
Jörg Gabmeier Bakk.rer.soc.oec.

Recommender Systems in the Domain of Video Games:
A Comparison of Various Algorithms, Rating Scales and
Implicit/Explicit Feedback Utilizing the Steam Platform

to achieve the university degree of
MASTER'S THESIS

 Master's degree programme: Software Development and Business Management

submitted to
Graz University of Technology

Assoc.Prof. Dipl.-Ing. Dr.techn. Denis Helic

Knowledge Technologies Institute

 Master of Science

Supervisor

Faculty of Computer Science and Biomedical Engineering

Graz, September 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all ma-
terial which has been quoted either literally or by content from the sources used.
The text document uploaded to TUGRAZonline is identical to the present master‘s
thesis.

Date Signature

Abstract

Recommender systems are ubiquitous. This thesis deals with recommender
systems in the domain of video games and specifically the Steam platform
by comparing the performance of several selected algorithms provided by the
MyMediaLite library. Furthermore, implicit feedback is converted into explicit
ratings and compared to actual explicit ratings provided by the many users
of the Steam network. Last but not least, binary to quinary rating scales are
considered in order to find the one that performs best in terms of accuracy.

The thesis further consists of an introduction to recommender systems, an
overview of various recommender system libraries, implemented algorithms, the
Knowledge Discovery Process (KDP) and the Steam platform itself. Related
work, also dealing with the domain of video games as well as diverse rating
scales, is presented. The approach used for conducting the experiments, in
order to answer the research questions, is based on the KDP and thoroughly
described. The selected recommendation algorithms are tested on five datasets
specifically created for this purpose, whereby the data is crawled directly from
the Steam website. 10-fold cross-validation, with separate validation and test
sets for hyperparameter optimization and evaluation, is applied. The NRMSE is
calculated and presented for each algorithm and dataset in the form of tables as
well bar plots. Finally, the Friedman test and the subsequent Nemenyi post-hoc
test is applied in order to draw reliable conclusions.

iii

Contents

Abstract iii

1 Introduction 1

2 Background 4
2.1 Recommender Systems . 4

2.1.1 History . 5
2.1.2 Basic Terms and Concepts 7

2.1.2.1 User . 8
2.1.2.2 Item . 8
2.1.2.3 Transaction . 8
2.1.2.4 Prediction . 9
2.1.2.5 Recommendation 9

2.1.3 Techniques . 9
2.1.3.1 Content-Based 10
2.1.3.2 Collaborative Filtering 10
2.1.3.3 Demographic 11
2.1.3.4 Knowledge-Based 11
2.1.3.5 Community-Based 12
2.1.3.6 Hybrids . 12

2.1.4 Challenges and Issues . 12
2.1.5 Evaluation Methods . 14

2.1.5.1 Prediction Accuracy 14
2.1.5.2 Coverage . 14
2.1.5.3 Confidence . 15
2.1.5.4 Trust . 15
2.1.5.5 Novelty . 15
2.1.5.6 Serendipity . 15
2.1.5.7 Diversity . 16

iv

Contents

2.1.5.8 Utility . 16
2.1.5.9 Risk . 16
2.1.5.10 Robustness . 17
2.1.5.11 Privacy . 17
2.1.5.12 Adaptivity . 17
2.1.5.13 Scalability . 17

2.2 Recommender System Libraries 18
2.2.1 MyMediaLite . 18
2.2.2 PREA . 20
2.2.3 LensKit . 21
2.2.4 Mahout . 22

2.3 Recommendation Algorithms 22
2.3.1 Baselines . 23

2.3.1.1 Random . 23
2.3.1.2 GlobalAverage 23
2.3.1.3 UserAverage . 23
2.3.1.4 ItemAverage . 23
2.3.1.5 UserItemBaseline 23

2.3.2 Content-Based . 24
2.3.2.1 ItemAttributeKNN 24

2.3.3 Collaborative Filtering 26
2.3.3.1 ItemKNN . 26
2.3.3.2 SlopeOne . 26
2.3.3.3 MatrixFactorization 27
2.3.3.4 BiasedMatrixFactorization 28
2.3.3.5 SVDPlusPlus 30

2.3.4 Hybrid . 32
2.3.4.1 GSVDPlusPlus 32

2.4 Knowledge Discovery Process 34
2.4.1 Selection . 36
2.4.2 Preprocessing . 36
2.4.3 Transformation . 36
2.4.4 Data Mining . 36
2.4.5 Interpretation/Evaluation 37

2.5 The Steam Platform . 37

3 Related Work 40

v

Contents

4 Materials and Methods 43
4.1 Development Environment . 43
4.2 Knowledge Discovery Process 44

4.2.1 Selection . 45
4.2.1.1 AppCrawler . 46
4.2.1.2 ReviewCrawler 47
4.2.1.3 FriendsCrawler 47
4.2.1.4 GamesOwnedCrawler 48

4.2.2 Preprocessing . 49
4.2.3 Analysis . 50
4.2.4 Transformation . 54

4.2.4.1 Sampling . 54
4.2.4.2 Explicit Rating Data File 54
4.2.4.3 Implicit Rating Data Files 55
4.2.4.4 Additional Input Files 56

4.2.5 Data Mining . 56
4.2.5.1 Approach . 57
4.2.5.2 Hyperparameter Optimization 60

4.2.6 Interpretation/Evaluation 60

5 Results 63
5.1 Algorithms . 63

5.1.1 Baselines . 63
5.1.1.1 Random . 63
5.1.1.2 GlobalAverage 64
5.1.1.3 UserAverage . 64
5.1.1.4 ItemAverage . 65
5.1.1.5 UserItemBaseline 65

5.1.2 Content-Based . 66
5.1.2.1 ItemAttributeKNN 66

5.1.3 Collaborative Filtering 67
5.1.3.1 ItemKNN . 67
5.1.3.2 SlopeOne . 68
5.1.3.3 MatrixFactorization 68
5.1.3.4 BiasedMatrixFactorization 70
5.1.3.5 SVDPlusPlus 71

vi

Contents

5.1.4 Hybrid . 71
5.1.4.1 GSVDPlusPlus 71

5.2 Overview . 73

6 Discussion 75

7 Conclusion 78

Bibliography 81

vii

List of Figures

2.1 The Knowledge Discovery Process (KDP). 35
2.2 The Store View of the Steam Client. 38

4.1 Complementary Cumulative Distribution Functions (CCDF) of
Various User Related Data within the Steam Dataset. 52

4.2 Complementary Cumulative Distribution Functions (CCDF) of
Various Game Related Data within the Steam Dataset. 53

4.3 10-Fold Cross-Validation with Training, Validation and Test
Subsets. 59

5.1 Barplot of the NRMSE Measurements for the Random Algorithm. 64
5.2 Barplot of the NRMSE Measurements for the GlobalAverage

Algorithm. 64
5.3 Barplot of the NRMSE Measurements for the UserAverage Al-

gorithm. 65
5.4 Barplot of the NRMSE Measurements for the ItemAverage Al-

gorithm. 65
5.5 Barplot of the NRMSE Measurements for the UserItemBaseline

Algorithm. 66
5.6 Barplot of the NRMSE Measurements for the ItemAttributeKNN

Algorithm. 67
5.7 Barplot of the NRMSE Measurements for the ItemKNN Algorithm. 67
5.8 Barplot of the NRMSE Measurements for the SlopeOne Algorithm. 68
5.9 Barplot of the NRMSE Measurements for the MatrixFactoriza-

tion Algorithm. 69
5.10 Barplot of the NRMSE Measurements for the BiasedMatrixFac-

torization Algorithm. 70
5.11 Barplot of the NRMSE Measurements for the SVDPlusPlus

Algorithm. 71

viii

List of Figures

5.12 Barplot of the NRMSE Measurements for the GSVDPlusPlus
Algorithm. 72

5.13 Critical Difference (CD) Diagram for the Nemenyi Post-Hoc Test
in Succession to the Friedman Test. 74

ix

List of Tables

2.1 Small Example of a Ratings Matrix. 7
2.2 Overview of Various Recommender System Libraries and Offered

Recommendation Approaches. 18

4.1 Attributes of an App, Crawled Using the AppCrawler. 46
4.2 Count of Application Types, Retrieved Using the AppCrawler. . 47
4.3 Attributes of a Review, Crawled Using the ReviewCrawler. . . . 48
4.4 Attributes of a Relationship, Crawled Using the FriendsCrawler. 48
4.5 Attributes of the Games Owned by a User, Crawled Using the

GamesOwnedCrawler. 49
4.6 Basic Statistics of the Steam Dataset. 50
4.7 Structural Properties of the Network Spanned by the Relation-

ships Between Users Within the Steam Dataset. 51
4.8 Descriptive Statistics of the Steam Dataset. 51
4.9 Statistics of the Explicit Rating Data File Used as Input for the

Recommender Algorithms. 55
4.10 Statistics of the Implicit Rating Data Files Used as Input for

the Recommender Algorithms. 55

5.1 Best Hyperparameters for the UserItemBaseline Algorithm. . . . 66
5.2 Best Hyperparameters for the ItemAttributeKNN Algorithm. . . 66
5.3 Best Hyperparameters for the ItemKNN Algorithm. 68
5.4 Best Hyperparameters for the MatrixFactorization Algorithm. . 69
5.5 Best Hyperparameters for the BiasedMatrixFactorization Algo-

rithm. 70
5.6 Best Hyperparameters for the SVDPlusPlus Algorithm. 71
5.7 Best Hyperparameters for the GSVDPlusPlus Algorithm. 72
5.8 NRMSE Measurements for All Algorithms. 73

x

1 Introduction

The information available on the web is growing steadily and so is the provided
content of big websites such as Amazon, Netflix, YouTube and Steam. Content
can be pretty much anything, such as books, movies, games and scientific papers,
and sometimes the sheer amount of this content can be overwhelming. It can be
difficult to retrieve good results not only due to this mass of information, but
also due to the users’ lack of knowledge or simply the content’s uncommonness.
Filtering seems to be a logical necessity for the users of these platforms in order
to retrieve personalized content and this is where recommender systems are
used in an attempt to assist.

Recommender systems are used to automatically fulfill the desire for receiving
only appropriate content and are ubiquitous nowadays. In fact, all the platforms
mentioned above implement some sort of recommendation system that caters
to the needs of their users by providing personalized content with the goal of
an improved user experience, thus enhancing customer loyalty, selling more
and diverse items, and ultimately improving the companies’ revenues. (Ricci,
Rokach, and Shapira, 2015a)

Many of the companies even provide valuable information about their systems.
For instance Goldberg et al. (1992), the developers of Tapestry, the first
recommender system, coined the term collaborative filtering. (Resnick and
Varian, 1997) Insight into Amazon’s Item-to-Item Collaborative Filtering was
provided by Linden, B. Smith, and York (2003), Davidson et al. (2010) presented
YouTube’s video recommendation system, and Gomez-Uribe and Hunt (2016)
recently provided material on Netflix’s range of varying recommender algorithms.
On the other hand, to the best of the author’s knowledge, Valve, developer
of the Steam platform, made no scientific work on Steam’s recommendation
system available for researchers, yet they are certainly one of the major players
in the gaming industry and probably worth billions. (Chiang, 2011)

1

1 Introduction

One interesting difference between these platforms is their varying rating scale,
which is the explicit basis for most recommender systems. While Amazon and
Netflix use the classical rating scale of one to five stars, YouTube changed
this scale into a binary one consisting solely of a like and a dislike rating after
considering the fact that hardly anyone ever used ratings below five stars.
(Rajaraman, 2009) Steam also provides this binary rating scale in the form of a
thumbs-up and a thumbs-down. Despite these differences, there is little research
that deals with the performance effects of varying rating scales, especially
within the domain of video games.

A further significant distinction lies not within the rating scales, in other words
explicit data, but in the implicit information of user preferences available to
each system. Of course all of these websites could easily track simple user
interaction, such as following links or purchasing items, however some services
have quite unique domain specific information available. While YouTube and
Netflix could track view counts of their videos or movies respectively, video
game platforms like Steam have the advantage of easily recordable information
on the time a user has spent playing a certain game.

Based on these observations, this thesis strives to answer the following research
questions with reference to the domain of video games and specifically the
Steam platform:

RQ 1 How well are various recommender algorithms performing in comparison
to each other?

RQ 2 Can implicit data, specifically game times for each user, be utilized as
an adequate replacement for explicit ratings?

RQ 3 Considering rating scales from binary to quinary, which rating scale is
to be preferred in terms of accuracy?

Answering these research questions requires the application of the knowledge
discovery process to the topic of recommender systems. The first major step in
this process is the data acquisition from the Steam platform using web crawling,
followed by preprocessing and cleaning of the retrieved data. Next, the data is
transformed into a usable input for different recommender algorithms, which
are chosen from existing recommender system libraries. Algorithms are selected
with diversity in mind, trained, and finally evaluated, thus concluding the
process.

2

1 Introduction

The remainder of this thesis is structured as follows. Chapter 2 gives an overview
of recommender systems, existing recommender system libraries along with
assorted algorithms, the knowledge discovery process and the Steam platform.
Chapter 3 provides a survey of literature relevant to the research questions
raised. Chapter 4 makes up the major part of the thesis and contains the
detailed materials and methods used to answer the research questions. Results
are presented in Chapter 5 and discussed in Chapter 6. Last but not least,
Chapter 7 concludes with a summary of the presented work.

3

2 Background

This chapter is dedicated to the theoretical background of the thesis. First,
an introduction to recommender systems is given, which includes a historical
view on such systems, the definitions of basic terms and concepts, a taxonomy
on the varying recommendation techniques, associated challenges and issues,
and the corresponding evaluation methods. The introduction is followed by an
overview of various recommender system libraries and selected recommendation
algorithms. Further, the knowledge discovery process used to answer the research
questions is depicted and interpreted from the viewpoint of a recommender
system. The chapter is concluded with a brief introduction of the Steam
platform, which represents the data base for the experiments.

2.1 Recommender Systems

Be it the question of what book to read next, what movie to rent or what
stock to buy, every day life is full of choices and options. Especially since
the information available on the world wide web is steadily growing, decision-
making can be tough for internet users. Recommender systems assist in this
decision-making process by providing personalized recommendations to their
users and have become a broad field in computer science. (Jannach et al.,
2011)

Most of the internet users have already made contact with one or another rec-
ommendation system within the web. For instance, while shopping at Amazon,
it is quite difficult to miss the user reviews along with the star ratings for the
offered products or Amazon’s recommendations on what other users bought
together with the currently viewed item.

4

2 Background

Actually providing a useful recommendation requires a user profile which reflects
the preferences of the user. This preferences can be acquired by explicitly asking
the user or by converting implicitly observed behavior of the user. Implicit
information can be the user’s browsing habits, purchases, and other interactions
with the platform in question, while explicit data is mostly represented by
ratings of the content. (Jannach et al., 2011)

Utilizing these user preferences and driven by the goal of raising the user’s
experience on the service, a recommendation system attempts to predict the
user’s preference or rating for items on which he has not yet expressed his
opinion. It is most certainly a mutual benefit for the client and the customer, as a
satisfied customer will more likely return and consume more, while the company
profits in obvious and also not so obvious ways. The latter, for example, includes
the opportunity to sell more diverse and not so popular items, also called the
long-tail of an item catalog, eventually giving the company an advantage over
others.

2.1.1 History

People have always been influenced by the recommendations of other people,
regardless of whether they are domain experts or just friends with similar tastes.
Putting trust in ones peers has limits though. For instance, a person interested
in finding new movies to watch might never have heard of a specific movie that
he might possibly like. This could be due to the uncommonness of the movie
itself or uninformed peers, and recommender systems are used to help with
such issues.

Research on recommender systems has been going on for more than 30 years
now. The roots can be traced back to Grundy, which was a rather primitive
system outlined by Rich (1979), but nevertheless an important step in the
history of recommender systems. It modeled the user profiles by asking the user
a few questions and then grouped them into stereotypes based on their answers.
Recommendations were then made by hard-coded preferences attached to these
stereotypes.

Another major step was taken by Goldberg et al. (1992), who coined the term
collaborative filtering, and the Tapestry system they developed. (Resnick and

5

2 Background

Varian, 1997) The system was intended to replace email systems and was not
entirely automated. Users would have to annotate documents in order for others
to be able to receive relevant content. They would then either directly query
the system for certain annotations or other users, or set their preferences by
installing filters, which would then deliver relevant content as soon as it became
available.

Recommender systems have since become an important field in research due to
the emergence of several scientific papers during the mid-1990s. (Adomavicius
and Tuzhilin, 2005) Examples include the work of Resnick, Iacovou, et al. (1994)
on GroupLens for recommending netnews articles, Shardanand and Maes (1995)
on Ringo for music, and Hill et al. (1995) on the Bellcore Video Recommender
for movies, which are all automated collaborative filtering approaches.

In the late 1990s, commercial usage of recommender technologies began, with
one prominent example being Amazon and their usage of browsing and pur-
chasing history for proposing new items to the customer. (M. D. Ekstrand,
Riedl, and Konstan, 2011) Amazon’s item-to-item collaborative filtering was
described by Linden, B. Smith, and York (2003) and along with the work of
Sarwar et al. (2001) and Karypis (2001), brought insight into a new way of
recommending things. Later in the mid-2000s, Netflix gained massive attention
from both scientists and hobbyists when they offered a million dollar prize to
anyone able to improve their Cinematch recommendation system in terms of
accuracy by 10%. (Netflix, 2009)

Much has changed since then and companies started to overthink their ways of
recommending content. For example, YouTube changed their 5-star rating scale
into a binary like/dislike system after considering the fact that most people
hardly ever used a rating other than 5 stars. (Rajaraman, 2009) Netflix still
utilizes the algorithms resulting from their competition, but has also extended
the system by a variety of other approaches. (Gomez-Uribe and Hunt, 2016)
Further, while most of the early research focused on improving the accuracy
of recommender systems, more recent research also deals with other aspects
such as navigability, reachability and diversity. (Nguyen et al., 2014; Lamprecht
et al., 2015)

6

2 Background

2.1.2 Basic Terms and Concepts

The three most important terms in the field of recommender systems are
probably users, items and ratings. A user states his preferences for various
items in the form of a rating, which is together often represented as a triple
(user, item, rating). All triples together then form a rating matrix, which usually
is very sparse. In the end, the recommender system calculates what is worth
recommending by predicting the utility of the item for the user in question,
thus filling up empty entries in the ratings matrix. Last but not least, the
recommender system typically presents a list of n recommended items to the
user. (M. D. Ekstrand, Riedl, and Konstan, 2011)

Table 2.1 shows an example of a small ratings matrix with ratings between
1 and 5 stars, whereby empty cells represent items a user has not yet rated.
An example of a rating triple could therefore be (Alice, Django Unchained, 5).
Based on the existing ratings, the recommender might infer a rating of 4 stars
for Alice and Aliens, thus recommending Aliens to Alice.

Django
Unchained

The Matrix Aliens Schindler’s
List

Alice 5 4 1
Bob 4 5 4
Charlie 3 4

Table 2.1: A small example of a ratings matrix with ratings between 1 and 5 stars. Empty
cells represent items a user has not yet rated.

The following is a formal definition of the recommendation problem based on
Adomavicius and Tuzhilin (2005): let U be the set of all users, I the set of
all items that can be recommended and f the utility function that measures
the usefulness of item i for user u, that is f : U × I → R, where R is a totally
ordered set of ratings. Then, for each user u ∈ U , the recommender system is
supposed to choose such item i′ ∈ I that maximizes the user’s utility, or more
formally:

∀u ∈ U , i′u = argmax
i∈I

f(u, i) (2.1)

7

2 Background

Definitions of the subsequent basic terms are all based on the elucidations of
Ricci, Rokach, and Shapira (2015a).

2.1.2.1 User

Users of recommender systems are always accompanied by a user model that
represents the personal preferences and needs, which can of course be very
diverging. Without a user model, personalized recommendations would not be
possible at all and therefore, they will always play a central role in the field.
The constitution of a given user profile is heavily dependent on the system
in question and can be a simple list of ratings, sociodemographic attributes
such as age, gender, and the country they live in, behavior data like browsing
histories, or relations to other users in the form of a trust level.

2.1.2.2 Item

Items in this context can be any number of things such as movies, video
games, websites, research papers, and jokes. They represent the things to be
recommended and can be characterized by their complexity, value and/or
utility. It certainly does make a huge difference for the recommender system to
recommend simple things like books and CDs, or much more complex things
like insurance policies and financial investments. In order to model the items,
properties and features can be attached to make them more distinguishable.

2.1.2.3 Transaction

Transactions represent a recorded interaction between a user and the recom-
mendation system. A transaction can be rating data, which is the most common
form, but also evaluation in the form of user-applied tags. For example, the user
could tag a video game with certain expressions such as “boring”, “beautiful
graphics” and so forth. Ratings on the other hand can either be expressed ex-
plicitly or implicitly, depending again on the domain and the platform involved,
and can take on many forms. Explicit ratings can be unary (simply indicating
that a user has made a positive interaction with the item), binary (positive

8

2 Background

or negative), numerical (for example 1 to 5 stars) and ordinal (for instance
“agree”, “neutral”, “disagree”), while implicit ratings can be derived from many
user interactions such as clicks on links, the watch count of videos, or playtime
for video games.

2.1.2.4 Prediction

A prediction is usually made by the recommender in the sense of calculating an
item’s utility for a specific user, or at least by comparing the utility of various
items. It is not necessary, though, that the utility is calculated explicitly as it
may also be sufficient to apply some heuristics in order to make the decision of
whether or not an item is useful to a user.

2.1.2.5 Recommendation

Finally, a recommendation is the output of a recommender system in the form
of a list of n items, usually having the largest predicted utility. Typically, n is
much smaller than the cardinality of the item set, thus filtering relevant items.
It is further noteworthy that the list of n recommended items can also include
other items than those with highest utility. For example, the list could also
contain the most popular item and an item very different to what the user is
familiar with in order to avoid being stuck in a filter bubble. The term filter
bubble can be described as isolating people from a diversity of viewpoints or
content and was recently explored by Nguyen et al. (2014).

2.1.3 Techniques

Burke (2007) distinguishes recommender systems based on their source of
knowledge: collaborative, content-based, demographic and knowledge-based.
Further, hybrid recommender systems are defined as any combination of the
aforementioned techniques and Ricci, Rokach, and Shapira (2015b) adds another
technique to the taxonomy: the community-based recommendation system. The
following subsections describe the basic principles behind recommenders of
these techniques.

9

2 Background

2.1.3.1 Content-Based

Content-based recommendation systems rely on the ratings of users as well
as attributes and/or features of the items to be recommended, which can
for example be keywords in a document recommender application or genres,
directors, actors, etcetera in one for movies. The system usually generates a
content based user profile as a reflection of the user’s preferences on certain items
and their attributes based on the ratings. In order to find good recommendations,
a similarity measurement is done on the user profile and the attributes of items
to be considered, which is commonly done by some scoring heuristic such
as the cosine similarity. However, heuristic formulas are not the only way of
predicting the utility. Other methods include Bayesian classifiers, machine
learning techniques, clustering, decision trees and artificial neural networks.
(Adomavicius and Tuzhilin, 2005)

These recommenders are frequently used for recommending text-based items,
such as websites, documents, and e-mail messages. The reason for this is
not only the importance of text-based applications, but also early advances
from researchers of the information retrieval and information filtering fields.
Keywords are usually given weights in order to reflect their importance, which
can be carried out in several ways, whereas the best-known measure is the term
frequency/inverse document frequency (TF-IDF). (Adomavicius and Tuzhilin,
2005)

2.1.3.2 Collaborative Filtering

The most widely used recommender technique is collaborative filtering with
its two approaches user-user and item-item. User-user thereby refers to the
principle of finding users similar to the recommendation recipient based on
their previous item ratings, while item-item turns this around and finds similar
items based on their ratings. (M. D. Ekstrand, Riedl, and Konstan, 2011)

The Core issue of this recommender is the search for the neighborhood of either
users or items, thus making the item-item approach preferable if the number
of users exceeds the number of items to be considered. However, the major
advantage of the item-item approach is different, namely the possibility of
pre-computing the similarity matrix. In the user-user approach, a change in

10

2 Background

the user’s ratings can easily also change the neighborhood to be considered, as
it is dependent on the ratings of other users as well. On the other hand, if the
user-item ratio is high enough and an item has many ratings, the neighborhood
of an item-item approach is likely to remain stable after one user changes a
rating. The re-computation of the neighborhood can then be delayed until a
substantial number of users have added ratings, while the user-user approach
usually computes the neighborhood every time a recommendation is needed.
(M. D. Ekstrand, Riedl, and Konstan, 2011)

As the rating space in these systems can become very high-dimensional, di-
mensionality reduction has become an important and obvious extension of
collaborative filtering. Latent semantic analysis (LSA), also called latent se-
mantic indexing (LSI), in the form of matrix factorization techniques such
as Singular Value Decomposition (SVD) and Principle Component Analysis
(PCA) alleviates the scalability issues. The idea behind this is to find common
information amongst users or items, as it is done explicitly with content-based
systems and item features, which are latent in the rating data. (M. D. Ekstrand,
Riedl, and Konstan, 2011)

2.1.3.3 Demographic

Demographic recommenders take advantage of the user’s demographics such
as age, gender, language, and country in order to identify user types who like
certain items. Usually the ratings of users in a certain demographic niche are
combined to generate recommendations for each niche. (Burke, 2007; Ricci,
Rokach, and Shapira, 2015b) According to Krulwich (1997), the demographic
generalization approach comes at the expense of reduced accuracy of the
recommendation system.

2.1.3.4 Knowledge-Based

Knowledge-based recommendation systems utilize specific domain knowledge
about how the user’s preferences can be satisfied by certain item features.
Although all recommendation techniques use inference in some way, knowledge-
based systems can be distinguished by functional knowledge. User profiles and
the knowledge used by these systems can be manifold. An example of a user

11

2 Background

profile and its knowledge structure could be a simple query on a search engine.
While these systems tend to be strong in the early stages after deployment,
they may easily be outperformed by simpler methods, such as collaborative
filtering, if they lack some sort of learning component. (Burke, 2002; Ricci,
Rokach, and Shapira, 2015b)

2.1.3.5 Community-Based

Community-based systems, also called social systems, make recommendations
based on the saying “Tell me who your friends are, and I will tell you who you
are”. In order to make a recommendation for a user, the ratings of persons
connected to this user are considered, making this a very simple yet comprehen-
sive approach. The popularity of social networks and indications for people’s
tendency to prefer recommendations from friends rather than strangers lead
to this recommending technique becoming more and more interesting. (Ricci,
Rokach, and Shapira, 2015b)

2.1.3.6 Hybrids

A combination of any of the former techniques constitutes a hybrid recommender
system. The idea behind this is to utilize the advantages of one involved
technique in order to improve upon the shortcomings of the other one and vice
versa. Burke (2007) found that cascading systems is one of the best strategies
for building a hybrid recommender. The results from the first recommender
are thereby used as an approximation, which is then fine-tuned by a second
recommender. Also, using a knowledge-based recommender as a contributing
component leads to good results.

2.1.4 Challenges and Issues

Every technique has its advantages and disadvantages, while some challenges
are common to the field of recommender systems in general. Ricci, Rokach,
and Shapira (2015a) lists three essential challenges for the field:

1. Preference Acquisition and Profiling

12

2 Background

2. Interaction
3. New Recommendation Tasks

Acquiring user preferences is certainly one of the core challenges of recommender
systems. Collecting implicit user feedback, such as clicking on links or purchasing
an item, can be much easier than collecting explicit feedback due to ease of
availability. While utilizing implicit feedback can be profitable, it is worth noting
that this feedback can only be positive by nature and negative user preferences
would still have to be extracted from explicit feedback after all. Designers of
recommender systems also have to take care when collecting explicit feedback to
ensure that the system is not too intrusive for the user. Further, user preferences
might change over time, whereby some user preferences can be of long-term
use and others of short-term use.

Also of great importance and subject to further research is the form of the
systems input from the user and the output to the user. Usage of decision
psychology and cognitive psychology are to be considered in this area as well
as the topic of explaining recommendations. The same goes for the inclusion
of novelty in recommendations in order to avoid the filter bubbles mentioned
in Section 2.1.2.5, which are especially a problem for content-based filtering
systems but not for knowledge-based or collaborative systems.

The third common challenge lies in totally new recommendation tasks, such
as making a new recommendation every week, reciprocal recommendations
(for example in dating apps), ranking recommendations instead of predicting
specific ratings, guided navigation, and user action interpretation so that every
user action has an effect on the recommendations.

As for the common issues, all recommendation techniques that are based on
learning, specifically collaborative, content-based, and demographic recom-
menders, suffer from the cold-start problem, which affects the handling of new
items or new users. For example, in collaborative filtering systems, new items
can not be recommended to users as long as they haven’t been rated by anyone.
While content-based systems are inherently protected against the new item
problem, they are affected by the new user problem the same way collabora-
tive filtering systems are, since a user without ratings has not yet expressed
any preferences. (Burke, 2007) Implicit feedback and user demographics may

13

2 Background

mitigate this new user problem to a certain degree. (Koren, Bell, and Volinsky,
2009)

2.1.5 Evaluation Methods

A simple online user study can help make the decision as to what algorithm
works best, but is highly subjective by its very nature. The easy variant of
simply having users choose the best algorithm and then rank them by their
number of votes should therefore be put aside and replaced with a more detailed
measurement allowing the improvement of the system in a more selective way.
Gunawardana and Shani (2015) elaborates on a total of 13 desired properties
of recommender systems and their evaluation methods for selecting a certain
algorithm, which are summarized in the following subsections.

2.1.5.1 Prediction Accuracy

Accuracy is one of the most widely used properties because of the assumption
that a user would want the system to be as accurate as possible in its predictions.
Tests can easily be done offline since the accuracy is mostly independent of the
user interface. Several measurements can be made depending on the prediction
task, which can be the prediction of ratings (the rating a user would give
an item), usage (whether the user would use an item or not), or ranking (an
ordered list of items the user would might like).

2.1.5.2 Coverage

Coverage deals with the long-tail of an item set, specifically the recommendation
of the majority of items that have only a few ratings each, as opposed to the
head or the few items with a large amount of ratings. Item coverage is usually
measured by the proportion of items a recommender system can recommend
while user coverage can also be measured analogously.

14

2 Background

2.1.5.3 Confidence

Trust in its own recommendation or prediction is known as a recommenders’
confidence. It is usually measured through the probability of a predicted value
being true and can be done with offline experiments by repeatedly testing the
outcome of a prediction while hiding a few of the user’s other ratings each
time.

2.1.5.4 Trust

As opposed to confidence, trust refers to the user’s trust in the system and can
be measured in online experiments by asking the users for their opinion on the
recommendation quality. A recommender system may recommend items the
user already liked, which does not provide any direct value for the user, but
may raise his trust in recommendations of previously unknown items.

2.1.5.5 Novelty

Recommending unknown items to the user is measured by novelty and can
be done in either an online user study or an offline experiment. In offline
experiments, a number of user ratings past a certain time will be hidden and
the system will be rewarded for recommending a hidden item. Additionally,
a few items before that point in time can also be hidden. If the system then
recommends one of those hidden items, it will be punished. Another way of
measuring a system’s novelty can be accomplished by rewarding the system for
accurately recommending unpopular items. It is always important to consider
the system’s accuracy though, because recommending an irrelevant item is
worthless even if it is new to the user.

2.1.5.6 Serendipity

Serendipity is a measure of how surprising a recommendation is to the user
and should always be balanced with accuracy. In other words, serendipity
is the number of relevant item features that are new to the user and thus

15

2 Background

not obvious. Again, this property can be evaluated in a user study or in an
offline experiment by measuring the distance of a successful recommendation to
already rated items in a collaborative filtering approach, or to the user profile
in a content-based approach.

2.1.5.7 Diversity

Diversity is yet another property that has a trade-off with accuracy and
is measured by the distance between items in a list of recommendations.
The system is rewarded for recommending diverse items and punished if it
recommends items that are too similar to one another. The point of this is to
provide the user with as many diverse items as possible so that many of the
user’s interests can be satisfied.

2.1.5.8 Utility

The utility for a user or the system can be measured in many ways. For example,
the utility function could be optimized in terms of revenue for the system’s
company. Another possibility, in terms of utility for a user, would be to consider
a recommendation of a 5-star movie to be better than the recommendation of
a 4-star movie. Evaluation is simply done by measuring the utility in an offline
experiment or in an online user study. In the example of improving revenue,
the online study could compare the change in revenue for different users and
algorithms. In the example of optimizing user utilities, the online study might
become more difficult as users usually have a hard time assigning utilities to
outcomes.

2.1.5.9 Risk

Some systems imposing certain risks, such as a stock recommendation system,
might need a separate measurement for that. Usually this is done by also
considering the variance of the utility, which can be multiplied with either a
positive or negative factor, depending on whether the system should reward
higher risk or lower risk.

16

2 Background

2.1.5.10 Robustness

Robustness is about the recommendation stability in the presence of fake
information, which attempts to change others’ recommendations, and can be
measured by the amount of information required in order to actually change
the recommendation.

2.1.5.11 Privacy

It is import for most users that their expressed preferences remain private.
While privacy may come at the expense of recommendation accuracy, it is
usually bad if the system reveals the private information of even a single user.
Evaluation can be of a theoretical nature, as in considering all cases under
which private information may be disclosed, or practical, as in counting the
users of certain algorithms with leaked private information.

2.1.5.12 Adaptivity

Adaptivity refers to the change of interest in certain items in general or for
certain users and the algorithms capability of adapting to the new situation in
a timely manner. Once again, adaptivity comes at the expense of accuracy. In
a way, this stays in contrast to the robustness of a system as new items can
only be recommended with a certain amount of new information. The change
for a specific user instead can be evaluated by measuring the distance between
a list of recommendations before and after adding new information.

2.1.5.13 Scalability

Since data used in recommender systems usually grows over time, scalability is
an import point to consider and is usually measured by monitoring the speed
and resource consumption of the system after changing the volume of the data.
Again, this measurement comes at the cost of accuracy. Other measurements
could be the throughput (the number of recommendations a system can do per
second) or the latency (the time required for making a recommendation).

17

2 Background

2.2 Recommender System Libraries

This section contains an overview of a few selected recommender system
libraries, which attempt to support researchers in finding answers to their
questions. They do so by providing a framework that includes a range of
implemented recommendation algorithms and also allows for the easy addition
of new ones. Moreover, they may provide means for their evaluation and
ultimately comparison with already existing algorithms. Because open-source
software provides several advantages, such as the low cost and the opportunity
to personally examine provided code for correctness etc., the focus of this
section lies solely on such libraries. Table 2.2 lists these libraries together with
some basic information and the recommendation approaches supported by the
inclusion of at least one algorithm in that specific category. Although there are
many other more or less interesting frameworks, most of them are either not
being actively developed anymore, focus on one specific aspect of recommender
systems, are not available via an open-source license, or simply lack proper
documentation.

Name MyMediaLite PREA LensKit Mahout
License GPL 3 FreeBSD LGPL 2.1 Apache 2.0
Last update 2015-12-31 2014-06-05 2015-11-10 2016-06-13
Programming language C# Java Java Java
Recommendation Approaches
Baselines 4 4 4 -
Content-based 4 - - -
Collaborative filtering 4 4 4 4

Demographic 4 - - -
Knowledge-based - - - -
Community-based 4 - - -
Hybrid 4 - - -

Table 2.2: Overview of various recommender system libraries and offered recommendation
approaches.

2.2.1 MyMediaLite

MyMediaLite is an open source library of recommender system algorithms
developed by Gantner, Rendle, Freudenthaler, et al. (2011) at the University of

18

2 Background

Hildesheim. Its target audience include both researchers in the area, as well as
business users searching for an existing framework to use or build upon. This
is also reflected by the website’s list of users, which includes a large number
of universities and also a few commercial users such as the BBC1. (Gantner,
Rendle, Drumond, et al., 2015) The site also offers an introduction, a few
examples and a quite thorough API documentation. Since the library is written
in C#, and due to the free .NET implementation Mono, it runs on many major
platforms such as Windows, OS X and Linux. Additionally, it can be called
from other programming languages like Python or Ruby via the .NET specific
implementations IronPython and IronRuby respectively.

The library does offer a very broad range of supported recommender approaches.
These include several baseline algorithms, such as those described by the Netflix
Grand Prize winners, which take biases for users, items, time and frequencies
into account. (Koren, 2009; Koren, 2010) Collaborative filtering techniques
make up the major part of the framework by offering the usage of either explicit
feedback (for example star ratings on a scale of 1 to 5) in case of rating prediction,
or positive-only implicit feedback (for instance purchase actions) in case of
item prediction. Among the collaborative filtering methods are simple slope
one predictors as outlined by Lemire and Maclachlan (2005), various k-nearest
neighbor models including Amazon’s by Linden, B. Smith, and York (2003),
an algorithm involving simultaneous clustering of users and items as proposed
by George and Merugu (2005) and more sophisticated latent factor models.
The latter include the Probabilistic Matrix Factorization (PMF) algorithm by
Salakhutdinov and Mnih (2007) and a log-linear model for dyadic prediction
using latent features as described by Menon and Elkan (2010), which can both
be parallelized based on the idea of Gemulla et al. (2011) and updated online
as depicted by Rendle and Schmidt-Thieme (2008). Further algorithms are
comprised of a matrix factorization technique using factor-wise learning by Bell,
Koren, and Volinsky (2007) and the SVD++ algorithm introduced by Koren
(2008). Since some algorithms can also take item or user attributes into account,
content-based filtering as well as demographic methods are also supported. With
gSVD++, there is also a hybrid recommender approach integrated, which is
based on the SVD++ algorithm and adds metadata awareness to it. (Manzato,
2013) Last but not least, the framework also offers a community-based model

1http://www.bbc.co.uk/rd/projects/sibyl-recommender-system

19

2 Background

(arguably also a hybrid model) that adds trust propagation to existing matrix
factorization techniques. (Jamali and Ester, 2010)

2.2.2 PREA

Another open source library for recommender system algorithms is PREA,
which is short for Personalized Recommendation Algorithm Toolkit. It was
developed by J. Lee, Sun, and Lebanon (2012b) at the Georgia Institute of
Technology and attempts to provide an easy mechanic for comparing various
algorithms, thus it is geared more toward researchers. The website offers a
comprehensive overview of the implemented features, a tutorial on all the
major functions, a documentation embedded into the website as well as an API
documentation made with Javadoc. (J. Lee, Sun, and Lebanon, 2014) Since
the framework was written in Java, cross-platform usability is also provided.

The authors have implemented several baseline algorithms, memory-based
collaborative filtering techniques and a large number of latent semantic models
using matrix factorization. Among the collaborative filtering algorithms is a
user-based one as described by Adomavicius and Tuzhilin (2005) and Su and
Khoshgoftaar (2009) as well as an item-based one as proposed by Sarwar et al.
(2001). Also, a few implemented extensions dealing with default voting and
inverse user frequency as expressed by (Breese, Heckerman, and Kadie, 1998)
can be found. The implemented Slope One algorithm illustrated by Lemire and
Maclachlan (2005) concludes the available collaborative filtering methods.

According to a study conducted by the framework’s authors, matrix factorization
techniques provide the highest accuracy among those offered. (J. Lee, Sun,
and Lebanon, 2012a) This is clearly reflected by the large amount of variants
they offer with the PREA toolkit, namely regularized SVD by Paterek (2007),
Non-negative Matrix Factorization (NMF) by D. D. Lee and Seung (2000),
Probabilistic Matrix Factorization (PMF) by Salakhutdinov and Mnih (2007),
Bayesian Probabilistic Matrix Factorization (BPMF) by Salakhutdinov and
Mnih (2008) and Non-linear Probabilistic Matrix Factorization (NLPMF) by
Lawrence and Urtasun (2009). Furthermore, the authors provide their rather
recent Local Low-Rank Matrix Approximation (LLORMA) methods as outlined
by J. Lee, Kim, et al. (2013) and J. Lee, S. Bengio, et al. (2014) in addition to
other state-of-the art algorithms, which are Fast Nonlinear Principal Component

20

2 Background

Analysis (NPCA) by Yu et al. (2009) and a rank-based recommender by Sun,
Lebanon, and Kidwell (2011).

2.2.3 LensKit

LensKit was developed by M. D. Ekstrand, Ludwig, et al. (2011) for the purpose
of preventing researchers from wasting time on reimplementing well-known
algorithms. The idea is that researchers can easily compare their own algorithms
against carefully implemented versions of the prior state-of-the-art algorithms.
According to the authors, the framework’s design was driven by three goals,
namely modularity, clarity, and efficiency. Since it is implemented in Java, it
runs on a Java Virtual Machine (JVM), and in succession is also accessible
from other languages like Python and Ruby via their respective Java specific
implementations Jython and JRuby. The website covers all the basics that are
to be expected, such as a documentation of the framework, the implemented
algorithms and evaluation methods, as well as a comprehensive list of published
research that has used the software in all kinds of forms. (M. Ekstrand et al.,
2016)

In addition to the obligatory baseline algorithms, the framework offers highly-
customizable and performant implementations of the original automatic user-
user collaborative filtering algorithm as expressed by Resnick, Iacovou, et al.
(1994), an item-item version of collaborative filtering as described in Sarwar
et al. (2001) and Deshpande and Karypis (2004), and an SVD-like matrix
factorization collaborative filtering algorithm using gradient descent as proposed
by the Netflix prize winner in Funk (2006). More recently, the Slope One
algorithm was implemented as suggested by Lemire and Maclachlan (2005).
For the future, the authors originally planned to implement content-based and
hybrid algorithms, which unfortunately are not available as of today. Still, the
framework is being actively developed and existing algorithms are constantly
improved.

21

2 Background

2.2.4 Mahout

Apache Mahout is a scalable and robust machine learning library that includes
some recommendation algorithms. It is maintained by The Apache Software
Foundation (2016) and seems to be targeted towards a more practically orien-
tated audience. The unique part of this framework is that some of the algorithms
support Apache Hadoop, specifically its MapReduce programming model, and
the more recent Apache Spark for distributed computing. Although the official
website feels a little unorganized, as does the documentation, the authors offer
a list of related books, articles, tutorials, coursework, talks and many other
background materials.

As for the available algorithms, the framework’s recommender part consists
solely of collaborative filtering algorithms. These include user-based and item-
based neighborhood models as well as a few matrix factorization algorithms.
The latter include models using Alternating Least Squares (ALS) with either
explicit or implicit data as described by Hu, Koren, and Volinsky (2008) and
Zhou et al. (2008), a simplified version of the SVD++ algorithm as proposed by
Koren (2008) and a parallel Stochastic Gradient Descent (SGD) implementation,
which can be traced back to Recht et al. (2011).

2.3 Recommendation Algorithms

This section covers a selected range of recommendation algorithms implemented
by the MyMediaLite framework. All the algorithms are trained using the given
(user, item, rating) triples, enabling them to predict a previously unknown
rating for a specific item and user. Some of the algorithms also take additional
input, which will be mentioned separately. The purpose of this section is to
give the reader of this thesis an understanding of how the algorithms work in
general, how the training and prediction is done, and what hyperparameters
are subject to a tuning process.

22

2 Background

2.3.1 Baselines

2.3.1.1 Random

The Random predictor simply uses a random value between the boundaries of
the rating scale for prediction. It does not have a separate training process or
hyperparameters to be tuned.

2.3.1.2 GlobalAverage

The GlobalAverage predictor calculates the average of all ratings in the given
dataset and uniformly uses this global average for prediction. The training
process consists solely of the averaging of the ratings and does not require
hyperparameters to be tuned.

2.3.1.3 UserAverage

Prediction in the UserAverage baseline works by calculating the average of
ratings on a user basis, which also makes up the training process together
with calculating the global average of all ratings, which is used as a fallback
mechanism for new users. Again, no hyperparameters are involved in this
predictor.

2.3.1.4 ItemAverage

Similar to the UserAverage predictor, the ItemAverage calculates the average
of ratings on an item basis, while the rest works completely analogously.

2.3.1.5 UserItemBaseline

It is quite frequent that certain users tend to give generally higher or lower
ratings than others and the same also applies to the ratings of certain items.
An improvement on the GlobalAverage predictor can therefore be made by
incorporating said biases into the prediction of a rating. The implementation of

23

2 Background

this predictor is based on the baseline estimate described by Koren (2010) with
a few differences, where one is the support of several iterations of alternating
optimization instead of just one. The system tries to solve the following least
squares problem:

min
b∗

∑
(u,i)∈K

(rui − µ− bu − bi)2 + λu‖bu‖2 + λi‖bi‖2 (2.2)

where rui is user u’s rating for item i, K the set of (u, i) pairs for which rui is
known, µ the global average, bu the user bias, bi the item bias, and λu and λi
the regularization constants to combat overfitting by shrinking the estimates
towards the baseline default.

During the training phase, in order to solve the least squares problem, the
biases are alternately calculated by applying the Alternating Least Squares
(ALS) method as follows:

bu =

∑
i:(u,i)∈K(rui − µ− bi)
λi + |{i | (u, i) ∈ K}| , bi =

∑
u:(u,i)∈K(rui − µ− bu)
λu + |{u | (u, i) ∈ K}| (2.3)

Prediction of a rating r̂ui for user u and item i is then done by simply adding
the biases to the global average as follows:

r̂ui = µ+ bu + bi (2.4)

Hyperparameters to optimize for this algorithm include the regularization
constants λu and λi, as well as the number of iterations for the ALS method.

2.3.2 Content-Based

2.3.2.1 ItemAttributeKNN

The ItemAttributeKNN represents a content-based recommendation algorithm
as it uses binary item attributes as the basis. Its implementation is based on

24

2 Background

the neighborhood model depicted by Koren (2010). Due to the underlying
UserItemBaseline algorithm, it again includes an iterative process of alternating
optimization. Koren (2010) states that this algorithm became very popular
due to its intuitiveness and the relatively simple implementation. Further,
predictions can easily be reasoned to the user and new ratings are taken into
account as soon as the user enters them.

During the training phase, the underlying baseline algorithm is trained as
explained in Section 2.3.1.5. Afterwards, similarities between all item pairs are
calculated using the binary item attributes as input. Several similarity measures
are available for selection including the Jaccard index, the cosine similarity and
conditional probabilities.

In the event of a new user or item, the algorithm falls back to the UserItemBase-
line algorithm. Otherwise, prediction is done by first selecting k neighboring
items that have the highest positive correlation. For each found item, the
correlations are then multiplied by the difference of the user’s rating and the
baseline estimate of the UserItemBaseline algorithm, which accounts for user
and item biases as explained in Section 2.3.1.5. These weighted ratings are
then summed up and divided by the sum of the weights (the correlations) and
eventually used as prediction for the given user and item. Ratings are thereby
restricted to the boundaries of the rating scale. More formally:

r̂ui = bui +

∑
j∈Sk(i;u) sij(ruj − buj)∑

j∈Sk(i;u) sij
(2.5)

where r̂ui is the prediction for the rating of user u and item i, bui the baseline
estimate, Sk(i;u) the k items rated by u which are most similar to i, and sij
the similarity between item i and item j.

Hyperparameters for this predictor are the chosen similarity measure and the
number of neighbors k. The UserItemBaseline requires the usual optimization
as explained in Section 2.3.1.5.

25

2 Background

2.3.3 Collaborative Filtering

2.3.3.1 ItemKNN

ItemKNN is exactly the same implementation as the ItemAttributeKNN (in
fact ItemAttributeKNN is derived from ItemKNN), the only difference being
the correlation calculations and their basis, which are the ratings in this case.
Section 2.3.2.1 contains further details on the implementation.

Similarity measurements available for this predictor, such as the Pearson
correlation coefficient, are implemented using a regularization parameter for
shrinking the estimates towards the baseline defaults as follows:

sij =
nij

nij + λ
pij (2.6)

where sij is the similarity measure, nij the number of users who co-rated
items i and j, λ the regularization parameter, and pij the Pearson correlation
coefficient.

The shrinkage parameter λ would then be subject to hyperparameter op-
timization for this predictor. Also the UserItemBaseline requires the usual
optimization as explained in Section 2.3.1.5.

2.3.3.2 SlopeOne

The SlopeOne algorithm is implemented as presented in the paper of Lemire
and Maclachlan (2005) using their Weighted Slope One scheme. The authors
attempt to provide a solid algorithm for real-world situations, as it is supposed
to be easy in implementation, be updateable on-the-fly, possess an efficient
query time, provide valid ratings to users with only a few ratings, and is
accurate within reason. In order to be able to predict a rating for an item i, the
system finds users who also rated item i and accounts for average differences in
common ratings of other items.

The training phase therefore consists of the calculation of the average differences
in ratings between all item pairs and the frequencies of ratings for each pair as
follows:

26

2 Background

devi,j =
∑

u∈Si,j(U)

rui − ruj
|Si,j(U)|

(2.7)

where devi,j is the average rating deviation between item i and j, rui and ruj
the ratings of user u for item i and j respectively, and Si,j(U) the set of all
users who rated both items i and j.

For new users and items, the global average is again used as a fallback mecha-
nism. Prediction of a rating r̂ui for a user u and item i is otherwise done as
follows:

r̂ui =

∑
j∈S(u)−{i}(devi,j + ruj)|Si,j(U)|∑

j∈S(u)−{i} |Si,j(U)|
(2.8)

where S(u) is the set of all items rated by user u.

No hyperparameters are involved in this algorithm and therefore it requires no
separate optimization.

2.3.3.3 MatrixFactorization

Matrix factorization techniques generally combine good scalability, accuracy
and flexibility. The MatrixFactorization algorithm found in MyMediaLite is
based on the elucidations of Koren, Bell, and Volinsky (2009) and implements
a basic matrix factorization model including the global average as bias. In
order to learn the latent factor vectors for users and items, the system uses
Stochastic Gradient Descent (SGD) as described by the Netflix prize winner in
Funk (2006), which is supposed to provide ease of implementation and a fast
running time. Specifically, the system attempts to minimize the regularized
squared error on the set of known ratings K as follows:

min
q∗,p∗

∑
(u,i)∈K

(rui − µ− qTi pu)2 + λ(‖qi‖2 + ‖pu‖2) (2.9)

27

2 Background

where rui is user u’s rating for item i, µ the global average, qi the item factors
vector, pu the user factors vector and λ the regularization constant to avoid
overfitting.

The training phase of the algorithm therefore iteratively loops over all ratings,
attempts to predict this rating, computes the resulting error as stated in
equation 2.10 and finally adapts the parameters by a magnitude proportional
to γ in the opposite direction of the gradient as shown in equation 2.11.

eui = rui − (µ+ qTi pu) (2.10)

pu = pu + γ(euiqi − λpu), qi = qi + γ(euipu − λqi) (2.11)

To predict the rating r̂ui of user u for item i, the system again takes the global
average as a fallback for new items or users. In all other cases, it takes the
global average µ and adds the dot product of the user factors vector pu and
the item factors vector qi as stated in equation 2.12. Results will further be
restricted by the boundaries of the given rating scale.

r̂ui = µ+ qTi pu (2.12)

This method has multiple hyperparameters to be tuned: the learning rate γ an
optional decay for it, the regularization constant λ, the number of factors to
be used, and the number of iterations.

2.3.3.4 BiasedMatrixFactorization

The BiasedMatrixFactorization implementation in MyMediaLite is based on
the paper of Salakhutdinov and Mnih (2007), who demonstrate an alternative
approach to the linear factor model described in Section 2.3.3.3. Probabilistic
Matrix Factorization assumes that given the user and item features, the distri-
bution over the corresponding ratings is given by a Gaussian distribution with
the mean being the dot product between user and item feature vectors plus
some noise represented by the standard deviation σ2.

28

2 Background

P (rui|pu, qi,σ2) = N (rui|g(qTi pu),σ2) (2.13)

rui is thereby the rating for user u and item i, pu the user factors vector, qi
the item factors vector, and N (x|µ,σ2) the probability density function with
mean µ and variance σ2. Further, since the Gaussian model can predict ratings
outside of the allowed range, the dot product of the user and item factors vector
are passed through the logistic function g(x) = 1

1+e−x in order to keep them in
the interval [0, 1]. This of course requires the input ratings to be mapped to
the interval [0, 1] as well.

In addition, the user and item feature vectors for N users and M items are
initialized with zero-mean Gaussian priors:

P (p|σ2
p) =

N∏
u=1
N (pu|0,σ2I), P (q|σ2

q) =
M∏
i=1
N (qi|0,σ2I) (2.14)

While Salakhutdinov and Mnih (2007) do not include any biases within their
model, Gantner, Rendle, Freudenthaler, et al. (2011) add again a global, user
and item bias to it. Maximizing the posterior probability estimation is then
equivalent to minimizing the following on the set of known ratings K:

min
q∗,p∗,b∗

1
2

∑
(u,i)∈K

(
rui − g(µ+ bu + bi + qTi pu)

)2

+
λu
2

(N∑
u=1
‖pu‖2 + ‖bu‖2

)
+
λi
2

(M∑
i=1
‖qi‖2 + ‖bi‖2

) (2.15)

where µ is the global average, bu the user bias, bi the item bias, and λu and λi
the regularization constants.

Again, as in the MatrixFactorization algorithm described in Section 2.3.3.3,
learning is done using Stochastic Gradient Descent while iterating over all
observed ratings. Error calculation is done as follows:

eui = rui − g(µ+ bu + bi + qTi pu) (2.16)

29

2 Background

Adjustment of the latent factors is given by Equation 2.18, while bias adjustment
is given by Equation 2.17. Bias adjustment has an additional learning rate γb,
which is bound to the overall learning rate γ, and an additional regularization
constant λb, which is bound to the user and item biases λi and λu.

bu = bu + γbγ
(
euig

′(µbu + bi + qTi pu)− λbλubu
)

,

bi = bi + γbγ
(
euig

′(µbu + bi + qTi pu)− λbλibi
) (2.17)

pu = pu + γ
(
euig

′(µbu + bi + qTi pu)qi − λupu
)

,

qi = qi + γ
(
euig

′(µbu + bi + qTi pu)pu − λiqi
) (2.18)

where g′(x) is the derivative of the logistic function g′(x) = ex

(1+ex)2 .

Prediction of a rating ˆrui for user u and item i is finally done as follows:

r̂ui = g(µ+ bu + bi + qTi pu) (2.19)

The BiasedMatrixFactorization requires several hyperparameters to be tuned:
the regularization terms λb, λu and λi, the learning rates γb, γ and an optional
decay, the number of factors, and the number of iterations. Optimization of the
learning rate decay is no longer important, due to the SGD implementation in
this algorithm also supporting the bold driver algorithm, which automatically
adjusts the learning rate.

2.3.3.5 SVDPlusPlus

SVDPlusPlus is implemented as proposed in the paper of Koren (2008). It
is based on the MatrixFactorization algorithm described in Section 2.3.3.3
and integrates the users’ implicit preferences for items into the system, which
improves accuracy especially for those users who have not provided much

30

2 Background

explicit feedback. The implicit feedback is thereby modeled as a separate latent
factors vector yj for each item j. Optimization is carried out using SGD and
solving the following least squares problem for all known ratings in the set
K:

min
q∗,p∗,y∗,b∗

∑
(u,i)∈K

rui − µ− bu − bi − qTi (pu + |N(u)|−
1
2

∑
j∈N(u)

yj

)2

+ λ
(
λbb

2
u + λbb

2
i + ‖qi‖2 + ‖pu‖2 +

∑
j∈N(u)

‖yj‖2
) (2.20)

where rui is the rating of user u for item i, µ the global average, bu the user
bias, bi the item bias, qi the item factors vector, pu the user factors vector, and
yj the implicit feedback factors vector. The difference to MatrixFactorization
is made up by the combination of the user factors vector and the implicit point
of view as expressed by the term

(
pu + |N(u)|− 1

2
∑
j∈N(u) yj

)
. N(u) thereby

contains all items for which user u provided an implicit preference.

During training, SGD is applied by iterating over all known ratings in K,
calculating the error given by Equation 2.21 and adjusting the biases as well as
the factors by a magnitude proportional to γ in the opposite direction of the
gradient as shown in Equation 2.22 and Equation 2.23 respectively. Further,
overfitting is battled by the regularization constant λ, which is applied to
each optimization target. For the adjustment of the biases, Gantner, Rendle,
Freudenthaler, et al. (2011) again add a separate learning rate γb, bound to
the overall learning rate, and regularization constant λb, bound to the overall
regularization constant.

eui = rui − µ+ bu + bi + qTi

(
pu + |N(u)|−

1
2

∑
j∈N(u)

yj

)
(2.21)

bu = bu + γbγ
(
eui − λbλbu

)
, bi = bi + γbγ

(
eui − λbλbi

)
(2.22)

31

2 Background

pu = pu + γ

euiqi − λpu
,

qi = qi + γ

eui(pu + |N(u)|−
1
2

∑
j∈N(u)

yj

)
− λqi

,

yj = yj + γ

eui|N(u)|−
1
2 qi − λyj

(2.23)

Once training is done, the recommender can predict a rating r̂ui for user u and
item i as follows:

r̂ui = µ+ bu + bi + qTi

(
pu + |N(u)|−

1
2

∑
j∈N(u)

yj

)
(2.24)

Hyperparameters to be adjusted are comprised of the regularization constants
λ and λb, the learning rates γ, γb as well as an optional decay, the number of
factors, and finally the number of learning iterations.

2.3.4 Hybrid

2.3.4.1 GSVDPlusPlus

The GSVDPlusPlus algorithm is implemented as described by Manzato (2013).
It is based on the SVD++ algorithm and incorporates item attributes such as
genres, which the paper’s authors denote as the set G(i), thus providing the
name gSVD++. For this set of item attributes, a metadata factors vector xg is
introduced, which contains the factors for possible item descriptions. The rest
of the algorithm works completely analogously using again SGD to solve the
following least squares problem:

32

2 Background

min
q∗,p∗,x∗,y∗,b∗

∑
(u,i)∈K

rui − µ− bu − bi
−
(
qi + |G(i)|−α

∑
g∈G(i)

xg

)T(
pu + |N(u)|−

1
2

∑
j∈N(u)

yj

)2

+ λ
(
λbb

2
u + λbb

2
i + ‖qi‖2 + ‖pu‖2 +

∑
g∈G(i)

‖xg‖2 +
∑

j∈N(u)

‖yj‖2
)

(2.25)

where rui is the rating of user u for item i, K the set of (u, i) pairs for which
rui is known, µ the global average, bu the user bias, bi the item bias, qi the item
factors vector, pu the user factors vector, xg the metadata factors vector, and
yj the implicit feedback factors vector. G(i) is further the set of descriptions
for item i, which is taken into account only if metadata is available. This is
done by setting the parameter α to 1 or 0, depending on the availability of
metadata, thus making the algorithm identical to SVD++ if set to 0.

During the training phase, SGD is applied by iterating over all ratings in K and
calculating the error given by Equation 2.26. Using this calculated error, the
biases and latent factors are adjusted by moving them in the opposite direction
of the gradient as depicted in Equation 2.27 and Equation 2.28 respectively.
Factors for metadata are further updated for all g ∈ G(i), and for implicit
feedback for all j ∈ N(u). Overfitting is also again battled by the regularization
constant λ, which is applied to each optimization target.

eui = rui −

µ+ bu + bi

+
(
qi + |G(i)|−α

∑
g∈G(i)

xg

)T(
pu + |N(u)|−

1
2

∑
j∈N(u)

yj

) (2.26)

bu = bu + γbγ
(
eui − λbλbu

)
, bi = bi + γbγ

(
eui − λbλbi

)
(2.27)

33

2 Background

pu = pu + γ

eui(qi + |G(i)|−α ∑
g∈G(i)

xg

)
− λpu

,

qi = qi + γ

eui(pu + |N(u)|−
1
2

∑
j∈N(u)

yj

)
− λqi

,

xg = xg + γ

eui|G(i)|−α(pu + |N(u)|−
1
2

∑
j∈N(u)

yj

)
− |G(g)|−1xg

,

yj = yj + γ

eui|N(u)|−
1
2

(
qi + |G(i)|−α

∑
g∈G(i)

xg

)
− |N(j)|−

1
2yj

(2.28)

Prediction of a rating r̂ui for user u and item i is then carried out as follows:

r̂ui = µ+ bu + bi

+
(
qi + |G(i)|−α

∑
g∈G(i)

xg

)T(
pu + |N(u)|−

1
2

∑
j∈N(u)

yj

) (2.29)

Hyperparameters to be adjusted are identical to the SVDPlusPlus algorithm
and are thus comprised of the regularization constants λ and λb, the learning
rates γ, γb as well as an optional decay, the number of factors, and the number
of learning iterations.

2.4 Knowledge Discovery Process

Finding useful information or knowledge in the ever-growing amount of available
data in various research areas calls for a unified process: the Knowledge Discovery
in Databases Process or simply Knowledge Discovery Process (KDP). Fayyad,
Piatetsky-Shapiro, and Smyth, 1996b define this process as

“the non-trivial process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data”

34

2 Background

or more detailed as

“the process of using the database along with any required selection,
preprocessing, subsampling, and transformations of it; to apply data
mining methods (algorithms) to enumerate patterns from it; and to
evaluate the products of data mnining to identify the subset of the
enumerated patterns deemed ‘knowledge’.”

ly understandable patterns in data (Fayyad,
Piatetsky-Shapiro, and Smyth 1996).

Here, data are a set of facts (for example,
cases in a database), and pattern is an expres-
sion in some language describing a subset of
the data or a model applicable to the subset.
Hence, in our usage here, extracting a pattern
also designates fitting a model to data; find-
ing structure from data; or, in general, mak-
ing any high-level description of a set of data.
The term process implies that KDD comprises
many steps, which involve data preparation,
search for patterns, knowledge evaluation,
and refinement, all repeated in multiple itera-
tions. By nontrivial, we mean that some
search or inference is involved; that is, it is
not a straightforward computation of
predefined quantities like computing the av-
erage value of a set of numbers.

The discovered patterns should be valid on
new data with some degree of certainty. We
also want patterns to be novel (at least to the
system and preferably to the user) and poten-
tially useful, that is, lead to some benefit to
the user or task. Finally, the patterns should
be understandable, if not immediately then
after some postprocessing.

The previous discussion implies that we can
define quantitative measures for evaluating
extracted patterns. In many cases, it is possi-
ble to define measures of certainty (for exam-
ple, estimated prediction accuracy on new

data) or utility (for example, gain, perhaps in
dollars saved because of better predictions or
speedup in response time of a system). No-
tions such as novelty and understandability
are much more subjective. In certain contexts,
understandability can be estimated by sim-
plicity (for example, the number of bits to de-
scribe a pattern). An important notion, called
interestingness (for example, see Silberschatz
and Tuzhilin [1995] and Piatetsky-Shapiro and
Matheus [1994]), is usually taken as an overall
measure of pattern value, combining validity,
novelty, usefulness, and simplicity. Interest-
ingness functions can be defined explicitly or
can be manifested implicitly through an or-
dering placed by the KDD system on the dis-
covered patterns or models.

Given these notions, we can consider a
pattern to be knowledge if it exceeds some in-
terestingness threshold, which is by no
means an attempt to define knowledge in the
philosophical or even the popular view. As a
matter of fact, knowledge in this definition is
purely user oriented and domain specific and
is determined by whatever functions and
thresholds the user chooses.

Data mining is a step in the KDD process
that consists of applying data analysis and
discovery algorithms that, under acceptable
computational efficiency limitations, pro-
duce a particular enumeration of patterns (or
models) over the data. Note that the space of

Articles

FALL 1996 41

Data

Transformed
Data

Patterns

Preprocessing

Data Mining

Interpretation /
Evaluation

Transformation

Selection

--- --- ---
--- --- ---
--- --- ---

Knowledge

Preprocessed Data

Target Date

Figure 1. An Overview of the Steps That Compose the KDD Process.Figure 2.1: The Knowledge Discovery Process (KDP) and its five major steps: selection,
preprocessing, transformation, data mining and interpretation/evaluation. The
process is iterative and may contain loops as depicted by the dashed arrows.
Depiction taken from Fayyad, Piatetsky-Shapiro, and Smyth (1996a).

Figure 2.1 is a graphical illustration of said process and its five major steps: selec-
tion, preprocessing, transformation, data mining and interpretation/evaluation.
These steps are to be understood iteratively and may thus contain loops between
any of the steps. It is further noteworthy that, according to Cios et al. (2007),
there are several other models that will not be considered further here. Instead,
the focus lies on the model of Fayyad, Piatetsky-Shapiro, and Smyth (1996b)
and Fayyad, Piatetsky-Shapiro, and Smyth (1996c), which will be discussed
and applied to the field of recommender systems using additional information
from Geyer-Schulz and Hahsler (2002).

35

2 Background

2.4.1 Selection

After having a clear understanding of the application domain and with a goal in
mind, the first major step in the KDP is the selection of a target data set. Data
can come from many sources and also be retrieved in many ways, for example
by crawling a website. In the case of recommender systems, the purpose of the
selection process is clearly to have enough usable information as input for the
system.

2.4.2 Preprocessing

Second comes the data cleaning and preprocessing step, which includes removing
unnecessary data, dealing with missing values, and handling of outliers. For
recommender systems, this could include the removal of anything but the (user,
item, rating) triples, outlier detection within the ratings, removal of duplicate
ratings and the like.

2.4.3 Transformation

Next, the preprocessed data is transformed into a format useful for the following
data mining step. It also includes the extraction of relevant features to represent
the data and a possible application of dimensionality reduction. In the case
of recommender systems, this may include finding valuable implicit data and
transforming it into a proper format.

2.4.4 Data Mining

At the heart of the knowledge discovery process lies the data mining step. With
the process goal in mind and having found algorithms that properly match
these goals, a number of algorithms are chosen in order to search for patterns
within the data. These patterns could be classification rules, decision trees,
regression models, trends, clustering, and others. In a recommender system,
the data mining part could be described as learning the parameters of the
underlying model using the given dataset.

36

2 Background

2.4.5 Interpretation/Evaluation

Finally, the patterns found have to be made understandable for humans and
be integrated into the productive system or simply documented and reported.
It is possible that the retrieved knowledge conflicts with previously believed
knowledge, which has to be resolved in this step. A recommender system
inherently interprets the patterns for the user by showing him the results as
ratings or recommendations. Eventually, the system’s developer should also
evaluate the system using any of the properties explained in Section 2.1.5.

2.5 The Steam Platform

Steam is the social entertainment platform of Valve Corporation, which was
founded in 1996 by Gabe Newell. Starting with the award winning video games
Half-Life and Counter-Strike, a former modification for it, the company felt
the necessity for an easier update mechanism for the Counter-Strike client,
which was previously distributed via FTP. The solution, Steam, has since
become the world’s largest online gaming platform with over 4500 pieces of
content, namely games from Valve and third-party companies as well as non-
gaming applications. More recently, Valve released live broadcasting, music,
movies, their own operating system SteamOS and various hardware. Valve
further claims to have about 125 million active users with more than 9.5 million
concurrent players at peaks, making up 2 billion minutes of playtime per day.
Although no exact numbers are known, the company is valued between 2 and 4
billion dollars. (Chiang, 2011; Dunkle, 2015; Valve Corporation, 2016b)

The Steam store is available via the web2, but most of Steam’s features are
bound to the client depicted in Figure 2.2. Next to the store itself, the client
provides access to the users application library and the community where
users can socially interact with each other, become friends and of course play
games together. This social network can be especially interesting for various
recommender algorithms. As for the applications, Steam does not only track
which game is owned by what users, but also the time users are spending on them,
which is yet another appealing feature of the platform as it provides domain

2http://store.steampowered.com/

37

http://store.steampowered.com/

2 Background

Figure 2.2: The store view of the Steam client with obfuscated personal information. Screen-
shot taken by the author.

38

2 Background

specific implicit information of the users preferences. Further, applications can
be reviewed by the users and rated within a binary scale, specifically a thumbs-
up or thumbs-down, thus providing explicit feedback that can be utilized as
the basis for the majority of recommendation algorithms.

The client, more precisely the store, also offers recommendations in various
ways. Besides the obligatory advertisement for top sellers and new releases
on top of the store page, individual recommendations are made through one
of three distinct features: the Discovery Queue, Steam Curators, and the
Recommendation Feed. To the best of the author’s knowledge, the details
on the technologies behind these components are unavailable to the public.
Nevertheless, the following list describes each of the features as accurately as
possible in accordance with Valve Corporation (2016a).

• The Discovery Queue is a queue of 12 titles personalized for each user and
a mixture of recommended titles, new titles, and popular releases. After
browsing through the queue, users can start a new queue made up of
12 entirely new titles again. According to Schreier (2014), the Discovery
Queue prioritizes popular titles, previously unseen by the user.

• Steam Curators are individuals, organizations, and groups that manually
recommend content to the users, who can follow selected curators in order
to see their recommendations.

• The Recommendation Feed, last but not least, is a nearly endless list
of recommendations based on the titles a user and his or her friends
have been playing. Yet again, the list also contains titles that are simply
well-reviewed. Schreier (2014) also mentions that these recommendations
are mainly based on user-applied tags and accordingly games with similar
tags.

39

3 Related Work

As of today, the domain of video games in recommendation systems is relatively
unexplored. Yet, video games are played by millions of people worldwide, its
industry is worth billions of dollars and it heavily competes with the movie
and music industries. According to Egenfeldt-Nielsen, J. H. Smith, and Tosca
(2016), the global revenues of the video game industry reached $64.9 billion
in 2014, positioning it right between the movie industry ($90 billion) and the
music industry ($20.97 billion). Additionally, while the music industry struggles
to keep its revenues at all, the annual growth rate between 2013 and 2018 of
the video game industry is expected to be 9.6%, compared to 4.5% in the movie
industry. Entertainment Software Association (ESA) (2016) further reports
that video games are frequently played by persons of all ages, both male and
female.

Sifa, Bauckhage, and Drachen (2014) claim to be the first to apply recom-
mender systems to the domain of digital games. They present two approaches
to Top-N recommendation systems, where the user is presented a list of N rec-
ommendations, namely a matrix factorization and a user-based neighborhood
model operating in reduced dimensions. Both models are based on archetypal
analysis, a method similar to cluster analysis, thus clustering the users into k
archetypes. The data used for this analysis is comprised of implicit feedback,
specifically information on game ownership and playtimes, with the ultimate
goal of recommending those games, which have the highest predicted playtime.
The authors compare their algorithms to several baselines and an item-based
neighborhood model, which they were able to beat.

Microsoft revealed in the paper by Koenigstein et al. (2012) how the recom-
mendation system in the Xbox Live Marketplace works. As input for their
algorithm, Microsoft infers like/dislike ratings based on game ownership. The
positive ratings consist of the games a user owns, whereby the user’s playtimes

40

3 Related Work

are utilized in order to remove games that were hardly ever played. Further,
they generate an equal number of negative ratings by randomly picking games
a user does not own, which is done in proportion to their popularity. Prediction
is then carried out using a probabilistic matrix factorization approach including
item biases.

Cosley et al. (2003) examine various effects of recommender system interfaces as
well as different rating scales. Although they hesitate to draw conclusions based
on the MAE results obtained from common collaborative filtering algorithms,
they found that the prediction accuracy drops in relation to a rising granularity
of the rating scale. More interestingly, rating scales with 5 or 6 stars performed
about the same, while binary and also 10-star rating scales performed worse.

The rating scale offered by a recommendation system also affects user satis-
faction according to Sparling and Sen (2011). The paper’s authors found that
a 5-star rating scale is strongly preferred over a binary rating scale and even
more preferred over a unary or 100-point scale. They also believe that their
findings apply to many different domains and further recommend designers
of recommender systems to carefully evaluate different rating scales before
deployment. Not only does the rating scale affect user satisfaction, it also
affects the way a user experiences items. For further research, the authors
suggest the topic of adaptive rating scales, which change from smaller ratings
scales for fresh users to larger scales for more experienced users. The idea is
that, as a system learns from the user, more fine-grained information would
yield better results.

While other researchers already found that user ratings are noisy, which could
limit the predictive power of a recommender system, Kluver et al. (2012) further
explored how much preference information is contained in ratings as well as
predictions within different rating scales. The authors found that there is a
“sweet spot” in rating scale granularity, which balances between input preference
information and rating noise. The results are similar to the results of Sparling
and Sen (2011), with the binary rating scale requiring remarkably more ratings
per user to deliver the same information a 5-star rating scale achieves with
fewer ratings. Once again, there is little to no reason to pick a 100-point rating
scale over a 5-star scale.

With the above research in mind, this thesis explores the domain of video games
by comparing various recommendation algorithms. An attempt at inferring

41

3 Related Work

explicit user ratings from implicit feedback is made in order to compare them
to actual explicit ratings using the selected recommendation algorithms. The
implicit feedback will further be used to compare different rating scales, specifi-
cally binary to quinary rating scales, while using the same recommendation
algorithms.

42

4 Materials and Methods

This chapter contains the materials and methods used within this thesis. First,
the development environment, programming languages, and libraries utilized
are listed in order to provide reproducibility of the results following in Chapter 5.
Second, the knowledge discovery process used for conducting the experiments in
order to answer the research questions is described. This contains the following
major steps in the process: data selection, preprocessing, transformation, mining
and evaluation as well as a thorough analysis of the dataset.

4.1 Development Environment

The following is a brief overview of the relevant hard- and software used for
performing the experiments described in Section 4.2.

• Processor
– Intel Core i5 @ 3.40 GHz

• Memory (RAM)
– 32 GB

• System type
– 64-bit Operating System, x64-based processor

• Operating System
– Windows 10 Pro

• Integrated Development Environment (IDE)
– Microsoft Visual Studio Enterprise 2015

43

4 Materials and Methods

The subsequent list contains programming languages and important libraries
used for varying purposes.

• Data selection
– Python 64-bit 2.7
– Scrapy 1.0.31

• Data preprocessing
– Python 64-bit 3.5

• Data analysis
– Python 64-bit 3.5
– Python 64-bit 2.7
– Snap.py 1.22

• Data transformation
– R 3.2.4
– Python 64-bit 3.5

• Data mining and evaluation
– C# 6.0
– .NET Framework 4.5.2
– MyMediaLite 3.113

– R 3.2.4
– scmamp 0.2.5

4.2 Knowledge Discovery Process

In this section, the major steps of the knowledge discovery process are depicted.
Since this is an iterative process that may contain loops, as stated by Fayyad,
Piatetsky-Shapiro, and Smyth (1996b), the process steps contained in the
following subsections may overlap sometimes. Furthermore, a separate data
analysis step was inserted between the data preprocessing and transformation
steps in contemplation of providing an adequate understanding of the dataset.

1http://scrapy.org/
2https://snap.stanford.edu/snappy/
3http://mymedialite.net/

44

http://scrapy.org/
https://snap.stanford.edu/snappy/
http://mymedialite.net/

4 Materials and Methods

4.2.1 Selection

In order to carry out the experiments, a comprehensive dataset in the domain
of video games is required. The Steam platform is very well suited for this
task, as it provides a large catalog of games, a massive user base and most
importantly, binary user ratings as well as playtime for the games.

The first task in the knowledge discovery process was, therefore, the data
acquisition from the Steam website. Valve offers a Web API that can be used
to retrieve data in different formats such as JSON or XML, which substantially
reduces the necessary effort. (Valve Developer Community, 2016) At the time
of writing this thesis, some of the required data, mainly the user reviews for
the games and thus also the ratings, were not accessible via the API. Most
API features also require registration and are limited in certain ways, with
the major limitation being a restriction to 100 000 calls to the API per day.
(Valve Corporation, 2010) Due to these reasons, a combination of API usage
and classical web scraping was applied. It goes without saying that the website’s
Robots Exclusion Standard (robots.txt) was respected, although it is only a
convention according to Mitchell (2015).

Furthermore, there is no way to get an accurate list of users of the Steam
platform via API or the website, especially since not all user profiles are
publicly available. The list of users was thus extracted from the results of the
ReviewCrawler described in Section 4.2.1.2. As a consequence, this method
resulted in all users within the dataset having at least one review or rating
respectively.

Eventually, four web crawlers were implemented in Python under the usage of
Scrapy, an open source framework for crawling websites. Besides the obvious
crawling of URLs and their content, Scrapy also provides the opportunity to
extract only relevant and proper information that has to be defined earlier
in order to store it in whatever format necessary. The framework was thus
utilized to combine a part of the data preprocessing with the crawling process.
Specifically, only the most important data from the HTML pages was extracted
and written to CSV files on the fly. The following sections describe each crawler
and the data retrieved during February 2016.

45

4 Materials and Methods

4.2.1.1 AppCrawler

The AppCrawler was implemented to retrieve a list of apps and their details
from the Steam store. First, the API was utilized to get a full list of applications.
This application list was then used in a second step to initialize crawling the
details for each app, again making use of the API. As a side note, these two
API methods were not listed at Valve’s developer community wiki and were
found via the forums instead. Table 4.1 lists only the most interesting attributes
retrieved via the API, although all others were kept as well.

Attribute Data type Description
type String The type of app.
name String The app’s title.
steam_appid Integer The app’s unique identifier.
about_the_game String A detailed description of the game.
developers List(String) A list of the developers.
publishers List(String) A list of the publishers.
metacritic Integer The Metascore from Metacritic

(http://www.metacritic.com/).
categories List(Integer, String) A list of integer and string pairs

containing the category ID and
its description. Categories describe
the features of an app, such
as “Single-player”, “Multi-player”,
“Steam Cloud” etc.

genres List(Integer, String) A list of integer and string pairs con-
taining the genre ID and its descrip-
tion.

recommendations Integer The total number of positive ratings
for this app.

release_date Date The release date.
is_free Boolean Whether the app is available for free.

Table 4.1: Attributes of an app, crawled using the AppCrawler.

46

http://www.metacritic.com/

4 Materials and Methods

4.2.1.2 ReviewCrawler

After crawling the app list and details, all application types but games were
removed in a preprocessing step, leaving 7580 games in the dataset. This was
mainly necessary due to this thesis focusing on recommending only video games
to the users. Among others, the removed types include unreleased apps, which
were not allowed to be rated by the users yet, Downloadable Content (DLC),
which always requires the base game and would thus only complicate the
recommendation process, and private apps, which were hidden from the Steam
store presumably due to them no longer being available for purchase. Details
are listed in Table 4.2.

Type Count Percent
Game 7580 33.09%
DLC 6421 28.03%
Private App 5430 23.71%
Movie 1765 7.71%
Demo 983 4.29%
Advertising 257 1.12%
Unreleased App 249 1.09%
Video 180 0.79%
Mod 32 0.14%
Hardware 7 0.03%
Total 22 904 100.00%

Table 4.2: Count of application types, retrieved using the AppCrawler.

The ReviewCrawler was then initialized with the previously filtered IDs of
games in order to scrape reviews of each app, the attributes of which are
depicted in Table 4.3. The reviews for each game were directly accessed through
Steam’s game specific web page, as there was no API available for this task.

4.2.1.3 FriendsCrawler

The FriendsCrawler was used to get the relationships between users. The
crawler was thereby initialized with the list of users retrieved by using the

47

4 Materials and Methods

Attribute Data type Description
app_id Integer The app’s unique identifier.
steam_id Integer The user’s unique identifier.
date_posted Date The date this review was posted.
rating Integer The rating given by the user: either

positive (2) or negative (1).
playtime_forever Integer The number of minutes the user

spent playing this game.
content String The content of the review.
helpful_ratings Integer The number of users who found this

review helpful.
total_ratings Integer The total number of users who rated

this review.
funny_ratings Integer The number of users who found this

review funny.
content_url String The URL pointing to this specific

review.

Table 4.3: Attributes of a review, crawled using the ReviewCrawler.

ReviewsCrawler. The relationships presented in Table 4.4 were then extracted
from Steam’s user specific web pages.

Attribute Data type Description
steam_id Integer The user’s unique identifier.
friend_id Integer The friend’s unique identifier.

Table 4.4: Attributes of a relationship, crawled using the FriendsCrawler.

4.2.1.4 GamesOwnedCrawler

To get the games owned by each user, the GamesOwnedCrawler was utilized.
Similar to the FriendsCrawler, this crawler was initialized with the list of users
obtained by using the ReviewCrawler. The data depicted in Table 4.5 was then
retrieved by accessing Steam’s user specific web pages.

48

4 Materials and Methods

Attribute Data type Description
app_id Integer The app’s unique identifier.
steam_id Integer The user’s unique identifier.
playtime_forever Integer The number of minutes the user

spent playing this game.
playtime_2weeks Integer The number of minutes the user

spent playing this game within the
last two weeks only.

last_played Integer The last time the user has played this
game.

Table 4.5: Attributes of the games owned by a user, crawled using the GamesOwnedCrawler.

4.2.2 Preprocessing

In the data preprocessing step, several actions were executed in order to clean
the dataset of unnecessary information. The major part was already done
during the crawling process with the help of the Scrapy framework as explained
in Section 4.2.1. This includes removing the HTML code surrounding the data
as well as extracting the relevant information and transforming it into the
desired format. For example, reviews within the Steam store are annotated with
either a thumbs-up symbol in combination with the label “Recommended”, or
a thumbs-down symbol in combination with the label “Not Recommended”,
which were transformed into 2 or 1 respectively. Further data preprocessing
done with Scrapy includes transformation of varying date representations and
numbers.

Also already mentioned in Section 4.2.1.2, all applications but games were
removed during the data selection process. Last but not least, the relationships
between users were cleaned from duplicate entries, as the relationships are
bidirectional, and entries where one entity was not present in the user list
retrieved by crawling the reviews.

49

4 Materials and Methods

4.2.3 Analysis

To get a feeling for the composition of the dataset, it was analyzed thoroughly
before proceeding with the next steps. Table 4.6 shows some basic statistics of
the Steam dataset, while Table 4.7 contains structural properties of the network
spanned by the relationships between users. It should be mentioned that the
diameter and effective diameter of this network are approximations based on
1000 random nodes using the Snap.py tool developed by Leskovec and Sosič
(2014). It is noteworthy that the potential implicit data for a recommender
algorithm, the number of games owned and hours played by a user, differs
from the explicit data, the total ratings, by two and three orders of magnitude
respectively. Also, more than 80% of the ratings given by the users are positive
which could either be due to user bias or the games being actually mostly
good.

Count
Users 2 206 672
Games 7580
Total ratings 4 976 058
Positive ratings 4 132 048
Negative ratings 844 010
Games owned 199 435 959
Hours played 3 479 153 098

Table 4.6: Basic statistics of the Steam dataset.

Table 4.8 further shows some descriptive statistics for various data within
the Steam dataset. Since the data appears to be right-skewed and heavy-
tailed, an attempt to fit power law distributions was made using the Python
implementation of Alstott, Bullmore, and Plenz (2014). The results are depicted
in Figure 4.1 and Figure 4.2 as complementary cumulative distribution functions
(CCDF) of the data and show that all of the data is indeed heavy-tailed and
that an exponentially truncated power law is a good fit for all data, except for
the hours played per user, which is best fit by a log-normal distribution. The
curves in Figure 4.1e look heavily distorted and a glance at the corresponding
entry in Table 4.8, specifically the maximum value for hours played per user,

50

4 Materials and Methods

Nodes 2 206 672
Edges 5 185 136
Zero degree nodes 612 086
Nonzero degree nodes 1 594 586
Nodes in largest connected component 1 537 021
Edges in largest connected component 5 151 791
Average clustering coefficient 0.063
Global clustering coefficient 0.0319
Number of triangles 1 033 960
Diameter 18
Effective diameter 7.6648

Table 4.7: Structural properties of the network spanned by the relationships between users
within the Steam dataset. The diameter and effective diameter are approximations
based on 1000 random nodes.

certainly raises some questions. Seen realistically, 664 968 hours or roughly 76
years spent playing, does sound impossible, especially considering the fact that
Valve did not begin tracking playtime before early 2009 according to Valve
Developer Community (2016). Clearly, this number is caused by outliers in the
playtime data, which are subject to data cleaning when using playtime data as
input for a recommender algorithm.

Min Q1 Median Q3 Max Skewness Kurtosis
Positive ratings per user 0 1.0 1.0 2.0 811 30.2415 3273.1375
Negative ratings per user 0 0.0 0.0 0.0 469 55.0328 9957.5216
Total ratings per user 1 1.0 1.0 2.0 841 29.2907 2582.7896
Games owned per user 0 16.0 50.0 109.0 7027 9.0819 164.3865
Hours played per user 0 267.0 1038.0 2259.0 664 968 31.6006 7706.0332
Friends per user 0 0.0 2.0 6.0 819 6.7118 141.862
Positive ratings per game 0 10.0 41.0 192.0 93 797 16.5713 400.1691
Negative ratings per game 0 3.0 14.0 59.0 24 570 23.0333 814.4457
Total ratings per game 0 16.0 61.0 262.0 97 876 15.5054 344.2644
Ownerships per game 0 934.0 4460.0 18 805.0 1 391 197 7.0134 75.4816
Hours played per game 0 878.0 6560.0 39 383.0 327 204 943 37.4231 1577.4309

Table 4.8: Descriptive statistics of the Steam dataset.

51

4 Materials and Methods

101 102 103

Positive ratings per user

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

p
(X
¸
x
)

Empirical data
Power law fit
Truncated power law fit
Lognormal positive fit
Stretched exponential fit
Exponential fit

(a) Positive ratings per user

100 101 102 103

Negative ratings per user

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

p
(X
¸
x
)

Empirical data
Power law fit
Truncated power law fit
Lognormal positive fit
Stretched exponential fit
Exponential fit

(b) Negative ratings per user

101 102 103

Total ratings per user

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
(X
¸
x
)

Empirical data
Power law fit
Truncated power law fit
Lognormal positive fit
Stretched exponential fit
Exponential fit

(c) Total ratings per user

102 103 104

Games owned per user

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
p
(X
¸
x
)

Empirical data
Power law fit
Truncated power law fit
Lognormal positive fit
Stretched exponential fit
Exponential fit

(d) Games owned per user

103 104 105 106

Hours played per user

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

p
(X
¸
x
)

Empirical data
Power law fit
Truncated power law fit
Lognormal positive fit
Stretched exponential fit
Exponential fit

(e) Hours played per user

101 102 103

Friends per user

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
(X
¸
x
)

Empirical data
Power law fit
Truncated power law fit
Lognormal positive fit
Stretched exponential fit
Exponential fit

(f) Friends per user

Figure 4.1: Complementary cumulative distribution functions (CCDF) of various user related
data within the Steam dataset. An exponentially truncated power law is a good fit
for the data in Figures a, b, c, d, and f, while a log-normal distribution considering
only positive random variables is the best fit for the data in Figure e.

52

4 Materials and Methods

102 103 104 105

Positive ratings per game

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
(X
¸
x
)

Empirical data
Power law fit
Truncated power law fit
Lognormal positive fit
Stretched exponential fit
Exponential fit

(a) Positive ratings per game

102 103 104 105

Negative ratings per game

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
(X
¸
x
)

Empirical data
Power law fit
Truncated power law fit
Lognormal positive fit
Stretched exponential fit
Exponential fit

(b) Negative ratings per game

103 104 105

Total ratings per game

10-5

10-4

10-3

10-2

10-1

100

p
(X
¸
x
)

Empirical data
Power law fit
Truncated power law fit
Lognormal positive fit
Stretched exponential fit
Exponential fit

(c) Total ratings per game

105 106 107

Ownerships per game

10-4

10-3

10-2

10-1

100
p
(X
¸
x
)

Empirical data
Power law fit
Truncated power law fit
Lognormal positive fit
Stretched exponential fit
Exponential fit

(d) Ownerships per game

106 107 108 109

Hours played per game

10-5

10-4

10-3

10-2

10-1

100

p
(X
¸
x
)

Empirical data
Power law fit
Truncated power law fit
Lognormal positive fit
Stretched exponential fit
Exponential fit

(e) Hours played per game

Figure 4.2: Complementary cumulative distribution functions (CCDF) of various game related
data within the Steam dataset. An exponentially truncated power law is a good
fit for the data in figures a, b, c, d, and e.

53

4 Materials and Methods

4.2.4 Transformation

The data transformation described in this section consists of sampling a subset of
the dataset retrieved earlier and generating the input files for the recommender
algorithms used in Section 4.2.5. The latter is further split into the generation
of the vital explicit and implicit rating data files and other input files that are
used for specific algorithms only.

4.2.4.1 Sampling

Due to the dataset being very large and the resource-intensive, possibly not
optimal, implementations of the algorithms to be tested, sampling is a good
strategy to circumvent these issues, while maintaining the original properties
of the dataset. (Amatriain and Pujol, 2015) In order to make all the algorithms
as comparable as possible, the network spanned by the relationships between
users within the Steam dataset was used as a starting point for the sampling
process.

Considering the fact that the Steam network has been growing over time,
having a sample that looks similar to what the network used to look like at
any given time seemed appropriate. Leskovec and Faloutsos (2006) compare
various sampling strategies for this back-in-time sampling goal and found the
Forest Fire Model to perform best. Therefore, the network was sampled using
the algorithm described in Leskovec, Kleinberg, and Faloutsos (2005) with
a forward burning probability of 20% and a sample size of 1%, resulting in
a sample consisting of 22 070 users (nodes) and 37 375 relationships (edges)
between them.

4.2.4.2 Explicit Rating Data File

An attempt at answering the first and second research questions requires a
dataset containing the explicit ratings of the users sampled in Section 4.2.4.1.
The rating data was extracted from the files retrieved by the various crawlers
described in Section 4.2.1, which was a straight forward task. Table 4.9 shows
the most important statistics of the generated file.

54

4 Materials and Methods

Users Games Ratings 1 Stars 2 Stars
22 070 4358 67 321 10 338 56 983

Table 4.9: Statistics of the explicit rating data file used as input for the recommender
algorithms.

4.2.4.3 Implicit Rating Data Files

Answering the second and third research question calls for a dataset containing
explicit ratings that are derived from implicit data, specifically the time that
users spent on playing each game. As a preprocessing step, all game times of
zero were treated as unrated and thus removed from the dataset. The remaining
game times were then binned on a logarithmic scale with the upper limit being
the 99th percentile (476 hours) of all game times for each user and game. This
upper limit dealt with the outliers described in Section 4.2.3 and further gave
quite realistic values for the boundaries of the logarithmic bins and the number
of ratings in each bin.

Moreover, to answer research question three, datasets for binary to quinary
rating scales were created by adapting the number of bins. The resulting
statistics of the generated files can be seen in Table 4.10. It can be seen that,
while using the same number of sampled users as a starting point, the amount
of ratings generated using implicit data far surpasses the explicit data while
also covering more games. Additionally, there is a substantial difference in the
ratio of 1 and 2 stars between the explicit and the implicit dataset.

Max. Rating Users Games Ratings 1 Star 2 Stars 3 Stars 4 Stars 5 Stars
2 20 570 6887 1 553 844 684 628 869 216 0 0 0
3 20 570 6887 1 553 844 224 068 969 739 360 037 0 0
4 20 570 6887 1 553 844 95 751 588 877 669 646 199 570 0
5 20 570 6887 1 553 844 36 194 335 019 643 629 404 526 134 476

Table 4.10: Statistics of the implicit rating data files used as input for the recommender
algorithms.

55

4 Materials and Methods

4.2.4.4 Additional Input Files

Several additional input files for usage within specific recommender algorithms
were created: an item attribute file, a user relation file, and an implicit data file.
The latter two were created in a straight forward manner: the user relation file
simply contains the relationships between the sampled users and the implicit
data file contains the games owned by those users.

On the other hand, the item attribute file is more complex and consists of a list
of pairs, namely an app ID and an assigned attribute ID. Attribute IDs were
thus extracted from the app details described in Table 4.1 and the following
attributes: “is_free”, publishers, genres and categories. While the “is_free”
attribute already was a binary feature, the others had to be transformed first.
This means that each publisher, genre and category was given an ID, which in
turn was assigned to the games involving them. For example the app ID 70
(Half-Life) was connected to 5 attributes, including attribute ID 2 and 10, which
map to the genre “action” and the category “Single-player” respectively.

Furthermore, while these attributes were selected manually using domain
knowledge and were deemed appropriate for the purpose of providing an initial
input for a few specific recommender algorithms, this attribute selection step
could obviously be subject to more sophisticated methods in order to remove
attributes with little information gain and add attributes with high information
gain. Further sources for good features could be the user assigned tags for each
game, and/or the application of Term Frequency-Inverse Document Frequency
(TF-IDF) on the game descriptions.

4.2.5 Data Mining

For the purpose of data mining in the recommender system, the MyMediaLite
library was chosen because the algorithms implemented cover the most diverse
recommendation approaches among the libraries discussed in Section 2.2. Fur-
ther it provides almost all the required utility, including easy input of rating
files, splitting the datasets for cross-validation, calculating evaluation metrics,
and even some form of hyperparameter optimization.

56

4 Materials and Methods

As for the recommender algorithms themselves, several diverging algorithms
were chosen. Since the Steam network provides hardly any demographic user
data, this recommendation approach was out of the question. The following
list contains the chosen algorithms and their underlying approach:

• Baselines
– Random
– GlobalAverage
– UserAverage
– ItemAverage
– UserItemBaseline

• Content-based
– ItemAttributeKNN

• Collaborative filtering
– ItemKNN
– SlopeOne
– MatrixFactorization
– BiasedMatrixFactorization
– SVDPlusPlus

• Hybrid
– GSVDPlusPlus

4.2.5.1 Approach

As Amatriain and Pujol (2015) state, the dataset should be split into three
subsets: training, validation, and test. The training dataset is thereby used for
fitting the model, the validation set for hyperparameter optimization, and the
test set for evaluating the accuracy.

First, the algorithm trains its parameters on the data of the training set, while
the data in the test set remains unseen. Then, the accuracy is measured by
predicting the ratings of the unseen test set and calculating the error to the
actual ratings. This ensures that the algorithm is evaluated on how well it
generalizes, as testing on the training set would result in biased accuracy.

57

4 Materials and Methods

Salzberg (1997) further explains that everything done to modify or train the
algorithm has to be done in advance of seeing the test set, otherwise the
results may also be biased. Therefore, hyperparameter tuning is done before
measuring the accuracy, again by testing on different unseen data, specifically
the validation set.

Since the originally huge dataset was heavily reduced in size using sampling, the
data might not be enough for getting an accurate estimate of the algorithms’
general performances. Therefore, the above procedure is extended by applying
10-fold cross-validation, where essentially the training and testing process is
repeated 10 times using different parts of the dataset each time. The following
process is based on the proposal of Salzberg (1997) with a few adaptions
and applied on each algorithm and each dataset constructed as described in
Section 4.2.4:

1. Split the dataset D into k disjoint and approximately equal sized subsets
D1, ...,Dk, where k = 10.

2. For i ∈ [1, k], do the following:
a) Create a test set Dtest

i = {Di}.
b) Create a validation set Dvalid

i = {Di−1|D−1
def
= Dk}

c) Create a training set Dtrain
i = {D−Dtest

i −Dvalid
i }

3. Optimize hyperparameters as described in Section 4.2.5.2 by applying
cross-validation, where the Dtrain

i subsets are used for training and the
Dvalid
i subsets for testing.

4. Using the best hyperparameters found in the previous step, train on each
set Dtrain

i and test on the corresponding set Dtest
i while calculating the

Root Mean Squared Error (RMSE).
5. Store the results of each fold for further evaluation as described in Sec-

tion 4.2.6.

Figure 4.3 graphically depicts the process described above. It shows that every
subset is used exactly once for validation and once for testing, while the others
are used for training.

58

4 Materials and Methods

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
1
2
3
4
5
6
7
8
9

10
 Training Validation Test

Iterations

Datasets

Figure 4.3: 10-Fold Cross-Validation with Training, Validation and Test Subsets. The dataset
is split into 10 subsets D1, ..., D10, whereby in each iteration 8 subsets are used
for training, 1 is used for validation, and 1 is used for testing. Hyperparameter
optimization is done by cross-validation with the validation sets used for testing.
Finally, using the best hyperparameters found, the model is again cross-validated
using the test sets for evaluating the RMSE. Image drawn by the author.

59

4 Materials and Methods

4.2.5.2 Hyperparameter Optimization

As already described in Section 2.3, most of the algorithms have hyperparame-
ters that need to be tuned. A hyperparameter is basically a control knob that
has to be adjusted in order for the actual learning algorithm to perform well.
Y. Bengio (2012) defines a hyper-parameter for a learning algorithm A as

“a variable to be set prior to the actual application of A to the data,
one that is not directly selected by the learning algorithm itself.”

There are many ways to optimize such hyperparameters, including wrapping
another learning algorithm around this problem and create a so-called “hyper-
learner”, which could potentially require its own hyper-parameters to be ad-
justed. If the hyper-learner has no hyper-parameters itself, it is considered to
be a “pure” learning algorithm. Since this process can take a long time, and
is not within the focus of this thesis, a simple combination of manual search
and grid search was applied. Grid search simply exhaustively tries all possible
combinations for hyper-parameters by applying cross-validation as described in
Section 4.2.5.1 in order to determine the ones that perform best. All possible
combinations thereby refers to a finite set of values specified by a human.

Therefore, in a first step, a manual search for good hyper-parameters was
applied. The found values were then extended by a range of neighboring values,
which were then passed on to grid search. Also, for most of the hyper-parameters
such as regularization constants, testing values on a log scale given by 10x,
where x ∈ [−6, 1], was deemed sufficient for the purpose of the experiments.
Though, it should be noted that there is most certainly a little more potential
contained in this hyper-parameter optimization step.

4.2.6 Interpretation/Evaluation

The approach described in Section 4.2.5.1 contains the calculation of the Root
Mean Squared Error (RMSE), which was deemed to be more appropriate than
other measures such as the Mean Absolute Error (MAE). Within a recommender
system, these measures represent the error between the predicted and the known
ratings. The MAE is a linear score and therefore weights all differences equally
in the average, while the RMSE punishes large errors more due to it being a

60

4 Materials and Methods

quadratic score. This difference was expected to be of importance, especially in
the case of various rating scales, which is why the selected learning algorithms
were optimized with respect to the RMSE. Further, in order to compare the
results of the various rating scales, these error measures need to be normalized
first. Gunawardana and Shani (2015) define these measures as depicted in
Equation 4.1 and Equation 4.2.

RMSE =

√√√√ 1
|K|

∑
(u,i)∈K

(r̂ui − rui)2 NRMSE =
RMSE

rmax − rmin
(4.1)

MAE =

√√√√ 1
|K|

∑
(u,i)∈K

|r̂ui − rui| NMAE =
MAE

rmax − rmin
(4.2)

where rui is the rating of user u for item i, K the set of (u, i) pairs for which rui
is known, and r̂ui the prediction. NRMSE and NMAE further are the normalized
variants of the measures, while rmax and rmin represent the maximum and
minimum rating within the given scale.

While some of the algorithms may obviously perform better than others, as
the error measures defined above can show, some may also perform very
similarly in terms of accuracy. Drawing reliable conclusions when comparing
these algorithms is another challenging task, which is usually done by applying
a hypothesis test such as a paired t-test. In fact, there is a lot of discussion in
the literature regarding statistical validity of hypothesis tests, also specifically
within the field of machine learning.

In order for hypothesis tests to deliver reliable results, a relevant number
of measurements is required. Salzberg (1997) warns about repeating cross-
validation on the same data set as it would not produce valid statistics due to
the trials being highly interdependent. However, Nadeau and Y. Bengio (2003)
propose a correction for the variance estimation in such a resampling scenario,
specifically multiplying σ2 with 1

n +
n2
n1
, where n1 is the fraction of data used

for training and n2 the fraction of data used for testing. Bouckaert (2003)
and Bouckaert and Frank (2004) further propose a 10 times repeated 10-fold
cross-validation approach where accuracies calculated on each of the 100 folds
are treated as separate measurements and used for estimating the mean and

61

4 Materials and Methods

variance. According to the authors, this approach has not only an appropriate
Type I error and a low Type II error, but also provides high replicability.

Another challenge arises when comparing multiple algorithms and multiple
datasets. This is due to the repetition of t-tests also raising the chance of
finding statistical significance. Therefore, these tests have to be corrected,
for example by applying the Bonferroni correction. Although Salzberg (1997)
mentions that this approach lacks the power of better tests and is overly radical,
the application of other methods such as the ANOVA test is left unexplored.
Demšar (2006) seizes this thought and analyzes several statistical tests usable
for the comparison of two or more classifiers on multiple datasets, concluding
that the Friedman test is safer to use than parametric tests such as the ANOVA
since it does not assume normal distributions or homogeneity of variance.

Hence, with Research Question 1 in mind, the Friedman test and a subsequent
post-hoc test, specifically the Nemenyi test for comparing all classifiers to each
other, was deemed appropriate. The RMSE results of all algorithms for all
datasets were thus aggregated in order to rank the algorithms tested. For this
purpose, the R-package scmamp was utilized with results being presented in
Chapter 5.

62

5 Results

This chapter contains the results of the experiments outlined in Chapter 4.
The goal of this thesis was the execution of the Knowledge Discovery Process
(KDP) on recommender systems in the domain of video games, specifically the
Steam platform, in order to answer the research questions stated in Chapter 1.
The Normalized Root Mean Squared Error (NRMSE) was calculated for each
algorithm and dataset, thus allowing for a comparison in terms of performance,
and further providing the foundation for answering all research questions. The
results for each algorithm are presented separately in the first part of the
chapter, which is followed by an overview of all algorithms and the results of
the Friedman and Nemenyi tests.

5.1 Algorithms

For each algorithm tested, the following information is presented:

• The Normalized Root Mean Squared Error (NRMSE) per dataset in the
form of a bar plot, which also includes the exact values in tabular form.

• For algorithms requiring hyperparameters to be tuned: the best hyperpa-
rameter settings found per dataset.

5.1.1 Baselines

5.1.1.1 Random

Figure 5.1 shows the NRMSE measurements for the Random algorithm of all
datasets tested.

63

5 Results

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.57651323 0.57691993 0.42061031 0.39125257 0.37453977

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.1: Barplot of the NRMSE measurements for the Random algorithm.

5.1.1.2 GlobalAverage

Figure 5.2 shows the NRMSE measurements for the GlobalAverage algorithm
of all datasets tested.

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.36051198 0.49645959 0.3034187 0.2612335 0.23531526

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.2: Barplot of the NRMSE measurements for the GlobalAverage algorithm.

5.1.1.3 UserAverage

Figure 5.3 shows the NRMSE measurements for the UserAverage algorithm of
all datasets tested.

64

5 Results

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.37901726 0.48172241 0.29459995 0.25234783 0.22714998

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.3: Barplot of the NRMSE measurements for the UserAverage algorithm.

5.1.1.4 ItemAverage

Figure 5.4 shows the NRMSE measurements for the ItemAverage algorithm of
all datasets tested.

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.3477185 0.4455886 0.26253765 0.22327454 0.19815241

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.4: Barplot of the NRMSE measurements for the ItemAverage algorithm.

5.1.1.5 UserItemBaseline

Figure 5.5 shows the NRMSE measurements for the UserItemBaseline algorithm
of all datasets tested. Table 5.1 further shows the best hyperparameters for
each dataset.

65

5 Results

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.33056908 0.43183406 0.2545223 0.21535851 0.19083342

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.5: Barplot of the NRMSE measurements for the UserItemBaseline algorithm.

Dataset
Hyperparameter Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
reg_u 7 11 12 11 11
reg_i 4 1 1 1 1
num_iter 15 10 10 10 10

Table 5.1: Best hyperparameters for the UserItemBaseline algorithm.

5.1.2 Content-Based

5.1.2.1 ItemAttributeKNN

Figure 5.6 shows the NRMSE measurements for the ItemAttributeKNN algo-
rithm of all datasets tested. Table 5.2 further shows the best hyperparameters
for each dataset.

Dataset
Hyperparameter Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
k 50 50 50 50 50
correlation Conditional-

Probability
Conditional-
Probability

Conditional-
Probability

Conditional-
Probability

Conditional-
Probability

weighted_binary True True True True True
alpha 0 0 0 0 0
reg_u 7 11 11 11 11
reg_i 4 1 1 1 1
num_iter 15 10 10 10 10

Table 5.2: Best hyperparameters for the ItemAttributeKNN algorithm.

66

5 Results

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.33058257 0.43183406 0.2545223 0.21535851 0.19083342

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.6: Barplot of the NRMSE measurements for the ItemAttributeKNN algorithm.

5.1.3 Collaborative Filtering

5.1.3.1 ItemKNN

Figure 5.7 shows the NRMSE measurements for the ItemKNN algorithm of
all datasets tested. Table 5.3 further shows the best hyperparameters for each
dataset.

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.34662659 0.42963486 0.25456116 0.21480014 0.19063785

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.7: Barplot of the NRMSE measurements for the ItemKNN algorithm.

67

5 Results

Dataset
Hyperparameter Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
k 50 50 50 50 50
correlation Pearson RatingCosine RatingCosine RatingCosine RatingCosine
weighted_binary False False False False False
alpha 10 1 1 1 1
reg_u 7 11 12 11 11
reg_i 4 1 1 1 1
num_iter 15 10 10 10 10

Table 5.3: Best hyperparameters for the ItemKNN algorithm.

5.1.3.2 SlopeOne

Figure 5.8 shows the NRMSE measurements for the SlopeOne algorithm of all
datasets tested.

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.38237591 0.43233558 0.25600457 0.21663846 0.19214722

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.8: Barplot of the NRMSE measurements for the SlopeOne algorithm.

5.1.3.3 MatrixFactorization

Figure 5.9 shows the NRMSE measurements for the MatrixFactorization algo-
rithm of all datasets tested. Table 5.4 further shows the best hyperparameters
for each dataset.

68

5 Results

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.3605182 0.44340571 0.26323001 0.22199084 0.19386656

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.9: Barplot of the NRMSE measurements for the MatrixFactorization algorithm.

Dataset
Hyperparameter Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
num_factors 10 50 50 50 10
regularization 2 0.01 0.01 0.01 0.01
learn_rate 0.005 0.01 0.01 0.01 0.01
decay 0.99 0.99 0.99 0.99 0.99
num_iter 30 20 15 10 15

Table 5.4: Best hyperparameters for the MatrixFactorization algorithm.

69

5 Results

5.1.3.4 BiasedMatrixFactorization

Figure 5.10 shows the NRMSE measurements for the BiasedMatrixFactorization
algorithm of all datasets tested. Table 5.5 further shows the best hyperparame-
ters for each dataset.

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.33163635 0.43163638 0.25444244 0.21582852 0.19108538

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.10: Barplot of the NRMSE measurements for the BiasedMatrixFactorization algo-
rithm.

Dataset
Hyperparameter Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
num_factors 50 10 10 10 10
bias_reg 0.001 0.001 0.01 0.01 0.1
reg_u 4 3 1 1 1
reg_i 0.1 0.001 1E-05 1E-05 1E-05
frequency_regularization False False False False False
learn_rate 0.5 0.5 0.1 0.01 0.01
bias_learn_rate 1 0.25 0.25 1 1
decay 0.99 0.99 0.99 0.99 0.99
num_iter 10 35 20 20 10
bold_driver True True True True True
loss RMSE RMSE RMSE RMSE RMSE
max_threads 1 1 1 1 1
naive_parallelization False False False False False

Table 5.5: Best hyperparameters for the BiasedMatrixFactorization algorithm.

70

5 Results

5.1.3.5 SVDPlusPlus

Figure 5.11 shows the NRMSE measurements for the SVDPlusPlus algorithm
of all datasets tested. Table 5.6 further shows the best hyperparameters for
each dataset.

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.33089639 0.43247338 0.25513732 0.21585571 0.19133925

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.11: Barplot of the NRMSE measurements for the SVDPlusPlus algorithm.

Dataset
Hyperparameter Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
num_factors 10 10 10 10 10
regularization 4 4 7 7 4
bias_reg 0.001 1E-05 1E-05 0.0001 0.0001
frequency_regularization False False False False False
learn_rate 0.01 0.01 0.01 0.01 0.01
bias_learn_rate 1 0.5 0.5 0.5 0.5
decay 0.99 0.99 0.99 0.99 0.99
num_iter 15 195 215 25 230

Table 5.6: Best hyperparameters for the SVDPlusPlus algorithm.

5.1.4 Hybrid

5.1.4.1 GSVDPlusPlus

Figure 5.12 shows the NRMSE measurements for the GSVDPlusPlus algorithm
of all datasets tested. Table 5.7 further shows the best hyperparameters for
each dataset.

71

5 Results

Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
NRMSE 0.33083269 0.43248144 0.25511561 0.21587525 0.19128215

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
R

M
S
E

Figure 5.12: Barplot of the NRMSE measurements for the GSVDPlusPlus algorithm.

Dataset
Hyperparameter Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5
num_factors 10 10 10 10 50
regularization 7 4 7 7 5
bias_reg 0.0001 1E-05 1E-05 0.0001 1E-05
frequency_regularization False False False False False
learn_rate 0.01 0.01 0.01 0.01 0.01
bias_learn_rate 1 0.5 0.5 0.5 0.5
decay 0.99 0.99 0.99 0.99 0.99
num_iter 15 200 205 25 25

Table 5.7: Best hyperparameters for the GSVDPlusPlus algorithm.

72

5 Results

5.2 Overview

Table 5.8 shows the NRMSE Measurements for all algorithms, which were
also used as input for the Friedman test. The algorithms in the table are
sorted by their average ranks based on all datasets tested. Figure 5.13 finally
shows the Critical Difference (CD) diagram for the Nemenyi post-hoc test in
succession to the Friedman test, which showed a p-value of 1.047e-06. The
diagram graphically depicts the average ranks of the algorithms with groups
of algorithms being connected, if there is no significant difference in terms of
performance.

Dataset
Explicit 2 Implicit 2 Implicit 3 Implicit 4 Implicit 5

UserItemBaseline 0.33056908 0.43183406 0.2545223 0.21535851 0.19083342
ItemKNN 0.34662659 0.42963486 0.25456116 0.21480014 0.19063785
ItemAttributeKNN 0.33058257 0.43183406 0.2545223 0.21535851 0.19083342
BiasedMatrixFactorization 0.33163635 0.43163638 0.25444244 0.21582852 0.19108538
GSVDPlusPlus 0.33083269 0.43248144 0.25511561 0.21587525 0.19128215
SVDPlusPlus 0.33089639 0.43247338 0.25513732 0.21585571 0.19133925
SlopeOne 0.38237591 0.43233558 0.25600457 0.21663846 0.19214722
ItemAverage 0.3477185 0.4455886 0.26253765 0.22327454 0.19815241
MatrixFactorization 0.3605182 0.44340571 0.26323001 0.22199084 0.19386656
UserAverage 0.37901726 0.48172241 0.29459995 0.25234783 0.22714998
GlobalAverage 0.36051198 0.49645959 0.3034187 0.2612335 0.23531526
Random 0.57651323 0.57691993 0.42061031 0.39125257 0.37453977

Table 5.8: NRMSE Measurements for all algorithms. The algorithms are sorted in order of
their average ranks based on all datasets tested.

73

5 Results

2 3 4 5 6 7 8 9 10 11 12

CD

UserItemBaseline

ItemKNN

ItemAttributeKNN

BiasedMatrixFactorization

GSVDPlusPlus

SVDPlusPlus

SlopeOne

ItemAverage

MatrixFactorization

UserAverage

GlobalAverage

Random

Figure 5.13: Critical Difference (CD) diagram for the Nemenyi post-hoc test in succession
to the Friedman test. The critical difference is displayed above the horizontal
axis. The numbers in this axis represent the average ranks of the algorithms
with 1 being the best and 12 being the worst. If there is no significant difference
in terms of performance, the groups of algorithms are connected.

74

6 Discussion

This chapter contains the discussion of the results presented in Chapter 5, while
answering the research questions raised in Chapter 1. All research questions
are specifically targeting the domain of video games and specifically the Steam
platform.

RQ 1 How well are various recommender algorithms performing in comparison
to each other?

The NRMSE results in Section 5.2, especially Figure 5.13, show that the
UserItemBaseline algorithm is a very strong baseline and overall the best al-
gorithm tested in terms of prediction accuracy. For the Explicit 2 dataset,
no other algorithm was able to beat the baseline. For the implicit datasets,
the ItemKNN algorithm was superior in most cases with only the BiasedMa-
trixFactorization algorithm beating all others in the case of the Implicit 3
dataset. Overall, the KNN methods are a close second to the UserItemBaseline
algorithm, closely followed by the BiasedMatrixFactorization algorithm. While
the other collaborative filtering methods SVDPlusPlus and GSVDPlusPlus give
a mediocre performance, the basic MatrixFactorization algorithm as well as
the rest of the baseline algorithms lag behind.

Looking at the good performance of the ItemAverage baseline, it can be as-
sumed that the majority of items are rated similarly, which also explains the
good performance of the UserItemBaseline algorithm. The distributions of the
ratings shown in Table 4.9 and Table 4.10, specifically, clearly emphasize this.
Interestingly enough, the KNN methods were not able to beat the UserItem-
Baseline in some of the datasets. The otherwise good performance of these
methods can be traced back to the UserItemBaseline being directly integrated
into these methods.

75

6 Discussion

Although the mentioned rankings give a tendency of what algorithms work best
in the domain of video games and specifically the Steam platform, the Nemenyi
post-hoc test shows no significant difference between the first 10 algorithms. In
order to draw final conclusions, more datasets or repetitions of the experiments
would be necessary. Further, most of the algorithm’s hyperparameters were
tuned in a rather simple manner. It is thus quite possible that some of the
algorithms might perform better if more sophisticated hyperparameter tuning
strategies are applied. Then again, the simplistic UserItemBaseline provides
good results even without expensive hyperparameter optimization as do the
KNN and BiasedMatrixFactorization algorithms. During the execution of the
experiments, the matrix factorization techniques also showed the expected
advantage over the KNN methods in terms of system resources and runtime
performance, making the BiasedMatrixFactorization algorithm a good overall
choice next to the UserItemBaseline, whereby the latter is not as heavily
personalized as the former.

RQ 2 Can implicit data, specifically game times for each user, be utilized as
an adequate replacement for explicit ratings?

The bar plots contained in Section 5.1 show the same behavior for all the
algorithms tested. While there is a performance drop between the Explicit
2 and Implicit 2 datasets, the rest of the implicit datasets show a drastic
performance increase compared to the explicit dataset. RQ2 can thus definitely
be answered positively.

It should be noted that the creation of explicit ratings based on game times is
subject to tuning as well. The chosen method used logarithmic bins to convert
the game times into ratings with the 99th percentile being the upper limit.
Shifting this limit might, for example, lead to very different results. Further,
as Koenigstein et al. (2012) show, the datasets might also be augmented with
randomly generated negative ratings while the positive ratings simply result
from the more frequently played games owned by each user. Another thing that
could be respected is game and user specific biases amongst the game time.
A hardcore player might play games for a longer time compared to a casual
player, while both have the same positive or negative experience of these games.
Analogously, this might also be the case for the games themselves. One game
might be fully experienced in a short amount of time, while others might offer

76

6 Discussion

content that can be exciting for hundreds of hours. Despite the gap in game
time, players might have the same feeling for both kinds of games.

RQ 3 Considering rating scales from binary to quinary, which rating scale is
to be preferred in terms of accuracy?

Again considering the bar plots of Section 5.1, the performance increases in
relation to the size of the rating scale for all algorithms tested. While there is a
large gap between the performances of the Implicit 2 and Implicit 3 datasets,
the performance increase becomes smaller for the subsequent datasets and
thus rating scales. Intuitively, this is reflected by the severity of an error in
prediction. For example, if the prediction is off by one star in the case of a
binary rating scale, the item is rated with the exact opposite of the true rating.
A larger rating scale is more forgiving in such scenarios, as a prediction of 4
stars is still a good recommendation, even if the true rating would be 5 stars.

Other scientists found similar results with completely different settings as
outlined in Chapter 3. It is thus expected, that a further extension of the rating
scale would not lead to a significant improvement in performance. For the
domain of video games and specifically the Steam platform, the recommended
size of the rating scale is therefore the classic 5-star rating scale.

77

7 Conclusion

This thesis dealt with recommender systems in the domain of video games and
specifically the Steam platform. Chapter 1 gave an introduction to the field
and illustrated the lack of research for recommender systems in the domain
of video games and subsequently the Steam platform, for which the existing
recommendation approach is unknown to the public. Further, the difference
in rating scales between various platforms such as Amazon, Netflix, YouTube,
and Steam, as well as the diverse ways for attaining implicit feedback was
pointed out. Based on these observations, the following research questions were
stated.

RQ 1 How well are various recommender algorithms performing in comparison
to each other?

RQ 2 Can implicit data, specifically game times for each user, be utilized as
an adequate replacement for explicit ratings?

RQ 3 Considering rating scales from binary to quinary, which rating scale is
to be preferred in terms of accuracy?

Chapter 2 gave an introduction to recommender systems consisting of a brief
history tracing the roots back to the late 1970s, an explanation of basic terms
and concepts, different recommendation techniques, challenges and issues as
well as evaluation methods. The chapter further provided an overview of
various recommender libraries, with the focus being on open-source software.
Next, selected recommendation algorithms offered by the MyMediaLite library
including baselines, content-based, collaborative filtering and hybrid methods
were explained. In order to lay the foundation for the process of answering the
research questions, the Knowledge Discovery Process was presented from the
viewpoint of a recommender system. Last but not least, a brief presentation of
the Steam platform and its existing recommendation approaches was given.

78

7 Conclusion

Related research was discussed in Chapter 3, depicting the few works dealing
with the domain of video games as well as the analysis of varying rating scales
and the effect on users.

The major part of this thesis was presented in Chapter 4, which described the
necessary steps for answering the research questions. The chapter started with
the presentation of the development environment, continuing with the treatise
on the Knowledge Discovery Process. In the selection step, data was retrieved
by crawling the Steam website during February 2016 and preprocessed using
Python. A thorough analysis of the dataset gave a feeling for its characteristics
and showed that most of the data follows a truncated power law. The transfor-
mation step of the KDP contained sampling of the data using the Forest Fire
Model and the creation of the necessary input files for the data mining process.
This step then outlined the approach for testing the selected recommendation
algorithms, which included 10-fold cross validation with separated validation
and test sets for hyperparameter optimization and evaluation respectively.
Finally, the interpretation step dealt with the importance of drawing reliable
conclusions. The Friedman test and the subsequent Nemenyi post-hoc test was
deemed fitting in order to find significant differences in the performance of the
tested recommendation algorithms.

Chapter 5 in due course presented the results of the conducted experiments.
For each algorithm, a table of the NRMSE measurements obtained for each
dataset as well as a corresponding bar plot was shown. Further, for algorithms
utilizing hyperparameters, the best ones found were shown as well. The chapter
concluded with an overview of the results that were also used as input for the
Friedman test, for which the post-hoc Nemenyi test was graphically displayed
by utilizing a Critical Difference diagram.

Discussion of the results and answering the research questions was then done
in Chapter 6. It was explained that no significant difference between the first
10 algorithms tested could be found, although the results indicated that the
UserItemBaseline as well as the KNN methods and the BiasedMatrixFactoriza-
tion performed best. After considering the personalization of the recommender
algorithms as well as the required system resources and runtime performances,
the BiasedMatrixFactorization algorithm was deemed as a good overall choice.
The bar plots of Section 5.1 further indicated that it is indeed possible to use
game times as a replacement for explicit ratings and that a quinary rating scale,

79

7 Conclusion

the classic 5-star rating scale, is recommended in the domain of video games
and specifically the Steam platform.

Further research could deal with optimizing the conversion of implicit feedback
into explicit ratings as well as further optimization of the hyperparameters,
which is often neglected in many works that deal with recommender systems.
Also, the SocialMF algorithm contained in the MyMediaLite library could be
tested by utilizing the already crawled trust network of the Steam platform.
Since it builds upon the BiasedMatrixFactorization algorithm, the performance
in terms of accuracy might thus further improve.

80

Bibliography

Adomavicius, Gediminas and Alexander Tuzhilin (2005). “Toward the Next
Generation of Recommender Systems: A Survey of the State-of-the-Art
and Possible Extensions.” In: IEEE Transactions on Knowledge and Data
Engineering 17.6, pp. 734–749. doi: 10.1109/TKDE.2005.99 (cit. on pp. 6,
7, 10, 20).

Alstott, Jeff, Ed Bullmore, and Dietmar Plenz (2014). “powerlaw: A Python
Package for Analysis of Heavy-Tailed Distributions.” In: PLoS ONE 9.1,
pp. 1–11. doi: 10.1371/journal.pone.0085777. url: http://journals.
plos.org/plosone/article?id=10.1371/journal.pone.0085777 (cit.
on p. 50).

Amatriain, Xavier and Josep M. Pujol (2015). “Data Mining Methods for
Recommender Systems.” In: Recommender Systems Handbook. Ed. by
Francesco Ricci, Lior Rokach, and Bracha Shapira. 2nd ed. Boston, Mas-
sachusetts, USA: Springer US. Chap. 7, pp. 227–262. isbn: 9781489976376.
doi: 10.1007/978-1-4899-7637-6_7 (cit. on pp. 54, 57).

Bell, Robert, Yehuda Koren, and Chris Volinsky (2007). “Modeling Rela-
tionships at Multiple Scales to Improve Accuracy of Large Recommender
Systems.” In: Proc. 13th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD’07). (San Jose, California, USA),
pp. 95–104. isbn: 9781595936097. doi: 10.1145/1281192.1281206 (cit. on
p. 19).

Bengio, Yoshua (2012). “Practical Recommendations for Gradient-Based Train-
ing of Deep Architectures.” In: Neural Networks: Tricks of the Trade. Ed. by
Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert Müller. 2nd ed.
Berlin, Heidelberg, Germany: Springer Berlin Heidelberg. Chap. 19, pp. 437–
478. isbn: 9783642352898. doi: 10.1007/978-3-642-35289-8_26 (cit. on
p. 60).

81

http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1371/journal.pone.0085777
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085777
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085777
http://dx.doi.org/10.1007/978-1-4899-7637-6_7
http://dx.doi.org/10.1145/1281192.1281206
http://dx.doi.org/10.1007/978-3-642-35289-8_26

Bibliography

Bouckaert, Remco R. (2003). “Choosing Between Two Learning Algorithms
Based on Calibrated Tests.” In: Proc. Twentieth International Conference
on Machine Learning (ICML’03). (Washington, D.C., USA), pp. 51–58.
isbn: 9781577351894. url: http://www.aaai.org/Papers/ICML/2003/
ICML03-010.pdf (cit. on p. 61).

Bouckaert, Remco R. and Eibe Frank (2004). “Evaluating the Replicabil-
ity of Significance Tests for Comparing Learning Algorithms.” In: Proc.
8th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD’04). (Sydney, Australia), pp. 3–12. isbn: 9783540247753. doi:
10.1007/978-3-540-24775-3_3 (cit. on p. 61).

Breese, John S., David Heckerman, and Carl Kadie (1998). “Empirical Anal-
ysis of Predictive Algorithms for Collaborative Filtering.” In: Proc. 14th
Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI’98).
(Madison, Wisconsin, USA), pp. 43–52. isbn: 155860555X. url: https:
//dslpitt.org/uai/papers/98/p43-breese.pdf (cit. on p. 20).

Burke, Robin (2002). “Hybrid Recommender Systems: Survey and Experi-
ments.” In: User Modeling and User-Adapted Interaction 12.4, pp. 331–370.
doi: 10.1023/A:1021240730564 (cit. on p. 12).

Burke, Robin (2007). “Hybrid Web Recommender Systems.” In: The Adap-
tive Web. Methods and Strategies of Web Personalization. Ed. by Pe-
ter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. Berlin, Heidelberg,
Germany: Springer Berlin Heidelberg. Chap. 12, pp. 377–408. isbn:
9783540720799. doi: 10.1007/978-3-540-72079-9_12 (cit. on pp. 9,
11–13).

Chiang, Oliver (2011). “The Master of Online Mayhem.” In: Forbes. url: http:
//www.forbes.com/forbes/2011/0228/technology- gabe- newell-
videogames-valve-online-mayhem.html (visited on 07/07/2016) (cit. on
pp. 1, 37).

Cios, Krzysztof J., Roman W. Swiniarski, Witold Pedrycz, and Lukasz A.
Kurgan (2007). “The Knowledge Discovery Process.” In: Data Mining: A
Knowledge Discovery Approach. Boston, Massachusetts, USA: Springer US,
pp. 9–24. isbn: 978-0-387-36795-8. doi: 10.1007/978-0-387-36795-8_2
(cit. on p. 35).

Cosley, Dan, Shyong K. Lam, Istvan Albert, Joseph A. Konstan, and John
Riedl (2003). “Is Seeing Believing?: How Recommender System Interfaces
Affect Users’ Opinions.” In: Proc. SIGCHI Conference on Human Factors in

82

http://www.aaai.org/Papers/ICML/2003/ICML03-010.pdf
http://www.aaai.org/Papers/ICML/2003/ICML03-010.pdf
http://dx.doi.org/10.1007/978-3-540-24775-3_3
https://dslpitt.org/uai/papers/98/p43-breese.pdf
https://dslpitt.org/uai/papers/98/p43-breese.pdf
http://dx.doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1007/978-3-540-72079-9_12
http://www.forbes.com/forbes/2011/0228/technology-gabe-newell-videogames-valve-online-mayhem.html
http://www.forbes.com/forbes/2011/0228/technology-gabe-newell-videogames-valve-online-mayhem.html
http://www.forbes.com/forbes/2011/0228/technology-gabe-newell-videogames-valve-online-mayhem.html
http://dx.doi.org/10.1007/978-0-387-36795-8_2

Bibliography

Computing Systems (CHI’03). (Ft. Lauderdale, Florida, USA), pp. 585–592.
isbn: 1581136307. doi: 10.1145/642611.642713 (cit. on p. 41).

Davidson, James, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van
Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston,
and Dasarathi Sampath (2010). “The YouTube Video Recommendation
System.” In: Proc. 4th ACM Conference on Recommender Systems (Rec-
Sys’10). (Barcelona, Spain), pp. 293–296. isbn: 9781605589060. doi: 10.
1145/1864708.1864770 (cit. on p. 1).

Demšar, Janez (2006). “Statistical Comparisons of Classifiers over Multiple Data
Sets.” In: The Journal of Machine Learning Research 7, pp. 1–30. url:
http://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
(cit. on p. 62).

Deshpande, Mukund and George Karypis (2004). “Item-Based Top-N Recom-
mendation Algorithms.” In: ACM Transactions on Information Systems
(TOIS) 22.1, pp. 143–177. doi: 10.1145/963770.963776 (cit. on p. 21).

Dunkle, Mike (2015). “Content Delivery Summit 2015. Steam – Past, Cur-
rent, Future.” In: Content Delivery Summit 2015. (New York, New York,
USA). url: http://conferences.infotoday.com/documents/234/
2015CDNSummit- Keynote- Valve.pdf (visited on 07/08/2016) (cit. on
p. 37).

Egenfeldt-Nielsen, Simon, Jonas Heide Smith, and Susana Pajares Tosca (2016).
Understanding Video Games. The Essential Introduction. 3rd ed. New York,
New York, USA: Routledge. isbn: 9781138849815 (cit. on p. 40).

Ekstrand, Michael D., Michael Ludwig, Joseph A. Konstan, and John T. Riedl
(2011). “Rethinking the Recommender Research Ecosystem: Reproducibil-
ity, Openness, and LensKit.” In: Proc. 5th ACM Conference on Recom-
mender Systems (RecSys’11). (Chicago, Illinois, USA), pp. 133–140. isbn:
9781450306836. doi: 10.1145/2043932.2043958 (cit. on p. 21).

Ekstrand, Michael D., John T. Riedl, and Joseph A. Konstan (2011). “Collab-
orative Filtering Recommender Systems.” In: Foundations and Trends in
Human–Computer Interaction 4.2, pp. 81–173. doi: 10.1561/1100000009.
url: http://files.grouplens.org/papers/FnT%20CF%20Recsys%
20Survey.pdf (cit. on pp. 6, 7, 10, 11).

Ekstrand, Michael, Daniel Kluver, Lingfei He, Jack Kolb, Michael Ludwig, and
Yilin He (2016). LensKit Recommender Toolkit. url: http://lenskit.org
(visited on 07/14/2016) (cit. on p. 21).

83

http://dx.doi.org/10.1145/642611.642713
http://dx.doi.org/10.1145/1864708.1864770
http://dx.doi.org/10.1145/1864708.1864770
http://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
http://dx.doi.org/10.1145/963770.963776
http://conferences.infotoday.com/documents/234/2015CDNSummit-Keynote-Valve.pdf
http://conferences.infotoday.com/documents/234/2015CDNSummit-Keynote-Valve.pdf
http://dx.doi.org/10.1145/2043932.2043958
http://dx.doi.org/10.1561/1100000009
http://files.grouplens.org/papers/FnT%20CF%20Recsys%20Survey.pdf
http://files.grouplens.org/papers/FnT%20CF%20Recsys%20Survey.pdf
http://lenskit.org

Bibliography

Entertainment Software Association (ESA) (2016). The 2016 Essential
Facts About the Computer and Video Game Industry. url: http : / /
essentialfacts.theesa.com/Essential-Facts-2016.pdf (visited on
07/27/2016) (cit. on p. 40).

Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth (1996a).
“From Data Mining to Knowledge Discovery in Databases.” In: AI Magazine
17.3, pp. 37–54. doi: 10.1609/aimag.v17i3.1230 (cit. on p. 35).

Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth (1996b).
“Knowledge Discovery and Data Mining: Towards a Unifying Frame-
work.” In: Proc. Second International Conference on Knowledge Discovery
and Data Mining (KDD’96). (Portland, Oregon, USA), pp. 82–88. isbn:
9781577350040. url: https://www.aaai.org/Papers/KDD/1996/KDD96-
014.pdf (cit. on pp. 34, 35, 44).

Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth (1996c). “The
KDD Process for Extracting Useful Knowledge from Volumes of Data.”
In: Communications of the ACM 39.11, pp. 27–34. doi: 10.1145/240455.
240464 (cit. on p. 35).

Funk, Simon (2006). The Evolution of Cybernetics - A Journal. Netflix Update:
Try This at Home. url: http://sifter.org/~simon/journal/20061211.
html (visited on 07/14/2016) (cit. on pp. 21, 27).

Gantner, Zeno, Steffen Rendle, Lucas Drumond, and Christoph Freudenthaler
(2015). MyMediaLite Recommender System Library. url: http://www.
mymedialite.net (visited on 07/14/2016) (cit. on p. 19).

Gantner, Zeno, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-
Thieme (2011). “MyMediaLite: A Free Recommender System Library.”
In: Proc. 5th ACM Conference on Recommender Systems (RecSys’11).
(Chicago, Illinois, USA), pp. 305–308. isbn: 9781450306836. doi: 10.1145/
2043932.2043989. url: http://www.ismll.uni-hildesheim.de/pub/
pdfs/Gantner_et_al2011_MyMediaLite.pdf (cit. on pp. 18, 29, 31).

Gemulla, Rainer, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis (2011).
“Large-scale Matrix Factorization with Distributed Stochastic Gradient
Descent.” In: Proc. 17th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD’11). (San Diego, California, USA),
pp. 69–77. isbn: 9781450308137. doi: 10.1145/2020408.2020426 (cit. on
p. 19).

George, Thomas and Srujana Merugu (2005). “A Scalable Collaborative Filter-
ing Framework based on Co-clustering.” In: Proc. 5th IEEE International

84

http://essentialfacts.theesa.com/Essential-Facts-2016.pdf
http://essentialfacts.theesa.com/Essential-Facts-2016.pdf
http://dx.doi.org/10.1609/aimag.v17i3.1230
https://www.aaai.org/Papers/KDD/1996/KDD96-014.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-014.pdf
http://dx.doi.org/10.1145/240455.240464
http://dx.doi.org/10.1145/240455.240464
http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html
http://www.mymedialite.net
http://www.mymedialite.net
http://dx.doi.org/10.1145/2043932.2043989
http://dx.doi.org/10.1145/2043932.2043989
http://www.ismll.uni-hildesheim.de/pub/pdfs/Gantner_et_al2011_MyMediaLite.pdf
http://www.ismll.uni-hildesheim.de/pub/pdfs/Gantner_et_al2011_MyMediaLite.pdf
http://dx.doi.org/10.1145/2020408.2020426

Bibliography

Conference on Data Mining (ICDM’05). (Houston, Texas, USA), pp. 625–
628. isbn: 0769522785. doi: 10.1109/ICDM.2005.14 (cit. on p. 19).

Geyer-Schulz, Andreas and Michael Hahsler (2002). “Comparing Two Rec-
ommender Algorithms with the Help of Recommendations by Peers.” In:
WEBKDD 2002 – Mining Web Data for Discovering Usage Patterns and
Profiles. 4th International Workshop. (Edmonton, Canada). Berlin, Heidel-
berg, Germany, pp. 137–158. isbn: 9783540203049. doi: 10.1007/978-3-
540-39663-5_9 (cit. on p. 35).

Goldberg, David, David Nichols, Brian M. Oki, and Douglas Terry (1992).
“Using Collaborative Filtering to Weave an Information Tapestry.” In:
Communications of the ACM 35.12, pp. 61–70. doi: 10.1145/138859.
138867 (cit. on pp. 1, 5).

Gomez-Uribe, Carlos A. and Neil Hunt (2016). “The Netflix Recommender
System: Algorithms, Business Value, and Innovation.” In: ACM Transac-
tions on Management Information Systems (TMIS) 6.4, 13:1–13:19. doi:
10.1145/2843948 (cit. on pp. 1, 6).

Gunawardana, Asela and Guy Shani (2015). “Evaluating Recommendation
Systems.” In: Recommender Systems Handbook. Ed. by Francesco Ricci, Lior
Rokach, and Bracha Shapira. 2nd ed. Boston, Massachusetts, USA: Springer
US. Chap. 8, pp. 257–297. isbn: 9780387858203. doi: 10.1007/978-0-
387-85820-3_8 (cit. on pp. 14, 61).

Hill, Will, Larry Stead, Mark Rosenstein, and George Furnas (1995). “Rec-
ommending and Evaluating Choices in a Virtual Community of Use.”
In: Proc. 1995 Conference on Human Factors in Computing Systems
(CHI’95). (Denver, Colorado, USA), pp. 194–201. isbn: 0201847051. doi:
10.1145/223904.223929 (cit. on p. 6).

Hu, Yifan, Yehuda Koren, and Chris Volinsky (2008). “Collaborative Filter-
ing for Implicit Feedback Datasets.” In: Proc. 8th IEEE International
Conference on Data Mining (ICDM’08). (Pisa, Italy), pp. 263–272. isbn:
9780769535029. doi: 10.1109/ICDM.2008.22 (cit. on p. 22).

Jamali, Mohsen and Martin Ester (2010). “A Matrix Factorization Tech-
nique with Trust Propagation for Recommendation in Social Networks.”
In: Proc. 4th ACM Conference on Recommender Systems (RecSys’10).
(Barcelona, Spain), pp. 135–142. isbn: 9781605589060. doi: 10.1145/
1864708.1864736 (cit. on p. 20).

85

http://dx.doi.org/10.1109/ICDM.2005.14
http://dx.doi.org/10.1007/978-3-540-39663-5_9
http://dx.doi.org/10.1007/978-3-540-39663-5_9
http://dx.doi.org/10.1145/138859.138867
http://dx.doi.org/10.1145/138859.138867
http://dx.doi.org/10.1145/2843948
http://dx.doi.org/10.1007/978-0-387-85820-3_8
http://dx.doi.org/10.1007/978-0-387-85820-3_8
http://dx.doi.org/10.1145/223904.223929
http://dx.doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.1145/1864708.1864736
http://dx.doi.org/10.1145/1864708.1864736

Bibliography

Jannach, Dietmar, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich
(2011). Recommender Systems. An Introduction. New York, New York,
USA: Cambridge University Press. isbn: 9780521493369 (cit. on pp. 4, 5).

Karypis, George (2001). “Evaluation of Item-Based Top-N Recommendation
Algorithms.” In: Proc. 10th International Conference on Information and
Knowledge Management (CIKM’01). (Atlanta, Georgia, USA), pp. 247–254.
isbn: 1581134363. doi: 10.1145/502585.502627 (cit. on p. 6).

Kluver, Daniel, Tien T. Nguyen, Michael Ekstrand, Shilad Sen, and John
Riedl (2012). “How Many Bits Per Rating?” In: Proc. 6th ACM Conference
on Recommender Systems (RecSys’12). Dublin, Ireland, pp. 99–106. isbn:
9781450312707. doi: 10.1145/2365952.2365974 (cit. on p. 41).

Koenigstein, Noam, Nir Nice, Ulrich Paquet, and Nir Schleyen (2012). “The
Xbox Recommender System.” In: Proc. 6th ACM Conference on Rec-
ommender Systems (RecSys’12). (Dublin, Ireland), pp. 281–284. isbn:
9781450312707. doi: 10.1145/2365952.2366015 (cit. on pp. 40, 76).

Koren, Yehuda (2008). “Factorization Meets the Neighborhood: A Multifaceted
Collaborative Filtering Model.” In: Proc. 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’08). (Las
Vegas, Nevada, USA), pp. 426–434. isbn: 9781605581934. doi: 10.1145/
1401890.1401944 (cit. on pp. 19, 22, 30).

Koren, Yehuda (2009). The BellKor Solution to the Netflix Grand Prize.
url: http://www.netflixprize.com/assets/GrandPrize2009_BPC_
BellKor.pdf (visited on 07/14/2016) (cit. on p. 19).

Koren, Yehuda (2010). “Factor in the Neighbors: Scalable and Accurate Col-
laborative Filtering.” In: ACM Transactions on Knowledge Discovery from
Data (TKDD) 4.1, 1:1–1:24. doi: 10.1145/1644873.1644874 (cit. on
pp. 19, 24, 25).

Koren, Yehuda, Robert Bell, and Chris Volinsky (2009). “Matrix Factorization
Techniques for Recommender Systems.” In: Computer 42.8, pp. 30–37. doi:
10.1109/MC.2009.263 (cit. on pp. 14, 27).

Krulwich, Bruce (1997). “Lifestyle Finder. Intelligent User Profiling Using
Large-Scale Demographic Data.” In: AI Magazine 18.2, pp. 37–46. doi:
10.1609/aimag.v18i2.1292 (cit. on p. 11).

Lamprecht, Daniel, Florian Geigl, Tomas Karas, Simon Walk, Denis Helic,
and Markus Strohmaier (2015). “Improving Recommender System Navi-
gability Through Diversification: A Case Study of IMDb.” In: Proc. 15th
International Conference on Knowledge Technologies and Data-driven Busi-

86

http://dx.doi.org/10.1145/502585.502627
http://dx.doi.org/10.1145/2365952.2365974
http://dx.doi.org/10.1145/2365952.2366015
http://dx.doi.org/10.1145/1401890.1401944
http://dx.doi.org/10.1145/1401890.1401944
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
http://dx.doi.org/10.1145/1644873.1644874
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1609/aimag.v18i2.1292

Bibliography

ness (i-KNOW’15). (Graz, Austria), 21:1–21:8. isbn: 9781450337212. doi:
10.1145/2809563.2809603 (cit. on p. 6).

Lawrence, Neil D. and Raquel Urtasun (2009). “Non-linear Matrix Factorization
with Gaussian Processes.” In: Proc. 26th International Conference on
Machine Learning (ICML’09). (Montreal, Quebec, Canada), pp. 601–608.
isbn: 9781605585161. doi: 10.1145/1553374.1553452 (cit. on p. 20).

Lee, Daniel D. and H. Sebastian Seung (2000). “Algorithms for Non-negative
Matrix Factorization.” In: Proc. 14th Conference on Neural Information
Processing Systems (NIPS’00). (Denver, Colorado, USA), pp. 556–562. url:
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-
matrix-factorization.pdf (cit. on p. 20).

Lee, Joonseok, Samy Bengio, Seungyeon Kim, Guy Lebanon, and Yoram
Singer (2014). “Local Collaborative Ranking.” In: Proc. 23rd International
Conference on World Wide Web (WWW’14). (Seoul, Korea), pp. 85–96.
isbn: 9781450327442. doi: 10.1145/2566486.2567970 (cit. on p. 20).

Lee, Joonseok, Seungyeon Kim, Guy Lebanon, and Yoram Singer (2013). “Local
Low-Rank Matrix Approximation.” In: Proc. 30th International Conference
on Machine Learning (ICML’14). (Atlanta, Georgia, USA), pp. 82–90. url:
http://jmlr.org/proceedings/papers/v28/lee13.pdf (cit. on p. 20).

Lee, Joonseok, Mingxuan Sun, and Guy Lebanon (2012a). “A Comparative
Study of Collaborative Filtering Algorithms.” In: arXiv: 1205.3193 (cit. on
p. 20).

Lee, Joonseok, Mingxuan Sun, and Guy Lebanon (2012b). “PREA: Personalized
Recommendation Algorithms Toolkit.” In: The Journal of Machine Learn-
ing Research 13, pp. 2699–2703. url: http://www.jmlr.org/papers/
volume13/lee12b/lee12b.pdf (cit. on p. 20).

Lee, Joonseok, Mingxuan Sun, and Guy Lebanon (2014). PREA (Personalized
Recommendation Algorithms Toolkit). url: http://prea.gatech.edu/
(visited on 07/14/2016) (cit. on p. 20).

Lemire, Daniel and Anna Maclachlan (2005). “Slope One Predictors for
Online Rating-Based Collaborative Filtering.” In: Proc. 2005 SIAM
International Conference on Data Mining (SDM’05). (Newport Beach,
California, USA), pp. 471–475. isbn: 9780898715934. doi: 10 . 1137 /
1 . 9781611972757 . 43. url: http : / / lemire . me / fr / documents /
publications/lemiremaclachlan_sdm05.pdf (cit. on pp. 19–21, 26).

Leskovec, Jure and Christos Faloutsos (2006). “Sampling from Large Graphs.”
In: Proc. 12th ACM SIGKDD International Conference on Knowledge

87

http://dx.doi.org/10.1145/2809563.2809603
http://dx.doi.org/10.1145/1553374.1553452
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://dx.doi.org/10.1145/2566486.2567970
http://jmlr.org/proceedings/papers/v28/lee13.pdf
http://arxiv.org/abs/1205.3193
http://www.jmlr.org/papers/volume13/lee12b/lee12b.pdf
http://www.jmlr.org/papers/volume13/lee12b/lee12b.pdf
http://prea.gatech.edu/
http://dx.doi.org/10.1137/1.9781611972757.43
http://dx.doi.org/10.1137/1.9781611972757.43
http://lemire.me/fr/documents/publications/lemiremaclachlan_sdm05.pdf
http://lemire.me/fr/documents/publications/lemiremaclachlan_sdm05.pdf

Bibliography

Discovery and Data Mining (KDD’06). (Philadelphia, Pennsylvania, USA),
pp. 631–636. isbn: 1595933395. doi: 10.1145/1150402.1150479. url:
http://cs.stanford.edu/people/jure/pubs/sampling-kdd06.pdf
(cit. on p. 54).

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos (2005). “Graphs over
Time: Densification Laws, Shrinking Diameters and Possible Explanations.”
In: Proc. 11th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’05). (Chicago, Illinois, USA), pp. 177–
187. isbn: 159593135X. doi: 10.1145/1081870.1081893. url: https:
//www.cs.cornell.edu/home/kleinber/kdd05-time.pdf (cit. on p. 54).

Leskovec, Jure and Rok Sosič (2014). Snap.py: SNAP for Python, a General
Purpose Network Analysis and Graph Mining Tool in Python. url: http:
//snap.stanford.edu/snappy (visited on 05/25/2016) (cit. on p. 50).

Linden, Greg, Brent Smith, and Jeremy York (2003). “Amazon.com Rec-
ommendations. Item-to-Item Collaborative Filtering.” In: IEEE Internet
Computing 7.1, pp. 76–80. doi: 10.1109/MIC.2003.1167344 (cit. on pp. 1,
6, 19).

Manzato, Marcelo Garcia (2013). “gSVD++: Supporting Implicit Feedback on
Recommender Systems with Metadata Awareness.” In: Proc. 28th Annual
ACM Symposium on Applied Computing (SAC’13). (Coimbra, Portugal),
pp. 908–913. isbn: 9781450316569. doi: 10.1145/2480362.2480536 (cit.
on pp. 19, 32).

Menon, Aditya Krishna and Charles Elkan (2010). “A Log-Linear Model with
Latent Features for Dyadic Prediction.” In: Proc. 10th IEEE International
Conference on Data Mining (ICDM’10). (Sydney, Australia), pp. 364–373.
isbn: 9780769542560. doi: 10.1109/ICDM.2010.148 (cit. on p. 19).

Mitchell, Ryan (2015). Web Scraping with Python. Sebastopol, California, USA:
O’Reilly Media, Inc. isbn: 9781491910290 (cit. on p. 45).

Nadeau, Claude and Yoshua Bengio (2003). “Inference for the Generaliza-
tion Error.” In: Machine Learning 52.3, pp. 239–281. doi: 10.1023/A:
1024068626366 (cit. on p. 61).

Netflix, Inc (2009). Netflix Prize. url: http://www.netflixprize.com (visited
on 07/09/2016) (cit. on p. 6).

Nguyen, Tien T., Pik-Mai Hui, F. Maxwell Harper, Loren Terveen, and Joseph
A. Konstan (2014). “Exploring the Filter Bubble: The Effect of Using
Recommender Systems on Content Diversity.” In: Proc. 23rd International

88

http://dx.doi.org/10.1145/1150402.1150479
http://cs.stanford.edu/people/jure/pubs/sampling-kdd06.pdf
http://dx.doi.org/10.1145/1081870.1081893
https://www.cs.cornell.edu/home/kleinber/kdd05-time.pdf
https://www.cs.cornell.edu/home/kleinber/kdd05-time.pdf
http://snap.stanford.edu/snappy
http://snap.stanford.edu/snappy
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1145/2480362.2480536
http://dx.doi.org/10.1109/ICDM.2010.148
http://dx.doi.org/10.1023/A:1024068626366
http://dx.doi.org/10.1023/A:1024068626366
http://www.netflixprize.com

Bibliography

Conference on World Wide Web (WWW’14). (Seoul, Korea), pp. 677–686.
isbn: 9781450327442. doi: 10.1145/2566486.2568012 (cit. on pp. 6, 9).

Paterek, Arkadiusz (2007). “Improving Regularized Singular Value Decomposi-
tion for Collaborative Filtering.” In: Proc. KDD Cup and Workshop 2007.
(San Jose, California, USA). url: https://www.cs.uic.edu/~liub/KDD-
cup-2007/proceedings/Regular-Paterek.pdf (cit. on p. 20).

Rajaraman, Shiva (2009). Five Stars Dominate Ratings. url: https : / /
youtube.googleblog.com/2009/09/five-stars-dominate-ratings.
html (visited on 07/07/2016) (cit. on pp. 2, 6).

Recht, Benjamin, Christopher Re, Stephen Wright, and Feng Niu (2011).
“Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient De-
scent.” In: Proc. 25th Conference on Neural Information Processing Systems
(NIPS’11). (Granada, Spain), pp. 693–701. url: http://papers.nips.
cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-
stochastic-gradient-descent.pdf (cit. on p. 22).

Rendle, Steffen and Lars Schmidt-Thieme (2008). “Online-updating Regularized
Kernel Matrix Factorization Models for Large-scale Recommender Systems.”
In: Proc. 2008 ACM Conference on Recommender Systems (RecSys’08).
(Lausanne, Switzerland), pp. 251–258. isbn: 9781605580937. doi: 10.1145/
1454008.1454047 (cit. on p. 19).

Resnick, Paul, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl (1994). “GroupLens: An Open Architecture for Collaborative Filtering
of Netnews.” In: Proc. 1994 ACM Conference on Computer Supported
Cooperative Work (CSCW’94). (Chapel Hill, North Carolina, USA), pp. 175–
186. isbn: 0897916891. doi: 10.1145/192844.192905 (cit. on pp. 6, 21).

Resnick, Paul and Hal R. Varian (1997). “Recommender Systems.” In: Com-
munications of the ACM 40.3, pp. 56–58. doi: 10.1145/245108.245121
(cit. on pp. 1, 5).

Ricci, Francesco, Lior Rokach, and Bracha Shapira (2015a). Recommender
Systems Handbook. 2nd ed. Boston, Massachusetts, USA: Springer US.
isbn: 9781489976376. doi: 10.1007/978-1-4899-7637-6 (cit. on pp. 1, 8,
12).

Ricci, Francesco, Lior Rokach, and Bracha Shapira (2015b). “Recommender Sys-
tems: Introduction and Challenges.” In: Recommender Systems Handbook.
Ed. by Francesco Ricci, Lior Rokach, and Bracha Shapira. 2nd ed. Boston,
Massachusetts, USA: Springer US. Chap. 1, pp. 1–34. isbn: 9781489976376.
doi: 10.1007/978-1-4899-7637-6_1 (cit. on pp. 9, 11, 12).

89

http://dx.doi.org/10.1145/2566486.2568012
https://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/Regular-Paterek.pdf
https://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/Regular-Paterek.pdf
https://youtube.googleblog.com/2009/09/five-stars-dominate-ratings.html
https://youtube.googleblog.com/2009/09/five-stars-dominate-ratings.html
https://youtube.googleblog.com/2009/09/five-stars-dominate-ratings.html
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://dx.doi.org/10.1145/1454008.1454047
http://dx.doi.org/10.1145/1454008.1454047
http://dx.doi.org/10.1145/192844.192905
http://dx.doi.org/10.1145/245108.245121
http://dx.doi.org/10.1007/978-1-4899-7637-6
http://dx.doi.org/10.1007/978-1-4899-7637-6_1

Bibliography

Rich, Elaine (1979). “User Modeling via Stereotypes.” In: Cognitive Science
3.4, pp. 329–354. doi: 10.1207/s15516709cog0304_3. url: http://dx.
doi.org/10.1207/s15516709cog0304_3 (cit. on p. 5).

Salakhutdinov, Ruslan and Andriy Mnih (2007). “Probabilistic Matrix Fac-
torization.” In: Proc. 21st Conference on Neural Information Processing
Systems (NIPS’07). (Vancouver, British Columbia, Canada), pp. 1257–1264.
url: http://papers.nips.cc/paper/3208-probabilistic-matrix-
factorization.pdf (cit. on pp. 19, 20, 28, 29).

Salakhutdinov, Ruslan and Andriy Mnih (2008). “Bayesian Probabilistic Matrix
Factorization Using Markov Chain Monte Carlo.” In: Proc. 25th Interna-
tional Conference on Machine Learning (ICML’08). (Helsinki, Finland),
pp. 880–887. isbn: 9781605582054. doi: 10.1145/1390156.1390267 (cit.
on p. 20).

Salzberg, Steven L. (1997). “On Comparing Classifiers: Pitfalls to Avoid and a
Recommended Approach.” In: Data Mining and Knowledge Discovery 1.3,
pp. 317–328. doi: 10.1023/A:1009752403260 (cit. on pp. 58, 61, 62).

Sarwar, Badrul, George Karypis, Joseph Konstan, and John Riedl (2001). “Item-
based Collaborative Filtering Recommendation Algorithms.” In: Proc. 10th
International Conference on World Wide Web (WWW’01). (Hong Kong,
Hong Kong), pp. 285–295. isbn: 1581133480. doi: 10.1145/371920.372071
(cit. on pp. 6, 20, 21).

Schreier, Jason (2014). “Steam Is Getting A Massive Overhaul.” In: Kotaku.
url: http://kotaku.com/steam-is-getting-a-massive-overhaul-
1637818112 (visited on 07/08/2016) (cit. on p. 39).

Shardanand, Upendra and Pattie Maes (1995). “Social Information Filtering: Al-
gorithms for Automating &Ldquo;Word of Mouth&Rdquo.” In: Proc. 1995
Conference on Human Factors in Computing Systems (CHI’95). (Denver,
Colorado, USA), pp. 210–217. isbn: 0201847051. doi: 10.1145/223904.
223931 (cit. on p. 6).

Sifa, Rafet, Christian Bauckhage, and Anders Drachen (2014). “Archetypal
Game Recommender Systems.” In: Proc. 16th LWA Workshops: KDML, IR
and FGWM (LWA’14). (Aachen, Germany), pp. 45–56. url: http://ceur-
ws.org/Vol-1226/paper10.pdf (cit. on p. 40).

Sparling, E. Isaac and Shilad Sen (2011). “Rating: How Difficult is It?” In: Proc.
5th ACM Conference on Recommender Systems (RecSys’11). (Chicago,
Illinois, USA), pp. 149–156. isbn: 9781450306836. doi: 10.1145/2043932.
2043961 (cit. on p. 41).

90

http://dx.doi.org/10.1207/s15516709cog0304_3
http://dx.doi.org/10.1207/s15516709cog0304_3
http://dx.doi.org/10.1207/s15516709cog0304_3
http://papers.nips.cc/paper/3208-probabilistic-matrix-factorization.pdf
http://papers.nips.cc/paper/3208-probabilistic-matrix-factorization.pdf
http://dx.doi.org/10.1145/1390156.1390267
http://dx.doi.org/10.1023/A:1009752403260
http://dx.doi.org/10.1145/371920.372071
http://kotaku.com/steam-is-getting-a-massive-overhaul-1637818112
http://kotaku.com/steam-is-getting-a-massive-overhaul-1637818112
http://dx.doi.org/10.1145/223904.223931
http://dx.doi.org/10.1145/223904.223931
http://ceur-ws.org/Vol-1226/paper10.pdf
http://ceur-ws.org/Vol-1226/paper10.pdf
http://dx.doi.org/10.1145/2043932.2043961
http://dx.doi.org/10.1145/2043932.2043961

Bibliography

Su, Xiaoyuan and Taghi M. Khoshgoftaar (2009). “A Survey of Collaborative
Filtering Techniques.” In: Advances in Artificial Intelligence 2009. doi:
10.1155/2009/421425 (cit. on p. 20).

Sun, Mingxuan, Guy Lebanon, and Paul Kidwell (2011). “Fast Nonparametric
Matrix Factorization for Large-scale Collaborative Filtering.” In: Proc.
14th Fourteenth International Conference on Artificial Intelligence and
Statistics (AISTATS’11). (Ft. Lauderdale, Florida, USA). url: http :
//jmlr.csail.mit.edu/proceedings/papers/v15/sun11a/sun11a.pdf
(cit. on p. 21).

The Apache Software Foundation (2016). Apache Mahout: Scalable Machine
Learning and Data Mining. url: http://mahout.apache.org (visited on
07/14/2016) (cit. on p. 22).

Valve Corporation (2010). Steam Web API Terms of Use. url: http : / /
steamcommunity.com/dev/apiterms (visited on 05/25/2016) (cit. on
p. 45).

Valve Corporation (2016a). Steam Discovery Update. A Smarter Storefront,
Personalized Just for You. url: http : / / store . steampowered . com /
about/newstore (visited on 07/08/2016) (cit. on p. 39).

Valve Corporation (2016b). Valve. url: http://www.valvesoftware.com/
company (visited on 05/25/2016) (cit. on p. 37).

Valve Developer Community (2016). Steam Web API. url: https : / /
developer . valvesoftware . com / w / index . php ? title = Steam _ Web _
API&oldid=195954 (visited on 05/25/2016) (cit. on pp. 45, 51).

Yu, Kai, Shenghuo Zhu, John Lafferty, and Yihong Gong (2009). “Fast Non-
parametric Matrix Factorization for Large-scale Collaborative Filtering.”
In: Proc. 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’09). (Boston, Massachusetts,
USA), pp. 211–218. isbn: 9781605584836. doi: 10.1145/1571941.1571979
(cit. on p. 21).

Zhou, Yunhong, Dennis Wilkinson, Robert Schreiber, and Rong Pan (2008).
“Large-Scale Parallel Collaborative Filtering for the Netflix Prize.” In:
Proc. 4th International Conference on Algorithmic Aspects in Informa-
tion and Management (AAIM’08). (Shanghai, China), pp. 337–348. isbn:
9783540688655. doi: 10.1007/978-3-540-68880-8_32 (cit. on p. 22).

91

http://dx.doi.org/10.1155/2009/421425
http://jmlr.csail.mit.edu/proceedings/papers/v15/sun11a/sun11a.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v15/sun11a/sun11a.pdf
http://mahout.apache.org
http://steamcommunity.com/dev/apiterms
http://steamcommunity.com/dev/apiterms
http://store.steampowered.com/about/newstore
http://store.steampowered.com/about/newstore
http://www.valvesoftware.com/company
http://www.valvesoftware.com/company
https://developer.valvesoftware.com/w/index.php?title=Steam_Web_API&oldid=195954
https://developer.valvesoftware.com/w/index.php?title=Steam_Web_API&oldid=195954
https://developer.valvesoftware.com/w/index.php?title=Steam_Web_API&oldid=195954
http://dx.doi.org/10.1145/1571941.1571979
http://dx.doi.org/10.1007/978-3-540-68880-8_32

	Abstract
	Introduction
	Background
	Recommender Systems
	History
	Basic Terms and Concepts
	User
	Item
	Transaction
	Prediction
	Recommendation

	Techniques
	Content-Based
	Collaborative Filtering
	Demographic
	Knowledge-Based
	Community-Based
	Hybrids

	Challenges and Issues
	Evaluation Methods
	Prediction Accuracy
	Coverage
	Confidence
	Trust
	Novelty
	Serendipity
	Diversity
	Utility
	Risk
	Robustness
	Privacy
	Adaptivity
	Scalability

	Recommender System Libraries
	MyMediaLite
	PREA
	LensKit
	Mahout

	Recommendation Algorithms
	Baselines
	Random
	GlobalAverage
	UserAverage
	ItemAverage
	UserItemBaseline

	Content-Based
	ItemAttributeKNN

	Collaborative Filtering
	ItemKNN
	SlopeOne
	MatrixFactorization
	BiasedMatrixFactorization
	SVDPlusPlus

	Hybrid
	GSVDPlusPlus

	Knowledge Discovery Process
	Selection
	Preprocessing
	Transformation
	Data Mining
	Interpretation/Evaluation

	The Steam Platform

	Related Work
	Materials and Methods
	Development Environment
	Knowledge Discovery Process
	Selection
	AppCrawler
	ReviewCrawler
	FriendsCrawler
	GamesOwnedCrawler

	Preprocessing
	Analysis
	Transformation
	Sampling
	Explicit Rating Data File
	Implicit Rating Data Files
	Additional Input Files

	Data Mining
	Approach
	Hyperparameter Optimization

	Interpretation/Evaluation

	Results
	Algorithms
	Baselines
	Random
	GlobalAverage
	UserAverage
	ItemAverage
	UserItemBaseline

	Content-Based
	ItemAttributeKNN

	Collaborative Filtering
	ItemKNN
	SlopeOne
	MatrixFactorization
	BiasedMatrixFactorization
	SVDPlusPlus

	Hybrid
	GSVDPlusPlus

	Overview

	Discussion
	Conclusion
	Bibliography

