
Michael Krisper, BSc

Finding the Right Design Pattern
Using Binding Time Properties

MASTER'S THESIS

to achieve the university degree of
Diplom-Ingenieur

Master's degree programme: Computer Science

submitted to
Graz University of Technology

Supervisor
Dipl.-Ing. Dr. Christian Kreiner

Institute of Technical Informatics

Graz, October 2016

This document is set in Palatino, compiled with pdfLATEX2e and Biber. The
used LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

A�davit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master‘s thesis.

Graz,

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene
Textdokument ist mit der vorliegenden Masterarbeit identisch.

Graz,

Datum Unterschrift

iii

Abstract

In this thesis 120 design patterns from standard literature are described and
analyzed for their respective binding times (Books: GoF, POSA1, POSA2,
POSA3, POSA4). Binding time is an important aspect of design patterns
to decide which one to choose for a specific purpose (to find the right
pattern). Several binding time scenarios are presented which compare the
different patterns on a temporal continuum from early static binding to
late dynamic binding (as applicable). These scenarios give insights which
pattern to apply for which purpose to achieve a flexible software design
without over-engineering or inappropriately high complexity. For a better
understanding the used design patterns are described and their binding
time is specified in detail.

Thanks

I want to thank my supervisor Christian Kreiner for inspiring me and
supporting me to write about the topic of Binding Time and Design Patterns.
Also I want to thank my girlfriend Melanie who displayed a huge amount
of patience during my turmoils of working on this thesis. Additionally I
want to thank my family, my professors and my teachers.

v

Contents

Abstract v

1 Introduction 1

2 Background and Related Work 3
2.1 Design Patterns . 3

2.1.1 Pattern Forms . 4

2.1.2 Pattern Form used in this Work 8

2.2 Binding Time . 10

2.2.1 Phase . 11

2.2.2 Participant . 12

2.2.3 Responsible Role . 13

2.2.4 Binding Sequence . 14

2.3 Program Timeline . 15

2.4 Context and Motivating Scenarios 20

2.4.1 Software Architect Scenario 20

2.4.2 Software Developer Scenario 21

2.5 Related Work . 22

3 Finding the Right Pattern 25
3.1 Method Calls - Dispatching Patterns 26

3.2 Creational Patterns . 28

3.3 Behavior and Processing Patterns 30

3.4 Concurrency and Synchronization Patterns 33

4 Gang of Four Design Patterns 35
4.1 Abstract Factory . 36

4.2 Adapter . 37

4.3 Bridge . 38

vii

Contents

4.4 Builder . 39

4.5 Chain of Responsibility . 40

4.6 Command . 41

4.7 Composite . 42

4.8 Decorator . 43

4.9 Facade . 44

4.10 Factory Method . 45

4.11 Flyweight . 46

4.12 Interpreter . 47

4.13 Iterator . 48

4.14 Mediator . 49

4.15 Memento . 50

4.16 Observer . 51

4.17 Prototype . 52

4.18 Proxy . 53

4.19 Singleton . 54

4.20 State . 55

4.21 Strategy . 56

4.22 Template Method . 57

4.23 Visitor . 58

5 POSA 1 Design Patterns 59
5.1 Layers . 60

5.2 Pipes and Filters . 61

5.3 Blackboard . 62

5.4 Broker . 63

5.5 Model-View-Controller . 65

5.6 Presentation-Abstraction-Control 66

5.7 Microkernel . 68

5.8 Reflection . 69

5.9 Master-Slave . 70

5.10 Command Processor . 71

5.11 View Handler . 72

5.12 Forwarder-Receiver . 73

5.13 Client-Dispatcher-Server . 74

5.14 Counted Pointer . 75

5.15 Duplicate Patterns . 75

viii

Contents

6 POSA 2 Design Patterns 77
6.1 Wrapper Facade . 78

6.2 Component Configurator . 79

6.3 Interceptor . 80

6.4 Extension Interface . 81

6.5 Reactor . 82

6.6 Proactor . 83

6.7 Asynchronous Completion Token 84

6.8 Acceptor-Connector . 85

6.9 Scoped Locking . 86

6.10 Strategized Locking . 87

6.11 Thread-Safe Interface . 88

6.12 Double-Checked Locking . 89

6.13 Active Object . 90

6.14 Monitor Object . 91

6.15 Half-Sync/Half-Async . 92

6.16 Leader/Followers . 93

6.17 Thread-Specific Storage . 94

7 POSA 3 Design Patterns 95
7.1 Lookup . 96

7.2 Lazy Acquisition . 97

7.3 Eager Acquisition . 98

7.4 Partial Acquisition . 99

7.5 Caching . 100

7.6 Pooling . 101

7.7 Coordinator . 102

7.8 Resource Lifecycle Manager . 102

7.9 Leasing . 103

7.10 Evictor . 104

8 POSA 4 Design Patterns 105
8.1 Domain Model . 108

8.2 Shared Repository . 109

8.3 Domain Object . 110

8.4 Messaging . 111

8.5 Message . 112

ix

Contents

8.6 Message Channel . 113

8.7 Message Endpoint . 114

8.8 Message Translator . 115

8.9 Message Router . 116

8.10 Client Proxy . 117

8.11 Requestor . 118

8.12 Invoker . 119

8.13 Client Request Handler . 120

8.14 Server Request Handler . 121

8.15 Explicit Interface . 122

8.16 Introspective Interface . 123

8.17 Dynamic Invocation Interface 124

8.18 Business Delegate . 125

8.19 Combined Method . 126

8.20 Enumeration Method . 127

8.21 Batch Method . 128

8.22 Half-Object plus Protocol . 129

8.23 Replicated Component Group 130

8.24 Page Controller . 131

8.25 Front Controller . 132

8.26 Application Controller . 133

8.27 Template View . 134

8.28 Transform View . 135

8.29 Firewall Proxy . 136

8.30 Authorization . 137

8.31 Guarded Suspension . 138

8.32 Future . 139

8.33 Copied Value . 140

8.34 Immutable Value . 141

8.35 Double Dispatch . 142

8.36 Context Object . 143

8.37 Data Transfer Object . 144

8.38 Execute-Around Object . 145

8.39 Null Object . 146

8.40 Declarative Component Configuration 147

8.41 Methods for States . 148

8.42 Collections for States . 149

x

Contents

8.43 Container . 150

8.44 Object Manager . 151

8.45 Virtual Proxy . 152

8.46 Lifecycle Callback . 153

8.47 Activator . 154

8.48 Automated Garbage Collection 155

8.49 Disposal Method . 156

8.50 Database Access Layer . 157

8.51 Data Mapper . 158

8.52 Row Data Gateway . 159

8.53 Table Data Gateway . 160

8.54 Active Record . 161

8.55 Duplicate Patterns . 162

9 Conclusion 165

Bibliography 167

xi

List of Figures

2.1 Binding . 10

2.2 Program Timeline . 15

3.1 Binding Time - Method Calls 26

3.2 Creational Patterns Binding Times 28

3.3 Behavior Patterns Binding Times 30

3.4 Concurrency Patterns Binding Times 33

4.1 Abstract Factory . 36

4.2 Adapter . 37

4.3 Bridge . 38

4.4 Builder . 39

4.5 Chain Of Responsibility . 40

4.6 Command . 41

4.7 Composite . 42

4.8 Decorator . 43

4.9 Facade . 44

4.10 Factory Method . 45

4.11 Flyweight . 46

4.12 Interpreter . 47

4.13 Iterator . 48

4.14 Mediator . 49

4.15 Memento . 50

4.16 Observer . 51

4.17 Prototype . 52

4.18 Proxy . 53

4.19 Singleton . 54

4.20 State . 55

4.21 Strategy . 56

xiii

List of Figures

4.22 Template Method . 57

4.23 Visitor . 58

5.1 Layers . 60

5.2 Pipes and Filters . 61

5.3 Blackboard . 62

5.4 Broker . 63

5.5 Model-View-Controller . 65

5.6 Presentation-Abstraction-Control 66

5.7 Microkernel . 68

5.8 Reflection . 69

5.9 Master-Slave . 70

5.10 Command Processor . 71

5.11 View Handler . 72

5.12 Forwarder-Receiver . 73

5.13 Client-Dispatcher-Server . 74

5.14 Counted Pointer . 75

6.1 Wrapper Facade . 78

6.2 Component Configurator . 79

6.3 Interceptor . 80

6.4 Extension Interface . 81

6.5 Reactor . 82

6.6 Proactor . 83

6.7 Asynchronous Completion Token 84

6.8 Acceptor-Connector . 85

6.9 Scoped Locking . 86

6.10 Strategized Locking . 87

6.11 Thread-Safe Interface . 88

6.12 Double-Checked Locking . 89

6.13 Active Object . 90

6.14 Monitor Object . 91

6.15 Half-Sync/Half-Async . 92

6.16 Leader/Followers . 93

6.17 Thread-Specific Storage . 94

7.1 Lookup . 96

xiv

List of Figures

7.2 Lazy Acquisition . 97

7.3 Eager Acquisition . 98

7.4 Partial Acquisition . 99

7.5 Caching . 100

7.6 Pooling . 101

7.7 Task Coordinator . 102

7.8 Leasing . 103

7.9 Evictor . 104

8.1 Overview . 105

8.2 Domain Model . 108

8.3 Shared Repository . 109

8.4 Domain Object . 110

8.5 Messaging . 111

8.6 Message . 112

8.7 Message Channel . 113

8.8 Message Endpoint . 114

8.9 Message Translator . 115

8.10 Message Router . 116

8.11 Client Proxy . 117

8.12 Requestor . 118

8.13 Invoker . 119

8.14 Client Request Handler . 120

8.15 Server Request Handler . 121

8.16 Explicit Interface . 122

8.17 Introspective Interface . 123

8.18 Dynamic Invocation Interface 124

8.19 Business Delegate . 125

8.20 Combined Method . 126

8.21 Enumeration Method . 127

8.22 Batch Method . 128

8.23 Half-Object plus Protocol . 129

8.24 Replicated Component Group 130

8.25 Page Controller . 131

8.26 Front Controller . 132

8.27 Application Controller . 133

8.28 Template View . 134

xv

List of Figures

8.29 Transform View . 135

8.30 Firewall Proxy . 136

8.31 Authorization . 137

8.32 Guarded Suspension . 138

8.33 Future . 139

8.34 Copied Value . 140

8.35 Immutable Value . 141

8.36 Double Dispatch . 142

8.37 Context Object . 143

8.38 Data Transfer Object . 144

8.39 Execute-Around Object . 145

8.40 Null Object . 146

8.41 Declarative Component Configuration 147

8.42 Methods for States . 148

8.43 Collections for States . 149

8.44 Container . 150

8.45 Object Manager . 151

8.46 Virtual Proxy . 152

8.47 Lifecycle Callback . 153

8.48 Activator . 154

8.49 Automated Garbage Collection 155

8.50 Disposal Method . 156

8.51 Database Access Layer . 157

8.52 Data Mapper . 158

8.53 Row Data Gateway . 159

8.54 Table Data Gateway . 160

8.55 Active Record . 161

xvi

1 Introduction

Design patterns play a huge role in the development of modern software
applications. They give solution templates for commonly reoccurring prob-
lems. Understanding how and when to apply them, helps building more
robust and flexible applications. This thesis is targeting software architects,
designers and developers in the context of designing and developing a
software application. The goal of this thesis is to analyze the binding times
of the many different design patterns to better understand the consequences
and to give a guide which pattern to apply for which binding time require-
ment. Applying design patterns without thinking about the binding time
consequences could impose unnecessary complexity in the software design
and therefore lead to performance or quality problems.

Some decisions are made early during design and implementation, others
are deferred until runtime and decided dynamically during execution of
an application. Although dynamic implementations give more freedom
and flexibility later on, it often imposes another layer of abstraction which
increases the complexity and takes longer to develop. If this flexibility is not
needed it was a waste of resources. To avoid this it is important to know
which binding times a pattern has, which flexibility it allows and what the
effort and increase in complexity a pattern imposes.

Chapter 2.1: Design Patterns gives an introduction to design patterns as well
as pattern forms which describe them. Chapter 2.2: Binding Time defines
binding time and explains the basic terminology in the dimensions of
binding time, participants and responsible role which is used throughout the
whole work. Chapter 3: Finding the Right Pattern gives the main overview
over some binding scenarios and the applicable patterns.
In the remaining Chapters 4-8 design patterns taken from five of the most
important books in the design pattern standard literature are described and
analyzed.

1

1 Introduction

The following books are the basis for this work’s analysis. All design patterns
which are defined there are presented also in this work and are analyzed
for their respective participants and binding times:

• GOF: Design Patterns - Elements of Reusable Object-Oriented Soft-
ware (Gamma et al., 1995), 23 Patterns, described in Chapter 4.
• POSA1: Pattern-Oriented Software Architecture Volume 1: A system

of patterns (Buschmann, Meunier, et al., 1996), 15 Patterns, described
in Chapter 5.
• POSA2: Pattern-Oriented Software Architecture Volume 2: Patterns for

Concurrent and Networked Objects (Schmidt et al., 2000), 17 Patterns,
described in Chapter 6.
• POSA3: Pattern-Oriented Software Architecture Volume 3: Patterns for

Resource Management (Kircher and Jain, 2004), 10 Patterns, described
in Chapter 7.
• POSA4: Pattern-Oriented Software Architecture Volume 4: Pattern

Language for Distributed Computing (Buschmann, Henney, and Schmidt,
2007), 55 Patterns, described in Chapter 8.

2

2 Background and Related

Work

2.1 Design Patterns

A design pattern systematically names, motivates, and explains a general design that
addresses a recurring design problem in object-oriented systems. It describes the problem,
the solution, when to apply the solution, and its consequences. It also gives implementation
hints and examples. The solution is a general arrangement of objects and classes that solve
the problem. The solution is customized and implemented to solve the problem in a
particular context.

— (Gamma et al., 1995)

In this work 120 design patterns from standard literature are described and
analyzed. For that purpose it makes sense to define what a design pattern
is, and how it can be described.

Design Pattern A design pattern is a solution template to a commonly
recurring problem in a given context. Patterns can be found by abstracting
the core solution concepts from existing solutions. Mature patterns are
already reinvented and applied in multiple software projects by different
people and have proven helpful and useful. Such patterns are worthy
describing and sharing, to give others the knowledge to also implement
such good solutions.

3

2 Background and Related Work

2.1.1 Pattern Forms

Describing patterns has the purpose of knowledge transfer to other people
in order to give them opportunity to also apply these approved and good
solutions for their own problems. To better understand the applicability, the
context, problem, and forces have to be described as well as the solution
and consequences. To do that several pattern forms have emerged which all
try to do good descriptions of pattern.

There are several different forms how to write a pattern. Here is a list of the
most prominent ones in the software sector (C2, 2016):

• Compact Form (Minimal Form)
• Alexandrian Form
• GOF-Form
• Portland Form
• POSA1/2/3 Form
• POSA4 Form
• Beck Form
• Coplien Form (Canonical Form)

In the following sections these forms are described in detail.

Compact Form (Minimal Form)

Common ground for all patterns. This should be the minimal description a
pattern has:

• Name
• Context
• Problem
• Solution
• Consequences

4

2.1 Design Patterns

Alexandrian Form

For convenience and clarity, each pattern has the same format. First, there is a
picture, which shows an archetypal example of that pattern. Second, after the
picture, each pattern has an introductory paragraph, which sets the context
for the pattern, by explaining how it helps to complete certain larger patterns.
Then there are three diamonds to mark the beginning of the problem. After the
diamonds there is a headline, in bold type. This headline gives the essence of
the problem in one or two sentences. After the headline comes the body of the
problem. This is the longest section. It describes the empirical background of
the pattern, the evidence for its validity, the range of different ways the
pattern can be manifested in a building, and so on. Then, again in bold type,
like the headline, is the solution - the heart of the pattern - which describes the
field of physical and social relationships which are required to solve the stated
problem, in the stated context. This solution is always stated in the form of an
instruction - so that you know exactly what you need to do, to build the
pattern. Then, after the solution, there is a diagram, with labels to indicate its
main components.
After the diagram, another three diamonds, to show that the main body of the
pattern is finished. And finally, after the diamonds there is a paragraph which
ties the pattern to all those smaller patterns in the language, which are needed
to complete this pattern, to embellish it, to fill it out.

— Christopher Alexander, (Alexander, 1979)
The alexandrian form was one of the first forms to write pat-

terns. Although it was established for architectural patterns it can
be applied to software development (with slight modifications).
It typically is built up like this:

• Picture
• Prologue
• Three Diamonds (� � �)
• Problem
• Discussion
• Solution
• Diagram
• Three Diamonds (� � �)
• Epilogue

5

2 Background and Related Work

GoF Form

Established in the Gang-Of-Four-Book (Gamma et al., 1995).

• Name
• Classification
• Also Known As (optional)
• Motivation
• Applicability
• Structure
• Participants
• Collaborations
• Consequences
• Implementation
• Sample Code
• Known Uses
• Related Patterns

Portland Form

Short and simplified narrative Form which is close to Alexan-
drian Form, but much shorter. Uses the word “Therefore:“ as
delimiter between Problem and Solution.

POSA1/2/3 Form

Established in the POSA1, POSA2, POSA3 Books (Buschmann,
Meunier, et al., 1996; Schmidt et al., 2000; Kircher and Jain, 2004).

They distinguish between three category of Patterns: Archi-
tectural Patterns, Design Patterns, Idioms. Each layer is more
detailed.

• Name
• Also Known As
• Example
• Context
• Problem
• Solution

6

2.1 Design Patterns

• Structure
• Dynamics
• Implementation
• Example Resolved
• Specialization (only POSA3)
• Variants
• Known Uses
• Consequences
• See Also
• Credits (only POSA2, POSA3)

POSA4 Form

Established in the POSA4 Book (Buschmann, Henney, and Schmidt,
2007).

Written in a more narrative Style with text formatting. (more
like the Alexandrian Form). Uses the Word “Therefore:“ as de-
limiter between Problem and Solution.

• Pattern name and maturity level
• Inbound Patterns
• Context
• Border Line
• Problem statement
• Forces
• “Therefore:“
• Solution instruction
• Solution Sketch
• Solution structure and behavior
• Solution consequences
• Solution details and outbound patterns

7

2 Background and Related Work

Beck Form

Established in Smalltalk Best Practice Patterns by Kent Beck
(Beck, 1996)

• Title
• Context
• Problem Question
• Forces
• Solution
• Resulting Context

Canonical Form (Coplien Form)

Established in the PLOPD Books (see (Coplien, 1995; Coplien
and Vlissides, 1996)).

• Name
• Alias (optional)
• Problem
• Context
• Forces
• Solution
• Example (optional)
• Resulting Context
• Rationale (optional)
• Known Uses
• Related Patterns

2.1.2 Pattern Form used in this Work

Due to the fact that all patterns described here are already estab-
lished in the books (GoF, POSA1, POSA2, POSA3, POSA4) and
described there in detail, this work only gives a short description
and a diagram to illustrate to the reader how we understand
the pattern. After this short description, the section "Participants
and Bindings" in each pattern describes the binding times of all
contained participants in it.

8

2.1 Design Patterns

• Name: The name or title of the pattern as it was given in
the books.
• Description: A description of the pattern structure to give

the reader an idea of its implementation and behavior.
• Diagram: A diagram showing the pattern structure with a

kind of UML class diagrams (and often additional elements
to depict dynamics or architectural aspects).
• Participants and Bindings: A list of the participants in

the pattern and their respective dependencies and bind-
ing times.

Diagrams

The diagrams used in this work are based on UML class diagrams
(Booch, Jacobson, and Rumbaugh, 1999) with the difference,
that for simplicity some architectural elements are added to
simplify and hide implementation details which are not relevant
in general or unique to specific programming languages.

One basic assumption for the diagrams is a language which
support object orientation, interfaces, inheritance, constructor,
destructor and collections (arrays and dictionaries). Some pat-
terns also need extra functionality somehow available (either
via standard library, or external libraries) like some kind of syn-
chronization (e.g. mutex, semaphore or condition variables) and
threading (e.g. thread, timer). These technologies are available
in many languages and therefore the patterns which need those
are applicable in a broad range of programming languages.

9

2 Background and Related Work

2.2 Binding Time

Binding time is defined as “the latest time during software lifecycle,
when something flexible becomes decided and fixed” (Kreiner, 2013).
It depicts the temporal aspect of a binding and can generally
be described using the time continuum of the program lifetime.
Additionally the bound participant and the responsible role
have to be defined. Figure 2.1 shows these dimensions used for
analyzing binding time.

Binding

Time
• When?

Artifact
• What?

Role
• Who?

Figure 2.1: Binding

• Binding-Time: When is it bound? The phase of a program
lifetime when the binding happens.
• Participant: What is bound? The software-artifact which is

bound.
• Role: Who binds it? The role responsible for the binding

decision.

There exist many binding-mechanisms which have different
consequences for binding-time. These binding mechanism are de-
fined in the programming language or standard library and are
used implicitly while implementing a software application. Some
Examples are: hardcoded method calls and type declarations,
conditional compilation, object-orientation (encapsulation, inher-
itance, polymorphism, abstraction), applying design patterns,
aspect oriented programming, using reflection, configuration,
dynamic dispatch, dynamic loading, etc.

10

2.2 Binding Time

2.2.1 Phase

During the development of a software application the projects
goes through different phases of completion. The easiest model is
the distinction between compile-time and run-time. Another one
is compile-time, link-time and start-up time (Linden, Schmid,
and Rommes, 2007). More sophisticated models divide these
into several fine-grained steps like requirements-analysis, design-
time, compile-time, deployment, run-time (Capilla and Bosch,
2013; Fritsch, Lehn, and Strohm, 2002; Jaring and Bosch, 2002;
Krueger, 2004). Each of these steps has its own form of binding.

The definition of a program timeline as in the following Sec-
tion2.3 is convenient for analyzing software related binding times,
but other domains could have different time lines. To give an
example: Fritsch et al. defined another set of binding times for
the domain of automotive embedded systems: Programming,
Integration, Assembly, and Run Time (Fritsch, Lehn, and Strohm,
2002). While covering most the phases of the development of
software application the program timeline does not incorporate
a whole project plan or industrial software product lines. These
span up new timelines which coexist in parallel and potentially
overlap and synchronize sometimes (Myllymäki, 2001).

Additionally to the program lifetime also other lifelines exist
in projects where binding may happen, e.g.:

• Program Life-Cycle (Krueger, 2004): Language Design, Plat-
form Design, Source Reuse, Implementation/Generation,
Pre-Compile, Compile, Package, Link & Load, Customiza-
tion, Install, Start-up, Runtime, Dynamic Loading, Scripting,
Unloading.
• Software Development Life-Cycle: Requirements Analysis,

Architecture and Design, Implementation, Testing, Deploy-
ment, Maintenance
• Software Product Lines: Reuse, Configuration, Generation
• Runtime Adoption: Always On, Live-Updating System,

Real-time Applications

11

2 Background and Related Work

2.2.2 Participant

An integral part of a binding is the participant. The participant
is the actual artifact which is bound. In previous work this was
directly called artifact (Krisper and Kreiner, 2016), but for design
patterns it is more useful to talk about it as a participant. To
analyze binding these participants have to be defined. Typical
examples are a class, a object, a variable an specific instantiation
of a type, or some behavior like a method, which could by
dynamically dispatched at runtime. Some more examples:

• Object: A software-artifact which can be handled in the
source code.
• Instance: A real instantiated object with an specific type.
• Type: A concrete description of properties and method-

signatures of an object.
• Interface: An abstract description of properties and method-

signatures
• Method: The definition and implementation of a function

(optionally with parameters), bound to an object
• Function: The definition and implementation of a behavior

or calculation in the source code
• Property/Member: A value with specific type which is part

of an object.
• Method-Call: The process of executing a method with con-

crete parameter values from an outer context.
• Interface-Implementor: An object which implements an

interface.
• Wrapper-Class: A class containing another object and using

its properties and methods for its purpose.
• Language features: Syntactic and Semantic elements of a

programming language.

12

2.2 Binding Time

2.2.3 Responsible Role

Every binding is decided by a mechanism which is somehow
responsible for that binding. This mechanism is here defined as
the responsible role. For example a software developer could
decide an implementation detail during implementation, or a
software architect decides which structure to use during the
design phase. Even before that, the requirements are defined by
the project leader and the customer. But decisions could also be
made very late, if a software is configurable and flexible. Such late
bindings are configured by the end-user when an application is
already deployed and running (even after the actual development
stopped). Obviously most software related binding decisions in
detail are made by the software architect or some developer. The
participants and stakeholders of a project all have their roles and
could potentially decide binding.

• Pattern-Designer: Writes software design patterns. Decides
the name and structure of the pattern.
• Language-Designer: Person or Company responsible for

designing the syntactical and semantical definitions of a
programming language.
• Project-Manager: Person who is coordinating a software

project and is responsible for defining the requirements and
resource limitations together with the customer.
• Software-Architect: Person who designs the software archi-

tecture and environment according to the requirements.
• (Senior-)Developer: Person who implements software and

decides smaller but more frequent design decisions. Is lastly
responsible for the whole source code and implementation.
• Customer: The project customer of a software project.
• Configurator: A person responsible for configuring a soft-

ware product to the needs of a end-user.
• Maintainer: Person who maintains a software and keeps

the environment up-and-running and up-to-date.
• End-User: A person which really has to work with a software-

product in order to accomplish the daily work-load.

13

2 Background and Related Work

2.2.4 Binding Sequence

On an variation point a binding always goes through the follow-
ing sequence:

1. Undecided: Binding has not happened yet. Variations are
still open. Changes could still be made. Errors could still be
mitigated.

2. Binding: Binding happens just now. The variation is bound,
the decision is made.

3. Fixed: The binding has happened and the consequences
are now realizing. If errors happened in the binding deci-
sion, these can only be recovered, resisted or rolled back
(mitigation not possible anymore).

As already mentioned in the descriptions, this has a huge im-
pact on error handling. Beforehand it is relatively easy to mitigate
errors by simply deciding for the correct binding. Afterwards
it is more difficult, because some languages even don’t allow
for a direct correction of bound variables. The corresponding
method has to be reverted and called again, now with the correct
parameters to decide for the correct binding.

14

2.3 Program Timeline

2.3 Program Timeline

The actual time is the most important aspect of binding time.
The program timeline is a sequentially increasing list of time
phases during the development of a software application from
the developer’s view. It covers the whole development process,
beginning with the requirements phase, going from architecture
and design phase to the actual implementation, compilation,
deployment and runtime. This temporal continuum is the basis
for the analysis of design patterns in this thesis.

The program timeline can be seen in Figure 2.2 and the phases
are described hereafter.

Requirements

•User	Requirements
•Hardware
•Environment

Architecture

•Application Structure
•System	Structure
•Frameworks

Source	Reuse

•Components
•Existing
Source/Tools

Design

•Components
•Interfaces	&	Classes
•Design	Patterns

Implementation

•Source	Code
•Code	Generation

Pre-Compile

•Templates
•Code	Generation
•Includes

Compilation

•Conditional
Compilation
•Optimization

Deployment

•Package
•Code-Signing

Configuration

•Config-Files
•Licensing
•Resource Connections

Startup

•Context

Link	&	Load

•Libraries
•Code	 Injection

Runtime

•Execution
•Plugins
•Dynamic	Loading
•Dynamic	Configuration
•Scripting

Figure 2.2: Program Timeline

In the following paragraphs these phases and their impact on
the binding time are described.

Requirements The project phase where the requirements are
defined. This happens before any line of code was written and
sometimes even before the project even started. The customer,
the stakeholders and the general environment set the require-
ments for the software application. This can be distinguished
in functional and non-functional requirements as well as cus-

15

2 Background and Related Work

tomer requirements and internal requirements. The implications
are huge because this is the basis for all further architectural
thoughts and decisions, as well as all further work. The require-
ments influence many design decisions afterwards. This is also
the phase which has the highest contact points to project man-
agement and customer relations. Typical outcome is a project
description with a detailed plan of the requirements, quality of
service contracts and also monetary and time restrictions.

Architecture One of the first phases in a software project is the
Architecture Time wherein the architecture of the application
is specified. Decision made in this phase are which basic tech-
nology is used, which platforms and which general structures
the application will have. The decisions are mostly made by the
software architect in coordination with the project manager and
the senior developers. These decisions are the guidelines for ev-
ery follow-up decision and have the highest impact in the whole
software development process. Overview Diagrams, Component
Diagrams, or Network Diagrams are the general outcomes of
this phase as well as descriptions of the Quality Requirements
and Development Guidelines.

Source Reuse In this phase it is decided which tools, compo-
nents and libraries are used and which parts of the software
are implemented new by the software-development team. The
used software component often have implications for the design.
This could mean that a framework demands a specific imple-
mentation, or that internal development components demand
a specific structure. This has huge consequences for the design,
and therefore has to be done before that. Typical outcomes for
this phase is a description of used software components and
libraries as well as the libraries themselves. Often they have to
be acquired and this also happens during this phase.

Design In the design phase the internal structure of the soft-
ware components is decided. Which domain objects exist, how

16

2.3 Program Timeline

they are represented in the software. Which Design Patterns
are applied. The general class and object structure is planned
and decided by the senior-developers in junction with the other
development team. The general outcomes for this phase are class
diagrams, sequence-diagrams, flow-diagrams, or other detailed
descriptions of the software structure.

Implementation The actual coding of the source code or cre-
ation of the resources. In this phase the software developers
implement the functionality and class structure according to the
requirements and class-definitions made in the previous phases.
In this phase small detailed decisions are made with every line
of code. How readable is the code? How flexible is the code?
Does the code work at all? Should I take a array or a list for that
list of object?

During implementation sometimes problems arise, that some
design decisions are wrong, or even some requirements cannot
be fullfilled with the used architecture or technology. This leads
to feedback-loops where the architecture and design is revised,
or even discussions with the customer to loosen up on the re-
quirements or shift some features to later version of the software.
Typical outcomes of the implementation phase are the source
code, images, configuration files, media files.

Pre-Compile In this phase the source code it automatically
generated or modified through text replacement mechanisms
like Includes or Macros or generative code templates. During
this phase many decisions made earlier are manifested in the
sourcecode. Also decisions made in the coding templates mani-
fest during this phase. Typical outcome are the same as during
the implementation phase: source code, images, configuration
files, media files.

A typical example for pre-compile processing is replacement
of constant values in C++. Another would be the generation of
Code via T4-Template in Visual Studio.

17

2 Background and Related Work

Compile-Time The compile-time is the phase where the source
code and all resources are translated and bundled into an ap-
plication. In this phase the compiler manifests many decisions
which are made before. How big are the datatypes? Code op-
timizations? Generate machine code according to the calling
conventions and memory layout and so on. This phase in itself
is an own research area (compiler construction (Wirth, 1996))
and could be split up into several sub-phases: parsing, lexing,
type inference, code optimization, code generation. Even after
compilation there exist post-compile-tools which change the gen-
erated byte-code or assembler-code afterwards to accomplish
some kind of aspect-oriented weaving. These sub-phases are on
a lower abstraction level during compilation and will not be
covered in detail here.

For interpreted languages the compilation-phase is completely
shifted to the runtime of the interpreter (and repeated in a de-
generated way for every new line of code).

The output of the compilation phase could typically be an
executable application, a library, or intermediate byte code which
could be interpreted and executed in an highly efficiently way in
a runtime environment (as it is the case in .NET Languages and
Java).

Deployment During deployment the compiled application pack-
age is packed, delivered and installed at the customer. This is typ-
ically done via installer or packages (installer files like msi/dmg,
ios or android apps, or packages in linux package managers).

The deployment phase fixes decisions for the environment
where the applications should be installed. Meta-information
like the author, installation hints, or installation requirements are
defined here.

Con�guration After the application is deployed it can be con-
figured to the users needs. This is done during the "configuration-
time". Typically the definitions are stored in an configuration file
(e.g. ini-file, or xml-settings) or a database and read on startup

18

2.3 Program Timeline

or during runtime. The configuration influences some behav-
ior of the application (e.g. restricted areas, or license checks, or
database connections, ...).

Startup During startup the application gets environment in-
formation like system paths, time information, access-rights,
executing user, or general platform values like cpu-count or is
gpu-support available or not. Beside the environment variables,
these decisions are made implicitly by the user just by executing
the application on the target platform.

Link and Load Linking and loading the needed libraries at
startup of an application. During this phase the system paths or
local paths are searched for the needed libraries to load. During
this phase external code is referenced and loaded into the appli-
cation. This is a phase in its own right, because the libraries could
change (version updates, DLL Hell (Nord, 2011)) and therefore
bindings could be different.

Runtime During runtime the actual application logic is exe-
cuted and interaction with other systems and the user happens.
During runtime an application could e.g. run in multiple threads,
spawn other processes, communicate over the network, wait for
user interaction, do sophisticated calculations, and much more.

Depending on the implementation an application could even
apply very late binding mechanisms like loading libraries dy-
namically into the memory at runtime or provide a kind of
scripting system (e.g. with the Interpreter (47) Pattern) to al-
low the user write own applications. Also configuration files or
database configuation could be read during runtime to change
the behavior and look of the application. Depending on the pro-
gramming language capabilities it is even possible to change its
own code during runtime (interpreted languages often allow this
by default, and compiled languages sometimes allow this via
reflection or dynamic compilation to extend functions and class
definitions).

19

2 Background and Related Work

2.4 Context and Motivating Scenarios

2.4.1 Software Architect Scenario

Consider a software architect planing the software design for an
application. According to the project requirements and resource
constraints he has to decide the overall structure and capabilities
of an application. Concerns like flexibility, variability and embrac-
ing changing requirements have to be considered. Many things
in an application depend upon the overall design and therefore
this has to be done very carefully. Design patterns represent
proven solution templates for a problem within a given context
and therefore come in handy building a flexible and extensible
model. They also help govern a healthy and understandable
communication culture amongst the project team.

The architect has to balance two antagonizing forces here:
The design should fulfill all requirements (functionality, quality,
flexibility, ...) but this has to be accomplished with only limited
resources (time, money, deadlines, staff, ...). This balancing act
results in a design which could be very flexible (having late
binding times) or rather rigid (with early binding times) or
a reasonable mixture. Taken to the extreme, this leads to two
problem scenarios:

Oversimpli�cation While it is highly desirable to design a
very flexible, extensible, future-proof architecture to cope with
changes of requirements, it often cannot be done due to resource
limitations (time, money). This leads to a cheaper design with
early binding times, which is easier and faster to implement, but
has its drawbacks in flexibility and extensibility.

Indecisive Generality While it is one of the recommended prac-
tices to defer decisions as long as possible (Kandt, 2003), this
could lead to a situation called indecisive generality (Marquardt,
2005). Sometimes a decision cannot be made due to unclear
requirements and therefore is either deferred or implemented

20

2.4 Context and Motivating Scenarios

in an abstract way, so it can be changed easily later on. This
unnecessary flexibility makes the source code more complicated,
harder to implement and understand, which ultimately results
in higher development and maintenance costs and higher risk of
bugs in the source.

2.4.2 Software Developer Scenario

Consider a software developer implementing a specific function
in a software project. While many of the interface and overall
structure decisions are already made during the design phase,
the internal mechanisms are implemented later on, and with
it also many ad-hoc decisions made by the developer. While
a software architect has to cope with external constraints, the
developer has to solve internal requirements and quality issues,
like functionality, runtime performance, code readability, testing,
security, etc. Small decisions could have huge impact, like choos-
ing a list, set, or dictionary as data structure; or deriving from an
existing object or just wrap it in a decorator; or choosing which
variant of a design pattern to implement. The coding style itself
also greatly impacts the quality. Readability, code understand-
ing, simplicity of changing and refactoring code highly depend
upon this implementation decisions and therefore impact the
flexibility of the software on an internal level. These decisions
are manifested in the source code during implementation and
therefore also have a binding time.

Imagine a task which consists of going through a list of objects
and aggregating some values. This could be done with a simple
for-loop, but also with the help of iterators, or a functional
approach like map-reduce and deferred execution (e.g. LINQ
in C#). All of these are just implementation details but have
different consequences for the application affecting memory
and performance. Using a deferred execution approach shifts
the actual processing until the result is actually needed (later
binding time), while a for-loop (with early binding time) could
be easier to implement, debug and understand in some cases.

21

2 Background and Related Work

2.5 Related Work

This thesis is mainly based on the following books:

• GOF: Design Patterns - Elements of Reusable Object-Oriented
Software (Gamma et al., 1995)
• POSA1: Pattern-Oriented Software Architecture Volume 1:

A system of patterns (Buschmann, Meunier, et al., 1996)
• POSA2: Pattern-Oriented Software Architecture Volume 2:

Patterns for Concurrent and Networked Objects (Schmidt
et al., 2000)
• POSA3: Pattern-Oriented Software Architecture Volume 3:

Patterns for Resource Management (Kircher and Jain, 2004)
• POSA4: Pattern-Oriented Software Architecture Volume 4:

Pattern Language for Distributed Computing (Buschmann,
Henney, and Schmidt, 2007)

All design patterns described in these books are also in described
in this thesis and analysed for their binding times.

Much of the definitions for binding time is taken from “De-
scribing Binding Time in Software Design Patterns” by Krisper
and Kreiner (Krisper and Kreiner, 2016) as well as “A binding
time guide to creational patterns” by Kreiner (Kreiner, 2013).

Binding of variables and methods is in the core of program-
ming languages. Different languages and programming paradigms
have different binding mechanisms and these are well described
and well known in the programming community, as described
in (Burch, 2012) e.g. dynamic dispatch, late binding of methods,
name binding, dynamic typing, deferred execution, etc.

Going beyond this technical level, Fritsch et al. proposed bind-
ing time as one of the several aspects for evaluating implementa-
tion mechanisms (Fritsch, Lehn, and Strohm, 2002). Myllymäki
wrote about variability management and discussed the of bind-
ing and binding mechanisms as well as language capabilities
in detail (Myllymäki, 2001). Regarding software product lines
Svahnberg gave a taxonomy of variability where the binding
time is one decision factor for introducing variants (Svahnberg,
Gurp, and Bosch, 2005). Krueger also proposed a more general

22

2.5 Related Work

taxonomy and graphical representation of software product lines
and their variations (Krueger, 2004). In contrast to this broader
and more general view, Capilla and Bosch give a detailed view
on binding time and described different phases (Capilla and
Bosch, 2013). They also go into the aspect of having multiple
possible binding times available for creating variants.

In regards of design patterns Gamma et al. discuss the general
scope of patterns (class level, object level), (Gamma et al., 1995)
and sometimes discuss the governing forces and consequences in
terms of binding time, but in a narrative and open form. Other
relevant literature for design patterns are the “Pattern Languages
of Program Design” (PLOPD) books (Coplien, 1995; Coplien and
Vlissides, 1996; Martin, Riehle, and Buschmann, 1007; Foote,
Harrison, and Rohnert, 1999; Manolescu, Voelter, and Noble,
2006).

23

3 Finding the Right

Pattern

Many of the design patterns solve similar problems in approxi-
mately similar contexts and therefore can be compared in regards
of binding time. This chapter gives an overview over the com-
parable scenarios and patterns and align them on the basis of
binding time. The patterns are always listed in order from early
binding going to late binding.

Many of the described patterns are not listed in this scenarios,
and there are several reasons for that. Either they solve a unique
problem which cannot be compared to others, or they give only
a partial solution for the already listed patterns, or they are so
general that their binding time could be anywhere depending
on the implementation.

Binding Scenarios:

• Method Call Bindings (Dispatching Patterns)
• Object Creation Bindings (Creational Patterns)
• Behavior and Processing Bindings (Behavioral Patterns)
• Concurrency and Synchronisation Bindings (Concurrency

Patterns)

25

3 Finding the Right Pattern

3.1 Method Calls - Dispatching Patterns

The calling patterns have the purpose of finding, creating or
dispatching the correct object or method to call.

Binding

Time
Client Class

Client

Class

«interface»
Interface

Client Wrapper Class

Client Proxy

Class

«interface»
Interface

Client Microkernel

process
boundary

Client Broker

network

Server
Component

Class

Late
Binding

Early
Binding

Direct Object Method Call

Interface Method Call

Wrapper

Loose Coupling

Services

Network Services

Proxy, Decorator,

Adapter, Facade,

Encapsulated

Implementation

Observer,

Mediator,

Bridge,

Command,

Visitor,

Iterator

Microkernel

Broker,

Lookup,

Client-Dispatcher-

Server

Client
Dynamic
Invocation
Interface

Class

Dynamic Invocation Dynamic Invocation

Interface,

Reflection,

Introspective Interface

Explicit Interface,

Extension Interface

Figure 3.1: Binding Time - Method Calls

26

3.1 Method Calls - Dispatching Patterns

Object Method Call This is no pattern in itself, it is a simple
direct call of a Method on an Object in the programming lan-
guage. The client has to know the object type and the method at
compile time and calls it at runtime.

Interface Method Call Here the call is made via an interface.
The client does not know at compile time which object really
is behind the call, just that the object implements the given
interface.90

Wrapper The proxy concept takes the indirect dispatch one
step further and wraps around the object to call. Still the client
calls the interface, but the called object is still a wrapper around
the object itself. The proxy could adapt the interface, could add
or change functionality of the object, without the client knowing
of the Proxy, the Object and what was changed.

Loose Coupling The mediator connects several colleague object
via a defined interface and coordinates message between them.
This allows for completely loosening compile time dependencies
between them. It also allows for later registration of objects.

Dynamic Invocation For completely dynamic invocation some
languages allow the calling of methods via a reflection system
or a dynamic service provider. This allows for a complete duck
typing system like interpreted languages like Python have.

Services Works like a mediator, with the difference that objects
are outside of the process boundaries.

Network Services This is also a network based solution, with
the aspect that brokers even could be chained behind each other.
Therefore a request goes through a chain of brokers before reach-
ing the server shifting the actual work even more out of sight of
the client.

27

3 Finding the Right Pattern

3.2 Creational Patterns

The creational scenario is about creating the needed object in-
stance. It is also about resource acquisition and releasing.

Binding

Time

Client Class
new

Client ClassFactory

Client Abstract

Factory
Factory

Client Object

Client Broker

network

Late
Binding

Early
Binding

Direct Object Creation "new"

Factory

Abstract Factory

Synchronization

Network Instances

Client Manager
new

Class

Lifecycle Manager

new

new
Class

new

Class

Objectdelete

Object

process
boundary

Half-Object
plus Protocol

Broker
Active object

Client-Dispatcher-Server

Abstract
Factory

Object
Lifecycle
Manager

Factory
Method

Prototype
Builder

Singleton

Figure 3.2: Creational Patterns Binding Times

Direct Object Creation "new" On this level the client directly
creates its objects with the respective "new" command and direct
constructor call. The client depends directly on the object and its
constructor, and also has responsibility over the object.

28

3.2 Creational Patterns

Factory In the factory case, the client itself does not directly
know the created object anymore. It just knows the interface and
accesses the object through it. Also the client does not directly ac-
cesses the constructor, therefore the Factory can control instance
count, reuse and the creation process.

Abstract Factory One abstraction level further is the concept of
an abstract factory. Here the client requests a factory which itself
creates the objects which the client needs. Again the knowledge
which object is created lies in the factory itself, but now the client
even has the possibility to choose between object groups which
all implement the same interface.

Lifecycle Manager The lifecycle manager takes the concept of
a factory but extends it even further to the whole life time of
the object. The client does not has the responsibility to destroy
the object or resource, but the lifecycle manager. This opens up
interesting possiblities for caching resources, or pooling threads.
Also in the case of counted pointer, it prevents for some imple-
mentation errors and makes the code more robust.

Synchronization Through Synchronization object instances can
synchronize its data to each other without the client knowing.
This allows for a distributed infrastructure where multiple pro-
cesses share the same instances although they are in their own
local memory address space.

Network Instances Instantiation of objects over the network
complete strips away local dependencies. The objects are accessed
remotely via a protocol and messaging and not called directly
anymore. Through some mechanisms like sessions the clients
can still be connected to the server side process in order to access
the same objects.

29

3 Finding the Right Pattern

3.3 Behavior and Processing Patterns

Patterns for delegating and splitting up work onto multiple
objects, threads, or network nodes.

Binding

Time
Class

Domain

Object 1

Wrapper Class

Class Task

Class

process
boundary

Broker

network

Class

Late
Binding

Early
Binding

Single Class

Domain Objects

Composition

Tasks

Serialized Operations / Contextualized Operations

Decoupled Network Services

Operations

Domain

Object 2

Domain

Object 3

Wrapper

Parent

Child

Inheritance

Class

Domain Object

Explicit Interface

Decorator, Proxy, Facade,

Wrapper, Object Adapter,

Encapsulated

Implementation

Antipattern: God-Object

(Blob)

Class Operation
* «interface»

Target

Visitor, Iterator, Chain of

Responsibility, Command, State,

Method for States, Collection for

States, Model-View-Controller,

PAC, Blackboard, Application

Controller, Coordinator, Interceptor

Context Object, Business-

Delegate, Pipes&Filters, Interpreter, Front-

Controller, Page Controller, Master-Slave,

Leader-Followers, Forwarder-Receiver,

Reactor, Proactor, Requestor, Invoker

Class

Broker

Microkernel,

Client-Dispatcher-Server

Command, Strategy, Batch

Method, Enumeration

Method, Active Object

Template Method,

Combined Method,

Class Adapter

Figure 3.3: Behavior Patterns Binding Times

30

3.3 Behavior and Processing Patterns

Single Class From behavior point of view this is a most basic
and straight forward way to implement functionality. Just one
class which includes every needed functionality. This is the so
called God-Class Antipattern because it represents the most un-
flexible, highly coupled and most difficult to maintain approach
of defining behavior. Suited only for small objects in very small
domains.

Domain Objects To split up functionality into objects which
have a specific purpose and responsiblity is a standard object
oriented way of implementing functionality. Anyways, this ap-
proach has its downsides in that is still highly couples the objects
together and does not allow much flexibility.

Inheritance This standard object oriented approach is the pro-
cess of grouping similar objects together and implement the
common functionality only once and inherit it to all the ob-
ject which need this functionality. While this is a good method
of avoiding duplication of functionality, depending on the lan-
guage capabilities it sometimes is not possible to do it completely
(multiple inheritance is often not supported). A huge inheritance-
hierarchy makes an design hard to comprehend and therefore
this approach could result in difficult to understand and maintain
source code.

Composition As stated in GoF: "Favor object composition over
class inheritance" (Gamma et al., 1995), a more flexible approach
for splitting up behavior is the composition of objects. This
approach wraps around objects and combines objects to achieve
the needed functionality. Depending on the implementation this
can be very flexible and changed at runtime.

Tasks Tasks are single methods or functions which are ex-
tracted from the objects to be executed on them. Although this
goes in the direction of structured and functional way of pro-
gramming, it is a good way of separating the behavior of an

31

3 Finding the Right Pattern

object and its data structures. The tasks can be applied to the
objects on demand.

Operations Operations are loose coupled tasks which imple-
ment against an interface instead of the object. In this way the
Operations are applyable to a much more broader range of
objects. This adheres to the principle of "Programming to an
Interface, not an Implementation" (Gamma et al., 1995).

Serialized Operations / Contextualized Operations The next
step of decoupling the Operations is to give them their own con-
text in order to run them independently or completely serialize
the data and chain together independent functions. This com-
pletely shuts of the object oriented dependencies and depends
just on the common data format to operate correctly.

Decoupled Network Services The most decoupled behavior
binding one could achieve are network services, where function-
ality is even not on the same machine anymore but somewhere
in the network in a decoupled registered service structure which
allows for service lookup and execution. Here the data also has
to be serialized, but the client even doesn’t know where the data
goes and how it is processed. It just uses the service.

32

3.4 Concurrency and Synchronization Patterns

3.4 Concurrency and Synchronization

Patterns

Patterns for mutual exclusion and concurrency of multiple ob-
jects and threads.

Thread 1

Binding
Time

Late
Binding

Early
Binding

Single Threaded Client

Multithreading without Shared Data

Thread Safe Interface

Thread Safe

Interface

Locking

Thread Safe Interface,
Monitor, Half-Sync/Half-

Async, Caching, Pooling,
Guarded Suspension,

Master-Slave, Task
Coordinator

Scoped Lock, Strategized
Lock, Double Checked

Locking

Client

Client

Thread 2Object

Thread 3Object

Thread Specific Storage, Context
Object, Copied Value, Immutable

Value, Data Transfer
Object, Future, Asynchronous

Completion Token

Client LockObject

acquire

release

Client LockObject

acquire

release

No locking needed

Figure 3.4: Concurrency Patterns Binding Times

Single Threaded Client A single threaded client uses only one
thread for all processing and resources and therefore does not
need explicit locking mechanism. The locking overhead even
would slow down the whole client. So if it is not needed - don’t
use it.

Multithreading without Shared Data From functional pro-
gramming comes the principle that functions should not have
side effects and that there is not shared data. This can be applied

33

3 Finding the Right Pattern

to multithreading environments to avoid the need of locking
mechanisms explicitly. There are patterns to avoid shared data,
or to copy and transfer data for every thread in order to avoid
simultaneous access to objects.

Locking If sharing data is not avoidable, the classic Locking
Mechanisms like Mutex, Semaphores or Condition Variables
have to be used to synchronize simultaneous access. There are
some design patterns which makes it easy to use these locking
mechanisms.

Thread Safe Interface The king class of locking are simply
wrappers around the data or resources which support a thread
safe interface so that the client does not have to lock the data
by itself. Also resources and asynchronous calls can be guarded
and coordinated by such wrappers to make it easy to use.

34

4 Gang of Four Design

Patterns

In this chapter 23 design patterns from the book “Design Patterns
- Elements of Reusable Object-Oriented Software” (Gamma et al.,
1995) are analyzed:

• Creational Patterns: Factory Method (45), Abstract Fac-
tory (36), Builder (39), Prototype (52), Singleton (54)
• Structural Patterns: Adapter (37), Bridge (38), Compos-

ite (42), Decorator (43), Facade (44), Proxy (53)
• Behavioral Patterns: Interpreter (47), Template Method (57),

Chain of Responsibility (40), Command (41), Iterator (48),
Mediator (49), Memento (50), Flyweight (46), Observer (51),
State (55), Strategy (56), Visitor (58)

35

4 Gang of Four Design Patterns

4.1 Abstract Factory

Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.

— (Gamma et al., 1995)

ProductA

ConcreteProductA1

ProductB

ConcreteProductB1ConcreteProductB2

ConcreteProductA2

Client

ConcreteFactory1

+ CreateProductA(): ProductA

+ CreateProductB(): ProductB

ConcreteFactory2

+ CreateProductA(): ProductA

+ CreateProductB(): ProductB

AbstractFactory

+ CreateProductA(): ProductA

+ CreateProductB(): ProductB

Abstract Factory

Compile-Time

Abstract Factory

Abstract Product

depends on

depends on

Concrete Factory
depends on

Concrete Product

Run-Time

<<Instance>>
Client

<<Instance>>
Concrete Product 1

uses

depends on

depends on

uses

is instance of

creates

Figure 4.1: Abstract Factory

Participants and Bindings:

• AbstractFactory: Specifies the interface for the Concrete-
Factory at compile time. This has to be done by another
Factory which could implement this directly in the source-
code at compile-time or dependent on a configuration file at
configuration-time or by flags during execution at run-time.
• AbstractProduct: Defines the interface for the Product at

compile time.
• ConcreteFactory: Decides which concrete product group to

take (binding time depends on variant).
• ConcreteProduct: Defines the concrete product at compile

time.
• Client: Depends on the AbstractFactory and AbstractProd-

uct at compile time. Uses the ConcreteFactory and Con-
creteProduct at runtime.

36

4.2 Adapter

4.2 Adapter

Convert the interface of a class into another interface clients expect. Adapter
lets classes work together that couldn’t otherwise because of incompatible
interfaces.

— (Gamma et al., 1995)

Client

Target

+ Request()

Adaptee

+ SpecificRequest()Adapter

+ Request()

target

adaptee

adaptee.SpecificRequest()

target.Request()

Figure 4.2: Adapter

Participants and Bindings:

• Client: Dependent on Target Class at compile time. Calls the
request method at runtime.
• Target: Defines interface at compile time.
• Adapter: Depends on Adaptee at compile time. Calls the

SpecificRequest at runtime.
• Adaptee: SpecificRequest gets called at runtime.

37

4 Gang of Four Design Patterns

4.3 Bridge

Decouple an abstraction from its implementation so that the two can vary
independently.

— (Gamma et al., 1995)

Abstraction

+ Operation()

Implementor

+ OperationImp()

ConcreteImplementor2

+ OperationImp()

ConcreteImplementor1

+ OperationImp()

imp

RefinedAbstraction

Client

imp.OperationImp()

Figure 4.3: Bridge

Participants and Bindings:

• Client: Depends on Abstraction-Interface at compile time.
Calls the Operation-Method at runtime.
• Abstraction: Depends on Implementor-Interface at compile

time. Calls the OperationImp-Method at runtime.
• Implementor: Defines the interface at compile time.
• ConcreteImplementor: Depends on Implementor interface

at compile-time. Gets called at runtime.

38

4.4 Builder

4.4 Builder

Separate the construction of a complex object from its representation so that
the same construction process can create different representations.

— (Gamma et al., 1995)

Director

+ Construct()

Builder

+ BuildPart()

ConcreteBuilder

+ BuildPart()

+ GetResult()

Product
for o in structure:
 builder.BuildPart()

builder

Figure 4.4: Builder

Participants and Bindings:

• Director: Depends on Builder Interface at compile time. Calls
BuildPart() at runtime.
• Builder: Specifies Interface at compile time.
• ConcreteBuilder: Depends on Builder Interface and on

Product at compile time. Creates a Product at runtime.
• Product: Gets created at runtime.

39

4 Gang of Four Design Patterns

4.5 Chain of Responsibility

Avoid coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request. Chain the receiving objects and pass the
request along the chain until an object handles it.

— (Gamma et al., 1995)

Client
Handler

+ HandleRequest()

successor

ConcreteHandler1

+ HandleRequest()

ConcreteHandler2

+ HandleRequest()

Figure 4.5: Chain Of Responsibility

Participants and Bindings:

• Client: Depends on Handler-Interface at compile time. Exe-
cutes a request at runtime.
• Handler: Specifies an Interface at compile time.
• ConcreteHandler: Depends on Handler Interface at compile

time. Handle the request or forwards it to next Handler at
runtime.

40

4.6 Command

4.6 Command

Encapsulate a request as an object, thereby letting you parameterize clients
with different requests, queue or log requests, and support undoable
operations.

— (Gamma et al., 1995)

Client

Command

+ Execute()

ConcreteCommand

+ Execute()

Receiver

+ Action()

Figure 4.6: Command

Participants and Bindings:

• Client: Depends on ConcreteCommand and Command In-
terface at compile time. Creates a ConcreteCommand and
sets its receiver at runtime.
• Command: Specifies the Interface for Commands at compile

time.
• ConcreteCommand: Implements the Command-Interface at

compile time. Depends on the Receiver at compile time. Imple-
ments the command at compile time. Executes the behavior
on the receiver at runtime.
• Receiver: Implements the actions to execute some behavior

at compile time. Is created by the client at runtime.

41

4 Gang of Four Design Patterns

4.7 Composite

Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly.

— (Gamma et al., 1995)

Client Component

+ Operation()

+ Add(component)

+ Remove(component)

Composite

+ Operation()

+ Add(component)

+ Remove(component)

Leaf

+ Operation()

for c in children:

 c.Operation()

children

Figure 4.7: Composite

Participants and Bindings:

• Client: Depends on the component interface at compile time.
Adds or Removes children at runtime. Calls the operation at
runtime.
• Component: Defines the interface at compile time.
• Leaf: Depends on the component interface at compile time.

The operation is called at runtime.
• Composite: Depends on the component interface at com-

pile time. Children are added and removed at runtime. The
operation is called at runtime.

42

4.8 Decorator

4.8 Decorator

Attach additional responsibilities to an object dynamically. Decorators provide
a flexible alternative to subclassing for extending functionality.

— (Gamma et al., 1995)

Component

+ Operation()

ConcreteComponent

+ Operation()

Decorator

+ Operation()

ConcreteDecorator1

+ addedState: *

+ Operation()

ConcreteDecorator2

+ Operation()

+ AddedBehaviour()

component

component.Operation()

Decorator.Operation();

AddedBehaviour();

Figure 4.8: Decorator

Participants and Bindings:

• Component: Specifies the Interface for the Components at
compile time.
• ConcreteComponent: Depends on Component Interface at

compile time. Gets decorated at runtime.
• Decorator: Depends on the Component-Interface and speci-

fies the Interface for the Decorators at compile time. Calls the
component’s operation at runtime.
• ConcreteDecorator: Depends on the Decorator Base Class

at compile time. Calls the base-class operation at runtime and
adds own behavior.

43

4 Gang of Four Design Patterns

4.9 Facade

Provide a unified interface to a set of interfaces in a subsystem. Facade defines
a higher-level interface that makes the subsystem easier to use.

— (Gamma et al., 1995)

FacadeSubsystem

Client

Figure 4.9: Facade

Participants and Bindings:

• Client: Depends on the Facade at compile time. Uses the
Facade’s Methods at runtime.
• Facade: Depends on the subsystem to call some methods

at compile time. Specifies an Interface for the caller at com-
pile time. Gets called and reroutes the calls to the specific
implementor objects at runtime.
• Subsystem: Provides classes and methods for the facade at

compile time. Gets used at runtime.

44

4.10 Factory Method

4.10 Factory Method

Define an interface for creating an object, but let subclasses decide which class
to instantiate. Factory Method lets a class defer instantiation to subclasses.

— (Gamma et al., 1995)

Product

ConcreteProduct

ConcreteCreator

+ FactoryMethod()

Creator

+ FactoryMethod()

+ Operation()

return new ConcreteProduct()

...
product = FactoryMethod()
...

Figure 4.10: Factory Method

Participants and Bindings:

• Creator: Defines interface for the Factory-Methods at compile
time. Calls the actual implementation at runtime.
• ConcreteCreator: Depends on the Creator and the Con-

creteProduct at compile time. Implements the Creator Inter-
face at compile time. Creates a ConcreteProduct at runtime.
• Product: Defines an interface for the products at compile

time.
• ConcreteProduct: Depends on the Product and implements

the Product-Interface at compile time.

45

4 Gang of Four Design Patterns

4.11 Flyweight

Use sharing to support large numbers of fine-grained objects efficiently.
— (Gamma et al., 1995)

Client

FlyweightFactory

+ GetFlyweight(key)

Flyweight

+ Operation(extrinsicState)

ConcreteFlyweight

- intrinsicState

+ Operation(extrinsicState)

UnsharedConcreteFlyweight

- allState

+ Operation(extrinsicState)

if not flyweights[key] exists:
 flyweights[key] = new Flyweight()

return flyweights[key]

flyweights

Figure 4.11: Flyweight

Participants and Bindings:

• Client: Depends on the FlyweightFactory and Flyweight In-
terface at compile time. Calls the ConcreteFlyweights-Operation
at runtime.
• FlyweightFactory: Depends on the Flyweight-Interface and

ConcreteFlyweight and UnsharedConcreteFlyweight at com-
pile time. Creates and stores Flyweight Instances at runtime.
• Flyweight: Specifies the Interface for Flyweights at compile

time.
• ConcreteFlyweight: Implements the Flyweight-Interface. Gets

called by the client at runtime.
• UnsharedConcreteFlyweight: Implements the Flyweight-

Interface. Gets called by the client at runtime.

46

4.12 Interpreter

4.12 Interpreter

Given a language, define a represention for its grammar along with an
interpreter that uses the representation to interpret sentences in the language.

— (Gamma et al., 1995)

Client Context

AbstractExpression

+ Interpret(context: Context)

TerminalExpression

+ Interpret(context: Context)

NonterminalExpression

+ Interpret(context: Context)

Figure 4.12: Interpreter

Participants and Bindings:

• Client: Dependend on the Context and the AbstractExpres-
sion interface at compile time. Calls the Interpret-Function
with a instantiated context at runtime.
• AbstractExpression: Specifies an interface for the Expres-

sions at compile time.
• TerminalExpression: Implements the interpreter interface

at compile time. Is called at runtime.
• NonterminalExpression: Implements the interpreter inter-

face at compile time. Is called at runtime.
• Context: Is created and used by the client at runtime.

47

4 Gang of Four Design Patterns

4.13 Iterator

Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.

— (Gamma et al., 1995)

Client Iterator<T>

+ First()

+ Next()

+ IsDone(): bool

+ CurrentItem(): T

ConcreteIteratorConcreteAggregate

+ CreateIterator(): Iterator

Aggregate

+ CreateIterator(): Iterator

return new ConcreteIterator(this)

Figure 4.13: Iterator

Participants and Bindings:

• Iterator: Specifies the Interface for the iterators at compile
time.
• Aggregate: Specifies the interface to create an iterator at

compile time.
• ConcreteAggregate: Implements the Aggregate-Interface at

compile time to create an Iterator-Instance. Creates a specific
ConcreteIterator instance at runtime.
• ConcreteIterator: Implements the Iterator-Interface for a

specific object type at compile time. Is used by the client at
runtime to iterate through the objects.
• Client: Depends on the Iterator and the Aggregate at compile

time. Uses them at runtime.

48

4.14 Mediator

4.14 Mediator

Define an object that encapsulates how a set of objects interact. Mediator
promotes loose coupling by keeping objects from referring to each other
explicitly, and it lets you vary their interaction independently.

— (Gamma et al., 1995)

Mediator Colleague

ConcreteMediator ConcreteColleague1

mediator

ConcreteColleague2
ConcreteColleague n

*

1

2
update

Figure 4.14: Mediator

Participants and Bindings:

• Mediator: Specifies the interface for the Mediator at compile
time.
• Colleague: Specifies the interface for the Colleagues at com-

pile time.
• ConcreteMediator: Implements the Mediator Interface at

compile time. Depends on the Colleague-Interface at com-
pile time. Spreads out requests from a Colleague to the
other Colleagues at runtime. Depending on the detail of
implementation also depends on the ConcreteColleagues at
compile time when calling their non-inherited methods at
runtime.
• ConcreteColleague: Implements the Colleague Interface at

compile time. Dependent on the Mediator Interface at com-
pile time. Calls the ConcreteMediator at runtime to spread
out the updates to the other Colleagues.

49

4 Gang of Four Design Patterns

4.15 Memento

Without violating encapsulation, capture and externalize an object’s internal
state so that the object can be restored to this state later.

— (Gamma et al., 1995)

Originator

+ state

+ SetMemento(m: Memento)

+ CreateMemento()

Memento

+ state

+ GetState()

+ SetState()

Caretaker

return new Memento(state)

state = m.GetState()

memento

Figure 4.15: Memento

Participants and Bindings:

• Originator: An object defined at compile time, which mani-
fests its state in form of a Memento at runtime.
• Memento: Data object which represents the Originator’s

state and can be used by the Originator at runtime to save or
restore it’s inner state. Defined at compile time, created and
used at runtime.
• Caretaker: Depends on the Originator-Interface at compile

time to Get or Set Memento Objects to it at runtime.

50

4.16 Observer

4.16 Observer

Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

— (Gamma et al., 1995)

Subject

+ Attach(o: Observer)

+ Detach(o: Observer)

+ Notify()

ConcreteSubject

+ subjectState

+ GetState()

+ SetState()

Observer

+ Update()

ConcreteObserver

+ observerState

+ Update()return subjectState

for o in observers:
 o.Update()

observerState =
 subject.GetState()

observers

subject

Figure 4.16: Observer

Participants and Bindings:

• Subject: Specifies an interface for observable objects and is
dependend on the observer-interface at compile time. Holds
a list of observers at runtime.
• ConcreteSubject: Implements the Subject Interface at com-

pile time. Notifies the observers and manages its state at
runtime.
• Observer: Specifies an interface at compile time for notifying

observers.
• ConcreteObserver: Implements the Observer-Interface and

depends on the ConcreteSubject at compile time. On Update
it gets the state of the concrete subject at runtime.

51

4 Gang of Four Design Patterns

4.17 Prototype

Specify the kinds of objects to create using a prototypical instance, and create
new objects by copying this prototype.

— (Gamma et al., 1995)

Prototype

Clone()

ConcretePrototype1

Clone()

return "copy of self"

prototype

ConcretePrototype1

Clone()

return "copy of self"

Client

Prototype p =
 prototype.Clone()

Figure 4.17: Prototype

Participants and Bindings:

• Client: Depends on the Prototype Interface at compile time.
Calls the Clone()-Method at runtime.
• Prototype: Specifies the Interface at compile time.
• ConcretePrototype: Implement the Prototype interface at

compile time. Gets called at runtime.

52

4.18 Proxy

4.18 Proxy

Provide a surrogate or placeholder for another object to control access to it.
— (Gamma et al., 1995)

Client Subject

+ Request()

ConcreteSubject

+ Request()

Proxy

+ Request() subject.Request()

subject

Figure 4.18: Proxy

Participants and Bindings:

• Client: Depends on the Subject-Interface at compile time.
Calls the actual Request at runtime.
• Subject: Specifies the Interface for the Subjects at compile

time.
• ConcreteSubject: Implement the Subject-Interface at compile

time. Gets called by the Proxy at runtime.
• Proxy: Implements the Subject-Interface at compile time. De-

pends on the ConcreteSubject at compile time. Reroutes the
requests to ConcreteSubject at runtime.

53

4 Gang of Four Design Patterns

4.19 Singleton

Ensure a class only has one instance, and provide a global point of access to it.
— (Gamma et al., 1995)

Singleton

- «static» instance: Singleton

+ «static» Instance(): Singleton

- Singleton()

Client

return instance;Singleton s =
 Singleton.Instance()

Figure 4.19: Singleton

Participants and Bindings:

• Client: Depends on the Singleton at compile time. Calls the
static instance of the singleton at runtime.
• Singleton: Manages the single instance of the Singleton at

runtime.

54

4.20 State

4.20 State

Allow an object to alter its behavior when its internal state changes. The
object will appear to change its class.

— (Gamma et al., 1995)

Context

+ Request()

State

+ Handle()

ConcreteStateA

+ Handle()

state.Handle()

state

ConcreteStateB

+ Handle()

...

+ Handle()

Figure 4.20: State

Participants and Bindings:

• Context: Depends on the State Interface at compile time.
Manages and uses the states at runtime.
• State: Specifies the interface for all States at compile time.
• ConcreteState: Implements the State Interface at compile

time. Handles the Requests at runtime

55

4 Gang of Four Design Patterns

4.21 Strategy

Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients
that use it.

— (Gamma et al., 1995)

Context

+ ContextInterface()

Strategy

+ AlgorithmInterface()

ConcreteStrategyA

+ AlgorithmInterface()

strategy

ConcreteStrategyB

+ AlgorithmInterface()

...

+ AlgorithmInterface()

Figure 4.21: Strategy

Participants and Bindings:

• Strategy: Specifies the Interface for the Strategy at compile
time.
• ConcreteStrategy: Implements the Strategy interface at com-

pile time. Gets called by the Context at runtime
• Context: Depends on the Strategy Interface at compile time.

Calls the Methods at runtime.

56

4.22 Template Method

4.22 Template Method

Define the skeleton of an algorithm in an operation, deferring some steps to
subclasses. Template Method lets subclasses redefine certain steps of an
algorithm without changing the algorithm’s structure.

— (Gamma et al., 1995)

AbstractClass

+ TemplateMethod()

~ PrimitiveOperation1()

~ PrimitiveOperation2()

ConcreteClass

~ PrimitiveOperation1()

~ PrimitiveOperation2()

...

PrimitiveOperation1()

...

PrimitiveOperation2()

...

Figure 4.22: Template Method

Participants and Bindings:

• AbstractClass: Defines the Interface for the Templates at
compile time. Calls the overloaded methods at runtime.
• ConcreteClass: Implements the AbstractClass Methods at

compile time. Gets called at runtime.

57

4 Gang of Four Design Patterns

4.23 Visitor

Represent an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the
elements on which it operates.

— (Gamma et al., 1995)

Client Visitor

+ VisitElementA(ElementA)

+ VisitElementB(ElementB)ObjectStructure

Element

+ Accept(Visitor)

ElementA

+ Accept(v: Visitor)

ElementB

+ Accept(v: Visitor)

v.VisitElementA(this) v.VisitElementB(this)

ConcreteVisitor1

+ VisitElementA(ElementA)

+ VisitElementB(ElementB)

ConcreteVisitor2

+ VisitElementA(ElementA)

+ VisitElementB(ElementB)

Figure 4.23: Visitor

Participants and Bindings:

• Visitor: Specifies the interface for the visitors at compile time.
• ConcreteVisitor: Implements the Visitor interface at compile

time. gets called at runtime.
• ObjectStructure: An arbitrary collection containing objects

defined at compile time and used at runtime.
• Element: Specifies the interface at compile time for elements

which are visitable by the visitors.
• ConcreteElement: Implements the Element Interface at com-

pile time and calls a concrete method of the visitor interface
at runtime.
• Client: Depends on Visitor and Element Interface and on

the ObjectStructure at compile time. Creates a concrete visitor
and applies it to the elements at runtime.

58

5 POSA 1 Design Patterns

In this chapter 15 design patterns from the book “Pattern-Oriented
Software Architecture Volume 1: A system of patterns” (Buschmann,
Meunier, et al., 1996) are analyzed:

• Architectural Patterns:
– From Mud to Structure: Layers (60), Pipes and Filters (61),

Blackboard (62)
– Distributed Systems: Broker (63)
– Interactive Systems: Model-View-Controller (65), Presentation-

Abstraction-Control (66)
– Adaptable Systems: Microkernel (68), Reflection (69)

• Design Patterns:
– Structural Decomposition: Whole-Part→ Composite (42)
– Organization of Work: Master-Slave (70)
– Access Control: Proxy (53)
– Management: Command Processor (71), View Handler (72)
– Communication: Forwarder-Receiver (73), Client-Dispatcher-

Server (74), Publisher-Subscriber→ Observer (51)
• Idioms: Counted Pointer (75)

59

5 POSA 1 Design Patterns

5.1 Layers

Define one or more layers for the software under development, with each layer
having a distinct and specific responsibility.

— (Buschmann, Meunier, et al., 1996)

Layer 1

Layer 2

Layer n

...

Figure 5.1: Layers

Participants and Bindings: The decision how many layers and
which responsibilities the layers have, is bound at architecture
time. Which objects and the internal structure of the layers is
bound at design time. Every layer depends on the underlying
interfaces and defines interfaces for the next layer at compile time.
Internally every layer also depends on its contained objects at
compile time. At runtime the layers are actually coupled together
by some creation mechanism.

60

5.2 Pipes and Filters

5.2 Pipes and Filters

Divide the application’s task into several self-contained data processing steps
and connect these steps to a data processing pipeline via intermediate data
buffers.

— (Buschmann, Meunier, et al., 1996)

Client

Pipe
1

Filter 1

buffer

Pipe
2

Filter 2

buffer

Pipe
n

Filter n

buffer

...

process process

process

Figure 5.2: Pipes and Filters

Participants and Bindings:

• Client: Dependent on the common data format at runtime.
• Pipe: Dependent on the common data format at runtime.
• Filter: Dependent on the common data format at runtime.

61

5 POSA 1 Design Patterns

5.3 Blackboard

Use heuristic computation to resolve the task via multiple smaller components
with deterministic solution algorithms that gradually improve an
intermediate solution hypothesis.

— (Buschmann, Meunier, et al., 1996)

Client

Blackboard

- data

+ Inspect()

+ UpdateData()

KnowledgeSource 1

+ CreateHypothesis()

+ ApplyHypothesis()

KnowledgeSource 2

+ CreateHypothesis()

+ ApplyHypothesis()

KnowledgeSource n

+ CreateHypothesis()

+ ApplyHypothesis()

...

best

hypothesis

1.Create all Hypotheses

2.Choose Best Hypothesis

3.Apply Best Hypothesis

1

2

3

4

Figure 5.3: Blackboard

Participants and Bindings:

• Client: Depends on the KnowledgeSources at compile time.
Calls the KnowledgeSources at runtime, chooses and applies
the best solution at runtime.
• KnowledgeSource: Depends on the Blackboard-Interface

and Data structure at compile time. Uses the Blackboard for
inspection at runtime.
• Blackboard: Specifies the Data-Structure and Blackboard-

Interface at compile time. Gets inspected and updated by the
KnowledgeSources at runtime.

62

5.4 Broker

5.4 Broker

Use a federation of brokers to separate and encapsulate the details of the
communication infrastructure in a distributed system from its application
functionality. Define a component-based programming model so that clients
can invoke methods on remote services as if they were local.

— (Buschmann, Meunier, et al., 1996)

Client Proxy

+ SendRequest()

Broker

+ ForwardRequest()

+ ForwardResponse()

+ RegisterService()

BridgeA

+ ForwardMessage

+ TransmitMessage

Server Proxy

+ CallService()

+ SendResponse()

Server

+ RunService()

Client
1

6

5

432

7

BridgeB

+ ForwardMessage

+ TransmitMessage

0

BrokerA

+ ForwardRequest()

+ ForwardResponse()

+ RegisterService()

BrokerB

+ ForwardRequest()

+ ForwardResponse()

+ RegisterService()

2

2.1

2.2
2.3

3

process
boundary

process
boundary

process
boundary

Figure 5.4: Broker

Participants and Bindings:

• Client: Depends on the Client-Proxy at compile time. Uses
the Client-Proxy at runtime.

63

5 POSA 1 Design Patterns

• Client-Proxy: Depends only on the common data serializa-
tion format between Client-Proxy and the Broker at runtime.
• Broker: Depends on the Bridge-Interfaces at compile time.

Depends on the common data serialization format between
Client-Proxy and Broker at runtime. Uses the Bridges at
runtime to communicate to other Brokers. Uses the Server-
Proxy at runtime.
• Bridge: Converts the request data serialization format of

one Broker to the format of another Broker at runtime (en-
sures compatibility). Is used by the Broker and uses another
Bridge at runtime.
• Server-Proxy: Depends on the Server at compile time. Con-

vert the common data serialization format of Broker to
Server-Proxy at runtime into a form which is appropriate
for the Server to use.
• Server: Registers at the Broker at runtime. Gets called by the

Server-Proxy at runtime.

64

5.5 Model-View-Controller

5.5 Model-View-Controller

Divide the interactive application into three decoupled parts: processing,
input, and output. Ensure the consistency of the three parts with the help of a
change propagation mechanism.

— (Buschmann, Meunier, et al., 1996)

Clientdisplay

notify
Change Data

notify

manage &

manipulate

Observer

+ Update()View

+ Update()

Controller

+ Operation()

+ Update()

Model

- data

+ Change(data)

1

4

5

4

2

3

Figure 5.5: Model-View-Controller

Participants and Bindings:

• Client: Dependent on the Controller Interface at compile
time. Initiates some action on the Controller at runtime.
• Controller: Implements the Observer-Interface at compile

time. Depends on the Model Interface and the View-Interface
at compile time. Updates the model at runtime. Manages and
manipulates the Views at runtime.
• Model: Depends upon the Observer-Interface at compile time.

Gets updated at runtime and also notifies its observers at
runtime. Manages its Observers at runtime.
• View: Implements the Observer-Interface at compile time.

Gets notified for changes on the underlying model at run-
time. Is managed and manipulated by the Controller at
runtime.
• Observer: Specifies the Interface for the Observers at compile

time.

65

5 POSA 1 Design Patterns

5.6 Presentation-Abstraction-Control

Structure the interactive application as a hierarchy of decoupled agents: one
top-level agent, several intermediate-level agents, and many bottom-level
agents. Each agent is responsible for a specific functionality of the application
and provides a specialized user interface for it.

— (Buschmann, Meunier, et al., 1996)

Bottom-level
Agents

Client

Presentation Control Abstraction

do
something

display

Top-Level
Agent

Intermediate-Level
Agents

CP A

CP A CP A

CP A

display

CP A

Figure 5.6: Presentation-Abstraction-Control

Participants and Bindings:

• Client: Depends on the Interface to the Presentation-Parts
of the PAC-Agents at compile time. Uses the Presentation-
Part to do something (invoke a signal, method, or event) at
runtime. Gets updated by de Presentation-Parts at runtime.
• Presentation: Depends on the Control-Interface and speci-

fies the Interface and display-logic to the Client at compile
time. Receives calls from the Client, gets changed by the
Control-Part and displays the changes back at the Client at
runtime.
• Abstraction: Depends on the Controller-part of the PAC-

Agent at compile time. Manages the data abstraction and
manifestation in a PAC-Agent at runtime.
• Control: Depends on the Presentation and Abstraction in-

terfaces in a PAC-Agent at compile time. Also depends on
the other Control-Parts of the other PAC-Agents at compile
time. Manages the control and data flow between Presenta-

66

5.6 Presentation-Abstraction-Control

tion and Abstraction part and also other Control-parts at
runtime.
• Bottom-Level Agents: Manage the lowest-level display items

like e.g. textboxes, labels, buttons at runtime.
• Intermediate-Level Agents: Manage intermediate container

items like e.g. Panels, Groupboxes, Layout-Managers at run-
time. Delegates detailed drawing tasks to the bottom-level
agents at runtime.
• Top-Level Agent: Manages the top level states in an appli-

cation like e.g. the application window or other top level
modal containers at runtime. Delegates layout and drawing
tasks to the intermediate-level agents at runtime.

67

5 POSA 1 Design Patterns

5.7 Microkernel

Applies to software systems that must be able to adapt to changing system
requirements It separates a minimal functional core from extended
functionality and customer-specific parts. The microkernel also serves as a
socket for plugging in these extensions and coordinating their collaboration

— (Buschmann, Meunier, et al., 1996)

Client GUI

API1

API2

request
display Microkernel

External
Server1

External
Server2

Internal
Server

Internal
Server

route requests
to right target

Figure 5.7: Microkernel

Participants and Bindings:

• Client: Depends on the GUI Interface at compile time. Re-
quests the GUI at runtime and gets Display back at runtime.
• GUI/API: Depend on the Microkernel Interface and the

external Access Protocoll (e.g. via a Webservice, or GUI
Events) at compile time. Communicate externally at runtime
and route Events to the Microkernel at runtime. Get updated
by the Microkernel at runtime.
• Microkernel: Depends on the Internal Server Interfaces

at compile time. Manages the registered internal Servers at
runtime. Route the Events to the correct server at runtime.
• Internal Server: Depends on the Microkernel Interface at

compile time. Registers at the Microkernel at runtime. Gets
called by the Microkernel at runtime.
• External Server: Depend on the API at compile time. Call the

API’s functions at runtime.

68

5.8 Re�ection

5.8 Re�ection

Objectify information about properties and aspects of the application’s
structure into metaobjects. Separate the metaobjects from the core application
logic via a two-layer architecture: a meta level and a base level.

— (Buschmann, Meunier, et al., 1996)

Base Level

Meta Level

Client

UserInterface

+ Operation()

described by

Types

Methods
Fields

Properties
Attributes

...

ComponentA

+ FunctionA()

ComponentB

+ FunctionB()

MetaObjectProtocol

+ GetTypes

+ GetMethods

+ SetMethods

+ ... (get, set)

described bydescribed by

Meta Objects

Application Logic

Figure 5.8: Reflection

Participants and Bindings:

• Client: Depends on the Base-Level Objects at compile time.
Uses the User-Interface at runtime.
• Application Logic: Actual implementation of the applica-

tion logic, components and objects at compile time which are
called at runtime.
• MetaObjectProtocol: Depends on the Meta Objects at com-

pile time. Depends on the Base Level Objects at compile time
(static) at startup time (once) or runtime (dynamic late bind-
ing). Creates and manages the MetaObjects at runtime.
• MetaObjects: Depend on each other at compile time. Are

managed by the MetaObjectProtocol at runtime.

69

5 POSA 1 Design Patterns

5.9 Master-Slave

Meet the performance, fault-tolerance, or accuracy requirements of the
component via a “divide and conquer” strategy. Splits its services into
independent subtasks that can be executed in parallel, and combine the partial
results returned by these subtasks to provide the service’s final results.

— (Buschmann, Meunier, et al., 1996)

Client

Master

+ Service()

1) Map: Delegate to Slaves (async)
2) Reduce: Combine Results

Slave

+ Subservice()

+ GetResult()

*async call

*

1 2

Slave

+ Subservice()

+ GetResult()

Slave

+ Subservice()

+ GetResult()

Multiple Instances of Slave

3

Figure 5.9: Master-Slave

Participants and Bindings:

• Client: Dependent on the Master at compile time. Calls the
Service-Method at runtime.
• Master: Dependent on the Slave-Interface at compile time.

Asynchronously calls the slaves at runtime and combines
their results at runtime.
• Slave: Gets called by the Master at runtime.

70

5.10 Command Processor

5.10 Command Processor

Introduce a command processor to execute requests to the application. The
command processor acts on behalf of the clients and within the constraints of
the application.

— (Buschmann, Meunier, et al., 1996)

Client

CommandProcessor

- commands[]

+ Insert(Command)

+ StartEventLoop()

*

Command

+ Execute()

creates
1

2

5

6

3 Application

Figure 5.10: Command Processor

Participants and Bindings:

• Client: Depends on the Commands and the Command-
Processor at compile time. Starts the CommandProcessor at
runtime. Creates Commands and handles them over to the
CommandProcessor at runtime.
• CommandProcessor: Depends upon the Command-Interface

at compile time. Manages the commands at runtime (thread-
safe). Executes the commands at runtime.
• Command: Depends on the Application-Interface at compile

time. Is created by the Client at runtime. Calls the implemen-
tation at runtime.
• Application: Gets called by the commands at runtime.

71

5 POSA 1 Design Patterns

5.11 View Handler

Helps to manage all views that a software system provides A view handler
component allows clients to open, manipulate and dispose of views. It also
coordinates dependencies between views and organizes their update.

— (Buschmann, Meunier, et al., 1996)

Client
open manages

notify

notify

notify

ViewHandler

Supplier

AbstractView

ViewA ViewB

Figure 5.11: View Handler

Participants and Bindings:

• Client: Dependent on the ViewHandler at compile time. Calls
the ViewHandler at runtime.
• ViewHandler: Dependent on the AbstractView Interface at

compile time. Manages the Views at runtime. Notifies the
registered Suppliers at runtime.
• AbstractView: Specifies the Interface for views at compile

time.
• Supplier: Implements some kind of notification-mechanism

at compile-time. Delegates changes to the registered View-
Objects at runtime. Registers at the ViewHandler to get
notified for changes at runtime.
• View: Implements the AbstractView-Interface at compile time.

Gets created and managed by the ViewHandler at runtime.
Gets notified for changes by the supplier at runtime.

72

5.12 Forwarder-Receiver

5.12 Forwarder-Receiver

Provides transparent inter-process communication for software systems with
a peer-to-peer interaction model. It introduces forwarders and receivers to
decouple peers from the underlying communication mechanisms.

— (Buschmann, Meunier, et al., 1996)

Receiver

+ Receive()

Forwarder

+ Send()

Peer 1

process
boundary

Receiver

+ Receive()

Forwarder

+ Send()

Peer 2

Figure 5.12: Forwarder-Receiver

Participants and Bindings:

• Peers: Depends on the Forwarder- and Receiver-Object at
compile time. Call Send and Receive methods at runtime.
• Forwarder: Depends on the common data exchange format

for marshalling at runtime.
• Receiver: Depends on the common data exchange format

for unmarshalling at runtime.

73

5 POSA 1 Design Patterns

5.13 Client-Dispatcher-Server

Introduces an intermediate layer between clients and servers, the dispatcher
component. It provides location transparency by means of a name service, and
hides the details of the establishment of the communication connection
between clients and servers.

— (Buschmann, Meunier, et al., 1996)

Client

Dispatcher

- registeredServices[]

+ Lookup()

+ Register()

+ Unregister()

Server

+ Service()

process
boundary

process
boundary

process
boundary

Creates Connection
Between Client and Server

Figure 5.13: Client-Dispatcher-Server

Participants and Bindings:

• Client: Dependent on the common data format to the Dis-
patcher for looking up services at runtime. Looks up the a
service and calls it at runtime. Dependent on the common
data format between the Client and the Server at runtime.
• Dispatcher: Manages the registered Services at runtime.

Gets requested by the Client and the Server at runtime.
• Server: Dependent on the common data format for register-

ing the Services at the Dispatcher at runtime.

74

5.14 Counted Pointer

5.14 Counted Pointer

Makes memory management of dynamically-allocated shared objects in C++
easier. It introduces a reference counter to a body class that is updated by
handle objects. Clients access body class objects only through handles via the
overloaded operator "->".

— (Buschmann, Meunier, et al., 1996)

Client

handle
Handle

+ Handle()

+ ~Handle()

+ «operator» ->

+ «operator» =

Body

- refCounter: int

+ SomeMethod()

body

body.refCount‐‐

body.refCount++

body.refCount = 1

return body

Figure 5.14: Counted Pointer

Participants and Bindings:

• Client: Dependent on Handle-Interface and Body-Object at
compile time. Creates Handle and Body at runtime and uses
it at runtime.
• Handle: Dependent on the Body-Class at compile time. Gets

created at runtime and also creates a Body-Object at runtime.
Manages the reference count of the corresponding Body-
Object at runtime.
• Body: Gets created by the handle at runtime. Gets destroyed

when last reference gets destroyed at runtime.

5.15 Duplicate Patterns

In POSA1 some patterns are duplicates from the GoF-Book. Here
is a listing of those patterns:

• Publisher-Subscriber→ see GOF Observer (51)
• Whole-Part→ see GOF Composite (42)
• Proxy→ see GOF Proxy (53)

75

6 POSA 2 Design Patterns

In this chapter 17 design patterns from the book “Pattern-Oriented
Software Architecture Volume 2: Patterns for Concurrent and
Networked Objects” (Schmidt et al., 2000) are analyzed:

• Service Access and Configuration Patterns: Wrapper Fa-
cade (78), Component Configurator (79), Interceptor (80),
Extension Interface (81)
• Event Handling Patterns: Reactor (82), Proactor (83), Asyn-

chronous Completion Token (84), Acceptor-Connector (85)
• Synchronization Patterns: Scoped Locking (86), Strategized

Locking (87), Thread-Safe Interface (88), Double-Checked
Locking (89)
• Concurrency Patterns: Active Object (90), Monitor Object (91),

Half-Sync/Half-Async (92), Leader/Followers (93), Thread-
Specific Storage (94)

77

6 POSA 2 Design Patterns

6.1 Wrapper Facade

Avoid accessing low-level function-based APIs directly. Instead, wrap each
related group of functions and data within such an API in a separate, cohesive
wrapper facade class.

— (Schmidt et al., 2000)

Client

WrapperFacade

+ ServiceA()

+ ServiceB()

LowLevelAPI

+ Method1()

+ Method2()

+ Method3()

+ Method4()

1 2
3

Figure 6.1: Wrapper Facade

Participants and Bindings:

• Client: Depends on the WrapperFacade at compile time. Calls
the Service-methods at runtime.
• Wrapper Facade: Depends on the LowLevelAPI at compile

time. Calls its methods at runtime.
• Low Level API: Specifies an interface and implements the

functionality at compile time. Gets called by the WrapperFa-
cade at runtime.

78

6.2 Component Con�gurator

6.2 Component Con�gurator

Decouple component interfaces from their implementations and provide a
mechanism to (re)configure components in an application dynamically
without having to shut down and restart it.

— (Schmidt et al., 2000)

Client

ComponentRepository

- components: Dictionary<string, Component>

+ Insert(Component)

+ Remove(Component)

+ Call(ComponentName, MethodName)

ComponentConfigurator

+ Configure(Library)

External Library
DLL

Extension File

Component
Component
Component

*

call Method()

1

2

3

4

dynamically loads
Components from Library

Figure 6.2: Component Configurator

Participants and Bindings:

• Client: Depends on the Component Configurator Interface
and the Component Repository Interface at compile time.
Calls the Configure method on the Configurator with an
external Library to load at runtime. Uses the Component
Repository to call Methods on the dynamically loaded Com-
ponents at runtime.
• Library: An external component library which is loaded at

runtime.
• Component Configurator: Depends on the dynamic load-

ing facilities of the programming language at compile time
to load an external library into the Component Registry
at runtime. Depends on the Component Registry Interface
at compile time. Loads an external library and stores the
Components and Services in the Component Registry at
runtime.

79

6 POSA 2 Design Patterns

• Component Repository: Manages the loaded Components
and Services at runtime. Calls the Methods on the Compo-
nents at runtime.
• Component: Is defined in the external library (within its

own lifecycle, but at runtime when the client wants to load
the library) and loaded dynamically at runtime.

6.3 Interceptor

Allow users to tailor a software framework by registering out-of-band service
extensions via predefined callback interfaces, known as “interceptors”, then let
the framework trigger these extensions automatically when specific events
occur.

— (Schmidt et al., 2000)

Client

Interceptor

+ Callback()

Framework
Event1

Event2

Event3

register callback

called when Event1 occurs

1

2

3

Figure 6.3: Interceptor

Participants and Bindings:

• Client: Depends on the Framework at compile time. Uses it
at runtime.
• Framework: Specifies Events to be intercepted by Intercep-

tors at compile time. Stores the registered Interceptors at
runtime and notifies the Interceptors at runtime when spe-
cific events occur.
• Interceptor: Register at the Framework for specific Events

at runtime. Gets called at runtime when these Events occur.

80

6.4 Extension Interface

6.4 Extension Interface

Let clients access a component only via specialized extension interface, and
introduce on such interface for each role that the component provides.
Introduce new extension interfaces whenever the component evolves to
include new functionality or updated signatures within existing extension
interfaces.

— (Schmidt et al., 2000)

Client 1

«interface»
ExtensionInterface1

+ MethodA()

«interface»
ExtensionInterface2

+ MethodB()

+ MethodC()
Client 2

Implementation

+ MethodA()

+ MethodB()

+ MethodC()

Figure 6.4: Extension Interface

Participants and Bindings:

• Clients: The clients are dependent on the used interfaces at
compile time and call the defined Methods at runtime.
• Interfaces: Specifies the interfaces for the individual roles

at compile time.
• Implementation: Implements all the interfaces representing

the different roles or usage scenarios at compile time. Gets
called by the Clients at runtime (but only via the interfaces).

81

6 POSA 2 Design Patterns

6.5 Reactor

Provide an event handling infrastructure that waits on multiple event sources
simultaneously for service request events to occur, but only demultiplexes and
dispatches one event at a time to a corresponding event handler that performs
the service.

— (Schmidt et al., 2000)

Client

Reactor

+ RunEventLoop()

request
Operating System

GetNextEvent()

*

Event Handler

+ HandleEvent()

Event Handler

+ HandleEvent()

Event Handler

+ HandleEvent()

synchronous

call

0

1

2

3

process
boundary

Figure 6.5: Reactor

Participants and Bindings:

• Client: Makes requests to the operating system at runtime.
Depends on the communication method at runtime.
• Reactor: Dependent on the Operating System and the Event

Handlers at compile time. Runs the Event Loop and Routes
events to the correct Event Handler at runtime.
• Operating System: Dependent on the communication method

at runtime. Returns incoming events one after another to the
Reactor at runtime.
• Event Handler: Gets called by the Reactor at runtime. Han-

dles the Event at runtime.

82

6.6 Proactor

6.6 Proactor

Split an application’s functionality into asynchronous operations that perform
activities on event sources and completion handlers that use the results of
asynchronous operations to implement application service logic. let the
operating system execute the asynchronous operations, but execute the
completion handlers in the application’s thread of control.

— (Schmidt et al., 2000)

Event Handler

+ HandleEvent()

Event Handler

+ HandleEvent()

Client

Proactor

+ RunEventLoop()

request
Operating System

GetNextEvent()

*

Event Handler

+ HandleEvent()

asynchronous

call
0

1

2

3

process
boundary

read request

write response

4 5

Figure 6.6: Proactor

Participants and Bindings:

• Client: Dependent on the communication method at run-
time.
• Proactor: Depends on the Operating System and the Event

Handler Classes at compile time. Runs the asynchronous
Event Loop at runtime.
• Operating System: Dependent on the communication method

at runtime. Returns incoming events one after another to
the Proactor at runtime. Gets interacted with by the asyn-
chronous Event Handlers at runtime.
• Event Handler: Get called asynchronously by the Proactor

at runtime. Gets the request, processes it and writes the
response to the operating system at runtime.

83

6 POSA 2 Design Patterns

6.7 Asynchronous Completion Token

Along with each call that a client issues on an synchronous operation,
transmit an synchronous completion token that contains the minimum
amount of information needed to identify how the client should process the
operation’s response.

— (Schmidt et al., 2000)

Service

+ Operation(ACT)

async. call

response

Client

+ Dispatch(ACT)

+ FinishMethod(result)

2

Asynchronous
Completion Token

+ Result

+ DispatchMethod

+ Dispatch(result)

3

4

client creates Token with FinishMethod

1

e.g. FinishMethod

Figure 6.7: Asynchronous Completion Token

Participants and Bindings:

• Client: Dependent on Asynchronous Completion Token
Object and Service Interface at compile time.
• Service: Dependent on Asynchronous Completion Token at

compile time. Sets the result at runtime at returns it back to
the client at runtime.
• Asynchronous Completion Token: Created by the Client

and Manipulated by the Service at runtime.

84

6.8 Acceptor-Connector

6.8 Acceptor-Connector

Decouple the connection and initialization of peer event handlers in a
networked system from the processing that these peers subsequently perform.

— (Schmidt et al., 2000)

Connector

+ Connect()

Acceptor

+ Accept()

Service Handler

+ Init(connection)

+ Service()

Service Handler

+ Init(connection)

+ Service()

process
boundary

communicate

1

2

33

4

establish
connection

Figure 6.8: Acceptor-Connector

Participants and Bindings:

• Connector: Dependent on the Service Handler Interface at
compile-time. Dependent on the communication method to
the Acceptor at runtime.
• Acceptor: Dependent on the Service Handler Interface at

compile-time. Dependent on the communication method
from the Connector at runtime.
• Service Handler: Dependent on the Connector-Interface

at compile time. Either initiates the communication or gets
connected at runtime. Dependent on the communication
format between Service Handlers at runtime.

85

6 POSA 2 Design Patterns

6.9 Scoped Locking

Scope the critical section - if this has not already been done - and acquire the
lock automatically when control enters the scope. Similarly, automate the
release of the lock when control leaves the scope via any exit path.

— (Schmidt et al., 2000)

Client

Lock

+ Acquire()

+ Release()

ScopedLock

+ ScopedLock()

+ ~ScopedLock()

Component

+ Method()

ScopedLock lock;
...
return

1 2 3

4 5

Figure 6.9: Scoped Locking

Participants and Bindings:

• Client: Depends on the Component at compile time. Calls
the method of the Component at runtime.
• Component: Depends on the ScopedLock at compile time.

Creates a local instance of the ScopedLock which acquires a
Lock at runtime. After the callstack is unwinded, the destruc-
tor of the ScopedLock releases the Lock again at runtime.
• ScopedLock: Depends on the Lock at compile time. On con-

struction it acquires the Lock, and on desctruction it releases
the Lock at runtime.
• Lock: Depends on the threadsafe locking mechanism of the

operating system at runtime. Gets acquired and release by
the ScopedLock at runtime.

86

6.10 Strategized Locking

6.10 Strategized Locking

Define locks in terms of “pluggable” types, with each type objectifying a
particular synchronization strategy. Provide all types with a common
interface, so that a component can use all lock types uniformly without being
dependent on their implementation.

— (Schmidt et al., 2000)

Client

Mutex

+ Acquire()

+ Release()

Component

+ Method(lock)
1

2

3

«interface»
StrategizedLocking

+ Acquire()

+ Release()

Semaphore

+ Acquire()

+ Release()

ReaderWriterLock

+ Acquire()

+ Release()

lock.Acquire()
...
lock.Release()

create an actual lock instance

0

Actual Lock Instance

Figure 6.10: Strategized Locking

Participants and Bindings:

• Client: Depends on the StrategizedLocking interface, the
actual used Lock Class and the Component at compile time.
Creates the actual Lock instance at runtime and configures
the Component with the actual Lock instance at runtime.
Calls the Method of the Component at runtime.
• Component: Depends on the StrategizedLocking interface

at compile time. Calls the Acquire and Release Methods at
runtime.
• StrategizedLocking: Specifies the common Interface for

Lock-Objects at compile time.
• Actual Lock Instance (Mutex, Semaphore, ...): Implements

the StrategizedLocking Interface at compile time. Is created
by the Client at runtime and set to the Component at runtime.
Is used by the Component at runtime to acquire and release
a lock.

87

6 POSA 2 Design Patterns

6.11 Thread-Safe Interface

Split a component’s methods into publicly accessible interface methods and
corresponding private implementation methods. An interface method acquires
a lock, calls its corresponding implementation method, and released the lock.
An implementation method assumes the necessary lock is held, does its work,
and only invokes other implementation methods.

— (Schmidt et al., 2000)

Client

ThreadSafeInterface

+ MethodA()

Implementation

+ MethodA()

Lock

+ Acquire()

+ Release()
1 2 3

4

Figure 6.11: Thread-Safe Interface

Participants and Bindings:

• Client: Dependent on the ThreadSafeInterface-Interface at
compile time. Calls the Methods of it at runtime.
• ThreadSafeInterface: Implements thread-safe version of the

Implementation Methods at compile time. Acquires the Lock,
calls the methods, and releases the Lock at runtime.
• Implementation: Implements the Methods at compile time.

Gets called at runtime with the assumption that all necessary
locks are held.
• Lock: Is acquired by the ThreadSafeInterface at runtime.

Assures that only one object can hold it at runtime.

88

6.12 Double-Checked Locking

6.12 Double-Checked Locking

Provide the shared objects with a “hint” as to whether execution of a
particular critical section is necessary. Check this hint before and after
acquiring the lock that guards this critical section.

— (Schmidt et al., 2000)

Client

ThreadSafeInterface

+ MethodA(conditions)

Implementation

+ MethodA()

Lock

+ Acquire()

+ Release()

if conditions == true:
 lock.Acquire()
 if conditions == true:
 impl.MethodA()
 lock.Release()

Figure 6.12: Double-Checked Locking

Participants and Bindings:

• Client: Dependent on the ThreadSafeInterface-Interface at
compile time. Calls the Methods of it at runtime.
• ThreadSafeInterface: Implements thread-safe version of the

Implementation Methods at compile time. Checks the prereq-
uisites (condition), acquires the Lock, checks again, calls the
methods, and releases the Lock at runtime.
• Implementation: Implements the Methods at compile time.

Gets called at runtime with the assumption that all necessary
locks are held.
• Lock: Is acquired by the ThreadSafeInterface at runtime.

Assures that only one object can hold it at runtime.

89

6 POSA 2 Design Patterns

6.13 Active Object

Define the units of concurrency to be service requests on components, and run
service requests on a component in a different thread from the requesting
client thread. Enable the client and component to interact asynchronously to
produce and consume service results.

— (Schmidt et al., 2000)

Thread 2

Client

Proxy

+ Method1()

+ Method2()

CommandProcessor

- commandsQueue

+ Insert(Command)

+ StartEventLoop()

Receiver

+ Action()

Command

+ Execute()

Thread 1

creates

1

2

3
4

5

6

Figure 6.13: Active Object

Participants and Bindings:

• Client: Depends on the Proxy at compile time. Calls the
methods of the Proxy at runtime.
• Proxy: Depends on the Command and the CommandPro-

cessor at compile time. Creates Command objects at runtime
and gives it to the CommandProcessor at runtime.
• CommandProcessor: Depends upon the Command-Interface

at compile time. Manages the commands at runtime (thread-
safe). Executes the commands at runtime.
• Command: Depends on the implementation interface at

compile time. Is created by the Proxy in a different thread
than it is actually executed at runtime. Calls the implemen-
tation at runtime.
• Receiver: Gets called by the commands at runtime.

90

6.14 Monitor Object

6.14 Monitor Object

Execute a shared object in each of its client threads, and let it self-coordinate a
serialized, yet interleaved, execution sequence. Access the shared object only
through synchronized methods that allow execution of only one method at a
time.

— (Schmidt et al., 2000)

Monitor

+ Method1()

+ Method2()

Client 1

Client 2

Lock

+ Acquire()

+ Release()

release the lock

Thread 1

Thread 2

Component

+ Method1()

+ Method2()

1 2 3

4

5
blocks until Lock is available

7

6

release the lock
8

Figure 6.14: Monitor Object

Participants and Bindings:

• Clients: Depend on the Monitor-Interface at compile time.
Call the Methods at runtime.
• Monitor: Depends on the Lock and the Component at com-

pile time. Ensures at runtime that only one Method call
per Type (or depending on the implementation per Object
Instance) is possible at runtime.
• Component: Gets called by the Monitor at runtime.
• Lock: Depends on the operating systems methods to imple-

ment a threadsafe lock at compile time. Gets Acquired and
Released by the Monitor at runtime.

91

6 POSA 2 Design Patterns

6.15 Half-Sync/Half-Async

Decompose the services of concurrent software into two separated layers -
synchronous and asynchronous - and add a queuing layer to mediate
communication between them.

— (Schmidt et al., 2000)

Synchronous
Service Layer

Asynchronous
Service Layer

Queue Layer

Request Queue

- send: Queue

- receive: Queue

Pop(): data

Push(data)

Read(): data

Write(data)

Async Service

+ Receive()

+ Send()

...

...

Sync Service

+ Method(): data
Client 1

2
4

8

7

9

blocks until
data is available
(11)

3

11

10

6

Gets called
in event loop

5

async

Figure 6.15: Half-Sync/Half-Async

Participants and Bindings:

• Client: Depends on the Synchronous Service Layer (espe-
cially the SyncService) at compile time. Calls the Method at
runtime and requires it to be run synchronously.
• Sync Service: Depends on the Queue Layer (especially the

Request Queue) at compile time. Adds requests at runtime
and waits until a response is available at runtime.
• Request Queue: Implements a waiting queue at compile

time. If the queue is empty the Pop-Method blocks until an
element is available at runtime.

92

6.16 Leader/Followers

• Async Service: Depends on the Queue Layer (especially the
Request Queue) at compile time. Depends on the communi-
cation method and message format at compile time. Issues
asynchronous requests to the corresponding resource at run-
time and adds the Response to the Request Queue as soon
as it is available at runtime.

6.16 Leader/Followers

Use a pre-allocated pool of threads to coordinate the detection, demultiplexing,
dispatching, and processing of events. In this pool only one thread at a time -
the leader - may wait for an event on a set of shared event sources. When an
event arrives, the leader promotes another thread in the pool to become the
new leader and then processes the event concurrently.

— (Schmidt et al., 2000)

EventQueue

+ WaitForEvent(): event

Thread 1

Thread 2

Leader

Follower

1 2
3

4
swap
roles

Figure 6.16: Leader/Followers

Participants and Bindings:

• EventQueue: Depend on the event method at compile time.
Waits for incoming events at runtime.
• Thread: Depends on the EventQueue at compile time. If it

is the current Leader is calls the WaitForEvents Method at
runtime and then sets the next Follower as Leader. If it is a
Follower is just waits until it is a Leader at runtime.

93

6 POSA 2 Design Patterns

6.17 Thread-Speci�c Storage

Introduce a common access point for the environmentally bound object, but
maintain its physical object instances in storage that is local to each thread.

— (Schmidt et al., 2000)

Thread 1

Client 1

ThreadSpecificStorage

- data: Dictionary<Thread, data>

+ GetData(): data

if not data.HasKey(CurrentThread):
 data[CurrentThread] = new Data()
return data[CurrentThread]

Thread 2

Client 2

Figure 6.17: Thread-Specific Storage

Participants and Bindings:

• Client: Depends on the ThreadSpecificStorage at compile
time. Gets its data as it would be a local variable at runtime.
• Thread Specific Storage: Ensures that every Client Thread5

can only access its own instance of the data at runtime.

94

7 POSA 3 Design Patterns

In this chapter 10 design patterns from the book “Pattern-Oriented
Software Architecture Volume 3: Patterns for Resource Manage-
ment” (Kircher and Jain, 2004) are analyzed:

• Resource Acquisition: Lookup (96), Lazy Acquisition (97),
Eager Acquisition (98), Partial Acquisition (99)
• Resource Lifecycle: Caching (100), Pooling (101), Coordina-

tor (102), Resource Lifecycle Manager (102)
• Resource Release: Leasing (103), Evictor (104)

95

7 POSA 3 Design Patterns

7.1 Lookup

Provide a lookup service that allows services in a distribute system to register
their references when they become available, and deregister their references
when they become unavailable.

— (Kircher and Jain, 2004)

ResourceProvider

Client

LookupService

- registeredServices[]

+ Lookup()

+ Register()

+ Unregister()

lookup

Service

+ Method()

registers

uses
1 2

3

creates
4

Figure 7.1: Lookup

Participants and Bindings:

• Client: Dependent on the LookupService at compile time.
Looks for services at runtime and calls these services at
runtime.
• LookupService: Manages the registration of Services at run-

time. Looks up the registered Services at runtime.
• ResourceProvider: Dependen on the LookupService and

the Service-Class at compile time. Creates and registers Ser-
vices at the LookupService at runtime. Maintains access to
resources used by the services at runtime.
• Service: Gets created by the ResourceProvider at runtime,

gets called by the Client at runtime.

96

7.2 Lazy Acquisition

7.2 Lazy Acquisition

Acquire resources at the latest possible point in time. The resource is not
acquired until it is actually about to be used. At the point at which a resource
user is about to use a resource, it is acquired and returned to the resource user.

— (Kircher and Jain, 2004)

Client

LazyAcquisition
Component

+ Method()
acquire

Resource

acquire on demand

Figure 7.2: Lazy Acquisition

Participants and Bindings:

• Client: Depends on the Lazy Acquisition Component at
compile time. Calls its Method at runtime.
• Lazy Acquisition Component: Depends on the Resource

Interface at compile time. Gets called by the Client at runtime
and acquires the Resource at the latest possible moment at
runtime.
• Resource: Gets acquired by the Lazy Acquisition Compo-

nent at runtime.

97

7 POSA 3 Design Patterns

7.3 Eager Acquisition

The Eager Acquisition pattern describes how run-time acquisition of resources
can be made predictable and fast by eagerly acquiring and initializing
resources before their actual use

— (Kircher and Jain, 2004)

Client

EagerAcquisition
Component

- resource: Resource

+ EagerAcquisitionComponent()

+ Method()

acquire Resource
uses1

2

3

Figure 7.3: Eager Acquisition

Participants and Bindings:

• Client: Depends on the Eager Acquisition Component at
compile time. Calls its Method at runtime.
• Eager Acquisition Component: Depends on the Resource

Interface at compile time. Acquires the Resource at the earliest
possible point (constructor) at runtime and stores it for later.
Gets called by the Client at runtime and uses the Resource
at runtime.
• Resource: Gets acquired early by the Eager Acquisition

Component at runtime.

98

7.4 Partial Acquisition

7.4 Partial Acquisition

Split the acquisition of each resource into multiple stages. In each stage,
acquire only a part of the resource, so that its acquisition gradually completes
over time, in accordance with overall application quality of service needs.

— (Kircher and Jain, 2004)

Client

PartialAcquisitor

+ GetHeader()

+ GetBody()

+ GetReferencedResource()

Resource

acquire on demand
only what is needed

Resource

file.ReadBytes(128)

file.Seek(128)
file.ReadToEnd()

Figure 7.4: Partial Acquisition

Participants and Bindings:

• Client: Depends on the Partial Acquisitor at compile time.
Calls its Methods at runtime.
• PartialAcquisitor: Depends on the Resource-Interface at

compile time. Acquires it at runtime, but only as much as
needed. Acquires additional Resource as needed at runtime.
• Resource: Gets acquired by the PartialAcquisitor at runtime.

99

7 POSA 3 Design Patterns

7.5 Caching

Rather than destroying a resource after use, store it in an in-memory cache.
When the resource is needed again, fetch it from the cache and return it,
instead of creating it anew.

— (Kircher and Jain, 2004)

Client

Cache

+ Insert(Resource)

+ Get(): Resource

acquire
Resourceuse

store

1

2

3

re-acquire

4

Figure 7.5: Caching

Participants and Bindings:

• Client: Depends on the Resource and the Resource Cache
at compile time. Acquires and uses the Resource at runtime.
Stores it in the Cache for later use at runtime. Re-acquires
the Resource if necessary from the Cache at runtime.
• Resource: Gets acquired and used by the Client at runtime

and stored in the Cache at runtime.
• Cache: Stores already acquired Resources for later use at

runtime.

100

7.6 Pooling

7.6 Pooling

Keep a certain number of resources available in an in-memory resource pool.
Rather than repeatedly creating resources from scratch, retrieve the resources
from the pool quickly and predictably. When the application no longer needs a
resource, it must be returned to the pool so it becomes available for subsequent
acquisition.

— (Kircher and Jain, 2004)

Client

ResourcePool

+ Acquire(): Resource

+ Release(Resource)

acquire

Resource
use

release

Resource
Resource
Resource

resources *
1

2

3

Figure 7.6: Pooling

Participants and Bindings:

• Client: Depends on the ResourcePool and the Resource
at compile time. Acquires and Releases Resources at the
ResourcePool at runtime. Uses the Resource at runtime.
• ResourcePool: Manages the Resources at runtime.
• Resource: Is managed by the ResourcePool and gets ac-

quired and released by the Clients at runtime.

101

7 POSA 3 Design Patterns

7.7 Coordinator

Introduce a coordinator that supervises the execution and completion of a task
by all participants. The coordinator ensures that either all contributing
participants complete successfully or, in the event of even a single
participating task failing, it appears that the entire task did not execute at all.

— (Kircher and Jain, 2004)

Client

TaskCoordinator

+ Run(tasks[])

Task

+ Execute()

+ Rollback()

+ Commit()

Task

+ Execute()

+ Rollback()

+ Commit()

Task

+ Execute()

+ Rollback()

+ Commit()

Task

+ Execute(): bool

+ Rollback()

+ Commit()

*

Execute all tasks
if all tasks successful:
 commit all tasks
else:
 rollback all tasks

Figure 7.7: Task Coordinator

Participants and Bindings:

• Client: Depends on the TaskCoordinator at compile time.
Calls the TaskCoordinator at runtime.
• Task Coordinator: Depends on the Task-Interface at compile

time. Executes the Tasks at runtime and depending on the
success either commits or rolls back all Tasks at runtime.
• Task: Implements a Task which can be Executed, Commited

or Rolled Back at compile time. Gets called by the Task Coor-
dinator at runtime.

7.8 Resource Lifecycle Manager

See 8.44 Object Manager (on page 151).

102

7.9 Leasing

7.9 Leasing

Have the provider create a lease for each resource held by clients. Include a
time duration in the lease that specifies how long a client can use the resource.
After the time duration expires, release the reference to the resource in the
client and the resource in the provider.

— (Kircher and Jain, 2004)

ResourceProvider

- resources[]

+ Acquire()

+ LeaseExpired()

Resource

when lease expiredrelease

Client

+ Main()

+ LeaseExpired(Resource)
delete reference

set timeout
for resource

1

2

33

Figure 7.8: Leasing

Participants and Bindings:

• Client: Depends on the ResourceProvider Interface and the
Resource Interface at compile time. Acquires the Resource at
the ResourceProvider at runtime. Uses the Resource at run-
time. Release the reference at latest when the Lease expired
at runtime.
• Resource Provider: Depends on the Timer-Interface and the

Resource-Interface at compile time. Manages the resources
at runtime, sets up timer for each Resource and after the
lease expires, informs all clients and releases the resource at
runtime.
• Resource: Gets acquired at runtime, and released after an

expiration timeout at runtime.

103

7 POSA 3 Design Patterns

7.10 Evictor

Introduce an evictor to monitor the use of resources and control their lifetime.
Resources that are not accessed after a specific period of time are removed to
free up space for other resources.

— (Kircher and Jain, 2004)

Evictor

+ Acquire()

+ Release()
Client

Resource
Resource
Resource
Resource

acquire/return Resource
remove release timer

*resources

add to release
timer release

Figure 7.9: Evictor

Participants and Bindings:

• Client: Depends on the Evictor Interface and the Resource
Interface at compile time. Calls the Evictor’s methods to
acquire and release resources at runtime. Uses the Resources
at runtime.
• Evictor: Depends on the Timer-Interface and the Resource-

Objects at compile time. Acquires Resources on demand as
requested by the Client and holds its references even after
Release for a specific amount of time to be immediately
reused at runtime. After expiration it releases the Resource
to free up memory at runtime.
• Resources: Get acquired and released by the Evictor at

runtime. Get used by the Client at runtime.

104

8 POSA 4 Design Patterns

In this chapter 55 design patterns from the book “Pattern-Oriented
Software Architecture Volume 4: Pattern Language for Distributed
Computing” (Buschmann, Henney, and Schmidt, 2007) are ana-
lyzed:

Database Access

From Mud to
Structure

Application
Control

Object InteractionDistribution
Infrastructure

Interface
Partitioning

Component
Partitioning

Modal Behavior

Adaption and
Extension

Synchronization

Concurrency

Event Handling Resource
Management

Figure 8.1: Overview

• From Mud to Structure: Domain Model (108), Layers (60),
Model-View-Controller (65), Presentation-Abstraction-Control (66),
Microkernel (68), Reflection (69), Pipes and Filters (61),
Shared Repository (109), Blackboard (62), Domain Object (110)

105

8 POSA 4 Design Patterns

• Distribution Infrastructure: Messaging (111), Message Chan-
nel (113), Message Endpoint (114), Message Translator (115),
Message Router (116), Broker (63), Client Proxy (117), Re-
questor (118), Invoker (119), Client Request Handler (120),
Server Request Handler (121), Publisher-Subscriber→ Ob-
server (51)
• Event Handling: Reactor (82), Proactor (83), Acceptor-Connector (85),

Asynchronous Completion Token (84)
• Interface Partitioning: Explicit Interface (122), Extension

Interface (81), Introspective Interface (123), Dynamic Invo-
cation Interface (124), Proxy (53), Business Delegate (125),
Facade (44), Combined Method (126), Iterator (48), Enumer-
ation Method (127), Batch Method (128)
• Component Partitioning: Encapsulated Implementation→

Proxy (53), Whole-Part→ Composite (42), Composite (42),
Master-Slave (70), Half-Object plus Protocol (129), Repli-
cated Component Group (130)
• Application Control: Page Controller (131), Front Controller (132),

Application Controller (133), Command Processor (71), Tem-
plate View (134), Transform View (135), Firewall Proxy (136),
Authorization (137)
• Concurrency: Half-Sync/Half-Async (92), Leader/Follow-

ers (93), Active Object (90), Monitor Object (91)
• Synchronization: Guarded Suspension (138), Future (139),

Thread-Safe Interface (88), Double-Checked Locking (89),
Strategized Locking (87), Scoped Locking (86), Thread-Specific
Storage (94), Copied Value (140), Immutable Value (141)
• Object Interaction: Observer (51), Double Dispatch (142),

Mediator (49), Memento (50), Context Object (143), Data
Transfer Object (144), Command (41), Message (112)
• Adaptation and Extension: Bridge (38), Object Adapter
→ Adapter (37), Interceptor (80), Chain of Responsibil-
ity (40), Interpreter (47), Visitor (58), Decorator (43), Tem-
plate Method (57), Strategy (56), Null Object (146), Wrapper
Facade (78), Execute-Around Object (145), Declarative Com-
ponent Configuration (147)
• Object Behavior: Objects for States→ State (55), Methods

106

for States (148), Collections for States (149)
• Resource Management: Object Manager (151), Container (150),

Component Configurator (79), Lookup (96), Virtual Proxy (152),
Lifecycle Callback (153), Task Coordinator → Coordina-
tor (102), Resource Pool→ Pooling (101), Resource Cache
→ Caching (100)), Lazy Acquisition (97), Eager Acquisi-
tion (98), Partial Acquisition (99), Activator (154), Evic-
tor (104), Leasing (103), Automated Garbage Collection (155),
Counting Handle → Counted Pointer (75), Abstract Fac-
tory (36), Builder (39), Factory Method (45), Disposal Method (156)
• Database Access: Database Access Layer (157), Data Map-

per (158), Row Data Gateway (159), Table Data Gateway (160),
Active Record (161)

107

8 POSA 4 Design Patterns

8.1 Domain Model

Create a model that defines and scopes a system’s business responsibilities and
their variations: model elements are abstractions meaningful in the
application domain, while their roles and interactions reflect the domain
workflow.

— (Buschmann, Henney, and Schmidt, 2007)

Professor

Student studies at

attends works at

Course
holds

University

grades

Entity1

Properties...

Operations()...

Entity2

Properties...

Operations()...

Relation

Figure 8.2: Domain Model

Participants and Bindings: The Domain Model is on a highly
abstract conceptual level and must not directly correspond to
the actual technical implementation. Here the objects and their
relations get bound at requirements analysis time, architecture time,
or at design time. These decisions are some of the earliest one can
take.

108

8.2 Shared Repository

8.2 Shared Repository

Maintain all data in a central repository shared by all functional components
of the data-driven application and let the availability, quality, and state of that
data trigger and coordinate the control flow of the application logic.

— (Buschmann, Henney, and Schmidt, 2007)

Client 1

Component 1

Component 2

Component 3Client 2

Shared Repository

Data
Entities

Figure 8.3: Shared Repository

Participants and Bindings:

• Client: Multiple Clients may use multiple functional com-
ponents at runtime in parallel and may manipulate even the
same objects.
• Component: The Components depend upon the shared

repository for data storage and manipulation at runtime.
They get called by the Clients at runtime.
• Shared Repository: Stores the Data Entities for all different

components at runtime. Manages access and synchroniza-
tion amongst the data at runtime.

109

8 POSA 4 Design Patterns

8.3 Domain Object

Encapsulate each distinct functionality of an application in a self-contained
building-block - a domain object.

— (Buschmann, Henney, and Schmidt, 2007)

Domain Object

Implementation

+ FunctionA()

+ FunctionB()

implements

«interface»
Domain Object

Interface

+ FunctionA()

+ FunctionB()

DomainObjectA

+ OperationA()

DomainObjectB

+ MethodB()

«interface»
IDomainObjectA

+ OperationA()

«interface»
IDomainObjectB

+ MethodB()

calls1

implicit interface
defined by class
implementation

Figure 8.4: Domain Object

Participants and Bindings:

• Domain Object Implementation: Implements a Domain
Object Interface at compile time. May depend on other Do-
main Objects at compile time. May call other Domain Objects
at runtime.
• Domain Object Interface: Specifies the interface for a Do-

main Object at compile time. If a Domain Object has no
interface, its method signatures implicitly defined a Domain
Object Interface at compile time.

110

8.4 Messaging

8.4 Messaging

Connect the services via a message bus that allows them to transfer data
messages asynchronously. Encode the messages so that senders and receivers
can communicate reliably without having to now all the data type
information statically.

— (Buschmann, Henney, and Schmidt, 2007)

Message Bus

Service 1

send/receive
data message

Service 2

send/receive
data message

Service n

send/receive
data message

...

Figure 8.5: Messaging

Participants and Bindings:

• Service: Dependent on the common message data format
and the communication method at runtime.
• Message Bus: Dependent on the common message data

format and the communication method at runtime.
• Data Message: Specifies the common message data format

at compile time.

111

8 POSA 4 Design Patterns

8.5 Message

Encapsulate method requests and data structures to be sent across the
network into messages: byte streams that include a header specifying the type
of information being transmitted, its origin, destination, size, and other
structural information, and a payload that contains the actual information.

— (Buschmann, Henney, and Schmidt, 2007)

Message Message

Sender Receiver

process
boundary

pack unpack

DataData

Header

Body

Header

Body

Figure 8.6: Message

Participants and Bindings:

• Sender: Depends on the communication method and the
common message format at compile time. Packs Data into
Messages and sends them to the receiver at runtime.
• Message: Specifies the common message format at compile

time. Gets created at runtime.
• Receiver: Depends on the communication method and the

common message format at compile time. Unpacks Messages
into Data at runtime.

112

8.6 Message Channel

8.6 Message Channel

Connect the collaborating clients and services using a message channel that
allows them to exchange messages.

— (Buschmann, Henney, and Schmidt, 2007)

Message Channel
write

Receiver
read

Sender

Figure 8.7: Message Channel

Participants and Bindings:

• Client: Dependent on the common messaging data format
to send the data at runtime. Dependent on the communica-
tion form of the message channel at compile time (if statically
bound) or runtime (with a dynamic approach).
• Message Channel: Dependent on the common messaging

data format (at least the header or basic byte stream) at
runtime. Gets established by some lookup-mechanism at
runtime.
• Receiver: Dependent on the common messaging data for-

mat to read the data at runtime. Dependent on the com-
munication form of the message channel at compile time (if
statically bound) or runtime (with a dynamic approach).

113

8 POSA 4 Design Patterns

8.7 Message Endpoint

Connect the clients and services of an application ot the messaging
infrastructure using specialized message endpoints that allow clients and
services to exchange messages.

— (Buschmann, Henney, and Schmidt, 2007)

Messaging
Middleware

message
Receiver

messageSender

Message Endpoint

+ Read(): data

+ Write(data)

Message Endpoint

+ Read(): data

+ Write(data)
data

data

Figure 8.8: Message Endpoint

Participants and Bindings:

• Client / Receiver: Dependent on the Message Endpoint at
compile time. Writes or Reads Data onto or from it at runtime.
• Message Endpoint: Dependent on the common message

data format and the communication type to the middleware
at runtime.
• Messaging Middleware: Routes Messages from one end-

point to another at runtime. Maybe dependent on the com-
mon message data format (headers, encoding, ...) at runtime,
but not necessarily.

114

8.8 Message Translator

8.8 Message Translator

Introduce message translators between clients and services of an application
that convert messages from one format into another.

— (Buschmann, Henney, and Schmidt, 2007)

Message Translator ReceiverBSender A A B

Figure 8.9: Message Translator

Participants and Bindings:

• Sender: Dependent on the message format A and the gen-
eral communication method at runtime.
• Message Translator: Dependent on the message format

A and message format B and the general communication
method at runtime.
• Receiver: Dependent on the message format B and the gen-

eral communication method at runtime.

115

8 POSA 4 Design Patterns

8.9 Message Router

Provide message routers that consume messages from one message channel
and reinsert them into different message channels, depending on a set of
conditions.

— (Buschmann, Henney, and Schmidt, 2007)

Message Router

In Message Channel

Out Message Channel

Out Message Channel

Out Message Channel

Figure 8.10: Message Router

Participants and Bindings:

• In Message Channel: Dependent on the common message
format and the general communication method at runtime.
• Message Router: Dependent on the common message for-

mat and the general communication method at runtime.
• Out Message Channel: Dependent on the common mes-

sage format and the general communication method at
runtime.

116

8.10 Client Proxy

8.10 Client Proxy

Provide a client proxy in the client’s address space that is a surrogate for the
remote component. The proxy provides the same interface as the remote
component, and maps client invocations to the specific message format and
protocol used send these invocations across the network.

— (Buschmann, Henney, and Schmidt, 2007)

Send

Receive

Client Proxy

+ MethodA()

+ MethodB()

Client

process
boundary

Component

+ MethodA()

+ MethodB()

calls

return

Figure 8.11: Client Proxy

Participants and Bindings:

• Client: Dependent on the Client Proxy at compile time. Calls
the Methods at runtime.
• Client Proxy: Dependent on the common message format

and communication method on the client side at runtime.
• Receive/Send: Dependent on the common message format

and communication method on the server side at runtime.
• Component: Gets called at runtime.

117

8 POSA 4 Design Patterns

8.11 Requestor

Create a requestor that encapsulates the creation, handling and sending of
request messages to remote components.

— (Buschmann, Henney, and Schmidt, 2007)

Server A

Requestor

+ Request(server, component,
 function, arguments)

Client

process
boundary

Component 1

+ MethodA()

+ MethodB()

Request(Server A, Component 1,
 MethodA, null)

Figure 8.12: Requestor

Participants and Bindings:

• Client: Dependent on the Requestor-Class at compile time.
Calls the Requestor with specific arguments at runtime.
• Requestor: Dependent on the communication method to

the servers at runtime. Gets called by the client at runtime.
• Server/Component: Gets requests from the Requestor at

runtime.

118

8.12 Invoker

8.12 Invoker

Create an invoker that encapsulates the reception and dispatch of request
messages from remote clients in a specific method of a component
implementation.

— (Buschmann, Henney, and Schmidt, 2007)

Server A

Invoker

+ Invoke(Message)Client

process
boundary

Component 1

+ MethodA()

+ MethodB()Message
Server Component

Method Arguments

Figure 8.13: Invoker

Participants and Bindings:

• Client: Dependent on the communication method and the
common message format at runtime.
• Invoker: Dependent on the Component-Class at compile time.

Dependent on the communication method and the common
message format at runtime.
• Message: Specifies the common message format at runtime.
• Server: Dependent on the communication method at run-

time.
• Component: Gets called by the Invoker at runtime.

119

8 POSA 4 Design Patterns

8.13 Client Request Handler

Provide a specialized client request handler that encapsulates and performs all
IPC tasks on behalf of client component that send requests to and receive
replies from the network.

— (Buschmann, Henney, and Schmidt, 2007)

Client

Request

Handler

+ Send

+ Receive

call
Client

process
boundary

return

1 2

34

Figure 8.14: Client Request Handler

Participants and Bindings:

• Client: Dependent on the Client Request Handler at compile
time. Calls the Send Method at runtime.
• Client Request Handler: Dependent on the communication

method and the common message format at runtime.

120

8.14 Server Request Handler

8.14 Server Request Handler

Provide a speicalized server request handler that encapsulates and performs
all IPC tasks on behalf of remote components that receive requests from and
send replies to the network.

— (Buschmann, Henney, and Schmidt, 2007)

Server

Request

Handler

+ Receive

+ Send return Server

process
boundary

call1 2

34

Figure 8.15: Server Request Handler

Participants and Bindings:

• Server Request Handler: Dependent on the server at com-
pile time. Dependent on the communication method and the
common message format. Uses the Server at runtime.
• Server: Gets called by the Server Request Handler at run-

time.

121

8 POSA 4 Design Patterns

8.15 Explicit Interface

Separate the declared interface of a component from its implementation.
Export the interface to the clients of the component, but keep its
implementation private and location-transparent to the client.

— (Buschmann, Henney, and Schmidt, 2007)

Component

Client

Implementation

+ MethodA()

+ MethodB()

«interface»
ExplicitInterface

MethodA()

MethodB()

dispatch
to

Figure 8.16: Explicit Interface

Participants and Bindings:

• Client: Dependend on the Interface at compile time. Executes
the actual implementation at runtime.
• Interface: Specifies the Interface at compile time.
• Implementation: Implements the Interface at compile time.

Gets called at runtime.

122

8.16 Introspective Interface

8.16 Introspective Interface

Introduce a special introspective interface for the component that allows
clients to access information about its mechanism and structure. Keep the
introspective interface separate from the component’s operational interfaces.

— (Buschmann, Henney, and Schmidt, 2007)

Client

Component

+ FunctionA()

+ MethodB()

Introspective Interface

+ Type()

+ Name()

+ Interfaces()

+ Methods()

+ MetaAttributes()

+ ...

describes

Figure 8.17: Introspective Interface

Participants and Bindings:

• Client: Dependent on the IntrospectiveInterface-Interface at
compile time. Calls its methods at runtime. May call methods
on the Component at runtime.
• Introspective Interface: Specifices Methods for providing

meta-data for the Component at compile time. May construct
the MetaData at pre-compile-time, compile time, or runtime
dependent on the implementation (static vs. dynamic).
• Component: An actual implementation of a domain ob-

ject at compile time. Gets created and called at runtime. Is
described by the Introspective Interface at runtime.

123

8 POSA 4 Design Patterns

8.17 Dynamic Invocation Interface

Introduce an invocation interface for the component that allows clients to
compose calls on the component dynamically. Methods are identified at
runtime by strings, and arguments are passed as generally typed collections.
Keep the dynamic invocation interface separate from the components
operational interfaces.

— (Buschmann, Henney, and Schmidt, 2007)

Client

Component

+ FunctionA()

+ MethodB(param)

Dynamic Invocation Interface

+ InvokeMethod(name, params[])

switch name:
 case "FunctionA":
 component.FunctionA()
 case "FunctionB":
 component.FunctionB(params[0])

component

Figure 8.18: Dynamic Invocation Interface

Participants and Bindings:

• Client: Dependent on the Dynamic Invocation Interface at
compile time. Calls InvokeMethod with specific parameters
at runtime.
• Dynamic Invocation Interface: Dependent on the Compo-

nent at compile time. Invokes the Method as requested by the
Client on the Component at runtime.
• Component: Is used by the Dynamic Invocation Interface

at runtime.

124

8.18 Business Delegate

8.18 Business Delegate

Introduce a business delegate for each remote component that can be created,
used, and disposed of like a collocated component, and whose interface is
identical to that of the component it represents. Let the business delegate
perform all networking tasks transparently for clients using the component.

— (Buschmann, Henney, and Schmidt, 2007)

Client

BusinessDelegate

+ MethodA()

+ MethodB()

process
boundary

RemoteImplementation

+ OperationA()

LocalImplementation

+ OperationB()

Locate Method

Remote Call

Error-Handling

Locate Method

Local Call

«interface»
ComponentInterface

+ MethodA()

+ MethodB()

Figure 8.19: Business Delegate

Participants and Bindings:

• Client: Depends on the BusinessDelegate-Interface at com-
pile time. Calls the methods of the Business Delegate at
runtime.
• ComponentInterface: Specifies the interface for the busi-

ness component at compile time.
• Business Delegate: Implements the Component Interface at

compile-time. Calls the Implementations at runtime. Depends
on the communication format to the Remote Implementa-
tions at runtime. If local or remote Implementation is used,
is decided at runtime.
• Remote Implementation: Gets called at runtime. Depends

on the communication format at runtime.
• Local Implementation: Gets called at runtime.

125

8 POSA 4 Design Patterns

8.19 Combined Method

Combine methods that must be, or commonly are, executed together on a
component into a single method.

— (Buschmann, Henney, and Schmidt, 2007)

Client

Component

+ MethodA()

+ MethodB()

+ MethodC()

+ CombinedMethod()

try:

 MethodA()

 MethodB()

 MethodC()

catch:

 HandleError

2

3

1 4

Figure 8.20: Combined Method

Participants and Bindings:

• Client: Depends on the Component at compile time. Calls
the Combined Method at runtime.
• Component: Implements the CombinedMethod at compile

time. Calls its own Methods as needed at runtime.

126

8.20 Enumeration Method

8.20 Enumeration Method

Bring the iteration inside the aggregate and encapsulate it in a single
enumeration method that is responsible for complete traversal. Pass the task of
the loop - the action to be executed on each element of the aggregate - as an
argument to the enumeration method, and apply it to each element in turn.

— (Buschmann, Henney, and Schmidt, 2007)

Client

EnumerationMethod

+ ForEach(aggregate, action)

Action

+ Execute(element)

for each element in aggregate:
 action.Execute(element)

Figure 8.21: Enumeration Method

Participants and Bindings:

• Client: Dependent on the Action-Interface and the EnumerationMethod-
Interface at compile time. Creates the Action and the Enu-
merationMethod at runtime and calls the ForEach-Method
with the aggregate at runtime.
• Enumeration Method: Dependent on the Aggregate-Interface

to loop over it at compile time. Calls the Action at runtime.
• Aggregate: Specifies the the Aggregate-Interface at compile

time and gets used by the EnumerationMethod to iterate
over it at runtime.
• Action: Dependent on the Element-Interface at compile time.

Gets called by the EnumerationMethod for each element in
the aggregate at runtime.
• Element: Specifies an Element-Object in the Aggregate at

compile time. Is used by the action at runtime.

127

8 POSA 4 Design Patterns

8.21 Batch Method

Define a single batch method that performs the action on the aggregate
repeatedly. The method is declared to take all the arguments for each execution
of the action, for example via an array or a collection, and to return results by
similar means.

— (Buschmann, Henney, and Schmidt, 2007)

Client

Batch Method

+ Execute(Elements[n])
 : Elements[n]

Figure 8.22: Batch Method

Participants and Bindings:

• Client: Dependent on the BatchMethod at compile time. Cre-
ates the Elements and calls the Batch Method in batches of
n Elements at runtime.
• Batch Method: Gets called by the Client at runtime.

128

8.22 Half-Object plus Protocol

8.22 Half-Object plus Protocol

Divide the objects into multiple “half-objects”, one for each address space in
which they is are used. Each half object implements the functionality and data
required by the clients that reside in the respective address space. A protocol
between the half objects helps to coordinate their activities and keep their state
consistent.

— (Buschmann, Henney, and Schmidt, 2007)

 Logical Full Object

Client 1

HalfObject1

- data1

+ Service1(): data1

+ Service2(): data2

process
boundary

HalfObject2

- data2

- data3

+ Service1(): data1

+ Service2(): data2

+ Service3(): data3

Client 2
Protocol

Figure 8.23: Half-Object plus Protocol

Participants and Bindings:

• Clients: Depends on the Half-Objects Interfaces at compile
time.
• Logical Full Object: The domain object which is split up

into Half-Objects during design time, implemented at compile
time and synchronized over the client domains at runtime.
• Half-Object: The part of an object which is needed for a

specific domain. Specified during design time, implemented
at compile time. Depends on the Protocol at compile time
and uses it to synchronize with its other parts if needed at
runtime.
• Protocol: The communication method and message data

format specified at compile time. Is used by the Half-Objects
to synchronize at runtime.

129

8 POSA 4 Design Patterns

8.23 Replicated Component Group

Provide a group of component implementations instead of a single
implementation, and replicate these implementations across different network
nodes. Forward client requests on the component interface to all
implementation instances, and wait until on of the instances returns a result.

— (Buschmann, Henney, and Schmidt, 2007)

Client

Service

+ Method()

process
boundary

process
boundary

process
boundary

Service

+ Method()

Service

+ Method()

ServiceProxy

+ Method()

Figure 8.24: Replicated Component Group

Participants and Bindings:

• Client: Depends on the Service Proxy at compile time. Calls
the Method at runtime.
• Service Proxy: Depends on the communication method and

common message format at compile time. Depends on the
Service-Instances at runtime.
• Service: Implements the Service-Method at compile time.

Depends on the communication method and the common
message format at compile time. Gets called by the Service-
Proxy at runtime.

130

8.24 Page Controller

8.24 Page Controller

For each form offered by an applications’s user interface, introduce a page
controller to control the execution of all requests issued from that form.

— (Buschmann, Henney, and Schmidt, 2007)

Page Controller 1

+ Method1()

+ Method2()

UI Form 1

UI Form 2 Page Controller 2

+ Method3()

+ Method4()

User

Business Logic Layer

Figure 8.25: Page Controller

Participants and Bindings:

• User: Uses the UI Forms at runtime.
• UI Forms: Dependent on the Page Controller at compile time.

Interacts with the User at runtime. Delegates the Requests
to its corresponding Page Controller and gets controlled by
it at runtime.
• Page Controller: Dependent on the UI Form Interface and

the Business Logic Interface at compile time. Gets requests
by the UI Form at runtime. Redirects those requests to the
Business Logic Layer at runtime. Controlls the behaviour of
the UI Forms at runtime.
• Business Logic Layer: Implements the Business Logic for

the Application at compile time. Gets used by the Page Con-
troller at runtime.

131

8 POSA 4 Design Patterns

8.25 Front Controller

Introduce a front controller that publishes the application’s functionality and
transforms client service request into specific requests that can be invoked on
the application’s components.

— (Buschmann, Henney, and Schmidt, 2007)

Front Controller

+ Method1()

+ Method2()

+ Method3()

+ Method4()

UI Form 1

UI Form 2

User

Business Logic

Figure 8.26: Front Controller

Participants and Bindings:

• User: Uses the UI Forms at runtime.
• UI Forms: Dependent on the Front Controller at compile time.

Interacts with the User at runtime. Delegates the Requests
to the Front Controller and gets controlled by it at runtime.
• Front Controller: Dependent on the UI Form Interface and

the Business Logic Interface at compile time. Gets requests
by the UI Form at runtime. Redirects those requests to the
Business Logic Layer at runtime. Controlls the behaviour of
the UI Forms at runtime.
• Business Logic Layer: Implements the Business Logic for

the Application at compile time. Gets used by the Front
Controller at runtime.

132

8.26 Application Controller

8.26 Application Controller

Encapsulate the application’s workflow within a separate application
controller. User-interface controllers use the application controller to
determine the appropriate actions to invoke on application logic, as well as the
correct view to display after the action has been executed.

— (Buschmann, Henney, and Schmidt, 2007)

Controller

+ Handle()

UI

User

Application Controller

+ GetCommand(): Command

+ GetNextView(): View

View

+ Display()

Command

+ Execute()

Application

2

3

4

6

5

1

7

Figure 8.27: Application Controller

Participants and Bindings:

• User: Interacts with the UI at runtime.
• UI: Depends on the Controller Interface and the View In-

terface at compile time. Gets acted on by the User at runtime
and requests the corresponding Controller to Handle the
Event at runtime.
• Controller: Depends on the Application Controller, the

Command-Interface and the View-Interface at compile time.
Gets called by the UI to handle an interaction event at
runtime. Calls the Application Controller to get the next
command and executes the Command at runtime. Calls the
Application Controller to get the next View and display’s
the View at runtime.
• ApplicationController: Dependent on the Commands and

Views at compile time. Controls the application’s workflow at
runtime by returning the appropriate commands and view
depending on the current state of the Application at runtime.
• Command: Depends on the Application at compile time. Gets

created by the Application Controller and called by the

133

8 POSA 4 Design Patterns

Controller at runtime. Acts on the Application at runtime.
• Application: Gets acted on by the Command at runtime.
• View: Depends on the UI Interface at compile time. Gets

created by the Application Controller and displayed by the
Controller at runtime.

8.27 Template View

Introduce a template view that predefines the view’s structure and which
contains placeholders for dynamic application data.

— (Buschmann, Henney, and Schmidt, 2007)

TemplateView

+ Render()

UI

User display <html>

<body>

<h1><%= Data.Header %></h1>

<% for element in Data.Elements: %>
 <%= element %>

<% endfor %>
</body>

</html>

1 2

3

DataController

+ GetData(): Data

Figure 8.28: Template View

Participants and Bindings:

• User: Interacts with the UI at runtime.
• UI: Depends on the TemplateView Interface at compile time.

Gets acted on by the User at runtime and routes the event to
the TemplateView runtime.
• Template View: Depends on the DataController Interface

at compile time. Gets the Data from the DataController at
runtime. Runs a Text-Replacement Engine to render the view
for the UI with the Data at runtime.
• DataController: Delivers the Data to the TemplateView at

runtime.

134

8.28 Transform View

8.28 Transform View

Introduce a transform view that walks the structure of the data received from
the application, recognizes the data to display, and transforms it into a specific
output format.

— (Buschmann, Henney, and Schmidt, 2007)

TransformView

+ CreateView(data): string

UI

User <html>
<body>
<h1>First Chapter</h1>
Element1
Element2
Element3
</body>
</html>

Data

DataController

+ GetData(): data

1

2

Figure 8.29: Transform View

Participants and Bindings:

• User: Interacts with the UI at runtime.
• UI: Depends on the DataController and the TransformView

at compile time. Gets acted on by the User at runtime. Gets
the data from the DataController and Transforms it into the
output format via the TransformView at runtime.
• TransformView: Depends on the common data format at

compile time. Transforms given data to the wished output
format at runtime.
• DataController: Returns the Data needed for the view at

runtime.

135

8 POSA 4 Design Patterns

8.29 Firewall Proxy

Introduce a firewall proxy for the publicly accessible functionality of the
application. This proxy enforces security policies on each client request to
protect the components that implement this functionality from cyber attacks.

— (Buschmann, Henney, and Schmidt, 2007)

Client

FirewallProxy

+ Request(message)

SecurityRules

+ Check(message): bool

Component

+ Method()

dispatch

1

2

only if security
check is ok!

Figure 8.30: Firewall Proxy

Participants and Bindings:

• Client: Depends on the FirewallProxy interface at compile
time. Calls the Request method at runtime.
• Firewall Proxy: Depends on the SecurityRules interface

and the Component interface at compile time. Calls the Se-
curityRules to check the message and calls Components
Methods at runtime.
• Security Rules: Checks the security of a message at runtime.
• Component: Implement some functionality at compile time.

Gets called at runtime if the security is checked and ok.

136

8.30 Authorization

8.30 Authorization

Assign access rights to each client that can send service requests to the
security-sensitive subsystem and check these rights before executing any
request on the subsystem.

— (Buschmann, Henney, and Schmidt, 2007)

Client

AccessRights

+ ExecuteAllowed(identity): bool

Component

+ Method()

only execute if
execution is allowed

Figure 8.31: Authorization

Participants and Bindings:

• Client: Depends on the Component Interface at compile time.
Calls the Method at runtime.
• Component: Depends on the AccessRights Interface at com-

pile time. When called, checks the AccessRights first and if
allowed it executes the Method at runtime.
• AccessRights: Checks the access rights of an identity at

runtime.

137

8 POSA 4 Design Patterns

8.31 Guarded Suspension

Instead of aborting the method, suspend its client thread so that other client
threads can access the shared component safely and change the state of the
methods’ guard condition. If this state changes, resume the suspended thread
so that the thread can try to continue the execution of the interrupted method.

— (Buschmann, Henney, and Schmidt, 2007)

Queue

+ Get()

+ Put()

Client 1

Client 2

Condition

+ Wait()

+ Signal()

Thread 1

Thread 2

1 2

3 4

block until signaled

5

Shared Object

Figure 8.32: Guarded Suspension

Participants and Bindings:

• Clients: Depending on the Shared Object Interface at com-
pile time. Calls the methods of the Shared Object at runtime.
If the call cannot be answered immediately the Thread waits
until the call may be answered.
• Queue: An example of an shared object. Depends on the

Condition-Interface at compile time. If the queue is empty it
calls the Wait method to suspend the calling thread until the
Signal Method on the Condition is called at runtime. Calls
the Signal-Method on the Condition when data is put into
the queue at runtime.
• Condition: Calling the Wait()-Method suspend the calling

Thread until the Signal()-Method is called by another Thread
at runtime. With a call to Signal, it wakes up all waiting
Threads to continue with their work at runtime.

138

8.32 Future

8.32 Future

Immediately return a “virtual” data abject - called a future - to the client
when it invokes a service. This future keeps track of the state of the service’s
concurrent computation and only provides a value to clients when the
computation is complete.

— (Buschmann, Henney, and Schmidt, 2007)

Thread 2

Client

Future

- result

+ GetResult(): result

+ SetResult(result)

Thread 2

Service

+ Method(): Future

Task

+ Run(Future)1 2

4
3

block until
result is set

return
5

Figure 8.33: Future

Participants and Bindings:

• Client: Depends on the Future-Interface and the Service-
Interface at compile time. Calls the Service and gets a Future
at runtime. After that, gets the Result of the Future at runtime.
• Service: Creates a Future-Object at runtime. Creates a Task

which runs in parallel in a separate Thread at runtime and
sets the Future-Object. Returns the Future object to the caller
which relates to the result of that Task at runtime.
• Task: Depends on the Future-Interface at compile time. Does

some operation in parallel in an own thread at runtime and
after completion sets the result on the Future at runtime.
• Future: Depends on the result-object at compile time. Is cre-

ated by the Service and handled over to the Task and the
Client at runtime. Waits until the Result has been set by the
Task and returns it to the Client afterwards at runtime.

139

8 POSA 4 Design Patterns

8.33 Copied Value

Define a value object type whose instances are copyable. When a value is used
in communication with another thread, ensure that the value is copied.

— (Buschmann, Henney, and Schmidt, 2007)

Thread 1

Client

Service

CopiedValue

- value

+ GetValue(): value

+ Copy(): CopiedValued

Original

- value

+ GetValue(): value

+ Copy(): CopiedValued

Copy

- value

+ GetValue(): value

+ Copy(): CopiedValued

create

copy call

1

2 3

Thread 2

Figure 8.34: Copied Value

Participants and Bindings:

• Client: Depends on the CopiedValue-Interface at compile
time. Creates and manages the Original at runtime. Copies
the Original and calls the service with the Copy at runtime.
• CopiedValue: Implements a copied value object compile

time.
• Original: The Original value created by the Client at runtime.

Gets copied at runtime.
• Copy: The copy of the Original value to be handled over to

the Service at runtime.
• Service: Dependent on the CopiedValue at compile time. Gets

called with the Copy-Object at runtime.

140

8.34 Immutable Value

8.34 Immutable Value

Define a value object type whose instances are immutable. The internal state
of a value object is set at construction and no subsequent modifications are
allowed.

— (Buschmann, Henney, and Schmidt, 2007)

Client

ImmutableValue

- const value

+ ImmutableValue(value)

+ GetValue(): value

create

get value

distribute

Object

Object
Object

get value

1

2

3

3

no public reference!
no setter!
no changing mechanism!

Figure 8.35: Immutable Value

Participants and Bindings:

• Client: Depends on the ImmutableValue and the corre-
sponding Value-Object at compile time. Creates the Immutabl-
eValue object and uses it at runtime.
• ImmutableValue: Depends on the Type of the underlying

value object at compile time. Gets created and accessed at
runtime.
• Objects: Depends on the ImmutableValue object and the

underlying Value at compile time. Accesses it at runtime. Get
shared references of the ImmutableValue at runtime, which
all refer to the same ImmutableValue instance with the same
underlying value object.

141

8 POSA 4 Design Patterns

8.35 Double Dispatch

Pass the caller object to the receiver object as an extra argument. Within the
receiver, call back the caller object to run caller-class dependent logic, passing
the receiver as an additional argument, so that the caller can behave
appropriately.

— (Buschmann, Henney, and Schmidt, 2007)

Client

Caller

+ Method()

+ Callback(ReceiverA)

+ Callback(ReceiverB)

ReceiverA

+ Accept(Caller)

+ MethodA()

«interface»
Receiver

+ Accept(Caller)

ReceiverB

+ Accept(Caller)

+ MethodB()

caller.Callback(this)

1 2

3

4

receiver.MethodA() receiver.MethodB()

Figure 8.36: Double Dispatch

Participants and Bindings:

• Client: Dependent on the Caller at compile time. Calls the
Method at runtime.
• Caller: Dependent on the Receiver-Interface and the Receiver-

Implementations at compile time. Calls the Accept-Method
on the Interface at runtime. The corresponding Callback
method is called by the Receiver at runtime and calls the
respective methods on the Receiver-Object at runtime.
• Receiver-Interface: Specifies the Interface for all Receivers

at compile time.
• Receiver: Implements the Receiver-Interface at compile time.

Depends on the Caller Object at compile time. Calls the re-
spective overloaded Callback on the Caller Object at runtime.

142

8.36 Context Object

8.36 Context Object

Represent the information and services in an object that encapsulates the
required context. Provide this object to the operations, component, and layers
that need the context.

— (Buschmann, Henney, and Schmidt, 2007)

Client

Component

+ Service(ContextObject)

create
ContextObject

- context

+ GetContext()

call

1

2

3

Figure 8.37: Context Object

Participants and Bindings:

• Client: Depends on the ContextObject and the Component
at compile time. Creates the ContextObject at runtime and
handles it over to the Component at runtime by calling the
Service-Method.
• ContextObject: Defines a container for the context at compile

time. Gets created by the Client at runtime.
• Context: Placeholder for the Context of the Service-Method

Call. Is used by the Component at runtime.
• Component: Depends on the ContextObject at compile time.

Uses it when the Service-Method is called at runtime.

143

8 POSA 4 Design Patterns

8.37 Data Transfer Object

Bundle all data items that might be needed into a single data transfer object
used for querying or updating attributes together.

— (Buschmann, Henney, and Schmidt, 2007)

Client

Component

+ Service(): DataTransferObject

creates
DataTransferObject

- data

+ GetData()

invoke1

23

returns DTO

4

Figure 8.38: Data Transfer Object

Participants and Bindings:

• Client: Depends on the Component and the Data Transfer
Object at compile time. Calls the Component at runtime and
uses the Data contained in the returned Data Transfer Object
at runtime.
• Data Transfer Object: Container for the Data specified at

compile time. Is created by the Component at runtime and
returned to the Caller of the Service-Method.s
• Data: Placeholder for the actual data returned by the Service-

Method.
• Component: Depends on the Data Transfer Object at compile

time. Creates it and sets the Data at runtime.

144

8.38 Execute-Around Object

8.38 Execute-Around Object

Provide a helper class whose constructor implements the pre-sequence action
and whose destructor the post-sequence action. Define an object of this class
on the stack before the sequence of statements, and provide its constructor
with the necessary arguments to perform the pre- and post-sequence actions.

— (Buschmann, Henney, and Schmidt, 2007)

ExecuteAroundObject

+ ExecuteAroundObject()

+ ~ExecuteAroundObject()

PreSequenceAction()

PostSequenceAction()

Client

+ Method()

Method():

 ExecuteAroundObject e

 Operation()

 return

on enter

on exit

Figure 8.39: Execute-Around Object

Participants and Bindings:

• Client: Depends on the Execute-Around Object at compile
time and uses it at runtime. Calls the Method at runtime.
• Execute-Around Object: Implements the PreSequenceAc-

tion and PostSequenceAction at compile time. Gets repeatedly
created and destroyed on the stack at runtime.
• Pre-Sequence-Action: The Action which is executed at cre-

ation of the ExecuteAroundObject. Is executed at runtime
before the actual operation of the client.
• Post-Sequence-Action: The action which is executed at the

destruction of the ExecuteAroundObject. Is called at runtime
either manually or at stack-unwinding after the method
exits (but more important: after the operation was executed).

145

8 POSA 4 Design Patterns

8.39 Null Object

Provide something for nothing: a class that conforms to the interface required
of the object reference, implementing all of its methods to do nothing, or to
return suitable default values. use an instance of this class, a so-called “null
object”, when the object reference would otherwise have been null.

— (Buschmann, Henney, and Schmidt, 2007)

Client

NullObject

+ Method1()

+ Method2()

«interface»
BaseInterface

+ Method1()

+ Method2()

BaseImplementation

+ Method1()

+ Method2()
void Method1() {}
void Method2() {}

Figure 8.40: Null Object

Participants and Bindings:

• Client: Depends on the BaseInterface at compile time. Uses
its implementations at runtime.
• BaseInterface: Specifies a base interface at compile time.
• BaseImplementation: Implements the BaseInterface at com-

pile time. Gets used by the Client at runtime.
• Null Object: Implements the BaseInterface with empty

methods at compile time. Gets used by the Client at run-
time, without him recognizing that this is just a placeholder.

146

8.40 Declarative Component Con�guration

8.40 Declarative Component

Con�guration

Specify a separate declarative component configuration for each component
that indicates to the runtime environment the system resources and services it
needs to execute correctly, as well as how it will use these resources and
services.

— (Buschmann, Henney, and Schmidt, 2007)

Component

+ MethodA()

+ MethodB()

+ MethodC()

Runtime Environment

<configuration>

 <class name="Component"

 instanceCount="1"

 instantiationMode="OnDemand">

</configuration>

Figure 8.41: Declarative Component Configuration

Participants and Bindings:

• Runtime Environment: Reads the configuration and man-
ages the described Component with the respective behavior
at runtime.
• Component: Implements some functionality at compile time.

Gets created and managed at runtime by the Runtime Envi-
ronment.
• Configuration: Describes some behavioral aspects of the

component for the Runtime Environment at pre-compile-time,
compile time, configuration time, startup time or even runtime
(depending on the implementation).

147

8 POSA 4 Design Patterns

8.41 Methods for States

Implement state-dependent behavior as internal methods of the object, and use
data structures to reference the methods that represent the behavior of a
specific state.

— (Buschmann, Henney, and Schmidt, 2007)

Client

Component

- currentMethod: «function»

- stateA_Method()

- stateB_Method()

+ Method() return currentMethod()

currentMethod = stateB_Method
...

Figure 8.42: Methods for States

Participants and Bindings:

• Client: Depends on the Component at compile time. Calls
the Method at runtime.
• Component: Implements the state methods at compile time.

Gets called and changes its internal state at runtime.
• State Methods: Implement the different states inside the

Component at compile time. Get called and switch at runtime.

148

8.42 Collections for States

8.42 Collections for States

Within the client, represent each state of interest by a separate collection that
refers to all objects in that state.

— (Buschmann, Henney, and Schmidt, 2007)

Client

StateCollection

- objectsInStateA[]

- objectsInStateB[]

- objectsInStateC[]

+ Step()

- DoStateA(Object)

- DoStateB(Object)

- DoStateC(Object)

Object

+ Method1()

+ Method2()

+ ...

Object

+ Method1()

+ Method2()

+ ...

Object

+ Method1()

+ Method2()

+ ...

Object

+ Method1()

+ Method2()

+ ...

*

*

*

for obj in objectsInStateA:
 DoStateA(obj)

 newObjectsInStateB.Add(obj)

for obj in objectsInStateB:
 DoStateB(obj)

 newObjectsInStateC.Add(obj)

...

objectsInStateA = newObjectsInStateA

objectsInStateB = newObjectsInStateB

objectsInStateC = newObjectsInStateC

Figure 8.43: Collections for States

Participants and Bindings:

• Client: Depends on the StateCollection at compile time. Calls
the Step Method at runtime.
• StateCollection: Depends on the Objects at compile time.

Calls the Methods on the objects at runtime (depending in
which state collection they are). Moves the objects between
the Object-Lists to change their state.
• Objects: Are stored in the object-Lists at runtime. Get called

at runtime.
• Object-Lists: Store the Objects which are in the respective

State at runtime.
• State-Methods: Depends on the Object-Interface at compile

time. Act on the Objects which are in the respective State at
runtime.

149

8 POSA 4 Design Patterns

8.43 Container

Define a container to provide the execution environment for a component that
supports the necessary technical infrastructure to integrate components into
application-specific usage scenarios, and on specific system platforms, without
tightly coupling the components with the applications or platforms.

— (Buschmann, Henney, and Schmidt, 2007)

Component
Component

Client

Container

- components[]

+ Register(component)

+ Unregister(component)

+ GetComponent(name): component

Component

Figure 8.44: Container

Participants and Bindings:

• Client: Depends on the Container and the Components at
compile time. Gets the needed Components from the Con-
tainer at runtime. Uses the Components at runtime.
• Container: Stores a list of components at runtime. Gets re-

quested by the Client at runtime.
• Component: Implements some functionality at compile time.

Gets created and registered at the Container at runtime. Gets
used by the Client at runtime.

150

8.44 Object Manager

8.44 Object Manager

Separate object usage from object lifecycle and access control. Introduce a
separate object manager whose responsibility is to manage and maintain a set
of objects.

— (Buschmann, Henney, and Schmidt, 2007)

Client

ObjectManager

- ManagedObjects[]

+ Create()

+ Insert()

+ Find()

+ Delete()

+ Remove()

Managed

Object

Managed

Object

1

2

«interface»
Interface

Managed

Object

Managed

Object

Figure 8.45: Object Manager

Participants and Bindings:

• Client: Depends on the ObjectManager at compile time. De-
pends on the object interfaces at compile time. Uses the Ob-
jectManager to manage the objects at runtime, uses the ob-
jects at runtime.
• Object Manager: Manages a list of objects at runtime.
• Managed Object: Implements the interface at compile time.

Gets created and destroyed by the ObjectManager at runtime.
Gets used by the Client at runtime.

151

8 POSA 4 Design Patterns

8.45 Virtual Proxy

Introduce a proxy for an object that does not currently exist in memory. The
proxy may be able to handle simple requests, such as a query of the intended
target objects’ identifying key, but when more complete object behavior is
needed, the actual target objects is created and initialized as needed.

— (Buschmann, Henney, and Schmidt, 2007)

Client

VirtualProxy

+ MethodA()

+ MethodB()

Implementation

+ MethodA()

+ MethodB()create & invoke

return new Implementation().MethodB()

12

3

«interface»
ObjectInterface

+ MethodA()

+ MethodB()

Figure 8.46: Virtual Proxy

Participants and Bindings:

• Client: Depends on the Object Interface at compile time. Uses
the Virtual Proxy at runtime (and also indirectly the Imple-
mentation at runtime).
• Virtual Proxy: Implements the Object Interface at compile

time. Depends on the Implementation at compile time. Han-
dles some calls at runtime by itself, but delegates expensive
calls to the Implementation at runtime.
• Object Interface: Specifies the interface for the Implemen-

tation and Virtual Proxy at compile time.
• Implementation: Implements the Object Interface at com-

pile time. Gets created and called by the Virtual Proxy on
demand at runtime.

152

8.46 Lifecycle Callback

8.46 Lifecycle Callback

Define key lifecycle events as callbacks in an interface that is supported by
framework objects. The framework uses the callbacks to control the objects’s
lifecycle explicitly.

— (Buschmann, Henney, and Schmidt, 2007)

Framework

FrameworkObject

+ Create()

+ Init()

+ Dispose()

+ ...

«interface»
LifecycleCallback

+ Create

+ Init

+ Dispose

+ ...

Figure 8.47: Lifecycle Callback

Participants and Bindings:

• Framework: Depends on the LifecycleCallback-Interface at
compile time. Calls the respective methods on the Frame-
workObjects at runtime.
• LifecycleCallback: Specifies the needed interface in the

Framework for the FrameworkObjects at compile time.
• FrameworkObject: Implements the LifycycleCallback-Interface

at compile time. Gets used by the Framework at runtime.

153

8 POSA 4 Design Patterns

8.47 Activator

Minimize resource consumption by activating services on demand and
deactivating services when they are no longer accessed by clients. Use proxies
to decouple client access transparently from service behavior and lifecycle
management.

— (Buschmann, Henney, and Schmidt, 2007)

Client

Activator

+ Activate(): Resource

Proxy

+ Method()

Resource

+ Method()

Figure 8.48: Activator

Participants and Bindings:

• Client: Depends on the Proxy-Interface at compile time. Calls
the method at runtime.
• Proxy: Implements the Proxy-Interface at compile time. De-

pends on the Activator-Interface and the Resource at compile
time. Calls the Activator at runtime and uses the Resource at
runtime.
• Activator: Depends on the Resource at compile time. Gets

called by the Proxy at runtime and returns a Resource at
runtime.
• Resource: Get activated at runtime by the Activator.

154

8.48 Automated Garbage Collection

8.48 Automated Garbage Collection

Define a garbage collector that identifies which objects are no longer
referenced by live objects in the application,m and reclaims their memory. The
garbage collector performs the identification and reclamation automatically
and transparently.

— (Buschmann, Henney, and Schmidt, 2007)

Heap

GarbageCollector

+ Collect() delete object

Figure 8.49: Automated Garbage Collection

Participants and Bindings: The Garbage Collector depends
on the structure of the Heap and the object reference method
at compile time. Periodically checks the object reference graph or
reference count on the heap and deletes all objects which are not
referenced at runtime.

155

8 POSA 4 Design Patterns

8.49 Disposal Method

Encapsulate the concrete details of objects disposal withing a dedicated
method, instead of letting clients delete or discard objects themselves.

— (Buschmann, Henney, and Schmidt, 2007)

Client

ObjectManager

+ Create(): Object

+ Dispose(Object)
call

Object
delete1 2

Figure 8.50: Disposal Method

Participants and Bindings:

• Client: Depends on the ObjectManager at compile time. Calls
the Dispose-Method at runtime.
• ObjectManager: Specifies the Interface for managing Ob-

jects (especially disposing object) at compile time. Upon call-
ing the Dispose method it deletes the given object at runtime.

156

8.50 Database Access Layer

8.50 Database Access Layer

Introduce a separate database access layer between the application and the
relational database that provides a stable object-oriented data-access interface
for application use, backed by an implementation that is database-centric.

— (Buschmann, Henney, and Schmidt, 2007)

Relational Database

Database Access Layer

Object Oriented Application

SQL

Object Oriented Interface

Figure 8.51: Database Access Layer

Participants and Bindings:

• Object Oriented Application: Depends on the Interfaces
provided by the Database Access Layer at compile time. Ma-
nipulates objects in an object oriented way at runtime.
• Database Access Layer: Specifies an object oriented Inter-

face for the Application at compile time. Implements access-
ing the Relational Database by translating and reflecting re-
quests to SQL at compile time, although dynamic approaches
(like hibernate, or LINQ to SQL) could defer the creation
of the SQL query to runtime. Executes those requests at
runtime.
• Relational Database: Represents the data as relational ta-

bles in normal form which can be manipulated with SQL
queries at runtime. The database has its own development
lifecycle and therefore can be established at any time of the
application lifecycle, but the latest binding time is actually
at runtime when an SQL query is applied to it.

157

8 POSA 4 Design Patterns

8.51 Data Mapper

Introduce a data mapper for each type of persistent application objects whose
responsibility is to transfer data from the object to the relational database, and
vice-versa.

— (Buschmann, Henney, and Schmidt, 2007)

Client DataMapper

+ Create(): object

+ Read(id): object

+ Update(object)

+ Delete(object)

Relational Database

ID Name Age

0 Gamma 55

1 Johnson 61

Object

+ ID

+ Name

+ Age

Figure 8.52: Data Mapper

Participants and Bindings:

• Client: Depends on the Object and the DataMapper at com-
pile time. Manipulates the Object at runtime and handles it
over to the DataMapper to persist the changes at runtime.
• Object: Specifies an object oriented way to access the in-

formation of an object at compile time. Gets manipulated at
runtime and persisted by the DataMapper into the database
at runtime.
• Data Mapper: Depends on the Object and communication

form to the Relational Database (e.g. SQL) at compile time.
Also depends on the data structure inside the Relational
Database at compile time (but this could be deferred to run-
time by a dynamic approach like hibernate or LINQ to SQL).
Gets called by the Client at runtime and translates this calls
to SQL queries which are applied to the Database at runtime.
• Relational Database: Represents the data as tables in nor-

mal form which can be manipulated with SQL queries at
runtime. The database has its own development lifecycle and
therefore can be established at any time of the application
lifecycle, but the latest binding time is actually at runtime
when an SQL query is applied to it.

158

8.52 Row Data Gateway

8.52 Row Data Gateway

Wrap the data structures and their database access code within row data
gateways whose internal structure looks exactly like a database record, but
which offer a representation-independent data access interface to clients.

— (Buschmann, Henney, and Schmidt, 2007)

Client

ID Name Age

0 Gamma 55

1 Johnson 61

RowDataGateway

+ ID (get)

+ Name (get)

+ Age (get)

+ Insert(id, name, age)

+ Update(id, name, age)

+ Delete()

Row

Data gets persisted on calling
the Insert/Update/Delete Methods

Figure 8.53: Row Data Gateway

Participants and Bindings:

• Client: Depends on the RowDataGateway Interface at com-
pile time. Calls the Methods at runtime to manipulate data
rows at runtime.
• RowDataGateway: Depends on the Database communica-

tion method and the data structure (data table) inside the
database at compile time (or later when using dynamic ap-
proaches like configurations as in hibernate or LINQ to
SQL).

159

8 POSA 4 Design Patterns

8.53 Table Data Gateway

Wrap the database access code for a specific database table within a specialized
table data gateway, and provide it with an interface that allows applications to
work on domain-specific data collections.

— (Buschmann, Henney, and Schmidt, 2007)

Client
ID Name Age

0 Gamma 55

1 Johnson 61

TableDataGateway

+ Rows[]

+ Columns[]

+ Create(): row

+ Insert(row)

+ Update(row)

+ Read(id): row

+ Delete(row)

row e.g. [0, "Gamma", 55]

Table

Figure 8.54: Table Data Gateway

Participants and Bindings:

• Client: Depends on the TableDataGateway Interface at com-
pile time. Calls the Methods at runtime to manipulate data
rows at runtime.
• TableDataGateway: Depends on the Database communi-

cation method and the data structure (data table) inside
the database at compile time (or later when using dynamic
approaches like configurations as in hibernate or LINQ to
SQL).

160

8.54 Active Record

8.54 Active Record

Encapsulate the data, the corresponding database access code, and the
data-centered domain behavior in active record objects that offer a
domain-specific interface to clients.

— (Buschmann, Henney, and Schmidt, 2007)

Client
ID Name Age

0 Gamma 55

1 Johnson 61

ActiveRecord

+ ID

+ Name

+ Age

+ Method1()

+ Method2()

Row

Changes automatically
persisted to corresponding Row

Figure 8.55: Active Record

Participants and Bindings:

• Client: Depends on the Active Record Interface at compile
time. Manipulates the object directly at runtime.
• Active Record: Depends on the Database communication

method and the Table-Structure at compile time (or later
with dynamic approaches like hibernate or LINQ to SQL).
Gets changed by the Client at runtime and afterwards per-
sists these changes automatically into the Database also at
runtime.

161

8 POSA 4 Design Patterns

8.55 Duplicate Patterns

In POSA4 some already described patterns where also depicted.
Here is a list of the duplicate patterns and where to find them in
the previous books:

• Layers→ see POSA1 Layers (60)
• Command Processor→ see POSA1 Command Processor (71)
• Component Configurator→ see POSA2 Component Con-

figurator (79)
• Model-View-Controller→ see POSA1 Model-View-Controller (65)
• Presentation-Abstraction-Control→ see POSA1 Presentation-

Abstraction-Control (66)
• Microkernel→ see POSA1 Microkernel (68)
• Reflection→ see POSA1 Reflection (69)
• Pipes and Filters→ see POSA1 Pipes and Filters (61)
• Blackboard→ see POSA1 Blackboard (62)
• Publisher-Subscriber→ see GOF Observer (51)
• Broker→ see POSA1 Broker (63)
• Reactor→ see POSA2 Reactor (82)
• Proactor→ see POSA2 Proactor (83)
• Acceptor-Connector→ see POSA2 Acceptor-Connector (85)
• Asynchronous Completion Token → see POSA2 Asyn-

chronous Completion Token (84)
• Extension Interface→ see POSA2 Extension Interface (81)
• Proxy→ see GOF Proxy (53)
• Facade→ see GOF Facade (44)
• Iterator→ see GOF Iterator (48)
• Encapsulated Implementation→ see GOF Proxy (53)
• Whole-Part→ see GOF Composite (42)
• Composite→ see GOF Composite (42)
• Master-Slave→ see POSA2 Master-Slave (70)
• Half-Sync/Half-Async→ see POSA2 Half-Sync/Half-Async (92).
• Leader/Followers→ see POSA2 Leader/Followers (93)
• Active Object→ see POSA2 Active Object (90)
• Monitor Object→ see POSA2 Monitor Object (91)
• Thread-Safe Interface → see POSA2 Thread-Safe Inter-

162

8.55 Duplicate Patterns

face (88)
• Double-Checked Locking→ see POSA2 Double-Checked

Locking (89)
• Strategized Locking→ see POSA2 Strategized Locking (87)
• Scoped Locking→ see POSA2 Scoped Locking (86)
• Thread-Specific Storage→ see POSA2 Thread-Specific Stor-

age (94)
• Observer→ see GOF Observer (51)
• Mediator→ see GOF Mediator (49)
• Command→ see GOF Command (41)
• Memento→ see GOF Memento (50)
• Bridge→ see GOF Bridge (38)
• Object Adapter→ see GOF Adapter (37)
• Chain of Responsibility→ see GOF Chain of Responsibil-

ity (40)
• Interpreter→ see GOF Interpreter (47)
• Interceptor→ see POSA2 Interceptor (80)
• Visitor→ see GOF Visitor (58)
• Decorator→ see GOF Decorator (43)
• Template Method→ see GOF Template Method (57)
• Strategy→ see GOF Strategy (56)
• Lookup→ see POSA3 Lookup (96)
• Task Coordinator→ see POSA3 Coordinator (102)
• Resource Pool→ see POSA3 Pooling (101)
• Resource Cache→ see POSA3 Caching (100)
• Lazy Acquisition→ see POSA3 Lazy Acquisition (97)
• Eager Acquisition→ see POSA3 Eager Acquisition (98)
• Partial Acquisition→ see POSA3 Partial Acquisition (99)
• Evictor→ see POSA3 Evictor (104)
• Leasing→ see POSA3 Leasing (103)
• Counting Handle→ see POSA1 Counted Pointer (75)
• Abstract Factory→ see GOF Abstract Factory (36)
• Builder→ see GOF Builder (39)
• Factory Method→ see GOF Factory Method (45)
• Wrapper Facade→ see POSA2 Wrapper Facade (78)
• Objects for States→ see GOF State (55)

163

9 Conclusion

In this thesis, the importance of binding time as an additional
supportive criterion for selecting the right design pattern was
demonstrated. If the context and requirements are quite simi-
lar for multiple patterns, binding time considerations can help
choosing the best fitting pattern for a given problem, as is shown
in the binding time scenarios in chapter 3 Finding the Right Pat-
tern. The program timeline (see chapter 2.3) defines the phases of
time for the whole lifetime of a program. Binding may happen in
any of these phases from early architectural decisions until late
dynamic bindings and configurations at runtime. The later the
binding in this timeline happens, the more flexible an application
is, but this flexibility comes with the price of complexity and
higher costs which is often not desirable.

Binding time considerations can help out of this dilemma, by
making clear statements which bindings are needed at which
phase of the program timeline. In such a way, the design patterns
which support the requirements and introduce the least com-
plexity, can be selected amongst other competing alternatives.

165

Bibliography

Alexander, Christopher (1979). The Timeless Way of Building, p. 552.
isbn: 0195024028. doi: 10.1080/00918360802623131 (cit. on
p. 5).

Beck, Kent (1996). SmallTalk Best Practice Patterns. New Jersey:
Prentice Hall, p. 240. isbn: 978-0134769042 (cit. on p. 8).

Booch, Grady, Ivar Jacobson, and James Rumbaugh (1999). The
Unified Modeling Language Reference Manual, p. 550. isbn:
020130998X (cit. on p. 9).

Burch, Carl (2012). Binding time. (Visited on 04/22/2016) (cit. on
p. 22).

Buschmann, Frank, Kevlin Henney, and Douglas Schmidt (2007).
Pattern-Oriented Software Architecture Volume 4: A Pattern Lan-
guage for Distributed Computing, p. 639. isbn: 9780470059029

(cit. on pp. 2, 7, 22, 105, 108–161).
Buschmann, Frank, Regine Meunier, et al. (1996). “Pattern-Oriented

Software Architecture Volume 1: A system of patterns.” In:
John Wiley&Sons 1, p. 476. issn: 0007-1250. doi: 10.1192/bjp.
108.452.101 (cit. on pp. 2, 6, 22, 59–63, 65, 66, 68–75).

C2 (2016). Pattern Forms. (Visited on 09/25/2016) (cit. on p. 4).
Capilla, Rafael and Jan Bosch (2013). “Binding Time and Evolu-

tion.” In: Systems and Software Variability Management. Berlin,
Heidelberg: Springer Berlin Heidelberg. Chap. 4, pp. 57–73.
isbn: 9783642365836. doi: 10.1007/978-3-642-36583-6_4
(cit. on pp. 11, 23).

Coplien, James O. (1995). Pattern Languages of Program Design. Pat-
tern Languages of Program Design. Addison-Wesley, p. 576.
isbn: 978-0201607345 (cit. on pp. 8, 23).

Coplien, James O. and John Vlissides (1996). Pattern Languages
of Program Design 2. Pattern Languages of Program Design.

167

http://dx.doi.org/10.1080/00918360802623131
http://dx.doi.org/10.1192/bjp.108.452.101
http://dx.doi.org/10.1192/bjp.108.452.101
http://dx.doi.org/10.1007/978-3-642-36583-6_4

Bibliography

Addison-Wesley, p. 624. isbn: 978-0201895278 (cit. on pp. 8,
23).

Foote, Brian, Neil Harrison, and Hans Rohnert (1999). Pattern
Languages of Program Design 4. Pattern Languages of Program
Design. Addison-Wesley, p. 784. isbn: 978-0201433043 (cit. on
p. 23).

Fritsch, Claudia, Andreas Lehn, and Thomas Strohm (2002).
“Evaluating Variability Implementation Mechanisms.” In: Pro-
ceedings of International Workshop on Product Line Engineering,
pp. 59–64 (cit. on pp. 11, 22).

Gamma, Erich et al. (1995). Design Patterns - Elements of Reusable
Object-Oriented Software. 1st ed. Boston, USA: Addison-Wesley,
p. 395. isbn: 978-0201633610 (cit. on pp. 2, 3, 6, 22, 23, 31, 32,
35–58).

Jaring, Michel and Jan Bosch (2002). “Representing Variability in
Software Product Lines: A Case Study.” In: Software Product
Lines (LNCS). LNCS. Vol. 2379. Berlin Heidelberg: Springer-
Verlag, pp. 15–36. isbn: 3540439854. doi: 10.1007/3-540-
45652-X_2 (cit. on p. 11).

Kandt, Kirk (2003). “Software Design Principles and Practices.”
In: Proceedings of the ICSE’03, pp. 1–9 (cit. on p. 20).

Kircher, Michael and Prashant Jain (2004). Pattern-Oriented Soft-
ware Architecture Volume 3: Patterns for Resource Management.
Vol. 3. isbn: 0470845252 (cit. on pp. 2, 6, 22, 95–104).

Kreiner, Christian (2013). “A binding time guide to creational
patterns.” In: Proceedings of the 18th European Conference on
Pattern Languages of Program - EuroPLoP ’13. New York, New
York, USA: ACM Press, pp. 1–10. isbn: 9781450334655. doi:
10.1145/2739011.2739025 (cit. on pp. 10, 22).

Krisper, Michael and Christian Kreiner (2016). “Describing Bind-
ing Time in Software Design Patterns.” In: EuroPLoP ’16 (cit.
on pp. 12, 22).

Krueger, Charles W (2004). “Towards a Taxonomy for Software
Product Lines.” In: Software Product-Family Engineering (LNCS).
Ed. by Frank van der Linden. Vol. 3014. Berlin Heidelberg:
Springer Verlag, pp. 323–331. isbn: 978-3-540-24667-1. doi:
10.1007/978-3-540-24667-1_25 (cit. on pp. 11, 23).

168

http://dx.doi.org/10.1007/3-540-45652-X_2
http://dx.doi.org/10.1007/3-540-45652-X_2
http://dx.doi.org/10.1145/2739011.2739025
http://dx.doi.org/10.1007/978-3-540-24667-1_25

Bibliography

Linden, Frank van der, Klaus Schmid, and Eelco Rommes (2007).
Software Product Lines in Action. Berlin, Heidelberg: Springer
Berlin Heidelberg. isbn: 978-3-540-71436-1. doi: 10.1007/
978-3-540-71437-8 (cit. on p. 11).

Manolescu, Dragos, Markus Voelter, and James Noble (2006).
Pattern Languages of Program Design 5. Pattern Languages of
Program Design. Addison-Wesley Professional, p. 624. isbn:
978-0321321947 (cit. on p. 23).

Marquardt, Klaus (2005). “Indecisive generality.” In: Proceedings
of the EuroPLoP’05, p. 16. isbn: 978-387940805-4 (cit. on p. 20).

Martin, Robert C., Dirk Riehle, and Frank Buschmann (1007).
Pattern Languages of Program Design 3. Pattern Languages of
Program Design. Addison-Wesley Professional, p. 656. isbn:
978-0201310115 (cit. on p. 23).

Myllymäki, Tommi (2001). Variability Management in Software
Product Lines. Tech. rep. Tampere: Tampere University of
Technology, Software Systems Laboratory, ARCHIMEDES,
p. 49 (cit. on pp. 11, 22).

Nord, Joe (2011). “History of DLL Hell and why it will repeat
itself” (cit. on p. 19).

Schmidt, Douglas et al. (2000). Pattern-Oriented Software Archi-
tecture Volume 2: Patterns for Concurrent and Networked Ob-
jects. Vol. 2, pp. 1–482. isbn: 0471606952. doi: 10.1080/
13581650120105534 (cit. on pp. 2, 6, 22, 77–94).

Svahnberg, Mikael, Jilles van Gurp, and Jan Bosch (2005). “A
taxonomy of variability realization techniques.” In: Software:
Practice and Experience 35.8, pp. 705–754. issn: 0038-0644. doi:
10.1002/spe.652 (cit. on p. 22).

Wirth, Niklaus (1996). Compiler Construction. Lecture Notes in
Computer Science. Addison Wesley, p. 176. isbn: 978-0201403534.
doi: 10.1007/11688839. arXiv: arXiv:1011.1669v3 (cit. on
p. 18).

169

http://dx.doi.org/10.1007/978-3-540-71437-8
http://dx.doi.org/10.1007/978-3-540-71437-8
http://dx.doi.org/10.1080/13581650120105534
http://dx.doi.org/10.1080/13581650120105534
http://dx.doi.org/10.1002/spe.652
http://dx.doi.org/10.1007/11688839
http://arxiv.org/abs/arXiv:1011.1669v3

	Abstract
	Introduction
	Background and Related Work
	Design Patterns
	Pattern Forms
	Pattern Form used in this Work

	Binding Time
	Phase
	Participant
	Responsible Role
	Binding Sequence

	Program Timeline
	Context and Motivating Scenarios
	Software Architect Scenario
	Software Developer Scenario

	Related Work

	Finding the Right Pattern
	Method Calls - Dispatching Patterns
	Creational Patterns
	Behavior and Processing Patterns
	Concurrency and Synchronization Patterns

	Gang of Four Design Patterns
	Abstract Factory
	Adapter
	Bridge
	Builder
	Chain of Responsibility
	Command
	Composite
	Decorator
	Facade
	Factory Method
	Flyweight
	Interpreter
	Iterator
	Mediator
	Memento
	Observer
	Prototype
	Proxy
	Singleton
	State
	Strategy
	Template Method
	Visitor

	POSA 1 Design Patterns
	Layers
	Pipes and Filters
	Blackboard
	Broker
	Model-View-Controller
	Presentation-Abstraction-Control
	Microkernel
	Reflection
	Master-Slave
	Command Processor
	View Handler
	Forwarder-Receiver
	Client-Dispatcher-Server
	Counted Pointer
	Duplicate Patterns

	POSA 2 Design Patterns
	Wrapper Facade
	Component Configurator
	Interceptor
	Extension Interface
	Reactor
	Proactor
	Asynchronous Completion Token
	Acceptor-Connector
	Scoped Locking
	Strategized Locking
	Thread-Safe Interface
	Double-Checked Locking
	Active Object
	Monitor Object
	Half-Sync/Half-Async
	Leader/Followers
	Thread-Specific Storage

	POSA 3 Design Patterns
	Lookup
	Lazy Acquisition
	Eager Acquisition
	Partial Acquisition
	Caching
	Pooling
	Coordinator
	Resource Lifecycle Manager
	Leasing
	Evictor

	POSA 4 Design Patterns
	Domain Model
	Shared Repository
	Domain Object
	Messaging
	Message
	Message Channel
	Message Endpoint
	Message Translator
	Message Router
	Client Proxy
	Requestor
	Invoker
	Client Request Handler
	Server Request Handler
	Explicit Interface
	Introspective Interface
	Dynamic Invocation Interface
	Business Delegate
	Combined Method
	Enumeration Method
	Batch Method
	Half-Object plus Protocol
	Replicated Component Group
	Page Controller
	Front Controller
	Application Controller
	Template View
	Transform View
	Firewall Proxy
	Authorization
	Guarded Suspension
	Future
	Copied Value
	Immutable Value
	Double Dispatch
	Context Object
	Data Transfer Object
	Execute-Around Object
	Null Object
	Declarative Component Configuration
	Methods for States
	Collections for States
	Container
	Object Manager
	Virtual Proxy
	Lifecycle Callback
	Activator
	Automated Garbage Collection
	Disposal Method
	Database Access Layer
	Data Mapper
	Row Data Gateway
	Table Data Gateway
	Active Record
	Duplicate Patterns

	Conclusion
	Bibliography

