04 3.09 0.08 0.46 1.20 1.46 1, 223.17

Table 5.9: Computation time for the determinization and conformance checks on the par-
tial models of the non-deterministic version of the car alarm system. All times
are given in seconds.

tree, or removed branching. For instance a mutation changing the source location of a transition to the
initial location increases the size of the mutants.

We then performed the model-based mutation testing on the two models, with all mutation operators
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Figure 5.5: Partial models of the car alarm system with silent transitions.
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described in Section 3.1. The results of applying the approaches to these models are illustrated in Row
1 and 3 of Table 5.9, including the mean time, the maximal and minimal time and he quartiles Q1, Q2

and Q3. The complete runtime for the first partial model was 23.45 minutes for 220 mutants on Depth
8. The approach created 41 test cases and classified 179 mutants as equivalent. For the second partial
model, the bounded model checking took 20.38 minutes for 1, 263 mutants on Depth 12. This time, 637
test cases were generated and 626 mutants were classified as equivalent.

The runtime of the test-case generation exceeds the runtime of the determinization significantly,
identifying the test-case generation as the bottleneck of the approach. The high runtime of the first
partial model is party caused by some statistical outliers, where the check almost takes a minute, but also
the median values (expressed by Q3) is rather high, indicating that the check took more than 7 seconds
for at least half of the mutants. The runtime of the second model is caused by the sheer number of
mutants, while the conformance check for the individual mutants only took an average of 1.04 seconds.

For the first model, 95% of the time was spent on equivalent mutants and for the second model it was
62% of the time. These times indicate, that reworking the mutation operators to produce fewer equivalent
mutants would be a valuable future task.

5.3.3 Adjustable Speed Limiter.

This section will present our results on the non-deterministic speed limiter. We produced 342 mutants
from its original automaton, using the mutation operators described in Section 3.1. 40 of these mutants
contained loops of silent transitions and were neglected from the following process. The remaining 302
mutants were unfolded to depth ten, together with the original specification. Then, the silent transition
removal and the determinization were performed on all of them, using the on-the-fly algorithm. The
on-the-fly algorithm took an average of 0.2 seconds per mutant, with a maximum of 1.0 and a minimum
of 0.14 seconds. The unfolded determinized mutants contained an average of 620 locations, with a
minimum of 337 and a maximum of 1065 locations. The correct specification contained 606 locations.
The different amount of locations is caused by the fact, that the mutations may change the branching of
the tree and they may change the amount of non-determinism (and thus the amount of locations in the
trees that can be merged) of the mutants.

Then we started the test-case generation, which means applying tioco- conformance checks between
the determinized mutants and the determinized specification. The checks took an average of 63.3 sec-
onds, with a minimum of 0.2 and a maximum of 201.9 seconds. In total, the test-case generation took 5.4
hours, and produced 128 test cases. All runtimes are summarized in Table 5.10, including the quartiles
(Q1, Q2, Q3). Again, the equivalent mutants took a high percentage of the total time, with 74%. This
confirms the need to select suitable mutation operators for each case study.

The results show that the determinization only takes a fraction of the time needed for test-case gen-
eration. However, due to the increased amount of locations and transitions in the explicit unfolding,
the runtime of the test-case generation was significantly increased, compared to being executed on a
deterministic model of equivalent size that was not unfolded. The most efficient way to combine de-
terminizing and test-case generation would most likely be to integrate the test-case generation into the
on-the-fly algorithm, which will be discussed in the future work section.

Depth Mean Min Max Q1 Q2 Q3 Total
Determinization 10 0.2 0.14 1.0 0.16 0.18 0.20 60.4
Test-case generation 10 63.3 0.17 201.9 17.1 76.7 94.2 5.4h

Table 5.10: Runtime of determinization and test-case generation for the speed limiter. All
numbers are given in seconds, unless otherwise noted.



6 Additional Contributions

Parts of this chapter are based on our publications at SAFECOMP 2014 [10], AMOST 2015 [15] and a
Festschrift paper for Frank de Boer [18].

In the previous chapters we saw how timed automata can be used for model-based mutation testing,
and how the models can be determinized, to enable the testing from non-deterministic models. Those
were the two core topics of Part I. In this chapter, we will present three smaller topics, that slightly
expand the capabilities of the test-case generation. The first presented topic in Section 6.1 will show
how model mutants can be used to debug faulty implementations, by giving the developer a hint where
the fault might be located, and how it looks like. In the second section (Section 6.2) we present how
pruning can be used to generate smaller partial models, that still conform to the original and reduce the
state space. These partial models enable the efficient processing of models that would otherwise be too
complex. In the last section of this chapter, Section 6.3, we will show how to translate timed automata
to timed action systems, and compare the presented test-case generation approach with a symbolic one,
that runs on timed action systems.

6.1 Debugging via Mutations

Testing and debugging are both important tasks of the development process in the automotive industry. In
Chapter 3, we already motivated and discussed the use of model mutations for test-case generation. This
section will give a short overview how a very similar technique, reusing many of the already available
operations, can also be used for debugging, that is, for the tracing from a failing test case to the actual
fault in the system.

Consider a set of very long regression tests, where at some point during execution at least one test
case fails. In that case, either the test case or the test setup could be faulty or the implementation can
be incorrect. In this section, we will consider the second case. Now the failing test case must not
necessarily lead directly to the fault, and thus does not provide many details on its location. Especially in
larger products where several designers are working on the SUT, it is important to identify the erroneous
part as fast as possible. Therefor the verification engineer has to go through the design and probe outputs
/ signals / variables related to the faulty test case to judge their correctness. This debugging process is
a difficult and time consuming task which in practice is up to now mostly done manually. Within this
section we propose a method for speeding up the debugging process by using model-mutants to provide
a higher degree of automation.

First, we will discuss some related work, as an introduction to the topic: model-based software de-
bugging (MBSD) [147, 128] is an automated debugging approach with the goal of identifying model
components that might be responsible for faulty behavior. MBSD relies on a set of test cases that spec-
ify the correct behavior and one or more models that reflect incorrect behavior. Usually the models
are divided into a set of components, e.g. the set of code statements. Then the goal of MBSD is to
find minimal sets of components (called ”diagnoses”) that, if assumed to be faulty, explain the fault in
the implementation. Several different model notations have already been used for model based debug-
ging [127], using formal textual specifications for the models, usually created automatically from the
source code. The most commonly used models are Dependency-based Models, Value-based Models
and Abstraction-based Models. Other common approaches rely on satisfiability checking and worst-case
analysis of several different models [127].

Papadakis and Le Traon [140] used mutants for mutation-based fault-localization, where they show
that by investigating the locations indicated by the mutants, they are able to detect 90% of all faults, by
investigating only 10% of the source code.

75
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Figure 6.1: Workflow of the model-based debugging approach.

Wotawa [176] introduced mutation debugging, using code mutations as possible diagnoses for faulty
implementations. Model-based debugging is used to determine possibly faulty components and the mu-
tation algorithm is only executed on these candidates, to speed up the process.

Nica et al. [132] propose a method for combining debugging, testing and mutants to reduce the set
of possible fault candidates. Contrary to our work, they use white-box methods: by mutating the faulty
code, they try to find mutants behaving correctly, while we mutate the correct model, trying to find
mutants that show the same faulty behavior as the implementation.

6.1.1 Model-Based Mutation Debugging

Model-based mutation debugging (MBMD) starts with a situation that is very common in model-based
testing: we are given a specification model (assumed to be correct), a faulty implementation and a random
test case that conforms to the model, but fails on the implementation. As already mentioned, if the test
case is not minimal, it does not give a lot of feedback on which part of the implementation is faulty, as
the incorrect output might be triggered by a fault that was invoked much earlier in the test execution.

Via model mutation, as described in Section 3.1 we can create model mutants representing possible
implementation faults. In different filtering steps we can select a small subset of those mutants showing
the same faulty behavior as the SUT. These mutants are therefore likely to represent the implemented
fault and can be seen as ”mutant diagnoses” for the faulty implementation. The technique relies mostly
on operations that were already implemented for the testing approach.

Our approach consists of several steps, each of which will be explained in detail in the next sections.
The basic concept behind the approach works as illustrated in Figure 6.1 and is described in the following.
The whole procedure is done automatically by our framework. Only the final step, the analysis of the
source code, steered by the final mutants, needs to be done manually.

• Mutant Generation: First, we create a set of all model mutants our framework supports (Mutant
1, Mutant 2, Mutant 3, Mutant 4 in Figure 6.1). Details on the different supported mutation
operators can be found in Section 3.1. Note that we generated fewer mutants, by only applying
each mutation operator once per transition/location. Thus, instead of e.g. changing the target
location of a transition once for each other location in the automaton and creating multiple mutants
for it, we only changed it to one randomly chosen location.
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• Mutation Analysis: Next, the random test case can be compared to the mutants. If a mutant shows
any faulty behavior along the path of the test case, the mutant is said to be killed by the test case.
The killed mutants are stored for the next step. All mutants that are not killed are disregarded
(Mutant 3 in Figure 6.1), because either their mutations did not lie along the path of the initial test
case or did not introduce any faults. The mutation analysis is implemented as a language inclusion
check of timed traces (see Section 3.3.2), where the test case is seen as the specification, and we
check whether the mutants conform to it. This is possible because our abstract test cases are timed
automata traces in sequential form, that can be seen as partial models of the complete specification.

• Test-Case Generation: Then, we use our model-based mutation testing technique as described in
Chapter 3 for creating minimal test cases (Test 1, Test 2, Test 4) for the selected mutants (Mutant
1, Mutant 2, Mutant 4). The test cases reflect the shortest input/output sequence leading to the
faulty output of the mutants.

• Test-Case Execution: Next, by executing the test cases on the faulty implementation, we can
identify the subset of test cases (and their corresponding mutants) that still are able to find the
bug. Some of the test cases cover the bug, but contain several unnecessary steps afterwards. By
discarding these test cases and their corresponding mutants, an even smaller set of test cases (Test
2, Test 4) and mutants (Mutant 2, Mutant 4) can be achieved.

• Source Code Analysis: Finally, the remaining subset of mutants consists of those mutants that
reflect the behavior of the faulty implementation the best. Each mutant reflects a specific imple-
mentation fault at a specific location. By examining these code fragments, the location of the bug
can usually be traced easily.

We will illustrate the approach on the same car alarm system, that was already introduced in Sec-
tion 5.1.1. For convenience, we show it is specification once more in Figure 6.2(a). Additionally to the
model, we have a Java implementation, a tool to generate random test cases and our model-based mu-
tation test case generation tool MoMuT::TA. Now let us assume a fault in our implementation, skipping
the effect of the unlock? signal after the alarm went silent. The corresponding model mutant mimicking
this implementation fault can be seen in Figure 6.2(b). Also assume the untimed abstract test case TC1

6:
close? - lock? - armedOn! - open? - armedOff! - flashOn! - soundOn! - soundOff! - soundOff!- flashOff!
- unlock? - lock? - close? - armedOn! to return the verdict fail after this sequence. Now of course, if
it was a real random test case, it could be much longer and the trace would not lead straight towards the
fail. But already in this simple version, it is hard to trace the exact location of the fault, that could have
been introduced anywhere along the path.

Our method provides mutant diagnoses for the bug which can be created without access to the source
code, are simple to understand, illustrated as UPPAAL models and give information about both the
possible locations and the possible types of fault.

Example 6.1. Applying MBMD to the CAS:

• Mutant Generation: we produce the whole set of model mutants. For the CAS the total number of
mutants is 296.

• Mutation Analysis: we filter out all mutants that conform to the test case and keep only those that
are killed. E.g. all mutations on the unlock? signal while the alarm is still active are not within the
scope of the test case.

• Test-case Generation: we can produce minimal test cases for each remaining mutant, leading
straight to the fault. A mutation of the armedOn! signal might for example produce the test case
TC2 lock? - close? - armedOn! to make sure that the implementation fault corresponding to this
specific mutation would be detected in the implementation.

6For presentation purposes, the test case does not include any timing information.
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Figure 6.2: Car alarm system: correct TAIO specification (a) and a mutant (b).

• Test-case Execution: after executing the new test cases on the faulty implementation, mutants with
test cases that cannot reach the implementation fault are filtered out. TC2 does not reach the fault,
therefore it would be filtered out, as well as its corresponding mutant. Only the shortest test cases
and their mutants pass this selection step and are presented to the user as the final set of mutant
diagnoses.

• Source Code Analysis: For this specific fault, only two of our mutants remain at the end. Both
represent implementation faults of the unlock? signal, deactivating its functionality after the alarm
went silent. Both lead to the same faulty implementation statement. Figure 6.2 (b) shows one of
them. 2

6.1.2 Experimental Results

To validate our approach we conducted several experiments on the Java implementation of the car alarm
system and the 38 faulty versions, that we presented in Section 5.2. As mentioned, the implementation
consists of four public methods, open, close, lock and unlock, and two internal methods, SetState and the
constructor. Elapse of time is simulated with a tick method. The faulty implementations were generated
with the mutation tool µJava. Since none of the automatically generated faulty implementations con-
tained any timing errors, we additionally created six of those: we generated two faulty implementations
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Table 6.1: Possible fault models derived by the remaining mutant diagnoses.
Model Mutation Mutated Transitions Corresponding Implementation Fault
Invert Reset lock? A wrong clock reset during the lock? signal.
Self Loop close?/lock? The close?/lock? signal has no effect.
Sink Location close? / lock? The close?/lock? signal leads to a quiescent

state.
Change invariant - The armedOn! signal is delayed longer than

allowed by the specification.
Change source close?/lock? The close?/lock? signal is enabled in a wrong

internal state & disabled in the right one.
Change target close?/lock? The close?/lock? signal leads to a wrong in-

ternal state.
Negate Guard close?/lock? The close?/lock? signal is disabled.

for each of the three signals armedOn, flashOff and soundOff, one where the signal is delayed and one
where the signal is triggered too early.

We applied our debugging method to each of the faulty implementations in a separate experiment: in
each experiment, we used the specification model shown in Figure 6.2(a), one of the faulty implemen-
tations and a random test case of length 50, generated from the model by our tool MoMuT::TA. If the
random test case passed on the faulty implementation, new test cases were generated until one failed on
it. All experiments used the same model mutants, which were produced from the specification model by
our tool chain. The total number of timed automata model mutants for the CAS is 296.

This subsection is split into three parts: The first two will show two of the experiments in detail.
They represent the two most demonstrative special cases, a mutation that can be reached from the initial
state, and a mutation that needs ten preceding signals to be reached. Then in the third part, we will give
an overview on how well our method performed, presenting the average values of the 44 experiments.

Experiment 1. The first experiment was started with a random test case of length 50. The mutated
code of the faulty implementation is shown in Listing 6.1: the introduced implementation fault (negating
the state variable in Line 10) causes the close? signal to lead to an incorrect internal state that can never
be left. The bug only occurs if close? is triggered from the initial state.

By doing the tioco-conformance check between the model mutants and the test case, the number of
possible mutants was already reduced to 108. Hence, 188 mutants were disregarded either because they

1 public static final int OpenAndUnlocked = 1;
2 public static final int ClosedAndUnlocked = 2;
3 public static final int OpenAndLocked = 3;
4 public static final int ClosedAndLocked = 4;
5 public static final int SilentAndOpen = 5;
6 ...
7 public void Close() {
8 switch (m_state) {
9 case CarAlarmSystemState.OpenAndUnlocked :

10 SetState(-CarAlarmSystemState.ClosedAndUnlocked);
11 break;
12 ...

Listing 6.1: Code mutation of the close? signal leading to a wrong internal state, by
negating the state variable in the initial state.
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1 public void Unlock() {
2 switch (m_state) {
3 case -CarAlarmSystemState.SilentAndOpen :
4 SetState(CarAlarmSystemState.OpenAndUnlocked);
5 break;
6 ...

Listing 6.2: Code mutation of the unlock? signal. The switch condition cannot evaluate
to true, because of the incorrect negation.

were equivalent to the specification, or because the mutation was not covered by the random test case.

Executing MoMuT::TA on the remaining mutants took 724 seconds and produced the corresponding
set of test cases. A total of 51 out of the 108 test cases were able to kill the faulty implementation. 17 of
these test cases are minimal and all of the minimal test cases are identical, consisting of the trace close?
- lock? - armedOn!. All test cases longer than this trace and their mutants are disregarded.

Observing that all test cases contain the trace close? - lock? - armedOn! and none of them contains
lock? - close? - armedOn! lets us conclude two things: The fault is not located at the armedOn! signal
and it is state dependent. The fault is either located in the close? signal, when triggered from the initial
state, or in the lock? signal, when triggered from the closed and unlocked state.

Since there is no possible output between the close? and the lock? signal, the test cases cannot
provide more information on the location of the bug.

However, using this information, one can discard all mutants with mutations in the armedOn! signal,
further reducing the 17 mutants to 11. This is however the first step that requires manual input, while
the execution so far can be done automatically. Table 6.1 presents the implementation faults represented
by the remaining mutant diagnoses. The bold row shows the model mutant representing the actual
implementation fault, which could easily be found with this information.

Experiment 2. Part of the second experiment has already been discussed in the introduction of this
section, yet here we present the full results. The exact fault is shown in Listing 6.2. The switch condition
for the silent and open state in the mutated unlock signal (Line 3) has been negated and can never evaluate
to true, hence the unlock method has no effect after the alarm went silent.

Our initial test case was produced randomly with a length of 50 and is able to kill our faulty imple-
mentation. The tioco - conformance check between the model mutants and the test case reduced the total
amount of mutants to 127, taking 742 seconds. Hence, 169 mutants were disregarded because the test
case did not cover any unspecified output on them.

In the next step, we produced the corresponding test cases with our model-based mutation testing
technique, obtaining 127 test cases in 68 seconds. Due to the fact that the mutation is not easy to reach,
only 2 of the test cases were able to kill the faulty implementation, therefore only two mutant diagnoses
remained in the final set. One of them can be seen in Figure 6.2(b). It was produced with the change target
mutation operator, which created a ”self loop”for the unlock? transition leaving the silent and open state.
Such loops mimic the behavior of implementation faults that completely disable the functionality of a
signal. The second mutant diagnosis remaining was created via the ”Negate Guard” mutation operator,
disabling the guard of the unlock? signal. Both diagnoses are valid explanations for the faulty behavior.

Average results. Applying the whole procedure to a faulty implementation took an average of 835
seconds. The final set of mutant diagnoses contained an average of 13 mutants. The reason for this
high value is that in black box methods at least one observable has to be reached before a difference



Chapter 6. Additional Contributions 81

Table 6.2: Characteristics of the generated mutant diagnoses and minimal test cases.

# Faulty impls. 9 1 1 3 1 4 1 2 3 4 2 1 5 2 5 Avg.
# Mutant diagnoses 30 29 28 17 16 13 10 9 8 7 6 5 3 2 1 12.65
Average minimal
test case length

3 3 3 3 3 3 10 9 8 6.5 4 11 3 13 5 4.95

in behavior can be detected. Consequently, the minimal length of a test case for the CAS is three and
most implementation faults that lie within these three steps show the same behavior with respect to tioco.
Therefore, all model mutations that lie within these steps are seen as possible explanations for the faults.
Faults that are harder to reach and therefore usually harder to detect, can be identified far better by our
approach.

An average of 14 mutants were selected as diagnoses for the timed faults of the six manually created
faulty implementations. Several of these diagnoses contained mutations of the (time dependent) guard
of transitions and mutations on time invariants. This shows that MBMD also supports the debugging
of timing faults. Table 6.2 shows the relation between the faulty implementations and the amount of
mutant diagnoses produced by them. The nine faulty implementations that produce 30 possible mutant
diagnoses all contain a fault introduced within the first three transitions. The last row shows the average
length of the minimal test cases per cardinality of the diagnosis set. It highlights the fact that, in general,
deeper faults generate fewer possible explanations.

6.2 Pruning of Trees

In Chapter 4 we presented a bounded method to remove silent transitons and determinize timed au-
tomata, by unfolding the automata and bounding the length of the traces we investigate. As mentioned,
one of the downsides to this technique is an exponential state-space explosion caused by the unfolding.
Consider the example presented in Figure 6.3. It is once more a timed automata specification of a car
alarm system, however it differs from the previous examples as it is split into four communicating timed
automata. The first two automata handle the locks and the doors. If an input is triggered, they pass on
an internal signal to the third automaton, that monitors the locks and doors, to arm the system, if the
doors are closed and locked for twenty seconds. The last automaton handles the activation and manual
or time-triggered deactivation of the alarms, that are triggered if the doors are violently opened while
the system is armed. The network contains four inputs (lock, unlock, close, open), five internal signals
(locked, unlocked, closed, opened) that become hidden after building the product, and six output signals
(soundOn, soundOff, flashOn, flashOff, armedOn, armedOff). Altogether, the example contains only 23
locations. Yet, unfolding its product to the observable depth two already creates 11 locations, without
taking into account the locations that can only be reached by traces ending with internal transitions. Un-
folding it one step further creates a total of 50 locations. The number of locations grows exponentially,
e.g. on Depth 12 it is already higher then three million locations.

At this point, applying our test-case generation is not feasible anymore. In this section, we propose
two methods that avoid the generation of the whole tree and use meaningful sub-trees instead.

The first method applies the mutation to the unfolded tree, instead of applying it to the original
specification, as done in our initial process. Consequently, the position of the mutation in the tree is
known, and the check whether the mutation violates tioco conformance has to be applied only to the
sub-tree beneath.

The second method works with heuristic-based pruning of the tree. Due to the fact that we are using
tioco, which supports partial models, pruning away transitions with input labels leads to legal partial
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models. The test cases that can be produced via pruning the system are more adaptive than the tests
we generated in our previous test-case generation approach, as they still contain every trace that can
be invoked by the remaining inputs and do not lead to inconclusive verdicts if the execution takes a
different path than intended by our tool.

6.2.1 Mutation on the Tree

Originally, it was planned to mutate the original specification before unfolding, to produce fewer mutants
and avoid the state-space explosion of the unfolding during the mutation. The whole test-case generation
process is illustrated in Figure 6.4 (a). It is applied on N mutants, producing n tests, where N ≥ n, due
to possibly equivalent mutants.

However, the unfolded structure can also be utilized to improve the mutation and language inclusion
process: the unfolding already traverses the whole state space that is needed for the test-case generation.
By mutating the unfolded specification, this information can be used: as the mutations are introduced
on purpose and systematically, their position in the unfolded state-space is known. The only thing that
needs to be done is the check whether a mutation invokes a violation of the tioco-conformance relation
in the sub-tree beneath it, or not. Thus, the language inclusion check does not need to start at the root of
the tree, but should rather start at the mutation and explore only the subtree beneath the mutated action.
This reduces the investigated state space drastically. The updated process can be seen in Figure 6.4 (b).
Note that this approach producesM mutants andm tests, whereM ≥ m andM > N since the mutation
on the bigger unfolding produces more mutants than the mutation on the smaller specification.

In order to apply this approach, two steps need to be executed: First, as the unfolded automata
might contain infeasible paths, a reachability-analysis is needed to check whether the mutated location
or transition can actually be reached from the initial location. If the path from the initial state to the
mutated location is in the form of a tree, i.e. every location along the path has exactly one incoming
transition, the reachability is comparatively easy and only the guards and clock resets along the trace
have to be checked for satisfiability. The constraints that are created on the clocks need to be stored,
so they can be attached to the initial state of the tioco check. If there are several traces leading to the
mutated state, there is not only one constraint, but one per different trace. As only one of them has to be
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(a)

(b)

Figure 6.4: Our test-case generation process: (a) illustrates the original process (b) shows
the updated process, where the language inclusion is only applied to a subtree
of the specification and the mutants.

satisfiable for the mutated state to be reachable, a disjunction of all these constraints is stored.

After finishing the reachability analysis, the tree can be pruned, leaving only the subgraph below the
mutation. Then the language inclusion check can be applied, with the mutated location as initial location,
to see if the mutation propagates to a real failure. The only change to the classical check is that the clocks
are not set to zero at the initial location, but are defined by the constraints calculated in the last step.

If a counterexample is found, the test-case generator merges the trace(s) calculated in the reachability
check with the counter-example found by the language inclusion, to gain a time adaptive test case from
the initial state to the tioco-violation.

This check naturally enables us to reach far higher depths in the k-bounded language inclusion of the
trees than could be achieved otherwise, as the exponential growth of the complexity only starts after the
mutation.

6.2.2 Pruning the Inputs

Partial specifications are valid resources for test-case generation, as long as the partial models still con-
form to the complete specification. The conformance relation tioco allows the underspecification of
inputs, thus by pruning inputs in the tree, the tioco conformance is not violated, while removing any
output transitions would. There are several possibilities for the pruning approach:

• Prune according to a manually predefined test purpose.

• At each depth, pick a subset N of all inputs, either randomly or according to some predefined
distribution, and prune every input not contained in N .

• At each depth, only allow exactly one random controllable and prune the rest.

Note that these pruning options can already be applied during the determinization, thus the pruning
does not only decrease the complexity of the test-case generation, but can already increase the efficiency
of the unrolling and determinizing. In the following, we want to present these approaches in detail:
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Figure 6.5: The tree of the car alarm system pruned according to the test purpose {lock},
{close}, {}, {open, unlock}, {}, {}.

Test purpose. Our test purposes we have in mind are defined as sets of inputs for each depth, so that at
each step only the defined inputs are explored. The test purposes have to be defined by the test engineer,
which requires some knowledge about the system, but ensures that the tree only covers the parts relevant
for the user. For the presented car alarm system, a test engineer might want to avoid those parts of the
tree that start with alternating locking and unlocking of the doors. A well chosen test purpose to avoid
this is {lock}, {close}, {}, {open, unlock}, {}, {}. This prunes the tree to locking and closing the doors
in the first two steps, and avoids any inputs in the third step (thus the empty set). Thus, in the third
step only outputs are received, and the tree only covers the branch that arms the alarm system. Opening
the door in the fourth step will cause the alarms to start and unlocking it will trigger the transition for
unarming the system, so both important branches of the tree are covered. The pruned car alarm system
can be seen in Figure 6.5.

The empty sets at the end of the test purpose are used to complete the test case with all outputs that
are immediately triggered after the test purpose. Due to these empty sets, in the final steps no new input
is triggered, but all outputs are still captured. Contrary, if the test purpose should only be used to prune
the first few steps of the tree, and the unfolding should be continued afterwards, it suffices to add sets
with all inputs, until the desired depth is reached.

Automated picking of inputs. Picking a set of inputs N for each depth, either per randomization or
according to some distribution, is very similar to the manual approach in the previous paragraph. The
main advantage is that no knowledge about the specification is needed and the partial model can be
created purely automatically.

The random approach of selecting the enabled inputs needs the least effort, even though it needs to
ensure in some way, that the chosen inputs are actually enabled in some parts of the tree in the current
depth. Choosing the inputs via statistical measures helps steering the partial model in the right direction.
If locking and closing the doors has a higher priority than opening and unlocking, the probability for
arming the system in the selected partial model is very high.

Alternatively, the inputs can also be chosen for each location in the tree individually, instead of using
the same inputs at all locations of each depth. This would facilitate specifying the priority of the inputs
in the specification, dependent on the current location. Thus, for instance, the priority of lock and close
might be higher in the first few locations, and might decrease as the inner parts of the model are explored.

One input per depth. Choosing exactly one input per depth is a special case of the approach described
in the previous paragraph, where |N | is set to one. Like in the last paragraph, the selection can be done
randomly or steered by heuristics. The partial models constructed by this approach are in fact already
adaptive test cases [99]: they provide one fixed sequence of inputs, and contain every branching caused
by the outputs. Given a test driver that can handle adaptive tests, theses tests could immediately be
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executed on a SUT.

While these partial models cannot be used for generating a test suite via model-based mutation test-
ing, as they already are in the form of test cases, the model-mutations still can be used to assess the
quality of these random tests, i.e. to check how many mutants are killed by the adaptive test cases. The
mutation analysis could also be used as a stopping criterion for the test-case generation, indicating when
enough test cases have been generated.

Note that we distinguish between two types of non-determinism: non-deterministic automata, where
two transitions with the same label are enabled at the same time, and non-deterministic systems, where
the system can chose non-deterministically between different outputs. While our test-case generation
approach is not able to handle the first case, the second one did not cause problems. However, our
previous test cases only contained one specific trace through the system, and hence unexpected outputs
led the test-case execution to an inconclusive verdict. The test cases we generate by pruning the tree
are fully adaptive and contain every trace that can be invoked by the chosen inputs.

6.3 Translation to Timed Action Systems

In this section, we show how to translate timed automata into timed action systems, an extended version
of Back and Kurkio-Suonios [37] action systems with support for time. We then show how to apply
a symbolic conformance check to timed action systems, according to the symbolic timed input-output
conformance (stioco). The approach was developed together with Martin Tappler, who developed and
implemented the conformance check and did all the experiments on the timed action systems. In this
section we will only give an excerpt, the full documentation can be found in [18].

6.3.1 Timed Action Systems

Action systems were introduced for modeling distributed systems. In more recent work, they have been
used as a modeling formalism for mutation-based test-case generation for reactive systems [14, 4]. An
event-centered view of action systems has been taken in this context, for deriving test cases and for
checking of ioco conformance between action systems. More concretely, for model-based mutation
testing each action is assigned a label and an action type, which identifies the action as being an output,
input or internal action.

For the definition of timed action systems, we also follow this approach. However, the modeling
formalism discussed in the following is more restricted with respect to discrete actions than other variants
of the action systems formalism. Nevertheless, we also extend traditional action systems by explicitly
accounting for time, which is inspired by timed automata.

In our approach, an action system defines a set of actions and corresponding guarded commands, a
set of state variables and an initialisation for these variables. An action defines a set of parameters and
has an action type. For each action, the corresponding guarded command defines the conditions in which
the action may be executed and the effect of the action execution. The guarded commands may access
state variables and the parameters of the corresponding action. There may be several actions same label
and if multiple actions share the same label, they must also have the same parameters and action type.

During the execution of action systems, at each step an enabled action is chosen non-deterministically
and executed. Through this the state is continuously updated until the execution terminates, when none
of the actions is enabled. An action is enabled if the guard of its corresponding guarded command is
satisfiable.

In order to enable the modeling of time, we extend action systems by adding clock variables as
in timed automata. In between the execution of two discrete actions, the system may wait for certain
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amounts of time, which increases the values of the clock variables. This act of waiting will also be
referred to as delay in the following. To be able to define the conditions for the actual waiting time,
we add time invariants to action systems. The time invariant of an action system must hold in all states
and consists of several clauses. A clause defines a time constraint which must hold if the state variables
satisfy the condition defined by the clause. Finally, guarded commands may define conditions using
clocks and may reset clocks.

Several time extensions for action systems have already been proposed: Fidge and Wellings [85]
proposed timed action systems, assuming time-consuming actions and discrete time. Westerlund and
Plosila [175] proposed action systems based on continuous time, where each action system contains a
clock to measure the time since start of the system. Again, time is considered to be consumed by actions,
and may not pass between them. Wabenhorst [170] proposes a formalism combining time-consuming
actions and an additional wait action executed if none of the other actions are enabled. In contrast to
these proposals, we consider actions that take zero time, followed by delays. This keeps our definition of
timed action systems very close to timed automata.

Kurki-Suonio [118] proposed a time extension to action systems, using, equal to our approach, zero
time actions, but using only one global variable to track time. Each action has a parameter specifying
its time of execution. They can only be executed if the global time is smaller or equal to their time
of execution. If an action is chosen, it raises the global time to its time of execution. Contrary to this
approach, we use invariants instead of deadlines for limiting time progress and we support multiple
clocks, allowing for more complex time constraints.

Seceleanu and Seceleanu [151] proposed a new definition of a parallel product for action systems,
which can also be applied to continuous timed action systems. However, the scope of the paper focused
mainly on the product of multiple action systems, while our approach is currently only applied to single
action systems.

6.3.2 Conventions

Generally, we assume the usage of two-sorted logic, where one sort d is defined for discrete data and the
other sort t for time-related formulas and terms. We further require that the constant 0t of sort t and the
binary addition +t for pairs of sort t must be defined. In addition, the relations ≤, <,=, >≥ must be
defined for all pairs of sorts d and t, i.e. any comparison between time and data must be possible. Note
that in practise, we allow for more sorts in our models, such as user-defined enumeration sorts, but we
use a type checker to ensure that only meaningful comparisons are performed.

We will denote the set of terms containing variables from a set X by Te(X) and first-order formulas
containing free variables from the same set by Fr(X). The function free(ϕ) maps a formula ϕ to the set
of all free variables in ϕ.

The set CC(X,Y ) denotes the set of clock constraints, with clock variables in X and constraint
operands in Y ∪ Te(∅). A clock constraint is of the form x ⊗ y, with x ∈ X , y ∈ Y ∪ Te(∅) and
⊗ ∈ {≤, <,=, >≥}, i.e. it is comparison between a clock variable and a variable or a constant term.

The set of all total functions from A to B shall be denoted by BA. The substitution of variables shall
be denoted by g[σ], where σ is a function from variables to terms and g is some formula or term. Hence,
the signature of [σ] is given by [σ] : Te(X)∪Fr(X)→ Te(X)∪Fr(X), where X is a set of variables.
The term fX denotes the domain restriction of a function f to the set X .

Sequences containing e1, e2, . . . , en will be denoted by 〈e1 · e2 · · · en〉 and the concatenation of two
sequences σ1 and σ2 will be denoted by σ1ˆσ2.
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1 clocks[Real]{ c;d;e;f;g }
2 init{
3 location := OpenAndUnlocked;}
4 invariant{
5 if location == ClosedAndLocked then c <= 20;
6 ... }
7 actions{
8 !armedOn() if location == ClosedAndLocked and c == 20 then {
9 location := Armed; };

10

11 ?open() resets e if location == Armed then {
12 location := BeforeAlarm; };
13 ... }

Figure 6.6: A snippet of the timed action system model of the CAS.

6.3.3 Syntax

In the following, we define the syntax for action systems. For a trace-based definition of their semantics,
we refer to our publication [18]. The definitions are inspired by the work of Frantzen et al. [87] and
von Styp et al. [168], who use symbolic timed automata. Since symbolic timed automata are similar to
regular ones, our version of stioco can be seen as an extension of the original definition [168], as we also
allow internal actions.

Figure 6.6 illustrates the structure of the concrete syntax of timed action systems and models a part
of the car alarm system. It specifies five real-valued clocks, that the initial state of the system shall be
OpenAndUnlocked, that the system must not wait longer than 20 time units in state ClosedAndLocked and
defines the actions. The actions are labeled with armedOn and open. These two events are fully defined
through two and three actions respectively. In the following, we present the abstract syntax of timed
action systems.

Definition 6.1 (Abstract Syntax of Timed Action Systems)
A timed action system is a tuple TAS = 〈V, I, C,ΛI ,ΛU , ι, Inv,A〉, where V is the set of state variables,
I is the set of parameter variables and C is the set of clock variables, with V , I, C being mutually
disjoint. Λ = ΛI ∪ ΛU is the set of action labels, with ΛI being the set of input action labels and
ΛU being the set of output action labels. The constant τ /∈ Λ denotes an internal action and we set
Λτ = Λ ∪ {τ}. The initialisation of the action system is ι ∈ Te(∅)V . Inv is the time invariant of
TAS, which is of the form

∧
i dci → cci, with dci ∈ Fr(V) and cci ∈ CC(C,V) for all i. The set A ⊆

Λτ×Fr(V∪I)×CC(C,V)×Te(V∪I)V×P(C) is the set of all actions. For a = (λ, g, gc, up, r) ∈ A, λ
is called label, g is called guard, gc is the clock guard, up is the update mapping, defined by assignments
in the guarded command and r is a set of clocks, which are reset by executing a.

Before we define semantics for timed action systems, we introduce two requirements and two auxil-
iary functions. These are similar to the requirements defined for symbolic transition systems by Frantzen
et al. [87]. The functions arity and para associate each action with its number of parameters and a tuple
containing its parameters respectively.

1. For all actions λ, paramaps λ to a tuple of distinct parameter variables and for (λ, g, gc, up, r) ∈ A
it holds that free(g) ⊆ V ∪ para(λ) and up ∈ Te(V ∪ para(λ))V .

2. As for τ -edges of timed transition system, we disallow the definition of parameter variables for
internal actions of timed action systems, i.e. for all τ -actions, it must hold that arity(τ) = 0.

Example 6.2 (Abstract Syntactical Representation of the CAS). The CAS defined in Figure 6.6 is a
timed action system〈V, I, C,ΛI ,ΛU , ι, Inv,A〉, where V = {location}, I = {}, C = {c, d, e, f, g},
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ΛI = {open, . . .}, ΛU = {armedOn, . . .}, ι = {location 7→ OpenAndUnlocked}, Inv = (location =
ClosedAndLocked) → c ≤ 20 ∧ . . . and A = {o, a, . . .}. With actions o = (open, location =
Armed, true, {location 7→ BeforeAlarm}, {e}) and a = (armedOn, location = ClosedAndLocked,
c = 20,{location 7→ Armed}, {}). Parts omitted in Figure 6.6 are represented by dots. 2

The trace-based semantics must fulfill four requirements: a trace must (1) start with a delay, (2)
consist of alternating sequences of discrete actions and delays, and (3) end in a delay. The first two
requirements are placed on the semantics in correspondence to the definition of traces by von Styp et
al. [168]. Conversely, the third requirement serves to simplify conformance checking while it does
not limit generality as zero delays are possible. Additionally, (4) a trace should handle internal actions
appropriately: consider the concrete timed trace ct = 〈1·!a·2·τ ·3·?b·0〉. For checking tioco conformance
one is only interested in observable traces of the specification [116]. Thus, we would project ct to the set
of observable input and output actions, erasing the τ -action and summing up the two consecutive delays:
ct′ = 〈1 · !a · 5 · ?b · 0〉.

In the symbolic setting, we use symbolic traces where constant time delays are replaced by symbolic
delay variables. As common in symbolic execution, these symbolic delays are defined via constraints.
We distinguish between two kinds of delay variables: observable delays ti, which are part of the ob-
servable trace and unobservable delays di,j that appear only in constraints. Observable delays are always
defined in terms of unobservable delays. For example, the symbolic trace st = 〈d1·!a·d2,1 ·τ ·d2,2·?b·d3〉
including an unobservable τ -action would be projected to an observable trace st′ = 〈t1·!a · t2·?b · t3〉
with the constraints t1 = d1, t2 = d2,1 + d2,2 and t3 = d3. Note that while observing the delay t2, it is
not possible to distinguish between the internal delays d2,1 and d2,2.

So far, we only considered delays. For the trace-based semantics we need to update the state of
variables and clocks along a trace and collect the constraints: discrete and time guards of actions, time
invariants and constraints which express that consecutive unobservable delays sum up to observable
delays. In addition, it is necessary to keep track of the set of unobservable delays along a trace, because
we will hide these via existential quantification for the conformance check.

6.3.4 Conformance Checking.

Since the stioco conformance relation for timed action systems is very similar to the definition of stioco
of von Styp et al. [168], we will not give the full definition, but rather list three important differences:

• We use the semantics discussed above. As unobservable delays along a trace are relevant for
conformance, symbolic states and symbolic observations consider these as well. Hence, states
and observations are tuples, where one tuple element contains the unobservable delays which have
been collected before reaching a symbolic state or before observing some symbolic observation.

• The symbolic observation of delays needs to be adapted as well, i.e. a symbolic counterpart of the
elapse(s)-function [116] must be defined, which maps a state s to the set of delays, which can be
executed without executing an observable action. Hence, a symbolic elapse(s)-function could be
defined as a trace, which consists of only one delay, executed in state s.

• The original stioco definition uses a function Φ, which gives a condition for observing some ob-
servation after a given trace σ. To account for internal actions, this function needs to existentially
quantify over the sets of unobservable delays collected along σ.

The symbolic conformance check is implemented in the same fashion as the sioco conformance
check for untimed action systems [23], which is itself inspired by the ioco conformance checker used
in [6, 4]. More concretely, it performs a bounded depth-first search for unsafe states, which are states
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in which non-conformance may be observed. For this purpose, both mutant and specification are sym-
bolically executed in parallel, such that they synchronise on observable actions, but execute internal
actions independently from each other. In order to ensure input-enabledness of the mutant, which is
a requirement for stioco, we perform an angelic completion for the mutant. Hence, we implicitly add
self-loops to states for all non-specified inputs. At each step, a conformance check is performed and if
non-conformance is detected, the trace leading to the current state and the satisfiable non-conformance
condition are returned.

6.3.5 Encoding Timed Automata using Timed Action Systems

In order to encode a timed automaton as a timed action system, we essentially create a timed action
system having the same set of state variables plus one additional state variable representing the current
location and having the same set of transitions/actions. The procedure for translating timed automata
into timed action systems can be structured as follows:

1. Create a timed action system with a set of state variables corresponding to the automatons loca-
tions, and the same clocks and action labels.

2. Create a set of constants Loc, where each constant represents a location in the timed automaton.
Define a function rep, which maps locations to their respective constants.

3. Add an additional state variable called location, which takes values inLoc, and rename an existing
variable with the same name, if such a variable exists. Initialise location with rep(l0), where l0 is
the initial location of the timed automaton.

4. For each transition of the timed automaton with source location l and target location l′:

(a) Create an action with equivalent guards, clock resets, state updates and label.
(b) Add location = rep(l) to the guard via conjunction and add location 7→ rep(l′) to the state

update.

5. Initialise the time invariant to >, then for each invariant i of a location l: Add the clause rep(l) =
location→ i to the time invariant of the timed action system via conjunction.

Any timed action system that was built according to this structure, can also be encoded as a timed
automaton, by reverting the steps above.

6.3.6 Comparison of Symbolic Execution and Bounded Model-Checking

We now want to compare the symbolic conformance check developed by Martin Tappler to the bounded
model-checking approach described in Chapter 3 [23]. We apply the checks to different variants of
the car alarm system, containing model elements such as silent transitions and data variables, that can
be challenging for the conformance checks. In all the experiments we use the following settings: we
translated from timed automata to timed action systems as closely as possible: The different models
contain the same number of states and transitions and the same sets of clocks and variables. We used eight
different mutation operators (similar to those in Section 3.1, excluding the changing of action labels, that
would have been problematic to implement for the timed action systems), that were implemented equally
for both types of models. However, due to the different modeling styles, the amount of mutants did vary
slightly in some cases. All experiments were run on a MacBook Pro with a 2.8 GHz Intel Core i7 and 8
GB RAM (6 GB were reserved for the Java virtual machine) with the reimplementation of MoMuT::TA,
only the car alarm system with PIN code was processed with the initial prototype implementation.



Chapter 6. Additional Contributions 90

Table 6.3: Computation time for the different conformance checks on the deterministic
version of the car alarm system.

Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

12 1.4s 1.1s 33s 0.07s 1.7s 0.02s 38.83s ∼ 0s

Deterministic Car Alarm System. We first investigate the model in Figure 5.1 (a). It is deterministic
and has 5 clocks, 16 locations and 25 transitions. The results of applying both approaches are displayed
in Table 6.3. The bounded model checking performed slightly faster and at a very constant rate, without
many statistical outliers. The symbolic execution, with the median far below the mean value, was very
fast for most of the mutants, however there were some that took significantly longer than the rest, and
increased the average processing time. The overall runtime of the bounded model checking was 30.0
minutes for 1, 320 mutants, compared to 27.5 minutes for 968 mutants of the symbolic execution.

Non-Deterministic Car Alarm System. The next model was presented in Figure 5.1 and contains a
silent transition that non-deterministically delays the 20 seconds timer responsible for arming the system
by up to two seconds. This changes the time constraints for the arming of the system and adds non-
determinism for the unlock and open transitions leaving the locations. In Section 5.3.2 we already
explained that the unfolded determinized model became too large for our test-case generation approach.
Thus, it was split into two tioco-conform partial models, where the first one captures the different variants
of locking, unlocking, closing and opening the doors, up to the first arming transition. The second one
only contains one direct path to the armed state, but covers the rest of the system. Both partial models
are illustrated in Figure 5.5.

The results of applying the two different approaches to these models are illustrated in Table 6.4. The
difference to the runtimes presented in Section 5.3.2 is based on using a different version of Z3, and in
the experiments from Section 5.3.2 we reserved more RAM for the virtual machine. Both approaches
discussed in this section were run with the same settings. The overall runtime for the first partial model
was 32.8 minutes for 220 mutants for applying the bounded model checking and 48.1 seconds for 168
mutants for the symbolic execution. For the second partial model, the bounded model checking took
34.1 minutes for 1, 263 mutants and the symbolic execution only needed 68.1 seconds for 832 mutants.

The ability of the symbolic approach, to process the models without unfolding them first, clearly
gives it an advantage here. Not only is it a lot faster on the partial models, it was also able to process the
complete model. Additionally, it has on average even been faster than in the deterministic case. There
are two main reasons for this behavior. Firstly, three mutants have not been checked for conformance
automatically, because they ran into a timeout (ten minutes), and were excluded from the experiments.
However, manual inspection revealed that these mutants conform to the specification. Secondly, the
introduction of a silent transition led to a much larger portion of nonequivalent mutants. Aichernig et al.
showed that ioco checking of equivalent mutants takes significantly longer than ioco checking of non-

Table 6.4: Computation time for the different conformance checks on the partial models
of the non-deterministic version of the car alarm system.

Model Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

Partial 1 8 9.7s 8.0s 85.1s 0.3s 0.28s 0.04s 16.78s ∼ 0s

Partial 2 12 1.6s 1.63s 37.3s 0.08s 0.08s 0.03s 2.28s ∼ 0s

Complete 12 x x x x 0.79s 0.06s 360.84s ∼ 0s
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Table 6.5: Computation time for the different conformance checks on the deterministic
version of the car alarm system, augmented by a PIN code.

Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

8 1.46s 0.28s 59.41s 0.12s 0.07s 0.05s 0.82s ∼ 0s
12 4.12s 0.35s 35.41s 0.13s 0.24s 0.05s 3.67s ∼ 0s

equivalent mutants [6], thus a lower number of equivalent mutants can explain the reduction in average
runtime from 1.7s to 0.79s.

Car Alarm System with PIN Code. This final model treats the ability of processing data variables.
The unlock and lock transitions of the car alarm system are augmented by a PIN code. If the code is
entered correctly, the system acknowledges it with a new ack-output, and continues as before. If it was
entered incorrectly, the system will start the alarms, after a nack-output. This model only uses one clock,
whereas five clocks were used in the original car alarm system.

The PIN code did not have any negative influence on both approaches, as illustrated in Table 6.5.
For the symbolic execution, the mean conformance check time was even reduced. This was most likely
caused by the fact that only one clock was used in this model. Furthermore, there were several more
mutants, most of which were non-equivalent.

Altogether, the bounded model checking was applied to 1, 702 mutants and needed 41.4 minutes on
depth 8 and 116.8 minutes on depth 12. The symbolic execution was faster, needing 143.0 seconds on
depth 8 and 460.8 seconds on depth 12 for 1, 918 mutants. For the reported numbers, we restricted the
PIN code to three digits. However, we also applied the experiments with higher values (four and five
digits), without any negative consequences.

6.3.7 Summary

In this section, we have introduced timed action systems in a fashion as close to timed automata as
possible. We showed how to translate timed automata into timed action systems and defined a symbolic
trace semantics for them. Using this semantics, we applied a symbolic conformance check based on the
stioco conformance relation. We then compared bounded model checking and symbolic execution in the
context of test-case generation, applied to different models of a car alarm system. The results showed
that symbolic execution was able to handle non-determinism better than the bounded model-checking
approach, and that data variables did have no negative influence on both approaches.
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Part II

Synchronous Systems
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Overview

In the second part of this thesis, we investigate synchronous systems in the context of model-based
mutation testing and real-time properties.

We first introduce requirement interfaces, which we use as a representative for synchronous for-
malisms. It enables the modeling of different system views as subsets of requirements. It is a state-
transition formalism that supports compositional specification of synchronous data-flow systems by
means of assume/guarantee rules, that we call contracts. We associate subsets of contracts to requirement
identifiers, to facilitate their tracing to the informal requirements from which the specification is derived.
These associations can later on be used to generate links between the work products, connecting severals
tools.

Instead of modeling the complete behavior of a system at once, each requirement interface is in-
tended to model a single specific view of the SUT. We define the conjunction operation that enables
combining different views of the SUT. Intuitively, a conjunction of two requirement interfaces is an-
other requirement interface that requires contracts of both interfaces to hold. We assume that the overall
specification of the SUT is given as a conjunction of requirement interfaces modeling its different views.
Requirement interfaces are inspired by the synchronous interfaces formalism by Henzinger et al. [66],
with the difference that we support hidden variables in addition to the interface (input and output) vari-
ables and that the requirement identifiers are part of the formal model. The conjunction operator was
first defined by Doyen et al. [78] as shared refinement, while Benveniste et al. [46] establishes the link
of the conjunction to multiple viewpoint modeling and requirement engineering.

Once the basic definitions of requirement interfaces are given, we formally define consistency for
requirement interfaces and develop a bounded consistency checking procedure. In addition, we show that
falsifying consistency is compositional with respect to conjunction – the conjunction of an inconsistent
interface with any other interface remains inconsistent. Next, we develop a requirement-driven TCG and
execution procedure from requirement interfaces, with language inclusion as the conformance relation.
We present a procedure for TCG from a specific SUT view, modeled as a requirement interface, and
a test purpose. Here, the test purpose is a formal specification of the target state(s) that a test case
should cover. Such a test case can be used directly to detect if the implementation by the SUT violates a
given requirement, but cannot detect violation of other requirements in the conjunction that composes the
system. Next, we extend this procedure by completing such a partial test case with additional constraints
from other view models that enable detection of violations of any other requirement.

Then, we develop a tracing procedure that exploits the natural mapping between informal require-
ments and our formal model. Thus, inconsistent contracts or failing test cases can be traced back to
the violated requirements. We believe that such tracing information provides precious maintenance and
debugging information to the engineers.

Next, we show how to apply model-based mutation testing, using the technique to automatically
generate a set of test purposes. The corresponding test suite is able to provide fault coverage for a
specified set of fault models, under the assumption of a deterministic SUT. The approach includes the
following steps: first, we define a set of fault models for requirement interfaces. These are applied to all
applicable parts of the contracts in the requirement interface, generating a set of mutants. We then check
whether the mutated contract introduces any new behavior. This check is encoded as a test purpose, so we
can simply pass it to the previously defined test generation. If the mutation introduces new behavior that
deviates from the reference model, it will generate a test, otherwise, the test purpose will be unreachable,
and the mutant is considered equivalent.

We illustrate the entire workflow of using requirement interfaces for consistency checking, testing
and tracing in Figure 6.7, where the test purpose may be produced by model-based mutation testing, or
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Figure 6.7: Overview of using requirement interfaces for testing, analysis and tracing.

any arbitrary other technique. The process starts with the requirements document, which in this example
shows three different views of the system. These are then formalized into three requirement interfaces,
which, if composed together, specify the complete functionality of the system. Then we perform a con-
sistency check, which may be performed on the individual requirement interfaces, or on the conjunction.
If they reveal an inconsistency, we need to trace them back to the original requirements (which are di-
rectly linked), to see whether the fault lies in the requirements, or was made during the formalization.
If the requirement interfaces were consistent, we apply the test-case generation, which may be guided
by manually designed test purposes, or by automatically generated ones, like those generated by model-
based mutation testing. If the test purposes can be reached, we transform the trace leading there into a
test case. The sum of this test cases forms the test suite, which is then executed on the system under test.
If all test cases pass, we can consider the system correct, with respect to the test suite and the require-
ments. If not, we need to examine which requirements were violated, to determine whether the system
behaved incorrectly, or the requirements were incorrect.



7 Requirement Interfaces

Parts of this chapter are based on our publication at FMICS 2015 [11].

We introduce requirement interfaces, a formalism for the specification of synchronous data-flow
systems. Their semantics is given in the form of labeled transition systems (LTS). We define consistent
interfaces as the ones that admit at least one correct implementation. The refinement relation between
interfaces is given as language inclusion. Finally, we define the conjunction of two requirement interfaces
as another interface that subsumes all behaviors of both interfaces.

7.1 Syntax

Let X be a set of typed variables. A valuation v over X is a function that assigns to each x ∈ X a
value v(x) of the appropriate type. We denote by V (X) the set of all valuations over X . We denote by
X ′ = {x′ | x ∈ X} the set obtained by priming each variable in X . Given a valuation v ∈ V (X) and a
predicate ϕ on X , we denote by v |= ϕ the fact that ϕ is satisfied under the variable valuation v. Given
two valuations v, v′ ∈ V (X ∪X ′) and a predicate ϕ on X ∪X ′, we denote by (v, v′) |= ϕ the fact that
ϕ is satisfied by the valuation that assigns to x ∈ X the value v(x), and to x′ ∈ X ′ the value v′(x′).

Given a subset Y ⊆ X of variables and a valuation v ∈ V (X), we denote by π(v)[Y ], the projection
of v to Y . We will commonly use the symbol wY to denote a valuation projected to the subset Y ⊆ X .
Given the sets X , Y1 ⊆ X , Y2 ⊆ X , w1 ∈ V (Y1) and w2 ∈ V (Y2), we denote by w = w1 ∪ w2 the
valuation w ∈ V (Y1 ∪ Y2) such that π(w)[Y1] = w1 and π(w)[Y2] = w2.

Given a setX of variables, we denote byXI ,XO andXH three disjoint partitions ofX denoting sets
of input, output and hidden variables, such thatX = XI ∪XO∪XH . We denote byXobs = XI ∪XO the
set of observable variables and by Xctr = XH ∪ XO the set of controllable variables. We adopt SUT-
centric conventions to naming the roles of variables. A contract c onX ∪X ′, denoted by (ϕ,ψ), is a pair
consisting of an assumption predicate ϕ on X ′I ∪X and a guarantee predicate ψ on X ′ctr∪X . A contract
ĉ = (ϕ̂, ψ̂) is said to be an initial contract if ϕ̂ and ψ̂ are predicates on X ′I and X ′ctr, respectively, and
an update contract otherwise. Given two valuations v, v′ ∈ V (X ∪X ′) and a contract c = (ϕ,ψ) over
X∪X ′, we say that (v, v′) satisfies c, denoted by (v, v′) |= c, if (v, π(v′)[X ′I ]) |= ϕ⇒ (v, π(v′)[X ′ctr]) |=
ψ, where⇒ denotes implication. In addition, we say that (v, v′) satisfies the assumption of c, denoted
by (v, v′) |=A c if (v, π(v′)[X ′I ]) |= ϕ. The valuation pair (v, v′) satisfies the guarantee of c, denoted by
(v, v′) |=G c, if (v, π(v′)[X ′ctr]) |= ψ). Note that we sometimes use the direct notation (v, w′I) |=A c and
(v, w′ctr) |=G c, where wI ∈ V (XI) and wctr ∈ V (Xctr) and for readability we use the concrete syntax
ϕ ` ψ to denote (ϕ,ψ) in our examples.
Definition 7.1
A requirement interface A is a tuple 〈XI , XO, XH , Ĉ, C,R, ρ〉, where

• XI , XO and XH are disjoint finite sets of input, output and hidden variables, respectively, and
X = XI ∪XO ∪XH denotes the set of all variables;

• Ĉ and C are finite non-empty sets of initial and update contracts;

• R is a finite set of requirement identifiers;

• ρ : R → P(C ∪ Ĉ) is a function mapping requirement identifiers to subsets of contracts, such that⋃
r∈R ρ(r) = C ∪ Ĉ and P is the powerset operator.

We say that a requirement interface is receptive if in any state it has defined behaviors for all inputs,
that is

∨
(ϕ̂,ψ̂)∈Ĉ ϕ̂ and

∨
(ϕ,ψ)∈C ϕ are both valid. This corresponds to input-enabledness of timed au-

tomata. A requirement interface is fully-observable if XH = ∅. A requirement interface is deterministic
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if for all initial contracts (ϕ̂, ψ̂) ∈ Ĉ, ψ̂ has the form
∧
x∈XO

x′ = cinit, where cinit is a constant of
the appropriate type, and for all (ϕ,ψ) ∈ C, ψ has the form

∧
x∈Xctr

x′ = f(X), where f is a function
over X that has the same type as x. Note that we denote by XO/Xctr the output/controllable variables
involved in that contract.

Example 7.1. We use an abstract N -bounded FIFO buffer example to illustrate all the concepts intro-
duced in this chapter. Note that the actual content of the buffer are ignored, as we are only interested
in detecting whether the buffer is full, empty, or in between. Let Abeh be the behavioral model of the
buffer. The buffer has two Boolean input variables enq, deq, i.e. Xbeh

I = {enq, deq}, two Boolean output
variables E, F, i.e. Xbeh

O = {E,F} and a bounded integer internal variable k ∈ [0, N ] for some N ∈ N,
i.e. Xbeh

H = {k}. The textual requirements are listed below:

r0: In the initial state, the buffer is empty and the inputs are ignored.

r1: enq triggers an enqueue operation when the buffer is not full.

r2: deq triggers a dequeue operation when the buffer is not empty.

r3: E signals that the buffer is empty.

r4: F signals that the buffer is full.

r5: Simultaneous enq and deq (or their simultaneous absence), an enq on the full buffer or a deq on
the empty buffer have no effect.

We formally define Abeh as Ĉbeh = {c0}, Cbeh = {ci | i ∈ [1, 5]}, Rbeh = {ri | i ∈ [0, 5]}, ρbeh(ri) =
{ci}, Xbeh

I = {enq, deq}, Xbeh
O = {E,F} and Xbeh

H = {N, k} where

c0 : true ` (k′ = 0) ∧ E′ ∧ ¬F′

c1 : enq′ ∧ ¬deq′ ∧ k < N ` k′ = k + 1
c2 : ¬enq′ ∧ deq′ ∧ k > 0 ` k′ = k − 1
c3 : true ` k′ = 0⇔ E′

c4 : true ` k′ = N ⇔ F′

c5 : (enq′ = deq′) ∨ (enq′ ∧ F) ∨ (deq′ ∧ E) ` k′ = k

Contracts c0 to c2 follow the requirements r0 to r2 very closely and do not need further explanation.
c3 and c4 are more interesting, as we are not allowed to reason over primed input variables in the as-
sumption of the contracts. Thus, we could not simply model them as k′ = 0 ` E′, but had to shift the
implication into the guarantee. The biimplication was only used to emphasize the connection between
the empty buffer and the empty signal. Requirement r5 and contract c5 are needed, as without them the
behavior of the buffer would not be defined for e.g. a dequeue operation on an empty buffer. In that
case, the internal variable k might be set to any value arbitrarily. The requirement interface is receptive,
since for all reachable states the behavior for any input is defined. It is deterministic, since all output and
internal variables are set to a fixed value for any possible combination of inputs and internal values. 2

7.2 Semantics

Given a requirement interface A defined over X , let V = V (X) ∪ {v̂} denote the set of states in A,
where a state v is a valuation v ∈ V (X) or the initial state v̂ 6∈ V (X). The latter is not a valuation, as
the initial contracts do not specify unprimed variables. There is a transition between two states v and v′

if (v, v′) satisfies all its contracts. The transitions are labeled by the (possibly empty) set of requirement
identifiers corresponding to contracts for which (v, v′) satisfies their assumptions. The semantics [[A]]
of A is the following LTS.
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Figure 7.1: Labeled transition graph [[Abeh]] illustrating the semantics of the bounded
FIFO specification Abeh, where N = 2.

Definition 7.2
The semantics of the requirement interfaceA is the LTS [[A]] = 〈V, v̂, L, T 〉, where V is the set of states,
v̂ is the initial state, L = P(R) is the set of labels and T ⊆ V × L × V is the transition relation, such
that:

• (v̂, R, v′) ∈ T if v ∈ V (X),
∧
ĉ∈Ĉ(v̂, v′) |= ĉ and R = {r | (v̂, v) |=A ĉ for some ĉ ∈ Ĉ and ĉ ∈

ρ(r)};
• (v,R, v′) ∈ T if v, v′ ∈ V (X),

∧
c∈C(v, v′) |= c and R = {r | (v, v′) |=A c for some c ∈

C and c ∈ ρ(r)}.

We say that τ = v0
R1−−→ v1

R2−−→ · · · Rn−−→ vn is an execution of the requirements interface A if v0 = v̂
and for all 1 ≤ i ≤ n− 1, (vi, Ri+1, vi+1) ∈ T . In addition, we use the following notation:
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(1) v R−→ iff ∃v′ ∈ V (X) s.t. v R−→ v′;

(2) v → v′ iff ∃R ∈ L s.t. v R−→ v′;
(3) v → iff ∃v′ ∈ V (X) s.t. v → v′;
(4) v ε

=⇒ v′ iff v = v′;
(5) v w

=⇒ v′ iff ∃Y ⊆ X s.t. π(v′)[Y ] = w and v → v′;
(6) v w

=⇒ iff ∃v′, Y ⊆ X s.t. π(v′)[Y ] = w and v → v′;
(7) v w1·w2···wn======⇒ v′ iff ∃v1, . . . , vn−1, vn s.t. v w1=⇒ v1

w2=⇒ · · · vn
wn=⇒ v′; and

(8) v w1·w2···wn======⇒ iff ∃v′ s.t. v w1·w2···wn======⇒ v′.

We say that a sequence σ ∈ V (Xobs)
∗ is a trace of A if v̂ σ

=⇒. We denote by L(A) the set of all traces
ofA. Given a trace σ ofA, letA after σ = {v | v̂ σ

=⇒ v}. Given a state v ∈ V , let succ(v) = {v′ | v → v′}
be the set of successors of v.

Example 7.2. In Figure 7.1, we show the LTS [[Abeh]] of Abeh. We use the notation r1,2,3 to denote the
set {r1, r2, r3}. The outermost dotted groupings consist of all valuations with the same values for the
internal and output variables. Each of the dottet groupings contains one valuation for the possible input
values. In the initial valuation, all inputs are ignored, thus from the initial valuation we might reach any
of the valuations v1 to v4. By applying an enqueue afterwards, we reach valuation v5, with the label
r1,3,4. A single enqueue would lead us to v9, a single dequeu to v4. Any other inputs would lead to v6 or
v7. For instance, v̂ r0−→ v3

r1,3,4−−−→ v5
r3,4,5−−−→ v6 is an execution in [[A]] and the trace induced by the above

execution is (¬enq,¬deq, E,¬F ), (enq,¬deq,¬E,¬F ), (enq,deq,¬E,¬F ).

7.3 Consistency, Refinement and Conjunction

A requirement interface consists of a set of contracts, that can be conflicting. Such an interface does not
permit any correct implementation. We say that a requirement interface is consistent if it permits at least
one correct implementation.

Definition 7.3
Let A be a requirement interface, [[A]] its associated LTS, v ∈ V a state and C = Ĉ if v is initial, and
C otherwise. We say that a state v ∈ V is consistent, denoted by cons(v), if for all wI ∈ V (XI), there
exists v′ such thatwI = π(v′)[X ′I ],

∧
c∈C(v, v

′) |= c and cons(v′). We say thatA is consistent if cons(v̂).

Example 7.3. Abeh is consistent – every reachable state accepts every input valuation and generates
an output valuation satisfying all contracts. Consider now replacing c2 in Abeh with the contract cm :
¬enq′ ∧ deq′ ∧ k ≥ 0 ` k′ = k − 1, that incorrectly models r2 and decreases the counter k upon deq
even when the buffer is empty, setting it to the value minus one. This causes an inconsistency with the
contracts c3 and c5, that state that if k equals zero the buffer is empty, and that dequeue on an empty
buffer has no effect on k. 2

We define the refinement relation between two requirement interfaces A1 and A2, denoted by A2 �
A1, as trace inclusion. Refinement is used for checking whether a more concrete model, or an implemen-
tation, conforms to an abstract specification. Cavalcanti et al. [65] gave an overview on different notions
of refinement. Henzinger et al. [96] defined compositional refinement for assume-guarantee contracts.
In our case, we will use refinement during the model-based mutation testing, described in Section 8.3, to
check whether a mutant refines the original requirement interface.

Definition 7.4
Let A1 and A2 be two requirement interfaces. We say that A2 refines A1, denoted by A2 � A1, if
(1) A1 and A2 have the same sets XI , XO and XH of variables; and
(2) L(A1) ⊆ L(A2).
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We use a requirement interface to model a view of a system. Multiple views are combined by
conjunction. The conjunction of two requirement interfaces is another requirement interface that is either
inconsistent due to a conflict between views, or is the greatest lower bound with respect to the refinement
relation. The conjunction of A1 and A2, denoted by A1 ∧ A2, is defined if the two interfaces share the
same sets XI , XO and XH of variables.

Definition 7.5
Let A1 = 〈XI , XH , XO, Ĉ

1, C1,R1, ρ1〉 and A2 = 〈XI , XH , XO, Ĉ
2, C2,R2, ρ2〉 be two requirement

interfaces. Their conjunction A = A1 ∧ A2 is the requirement interface 〈XI , XH , XO, Ĉ, C,R, ρ〉,
where

• Ĉ = Ĉ1 ∪ Ĉ2 and C = C1 ∪ C2;

• R = R1 ∪R2; and

• ρ(r) = ρ1(r) if r ∈ R1 and ρ(r) = ρ2(r) otherwise.

Remark: For refinement and conjunction, we require the two interfaces to share the same alphabet. This
additional condition is used to simplify definitions. It does not restrict the modeling – arbitrary interfaces
can have their alphabets equalized without changing their properties by taking union of respective input,
output and hidden variables. Contracts in the transformed interfaces do not constrain newly introduced
variables. For requirement interfaces A1 and A2, alphabet equalization is defined if (X1

I ∪X2
I )∩ (X1

ctr∪
X2

ctr) = (X1
O∪X2

O)∩ (X1
H ∪X2

H) = ∅. Otherwise, A1 6� A2 and vice versa, andA1∧A2 is not defined.

Example 7.4. We now consider a power consumption view of the bounded FIFO buffer. Its model Apc

has the Boolean input variables enq and deq and a bounded integer output variable pc. The following
textual requirements specify Apc:

ra: The power consumption equals zero when no enq/deq is requested.

rb: The power consumption is bounded to 2 units otherwise.

The interface Apc consists of Ĉpc = Cpc = {ca, cb}, Rpc = {ri | i ∈ {a, b}}, ρ(ri) = {ci} for
i ∈ {a, b}, Xpc

I = {enq, deq}, Xpc
O = {pc} and Xpc

H = {} where:

ca : ¬enq ∧ ¬deq ` pc′ = 0
cb : enq ∨ deq ` pc′ ≤ 2

The conjunction Abuf = Abeh ∧ Apc is the requirement interface where Xbuf
I = {enq,deq}, Xbuf

O =

{E,F,pc}, Xbuf
H = {k}, Ĉbuf = {c0, ca, cb}, Cbuf = {c1, c2, c3, c4, c5, ca, cb}, Rpc = {ri | i ∈

{a, b, 0, 1, 2, 3, 4, 5}}, and ρ(ri) = {ci}. 2

We now show some properties of requirement interfaces.

The conjunction of two requirement interfaces with the same alphabet is the intersection of their
traces.

Theorem 7.1
Let A1 and A2 be two consistent requirement interfaces defined over the same alphabet. Then either
A1 ∧A2 is inconsistent, or L(A1 ∧A2) = L(A1) ∩ L(A2).

Proof: Let A1 and A2 be two consistent requirement interfaces defined over the same alphabet. We first
show that A1 ∧ A2 can be inconsistent. For this, we choose A1 and A2 such that X1

I = X2
I = {x},

X1
O = X2

O = {y}, X1
H = X2

H = ∅, Ĉ1 = C1 = {c1} and Ĉ2 = C2 = {c2}, where c1 = true ` y′ = 0
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and c2 = true ` y′ = 1. It is clear that both A1 and A2 are consistent – for any new value of x, A1 (A2)
updates the value of y to 0 (1). However, A1 ∧ A2 is inconsistent, since no implementation can satisfy
the guarantees of c1 and c2 simultaneously (y′ = 0 ∧ y′ = 1).

Assume that A1 ∧A2 is consistent. We now prove that L(A1 ∧A2) ⊆ L(A1)∩L(A2). The proof is
done by induction on the size of σ.

Base case: σ = ε. We have that (A1 ∧A2) after ε = (A1 after ε) ∧ (A2 after ε) = {v̂}.
Inductive step: Let σ be an arbitrary trace of size n such that σ ∈ L(A1 ∧ A2). By inductive hy-
pothesis, σ ∈ L(A1) and σ ∈ L(A2). Consider an arbitrary wobs such that σ · wobs ∈ L(A1 ∧ A2).
Let V1∧2 = {v | v̂ σ

=⇒ v}. By the definition of semantics of requirement interfaces, it follows that
V ′1∧2 = {v′ | v wobs==⇒1∧2 v′ for some v ∈ V1∧2} is non-empty. Let v′ be an arbitrary state in V ′1∧2,
hence we have that v →1∧2 v′. Let Ci∗ = {(ϕ,ψ) | (ϕ,ψ) ∈ Ci and (v, π(v′)[X ′I ]) |= ϕ} for
i ∈ {1, 2} denote the (possibly empty) set of contracts in Ai for which the pair (v, v′) satisfies its
assumptions. By the definition of conjunction and semantics of requirement interfaces, we have that
(v, v′) |=

∧
(ϕ,ψ)∈C1

∗
ψ∧

∧
(ϕ,ψ)∈C2

∗
ψ. It follows that (v, v′) |=

∧
(ϕ,ψ)∈C1

∗
ψ, and (v, v′) |=

∧
(ϕ,ψ)∈C2

∗
ψ,

hence we can conclude that v →1 v
′ and v →2 v

′, hence σ ·wobs ∈ L(A1) and σ ·wobs ∈ L(A2), which
concludes the proof that L(A1 ∧A2) ⊆ L(A1) ∩ L(A2).

We now show that L(A1 ∧A2) ⊇ L(A1) ∩ L(A2). The proof is by induction on the size of σ.

Base case: σ = ε. We have that (A1 ∧A2) after ε = (A1 after ε) ∧ (A2 after ε) = {v̂}.
Inductive step: Let σ be an arbitrary trace of size n such that σ ∈ L(A1) and σ ∈ L(A2). By in-
ductive hypothesis, it follows that σ ∈ L(A1 ∧ A2). Let σ = σ′ · v. Consider an arbitrary wobs

such that σ · wobs ∈ L(A1) and σ · wobs ∈ L(A2). It follows that v
wobs==⇒1 and v

wobs==⇒2. Let Ci∗ =
{(ϕ,ψ) | (ϕ,ψ) ∈ Ci and (v, wobs) |= ϕ} for i ∈ {1, 2} denote the (possibly empty) set of contracts
in Ai for which the pair (v, wobs) satisfies its assumptions. By the definition of conjunction and the
semantics of requirement interfaces, we have that there exist v′ and v′′ such that (v, v′) |=

∧
(ϕ,ψ)∈C1

∗
ψ,

and (v, v′′) |=
∧

(ϕ,ψ)∈C2
∗
ψ. By the assumption that A1 ∧ A2 is consistent, we have that there exists v′

such that (v, v′) |=
∧

(ϕ,ψ)∈C1
∗
ψ ∧

∧
(ϕ,ψ)∈C2

∗
ψ, σ ·wobs ∈ L(A1 ∧A2), which concludes the proof that

L(A1 ∧A2) ⊇ L(A1) ∩ L(A2). 2

The conjunction of two requirement interfaces with the same alphabet is either inconsistent, or it is
the greatest lower bound with respect to refinement.

Theorem 7.2
LetA1 andA2 be two consistent requirement interfaces defined over the same alphabet such thatA1∧A2

is consistent. Then A1 ∧ A2 � A1 and A1 ∧ A2 � A2, and for all consistent requirement interfaces A,
if A � A1 and A � A2, then A � A1 ∧A2.

Proof: Assume that A1 ∧ A2 is consistent and consider an arbitrary consistent interface A that shares
the same alphabet with A1 and A2. The proofs that A1 ∧ A2 � A1, A1 ∧ A2 � A2, and that if A � A1

and A � A2, then A � A1 ∧A2 follow directly from Theorem 7.1 and the definition of refinement. 2

The following theorem states that the conjunction of an inconsistent requirement interface with any
other interface remains inconsistent. This result enables incremental detection of inconsistent specifica-
tions.
Theorem 7.3
Let A be an inconsistent requirement interface. Then for all consistent requirement interfaces A′ with
the same alphabet as A, A ∧A′ is also inconsistent.

Proof: Follows directly from the definition of conjunction, which constrains the guarantees of individual
interfaces. 2



8 Consistency Checking and Test-Case Generation

Parts of this chapter are based on our publication at FMICS 2015 [11].

In this chapter, we present our test-case generation and execution framework and instantiate it with
bounded model checking techniques. For now, we assume that all variables range over finite domains.
This restriction can be lifted by considering richer data domains in addition to theories that have decidable
quantifier elimination, such as linear arithmetic over reals. Before executing the test-case generation, we
should apply a consistency check on the requirement interface, to ensure the generation starts from an
implementable specification.

8.1 Bounded Consistency Checking

In order to check k-bounded consistency of a requirement interface A, we unfold the transition relation
of A in k steps, and encode the definition of consistency in a straight-forward manner. The transition
relation of an interface is the conjunction of its contracts, where a contract is represented as an implication
between its assumption and guarantee predicates. Let

θ̂ =
∧

(ϕ̂,ψ̂)∈Ĉ

ϕ̂⇒ ψ̂

and
θ =

∧
(ϕ,ψ)∈C

ϕ⇒ ψ

Then, the k-bounded consistency check for A corresponds to checking the satisfiability of the formula

∀X0
I .∃X0

ctr . . . ∀Xk
I .∃Xk

ctr. θ
0 ∧ θ1 ∧ · · · ∧ θk where

θ0 = θ̂[X ′\X0] and θi = θ[X ′\Xi, X\Xi−1], 1 ≤ i ≤ k, where X\Y means substituting X by Y in
the formula.

To implement the consistency check, it can be transformed to a satisfiability problem, which can then
be solved by an SMT-solver, as e.g. Z3. The first step is to construct a symbolic representation of the
initial contracts and the transition relation.

The transition relation is then unfolded for each step by renaming the occurrence of each variable
such that it is indexed by the corresponding step. In each step i the undecorated variables are indexed with
i − 1, while the decorated variables are indexed with i thus keeping the relation between the valuations
of each step. Given a set X of variables, we denote by Xi the copy of the set, in which every variable
is indexed by i. The conjunction of all instances of the step relation up to a certain depth is an open
formula, leaving all variables free. The consistency check is bounded by a certain depth k.

Example 8.1. Consider the mutated contract cm presented in Example 7.3, that mutates the dequeue
contract. The system is consistent in its initial valuation if for any possible input the conjunction of the
contracts is satisfiable. For any inputs other than a single dequeue, this holds producing the valuations.
(¬enq,¬deq, E,¬F, k = 0), (enq,¬deq,¬E,¬F, k = 1) and (enq,deq, E,¬F, k = 0). However,
for a single dequeue, contract cm requires k to become −1, while contract c5 requires it to be set to 0.
Thus, there does not exist a valid valuation of the controllable variables, and the system is detected to be
inconsistent. 2

103
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8.2 Test-Case Generation

A test case is an experiment executed on the SUT I by the tester. We assume that I is a black-box
that is only accessed via its observable interface. We assume that I can be modeled as an input-enabled,
deterministic requirement interface. The restriction to deterministic implementations is for presentation
purposes only, the technique is general and can also be applied to non-deterministic systems. Without
loss of generality, we can represent I as a total sequential function I : V (XI) × V (Xobs)

∗ → V (XO).
This means, that the behavior of the implementation can be represented by its history of observable
inputs and outputs, V (Xobs)

∗, which together with a new input V (XI) leads to a new output V (XO).
A test case TA for a requirement interface A over X takes a history of actual input/output observations
σ ∈ L(A) and returns either the next input value to be executed or a verdict. Hence, a test case can be
represented as a partial function TA : L(A)→ V (XI) ∪ {pass, fail}.

We first consider the problem of generating a test case from A. The test-case generation procedure is
driven by a test purpose. Here, a test purpose is a condition specifying the target set of states that a test
execution should reach. Hence, it is a formula Π defined over Xobs.

Given a requirement interface A, let φ̂ =
∨

(ϕ̂,ψ̂)∈Ĉ ϕ̂ ∧
∧

(ϕ̂,ψ̂)∈Ĉ ϕ̂ ⇒ ψ̂ and φ =
∨

(ϕ,ψ)∈C ϕ ∧∧
(ϕ,ψ)∈C ϕ ⇒ ψ. The predicates φ̂ and φ encode the transition relation of A, where φ̂ depicts the

transition relation of the initial contracts, with the additional requirement that at least one assumption
must be satisfied. Thus we avoid input vectors for which the test purpose can be trivially reached due to
under-specification. A test case for A that can reach Π is defined iff there exists a trace σ = σ′ · wobs in
L(A) such that wobs |= Π. The test purpose Π can be reached in A in at most k steps if

∃X0, . . . , Xk. φ0 ∧ . . . ∧ φk ∧
∨
i≤k

Π[Xobs\Xi
obs],

where φ0 = φ̂[X ′\X0] and φi = φ[X ′\Xi, X\Xi−1] represent the transition relation of A unfolded in
the i-th step.

Example 8.2. Consider our example of the abstract buffer, and the test purpose Π = F . The formula for
reaching the test purpose in at most 2 steps is presented below. The first line is the initial contract, the
next ten lines are the step relation of the first and the second steps, followed by the test purpose, which
must hold for k = 0 or k = 1 or k = 2.

true ` (k0 = 0) ∧ E0 ∧ ¬F0∧
enq1 ∧ ¬deq1 ∧ k0 < 2 ` k1 = k0 + 1∧
¬enq1 ∧ deq1 ∧ k0 > 0 ` k1 = k0 − 1∧
true ` k1 = 0⇔ E1∧
true ` k1 = 2⇔ F1∧
(enq1 = deq1) ∨ (enq1 ∧ F0) ∨ (deq1 ∧ E0) ` k1 = k0∧
enq2 ∧ ¬deq2 ∧ k1 < 2 ` k2 = k1 + 1∧
¬enq2 ∧ deq2 ∧ k2 > 0 ` k2 = k1 − 1∧
true ` k2 = 0⇔ E2∧
true ` k2 = 2⇔ F2∧
(enq2 = deq2) ∨ (enq2 ∧ F1) ∨ (deq2 ∧ E1) ` k2 = k1∧
(F0 ∨ F1 ∨ F2)

Given A and Π, assume that there exists a trace σ in L(A) that reaches Π. Let σI be a projection
to inputs, s.t. σI = π(σ)[XI ] = w0

I · w1
I · · ·wkI . We first compute ωσI ,A (see Algorithm 13), a formula

characterizing the set of output sequences that A allows on input σI . The formula ωσI ,A can be seen as
a monitor for A under input σI .
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Algorithm 13 OutMonitor
Input: σI = w0

I · w1
I · · ·wkI , A

Output: ωσI ,A
1: ω0

σI ,A
← φ̂[X ′I\w0

I , X
′
ctr\X0

ctr] . Substitution in step relation for initial contracts
2: for i = 1 to k do
3: ωiσI ,A ← φ[XI\wi-1I , X ′I\wiI , Xctr\Xi-1

ctr , X
′
ctr\Xi

ctr] . Substitution in norm. step relation
4: end for
5: ω∗σI ,A ← ω0

σI ,A
∧ . . . ∧ ωkσI ,A . Auxiliary variable

6: ωσI ,A ← qe(∃X0
H , X

1
H , . . . , X

k
H .ω

∗
σI ,A

) . Quantifier elimination
7: return ωσI ,A

Let φ̂ =
∧

(ϕ̂,ψ̂)∈Ĉ ϕ̂ ⇒ ψ̂ and φ =
∧

(ϕ,ψ) ϕ ⇒ ψ. For every step i, we represent by ωiσI ,A the allowed
behavior ofA constrained by σI (Lines 1−4). The formula ω∗σI ,A (Line 5) describes the transition relation
of A, unfolded to n steps and constrained by σI . However, this formula refers to the hidden variables of
A and cannot be directly used to characterize the set of output sequences allowed by A under σI . Since
any implementation of hidden variables that preserves correctness of the outputs is acceptable, it suffices
to existentially quantify over hidden variables in ω∗σI ,A. After eliminating the existential quantifiers,
which can e.g. be done by Z3, using the qe strategy [73], we obtain a simplified formula ωσI ,A over
output variables only (Line 6).

Example 8.3. Using the test purpose Π = F on our abstract buffer, we get the input sequence

(∗, ∗)
σ = (enq,¬deq,¬E,¬F)

(enq,¬deq)

and the output monitor

(E,¬F)
σ = (¬E,¬F)

(¬E,F)

Algorithm 14 TσI ,A
Input: σI = w0

I · · ·wkI , A, σ = w0
obs · · ·wkobs

Output: {pass, fail}
1: ωσI ,A ← OutMonitor(σI , A) . Produce output monitor
2: for i = 0 to k do
3: wiO ← π(wiobs)[XO]
4: end for
5: ω0,k

σI ,A
← ωσI ,A[X0

O\w0
O, . . . , X

k
O\wkO] . Substitute outputs by outputs observed by SUT

6: if ω0,k
σI ,A

= true then . Output minitor satisfied
7: return pass
8: else if ω0,k

σI ,A
= false then . Output monitor not satisfied

9: return fail
10: end if
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Let TσI ,A be a test case, parameterized by the input sequence σI and the requirement interface A from
which it was generated. It is a partial function, where TσI ,A(σ) is defined if |σ| ≤ |σI | and for all
0 ≤ i ≤ |σ|, wiI = π(wiobs)[XI ], where σI = w0

I · · ·wkI is the input sequence and σ = w0
obs · · ·wkobs are

the outputs observed from the SUT. Algorithm 14 gives a constructive definition of the test case TσI ,A.
It starts by producing the output monitor for the given input sequence (Line 1). Then it substitutes all
output variables in the monitor, by the outputs observed from the SUT (Lines 2-5). If the monitor is
satisfied by the outputs, it returns the verdict pass, otherwise it returns fail.

8.2.1 Incremental Test-Case Generation:

So far, we considered test case generation for a complete requirement interface A, without considering
its internal structure. We now describe how test cases can be incrementally generated when the interface
A consists of multiple views, e.g. A = A1 ∧A2. Within this section, we consider two views for the sake
of simplicity.

The advantage of the incremental approach is a huge improvement with regards to the runtime of the
test-case generation. In Section 11 we will present that even on the abstract buffer, this approach can
already result in notable runtime improvements. The work presented in this section was mostly driven by
Stefan Tiran. Additional work he did on the topic of incremental test-case generation was later published
in an additional paper by Aichernig et al. [21]. In that paper they present a railway interlocking system,
and show that the incremental approach for test-case generation can reduce the runtime from over an
hour to about eight minutes.

Let Π be a test purpose for the view modeled with A1. We first check whether Π can be reached in
A1, which is a simpler check than doing it on the conjunction A1 ∧ A2. If Π can be reached, we fix the
input sequence σI that steers A1 to Π. Instead of creating the test case TσI ,A1 , we generate TσI ,A1∧A2 ,
which keeps σI as the input sequence, but collects output guarantees ofA1 andA2. Such a test case steers
the SUT towards the test purpose in the view modeled by A1, but is able to detect possible violations of
both A1 and A2.

We note that test-case generation for fully observable interfaces is simpler than the general case,
because there is no need for the quantifier elimination, due to the absence of hidden variables in the
model. A test case from a deterministic interface is even simpler as it is a direct mapping from the
observable trace that reaches the test purpose – there is no need to collect constraints on the output since
the deterministic interface does not admit any freedom to the implementation on the choice of output
valuations.

Example 8.4. Consider the requirement interface Abeh for the behavioral view of the 2-bounded buffer
presented in Example 7.1, and the test purpose F. Our test-case generation procedure gives the input
vector σI of size 3 such that σI [0] = w0

I = {enq,deq}, σI [1] = w1
I = {enq,¬deq} and σI [2] = w2

I =
{enq,¬deq}. The observable output constraints for σI (which are encoded in OutMonitor) are E ∧ ¬F
in Step 0, ¬E∧¬F in Step 1 and ¬E∧F in Step 2. Together, the input vector σI and the associated output
constraints form the test case TσI ,beh. By using the incremental test-case generation procedure, we can
extend TσI ,beh to a test case TσI ,buf that also takes into account the power consumption view of the buffer
(presented in Example 7.4), resulting in output constraints E∧¬F∧pc ≤ 2 in Step 0, ¬E∧¬F∧pc ≤ 2
in Step 1 and ¬E ∧ F ∧ pc ≤ 2 in Step 2. 2

8.2.2 Test-Case Execution

Let A be a requirement interface, I a SUT with the same set of variables as A, and TσI ,A a test case
generated from A. Algorithm 15 defines the test-case execution procedure TestExec that takes as input
I and TσI ,A and outputs a verdict pass or fail. Note that, like in Part I, we perform offline testing, thus



Chapter 8. Consistency Checking and Test-Case Generation 107

Algorithm 15 TestExec
Input: I , TσI ,A
Output: {pass, fail}

1: testin : V (XI) ∪ {pass, fail}
2: testout : V (XO)
3: σ ← ε
4: testin ← TσI ,A(A, σ) . Retrieve next input from test case
5: while testin 6∈ {pass, fail} do
6: testout ← I(testin, σ) . Stimulate SUT and retrieve its output
7: σ ← σ · (testin ∪ testout)
8: testin ← TσI ,A(A, σ) . Check output monitor for correctness
9: end while

10: return testin

generating the tests first, and executing them afterwards. TestExec gets the next test input testin from
the given test case TσI ,A (Lines 4, 8), stimulates at every step the SUT I with this input and waits for
an output testout (Line 6). The new inputs/outputs observed are stored in σ (Line 7), which is given as
input to TσI ,A. The test case monitors if the observed output is correct with respect to A. The procedure
continues until a pass or fail verdict is reached (Line 5). Finally, the verdict is returned (Line 10).

Proposition 8.1
Let A, TσI ,A and I be an arbitrary requirement interface, a test case generated from A and an imple-
mentation, respectively. Then, we have that:

1. if I � A, then TestExec(I, TσI ,A) = pass;

Proof: We first proof the loop invariant that if I � A, then testin 6= fail and σ ∈ L(A). In Line 6
the next input testin is by definition of the test case TσI ,A the next valid input in σI . The extended
trace in Line 7 is a trace of I . If I � A this extended trace is by definition of refinement also a
trace of A. In this case, by definition of the test case TσI ,A the next input testin of Line 8 will be
either the pass verdict or the next input of σI . Hence, the invariant holds. Consequently, when the
loop terminates the pass verdict is returned. 2

2. if TestExec(I, TσI ,A) = fail, then I 6� A.

Proof: By negation we obtain the proposition: if I � A, then
TestExec(I, TσI ,A) 6= fail. This follows directly from the loop invariant established above. 2

Proposition 8.1 immediately holds for test cases generated incrementally from a requirement inter-
face of the form A = A1 ∧ A2. In addition, we notice that a test case TσI ,A1 , generated from a single
view A1 of A does not need to be extended to be useful, and can be used to incrementally show that a
SUT does not conform to its specification. We state the property in the following corollary, that follows
directly from Proposition 8.1 and Theorem 7.2.

Corollary 8.1
Let A = A1 ∧ A2 be an arbitrary requirement interface composed of A1 and A2, I an arbitrary imple-
mentation and TσI ,A1 an arbitrary test case generated fromA1. Then, if TestExec(I, TσI ,A1) = fail, then
I 6� A1 ∧A2.
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Algorithm 16 3-buffer implementation I .
Input: enq, dec
Output: E, F, pc

1: wait for inputs . We receive both enq and deq simultaneously
2: if ¬enq ∧ ¬dec then
3: pc← 0 . Update power consumption
4: else
5: pc← 1 . Update power consumption
6: end if
7: while true do
8: wait for inputs . We receive both enq and deq simultaneously
9: if enq ∧ ¬dec ∧ k < 3 then

10: k ← k + 1
11: else if ¬enq ∧ dec ∧ k > 0 then
12: k ← k − 1
13: end if
14: if ¬enq ∧ ¬dec then
15: pc← 0 . Update power consumption
16: else
17: pc← 1 . Update power consumption
18: end if
19: if k = 3 then . Full buffer
20: F← true; E← false
21: else if k = 0 then . Empty buffer
22: F← false; E← true
23: else
24: F← false; E← false
25: end if
26: end while

Example 8.5. Consider the abstract implementation I of a 3-buffer, as illustrated in Algorithm 16. We
assume that the power consumption is updated directly in a PC variable. Although I is correctly im-
plementing a 3-buffer, it is a faulty implementation of the 2-buffer specified in Example 7.1 and Exam-
ple 7.4. In fact, when I already contains two items, the buffer is still not full, which is in contrast with
requirement r4 of a 2-buffer. Executing tests TσI ,beh and TσI ,buf from Example 8.4 will both result in a
fail test verdict. 2

8.2.3 Traceability

Requirement identifiers as first-class elements in requirement interfaces facilitate traceability between
informal requirements, views and test cases. A test case generated from a view Ai of an interface
A = A1 ∧ . . . ∧ An is naturally mapped to the set Ri of requirements. In addition, requirement iden-
tifiers enable tracing violations caught during consistency checking and test-case execution back to the
conflicting/violated requirements.

Tracing inconsistent interfaces to conflicting requirements: when we detect an inconsistency in a
requirement interface A defining a set of contracts C, we use QuickXPlain, a standard conflict set detec-
tion algorithm [106], in order to compute a minimal set of contracts C ′ ⊆ C such that C ′ is inconsistent.
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Once we compute C ′, we use the requirement mapping function ρ defined in A, to trace back the set
R′ ⊆ R of conflicting requirements.

Tracing fail verdicts to violated requirements: in fully observable interfaces, every trace induces at
most one execution. In that case, a test case resulting in fail can be traced to a unique set of violated
requirements. This is not the case in general for interfaces with hidden variables. A trace that violates
such an interface may induce multiple executions resulting in fail with different valuations of hidden
variables, and thus different sets of violated requirements. In this case, we report all sets to the user,
but ignore internal valuations that would introduce an internal requirement violation before inducing the
visible violation.

We propose a tracing procedure TraceFailTC, presented in Algorithm 17, that gives useful debugging
data regarding violation of test cases in the general case. The algorithm takes as input a requirement
interface A and a trace σ 6∈ L(A). The trace σ that is given as input to the algorithm is obtained from
executing a test case for A that leads to a fail verdict. The algorithm runs a main loop that at each
iteration computes a debugging pair, that consists of an execution τ = π(σ)[Xobs] and a set failR ⊆ R
of requirements. We assume that the trace does not violate initial contracts to simplify the presentation.
The extension to the general case is straightforward. The execution τ completes the faulty trace with
valuations of hidden variables that are consistent with the violation of the requirement interface in the
last step. The set failR contains all the requirements that are violated by the execution τ . We initialize
the algorithm by setting an auxiliary variable C∗ to the set of all update contracts C (Line 3). In every
iteration of the main loop, we encode in φ∗obs all the executions induced by σ that violate at least one
contract in C∗ (Lines 6 and 7). In the next step (Line 8), we check the satisfiability of the formula
φ∗obs (sat(φ∗obs)), a function that returns b = true and a sequence (model) of hidden variable valuations
w0
H , . . . , w

n
H if φ∗obs is satisfiable, and (b = false, σH = ε) otherwise. In the former case, we combine

σ and σH into an execution τ (Line 10). We collect in failR all requirements that are violated by τ and
remove the corresponding contracts from C∗ (Lines 11− 16). The debugging pair (τ, failR) is added to
debugSet (Line 16). The procedure terminates and returns debugSet when either C∗ is empty or σ cannot
violate any remaining contract in C∗, thus ensuring that every requirement that can be violated by σ is
part of at least one debugging pair in debugSet.

Example 8.6. Consider the execution trace

(enq,deq,E,¬F)
σ = (enq,¬deq,¬E,¬F)

(enq,¬deq,¬E,¬F)

that was produced by an execution of the 3-buffer implementation from Algorithm 16 and results in a
fail verdict when executing the test TσI ,beh from Example 8.4, as we expected a 2-buffer. The tracing
procedure gives as debugging information the set debugSet = {(τ1, {r4}), (τ2, {r1, r3}), (τ3, {r1})},
where τ1, τ2 and τ3 correspond to the following executions that can lead to violations of requirements
r4, r1, r3 and r1, respectively.

(enq,deq, k = 0,E,¬F)
τ1 = (enq,¬deq, k = 1,¬E,¬F)

(enq,¬deq, k = 2,¬E,¬F)

(enq,deq, k = 0,E,¬F)
τ2 = (enq,¬deq, k = 1,¬E,¬F)

(enq,¬deq, k = 0,¬E,¬F)

(enq,deq, k = 0,E,¬F)
τ3 = (enq,¬deq, k = 1,¬E,¬F)

(enq,¬deq, k = 1,¬E,¬F)
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Algorithm 17 TraceFailTC
Input: σ = w0

obs · · ·wnobs, A
Output: debugSet

1: debugSet← ∅
2: failR← ∅
3: C∗ ← C
4: b← true
5: while b do
6: φ∗obs ← φ0 ∧ . . . ∧ φn−1 ∧ (

∨
(ϕ,ψ)∈C∗(ϕ ∧ ¬ψ)) [X\Xn−1, X ′\Xn] . Negated guarantees

7: φ∗obs ← φ∗obs[X
0
obs\w0

obs, . . . , X
n
obs\wnobs] . Substitute by observed values

8: ((w0
H , . . . , w

n
H), b)← sat(φ∗obs) . Check satisfiability

9: if b then
10: τ ← (w0

obs ∪ w0
H) · · · (wnobs ∪ wnH) . Build execution trace

11: for all c = (ϕ,ψ) ∈ C∗ do
12: if (wn−1

obs ∪ w
n−1
H , wnobs ∪ wnH) |= ϕ[X\Xn−1, X ′\Xn] ∧ ¬ψ[X\Xn−1, X ′\Xn] then

13: failR← failR ∪ {r | c ∈ ρ(r)}; . Collect violated contracts
14: C∗ ← C∗\{c}
15: end if
16: end for
17: debugSet← debugSet ∪ {(τ, failR)}
18: failR← ∅
19: end if
20: end while
21: return debugSet

Requirements r0 and r5 cannot be violated in the last step of this test execution. We note that accessing
the faulty 2-buffer implementation I from Algorithm 16, the debugging pair (τ1, {r4}) would enable us
to exactly localize the error and trace it back to the violation of the requirement r4. 2

For requirement interfaces with hidden variables, the underlying implementation is only partially ob-
servable. The best that the tracing procedure can do when the execution of a test leads to the fail verdict
is to complete missing hidden variables with valuations that are consistent with the partial observations
of input and output variables. It follows that the debugSet consists of “hints” on possible violated re-
quirements and the causes of their violation. We note that Algorithm 17 attempts at finding the right
compromise between minimizing the amount of data presented to the designer, while still providing use-
ful information. In particular, it focuses on implementation errors that occur at the time of the failure, for
both the hidden and the output variables. We note that in some faulty implementations, errors in updating
hidden variables may not immediately result in observable faults. For instance, in the execution

(enq,deq, k = 1,E,¬F)
τ3 = (enq,¬deq, k = 1,¬E,¬F)

(enq,¬deq, k = 1,¬E,¬F)

the requirement r0 is immediately violated in the initial step, but the implementation errors are only
observed in the last step of the test execution. Algorithm 17 does not give such executions as possible
causes that lead to a fail verdict. It is a design choice – we believe that choosing hidden variables without
any restriction would result in executions that are too arbitrary and have little debugging value.
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8.2.4 Implementation

We implemented a prototype that contains both our test-case generation framework and the consistency
check. The prototype was added to the model-based testing tool family MoMuT and goes by the name
of MoMuT::REQs. The implementation uses the programming language Scala 2.10 and Microsoft’s
SMT solver Z3 [73] V4.3. The tool implements both monolithic and incremental approaches to test-
case generation, however it does not produce output monitors, but only sequences of inputs and outputs.
Using the input sequences, one can use the requirement interface as a monitor. For deterministic systems,
the output sequence can be used directly.

The tool consists of 27 classes, and about 10, 000 lines of code, though that covers some additional
functionalities that are not discussed in this thesis as well. It offers a command line interface and a
graphical user interface, that allows to select the contracts that should be used for the consistency check
and test-case generation. Additionally, it allows to load informal requirement interfaces from Microsoft
Excel files, and formalize them within the graphical user interface, storing a linking to the formalized
requirements. We will demonstrate the tool on the buffer example and an industrial case study in Chap-
ter 11. The tool was implemented by the author of this thesis and Stefan Tiran from Graz University of
Technology and the Austrian Institute of Technology.

8.3 Model-Based Mutation Testing

In this section we show how to apply model-based mutation testing (see Section 1.4) to requirement
interfaces. We generate a test suite covering a set of fault models, that are specified via a set of muta-
tion operators. These apply specific faults to all applicable parts of the requirement interface. When
injected into requirement interfaces, we mutate one contract at a time. Then we check for refinement
between the original requirement interface and the mutated one. If the mutated requirement interface can
produce controllable variable values that are forbidden by the original, the conformance is violated. In
that case we produce a test case leading exactly to that violation. If that test case is executed on a de-
terministic SUT and passes, we can guarantee that the corresponding fault was not implemented. Thus,
by generating all tests for all fault models, we can proof the absence of all corresponding faults in the
system.

Definition 8.1
We define a mutation operator µ as a function µ : C → P(C), which takes a contract c = (ϕ,ψ) ∈ C
and produces a set of mutated contracts Cµ ⊆ C, where a specific kind of fault is applied to all valid
parts of ψ. We only consider mutations in the guarantee, as the fault models should simulate situations
where the system produces wrong outputs, after receiving valid inputs.

We currently consider the following fault models:

1. off-by-one: mutate every integer constant or variable, both by adding and subtracting 1,

2. negation: flip every Boolean constant or variable,

3. change comparison operators: replace equality operators by inequality operators, and vice versa;
replace every operator in {≤, <,>,≥} by each of the operators in {≤, <,=, >,≥}.

4. change and/or: replace every and operator by an or operator, and vice versa,

5. change implication/bi-implication: replace every implication by a bi-implication, and vice versa;

Definition 8.2
A mutant cm = (ϕ,ψm) ∈ Cµ is an intentionally altered (mutated) version of the contract c = (ϕ,ψ).
A mutant is called a first order mutant, if it contains only one fault. In this thesis we only consider
first-order mutants.
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If a mutation does not introduce new behavior to the requirement interface, or leads to an inconsis-
tency, we consider the corresponding mutant equivalent . Inconsistent mutants are considered equivalent,
because the mutation can never be reached if it contradicts any of the other contracts. Thus, by perform-
ing consistency checks on the mutants, these mutants can be ignored, reducing the complexity of the
test-case generation procedure.

Given the contract (ϕ,ψ) ∈ C, we denote by C̄(ϕ,ψ) the set of the other contracts in the requirement
interface, i.e. C̄(ϕ,ψ) = C \ {(ϕ,ψ)}, by Cµ(ϕ,ψ) the set of mutants obtained by applying all mutation
operators to (ϕ,ψ) and by cm = (ϕ,ψm) one single mutant in Cµ(ϕ,ψ).

cm is a non-equivalent mutant, if there exist two valuations v, v′ so that:

• v is reachable from v̂

• (v, v′) |= ϕ

•
∧

(ϕ̄,ψ̄)∈C̄(v, v′) |= (ϕ̄, ψ̄)

• (v, v′) |= (ϕ,ψm) ∧ ¬(ϕ,ψ)

Thus, a mutants is non-equivalent, if there exists a reachable variable valuation v, for which there
exists a following variable valuation v′ that satisfies all contracts that are not mutated, satisfies the mu-
tated contract, but does not satisfy the original contract. Contract cm from Example 7.3 is an equivalent
mutants, because it introduced inconsistency, and all valuations v′ that satisfy cm do not satisfy the other
contracts. Below we will give an example of a non-equivalent mutant.

Using Definition 7.4, one can also express non-equivalent mutants via refinement. A mutant is con-
sidered non-equivalent, if the requirement interface with the mutated contract does not refine the original
requirement interface. We consider a mutant k-equivalent to the original requirement interface, if it is
equivalent up to a bound k.

The test purpose Π for detecting (ϕm, ψm) can be encoded by the formula

Π = ϕ ∧ ψm ∧ ¬ψ ∧
∧

(ϕ̄,ψ̄)∈C̄

(ϕ̄⇒ ψ̄)

The reachability formula for such a test purpose differs from the one presented in Section 8.2 in two
details: in the last step of the test case (the step supposed to reach the test purpose), the transition relation
does not hold, as we require the original contract to be violated. Additionally, a test purpose is a relation
over primed and unprimed variables.

A test purpose Π can be reached in step k, if

∃X0, . . . , Xk. φ0 ∧ . . . ∧ φk−1 ∧Π[X\Xk−1, X ′\Xk],

where, as in Section 8.2, φ0 = φ̂[X ′\X0] and φi = φ[X ′\Xi, X\Xi−1] represent the transition relation
of A, instantiated for the i-th step. If the test purpose is reachable, the mutation is not k-equivalent.

Remark: in our synchronous studies, we consider weak mutation testing [103]. This means that a wrong
value of internal variables is already considered a conformance violation. In contrast, strong mutation
testing, as applied in our part on asynchronous systems (see Chapter 3) also requires that an internal fault
propagates to an observable failure. The encoding of the reachability of the mutation as a test purpose,
without altering the step relation, is only possible for weak mutation testing. Strong mutation testing
would require the step relation to use the mutated contract in all steps, and then detect the failure in the
last step. Due to considering weak mutation testing, we also weaken the definition of a test purpose
compared to the definition in Section 8.2, enabling it to use internal variables.
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Contrary to the previously defined test purposes, the test purposes in model-based mutation testing
lead to negative counter examples, that is, counter examples steering towards an incorrect state. However,
as defined in Section 8.2, we only extract the input vector σi, which is then combined with the correct
requirement interface, to form a positive test case.

Often, different mutations of a contract will generate different negative counter examples, but those
tests might then combine into the same positive test case. However, if the different mutations require
different inputs to be enabled, they will also produce different positive test cases.

Example 8.7. Consider the requirement interface Abeh for the behavioral view of the 2-bounded buffer,
as presented in Example 7.1. Let c2,m : ¬enq′ ∧ deq′ ∧ k > 0 ` k′ = k − 2 be a mutant of c2, where
k′ = k − 1 was mutated to k′ = k − 2. The test purpose to detect this mutation is

Π = ϕc2 ∧ ψc2,m ∧ ¬ψc2 ∧
∧

i∈{0,1,3,4,5}

(ϕci ⇒ ψci)

The test purpose is not valid in the initial state, as the assumption requires k to be greater than 0. Thus a
corresponding test case needs to execute at least one enqueue operation, before the mutated dequeue func-
tionality can occur. The shortest vector σ̄ leading to the test purpose is σ̄[0] = (enq,deq, k = 0, E,¬F ),
σ̄[1] = (enq,¬deq, k = 1,¬E,¬F ) and σ̄[2] = (¬enq,deq, k = −1,¬E,¬F ). We extract the input
vector σI so that σI [0] = (enq,deq), σI [1] = (enq,¬deq) and σI [2] = (¬enq,deq). Now we can
build the positive test case, by applying the correct step relation, thus gaining σ[0] = (enq,deq, k =
0, E,¬F ), σ[1] = (enq,¬deq, k = 1,¬E,¬F ) and σ[2] = (¬enq,deq, k = 0, E,¬F ).

As a second mutant, consider c3,m : true ` k′ = 0 ⇔ ¬E′, where E′ is mutated to ¬E′. In this
case, the test purpose is not reachable, as the initial contract c0 requires both k′ = 0 andE′, which causes
an inconsistency with the mutated contract. Thus, c3,m could be discarded after running a consistency
check.

However, consider another mutant of c3, c3,m′ : true ` k′ = 0 =⇒ E′, that changes the bi-
implication to an implication. In this case, the mutated contract can be enabled after an enqueue in the
first step, when k′ = 1 and thus the left hand side of the implication is false, allowing E′ to take any
value. Thus, any vector of length two that starts with an enqueue operation, e.g., σ̄[0] = (enq,deq, k =
0, E,¬F ), σ̄[1] = (enq,¬deq, k = 1, E,¬F ) detects the mutation. This example shows, that for
different mutations on the same contract, the test generation results in different outcomes. 2

8.4 Restrictions

We would now like to summarize some of the restrictions of our approach:

• State-space explosion. While the test-case generation, which is a reachability analysis, performs
rather well, the complexity of the consistency check grows exponentially, both with the size of
the model and with the depth of the search. As will be shown in the next section, the consistency
check can only be applied to very low depths (smaller than five), for small to medium sized ex-
amples. This can be dodged, by manually defining important variable valuations, and performing
the consistency check with these valuations as starting points, but it definitely hinders the fully
automatic analysis of models. As for the test-case generation, the synchronous approach gains an
important advantage compared to asynchronous methods, by performing several inputs and out-
puts at once, and thus needing far shorter traces. Yet, it also eventually reaches a point where it
becomes infeasible, if the search depth or the size of the model is increased too high.

• Undefined behavior. During modeling with requirement interfaces, it happens fairly easily to ac-
cidentally leave some parts of the behavior undefined. If there exists a variable valuation, where
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for a specific internal or output variable x there is no contract enabled that restricts the behavior
of x, x may take any value during that step. Consider the buffer example (Example 7.1), where
contract c5 specifies the intended behavior of a simultaneous enqueue and dequeue operation. If
we had forgotten to specify that contract, the counter k might take any value if both operations
were performed at once. While this is the intended behavior, it takes some time to get used to this
behavior, and the behavior makes it likely to introduce faults into the specification.

• Weak mutation testing. One of the main restrictions of the current model-based mutation testing
approach with requirement interfaces is the restriction to weak mutation testing. Complex errors
that only trigger an observable fault several steps after the mutation takes effect are not guaranteed
to be detected. That is, only if another fault generates a test case that incidentally also detects the
complex fault, the fault will be found. Changing to strong mutation testing would need the mutant
and the original model to be executed independently, which can not be done by expressing the
mutation via a test purpose anymore.

• Coarse modeling. If too much of the functionality is modeled in one contract, or the assumption
of one contract is very weak, model-based mutation testing may produce only one test case, for
situations that can occur several times at different internal states. Strictly spoken, the mutations we
apply are not first-order mutations anymore, since any mutation of a contract with assumption true
may cause a bug in any internal state. Thus, to apply model-based mutation testing, we recommend
very fine grained modeling with restricting assumptions, which will both improve traceability and
the quality of the generated test suite.



9 Tool Integration

Parts of this chapter are based on our publication at QSIC 2014 [12].

In this chapter we will give a short overview on how the tool MoMuT::Reqs 8.2.4 was integrated
into a larger tool chain, to show how such an integration benefits a typical development process. We will
also discuss one run through such a process, illustrating the individual steps on one of our industrial use
cases, a safing engine of an airbag chip. More details on the safing engine will be given in Chapter 11.

The development process of safety-critical systems contains various different steps, including re-
quirement formalization, modeling, analysis, test-case creation, development and test-case execution.
The appropriate integration of the methods and tools coming from these complementary fields would
greatly improve the quality of the design process. However, requirements engineering, static verification
and testing are studied by different communities that insufficiently exchange their ideas and experiences.
In addition to cultural differences between these communities, isolated development of methods and tools
prevents their effective integration into a unified framework. The European ARTEMIS project MBAT
(see Section 1.7.1) addressed this problem and aimed at integrating different requirements engineering,
analysis and testing tools into the so-called MBAT Reference Technology Platform (MBAT RTP) [167].

Following the MBAT vision, we develop a novel requirements-driven analysis and testing frame-
work. The framework, illustrated in Figure 9.1, unifies and integrates methods and tools from require-
ments engineering, model checking, and model-based testing. In our framework, the starting point is
the document containing textual customer requirements. The role of the requirements document in our
framework is twofold – it is used to derive both the implementation of the system and its formal abstract
model (specification). These tasks are usually separately done by two different teams. Requirement for-
malization tools are used to support the engineer in developing a formal model of the system from its
informal requirements. The consistency checker tool, based on model checking techniques, is used to
analyze whether the formal model admits at least one correct implementation. The failing result of this
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Figure 9.1: Overview of the generic framework.
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Figure 9.2: Overview of the framework instantiation.

check indicates inconsistency in the requirements from which the formal model is derived. In that case,
the requirements must be corrected and the process repeated. Alternatively, the inconsistency may also
result from poor requirement formalization. In that case, it is the formal model that needs correction.
The test-case generation tool creates a test suite from the consistent formal model. The test cases from
the suite are executed on the system implementation via the test execution tool. All the artifacts created
during the workflow, that is the (informal) textual requirements, formal models, test cases and imple-
mentation models, are handled by an integrated tool providing requirements management as well as an
artifact repository.

We instantiate the framework with specific tools, shown in Figure 9.2. First, we receive the require-
ments document, which is stored in a Microsoft Excel file and imported into System Cockpit. Then, we
structure the informal requirements into boilerplates with the support of the tool DODT from Infineon
Austria [84]. Boilerplates are reusable text structures, that provide a semi-formal structure for often-used
sentences. They consist of fixed keywords and boilerplate attributed between them, that can e.g. be
variable identifiers. DODT also compares the name of variables to indicate possible typos. By applying
DODT, we gain a reduction of spelling mistakes, poor grammar and ambiguity. The resulting semi-
formal requirements are transformed into formal requirement interface models that specify the intended
behavior of the system. The MoMuT::REQs tool is used to (1) check the consistency of the formalized
requirements; and (2) automatically generate test cases from requirement interfaces. We use MathWorks
Simulink [138] to develop the system implementation model, which we derive directly from the textual
customer requirements. The test cases generated by MoMuT::REQs are executed on the Simulink imple-
mentation model via a test adapter developed by Infineon Austria. The artifacts created in this workflow,
including textual requirements, formal test and implementation models and test cases are managed in the
SystemCockpit tool developed by Dassault Systèmes [70]. This commercial requirements management
tool facilitates tracing formalized requirements, implementation model elements and test cases to the
original textual customer requirements.

The integration of MoMuT::REQs and SystemCockpit is achieved via the MBAT Interoperability
Specification (IOS) and the Open Services for Lifecycle Collaboration (OSLC) [139]. OSLC is a stan-
dard for linking systems and software engineering tools via web services, where all work products are
stored as OSLC ressources, and can be stored, retrieved and changed via unified commands. The OSLC
integration preserves the generic nature of our framework. In particular, it facilitates replacement of
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a specific tool used in the framework instantiation with another one with the compatible functional-
ity, as long as both comply with the OSLC standards. More details on OSLC will be given at the end
of this chapter. For instance, the requirements management tool SystemCockpit could be replaced by
DOORS [101] without additional effort. The integration of the other tools is currently done via a file
repository within SystemCockpit, where the work products are already stored and linked as OSLC re-
sources.

We will now illustrate the complete approach on the safing engine use case presented in Section 1.8.2
and Section 11.2.2.

9.1 From Textual to Formal Requirements

This section covers the second step in our methodology: requirement formalization. The first step,
storing the requirements from the Excel sheet into SystemCockpit is skipped due to simplicity. The
formalization is implemented via the tools DODT and MoMuT::REQs. We now present a subset of the
airbag system’s textual customer requirements, and then describe how these informal requirements are
structured and finally formalized. The safing engine of the airbag is responsible for double-checking,
whether the airbag should be released. It consists of a state machine that consists of seven states and
several input signals, that trigger different reactions and state changes, depending on the current state.
Airbag deployment is only possible in some selected states. More details are given in Section 11.1.1.

9.1.1 Textual Customer Requirements

The specification of the state machine consists of 39 textual requirements, that were provided by the cus-
tomer of Infineon. We illustrate our framework with three sample requirements from this specification.

R1: There shall be seven operating states for the safing engine: RESET state, INITIAL state, DIAG-
NOSTIC state, NORMAL state, TEST mode, SAFE state and DESTRUCTION state.

R2: The safing engine shall change per default from RESET state to INIT mode.

R3: On a reset signal, the SE shall enter RESET state and stay while the reset signal is active.

9.1.2 Structuring Textual Requirements

We use the DODT tool to structure the informal requirements and semi-formalize them, in order to
achieve a textual representation that relies on the same vocabulary and uses code words that provide
additional semantics. This is done with a six step process that transforms natural language (NL) require-
ments into boilerplates (see Figure 9.3), that were developed within the ARTEMIS CESAR project [144].
Boilerplates facilitate the reduction of spelling mistakes, poor grammar or ambiguity. Additionally they
help to capture the underlying system-related semantics.

In the first step the relevant sentences are selected. Thereafter, the typographic errors are corrected
by using the domain ontology concepts as a dictionary. The tool highlights variable names that only
occur once, or are very close to other used names. In the above example, it highlights INIT mode because
it is called INITIAL state in the rest of the requirements document and SE, that should be called safing
engine. Now requirements are transformed to find matching boilerplates. User-defined substitution rules
are applied to replace expressions (like ”will” or ”must”) with synonymous fixed syntax elements (like
”shall”). In the next step, the text between fixed syntax elements is assigned to boilerplate attributes and
several adjacent attributes are split. Through these steps R1 to R3 were transformed into semi-formal
requirements as depicted in Figure 9.4.
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Figure 9.3: Six-step Semi-Automated Conversion Process.

9.1.3 Formalizing Requirements

The semi-formal requirements are stored back to SystemCockpit and from there they can be accessed by
MoMuT::REQs, to be formalized as requirement interfaces, as introduced in Chapter 7.

The formalization is done manually, and the 39 safing engine requirements from the case study were
refined to 32 formal requirements. These formal requirements contain 11 input variables, 5 output vari-
ables and 11 hidden state variables. We now illustrate the formalization of textual customer requirements
R1, R2 and R3 into a requirement interface. The interface has a single Boolean input variable reset and
a single output variable state. It consists of three contracts FR1, FR2 and FR3, that are associated to
textual requirements R1, R2 and R3, respectively. The resulting contracts in the requirement interface
are shown in Listing 9.1. Note that in the tool, we denote the assumption by the keyword assume and the
guarantee by the keyword guarantee, instead of delimiting them by `.

9.2 Consistency Checking of Formal Requirements

The consistency check is also done in MoMuT::REQs, and was already discussed in Section 8.1. We
applied it to the formalized requirements and found that they are inconsistent. The tool reported the

Figure 9.4: Highlighting of variables and fixed syntax elements in DODT.
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1 FR1: assume \textrm{true}
2 guarantee {\sf state}’={\sf RESET} or {\sf state}’={\sf INIT}
3 or {\sf state}’={\sf DIAG} or {\sf state}’={\sf NORM}
4 or {\sf state}’={\sf TEST} or {\sf state}’={\sf SAFE}
5 or {\sf state}’={\sf DESTR}
6

7 FR2: assume {\sf state}={\sf RESET}
8 guarantee {\sf state}’={\sf INIT}
9

10 FR3: assume {\sf reset}’
11 guarantee {\sf state}’={\sf RESET}

Listing 9.1: Requirement interface contracts formalizing the textual customer
requirements R1-R3.

minimal conflict set {FR2, FR3}. The minimal conflict set provides useful debugging information to the
designer that enables easier identification of the source and causes of the conflict. A conflict can arise ei-
ther from a poor specification of the textual customer requirements or from their incorrect formalization.
In our example, the conflict is due to the following scenario. When the reset signal is triggered while the
system is in the reset state, FR2 requires the system to be in the initial, while FR3 requires it to be in the
reset state in the next step.

1 FR2.1: assume {\sf state}={\sf RESET} and not {\sf reset}’
2 guarantee {\sf state}’={\sf INIT}
3 FR2.2: assume {\sf state} = {\sf RESET}
4 guarantee {\sf state}’ = {\sf RESET} or {\sf state}’ = {\sf INIT}

Listing 9.2: Repairing the inconsistency of FR2.

The conflict can be resolved in two ways, both illustrated in Listing 9.2. The first resolution consists
in changing the textual customer requirement R2 and adapting its formalization accordingly. In fact, R2
is a potentially ambiguous requirement because it describes the correct system behavior when it is in the
reset state but does not refer to the reset input signal at all. It makes sense that a reset signal is never
triggered when the system is already in the reset state, hence we make this assumption explicit in R2 and
in its formalization FR2.1. On the other hand FR2.2 corrects FR2 by making a more direct translation
of the original textual customer requirement R2. In fact, R2 does not explicitly define the conditions
required for making a transition from the reset to the initial state. We correct FR2 by replacing it with
FR2.1, making this observation explicit – the update of the next state is chosen non-deterministically. In
this scenario, the designer needs to ensure that there exists another requirement in the specification that
defines more precisely when the state change is allowed to occur.

This example shows that choosing the right conflict resolution of inconsistent requirements may not
be a straight-forward task. The corrections may involve changes in either textual customer requirements,
formalized requirements or both. This process requires interactions between the verification engineers
and the supplier that provides the textual customer requirements in order to identify the exact causes of
conflicts and to find a solution that satisfies the intended meaning of the specification. After repairing the
inconsistency, the tool reports that all formalized requirements are consistent, as illustrated in Figure 9.5.

9.3 Generating Tests from Formal Requirements

Test cases are generated by MoMuT::REQs, according to the theory discussed in Section 8.2, using
manually defined test purposes or generating them via model-based mutation testing. They encode a
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sequence of input vectors and constraints relating input, output and hidden valuations that the system
must satisfy and that are defined by the requirement interface. In the case of deterministic specifications
without hidden variables, a test case has a simpler representation in the form of a sequence of input and
output valuations. MoMuT::REQs test cases are not adaptive – the tool fixes the input vector and a correct
output vector and one can use the requirement interface specification as a monitor (see Section 8.2 and
Algorithm 13) that observes the outputs of the implementation model to decide whether its execution
satisfies or violates the specification. Such a test case guarantees that for an arbitrary input vector, the
resulting pass/fail verdict is correct. On the other hand, non-adaptive test cases cannot guarantee that
the test purpose is always reached, due to the potential implementation freedom allowed by the output
constraints in the specification.

We generate test cases from the requirement interfaces that formalize textual customer requirements
of the safing engine case study. The safing engine specification does not contain non-determinism in
output or hidden variables. It follows that the input/output sequences produced by MoMuT::REQs can
be used directly for testing the system.

Listing 9.3 shows the test case that specifies the correct transition from the reset to the initial state, as
defined by the specification. We simplify the presentation of the test case by projecting away variables
that do not play a role in this scenario.

1

2 STEP 0
3 INPUT {\sf spi_command} = {\sf NONE}
4 INPUT {\sf reset1} = \textrm{true}
5 INPUT {\sf overvoltage} = \textrm{false}
6 OUTPUT {\sf safe1} = \textrm{false}
7 OUTPUT {\sf efo2} = \textrm{false}
8 HIDDEN {\sf operating_state} = {\sf RESET}
9

10 STEP 1
11 INPUT {\sf spi_command} = {\sf NONE}
12 INPUT {\sf reset1} = \textrm{false}
13 INPUT {\sf overvoltage} = \textrm{false}
14 OUTPUT {\sf safe1} = \textrm{false}
15 OUTPUT {\sf efo2} = \textrm{false}
16 HIDDEN {\sf operating_state} = {\sf INIT}

Listing 9.3: Two steps of a testcase leading to to the Init state.

9.4 Executing Tests on the Implementation Model

For the airbag system case study, the implementation, simulation and execution of our implementation
model was realized by Infineon via MATLAB Simulink. The test cases generated in the previous section
are executed on this model.

An extract of the Simulink model is shown in Figure 9.6. It shows the internal state machine of the
safety engine. To execute the abstract test cases on the implementation model, a test adapter was imple-
mented. It translates the abstract input labels, such as reset or spi command, into the actual input signal
implemented in the system. The outputs produced by the implementation model are then transformed

Figure 9.5: MoMuT::REQs reporting that the overhauled requirements are consistent.
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Figure 9.6: The Simulink model of the state machine described in Section 11.2.2.

back to the abstract test results, which can then be validated by the test oracle. The test adapter does not
only translate from one syntax (e.g. test case output) to another one (e.g. target language). It also adds
time steps for every test step, to ensure that the iterations take enough time for all outputs to be produced.
This is done via the workflow depicted in Figure 9.7. The generated abstract test cases are refined by the
test adapter, using a database that stores additional information, like e.g. the timing constraints for the
different outputs. The refined inputs are then executed on the Simulink model. The produced outputs
are then again processed by the test adapter, which abstracts them, to compare them with the outputs
expected by the test case. Then, according to whether the tests failed or passed, a verdict is passed to the
user, containing additional information, like which test cases failed.

Figure 9.7: Test-case execution process.
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Figure 9.8: Traceability view of SystemCockpit, illustrating the links between customer
requirements, formal requirements and the implementation model.

For the refinement of the abstract test cases, each signal is considered an object with assigned proper-
ties and methods. The methods assigned to the signals include the procedure to translate the signal from
one to another abstraction level. During the translation, timing information is added and abstract test
cases are translated into sequences. Information which is not included in the abstract test cases, but is
important for the execution of the Simulink model (e.g. timing information) is retrieved from the product
design specification.

The translated test cases are executed on the Simulink model by running the simulation using the
newly configured signals. The simulation results cannot be directly compared to the test oracle on the
higher abstraction level. Therefore the test adapter abstracts the results to match the higher abstract level.

Since the delay between inputs and outputs varies depending on the inputs, the test driver searches
for the input that needs the longest delay until it is processed, and waits for this delay, before it reads the
produced outputs.

9.5 Managing and Tracing Requirements, Models and Tests

The core component of our approach is a requirements management system implementing an OSLC
provider. It is used as central repository not only for the natural language requirements but also for any
model involved in the workflow as well as the traceability links between those elements. In our instance
of the tool chain we use the tool SystemCockpit. It is an experimental platform initially developed within
the ARTEMIS CESAR project and then continued in the ARTEMIS MBAT project. In the context of
the MBAT project the concrete instance of OSLC RM is referred to as MBAT/IOS. This also includes
extensions which enable services for navigation and creation of the traceability links using the modern
web technologies HTML 5 and AJAX.

As depicted in Figure 9.1, the requirements tool is supposed to store and link the customer require-
ments, the semi formal requirements, the formal requirements, the test cases and the implementation
model. SystemCockpit provides a way to build these IOS links via an internal web interface, as well as
directly via the connected tools.

The navigation is done using tree and 2D graph representations of the models, in which the user can
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easily follow traceability links. The user interface can also display a traceability graph between user
selected models. Figure 9.8 shows an example of such a graph: this view shows a partially expanded
model, customer requirements and formalized requirements, illustrating the traceability links between the
currently exposed elements. Bold links are pseudo links used to indicate that actual links exist between
some elements within the sub-trees of the source or destination. As the user expands these sub-trees,
these actual links are displayed. This provides a convenient visual help to perform coverage analysis.

9.6 OSLC Integration

OSLC is an open community that provides specifications for tool integration and communication. These
standards facilitate easy data exchange as well as the option to replace tools with others that comply to the
same OSLC sub-specification(s). In OSLC, data is linked via uniform resource identifiers (URIs), and
can be accessed and modified through creating, retrieving, updating and deleting (CRUD) commands.

The OSLC standard defines two types of tools: OSLC providers and OSLC consumers. Providers are
meant to store and provide data, providing the consumers easy access to browse, create and retrieve the
data. One of the main advantages of SystemCockpit is its compliance to the OSLC standard, by operating
as an OSLC provider. While it supports basic storage and access of work products via a file repository,
it stores these work products as OSLC resources and enables the creating, retrieving, updating, deleting
and linking of data via OSLC. All OSLC resources are equipped with a URI. Upon creation of a formal
requirement in SystemCockpit via the tool MoMuT::REQs, it is immediately linked to its associated
customer requirements by the satisfies-link, using the URIs of the requirements. A second link, as
displayed in Figure 9.8, is created between the customer requirements and the implementation model
parts.

MoMuT::REQs already uses this advanced communication as an OSLC consumer, by directly im-
porting customer requirements, exporting the formalized requirements and linking them, all via OSLC.
Excel and DODT use simple file import/export for the communication to SystemCockpit, and create the
corresponding URIs manually.
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10 Real-Time Requirements

In this chapter, we will discuss the applicability of requirement interfaces to real-time systems. First, in
Section 10.1, we will discuss how synchronous systems are usually designed in a way that completely
neglects timing, and considers all outputs to be produced instantaneously. Then, in Section 10.2, we will
show how such systems can be combined with clocks, to enable time-triggered outputs, using discrete
time delays. We will first show a notion that consumes one time unit per synchronous step through the
requirement interface, and then show how symbolic time delays can improve the test-case generation.

10.1 Time in Synchronous Systems

Synchronous languages, like Esterel [52] or Lustre [64], were originally designed with the goal of sim-
plifying the specification of real-time systems. In asynchronous specifications, inputs are received and
processed, and only afterwards outputs are generated. Contrary to that, synchronous systems are consid-
ered to behave according to the synchrony hypothesis, stating that outputs are produced simultaneously
to receiving inputs [52]. This notion facilitates to completely neglect time in the specification, and is
very well suited for embedded systems and circuit design. Consider the example in Figure 10.1. On
the left side, we have an asynchronous timed automata specification of a beverage vending machine,
that receives coin? as input, and triggers the release of the desired drink! as output, immediately after
receiving the second coin? input. Even though the invariant enforces a zero second delay between the
last input and the output, the two signals are considered consecutively. Additionally, this zero second
delay needs to be specified, enlarging the complexity of the example. On the right side, we show the
same example modeled via contracts of a requirement interface, where coin is a Boolean input, drink is a
Boolean output and counter is an internal integer variable. Simultaneously to receiving the second coin
signal, the output drink is immediately activated, without the need to introduce additional variables to
restrict the timing, or adding any complexity.

In praxis, the synchrony hypothesis cannot really be met by any implementations, as there always
is a slight delay during the calculation of the outputs. However, if the delay is small enough, so the
implementation is able to react to all external events, before the next inputs arrive, the implementation is
considered to satisfy the hypothesis. For a device operating according to clock cycles, this usually means
that all outputs must be calculated within one clock cycle. Considering such a system, we thus only have
to specify the behavior for each of the clock cycles, and can assume that everything is finished, before
the next cycle starts, which significantly reduces the complexity of the specification.

q0start

q1

q2

c ≤ 0

coin?

coin?
c = 0

c == 0
drink! c0 : coin′ ∧ counter < 2 ` counter′ = counter + 1

c1 : coin′ ∧ counter = 2 ` drink′ ∧ counter′ = 0

Figure 10.1: Asynchronous and synchronous specifications of a beverage vending ma-
chine.
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During the experiments on the airbag safing engine, described in Section 11.2.2, we considered the
synchrony hypothesis to hold. Thus, our requirement interfaces, and consequently also our test cases,
did not take time into account. However, some of the output needed longer than one clock cycle to be
produced. Additionally, the individual output signals needed different amounts of time, until they were
generated and these times were only known to the engineers from Infineon.

We found three possible ways to apply these times during test execution:

• The easiest approach would have been to wait the maximal delay between each step of the test
case, before retrieving the outputs and receiving the inputs. While this would take the minimal
effort, it also would be the most coarse approach, and if any of the outputs with smaller delays
would not meet their individual deadlines, it would go unnoticed.

• The most fine-grained approach would be to retrieve each output at the time of its personal dead-
line. This would take the most effort, as each of the outputs would be collected sequentially.
Additionally, this would somehow break the synchrony, as the outputs would not be read in one
step.

• For our experiments, we decided to choose a compromise between these two methods, and for
each step of the test case, we searched for the maximal delay invoked by the subset of outputs that
were actually produced in that specific step. At the corresponding time, we fetched all outputs at
once and triggered the next inputs.

Handling these time delays in the test adapter, which has as access to a database containing all time
constraints, and neglecting them in the specification, vastly reduced the complexity of our requirement
interface and thus simplified test case generation. Yet we still gained meaningful test cases, and were
able to extend them with the needed timing contraints.

The next section will discuss how the complexity rises if additional clock variables are added to the
specification to measure the progress of time.

10.2 Time-Triggered Outputs

So far, we investigated how requirement interfaces enable the simple specification of systems that expect
immediate reactions to inputs from the environment. In this section we will consider systems, where
certain outputs are observed after a certain delay upon receiving the triggering inputs.

10.2.1 Explicit Ticks

We consider systems that are clocked by a single clock, and only consider immediate outputs or discrete
time delays, with respect to that clock. Time progress is modeled via internal clock variables and an
additional tick-contract, that increases the value of all clock variables in each iteration. The assumption
of the tick-contract is true, and its guarantee is a conjunction of implications, stating for each clock
variable, that if it is not reset in the current iteration, it is increased by one. The tick contract could
be split into multiple contracts, to keep it more fine grained, if desired. Unfortunately, however, the
implication cannot be split into assuming that the clock is not reset, and guaranteeing that the clock is
increased by one, as that would need primed internal variables in the assumption

Example 10.1. We will illustrate this on the car alarm system, that was introduced in Section 1.8.1,
analyzed several times in Part I (the part on asynchronous systems) and is illustrated as a timed automaton
in Figure 5.1. It contains three timing constraints: 20 seconds after all doors were locked and closed, the
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alarm system shall be activated, 30 after the alarm was triggered, the sound shall stop, and 270 seconds
after that, the flash shall stop as well.

Given these three delays, we use three clock variables. As the preconditions for the delays do not
overlap, a single variable would also be sufficient, but this is not true in general, thus we show the more
general way. We call the three clock variables clka (armed), clkf (flash) and clks (sound). For each of
them, we introduce a reset flag (resa, resf , ress), which is an internal Boolean variable, and can be used
to reset the clocks.

The car alarm uses two Boolean inputs, closed and locked, six internal integer variables for handling
the timing, clka, clkf , clks,resa, resf , ress, one internal Boolean variable silent and three boolean output
variables, armed, sound and flash.

Contract c1 shows the reset of the armed clock. When the doors are closed and locked, but were
either not closed or not locked in the last iteration, the clock is reset. Contract c2 shows the arming of
the system, if the clock hits 20 while the doors are still locked and closed. Contract ctick is the contract
in charge of increasing all clocks, for which the reset flag is not true.

Note that the presented examples are simplified for presentational purposes. They only contain the
contracts specifying the wanted behavior. For our models to be complete, we also need contracts prohibit-
ing unwanted behavior. Consider for instance the armed variable: contract c2 activates the arming when
the clka variable hits 20. However, while the clock is smaller than 20, the behavior of the armed variable
is undefined, thus enabling the requirement interface to arbitrarily turn it on or off. Consequently, we
need to specify for every variable, that it is not supposed to change in all situations where we do not want
it to change. This can be done automatically, by creating an additional contract per variable. The assump-
tion of such a contract is the negation of the disjunction of the assumptions of all contracts that would
change the corresponding variable. The guarantee simply ensures that the variable does not change.
E.g., for the armed variable, the contract would look like this: carmed : ¬((closed′ ∧ locked′ ∧ clka =
20) ∨ (armed ∧ ¬closed′) ∨ (armed ∧ ¬locked′)) ` armed′ = armed. MoMuT::REQs provides an
option for building these constraints for all output and internal variables. After that, one can select which
of the generated contracts shall be used for the test generation, so that if unspecified behavior of some
variables is intended, it can be preserved.

The requirement interface for the car alarm system with three clocks is defined as: Acas1 :
Ĉcas1 = {c0}, Ccas1 = {ci | i ∈ [1, 7]} ∪ {ctick}, Xcas1

I = {closed, locked}, Xcas1
O ={armed, flash,

sound} and Xcas1
H = {silent, resa, ress, resf , clka, clks, clkf} where

c0 : ¬resa ∧ ¬ress ∧ ¬resf ∧ ¬sound ∧ ¬flash ∧ ¬armed
∧clka = 0 ∧ clks = 0 ∧ clkf = 0 ∧ ¬silent

c1 : closed′ ∧ locked′ ∧ ¬flash′ ∧ ¬sound′ ∧ (¬closed ∨ ¬locked) ` resa
′

c2 : closed′ ∧ locked′ ∧ clka = 20 ` armed′

c3 : armed′ ∧ closed ∧ ¬closed′ ∧ locked′ ` sound′ ∧ flash′ ∧ ¬armed′ ∧ ress
′

c4 : armed ∧ ¬locked′ ∧ closed′ ` ¬armed′

c5 : sound ∧ flash ∧ clks
′ = 30 ` ¬sound′ ∧ flash′ ∧ resf

′

c6 : ¬sound ∧ flash ∧ clkf
′ = 270 ` ¬sound′ ∧ ¬flash′ ∧ silent′

c7 : sound ∧ ¬locked′ ` ¬sound′ ∧ ¬flash′

c8 : silent ∧ closed ∧ locked′ ∧ ¬closed ` armed′

c9 : silent ∧ locked′ ` ¬silent′

ctick : true ` resa
′ =⇒ clka

′ = 0 ∧ ¬resa
′ =⇒ clka

′ = clka + 1∧
ress
′ =⇒ clks

′ = 0 ∧ ¬ress
′ =⇒ clks

′ = clks + 1∧
resf
′ =⇒ clkf

′ = 0 ∧ ¬resf
′ =⇒ clkf

′ = clkf + 1

Figure 10.2 shows the timing diagram of a trace that triggers the alarms of the car alarm system,
where we set the delay for arming the system from 20 to 2, to simplify the presentation. In the inital
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state, the inputs are false, then, in the second time step, at the rising edge of the external clock, they
are both turned on simultaneously. After they stayed activated for two time units, the system becomes
armed. One step after that, the doors are opemed, and the alarm starts immediatly.

pulsing

locked

closed

armed

sound

flash

Figure 10.2: Timing diagram of a trace in the car alarm system.

To reduce the complexity of the interface, one may also assume one single clock, measuring the
overall time in the system, without ever being reset. Then, for each time-triggered output, its expected
time of arrival can be calculated, depending on the current system time in the iteration when the counting
starts and the planned delay. We illustrate this with Example 10.2.

Example 10.2. A car alarm system modeled with only one such clock is illustrated below. Contract c1

shows the calculation of the time of arrival of the armed output, twenty seconds after the current time
when the doors were closed and locked. Contract c2 shows how the armed output is set to true, once
the current time hits the expected time of arrival, while the doors are still locked and closed. The tick
contract only needs to update the single clock. Again, we need additional contracts to ensure that the
time of arrival variables are not changed, while there is no contract enabled that restricts them.

The car alarm uses two Boolean inputs, closed and locked, and three boolean output variables, armed,
sound and flash and one internal Boolean variable silent. This time, however, we only need four internal
integer variables: current, toaf , toas and toaa.

The requirement interface for the car alarm system with a single clock is defined as: Acas2 :
Ĉcas2 = {c0}, Ccas2 = {ci | i ∈ [1, 9]} ∪ {ctick}, Xcas2

I = {closed, locked}, Xcas2
O = {armed, flash,

sound} and Xcas2
H = {silent, toaa, toas, toaf , current} where

c0 : toaa = 0 ∧ toas = 0 ∧ toaf = 0 ∧ ¬sound ∧ ¬flash ∧ ¬armed ∧ current = 0 ∧ ¬silent
c1 : closed′ ∧ locked′ ∧ ¬flash′ ∧ ¬sound′ ∧ (¬closed ∨ ¬locked)) ` toaa

′ = current′ + 20
c2 : closed′ ∧ locked′ ∧ current′ = toaa

′ ` armed′

c3 : armed′ ∧ closed ∧ ¬closed′ ∧ locked′ ` sound′ ∧ flash′ ∧ ¬armed′ ∧ toas
′ = current′ + 30

c4 : armed ∧ ¬locked′ ∧ closed′ ` ¬armed′

c5 : sound ∧ flash ∧ current′ = toas ` ¬sound′ ∧ flash′ ∧ toaf
′ = 270

c6 : ¬sound ∧ flash ∧ toaf
′ = current′ ` ¬sound′ ∧ ¬flash′ ∧ silent′

c7 : sound ∧ ¬locked′ ` ¬sound′ ∧ ¬flash′

c8 : silent ∧ closed ∧ locked′ ∧ ¬closed ` armed′

c9 : silent ∧ locked′ ` ¬silent′

ctick : true ` current′ = current + 1
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Note that this type of contracts can only express deterministic time delays, as a contract enforces the
guarantee as soon as the assumption is enabled, thus toa′a <= current′ ` armed′ would immediately
set armed’ to true as soon as toa′a = current′ holds. However, if the assumption is also restricted by other
variables, e.g. toa′a <= current′ ∧ closed′ ∧ locked′ ` armed′, using a time range instead of a fixed
value may still make sense to only trigger the contract if the general precondition (closed′ ∧ locked′) and
the timing constraint (toa′a <= current′) are satisfied simultaneously.

10.2.2 Symbolic Ticks

In the previous subsection we discussed the modeling of time with explicit ticks to measure the progress
of times. Naturally, a time delay of x time units needs x clock cycles invoking tick to be completed.
Consequently, this modeling style neglects one of the main advantages of synchronous systems in the
context of test-case generation, the short length of the test cases. While we previously saw that syn-
chronous test cases may summarize several steps of an asynchronous test case into one step, we now
need several steps (up to 270 in case of the car alarm system), just to measure one time delay.

The natural way to avoid this is the parametrization of time delays. Thus, during each step, the
clock is not always increased by one, but by any positive discrete value. The notion of this is, that we
apply inputs, wait for the specified delay, and then read the outputs. Thus, each iteration through the
requirement interface is associated to two times: the starting time, where the inputs are applied, and the
ending time, when the outputs are read.

To illustrate this on the car alarm system presented in the last subsection (Example 10.2), the tick
contract needs to be updated to ctick : true ` current′ >= current. In the case of multiple clock
variables (Example 10.1), one additionally needs to ensure that the passage of time is equal for all of
them.

One problem with underspecified delays is that the expected time of arrival of a variable may be
skipped by a longer time delay, thus never enabling the corresponding contract. This can be avoided by
restricting the delay of time, so it cannot skip any of the deadlines. The updated tick contract for the car
alarm system with restricted delays is:

ctick : true ` current′ >= current∧
current < toaa =⇒ current′ ≤ toaa∧
current < toaf =⇒ current′ ≤ toaf∧
current < toas =⇒ current′ ≤ toas

This notion works very well for examples like the car alarm system. However, the encoding gives
time different semantics than the explicit ticks did. We now expect the system to pause during delay,
while in the previous approach, the contracts that are not time-dependent were synchronously executed.
Consider a contract that increases some arbitrary variable x: c1 : true ` x′ = x + 1 and a contract
c2 : toay = current ` y′. In the previous approach, a delay of 20 ticks enforced by the second contract
would have caused 20 iterations, and thus x would have been increased by 20, during the delay. With
the parametrized delays, contract c1 would only be executed once, while in parallel the parametrized tick
contract would state that the iteration took 20 seconds.

This implies, that this symbolic notion of time can not be used for safety-critical embedded systems,
where the constant interaction with the environment is of extremely high importance. However, for sys-
tems like the car alarm system, which contain strict timing limitations, but no variables that continuously
change over time, it works very well.

A test case that activates the alarm and waits until both the flash and the sound stopped takes nine
discrete steps (close, lock, armedOn, open, armedOff, flashOn, soundOn, soundOff, flashOff) in the
asynchronous timed automata example, plus the time steps in between. With explicit ticks, it would take
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five steps where inputs are changed plus 320 steps for the ticks. With the parametrized ticks, the five
steps are sufficient.



11 Case Studies and Results

Parts of this chapter are based on our publications at FMICS 2015 [11] and QSIC 2014 [12].

In this chapter we will introduce the case studies we used for evaluating our approach on synchronous
systems. We will introduce a safing engine for an airbag chip and present synchronous specifications of
the adjustable speed limiter and the car alarm system, that were already introduced in Part I.

Then we will present results for the test-case generation with manually designed test purposes, au-
tomatically generated test purposes for model-based mutation testing, and finally for the model-based
mutation testing of systems that contain time delays. All experiments were run on a MacBook Pro with
a 2.8 GHz Intel Core i7 Processor and 8 GB RAM.

11.1 Case Studies

11.1.1 Safing Engine

We now provide more details on the safing engine use case that was already introduced in Section 1.8.2
and Chapter 9. It was an automotive use case supplied by the European ARTEMIS project MBAT, that
partially motivated our work on requirement interfaces. The use case was initiated by our industrial
partner Infineon and evolves around building a formal model for analysis and test-case generation for the
safing engine of an airbag chip.

The chip provides both the power electronics for actually deploying the airbag and the control logic
interacting with the control CPU, supported by a so called safing engine. The safing engine double
checks the validity of the commands sent from the CPU and can block deployment if the situation does
not have the characteristics of a crash. This is obviously safety-critical, as both, deployment of the airbag
without a crash and no deployment of the airbag in case of a crash, may lead to hazardous events.

To prevent any malfunction of the safing engine, the basic functionality of the airbag is controlled
by an internal state machine, consisting of seven different states. The airbag can only be triggered
within a certain state and while a combination of several input signals is applied. The initial state of the
airbag system is the RESET state (1). Apart from the initial condition, this state can also be reached
whenever the airbag is reset by an external signal. Within the RESET state all functionality of the chip
is deactivated. As soon as the external reset signal is turned off, the chip traverses to the INITIAL state
(2). While in this state, self-diagnostic functions are active which test the integrity of the basic hardware
functions. If an error is detected, a reset is enforced leading to a transition to the RESET state. After
receiving a certain sequence of commands from the controller CPU via the Serial Peripheral Interface
(SPI) Bus, the controller chip moves to the DIAGNOSTIC state (3). Within the DIAGNOSTIC state,
several additional tests are executed. Detecting an error in this state leads the system to the SAFE state
(4), whereas a successful diagnosis leads the system to the NORMAL state (5). While the system is in
the SAFE state, it may not react to any inputs or trigger any outputs, until the system has been reset by
an external signal. In the NORMAL state, the system is fully functional. It is reacting to all inputs and if
they match certain conditions, the airbag can be triggered. The TEST state (6) can be reached from the
NORMAL state via certain SPI commands. In this state, different output signals can be triggered directly
via SPI commands to test the functionality. The last state is the DESTRUCTION state (7), which enables
the manual deployment of the airbags at the end of life of the airbag system.

The requirements document, developed by a customer at Infineon, is written in natural (English) lan-
guage. We identified 39 requirements that represent the core of the system’s functionality and iteratively
formalized them in collaboration with the designers of Infineon. The resulting formal requirement inter-
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face is deterministic and consists of 32 contracts. It contains 11 input variables, 5 output variables and
11 hidden state variables, where one of each variables is an integer variable, and the rest are Boolean.

11.1.2 Adjustable Speed Limiter

The second industrial case study, the adjustable speed limiter, was already introduced in Part I, in Sec-
tion 5.1.2. We will give a short description as a reminder: it contains an internal state machine with three
states: OFF, LIMITING and OVERRIDDEN. Upon activation, it either takes the current speed as limit,
or a predefined value. The limit can then be increased and decreased manually, and a kickdown of the
gas pedal overrides the speed limiter for some time threshold. Adjusting the speed, or setting it to the
predefined value, ends the overridden mode. Finally, the speed limiter can be turned off again, both from
overridden and active mode.

The part of the adjustable speed limiter that was analysed within the project was documented by
17 informal requirements. These were refined to 26 formal requirements, i.e. contracts, collected in
one requirements interface. The interface contains two input variables, two output variables and four
internal variables. The example below shows three characteristic contracts which serve as an illustration
of the functionality of the speed limiter, where set and state are output variables, in and kickdown are
input variables, preset value and timer are internal variables, and preset and plus are enum values.
Contract c1 switches the adjustable speed limiter on, assigning the preset value as current limit. Contract
c2 adjusts the current limit, increasing it by one. And c3 activates the overridden mode, in case of a
gas pedal kickdown. It also resets a clock variable for the automated timeout, that would lead back to
limiting mode.

c1 : state = OFF ∧ in′ = preset ∧ ¬kickdown′ `
state′ = LIMITING ∧ set′ = preset value

c2 : state = LIMITING ∧ in′ = plus ∧ ¬kickdown′ `
state′ = LIMITING ∧ set′ = set + 1

c3 : state = LIMITING ∧ kickdown′ `
state′ = OVERRIDDEN ∧ timer′ = 0

11.1.3 Car Alarm System

The car alarm system was already introduced in Section 5.1.1, and its synchronous models were shown
in Section 10.2. In this chapter we will present results for the models with one single clock, that is, the
model from Example 10.2 with explicit ticks and Example 11.1, that is presented below, with symbolic
ticks.

Both models consist of two input signals, three output signals. The explicit model needs six internal
integer variables for handling time, and an internal Boolean variable. The symbolic model needs four
internal integer variables for handling the time and the same internal Boolean variable.

Example 11.1. The requirement interface for the car alarm system with symbolic ticks is given asAcas3 :
Ĉcas3 = {c0}, Ccas3 = {ci | i ∈ [1, 9]} ∪ {ctick}, Xcas3

I = {closed, locked}, Xcas3
O = {armed, flash,



Chapter 11. Case Studies and Results 133

sound} and Xcas3
H = {silent, toaa, toas, toaf , current} where

c0 : current = 0 ∧ ¬sound ∧ ¬flash ∧ ¬armed ∧ clka = 0 ∧ clks = 0 ∧ clkf = 0 ∧ ¬silent
c1 : closed′ ∧ locked′ ∧ ¬flash′ ∧ ¬sound′ ∧ (¬closed ∨ ¬locked)) ` toaa

′ = current′ + 20
c2 : closed′ ∧ locked′ ∧ current′ = toaa

′ ` armed′

c3 : armed′ ∧ closed ∧ ¬closed′ ∧ locked′ ` sound′ ∧ flash′ ∧ ¬armed′ ∧ toas
′ = current′ + 30

c4 : armed ∧ ¬locked′ ∧ closed′ ` ¬armed′

c5 : sound ∧ flash ∧ current′ = toas ` ¬sound′ ∧ flash′ ∧ toaf
′ = 270

c6 : ¬sound ∧ flash ∧ toaf
′ = current′ ∧ locked′ ` ¬sound′ ∧ ¬flash′ ∧ silent′

c7 : sound ∧ ¬locked′ ` ¬sound′ ∧ ¬flash′

c8 : silent ∧ closed ∧ locked′ ∧ ¬closed ` armed′

c9 : silent ∧ locked′ ` ¬silent′

ctick : true ` current′ >= current ∧ current < toaa =⇒ current′ ≤ toaa
∧current < toaf =⇒ current′ ≤ toaf
∧current < toas =⇒ current′ ≤ toas

11.1.4 Overview

Table 11.1 presents the characteristics of the three case studies, in terms of the number of contracts, the
number of variables, and the number of integer and Boolean variables.

11.2 Manual Definition of Test Purposes

In this section we will present our results for the general test-case generation methodology, that does not
yet include model-based mutation testing. We will first discuss the buffer that was used as a demonstrat-
ing example throughout this part and then discuss the safing engine.

11.2.1 Demonstrating Example

In order to experiment with our algorithms, we model three variants of the abstract buffer behavioral
interface. All three variants model buffers of size 150, with different internal structure. Buffer 1 models
a simple buffer with a single counter variable k. Buffer 2 models a buffer that is composed of two internal
counter variables of size 75 each and Buffer 3 models a buffer that is composed of three internal counter
variables of size 50 each. We also remodel a variant of the power consumption interface that creates a
dependency between the power used and the state of the internal buffers (idle/used).

All versions of the behavior interfaces can be combined with the power consumption view point from
Example 7.4, either using the incremental approach 8.2.1 or doing the conjunction before generating test
cases from the monolithic specification.

Incremental Consistency Checking. In order to evaluate the consistency check, we introduce three

Table 11.1: Characteristics of the three case studies.
Case study # Contracts # Variables # Integers # Booleans
Safing engine 32 27 3 24
Speed limiter 26 6 5 1
CAS (explicit) 13 12 6 6
CAS (symbolic) 13 10 4 6
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Table 11.2: Run-time in seconds for checking consistency of single and conjuncted inter-
faces of the buffer.

Fault 1 (behavior) Fault 2 (power)
single monolithic single monolithic

Buffer 1 0.7 3.6 1.0 7.3
Buffer 2 5.3 13.4 1.0 26.7
Buffer 3 7.2 13.8 1.0 13

faults to the behavioral and power consumption models of the buffer: Fault 1 causes deq to decrease k
when the buffer is empty; Fault 2 alters an assumption resulting in conflicting requirements for power
consumption upon enq; and Fault 3 causes enq to increase k when the buffer is full. Due to the fact that
we have three implementations of the buffer, the fault injection results in 9 faulty variants of interfaces,
each containing a single fault.

We compare monolithic consistency checking to the consistency checking of individual views. We
first note that the consistency check is coupled with the algorithm for finding minimal inconsistent sets
of contracts (see Section 8.2.3). We set the range of the integer values to [−2 : 152] and we bound
the search depth to 3. In the monolithic approach, we first conjunct all view models and then check for
consistency. In the incremental approach, we first check the consistency of individual views, and then,
if no inconsistency is found, conjunct them one by one, checking consistency of partial conjunctions.
However, in the current example, as we knew which view was faulty, we always started with the faulty
view and as the inconsistency was detectable by examining only one view, we did not need to conjunct
the second view. The results thus only show the comparison of checking consistency in complete and
partial models, highlighting the advantage that requirement interfaces gain by allowing to split models
into separate views. Table 11.2 summarizes and compares the time it takes to find an inconsistency and
compute the minimal inconsistent set of requirements in the requirement interface of a single view and
in the monolithic interface which is a conjunction of both views. It gives a very nice impression on how
separating the different views helps decreasing the complexity, and thus the runtime, of the consistency
checks. For example, for Fault 2 in the second buffer, it reduces the runtime of the consistency check
from 26 seconds to one second. Fault 3 is omitted in the table, as neither approach was able to find an
inconsistency. This is caused by the fact that the fault lies to deep in the system, and cannot be detected
with the given search depth.

The bounded consistency checking is very sensitive to the search depth. Setting the bound to 5
increases the run-time from seconds to minutes – this is not surprising, since a search of depth n involves
simplifying formulas with alternating quantifiers of depth n, which is a very hard problem for SMT
solvers.

Test-Case Generation. We compare the monolithic (see Section 8.2) and incremental (see Sec-
tion 8.2.1) approach to test-case generation, by generating monolithic tests for the conjunction of the
buffer interfaces and the power consumption interface, and incrementally, by generating tests only for
the buffer interfaces, and completing them with the power consumption interface. The tests were gener-
ated according to manually defined test purposes, that required the buffer to be full. Thus, the according
test cases needed to perform 150 enqueue operations, and were of length 150. Table 11.3 summarizes
the results, presenting the number of contracts and variables of the requirement interfaces, the runtime
of the incremental test-case generation and the runtime of the monolithic approach. For the incremental
approach, the runtime includes the test-case generation using only the behavioral view and the comple-
tion of the test case, according to the power consumption. The three examples diverge in complexity,
expressed in the number of contracts and variables. Our results show that the incremental approach
outperforms the monolithic one, resulting in speed-ups from 33% to 68%.
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Table 11.3: Run-time in seconds for incremental and monolithic test-case generation on
the buffer.

# Contracts # Variables tinc tmon speed-up
Buffer 1 6 6 10 16.8 68 %
Buffer 2 15 12 36.7 48.8 33 %
Buffer 3 20 15 69 115.6 68 %

11.2.2 Safing Engine

During the formalization process we already revealed several under-specifications in the informal re-
quirements that were causing some ambiguities. These ambiguities were resolved in collaboration with
the designers. The following consistency check performed with MoMuT::REQs revealed two inconsis-
tencies between the requirements. Tracing the conflicts back to the informal requirements enabled their
fixing in the customer requirements document.

We generated 21 test cases from the formalized requirements via test purposes that were designed to
ensure that every Boolean internal and output variable is activated at least once and that every possible
state of the underlying finite state machine is reached at least once. Thus, the test suite provides state
and signal coverage. The average length of the test cases was 3.4 and the maximal length was 6, but
since the test cases are synchronous, each of the steps is able to trigger several inputs and outputs at
once. The test cases were used to test the Simulink model of the system, developed by Infineon as
part of their design process. The Simulink model of the safing engine consists of a state machine with
seven states, ten smaller blocks transforming the input signals and a Matlab function calculating the final
outputs according to the current state and the input signals. In order to execute the test cases, Infineon’s
engineers developed a test adapter that transforms abstract input values from the test cases to actual
inputs passed to the Simulink model.

We created 66 faulty Simulink models (six turned out to be equivalent), by flipping every Boolean
signal (also internal ones) involved in the Matlab function calculating the final output signals. Our 21 test
cases were able to detect 31 of the 60 non-equivalent faulty models, giving a mutation score of 51.6%.
These numbers show that state and signal coverage is not enough to find all faults and confirm the need
to incorporate a more sophisticated test-case generation methodology. Therefore, we manually added
10 test purposes generating 10 additional test cases. The combined 31 test cases finally reached a 100%
mutation score. This means that all injected faults in the Simulink models were detected.

However, these additional test cases had to be designed by analyzing the existing test cases and the
correct Simulink model and figuring out which combinations of states and transitions were not covered.
The task took several hours, and various iterations. Thus, for the following experiments described in
the next section, we only performed model-based mutation testing, without designing manual test cases
before.

11.3 Model-Based Mutation Testing

We will now present the results of our model-based mutation testing approach for requirement interfaces.
We will first demonstrate it on the abstract buffer specification, and then on the two industrial case studies,
first on the safing engine, and then on the adjustable speed limiter.
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Table 11.4: Results for model-based mutation testing on the buffer, with depth 150.
# Mutants (Equiv.) # Unique Tests [min] tmbmt

Buffer 1 44 (0) 29 4.7
Buffer 2 138 (20) 52 44.0
Buffer 3 240 (46) 115 128.1

11.3.1 Demonstrating Example: Buffer

We applied the model-based mutation testing technique on all three variants of the buffer from Sec-
tion 11.2.1. For these experiments we did not consider the power consumption, which could be added
incrementally after the generation of the tests. We used all mutation operators defined in Section 8.3.
Table 11.4 shows the results of the approach, giving the number of mutants, the number of k-equivalent
mutants, the number of unique test cases that were produced, and the total time for applying the complete
approach to all mutants. The number of unique tests comes from the fact that the model-based mutation
testing approach produces negative traces, which are then translated into positive test cases, where sev-
eral traces may coincide into equivalent test cases. The bound k for the equivalence check was set to
150. The reported times include mutation, generation of according test purposes, test-case generation,
conversion into positive test cases and detecting the unique test cases. Buffer 2 and Buffer 3 are more
complex and create more mutants, and thus have a longer runtime. Yet, they also generate more unique
tests, und thus a more thorough test suite.

11.3.2 Safing Engine

We applied two iterations of the model-based mutation testing approach to the safing engine introduced
in Section 11.2.2, setting the bound k to 7. In the first iteration, we generated 362 mutants, applying
all mutation operators. We generated 165 negative tests - 197 mutants were k-equivalent. From the 165
negative tests, we extracted 28 unique positive test cases.

The mutation score achieved by these 28 test cases on the 60 faulty Simulink models was surpris-
ingly low, with only 49.2%. A closer investigation of the requirement interface shows that many of the
contracts work globally, without being bound to a specific state of the state machine. For mutants from
these contracts, our approach only generates one test case, even though the mutants generate multiple
faults, in several different states. Due to the decomposed structure, even though we only insert one fault,
our mutants are not classic first-order mutants anymore.

There are two ways to deal with this problem. The first one would be the generation of multiple test
cases per mutant, that cover all possible faulty states. This technique was already applied previously, in a
different context [6]. However, this approach might become very expensive, and impossible for systems
with infinite state space.

The second approach is based on refactoring of the contracts, splitting global contracts into multiple
more fine-grained ones. E.g., contract c3 could be refactored into several state-bound contracts like

c3,1 : reset’ ∧ state’ = INIT ` state’ = RESET
c3,2 : reset’ ∧ state’ = DESTR ` state’ = RESET

Applying this technique we gained 17 new contracts. The second run of our test-case generation
produced 525 mutants and 293 were detected as non-equivalent. This led to 61 unique test cases. The
mutation and the generation of the test cases took 139.8 seconds, and the distribution of their length is
shown in Table 11.5. 75% of the time was spent on equivalent mutants, which is once more a very high
value.
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Table 11.5: Distribution of the length of the test cases generated for the safing engine.
Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 Depth 7

Number of tests 5 16 12 3 8 16 1

The test cases were able to detect 53 of the faulty mutants, resulting in a mutation score of 88%. Jia
and Harman [103] state that up to 40% of all mutants are equivalent, which means that a mutation score
over 60% can be considered very well. However, since we already discarded all equivalent mutations
in this case, the score of 88% is still rather low, and further refining of the contracts woulds still be
advantageous.

This shows, that the quality of model-based mutation testing for requirement interfaces is severely
depending on the modeling style. However, while the fine grained contracts might slightly decrease the
clarity of the requirement interfaces, they in turn increase the traceability, and facilitate fault detection.

11.3.3 Adjustable Speed Limiter

Next we will discuss our experiments on the adjustable speed limiter case study. Applying the mutation-
based test generation to this case study setting the bound k to 4 generates 291 mutants. 57 of the mutants
are equivalent, leaving a total of 234 non-equivalent mutants. 96 of these mutants can be detected within
one step, 64 mutants are detected after two steps and 72 after the third step. This reflects very clearly the
state-based structure that consists of three states. An analysis of the test cases shows that 60 of the tests
are unique. Given that the model is deterministic, each of the unique tests enables different contracts in
the individual steps. A further analysis of these 60 unique test cases shows that 12 are of length one, 18
of length two and 30 are of length three, as presented in Table 11.6 The test-case generation, including
the mutation, took 18.3 seconds, 52% of the time was spent on equivalent mutants.

To evaluate the quality of the test cases, we implemented a Java version of the adjustable speed
limiter, and used the Major mutation framework [107] to generate a set of 64 faulty implementations,
using all mutation operators supported by Major. By executing our generated tests on these faulty im-
plementations, we could perform a classic mutation analysis: our test suite was able to detect 48 of the
faults. Further investigation of the undetected faults revealed that 13 of the remaining Java mutants were
equivalent, and could thus not be detected by any test case. Another two of the faults were introduced
in the conditions of if-statements. The conditions correspond to the assumptions of our interfaces, which
we did not mutate during the test-case generation.

The last remaining fault was introduced in the timing behavior of the Java implementation, which
was simulated via a tick method, indicating the passage of one second. In the requirement interface,
it was modeled via a non-deterministically increasing variable. The fault caused the implementation to
trigger the state change already after 9 seconds instead of 10. The test driver was not sensitive enough
to detect that, as the test case only specified the behavior after 10 seconds, and did not specify what
the correct behavior after 9 seconds would be. If, however, the faulty implementation had been delayed
instead of producing the output early, we would have detected that, as the output would not have arrived
after the expected 10 seconds.

Table 11.6: Distribution of the length of the test cases generated for the adjustable speed
limiter.

Depth 1 Depth 2 Depth 3

Number of tests 12 18 30
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11.4 Explicit Ticks vs. Symbolic Ticks: Car Alarm System

We used the car alarm system to evaluate the explicit and symbolic tick modeling styles for real-time
systems, both with the single clock notation using times of arrival. The two presented models could both
be processed by MoMuT::REQs, without needing any changes to the implementation.

We evaluated the two models by first generating tests cases via model-based mutation testing, and
then execution of the test cases on the faulty Java implementations that were already introduced in Chap-
ter 5. Note that these Java implementations work asynchronously, and that thus our test cases had to be
executed asynchronously as well. Hence, if lock and close were performed synchronously in the test
case, we performed them in random order without time delay between them.

Explicit ticks. The model with explicit ticks, after completing it to disable unintended variable changes,
consisted of 28 contracts. From these contracts we generated 126 mutants. We then applied the test-case
generation with a maximal search depth of 40. This search depth was sufficient, as the delays in the faulty
implementations were divided by ten, and thus reduced to 2,3 and 27 and the requirement interface was
adapted accordingly. 24 of the mutants turned out to be equivalent with respect to the search depth. The
remaining 102 mutants were non-equivalent and thus produced test cases, 17 of which were unique. The
test-case generation took 80.4 seconds. Table 11.7 shows the distribution of the length of the generated
test cases. Note that a test case of length 1 can already include both closing and locking the doors. The
equivalent mutants took 87% of the complete runtime.

We executed the 17 unique test cases on the 38 faulty implementations and were able to detect the
faults in 23 of them. This gives a mutation-score of 60.5%. While this value is comparatively low, this
is not very unexpected, given that we applied weak mutation testing, while in the previous experiments
using timed automata, we applied strong mutation testing. Several of the faults only propagate to a visible
fault after several steps. Additionally, when several actions were modeled synchronously, we only chose
one of the interleavings for the test-case execution, thus not testing the other branch.

A further inspection of tests and faulty implementations revealed, that again some of the contracts
were too coarse. Consider e.g. contract R7 that specifies that unlocking the door deactivates the alarms:

c7 : flash ∧ ¬locked′ ` ¬sound′ ∧ ¬flash′

In its current form, it is enabled as long as the flash signal is activated. This covers both the cases
when additionally the sound is active, and when the sound is already deactivated. As our test cases are
designed to be minimal, and the first case can be reached using one step less, this only creates a test case
for the first case, and leaves the second one (which actually occurs in one of the faulty implementations)
untested.

Symbolic ticks. The model with symbolic time delays consisted of 20 contracts, after being completed.
From these, we derived 198 mutants. The test-case generation was executed with a search depth of 10, as
the car alarm system can be fully explored with that depth due to the symbolic time delays. With respect
to that depth, 43 mutants were found to be equivalent. We generated 155 test cases in 18.3 seconds,
18 of which were unique. The distribution of the lengths of the test cases can be found in Table 11.8.

Table 11.7: Distribution of the length of the test cases generated for the car alarm system
with explicit ticks.

Depth 1 Depth 3 Depth 4 Depth 5 Depth 7 Depth 34 Depth 35

Number of tests 54 1 21 5 11 8 2
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Table 11.8: Distribution of the length of the test cases generated for the car alarm system
with symbolic ticks.

Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6

Number of tests 55 42 27 21 3 7

The equivalent mutants needed 66% of the runtime, which is far fewer than for the explicit ticks. This
reduction is probably based on the shorter search depth, where the exploration of an equivalent mutant is
not so expensive.

By executing the tests on the faulty implementations, we were able to detect 26 of the faults, leaving
12 faults undetected. The resulting mutation score of 68.4% is about 8 percentage points higher than with
the other modeling style. For both styles, we manually checked whether the timing faults we manually
added to the faulty Java implementations were killed, and can report that they all were killed by the test
suite.

11.5 Overview

In this section, we will present a compact overview of the results gained on the industrial case studies
described in this chapter. The results are presented in Table 11.9. The different search depths were
adjusted to the individual examples, and thus vary strongly. Accordingly, the times for the test-case
generation cannot be compared directly. However, the difference in runtime between the explicit and the
symbolic ticks of the car alarm system are noteworthy, especially given that the symbolic modeling style
lead to better mutation score. Another interesting fact is given by the number of equivalent mutants for
the safing engine. This might be caused by the fact that some of the contracts restrict the same variables.
Thus, if one of them is mutated, the mutation causes an inconsistency and cannot be detected.

Table 11.9: Model-based mutation testing results of the three case studies.
Case study # Mutants # Equiv. Mutants Search depth Unique Tests % Mutation Score tmbmt

Safing engine 525 232 7 61 88 139.8
Speed limiter 291 57 4 60 94 18.3
CAS (explicit) 126 24 40 17 60.5 80.4
CAS (symbolic) 198 43 10 18 68.4 18.3
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Part III

Discussion
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Overview

In the third part of this thesis, we will discuss the presented work, focusing on several aspects. First,
in Chapter 12, we will compare our approaches for asynchronous and synchronous models and sum-
marize the most important differences we found. Then we will give a short overview how the two
approaches may be combined to form asynchronous specifications with synchronous components. Next,
in Chapter 13, we will discuss related work in the contexts of model-based testing of real-time systems,
model-based mutation testing, timed automata and synchronous specifications. Finally, in Chapter 14,
we will provide a summary of the thesis, focus on the achieved contributions and conclude our work with
an overview of possible future work.
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12 Asynchrony and Synchrony

To bring the two parts of this thesis together, this chapter will contain both a comparison and a discussion
of the possible combination of asynchronous and synchronous systems. The comparison of the two
approaches will be given in Section 12.1, discussing the strengths and weaknesses of the two approaches.
Then, in Section 12.2 we show how the two approaches can be combined and how such a combination
can benefit from the strengths of both approaches.

12.1 Comparison of Asynchrony and Synchrony

A direct experimental comparison between the asynchronous and the synchronous modeling approaches
is hardly possible. The models of the two approaches differ in terms of general attributes, like model-size,
possible model-elements or the numer of variables, but also in several means in the context of testing:
the length of the produced test cases, the complexity of the test-case execution procedure or the level of
abstraction. However, we want to point out some interesting details we learned during our experiments:

• Length of the Test Cases. The first and most substantial observation was the length of the test
cases. Being able to process several inputs simultaneously, drastically decreases the needed search
depths for most systems, and thus substantially decreases the complexity of the conformance
checks. While this seems like a definite advantage of the synchronous approach, is creates prob-
lems as well: the test-case generation procedure, trying to create as short test cases as possible,
will always perform as many inputs simultaneously as possible. If, however, an interleaved version
would also be possible in the SUT, the different interleavings will never be tested.

• Possible Levels of Abstractions. During our experiments on the adjustable speed limiter (Sec-
tion 11.3.3), we tried several different modeling approaches on three levels of abstraction, that
were performed and analyzed by Grischa Liebel from Chalmers University. The first approach
was a network of timed automata, that was performed on a very detailled level, including C-like
functions in guards and consisting of 13 automata. As this model could not be processed by Mo-
MuT::TA due to the unsupported C-like functions, and since it was not very comprehensible either,
this model was soon dropped, and replaced by a more compact model.

This second model was on a medium level of abstraction. But while it got rid of the C-like func-
tions, it still contained a network of timed automata and guards and updates with data variables,
and was thus not processable by MoMuT::TA, that only supports either of these two modeling
elements. However, we did a manual transformation to MoMuT::REQs, and could create first test
cases on that level of abstraction. MoMuT::REQs seemed very well suited for that abstraction
level, as it could cope with the data variables very well, and most of the automata in the net-
work worked independently, and their translation could simply be conjuncted to the requirement
interface. However, the model was soon refactored once more, and a third high-level model was
designed and used for the rest of the project.

This third model is the one presented in Section 11.3.3, and was on the right level of abstrac-
tion for both MoMuT::REQs and MoMuT::TA. While both tools performed well for that specific
model, MoMuT::REQs was already able to process the more low-level specification as well, which
indicates that it might be better applicable for low-level abstraction models than MoMuT::TA.

• Mutation Score. In terms of quality of the created test suites, the asynchronous models perform
better. Our experiments on the car alarm system achieved a 100% mutation score on the asyn-
chronous car alarm system, and only 60/68% on the synchronous models. However, the mutation
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operators are slightly different, the synchronous approach currently only performs weak mutation
testing and the car alarm system implementation is an asynchronous system, thus the tests had to
be transformed to asynchronous execution traces, missing some interleavings. Choosing a syn-
chronous implementation instead of the asynchronous Java implementation of the car alarm sys-
tem might change that comparison, but implementing strong mutation testing for MoMuT::REQs
is still an important future task for upgrading the quality of the generated test suites.

• Suitability for Real-Time Systems. For embedded systems that conform to the synchrony hy-
pothesis, the synchronous approach that implicitly determines that all outputs are produced instan-
taneously is very well suited. It facilitates the specification of such systems in a way that is both
comprehensibly and easily to process. However, for delayed outputs that rely on hard timing con-
straints, timed automata still have a clear advantage. The implicit progress of time in the locations
clearly outgoes the explicit modeling of time progress with ticks, both with respect to comprehen-
sibility of the model, and with respect to reduced complexity of the test-case generation.

• Non-determinism. Non-determinism is supported by both tools. However, MoMuT::TA needs to
determinize the models before the test-case generation, which adds additional complexity and
increases the state-space. Thus, MoMuT::Reqs, even though right now the monitoring using
the non-deterministic specification needs to be done manually, is probably better suited for non-
deterministic models. However, only MoMuT::TA supports non-deterministic timing behavior, as
the contracts of MoMuT::Reqs always have to trigger as soon as the assumption is satisfied. Thus,
a contract of the form clkx ≥ 1 ` y will always fire as soon as clkx is equal to one, and even
though it would also hold later.

12.2 Combination of Asynchrony and Synchrony

Combinations of synchronous and asynchronous systems are well known in the literature, where the
most important combination is called GALS systems, which stands for globally asynchronous, locally
synchronous systems [158]. Such systems consist of several synchronous components, that are con-
nected via a global asynchronous interconnection. The different synchronous components may run at
different frequencies, and the asynchronous communication between them is handled by e.g. FIFO
buffers. Teehan et al.[158] provided a survey on GALS systems, giving a classification of different
GALS approaches, and also stating the advantages of the GALS design, like fast block-reuse and power
savings.

In our context, we can have several requirement interfaces that model individual components, and are
connected via a global time automata model. The advantage of this modeling style is that the individual
components as well as the timed automata system can be kept very small, enabling efficient test-case
generation for them. After generating test cases from the timed automata model, the individual signals
in the trace can be replaced by more concrete sub-traces gained from the synchronous components.

Example 12.1. Consider e.g. the car alarm system, that was already mentioned several times during this
thesis. In all previous timed automata models, we had the four inputs lock?, unlock?, close? and open?.
However, these signals reflect the actual inputs to a car rather poorly, given that a car usually consists of
6 doors, counting the luggage compartment and the bonnet. And actually, the original requirements state
that very well, talking about ”all doors, the bonnet and the luggage compartment”. However, modeling
inputs for every of these doors leads to a huge state-space explosion in the model, due to all the possible
interleavings. Thus, previously the inputs were abstracted and a single close? input was supposed to
simulate the closing of the last open door, while an open? was considered opening the first door. Since
our Java implementation of the car alarm system was on the same level of abstraction, this did not pose a
problem. However, for hardware testing on a real car, the test cases would need to be translated to a less
abstract form, closing and opening as many doors as needed in each step.
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Now consider the requirement interface depicted below. It only contains one single component
of the car alarm system, that takes care of the individual doors. It contains eight different inputs:
closedd1 . . . closedd4 denote whether the individual doors are closed or opened, and lockedd1 . . . lockedd4

denote whether the doors are currently locked or unlocked7. The four outputs, locksig, closesig, unlocksig
and opensig are triggered if all doors are locked or closed, and if one door is unlocked or opened. Con-
tracts c1 to c4 are responsible for triggering the outputs in the right situations, while contracts c5 to c8

deactivate the outputs, whenever c1 to c4 are not active.

We formally define Acas doors as Ĉcas doors = {c0}, Ccas doors = {ci | i ∈ [1, 8]}, Xcas doors
I =

{closedd1, closedd2, closedd3, closedd4, lockedd1, lockedd2, lockedd3, lockedd4}, Xcas doors
O = {locksig,

closesig, unlocksig, opensig} and Xcas doors
H = {} where

c0 : ¬locksig ∧ ¬unlocksig ∧ ¬closesig ∧ ¬opensig

c1 : closedd1
′ ∧ closedd2

′ ∧ closedd3
′ ∧ closedd4

′

∧¬(closedd1 ∧ closedd2 ∧ closedd3 ∧ closedd4) ` close′sig
c2 : ¬closedd1

′ ∨ ¬closedd2
′ ∨ ¬closedd3

′ ∨ ¬closedd4
′

∧(closedd1 ∧ closedd2 ∧ closedd3 ∧ closedd4) ` opensig
′

c3 : lockedd1
′ ∧ lockedd2

′ ∧ lockedd3
′ ∧ lockedd4

′

∧¬(lockedd1 ∧ lockedd2 ∧ lockedd3 ∧ lockedd4) ` locksig
′

c4 : ¬lockedd1
′ ∨ ¬lockedd2

′ ∨ ¬lockedd3
′ ∨ ¬lockedd4

′

∧(lockedd1 ∧ lockedd2 ∧ lockedd3 ∧ lockedd4) ` unlock′sig
c5 : ¬(closedd1

′ ∧ closedd2
′ ∧ closedd3

′ ∧ closedd4
′

∧¬(closedd1 ∧ closedd2 ∧ closedd3 ∧ closedd4)) ` ¬closesig
′

c6 : ¬(¬closedd1
′ ∨ ¬closedd2

′ ∨ ¬closedd3
′ ∨ ¬closedd4

′

∧(closedd1 ∧ closedd2 ∧ closedd3 ∧ closedd4)) ` ¬opensig
′

c7 : ¬(lockedd1
′ ∧ lockedd2

′ ∧ lockedd3
′ ∧ lockedd4

′

∧¬(lockedd1 ∧ lockedd2 ∧ lockedd3 ∧ lockedd4)) ` ¬locksig
′

c8 : ¬(¬lockedd1
′ ∨ ¬lockedd2

′ ∨ ¬lockedd3
′ ∨ ¬lockedd4

′

∧(lockedd1 ∧ lockedd2 ∧ lockedd3 ∧ lockedd4)) ` ¬unlocksig
′

The output signals can then be processed by an intermediate timed automaton, that passes them
forward to the car alarm system as input events. An example of such an automaton for the locksig output
signal of the requirement interface is given in Figure 12.1. It transforms the signal locksig into the even
lock! as soon as it is activated. It goes back into the initial state, when the locksig signal is deactivated.

7Note that we still neglect the luggage compartment, as this is only an illustrative example and should be kept simple.
Additionally we consider the car not to contain a central locking system.

start

locksig = true
lock!

locksig = false
ε 2

Figure 12.1: An intermediate timed automaton, reading the locksig signal of the syn-
chronous system and passing it on to the car alarm system automaton via
the event lock!, once it is activated.
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Given a test suite that was generated from the timed automata car alarm system, one can now replace
each of the input signals by refined traces consisting of the input signals of the individual doors. However,
adding all possible interleavings of these signals to the test suite would lead to an exponential blowup
in the size of the test suite. Thus, we propose to extract from each test case the sequence consisting
of only the signals that are used in the requirement interface (e.g. in the current case, this are only the
inputs. Thus from the test case (close, lock, armedOn, open) we extract (close, lock, open)) and perform
a reachability analysis through the requirement interfaces, to gain a random trace producing exactly
these signals in that order. The functionality needed to gain such a refined trace in one single test-case
execution is currently not implemented in MoMuT::REQs, as the current test purposes only specify the
values in one step, while these new test purposes would specify multiple signals within the trace. Thus,
currently one would need to create a test case leading to the first signal (closesig), and then use the
variable valuation at the end of the created test case as the initial variable valuation when creating a test
case leading to the second signal (locksig), and so on. Then, each of the signals in the timed automata
can be replaced by the partial refined trace that leads from the last signal to the current one. This creates
a refined test case, that contains all the signals needed for an execution on a real system, and still leads
to the fault it is intended to catch.

Example 12.2. Another component in the car alarm system that could be expressed as a synchronous
system would be the alarm switching unit itself. A possible requirement interface for the alarm is illus-
trated below. In this case, we do not refine signals in the timed automata model, but actually replace
the corresponding parts of it by the synchronous component. The inputs to the requirement interface are
armed onsig, armed offsig, sound offsig, flash offsig and opensig. It stores the internal variable armed, and
emits the outputs flashsig and soundsig, where the sound is an alternation of high and low tuned pitches.
These outputs are not passed to the timed automaton, but directly to the environment.

We formally define Acas alarm as Ĉcas alarm = {c0}, Ccas alarm = {ci | i ∈ [1, 5]}, Xcas alarm
I =

{armed onsig, armed offsig, sound offsig, flash offsig, opensig}, Xcas alarm
O = {high tunesig, soundsig,

flashsig} and Xcas alarm
H = {armed} where

c0 : ¬armed ∧ ¬flashsig ∧ ¬soundsig

c1 : armed onsig
′ ` armed′

c2 : armed offsig
′ ` ¬armed′

c3 : armed′ ∧ opensig
′ ` ¬armed′ ∧ soundsig

′ ∧ flashsig
′

c3 : soundsig
′ ` high tunesig ⇔ ¬high tunesig

′

c4 : sound offsig
′ ` ¬soundsig

′

c5 : flash offsig
′ ` ¬flashsig

′

Figure 12.2 shows the updated timed automaton of the car alarm system, where the turning on of the
alarm is removed and replaced by the requirement interface. The communication between the require-
ment interface and the timed automaton is based on the signals opensig, armend onsig, armend offsig,
sound offsig and flashoff offsig, which are all sent from the timed automaton to the requirement inter-
face. It is a one-side communication, as the outputs of requirement interface, soundsig and flashsig,
high tunesig and low tunesig, are all sent directly to the environment. Communication from the timed
automaton to the requirement interface could again be done by intermediate timed automata, similar to
the one presented in Figure 12.1, that set the corresponding signal upon receiving an event from the car
alarm system automaton.

The part of the requirement interface is comparatively small, but the chosen borders bring several
advantages: The handling of the time constraints is still left in the timed automaton, that will trigger the
soundOff and flashOff event, once the timers run out. The alarms can be modeled in more detail, like
e.g. with switching between high and low tunes, as seen in Contract c3. And the orders of the flash
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start

flashOff!

c ≤ 20

e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

lock?

unlock?

close?

open?

open?

close?
{c}

unlock?

lock?
{c}

c == 20
armedOn!

open?
{e}

e == 0
armedOff!
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unlock?
{g}

e == 30
soundOff!

unlock?
{g}

e == 300
soundOff!

flashOff!

unlock?

close?
{f}

armedOn!

soundOff!

unlock?
{d}

armedOff!

Figure 12.2: A car alarm system, where the alarm switching unit is shifted to a syn-
chronous component.

and sound alarms, which was previously either modeled non-deterministically or fixed to one of the two
possible interleavings, does not need to be modeled anymore, as they are now turned on synchronously,
as intended.

Even though we did not apply the GALS style in our experiments, it shows a lot of potential. Given
that the individual models stay very small and compact, this facilitates a very efficient test-case generation
from the individual models, and the test cases can then either be combined, or the individual components
can be tested separately.
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13 Related Work

13.1 Model-Based Mutation Testing

Model-based mutation testing was initially used for predicate-calculus specifications in a publication by
Budd and Gopal [62]. This approach was a combination of classic mutation testing and model-based
mutation testing. They created model-mutants, and used them to assess the quality of an existing test
suite. Then they produced new test cases, in order to kill the remaining mutants, but this was not done
automatically as in the approach presented in this thesis.

Later, model-based mutation testing was applied to formal Z specifications by Stocks [155]. While
he showed how to generate test cases able to kill a mutant, this workflow was not automated. Amman
et al. [34] used temporal formula to check equivalence between models and mutants, and converted
counter-examples to test cases, in case of non-equivalence. Using equivalence as conformance relation,
this approach was restricted to deterministic models, and did not support partial models.

Model-based mutation testing has since been applied to various different specification languages:
Belli et al. [43, 42] applied model-based mutation testing to event sequence graphs and pushdown au-
tomata.

Hierons and Merayo [98] applied mutation-based test case generation to probabilistic finite state
machines. The work presents mutation operators and describes how to create input sequences to kill a
given mutated state machine.

Fraser and Wotawa [88] presented a model-checker based approach to model-based mutation testing,
focusing on the requirement specification. They evaluate the approach by a property coverage criteria, to
measure whether the resulting test cases cover all aspects of the specification. The evaluation is done on
five examples from the automotive domain.

Weiglhofer and Wotawa [174] performed model-based mutation testing using the input output con-
formance relation ioco, working with LOTOS specifications.

El Fakih et al. [81, 80] proposed a model-based mutation testing approach based on finite state
machines. They use deterministic mutation machines, that contain all possible mutants according to a
user-defined fault model and generate test-cases covering these mutants. Petrenko et al. [142] define
mutation machines for finite state machines as well, using them for mutation analysis of a given test
suite. Koufareva et al. [111] extended the fault-based test-casse generation for finite state machines,
allowing the implementations to consist of more states than its specification, and possibly reducing the
length of the created test cases. Contrary to that work, Simão and Petrenko [68] extended the approach,
by allowing the implementations to have a smaller state space than the specification, which reduces the
state space for test-case generation.

Henard et al. [92] applied mutation-based testing to the testing of product line configurations, where
they use mutations of the feature models to select interesting product line configurations for testing.

Sampaio et al. [148] propose a compositional input output conformance for the CSP process algebra,
where they specially mention that this could be used for mutation-based test-case generation. However,
no such experiments were performed yet, as they concentrated on checking the conformance between
the specification and the actual implementation.

Recently, model-based mutation testing was also applied to the specification language Circus by
Alberto et al. [26]. Circus is a textual specification for processed, based on Z and CSP, with semantics
based on UTP. In the paper they provide a complete theory for model-based mutation testing, based on
refinement. They provide automation via a Java prototype tool and present experimental results on a cash
machine.
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Jia and Harman [103] provide a survey on mutation-testing, which also covers model-based mutation
testing, and gives a very good overview on the technique.

Bernhard Aichernig, my supervisor and leader of our research group, contributed to model-based
mutation testing in several different areas:

In his first publication on that topic, Aichernig [1] introduced mutation testing to pre/post condition
contracts. He used the refinement calculus for expressing the theory of mutation testing, and discussed
the benefits of contract mutation, compared to program mutation, including the possibility of testing
under refinement, if the specification is refined during development. Then, Aichernig and He [9] explored
mutation testing for designs in UTP, where they viewed test cases as specification predicates, which
allows to define refinement between tests and the specification. This work was the first testing theory
for UTP, and also the first work on mutation of non-deterministic contracts. The first implementation
on test-case generation via mutated contracts was presented by Aichernig et al. [22] for UML contracts
in the OCL language. Later, Krenn and Aichernig [112] also applied the technique to Spec# contracts,
using a combination of the verification generator Boogie and Z3 for solving the conformance check.
Contrary to the definition in our requirement interfaces, the contracts in the above mentioned works were
not synchronous.

The work on UTP designs was also extended to Reo connectors [130]. Reo is a channel-based
modeling style, where models consist of simple connectors, which are composed together to build more
complex ones. By modeling the connectors as UTP designs, the authors could design a fault-based
test-case generation approach for connectors, which they support with a prototype implementation.

Aichernig and Corrales Delgado [8] performed model-based mutation testing, by generating test
purposes for each model mutant. While this is very closely related to our approach for requirement
interfaces, is was performed on asynchronous models, and did not concentrate on real-time properties.
Using the test purpose technique, Aichernig et al. [24] also developed a slicing method to prune away
the parts of the search tree that do not contain the mutation, which is a very similar approach than the
partial models we suggested for timed automata in Chapter 6.

Model-based mutation testing has also been applied in our research group to UML models [3, 6]
and action systems [5]. In the UML approach, both the specification and the mutants were translated to
action systems. The conformance check, which was either refinement or ioco, was then performed on
the action systems. The used tool is called MoMuT::UML, and supports both an explicit and a symbolic
backend [115].

Model-based mutation testing was also applied to hybrid systems by Aichernig et al. [4], leading to
the development of qualitative action systems [7]. Test cases produced by this technique additionally
contain expected values of the environment after their execution.

Most of this work is summarized in the habilitation thesis by Bernhard Aichernig [2]. Additionally,
the work led to the PhD thesis by Harald Brandl [59] on hybrid systems and the PhD thesis by Elisabeth
Jöbstl [105] on model-based mutation testing with constraint and SMT solvers.

13.2 Theory of Timed Automata

Timed Automata were introduced by Alur and Dill in 1994 [29] and in the years since there has been
ongoing work on both the theoretical and the practical aspects of timed automata. A recent survey by
Waez et al. [171] lists forty different tools that use timed automata in the context of code development and
verification. The survey identifies eleven classes of timed automata and almost eighty concrete variants
belonging to those classes.

Already Alur and Dill [29] showed that non-deterministic timed automata are more expressive than
deterministic ones, a result that was later also confirmed by Tripakis [162] and Finkel [86]. Bérard et
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al. [50] showed that timed automata with silent transitions are even more expressive, but also showed
that silent transitions without clock resets can be removed without changing the language of a timed
automaton. One class of determinizable timed automata, namely Event-Recording Timed Automata, was
already found by Alur et al. [30]. Some other classes of determinizable timed automata were identified
by Baier et al. [39]. Suman and Pandya [156] showed that Integer Reset Timed Automata with Silent
Transitons can be determinized. These are timed automata where transitions that reset clocks can only
occur at integer valued time points. This restricts the timed language of the automata, but may be very
efficient in applications where the exact timing of the transition can be neglected.

Alur et al. [32] also gave a survey of various decision problems of reachability, language inclusion
and language equivalence for timed automata and its variants.

The main inspiration to our work with regards to silent transition removal and determinization comes
from Bérard et al. [50] and Baier et al. [39]. Bérard et al. [50] show that silent transitions extend the
expressive power of timed automata and identify a sub-class of timed automata with silent transitions for
which silent transitions can be removed. By restricting ourselves to the bounded setting, we can remove
silent transition of all strongly-responsive TAε. In addition, our approach for removing silent transitions
preserves diagonal constraints in the resulting automaton, thus avoiding a potential exponential blow-up
in the size of its representation. Bouyer et al [58] discuss the practical advantages of preserving diagonal
constraints in timed automata. Baier et al. [39] propose a procedure for translating non-deterministic
timed automata to infinite deterministic trees, and then identify several classes of non-deterministic timed
automata that can be efficiently determinized into finite deterministic timed automata. In contrast to
our work, their procedure works on the region graph, which makes it impractical for implementation.
In addition, we also allow in our determinization procedure disjunctive constraints which results in a
more succinct representation that can be directly handled by the bounded model-checking tools. Both
Bérard et al. [50] and Baier et al. [39] tackle non-determinism and observability in TA from a general
theoretical perspective. We adopted the ideas from these papers and developed an effective procedure
for the bounded determinization of NON-DET(TAε).

Bertrand et al. [54] develop a game-based method for determinization of NON-DET(TAε) which gen-
erates either a language equivalent DET(TA) when possible, or its approximation otherwise. A similar
approach is proposed by Bertrand et al. [53] in the context of model-based testing, where it is shown that
their approximate determinization procedure preserves the tioco relation. In contrast to our approach,
which is language preserving up to a bound k, and thus appropriate for bounded model checking algo-
rithms, determinization in the above-mentioned papers introduces a different kind of approximation than
ours.

Wang et al. [173] perform language inclusion on timed automata. Their procedure involves building
a tree, renaming the clocks and determinization of the tree. Contrary to our work, they do not restrict
themselves to the bounded setting, thus taking the risk that their algorithm does not terminate for some
classes of timed automata. They also use the ”standard” determinization method that involves splitting
non-deterministic transitions into a possibly far larger set of deterministic transitions, whereas we join
them into one transition.

De Wulf et al. [74] proposed an antichain-based algorithm for checking several problems on finite
automata, including a trace-inclusion check that does not need to explicitly determinize the automata
first. Iosif et al. [102] extended the trace inclusion algorithm via antichains to infinite state systems.
While timed automata can be expressed as such systems, one would also need to change their language,
so that the values of all clocks is made observable after each step. Additionally, the algorithm does not
consider silent transitions and termination is not guaranteed.



Chapter 13. Related Work 154

13.3 Test-Case Generation for Timed Automata

Model-based test-case generation from timed automata has been done in several approaches:

Nielsen and Skou [134] proposed a test case generation framework for non-deterministic (but deter-
minizable) timed automata, implemented in the prototype tool RTCAT. Contrary to our approach, they do
not use mutants to steer test-case generation and they can only process determinizable timed automata.
Their coverage criteria are based on equivalence classes of the state space, where for each equivalence
class, certain observations have to be seen at least once.

The UPPAAL tool family contains a series of tools working with timed automata. There are three
UPPAAL tools used in the context of testing: UPPAAL Cover [97] generates tests offline and provides
means for specifying observers to generate tests satisfying pre-defined coverage criteria. Cover requires
the specification to be deterministic. UPPAAL Tron [131] is used for online testing, where inputs and
delays are chosen non-deterministically and executed on the SUT and the specification simultaneously
and all outputs that are received from the system are checked for conformance on the model. UPPAAL
Yggdrasil [109] is the newest testing tool in the UPPAAL family, facilitating offline test-case generation,
with the advantage of adding test scripts to transitions, that are added to the tests during generation.
The resulting tests can thus be executable scripts or function calls in any desired language. None of the
tools in the UPPAAL family performs mutation-based test-case generation. Note that while we model
our automata in UPPAAL, the automata produced by our determinization and silent transition removal
procedure can not be analysed with UPPAAL anymore, as they contain disjunctions. They can, however,
still be opened and viewed.

Springintveld [154] proposed a test-case generation procedure for timed I/O automata, where the
automata are reduced to grid automata with discrete time information. They claim that their test suite
grows too big for practical purposes, but is complete with respect to the grid automata. Contrary to our
approach, they do not create test cases with dense time, and do not apply mutation-based testing.

Cardell-Oliver [63] introduced a method for conformance testing between implementations and
timed automata specifications. He translates timed automata into testable timed transition systems and
creates test views to separate the parts that shall be tested, while hiding the transitions that are not part
of the test view. Contrary to our work, he only considers four types of faults, that are not especially
designed for catching real-time errors and tests for trace equivalence, instead of tioco-conformance.

Krichen and Tripakis [117] produce deterministic testers for non-deterministic timed automata in the
context of model-based testing. They restrain the testers to using only one clock, which is reset upon
receiving an input. The testers are sound, but not in general complete and might accept behavior of the
SUT that should be rejected.

Marinescu et al. [125] developed a framework for testing automotive embedded systems, where the
main model is an EAST-ADL specification, and individual components are modelled as timed automata
with UPPAAL Port. They can verify the models according to timed computation tree logic formulas
and generate test cases according to this formula via UPPAAL Port. The tests are then automatically
translated into executable python scripts.

Vulgarakis et al. [169] provided formal semantics for the ProCom real-time component model, where
the semantics are given by an extended finite state machine language. These finite state machines can be
translated to timed automata with urgency and priorities. Systems with several components are naturally
expressed by networks of timed automata. Tools like UPPAAL or TDSpin can then be used for the
verification of ProCom models. Another closely related formalism that supports automated translation
into (priced) timed automata is called REMES [152], which is a ressource model for embedded systems.
REMES allows the annotation of ressources, to express and solve resource analysis problems, like e.g.
optimal/worst-case ressource analysis.
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Model-based test-case generation for real-time systems has been performed with various models
other than timed automata. Some have been summarized by Nilsson [135], where he separates the
methods into methods based on Process Algebra, Finite State Machines, Temporal Logic, Petri Nets and
Informal Methods.

Several different approaches to model mutation have already been published, using Finite State Ma-
chines [83, 143], Kripke structures [56] or Event Sequence Graphs [43]. Nilsson et al. [136] introduced
mutation operators for timed automata with tasks, yet the mutation operators there concentrate on tasks
and timeliness and not the core essence of TA. Our mutation operators 6 and 8 from Section 3.1 are
specific to TA, while the other ones are similar or closely related to the operators described by Ferraz
Fabbri et al. [143].

Krenn et al. [113] proposed an incremental language inclusion check for networks of timed au-
tomata. Instead of checking the language inclusion for the complete networks, they check it for two
single automata of both networks. If they find a witness to the language inclusion, they expand it (if
possible) to a counter example for the complete networks. The approach can be used for incremental
tioco-conformance checking of networks of timed automata, and thus for efficient model-based mutation
testing.

13.4 Other Variants of Timed Automata

In the following, we would like to shortly discuss different variants of timed automata, even though in
this thesis we only used the variants discussed in Section 2.1. The definitions are adapted from the survey
of timed automata by Waez et al. [171].

• Timed Automata with other Clock Constraints

Timed automata with other clock constraints denote timed automata with weakened guard defini-
tions. Waez. et al. give three subcategories of these class: periodic clock constraints, additiv/mul-
tiplicative clock constraints and parametric timed automata.

Periodic clock constraints denote constraints that are enabled at certain intervalls, like when the
value of a clock is odd. Automata with periodic clock constraints [67] (and periodic clock updates)
can express timed automata with silent transitions [77].

Timed automata with additive/multiplicative clock constraints [49] are closely related to timed
automata with diagonal constraints, but allow addition and multiplication of clocks. Theoretic
results on these automata vary strongly depending on the number of clocks and used constraints.
The results for reachability are presented in Table 5 of the survey.

Parametric timed automata [31] allow the parametrization of clock constraints. Instead of concrete
constraints like x > 4, the numeric values can be replaced by parameters (e.g. x > p), changing
the reachability problem to either ”does there exist a parameter valuation, so that a certain location
can be reached” or ”for a certain parameter valuation, can a certain location be reached?”.

• Timed Automata with Clock Updates

Timed automata with clock updates can reset clocks to values other than zero. These may be
updatable timed automata, suspension automata or integer reset timed automata.

In updatable timed automata [57], clocks may either be set to a fixed value, or, with a constraint
of the form x :> 5, may be non-deterministically set to any value satisfying the constraint.

Suspension automata [129] either suspend the passage of time in certain locations, or use stopwatch-
like clocks, that enable the subtraction of integer values from clocks, to subtract the time that was
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spent in a certain location. McManis and Varaiya [129] showed that the language inclusion prob-
lem for suspension automata is decidable. They use hybrid automata with rate 1 to model the
suspension automata.

Integer reset timed automata [156] only reset clocks when they have integer values. It is note-
worthy, that it is decidable to check whether the language of an integer reset timed automata is
included in the language of a classical one.

• Timed Automata with other Clock Rates
Timed Automata with other clock rates let different clocks progress at different rates. If the clock
rates are defined and can not change, the corresponding automata can also be expressed by a classic
timed automata [94]. If the clock rates may vary during execution, each clocks needs to be reset
every time its rate changes. In that case, it can still be expressed by a classic timed automaton, and
reachability is decidable, otherwise it is not.

• Timed Automata with Resources
Timed automata with resources can be used to model resource consumption additionally to the
usual timing constraints. The most well-known timed automata with resources are priced / weighted
automata [33, 41].

The consumption of ressources is annotated both for the transitions and for the locations, where in
location the consumption usually rises with passing time, while for each transition a fixed amount
is added. Consequently, each run through the automaton is assigned a price / weight. Using these
prices, one can create reachability problems like how to reach a certain location with minimal cost.

Another timed automata variant with resources are timed automata with real-time tasks [137],
where transitions may be assigned tasks, containing a best-case execution time and a worst-case
execution time. Thus, transitions are no longer instantaneous. As the worst-case execution time
might be set to zero, these automata are at least as expressive as classic timed automata.

• Timed Automata with Probabilities
In timed automata with probabilities [28], transitions may be assigned a probability, stating its
likelihood of occurring. They can be used to estimate performance parameters like throughput or
mean service time. They can also be used to specify soft real-time properties, like ”at most 5% of
the runs through the system take longer than 10 seconds”.

• Timed Automata with Communication
Timed automata with communication [120] are timed automata extended by channels that enable
communication, e.g. in a network of timed automata. The timed automata with inputs and outputs
that are used in the most parts of this thesis are an example for communicating timed automata.

• Timed Automata with Determinizability
This subclass of timed automata contains those classes of timed automata that are known to be
determinizable. These are for instance event-clock automata [30]. Each action is associated with
an event-recording and an event-predicting clock, recording the time since the action last occurred
and predicting the time until its next occurrence. By definition, event clock automata do not contain
any silent transitions.

Timed automata with integer resets were proven to be determinizable as well [157]. Another
variant of determinizable timed automata,strongly non-Zeno timed automata, was proposed by
Baier et al. [39].

• Timed Automata with Self-Embedded Recursion ...

Timed automata with self-embedded recursion, e.g. pushdown timed automata or recursive timed
automata [163], let each state of the automata to consist of another automaton, that might even



Chapter 13. Related Work 157

be itself. Each such state contains a marked entry and a marked exit state. Clock values may be
passed between the different automata, enabling the ”inner” automata to reason about the global
time.

• Timed Automata with Succinctness

These classes of timed automata focus on easier modeling, instead of easier analysis. Thus, they
offer additional modeling elements which are equally hard or harder to analyze, but offer a more
comprehensive modeling style. One example are timed automata with urgency [40]. According
to different definitions, they may either contain urgent locations, which must be left as soon as
possible, or urgent transitions, which have to be taken within a specified time intervall (deadline)
after being enabled, and have priority over non-urgent transitions.

• Timed Automata with Games

Timed game automata [124] have been designed to model open real-time systems. The game
reachability problem for these automata focuses on whether the system has a strategy to reach a
target state, regardless of the decisions of the environment.

We decided to model with timed automata with inputs and outputs for two reasons. Most importantly,
the separation into inputs and outputs is needed for testing, to separate which events are triggered by the
environment, and which are part of the system under test. The second reason was the tool support by
UPPAAL, which was already used in MBAT and allows us to analyze the specifications before starting
the test-case generation.

13.5 Symbolic Semantics of Timed Automata

There exist two symbolic representations for timed automata, that convert the infinite state-space of timed
automata into a finite one, while preserving most properties of the automata. The two representations are
called regions and zones [27]. While regions are mainly used for calculating and proofing decidability
results, zones are used in many of the available tools for timed automata. Using our bounded model-
checking approach, we can work directly on timed automata, as the infinite state-space does not pose
a problem. However, we will now shortly discuss the two representations, as they enable interesting
alternatives to bounded model-checking.

13.5.1 Regions

A region, which is a state in a region graph, is defined as a tuple 〈l, r〉, s.t. l is a location and r is a set of
clock valuations, called a clock region. r is defined in a way, so that for every clock x and any two clock
valuations v, v′, the integral value of v(x) equals the integral value of v′(x), and that for all clocks the
order of the fractional parts is preserved. As all constraints only use integral values, the integral values
suffice for checking whether a clock constraint is fulfilled, while the order on the fractional part is needed
to know, which clock will change its integral value first.

Two regions 〈l, r〉 and 〈l, r′〉 may be merged, if for all constrains C in the invariants of l and the
guards of the transitions leaving l, r satisfies C iff r′ satisfies C.

The number of regions grows exponentially with the number of clocks and the value of the highest
constant in the timed automaton.
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13.5.2 Zones

Zones are also defined by tuples 〈l, Z〉, where Z is a conjunction of general clock constraints, and the
zone is defined to contain all clock valuations satisfying Z.

Zone can be used for forward and backward analysis of timed automata systems. The forward anal-
ysis starts in the initial location, with all clocks initialized to zero, and its constraint being a conjunction
of the invariant of the initial location, and the constraint x1 = x2 = · · ·xn for all clocks xk ∈ C. From
there, we compute all reachable computations, until all final locations are found, or the algorithm termi-
nates, even though termination is not guaranteed. During the exploration, the constraints on the zones
are updated according to clock resets, guards and invariants.

For a backward analysis, one starts with the final states, and all clocks unrestrained, and explores the
predecessor zones, trying to reach the initial location.

Zones are usually represented by DBMs (Difference Bound Matrices), which facilitate performing
tests like emptiness checking or the comparison of zones syntactically on the DBMs. While this im-
proves computation efficiency a lot, these representations can not be used for timed automata containing
diagonal constraints or disjunction. However, Bouyer et al [58] introduced an extension to DBMs, that
allows diagonal constraints.

Most major timed automata tools, like e.g. UPPAAL [120] and Kronos [72], use zones. As already
mentioned, our intention was to use bounded model-checking for the test-case generation, which enables
us to perform analysis directly on the timed automata, and enables the usage of additional modeling
elements, like disjunction.

13.6 Synchronous Systems

Synchronous languages were introduced in the nineteen-eighties, and mostly driven in France, where the
most well-known three synchronous languages were developed: Lustre [64], Signal [89] and Esterel [52].
In 1991, IEEE devoted a special issue to synchronous systems, featuring e.g. a paper by Benveniste
and Berry [44], discussing the major issues and approaches of synchronous specifications of real-time
systems. A decade later, Benveniste et al. [47] gave an overview on the development of synchronous
languages during that decade, especially mentioning the rising tool support and the industrial acceptance.
They also mention globally asynchronous, locally synchronous systems [158] as an upcoming trend.

The main inspiration for our requirement interfaces was the introduction of the conjunction operation
and the investigation of its properties [78] in the context of synchronous interface theories [66]. While
the mathematical properties of the conjunction in different interface theories were further studied by
Benveniste et al. [45], Reineke and Tripakis [146] and Henzinger and Ničković [95], we are not aware of
any similar work related to model-based testing. Requirement interfaces differ from the Moore interfaces
and bidirectional interfaces introduced by Chakrabarti [66] in two main ways: they support internal
variables, and they are designed to build a strong linkage to the original informal requirements.

Synchronous data-flow modeling [48] has been an active area of research in the past. The most
important synchronous data-flow programming languages are Lustre [64] and SIGNAL [89]. These lan-
guages are implementation languages, while requirement interfaces enable specifying high-level prop-
erties of such programs. Testing of Lustre-like programs was studied by Raymond et al. [145] and
Papailiopoulou [141], using SCADE. The specification language SCADE [51] supports graphical rep-
resentation of synchronous systems. Internally, SCADE models are stored in a textual representation
very similar to Lustre. Experimental results for test-case generation were presented by Wakankar et
al. [172] for experiments where the manually translated SCADE models to SAL-ATG models, and used
the SAL-ATG for the test-case generation.
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Compositional properties of specifications in the context of testing were studied before [166, 162,
148, 25, 69]. None of these works consider synchronous data-flow specifications, and the compositional
properties are investigated with respect to the parallel composition and hiding operations, but not con-
junction. A different notion of conjunction is introduced for the test-case generation with SAL [90]. In
that work, the authors encode test purposes as trap properties, and conjunct them in order to drive the
test-case generation process towards reaching all the test purposes with a single test case. Consistency
checking of contracts has been studied by Ellen et al. [82], yet for a weaker notion of consistency.

Our specifications using constraints share similarities with the Z specification language [153], that
also follows a multiple-viewpoint approach to structuring a specification into pieces called schemas.
However, a Z schema defines the dynamics of a system in terms of operations. In contrast, our require-
ment interfaces follow the style of synchronous languages.

Seceleanu and Seceleanu [151] proposed a synchronization mechanism for action systems. They
achieve the synchronization by introducing a new parallel composition operator, which performs rounds
of internal actions, covering all possible interleavings of the individual action systems, before syn-
chronously producing all global variables and reaching a new global state of the action system. They
also extend the approach to continuous and timed action systems.

Brillout et al. [60] performed mutation-based test-case generation on Simulink models. They im-
plemented the approach in the tool COVER, based on the model-checker CBMC. He et al. [91] exploit
similarity measures on mutants of Simulink models, to decrease the cost of mutation-based test-case gen-
eration. They provide experiments to show the advantages of model-based mutation testing compared to
random testing, and compared to simpler mutation-based testing approaches.

There exist several tools for test-case generation for synchronous systems. The tool Lutess [79] is
based on Lustre. It takes the specification of the environment (specified in Lustre), a test sequence gen-
erator, and an oracle and performed online testing on the system under test according to the environment
and traces selected by the generator according to several different modes. Another tool based on Lustre
is called Lurette [145]. Lurette only performs random testing, but is able to validate systems with nu-
merical inputs and outputs. A third testing tool based on Lustre is called GATeL [126]. It generates tests
according to test purposes, using constraint logic programming to search for suitable traces.

The tool Autofocus [100] facilitates test-case generation from time-synchronous communicating ex-
tended finite state machines that build a distributed system. It is based on constraint logic programming,
and supports functional, structural and stochastic test specifications.
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14 Summary and Conclusions

Within this thesis we have shown how model-based mutation testing can be applied to real-time systems,
discussing both synchronous and asynchronous models. This chapter is ment to summarize the presented
work, illustrate the contributions, give conclusions while answering the research questions and provide
an outlook to possible future extensions.

14.1 Summary

In the first part of this thesis, we started with an introductory chapter, that presented our motivation for
testing real-time systems, which is mainly based on the vast amount of time-sensitive and safety-critical
components in the automotive domain. Then we explained the concepts of model-based testing and
model-based mutation testing, giving clear priority to the latter, as it was the main topic of this thesis.
The main workflow of model-based mutation testing, independently on the used formalisms, consists
of three steps: (1) mutating the specification, to receive a set of faulty models (mutants), (2) checking
for conformance between the specification and the mutants, and (3) in case of non-conformance, build
a test case that can guarantee to detect the corresponding fault in deterministic systems. At the end of
the introductory chapter, we established our research questions and gave an overview of the publications
that led to this thesis.

We started with Part I, which is the part about introducing model-based mutation testing to asyn-
chronous real-time systems, by giving basic definitions of timed automa and timed conformance rela-
tions. We picked timed automata as the exemplary formalism for asynchronous models, as they are
among the most well-known formalisms for specifying real-time systems, and are supported by a well
defined and explored theory.

To apply model-based mutation testing to timed automata we had to take care of several steps: first,
we defined mutation operators for timed automata, focusing on introducing time-dependent faults. Then,
we showed how the tioco-conformance check can be expressed as a language inclusion problem, which
can then be expressed as an SMT-formula and solved by bounded model-checking. The produced SMT-
formula was designed to detect counter-examples to the language inclusion, i.e., it tried to find a reachable
location, in which the mutant can perform an output that is not possible in the specification. If such a
location is found, we produce a test case with symbolic time delays that leads there. The complete
workflow was implemented in a tool we call MoMuT::TA.

The main restriction of this approach was that it was only defined for fully-observable timed au-
tomata, and that it may produce spurious counter-examples for non-deterministic timed automata. Thus,
in the next chapter we investigated how to remove both silent transitions and non-determinism from
our models. It is well known that silent transitions and non-determinism add to the expressiveness of
timed automata, and cannot be removed in general. We thus introduced a bounded approach that cuts
all traces after a specified number of observable steps. The resulting timed automaton, which is in the
form of a tree, resets exactly one clock per transition and all transitions of same depth reset the same
clock. Due to the bounded traces, the silent transitions can be removed and the tree can be determinized
effectively. The silent transition removal traverses through the state space of the tree searching for every
silent transition. For each of them, it creates a bypass transition, that is, a transition combining the last
observable transitions before the silent transition, and the silent transition itself. Additionally, for the
complete subtree below the silent transitions, all future guards that refer to the clock that was reset on the
silent transition need to be updated and synchronized. Once all silent transitions are removed, we apply a
determinization step, that combines non-deterministic transitions via disjunction. While disjunctions in
guards do not conform to the standard definition of timed automata, we exploit both diagonal constraints
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and disjunction, in order to reduce our state-space. Additionally, we implemented an on-the-fly algorithm
that only needs to explore the state-space once to perform the unfolding, the silent transition removal and
the determinization in one step. This on-the-fly algorithm was then expanded, to also include building
the product of networks of timed automata during the unfolding.

In Chapter 5 we presented the experiments we performed for evaluating the presented approaches.
As a continuous example we presented several versions of a car alarm system, including a deterministic
version, a non-deterministic one with silent transitions, and a version with data variables. The test-case
generation from the deterministic version produced a test suite strong enough to reach a 100% mutation
score on a Java implementation that was mutated via the tool µ-java. The non-deterministic model
grew so big during the determinization, that test-case generation became infeasible. We thus had to
split the model into two partial models, to perform the test-case generation. While test-case generation
of the complete test suite from the deterministic model needed 30 minutes, the approach on the two
unfolded partial models took 43 minutes, which illustrates the complexity introduced by state-space
increase caused by the unfolding.

As a second industrial example we presented an automated speed limiter, where we both had a
deterministic model and one that contained both non-deterministic and silent transitions. We used the
first model to assess the quality of an existing test suite, and generated additional test cases only for the
mutants that were not killed by the previous test suite. We expanded the existing test suite by additional
eleven test cases. For the non-deterministic model, we performed our complete workflow, including silent
transition removal, determinization and test-case generation. The complete approach took 5.4 hours and
produced 128 test cases. Unfortunately, the quality of the test-cases could not be evaluated, as we did
not have access to the real system under test. However, we also created test cases for a more abstract
deterministic version of the speed limiter, and the resulting test cases were analyzed by Chalmers and
Volvo. Despite detecting some previously untested functionality of the system, the system engineers that
manually inspected the tests and mutants showed high interest in the mutants, using them as validation
why the corresponding test cases make sense.

We concluded Part I by presenting several smaller approaches we performed with timed automata:
first, we investigated how the model mutants we create during the test-case generation can be used to
debug a system under test. The approach is supposed to both hint on the location of the bug, and select
a subset of the model mutants that reflect the possible faults that might be contained in the implementa-
tion. Then, we showed how to build tioco-conform partial models during the determinization approach.
This approach enables the efficient test-case generation from determinized models, that might otherwise
exceed the capabilities of MoMuT::TA. Finally we showed how timed automata can be encoded as timed
action systems, and compared MoMuT::TA to a tool based on symbolic execution, developed by Martin
Tappler.

In Part II we presented our work on synchronous systems, illustrated on requirement interfaces,
which are a synchronous formalism we proposed within the MBAT project. Requirement interfaces
provide the possibility to separately specify different views on a system, e.g. the functional view can be
modeled separately from the power consumption. This enables an easier test-case generation as well,
where the test cases of one view can then be extended using a second view.

First, we defined requirement interfaces, providing syntax and semantics, as well as discussing gen-
eral attributes like consistency, refinement between requirement interfaces and their conjunction.

Then, we demonstrated how to perform a bounded consistency check on requirement interfaces,
using SMT-solvers. However, due to the quantifiers in the formula, the state-space of the consistency
check grows exponentially, and does not support very high bounds. Thus, we focused more on the test-
case generation, where we introduced a methodology driven by test purposes (the variable valuations
we try to reach). We also defined how test cases produced according to one view of the system can be
expanded using a second view and demonstrated it on our running example, the abstract specification
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of a buffer. Additionally, we showed how requirement interfaces facilitate an easy way to be linked to
the textual requirements they were built from, which supports traceability. At the end of the section,
we developed a model-based mutation testing methodology for requirement interfaces. This included
the definition of mutation operators for requirement interfaces, and the theory on how to automatically
create test purposes that lead to the mutations, if these introduce faulty behavior. As we wanted to express
the conformance check via test purposes, we only introduced weak mutation testing. Consequently, the
generated test suite is of slightly lower fault detection capability than the test suites produced by our
asynchronous approach, as the tests only lead to the mutation, but not necessarily to the observable
failures caused by the mutation. All introduced methodologies, the consistency check, the test-case
generation and the model-based mutation testing, were implemented in a tool called MoMuT::REQs.

In the following section, we showed one iteration through a typical development process, from the
textual requirements up to the test-case execution on a (simulated) system under test. The process is
built up around a central data management system that stores and links all work products that are created
along the development. Communication between MoMuT::REQs and this system is implemented via
the OSLC standard, providing high interoperability. The presentation of this workflow is used to give
details on one of our industrial case studies, the safing engine of an airbag, and to show the benefits of
traceability.

Next we investigated the suitability of requirement interfaces for real-time systems. We differentiated
between two types of real-time systems: those conforming to the synchrony hypothesis, which states that
all outputs can be produced before the next inputs arrive, and those not conforming, where outputs arrive
delayed and other inputs may be arriving in between. For the former, requirement interfaces, just like all
synchronous languages, are very well suited. Time can be completely neglected from the specification,
as all outputs are considered to arrive instantaneously. This reduces the complexity of the specification,
both with regards to comprehensibility and with regards to the automated test-case generation. For the
latter, we investigated two modeling styles that can take care of delayed outputs, one with explicit ticks
for measuring time, and one with symbolic time delays. Explicit ticks are very well suited for modeling
systems depending on clock cycles that continuously interact with the environment. However, for testing
long timed delays, the test cases become huge, simply since every time unit that needs to be waited is
another step in the test case. This poses a problem for the test-case generation, as we need higher search
depth. However, afterwards these delays can be expressed as integer values, to decrease the size of the
test case. Symbolic timed delays take care of that problem already during the test-case generation, but
change the notion of time in a way that completely freezes the system while waiting. While this cannot
be used to model embedded systems that are ment to continuously react to environmental changes, it is a
promising approach for modeling systems where we can regulate all inputs to the system under test, like
the car alarm system, where we can decide when to open and close the doors.

We evaluated our approaches on three industrial studies: The car alarm system, the safing engine and
the speed limiter.

First, we generated test cases from manual test purposes for the safing engine, generating a test suite
that covers every possible value of every signal at least once. We evaluated the test suite with a set
of faulty Simulink models, receiving a mutation score of only 51%. We then inspected the test suite,
and manually added ten more test purposes, to receive a 100% mutation score. However, the manual
inspection was time consuming, and needed several iterations.

Thus, in the next experiment we applied model-based mutation testing to the safing engine and
executed the produced test suite on the faulty Simulink models. We gained a mutation score of 88%,
where simply trying to reach all possible variable values once only lead to a 51% coverage. For the
automated speed limiter, where we did not generate manual test purposes and only performed the model-
based mutation testing, we even reached 98% mutation score on a Java implementation mutated via the
Major mutation tool.
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We applied the model-based mutation technique to two versions of the car alarm system, one with
explicit ticks and one with symbolic ticks. The mutation scores of the corresponding test suites on the
previously mentioned faulty Java implementations was comparatively low, with 60% and 68%. This was
caused by three facts: A rather coarse modeling style, the weak mutation testing and the execution of
synchronous test suites on an asynchronous system.

We concluded Part II with an overview on related work in the context of model-based testing of
synchronous systems.

In the last part of the thesis we brought the two different directions of Part I and Part II together, by
first summarizing the different advantages of the two modeling styles, and then discussing how the two
styles can be combined to form globally asynchronous and locally synchronous systems. We showed in
detail how different components of the car alarm system can be modelled via requirement interfaces, and
connected via a global timed automata model.

Then, we gave a summary of the work presented in this thesis, and now we will concentrate on
presenting the contributions, drawing some conclusions and pointing towards future work.

14.2 Contributions

We would like to state once more the contributions of this thesis:

• We developed a model-based mutation testing approach (see Chapter 3) for deterministic timed
automata. We encoded the tioco-check via language inclusion, and developed a set of mutation
operators, some of which were developed to cover real-time aspects. We developed the theory
behind the approach, and implemented it in the tool MoMuT::TA using bounded model-checking.

• We introduced and implemented a method for bounded determinization and silent transition re-
moval of timed automata (see Chapter 4), to enable the processing of non-deterministic systems
with our test-case generation approach. Even though in general timed automata cannot be deter-
minized or made fully observable, both approaches work for general timed automata, since we
bounded the traces. This technique can be used for analysis of the tools as well, but is especially
useful for test-case generation, where we only consider finite traces anyway.

• To improve the efficiency of the determinization, we developed an on-the-fly algorithm (see Sec-
tion 4.5), which supports networks of timed automata and produces a deterministic bounded un-
folding of the product of all automata in the network, while only going through the state-space
once. This significantly reduces the runtime of the approach.

• We showed how the model-mutants we create for model-based mutation testing can also be used
for debugging (see Section 6.1), where we select a subset of mutants that correspond to a faulty
system under test and analyze which kind of implementation error may correspond to the selected
mutations.

• We introduced requirement interfaces (see Chapter 7), which are a synchronous contract-based
specification language for synchronous data-flow systems and showed how to build their conjunc-
tion, how to check their consistency and how to generate tests from them, using either manually
designed or automatically generated test purposes.

• We extended the test-case generation for requirement interfaces, to support model-based mutation
testing (see Section 8.3), by automatically generating test purposes for mutants, enabling weak
mutation testing.

• We discussed how time is treated in synchronous languages and how discrete delays can be inte-
grated into requirement interfaces (see Chapter 10). We proposed both an explicit and a symbolic
approach for delayed outputs.



Chapter 14. Summary and Conclusions 165

• We implemented both approaches based on bounded model-checking and evaluated both the syn-
chronous and the asynchronous test-case generation on industrial use cases (see Chapter 5 and
Chapter 11) and reported and discussed the empirical results.

14.3 Conclusions

In the introduction we defined four main research questions and 12 subquestions for this thesis:

• Q1: Can real-time systems be tested with model-based mutation testing?

– Q1.1: Can we support non-determinism for model-based mutation testing?
– Q1.2: Can we support internal transitions?
– Q1.3: What kind of mutation operators reflect violated timing properties?

• Q2: Can bounded-model checking be applied to test real-time systems?

– Q2.1: How can we encode the conformance check via bounded-model checking?
– Q2.2: How should we implement the bounded model-checking?
– Q2.3: Is bounded model-checking an efficient approach?

• Q3: Can the approach be applied to both synchronous and asynchronous systems?

– Q3.1: What modeling languages should we use as representations for the individual modeling
styles?

– Q3.2: How well do timing properties fit in the individual styles?
– Q3.3: How can the two approaches be combined?

• Q4: Can the approach be effectively performed on industrial use cases?

– Q4.1: How big does the state-space of the models become?
– Q4.2: How can we reduce the state-space explosion?
– Q4.3: Are the reachable search depths of our bounded model-checking approach sufficient

for industrial case studies?

We will give our answers to these three questions in a backward order, starting with question Q4.

Q4.1: How bad does the state-space explosion become? As for all model-checking problems,
the state-space increases exponentially with the search depth. While this problem is decreased for re-
quirement interfaces by the reduced search depth due to simultaneous inputs, it still poses a problem
for applications where this is not possible. For timed automata, the problem especially arises for non-
deterministic models, that need to be explicitly determinized.

Q4.2: How can we reduce the state-space explosion? However, the search space can be reduced
in several ways: we investigated both manually and automatically generated partial models for timed
automata (see Section 6.2 and Section 6.3), which enables us to process models that were infeasible
otherwise. For requirement interfaces, we showed that the complexity may be reduced by separating
different views of the system, and dividing them into separate requirement interfaces (see Example 7.1
and Example 7.4), which can then be used to extend test cases from the main interface later on. Addi-
tionally, the synchronous nature of requirement interfaces reduces the state-space, as several signals can
be processed simultaneously.
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Q4.3: Are the reachable search depths sufficient for industrial case studies? We applied our
approach successfully to three industrial case studies, that is, a car alarm system from a previous project,
a safing engine of an airbag, which was a use case in the MBAT project, and an adjustable speed limiter
that was a use case in the CRYSTAL project. We had to split the non-deterministic timed automata model
of the car alarm system into two models, to be able to process it, and we had to pick a suitable level of
abstraction for the speed limiter, but in the end, the test suites could be generated in reasonable time,
could provide a high mutation score when executed on faulty implementations, and covered the complete
functionality we intended to test. The experiments were presented in Chapter 5 and Chapter 11.

We thus conclude that the technique works efficiently enough to be applied to industrial case studies.

Q3.1: What modeling languages should we use as representations for the individual modeling
styles? Picking timed automata as representative for asynchronous timed systems was an easy choice.
Not only are they probably the most well-know formalism for real-time system specification, but also
Aalborg University, one of the two universities developing UPPAAL, was a partner in the MBAT project.
Thus, timed automata were used in MBAT already and using them let us build a deeper cooperation with
other partners in the project. The choice of requirement interfaces also originated in MBAT, where we
developed the requirement interface language in cooperation with our industrial partners at a face-to-face
meeting, so we could adapt it for their personal needs.

Q3.2: How well do timing properties fit in the individual styles? Both formalisms are well suited
to represent their class of systems, i.e. asynchronous and synchronous systems. While the car alarm
system was easier to model as a timed automata model, the safing engine which is an embedded chip,
was definitely better suited to being specified by a synchronous language. To summarize the experiences
we gained from our experiments, timed automata are more well suited for specifying complex timing
behavior, while requirement interfaces are only well suited for instantaneous outputs, our outputs are
also triggered by discrete delays.

Q3.3: How can the two approaches be combined? We evaluated the approaches on several exam-
ples, presented a summary of their individual advantages, and showed how the two modeling styles may
be combined to form an architecture that benefits from their individual advantages (see Section 12.2.
While we saw a clear advantage in their combination, we did not perform any experiments, as the need
did not arise in our projects.

We answer research question Q3 with the statement that both, synchronous and asynchronous real-
time systems, can be tested vial model-based mutation testing, where asynchronous systems are better
suited for modeling time delays, and synchronous systems improve the specification of systems with
instantaneous outputs.

Q2.1: How can we encode the conformance check via bounded-model checking? In the part on
asynchronous systems, we encoded a tioco-conformance check for timed automata via language inclu-
sion (see Section 3.3.1). This works based on the fact that we made the specifications input enabled.
We encoded the language inclusion as a bounded model-checking problem and expressed it as an SMT-
formula. In the part on synchronous systems, we used refinement for our conformance checks. We
implemented a way to automatically generate test purposes for mutated contracts, that can be used to
detect non-conformance (see Section 8.3). These test purposes, together with the step relation of the
requirement interface, can be used for a reachability analysis via bounded model-checking.

Q2.2: How should we implement the bounded model-checking? In both of the approaches, we
used SMT-solving for solving our bounded model-checking problems. More specifically, we used Mi-
crosofts SMT-solver Z3. The representation as SMT-LIB formulas would also allow an easy integration
of other solvers, but since Z3 worked very well for both approaches, this was never done.

Q2.3: Is bounded model-checking an efficient approach? We compared bounded model-checking
to symbolic execution in Section 6.3.6, where we found out that symbolic execution can handle non-
determinism better than bounded model-checking. On the other hand, higher numbers of clocks affects



Chapter 14. Summary and Conclusions 167

the runtime of symbolic execution far stronger than the runtime of the bounded model-checking. We also
encoded language inclusion in UPPAAL, by adding a trap property to the product of the specification
and a mutant. First experiments on the car alarm system models presented in Section 6.3.6 showed that
UPPAAL is very fast in detecting non-conformance in the deterministic case. In the non-deterministic
case, the encoding we used suffered from the same problem as the bounded-model checking: it lead to
spurious counter examples. Adding a PIN code with a range of 0−500 to the deterministic model already
slowed the conformance check down and expanding it to 5000 made the whole approach infeasible. Thus,
for pure timed automata, where difference bound matrices (DBMs) can be used for the checks, UPPAAL
outperforms our approach, but with different modeling elements that are not supported by the DBMs,
bounded model-checking performs a lot faster.

Q1.1: Can we support non-determinism for model-based mutation testing? We do support non-
determinism for both types of models, where we ran into different challenges for each of them: timed
automata need to be pre-processed (see Section 4), to remove the non-determinism before starting the
test-case generation. This leads to increased complexity of the workflow, and increases the state-space
for the test-case generation. However, underspecification, in the sense that we allow different outputs to
leave a location, is supported without pre-processing. Requirement interfaces facilitate non-determinism
without much additional complexity, but they do not support non-deterministic time delays.

Q1.2: Can we support internal transitions? Both formalisms support internal transitions (or in the
case of requirement interfaces, the update of internal state variables). For timed automata this needs a
pre-processing step (see Section 4), and thus once more increases the complexity. However, we could
perform the test-case generation on all industrial examples we had in our projects.

Q1.3: What kind of mutation operators reflect violated timing properties? We mainly targeted
off-by-one faults, where outputs arrive either a little too soon, or a little too late. Additionally, we targeted
additional or missing clock resets, leading to timed outputs which arrive a lot sooner than expected (if the
clock already was close before reaching the timing constraints, when it should have been reset) or not at
all, if the timing constraint was already exceeded when the clock should have been reset, but was not. For
the asynchronous deterministic adjustable speed limiter, we created tests that covered the timed internal
state change that were not covered by the test suite in use (see Section 5.2.2). For the asynchronous car
alarm system (see Section 5.2.1), we were able to detect all time related faults we manually inserted into
the car alarm system. For the synchronous car alarm system (see Section 11.4), an investigation of the
killed mutants showed that we covered all timing faults. Only for the synchronous model of the speed
limiter (see Section 11.3.3), one timing fault could not be caught, due to being too coarse during test-case
execution.

To sum up the conclusions, we were fairly satisfied with the empirical evaluations of both approaches.
They are both well suited for their domains, provide adequate test suites in reasonable time, and can be
applied to case studies of industrial size.

14.4 Future Work

As there is always room for further improvements, we will limit this summary of possible future work to
only four main topics:

• All-In-One Algorithm. The processing of non-deterministic timed automata still suffers from
scalability issues. Building an on-the-fly algorithm for the determinization and the silent transition
removal definitely was a step in the right direction. However, the step can still be expanded. By
adding the model mutator to this algorithm, one could achieve several goals: first, it might be
possible to only perform the determinization once, instead of determinizing all mutants separately,
or at least use the tree of the specification for those parts not mutated. Secondly, the position of the
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mutation in the determinized tree could be marked, enabling us to perform a reachability analysis
to that location, and to perform the tioco-check from there.

To expand the algorithm even further, the conformance check could / should be integrated as
well. This would benefit the tioco-check starting from the mutation and reduce the amount of
disk accesses needed during an execution. The improvements of such an algorithm to the com-
plete model-based mutation approach for timed automata would probably be comparable to the
improvement achieved by the on-the-fly algorithm compared to the sequential approach.

• Strong Mutation Testing. Applying weak mutation testing to the requirement interfaces was a
reasonable approach, with regards to the existing test-case generation based on test purposes. It
provided a strong coherence between the model-based mutation testing and the general approach.
However, the implementation of strong mutation testing should still be one of the top goals for
future work, considering the improvement it would mean for the generated test suites. Stopping
a test case at the point where it reaches the mutation, without expanding it until the mutation
eventually leads to an observable failure is like running in a race, and stopping right in front of the
goal. While it might be sufficient to detect most errors of low complexity, it will most probably
skip most of the interesting, hard to detect, faults.

• Comparison to Other Coverage Criteria. Both for the asynchronous and the synchronous ap-
proach, we would be highly interested in performing a study that compares the results of model-
based mutation testing with the results achieved by other model-based techniques. We already
presented the mutation score we gained for the safing engine by applying signal coverage (cover-
ing every value of each signal at least once). However this coverage criterion is rather simple as it
does not take into account the possible combinations of several signals. Thus, an analysis of more
complex coverage criteria and their relation to model-based mutation testing would be a perfect
topic for a future study.

• Reducing the Number of Mutants. For both approaches, the equivalent mutants took a high
percentage of the processing time. The same observation was already made by Elisabeth Jöbstl
in her PhD thesis on model-based mutation testing with constraint and SMT-solvers [105]. This
calls for an investigation of the mutation operators, to see whether all of them are needed, or
whether some are subsumed by others. Various methods for reducing the number of mutants are
summarized in the survey by Jia and Harman [103].

This thesis provided several different contributions to the field of model-based testing of real-time
systems. Hopefully some of the ideas will be picked up by other researchers and be built up on, to
overcome the current limitations.
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[104] Elisabeth Jöbstl. Automating test case generation from transition systems via symbolic execution
and SAT solving. Master’s thesis, Graz University of Technology, 2009. (Cited on page 9.)
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[108] Ahmed Khoumsi, Thierry Jéron, and Hervé Marchand. Test cases generation for nondeterministic
real-time systems. In Alexandre Petrenko and Andreas Ulrich, editors, Formal Approaches to
Software Testing: Third International Workshop on Formal Approaches to Testing of Software,
FATES 2003, Montreal, Quebec, Canada, October 6th, 2003. Revised Papers, pages 131–146,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. (Cited on page 24.)

[109] JinHyun Kim, KimG. Larsen, Brian Nielsen, Marius Mikucionis, and Petur Olsen. Formal analysis
and testing of real-time automotive systems using uppaal tools. In Manuel Núñez and Matthias
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