
Dipl.-Ing. Manuel Hofer

Building with Lines:

Efficient 3D Scene Abstraction
for the Built Environment

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

Prof. Dr. Horst Bischof

Institute for Computer Graphics and Vision

Prof. Dr.-Ing. Reinhard Koch

Institute of Computer Science, University of Kiel

Graz, Austria, July 2016

Abstract

Extracting 3D information from a moving camera is traditionally based on interest point

detection and matching. This is especially challenging in urban indoor- and outdoor

environments, where the number of distinctive interest points is naturally limited. While

common Structure-from-Motion (SfM) approaches usually manage to obtain the correct

camera poses, the number of accurate 3D points is very small due to the low number of

matchable features. Subsequent Multi-view Stereo approaches may help to overcome this

problem, but suffer from a high computational complexity.

We propose a novel approach for the task of 3D scene abstraction from oriented im-

age sequences (e.g. SfM results), which uses straight line segments as underlying image

features. We use purely geometric constraints to match 2D line segments from different

images, and omit any kind of appearance constraints (such as color or image gradients)

altogether. This enables us to find line correspondences for highly non-planar scenes, and

under changing illumination conditions, for which traditional descriptor- or color-based line

matching methods would often fail. This results in a one-to-many matching procedure,

where each individual 2D segment can have multiple spatially disparate correspondences

in each neighboring image. We then triangulate all potential correspondences in 3D space,

and evaluate their likelihood of being correct by employing a scoring procedure based on

the mutual support between them. We now assign a 3D estimate to each 2D segment indi-

vidually, which simply corresponds to the triangulation of its matching hypothesis with the

highest score. As a final reconstruction step, we cluster corresponding 2D segments based

on the similarity between their 3D location estimates, using an efficient graph-clustering

formulation. The final line-based 3D model and its 2D residuals can further be used to

refine the input SfM result, by using combined point- and line-based bundle adjustment at

the end. We show that our method generates accurate 3D models with low computational

costs, which makes it especially useful for large-scale urban indoor- and outdoor datasets.

Since the quality and completeness of image-based 3D reconstructions heavily depends

on the available image set, online SfM methods have been introduced to guide the user

iii

iv

during the image acquisition process, by directly computing a sparse 3D model while the

images are being recorded. As an application for our method, we show how our line-

based 3D reconstruction principles can be easily reformulated to allow an incremental

reconstruction, which enables its integration into any online SfM pipeline. We show how

additional 3D lines in combination with the sparse point cloud from the SfM significantly

improve the visual impression of the emerging 3D model, which in turn helps the user to

better judge whether the images already taken are sufficient for 3D reconstruction or not.

Kurzfassung

Das Extrahieren von 3D Information aus Bildern einer sich bewegenden Kamera wird

traditionell durch so genannte Feature Punkte gelöst, die zuerst in den einzelnen Bildern

detektiert und anschließend über die Bildgrenzen hinaus abgeglichen werden. Dieser Vor-

gang ist speziell in urbanen Umgebungen (innerhalb, sowie auch außerhalb von Gebäuden)

mit immensen Schwierigkeiten verbunden, da die Anzahl der visuell gut unterscheidbaren

Feature Punkte hier naturgemäß eher beschränkt ist. Während gängige Structure-from-

Motion (SfM) Ansätze im Regelfall zumindest die korrekten Kameraposen zu den ver-

wendeten Bildern finden können, ist die Anzahl der rekonstruierten 3D Punkte aufgrund

der wenigen korrekten Feature Punkt Korrespondenzen im Allgemeinen nur sehr klein.

Nachfolgende reine 3D Rekonstruktions (Multi-view Stereo) Algorithmen können dieses

Problem zwar häufig beseitigen, sind dafür aber mit einem hohen Rechenaufwand verbun-

den.

In dieser Dissertation stellen wir eine neuartige Methode zur dreidimensionalen Ab-

straktion einer Szene aus einer orientierten Bildsequenz (z.B. eines SfM Resultates) vor,

wobei wir gerade Liniensegmente als zugrundeliegende Bild Merkmale verwenden. Wir

verwenden rein geometrische Eigenschaften um potentiell korrespondierende Linienseg-

mente zwischen Bildern abzugleichen und verzichten gänzlich auf visuelle Merkmale, wie

z.B. Farbe oder Bildgradienten. Dies ermöglicht es uns Linien Korrespondenzen auch

in höchst nicht-planaren Szenen und unter sich verändernder Beleuchtung zu finden,

was mit traditionellen auf Deskriptoren- oder auf Farbe basierenden Korrespondenzfind-

ungsmethoden kaum möglich wäre. Das Resultat sind eine Vielzahl an potentiellen Ko-

rrespondenzen für jedes einzelne 2D Segment, in jedem benachbarten Bild. Wir trian-

gulieren nun alle Korrespondenzen in den 3D Raum und evaluieren deren Grad an Ko-

rrektheit durch eine Beurteilungsprozedur, welche auf der gegenseitigen Unterstützung

dieser Korrespondenzen in 3D beruht. Wir weisen nun jedem 2D Liniensegment indi-

viduell eine geschätzte 3D Position zu, welche aus der Korrespondenzhypothese mit der

v

vi

höchsten Korrektheitswahrscheinlichkeit abgeleitet ist. Als letzten Schritt verwenden wir

Ähnlichkeitskriterien unter potentiell korrespondierenden 2D Segmenten, basierend auf der

räumlichen Nähe ihrer geschätzten 3D Positionen, um zusammengehörige 2D Segmente

aus allen Bildern zu gruppieren. Das finale 3D Linienmodel kann im Anschluss auch dazu

verwendet werden die berechneten Kameraposen aus dem SfM Resultat weiter zu ver-

feinern, indem man eine kombinierte Optimierung über alle rekonstruierten Punkte und

Linien durchführt. Wir demonstrieren dass unsere Methode in der Lage ist mit geringem

Rechenaufwand akkurate 3D Modelle zu erzeugen, was sich speziell für große Datensätze

urbaner Umgebungen als höchst nützlich erweist.

Da die Qualität und die Vollständigkeit einer bildgestützten 3D Rekonstruktion sehr

stark von den zugrundeliegenden Bildern abhängen, besteht die Möglichkeit eine online

SfM Methode zu verwenden, die den Benutzer während der Bildaufnahme unterstützt, in-

dem die aufgenommenen Bilder direkt zum Berechnen einer dünnen Punktwolke herange-

zogen werden. Als Anwendungsbeispiel für unsere Methodik zeigen wir wie unsere Rekon-

struktionsprinzipien mit wenig Aufwand so umformuliert werden können, dass eine inkre-

mentelle Rekonstruktion möglich ist, was in weiterer Folge die Integration in jede beliebige

online SfM Applikation ermöglicht. Wir streichen hervor wie sehr die Verfügbarkeit von

3D Linien zusätzlich zur dünnen Punktwolke der SfM Applikation den entstehenden vi-

suellen Eindruck des generierten 3D Models verbessert, was natürlich auch dem Benutzer

zugute kommt, da dadurch eine bessere Abschätzung darüber möglich ist, ob die bereits

aufgenommen Bilder zum Erstellen eines zufriedenstellenden 3D Models geeignet sind oder

nicht.

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present doctoral

thesis.

Date Signature

Acknowledgments

First I would like to thank Prof. Horst Bischof for giving me the opportunity to pursue a

PhD degree under his supervision, while also being paid for the work I very much enjoyed

during the last few years. I am very thankful for the fruitful work environment at ICG,

where I was welcomed with open arms right from the start. In addition, I also want to

thank my second supervisor, Prof. Reinhard Koch, for taking the time to review my PhD

thesis, and to come down to Graz for my PhD defense.

I also want to thank all my colleagues from ICG, who made this working place very

special, and helped to overcome some rarely occurring less pleasant periods (e.g. the

incredible heat in the offices during the summer). A special thanks goes to the Aerial

Vision Group, the reading group, and all members of the 3D-pitoti project, for all the

fruitful discussions, collaborations, the long drives to Italy, and of course all the social

events that took place.

I want to thank my family, especially my parents and my brother, for all their (not

just financial) support during all my years of studying, and for the healthy environment

in which I was lucky enough to grow up. I would not have gotten that far without you,

and I hope I can do the same for my own kids someday. Last, but definitely not least,

I want to thank my fiancée Anna for putting up with we, and for always being there for

me. I love you, and I always will.

This work has partially been supported by the Austrian Research Promotion Agency

(FFG) projects FreeLine (Bridge1, 843450) and PEGASUS (FIT-IT, 825841/10397), in

collaboration with OMICRON electronics GmbH. In addition, I received funding from the

European Union for working on the 3D-pitoti project (Seventh Framework Programme,

600545) during my time as a PhD student.

ix

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution and Overview . 4

2 Related Work 7

2.1 Point-based Structure-from-Motion . 9

2.2 Line Matching . 12

2.3 Line-based Structure-from-Motion . 18

2.4 Line-based SLAM . 23

2.5 Line-based Multi-View Stereo . 26

2.6 Summary . 31

3 Line3D++: A Line-based 3D Reconstruction Framework 33

3.1 Prerequisites . 33

3.1.1 Camera Model . 34

3.1.2 Epipolar Geometry . 37

3.2 Pipeline Overview . 40

3.3 Line Segment Detection . 41

3.4 Establishing Line Segment Correspondences 43

3.4.1 Visual Neighbor Selection . 44

3.4.2 Epipolar-guided Line Matching . 46

3.4.3 Improving the Matching Precision 47

3.4.4 Creating 3D Hypotheses from Matched Segments 48

3.5 Evaluating Line Segment Correspondences 49

3.5.1 Scale-Invariant Spatial Regularization 53

3.6 Assigning 3D Locations to 2D Segments . 53

xi

xii

3.7 Clustering Corresponding 2D Segments . 55

3.7.1 Final 3D Lines from Clustered Segments 56

3.8 Combined Bundle Adjustment . 57

3.9 Summary . 59

4 Evaluation and Results 61

4.1 Testing Environment & Implementation Details 61

4.1.1 SfM Pipeline . 62

4.2 Default Parameters . 63

4.3 Test Datasets . 64

4.3.1 Groundtruth Sequences . 64

4.3.2 Real-World Sequences . 65

4.4 Reconstruction Results . 67

4.4.1 Results on Real-World Sequences . 67

4.4.2 Results on Groundtruth Sequences 68

4.5 Parameter Evaluation . 70

4.5.1 Line Segment Detection . 70

4.5.2 Line Matching . 73

4.5.2.1 Evaluating τ . 74

4.5.2.2 Evaluating M and k . 76

4.5.3 Match Evaluation . 77

4.6 Bundle Adjustment Evaluation . 79

4.6.1 Camera Pose Accuracy . 81

4.6.2 Line Model Accuracy . 82

4.7 Runtime Evaluation: GPU vs. CPU . 82

4.8 Summary . 84

5 Application: Online SfM using Points and Lines 85

5.1 Online Structure-from-Motion . 85

5.2 Incremental Line3D++ . 89

5.2.1 Line Segment Matching & Depth Estimation 89

5.2.1.1 Line Segment Matching . 89

5.2.1.2 Depth Estimation . 90

5.2.2 3D Model Update . 91

5.2.2.1 Segment Clustering . 91

5.2.2.2 Cluster Verification . 92

5.2.3 Bundle Adjustment . 93

5.3 Experimental Results . 93

5.3.1 Test Setup . 94

5.3.2 Quantitative Evaluation . 95

5.4 Summary . 99

xiii

6 Conclusion 101

6.1 Summary . 101

6.2 Future Work: Beyond Lines . 102

A List of Acronyms 107

B List of Publications 109

B.1 2013 . 109

B.2 2014 . 110

B.3 2015 . 111

B.4 2016 . 112

Bibliography 115

List of Figures

1.1 Example SfM reconstruction for the Pylon sequence. 2

1.2 Close-up views of the Pylon sequence. 2

1.3 Comparison between sparse SfM-, and dense MVS point clouds. 3

1.4 Three different 3D representations of the Pylon and the Building sequence. 5

2.1 Illustrations from (Baillard et al., 1999). 13

2.2 Illustrations from (Wang et al., 2009) and (Wang et al., 2012). 14

2.3 Illustrations from (Zhang and Koch, 2013). 15

2.4 Illustrations from (Wang et al., 2009). 16

2.5 Illustrations from (Kim and Lee, 2010). 16

2.6 Matching of wiry structures. 17

2.7 Illustrations from (Bay et al., 2006). 20

2.8 Illustrations from (Schindler et al., 2006). 20

2.9 Illustrations from (Elqursh and Elgammal, 2011). 21

2.10 Illustrations from (Zhang and Koch, 2014). 22

2.11 Illustrations from (Micusik and Wildenauer, 2014). 22

2.12 Illustrations from (Ramalingam et al., 2015). 23

2.13 Illustrations from (Zhang et al., 2012). 25

2.14 Illustrations from (Flint et al., 2010). 26

2.15 Illustrations from (Werner and Zisserman, 2002). 27

2.16 Illustrations from (Ok et al., 2011). 28

2.17 Illustrations from (Chen and Wang, 2010). 29

2.18 Illustrations from (Jain et al., 2010). 30

2.19 Illustrations from (Jain et al., 2010). 30

3.1 The pinhole camera model. 35

xv

xvi LIST OF FIGURES

3.2 The epipolar geometry. 38

3.3 Limitations of the epipolar geometry. 40

3.4 Line3D++ pipeline overview. 42

3.5 Line segment detection using LSD. 43

3.6 Visualization of the distance-based visual neighbor score. 46

3.7 The epipolar-based matching procedure. 47

3.8 A visualization of the obtained matches. 48

3.9 Computation of a 3D hypothesis from matched 2D line segments. 49

3.10 Inlier and outlier correspondences. 51

3.11 Derivation of the slope µσ of the spatial regularizer. 53

3.12 All accepted 3D line hypotheses, and the best hypothesis for each 2D segment. 54

3.13 Final 3D models for the Building and the Pylon sequence using two different

clustering methods. 58

4.1 The Timberframe sequence. 65

4.2 The Strecha sequences. 65

4.3 Example images from the real-world sequences. 66

4.4 Example images from the Dubrovnik6K dataset. 67

4.5 Reconstruction results for the real-world datasets. 68

4.6 Line-based 3D reconstruction of the crowdsourced Dubrovnik6K dataset. . . 69

4.7 Quantitative evaluation on the Herz-Jesu-P8, and the Fountain-P11 datasets. 70

4.8 Quantitative evaluation on the Timberframe dataset. 71

4.9 Reconstruction results for the Herz-Jesu-P25, and the Castle-P30 datasets. 71

4.10 Reconstruction results for the line segment detection evaluation (real-world). 73

4.11 Reconstruction results for the line segment detection evaluation

(groundtruth). 74

4.12 Reconstruction results for the line matching evaluation (real-world). 75

4.13 Reconstruction results for the line matching evaluation (Pylon). 78

4.14 Reconstruction results for the match scoring evaluation. 80

4.15 Reconstruction results for extreme σ values. 81

4.16 Reconstruction results for the combined bundle adjustment evaluation. . . . 83

5.1 An example of an unsuitable image set for SfM. 86

5.2 A schematic overview of the online SfM pipeline by (Hoppe et al., 2012). . . 87

5.3 An online SfM result using points and lines. 88

5.4 An illustration of the incremental reconstruction procedure. 94

5.5 A visual comparison between the offline- versus the online method

(groundtruth). 96

5.6 A visual comparison between the offline- versus the online method (real-

world). 97

5.7 The basic online/offline 3D reconstruction workflow. 100

LIST OF FIGURES xvii

6.1 Line-based vs. curve-based 3D reconstruction. 104

List of Tables

4.1 List of default parameters. 64

4.2 List of real-world test sequences. 66

4.3 Reconstruction results for the real-world datasets. 69

4.4 Evaluation results for the line segment detection step. 72

4.5 Quantitative evaluation results for the line segment detection step. 72

4.6 Evaluation results for the line matching step. 76

4.7 Quantitative evaluation results for k-nn line matching. 77

4.8 Evaluation results for the line matching step (Pylon). 79

4.9 Evaluation results for the combined bundle adjustment. 82

4.10 Quantitative evaluation results for the bundling step. 83

4.11 Runtime evaluation results (GPU vs. CPU). 84

5.1 A comparison between the offline- and the online algorithm. 95

5.2 Camera pose evaluation results (offline vs. online). 98

5.3 Line model evaluation results (offline vs. online). 98

xix

1
Introduction

Contents

1.1 Motivation . 1

1.2 Contribution and Overview . 4

1.1 Motivation

Not too long ago, automatic recovery of 3D information from an image sequence used to

be a very challenging and time consuming task. Today, thanks to freely available software

[114, 136, 137, 143, 149, 172], as well as sophisticated professional tools [3, 24, 147], even

non-expert users are able to generate accurate (georeferenced) 3D models from arbitrary

scenes within hours.

The first step of any traditional image-based 3D reconstruction pipeline, is the so-

called Structure-from-Motion (SfM) step [2, 47, 143]. Here, the goal is to simultaneously

solve for the unknown camera poses of the images, and the underlying 3D structure of

the scene. To be able to handle very large datasets consisting of thousands of images, all

common SfM pipelines make use of a sparse set of distinctive feature points (key points)

to find connections between images, which then constrain the camera poses and give an

initial 3D representation of the scene. Figure 1.1 shows a typical SfM result for an image

sequence around a power pylon. The sparse point cloud represents the matched feature

points in 3D, and the small image thumbnails at the bottom of the pylon represent the

camera poses of the respective images.

As we can see in this example, the 3D point density is not equally distributed through-

out the whole reconstruction. The amount of reconstructed 3D points for each part of

the scene depends heavily on its visual appearance (see Figure 1.2 for close-up views).

This is due to the fact that matchable feature points can only be extracted from non-

homogeneous and preferably unique image regions, such that they can be mathematically

1

Reference:

 ()

Reference:

 ()

Reference:

 ()

2 Chapter 1. Introduction

(a) Example images (b) SfM result (18, 623 points)

Figure 1.1: Example SfM reconstruction for the Pylon sequence (106 images): (a) Two example
input images from the sequence, (b) visualization of the SfM result (camera poses and sparse point
cloud) using the ICG3D library [72].

encoded in a compact and meaningful way, through one of the many available feature point

descriptors (e.g. Scale-Invariant Feature Transform (SIFT) [101] or Speeded Up Robust

Features (SURF) [18]), which allow scale-, rotation and illumination invariant comparison

of features from different images. Hence, the 3D output obtained by any SfM pipeline is

usually quite sparse in any case (even when a high number of features per image is used),

and only provides 3D information in textured parts of the scene.

(a) Overview (b) Untextured region (more sparse) (c) Textured region (more dense)

Figure 1.2: Close-up views of the sparse point cloud from the Pylon sequence: (a) The whole
model with the close-up areas highlighted (approximately), (b) the sparsely occupied top-part of
the pylon, and (c) the more densely occupied wall.

The more important part of the SfM output are actually the obtained camera poses.

The availability of camera pose information significantly eases the recovery of 3D infor-

mation from an image sequence, and especially the directly computable epipolar geometry

between different images simplifies the correspondence problem to a one dimensional search

along the epipolar lines [54]. This enables subsequent Multi-View Stereo (MVS) pipelines,

such as PMVS [49] or SURE [131], to create accurate (semi-) dense point clouds, which

also provide 3D information for less-textured parts of the scene, and significantly improve

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"Herbert Bay and Tinne Tuytelaars and Luc van Gool" (2006)"SURF: Speeded Up Robust Features"

Reference:

"Richard Hartley and Andrew Zisserman" ("2003")"Multiple View Geometry in Computer Vision"

Reference:

"Yasutaka Furukawa and Brian Curless and Steve Seitz and Richard Szeliski" (2010)"Towards Internet-Scale Multi-View Stereo"

Reference:

"Mathias Rothermel and Konrad Wenzel and Dieter Fritsch and Norbert Haala" (2012)"SURE: Photogrammetric Surface Reconstruction from Imagery"

1.1. Motivation 3

(a) Pylon (18, 623→ 1, 393, 124 pts.) (b) Building (97, 699→ 14, 516, 368 pts.)

Figure 1.3: Comparison between sparse SfM -, and dense MVS point clouds for (a) the Pylon
sequence (106 images), and (b) the Building sequence (344 images). The dense models were
obtained using PMVS [49].

the overall visual impression and semantic meaning of the obtained 3D model. In addi-

tion, watertight surface meshes can be directly extracted from such dense point clouds

(e.g. [69, 91]), and realistically textured using the underlying image sequence [160]. Fig-

ure 1.3 illustrates the difference in terms of the visual impression between a sparse SfM -,

and a dense MVS point cloud. As we can see, the dense model significantly improves the

level of detail in both cases. This is especially notable for the Pylon sequence, were for

example non of the power lines are visible in the sparse point cloud at all.

While the SfM process can be performed quite efficiently even for large-scale datasets

(e.g. by exploiting massive parallelism [47] and efficient feature matching strategies

[58, 120]), computing a dense 3D model is still computationally expensive, and can easily

take up to several days on standard desktop computers. Moreover, the resulting model

often consists of millions of points (or triangles), which makes all kinds of subsequent

data analysis tasks very tedious and challenging. In many cases, even viewing such a 3D

model in common 3D viewers can bring modern computers to their limits, due to the huge

amount of main- and GPU memory that is needed to render large point clouds or meshes.

The benefit of point clouds (or also meshes) is their flexibility, since objects of arbitrary

shapes and complexities can be theoretically expressed by such a data structure. However,

as stated above, in terms of point clouds the number of points that is produced by common

MVS algorithms is usually very large, and since pretty much every state-of-the-art 3D

reconstruction software (e.g. Pix4D [147]) uses such a point cloud to derive the 3D surface

from it, the produced meshes have a very high complexity as well. While there are of

course scenes with an inherently high geometrically complexity (e.g. non-urban areas,

such as forests or mountains), which definitely require a lot of 3D entities to be accurately

reconstructed, there are also a large number of scenes where the relevant 3D information

can be encoded much more efficiently, due to a high amount of geometric regularities.

The most prominent example are man-made indoor and outdoor environments, such as

urban areas. Here, we encounter a high amount of piecewise planar and linear structures

(e.g. buildings, roads, or power pylons), which can be efficiently represented by a set of

3D planes or lines. Since it is not very efficient to first compute a dense point cloud or

Reference:

"Yasutaka Furukawa and Brian Curless and Steve Seitz and Richard Szeliski" (2010)"Towards Internet-Scale Multi-View Stereo"

Reference:

 ()

Reference:

"Michael Waechter and Nils Moehrle and Michael Goesele" (2014)"Let There Be Color! Large-Scale Texturing of 3D Reconstructions"

Reference:

"Jan-Michael Frahm and Pierre Fite-Georgel and David Gallup and Tim Johnson and Rahul Raguram and Changchang Wu and Yi-Hung Jen and Enrique Dunn and Brian Clipp and Svetlana Lazebnik and Marc Pollefeys" (2010)"Building Rome on a Cloudless Day"

Reference:

 ()

Reference:

"Christoph Strecha and Oliver Kueng and Others" ()"Pix4D, UAV mapping software"

4 Chapter 1. Introduction

mesh (which might take a long time) just to reduce this data to a more abstract 3D model

afterwards, it would be beneficial to have efficient algorithms that can directly extract

such semantically meaningful and simple 3D models from (oriented) image sequences. To

achieve this goal, we propose a novel method to generate 3D line models from SfM results

in an efficient and robust way. We show how such an approach can effectively capture

the 3D structure of man-made environments significantly faster than existing dense MVS

methods, and with much lower memory requirements.

1.2 Contribution and Overview

In this thesis, we focus on the task of efficient 3D scene abstraction for the built environ-

ment, by making use of 2D line segments as complementary image features to traditional

key points. We propose a novel line-based 3D reconstruction method, which can operate

directly on the output of any traditional SfM pipeline. Our method is based on epipolar-

guided line segment matching, which does not require any kind of appearance information,

to be able to handle illumination changes and wiry structures, for which traditional line

matching methods are not suitable. We derive 3D estimates for all 2D segments in all

images individually, by analysing the mutual support between their pairwise matches, and

formulate the final 3D reconstruction as a graph-clustering problem. Our algorithm is

very runtime efficient, and orders of magnitude faster than standard dense 3D reconstruc-

tion algorithms, while still providing a significant amount of valuable and semantically

meaningful 3D information in a very compact manner.

Figure 1.4 shows a comparison between a sparse-, dense-, and a line-based 3D model for

the two datasets introduced in Section 1.1. As we can see, our line-based reconstruction

provides a high degree of semantically meaningful 3D information, despite its sparsity

compared to the dense point model (only several thousand lines vs. several million points).

Moreover, our method is much more efficient than computing a dense 3D model, with an

average runtime of approximately one second per image on both datasets.

The work presented in this thesis resulted in a publicly available reconstruction frame-

work called Line3D++ 1, which enables the accurate and fast line-based 3D reconstruction

of arbitrary scenes, without excessive parameter tuning. It comes with native support for

several major SfM pipelines (free and non-free), and can be easily linked to any other kind

of SfM -like application. We further present how our method can be incorporated into an

online SfM pipeline, to jointly generate sparse point clouds and 3D line models on-the-fly,

already during image acquisition.

The remainder of this thesis is structured as follows. In Chapter 2 we give an extensive

overview over all related methods that deal with the task of line-based 3D reconstruction,

and put them in relation to our proposed method. In Chapter 3 we introduce our recon-

struction principles for the offline case, and explain all necessary reconstruction steps in

1https://github.com/manhofer/Line3Dpp

https://github.com/manhofer/Line3Dpp

1.2. Contribution and Overview 5

18, 623 points
t = 660 s

∅t = 6.23 s

1, 393, 124 points
t = 7, 980 s
∅t = 75.28 s

5, 319 lines
t = 75.27s
∅t = 0.71s

Pylon, 106 images

97, 699 points
t = 2, 640 s
∅t = 7.67 s

14, 516, 368 points
t = 51, 660 s
∅t = 150.17 s

11, 238 lines
t = 361.17s
∅t = 1.05s

Building, 344 images

Figure 1.4: Three different 3D representations of the Pylon and the Building sequence: Left:
SfM result [72] (SIFT [101] features), Middle: dense PMVS [49] point cloud, Right: line-based
3D model by our proposed method (Line3D++).

more detail. In Chapter 4 we perform an extensive evaluation of all parts of the pipeline

separately, and show experimental results on several real-world and synthetic datasets,

with and without groundtruth. Finally, we show how our approach can be integrated into

an online SfM system in Chapter 5, and conclude with several ideas for future works in

Chapter 6.

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"Yasutaka Furukawa and Brian Curless and Steve Seitz and Richard Szeliski" (2010)"Towards Internet-Scale Multi-View Stereo"

2
Related Work

Contents

2.1 Point-based Structure-from-Motion 9

2.2 Line Matching . 12

2.3 Line-based Structure-from-Motion 18

2.4 Line-based SLAM . 23

2.5 Line-based Multi-View Stereo . 26

2.6 Summary . 31

Line segments have been used in the context of 3D vision since the early 1980s, with

various applications such as establishing correspondences between maps and aerial images

[108], stereo matching [8, 106, 109], tracking [32], robot navigation [7], or Structure-from-

Motion (SfM) [57, 153]. However, even though many of these methods already introduced

promising concepts for image-based 3D reconstruction, processing realistic and possibly

large-scale datasets still remained virtually impossible. This changed with the introduction

of efficiently detectable and reproducible image feature points (e.g. Harris corners [53]),

and highly invariant feature point descriptors (e.g. the well-known SIFT - [101], or SURF

[18] descriptors), which started the successful era of SfM for the masses [2, 47, 143], and

subsequently shifted the momentum towards point-based methods.

Later on, the core concepts of modern feature point descriptors have been adopted

for line segments as well, resulting in so called line descriptors (e.g. [163, 179, 182]),

which enabled the robust and efficient matching of line segments for the wide baseline

case, and even under severe illumination and viewpoint changes. However, line-based 3D

reconstruction methods that could handle realistic datasets remained surprisingly rare.

Most of the presented algorithms either work only in very constrained environments (e.g.

Manhattan-worlds [132]), or suffer from an unnecessarily high computational complexity

(e.g. [73]). Only in recent years, more general and more efficient methods have been

introduced, which finally caught up with point-based SfM and Multi-View Stereo (MVS),

7

Reference:

"Gerard Medioni and Ramakant Nevatia" (1984)"Matching Images Using Linear Features"

Reference:

 ()

Reference:

"Rachid Deriche and Olivier Faugeras" (1990)"Tracking Line Segments"

Reference:

"Nicholas Ayache and Olivier Faugeras" (1988)"Building, Registrating, and Fusing Noisy Visual Maps"

Reference:

 ()

Reference:

"C. Harris and M. Stephens" (1988)"A combined corner and edge detector"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"Herbert Bay and Tinne Tuytelaars and Luc van Gool" (2006)"SURF: Speeded Up Robust Features"

Reference:

 ()

Reference:

 ()

Reference:

"Grant Schindler and Panchapagesan Krishnamurthy and Frank Dellaert" (2006)"Line-Based Structure from Motion for Urban Environments"

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

8 Chapter 2. Related Work

in terms of usability and robustness [63, 110, 180].

In this chapter we first give a general overview of traditional point-based SfM (Section

2.1), followed by an extensive survey of all related methods that deal with straight line

segments in a 3D context. In general, all relevant literature in line-based 3D vision can

be put in one of the following categories:

1. Line Matching (Section 2.2):

Matching 2D line segments between different images, with appearance and/or geo-

metric constraints. The aim is to create inter-image correspondences between line

segments that originate from the same physical 3D structure. Having such corre-

spondences is a necessary requirement for most subsequent 3D vision tasks, such as

line-based SfM , SLAM , or MVS .

2. Line-based Structure-from-Motion (Section 2.3):

Performing all parts of an SfM pipeline with line segments only. This includes

feature matching, camera pose estimation, sparse 3D reconstruction, and bundle

adjustment. The result is usually a 3D line model and the camera poses of the

underlying images.

3. Line-based SLAM (Section 2.4):

Performing real-time visual navigation with line segments as image features. Similar

to SfM , the output is a 3D map of the environment with the current and past

positions of the camera. However, the goal is to get an on-the-fly response in real-

time, to use the obtained information for localization and obstacle avoidance (e.g.

of a moving robot).

4. Line-based Multi-View Stereo (Section 2.5):

Performing line-based 3D reconstruction with already given camera poses. As in

point-based MVS , the goal is to get an accurate 3D model of the scene that is as

complete as possible. Hence, the runtime is usually not a critical point, which enables

more complex matching and reconstruction strategies, as well as the usage of more

2D features (e.g. in contrast to time-critical SLAM applications). In addition, the

availability of the camera poses significantly eases line matching, since geometric (e.g.

epipolar) matching constraints can be used in addition to (or instead of) appearance

constraints.

Our work itself belongs to the fourth category (Line-based MVS), since we use camera

poses obtained by traditional (point-based) SfM pipelines as input. However, parts of

our algorithm are related to approaches throughout all of the aforementioned categories,

which we will introduce and discuss in the following sections.

Reference:

 ()

2.1. Point-based Structure-from-Motion 9

2.1 Point-based Structure-from-Motion

What we know today as SfM has its origins in early image-based 3D reconstruction meth-

ods, which have also been known under the term photogrammetry since the late nineteenth

century [6]. An excellent survey that covers the historic development from these early

methods to modern SfM pipelines can be found in [68]. Basically, most of the common

SfM pipelines today follow six steps:

1. Image Acquisition: Several (≥ 2) images from different viewpoints are taken from

the target object or scene. All relevant parts of the scene should be visible in at least

two images, and the camera movements between subsequent shots should be small.

This step is technically not part of the SfM pipeline itself, but rather a necessary

prerequisite (unless online SfM is considered; see Chapter 5).

2. Feature Detection: Distinctive key points are extracted from all images, and

mathematically described by one of the numerous descriptors available (e.g.

SIFT [101] or SURF [18]). These key points with their corresponding descriptors

are often also referred to as image features, or feature points.

3. Feature Matching: The image features are now matched, i.e. by finding visually

similar pairs of features (based on their descriptor similarity) from two different

images, that fulfill some minimum similarity criterion. The matching process is

usually a one-to-one matching, so each feature from one image can only have (at

most) one correspondence in another image.

4. Geometric Verification: Matched image pairs are now verified by computing the

relative pose between them, using the obtained feature correspondences and a robust

RANSAC [45] procedure. All correspondences are then verified using basic epipolar

constraints, and outlier matches are subsequently removed.

5. Reconstruction: Given the relative poses between matched images from the pre-

vious step, a consistent 3D model is created by merging all cameras to one world-

coordinate frame. This can either be done incrementally (starting from an initial

camera pair; e.g. [47, 143, 172]), or in a global way (e.g. [28, 150]). During this

procedure, all matched feature points are triangulated to 3D space, to form a sparse

point-cloud.

6. Bundle Adjustment: To ensure a consistent 3D model, the last step is to run a

global bundle adjustment procedure [156], which is basically a non-linear optimiza-

tion, that optimizes camera poses, 3D points, and potentially also the distortion

coefficients for all images simultaneously, by minimizing the reprojection error over

all reconstructed 3D points and their 2D residuals.

Reference:

"K. Atkinson" ("1996")"Close Range Photogrammetry and Machine Vision"

Reference:

Christof Hoppe (2014)Interactive Structure-from-Motion

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"Herbert Bay and Tinne Tuytelaars and Luc van Gool" (2006)"SURF: Speeded Up Robust Features"

Reference:

"M. A. Fischler and R. C. Bolles" (1981)"Random Sampling Consensus: A paradigm for model fitting with applications to image analysis and automated cartography"

Reference:

 ()

Reference:

 ()

Reference:

"Bill Triggs and Philip McLauchlan and Richard I. Hartley and Andrew W. Fitzgibbon" (1999)"Bundle Adjustment — A Modern Synthesis"

10 Chapter 2. Related Work

Of course, all available SfM pipelines are slightly different from each other. However,

these six steps can be considered the basics of SfM , and should help the reader to better

understand the methods which are going to be introduced in the following paragraphs.

For a more complete overview of the SfM basics, as well as multiple-view geometry in

general, we kindly refer to the excellent book by Hartley & Zisserman [55].

Among the first to make SfM mainstream were Snavely et al. [143] in 2006. They

demonstrated how large and unordered image collections (e.g. from the Internet) can be

used to interactively explore the depicted sites of interest in 3D, directly on ones home

computer (see the Photo Tourism project for more details 1). The core part of their method

is an SfM pipeline called bundler, which is freely available, and arguably became the state-

of-the-art in SfM for many years. They use SIFT [101] features to create correspondences

between all image pairs, and robustly estimate the relative poses between them using the

eight-point algorithm [55] in a RANSAC [45] loop. They finally use the pairwise relative

poses and all consistent tracks of matched key-points to jointly estimate a global sparse

3D model, as well as the camera poses of the aligned images.

While their method produces very accurate 3D models, it is computationally quite

expensive, since all possible image pairs are matched. However, in many cases there are

far more image pairs which do not have a visual overlap (i.e. which do not see the same

part of the scene), than pairs which actually do. This is especially notable in large image

sets, which e.g. span a whole city. Hence, it is beneficial to determine which image pairs

should be matched before the matching procedure actually takes place. For this purpose,

a popular solution is to use a vocabulary tree [120], which basically inserts the SIFT (or

other) descriptors into a tree structure, and determines which images are visually similar

by analyzing how many of their descriptors fall into similar leaf notes. A SfM pipeline that

makes use of this method was e.g. presented by Irschara et al. [72]. They showed how this

relatively simple procedure results in a massive speed-up, without negatively influencing

the accuracy or completeness of the reconstruction results.

With the quasi permanent availability of high-resolution cameras in mobile devices, as

well as the increasing popularity of uploading images to social media (e.g. Flickr 2), SfM

methods which are capable of handling thousands of uncalibrated images at a time, to

reconstruct popular and frequently photographed landmarks, came more and more into

focus. Similar to the Photo Tourism project mentioned above, Agarwal et al. [2] published

a paper called Building Rome in a Day, where they demonstrated how the city of Rome

in Italy could be reconstructed from more than two million crowd-sourced photographs

in just one single day, on a massive computing cluster. They basically used the bundler

software [143], but introduced a novel parallel distributed matching system, and a highly

efficient bundle adjustment procedure. A year later, Frahm et al. [47] further improved

the efficiency of the method and managed to reconstruct the same scene in one day on

one single machine. They make use of GIST [124] features, to capture the global image

1http://phototour.cs.washington.edu/
2http://www.flickr.com/

Reference:

"Richard Hartley and Andrew Zisserman" ("2004")"Multiview Geometry in Computer Vision"

Reference:

"Noah Snavely and Steve Seitz and Richard Szeliski" ("2006")"Photo Tourism: Exploring image collections in 3D"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"Richard Hartley and Andrew Zisserman" ("2004")"Multiview Geometry in Computer Vision"

Reference:

"M. A. Fischler and R. C. Bolles" (1981)"Random Sampling Consensus: A paradigm for model fitting with applications to image analysis and automated cartography"

Reference:

"David Nister and Henrik Stewenius" (2006)"Scalable Recognition with a Vocabulary Tree"

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"Sameer Agarwal and Noah Snavely and Ian Simon and Steven M. Seitz and Richard Szeliski" (2009)"Building Rome in a Day"

Reference:

"Noah Snavely and Steve Seitz and Richard Szeliski" ("2006")"Photo Tourism: Exploring image collections in 3D"

Reference:

"Jan-Michael Frahm and Pierre Fite-Georgel and David Gallup and Tim Johnson and Rahul Raguram and Changchang Wu and Yi-Hung Jen and Enrique Dunn and Brian Clipp and Svetlana Lazebnik and Marc Pollefeys" (2010)"Building Rome on a Cloudless Day"

Reference:

"A. Oliva and A. Torralba" (2001)"Modeling the shape of the scene: a holistic representation of the spatial envelope"

http://phototour.cs.washington.edu/
http://www.flickr.com/

2.1. Point-based Structure-from-Motion 11

appearances, and use a k-medoids [79] clustering algorithm to divide the image set into

visually similar subsets. For each set, they derive one iconic view which is then used

as a representative for each cluster of images. Finally, they use a vocabulary tree based

matching procedure on all iconic views to compute a sparse 3D model of the scene. In

subsequent years, various other approaches to very large-scale (or Internet-scale) SfM have

been presented, which aim at increasing the number of images that can be realistically

processed towards the billion mark [59, 128, 138].

Most SfM pipelines introduced so far work under the assumption that all necessary

pieces of information (i.e. all images) are already available during execution time. How-

ever, if the final 3D model is not satisfying, because it e.g. shows some holes at parts

where not enough images have been taken, it can not be further improved when more

information (i.e. additional images) becomes available. However, conceptionally speaking

it is quite straightforward to just add new images to the reconstruction by performing

the basic matching procedure for each new image, and then adding the corresponding

camera poses using absolute pose estimation (e.g. [89]). Finally, a new round of bundle

adjustment should ensure the global consistency of the obtained model. This procedure

could easily be repeated as long as new images come along, and as long as these images

have some visual overlap to the existing (already integrated) images. This concept is often

referred to as incremental SfM .

Changchang Wu [172] released a very efficient incremental SfM pipeline, which is

known as VisualSfM. It also uses SIFT features (as most SfM pipelines) and is highly

efficient due to a preemptive matching strategy, and a multicore bundle adjustment im-

plementation [173]. In their corresponding paper [172], they showed that in practice the

runtime complexity of incremental SfM can be considered linear-, despite being in fact

quadratic in the number of images. This holds as long as the number of images is not too

large (≈ 15K in their evaluations).

Related to incremental SfM , online SfM goes one step further and allows to compute

sparse 3D models from high-resolution images on-the-fly, already while the images are

being recorded. Hoppe et al. [70] proposed a sophisticated online SfM system (based on

[72]), which starts from an initial image pair, and incrementally adds new images to the

model using absolute pose estimation [89]. It also allows rapid position changes, since

it uses a vocabulary tree [120] to identify the already integrated images to which a new

image should be aligned. This of course only works if the part of the scene depicted in the

new image has already been seen before (i.e. there actually is an existing image to which

the new image can be matched). Evaluations on groundtruth datasets showed that their

method has a comparable accuracy to bundler, however with a much lower runtime and

with the benefit of being fully interactive. More details about online SfM can be found

in [68]. In Chapter 5, we will demonstrate how our proposed method can be efficiently

integrated into this online SfM system, to generate both a sparse 3D point- and a 3D

line model on-the-fly, without negatively influencing the overall runtime (compared to

point-based SfM alone).

Reference:

"L. Kaufman and P. J. Rousseeuw" (1990)"Finding Groups in Data: An Introduction to Cluster Analysis"

Reference:

 ()

Reference:

"Laurent Kneip and Davide Scaramuzza and Roland Siegwart" (2011)"A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation"

Reference:

"Changchang Wu" (2013)"Towards linear-time Incremental Structure-from-Motion"

Reference:

"Changchang Wu and Sameer Agarwal and Brian Curless and Steven M. Seitz" (2011)"Multicore Bundle Adjustment"

Reference:

"Changchang Wu" (2013)"Towards linear-time Incremental Structure-from-Motion"

Reference:

"Christof Hoppe and Manfred Klopschitz and Markus Rumpler and Andreas Wendel and Stefan Kluckner and Horst Bischof and Gerhard Reitmayr" (2012)"Online Feedback for Structure-from-Motion Image Acquisition"

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"Laurent Kneip and Davide Scaramuzza and Roland Siegwart" (2011)"A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation"

Reference:

"David Nister and Henrik Stewenius" (2006)"Scalable Recognition with a Vocabulary Tree"

Reference:

Christof Hoppe (2014)Interactive Structure-from-Motion

12 Chapter 2. Related Work

In recent years, several new SfM pipelines have been proposed by various research

groups (e.g. [28, 114, 136, 137, 149, 167]). For the most part, the core concepts among

them are quite similar. The differences lie often in the details, and a general statement on

which of these pipelines is best is hard (if not impossible) to make. Since full SfM pipelines

have been published quite frequently already, many researchers focus on improving a

specific part of SfM separately, which leads to interesting algorithms that can subsequently

be integrated into existing (or new) SfM methods. For instance, publications about e.g.

direct structure estimation [75], optimizing the viewing graph [150], or stitching visually

disconnected SfM sub-models via symmetry information [27] have been released recently,

to just name a few.

All the SfM pipelines mentioned above ultimately result in the same kind of output,

which consists of the camera poses (for all successfully integrated images) and a sparse

set of 3D points (with visibility information). As already stated above, some methods in

addition also provide the distortion coefficients for the images, which allows us to undistort

all images before 2D line segments are being extracted later on. For our line-based MVS

approach it does not matter which SfM pipeline was executed to obtain the camera poses.

However, it is recommended to use a state-of-the-art method (e.g. colmap [137]) since it

in general produces more accurate and more complete results than older methods. Our

framework comes with native support for the following SfM pipelines:

• bundler [143] - http://www.cs.cornell.edu/~snavely/bundler/

• VisualSfM [172] - http://ccwu.me/vsfm/

• Pix4D [147] - https://pix4d.com/ 3

• mavmap [136] - https://github.com/mavmap/mavmap/

• OpenMVG [114] - https://github.com/openMVG/openMVG/

• colmap [137] - https://github.com/colmap/colmap

• ICG3D [72] - internal (not publicly available)

We want to emphasize again that our method is not limited to these approaches, and

additional interfaces can be created straightforward at any time.

2.2 Line Matching

Line matching is the process of establishing pairwise correspondences between two sets

of line segments. Common tasks are 2D line segment matching between two images, or

establishing 3D to 2D correspondences between a 3D model and an image (e.g. for camera

3commercial software, not freely available

Reference:

 ()

Reference:

"Nianjuan Jiang and Wen-Yan Lin and Minh N. Do and Jiangbo Lu" (2015)"Direct Structure Estimation for 3D Reconstruction"

Reference:

"Chris Sweeney and Torsten Sattler and Tobias Hoellerer and Matthew Turk and Marc Pollefeys" (2015)"Optimizing the Viewing Graph for Structure-from-Motion"

Reference:

"Andrea Cohen and Torsten Sattler and Marc Pollefeys" (2015)"Merging the Unmatchable: Stitching Visually Disconnected SfM Models"

Reference:

"Johannes Lutz Schoenberger and Jan-Michael Frahm" ("2016")"Structure-from-Motion Revisited"

Reference:

"Noah Snavely and Steve Seitz and Richard Szeliski" ("2006")"Photo Tourism: Exploring image collections in 3D"

Reference:

"Changchang Wu" (2013)"Towards linear-time Incremental Structure-from-Motion"

Reference:

"Christoph Strecha and Oliver Kueng and Others" ()"Pix4D, UAV mapping software"

Reference:

Johannes L. Schoenberger and Friedrich Fraundorfer and Jan-Michael Frahm (2014)Structure-from-motion for MAV image sequence analysis with photogrammetric applications

Reference:

"Pierre Moulon and Pascal Monasse and Renaud Marlet and Others" ()"OpenMVG. An Open Multiple View Geometry library"

Reference:

"Johannes Lutz Schoenberger and Jan-Michael Frahm" ("2016")"Structure-from-Motion Revisited"

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

http://www.cs.cornell.edu/~snavely/bundler/
http://ccwu.me/vsfm/
https://pix4d.com/
https://github.com/mavmap/mavmap/
https://github.com/openMVG/openMVG/
https://github.com/colmap/colmap

2.2. Line Matching 13

(a) Epipolar geometry (b) Trifocal constraint

Figure 2.1: Illustrations taken from [9]. (a) Establishing a point-wise correspondence X ↔ X ′

between two line segments l and l′ from two images, by intersecting the epipolar line l′e of X with
l′ (and vice versa). (b) The projective relationship between a 3D line segment L and its images (2D
segments) l1, l2, and l3 in three different views. If l1 and l2 are correctly matched, the intersection
of their viewing planes coincides with their real pre-image L, which can be projectively verified by
l3.

pose estimation [181]). In this section, we focus on the former task, since we do not assume

a given 3D model in our work, and we do not focus on line-based pose estimation as well.

Basically, line matching methods can be divided into two categories. Those that match

line segments individually by exploiting only local pairwise similarities (geometric or ap-

pearance), and those that match the whole set at once, e.g. by using a graph matching

formulation that exploits local- as well as global matching constraints. The former usu-

ally benefit from a lower computational complexity (similar to classic local feature point

matching in SfM pipelines), while the latter are generally more robust to repetitive pat-

terns and weak visual distinctiveness in the target images, by also exploiting geometric

relationships between segment pairs (e.g. collinearity, intersections, co-planarity,...).

In the earlier days of Computer Vision, line segment matching was mostly done by

establishing potential correspondences using geometric- (e.g. length and orientation dif-

ferences, or epipolar overlap) and intensity constraints (e.g. intensity- or contrast differ-

ences), followed either by a local matching procedure [32, 106, 109], or graph matching

[8, 108]. All of these methods already achieved quite impressive results, given the limited

computational resources available at that time.

A few years later, Schmid and Zisserman [134] proposed an automatic line matching

approach for image triplets. Assuming known camera poses, they exploit the epipolar

geometry to establish point-wise line segment correspondences for intensity based matching

(Figure 2.1a). To verify potential matches, they make use of the trifocal tensor [57], which

encodes all projective geometric relationships between three images (Figure 2.1b). This

two step procedure enables virtually outlier free line matching results, but also requires

knowledge about the extrinsic camera parameters, and at least three images. They further

applied their method to curve matching [135], as well as piecewise planar 3D reconstruction

of buildings [9].

In 2005, Bay et al. [17] proposed the first line descriptor for uncalibrated wide-baseline

Reference:

"Caroline Baillard and Cordelia Schmid and Andrew Zisserman and Andrew Fitzgibbon" (1999)"Automatic line matching and 3D reconstruction of buildings from multiple views"

Reference:

"Lilian Zhang and Chi Xu and Kok-Meng Lee and Reinhard Koch" (2012)"Robust and Efficient Pose Estimation from Line Correspondences"

Reference:

 ()

Reference:

 ()

Reference:

"Cordelia Schmid and Andrew Zisserman" (1997)"Automatic Line Matching across Views"

Reference:

"Richard I. Hartley" (1995)"A Linear Method for Reconstructing from Lines and Points"

Reference:

"Cordelia Schmid and Andrew Zisserman" (2000)"The Geometry and Matching of Lines and Curves Over Multiple Views"

Reference:

"Caroline Baillard and Cordelia Schmid and Andrew Zisserman and Andrew Fitzgibbon" (1999)"Automatic line matching and 3D reconstruction of buildings from multiple views"

Reference:

"Herbert Bay and Vittorio Ferrari and Luc van Gool" (2005)"Wide-Baseline Stereo Matching with Line Segments"

14 Chapter 2. Related Work

(a) MSLD descriptor [163] (b) MSHS descriptor [162]

Figure 2.2: Illustrations taken from [162, 163]. (a) The SIFT -like [101] structure of the MSLD
line descriptor [163]. Several gradient histograms are computed orthogonal to (d⊥) and along the
line (dL), and transformed into a line descriptor. (b) The same principle can be used to compute
a descriptor for arbitrary 2D curves, resulting in the Mean-Standard Deviation of the Hue and
Saturation (MSHS) descriptor [162].

stereo images, by computing two HSV color histograms from image pixels directly adjacent

to each line segment on either side. They match line segments by comparing the respec-

tive histograms using a robust dissimilarity measure, and further improve the matching

accuracy by applying a topological filter which takes into account the relative locations

between pairs of segments.

In contrast to a histogram-based descriptor, several patch-based line descriptors have

been proposed in the following years, inspired by powerful feature point descriptors, such as

SIFT [101] or SURF [18]. Khaleghi et al. [80] proposed the Scale Invariant Line Transform

(SILT) descriptor, which uses Haar-like features and a Principle Component Analysis

(PCA). The patch-based support region for their descriptor is scaled with the length of the

line segment, to achieve scale invariance. However, this does not take potential occlusions

and imprecisely detected or broken line segments into account. In the same year, the

popular Mean-Standard Line Deviation (MSLD) line descriptor was introduced by Wang

et al. [163]. It is closely related to SIFT [101], and builds up on the same principles

(gradient histograms; see Figure 2.2a). They reported excellent matching results even

under severe viewpoint and illumination changes, but no invariance to scale variations.

Their method was further adapted and refined in [182], and extended for the task of curve

matching [162] (Figure 2.2b).

Zhang and Koch [179] proposed the so-called Line Band Descriptor (LBD), which is

constructed in a similar way as MSLD . The core difference is that they do not compute

gradient histograms, but rather accumulate gradients within several band-like regions adja-

cent to- and parallel to the line segment (Figure 2.3a). They further improve the matching

performance by enforcing pairwise geometric consistencies between spatially related line

segments, using a spectral clustering approach (Figure 2.3b). They showed how a combi-

nation of a robust line descriptor with additional geometric constraints significantly boosts

the line matching performance, compared to using appearance constraints only. A simi-

Reference:

"Zhiguo Wang and Fuchao Wu and Zhanyi Hu" (2009)"MSLD: A Robust Descriptor for Line Matching"

Reference:

"Zhi-Heng Wang and Shan-Shan Zhi and Hong-Min Liu" (2012)"MSHS: The Mean-Standard Deviation Curve Matching Algorithm in HSV Space"

Reference:

 ()

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"Zhiguo Wang and Fuchao Wu and Zhanyi Hu" (2009)"MSLD: A Robust Descriptor for Line Matching"

Reference:

"Zhi-Heng Wang and Shan-Shan Zhi and Hong-Min Liu" (2012)"MSHS: The Mean-Standard Deviation Curve Matching Algorithm in HSV Space"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"Herbert Bay and Tinne Tuytelaars and Luc van Gool" (2006)"SURF: Speeded Up Robust Features"

Reference:

"Bahador Khaleghi and Malek Baklouti and Fakhreddin O. Karray" (2009)"SILT: Scale-Invariant Line Transform"

Reference:

"Zhiguo Wang and Fuchao Wu and Zhanyi Hu" (2009)"MSLD: A Robust Descriptor for Line Matching"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"Yueqiang Zhang and Heng Yang and Xiaolin Liu" (2011)"A Line Matching Method based on Local and Global Appearance"

Reference:

"Zhi-Heng Wang and Shan-Shan Zhi and Hong-Min Liu" (2012)"MSHS: The Mean-Standard Deviation Curve Matching Algorithm in HSV Space"

Reference:

"Lilian Zhang and Reinhard Koch" (2013)"An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency"

2.2. Line Matching 15

lar observation was made in [100], where they also combined appearance- and geometric

(neighbourhood) constraints to an effective iterative line matching algorithm.

(a) LBD descriptor (b) Pairwise geometric relations

Figure 2.3: Illustrations taken from [179]. (a) The structure of the LBD line descriptor [179].
In contrast to MSLD (Figure 2.2a), the gradients are computed within several bands parallel to
the line segment (Band 1 to 5), and not within quadratic patches. (b) An illustration of pairwise
relationships (intersection point C, angle Θij , relative lengths li and lj , and pairwise endpoint
projections {Sjp, Ejp} and {Sip, Eip}) between two segments i and j from the same image. These
relations are taken into account when building a relational graph, which is then used to match all
line segments simultaneously by a spectral clustering approach.

Wang et al. [161] proposed an interesting approach to line matching, where they clus-

tered groups of spatially close line segments to so-called Line Signatures (LSs). They

measure similarities between two LSs from different images, by analysing the geometric

configurations of their underlying line segments. Even though these configurations are

only invariant under perspective transformations if all segments in the LS are coplanar,

they showed that their approach also works well when this is not the case (given that the

camera motion is not too extreme). Figure 2.4 illustrates two matched LSs from different

images. While their approach achieves a fairly high matching accuracy, it is rather compu-

tationally expensive. A similar approach has been proposed by Fan et al. [41], where they

also exploited neighbourhood information for matching, but replaced the neighbouring

line segments with matched feature points, which might be coplanar with the lines. They

originally tackled affine invariants by using one line- and two point correspondences, and

later added projective invariants by using one line- and four point correspondences [42].

A different approach to the line matching problem was proposed by Kim and Lee [82].

They make use of the perspective invariance of coplanar line intersections, and match them

by using a Normalized Cross Correlation (NCC) score on a patch around the intersection

points. They show how their approach can effectively be used for various task such as

fundamental matrix estimation, which can be done straightforwardly since the matched

intersections are just ordinary point correspondences. They further refined their method to

be more robust to intersections which occur on spatial discontinuities [83] (i.e. where only

parts of the extracted intersection patch are on a planar surface; see Figure 2.5). A similar

approach has been introduced by Li et al. [95, 96], where they replaced the NCC matching

Reference:

"Juan Lopez and Roi Santos and Xose R. Fdez-Vidal and Xose M. Pardo" (2015)"Two-view line matching algorithm based on context and appearance in low-textured images"

Reference:

"Lilian Zhang and Reinhard Koch" (2013)"An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency"

Reference:

"Lilian Zhang and Reinhard Koch" (2013)"An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency"

Reference:

"Lu Wang and Ulrich Neumann and Suya You" (2009)"Wide-Baseline Image Matching Using Line Signatures"

Reference:

"Bin Fan and Fuchao Wu and Zhanyi Hu" (2010)"Line Matching Leveraged By Point Correspondences"

Reference:

"Bin Fan and Fuchao Wu and Zhanyi Hu" (2012)"Robust line matching through line-point invariants"

Reference:

"Hyunwoo Kim and Sukhan Lee" (2010)"A Novel Line Matching Method Based on Intersection Context"

Reference:

"Hyunwoo Kim and Sukhan Lee" (2010)"Wide-Baseline Image Matching Based on Coplanar Line Intersections"

Reference:

 ()

16 Chapter 2. Related Work

(a) Image 1 (b) Image 2

Figure 2.4: Illustrations taken from [161]. (a) A LS computed from a central segment (blue) and
its neighboring segments (red). (b) Its match in the second image. As we can see, all segments
have been matched correctly, apart from segment ab which has been erroneously matched with cd.

(a) Matching line intersections (b) Intersection scenarios

Figure 2.5: Illustrations taken from [83]. (a) Two matching line intersections from different
views. The patches are rectified to a canonical frame to allow appearance-based matching. (b)
The possible intersection scenarios and the resulting invariant regions within the corresponding
patches. Only when the intersection occurs on a 3D plane (left column) the full patch can be used.

with a SIFT -like descriptor on the line junctions, and by Bauer et al. [14, 15], where they

introduced so called Zwickel features, which are basically image regions enclosed by two

intersecting coplanar line segments.

While the aforementioned methods produce satisfying results for a wide range of sce-

narios, their main problem is that virtually all of these methods are not invariant to scale

changes. For instance, the SILT [80] descriptor promises scale invariance in his name,

but this only holds when the line segment endpoints are the same in both views. For

realistic scenarios, with occlusions and imprecisions in the line segment detection process,

this usually does not hold. Fathi and Brilakis [43] proposed a method which determines

the scale of a line by using Laplacian zero-crossings, to compute a scale invariant version

of the MSLD [163] descriptor. While their method still cannot handle occlusions, it is

invariant to imprecise line segment endpoints. Verhagen et al. [157] recently showed how

two popular line descriptors (Bay et al. [17] and MSLD [163]) can be made scale invariant,

and performed several evaluations undermining their proposed modifications.

To sum up, line matching has been a very active field of research in Computer Vision,

Reference:

"Lu Wang and Ulrich Neumann and Suya You" (2009)"Wide-Baseline Image Matching Using Line Signatures"

Reference:

"Hyunwoo Kim and Sukhan Lee" (2010)"Wide-Baseline Image Matching Based on Coplanar Line Intersections"

Reference:

 ()

Reference:

"Bahador Khaleghi and Malek Baklouti and Fakhreddin O. Karray" (2009)"SILT: Scale-Invariant Line Transform"

Reference:

"H Fathi and I Brilakis" (2014)"A Scale, Rotation, and Affine Invariant Line Detection and Matching Algorithm for 3D Reconstruction of Infrastructure"

Reference:

"Zhiguo Wang and Fuchao Wu and Zhanyi Hu" (2009)"MSLD: A Robust Descriptor for Line Matching"

Reference:

"Bart Verhagen and Radu Timofte and Luc van Gool" (2014)"Scale-invariant line descriptors for wide baseline matching"

Reference:

"Herbert Bay and Vittorio Ferrari and Luc van Gool" (2005)"Wide-Baseline Stereo Matching with Line Segments"

Reference:

"Zhiguo Wang and Fuchao Wu and Zhanyi Hu" (2009)"MSLD: A Robust Descriptor for Line Matching"

2.2. Line Matching 17

(a) Image 1 (b) Image 2 (c) Extracted Patches

Figure 2.6: (a-b) Two images of a power pylon taken from different perspectives. The same part
of the structure is highlighted in both views. The surroundings of the segments vary significantly
between the two shots, since they are not coplanar with the segments (grass, sky, ...). (c) Two
same-size patches extracted from the top part of the respective line segments. As we can see,
the patches have a completely different appearance, which renders descriptor-based line matching
almost impossible.

with a lot of different proposed solutions. The most recent and most promising methods

all combine appearance- and geometric constraints, which is a very reasonable thing to

do given the rich amount of intra-image relationships that line segments usually have

(e.g. collinearity, or pairwise intersections), and which benefit graph-matching rather

than individual local matching. However, for our case the situation is a little bit different.

Since we operate in a multi-view scenario (≥ 3 images) with given camera poses, we

benefit from even more prior information. That is, given a pairwise match in two images,

we can use other neighboring images to verify this match, by simply triangulating and

backprojecting it into these images. The discussed line matching algorithms above are

more general, and do not assume additional images to be available. Hence, they need to

be as robust and accurate as possible, to ensure a high amount of correct matches even

when just two images are available.

While the discussed line matching algorithms report very high matching scores for

their evaluation testcases, in practice of multi-view 3D reconstruction their performance

is often rather limited. For example, all patch-based line descriptors are not able to handle

thin wiry structures (such as power pylons or fences), which frequently occur in man-made

environments. The problem is that a patch drawn around a segment located on such a

structure would almost always contain pixels which do not originate from the same planar

surface on which the line segment is located, which results in a non-meaningful descriptor.

Figure 2.6 illustrates this situation for a power pylon. As we can see, descriptor-based line

matching is hard to achieve for such objects.

To handle all kinds of structures, we decided to omit appearance-based line matching

completely, and simply rely on the more robust geometric properties that line segment

matches over multiple images have. In particular, we use the epipolar overlap between the

endpoints of a segment in one image, with a potentially matching segment in the other

image as a similarity measure. This has the benefit that we do not have to compute and

18 Chapter 2. Related Work

match any kind of line descriptors, which significantly boosts the runtime performance and

also makes our method less sensitive to illumination changes. However, since we only use

weak epipolar constraints, we cannot perform a robust one-to-one matching for pairs of

images, since for one segment in the first image it can easily happen that several segments

from the second image fulfill the underlying overlap constraints. Just taking the one

match that maximizes the epipolar overlap is also not a good solution for the general case,

especially when we have to deal with a high amount of occlusions. Therefore, we simply

keep all matches that fulfill the criteria (one-to-many matching), and efficiently score and

verify them using other neighboring images, after the matching procedure. We will show

how this approach successfully enables the virtually outlier free 3D reconstruction of wiry

as well as solid objects, with quasi real-time performance.

2.3 Line-based Structure-from-Motion

Structure-from-Motion (SfM) means to simultaneously recover the motion parameters of

a moving camera, and 3D information about the scene it observes. Most commonly, this

is done by extracting a discrete set of image features that are then matched or tracked

throughout multiple views, which allows to solve for the unknown camera parameters and

the 3D coordinates of these image features.

State-of-the-art SfM pipelines [72, 114, 143, 147, 172] usually use very distinctive 2D

image points (also called interest points or key points) as features, which has two main

benefits. First, a small number of matched points over as little as two images already

provides enough information to compute the camera poses (five for relative pose- [119],

and three for absolute pose estimation [89]). And second, feature points can be efficiently

detected and matched using one of the numerous interest point detectors and descriptors

that are available (e.g. SIFT [101]). However, while point-based SfM pipelines have been

shown to work well in numerous kinds of environments, they heavily rely on the existence

of distinctive texture in the scene. While this is usually no problem in outdoor environ-

ments (especially when dealing with aerial images), this can be problematic in indoor- and

monotonic urban environments. And even if the SfM pipeline manages to create enough

feature matches to successfully compute the correct camera poses, the resulting 3D model

is usually very sparse and quite meaningless (for more information about point-based SfM

please see Section 2.1).

To overcome this drawback, one could use different kinds of image features which

are more suited for such untextured environments. A popular choice are straight line

segments, which occur frequently in man-made environments. However, while line features

can provide a much better sparse 3D representation of an almost textureless urban scene,

they are not as convenient to use as point features. This is due to the fact that matched

lines between two images do not put enough constraints on the fundamental matrix such

that relative pose estimation could be performed. Therefore, one always needs to consider

at least three views at a time to compute the relative camera poses for the general case

Reference:

 ()

Reference:

"David Nister" (2004)"An efficient solution to the five-point relative pose problem"

Reference:

"Laurent Kneip and Davide Scaramuzza and Roland Siegwart" (2011)"A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

2.3. Line-based Structure-from-Motion 19

[71].

Yen and Huang [174] and Liu and Huang [99] were among the first to propose line-based

SfM for the task of estimating the motion of a rigid body observed by a static camera in

three frames (which is virtually the same as a rigid scene and a moving camera, given that

the camera only observes the one moving object, or multiple objects with the same motion).

In the following years, several methods have been proposed based on different principles

such as Kalman Filters [140, 158], a unified statistical framework [107], a globally visible

reference plane [130], affine camera models [78, 127], matrix factorization [105, 151, 155],

solving linear equation systems [52, 56, 57, 159, 165], or non-linear optimization of a global

objective function [12, 13, 112, 153, 183].

What all these methods have in common is that they do not consider the task of

matching line segments across images, and assume that all matches are already given.

Hence, they omit one of the most challenging and time consuming steps of SfM : the

feature matching. While several line matching algorithms were already introduced at the

time of the aforementioned methods (see Section 2.2), full line-based SfM pipelines which

include the matching process were surprisingly rare.

Bartoli et al. [11] proposed to use a combination of line segments and feature points, so

called Pencil-of-Points (PoPs). They basically attach interest points to adjacent 2D line

segments to form a PoP , and match them based on cross-correlation scores between their

corresponding feature points. Hence, they break down line matching to point matching,

which in addition gives them point-wise correspondences between matched lines. They

have shown that the epipolar geometry between two images can be derived from just three

pairs of matched PoPs, which is beneficial especially for hypothesize and test frameworks,

such as Random Sample Consesus (RANSAC) [45]. However, their method requires reli-

able feature points within close proximity of candidate lines, which is often not the case

in untextured environments, and when the lines in question correspond to depth disconti-

nuities.

Bay et al. [16] proposed a stereo SfM method for two uncalibrated images, where they

utilize their own histogram-based line matching method [17] to compute pairwise line cor-

respondences. They continue by finding junctions between potentially coplanar lines, and

segment the images into planar regions using a Binary Partitioning Tree. They estimate

the fundamental matrix using corresponding junctions, which are of course valid point-

wise correspondences given that the underlying lines are actually coplanar. Finally, they

derive a piecewise planar 3D model of the scene using the detected planar image regions,

and their matched borderlines (see Figure 2.7). While their approach is able to compute

impressive dense 3D models especially for indoor scenes, it is not straightforwardly ex-

tendible to more than two images. In addition, the underlying color-based line-descriptor

[17] is not robust to large illumination changes, which makes an outdoor use very challeng-

ing. A similar approach was presented by Kim and Lee [84], where they also utilize the

intersections of coplanar lines to compute the epipolar geometry. The difference is that

they do not match the line segments themselves, but rather their intersection points using

Reference:

"Thomas S. Huang" ("1987")"Motion Analysis"

Reference:

"B. L. Yen and Thomas S. Huang" (1983)"Determining 3-D Motion and Structure of a Rigid Body Using Straight Line Correspondences"

Reference:

"Yuncai Liu and Thomas S. Huang" (1988)"Estimation of Rigid Body Motion Using Straight line Correspondences"

Reference:

 ()

Reference:

"Philip F. McLauchlan and David W. Murray" (1995)"A unifying framework for structure and motion recovery from image sequences"

Reference:

"Carsten Rother" (2003)"Linear Multi-view Reconstruction of Points, Lines, Planes and Cameras using a Reference Plane"

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

"Adrien Bartoli and Mathieu Coquerelle and Peter Sturm" (2004)"A Framework For Pencil-of-Points Structure-From-Motion"

Reference:

"M. A. Fischler and R. C. Bolles" (1981)"Random Sampling Consensus: A paradigm for model fitting with applications to image analysis and automated cartography"

Reference:

"Herbert Bay and Andreas Ess and Alexander Neubeck and Luc van Gool" (2006)"3D from Line Segments in Two Poorly-Textured, Uncalibrated Images"

Reference:

"Herbert Bay and Vittorio Ferrari and Luc van Gool" (2005)"Wide-Baseline Stereo Matching with Line Segments"

Reference:

"Herbert Bay and Vittorio Ferrari and Luc van Gool" (2005)"Wide-Baseline Stereo Matching with Line Segments"

Reference:

"Hyunwoo Kim and Sukhan Lee" (2012)"Simultaneous line matching and epipolar geometry estimation based on the intersection context of colplanar line pairs"

20 Chapter 2. Related Work

(a) Input images (b) 3D model

Figure 2.7: Illustrations taken from [16]. (a) Two uncalibrated input images of an untextured
indoor scene. (b) The resulting piecewise planar 3D model obtained from matched line segments,
and automatically detected planar image regions using line junctions.

Figure 2.8: Illustrations taken from [132]. Left: An example input image from an urban scene.
Middle: Detected 2D line segments color coded with their assigned vanishing direction. Right:
The reconstructed 3D model rendered from the same perspective as the input image.

an NCC score [82]. However, they do not compute dense piecewise planar 3D models at

the end, as it is done in [16].

Schindler et al. [132] presented a line-based SfM method specifically designed for

Manhattan-world like scenarios. They cluster image lines with common vanishing di-

rections, and use this information to derive camera motion and 3D lines very conveniently

(given that ≥ 3 distinct vanishing directions are present). However, while in the vast

majority of urban scenes at least three different vanishing directions should be observable,

the underlying strong assumptions somewhat limit the general applicability (i.e. lines that

could not be assigned to one of the detected vanishing directions are not reconstructed).

Figure 2.8 shows some results obtained by their algorithm. A related method was pre-

sented by Kim and Manduchi [81] for smartphone applications. Here they make use of

the phones’ Inertial Measurement Unit (IMU) for rotation estimation, and compute three

dominant and mutually orthogonal planes from matched lines (matched with the MSLD

line descriptor [163]).

Elqursh and Elgammal [37] introduced a line-based SfM framework, which allows

relative pose estimation between just two images rather than three. They achieve this by

considering triplets of 2D lines, where two of the lines are parallel and one is orthogonal

to both (parallelism and orthogonality refer to the pre-images of the 2D lines in 3D; see

Reference:

"Herbert Bay and Andreas Ess and Alexander Neubeck and Luc van Gool" (2006)"3D from Line Segments in Two Poorly-Textured, Uncalibrated Images"

Reference:

"Grant Schindler and Panchapagesan Krishnamurthy and Frank Dellaert" (2006)"Line-Based Structure from Motion for Urban Environments"

Reference:

"Hyunwoo Kim and Sukhan Lee" (2010)"A Novel Line Matching Method Based on Intersection Context"

Reference:

"Herbert Bay and Andreas Ess and Alexander Neubeck and Luc van Gool" (2006)"3D from Line Segments in Two Poorly-Textured, Uncalibrated Images"

Reference:

"Grant Schindler and Panchapagesan Krishnamurthy and Frank Dellaert" (2006)"Line-Based Structure from Motion for Urban Environments"

Reference:

"Chelhwon Kim and Roberto Manduchi" (2014)"Planar Structures from Line Correspondences in a Manhattan World"

Reference:

"Zhiguo Wang and Fuchao Wu and Zhanyi Hu" (2009)"MSLD: A Robust Descriptor for Line Matching"

Reference:

"Ali Elqursh and Ahmed Elgammal" (2011)"Line-Based Relative Pose Estimation"

2.3. Line-based Structure-from-Motion 21

Figure 2.9a). They decouple the relative pose estimation into two separate steps. First,

they solve for the rotation using matched line triplets, and second, they obtain the relative

translation from two matched line intersection points. Their approach is designed for

image sequences with a small relative motion between consecutive frames (see Figure 2.9b).

While the possibility of determining the relative camera motion between two images using

lines instead of points is interesting and potentially useful, finding suitable line triplets

and producing reliable line matches at the same time can be challenging, especially for

larger baselines.

(a) Line triplets (b) Final 3D model and camera trajectory

Figure 2.9: Illustrations taken from [37]. (a) The general geometric configuration of a suitable
line triplet in 3D (left), and two real-world examples visualized with dashed- and solid black lines
(right). (b) An example SfM result (3D lines and camera poses) of a small image sequence around
a book.

Zhang and Koch [180] proposed a very sophisticated line-based SfM pipeline, which is

centered around their LBD line descriptor [179] for matching, and their Perspective-n-Line

(PnL) [181] algorithm for absolute pose estimation. They initialize the reconstruction from

matched lines across three images in closed from, and incrementally add new images by

establishing 3D-2D line correspondences, which can then be used to compute the absolute

camera pose [181]. As a core novelty, they introduce the Cayley 3D line representation,

which can be efficiently derived from Plücker coordinates through the Cayley transform

[90]. This representation allows to encode 3D lines using the minimum of four parameters,

without unavoidable singularities. This significantly eases the optimization of the 3D line

parameters during bundle adjustment. Figure 2.10 shows an exemplary reconstruction

result using their proposed method.

Micusik and Wildenauer [110] proposed a similar approach, which is also built on

an initial reconstruction from three images, and a sequential alignment of new images.

However, their matching procedure is fundamentally different. They propose to compute

SIFT [101] features on the endpoints of detected 2D line segments, and use these fea-

ture points for matching. This of course only works for small camera motions, such that

strong deviations in the line segment endpoints from frame to frame are less likely. To

get the camera poses, they follow [37] for rotation estimation and compute the translation

afterwards using a linear formulation. They have shown that their approach has a simi-

Reference:

"Ali Elqursh and Ahmed Elgammal" (2011)"Line-Based Relative Pose Estimation"

Reference:

"Lilian Zhang and Reinhard Koch" (2014)"Structure from motion from line correspondences: Representation, projection, initialization and sparse bundle adjustment"

Reference:

"Lilian Zhang and Reinhard Koch" (2013)"An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency"

Reference:

"Lilian Zhang and Chi Xu and Kok-Meng Lee and Reinhard Koch" (2012)"Robust and Efficient Pose Estimation from Line Correspondences"

Reference:

"Lilian Zhang and Chi Xu and Kok-Meng Lee and Reinhard Koch" (2012)"Robust and Efficient Pose Estimation from Line Correspondences"

Reference:

"S. G. Krantz" ("1999")"Handbook of Complex Variables"

Reference:

"Branislav Micusik and Horst Wildenauer" (2014)"Structure from Motion with Line Segments Under Relaxed Endpoint Constraints"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"Ali Elqursh and Ahmed Elgammal" (2011)"Line-Based Relative Pose Estimation"

22 Chapter 2. Related Work

(a) Exemplary input images (b) Final 3D reconstruction

Figure 2.10: Illustrations taken from [180]. (a) Two exemplary images from the Wadham College
dataseta. (b) The final reconstruction result rendered from two perspectives, with (left) and
without (right) camera poses.

ahttp://www.robots.ox.ac.uk/~vgg/data/data-mview.html

(a) Exemplary image (b) Point-based SfM (c) Line-based SfM

Figure 2.11: Illustrations taken from [110]. (a) An exemplary image from the sequence used for
the reconstruction (fisheye lens). (b) A classic point-based SfM reconstruction. (c) The result
obtained using their proposed line-based 3D reconstruction pipeline. As we can see, the line model
provides much more semantic information about the scene structure, despite being also sparse.

lar performance than traditional point-based SfM , but delivers a much more meaningful

sparse 3D model (see Figure 2.11). However, their documented reconstructions appear to

be relatively noisy (see experiments in [110]).

Recently, Ramalingam et al. [129] proposed an interesting hybrid approach for point-

and line features. They create virtual lines between coplanar feature points, and intersect

these virtual lines with actually detected 2D line segments in the images. Given that the

virtual- and the actual line are coplanar, the newly generated intersection point is a well

defined and invariant feature point, that can be used for pose estimation and to densify

the sparse 3D point model. Using the well defined Cross-Ratio [55] constraint (see Figure

2.12), the intersection points (as well as the line segments) can be matched between images,

which significantly improves the visual appearance of the resulting 3D model. However,

their approach is strictly seen not a real line-based SfM pipeline, it mainly utilizes lines

to increase the number of interest points.

As we can see, a lot of different attempts at line-based SfM have been made over the

years. While especially in recent years very promising and flexible methods have been

Reference:

"Lilian Zhang and Reinhard Koch" (2014)"Structure from motion from line correspondences: Representation, projection, initialization and sparse bundle adjustment"

Reference:

"Branislav Micusik and Horst Wildenauer" (2014)"Structure from Motion with Line Segments Under Relaxed Endpoint Constraints"

Reference:

"Branislav Micusik and Horst Wildenauer" (2014)"Structure from Motion with Line Segments Under Relaxed Endpoint Constraints"

Reference:

"Srikumar Ramalingam and Michel Antunes and Daniel Snow and Gim Hee Lee and Sudeep Pillai" (2015)"Line-Sweep: Cross-Ratio for Wide-Baseline Matching and 3D Reconstruction"

Reference:

"Richard Hartley and Andrew Zisserman" ("2004")"Multiview Geometry in Computer Vision"

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

2.4. Line-based SLAM 23

(a) Cross-Ratio (b) Applying Cross-Ratio to obtain new features

Figure 2.12: Illustrations taken from [129]. (a) A visualization of the perspective Cross-Ratio
invariant, defined by four collinear points (see [55] and [129] for a detailed explanation). (b)
Obtaining additional invariant feature points (green), by intersecting virtual lines (dashed blue)
spanned by two coplanar interest points (red) with actual 2D lines (coplanar with the virtual
ones). The Cross-Ratio constraint can be efficiently used to identify corresponding intersection
points between two images, which subsequently leads to matched line segments and additional
feature points.

introduced [110, 180], they are still not as general and out-of-the-box usable as classic

point-based SfM pipelines. This is mainly due to the fact that line-based camera pose

estimation is much more complicated than when using points, which is often compensated

by using stronger constraints on the scene structure, or by assuming small camera motions

(as mentioned above). In addition, processing unordered image sequences with potentially

large baselines has not yet been demonstrated by any line-based SfM method, while point-

based methods can handle such cases quite efficiently (e.g. by using descriptor vocabularies

[58, 120]). However, there are scenarios in which point-based methods will fail due to the

lack of texture, and the presented line-based SfM approaches provide a valuable set of

tools to compensate this issue, given that the respective underlying assumptions can be

applied.

In our approach we rely on given camera poses, most likely obtained by any traditional

point-based SfM pipeline that is available. Hence, our work is a line-based MVS method,

rather than line-based SfM . We have seen in our research that point-based SfM only

rarely fails to obtain the correct camera poses, which in turn significantly eases the task

of line-based 3D reconstruction. Since point-based SfM is widely spread in the Computer

Vision community, and also widely used in the industry, we believe that having a robust

method at hand that can efficiently post-process and enhance an SfM result with 3D lines

can be very valuable for numerous tasks.

2.4 Line-based SLAM

Simultaneous Localization and Mapping (SLAM) is a common name for a system which

enables a device (e.g. a robot, a drone, or simply a camera) to localise itself within an

(potentially) unknown environment, while simultaneously creating or extending a map of

Reference:

"Srikumar Ramalingam and Michel Antunes and Daniel Snow and Gim Hee Lee and Sudeep Pillai" (2015)"Line-Sweep: Cross-Ratio for Wide-Baseline Matching and 3D Reconstruction"

Reference:

"Richard Hartley and Andrew Zisserman" ("2004")"Multiview Geometry in Computer Vision"

Reference:

"Srikumar Ramalingam and Michel Antunes and Daniel Snow and Gim Hee Lee and Sudeep Pillai" (2015)"Line-Sweep: Cross-Ratio for Wide-Baseline Matching and 3D Reconstruction"

Reference:

 ()

Reference:

 ()

24 Chapter 2. Related Work

its surroundings. Originally, SLAM systems where introduced by the robotics commu-

nity to enable (semi-) autonomous robots to navigate through any given environment,

by making use of various measurement devices, such as ultrasonic range finders [36, 164],

laser range finders [102, 177], and of course also camera systems [31, 87]. Due to their

high flexibility and their low cost and weight, cameras are particularly useful for SLAM

systems, especially when dealing with Unmanned Aerial Vehicles (UAVs), where weight is

a critical factor.

In our research, we did not focus on SLAM applications directly. However, we did

investigate the online reconstruction of 3D lines within an online SfM framework [61, 65],

which can be seen as a SLAM -like system (see Chapter 5). While arguably there is no

real conceptional difference between online SfM and SLAM (both compute camera poses

and 3D structure on-the-fly in quasi real-time), we follow the idea that SLAM is usually

focused on fast navigation (with a low-resolution continuous video- or image stream),

while online SfM is generally more focused on computing an accurate 3D model (most

commonly with high-resolution still images, and potentially wider baselines). For the sake

of completeness, we present a short overview of available line-based SLAM approaches in

the remainder of this section.

The majority of all line-based SLAM systems are based on an Extended Kalman

Filter (EKF), which is able to handle non-linear systems. Among these methods several

different core principles are applied, such as the usage of vanishing point information

[20, 46, 92, 125, 184], omnidirectional cameras [20], stereo cameras [7, 30], a mixture of

point- and line features [74, 93, 142], Manhattan-world assumptions [178], undelayed line

initialization [145], or special line configurations [37, 175, 176]. In addition, several model-

based SLAM approaches have been presented [4, 50, 86]. However, since these methods

assume a given 2D or 3D model of the environment to which they localize themselves,

they are strictly speaking not real SLAM systems (since they do not map anything).

In addition to pure line-based SLAM , several methods have been presented which aim

at combining line features with different types of landmarks within one consistent frame-

work. As mentioned above for EKF -based SLAM , a popular choice are a combination of

points and lines [74, 93, 142], which are known to highly complement each other, since fea-

ture points represent texture while lines represent structural outlines. Klein and Murray

[88] showed how the integration of locally straight edgelets (which are basically straight

line segments) into a point-based SLAM method significantly improves the agility of the

system, which allows more rapid camera motions. However, essential for the success of

combining different feature types is a suitable landmark parametrization. An extensive

survey about this issue was published by Solà et al. [144], for monocular EKF -SLAM .

In contrast to monocular SLAM , several stereo methods using line features have been

proposed as well (e.g. [7, 30]). The benefit of stereo SLAM is that just two different

imaging positions (≥ 4 images) are enough to compute accurate pose estimates from

matched lines, which is in general not possible for the monocular two-view case (unless

special line configurations are considered, as e.g. shown in [37]). In addition, a calibrated

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

"Michael Bosse and Richard Rikoski and John Leonard and Seth Teller" (2003)"Vanishing points and three-dimensional lines from omni-directional video"

Reference:

 ()

Reference:

 ()

Reference:

"Lilian Zhang and Reinhard Koch" (2011)"Hand-held Monocular SLAM Based on Line Segments"

Reference:

"Joan Sola and Teresa Vidal-Calleja and Michel Devy" (2009)"Undelayed initialization of line segments in monocular SLAM"

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

"Georg Klein and David Murray" (2008)"Improving the agility of keyframe-based SLAM"

Reference:

"Joan Sola and Teresa Vidal-Calleja and Javier Civera and Jose Maria Martinez Montiel" (2012)"Impact of landmark parametrization on monocular EKF-SLAM with points and lines"

Reference:

 ()

Reference:

"Ali Elqursh and Ahmed Elgammal" (2011)"Line-Based Relative Pose Estimation"

2.4. Line-based SLAM 25

(a) Exemplary input (b) W.o. loop closure (c) With loop closure

Figure 2.13: Illustrations taken from [175]. (a) An exemplary input frame with detected vertical-
and floor lines (white). (b) Their original result without the explicit loop closure procedure [176]
(top view). (c) Their improved results with loop closure through vanishing point information
[175]. As can be seen, the reconstructed map is significantly more accurate and consistent when
loop closure is performed.

stereo setup directly provides the correct metric scale for the reconstructed map, which

is especially useful for robot navigation. Sophisticated line-based stereo SLAM methods

were - among others - proposed by Chandraker et al. [25], and very recently by Holzmann et

al. [67]. Both approaches show remarkable results, especially in low-texture environments.

What has been widely used throughput the literature, is the exploitation of struc-

tural properties of the surrounding environment. Since most line-based SLAM methods

were motivated by indoor applications, the Manhattan-world- or similar assumptions are

often deployed. Zhang et al. [176] proposed to use a combination of vertical- and floor

lines within a monocular EKF -SLAM framework. They show how knowledge about the

line orientations significantly eases both localization and mapping, as well as it reduces

potential drift. They further extended their work to perform loop closure, by exploiting

vanishing points [175] (see Figure 2.13). A similar method has been recently proposed

by Zhou et al. [184]. Here, they make use of the so-called building structure lines, which

are essentially horizontal and vertical lines on the ground and on the walls, following the

Manhattan-world assumption.

Flint et al. [46] went one step further and showed how semantically meaningful 3D

models can be extracted in real-time within a SLAM framework. They use the classic

Parallel Tracking and Mapping (PTAM) approach by Klein and Murray [87] as a basis,

and demonstrate how a semantically labelled piecewise planar 3D model can be derived

from lines that follow dominant vanishing directions. As an example of the usefulness

of such higher-order semantic information, Figure 2.14 illustrates how it can be used to

derive floor plans of buildings fully automatically.

In recent years, SLAM approaches that use affordable depth sensors (e.g. the Mi-

crosoft Kinect) rather than ordinary cameras have become increasingly popular (e.g.

KinectFusion [118]), especially for indoor environments. The core benefit is that these

sensors provide not only an RGB image, but also a depth map corresponding to its pixels.

Reference:

"Guoxuan Zhang and Dong Hun Kang and Il Hong Suh" (2012)"Loop closure through vanishing points in a line-based monocular SLAM"

Reference:

"Guoxuan Zhang and Il Hong Suh" (2011)"Building a partial 3D line-based map using a monocular SLAM"

Reference:

"Guoxuan Zhang and Dong Hun Kang and Il Hong Suh" (2012)"Loop closure through vanishing points in a line-based monocular SLAM"

Reference:

"Manmohan Chandraker and Jongwoo Lim and David Kriegman" (2009)"Moving in Stereo: Efficient Structure and Motion Using Lines"

Reference:

"Thomas Holzmann and Friedrich Fraundorfer and Horst Bischof" ("2016")"Direct Stereo Visual Odometry Based on Lines"

Reference:

"Guoxuan Zhang and Il Hong Suh" (2011)"Building a partial 3D line-based map using a monocular SLAM"

Reference:

"Guoxuan Zhang and Dong Hun Kang and Il Hong Suh" (2012)"Loop closure through vanishing points in a line-based monocular SLAM"

Reference:

"H. Zhou and D. Zou and L. Pei and R. Ying and P. Liu and W. Yu" (2015)"StructSLAM: Visual SLAM With Building Structure Lines"

Reference:

"A. Flint and C. Mei and I. Reid and D. Murray" (2010)"Growing semantically meaningful models for visual SLAM"

Reference:

"Georg Klein and David Murray" (2007)"Parallel tracking and mapping for small AR workspaces"

Reference:

"Richard A. Newcombe and Shahram Izadi and Otmar Hilliges and David Molyneaux and David Kim and Andrew J. Davison and Pushmeet Kohli and Jamie Shotton and Steve Hodges and Andrew Fitzgibbon" (2011)"KinectFusion: Real-time dense surface mapping and tracking"

26 Chapter 2. Related Work

(a) Semantically labelled 3D model (b) Floor plan

Figure 2.14: Illustrations taken from [46]. (a) The reconstructed semantically labelled piecewise
planar 3D model projected into two input frames. The different colors identify different structural
planes in the scene (red and green: walls, blue: floor and ceiling). (b) The automatically extracted
floor plan. The green lines are the identified wall structures, and the red dots are the 3D points
reconstructed by PTAM [87] (top view). As can be seen, the points alone do not provide enough
information to robustly derive the correct floor plan.

The underlying depth estimation method is usually based on active sensing technologies

(e.g. structured light or time-of-flight), which allows depth computation also in very low-

textured environments. A line-based SLAM approach based on KinectFusion [118] has

been presented by Nakayama et al. [117], showing improved reconstruction results for man-

made scenes and piecewise linear objects. However, the downside of most active depth

sensors is that they only have a very limited depth range, and do not work well under

direct sunlight.

All in all, a lot of excellent work has been done in the field of line-based SLAM so

far. Recently, the observable trend throughout the SLAM community is to move from

feature-based methods to so-called direct SLAM methods, which means that no explicit

features (neither points, nor lines) are computed, but consecutive images are aligned by

minimizing a global photometric- or geometric error between them. Several examples for

this paradigm shift can be found in the literature for monocular- [38, 152], or also stereo

camera systems [39]. How this development affects the future of line-based SLAM remains

to be seen.

2.5 Line-based Multi-View Stereo

The final category of the related work section is Line-based Multi-View Stereo (MVS). In

contrast to Line-based SfM (Section 2.3), MVS algorithms assume given camera poses,

and focus only on the reconstruction part. Since our method fits into this category, the

approaches mentioned in the following paragraphs are more closely related to our work

than the ones from the previous sections.

Among the available line-based MVS methods, a significant amount uses the extracted

3D lines as prior to create a piecewise planar 3D model of the scene, which can be done

Reference:

"A. Flint and C. Mei and I. Reid and D. Murray" (2010)"Growing semantically meaningful models for visual SLAM"

Reference:

"Georg Klein and David Murray" (2007)"Parallel tracking and mapping for small AR workspaces"

Reference:

"Richard A. Newcombe and Shahram Izadi and Otmar Hilliges and David Molyneaux and David Kim and Andrew J. Davison and Pushmeet Kohli and Jamie Shotton and Steve Hodges and Andrew Fitzgibbon" (2011)"KinectFusion: Real-time dense surface mapping and tracking"

Reference:

"Yusuke Nakayama and Toshihiro Honda and Hideo Saito and Masayoshi Shimizu and Nobuyasu Yamaguchi" (2014)"Accurate camera pose estimation for kinectfusion based on line segment matching by LEHF"

Reference:

 ()

Reference:

"Jakob Engel and Joerg Stueckler and Daniel Cremers" (2015)"Large-Scale Direct SLAM with Stereo Cameras"

2.5. Line-based Multi-View Stereo 27

(a) Reconstructed 3D lines (b) Piecewise planar model (c) Piecewise planar model
(textured)

Figure 2.15: Illustrations taken from [166]. (a) The reconstructed 3D line segments by using
[134]. (b-c) The derived piecewise planar 3D model with and without photo-realistic texture.

very reliably and efficiently for urban indoor and outdoor scenes. The benefit compared

to point-based 3D plane reconstruction methods is, that two 3D lines are enough to create

a plane hypothesis, while at least three points would be needed. Furthermore, it is much

easier to reduce the set of potentially coplanar 3D features when lines are used, since only

intersecting- or parallel lines need to be considered (whereas all 3D point triplets form

valid 3D planes, unless the three points are collinear). Many of the presented algorithms

focus on the 3D reconstruction of buildings from aerial images, by either using 2D line

segments [9, 19, 85, 113, 121, 139], or general edgels [76] (i.e. chains of edge pixels) as

image features.

In addition to these aerial methods, several more general approaches to piecewise

planar 3D modeling through lines have been presented as well. Werner and Zisserman

[166] proposed to use vanishing direction information obtained from 2D lines in the images,

to find dominant planes in a scene. They show quite impressive results for non-trivial

buildings, e.g. with oriels, protrusions, and complex façades (see Figure 2.15). Similar

methods were presented by Schindler and Bauer [133], and Sinha et al. [141]. The core

differences are that in [133] a dense 3D point-cloud is needed as well (in addition to the

3D lines), and in [141] the plane estimation is formulated as a pixel-wise labelling problem

using a Markov Random Field (MRF). All three methods make use of the line matching

approach by Schmid and Zisserman [134], to create a 3D line model.

Pure line-based MVS approaches (without creating a 3D plane model) have of course

been proposed as well. Many of them focus on aerial sequences, to reconstruct outlines

of buildings, roads, or other man-made structures. Woo et al. proposed several line-

based MVS methods for this task, which either use Digital Elevation Models (DEMs)

[169], or disparity maps [170, 171] in conjunction with aerial imagery. They only aim

at reconstructing rooftop outlines, and discard all line features that correspond to other

structures, or noise. Ok et al. [123] proposed a different approach to aerial line-based 3D

reconstruction, where they separated the pairwise line matching and triangulation into two

categories. The first category deals with 2D lines in a general configuration (Figure 2.16a),

and the second one handles lines that are nearly aligned with the epipolar lines (Figure

Reference:

"Tomas Werner and Andrew Zisserman" (2002)"New Techniques for Automated Architectural Reconstruction from Photographs"

Reference:

"Cordelia Schmid and Andrew Zisserman" (1997)"Automatic Line Matching across Views"

Reference:

 ()

Reference:

"Franck Jung and Nicolas Paparoditis" (2003)"Extracting 3D Free-Form Surface Boundaries of Man-Made Objects from Multiple Calibrated Images: A Robust, Accurate and High Resolving Power Edgel Matching and Chaining Approach"

Reference:

"Tomas Werner and Andrew Zisserman" (2002)"New Techniques for Automated Architectural Reconstruction from Photographs"

Reference:

"Konrad Schindler and Joachim Bauer" ("2003")"Towards feature-based building reconstruction from images"

Reference:

"Sudipta N. Sinha and Drew Steedly and Richard Szeliski" (2009)"Piecewise Planar Stereo for Image-based Rendering"

Reference:

"Konrad Schindler and Joachim Bauer" ("2003")"Towards feature-based building reconstruction from images"

Reference:

"Sudipta N. Sinha and Drew Steedly and Richard Szeliski" (2009)"Piecewise Planar Stereo for Image-based Rendering"

Reference:

"Cordelia Schmid and Andrew Zisserman" (1997)"Automatic Line Matching across Views"

Reference:

"Dong-Ming Woo and Seung-Soo Han and Dong-Chul Park and Quoc-Dat Nguyen" (2008)"Extraction of 3D line segment using digital elevation data"

Reference:

 ()

Reference:

"A. O. Ok and J. D. Wegner and C. Heipke and F. Rottensteiner and U. Soergel and V. Toprak" (2011)"Accurate matching and reconstruction of line features from ultra high resolution stereo aerial images"

28 Chapter 2. Related Work

2.16b). By treating the latter as a special case they manage to successfully reconstruct

3D lines which are approximately aligned with the camera motion, a case which is hard

to handle for the majority of the related methods.

(a) General case (b) Epipolar-aligned case

Figure 2.16: Illustrations taken from [123]. (a) Matching line segments in a general configuration.
The line in the target image (right) is not aligned with the epipolar line, which makes a robust
matching and triangulation possible. (b) Matching line segments when the target segment (right)
is aligned with the epipolar line. Here, an accurate intersection between the target line and the
epipolar line is not possible, which makes triangulation almost impossible. The algorithm of Ok
et al. [123] can handle such cases, in contrast to most related methods.

A different category of line-based MVS approaches deals with the problem of extracting

3D line models not just from an oriented image sequence, but requires a dense point-cloud

of the scene as well. Chen and Wang [26] used bundler [143] and PMVS [49] to create a

dense 3D point-cloud, which is then used to determine matches between 2D line segments

from different images. A similar method was proposed by Fu et al. [48], where they

improved the line matching by using spectral graph analysis of a pairwise matching graph

for all 2D line segments. Figure 2.17 shows one of the impressive reconstruction results

obtained by [26] . However, the need for a dense 3D point-cloud renders such methods

quite inefficient, since obtaining it usually takes a lot of time and memory. A related

approach was proposed by Lin et al. [98], with the difference that they use a point-cloud

obtained with a Light Detection and Ranging (LiDAR) device.

All of the aforementioned approaches provide very reasonable results within their re-

spective doamin (e.g. aerial image data), but are not as flexible and out-of-the-box usable

as common point-based MVS methods (e.g. PMVS [49]). Most of them rely quite heavily

on a set of core assumptions, that prevent a proper generalization to arbitrary scenes.

Among the discussed approaches, methods that build on the line matching algorithm

by Schmid and Zisserman [134] (which already showed basic line-based 3D models) are

arguably the most versatile. They only rely on epipolar- and intensity-based matching

constraints, and do not enforce further constraints on the line-based 3D model. However,

matching lines using gray-value similarities is in general not very robust to illumination

changes, and using more sophisticated line-descriptors does not work well for wiry struc-

tures (see Section 2.2). To overcome this drawback, several methods that do not rely on

Reference:

"A. O. Ok and J. D. Wegner and C. Heipke and F. Rottensteiner and U. Soergel and V. Toprak" (2011)"Accurate matching and reconstruction of line features from ultra high resolution stereo aerial images"

Reference:

"A. O. Ok and J. D. Wegner and C. Heipke and F. Rottensteiner and U. Soergel and V. Toprak" (2011)"Accurate matching and reconstruction of line features from ultra high resolution stereo aerial images"

Reference:

"Tingwang Chen and Qing Wang" (2010)"3D Line Segment Detection for Unorganized Point Clouds from Multi-View Stereo"

Reference:

"Noah Snavely and Steve Seitz and Richard Szeliski" ("2006")"Photo Tourism: Exploring image collections in 3D"

Reference:

"Yasutaka Furukawa and Brian Curless and Steve Seitz and Richard Szeliski" (2010)"Towards Internet-Scale Multi-View Stereo"

Reference:

"Kang-Ping Fu and Shu-Han Shen and Zhan-Yi Hu" (2014)"Line Matching Across Views Based on Multiple View Stereo"

Reference:

"Tingwang Chen and Qing Wang" (2010)"3D Line Segment Detection for Unorganized Point Clouds from Multi-View Stereo"

Reference:

"Yangbin Lin and Cheng Wang and Jun Cheng and Bili Chen and Fukai Jia and Zhonggui Chen and Jonathan Li" (2015)"Line segment extraction for large scale unorganized point clouds"

Reference:

"Yasutaka Furukawa and Brian Curless and Steve Seitz and Richard Szeliski" (2010)"Towards Internet-Scale Multi-View Stereo"

Reference:

"Cordelia Schmid and Andrew Zisserman" (1997)"Automatic Line Matching across Views"

2.5. Line-based Multi-View Stereo 29

Figure 2.17: Illustrations taken from [26]. Left: An example image of their Press Building
dataset (100 images, 2128×1416 px). Middle: Obtained 3D line model. Right: The 3D line model
and the dense PMVS [49] point-cloud combined.

appearance constraints at all have been presented over the years.

Heuel and Förstner [60] presented a purely geometric approach to line-based MVS ,

based on uncertain projective geometry. They created an extensive framework to match

2D line segments from multiple images, and optimally reconstruct 3D lines from these

correspondences, which can further be grouped to 3D corners. They represent all geomet-

ric entities (points, lines, and planes) and their respective uncertainties in homogeneous

coordinates (in 2D and 3D), and show how new entities can be easily reconstructed, hand

in hand with their propagated uncertainties. However, sadly they only evaluated their

approach on few aerial sequences, which do not look ultimately convincing.

The most relevant work for our research was presented by Jain et al. [73]. Their

approach to line-based MVS is fundamentally different from all the methods discussed

above, since they do not just omit appearance-based line matching, but line matching all

together. What they do is relatively simple, they unproject all 2D line segments from all

images to all possible spatial positions (within a certain range; see Figure 2.18a), and then

reproject all of these spatial 3D line hypotheses into nearby images. They now compute an

edge-based score for each reprojected 3D hypothesis, which simply analyzes how well the

reprojection fits with the image gradients (see Figure 2.18b). This is a reasonable thing

to do, since image gradients (or in extension also image edges) are used to detect 2D lines

in images in any available line segment detector. Afterwards, they compute a 3D position

for each 2D line segment, which is simply defined by the 3D hypothesis with the highest

score. To verify their estimates, and to discard outliers, they perform a spatial clustering

procedure, which fuses together 2D line segments with spatially close 3D positions (by

using a cylindrical grouping radius; see Figure 2.19a). They reconstruct a final set of

3D lines by merging the selected 3D hypotheses of clustered 2D lines, and discard 2D

segments that could not be clustered with at least one other segment. In addition, they

also perform a loopy belief propagation procedure to enforce connections between 3D lines.

A final reconstruction result using their method can be seen in Figure 2.19b.

The absence of an explicit line matching step (either appearance- or geometry-based)

Reference:

"Tingwang Chen and Qing Wang" (2010)"3D Line Segment Detection for Unorganized Point Clouds from Multi-View Stereo"

Reference:

"Yasutaka Furukawa and Brian Curless and Steve Seitz and Richard Szeliski" (2010)"Towards Internet-Scale Multi-View Stereo"

Reference:

"Stephan Heuel and Wofgang Foerstner" (2001)"Matching, Reconstructing and Grouping 3D Lines From Multiple Views Using Uncertain Projective Geometry"

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

30 Chapter 2. Related Work

(a) Potential 3D locations (b) Projective gradient scoring

Figure 2.18: Illustrations taken from [73]. (a) All potential 3D locations of the pre-image of the
2D line segment l = {pjs, pje} have to be located on the lines-of-sight of its two endpoints pjs and
pje. All potential 3D locations are equally likely, unless more images from different viewpoints exist
to verify them. (b) All 3D hypotheses (locations) are backprojected into neighboring images, and
scored based on their alignment with the image gradients. The better the alignment, the more
likely a certain 3D hypothesis corresponds to the true location of the pre-image of the underlying
2D segment.

(a) Spatial line clustering (b) Exemplary reconstruction result

Figure 2.19: Illustrations taken from [73]. (a) Clustering lines based on the spatial proximity
of 3D line hypotheses, with a fixed cylindrical grouping radius. All segments which can not be
clustered with at least one other segment are considered outliers and removed. (b) An exemplary
reconstruction result of their Street a sequence (20 images).

ahttp://resources.mpi-inf.mpg.de/LineReconstruction/

allows [73] to reconstruct scenes of an arbitrary complexity, e.g. including wiry objects or

high illumination changes. However, the core problem of their work is that the computa-

tional complexity is incredibly high. In their paper they do not state the actual runtime,

but they mention that their approach needs several hours even for small-scale datasets.

This is mostly due to the very expensive 3D hypothesis estimation step, where all possible

3D locations for every 2D line segment have to be analyzed by backprojection and gradi-

ent scoring. Given the potentially very large depth range in which valid 3D lines might

occur in front of the cameras, their is no straightforward way to reduce the computational

complexity, unless some prior knowledge about the scene structure is available.

To overcome this issue, we proposed to combine their projective 3D hypothesis scoring

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

http://resources.mpi-inf.mpg.de/LineReconstruction/

2.6. Summary 31

with purely geometric line matching [66]. The core idea is that it is not necessary to

analyze all potential 3D locations for each 2D segment, but rather a limited set based on

the information that is provided by nearby images. We therefore compute a set of line

matches for each 2D segment in its neighboring images, based solely on weak epipolar

matching constraints. We then triangulate all these matches, and only backproject and

score this discrete and limited set of 3D locations. We show how this simple procedure

can significantly boost the performance of the overall reconstruction algorithm, without

negatively influencing the completeness or the accuracy of the resulting 3D models. The

insights gained from these initial experiments have formed the basis of our subsequent

research in line-based 3D reconstruction, where we have successfully increased the perfor-

mance and the accuracy of our method even more [62, 63]. In addition, we have shown

how our principles can be used within online SfM frameworks, for the robust and fast

on-the-fly reconstruction of 3D line models [61, 65] (see Chapter 5).

2.6 Summary

We have presented an extensive overview of all closely related fields in the area of line-

based 3D vision, divided into the four categories Line Matching, Line-based SfM , Line-

based SLAM , and Line-based MVS . While arguably there are more applications for lines

in 3D vision (e.g. camera calibration [23, 34]), these are the ones that are directly related

to our work, and have influenced it the most.

Throughout this chapter, we tried to emphasize why we do not use classic appearance-

based line matching, and why we use given camera poses from traditional SfM pipelines,

rather than performing full line-based SfM . First, we want to be able to reconstruct wiry

objects (e.g. power pylons), which is virtually impossible when state-of-the-art patch-

based line descriptors are used. And second, line-based SfM is by far more challenging

than point-based SfM , given that either special requirements need to be met such that

relative poses can be computed from matched line segments across just two images, or

matches across at least three images need to be considered at al times. This becomes

even more severe given that it is in many cases not trivial to come up with a sufficiently

large set of correct matches in the first place, e.g. when dealing with wiry objects, as

mentioned above. Hence, we decided to rely on traditional SfM pipelines to deliver the

correct camera poses, and focus more on the reconstruction part. This enables our work

to be out-of-the-box usable with most available SfM pipelines, which are frequently used

by a very large community (both in academia and industry). In the following chapter, we

give an extensive in-depth overview of our proposed line-based 3D reconstruction pipeline,

and describe all necessary processing steps in detail.

Reference:

"Manuel Hofer and Andreas Wendel and Horst Bischof" ("2013")"Line-based 3D Reconstruction of Wiry Objects"

Reference:

 ()

Reference:

 ()

Reference:

 ()

3
Line3D++: A Line-based 3D Reconstruction Framework

Contents

3.1 Prerequisites . 33

3.2 Pipeline Overview . 40

3.3 Line Segment Detection . 41

3.4 Establishing Line Segment Correspondences 43

3.5 Evaluating Line Segment Correspondences 49

3.6 Assigning 3D Locations to 2D Segments 53

3.7 Clustering Corresponding 2D Segments 55

3.8 Combined Bundle Adjustment 57

3.9 Summary . 59

In this chapter we introduce our line-based 3D reconstruction framework, and explain

all underlying processing steps in detail. For a better visual understanding of our pipeline,

we show graphical illustrations of the various processing steps on the example of our

Building and Pylon datasets, introduced in Figure 1.4. All following steps are part of

our open-source implementation Line3D++, which is available online 1. All parameters

that are introduced throughout the algorithmic explanations are kept abstract, and their

default values as well as their influence on the reconstruction results are discussed during

the evaluations in Chapter 4.

The algorithm introduced in this chapter is based on several of our earlier publications

on this topic [62, 63, 66], and has been recently published in compressed form in [64].

3.1 Prerequisites

The input to our algorithm is always an oriented (and not necessarily ordered) set of

calibrated images I = {I1, . . . , IN}, i.e. images with given intrinsic- (K) and extrinsic

1https://github.com/manhofer/Line3Dpp

33

Reference:

 ()

Reference:

"Manuel Hofer and Michael Maurer and Horst Bischof" ("2016")"Efficient 3D Scene Abstraction using Line Segments"

https://github.com/manhofer/Line3Dpp

34 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

(R, t) camera parameters (see Section 3.1.1 for an explanation), as well as their distortion

coefficients (if necessary). The extrinsics can be easily obtained by any given Structure-

from-Motion (SfM) pipeline available, e.g. the freeware tools VisualSfM [172] or Open-

MVG [114], and the intrinsics and distortion coefficients can be obtained by any camera

calibration toolbox (e.g. [29]). Alternatively, all this information (extrinsics, intrinsics,

and distortion coefficients) might potentially be estimated by the SfM application alone,

without prior knowledge (depending on what pipeline is used).

Since our method only needs the images and the corresponding camera poses, one

could technically also use an external tracking system to compute these poses. However,

in the remainder of this thesis we always assume without loss of generality that an SfM

pipeline has been run beforehand. This means that we assume to also have a sparse set of

3D points X = {X1, . . . ,XT }, which we will need later to define which images are visual

neighbors (i.e. see the same thing). We further define Xi ⊂ X to be the set of 3D points

which are visible in image Ii, where visible means that they have a 2D residual in this

particular image. For a better understanding of our algorithm, we explain the underlying

camera model and its parameters, as well as the principle of epipolar geometry in the

following sections.

3.1.1 Camera Model

To understand the relation between a 3D entity (e.g. a point) and its 2D projection in an

image, we need to analyze the camera that was used to create this image. Even though

each physical camera is build from slightly different components, the underlying camera

model (i.e. the abstract principal behind the actual camera) is usually quite similar. In

this thesis, we focus on a very simple model, called a pinhole camera, which is frequently

used to model common compact-, Digital Single-Lens Reflex (DSLR), or also smartphone

cameras in 3D reconstruction applications. However, there exist of course also other

camera models, such as e.g. affine-, or non-central cameras.

The basic principle of a pinhole camera can probably be best explained by the so called

camera obscura (Latin for dark room), which was already familiar to the Greek philosopher

Aristotle more than 300 years BC. It is basically a dark room (or a box) where a small

hole is placed in one of the walls (hence, the term pinhole). Light from an external light

source, that is reflected from objects outside of the box, now travels through the hole,

and projects an image of these objects onto the back surface (opposite of the hole). The

projected image is upside down, but color as well as perspective is preserved. Figure 3.1a

shows an illustration of this principle.

Geometrically speaking, a pinhole camera consists of a center of projection C, an image

plane π, and the focal length f . The center of projection (also called camera center) is

basically the pinhole itself, while the image plane π is the equivalent to the wall of the

camera obscura on which the image is projected. The focal length f is simply the distance

between the camera center and the image plane, which basically defines how large the

Reference:

"Changchang Wu" (2013)"Towards linear-time Incremental Structure-from-Motion"

Reference:

"Pierre Moulon and Pascal Monasse and Renaud Marlet and Others" ()"OpenMVG. An Open Multiple View Geometry library"

Reference:

"Shreyansh Daftry and Michael Maurer and Andreas Wendel and Horst Bischof" ("2013")"Flexible and User-Centric Camera Calibration using Planar Fiducial Markers"

3.1. Prerequisites 35

projected image will appear. Figure 3.1b shows a graphical illustration of the relationship

between these three components (for more detailed explanations we refer to [55]).

(a) The camera obscura (b) The pinhole camera model

Figure 3.1: An illustration of the pinhole camera model. (a) The camera obscura, which is an
early version of an actual physical camera that directly follows the pinhole camera model a. (b)
The geometric principles behind the pinhole camera model (image taken from [68]).

aillustration taken from https://prezi.com/4y2ggpyifukg/camera-obscura/

In this example, the image plane π is placed in front of the camera center C, which

means that the resulting images are not upside down. Please note that this is only a

theoretical model, which could not be build exactly like this. However, the 3D-to-2D

projection principles are just as valid for this scenario. In addition to the camera center

(C), the focal length (f), and the image plane (π), the illustration also shows a so-called

principle point (p = [pu, pv]
T), and a coordinate frame (X, Y , and Z). The coordinate

frame defines the local camera coordinate system, i.e. the 3D world as seen from the

cameras’ viewpoint. It has its origin at the camera center C, with the Z axis (the optical

axis) going into the scene. The 2D point in which the optical axis intersects π is the

principle point.

Now, if a 3D point X = [X,Y, Z]T ∈ R3 is defined in the local camera coordinate

system, its projection x = [u, v]T ∈ R2 in the image π can be written as

x =

(
u

v

)
= f

(
X/Z

Y/Z

)
, (3.1)

which basically means that for a point in space with given X and Y coordinates, its

position in the image depends linearly on its depth (i.e. its Z coordinate), and the focal

length f .

This projection of course only works if the 3D point is defined in the local camera

coordinate system. However, in a multi-view scenario with multiple cameras, each 3D point

should only have one globally consistent 3D coordinate triplet, and not one per observing

camera. Hence, we need to define a global coordinate system for our reconstructed (or

Reference:

"Richard Hartley and Andrew Zisserman" ("2004")"Multiview Geometry in Computer Vision"

Reference:

Christof Hoppe (2014)Interactive Structure-from-Motion

https://prezi.com/4y2ggpyifukg/camera-obscura/

36 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

observed) 3D world. To easily define the projection of globally defined 3D points into

an arbitrary 2D image plane, we first switch to the projective space by making use of

homogeneous coordinates. Hence, our 3D point X̃ = [X,Y, Z, 1]T ∈ P3 has now four

coordinates, and the corresponding 2D point x̃ = [u′, v′, w]T ∈ P2 has three (for an easier

understanding, ·̃ symbolizes homogeneous coordinates).

The projection of X̃ into π can now be rewritten as

x̃ =

u′v′
w

 =

fx 0 pu
0 fy pv
0 0 1

 [R3×3|t3×1]

X

Y

Z

1

 = K[R3×3|t3×1]X̃ , (3.2)

where K holds the intrinsic parameters of the camera (i.e. its internal characteristics),

and R (rotation) and t (translation) are the external camera parameters. The external

parameters (often also called extrinsics) basically describe the transformation from the

global coordinate system to the camera coordinate systems. In addition, instead of having

only one focal length f in the intrinsics K, we now have two potentially different values fx
and fy (in x- and y direction). This allows a more realistic modelling of physical cameras,

and generally produces more accurate measurements. The camera center C itself can be

expressed in global (world) coordinates as

C = −RT t, (3.3)

where RT = R−1, since it is a rotation matrix.

The 3D-to-2D projection can be seen as a dual process, where

XC = [R|t]X̃ (3.4)

first transforms a 3D point X from global- to local camera coordinates (still in 3D), and

x̃ = KXC (3.5)

finally projects the local 3D point into the image plane. The whole projection process is

often expressed in terms of one single matrix-vector multiplication

x̃ = P X̃ = K[R|t]X̃ , (3.6)

where P = K[R|t] is the 3× 4 projection matrix. To de-homogenize x̃ (i.e. to transform it

back to R2), we can simply use

x =

(
u′/w

v′/w

)
, (3.7)

which basically means that the first two coordinates of x̃ are divided by the third.

3.1. Prerequisites 37

The reverse process, which is the unprojection of a 2D image point x̃ = [u, v, 1]T ∈ P2

into 3D space, is of course defined as well. However, during the 3D-to-2D projection (i.e.

the image acquisition) all depth information inevitably gets lost by design. Hence, we can

only unproject 2D points as infinite 3D rays, on which the real 3D entity that created this

2D image point must be located. For the point x in Figure 3.1b, this would be the ray

rx ∈ R3, passing through the camera center C, the image point x itself, and its true 3D

pre-image X . It can be simply computed as

rx = RTK−1x̃, (3.8)

and can then be used to reconstruct the actual 3D point

X = C + d · rx, (3.9)

given that its depth d = ‖C − X‖2 along the ray is known, and rx is normalized to unit

length (‖rx‖ = 1).

What is missing to actually use this camera model for SfM applications from consumer

cameras, is the modelling of potential image distortion. Especially wide angle lenses do

not strictly follow the pinhole camera model, but introduce a certain amount of radial-

as well as tangential distortion, especially further away from the image center. However,

this issue can be easily fixed by calibrating the camera first, which means to estimate its

intrinsics and its distortion coefficients by following a defined calibration procedure, which

usually involves taking pictures of a planar calibration target from multiple view points.

An overview of common calibration strategies, as well as a freely available calibration tool,

can be found in [29]. For the rest of this work, we assume that the calibration coefficients

are available (either by calibration, or estimated by the SfM pipeline), which allows us to

undistort the images such that the pinhole camera model can be used directly.

3.1.2 Epipolar Geometry

Given our input image set I, the underlying SfM pipeline provides us with intrinsics Ki,

as well as extrinsics Ri and ti, for each image Ii ∈ I (and in extension, of course also

Pi = Ki[Ri|ti]). This information fully defines the spatial camera configuration of this

multi-view scenario, as well as the sparse 3D point-cloud (given that feature matches are

available, which can then be straightforwardly triangulated to 3D points).

However, even if all this information is available there is no explicit direct mapping

between all corresponding pixels in pairs of images Ii and Ij , i.e. in form of a globally

coherent transformation matrix Ti,j , that fully maps one image onto the other. That

means, given a pair of corresponding 2D points x̃i = PiX and x̃j = PjX in πi and πj
(which are the images of the same 3D point X), a well defined relationship such as

x̃j = Ti,j x̃i and x̃i = T−1
i,j x̃j , (3.10)

Reference:

"Shreyansh Daftry and Michael Maurer and Andreas Wendel and Horst Bischof" ("2013")"Flexible and User-Centric Camera Calibration using Planar Fiducial Markers"

38 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

Figure 3.2: An illustration of the epipolar geometry between two images Ii and Ij . The 3D point
X and the two camera centers Ci and Cj span a triangle, whose lines of intersection with the two
image planes πi and πj are the two epipolar lines ejxi

and eixj
.

that maps every pixel from one image to its correct correspondence in the second image,

does not exist. This is true for the general case, but there are some special scenarios for

which a global transformation does indeed exist (see [55] for an introduction on homo-

graphies). The reason why such a transformation is not possible, is because of the loss

of the depth information when the 3D world is mapped to a 2D image. Only for those

2D points for which depth information is available (i.e. the 2D feature points that have

been successfully matched and reconstructed to a 3D point X) a direct mapping between

images is possible, since X can be projected into any image, given that the corresponding

projection matrix is available.

As we have discussed above, each 2D point x̃i can be at least unprojected as a 3D ray

rxi = RTi K
−1
i x̃i, (3.11)

even if its depth is not known. Since we could technically generate an infinite number of

3D points

Xxi(d) = Ci + d · rxi (3.12)

along this ray (for all possible depths d), we could project all these points into another

image Ij . The geometric structure that would emerge in πj is again a straight line, and

more specifically, the 2D image of the infinite ray rxi in Ij . This resulting 2D line is

called an epipolar line, denoted as ejxi . Figure 3.2 illustrates the geometric principle of the

so-called epipolar geometry graphically.

As we can see, the 3D point X and the two camera centers Ci and Cj span a triangle.

This triangle intersects the two image planes πi and πj in two straight lines, which are the

epipolar lines ejxi (in Ij) and eixj (in Ii). These lines coincide with the projections of rxi in

image Ij , and rxj in image Ii respectively. As we can also see, all potential unprojections

Xxi(d) of xi (with different depths d; visualized as black dashed lines) would be projected

Reference:

"Richard Hartley and Andrew Zisserman" ("2004")"Multiview Geometry in Computer Vision"

3.1. Prerequisites 39

exactly onto the epipolar line ejxi in πj . In addition, the intersections of the line between

Ci and Cj with the image planes are the two epipoles Ei and Ej . These epipoles are not

depending on any 3D points, but only on the relative spatial positions between the two

cameras.

The epipolar geometry between two cameras can be efficiently encoded in a 3× 3 ma-

trix, which is called the essential matrix (Ei,j) for the calibrated-, and the fundamental

matrix (Fi,j) for the uncalibrated case [55]. Both matrices can be estimated from point cor-

respondences between the two images, where in general eight correspondences are needed

to derive the essential-, and seven to derive the fundamental matrix. However, several

methods exist that have shown that less correspondences are also sufficient in many cases

(e.g. the five-point relative pose problem [119]). In the rest of this section we will only

consider the fundamental matrix Fi,j . The relationship between Ei,j and Fi,j is defined as

Ei,j = KT
j Fi,jKi, (3.13)

which means that Ei,j can always be derived from Fi,j , as long as the intrinsics of the two

cameras (Ki and Kj) are known.

Given Fi,j for an image pair Ii and Ij , the epipolar line ejxi in Ij of a 2D point xi in Ii
can be simply computed as

ejxi = Fi,j x̃i, (3.14)

by multiplying the fundamental matrix with the homogenized point coordinates x̃i. The

same holds for the opposite direction, where

eixj = Fj,ix̃j = F Ti,j x̃j , (3.15)

and Fj,i being equivalent to F Ti,j . Hence, the fundamental matrix is not bidirectional, but

once Fi,j is known, Fj,i follows straightforward.

When we again have a look at Figure 3.2, we see that the projection xj of X in Ij
has to lie on the epipolar line ejxi defined by its counterpart xi in Ii (and vice versa).

This is the case because ejxi is the projection of the ray rxi on which X must be located

(otherwise xi could not be an image of X , given the underlying camera model). This means

that if we only have xi and Fi,j , and we do not know the corresponding point xj in the

other image, we only have to look for a correspondence along the epipolar line ejxi , which

effectively reduces the correspondence search (also commonly known as the correspondence

problem) from a 2D to a 1D problem. This is arguably the most important property of the

epipolar geometry in the context of image-based 3D reconstruction, and has been widely

used especially in multi-view stereo algorithms (e.g. [49, 131]). As a consequence, it also

follows that

x̃j
TFi,j x̃i = 0, (3.16)

for all corresponding point pairs xi and xj . However, please note that Equation 3.16 is

Reference:

"Richard Hartley and Andrew Zisserman" ("2004")"Multiview Geometry in Computer Vision"

Reference:

"David Nister" (2004)"An efficient solution to the five-point relative pose problem"

Reference:

 ()

40 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

Figure 3.3: An illustration on how different 3D points X1, X2, and X3 that project to xi in πi,
all fulfill the basic epipolar constraint (Equation 3.16), since their projections xj1, xj2, and xj3 (in
πj) all lie on the epipolar line ejxi

of xi.

fulfilled for a certain point xi and all other points z ∈ πj , which happen to lie on the

epipolar line ejxi (even if they are not really corresponding to the same 3D entity!). Figure

3.3 illustrates this issue. As we can see, all three potential correspondences (xi, xjk) (with

k ∈ {1, 2, 3}) fulfill the epipolar constraint in Equation 3.16, despite the fact that only one

of these correspondences is correct (in terms that both 2D points are images of the same

physical 3D entity).

With a proper camera model and the concept of the epipolar geometry at hand, we

have now all the tools we need to proceed to our actual method, which aims at using the

(undistorted) input images and the corresponding camera parameters to generate line-

based 3D models in an efficient and robust way. In the remainder of this chapter we will

explain all the necessary processing steps in full detail.

3.2 Pipeline Overview

Our line-based 3D reconstruction method consists of several steps:

1. Line Segment Detection (Section 3.3)

An out-of-the-box line segment detector is used to detect 2D line segments in all

available images. These image features are the basis of our 3D reconstruction ap-

proach.

2. Establishing Line Segment Correspondences (Section 3.4)

The detected 2D segments are matched between related images, i.e. images that see

the same part of the scene. Here, we focus on maximizing the recall by employing a

purely geometric one-to-many matching procedure, so that ideally no correct matches

are missed even when severe illumination changes or occlusions are present.

3.3. Line Segment Detection 41

3. Evaluating Line Segment Correspondences (Section 3.5)

We triangulate all matches to 3D line hypotheses, and evaluate them based on their

mutual support across several different images in a fast local scoring procedure (di-

rectly in 3D space).

4. Assigning 3D Locations to 2D Segments (Section 3.6)

We use the obtained scores from the previous step to remove matches that are most

likely incorrect, and to assign an initial 3D location to each 2D segment individually,

based on its triangulated match with the highest score.

5. Clustering Corresponding 2D Segments (Section 3.7)

In the final reconstruction step, we compute a global sparse affinity matrix for all

2D segments across all images, based on the spatial proximity of their estimated

3D locations. We then cluster corresponding 2D segments using an efficient graph-

clustering formulation, and derive their underlying 3D line using their assigned 3D

locations.

6. Combined Bundle Adjustment [optional] (Section 3.8)

As an optional step, we show how the resulting line-based 3D model and the given

SfM result can be further improved by a combined bundle adjustment procedure

over all features (points and lines).

Figure 3.4 illustrates all processing steps in a graphical way, for a better understanding.

In the following sections we will describe all these steps in more detail.

3.3 Line Segment Detection

As a first step, we have to detect a set of 2D line segments Li = {`i1, . . . , `imi
} for each

(undistorted) image Ii ∈ I, which will function as our 2D features for the 3D reconstruction

procedure. For this task, any available 2D line segment detector can be used. Please note

that we are dealing with straight line segments, and not curves. From this point forward,

a line is always meant to be a straight line, unless stated otherwise. From the various

existing 2D line representations (e.g. polar coordinates), we chose to represent each 2D

line segment

`im = {pim, qim} (3.17)

simply by its two endpoints pim and qim (pim, q
i
m ∈ R2). Since the amount of detected line

segments obtained by a line segment detector can be very high (especially when image noise

is present), we limit ourselves to the κ longest detected line segments in each image. This

is motivated by the fact that long line segments are more likely to correspond to important

structural parts of the scene (and are more robustly fitted), while very short segments often

originate from image noise and less relevant structural elements. A similar scheme is often

applied in point-based SfM as well, where usually only a subset of all detected feature

42 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

Figure 3.4: A schematic overview of our Line3D++ line-based 3D reconstruction pipeline, in-
cluding all necessary pre-processing steps (image acquisition and SfM).

points is actually used for the reconstruction (e.g. the k largest SIFT [101] features in

[72]). In addition, we only consider line segments with a length

‖`im‖ = ‖pim − qim‖2 (3.18)

of more than ρ times the image diagonal to be valid.

The choice of the line segment detector is in general arbitrary. However, it is of course

recommended to use a robust algorithm, that is not easily influenced by image noise.

Among the first approaches to line segment detections, Ballard [10] used the famous Hough

voting scheme to transform an edge image (obtained using the Canny edge detector [22])

into a binary parameter space for infinite 2D lines, where the final line detections can be

derived from local maxima. While Hough-based methods are in general very well suited

to detect most of the relevant 2D lines, their precision is usually very low, because they

are highly sensitive to noise and high-frequency texture. In addition, they usually have a

comparably high runtime due to their computational complexity, which has partly been

solved e.g. by using only a randomly selected subset of edge points [104].

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"D. H. Ballard" (1981)"Generalizing the Hough Transform to Detect Arbitrary Shapes"

Reference:

"J. Canny" (1986)"A Computational Approach to Edge Detection"

Reference:

"J. Matas and C. Galambos and J. Kittler" (2000)"Robust Detection of Lines Using the Progressive Probabilistic Hough Transform"

3.4. Establishing Line Segment Correspondences 43

(a) Building (detail) (b) Pylon (detail)

Figure 3.5: Line segment detection using the LSD algorithm [51]. (a) Example image from the
Building sequence (3801 segments). (b) Example image from the Pylon sequence (6875 segments).

More recent line segment detectors, such as the Line Segment Detector (LSD) [51] or

the EDLines [5] algorithm, do not suffer from such problems. Both methods are based

on iteratively chaining together edge pixels with a similar orientation, and evaluating

these straight edgels by an a contrario model, based on the so called Helmholtz principle

[33]. They both have the benefit that they do not require any parameter tuning for

various images, with the obtained results being fairly similar. Very recently, some more

sophisticated methods such as CannyLines [103] or a saliency-based method [21] have

been presented, which do not require excessive parameter tuning as well. Overall, the

results for all state-of-the-art methods do not deviate by a large extend, which makes all

of them perfectly usable for line-based 3D reconstruction. In our implementation, we use

the LSD [51] algorithm, for which source code is available (e.g. within OpenCV 3 2).

Figure 3.5 shows two example images with their respective line segments, obtained by

LSD .

3.4 Establishing Line Segment Correspondences

To generate a line-based 3D model we need to establish correspondences between the

detected 2D line segments from all images. Theoretically, this could be done by one of the

numerous line-matching approaches presented in the past (e.g. [163, 181, 182]). However,

we have already discussed in Section 2.2 that most of these approaches are appearance-

based, and therefore not suitable for highly non-planar objects such as power pylons, or

fences. To be able to reconstruct all kinds of linear structures, we use purely geometric

matching constraints which are based solely on the epipolar geometry between two images.

The matching algorithm is divided into three main parts. First, we need to establish

which image pairs (visual neighbors) should be matched, since especially in big scenes not

all possible image pairs share a common field-of-view (Section 3.4.1). Then, we perform

our weak epipolar-guided matching procedure for all selected image pairs, which returns

2http://opencv.org/opencv-3-0.html

Reference:

"Rafael Grompone von Gioi and Jeremie Jakubowicz and Jean-Michel Morel and Gregory Randall" (2008)"LSD: A Fast Fine Segment Detector With a False Detection Control"

Reference:

"Rafael Grompone von Gioi and Jeremie Jakubowicz and Jean-Michel Morel and Gregory Randall" (2008)"LSD: A Fast Fine Segment Detector With a False Detection Control"

Reference:

"Cuneyt Akinlar and Cihan Topal" (2011)"EDLines: Real-Time Line Segment Detection by Edge Drawing"

Reference:

"A. Desolneux and L. Moisan and J. M. Morel" (2007)"From Gestalt Theory to Image Analysis, A Probabilistic Approach"

Reference:

"Xiaohu Lu and Jian Yao and Kai Li and Li Li" (2015)"CannyLines: A parameter-free line segment detector"

Reference:

"Mark Brown and David Windridge and Jean-Yves Guillemaut" (2015)"A generalisable framework for saliency-based line segment detection"

Reference:

"Rafael Grompone von Gioi and Jeremie Jakubowicz and Jean-Michel Morel and Gregory Randall" (2008)"LSD: A Fast Fine Segment Detector With a False Detection Control"

Reference:

 ()

http://opencv.org/opencv-3-0.html

44 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

multiple potential matches for each source 2D segment in each target image (one-to-

many matching ; Section 3.4.2). And last, we perform an optional filtering step which

aims at increasing the matching precision (for a better performance in all subsequent

steps), without negatively affecting the recall (k-nn matching ; Section 3.4.3). After the

matching is completed, we can triangulate all matching 2D segment pairs to 3D line

segment hypotheses (Section 3.4.4), which will be needed to discard outlier matches and

to reconstruct the 3D line model later on.

3.4.1 Visual Neighbor Selection

Especially for large scenes, it is unlikely that all image pairs Ii and Ij ∈ I have some

visual overlap, i.e. it is unlikely that they see the same part of the scene. Hence, it would

be completely unnecessary to match all images with each other, which would result in a

quadratic runtime complexity (O(N2)). In traditional SfM , this problem is often solved

by making use of the computed feature-point descriptors, e.g. by utilizing a vocabulary

tree [120]. Since we do not have such descriptors (that would not be reliable anyway), we

have to think of another way of determining a meaningful subset of all image pairs for

matching.

In our earlier work, we simply used the Euclidean distance ‖Ci − Cj‖2 between the

camera centers Ci and Cj ∈ R3 of two images, and the angle between their optical axes as

a similarity measure [65, 66]. However, this is not necessarily a good indicator for visual

overlap, since it does not take occlusions into account. Since we have more information

from the SfM result than just camera poses, we can also use visibility information from

the sparse 3D point set X as an indicator for a common field-of-view [62, 63]. That means,

if it holds for two images Ii and Ij that there exists a 3D point Xt such that

Xt ∈ Xi ∧ Xt ∈ Xj , (3.19)

it follows that there is at least a small part of the scene which is visible in both images

(unless Xt is an outlier). As a consequence, the more worldpoints the two images share,

the higher is the probability that they have a large visual overlap, and the more sense does

it make to match lines between them.

Building up on this assumption, we first define a pairwise view similarity score

SI(i, j) =

{
2·|Xi∩Xj |
|Xi|+|Xj | if i 6= j

−∞ else
, (3.20)

which is based on Dice’s similarity coefficient (the higher the more similar). It basically

sets the number of the worldpoints that both images have in common in relation to the

total number of worldpoints each image sees, and forbids self-similarity. We use this score

Reference:

"David Nister and Henrik Stewenius" (2006)"Scalable Recognition with a Vocabulary Tree"

Reference:

 ()

Reference:

 ()

3.4. Establishing Line Segment Correspondences 45

to compute a sorted visual neighbor set

Vi = {j1, j2, . . . | SI(i, j·) > 0 ∩ x < y ⇒ SI(i, jx) ≥ SI(i, jy)} (3.21)

for each image Ii individually, which just contains all indices of all other images Ij (which

share at least one worldpoint with Ii), sorted by their view similarity SI(i, j) in descending

order. For a meaningful matching procedure we could now e.g. simply use the top M

elements in Vi for each image Ii individually, which we have done previously in [63]. This

results in a fast matching algorithm, with a linear time complexity O(N ·M) (with respect

to the number of images N), given that M is kept constant (usually M � N , especially

for large-scale datasets).

However, the problem with this formulation is that it may have a slight bias towards

image pairs with a small baseline, since those pairs often have a lot of sparse 3D points

in common (given the moderate rotational invariance of classic feature point descriptors).

Since line segments are more robust to larger camera displacements, it would be reasonable

to try to create more line correspondences between spatially more distant views, since

resulting 3D triangulations would be more accurate and stable.

To achieve this, we define a second distance-based visual neighbor score

ŜI(i, j) =

{∑
h∈{1,2} |〈Ri · Cj + ti, nh〉| if SI(i, j) > 0.8 ·max{SI(i, ·)}

−∞ else
, (3.22)

where Ri ·Cj + ti transforms the camera center Cj of image Ij into the camera coordinate

frame of Ii, and |〈P, n〉| is the Euclidean distance between a 3D point P and a plane going

through the origin (which equals Ci in the local camera coordinate frame) and with a

normal vector n (〈·, ·〉 is the dot product). The two normal vectors are defined as

n1 = (1, 0, 0)T and n2 = (0, 1, 0)T , (3.23)

which means that the two planes are the (y, z)- and the (x, z)-plane of the camera coor-

dinate system (with the z-axis pointing along the optical axis into the scene; see Figure

3.6).

What we want to achieve with this formulation is, that views Ij which have a large

spatial displacement (baseline) to Ii in both the vertical- as well as the horizontal direction

have a higher score, which ideally means that vertical as well as horizontal lines in Li can

be more easily matched and triangulated with lines from Lj , since the epipolar lines of

the endpoints of a specific 2D segment `im are less likely to collapse to one single line

(which frequently happens especially for horizontal lines when the camera only moves in

one constant height e.g. sideways along a façade).

However, since it would not make sense to consider a distance-based score on its own

(because it would favour image pairs that are as far away from each other as possible, with

potentially no visual overlap at all), the formulation in Equation 3.22 only returns positive

Reference:

"Manuel Hofer and Michael Maurer and Horst Bischof" (2015)"Line3D: Efficient 3D Scene Abstraction for the Built Environment"

46 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

Figure 3.6: Visualization of the distance-
based visual neighbor score ŜI(i, j) between
two images Ii and Ij (Equation 3.22). The
image Ii is shown from the back, i.e. such
that its optical axis (z-axis) is only visible
as a point ((z) ≡ Ci). The two distances d1

and d2 of the camera center Cj of another
image to the (y, z)- (purple) and the (x, z)-
plane (red) of the camera coordinate frame
are simply added to form the final score.

scores for view pairs with a worldpoint-based similarity score SI(i, j) that is bigger than

80% of the maximum score for image Ii (i.e. the score corresponding to the first index in

the sorted set Vi). This ensures that only images which already have a high number of

common worldpoints (and hence, probably a large shared field-of-view) are considered for

distance-based scoring.

We now compute a second sorted visual neighbor set

V̂i =
{
j1, j2, . . . | ŜI(i, j·) > 0 ∩ x < y ⇒ ŜI(i, jx) ≥ ŜI(i, jy)

}
(3.24)

which is a subset of Vi, but now sorted by the distance score ŜI(i, j). We now select the first

half (M/2) of the final visual neighbors from V̂i, and the second half from Vi (skipping

potential duplicates). This ensures that we have a more balanced visual neighbor set

consisting of images that have a high visual overlap with Ii (→ Vi), as well as those that

have a large baseline to Ii (→ V̂i). We then store the final visual neighbor set in VM
i and

proceed to the matching step.

3.4.2 Epipolar-guided Line Matching

After the visual neighbor estimation, we match all segments in Li to all segments in Lj
(if j ∈ VM

i), to determine potential correspondences. For a specific segment pair, `im ∈ Li
and `jm̄ ∈ Lj , we first compute the epipolar lines of the endpoints pim and qim of `im in the

opposite image Ij . We then simply intersect the infinite line passing through the segment

`jm̄ with these epipolar lines, and obtain two intersection points xp and xq, which have to

be collinear with the endpoints pjm̄ and qjm̄ of the segment `jm̄. We then define a matching

score between `im and `jm̄ as

s(`im, `
j
m̄) =

inner
({
pjm̄, q

j
m̄, xp, xq

})
outer

({
pjm̄, q

j
m̄, xp, xq

}) , (3.25)

3.4. Establishing Line Segment Correspondences 47

Figure 3.7: An illustration of the epipolar-based matching procedure. Left: image Ii with one
specific 2D line segment `im, and its two endpoints pim and qim (orange). Right: The epipolar lines
of the endpoints of `im in image Ij are shown as dashed lines. The two intersection points xp and

xq (brown) of the epipolar lines and the infinite line passing through `jm̄ (red) form a collinear

quadruple, and the matching score s(`im, `
j
m̄) is simply the Euclidean distance between the two

inner points (xp and xq), divided by the distance between the two outer points (pjm̄ and qjm̄).

where inner({· · · }) and outer({· · · }) stand for the Euclidean distance between the inner-

and the outer pair of the four collinear points (pjm̄, qjm̄, xp, and xq) respectively. Figure

3.7 illustrates this process graphically. What we basically do is to measure the mutual

support between two 2D segments, given the geometric constraints which are defined by

the epipolar geometry. If both segments would be ideal measurements (un-occluded and

neither too long, nor too short) of the same physical 3D structure, the matching score

s(`im, `
j
m̄) would be exactly 1 (given that the camera poses are noise free as well).

If the matching score is above a fixed threshold τ , we consider `im and `jm̄ to be

potentially matching. However, we only consider constellations as valid matches where an

overlap between the line segment ljm̄ and the virtual segment defined by the intersection

points xp and xq actually exists (i.e. when either one or both of the points xp and xq are

in between `jm̄, or vice versa).

3.4.3 Improving the Matching Precision

A matching procedure like this naturally results in a high recall but a very low precision,

especially when the threshold τ is small. This means that for each 2D segment we generate

a large set of potential matches, from which only few are correct (in most cases only one per

neighboring view is correct). Figure 3.8 illustrates a potential matching situation for one

specific 2D segment `im, and one visual neighbor image Ij . As we can see, several matching

candidates `jm̄ ∈ Lj fulfill the geometric matching requirements, which means that we end

up with a quite large set of potential matches for this one segment `im. However, increasing

the threshold does not lead to satisfying matching results for the general case, since the

robustness to occlusions and imprecise line segment detections would quickly vanish.

We have already faced this issue in our previous work [61], where we tried to improve

the matching precision by incorporating appearance information. We used a modified

Reference:

"Manuel Hofer and Michael Donoser and Horst Bischof" ("2014")"Semi-Global 3D Line Modeling For Incremental Structure-from-Motion"

48 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

Figure 3.8: An illustration of how many matches per neighboring image Ij (j ∈ VMi) are to be
expected. Left: image Ii with one specific 2D line segment `im (purple). Right: The epipolar lines
of the endpoints of `im in image Ij are shown in yellow. Accepted matches are shown in orange
and purple (correct match), and rejected matches in red. As we can see, more than one potential
match is found by the matching procedure, since it only depends on weak epipolar constraints
(τ = 0.25). Please note that this is just a visualization and not necessarily the complete set of
accepted/rejected matches!

version of the HSV histogram-based line descriptor by Bay et al. [17], which is not patch-

based, and therefore also works for thin wiry structures. However, a color-based descriptor

like this has the drawback that it is not very robust to illumination changes. In addition,

color is often not enough to distinguish structural elements in urban environments, since

such structures very often share the same color (as can be clearly seen for the potential

matching candidates in Figure 3.8). Hence, we need to come up with a different way to

narrow down the number of outlier matches.

When we look at the right part of Figure 3.8, we can see that although most of the

accepted matches (orange) have a fairly high overlap score s(`im, `
j
m̄), the correct match

(purple) has definitely the highest score (close to the optimum). Given that we do not

have any occlusions, or imprecise line segment detections, one could always just use the

one match with the highest score per neighboring image, which has to be the correct

one, unless it is not visible in this image. Since this assumption is unrealistic, it would

of course not make a lot of sense to just use the one best match, which would result in

a lot of missing correspondences. However, even if we consider occlusions and slightly

imprecise 2D segments, it is unlikely that the correct match will not be among the top

scoring matches for the vast majority of the cases. Hence, we propose to just keep the best

k matches for one specific 2D segment `im, in each neighboring image. This is an optional

step, and we will evaluate how different values for k effect the reconstruction results and

the runtime in Chapter 4.

3.4.4 Creating 3D Hypotheses from Matched Segments

Since we know all camera poses, we can transform each 2D correspondence `im → `jm̄
into a 3D line H i,j

m,m̄, which is the intersection of the two planes defined by the respective

camera centers Ci, Cj ∈ R3 and the 2D segments `im and `jm̄. We compute two 3D line

segment hypotheses (hi,jm,m̄ and hj,im̄,m) for each correspondence, which are defined as 3D line

Reference:

"Herbert Bay and Vittorio Ferrari and Luc van Gool" (2005)"Wide-Baseline Stereo Matching with Line Segments"

3.5. Evaluating Line Segment Correspondences 49

Figure 3.9: An illustration how the two 3D hypotheses hi,jm,m̄ and hj,im̄,m are computed from two

matched 2D segments `im (green) and `jm̄ (red). Both hypotheses are collinear on the underlying
(infinite) 3D line Hi,j

m,m̄ (black), but in general not identical, since the endpoints of `im and `jm̄
must not necessarily coincide.

segments on H i,j
m,m̄, whose projected endpoints coincide with the endpoints of the 2D line

segments `im and `jm̄ respectively. Similar to the 2D case, a 3D line segment consists of two

3D points hi,jm,m̄ = {P i,jm,m̄, Q
i,j
m,m̄}. Note that H i,j

m,m̄ = Hj,i
m̄,m, while in general hi,jm,m̄ 6= hj,im̄,m

(due to occlusions and imprecise 2D segment detections). However, the segments hi,jm,m̄
and hj,im̄,m are always collinear on the infinite line H i,j

m,m̄. For a visualization see Figure 3.9.

With all potential correspondences and their respective 3D hypotheses at hand we can

now proceed to the task of correspondence evaluation, where we aim at distinguishing

correct from incorrect matches by analyzing spatial coherences between their estimated

3D hypotheses.

3.5 Evaluating Line Segment Correspondences

As stated above, the matching procedure gives us a potentially very large set of corre-

spondences, most of which are of course incorrect. To distinguish between correct and

incorrect matches, we want to compute some kind of confidence value for each of them,

after all images have been matched with all visual neighbors. What can be done to check

whether a matching hypothesis hi,jm,m̄ between two segments `im and `jm̄ makes sense or not,

is to analyze how well this hypothesis fits to the neighboring images (apart from Ii and Ij ,

which created this hypothesis). This can for example be done using gradient-based scoring

of the 3D hypothesis hi,jm,m̄ over multiple images [66, 73], which basically means to project

the 3D line segment into these images, and to compute how well the projection aligns with

the image gradients. While this procedure is in general quite effective, it is also very time

consuming. To speed-up this procedure, one could check how well the projection aligns

Reference:

 ()

50 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

just with the detected 2D line segments rather than all image gradients [63].

However, both methods just measure the re-projection error, which can be small despite

a potentially large displacement between the reprojected 3D hypothesis and the pre-image

of the reference 2D feature (either a gradient pixel [66, 73], or a 2D segment [63]). To

overcome this problem, we want to evaluate the likelihood a correspondence and its 3D

hypothesis directly in 3D space. This of course means that we need some reference data in

3D, to which we can evaluate our 3D hypotheses. Since we do not want to assume to have

groundtruth available (i.e. in form of a dense surface model), we came up with a different

idea for correspondence evaluation. The core idea behind our evaluation procedure is quite

similar to the backprojection and scoring mentioned above. We also want to measure the

deviation of a 3D hypothesis hi,jm,m̄ from some other feature, but directly in 3D rather than

in 2D.

Consider the following situation. Given a 2D segment `im that is correctly matched

to a segment `jm̄ in image Ij , and also correctly matched to another segment `bm̃ in image

Ib, than the resulting 3D hypotheses hi,jm,m̄ and hi,bm,m̃ must be spatially close to each

other (in an ideal noise-free scenario, they should be perfectly collinear). However, if

`im is matched incorrectly in both Ij and Ib, then the resulting 3D hypothesis will most

likely not be spatially close, since their is no geometric consistency between triangulated

outliers. Figure 3.10 illustrates this observation graphically. As we can see, triangulated

inlier correspondences always support each other, while outlier correspondences do not

have this property (unless by chance, on some rare occasions).

We now use this consistency property to our advantage, to compute a correctness score

for each correspondence in 3D space. The main idea is to find for each 3D segment hi,jm,m̄
(associated with the correspondence between `im ∈ Li and `jm̄ ∈ Lj) all other 3D segments

hi,·m,· (originating from `im as well), that are spatially close to hi,jm,m̄ (i.e. that support it).

The number of different views from which these underlying correspondences emerge is a

good indicator whether a 3D segment is likely to exist in reality or not, since it is unlikely

that random incorrect correspondences are triangulated to the same spatial position, while

all correct matches for one specific 2D segments always end up at the (approximate) same

position in space.

In our method, we use a similarity measure based on spatial- and angular errors be-

tween 3D hypotheses. We assign a confidence

c(hi,jm,m̄) =
∑

x∈VM
i \{j}

max
y∈{1,...,mx}

{
A(hi,jm,m̄, h

i,x
m,y)

}
, (3.26)

to a correspondence hi,jm,m̄, where A computes an affinity between two 3D hypotheses

originating from the same source segment (`im). This affinity is defined as

A(hi,jm,m̄, h
i,x
m,y) =

{
min

{
Sa(hi,jm,m̄, h

i,x
m,y), Sp(h

i,j
m,m̄, h

i,x
m,y)

}
if min{· · · } > 1

2

0 else
, (3.27)

Reference:

"Manuel Hofer and Michael Maurer and Horst Bischof" (2015)"Line3D: Efficient 3D Scene Abstraction for the Built Environment"

Reference:

 ()

Reference:

"Manuel Hofer and Michael Maurer and Horst Bischof" (2015)"Line3D: Efficient 3D Scene Abstraction for the Built Environment"

3.5. Evaluating Line Segment Correspondences 51

(a) Inlier consistency

(b) Outlier inconsistency

Figure 3.10: An illustration how multiple inlier correspondences for one specific 2D segment
`11 in image I1 are spatially consistent, while this does not hold for outlier correspondences. (a)
If `11 is correctly matched with `12 and `13 in the images I2 and I3, the resulting 3D hypotheses
h1,2

1,1 and h1,3
1,1 are (ideally) identical. (b) If `11 is incorrectly matched with `22 and `32, the resulting

3D line segments h1,2
1,2 and h1,3

1,2 are not spatially consistent at all, despite the fact that both `22
and `32 are images of the same physical 3D structure. The original slide was taken from http:

//slideplayer.com/slide/7085888/ (slide credit: Noah Snavely).

http://slideplayer.com/slide/7085888/
http://slideplayer.com/slide/7085888/

52 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

with Sa being an angular similarity in 3D, and Sp being a positional similarity in 3D,

defined as

Sa(hi,jm,m̄, h
i,x
m,y) = exp

(
−
∠(hi,jm,m̄, h

i,x
m,y)2

2σ2
a

)
(3.28)

and

Sp(hi,jm,m̄, h
i,x
m,y) = min

Z∈hi,jm,m̄

exp

(
− d⊥(Z, hi,xm,y)2

σp(di(Z))2 + σp(dj(Z))2

)
, (3.29)

where ∠(h1, h2) denotes the angle between the two line segments (in degrees), d⊥(Z, h2)

is the normal distance between the 3D point Z and the infinite line passing through h2,

and di(Z) = ‖Ci − Z‖2 is the Euclidean distance between the camera center Ci of Ii and

Z (i.e. its depth along its corresponding camera ray). To prevent that the confidence gets

high if we only have several weak supporters (i.e. many non-zero elements in the sum

in Equation 3.26, but no strong support among them), we truncate the affinity and only

accept values above 1/2.

Both formulas require a regularization parameter σ. For the angular case (σa; Equation

3.28), we can chose a reasonable value very easily, since angles are scale invariant. However,

for the spatial case (σp; Equation 3.29) this is non trivial. Even if we know the scale of

the reconstruction, choosing a constant value for all 3D hypotheses is not recommended,

since the positional uncertainty of 3D line hypotheses h also depends strongly on the

distances to the cameras from which they were triangulated. Hence, choosing a value that

is too large will produce a bias towards hypotheses that are very close to the cameras,

while a small value will prevent that hypotheses farther away from the cameras can reach

reasonable scores.

To prevent this, we use a depth adaptive spatial regularization function σp(di(Z)),

similar to the one we first proposed in [62]. This regularization function is defined as

σp(d) = d · µ

dmed
, (3.30)

which is a linear function in the depth d. The slope, µ/dmed, of the function consists of a

user specified spatial regularizer µ (e.g. 0.05 for 5 cm in a metric reconstruction), and a

regularization depth dmed, which in our case is simply the median worldpoint-to-camera

distance (however, a different regularization depth can be chosen by the user as well). This

formulation basically allows a spatial uncertainty of µ when the distance to the camera

is exactly dmed, and a lower/larger uncertainty when the distance is smaller/bigger. This

allows us to reliably score correspondences that are triangulated closer to their respective

cameras, as well as those that are triangulated farther away.

However, this formulation requires knowledge about the reconstruction scale, since µ

needs to be chosen by the user. Since in SfM applications scale information is not always

present, we came up with a scale-invariant formulation to handle such cases [61–63, 65].

Reference:

"Manuel Hofer and Michael Maurer and Horst Bischof" (2014)"Improving Sparse 3D Models for Man-Made Environments Using Line-Based 3D Reconstruction"

Reference:

 ()

3.6. Assigning 3D Locations to 2D Segments 53

Figure 3.11: Derivation of the slope µσ
of the spatial regularization function σip(d),
based on the camera geometry and the reg-
ularization parameter σ. The image plane I
is shown from the top.

3.5.1 Scale-Invariant Spatial Regularization

To be scale invariant, we slightly modify the spatial regularizer σp(d) (Equation 3.30) for

each image individually as

σip(d) = d · µσ, (3.31)

which is again a linear function in the depth d. However, this time the slope, µσ, is derived

from the underlying camera geometry. Given a standard pinhole camera model, we do

this by shifting the principle point p̃p horizontally by a user defined 2D regularizer σ (in

pixels), to obtain a second point p̃σp (in homogeneous coordinates), and then computing

the angle β between the two 3D rays K−1 · p̃p and K−1 · p̃σp , where K−1 are the cameras’

inverse intrinsics. We then simply compute µσ = sin(β), which is basically the maximum

distance we can move the unprojection of the principal point at depth d = 1, such that

the distance between the reprojection of the moved point and the principal point in the

image is less or equal to σ (see Figure 3.11). This formulation ensures that higher 3D

point-to-line distances (d⊥(Z, h) in Equation 3.29) are punished less when the respective

hypotheses are farther away from their observing cameras, and vice versa. We now simply

replace σp(d) with our new σip(d) in Equation 3.29, for the scale invariant case.

With the confidence formulation from Equation 3.26 we are now able to determine

whether a matching hypothesis makes sense or not. We only keep hypotheses for further

processing for which c(hi,jm,m̄) > 1, which means that at least two segments from two

additional images (apart from Ii and Ij) have to support hi,jm,m̄. We end up with a much

sparser set of correspondences, with a significantly lower number of outliers, while correct

hypotheses are only seldom removed (e.g. when a segment is occluded in many visual

neighbors). Figure 3.12 (top row) shows a visualization of all verified correspondences,

that remained after the previous verification step. The building and the pylon can be

clearly recognized, even though several outlier hypotheses remain (e.g. in the sky).

3.6 Assigning 3D Locations to 2D Segments

Given all remaining (verified) hypotheses hi,jm,m̄ for a 2D segment `im, we want to estimate

its most probable 3D position, since each 2D segment can only be a projection of one

54 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

649, 388 292, 798

(a) All scored hypotheses {hi,jm,m̄}

101, 074 55, 587

(b) Best hypotheses {ĥim}

Figure 3.12: The result of the scoring and filtering procedure. (a) All hypotheses hi,jm,m̄ for which

c(hi,jm,m̄) > 1. (b) The set of all selected hypotheses {ĥim} (i.e. the one hypothesis with the highest
confidence for each 2D segment across all images). The 3D structure is clearly recognizable in all
images, while the majority of the remaining outliers have been removed below.

specific 3D structure. We use this 3D information for the following clustering procedure,

as we have first shown in [61, 62]. For each 2D segment `im we define its 3D location as

ĥim = argmax
hi,jm,m̄

{
c(hi,jm,m̄)

}
, (3.32)

which is simply its 3D hypothesis with the highest confidence. As stated above, we only

keep hypotheses with a confidence bigger than one, which means that each remaining

hypothesis is supported by ≥ 4 images (see Section 3.5). We have seen that 3D segment

hypotheses verified by 4 or more images are rarely incorrect, which can also be observed for

SfM point-clouds on the 3D point level. Figure 3.12 (bottom row) shows all selected 3D

hypotheses {ĥim} for the Building and the Pylon sequence. As we can see, the majority of

the 2D segments selects its correct 3D position, with only few isolated outliers remaining.

Reference:

 ()

3.7. Clustering Corresponding 2D Segments 55

3.7 Clustering Corresponding 2D Segments

After the previous step, we end up with an individual 3D estimate ĥim for each 2D line

segment `im. To compute one consistent 3D model, we have to fuse corresponding 2D

segments (i.e. segments that originate from the same 3D entity) and their 3D estimates

together. As we have shown in our previous work [62, 63], this can be efficiently done by

employing a graph clustering procedure, which operates on a global affinity matrix W ,

encoding the pairwise similarities between potentially corresponding 2D segments across

all images. Since we only need to consider segment pairs which have been successfully

matched (i.e. for which a valid 3D hypothesis exists), this matrix is usually very sparse.

To compute these similarities, we use the same metric as for the hypothesis confidence

above (see Equation 3.27). Hence, the affinity between two potentially matching 2D

segments `im and `jm̄ can be computed straightforwardly as

W (`im, `
j
m̄) =

{
min

{
Sa(ĥim, ĥ

j
m̄), Ēp(ĥim, ĥ

j
m̄)
}

if min{· · · } > 1
2

0 else
, (3.33)

where Sa is the basic angular similarity (Equation 3.28), and Ēp is a symmetric positional

similarity defined as

Ēp(ĥim, ĥ
j
m̄) = min

{
S̄p(ĥim, ĥ

j
m̄), S̄p(ĥjm̄, ĥ

i
m)
}
, (3.34)

which is computed using a slightly modified version of Sp (referring to Equation 3.29)

S̄p(ĥim, ĥ
j
m̄) = min

Z∈ĥim
exp

(
− d⊥(Z, ĥjm̄)2

σ̄p(di(Z))2 + σ̄p(dj(Z))2

)
, (3.35)

with a different spatial regularizer

σ̄p(d) =

{
d · µ

dmed
if d < dLmed

dLmed ·
µ

dmed
otherwise

, (3.36)

which is truncated at a certain depth dLmed, to avoid the possibility that the allowed

spatial uncertainty grows too large for points far away from the camera center. This is

not necessary during the scoring procedure, but for the reconstruction we want to prevent

potentially imprecise line clusters that might occur far away from the observing cameras.

To obtain a reasonable estimate for dLmed (even when the scale is unknown), we define it as

the median depth over all final 3D hypotheses ĥim to their respective camera Ii, by using

both segment endpoints (similar as for dmed in Equation 3.30, but for 3D line hypotheses

instead of worldpoints).

The resulting affinity matrix W could now be directly fed to an arbitrary graph clus-

tering algorithm, which takes a simple pairwise affinity matrix as an input. In our earlier

Reference:

 ()

56 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

approaches [61, 62], we used the popular method by Felzenszwalb and Huttenlocher [44] as

a clustering algorithm, which delivers visually pleasant results for the general case, with-

out any kind of parameter tuning. In our most recent work [63, 64], we experimented with

a different clustering strategy [35], which is based on diffusing the given affinity matrix

W , by implicitly considering the underlying data manifold. The diffused matrix is then

segmented by the same graph clustering method as before [44]. In both cases, we only

accept clusters if they contain 2D segments from at least three different images.

In practice the choice of the clustering method has a minor influence on the resulting

3D model. In general, the result obtained using [35] manages to cluster together more

3D segments and obtains a slightly denser result, at virtually no additional cost regarding

computational time. Hence, we recommend to use the diffusion-based method [35] by

default.

Regardless of the method, the output of the clustering algorithm is always a set of 3D

line clusters Π = {Π1, · · · ,ΠT }, where each cluster Πt consists of a set of 2D residuals

LΠt = {`1, `2, · · · }, a representative 3D line HΠt , and one or more collinear 3D line seg-

ments hΠt = {h1, · · · } (which are a part of the infinite line HΠt). To obtain the underlying

3D line HΠt for a cluster Πt, we simply use the 3D depth estimates (ĥ) of its 2D residuals.

3.7.1 Final 3D Lines from Clustered Segments

To estimate one representative 3D line HΠt for a cluster Πt, we need two components: the

line direction vΠt ∈ R3, and a 3D point ZΠt ∈ R3 on the line. Other representations are of

course possible as well, e.g. Plücker coordinates or the Cayley representation [180], but the

point-direction representation can be straightforwardly derived from the 3D hypotheses ĥ

of the clustered 2D segments LΠt , as first shown in [73].

To obtain the line direction vΠt we first compute a matrix

P =
[
P im Qim · · ·

]
, P im, Q

i
m ∈ ĥim s.t. `im ∈ LΠt , (3.37)

which simply contains all 3D endpoints of the 3D estimations ĥim, over all 2D residuals of

the cluster (LΠt). We then compute the scatter matrix

M = P ·
(
I − 1

2 · |LΠt |
· C1

)
· PT , (3.38)

where I is the identity matrix, and C1 is a constant matrix containing only 1’s. Finally,

we perform a Singular Value Decomposition

{U,Σ, V } = SVD(M), (3.39)

and define vΠt to be the column of U corresponding to the highest singular value (stored

in Σ), normalized to unit length. A point on the line (ZΠt) can easily be obtained by

Reference:

 ()

Reference:

"Pedro Felzenszwalb and Daniel Huttenlocher" (2004)"Efficient Graph-Based Image Segmentation"

Reference:

 ()

Reference:

"Michael Donoser" ("2013")"Replicator Graph Clustering"

Reference:

"Pedro Felzenszwalb and Daniel Huttenlocher" (2004)"Efficient Graph-Based Image Segmentation"

Reference:

"Michael Donoser" ("2013")"Replicator Graph Clustering"

Reference:

"Michael Donoser" ("2013")"Replicator Graph Clustering"

Reference:

"Lilian Zhang and Reinhard Koch" (2014)"Structure from motion from line correspondences: Representation, projection, initialization and sparse bundle adjustment"

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

3.8. Combined Bundle Adjustment 57

computing the center of gravity of all the 3D segment endpoints stored in P. The final

3D line HΠt of the cluster can now be written in parametric form as

HΠt(s) = ZΠt + s · vΠt . (3.40)

The estimated 3D lineHΠt represents the clustered 2D segments as an infinite line in 3D

space. However, not every part of the line is actually physically existing (i.e. corresponds

to a real structural element in the scene). To obtain the actual 3D line segment set hΠt

on HΠt (i.e. the actually visible part of the infinite line HΠt , with respect to its 2D

observations LΠt), we project the 3D estimates (ĥ) of all 2D residuals LΠt onto the newly

estimated 3D line HΠt , and compute a minimal set of non overlapping 3D line segments

on this line, such that each of these segments is fully covered by at least three of the

projected hypotheses (from at least three different images). This ensures that we only

reconstruct 3D line segments that actually correspond to physically existing parts of the

observed scene. Figure 3.13 shows the final 3D line models (i.e. all final sets hΠt , for

all valid clusters Πt) for the Building and the Pylon sequence, using the two different

clustering approaches mentioned above.

3.8 Combined Bundle Adjustment

The resulting set of 3D line clusters Π obtained in the previous section can be used as

the final output of our pipeline, and is in general very accurate (with respect to the used

regularization parameters µ or σ, and σa). However, since the obtained 3D lines are more

or less an average over several 3D hypotheses, which are only two-view triangulations,

there is no guarantee that they fit the 2D observations in an optimal way. To overcome

this issue, one could easily formulate a bundle adjustment procedure [156], to optimize

the 3D lines with respect to their 2D residuals (i.e. minimizing the reprojection error).

In addition, we could go even further and don’t just optimize the 3D lines alone, but

also the whole SfM result (points and camera poses) using the newly obtained 2D to 3D

correspondences, that are provided by the reconstructed line clusters.

While there are slight differences in the exact formulation in various SfM pipelines,

bundling is usually done by minimizing a non-linear least squares problem, consisting of

the reprojection error of the reconstructed 3D points to their 2D residuals, with respect

to the camera poses. Analogue to a 3D line cluster Πt, a reconstructed 3D point Xt ∈ X
from the SfM can be seen as a cluster Ωt of 2D points PΩt = {p1, p2, · · · } (p ∈ R2), and an

associated 3D position Xt ∈ R3. For points and lines, the combined optimization problem

can be defined as

f∗ = min
{R,t},Ω,Π

∑
Ωt∈Ω

fP (Ωt) + λ
∑

Πt∈Π

fL(Πt), (3.41)

where R, t are the rotation and translation of the cameras, and fP and fL are error

functions for 3D points and lines respectively, with a scalar weighting factor λ. For the

Reference:

"Bill Triggs and Philip McLauchlan and Richard I. Hartley and Andrew W. Fitzgibbon" (1999)"Bundle Adjustment — A Modern Synthesis"

58 Chapter 3. Line3D++: A Line-based 3D Reconstruction Framework

11, 076 segments
340.98 sec

5, 280 segments
74.65 sec

(a) Graph clustering [44]

11,238 segments
361.17 sec

5,319 segments
75.27 sec

(b) Matrix diffusion [35]

Figure 3.13: Final line-based 3D models of the Building and the Pylon sequence obtained by
Line3D++ when (a) directly using the graph-clustering method by Felzenszwalb and Huttenlocher
[44], or when (b) pre-processing the affinity matrix W by using matrix diffusion [35]. Both results
are almost identical. However, the diffusion based approach often manages to reconstruct slightly
more parts of the scene.

sake of simplicity, we do not include the cameras’ intrinsics and distortion coefficients into

the bundle adjustment (but they can be added straightforwardly). In our case, the error

functions are defined as

fP (Ωt) =
∑
px∈PΩ

ρε
(
dP2D(Γx(Xt), px)

)
(3.42)

and

fL(Πt) =
∑
`x∈LΠ

ρε
(
dL2D(Γx(HΠ), `x)

)
, (3.43)

where ρε is the robust Huber loss function (linearised at ε), Γx projects a 3D point or line

into image Ix, and dP2D and dL2D are error functions for 2D points and lines respectively.

Reference:

"Pedro Felzenszwalb and Daniel Huttenlocher" (2004)"Efficient Graph-Based Image Segmentation"

Reference:

"Michael Donoser" ("2013")"Replicator Graph Clustering"

Reference:

"Pedro Felzenszwalb and Daniel Huttenlocher" (2004)"Efficient Graph-Based Image Segmentation"

Reference:

"Michael Donoser" ("2013")"Replicator Graph Clustering"

3.9. Summary 59

For the point case, a common choice is the Euclidean distance

dP2D(p1, p2) = ‖p1 − p2‖2, (3.44)

between the projected (Γx(hΩ) ≡ p1) and the observed (px ≡ p2) 2D point.

For lines this is slightly more complicated. We define the error function as

dL2D(`1, `2) =

∑
p∈`2

d2D
⊥ (p, `1)

 · exp(wL · ∠(`1, `2)), (3.45)

where d2D
⊥ (p, `) is the normal distance from an endpoint p to an infinite line ` (analogue to

Equation 3.29 for the 3D case), and ∠(`1, `2) is the angle between the two lines `1 and `2
(∈ [0, π/2]). The second term can basically be seen as a weighting factor for the first term,

and punishes directional deviations by increasing the positional error if the angle between

the projected and the observed 2D segment is large. We have seen that this additional

weighting leads to a much faster convergence, without negatively affecting the results.

To avoid over-parametrization, we use the Cayley 3D line representation for bundling, as

suggested in [180]. It has the benefit that it only needs four parameters to define a 3D

line, which is an optimal encoding, since a 3D line has exactly four degrees of freedom.

We solve the optimization problem by using the powerful Ceres solver [1], which offers

built-in support for bundle adjustment and is very efficient even for large-scale problems.

3.9 Summary

Throughout this chapter we have introduced our line-based 3D reconstruction pipeline, and

all its necessary computing steps. For each step, we have introduced a set of parameters,

which have to be set properly in order to ensure satisfying reconstruction results. In the

following chapter, we will discuss these parameters and their effects on both the 3D model

and the runtime, for each step of the algorithm individually. We test our method on several

challenging datasets, with and without groundtruth 3D surfaces and/or camera poses. In

addition, we will evaluate the effect of the combined bundle adjustment procedure on both

the accuracy of the 3D line model, as well as the accuracy of the underlying camera poses.

Reference:

"Lilian Zhang and Reinhard Koch" (2014)"Structure from motion from line correspondences: Representation, projection, initialization and sparse bundle adjustment"

Reference:

"Sameer Agarwal and Keir Mierle and Others" ()"Ceres Solver"

4
Evaluation and Results

Contents

4.1 Testing Environment & Implementation Details 61

4.2 Default Parameters . 63

4.3 Test Datasets . 64

4.4 Reconstruction Results . 67

4.5 Parameter Evaluation . 70

4.6 Bundle Adjustment Evaluation 79

4.7 Runtime Evaluation: GPU vs. CPU 82

4.8 Summary . 84

In this chapter, we show various reconstruction results using our proposed method.

Furthermore, we evaluate all parameters introduced in the different pipeline steps through-

out Chapter 3, and their effect on the reconstruction results. To have a meaningful evalua-

tion, we use several challenging test sequences (synthetic and real-world) with and without

groundtruth camera poses, and for some cases also with a groundtruth 3D surface. We will

conclude this chapter with an evaluation of the combined bundle adjustment procedure

for points and lines, and with a runtime analysis which highlights the benefits of parallel

computing using the GPU .

4.1 Testing Environment & Implementation Details

Our test system is an ordinary mid-range desktop PC equipped with the following com-

ponents:

• CPU: Intel Core i5-3570, 4× 3.4 GHz

• GPU: nVidia Geforce GTX 580, 512 CUDA cores

61

62 Chapter 4. Evaluation and Results

• Main Memory: 16 GB

• Hard Drive: 2 TB HDD

Our algorithm is implemented in C++ and CUDA (if an nVidia graphics card is avail-

able). To ensure an efficient computation, we make use of parallel computation whenever

possible. For less computationally expensive steps (e.g. line segment detection or creating

the affinity matrix), and when no suitable GPU is available, we make us of the OpenMP 1

framework for parallelization. If possible, the most runtime intense steps, which are line

matching and hypotheses scoring, are executed on the GPU . We will analyze the achieved

speed-up in Section 4.7.

4.1.1 SfM Pipeline

As explained in Section 3.1, we obtain the camera poses of our input images by running an

off-the-shelf Structure-from-Motion (SfM) pipeline beforehand. While our code directly

supports multiple available SfM pipelines (free and non-free), we use our in-house ICG3D

library for all test sequences in this chapter (apart from one Internet-scale crowd-sourced

dataset, which already comes with a bundler [143] result file). The SfM part of the

library was first introduced in [72], and often extended and improved in subsequent years.

It offers state-of-the-art performance in terms of accuracy, and has a very similar runtime

performance as the recently proposed colmap [137].

The core principles of this SfM pipeline are quite straightforward. All images are first

undistorted based on an initial calibration estimated using [29]. Then, SIFT [101] features

are extracted from the undistorted images, and matched using an accelerated vocabulary

tree based matching scheme [120]. By default, we extract the 5000 largest features per

image, and use

vr = max(min(0.2 ·N, 20), 5) (4.1)

as a voctree radius, where N is the total number of images in the sequence. After the

matching step, relative poses are computed between matched images, and verified using

epipolar constraints based on the matched feature points. Then, an epipolar graph is

created, and the largest connected chain of cameras is extracted. The first two images are

used as an initialization, with the origin being located at the camera coordinate frame of

the first image, and the distance between the two images set to one. Now, the remaining

images are added incrementally using absolute pose estimation [89]. After every tenth

newly added image (and at the very end), bundle adjustment is performed using the

Ceres solver [1]. All processing steps are executed in parallel (whenever possible), either

on the GPU or on the CPU .

For all real-world test sequences, we do not perform geo-referencing or manual scal-

ing, and keep the reconstruction in the local (non-metric) coordinate system. For the

1http://openmp.org/wp/

Reference:

"Noah Snavely and Steve Seitz and Richard Szeliski" ("2006")"Photo Tourism: Exploring image collections in 3D"

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"Johannes Lutz Schoenberger and Jan-Michael Frahm" ("2016")"Structure-from-Motion Revisited"

Reference:

"Shreyansh Daftry and Michael Maurer and Andreas Wendel and Horst Bischof" ("2013")"Flexible and User-Centric Camera Calibration using Planar Fiducial Markers"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"David Nister and Henrik Stewenius" (2006)"Scalable Recognition with a Vocabulary Tree"

Reference:

"Laurent Kneip and Davide Scaramuzza and Roland Siegwart" (2011)"A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation"

Reference:

"Sameer Agarwal and Keir Mierle and Others" ()"Ceres Solver"

http://openmp.org/wp/

4.2. Default Parameters 63

groundtruth sequences, we rigidly align the SfM result to the groundtruth poses, using

a basic similarity transformation (rotation, translation, and scale). We could of course

directly use the groundtruth camera poses without the SfM as well. However, then we

would not have feature correspondences for visual neighbor estimation.

4.2 Default Parameters

Throughout Chapter 3, we have introduced several parameters for each of the recon-

struction steps. For the algorithm to work as expected, these parameters need to be set

properly. In Section 4.5 we evaluate different values for all these parameters, and their

effect on the final output. However, we evaluate the parameters step-by-step, which means

that we will only vary the parameters corresponding to one specific algorithmic step (e.g.

matching) at a time, and keep all the others fixed. Hence, we have to specify the default

values for all steps in advance.

We have performed numerous experiments over the last years, which finally resulted

in this basic default parameter set for our open-source implementation. Please note that

these values do not necessarily produce the best results for all possible scenes (which would

be virtually impossible), but are set such that reasonable results are to be expected for

previously unprocessed datasets, without the necessity of excessive parameter tuning. Of

course, tuning the parameters individually for each dataset might potentially improve the

completeness and the accuracy of the resulting 3D models even more, but this would be

a very tedious task with no scientific value. Table 4.1 shows all default values, for all the

individual reconstruction steps.

Two of these values are not stated as a specific value in the table. The first is the

spatial regularizer (µ [m] or σ [px]), which is by default set to σ = 2.5 pixels, since we

do not assume to have a metrically scaled SfM reconstruction at hand. However, this

parameter obviously heavily depends on the image sizes (see Section 3.5.1, on how the

spatial regularizer is derived from σ). The selected value of 2.5 pixels usually delivers

satisfying reconstruction results for high-resolution images (> 10 Megapixels), and for

non close-up views (e.g. outdoor recordings with a UAV). For image sequences where the

camera is closer to the target objects (e.g. indoor scenes), this value generally needs to

be increased. We will illustrate this issue for the various test datasets in Section 4.4, and

specify a spatial regularizer for all of them individually.

The second non-constant parameter is the weighting term λ of the objective function in

the bundle adjustment (see Section 3.8). We compute it dynamically by setting λ = |Ω|/|Π|
(Equation 3.41), which balances the weight between points and lines such that both parts

contribute equally.

64 Chapter 4. Evaluation and Results

Line Segment Detection (Section 3.3)

Parameter Value Description

ρ 0.005 min. 2D line segment length (relative to the image diagonal)

κ 3000 max. number of 2D segments per image

Establishing Line Segment Correspondences (Section 3.4)

M 10 number of visual neighbors for matching

τ 0.25 min. epipolar overlap

k 10 number of matches (per 2D segment and neighbor image) that are kept

Evaluating Line Segment Correspondences (Section 3.5)

σa 10◦ angular regularizer

µ / σ var. spatial regularizer

Clustering Corresponding 2D Segments (Section 3.7)

Cl. mode [35] clustering algorithm (→ matrix diffusion)

Combined Bundle Adjustment (Section 3.8)

ε 2 px linearizer for the Huber loss function

wL 2 influence of the angular line reprojection error

λ dyn. line weight in objective function

Table 4.1: The default parameters of the Line3D++ algorithm (see Chapter 3).

4.3 Test Datasets

To show the capabilities of our method and to evaluate its accuracy, we use several chal-

lenging test datasets. We divide the set of test sequences into two categories: publicly

available groundtruth sequences, for which camera poses and optionally also a 3D surface

model are available, and real-world sequences, most of which we have recorded ourselves,

by either using a high-resolution hand-held camera or an UAV .

4.3.1 Groundtruth Sequences

We use five groundtruth sequences in our evaluations that come with accurate camera

poses, three of which also have a 3D surface mesh available. The first sequence is the

Timberframe2 dataset from [73]. It is a synthetic sequence consisting of 240 images (1280×
960 px), with groundtruth camera poses and a Computer Aided Design (CAD) model.

Figure 4.1 shows an example image from the sequence and the surface model.

The other four sequences are Herz-Jesu-P8, Herz-Jesu-P25, Castle-P30, and Fountain-

P11, which are all part of the Strecha [146] dense Multi-View Stereo (MVS) datasets 3.

They have different numbers of images (specified by the ”-P* ” at the end of the sequence

name), and a fixed resolution of 3072× 2048 pixels. Figure 4.2 shows example images for

all sequences, and the two surface meshes (laserscans) of Herz-Jesu-P8 and Fountain-P11.

2http://resources.mpi-inf.mpg.de/LineReconstruction/
3http://cvlabwww.epfl.ch/data/multiview/denseMVS.html

Reference:

"Michael Donoser" ("2013")"Replicator Graph Clustering"

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

http://resources.mpi-inf.mpg.de/LineReconstruction/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.html

4.3. Test Datasets 65

(a) Example image (b) Groundtruth CAD model

Figure 4.1: The synthetic Timberframe sequence [73] (240 images, 1280×960 px). (a) An example
image from the sequence. (b) The groundtruth CAD model. Please note that the texture of the
house, as well as the ground on which it stands, are not part of the groundtruth.

Herz-Jesu-P8/25 Castle-P30 Fountain-P11

Herz-Jesu-P8 (laserscan) Fountain-P11 (laserscan)

Figure 4.2: The used Strecha [146] dense MVS datasets (3072 × 2048 px). Top row: Example
images of all sequences (Herz-Jesu-P8 and Herz-Jesu-P25 have similar images, only a different
amount). Bottom row: The two groundtruth surface meshes (obtained by a laserscanner) for Herz-
Jesu-P8 and Fountain-P11. Please note that some actually existing parts of the depicted objects
are not contained in the groundtruth, e.g. the railings at the entrance stairs in Herz-Jesu-P8.

4.3.2 Real-World Sequences

In addition to the five groundtruth datasets introduced above, we also use five real-world

datasets for a qualitative evaluation. The first four datasets are the Building, Pylon,

Façade, and the Kitchen sequence, which we have recorded ourselves. We used different

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

66 Chapter 4. Evaluation and Results

cameras and recording platforms (hand-held or UAV), as well as different kinds of scenes

(e.g. wiry objects, or indoor scenes). Table 4.2 gives some more information about the

scenes, such as resolution or number of images. Figure 4.3 shows an example image from

each sequence.

Name Camera Platform Resolution # images

Building Sony NEX5 UAV 4912× 3264 344

Pylon Canon 5D Hand-held 3744× 5616 106

Façade Panasonic DMC-LX3 UAV 3648× 2736 317

Kitchen Sony Alpha 6000 Hand-held 6000× 4000 62

Table 4.2: The characteristics of our real-world test sequences.

(a) Building (b) Pylon

(c) Façade (d) Kitchen

Figure 4.3: Example images from the real-world sequences (a) Building, (b) Pylon, (c) Façade,
and (d) Kitchen. Information about the datasets can be found in Table 4.2.

Finally, we also tested our algorithm on the Internet-scale Dubrovnik6K 4 [97] dataset,

4http://www.cs.cornell.edu/projects/p2f/

Reference:

"Yunpeng Li and Noah Snavely and Daniel P. Huttenlocher" (2010)"Location Recognition using Prioritized Feature Matching"

http://www.cs.cornell.edu/projects/p2f/

4.4. Reconstruction Results 67

which consists of more than 6000 crowd-sourced images (see Figure 4.4 for some examples).

It comes with a metrically scaled SfM reconstruction obtained using bundler [143], which

we directly use as an input for our method. Here, most images have a different resolution

and originate from different cameras, and were taken at different times as well. These facts

make a dataset like this especially challenging to reconstruct, since the intrinsic camera-

and distortion parameters have to be estimated for each image individually. In addition,

most of the images have a comparably low resolution (below 5 Megapixels).

Figure 4.4: Example images from the crowd-sourced Dubrovnik6K dataset [97]. The images
where obtained from Flickr (https://www.flickr.com/).

4.4 Reconstruction Results

In this section, we show the reconstruction results for all our test sequences, using the

default parameters introduced in Section 4.1. The spatial regularizer (µ for metric-, and

σ for unscaled SfM results) is specified for each dataset individually.

4.4.1 Results on Real-World Sequences

Figure 4.5 shows the final line-based 3D models for the real-world sequences, in context

with their corresponding sparse SfM - [72], and their dense PMVS [49] point clouds. All

relevant numbers (e.g. runtime, or number of 3D entities) can be found in Table 4.3.

As we can see, the line-based 3D models deliver a high amount of semantically mean-

ingful information compared to basic SfM , despite being a sparse 3D representation as

well. In addition, our algorithm is on average around 9.5 times faster than SfM , and more

than 160 times faster than PMVS (however, SfM has to be performed beforehand, unless

the camera poses are already available from some other source).

To further emphasize the efficiency of our algorithm, we show a line-based 3D recon-

struction for the crowdsourced Dubrovnik6K [97] dataset in Figure 4.6. As we can see, our

method is able to successfully process this very large-scale dataset, with a total runtime

of just 90 minutes (∅t ≈ 0.79 s). Since the scale is metric, and the images have various

different resolutions, we use a spatial regularizer µ = 0.025 (which is 2.5 cm) defined in

world coordinates. The obtained result shows satisfying 3D models, especially in densely

photographed areas of the city (e.g. churches). However, due to the generally low im-

age resolutions, the amount of noise is slightly higher compared to the results shown in

Reference:

"Noah Snavely and Steve Seitz and Richard Szeliski" ("2006")"Photo Tourism: Exploring image collections in 3D"

Reference:

"Yunpeng Li and Noah Snavely and Daniel P. Huttenlocher" (2010)"Location Recognition using Prioritized Feature Matching"

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"Yasutaka Furukawa and Brian Curless and Steve Seitz and Richard Szeliski" (2010)"Towards Internet-Scale Multi-View Stereo"

Reference:

"Yunpeng Li and Noah Snavely and Daniel P. Huttenlocher" (2010)"Location Recognition using Prioritized Feature Matching"

https://www.flickr.com/

68 Chapter 4. Evaluation and Results

Building (344 images)

Pylon (106 images)

Façade (317 images)

Kitchen (62 images)

Figure 4.5: Reconstruction results for the real-world datasets. Left column: The sparse SfM
reconstruction [72] using SIFT [101] feature points. Middle column: A dense point cloud us-
ing PMVS [49]. Right column: A line-based 3D model obtained using our proposed Line3D++
algorithm. The corresponding numbers can be found in Table 4.3.

Figure 4.5. In general, we recommend to use one consistent high-resolution camera over

crowdsourced data, but this experiment shows that our method can handle such cases as

well.

4.4.2 Results on Groundtruth Sequences

Figure 4.7 shows a quantitative evaluation of our method on the Herz-Jesu-P8, and the

Fountain-P11 datasets [146]. The lines are color-coded by their Root-Mean-Square Error

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"Yasutaka Furukawa and Brian Curless and Steve Seitz and Richard Szeliski" (2010)"Towards Internet-Scale Multi-View Stereo"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

4.4. Reconstruction Results 69

SfM [72] PMVS [49] Line3D++ (proposed)

Dataset time t [s] ∅t [s] # points time t [s] ∅t [s] # points time t [s] ∅t [s] # lines σ [px]

Building 2, 640 7.67 97, 699 51, 660 150.17 14, 516, 368 361.17 1.05 11,238 2.5

Pylon 660 6.23 18, 623 7, 980 75.28 1, 393, 124 75.27 0.71 5,319 2.5

Façade 1, 980 6.25 79, 870 25, 380 80.06 6, 520, 863 162.02 0.51 6,767 4.0

Kitchen 420 6.77 24, 401 9, 960 160.65 1, 237, 824 35.53 0.57 1,118 15.0

Mean 6.73 116.54 0.71

Table 4.3: Corresponding numbers to the reconstruction results of our real-world datasets, seen
in Figure 4.5. For more information about the datasets see Table 4.2.

Figure 4.6: Reconstruction result for the large crowdsourced Dubrovnik6K [97] dataset (6844
images; µ = 0.025; 21, 040 3D lines). The total runtime was approximately 90 minutes (excluding
SfM).

(RMSE) to the ground truth surface, using the Hausdorff distance. Please note that not

all valid 3D lines are actually contained in the ground truth. This is especially notable on

the railings at the main entrance of Herz-Jesu-P8 (colored in red).

Figure 4.8 shows an evaluation on the synthetic Timberframe dataset, as well a com-

parison to the original reconstruction result by Jain et al. [73]. As we can see, our method

manages to reconstruct the house more densely and with a lower RMSE to the ground

truth surface. In their paper no explicit runtimes are given, but it is stated that the

reconstruction can easily take several hours. Our method finishes in less than a minute,

which is mostly due to the more efficient matching procedure and the massive parallelism.

Results for the remaining two datasets (Herz-Jesu-P25 and Castle-P30), which do not

have a groundtruth surface mesh available, can be seen in Figure 4.9. Please note that all

our reconstruction results above where obtained with bundle adjustment enabled. We will

analyze how the optimization procedure affects the quality of the line-based 3D models,

as well as the accuracy of the camera poses, in Section 4.6.

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"Yasutaka Furukawa and Brian Curless and Steve Seitz and Richard Szeliski" (2010)"Towards Internet-Scale Multi-View Stereo"

Reference:

"Yunpeng Li and Noah Snavely and Daniel P. Huttenlocher" (2010)"Location Recognition using Prioritized Feature Matching"

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

70 Chapter 4. Evaluation and Results

Herz-Jesu-P8 [µ = 0.025]
RMSE : 5.21 cm

870 segments
4.84 seconds

Fountain-P11 [µ = 0.025]
RMSE : 3.34 cm
1, 029 segments

7.19 seconds

Figure 4.7: Quantitative evaluation on the Herz-Jesu-P8, and the Fountain-P11 datasets [146].
The RMSE is computed for densely sampled points on the 3D lines to the ground truth mesh.
The colors indicate the RMSE using a linear color mapping (blue: 0.0, green: 0.05, red: ≥ 0.1 m).

4.5 Parameter Evaluation

In this section, we evaluate different parameters for each reconstruction step individually,

and analyze how different choices effect the reconstruction output. All remaining param-

eters (apart from the one being analyzed) are set to their default values, as discussed in

Section 4.2.

4.5.1 Line Segment Detection

As line segment detector we chose the popular LSD algorithm [51], which does not require

any parameter tuning, and for which several efficient and robust implementations are

available (e.g. in OpenCV 3). As stated in Section 3.3, we only use the κ longest 2D line

segment for reconstruction, but only if they are longer than ρ times the image diagonal

(κ = 3000, ρ = 0.005; see Table 4.1). In most cases, the number of detected line segments

that are long enough is well below 3000, which means that κ is not a very important

parameter, and just ensures a certain worst-case performance and memory consumption.

Therefore, we do not perform an evaluation on κ, since the results do not really change

when it is modified, unless we would set it to an unreasonably small number.

However, since we have proposed to scale down high-resolution images to smaller sizes

for a more efficient line segment detection in our previous work [61–63, 65], we perform an

evaluation how line segment detection on the full-size versus the reduced images affects

the completeness of the results, as well as the runtime. For this experiment, we reduced

the images to a constant width of 1280 (≈ HD ready) and 1920 (≈ FullHD) pixels, and

compared to the full resolution results from Section 4.4.1 and 4.4.2 (width in this con-

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Rafael Grompone von Gioi and Jeremie Jakubowicz and Jean-Michel Morel and Gregory Randall" (2008)"LSD: A Fast Fine Segment Detector With a False Detection Control"

Reference:

 ()

4.5. Parameter Evaluation 71

Jain et al. [73]
RMSE : 16.14 cm

828 segments
n.a. (≈ several hours)

Line3D++ [µ = 0.05]
RMSE : 3.85 cm
3, 694 segments
37.70 seconds

Figure 4.8: Quantitative evaluation on the Timberframe [73] synthetic dataset (240 images). The
RMSE is computed for densely sampled points on the 3D lines to the ground truth CAD model.
The colors indicate the RMSE using a linear color mapping (blue: 0.0, green: 0.25, red: ≥ 0.5
m). On the left, we see the original result by [73]. On the right, we see the result obtained using
Line3D++.

Herz-Jesu-P25 [µ = 0.025]
2, 210 segments
21.53 seconds

Castle-P30 [µ = 0.05]
3, 188 segments
22.02 seconds

Figure 4.9: Reconstruction results for the Herz-Jesu-P25 (25 images), and the Castle-P30 (30
images) datasets [146].

text always refers to the larger image dimension). After the line segment detection, the

coordinates are always upscaled to the full image dimensions.

Table 4.4 shows the evaluation result for all datasets, except the Timberframe sequence,

where all images already have a width of 1280 pixels. The speed-up is simply defined as

speed-upw =
tref
tw

, (4.2)

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

72 Chapter 4. Evaluation and Results

where tref is the reconstruction time using the full-sized images, and tw is the reconstruc-

tion time using the resized images. The reconstruction results can be seen in Figure 4.10

for the real-world-, and in Figure 4.11 for the ground-truth datasets.

w = 1280 (≈ HD ready) w = 1920 (≈ FullHD) Full Size

Dataset time t [s] ∅t [s] # lines Speed-up time t [s] ∅t [s] # lines Speed-up time t [s] ∅t [s] # lines width

Building 129.18 0.38 2, 346 2.80× 206.16 0.60 6, 268 1.75× 361.17 1.05 11, 238 4912

Pylon 20.63 0.19 1, 340 3.65× 31.42 0.30 3, 071 2.40× 75.27 0.71 5, 319 5616

Façade 57.19 0.18 3, 537 2.83× 84.84 0.27 5, 462 1.91× 162.02 0.51 6, 767 3648

Kitchen 9.89 0.16 708 3.59× 13.38 0.22 1, 062 2.66× 35.53 0.57 1, 118 6000

HJ-P25 [146] 13.12 0.52 1, 679 1.64× 17.47 0.70 2, 223 1.23× 21.53 0.86 2, 210 3072

HJ-P8 [146] 2.96 0.37 580 1.64× 4.01 0.50 838 1.21× 4.84 0.61 870 3072

C-P30 [146] 8.67 0.29 1, 610 2.54× 16.98 0.57 2, 927 1.30× 22.02 0.73 3, 188 3072

F-P11 [146] 4.42 0.40 833 1.63× 6.37 0.58 1, 086 1.13× 7.19 0.65 1, 029 3072

Mean 0.29 2.37× 0.43 1.62× 0.65

Table 4.4: Evaluation results for the line segment detection step (see Section 3.3). The corre-
sponding reconstruction results can be seen in Figures 4.10 and 4.11.

As we can see, for the majority of the cases the completeness of the resulting 3D models

does not suffer largely when the images are resized to approximate FullHD resolution, while

the quality significantly drops when the images are made even smaller. This is especially

noticeable for the Pylon and the Building model (Figure 4.10), where large parts of the

reconstruction are missing when the images are reduced.

The average speed-up is about 2.4 times for HD ready, and about 1.6 times for FullHD

resolution. However, if we look at the absolute numbers we see that this is only relevant

for the larger image sequences, such as Building, where the total execution time drops

from 361.17 (∅t = 1.05 s) to 129.18 seconds (∅t = 0.38 s). But even here the absolute

difference is rather negligible, compared to the execution time of the SfM pipeline that is

executed beforehand.

Table 4.5 shows a quantitative accuracy evaluation on the Herz-Jesu-P8 and the

Fountain-P11 groundtruth datasets [146]. As we can see, the accuracy of the 3D model

is very similar for all image sizes, with only small differences in the millimeter range.

To conclude, in general it is beneficial to detect the line segments on higher resolutions,

which benefits the completeness and the accuracy of the reconstructions, without severely

affecting the runtime efficiency. However, when the available execution time is limited it

makes sense to slightly reduce the image sizes, as long as the reduction is not too severe.

w = 1280 (≈ HD ready) w = 1920 (≈ FullHD) Full Size (w = 3072)

Dataset RMSE [cm] mean err. [cm] RMSE [cm] mean err. [cm] RMSE [cm] mean err. [cm]

Herz-Jesu-P8 6.83 3.22 6.04 2.92 5.21 2.07

Fountain-P11 3.97 1.30 3.32 1.08 3.34 1.14

Table 4.5: Quantitative evaluation results for the line segment detection step, on the two
groundtruth datasets Herz-Jesu-P8 and Fountain-P11 [146].

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

4.5. Parameter Evaluation 73

Figure 4.10: Reconstruction results on the real-world datasets, for different image-sizes during
line segment detection. The corresponding numbers can be found in Table 4.4.

4.5.2 Line Matching

The line matching step (see Section 3.4) depends on three parameters, which are the

maximum number of visual neighbors (M = 10), the epipolar overlap threshold (τ = 0.25),

and the number of matches per 2D segment and neighboring image which are kept (k = 10).

We divide the parameter evaluation into two steps. First, we evaluate the epipolar overlap

threshold τ on its own, and second, we evaluate M and k in combination. Therefore, we

perform a quantitative evaluation on how changing k affects recall and precision of the

matching procedure on all datasets, followed by a demonstration on how various M and

k pairs influence the reconstruction results for the Pylon sequence visually.

74 Chapter 4. Evaluation and Results

Figure 4.11: Reconstruction results on the groundtruth datasets, for different image-sizes during
line segment detection. The corresponding numbers can be found in Table 4.4.

4.5.2.1 Evaluating τ

The default value for τ is 0.25, which means that the mutual support of two potentially

matching 2D line segments has to be at least 25% (with respect to the epipolar geometry).

Our experiments showed that this value is a fair compromise between robustness to occlu-

sions, and matching precision, since it does not result in too many outlier matches. As an

evaluation, we run our algorithm with four different values (τ ∈ {0.01, 0.25, 0.50, 0.90}),
which range from a very low threshold (τ = 0.01), that accepts almost everything as long

as there is at least some overlap, to a very high threshold (τ = 0.90), that expects an

almost complete compliance, and hence no severe occlusions are tolerated. For this exper-

iment, we set k = ∞ (which means no k-nearest-neighbor matching; see Section 3.4.3),

such that the effects of modifying τ can be properly analyzed.

Figure 4.12 shows the resulting 3D models, and Table 4.6 the corresponding numbers.

4.5. Parameter Evaluation 75

As expected, the number of reconstructed 3D lines decreases when τ is increased, since

a lower number of matches is accepted. This essentially means that the tolerance to

imprecise line segment detections and occlusions goes down with higher values for τ . It is

noticeable that up to τ = 0.5 (i.e. 50% occlusion tolerance) the results are fairly stable,

and the completeness of the 3D models does not change dramatically. However, when a

very extreme value is chosen (τ = 0.9), the 3D models are very unsatisfying, and a lot

of relevant parts of the scene are missing. As a conclusion, it is beneficial to chose lower

values for τ since the chance of missing correct matches is decreased, while the risk of

introducing outliers is still very small. Analogue to the number of reconstructed 3D lines,

the runtime is of course higher when τ is smaller, since more matches have to be processed

in later stages of the algorithm. However, the mean per-image runtime only varies between

0.88 and 0.64 seconds, which further undermines that τ should be kept low, unless one

needs to process a very large dataset with a low time budget.

Figure 4.12: Reconstruction results for different τ values during the line matching evaluation,
on the real-world datasets. The corresponding numbers can be found in Table 4.6.

76 Chapter 4. Evaluation and Results

τ = 0.01 τ = 0.25 (default) τ = 0.50 τ = 0.90

Dataset time t [s] ∅t [s] # lines time t [s] ∅t [s] # lines time t [s] ∅t [s] # lines time t [s] ∅t [s] # lines

Building 497.32 1.45 15, 580 385.36 1.12 15, 248 338.18 0.98 12, 021 319.41 0.93 5, 227

Pylon 87.83 0.83 5, 280 78.87 0.74 5, 663 72.34 0.68 5, 292 68.71 0.65 1, 497

Façade 208.61 0.66 8, 157 163.96 0.52 7, 730 146.80 0.46 5, 673 143.31 0.45 2, 241

Kitchen 35.92 0.58 1, 176 34.93 0.56 1, 180 33.84 0.55 919 32.84 0.53 223

Mean 0.88 0.74 0.67 0.64

Table 4.6: Line matching evaluation results for various τ values, with k = ∞ (see Section 3.4).
The corresponding reconstruction results can be seen in Figure 4.12.

4.5.2.2 Evaluating M and k

The default value for M as well as k is 10, which means that each image is matched with

its M = 10 nearest visual neighbors (see Section 3.4.1), and for each 2D segment the

k = 10 best matches are kept in each of the selected visual neighbor images (see Section

3.4.3). Hence, each 2D segment has at most M · k = 100 potential matches.

As a qualitative evaluation of the parameter k, we perform our geometric matching

procedure for randomly selected image pairs from all datasets (by only allowing pairs

which are actually visual neighbors), for various k values (k ∈ {1, 5, 10, 20,∞}). We then

calculate the

recall =
#true positives

#true positives + #false positives
, (4.3)

and the

precision =
#true positives

#true positives + #false negatives
, (4.4)

considering only the 100 longest line segments in each image (since manually evaluating

all 3000 segments would be quite exhausting, and we do not have labelled groundtruth

matches available). Also, we only include 2D segments into the measurements which are

not occluded in the opposite image, such that the correct match could actually be found.

This is a reasonable thing to do, since occluded segments cannot be matched by any line

matching method. Table 4.7 shows the evaluation results.

As we can see, when k = 1 (nearest-neighbor matching) we end up with a fairly low

recall (and precision) of only 55%, which means that the miss the correct match almost half

of the time. However, the speed-up compared to the baseline (k =∞) is with more than 30

times quite large, where speed-up simply relates to the number of resulting matches which

need to be post-processed later on. When we increase k to 5, the recall quickly increases

to almost 80% (with a precision of around 16%), which is already quite reasonable for

proper reconstruction results. The speed-up drops to approximately 6 times, which is of

course to be expected, since we have (at most) five times more matches to process. When

we further increase k to 10 (default) and 20, the recall jumps to 90% and 93% respectively.

Compared to the 11% increase in recall between k = 5 and k = 10, the difference of just

3% between k = 10 and k = 20 is quite insignificant in practice. When we finally set

k =∞ we only gain additional 3% in recall, which suggests that there is not much to be

4.5. Parameter Evaluation 77

gained from setting k > 20. As a conclusion, we use k = 10 by default, which is still about

three times faster than the baseline, with a reasonably high recall. However, if runtime is

not an issue one can always use larger k values (or k =∞), to minimize the risk of missing

a correct match.

k = 1 k = 5 k = 10 (default) k = 20 k =∞
Dataset Rec./Prec. Speed-up Rec. Prec. Speed-up Rec. Prec. Speed-up Rec. Prec. Speed-up Rec. Prec.

HJ-P25 [146] 0.64 31.4× 0.79 0.16 6.4× 0.88 0.09 3.4× 0.93 0.05 1.7× 0.95 0.03

C-P30 [146] 0.45 31.9× 0.63 0.14 7.1× 0.79 0.09 4.0× 0.83 0.05 2.2× 0.89 0.03

F-P11 [146] 0.64 20.3× 0.94 0.19 4.1× 1.00 0.10 2.1× 1.00 0.06 1.3× 1.00 0.05

TF [73] 0.41 25.4× 0.80 0.17 5.3× 0.96 0.09 2.7× 1.00 0.06 1.4× 1.00 0.04

Building 0.75 64.4× 0.82 0.16 12.9× 0.93 0.09 6.4× 0.98 0.05 3.2× 1.00 0.02

Pylon 0.48 27.1× 0.86 0.17 5.4× 0.96 0.10 2.7× 0.98 0.06 1.6× 0.98 0.04

Façade 0.33 32.4× 0.67 0.14 6.3× 0.81 0.08 3.2× 0.85 0.05 1.7× 0.96 0.03

Kitchen 0.72 11.9× 0.81 0.18 2.7× 0.88 0.11 1.5× 0.88 0.08 1.1× 0.88 0.07

Mean 0.55 30.6× 0.79 0.16 6.3× 0.90 0.09 3.2× 0.93 0.06 1.8× 0.96 0.04

Table 4.7: Quantitative line matching evaluation results for various k values (see Section 3.4.3).
Rec. stands for recall, and Prec. for precision.

To give a visual impression, we also evaluate the combined effect of M and k on the

Pylon sequence, by selecting M ∈ {5, 10, 20,∞}, and k ∈ {1, 5, 10,∞}. The reconstruction

results are shown in Figure 4.13 , and the corresponding numbers in Table 4.8. As we

can see, varying k does not affect the runtime by a very large margin for this mid-sized

dataset (106 images). However, the reconstruction results are significantly better and more

complete when higher values for k are used. It is noticeable that setting k = 10 (default)

and k =∞ produces nearly identical results (also regarding the number of reconstructed

segments), with a slight runtime benefit for k = 10. In addition, we can also see here that

nearest-neighbor matching (k = 1) is not very suitable for our matching procedure, since

we often encounter severe occlusions, which means that the correct match might not have

the highest epipolar overlap.

Similar observations can be made for the choice of M . The results are noticeably

better when each image is matched with more visual neighbors, but the runtime of course

increases with each additional matching procedure. When M = 10 (default), the results

are virtually identical to M = 20 and M =∞, with a lower runtime. As a final conclusion,

given a high enough time budget it is always beneficial to increase M and k, to get the

best result possible. However, the default values deliver results close to the optimum, with

a bounded computational complexity.

4.5.3 Match Evaluation

The evaluation (scoring) of the obtained matches (see Section 3.5) depends on two pa-

rameters. The first is the angular regularizer σa (by default set to 10◦), and the second

is a depth-adaptive spatial regularizer, which is either defined directly in 3D space (µ), or

scale-invariantly in pixels (σ). As we have stated in Section 4.2, the angular regularizer

can be kept constant since angles are inherently scale invariant. The more challenging

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

78 Chapter 4. Evaluation and Results

Figure 4.13: Reconstruction results for four different M and k values, demonstrated on the Pylon
sequence. The corresponding numbers can be found in Table 4.8.

task is to select a proper spatial regularizer, since it depends on multiple factors (scale

of the reconstruction, image sizes, accuracy of the camera poses, ...). Hence, we cannot

simply define a default parameter that makes perfect sense for all scenarios.

When the scale is known, selecting a proper value is fairly straightforward (e.g. setting

µ to a few centimeters usually works fine for the reconstruction of buildings and other

outdoor structures). However, when we do not know the reconstruction scale, the selection

of a proper value for σ is slightly more complicated. In Table 4.3, we have specified working

4.6. Bundle Adjustment Evaluation 79

k = 1 (nearest-neigh.) k = 5 k = 10 (default) k =∞
Pylon time t [s] ∅t [s] # lines time t [s] ∅t [s] # lines time t [s] ∅t [s] # lines time t [s] ∅t [s] # lines

M = 5 60.10 0.57 866 60.09 0.57 1, 984 60.10 0.57 2, 402 61.73 0.58 2, 782

M = 10 (def.) 70.63 0.67 2, 100 72.85 0.69 4, 584 75.27 0.71 5, 319 78.56 0.74 5, 663

M = 20 92.70 0.87 2, 848 99.14 0.94 5, 215 101.87 0.96 5, 317 110.13 1.04 5, 160

M =∞ 110.37 1.04 3, 248 118.07 1.11 4, 590 127.51 1.20 4, 560 142.83 1.35 4, 385

Table 4.8: Evaluation results on the Pylon sequence, for four different M and k values in the
line matching step (see Sections 3.4.1 and 3.4.3). The corresponding reconstruction results can be
seen in Figure 4.13.

σ values for our real-world datasets, which provide reasonable results. As we can see, the

values vary from 2.5 to as much as 15 pixels. For the general case, a value in the one digit

pixel range is usually fine, especially when we deal with high-resolution outdoor datasets,

where the distance between the objects and the images is generally larger than in indoor

datasets. However, to demonstrate the affect of modifying σ, we perform an experiment

on our real-world datasets, where we set the previously chosen value for σ from Table 4.3

to σ/2 and 2σ. Figure 4.14 shows the corresponding reconstruction results.

As we can see, lower values for σ naturally lead to sparser 3D models, while higher

values produce a more complete output. In all cases, no outliers were introduced, even

when σ = 30 pixels for the Kitchen sequence. However, this is not very surprising since

all the chosen values are still in a very reasonable range (given the image sizes). To

demonstrate the effect of unreasonably large σ values, we ran the Pylon testcase with

σ ∈ {10, 25, 50}. A detail view on the top of the pylon can be seen in Figure 4.15 (a-c).

As we can observe, the models are still fairly accurate, with hardly any severe outliers

present. However, the results do get quite noisy, especially when σ = 50 pixels. What is

interesting is, that the number of reconstructed 3D lines actually decreases with higher

values for σ. This is due to the fact that a higher spatial regularizer might fuse 2D

segments that are actually not originating from the same 3D structure, but are just close

together (i.e. the main structural parts of the pylon). A full view of the scene can be seen

in Figure 4.15 (d).

So far, there is no automatic way to derive σ (or µ) for every possible scenario. However,

as a rule of thumb, one digit pixel values are a good initial guess for σ (lower for outdoor-,

and higher for indoor scenes), and a few centimeters should be reasonable for µ. If the

initial guess was incorrect, re-running Line3D++ with a different value is usually not a

problem, due to the algorithm’s high efficiency.

4.6 Bundle Adjustment Evaluation

To evaluate the potential influence of the reconstructed line segments on the accuracy of

the overall 3D reconstruction (including the SfM step), we re-bundle the whole model

using both the 3D points from the SfM , and the 3D lines from our proposed method. We

then perform two separate evaluations. First, we evaluate the accuracy of the optimized

80 Chapter 4. Evaluation and Results

σ = 1.25 px; 5, 191 lines σ = 2.5 px; 11, 238 lines σ = 5.0 px; 15, 187 lines

σ = 1.25 px; 2, 917 lines σ = 2.5 px; 5, 319 lines σ = 5.0 px; 6, 586 lines

σ = 2.0 px; 2, 838 lines σ = 4.0 px; 6, 767 lines σ = 8.0 px; 9, 270 lines

σ = 7.5 px; 649 lines σ = 15.0 px; 1, 118 lines σ = 30.0 px; 1, 180 lines

Figure 4.14: Reconstruction results for different σ values during the match evaluation step.

camera poses in comparison to the purely point-based SfM . And second, we evaluate the

accuracy of the optimized 3D line models in comparison to unoptimized reconstructions

(i.e. stopping after the clustering step described in Section 3.7.1). As a reference, we use

the true camera poses provided by our groundtruth datasets, as well as the groundtruth

surface models.

4.6. Bundle Adjustment Evaluation 81

(a)
σ = 10 px
5, 970 lines (b)

σ = 25 px
5, 119 lines (c)

σ = 50 px
4, 499 lines

(d) Full scene (σ = 50 px)

Figure 4.15: Reconstruction results for extreme σ values on the Pylon sequence.

4.6.1 Camera Pose Accuracy

To evaluate the effect of the combined bundling procedure on the camera poses, we com-

pare the re-bundled poses to the poses from the basic (points only) SfM result [72] (5000

SIFT [101] features; see Section 4.1.1), as well as to a different SfM result with more fea-

ture points per image (# SIFT = 5000+κ = 8000). This additional comparison evaluates

how the appearance as well as the accuracy of the SfM results changes when simply more

feature points are used, rather than when points and lines are used in combination.

Table 4.9 shows the evaluation results. The error computation is dived in two parts, the

positional error (in centimeters) and the angular error (in degrees). The positional error

is simply the absolute deviation of the reconstructed camera centers from the groundtruth

camera positions, and the angular error is the angle between the optical axes of the

reconstructed- and the groundtruth camera poses. As we can see, for most cases (apart

from Fountain-P11) the combined bundle adjustment results in the lowest positional er-

rors. This might of course also be a result of the higher number of 3D entities to be bundled

(i.e. more 3D information). It is observable throughout all testcases that a higher number

of SIFT [101] features does not really result in denser point clouds (i.e. the number of

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

Reference:

"David G. Lowe" (2004)"Distinctive Image Features from Scale-Invariant Keypoints"

82 Chapter 4. Evaluation and Results

reconstructed 3D points stays roughly the same), while adding the reconstructed lines

significantly increases the available 3D entities for optimization. However, all in all the

improvement on the positional errors is rather small, and lies somewhere in the millimeter

or low centimeter range for all datasets, since the underlying SfM pipeline is already quite

accurate [72].

For the angular error, the results are less conclusive. All three methods achieve the best

scores (lowest errors) for some of the testcases, but with very small absolute differences

among them. All in all, the angular errors are extremely low, with the maximum error

being always well below one degree (apart from Castle-P30, where the maximum errors

are slightly above one degree). Figure 4.16 shows comparative reconstruction results for

Herz-Jesu-P25 and Castle-P30, for all three reconstruction methods. As we can see, the

point clouds with 5000 versus 8000 SIFT features are virtually identical, while points

and lines in combination give a much better visual impression of the scene, with a higher

semantic meaning.

SfM [72] (# SIFT = 5, 000) SfM [72] (# SIFT = 8, 000) Comb. (# SIFT = 5, 000; # LINES = 3, 000)

Pos. Err. [cm] Ang. Err. [deg] |Ω| Pos. Err. [cm] Ang. Err. [deg] |Ω| Pos. Err. [cm] Ang. Err. [deg] |Ω|+ |Π|
Dataset max mean max mean max mean max mean max mean max mean

HJ-P25 [146] 1.611 0.611 0.155 0.070 12, 520 1.435 0.599 0.123 0.049 12, 311 1.207 0.495 0.139 0.074 14, 730

HJ-P8 [146] 0.692 0.425 0.279 0.253 4, 924 0.669 0.424 0.273 0.253 4, 924 0.658 0.404 0.276 0.252 5, 794

C-P30 [146] 62.244 8.093 1.217 0.263 17, 386 65.461 8.760 1.269 0.252 17, 688 62.077 7.707 1.219 0.265 20, 574

F-P11 [146] 0.472 0.309 0.101 0.084 7, 365 0.476 0.324 0.113 0.084 7, 357 0.572 0.354 0.091 0.070 8, 394

TF [73] 8.453 3.709 0.205 0.061 43, 413 9.930 3.393 0.227 0.064 43, 579 7.910 2.817 0.245 0.082 47, 107

Table 4.9: Evaluation results for the combined bundle adjsutment optimization (see Section 3.8).
The corresponding reconstruction results for Herz-Jesu-P25 and Castle-P30 can be seen in Figure
4.16.

4.6.2 Line Model Accuracy

Table 4.10 shows a quantitative evaluation of the bundled- and unbundled 3D line models,

with respect to the groundtruth surfaces of Herz-Jesu-P8, Fountain-P11, and Timber-

frame. For Herz-Jesu-P8 and Timberframe the bundling procedure improves the accuracy

of the 3D reconstruction, while the unbundled result is more accurate for Fountain-P11.

This is consistent with the analysis of the bundled camera poses in Section 4.6.1, where

Fountain-P11 is the only dataset which does not benefit from the combined bundle ad-

justment. However, the differences are at most in the low millimeter range, which further

shows that the obtained camera poses using purely point-based SfM are already very

accurate, and do not benefit by a large amount from a combined optimization at the end.

4.7 Runtime Evaluation: GPU vs. CPU

Several parts of our method can be efficiently executed in parallel. Most notably, the com-

putationally most expensive line segment matching- (Section 3.4) and hypotheses scoring

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Christoph Strecha and Wolfgang von Hansen and Luc Van Gool and Pascal Fua and Ulrich Thoennessen" (2008)"On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery"

Reference:

"Arjun Jain and Christian Kurz and Thorsten Thormaehlen and Hans-Peter Seidel" (2010)"Exploiting Global Connectivity Constraints for Reconstruction of 3D Line Segments from Images"

4.7. Runtime Evaluation: GPU vs. CPU 83

12, 520 points 12, 311 points 14, 730 points+lines

17, 368 points 17, 688 points 20, 574 points+lines

Figure 4.16: Reconstruction results for Herz-Jesu-P25 (top) and Castle-P30 (bottom). Left:
SfM [72] with 5000 SIFT features, Middle: SfM with 8000 SIFT features, and Right: SfM and
Line3D++ combined. The corresponding numbers can be found in Table 4.9.

Line3D++ (raw) Line3D++ (bundled)

Dataset RMSE [cm] mean err. [cm] RMSE [cm] mean err. [cm]

Herz-Jesu-P8 5.56 2.81 5.21 2.07

Fountain-P11 3.30 1.11 3.34 1.14

Timberframe 3.88 2.88 3.85 2.81

Table 4.10: Quantitative evaluation results for the combined bundle adjustment, on the three
groundtruth datasets Herz-Jesu-P8 [146], Fountain-P11 [146], and Timberframe [73].

steps (Section 3.5) can be easily parallelized, which significantly boosts the performance.

In our case, we make use of the CUDA 5 framework by nVidia, which of course means

that GPU support is only available when an nVidia graphics card is installed.

Table 4.11 shows the total execution times on the CPU versus the GPU , for all test-

cases. As we can see, the average speed-up when using the GPU is approximately 2.4

times, and the average execution time drops from 1.49 to 0.65 seconds per image. The

reconstruction results are virtually identical, there are only slight variations in the number

of reconstructed 3D lines. This is mainly due to the different datatypes that are used on

the CPU and the GPU , as well as due to the CPU ’s higher floating-point precision.

5http://www.nvidia.com/object/cuda_home_new.html

Reference:

"Arnold Irschara and Christopher Zach and Horst Bischof" (2007)"Towards Wiki-Based Dense City Modeling"

http://www.nvidia.com/object/cuda_home_new.html

84 Chapter 4. Evaluation and Results

Line3D++ (GPU) Line3D++ (CPU)

Dataset time t [s] ∅t [s] # lines Speed-up time t [s] ∅t [s] # lines

Building 361.17 1.05 11, 238 2.27× 821.37 2.39 11, 096

Pylon 75.27 0.71 5, 319 1.87× 140.97 1.33 5, 299

Façade 162.02 0.51 6, 767 2.00× 324.51 1.02 6.735

Kitchen 35.53 0.57 1, 118 1.46× 45.20 0.84 1, 100

HJ-P25 [146] 21.53 0.86 2, 210 2.81× 60.50 2.42 2, 203

HJ-P8 [146] 4.84 0.61 870 2.28× 11.04 1.38 871

C-P30 [146] 22.02 0.73 3, 188 2.70× 59.55 1.99 3, 224

F-P11 [146] 7.19 0.65 1, 029 2.21× 15.86 1.44 1, 035

TF [73] 37.70 0.16 3, 694 3.60× 135.87 0.57 3, 638

Mean 0.65 2.36× 1.49

Table 4.11: Runtime evaluation results for using the GPU versus the CPU .

4.8 Summary

In this chapter, we have shown a variety of line-based 3D reconstructions from several chal-

lenging real-world- and groundtruth datasets, using our proposed method. We have further

analyzed all individual steps of our line-based 3D reconstruction pipeline separately, and

have shown how the respective parameters affect the accuracy and completeness of the

resulting 3D models. In addition, we have evaluated the use of a combined bundle adjust-

ment procedure, to further optimize the camera parameters and the 3D data (points and

lines) after the reconstruction.

While dense point clouds of course provide more 3D information for most of our

datasets (see Figure 4.5), the amount of data that is needed to encode this information

is considerably larger than the set of 3D lines obtained by our method. For each of the

datasets, more than a million 3D points are reconstructed by PMVS [49], which makes

further processing of any kind (e.g. meshing and texturing, or semantic scene understand-

ing) relatively tedious on ordinary desktop machines. In contrast, the 3D line models do

not exceed more than a few thousand 3D entities. While for some scenarios the dense

scene coverage is definitely necessary, there are a lot of applications where a compact 3D

line model would be just as (or probably even more) suitable than a large unordered set of

points, such as e.g. plane detection, piecewise planar 3D reconstruction, or more specific

tasks, such as window detection.

In the following chapters, we will talk about potential applications for our line-based

3D reconstruction algorithm. For the main part, we will show how our method can be

easily integrated into an online SfM pipeline, for real-time reconstructions already during

image acquisition (Chapter 5), followed by a discussion about several potential extensions

of our method for future projects (Chapter 6).

5
Application: Online SfM using Points and Lines

Contents

5.1 Online Structure-from-Motion . 85

5.2 Incremental Line3D++ . 89

5.3 Experimental Results . 93

5.4 Summary . 99

In the previous chapters, we have introduced and evaluated our line-based Multi-View

Stereo (MVS) pipeline for the offline case (i.e. we assumed that a consistent and final-

ized Structure-from-Motion (SfM) result is available). As a practical application of our

work, we now show how a combination of online SfM and an incremental version of our

algorithm can be easily used to compute camera poses and a combined point-and-line

cloud on-the-fly, already during the image acquisition process. We first motivate the use

of online SfM altogether, by discussing its benefits compared to traditional offline SfM

pipelines. Afterwards, we show the necessary modifications to make our approach capa-

ble of incremental 3D reconstruction, and conclude with several experiments to evaluate

accuracy and efficiency of the online- versus the offline version.

The core principles of our incremental reconstruction procedure are based on our re-

lated publications on this topic [61, 65]. The final algorithm (as it is presented in this

chapter) is not yet published.

5.1 Online Structure-from-Motion

As we have discussed in Section 2.1, there are numerous SfM pipelines available to re-

construct unordered and potentially very large image sequences in 3D. However, whether

an image set is suitable for an accurate and complete reconstruction does not primarily

depend on which SfM pipeline is used, but rather on the configuration of the images them-

selves. To ensure that all (relevant) images are correctly integrated into the 3D model,

85

86 Chapter 5. Application: Online SfM using Points and Lines

Figure 5.1: An example of an unsuitable image set for SfM reconstruction, as taken by a non-
expert user. As we can see, the relative camera motion between consecutive images is too large for
reliable feature matching.

several constraints must be fulfilled. The most important ones are a high redundancy- and

a small camera motion between consecutive images, as well as a sufficient coverage of all

parts of the scene that should be reconstructed.

A high redundancy means that matching candidates need to have a high visual overlap,

which increases the probability of finding enough corresponding feature points between

them. Similarly, a small camera motion between nearby images ensures that the detected

features can be reliably matched, since virtually all modern feature point descriptors are

only robust to moderate out-of-plane camera rotations (e.g. SIFT [101] is known to be

quite unreliable for affine transformations beyond 50◦ [111]). Both of these constraints

are of course not completely independent, since a high redundancy somewhat implies a

similar camera pose, and vice versa. Sufficient coverage means that all important parts of

the scene (i.e. those parts that should be included in the 3D model) need to be covered

by more than one image. Ideally, the coverage should be at least three images per target

area (the higher the better).

As discussed at length in [68], taking an image set that fulfils these constraints is often

hard to achieve even for experienced users. Especially for complex objects it is virtually

impossible to judge whether enough images have been taken for a complete reconstruction.

This is even more severe when inexperienced users are involved, that are potentially not

familiar with the underlying processing steps of an SfM pipeline, and therefore lack basic

judgement about the usability of the obtained images. Figure 5.1 shows an image set for

3D reconstruction, that has been taken by a non-expert user. Apart from the fact that the

object itself is highly unsuitable for SfM approaches, due to its textureless surface with

almost no distinctive image features, the camera movements between consecutive images

are way too large for reliable feature matching, which causes a standard SfM pipeline to

fail. However, if the SfM pipeline is not directly employed on-site (i.e. by using a portable

computer), it can easily happen that upon returning to the workstation the user realizes

that the image set is insufficient, which means that he has to return to the target scene

(which might have changed in the meantime; i.e. movable objects, illumination, ...) to

take additional pictures.

Even if the SfM pipeline is executed directly on-site, this would still be a highly non-

interactive process, which includes long unproductive waiting periods during which the

5.1. Online Structure-from-Motion 87

Figure 5.2: A schematic overview of the online SfM pipeline proposed by Hoppe et al. [70]. The
illustration was taken from the original paper.

computer processes the obtained pictures, and the user has to wait for some feedback.

Hence, it would be beneficial if the user would be guided by the SfM system, such that

he immediately knows if the picture he just took is suitable or not. This was the core

motivation for the paper by Hoppe et al. [70], where they introduced the first real online

SfM pipeline which can not only perform classic point-based SfM on-the-fly, but also

directly compute a dense 3D surface model, which can then be used to directly visualize

the amount of coverage and redundancy for each part of the observed scene. Figure 5.2

shows a schematic illustration of their proposed method.

Basically, the SfM part of their approach is an online-capable version of [72]. They

start from an initial image pair I1 and I2, for which the relative camera poses are com-

puted automatically using SIFT [101] feature matches (with the origin being defined as

the camera coordinate frame of the first image). For each incoming new image It, they

use a vocabulary tree to determine a set of similar images Vt ⊂ {1, · · · , t − 1}, and try

to align It to the existing reconstruction by using absolute pose estimation from SIFT

correspondences [89]. In addition, a periodic bundle adjustment procedure is performed to

keep the reconstruction globally consistent [156]. Since they always use the visual neigh-

bors from the vocabulary tree, and do not assume a strict image sequence, they implicitly

perform loop closure, and allow a non continuous image acquisition process (i.e. one can

stop taking images at any time, and continue at some other part of the scene, as long as

this part has already been seen before).

In addition to the sparse SfM part of their work, they also compute an incremental 3D

surface from the sparse point cloud [69]. They use the obtained triangle mesh to visualize

the quality of the reconstruction using a scalable color map. The two possible quality

measures are redundancy (i.e. the number of cameras that see a certain triangle) and

resolution (i.e. the ground sampling distance). These measures are especially useful to

guide an inexperienced user during the image acquisition, since he directly sees in which

parts of the scene he needs to take additional pictures, or in which parts he already has

enough pictures for a successful 3D reconstruction.

While there have been other attempts to online SfM before (e.g. [115, 116]), the

88 Chapter 5. Application: Online SfM using Points and Lines

Figure 5.3: Online SfM result for a
bakestone house (128 images). Top
row : A visualization of the incre-
mental reconstruction process. Bot-
tom right : SIFT [101] features only
[70], ∅t = 1.07s. Bottom left :
Points and lines combined, ∅t =
1.23s.

method by Hoppe et al. [70] is the only available real online SfM pipeline, capable of

directly reconstructing an accurate sparse 3D model from high-resolution still images (to

the best of our knowledge). However, online SfM is of course closely related to visual

SLAM , which aims et directly estimating 3D structure and camera motion as well. While

the core principles between many SLAM algorithms and SfM pipelines are similar (e.g.

PTAM [87], where also matched feature points are used), SLAM algorithms are usually

tuned for real-time computation with high frame rates. Hence, they often operate on a

video stream of a lower resolution than e.g. still images from a modern DSLR camera.

This has the benefit that the baselines between consecutive images are relatively small,

which allows an efficient direct camera pose estimation without any kind of explicit and

hand-crafted image features [38, 152]. However, the accuracy and level of detail of the

obtained 3D models is usually limited by the smaller image resolutions, and potential

motion blur. Hence, if the goal is to create the most accurate 3D model rather than

navigating through the scene in real-time, it is preferred to use an online capable SfM

pipeline rather than SLAM . This also has the additional benefit that the user in the end

has a manageable set of high-quality images for post-processing (e.g. for computing a

dense point-cloud), rather than a large video stream.

In the remainder of this chapter, we will demonstrate how we can efficiently integrate

our line-based 3D reconstruction method into the online SfM pipeline presented in [70].

However, our method could potentially be integrated into any online SfM (or potentially

also SLAM) scheme in the same way, as long as an on-the-fly image alignment and a peri-

odical bundle adjustment are performed. In the next section we will discuss the necessary

adaptions to our reconstruction principle presented in Chapter 3, to make our method

incremental and quasi real-time capable. For more information about online SfM itself we

kindly refer to the PhD thesis of Christof Hoppe [68]. Figure 5.3 shows an example recon-

struction using a combination of [70] and our proposed method. As we can see, the visual

impression is greatly enhanced when line segments and point features are used together,

while the average (per image) runtime is only slightly increased.

5.2. Incremental Line3D++ 89

5.2 Incremental Line3D++

In this section, we describe the process of incremental line-based 3D reconstruction step-by-

step, and discuss the necessary adaptions compared to the offline version. In the past, we

have published two similar approaches [61, 65], which were also integrated into the online

SfM pipeline by Hoppe et al. [70]. The core differences to our current work lie mainly

in the details, e.g. the usage of a greedy direct clustering approach [65], or additional

appearance-based matching constraints [61]. The method described here in this section

closely follows the principles of our offline algorithm from Chapter 3, and uses the same

basic steps. First, 2D line segments are detected and matched between each new image and

its visual neighbors among the already processed images, followed by an assignment of the

most probable 3D location for each 2D segment (Section 5.2.1). This procedure is adaptive,

i.e. the depth estimate can change when more information is available. Afterwards, the

3D line model is updated using an incremental graph clustering approach (Section 5.2.2).

A combined bundle adjustment procedure is performed periodically, to keep the 3D point-

and line clouds consistent (Section 5.2.3).

5.2.1 Line Segment Matching & Depth Estimation

Given an already processed image sequence I = {I1, . . . , It−1}, we want to integrate a

new incoming image It and update the 3D model accordingly. As in Section 3.3, we

start by running the LSD [51] line segment detector, to obtain a set of line segments

Lt = {`t1, . . . , `tmt
} from image It, where each line segment `tm is again simply defined

by two 2D points ptm, q
t
m ∈ R2. We now match Lt with existing images, to obtain new

potential correspondences. We can use these new matches to update the quality of existing

correspondences, and to initialize or refine the depth estimates of each affected 2D line

segment.

5.2.1.1 Line Segment Matching

To match the line segments Lt from image It with existing images, we first need to de-

termine which images are potential candidates (i.e. visual neighbors). As described in

Section 3.4.1, we use the visibility information of the 3D point cloud, as well as the spatial

camera distributions, to determine visual neighbors among the images. Analogue to the

offline case, we compute the visual neighbor subsets Vt and V̂t for image It (Equations

3.21 and 3.24). The final visual neighbor set VM
t is then again defined by the M/2 nearest

neighbors from V̂t, and the M/2 nearest neighbors from Vt (skipping duplicates).

We now match Lt with all Lx (x ∈ VM
t), by using our purely geometric matching

constraints from Section 3.4.2, with the k-nn matching refinement (Section 3.4.3). This

is especially crucial for online SfM applications, since it limits the amount of potential

correspondences that need to be processed, while it does not negatively influence the

reconstruction results (as we have demonstrated in Section 4.5.2.2).

90 Chapter 5. Application: Online SfM using Points and Lines

After the matching, all remaining correspondences `tm → `xm̄ are converted to 3D line

segment hypotheses, as described in Section 3.4.4. The resulting 3D line segments ht,xm,m̄
are stored in the hypotheses set Ψt

m belonging to the 2D segment `tm.

5.2.1.2 Depth Estimation

After the matching procedure, we end up with an initial set of potential correspondences

for all new segments `tm ∈ Lt, and an increased correspondence set for all existing seg-

ments `xm̄ ∈ Lx (with x ∈ VM
t). As in the offline approach, we now want to evaluate all

correspondences based on their mutual support among neighboring images (see Section

3.5). The obtained scores can then be used to remove outlier correspondences, and to

select (or update) the most probable 3D location for each 2D segment.

By default we assume that we do not know the reconstruction scale at runtime, which

is often the case when a user starts to take pictures of an object from a probably random

starting point, and with no proper initialization. Hence, we use the scale invariant scoring

formulation as described in Section 3.5.1. However, if scale information is available it is

of course straightforward to use our scale-aware scoring formulation as well.

The (non-symmetric) similarity between two arbitrary 3D hypotheses can be expressed

as

S(hx,ya,b , h
z,w
c,d) = min

Z∈hx,ya,b

exp

(
−
d⊥(Z, hz,wc,d)2

2 · σxp (dx(Z))2

)
, (5.1)

where d⊥(Z, hz,wc,d) is the Euclidean distance between the 3D point Z and the infinite

line passing through the segment hz,wc,d , and dx(Z) is the Euclidean distance between Z

and the camera center of the image Ix. This equation is very similar to our positional

similarity Sp (Equation 3.29), with the difference that we only have one regularizer (σxp)

defined by the reference image Ix (hence, the similarity function is non-symmetric). In

addition, we now directly use the adapted positional similarity from Equation 5.1 as the

total affinity between two 3D hypotheses, by omitting the angular similarity Sa (Equation

3.28) altogether. We do this for efficiency reasons, since the more important part of the

similarity computation is the positional similarity, with the angular similarity being more

or less only a safety term to prevent degenerate configurations (which are unlikely to

occur).

For each hypothetical match ht,xm,m̄, we now compute a truncated score (confidence)

c(ht,xm,m̄) =
∑

z∈VM
t \{x}

{
maxht,zm,·∈Ψt

m

{
S(ht,xm,m̄, h

t,z
m,·)
}

if max··· {. . . } > 1
2

0 else
(5.2)

analogue to Equation 3.26 in the offline version.

This scoring procedure has a relatively high computational complexity, since for each

3D hypothesis ht,xm,m̄ we have to compute the similarities to all other hypotheses in Ψt
m.

For a new image It, this is necessary since we do not have any prior information, and all

5.2. Incremental Line3D++ 91

correspondences between Lt and its visual neighbors Lx (x ∈ VM
t) are initialized at the

same time. However, for the existing images we can use an update formulation with a

lower complexity. Given new correspondences between an existing image Ix and a new

image It, we update the scores for already existing correspondences hx,y·,· between Ix and

another (older) image Iy ∈ {I1, · · · It−1} by computing

c(hx,y·,·) = c(hx,y·,·) + max
hx,t·,· ∈Ψx

·

{
S(hx,y·,· , h

x,t
·,·)
}
. (5.3)

In a similar fashion, we initialize the scores of the new hypotheses hx,tm,· between Ix and

the new It as

c(hx,tm,·) = max
h∈Ψx

m

{c(h) · S(hx,tm,·, h)}. (5.4)

As explained in Section 3.6, we use these (updated) scores to assign a new depth

estimate to each affected 2D segment `xm (x ∈ VM
t ∪ {t}), which is defined as its most

likely 3D hypothesis

ĥxm = argmax
h∈Ψx

m

{c(h)}, (5.5)

with respect to the scoring function. We only accept ĥxm if its score c(ĥxm) is bigger than

zero (i.e. at least one term of the sum in Equation 5.3 must be bigger than 1/2). In

addition, we remove all hypotheses hx,··,· for which c(hx,··,·) = 0, if the underlying image Ix
has already been matched with a certain number different images (i.e. such that we are

fairly confident that this match is truly an outlier), or if a certain number of new images

have been added to the system since the hypothesis was created. This on the one hand

ensures that the performance stays high, even when many images are being processed, but

on the other hand it prevents correct hypotheses from being removed, only because the

scene coverage might still be low (which in return causes lower confidence values).

5.2.2 3D Model Update

Every time a new image It is integrated into the system, we update the line-based 3D model

with the new information. We therefore perform an incremental clustering procedure,

which only considers all new or updated 2D segments from Lt and Lx (x ∈ VM
t). This

means that in each clustering process we always have a fairly constant number of affected

segments, which is beneficial especially for large image sets.

5.2.2.1 Segment Clustering

As in Section 3.7, a line cluster Π consists of a set of 2D residuals LΠ = {`1, `2, · · · }, and

a corresponding 3D line segment hΠ. The score c(Π) of a cluster is defined as the average

score over the best hypotheses (ĥ) of its residuals. Additionally, we define C(`) to be a

function that returns the line cluster to which the 2D segment ` belongs (initially, and for

all unclustered segments, we set C(`) = ∅).

92 Chapter 5. Application: Online SfM using Points and Lines

We now compute an affinity matrix W between all segments from Lt and Lx (x ∈ VM
t),

by making use of their estimated depths. The affinity between two segments `xm and `ym̄
is defined as

W (`xm, `
y
m̄) =

{
1
2

(
S̄(ηxm, η

y
m̄) + S̄(ηym̄, η

x
m)
)

if 1
2(· · ·) > 0.5

0 else
(5.6)

where S̄ is a truncated version of the similarity function (Equation 5.1), with the modified

regularizer from Equation 3.36. The input 3D segments ηxm and ηym̄ in Equation 3.27 are

defined as

ηxm =

{
ĥxm if C(`xm) = ∅

hC(`xm) else
, (5.7)

which basically maps a 2D segment `xm to its containing cluster (if it exists), or to its

estimated 3D hypothesis. Please note that we only consider 2D segments for clustering

for which a valid 3D estimate exists.

When the affinity matrix is computed, we segment it using the basic graph clustering

algorithm [44], since it is faster and less memory consuming than the diffusion-based

approach [35] (the differences are explained in Section 3.7). All found clusters which only

contain 2D line segments ` for which C(`) = ∅ form a new 3D line cluster Π. The residual

set LΠ is initialised with the clustered 2D segments, and the initial position of the 3D line

hΠ is simply the maximum score 3D hypothesis of the segments in LΠ.

In all other cases, i.e. when at least one of the clustered 2D segment is already part

of a 3D line cluster, we just merge these clusters and their residual sets to one new and

bigger cluster Π. 2D segments ` for which C(`) = ∅ are simply added to the residual set of

the new cluster, and the associated 3D line hΠ is derived from one of the merged clusters

(the one with the largest residual set).

We only consider clusters Π to be valid, if their score c(Π) > 0. Since the 3D line

segment hΠ associated with Π does not necessarily need to be an optimal estimate for

visualization, we compute the line visibility by projecting the endpoints of all residing 2D

segments ` ∈ LΠ onto the infinite line through hΠ, sorting the resulting set of projected

collinear points, and computing all non overlapping 3D line segments which are visible in

at least 3 images (as introduced in Section 3.7.1). These estimated 3D lines can then be

displayed along with the 3D points from the online SfM .

5.2.2.2 Cluster Verification

The quality of the computed 3D line clusters {Π} depends on correct depth estimates for

the 2D segments `. If the scene coverage is low, incorrect depth estimates are possible,

which can result in outlier clusters on rare occasions. To correct potential errors, we

check how well the estimated 3D hypothesis ĥxm for a 2D segment `xm fits to its associated

cluster C(`xm), whenever its depth estimate changes (i.e. whenever image Ix is matched

5.3. Experimental Results 93

with another image). We compute the similarity S(hxm, hC(`xm)), and remove `xm from

the cluster if the similarity is zero, and the score of its current 3D hypothesis c(hxm) is

larger than the score of its 3D line cluster c(C(lxm)). We also remove clusters Π for which

c(Π) = 0. In contrast to our previous methods [61, 65], where clusters are always kept once

they were created, this procedure allows to correct errors when better depth estimates are

available.

5.2.3 Bundle Adjustment

To create a consistent reconstruction with closed loops, and to ensure that the recon-

structed points and lines fit together, bundle adjustment [156] has to be performed peri-

odically. In the online SfM pipeline [70] this is done in a parallel thread, in a permanent

loop. This means that at the beginning bundle adjustment is performed quasi after each

new image, since the looped optimization procedure finishes very quickly. As the recon-

struction grows, the optimization takes longer and it can happen that more than just

one image have been added to the model before the bundling procedure can start again.

However, this is not really a problem, since when the reconstruction already contains a

high amount of images the model is usually already very consistent, and additional images

do not change the reconstruction as a whole by a large margin.

The combined bundling procedure is performed using the Ceres solver [1], and in the

same way as for the offline approach (see Section 3.8). Since the camera poses change

very often, especially at the beginning when only few images are available or when loops

are closed, all 3D line hypotheses (and not just the 3D line clusters) have to be adapted

as well. We could incorporate all pairwise matches into the bundle adjustment to ensure

consistency, but this would significantly slow down the optimization procedure. We there-

fore decided to recompute the 3D positions of all hypotheses h whenever necessary, with

the current camera poses. This is only the case when a new image is added to the system,

and only for those images that have been affected. We recompute the 3D positions of all

remaining pairwise matches in parallel on the GPU , which only requires the intersection

of two lines with a 3D plane (see Section 3.4.4). This is a minor drawback compared

to the offline algorithm, where the camera poses are not changed during the line-based

3D reconstruction, and hence all 3D hypotheses do not have to be modified after their

creation. However, re-estimating the 3D hypotheses does not take a lot of time, which is

beneficial for our online SfM application.

5.3 Experimental Results

To evaluate accuracy and runtime of the combined online SfM , we perform several experi-

ments on our test datasets introduced in Chapter 4 (the test system is the same as before).

We basically perform a comparative evaluation between the online SfM with points and

lines, and our in-house offline SfM pipeline [72] (which we have used throughout this the-

94 Chapter 5. Application: Online SfM using Points and Lines

(a) Pylon

(b) Kitchen

Figure 5.4: An illustration of the incremental reconstruction procedure on the Pylon and the
Kitchen dataset.

sis) followed by the 3D line reconstruction afterwards. Both SfM pipelines build up on

very similar core principles, which guarantees a fair comparison. Figure 5.4 illustrates the

incremental reconstruction procedure for the Pylon and the Kitchen sequence. As we can

see, the completeness of the 3D models is significantly improved when more images are

available.

5.3.1 Test Setup

As in the offline version [72], the online SfM pipeline also makes use of SIFT [101] features,

and a vocabulary tree [120]. We again use the 5000 largest SIFT features per image, but

reduce the voctree radius vr to only 5 images to be more runtime efficient. As stated above,

the online SfM is designed as two parallel processes. The first one incrementally integrates

new images into the SfM reconstruction, and the second one performs an infinite bundle

adjustment in a loop. We modify the system such that the first (alignment-) process

pushes the newly aligned images into our line-based 3D reconstruction framework, and

the second (bundle-) process updates all 3D line equations after the bundling procedure.

All data access by both threads is synchronized by making use of MUTEX structures. For

a lower per-image runtime, we reduce the images to approximate FullHD resolution during

the line segment detection step. This notably boosts the performance, while it does not

change the results by a large margin (as discussed in Section 4.5.1). The average increase

in runtime between the pure point-based online SfM , and the combined version (points

and lines) is approximately 0.2 seconds per image.

5.3. Experimental Results 95

For a fair and meaningful comparison to the offline method (offline SfM [72] +

Line3D++), we also set the voctree radius to 5 images here, and further reduce the

image sizes to FullHD resolution for line segment detection as well. However, we have

seen that for several datasets (Timberframe, Building, Pylon, Façade, and Kitchen) the

offline SfM is not able to successfully reconstruct the scene with such a low voctree

radius, while this was not a problem for the online version. Hence, we had to increase

the radius to 10 or 15 images for these datasets.

This behaviour is observable especially for larger datasets, and for datasets with a high

amount of repetitive structures. Here, when using a low voctree radius it happens quite

frequently that the selection of the images for matching is not optimal, since the pool of

images to draw from might be very large, while the distinctiveness of the image features of

the query image is often rather low. This problem is not native to the ICG3D pipeline [72]

alone, but also observable in e.g. COLMAP [137]. An online SfM pipeline on the other

hand has the inherent benefit that the images for matching are only selected among the

already processed images, and not the complete and final image set. In many cases, this

helps to enable a correct image alignment, even for highly repetitive scenes. Technically,

the same issue can of course happen with the online SfM as well, especially when the

image set grows very large. In our experiments however this did not happen.

5.3.2 Quantitative Evaluation

Table 5.1 shows a comparison between the offline- and the online algorithm on all test

sequences. As we can see, the online version is approximately twice as fast as the offline

version (even for those datasets where we did not have to increase the voctree radius).

The average runtime is approximately two seconds per image for the online method, which

means that a quasi real-time performance is achieved, given that the operator (or more

general: the camera) has to change its position between shots. The number of recon-

structed lines and points is fairly similar for both methods.

Offline (SfM [72] → Line3D++) Online (online SfM [70] ↔ inc. Line3D++)

Dataset time t [s] ∅t [s] # lines # points vr time t [s] ∅t [s] # lines # points σ [px]

Herz-Jesu-P25 [146] 75 3.00 2, 042 12, 473 5 45 1.80 1, 971 10, 216 4.0

Herz-Jesu-P8 [146] 28 3.54 801 4, 863 5 10 1.25 964 3, 582 4.0

Castle-P30 [146] 72 2.41 2, 411 17, 448 5 45 1.50 2, 854 11, 661 2.5

Fountain-P11 [146] 35 3.22 788 7, 396 5 17 1.55 1, 062 5, 210 4.0

Timberframe [73] 455 1.90 5, 691 46, 135 10 417 1.74 5, 644 53, 344 2.5

Building 2, 168 6.91 6, 309 90, 437 10 1, 110 3.54 4, 621 95, 960 2.5

Pylon 722 6.81 3, 484 18, 322 15 308 2.91 3, 400 21, 884 2.5

Façade 1, 774 5.70 6, 251 77, 602 15 564 1.81 4, 497 70, 730 4.0

Kitchen 346 5.77 1, 336 23, 720 10 184 3.07 822 14, 029 15.0

Mean 4.36 2.13

Table 5.1: A comparison between the offline-, and the online combined reconstruction pipeline.
More information about the datasets can be found in Section 4.3.

96 Chapter 5. Application: Online SfM using Points and Lines

(a) Herz-Jesu-P25 [146]

(b) Castle-P30 [146]

(c) Fountain-P11 [146] (d) Timberframe [73]

Figure 5.5: A visual comparison between the offline- (left) versus the online method (right), on
the groundtruth datasets. The corresponding numbers can be found in Table 4.4.

A visual comparison can be seen in Figure 5.5 for the groundtruth-, and in Figure 5.6

for the real-world datasets. In both cases, most reconstruction results are fairly similar,

and it is hard to make a general statement about which method is to be preferred.

Table 5.2 shows an evaluation of the camera pose accuracies between the offline- and

the online method, on the groundtruth datasets. For the offline case, the values relate

to the final bundled camera poses (with points and lines). As we can see, the angular

error is in general lower when the online version is used. However, the differences are very

small and negligible in practice. The more interesting case is the positional error. Here,

the offline SfM is more accurate on all datasets, apart from Castle-P30 and Fountain-

P11. For Castle-P30 the significantly higher maximum- and mean positional errors of the

5.3. Experimental Results 97

(a) Building

(b) Façade

(c) Pylon (d) Kitchen

Figure 5.6: A visual comparison between the offline- (left) versus the online method (right), on
the real-world datasets. The corresponding numbers can be found in Table 4.4.

offline version are the result of one single displaced camera, which is off by more than

one meter (hence, the maximum error of 65.95 cm). Interestingly, this did not happen

with the online version, which is most likely due to a different initialization of the two

competing incremental SfM procedures. For Fountain-P11 it is less conclusive why the

online algorithm is more accurate, but it is again likely that the reason lies within different

choices for the initial camera pair. However, in contrast to Castle-P30 the differences are

way less severe and hardly noticeable.

A comparison of the accuracy of the obtained line models can be seen in Table 5.3.

Again, the differences are quite small on these datasets. Both experiments show that the

online SfM pipeline is in practice not less accurate than the offline version, but with the

98 Chapter 5. Application: Online SfM using Points and Lines

Offline Online

Pos. Err. [cm] Ang. Err. [deg] Pos. Err. [cm] Ang. Err. [deg]

Dataset max mean max mean max mean max mean

Herz-Jesu-P25 [146] 1.278 0.520 0.200 0.162 1.301 0.570 0.108 0.053

Herz-Jesu-P8 [146] 0.995 0.536 0.171 0.155 1.189 0.565 0.181 0.152

Castle-P30 [146] 65.949 8.008 1.281 0.265 10.750 4.139 0.273 0.110

Fountain-P11 [146] 0.472 0.309 0.102 0.088 0.365 0.236 0.065 0.045

Timberframe [73] 7.703 2.222 0.211 0.070 15.803 5.541 0.233 0.062

Table 5.2: Camera pose accuracies of the offline- versus the online 3D reconstruction method, on
the groundtruth datasets.

additional benefit of interactivity. However, both pipelines follow the same core principles,

which probably best explains the similarity of the reconstruction outcome between them.

In practice, the best way to obtain an accurate 3D model is to use the online SfM during

image acquisition, to guarantee that the recorded image set is suitable for reconstruction.

Here, one should use a small voctree radius, a smaller number of feature points, and

potentially also downsampled images, to ensure real-time computation, such that the

camera operator does not have to wait long periods of time for the SfM to query each new

image. Then, one can easily re-compute the SfM result using e.g. a state-of-the-art offline

pipeline on full resolution, before a real dense (or also line-based) 3D model is computed.

Offline Online

Dataset RMSE [cm] mean err. [cm] RMSE [cm] mean err. [cm]

Herz-Jesu-P8 5.80 2.77 5.51 3.13

Fountain-P11 2.31 0.76 2.15 0.98

Timberframe 5.08 3.26 5.73 3.51

Table 5.3: Line model accuracies of the offline- versus the online 3D reconstruction method, on
the three groundtruth datasets with surface model.

Figure 5.7 shows an example for this workflow. As we can see, the online SfM enables

a very fast image alignment when the image dimensions and the number of feature points

are reduced, with an average per image runtime of less than one second. Hence, one can

consider this approach real-time capable, given that a moving human camera operator is

involved. Afterwards, the offline (or also the online-) SfM pipeline can be executed on

the full-resolution images, and with a higher number of image features, to ensure a more

accurate and a more complete result. Since all images are properly aligned by the online

SfM , we can be fairly certain that all images can be aligned by the offline version as well.

As a final step, the SfM result can e.g. be used to compute a dense 3D point cloud (if

desired). What we can clearly observe in this example, is that the scene coverage is much

lower on the left part of the scene, than on the right. This is especially noticeable for

5.4. Summary 99

the 3D lines, where several parts of the windows are missing on the top left part of the

building. This is already the case in the online result, which means that the user would

have had the opportunity to react to this situation, by taking some additional images in

this part of the scene. Hence, missing parts in the final 3D models (both the line model

as well as the dense point cloud) could have been easily avoided by the user. This shows

once more the potential benefits of an online SfM pipeline, especially when dealing with

inexperienced users, and for highly complex scenes.

5.4 Summary

We have discussed the principle of online SfM , and the potential benefits compared to

offline methods. As stated above, the main benefit is the interactivity, which allows to

directly see if an acquired image is suitable for 3D reconstruction or not. Hence, the user

can always correct his acquisition strategy in case that new images cannot be aligned

with the existing ones (e.g. by too severe camera rotations). We have shown how our

method can be efficiently integrated into an online SfM pipeline [70], which allows the

direct computation of a 3D point- and line model on-the-fly. This additional information

further aids the user in his judgement about the quality of the obtained image set, and

about the completeness of the observed scene. In the next chapter we conclude our work

in line-based 3D reconstruction, and go on to discuss some ideas for future projects.

100 Chapter 5. Application: Online SfM using Points and Lines

(a) Online SfM [70] ↔ incremental Line3D++ (∅t = 0.82 s)

(b) Offline SfM [72] → Line3D++ (∅t = 6.78 s)

(c) PMVS [49]

Figure 5.7: An exemplary result of the online/offline 3D reconstruction workflow for the Façade
dataset. (a) First, the online SfM pipeline [70] is run on downsampled images (50%), with only
2, 500 SIFT [101] features per image, and with a voctree radius of just 5 images. (b) Then, the
offline SfM pipeline [72] is executed on the full-resolution images, with 5, 000 features and a voctree
radius of 20 images. (c) As a final step, any point-based MVS pipeline can be used to create a
semi-dense point cloud, based on the offline SfM result (e.g. PMVS [49]).

6
Conclusion

Contents

6.1 Summary . 101

6.2 Future Work: Beyond Lines . 102

In this thesis, we motivated the use of line-based 3D reconstruction (or line-based

MVS) for the task of 3D scene abstraction, and introduced our proposed method in full

detail. Our approach is targeted on man-made environments, in which piece-wise planar-

and linear objects frequently occur. In Section 6.1 we sum up our core findings, and

in Section 6.2 we discuss some ideas for future work, which aim at going beyond sparse

line-based 3D models.

6.1 Summary

Our approach is best described as an SfM post-processing step, which takes an already

oriented image sequence as input. This has the benefit that we can already use more

information than just the raw image sequence, since we can make use of epipolar-geometric

relations between the images. This gives us the opportunity to focus on the task of

generating an accurate and complete 3D line model, rather than dealing with camera pose

estimation from line correspondences. Pure line-based SfM pipelines (see Section 2.3) are

often motivated by the fact that especially in monotone man-made environments reliable

feature point matching is hard to achieve, which would render traditional SfM pipelines

ineffective (and hence, our method could not be used). In practice this is usually not the

case. Our numerous experiments in urban indoor- and outdoor environments have seen

that state-of-the-art general purpose SfM pipelines (e.g. VisualSfM [172] or colmap [137])

work very well in the majority of the cases, and - at the very least - deliver the correct

camera poses even when the resulting point cloud is sparse. In addition, point-based

SfM pipelines are more straightforward to use than line-based ones, since underlying

101

102 Chapter 6. Conclusion

tasks like relative pose estimation can be easily solved by a set of almost arbitrary point

correspondences, while one either needs matched lines in a special spatial configuration

(e.g. [37]), or a trifocal tensor [55], when using lines as sole image features.

From the reconstruction point of view, having the camera poses available has one core

benefit: we can use highly invariant geometric relations between images for the task of line

segment matching, rather than unstable appearance constraints. This enables us to match

line segments under changing illumination conditions, and when dealing with thin wiry

structures for which meaningful patch-based line descriptors are virtually impossible to

compute. We have shown in numerous experiments, and on several challenging datasets,

that geometric constraints are in fact enough to robustly reconstruct accurate and outlier

free 3D line models, for indoor as well as outdoor scenes. In addition, our algorithm is

very runtime efficient and allows for a much faster 3D reconstruction than e.g. dense

point-based MVS algorithms (e.g. PMVS [49]). This makes our algorithm also suitable

for real-time computation, in conjunction with an online SfM pipeline.

The biggest benefit of an algorithm like ours is the inherent abstraction procedure. In

contrast to a potentially huge dense point-cloud, our method generates a highly compressed

amount of 3D data, which still offers a high degree of semantic information. As seen in

our experiments, just a few thousand 3D lines are enough to successfully represent a 3D

scene from hundreds of images, while a dense point-cloud obtained from the same images

easily consists of millions of points. However, the world in which we live is of course

not made of lines. For many tasks it is necessary to generate more realistic 3D models,

which closely resemble our own visual impression of our surroundings. In these cases,

it is unavoidable to use a more memory- and runtime consuming (and less abstract) 3D

representation, such as a dense point-cloud or a subsequently generated photo-textured

3D mesh. Nevertheless, there are lots of scenarios in which the efficiently computable

and highly abstract 3D information provided by a line-based 3D reconstruction method is

more than sufficient, or even preferred over a large unordered set of 3D points. In addition,

3D lines can also be used to refine 3D surface models, since lines are often located on the

intersection of two physical planes, which naturally helps to estimate more accurate object

boundaries in triangle meshes (e.g. as recently shown in [148]). In the following section,

we want to give an outlook of what can be done with the obtained 3D line models, and

how we can potentially go beyond lines without sacrificing the higher level of abstraction.

6.2 Future Work: Beyond Lines

With our open-source framework we enable the broad public to easily obtain 3D line

models from arbitrary SfM results. Despite their high sparsity, these models contain a high

degree of semantic information about the scene structure (e.g. walls, windows, doors,...).

While there are certainly a lot of tasks for which these line models are sufficient, there

are also numerous scenarios which require more than that (e.g. a dense model of some

kind). However, this does not necessarily mean that we need to replace line-based 3D

6.2. Future Work: Beyond Lines 103

reconstruction with something else, but that it makes sense to think of potential post-

processing tasks that build up on the reconstructed 3D lines.

What inevitably comes in mind when thinking about 3D line models, is the reconstruc-

tion of a piecewise planar 3D model. In contrast to a traditionally generated 3D mesh

from a dense point-cloud, such a piecewise planar model is usually much more memory

efficient, since arbitrarily large 3D plane-like structures (e.g. polygonal structures) can

be represented by just a few large triangles. If these triangles are then colorized using a

proper phototexture, the resulting 3D models are in general highly realistic and visually

pleasing (e.g. see [141, 168]). Since all reconstructed structural lines are commonly caused

by the intersection of two 3D planes, it makes sense to use the 3D lines as an indicator

for the existence of actual physically meaningful planes. This idea is of course not new.

As discussed in Section 2.5, many line-based MVS algorithms presented so far only used

the 3D lines as an intermediate step towards computing a piecewise planar 3D model.

However, most of these methods only focus on relatively simple cases, such as rooftops

seen from aerial images [19, 113, 139], or one single building or scene [141, 166, 168]. Our

method supports the line-based 3D reconstruction of more complex and significantly larger

scenes out-of-the-box, which raises the question whether this can be extended to the task

of piecewise planar 3D modeling. We believe that it would be quite straightforward to

extract potential plane hypotheses, by analyzing the spatial relationships between recon-

structed 3D lines (e.g. intersections or parallelism), and to further verify and cluster these

hypotheses in a similar way as we do for 3D lines in our approach. The only part that

is less straightforward is the visibility check of actual regions on these clustered (infinite)

planes (e.g. to find out which regions on the planes are actually physically existing, and

therefore visible in the 3D model). However, for this task numerous approaches exist in

the literature (e.g. [168]), from which we could draw inspiration.

A second extension that comes in mind is the incorporation of curved image features

into the reconstruction process. When using line segments alone, it frequently happens

that curved structures are piecewise linearly approximated by straight line segments. Fig-

ure 6.1a illustrates this behaviour for a toy example dataset of a paper box. As we can

see, the circular structure on the box is visually quite unpleasantly approximated by a set

of lines. This is in general unavoidable, since available 2D line segment detectors all have

this behaviour of representing curved edges as a set of lines, which are then subsequently

treated like any other (regular) lines by the matching and reconstruction procedure. If the

approximation is consistent enough between neighboring images, the respective segments

will get matched and reconstructed as a consequence. However, it would be highly desir-

able to distinguish between straight- and curved edges, and to reconstruct them properly

in 3D.

In the past, some but few methods for the task of curve-based 3D reconstruction have

been presented (e.g. [40, 77, 94, 154]). While most of them show some promising results,

they are not generally applicable for arbitrarily complex datasets, due to the much higher

complexity of reconstructing 3D curves compared to 3D lines. For instance, corresponding

104 Chapter 6. Conclusion

(a) 3D lines

(b) 3D curves

Figure 6.1: A comparison between (a) a line-based-, and (b) a curve-based 3D model of a simple
paper box. This toy-example dataset consists of 10 high-resolution images, obtained using a hand-
held compact camera.

6.2. Future Work: Beyond Lines 105

points between two matched lines from different images can be easily obtained by inter-

secting the epipolar line of a point on the first line with the corresponding line in the

other image. Since we are dealing with lines, there can be at most one unique intersec-

tion point. However, if we are dealing with curves, it is possible that the epipolar line

intersects the respective curve more than once. Difficulties like this make curve-based 3D

reconstruction a very hard task, and several of the aforementioned methods simplify the

task by considering the 2D and 3D curves as connected chains of pixels (or 3D points),

rather than parametric curves. This however results in a potentially large (connected)

point-cloud, which somehow diminishes the benefits of having an abstract 3D model of a

low complexity.

Very recently, Nurutdinova and Fitzgibbon [122] revisited curve-based 3D reconstruc-

tion, by proposing an SfM refinement algorithm based on matched curves. They use

splines with a fixed number of control points as 3D entities, and show how reconstructed

3D curves can be used to improve the underlying camera parameters from the SfM , and to

enhance the visual impression of the sparse 3D model. Sadly, they assume that matched

curves between all images are already given, which omits two of the most challenging

tasks: curve detection and matching. However, their findings are still very valuable, given

that the matching problem can be efficiently solved. To that end, we made some first

experiments with a combination of line- and curve features, in the form of elliptical arcs

[126]. These features can be quite efficiently detected in large-scale images, and easily

encoded in parametric form. In addition, most outlines of man-made structures can be

accurately approximated by a chain of such elliptical arcs, which are basically quadratic

curves. Figure 6.1b shows a first reconstruction result on a small dataset depicting a paper

box, where we have straightforwardly applied our line-based 3D reconstruction concepts

on curve matching and reconstruction. As we can see, the circular structures on the box

are correctly reconstructed as 3D circles, which is much more accurate than a piecewise

linear approximation, while it still preserves a similar level of abstraction as the 3D lines.

To conclude, we strongly believe that one key research aspect for image-based 3D

reconstruction in the future will be to develop novel and even more efficient ways to create a

highly abstract, but also semantically rich, 3D model of any given scene. While huge dense

point clouds can be computed quite easily today, it is necessary to think about new ways

of 3D scene abstraction, such that for any given task only the amount of 3D information

is extracted that is actually really needed. This will help to free computational power

for more important tasks, like actually using the generated 3D data e.g. for autonomous

driving or flying, to just name two popular examples.

A
List of Acronyms

CAD Computer Aided Design

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DEM Digital Elevation Model

DSLR Digital Single-Lens Reflex

EKF Extended Kalman Filter

GB Gigabyte

GPU Graphics Processing Unit

HDD Hard Disk Drive

IMU Inertial Measurement Unit

LBD Line Band Descriptor

LiDAR Light Detection and Ranging

LS Line Signature

LSD Line Segment Detector

MRF Markov Random Field

MSHS Mean-Standard Deviation of the Hue and Sat-

uration

MSLD Mean-Standard Line Deviation

MUTEX Mutual Exclusion

MVS Multi-View Stereo

NCC Normalized Cross Correlation

PCA Principle Component Analysis

PMVS Patch-Based Multi-View Stereo

PnL Perspective-n-Line

PoP Pencil-of-Points

PTAM Parallel Tracking and Mapping

RANSAC Random Sample Consesus

107

108 Chapter A. List of Acronyms

RMSE Root-Mean-Square Error

SfM Structure-from-Motion

SIFT Scale-Invariant Feature Transform

SILT Scale Invariant Line Transform

SLAM Simultaneous Localization and Mapping

SURF Speeded Up Robust Features

TB Terabyte

UAV Unmanned Aerial Vehicle

B
List of Publications

My work at the Institute for Computer Graphics and Vision led to the following peer-

reviewed publications, listed in chronological order along with the respective abstracts.

B.1 2013

Line-based 3D Reconstruction of Wiry Objects

Manuel Hofer, Andreas Wendel, and Horst Bischof

In: Proceedings of the 18th Computer Vision Winter Workshop (CVWW)

pp. 78 - 85

February 2013, Hernstein, Austria

(Accepted for oral presentation)

Best Student Paper Award

Abstract: Man-made environments contain many weakly textured surfaces which are

typically poorly modeled in sparse point reconstructions. Most notable, wiry structures

such as fences, scaffolds, or power pylons are not contained at all. This paper presents

a novel approach for generating line-based 3D models from image sequences. Initially,

camera positions are obtained using conventional Structure-from-Motion techniques. In

order to avoid explicit matching of 2D line segments in the various views we exploit the

epipolar constraints and generate a series of 3D line hypotheses, which are then verified

and clustered to obtain the final result. We show that this approach can be used to densify

various sparse occupied point clouds of urban scenes in order to obtain a meaningful model

of the underlying structure.

Related chapter(s): 3

109

110 Chapter B. List of Publications

Incremental Line-based 3D Reconstruction using Geometric Constraints

Manuel Hofer, Andreas Wendel, and Horst Bischof

In: Proceedings of the 24th British Machine Vision Conference (BMVC)

pp. 92.1 - 92.11

September 2013, Bristol, UK

(Accepted for oral presentation)

Abstract: Generating accurate 3D models for man-made environments can be a chal-

lenging task due to the presence of texture-less objects or wiry structures. Since traditional

point-based 3D reconstruction approaches may fail to integrate these structures into the

resulting point cloud, a different feature representation is necessary. We present a novel

approach which uses point features for camera estimation and additional line segments for

3D reconstruction. To avoid appearance-based line matching, we use purely geometric con-

straints for hypothesis generation and verification. Therefore, the proposed method is able

to reconstruct both wiry structures as well as solid objects. The algorithm is designed to

generate incremental results using online Structure-from-Motion and line-based 3D mod-

elling in parallel. We show that the proposed method outperforms previous descriptor-less

line matching approaches in terms of run-time while delivering accurate results.

Related chapter(s): 5

B.2 2014

Semi-Global 3D Line Modeling for Incremental Structure-from-Motion

Manuel Hofer, Michael Donoser, and Horst Bischof

In: Proceedings of the 25th British Machine Vision Conference (BMVC)

September 2014, Nottingham, UK

(Accepted for poster presentation)

Abstract: Structure-from-Motion (SfM) approaches, which are conventionally based on

local interest point matches, tend to work well for richly textured indoor- and outdoor

environments. However, in less textured scene areas the density of the resulting point

cloud suffers from the lower number of matchable interest points. This significantly af-

fects subsequent computer vision tasks like image based localization, surface extraction

or visual navigation. In this paper, we propose a novel 3D reconstruction approach that

increases the amount of 3D information in the reconstruction by exploiting line segments

as complementary features. We introduce an efficient and effective semi-global approach,

which takes into account local (per 2D line segment) as well as global (graph clustering)

3D line hypotheses constellations. Our approach outperforms the state-of-the-art in terms

of accuracy, with comparable runtime.

B.3. 2015 111

Related chapter(s): 5

Improving Sparse 3D Models for Man-Made Environments Using Line-

Based 3D Reconstruction

Manuel Hofer, Michael Maurer, and Horst Bischof

In: Proceedings of the 2nd International Conference on 3D Vision (3DV)

pp. 535 - 542, IEEE

December 2014, Tokyo, Japan

(Accepted for oral presentation)

Abstract: Traditional Structure-from-Motion (SfM) approaches work well for richly tex-

tured scenes with a high number of distinctive feature points. Since man-made environ-

ments often contain textureless objects, the resulting point cloud suffers from a low den-

sity in corresponding scene parts. The missing 3D information heavily affects all kinds

of subsequent post-processing tasks (e.g. meshing), and significantly decreases the visual

appearance of the resulting 3D model. We propose a novel 3D reconstruction approach,

which uses the output of conventional SfM pipelines to generate additional complementary

3D information, by exploiting line segments. We use appearance-less epipolar guided line

matching to create a potentially large set of 3D line hypotheses, which are then verified us-

ing a global graph clustering procedure. We show that our proposed method outperforms

the current state-of-the-art in terms of runtime and accuracy, as well as visual appearance

of the resulting reconstructions.

Related chapter(s): 3

B.3 2015

Line3D: Efficient 3D Scene Abstraction for the Built Environment

Manuel Hofer, Michael Maurer, and Horst Bischof

In: Proceedings of the 37th German Conference on Pattern Recognition (GCPR)

pp. 237 - 248, Springer

October 2015, Aachen, Germany

(Accepted for poster presentation)

Abstract: Extracting 3D information from a moving camera is traditionally based on

interest point detection and matching. This is especially challenging in the built environ-

ment, where the number of distinctive interest points is naturally limited. While common

Structure-from-Motion (SfM) approaches usually manage to obtain the correct camera

poses, the number of accurate 3D points is very small due to the low number of matchable

112 Chapter B. List of Publications

features. Subsequent Multi-view Stereo approaches may help to overcome this problem,

but suffer from a high computational complexity. We propose a novel approach for the

task of 3D scene abstraction, which uses straight line segments as underlying features. We

use purely geometric constraints to match 2D line segments from different images, and

formulate the reconstruction procedure as a graph-clustering problem. We show that our

method generates accurate 3D models, with a low computational overhead compared to

SfM alone.

Related chapter(s): 3

B.4 2016

UAVs rather than planes in the Neolithic Tavoliere: understanding site

structure using UAV-based NIR imaging and photogrammetric mapping,

magnetometry and field survey

Craig Alexander, Keri Brown, Kyle Freund, Manuel Hofer, Tommaso Mattioli, Andrea Di

Miceli, Italo Muntoni and Robert Tykot

In: 2nd International Conference of Aerial Archaeology

February 2016, Rome, Italy

Abstract: Aerial photography has played an extremely important role in Tavoliere Ne-

olithic archaeology, the earliest sites being reported by Bradford (1949) on the basis of

WWII reconnaissance photography. Subsequently researchers such as Jones (1987) and,

more recently, Keri Brown (2004) have also exploited aerial photographs. Analysis of

aerial photography continues to this day through projects involving regional research and

cultural heritage institutions (e.g. Caldara et al. 2014).

During summer 2015, the authors used a fixed wing SenseFly eBee UAV to create near-

infrared (NIR) imagery (see, e.g., Verhoeven 2012) of 4 Neolithic sites on the Tavoliere in

Puglia - 2 in the northwest around Lucera, one nearer to Foggia and one to the southwest

near Cerignola. At two of these sites, we also undertook magnetometer survey and field

survey.

In this paper, we present a case study of the site FG003663 near Lago Capacciotti in the

province of Foggia. The site proved extremely rich in post-harvest surface finds, typically of

much larger size than found at other sites. A high-resolution DSM - in the context of post-

harvest cereal fields this is essentially also a DTM - was created by photogrammetry from

the UAV NIR imagery. A 20m x 160m transect was surveyed by magnetometer, oriented

so as to cut the site boundary ditch (as revealed in earlier aerial photographs). Both

magnetometry and the NIR imaging showed the boundary ditch, while the magnetometer

survey also revealed internal structures.

B.4. 2016 113

This work formed part of the third field season of a project co-directed by Craig

Alexander, Keri A. Brown (University of Manchester) and Robert H. Tykot (University

of South Florida). The project has conducted field survey at 26 Neolithic sites and used

a pXRF (portable X-ray fluorescence) spectrometer to analyse the ceramic and obsidian

finds. Further pXRF analyses were conducted on materials excavated in recent years by

the Soprintendenza. The team has also collected and analysed 75 clay samples from across

the Tavoliere. Analysis of the trace element chemical data is in progress to reconstruct

the sourcing and exchange networks of the area. The work described herein is intended to

provide a basis for a substantial expansion of the project.

Related chapter(s): -

Efficient 3D Scene Abstraction Using Line Segments

Manuel Hofer, Michael Maurer, and Horst Bischof

In: Computer Vision and Image Understanding (CVIU)

In press, Elsevier

March 2016

Abstract: Extracting 3D information from a moving camera is traditionally based on

interest point detection and matching. This is especially challenging in urban indoor- and

outdoor environments, where the number of distinctive interest points is naturally limited.

While common Structure-from-Motion (SfM) approaches usually manage to obtain the

correct camera poses, the number of accurate 3D points is very small due to the low

number of matchable features. Subsequent Multi-view Stereo approaches may help to

overcome this problem, but suffer from a high computational complexity. We propose a

novel approach for the task of 3D scene abstraction, which uses straight line segments

as underlying features. We use purely geometric constraints to match 2D line segments

from different images, and formulate the reconstruction procedure as a graph-clustering

problem. We show that our method generates accurate 3D models with low computational

costs, which makes it especially useful for large-scale urban datasets.

Related chapter(s): 3, 4

BIBLIOGRAPHY 115

Bibliography

[1] Agarwal, S., Mierle, K., Others: Ceres Solver. http://ceres-solver.org (page 59,

62, 93)

[2] Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in

a Day. In: IEEE 12th International Conference on Computer Vision (ICCV). pp.

72–79. IEEE (2009) (page 1, 7, 10)

[3] Agisoft: Agisoft PhotoScan. http://www.agisoft.com/ (page 1)

[4] Aider, O.A., Hoppenot, P., Colle, E.: A model-based method for indoor mobile robot

localization using monocular vision and straight-line correspondences. Robotics and

Autonomous Systems 52(2), 229–246 (2005) (page 24)

[5] Akinlar, C., Topal, C.: EDLines: Real-Time Line Segment Detection by Edge Draw-

ing. In: 18th IEEE International Conference on Image Processing (ICIP). pp. 2837–

2840. IEEE (2011) (page 43)

[6] Atkinson, K.: Close Range Photogrammetry and Machine Vision. Whittles Pub.

(1996) (page 9)

[7] Ayache, N., Faugeras, O.: Building, Registrating, and Fusing Noisy Visual Maps.

The International Journal of Robotics Research 7(6), 45–65 (1988) (page 7, 24)

[8] Ayache, N., Faverjon, B.: Efficient Registration of Stereo Images by Matching Graph

Descriptions of Edge Segments. International Journal of Computer Vision (IJCV)

1(2), 107–131 (1987) (page 7, 13)

[9] Baillard, C., Schmid, C., Zisserman, A., Fitzgibbon, A.: Automatic line matching

and 3D reconstruction of buildings from multiple views. In: ISPRS Conference on

Automatic Extraction of GIS Objects from Digital Imagery. vol. 32, pp. 69–80 (1999)

(page 13, 27)

[10] Ballard, D.H.: Generalizing the Hough Transform to Detect Arbitrary Shapes. Pat-

tern recognition 13(2), 111–122 (1981) (page 42)

[11] Bartoli, A., Coquerelle, M., Sturm, P.: A Framework For Pencil-of-Points Structure-

From-Motion. In: European Conference on Computer Vision (ECCV), pp. 28–40.

Springer (2004) (page 19)

[12] Bartoli, A., Sturm, P.: Multiple-View Structure and Motion From Line Correspon-

dences. In: Ninth IEEE International Conference on Computer Vision (ICCV). pp.

207–212. IEEE (2003) (page 19)

http://ceres-solver.org
http://www.agisoft.com/

116

[13] Bartoli, A., Sturm, P.: Structure-from-motion using lines: Representation, triangu-

lation, and bundle adjustment. Computer Vision and Image Understanding (CVIU)

100(3), 416–441 (2005) (page 19)

[14] Bauer, J.: Feature-Based Reconstruction of 3D Primitives from Multiple Views. Phd

thesis, Graz University of Technology (11 2009) (page 16)

[15] Bauer, J., Bischof, H., Klaus, A., Karner, K.: Robust And Fully Automated Image

Registration Using Invariant Features. In: International Society for Photogrammetry

and Remote Sensing (ISPRS). pp. 12–23 (2004) (page 16)

[16] Bay, H., Ess, A., Neubeck, A., van Gool, L.: 3D from Line Segments in Two Poorly-

Textured, Uncalibrated Images. In: Third International Symposium on 3D Data

Processing, Visualization, and Transmission (3DPVT). pp. 496–503. IEEE (2006)

(page 19, 20)

[17] Bay, H., Ferrari, V., van Gool, L.: Wide-Baseline Stereo Matching with Line Seg-

ments. In: IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR). vol. 1, pp. 329–336. IEEE (2005) (page 13, 16, 19, 48)

[18] Bay, H., Tuytelaars, T., van Gool, L.: SURF: Speeded Up Robust Features. In:

European Conference on Computer Vision (ECCV), pp. 404–417. Springer (2006)

(page 2, 7, 9, 14)

[19] Bignone, F., Henricsson, O., Fua, P., Stricker, M.: Automatic extraction of generic

house roofs from high resolution aerial imagery. In: European Conference on Com-

puter Vision (ECCV), pp. 83–96. Springer (1996) (page 27, 103)

[20] Bosse, M., Rikoski, R., Leonard, J., Teller, S.: Vanishing points and three-

dimensional lines from omni-directional video. The Visual Computer 19(6), 417–430

(2003) (page 24)

[21] Brown, M., Windridge, D., Guillemaut, J.Y.: A generalisable framework for

saliency-based line segment detection. Pattern Recognition 48(12), 3993–4011 (2015)

(page 43)

[22] Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI) 6, 679–698 (1986) (page 42)

[23] Caprile, B., Torre, V.: Using vanishing points for camera calibration. International

Journal of Computer Vision (IJCV) 4(2), 127–139 (1990) (page 31)

[24] CapturingReality: CapturingReality. https://www.capturingreality.com/

(page 1)

https://www.capturingreality.com/

BIBLIOGRAPHY 117

[25] Chandraker, M., Lim, J., Kriegman, D.: Moving in Stereo: Efficient Structure and

Motion Using Lines. In: IEEE 12th International Conference on Computer Vision

(ICCV). pp. 1741–1748. IEEE (2009) (page 25)

[26] Chen, T., Wang, Q.: 3D Line Segment Detection for Unorganized Point Clouds

from Multi-View Stereo. In: Asian Conference on Computer Vision (ACCV), pp.

400–411. Springer (2010) (page 28, 29)

[27] Cohen, A., Sattler, T., Pollefeys, M.: Merging the Unmatchable: Stitching Visually

Disconnected SfM Models. In: IEEE International Conference on Computer Vision

(ICCV). pp. 2129–2137. IEEE (2015) (page 12)

[28] Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.P.: Discrete-Continuous Opti-

mization for Large-Scale Structure-from-Motion. In: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). pp. 3001–3008. IEEE (2011) (page 9, 12)

[29] Daftry, S., Maurer, M., Wendel, A., Bischof, H.: Flexible and User-Centric Camera

Calibration using Planar Fiducial Markers. In: British Machine Vision Conference

(BMVC) (2013) (page 34, 37, 62)

[30] Dailey, M.N., Parnichkun, M.: Landmark-based simultaneous localization and map-

ping with stereo vision. In: Proceedings of the Asian Conference on Industrial Au-

tomation and Robotics (2005) (page 24)

[31] Davison, A.J.: Real-time simultaneous localisation and mapping with a single cam-

era. In: Ninth IEEE International Conference on Computer Vision (ICCV). pp.

1403–1410. IEEE (2003) (page 24)

[32] Deriche, R., Faugeras, O.: Tracking Line Segments. In: European Conference on

Computer Vision (ECCV). pp. 259–268. Springer (1990) (page 7, 13)

[33] Desolneux, A., Moisan, L., Morel, J.M.: From Gestalt Theory to Image Analysis, A

Probabilistic Approach, vol. 34. Springer Science & Business Media (2007) (page 43)

[34] Devernay, F., Faugeras, O.: Straight Lines Have to Be Straight. Machine Vision and

Applications 13(1), 14–24 (2001) (page 31)

[35] Donoser, M.: Replicator Graph Clustering. In: British Machine Vision Conference

(BMVC) (2013) (page 56, 58, 64, 92)

[36] Elfes, A.: Sonar-based real-world mapping and navigation. IEEE Journal of Robotics

and Automation 3(3), 249–265 (1987) (page 24)

[37] Elqursh, A., Elgammal, A.: Line-Based Relative Pose Estimation. In: IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR). pp. 3049–3056. IEEE

(2011) (page 20, 21, 24, 102)

118

[38] Engel, J., Schoeps, T., Cremers, D.: LSD-SLAM: Large-scale direct monocu-

lar SLAM. In: European Conference on Computer Vision (ECCV), pp. 834–849.

Springer (2014) (page 26, 88)

[39] Engel, J., Stueckler, J., Cremers, D.: Large-Scale Direct SLAM with Stereo Cameras.

In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

pp. 1935–1942. IEEE (2015) (page 26)

[40] Fabbri, R., Kimia, B.: 3D Curve Sketch: Flexible Curve-Based Stereo Reconstruc-

tion and Calibration. In: IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). pp. 1538–1545. IEEE (2010) (page 103)

[41] Fan, B., Wu, F., Hu, Z.: Line Matching Leveraged By Point Correspondences. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 390–

397. IEEE (2010) (page 15)

[42] Fan, B., Wu, F., Hu, Z.: Robust line matching through line-point invariants. Pattern

Recognition 45(2), 794–805 (2012) (page 15)

[43] Fathi, H., Brilakis, I.: A Scale, Rotation, and Affine Invariant Line Detection and

Matching Algorithm for 3D Reconstruction of Infrastructure. In: Computing in Civil

and Building Engineering. pp. 942–949. ASCE (2014) (page 16)

[44] Felzenszwalb, P., Huttenlocher, D.: Efficient Graph-Based Image Segmentation. In-

ternational Journal of Computer Vision (IJCV) 59(2), 167–181 (2004) (page 56, 58,

92)

[45] Fischler, M.A., Bolles, R.C.: Random Sampling Consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Communi-

cations of the ACM 24(6), 381–395 (1981) (page 9, 10, 19)

[46] Flint, A., Mei, C., Reid, I., Murray, D.: Growing semantically meaningful models for

visual SLAM. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). pp. 467–474. IEEE (2010) (page 24, 25, 26)

[47] Frahm, J.M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen,

Y.H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on a Cloudless

Day. In: European Conference on Computer Vision (ECCV), pp. 368–381. Springer

(2010) (page 1, 3, 7, 9, 10)

[48] Fu, K.P., Shen, S.H., Hu, Z.Y.: Line Matching Across Views Based on Multiple

View Stereo. Acta Automatica Sinica 40(8), 1680–1689 (2014) (page 28)

[49] Furukawa, Y., Curless, B., Seitz, S., Szeliski, R.: Towards Internet-Scale Multi-View

Stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

pp. 1434–1441. IEEE (2010) (page 2, 3, 5, 28, 29, 39, 67, 68, 69, 84, 100, 102)

BIBLIOGRAPHY 119

[50] Gee, A.P., Mayol-Cuevas, W.: Real-time model-based SLAM using line segments.

In: Advances in Visual Computing, pp. 354–363. Springer (2006) (page 24)

[51] von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: A Fast Fine Segment

Detector With a False Detection Control. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI) 4, 722–732 (2008) (page 43, 70, 89)

[52] Habib, A.: Motion parameter estimation by tracking stationary three-dimensional

straight lines in image sequences. ISPRS Journal of Photogrammetry and Remote

Sensing 53(3), 174–182 (1998) (page 19)

[53] Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision

conference. vol. 15, p. 50. Citeseer (1988) (page 7)

[54] Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-

bridge University Press (2003) (page 2)

[55] Hartley, R., Zisserman, A.: Multiview Geometry in Computer Vision. Cambridge

University Press (2004) (page 10, 22, 23, 35, 38, 39, 102)

[56] Hartley, R.I.: Projective Reconstruction from Line Correspondences. In: IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition (CVPR). pp.

903–907. IEEE (1994) (page 19)

[57] Hartley, R.I.: A Linear Method for Reconstructing from Lines and Points. In: Fifth

International Conference on Computer Vision (ICCV). pp. 882–887. IEEE (1995)

(page 7, 13, 19)

[58] Havlena, M., Schindler, K.: VocMatch: Efficient Multiview Correspondence for

Structure from Motion. In: European Conference on Computer Vision (ECCV),

pp. 46–60. Springer (2014) (page 3, 23)

[59] Heinly, J., Schoenberger, J.L., Dunn, E., Frahm, J.M.: Reconstructing the World*

in Six Days *(As Captured by the Yahoo 100 Million Image Dataset). In: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3287–3295.

IEEE (2015) (page 11)

[60] Heuel, S., Foerstner, W.: Matching, Reconstructing and Grouping 3D Lines From

Multiple Views Using Uncertain Projective Geometry. In: IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR). vol. 2, pp. 517–

524. IEEE (2001) (page 29)

[61] Hofer, M., Donoser, M., Bischof, H.: Semi-Global 3D Line Modeling For Incremen-

tal Structure-from-Motion. In: British Machine Vision Conference (BMVC) (2014)

(page 24, 31, 47, 52, 54, 56, 70, 85, 89, 93)

120

[62] Hofer, M., Maurer, M., Bischof, H.: Improving Sparse 3D Models for Man-Made

Environments Using Line-Based 3D Reconstruction. In: International Conference

on 3D Vision (3DV). vol. 1, pp. 535–542. IEEE (2014) (page 31, 33, 44, 52, 54, 55,

56)

[63] Hofer, M., Maurer, M., Bischof, H.: Line3D: Efficient 3D Scene Abstraction for

the Built Environment. In: German Conference on Computer Vision and Pattern

Recognition (GCPR), pp. 237–248. Springer (2015) (page 8, 31, 33, 44, 45, 50, 52,

55, 56, 70)

[64] Hofer, M., Maurer, M., Bischof, H.: Efficient 3D Scene Abstraction using Line

Segments. Computer Vision and Image Understanding (CVIU) (2016) (page 33, 56)

[65] Hofer, M., Wendel, A., Bischof, H.: Incremental Line-based 3D Reconstruction using

Geometric Constraints. In: British Machine Vision Conference (BMVC). pp. 92.1–

92.11 (2013) (page 24, 31, 44, 52, 70, 85, 89, 93)

[66] Hofer, M., Wendel, A., Bischof, H.: Line-based 3D Reconstruction of Wiry Objects.

In: Computer Vision Winter Workshop (CVWW). pp. 78–85 (2013) (page 31, 33,

44, 49, 50)

[67] Holzmann, T., Fraundorfer, F., Bischof, H.: Direct Stereo Visual Odometry Based

on Lines. In: International Conference on Computer Vision Theory and Applications

(VISAPP) (2016) (page 25)

[68] Hoppe, C.: Interactive Structure-from-Motion. Phd thesis, Graz University of Tech-

nology (5 2014) (page 9, 11, 35, 86, 88)

[69] Hoppe, C., Klopschitz, M., Donoser, M., Bischof, H.: Incremental Surface Extrac-

tion from Sparse Structure-from-Motion Point Clouds. In: British Machine Vision

Conference (BMVC). pp. 94.1–94.11 (2013) (page 3, 87)

[70] Hoppe, C., Klopschitz, M., Rumpler, M., Wendel, A., Kluckner, S., Bischof, H.,

Reitmayr, G.: Online Feedback for Structure-from-Motion Image Acquisition. In:

British Machine Vision Conference (BMVC). vol. 2, p. 6 (2012) (page 11, 87, 88,

89, 93, 95, 99, 100)

[71] Huang, T.S.: Motion Analysis. Encyclopedia of Artificial Intelligence pp. 620–632

(1987) (page 19)

[72] Irschara, A., Zach, C., Bischof, H.: Towards Wiki-Based Dense City Modeling.

In: IEEE 11th International Conference on Computer Vision (ICCV). IEEE (2007)

(page 2, 5, 10, 11, 12, 18, 42, 62, 67, 68, 69, 81, 82, 83, 87, 93, 94, 95, 100)

BIBLIOGRAPHY 121

[73] Jain, A., Kurz, C., Thormaehlen, T., Seidel, H.P.: Exploiting Global Connectivity

Constraints for Reconstruction of 3D Line Segments from Images. In: IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR). pp. 1586–1593. IEEE

(2010) (page 7, 29, 30, 49, 50, 56, 64, 65, 69, 71, 77, 82, 83, 84, 95, 96, 98)

[74] Jeong, W.Y., Lee, K.M.: Visual SLAM with line and corner features. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). pp. 2570–2575.

IEEE (2006) (page 24)

[75] Jiang, N., Lin, W.Y., Do, M.N., Lu, J.: Direct Structure Estimation for 3D Re-

construction. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). pp. 2655–2663. IEEE (2015) (page 12)

[76] Jung, F., Paparoditis, N.: Extracting 3D Free-Form Surface Boundaries of Man-

Made Objects from Multiple Calibrated Images: A Robust, Accurate and High

Resolving Power Edgel Matching and Chaining Approach. International Archives

of Photogrammetry Remote Sensing and Spatial Information Sciences 34(3/W8),

39–46 (2003) (page 27)

[77] Kahl, F., August, J.: Multiview Reconstruction of Space Curves. In: Ninth IEEE

International Conference on Computer Vision (ICCV). pp. 1017–1024. IEEE (2003)

(page 103)

[78] Kahl, F., Heyden, A.: Affine Structure and Motion from Points, Lines and Conics.

International Journal of Computer Vision (IJCV) 33(3), 163–180 (1999) (page 19)

[79] Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster

Analysis. Wiley Online Library (1990) (page 11)

[80] Khaleghi, B., Baklouti, M., Karray, F.O.: SILT: Scale-Invariant Line Transform.

In: IEEE International Symposium on Computational Intelligence in Robotics and

Automation (CIRA). pp. 78–83. IEEE (2009) (page 14, 16)

[81] Kim, C., Manduchi, R.: Planar Structures from Line Correspondences in a Man-

hattan World. In: Asian Conference on Computer Vision (ACCV), pp. 509–524.

Springer (2014) (page 20)

[82] Kim, H., Lee, S.: A Novel Line Matching Method Based on Intersection Context.

In: IEEE International Conference on Robotics and Automation (ICRA). pp. 1014–

1021. IEEE (2010) (page 15, 20)

[83] Kim, H., Lee, S.: Wide-Baseline Image Matching Based on Coplanar Line Intersec-

tions. In: IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). pp. 1157–1164. IEEE (2010) (page 15, 16)

122

[84] Kim, H., Lee, S.: Simultaneous line matching and epipolar geometry estimation

based on the intersection context of colplanar line pairs. Pattern Recognition Letters

33(10), 1349–1363 (2012) (page 19)

[85] Kim, Z., Nevatia, R.: Automatic description of complex buildings from multiple

images. Computer Vision and Image Understanding (CVIU) 96(1), 60–95 (2004)

(page 27)

[86] Kitanov, A., Bisevac, S., Petrovic, I.: Mobile robot self-localization in complex

indoor environments using monocular vision and 3D model. In: IEEE/ASME in-

ternational conference on Advanced intelligent mechatronics. pp. 1–6. IEEE (2007)

(page 24)

[87] Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:

6th IEEE and ACM International Symposium on Mixed and Augmented Reality

(ISMAR). pp. 225–234. IEEE (2007) (page 24, 25, 26, 88)

[88] Klein, G., Murray, D.: Improving the agility of keyframe-based SLAM. In: European

Conference on Computer Vision (ECCV), pp. 802–815. Springer (2008) (page 24)

[89] Kneip, L., Scaramuzza, D., Siegwart, R.: A novel parametrization of the perspective-

three-point problem for a direct computation of absolute camera position and orien-

tation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

pp. 2969–2976. IEEE (2011) (page 11, 18, 62, 87)

[90] Krantz, S.G.: Handbook of Complex Variables. Springer (1999) (page 21)

[91] Labatut, P., Pons, J.P., Keriven, R.: Efficient Multi-View Reconstruction of Large-

Scale Scenes using Interest Points, Delaunay Triangulation and Graph Cuts. In:

IEEE 11th International Conference on Computer Vision (ICCV). IEEE (2007)

(page 3)

[92] Lee, Y.H., Nam, C., Lee, K.Y., Li, Y.S., Yeon, S.Y., Doh, N.L.: VPass: Algorithmic

compass using vanishing points in indoor environments. In: International Conference

on Intelligent Robots and Systems (IROS). pp. 936–941 (2009) (page 24)

[93] Lemaire, T., Lacroix, S.: Monocular-vision based SLAM using Line Segments. In:

IEEE International Conference on Robotics and Automation (ICRA). pp. 2791–2796.

IEEE (2007) (page 24)

[94] Li, G., Genc, Y., Zucker, S.W.: Multi-View Edge-based Stereo by Incorporating

Spatial Coherence. In: Sixth International Conference on 3-D Digital Imaging and

Modeling (3DIM). pp. 341–348. IEEE (2007) (page 103)

BIBLIOGRAPHY 123

[95] Li, K., Yao, J., Li, L., Zhang, Z.: Hierarchical line matching based on Line-Junction-

Line structure descriptor and local homography estimation. Neurocomputing (2016)

(page 15)

[96] Li, K., Yao, J., Lu, X.: Robust Line Matching Based on Ray-Point-Ray Structure

Descriptor. In: Asian Conference on Computer Vision (ACCV) Workshops. pp. 554–

569. Springer (2014) (page 15)

[97] Li, Y., Snavely, N., Huttenlocher, D.P.: Location Recognition using Prioritized Fea-

ture Matching. In: European Conference on Computer Vision (ECCV), pp. 791–804.

Springer (2010) (page 66, 67, 69)

[98] Lin, Y., Wang, C., Cheng, J., Chen, B., Jia, F., Chen, Z., Li, J.: Line segment ex-

traction for large scale unorganized point clouds. ISPRS Journal of Photogrammetry

and Remote Sensing 102, 172–183 (2015) (page 28)

[99] Liu, Y., Huang, T.S.: Estimation of Rigid Body Motion Using Straight line Corre-

spondences. Computer Vision, Graphics, and Image Processing 43(1), 37–52 (1988)

(page 19)

[100] Lopez, J., Santos, R., Fdez-Vidal, X.R., Pardo, X.M.: Two-view line matching algo-

rithm based on context and appearance in low-textured images. Pattern Recognition

48(7), 2164–2184 (2015) (page 15)

[101] Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Interna-

tional Journal of Computer Vision (IJCV) 60(2), 91–110 (2004) (page 2, 5, 7, 9, 10,

14, 18, 21, 42, 62, 68, 81, 86, 87, 88, 94, 100)

[102] Lu, F., Milios, E.: Robot Pose Estimation in Unknown Environments by Matching

2D Range Scans. Journal of Intelligent and Robotic Systems 18(3), 249–275 (1997)

(page 24)

[103] Lu, X., Yao, J., Li, K., Li, L.: CannyLines: A parameter-free line segment detector.

In: IEEE International Conference on Image Processing (ICIP). pp. 507–511. IEEE

(2015) (page 43)

[104] Matas, J., Galambos, C., Kittler, J.: Robust Detection of Lines Using the Progressive

Probabilistic Hough Transform. Computer Vision and Image Understanding (CVIU)

78(1), 119–137 (2000) (page 42)

[105] Matinec, D., Pajdla, T.: Line Reconstruction from Many Perspective Images by

Factorization. In: IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR). vol. 1, pp. 497–502. IEEE (2003) (page 19)

[106] McIntosh, J.H., Mutch, K.M.: Matching Straight Lines. Computer Vision, Graphics,

and Image Processing 43(3), 386–408 (1988) (page 7, 13)

124

[107] McLauchlan, P.F., Murray, D.W.: A unifying framework for structure and motion

recovery from image sequences. In: Fifth International Conference on Computer

Vision (ICCV). pp. 314–320. IEEE (1995) (page 19)

[108] Medioni, G., Nevatia, R.: Matching Images Using Linear Features. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (PAMI) 6, 675–685 (1984)

(page 7, 13)

[109] Medioni, G., Nevatia, R.: Segment-Based Stereo Matching. Computer Vision,

Graphics, and Image Processing 31(1), 2–18 (1985) (page 7, 13)

[110] Micusik, B., Wildenauer, H.: Structure from Motion with Line Segments Under

Relaxed Endpoint Constraints. In: International Conference on 3D Vision (3DV).

vol. 1, pp. 13–19. IEEE (2014) (page 8, 21, 22, 23)

[111] Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27(10), 1615–

1630 (2005) (page 86)

[112] Montiel, J.M.M., Tardos, J.D., Montano, L.: Structure and motion from straight

line segments. Pattern Recognition 33(8), 1295–1307 (2000) (page 19)

[113] Moons, T., Frere, D., Vandekerckhove, J., Gool, L.V.: Automatic modelling and

3D reconstruction of urban house roofs from high resolution aerial imagery. In:

European Conference on Computer Vision (ECCV), pp. 410–425. Springer (1998)

(page 27, 103)

[114] Moulon, P., Monasse, P., Marlet, R., Others: OpenMVG. An Open Multiple View

Geometry library. https://github.com/openMVG/openMVG (page 1, 12, 18, 34)

[115] Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Real Time Locali-

sation and 3D Reconstruction. In: IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR). vol. 1, pp. 363–370. IEEE (2006) (page 87)

[116] Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Generic and

Real-Time Structure from Motion. In: British Machine Vision Conference (BMVC).

vol. 7, p. 6 (2007) (page 87)

[117] Nakayama, Y., Honda, T., Saito, H., Shimizu, M., Yamaguchi, N.: Accurate cam-

era pose estimation for kinectfusion based on line segment matching by LEHF. In:

22nd International Conference on Pattern Recognition (ICPR). pp. 2149–2154. IEEE

(2014) (page 26)

[118] Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J.,

Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-time dense

https://github.com/openMVG/openMVG

BIBLIOGRAPHY 125

surface mapping and tracking. In: IEEE International Symposium on Mixed and

Augmented Reality (ISMAR). pp. 127–136. IEEE (2011) (page 25, 26)

[119] Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (PAMI) 26(6), 756–770 (2004)

(page 18, 39)

[120] Nister, D., Stewenius, H.: Scalable Recognition with a Vocabulary Tree. In:

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR). vol. 2, pp. 2161–2168. IEEE (2006) (page 3, 10, 11, 23, 44, 62, 94)

[121] Noronha, S., Nevatia, R.: Detection and modeling of buildings from multiple aerial

images. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)

23(5), 501–518 (2001) (page 27)

[122] Nurutdinova, I., Fitzgibbon, A.: Towards Pointless Structure from Motion: 3D re-

construction and camera parameters from general 3D curves. In: IEEE International

Conference on Computer Vision (ICCV). pp. 2363–2371. IEEE (2015) (page 105)

[123] Ok, A.O., Wegner, J.D., Heipke, C., Rottensteiner, F., Soergel, U., Toprak, V.:

Accurate matching and reconstruction of line features from ultra high resolution

stereo aerial images. In: Proceedings of ISPRS Hannover Workshop, High Resolution

Earth Imaging for Geospatial Information, Hannover, Germany (2011) (page 27, 28)

[124] Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation

of the spatial envelope. International Journal of Computer Vision (IJCV) 42(3),

145–175 (2001) (page 10)

[125] Park, Y.B., Kim, S.S., Suh, I.H.: Visual Recognition of Types of Structural Corridor

Landmarks Using Vanishing Points Detection and Hidden Markov Models. In: In-

ternational Conference on Pattern Recognition (ICPR). pp. 3292–3295. IEEE (2010)

(page 24)

[126] Patraucean, V., Gurdjos, P., von Gioi, R.G.: A parameterless line segment and

elliptical arc detector with enhanced ellipse fitting. In: European Conference on

Computer Vision (ECCV), pp. 572–585. Springer (2012) (page 105)

[127] Quan, L., Kanade, T.: Affine Structure from Line Correspondences With Uncali-

brated Affine Cameras. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence (PAMI) 19(8), 834–845 (1997) (page 19)

[128] Radenovic, F., Schoenberger, J.L., Ji, D., Frahm, J.M., Chum, O., Matas, J.: From

Dusk Till Dawn: Modeling in the Dark. In: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). IEEE (2016) (page 11)

126

[129] Ramalingam, S., Antunes, M., Snow, D., Lee, G.H., Pillai, S.: Line-Sweep: Cross-

Ratio for Wide-Baseline Matching and 3D Reconstruction. In: IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). pp. 1238–1246. IEEE (2015)

(page 22, 23)

[130] Rother, C.: Linear Multi-view Reconstruction of Points, Lines, Planes and Cameras

using a Reference Plane. In: Ninth IEEE International Conference on Computer

Vision (ICCV). pp. 1210–1217. IEEE (2003) (page 19)

[131] Rothermel, M., Wenzel, K., Fritsch, D., Haala, N.: SURE: Photogrammetric Surface

Reconstruction from Imagery. In: Proceedings LC3D Workshop, Berlin. vol. 8 (2012)

(page 2, 39)

[132] Schindler, G., Krishnamurthy, P., Dellaert, F.: Line-Based Structure from Motion

for Urban Environments. In: Third International Symposium on 3D Data Process-

ing, Visualization, and Transmission (3DPVT). pp. 846–853. IEEE (2006) (page 7,

20)

[133] Schindler, K., Bauer, J.: Towards feature-based building reconstruction from images.

International Conference in Central Europe on Computer Graphics, Visualization

and Computer Vision (WSCG) (2003) (page 27)

[134] Schmid, C., Zisserman, A.: Automatic Line Matching across Views. In: IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition (CVPR).

pp. 666–671. IEEE (1997) (page 13, 27, 28)

[135] Schmid, C., Zisserman, A.: The Geometry and Matching of Lines and Curves Over

Multiple Views. International Journal of Computer Vision (IJCV) 40(3), 199–233

(2000) (page 13)

[136] Schoenberger, J.L., Fraundorfer, F., Frahm, J.M.: Structure-from-motion for mav

image sequence analysis with photogrammetric applications. The International

Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences

40(3), 305 (2014) (page 1, 12)

[137] Schoenberger, J.L., Frahm, J.M.: Structure-from-Motion Revisited. In: IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). IEEE (2016) (page 1,

12, 62, 95, 101)

[138] Schoenberger, J.L., Radenovic, F., Chum, O., Frahm, J.M.: From Single Image

Query to Detailed 3D Reconstruction. In: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). pp. 5126–5134. IEEE (2015) (page 11)

[139] Scholze, S., Moons, T., Gool, L.V.: A probabilistic approach to roof extraction

and reconstruction. International Archives of Photogrammetry Remote Sensing and

Spatial Information Sciences 34(3/B), 231–236 (2002) (page 27, 103)

BIBLIOGRAPHY 127

[140] Seo, Y., Hong, K.S.: Sequential Reconstruction of Lines in Projective Space. In:

Proceedings of the 13th International Conference on Pattern Recognition (ICPR).

vol. 1, pp. 503–507. IEEE (1996) (page 19)

[141] Sinha, S.N., Steedly, D., Szeliski, R.: Piecewise Planar Stereo for Image-based Ren-

dering. In: IEEE 12th International Conference on Computer Vision (ICCV). pp.

1881–1888 (2009) (page 27, 103)

[142] Smith, P., Reid, I.D., Davison, A.J.: Real-Time Monocular SLAM with Straight

Lines. In: British Machine Vision Conference (BMVC). vol. 6, pp. 17–26 (2006)

(page 24)

[143] Snavely, N., Seitz, S., Szeliski, R.: Photo Tourism: Exploring image collections in

3D. ACM Transactions on Graphics (SIGGRAPH) (2006) (page 1, 7, 9, 10, 12, 18,

28, 62, 67)

[144] Sola, J., Vidal-Calleja, T., Civera, J., Montiel, J.M.M.: Impact of landmark

parametrization on monocular EKF-SLAM with points and lines. International Jour-

nal of Computer Vision (IJCV) 97(3), 339–368 (2012) (page 24)

[145] Sola, J., Vidal-Calleja, T., Devy, M.: Undelayed initialization of line segments in

monocular SLAM. In: IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). pp. 1553–1558. IEEE (2009) (page 24)

[146] Strecha, C., von Hansen, W., Gool, L.V., Fua, P., Thoennessen, U.: On Bench-

marking Camera Calibration and Multi-View Stereo for High Resolution Imagery.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

(2008) (page 64, 65, 68, 70, 71, 72, 77, 82, 83, 84, 95, 96, 98)

[147] Strecha, C., Kueng, O., Others: Pix4D, UAV mapping software. https://pix4d.

com/ (page 1, 3, 12, 18)

[148] Sugiura, T., Torii, A., Okutomi, M.: 3d surface reconstruction from point-and-line

cloud. In: International Conference on 3D Vision (3DV). pp. 264–272. IEEE (2015)

(page 102)

[149] Sweeney, C.: Theia multiview geometry library: Tutorial & reference, university of

California Santa Barbara. (page 1, 12)

[150] Sweeney, C., Sattler, T., Hoellerer, T., Turk, M., Pollefeys, M.: Optimizing the

Viewing Graph for Structure-from-Motion. In: IEEE International Conference on

Computer Vision (ICCV). pp. 801–809. IEEE (2015) (page 9, 12)

[151] Tang, A.W.K., Ng, T.P., Hung, Y.S., Leung, C.H.: Projective reconstruction from

line-correspondences in multiple uncalibrated images. Pattern Recognition 39(5),

889–896 (2006) (page 19)

https://pix4d.com/
https://pix4d.com/

128

[152] Tarrio, J.J., Pedre, S.: Realtime edge-based visual odometry for a monocular camera.

In: IEEE International Conference on Computer Vision (ICCV). pp. 702–710 (2015)

(page 26, 88)

[153] Taylor, C.J., Kriegman, D.J.: Structure and Motion from Line Segments in Multiple

Images. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)

17(11), 1021–1032 (1995) (page 7, 19)

[154] Teney, D., Piater, J.: Sampling-based Multiview Reconstruction without Correspon-

dences for 3D Edges. In: Second International Conference on 3D Imaging, Modeling,

Processing, Visualization and Transmission (3DIMPVT). pp. 160–167. IEEE (2012)

(page 103)

[155] Triggs, B.: Factorization Methods for Projective Structure and Motion. In:

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR). pp. 845–851. IEEE (1996) (page 19)

[156] Triggs, B., McLauchlan, P., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment

— A Modern Synthesis. In: Vision Algorithms: Theory and Practice, pp. 298–372.

Springer (1999) (page 9, 57, 87, 93)

[157] Verhagen, B., Timofte, R., van Gool, L.: Scale-invariant line descriptors for wide

baseline matching. In: IEEE Winter Conference on Applications of Computer Vision

(WACV). pp. 493–500. IEEE (2014) (page 16)

[158] Vieville, T., Faugeras, O.: Feed-Forward Recovery of Motion and Structure from

a Sequence of 2D-Lines Matches. In: Third International Conference on Computer

Vision (ICCV). pp. 517–520. IEEE (1990) (page 19)

[159] Vieville, T., Faugeras, O., Luong, Q.T.: Motion of Points and Lines in the Uncal-

ibrated Case. International Journal of Computer Vision (IJCV) 17(1), 7–41 (1996)

(page 19)

[160] Waechter, M., Moehrle, N., Goesele, M.: Let There Be Color! Large-Scale Texturing

of 3D Reconstructions. In: European Conference on Computer Vision (ECCV), pp.

836–850. Springer (2014) (page 3)

[161] Wang, L., Neumann, U., You, S.: Wide-Baseline Image Matching Using Line Sig-

natures. In: IEEE 12th International Conference on Computer Vision (ICCV). pp.

1311–1318. IEEE (2009) (page 15, 16)

[162] Wang, Z.H., Zhi, S.S., Liu, H.M.: MSHS: The Mean-Standard Deviation Curve

Matching Algorithm in HSV Space. In: International Conference on Machine Learn-

ing and Cybernetics (ICMLC). vol. 3, pp. 1064–1069. IEEE (2012) (page 14)

BIBLIOGRAPHY 129

[163] Wang, Z., Wu, F., Hu, Z.: MSLD: A Robust Descriptor for Line Matching. Pattern

Recognition 42(5), 941–953 (2009) (page 7, 14, 16, 20, 43)

[164] Wei, S., Yagi, Y., Yachida, M.: Building local floor map by use of ultrasonic and

omni-directional vision sensor. In: IEEE International Conference on Robotics and

Automation (ICRA). vol. 3, pp. 2548–2553. IEEE (1998) (page 24)

[165] Weng, J., Huang, T.S., Ahuja, N.: Motion and Structure from Line Correspondences:

Closed-Form Solution, Uniqueness, and Optimization. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI) 3, 318–336 (1992) (page 19)

[166] Werner, T., Zisserman, A.: New Techniques for Automated Architectural Recon-

struction from Photographs. In: European Conference on Computer Vision (ECCV),

pp. 541–555. Springer (2002) (page 27, 103)

[167] Wilson, K., Snavely, N.: Robust Global Translations with 1DSfM. In: European

Conference on Computer Vision (ECCV), pp. 61–75. Springer (2014) (page 12)

[168] Witt, J., Mentges, G.: Maximally Informative Surface Reconstruction from Lines.

In: International Conference on Robotics and Automation (ICRA). pp. 2029–2036.

IEEE (2014) (page 103)

[169] Woo, D.M., Han, S.S., Park, D.C., Nguyen, Q.D.: Extraction of 3D line segment

using digital elevation data. In: Congress on Image and Signal Processing (CISP).

vol. 2, pp. 734–738. IEEE (2008) (page 27)

[170] Woo, D.M., Park, D.C.: 3D line segment detection based on disparity data of area-

based stereo. In: WRI Global Congress on Intelligent Systems (GCIS). vol. 4, pp.

219–223. IEEE (2009) (page 27)

[171] Woo, D.M., Park, D.C., Han, S.S.: Extraction of 3D line segment using disparity

map. In: International Conference on Digital Image Processing. pp. 127–131. IEEE

(2009) (page 27)

[172] Wu, C.: Towards linear-time Incremental Structure-from-Motion. In: International

Conference on 3D Vision (3DV). pp. 127–134. IEEE (2013) (page 1, 9, 11, 12, 18,

34, 101)

[173] Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore Bundle Adjustment. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3057–

3064. IEEE (2011) (page 11)

[174] Yen, B.L., Huang, T.S.: Determining 3-D Motion and Structure of a Rigid Body

Using Straight Line Correspondences. In: Image sequence processing and dynamic

scene analysis, pp. 365–394. Springer (1983) (page 19)

130

[175] Zhang, G., Kang, D.H., Suh, I.H.: Loop closure through vanishing points in a

line-based monocular SLAM. In: IEEE International Conference on Robotics and

Automation (ICRA). pp. 4565–4570. IEEE (2012) (page 24, 25)

[176] Zhang, G., Suh, I.H.: Building a partial 3D line-based map using a monocular

SLAM. In: IEEE International Conference on Robotics and Automation (ICRA).

pp. 1497–1502. IEEE (2011) (page 24, 25)

[177] Zhang, L., Ghosh, B.K.: Line Segment Based Map Building and Localization Using

2D Laser Rangefinder. In: IEEE International Conference on Robotics and Automa-

tion (ICRA). vol. 3, pp. 2538–2543. IEEE (2000) (page 24)

[178] Zhang, L., Koch, R.: Hand-held Monocular SLAM Based on Line Segments. In:

Irish Machine Vision and Image Processing Conference (IMVIP). pp. 7–14. IEEE

(2011) (page 24)

[179] Zhang, L., Koch, R.: An efficient and robust line segment matching approach based

on LBD descriptor and pairwise geometric consistency. Journal of Visual Commu-

nication and Image Representation 24(7), 794–805 (2013) (page 7, 14, 15, 21)

[180] Zhang, L., Koch, R.: Structure from motion from line correspondences: Represen-

tation, projection, initialization and sparse bundle adjustment. Journal of Visual

Communication and Image Representation 25(5), 904–915 (2014) (page 8, 21, 22,

23, 56, 59)

[181] Zhang, L., Xu, C., Lee, K.M., Koch, R.: Robust and Efficient Pose Estimation

from Line Correspondences. In: Asian Conference on Computer Vision (ACCV),

pp. 217–230. Springer (2012) (page 13, 21, 43)

[182] Zhang, Y., Yang, H., Liu, X.: A Line Matching Method based on Local and Global

Appearance. In: 4th International Congress on Image and Signal Processing (CISP).

vol. 3, pp. 1381–1385. IEEE (2011) (page 7, 14, 43)

[183] Zhang, Z.: Estimating Motion and Structure from Correspondences of Line Seg-

ments between Two Perspective Views. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI) 17(12), 1129–1139 (1995) (page 19)

[184] Zhou, H., Zou, D., Pei, L., Ying, R., Liu, P., Yu, W.: StructSLAM: Visual SLAM

With Building Structure Lines. IEEE Transactions on Vehicular Technology 64(4),

1364–1375 (2015) (page 24, 25)

	Introduction
	Motivation
	Contribution and Overview

	Related Work
	Point-based Structure-from-Motion
	Line Matching
	Line-based Structure-from-Motion
	Line-based SLAM
	Line-based Multi-View Stereo
	Summary

	Line3D++: A Line-based 3D Reconstruction Framework
	Prerequisites
	Camera Model
	Epipolar Geometry

	Pipeline Overview
	Line Segment Detection
	Establishing Line Segment Correspondences
	Visual Neighbor Selection
	Epipolar-guided Line Matching
	Improving the Matching Precision
	Creating 3D Hypotheses from Matched Segments

	Evaluating Line Segment Correspondences
	Scale-Invariant Spatial Regularization

	Assigning 3D Locations to 2D Segments
	Clustering Corresponding 2D Segments
	Final 3D Lines from Clustered Segments

	Combined Bundle Adjustment
	Summary

	Evaluation and Results
	Testing Environment & Implementation Details
	SfM Pipeline

	Default Parameters
	Test Datasets
	Groundtruth Sequences
	Real-World Sequences

	Reconstruction Results
	Results on Real-World Sequences
	Results on Groundtruth Sequences

	Parameter Evaluation
	Line Segment Detection
	Line Matching
	Evaluating
	Evaluating M and k

	Match Evaluation

	Bundle Adjustment Evaluation
	Camera Pose Accuracy
	Line Model Accuracy

	Runtime Evaluation: GPU vs. CPU
	Summary

	Application: Online SfM using Points and Lines
	Online Structure-from-Motion
	Incremental Line3D++
	Line Segment Matching & Depth Estimation
	Line Segment Matching
	Depth Estimation

	3D Model Update
	Segment Clustering
	Cluster Verification

	Bundle Adjustment

	Experimental Results
	Test Setup
	Quantitative Evaluation

	Summary

	Conclusion
	Summary
	Future Work: Beyond Lines

	List of Acronyms
	List of Publications
	2013
	2014
	2015
	2016

	Bibliography

