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Abstract

The combination of different gravity field quantities for the purpose of regional gravity field

modeling has become a long term tradition in the Austrian scientific community. Numerous

initiatives have addressed this issue, whereby the accuracy of today’s official geoid solution

is in the range of a few centimeters. However, this could only be achieved by means of a

non-physical correction surface, which has been used to fit the computed geoid solution to

GPS/leveling observations, provided by the Federal Office of Metrology and Surveying (BEV).

Disadvantageously, due to this practical approach the geoid can not be considered as a free

physical surface any longer.

To overcome this problem, a consistent combination of satellite and terrestrial gravity field

observations is needed, and this in turn requires some methodological developments with refer-

ence to the Remove-Compute-Restore (RCR) technique. Such a new approach is, for example,

the rigorous spectral separation of the different gravity field quantities in order to prevent an

overlap in the spectral domain. This leads to a purely physically determined gravimetric geoid,

which is on a comparable level of accuracy to the official geoid solution wherein the achieved

root mean square (rms) value is 2.80 cm. Furthermore, problems connected to an inhomoge-

neous input data distribution are also solved. Moreover, the number of usable gravity data

was always limited because of numerical stability reasons of the used computation method.

Now, the introduced least squares approach with radial basis functions parametrization al-

lows for an increased number of gravity field observations, and a dense spatial distribution

of these points is no longer a problem. The variance component estimation method provides

a-posteriori weights and thus an optimum relative weighting scheme of different gravity field

quantities to each other. It could further be demonstrated, that within the RCR technique

the isostatic component is already well represented by a global gravity field model which im-

plies a sufficient choice of the series expansion degree. The so-called full vector approach also

represents a methodological development, which means that within the reduction step the

magnitude of the computed absolute gravity vector is subtracted from the measured value.

Furthermore, an approximated geoid derived from a global gravity field model is introduced

to minimize linearization errors.

Additionally, several investigations are part of this thesis. For example, it could be demon-

strated how the use of a surface density model improves the computed geoid. The information

content of the different gravity field quantities has also been investigated. It has been found

that at least three times more gravity measurements than deflections of the vertical are re-

quired in order to ensure an equivalent geoid quality. This work has been completed with an

estimation of deflections of the vertical maps, which are based purely on reduced gravity data.

The validation with measured deflections of the vertical shows rms values of less than 0.61”.
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Zusammenfassung

Die Kombination von verschiedenen Schwerefeldgrößen für den Zweck der regionalen Schwere-

feldmodellierung ist ein Thema, welches einschlägige österreichische Forschungsinstitutionen

seit mehreren Jahrzehnten begleitet. Zahlreiche Initiativen beschäftigten sich bereits mit dieser

Thematik, wodurch die Genauigkeit des heutigen, offiziellen Geoids im Bereich von wenigen

Zentimetern liegt. Dies konnte allerdings nur unter Zuhilfenahme einer nicht physikalischen

Korrekturfläche erreicht werden, welche die Lösung an GPS/Nivellement Beobachtungen, be-

reitgestellt vom Bundesamt für Eich- und Vermessungswesen (BEV), zwängt. Dieser Ansatz

hat jedoch den Nachteil, dass damit der physikalische Charakter des Geoids verloren geht.

Basierend auf einer konsistenten Kombination von Satelliten- und terrestrischen Schwerefeld-

beobachtungen konnte dieses Problem beseitigt werden, was wiederum Weiterentwicklungen

im Rahmen der Remove-Compute-Restore (RCR) Technik voraussetzt. Ein solcher, neuer

Ansatz ist beispielsweise die strikte spektrale Trennung der verschiedenen Schwerefeldgrößen,

um eine Überlappung der Komponenten im Spektralbereich zu vermeiden. Dadurch konnte

ein rein physikalisch bestimmtes Geoid auf dem gleichen Genauigkeitsniveau wie die offizielle,

gelagerte Geoidlösung bestimmt werden, wobei der dabei ermittelte root mean square (rms)

Wert bei 2.80 cm lag. In weiterer Folge wurden mittels der kleinste Quadrate Methode und

einer Parametrisierung über radiale Basisfunktionen die Probleme, die mit einer inhomogenen

Datenverteilung einhergehen, gelöst. Bis dato war die Anzahl sowie räumliche Verteilung der

nutzbaren Schweremessungen aus rechentechnischen Gründen limitiert. Des weiteren ermög-

licht die Varianzkomponentenschätzung eine Bestimmung von a-posteriori Gewichtseinheiten

und somit eine optimale relative Gewichtung der verwendeten Schwerefeldgrößen zueinander.

Darüber hinaus konnte gezeigt werden, dass die Isostasie bei entsprechender Wahl der Auf-

lösung eines globalen Schwerefeldmodells bereits größtenteils von diesem repräsentiert wird

und dadurch in der Geoidberechnung vernachlässigt werden kann. Ebenfalls als methodische

Weiterentwicklung zu werten ist der als “full vector approach” bezeichnete Reduktionsschritt,

bei dem der Betrag des ermittelten Schwerevektors vom gemessenen Schwerewert abgezogen

wird, sowie die Einführung eines Näherungsgeoids, um Linearisierungsfehler zu minimieren.

Durch diverse Untersuchungen konnte unter anderem gezeigt werden, wie vorteilhaft sich die

Verwendung eines Oberflächendichtemodells auf die Schwerefeldmodellierung auswirkt. Eben-

so wurde auf den Informationsgehalt der verwendeten Schwerefeldgrößen eingegangen. Dabei

zeigte sich, dass mindestens dreimal so viele Schwerewerte wie Lotabweichungen benötigt wer-

den, um eine gleichwertige Geoidqualität sicherzustellen. Abgerundet wurde diese Dissertation

mit der Schätzung von Lotabweichungskarten für Österreich, welche rein aus den reduzierten

Schwerewerten bestimmt wurden, wobei die Validierung mit gemessenen Lotabweichungen

rms Werte von weniger als 0.61” ergab.
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1 Introduction and Motivation

1 Introduction and Motivation

Knowledge about the Earth’s gravity field is important for many scientific applications. In

physical geodesy, the geoid acts as a role model for the physical Earth and serves as a reference

surface for height systems. Therefore, a precisely determined geoid is essential in order to

realize the idea of orthometric heights, derived from the Global Navigation Satellite System

(GNSS), which is expected to replace classical geodetic spirit leveling during future decades.

To make a steps towards this idea, the main focus of this thesis is to develop an optimum

and consistent combination of terrestrial gravity field data, which consists of absolute and

relative gravity measurements as well as deflections of the vertical with the complementary

satellite derived Global Gravity field Models (GGM) in order to compute a high quality

regional geoid solution. The terrestrial gravity field data contain local components of the

gravity field, whereas the satellite data provides global information. These circumstances are

very important for the combination of both data types because, the terrestrial data covers

mainly the short- to mid wavelengths of the gravity field, whereas a GGM represents the long

wavelengths. Especially with reference to the Remove-Compute-Restore (RCR) technique,

which provides the framework of geoid computation in this research, this fact has to be

considered. In order to simplify the prediction process, the gravity field signal needs to be

smoothed in a first step. Due to the influence of topographic masses, which are of mainly

of short wavelength character, a highly variable gravity field signal is induced and therefore

the influence of the topographic masses needs to be removed from the signal. Furthermore,

terrestrial gravity data are usually not available on a global scale. In case of regional gravity

field modeling, indeed the data are only used in a restricted area of interest and a GGM

is used to model long wavelength effects which are removed from the gravity field signal in

advance. The smoothed input data lead to a computation of a residual gravity field, where all

previously removed parts need to be restored afterwards in order to establish the final gravity

field solution.

A common method for residual gravity field computation is Least Squares Collocation (LSC).

This method has also been used for the determination of the official Austrian geoid solution in

the year 2007 (Pail et al, 2008). Since that time, for instance, highly accurate global gravity

field data from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite

mission (2009-2013) has become available (Drinkwater et al, 2003). The scientific goal of this

mission was to determine the static Earth gravity field with a geoid height accuracy of about

1-2 cm and a spatial resolution of approximately 80 km. Additionally, the Gravity Recovery

and Climate Experiment (GRACE) satellite mission (Tapley et al, 2004), has been collecting

gravity field information since the year 2002 and is expected to continue its mission until the

1



1.1 Main Research Goals

end of 2016. The combined information from mainly these two satellite missions allows for an

unprecedented accuracy of the long wavelength component and leads to the high resolution

global model GOCO05s (Mayer-Gürr et al, 2015), which is considered as reference GGM in

this research. Moreover, Digital Terrain Models (DTM) provided by the Federal Office of

Metrology and Surveying (BEV) are available to cover the very high frequent part of the

gravity field signal within the central European region. In order to ensure global topographic

coverage, a corresponding DTM model is available too.

In this thesis an alternative approach for regional gravity field modeling by means of a least

squares estimation process - a Gauss Markov model in association with Radial Basis Functions

(RBF) - is used instead of LSC. This new approach for the Austrian gravity field recovery

enables the handling of an inhomogeneous input data distribution. Therefore, the amount of

data which can be incorporated to a geoid solution increases. The weighting scheme is based

on the Variance Component Estimation (VCE) method, which provides a proper relative

weighting among different observation groups.

Furthermore, this research follows the idea to incorporate as much information as possible into

the gravity field estimation process. This includes the use of all available DTM information,

(beyond the Hayford zone of 167 km) and also the full information in terms of degree and

order (d/o) provided by a GGM. This in turn will lead to a spectral overlap of long- and

short wavelength components within the RCR procedure and in an inconsistent treatment of

the gravity field quantities. To avoid this problem, a rigorous separation of the global and

local remove and restore step is recommended [see e.g. (Pock et al, 2014) or (Rieser, 2015)].

By means of a spherical harmonic expansion of the DTM and a proper combination with the

GGM, a spectral separation is possible. This finally reveals in a significant improvement of

the computed geoid solution. Dividing the topographic masses into a long wavelength and a

remaining high frequency part was one of the key applications to remove the inconsistencies

between a gravimetric geoid and GPS/leveling measurements, which has always been occurred

in previous Austrian geoid computation projects.

Further methodological improvements are based on the introduction of an approximated geoid

and replacing the usually used normal gravitational potential of a rotating ellipsoid by intro-

ducing a more realistic Taylor point in order to minimize linearization errors. In addition,

the incorporation of density information into the computation process, is only one example

mentioned at this point to improve the quality of the computed gravity field solutions.

1.1 Main Research Goals

The starting point of this thesis deals with previous Austrian geoid computation initiatives.

Despite strenuous efforts, the national geoid solution still suffers from inconsistencies between

GPS/leveling observations and the computed gravimetric geoid. As a consequence, the geoid

was fitted to GPS/leveling measurements, but disadvantageously the pure physical nature

2



1.1 Main Research Goals

of the geoid as an equipotential surface is lost. This practical approach follows the require-

ments specified by the BEV and reveals a highly accurate geoid solution due to the applied

constraints.

A main aim of this research is to establish a gravimetric geoid or a combined solution with

deflections of the vertical at least on the same level of accuracy as the present national geoid

solution but without applying constraints. This is only possible if a proper combination

of different gravity field quantities can be found and the reasons for the inconsistencies are

identified. One possible reason for this problem is attributed to a spectral overlap in the

combination of long wavelength and low frequency satellite derived data, with the medium to

high frequency short wavelength data provided by a DTM. This is illustrated in Fig. 1.1. A

practical solution to overcome this problem is to introduce a non-physical correction surface

which absorbs all inconsistencies in the modeling, but this will not be the approach of this

research.

f

Topography
Satellite Model
Spectral overlap

Rlocal n=0
global

n=max

Figure 1.1: Combination of heterogeneous data within the RCR technique and spectral overlap

Apart from this important aim, several methodological developments and their impact on the

geoid computation are part of investigations, which are carried out on the example of Austria.

The findings can of course be applied to larger areas. Some of the investigated effects have a

minor impact on the computed geoid, but some of them are recommended to be considered in

the computation in order to improve the geoid quality. This, for example, includes the effect

of the atmospheric correction of the gravity field quantities. Another investigation deals with

linearization. The introduction of a new Taylor point, represented by an approximated geoid

instead of the common ellipsoidal representation, leads to minimized linearization errors in

the computation process. In this case the normal gravity field is also exchanged. Further

improvements are attributed to a more realistic topographic density assumption and the use

of the full gravity vector instead of only the radial derivation of the potential. The effect

of a global DTM coverage is also presented. Additionally, the impact of different DTM

resolutions on the geoid computation have been investigated. For a combined geoid solution,

3



1.2 Outline of this Thesis

the contribution of each gravity field quantity is shown and also the relative weighting scheme

of the individual observation groups is discussed in more detail.

For validation purposes, 192 GPS/leveling observations and their corresponding geopotential

numbers are available. Additionally, the official Austrian geoid is available on a grid. As a

side product, a dense map of deflections of the vertical is estimated and validated with real

measured ξ and η quantities. It must be noted, that the achieved results are established

within the “Geoid for Austria - Regional gravity FIELD improved” (GARFIELD) project. A

second approach within this project was undertaken by (Rieser, 2015), who mainly focused

on the LSC method and the combination of terrestrial data with GOCE gravity gradients.

1.2 Outline of this Thesis

At the beginning chapter 2 provides an overview of relevant height systems which are essential

for regional gravity field modeling. Initially, the physical background is presented and after a

discussion of important geodetic height systems, the chapter ends with a closer look at special

features of the Austrian height system. This leads to corrections which have been applied to

the gravity field data in order to obtain the desired orthometric heights.

In chapter 3 fundamentals of physical geodesy are presented. Important relations and po-

tential theory are discussed in a first step with a special focus on spherical harmonics and

its corresponding representation of the Earth gravitational potential. Afterwards, function-

als of the disturbing potential and spherical approximation as well as linearization issues are

discussed.

An overview about the available database for Austrian geoid determination is presented in

chapter 4. This includes a historical review, starting from the early beginnings of the Aus-

trian geoid computation and moving through several geoid projects carried out in the recent

past. It continues with background information to the national geoid solution. Different

relevant input datasets are later discussed in more detail. This is important because these

datasets such as gravity measurements or deflections of the vertical, are inhomogeneous and

historically compiled. This provides a first indicator of the challenging task of precise regional

gravity field modeling. Finally, several density models are presented.

The principles of least squared adjustment are shown in chapter 5. The chapter continues

with a closer look at the VCE method, as well as the relative weighting and regularization

issues. This is also an important discussion, because VCE provides not only a proper weighting

between different observation groups, it is also used for the determination of the regularization

parameters. Lastly, the obtained observation groups are presented.

The estimation of regional gravity field solutions based on the concept of a least squares ap-

proach with RBF parametrization is discussed in chapter 6. This new approach for Austrian

geoid computation is the backbone of this thesis and represents the compute step within the
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RCR procedure. Several effects and results concerning the remove and the restore steps are

presented in this chapter. Furthermore, degree variances and their shape controlling character

for RBFs are discussed.

The main results of this thesis are presented in chapter 7. An initial step shows the reduced

input datasets and the resulting residual geoid heights, based on the RBF approach. Next,

the achieved results are validated with independent GPS/leveling observations and also with

the official Austrian geoid which is given on a grid. Afterwards, the effects of several method-

ological developments are presented. This also includes small effects on the geoid estimation

process, from which a recommendation of whether the single effect is important for precise

geoid determination is desired. This holds for manifold investigations which are presented

subsequently. At the end of the chapter, estimated maps of deflections of the vertical and

their corresponding validation are shown.

Finally, chapter 8 summarizes the achieved results and makes some recommendations related

to the Austrian geoid computation. Some open questions for further gravity field studies are

also discussed.

In general, the computation of the results have been undertaken with the Gravity Object

Orientated Programming System (GROOPS) software, which was originally developed under

the lead of Univ.-Prof. Dr.-Ing. Torsten Mayer-Gürr. The package is equipped with a

Graphical User Interface (GUI), based on the Extensible Markup Language (XML) and all

C++ routines, developed as part of this thesis are included in the software package. The

software interface is shown in Fig. 1.2.

Figure 1.2: Example of GROOPS software interface
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2 Height Systems

2 Height Systems

This chapter discusses different height systems which are important for regional gravity field

modeling. At the beginning, the physical background is presented, and due to the fact that

heights are closely connected to physical geodesy, these topics can not be easily separated from

each other. Furthermore, a closer look at the Austrian height system is more than justified.

Due to historical reasons close attention must be paid to some special characteristics and

corrections which are recommended for consideration in order to obtain rigorous orthometric

heights.

In general, an arbitrary physical height expressed in SI units is defined as

Height =
Potentential difference

Gravity
=

m2/s2

m/s2
= [m] .

This equation shows that a height depends on the potential difference of a point with respect

to the geoid, as well as on gravity. The potential difference is denoted as geopotential number,

which in turn is connected to an equipotential surface.

2.1 Physical Background of Height Systems

2.1.1 Equipotential Surface

According to (Heiskanen and Moritz, 1967) a surface which is characterized by the same

constant potential value is defined as an equipotential surface (see also sec. 3.2). Another

characterization is determined by the fact that these surfaces are not parallel to each other,

because the passing gravity vector is orthogonal to each equipotential surface. Hence, the

corresponding plumb lines are curved, due to mass anomaly and mass inhomogeneity in the

interior of the Earth.

The length of such a curved plumb line, starting from the Earth’s surface towards the geoid, is

referred to as orthometric height H (see sec. 2.2.1) and the Austrian height system is defined

by orthometric heights. The relationship between equipotential surface, plumb line and the

corresponding gravity vector is illustrated in Fig. 2.1. In general, the geoid as a special

equipotential surface is defined as

W = W0 = const. (2.1)
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Figure 2.1: Level surfaces and plumb lines; Inspired by (Hofmann-Wellenhof and Moritz, 2006)

In a first approximation, a global geoid with constant geopotential W0 corresponds to the

mean sea level and conceptual continuation of the ocean surface underneath the Earth’s solid

continents (Hofmann-Wellenhof and Moritz, 2006).

2.1.2 Geopotential Numbers

A single geopotential number C is defined as the potential difference between two points

connected by spirit leveling. It can be obtained by precise spirit leveling, in combination with

gravity measurements along the leveling line. If the potential difference is given between a

point P , located on the Earth’s surface, and the geoid, the following relationship is valid

C = W0 −WP = −∆W =

P∫
0

g dn ≈
P∑
0

∆n · g0 , (2.2)

where ∆n is the height difference obtained by spirit leveling and g0 denotes the measured

gravity. The physical dimension of a geopotential number is [m2/s2] and it is characterized

as path-independent.

Different heights may be obtained by means of dividing the geopotential number with different

gravity definitions. This demonstrates how the geopotential number is converted into a length

unit. Related to this work, geopotential numbers are also used for validation purposes. The

potential is independent of an error related to the ellipsoidal height and may provide an

indicator for the quality of the corresponding GPS/leveling observations. If the potential and

geoid height deviations are on the same level of accuracy, the corresponding ellipsoidal height
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of the GPS/leveling measurement is reliable and the main part of the error is supposed to be

in the orthometric height component.

2.2 Important Geodetic Height Systems

2.2.1 Orthometric Heights

The orthometric height H is defined as height above the geoid measured along the curved

plumb line. Through examination of Fig. 2.2 the orthometric height is seen as the plumb line

segment between a point P located on the Earth’s surface and the geoid point P0. This segment

is curved since the equipotential surfaces are not parallel (see sec. 2.1.1). The orthometric

height is mathematically defined as

H =
C

g
, (2.3)

where the geopotential number of the point P is determined as C = W0 −WP . The mean

gravity as the average value of gravity along the plumb line reads

g =
1

H

H∫
0

g(H) dH , (2.4)

where g(H) denotes the actual gravity of a variable point at any height.

Figure 2.2: General definition of the ellipsoidal height h, the orthometric height H and the geoid
height N
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The rigorous computation of the mean gravity value g along the plumb line is impossible

because this requires knowledge about the complete mass and density distribution of the

Earth’s crust. Therefore, the orthometric height is not determined rigorously. Different

ways to derive the mean gravity on purely hypothetical assumptions are based on following

prominent approaches:

• Prey-Poincare: g = g + 0.0424 H (g [gal], H [km]),

• Helmert: g = g + (0.3086− 0.08382σ)H2 (g [gal], σ [g/cm3], H [km]),

• Mader: g = 1
2(g + g0), (g, g0 [gal]).

The latter approach presupposes that the gravity varies only linearly along the plumb line

which is only an approximation of reality.

In case of the Austrian orthometric height system, the Federal Office of Metrology and Sur-

veying (BEV) decided to follow their own approach, tailored to the needs of the special

topographic situation within Austria. In general, the mean gravity determination is based on

the Prey-Poincare method but with some refinements. The computation is divided into three

steps:

1. Remove the impact of the masses onto point P ,

2. compute the gradient correction to point P ′,

3. restore the masses in point P ′.

The point P ′ can be any arbitrary point along the plumb line. The computation of the mean

gravity is critical, because the mass effects do not vary linearly along the plumb line which

leads to errors in orthometric heights. Moreover, also the mean gravity value along the plumb

line computed from Prey-Poincare does not match the modeling requirements (Ruess, 2001).

Several refinements related to gravity weighting and different numbers of nodal points along

the plumb line have been investigated by the BEV. The optimum results are achieved for

points with a height of < 1400 m by using a weighted Kepler integral approach based on

three weighted nodal points. For heights > 1400 m a Simpson integral approach based on five

weighted nodal points is required which leads to minimized gravity errors of < 1.1 mgal (Ruess,

2001). Further details related to this topic can be found in e.g. (Meurers et al, 2001).

The geoid height N is geometrically defined as the difference between the ellipsoidal height

h and the orthometric height H (see Fig. 2.2). Depending on the chosen reference ellipsoid

which represents an idealized figure of the Earth, global geoid variations up to ± 100 m occur.

The geoid, which is a special equipotential surface (see sec. 2.1.1), is irregular in its shape

but considerably smoother than the physical Earth topography and coincides with the ocean

surface in a first approximation. The geoid height is given as
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N = h−H . (2.5)

From this point of view the geoid represents a combination of a geometrical quantity h,

obtained from Global Positioning System (GPS) measurements and a physical quantity H,

based on spirit leveling in combination with gravity measurements. If two of the quantities in

Eq. (2.5) are known, the third can be computed immediately, due to this linear relationship.

This is the basic idea of the GPS/leveling concept (see sec. 4.2.3). Therefore, an important

aspect is the computation of centimeter and sub-centimeter geoid solutions. One may con-

clude, if the geoid is accurate enough, the spirit leveling can be omitted and the orthometric

height is calculated directly. This would represent a significant progress in the field of geodesy,

because spirit leveling is a very time consuming work.

2.2.2 Normal Heights

It is also possible to define a height HN , which avoids a density hypothesis for the Earth’s

crust. This was shown for the first time by M.S. Molodensky who introduced this method of

determining the physical surface of the Earth. It can be calculated through introducing an

approximation of the real gravity field by a normal reference field with normal potential. In

this case, all physical quantities can be calculated in a rigorous mathematical process.

Conventionally, normal heights are defined as measured values starting from a point P , on the

Earth’s surface along the plumb line towards a point P0, on the quasigeoid. The quasigeoid is

smoother compared to the geoid, but has no physical meaning (Heiskanen and Moritz, 1967).

In Austria the differences to the geoid are of approximately ± 30 cm, based on the quasigeoid

solution of (Denker and Torge, 1998). The normal height is mathematically defined as

HN =
C

γ
, (2.6)

where C is the potential difference in point P . The mean normal gravity γ along the plumb

line is given as

γ =
1

HN

HN∫
0

γ(HN ) dHN , (2.7)

where γ(HN ) is the gravity according to (3.40). Furthermore, the difference between the

ellipsoidal height and the normal height is denoted as height anomaly ζ

ζ = h−HN , (2.8)
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where in turn the relationship to the orthometric height H can be found by

N − ζ = HN −H . (2.9)

2.2.3 Ellipsoidal Heights

If points, located on Earth’s surface are determined with respect to a reference ellipsoid, they

are categorized as ellipsoidal or sometimes also denoted as geodetic coordinates ϕ and λ, re-

spectively. This pair of coordinates is referred to a corresponding ellipsoidal height h, which is

connected to an ellipsoid of revolution, completing the coordinate triple. This ellipsoid is more

appropriate to approximate the Earth shape, compared to an ordinary sphere. For applica-

tions as GPS, the Word Geodetic System-84 (WGS-84) was established. The corresponding

WGS-84 ellipsoid parameters are presented in Tab. 2.1.

Table 2.1: Parameters of the WGS-84 ellipsoid (Hofmann-Wellenhof and Moritz, 2006)

Parameter Value Meaning

a 6378137 [m] semi-major axis of ellipsoid

GM 3986004.418 · 108 [m3s−2] Earth grav. constant × mass

w 7292115 · 10−11 [rad s−1] Earth angular velocity

f 1/298.257223563 ellipsoid flattening

The ellipsoidal height is independent of the Earth’s gravity field, because it is defined in a

purely geometrical sense. Nevertheless, it depends on the chosen reference ellipsoid, because

h is defined as height above the ellipsoid (see Fig. 2.2). From a historical point of view,

WGS-84 is based on the GRS80 reference system (Moritz, 1980b). The reference ellipsoid

of WGS-84 differs slightly from GRS80 due to later refinements. Most of these refinements

are essential for high-precision satellite orbit calculation, but have a rather small effect on

terrestrial applications.

2.2.4 Spheroidal Heights

The Austrian height system is characterized by differences between rigorously defined ortho-

metric heightsH (see sec. 2.2.1) and so-called“MGI Gebrauchshöhen”, denoted asHsph., which

have the character of an orthometric height but are effected by systematic errors due to his-

torical reasons. The use of spheroidal heights, also sometimes denoted as normal-orthometric

heights, is a result of the fact that real gravity measurement along the leveling line could not

always be carried out in the 19th century. This holds true especially for measurements in

mountainous regions. Therefore, the normal gravity along the spirit leveling line, denoted as

γ∗, is computed and the spheroidal heights are obtained from normal geopotential numbers

C∗. A spheroidal height is defined as
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Hsph. =
P∑
0

∆n · γ
∗

γ
=
C∗

γ
, (2.10)

where the combination of the geometrically defined normal gravity and the measured height

differences ∆n, which is physically defined, can not be clearly classified either as a physical

or geometrical quantity anymore. Finally, division by the mean normal gravity γ converts it

into a spheroidal height.

This height can only be interpreted as an approximation of an orthometric height because of

missing real physical gravity measurements. The height definition of Eq. (2.10) is the basis

for many products, distributed by the BEV. This is important because it also includes the

Austrian gravity data, which are originally related to spheroidal heights. The transition from

spheroidal to orthometric heights is discussed in sec. 2.4.

Figure 2.3: Special characteristics of the Austrian height system - The reference surface is connected
to spheroidal heights whereas the orthometric heights are related to the geoid. The devia-
tion from spheroidal to the orthometric heights, which are needed for geoid determination
is denoted as ∆H. [courtesy by BEV1]

1www.bev.gv.at
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2.3 Comparison of Height Systems

Each height system has its own characteristic. By means of the geopotential number C,

defined in Eq. (2.2), it is possible to obtain different kinds of heights, depending on the chosen

gravity value. In particular, this leads to

• Orthometric heights: g ,

• Normal heights: γ .

In theory, this gives an unlimited number of height systems by calculating the gravity in

slightly different ways. Focusing on the height systems treated in this chapter, one can state

that unlike orthometric heights, normal heights can be determined exactly and without any

hypothesis. Another aspect is that normal heights are as accurate as the geopotential numbers

because the normal gravity can be calculated in a rigorous mathematically manner. For the

definition of a national height reference system, orthometric heights as well as normal heights

are suitable. For example, the German height system is related to normal heights. Both

heights are based on geopotential numbers and therefore defined path-independent. Related to

this, an important difference is that the geoid has a physical meaning, whereas the quasigeoid

which is connected to normal heights does not. A short summary of the different height

systems discussed in this chapter is presented in Tab. 2.2.

Table 2.2: Characterization of different height systems (Marti and Schlatter, 2002)

Criteria Geop. num-
ber

Orthometric Ellipsoidal Normal

Notation C H h HN

SI-unit m2/s2 m m m

Hypothesis-free yes no yes yes

Reference geoid geoid ellipsoid quasigeoid

Determination spirit leveling spirit leveling GNSS spirit leveling

Gravity meas. yes yes no yes

2.4 General Information on the Austrian Height System

The Austrian height system has historically developed, and is grounded on measurements

conducted by the Militär- Geographisches Institut (MGI). This spirit leveling and the height

system is connected with the Mediterranean sea. The corresponding reference point was

defined as the local sea level in the year 1875 at Molo Sartorio, Trieste, Italy. All Austrian

heights are originally related to this fundamental point. In 1923 the MGI was replaced by

the newly established Federal Office of Metrology and Surveying (BEV). After the war the

Austrian height system was still connected to Molo Sartorio but the reference point for new
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spirit leveling campaigns had changed to Bruck/Fusch, Salzburg, where a spheroidal height

(see sec. 2.2.4) representation was available at the train station building. After 1962 modern

measurement equipment has become available and old measurements were replaced and during

1966-2001 steady improvements have been applied to the height system.

The Austrian spirit leveling is linked with international measurement campaigns. Under the

lead of the German Federal Agency for Cartography and Geodesy (BKG) there is currently

work in progress to unify the different height systems within Europe. This initiative is called

the United European Leveling Network (UELN) and is connected to the tide gauge datum

point of Amsterdam, The Netherlands. The differences of the manifold height systems, with

respect to this datum point with its realization in the EVRS2007 system, are illustrated in

Fig. 2.4. More details on this topic can be found in (Sacher et al, 1999) or (Mäkinen, 2008).

Figure 2.4: National reference levels with respect to the EVRS2007 [cm] (left); Realization of the
UELN-net and 11 reference points of the EVRS2007, where one of this points is located
within Austria (right) [courtesy by BKG2]

Based on overlapping spirit leveling measurements collected during the last 70 years, a vertical

height change in Austria has been observed by the BEV. A map providing information on the

velocity of the height change per year is shown in Fig. 2.5. Currently, the BEV is working

on a kinematic height adjustment based on all available spirit leveling observables in order

to provide to the community time dependent geopotential numbers and their corresponding

vertical velocity. These time dependent changes are a potential error source, especially for

GPS/leveling observations, because the Austrian spirit leveling is not carried out within a

single measurement epoch and is therefore affected by such a height change.

2www.bkg.bund.de
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Figure 2.5: Vertical changes over the last 70 years derived from redundant spirit leveling measure-
ments [mm/year]; (Ruess and Mitterschiffthaler, 2015)

The height differences occurring between Austria and neighbouring countries are shown in

Fig. 2.6. These differences must be considered in case of any cross-border projects.

Figure 2.6: Differences between the Austrian height system and the neighbouring counties [mm];
[courtesy by BEV3]

For Austrian geoid computation the orthometric height is of special interest because it defines

the official height system. The gravity measurements are connected to spheroidal heights and

a transition from spheroidal to orthometric heights is needed.

3www.bev.gv.at
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Transition from Spheroidal to Orthometric Heights

For the transition of the spheroidal heights to orthometric heights the BEV provides a trans-

formation grid where every grid point is assigned with an individual ∆H value (see sec. 2.2.4).

The orthometric heights are the desired quantity related to the geoid computation but the

measured gravity is originally related to spheroidal heights. The transformation to a rigorous

orthometric heights is given as

H = Hsph. + ∆H , (2.11)

where, in a practical approach, ∆H is computed using a third degree polynomial to interpolate

the positions of the gravity measurements. In a first step, the corresponding heights of all

gravity measurements within Austria are transformed. The occurring height changes are

shown in Fig. 2.7. The corrections for the gravity measurements located in the western part

of Austrian are smaller because of the geographical location which is closer to Molo Sartorio.

Figure 2.7: Applied height differences ∆H to the gravity stations within Austria based on the BEV
transformation grid

The range of the height corrections is -0.5 m to 0.2 m and has been applied to all gravity

stations within Austria. The BEV specifies the accuracy of the height grid of approximately

6 cm. Due to the lack of information for neighbouring countries, no corrections are applied

and the heights are assumed to be orthometric. A detailed description how to perform the

transformation and many more details related to the Austrian height system can be found

in (Briese et al, 2011).
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3 Fundamentals of Physical Geodesy

In this chapter the fundamentals of physical geodesy are presented. This work follows the

ideas of Torben Krarup, Aleksanteri Heiskanen and Helmut Moritz (Heiskanen and Moritz,

1967), who are three prominent pioneers in the field of physical geodesy. Hence, important

parts from those works, with a connection to this thesis, are described in a compact way.

3.1 Newtons Law of Gravitation

This section provides a basic summary of potential theory. On the basis of Newton’s law of

gravitation, the force of attraction between two bodies with mass m1 and with mass m2 at

distance r from each other is given as

F = G
m1m2

r2
, (3.1)

with the Newtons gravitational constant G = (6.6742 ± 0.0010) · 10−11m3/kg s2. The com-

bination of Eq. (3.1) with Newton’s second law F = ma, which is valid in case of constant

masses, provides the acceleration of the body of mass m1 with respect to the center mass of

both bodies according to

a =
Gm2

r2
. (3.2)

In case of the equivalence principle, a vector representation of the acceleration a or g can be

obtained by deriving the acceleration from a scalar function denoted as gravitational potential

V (see sec. 3.2). For the exterior of the Earth, the Laplace equation is valid and the gravita-

tional potential can be expressed by spherical harmonic functions. This is essential and gives

the starting point for the development of different potentials in terms of spherical harmonics

as it is done in this chapter. A basic introduction to spherical harmonics is given in sec. 3.3.

3.2 Important Relations in Physical Geodesy

Initially, forces or accelerations acting on an arbitrary body located on the Earth’s surface

must be defined. The two main accelerations are the gravitational acceleration ggrav caused

by the gravitational attraction of Earth’s mass, and the centrifugal acceleration gacc which is
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caused by Earth’s rotation. The latter depends directly on the distance to the Earth rotation

axis and reaches its maximum at the equator, whereas at the poles the centrifugal acceleration

vanishes. An Earth located gravimeter is also affected by these forces. Additionally, masses in

the solar system (e.g. sun and moon) must also be considered, because they are introducing

a time-varying field due to their motion relative to the Earth. In potential theory all masses

are generating potentials. On the one hand, the gravitational potential V and on the other

hand, the centrifugal potential Φ exists, which in turn are causing accelerations. In a first

step, the combination of gravitational acceleration and centrifugal acceleration is denoted as

gravity vector g and it follows

g = ggrav + gcen , (3.3)

where every single acceleration is equipped with an associated potential. The Earth’s gravity

potential is then given according to

W = V + Φ . (3.4)

In general, a potential is defined as work which is needed to transport a mass from a certain

point to infinity (Heiskanen and Moritz, 1967). In a geodetic sense, such an equipotential

surface (see sec. 2.1.1) is denoted as geoid if it coincides with the mean sea surface. It serves as

a reference surface for height systems. The gravity vector g can be expressed by the gradient

operator applied on the Earth’s gravity potential W

g = ∇W =


∂W
∂x
∂W
∂y
∂W
∂z

 . (3.5)

The magnitude of the gravity acceleration vector ‖g‖ provides the scalar absolute gravity

value. Gravity has the physical dimension of an acceleration and is, due to historical reasons,

measured in gal, named after Galilio Galilei. The link to SI units is given with

1 gal = 0.01 m/s2 . (3.6)

The same relation also holds for the gravitational potential V , where the derivatives are related

to the components of the gravitational acceleration according to

ggrav = ∇V =


∂V
∂x
∂V
∂y
∂V
∂z

 . (3.7)

18



3.2 Important Relations in Physical Geodesy

This also holds true for the centrifugal potential which is described in more detail in sec. 3.4.2.

For several point masses the superposition principle is valid

V =
Gm1

l1
+
Gm2

l2
+ · · ·+ Gmn

ln
= G

n∑
i=1

mi

li
, (3.8)

where G is the gravitational constant and mi the mass of the attracting point. The Euclidean

distances are denoted with li. Assuming a continuous mass distribution and a corresponding

density ρ, the gravitational potential can be expressed as Newtonian volume integral formula

according to

V = G

∫∫∫
Ω

ρ

l
dΩ . (3.9)

Furthermore, a point which is located outside the masses fulfills the Laplace equation which

is characterized as harmonic

∆V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0 . (3.10)

This in turn provides the opportunity to represent the exterior potential by spherical har-

monics (see sec. 3.3). For the interior potential, the Poisson equation is valid because of

non-vanishing density according to

∆V = −4πGρ . (3.11)

More details on interior and exterior potentials can be found in sec. 3.3.1. The general topic

of potential theory is characterized as fundamental knowledge in physical geodesy and is well

documented in literature [cf. (Moritz, 1980a) or (Hofmann-Wellenhof and Moritz, 2006)].
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3.3 Spherical Harmonics

Due to the fact that the exterior potential is characterized as harmonic, the gravitational

potential V can be expanded into spherical harmonics. One possible way to solve the Laplace

equation [Eq. (3.10)] is to express it in terms of spherical coordinates. The Laplace equation

is a partial differential equation of 2nd order, and expressed in terms of spherical coordinates

it follows

r2∂
2V

∂r2
+ 2r

∂V

∂r
+
∂2V

∂ϑ2
+ cotϑ

∂V

∂ϑ
+

1

sin2 ϑ

∂2V

∂λ2
= 0 . (3.12)

Two possible solutions of this differential equation are given for the interior [i] and the exterior

[e] potential of a unit sphere as

V i(r, ϑ, λ) =

∞∑
n=0

rnYn(ϑ, λ) , (3.13)

V e(r, ϑ, λ) =
∞∑
n=0

1

rn+1
Yn(ϑ, λ) , (3.14)

with Yn(ϑ, λ) as the Legendre surface spherical harmonics, which in turn can be reformulated

to the following equations, either

Yn(ϑ, λ) = Pnm(cosϑ) cosmλ , (3.15)

or

Yn(ϑ, λ) = Pnm(cosϑ) sinmλ , (3.16)

where the Pnm are the associated Legendre functions and n and m denote the degree and

order. The Legendre functions can be found according to

Pnm(t) = (1− t2)
m
2
dmPn(t)

dtm
with Pn(t) =

1

2nn!

dn

dtn
(t2 − 1)n and t = cosϑ . (3.17)

After a combination of all possible solutions of the differential equation, the Laplace series

reads

Yn(ϑ, λ) =

∞∑
n=0

[cnmPnm(cosϑ) cosmλ+ snmPnm(cosϑ) sinmλ] , (3.18)
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where the cnm and snm coefficients are arbitrarily chosen in a first step. Later, the coefficients

from e.g. a Global Gravity field Model (GGM) or the topographic potential coefficients will be

used in the calculation. In general, after combining Eq. (3.18) with Eq. (3.15) and Eq. (3.16),

two different representations in terms of interior and exterior potential are found

V i(r, ϑ, λ) =

∞∑
n=0

rn
n∑

m=0

cnm Pnm(cosϑ) cosmλ︸ ︷︷ ︸
Cnm

+snm Pnm(cosϑ) sinmλ︸ ︷︷ ︸
Snm

 , (3.19)

V e(r, ϑ, λ) =
∞∑
n=0

1

rn+1

n∑
m=0

cnm Pnm(cosϑ) cosmλ︸ ︷︷ ︸
Cnm

+snm Pnm(cosϑ) sinmλ︸ ︷︷ ︸
Snm

 . (3.20)

It is possible to write both equations in a more compact notation by taking fully normalized

Legendre functions denoted as P̄nm, into account [see (Hofmann-Wellenhof and Moritz, 2006,

p.23)]. This leads to

V i(r, ϑ, λ) =

∞∑
n=0

rn
n∑

m=−n
āinmȲnm(ϑ, λ) , (3.21)

V e(r, ϑ, λ) =

∞∑
n=0

1

rn+1

n∑
m=−n

āenmȲnm(ϑ, λ) , (3.22)

where the difference is again only attributed to the distance r, which is either inside or outside

the attracting masses. Finally, introducing boundary conditions according to (Hofmann-

Wellenhof and Moritz, 2006, p.27, p.56), to Eq.(3.19) and Eq.(3.20), the following expressions

are found

V i(r, ϑ, λ) =
GM

R

∞∑
n=1

( r
R

)n n∑
m=0

āinmȲnm(ϑ, λ) , (3.23)

V e(r, ϑ, λ) =
GM

R

∞∑
n=1

(
R

r

)n+1 n∑
m=0

āenmȲnm(ϑ, λ) . (3.24)

3.3.1 Topographic/Isostatic Potential in Terms of Spherical Harmonics

In general, spherical harmonic coefficients in the spectral domain represent the global structure

and the irregularities of the geopotential field. If it is required to express the geopotential

field in terms of spherical harmonics, first the fundamental Newtonian integral formula for the

gravitational potential is given according to Eq. (3.9). A closed solution of the triple integral
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3.3 Spherical Harmonics

is impossible, due to the unknown density and mass distribution inside the Earth. Taking

into account that the solid spherical harmonics are an orthogonal set of solutions, which are

satisfying the Laplace equation represented in a system of spherical coordinates, the reciprocal

distance between integration point Q and computation point P can be expressed as a series of

Legendre polynomials (Heiskanen and Moritz, 1967). Now the addition theorem of spherical

harmonics can also be applied [see e.g. (Hobson, 1931) or (Freeden, 1985)]. Finally, the

equation which connects the spatial and spectral domains of the interior potential, in a fully

normalized representation is given according to

V i(P ) =
GM

R

∞∑
n=1

( r
R

)n n∑
m=−n

1

M(2n+ 1)

∫∫∫
Ω

(
R

r′

)n+1

Ȳnm(Q)ρ(Q)dΩ(Q)

︸ ︷︷ ︸
āinm

Ȳnm(P ) ,

(3.25)

where the fully normalized coefficients āenm are of interest. This also holds for the exterior

potential. Analogously to the interior potential it follows

V e(P ) =
GM

R

∞∑
n=1

(
R

r

)n+1 n∑
m=−n

1

M(2n+ 1)

∫∫∫
Ω

(
r′

R

)n
Ȳnm(Q)ρ(Q)dΩ(Q)

︸ ︷︷ ︸
āenm

Ȳnm(P ) ,

(3.26)

These two equations, Eq. (3.25) and Eq. (3.26), are the basis for the development of spherical

harmonics based on topographic, isostatic or the atmospheric potential.

In the following, a detailed explanation on how the topographic potential may be expressed in

terms of spherical harmonics is provided. This approach and its implementation is of essential

interest, in order to avoid a double consideration of the topographic/isostatic masses within

the Remove-Compute-Restore (RCR) procedure. The gravitational potential coefficients de-

rived from topography in the spectral domain are computed from a Digital Terrain Model

(DTM). After applying the series expansion for the inverse distance 1
l and introducing Leg-

endre polynomials as well as the addition theorem of spherical harmonic functions, Eq. (3.9)

can be reformulated to Eq. (3.24). This procedure is well documented and can be found in

numerous publications [cf. (Rummel et al, 1988), (Denker, 1988), (Tsoulis, 1999), (Kuhn and

Seitz, 2010), (Wild-Pfeiffer, 2007), (Grombein et al, 2013), (Rieser, 2015) or (Kuhn and Hirt,

2016)].

The topographic potential coefficients, here denoted as āenm, are derived by introducing a

constant crustal density ρ as
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3.3 Spherical Harmonics

āenm =
ρ

M(2n+ 1)

∫∫∫
Ω

( r
R

)n
Ȳnm(λ, ϑ) dΩ . (3.27)

The infinitesimal volume element can be computed according to dΩ = r2dσ = r2sinϑ dr dλ dϑ,

when inserted in Eq. (3.27), it reads

āenm =
ρ

M(2n+ 1)

1

Rn

∫∫
σ

ru∫
rl

rn Ȳnm(λ, ϑ) r2sinϑ dr dλ dϑ . (3.28)

The integration in radial direction is now applied

āenm =
ρ

M(2n+ 1)

1

Rn

∫∫
σ

ru∫
rl

rn+2 Ȳnm(λ, ϑ) dr dσ , (3.29)

and after insertion of the upper and lower integration boundaries, finally the topographic

potential coefficients āenm are obtained according to

āenm =
ρ

M(2n+ 1)(n+ 3)

∫∫
σ

(
rn+3
u

Rn
−
rn+3
l

Rn

)
Ȳnm(λ, ϑ) dσ . (3.30)

The integration with respect to r is rigorously solved and is valid for the exterior potential.

Following the aim of minimized linearization errors, ru is determined as the orthometric height

of the DTM, plus the geoid height based on a GGM and therefore an approximated ellipsoidal

height is available (see also sec. 6.2.3). The lower integration boundary rl is attributed to only

the geoid height. Therefore, the origin of computation refers to a previously introduced global

geoid solution. Additionally, the spherical harmonics Ȳnm(λ, ϑ) of the DTM integration points

and the area elements dσ of the DTM are known. For the solution of the radial integral kernel

no binomial series e.g. (Wild-Pfeiffer, 2007) or condensed topography (Kern et al, 2003) is

needed. Please note, that the constant crustal density ρ = 2670 kg/m3 can easily be replaced

by, for example, a 2D surface density model. This provides individual density information for

each mass column, in order to additionally help to improve the geoid (Tziavos et al, 1996),

which is described in more detail in sec. 4.4.

According to the topographic reduction, the complementary isostatic part may also developed

into spherical harmonics. The isostatic potential coefficients can be found after the radial

integration analogously to Eq. (3.30). In contrast to the topographic potential, a constant

density contrast ∆ρ is used instead of the density ρ. This is due to the representation of the

Airy-Heiskanen system, which is based on a condition of floating equilibrium. Furthermore,

also the integration boundaries in the radial direction are different. For the upper boundary
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3.3 Spherical Harmonics

ru the normal thickness of the Earth’s crust T = -30 km is introduced. The lower boundary

rl is provided by the corresponding root t according to

t =
ρ

∆ρ
H , (3.31)

and for the ocean covered regions

t =
ρ− ρw

∆ρ
H . (3.32)

In this case the lower integration boundary rl = T − t is scaled by the orthometric height

above the geoid, whereas the relation between the two densities ρ and ∆ρ is assumed to be

constant. For the ocean regions, ρw = 1027 kg/m3 is a common assumption. The model of

isostatic compensation is presented in more detail in sec. 6.2.3. The impact of the isostasy on

reduced gravity and the computed geoid is discussed in sec. 7.4.7.

3.3.2 Atmospheric Potential in Terms of Spherical Harmonics

The treatment of masses located above the gravity station is also important for a consistent

geoid computation. Nevertheless, this effect is small compared to others, for example the

topographic reduction, but needs to be considered. Analogously to the topographic reduc-

tion, the atmospheric potential is considered as a spherical harmonic representation by radial

integration. Compared to the density of the topography ρ, the atmospheric density ρa is not

a constant value for one single mass column, but depends on the actual height. Its value

decreases with increasing height and a proper model for the potential representation has to be

found. This research uses the ITSG atmospheric density model developed by (Rieser, 2015)

to consider the masses above the measured gravity values. This model in turn is based on the

US standard atmosphere model USSA76 (NOAA et al, 1976).

ITSG Atmospheric Density Model

As an essential requirement, the radial or vertical integration of the atmospheric potential has

to be performed in order to obtain a set of spherical harmonic coefficients for the exterior, as

well well as for the interior space. Therefore, a layer approach according to the USSA76 was

chosen where the parametrization is split into two different altitudes. According to (Rieser,

2015) for the density distribution it follows

ρa(h) =

ρ0

(
R

R+h

)ν
0 ≤ h ≤ 11 km ,

ρa(11 km)
(
R+11 km
R+h

)ν′
11 km ≤ h ≤ Z .

(3.33)
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In this case Z indicates the chosen maximum height. The coefficients ν = 680 and ν ′ = 932

respectively, are two degrees of freedom to perform a proper fit to the USSA76 model. The

initial values are given with ρ0 = 1.225 kg/m3 and ρa (11 km) = 0.3648 kg/m3. The final

outcome as stated by (Rieser, 2015) was that the residuals, compared to the USSA76, are

small and the ITSG model fits quite well. This is very important for the lower altitudes

up to 20 km, because most of the atmospheric masses are concentrated in this region. The

atmospheric potential coefficients are derived by spherical harmonic expansion as described

in the following. The atmospheric exterior potential coefficients are given as

āatm,enm =
1

M(2n+ 1)

∫∫
σ

∫
r

( r
R

)n
ρa(r) r2 Ȳnm dr dσ . (3.34)

Introducing the atmospheric density ρa(r), which in turn is a function of height, subsequently

applying the radial integration, and additionally taking the difference between the ellipsoid

and the sphere into account, the exterior atmospheric potential coefficients are found according

to

āatm,enm =



ρ0R3

M(2n+1)(3+n−ν)

∫∫
σ
Ȳnm

(
R̄
R

)n+3
×[(

1 + Z
R̄

)n+3−ν −
(
1 + h

R̄

)n+3−ν]
dσ ∀ n ∈ N \ (ν − 3)

ρ0R3

M(2n+1)

∫∫
σ
Ȳnm

(
R̄
R

)n+3
ln
(
R̄+Z
R̄+h

)
dσ n = ν − 3

(3.35)

where R̄ denotes the geocentric Earth radius. The treatment of the spherical harmonic degree

n = ν − 3 is special because of an occurring discontinuity, which is only attributed to the

exterior potential. Fortunately, the treatment of the interior potential is much easier. The

spherical harmonic coefficients are given as

āatm,inm =
1

M(2n+ 1)

∫∫
σ

∫
r

(
R

r

)n+1

ρa(r) r2 Ȳnmdr dσ , (3.36)

and again, after radial integration and rearrangements of the formulas, the atmospheric po-

tential coefficients for the interior potential can be obtained by

āatm,inm =
ρ0R

3

M(2n+ 1)(2− n− ν)

∫∫
σ

Ȳnm

(
R̄

R

)2−n
[(

1 +
Z

R̄

)2−n−ν
−
(

1 +
h

R̄

)2−n−ν
]
dσ .

(3.37)

The distinction between interior and exterior potential depends on the location of the com-

putation point P . If the solution of the Laplace equation is located inside (rP < R), a sphere
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3.4 Potential and Linearization

with radius R, the corresponding solution is given according to Eq. (3.37). In case of rP > R,

the exterior potential according to Eq. (3.35) is valid.

In case of terrestrial gravity measurements the interior atmospheric potential is important

because the attracting masses are located above the measurements. In contrast, if the geode-

tic measurements are taken at satellite altitudes of several hundred kilometers height, the

atmospheric masses can be assumed to be underneath the measurement level, and therefore

only the exterior potential is of further interest. Further details on this topic can be found in

e.g. (Rieser, 2015).

Typically, measured gravity datasets taken on the Earth’s surface, are reduced by the at-

mospheric components following the International Association of Geodesy (IAG) approach.

This approach accounts for the interior gravity effect in order to be conform with the Laplace

assumption of mass-free exterior space (Sjöberg, 1999). Additionally, the atmospheric masses

are considered in the geopotential satellite models, as well as in the normal potential reference

field. By reducing these effect from the measured gravity data and applying the atmospheric

effect to the GGM, the gravity can be treated without atmosphere. Hence, the effect of atmo-

spheric masses must be considered within the RCR procedure in order to ensure a consistent

treatment. Results related to the atmospheric potential can be found in sec. 6.2.4 or sec. 6.4.3.

3.4 Potential and Linearization

In order to connect the non-linear relation of gravity field observables with the unknown

geoid, some approximations of the Earth gravity field are required. To consider a linear

relation between this quantities an approximation has to ensure only small deviations from

the actual gravity field. Therefore, an ellipsoid of revolution with a corresponding normal

potential is introduced as suitable counterpart of the Earth, which is briefly discussed in the

following.

3.4.1 Normal Potential

The normal potential representation is based on the idea to split the Earth’s gravity poten-

tial W into two parts. One normal part, with normal gravity and normal potential, which

is related to a rotating ellipsoidal reference surface, and a small supplement. To ensure a

similarity to the Earth’s shape, a rotation ellipsoid can therefore be chosen with the benefit

that the calculation can be carried out in a rigorous mathematically manner. In physical

geodesy, a proper approximation of geometry and gravity of the Earth is required to perform

a linearization between the geodetic observables and the Earth’s gravity field which is in gen-

eral a nonlinear relation. Therefore, a rotationally symmetric ellipsoid is used which does not

deviate from the physical geoid by more than ± 100 m on a global scale.
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3.4 Potential and Linearization

According to (Heiskanen and Moritz, 1967) the normal potential can be written as

U = Vell + Φ , (3.38)

where Vell denotes the gravitational potential of the ellipsoid, and Φ is the centrifugal potential

as described in sec. 3.4.2. The closed formulas, which are describing the normal potential or

the ellipsoidal potential, can be found in e.g. (Moritz, 1980a). For the exterior space, the

spherical harmonic series notation of Vell in a fully normalized form is again determined by

Eq. (3.26). The magnitude of the normal gravity is given according to the Somiglianas formula

γ0 =
aγe cos2 ϕ+ bγp sin2 ϕ√
a2 cos2 ϕ+ b2 sin2 ϕ

, (3.39)

where γe, and γp respectively, denote the gravity at the equator and the poles. The major

and semi-major axis of the ellipsoid are denoted with a and b. Due to the rotating symmetry

of the ellipsoid, the normal gravity is only a function of the geodetic latitude. For details to

the corresponding formulas, the reader is referred to (Somigliana, 1929) or (Moritz, 1980a).

Somiglianas formula is only valid on the ellipsoidal surface. The gravity in an arbitrary

ellipsoidal height h, can be approximated by a truncated series expansion according to

γ(h) = γ0

[
1− 2

a

(
1 + f +m− 2f sin2 ϕ

)
h+

3

a2
h2

]
, (3.40)

with the ellipsoidal flattening,

f =
a− b
a

. (3.41)

The chosen reference ellipsoid is responsible for the quality of the geoid approximation. A

common approach is to use the GRS80 ellipsoid, according to (Moritz, 1980b), as a reference

field. In general, the normal gravity vector can be computed with the gradient operator

applied to the corresponding potential γ = ∇U .

This thesis is chasing a different approach, where the normal gravity is replaced by the gravity

derived from a GGM. Also, the shape is approximated by a geoid model instead of the ellipsoid.

In this case, a more realistic Taylor point can be obtained and therefore the linearization errors

are minimized. The impact of this approach is presented in sec. 7.4.1.
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3.4 Potential and Linearization

3.4.2 Centrifugal Potential

The centrifugal potential Φ is part of the relation between the Earth’s gravity potential W and

the normal potential U . A simple analytical representation in terms of Cartesian coordinates

is given by

Φ =
1

2
ω2
(
x2 + y2

)
, (3.42)

where ω denotes the angular velocity of the Earth’s rotation. Analogous to the gravity po-

tential and the normal potential, the components of the centrifugal potential can be derived

by the first derivative of the potential according to

∇Φ =


∂Φ
∂x
∂Φ
∂y
∂Φ
∂z

 . (3.43)

If the Laplace operator is applied to the centrifugal potential

∆Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 2ω2 , (3.44)

it reveals that Φ is not harmonic. The centrifugal acceleration depends on the distance to

the Earth’s rotational axis and acts in the opposite direction to the gravitational acceleration.

Therefore, the centrifugal acceleration becomes stronger towards the equator (Moritz, 1980a).

3.4.3 Disturbing Potential

The relation between the gravity potential of the Earth W and the normal potential U , which

is usually used as reference potential, is affected by a small difference because the reference

ellipsoid is only an approximation of the geoid and the real gravity field. The potential

difference is referred to as disturbing potential T . Assuming that the geoid and the reference

ellipsoid are very similar, the following relation is valid

W = U + T . (3.45)

The disturbing potential satisfies the Laplace equation outside the attracting masses and

∆T = 0 is valid. It is basically defined as the difference between the actual and the assumed

potential. A proper approximation of the actual field leads to a small residual part and

enables the opportunity for a truncated Taylor series expansion. The disturbing potential can

therefore be expressed as
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T = W − U = V − Vell . (3.46)

A representation in terms of spherical harmonics is possible and due to the cancellation of the

centrifugal potential, finally the series reads

T (r, ϑ, λ) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=−n

∆ānmȲnm(ϑ, λ) . (3.47)

The coefficients ∆ānm represent the linearized difference of the two fully normalized potentials

in the spectral domain. The derivatives of the disturbing potential are also important and

provide a connection of the individual gravity field quantity to the disturbing potential which

can in turn expressed in spherical harmonics.

For the linearization a common way is to use the normal potential and the normal field

for a first order approximation with its realization by the GRS80 ellipsoid shape and grav-

ity (Moritz, 1980b). This assumption, in combination with a spherical approximation of the

Earth in mathematical calculation and physical geodesy, leads to a global geoid rms value of

approximately ± 30 m, whereas the minimal and maximal deviations are of about ± 100 m.

Therefore, in case of spherical approximation an error of about 0.3 % of the Earth flattening

propagates in a geoid error of about ± 10 cm (Moritz, 1980a), which is not the desired geoid

quality nowadays.

Due to a steady progress in the processing and quality of GGMs during recent decades, it is

more appropriate to use the shape and gravity from up to date GGM models. Investigations

and different validation of geoid heights, derived from this gravity models with independent

GPS/leveling observations, show a long wavelength agreement and a global rms of approxi-

mately ± 0.3 m [see e.g. (Gruber and Köhl, 2008) or (Gruber et al, 2011)].

Assuming the spherical approximation is used for GGM derived shape and gravity, this would

lead to an improved first order approximation because of the improved long wavelength agree-

ment. The remaining geoid rms is now expected to be on the millimeter level. The replacement

of the normal field by a GGM and the occurring effect is discussed in more detail in sec. 7.4.1.
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3.5 Functionals of the Disturbing Potential

3.5 Functionals of the Disturbing Potential

3.5.1 Gravity Anomalies

Gravity anomalies are usually defined as the vector difference between a point P0 located on the

geoid and a point Q which is located on a reference ellipsoid, as illustrated in Fig. 3.1. In this

original definition, based on a normal field ellipsoid the corresponding normal gravity vector

γ is introduced as Taylor point for the linearization. In vector notation gravity anomalies are

defined as

∆g = gP − γQ . (3.48)

Figure 3.1: Common definition of gravity anomalies

It is also important to know that the difference of the directions of both gravity vectors gP
and γQ respectively, evaluated at the same point located on the Earth’s surface, leads to

deflections of the vertical (see Fig. 3.3). In turn this is connected to the definition of the

gravity disturbance as discussed in sec. 3.5.2. Several results and validations concerning the

deflection based astrogeodetic geoid computation can be found in sec. 7.2.2. However, gravity

anomalies represent the basic input for gravimetric geoid determination. Due to the fact that

there is a huge amount of gravity observations available, as will be discussed in sec. 4.2, a

combined geoid solution which includes deflections of the vertical, heavily depends on gravity

anomalies. This is shown in sec. 7.2.3.

Gravity anomalies can be represented by the fundamental equation of physical geodesy in

spherical approximation. According to (Hofmann-Wellenhof and Moritz, 2006, p.97) it follows

∆g = −∂T
∂r
− 2

r
T , (3.49)
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which allows the introduction of the disturbing potential in terms of spherical harmonics.

Inserting Eq. (3.47) into Eq. (3.49) finally gives

∆g =
GM

R2

∞∑
n=0

(n− 1)

(
R

r

)n+2 n∑
m=−n

[∆c̄nm cosmλ+ ∆s̄nm sinmλ] P̄nm . (3.50)

An alternative approach is to introduce an approximated geoid solution instead of the ellipsoid,

to obtain a more realistic Taylor point for the linearization. This in turn leads to a different

definition of gravity anomalies, because the reference surface changes and is now related to

the a-priori geoid. The gravity anomaly vector related to the geoid, which is based on a GGM,

is given according to

∆g = gP − gGGM . (3.51)

This alternative definition is illustrated in Fig. 3.2 and is used for this thesis.

Figure 3.2: Alternative definition of gravity anomalies

3.5.2 Gravity Disturbances

In order to obtain the fundamental equation of physical geodesy a second quantity of the

disturbing potential, namely the gravity disturbance, is required. The original definition of

the gravity disturbance vector is given by comparing the gravity vector g and the normal

gravity vector γ at the same point P . This can be done easily because vectors can be shifted

in their line of action. The difference in magnitude between the actual and the normal gravity

vector reads

δg = ∇T = gP − γP , (3.52)
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and generally, this corresponds to the gradient of the disturbing potential T . The scalar valued

gravity disturbance reads

δg = −∂T
∂r

, (3.53)

which gives the gravity disturbance and its connection to the disturbing potential (Hofmann-

Wellenhof and Moritz, 2006, p.94). The radial derivative of the disturbing potential which is

given in Eq. (3.47) provides the gravity disturbance expressed in terms of spherical harmonics

Tr = δg = −GM
R2

∞∑
n=0

(n+ 1)

(
R

r

)n+2 n∑
m=−n

[∆c̄nm cosmλ+ ∆s̄nm sinmλ] P̄nm , (3.54)

The gravity disturbance plays a major role in the topographic reduction, if the reduction

follows the linearized approach and the reduction steps are carried out subsequently as de-

scribed in sec. 7.4.1. The common definition of the gravity disturbance is shown in Fig. 3.3.

If the evaluation is related to the same point P located on the Earth’s surface and applying a

projection into a local horizontal system, deflections of the vertical can be decomposed from

it (see sec. 3.5.3). The radial component represents the difference in terms of magnitude.

Figure 3.3: Common definition of the gravity disturbance
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3.5.3 Deflections of the Vertical

Generally, deflections of the vertical are defined as the difference of the astronomical coordi-

nates Φ and Λ which are connected to the actual plumb line, and the geodetic coordinates ϕ

and λ which are related to the ellipsoid normal. Depending on the direction of the deflections,

one may distinguish between a North-South, and an East-West component.

The North-South component ξ is conventionally defined as the coordinate difference

ξ = ϕ− Φ , (3.55)

whereas the East-West component η is given as

η = (Λ− λ) cosϕ . (3.56)

The computation of deflections of the vertical from the disturbing potential can be achieved

according to (Hofmann-Wellenhof and Moritz, 2006, p.370). Depending on the chosen coor-

dinate system it follows

ξ = − 1

γr

∂T

∂ϕ
, or ξ =

1

γr

∂T

∂ϑ
, (3.57)

and the East-West component, respectively

η = − 1

γr cosϕ

∂T

∂λ
, or η = − 1

γr sinϑ

∂T

∂λ
. (3.58)

In case of deflections of the vertical, the direction of the gravity vector is the important

quantity. The link between gravity, or more specifically the gravity disturbance vector and

deflections is given by subtracting the normal gravity vector from the gravity vector if the

two vectors refer to the same point P . According to (Hofmann-Wellenhof and Moritz, 2006,

p.246) the following relation is valid

δg = gP − γP ≈

 −γξ−γη
−δg

 . (3.59)

Due to spherical approximation the deflections can be directly obtained from Eq. (3.59) by

only taking the horizontal components of the gravity disturbance vector into account. It

follows
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ξ = −1

γ
δgϕ , and η = −1

γ
δgλ . (3.60)

Furthermore, if the normalized gravity vector is evaluated in a local level coordinate system

which corresponds to North, East and Up coordinates as defined in (Hofmann-Wellenhof and

Moritz, 2006, p.209), the deflections are derived from the two horizontal components of the

local ellipsoidal system vector without linearization. All results achieved in sec. 7.1.2 and

sec. 7.5 are based on this approach. A solely astrogeodetic geoid solution based on measured

deflections of the vertical and a dense map of estimated deflections derived from gravity data

are shown in the result chapter. A quality statement and validation issues are also presented

therein

Performing the partial derivative of the disturbing potential, Eq. (3.47), leads to

Tϑ =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=−n

[∆c̄nm cosmλ+ ∆s̄nm sinmλ]
dP̄nm
dϑ

, (3.61)

Tλ =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=−n

m [∆c̄nm sinmλ−∆s̄nm cosmλ] P̄nm , (3.62)

which can now be used to compute the deflection components according to Eq. (3.57) and

Eq. (3.58) in spherical harmonic representation.

3.5.4 Geoid Heights

The link between the disturbing potential and the geoid height is defined by Bruns equa-

tion (Bruns, 1878)

N =
T

γ
. (3.63)

This equation is used to calculate the geoid if the disturbing potential is evaluated on the

geoid surface. Inserting Eq. (3.47) into Eq. (3.63), the geoid in terms of spherical harmonics

may be computed according to

N =
GM

Rγ

∞∑
n=0

(
R

r

)n+1 n∑
m=−n

[∆c̄nm cosmλ+ ∆s̄nm sinmλ] P̄nm . (3.64)
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4 Database for Austrian Geoid Determination

For the issue of geoid determination, a historical review on the Austrian geoid is provided.

During recent decades different types of data, for example, gravity measurements, deflections

of the vertical or GPS/leveling measurements have been collected by the Federal Office of

Metrology and Surveying (BEV) and are available for this thesis. Austria is an interesting

area for the purpose of gravity field modeling because of its manifold topography. On the one

hand it consists of flatland with heights of approximately 200 m above sea level and on the

other hand there are alpine areas with an elevation of 3800 m. The topography is covered by

a high resolution Digital Terrain Model (DTM).

4.1 History of the Austrian Geoid

Returning to the beginnings of the Austrian geoid computation in the early 50s of the last

century, Josef Litschauer provides a first astrogeodetic geoid solution based on only a few

deflections of the vertical, which were located on geodetic triangulation points (Litschauer,

1953). Furthermore, Karl Rinner and Helmut Moritz played a key role in Austrian gravity

field determination. Helmut Moritz is one of the most recognized representatives in the field

of physical geodesy. His publications have for a long time been considered as the standard

literature in this field of research. The Least Squares Collocation (LSC) method provides one

possible tool for combining heterogeneous datasets. Based on this approach, further geoid

solutions were calculated by Hans Sünkel and Norbert Kühtreiber. Under the lead of Hans

Sünkel, who is a pioneer in Austrian gravity field determination, much work has been carried

out at Graz University of Technology since the 1980s. He published his astrogeodetic geoid

solution in 1987 (Sünkel et al, 1987). Norbert Kühtreiber calculated a pure gravimetric geoid

solution in 1998 (Kühtreiber, 1998b) and also the first combined solution, which was based on

gravity measurements and deflections of the vertical (Kühtreiber, 2002).

In the year 2007 Roland Pail established the new official Austrian geoid (Pail et al, 2008).

This solution is currently still the national geoid provided by the BEV. A combination of

heterogeneous data by the LSC method was applied in order to improve the Austrian geoid

to the accuracy level of a few centimeters. Nevertheless, this solution is still affected by

systematic errors between GPS/leveling measurements and the gravimetric geoid. The use of

a non-physical correction surface could not be avoided. More details on the national geoid

can be found in sec. 4.1.1.

Further historical information about the beginnings of the Austrian geoid computation is

presented in (Rinner, 1983). It should be mentioned that all geoid determination approaches,
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as well as the official geoid solution, are based on the LSC method. In this thesis an alternative

approach by a Gauss-Markov model in combination with Radial Basis Functions (RBF) is

applied (see chap. 6).

4.1.1 Project GEOnAUT

The Austrian Geoid 2007 - GEOnAUT project, was the first in a series funded by the Austrian

Research Promotion Agency (FFG). Under the lead of the Institute of Navigation and Satellite

Geodesy (INAS) and in cooperation with project partners, namely the BEV and the Institute

of Numerical Mathematics (INM), it was successfully carried out during the years 2006-2007.

The BEV contributed as data provider, consultant and external evaluator of the results.

The main goal of the project was to compute a new geoid solution by combining all available

data at that time. To ensure an optimal LSC result, the gravity data was thinned to ap-

proximately 4×4 km spatial resolution to avoid partly clustered observation sets, which can

lead to a numerically unstable equation system for the LSC method. This approach has the

drawback that not all available data can be used due to computational reasons. An overview

about the different datasets used and their spatial distribution is illustrated in Fig. 4.1.

Figure 4.1: GEOnAUT data: gravity measurements (black), deflections of the vertical (blue) and
GPS/leveling observations (red)

In particular, the dataset consists of:

• 14001 measured gravity

• 672 deflections of the vertical

• 170 GPS/leveling observations

The terrain model used is originally based on the work of (Graf, 1996) but includes minor

updates, for example, new DTM information for Switzerland (see also sec. 4.3). The long
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wavelength part of the gravity field was represented by the satellite-only EIGEN-GL04S1

model (Förste et al, 2006) up to d/o 70. The short wavelength part was determined by using

the classic approach of Airy-Heiskanen topographic/isostatic compensation (see sec. 6.2.3).

Further information on the GEOnAUT project can be found in (Pail et al, 2007). The

outcome of this project represents the present national geoid solution.

The geoid solution was driven by a practical approach to overcome inconsistencies in the

geoid modeling and therefore a correction surface was applied. An illustration of the Austrian

geoid based on the LSC approach is given in Fig. 4.2. This solution is not independent of

GPS/leveling observations, which makes it difficult to provide reliable accuracy information.

However, the geoid was re-evaluated based on 700 independent GPS/leveling observations

available only in the Western part of Austria and the BEV specifies an overall geoid accuracy

< 3 cm. Further validation results can be found in (Pail et al, 2009).

Figure 4.2: Official Austrian geoid solution based on the GEOnAUT project

The Austrian Geoid 2007

The framework for the geoid determination has been provided by the Remove-Compute-

Restore (RCR) procedure and combination of different data types. Within this procedure

the LSC method was utilized for the computation of the residual geoid. After some quality

checks and a data preparation step (see sec. 4.2), the final gravity dataset of 14001 gravity

measurements, with a spatial distance of about 4×4 km, was established. The spatial distri-

bution was a requirement for the LSC procedure, in order to avoid computational problems.

As a second gravity field quantity, 672 deflections of the vertical were available, representing a

different kind of gravity field observation. Furthermore, 170 GPS/leveling observations were

incorporated in the geoid estimation process to constrain the solution.
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The Global Gravity field Model (GGM) EIGEN-GL04S1 (Förste et al, 2006) up to d/o 70 has

been used to represent the long wavelength part of the gravity field. The short wavelength

part was considered with the topographic/isostatic compensation according to Airy-Heiskanen

with a constant standard crustal density of 2670 kg/m3 for the topography and a constant

density contrast of 600 kg/m3 for the isostasy. A high resolution DTM (see sec. 4.3) was used

to represent the topography in the vicinity of the observations (< 15 km). Beyond a 15 km

radius, until the Hayford zone radius of < 167 km, a more generalized DTM was used to

model the gravitational attraction. Distant topographic masses beyond a distance of 167 km

were not considered. More details can be found in (Pail et al, 2008).

With the chosen processing strategy, inconsistencies between a purely gravimetric geoid and

GPS/leveling observation in the range of several meters could not be avoided. At that time,

the reason for this trend field was supposed to be in a systematic inconsistent orthometric

height system or remaining GPS height errors. To overcome these inconsistencies and to cope

with the systematic effect, a non-physical correction surface was introduced. A practical way

to handle these inconsistencies is to fit a polynomial surface to the differences, which is applied

twice within the RCR procedure. In an initial step, the correction surface is reduced from

the GPS/leveling observations within the remove step. In a second step, it has been restored

to the estimated residual geoid (from LSC) during the restore step. The physical meaning

of the geoid as an equipotential surface is lost, but the geoid solution fits very well to the

GPS/leveling observations and therefore an improved geoid accuracy can be expected. This

approach followed the requirements by the BEV, in order to use the geoid as a transformation

surface from GPS heights to orthometric heights and vice versa. In Fig. 4.3 the correction

surface which has been applied to the Austrian geoid 2007 is shown.

Figure 4.3: Correction surface given on a approximately 3×3 km grid used for the official Austrian
geoid solution 2007 [m]; The positions of the 170 GPS/leveling observations are indicated
in red (Pock, 2011)

In case of the Austrian geoid 2007, this surface was represented by a third degree polynomial.

As can be clearly seen in Fig. 4.3, the correction surface, which is originally based on 170

GPS/leveling observations and their deviations to a gravimetric geoid, is in a range of several

meters including bias and trend. Furthermore, investigations have shown that the correction
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surface strongly depends on the chosen d/o of the GGM, leading to a long wavelength behavior

with increasing degree and order [see (Pock, 2011)].

The relative weighting issue between different gravity field quantities was also part of investi-

gations. In case of GPS/leveling, the weighting was applied as an iterative process in order to

fit the geoid to these observations. In a first step, and in order to keep the residuals between

predicted and observed geoid heights small, the GPS/leveling observations are assigned with

an a-priori weight of 1 mm each (Pail et al, 2008). This leads to residuals of only few millime-

ters. In a second step, these residuals in turn were introduced as individual a-priori weights

and a geoid recalculation was carried out to compute the final official solution. The gravity

anomalies were assumed to be known, with an a-priori accuracy of 1 mgal. For deflections of

the vertical a sigma of the ξ and η components of 0.30” was assumed. For both aspects, an

empirical approach was used to determine the a-priori weights. Due to a polynomial represen-

tation of the introduced correction surface, the accuracy of the computed geoid was specified

by the BEV with < 3 cm. Further validation results and a LSC error estimate of the Austrian

geoid can be found in (Pail et al, 2009).

Since this practical approach of geoid determination was applied, the Austrian geoid 2007

heavily depends on GPS/leveling observations. This can cause problems especially if these

observations are re-evaluated over the years. Indeed, this was undertaken in the follow-on

GEOID+ project (see sec. 4.1.2) with the result that for many observations the geoid height

has changed by some centimeters. Therefore, the geoid solution also needs to be recomputed

in order to ensure consistency. Nevertheless, the BEV did not make use of the geoid update

in the GEOID+ project as official solution, which leads to inconsistencies between the present

national geoid and GPS/leveling observations (see also sec. 4.2.3).

4.1.2 Project GEOID+

The follow-on project to GEOnAUT was called GEOID+. This project was again funded by

the FFG and the GEOnAUT research group constellation have teamed up again to improve the

Austrian geoid during the years 2009-2010. In principle, the input datasets which are based on

the previous project, remain the same, with the exception of minor DTM changes and some

updates attributed to the gravity data thinning process. This also holds true for the LSC

geoid computation method, as well as the RCR procedure. The only considerable difference is

attributed to an updated GPS/leveling dataset and additional gravity data observations from

Slovenia. The entire dataset for this project is illustrated in Fig. 4.4.
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Figure 4.4: GEOID+ dataset: gravity measurements (black), deflections of the vertical (blue) and
GPS/leveling observations (red)

In particular, the input dataset consists of:

• 13689 measured gravity

• 672 deflections of the vertical

• 192 GPS/leveling observations

Due to a new thinning process, the gravity input data are slightly different in comparison to

the GEOnAUT project. The reason for this was connected to some problems with the gridded

Hungarian data, which were now eliminated. In addition, the DTM has been improved by

newly acquired data from Slovenia and South-Tyrol. In this project the first GGM incor-

porating GOCE data, the GOCO01s (Pail et al, 2010), was available to represent the long

wavelength part of the gravity field. Although some new datasets are included a correction

surface was still required. Therefore, the BEV decided against a new geoid solution because

the final improvements between the official geoid and the GEOID+ project did not justify

this from their point of view. In contrast, a complete re-evaluation of GPS/leveling observa-

tions was carried out in the GEOID+ project. This in turn means that the official Austrian

geoid derived from the GEOnAUT project is inconsistent compared to the updated set of

GPS/leveling observations, because the height changes are significant (see sec. 4.2.3) and a

corresponding new geoid solution, which is again fitted to these re-evaluated observations, has

not replaced the official Austrian geoid. Further details related to GEOID+ can be found

in (Kühtreiber et al, 2011).
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4.1.3 Project GARFIELD

The Geoid for Austria - Regional gravity FIELD improved (GARFIELD) project was launched

in 2012 and officially ends at the beginning of 2016. It was funded by the Austrian Sciences

Fund (FWF). The research group consists of the former Institute of Theoretical Geodesy and

Satellite Geodesy (ITSG), under the lead of Torsten Mayer-Gürr, in cooperation with the

INAS institute and the BEV.

The main goal was to derive a high quality regional gravity field solution for Austria with

unprecedented accuracy. The gravity field determination should be based on an optimum

combination of satellite observations and all complementary available terrestrial gravity field

data. Another important aspect was to incorporate the final GOCE mission results and the

latest satellite-only GGM. Further methodological developments were also important tasks

of this project. This includes an adapted RCR procedure, as well as comparisons between

the LSC method and an alternative parametrization based on RBF. The combination of

heterogeneous data types additionally required a careful determination of weighting among

different a-priori defined observation groups. This was achieved by utilizing the Variance

Component Estimation (VCE) method. Main results of the project are derived from this

thesis. The entire terrestrial dataset is shown in Fig. 4.5.

Figure 4.5: GARFIELD data: gravity measurements (black), deflections of the vertical (blue) and
GPS/leveling observations (red)

In particular, the input dataset consists of:

• 72327 measured gravity

• 735 deflections of the vertical

• 192 GPS/leveling observations

The GPS/leveling observations remain the same as in the GEOID+ project. The number of

deflections of the vertical could be increased, due to some additional measurements connected
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to the Koralm and Semmering tunnel projects, measured with a digital astronomical measure-

ment system (Bürki et al, 2004). In addition, some real gravity measurements in Slovakia and

the Czech Republic are now available. Previously only interpolated gravity data was available

in those regions.

The entire gravity dataset is used and a down-sampling of the data, as it is required for the

LSC method, is no longer a requirement and therefore the amount of input data increases. A

new computation method using a Gauss-Markov model with RBF parametrization is applied

(see sec. 6.3.1). The availability of the latest GOCO product, the satellite-only gravity field

model GOCO05s (Mayer-Gürr et al, 2015), (see sec. 6.2.2) also contributes to the success of

the project. Improvements in the scope of the RCR technique, in order to avoid a double

consideration of the topographic masses, are described in chapter 6. Furthermore, the topic

of atmospheric effects is new in Austrian geoid computation.

4.2 Available Gravity Field Quantities for Geoid Computation

In this section a short overview of the most important gravity field quantities for geoid compu-

tation is provided. This includes a historical review as well as actual remarks on the datasets.

4.2.1 Gravity Database

The entire gravity database of Graz University of Technology and the BEV includes almost

132000 measurements. About 50000 of these are located within the Austrian territory. All

gravity values are connected to the official Austrian gravity network (ÖSGN), [see (Ruess,

1983)] which consists of approximately 800 datum points and is further linked to 35 absolute

gravity measurements. This gives the zero order net of Austria. The remaining gravity

observations are based on relative measurements, connected to 1-3 order nets. During recent

decades, a vast amount of gravity values were collected by Norbert Kühtreiber. The BEV is

the owner of the entire dataset and distributes them on request.

The Austrian gravity dataset has been collected during the past 70 years and consists of data

from several contributors. In particular, they are

• BEV, Austria

• Institute of Meteorology and Geophysics, University of Vienna, Austria

• Institute of Geophysics, Mining University of Leoben, Austria

• Institute of Geophysics, Technical University of Clausthal, Germany

• Institute of Geophysics, Technical University of Vienna, Austria

• OMV AG, Austria

In the 1950s the first gravity measurements were carried out along the spirit leveling lines using

relative gravimeter. Today modern equipment is available as shown in Fig. 4.6a. The zero
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order net values for the ÖSGN are measured with free fall absolute gravimeter, as illustrated

in Fig. 4.6b. The absolute values of the gravity acceleration within Austria are approximately

between 9.80 and 9.81 m/s2 and can be seen in Fig. 4.7.

(a) Relative gravimeter (b) Absolute gravimeter

Figure 4.6: (a) Relative gravimeter LCR; (b) Absolute gravimeter FG-5

Since the end of the 1980s, high-precise absolute gravity measurements have been regularly

performed by the BEV using the JILAg-6 instrument, which was able to measure the Earth’s

gravity acceleration with a standard deviation of ± 8 µgal1 (Ruess and Ulrich, 2011). Since

2010 the BEV commissioned a new, more accurate measurement system (FG-5). Currently

there is work in progress to densify the net of absolute gravity measurements within Austria.

Figure 4.7: Gravity accelerations

11µgal = 10nm/s2
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The relative gravity measurements were mostly performed with LaCoste Romberg (LCR) and

Scintrex CG-3 instruments between 1980-2010. Since 2010 the new Scintrex CG-5 has been

used to ensure an accurate constraint to the absolute gravimeter measurements. Additional

measurements in the period between 1950-1980 provided by oil and gas companies, using the

Worden 500 gravimeter, or data collected by other Universities, by means of the Noorgard

gravimeter, completed the Austrian gravity database.

The motivation for the first gravity measurement campaign was to establish a height system

for Austria. These old measurements were different in their offset behavior and calibration ac-

curacy. During recent decades different measurements are combined and re-calibrated, which

results in a unified Austrian gravity frame. This work has mostly been undertaken by Diethard

Ruess from the BEV. Further information can be found in (Ruess, 2001). Regarding the data

from the neighbouring countries, a unified system can not be guaranteed. Nevertheless, in

the boundary region between Austria and its neighbors a continuing similar behavior of the

reduced cross-border gravity values can be observed. This is an indicator for a reasonable

homogeneous gravity input, throughout the entire set of observations. Further details about

the beginnings of the ÖSGN can be found in (Ruess, 1995).

The accuracy information for the gravity data are provided by the BEV and is shown in

Tab. 4.1 [see (BEV, 2007). It describes the quality of the entire dataset, depending on the

measurement system used. Due to different measurement epochs during the last decades, the

specified quality only represents the reliability of the measurements not the overall accuracy

of the measurement systems. Interpolated or estimated gravity data, as well as data with an

uncertainty threshold > 0.40 mgal, are not considered for the geoid computation.

Table 4.1: Quality of Austrian gravity data (BEV, 2007)

Instrument σ [mgal] Type Number

FG5 and JILAg-6 < 0.005 absolute 35

LCR-D < 0.02 relative 11507

LCR-G < 0.02 relative 15237

LCR-general < 0.02 relative 9384

Scintrex CG-3 < 0.02 relative 422

Worden 500 < 0.07 relative 8939

Norgaard < 0.30 relative 3816

Preprocessing of Gravity Data - Quality Check

In an initial step the quality of the input data has been evaluated by means of using the values

of Tab. 4.1. Interpolated or estimated data has been rejected beforehand. Additionally, the

associated height of the gravity measurements provided by BEV was subject of a quality check.

Hence, only gravity measurements with a height uncertainty < 2 m, which corresponds to a

gravity error of about 0.60 mgal have been taken into account. Moreover, a vast majority of

gravity data is specified with a height uncertainty of< 0.1 m (BEV, 2007). Another criterion is
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the deviation between the terrain model and the gravity station height. For the high resolution

DTM BEV00 (see sec. 4.3.1), the height differences are shown in Fig. 4.8. Here the nearest

DTM point was chosen to calculate the deviation. For the gravity positional information no

quality check has been conducted because the accuracy of the geodetic coordinates is not

critical except of very rough terrain.

Figure 4.8: Differences between gravity station height and the nearest DTM point; Most of the oc-
curring differences are located in the central part of Austria

The height differences in Fig. 4.8 are up to ± 120 m, and the biggest differences occur in

certain regions, for example, transition from a mountainous region to flatland as it is the case

in central Austria. However, only a few gravity points display such large differences. They

have not been removed from the input dataset because the improvement on the final computed

geoid turns out not being significant. This is connected to investigations on the impact of the

differences between the gravity station height and the DTM height. The gravity data heights

have been corrected for the deviation to the DTM heights and vice versa. However, it was not

possible to identify whether a possible height error is attributed to the DTM or to the gravity

height since the geoid validation with GPS/leveling does not show significantly improvements

in either case. As a consequence the data remain unchanged.

4.2.2 Deflections of the Vertical

In physical geodesy deflections of the vertical are primarily important for astrogeodetic geoid

determination. In Austria, the first accurate measurements were carried out by Kurt Bretter-

bauer and Gottfried Gerstbach from the Technical University of Vienna during the period of

1970-1990 [see (Bretterbauer and Gerstbach, 1983)]. In case of Graz University of Technology,

Karl Rinner, Herbert Lichtenegger and later also Hans Sünkel (Sünkel et al, 1987) are the

three pioneers who provided first astronomical measurements. Furthermore, the BEV carried
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out precise deflection measurements during the 1980s. The estimated geoid solution was pub-

lished by Erhard Erker in 1987 (Erker, 1987). In the year 2006, Bernadette Wasle provided

some additional measurements in the South-East of Austria in her masters thesis. The cor-

responding results of this work can be found in (Wiesenhofer, 2007). During the period of

2010-2015 Beat Bürki from ETH Zürich measured deflection of the vertical for the Koralm

and Semmering tunnel projects with a digital astronomical measurement system (Bürki et al,

2004). Some of these points are now part of the entire dataset, which currently consists of

735 measurements. They are shown for each component in Fig. 4.9 and Fig. 4.10.

In summary, currently the astrogeodetic measurements in Austria are based on the following

contributors:

• 1976-1982 measurements in the eastern part of Austria, conducted by TU Vienna, TU

Graz and BEV

• 1983-1986 measurements in the western part of Austria, performed by BEV

• 2006 measurements in the south-eastern part of Austria, carried out by TU Graz

• 2010-2015 measurements for the Koralm and Semmering tunnel projects, provided by

TU Graz and ETH Zürich

Figure 4.9: Measured 735 North-South ξ components

For the Austrian region the magnitude of the measured 735 deflections of the vertical is below

± 25”. The statistics can be found in Tab. 4.2.

Another aspect which can directly be seen in both figures is the irregular point distribution of

the measurements. A considerable amount of measurements is located in the eastern part of

Austria, near Vienna. This is due to oil and gas exploration in those areas. Nevertheless, the

deflections cover the entire Austrian territory but are notably sparse compared to the gravity

measurements. In general, the overall precision of both, the ξ as well as the η component
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Figure 4.10: Measured 735 East-West η components

Table 4.2: Statistics of 735 measured deflections of the vertical

[sec] min max mean

ξ -14.18 24.78 3.59
η -15.54 17.73 2.88

of the measurements, is assumed to be ± 0.30”. This value was empirically determined in

previous Austrian gravity field projects and is specified by the BEV. Results derived from the

VCE method which are based on a relative weighting between the observation groups, are

different. The corresponding investigation can be found in sec. 5.2.

A limiting factor for the practical use of deflections for precise geoid determination is linked to

historical reasons because most of the Austrian measurements are taken before the GPS-based

timing became available. To determine the East-West component of the deflections, accurate

time measurements are needed because the determination of the astronomical longitude Λ was

derived from the transition time of a star passing through the meridian. Further details related

to astronomical measurements may be found in (Wiesenhofer, 2007). In contrast, the North-

South component is not affected by such a time component and can therefore been assumed

as better determined in comparison to the East-West component. Nowadays, a modern zenith

camera is equipped with a GPS antenna (see Fig. 4.11). Therefore, the ellipsoidal coordinates

as well as the time stamp (global GPS time) can be derived exactly.

Today, measured deflections of the vertical can reach the ± 0.1”accuracy level. Such a modern

system uses a star tracker to determine the astronomical latitude Φ and longitude Λ very

accurately. By means of subtracting the ellipsoidal coordinates, the deflections can be directly

obtained (see sec. 3.5.3). A zenith camera system allows for an automated and simplified

observation process with the additional benefit of being independent of any subjective errors,
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as they often occur in visual methods. In this case, the processing chain includes leveling as

well as a star field, imaged on a CCD array and the data transfer. The determination of the

ellipsoidal coordinates is less critical, and its accuracy is assumed to be of a few centimeters.

By means of the rule of thumb, that 1” ≈ 30 m on the Earth’s surface, this leads to errors

of some milli-arcseconds and can be neglected in the deflection error budget. Depending on

the weather conditions, about 50 measurements are carried out by a single station to obtain

the final average value. Therefore, it is possible to determine several individual deflection

measurements during a single night. More information related to this topic can be found

in (Hirt et al, 2010).

Figure 4.11: Digital zenith camera systems for the direct measurement of deflections of the vertical
during a parallel observation session [courtesy by (Hirt et al, 2010)]

4.2.3 GPS/Leveling Observations

Currently there are 192 GPS/leveling observations available which are provided by the BEV.

The present national Austrian geoid solution is highly constrained to a subset of 170 mea-

surements. They are used as datum points to overcome inconsistencies in the geoid modeling

and to obtain the correction surface (see sec. 4.1.1).

GPS/leveling observations are characterized by having both, on the one hand high precise

spirit leveling which provides the orthometric height H component and and on the other

hand GPS long-term measurements which are responsible for an accurate determination of

the ellipsoidal height h. For the latter, the BEV specifies an accuracy of < 1 cm. For the

orthometric height, no reliable accuracy information is provided. Nevertheless, the accuracy of

these observations is expected to be on the level of a few centimeters. By means of N = h−H
the absolute geoid height with respect to the a reference ellipsoid can be directly obtained.

In Fig. 4.12 the measurement principle is shown. In Fig. 4.13 the dataset of 192 measured

geoid heights used for the validation is presented. The corresponding statistics may be found

in Tab. 4.3.

48



4.2 Available Gravity Field Quantities for Geoid Computation

Figure 4.12: Measurement principle of GPS/leveling [courtesy by NRCAN2]

Figure 4.13: 192 measured geoid heights provided by the BEV

In contrast to the official Austrian geoid solution, these GPS/leveling observations are only

used for validation purposes within this thesis. It is also important to understand that the

GPS/leveling measurements are constraint to the European Vertical Reference System 2000,

which is defined as tide-free system. This leads to inconsistencies and a possible mixture

since the reference of most of the leveling datasets is unknown. This is also a probable

source of errors when comparing the computed gravimetric geoid solution with GPS/leveling

observations. More on this topic can be found in sec. 7.3.

2www.nrcan.gc.ca
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Table 4.3: Statistics of 192 measured geoid heights

[m] min max mean

N 43.14 52.15 47.69

The national Austrian geoid solution is constrained to 170 GPS/leveling observations (see

sec. 4.1.1). The GPS/leveling observations are subject of continuous improvements. During

the period of 2009-2010, the BEV undertook a re-evaluation of the entire dataset. As a result

of the review process, about 30% of the GPS/leveling measurements changed significantly,

either due to changes in the ellipsoidal heights or due to a corrected orthometric height. Un-

fortunately, these changes are not part of the official Austrian geoid solution. As the present

national solution is highly constrained to the older set of 170 GPS/leveling observations it

suffers from the evaluation process and is not consistent with the updated set of 192 mea-

surements. During this period 22 measurements were newly established. The occurring geoid

height changes are illustrated in Fig. 4.14.

Figure 4.14: Changes of the GPS/leveling observations during the period of 2009-2010 initialized by
the GEOID+ project

At some stations the differences are up to ± 8 cm and the rms is 1.6 cm. However, the new

dataset is clean of big outliers and the accuracy of these observations are supposed to be on

the level of a few centimeters. A comparison of the new dataset with the official Austrian

geoid solution was conducted by (Rieser, 2015). The results show a maximum variation from

-6.4 cm to 7.5 cm with a corresponding rms value of 2.2 cm. Based on these differences it is

possible to conclude that a change of the GPS/leveling heights would also require a complete

recalculation of the official Austrian geoid. Further comparisons with the national geoid can

be found in chapter 7.
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4.3 Digital Terrain Models

4.3.1 Austrian Digital Terrain Model

The BEV provides a DTM up to a high resolution of 1.40625”×2.34375” which corresponds

to approximately 44×49 m. This dense DTM is available only within the central European

region. First work on the DTM goes back to Diethard Ruess and Josef Graf [see (Ruess,

1984) and (Graf, 1996)]. Based on new technologies, for example by the Space-Shuttle-

Topography-Mission (SRTM), an ongoing process of DTM improvements can be observed over

the years. In addition, new high-precise photogrammetric data from Austria, Switzerland,

Slovenia and South Tyrol has been incorporated. The combination of the different data

sources, for example, SRTM and airborne datasets, was the final step on the way to a complete

and consistent Austrian DTM. In general, SRTM data was used to fill data gaps in the central

European region and to form the final DTM as shown in Fig. 4.15. With the new SRTM+

data the bathymetrical information over the oceans is also available. The height accuracy of

the SRTM-3 data has been specified by the Jet Propulsion Laboratory (JPL) with ± 20 m

[see e.g. (Smith and Sandwell, 2003)]. More information on the SRTM mission can be found

on the official SRTM web page.3

For a detailed description of DTM evolution the reader is referred to (Mayerhofer, 2007). The

currently available Austrian DTM is based on orthometric heights, whereas the horizontal

coordinates are related to the WGS-84 system (see sec. 2.2.3).

Figure 4.15: High resolution DTM within central Europe

3http://www2.jpl.nasa.gov/srtm/
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In general, the DTM is given within the following borders:

ϕ= 43◦-53◦ ,

λ= 5◦-22◦ .

Based on the original resolution, different coarse DTM models have been derived by computing

weighted mean values. In particular, the following resolutions are calculated:

Table 4.4: Different DTM resolutions

Notation Resolution Number of Points

BEV00 1.40625”×2.34375” 668.467.200

BEV01 2.8125”×4.6875” 167.116.800

BEV02 5.625”×9.375” 41.779.200

BEV03 11.25”×18.75” 10.444.800

BEV04 22.5”×37.5” 2.611.200

BEV05 45”×75” 652.800

BEV06 90”×150” 163.200

Due to a historical evolution of the DTM, uncertainties in the obtained orthometric heights

of about ± 2.5 m within Austria can be expected. This specification depends on whether the

terrain is flat or mountainous. In mountainous regions the uncertainty can reach the ± 20 m

level, depending on the land coverage and recording method (Mayerhofer, 2007). Besides the

European coverage there is also a global coverage available, which is described in the following

section.

4.3.2 GTOPO Model - Global DTM Coverage

In order to provide a global DTM coverage for investigations, the GTOPO4 model, which

consists of several data sources, has been additionally considered. The original GTOPO

dataset was completed in 1996, during the following years ongoing improvements were applied

and today the latest SRTM+ datasets are also incorporated to provide an updated topographic

model. The GTOPO model essentially consists of different merged elevation information and

is provided by the U.S. Geological Survey (USGS, 2014). For the investigation of the distant

zone contribution the originally given 30 arc seconds5 resolution was not used. A data thinning

step was applied. The coarse DTM resolution used is of about 4×4 km. In order to combine

the high resolution DTM provided by the BEV with the GTOPO dataset, the height values

are set to zero in the overlapping area. This is shown in Fig. 4.16.

As also can be clearly seen in Fig. 4.16, the GTOPO model only provides information above

sea level. The ocean covered regions are set to zero. Furthermore, there is no corresponding

4https://lta.cr.usgs.gov/GTOPO30
530” ≈ 1 km
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Figure 4.16: Global DTM coverage provided by the GTOPO model; For the combination with the
Austrian DTM, the overlapping part is set to zero

density information available. For example, Greenland is completely covered by snow and

ice which does not correspond to the density assumption of solid rock. The heights are also

originally related to the WGS-84 system and geoid heights are necessary in order to provide

orthometric heights (USGS, 2014).

The impact of additional masses coming from the distant zones had never been investigated

in the frame of Austrian geoid computation. With the GGM information on one hand, and

the global DTM coverage on the other hand, both information types are now valid on a global

scale. Results related to this topic can be found in sec. 7.4.4. A set of topographic coefficients

has been computed for the GTOPO model in order to provide a correct representation of the

topographic masses in the spectral domain. A general height accuracy of ± 30 m has been

specified by the USGS depending on the individual data source.

4.4 General Aspects of Density Information

For the topographic/isostatic or atmospheric reduction, the knowledge of the topography, as

well as an assumption about the density distribution is needed in order to calculate different

kinds of reduction. In case of the topographic/isostatic compensation, a common approach is

to use a standard crustal density value of 2670 kg/m3 which refers to the density of the Earth’s

crust. In this case no further information about the density in the area of interest is available.

Indeed, this is only an assumption and therefore density anomalies which are different from

this standard value remain in the reduced gravity. A typical geological structure of different

density is the so-called Tauern window [see e.g. (Meurers et al, 2001)]. Fortunately, there is

density information apart from the constant standard assumption available.
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This is not the first attempt to introduce density information into the geoid computation pro-

cess for Austria. During the past decades, for example, Norbert Kühtreiber from Graz Univer-

sity of Technology has also used the same lateral density data for several investigations. The

final outcome was that no significant differences, based on the density information in compar-

ison to the constant standard crustal density assumption, can be observed [see (Kühtreiber,

1998a) or (Kühtreiber et al, 2011)]. Due to a more consistent RCR procedure this result has

been revised. In sec. 7.4.2 at least a slight improvement of the results in the remove and

restore steps, as well as in the final estimated geoid, can be observed. A visual representation

of the different density models is provided in the following sections.

4.4.1 2D Surface Density Model

Based on geological observations a surface density model for the Austrian territory becomes

available in the early 1950s. Initial work has been carried out by Harald Granser and further

details are provided by (Rinner, 1983). This type of information is closely connected to

the rocks and geological structures (compare Fig. 4.17 and Fig. 4.18). It is valid for the

Earth’s surface, but no serious statement about the density distribution in the Earth’s interior

contributing towards the geoid level is possible. In this research the impact of this effect on

the geoid computation is also of interest and has been investigated. The original density

resolution has been interpolated to the corresponding DTM spacing, which makes it available

for the RCR procedure.

Figure 4.17: 2D Austrian density model based on geological observations

The use of a surface density model leads to smoother gravity data and to a slightly improved

geoid, compared to GPS/leveling observations. To support this statement, the corresponding

results can be found in sec. 7.4.2. This is important when discussing precise geoid computation

requirements. In Fig. 4.18 the geological structures of Austria can be seen. The 2D density
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model is strongly correlated with the rocks and provides many geological features. Not all of

these are reflected in the density map, but in general a great deal of variety can be observed

when compared to an ordinary constant standard density assumption of 2670 kg/m3.

Figure 4.18: Geological map of Austria [courtesy by Geological Survey Austria6]

4.4.2 3D Seismic Density Model

For the purpose of scientific research a 3D density model for the central European region has

been provided by the Technical University of Vienna for the GEOID+ project (see sec. 4.1.2).

This model originally consists of ellipsoidal WGS-84 related coordinates and variable vertical

density values, derived from seismic tomography (Behm et al, 2008). Unfortunately, the

model does not cover the entire Austrian territory. In the western part of Austria (λ < 11◦)

no seismic data are available (see Fig. 4.19). The relationship between seismic velocity and

density is based on the Christensen-Mooney relation, where the seismic velocity is directly

transformed into density information (Christensen and Mooney, 1995).

The seismic model originally consists of 11 layers, starting from 0 km to -10 km and is actually

able to cover deep and large scale structures. Within this research only the top layer (0 km)

which refers to the sea level, and to a geoid given a global scale, has been used. The isostatic

long wavelength components underneath are assumed to be well covered by a GGM and can

be neglected within the RCR procedure as shown in sec. 7.4.7.

In sec. 7.4.2 an investigation on the impact and performance of different density assumptions

has been made. One of these assumptions is the so-called hybrid model, which represents an

attempt to combine geological and seismic data is briefly discussed in the following section.

6www.geologie.ac.at
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Figure 4.19: Top layer (0 km) of seismic 3D density information

4.4.3 Hybrid Density Model

Basically, this model consists of two different datasets. The top layer of the hybrid model is

based on the 2D surface density information and the bottom layer is provided by 3D seismic

tomography, as shown in Fig. 4.19. The remaining area was again filled with standard crustal

density values, which also holds for the other models. The hybrid density combination is given

according to

ρhyb =
ρ2D + ρ3D

2
, (4.1)

and in areas where only the 3D information is available the standard crustal density ρ is

introduced as

ρhyb =
ρ+ ρ3D

2
. (4.2)

Please note, that this is only an attempt to combine these two different datasets for the

purpose of geoid computation. For the purpose of an integrated interpretation, for example

as it is necessary for gas and oil exploration decisions, it is not suitable. In the western part

of Austria (λ < 11◦) the hybrid model converts to the 2D surface density model, because here

the 3D model does not provide information. Finally, the resulting hybrid density model is

shown in Fig. 4.20.
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Figure 4.20: Hybrid density model

To summarize, a statistics of different density models used in this thesis can be found in

Tab. 4.5. The original density information is given on an approximately 4×4 km resolution

for the 2D surface density and on approximate 20×20 km for the seismic 3D measurements. To

make this information usable, the density information has been interpolated to the resolution

of the corresponding DTM, which is taken into account for the computation. In this case for

every mass column a corresponding density value is available. In areas where the model does

not provide density information, the standard crustal density value of 2670 kg/m3 is assigned.

Table 4.5: Statistics of all used density models

Model min [kg/m3] max [kg/m3] mean [kg/m3]

Surface Density Model 2000.00 2852.00 2579.60

3D Density Model 2102.70 2870.56 2628.57

Hybrid Density Model 2054.95 2775.27 2641.67

Standard Density Model 2670.00 2670.00 2670.00
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5 Least Squares Adjustment

5.1 Principles of Least Squares Estimation

The basics of a least squares approach (Gauss-Markov model) are explained in this section

because it provides the mathematical backbone for the estimation of the unknown parameters.

The used notation is taken from (Montenbruck and Gill, 2000).

The observations and unknown parameters are linked by a functional model and noise. The

observations are grouped in the observation vector y. The functional model f includes ob-

servation equations related to the estimation parameters which are contained in the vector x.

Taking into account the residual vector ε, the observation equation reads

y = f(x) + ε . (5.1)

The model is typically overdetermined, that means compared to the number of unknowns

to determine a larger amount of observations is available. Furthermore, in case of a non-

linear model the first step is to linearize it by means of approximated values for the unknown

parameters. The linearization of the model can be performed by a Taylor series as

y = y0 +
∂f(x)

∂x

∣∣
0
(x− x0) + ... , (5.2)

which is truncated after the linear term. The linearization, attributed to a reference solution

with a-priori values for the unknowns is given according to

y = f(x0) +A∆x+ ε , (5.3)

where A denotes the design matrix which is defined as

A =
∂f(x)

∂x

∣∣
x=x0

. (5.4)

The linearized model reads y0 = f(x0), and reveals in linearized observations ∆y = y − y0

as well as supplements to the unknown parameters ∆x = x−x0. The entire linear system of

equations in matrix notation can be written as
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5.1 Principles of Least Squares Estimation

∆y = A∆x+ ε , (5.5)

where the Gauss-Markov model assumes that the measurement errors have an expectation

value of zero. The stochastic behavior of the model is characterized by the covariance matrix

of the observations, denoted as Q. This matrix is defined according to

Q = σ2
0 P

−1 , (5.6)

where σ2
0 is the unknown variance factor. Considering the weight matrix P , the minimum

condition of the normal equation system reads

0 = ATPA∆x̂−ATP∆y . (5.7)

Rearranging Eq. (5.7) leads to supplements to the estimated parameter vector, given as

∆x̂ = (ATPA︸ ︷︷ ︸
N

)−1ATP∆y . (5.8)

Therein ATPA denotes the normal equation matrix N . This matrix is characterized as

symmetric. The final adjusted model parameters are now given by

x̂ = x0 + ∆x̂ . (5.9)

The entire adjustment process is solved iteratively and the connection to the Remove-Compute-

Restore (RCR) technique (see sec. 6.1) is given by the linearized observations ∆y which are

introduced in the remove step, the supplements to the parameters ∆x̂ are estimated in the

compute step and the final parameters x̂ are used in the restore step.

The stochastic behavior of the estimated parameters can by scaled by an a-posteriori variance,

which can be calculated according to

σ̂2
0 =

ε̂TP ε̂

n− u
, (5.10)

where n− u describes the degree of freedom computed as the difference between the number

of observations n minus the number of estimated parameters u. Additionally, the covariance

matrix of the estimated parameters can be obtained according to

Qx̂ = σ̂2
0N
−1 . (5.11)
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For the estimation of the a-posteriori variances, the Variance Component Estimation (VCE)

method is used. More on this topic can be found in sec. 5.2. In addition, the quality of

the chosen model can be verified by means of the corresponding residuals. The estimated

observations ŷ are computed by

ŷ = Ax̂ , (5.12)

and the post-fit residual vector follows according to

ε̂ = y − ŷ . (5.13)

5.2 Regularization Issues and Variance Components

As will be shown in sec. 6.3.4, a vast amount of homogeneously distributed unknown pa-

rameters u to determine are needed in order to ensure a proper gravity field representation.

Conversely, the amount of inhomogeneous distributed gravity field observations n is limited

due to computational efforts. According to the least squares approach, an overdetermined sys-

tem, that means more observations than unknown parameters, is assumed. In this case, the

entire equation system (see sec. 5.1) can be solved under the assumption that the estimated

parameter vector x̂ is replacing the exact solution vector x, with the minimum condition of

‖ε̂‖2, which represents the minimized square sum of the residuals.

In comparison to global gravity field modeling, where no spatial cut off errors occur, regional

gravity field modeling is spatially limited within a certain region and an edge effect occur.

Another aspect is the inhomogeneous input data distribution, which leads to the situation

that the entire equation system might be ill-posed. Therefore, the least squares minimum

condition itself does not lead to a stable solution and some kind of stabilization process needs

to be applied in order to stabilize the entire equation system. From a mathematical point

of view, the instability of the design matrix A can be treated by adding a-priori information

about the solution to constrain the estimation result. One possible way in order to recognize

an equation system to be well- or ill-posed, is to investigate the condition number, which is

defined according to (Higham, 1987)

cond(A) = ‖A‖‖A−1‖ . (5.14)

If the condition number is small, the equation system or the matrix A is well conditioned.

In case of a large condition number, the system needs to be stabilized in any way. There are

several methods to deal with ill-posed systems as, for example, described in (Naeimi, 2013)

or (Eicker, 2008).
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For geoid determination, the regularization is embedded within the Remove-Compute-Restore

(RCR) procedure. The remove step provides the necessary a-priori information for the regu-

larization due to the use of long- and short wavelength components which have been reduced

from the original gravity field signal. In this thesis the approach of Tikhonov regulariza-

tion (Tikhonov, 1963) has been applied, which is described in the following.

5.2.1 Tikhonov Regularization

Regularization may be applied by means of a refinement of the original observation model,

which is provided in a least square sense by means of Eq. (5.5), with the corresponding weight

matrix given by Eq. (5.6), which includes the covariance information of the observations.

Following (Naeimi, 2013), and supposing that this information can be expressed by a refined

model as

Lx = s , with Qs = σ2
s P

−1
s , (5.15)

where L is the regularization matrix and s a functional of the unknown parameters x. A

combination with Eq. (5.5) obtains the following combined equation system

[
A

L

]
x =

[
y

s

]
. (5.16)

This normal equation system can be further reformulated as

(N +K)x = y + u , (5.17)

where K = σ−2
s L

TP sL and u = σ−2
s L

TP ss. By means of introducing the regularization

parameter

γ2 =
σ2

0

σ2
s

, (5.18)

the full equation system reads

(ATPA+ γ2K)x = ATPy + γ2LTP ss , (5.19)

with the equivalent minimum condition of

min(‖ε̂‖2 + γ2‖ε̂s‖2) . (5.20)

61



5.2 Regularization Issues and Variance Components

This gives the generalized form of regularization of an ill-posed problem, depending on the

prior information introduced by s. At this point it has to be mentioned that these information

corresponds to the remove step as discussed in sec. 5.2 and the regularization is applied towards

zero s = 0. Further let P s = I, Eq. (5.19) depends strongly on the a-priori chosen L, as

well as on the regularization parameter γ2, which leads to Tikhonov regularization (Tikhonov,

1963) in a strict sense. For gravity field estimation this method is a common approach to solve

ill-posed problems numerically. This type of regularization is characterized by a regularization

matrix and a corresponding regularization parameter.

The so-called standard Tikhonov regularization may be derived by means of the additional

assumption of L = I. With this assumption, the unit matrix is introduced and theoretically

it is possible to refine the regularization. Then it is also possible to distinguish between land

or ocean areas [see e.g. (Eicker, 2008)].

One constant regularization parameter is introduced for each unknown parameter and the

regularization reads

(ATPA+ γ2I)x = ATPy , (5.21)

and the corresponding minimum condition is given as

min(‖ε̂‖2 + γ2‖x‖2) , (5.22)

which further means that not only the norm of the residuals ε̂ is minimized but also the

norm of the solution x. This circumstance implies the regularity of the solution. Finally, the

regularized solution vector, here denoted as x̂γ , can be obtained by

x̂γ = (ATPA+ γ2I)−1ATPy . (5.23)

In this case the solution is strongly dependent on the chosen regularization parameter and

this choice is also essential in order to keep the balance between the fit to a-priori information

and the regularity of the solution (Eicker, 2008). For this research, one regularization is

applied for the complete region. This means that in areas with a vast amount of terrestrial

data the chosen regularization might be too strong whereas in areas with sparse observations

the regularization dominates the solution. Therefore, the regularization is a trade-off between

data fitting and stabilizing the solution (Metzler, 2007). By means of VCE, a regularization

parameter which controls the power of the regularization is estimated.
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5.2.2 Variance Component Estimation

The VCE applied within this thesis is based on (Koch and Kusche, 2002). In general, it is

suitable to iteratively determine a regularization parameter, and to find a proper weighting

among the individual observation groups. Not only different types of observations are weighted

relatively to each other, for example gravity data and deflections of the vertical. It is also

possible to find an individual weight for observation groups which consist of the same type of

observation.

The normal equation system N can be established by an accumulated sum of the weighted

individual normal equation systems Nk, depending on the different observation groups taken

into account (see also 5.2.3 and sec. 7.2.3). Additionally, one group of regularization param-

eters for all basis functions is introduced. These parameters will be constant, representing

one mean value for the entire area of interest. According to (Eicker, 2008), the total system

expressed as combination of the individual normal equations can be written as

ATPA︸ ︷︷ ︸
N

x = ATPy︸ ︷︷ ︸
n

, (5.24)

with

N =
∑
k

1

σ̂2
k

Nk , and n =
∑
k

1

σ̂2
k

nk . (5.25)

This includes an a-priori initial value σ̂2
k for every individual observation group. The VCE

weighting arguments are given as the reciprocal variances of the normal equation system

according to

σ̂2
k =

Ω̂k

rk
, (5.26)

with Ω̂k being the square sum of the residuals of the kth observation group

Ω̂k = ε̂TkP kε̂k . (5.27)

The partial redundancies are computed according to

rk = nk −
1

σ̂2
k

trace
(
NkN

−1
)
, (5.28)

with nk denoting the number of observations of the kth observation group. Finally, the overall

redundancy can be computed as
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∑
k

rk = n− u . (5.29)

In case of regularization, s = 0, L = P s = I is applied. The normal equation matrix N is

extended to the regularized normal equation matrix as

Nγ = ATPA+ γ2I . (5.30)

The solution for x̂ and the variance components σ̂2
k are a-priori unknown. Therefore, initial

values must be defined for the iterative VCE process, which is utilized as:

1. Initial values σ̂2
k

2. Combining the normal equation matrix N and n

3. Establish the system of equations Nx=n

4. Compute the solution for x̂ and estimate new variance components σ̂2
k and rk

5. If
convergence−−−−−−−→ STOP; if

no convergence−−−−−−−−−−→ begin again at step 2

The VCE is a powerful tool to find a proper weighting among individual observation groups

and also to determine a proper regularization parameter. By means of an appropriate initial

choice of the variance components, the solution convergence is expected to be within a few

iteration steps. In this thesis, the values from the official Austrian geoid solution 2007 have

been used as initial values. The VCE method was utilized to check the empirically defined

sigmas in previous Austrian geoid campaigns. To do so, only one set of observation groups

representing the entire gravity dataset is considered. In addition, the following a-posteriori

sigmas derived from VCE are obtained and compared with the empirical values chosen for the

Austrian geoid solution. These values are shown in Tab. 5.1.

Table 5.1: Estimated σ compared to the official Austrian geoid solution

Parameter VCE method Austrian geoid
2007

∆g 0.95 mgal 1.00 mgal

ξ, η 0.54” 0.30”

The estimated sigma for the gravity anomalies is similar, whereas for the deflections of the

vertical the sigma is different which is due to the redundancies and the relative weighting of

the different observation groups using VCE.
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5.2.3 Building Observation Groups

In order to define different observation groups for the same type of observation, some prior

information is needed. This information has been provided by the Federal Office of Metrology

and Surveying (BEV) (see sec. 4.2.1), where the gravity data within Austria can be separated

according to the individual measurement systems and their corresponding accuracy informa-

tion, which leads to three different groups. Another simple separation can be performed by

means of the geographical location where the gravity data are divided by political boundaries,

which leads to seven additional groups. For the sake of completeness it has to be mentioned

that a few Lichtenstein gravity observations are merged with the Switzerland dataset. This

also holds for some absolute gravity measurements within Austria because that small amount

(35 measurements) does not justify an additional observation group, although they are the

most accurate ones. Finally, this leads to ten individual gravity observation groups as shown

in Fig. 5.1.

Figure 5.1: The entire gravity dataset of 72327 measurements divided into ten different observation
groups; Within Austria the groups depend on the chosen measurement system with 35595
LCR and Scintrex in blue, 9339 Worden in red and 3818 Norgaard measurements in dark
green; The remaining 23577 observations belong to the neighbouring countries

For the combined gravity field computation, the deflections of the vertical also have to be taken

into account as an individual observation group. It turns out not being necessary to separate

the ξ and η components, because their contribution to a combined solution is rather small

(see sec. 7.2.3). The VCE method provides weighting among the different observation groups

of the same type and also between different types of gravity field observations. Furthermore,

a regularization parameter is estimated for every unknown RBF scaling coefficient in order to

stabilize the entire equation system. The estimated variance components are of about 1 mgal

within Austria and are shown in Tab. 5.2. It must be noted that the individual σ values are

not comparable to the measurement accuracy, due to remaining modeling errors. More on

this topic can be found in sec. 4.2.1.
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Table 5.2: Estimated variance factors of the individual observation groups by means of VCE

Group Points [σ]

Austria - LCR 35595 1.10 mgal

Austria - Worden 9339 0.82 mgal

Austria - Norgaard 3818 0.85 mgal

Germany 3604 1.22 mgal

Switzerland 3150 1.13 mgal

Italy 2527 1.02 mgal

Slovenia 2236 1.05 mgal

Hungary 1535 0.22 mgal

Czech Republic 649 2.08 mgal

Slovakia 9282 0.58 mgal

Deflections of the vertical 735 0.54”

Regularization 37891 1 · 10−4

As can be seen in Tab. 5.2, the estimated variance components vary in the range of about

1 mgal. Especially in Hungary and Czech Republic, the estimated factors are too optimistic

due to the fact the used input data are not real measurements but further processed and inter-

polated gravity. In general, for Austrian neighbouring countries, the quality of the measured

gravity is unknown due to the fact that the measurements have grown historically, but VCE

provides a method to deal with this problems.
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6 Regional Gravity Field Modeling

The combination of various gravity field quantities and their different wavelengths behavior

was one of the major challenges in this thesis. As shown in sec. 4.1, the official Austrian

geoid solution is still affected by systematic errors between the gravimetric geoid solution

and GPS/leveling observations. These errors are supposed to be coming from an inconsistent

treatment of the topographic masses. Due to this reason, a non-physical correction surface,

with a magnitude of several meters, has been introduced to absorb deficiencies in the modeling.

This chapter presents a different approach, by means of a rigorous separation of the individual

parts of the gravity field in the spectral domain. The general framework for gravity field

modeling is the Remove-Compute-Restore (RCR) procedure, which will be described in the

following.

6.1 Remove-Compute-Restore Technique

In general, the concept of the RCR approach (Forsberg, 1984), (Forsberg and Tscherning,

1997), or (Hofmann-Wellenhof and Moritz, 2006), is to remove the short wavelength topo-

graphic, the atmospheric and the long wavelength part from the gravity field signal before

computation. This results in gravity field quantities which are computed based only on a resid-

ual disturbing potential. Hence, the effect of the topographic and atmospheric masses, as well

as the long wavelengths have to be restored after the computation. Finally, the achieved re-

sults will be validated with independent datasets. The RCR procedure is a common approach

in regional gravity field modeling.

For the purpose of geoid modeling, and in order to fulfill the requirements of the Laplace

equation, no attracting masses outside the geoid are permitted. If this is valid, the gravita-

tional potential V and the disturbing potential T are characterized as harmonic (see sec. 3.1).

In reality, topographic masses are located outside the geoid and in order to compute a geoid

according to a harmonic function, which is based on the solution of the fundamental equation

of geodesy (e.g. based on the Stokes formula (Moritz, 1980a) or (Hofmann-Wellenhof and

Moritz, 2006), or based on Fast Fourier Transformation (Schwarz et al, 1990), or the Least

Squares Collocation (LSC) method (Moritz, 1962) or (Heiskanen and Moritz, 1967), these

masses have to be removed in a mathematical manner.

In the framework of the RCR technique the a-priori non-linear observation equations are

linearized. According to sec. 5.1, the general linearization of the equation system is given by
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∆y = A∆x+ ε , (6.1)

where the remove step is represented by ∆y = y−∆y0. Within this step all known parts of

the gravity field (long- and short wavelength components) are modeled and subtracted from

the original measurements. Based on these linearized and reduced observations, supplements

to the a-priori introduced parameters are estimated in the compute step according to

∆x̂ = (ATPA)−1ATP∆y . (6.2)

Finally, the estimated parameter vector is used in the restore step in order to calculate the

quantities of the gravity field. It may expressed as

x̂ = x0 + ∆x̂ . (6.3)

All known quantities which can be modeled beforehand are subtracted from the input data

in the remove step. Therefore, on the one hand Global Gravity field Models (GGM), are

representing the long-wavelength components of the gravity field, and on the other hand

Digital Terrain Models (DTM) with their corresponding high frequent characteristic, which is

well suited for the representation of mountainous regions like the Alps, mainly represent the

short wavelengths. The iteratively computation of the supplements to the a-priori parameters

is based on smoothed data. Therefore, the estimated gravity field quantity is representing

only a residual signal. In case of the Austrian gravimetric geoid, residual geoid heights of

about ± 1 m occur. By adding the output from the compute step together with long- and

short wavelength components, the restore step is accomplished.

In case of Austrian geoid computation, three main data sources can be identified. First,

terrestrial measurements provide the opportunity to represent the fine structures of the gravity

field. Furthermore, information among all spectral bands is provided by gravity anomalies

and deflections of the vertical (Denker, 1988).

The second data source is the long wavelength component, which is represented by a GGM.

In case of geoid computation, it covers mainly the long wavelengths up to a certain degree.

A GGM of d/o 250 corresponds to a spatial resolution of about 80 km. Consequently, high

resolution geoid structures will not be recovered by these models.

The third data source are high resolution DTMs. It is possible to cover highly frequent

parts of the gravity field but a density assumption with respect to topographic masses is

needed. Especially in Austria, where a mixture between topography and flatland prevail, a

high quality DTM is essential for precise geoid computation. Another important application

is the smoothing of the input data based on a topographic reduction of the gravity field signal,

where a double consideration of topographic masses needs to be avoided. Therefore, a proper
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combination of these different data types and sources suggests itself. Another quantity which

is relevant for geoid modeling is the atmospheric effect. The impact of both atmospheric

potentials on the geoid computation is rather small, but significant, and has to be considered

in order to ensure a consistent RCR procedure.

6.2 Remove Step - Smooth the Gravity Field Signal

The gravity field signal has to be smoothed due to several reasons within the geoid computation

process. This includes different reduction steps which are discussed in this section. The focus

is on an optimum combination of different spectral components in order to establish one

consistent set of observations, which can be used to compute a high quality geoid.

6.2.1 Full Vector Approach

in this research the full vector approach is developed in order to minimize linearization errors

and to improve the entire geoid computation (see sec. 7.4.1). A linearization according to

y0 = f(x0) , (6.4)

is usually applied to transform from non-linear to linear functionals. The full vector ap-

proach prevents linearization and the complete reduction, including the topographic-isostatic

components and atmospheric part from the measured gravity value g can therefore written as

∆gred = g − ‖∇V GGM + δgtopo + gisoSH − δgatm + gcen‖ , (6.5)

where the individual quantities are treated as vectors instead of a scalar potential represen-

tation (see also sec. 3.2). ∇V GGM denotes a reference field which is subtracted from the

measured gravity data. This is discussed in more detail in sec. 6.2.2. The topographic re-

duction is denoted as δgtopo and represents the spectral part which is not yet covered by the

GGM (see sec. 6.2.3). This also holds for the residual isostatic part, denoted as gisoSH , which

is representing only the remaining short wavelength component of the isostasy. The parts

representing the removal of the atmosphere has been split into interior and exterior parts.

The combined part δgatm of both atmospheric potentials has been considered in Eq. (6.5).

This is due to the fact that the GGM already includes atmospheric reduction below satellite’s

altitude but the affecting atmospheric masses are above the measured gravity field quantities

which are located on the Earth’s surface. This problem is treated in more detail in sec. 6.2.4.

The centrifugal acceleration for the gravity computed from the Earth rotation is denoted as

gcen.
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6.2.2 Long-Wavelength Reduction and Global Gravity Field Model

The satellite-only model GOCO05s (Mayer-Gürr et al, 2015), has been utilized in this research

to cover the long wavelength part of the gravity field. Currently, the GOCO05s is the latest

and most accurate in a row of Gravity Observation COmbination (GOCO) models, providing

high accurate information of the long wavelength available up to Nmax= 280. This d/o

corresponds to a spatial resolution of approximately 70 km. Considering the fact that the long

wavelengths behave with decreasing accuracy in the higher degrees, the practical consideration

of this model is limited to d/o 250 within this thesis.

In Fig. 6.1 the development of GGMs used for Austrian geoid computation is shown in terms

of geoid heights. The EIGEN-GL04S1 (Förste et al, 2006) or (Förste et al, 2008) model

was used for the present Austrian geoid solution in 2007. The maximum d/o of the model is

limited to 150, whereas only d/o 70 was taken into account for the geoid modeling. At the

moment the GOCO05s represents the state of the art model. The signal degree variances,

which represent the information content of every spherical harmonic degree, are illustrated

as solid line, the formal errors (error degree variances) as dashed lines (see sec. 6.3.3), which

indicates an improvement of the GOCO05s in comparison to the EIGEN model.

Figure 6.1: Signal degree variances of the GOCO and EIGEN models as solid lines; The formal errors
of the models are illustrated as dashed lines in terms of geoid heights

Several data sources from 15 different satellites contribute to the GOCO05s. The main contri-

butions are provided by dedicated gravity field missions. GRACE (Tapley et al, 2004) provides

information below d/o 120, whereas GOCE (Drinkwater et al, 2003) mainly contributes be-

tween d/o 120-260. Beyond d/o 260 the model is driven by Kaula regularization (Kaula,

1966). Moreover, the Satellite Laser Ranging (SLR) technique provides accurate information

about the very long wavelengths. This technique contributes up to d/o 10, where the main
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part of its contribution is attributed to d/o 2. More details related to the GOCO05s model

can be found in (Mayer-Gürr et al, 2015).

The spherical harmonic coefficients provided by the GOCO05s can directly be used to compute

functionals of the disturbing potential such as geoid heights, where the spatial resolution

depends on the chosen d/o (see sec. 3.5). In this section only an intermediate step of Eq. (6.5),

representing the removal of the long wavelength components up to d/o 250 from the measured

gravity, is shown in Fig. 6.2. The corresponding statistics can be found in Tab. 6.1.

At this point it has to be mentioned that for linearization issues and as a methodological

development an approximated ellipsoidal height has been introduced for every gravity field

observation and every DTM point in advance. The necessary geoid height is derived from the

GOCO05s model up to d/o 250 according to

h ≈ H +NGGM . (6.6)

Therefore, also the evaluation of the potential is related to that height. Furthermore, gravity

derived from the GOCO05s model replaces the normal gravity. This has been discussed in

sec. 3.5, whereas the impact of both effects is presented in sec. 7.4.1.

Figure 6.2: Remaining short wavelength part of gravity anomalies after long wavelength reduction
up to d/o 250

Table 6.1: Statistics of long wavelength reduction of 72327 gravity observations

[mgal] min max mean rms

g − ‖∇V GGM + gcen‖ -231.13 143.89 -26.34 51.42

As expected, after applying a long wavelength reduction sharp structures and valleys show

up in Fig. 6.2. Also a considerable mean value is remaining. This is due to the fact that
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a vast amount of the gravity measurements are taken place in valleys and the mountainous

regions are underrepresented. With this long wavelengths correction also the contribution

from isostasy is well covered due to the fact the satellite derived GGM is representing the

signal in the same spectral bandwidth.

6.2.3 Short-Wavelength Reduction and Topographic/Isostatic Model

From a spectral point of view, one can say that the entire reduction step needs to be cor-

rected for long wavelength signals coming from the topographic reduction, as well as from

the potential of the atmosphere. Parts of the topographic reduction are already included in

the long wavelength GGM and this needs to be considered in the RCR procedure in order to

avoid a double consideration of topographic masses. Therefore, only short wavelength parts

of topography are needed.

Topographic Model

To be able to exploit the full available information from GGMs and to ensure a proper treat-

ment of the topographic masses within the RCR technique, a spectral separation approach in

long- and short wavelength parts is performed. For the remove as well as the restore step, the

long wavelength components should only be represented by the information derived from the

GGM. The short wavelength part beyond a certain d/o of the series expansion is therefore

derived from topography, which ensures that the spectral component of topography which is

already covered by the GGM is not taken into account twice. In mathematical notation the

complete gravitational potential is therefore given according to

V (P ) =
N∑
n=0

aGGMnm Ynm(P )︸ ︷︷ ︸
long

+
∞∑

n=N+1

atoponm Ynm(P )︸ ︷︷ ︸
short

, (6.7)

where Ynm are the spherical harmonics and the anm representing either short- or long wave-

length components (see also sec. 3.1). To perform the spectral separation the gravitational

potential of the topography has to be known and can be computed by e.g. prism repre-

sentation as will be shown later in this section. For an arbitrary point P , this topographic

gravitational potential in the spectral domain may be expressed as

V topo(P ) =

N∑
n=0

V topo
n (P ) +

∞∑
n=N+1

V topo
n (P ) , (6.8)

where the high frequent part of the topography, which is needed in addition to the part covered

by the GGM, is given by spectral separation of Eq. (6.8). It follows
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∞∑
n=N+1

V topo
n (P ) = V topo(P )−

N∑
n=0

V topo
n (P ) , (6.9)

where in turn
∑N

n=0 V
topo
n (P ) denotes the gravitational potential of the topography coming

from the spherical harmonic expansion of the DTM up to d/o N , which is given according

to Eq. (3.26). A proper choice of N is discussed in sec. 6.3.3. By means of introducing

the topographic potential coefficients into the RCR procedure, a rigorous spectral separation

between the different spectral bands is possible. The set of coefficients derived from the

topography can be used for the series expansion of different functionals of the disturbing

potential which is shown in, for example (Mayer-Gürr and Pock, 2015).

The topography and its gravitational potential has to be removed to fulfill the Laplace equa-

tion (see sec. 3.2). Furthermore, the gravity field signal is smoothed by removing its high

frequent topographic part. This is done by a topographic reduction, where the masses are

treated depending on their spatial distance from the gravity station. In the vicinity of the

gravity station, the gravitational potential of the topography is treated with the prism for-

mula (Mader, 1951). Beyond a certain distance, the topography is treated as a 2D integral

with radial integration and another distinction is done for the distant zones, where the topog-

raphy is assumed to be a point mass. This is due to a decreasing impact of the topographic

masses with increasing distance. In summary, the topographic potential is approximated as

• r < 50 km prism formula,

• r= 51-100 km 2D integral with radial integration,

• r > 100 km point masses.

A visual interpretation of the different topographic treatments is shown in Fig. 6.3. It has to

be noted that the entire topography is considered without a limiting radius for remove and

restore steps. A common approach is to assign a constant density value to every individual

mass column. To be more realistic, this information can also be derived from density models

as discussed in sec. 4.4, where the constant standard value may be replaced.

In general, for the computation of the potential and its first derivatives, the topographic masses

are separated into single volume elements. The gravitational effect is therefore computed over

the sum of these single elements, where the type of the shape approximation method depends

on the distance between the gravity station and the integration point of the DTM. Due

to the fact that the fine structure of a field generating body is attenuated with increasing

distance from the station, a simplification from prism representation to a 2D integral with

radial integration and point masses is permitted. This simplification decreases computational

efforts.
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Figure 6.3: Different approximation approaches of the topography depending on the distance between
the gravity station and the DTM point

Prism Representation

For the discretization of the topography, a DTM is used to enable the computation of the

gravitational attraction. In case of representation as a prism shaped body, the gravitational

potential in the vicinity of the gravity station for an arbitrary computation point P is given

according to (Mader, 1951) or (Nagy, 1966)

V (x, y, z) = Gρ

[
− ȳz̄ log(x̄+ l)− x̄ȳ log(z̄ + l)− x̄z̄ log(ȳ + l)

+
x̄2

2
arctan

( ȳz̄
x̄l

)
+
ȳ2

2
arctan

(
x̄z̄

ȳl

)
+
z̄2

2
arctan

( ȳx̄
z̄l

)] (x−x2)(y−y2)(z−z2)∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
(x̄=x−x1)(ȳ=y−y1)(z̄=z−z1)

, (6.10)

where for a local Cartesian coordinate system, which is defined at the edges of the prism

according to Fig. 6.4, the distance l =
√
x̄2 + ȳ2 + z̄2 is given as the difference between

computation and integration point. The three components of the gravity vector, which are

needed for the full vector approach (see sec. 6.2.1), are derived from partial derivatives of the

potential as follows

gx =
∂V (P )

∂x
= Gρ

[
ȳ log(z̄ + l) + z̄ log(ȳ + l)− x̄ arctan

( ȳz̄
x̄l

)] (x−x2)(y−y2)(z−z2)∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
(x̄=x−x1)(ȳ=y−y1)(z̄=z−z1)

,
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gy =
∂V (P )

∂y
= Gρ

[
z̄ log(x̄+ l) + x̄ log(z̄ + l)− ȳ arctan

(
x̄z̄

ȳl

)] (x−x2)(y−y2)(z−z2)∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
(x̄=x−x1)(ȳ=y−y1)(z̄=z−z1)

,

gz =
∂V (P )

∂z
= Gρ

[
ȳ log(x̄+ l) + x̄ log(ȳ + l)− z̄ arctan

( ȳx̄
z̄l

)] (x−x2)(y−y2)(z−z2)∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
(x̄=x−x1)(ȳ=y−y1)(z̄=z−z1)

.

(6.11)

The geometric situation for an individual prism is shown in Fig. 6.4.

Figure 6.4: Geometric situation for a single prism with density ρ

As the gravity vector is needed in a global equatorial system, an ordinary coordinate transfor-

mation has to be considered. The corresponding matrices can be found in e.g. (Kuhn, 2000).

The spatial arrangement of the prism is shown on the right hand side of Fig. 6.5, whereas the

evaluation and summation of the prism formula over every single mass column of the DTM

gives the entire gravitational effect within a defined radius r. Due to decreasing gravitational

influence with increasing distance and due to computational efforts, the effect beyond this is

approximated with an approach based on tesseroids, as described in the following.

2D Integral and Radial Analytical Integration

The solution of the potential of a tesseroid shaped body (see Fig. 6.5) leads to elliptical inte-

grals which are not directly solvable in an analytical sense (Wild-Pfeiffer, 2007). Nevertheless,

there are several approaches existing to solve, for example, a numerical solution such as 2D
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integrals with radial integration (Heck and Seitz, 2003). In this case, the originally given 3D

volume element is split into a one-dimensional analytic integral in radial direction and one

two-dimensional integral for the area element as described in (Wild-Pfeiffer, 2007).

The tesseroid can be approximated by a prism shaped body, if the mass and the vertical

extension are the same (Hirt and Kuhn, 2014). In this case, the spatial orientation of both,

the prism and the tesseroid coincide, leading to the same intersection points on the bottom,

midpoint and top of the body. Nevertheless, the shapes are different and so the corner points

differ as shown on the right hand side of Fig. 6.5. The relation to the prism is given according

to (Heck and Seitz, 2007)

∆x = r0∆ϕ, ∆y = r0 cosϕ0∆λ, ∆z = ∆r , (6.12)

where the ∆x, ∆y and ∆z values refer to the prism geometry as shown in Fig. 6.4. ∆ϕ, ∆λ

as well as ∆r belong to the tesseroid. Furthermore, ϕ0 and r0 are related to the midpoint of

the body.

Figure 6.5: Simple tesseroid representation (left) and approximation by prism (right)

Following the notation of (Wild-Pfeiffer, 2007, p.21), the corresponding potential reads

V (λ, ϕ, r) =
Gρ

2

∫∫
σ

KV dσ,

KV =
1

2

[
r2l2 − r1l1 + 3r cos Ψ(l2 − l1) +r2(3 cos2 Ψ− 1) ln

(
l2 + r2 − r cos Ψ

l1 + r1 − r cos Ψ

)]
, (6.13)

where Ψ denotes a spatial distance, r is the radius and r1 and r2 are the upper and lower

integration bounds. The distances to the upper and lower points are given as

l1 =
√
r2 + r2

1 − 2rr1 cos Ψ l2 =
√
r2 + r2

2 − 2rr2 cos Ψ
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According for the chain rule, the three components of the gravity vector as partial derivatives

of the corresponding potential read

gx =

{
−2r ln

(
l2 + r2 − r cos Ψ

l1 + r1 − r cos Ψ

)
x

r
+

[
r2 + 3r cos Ψ +

r2(3 cos2 Ψ− 1)

l1 + r1 − r cos Ψ

]
x

l2

+

[
−r1 − 3r cos Ψ− 3 cos2 Ψ− 1

l2 + r2 − r cos Ψ

]
x

l1

}
1

2
cosϕ0dλdφ ,

gy =

{
−2r ln

(
l2 + r2 − r cos Ψ

l1 + r1 − r cos Ψ

)
y

r
+

[
r2 + 3r cos Ψ +

r2(3 cos2 Ψ− 1)

l1 + r1 − r cos Ψ

]
y

l2

+

[
−r1 − 3r cos Ψ− 3 cos2 Ψ− 1

l2 + r2 − r cos Ψ

]
y

l1

}
1

2
cosϕ0dλdφ ,

gz =

{
−2r ln

(
l2 + r2 − r cos Ψ

l1 + r1 − r cos Ψ

)
z

r
+

[
r2 + 3r cos Ψ +

r2(3 cos2 Ψ− 1)

l1 + r1 − r cos Ψ

]
z

l2

+

[
−r1 − 3r cos Ψ− 3 cos2 Ψ− 1

l2 + r2 − r cos Ψ

]
z

l1
+

[
3(l2 − l1) + 6r cos Ψ ln

(
l2 + r2 − r cos Ψ

l1 + r1 − r cos Ψ

)
− r2(3 cos2 Ψ− 1)

l2 + r2 − r cos Ψ
+
r2(3 cos2 Ψ− 1)

l1 + r1 − r cos Ψ

]}
1

2
cosϕ0dλdφ . (6.14)

Point Masses

The potential of a prism can be simplified. Due to the fact that with increasing distance

the impact of the masses on the gravitational potential diminishes, a Taylor series expansion

of the integral kernel with its origin evaluated at the geometrical center of the mass leads

to (Wild-Pfeiffer, 2007, p.28)

V (x, y, z) = Gρ
∆x∆y∆z

l
. (6.15)

The distance between the geometrical center of the mass and the computation point is denoted

as l and the geometry of the prism is covered by ∆x, ∆y and ∆z. The density is denoted as

ρ. The gravitational attraction of a point mass vector is given according to

gx =
∂V (P )

∂x
= Gρ∆x∆y∆z

x̄

l3
,

gy =
∂V (P )

∂y
= Gρ∆x∆y∆z

ȳ

l3
,

gz =
∂V (P )

∂z
= Gρ∆x∆y∆z

z̄

l3
, (6.16)
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where x̄, ȳ and z̄ denote the corresponding coordinate difference between the computation

and integration points. Finally, for all shape representations the corresponding gravity vectors

are found where the general information is provided by (Wild-Pfeiffer, 2007).

Within the RCR procedure, long- and short wavelength parts of the gravity field signal have

to be treated. In order to avoid a spectral overlap of these parts, the circumstance that a

long wavelength topographic and also the isostatic part are already considered in the highly

accurate GGMs has to be taken into account. In the following, only the topographic part is

treated in more detail because the isostatic part can be treated analogously.

The combined topographic part of Eq. (6.5), is visualized in Fig. 6.6 and the corresponding

results can be found in Tab. 6.2. It is defined as

δgtopo = gtopo − gtopoSH , (6.17)

where gtopo denotes the topographic reduction and gtopoSH the corresponding representation of

the DTM masses in terms of spherical harmonics up to d/o 250. Due to a consistent treatment

of the masses, only short wavelengths are remaining, which are now used to smooth the gravity

field signal by means of subtracting this effect. Corresponding results can be found in sec. 7.1.

Figure 6.6: Topographic part beyond d/o 250

Table 6.2: Statistics of the short wavelength part of reduction based on 72327 gravity observations

[mgal] min max mean rms

‖δgtopo‖ -228.92 129.89 -25.49 49.21
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Isostatic Model

In general, the isostasy represents the hydrostatic equilibrium of the Earth’s crust with a kind

of mass deficit in mountainous regions and a mass surplus in flatland. This assumption needs

to be modeled. According to G.B. Airy, the idea is to model the isostasy like an iceberg

floating on the water. The more the mass protrudes from the water, the deeper it sinks,

whereas in reality, the topography is floating on the Earth’s mantle. The standard Airy-

Heiskanen isostasy model (see Fig. 6.7) is by default assumed with a normal crust thickness

of T=-30 km and a constant density contrast ∆ρ = ρm−ρc between the mantle and the crust

of 600 kg/m3.

The approach for geoid computation, which is being pursued in this thesis, considers the

long wavelengths effect of isostasy as already covered by a GGM. This is valid if the spherical

harmonic expansion is carried out to a higher d/o, and therefore the model covers the isostatic

effect. Thus, only effects based on the series truncation beyond the chosen degree of the GGM

have to be considered in the computation.

The density contrast used for this research is based on investigations to find a tailored value for

the Austrian region made by (Kühtreiber, 1998a) and (Rieser, 2015). They found 350 kg/m3

to be suitable, where this regional value has been used for the computation of a set of isostatic

spherical harmonics up to d/o 500. The corresponding spherical harmonic representation of

the isostasy can be found in sec. 3.3.1, where a density contrast ∆ρ is taken into account

instead of the density ρ. This set of coefficients should represent only the short wavelength

component of the isostatic signal, which is actually of long wavelengths characteristic. At

this point it must be noted that the entire isostatic concept is based on several assumptions

and by means of applying this concept in practical geoid computation, a significant level of

uncertainty is imported into the estimation process.

Figure 6.7: Standard Airy-Heiskanen model
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The fundamental relationship between the values describing the equilibrium condition is given

according to (Hofmann-Wellenhof and Moritz, 2006)

t∆ρ = Hρc , (6.18)

the total thickness of the Earth’s crust is assumed to be

T + t+H , (6.19)

where t is the root and H the orthometric height. For the oceans the following relationship

is valid

t∆ρ = H ′(ρc − ρw) , (6.20)

with ρw = 1027 kg/m3, which represents the water density and H ′ is representing the ocean

depth. The corresponding crustal thickness under the ocean is then given as

T −H ′ − t′ . (6.21)

where t′ is the anti-root which belongs to the ocean. Furthermore, all isostatic variables are

explained in Fig. 6.7. The influence of the isostasy concept on the entire geoid computation

has been investigated and results can be found in sec. 7.4.7. It turns out that this part strongly

depends on the chosen d/o of the GGM, which covers the same long wavelengths range of the

spectrum and contains in principle the same information. Therefore, a decreasing influence

of the isostasy with increasing d/o of the GGM is expected.

In Fig. 6.8 the residual isostatic part is shown. As can directly be observed, a remaining long

wavelength structure is not visible, only short wavelength parts remain, where the computation

is based on a constant density contrast of ∆ρ = 350 kg/m3. The corresponding statistics is

provided in Tab. 6.3. The remaining isostatic effect is small and has to be restored in terms

of geoid heights within a consistent RCR procedure.

Table 6.3: Statistics of remaining isostatic part of 72327 gravity observations

[mgal] min max mean rms

gisoSH d/o 251 → 500 -7.13 8.88 0.07 1.94

For the sake of completeness, the Pratt-Hayford and the Vening-Meinesz models have to be

mentioned. Both models also deal with isostasy but in different ways. The Pratt-Hayford

model is based on a constant level of compensation of 100 km, but allows for different density
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Figure 6.8: Influence of the isostatic part on gravity observations d/o 251 → 500

assumptions for each individual surface mass column, which compensates mass surpluses or

deficits in a local region. Due to the varying density values all mass columns have equal mass.

This model is suitable especially for flatland.

The Vening-Meinesz approach can be seen as an refinement of Airy-Heiskanen, but with a

more regional compensation of the mass loading in the lithosphere. This gives a more realistic

geophysical meaning but is very complex in comparison to the Airy-Heiskanen model. A

detailed description of the different models can be found in, for example, (Hofmann-Wellenhof

and Moritz, 2006), or especially the Vening-Meinesz approach is treated in (Abd-Elmotaal,

1995).

6.2.4 Atmospheric Reduction and Atmospheric Density Model

The atmospheric density decreases with increasing height. Therefore, the ITSG atmospheric

density model [see (Rieser, 2015) or sec. 3.3.2] provides the framework for the atmospheric

corrections, which are considered for the exterior as well as for the interior potential within

the RCR approach. As shown by (Rieser, 2015), the combined effect of these two components

δgatm = gatm,eSH − gatm,iSH , (6.22)

is rather small and clearly < 1 mgal but needs to be considered for the geoid determination. In

order to be consistent in the RCR process, the exterior atmospheric potential effect gatm,eSH is

added back to the GGM model because it is already subtracted from this model. The interior

potential gatm,iSH is representing the gravitational influence of each mass column located above

the measured gravity measured on Earth surface and has to be removed in order to obtain
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atmosphere free observations. On the one hand the attracting masses are assumed to be below

(at satellites altitude) and on the other hand above the gravity measurements. Hence, it must

be distinguished between inner and exterior potentials.

The atmospheric potential effect is of long wavelength behavior and several investigations

concerning a DTM enhancement and a proper expansion of the potential in terms of spherical

harmonics have been carried out. It turns out that the differences between an European DTM

representation (see sec. 4.3.1) and a global DTM coverage provided by the GTOPO model

(see sec. 4.3.2) are rather small and can be neglected. To account for the exterior atmospheric

potential, which is already included in the GGM, the potential series expansion was chosen

accordingly to the series expansion of the GGM. For the interior potential the chosen d/o

can exceed the maximum degree of the GGM. Nevertheless, to be consistent the same d/o is

chosen.

In Fig. 6.9 the combined effect of the atmosphere, based on the DTM covering central Europe,

is shown for the gravity data. The main effect consists of a mean value of 0.63 mgal, which

has been subtracted from the illustration in order to expose the remaining variations. As

expected, it is the smallest quantity within the entire RCR procedure, representing a range

starting from 0.48 mgal in mountainous regions up to 0.70 mgal in flatland. This behavior

is inverse in comparison to the topographic structures, because the masses above the gravity

measurements are smaller in areas which are located in alpine regions. For the restore step,

the geoid heights caused by the atmospheric potentials are shown in sec. 6.4.3.

Figure 6.9: Combined atmospheric signal in terms of gravity anomalies
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6.3 Compute Step - Estimate Gravity Field Quantities

Within the RCR procedure the compute step is utilized to estimate a set of parameters for

different functionals of the gravity field. The residual gravity field signal is used as input

for the computation process (see sec. 6.2). The estimation of the unknown parameters is

mathematically determined by a least squares approach which is discussed in sec. 5.1. The

parametrization is based on Radial Basis Functions (RBF) parameters (see sec. 6.3.1), where

the Variance Component Estimation (VCE) method (see sec. 5.2.2) provides the relative

weighting of the different observation groups (see sec. 5.2.3). The shape of the RBFs are

derived from the formal errors of a GGM up to a certain d/o, and beyond by Kaula’s rule

of thumb (see sec. 6.3.3). The finally estimated solution vector of RBF scaling coefficients is

suitable to represent every gravity field quantity.

6.3.1 Radial Basis Function Parametrization

RBFs are characterized by the spherical distance between two points on the sphere. The basis

functions denoted as φ(r) are radial symmetric and can therefore be expressed as a sum of

Legendre polynomials. According to (Eicker, 2008) and (Bentel et al, 2013) it follows

φ(r) =
GM

R

∞∑
n=2

(
R

r

)n+1√
2n+ 1·knPn(r ·ri) =

GM

R

∞∑
n=2

(
R

r

)n+1

kn

n∑
m=−m

Ynm(r)Ynm(ri) ,

(6.23)

where r indicates the evaluation position and ri the spatial localization of the RBF. The

coefficients kn are responsible for the shape of the basis function. In general, the functionals

of the disturbing potential (see sec. 3.5) can be expressed as the sum of a series expansion

evaluated at a certain position r. It follows

T (r) =
I∑
i=1

ai φi(r) , (6.24)

where this linear combination includes the unknown RBF weights ai to determine. The

disturbing potential is a harmonic function. Hence, the RBFs are also characterized as har-

monic (Eicker, 2008). Further mathematical details concerning the harmonic kernel functions

can be found in, for example (Freeden and Törnig, 1981) or (Freeden, 1999).

An example set of estimated unitless scaling coefficients ai and their corresponding spatial

distribution used in this thesis is shown in Fig. 6.10. This corresponds to the finally chosen

RBF locations as described in sec. 6.3.4.
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Figure 6.10: Set of estimated unitless RBF scaling coefficients

6.3.2 Radial Basis Function Referred to Functionals of the Gravity Field

Applying the RBF approach for regional geoid modeling, which is originally based on (Eicker,

2008), to the gravity field signal, it may be expressed as a linear combination of the radial

symmetric basis functions with the scaling coefficients as given in Eq. (6.24). The correspond-

ing basis function φ(r) for gravity anomalies can in turn be expressed by a sum of Legendre

polynomials according to

φ(r) =
GM

R

∞∑
n=2

(
R

r

)n+1

kn

n∑
m=−n

(
n− 1

R

)
Ynm(r)Ynm(ri) . (6.25)

In case of gravity disturbances, the basis function changes to

φ(r) =
GM

R

∞∑
n=2

(
R

r

)n+1

kn

n∑
m=−n

(
n+ 1

R

)
Ynm(r)Ynm(ri) . (6.26)

For the gravity vector representation, partial derivatives of the basis functions are required

g(r) = ∇T (r) =

I∑
i=1

ai ∇φi(r) , (6.27)

where the derivatives of the basis functions with respect to Cartesian coordinates can be found

by applying the chain rule. According to (Eicker, 2008) it follows
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∇φ =
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∂t
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 . (6.28)

The single derivative with respect to r and t are given for the exterior potential. Hence, the

following derivatives can be built

∂φ

∂r
=
−(n+ 1)Rn+1

rn+2
knPn(t) , (6.29)

∂φ

∂t
=

(
R

r

)n+1

kn
d Pn(t)

dt
, (6.30)
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z
, (6.31)
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∂t
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rR
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r2
,

∂t

∂z
=

zi
rR
− tz

r2
, (6.32)

where t = r · ri, which indicates the affiliation to the coordinates of the two points involved.

If any other coordinate system is needed the corresponding transformations can be found in

e.g. (Hofmann-Wellenhof and Moritz, 2006).

The RBF solution may be transformed into a set of spherical harmonics which leads to the

same result (Wittwer, 2009). The main difference is that spherical harmonics are not lo-

calized in space, whereas the RBF have an ideal space localizing character (Freeden, 1999).

Furthermore, RBFs are strongly dependent on the spherical distance of the data points and

the corresponding spatial location of the basis functions.

Typically, the shape of the basis function has its maximum value at the center and shows

an oscillating behavior with increasing distance from the center. If the basis function is

not defined as a band-limited function, it never becomes zero. With increasing degree of

expansion, the basis function becomes narrower. From a spectral point of view, this means

that wider basis functions are more suitable for the representation of the lower frequencies,

whereas the high frequencies can be well represented with narrow basis functions (Wittwer,

2009). In order to recover finer structures of the gravity field, a higher degree of expansion is

needed. An example connected to two important gravity field quantities is shown in Fig. 6.11.

The normalized kernel basis functions for gravity anomalies as well as for the geoid heights,

are illustrated therein. For the representation of the gravity field signal in terms of RBFs,

the scaling coefficients ai are the desired quantities to be determined within a least squares

adjustment, where i denotes the number of unknown weights.
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Figure 6.11: Different normalized RBF kernels; gravity anomaly (left) and geoid height (right)

6.3.3 Shape Giving Aspects of Radial Basis Functions

A possible way to define the shape of the basis functions is the so-called spline kernel, where

the frequency response of the Earth’s gravity field is taken into account [see (Eicker, 2008)

or (Naeimi, 2013)]. In this case the degree variances of a GGM are representing these re-

sponses and can be computed from spherical harmonic coefficients according to

σ2
n =

n∑
m=0

c̄2
nm + s̄2

nm . (6.33)

For this research the approach of (Eicker, 2008) is applied for the estimation of the scaling

RBF coefficients. Following this method, the RBFs are defined according to Eq. (6.23) and

the coefficients kn are given as

kn =
σn√

2n+ 1
. (6.34)

The kn coefficients are important because they control the shape of the basis functions and

furthermore it is a degree dependent weighting of the Legendre polynomials.

The error degree variances σ2
n, are provided by an a-priori known GGM model up to a certain

d/o. Considering this information means that the accuracy information of the GGM is taken

into account within the computation process and the solution is regularized towards this prior

information (see sec. 5.2). Beyond the maximum available d/o of the GGM, Kaula’s rule of

thumb (Kaula, 1966) approximates the degree variances according to

σn ≈
√

(2n+ 1)
10−10

n4
, (6.35)
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in terms of unitless coefficients. This enables the opportunity to approximate degree variances

if the maximum d/o provided by the GGM needs to be exceeded.

Within this thesis error degree variances of the GOCO05s model up to d/o 250 have been

considered. Beyond d/o 250 up to d/o 9000 the coefficients are padded by Kaula’s rule

[Eq. (6.35)]. The GOCO05s itself provides error degree variances up to d/o 280. The choice

of this d/o considers the fact that the GGM does not provide the full spectral power in the

higher degrees, but provides a high accuracy in the long wavelengths. This combination of the

degree- and error degree variances for the RBF shape representing kn coefficients are shown

in terms of geoid heights in Fig. 6.12.

Figure 6.12: Transition between the GOCO05s error degree variances and the full signal of the high
frequencies using Kaula’s rule starting from d/o 251 → 9000

Kaula’s rule is used to compute the power spectrum beyond d/o 250. The approximation of

degree variances with Kaula’s rule is defined on a global scale. For the purpose of regional

gravity field modeling, a slight modification affecting the decay behavior of Kaula’s approx-

imated degree variance function has been applied and investigated. This has been done in

order to prove if the original Kaula definition is also valid on a regional scale (for Austrian

geoid computation) and to investigate if a changed shape of the curve is more appropriate to

represent the RBF shape. The degree variances which are responsible for the RBF shape are

shown in Fig. 6.13, up to d/o 1000, whereas they are computed up to d/o 9000.

The decay behavior is attributed to a different meaning for the computation. As can be seen

in Fig. 6.13, one curve denoted as Kaula 1 is steeper and the curve denoted as Kaula 2 runs

shallower compared to the original Kaula definition, which is given as dashed red line. This

corresponds directly to a more optimistic or more pessimistic assumption of the accuracy of

the approximated degree amplitudes in the higher degrees. The achieved results for different

RBF shapes can be found in sec. 7.4.5.
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Figure 6.13: Different degree variance curves based on Kaula computation and GOCO05s error degree
variances; original Kaula (red), adapted Kaula 1 (orange) and adapted Kaula 2 (blue),
starting from d/o 251 → 9000;

6.3.4 Spatial Distribution of Radial Basis Functions

In contrast to spherical harmonics, which are not localized in space, the spatial distribution of

the space localizing RBFs is essential for the quality of regional gravity field modeling. For high

quality gravity field estimation the localization of the basis function is determined by means

of a grid, where the corresponding grid points represent the individual spatial localization on

the sphere. There are several existing approaches dealing with the topic of point distributions

on the sphere. In (Eicker, 2008) an overview about different grid types is provided.

Due to empirical investigations, the choice of the grid, as well as the location of the RBF on the

sphere, is irrelevant if the chosen basis functions are close enough to each other. For example,

in order to reconstruct the input gravity dataset, which is given with a spatial distance below

2×2 km in some areas, a basis function grid with similar spatial resolution is recommended to

avoid bigger residuals. On the one hand a small residual vector ε̂ (see Eq. (5.13)) requires a

dense RBF grid point distribution but on the other hand the number of unknown RBFs and

their corresponding scaling factors to determine are constrained by the characterization of the

least squares approach to be overdetermined. This means that the number of observations

must exceed the number of unknown parameters and therefore the level of densification is

limited. To cover all possible cases which occur within this research, the triangle vertex grid

[see e.g. (Schmidt, 1981)] is chosen to represent the RBF location. It is suitable for all gravity

field observations, especially if the estimated geoid solution is computed on a regular grid,

which is a common approach.
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Nevertheless, from a global point of view the chosen spatial resolution results in a huge amount

of basis functions, homogeneously distributed over the sphere. In order to carry out a gravity

field estimation without any computational delay, the basis function locations are tailored to

the borders of the used terrestrial input dataset, including a buffer of several kilometers to

minimize edge effects. This results in 37891 RBFs, well distributed within the area of interest,

as shown in Fig. 6.14. Furthermore, all achieved results of this thesis are based on this triangle

vertex grid arrangement.

Figure 6.14: Triangle vertex grid of 37891 RBFs in the area of interest which corresponds to a spatial
distance of approximately 2×2 km

Definition of the Triangle Vertex Grid

This grid type is characterized by the fact that the grid points are located at vertices. The

basis of this grid is also referred to as icosahedron, which essentially consists of 12 vertices

and 20 faces. The number of global grid points can be calculated according to (Eicker, 2008)

I = 10 (l + 1)2 + 2 , (6.36)

where l indicates the level of densification. For this thesis a level of l = 2846 has been chosen,

resulting in approximately 81 Mio. points, which corresponds to a global spatial resolution

of about 2×2 km and 37891 RBFs. In Fig. 6.15, the triangle vertex grid for l = 3 and the

individual steps of the grid determination are shown.

First, the triangle edges of the icosahedron are subdivided according to the chosen level of

densification. Next, these points are connected to each other by means of arcs of great circles,

resulting in intersections within the individual face and the newly established points, located

at these intersections. These newly established points become the node points of the densified

grid. This is repeated for all faces of the icosahedron, as can be seen in the lower right part

of Fig. 6.15. For more details, the reader is referred to (Eicker, 2008).
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Figure 6.15: Triangle vertex grid of level 3 [courtesy by (Eicker, 2008)]

6.4 Restore Step - Compute the Solution

Within the restore step, all previously removed gravity field signals are restored and added

to the estimated quantities derived from the compute step. In case of gravimetric geoid

determination, the residual geoid is computed based on the reduced gravity data and within

the restore step geoid heights are added. The geoid displays more long wavelength behavior,

whereas the gravity anomalies can be classified as representative of the entire wavelength

bandwidth. Therefore, remove and restore steps cover different wavelength bands which also

holds for deflections of the vertical.

The restore step for the short wavelength component is carried out at geoid height NGGM

derived from the GOCO05s model up to d/o 250. This follows the spirit of providing a more

realistic Taylor point in order to minimize linearization errors. First, all components from the

reduction step need to be reversed within the restore step, which is achieved according to

N = NRBF +NGGM + δN topo + δNatm +N iso
SH . (6.37)

NRBF denotes the estimated residual geoid based on a residual disturbing potential, as de-

scribed in sec. 6.3. The combined topographic effect is denoted as δN topo which accounts

90



6.4 Restore Step - Compute the Solution

for long wavelength topographic masses which are already covered by the NGGM . This topic

is treated in sec. 6.4.2. The combined atmospheric effect δNatm accounts for exterior and

interior potentials is discussed in sec. 6.4.3, and the short wavelength part of isostasy, starting

from degree NGGM
n +1, is denoted as N iso

SH . The impact of this effect is discussed in sec. 7.4.7.

6.4.1 Long Wavelength Part

The long wavelength geoid heights for Austria are derived from the GOCO05s model as

illustrated in Fig. 6.16. The NGGM geoid is computed up to d/o 250 and shows the expected

long wavelength behavior, especially in the Alps region. Moreover, this geoid is used as a

reference solution to minimize linearization errors as discussed in e.g. sec. 6.2.2.

Figure 6.16: Geoid heights NGGM based on the GOCO05s model up to d/o 250, covering the long
wavelength component of the gravity field

In Tab. 6.4, the corresponding statistics is presented. As a matter of fact, the obtained geoid

heights up to d/o 250 are able to represent a suitable first order approximation of the final geoid

but lack from the high frequent, short wavelength components. This global representation of a

geoid provides the biggest contribution to the final regional solution, because the magnitude of

the missing high frequent components of the residual geoid as well as the topography derived

part is of about ± 1.4 m. This in turn is only possible in case of a consistent combination of

global gravity field data with the complementary terrestrial datasets and a rigorous spectral

separation of the different bandwidth as discussed in sec. 6.2.

Table 6.4: Statistics of the long wavelength geoid up to d/o 250

[m] min max mean

NGGM 42.87 51.97 47.25
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6.4.2 Topographic/Isostatic Part

The topographic part represents predominately the short wavelength component of the gravity

field. In case of the geoid it is the same computation procedure as for the remove step. The

rigorous spectral separation also has to be considered in order to avoid a double consideration

of the topographic masses. The evaluation height is referred to the NGGM geoid and therefore

topographic masses are located above (see also sec. 7.4.1). However, equations for the exterior

potential are valid as presented in sec. 6.2.3 for the topography derived geoid heights. The

corresponding spherical harmonic representation up to d/o 250 is described in sec. 3.3.1.

Hence, the combined topographic effect is defined as

δN topo = N topo −N topo
SH , (6.38)

where N topo denotes the geoid height representation of the entire topographic masses within

central Europe. In order to be consistent with the remove step and to avoid a spectral overlap

in the RCR procedure, the mainly long wavelength components of the topography, denoted as

N topo
SH , are removed from the entire topographic potential. Therefore, only the desired short

wavelength part of the topography beyond d/o 250 is remaining. This is shown in Fig. 6.17,

and the corresponding statistics is presented in Tab. 6.5.

Figure 6.17: Remaining short wavelength topographic part in terms of geoid heights
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Table 6.5: Statistics of short wavelength topographic part beyond d/o 250 in terms of geoid heights

[m] min max mean rms

δN topo -1.03 0.75 -0.15 0.37

With regard to the residual short wavelength isostatic part starting from d/o 251 → 500,

the same behavior as for the gravity data, discussed in the remove step (see sec. 6.2.3) can

be observed. This effect is again well covered by a GGM and no long wavelength structures

are occurring as it is shown in Fig. 6.18. As illustrated, the geoid heights reflect the typical

spherical harmonic structures with a spatial resolution of about 40-80 km, which corresponds

to the maximum d/o of the isostatic series expansion. The corresponding statistics is presented

in Tab. 6.6. The impact on the geoid validation is treated in sec. 7.4.7, at this point it is only

mentioned that the residual isostatic part is compensated in the RCR procedure and can

therefore been neglected.

Figure 6.18: Remaining short wavelength part of isostasy in terms of geoid heights d/o 251 → 500

Table 6.6: Statistics of remaining short wavelength isostatic part in terms of geoid heights

[cm] min max mean rms

N iso
SH d/o 251 → 500 -10.28 11.76 0.20 3.96
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6.4.3 Atmospheric Part

The smallest contribution for the remove and also for the restore step is connected to the

atmospheric potential. In terms of geoid heights, the combined atmospheric effect provides

the inverse situation as for the remove step. It is defined as

δNatm = Natm,i
SH −Natm,e

SH . (6.39)

As can be seen in Fig. 6.19, these effects degrade approximately to a constant mean value

of 0.35 cm with marginal variations in the range of one millimeter, which are connected

to the topographic situation in Austria. The only impact on the final geoid solution is a

slightly different bias, which does not contribute to an increased geoid accuracy compared to

GPS/leveling observations. Due to consistency reasons within the RCR procedure it must be

distinguished between interior and exterior potentials as discussed in sec. 6.2.4.

Figure 6.19: Geoid heights based on the combined atmospheric effect

Table 6.7: Statistics of geoid heights based on the combined atmospheric effect

[cm] min max mean

δNatm 0.35 0.37 0.36
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7 Calculation and Results

In this chapter all relevant results of the thesis are summarized. The theoretical basis and

a detailed description about the data used is provided in previous chapters. First, the re-

duced datasets for geoid computation are shown, which are the basis for all further output.

Afterwards, the different estimated geoid solutions and the corresponding geoid validation

are presented. Later, different investigations and methodological developments are discussed.

Finally, a map for deflections of the vertical based on consistent reduced gravity is estimated

and validated.

7.1 Reduced Datasets for Gravity Field Estimation

7.1.1 Reduced Gravity Data

The used gravity dataset consists of 72327 individual observations which are reduced by global,

local and atmospheric parts. Furthermore, a double consideration of the topographic masses

is avoided by means of a rigorous spectral separation between long- and short wavelength

components (see e.g. sec. 6.2.3). The reduced gravity data can be obtain by means of

∆gred = g − ‖∇V GGM︸ ︷︷ ︸
GOCO05s

+ gtopo − gtopoSH︸ ︷︷ ︸
Topography

+ gatm,eSH − gatm,iSH︸ ︷︷ ︸
Atmosphere

+ gcen‖ . (7.1)

The reduction is carried out according to the full vector approach, which is described in more

detail in sec. 6.2.1. The isostatic component is neglected as discussed in sec. 7.4.7. For this

investigation the 2D surface density information is taken into account. Comparisons with

other density assumptions can be found in sec. 7.4.2.

Table 7.1: Statistics of subsequently reduced 72327 gravity observations

[mgal] min max mean rms

GGM (GOCO05s) -231.13 143.89 -26.34 51.42
Topography -49.48 37.35 -0.85 11.40
Atmosphere -48.95 37.99 -0.22 11.38

In Tab. 7.1 the statistics of gravity reduced subsequently by a Global Gravity field Model

(GGM), topography and atmospheric effects is shown. In an initial step, the long wavelength
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Figure 7.1: Reduced gravity dataset ∆gred

from the GOCO05s, up to d/o 250 and the centrifugal acceleration gcen are subtracted from

the measured data, leaving predominately short wavelengths remaining. This is also discussed

in sec. 6.2.2. Afterwards, the topographic part, as illustrated in Fig. 6.6, is subtracted. Finally,

the small atmospheric components are applied, which lead to the remaining variation of the

reduced gravity data ∆gred of 11.38 mgal.

The smoothed dataset is shown in Fig. 7.1, and can mainly be attributed to gravity field

signal. Remaining modeling deficiencies, especially in the area of the Tauern Window or in

the Tyrolean Inn valley are connected to density variations in these regions [see (Meurers

and Ruess, 2007)]. An important indication for the consistency of the entire dataset is the

transnational continuous behavior of the reduced gravity. Although the dataset has grown

historically and consists of several different data sources, as described in sec. 4.2.1, no un-

expected behavior such as jumps along the Austrian borders can be observed. Furthermore,

the chosen extended border for the gravity data surrounding Austria (approximately 100 km)

has been determined empirically. A further extension beyond this does not contribute signifi-

cantly to a geoid solution and leads only to additional computational efforts. Examining only

the reduced Austrian data subset, which consists of 49354 observations, the minimum and

maximum values as well as the data variety in terms of rms slightly decreases in comparison

to the entire dataset. The corresponding statistics can be found in Tab. 7.2.

Table 7.2: Statistics of Austrian gravity data subset

[mgal] min max mean rms

∆gred -48.25 33.43 -0.01 11.02
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7.1.2 Reduced Deflections of the Vertical

For the computation of the long- and short wavelength parts of the deflections of the vertical,

the full vector approach is applied analogously to Eq. (7.1), but only the first two components

of the computed gravity vector are finally considered and subtracted from the measured ξ

and η values (see sec. 3.5.3). If this vector is evaluated in a local left-handed coordinate

system [see e.g. (Hofmann-Wellenhof and Moritz, 2006)], the computed deflections can be

directly subtracted from the astronomic measurements and the reduced values are obtained.

The corresponding series expansion as functionals of the disturbing potential, are presented

in sec. 3.5.3. The deflections are the second gravity field quantity which is considered as an

input in this research. The dataset is therefore used twice. First, for a pure astrogeodetic

geoid solution and secondly within a combined geoid solution in combination with gravity

data. The stand-alone solution especially provides an unexpected quality of the astrogeodetic

geoid although of sparse observations (see sec. 7.2.2). Therefore, the information content

of this observation type indicates to be higher in comparison to gravity data but it suffers

from sparse data distribution (see sec. 7.4.6). Finally, measured deflections of the vertical

are used for the validation of the estimated ξ and η maps, as described in sec. 7.5. The

reduced deflections of the vertical are shown in the following two illustrations, where the ξred

component is shown in Fig. 7.2 and the ηred component in Fig. 7.3, respectively. In Tab. 7.3

the statistics is presented.

Table 7.3: Statistics of 735 reduced deflections of the vertical

[sec] min max mean rms

ξred -6.97 6.68 0.28 1.93
ηred -4.98 5.40 0.26 1.62

Figure 7.2: Reduced North-South ξred component
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Figure 7.3: Reduced East-West ηred component

One rule of thumb is that masses, or mass anomalies, with North-South orientation show up

in the η direction, whereas masses with East-West orientation show up in the ξ component.

Mass anomalies with different orientation show up in both components.

The reduction has been carried out according to sec. 6.2, whereas long- and short wavelength

reductions are considered with a consistent treatment of the topographic masses, as described

in sec. 6.2.3. Furthermore, the 2D surface density model is taken into account. What can

be seen in both figures is that the reason for the gravity field signal are the same as for the

gravity data. One example can be made of the Tauern Window region (Meurers and Ruess,

2007), which is of East-West direction. It is clearly visible in the ξ component, which in

turn represents the North-South direction of the deflections. Here, the predominantly part of

the signal can be explained with density variations, which reach down far below the Earth’s

surface.

7.2 Estimated Residual Geoid Heights

In previous sec. 7.1, the reduced gravity field quantities used for the geoid estimation are

presented in detail. In this section the computed residual geoid heights are shown, but the

full restore step has not yet been carried out. Depending on the used input data, the solution

is attributed to a gravimetric, an astrogeodetic or a combined geoid.
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7.2.1 Gravimetric Solution

The gravimetric geoid solution has been computed based on the entire reduced gravity data

of 72327 observations and the 2D surface density information as described in sec. 4.4. The

residual geoid is denoted as NRBF
grav , and this is related to the 37891 estimated Radial Basis

Functions (RBF) scaling coefficients, as discussed in sec. 6.3. The final output is shown Fig. 7.4

and the corresponding statistics can be found in Tab. 7.4, where the mean value is 3 mm. The

relative weighting between the observation groups has been performed by Variance Component

Estimation (VCE) method, with ten individual observation groups as discussed in sec. 5.2.3.

The occurring residual geoid structure is, as expected, correlated with the gravity anomalies

(compare with Fig. 7.1). This represents, apart from the topographic part, one supplement to

the GGM based NGGM geoid, which is shown in sec. 6.4.1. Furthermore, the corresponding

standard deviations derived from the least squares approach (see sec. 5.1) provide the formal

accuracy.

(a) Estimated gravitational geoid (b) Standard deviations

Figure 7.4: (a) Estimated gravimetric residual geoid heights; (b) Corresponding standard deviations

Table 7.4: Statistics of gravimetric residual geoid on approximately 3×3 km grid

[m] min max mean rms

NRBF
grav -0.74 0.49 0.00 0.21

The standard deviations mainly reflect missing gravity observations and data gaps. Within

Austria the model appears to have an average standard deviation of σ < 0.5 cm. Only in the

alpine regions, with sparse gravity observations, the sigma values can reach a maximum of

1.2 cm. In contrast to Fig. 7.4a, where only the Austrian territory is illustrated, the corre-

sponding sigmas are shown slightly beyond Austrian borders, which is indicated in Fig. 7.4b.

Reviewing only these border regions, the observation situation is reflected again and the stan-

dard deviation reaches its overall maximum, which is up to 2 cm. This holds true for regions

with only a few gravity observations, like the borders to the Czech Republic. The computed

formal errors are quite optimistic because they do not cover the whole error budget e.g. DTM

errors are not considered. To provide a more realistic interpretation of the geoid quality, the
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formal errors need to be calibrated. The validation with independent GPS/leveling observa-

tions as well as with the official Austrian geoid, which is presented in sec. 7.3, show rms values

< 3 cm. The relationship between different error contributors is assumed as

σ2
val. = σ2

N + σ2
GPS/lev. , (7.2)

where σval. represents the validation result and σGPS/lev. denotes the GPS/leveling quality.

By simple rearrangement of Eq. (7.2), the geoid standard deviation may expressed as

σN =
√
σ2
val. − σ2

GPS/lev. . (7.3)

In case σval. = 3 cm and σGPS/lev. is assumed to be 2 cm, a geoidal standard deviation of 2.3 cm

is computed which represents a more realistic assumption of the geoid quality. This approach

can be applied to the astrogeodetic and combined geoid solution as well. Further investigations

on the quality of Austrian GPS/leveling measurements have been made by (Rülke et al, 2013),

resulting in a more pessimistic assumption of 3.8 cm, but only 17 out of 192 GPS/leveling

observations are considered in this investigation.

7.2.2 Astrogeodetic Solution

The astrogeodetic solution is based on 735 reduced ξ and η components, as presented in

sec. 7.1.2. Within the VCE they are treated as one observation group. Applying regularization

finally leads to two observation groups, where the a-posteriori σ of the deflections results

in 0.54” (see sec. 5.2.3). At this point, it must be noted that the number of observations

corresponds to a relation of 1:100 compared to the gravity dataset. Nevertheless, the results

achieved, based on these few observations are remarkable, which is discuss in more detail in

sec. 7.3.3. In Fig. 7.5 the computed residual geoid and the corresponding standard deviations

are shown. Due to sparse observations the formal standard deviations are significantly higher

compared to the gravimetric geoid solution.

Table 7.5: Statistics of astrogeodetic residual geoid on approximately 3×3 km grid

[m] min max mean rms

NRBF
astro -0.74 0.46 0.00 0.21

Differences between the gravimetric and astrogeodetic geoid solution are shown in Fig. 7.6a.

Prominent features can be identified in the Styrian region and for the entire area differences

up to ± 14 cm occur, although there is a considerable amount of observations available in this

region. Further investigations on this have been carried out. Therefore, the deflections are

treated individually as two different observation groups with an estimated variance component

each, which leads to a relative down weighting of one group against the other. The regularized
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(a) Estimated astrogeodetic geoid (b) Standard deviations

Figure 7.5: (a) Estimated astrogeodetic residual geoid heights; (b) Corresponding standard deviations

solution of the a-posteriori σ for the ξ component is 0.39” and the corresponding η component

is 0.49”, which indicates that the North-South component is determined slightly better. The

reason for this is attributed to historical time determination as discussed in sec. 4.2.2. The

two individual variance components for the deflections are different compared to the estimate

within a combined geoid solution due to the relative weighting. Nevertheless, the prominent

features in comparison to the gravimetric geoid do not vanish because only slight geoid height

differences in the range of about ± 1 cm between the two astrogeodetic solutions are observable

which is shown in Fig. 7.6b.

In general, the astrogeodetic solution indicates superior information content of the deflections

in comparison to the gravity data, which is further investigated in sec. 7.4.6. Unfortunately,

the number of deflections and their distribution is too sparse to be truly competitive to the

gravitational geoid solution, as reveals during the geoid validation (see sec. 7.3). Also within

the combined solution, the contribution of these few observations almost disappears, as will

be shown in sec. 7.2.3. It has to be noted, that the different solutions are directly comparable

and no fitting to GPS/leveling observations is applied.

(a) Gravimetric minus astrogeodetic geoid (b) Differences in astrogeodetic solutions

Figure 7.6: (a) Geoid differences between gravimetric and astrogeodetic geoid; (b) Differences be-
tween two astrogeodetic solutions based on different observations groups
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7.2.3 Combined Solution

The combined geoid solution is characterized by the fact that two purely physical gravity

field quantities, the gravity anomalies and deflections of the vertical, are processed together in

order to compute a geoid. The relative weighting between the different observation groups is

computed by means of VCE. The same observation group scheme as for the pure gravimetric

solution (see sec. 7.2.1) has been applied, with one additional group for the deflections of

the vertical. As mentioned in sec. 7.2.2, the amount of available gravity measurements is

considerably higher. Therefore, the combined geoid solution is mainly driven by these data

and the contributions from the deflections are rather small. The achieved geoid solution (see

Fig. 7.7a), as well as the corresponding formal standard deviations (see Fig. 7.7b), are very

similar to the pure gravimetric geoid.

(a) Estimated combined geoid (b) Standard deviations

(c) Difference of gravimetric and combined geoid

Figure 7.7: (a) Estimated combined residual geoid heights; (b) Corresponding standard deviations;
(c) Differences between gravimetric and combined geoid solution indicating the influence
of the additional deflection data

Table 7.6: Statistics of combined residual geoid on approximately 3×3 km grid

[m] min max mean rms

NRBF
combi -0.74 0.50 0.00 0.21
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The differences between the gravimetric and the combined geoid solution represent the impact

of the deflections of the vertical. As can be seen in Fig. 7.7c, the contribution to a combined

geoid solution is small and limited to regions where the gravity observations are sparse. This

can be seen again along the borders to the Czech Republic. Within Austria, scattered con-

tributions can be observed but only with a magnitude of ± 1 cm and mainly located in

mountainous regions. The sparse amount of deflections of the vertical within a combined

solution leads also to non-significant changes compared to GPS/leveling data. Nevertheless,

the information content of the deflections itself is higher compared to gravity measurements.

Investigations have shown that at least three times more gravity data are needed to guarantee

the same geoid quality level as discussed in sec. 7.4.6.

To give a qualified statement about the impact of the deflections, the geoid validation with

independent GPS/leveling observations provides the first indicator, which is presented in

sec. 7.3.4. The contribution of each individual gravity field quantity to a combined geoid

solution gives a second indicator.

Contributions to a Combined Solution

The contributions of the individual normal equation systems to the estimated solution vector

is discussed in more detail. The estimated solution vector x̂ consists of 37891 space localizing

RBF scaling coefficients, as discussed in sec. 6.3 and the individual contributions of the normal

equations [see Eq. (5.25)] in terms of percentage are shown in Fig. 7.8. The combined normal

equation system consists of only three individual parts and the contribution can be derived

from

(ci)k =
(
N iN

−1
total

)
k
, (7.4)

with

N total = N∆g +N ξ,η +NGGM , (7.5)

providing the combined normal equation system. To show the contribution from the gravity

data in a more comprehensible way, the ten individual gravity observation groups are united

in a first step.

The gravity field quantity contribution, shown in Fig. 7.8a, belongs to gravity data. As can

be seen, the estimated solution vector is dominated by gravity data in dependence of the

corresponding spatial location of the data. In general, the following rule is valid for the three

illustrations: the brighter the area, the higher the contribution of the gravity field quantity.

This means, that in areas with dense gravity data the contribution can be up to 98 %. The

inverse situation is in principle given in areas with sparse gravity observations. Within these
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areas the solution is dominated by regularization as shown in Fig. 7.8b, where in this case the

a-priori information is provided by the GOCO05s model, as indicated by NGGM in Eq. (7.5).

This in turn means that the main contribution to a combined geoid solution is coming from

either gravity or from the regularization part.

In order to identify the contribution coming from deflections of the vertical, the colorbar has

changed to 0-3 %. Deflections of the vertical are only available within Austria, hence their

contribution to outside regions is almost zero, which is obvious and shown in Fig. 7.8c. The

highest impact can be observed amongst the Austrian borders, again in areas where the gravity

measurements are sparse. Here a small contribution may be identified. This again holds for

the border with the Czech Republic and corresponds to the result shown in Fig. 7.7c, which

can be characterized as the contribution in terms of geoid heights derived from deflections of

the vertical in a combined solution.

(a) Contribution of gravity data (b) Contribution of regularization

(c) Contribution of deflections of the vertical

Figure 7.8: (a) Contribution from gravity data [0-100%]; (b) Contribution from regularization [0-
100%]; (c) Contribution from deflections of the vertical [0-3%]
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7.3 Validation Issues

The validation of different geoid solutions, which are presented in the previous section, is based

on fully restored geoid heights by comparison to independent GPS/leveling observations, as

well as to the official Austrian geoid. Furthermore, geopotential numbers are also available

for validation purposes.

7.3.1 Validation of Input Data

In order to verify the model used and to examine probable outliers in the different datasets,

the residual vectors ε̂, [Eq. (5.13)], are computed for the gravity data and for the deflections

of the vertical. The corresponding results are shown in Fig. 7.9.

(a) ξred residuals (b) ηred residuals

(c) ∆gred residuals

Figure 7.9: (a) 735 ξred component residuals; (b) 735 ηred component residuals; (c) 72327 ∆gred
reduced gravity residuals

For the deflections of the vertical the same RBF parametrization as for the gravity data has

been chosen. It must be noted that the post-fit residuals are computed either based on reduced

gravity or on reduced deflections and no relative VCE weighting has been applied. For the

gravity data the achieved rms is 0.87 mgal and for the deflections of the vertical 0.21” and

0.23” for ξ and η, respectively. This slightly differs from the VCE a-posteriori sigmas because
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of the redundancies (see sec. 5.2.2). Furthermore, the deflections of the vertical are treated

together as one observation group within a combined geoid solution (see sec. 5.2.3).

Looking closer at the deflection residuals which are shown in Fig. 7.9a and Fig. 7.9b respec-

tively, significant differences especially in mountainous regions, as well as the Styrian region,

where the biggest differences to a pure gravimetric solution are observed, can be identified.

This indicates a slight error either in the observations or in the model used, which may cause

these prominent features (see also sec. 7.2.2). Due to the fact that it is not possible to identify

clear outliers in the deflection data and additionally take into account the circumstance of

sparse observation data, all measured deflections are ultimately considered in the computation,

although some of them are slightly above the 3σ level.

In case of gravity, the data distribution is very inhomogeneous. This makes it difficult for the

evaluation of the occurring residuals because the chosen RBF distribution can not be that

tight (see sec. 6.3.4). In some areas this may lead to an underrepresented gravity field signal

and the occurring residuals are probably affected by this. This is the reason why all gravity

data are taken into account and no outliers are removed from the dataset, although some data

are clearly above the 3σ level. The statistics can be found in Tab. 7.7.

Table 7.7: Statistics of 735 deflections of the vertical and 72327 reduced gravity post-fit residuals

[sec] min max mean rms

ε̂ξred -1.09 1.11 -0.01 0.21
ε̂ηred -0.91 0.95 0.09 0.22

[mgal] min max mean rms
ε̂∆gred -7.01 6.95 0.01 0.87

7.3.2 Gravimetric Solution

The validation of the achieved gravimetric geoid is conducted in several ways. First, the

solution is compared with independent GPS/leveling observations, which are assumed to be

accurate within a range of a few centimeters (see sec. 4.2.3). Another comparison can be

done with the official Austrian geoid solution, which is described in sec. 4.1.1, and finally a

comparison with geopotential numbers is also possible. In order to carry out the different

validations in a correct manner, all short and long wavelength components, as well as the

atmospheric part which are discussed in sec. 6.4, have been added to the residual gravimetric

geoid solution (see sec. 7.2.1) to achieve the fully restored geoid. This can be obtained by

N = NRBF︸ ︷︷ ︸
Compute

+ NGGM︸ ︷︷ ︸
GOCO05s

+N topo −N topo
SH︸ ︷︷ ︸

Topography

+Natm,i
SH −Natm,e

SH︸ ︷︷ ︸
Atmosphere

. (7.6)
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In Eq. (7.6) the isostatic component is assumed to be covered by the long wavelength GGM

representation (see sec. 7.4.7). The achieved geoid N is computed on a regular grid and the

heights are within a range from 42.45 m up to 51.97 m with a corresponding mean value of

47.09 m. This is shown in Fig. 7.10a.

(a) Final computed gravimetric geoid (b) Corresponding validation with GPS/leveling

(c) Validation with official Austrian geoid

Figure 7.10: (a) Final restored gravimetric geoid; (b) Corresponding validation where a constant
bias of -41.62 cm is removed; (c) Validation with official Austrian geoid solution where
a constant bias of -41.20 cm is removed

The quality of the solution can be directly validated, if a constant mean value or bias is

subtracted from the difference of the two solutions. There are several possible reasons for this

bias. As stated by (Rieser, 2015), one possible reason is an offset between the gravimetric

geoid and the realization of the vertical leveling datum. Another potential reason is that an

ellipsoid, which fits the gravimetric geoid best, might differ from the ellipsoid which is used

for the calculation of the ellipsoidal GPS heights. Furthermore, the geoid is computed with

respect to the GOCO05s which is given in a tide-free system, whereas the exact definition of

GPS/leveling observations is connected to the EVRS/UELN98, defined as a zero-tide system

for the orthometric part and to the GRS80/ETRS89 system for the ellipsoidal GPS height (see

sec. 2.4) which gives a significant contribution to the bias. However, after the constant bias

is removed from the data, a high-quality gravimetric geoid solution with a rms value < 3 cm

has been established. The statistics including the bias values are presented in Tab. 7.8. In

this rms range it can not be stated whether the error is in the computed geoid solution or still
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in the validation points, because the BEV specifies their accuracy within a few centimeters.

Consequently, one of the main goals of this thesis, to compute a gravimetric solution without

applying constraints, which is competitive to the official Austrian geoid 2007 is achieved.

Table 7.8: Statistics of gravimetric geoid validation with 192 GPS/leveling observations and with
the gridded official Austrian geoid N2007

[cm] min max bias rms

∆GPS/lev. -9.62 6.46 -41.62 2.75
∆N2007 -8.19 8.38 -41.20 2.80

Prominent features in the geoid differences show up in Fig. 7.10c. Investigations on the

systematic effect located in the central part of Austria are carried out by means of a comparison

to the EGM2008 geoid (Pavlis et al, 2008). The differences are shown in Fig. 7.11, but a

systematic effect is still visible in both solutions although the rms of the comparison to the

national geoid is 4.36 cm and the present solution reveals a rms value of 3.90 cm. In contrast,

it turns out that the national geoid fits well to 192 GPS/leveling observations due to the

applied constraints and provides a better rms value (see sec. 4.2.3).

(a) Geoid height differences to official solution (b) Geoid height differences to present solution

Figure 7.11: (a) Geoid height differences of the national geoid in comparison to EGM2008 derived
geoid heights; (b) Geoid height differences of the present geoid solution in comparison
to EGM2008 derived geoid heights

The short wavelength part of the topography contributes to these features as well as the

use of 2D surface density information (see sec. 7.4.2) or the choice of the RBF shape as

presented in sec. 7.4.5. Moreover, height errors in the data may also explain parts of this

effect (see sec. 4.2.1). Finally, the reason could not be attributed to one singe effect and a

reliable statement whether the systematic belongs either to the official Austrian geoid or to

the present solution could not be provided in this research, which also holds for the combined

geoid solution (see sec. 7.3.4). Occurring short wavelengths geoid differences e.g. in the Inn

valley are attributed to a consistent treatment of the topographic masses within the restore

step as described in sec. 6.4.2.
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Another independent validation of the computed gravimetric geoid solution (see Fig. 7.10a)

can be conducted on the potential level. The geopotential numbers are estimated from the

gravimetric dataset and are compared to the values available for the GPS/leveling observa-

tions. The validation result is shown in Fig. 7.12, where the geopotential numbers are inde-

pendent of the GPS derived ellipsoidal heights. Therefore, the similar occurring difference

structure (compare Fig. 7.10b and Fig. 7.12) is an indicator that the ellipsoidal height, which

is part of GPS/leveling observations, provides only a small contribution to the overall noise

budget. It also shows that the major part of the occurring geoid differences is supposed to be

connected to the orthometric heights. The corresponding statistics can be found in Tab. 7.9.

This type of validation is only shown for the gravimetric solution but the characteristic is the

same for the astrogeodetic, as well as the combined geoid solution.

Figure 7.12: Validation with geopotential numbers

Table 7.9: Statistics of validation with 192 geopotential numbers

[m2/s2] min max bias rms

∆C -0.99 0.66 -4.09 0.27
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7.3.3 Astrogeodetic Solution

The estimated astrogeodetic geoid is validated with GPS/leveling observations, as well as with

the official Austrian geoid. As expected, it is not as accurate as the gravimetric solution, which

can be attributed to the sparse observation situation is discussed in sec. 7.2.2. Nevertheless,

the geoid validation shows rms values < 5 cm for both validation cases, which are shown

in Fig. 7.13b and Fig. 7.13c. This is an indicator for the superior information content of

deflections of the vertical in comparison to gravity data, which is discussed in more detail in

sec. 7.4.6.

(a) Final computed astrogeodetic geoid (b) Corresponding validation with GPS/leveling

(c) Validation with official Austrian geoid

Figure 7.13: (a) Final restored astrogeodetic geoid; (b) Corresponding validation where a constant
bias of -40.84 cm is removed; (c) Validation with official Austrian geoid solution where
a constant bias of -41.31 cm is removed

Table 7.10: Statistics of astrogeodetic geoid validation with 192 GPS/leveling observations and with
the official Austrian geoid N2007

[cm] min max bias rms

∆GPS/lev. -13.85 13.32 -40.84 4.92
∆N2007 -16.51 18.96 -41.31 4.22
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7.3.4 Combined Solution

The validation of the combined solution shows in principle the same difference behavior as

the pure gravimetric solution (compare Fig. 7.10 and Fig. 7.14). This is due to the fact, that

deflections play a minor role within a combined geoid solution as already discussed in sec. 7.2.3.

The validation with GPS/leveling measurements and with the national Austrian geoid displays

a slightly increased rms value of about 1 mm, in comparison to the gravimetric solution.

Consequently, the deflections do not significantly contribute to a geoid improvement and the

quality of the gravimetric and combined solutions is regarded as equivalent. Furthermore, the

prominent features in Fig. 7.14c are still visible (see sec. 7.3.2 for explanation).

(a) Final computed combined geoid (b) Corresponding validation with GPS/leveling

(c) Validation with official Austrian geoid

Figure 7.14: (a) Final restored combined geoid; (b) Corresponding validation where a constant bias
of -41.59 cm is removed; (c) Validation with official Austrian geoid solution where a
constant bias of -41.18 cm is removed

Table 7.11: Statistics of combined geoid validation with 192 GPS/leveling observations and with
the official Austrian geoid N2007

[cm] min max bias rms

∆GPS/lev. -9.65 7.08 -41.59 2.89
∆N2007 -9.18 8.81 -41.18 2.92
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7.4 Selected Investigations

7.4.1 Effect of Linearization

Introducing a more realistic Taylor point affects the computed potential as well as the geo-

metrical representation and may be attributed to a methodological improvement in Austrian

geoid computation. In a classical approach, the ellipsoid is introduced as Taylor point for the

linearization, which also holds true for the Austrian geoid 2007. One attempt to introduce

a more realistic Taylor point by means of a global geoid representation is completed in this

research. In an initial step, this means serious computational efforts because all gravity field

quantities and every gridded Digital Terrain Model (DTM) point needs to be assigned with

geoid heights, based on a GGM. Due to consistency reasons the GOCO05s up to d/o 250 is

chosen for the approximated geoid representation. As a consequence, the original definition

of a gravity anomaly changes because it is related to an approximated geoid instead of the

ellipsoid (see sec. 3.5.1). This new definition is slightly different compared to the classical

approach, but benefits from up to date global satellite data.

The masses above the geoid need to be removed mathematically, which is connected to a

geometrical representation of the Earth’s topography by means of a DTM. Therefore, in a

classical approach the topographic potential is computed starting from the ellipsoid up to

orthometric height. A new approach used within this thesis introduces an approximated

geoid as Taylor point for linearization and the potential is computed up to orthometric height

plus geoid height. Therefore, a different definition of the mass column is given. However,

the occurring gravity differences between these two approaches are on the µgal level and can

therefore neglected but are in compliance with the theory of physical geodesy.

An additional benefit of a-priori geoid heights is that approximated ellipsoidal heights are

available for every computation point (see sec. 6.2.2). This is important for the development

of the topography into spherical harmonics, as discussed in sec. 3.3.1. Furthermore, the restore

step in the new approach is also carried out on the geoid height level.

Normal Gravity and Global Gravity Field Representation

For the national Austrian geoid solution, the reduction of the measured gravity is carried out

with respect to the ellipsoid and the corresponding normal gravity γ, with its GRS80 (Moritz,

1980b) representation as shown in sec. 3.4.1. Therefore, the long wavelength part can be

computed according to

∆gred = g − γ −∆gGGM . (7.7)
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This research attempts to minimize linearization errors. Therefore, a more realistic Taylor

point representation by means of GOCO05s derived approximated geoid heights is introduced,

replacing the classical ellipsoid. As a consequence, the gravity representation is also exchanged

and now refers to the GOCO05s model as representation of the gravity potential, which

consists of the gravitational potential and the centrifugal potential. Both potential effects are

summarized and the long wavelength derived gravity reduction can be expressed as

∆gred = g − ‖∇V GGM + gcen‖ , (7.8)

where the corresponding result of the long wavelength reduction step is shown in sec. 6.2.2.

The differences of the reduced gravity computed from Eq. (7.7) and Eq. (7.8) are shown in

Fig. 7.15. In comparison to the accuracy of the gravity measurements the occurring differences

are significant. Furthermore, slight geoid improvements can be observed if this approach is

further extended to all constituents as defined in Eq. (7.1). In this case, the full vector

approach is applied.

Figure 7.15: Gravity differences between the normal gravity and the GGM gravity

Table 7.12: Statistics of the gravity differences between the normal and the GGM gravity

[mgal] min max mean rms

∆∆gred -0.33 0.21 0.01 0.10
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Impact of Full Vector Approach for Topographic Effects

This section is investigating the effect caused by using the so-called full vector approach

(see sec. 6.2.1) which has priority in this thesis, in comparison to the classical linearization

approach which takes only the radial derivation of the potential into account. Furthermore,

it has to be noted that both approaches are related to the same approximated GGM geoid

height and the difference between these two approaches is connected to the evaluation of the

disturbing potential T . The linearized, scalar approach can be written as

∆gred = g − ‖∇V GGM + gcen‖+ δgtopo − δgatm with δgtopo =
∂T topo

∂r
. (7.9)

In contrast, the full vector approach is given according to Eq. (7.1), where the entire com-

putation is based on vector evaluation which also holds true for the topography according to

gtopo = ∇T topo. The occurring gravity difference is of about ± 0.41 mgal as shown in Fig. 7.16.

Figure 7.16: Gravity differences between the full gravity vector and linearized approach for topo-
graphic effects

Table 7.13: Statistics of the gravity differences of full gravity vector and linearized approach for
topographic effects

[mgal] min max mean rms

∆∆gred -0.39 0.41 0.01 0.07

Taking this effect into account leads to a more consistent geoid computation and minimized

linearization errors, which further contributes to an improved geoid quality, which will be

discussed in the following subsection.
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Accumulated Effect of Methodological Developments

The effect of a new Taylor point and a different gravity representation as well as the use of

the full vector approach lead to slightly different reduced gravity values. These differences are

attributed to methodological developments and are shown in Fig. 7.17. The statistics can be

found in Tab. 7.14.

Figure 7.17: Gravity differences of accumulated effects

Table 7.14: Statistics of the gravity differences of accumulated effects

[mgal] min max mean rms

∆∆gred -0.54 0.53 0.01 0.12

The reduced gravity differences are propagating throughout the entire geoid computation

which is shown in Fig. 7.18. The corresponding statistics is presented in Tab. 7.15.

Table 7.15: Statistics of occurring geoid height differences caused by accumulated effects

[cm] min max mean rms

∆N -0.78 0.86 0.04 0.38

In order to state about the influence and the benefits of the considered effects, a validation

with independent GPS/leveling observations is carried out after the short and long wavelength

parts have been restored. If all effects are considered and additionally the 2D surface density

information is taken into account, finally a rms value of 2.75 cm can be achieved for the

geoid validation (see also sec. 7.3.2), whereas the classical approach with constant density

assumption leads to a variation of 3.07 cm. A geoid quality improvement of about 4 mm

in comparison to the classical approach is achieved, which corresponds to an approximately
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Figure 7.18: Geoid height differences of accumulated effects

11% decreased rms value. Therefore, it could be demonstrated that even small effects may

contribute to an improved geoid solution.

7.4.2 Effect of Different Density Information

The focus of this investigation is on the effect caused by different density information and their

contributions to an improved gravity field estimation. As discussed in sec. 4.4, several types

of density assumptions are available. For the geoid solutions which are shown in previous

sections of this thesis, the 2D surface density assumption is considered. This investigation

will reveal the benefit of this model. Nevertheless, proof is now required regarding which

of these assumptions is suitable for the Austrian geoid determination, in order to make a

recommendation for future projects. In particular, the following models are investigated:

• Constant standard crustal density

• Hybrid density model

• 2D surface density model

In previous Austrian geoid computation, a constant standard crustal density assumption of

ρ=2670 kg/m3 has been used. The hybrid density model, here denoted as ρhyb is an attempt

to combine the 2D surface density information with seismic measurements for the purpose

of geoid computation. Due to the fact that these datasets do not cover the entire central

European region, the missing sections are filled with standard crustal density.

For the remove step, the reduced gravity dataset based on the constant standard density

assumption has been chosen as reference. The structures and occurring features of the reduced

gravity data look similar as already shown in Fig. 7.1. Therefore, in Fig. 7.19a and Fig. 7.19b
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only gravity differences to the reference standard density assumption are presented. These

differences can reach ± 22 mgal.

(a) Gravity differences standard vs. surface density (b) Gravity differences standard vs. hybrid density

Figure 7.19: (a) Gravity differences of standard and 2D surface density; (b) Gravity differences of
standard and hybrid density

In this research it results that the use of the 2D surface density model, denoted as ρ2D, is

beneficial because it provides an additional smoothing to the gravity data. The statistics can

be found in Tab. 7.16 and discloses the positive effect of the surface density information on

the entire geoid computation process. This information leads to a decreased rms value for the

reduced gravity dataset, as well as for the geoid validation with independent GPS/leveling

observations which is attributable to a more realistic density assumption of the topography,

although the model is only based on geological Earth surface observations which are most

likely not valid for deep structures.

Table 7.16: Statistics of reduced gravity and corresponding geoid validation with GPS/leveling
observations

[mgal] min max mean rms

∆gred (ρ) -48.20 39.91 -0.47 11.72
∆gred (ρhyb) -47.57 39.31 -0.39 11.54
∆gred (ρ2D) -48.95 37.99 -0.22 11.38

[cm] min max bias rms

∆GPS/lev. (ρ) -11.68 7.43 -41.65 3.34
∆GPS/lev. (ρhyb) -11.82 7.21 -41.59 3.01
∆GPS/lev. (ρ2D) -9.62 6.46 -41.62 2.75

Compared to the two other models, the performance of the standard crustal density model

turns out as suboptimal for the purpose of Austrian geoid modeling. Due to the Alps and

mountainous regions, as well as different rock types, a model which allows for more variability

as the hybrid model seems to be more appropriate. The performance of the hybrid model is

in between the surface and the standard crustal density assumption, but in general the 2D

surface density assumption performs best compared to GPS/leveling measurements.
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7.4.3 Effect of Different DTM Resolutions

In this investigation the impact of different DTM resolutions on the remove and restore step

based on a gravimetric geoid solution is discussed. In particular, the following three resolutions

are investigated:

• BEV00: 1.40625”×2.34375”

• BEV01: 2.8125”×4.6875”

• BEV02: 5.625”×9.375”

The BEV00 model represents the original resolution, other resolutions denoted as BEV01 and

BEV02 are derived from it (see sec. 4.3). In general, the computation steps within the RCR

procedure remain the same as described in sec. 7.1.1 and sec. 7.3.2, only the DTM resolution

changes. For further DTM background information the reader is referred to sec. 4.3.1.

This investigation shows in an impressive way how the DTM resolution is affecting the reduced

gravity data. In Fig. 7.20a the differences between the reduced gravity based on BEV02 and

BEV01 resolutions are shown. As can be seen, the differences are strongly correlated with

the topographic situation in Austria. This also holds for the differences between BEV01 and

BEV00 which are also achieved during the remove step as shown in Fig. 7.20b. The statistics

is presented in Tab. 7.17. Consequently, it is still information coming from a denser DTM

resolution, which indicates that the highest available DTM resolution is insufficient because

the results differ.

(a) Differences in reduced gravity (b) Differences in reduced gravity

Figure 7.20: (a) Differences in reduced gravity data caused by DTM resolutions BEV02-BEV01; (b)
Differences in reduced gravity data caused by DTM resolutions BEV01-BEV00

Table 7.17: Statistics of reduced gravity differences caused by different DTM resolutions

[mgal] min max mean rms

∆∆gred BEV02-BEV01 -3.10 3.37 0.24 0.60
∆∆gred BEV01-BEV00 -1.80 1.97 0.10 0.27
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For the restore step it turns out that the geoid, derived from the topographic part of Eq. (7.6),

is independent of the chosen DTM resolution. Therefore, the effect of the remove step is not

fully compensated during the restore step and the remaining short wavelength topographic

part beyond d/o 250 denoted as δN topo is almost unchanged although different DTM reso-

lutions are considered (see also sec. 6.4). Within the restore step the occurring geoid height

changes are on the sub millimeter level and can been neglected as shown in Fig. 7.21.

Figure 7.21: Geoid height differences within the restore step computed by subtracting the topographic
part based on BEV00 resolution with the part derived from the BEV02 resolution

Hence, the only reason why the resulting geoid heights are slightly varying are attributable to

reduced gravity differences achieved from different DTM resolutions within the remove step.

These differences are directly propagating in the geoid solution. The corresponding geoid

height changes for the BEV02-BEV01 resolutions are shown in Fig. 7.22a. The differences

located near the Austrian borders are caused by the sparse gravity observation situation in

this regions. This in turn increases the variability of the geoid height in those special areas

which holds true especially for the boarder to the Czech Republic. Furthermore, the occurring

geoid height differences between the BEV01 and the high resolution BEV00 are small but still

present as shown in Fig. 7.22b. The corresponding statistics is presented in Tab. 7.18.

Table 7.18: Statistics of geoid height differences caused by different DTM resolutions

[cm] min max mean rms

∆N BEV02-BEV01 -4.27 3.29 0.82 1.45
∆N BEV01-BEV00 -1.56 1.78 0.35 0.62

This investigation indicates that a higher DTM resolution provides additional information to

the gravity field computation process. In contrast, taking into account the BEV00 resolution,

the absolute geoid validation with GPS/leveling observations do not show a significant geoid
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(a) Differences in geoid height BEV02-BEV01 (b) Differences in geoid height BEV01-BEV00

Figure 7.22: (a) Differences in geoid heights based on DTM resolution (BEV02-BEV01); (b) Differ-
ences in geoid heights based on DTM resolution (BEV01-BEV00)

improvement. Finally, it turns out that the highest possible DTM resolution does not au-

tomatically provide the best geoid solution in comparison to GPS/leveling observations and

this indicates that the accuracy of the DTM is likely insufficient. Considering the BEV02 and

BEV01, which are generalized from the BEV00, the corresponding DTM height errors are also

generalized. Finally, this leads to the same geoid quality. Furthermore, the use of the BEV00

includes more than 650 Mio. DTM points and leads to computational efforts.

7.4.4 Effect of Distant Topographic Masses

For Austrian geoid computation a DTM model which covers the central European region as

described in sec. 4.3 is usually considered. The masses and the corresponding topography

beyond are neglected. In order to quantify the effect of these truncated terrain model, a

global DTM coverage, by means of the GTOPO model (see sec. 4.3.2), has been taken into

account. Furthermore, this model is combined with the Austrian DTM so that occurring

differences may be interpreted as additional signal coming from the remote masses. Initially,

the computation and the RCR procedure are carried out once with and once without these

additional masses. They are considered as point masses in the computation due to their large

distance from the gravity stations and also a constant standard rock density of ρ = 2670 kg/m3

is assumed due to the lack of more suitable information.

The occurring differences in the reduced gravity data as well as in the computed final geoid

are shown in Fig. 7.23. It has to be pointed out that during the RCR procedure all topo-

graphic masses are treated according to sec. 6.2.3 and sec. 6.4.2 in order to avoid a spectral

overlap. This is valid for the near as well as for the distant masses based on the GTOPO

model. Therefore, analogously to the central European region a set of topographic potential

coefficients is also computed for the distant GTOPO covered zones. The difference plot of the

reduced gravity data in Fig. 7.23a, shows the remaining components beyond d/o 250 caused

by the GTOPO model.
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The additional masses are restored after the residual geoid is computed and therefore the

impact, which can be clearly identified in the reduced gravity data, is almost compensated and

vanishes in the fully restored geoid. Only a rather small effect in the range of few millimeters

remains in comparison to the result achieved by only taking into account the central European

region. This effect is shown in Fig. 7.23b and does not lead to a significant improvement of

the geoid computation. The statistics can be found in Tab. 7.19.

(a) Gravity differences caused by distant zones (b) Remaining geoid differences after full restore step

Figure 7.23: (a) Differences in reduced gravity caused by additional masses; (b) Corresponding re-
maining geoid height changes after full restore step

Table 7.19: Statistics of differences in reduced gravity data due to the consideration of a global
DTM and remaining effect in geoid heights after full restore step

[mgal] min max mean rms

∆∆gred -3.58 4.20 0.00 1.23

[cm] min max mean rms
∆N -0.11 0.24 -0.03 0.05

7.4.5 Effect of Different RBF Shapes

This investigation deals with the question whether the chosen RBF shape, which is implicitly

defined by means of degree variances as well as error degree variances of a GGM, is appropriate

for the purpose of regional geoid modeling. As discussed in sec. 6.3.3, the idea behind this

approach is originally based on (Eicker, 2008) who first introduced signal degree variance

errors, for RBF shape giving purposes. Such global models are limited in terms of d/o,

therefore beyond the maximum chosen d/o Kaula’s rule of thumb (see Eq. (6.35)) is used to

approximate higher signal degree variances. In this thesis a spatial distance of approximately

2×2 km between the RBFs is needed, which corresponds at least to a degree of 9000 (see

sec. 6.3.4). In general, Kaula’s rule of thumb is valid on a global scale, but the area of interest

is restricted to the central European region. Therefore, it is worthwhile to investigate different

RBF shape assumptions in the higher degrees, which have been presented in Fig. 6.13.
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As shown in sec. 6.3.3, an alternative approach leads to two different assumptions of the RBF

shapes which are denoted as Kaula 2 and Kaula 1. The latter approximates the EGM2008

signal degree variances (Pavlis et al, 2008) or (Pavlis et al, 2012) up to d/o 2160. Beyond d/o

2160 a steady progress of the curve is assumed. The second assumption, which is denoted as

Kaula 2, represents a more flattened progress from d/o 250 up to d/o 9000. These investigation

only effects the estimation of the residual geoid but to enable the possibility for absolute geoid

validation, the full restore step has been carried out.

Nevertheless, the achieved geoid results and comparisons lead to similar output, mainly in-

dependent of the shape as shown in Fig. 7.24. In comparison to the official Austrian geoid

solution, prominent features in the central part of Austria are still visible (see sec. 7.3.2) but

the Kaula 1 assumption is not as pronounced as Kaula 2. Nevertheless, the results are similar

to the standard Kaula approach, which is confirmed to be used for all other geoid computation

(see sec. 7.2).

(a) Validation of Kaula 1 solution (b) Geoid validation with GPS/leveling

(c) Validation of Kaula 2 solution (d) Geoid validation with GPS/leveling

Figure 7.24: (a) & (c) Validation of Kaula 1 and Kaula 2 in comparison to the official Austrian geoid;
(b) & (d) Corresponding geoid validation with GPS/leveling observations

Furthermore, absolute geoid validation with independent GPS/leveling measurements show

similar results. Consequently, the standard definition of Kaula’s rule of thumb is also suitable

to represent degree variances and the corresponding RBF shape on a regional scale. Variations
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Table 7.20: Statistics of geoid validation with GPS/leveling observations and with the official
Austrian geoid N2007

[cm] min max bias rms

∆GPS/lev. (Kaula 1) -12.33 7.22 -41.59 2.96
∆GPS/lev. (Kaula 2) -12.58 7.06 -41.48 3.15

∆N2007 (Kaula 1) -9.20 9.15 -41.13 2.72
∆N2007 (Kaula 2) -9.91 8.57 -41.08 3.08

of the RBF shape in the higher degrees do not lead to significantly different results. The

statistics is presented in Tab. 7.20.

7.4.6 Effect of Amount of Incorporated Gravity Field Quantities

This section provides an insight on the effects caused by the amount of gravity data used and

the resulting gravimetric geoid in comparison to deflections of the vertical and the astrogeode-

tic geoid solution. The entire investigation is driven by the question whether the information

content of these two gravity field quantities is comparable for the purpose of geoid computa-

tion or if one quantity is preferable to the other. To answer this question, which came up in

sec. 7.3.3, the amount and spatial distribution is chosen similarly for both quantities. This

represents an important requirement for this investigation.

In fact there are 735 deflections of the vertical with North-South and East-West orientation

available. For each deflection component the number of gravity data is similar with randomly

chosen 1446 observations as shown in Fig. 7.25a. This provides almost a one by one ratio,

which is important to enable the opportunity to compare two gravity field quantities on the

geoid level. Furthermore, about 3.5 times more gravity observations (5294 observations) are

used for a second investigation, taking into account an unbalanced ratio, which clearly favors

the gravity data as shown in Fig. 7.25c. This number has been chosen empirically in order to

view the improvements in comparison to the GPS/leveling data. In general, the computation

parameters and all used models are chosen equivalent to the astrogeodetic solution, which is

presented in sec. 7.2.2, so that occurring differences are only attributable to the number of

observations which are taken into account.

As supposed in sec. 7.3.3, the superior information content of deflections of the vertical, in

comparison to gravity data, is now proven. The statistics is presented in Tab. 7.21 and reveals

that the gravity subset which consists 1446 observations leads to a final geoid variability of

5.81 cm, whereas for the astrogeodetic geoid solution the rms value is 4.92 cm (see again

sec. 7.3.3). This indicates that if the amount and spatial distribution of gravity data, as

well as deflections of the vertical are similar, the latter performs better in comparison to the

absolute validation with independent GPS/leveling observations.
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(a) Reduced gravity subset of 1446 observations (b) Corresponding geoid validation

(c) Reduced gravity subset of 5294 observations (d) Corresponding geoid validation

Figure 7.25: (a) Reduced gravity subset ∆gred which corresponds to the amount of deflections; (b) &
(d) Corresponding geoid validation with GPS/leveling observations; (c) Reduced gravity
subset ∆gred, which ensures a similar geoid quality in comparison to the astrogeodetic
solution

As a result, at least three times more gravity data need to be considered in order to ensure

the same geoid quality, which is visualized in Fig. 7.25d. The structures and features of the

reduced gravity data in Fig. 7.25c now become more apparent in comparison to the final

reduced gravity dataset within Austria, which is shown in Fig. 7.1. Finally, the validation of

these input dataset including 5294 observations leads to a decreased variability of 4.43 cm,

which is comparable to the quality of the astrogeodetic geoid solution.

For further Austrian geoid projects it is recommended to collect and include any newly mea-

sured deflections of the vertical for the purpose of gravity field determination. Currently only

sparse deflections of the vertical are available, but as shown in this investigation their infor-

mation content is higher in comparison to gravity data and less observations are needed to

achieve results on the same quality level.
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Table 7.21: Statistics of the reduced gravity subsets and corresponding geoid validation

[mgal] min max mean rms

∆gred (1446 observations) -45.98 31.61 -0.51 11.80
∆gred (5294 observations) -50.06 31.89 -0.56 11.59

[cm] min max bias rms

∆GPS/lev. (1446 observations) -20.13 17.14 -44.58 5.81
∆GPS/lev. (5294 observations) -16.50 14.05 -42.26 4.43

7.4.7 Effect of Isostasy

In this investigation it could be demonstrated that the isostatic component is well covered by

a global GGM and that residual isostatic parts beyond the maximum d/o of the GGM do not

contribute to a significant geoid improvement and are almost compensated during the RCR

procedure. To prove this statement, the impact on remove and restore steps are investigated.

For the topographic part a constant standard crustal density assumption of ρ = 2670 kg/m3

and a corresponding constant density contrast of ∆ρ = 350 kg/m3 is considered. It has to be

noted that for this single investigation the atmospheric part is neglected because this effect

may be assumed as not important for the investigation of the isostasy.

In Tab. 7.22 the final impact of the residual isostatic part for the remove step is shown.

Considering the isostasy leads to slightly increased minimum and maximum values and the

variability, expressed as rms value, is also increased. This indicates that the isostatic com-

ponent is indeed well covered and represented by means of a GGM, if the chosen maximum

d/o of the series expansion is sufficient. Furthermore, the isostatic compensation is based on

several assumptions with regard to density contrast or compensation depth which can not be

proven in reality. For the purpose of gravity field estimation on a regional scale, the replace-

ment of isostasy by means of a GGM can be viewed very positively in every respect, because

it contributes to remove assumptions during the computation process, which in turn improves

the entire gravity field computation.

Table 7.22: Statistics of 72327 reduced gravity observations, once with and once without isostasy
from d/o 251 → 500

[mgal] min max mean rms

∆gred -48.49 39.45 -1.11 11.69
∆gred with iso. -50.67 42.58 -1.19 11.74

For the purpose of geoid validation, the residual isostasy is also considered within the restore

step. Slight differences in the final geoid heights occur and the corresponding validation is

shown in Tab. 7.23. However, neglecting the remaining isostatic effect beyond d/o 250 leads

to better results in comparison to GPS/leveling observations. One may conclude that by
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applying the additional effect of short wavelength isostasy an overcompensating behavior is

introduced, which slightly degrades the geoid solution.

Table 7.23: Statistics of geoid validation with GPS/leveling observations; Once with and once
without isostasy considered from d/o 251 → 500

[cm] min max mean rms

∆GPS/lev. -11.68 7.43 -41.65 3.34
∆GPS/lev. with iso. -12.91 8.11 -41.66 3.60

7.5 Estimated Maps of Deflections of the Vertical

Based on the reduced gravity dataset which is described in detail in sec. 7.1.1, maps represent-

ing deflections of the vertical are estimated. are estimated. This means that the computation

is again based on the full vector approach and also the 2D surface density information as well

as the GOCO05s are considered whereas the computation method is described in sec. 3.5.3.

The deflections of the vertical are predicted on the Earth’s surface, which in turn requires

height information provided by a dense DTM (BEV02). The general aim of this approach is

to provide a gridded map of deflections of the vertical, which can be used for interpolation

of new deflection values without being dependent on a new computation. Therefore, a dense

grid of deflections (< 200 m) is needed in advance, in order to keep the interpolation errors

small. These maps which finally consist of about 2.5 Mio. individual deflections are shown in

Fig. 7.26 and Fig. 7.27, respectively.

Figure 7.26: Map of North-South direction

One of the characteristics of deflections is that they are more sensitive to horizontal than

to vertical mass anomalies. This is the reason why valleys and corresponding masses with
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Figure 7.27: Map of East-West direction

East-West orientation clearly show up in the ξ component, and valleys with North-South

orientation in the η component. This can be clearly seen in the two maps. Masses with other

spatial orientation appear in both components. The validation of these maps is conducted

by means of a comparison of estimated and real measured deflections. This in turn is also

an additional validation of the full vector approach and the entire reduced gravity data set,

because only gravity data are taken into account for the estimation. The validation results

show a remaining variation of 0.50” for the ξ component and 0.61” for the η component, which

indicates a high quality for the estimated maps (see Tab. 7.24). A significant characteristic

of the validation result is a remaining mean value or bias, especially in the η component.

One reason for this is related to time measurements, which are especially required for the

determination of the East-West orientated deflection component (see sec. 4.2.2). Most of

these 735 measurements are taken before the GPS system time was available and therefore

the time stamps were not as accurate as nowadays, which can cause such a bias. In comparison

with up to date zenith camera measurements, provided for the Semmering tunnel project, the

validation shows a much more homogeneous behavior and rms values < 0.5” but only a few

observations are available.

Table 7.24: Statistics of the gridded map values and corresponding validation with 735 measured
deflections of the vertical

[sec] min max mean rms

ξ -26.09 38.65 3.67 8.73
η -26.57 25.72 1.51 6.48

∆ξ -2.05 1.93 0.10 0.50
∆η -1.71 1.82 0.35 0.61
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(a) Validation of ξ component (b) Validation of η component

Figure 7.28: Validation of the estimated maps of deflections
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8 Summary and Recommendations

One of the main goals of this thesis, to compute an unconstrained gravimetric geoid solution

on the same accuracy level as the official Austrian geoid, has been achieved. Furthermore,

several problems resulting in inconsistencies between a gravimetric geoid and GPS/leveling

observations could be overcome and a fit to GPS/leveling observations by means of a non-

physical correction surface is no longer required. Therefore, several improvements concerning

the combination of global satellite and terrestrial data within the Remove-Compute-Restore

(RCR) procedure and a minimized number of assumptions in the computation are required.

The major part of the methodological progress is attributed to a rigorous spectral separation

of different wavelength components of the gravity field signals in the RCR procedure. The

long wavelengths up to d/o 250 are only represented by a Global Gravity field Model (GGM).

Beyond this level a high resolution Digital Terrain Model (DTM) is used to represent mainly

the short wavelengths. Furthermore, it could be demonstrated that due to this approach

the isostatic component, which is based on several assumptions, could be avoided in the

computation because its long wavelength characteristic is already covered by a GGM up to

d/o 250. The atmospheric potential is represented by the ITSG density model. This accounts

for the fact that gravity data are located within the attracting masses because the atmosphere

is considered to be above the terrestrial observations. Another improvement is attributed to

the transition from the ellipsoid reference surface to a geoid representation, which is valid

on a global scale and provides a more realistic Taylor point for linearization purposes. The

corresponding normal gravity field has also been exchanged by means of a GGM gravity

representation.

The computation of the gravimetric geoid solution is based on 72327 gravity measure-

ments. For the remove step, the full vector approach is applied. Hence, the absolute magni-

tude of the gravity acceleration is computed for each gravity vector and is subtracted from

every single gravity station in order to obtain gravity anomalies. The long wavelength com-

ponent is represented by the latest GOCO model, the GOCO05s up to d/o 250, whereas the

short wavelengths are predominately based on a dense DTM representation. With the inclu-

sion of 2D surface density information which replaces the standard crustal density assumption

an additional step towards an improved geoid quality has been completed to realize the idea

of orthometric heights, derived from the Global Navigation Satellite System (GNSS), which

is expected to replace classical geodetic spirit leveling in future. In order to consider gravity

a-priori accuracy information, the dataset is divided into several observation groups. Within

Austria three groups, based on different measurement systems are established. The remaining

gravity data outside Austria is split according to Austria’s neighbouring countries, which lead

to seven additional groups and finally a total of ten observation groups. Taking into account
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the regularization, one additional group for the regularization parameters, which are set up

for all unknown parameters, is required. The used least squares approach with Radial Ba-

sis Function (RBF) parametrization is utilized for the first time for the purpose of Austrian

geoid computation. The Variance Component Estimation (VCE) method provides the relative

weighting among ten observation groups and the regularization parameters. Concerning the

spatial distribution of the RBFs, which represent the gravity field signal, a triangle vertex

representation with a spatial resolution of about 2×2 km is sufficient to cover all possible

cases of gravity field estimation within this research. In order to provide the opportunity

to validate the different achieved gravity field solutions, all remove steps are reversed and

long- short, as well as atmospheric components, have been restored. The validation of the

gravimetric geoid solution shows a remarkable quality for validation with the official Austrian

geoid, which is provided on a grid, as well as the for the validation with geopotential numbers.

The comparison to 192 independent GPS/leveling measurements and the national Austrian

geoid solution finally reveals a rms value < 3 cm. Due to the fact that the general absolute

accuracy of these measurements is unknown, it can be stated that the computed solution is

at least on the same accuracy level. Furthermore, prominent features located in the central

part of Austria in comparison to the national geoid occur, but it was not possible to give a

reliable statement whether these features belong either to the official Austrian geoid or to the

present geoid solution.

For the computation of the astrogeodetic geoid solution, 735 deflections of the vertical

are considered. The computation configuration is in principle the same as for the gravi-

metric geoid. The difference being that the computed deflections are taken from the first

two components of the gravity vector, representing the deviation from the local plumb line.

The computation is based on only one observation group and the regularization is in general

stronger, due to less observations. Although there are only a few observations available, in

comparison to the gravity dataset, the astrogeodetic geoid solution displays an unexpected

quality level in comparison to GPS/leveling measurements as well as with the official Aus-

trian geoid. Both comparisons finally provide a rms value < 5 cm, which indicates superior

information content of deflections of the vertical in comparison to gravity data.

The combined geoid solution consists of 72327 gravity measurements, and 735 deflections

of the vertical. Once more, the computation setup is chosen according to the pure gravimetric

geoid, with the difference that the deflections are introduced as an additional observation

group. Due to the huge amount of gravity data, the solution is dominated by this gravity

field quantity. The contribution of 735 deflections of the vertical to a combined geoid solution

is rather small. Also the validation with GPS/leveling observations, as well with the official

Austrian geoid solution shows in principal the same results as the pure gravimetric solution.

Further investigations show that both solutions are equivalent in terms of geoid height, except

for the regions bordering the Czech Republic and some alpine regions in Austria, where only

sparse gravity observations are available. Nevertheless, this is not significant for the absolute

geoid validation. Therefore, the quality of both solutions are also assumed to be equivalent

and the rms is < 3 cm.
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The results of several investigations and important findings related to the geoid compu-

tation have also been part of this research. First, methodological developments including the

implementation of the full vector approach in combination with the inclusion of the GOCO05s

as a reference field, in order to reduce linearization errors and to use a more realistic Taylor

point are discussed. It could be shown, that the cumulative effects result in a slightly smoother

input gravity dataset and also the resulting rms value for the absolute geoid validation with

GPS/leveling observations slightly improves in the range of about 4 mm compared to the clas-

sical approach. This corresponds to a 11% decreased rms value. Furthermore, this approach is

also important to provide approximated ellipsoidal heights for the spherical harmonic expan-

sion of the DTM. Summarized, this approach provides a methodological improvement, which

is recommended to be taken into account for future Austrian gravity field projects.

The next investigation is dealing with the use of different types of density information.

Therefore, three different assumptions have been compared. The inclusion of the 2D standard

crustal density, which is based on geological observations and therefore strongly correlated

to rocks and geological composition within Austria, provides in the best geoid solution when

compared to all validation possibilities. To include such information in the computation

process is beneficial twofold. First, the reduced gravity dataset is smoothed additionally.

Secondly, the final geoid outcome also shows a significant improvement in comparison to the

standard crustal density assumption, which results in a decreased rms value. Therefore, if

this type of density information is available it is recommended to incorporate it.

The effect of different DTM resolutions is also investigated. It is shown that in a sub-

sequent densification of the DTM, starting from the coarse BEV02 resolution towards the

BEV00, which provides the highest available spatial resolution a change in the reduced grav-

ity data occurs. This indicates that still information is provided from a higher resolution

and therefore a denser DTM is needed. The change of reduced gravity caused by different

DTM resolutions is directly propagating into a residual geoid change of a few centimeters.

In contrast, the remaining topographic short wavelengths geoid heights computed within the

restore step are independent of the chosen DTM resolution, which is also shown in this inves-

tigation. Consequently, a part of the signal is removed due to the fine DTM resolution, but

not restored afterwards. This is one explanation why the gravity smoothing is slightly im-

proved with increasing DTM resolution, but this does not affect the absolute validation of the

geoid in a significant way. The achieved geoid validation rms values for BEV00, BEV01 and

BEV02 remain more or less the same, which was not expected. The BEV02 and BEV01 are

generalized, from the dense BEV00 resolution, and therefore also the DTM height errors are

generalized. This is one explanation why the absolute geoid validation considering the highest

available DTM resolution does not automatically provide the best geoid result. Furthermore,

the use of the BEV00 resolution leads to intense computational efforts.

The next investigation deals with the effect caused by distant topographic masses outside

the central European region, represented by means of a global DTM coverage. These distant

masses are almost compensated during the RCR procedure and the remaining effect is only on
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the 2 mm level in terms of geoid heights. Furthermore, an improvement of the geoid quality

by comparing it with independent GPS/leveling observation is not observed. Therefore, these

masses can be neglected and the extended regions do not provide a significant contribution

to a regional geoid quality improvement.

The general result from different RBF shape approaches used for the higher degrees

variances beyond d/o 250, which control the RBF shape, is confirmed as the standard Kaula’s

rule of thumb. A slight different continuation of the RBF shape leads only to sub-centimeter

geoid height changes and the prominent features in comparison to the official Austrian geoid

do not vanish. In addition, the absolute geoid validation shows similar rms vales in comparison

to the standard Kaula method. Therefore, it was proven that for the shape giving aspect of

the RBF, Kaula’s rule of thumb, which is originally defined on a global scale, is also suitable

for a more regional representation, as it is the case for the Austrian geoid computation.

The next of the selected investigations deals with a different amount of input data and

proves that deflections of the vertical are of superior information content, compared to gravity

data. As could be demonstrated, at least three time more gravity data are required to ensure

the same geoid quality, based on absolute geoid validation with independent GPS/leveling

observations. This statement is valid if the spatial data distribution and the computation

setup remains unchanged between the gravimetric and the astrogeodetic geoid solutions. If

the ratio between these two observations is equal, the astrogeodetic geoid solution provides a

better quality.

It also could be shown that the effect of isostasy is well covered by a GGM representation if

the corresponding maximum d/o is chosen sufficiently. This is due to the fact that in principle

both effects cover predominately the same long wavelength range of the spectrum. Therefore,

a significant level of uncertainty is avoided within the RCR procedure because the isostatic

concept is based on several assumptions.

Furthermore, dense maps of deflections of the vertical are estimated. The computation

is based on the 72327 reduced gravity measurements which provide the basis for the estimated

solution vector of RBF scaling coefficients. The deflections can be computed on every arbitrary

point and as an input only geodetic coordinates in combination with an orthometric heights are

needed. The BEV02 resolution is therefore directly ready to provide the basis for a dense map

of either the ξ or η component of deflections of the vertical, without excessively computational

efforts. These dense spatial distribution enables the opportunity to simply interpolate new

deflections of the vertical. The validation of the estimated maps with 735 measured deflections

of the vertical show rms values < 0.61” for both components. A comparison to more up to date

zenith camera measurements shows a higher level of agreement, but only a few observations

are available. Such an approach can not replace present zenith camera measurements, but

provides an alternative method for the prediction of deflections, if only a lower level of accuracy

is required.
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A general problem which is related to the used validation points and models is also dis-

cussed. The major geoid validation has been performed with GPS/leveling observations, but

the Federal Office of Metrology and Surveying (BEV) does not provide reliable accuracy in-

formation of these measurements. They are only assumed to be accurate on a few centimeter

level. Furthermore, due to a complete re-evaluation of the GPS/leveling observations in the

year 2010, the official Austrian geoid 2007 (Pail et al, 2008) is inconsistent to these measure-

ments. Moreover, for the density information used in this thesis no quality information is

available.

Finally, in the present Austrian geoid initiative (GARFIELD) two different methods of

gravity field estimation are compared. Within this thesis a least squares approach with

RBF parametrization is applied whereas the classical approach of Least Squares Collocation

(LSC) has been utilized by (Rieser, 2015). Both methods provide the opportunity to compute

high quality geoid solutions. The corresponding PhD theses represent the state of the art of

Austrian gravity field modeling.
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Rothacher M, Schöne T, Wickert J (eds) System Earth via Geodetic-Geophysical Space

Techniques, Springer Berlin Heidelberg, p. 255–264, url: http://dx.doi.org/10.1007/

978-3-642-10228-8_20

Erker E (1987) The Austrian Geoid - Local Geoid Determination using Modified Conservative

Algorithm, Gravity Field in Austria - Geodätische Arbeiten Österreichs für die Interna-
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Marti U, Schlatter A (2002) Höhenreferenzsysteme und -Rahmen. Vermessung, Photograme-

trie, Kulturtechnik (VPK) vol 100, url: http://dx.doi.org/10.5169/seals-235866
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