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Kurzfassung 

Die westliche Gesellschaft hängt stark von schnellen Transportmitteln wie dem Flugzeug sowie von 
permanenter Verfügbarkeit von elektrischer Energie ab, deswegen hat die Forschung auf dem Gebiet 
der Verbrennung in Turbomaschinen einen starken Einfluss auf die Gesellschaft. 

Um die heutigen strengen Schadstoffvorschriften die der Gesetzgeber vorschreibt, zu erfüllen, haben 
Turbomaschinenhersteller die Entwicklung von emissionsarmen Magerverbrennungskonzepten vor-
angetrieben. Diese Systeme neigen allerdings verstärkt zu Verbrennungsinstabilitäten. Wärmefrei-
setzungsschwankungen verursachen Schallabstrahlung und im Falle von thermoakustischer Kopplung 
kann dies zu großen Druckamplituden führen, welche die Integrität des Brenners beeinträchtigen und 
bis hin zur Zerstörung des gesammten Turbinensatzes führen können. In Flammen kann die schwank-
ende Wärmefreisetzung über eine geeignete Kopplungsbeziehung mit den Dichteschwankungen, 
genauer mit der zeitlichen Ableitung der Dichteschwankungen in Verbindung gebracht warden. 

Das so genannte Laser Vibrometer, ein Interferometer, ursprünglich in der Ober-
flächenschwingungsdiagnostik angewandt, kann die Zeitableitungen von Dichteschwankungen in 
Flammen direkt aufzeichnen. Das Ziel dieser Arbeit war die Möglichkeiten und Grenzen dieses Sys-
tems in experimentellen Flammen sowie in gasturbinenrelevanten Brennern zu erforschen. Dies ist 
eine innovative Anwendung in der Verbrennungsdiagnostik, einem Gebiet, wo Techniken zur 
Messung von Wärmefreisetzung rar sind. 

In dieser Arbeit war der Fokus auf der Anwendung des Systems auf vorgemischte turbulente Flam-
men wie sie in Industrieanwendungen üblich sind. Getestet wurde die Robustheit der Kupplungsbezi-
ehung, die die Dichteschwankungen mit dem Parameter von Interesse verbindet, nämlich der dyna-
mischen Wärmefreisetzungsrate. 

In einem zweiten Teil der Arbeit wurde die Möglichkeit untersucht, das akustische Fernfeld mittels 
messung der Dichteschwankungen in der Flamme vorherzusagen. Die zugrunde liegende Hypothese 
behauptet, dass aus den lokalen Laser Vibrometer Aufnahmen innerhalb der Verbrennungszone, die 
akustische Strahlung einer Flamme vorhergesagt werden kann, da Laser Vibrometer quantitativ die 
erste zeitliche Ableitung von Dichteschwankungen detektieren können. Mit der gleichzeitig experi-
mentellen Aufnahme des akustischen Feldes wurde diese Annahme getestet. 

Eine solche quantitative Vorhersage des abgestrahlten Lärmes durch interferometrische Detektion von 
Fluktuationen innerhalb der Flamme stellt einen innovativen Aspekt für experimentelle Forschung in 
der Thermoakustik dar. 

     





 
 

 

Abstract 

Western society strongly depends on fast transportation such as air traffic and permanent availability 
of electric energy, thus research in the field of combustion in turbomachinery has a strong impact on 
society. 

In order to meet the stringent pollutant regulations set by governments, low-emission concepts of 
combustion systems in turbomachinery have been developed. As a drawback, lean combustion sys-
tems have a strong tendency towards combustion instabilities. Unsteady heat release will cause sound 
radiation and in case of thermoacoustic coupling can lead to large amplitudes and compromise the 
integrity of the combustor leading to engine failure. The unsteady heat release can be related to the 
density fluctuations in the flame, or to be more precise, to the time derivative of density fluctuations. 

The so-called laser vibrometer – an interferometer used in engineering for surface vibration detection 
– can directly record the time derivatives of density fluctuations in flames. To explore the capabilities 
and boundaries of this system in experimental flames as well as in engine relevant burners was the 
goal of this thesis. This is an innovative application in combustion diagnostics, a field where heat 
release-measurement techniques are scarce. 

In this thesis the focus was on the application of the system to turbulent premixed flames, as common 
in industry applications. Tested was the robustness of the coupling equation which links density fluc-
tuations to the real parameter of interest – the dynamic heat release rate. 

Secondly, far-field sound prediction by detection of density fluctuations in the flame was investigated. 
The underlying hypothesis claims that from the local laser vibrometer recordings in the combustion 
zone, the acoustic radiation of a flame can be predicted, since laser vibrometers can detect the first 
time derivative of density fluctuations quantitatively. With the simultaneously, experimentally record-
ed acoustic power distribution in the far-field of the flame, this assumption can be tested.   

Such a quantitative prediction of the radiated noise around the flame by interferometric detection of 
fluctuations in the flame provides an innovative aspect for experimental thermoacoustic research.  
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Nomenclature 

a - general variable 
Ameas M² measurement area 
AOM - acousto-optical modulator 

c M/s speed of sound 
CAEP Hz Committee on Aviation Environmental Protection 
CCPP Hz combined cycle power plants 
C(f) Hz cross power spectrum 
CO - carbon monoxide 
cp J/Kg/K heat capacity at constant pressure 

CPS W cross power spectrum 
CPSD W/Hz cross power spectral density 
ENBW Hz equivalent noise band width 

fB Hz frequency of the Bragg cell 
fmeas Hz frequency to measure 
fNy Hz Nyquist-frequency 

FDF - flame describing function 
FTF - flame transfer function 
G m³/kg Gladstone-Dale constant 
H J/kg enthalpy 

HC - hydro-carbons 
ILIV W/m² intensity at detector 
 Ԧ W/m² sound Intensityܫ

ICAO - International Civil Aviation Organization 
Im - imaginary part 
K m/s/V vibrometer calibration constant 

LIV - laser interferometric vibrometry 
MMM - multi-microphone-method 

MP - measurement point 
noav - number of blocks to average (FFT) 
N - refractive index 

NO - nitrogen oxide 
P Pa pressure 

PLL - phase lock loop 
P(f) - power of a signal at a certain frequency range 
Pfar W acoustic power in the far field 
qV J/m³ volumetric heat release  
ሶܳ  W total heat release rate  
ሶܳ  W total heat release rate  

r m radial distance 
R J/kg/K specific gas constant 

SARP - Standards and Recommended Practices 
spls - samples 
SL - sample length 
SR - sample rate 
T K temperature 
t S time 

u, v, w m/s velocities in coordinate direction 
U V voltage 

UN - United Nations 
x, y, z - cartesian coordinates  

   



 

 

Φdis W/kg energy dissipation rate 
Δf Hz frequency resolution 
κ - ratio of specific heats 
ρ kg/m³ density 
ζ m length of laser beam 
χ m/s speed of light 
λ m wavelength of light 
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legislation [13]. Current ICAO Standards for engine emissions contained in Annex 16, Volume II [14] 
cover: 

• Nitrogen oxides (NOx),  

• Carbon monoxide (CO),  

• Unburned hydro carbons (uHC) and  

• Soot. 

Due to its impact on global warming [7, 8] 

• Carbon Dioxide (CO2)  

is expected to be covered soon in the new Standard Annex 16 Volume III [15]. 
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1.2 Combustor Technologies 

In order to achieve ICAO certification in the future, the limits of old technologies are pushed and new 
technologies are introduced. Currently, two major trends can be found. The increase of the ratio be-
tween combustor pressure and ambient pressure in order to increase efficiency and reduce CO2 emis-
sions is applied to classic combustor technologies. Additionally, the change towards lean combustion 
concepts in order to reduce NOx emissions is on its way.  

For a given fuel, CO2 cannot be influenced easily by better control of the combustion process, since 
complete combustion will always lead to carbon dioxide production as a final product of combustion. 
The only possibility to reduce the CO2 production is by increasing the overall efficiency of the engine 
and airplane [16]. 

Alternatively it is possible to increase the heat value of the fuel by increasing the H/C ratio of the fuel. 
For example in a preceding EU project at TU Graz (Alfa-Bird) a synthetic liquid jet fuel was investi-
gated which had a 5% higher heating value than jet A1. 

For the engineer, particularly the increased efficiency demand is critical, although many parts of the 
machine can contribute to reduce loss, the only parameter increasing the thermodynamic efficiency is 
an increased pressure ratio [16]. Modern engines in service get close to a ratio of 60 and near future 
projects are expected to exceed 70 [17]. The resulting power densities are in the region of decaMW 
per liter volume, where it gets very difficult to maintain stable combustion.  

The increased efficiency of course has the convenient side effect of reduced fuel consumption and 
consequently fuel costs. The German airline industry for example, averages on below 4 liters of kero-
sene per person per hundred kilometers for long range airplanes. Additionally, due to the high compe-
tition of the industry, engine designers are expected to improve the units with respect to: 

• lower down time 

which can be achieved by longer service intervals and 

• longer range capability 

which is manifested in the so called Extended Operations (ETOPS) certification. It certifies twin-
engine airplanes to be capable of continuing their flight in cruise conditions for a certain time period 
before it has to land, once one engine fails. The new Airbus A350 for example features an ETOPS 370 
certification, so it can stay in the air for another 370 minutes after one engine failed, offering a virtual-
ly unrestricted route choice for the airline. Currently the longest scheduled non-stop flight from Dubai 
to Auckland covers a distance of 14,162 kilometers. The expected features mentioned above demand 
more reliable and at the same time more efficient technologies from engine manufacturers.  

Besides increased pressure ratios for classic combustor technologies, the trend goes to lean combus-
tion in order to reduce NOx emissions.  While piston engines for automobile applications nowadays 
reduce NOx emissions by means of a catalyst, this is not possible for aero turbines due to weight re-
strictions and a dramatically higher volume flow rate. Achieving low NOx without any after treatment 
is particularly challenging, because a considerable amount of NOx called thermal NOx is produced 
with high temperatures. In combustion, the highest temperatures are achieved near stoichiometric 
conditions because the lowest amount of gas has to be heated by the exothermal reaction (Figure 5). 
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1.3 Measurement Technology 

While numerical methods have vastly improved in recent years, experimental work is still necessary 
for validation. The common characterizing parameters of instationary fluids, such as velocity and 
pressure, can be accurately quantified with classic approaches such as laser-Doppler-anemometry and 
piezo-pressure transducers. Those systems are generally applicable for combustion analysis if precau-
tions are taken: Pressure transducers must be water- or nitrogen cooled. For velocity measurements, 
proper seeding must be chosen and optical accessibility ensured. Tools, recording temperature and 
heat release in the flame, on the other side, are scarce. While temperature can be acquired with Raman 
spectroscopy, for the acquisition of heat release, so far only chemiluminescence has been used. There, 
the light emitted by the flame at certain wavelengths is considered proportional to transfer from chem-
ical to thermal energy in the flame (combustion process). This simple and easy to use system is popu-
lar but has drawbacks when used in the environment of equivalence ratio fluctuations and in the pres-
ence of strain rates [18]. Given those circumstances, an alternative technique is welcome in the scien-
tific community. Here laser interferometric technologies come into play. They rely on the fact, that 
monofrequent light can be described as waves, and those waves can interfere with each other. When 
they are superimposed, the resulting wave has smaller, the same or greater amplitude as the original 
waves. In this work the so called laser interferometric vibrometry (LIV) is applied, where interference 
between a reference beam and a measuring beam is detected [19]. The measurement beam, exposed to 
a changing refractive index in the measurement section detects a change of speed of light. In gasses a 
change of refractive index can be directly linked to its density via the Gladstone-Dale constant [20, 
21]. The physical measurand is then the time derivative of the density (ρ) in the measurement area 
(Ameas) integrated over the laser-beam length (ζ):  

 

න
ᇱߩ߲

఍ݐ߲
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݇
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with the Gladstone-Dale constant (G), the calibration constant (k), and the output voltage of the LIV 
(U). When investigating reacting gases, not so much the density fluctuation but the heat release is of 
interest, since it takes part in the fundamental coupling mechanism [22] and is used for stability analy-
sis [23]. With the appropriate theoretical frame work heat release can be assessed qualitatively and 
quantitatively, as described by Dowling [24]: 
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 (2) 

with the pressure (p), the speed of sound (c), the ratio of specific heats (κ) and the volumetric heat 
release (qv). The LIV system measures the density fluctuations integrated along the line-of-sight with 
a time resolution of more than 100,000 samples per second. Additionally, 2D- traversing provides 
lateral resolution, and the integration over those measurement points provides the entire density fluc-
tuations and consequently the entire volumetric heat release of the flame.  
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Bernhard Wagner, Jakob Woisetschläger and Franz Heitmeir [43]. This was the very first time, the 
LIV system was applied to reacting flows. Fabrice Giuliani – at that time Head of the Combustion 
Division at the Institute for Thermal Turbomachinery and Machine Dynamics - provided his experi-
ence in the design and testing of combustion chambers with forced instabilities. The publication 
served as a proof of concept, and revealed promising insight into flame dynamics. 

Köberl et al. [33] applied the LIV to an unconfined laminar methane fired diffusion flame of 7.5kw 
thermal power. Dual-LIV measurements matched with differential interferometry data. In a second 
step, a premixed swirl stabilized flame of 17.5kW thermal power was investigated at atmospheric 
conditions. By means of Dual-LIV, the time derivative of density fluctuations was compared to tomo-
graphic reconstruction of chemiluminescence measurements. Similar trends were found for both 
measurement techniques. In a combustion chamber, the same burner was operated in a three flame 
configuration with natural gas at a total power of 27kW. The time derivative of local density fluctua-
tions was compared to chemiluminescence measurements with matching trends. Flame-flame interac-
tion and self-excited combustion oscillation were visualized using dual-LIV.  

Funded by EU-project NEWAC (”New Aero-engine Core Concepts”, AIP5-CT-2006-030876) and 
organized as a cooperation between TU Graz (Fabrice Giuliani) and École Centrale Paris (Thierry 
Schuller),  Leitgeb et al. [29] employed the link in eq. 2 in order to conclude on heat release fluctua-
tions excited by acoustic modulation of the feedline and quantitatively draw a comparison between 
LIV and chemiluminescence. For this, an unconfined laminar premixed flame was used and acousti-
cally excited. Additionally, the sound emitted by the perturbed flame was detected by means of LIV 
and compared to microphone measurements. For the first time, results of LIV have been quantified in 
laminar flames.  

FWF P 24096-N24 - Interferometric Detection of Thermoacoustic Oscillations in 
Flames 

As a logical consequence to preceding projects, in this work, heat release of turbulent combustion 

had to be quantified by means of LIV according to ʃdρ/dt  ሶܳ . In order to validate the system it was 
necessary to compare time resolved heat release fluctuations recorded by LIV with established tech-
niques such as chemiluminescence and microphone methods within their limits of validity. For this, 
confined and unconfined flames had to be investigated in the range of 4 kW to 50 kW of thermal 
power at rich and lean conditions, from equivalence ratios of φ = 0.71 to φ = 1.43. In terms of flame 
dynamics, a comparison between measurement techniques had to be drawn for natural spectra, as well 
as for excited flames. For this, the feedline flow had to be modulated by a siren. For validation, local 
as well as global heat release was studied. Furthermore, it was necessary to investigate the influence 
of the speed of sound on the link between density fluctuations and heat release as described in Equa-
tion (2). Additionally, a more detailed study on signal correlation between two laser vibrometers was 
performed. This led to velocity recordings without the need of tracer particles and spatial correlations 
(structural decay). 

Additionally, an industry relevant application had to be evaluated. To measure the flame transfer 
function is a well-established approach to quantify the stability behavior of a flame. Here integral-LIV 
recordings were compared to the classical OH-chemiluminescence technique. 

The second part of the project was devoted to the prediction of combustion noise by means of LIV. 
Sound emitted by a flame can be predicted by measured density fluctuations (ʃd2ρ/dt2 ~ p’ in far-field) 
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as derived by Strahle [44]. Although an old theory, it has never been experimentally proven. This 
proof was the second goal of this project. For this, the sound intensity in a spherical surface around the 
flame was measured and compared with the density fluctuation data acquired by two-dimensional 
traversing of the LIV-system. For these experiments, a model combustor of 4kW thermal power was 
used. This variable geometry burner was originally designed by Leitgeb and Giuliani in a preceding 
project ”New Aero-engine Core Concepts” (NEWAC, AIP5-CT-2006-030876). The design and vali-
dation is well documented [45, 46, 47]. This initial burner was then further improved and redesigned 
with retrospect to the validation of measurement technologies. The new design now provides rotation-
al symmetry of the flame and sufficient cooling air for operation within a combustion chamber. This 
new burner was characterized including the spatially and time resolved flow field, temperature field 
and acoustic spectrum. To facilitate acoustic measurements, a new laboratory had to be built at the 
institute which included a low reflective environment around the flame. For the high power flame of 
industrial relevance a test rig at Technische Univeristät München was available during a measurement 
campaign. 
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2.1 Working Principle of the Vibrometer 

In contrast to the introduction where the relevance of vibrometry is explained and the actual measur-
and and its link to combustion is discussed within this chapter the fundamental principle of vibrometry 
is presented. 

Laser vibrometers are widely used to detect surface vibrations of machinery. For best results the laser 
beam must be focused on the object. In the present work however - when density fluctuations are 
measured - it is important to ensure a parallel laser beam. For this, the setup includes the sensing head 
itself, a concave focus lens and a rigidly fixed mirror. The measurement beam is collimated at a de-
sired diameter by means of the internal optics (Figure 10) and the concave focus lens. The beam pass-
es the measurement region and is then reflected back into the sensing head by a rigidly fixed mirror 
(Figure 11).  

The lenses are slightly tilted in order to avoid its reflection from hitting the sensing head. This ensures 
that the vibrations of the lens mount do not corrupt the signal. Vibrations of the mirror on the other 
hand are always detected by the system. To receive meaningful results, the vibration of the mirror 
must be reduced to a minimum and shifted outside the frequency band of interest. Thus, the surface 
mirror was bonded to a massive steel box filled with sand. This ensures damping of the mirror and its 
high mass pulls the Eigen frequency of the mirror to a value below 10 Hz. Such low frequencies can 
then be easily separated from the frequencies of the density fluctuations typical for industrial flames. 
In the measurement section, the speed of light χmeas is a function of the refractive index of the medium 
nmeas. The refractive index (n) is defined as follows: 

 

݊௠௘௔௦ሺݐሻ ൌ
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ߣ ௡݂ ൌ
݇
2
ܷሺݐሻ (6) 

Combining equation (4) and (6) then results in: 

 

න
߲݊ᇱ

఍ݐ߲
ሺܣ௠௘௔௦, ,ߞ ߞሻ݀ݐ ൌ

݇
2
ܷሺݐሻ (7) 

If the test medium is gaseous, the refractive index changes with density. The parameters are linked via 
the Gladstone-Dale constant (G) as follows:  

 

݊ െ 1 ൌ  (8) ߩܩ

 

The Gladstone-Dale constant is a function of the wavelength of the light source used and the chemical 
composition of the gas investigated. It can be derived from dispersion relations [48, 20]. The line-of-
sight integral density fluctuations dρ’/dt per measurement area Ameas in the test volume are then linked 
to the output voltage by combining equation (7) and (8): 

 

න
ᇱߩ߲

఍ݐ߲
ሺܣ௠௘௔௦, ,ߞ ߞሻ݀ݐ ൌ

݇
ܩ2

ܷሺݐሻ (9) 

A factor of two is due to the laser beam passing the cylindrical measurement volume twice. 
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The signal obtained should also be of monofrequent character and peaks in the spectrum should be 
well apart from each other in order to be identified. The most common window functions are briefly 
described below.  

The rectangular filter has a value of unity over the entire sample length, and therefore is the same as 
not using a filter at all. The rectangular filter reaches highest spectral resolution, but has the highest 
scalloping loss of all filters with up to 36% if the frequency is exactly between two bins. 

Flattop windowing is a family of different filters that have the lowest possible scalloping loss, with the 
tradeoff of low spectral resolution. They are most common in calibration applications, where noise is 
generally low, pure harmonic or a combination of harmonic signals is investigated and where it is 
significant to know the exact amplitude of a signal. Since they have very bad frequency resolution, 
they are not appropriate for broad band signals or when frequencies are not separated well in the spec-
trum. 

In engineering most people use a Blacksmith, Hamming, Hanning or Butterworth filter, since those 
filters represent a good balance between spectral resolution and scalloping loss. Generally the tradeoff 
between the window-functions is that they are either very good at frequency resolution (rectangular 
window) or correct amplitude caption (flattop window), or average to good at both (Hamming, Han-
ning). Note: For window functions, the sample block has to be normalized by a value other than the 
sample length. For a detailed application guide of window functions, Heinzel et al [51] is recommend-
ed. One property of filters is, the stronger the filter is, the more time signal bins it suppresses on the 
edges of the window, and consequently information is lost. This drawback can be circumnavigated by 
employing window overlapping which is described below. 

2.2.7 Window-Averaging 

So far examples were considered where the sample rate, the sample length, and the total number of 
samples were equal. In environments where the signal-to-noise ratio is low, as generally in turbulent 
combustion measurements, it is necessary to repeat measurements and average the result in order to 
reduce stochastic noise and compensate for fluctuations in the point of operation. This can be done by 
increasing the total number of samples without changing sample length or sample rate. Then the total 
sample with length splstot is split into sampling block of length SL. If used the window-function is 
applied (Figure 28) and the Fourier transform is performed for each of those blocks individually. The 
total number of samples divided by the sample length of the Fourier transform then results in the 
number of blocks to average (noav). 
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 (12) 

When using this procedure, noise is reduced and a cleaner spectrum is the result. Figure 28 shows that 
the window function is close to zero at the edges. If the time signal is multiplied by the window func-
tion, it is heavily dampened there. If a window function is applied, it is therefore beneficial to let the 
sample blocks overlap in order to retrieve otherwise lost information at the edges of the sample blocks 
(Figure 29). 
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exhibit a proportionality between the heat release fluctuations flame chemiluminescence (OH* and/or 
CH*). This is the case in adiabatic flames with low strain rates and constant equivalence ratio, such as 
perfectly premixed flames [18].  On the other hand, an error is introduced in technically premixed 
combustion systems, where a linearity between OH* and CH* can no longer be assumed.  

2.3.5 Coupling Mechanism Between dρ/dt and Q’ 

Although the rate of change of density fluctuations dρ/dt is an interesting quantity in combustion 
analysis, information about heat release is more sought-after by the engineer, since it describes the 
flame dynamics and the stability behavior more directly. Thus, in the following, a link between densi-
ty fluctuations and heat release is established. Additionally, the limitations of this approach are dis-
cussed. Ideal gas is assumed and exposed to heat addition as usual in thermoacoustics studies. In dif-
ferential form, the density fluctuations are related to the pressure (p) and temperature (T) fluctuations 
as follows: 
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Elimination of dT from this equation using the first law of thermodynamics gives: 
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with the heat release (q), enthalpy (h) and heat capacity at constant pressure (cp). Combination with 
the ideal gas law 
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with the gas constant (R), leads to 
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using 
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(21) 

with the ratio of heat capacities κ and the relation between sound velocity c and temperature  
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ܿ ൌ ܴܶߢ√  (22) 

results in: 
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This is the most general solution used and discussed by several authors [24, 29]. The time derivatives 
in Equation (23) express the fluctuation components of density, pressure and heat release. It is com-
mon practice to replace the material derivatives by partial derivatives when studying thermoacoustic 
low Mach numbers problems. With the link between the material derivatives of a general variable (a) 
and partial derivatives for time t, and the space coordinates x, y, z: 
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This gives: 
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 This implies the assumption that the convective transport of the heat release fluctuations has no effect 
on the driving potential of thermoacoustic instabilities. The use of partial derivatives allows the treat-
ment of wave propagation separate from the heat release in e.g. hybrid field methods using the inho-
mogeneous wave equation [53], Acoustic Perturbation Equations  (APE) [54] as well as Linearized 
Euler Equations (LEE) and Linearized Navier Stokes Equations (LNSE) (e.g. [55]). In isothermal 
flows, the heat input is zero and the density fluctuations represent the change of pressure in the sys-
tem: 
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 (26) 

then e.g. acoustic waves can be detected with the aid of density fluctuations as done by [29, 36]. In 
reacting flows on the other hand, where heat input is considerable, it can be shown that the pressure 
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term can be neglected in the combustion zone (flame) because it is at least an order of magnitude 
smaller than the other terms in Equation (25) [24, 56]. This finally leads to: 
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 (27) 

Equation (27) reveals a proportionality between the time derivatives of density fluctuation recorded by 
vibrometers and the heat release fluctuations in the flame front [29]. It is of particular interest to ex-
perimentally investigate whether the local and global proportionality between density fluctuations and 
fluctuating heat release rate in the flame exists in reality. As shown later, this is not always the case 
(a.) because for not fully adiabatic conditions density fluctuations also occur outside the flame front 
and (b.) because changes in density are present in the products, which is both the case for combustion 
with spatially or temporal varying equivalence ratio. 

2.3.6 Influence of the Speed of Sound 

As shown in equation (27), the link between density gradients and heat release includes the speed of 
sound. Therefore, to quantify the heat release exactly, it is necessary to detect the temperature for a 
given gas in the system. As an alternative, if pressure fluctuations are not present, the heat release can 
be expressed as a function of absolute density and density gradients only. Starting off with the cou-
pling equation without pressure  (eq. (27).) and substituting the speed of sound results in: 
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and employing the ideal gas equation gives  
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since pressure fluctuations are already assumed to be small in the flame, the mean pressure can be 
assumed without including an additional error, as it is necessary to detect absolute density. This can be 
carried out with methods such as shearography. 
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2.4 Combustion Noise 

The combustion process in laminar flames as seen in candles is almost silent, while turbulent combus-
tion as predominantly applied in industrial burners can be very violent and exhibit high amplitudes of 
noise. This noise can be particularly severe when the reaction takes place at elevated pressure. Com-
bustion generated noise has been a topic for many years in industrial applications where reacting 
flows are predominantly turbulent. Especially the prediction, and consequently the reduction of corre-
lated and stochastic sound radiation of flames have been investigated intensively [57, 58]. Early theo-
ries as well as experimental validations suggest that the far-field sound pressure is proportional to 
fluctuations of heat release in the flame [59]. For measurability, many publications supported the use 
of the time derivative of OH*-Chemiluminescence [60]. However, the density distribution in the 
flame had to be assumed. Alternatively, early work [44] suggested the use of density fluctuations in 
the flame (ρ’T) integrated over the flame volume (V) in order to estimate density fluctuations in the 
far-field (ρ’) and consequently combustion noise:  
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with (c0) speed of sound in the far-field , radial distance (r) of observer and radius (r0) of the flame. 
Since time resolved density fluctuations were difficult to measure, an adaption of the equation with 
application of OH*-chemiluminescence estimating the mean density in the flame was often preferred 
[58]. The development of the LIV technique and experimental work enabled accurate measurements 
of time resolved line-of-sight and local density fluctuations in turbulent jets [21, 42] and in laminar 
[29, 31] and turbulent flames [30]. With this basis, it is possible to prove Strahle’s assumption direct-
ly. In the following, sound power as a function of sound intensity and consequently of ∂ρ'T/∂t is de-
rived. Comparing sound power has the advantage that this number does not depend on the distance of 
the observer (microphone) in contrast to sound intensity. It has the same significance as comparing 
density fluctuations since in the far-field sound power is a direct function of the density fluctuation. 
Additional information about the pp-probe is provided in appendix C. This is necessary because in a 
laboratory environment the far-field condition for low frequencies is usually not fulfilled and flames 
have a low pass characteristic. This means that combustion noise is of rather low frequencies because 
high frequencies of feedline modulation are filtered by the flame.  

2.4.1 Calculation of Sound Power from ∂ρ'T/∂t 

In the far-field where sound pressure p’ and particle velocity are in phase, sound power Pfar can be 
calculated from density fluctuations as follows. 
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with the mean density in the far-field ρ0. A sphere is defined as the detection surface. Combining 
Equation (31) and Equation (32) results in the sound power as a function of density fluctuations: 
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with radius r of the surface. After performing a fast Fourier transform (FFT) - now in the frequency 
domain - the time derivative of a variable is simply the variable times the angular frequency with a 
time lag of pi/2: 
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Replacing the integral by the sum of all measurement points (MP) times the measurement volume, the 
power can be calculated as follows (in the frequency domain):  
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with Ameas * ζ the measurement area times the measurement length. The factor 4/π corrects the meas-
urement area for a circular laser beam in a rectangular measurement grid. For the total sound power 
the sum over all frequencies is 
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2.4.2 Calculation of Sound Power from PP-Probe 

In the near field where sound pressure p’ and particle velocity ݒറ  are not in phase, sound power P can 

be calculated via sound intensity ܫറ: 
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 (37) 

Pressure is far easier to measure than particle velocity, therefore, the Euler equation is often used to 
estimate the particle velocity: 
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The velocity along one dimension can then be expressed as a function of the pressure at two different 
positions: 
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As a consequence, the sound intensity can be calculated by 
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For spectral analysis this equation can be expressed as a function of the imaginary part of the cross 
spectral density of the complex pressures (CPSD): 
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The cross power spectral density in the frequency domain can then be calculated from the cross power 
spectrum (CPS) divided by the equivalent nose band width (ENBW) [51]. The ENBW is constant for 
a constant frequency resolution Δf and a given window function. The CPS is the complex conjugated 
multiplication of the individual complex amplitudes:  
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The equation holds true if the flame diameter is small compared to the wavelength and distance to the 
observer. If the flame diameter is large the spatial distribution of coherent heat release cannot be ne-
glected anymore. Extinction and amplification of pressure waves from local heat release (density) 
fluctuations would depend on the position of the source in the flame. For small flames the noise is 
proportional to the total heat release [44]. 
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3 Results and Discussion 

The results obtained during this research are discussed by means of selected publications (Table 1) in 
the following chapter. The results are organized into three sections. In the fundamentals section limita-
tions of the system are analyzed and validation is performed. In the second section of the results, the 
application of the system and usability with respect to thermo-acoustics is discussed. In the final sec-
tion it is shown that combustion noise can be predicted by means of LIV measurements.  
 

 
 
Contribution of co-authors to the publications: 

In order of appearance, for all Publications listed above ao.Univ.-Prof. Dipl.-Ing. Dr.techn. 
Woisetschläger contributed significantly to this work not only passively as a supervisor but also by 
providing support with a range of sophisticated optical measurement techniques as well as by 
initiating discussions triggering new directions of investigation. 
For ‘Peterleithner et al. 2015 B’ [30], Dipl.-Ing. Nicolai Stadlmair and Prof. Dr. Thomas Sattelmayer 
from TU München enabled measurements at their combustion test rig which features a down scaled 
close-to-industry burner with a well-controlled flame. They also provided substantial combustion 
knowledge leading to this paper.  

 
Table 1: Selected publications on LIV in combustion. 

 
Title Journal/Conference Abbreviation 

LASER VIBROMETRY FOR 
COMBUSTION DIAGNOSTICS IN 
THERMOACOUSTIC RESEARCH 

J. Peterleithner and J. Woisetschlä-
ger, Technisches Messen, vol. 82, 

no. 11, pp. 549-555, 2015. 

Peterleithner et al. 
2015 A [61] 

ANALYSIS OF MEASURED 
FLAME TRANSFER FUNCTIONS 

WITH LOCALLY RESOLVED 
DENSITY FLUCTUATION AND 

OH-CHEMILUMINESCENCE DA-
TA 

J. Peterleithner, N. V. Stadlmair, J. 
Woisetschläger and T. 

Sattelmayer, Journal of Engineering 
for Gas Turbines and Power, vol. 

138, no. 3, 2016. 

Peterleithner et al. 
2015 B [30] 

INTERFEROMETRIC INVESTI-
GATION OF THE THERMO-

ACOUSTICS IN A SWIRL STABI-
LIZED METHANE FLAME 

J. Peterleithner, A. Marn and J. 
Woisetschläger, in Proceedings of 

the 
ASME Turbo Expo, 2015. 

Peterleithner et al. 
2015 C [62] 

COMPARISON OF FLAME 
TRANSFER FUNCTIONS AC-

QUIRED BY 
CHEMILUMINESCENCE AND 

DENSITY FLUCTUATION 

J. Peterleithner, R. Basso, F. 
Heitmeir, J. Woisetschläger, 

Schlüßler. R., Czarske. J. and A. 
Fischer, in Proc. ASME Turbo 

Expo, 2016. 

Peterleithner et al. 
2016 A [63] 

ANALYSIS OF COMBUSTION 
NOISE USING LOCALLY 

RESOLVED DENSITY 
FLUCTUATIONS AND A 
MICROPHONE ARRAY 

Johannes Peterleithner, Stefan 
Zerobin, Jakob Woisetschläger in 
Proc. ASME Turbo Expo, 2016. 

Peterleithner et al. 
2016 B [64] 
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For ‘Peterleithner et al. 2015 C’ [62], Dipl.-Ing. Dr.techn. Andreas Marn contributed by performing 
the CFD calculations of the burner-plenum and with several discussions providing technical input.  
For ‘Peterleithner et al. 2016 A’ [63] Mr. Basso measured and post processed the chemiluminescence 
images. Univ.-Prof. Dr.-Ing. Franz Heitmeir is head of the Institut for Thermal Turbomachinery and 
Machine Dynamics, TU Graz and contributed to the new test rig and laboratory. 
Dipl.-Phys. Raimund Schlüßler,  Prof. Czarske and PD Dr.-Ing. habil. Andreas Fischer provided the 
FM-DGV system as well as the necessary know-how in order to acquire and post process the velocity 
fields of the flame. 
For ‘Peterleithner et al. 2016 B’, Dipl.-Ing. Stefan Zerobin provided support with the installation of 
the microphone setup and the acquisition routines. 
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Figure 42: Heat release fluctuations detected by OH*(left) and LIV (right). 

  

3.1.3 Comparison of LIV and OH*-Chemiluminescence 

On basis of the previously stated uncertainty analysis, in the paper Peterleithner et al. 2015 B, the 
focus is specifically on the validation of the technique in a gas turbine relevant combustor at 
atmospheric conditions. This is the first publication to draw a quantitative comparison of heat release 
measured by LIV in a turbulent flame. The heat release detected from laser vibrometry was compared 
to the conventional technique of recording OH*-chemiluminescence. Due to the low errors found 
above and the comparably strong influence of the equivalence ratio onto chemiluminescence [26, 18] 
the expectation was to find more accurate results for heat release by measuring the density 
fluctuations rather than light intensity fluctuations. Secondly, the integral heat release fluctuations 
were compared to a purely acoustical method, called multi-microphone-method (MMM), which is 
also independent of the equivalence ratio. The results were integrated over the combustion region. On 
an integral level, LIV matched the MMM better than the OH*-Chemiluminescence did. For 
technically premixed flames, the OH*-chemiluminescence showed a significant overshoot caused by 
equivalence ratio waves (Figure 42). Perfectly premixed flames were in good agreement for all three 
measurement techniques. 
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3.1.4 Reviewed articles on Fundamentals and Uncertainties: 

 PETERLEITHNER ET AL. 2015 A  

J. Peterleithner and J. Woisetschläger, "Laser vibrometry for combustion diagnostics in 
thermoacoustic research," Technisches Messen, vol. 82, no. 11, pp. 549-555, 2015. 
  

 Peterleithner et al. 2015 B. 

J. Peterleithner, N. V. Stadlmair, J. Woisetschläger and T. Sattelmayer, "Analysis of measured flame 
transfer functions with locally resolved density fluctuation and OH-Chemiluminescence Data," 
Journal of Engineering for Gas Turbines and Power, vol. 138, no. 3, 2016. 
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Laser vibrometry for combustion diagnostics in
thermoacoustic research
Untersuchung thermoakustischer Oszillationen mittels Laservibrometer
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Abstract: A novel technique for time- and space-resolved
measurement of density fluctuation is presented. It is non-
intrusive and based on laser Doppler vibrometry. The den-
sity fluctuations reveal information on dynamic heat re-
lease and fluid velocity. The significance of this tech-
nique is proven by recording thermo-acoustic oscillations
in a model combustor.

Keywords: Interferometry, laser vibrometry, thermoacous-
tics, combustion diagnostics.

Zusammenfassung: Es wird ein neuartiges Verfahren
zur frequenz- und ortsaufgelösten Messung von Dich-
teschwankungen vorgestellt, welches berührungslos
arbeitet und auf der interferometrischen Laser-Doppler-
Vibrometrie beruht. Sowohl die Schwankungen der Wär-
mefreisetzung in Flammen als auch die Strömungs-
geschwindigkeit lassen sich mit diesem Verfahren be-
stimmen. Die Aussagekraft dieser neuen Messmethode
wurde mit der Untersuchung von thermoakustischen
Oszillationen einer Methanflamme unter Beweis gestellt.

Schlüsselwörter: Interferometrie, Laser Vibrometer, Ther-
moakustik, Verbrennungsdiagnostik.

1 Introduction
State-of-the-art technology in industrial gas turbines for
power generationuses lean-premixed combustion for high
combustion efficiencyand lowemissions.Highpowerden-
sities and lean combustion increase the susceptibility to
thermoacoustic oscillations. These instabilities arise from

*Corresponding author: Jakob Woisetschläger, Technische
Universität Graz, e-mail: jakob.woisetschlaeger@tugraz.at
Johannes Peterleithner: Technische Universität Graz

the positive coupling between the fluctuations of pressure
and heat release [1], cause combustion noise and candam-
age the machine during operation. High temperatures,
high turbulence and the need for local data name only
few of the challenges experienced in such arrangements
of powerful burners in the order of 1MW of power each.
Techniques toprevent thermo-acoustic oscillations arenot
only relevant in lean-premixed gas turbine combustors
but also in mobile heaters, industrial furnaces boilers and
lately aero-engines.

A number of sophisticated measurement techniques
are currently used to tackle these problems including mi-
crophone arrays, pressure and temperature sensors, high-
speed intensified cameras, chemiluminescence, schlieren
technique, Rayleigh and Raman scattering, particle im-
age velocimetry, Doppler global velocimetry and laser ve-
locimetry. All these currently used techniques lack either
the necessary time resolution, do not provide local data or
need tracer particles added to the flow.

On the other hand, in designing new machinery with
reduced noise emission from surface vibrations hetero-
dyne interferometric methods are a powerful tool to pro-
vide local frequency spectra of vibration. Currently, one
of the most used technologies in vibration detection is
laser vibrometry. In this work presented here we give all
information needed to record local and global heat re-
lease fluctuations from flames using commercially avail-
able laser vibrometers whenever optical access is granted
to the combustion zone. It is also shown that by correlat-
ing the time signals from two laser vibrometers velocities
can be recordedwithout the need for additional tracer par-
ticles or mechanically probing the test section.

2 Background
Laser vibrometers (LV) are interferometric systems widely
used to detect surface vibrations frommachinery. With an
acousto-opticmodulator as frequency modulator these in-
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Figure 1: Setup of a laser vibrometer for surface vibration
recording [2]. BS beam splitter, M mirror, L lens, AOM acousto-optic
modulator.

terferometers record vibration velocity rather than vibra-
tion amplitude. The basic principle of such a system is
shown in Figure 1 as provided by [2]. Using interferomet-
ric techniques these powerful commercially available sys-
tems can detect vibrations without mechanical contact to
the surface, andprovide sub-nanometer resolutionatwide
frequency ranges.

In combustion research at TU Graz such systems are
used to detect density fluctuations with fixed geometry
in the optical path because LV then directly record the
time derivative of density fluctuations [3–7]. Generally the
changes in density occur through changes of pressure p or
entropy s. Employing the first law of thermodynamics and
assuming perfect gas [8] leads to

𝑑𝜌

𝑑𝑡
=

1

𝑐
2

𝑑𝑝

𝑑𝑡
−
(𝜅 − 1)

𝑐
2

̇𝑞
𝑉
, (1)

with ̇𝑞
𝑉
the heat release rate per unit volume, 𝑝 pres-

sure, 𝑐 speed of sound, 𝜅 ratio of the specific heat capac-
ities and 𝑡 time. It can be shown that the pressure term
can be neglected in flames, because it is at least one or-
der of magnitude smaller than the other terms in Equa-
tion (1) [8, 9]. This proportionality between the timederiva-
tives of density recorded by LV and the desired heat release
rate in the flame was first used by [4] and proven by [5].
The time derivatives in Equation (1) express the contribu-
tions of pressure and heat release to the density fluctua-
tions recorded. Under the assumption that the LV records

data only in the flame where pressure fluctuations can be
neglected we get

𝑑𝜌

𝑑𝑡
= −

(𝜅 − 1)

𝑐
2

𝑑𝑞
𝑉

𝑑𝑡
. (2)

By Fourier transform of the recorded density fluctuations
the frequency spectra of the heat release fluctuations can
be plotted. Only at the cavity resonance frequency of the
combustion chamber the pressure term cannot be ne-
glected.

While all other techniques exhibit problems in the de-
termination of local heat release rates [10], LV can be used
to either provide heat release rates �̇� globally within the
entire combustion volume, or locally ̇𝑞. While interfero-
metric line-of-sight data need tomographic reconstruction
to obtain local values – or Abel-inversion in case of ob-
jects with cylindrical symmetry – the dual-LV technique
provides this local data in one recording [11, 12].

In non-reacting flows, LV are used to characterize the
pressure field (e. g. sound field). In such applications only
the first term in Equation (1) is of interest [13–17].

Replacing the materials derivatives in Equations (1)
and (2) by partial derivatives and using Reynold’s defini-
tion ofmean andfluctuating components convective terms
will appear, with dash denoting the fluctuating compo-
nents. These convective terms include density gradients,
gradients in heat release and velocities, as well as, the re-
spective fluctuating components. With velocities and ve-
locity fluctuations small compared to the speed of sound
(low Mach number problems) the convective transport of
heat release is small (see [18] for a more detailed discus-
sion). Then the amplitude is only slightly above the back-
ground noise, but the phase can clearly visualize the flow
pattern of the convective heat. First studies revealed that
two LV with parallel or crossed beams can detect flow ve-
locities in flames using the phase lag whenever a den-
sity structure first passes through beam 1, then through
beam 2 [4, 12].

3 Experimental setup: The
methane/air burner

Thiswork and previous work [6, 19] used a swirl-stabilised
methane/air flame at atmospheric pressure conditions.
The variable geometry burner used in this investigation is
seen in Figure 2 colour coding the most important parts.
The swirl strength is set by the ratio between axial (gray)
and tangential air (yellow) without changing the overall
air-fuel-ratio. The burner was combined with an optically
accessible liner at atmospheric pressure. In Figure 2 the
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Figure 2: Variable geometry burner used to investigate
thermo-acoustic oscillations in a swirl-stabilized methane flame.

schematics of the burner are shown together with a line-
of sight integrated schlieren visualisation on the left side
of the image and the spectral emittance at 430 nm (CH*)
on the right side. For schlieren visualisation 700 frames
were recorded with the brightest 10 percent of each pixel
accounted for an averaging process. Such procedure gen-
erates streamlines around the combustion zoneand shows
small turbulent combustion structures in the combustion
zone. OH* and CH* line-of-sight time-averaged chemilu-
minescence was recorded using a TECHSPEC band-pass-
filter for 310 and 430 nm (both Edmund Optics, Barring-

Figure 3: Setup of the laser vibrometer used to detect heat release fluctuations in flames.

ton, NJ, USA) together with an ICCD camera (NanoS-
tar, 1280×1024 pixel, LaVision, Göttingen, Germany) and
aUV lens (105 mm,𝑓/4.5, Nikon, Tokio, Japan). For the re-
sults shown in this publication, the burner was operated
at 3.37 kW power, 0.9�̇�

𝑡𝑎𝑛
/�̇�
𝑎𝑥

(tangential to axial mass
flows), a global equivalence ratio of 0.68, and a swirl num-
ber of 0.65.

4 Experimental setup: The laser
vibrometer

For the investigations two laser vibrometers were used
(interferometer head OFV-353, velocity decoder OFV-3001,
calibration factor 5mm/s/V, 20 kHz bandwidth, no fil-
ters, Polytec, Waldbronn, Germany). The basic setup to
record heat release fluctuations is shown in Figure 3. An
additional lens with −40mm focal length was used to col-
limate the beam to a certain diameter. The scanning width
depended on the beam diameter and e. g. was 3mm for a
3mmbeamdiameter. Anoptical accessmust begranted to
apply this technique –here two quartz glasswindowswith
220 × 90mm

2 were used when a liner (combustion cham-
ber) was mounted on top of the flame. To scan the field,
the combustor wasmounted on a DANTEC lightweight tra-
verse (DANTEC Dynamics, Roskilde, Denmark), while the
vibrometer was fixed. Analog input modules NI-91215 (Na-
tional Instruments, Austin, Texas) and Labview 8.6 soft-
ware were used for data recording. Each scanned posi-
tion was sampled with 245760 samples at a sample rate
of 4096 S/s. Together with the vibrometer voltage a mi-
crophone signal was recorded (KECG2738PBJ-A, minia-
ture electret condenser microphone, omni-directional,
−40 dB, 2.8mm diameter, Kingstate Electronics Corp,
New Taipei City, Taiwan). For the phase shift 𝜑(𝑡) between
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reference and object wave in the interferometer (and thus
the optical path difference Δ𝐿) we find

𝜕

𝜕𝑡
𝜑(𝑡) =

2𝜋

𝜆

𝜕

𝜕𝑡
Δ𝐿(𝑡) =

2𝜋

𝜆
𝐺∫

𝑧

𝜕𝜌
󸀠
(𝑧, 𝑡)

𝜕𝑡
𝑑𝑧

=
2𝜋

𝜆
𝑘vib𝑈(𝑡), (3)

using𝐺 the Gladstone–Dale constant for the given equiva-
lence ratio [20], 𝜌󸀠(𝑧, 𝑡) the density fluctuations along the
optical axis, 𝑘

vib
the calibration constant of the vibrome-

ter, here 5mm/s/V, and𝑈(𝑡) the vibrometer output volt-
age. 𝑧 is the coordinate along the optical axis of the LV.
The integral expresses the line-of-sight character of the
measurement. In case of two or more uncorrelated den-
sity fluctuations along the light beam the interferometer
averages on these structures thus leading to a decrease in
standard deviation by the square root of the fluctuations
number [13]. With a few events observed in the low fre-
quency range this systematic error is not significant here.
The Gladstone dale constant depends on the local equiv-
alence ratios along the laser beam. Under technically pre-
mixed conditions the systematic error can be in the order
of 1%, while in the perfectly premixed flame used here
there is no systematic error. Recording frequency spectra
or power spectra 𝑆(𝑓) by a Fast-Fourier-Transform FT the
timederivative of density fluctuations along thebeampath
can be transformed into the density fluctuation by using
the 2𝜋𝑓 conversion factor at the given frequencies 𝑓

𝑆(𝑓) = FT2 [∫ 𝜌󸀠(𝑡) 𝑑𝑧] =
1

4𝜋
2
𝑓
2
FT2 [∫

𝜕𝜌
󸀠

𝜕𝑡
(𝑡) 𝑑𝑧]

=
1

4𝜋
2
𝑓
2
FT2 [

𝑘
𝑣𝑖𝑏
𝑈(𝑡)

𝐺
] . (4)

When two laser vibrometers are used, local density fluc-
tuations can be recorded by correlating signals from the
two intersecting laser beams [11, 12]. For this dual laser vi-
brometry either one, or both vibrometers can be traversed
horizontally, in order to get radial profiles of density fluctu-
ations at certain frequencies or frequency bands with the
vibrometers fixed. Another possibility is to scan the flow in
axial direction with only one laser vibrometer, while the
second vibrometer and the burner are fixed [4, 12]. Con-
sidering a streamline within a flame, a density fluctua-
tion now firstly crosses laser beam 1, secondly beam 2,
a phase delay is recorded, depending on the convective
flow velocity of this structure in axial direction. Whenever
such a structure decayswhilemoving in axial direction, or
leaves the test volume due to tangential motion, the corre-
lation will be lost. This will provide information on struc-

tural decay and velocity. The cross-correlation 𝑐
12
(𝑡) be-

tween two functions 𝑓
1
(𝑡) and 𝑓

2
(𝑡) is given by

𝑐
12
(𝜏) =

1

𝑇

𝑇

∫

0

𝑓
∗

1
(𝑡)𝑓
2
(𝑡 + 𝜏)𝑑𝑡. (5)

Using the convolution theorem the correlation power spec-
trum𝐶(𝑓) canbe calculated from two laser vibrometer fre-
quency spectra 𝐹

1
(𝑓) and 𝐹

2
(𝑓). Due to the turbulent na-

ture of combustion, a high number of single spectra must
be averaged to obtain meaningful results

𝐶(𝑓) = FT[𝑐
12
(𝜏)] = 𝐹

1
(𝑓) ⋅ 𝐹

∗

2
(𝑓). (6)

The overbar indicates the averaged quantities. For this cor-
relation technique up to 2000 complex cross-spectra were
averaged since the accuracy depends on the square root of
the number of sampled spectra [11].

5 Results and discussion
In thismodel combustor thermo-acoustic oscillationshave
been observed and documented in earlier works [7, 12].
LV can scan the flow field to record frequency spectra of
heat release fluctuations. These line-of-sight data can be
used to record local data by Abel inversion or tomographic
algorithms. Local data can also be recorded directly by
dual-LV using correlationmethods [11]. Figure 4 shows the
easy-to-read line-of-sight results providing deep insights
in thermo-acoustics. Figure 4 plots the resulting frequency
spectra of a line scan (3mm steps with 3mm beam di-
ameter) through the flame with and without liner at dif-
ferent scanning heights. When discussing the spectra of
the flame without liner first, we observe a periodic phe-
nomenon at 230 Hz with a higher harmonic at 460Hz,
suggesting a non-sinusoidal signal. With the liner in place
an additional acoustic wave is excited at a frequency of
200Hz in the cavity. This periodic instability is observed
when the burner excites a standingwave in the liner cavity.
At this 200 Hz frequency strong amplitudes can be seen
in the flame and lower amplitudes in the non-reacting ar-
eas outside the flame. It is important to learn that the pres-
sure term in Equation (1) can not necessarily be neglected
when a combustion chamber resonance is observed.When
the line scan is performed above the combustion zone, as
shown in the right plot in Figure 4, the amplitude at the
chamber resonance frequency has its maximum beyond
a radial extend of 20mm. Comparing this finding with
the schlieren image in Figure 2 indicates that in this re-
gion mixing with colder air takes place. While in the cen-
tre the hot gases from the combustion flow downstream,
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Figure 4: Density fluctuation frequency spectra recorded by laser vibrometry. The laser beam is scanned through the flame for two different
heights with and without liner at resonant conditions.

the colder cooling gases in the outside seem to have just
the correct temperature to particularly enable the stand-
ing pressure wave, thus the higher resonance amplitude in
this region. In the scans at 40mm height (Figure 4, right
plot) the contributions from heat release are already small
compared to the resonant pressure term. Also strong am-
plitudes were detected at the lower frequencies at 15Hz
and at 30Hz across the whole section of the burner. The
30 Hz signal is constant at all positions scanned, indi-
cating a structural vibration of the test rig (traverse). In
contrast, the 15Hz frequency is not of uniform ampli-
tude along the cross-section of the combustion chamber
and slowly decays towards higher frequencies, indicating

Figure 5: Density fluctuations within 230–260Hz as recorded by the LV are shown left, while the temperature corrected values in the right
image present the heat release fluctuations in this frequency range.

a convective-aerodynamic effect. In this region hot strains
from the flame rise next to cooling air along the windows.
This convective transport of heat was already expected by
analyzing the Schlieren image.

One important fact from Equations (1) and (2) is the
temperature dependency of the speed of sound. While
in hydrocarbon combustion the ratio of specific heat ca-
pacities depends only slightly on temperature, the speed
of sound is sensitive to temperature changes. In order
to record the fluctuations of heat release rate at a given
frequency or for a given frequency interval correctly, the
temperature distribution in the flame must be known to
record the heat release fluctuations form Equation (2) cor-
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Figure 6: Recording the convective heat transport velocity using
phase correlation from dual laser vibrometry above the nozzle
(𝑦 = 0mm).

rectly. Assuming perfect gas and using the gas law, this
temperature field can be acquired by measuring the den-
sity distribution for example with shearography, a spa-
tial correlation technique interferometrically comparing
the wavefront with its sheared counterpart. Here a shearo-
graphic technique was used allowing for independent
alignment of shear (sensitivity) and carrier fringe sys-
tem [4, 21]. The influence of the local temperature distri-
bution on the result is shown in Figure 5 for fluctuations
within 230–260 Hz as recorded by the LV. While the over-
all fluctuation-patterndoesnot changemuch, in regionsof
strong temperature gradients, it does change significantly.

In order to assess the velocity of convective structures
two vibrometers can be aligned above each other. When
a density fluctuation crosses laser beam 1 first, then beam
2, a phase delay is recorded, depending on the axial veloc-
ity of this structure. By traversing one vibrometer, the evo-
lution of the flow and the decay of the structures can be
visualized. Whenever such a structure decays while mov-
ing in axial direction, or leaves the test volume due to tan-
gential motion, the correlationwill be lost. Such a scan for
density fluctuations for two LV with perpendicular laser
beams is shown in Figure 6 for frequencies between 0 and
180Hz with a cavity resonance at 165 Hz. This change in
resonance frequency compared to the results presented in
Figure 4 was caused by a slightly different point of oper-
ation. Shown is the phase lag observed by scanning one
LV, while the other one is fixed. The data processing was
done according to Equation (6) by a cross-correlation pro-
cedure with a high number of samples due to the high
level of turbulence in this flow. The first vibrometer was
set up at 𝑥 = 80mm, and the second vibrometer’s starting
height was at 𝑥 = 120mm above the burner nozzle. The

second LV was traversed in axial direction up to a height
of 180mm (perpendicular laser beams). In the lower fre-
quency range the convective heat transport is observed.
From the phase lagΔ𝜑(𝑥) in 𝑥-direction, the known scan-
ning distance Δ𝑥, and the frequency 𝑓, the axial velocity
𝑣
ax
can be obtained by

𝑣
𝑎𝑥
=

2𝜋

Δ𝜑(𝑥)
⋅ Δ𝑥 ⋅ 𝑓. (7)

This procedure resulted in an axial velocity of 2.5m/s,
which is in good agreement with laser-optical velocity
measurements performed in this setup [7]. At higher fre-
quencies a loss of coherence between the two LV signal is
observed, due to a structural decay at these frequencies.
This decay can also be seen from the correlation ampli-
tude spectra not presented here. Another possibility for
this loss of coherence is the strong tangential movement in
this swirl-stabilized flame. At about 165 Hz the field in the
liner is dominated by the cavity resonance. No significant
phase delay between the LV positions can be observed at
this frequency due to the high speed of sound. The stand-
ing acoustic wave (pressure wave) dominates the phase in
this spatio-temporal correlation at 165Hz.

6 Summary and outlook
The laser vibrometer is a powerful tool for combustion di-
agnostics. Based on Equations (1) to (7) amplitude and
phase of density-fluctuation frequency-spectra can be
recorded in a non-intrusive way with high frequency and
spatial resolutions. These spectra can then be used to
classify the flame and discuss thermo-acoustic oscilla-
tions whenever optical access is granted to the combus-
tion zone. By correlating the time signals from two laser vi-
brometers velocities can be recorded without the need for
additional tracer particles ormechanically probing the test
section. For further flame characterization, flame trans-
fer functions (FTF) can be detected by LV, since it was
shown recently [18] that the fluctuations in global heat re-
lease rate �̇�󸀠 recorded in perfectly premixed flame by LV
do agree with data recorded by OH*-chemiluminescence.
Data from measurements using a high number of LV
beams, maybe even from multiple directions, could pro-
vide local spatio-temporal correlations and deeper insides
into combustion processes.
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Analysis of Measured Flame
Transfer Functions With Locally
Resolved Density Fluctuation and
OH-Chemiluminescence Data
The goal of this study is to analyze flame transfer functions (FTFs) locally by quantifying
the heat release rate with OH*-chemiluminescence and density fluctuation measurements
using laser vibrometry. In this study, both techniques are applied to a swirl burner config-
uration with known FTFs acquired by multimicrophone-method (MMM) measurements
for perfectly premixed and partially premixed cases. The planar fields of the quantities
are compared to the FTFs in order to improve the understanding regarding the specific
amplitude and phase values. On the global scale values of heat release expected from the
MMM are satisfactorily reproduced by both methods for the premixed cases, whereas
OH*-chemiluminescence data cannot be used as indicator for heat release in the
partially premixed case, where equivalence ratio fluctuations are present. Vibrometry is
not affected by fluctuations of equivalence ratio but additionally reveals the periodic os-
cillation of the conical annular jet of the cold reactants in the combustor filled with hot
products. [DOI: 10.1115/1.4031346]

Introduction

State-of-the-art technology in industrial gas turbines for power
generation predominantly uses lean-premixed combustion to
achieve high combustion efficiency and low emissions. High
power densities and reduced damping capabilities of the combus-
tor increase the susceptibility to thermoacoustic oscillations.
These instabilities arise from the positive coupling between the
fluctuations of pressure and heat release [1]. Modeling and predic-
tion of instabilities is often accomplished by analyzing the FTF,
which relates the unsteady heat release of the flame to perturba-
tions of acoustic velocity at the burner exit.

In the past, a variety of methods for the measurement of FTFs
in research combustors have been published. A method widely
used for determining the FTF is measuring the chemilumines-
cence from OH* within the flame as the measure for heat release.
Velocity fluctuations at the burner exit are obtained either directly
from hot wire anemometry or from dynamic pressure measure-
ments with the multimicrophone-method [2,3]. Whereas all
approaches relying on chemiluminescence are only applicable for
adiabatic flames with low strain rates and constant equivalence
ratio [4], this method is not applicable to technically premixed
combustion systems. For this case, fluctuations of the equivalence
ratio provide additional contribution to the heat release fluctua-
tions and thus the FTF cannot be determined from the integral
OH*-chemiluminescence [5]. Alternatively, the FTF can be
obtained with the multimicrophone-method (MMM). This tech-
nique is free of these restrictions, as it is entirely based on
dynamic pressure measurements and allows obtaining FTFs,
which represent the flame dynamics in form of the frequency de-
pendent amplitudes and phase for a wide range of flames. It can
be applied to combustion processes with heat losses, high strain
rates and partially premixed flames with equivalence ratio fluctua-
tions or sprays. Conversely, this implies that no direct information
regarding local phenomena can be captured, as the flame is treated
as a “black-box” system. To overcome this shortfall, it is common
practice to use physically based fit functions, which may

indirectly lead to information on the effects governing flame dy-
namics [6,7]. In some cases, Abel-de-convoluted flame images of
OH*-chemiluminescence from a high-speed camera can be used
to obtain local information for further analysis of the flame
dynamics. However, Lauer [4] showed that turbulence has a re-
markable impact on the chemiluminescence intensity in highly
turbulent flames. In such cases, discrepancies in the spatial distri-
butions of chemiluminescence emission and heat release rate must
be expected.

Experimental Setup

Test Rig. The measurements presented in this study have been
carried out on the single burner test rig with a modular swirl
burner system (33 mm exit diameter) for lean-premixed operation
shown in Fig. 1 [8,9]. The main airflow is preheated by an electri-
cal preheater to Tc¼ 300 �C before it enters the cylindrical plenum
chamber with a diameter of 124 mm. Acoustic excitation is pro-
vided by two sirens positioned at two different locations. One si-
ren is placed far upstream of the burner and modulates the main
airflow, the second one is located downstream of the combustor.
Transfer matrix measurements can be accomplished with this test
rig using the two source-location method [3]. For perfectly pre-
mixed mode (PPM) operation, natural gas is supplied to the inlet
of the plenum chamber to avoid fluctuations of the equivalence ra-
tio. When operating in technically premixed mode (TPM), the
fuel is directly injected through tangential holes in the swirler. In
this case, an equivalence ratio wave is generated, if the flow is
forced. A conical mixing tube attached to the swirler produces a
convective time delay between the fluctuations of swirl and axial
velocity at the burner exit. The combustor has a cross-sectional
area of 150� 150 mm and is optically accessible from two sides.
An acoustically low-reflective end is attached to the combustor
exit.

Measuring Techniques. Acoustic pressure fluctuations are
measured by PCB 106B piezoelectric sensors. Three of these are
located in the plenum chamber and three in the combustor. Simul-
taneous data acquisition is achieved by a personal computer
equipped with a National Instruments PCI-4472 card. The phase
signal of the siren excitation is provided by rotational speed
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sensors. The integral OH*-chemiluminescence intensity emitted
by the flame is acquired using an UV filtered photomultiplier. The
sensor consists of a photo diode and a narrow-band interference
filter of 308 nm.

Phase-resolved flame images are obtained by an image
intensified Photron Fastcam APX I2 high-speed camera. The
OH*-chemiluminescence intensity of the flame is recorded using
a narrow-band interference filter with a maximum transmission of
16.17% at a characteristic wavelength of 308.52 nm and a band-
width of 10 nm. CH* chemiluminescence intensity is obtained by
filtering at a characteristic wavelength of 431 6 10 nm and a max-
imum transmission of 48%. All images are taken with a recording
frequency of 12.5 kHz and a resolution of 512� 256 pixels.
Dynamic pressure data, siren phase, and trigger signal of the
image intensifier are acquired simultaneously.

After calibration for thermal noise, a set of 32,768 images at a
recording rate of 12,500 images per second was acquired for CH*
and OH*. For post processing, the frames of 512� 256 pixels
were then split into 6� 6 pixel subframes corresponding to 4 mm2

in the flame cross section.
On the basis of the ratio between OH*- and CH*-

chemiluminescence, the global and local equivalence ratio can be
determined [10]. Fluctuations of equivalence ratio are calculated
from the images obtained by the high-speed camera after sorting
them according to their phase with respect to the excitation

/0 að Þxz
�/ij

a
¼

IOH� að Þxz

ICH� að Þxz

IOH�xz

ICH�xz

� �a � 1 (1)

For the comparison on the global level, the time-series of each
subframe was Fourier analyzed, resulting in local fluctuation
amplitudes for the siren frequencies.

For the 2D image series plotted below, the images were sorted
according to the phase to the sirens trigger. An example is shown
in Figs. 2(b) and 2(c). Finally, an Abel inversion was performed to
gain local data. In case of rotational symmetry of the flame, a sin-
gle projection can be used. For this purpose, the software package
IDEA 1.7.31 was used, developed at Graz University of Technology
[11,12]. A f-interpolation technique was use to obtain local data
from line-of-sight data by Abel inversion from radially symmetric
data [13].

Abel inversion was performed on the single frames within the
time-series in order to preserve the phase throughout the image
processing.

Laser vibrometers (LVs) consisting of a Mach–Zehnder inter-
ferometer are widely used to detect surface vibrations from ma-
chinery. With an acoustic-optical modulator, these interferometers
record vibration velocity rather than surface amplitude increasing
the spectral signal by a factor of 2pf. In combustion research,
these systems are used to detect density fluctuations with fixed
geometrical changes in the optical path.

In this study, a single LV was used (interferometer head OFV-
353, velocity decoder OFV-3001, calibration factor 5 mm/s/V,

20 kHz bandwidth, Polytec, Waldbronn, Germany). The LV was
equipped with a 40 mm lens to collimate the laser beam to 2 mm
diameter. To scan the field, the vibrometer was mounted on a
DANTEC lightweight traverse (DANTEC Dynamics, Roskilde,
Denmark). Data were acquired with analog input modules NI-
91215 (National Instruments, Austin, TX) and LABVIEW 8.6 soft-
ware. For each of the positions scanned at 200 Hz 6� 106 samples
were taken with a sample rate of 100 kS/s. In the 480 Hz experi-
ments 491,520 samples at 8192 S/s were taken and the signals
were filtered with a 5 kHz low pass. Together with the vibrometer
voltage, the microphone signal and the siren excitation signal
were recorded for all scanned positions to have a phase reference.
For one single position in the field LV, microphone and photomul-
tiplier signal (OH*) were recorded. All cross-correlations and
Fourier transforms were done by a MATLAB routine providing fre-
quency spectra (amplitude and phase) for each position scanned.
Sample lengths of 50 kS (experiments with 200 Hz excitation) and
4096 S (experiments with 480 Hz excitation), respectively, were
used.

Using the LV, the combustion field was scanned in 150 posi-
tions in the upper half-plane as indicated in Fig. 2. Since the LV
records changes of the optical path length L(t), the output voltage
U(t) must be related to the density fluctuations by

kvibU tð Þ ¼ d

dt
L tð Þ ¼ G

ð
d

dt
q tð Þ dy (2)

With the calibration factor kvib (5 mm/s/V) for the LV and the
Gladstone–Dale constant G, relating refractive index with density.
Since the Gladstone–Dale constant for air is about 2.4� 10�4 m3/
kg, but 6� 10�4 m3/kg for Methane, a slight influence of equiva-
lence ratio fluctuations is evident.

Fig. 1 Schematic of the single burner test rig with modular swirl burner system

Fig. 2 Coordinate system used for the vibrometer measure-
ments and measurement points at an area of 75 3 70 mm (a). A
single shot (b) and a time averaged OH* image (c) of
chemiluminescence.
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The evaluation procedure for the LV data was identical to the
procedure performed on the chemiluminescence flame images,
resulting in line-of-sight plots for the density fluctuations and inte-
gral fluctuations for the field of view.

In order to derive the relationship between the density fluctua-
tions and heat release fluctuations, we consider an ideal gas
exposed to heat addition as usual in thermoacoustics studies. In
differential form, the density fluctuations are related to the
pressure and temperature fluctuations as follows:

dq ¼ @q
@p

����
T

dpþ @q
@T

����
p

dT (3)

We eliminate dT from this equation using the first law of
thermodynamics

dqþ dp

q
¼ dh ¼ cpdT (4)

With the ideal gas law p¼ qRT, this leads to

dq ¼ 1

RT
� p

RT2

1

qcp

� �
dp� p

RT2

1

cp
dq (5)

Using cp ¼ jR=j� 1 and the relation between sound velocity and
temperature c ¼

ffiffiffiffiffiffiffiffiffi
jRT
p

, we obtain

dq
dt
¼ 1

c2

dp

dt
� j� 1

c2

dqV

dt
(6)

The time derivatives in Eq. (6) express the fluctuation components
of density, pressure, and heat release. It is common practice to
replace the material derivatives in Eq. (6) by partial derivatives
when studying thermoacoustic low Mach numbers problems. This
implies the assumption that the convective transport of the heat
release fluctuations has no effect on the driving potential of
thermoacoustic instabilities. The use of partial derivatives allows
the treatment of wave propagation separate from the heat release
in, e.g., hybrid field methods using the inhomogeneous wave
equation [14], acoustic perturbation equations [15], as well as
linearized Euler equations and linearized Navier–Stokes equations
(e.g., Ref. [16]). It can be shown that the pressure term can
be neglected in flames, because it is at least an order of
magnitude smaller than the other terms in Eq. (4) [17,18]. This
finally leads to

@q0

@t
¼ �j� 1

c2

@qV
0

@t
(7)

Equation (7) reveals a proportionality between the time deriva-
tives of density fluctuation recorded by vibrometers and the heat
release fluctuations in the flame front [19]. It is of particular inter-
est to experimentally investigate whether the local and global pro-
portionality between density fluctuations and fluctuating heat
release rate in the flame exists in reality. As shown later, this is
not always the case (a) because for not fully adiabatic conditions
density fluctuations also occur outside the flame front, (b) because
changes in density are present in the products, which is both the
case for combustion with spatially or temporal varying equiva-
lence ratio, and (c) because additional density fluctuations are
generated at the interface between reactants and products, if these
interfaces oscillate.

In the study presented below, a new approach based on the
combination of line-of-sight OH*-chemiluminescence and density
fluctuation data will be employed for analyzing FTFs. Both meas-
uring techniques should give access to the heat release fluctuations
of the flame independent of one another. This is achieved by
acquiring OH*-chemiluminescence with an intensified camera,
while density fluctuations are measured with a vibrometer on a

two axis traverse. After integration over the field of view, these
data can be compared with the FTF results obtained by the MMM.
In the first phase, investigations are carried out for perfectly pre-
mixed conditions, whereas in the second phase the case with
equivalence ratio waves is considered. These are generated when
operating the burner in TPM with fuel injection in the swirler.

Flame Properties and Flow Field

Stationary Flame Behavior. In the following, the steady flame
properties of the lean premixed, aerodynamically stabilized flame
will be briefly described. Figure 3 shows the flow field of the
flame without reaction and the reaction zone is visible from line-
of-sight OH*-chemiluminescence intensity [20]. A stable and
well-defined bubble-shaped recirculation zone is generated
approximately 0.5D downstream of the burner outlet. In the react-
ing case, the bubble end is located at 1.5D–2D. The vortex break-
down is induced by the sudden change in the cross section
between burner and combustor. Flame stabilization is accom-
plished inside the core flow at the tip of the recirculation zone.
The flame propagates through the inner shear layer whereas no
reaction takes place in the outer shear layer due to heat loss and
strain. Further information on the aerodynamic properties of the
burner is available in Ref. [20].

Flame Transfer Functions. Physically, the FTF correlates the

heat release fluctuations _Q
0

in the flame to the velocity fluctua-
tions at the burner exit u0b. The FTF is generally defined by the fol-
lowing equation:

FTF ¼
_Q
0
= �_Q

u0=�u
(8)

On this basis, direct measurements of the FTF are only possible
in flames, which exhibit a proportionality between the heat release
fluctuations and flame chemiluminescence (OH* and/or CH*).

In this study, the FTFs are determined with the fully acoustic
approach as the premise of a constant equivalence ratio is not met
for all investigated cases. For this purpose, the burner transfer
matrices (BTM) and the burner and flame transfer matrices
(BFTM) are measured with source-location method. In the next
step, the flame transfer matrix (FTM) is calculated for each excita-
tion frequency

FTM ¼ BFTM � BTM�1 (9)

Provided, the temperatures before (Tc) and after the flame (Th) are
known, the FTF can be calculated from the element (2,2) of the
FTM from the Rankine–Hugoniot relations

Fig. 3 Flow field (nonreacting case) and reaction zone from
line-of-sight OH*-chemiluminescence in the combustor [20]
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FTF xð Þ ¼ FTM2;2 � 1

1þ Th

Tc

(10)

The given FTFPPM show a clearly visible minimum at approxi-
mately 200 Hz, followed by a maximum, and finally the amplitude
decreases slightly toward higher frequencies (Fig. 4). The phase is
plotted with the velocity as reference, continuously decreasing
with increasing frequency, representing the convective time delay
between velocity fluctuations and the flame response with
unsteady heat release. In contrast to that, the lowest amplitude of
the FTFTPM is shifted toward lower frequencies. Maximal ampli-
tudes are higher than in the perfectly premixed case. With increas-
ing frequency, amplitudes of both perfect premixing and technical
mixing converge, which suggests a vanishing influence of the fluc-
tuations of equivalence ratio. The phase of the FTFTPM decreases
steeper than for the PPM case. Both slopes converge toward
higher frequencies [8]. Based on these results, we have chosen
200 Hz for the first excitation frequency. In this case, the ampli-
tude of FTFPPM reaches its minimum, whereas the amplitude of
FTFTPM is large. In the latter case, we expect an overprediction
of the amplitude by the chemiluminescence intensity compared to
the pure acoustic method. We are thus expecting the oscillations
of heat release obtained from the density fluctuations to be lower
compared to the chemiluminescence method when equivalence ra-
tio waves are present.

Second, the excitation at 480 Hz is of particular interest at which
the FTFPPM reveals its maximum amplitude. Using the original
definition of the FTF in Eq. (8), the normalized heat release fluctu-
ations can directly be obtained from multiplying the FTF with the
normalized velocity fluctuations at the burner exit. Consequently,
the influence of the velocity perturbations can be eliminated. This
allows direct comparison of OH*-chemiluminescence intensity
and density fluctuations. The normalized global heat release fluctu-
ations Q0= �Q obtained from the MMM for both premixing modes
are plotted in Fig. 5. Considering only the amplitude behavior, it
becomes clear that the deviations between the FTFPPM and
FTFTPM in the low frequency range are mainly caused by the
fluctuating heat release rate, which is remarkably higher in the
TPM case. This contribution diminishes toward higher frequencies
where the FTF amplitude is dominated by the decreasing

amplitudes of the velocity perturbations. Amplitudes and phase
slopes of the velocity fluctuations for both premix modes do not
differ substantially from one another. For that reason the phase lag
between the FTFPPM and FTFTPM for low frequencies is caused
by the contribution of the heat release fluctuations alone.

Operating Conditions. The operating conditions of the single
burner test rig employed in this study have been chosen identi-
cally to the configuration previously used in Refs. [8,9] for trans-
fer matrix measurements. An overview of the operating
conditions and its corresponding amplitude and phase values are
shown in Table 1.

This allows comparisons to be drawn across different measure-
ment techniques and utilization of existing data. Investigations
conducted in this study have been accomplished for a fixed global
equivalence ratio of /¼ 0.71 at constant thermal power of
Pth¼ 50 kW. Swirl strength and mixing tube length were kept
constant for all experiments.

Results

Below the global OH*-chemiluminescence data acquired with a
photomultiplier will be discussed first. Then the planar line-of-
sight chemiluminescence and density fluctuation data acquired
with the intensified camera and the vibrometer, respectively, will
be presented. On this basis, the reasons for the amplitudes of the
heat release fluctuations measured with the MMM for the three
operating points will be analyzed. In addition, consistency checks
between all three methods will be made. And finally all line-of-
sight data will be deconvoluted to generate pseudo-local data,
which reveal additional insight in the spatial distribution of OH*-
chemiluminescence and density fluctuations.

Global Data. During experiments, the integral chemilumines-
cence signal was permanently monitored with a photomultiplier
and a narrow-band interference filter at the OH*-emission line.

The broadband combustion noise spectra for the three operating
points shown in Fig. 6 exhibit the decay of amplitude toward
higher frequencies typical for turbulent flames. At 430 Hz and
above 800 Hz, the eigenfrequencies of the combustor configura-
tion lead to amplification of the heat release fluctuations due to

Fig. 4 Flame transfer function FTFs measured with the multi-
microphone method

Fig. 5 Normalized heat release fluctuations extracted from the
FTF
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turbulent noise. However, this effect is very low, because the
acoustic design of the test rig with the lowly reflecting end plate
provides strong damping. At the forcing frequencies distinct peaks
are present, which are approximately one order of magnitude
higher than the background from turbulent noise. This shows that
the siren excitation is powerful enough to provide well-correlated
phase information, which is required for the generation of time se-
ries from the data (see below).

A closer look on the peak heights of OH*-Chemiluminescence
in Fig. 6 delivers estimates for the ratios between fluctuation
amplitudes from integral OH* emission for different operating
points. For the two operating points with forcing at 200 Hz, we
obtain a value of TPM200:PPM200¼ 5.7 and for the two per-
fectly premixed cases the ratio is PPM480:PPM200¼ 1.5. Within
the measurement uncertainty, the latter ratio corresponds to the
expectations based on the measurements with the MMM. Table 1
shows that both methods deliver consistent results for PPM. On
the other hand, the amplitude measured with the photomultiplier
for the TPM is significantly higher than the expected value. This
indicates that the heat release fluctuations are lower than the
OH*-chemiluminescence fluctuations recorded by the photomulti-
plier. Obviously, the equivalence ratio fluctuations generated by
the fuel injection in the swirler (TPM200) are not fully dissipated
during convection into the flame zone and part of the OH*-
chemiluminescence fluctuations are the result of the sensitivity of
OH*-chemiluminescence on the equivalence ratio.

Line-of-Sight Data. In Fig. 7, the line-of-sight integrated data
are presented for the three investigated operating points. The
image sequence of each figure shows the OH*-chemiluminescence
and below, the sequence of density fluctuations. Please note that
the full color scale has been used in each image sequence and that
the scales differ when comparing the image sequences of the three
operating points with each other.

According to the derivation in the introduction, the OH*-
chemiluminescence and the density fluctuation image sequence
should be identical or at least almost very similar for the premixed
operating points PPM200 and PPM480. However, the sequences
in Fig. 7 show that this is not the case. Potential reasons for the

observed differences have been mentioned in the introduction and
will be analyzed below.

The OH*-chemiluminescence image sequence for PPM200
(Fig. 7, upper section) indicates that in the premixed case a zone
with periodic heat release overshoot (red) and heat release deficit
(blue) is generated at the burner exit, which is convected down-
stream along the inner shear layer of the conical annular jet of
reactants. Apparently, this convective process ends with the for-
mation of a fluctuating flat reaction zone, but it would be difficult
to identify a reason for the flat shape on the basis of the analysis
of the flow (Fig. 3). The analysis of the deconvoluted images pre-
sented below will show that the flat shape of that downstream
zone originates from the line-of-sight integration and that the
observed flat reaction zone in fact does not exist.

According to the MMM, the amplitude of the heat release is
low for PPM200. The reason for the low gain is clearly visible in
the OH*- chemiluminescence image sequence: At each phase
angle the zones with heat release overshoot and heat release defi-
cit are in almost perfect balance.

The density fluctuation image sequence (Fig. 7, upper section)
also shows the formation of a zone with periodic heat release fluc-
tuations near the burner exit. However, the convective processes
are almost invisible in the vibrometer measurements of PPM200.
Instead a conical structure in the outer shear layer is visible, which
oscillates in phase.

This structure cannot be linked to heat release because the reac-
tion is quenched in the outer shear layer (see above). This leads to
the conclusion that the density fluctuations due to the temperature
difference of reactants and products, which can coexist in the
outer shear layer, are measured by the vibrometer. The deconvo-
luted images presented below will provide more information
regarding the underlying effects. In the center structures with
complex shapes are measured which are difficult to understand,
because they may again result from line-of-sight integration.

The OH*-chemiluminescence image sequence for TPM200
(Fig. 7, middle section) shows fundamentally different patterns. A
huge flat pulsating zone is created at the burner exit, which spreads
radially outward first, before it is convected in axial direction and
finally vanishes. Since flame stabilization and flame propagation
follow the same principles and are not specific to the method of
fuel injection and premixing, the observed fundamental change of
the pattern of fluctuation cannot be primarily linked to the heat
release in the flame. This leads to the conclusion that the observed
fluctuations to a large extend are caused by the temperature de-
pendency of OH*chemiluminescence, which plays a role when
equivalence ratio waves are convectively transported through the
flame zone. This is the case shown in Fig. 8, where the axial distri-
bution of the equivalence ratio / over the phase angle is shown for
TPM200. In order to illustrate the axial convection more clearly,
data have been integrated over the x-axis, which is perpendicular
to the main flow. Each plotted data series corresponds to a certain
time step. Starting with the first data series, we see that the highest
equivalence ratio is found near the downstream end of the flame.
With increasing time step, this peak decreases, and a new wave
starts at the beginning of the flame. This wave is then convectively
transported through the flame.

Since Fig. 8 shows a significant level of fluctuation of the
equivalence ratio, it cannot be expected that meaningful data
regarding the heat release distribution can be extracted from the
OH*-chemiluminescence image sequence shown in Fig. 7 (middle
section). It is expected that the pulsation amplitude calculated on
the basis of OH*-chemiluminescence is by far to high.

The density fluctuation image sequence in Fig. 7 (middle sec-
tion) confirms that the reaction patterns of PPM200 and TPM200
are much less different than to be expected on the basis of the
OH*-chemiluminescence image sequences for both operating
points. Although the maximum amplitude in the time series plots
is the same for PPM200 and TPM200, areas of high amplitude are
significantly larger in the technically premixed case. This leads to
a higher amplitude for TPM200.

Table 1 Investigated operating modes, amplitude, and phase
values are referenced to the PPM200 Hz case

Operating
mode (Hz) jFTFjrel

1ðFTFÞrel

(rad) j _Q 0jrel

1ð _Q
0Þrel

(rad)

PPM200 1 0 1 0
PPM480 6.51 �5.47 2.41 2.58
TPM200 4.05 �3.65 4.24 2.78

Fig. 6 Integral OH*-chemiluminescence OH* detected by the
photomultiplier
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Qualitatively, the OH*-chemiluminescence image sequence for
PPM480 (Fig. 7, lower section) shows the same effects as the
image sequence for PPM200. The bone-shape of the zones of heat
release overshoot (red) and heat release deficit (blue) visible in
Fig. 7 (lower section) are again the result of line-of-sight integra-
tion as will be shown later, when the deconvoluted images are dis-
cussed. However, the red and blue zones are no longer in balance
over the cycle. Overshoot zones clearly dominate between 330
and 150 deg and deficit zones in between. The reason for that dif-
ference is the ratio of time scales: Whereas the convective time
scale is independent of the forcing frequency the formation of
overshoot and deficit zones is proportional to it. In line with the

expectation from the measurements with the MMM the OH*-
chemiluminescence image sequence also provides evidence for a
high global amplitude of the heat release fluctuations.

The density fluctuation image sequence for PPM480 (Fig. 7,
lower section) shows the same basic effects as the image sequence
for PPM200 but it also shows the imbalance between overshoot
and deficit zones over the pulsation cycle.

Spatially Integrated Line-of-Sight Data. If the data presented
in the last section, Line-of-Sight Data, are integrated in x- and in
z-direction, global values for the OH*-chemiluminescence and the

Fig. 7 Phase-resolved OH*-chemiluminescence and density fluctuations, line-of-sight data
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density fluctuations are obtained, which reveal amplitude and
phase information regarding flame dynamics like the MMM. This
allows a comparison of both methods on the global scale, and in
addition, the results from OH*-chemiluminescence can be
compared with the data from the photomultiplier.

Figure 9 shows the normalized intensity of OH*-
chemiluminescence integrated over the entire image of a time
series acquired by fast Fourier transform. Considering amplitude,
the technically premixed case shows by far the highest value as
expected on the basis of the MMM measurements. TPM200 is
about 5.9 times higher than PPM200. In further agreement, the
PPM480 case exhibits 1.6 times higher fluctuations than the
PPM200, although not as much higher as expected (see Table 1
for comparison). For 200 Hz the technically premixed case lags in
phase. This is in agreement with the MMM measurements as well,
but again, does not match the values exactly. The deviation in
phase may be due to the steep gradients in gain and the sudden
phase change around 200 Hz.

In analogy to Fig. 9, the line-of-sight results from the vibrome-
ter measurement are also integrated in x- and z-direction (Fig. 10).
A similar phase lag as observed for OH* is found for the techni-
cally premixed operating point, but major differences are found in
the amplitudes. PPM480 still shows higher amplitude than
PPM200, which exhibits the lowest value of the three operating
points considered.

Most interesting is the amplitude of TPM200. Although it is
still the highest of all three, it is considerably lower than the val-
ues extracted from OH*-chemiluminescence and this value corre-
sponds better to the expectations based on the measurements with
the MMM. A clear advantage of the vibrometer is that the time
derivatives of density fluctuations, measured are not influenced by
equivalence ratio waves like OH*-chemiluminescence.

The ratios of fluctuation amplitudes recorded by the LV are
TPM200:PPM200¼ 2.5 and PPM480:PPM200¼ 1.6. These match
the fluctuation ratios obtained by the multimicrophone method bet-
ter than the OH*-chemiluminescence data. Using the LV to record
the density fluctuations, the TPM200 fluctuations in heat release
rate are no longer overestimated. Also a phase-shift between
TPM200 and PPM200 becomes visible in the LV time-series
expected from multimicrophone data.

Pseudo-local Data. Finally, the line-of sight data presented
earlier are deconvoluted to provide pseudo-local data, which are
free from artifacts originating from line-of-sight integration.

The OH*-chemiluminescence image sequence for PPM200
(Fig. 11, upper section) indicates that the fluctuating flat reaction
zone seen in the line-of-sight data does not exist in reality.
Instead, the zones with heat release overshoot or deficit are recir-
culated in the vortex breakdown bubble and finally reach the

stagnation zone where they have been initially created before they
are completely dissipated.

In the density fluctuation image sequence, two conical struc-
tures are visible which represent the inner and the outer shear
layer in between the conical annular jet of reactants flowing into
the combustor filled with hot combustion products. Each of them
oscillates in phase but both oscillate with a phase difference of
180 deg relative to each other. This indicates a flapping motion of
the annular jet, which is driven by the pulsation of the flow. The
interesting finding is that the vibrometer records the density fluc-
tuations due to the temperature difference of reactants and prod-
ucts in addition to the time derivatives of density fluctuations
originating from combustion. Due to the oscillation of both shear
layers with opposite phase, the net effect may be small after spa-
tial integration, but it dominates the pseudo-local data. This
explains the finding that the vibrometer delivers reasonable global
results regarding the integral heat release fluctuation in the flame.

The OH*-chemiluminescence image sequence for TPM200
(Fig. 11, middle section) shows that the flat structure of the heat
release overshoot and deficit zones does not exist in reality. The
deconvoluted images once again show the strong recirculation of
these zones toward the stagnation point. That implies that a signif-
icant oscillation of the equivalence ratio in the vortex breakdown
bubble is present and that well mixed conditions cannot be
assumed.

The density fluctuation image sequence reveals the two conical
structures again. As expected, these similarly appear for both fuel
injection methods.

Fig. 8 Convectively transported equivalence ratio wave at 200
Hz, (TPM200), line-of-sight data with U0 calculated according to
Eq. (1) Fig. 9 Global OH*-chemiluminiescence fluctuations. The fluc-

tuations are normalized by the PPM200 fluctuation amplitude.

Fig. 10 Global density fluctuations. The fluctuations are nor-
malized by the PPM200 fluctuation amplitude.
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The OH*-chemiluminescence image sequence for PPM480 shown
in the lower section of Fig. 11 proves that the bone-shape of the
zones of heat release overshoot (red) and heat release deficit (blue)
visible in figure Fig. 7 (lower section) do not exist in reality. Instead,
these zones are generated at the burner exit and propagate radially
outward during convection downstream before they are dissipated.

The density fluctuation image sequence for PPM480 does not
provide additional insight compared to PPM200.

Conclusions

The focus of the study was the improvement of the understand-
ing of FTFs measured with the MMM. In that context, a LV was

used in addition to OH*-chemiluminescence imaging with an
intensified camera and with a photomultiplier. The test object was
a single modular swirl burner, allowing operation in perfectly
premixed mode (PPM) and operation with fuel injection in the
swirler (TPM) as well.

Following standard approaches in thermoacoustics research, it
was shown that local density fluctuations should be proportional to
the local heat release fluctuation, which can be acquired by OH*-
chemiluminescence imaging. Hybrid field methods for stability
assessment are generally based on this very common assumption.
Experiments with a premixed swirl flame were made which show
that the density fluctuation and the OH*-chemiluminescence fields
are entirely different, because a number of other sources for the

Fig. 11 Phase-resolved OH*-chemiluminiescence and density fluctuations, Abel-deconvoluted data
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generation of density fluctuations exist, which are not linked to
heat release. Periodic motion of the interfaces between reactants
and products generated by the acoustic field was observed. This
motion is recorded by the vibrometer in addition to the density
fluctuations from combustion. Although that effect may dominate
the structure of the density field, it does not necessarily produce
large errors after spatial integration.

For the PPM, the calculated fluctuations of the heat release
were consistent with all three diagnostic techniques when the data
were compared on the global level. In the case with equivalence
ratio fluctuations (TPM), the global OH*-chemiluminescence
fluctuations were significantly higher than the heat release fluctua-
tions. This is due to the well-known sensitivity of OH* on temper-
ature. This was found for the photomultiplier and also for the
integrated high-speed camera data. In the investigated case, OH*-
chemiluminescence intensity was dominated by the equivalence
ratio wave which was measured using the OH*/CH*-ratio. The
LV reproduced the fluctuation amplitudes expected from the
measurements with the multimicrophone method for perfectly
premixed and technically premixed operation as well with reason-
able quality.

For perfectly premixed flames (PPM), planar OH*-
chemiluminescence imaging data are better suited for the
interpretation of FTF data than the LV data. Deconvolution of the
line-of-sight data is required before the convection of the zones
with periodic heat release can be studied in detail.

On the other hand, the LV data deliver interesting information
on the dynamics of the interface between the reactants and the
products which is not visible in the OH*-chemiluminescence
image sequences.

This leads to the final conclusion that both methods comple-
ment each other.
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Nomenclature

BFTM ¼ burner and flame transfer matrix
BTM ¼ burner transfer matrix

c ¼ speed of sound (m/s)
cp ¼ constant pressure specific heat (J/kg/K)

f ¼ frequency (Hz)
FTF ¼ flame transfer function

FTM ¼ flame transfer matrix
G ¼ Gladstone–Dale constant (m3 /kg)
h ¼ specific heat (J/kg)

ICH ¼ CH*-intensity (AU)
IOH ¼ OH*-intensity (AU)
kvib ¼ calibration factor of LV (mm/s/V)

L ¼ optical path length (m)
LV ¼ laser vibrometer

p ¼ pressure (Pa)
PPM ¼ perfectly premixed mode

q ¼ specific heat release (W/kg)
_Q ¼ heat release (W)

qv ¼ volumetric heat release (W/ m3)
R ¼ gas constant (J/kg/K)
t ¼ time (s)

T ¼ temperature (K)

Tc ¼ temperature of reactants (K)
Th ¼ temperature of products (K)

TPM ¼ technically premixed mode
U ¼ vibrometer signal (V)

x, y, z ¼ coordinates (m)
a ¼ phase angle (deg)
j ¼ ratio of specific heats
q ¼ density (kg/ m3)
s ¼ phase angle at 200 Hz (deg)
/ ¼ equivalence ratio
/ ¼ phase angle (rad)
�/ ¼ equivalence ratio (mean)
/0 ¼ equivalence ratio (fluctuations)
x ¼ angular frequency (rad/s)
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investigations, where only a total of four tangential bores provided the tangential gas mixture. This 
alteration in the design guaranteed a rotational symmetric flame for the investigations presented. In 
contrast to this, the previous design had a structure of four clearly visible flame-prongs. Additional 
cooling air (g) was provided through a settling chamber mounted underneath a perforated metal plate 
(k) with a hole diameter of 5mm and a distance between holes of 5mm. This air served as a coolant for 
the glass plates (i) in the liner. In the previous work by Giuliani et al. [46] all details on control and 
fuel supply including the metering and remote control were presented. A detailed design drawing is 
added to this thesis. Together with a siren in upstream flow [67] and a chamber section shown in Fig-
ure 43 this burner formed the test rig and the points of operation. The detailed combustion behavior 
was characterized in Peterleithner et al. 2015 C. This characterization was achieved by several meas-
urement techniques. This also proved to be useful for plausibility check. The mean flow field in the 
flame and in the plenum was analyzed by particle image velocimetry and computational fluid dynam-
ics respectively. The combustion process was characterized by means of schlieren, chemilumines-
cence and LIV. The microphones were used for consistency checks and as a trigger. In the unconfined 
flame a convective fluctuation was identified above 200 Hz. This could be explained by vortex shed-
ding in the plenum found by means of numeric analysis of the flow field. A cavity resonance at 200 
Hz was found when the flame was operated in the combustion chamber. It was particularly violent 
because of the heavy excitation by the convective effect. The convective effect itself was not found in 
the acoustics detected by the microphone while the cavity resonance caused heavy pressure fluctua-
tions. 

3.2.2 Global Heat Release 

In industrial applications of gas turbine combustion, the fundamental mechanisms of thermo-acoustics 
are often not of primary concern. When the stability of a combustion process is of interest, a quick 
acquisition of significant parameters of the flame is more important than the mechanisms leading to 
stable or unstable regimes. The parameters significant to combustion are usually particle velocity, 
pressure, temperature and heat. In the worst case pressure fluctuations can destroy the combustor [68], 
Fluctuations of temperature affect the first turbine stage. The first turbine stage can withstand a certain 
temperature. This temperature is limited due to material properties. At the same time it is desired to 
capitalize this allowable temperature in order to gain maximum thermal efficiency. The smaller the 
fluctuations are and the more homogenous the temperature field is, the better. Then the mean tempera-
ture can be closer to the allowed temperature. Although those two parameters are the ones which di-
rectly affect the engine reliability and efficiency, the heat release of the flame is usually the source of 
temperature fluctuations and can be the source or driver of amplification of pressure fluctuations. 
Therefore this parameter is usually chosen by engineers in order to assess the stability of a combustor. 
The upstream velocity fluctuation generally influences the heat release somehow.  It can be consid-
ered the major input parameter of a reduced model of flame dynamics. Therefore a very popular de-
scription of flame stability is to provide the heat release rate fluctuation, normalized by the velocity 
fluctuation at the burner exit. This way an amplification factor can be given for different frequencies.  
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flame center due to rotationally symmetrical shape of the flame. This effect reduces the resulting error 
further.   For accurate measurements, it is necessary to ensure a homogenous illumination by the laser. 
For small diameters of the laser beam, this influence is small and can be neglected, but as soon as 
large diameters are used, this influence should be compensated because the intensity variation would 
then under-represent the bordering regions of the laser beam. In PETERLEITHNER ET AL. 2016 A 
the approach was to widen the beam more than necessary for the diameter desired. Then only the core 
of the beam was sent through the collimating lens of diameter 81mm. In the same publication integral 
heat release with linear excitation as well as local heat release for the natural flame was shown. The 
latter was then compared with the velocity field of the reaction zone. During characterization of the 
combustor (Peterleithner et al. 2015 C), the flame showed a natural excitation frequency above 200 
Hz, which was present both with and without the chamber. This excitation was caused by vortex sepa-
ration in the plenum of the burner, as shown by numerical simulations using ANSYS CFD software. 
Under correct conditions it excited the cavity resonance of the combustor. In the chamber, at resonant 
conditions the phase resolved heat release detected by LIV is always difficult to interpret. In Peter-
leithner et al. 2016 A, it was possible to combine the LIF measurement with a FM-DGV velocity 
recording at TU Dresden (without chamber) to clarify the source of local phase changes of heat re-
lease in the swirl stabilized flame. Vorticity was calculated from the velocity field and compared to 
heat release. Matching the spatial distributions at the same frequency for both LIV and FM-DGV data 
sets, heat and vorticity revealed the source of instability to be vortex shedding from upstream the 
nozzle. Periodic vortex shedding modulates the flame surface. This variation in flame surface typical-
ly causes a fluctuation of heat release, vorticity outside the reaction zone does not cause fluctuations 
in heat release. 

3.2.3 Reviewed Articles on the Application of LIV in combustion: 

 PETERLEITHNER ET AL. 2015 C 

J. Peterleithner, A. Marn and J. Woisetschläger, "Interferometric In estigation of the thermo-
acoustics in a swirl stabilized Methane flame," in Proceedings of the ASME Turbo Expo, 2015. 

 PETERLEITHNER ET AL. 2016 A 

J. Peterleithner, R. Basso, F. Heitmeir, J. Woisetschläger, S. R., C. J. and A. Fischer, "COMPARISON 
OF FLAME TRANSFER FUNCTIONS ACQUIRED BY CHEMILUMINESCENCE AND DENSITY 
FLUCTUATION," in Proc. ASME Turbo Expo, 2016. 
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ABSTRACT 
In this work, an atmospheric model combustion chamber 

was characterized employing Laser Vibrometry, 
chemiluminescence and Particle Image Velocimetry. The test 
object was a variable geometry burner enclosed with a liner, 
with the flame optically accessible through four fused silica 
windows. In this burner with adjustable flame conditions the 
cavity of the atmospheric model combustion chamber was 
excited at a frequency around 200Hz. Resonant and non-
resonant flame conditions were investigated and compared by 
laser vibrometer interferometry, schlieren visualization and 
OH*/CH* chemiluminescence. Additionally, the velocity field 
was recorded with Particle Image Velocimetry, while the 
aerodynamics of the burner plenum was analyzed with 
Computational Fluid Dynamics. 

NOMENCLATURE 

c [m/s] Speed of sound 
f [Hz] Frequency 
G [m3/kg] Gladstone-Dale constant 
k [mm/s/V] Calibration factor of LV 
LV - Laser Vibrometer 
n - Refractive index 
ሶ݉ ௧௔௡/ ሶ݉ ௔௫ [-] mass ratio of tangential and axial 

air 
OPL [m] Optical path length 
p [Pa] Pressure fluctuation 
Pth [kW] Thermal Power 
 ሶV [W] Volumetric heat releaseݍ
S - Simplified Swirl number [1] 
t [s] Time 
U [V] Voltage 

x, y, z, [m] Geometrical coordinates 
u,v,w, [m/s] Velocities, in coordinate direct. 
γ [-] Ratio of specific heats 
ρ [kg/m3] Density 
Φcore, Φglob [-] Equivalence ratio without / with 

Cooling air 

 
INTRODUCTION 

 The thermoacoustic behavior of gas turbine 
combustors is critical for the reliability and performance of the 
whole engine. With increasing demand of part load capability, 
the topic is as important as ever. Nowadays low-NOx strategies 
include lean combustion in order to reduce the flame 
temperature. Consequently the combustor wall has less cooling 
holes and therefore less damping. Inside the combustor, 
interactions between fluctuations of heat release and pressure 
can occur periodically. With less damping, the effect of thermo-
acoustic coupling is more severe. Thermoacoustics is a highly 
dynamic process which calls for time resolved methods of 
analysis. Due to the hot environment in a combustor, only few 
measurement techniques can be applied in order to provide 
local information of state variables. Laser Vibrometry (LV) is 
one of them. It is capable of time resolved recording of density 
fluctuations (dρ’/dt) which are linked to pressure and heat 
release fluctuations by equation [1]. In case of small pressure 
fluctuations, this is also a measure of local heat release rate[2], 

Vq
cdt

dp

cdt

d


22

11 

  (1) 

 Here, absence of heat release gives access to density 
fluctuations, but more interestingly, if heat release is present, 
the density fluctuations due to heat release are by orders of 

77



 

magn
Only 
result
can n
gradie
Leitg
detec
emplo
objec
deriva
volum
by a 
rotati
Trans

I
inves
reson
acous

T
Vibro
comb
comm
noise

EXPE

Com
F

atmos
variab
FIGU
coolin
order 
tange
there,
tange
is inj
guara

T
consi
then 
tomog
the d
flame
proce

T
order 
and c
The s
axial(

F
above
chang
the b

nitude higher t
when cavity

ts must be car
no longer be n
ent is also a m
eb et al [3]. La
t vibrations o
oying the Dop

ct (i.e. then a
ative of the 

me of the Lase
correlation tec
onal symmet

sformation. 
In this study, a 
tigated at at

nance. The goa
stic amplificati
The flame dy
ometer combin
bustor is com
mercial softwar
. 

ERIMENTAL 

mbustor and t
For laser opti
spheric combu
ble geometry 

URE 1 is fed by
ng air (g). Th
r to ensure p
ential air passe
, enters the pl

entially and sym
njected into th
anteeing well p
The initial desi
sted of four ta
the flame shap
graphic metho

design using 3
e for the inves
essing.  
The center con
r to constrict t
consequently m
swirl can be a
(c) and tangent
For our invest
e the exit-plan
ging the swirl-
burner has be

than the ones 
 resonance is
rried out with 
neglected. The
easure of local
aser Vibromete
of solid struc

ppler effect in 
a mirror) fixe
density of the
er beam. Local
chnique using 
try by com

swirl-stabilize
tmospheric co
al of this stud
on in contrast 

ynamics were 
ned with PIV 

mpared to a 
re, in order to

SETUP 

the thermoac
cal investigati

ustor with 4 qu
burner is use

y fuel (a) tange
he axial air is 

urely axial fl
es the outer m
lenum through
mmetrically aro
he tangential 

premixed comb
ign was used 
angential bores
pe had four cl

ods very time 
32 bores guar
stigations, and 

ne (f) of the bu
the flow throu
maintaining th
djusted by cha
tial (b) air.  
tigations the c
e while changi
-number, as w
en documente

due to pressu
s observed, in

care as pressu
refore, in flam
l heat release r
ers were initial
ctures in mac
a laser beam. 

ed, the LV de
e gas within 
l information c
2 Vibrometer

mputing an 

ed Methane-air
onditions with
dy was to iden
to regions of d
visualized u
data. The flo

CFD calculat
o identify sour

coustic labo
ions of flame
uarz windows

ed. The combu
ential air (b), a
forced through
low. In contra

mixing chambe
h 32 cylindrica
ound the burne

air in the o
bustion. 
in earlier publ
s forcing swirl
learly visible p
consuming. T
anteed a cylin
dramatically s

urner can be m
gh the burner 

he right veloci
anging the ma

center cone w
ing the points 

well as total ma
ed in detail i

ure fluctuation
nterpretation o
ure fluctuation

mes, the densit
ate as shown b
lly developed t
chine dynamic
By keeping th
etects the tim
the cylindrica

can be obtaine
s, or in case o
inverse Abe

r combustor wa
h and withou
ntify regions o
damping. 
sing the Lase
ow field in th
tion employin
rces of periodi

ratory 
e dynamics, a
, mounted on 
ustor shown i
axial air (c), an
h a stratifier i
ast to this th

er (d) and from
al bores aligne
er axis. Methan
outer chambe

lications [4]. 
l onto the fluid
prongs, makin

The alteration i
nder symmetri
simplified pos

moved axially i
exit nozzle (e

ity at part-load
ss-flow ratio o

was set to 1mm
of operation b
ass-flow. Whil
n the work o

2

s. 
of 
ns 
ty 
by 
to 
cs 
he 

me 
al 
ed 
of 
el-

as 
ut 
of 

er 
he 
ng 
ic 

an 
a 

in 
nd 
in 
he 
m 
ed 
ne 
er, 

It 
d, 

ng 
in 
ic 
t-

in 
e) 
d. 
of 

m 
by 
le 
of 

Giulia
discus
four s
hood 
coolin
undern
 
TABL

P
op

re

    
T

quadra
in FIG

T
within
curtain

T
compa
resona
techni
The si
z=17m
respec

NUME

C
packag
epsilo
and a 

FIGUR
WITH L

ani et al [3],
ssed in this wo
sides (i), an ex
(j) and is sup

ng air was pro
neath a perfora

LE 1: POINTS 
Point of 
peration 

ሶ࢓ ࢚

esonant 
stable  

The variable ge
atic shape with

GURE 1.  
The test rig w
n a 3x3x2.5m
ns and a sound

Throughout all 
ared. The ‘sta
ant one is of m
iques. Their sp
implified Swir

mm which 0.5 
ctively. 

ERICAL SET

Calculations we
ge with a pre

on turbulence m
Turbulence m

RE 1: VARI
LINER, MOU

the flow-fiel
ork. The liner 
xit constriction
pplied with ad
ovided through
ated metal plate

 OF OPERATI

ሶ࢓/࢔ࢇ࢚  ࢞ࢇ
[-] 

Pth

[kW

0.9 3.37
1.76 4.24

eometry combu
h cross-section

was set up in 
m3 box with tw
d absorbing cei

investigations
able’ one serv

more interest fo
pecific properti
rl number was
times and 1 t

TUP 

ere performed
ssure based so

model with sta
model with bou

IABLE GEOM
UNTED ON BU

Copyright © 2

ld within the 
(h) has an op

n of 80mm in 
dditional coolin
h a settling cha
e (k).  

ION 

h 
W] 

ϕcore

[-]	
ϕg

[-

7 1.49 0.6
4 1.92 0.8

ustor was plac
n. Its dimension

a thermoacou
wo layers of 
iling.  
s, two points o
ves as referen
or time resolve
ies can be foun
s measured fro
time the burne

d with Fluent 
olver, employi
andard wall fun
undary conditio

METRY BUR
URNER (RIGH

2015 by ASME

liner will b
ptical access on
diameter at th
ng air (g). Th
amber mounte

glob

-]
S

[-] 

68 0.65 
87 0.98 

ed in a liner o
ns can be foun

ustic laboratory
low reflectiv

of operation ar
nce, while th

ed measuremen
nd in TABLE 1
om z=8.5mm to
er exit diamete

in ANSYS 1
ing standard k
nctions (y+=30
ons of velocity

RNER (LEFT
HT). 

E 

e 
n 
e 
e 
d 

of 
d 

y 
e 

e 
e 

nt 
1. 
o 

er 

5 
k-
0) 
y-

T) 

78



 

inlet, 
97000

MEA

Stere
P

veloc
is de
displa
captu
the t
measu
came
the ou
PIV).

T
measu
the ta

F
at the
the y
660m
comb
the li
aligne
had a
an im
firstly
burne
record
stitch

T
Laser
532nm
15Hz
(1280
mode
Skovl
DAN
view 
point 
record
interr
in bo
flow 
and a
specif
betwe
1500μ
backg
flame
subtra
is sm

pressure-outle
0Pa was set, an

ASUREMENT

eoscopic Pa
Particle Image
city of particles
fined by the l
acement of par

ured by a came
time between 
urement plane
ra observing t
ut of plane com
. 
The result is a
ure quantities s

angential veloc
For measureme
e Institute had 
y-axis and tilte
mm away from 
bustor, and due
ner), a differen
ed with the y-
an angle of 23°
mage of the w
y focused on o
er was rotated
ded. In this m

hed together fro
The laser syst
r (from New
m - green ligh

z), two came
0x1024 pixels
el DANTEC 
lunde,Denmark

NTEC FlowMan
common to b
of operation, 

ded. To gener
rogation areas o
oth horizontal 
is seeded with
an aerosol of 
fic particle s
een pulses wa
μs for cooling
ground illumin
e, the use of na
action were ne

mall compared 

et, and no comb
nd as a Medium

 TECHNIQUE

rticle Image 
e Velocimetry
s seeded into a
light-sheet fro
rticles illumina
era triggered b

pulses know
 can be calcul
the measureme
mponent of ve

a three dimens
such as the sw
ity, or out-of-p
ents without th
both cameras 
ed 45° off th
the burner axi

e to restricted o
nt setup had to
-axis at a dista
° towards the t

whole combust
ne side of the 
d by 180° an

manner, all ima
om two measur
tem consists o

w Wave GEM
ht, 120mJ per
eras model 
, 12bit greys

FLOWMap 
k). The raw im
nager PIV-soft
both cameras 
1300 double 

rate vector plo
of 64x64 pixel
and vertical d

h titan dioxide (
DEHS partic

size 0.3-1μm) 
s set to 80μs 
g air measure
nation of titan
arrowband filte
ecessary. The m
to the methan

bustion. As op
m air was used

ES 

Velocimetry 
y (PIV, [5]) 
a fluid. The me
om a double p
ated by the las
by the two las
wn, the veloc
lated. By empl
ent plane at a 
locity can be d

sional flow-fie
wirl-number S, m
plane componen
he liner, the ste
aligned symm

he y-axis, with
s. When measu
optical access (
o be chosen. C
ance of 660mm
the y-axis. In o
tor cross-sectio
combustion ch
nd the other 
ages from with
rements.  
of a double-ca

MINI, Sunnyva
r pulse, pulse 
DANTEC 80
cale), and a 

1500 (Dant
mages are proc
tware (v4.60.2
covers 70*90m
frames for eac

ots out of the 
ls size with an 
directions were
(1m diameter
cles (Di-Ethyl-

for the coo
for burner inv

ements. Becau
n dioxide glow
rs (532nm) and
mass flow of i
ne mass flow (

erating pressur
. 

measures th
easurement are
pulse laser. Th
ser light-sheet 
ser pulses. Wit
city within th
loying a secon
different angle

derived. (stereo

eld. In order t
measurement o
nt is required. 

ereo-PIV system
etrically aroun
h a distance o
uring within th
(corner walls o

Camera one wa
m. Camera tw
order to receiv
on, camera tw
hamber, then th
half-plane wa

hin the liner ar

avity Nd:YAG
ale, California
duration 3-5n
0C60 HiSens
PIV Processo

tec Dynamic
cessed with th

28). The field o
mm. For ever
ch camera wer

double image
overlap of 50%
e used. The a
r) for the burne
-Hexyl-Sebaca

oling air. Tim
vestigations an
use of the hig
wing within th
d a back groun
injected seedin
(mass ratio les

3

re 

he 
ea 
he 
is 
th 
he 
nd 
e, 
o-

to 
of 
 
m 
nd 
of 
he 
of 
as 

wo 
ve 

wo 
he 
as 
re 

G-
a, 
s, 
se 
or 
s, 

he 
of 
ry 
re 
es 
% 
air 
er 
at, 
me 
nd 
gh 
he 
nd 
ng 
ss 

than 1
both s
the las
All to
0,5mm
calibra
the g
conser

Laser
T

for dy
part o
device
of the
increa
used f
help o
record
provid
the fre

In
length
path. T
geome
refract

an
path, s
(ρ) via

FIGU
VIBR
TRAV

1%), thus its e
setups calibrati
sersheet and tr

ogether 5 imag
m; and -1mm 
ation polynom
given measu
rvatively estim

r Vibrometry
The Laser Vibr
ynamic measur
of the system
e utilizes the D
e laser beam w
ase sensitivity. 
for detection o
of an acousti

d vibration vel
des a spectral 
equency of the 
n all types of 
h (OPL) is rec
This means th
etrical path (
tive index (n)

nd consequent
since the refra
a the Gladstone

URE 2: SETU
ROMETER, 
VERSING DIR

effect on comb
ion was perform
raversing it per
ges were acqu

). The Dante
mial for in- and
urements, an 
mated, followin

y 
rometer was th
rements within

m is a Mach-Z
Doppler-shift w
when it is refl

Therefore the
of surface vibr
ic-optical mod
locity rather th
signal increas
oscillation.  
interferometer
corded rather 

hat according to
(y) matters, a

ynOPL 

tly, changes o
active index is 
e-Dale constan

UP WITH BU
COORDINA

RECTIONS 

Copyright © 2

bustion can be 
med by positio
rpendicular to 

uired, (1mm; 0
c Software th
d out-of-plane 

error of 
ng Willert and G

he main measu
n this investiga
Zehnder inter
which changes
ected by a mo

e Laser Vibrom
ration of mach
dulator these 
han surface am
ed by a factor

rs the change 
than solely t

o equation (2)
as well as, c

 

of density alo
directly linked

nt (G) by 

URNER, LINE
ATE SYSTE

2015 by ASME

neglected. Fo
oning a target in

the laser sheet
0,5mm; 0mm; 
hen computes 

velocities. Fo
+-0.5m/s wa
Gharib [6]. 

urement devic
ation. The cor
ferometer. Th
s the frequency
oving object to
meter is widely
hinery. With th

interferometer
mplitude, which
r of 2πf, with 

of optical path
the geometrica
) any change o
changes of th

(2)

ong the optica
d to the density

ER, LASER
EM, AND

E 

or 
n 
t. 
-
a 

or 
as 

e 
e 
e 
y 
o 
y 
e 

rs 
h 
f 

h 
al 
of 
e 

al 
y 

79



 

E
detec
fixed 
anym
integr
The v

w
Glads
beam
relate

FIG
TAN
OPE
CO

FIGU
OPER
COMB

Employing equ
ts changes of 
mirror, as th

more. The outpu
ral value of al
voltage output 

U (

with the voltag
stone Dale co

m direction  and
es the gas densi

GURE 5: 
NGENTIAL 
ERATION, M
MBUSTOR 

URE 3: ABSO
RATION, MEA
BUSTOR 

 Gn 1

uations (2) a
density if the b

he geometrical
ut voltage of th
ll density fluct
of the velocity

dt

d

k

G
t

y


2
)(

ge U, the time 
nstant G, the 

d the density ρ.
ity and refracti

TANGENTI
VELOCITY

MEASURED B

OLUTE VELO
ASURED BY 

  

nd (3), the l
beam is reflec
l path then do
he LV-processo
tuations along 

y decoder is giv

dy  

t, the calibrati
coordinate in

. The Gladston
ive index. The 

IAL VELO
Y OF 

BY STEREO-P

OCITY OF RE
STEREO-PIV

(3)

laser-vibromete
ted by a rigidl
oes not chang
or represents th

the beam path
ven by: 

(4)

ion factor k, th
 the laser ligh

ne Dale constan
density consist

OCITY OF
RESONANT
PIV IN THE

ESONANT
V IN THE

4

er 
ly 
ge 
he 
h. 

he 
ht 
nt 
ts 

of a ti
ρmean +
voltag
inform
invest
vibrom
calibra
the m
(interf
calibra
Polyte

 -
2mm 
on a 
Roskil
was tr
the wh

D

FIG
ME
 

FIGU
RESO
PIV IN

ime averaged
+ ρ’). Only the
ge signal prov
mation can be f
tigated in [9
meter was us
ation factor 5 
measurements 
ferometer head
ation factor 5
ec, Waldbronn,
40mm lenses 
diameter. To s
DANTEC lig

lde, Denmark)
raversed in the
hole optically a

Data acquisition

GURE 6:
EASURED BY

URE 4: ABSO
ONANT OPER
N THE COMB

mean value an
e signal chang
vided by the 
found in [3,7,8
9,10,11]. Duri
sed in velocit
mm/s/V for hi

a single la
d OFV-353, v
5mm/s/V,  20
, Germany). 
were used to

scan the field, 
ghtweight trav
), while the vib
e x-z plane wi
accessible area
n was performe

NON RES
Y STEREO-PIV

OLUTE VELOC
RATION, ME
BUSTOR 

Copyright © 2

nd a fluctuatin
ging in time co

velocity dec
8].  Turbulent f
ing all inve
ty decoder m
ighest sensibili
aser vibromet
velocity decod
0kHz bandwid

o collimate the
the combusto

verse (DANTE
brometer was f
th 25*15 posit

a of the combus
ed with analog

SONANT O
V IN THE COM

CITY OF STA
EASURED BY

2015 by ASME

ng value (ρ(t) =
ontributes to th
coder. Detailed
flows have been
stigations, th

mode, with th
ity. For most o
ter was use
der OFV-3001
dth, no filters

e beam to 1.5
or was mounted
EC Dynamics
fixed. The fiel
tions, resolving
stor.  

g input module

OPERATION,
MBUSTOR 

ABLE, NON
Y STEREO-

E 

=  
e 
d 
n 
e 
e 

of 
d 
1, 
s, 

5-
d 
s, 
d 
g 

s 

80



 

NI-91
8.6 so
taken
vibro
record
and a
(KEC
omni-
Electr
correl
(2009
frequ
positi

F
ampli
with 
this p
frequ
the fr
fluctu
a tim
Furth
single

FLOW

Expe
P

of ap
axial 
is jus
image
peak 
of the

FIG
IN  
RES

1215 (Nationa
oftware. For e

n with a sam
meter voltage
ded in position

another one (M
CG2738PBJ-A,
-directional, 
ronics Corp, 
lations and Fo
9b) routine us
uency spectra 
ion scanned.  
For the time 
itude and phas
the microphon

provides a full
uencies. After A
requencies of i
uations at a cer
e series also p

hermore, origin
e time-series.  

W FIELD 

erimental dat
PIV-Data (Figs
proximately 5 
momentum in

st above the fla
es below. The
velocity furthe
e flame, the w

GURE 7: CRO
HIGHT OF T

SONANT  OPE

l Instruments, 
ach position s

mple rate of 
e, a referenc
n x=-140mm, y

MIC2) was recor
, miniature ele

-40dB, 2.8
New Taipei 

ourier transfor
sing a sample
(power, amp

series of d
e were calcula
ne as reference
l frequency sp
Abel-inversion
nterest, this pr
rtain frequency
rovides discret
ns of disturban

ta 
s. 3-6) shows a

m/s for both 
 the resonant c
ame when com
e stable, non-
er downstream
wider expansio

OSS-SECTION
TANGENTIAL
ERATION. 

Austin, Texas
canned 24576
4096S/s. Tog
ce microphon
y=150mm, z=
rded in the coo
ectret condens
8mm diamet

City, Taiwa
rms were don
e length of 2
plitude and ph

density-fluctua
ated by Fast Fo
e. For each po
pectrum of flu
 of single proj
rovides access 
y. Inverting int
te phase-angle
nces can be l

a maximum ab
configurations

case, the peak o
mpared to chem
-resonant case 

m, but also sitti
on is clearly d

N OF THE F
L SWIRLER-B

s) and Labview
0 samples wer
ether with th

ne signal wa
150mm (MIC1
oling air plenum
ser microphone
ter, Kingstat
an). All cross
ne by a Matla
2048, providin
hase) for eac

ation gradient
ourier transform
osition scanned
uctuations at a
jection lines fo
to local densit

tegral data from
s for local data
ocalized withi

bsolute velocit
s. Due to highe
of total velocit
miluminescenc

establishes it
ing right on to
due to a highe

LOW-FIELD
BORES FOR

5

w 
re 
he 
as 
1) 
m 
e, 
te 
s-
ab 
ng 
ch 

ts, 
m, 
d, 

all 
or 
ty 
m 
a. 
in 

ty 
er 
ty 
ce 
ts 

op 
er 

swirl n
leads 
fresh 
canno
smalle
size o
gradie
(FIGU
shows
of gre
above

Nume
F

was as
the cr
Stream
toward
outer
case s
chamb
vortice
tangen
almos
But th
vortice
tangen
other s

FIG
ABS
SW
OPE

number. The a
to a well-defin
reactants. In 

ot clearly be id
er radial expan
of roughly 5m
ent is likely no
URE 5 and FI
s a clear recirc
eater radial exp
e the nozzle (z=

erical data 
or the stable p
ssumed. In FIG
ritical joint o
mlines for the 
ds the center r
chamber, imp

shows several 
ber as well. Bu
es establish a
ntial jet. Since
st 50%, a strong
his could also
es. During ope
ntial air, enabl
side, changing

GURE 8: CRO
SOLUTE VE

WIRLER-BORE
ERATION 

arrows indicate
ned inner recir
the resonant 

dentified. Due 
nsion, and cons

mm for PIV p
ot resolved. Lo
IGURE 6), th

culation zone, t
pansion, with a
=10, x=+-15).  

point of operati
GURE 7 and F
of tangential a

tangential air 
rod. Major reci
proving mixing

zones of recir
ut in contrast to
along the cen
e the momentu
ger disruption 
o be sensitive
eration, it beca
les or suppress
g axial air, sligh

OSS-SECTION
ELOCITY IN

ES FOR, 

Copyright © 2

e that this high
rculation zone
case, this reci
to less swirl,
sidering an int

post processing
ooking at tange
he stable non-
thus the tangen
a low value jus

ion, a homoge
IGURE 8 the c
air and axial 
can be seen, f
irculation appe
g in this area
rculation in th
o the non-reson

nter rod at the
um of the jet i
of the axial air

e to triggered
ame evident, th
ses flame oscil
htly alters the r

N OF FLOWF
N THE TA

NON 

2015 by ASME

h swirl numbe
e, reigniting th
irculation zon
the flame is o

terrogation are
g, this velocity
ential velocitie
-resonant mod
ntial velocity i
st inside the jet

nous flow field
cross-section o
air is plotted

forcing axial ai
ears only in th
a. The resonan
he outer mixing
nant case, eigh
e end of each
is increased by
r is guaranteed

d separation o
hat variation in
llations, On th
resonance. 

FIELD WITH
ANGENTIAL
RESONANT

E 

er 
e 
e 

of 
a 
y 
s 
e 
is 
t, 

d 
of 
d. 
ir 
e 

nt 
g 

ht 
h 
y 

d. 
of 
n 
e 

81



 

COM

Flam
D

differ
Chem
points
Both 
that r
also i
with 
the re
althou
can s
that c
ring a
flame

FI

FIGU
POIN
LAS

MBUSTION D

me Behavior 
Depending on 
rent shapes.

miluminescence
s of operation
points of oper

reaction takes 
in the outer on
a radial exten
eaches 50mm 
ugh these ima
ee that less OH
combustion do
around the z-c
e with higher ax

IGURE 9: OH

URE 10: SCH
NT OF OPER
ER VIBROME

YNAMICS 

the swirl, th
 In FIGU
e is shown fo
n, once within
ration are typic
place not only
e. The resonan

nsion of 40mm
in diameter. T
ges show line
H-chemilumin

os not take pla
coordinate. In 
xial momentum

-CHEMILUM

HLIEREN IMA
RATOIN WIT
ETER SCANN

e Flame show
URE 9, 
or resonant an
n the liner and
cally M-shaped
y in the inner 
nt flame is a lo

m while the no
The flame is p

of sight integ
nescence in the
ace in the very
contrast to th

m burns in the 

MINESCENCE 

AGE OF THE 
THIN THE LI
NING POSITIO

ws considerabl
integral OH

nd non-resonan
d once withou
d, which mean
shear layer bu

ot more compac
n-resonant cas

pulled apart an
grated data, on
e core, indicate
y core, but in 
is, the resonan
middle as well

MEASUREM

RESONANT
INER, WITH 
ONS. 

6

ly 
H-
nt 

ut. 
ns 
ut 
ct 
se 
nd 
ne 
es 
a 

nt 
l.  

E
FIGUR
core o
region
conve
those 
the fre

Intrin
To

vibrom
z=10m
freque
red cu
given 
turbul
follow
freque
the sa
electro

FIG
FLU
LAS
RES
WIT
COM
LIN

ENTS FOR BO

Exemplarily, fo
RE 10 nicely 

of the flame in
n, while on th
ective heat risi

structures and
equency of the

nsic instabilit
To investigate 
meters measur
mm, x=3mm, ta
ency spectra of
urve is the no

operating co
lent jet with 
wed by a gen
encies. As refe
ame diagram 
onic noise at 9

GURE 11:
UCTUATIONS
SERVIBROM
SONANT OP
TH NON-R
MBUSTION W

NER(PURPLE)

OTH OPERAT

or the resonant
visualizes str

ndicating small
he sides, smo
ing at larger d
d the local flow
se structures. 

ty 
the thermo-ac

rement beam w
angentially to t
f the resonant 
on-reacting flo
onditions. The
a rise in am
ntle descent 

erence, the sign
(blue). Both 

925Hz and 940

 AMPLIT
S, MEAS
ETER AT Z

PERATION W
REACTING 
WITHOUT LIN
). 

TING POINTS

Copyright © 2

t case, the schl
rong density g
l strucutres in t
ooth density g
diameters. Due
w velocity, on

coustic oscilla
was aligned th
the flame. In F
configuration 

ow of fuel-air 
e spectrum is 

mplitude for lo
of amplitude 
nal without flo

signals are c
0Hz which disa

TUDE OF 
SURED B
Z=10MM, X=

WITHOUT FL
FLOW (RE

NER (GREEN

S 

2015 by ASME

lieren-image o
gradients in th
the combustion
gradients show
e to the size o
ne can estimat

ation, the lase
hrough position
FIGURE 11, th
are shown. Th
mixture at th
typical for 

ow frequencie
towards high

ow is plotted in
corrupted with

appear at highe

DENSITY
BY THE

=3MM  FOR
LOW (BLUE)
ED), WITH

N) AND WITH

E 

of 
e 
n 
w 
of 
e 

er 
n 
e 
e 
e 
a 
s 
h 
n 
h 

er 

Y
E
R
,

H
H

82



 

overa
witho
visibl
The 
appro
turbu
sugge
instab
such 
pheno
group
descr
increa
wave 
peak.

T
spectr
refere
pressu

FIGU
OPER
ABOV

FIG
RE
WI
AN

all amplitudes 
out the liner in
le in the spectru
amplitude of 

oximately five
ulent combusti
esting a non-s
bilities are not 

as an open
omenon of int
p in Holland 
ribed by [14]. 
ased even furth
 at 200Hz wh
  

This resonanc
rum (FIGURE
ence micropho
ure wave. In 

URE 12: POW
RATION MOD
VE THE FLAM

GURE 13: 
ESONANT PO
ITHOUT THE
ND INSIDE (M

at combustion
n place, a perio
um.  

f the periodic
e times high
ion with a h
sinusoidal sign
expected in a 

n flame in a
trinsic instabil
[12,13] and re
With the liner

her. But now, c
hich can be id

ce is also ob
E 13). For the re
one (MIC1) do

contrast to th

WER SPECRU
DE WITHOUT
ME AT Z=40M

AMPLITUDE
OINT OF O
E LINER IN 

MIC2) THE CO

. When ignitin
odic instability

c phenomenon
her than the 
higher harmo
nal. Although 
nearly anecho

an acoustic 
lity has been 
ecently has be
r in place, the

combustion exc
dentified by i

bserved in th
esonant case w

oes not detect a
his, with the 

UM OF THE 
T LINER AT 

MM (RIGHT). 

E OF PRE
OPERATION, 

PLACE. OUT
OMBUSTOR. 

ng the gas, eve
y of the flame i

n at 230Hz 
broad bande

nic at 460Hz
those kind o

oic environmen
laboratory, th
observed by 

een analyticall
e signal level 
cites an acousti
ts very distinc

he microphon
without liner, th
a monofrequen
liner in place

LASER VIB
Z=20MM (LE

ALL THREE 

SSURE FOR
WITH AND

TSIDE (MIC1

7

en 
is 

is 
ed 
z, 
of 
nt 
he 

a 
ly 
is 
ic 
ct 

ne 
he 
nt 
e, 

signifi
even m
coolin
reache
burner

T
model
Howe
resona
pressu
fact, 
amplif
plot) t
Ampli
+ -15m
liner (
now, t
combu
of he
freque
power
right
maxim
flow f
veloci
image
within
colder
region
where
Since 
structu
to pa

BROMETER I
EFT), WITH
ARE RESONA

R
D
)

ficant pressure 
more evident, 

ng air plenum
es a maximum
r pressure drop

Thermo-acousti
l combustor, 

ever it was a
ance was clos
ure wave modu
this instability
fied by it. As 
the periodic ph
itude due to tu
mm. The frequ
(FIGURE 12 c
the periodic ph
ustor. Strong a
eat release, an
ency is observe
r spectrum just
plot) it is evi

mum beyond +
field in the sec
ity is parallel t
e in FIGURE 
n the region wh
r cooling air 
n is slightly c
e solely the ho
this flame seem

ures on the out
articularly ena

IN A HORIZ
LINER AT Z

ANT FLOW C

fluctuations b
looking at the

m (MIC2). He
m of 10.7Pa, 
p, from axial ai
ic oscillations 
and documen

assumed that 
sed only by 
ulates the flow
y occurs even
shown in the s

henomenon is v
urbulent combu
uency spectrum

center plot) sho
henomenon ex

amplitude is see
nd considerab
ed in the non-
t above the fla
ident that the

+-20mm radial 
ction above sh
to the burner 
10 show that 
here products r
takes place. T
colder than th
ot combustion
ms to burn onl
tside seem to h

able the stand

ZONTAL SCA
Z=20MM (CEN
CONDITIONS.

Copyright © 2

become visible
e microphone 
re the sound 
which is abou

ir inlet to flame
have been ob

nted in earlie
the feedback

the liner, me
w conditions in 

n without the
spectrum in FI
very developed
ustion expands
m for combus
ows very simil
xcites a pressu
en at 200Hz w

bly lower amp
-reacting area.
ame at z=40mm
e amplitude of

extent. Comp
hows that in th
axis.  This and
outside the fl

rise convective
This suggests
he region at t
n products flow
ly in the inner

have just the rig
ding wave, th

AN FOR THE
NTER) AND 
. 

2015 by ASME

. This become
situated in th
pressure leve

ut 15% of th
e region. 
bserved in thi
er works [15]
k loop of th
eaning that th

the plenum. In
e liner, but i
IGURE 12 (lef
d at x = +-6mm
s further to x =
stion within th
lar features, bu
ure wave in th

within the region
plitude at thi
Looking at th

m (FIGURE 12
f 200Hz has 

parison with th
his position th
d the Schlieren
ame radius bu

ely, mixing with
that this oute

the center-axis
w downstream
shear layer, th
ght temperatur
hus the highe

E RESONANT
WITH LINER

E 

s 
e 

el 
e 

is 
]. 
e 
e 
n 
is 
ft 

m. 
= 
e 

ut 
e 
n 
is 
e 
2 
a 
e 
e 
n 

ut 
h 

er 
s, 

m. 
e 
e 

er 

T
R

83



 

oscill
produ
flow 
the ra
520°C
y=40m
const
field 

T
heat b
3.365
conve
1.04k
with a
the c
entran
tempe
is abo
the Te

O
ampli
sectio
whole
and h
moun
the se
order 
free o
of m
frequ
region

FIG
VIBR
HOR
OPE
Z=20

lation amplitud
ucts rise within
and cooling ai

adius of the ex
C at the cente
mm, indicating
triction on the 
can neither be 

The exit tempe
balance. Assum

5kW can be s
ection on the l
kW. For this w
a thermal cam

chart from Wr
nce temperatu
erature of 510°
ove the mean e
emperature lev
On the bottom
itudes are dete
on of the burn
e burner, indic
has been iden
nted on the trav
etup of test rig
r to keep the re
of structural vi
mono frequen
uencies, indicat
n hot strains

GURE 14: 
ROMETER 

RIZONTAL 
ERATION, INS
0MM. 

de in this reg
n the diameter 
ir thus has not
it plane reveal
er axis, smoot
g, that cold co
edges, therefo
assumed at thi

erature has bee
ming methane 
specified. Redu
liner surface o
we measured t
era and quanti
rede for natu

ure of 20°C th
°C calculated v
exit temperatur
vel. 

m of FIGURE 
ected at 15Hz a
ner. The 30Hz
cating a struct
ntified as the 
verse. This has
g and measurem
egion in the sp
ibrations. In co
t character b
ting a convecti
 from the fl

PHASE BE
AND THE 
SCAN FO

SIDE THE LI

ion.  In contr
of the flame. 

t happened the
ed a peak total
thly descendin
ooling air is st
re a homogeno
is level, nor fur
en checked for 

to fully react, 
uced by a he
f 2.4kW gives
the liner surfa
fied the heat lo

ural-convection
he exiting hea
via specific hea
re but shows th

12 (RIGHT), 
and at 30Hz a
z wave is con
tural vibration 
flexural mode
also been show

ment equipmen
pectrum around
ontrast to this, 
but decays t
ve-aerodynam

flame rise wi

ETWEEN TH
MICROPHO

OR THE 
INER IN THE

rast to this, ho
Mixing of cor
n. A scan alon
l temperature o
ng to 280°C a
till escaping th
ous temperatur
rther upstream
feasibility by 
a heat input o

at loss throug
s an exit heat o
ace temperatur
oss according t
n [16]).With a
at gives an ex
at capacity. Th
he feasibility o

high oscillatio
cross the whol
nstant over th
of the test rig

e of the burne
wn in [5] wher
nt was tuned i
d the resonanc
the 15Hz is no

towards highe
ic effect. In th
th about 3m/

HE LASER
ONE IN A

RESONANT
E FLAME AT

8

ot 
re 
ng 
of 
at 
he 
re 
.  
a 

of 
gh 
of 
re 
to 
an 
xit 
is 
of 

on 
le 
he 
g, 
er 
re 
in 
ce 
ot 
er 
is 
/s 

(FIGU
along 
alread
10. 

T
microp
FIGUR
flame
12), a
positio
flame
passes
outer p
pressu
visible
structu
on FI
40mm
detect
domin

U
integra
can be
From 
calcul
symm

Harm
F

plots i

FIG
VIB
HO
OPE
FLA

URE 3) next t
the windows

dy expected by

The phase rec
phone discuss
RE 15. All are
at the exciting

a phase jump
ons within the
heat fluctuatio

s the flame-edg
pressure field,

ure derivative i
e in the ampli
ures can still b
IGURE 15 wh

m height (just a
ted anymore, n
nant contributo

Using the pha
al line-of-sigh
e plotted, whe
such integral

lated using Ab
metry, shown in

monic Time S
or a flame of 
in FIGURE 16

GURE 15: 
BROMETER 

ORIZONTAL 
ERATION, IN
AME AT Z=40

to cooling air 
s. This conve
y analyzing the

corded from 
sed earlier, are
e referenced to
g frequency of

p can be obse
e flame with t
on dominate a
ge, from withi
 a phase shift b
is observed clo
itude, those p

be detected by 
hich represent
above the flam
no heat release
or to the density
ase from LV-m
ht amplitudes, 
en scanning th
l time series 
el inversion un

n FIGURE 16.  

Series 
f radial symme
6 show the loca

PHASE BET
AND THE 
SCAN FO

INSIDE THE 
0MM. 

Copyright © 2

at velocities c
ctive transpor

e Schlieren ima

the correlatio
e found in FI
o the micropho
f 200 Hz (show
erved, when 
the ones just 

and as soon as 
in the combust
between heat r
ose to or at res

pressure waves
a correlated p

s a scan acro
me) the phase-j
e is observed, 
y fluctuation. 
microphone co
a time-series o

he whole 2-dim
(0 – 2) loca
nder the assum

etry after Abel
al density fluctu

TWEEN TH
MICROPHON

OR THE R
LINER AB

2015 by ASME

close to 0.1m/
rt of heat wa
age in FIGURE

n spectra LV
IGURE 14 an
one. Within th
wn in FIGURE
comparing th
outside. In th
the vibromete

tion zone to th
release rate an
sonance. Barely
s or convectiv
phase. Focusing
oss the liner in
jump cannot b
pressure is th

orrelations an
of integral dat
mentional field
al data can b

mption of radia

l-inversion, th
uations. The 

HE LASER 
NE IN A 

RESONANT 
OVE THE 

E 

/s 
as 
E 

V-
d 
e 
E 
e 
e 

er 
e 
d 
y 
e 
g 
n 
e 
e 

d 
a 

d. 
e 

al 

e 

84



 

 

FIGURE 1
AMPLITUDE
(ABEL-INVER
OPERATION
200+5HZ (RI
THE PHASE I

6: TIME 
ES OF DEN
RTED DAT
, AT 232+8
GHT). ON TO
IS PLOTTED 

SERIES OF
NSITY FLUC

A), FOR R
8HZ (LEFT) 
OP OF EACH
IN DEGREE. 

F LOCAL
CTUATIONS
RESONANT

AND AT
H PICTURE
 

9

two f
differe
FIGUR
compa
outsid
recircu
stream
orifice
period

In
freque
has a 
flow a
the fla
left tim
the rig
oscilla
paralle

CONC

In
by ti
Veloci
source
pheno
exit of
the en
very s
eddies
system
betwe
this po
f=235
calcul
measu

ACKN

T
FWF 
of The

REFE
Pu

[1] 

[2] 

fluctuation fre
ent nature. Th
RE 12) is caus
act within th

de the main 
ulate, but rath

ming structures
e indicating ch
dic fuel oscillat
n contrast to th
ency of the so
stronger stand
around the rec
ame - moving i
me series (232
ght one (200HZ
ation a gener
el to the burner

CLUSION 

n this paper, a 
ime resolving
imetry, with t
e of instabil
omenon likely 
f the Tangentia

nd of those bor
susceptible poin
s to detach, wh
m to oscillate.
een those vortic
oint (vtan) as th
Hz. This assu

lations for the 
urements within

NOWLEDGM

This research w
within grant F
ermoacoustic O

ERENCES 
ut references h

Beér, J. M., 
Aerodynam
1st ed. Appl
Dowling, A
oscillations,
No. 
4, 1995, pp.

quencies obse
he oscillation 
sed by the assu
he flame, the 

flow. The 
her progress th
s also seem to c
hanges in heat r
tions.  

his, the 200Hz 
und wave with

ding wave patte
circulation area
in circles. Com

2HZ) in FIGUR
Z) supports thi
ral impression
r axis appears 

variable geom
g laser vibro
the goal to id
lity. It was 
is an Intrinsic
al air-bores. T
res shown in n
nt to periodic a

hich feeds flam
 A cross-chec
ces (λ) and the 
he speed of con
umption is se
burner plenum

n the flame. 

MENTS 

was funded by
FWF-24096-N2
Oscillations in 

here. 
and Chigier, N

mics, 
lied Science Pu
.P., "The calcu
," Journal of So

. 557-581. 

Copyright © 2

erved in the s
frequency at 2

umed ‘burner in
fluctuations

instability do
hrough the flam
come directly f
release, likely t

disturbance, w
hin the combu
ern, where pos
a, and then fo

mparing the 19
RE 12 with the
s impression. F

n of a mean 
from the time-

metry burner w
ometry and P
dentify and c

shown, that 
c instability re
he circular row

numeric simula
acoustic pertur

me periodically
ck using the d

tangential velo
nvection results
et on the bas
m, and the re

y the Austrian
24 “Interferom
Flames”. 

N. A., 1972. Co

ublishers Ltd., 
ulation of therm
ound and Vibra

2015 by ASME

spectra, are o
232HZ (left in
nstability’. Very
decay quickly

oes not really
me. The down
from the burne
to be caused by

which is also th
ustion chamber
sitive structure
ollow back into
0° image of th

e 310° image o
For the 232Hz
flow direction

-series. 

was investigate
Particle imag
haracterize th

the periodi
coupling at th
w of vortices a
ations, can be 
rbation, causing
y and causes th
distance 8.5mm
ocity of 2m/s a
s in a frequency
sis of numeri
sults of optica

n Science Fun
metric Detection

ombustion 

Barking. 
moacoustic 
ation, Vol. 180

E 

of 
n 
y 
y 
y 

n-
er 
y 

e 
r,  

es 
o 
e 

of 

n 

d 
e 
e 
c 
e 

at 
a 
g 
e  

m 
at 
y 
c 

al 

d 
n 

, 

85



 10 Copyright © 2015 by ASME 

[3] Leitgeb, T., Schuller, T., Durox, D., Giuliani, F., Köberl, 
S., Woisetschläger, J.,"Interferometric determination of 
heat release rate in a pulsated flame," Combustion and 
Flame, Vol. 160, No. 3, 2013, pp. 589-600. 

[4] Giuliani, F., Woisetschläger, J., and Leitgeb, T., "Design 
and Validation of a Burner With Variable Geometry 
for Extended Combustion Range," ASME Turbo Expo 
2012: Turbine Technical Conference and Exposition, Vol. 

[5] von Karman Institute, 1994, Measurement Techniques in 
Fluid Dynamics—An 
Introduction _Lecture Series of the von Karman Institute, 
Rhode-St-Genèse, 
VKI LS 1994-01. 

[6] Willert, C.E., Gharib, M. “Digital particle image 
velocimetry” Exp. Fluids, Vol. 10 No.4, 1991 pp. 181-
193.  

[7] Peterleithner, J., Salcher, F., Woisetschläger, J ‚ 2013. 
"Frequency resolved interferometric detection of local 
density fluctuations in flames" in Proceedings of 
International Symposium on Applications of Laser 
Techniques to Fluid Mechanics, Lisbon, Portugal 

[8] Zipser L, Franke HH (2008) Refracto-vibrometry – a 
novel method for visualizing sound waves in transparent 
media, Acoustics’08, Paris 29 June – 4 July2008 

[9] Woisetschläger J, Lang H, Hampel B, Göttlich E, 
Heitmeir F (2003a) Influence of blade passing on the 
stator wake in a transonic turbine stage investigated by 
particle image velocimetry and laser vibrometry Proc. 
Inst. Mech. Eng. A 217:385–91 

[10] Woisetschläger J, Mayerhofer N, Hampel B, Lang H, 
Sanz W (2003b) Laser-optical investigation of turbine 
wake flow Exp. Fluids 34:371–8 

[11] Mayrhofer N, Lang H, Woisetschläger J (2000) 
Experimental investigation of turbine wake flow by 
interferometrically triggered LDV-measurements, 
Proc.10th Int. Symp. on Application of Laser Techniques 
to Fluid Mechanics (Instituto Superior Tecnico, Lisboa), 
paper 28-1 

[12] P. G. M. Hoeijmakers, Flame–acoustic coupling in 
combustion instabilities, Ph.D. thesis, Technische 
Universiteit Eindhoven, Eindhoven, The Netherlands, 
2014. 

[13] M. Hoeijmakers, V. Kornilov, I. Lopez Arteaga, P. de 
Goey, H. Nijmeijer, Combust Flame, in press, 
http://dx.doi.org/10.1016/j.combustflame.2014.05.009. 

[14] Emmert, T., Bomberg, S., Polifke, W. 
Intrinsic thermoacoustic instability of premixed flames 
(2014) Combustion and Flame,  Article in Press. 

[15] Peterleithner JJ, Marn A, Leitgeb T, Woisetschläger J 
(2013) Frequency Resolved Density Fluctuation 
Measurements of Combustion Oscillations in a Model 
Combustor, 49th AIAA/ASME/SAE/ASEE Joint 
Propulsion Conference & Exhibit, 15 - 17 Jul 2013, San 
Jose, CA , Paper No.: 1589261 

[16] Gesellschaft, VDI: VDI-Wärmeatlas. 10. Aufl. 2006. 
Berlin, Heidelberg: Springer. 

 

86



 1 Copyright © 2016 by ASME 

Proceedings of ASME Turbo Expo 2016: Turbine Technical Conference and Exposition 
GT2016 

June 13-17, 2016, Seoul, South Korea 

      GT2016-57485 

COMPARISON OF FLAME TRANSFER FUNCTIONS ACQUIRED BY 
CHEMILUMINESCENCE AND DENSITY FLUCTUATION 

 
 

Johannes Peterleithner, Riccardo Basso, 
Franz Heitmeir, Jakob Woisetschläger 
Institute for Thermal Turbomachinery and 

Machine Dynamics, Graz University of 
Technology 

8010 Graz, Austria 

 
Raimund Schlüßler, Jürgen Czarske,  

Andreas Fischer 
Chair of Measurement and Sensor System 

Techniques  
Technische Universität Dresden 

01062 Dresden, Germany 
 
 
 

ABSTRACT 

The goal of this study was to measure the Flame Transfer 
Function of a perfectly and a partially premixed turbulent 
flame by means of Laser Interferometric Vibrometry. For the 
first time, this technique is used to detect integral heat release 
fluctuations. The results were compared to classical OH*-
chemiluminescence measurements. Effects of equivalence ratio 
waves and vortex rollup were found within those flames and 
were then investigated by means of time resolved planar 
CH*/OH*-chemiluminescence and Frequency modulated 
Doppler global velocimetry. This work is motivated by the 
difficulties chemiluminescence encounters when faced with 
partially premixed flames including equivalence ratio waves 
and flame stretching. LIV, recording the time derivative of the 
density fluctuations as line-of-sight data, is not affected by 
these flame properties. 

 

NOMENCLATURE 
 
c [m/s] speed of sound 
Dexit [mm] burner exit diameter 
fD [Hz] Doppler shift of laser light 
FTF [-] flame transfer function 
G [m³/kg] Gladstone-Dale constant 
ıԦ  [-] Laser incidence direction 
IOH* ICH* [-] light intensity of OH* and CH* 
kvib [mm/s/V] vibrometer calibration constant 
LIV  laser interferometric vibrometry 
LDA  laser Doppler interferometry 

i-OH*-CL  integral OH* Chemiluminescence 
oሬԦ [-] observation direction 
PPM  perfectly premixed 
Q’, [W] fluctuation of heat release 
qv’ [W/m³] fluctuation of heat release 
sԦ [-] sensitivity vector 
TPM  technically premixed 
u’ [m/s] fluctuation of Axial velocity 
U [V] voltage 
vሬԦ [m/s] velocity vector 
x, y, z [mm] coordinates 
Φ [-] equivalence ratio 
α [°] phase angle 
ߞ [m] length of measurement volume 
Κ [-] ratio of specific heats 
λ [nm] laser wave length 
 density [kg/mm³] ߩ

 

INTRODUCTION 

 Modern gas turbines for power generation rely on 
premixed combustion systems to achieve high combustion 
efficiency and low emissions. As a drawback, high power 
densities and reduced damping capabilities of the combustor 
increase the susceptibility to thermoacoustic oscillations. These 
instabilities arise from the positive coupling between the 
fluctuations of pressure and heat release [1]. Prediction of gas 
turbine stability is often achieved by network models, originally 
used in system dynamics analysis. Within the model the flame 
remains a ‘black box’. The flame is described as a single input 
single output block. Usually the data for this block comes from 

87



 

flame
of the
exit 
measu
comb
determ
OH* 
fluctu
hot w
appro
for a
equiv
techn

A
interf
can d
[6, 7]
time 
absen
releas
explo
is rec
proce
is ap
know
flow 
pertur
(LDA
is dis
a res
calcu
where
to the
premi
is inv
by m
measu
the fl
modu
veloc

 

EXPE

F
geom
siren,
docum
field 
the si
show
(TPM
premi

I
tange
throu

e transfer funct
e flame to pert
[2, 3]. In th
urement of 

bustors have b
mining the FTF
within the flam

uations at the b
wire anemomet
oaches relying 
adiabatic flam
valence ratio 
nically premixe
As an alterna
ferometric vibr
detect heat rele
]. The advanta

derivative of
nce of pressur
se rate [8]. Th
oited before, bu
corded. As a 
ess of traversin
plied to a sw

wn flow field a
is excited usin
rbation level i

A) in the burner
cussed for exc
sult from bo

ulated. This w
e chemilumine
e absence of e
ixed configura

vestigated. Diff
means of p
urements. To i
lame, a Doppl
ulation (FM-DG
city field with l

ERIMENTAL

For the investi
metry burner w
, mounted into
mented in deta
and characteri
iren has been c
n with the sta

M) - to the left
ixed (PPM) - t

In the TPM con
ential air (b) a
ugh a stratifier

tions, which re
turbations of a
he past, a v

flame trans
been published
F is measuring
me as the meas
burner exit are
try or laser D
on chemilumi

mes with low
[4, 5], this m

ed combustion 
ative Interferom
rometry (LIV) 
ase without th

age of this tech
f density fluc
re fluctuations
he link betwe
ut this is the fi
benefit, it ove
g the whole fie

wirl stabilized 
and well defin
ng a siren in th
s measured wi
r exit nozzle. S

citation frequen
oth, the flame
was done for 
escence should
equivalence rat
ation more rele
ferences in hea

planar time 
interpret the na
ler global velo
GV) was used 
line-of-sight-in

 SETUP 

igations presen
was used and 
o the axial air-f
ail in the work 
istics have bee
characterized i
andard configu

and the refere
o the right of th
nfiguration, th
and axial air 
r in order to 

elate the unstea
acoustic veloci
variety of me
fer functions

d. A method w
g the chemilum
sure for heat re

e obtained eithe
oppler anemom
inescence are 

w strain rates
method is not
systems. 
metric techniq
are not affecte
e restriction of
hnique is that 
ctuations dire
s, this is a m
en those quan

first time, integ
ercomes the t
eld. In this stud
burner config

ned operating 
he main air sup
ith laser Dopp
Secondly, integ
ncies from 0 H
e transfer fu
a perfectly pr

d provide a rel
tio waves. The

evant to industr
at release are f
resolved equ

atural heat rele
ocimeter with 

to compare th
ntegrated heat r

nted in this pa
the flow was 
feedline. The b
of Giuliani et 

en published re
n [11]. In Fig.

uration - techn
ence configura
he setup. 
e combustor is
(c). The axia
ensure purely 

ady heat releas
ty at the burne
ethods for th
s in researc
widely used fo
minescence from
elease. Velocit
er directly from
metry. Wherea
only applicabl

s and constan
t applicable t

ques like lase
ed by this. The
f perfect mixin
it measures th
ctly. With th

measure of hea
ntities has bee
gral heat releas
ime consumin
dy the techniqu
guration with 
conditions. Th
pply, where th
ler anemometr

gral Heat releas
z to 600 Hz. A

unction can b
remixed flame
liable result du
en a technicall
rial application
further analyze
uivalence rati
ase spectrum o
laser frequenc

he time resolve
release rate. 

aper, a variabl
excited with 

burner has bee
al [9], the flow

ecently [10] an
. 1 the burner 
ically premixe
ation - perfectl

s fed by fuel (a
al air is force

axial flow. I

2

se 
er 
he 
ch 
or 
m 
ty 
m 
as 
le 
nt 
to 

er 
ey 
ng 
he 
he 
at 
en 
se 
ng 
ue 
a 

he 
he 
ry 
se 

As 
be 
e, 
ue 
ly 
ns 
ed 
io 
of 
cy 
ed 

le 
a 

en 
w-
nd 
is 

ed 
ly 

a) 
ed 
In 

contra
chamb
cylind
the bu
outer c

In
into th
split.
bores 
pressu
acoust
slightl
enable
release

T
above
exit no
the p
thermo
layers
The m
operat
numbe
measu
height
time t
system
the me

TABL
 

Axia
[g

0.4

    

FIG
TPM
CON

ast to this the
ber (d) and fr
drical bores alig
urner axis. Met
chamber. The 
n case of perfe
he air supply f
As shown in
of a diamete

ure drop is pr
tically stiff an
ly alter the fu
ed without nec
e.  

The movable ce
e the exit in ord
ozzle (e) and c

point of oper
oacoustic labo

s of low reflect
mass flow, w
tion, can be 
er, according 
ured using a bu
t of z = 8.5 m
the burner ex

m for all meas
easurement pla

LE 1: FLOW P

al air 
g/s] 

Tang

422 0

GURE 1: THE
M CONFIGUR
NFIGURATIO

e tangential a
from there, en
gned tangentia
thane is injecte
siren modulate

ect mixing (PPM
far upstream b
Fig. 1, the fu

er of 0.5 mm
resent. Therefo
nd the acoustic
uel flow. Then 
cessarily genera

enter cone (f) o
der to constric
consequently e
ration. The t
oratory within 
tive curtains an

which was the
found in Tab
to [2] neglec

urner exit radiu
mm to z = 17 m
xit diameter r
surements orig
ane (g) is defin

PROPERTIES 

gential air  
[g/s]

0.397 

E EXPERIMEN
RATION TO T
ON TO THE R

Copyright © 2

air passes the
nters the plenu
ally and symme
ed into the tang
es the axial air 
M), the methan

before tangenti
uel is injected
. At those inj
ore, they are 
cs of the plenu

equivalence r
ating large amp

of the burner w
ct the flow thro
ensure correct 
test rig was 
a 3x3x2.5 m3

nd a sound abs
e same for b
ble 1. The si
cting the press
us of 8 mm av

mm which is 0
respectively. T

ginates at the b
ned by the x an

Fuel  
 [g/s] 

0.0683 

NTAL SETUP
THE LEFT AN
RIGHT 

2016 by ASME

e outer mixing
um through 32
etrically around
gential air in th
flow only. 
ne was injecte
al and axial ai

d through smal
njectors a larg

assumed to b
um would only
ratio waves ar
plitudes of hea

was set to 1 mm
ough the burne
momentum fo
set up in 

3 box with tw
sorbing ceiling
both points o
implified Swir
sure term, wa
veraging over 
0.5 times and 
The coordinat
burner exit an
d z-axis. 

Swirl 
Number [-]

0.54 

P WITH THE
ND THE PPM

E 

g 
2 
d 
e 

d 
ir 
ll 
e 
e 
y 
e 

at 

m 
er 
or 
a 
o 

g. 
of 
rl 
as 
a 
1 
e 
d 

88



 3 Copyright © 2016 by ASME 

Measuring Techniques 
Heat release fluctuations for the FTF were acquired by 

means of LIV and OH*-chemiluminescense using a 
photomultiplier with a filter. Velocity fluctuations for the FTF 
were acquired by means of laser Doppler anemometry. For 
planar time resolved velocity fields, FM-DGV was employed, 
and finally the phase averaged planar CH*/OH*-
chemiluminescence measurements were used to visualize 
equivalence ratio waves. Below the different measurement 
techniques are explained in detail. 

 
Laser interferometric vibrometry (LIV) detects the line 

of sight (ߞ) integrated density fluctuations of gasses by means 
of interferometry. This is shown in detail in [12] and applied in 
[13, 14]. Using a Polytec laser vibrometer (interferometer head 
OFV-353, velocity decoder OFV-3001, calibration factor 
5mm/s/V, 200kHz bandwidth, no filters, Polytec, Waldbronn, 
Germany), the measured voltage (U) is linked to the derivative 
of the density fluctuation (ρ) by the Gladstone-Dale constant 
(G) which is 2.59e-4 m³/kg for the present points of operation 
and the calibration factor (k) which was set to 5 mm/s: 
 

 න
݀
ݐ݀
ߞ݀	ሻݐሺߩ ൌ

2 ∗ ݇௩௜௕
ܩ

ܷሺݐሻ (1) 

The link between density fluctuations and heat release 
fluctuations has been derived and extensively discussed by [8, 
6, 7]. Neglecting pressure fluctuations which - for unconfined 
flames - are low compared to volumetric heat release rate qv, 
the following equation applies: 

 
ߩ݀
ݐ݀

ൌ െ
ߢ െ 1
ܿଶ

௏ݍ݀
ݐ݀

 (2) 

With the ratio of specific heats (κ) and the speed of sound (c). 
In combustion application LIV is used to locally or globally 
detect heat release fluctuations. In order to locally resolve the 
heat release fluctuations, the vibrometer must be traversed in a 
two dimensional field [14]. Since for FTFs, only the space 
integrated information of the flame is relevant, the laser beam 
of the vibrometer was expanded to and collimated at a diameter 
of 81 mm and centered at a height of 40 mm above the burner 
exit plane in order to acquire the entire combustion fluctuations 
at once. For the comparison with vorticity, the vibrometers 
beam was narrowed down to 5 mm in diameter and traversed in 
two directions with increments of 5mm. The result was 
interpolated in order to provide more readable plots. Areas of 
uncertainty of the LIV technique include the varying 
Gladstone-Dale constant discussed in [6], dependency on 
temperature discussed in [12] and a varying intensity of the 
laser beam over the beam diameter due to a Gaussian 
distribution of the laser light. Since only the central part of the 

beam covered the test section, the accuracy of the LIV detector 
signal is less than +/- 4 %, this can be further reduced, using a 
sufficiently strong light source. 

Alternatively, for the FTF, the integral OH*-
chemiluminescence (i-OH*-CL) intensity emitted by the flame 
was acquired using an UV filtered photomultiplier (PMM01, 
Thorlabs Inc., Newton, New Jersey, USA). On the 
photomultiplier  a narrow band OH* interference filter (310 nm 
CWL, FWHM 10±2 nm Bandwidth, 50mm Mounted Diameter, 
18 % Transmission, Edmund Optics, Barrington, NJ, USA) was 
mounted. 

The processing of LIV and the i-OH*-CL signal were acquired 
with 100 kilosamples per second using a data acquisition with 
analog input modules NI-91215 (National Instruments, Austin, 
Texas) and Labview 8.6 software. The spectral analysis was 
performed using a fast fourier transform (FFT) based on Matlab 
routines. In order to tackle the scalloping loss of Fourier 
transforms, a Matlab 2015a implementation of a Flattop filter 
was used, which is valid if frequencies are known in advance, 
ensuring a high signal to noise ratio. 

To record the velocities for the FTF a classical laser Doppler 
anemometer (LDA) was used to measure the axial velocity at 
the burner exit at z=2 mm x=r= 5.5 mm. (FibreFlow, DANTEC 
Dynamics, Roskilde, Denmark). Since LDA does not provide 
frequency spectra per se, with the help of a siren trigger the 
result was phase averaged and then divided into 64 bins. A FFT 
was performed on the phase averaged result and the base-
frequency was used for the FTF. 

A particle image velocimetry (PIV) was used as reference. 
The PIV setup was the same as in [10] with 1200 averaged 
images and two cameras set up at an angle of 45°.  

A Doppler global velocimetry measurement system with laser 
frequency modulation (FM-DGV) was employed to assess the 
flame dynamics of the non-excited flame in part two of this 
article. The FM-DGV technique relies on measuring the 
Doppler frequency shift fD of laser light, which is scattered by 
seeding particles moving with the flow: 
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∗
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(3) 

with ߣ as laser wavelength, ݋Ԧ as observation direction and ଓԦ 
as laser incidence direction. Hence, the velocity component 
௢௜ݒ ൌ Ԧݒ	 ∗  ,.Ԧ (i.eݏ Ԧ along the direction of the sensitivity vectorݏ
along the bisecting line of ݋Ԧ and െଓԦ) can be derived from the 
measured Doppler frequency. For determining the Doppler 
frequency shift, a frequency stabilized laser source in 
combination with a molecular cesium absorption cell with 
frequency dependent transmission was used. The frequency 
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obvious but still distinct, the fluctuations in heat release start at 
x = 5 mm, z = 10 mm and float down- and outwards following 
the inner shear layer of the right-side jet. For interpretation of 
the results, it is important to keep in mind that the measurement 
resolution is only 5 mm in comparison to 1 mm for velocity 
measurements. 

Comparison of results from two measurement techniques 
shows that both fluctuations occur within the upper inner shear 
layer of the jet, which is also the lower part of the main heat 
release, and the region where the flame is anchored.  Looking at 
the phase evolution, it shows that negative vorticity leads to 
positive heat release, which means that a vortex veering away 
from the jet curls up the surface of the flame. This leads to an 
increased surface area and consequently to an increased burn 
rate. At x = 5 mm and z = 15 mm the heat release is highest and 
this is also the region where the vortex fully hits the flame just 
after it merged and grew in strength. Here both measurement 
techniques acomplish each other, in order to gain insight into 
the flame dynamics. 

 

CONCLUSION 

The focus of this study was to discuss an alternative way of 
recording heat release rate and the FTF. It was the first time 
integral LIV was used for this application. The technique is 
promising of a better prediction of heat release in partially 
premixed (technically premixed) flames, where it is less 
receptive to equivalence ratio waves than the classical i-OH*-
CL method.  

Heat release spectra and FTF’s for both perfectly premixed 
and technically premixed flames were analyzed. The trend of 
both systems correlated very well for the perfectly premixed 
flame as the literature suggests. While for the technically 
premixed case the agreement of the overall trends were good as 
well, a strong overshoot at one peak in the spectra of the i-
OH*-CL signal was found. This was related to the known 
dependency of OH*-emission on equivalence ratio and 
correctly identified as such by visualizing the ratio between 
OH* and CH* fluctuations. A significant overshoot of OH*-CL 
without a considerable fluctuation of heat release can occur 
when the system features a high pressure drop over the injector. 
This acoustically stiff fuel line is then less sensitive to 
fluctuations of air flow. In the special case of this swirl-
stabilized flame, the overshoot of the photomultiplier signal 
does not affect the FTF significantly because the trend of the 
FTF is mainly dominated by velocity fluctuations. Therefore 
the LIV method is an interesting alternative to i-OH*-CL in 
order to measure and quantify heat release fluctuations in 
perfectly as well as partially premixed flames. Secondly, 
naturally excited frequencies of the technically premixed flame 
were investigated, since the LIV technique clearly identified 
this effect as a heat release fluctuation. Time resolved velocity 
was an obvious quantity to investigate, in order to identify the 
root of these fluctuations. By means of FM-DGV the heat 
release fluctuation was tracked back to flame front roll up and 

consequently vorticity. Pulsations of heat release can be 
observed in the shear layer where the flame is anchored and 
where vortices hit the flame, heat release is in phase with the 
vortices. Detailed analysis of the plots identifies the vortices as 
the source of the heat release pulsations. This leads to the final 
conclusion that LIV is a promising technique for full field heat 
release measurements. It has been shown, that it is possible to 
measure the heat release rate of an unconfined flame. Similar to 
chemiluminescence, it is not free of restrictions. These include 
sensitivity of the Gladstone-Dale constant to mixture 
fluctuations, and sensitivity to temperature. Additionallly, care 
must be taken when adjusting the laser beam in order to 
maintain a homogenous illumination of the measurement 
volume. 
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In terms of absolute amplitude, the vibrometer and microphone values match very well. Keeping in 
mind that for turbulent flames, the sound power emitted is in the range of 10^-8-10^-6 of the thermal 
power and the excitation level is in the range of 10-30% of the mean thermal power, the deviation 
found represents a very good agreement. The vibrometer mostly underestimates the microphone re-
sults by less than 70% of the microphone sound power. This is shown in Table 4. N/A marks frequen-
cies where either only microphone or only vibrometer results are available. Only operating points 
where the amplitude is very low show a considerable over estimation by the vibrometer. This is a 
result of noise measured by the technique. In order to avoid arbitrary manipulations of the data, there 
has not been any ‘noise’ filtering of the LIV system but for low amplitudes the noise can contribute to 
the predicted sound power.  

 
Table 4: Deviation of the sound power measured by LIV compared to microphone measurements in 

percent, for different frequencies and points of operation. 
 

f [Hz] TPM att TPM det PPM det 

125 11.82% -12.10% -3.38% 

212 -70.21% -62.42% -47.70% 

225 n/a n/a 176.12% 

250 -36.72% -60.69% -38.37% 

255 n/a n/a n/a 

256 n/a 53.14% n/a 

264 n/a n/a n/a 

423 -68.03% n/a 32.18% 

    

 
 

Aside from the mentioned noise, an additional source of error lies in the implementation of Strahles 
equation (31). Strahle assumed that only the density fluctuations in the flame front contribute to the 
radiated sound. This is intuitive because the reaction only takes place in the flame front, hence only 
there, combustion can be the source of sound. 

The vibrometer on the other hand integrates fluctuations of density along the line of sight. Due to this, 
it also takes into account fluctuations outside of the flame front. Those fluctuations can be considered 
small, as shown by [24] but never the less may slightly alter the resulting fluctuations.  

Further slight uncertainties could be caused by the low frequency combustion fluctuations observed or 
by the normalization process of the microphone array which was necessary because of the low fre-
quency combustion fluctuations. Acoustic intensity fluctuations were observed when traversing the 
microphone array tangentially. Those fluctuations were suppressed by normalizing the microphone 
signals by a reference microphone which was traversed with the burner. It is however possible, that 
the measured mean value of sound power does not represent the actual mean value. A measurement 
time of 20 seconds and 30 measurement points however gives a total of 10 minutes to average for the 
reference microphones. Therefore, this influence can only be small.  
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The difference lies in the equivalent noise band width (ENBW): 

 

ܦܵܲܥ ൌ
ܵܲܥ
ܹܤܰܧ

 (45) 

 

The ENBW depends on the frequency resolution (Δf) and the window function applied [51]. Without 
a window function and for Δf being unity, ENBW is zero. Otherwise it differs from one. The meas-
urement- and processing parameters used in this paper resulted in an ENBW is 3.7702. In the paper 
PETERLEITHNER ET AL. 2016 B, dividing the microphone measurements by a factor of 6 produced 
matching frequency spectra, but the reason for this discrepancy was unknown. Now with the correct 
computation of the sound power, there is still some variation as shown in Table 4, but the results are 
very close and in the expected error of such a comparison as discussed above. 

 

3.3.1 Reviewed articles on Combustion Noise: 

 PETERLEITHNER ET AL. 2016 B:  

J. Peterleithner, S. Zerobin and Woisetschläger, "ANALYSIS OF COMBUSTION NOISE USING 
LOCALLY RESOLVED DENSITY FLUCTUATIONS AND A MICROPHONE ARRAY," in Proc. 
ASME Turbo Expo, 2016. 
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ABSTRACT 

For turbulent swirl-stabilized flames combustion noise can 
be directly calculated, if density fluctuations as a function of 
time and space are known. It is however not easily possible to 
assess the density fluctuations directly. Therefore, in the past, 
combustion noise has been expressed as a function of 
chemiluminescence, an approach bringing in more 
assumptions. Now, by using interferometry, density fluctuations 
in the flame can be measured quantitatively. The advantage of 
this technique is that it measures the time derivative of density 
fluctuations directly. In this work laser interferometric 
vibrometry (LIV) was used to scan a two dimensional field in 
the flame in order to calculate the sound power emitted by the 
flame. Sound intensity was measured in a half-hemisphere by 
pressure-pressure-probes in order to record the total sound 
power of the direct combustion noise emitted by the unconfined 
flame. The goal of this study was to compare the measured 
sound power exhibited by the flame with the sound power 
predicted due to fluctuations of density within the flame. By 
using a siren to generate linear excitation, it was possible to 
qualitatively predict combustion noise with good agreement in 
trend. A quantitative comparison between both measurement 
techniques showed a deviation of a factor of six. 

 

NOMENCLATURE 
 
Ameas [m2] cross-sectional area of the laser 

vibrometer beam 
Asurf [m2] surface area of microphone 

hemisphere 
c0 [m/s] speed of sound 
f [Hz] frequency 

FFT  fast Fourier transform 
G [m3/kg] Gladstone-Dale constant 
Ir [W/m2] radial component of sound 

intensity 
Im  Imaginary part 
k [mm/s/V] vibrometer calibration constant 
LIV  laser interferometric vibrometry 
lat  latitudinal coordinate 
lng  longitudinal coordinate 
MP  measurement point 
natural 
spectrum 

 spectrum of flame without 
excitation 

Pfar, P [W] sound power 
pp-probe  pressure-pressure probe 
p’ [Pa] sound Pressure 
PPM det  detached perfectly premixed  
r [m] radial distance of observer 
r0 [m] radius of flame 
t [s] time 
TPM att  attached technically premixed  
TPM det  detached technically premixed  
U [V] voltage 
vr  [m/s] radial component of particle 

velocity 
VFl [m3] volume of the flame 
Δr [m] Distance between microphones of 

pp-probe 
ρ0 [kg/m3] mean density outside of the flame 
ρ’T  [kg/m3] density fluctuation within flame 
ρ’(r) [kg/m3] density fluctuation at radius of 

observer 
ζ [m] length of laser vibrometer beam 
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INTRODUCTION 

Combustion generated noise has been a topic for many 
years in industrial applications where reacting flows are 
predominantly turbulent. Especially the prediction, and 
consequently the reduction of correlated and stochastic sound 
radiation of flames has been investigated intensively [1, 2]. 
Early theories as well as experimental validations suggest that 
the far field sound pressure is proportional to fluctuations of 
heat release within the flame [3]. For measurability, many 
publications supported the use of the time derivative of OH*-
Chemiluminescence [4]. However, the density distribution 
within the flame had to be assumed. Progress in combustion 
noise theory made it possible to predict sound emission directly 
as a function of heat release without the need of the mean 
density field [5], but it remains a difficult task to acquire the 
heat release acurately.  Alternatively, early work [6] suggested 
the use the density fluctuations within the flame ρ’T in order to 
estimate density fluctuations in the far field ρ’ and 
consequently combustion noise:  

ሻݎᇱሺߩ  ൌ
1

଴ܿߨ4
ଶݎ

߲ଶ

ଶݐ߲
න ்′ߩ ൬ݎ଴, ݐ െ

ݎ
ܿ଴
൰

௏

ܸ݀ሺݎ଴ሻ (1) 

with c0 speed of sound, r radial distance of observer, 
volume V and radius r0 of the flame. Since time resolved 
density fluctuations were difficult to measure, an adaption of 
the equation with application of OH*-chemiluminescence 
estimating the mean density within the flame was often 
preferred [2], Recent development and experimental work 
enabled accurate measurements of time resolved line-of-sight 
and local density fluctuations in turbulent jets [7, 8] and in 
laminar [9] and turbulent flames [10, 11]. Therefore, it is now 
possible to prove Strahle’s assumption directly. For the 
research presented herein, a novel technique recording the time 
derivative of the density fluctuation was used. The 
measurement device, a laser interferometric vibrometer (LIV), 
integrates along the laser beam path and scans the two 
dimensional field of the flame. In the standard application of 
vibrometers the motion of an object is measured. If that object 
is a fixed mirror the interferometer in the instrument measures 
the time derivative of the density fluctuations along the laser 
beam path.  
 

THEORETICAL BACKGROUND 

In the following paragraph the calculation of sound power 

from 	׬ ఍ݐ߲/்′ߩ߲  directly measured by LIV and from 

microphone measurements are presented. Comparing sound 
power has the advantage that this number does not dependent 
on the distance of the observer (microphone) and it is easier to 
measure if the far field condition is not met [12]. It has the 
same significance as comparing density fluctuations since in 

the far field sound power is a direct function of the density 
fluctuation. Flames have a low pass characteristic and in a 
laboratory environment the far field condition for low 
frequencies is usually not fulfilled. Therefore, it is more 
convenient to calculate and compare sound power, which is not 
a function of the radial distance to the flame. 

Prediction of Sound Power from 	׬ ࣀ࢚ࣔ/ࢀ′࣋ࣔ  

In the far field where sound pressure p’ and particle 
velocity are in phase sound power Pfar can be calculated from 
density fluctuations as follows. 
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 (2) 

Here, a sphere is defined as detection surface. Combining 
Equation 1 and Equation 2 results in the sound power as a 
function of density fluctuations: 
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 (3) 

After performing a fast Fourier transform (FFT) - now in 
the frequency domain - the time derivative of a variable is 
simply the variable times the angular frequency with a time lag 
of pi/2 : 

ܶܨܨ  ቆ
்′ߩ߲
ݐ߲

ቇ ൌ ݂ߨ2 ∗ ,்′ߩሺܶܨܨ ݈ܽ݊݃݁ െ 90°ሻ (4) 

Now, in frequency domain, the acoustic power in the far 
field Pfar(f) can be calculated for each frequency f from 
Equation 3. 
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(5) 

The integral density fluctuation over the flame 

volume	׬ ρᇱ୘୚ಷ೗
 is equal to the sum of all fluctuations in the 

vibrometer grid, when the density fluctuations outside the flame 
are low compared to the ones within the flame. That this is the 
case, has been shown by [13]. 
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sound power.  From higher frequencies onward, the consistency 
of trends for both techniques is again very good. 

For linear excitation, the phase of the sound power derived 
from LIV and the microphone array is plotted in Figure 8 
(bottom). Measurements show that for all frequencies tested the 
phase of the LIV is very close to the photomultiplier signal. A 
low deviation of no more than 30 degrees (mostly below 10 
degrees) is expected, since both techniques represent the heat 
release of the flame. In order to compare the phase of the 
microphone with the phase of heat release recorded by LIV, 
firstly, one has to account for the time delay, the acoustic wave 
needs for the distance between the flame and the microphones. 
Secondly, the vibrometer signal is proportional to ∂ρ/ ∂t, but 
the resulting sound is proportional to the second time derivative 
of density. 90° phase shift have to be accounted for when the 
time derivative of a signal is calculated in the frequency 
domain. Therefore, the phase of the acoustics was corrected by 
adding a phase shift which is a function of the distance between 
flame and measurement position as well as the frequency. Then 
 was subtracted to correct for the time derivative in 2/ߨ
frequency domain. 

Analysis of Specific Sound Levels 
When comparing the natural spectrum and the amplitudes 

of linear excitation for the sound power measured by 
microphones, it can be found that the PPM detached flame is 
consistently quieter than the TPM det flame. However, the 
TPM att case is the quietest one for the natural spectrum but 
with excitation, all of a sudden, it becomes the noisiest flame. 
The reason for the natural spectrum to be of lowest amplitude 
has been identified to lie in the stabilization process of the 
anchored flame. But then, with siren excitation, the fluctuations 
of heat release get so violent that the flame anchoring region 
behind the bluff body is heavily disrupted. In Figure 9 left 
density gradients in space at one frequency and one phase angle 
are shown. The surface of the attached flame is heavily 
disrupted. At the end of the flame cone vortex an induced flame 
roll up is observed. This process enlarges the flame surface and 
coherent fluctuations in heat and consequently in noise can be 
observed. The attached V-cone flame almost acts like a rubber 
band, trying to keep the vortex attached to the flame, and then 
suddenly snaps back. In comparison to this, the other points of 
operation are purely dynamically stabilized. Therefore, those 
flames can, within limits, travel up and downstream of the flow, 
dampening the process. Vortex rollup, which introduces shear 
stress in the flow, is more suppressed by this flame motion. The 
vortex rollup in the flame can still be found in the detached 
flames (Figure 9 middle and right), but the density gradients are 
more smeared. 

 

CONCLUSION 

Strahle postulated that the sound of a flame in the far field 
is a function of density fluctuations within the flame. The focus 
of this study was to prove Strahle’s assumption by comparison 

between the predicted noise measured with LIV and a 
microphone array. In the first part, the acoustic field of the 
flame was analyzed. Normalization by the reference 
microphone corrected for sub-Hz frequency fluctuations during 
operation, results in an almost perfectly symmetrical sound 
field. In latitudinal direction, a slight dependency on angle was 
found as detected by other authors [23]. Overall sound power is 
in agreement with experience of former work as well. For the 
level of noise, the stabilization process was found to be the 
dominant factor. For siren excitation, the angular variation of 
sound intensity was traced back to the distribution of 
combustion fluctuations, which were particularly intense at the 
root of the flame.  

Considering sound prediction by heat release fluctuations 
qualitatively, both measurement techniques lie in the same 
order of magnitude.  In this study LIV underestimated the 
actual sound level by a factor of six. A very good agreement in 
trend over the range of investigated frequencies was shown. 
Some factors of influence lie within the equation of sound 
power due to density fluctuations. First, the assumption of a 
monopole, second, in the equation the diameter of the laser 
beam raised to the fourth is considered. Therefore, it is critical 
to accurately determine the diameter when the system is set up. 

Finally, the behavior of the TPM att was explained by 
means of the schlieren technique. This operation point initially 
was the quietest. However, once excited by the siren, it 
consistently had the highest amplitude.  

This leads to the final conclusion, that it is possible to 
predict combustion noise qualitatively due to density gradients 
within the flame. On the basis of direct physical quantities a 
comparison of both techniques revealed a deviation by a factor 
of six. 
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4 Conclusion and Outlook 

The LIV technique is comparably straight forward when used for the detection of density fluctuations. 
The influence of refractive index and the Gladstone-Dale constant is low for the participants of typical 
natural gas-air combustion in the lean regime. With increasing equivalence ratio beyond 1.16 the 
variation of the Gladstone-Dale constant considerably increases and is no longer neglect able. This 
however is not a significant limitation, since modern combustion systems mostly rely on lean combus-
tion systems [13]. Changing from perfectly premixed systems (laboratory setups) to partially pre-
mixed systems (industry setups) increases the uncertainty. This influence however is small.  

If pressure fluctuations are low, detection of the time derivative of density fluctuations via LIV is also 
a good alternative measurement technique in order to gain information about the heat release rate. 
This has been shown to be valid for laminar and turbulent flames between 4 kW and 50 kW in con-
fined and unconfined configuration.  

Then, an influence of the speed of sound is present. This influence is due to the speed of sound being 
dependent on the local temperature in the flame. The detection of the temperature field in a reactive 
environment is however challenging. It was shown in this thesis, that by detecting the absolute density 
field in addition to the fluctuations, this influence can be compensated as well. Shearography was used 
for measurements of absolute values of density. The prefect gas equation was employed and pressure 
fluctuations assumed to be small. Shearography is based on the relative change in density from pixel 
to pixel (gradient detection).  

A drawback of the LIV system is the time consuming traversing. To reduce measurement time, in a 
first step, the laser beam was expanded to and collimated at a diameter where the whole flame is cap-
tured at once. For detection, the laser beam is then focused again onto the single photo cell in the 
sensing head of the vibrometer. This technique was compared to OH*-chemiluminescence and proven 
to work. As a drawback, with this procedure geometrical resolution is sacrificed.  

Optionally, measurement time can be reduced in the same way without losing space resolution. The 
laser beam must again be expanded and collimated, but instead of collecting the information on one 
photocell, mounting a two dimensional array of receptors now gives local information. Detection of 
the whole field at once, including the undisturbed environment, gives the ability of not only detecting 
fluctuations in time but also performing spatial correlations. These spatial correlations will provide 
integral length scales in the flame, in addition to line-of-sight averaged flow velocities.  

A full-field laser vibrometer with an array of laser beams detecting density fluctuations could perform 
this task by the relative phase lags from pixel to pixel. Thus, such a future system would record tem-
perature field and density fluctuations as line-of-sight data for the same pixel-array. 

The most important tasks on the way towards a full-field LIV will then be to maintain a good level of 
signal-to-noise ratio in all pixels and an approach to limit the deflection of light rays. A strong devia-
tion would otherwise produce ghost images in neighboring measurement cells. 



Conclusion and Outlook 

120 

Conclusively, this thesis proved the hypothesis that LIV is a good alternative tool to record heat re-
lease fluctuations. It also shows the error margins for different types of flames.  

Finally, the assumption that sound emission can be predicted by measuring density fluctuations 
proved to be correct. By comparing acoustic pressure data and heat release data it was shown that this 
procedure can replace acoustic far-field measurement. 
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Appendix C – pp-Probe 

As derived in the theory part, sound power is generally a function of the complex values of sound 
pressure and particle velocity. Those two values may not be in phase in the near field and the transi-
tional region of a point source, which makes it necessary to measure both values in order to compute 
sound power. They are in phase in the far-field. There it is possible to express the particle velocity as a 
function of the sound pressure. Consequently sound power can be expressed as a function of one pa-
rameter only.  

For low frequencies as common in combustion, it is practically impossible to fulfill the far-field re-
quirement in confined spaces such as a laboratory. Therefore it is necessary to measure both, p’ and 
v’. Alternatively measuring sound pressure at two positions using a pp-probe and approximating the 
particle velocity by employing the Euler equation provides sound intensity. Integration of the sound 
intensity over a surface area enveloping the sound source gives the sound power. The first law of 
thermodynamics demands energy conservation, consequently neglecting losses, sound power must 
stay constant with increasing radial distance to the sound source. Assuming a spherical enveloping 
surface, this area increases with increasing diameter. Looking at equation (37) it becomes clear that 
sound intensity must then decrease with increasing radius, since power stays constant. When compar-
ing acoustics in one single laboratory setup, using sound intensity is legitimate, however comparing 
sound power is more universal and should therefore be preferred for acoustic analysis.  Here the dis-
tance between the two microphones is critical and must be adjusted according to the expected sound 
frequency. If the distance is too high, a phase jump could provide wrong results. If the distance be-
tween the two microphones is too short, the SNR of the microphones will become a problem (Figure 
C.1).  

For the presented measurements, a distance of 53mm between the microphone membranes was cho-
sen, in order to provide maximum accuracy in the low frequency region up to a maximum of 1250 Hz 
(Figure C.2). This, because the siren used, can modulate the feed line flow up to a maximum frequen-
cy of 1000 Hz. The arch designed to hold the microphones in place is shown in Figure C.3. The pp-
probe configuration and arch-setup is shown in Figure C.4. A maximum of 28 microphones was – in 
pairs - evenly distributed along the arch. 



Appe

134 

Figu
micr

 

Figu
micr

 

endix C – p

ure C.1: corre
rophones (Dat

ure C.2: Error
rophone distan

p-Probe 

 
ect distance b
ta taken from 

r in pressure 
nces [72]. 

between micro
[72]). 

intensity and 

ophones (top)

 

phase as a f

) and wrong 

function of fr

distance (to s

equency band

short) betwee

ds for differen

en 

 
nt 



 
F

 

 

Figure C.3: Diimensioning oof the microphhone arch. 

Appenddix C – pp-PProbe 

135 

 



Appe

136 

 

Figu
and r

 

endix C – p

ure C.4: pp-pro
right). Microp

p-Probe 

obe with two 
phone arch wi

microphones 
ith 14 pp-prob

(Mic 1 and M
bes behind bur

Mic 2) and a d
rner (bottom).

istance Δr of 
 

53mm (top leeft 



A

Al
ba
bo
sis
im
wi

 

F
t

 

Append

ll measureme
asement of the
oratory feature
stant accordin

mprovements r
ith measured d

Figure D.1: 
the laborato

dix D –

ents but the o
e Institute for
es a low refle
ng to DIN 410
reduced the re
data shown in

reverberati
ory. 

– Acous

nes for [30]
Thermal Tur

ective ceiling 
02 B 1 both a
everberation ti
n Figure D.1 fo

on time bef

stic La

were carried 
rbomachinery 
and heavy ac
are shown in 
time from 44 m
or a decrease 

fore (left) an

Append

aborato

out in the ‘T
and Machine

coustic curtain
Figure B.3 in

ms to less tha
in amplitude o

nd after (rig

dix D – Aco

ory 

Thermoakustik
e Dynamics at
ns (320g/m²) w
n the backgro
an 12 ms. Val
of 60 db. 

ght) the acou

oustic Labor

k-Messraum‘ 
t TU Graz. Th
which are flam
ound. The stru
lues were calc

ustic improv

ratory 

137 

in the 
he La-
me re-
uctural 
culated 

 

vements of 





Appendix E – Definitions of Error Analysis 

139 

Appendix E – Definitions of Error Analysis 

Reliability is the degree to which an assessment tool produces stable and consistent results. 

Validity refers to how well a test measures what it is intended to measure.   

Sensitivity (also called the true positive rate, or the recall in some fields) measures the proportion of 
positives that are correctly identified as such (e.g., the percentage of sick people who are correctly 
identified as having the condition). 

Specificity (also called the true negative rate) measures the proportion of negatives that are correctly 
identified as such (e.g., the percentage of healthy people who are correctly identified as not having the 
condition). Thus sensitivity quantifies the avoiding of false negatives, as specificity does for false 
positives. 

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or sys-
tem (numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs. A 
related practice is uncertainty analysis, which has a greater focus on uncertainty quantification and 
propagation of uncertainty. Ideally, uncertainty and sensitivity analysis should be run in tandem. 

Uncertainty: A set of possible states or outcomes where probabilities are assigned to each possible 
state or outcome – this also includes the application of a probability density function to continuous 
variables. 

In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with as-
sessing the uncertainty in a measurement. An experiment designed to determine an effect, demonstrate 
a law, or estimate the numerical value of a physical variable will be affected by errors due to instru-
mentation, methodology, presence of confounding effects and so on. Experimental uncertainty esti-
mates are needed to assess the confidence in the results. A related field is design of experiments. 

Precision is a description of a level of measurement that yields consistent results when repeated. It is 
associated with the concept of "random error", a form of observational error that leads to measurable 
values being inconsistent when repeated. 

Accuracy: The ISO definition is that accuracy is a level of measurement that yields true (no systematic 
errors) and consistent (no random errors) results 

 


