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Abstract

A global rise of surface temperature has been observed since the late 19th century
and has been accelerating since the last couple of decades. As such a warming will

undoubtedly have large impacts on humanity, the projection of a future climate still
remains a challenging task. Climate model outcomes serve as the most detailed basis
for such a future climate change analysis, but at the same time these models comprise
of large uncertainties. This is due to simplifications of physical processes, model errors
and the unknown future evolution of greenhouse gas concentrations. Dealing with these
uncertainties is one of the major topics in modern climate research.
In this work we address some of the current scientific questions of interest, starting with

the data processing of huge data sets of climate model ensembles and ending with the
statistical inference on possible climate changes. The questions to be answered mostly
arose within projects such as the EU-FP7 large scale project IMPACT2C1, where the
ultimate aim was to understand the impacts of climate change on sectors important to
humanity such as water, energy, and agriculture, while accounting for the climate model
uncertainties and communicating them to the public. During such projects the following
three main topics for the thesis were developed:
In the first step, we present the R tool wux which enables automated retrieval and

processing of entire ensembles of climate simulations. Besides generating datasets for
extensive statistical analysis, this tool also provides routines for simple exploratory data
analysis of such ensembles.
Second, we present a method to select a subset of representative climate models from

such ensembles, a procedure often needed for further climate impact research like hydro-
logical modelling. This method detects and accounts for model inter-dependencies and
tries to conserve the information content of the entire ensemble.
And third, as a last point in a climate change analysis, we show how to extract all the

information available in such an ensemble with a novel way for a statistical uncertainty
analysis. The innovative part in this method is the explicit formulation of the inter-
model dependencies as well as the assessment of the non-normally distributed nature of
projected climate change, which so far has not been performed in literature. Using a
hierarchical model approach, it is also possible to quantify the relative importance of the
individual sources of uncertainty and thereby to account for natural internal variability
on different time scales, as well as uncertainties induced by the climate models.
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Zusammenfassung

Seit dem 19ten Jahrhundert kann man einen globalen Temperaturanstieg beobachten,
der sich in den letzten Jahrzehnten zudem bescheunigt hat. Dieser Anstieg wird

zweifellos Auswirkungen auf die Gesellschaft haben, allerdings ist es immer noch schwierig
den Klimawandel genau zu modellieren. Die bislang präziseste Methode diesen zu
beschreiben, ist mit Hilfe von globalen Klimamodellen. Diese Klimamodelle beinhalten
allerdings diverse Vereinfachungen um physikalische Prozesse darzustellen und haben
inherente Modellfehler, woraus sich bei unterschiedlichen Modellen unterschiedliche Kli-
mawandelszenarien ergeben. Diese Unsicherheiten zu verstehen und zu beschreiben,
ist eines der zentralen Ziele moderner Klimaforschung. Diese Arbeit beschreibt einige
dieser Themen, welche sich zum Großteil aus Projekten, wie dem EU-FP7 Projekt
IMPACT2C2, ergeben haben. Folgende drei Punkte werden in dieser Arbeit präsen-
tiert:
Als Erstes präsentieren wir das R Paket wux, welches gleich eine Vielzahl an Kli-

mamodelldaten herunterladen kann um diese dann für eine statistische Datenanalyse
vorzuprozessieren. Als zweiten Punkt dieser Arbeit leiten wir eine Methode zur geeigneten
Auswahl von Klimamodellen her. Diese werden dann als Eingangsdaten für Modelle
hergenommen, welche zusätzlich Auswirkungen des Klimawandels simulieren, wie zum
Beispiel die Vorhersage von Wasserverorgungen in risikoreichen Regionen. Dabei ist
es wesentlich, die Unsicherheitsspanne aller vorhandenen Klimamodelle zu berücksichti-
gen. Als letzten Punkt dieser Arbeit leiten wir ein statistisches Modell zur Schätzung
der Verteilung von unterschiedlichen Klimaszenarien her. Neuartig an dieser Methode ist
die Einbeziehung von Abhängigkeitsstrukturen unterschiedlicher Klimamodelle, welche
in bisherigen Studien noch wenig Berücksichtigung fand. Auch die Standardannahme der
Normalverteilung wird untersucht und durch eine schiefe Verteilung ersetzt. Dabei wer-
den unterschiedliche Unsicherheitskomponenten mit Hilfe eines hierarchischen Ansatzes
geschätzt und mit natürlicher Klimavariabilität verglichen.

2www.atlas.impact2c.eu
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1 Introduction

A changing climate causes changes in systems of direct value to humanity. It is likely,
for example, that regional decrease of precipitation will cause a decrease in nearby

river run-offs, which, as a consequence, will change the crop yield of surrounding wheat
fields.
Such processes can be simulated with a magnitude of numerical models. The most

detailed information on future climate change is provided by General Circulation Models
(GCMs), which simulate the behaviour of Earth’s atmosphere and ocean. These models
provide information on a global change of climate parameters such as mean air temper-
ature (TAS) and precipitation amount (PR). To obtain more regionalised information
on climate change, these GCMs are often refined with Regional Climate Models (RCMs)
and empirical-statistical post-processing methods. The outcome of these models can be
fed into climate impact models, which take meteorological parameters (e.g. temperature
and precipitation) as input and give e.g. crop-yield as an output. Future projections like
these can then be used as a basis for political and economical long-term decisions.
However, GCMs and RCMs are subject to considerable uncertainties (e.g. Tebaldi

and Knutti 2007) originating from the chaotic behaviour of the climate system and the
unknown future evolution of greenhouse gas concentrations and other forcing agents of
the climate system, as well as simplifications and errors in climate models. Those inher-
ent uncertainties are often investigated using multi-model ensembles (MMEs), which also
challenges climate change impact assessments to base their investigations on multi-model
climatological input.
In this thesis we present three tools to handle uncertainty in climate research:

1. The R package wux can download entire MMEs in Network Common Data Form
(NetCDF) format and aggregate each climate model to the desired spatial and
temporal resolution to obtain a data.frame for further statistical analysis (Mendlik,
Heinrich, A. Gobiet et al. 2016; Mendlik, Heinrich and Leuprecht 2015).

2. A tool to select climate models from a MME in order to run impact models,
while accounting for the climate model uncertainty and dependencies (Mendlik
and A. Gobiet 2016). To do that, the method first detects relevant patterns of
climate change with a principle component analysis (PCA). Based on these pat-
terns, groups of similar climate simulations are found with a hierarchical clus-
tering method. We present an example application used in the EU-FP7 project

3



1 Introduction

IMPACT2C1 where a subset of RCMs had to be selected as an input for several
climate impact models, based on a multitude of climate parameters across the
entire European continent.

3. A tool to estimate the probability density function (PDF) for the projected climate
change of a MME, while accounting for climate model dependencies, the unbal-
anced data structure and non-normality. The skew-normal linear mixed-effects
model (SN-LMM), which is used to model the data, also allows for explicit esti-
mation of the individual sources of uncertainty of the MME. We derive confidence
intervals (CIs) for each parameter estimate with a second-order Wald approxima-
tion, with likelihood ratio test (LRT) statistics, and with non-parametric block-
bootstrap and parametric bootstrap techniques. As the last part, we present a
case study to quantify the projected seasonal temperature climate change of the
Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble over three
different European regions: The Alpine Region (AL), the Iberian Peninsula (IP)
and the Scandinavian Region (SC).

The thesis is split into four major Parts: Part I introduces the term climate change
and briefly explains climate models (Chapter 2). In Chapter 3 the role of statistics
and the challenges to analyse ensembles of these climate models is discussed in-depth.
At last, Chapter 4 in Part I introduces the three tools presented above in more depth
and provides a literature review. Part II of the thesis explains the functionality of the
wux package, which has been used to pre-process all data of this work (Chapter 6-
8). The text in this part has also been used in a peer-reviewed publication (Mendlik,
Heinrich, A. Gobiet et al. 2016). Part III introduces the method to sub-select climate
models from a MME to run impact models. Chapter 9 explains the underlying idea
behind the method and Chapter 10 presents a European model-selection case study of
an RCM ensemble. Also in this part the text has been used for a publication in a peer-
reviewed journal (Mendlik and A. Gobiet 2016). Finally, Part IV presents the SN-LMM
to estimate the expected climate change and the uncertainties in a MME. Chapter 12
derives a class of hierarchical models to address dependencies and which is then extended
in Chapter 13 to fit skewed data. Chapter 14 then introduces different methods on
how to obtain CIs for the estimates. And finally, Chapter 15 shows a case study of
uncertainty quantification of the CMIP5 ensemble. The R code for this uncertainty
analysis is outlined and summarised in Appendix B. Some of the more technical proofs
can be found in Appendix A.

1www.atlas.impact2c.eu
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Part I

From Climate to Statistics
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2 Climate and Climate Change

2.1 Climate, Climate Variability and Climate Change
Climate, which can be understood as the “average weather” is defined by the Intergov-
ernmental Panel on Climate Change (IPCC) as:

Climate in a narrow sense is usually defined as the average weather, or more
rigorously, as the statistical description in terms of the mean and variability
of relevant quantities over a period of time ranging from months to thou-
sands or millions of years. The classical period for averaging these variables
is 30 years, as defined by the World Meteorological Organization (WMO).
The relevant quantities are most often surface variables such as temperature,
precipitation and wind. Climate in a wider sense is the state, including a
statistical description, of the climate system (IPCC 2013).

The climate system is an interactive system consisting of the atmosphere, land surface,
snow and ice, oceans and other bodies of water and living things. Due to internal
dynamics and due to external factors, the climate system keeps on constantly changing.
And so does the climate. The IPCC therefore defines climate variability as:

Climate variability refers to variations in the mean state and other statistics
(such as standard deviations, the occurrence of extremes, etc.) of the climate
on all spatial and temporal scales beyond that of individual weather events.
Variability may be due to natural internal processes within the climate system
(internal variability), or to variations in natural or anthropogenic external
forcing (external variability).

In this work we differentiate between natural climate variability and climate change,
which is attributable purely to human activity. We therefore consider the definition
of the United Nations Framework Convention on Climate Change (UNFCCC) defining
climate change as

...a change of climate which is attributed directly or indirectly to human ac-
tivity that alters the composition of the global atmosphere and which is in
addition to natural climate variability observed over comparable time peri-
ods.
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2 Climate and Climate Change

Figure 2.1: Global mean energy budget under present-day climate conditions. The
numbers represent the energy fluxes in W/m2 with uncertainty ranges.
Source: Hartmann et al. 2013.

2.2 The Greenhouse Effect

The climate system is powered by solar radiation. The incoming solar radiation during
daytime on top of the Earth’s atmosphere is about 1370W/m2. Due to to planet’s
spherical shape, the amount of energy averaged on the entire planet is about 1/4 of
that, being about 340W/m2 as shown in Figure 2.1. About 30% of this radiation is
reflected directly back into space due to the albedo effect of the clouds and light coloured
earth surfaces such as ice, snow and deserts. The remaining radiation (about 240W/m2)
is absorbed by Earth’s surface and atmosphere. The same amount of energy must be
radiated back in form of longwave radiation. Emitting this amount of energy, the Earth
would have about −19 ◦C, but the planet has roughly 14 ◦C on average.
The reason for such a warm earth is the greenhouse effect caused by greenhouse gases

(GHGs) which create a blanket around the planet which absorbs outgoing longwave
radiation and emits parts back to the surface and parts into space. The most potent
GHGs are water vapour and CO2, whereas the two gases occurring most often, namely
nitrogen and oxygen, have no such effect. Clouds have a blanket effect as well (which
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can be felt with warm cloudy nights), but due to the albedo effect, they also reflect
substantial amount of incoming radiation from the sun.
Releasing additional GHGs enhances this blanketing effect. Human activity has in-

creased the amount of CO2 in the atmosphere by more than 35% since the industrial era,
primarily by combustion of fossil fuels and by removing forests (Solomon 2007). These
human-made changes in the atmospheric composition have major consequences for the
climate.

2.3 Climate Models
Climate models are mathematical representations of the climate system and they inves-
tigate its response to various forcings. The complexity of such models range from simple
energy-balance models (Section 2.2) to General Circulation Models (GCMs) representing
more detailed physical processes and simulating the interactions and feedbacks in the
atmosphere, ocean, cryosphere and land surface.

The Simplest Climate Model
The very simple zero-dimensional climate model (Saha 2008) represents the radiative
balance from Section 2.2 and can be written as

(1− a)Sπr2 = 4πr2εσT 4

with S being the solar constant (around 1370W/m2), a being the planets average
albedo (30%), r being Earth’s radius, ε is the effective emissivity of the planet (es-
timated to be around 0.612) and σ being the Stefan-Boltzmann constant, being about
5.67× 10−8 J K−4 m−2 s−1. The left side of the equation shows the incoming solar en-
ergy and the right side the outgoing energy from Earth. T is the equilibrium temperature
of Earth. Solving for this temperature yields 288K (being around 15 ◦C) as the planet’s
average temperature. The emissivity and albedo parameter account for the greenhouse
effect as described in Section 2.2.

General Circulation Models (GCMs)
GCMs, in contrast, mathematically describe the general circulation of the atmosphere
and ocean. They are based on fundamental principles of physics, being the conservation
of mass, energy and momentum. The conservation of mass says that inside a given
volume, no mass can be generated out of nowhere, which means that mass can change
only by in- and outflows. Conservation of energy (first law of thermodynamics) means
that the total energy remains constant and can only be transformed from one form to
another. The conservation of momentum is modelled with the Navier-Stokes equations
of fluid motion and accounts for magnitude and direction of velocity in reference to

9



2 Climate and Climate Change

Figure 2.2: Schematic description of a GCM. Source: www.ipcc-data.org.

present forces such as the pressure gradient, gravity and the Coriolis force caused by
a rotating Earth. These three fundamental principles form the primitive equations of
the model, forming a set of nonlinear differential equations. These equations need to be
simplified and solved numerically by discretising Earth into a 3-dimensional longitude-
latitude-height grid with discrete time steps (Figure 2.2). A typical horizontal resolution
of a GCM can be between 100 km and 500 km.
The higher the resolution, the more processes can be included into the model. Pro-

cesses which cannot be represented explicitly, either due to this lack of resolution (e.g.
cloud processes and turbulence) or due to their complexity (like biochemical processes
in vegetation) need to be parameterized. These parametrizations are one of the reasons
why different GCMs yield different future climate projections (see Section 3.1).
In order to produce long-term climate change projections, socioeconomic scenarios
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www.ipcc-data.org
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reflecting human behaviour (like GHG emission and land-use changes) are defined and
fed into the GCMs as the anthropogenic driving element. Currently, these scenarios
are the Representative Concentration Pathways (RCPs), being four consistent sets of
time-dependent forcing projections that could potentially be realised with more than
one underlying socioeconomic scenario. They are named after their approximate value of
radiative forcing (in W/m2) at 2100 relative to the pre-industrial era. RCP2.6 (the lowest
of the four) peaks at 3.0W/m2 and then declines to 2.6W/m2 in 2100, RCP4.5 (medium-
low) and RCP6.0 (medium-high) stabilise after 2100 at 4.2 and 6.0W/m2 respectively,
while RCP8.5 (highest) reaches 8.3W/m2 in 2100 on a rising trajectory (Collins, Knutti
et al. 2013).

Regional Climate Models (RCMs)
As the resolution of GCMs is too coarse to get regional and local climate information,
one can run Regional Climate Models (RCMs) to obtain a more detailed view. RCMs
are dynamically downscaled based on large-scale climate conditions often provided by
a GCM. In contrast to GCMs, RCMs do not model the entire planet, but rather a
specific region nested within a GCM. Modern RCMs have a typical horizontal resolution
of 12.5 km to 50 km and can resolve processes which are not represented in GCMs.

Climate Models Ensembles
The climate system is always in motion because of the dynamic interactions between its
components. These natural fluctuations (natural climate variability) make it difficult
to assess for near-term climate change as they may overshadow the effect of external
forcings like the increase of GHGs. For example, if we observe a new temperature record
this summer, it is difficult to attribute this anomaly to naturally occurring climate
variability or to climate change, as we only have a single observed “realisation” of climate.
Simulating several climate models with different external forcings helps to understand the
effect of human behaviour on the climate system. For the next decades, however, these
climate model ensembles project that external forcings will dominate internal variability.
The choice of scenarios of future GHG emissions (RCPs), has a huge impact on the long-
term change of mean global temperature (IPCC 2013).
However, different climate models project different climate changes, as there are var-

ious alternative and equally plausible ways to numerically represent and approximate
the climate system. We discuss the consequences and reasons for these uncertainties
in Section 3.1. This model diversity is another important reason to consider ensembles
of climate models and so to quantify climate change uncertainty. However, the con-
tributions of these models happen on a voluntary basis and are neither systematic nor
comprehensive. In addition, certain model inadequacies are common to all models and
different models have different strengths and weaknesses.

11



2 Climate and Climate Change

Figure 2.3: Projected CMIP5 temperature climate changes from 1981-2000 to 2081-
2100, as presented in the fifth assessment IPCC report. The individual
GCMs are driven with the RCP4.5 external forcing. Source: Collins,
Knutti et al. 2013.
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2.4 From Climate Models to Climate Impacts

The current state-of-the-art of GCM ensemble has been established as part of the
Coupled Model Intercomparison Project Phase 5 (CMIP5) project, (Taylor, Stouffer and
Meehl 2012), which has been used throughout the current IPCC report (IPCC 2013).
This project involves a worldwide coordination of GCM experiments, to synchronise the
model inputs, model diagnostics and the distribution in data archives with the Earth
System Grid Federation (ESGF). Figure 2.3 shows the different projected temperature
climate change signals at the end of the century of 42 GCMs from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) ensemble under the medium-low scenario
RCP4.5.
Ensembles like these can be used to interpret large-scale phenomena like temperature

change, however, for more local and more complex processes like regional precipitation,
ensembles of RCMs might be more accurate. The current state-of-the-art RCM ensem-
bles are coordinated with the COordinated Regional Climate Downscaling EXperiment
(CORDEX) (Jacob et al. 2013), where each continent is modelled separately, for ex-
ample Europe within the EURO-CORDEX project. Different GCMs are dynamically
downscaled to account for the uncertainty range of the CMIP5 experiments (see Figure
3.1). The European predecessor RCM ensemble was the ENSEMBLES project Hewitt
and Griggs 2004.
Regional climate modelling, however, introduces another source of uncertainty, as

different RCMs potentially yield different results even when driven by the same GCM.

2.4 From Climate Models to Climate Impacts

To make decisions for climate change mitigation or adaptation, it might not be enough to
consider climate change signals of temperature or other meteorological parameters, but
rather to inspect response of climate change on parameters of direct value for humanity.
A decision maker might be interested whether to build a hydro-power plant in a certain
region or not, and would therefore like to know if the river runoff is likely to change or not.
This is where climate impact models come to play. These models usually take climate
model output (usually regionalised, post-processed to fit the user needs) as an input
variable to simulate the impacts of a changing climate (like the hydrological impacts in
the Alpine region described in Ravazzani et al. 2014). However, it is often difficult to
make such decision because of the inherent uncertainty. Each step in climate research
is a potential source of this uncertainty, forming a cascade of uncertainty (Figure 2.4,
Mearns, Giorgi et al. 2003). This usually consists of:

1. Specifying alternative future emissions reflecting human behaviour (e.g. CO2)

2. Converting emissions to concentrations

3. Converting concentrations to climate forcing (e.g. RCP)

13



2 Climate and Climate Change

Figure 2.4: Cascade of uncertainty. Source: Mearns, Giorgi et al. 2003.

4. Modelling the climate response to a given forcing (e.g. RCMs or GCMs)

5. Converting the model response into inputs for impact studies

6. Modelling impacts

It is difficult to manage this cascade for impact studies, as only small subsets of
potential pathways through the cascade will usually be explicitly modelled. The aim
therefore is to find and develop techniques which consider a representative range of
climates and to find probabilistic techniques to manage the large ranges of possible
climate changes (Mearns, Giorgi et al. 2003).

14



3 Quantify Uncertainty: The Role of
Statistics

3.1 Where does Climate Model Uncertainty come from?

The outcomes between climate models can vary quite substantially, even though the
underlying physical principles might be the same. Such differences do occur when

modelling the present climate as well as when making future projections of the climate
system. This discrepancies are usually referred to as “uncertainties”. The aim of this
chapter is to shed light into the reasons behind those uncertainties.
Basically, when considering a climate simulation, there are three big sources of un-

certainty in an ensemble when considering climate change: Natural internal variability,
model uncertainty and scenario uncertainty.

1. Natural internal variability is the part of uncertainty which occurs due to
internal processes in the climate system in the absence of any radiative forcing
of the planet. Processes in the atmosphere, for example, can cause variability
on a nearly instantaneous time scale (e.g. cloud formation) up to variability over
years (e.g. troposphere-stratosphere exchange). Such natural variabilities can be
on even longer time scales when considering processes in the ocean or large ice-
sheets. Coupling of such components can also lead to strong internal variability,
such as the El-Niño Southern Oscillation (ENSO). Such internal variabilities are
important, as they can have the potential to reverse (for a decade or so) the longer-
term trends that are associated with anthropogenic climate change (Hawkins and
Sutton 2009). In a climate model ensemble, such variabilities can be assessed
when changing the initial conditions of a particular climate model. In literature
this variability is often addressed as initial condition uncertainty (Collins, Tett and
Cooper 2001).

2. Model uncertainty is due to the fact that climate models are only approxima-
tions of the real climate system and therefore induce errors. Two main components
are the parametric and the structural uncertainty.
Parametric uncertainty arises as not all processes can be resolved explicitly on

the model grid, so their influence on larger-scale processes must be param-
eterized empirically or by using expert judgement. Prominent processes are
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for example clouds which need to be parameterized. Without describing the
actual cloud element, physical theories are used to describe the statistics of
the cloud fields (e.g. the fractional cloudiness or the area-averaged precipi-
tation rate, Solomon 2007). Parameterization uncertainties can be explored
using perturbed physics ensembles (PPEs), where the parametrizations of a
single climate model are changed systematically. However, the PPE approach
does not reflect the full range of uncertainties as using only one model does
not account for structural uncertainty (see next paragraph).

Structural uncertainty emerges because it is simply not feasible to describe all
processes in a numerical climate model. It has to be decided which physical
processes should be explicitly modelled and what parameterization schemes
should be used. Usually, model uncertainty which does not emerge from
different parameter values (i.e. not being part of parametric uncertainty), is
said to be structural uncertainty (Tebaldi and Knutti 2007). It is not possible
for one climate model to describe this structural uncertainty, regardless of the
range of parameter values. Instead, several, ideally independently developed
models, have to be considered simultaneously. This is the motivation for using
multi-model ensembles (MMEs). The difficulty with this type of uncertainty
is designing MMEs, as processes and parameterization schemes cannot be as
easily perturbed as parameter values in a PPE.

3. Scenario uncertainty reflects the unknown future behaviour of humans (as world
economic and social development) which leads to different possible “pathways” of
future greenhouse gas emissions leading to a different radiative forcing of the cli-
mate system. This is a major part of the projected uncertainty in climate change
analysis, but the difficulty is that it remains impossible to link likelihoods or proba-
bilities to different pathways. Therefore climate change analysis is often performed
conditional on a specific pathway.

Studies like Hawkins and Sutton 2009 tried to quantify the relative importance of
these three sources of uncertainty in a multi model ensemble and so deriving a signal-
to-noise ratio of the projected climate change signal. Also an important field of research
is the so-called climate detection and attribution. There the aim is to understand the
anthropogenic causes and natural external forcings (e.g. changes in solar radiation, vol-
canism) of climate change and distinguish those from changes due to internal climate
system processes.

3.2 Statistical Challenges
In the previous chapters it has been shown that it requires a MME to quantify the com-
ponents of climate change uncertainty. However, climate models in such a multi-model
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ensemble cannot be regarded as a simple random draw from common distributions. One
reason is the lack of statistical experimental design: Models are developed voluntarily
from institutions worldwide, hence model components such as parametrizations are not
systematically changed. Also, certain institutions provide more models than others,
leading to an overall unbalanced design. MMEs are therefore often called ensemble of
opportunity. In addition, climate models (even across developing institutions) are known
to share certain components which leads to inter-model dependencies, which makes it
difficult to justify the independence assumption when quantifying the uncertainty of
such an ensemble with a statistical model. Because of these dependencies, the multi-
model ensemble can be expected to be even more unbalanced. Another challenge when
interpreting such an ensemble is the explicit formulation of the statistical assumptions
of the modelled and the observed climate system: Weather climate models are supposed
to be distributed around the observed truth, or weather earths climate should be inter-
preted as one draw from all possible climates. Also there have been only very few studies
which explicitly formulated the model inter-dependencies in a statistical framework and
account for the imbalanced data structure. The following Chapters discuss those topics
in more detail.

Lack of Experimental Design

A multi-model ensemble is often called an ensemble of opportunity (Tebaldi and Knutti
2007), as climate simulations are contributed from anyone who is willing to do so. There
is no underlying experimental design in a statistical sense where the components of
uncertainties, like parametrizations or structural components (Section 3.1) are sampled
in a systematic way.
Another problem is that such a multi-model ensemble will probably not span the full

range of behaviour or uncertainty. The reason is that usually climate simulations are
tuned to match the observed climate. Once a best setup is found, the model is submitted
to the ensemble. It is rarely the case that other parameterization settings are sought,
which would also yield a satisfactory observation agreement but rather project a different
future. In contrast to a MME, PPEs (Collins, Booth et al. 2006, Murphy et al. 2007)
do sample this uncertainty component.
As a consequence it can be argued that any quantification of uncertainty will yield

wrong estimates. Alternatively one can analyse the ensemble in a more qualitative
way, by finding several representative climate scenarios, and work on a case-study basis
(Whetton et al. 2012). Recently, several methods have emerged on how to select such a
sub-ensemble (Cannon 2015, Mendlik and A. Gobiet 2016, Zubler et al. 2015).
The problem of a lack of an experimental design is even amplified when designing an

ensemble of physically downscaled RCMs. An RCM is driven by a GCM and this forcing
has a huge effect on the downscaled simulation (Heinrich, A. Gobiet and Mendlik 2014).
Because of computational restrictions it is not possible to run all combinations of RCMs
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Figure 3.1: Climate Change signals for GCM of the CMIP5 ensemble over European
domain (left: winter, right: summer). The marked simulations were se-
lected for downscaling with an RCM within the current EURO-CORDEX
project.

with every GCM (Figure 3.2), so a selection of representative GCMs should be applied
here. This approach is pursued in the current coordinated downscaling experiment
EURO-CORDEX (Jacob et al. 2013), where driving GCMs are selected to sample the
extremes in temperature and precipitation changes (Figure 3.1). In a similar way the
Australian regional ensemble NARCliM has been designed to run 12 simulations, so
that the driving GCMs span the uncertainty range of projected future temperature
and precipitation changes (Evans, Ji, C. Lee et al. 2013). For the North-American
regional ensemble NARCCAP, four driving GCMs have been selected which should be
downscaled with 6 RCMs (Mearns, Gutowski et al. 2009). In order not to run all possible
24 combinations they used a balanced fractional factorial design to reduce the amount to
12 simulations. Though this design was explicitly chosen to quantify uncertainty using a
Bayesian probabilistic approach (Tebaldi, R. L. Smith et al. 2005), it is not clear whether
the range of possible climate changes has been sampled as in EURO-CORDEX or in
NARCliM. The predecessor project from EURO-CORDEX, the ENSEMBLES project
(Hewitt and Griggs 2004) did not use any type of sampling design, so the resulting
21 simulations were unbalanced with respect to the driving GCM. Some methods have
been developed (Déqué, Rowell et al. 2007, Déqué, Somot et al. 2011) to account for the
unbalance and fill up the missing simulations from the RCM-GCM matrix (Figure 3.2).
As those approaches deal with the unbalanced nature of the ensemble dataset, there
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Figure 3.2: GCM-RCM matrix for ENSEMBLES RCMs. The orange coloured cells
marked with X’s indicate the available simulations and empty cells rep-
resent the missing GCM–RCM combinations. The models spanning the
RCM and GCM uncertainty of ENSEMBLES are highlighted in blue and
green, respectively. Additional uncertainty due to the CMIP3 GCMs is
displayed in red.Source: Heinrich, A. Gobiet and Mendlik 2014.

still remains the problem of a possible underestimation of the range of climate changes,
as an arbitrary subset of GCMs has been selected out of an ensemble of GCMs. The
method developed by Heinrich, A. Gobiet and Mendlik 2014 accounts for this problem,
as it extends the methods of filling the RCM-GCM matrix to GCMs which have not been
downscaled at all (Figure 3.2). This way one can account for the possible underestimation
of climate changes by neglecting extreme GCMs.

Statistical Frameworks to interpret MME

In order to properly quantify the uncertainty of a changing climate, it is important to
understand the sampling scheme of the MME. Understanding the scheme and the role of
the observed climate allows to explicitly formulate a statistical framework to interpret
the climate model ensemble.
One paradigm, which has been the basis of many studies, assumes that all climate

models stem from a distribution centred around the “true” (observed) climate. In such
a truth plus error framework, the error (i.e. model minus observation) would converge to
zero when adding independent simulations to the ensemble. It has been shown in several
studies that this paradigm is not defensible (Abramowitz and Bishop 2015). There are
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mainly three reasons for this drawback:

1. In certain regions, climate models are known to have a common discrepancy from
the observed climate due to being only approximations to the real climate (Knutti
2010). Adding new models to the ensemble makes the average error converge to
this shared bias and not to zero. Because of this common bias, when looking at
the marginal distribution, the climate models are also not independent any more.

2. Even when not accounting the model errors, climate simulations have been shown
not to be statistically independent due to shared components among models (see
next section, Masson and Knutti 2011).

3. Even if the scientist would be able to create an ensemble of perfect simulations (not
violating 1.) which are all statistically independent (not violating 2.), the “truth
plus error” paradigm would assume that our observed climate is deterministic
because it does not account for the influence of internal variability such as El Niño-
Southern Oscillation (see Section 3.1): Due to the chaotic nature of the climate
system, an “alternative” planet earth would likely have a slightly different observed
climate. This internal variability will be common to all climate simulations when
considering model-minus-error, so the error mean will again not converge to zero,
again inducing marginally dependent climate simulation errors.

These issues have led to alternative frameworks such as the paradigm of exchange-
ability: the observed climate and climate models are treated as being random variables
stemming from the same distribution and therefore accounting for internal variability
and hence accounting for 3). In this case, increasing the amount of simulations would
not decrease uncertainty indefinitely (Knutti, Abramowitz et al. 2010, Annan and Harg-
reaves 2010, Rougier, Goldstein and House 2013). The study of Chandler 2013 extended
this approach by adding the concept of conditional exchangeability: The simulations
and the observed climate do not stem from the same distribution, rather the simulations
given the observed climate do. This way, shared discrepancies (1) are accounted for.
The study from Bishop and Abramowitz 2012 coined the term replicate earth with

the same idea that observations and simulations are drawn from the same distribution.
If simulations would be perfect representations of the real climate, the quantified un-
certainty would purely reflect internal variability (3). They present a method to find
optimal weights to decrease the mean squared error (MSE) of bias-corrected simulations
(accounting for 1) to the observed climate accounting for correlations of the model errors
(accounting for 2).
One big problem when incorporating the observed climate to the ensemble of simula-

tions is that the relation of observed climate and simulations may not be the same in
future projections. So usually some stationarity assumptions have to be made. Chandler
2013 incorporated a parameter to account for the future relation of the observed (yet
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unknown) climate to the simulations in his Bayesian model. Abramowitz and Bishop
2015 checked the method of Bishop and Abramowitz 2012 for future relations of ob-
served and simulated climate by incorporating the so called “perfect-model” approach:
They assume a particular simulation as being the observation which enables checking
for future relationships.

Violation of Independency Assumption

In current statistical analysis of climate model ensembles, the simulations are consid-
ered as independent in the sense that every model contributes additional information
(e.g. Tebaldi, R. L. Smith et al. 2005, Tebaldi and Knutti 2007, Buser, Künsch and
Weber 2010, Fischer et al. 2012). However, if the simulations make same simplifications
in parameterizing processes or share the numerical schemes to describe processes, their
deviations from the true climate system or from other simulations will be similar. For
example, simulations sharing the same computer codes to describe atmospheric processes
will tend to project similar climates in contrast to simulations using a complete differ-
ent scheme. The violations of independence lead to an underestimation of the climate
change uncertainty as well as to a biased estimate of the expected change in case of un-
balanced ensembles. This problem has been emphasised in several studies (e.g. Knutti
2010, Knutti, Furrer et al. 2010, Knutti, Abramowitz et al. 2010, Mearns 2010, Pirtle,
Meyer and Hamilton 2010, Storch and Zwiers 2013), but so far only a few statistical
methods have been proposed in literature to tackle the dependency issue.
The work by Pirtle, Meyer and Hamilton 2010 discusses model dependency and their

causes in detail. It raises the concern about “robustness” when several models coincide,
as there is no metric of dependence so far. They argue that the attention of GCM
developers should be devoted much more on model independence, and finding meth-
ods to understand model agreement is a crucial step in climate research. At the same
time another discussion paper (Abramowitz 2010) emerges, which stresses that model
independence and model performance are two unrelated properties of model projections
Therefore, model agreement, as a desired property of a “well performing” ensemble might
not be that desirable at all, as this might just mean that the models are strongly depen-
dent. This is particularly the case in the study of Tebaldi, R. L. Smith et al. 2005, where
GCMs have been up-weighted if they agree in their climate projection, as this agreement
is interpreted as good model performance. However, from the model dependency point
of view, the approach should be the other way around: models which agree might just
be highly dependent and should therefore be down-weighted because of double-counting
similar information.
The article of Pennell and Reichler 2010 is one of the first published attempts to

identify model dependence. They calculate the effective number of independent GCMs
based on correlation of model errors (i.e. climate model minus observation). In their
analysis of the CMIP3 multi-model ensemble, the effective amount of models reduces
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from 24 total to only 9. This is in agreement with the study of Knutti, Furrer et al. 2010.
They argue, that the bias of GCMs does not converge towards 0 as fast as it should if the
simulations were independent. As a result, uncertainty estimates in current literature
seem to be too small.
The work of Masson and Knutti 2011 showed this kind of climate dependency by

analysing the temperature and precipitation outputs for the historical period with a
hierarchical cluster analysis. They conclude that models developed at the same institu-
tion show the most striking similarities. Also strong dependencies can be found between
models that use the same atmosphere model or different versions thereof. The follow-
up study of Knutti, Masson and Gettelman 2013 extends the analysis to finding strong
similarities also for the future climate change projection (Figure 3.3). They categorise
the ensemble into clusters of similar behaviour.
One of the first attempts to actually quantify the model dependence in order to ac-

cordingly weight individual models while quantifying climate uncertainty, has been de-
veloped by Bishop and Abramowitz 2012. They seek a linear combination of climate
models which minimises the mean squared error to the observed climate. This weighting
scheme accounts for both model performance and model independence. In a follow-up
study, Abramowitz and Bishop 2015 use the same method to quantify uncertainty in
the CMIP5 multi-model ensemble. Their method shows a decrease of uncertainty of
the projected future. At a first glance this might seem counter-intuitive, as dependent
models contain less information and therefore from a statistical point of view the true
variance should be rather underestimated. However, their weighting scheme is based on
minimising the MSE with respect to the observed climate. This forcing of the linear
combination of the models to the observed climate reduces the variability.
The recent study of Zubler et al. 2015 pursue a similar path as Masson and Knutti

2011. First, they cluster GCMs in the historical period to identify similarities among
models. Then they simply down-weight GCMs by the inverse number of GCMs in the
same cluster and calculate the (weighted) quantiles as a measure of uncertainty. Similar
ideas already exist. The work of Evans, Ji, Abramowitz et al. 2013 stresses that the true
information content of an ensemble is smaller due to inter-dependencies and so when
selecting a smaller subset of the ensemble (for e.g. impact studies), this true information
content can be preserved when accounting for independence. They measure dependency
based on the method by Bishop and Abramowitz 2012 mentioned above, namely based
on the covariances of the model errors in the historical period. Basically the same line
of argumentation is followed by Mendlik and A. Gobiet 2016, who reduce the ensemble
size while retaining the full characteristics of the ensemble. In contrast to Evans, Ji,
Abramowitz et al. 2013, their measure of dependency is based on similarities of the
projected climate change to find clusters of dependent simulations, similarly as shown
by Knutti, Masson and Gettelman 2013.
Based on a similar idea to categorise dependent models based on clusters, the study

of Steinschneider et al. 2015 go further and analyse the climate change signals within a
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Figure 3.3: Model “family trees” shown as a dendrogram. Models with obvious simi-
larities in code or produced by the same institution are marked with the
same colour. (a) Similarity based on control climate from CMIP3 and
CMIP5 (marked with asterisks) plus observations (ERA40/GPCP and
NCEP/CMAP). (b) Similarity based on the predicted change in tempera-
ture and precipitation fields for the end of the 21st century in the RCP8.5
scenario relative to the control. Source: Knutti, Masson and Gettelman
2013.
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fully Bayesian framework. They assume constant correlation between GCMs within the
same cluster which have been identified by Knutti, Masson and Gettelman 2013. As an
expected result, uncertainty is broader than assuming independent GCMs, which further
significantly alters the quantification of risk of subsequent climate impact studies.

Model Performance
Another challenge is whether climate models should be weighted according to their skill
to represent the current climate. Ideally, a climate model should be weighted based on
the ability to represent the “true” climate change, but clearly this is not possible as
projections of climate change relate to a state never before observed.
In fact, studies have shown that the past performance of climate models (based on

global present-day diagnostics) do not correlate with their projected climate change
signal (Knutti, Furrer et al. 2010). This means that if we would weight simulations based
on their agreement with observations, or select a subset thereof, then the uncertainty of
the future projection will not be better constrained - the model spread remains rather
similar. This also applies to newly developed climate simulations, which tend to model
the observed climate better without reducing the uncertainty of projected future climate
change.
One particular problem with performance weighting is that often the same observa-

tional data have been used to tune the models (for example their parametrizations).
Therefore there is the risk of double-counting information, over-confidence and circular
logic when using the same data sets as used for model development (Knutti, Furrer et al.
2010).
Another problem arises when defining the performance of a model. The amount of

metrics is huge, so whether a model is good or bad depends on the question asked. There
is no model which performs best with regard to all variables (Tebaldi and Knutti 2007).
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Climate model outcomes are the basis for future climate change analysis. The work
presented in this thesis encompasses such analyses: Starting from the processing

of entire ensembles of climate models and ending with the statistical interpretation of
possible climate changes, while bearing in mind the complex structure of the data set.
In this chapter we introduce these concepts and integrate them into the state-of-the-art
research.

4.1 R Package for Climate Data Analysis

The R package Wegener Center uncertainty explorer (wux) (Mendlik, Heinrich, A. Gobiet
et al. 2016) is a toolbox which enables multi-model handling for statistical analysis of
climate scenarios. It is intended to be used to interpret climate model output and
provides uncertainty information for the end-user of the climate simulations. Having in
mind the heterogeneous target audience, we want this tool to perform following tasks:

1. Enable easy statistical descriptive analysis of user-defined climate model ensem-
bles.

2. Be expandable to any kind of statistical analysis (to push the development of new
statistical methods for climate multi-model analysis).

3. Easily process climate simulations to a common data format usable for statistical
analysis. This enables reproducing data for any analysis needed.

Descriptive statistics of climatic changes from ensembles (point 1) are crucial to under-
stand the underlying data. In practice people sometimes tend to forget this important
step and prefer to directly address their complex research questions without having an
overview of the data beforehand. A lot of valuable information lies in this analysis.
Having some ready-to-use tools already implemented in wux should encourage users to
perform this sort of analysis more often.
However, such a tool should not restrict the user to a pre-defined set of standard

methods, on the contrary, development of new methods for statistical inference on cli-
mate simulations should be strongly supported, as this is still ongoing research (Knutti,
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Furrer et al. 2010). Having set up this tool directly in R, allows to explore an ex-
tremely broad pool of ready-to-use methods, also from other disciplines using different
approaches (point 2).
One of the most time consuming and frustrating tasks when analysing climate sim-

ulations can be the step of processing data (point 3). The user of this tremendously
big amount of datasets will find him-/herself challenged, when trying to aggregate them
to the desired format (typically some sort of data frame) or get the desired statistics
of the ensemble for certain geographical regions of interest. The challenge here is defi-
nitely a technical one: Processing ensembles of data in a binary-format usually requires
dedicated programming work. The upside is that the data comes in the handy Network
Common Data Form (NetCDF) file format1, where a lot of meta-information about the
data is stored in its header, however, life is more complicated in practice. Quite often it
happens that meta-information between individual climate simulation output files differ
substantially. For this reason it quickly becomes a nuisance when treating large samples
of these files in an automated way. Up to now, no such tool is available which processes
user-defined climate simulations in an automated way and which allows sophisticated
statistical analysis. Furthermore, it is very difficult to reproduce statistical analysis from
the scientific community when either the data set from the publication is not available,
or the user wishes to apply the method with his/her own climate data. Providing a
software which takes this burden, allows the user to solely focus on the interpretation
of the climate model output without spending too many resources on technicalities. We
consider it a great strength of this package to perform this task in an automated way.
Several powerful tools already exist to process climate model outputs, such as Climate

Data Operators (CDO)2, NCO (Zender 2008), climate explorer3 (Oldenborgh et al. 2009)
and The NCAR Command Language (NCL)4. All of those tools are designed to perform
some sort of descriptive analysis and/or process the data to a desired format, however,
none of those tools combines both easy multi-model handling and flexibility in statistical
analysis. For example the climate explorer allows very straight forward processing of
multi-model ensembles without any programming work. The user specifies what climate
models to analyse simply by clicking on their names and the desired statistics. Such
web-based tools however, being simple to use, lack of flexibility for a real programming
interface. In addition it is not possible to extend those tools for own climate simulations
which are not implemented. Also, statistical analysis is restricted to available methods.
More programming-oriented tools like CDO and NCO also provide possibilities to anal-
yse ensembles of climate simulations. However, the user has to specify the location of
the data each time when calling a function and the data have to be pre-formatted for

1http://www.unidata.ucar.edu/software/netcdf/
2CDO 2014: Climate Data Operators. Available at: https://code.zmaw.de/projects/cdo
3http://climexp.knmi.nl
4The NCAR Command Language (Version 6.2.1) [Software]. (2014). Boulder, Colorado: UCAR/N-

CAR/CISL/VETS. http://dx.doi.org/10.5065/D6WD3XH5
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the program to understand its meaning. Changing local NetCDF files too much is a
restriction to reproducible research. Even though programming is possible, we are re-
stricted to pre-defined CDO statistics operators. The main difference of wux compared
to those tools is the easy way it can read in a multitude of climate simulations and simply
the fact that this tool is embedded in R, which allows to apply a very broad range of
sophisticated statistical tools and is not restricted only by methods implemented in the
toolbox itself.

4.2 Climate Model Selection

Studies like Whetton et al. 2012 recommend to shrink the ensemble to a set of repre-
sentative simulations which capture certain characteristics of the whole sample. This
subset should then be used as a consistent forcing for various impact models. A sensible
selection of climate simulations as input for climate change impact studies is needed in
any case, either to limit computational demand and/or to mitigate biases in the ensem-
ble statistics. Currently, such selection is often done “by opportunity” based on the ease
of access to climate simulations or by subjective criteria.
However, MMEs have several issues, as systematical biases, inter-model dependencies,

imbalance and lack of experimental design, which makes an uncertainty analysis of pro-
jected climate changes difficult (see Section 3.2). When selecting a subset of climate
simulations for impact studies (as in Section 2.4) one has to account for this complex
data structure. This work shows one such method to select a model subset especially
accounting for model inter-dependencies and the unbalanced nature of MME while con-
serving the spread of the full ensemble.
Several studies aim to select such a representative subset. One of the first published

approaches to tackle model selection with formal criteria, stems from J. B. Smith and
Hulme 1998. They propose several criteria such as vintage (considering the latest gen-
eration of climate simulations only), resolution (the higher the resolution, the better),
validity (model performance in the past) and representativeness (picking simulations
from the high and low end of the range of climate change signals of temperature and
precipitation to obtain a representative sub-sample). This method has been adopted by
the IPCC guidelines for climate scenarios IPCC-TGICA 2007. Such a selection of GCMs
has been applied by e.g. Murdock and Spittlehouse 2011 focusing on the region of British
Columbia by analysing the models based on the spread of change in temperature and
precipitation. A discussion on sub-selecting climate simulations for hydrology studies
has been published by Salathe, Mote and Wiley 2007. They propose to sample driving
climate simulations by considering the projected model spread for hydrology relevant
parameters (temperature and precipitation change) to find groups of similar simulations
and to select representative climate models. A generalisation to a multivariate setup has
recently been presented by Cannon 2015. His proposed method maximises model diver-
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sity by selecting the most extreme simulations. All those studies have a non-probability
sampling scheme in common: Instead of assigning probabilities to the simulations and
sampling them randomly, the selection is based on qualitative characteristics which are
relevant for the researcher (Mays and Pope 1995). The aim is to maximise diversity of
these characteristics.
The good practice guide on assessing multi model climate projections of Knutti,

Abramowitz et al. 2010 gives some more recent recommendations for model selection,
also addressing the issue of model dependence. Knutti, Abramowitz et al. 2010 argue
that agreement between models may arise due to the fact that models use similar sim-
plifications and may feature similar errors. This means that models do not represent
independent information and should be down-weighted in order to avoid biases in the
statistical analysis of the ensemble, which are induced by double-counting similar models
(Pirtle, Meyer and Hamilton 2010). Model selection can be regarded as a binary 0-1
weighting which should address these issues. Several impact studies address this prob-
lem of double-counting (e.g. Finger et al. 2012). Evans, Ji, C. Lee et al. 2013 presents
a selection method taking into account model performance and independence in climate
change signals. This method selects models which are most independent from the rest
of the entire ensemble.
In the literature, models are often selected based only on their performance in the

past, without regarding spread in the climate change signals, with the aim to use only
the “best” models. However, correlation between past performance and future climate
change signals are known to be very weak (Knutti, Furrer et al. 2010), which means
that there is no clear indication that the best performing models in the past are most
realistic with regard to the climate change signal. In addition, the ranking of models
with regard to performance in the past is highly dependent on the definition of the
performance measure (e.g. Jury et al. 2015), which leads to a very subjective ranking.
Therefore it seems reasonable that model performance in the past should rather be
used to detect and remove few severely unrealistic models which cannot be trusted in
their future projections for some clearly argued reasons, but not to select a few “best
performing” models, since there is no indication that they are more realistic in their
future projections than other reasonably performing models.
This leads to a further model selection criterion, namely the conservation of statistical

properties of the climate change signals - the sub-sample of the selected simulations
should properly represent uncertainties. Recently, methods have been published based
on this idea, partly combined with some pre-selection based on model performance (e.g.
Bishop and Abramowitz 2012; McSweeney, Jones and Booth 2012).
Our method generalises the pragmatic approach of finding the model spread of cli-

mate change signals of, say, temperature against precipitation, as done in most studies
(IPCC-TGICA 2007). It allows for simultaneous analysis of an arbitrary amount of
meteorological parameters over several spatial regions of interest, and brings forth dom-
inating patterns of climate change. Model similarities are detected based entirely on
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those patterns of projected change. This stands in contrast to most other studies, which
find similarities in the 20th century historical runs (e.g. Abramowitz and Gupta 2008;
Bishop and Abramowitz 2012; Pennell and Reichler 2010).

4.3 Quantification of Climate Change Uncertainty

The ultimate goal in climate research is to deliver some metric of expected climate change
with some measure of expected uncertainty. The complications arise when considering
the problematic design of the data structure: Inter-model dependencies, differing model
qualities, systematic biases, unbalanced design and the lack of an experimental design
are considered the main flaws of multi-model ensembles (see Section 3.2). There is
no trivial solution for those problems. Several studies addressed certain issues when
quantifying climate change and its uncertainties, however certain problems, like model
inter-dependencies, began to receive attention only recently. In probabilistic interpre-
tations of MMEs, in almost the entire climate literature climate models are treated as
independent random variables (e.g. Tebaldi, R. L. Smith et al. 2005). Several studies
showed that such independence assumptions do not hold (Knutti, Masson and Gettelman
2013; Masson and Knutti 2011; Mendlik and A. Gobiet 2016). Violation of the inde-
pendence assumption means that the information content is overestimated leading to an
overconfidence of the model variance (see Section 12.1 for a mathematical explanation).
Another problem arising from model inter-dependencies is the unbalanced nature of

MMEs. Unbalanced in the sense, that some modelling groups provide more and some
provide less simulations to the ensemble. Hence not only leads an invalid independence
assumption to an underestimation of the scale estimate, it can also lead to a biased
estimate of the mean climate change signal.
So far there are almost no studies presenting a suitable statistical model for this prob-

lem. Particularly, two methods only have been published so far: Bishop and Abramowitz
2012 with a follow up study by Abramowitz and Bishop 2015 present a method with
explicitly computed model weights which account for historical model similarity. Those
weights are based on the MSE to the observed climate. The same weights are then
used to estimate the uncertainty of future projections. A different approach which is
more similar to the proposed methodology of this study has recently been published
by Steinschneider et al. 2015. They also use the model similarity clustering results
from Knutti, Masson and Gettelman 2013 to define a blocking structure in their sta-
tistical model. Also entirely omitting the role of the observed climate, they derive a
Bayesian model accounting for model similarities in the historical period and use again
the same correlation estimate for future projections. For both changes in precipitation
and changes in temperature they assume a multivariate Gaussian distribution. Another
study by Zubler et al. 2015 quantifies the uncertainty using simple weighted quantiles
of the model ensemble, by accounting the clustered structure of the data obtained from
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Knutti, Masson and Gettelman 2013. While accounting for the unbalanced structure of
the ensemble, their approach has no underlying distributional assumptions. However,
they do not distinguish between the underlying sources of uncertainty.
An important point here is the interpretation of the estimated pdf/uncertainty, as

there are several sources of such a model spread (see Section 3.1): internal (natural)
variability, external (anthropogenic) forcings and climate model uncertainty. Simply
estimating a probability density function (PDF) among all available data would mix up
all the uncertainties, which have very different implications on climate change. Most
studies have in common to calculate the uncertainty conditional on a particular human
behaviour, thus not accounting on this source of uncertainty. The method proposed by
Bishop and Abramowitz 2012 eliminates all model uncertainty by forcing the models to
spread around the observed climate. Their estimated PDF can therefore be interpreted
as uncertainty created by internal variability. As this is the only source of uncertainly
they account for, their estimated spread is smaller than in other studies. The method
presented in Steinschneider et al. 2015 does not intend to reduce any uncertainties and
can be seen on the other side of the spectrum by purely estimating the climate model
uncertainty: Their method does not account the internal natural variability in any sense.
Internal variability is usually estimated by the spread of the year-to-year variations of
models (Hawkins and Sutton 2009) and by estimating the distribution of initial condition
ensembles (Collins, Tett and Cooper 2001).
Our work presents a novel approach to estimate such a PDF while accounting for

model inter-dependencies. In contrast to the studies described above, our method explic-
itly accounts for internal climate model variability, by considering natural year-to-year
variations as well as interpreting the outcome of initial condition ensembles, accounting
for a long-term internal variability. In addition, our method yields estimates of different
sources of uncertainty, by implementing a multi-level regression model, and can therefore
relate to studies like Hawkins and Sutton 2009. Bearing this in mind, this method ac-
counts for the unbalanced structure of the dataset, without the need to fill-up “missing”
climate simulation outcomes as in Déqué, Somot et al. 2011 or Heinrich, A. Gobiet and
Mendlik 2014. Further, by using bootstrap samples, the uncertainty of the individual
estimates (i.e. uncertainty of the uncertainty) is quantified as well. Also, in contrast to
almost any study estimating average fields of temperature and precipitation changes, we
rigorously check for the underlying statistical assumptions. We find that in most cases
the climate change signals are not normally distributed, but seem to stem rather from a
skewed distribution.
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Processing Climate Data - The
“wux” Package
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5 The Package

5.1 Package Overview

The wux package is meant to be an interfacing toolbox for scientists performing statis-
tical analysis on climate models. Its focus is to provide a simple data frame for the

user to make statistical inference on the ensemble. In particular, this package performs
following actions, which are depicted in Figure 5.1 and described in Table 5.1:

Climate data processing. The function models2wux reads output of climate model sim-
ulations from Network Common Data Form (NetCDF) files, extracts subregions of
interest, and writes climate change signals or time series to a data frame. Specific
meta-information, like file locations, are stored in a modelinput input argument,
which allows simple processing of the simulations. For any new climate simulation
it is enough to specify those meta-information without having to actually program
a new input routine.

Statistical analysis of climate change signals. Based on the data frame returned by
models2wux, we implemented various plotting options and summarizing utilities
for a descriptive analysis of the projected climate change signals (e.g. scatterplots
of temperature and precipitation). In addition, reconstruction tools allow to fill
up missing climate simulations by multiple imputation methods. Based on such a
reconstructed data frame (here termed as rwux.df), the user can assess for variance
components via the implemented analysis of variance (ANOVA) tools or perform
exploratory data analysis.
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6 Climate Data Processing

The central role of the Wegener Center uncertainty explorer (wux) package is to
automatically read in binary climate model output data from NetCDF files and

process them to a data frame for statistical analysis. This task is performed by the
function models2wux. The resulting data frame (further called wux.df, as it is technically
a wux.df object) contains the climate change signals for user-specified periods, regions,
seasons, and parameters for each of the climate models. One example wux.df is shown
at the end of Section 6.1. Alternatively, also time series data can be obtained.

6.1 From Climate Model Output to wux data frame
This is what models2wux is doing for each specified climate model:

1. Read in a three dimensional array (longitude, latitude, time) from binary climate
model output.

2. Temporal aggregation of the fields according to user-specified climate periods and
seasons. Aggregation statistics can also be specified by the user.

3. Spatial aggregation (arithmetic mean) over geographical domain.

4. Computing climate change signals for specified periods.

The resulting climate change signals for each climate model are returned to a data frame.
Temporal aggregation can be performed several times serially, going from fine tem-

poral resolution to coarser resolution, each time using another statistic for aggregation.
For example, daily temperature of a climate model output could first be aggregated to
monthly resolution using the mean function and as a second step the warmest month in
the year can be calculated with max. This would result in a climate change signal of
the warmest monthly averages. We can thus calculate a vast amount of sufficient statis-
tics to explore the climate data. Also, the user has the possibility to retrieve the full
time-series of the climate model instead of the climate change signal. This can, however,
result in quite a large data frame. The lowest time resolution currently implemented for
time-series data is on a monthly basis.
Being able to flexibly perform spatial aggregation over a specified domain is one of

the key strengths of this program. Several ways exist for the user to identify the region
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of interest. For example a rectangular region defined by the longitude-latitude corners
can be specified. For more flexibility, polygons can be defined using ESRI shapefiles1

to cut out and aggregate over the desired subregion domain. The spatial aggregation is
always performed using the arithmetic mean over geographical regions of any complexity.
However, this process is not as trivial as it first may seem. One problem lies in the
geographical projection of the climate model. Averaging over pixels of a model on a
Mercator projection (angle preserving) will result in a different value than averaging over
pixels in an area-preserving projection. General Circulation Models (GCMs) usually do
not come on an area-preserving projection. Therefore, the pixels should be weighted
by the cosine of their latitudes, otherwise areas near the poles would gain much more
weight then areas near the equator. When aggregating over a certain subregion, another
problem arises from the gridpoints which are associated with the subregion. Instead of
either considering a gridpoint to be within a region or not (0 and 1 weight), we may want
to weight all the model cells that contribute even partly to the considered subregion, i.e.
seize the fraction of the cell corresponding to the area covered by the subregion.

6.2 Setting up models2wux
To process a climate multi-model ensemble of your choice, models2wux needs two input
arguments userinput and modelinput, each being a named list object or a file containing
a named list.
modelinput stores general information about your climate data, i.e. the locations of the

NetCDF files and their filenames. It also saves certain meta-information for the specific
climate simulations (e.g. a unique acronym for the simulation, the developing institution,
the radiative forcing). Usually the modelinput information should be stored in a single
file on your system and should be updated when new climate simulations come in. It is
advisable to share this file with your colleagues if you work with the same NetCDF files
on a shared IT infrastructure.
The second input argument, userinput, defines which meteorological parameters of

which climate simulations defined in modelinput should be analysed. This is simply
done by calling the models acronym, as all meta-information is already stored in the
modelinput file. Also the geographical regions of interest and the temporal statistics
are specified in this file. This file typically changes depending on the type of analysis
performed.

6.3 Getting Started
We explain models2wux in more detail by considering an example of a typical workflow
for climate data processing. We start with downloading a couple of GCMs from the

1http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
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Coupled Model Intercomparison Project Phase 5 (CMIP5) project (Taylor, Stouffer and
Meehl 2012), then we specify their meta-information and the output statistics and finally
we run models2wux to process the binary data to an object of class wux.df.
To obtain CMIP5 climate simulations you can get started with downloading some

example NetCDF files directly from an Earth System Grid Federation (ESGF) node2 or
using the CMIP5fromESGF function from the wux package (Linux only).

R Code 6.1: wux package: Automatic data downloader for CMIP5 models.
> ## I) Load wux functions and example datasets ...
> library ("wux")

> ## II) obtain some climate simulations
> CMIP5fromESGF (save.to = "~/tmp/ CMIP5 /",

models = c("NorESM1 -M", " CanESM2 "),
variables = c("tas", "pr"),
experiments = c(" historical ", " rcp85 "))

Here, we download the 2m air temperature and surface precipitation files (tas and pr)
from two simulations NorESM1-M and CanESM2 for the historical period (here 1850–2005)
and the future projection (2006–2100), assuming a strong change in future radiative
forcing (rcp85, see Taylor, Stouffer and Meehl 2012). The data will be downloaded into
a temporary directory /tmp/CMIP5/ which can take a while. You need a valid account
at any ESGF node for this function to run.
In order to run models2wux, you need to specify the two input arguments explained

above: A modelinput file to define which climate simulations you have on your hard-
disk and a userinput file which controls models2wux itself. An example for the model
specification can be obtained in the package itself:

R Code 6.2: wux package: Meta-data example for climate model CanESM2.
> ## III) Meta - information on downloaded data for models2wux .
> data( modelinput _test)
> str( modelinput _test)
List of 2

$ CanESM2 - r1i1p1 _ rcp85 :List of 11
..$ rcm : chr ""
..$ gcm : chr " CanESM2 "
..$ gcm.run : num 1
..$ institute : chr " CCCma "
..$ emission . scenario : chr " rcp85 "
..$ file.path.alt :List of 2
.. ..$ air_ temperature :List of 2
.. .. ..$ historical : chr "~/tmp/ CMIP5 / CanESM2 / historical "
.. .. ..$ scenario : chr "~/tmp/ CMIP5 / CanESM2 / rcp85 "
.. ..$ precipitation _ amount :List of 2
.. .. ..$ historical : chr "~/tmp/ CMIP5 / CanESM2 / historical "
.. .. ..$ scenario : chr "~/tmp/ CMIP5 / CanESM2 / rcp85 "
..$ file.name :List of 2
.. ..$ air_ temperature :List of 2

2e.g. from the data node http://pcmdi9.llnl.gov
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.. .. ..$ historical : chr "tas_Amon_ CanESM2 _ historical _ r1i1p1 _
185001 -200512. nc"

.. .. ..$ scenario : chr "tas_Amon_ CanESM2 _ rcp85 _ r1i1p1 _
200601 -210012. nc"

.. ..$ precipitation _ amount :List of 2

.. .. ..$ historical : chr "pr_Amon_ CanESM2 _ historical _ r1i1p1 _
185001 -200512. nc"

.. .. ..$ scenario : chr "pr_Amon_ CanESM2 _ rcp85 _ r1i1p1 _ 200601 -210012.
nc"

..$ gridfile .path : chr "~/tmp/ CMIP5 / CanESM2 / historical "

..$ gridfile . filename : chr "tas_Amon_ CanESM2 _ historical _ r1i1p1 _
185001 -200512. nc"

..$ resolution : chr ""

..$ what. timesteps : chr " monthly "
$ NorESM1 -M- r1i1p1 _ rcp85 :List of 11

...

This input specifies the simulations which have just been downloaded. It is a named list
with the name being an unique acronym of the climate simulation. The example input
here specifies two simulations, but for the sake of brevity we only display the first one,
being the CanESM2-r1i1p1-rcp85 model. As this is a GCM, the rcm tag has no entry.
The other tags specify the model in more detail: This simulation is run number 1 of the
GCM CanESM2 and has been developed by the CCCma institution3. The corresponding
anthropogenic forcing is rcp85. file.path.alt defines the file locations for both temperature
and precipitation files as well as for historical runs and future scenario projections. In
this case the historical and the future scenario runs are located in different directories,
whereas both meteorological parameters are saved in the same path. file.name gives
information for the corresponding file names. The files which are necessary to define
the geographical longitude and latitude information are specified in gridfile.path and
gridfile.filename. The data is on a monthly timescale, which is defined in what.timesteps,
and the horizontal resolution is not specified here as it is optional.
It is advisable to store this list as a single file on your system. You should share this

file with colleagues using the same IT infrastructure to use synergies. Such a file can
also be created in an automated way using the function CMIP5toModelinput, for data
obtained with CMIP5fromESGF (see the manual for more details).
Next, we want to tell models2wux to get climate change signals of both simulations

we just defined above. In this example we are specifically interested in the temperature
changes for the Alpine area at the end of the 21st century. Therefore we specify a user
input file which contains a named list with all the necessary information:

R Code 6.3: wux package: Example config file to retrieve seasonal temperature climate
change signals of two GCMs.

> ## IV) Input argument controlling models2wux .
> data( userinput _ CMIP5 _ changesignal )
> str( userinput _ CMIP5 _ changesignal )

3Canadian Centre for Climate Modelling and Analysis (www.ec.gc.ca/ccmac-cccma)
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List of 9
$ parameter . names : chr "air_ temperature "
$ area. fraction : logi TRUE
$ reference . period : chr "1971 -2000"
$ scenario . period : chr "2071 -2100"
$ temporal . aggregation :List of 1

..$ stat. level .1: List of 3

.. ..$ period :List of 4

.. .. ..$ DJF: chr [1:3] 12 1 2

.. .. ..$ MAM: chr [1:3] 3 4 5

.. .. ..$ JJA: chr [1:3] 6 7 8

.. .. ..$ SON: chr [1:3] 9 10 11

.. ..$ statistic : chr "mean"

.. ..$ time. series : logi FALSE
$ subregions :List of 1

..$ AL: num [1:4] 5 15 48 44
$ plot. subregion :List of 4

..$ save. subregions . plots : chr "/tmp/"

..$ xlim : num [1:2] 0 20

..$ ylim : num [1:2] 40 50

..$ cex : num 10
$ save.as.data : chr "/tmp/ wuxexample "
$ climate . models : chr [1:2] "CanESM2 - r1i1p1 _ rcp85 ", "NorESM1 -M- r1i1p1 _

rcp85 "

This userinput input argument tells models2wux to process air-temperature (parameter.
names) for both models CanESM2-r1i1p1-rcp85 and NorESM1-M-r1i1p1-rcp85 (climate.
models tag). We define our 30 years base period (tag reference.period) to be 1971–
2000 and the projected future period of interest (tag scenario.period) for the climatic
change to be the 30 years of 2071–2100. We want the data to be aggregated to seasons
summer (June, July, August: JJA), autumn (SON), winter (DJF) and spring (MAM).
For each of those seasons models2wux returns the climate change signal defined by the
user by calculating scenario.period minus reference.period (for precipitation, changes are
in addition calculated relative to reference.period). When setting the attribute time.series
to TRUE, the output is a transient time series instead of climate change.
We want to aggregate over the spatial extend of the Alpine Region (AL), (see J. H.

Christensen and O. B. Christensen 2007), which is defined in the subregions tag. Here
it is a named vector of longitude and latitude coordinates and it defines a rectangular
region (western, eastern, northern and southern coordinates of the corners). There are
plenty of other ways to define a subregion, like reading in shapefiles. To analyze which
model grid cells lie within the specified region, we can specify plot.subregion (see Figure
6.1). We usually want to aggregate all model cells which lie within the specified region,
however, sometimes we would like to down-weight those cells which only partly contribute
to the considered region. Setting area.fraction as TRUE weights the cells corresponding
to the area covered by the subregion (Figure 6.1). Furthermore, area.fraction TRUE is
necessary, if the size of the subregion is in the same order of magnitude as the grid cell.
Such cases should be handled with care, since the grid point interpretation of climate
models is problematic. In most cases, the analysed subregions should be much larger
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than the grid size of the models and the error produced by setting area.fraction to FALSE
is negligible and processing gains a massive speed up. The data frame will also be saved
as a comma-separated file to /tmp/wuxexample.
Finally we run models2wux with the input arguments explained above to obtain the

temperature climate change signals (delta.air-temperature) for both simulations aggre-
gated over the Alpine region and four seasons. Columns besides subreg, season and the
temperature change parameter are meta-information of the climate data and derived
from the modelinput input argument.

R Code 6.4: wux package: A data.frame of processed seasonal temperature climate
change signals of two GCMs.

> ## V) Process NetCDF files
> climchange .df <- models2wux ( userinput = userinput _ CMIP5 _ changesignal ,
> modelinput = modelinput _test)
> climchange .df

subreg season acronym institute gcm gcm.run em.scn
1 AL DJF CanESM2 - r1i1p1 _ rcp85 CCCma CanESM2 1 rcp85
2 AL JJA CanESM2 - r1i1p1 _ rcp85 CCCma CanESM2 1 rcp85
3 AL MAM CanESM2 - r1i1p1 _ rcp85 CCCma CanESM2 1 rcp85
4 AL SON CanESM2 - r1i1p1 _ rcp85 CCCma CanESM2 1 rcp85
13 AL DJF NorESM1 -M- r1i1p1 _ rcp85 NCC NorESM1 -M 1 rcp85
14 AL JJA NorESM1 -M- r1i1p1 _ rcp85 NCC NorESM1 -M 1 rcp85
15 AL MAM NorESM1 -M- r1i1p1 _ rcp85 NCC NorESM1 -M 1 rcp85
16 AL SON NorESM1 -M- r1i1p1 _ rcp85 NCC NorESM1 -M 1 rcp85

period ref.per resolution corrected delta .air_ temperature
1 2071 -2100 no NA no 4.066630
2 2071 -2100 no NA no 8.041165
3 2071 -2100 no NA no 4.261498
4 2071 -2100 no NA no 5.686222
13 2071 -2100 no NA no 3.336806
14 2071 -2100 no NA no 5.378479
15 2071 -2100 no NA no 3.922325
16 2071 -2100 no NA no 3.787082

42



6.3 Getting Started

Fi
gu

re
6.
1:

G
rid

ce
lls

of
th
e
N
or
ES

M
1-
M

cl
im

at
e
m
od

el
be

in
g
ag

gr
eg
at
ed

.
O
n
th
e
le
ft

fig
ur
e
ar
ea
.fr
ac
tio

n
is

sw
itc

he
d
off

,t
ak

in
g
al
lc

el
ls

w
ith

th
ei
r
ce
nt
ro
id
s
ly
in
g
w
ith

in
th
e
A
lp
in
e
R
eg
io
n
(A

L)
an

d
w
ei
gh

t
th
em

eq
ua

lly
.
T
he

rig
ht

fig
ur
e
ha

s
ar
ea
.fr
ac
tio

n
on

:
T
he

sm
al
le
r
th
e
ci
rc
le
s,

th
e
sm

al
le
r
th
e
co
ve
ra
ge

of
th
e

m
od

el
ce
lls

an
d
th
e
sm

al
le
r
th
ei
r
w
ei
gh

t.
(S
ou

rc
e:

M
en

dl
ik
,H

ei
nr
ic
h,

A
.G

ob
ie
t
et

al
.2

01
6)
.

43





7 Statistical Analysis of Climate Change
Signals

Several functions are available to analyze the processed climate change signals created
by models2wux.

7.1 Descriptive Analysis
The summary function gives a descriptive overview of the climate model ensemble which
has been processed. On the one hand it calculates categorical statistics (counting cli-
mate models, emission scenarios, RCM-GCM cross-tables, . . . ) and on the other hand
it returns statistics of continuous climate change signals (mean, standard deviation, co-
efficient of variation and quantiles) split by season, emission scenario, meteorological
parameters and subregions. Let us consider the climate change signals from 1961–1990
until 2021–2050 in the Greater Alpine Region (GAR) of a multi-model ensemble consist-
ing of 22 Regional Climate Models (RCMs) from the ENSEMBLESmo project (Linden
and Mitchell 2009).

R Code 7.1: wux package: Summary of a wux.df object.
> ## VI b) Analyze climate change data - summary statistics
> data( ensembles )
> # consider Greater Alpine Region (GAR) only
> wuxtest .df <- droplevels ( subset (ensembles , subreg == "GAR"))
> ## summary statistics
> summary ( wuxtest .df)

----------------------------------------------------------------------
----------------------- FREQUENCIES BY SCENARIO ----------------------
----------------------------------------------------------------------

A1B:
8 GCMs ( disregarding runs)
22 models total
Number of GCMs used:

ARPEGE BCCR -BCM2 .0 CGCM3 ECHAM5 /MPI -OM HadCM3Q0
3 3 1 5 5

HadCM3Q16 HadCxM3Q3 IPSL -CM4
2 2 1

Number of RCM runs:
CLM CRCM HIRHAM HadRM3 PROMES RACMO RCA RCA3 REMO RM4 .5 RM5 .1

2 1 5 3 1 1 3 1 1 1 1
RRCM RegCM

1 1
Number of RCMs: 13
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----------------------------------------------------------------------
---------------- CLIMATE MODEL STATISTICS BY SUBREGION ---------------
----------------------------------------------------------------------

------------ GAR ------------
perc. delta . precipitation _ amount :

[A1B]
n mean sd coefvar min max med q25 q75

DJF: 22 2.88 5.09 1.77 -8.96 10.25 3.81 1.54 5.8
JJA: 22 -2.82 6.87 2.44 -12.42 10.71 -3.7 -7.19 1.61
MAM: 22 -0.64 4.99 7.83 -9.41 6.61 0.7 -5.52 2.87
SON: 22 0.76 5.7 7.51 -12.16 12.46 0.77 -2.09 3.65

delta .air_ temperature :
[A1B]

n mean sd coefvar min max med q25 q75
DJF: 22 1.66 0.51 0.31 0.92 2.41 1.56 1.19 2.13
JJA: 22 1.7 0.65 0.38 0.47 2.79 1.88 1.31 2.18
MAM: 22 1.25 0.53 0.43 -0.02 2.26 1.21 0.91 1.55
SON: 22 1.57 0.55 0.35 0.61 2.88 1.64 1.27 1.8

For the sake of brevity, we do not show all parts of the output. The FREQUENCIES
output shows that n = 22 climate simulations driven by 8 GCMs forced with one emis-
sion scenario (A1B) have been processed and shows the count of the specific RCMs
and GCMs used in the analysis. The CLIMATE MODEL STATISTICS output shows a
descriptive analysis of the continuous variables in the data set based on all n = 22 cli-
mate simulations available. In this case the continuous variables are the relative change
of precipitation (perc.delta.precipitation-amount) in percent and the absolute change of
temperature (delta.air-temperature) in ◦C. The precipitation change in the GAR is not
significant for either season, but there is a tendency in DJF for a slight increase of total
precipitation. In contrast to that, the change signal for temperature is significant for
all seasons showing quite an uniform warming, where MAM seems to have the smallest
trend.
Also, functions for a graphical overview of the climate model ensemble are available

in wux. The method plot for a wux.df object draws one or more scatterplots containing
climate change signals of selected meteorological parameters.

R Code 7.2: wux package: Calling a scatterplot of temperature and precipitaion climate
change signals for an RCM ensemble.

> ## VI b) Analyse climate change data - scatterplots
> plot(ensembles , "perc. delta . precipitation - amount ",
> " delta .air_ temperature ", boxplots = TRUE ,
> xlim = c( -40 ,40) , ylim = c(0, 4) ,
> xlab = " Precipitation Amount [%]", ylab = "2-m Air Temperature [K]",
> main = " Scatterplot ", subreg . subset = c("GAR"))

This draws a simple scatterplot which accounts for certain meta-information of the
climate change data frame and allows to highlight certain models. One of the scatterplots
produced by this call is shown on the left hand side of Figure 10.2. This is a very
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useful plot as it gives a good overview on the model behaviour and the climate change
uncertainty. In our example, some models project an increase in precipitation change,
whereas some project a decline. No correlation between temperature and precipitation
change is visible on this small spatial scale.

7.2 Data Reconstruction Methods

Due to limited computational capacities, even in large-scale climate modelling projects
such as CMIP5 or EURO-CORDEX (Jacob et al. 2013) only a limited number of cli-
mate simulations can be realised and it is a question of the experimental design which
uncertainty components are primarily tackled within the ensemble. Therefore, missing
realisations within climate projection ensembles are a common problem and even sim-
ple ensemble estimates such as mean and variability for e.g. temperature changes are
potentially biased due to unequal sampling of the uncertainty components. In order to
avoid such biases, Déqué, Rowell et al. 2007 introduced an iterative data reconstruction
method which assumes additivity between uncertainty components in order to estimate
the missing climate change signals. This reconstruction method was further applied in
several studies in order to obtain a balanced design for the analysis of variance compo-
nents (Déqué, Rowell et al. 2007; Déqué, Somot et al. 2011; Heinrich, A. Gobiet and
Mendlik 2014; Mendlik and A. Gobiet 2016; Prein, A. Gobiet and Truhetz 2011). In
wux, we implemented the method of Déqué, Rowell et al. 2007 for a two-factorial design
(reconstruct) such as realised in the ENSEMBLES project (Linden and Mitchell 2009).
In ENSEMBLES, a set of 21 high resolution RCM simulations with a horizontal grid
spacing of about 25 km was produced. The ensemble consists of 8 GCMs and 16 RCMs
only forced by the A1B emission scenario, but due to limited computational resources,
only a small fraction (16.4% of the possible GCM-RCM combinations) could be realised.
The result of such a reconstruction is shown in Figure 10.2. In that case, filling up the
missing GCM-RCM combinations does not alter the distribution of temperature and
precipitation change. However, as the method relies on an implicit formulation of the
uncertainty components, it cannot be used to extend the ensemble to GCMs that have
not been used as driver for any RCM in the ensemble. Further reconstruction meth-
ods which are able to extend the ensemble to GCMs outside of the original design are
investigated in Heinrich, A. Gobiet and Mendlik 2014.

7.3 Example: Further Statistical Analysis

It is one of the key strengths of this package to be directly implemented in R and for that
reason to have direct access to a huge magnitude of statistical methods to analyse climate
data. We provide an example application in this chapter to show possible extensions
based fully on the wux.df. We use a linear mixed effects model from the lme4 package
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7.3 Example: Further Statistical Analysis

(Bates et al. 2014) to estimate the average summer temperature trend over the Greater
Alpine Region based on individual time-series of 16 GCMs from the CMIP5 ensemble
under a moderate stabilisation scenario (Representative Concentration Pathway (RCP)
4.5).
To generate the appropriate wux.df, the timeseries tag in the userinput file was set

TRUE (see Chapter 6). The aim here is to get an average linear trend while accounting
for the unbalanced model design. Several of the GCMs were run a couple of times (up to
10 times) with different initial conditions, which induces a dependency structure in the
data set. We assess for this dependency by putting random effects in the linear model:

Yijk = β0 + β1yearjk + b0i + b1iyearjk + εijk

where Yijk is the average summer temperature projected by i = 1, . . . , 16 GCMs with
j = 1, . . . , ni runs per GCM and k = 1, . . . , 130 yearly time steps. The random effects
are defined as(

b0i
b1i

)
∼ N

((
0
0

)
,

(
σ2
gcm 0
0 σ2

gcm.t

))
and εijk

iid∼ N
(
0, σ2

y

)
.

We use the lmer function from the lme4 package for our analysis to estimate the fixed
effects β̂0, β̂1 and to predict the individual random effects b̂0 = (b̂0,1, . . . , b̂0,16)′, b̂1 =
(b̂1,1, . . . , b̂1,16)′. The time-series data and the trends are shown in Figure 7.2 plotted
with the lattice package (Sarkar 2008).

R Code 7.3: wux package: Example for an uncertainty analysis of CMIP5 multi-model
ensemble.

> data( alpinesummer )
> ## pick just a few GCMs for this example - for a more compact display
> gcms.sub <- c("ACCESS1 -3", "BCC -CSM1 -1", "CESM1 -CAM5", "CMCC -CM",
> "CNRM -CM5", "CSIRO -Mk3 -6 -0", "EC - EARTH ", "FGOALS -g2",
> "GFDL -CM3", "HadGEM2 -ES", "INM -CM4", "IPSL -CM5A -LR",
> " MIROC5 ", "MPI -ESM -LR", "MRI - CGCM3 ", "NorESM1 -M")
> alpinesummer .sub <- droplevels ( subset ( alpinesummer , gcm %in% gcms.sub))
> ## transform for better convergence
> alpinesummer .sub$time <- alpinesummer .sub$year - 1971
> lmm.fit <- lmer(air_ temperature ~ 1 + time + (1 |gcm) + (0 + time|gcm),
+ data = alpinesummer .sub)
> summary (lmm.fit)
Linear mixed model fit by REML [’lmerMod ’]
Formula : air_ temperature ~ 1 + time + (1 | gcm) + (0 + time | gcm)

Data: alpinesummer .sub

REML criterion at convergence : 16472.2

Scaled residuals :
Min 1Q Median 3Q Max

-4.0410 -0.6150 -0.0321 0.5766 4.5612

Random effects :
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7 Statistical Analysis of Climate Change Signals

Groups Name Variance Std.Dev.
gcm ( Intercept ) 2.5671124 1.60222
gcm .1 time 0.0001318 0.01148
Residual 1.2482244 1.11724

Number of obs: 5330 , groups : gcm , 16

Fixed effects :
Estimate Std. Error t value

( Intercept ) 16.49168 0.40257 40.97
time 0.03443 0.00292 11.79

Correlation of Fixed Effects :
(Intr)

time -0.016
> ## prints the first random effects
> head(coef(lmm.fit)$gcm)

( Intercept ) year
ACCESS1 -3 18.53855 0.03755274
BCC -CSM1 -1 17.26063 0.02928145
CESM1 -CAM5 16.11973 0.03574971
CMCC -CM 13.62953 0.03733811
CNRM -CM5 16.25376 0.03042184
CSIRO -Mk3 -6 -0 16.55908 0.04872848

The average slope β̂1 = 0.34 ◦C/decade (0.034 ◦C/y) is highly significant and the indi-
vidual slopes of the GCMs reach from slowly warming simulations b̂1,1 = 0.16 ◦C/decade
to very sensitive simulations b̂1,16 = 0.56 ◦C/decade (not visible in this output) assuming
linear temperature evolution over 130 years from 1971–2100. The residual standard de-
viation is σ̂y = 1.12 ◦C, which in this case can be interpreted as the average year-to-year
natural variability.
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8 Conclusion

It is crucial in climate research not only to analyse outcomes of single climate models,
but to consider entire multi-model ensembles, as it is virtually demanded in every cli-

mate impact related study to assess the associated uncertainties of the projected changes.
There is, however, definitely a technical challenge to process large amounts of climate
simulations at once, and not many tools exist to assess this problem. Another more gen-
eral problem arises measuring the uncertainty in multi-model ensembles. It is somewhat
uncomfortable to make statistical inference on multi-model ensembles, as they do not
stem from a designed experiment (Knutti, Furrer et al. 2010), are utterly unbalanced
(Déqué, Rowell et al. 2007), and are known to be biased (Maraun et al. 2010; Themeßl,
A. Gobiet and Leuprecht 2011).
The focus here is not to show solutions for sophisticated statistical analyses of climate

datasets, but merely to present a flexible and easy-to-use tool which is able to pre-
process the datasets for further statistical analysis. This way, the user can focus on
solving the grand challenges of statistical inference of multi-model datasets and does
not need to spend valuable resources on technical data issues. The function models2wux
fulfills exactly this task by processing magnitudes of binary climate model data to a R
data frame of climate change signals. Subsequently, the user can take advantage of the
vast amount of methods available in R, to analyse this data set.
However, this package also provides some functions for a first exploratory data analy-

sis, as e.g. a summary function and some plotting routines. Such simple analysis provide
very valuable information on the multi-model ensemble. In addition, we also provide
a couple of methods to address the issue of unbalanced experimental designs. Several
methods from literature are implemented to fill up the incomplete data matrix (Déqué,
Rowell et al. 2007; Heinrich, A. Gobiet and Mendlik 2014).
It should be kept in mind, that also other software packages exist which partly fulfill

similar tasks (e.g. climate explorer, Climate Data Operators (CDO), The NCAR Com-
mand Language (NCL)). The climate explorer can be a very convenient way to have a
quick descriptive analysis of a multi-model ensemble. It is easy to use, but it is also
restricted to a non-programming environment. Also, one can analyse only models which
are implemented in the system, and the statistical methods are restricted as well. It
should be noted, that no spatial analysis is currently possible within wux, as the empha-
size lies on averaged domains. For spatial maps, tools as CDO or NCL are far better
suited. Another limitation can be the hardware needed to process large datasets. R is
not the most memory-efficient environment and one can run into trouble when reading
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8 Conclusion

climate simulations with a very high spatial resolution.
To sum it up, wux is a very flexible tool dealing with different aspects of climate

model uncertainty in climate change impact investigations and enables a quick anal-
ysis of climate scenario uncertainty, which typically demands a considerable technical
effort as well as fundamental knowledge about climate modelling. It can be used to
achieve a quick overview on the involved uncertainties to identify the most important
sources of uncertainty or to select representative sub-ensembles to be used as input for
impact studies. wux is fully flexible regarding the meteorological parameter and region
under consideration and is able to assess uncertainties based on multiple user-defined
parameters.
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Climate Model Selection
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9 Statistical Methods

The following model selection method samples one representative climate simulation
out of groups of models with similar characteristics, to obtain a sub-set of indepen-

dent simulations which cover the multi-model ensemble (MME) spread. Those similar
groups are found using clustering techniques. The model spread and the similarity mea-
sure can be defined upon an arbitrary amount of climate parameters and indicators. In
addition, several spatial regions and several seasons of interest can be freely defined.
Therefore this method is not limited to the commonly used temperature and precipita-
tion changes of a single region, it is rather a multivariate extention.
Having such a complex set-up, it is necessary to decrease the dimensionality of the

climate parameters to eliminate collinearities and to reduce random noise. This is done
by using a principle component analysis (PCA) to identify patterns of climate change as
step (1) (Jolliffe 2002). Step (2) finds model similarities with a hierarchical clustering
algorithm (Huth et al. 2008) and finally, step (3) involves sampling of the simulations
out of each cluster detected. We assume that unrealistic simulations have been sorted
out in advance of the study. The next sections explain those steps in more detail.

9.1 Common patterns of climate change: PCA
With a PCA for each simulation, we transform the climate change signals of the me-
teorological parameters (like temperature and precipitation) to a linear combination of
those variables. Those transformed meteorological variables are formally called principle
components (PCs) and they form the common patterns of climate change (see Fig. 9.1).
The transformations, which are the coefficients of the linear combinations, are called
loadings and they describe which meteorological variables are combined to a particu-
lar pattern of climate change. The PCs of each simulation (i.e. patterns of climate
change) are treated in the same way as meteorological variables, but they differ in being
stochastically independent of each other, which is necessary for the subsequent cluster
analysis.
In the next step the most dominant patterns of climate change signals have to be

detected in order to reduce noise and make the subsequent cluster analysis more robust.
We use the broken-stick method given in Jolliffe 2002, which compares the variances
of individual PCs of the used dataset with a randomly generated dataset. If those
random variances are equal or larger than the observed ones, the corresponding PC can
be regarded as noise and should be excluded (Fig. 9.2).
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9.1 Common patterns of climate change: PCA
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Figure 9.2: Scree plot depicting the variances explained by the individual PCs (pat-
terns of climate change, black line). The red line depicts the variance of a
randomly generated dataset. PCs with variances close to this red line can
be regarded as noise and are excluded from the analysis. (Source: Mendlik
and A. Gobiet 2016).

Population PC

Let x = (x1, . . . , xp)′ ∈ Rp be the vector of variables. We are looking for a linear
combination of x which maximises variance. The first principle component (PC1) is
then

z1 = α′1x = α11x1 + · · ·+ α1pxp ∈ R (9.1)

with unknown coefficients (loading vector) α1 ∈ Rp. We seek for

Var(z1) = Var(α′1x) = α′1 Var(x)α1 = α′1Σα1 → max,

with α′1α1 = 1. The maximisation problem can be expressed as Lagrangian expression

φ1 = α′1Σα1 − λ(α′1α1 − 1).

Setting ∂φ1/∂α1 = 0 we obtain

Σα1 − λα1 = 0
(Σ− λIp)α1 = 0.

59
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The loading vector α1 is the eigenvector of Σ and λ is the corresponding eigenvalue. We
then get

Var(z1) = α′1Σα1 = α′1λ1α1 = λ1α
′
1α1 = λ1.

For PC2 we maximise Var(z2) = Var(α′2x) with the constraints α′2α2 = 1 and orthogo-
nality to the previous PC α′1α2 = 0 and get analogous coefficients.
Since eigenvetors and their corresponding eigenvalues are arranged in decreasing order,

the variance of the PCs decrease with higher order.
In matrix notation we can write the PCA as a base transformationz1

...
zp

 =

α11
...
αp1

x1 + · · ·+

α1p
...
αpp

xp

z1
...
zp

 =

α11 . . . α1p
...

...
αp1 . . . αpp


x1

...
xp


z = Ax ∈ Rp,

with the vector of principle components z = (z1, . . . , zp)′ ∈ Rp, the loading matrix
A = (α1, . . . ,αp)′ ∈ Rp×p containing rows of eigenvectors and the variables x =
(x1, . . . , xp)′ ∈ Rp

Sample PC
In reality the population covariance matrix Var ((x1, . . . , xp)′) = Σ is unknown and has
to be estimated using a sample for each variable xi. Denote xi = (xi1, . . . , xin)′ the
sample of variable xi with n observations. We write X = (x1, . . . ,xp)′ ∈ Rp×n as the
sample variable matrix. The first sample PC is

z1 = α′1X = α11x1 + · · ·+ α1pxp ∈ Rn. (9.2)

We define the score of observation i in the first PC as

z1i = α′1xi = α11x1i + · · ·+ α1pxpi ∈ R,

or in matrix notation, for r = rank(Cov(X)) we can write Z = AX, with Z = (z1, . . . ,zr) ∈
Rn×r and A = (α1, . . . ,αr)′, or in more detail:z11 . . . z1i . . . z1n

...
...

...
zr1 . . . zri . . . zrn

 =

α11 . . . α1p
...

...
αr1 . . . αrp

 ·
x11 . . . x1i . . . x1n

...
...

...
xp1 . . . xpi . . . xpn


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with the rows of Z being the principle components and its columns the scores.
The X matrix can be reconstructed from the PCA scores, Z. Due to the orthogonality

of A (i.e. A ·A′ = A′ ·A = I), its inverese is the transposed matrix A′ with X = A′Z orx11 . . . x1i . . . x1n
...

...
...

xp1 . . . xpi . . . xpn

 =

α11 . . . α1r
...

...
αp1 . . . αpr

 ·
z11 . . . z1i . . . z1n

...
...

...
zr1 . . . zri . . . zrn


so the k-th observation vector of X can be reconstructred using the k-th score (column
of Z): x1k

...
xpk

 =

α11
...
αp1

 z1k + · · ·+

α1r
...
αpr

 zrk, (9.3)

which is a linear combination of the eigenvectors α1, . . . ,αr ∈ Rp with coefficents
z1k, . . . , zrk ∈ R being the corresponding scores.
When using PCA as a dimension reduction technique, i.e. consider only the first q ≤ r

PCs, the reconstruction is done using only the first q scores and loading vectors.x
∗
1k
...
x∗pk

 =

α11
...
αp1

 z1k + · · ·+

α1q
...
αpq

 zqk + 0 + · · ·+ 0, (9.4)

with x∗jk being approximated, noiseless observations.

9.2 Model Similarity: Cluster Analysis
The aim here is to find groups of simulations based on their behaviour regarding the
common climate change patterns obtained from the PCA. Those groups of simulations
are found based on a hierarchical clustering algorithm which works like this: First, each
simulation is assigned to its own cluster, and then the algorithm proceeds iteratively
joining the two closest clusters in each agglomeration step until one cluster remains.
The measure of distance is based on Ward’s criterion, which finds new clusters with
minimal variance. This procedure tends to find compact and spherical groups of data.
Hierarchical clustering results in a tree-like similarity structure, which is meaningful if
we believe that some particular clusters might be more closely related to other clusters.
Having obtained a tree-like structure of the dependence of the simulations (Fig. 10.1),

the open question of how many simulations to actually select from the ensemble still
remains. There is no unique and best solution to this problem, but there are some
criteria on how to obtain an optimal amount of clusters. Our approach is to consider the
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distance criterion for each agglomeration step, which in case of Ward’s criterion is the
variance increase of the newly merged two clusters. We cut the tree where this increase
of variance does not change considerably.

9.3 Model Selection: Sampling
We extend the idea of non-probability sampling by sampling one simulation out of each
group of similar models obtained from the cluster analysis. This approach is also known
as quota sampling, where one selects members out of each group with key informa-
tion/characteristics relevant for the phenomenon being studied. This can be done by
picking simulations from the scatterplot on the PCs. Another way would be to look at
the distribution of the PCs for each simulation individually, which can be displayed with
a bar-chart denoting their location within the scatterplots. Starting from an average
simulation (all bars/PCs being close to 0) and then selecting one simulation with dis-
tinct extreme characteristics from each cluster. We will elaborate these methods in the
next section.
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10 Case Study: Model Selection for
European Domain

We apply the methods explained above within an exemplary case study to select
regional climate models for climate impact studies. The study is motivated by the

EU-FP7 project IMPACT2C (e.g. Vautard et al. 2014) to seek driving data for multiple
diverse impact models spread across the whole European continent. The large amount
of different impact modelling groups drastically increases the number of meteorological
variables which have to be considered. The analysis for this example, including the R
code and the data can be found in the electronic supplementary material online.

10.1 Climate Data
The MME used here is the multi-model dataset from the ENSEMBLES project. In
total there are 27 ENSEMBLES regional climate model simulations which are driven by
10 different General Circulation Models (GCMs) (all forced by the SRES A1B emission
scenario Nakicenovic, Alcamo and Davis 2000), where the ECHAM5 GCM appears three
times using different initialisation and the HadCM3 GCM also shows up with three
different parametrization schemes (Q0, Q3 and Q16 ). One RCM (KNMI ) has been
forced by all three ECHAM5 realisations, however with a rougher horizontal resolution
of 50km. Also, one additional simulation has been driven with this resolution, the
remaining 25 simulations have a 25km resolution. As one simulation (GKSS-CCLM4.8-
IPSL) lacks the variables relative humidity (HURS) and global radiation (RSDS), it
has been omitted in this study, leading to 9 different driving GCMs. In addition one
simulation (OURANOS-CRCM-CGCM3 ) shows very noticeable biases and has been
excluded as well, leaving n = 25 regional climate simulations for the analysis driven by
8 different GCMs. The baseline period for the climate change signal is the 30 years
average of 1971 to 2000. The future scenario period to determine the climate change
signal is chosen to be 2021 to 2050.
The most important meteorological drivers for climate change impacts in the European

study have been defined on the basis of a user survey among project partners, and
experience from previous projects. In total, ppar = 5 parameters have been selected,
being mean air temperature (TAS), precipitation amount (PR), HURS, RSDS and wind
speed (WSS). The climate change signals of these variables are analyzed in subregions
of Europe (as in J. H. Christensen and O. B. Christensen 2007) by aggregating spatially
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over pspat = 8 domains for the pseas = 4 seasons summer (JJA), winter (DJF), spring
(MAM) and autumn (SON). In total, this gives 160 different parameters. We obtained
the climate change signals using the R package wux Mendlik, Heinrich, A. Gobiet et al.
2016.

10.2 Common patterns of climate change
We use PCA to reduce the dimension space p = ppar × pseas × pspat = 5 · 4 · 8 = 160
of the n = 25 climate models. The broken-stick method detects 3-4 robust PCs (Fig.
9.2), excluding the remaining PCs as being random noise. We decided to reduce the
dimensionality to pred = 3 PCs.
The most dominant climate change pattern (PC1) is the temperature change along

all four seasons for all European subregions. PC2 shows a negative relationship between
HURS and RSDS. This means that simulations projecting a higher change in HURS
than others tend to project a lower change in RSDS. This anti-correlation seems to
hold for the entire European region in DJF and for the northern and eastern parts of
Europe in the remaining seasons, especially in MAM and SON. A positive correlation of
humidity and precipitation can be detected for the Scandinavian region over the whole
year and in winter for mid- and eastern Europe and the Alpine region. PC3 shows a
humidity-precipitation pattern for the southern regions for MAM (not shown).

10.3 Model similarity
Based on the first pred = 3 PCs we performed a hierarchical cluster analysis as described
in Section 9.2.
The tree-like dependency structure is visualised by a dendrogram in Figure 10.1. The

height of the branches depict the measure of dissimilarity between simulations and clus-
ters regarding the common patterns of climate change. The heights are used to detect
the optimal number of clusters: Starting from one cluster with the highest height we
increase the amount of clusters until there is no substantial change in heights any more.
The heights are shown as a barplot in Figure 10.1.
We show partitions with 5 clusters to visualise the range of reasonable clustering.

Notably, simulations driven by the lateral boundary conditions of the GCMs ECHAM5-
r3, BCM and ARPEGE show very strong GCM specific clustering, meaning that those
RCMs driven by the same GCM behave rather similar regarding the common patterns
of climate change. Further, ECHAM5-r3 and BCM driven simulations tend to be more
similar than ARPEGE models. Interestingly, the 50km versions of the RCM KNMI
driven by ECHAM5-r1 and by ECHAM5-r2 behave rather different than the ECHAM5-
r3 driven version and they are spread among different clusters. The simulations KNMI
and SMHI both have identical set-ups using a 25km and a 50km resolution. In each
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10.3 Model similarity

Figure 10.1: Cluster dendrogram for the first 3 PCs showing 5 clusters.The boxes
on the bottom show the driving GCM of the corresponding RCM. The
barplot on the top right shows the distance criterion (change of height
within the dendrogram) for each agglomeration step when merging clus-
ters. (Source: Mendlik and A. Gobiet 2016).
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10 Case Study: Model Selection for European Domain

Figure 10.2: Climate change signals of the ENSEMBLES RCMs within the principal
component space, showing the 75% variance ellipsoid within each cluster.
The selected models are highlighted. (Source: Mendlik and A. Gobiet 2016).

case, the similarity is very high. On the other hand, RCMs driven by the three GCMs
HadCM3 show quite some heterogeneity: On the one hand they are split among two
clusters of different sizes. On the other hand, RCMs driven by different HadCM3 GCMs
can be found in either cluster. Also the MIROC driven KNMI does not form a cluster
of its own but behaves similar to HadCM3 driven RCMs.

10.4 Model selection

Our model selection approach identifies 5 groups of similar simulations. As shown in
Fig. 10.1, these groups also show dependencies, some more than others, but much weaker
than between the individual simulations. By selecting one simulation of each cluster, we
definitely reduced the model dependency and obtained a more independent ensemble.
We decided to select an average climate simulation and 4 extreme simulations to span
the uncertainty range.
Figure 10.2 depicts the climate change signals of the regional climate simulations on

the principal component space with regard to the first three PCs. Simulations close
to 0 can be interpreted as having an “average pattern” of the climate change induced
by the corresponding principal component. The sign and order of magnitude in the
scatterplot (Fig. 10.2) corresponds to the pattern described in the corresponding PC from
the loadings plot in Figure 9.1. For PC1 (warming pattern), simulations within cluster 1
show highest changes, whereas cluster 2 and 5 tend to have cooler projections and cluster
3 is average. For PC2 (humidity pattern) cluster 4 and cluster 3 show distinct behaviour.
PC3 (precipitation and humidity pattern) mostly distinguishes between cluster 2, 3 and
5.
The individual locations within the scatterplots can be visualised with barplots (Fig.

10.3), which makes sampling easier. We started by choosing one average simulation,
being closest to 0 within all PC spaces. Then, out of each cluster, we took one ex-
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10.4 Model selection

Figure 10.3: Climate change signals for each RCM simulation in the principal component
space. The simulations are split according to their clustering. The suggested
selections are highlighted. (Source: Mendlik and A. Gobiet 2016).

treme representative to obtain maximum diversity of our sub-sample. One possible
model selection could be the following: KNMI-ECHAM5-r2-50km (average behavior),
C4I-HadCM3Q16 (low PC2), DMI-ARPEGE (high PC2, low PC3), ICTP-ECHAM5-r3
(high PC1, high PC3) and HCQ16-HadCM3Q16 (low PC1, high PC3). This selection
is marked in Figures 10.1, 10.2 and 10.3.
Here, some driving GCMs appear two times, such as ECHAM5 and HadCM3Q16, as

the corresponding RCM does project a very different pattern of climate change. However,
also other constellations could be possible, still capturing the extreme characteristics.
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11 Summary and Discussion

In order to provide sound meteorological input for climate change impact studies, it
is important to address the uncertainty induced by climate simulations. We present

a simple tool to aid the user to select appropriate climate simulations (either GCMs
or RCMs) as input for their studies. The aim of the proposed method is to sample
the climate model uncertainty, find model similarities and sub select models being as
independent as possible while conserving the spread of the full ensemble.
Our method generalises the pragmatic approach of finding the model spread of climate

change signals of, say, temperature against precipitation (IPCC-TGICA 2007). It allows
for simultaneous analysis of an arbitrary amount of meteorological parameters over sev-
eral spatial regions of interest, and brings forth dominating patterns of climate change.
Model similarities are detected based entirely on those patterns of projected change.
This stands in contrast to most other studies, which find similarities in the 20th century
historical runs (e.g. Abramowitz and Gupta 2008; Bishop and Abramowitz 2012; Pennell
and Reichler 2010). An interesting aspect for further research would be the question of
how model similarities in historical runs and dependencies in future projections relate
over time.
The selected simulations in the sub-ensemble conserve the main climate change char-

acteristics of the entire ensemble, but it might not share identical statistical properties
like mean and standard deviation. This is a desirable property, as unbalanced ensemble
designs often lead to biased estimates due to double-counting induced by model de-
pendencies. For balanced and thus unbiased ensembles, like for reconstructed datasets
(Heinrich, A. Gobiet and Mendlik 2014), the statistical properties are conserved, as the
sample size is equally decreased in each cluster.
We do not discuss model selection based on performance, as different models show

different strengths and weaknesses depending on the metric (Knutti, Abramowitz et al.
2010). We tend to the pragmatic approach of excluding few simulations with severe and
clearly demonstrated deficiencies and keeping as many simulations as possible as input
for the model selection procedure.
It should be noted that the proposed method does not deliver one single and unique

subset. Instead the user has to decide on how to select one simulation out of each
cluster. This can be done with probabilistic (random) sampling or non-probabilistic
sampling. We do not recommend any type of random sampling as it is vulnerable to
random sampling error: The randomness of the selection can result in a subset which is
not representative for the ensemble. The probability of such a misspecification increases
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11 Summary and Discussion

with decreasing sample size. For such small sample sizes it is more advisable to take
most extreme simulations to sample the entire model-spread.
Cannon 2015 proposes a very interesting alternative model selection algorithm, ad-

dressing the same problems as presented in this work (multivariate set-up and model
dependency). However, in contrast to the method proposed in this work, selected mod-
els are uniquely identified. This surely makes model selection simpler, but there is no
flexibility for the user to add some subjective selection criteria when sampling, like the
inclusion of an extremely well-performing simulation.
We demonstrate the presented model selection procedure with the ENSEMBLES

multi-model dataset (Chapter 10). Our results show that the first two most domi-
nating patterns of change relate to temperature and humidity and that the dataset can
be split into 5 groups of similar simulations. A dominant factor for model similarity in
this setting is the GCM forcing of the RCM. Interestingly, some GCM forcings lead to
very dense clusters (ECHAM5-r3 ), while others are very heterogeneous and may even
be split among different groups of similarity. This is particularly the case for the differ-
ent initial conditions of ECHAM5 (r1, r2 and r3 ), each inducing a distinct behaviour
of the RCMs. On the other hand, some driving GCMs do not create own clusters at
all (e.g MIROC ). In our example application this leads to a selection where two GCMs
appear twice, whereas others are omitted entirely. Selecting simulations from each GCM
would not necessarily span the entire uncertainty range.
However, our method is not restricted to the selection of RCMs, as a matter of fact it

can also be used to select suitable GCMs.
To sum it up, we present a flexible method to select models from an ensemble of

simulations conserving the model spread and accounting for model similarity. This
reduces computational costs for climate impact modelling and enhances the quality of
the ensemble at the same time, as it prevents double-counting of dependent simulations
which would lead to biased statistics.
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Part IV

Quantify Climate Uncertainty
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The aim of this part is to estimate the expected climate change and provide a cor-
responding measure of uncertainty, representing the spread of future climate pro-

jections. We focus on three case study regions in Europe which are known to have
very different impacts on climate change, namely the Alpine Region (AL), the Iberian
Peninsula (IP) and the Scandinavian Region (SC).
The method presented here explicitly accounts for several sources of uncertainty (Sec-

tion 3.1) by incorporating the entire state-of-the art multi-model ensemble Coupled
Model Intercomparison Project Phase 5 (CMIP5) as described in Section 2.3, pre-
processed with the “wux” package (Part II). The climate change uncertainty is quantified
with a hierarchical regression model, which best accounts for the problematic structure
of the data set (e.g. being massively imbalanced, see Section 3.1). The novelty of this ap-
proach is the explicit implementation of the dependence between climate models which
share core components simulating the climate system in a similar way (Masson and
Knutti 2011, Knutti, Masson and Gettelman 2013). Further this study shows that the
common conception of Gaussian distribution (e.g. Zubler et al. 2015) is severely wrong
and has a huge impact on the uncertainty estimates. We therefore implement a skewed
distribution which better captures the data. Also, we provide (1 − α)-confidence in-
tervals (CIs) for each estimate of the hierarchical regression model and compare them
using different methods. These CIs can be regarded as “uncertainties of the uncertainty
estimates”.
We therefore derive the Maximum-Likelihood estimate of a skew-normal mixed model

and directly maximise the objective function with a numerical solver. Here, the EM-
algorithm proposed in the literature does not work very well, it is in fact converging
slower than brute-force maximisation.
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12 Multilevel Regression Models

12.1 Motivation: Violating Independence Assumption
Let Y1, . . . , Yn be Random Variables (RVs) which can be formulated as

Yi = β0 +
p−1∑
j=1

βjzij + εi (12.1)

with εi being a independent and identically distributed (iid) RV with

εi
iid∼ N(0, σ2).

We can write this formula as

Yi = x′iβ + εi, i = 1, . . . , n (12.2)

with x′i = (1, zi1, . . . , zip−1) and β = (β0, β1, . . . , βp−1)′. The n equations can be written
more compactly as

Y = Xβ + ε, (12.3)

with Y = (Y1, . . . , Yn)′ ∈ Rn and X = (x1, . . . ,xn)′ ∈ Rn×p and unobservable errors
ε = (ε1, . . . , εn)′ ∈ Rn with

E(ε) = 0 and Var(Y ) = Var(ε) = σ2In. (12.4)

To estimate the parameter vector, we usually use the ordinary least-squares (OLS) esti-
mate

β̂ = (X ′X)−1X ′Y (12.5)

which we also obtain by maximising the likelihood function. The uncertainty (precision)
of this parameter estimate is then

Var(β̂) = Var
(
(X ′X)−1X ′Y

)
= (X ′X)−1X ′Var(Y )X(X ′X)−1 = σ2(X ′X)−1

(12.6)

which can be estimated with

V̂ar(β̂) = σ̂2(X ′X)−1.
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12 Multilevel Regression Models

Introducing Dependence So far we assumed the data being independent, for example
stemming from an iid normal distribution. But what happens to the estimate (12.5) if
we violate this assumption?
Let’s assume the data is dependent with Var(Y ) = V . Then the expected value of

the OLS estimate (12.5) is still

E(β̂dep) = E
(
(X ′X)−1X ′Y

)
= (X ′X)−1X ′ E(Y ) = (X ′X)−1X ′Xβ = β,

meaning we have an unbiased estimate. We write β̂dep to emphasise that the underlying
data are dependent. However, the uncertainty of the estimate β̂dep is now

Var(β̂dep) = Var((X ′X)−1X ′Y ) = (X ′X)−1X ′VX(X ′X)−1. (12.7)

It can be shown that the diagonal entries of the covariance matrix (12.7) are always
larger than the diagonal entries of the covariance matrix (12.6) of the estimate under
iid.
If V = σ2In, the uncertainty (12.7) attains the Cramér-Rao lower bound σ2(X ′X)−1.

And because this is exactly the uncertainty of the iid case Var(β̂iid) = σ2(X ′X)−1 we
get

Var(β̂dep) = (X ′X)−1X ′VX(X ′X)−1 ≥ I−1(σ2) = σ2(X ′X)−1 = Var(β̂iid). (12.8)

This means that dependence between observed data increase the uncertainty of the
estimate. Or in other words, if the model is mis-specified as iid, the true uncertainty
will be underestimated.

12.2 2-stage Mixed Regression Model
When dealing with dependent, clustered data, assume Yij ∈ R is a response of the j-th
member within the i-th cluster. Assume we have i = 1, . . . ,m clusters in total and
within each cluster we have j = 1, . . . , Ni observations Yij . Then we can describe this
dependency structure with a linear mixed-effects model (LMM)

Yij =
p∑
l=1

xijlβl +
d∑

k=1
zijkbik + εij = x′ijβ + z′ijbi + εij , (12.9)

with fixed but unknown β ∈ Rp and random bi ∈ Rd. In a more compact notation the
LMM (12.9) can be written as Yi1

...
YiNi

 =

 x
′
i1
...

x′iNi

β +

 z
′
i1
...
z′iNi

 bi +

 εi1
...

εiNi

 (12.10)
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12.2 2-stage Mixed Regression Model

or

Yi = Xiβ +Zibi + εi, (12.11)

with Yi = (Yi1, . . . , YiNi)′ ∈ RNi the responses within cluster i, with design matrices
Xi = (x′i1, . . . , x′iNi)

′ ∈ RNi×p and Zi = (z′i1, . . . , z′iNi)
′ ∈ RNi×d and with

bi ∼ Nd(0, D), εi ∼ NNi(0,Σi), (12.12)
b1, . . . , bm, ε1, . . . , εm independent, (12.13)

with unknown variance component (VC) D ∈ Rd×d and Σi ∈ RNi×Ni .

Vectorization We can vectorize the responses of the i = 1, . . . ,m clusters to a more
compact notation

Y = Xβ +Zb+ ε

with the total amount of observations N =
∑m

i=1Ni

Y =

Y1
...
Ym

 ∈ RN , X =

X1
...
Xm

 ∈ RN×p, (12.14)

and the design matrix for the random effects defining the dependency structure of the
clustered dataset with

Z =


Z1 0N1×d . . . 0N1×d

0N2×d Z2
... . . .

0Nm×d Zm

 ∈ RN×q, with q = d ·m, (12.15)

where q equals the dimensionality d of the random effects multiplied by the amount of
clusters m and further

0Ni×d =

0 . . . 0
... . . . ...
0 . . . 0

 ∈ RNi×d. (12.16)

The random quantities become

ε =

 ε1
...
εm

 ∈ RN , b =

b1
...
bm

 ∈ Rq, (12.17)
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12 Multilevel Regression Models

Dimension Description

Random Effects
q = d ·m vector length of random effect bi
d dimension of random effect bi
m number of clusters

Fixed Effects
p dimension of fixed effect β

Observations
Ni number of observations in cluster i
N =

∑m
i=1Ni number of total observations

Table 12.1: Indices for 2-stage random effects model.

Observations Fixed Effects Random Effects

yij x′ij β z′ij bi
(1× 1) (1× p) (p× 1) (1× d) (d× 1)
yi Xi β Zi bi

(Ni × 1) (Ni × p) (p× 1) (Ni × d) (d× 1)
y X β Z b

(N × 1) (N × p) (p× 1) (N × q) (q × 1)
Table 12.2: Dimensions of components at different vectorizations.

with the VCs

D =

D 0
. . .

0 D

 ∈ Rq×q, Σ =

Σ1 0
. . .

0 Σm

 ∈ RN×N . (12.18)

The notation of the indices is summarised in Table 12.1, and Table 12.2 provides an
overview over the dimensions for different vectorizations of the response Yij . The fixed
effects β, the variance components D and Σ1, . . . ,Σm can be estimated by iteratively
solving Henderson’s mixed model equations (Henderson 1982) which can be obtained by
maximising the marginal likelihood of Y .
Remark 12.1. If the random effects are normally distributed we obtain(

ε
b

)
∼ NN+q

((
0
0

)
,

(
Σ 0
0 D

))
. (12.19)
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12.2 2-stage Mixed Regression Model

r1(a) r1(b) r2(b) r3(b) r4(b) r1(c) r2(c)
a 1 . . . . . . N1 = 1

GCM b . 1 1 1 1 . . N2 = 4
c . . . . . 1 1 N3 = 2

N = 7
Table 12.3: Cross-table: Three climate simulations (a, b, c) having different amount of

initialisation runs.

Example 12.2 (Dependency structure: Climate models with several initial runs). Let
the responses Yij ∈ R be the projected temperature climate change of global climate
simulations i = 1, . . . ,m, m = 3. Each simulation has been started several times,
each time with different initial conditions (see Section 3.1) so we have j = 1, . . . , Ni

realisations with N1 = 1, N2 = 4, N3 = 2. The design is summarised in Table 12.3.
We model the j-th run of the i-th simulation as

Yij = β + bi + εij ,

in which case 

Y11
Y21
Y22
Y23
Y24
Y31
Y32


=



β
β
β
β
β
β
β


+



b1
b2
b2
b2
b2
b3
b3


+



ε11
ε21
ε22
ε23
ε24
ε31
ε32


which can be rewritten as

Yi = Xiβ +Zibi + εi, i = 1, . . . ,m

with m = 3 and d = 1 and

X1 = 1 ∈ RN1×1, X2 =


1
1
1
1

 ∈ RN2×1, X3 =
(

1
1

)
∈ RN3×1,

and with same Zi

Z1 = 1 ∈ RN1×1, Z2 =


1
1
1
1

 ∈ RN2×1, Z3 =
(

1
1

)
∈ RN3×1,
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12 Multilevel Regression Models

because the dimension of β is p = 1 and the sample sizes for each simulation being N1 =
1, N2 = 4, N3 = 2. However, when putting together the different climate simulations
(i.e. clusters of data), the model becomes

Y = Xβ +Zb+ ε,

with

X =



1
1
1
1
1
1
1


∈ RN×p,Z =

 Z1 0N1×d 0N1×d
0N2×d Z2 0N2×d
0N3×d 0N3×d Z3

 =



1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1


∈ RN×q, b =

b1b2
b3

 ∈ Rq.

with total number of observations N = 7 and the dimensionality of the random effects
vector being the amount of clusters (m = 3 climate simulation) times the amount of
random effects (d = 1) being q = d ·m = 3 · 1 = 3 and Z ′ being exactly the design Table
12.3.

Remark 12.3 (Hierarchical Model). The LMM can be written as a two level hierarchical
model

Y |b ∼ N(Xβ +Zb,Σ) (12.20)
b ∼ N(0,D) (12.21)

The LMM is defined in terms of the conditional distribution, let us take a look at the
marginal distribution of the responses.
Remark 12.4 (Marginal Distribution). The marginal distribution of the 2 level LMM Y
is again a normal distribution with expected value

E(Y ) = E(E(Y |b)) = E(Xβ +Zb) = Xβ (12.22)

and variance

V ar(Y ) = V ar(E(Y |b)) + E(V ar(Y |b)) (12.23)
= V ar(Xβ +Zb) + Σ (12.24)
= ZDZ ′ + Σ (12.25)

due to the law of conditional variance. The marginal distribution is thus

Y ∼ N(Xβ,ψ), ψ = ZDZ ′ + Σ. (12.26)

80



12.2 2-stage Mixed Regression Model

The marginal distribution in Remark 12.4 allows us to interpret any 2-stage mixed
model as an ordinary linear regression model with dependent error term

Y = Xβ + ε∗, ε∗ ∼ N(0,ψ), ψ = ZDZ ′ + Σ.

Example 12.5 (Marginal Variance of Example 12.2). Let us assume that the two-stage
LMM

Yij = β + bi + εij , i = 1, . . . ,m, j = 1, . . . , Ni

has independent errors and random effects

εij
iid∼ N(0, σ2), bi

iid∼ N(0, τ2),

which leads to the variance matrices

V ar(ε) = Σ = σ2IN , V ar(b) = D = τ2Iq.

With ZZ ′ being the block-diagonal matrix

ZZ ′ =



1 0 0 0 0 0 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1


∈ RN×N ,

the marginal variance of the observations is

V ar(Y ) = ψ = τ2ZZ ′ + σ2IN

=



τ2 + σ2 0 0 0 0 0 0
0 τ2 + σ2 τ2 τ2 τ2 0 0
0 τ2 τ2 + σ2 τ2 τ2 0 0
0 τ2 τ2 τ2 + σ2 τ2 0 0
0 τ2 τ2 τ2 τ2 + σ2 0 0
0 0 0 0 0 τ2 + σ2 τ2

0 0 0 0 0 τ2 τ2 + σ2


.

So the data-points are not independent marginally.

Example 12.6 (Marginal Variance Structure of climate models). Consider the real data
yij being the projected warming of GCMs i = 1, . . . , 37 in the Alpine area. Some models
i have been run several times (j = 1, . . . , Ni) with slightly different initial conditions,
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12.2 2-stage Mixed Regression Model

Transposed design matrix Z'

Dimensions: 37 x 82
Column

R
ow

10

20

30

20 40 60 80

Figure 12.2: Design matrix Z ∈ RN×q of random effects (here transposed). The dark
boxes denote values with 1, where the rest is 0. We have N = 82 total ob-
servations and q = m · d = 37 · 1 with m = 37 clusters.

and we expect those to behave similarly. The responses can be seen in Figure 12.1, where
we can clearly see clustering within GCMs. Lets take the same model as in Example
12.4

Yij = β + bi + εij , i = 1, . . . ,m, j = 1, . . . , Ni

with m = 37 and with the random GCM effect bi
iid∼ N(0, τ2) and the residuals εij

iid∼
N(0, σ2). The VC τ2 represents the spread between the GCMs and σ2 the spread of
the runs within a GCM. The design matrix Z in Figure 12.2 depicts the nested design
of the data. We obtain the estimated VCs of σ̂2 = 0.1 and τ̂2 = 1.07. The marginal
covariance is thus σ̂2 + τ̂2 = 0.1 + 1.07 = 1.17. The correlation estimate between the
GCMs is here defined to be 0 and the correlation between the runs of the same GCM
are τ̂2/(σ̂2 + τ̂2) = .91. The correlation structure between all available observations can
be seen in Figure 12.3.
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12 Multilevel Regression Models

Marginal covariance matrix

Dimensions: 82 x 82
Column

R
ow
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Figure 12.3: Marginal covariance structure of N = 82 climate simulations, which have
been driven by m = 37 GCMs. The block-diagonal dependency structure
has been induced by the random-effects design matrix Z. The diagonal
black entries is the variance of the runs σ̂2 + τ̂2 = 0.10 + 1.07 = 1.17 where
the off-diagonal grey entries denote the covariance τ̂2 = 1.07.

84



12.3 Multilevel Regression Model

12.3 Multilevel Regression Model
We now generalise the classical definition of a hierarchical (2-stage mixed-effects) model
by taking several levels of random effects into account, which we from now on call
multilevel model. We first need following matrix operations:

Definition 12.7 (Direct sum). The direct sum of two matricesA ∈ Rn×m andB ∈ Rp×q
is defined as

A⊕B =
(
A 0
0 B

)
∈ R(n+p)×(m+q),

with 0 being block-matrices with 0 entries.

Definition 12.8 (Kronecker product). We define the Kronecker product of two matrices
A ∈ Rn×m and B ∈ Rp×q as

A⊗B =

a11B . . . a1mB
... . . . ...

an1B . . . anmB

 .

Definition 12.9 (Multilevel Regression). Let Y be a N × 1 response vector. We want
to model the N outcomes with a L-level random effects regression model

Y = Xβ +Z(1)b(1) + · · ·+Z(L)b(L) + ε (12.27)

with β ∈ Rp×1 being the fixed effects and the random effects b(l) ∈ Rql×1 of length ql
with l = 1, . . . , L levels of random effects. The length of random effect of level l is

ql = dl ·ml, l = 1, . . . , L

with dl being the dimension of the distribution and ml the number of clusters of
the level l random effect. This means the elements of b(l) follow a known dl-variate dis-
tribution (with unknown parameters). We further demand mutual independence among
the random effects

b(1)⊥ . . .⊥b(L)⊥ε.

We further define the number of total observations within a cluster i with Ni, and Nij

the amount of observations within cluster j which is nested within cluster i and so on.
Similarly we define ml(i) to be the number of clusters in level l, nested within cluster
i (of the lowest level L). ml(ij) would be the amount of level l clusters nested within
cluster j in the second-lowest level nested within cluster i in the lowest level, and so on.
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12 Multilevel Regression Models

Dimension Description

Random Effects
L number of levels of random effects (nesting depth)
I number of clusters in lowest level L
Ji number of clusters in level L− 1 nested within cluster i
Kij number of clusters in level L− 2 nested within cluster j and i
...

ml(i) number of clusters in level l nested within cluster i
ml(ij) number of clusters in level L− 2 nested within cluster j and i
...
ql = dl ·ml vector length of vectorized random effect b(l)

dl dimension of random effect b(l)
i

ml number of total clusters at level l with
mL = I

mL−1 =
∑I

i=1 Ji
mL−2 =

∑I
i=1
∑Ji

j=1Kij

...

q =
∑L

l=1 ql vector length of all random effects b
m =

∑L
l=1ml total amount of clusters of all levels

Fixed Effects
p dimension of fixed effect β

Observations
N =

∑m
i=1Ni total number of observations

Ni =
∑Ji

j=1Nij number of observations in cluster i of lowest level L
Nij =

∑Kij
k=1Nijk number of observations in cluster j (in L− 1) within cluster i (in L)

...
Table 12.4: Notation for the indices and dimensions of the multilevel model.
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12.3 Multilevel Regression Model

Remark 12.10. The dependency structure of the data Y is defined by the random effects
b(l) for l = 1, . . . , L and its design matrices Z(l).
Remark 12.11 (Index subscription). The notation of the single observation entries in
Y ∈ RN×1 depends on the amount of random effect levels L. For example, having no
dependency structure (L = 0) as for the linear regression model we only need one index
for each sample point Yi

Yi = x′iβ + εi (12.28)

where

εi
iid∼ N(0, σ2), i = 1, . . . , N.

Having one random effect (L = 1) as in the two-stage regression model, the single data-
points can be written as Yij with

Yij = x′ijβ + z′ijbi + εij (12.29)

with N =
∑I

i=1Ni and

Level 2 bi
iid∼ Nd(0, D), i = 1, . . . , I

Level 1 εij
iid∼ N(0, σ2), j = 1, . . . , Ni.

In contrast, a 4-level multilevel model can be written as

Yijkt = x′ijktβ + z(1)
ijktb

(1)
ijk + z(2)

ijktb
(2)
ij + z(3)

ijktb
(3)
i + εijkt (12.30)

with N =
∑

i,j,kNijk and

Level 4 b
(3)
i

iid∼ Nd3(0, D3), i = 1, . . . , I

Level 3 b
(2)
ij

iid∼ Nd2(0, D2), j = 1, . . . , Ji

Level 2 b
(1)
ijk

iid∼ Nd1(0, D1), k = 1, . . . ,Kij

Level 1 εijkt
iid∼ N(0, σ2), t = 1, . . . , Nijk.

Remark 12.12. The 2-stage linear mixed effects model from Section 12.2 can be defined
with L = 1, and so setting b = bl leading to

Yij = x′ijβ + z′ijb+ εij

where

εij ∼ N(0, σ2), bi ∼ Nd(0, D)
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12 Multilevel Regression Models

with b = (b′1, . . . , b′m)′ and ε = (ε11, . . . , εmNm)′ leading to

Y = Xβ +Zb+ ε

with

ε ∼ NN (0, σ2IN ), b ∼ Nq(0, Im ⊗D).

Remark 12.13. Any L-level random effects model can be written as

Y = Xβ +Z(1)b(1) + · · ·+Z(L)b(L) + ε

where

Z = (Z(1)... . . .
...Z(L)) and b =

b
(1)

...
b(L)

 .

Example 12.14 (4-Level nested hierarchical model). Consider the hierarchical model

Yijkt = β0 + aijk + bij + ci + εijkt.

The data structure is shown in Figure 12.4. We have

i = 1, . . . , I, j = 1, . . . , Ji, k = 1, . . . ,Kij , t = 1, . . . , Nijk

where

Level 4 : I = 2,
Level 3 : J1 = 2, J2 = 1,
Level 2 : K11 = 2,K12 = 3,K21 = 4,
Level 1 : Nijk ≡ 3.

which defines the design matrix for the random effects when vectorizing the observations
Y ∈ RN , where N = 27 to

Y = 1β0 +Z(1)a+Z(2)b+Z(3)c+ ε.

From Definition 12.9 we get

a = (aijk)ijk ∈ Rq1 , Z(1) ∈ RN×q1 , N = 27, q1 = d1 ·m1 = 9
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12.3 Multilevel Regression Model

Figure 12.4: The hierarchical structure of a 4-Levels nested regression model having 3
levels of unobserved random effects aijk, bij , ci and one level of observed
data Y . The blue boxes depict the number of observed data (e.g. Nij)
at different levels, whereas the green boxes depict the number of clusters
(e.g. ml(i)) at different levels.

and because every random effect aijk is repeated Nijk ≡ 3 times, we get

Z(1) =



1 0 . . . 0
1 0 . . . 0
1 0 . . . 0
0 1 0
0 1 0
0 1 0

. . .
0 . . . 0 1
0 . . . 0 1
0 . . . 0 1


=

13 0
. . .

0 13

 = 13 ⊕ · · · ⊕ 13 = I9 ⊗ 13
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12 Multilevel Regression Models

and similarly for the other random effects:

b = (bij)ij ∈ Rq2 , Z(2) ∈ RN×q2 , N = 27, q2 = d2 ·m2 = 3
c = (ci)i ∈ Rq3 , Z(3) ∈ RN×q3 , N = 27, q3 = d3 ·m3 = 2

and

Z(2) = 1N11 ⊕ 1N12 ⊕ 1N11 ∈ R27×3

Z(3) = 1N1 ⊕ 1N2 ∈ R27×2.

We can write the model with a single random effect

Y = 1β0 +Zγ + ε,

where

γ =

ab
c

 ∈ Rq1+q2+q3 , Z = (Z(1)...Z(2)...Z(3)) ∈ RN×(q1+q2+q3)

Remark 12.15 (Linearity of expected value). If the underlying distributions are linear
with respect to the expected value (as it is the case for Gaussian distribution), any
nested hierarchical (linear) regression model can be written as the model (12.27) with
each random effect having zero mean. For example, consider

Y |γ(1),γ(2) ∼ N(X(0)β(0) +W (1)γ(1),Σy)
γ(1)|γ(2) ∼ N(β(1) +W (2)γ(2),Σ1)

γ(2) ∼ N(β(2),Σ2)

which can be re-parameterized with b(1) = γ(1)−E(γ(1)|γ(2)) = γ(1)− (β(1) +W (2)γ(2))
and b(2) = γ(2) − E(γ(2)) = γ(2) − β(2) leading to

Y = Xβ +Z(1)b(1) +Z(2)b(2) + ε

with

ε ∼ N(0,Σy), b(1) ∼ N(0,Σ1), b(2) ∼ N(0,Σ2), where b(1)⊥b(2)⊥ε

and

β =

β(0)

β(1)

β(2)

 , X = (X(0)...Z(1)...Z(2)), Z(1) = W (1), Z(2) = W (1)W (2),
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12.3 Multilevel Regression Model

because

X(0)β(0) +W (1)γ(1) = X(0)β(0) +W (1)(b(1) + β(1) +W (2)γ(2))
= X(0)β(0) +W (1)(b(1) + β(1) +W (2)(b(2) + β(2)))
= X(0)β(0) +W (1)β(1) +W (1)W (2)β(2) +W (1)b(1) +W (1)W (2)b(2)

= (X(0)...W (1)...W (1)W (2))

β(0)

β(1)

β(2)

+W (1)b(1) +W (1)W (2)b(2)

= Xβ +Z(1)b(1) +Z(2)b(2).
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13 Skewed Regression

We now move further from normally distributed data to the class of skew-normal
distributed data. The aim is to derive a multi-level regression model for this

general class of distributions.
We denote φn(x|µ,Σ) and Φn(x|µ,Σ) the probability density function (PDF) and

the cumulative distribution function of the Nn(µ,Σ) distribution evaluated at x ∈ Rn.
If µ = 0 and Σ = In we write φn(x) and Φn(x).

13.1 Skew-Normal Distribution

We consider the skew-normal distribution as first defined in Azzalini 1985 and further
extended in Azzalini and Dalla Valle 1996 and in Arellano-Valle, Bolfarine and Lachos
2005. We also introduce a reparameterization introduced by Arellano-Valle and Azzalini
2008 which results in a faster and more robust estimation as well as better interpretabil-
ity.

Definition 13.1. The random variable Y follows the univariate skew-normal distribu-
tion with location parameter ξ, scale parameter ω2 and skewness parameter λ when its
PDF is

fY (y) = 2φ1(y|ξ, ω2)Φ1

(
λ
y − ξ
ω

)
. (13.1)

We write Y ∼ SN(ξ, ω2, λ) or Y ∼ SN(λ) if ξ = 0 and ω2 = 1.

Remark 13.2. If λ = 0, then Y ∼ N(ξ, ω2).

Proposition 13.3. Let Y ∼ SN(λ), then

Y = δ|U |+ (1− δ2)1/2V, (13.2)

where δ = λ/
√

1 + λ2, U ∼ N(0, 1), i.e. |U | ∼ HN(0, 1), is independent of V ∼ N(0, 1).

This mixture of Normal and Half-Normal distribution can be used to derive the first
two moments.
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13 Skewed Regression

Proposition 13.4. Let Y = ξ + ωW where W ∼ SN(λ). Then

Y ∼ SN(ξ, ω, λ),

and

E(Y ) = µ = ξ +
√

2
π
ωδ,

Var(Y ) = E
(
(Y − µ)2) = σ2 = ω2(1− 2

π
δ2),

with δ = λ/
√

1 + λ2.

We derive those moments for the multivariate case below. The third standartised
moment, the skewness is given by

Skew(Y ) = E
(

(Y − µ)3

σ3

)
= γ1 = 4− π

2
(δ
√

2/π)3

(1− δ22/π)3/2 ,

which is derived with the moment generating function (see Azzalini 1985). It is important
to note that the skewness of the skew-normal distribution is limited to approximately
γ1 ∈ (−.995, .995).

Definition 13.5. An n-dimensional random vector Y follows a skew-normal distribution
with location vector ξ ∈ Rn, (positive definite) dispersion matrix Ω ∈ Rn×n and skewness
vector λ ∈ Rn when its PDF is given by

fY (y) = 2φn(y|ξ,Ω)Φ1(λ′Ω−1/2(y − ξ)) (13.3)

with Ω = Ω1/2Ω1/2. We write Y ∼ SNn(ξ,Ω,λ).

Proposition 13.6. Let W ∼ SNn(λ), then

W = δ|X0|+ (In − δδ′)1/2X1, (13.4)

where δ = λ/
√

1 + λ′λ, X0 ∼ N(0, 1), is independent of X1 ∼ Nn(0, In).

Proof. See Appendix A.

Corollary 13.7. Let Y = ξ + Ω1/2W , where W ∼ SNn(λ). Then

Y ∼ SNn(ξ,Ω,λ), (13.5)

and

E(Y ) = µ = ξ +
√

2
π

Ω1/2δ, (13.6)

Var(Y ) = Σ = Ω− 2
π

Ω1/2δδ′Ω1/2. (13.7)

with δ = λ/
√

1 + λ′λ.
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13.1 Skew-Normal Distribution

Proof. Because W = δ|X0| + (In − δδ′)1/2X1, with |X0| ∼ HN(0, 1) it follows that
E(|X0|) =

√
2/π and Var(|X0|) = 1− 2/π. We therefore obtain

E(Y ) = E(ξ + Ω1/2W ) = E(ξ + Ω1/2δ|X0|+ Ω1/2(In − δδ′)1/2X1, ) = ξ + Ω1/2δ

√
2
π

and

Var(Y ) = Var(ξ + Ω1/2δ|X0|+ Ω1/2(In − δδ′)1/2X1, )
= Ω1/2δ(1− 2/π)δ′Ω1/2 + Ω1/2(I − δδ′)Ω1/2

= Ω− 2
π

Ω1/2δδ′Ω1/2.

Remark 13.8. The expectation vector µ = E(Y ) equals the location parameter vector ξ
only if λ = 0, i.e if Y is normally distributed. The same holds for the covariance matrix
Σ = Var(Y ) which equals the dispersion matrix Ω if λ = 0.

Centred parameterization We can reparameterize the skew-normal RV Y = (Y1, . . . , Yn)′
defined by its direct parameters (DPs) (ξ,Ω,λ) to its centred parameters (CPs) (µ,Σ,γ1)
with µ = E(Y ), Σ = Var(Y ) and γ1 = (γ1,1, . . . γ1,n) being the vector with Pearsons
indices of skewness

γ1,i =
E
(
(Yi − E(Yi))3)
Var(Yi)3/2

This is meaningful for two reasons: First, studies like Arellano-Valle and Azzalini 2008
show that the profiled DP likelihood function (as a function of the skewness λ) has a
problematic non-quadratic shape and a stationary point at λ = 0. Also the estimated
distributions of the maximum likelihood estimate (MLE) can be bi-modal. Second, it
is difficult to directly interpret the location and dispersion parameters of Y , it is more
interesting to interpret the mean and variance of Y .
To perform the reparameterization we first introduce the normalised variable

Z = ω−1(Y − ξ) ∼ SN(0, Ω̄,λ),

where ω is a matrix consisting of the diagonal entries from Ω and Ω̄ being the normalised
dispersion matrix

Ω̄ = ω−1Ωω−1.
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13 Skewed Regression

We also define δ̄ = (1 + λ′Ω̄λ)−1/2Ω̄λ so that

E(Z) =
√

2
π
δ̄ = µz, Var(Z) = Ω̄− µzµ′z = Ω̄− 2

π
δ̄δ̄′ = Σz.

The centred parameters are now given by (µ,Σ,γ1) where

µ = E(Y ) = ξ + ωµz, Σ = Var(Y ) = Ω− ωµzµ′zω = ωΣzω

and by the skewness parameter where each component of γ1 = (γ1,1, . . . γ1,n)′ is

γ1,i = 4− π
2

µ3
i,z

(1− µ2
i,z)3/2 ,

with µz = (µ1,z, . . . , µn,z).
Now for a given choice of admissible CP parameters (µ,Σ,γ1) which corresponds to

some point (ξ,Ω,λ) in the DP space, the log-likelihood function for the random sample
y = (y1, . . . , yn)′ is given by evaluating the DP likelihood function at the corresponding
point in the DP space

lCP ((µ,Σ,γ1) ;y) = lDP ((ξ,Ω,λ);y)

For a given CP value (µ,Σ,γ1) the corresponding DP value is obtained as follows:

1. Calculate µz = (µ1,z, . . . , µn,z) with

µi,z = ci√
1 + c2

i

, ci =
(

2γi,1
4− π

)1/3
.

for each component of γ1 = (γ1,1, . . . , γn,1)′.

2. Get δ̄ =
√
π/2µz.

3. Get the diagonal components σ2
1,z, . . . , σ

2
n,z of ΣZ with

σi,z =
√

1− µi,z.

4. Get the square roots σi of the diagonal of the given Σ = Var(Y ).

5. Get the location vector ξ = (ξ1, . . . , ξn)′ with the given expectation vector µ =
E(Y )

ξi = µi − σiσ−1
i,z µi,z.
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6. Get the dispersion matrix Ω ∈ Rn×n with

ωi = σiσ
−1
i,z , Ω = Σ + ωµzµ′zω′

with ω = (ω1, . . . , ωn)′.

7. Get the skewness parameter vector λ with

λ = 1√
1− δ̄′Ω̄−1δ̄

Ω̄−1δ̄, Ω̄ = ω−1Ωω−1.

This yields the DP parameters (ξ,Ω,λ) which can be plugged in to the likelihood to be
maximised.

13.2 Skew-Normal Mixed Models
We discuss the skew-normal mixed models as defined in Arellano-Valle, Bolfarine and
Lachos 2005 and Lin and J. C. Lee 2008.

Definition 13.9. The skew-normal linear mixed-effects model (SN-LMM) for response
vector Yi ∈ RNi is defined as

Yi = Xiβ +Zibi + εi (13.8)

bi
iid∼ SNd(0,Ω,λ), εi

iid∼ NNi(0,Σi), (13.9)

with dimensions as shown in Table 12.2.

Remark 13.10. This leads to the hierarchical model

Yi|bi
ind∼ NNi(Xiβ +Zibi,Σi)

bi
iid∼ SNd(0,Ω,λ).

Remark 13.11. For the correct interpretation of the model parameters it is important to
consider expectation of the random vector

E(Yi) = Xiβ + E(Zibi) + E(εi) = Xiβ +
√

2
π
ZiΩ1/2δ (13.10)

with δ = λ(1 + λ′λ)−1/2 which follows from Corollary 13.7.
To obtain the marginal distribution of such mixed models we need the following

Lemma.
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13 Skewed Regression

Lemma 13.12. For any Y ∼ Np(µ,Σ) and X ∼ Nd(η,Ω) the mixture is

φp(y|µ+Ax,Σ)φd(x|η,Ω) = φp(y|µ+Aη,Σ +AΩA′)
× φd(x|η + ΛA′Σ−1(y − µ−Aη),Λ)

where

Λ = (Ω−1 +A′Σ−1A)−1.

Proposition 13.13 (Woodbury Identity). For any non-singular matrices A and B the
Woodbury matrix identity is

(A+UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1.

Theorem 13.14. For the SN-LMM model

Yi = Xiβ +Zibi + εi (13.11)

bi
iid∼ SNd(0,Ω,λ), εi

iid∼ NNi(0,Σi) (13.12)

with normally distributed Level-1 residuals, the marginal distribution for each i =
1, . . . ,m is

fYi(yi|θ) = 2φNi(yi|Xiβ,ψi)Φ1
(
λ̄ψ
−1/2
i (yi −Xiβ)

)
. (13.13)

With

λ̄ = ψ
−1/2
i ZiΩ1/2λ√

1 + λ′Ω−1/2ΛiΩ−1/2λ

and

ψi = Σi +ZiΩZ ′i, Λi = (Ω−1 +Z ′iψ−1
i Zi)

−1.

Proof. The marginal distribution of the observed data yi ∈ RNi depending on the pa-
rameters θ = (β′,α′1, . . . ,α′m,η′,λ′)′ (writing Σi = Σi(αi),Ω = Ω(η)) is obtained by
integrating out the random effects:

f(yi|θ) =
ˆ
Rd
f(yi|bi,θ)f(bi|θ)dbi

=
ˆ
Rd
φNi(yi|Xiβ +Zibi,Σi)2φd(bi|0,Ω)Φ1(λ′Ω−1/2bi)dbi

because of Lemma 13.12 (here abbreviated with L 13.12) we obtain

2φNi(yi|Xiβ,Σi +ZiΩZ ′i)
ˆ
Rd
φd(bi|ΛiZ

′
iΣ−1

i (yi −Xiβ),Λi)Φ1(λ′Ω−1/2bi)dbi.
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because of the Woodbury identity (WI) 13.13 we obtain

ΛiZ
′
iΣ−1

i = (Ω−1 +Z ′iΣ−1
i Zi)

−1Z ′iΣ−1
i

WI=
(
Ω−ΩZ ′i

(
Σi +ZiΩZ ′i

)−1
ZiΩ

)
Z ′iΣ−1

i

= ΩZ ′i
(
INi −

(
Σi +ZiΩZ ′i

)−1
ZiΩZ ′i

)
Σ−1
i

= ΩZ ′i
(
Σi +ZiΩZ ′i

)−1 ((Σi +ZiΩZ ′i
)
−ZiΩZ ′i

)
Σ−1
i

= ΩZ ′i
(
Σi +ZiΩZ ′i

)−1

= ΩZ ′iψ−1
i

with ψi = Σi +ZiΩZ ′i and therefore

f(yi|θ) = 2φNi(yi|Xiβ,ψi)
ˆ
Rd
φd(bi|ΩZ ′iψ−1

i (yi −Xiβ),Λi)Φ1(λ′Ω−1/2bi)dbi

= 2φNi(yi|Xiβ,ψi)
ˆ
Rd
φd(bi|ΩZ ′iψ−1

i (yi −Xiβ),Λi)
ˆ 0

−∞
φ1(α| − λ′Ω−1/2bi, 1)dαdbi

L13.12= 2φNi(yi|Xiβ,ψi)
ˆ 0

−∞

ˆ
Rd
φd(bi|µbi ,Σbi)dbi︸ ︷︷ ︸

=1

× φ1(α| − λ′Ω−1/2ΩZ ′iψ−1
i (yi −Xiβ), 1 + λ′Ω−1/2ΛiΩ−1/2λ)dα

= 2φNi(yi|Xiβ,ψi)Φ1(λ′Ω1/2Z ′iψ
−1
i (yi −Xiβ)|0, 1 + λ′Ω−1/2ΛiΩ−1/2λ)

= 2φNi(yi|Xiβ,ψi)Φ1
(
λ̄′ψ

−1/2
i (yi −Xiβ)

)
with

λ̄ = ψ
−1/2
i ZiΩ1/2λ√

1 + λ′Ω−1/2ΛiΩ−1/2λ

Remark 13.15. The marginal log-likelihood is then

l(θ;y) ∝− 1
2

n∑
i=1

log |ψi| −
1
2

n∑
i=1

(yi −Xiβ)′ψ−1
i (yi −Xiβ)

+
n∑
i=1

log Φ1
(
λ̄ψ
−1/2
i (yi −Xiβ)

)
,

with λ̄ as defined above and θ = (β′,α′1, . . . ,α′m,η′,λ′) writing Σi = Σi(αi), and
Ω = Ω(η)′.
No explicit solution is available for the maximisation problem, so the likelihood func-

tion has to be maximised numerically.
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13 Skewed Regression

13.3 Skew-Normal Multilevel Models
In this chapter we extend the Skew-Normal Mixed Models from Arellano-Valle, Bolfarine
and Lachos 2005 and Lin and J. C. Lee 2008 to a more general multilevel setup, as is the
case when modelling several nested random effects. As a result we obtain the marginal
likelihood function, which in contrast to the mixed-effects models, cannot be written as
a skew-normal distribution of the form defined by Azzalini and Dalla Valle 1996. This
generalises the multilevel setup as defined for the normal case in Section 12.3.

Definition 13.16. Consider the multilevel skew-normal (SN) regression model for Y ∈
RN with L random effect levels

Y = Xβ +Z(1)γ(1) + · · ·+Z(L)γ(L) + ε, (13.14)

with

ε ∼ NN (0,Σ).

Each level l = 1, . . . , L of the random effect γ(l) consists of ml clusters each having
dimension dl, leading to a total length of the vector γ(l) of ql = dl · ml. We write
γ(l) =

(
γ

(l)′
1 , . . . ,γ

(l)′
ml

)′
. The single clusters are denoted as γ(l)

i and follow a skew-normal
distribution

γ
(l)
i

iid∼ SNdl(0,Ωl,λl).

This model can also be written as

Y = Xβ +Zγ + ε,

where

γ = (γ(1)′ , . . . ,γ(L)′)′, Z = (Z(1)... . . .
...Z(L)),

and the total length of γ is q =
∑L

l=1 ql and the overall amount of all clusters over all
levels is m =

∑L
l=1ml.

Corollary 13.17. The marginal density of model (13.14) from Definition 13.17 is

fY (y|θ) = 2mφN (y|Xβ,ψ)Φm

(
ΓΩ1/2Zψ−1(y −Xβ)|0, Im + ΓΩ−1/2ΛΩ−1/2Γ′

)
.

(13.15)

with

ψ = Σ +ZΩZ ′, Λ = (Ω−1 +Z ′Σ−1Z)−1

Ω = Ω1 ⊕ · · · ⊕ΩL, Ωl = Iml ⊗ Ωl

Γ = Γ1 ⊕ · · · ⊕ ΓL, Γl = Iml ⊗ λ
′
l
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13.3 Skew-Normal Multilevel Models

where Iml denotes the ml×ml identity matrix, ⊗ is the Kronecker product (see Definition
12.8) and ⊕ the direct sum (see Definition 12.7).

Proof. We call the Woodbury identity as defined in Proposition 13.13 as WI. The
marginal density follows from

f(y) =
ˆ
Rq
f(y|γ)f(γ)dγ

=
ˆ
Rq1
· · ·
ˆ
RqL

f(y|γ)f(γ(1)) · · · f(γ(L))dγ(1) . . . dγ(L)

where

f(γ(l)) =
ml∏
i=1

f(γ(l)
i )

=
ml∏
i=1

2φdl(γ
(l)
i |0,Ωl)Φ1(λ′lΩ

−1/2
l γ

(l)
i )

= 2mlφdl·ml(γ
(l)|0, Iml ⊗ Ωl)Φml((Iml ⊗ (λ′lΩ

−1/2
l ))γ(l))

= 2mlφql(γ
(l)|0, Iml ⊗ Ωl)Φml((Iml ⊗ λ

′
l)(Iml ⊗ Ω−1/2

l )γ(l))

= 2mlφql(γ
(l)|0,Ωl)Φml(ΓlΩ

−1/2
l γ(l))

with the vector length of the random effect level l of ql = dl ·ml and by setting Γl =
Iml ⊗ λ′lΩ

−1/2
l and Ωl = Iml ⊗ Ωl as a consequence of the independence of the random

effects and because of the following fact:

Iml ⊗ Ω−1/2
l =

(
Iml ⊗ Ω−1/2

l

)1/2 (
Iml ⊗ Ω−1/2

l

)1/2
=
((
Iml ⊗ Ω1/2

l

)(
Iml ⊗ Ω1/2

l

))−1/2

=
(

(ImlIml)⊗
(

Ω1/2
l Ω1/2

l

))−1/2
= (Iml ⊗ Ωl)−1/2 = Ω−1/2

l .

Additionally we have

Φp(Ax)Φq(By) =
ˆ Ax

−∞
φp1(α1|0, Ip1)dα1

ˆ By

−∞
φp2(α2|0, Ip2)dα2

=
ˆ 0

−∞
φp1(α1| −Ax, Ip1)dα1

ˆ 0

−∞
φp2(α2| −By, Ip2)dα2

=
ˆ 0

−∞
φp1+p2

((
α1
α2

)
|
(
−Ax
−By

)
,

(
Ip1 0
0 Ip2

))
dα1dα2

= Φp1+p2

(
Ax
By

)
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13 Skewed Regression

= Φp1+p2

((
A 0
0 B

)(
x
y

))
= Φp1+p2

(
(A⊕B)

(
x
y

))
and m times the direct sum of the same matrix A yields A⊕ · · · ⊕A = Im ⊗A.
The common distribution of the l = 1, . . . , L random effects with total length of

q =
∑L

l=1 ql =
∑L

l=1 dlml and total amount of clusters described by the random effects
m =

∑L
l=1ml is then

L∏
l=1

f(γ(l)) =
L∏
l=1

2mlφql(γ
(l)|0,Ωl)Φml(ΓlΩ

−1/2
l γ(l))

= 2mφq(γ|0,Ω1 ⊕ · · · ⊕ΩL)Φm((Γ1Ω−1/2
1 ⊕ · · · ⊕ ΓLΩ−1/2

L )γ)
= 2mφq(γ|0,Ω)Φm(ΓΩ−1/2γ).

Now the marginal distribution becomes

f(y|θ) =
ˆ
Rq
f(y|γ,θ)f(γ|θ)dγ

= 2m
ˆ
Rq
φN (y|Xβ +Zγ,Σ)φq(γ|0,Ω)Φm(ΓΩ−1/2γ)dγ

L13.12= 2mφN (y|Xβ,Σ +ZΩZ ′)
ˆ
Rq
φq(γ|ΛZ ′Σ−1(y −Xβ),Λ)Φm(ΓΩ−1/2γ)dγ

(∗)= 2mφN (y|Xβ,ψ)
ˆ
Rq

ˆ
(R−)m

φq(γ|ΩZ ′ψ−1(y −Xβ),Λ)φm(α| − ΓΩ−1/2γ, Im)dαdγ

L13.12= 2mφN (y|Xβ,ψ)
ˆ

(R−)m

=1︷ ︸︸ ︷ˆ
Rq
φq(γ|µγ ,Σγ)dγ×

× φm(α| − ΓΩ−1/2ΩZ ′ψ−1(y −Xβ), Im + ΓΩ−1/2ΛΩ−1/2Γ′)dα
= 2mφN (y|Xβ,ψ)Φm(ΓΩ1/2Z ′ψ−1(y −Xβ)|0, Im + ΓΩ−1/2ΛΩ−1/2Γ′)

with Λ = (Ω−1 +Z ′Σ−1Z)−1 and with (∗) ΛZ ′Σ−1 = ΩZ ′ψ−1 as in proof of Theorem
13.14.

Definition 13.18. We discuss the multilevel SN regression model for an observed Y ∈
RN

Y = Xβ +Zγγ +Zbb+ ε (13.16)
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13.3 Skew-Normal Multilevel Models

consisting of both normal random effects b ∈ Rqb and a vector γ ∈ Rqγ with skew-normal
random effect components where

b ∼ Nqb(0,Σb), ε ∼ NN (0,Σ). (13.17)

For the skew-normal part, we have L levels with

γ = (γ(1)′ , . . . ,γ(L)′)′, Z = (Z(1)... . . .
...Z(L)),

and the total length of γ being qγ =
∑L

l=1 ql and the overall amount of all skew-normal
clusters over all levels being m =

∑L
l=1ml. Each level l = 1, . . . , L of the random effect

γ(l) consists of ml clusters each having dimension dl, leading to a total length of the
vector γ(l) of ql = dl · ml. We write γ(l) =

(
γ

(l)′
1 , . . . ,γ

(l)′
ml

)′
. The single clusters are

denoted as γ(l)
i and follow a skew-normal distribution

γ
(l)
i

iid∼ SNdl(0,Ωl,λl).

Corollary 13.19. The marginal density of the multilevel SN regression model (13.16)
is

f(y|θ) = 2mφN (y|Xβ,ψ)Φm(ΓΩ1/2Z ′γψ
−1(y −Xβ)|0, Im + ΓΩ−1/2ΛΩ−1/2Γ′)

(13.18)

with

ψb = Σ +ZbΣbZ
′
b, ψ = ψb +ZγΩZγ

Ω = Ω1 ⊕ · · · ⊕ΩL, Ωl = Iml ⊗ Ωl

Γ = Γ1 ⊕ · · · ⊕ ΓL, Γl = Iml ⊗ λ
′
l

Λ = (Ω−1 +Z ′γψ−1
b Zγ)−1,

and with parameter vector θ = (β′,α′1,α′2,η′,λ′)′ writing Σ = Σ(α1), Σb = Σb(α2),
and Ω = Ω(η)′. This marginal density differs from the pure skew-normal marginal
density from Corollary 13.17 by the term ψ−1

b in Λ instead of Σ−1.
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13 Skewed Regression

Proof. From proof of Corollary 13.17 we obtain

f(y|θ) =
ˆ
Rqb

ˆ
Rqγ

f(y|b,γ,θ)f(b|θ)f(γ|θ)dγdb

= 2m
ˆ
Rqb

ˆ
Rqγ

φN (y|Xβ +Zbb+Zγγ,Σ)φqb(b|0,Σb)φqγ (γ|0,Ω)Φm(ΓΩ−1/2γ)dγdb

L13.12= 2m
ˆ
Rqγ

φN (y|Xβ +Zγγ,Σ +ZbΣbZ
′
b)

=1︷ ︸︸ ︷ˆ
Rqb

φqb(b|µb,Λb)db

× φqγ (γ|0,Ω)Φm(ΓΩ−1/2γ)dγ

= 2m
ˆ
Rqγ

φN (y|Xβ +Zγγ,ψb)φqγ (γ|0,Ω)Φm(ΓΩ−1/2γ)dγ

L13.12= 2mφN (y|Xβ,ψb +ZγΩZ ′γ)
ˆ
Rqγ

φqγ (γ|ΛZ ′γψ−1
b (y −Xβ),Λ)Φm(ΓΩ−1/2γ)dγ

(∗)= 2mφN (y|Xβ,ψ)
ˆ
Rqγ

ˆ
(R−)m

φqγ (γ|ΩZ ′γψ−1(y −Xβ),Λ)φm(α| − ΓΩ−1/2γ, Im)dαdγ

L13.12= 2mφN (y|Xβ,ψ)
ˆ

(R−)m

=1︷ ︸︸ ︷ˆ
Rqγ

φqγ (γ|µγ ,Λγ)dγ

× φm(α| − ΓΩ−1/2ΩZ ′γψ−1(y −Xβ), Im + ΓΩ−1/2ΛΩ−1/2Γ′)dα
= 2mφN (y|Xβ,ψ)Φm(ΓΩ1/2Z ′γψ

−1(y −Xβ)|0, Im + ΓΩ−1/2ΛΩ−1/2Γ′),

with (∗) ΛZ ′γψ−1
b = ΩZ ′γψ−1 as in the proof of Theorem 13.14. We further have ψb =

Σ+ZbΣbZ
′
b, ψ = ψb+ZγΩZ ′γ = Σ+ZbΣbZ

′
b+ZγΩZ ′γ and Λ = (Ω−1 +Z ′γψ−1

b Zγ)−1

and Γ as defined above.

Remark 13.20. To solve the likelihood function (13.18) of model (13.16) we need to invert
two large marginal matrices, namely

Var(Y |γ) = ψb = Σ +ZbΣbZ
′
b

Var(Y ) = ψ = Σ +ZbΣbZ
′
b +ZγΩZ ′γ ,

where Var(Y ) is the overall marginal variance and Var(Y |γ) the marginal variance given
the SN random effect γ. For normal multilevel models or skew-normal mixed models we
only need to invert one such matrix.
However, due to the block-diagonal structure of the marginal matrices we can reduce

the problem using the Woodbury identity (Proposition 13.13) with

ψ−1 = (ψb +ZγΩZ ′γ)−1 = ψ−1
b −ψ

−1
b Zγ(Ω−1 +Z ′γψ−1

b Zγ)−1Z ′γψ
−1
b .
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13.3 Skew-Normal Multilevel Models

In which case we also need to invert two matrices (Ω−1 has to be inverted in both cases,
so we do not count that especially), but now the second matrix Ω−1 + Z ′γψ

−1
b Zγ is

usually of a much smaller dimension, which speeds up the calculations.
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14 Confidence Intervals for Estimators

The reason why we take MLEs is its property of being consistent estimates (converging
to the true parameter value with increasing sample size) and its property of being

asymptotically efficient (the standard errors are the smallest possible). We elaborate
the latter point and explain the estimation of the standard errors (being the square root
of the asymptotic variance) in the following Section as described in Casella and Berger
2002.
Hence we know the asymptotic distribution of the MLE, so we can estimate 1−α CIs

as a measure of uncertainty. In this work, we present three different ways for estimation:

1. 1 − α CIs based purely on the estimated MLE variance (standard error) (Wald
procedure)

2. 1− α CIs based on the likelihood ratio test (LRT) statistic

3. 1− α CIs based on bootstrap samples

14.1 Wald Procedure Interval
Definition 14.1. For an estimator Tn, suppose that kn(Tn− τ(θ))→ N(0, σ2) in distri-
bution, with kn being a sequence of normalising constants. The parameter σ2 is called
the asymptotic variance.

Definition 14.2. We call the square root of the asymptotic variance
√
σ2 of the esti-

mator Tn as defined above its standard error.

Definition 14.3. A sequence of estimatorsWn is asymptotically efficient for a parameter
τ(θ) if

√
n[Wn − τ(θ)]→ N(0, v(θ)) in distribution and

v(θ) = [τ ′(θ)]2

Eθ

((
∂
∂θ log f(X|θ)

)2) . (14.1)

The asymptotic variance of Wn achieves the Cramer-Rao Lower Bound.

Theorem 14.4 (Asymptotic efficiency of MLEs). Let X1, X2, . . . be iid f(x|θ), and θ̂
denote the MLE of θ, and let τ be a continuous function of θ. Under the regularity
conditions on f(x|θ) and hence, L(θ|x)

√
n[τ(θ̂)− τ(θ)]→ N(0, v(θ)), (14.2)
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14 Confidence Intervals for Estimators

where v(θ) is the Cramer-Rao Lower Bound. That is, τ(θ̂) is a consistent and asymp-
totically efficient estimator of τ(θ).

Remark 14.5. We can now approximate the true variance of the MLE by calculating the
Cramer-Rao Lower bound:

Varθ(h(θ̂)) ≈ (h′(θ))2

Eθ

((
∂
∂θ logL(θ|X)

)2) = (h′(θ))2

−Eθ
(
∂2

∂θ2 logL(θ|X)
)

where the denominator is termed as the Fisher Information. To estimate this variance
we can approximate using

V̂arθ(h(θ̂)) ≈
(h′(θ))2|θ=θ̂

− ∂2

∂θ2 logL(θ|X)|θ=θ̂
, (14.3)

with the denominator called the expected information number. As the expected infor-
mation is a consistent estimator of the Fisher information, V̂arθ(h(θ̂)) is a consistent
estimator for Varθ(h(θ̂)).
In this work, we denote the standard error of a function h(θ̂) of the MLE of θ with

SE(h(θ̂)) =
√

V̂arθ(h(θ̂)) as the square root of the estimated approximated variance of
the MLE.
From Slutsky’s theorem the normalised distribution of the function h(θ̂) converges to

the standard normal distribution

h(θ̂)− h(θ)
SE(h(θ̂))

→ N(0, 1),

which yields the approximate confidence interval

h(θ̂))− z1−α/2SE(h(θ̂)) ≤ h(θ)) ≤ h(θ̂)) + z1−α/2SE(h(θ̂)), (14.4)

with zα = Φ−1(α) being the standard normal α-quantile.

14.2 Likelihood-Ratio Interval
A very useful method for complicated models such as those derived in the chapters above,
is the likelihood ratio method to construct tests, which is:

λ(x) =
sup
Θ0

L(θ|x)

sup
Θ
L(θ|x) . (14.5)
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14.3 Bootstrap Interval

This is a convenient statistic, as the two suprema of L(θ|x) over the sets Θ0 and Θ can
be calculated numerically.
To define a level α test, a constant must be chosen so that

sup
θ∈Θ0

Pθ(λ(X) ≤ c) ≤ α. (14.6)

Theorem 14.6 (Asymptotic distribution of the LRT). For testing H0 : θ = θ0 versus
H1 : θ 6= θ0, suppose X1, . . . , Xn are iid f(x|θ), θ̂ is the MLE of θ, and f(x|θ) satisfies
certain regularity conditions. Then under H0, as n→∞,

−2 log λ(X)→ χ2
1 in distribution,

where χ2
1 is a χ2 random variable with 1 degree of freedom.

Proof. We expand logL(θ|x) = l(θ|x) in a Taylor-series around the MLE θ̂, giving

l(θ|x) = l(θ̂|x) + l′(θ̂|x)(θ − θ̂) + l′′(θ̂|x)(θ − θ̂)2

2! + · · · . (14.7)

Substitute the expansion for l(θ0|x) in −2 log λ(x) = −2l(θ0|x) + 2l(θ̂|x), and get

−2 log λ(x) ≈ −l′′(θ̂|x)(θ0 − θ̂)2,

as l′(θ̂|x) = 0. Since −l′′(θ̂|x) is the observed information În(θ̂) and 1
n În(θ̂) → I(θ0) it

follows that −2 log λ(X)→ χ2
1.

We can now invert the LRT statistic to obtain an approximate 1−α confidence interval:

{
θ : −2 log

(
L(θ|x)
L(θ̂|x)

)
≤ χ2

1,1−α

}
(14.8)

14.3 Bootstrap Interval
A very distinct approach, which does not require any normal theory, is Bootstrapping
(Efron and Tibshirani 1994). The basic idea behind this approach is to learn about the
distribution of a statistic by resampling the observed sample. The logic behind this idea is
that as the observed sample represents the population in one way, a magnitude of samples
should give us information about the characteristics of the population. Bootstrapping
helps us learn about the sample characteristics by resampling (with replacement) and
use this information to infer to the population. This way we get a measure of uncertainty
for a statistic of interest.
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14 Confidence Intervals for Estimators

For a sample x = (x1, x2, . . . , xn) and an estimate θ̂(x1, x2, . . . , xn) = θ̂ we draw resam-
ples with replacement and obtain x∗ = (x∗1, x∗2, . . . , x∗n). This nonparametric bootstrap is
performed B times and we can calculate

Var∗(θ̂) = 1
B − 1

B∑
i=1

(θ̂∗i − θ̂∗i )
2, (14.9)

where θ̂∗i is the estimator θ̂(x∗i ) obtained from the ith resample x∗i , 1 ≤ i ≤ B and obtain
the overall average θ̂∗i = 1

B

∑B
i=1 θ̂

∗
i . This way we can approximate the standard error of

any statistic without distributional assumptions.
Another type of bootstrapping is the parametric bootstrap, which is based on the es-

timated functional form for the population distribution function. For a sample x =
(x1, x2, . . . , xn) from a distribution with PDF f(x|θ) where θ can be a vector of param-
eters, we can estimate θ with its MLE θ̂, plug it into the distribution and draw random
samples

X∗1 , X
∗
2 , . . . X

∗
n ∼ f(x|θ̂).

We repeat this B times and estimate the variance of θ̂ with (14.9).
In case of clustered data, we perform a block bootstrap. We then sample (with re-

placement) entire blocks of dependent data. If the blocking structure is nested, this
resampling is performed recursively.
The (1 − α) confidence interval for the estimate θ̂ is then calculated based on the

bootstrap sample {
θ : θ̂∗(α/2) ≤ θ ≤ θ̂

∗
(1−α/2)

}
,

with θ̂∗(α/2) being the α/2-quantile of the sample of bootstrapped coefficients (θ̂∗1, θ̂∗2, . . . , θ̂∗B).
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15 Case Study: Regional Climate Change
in Europe

In this Chapter the aim is to estimate the expected temperature climate change signal
and its variance in three European hot-spot regions. In addition we quantify following

components of uncertainty: internal natural variability (initial-conditions uncertainty),
model similarity (based on pre-defined classes of models) and structural uncertainty
of General Circulation Models (GCMs) (variation of GCMs within the same class of
simulations). The uncertainties can be added together to obtain the overall uncertainty.
The analysis is based on yearly temperature time-series which further allows to quantify
year-to-year fluctuations, which are estimated as well, and therefore accounting natural
sources of uncertainty in more detail. In addition the skewed nature of the data is
accounted for by implementing a skew-normal distribution.

15.1 Data

We are interested in the projected seasonal temperature climate change signal (1971-
2000 to 2071-2099) for summer and winter of 77 Coupled Model Intercomparison Project
Phase 5 (CMIP5) climate simulations (see Section 2.3) over the Alpine Region (AL), the
Iberian Peninsula (IP) and the Scandinavian Region (SC) (as defined in J. H. Christensen
and O. B. Christensen 2007). The regions are shown in Figure 15.1. Every simulation
in each of those regions is represented as a time series of a possible climate development
as shown in Figure 15.2.
Each of those 77 climate simulations is a realisation of a GCM (Section 2.3) run with

certain initial conditions. As discussed in Section 3.1, those GCMs again share certain
components and/or have been developed by the same research groups. Therefore GCMs
can also be classified to similar simulations (Knutti, Masson and Gettelman 2013).
This can be described in a hierarchical setup with 4 levels:

Level 1: The individual time series with a year-to-year temperature evolution of 129
years from 1971-2099. This describes the natural climate variability. We
extract the last Nijk = 30 years of climate anomaly (see next section).

subset: nat, index: t = 1, . . . , Nijk
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15 Case Study: Regional Climate Change in Europe

Figure 15.1: Study regions, Alpine Region (AL), Iberian Peninsula (IP) and Scandina-
vian Region (SC).
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15.1 Data
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15 Case Study: Regional Climate Change in Europe

Level 2: Them1 = 77 time-series partly stem from the same GCM (being the same piece
of computer code) but the simulations have been started with different climate
conditions. Representing the initial condition uncertainty.
subset: run, index: k = 1, . . . ,Kij

Level 3: The m2 = 38 GCMs can again be assigned to a certain class of models. Within
the same model similarity class, the GCM computer codes are partly shared among
the GCMs. This represents parts of the structural model uncertainty.
subset: gcm, index: j = 1, . . . , Ji

Level 4: The m3 = 15 classes of different models as defined by Knutti, Masson and Get-
telman 2013. The variation of the model similarity classes can also be interpreted
as a part of structural model uncertainty. Time-series across different model
similarity classes are considered statistically independent.
subset: sim, index: i = 1, . . . , I

This hierarchical structure induces dependencies which would, if ignored, lead to an
overestimation of estimator precision (see Section 12.1). Also, this hierarchy structure
gives information about different types of variability in the dataset (also called uncer-
tainties, see Section 3.1), which we would like to quantify as well. The hierarchical
structure is schematically displayed in Figure 15.3. As we have now Nijk = 30 observed
years for each of the m1 = 77 simulations, this yields the total amount of 77 · 30 = 2310
data points for each of the 3 regions (IP, AL, SC) for each of the two seasons (summer
and winter).
Figure 15.4 depicts the individual climate change signals of all climate models grouped

by their GCM and model similarity (here omitting the natural year-to-year variability).
The clustering indicating a dependency structure is clearly visible.
Figure 15.4 also shows two potential problems for the analysis: Firstly, one particular

GCM (GFDL-CM3 ) has a very strong climate change signal, whereas other GFDL sim-
ulations are on the cooler side. This outlier has to be investigated more closely in the
analysis. Secondly, the internal variability of the CSIRO-Mk3 GCM is higher than that
of other models (like EC-EARTH ). This can cause problems for the homoscedasticity
assumption in linear regression.
From the CMIP5 simulations we further excluded the FIO model which does not seem

trustworthy (Collins, Knutti et al. 2013).

Data Preprocessing
We consider a total of 77 global climate simulations which have been preprocessed from
the binary Network Common Data Form (NetCDF) format to a dataframe of individual

114



15.1 Data

Figure 15.3: Random effects of the hierarchical regression model with 4 levels defining
the major sources of dependencies: climate model similarity by sharing
parts of codes (bsim,i), different global climate models (GCMs, bgcm,ij),
multiple runs of the same GCM (termed simulation, brun,ijk) and the
natural variability being εijkl.

time series with our wux package (Part II) for easy handling in R. But in order to fit
the statistical model we need some further detailed preprocessing. In this study we are
mainly interested in the climate change signals projected by each climate simulation,
but we are not interested in the specific functional shape of the time series trend. We
therefore transfer each of the 129 year trends (1971-2099, Figure 15.2) to 30 years (2070-
2099) temperature anomalies. These anomalies are the deviations from the average
climate state in the period 1971-2000 (Figure 15.5). This preprocessing is described in
the following section.
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15 Case Study: Regional Climate Change in Europe

Figure 15.4: Comparing temperature changes (y-axis) of different GCMs (x-axis).
The points represent individual GCM runs. The colours and letters mark
models which have either been developed at the same institute, or share
substantial parts of code. The three problematic GCMs are highlighted.

Obtaining Time-Series Anomalies

Individual time-series have distinct (non-linear) trends, and we are not interested in pre-
dicting the shape, but rather to catch the climate change and the year-to-year variability.
An alternative solution to fit a non-linear mixed model is to subtract the non-linear shape
from each time series individually before fitting the mixed model. This has been done
using following steps:

1. Get the average temperature (i.e. climate) for each simulation’s reference period
(1971-2000) and the scenario period (2070-2099).

2. Calculate the climate change signal for each simulation (scenario period minus
reference period).
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15.2 Statistical Model I: Normal Multilevel Model
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Figure 15.5: Temperature for IP in JJA. Left: Original, complete time-series from
1971 to 2099 with loess smoother. Right: Detrended time-series anomaly
1971-2000 and 2070-2099.

3. For each complete time-series from 1971-2099, fit a loess smoother (figure 15.5 -
left).

4. Subtract the loess smoother from the data - all data is now centred around 0.

5. Take only data points of the reference period (1971-2000) and the scenario period
(2070-2099), delete the residual data.

6. Add the individual climate change signals to the scenario period (2070-2099) part
(figure 15.5 - right).

The result is given as two temperature time-series for each simulation: A zero-centred
series representing the reference period (1971-2000) and a scenario anomaly time series
centred around the average future (2070-2099) temperature climate. For the following
statistical analysis we only take the future anomaly curve with 30 data points.

15.2 Statistical Model I: Normal Multilevel Model

Let Yijkt ∈ R (Level1) denote the temperature anomaly at time step t = 1, . . . , 30 of
the kth run (run, Level2) of the jth GCM (gcm, Level3) stemming from the ith model
family (sim, Level4).
We consider a linear mixed effects model with yijkt being the yearly temperature

anomalies in time-step t = 1, . . . , 30 in the future scenario 2070-2099 for simulation
number k = 1, . . . ,Kij of the GCM j = 1, . . . , Ji being in the similarity class i =
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15 Case Study: Regional Climate Change in Europe

1, . . . , 15. The model to implement the data is as follows:

Level 1 Yijkt|b
(1)
ijk

iid∼ N(β0 + b
(1)
ijk, σ

2) t = 1, . . . , Nijk

Level 2 l = 1 b
(1)
ijk|b

(2)
ij

iid∼ N(b(2)
ij , σ

2
b1) k = 1, . . . ,Kij

Level 3 l = 2 b
(2)
ij |b

(3)
i

iid∼ N(b(3)
i , σ2

b2) j = 1, . . . , Ji

Level 4 l = 3 b
(3)
i

iid∼ N(0, σ2
b3) i = 1, . . . , I.

This relationship can be written in a multilevel regression model as in Section 12.3

Yijkt = β0 + b
(1)
ijk + b

(2)
ij + b

(3)
i + εijkt

with

b
(1)
ijk

iid∼ N(0, σ2
b1), b

(2)
ij

iid∼ N(0, σ2
b2), b

(3)
i

iid∼ N(0, σ2
b3), εijkt

iid∼ N(0, σ2),

where we assume constant natural variability across all simulations.
However, for the sake of better readability and interpretability, we write

Yijkt = β0 + bsim,i + bgcm,ij + brun,ijk + εijkt (15.1)

with the random effects of climate change bsim,i for model similarity i , bgcm,ij for GCM
j and its k-th run of the GCM being brun,ijk. εijkl denotes the year-to-year temperature
variability. We write

bmod,i
iid∼ N(0, σ2

mod), bgcm,ij
iid∼ N(0, σ2

gcm), bsim,ijk
iid∼ N(0, σ2

sim)

and with

εijkt
iid∼ N(0, σ2

nat)

The hierarchical model is depicted in Section 15.3.

15.3 Diagnostics
In this section we check for the adequacy of the statistical model which fits the CMIP5
multi-model ensemble data. Also of interest is the detection of influential data points,
which have a strong effect on the statistical model outcome. These data can be either
actual observations (here temperature climate projections) or un-observed quantities,
expressed with random effects. The diagnostics for this case study have been performed
as explained in Loy and Hofmann 2014.
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15.3 Diagnostics

Model Assumptions (Residual Analysis)
To check whether the statistical model is suited for the underlying data, we will work
with three types of residuals as discussed in Loy and Hofmann 2014.

Level-1 (conditional) residuals: The residuals of the actually observed data points be-
ing εi = yi − Xiβ − Zibi. Those can be estimated by either plugging in the
Empirical Bayes (EB) estimates of bi or by performing a separate least-squares
(LS) fit for each group. As using the EB leads to confounded residuals, the rec-
ommended analysis is based on the LS method, which we will perform as well. We
will plot the semi-standardised residuals ε̂∗i defined as

ε̂∗i = σ̂i∆̂−1/2
i ε̂i

where ∆̂i is the diagonal matrix with elements equal to the diagonal of Var(ε̂i) =
σ2
i (1 − hi) with hi being the vector containing the diagonal elements of the hat

matrix Hi = Xi(X ′iXi)−1Xi from the LS model fit and Var(εi) = σ2
i INi . With

these semi- standardised residuals we both check the linearity of the fixed effects
β and to check for the homoscedasticity assumption of the linear model. QQ-plots
are then performed to check for the normality assumption.

Random effects residuals: The residuals of the un-observed groupings which are mod-
elled with random effects being either Zibi or bi. Also here we can either predict
the random effects b̂i = β̂i −Wiγ̂ either with LS (with Wiγ̂ being the average
trend), or use the EB as b̂i = E(bi|yi).

Marginal (composite) residuals: Sum of level-1 and random-effects residuals ζi = yi −
Xiβ = Zibi + εi. This residual is heavily confounded as all residual types are
mixed together, not giving relevant information on the reason of a possible mis-
specification.

Here we perform diagnostics at different levels of the model. Level 1, the ε residual, is
in this case the natural year-to-year variability of the temperature. The random effects
residuals are the internal variability from different initial conditions, model similarity
and GCM variability .

Residual Diagnostics for Alpine Region (AL) in Summer (JJA)
Level 1 Diagnostics Level 1 residuals (year-to-year changes of mean temperature) are
assumed to be normally distributed with zero mean and constant variance. The left-
hand side of Figure 15.6 shows the L1 residuals against the fitted y values. As there is no
visible trend or structure, the linearity assumption does not seem to be violated. It is not
clearly visible weather the homoscedasticity assumption is violated. For this Figure 15.6
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Figure 15.6: Semi-standardised L1 residuals against fitted values (left), and against the
model similarity classes “sim” (right).

(right) depicts the residual spreads for the individual classes of simulation (sim). The
natural year-to-year variance seems to be similar for most simulations, however, some
simulations (e.g. class n with longest variance and d with smallest variance) have clearly
a different natural variability and therefore violate the homogeneity assumption when
assuming constant variance.
Checking the normality assumption leads to a similar picture: if assuming constant L1

variance, the residuals are clearly more heavy tailed than expected from Gaussian dis-
tributed data (Figure 15.7). This clearly underlines the need for non-constant variances.
The L1 distributions for every single simulation are depicted in Figure 15.8 (left). There,
the residuals seem to follow a Gaussian distribution. This seems also to be true when
aggregating the L1 residuals into the same class (sim) of GCMs (Figure 15.8 right). This
indicates it is enough to assume constant variance σ2

i for simulations stemming from the
same model class i and let the year-to-year variance vary between different classes of
simulations.

Random Effects Diagnostics We look for the distributional assumptions of the random
effects residuals bsim,i, bgcm,ij , brun,ijk, which are obtained by the EB residual estimates.
Figure 15.9 depicts their predicted distributions. The distribution of the run RE brun,ijk
(being the distribution of the same gcm ij with different initial conditions k) indicates
a more heavy tailed shape than expected from a normal distribution (Figure 15.9, left).
This is due to the fact that the spread of the initial conditions ensembles is not constant
across GCMs (see Figure 15.4).The Level 3 RE distribution bgcm,ij of GCMs j of same
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15.3 Diagnostics
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Figure 15.7: Checking of normality distribution of semi-standardised L1 residuals.
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Figure 15.8: Checking of normality assumption of semi-standardised L1 residuals
grouped by each simulation run (left) and by its similarity class (right).
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Figure 15.9: Random effects residual (Empirical Bayes) distribution for the Level
2 “run” effect (left), the Level 3 “gcm” effect (middle) and the Level 4
“sim” effect (right).

model class i, shows an outlying simulation (sim class g) and in general more of a skewed
shape (Figure 15.9, middle). When fitting the residuals of the random slope of bgcm,ij ,
the skewness estimate is significantly positive. The distribution of the predicted bsim,is
(the spread of model classes) also shows a tendency towards a heavy tailed distribution,
but the sample is quite small to give a clear conclusion (Figure 15.9, right).

Marginal Residuals The marginal distribution as the sum of all residuals is shown in
Figure 15.10. A violation of the normality distribution is clearly visible as is the skewness
of the Level 3 (gcm) effect.

Influence Diagnostics

Here we analyse the changes of the estimates and changes when deleting individual
clusters (random-effect deletion). We omit a discussion on deletion based on individual
observations (level-1 deletion) as the influence of single years to the overall fit is not too
large.
For all influence diagnostics tools, we build our judgement based on visual identifica-

tion of gaps in the empirical distribution. We therefore consider the outlier measure for
boxplots to identify influential observations. So all data which exceed

Q3 + 3× IQR

are marked and considered as outlier, where Q3 is the q0.75-quantile and IQR = q0.75 −
q0.25 is the interquartile range of the data.
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15.3 Diagnostics
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Figure 15.10: Marginal Level 1 residuals.

Diagnostics for Fixed Effects We use Cook’s distance to assess for changes in the
estimated fixed effects

Ci(β̂) = 1
p

(
β̂ − β̂(i)

)′
V̂ ar(β̂)

(
β̂ − β̂(i)

)
,

with p being the rank of X. It describes the changes in the fixed parameter estimates
normalised by the expected variability of the estimate. To account for changes of the
parameter precision we can use the covariance trace

COVTRACEi(β̂) =
∣∣∣∣tr(V̂ ar(β̂)

−1 ̂
V ar(β̂(i))

)
− p
∣∣∣∣

Diagnostics for Variance Components We can use Cook’s distance and the covariance
trace as for the fixed effects, however, calculation of covariance matrix of the random
effects is expensive (with e.g. parametric bootstrap). Alternatively we can calculate the
relative variance change (RVC) (Dillane 2005)

RVCi(θ̂l) =
θ̂l(i)

θ̂l
− 1, (15.2)

where θ̂l(i) is the estimate of the variance component when the ith unit is deleted.
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15 Case Study: Regional Climate Change in Europe

Influence Diagnostics for Alpine Region (AL) in Summer (JJA)
Level 2 Influence We investigate the influence of excluding single data clusters on the
estimate of the fixed effects β̂ and on the estimates of the variance components (VCs)
σ2
mod, σ

2
gcm, σ

2
sim and σ2

nat,i. Figure 15.11 shows Cook’s distances for each L2 residual.
The most striking influence on the fixed effects estimates stems from the outlying GCM
GFDL-CM3 (having only one run) and the GCM CSIRO-Mk3 (which has several runs).
Also the entire model similarity class a (being HadGEM and ACCESS models) seems
to have an influence on the estimation of the fixed effects. Also, the GCM CSIRO-Mk3
seems to have some influence on the standard error of the estimate of the fixed effect as
well as the two simulation runs FGOALS-g2 and BNU-ESM (Figure 15.12).
Both models GFDL-CM3 and CSIRO-Mk3 show the largest influence also on the VC

estimates: As all the runs of the GCM CSIRO-Mk3 have an higher-than-average natural
year-to-year variability, an exclusion of all those runs decreases the σnat estimate by 25%
(Figure 15.13, top-left and Figure 15.14, top-left). The same model also has an inflating
effect on the variability estimate of σrun (Figure 15.13, top-right), but on a much smaller
scale (< 10%). The same effect is induced by other GCMs as well. A deflating effect on
the initial condition uncertainty is detected by the GCM EC-EARTH and others, again
being minor (Figure 15.14, top-right). A large influence on the Level 3 random effect
gcm can be clearly assigned to the GCM GFDL-CM3. An exclusion of this particular
model, and even the exclusion of the entire GFDL model family (g) leads to a decrease
of this VC by over 50% (Figure 15.13 and Figure 15.14, bottom left). However, at the
same time when excluding this model, the VC of Level 4 (model similarity sim) increases
the same amount (Figure 15.13 and Figure 15.14, bottom right). As both Level 3 and
Level 4 explain the same structural uncertainty of the CMIP5 multi-model ensemble,
this means the overall structural uncertainty is still not influenced too much by this
particular model.
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15.3 Diagnostics
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15.3 Diagnostics
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Figure 15.13: RVC when excluding entire clusters of the same model similarity class
(Level4) for VC estimates on Level 1 (top left), Level 2 (top right), Level
3 (bottom left) and on Level 4 (bottom right).
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Figure 15.14: RVC when excluding entire clusters of the same gcm clusters (Level
3) for VC estimates on Level 1 (top left), Level 2 (top right), Level 3
(bottom left) and on Level 4 (bottom right).
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15.4 Statistical Model II: Skew-Linear Multilevel Model

15.4 Statistical Model II: Skew-Linear Multilevel Model
We extend the LMM be adding a skewness parameter for the GCM random effect (reason
for this see Section 15.3):

bgcm,ij
iid∼ SN(0, τ2

gcm, λ),

Likelihood Function
We extend the LMM be adding a skewness parameter for the GCM random effect as
the corresponding residuals showed a non-symmetric behaviour. Also we do not assume
overall constant natural variability at Level1 anymore, but rather assume this variability
to be constant among simulations being from the same similarity class (Level4).
The distributional assumptions are now

Level 1 Yijkt|b
(1)
ijk

iid∼ N(β0 + b
(1)
ijk, σ

2
i ) t = 1, . . . , Nijk

Level 2 l = 1 b
(1)
ijk|γ

(2)
ij

iid∼ N(γ(2)
ij , σ

2
b1) k = 1, . . . ,Kij

Level 3 l = 2 γ
(2)
ij |b

(3)
i

iid∼ SN(b(3)
i , ω2, λ) j = 1, . . . , Ji

Level 4 l = 3 b
(3)
i

iid∼ N(0, σ2
b3) i = 1, . . . , I.

As before, this relationship can be written in a multilevel regression model

Yijkt = β0 + b
(1)
ijk + γ

(2)
ij + b

(3)
i + εijkt

with

b
(1)
ijk

iid∼ N(0, σ2
b1), γ

(2)
ij

iid∼ SN(0, ω2, λ), b
(3)
i

iid∼ N(0, σ2
b3)

being mutually independent and

εijkt
iid∼ N(0, σ2

i )

where we assume constant natural variability across all simulations within one model
similarity class.
In contrast to the normal distribution, the skew-normal distributions’ expected value

and variance cannot be directly interpreted reading the location- and scale parameter.
Its expectation value and variance are

E(γ(2)
ij ) =

√
2
π
δω,

V ar(γ(2)
ij ) = ω2 − 2

π
δ2ω2,
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with δ = λ/
√

1 + λ2. The skewness of the random effect is

γ = E
(

(γ(2)
ij − E(γ(2)

ij ))3

Var(γ(2)
ij )3/2

)
= 4− π

2
(δ
√

2π)3

(1− 2δ2/π)3/2 , (15.3)

where for the skew-normal (SN) class of distribution, the skewness is limited to |γ| ≤ .995.
The expected temperature climate change can be interpreted as

E(Yijkl) = β0,dp +
√

2
π
δω =: β0 (15.4)

and with the overall (marginal) variance being

Var(Yijkl) = σ2
run + σ2

gcm + σ2
sim + σ2

nat,i (15.5)

with σ2
gcm := V ar(γ(2)

ij ) = ω2 − (2/π)δ2ω2.
We are therefore primarily interested in estimating the expected climate change pa-

rameter β0 and its variance components σ2
sim, σ

2
gcm, σ

2
run and the variance component of

the natural year-to-year variability σ2
nat,i.

Those reparameterizations have been performed directly within the likelihood func-
tion, thus the maximum likelihood estimates (MLEs) obtained are directly interpretable
(see Section 13.3) for details.

Vectorize to Level 2 We can vectorize the level 1 random effect and obtain the observed
vector of i in j in k:

Yijk = 1β0 + 1b(1)
ijk + 1γ(2)

ij + 1b(3)
i + εijk

with 1 = 1Nijk and Nijk is the amount of observed data in clusters k within j within i.
Due to normality of L1

εijk ∼ NNijk(0, INijk ⊗ σ
2
i )

Vectorize to Level 3 If we further vectorize to Yij we get
b
(1)
ij1
...

b
(1)
ijKij

 ∼ NKij


0
...
0

 ,

σ
2
b1 0

. . .
0 σ2

b1


 ,

which we can write as b(1)
ij = (b(1)

ij1, . . . , b
(1)
ijKij

)′ and so

b
(1)
ij ∼ NKij (0, IKij ⊗ σ2

b1)
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and we obtain the design matrix for this random effect as

Z
(1)
ij =



1 0 . . . 0
...

...
...

1 0 . . . 0
. . .

. . .
0 . . . 0 1
...

...
...

0 . . . 0 1


=

1Lij1 0
. . .

0 1LijKij

 = 1Lij1 ⊕ · · · ⊕ 1LijKij ∈ RNij×Kij

with

Yij = 1β0 +Z(1)
ij b

(1)
ij + 1γ(2)

ij + 1b(3)
i + εij

with length of each 1 being the amount of observed data given the first two levels ij
being Nij =

∑Kij
k=1Nijk and Kij being the sample size of the random effects (number of

clusters) b(1)
ijk given ij.

Vectorize to Level 4 Now vectorizing the data to Yi we get

Yi = 1β0 +Z(1)
i b

(1)
i +Z(1)

i γ
(2)
i + 1b(3)

i + εi

with

b
(1)
i = (b(1)′

i1 , . . . , b
(1)′
iJi

)′, γ
(2)
i = (γ(2)

i1 , . . . , γ
(2)
iJi

)′

Z
(1)
i = Z

(1)
i1 ⊕ · · · ⊕Z

(1)
iJi
, Z

(2)
i = 1Ni1 ⊕ · · · ⊕ 1NiJi

and with the number of clusters at level l nested within cluster i we getml(i) =
∑Ji

j=1Kij

for l = 1, yielding

b
(1)
i = (b(1)′

i1 , . . . , b
(1)′
iJi

)′ ∼ Nm1(i)(0, σ
2
b1Im1(i)).

However, the multivariate variable γ(2)
i ∈ RJi is not SN distributed anymore, as shown

in Corollary 13.19.

Marginal Distribution at Level 4 We rewrite the model with

bi :=
(
b
(3)
i

b
(1)
i

)
, γi := γ

(2)
i =

(
γ

(2)
i1 , . . . , γ

(2)
iJi

)′
Zb
i :=

(
1Ni

...Z(1)
i

)
, Zγ

i := Z
(2)
i ,
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yielding

Yi = 1β0 +Zγ
i γi +Zb

i bi + εi,

as in Corollary 13.19 and as m3(i) ≡ 1, the vector length of γi equals m3(i) + m1(i) =
m1(i) + 1 and we have

bi =
(
b
(3)
i

b
(1)
i

)
∼ Nm1(i)+1 (0,Σb) , with Σb =

(
σ2
b3 0
0 Im1(i)σ

2
b1

)
The number of levels L in the skew-normal part γi is 1 so we can skip the superscript
(l) yielding γi = (γi1, . . . γiJi)′ with

γij
iid∼ SN(0, ω2, λ),

and we obtain the marginal distribution from Corollary 13.19 with m2(i) being the total
amount of clusters of the l = 2 skew-normal random effect, nested within cluster i (length
of γi):

f(yi|θ) = 2m2(i)φNi(yi|1β0,ψi)Φm2(i)(λωZ
γ′

i ψ
−1
i (yi − 1β0)|0, Im2(i) + λ2/ω2Λi)

(15.6)

with θ = (β0, σ2
1, . . . , σ

2
I , σ

2
b1, ω, σ

2
b3, λ)′ and

Λi = (ω−2IJi +Zb′
i ψ
−1
b,i Z

b
i )−1

ψb,i = σ2
i INi +Zb

iΣbZ
b′
i = σ2

i INi + σ2
b31Ni1′Ni + σ2

b1Z
(1)
i Z

(1)′
i

ψi = ψb + ω2Zb
iZ

b′
i .

The Likelihood Function We can now write the log-likelihood function to be maximised
as

l(θ;y) = log
(

I∏
i=1

f(yi|θ)
)

=
I∑
i=1

log f(yi|θ)

=
I∑
i=1

(
m2(i) log 2− 1

2 log 2π − 1
2 log |ψb,i| −

1
2(yi − 1β0)′ψ−1

b,i (yi − 1β0)
)

+
I∑
i=1

(
Φm2(i)(λωZ

γ′

i ψ
−1
i (yi − 1β0)|0, Im2(i) + λ2/ω2Λi)

)
.

There is no analytic solution for this maximisation problem. We therefore optimise
this likelihood function numerically with the native optimiser in R which allows box
constraints (Byrd et al. 1995).
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15.5 Results

Estimates of Parameters

Here we compare the estimates across the different statistical models, typically used in
climate science with the normal multilevel models and the here newly developed skew-
normal multilevel model.

Statistical Models The classical linear models (LMs) analysed here are often used in
climate research to quantify climate model uncertainties. It is a well-known fact that
different runs from the same GCM (here Level 2) project similar climate changes and
thereby are highly dependent. In practice this is by-passed by either averaging over all
runs of the same GCM or to pick one as representative and to perform the uncertainty
analysis based on the reduced set. Also, the time series has to be averaged as well, as this
would also yield an additional dependency component, so natural year-to-year variability
cannot be analysed with this model. In Table 15.1 we indicate the deletion/averaging
in the dataset by writing -d- in the corresponding column.
The linear mixed effect model LMM is the logical extension of the approach above

when we do not eliminate the initial-condition uncertainty by keeping all runs from the
GCMs. Also, this model can address the time-series structure and therefore estimates
the natural variability as well.
The model LMM-sim adds another level to the multilevel model LMM by adding the

model similarity component. This model (15.1) was described in the Section before.
The model LMM-het is the same as LMM-sim, but with heterogeneous Level 1 year-

to-year variability in the time series.
Model SN-LMM is the skew-normal multilevel model and estimates the same param-

eters as model LMM-het but relaxes the normality assumption by allowing for skewness
of the VC of Level 2 (GCM).

Interpretation Table 15.1 shows the estimates of the models described above. Firstly,
the expected climate change signals β̂0 are all very similar across the different methods.
Also the corresponding standard errors are comparable. Interestingly in SC in winter,
the standard error of the SN-LMM is quite smaller than that of its most similar model
LMM-het. When considering the 3 Level model LMM which ignores the similarity
structure, its estimated standard error tends to be smaller than for those models which
explicitly account for model dependency. For the SN-LMM model, in IP in summer and
in SC in winter (DJF), the Level 4 VC for similarity is quite a bit smaller compared to
its normally distributed sibling LMM-het.
When interpreting the parameter estimates one can see some differences between the

different seasons and the different regions. In IP and AL the summer climate change
signals are much larger than in winter, which is the other way around for SC, where the
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winter shows a larger change than the summer. Natural year-to-year variability seems
to go along with this pattern. The largest natural variability can be detected in SC
in winter and in AL in summer and winter. IP shows very little natural fluctuations.
The initial condition uncertainty is the smallest component of all VCs - different initial
conditions of the same GCM tend to yield similar results. The VCs for the structural
climate model uncertainty σgcm and σsim are mostly of the same order of magnitude
and are by far larger than the natural variability. All regions in both seasons (except
for IP in winter) show a large right-skewed behaviour with γ1 being at the parameter
boundary of .995.

Estimates of Standard Errors

Standard errors of the parameters obtained by the skew-normal multilevel model are
estimated with both non-parametric and parametric bootstrap techniques as well as
using the likelihood ratio test statistic and Wald’s test statistic (Chapter 14). The
statistical model here is slightly different from the model above, as the time series has
been averaged to a single climate change signal value for each simulation. This decreases
the complexity of the dataset which is necessary for computational reasons, as obtaining
the standard errors of the estimates often requires excessive re-evaluation of the model,
which in our case, is very slow.

Methods We implemented the non-parametric bootstrap (Section 14.3) by sampling
the data in the dataset from all levels (with replacement) starting from the lowest level
(Level4). So first the algorithm samples from the model similarity classes (Level4), then
within those classes remaining in the dataset, we sample the GCMs (Level3). From
the remaining GCMs we sample the initial condition runs from the GCM (Level2). On
Level 1 we perform no randomisation, in fact, we average the entire time-series to infer
on climate change signals only, as an extensive bootstrap would not be computationally
feasible otherwise. This approximation showed no effect on the resulting estimates.
The parametric bootstrap has been performed based on random number generation

based on the MLE estimates. So at each level of the model, the random effects as well
as the Level 1 observations have been artificially generated and re-estimated. The vari-
ability of the MLE estimates is then approximated by the variability of the parametric
bootstrap sample.
The much faster likelihood ratio test statistic (Section 14.2) evaluates the likelihood

with varying parameter values and compares it to the likelihood value of the MLE.
Wald’s test statistic (Section 14.1) is based on the second order approximation of

the MLE distribution and assumes symmetric behaviour (i.e. a quadratic likelihood
function). We only need to calculate the Hessian matrix of the likelihood function at
the MLE.
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Results The results are shown in Figure 15.15 for the climate change parameter β0, in
Figure 15.16 for the three VCs and in Figure 15.17 for Pearson’s skewness coefficient γ1.
The uncertainty estimates for the climate change signal β0 are all very similar across

different estimation methods. For this parameter the simplest Wald standard error
suffices. All climate change signals highly differ from 0.
The different methods to estimate the uncertainties of the VCs, show quite a similar

picture for Level 3 VC (variability across GCMs) and for Level 2 VC (variability across
runs of the same GCM). Both VCs are significantly different from 0 across all methods
and regions/seasons. It seems quite surprising that Wald’s approximation still seems
to work pretty well. For the climate model similarity VC the behaviour between the
bootstrap techniques and the likelihood based techniques (likelihood ratio (LR) and
Wald) start to differ. For all regions and seasons the bootstrap CIs are quite large
and always contain 0. Wald and LR are similar and tend to have a smaller CI spread
indicating statistical significance.
However, for the skewness coefficient γ1 Wald’s method does not seem to work at all,

as it highly underestimates the variability of the skewness estimate. In addition, the
method has difficulties on the parameter space boundaries as the CIs can reach values
which are outside the defined range. Beside of that the two bootstrap techniques per-
form similarly, where the LR CI estimate tends to be a bit narrower but still seems to be
reasonable. Overall the skewness parameters tend to have large CIs mostly including 0.
The parametric bootstrap CI always overlaps with 0, whereas the non-parametric boot-
strap shows significance only in SC in winter, but being of the same order of magnitude
as its parametric version. The LR CI indicates a significant skewness for IP in summer
and Al in summer as well as SC in winter. IP in DJF seems to be the only case where
no skewness is clearly prevalent.

15.6 Summary and Conclusions

In this Section we present a statistical model which is able to assess the problematic
design structure of climate multi-model ensembles (CMIP5), such as imbalance and
dependencies across climate simulations. In addition, rigorous model checking shows
the need of a more general distribution than the Gaussian, which in this case is the
skew-normal distribution.

Statistical Model

The multi-model ensembles can be nicely modelled by a hierarchical statistical model,
accounting for each uncertainty component separately. Every hierarchy level is repre-
sented by a variance parameter (called variance component, VC) which is being estimated
and can be directly interpreted as a source of uncertainty in the climate multi-model
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Figure 15.15: Estimated climate change signal: CIs for estimated fixed effect β̂0.
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Figure 15.16: Estimated sources of climate uncertainties: CIs for estimates of VCs
σ̂sim (model similarity/structural uncertainty), σ̂gcm (structural uncer-
tainty) and σ̂run (initial condition uncertainty).
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Figure 15.17: Estimated skewness of the pdf: CIs for skewness coefficient γ̂1
(|γ1| ≤ .995).
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ensemble. We start from the natural year-to-year variability described by a climate sim-
ulation (Level 1, natural variability), and go further to assess the uncertainty induced
by different initial conditions of the same climate simulation (Level 2, initial condition
uncertainty). Further, we account for the variation between climate models (GCMs)
stemming from the same model family, either because they have been implemented by
the same research group, or because they share key components in their computer code
(Level 3, structural uncertainty). And at last we describe the variability of those model
similarity classes (Level 4, structural uncertainty). Figure 15.3 depicts this hierarchical
structure.
There are several tools available to implement such a statistical model when assuming

normal distribution, such as the R packages lme4 and nlme which run linear mixed-
effects models (LMMs). However, when dealing with skewed data, the corresponding
theory exist for 2-stage mixed models only (e.g Arellano-Valle, Bolfarine and Lachos
2005 and Lin and J. C. Lee 2008). In this work we derive the likelihood function for
skewed multilevel frameworks exceeding 2 stages, as we present here for climate multi-
model ensembles. The maximisation of the likelihood function is performed directly with
an optimiser, which can get very slow when dealing with many data points as several
large matrices have to be inverted.
Besides estimating the VCs (i.e. the sources of climate model uncertainty), another

big aim in this study is to assess for the uncertainty of the estimates themselves, being
the “uncertainty of the uncertainty”. We therefore implement several methods such as
parametric- and non-parametric bootstrap techniques and the likelihood ratio and Wald
confidence intervals.

Adequacy of Normal Multilevel Model

We check the influence of individual L1 observations on the estimates of the fixed effects
and the random effects. This is done by re-fitting the LMM omitting individual obser-
vations. Figure 15.11 shows the influence on the estimates of the fixed effects (Cook’s
distance) and the influence on the precision of the fixed effects (Covtrace). Excluding
any of the GFDL simulations, especially GFDL-CM3, seems to alter the fixed effects.
Two simulations have more influence on the standard error of the estimates than others.
The influence on the variance components is depicted with RVC plots. The exclusion of

some of the CSIRO models shows some effect on the natural variability (Level 1) and the
initial condition variability (Level 2) VC. This means that those CSIRO models inflate
the estimate of the internal variability more than other simulations. This behaviour
could already be seen in Figure 15.4. An even stronger influence shows the GFDL-CM3
model on the estimate of the gcm VC. Excluding this single simulation decreases the
estimated variance of the gcm random effect by more than 50%. At the same time the
estimated variance of the sim random effect would increase by over 50%. A much weaker
influence can be seen by other simulations as well.
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15.6 Summary and Conclusions

Exclusion of level 2 observations (gcms and sim) reveal influence on the fixed effects
(Figure 15.11) of the GCMs GFDL-CM3 and the CSIRO models and of models of family
“a” (being HadGEM and ACCESS models).
To detect changes of the variance components (VCs) when excluding L2 objects we

refer to Figure 15.13. We can see a drastic change of the VC gcm when excluding
the GCM GFDL-CM3, which we observed as being an outlier. The estimated variance
decreases by more than 60%, and at the same time the variance for sim increases by
the same amount. The same effect happens when excluding all GFDL simulations (i.e.
excluding sim “g”).
The specified LMM is also very sensitive to the GCM CSIRO-Mk3-6-0. Excluding it

leads to a drastic decrease of the estimated L1 residual (by almost 50%), which in this
case can be interpreted as the internal variability of the GCM (sensitivity of the climate
change signal to changes in initial conditions). This means the CSIRO GCM exhibits
a much stronger variability then the remaining simulations and this strongly influences
the overall estimate of the VC.
And at last, one model family (sim a) seems to have a strong influence on the sim

VC estimate. excluding this leads to a strong decrease of more than 60% in that VC
estimate. This means, that GCMs within that sim appear to have a a much stronger
variability than GCMs in other sim families. One could re-think if this sim category is
meaningful.

Climate Change Uncertainty

The expected temperature climate change signal projected by the CMIP5 ensemble with
the high emission scenario RCP8.5 is quite heterogeneous with regard to the region and
season (Table 15.1). The highest temperature changes can be seen in the Scandinavian
Region (SC), where summer temperatures will rise by 4.6 ◦C and winters seem to get
warmer in order of magnitude of 6 ◦C. The Alpine Region (AL) depicts similar warming
signals where the seasonality is the other way around, having a stronger warming in
summer than in winter by almost 2 ◦C. The Iberian Peninsula (IP) shows the same
seasonality pattern with higher changes in summer than in winter, but the projected
changes are slightly weaker (5.2 ◦C in summer, 3.1 ◦C in winter).
In addition to obtaining the expected climate change, our proposed method also esti-

mates the natural climate variability - the internal variations of the climate system which
happen without anthropogenic influence (Section 2.1). Compared to the estimated cli-
mate change signals mentioned above, this variability is very small: On average, the
projected climate change signal is around 5 times larger than the standard deviation
of natural climate variability. From a climatological point of view, man-made climate
warming is highly significant when considering naturally occurring climate variations.
Also in purely statistical terms, the expected climate change signals in every region

in each season is highly significant - the expected climate change signal is around 20
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times larger than the estimated standard errors. Interestingly these standard errors of
the climate change signals are similar across different statistical methods: The multilevel
models accounting for model dependencies do not yield smaller estimator uncertainties
as we would have expected (see motivating Example 12.1). The same holds also for the
other model estimates being quite similar across the different statistical methods.
The VCs obtained by the hierarchical statistical model can be interpreted as sources of

the CMIP5 uncertainties. The largest part of the CMIP5 uncertainties can be attributed
to the structural uncertainty σgcm and σsim. σsim denotes the variability between dif-
ferent classes of model similarity as derived for the CMIP5 by Knutti, Masson and Get-
telman 2013. The higher this uncertainty component, the higher the induced climate
model inter-dependencies as described in Section 3.2. σgcm represents the variability of
the GCMs stemming from the same model-family. The initial conditions uncertainty
σrun for the projected temperature climate change is quite small in comparison. The
uncertainty component σrun is estimated using different starting conditions of the same
GCM.
Our derived multilevel model also estimates the skewness of the climate change prob-

ability density function (PDF) mainly induced by outlying GCMs. The point estimates
of the skewness parameter seems to be quite high almost everywhere. However, it has to
be noted that the skewness coefficient modelled by the skew-normal linear mixed-effects
model (SN-LMM) is limited by around |γ1| ≤ 0.995. Therefore, this model has its limits
when modelling highly skewed data, which might be a limitation in this study, as the
real PDF might be more skewed.
We inspected four different methods to assess for the statistical significance for each

estimate described above, i.e. deriving uncertainty estimates of the statistical estimates.
The uncertainty of the estimates for the average climate change signal (fixed effects) is
similar when applying the four different methods and highly significant. The statistical
uncertainty of the VCs are very small for the initial conditions uncertainty and largest
for the model similarity VC. The four methods to estimate the parameter uncertainties
yield surprisingly similar results for the VCs. However, for the skewness parameter this
is not true anymore, as Wald’s CI seems highly inadequate. All other methods yield
quite large confidence intervals for this parameter.
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A Appendix: Proofs

Proposition 13.13 (Woodbury Identity). For any non-singular matrices A and B the
Woodbury matrix identity is

(A+UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1

Proof. To proof the Woodbury Idendity, we show that

(A+UBV )
(
A−1 −A−1U(B−1 + V A−1U)−1V A−1) = I

(A+UBV )
(
A−1 −A−1U(B−1 + V A−1U)−1V A−1) =

= I −U(B−1 + V A−1U)−1V A−1 +UBV A−1

−UBV A−1U(B−1 + V A−1U)−1V A−1

= I +UBV A−1 −
(
U(B−1 + V A−1U)−1 +UBV A−1U(B−1 + V A−1U)−1)V A−1

= I +UBV A−1 −
(
U +UBV A−1U

) (
B−1 + V A−1U)−1)V A−1

= I +UBV A−1 −UB
(
B−1 + V A−1U

) (
B−1 + V A−1U)−1)V A−1

= I +UBV A−1 −UBV A−1

= I

Lemma 13.12. For any Y ∼ Np(µ,Σ) and X ∼ Nd(η,Ω) the mixture is

φp(y|µ+Ax,Σ)φd(x|η,Ω) = φp(y|µ+Aη,Σ +AΩA′)
× φd(x|η + ΛA′Σ−1(y − µ−Aη),Λ)

where

Λ = (Ω−1 +A′Σ−1A)−1.
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Proof. We denote z = y − µ−Aη and w = x− η and first show that

(z −Aw)′Σ−1(z −Aw) +w′Ω−1w =
= z′Σ−1z + (Aw)′Σ−1(Aw)− z′Σ−1Aw −w′A′Σ−1z +w′Ω−1w

= z′Σ−1z +w′(Ω−1 +A′Σ−1A)w − z′Σ−1Aw −w′A′Σ−1z

= z′Σ−1z − z′Σ−1AΛA′Σ−1z +w′Λ−1w − z′Σ−1Aw −w′A′Σ−1z+
+ z′Σ−1AΛA′Σ−1z

= z′(Σ−1 −Σ−1AΛA′Σ−1)z + (w′ − z′Σ−1AΛ)(Λ−1w −A′Σ−1z)
= z′(Σ−1 −Σ−1A(Ω−1 +A′Σ−1A)−1A′Σ−1)z+

+ (w −ΛA′Σ−1z)′Λ−1(w −ΛA′Σ−1z)
Woodbury= z′(Σ +AΩA′)−1z + (w −ΛA′Σ−1z)′Λ−1(w −ΛA′Σ−1z)

With this result and because z−Aw = y−µ−Ax and as of |Σ +AΩA′||Λ| = |Σ||Ω|
we obtain

φp(y|µ+Ax,Σ)φd(x|η,Ω) =

= (2π)−p/2 |Σ|−1/2 exp
(
−1

2(y − µ−Ax)′Σ−1(y − µ−Ax)
)

· (2π)−d/2 |Ω|−1/2 exp
(
−1

2(x− η)′Ω−1(x− η)
)

= (2π)−p/2 (2π)−d/2 |Σ|−1/2|Ω|−1/2

· exp
(
−1

2(y − µ−Ax)′Σ−1(y − µ−Ax) + (x− η)′Ω−1(x− η)
)

= (2π)−p/2 (2π)−d/2 |Σ +AΩA′|−1/2|Λ|−1/2

· exp
(
−1

2z
′(Σ +AΩA′)−1z + (w −ΛA′Σ−1z)′Ω−1(w −ΛA′Λ−1z)

)
= φp(y|µ+Aη,Σ +AΩA′)× φd(x|η + ΛA′Σ−1(y − µ−Aη),Λ)

Proposition 13.6. Let Y ∼ SNn(λ), then

Y = δ|U |+ (In − δδ′)1/2V , (A.1)

where δ = λ/
√

1 + λ′λ, U ∼ N(0, 1) is independent of V ∼ Nn(0, In).
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Proof. Because U ∼ N(0, 1), it follows that T = |U | ∼ HN(0, 1) with density fT (t) =
2φ1(t|0, 1) for t ∈ [0,∞). We further have Y |T ∼ Nn (δT, (In − δδ′)). The density of Y
is

fY (y) =
ˆ ∞

0
fY |T (y|t)dt

=
ˆ ∞

0
φn(y|0, δt, In − δδ′)2φ1(t|0, 1)dt

L13.12=
ˆ ∞

0
φn(y|0, (In − δδ′) + δδ′)2φ(t|Λδ′(I − δδ′)−1y,Λ)

because

Λ =
(
1 + δ′(I − δδ′)−1δ

)−1 = 1− δ′
(
(I − δδ′) + δδ′

)−1
δ = 1− δδ′

and (I − δδ′)−1 = I + δ(1− δ′δ)−1δ′ it follows that

fY (y) = φn(y|0, In)
ˆ ∞

0
2φ(t|Λδ′(I − δδ′)−1y,Λ)

= φn(y)
ˆ ∞

0
2φ
(
t|(1− δ′δ)δ′

(
I + δ(1− δ′δ)−1δ′

)
y, 1− δ′δ

)
= φn(y)

ˆ ∞
0

2φ
(
t|δ′(1− δ′δ + δ′δ)y, 1− δ′δ

)
= φn(y)

ˆ ∞
0

2φ
(
t|δ′y, 1− δ′δ

)
.

We set u = t−δy√
(1−δ′δ)

leading to du = dt/
√

1− δ′δ and so

ˆ ∞
0

φ
(
t|δ′y, 1− δ′δ

)
dt = 1√

2π(1− δ′δ)

ˆ ∞
0

exp
(
− (t− δy)2

2(1− δ′δ)

)
dt

= 1√
2π(1− δ′δ)

ˆ ∞
− δy√

1−δ′δ

exp
(
−u

2

2

)
du
√

1− δ′δ

= 1√
2π

ˆ δy√
1−δ′δ

−∞
exp

(
−u

2

2

)
du

= Φ
(

δy√
1− δ′δ

)
= Φ (λy)

with λ = δ/
√

1− δ′δ, yielding

fY (y) = φn(y)Φ (λy)
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and so Y ∼ SNn(λ).
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B Appendix: R Functions

This Chapter summarises the most relevant R functions which have been implemented for
this thesis. To handle the huge volume of climate data, we have published the R package
wux (Mendlik, Heinrich, A. Gobiet et al. 2016), which has already been described in Part
II. This package, including the entire documentation and code is publicly available at
CRAN (Mendlik, Heinrich and Leuprecht 2015). The R code used in Part III has been
published as an online supplementary material to the work of Mendlik and A. Gobiet
2016, and we therefore omit a listing here as well.
We therefore limit the description of the computer code in this chapter to Part IV,

which has not been published so far. For the sake of readability we do not show the
actual code, but rather describe the functions verbally.
We start from the binary NetCDF data of the CMIP5 multi-model ensemble. The

functions used to process these data to a suitable data.frame is described in Section B.1.
Inference on these data is performed with the help of the Skew-normal Multilevel Models
(SN-LMM) derived in derived in Chapter 13.3. These methods are presented in Section
B.2. The different methods to approximate the uncertainty of the resulting estimates,
as derived in Chapter 14, is summarised in Section B.3.

B.1 Preprocessing Climate Data

R Code B.1: Function from the wux package to create data.frame from binary NetCDF
files (models2wux).

models2wux <- function ( input .filename , does.plot. subregions = FALSE ) {
## Creates a dataframe containing climate change signals of climate models
## listed in user. input .
##
## Args:
## input . filename : Filename from input created by the user.
## The file contains a
## general . input section with tuning parameters and
## a model . input section listing the climate models
## to be processed .
## does.plot. subregions : Boolean . If TRUE , interactive plots will be
## displayed showing (I) The Shapes of the
## subregion files ( shapefiles , rectangle , ...)
## (II) a rough pixel map with the cliped areal
## data of the NetCDF file.
##
## Returns :
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B.2 Skew-normal Multilevel Model

## Dataframe containing climate change signals or time series for each
model .

##
...
}

R Code B.2: Function to obtain climate data time-series anomalies
(detrending.preprocess).

detrending . preprocess <- function (file , region , seas){
## Obtain climate data time - series anomalies . This function reads in
## the time series data. frame ( years 1971 -2099) obtained from the
## wux package and performs following steps :
## 1) fit overall loess
## 2) capture climate change signal from 1971 -2000 to 2070 -2099
## 3) detrending time series 2070 -2099 ( subtracting loess fit)
## 4) center time series 2070 -2099 to 0 mean
## 5) add climate change signal to centered time series 2070 -2099
##
## Input :
## file: (char) filename of data. frame from the models2wux
## function from the wux package . Regionalized climate
## timeseries data
## region : (char) subregion of rationalised data. Here either
## "AL", "IP" or "SC ".
## seas: (char) season of time - series data to be analysed . Here
## either "JJA" or "DJF ".
##
## Returns :
## data. frame of climate data anomalies

...
}

R Code B.3: Function to aggregates the time-series anomalies data.frame to a data.frame
of climate change signals (aggregate.ccs).

aggregate .ccs <- function (cmip){
## Aggregates the anomalies data. frame to a data. frame of climate
## change signals obtained from the " detrending . preprocess " function
## with the " aggregate " function . This way , the hierarchical depth of
## the anomaly data. frame is reduced by one , speeding up calculations
## for the uncertainty analysis .
##
## Input :
## cmip: data. frame of climate data anomalies returned from the
## " detrending . preprocess " function .
##
## Returns :
## Aggregated data. frame with climate change signals for each climate
## simulation .

...
}

B.2 Skew-normal Multilevel Model
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R Code B.4: Function of skew-normal multilevel log-likelihood function described in Sec-
tion 15.4 to fit the regionalized CMIP5 multimodel ensemble.

snlmm . varsig .cp.lik <- function ( parms .cp , yis , Xis , Zis , RE.inds ,
n. ranef = 3, fix. gamma = NULL ,
verbose = FALSE ){

## Implementation of skew - normal multilevel log - likelihood function
## to fit the regionalized CMIP5 multi - model
## ensemble . The likelihood is defined in the DP space , but this
## function takes CP parameters as input for better convergence and
## better interpretability and transforms them into the DP
## space . The function performs following tasks :
## 1) Reading in the centered parameters (CP) and transform them to
## DP as described in section ().
## 2) Loop over each model - similarity class member i (here 17
## members ) to calculate the components of the log - likelihood
## function . The multivariate normal CDF probabilities are
## obtained using the " pmvnorm " function from the " mnormt "
## package . Matrix inversion takes the most time here.
## 3) Return log - likelihood function .
##
## Assumptions : - natural variability const for each modsim ( heterogeneity

)
## - internal variability constant
## - gcm - modsim variability constant
##
## Input :
## parms .cp: vector of centered parameters (CP).
## yis: list of vectors of response values for each
## model - similarity class .
## Xis: list of fixed - effects design matrices for each
## model - similarity class .
## Zis: list of random - effects design matrices for each
## model - similarity class .
## RE.inds: list for indices of the random effects levels . This is
## necessary due to the multilevel nature of the model .
## n. ranef : depth of the multilevel model (here 3 random effect
## levels ).
## fix. gamma : ( numerical ) fix the skewness parameter to a certain
## value ( needed for LRT statistics ). Default is NULL.
## verbose : ( boolean ) More detailed output while optimising the
## likelihood function . Mainly for debugging purposes .
##
## Returns :
## Deviance of the likelihood (-2 times the log - likelihood value )
## for given CP parameter values .

...
}

R Code B.5: Function to get centered parameter (CP) estimates of the skew-normal
multilevel model for the CMIP5 multimodel ensemble with heterogenous
model-similarity variance components.

getSNLMM . varsig .cp <- function (cmip , fix. gamma = NULL , verbose = FALSE ){
## Get centered parameter (CP) estimates of the skew - normal
## multilevel model for the CMIP5 multi - model ensemble with
## heterogenous model - similarity variance components . This function
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## performs following tasks :
## 1) First obtain starting values of the fixed effect and the VCs
## by fitting the data using a LMM (" lme" function from the
## "nlme" package )
## 2) Obtain starting values for the skewness parameter by fitting
## the LMM residuals ( Level 2) with a skew normal modal with the
## "selm" function from the "sn" package .
## 3) For each model - similarity class , obtain the design matrices
## for the fixed effects (X) and the random effects (Z). Z is
## obtained with the function " mkRanefStructures " from the
## " lme4pureR " package . Obtain the vector of response variable y,
## in this case this is the temperature time - series of all models
## from the same model similarity class .
## 4) Optimize the likelihood function " snlmm . varsig .cp.lik" with
## the " optim " function using the "L-BFGS -B" method to define the
## 0 boundaries for the VCs and the ( -.995 ,.995) boundaries for
## the skewness coefficient gamma . The likelihood function is fed
## with the starting values , the design matrices X, Z and the
## response vectors y.
##
## Input :
## cmip: data. frame of the climate data anomalies obtained from
## the function " detrending . preproc ".
## fix. gamma : ( numerical ) fix the skewness parameter to a certain
## value ( needed for LRT statistics ). Default is NULL.
## verbose : ( boolean ) More detailed output while optimizing the
## likelihood function . Mainly for debugging purposes .
##
## Returns : Vector of centered parameter (CP) estimates of the skew
## normal multilevel model .

...
}

B.3 Uncertainty of MLEs

R Code B.6: Function obtain the Wald type 1-α CI.
getHessian .ucty <- function (cmip.ccs){

## Obtain the Wald type 1- alpha CI. Approximates the standard errors
## of the CP parameter MLE obtained from the " getSNLMM .cp.ccs"
## function . It first fits the MLEs and then calculates the hessian
## matrix of the log - likelihood function given the MLEs using the
## " hessian " function from the package " numDeriv ". The standard error
## estimates are then obtained by taking the square root of the
## diagonal entries of the Hessian matrix . The symmetrical 1- alpha CIs
## are obtained by
## MLE +/- 1.96 * hessian
##
## Input :
## cmip.ccs: data. frame of climate change signals of the CMIP5
## multimodel ensembles obtained from the function
## " aggregate .ccs ".
##
## Returns :
## Data. frame of 1- alpha confidence intervals with second - order
## standard error approximations for all MLEs.

...
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}

R Code B.7: Function which approximates the 1-α CI for the SN-LMM estimates using
the LR test static.

getLR .ucty <- function (cmip.ccs){
## Approximates the 1- alpha CI for the SN -LMM estimates using the LR
## test static . For each MLE the likelihood function is evaluated at
## all feasible values . For each value the LRT statistic is
## performed . The 1- alpha CI is obtained by discarding all parameter
## values for which the LRT exceeds the " qchisq (.95 , 1)" value .
##
## Input :
## cmip.ccs: data. frame of climate change signals of the CMIP5
## multi - model ensembles obtained from the function
## " aggregate .ccs ".
##
## Returns :
## Data. frame of 1- alpha confidence intervals for all MLEs using the
## LRT test statistic .

...
}

R Code B.8: Function to obtain the nonparametric bootstrap 1-α conficence interval for
each parameter of the SN-LMM model using 1000 resamples.

getNonParmBoot .ucty <- function (cmip.ccs){
## Gets the non - parametric bootstrap 1- alpha confidence interval for
## each parameter of the SN -LMM model using 1000 resamples . This
## function uses the function " parSapply " from the package " parallel "
## to parallelize the resampling process on several cores . This
## function draws a bootstrap sample using thef unction
## " nonparm .boot. resample " and then fits the SN -LMM with the new
## data. frame . The resampling is done recursively , so each hierarchy
## level (modsim , gcm and run) is resampled (block - bootstrapping ). From
## the 1000 MLEs from the bootstrap samples , the q0 .025 and q0 .975 are
## taken as the lower and upper CI bound .
##
## Input :
## cmip.ccs: data. frame of climate change signals of the CMIP5
## multi - model ensembles obtained from the function
## " aggregate .ccs ".
##
## Returns :
## Data. frame of 1- alpha confidence intervals obtained by
## non - parametric block bootstrapping .

...
}

R Code B.9: Function to get the non-parametric bootstrap 1-α conficence interval for
each parameter of the SN-LMM model using 1000 resamples.

nonparm .boot. resample <- function (dat , cluster , replace ) {
## Recursively resamples the nested factors of a data. frame and
## creates a new data. frame with identical dimensions . This function
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## is necessary for non - parametric block bootstrapping .
##
## Input :
## dat: data. frame from which to resample the factors .
## cluster : character vector specifying the factors to be
## resampled . This argument defines the hierarchy of the
## data. frame from top to bottom . In this case by
## c(" modsim ", "gcm", "run ").
## replace : boolean vector to indicate weather or not sampling
## should be performed with replacement on the individual
## hierarchy level . In this case we perform resampling
## with replacement on all levels c(" TRUE", "TRUE",
## "TRUE ").
##
## Returns :
## A data. frame with resampled factors . The observations remain
## unchanged .
##
## This code has been adapted from the code published at
## http:// biostat .mc. vanderbilt .edu/wiki/Main/ HowToBootstrapCorrelatedData

...
}

R Code B.10: Function to obtain the 1-α CI using parametric bootstrap using the SN-
LMM.

getParmBoot .ucty <- function (cmip.ccs){
## Obtains the 1- alpha CI using parametric bootstrap using the
## SN -LMM. As for the non - parametric case , this function uses
## parallelization with the " parallel " package to use multiple
## cores . This function first fits the original data. frame to obtain
## the MLEs. Using those MLEs , the function "parm.boot. resample "
## is called 1000 times to simulate new observational data. Then the
## new data. frames are re -fit to obtain a sample of MLEs. The 1- alpha
## CI is obtained in the same manner as for the non - parametric case by
## taking the q0 .025 and q0 .975 quantiles of the MLE sample .
##
## Input :
## cmip.ccs: data. frame of climate change signals of the CMIP5
## multi - model ensembles obtained from the function
## " aggregate .ccs ".
##
## Returns :
## Data. frame of 1- alpha confidence intervals obtained by
## parametric bootstrapping .

...
}

R Code B.11: Function for parametric block-bootstrap resampling.
parm.boot. resample <- function (parm.mle , cmip.ccs){

## Hierarchically simulates new observational values for a given
## data. frame using pre - specified distributional assumptions from a
## statistical model based on MLEs. In this case , the average
## climate change signal for the top hierarchy " modsim " is simulated
## using a normal distribution . Then for each mid - hierarchy level of
## "gcm" skew - normal data is created and added to the top
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## hierarchy . At last , for each lowest - level "run" data is created
## using a normal distribution and added to the hierarchy structures
## above .
##
## Input :
## parm.mle: Vector of MLEs obtained by the SN -LMM.
## cmip.ccs: Original data. frame which has been used to get the
## MLEs. This data. frame will be refilled with the
## simulated values .
## Returns :
## Data. frame filled with simulated data from a hierarchy of
## parametric distributions .

...
}
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