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Thesis Outline

Within the framework of this thesis, advanced control strategies of voltage source
converters in microgrids are developed, discussed, and analyzed in detail. There-
fore, both the islanded and grid-connected operating modes of the microgrid are
investigated in two separate studies. In either case, the focus is on the controlled
injection of power by the voltage source converter into the microgrid and/or main
grid. Internal model–based control strategies are developed, utilized, and analyzed
and in turn compared with common control practices.

This thesis encompasses three major parts:

• Part I, with the title General, introduces the concepts of microgrid, dq reference
frame, linearization of sets of non-linear differential-algebraic equations, and
internal model control, necessary to fully comprehend the material presented
in Part II and Part III of this thesis.

• Part II, with the title Small-Signal Stability Analysis of an Inverter-Based Micro-
grid with Internal Model–Based Controllers, deals with state-space modeling and
eigenvalue analysis of current and voltage controllers of voltage source con-
verters incorporated in an islanded microgrid. It builds upon the work of
Dr. Mehrdad Yazdanian and Dr. Ali Mehrizi-Sani [1–3]. The findings of Part II
have been submitted to IEEE Transactions on Power Systems as Leitner et al. [4].

• Part III, with the title Internal Model–Based Active Damping Current Control for
a Grid-Connected Voltage Source Converter with an LCL Filter, proposes a novel
internal model–based current controller for active resonance damping of an
LCL filter. The findings of Part III have been submitted to IEEE Transactions on
Power Delivery as Leitner et al. [5].

The study was conducted at Washington State University, Pullman, WA, USA, in
cooperation with Graz University of Technology, Graz, Austria. The research was
supported in part by the Austrian Marshall Plan Foundation through scholarship
number 639 848 22 15 2015.
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Abstract

Microgrids provide an effective means for the integration of distributed energy re-
sources (DER) in the power grid. Commonly, power electronic converters, e.g.,
voltage source converters (VSC), serve as an interface between the distributed gen-
eration (DG) and the grid. While extensive research has already been conducted on
control strategies for VSCs, there are still gaps in improving their stability, transient
behavior, and power quality, especially when it comes to dealing with resonance
phenomenons which can jeopardize the system stability.

This thesis is divided into three major parts:

• Part I serves as an introduction to microgrid, dq reference frame, linearization,
and internal model control.

• Part II studies the performance of cascade internal model–based current and
voltage control loops by deriving a state-space small-signal model and per-
forming eigenvalue analysis on an islanded inverter-based microgrid system.
The results are compared with those of the same system but with conventional
proportional-integral (PI)-based current and voltage controllers. Simulation
case studies are performed in PSCAD/EMTDC environment to compare the
transient behavior of both methods. The results confirm the superior per-
formance of the internal model–based controllers. Compared with PI-based
controllers, the characteristic behavior of internal model–based voltage and
current controllers includes 1) increased damping ratios and frequencies of
sensitive eigenvalues, 2) increased robustness against parameter changes, 3)
faster step response, and 4) reduced over/undershoot in current and voltage
transients.

• Part III proposes a novel active damping current controller based on the in-
ternal model principle for grid-connected VSCs integrated with LCL filters for
the reduction of switching current ripples. The controller can be considered
a high-order multi-input multi-output (MIMO) filter, implemented in the dq
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reference frame, including decoupling terms for improved transient behavior.
Simulation case studies are performed in PSCAD/EMTDC environment to rat-
ify the controller’s functionality, evaluate the transient behavior, and test its
robustness against parameter changes. The results are compared with those
of two existing active damping strategies. The study confirms the superior
performance of the proposed internal model–based active damping current
controller which shows 1) improved transient behavior, 2) increased robust-
ness against parameter changes, and 3) simpler tuning compared with existing
control strategies for active resonance damping of LCL filters.
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Zusammenfassung

Inselnetze, die sowohl autonom wie auch im Verbundbetrieb mit dem übergeord-
neten Netz operieren können, werden als Microgrids bezeichnet. Ein Microgrid kann
als eine Akkumulation dezentraler Energieerzeuger und -speichermöglichkeiten in
unmittelbarer Nähe von Verbrauchern gesehen werden. Sie bieten eine gute Mög-
lichkeit, dezentrale Erzeugungsanlagen ins Stromnetz zu integrieren. Bindeglied ist
meist ein leistungselektronischer Konverter (z.B. Voltage Source Converter), für dessen
Regelung bereits eine große Bandbreite an verschiedenen Reglerkonzepten entwi-
ckelt wurde. Jedoch gibt es noch immer Verbesserungspotenzial, was die Stabilität,
das transiente Verhalten und die Qualität der gelieferten Energie angeht, insbeson-
dere da unter bestimmten Umständen Resonanzerscheinungen auftreten können,
die die Systemstabilität erheblich gefährden können.

Die vorliegende Masterarbeit ist in drei Teile eingeteilt:

• Teil I erklärt den Begriff Microgrid und widmet sich den Themen Linearisierung,
rotierende Koordinatensysteme und Internal Model Control.

• Teil II umfasst die Entwicklung von Kleinsignalzustandsraummodellen für
kaskadierte Strom- und Spannungsregler, die auf dem Internal Model–Prinzip
basieren. Diese werden in weiterer Folge in das Kleinsignalzustandsraummo-
del eines Test-Microgrids integriert, um mit der resultierenden Systemmatrix
Eigenwertanalysen durchzuführen und Aussagen über die Stabilität treffen zu
können. Die Ergebnisse werden mit jenen von konventionellen proportional-
integral (PI)-basierten Strom- und Spannungsreglern verglichen. Darüber hin-
aus werden mit dem Computerprogramm PSCAD Simulationen im Zeitbereich
durchgeführt, um die untersuchten Reglerstrukturen auf ihr transientes Ver-
halten zu prüfen. Die Ergebnisse bestätigen das überlegene Verhalten der un-
tersuchten Strom- und Spannungsregler, die auf dem Internal Model–Prinzip
basieren. Verglichen mit PI-basierten Reglern, Strom- und Spannungsregler
die auf dem Internal Model–Prinzip basieren zeigen 1) erhöhte Frequenzen und

XI



Contents

Dämpfungsmaße kritischer Eigenwerte, 2) höhere Robustheit gegen Parame-
tervariationen, 3) schnellere Sprungantworten und 4) reduziertes Über- und
Unterschwingen der transienten Strom- und Spannungsverläufe.

• Teil III beinhaltet die Entwicklung einer neuartigen Reglerstruktur, basierend
auf dem Internal Model–Prinzip, zur aktiven Dämpfung von Resonanzerschei-
nungen die bei Voltage Source Converter im Zusammenhang mit LCL-Filter zur
Stromglättung auftreten können. Der vorgeschlagene Regler kann als multi-
input multi-output (MIMO) Filter höherer Ordnung angesehen werden, dessen
Modellierung in einem rotierenden Koordinatensystem erfolgt, einschließlich
Kopplungsterme, die das transiente Verhalten verbessern sollen. Simulationen
im Zeitbereich mittels PSCAD werden herangezogen, um die Wirksamkeit und
Robustheit des Reglers zu testen. Der entwickelte Regler wird mit zwei aus-
gewählten bereits etablierten Regelstrategien zur aktiven Resonanzdämpfung
verglichen. Die Untersuchungen zeigen, dass der entwickelte Regler erhebli-
che Vorteile im Hinblick auf 1) transientes Verhalten, 2) Robustheit und 3) Ein-
fachheit des Reglertunings gegenüber existierenden Regelstrategien für diese
Anwendung aufweist.
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Chapter 1

Microgrid

The following three sections deal with the concept of microgrid including its defini-
tion, control structure, and challenges faced.

1.1 Introduction

For the most part, today’s power grids were built decades ago and were designed to
have fewer but larger central generating stations which are easy to manage and con-
trol. Beside a steady increase in power demand, the utilization of distributed energy
resources (DER) is, due to the high number of small-scale distributed generation
(DG) units and their distributed nature, accompanied by several challenges for the
conventional power grid. That is why currently the trend is toward smart gird, as
an intelligent electric network, including enhanced employment of communication
and automation technology, to ensure a safe, reliable but also efficient operation of
the grid.

Microgrids can be considered main building blocks of a smart grid and can help
integrate DG units into the grid, improving thereby the power grid’s reliability and
sustainability. A microgrid is a single controllable entity and defined as a collection
of DG and distributed storage units in close proximity of the loads [6].

A microgrid can operate in both grid-connected and islanded operating modes
[7–9]. In the grid-connected mode, the voltage and frequency are dictated by the
main grid. However, in the islanded mode, the controllers of the DG units in the
microgrid are responsible for regulation of voltage and frequency and for power
sharing between DG units [10–13].
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Chapter 1 Microgrid

1.2 Microgrid Control Structure

In order to guarantee a safe, reliable, and efficient operation, a functioning microgrid
control structure is inevitable. The principal roles of the microgrid control structure
are [11]:

• Voltage and frequency regulation;

• Proper load sharing and DER coordination;

• Microgrid resynchronization with the main grid;

• Power flow control between the microgrid and the main grid;

• Optimizing the microgrid operating costs.

These requirements are of different significance and time scales. That is why the
hierarchical control strategy consists of four levels, namely, zero-level, primary,
secondary, and tertiary controls [11]:

• Zero-level control consists of inner current and outer voltage control loops and
is responsible for output current and voltage regulation of the DG unit;

• Primary control provides set points for the zero-level control and is responsible
for power sharing and voltage and frequency stabilization subsequent to load
and generation changes;

• Secondary control compensates for the voltage and frequency deviations caused
by the primary control; and

• Tertiary control manages the power flow between the microgrid and the main
grid and facilitates an economically optimal operation.

Zero-level control shows the fastest dynamics followed by primary, secondary,
and lastly tertiary control. This difference in time scale allows for individual designs
of the four control levels.
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1.3 Challenges

1.3 Challenges

In conventional power systems, the rotating mass of large generators can compensate
sudden imbalance between generation and consumption. As mentioned before, DG
units such as fuel-cells, photovoltaics, and microturbines are often interfaced to
the network through power electronic converters, which make the source more
flexible in its operation and control compared to conventional electrical machines.
However, inverter-based microgrids exhibit negligible physical inertia making them
potentially prone to oscillations resulting from generation and load changes, and
network disturbances [14]. In addition, these power electronic converters require
output filters (L, LC, LCL, etc.) to decrease switching harmonics. High-order output
filters (e.g., LCL filters) are economically advantageous for high-power applications
but can also cause resonance problems that may jeopardize the stability of the system.

Ergo, improving voltage and current transients in microgrids and ensuring proper
resonance damping are of utmost interest allowing for a more effective utilization of
the electric power delivery infrastructure and also prevention of operation limit vio-
lations [3]. As a consequence, the stability margin of the microgrid can be increased.

Part II of this thesis studies the stability of internal model–based current and
voltage controllers (i.e., zero-level controllers) proposed by [1, 3], by developing a
small-signal state-space model which, in further consequence, is utilized for eigen-
value and sensitivity analysis of a test microgrid with three DG units, connected via
two lines, and supplying two loads.

Part III of this thesis proposes an active damping current controller (i.e., zero-
level controller) based on the internal model principle for grid-connected voltage
source converters with LCL filters. The controller can be considered a high-order
multi-input multi-output (MIMO) transfer function, implemented in the dq reference
frame, including decoupling terms for improved transient behavior.
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Chapter 2

Theoretical Background

The following sections are partly based on [15, 16] and serve as a short introduction
to rotating reference frames (RRF) and the linearization procedure utilized for the
small-signal state-space modeling.

2.1 dq0 Reference Frame

As an extension of the Clark transform, the dq0 or Park transform is a space vector
transformation of three-phase time-domain signals from a stationary phase coordi-
nate system (ABC) to a rotating coordinate system (dq0) [15].

The following equation shows how the time-domain voltages ua, ub, and uc trans-
form into the dq0 reference frame where ud is the direct-, uq is the quadrature-, and
u0 is the zero-component:

ud

uq

u0

 =
2
3


cos(θ) cos(θ − 2π

3 ) cos(θ + 2π
3 )

−sin(θ) −sin(θ − 2π
3 ) −sin(θ + 2π

3 )
1
2

1
2

1
2



ua

ub

uc

 , (2.1)

where θ = ωt and ω is the angular speed of the rotating reference frame.
The inverse transform is defined as follows:

ua

ub

uc

 =


cos(θ) −sin(θ) 1

cos(θ − 2π
3 ) −sin(θ − 2π

3 ) 1
cos(θ + 2π

3 ) −sin(θ + 2π
3 ) 1



ud

uq

u0

 . (2.2)

For balanced systems, i.e., sinusoidal current and voltage waveforms and system
symmetry (same amplitudes and 120◦ phase shift between quantities), the zero-
component is zero and can therefore be omitted.
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Chapter 2 Theoretical Background

The instantaneous output power s̃ of a DG unit can be calculated in the dq reference
frame as follows:

s̃ = vi∗ = (vd + jvq)(id + jiq)
∗ = (vd + jvq)(id − jiq)

= idvd − jvdiq + jvqid + vqid = (vdid + vqiq)︸       ︷︷       ︸
p̃

+ j (vqid − vdiq)︸       ︷︷       ︸
q̃

, (2.3)

where p̃, and q̃ are the instantaneous real and reactive power components of the
instantaneous power s̃; and vd, vq, id, and iq are the dq-components of the output
voltage and current of the DG unit (vo and io in Fig. 5.1).

The synchronous reference frame can be aligned to rotate with the voltage (e.g.,
voltage source converters) or with the current (e.g., current source converters). When
it is aligned to the d-component of the voltage, the quadrature component uq = 0.
Ergo, the power equations reduce to:

p̃ = udid (2.4)

q̃ = −udiq. (2.5)

Striking is the fact that now the real power p̃ solely depends on id while the reactive
power q̃ solely depends on iq. In other words, setting uq to zero enables independent
control of real and reactive power.

For balanced three-phase systems, the dq0 transform has the following advanta-
geous characteristics [15]:

• The dq0 transform reduces three-phase AC quantities (e.g., ua, ub, and uc) into
two DC quantities (e.g., ud, uq). For balanced systems, the zero-component is
zero. The DC quantities facilitate easier filtering and control.

• Active and reactive power can be controlled independently by controlling the
dq-components.

2.2 Linearization Procedure

In general, the set of non-linear differential-algebraic equations are of the following
form [16, 17]:

ẋ = f (x, ε,u), 0 = g(x, ε,u), y = h(x, ε), (2.6)

8



2.2 Linearization Procedure

where x represents the state vector having n states, ε the r algebraic variables, u the
m system input variables, and y the p output variables.

In steady state, time-derivates become zero (ẋ = 0) and the following set of equa-
tions results:

0 = f (x0, ε0,u0), 0 = g(x0, ε0,u0), y0 = h(x0, ε0). (2.7)

This is the operating point (equilibrium) around which the system is to be linearized.
Its neighborhood can then be described as:

x = x0 + ∆x, ε = ε0 + ∆ε, u = u0 + ∆u, y = y0 + ∆y. (2.8)

Since small perturbations are assumed, the nonlinear function y = h(x, ε) in Equa-
tion 2.6 can be approximated by a first-order Taylor’s series expansion. The ith of p
outputs, yi, then yields:

yi = yi0 + ∆yi = hi(x0, ε0) +
∂hi

∂x1
∆x1 + .... +

∂hi

∂xn
∆xn +

∂hi

∂ε1
∆ε1 + .... +

∂hi

∂εr
∆εr, (2.9)

where the partial derivatives ∂hi
∂xa

, a = 1, ...,n; and ∂hi
∂εb

, b = 1, ..., r; are evaluated at
the initial steady state operating point (x0, ε0). Since yi0 = hi(x0, ε0) in Equation 2.9,
the linearized output equation reduces to:

∆yi =
∂hi

∂x1
∆x1 + .... +

∂hi

∂xn
∆xn +

∂hi

∂ε1
∆ε1 + .... +

∂hi

∂εr
∆εr. (2.10)

Applying a first-order Taylor’s series expansion to the remaining non-linear equa-
tions in Equation 2.6 results in:

∆ẋ j =

n∑
a=1

∂ f j

∂xa
∆xa +

r∑
b=1

∂ f j

∂εb
∆εb +

m∑
c=1

∂ f j

∂uc
∆uc (2.11)

and

0 =

n∑
a=1

∂gk

∂xa
∆xa +

r∑
b=1

∂gk

∂εb
∆εb +

m∑
c=1

∂gk

∂uc
∆uc. (2.12)

Equations 2.10, 2.11, and 2.12 can be used to linearize non-linear dynamic systems.
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Chapter 3

Internal Model Control (IMC)

Both Part II and Part III of this thesis deal with controllers based on the internal
model principle. Therefore, the following sections provide insights into the concept
of internal model control.

3.1 Introduction

Internal model control (IMC) is an alternative to conventional feedback control
and has a long history in the process industry. In fact, IMC is a popular control
method in chemical and mechanical engineering; however, its employment in the
field of electrical power systems is a relatively new trend [1]. IMC is utilized in load
frequency control [18, 19], the control of DC/DC converters [20], permanent magnet
synchronous machines (PMSM) [21,22], and induction machine applications [23–25].

IMC is based on the internal model principle, which states that: Control can be
achieved only if the control system encapsulates, either implicitly or explicitly, some repre-
sentation of the process to be controlled [26].

Internal model control utilizes special PID controllers, occasionally augmented
by a first-order lag, having only one tuning parameter (closed-loop time constant
or bandwidth) as opposed to the three modes (kc, τI, and τD) of ordinary PID con-
trollers [27]. IMC combines the benefits of both the feedforward and feedback con-
trol methods. It is know for its simple design procedure making a trade-off between
closed-loop performance and robustness against inaccuracies of the model [1, 27].
As its name implies, IMC’s salient feature is the directly embedded model of the
process to be controlled.

11



Chapter 3 Internal Model Control (IMC)

3.2 IMC Control Structure

Fig. 3.1 shows a block diagram of the internal model control method. The transfer
functions GP(s), G̃P(s), and GC(s) represent the process, the model of the process, and
the controller, respectively.

)(sr )(se )(su )( sy









)(̂sd

)(ˆ sd

)(sd




Plant
)(sGP

Plant Model 

)(
~

sGP

Controller 

)(sGC

Figure 3.1: Block diagram of the internal model control (IMC) method [1].

Applying the control signal u(s) to both the process GP(s) and its model G̃p(s) is
distinctive of internal model control. Due to the parallel structure, the feedback
signal d̃(s) contains information about the disturbance d(s) but also the mismatch
between the process and its model (missing information). The feedback signal d̃(s)
is then deducted from the set point r(s). The resulting error e(s) is in turn applied
to the controller GC(s) which generates the control signal u(s). Salient is the feature
that the error e(s) is equal to the set point r(s) in case of perfect tracking, while for
the same scenario e(s) = 0 in standard feedback control [1].

However, the control structure shown in Fig. 3.1 is inappropriate for practical
implementation. In order to rearrange it into the classical feedback form, the sub-
traction point leading to d̃(s) is moved to the input of the controller GC(s) resulting
in the block diagram shown in Fig. 3.2.
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Controller Plant
)(sr )(su )( sy





)(̂sd

)(sd






)(sK

)(sGC
)(sGP

Plant Model 

)(
~

sGP

Figure 3.2: Block diagram of the internal model control (IMC) principle (classical
feedback rearrangement) [1].

The equivalent standard feedback form of the IMC controller K(s) is [1]:

K(s) =
GC(s)

1 − GC(s)G̃P(s)
, (3.1)

where G̃P(s) is the plant model and GC(s) is the inner controller. Ideally, GC(s) is
chosen as the inverse of the plant model (GC(s) = G̃P(s)−1). To make GC(s) proper, it
is combined with a low-pass filter GLPF(s) of order n:

GC(s) = G̃P(s)−1GLPF(s) = G̃P(s)−1 1
(λs + 1)n , (3.2)

where λ is the tuning parameter.
The overall IMC-based controller K(s) in Equation 3.1 then yields:

K(s) =
G̃P(s)−1

(λs + 1)n − 1
. (3.3)

3.3 IMC Benefits

Reference [1] proposed a novel current controller for a voltage source converter based
on internal model control. The authors ascertained that the IMC control approach,
implemented in the dq reference frame, has superior control performance compared
with conventional PI-based current control methods in the dq reference frame:

1. Faster step response;

2. Less overshoot in the transient response;
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Chapter 3 Internal Model Control (IMC)

3. Higher axes decoupling; and

4. More robustness against faults.

Characteristics 1–3 are further investigated and elaborated in Part II and Part III of
this thesis.
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Part II

Small-Signal Stability Analysis of an
Inverter-Based Microgrid with

Internal Model–Based Controllers
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The findings of Part II of this thesis have been submitted to IEEE Transactions on
Power Systems as Leitner et al. [4].
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Chapter 4

Introduction Part II

Due to an increase in environmental awareness in recent years, cut-backs on the use of
fossil fuels and developments in the alternative energy sector have been accelerated.
As a consequence, the electricity generation from renewable energy sources (RES),
i.e., wind turbines, hydroelectric plants, photovoltaics, micro turbines, and fuel cells
has increased significantly.

The integration of these mostly distributed generation (DG) units into the conven-
tional power grid faces several challenges. As opposed to large central generating
stations, control and management of a large number of small-scale DG units are
difficult to accomplish [28–30].

Microgrids can help integrate DG units effectively and in turn improve the power
grid’s reliability and sustainability [6]. Many DG units utilize power electronic
inverters, especially voltage source converters (VSC), to interface with the microgrid
[31, 32]. The key advantages of a power electronics–based interface are [33]:

• Improved power quality;

• Improved voltage regulation;

• Improved fault current coordination; and

• Reactive power (VAr) support.

On the downside, inverter-based microgrids are characterized by low inertia which
causes challenges in maintaining stability and mitigating oscillations.

The use of PI-based controllers in zero-level control [11] dominates the control
practice in inverter-based microgrids. PI-based controllers are extensively used and
studied in the literature [10, 11, 34–37]. However, improving stability and transient
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behavior of voltage and current is imperative for microgrids to allow more effective
utilization of the assets and prevent violation of the operational limits [38, 39].

Recently, [1–3] proposed a cascade internal model control (IMC)–based voltage
regulator consisting of an inner current controller and an outer voltage controller,
as shown in Fig. 5.2. The authors perform time-domain simulations for a single DG
unit and show that compared with PI-based controllers, the IMC-based approach
has superior transient performance and is more robust against system parameter un-
certainties. However, these studies are limited to a single DG unit and no systematic
stability analysis is performed. In fact, while small-signal models are widely used
in the literature, especially for PI-based controllers [10, 40], small-signal models for
IMC-based controllers have not been developed yet.

Part II of this thesis studies the small-signal stability and transient behavior of
a microgrid which incorporates IMC-based current and voltage controllers, giving
an insight into the characteristic behavior of IMC controllers. As the first step, the
state-space models of the current and voltage controllers are developed. Then, the
state-space model of a microgrid incorporating IMC-based controllers is developed
following the procedure presented in [10]. Using this state-space model, a detailed
small-signal stability analysis is performed for a study microgrid system with three
DG units. The results are compared with those of the same microgrid but with
cascade PI-based controllers utilized in [10]. Moreover, PSCAD simulation case
studies on transient behavior of the microgrid are performed for both methods to
confirm the results of small-signal analysis. This study shows that compared with
PI-based controllers, the characteristic behavior of IMC-based controllers includes:

• Increased damping ratios and frequencies of sensitive eigenvalues;

• Higher robustness to parameter changes; and

• Faster step response and reduced over/undershoot in current and voltage tran-
sients.

These advantages agree with the transient behavior of a single DG unit obtained
from time-domain simulation case studies in [2].

The rest of Part II is organized as follows. The small-signal analysis is performed
in Chapter 5, where the state-space small-signal models of the IMC-based voltage
and current controllers are derived and incorporated into the model of a generic
microgrid, and eigenvalue and sensitivity analysis are conducted. Finally, Chapter 6
recapitulates Part II and draws conclusions.
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Chapter 5

Small-Signal Stability and Sensitivity
Analysis of Internal Model Control

The following sections deal with the state-space modeling of a microgrid and its
analysis. The voltage and current controllers of DG units are discussed, modeled,
and tuned in detail. The state-space model of a generic microgrid with all its com-
ponents is developed. The model is then used to perform eigenvalue and sensitivity
analysis. The results are backed up by time-domain simulation case studies.

5.1 Control Structure of a DG Unit

Generally, the voltage source converter (VSC) of a DG unit is connected to the
microgrid via a filter (e.g., RLC filter) in order to mitigate current and voltage
harmonics and thereby improving the quality of the injected power, see Fig. 5.1.
The zero-level control of the VSC usually comprises an inner current control loop
and an outer voltage control loop [41, 42].

When the microgrid is in the islanded operating mode, the current controller
regulates the injected current through the filter inductor, while the voltage controller
regulates the DG unit output voltage (capacitor voltage). Hence, as can be seen in
Fig. 5.1, the control of the DG unit is based on local measurements.

Although there exist different control approaches, PI-based voltage and current
controllers dominate this application [10, 11, 34–37]. Assuming a balanced system
with sinusoidal voltage and current waveforms, a rotating reference frame (RRF) is
usually used to regulate the DG unit quantities in the direct and quadrature axes (d
and q axes). As pointed out in Section 2.1, utilizing a RRF, independent control of
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Figure 5.1: DG unit block diagram including controllers, VSC, filter, and grid con-
nection.

grid-injected real and reactive power is facilitated.

As can be seen in Figs. 5.1, 5.2, and 5.3, depending on the DG unit output power to
be delivered, the power controller provides the reference set-points (v∗od and v∗oq) for
the outer voltage controller which in turn delivers the reference set-points (i∗ld and
i∗lq) for the inner current controller. The output of the current controller (vid and viq)
then determines the gating signals of the VSC. In Part II of this thesis, for the sake of
simplicity, the VSC is approximated with controlled voltage sources.

5.2 IMC-based Current and Voltage Controllers

Reference [2] recently proposed a novel cascade current and voltage control structure
based on the internal model principle in the rotating dq reference frame shown in
Fig. 5.2. The transfer functions of the outer voltage control loop Kv(s) and K′v(s) are
PD and PI controllers and the transfer functions of the inner current control loop
Kc(s) and K′c(s) are PID and PI controllers. The tuning of the IMC-based voltage and
current controllers is shown in Section 5.3.

In the following subsections, the state-space small-signal models for the IMC-
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Figure 5.2: Block diagram of the IMC-based cascade voltage and current controllers
of a VSC in the rotating dq reference frame [2].

based voltage and current controllers illustrated in Fig. 5.2 are derived. Generally,
the integrator outputs are selected as state variables, which in turn makes their
inputs derivatives of the state variables. Hence, the state equations of the inner
current control loop, in direct and quadrature axes, are

dγd

dt
= i∗ld − ild (5.1)

dγq

dt
= i∗lq − ilq, (5.2)

and those of the outer voltage control loop are

dφd

dt
= v∗od − vod (5.3)

dφq

dt
= v∗oq − voq, (5.4)

where γd, γq, φd, and φq are the respective state variables. For brevity, time functions
are stated without (t). The definition of all voltages and currents are based on
Fig. 5.1. Subscripts d and q represent direct and quadrature axes, respectively, and
∗ refers to the reference value of a variable. Throughout Part II of this thesis, d-
and q-components of the input vectors, output vectors, and state variables of the
state-space small-signal models are aggregated as ∆zdq = [∆zd ∆zq]T.
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5.2.1 IMC-Based Current Controller

This subsection derives the small-signal model of the inner current control loop
shown in Fig. 5.2. In [2], the transfer functions Kc(s) and K′c(s) are PID and PI con-
trollers, respectively, with the tuning parameters KPc, KIc, KDc, K′Pc, and K′Ic. However,
since a state-space representation requires proper transfer functions, the derivative
terms of controllers are neglected, which is justifiable in this study as KPc and KIc are
four and six orders of magnitude greater than KDc, see Section 5.3. From Fig. 5.2, the
output equations of the inner current control loop are

vid(s) = vod(s) +
[
KPc +

KIc

s

]
︸       ︷︷       ︸

Kc(s)

[
i∗ld(s) − ild(s)

]
−

[
K′Pc +

K′Ic
s

]
︸       ︷︷       ︸

K′c(s)

[
i∗lq(s) − ilq(s)

]
(5.5)

viq(s) = voq(s) +
[
KPc +

KIc

s

]
︸       ︷︷       ︸

Kc(s)

[
i∗lq(s) − ilq(s)

]
+

[
K′Pc +

K′Ic
s

]
︸       ︷︷       ︸

K′c(s)

[
i∗ld(s) − ild(s)

]
. (5.6)

Applying inverse Laplace transform to Equations 5.5 and 5.6 and taking Equa-
tions 5.1 and 5.2 into account yields

vid = vod + KPci∗ld − KPcild + KIcγd − K′Pci
∗

iq + K′Pcilq − K′Icγq (5.7)

viq = voq + KPci∗lq − KPcilq + KIcγq + K′Pci
∗

ld − K′Pcild + K′Icγd. (5.8)

By linearizing and combining Equations 5.1, 5.2, 5.7, and 5.8, the small-signal model
of the inner current control loop in state-space form is obtained as

[
∆γ̇dq

]
=

0 0
0 0

︸︷︷︸
AI

[
∆γdq

]
+

1 0
0 1

︸︷︷︸
BI1

[
∆i∗ldq

]
+

−1 0 0 0 0 0
0 −1 0 0 0 0

︸                      ︷︷                      ︸
BI2


∆ildq

∆vodq

∆iodq

 (5.9)

[
∆vidq

]
=

KIc −K′Ic
K′Ic KIc

︸       ︷︷       ︸
CI

[
∆γdq

]
+

KPc −K′Pc

K′Pc KPc

︸        ︷︷        ︸
DI1

[
∆i∗ldq

]
+

−KPc K′Pc 1 0 0 0
−K′Pc −KPc 0 1 0 0

︸                           ︷︷                           ︸
DI2


∆ildq

∆vodq

∆iodq

 .
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(5.10)

The calculation of the control parameters KPc, KIc, K′Pc, and K′Ic is presented in Sec-
tion 5.3. The values are also listed in Table 5.1.

Finally, Equations 5.11 and 5.12 represent the linearized small-signal state-space
model of the IMC-based current controller as a linear time-invariant (LTI) system:

∆γ̇d

∆γ̇q

︸︷︷︸
˙XI(t)

= AI

∆γd

∆γq

︸︷︷︸
XI(t)

+BI1

∆i∗ld
∆i∗lq

︸︷︷︸
UI1(t)

+BI2



∆ild

∆ilq

∆vod

∆voq

∆iod

∆ioq

︸︷︷︸
UI2(t)

(5.11)

∆vid

∆viq

︸︷︷︸
YI(t)

= CI

∆γd

∆γq

︸︷︷︸
XI(t)

+DI1

∆i∗ld
∆i∗lq

︸︷︷︸
UI1(t)

+DI2



∆ild

∆ilq

∆vod

∆voq

∆iod

∆ioq

︸︷︷︸
UI2(t)

, (5.12)

where the vector XI(t) represents the states, vectors UI1(t) and UI2(t) represent the
input quantities, and vector YI(t) represents the output quantities of the current
controller.

5.2.2 IMC-Based Voltage Controller

This subsection derives the small-signal model of the outer voltage control loop
depicted in Fig. 5.2. In [2], the transfer functions Kv(s) and K′v(s) are PD and PI
controllers, respectively, with the tuning parameters KPv, KDv, K′Pv, and K′Iv. The
derivative terms are omitted since a state-space representation needs proper transfer
functions, which is justifiable in this study because KDv is 500 times smaller than KPv,
see Section 5.3. The output equations of the outer voltage control loop can be derived
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from Fig. 5.2 as follows:

i∗ld(s) = iod(s) + KPv︸︷︷︸
Kv(s)

[
v∗od(s) − vod(s)

]
−

[
K′Pv +

K′Iv
s

]
︸       ︷︷       ︸

K′v(s)

[
v∗oq(s) − voq(s)

]
(5.13)

i∗lq(s) = ioq(s) + KPv︸︷︷︸
Kv(s)

[
v∗oq(s) − voq(s)

]
+

[
K′Pv +

K′Iv
s

]
︸       ︷︷       ︸

K′v(s)

[
v∗od(s) − vod(s)

]
. (5.14)

Applying inverse Laplace transform to Equations 5.13 and 5.14, and taking Equa-
tions 5.3 and 5.4 into account, the following algebraic equations for the outer voltage
control loop can be derived:

i∗ld = iod + KPvv∗od − KPvvod − K′Pvv∗oq + K′Pvvoq − K′Ivφq (5.15)

i∗lq = ioq + KPvv∗oq − KPvvoq + K′Pvv∗od − K′Pvvod + K′Ivφd. (5.16)

By linearizing and combining Equations 5.3, 5.4, 5.15, and 5.16, the small-signal
model of the outer voltage control loop in state-space form can be written as follows:

[
∆φ̇dq

]
=

0 0
0 0

︸︷︷︸
AV

[
∆φdq

]
+

1 0
0 1

︸︷︷︸
BV1

[
∆v∗odq

]
+

0 0 −1 0 0 0
0 0 0 −1 0 0

︸                      ︷︷                      ︸
BV2


∆ildq

∆vodq

∆iodq

 (5.17)

[
∆i∗ldq

]
=

 0 −K′Iv
K′Iv 0

︸       ︷︷       ︸
CV

[
∆φdq

]
+

KPv −K′Pv

K′Pv KPv

︸        ︷︷        ︸
DV1

[
∆v∗odq

]
+

0 0 −KPv K′Pv 1 0
0 0 −K′Pv −KPv 0 1

︸                            ︷︷                            ︸
DV2


∆ildq

∆vodq

∆iodq

 .
(5.18)

The calculation of the control parameters KPv, K′Pv, and K′Iv is presented in Section 5.3.
The values are also listed in Table 5.1.
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Finally, Equations 5.19 and 5.20 represent the linearized small-signal state-space
model of the IMC-based outer voltage controller as a linear time-invariant (LTI)
system:

∆φ̇d

∆φ̇q

︸︷︷︸
˙XV(t)

= AV

∆φd

∆φq

︸︷︷︸
XV(t)

+BV1

∆v∗od

∆v∗oq

︸︷︷︸
UV1(t)

+BV2



∆ild

∆ilq

∆vod

∆voq

∆iod

∆ioq

︸︷︷︸
UV2(t)

(5.19)

∆i∗ld
∆i∗lq

︸︷︷︸
YV(t)

= CV

∆φd

∆φq

︸︷︷︸
XV(t)

+DV1

∆v∗od

∆v∗oq

︸︷︷︸
UV1(t)

+DV2



∆ild

∆ilq

∆vod

∆voq

∆iod

∆ioq

︸︷︷︸
UV2(t)

, (5.20)

where the vector XV(t) represents the states, vectors UV1(t) and UV2(t) represent the
input quantities, and vector YV(t) represents the output quantities of the voltage
controller.

5.3 Tuning the Control Parameters

In this section, the control parameters of the IMC-based inner current and outer
voltage controllers are determined based on [1, 3].

5.3.1 Inner Current Controller

The transfer functions of the IMC-based inner current controller in Fig. 5.2 utilizing
PID and PI controllers are:

Kc(s) =
kds2 + kps + ki

s
(5.21)
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K′c(s) =
k′ps + k′i

s
. (5.22)

The control parameters of the current controller are calculated based on the used RL
filter of the DG unit and are tuned with the only tuning parameter λc. The VSC is
modeled as a time delay (digitalization and PWM transport delay) which is assumed
as TPWM = 1/(2 fsw) = 1/(2 × 8000Hz) = 6.25 × 10−5 s. With a tuning parameter of
λc = 10−5, the control parameters of the current controller result in:

kp = KPc =
R f TPWM+L f

λc
= 0.1Ω×6.25×10−5s+1.35mH

10−5 = 135.625

ki = KIc =
R f +TPWML fω

2

λc
= 0.1Ω+6.25×10−5s×1.35mH×(2π50Hz)2

10−5 = 9.1673 × 103

kd = KDc =
TPWML f

λc
= 6.25×10−5s×1.35mH

10−5 = 0.0084

(5.23)

and k′p = K′Pc =
2ωL f TPWM

λc
= 2×2π50Hz×1.35mH×6.25×10−5s

10−5 = 5.3014

k′i = K′Ic =
2(L f +R f TPWM)

λc
= 2(1.35mH+0.1Ω×6.25×10−5s)

10−5 = 4.2608 × 104.
(5.24)

The control parameters of the IMC-based current controller are also listed in Table 5.1.

5.3.2 Outer Voltage Controller

The transfer functions of the IMC-based outer voltage controller in Fig. 5.2 utilizing
PD and PI controllers are:

Kv(s) =
kds2 + kps

s
(5.25)

K′v(s) =
k′ps + k′i

s
. (5.26)

The control parameters of the voltage controller are calculated based on the used
C filter of the DG unit and are tuned with the only tuning parameter λv. Since the
outer voltage controller delivers the set points for the inner current controller, the
time delay of the current control loop (including VSC delay) needs to be taken into
account and is assumed as Tc = 2 ms. With a tuning parameter of λv = 2 × 10−4, the
control parameters of the current controller result in:kp = KPv =

C f

λv
=

50µF
2×10−4 = 0.25

kd = KDv =
C f Tc

λv
=

50µF×2ms
2×10−4 = 5 × 10−4

(5.27)
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and k′p = K′Pv =
C fωTc

λv
=

50µF×2π50Hz×2ms
2×10−4 = 0.1571

k′i = K′Iv =
2C fω

λv
=

2×50µF×2π50Hz
2×10−4 = 78.5398.

(5.28)

The control parameters of the IMC-based voltage controller are also listed in Table 5.1.

5.4 Conventional PI-based Current and Voltage

Controllers

Fig. 5.3 shows the control structure of the conventional PI-based cascade current and
voltage controllers, where Kc(s) and Kv(s) are PI-based current and voltage controllers
in the d and q axes and ωC and ωL are the cross-coupling terms aiming to improve
the transient behavior.
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Figure 5.3: Block diagram of the conventional PI-based cascade voltage and current
controllers of a VSC in the rotating dq reference frame [3].

Using the procedure from Subsection 5.2.1, the state-space small-signal model of
the conventional PI-based inner current control loop in Fig. 5.3 can be derived as [10]:

[
∆γ̇dq

]
=

0 0
0 0

︸︷︷︸
AC

[
∆γdq

]
+

1 0
0 1

︸︷︷︸
BC1

[
∆i∗ldq

]
+

−1 0 0 0 0 0
0 −1 0 0 0 0

︸                      ︷︷                      ︸
BC2


∆ildq

∆vodq

∆iodq

 (5.29)
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[
∆vidq

]
=

KIc 0
0 KIc

︸     ︷︷     ︸
CC

[
∆γdq

]
+

KPc 0
0 KPc

︸      ︷︷      ︸
DC1

[
∆i∗ldq

]
+

−KPc −ωnL f 0 0 0 0
ωnL f −KPc 0 0 0 0

︸                              ︷︷                              ︸
DC2


∆ildq

∆vodq

∆iodq

 .
(5.30)

Similarly, using the procedure from Subsection 5.2.2, the state-space small-signal
model of the PI-based outer voltage control loop can be derived as [10]:

[
∆φ̇dq

]
=

0 0
0 0

︸︷︷︸
AV

[
∆φdq

]
+

1 0
0 1

︸︷︷︸
BV1

[
∆v∗odq

]
+

0 0 −1 0 0 0
0 0 0 −1 0 0

︸                      ︷︷                      ︸
BV2


∆ildq

∆vodq

∆iodq

 (5.31)

[
∆i∗ldq

]
=

KIv 0
0 KIv

︸     ︷︷     ︸
CV

[
∆φdq

]
+

KPv 0
0 KPv

︸      ︷︷      ︸
DV1

[
∆v∗odq

]
+

0 0 −KPv −ωnC f F 0
0 0 ωnC f −KPv 0 F

︸                               ︷︷                               ︸
DV2


∆ildq

∆vodq

∆iodq

 .
(5.32)

The control parameters used in this paper for the conventional PI-based method
(KPc, KIc, KPv, and KIv) are the same as those reported in [10].

5.5 State-Space Model of a Generic Microgrid

This section discusses the small-signal model of a microgrid study system that in-
cludes power controllers, filters, inverters, lines, and loads based on [10]. It is shown
how the previously derived IMC-based current and voltage controllers are combined
with the submodels of the power controllers, filters, inverters, lines, and loads to
form the linearized system matrix AMG. The notation diag() is used to show the
nonzero elements of a diagonal matrix.

5.5.1 Power Controller Model

This subsection focuses on the power controller block in Fig. 5.1. In this study, power
controllers utilizing conventional droop control (see Fig. 5.4) are employed to share

30



5.5 State-Space Model of a Generic Microgrid

real and reactive power between inverters in the microgrid shown in Fig. 5.5.
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Figure 5.4: Block diagram of the power controller [4].

As derived in Section 2.1, the instantaneous power s̃ in the dq-frame can be calcu-
lated as follows:

s̃ = (vdid + vqiq)︸       ︷︷       ︸
p̃

+ j (vqid − vdiq)︸       ︷︷       ︸
q̃

, (5.33)

where p̃, and q̃ are the instantaneous real and reactive power components of the
instantaneous power s̃; and vd, vq, id, and iq are the dq-components of the output
voltage and current of the DG unit (vo and io in Fig. 5.1).

The instantaneous real and reactive power components are then passed through
a low-pass filter (LPF) with the cut-off frequency ωc to yield the average real and
reactive power values P and Q which are in turn used in the droop equations.

As can be seen in Fig. 5.4, in conventional droop control, an increase in the real
output power artificially reduces the reference value of the inverter frequency ω∗.
Similarly, an increase in the reactive output power reduces the reference output
voltage v∗od of the inverter while v∗oq is set to zero. The equations of the conventional
droop control are:

ω∗ = ωn −mpP (5.34)

v∗od = vodn − nqQ, (5.35)

where ωn and vodn are the nominal values of the inverter angular frequency and the
output voltage d-component. The coefficients mp and nq are the real and reactive
power droop gains which depend on the DG unit capacity (Pmax, Qmin, Qmax) and
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grid code (fmin, Vmax, Vmin) [43]. With Equation 5.34, the inverter angle in the
rotating dq reference frame can be determined as

δ =

∫
(ω∗ − ωcom)dt, (5.36)

where ωcom represents the angular speed of the reference inverter (side note: the
angle of the reference inverter is 0 as ω∗ = ωcom in that case).

Deriving Equation 5.36 with respect to time yields the linearized state equation of
the respective inverter angle:

∆̇δ = −mp∆P − ∆ωcom. (5.37)

Similarly, taking the power calculation in Equation 5.33 into account and apply-
ing the procedure presented in Section 2.2 to Equations 5.34 and 5.35 yields with
Equation 5.37 the small-signal state-space model of the power controller utilizing
conventional droop control:

∆̇δ

∆̇P
˙∆Q

 =


0 −mp 0
0 −ωc 0
0 0 −ωc

︸             ︷︷             ︸
AP


∆δ

∆P
∆Q

 +


−1
0
0

︸︷︷︸
BPωcom

∆ωcom

+


0 0 0 0 0 0
0 0 ωcIod ωcIoq ωcVod ωcVoq

0 0 −ωcIoq ωcIod ωcVoq −ωcVod

︸                                            ︷︷                                            ︸
BP


∆ildq

∆vodq

∆iodq


(5.38)


∆ω∗

∆v∗od

∆v∗oq

 =


0 −mp 0
0 0 −nq

0 0 0

︸               ︷︷               ︸
CP


∆δ

∆P
∆Q

 (5.39)

CP =

 [CPω]1×3

[CPv]2×3


3×3

. (5.40)

The quantities Iod, Ioq, Vod, and Voq are steady state values taken from [10] and
represent the operating state in whose neighborhood the linearization takes place.
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5.5.2 Filter and Grid Connection Model

Due to switching, output currents and voltages of power electronic converters (e.g.,
VSCs) are significantly distorted and contain harmonics. In this study, a low-pass
filter plus grid coupling inductor provide a remedy (see Fig. 5.1). The linearized
small-signal state-space model of the output LC filter and grid coupling inductance
Lc (including equivalent series resistors R f and Rc) is as follows [10]:

˙∆ildq

˙∆vodq

˙∆iodq

 = ALCL


∆ildq

∆vodq

∆iodq

 + BLCL1[∆vidq] + BLCL2[∆vbdq] + BLCL3[∆ω], (5.41)

where

ALCL =



−R f

L f
ω0

−1
L f

0 0 0

−ω0
−R f

L f
0 −1

L f
0 0

1
C f

0 0 ω0
−1
C f

0

0 1
C f
−ω0 0 0 −1

C f

0 0 1
Lc

0 −Rc
Lc

ω0

0 0 0 1
Lc
−ω0

−Rc
Lc


(5.42)

BLCL1 =



1
L f

0

0 1
L f

0 0
0 0
0 0
0 0


(5.43)

BLCL2 =



0 0
0 0
0 0
0 0
−1
Lc

0
0 −1

Lc


(5.44)

BLCL3 =
[
Ilq −Ild Voq −Vod Ioq −Iod

]T
. (5.45)

The quantities are defined in Fig. 5.1 and the system parameters in the above matrices
are listed in Table 5.1.
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5.5.3 Transformation of Inverter Parameters

In this study, a rotating reference frame (RRF) is utilized to describe the voltages
and currents in the microgrid. Generally, one of the inverters is chosen to be the
reference inverter while the lines, loads, and other inverters are translated into the
so called common reference frame. TSi is used to transform the dq-components of
inverter i into the DQ reference frame [44], rotating at a speed of ωcom:

[ fDGi] =

cos(δi) −sin(δi)
sin(δi) cos(δi)

︸                 ︷︷                 ︸
TSi

[ fdqi], (5.46)

where δi is the angle of inverter i.
The output variable of the inverter i is its output current, which can be transformed

into the RRF, resulting in the output current [∆ioDQi], as

[∆ioDQi] = TSi[∆iodqi] + TCi[∆δi], (5.47)

where

TSi =

cos(δ0i) − sin(δ0i)
sin(δ0i) cos(δ0i)


2×2

, (5.48)

TCi =

−Iodi sin(δ0i) − Ioqi cos(δ0i)
Iodi cos(δ0i) − Ioqi sin(δ0i)


2×1

, (5.49)

and δ0i is the steady state inverter angle (initial condition displacement).
The input variable of the inverter i is the bus voltage [∆vbdqi], which can be obtained

from the bus voltages in the RRF [∆vbDQi] as follows:

[∆vbdqi] = T−1
Si [∆vbDQi] + T−1

Vi [∆δi], (5.50)

where

T−1
Vi =

−VbDi sin(δ0i) + VbQi cos(δ0i)
−VbDi cos(δ0i) − VbQi sin(δ0i)


2×1

. (5.51)

5.5.4 Complete Model of Inverter i

In this subsection, the small-signal models of the derived current and voltage con-
trollers, along with the power controller, filter, and grid coupling inductor combine
to form the complete model of inverter i (model of the DG unit shown in Fig. 5.1):

[ ˙∆xINVi] = AINVi[∆xINVi] + BINVi[∆vbDQi] + Biωcom∆ωcom (5.52)
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 ∆ωi

∆ioDQi

 =

CINVωi

CINVci

 [∆xINVi], (5.53)

where

[∆xINVi] = [∆δi ∆Pi ∆Qi ∆ϕdqi ∆γdqi ∆ildqi ∆vodqi ∆iodqi]T (5.54)

BINVi =

 [0]7×2

BLCL2iT−1
Si


13×2

(5.55)

Biωcom =

 BPωcom

[0]10×1


13×1

(5.56)

CINVωi =

[CPω 0 . . . 0]1×13 i = 1

[0]1×13 i , 1
(5.57)

CINVci =
[
TCi [0]2×10 TSi

]
2×13

(5.58)

AINVi =



APi [0]3×2 [0]3×2 BPi

BV1iCPvi [0]2×2 [0]2×2 BV2i

BV1iDV1iCPvi BC1iCVi [0]2×2 BC1iDV2i + BC2i

BLCL1iDC1iDV1iCPvi

+BLCL2i

[
T−1

Vi [0]2×2

]
+BLCL3iCPωi

BLCL1iDC1iCVi BLCL1iCCi
ALCLi

+BLCL1i[DC1iDV2i + DC2i]


13×13

. (5.59)

5.5.5 Complete Model of all Inverters in the Microgrid

Using the previously derived small-signal model of inverter i, this subsection shows
how these individual inverter models can be combined to form the generic small-
signal model of k inverters in a microgrid with m nodes:

[ ˙∆xINV] = AINV[∆xINV] + BINV[∆vbDQ] (5.60)

[ ˙∆ioDQ] = CINVc[∆xINV], (5.61)
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where

[∆xINV] = [∆xINV1 ∆xINV2 ... ∆xINVk]T
2k×1 (5.62)

[∆vbDG] = [∆vbDG1 ∆vbDG2 ... ∆vbDGn]T
2k×1 (5.63)

BINV = diag([BINV1,BINV2, . . . ,BINVk])13k×2m (5.64)

CINVc = diag([CINVc1,CINVc2, . . . ,CINVck])2k×13k (5.65)

AINV =



AINV1 + B1ωcomCINVω1 [0]13×13 [0]13×13 . . . [0]13×13

Xmp AINV2 + B2ωcomCINVω2 [0]13×13 . . . [0]13×13

Xmp [0]13×13
. . .

. . .
...

...
...

. . .
. . . [0]13×13

Xmp [0]13×13 . . . [0]13×13 AINVk + BkωcomCINVωk


13k×13k

(5.66)

Xmp =


0 mp 0 . . . 0
0 0 0 . . . 0
...

...
...
. . .

...

0 0 0 . . . 0


13×13

, (5.67)

where inverter 1 (entry AINV(1, 1)) is chosen to be the common reference frame. The
mp entry in Equation 5.67 influences the angles of the remaining inverters in the RRF
and accounts for rotational speed changes of the reference inverter (inverter 1).

The studied microgrid has three DG units (see Fig. 5.5). Applying the derived
generic small-signal inverter model to the study microgrid system having three
inverters, the matrices BINV, CINVc, and AINV in Equation 5.60 and 5.61 reduce to:

BINV =


BINV1 [0]13×2 [0]13×2

[0]13×2 BINV2 [0]13×2

[0]13×2 [0]13×2 BINV3


39×6

(5.68)
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CINVc =


CINVc1 [0]13×2 [0]13×2

[0]13×2 CINVc2 [0]13×2

[0]13×2 [0]13×2 CINVc3


6×39

(5.69)

AINV =

AINV1 + B1ωcomCINVω1 [0]13×13 [0]13×13

Xmp AINV2 + B2ωcomCINVω2 [0]13×13

Xmp [0]13×13 AINVk + BkωcomCINVωk


39×39

. (5.70)

5.5.6 Line and Load Models

This subsection presents the generic state-space small-signal models of n lines and
p loads of the study microgrid; both of which are modeled with lumped RL circuits,
see Fig. 5.5. The generic small-signal state-space model of the lines of the microgrid
(network) reads [10]

[ ˙∆iLineDQ] = ANET[∆iLineDQ] + B1NET[∆vbDQ] + B2NET∆ωcom, (5.71)

where

ANET = diag([ANET1,ANET1, . . . ,ANETn])2n×2n (5.72)

ANETi =

−RLINEi
LLINEi

ω0

−ω0
−RLINEi
LLINEi

 (5.73)

B1NET = [B1NET1 B1NET2 . . .B1NETn]T
2n×2m (5.74)

B1NETi =

. . . 1
LLINEi

0 . . . −1
LLINEi

0 . . .

. . . 0 1
LLINEi

. . . 0 −1
LLINEi

. . .


2×2m

(5.75)

B2NET = [B2NET1 B2NET2 . . .B2NETn]T
2n×1 (5.76)

B2NETi = [ILineQi − ILineDi]T
1×2 (5.77)
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Applying these small-signal models to the two lines (line 1 and line 2) of the study
microgrid system shown in Fig. 5.5 yields:

ANET =




−RLINE1
LLINE1

ω0

−ω0
−RLINE1
LLINE1

 [0]2×2

[0]2×2


−RLINE2
LLINE2

ω0

−ω0
−RLINE2
LLINE2




4×4

(5.78)

B1NET =


1

LLINE1
0 −1

LLINE1
0 0 0

0 1
LLINE1

0 −1
LLINE1

0 0

0 0 1
LLINE2

0 −1
LLINE2

0

0 0 0 1
LLINE2

0 −1
LLINE2


4×6

(5.79)

B2NET =


ILineQ1

−ILineD1

ILineQ2

−ILineD2


4×1

. (5.80)

Similar to Equation 5.71, the generic small-signal state-space model of the loads is

[ ˙∆iLoadDQ] = ALOAD[∆iLoadDQ] + B1LOAD[∆vbDQ] + B2LOAD∆ωcom, (5.81)

where

ALOAD = diag(
[
ALOAD1,ALOAD2, . . . ,ALOADp

]
)2p×2p (5.82)

ALOADi =

−RLOADi
LLOADi

ω0

−ω0
−RLOADi
LLOADi

 (5.83)

B1LOAD =
[
B1LOAD1 B1LOAD2 . . .B1LOADp

]T

2p×2m
(5.84)
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B1LOADi =

. . . 1
LLOADi

0 . . .

. . . 0 1
LLOADi

. . .


2×2m

(5.85)

B2LOAD =
[
B2LOAD1 B2LOAD2 . . . B2LOADp

]T

2p×1
(5.86)

B2LOADi =
[
ILoadQi − ILoadDi

]T

1×2
. (5.87)

Applying these small-signal models to the two loads (load 1 and load 3) of study
microgrid system shown in Fig. 5.5 yields:

ALOAD =




−RLOAD1
LLOAD1

ω0

−ω0
−RLOAD1
LLOAD1

 [0]2×2 [0]2×2

[0]2×2 [0]2×2 [0]2×2

[0]2×2 [0]2×2


−RLOAD3
LLOAD3

ω0

−ω0
−RLOAD3
LLOAD3




6×6

(5.88)

B1LOAD =



1
LLOAD1

0 0 0 0 0

0 1
LLOAD1

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1

LLOAD3
0

0 0 0 0 0 1
LLOAD3


6×6

(5.89)

B2LOAD =



ILoadQ1

−ILoadD1

0
0

ILoadQ3

−ILoadD3


6×1

. (5.90)
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5.5.7 Complete Microgrid Model

The small-signal model of the node voltages in the microgrid can be written as [10]

[∆vbDQ] = RN(MINV[∆ioDQ] + MLOAD[∆iLoadDQ] + MNET[∆iLineDQ]), (5.91)

where RN = rN · [I]2m×2m, the mapping matrix MINV = [I]2m×2s which maps the inverter
connection points onto the network nodes. [I] is the identity matrix and rN is a large
virtual resistor (rN = 1000 Ω) introduced that all voltages in the system are well
defined. MLOAD2m×2p maps load connection points onto the network nodes with −1,
and MNET2m×2n maps the connecting lines onto the network nodes with ±1, whether
the current enters or exits the node.

Applying these small-signal models to the study microgrid system in Fig. 5.5
results in:

RN =



rN 0 0 0 0 0
0 rN 0 0 0 0
0 0 rN 0 0 0
0 0 0 rN 0 0
0 0 0 0 rN 0
0 0 0 0 0 rN


6×6

(5.92)

MINV =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


6×6

(5.93)

MLOAD =



−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


6×6

(5.94)
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MNET =



−1 0 0 0
0 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1


6×6

. (5.95)

5.5.8 System Matrix

Finally, in this subsection, the previously derived small-signal state-space submodels
that make up the microgrid (inverters, filters, lines, and loads) are combined to form
the system matrix AMG.

˙∆xINV

˙∆iLineDQ

˙∆iLoadDQ

 = AMG


∆xINV

∆iLineDQ

∆iLoadDQ

 (5.96)

AMG =

 AINV + BINVRNMINVCINVc BINVRNMNET BINVRNMLOAD

B1NETRNMINVCINVc + B2NETCINVω ANET + B1NETRNMNET B1NETRNMLOAD

B1LOADRNMINVCINVc + B2LOADCINVω B1LOADRNMNET ALOAD + B1LOADRNMLOAD


49×49

(5.97)

This matrix is used for the eigenvalue and sensitivity analysis presented in Sec-
tion 5.6, where the eigenvalue locations of the system are studied and their move-
ment subsequent to system parameter changes is investigated.

5.6 Eigenvalue and Sensitivity Analysis of the Study

Microgrid

In this section, the location and behavior of the eigenvalues of a study microgrid
subsequent to changes in power controller parameters are investigated. Further-
more, the sensitivity of different modes to state variables is studied by calculating
participation factors.

Fig. 5.5 shows the study microgrid; it operates in the islanded mode, supplies two
loads, and includes three DG units connected by two lines.
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Figure 5.5: Study microgrid system.

Initial conditions, filter, line and controller parameters are selected to be the same
as in [10] to facilitate the comparison. Table 5.1 shows the parameters of the study
microgrid.

Table 5.1: Study System Parameters Part II

Parameter Value Parameter Value Parameter Value

f 50 Hz λc 10−5 K′Iv 78.5398

L f 1.35 mH λv 2 × 10−4 RLOAD1 25 Ω

R f 0.1 Ω Tc 2 ms RLOAD3 20 Ω

C f 50 µF KPc 135.625 RLINE1 0.23 Ω

Lc 0.35 mH KIc 9.1673 × 103 RLINE2 0.35 Ω

Rc 0.03 Ω K′Pc 5.3014 LLOAD1 10 nH

ωc 31.41 rad/s K′Ic 4.2608 × 104 LLOAD3 10 nH

mp 9.4 × 10−5 KPv 0.25 LLINE1 318.31 µH

nq 1.3 × 10−3 K′Pv 0.1571 LLINE2 1.8 mH
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5.6.1 Locus of Eigenvalues

The MATLAB function eig() is employed to calculate the eigenvalues of the system
matrix AMG and its corresponding right and left eigenvectors. Fig. 5.6 shows the
locus of eigenvalues of the complete model of the study microgrid using both IMC
and conventional PI-based controllers.
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Figure 5.6: IMC vs. conventional method: Locus of eigenvalues of the study micro-
grid grouped into clusters (Fig. 5.7 shows a zoom of the clusters 1–3 and
A–B for −6000 ≤ Re{λ} ≤ 1000).
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Fig. 5.7 shows a zoom of the clusters 1–3 and A–B for −6000 ≤ Re{λ} ≤ 1000.
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Figure 5.7: IMC vs. conventional method: Locus of eigenvalues of the study micro-
grid grouped into clusters (zoom of Fig. 5.6).

The complete system has eigenvalue clusters A, B, and C with IMC controllers,
and eigenvalue clusters 1, 2, and 3 with PI controllers. Similar to the conventional PI-
based approach, the IMC eigenvalues form a low-frequency cluster near the origin
(cluster A in Figs. 5.6 and 5.7). However, it can be seen that the IMC clusters B and
C have significantly improved damping ratios compared with clusters 2 and 3 of the
conventional method. Cluster A, on the other hand, features more low-frequency
eigenvalues than cluster 1 and is therefore studied in Subsections 5.6.2 and 5.6.3 in
more detail (see Figs. 5.8 and 5.9).

44



5.6 Eigenvalue and Sensitivity Analysis of the Study Microgrid

The participation factor relating the kth state variable to the ith eigenvalue, in a
system with a total of n eigenvalues, is defined as

pki =
λi

akk
=

|vki||wki|∑n
k=1 |vki||wki|

, (5.98)

where λi is the ith eigenvalue, akk is a diagonal element of the system matrix, and
wki and vki are the kth elements of the left and right eigenvectors associated with
the ith eigenvalue [45]. The participation factors of the most critical modes λ1−2 and
λ1−3, where the subscripts indicate which inverters are affected the most, are listed
in Table 5.2.

Table 5.2: Sensitivity of Critical IMC Low-Frequency Dominant Modes

Sensitivity of λ1−2 Sensitivity of λ1−3

State Participation State Participation

P1 0.313 P1 0.236

Q1 0.109 Q1 0.091

P2 0.375 P2 0.148

Q2 0.106 P3 0.384

P3 0.066 Q3 0.116

The participation factors show that, similar to the conventional approach studied
in [10], low-frequency modes in cluster A are largely sensitive to the state variables
of the power controller. Cluster B contains high-frequency modes sensitive to power
controller state variables and output voltage ∆vodq, where the latter is a state variable
of the filter and indirectly influences the state variables of the voltage controller,
see Equations 5.3 and 5.4. High-frequency modes in cluster C are sensitive to state
variables of the filter and indirectly affect the state variables of the current controller,
see Equations 5.1 and 5.2.
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5.6.2 Eigenvalue Sensitivity to Real Power Droop Gain

This subsection studies the sensitivity of the eigenvalues to the real power droop gain
mp to evaluate and compare the robustness and stability of both methods. For this
purpose, the real power droop gain is varied between 1.57 × 10−5

≤ mp ≤ 3.14 × 10−4

and Fig. 5.8 shows the corresponding locus of low-frequency modes. The two critical
eigenvalues of the sensitivity analysis listed in Table 5.2 are marked.
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Figure 5.8: IMC vs. conventional method: Locus of low-frequency modes as a func-
tion of real power droop gain (for 1.57 × 10−5

≤ mp ≤ 3.14 × 10−4).

While the eigenvalues of the conventional control method deeply enter the right
half plane and therefore become unstable, IMC eigenvalues remain in the left half
plane and retain stability. Fig. 5.8 confirms that the IMC approach has superior
stability performance compared with the conventional approach.
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5.6 Eigenvalue and Sensitivity Analysis of the Study Microgrid

5.6.3 Eigenvalue Sensitivity to Reactive Power Droop Gain

In this subsection, the sensitivity of eigenvalues to the reactive power droop gain nq

is studied. Fig. 5.9 shows the locus of eigenvalues near the origin subsequent to a
change in reactive power droop gain in the range of 3.17 × 10−4

≤ nq ≤ 7 × 10−3.
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Figure 5.9: IMC vs. conventional method: Locus of low-frequency modes as a func-
tion of reactive power droop gain (for 3.17 × 10−4

≤ nq ≤ 7 × 10−3).

For IMC, eigenvalues located farther away from the real axis exhibit slightly
larger imaginary parts compared with those of the conventional method. On the
other hand, IMC eigenvalues located near the origin show slightly reduced real and
imaginary parts with respect to magnitude as shown in Fig. 5.9. The eigenvalues
of the conventional method become unstable by entering the right half plane while
IMC eigenvalues remain in the left half plane and retain stability.
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5.7 Simulation Results

This section discusses simulation case studies to evaluate the performance of the
IMC-based control approach and the PI-based approach. The study microgrid shown
in Figs. 5.1 and 5.5 is modeled in PSCAD/EMTDC environment. For the simulation
case studies, the loads shown in Fig. 5.5 are excluded. Instead, for comparison with
the results of [10], a large step change (from no load to 27 kW) is applied at bus 1 in
order to pointedly capture the high-frequency modes which are dominated by the
voltage and current controllers and not dominated by the power controller.

Figs. 5.10(a) and (b) show the real and reactive output power of the three DG units,
respectively, caused by a 27 kW step change in load at bus 1, comparing IMC and
the conventional method.
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sponses of DG units (i = 1, 2, 3) subsequent to a 27 kW step change in
load power at bus 1.
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However, graphs of both methods overlap. As anticipated, both methods have
similar results since they utilize the same power controller. It can be seen that low-
frequency modes of around 7 Hz in cluster A dominate the transient response in real
and reactive power, which agrees with results of [10]. Because no load is connected
to the microgrid before t = 0.1 s, both the real output power and the reactive output
power are zero. It can be seen that eventually the load of 27 kW is shared equally
between the DG units. The DG unit with the shortest electrical distance from the
load change responds the fastest but also shows the largest overshoot in its real
power response. DG units inject reactive power according to the feeder impedance.

Figs. 5.11(a) and (b) illustrate the d- and q-components of the filter current il

responses of the three DG units, respectively, comparing IMC and conventional
methods.
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of DG units (i = 1, 2, 3) subsequent to a 27 kW step change in load power
at bus 1.
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Again, real power is shared equally since the d-components of the currents adjust
to the same steady state value while q-components are according to reactive power
sharing. Figs. 5.11(a) and (b) show that IMC has less overshoot and faster response
than the conventional method, which agrees with [1, 2].

Fig. 5.12 shows transient responses of DG unit output voltages vodi (i = 1, 2, 3)
induced by the applied load step change. It can be seen that IMC significantly
reduces the transient voltage undershoot. The conventional method causes voltage
undershoots up to 20%. However, the IMC-based method has a maximum voltage
undershoot of only about 1.7%. This behavior agrees with the results of the single DG
unit case presented in [1, 2]. Reference [10] shows that the cluster 2 eigenvalues are
responsible for the output voltage transients with frequencies around 350 Hz. IMC
transients in the voltage show frequencies of around 1000 Hz and correspond to high-
frequency modes in cluster B. Cluster B eigenvalues exhibit higher frequencies but
have significantly improved damping ratios compared with cluster 2 eigenvalues.
This explains the drastic reduction of voltage undershoot with IMC.
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Figure 5.12: IMC vs. conventional method: Output voltage (d-axis) responses of DG
units (i = 1, 2, 3) subsequent to a 27 kW step change in load power at
bus 1.

It is important to point out that the waveforms of the PI-based approach start
oscillating earlier than those of IMC as the real and reactive power droop gain
coefficients mp and nq are increased (not displayed). This agrees with the results
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5.7 Simulation Results

of the small-signal analysis in Subsections 5.6.2 and 5.6.3, which predict that the
conventional method becomes unstable earlier than the IMC method as mp and nq

are increased (Figs. 5.8 and 5.9).
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Chapter 6

Conclusion Part II

In this part of the thesis, a small-signal model of an inverter-based microgrid utilizing
IMC-based controllers is derived. The model is used to perform eigenvalue and
sensitivity analysis. Simulation case studies verify the results of this small-signal
analysis. The results are compared with those of the same study microgrid utilizing
conventional PI-based controllers.

Sensitivity analysis, employing the calculation of participation factors, shows that
low-frequency modes are highly sensitive to the parameters of the power sharing
controller of the DG units for both methods. Yet, the small-signal analysis finds the
following:

• The roots for the drastically reduced voltage undershoot lie in the increased
frequencies and damping ratios of sensitive eigenvalues; and

• By varying the droop coefficients mp and nq, compared with the PI-based
approach, the study microgrid with IMC controllers exhibits superior stability
performance.
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Part III

Internal Model–Based Active
Damping Current Control for a

Grid-Connected Voltage Source
Converter with an LCL Filter
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The findings of Part III of this thesis have been submitted to IEEE Transactions on
Power Delivery as Leitner et al. [5].
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Chapter 7

Introduction Part III

Distributed generation (DG) units are usually interfaced to the grid via pulse-width
modulated voltage-sourced converters (VSC) [31–33, 46]. Owing to the switches,
VSCs produce sinusoidal waveforms that have harmonic components. Low-power
applications with high switching frequencies can utilize simple L filters to reduce
these switching harmonics. However, for high-power applications with low switch-
ing frequencies, L filters are costly and bulky [47–50] and LCL filters are utilized
instead. The low-frequency behavior of an LCL filter is similar to that of an L fil-
ter but the LCL filter has improved damping performance at high frequencies. The
downside of an LCL filter is the large peak at the resonance frequency in its frequency
response. This resonance complicates the current control design to preserve the sys-
tem stability [47, 50, 51]. Consequently, appropriate resonance damping methods
should be employed for VSCs with LCL filters.

Significant research effort has been put into developing damping strategies to
effectively deal with this resonance problem. Passive damping strategies, using
physical resistors to pointedly dissipate power [48], are an effective means for low-
cost low-power applications. However, medium- and high-power applications call
for sophisticated active damping control strategies to improve efficiency, where the
word active signifies that the VSC injects currents such that the resonance is not
excited. Active damping strategies can be divided into two main categories [50]:

1. Additional feedback methods; and

2. High-order controllers (filters).

Category 1 control strategies usually require additional sensors, feeding back ei-
ther the capacitor current or voltage to stabilize the system [47, 52–55]. As they
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Chapter 7 Introduction Part III

require additional measurements, both the cost and complexity of the system in-
crease. While estimation-based sensorless active damping methods exist [51, 56],
their performance is still not satisfactory. Category 2 control strategies usually
use notch or biquad filters in series with the current controller to compensate for
the resonance peak of the LCL filter [57–60]. These methods do not require ad-
ditional measurements but often lack in robustness or bandwidth. Filter-based
damping methods are especially desired when measurements of additional filter
states are not possible (e.g., for cable-connected DG units). References [57, 59, 60]
use proportional-resonance (PR) current controllers in series with high-order filters
to regulate single-phase systems but [57] also uses PR controllers in a stationary ref-
erence frame for three-phase systems. Reference [58] utilizes proportional-integral
(PI) current controllers plus a high-order filter (low-pass, lead, notch, or biquad) in
each axis of a rotating reference frame.

Part III of this thesis proposes a high-order filter active damping current controller
based on internal model control (IMC) for a grid-connected VSC with an LCL filter.
The proposed controller is implemented in the rotating dq reference frame to allow
independent control of injected three-phase real and reactive power. As opposed
to the existing Category 2 methods, the IMC active damping controller 1) takes the
decoupling terms for d and q axes into account to achieve better transient behavior, 2)
is simultaneously both the controller and the filter due to the internal model principle,
and 3) has a very simple design procedure with only one tuning parameter.

As its name implies, the IMC controller includes a model of the controlled plant
and has the following characteristics:

• Increased robustness against system parameter changes;

• Improved transient behavior;

• Easy tuning with only one tuning parameter; and

• No need for additional sensors;

which significantly increase the system stability, facilitate the active damping of the
LCL filters of a VSC, and keep the system cost low. Simulation case studies confirm
these superior characteristics of the proposed IMC-based active damping current
controller.

The rest of Part III of this thesis is organized as follows. In Chapter 8, the proposed
IMC-based AD current controller is derived. A frequency response analysis of the
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controller is presented in Chapter 9. Chapter 10 gives a short introduction to two
existing active damping methods. In Chapter 11, the results of the time domain
simulation case studies are discussed. Finally, Chapter 12 recapitulates Part III and
draws conclusions.
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Chapter 8

IMC-Based Active Damping Current
Controller

This chapter shows the design procedure of the IMC-based active damping current
controller shown in Fig. 8.1, given the plant model (LCL filter) and the IMC procedure
presented in Section 3.2. As shown in Fig. 8.1, the controller inputs are the filter
output voltage vo and current i2. The complex transfer functions in this chapter
represent the rotating dq reference frame (RRF) and are marked with superscript dq.
The acronym ESR stands for the equivalent series resistance of a inductance.
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Figure 8.1: Block diagram of the DG unit including controller, VSC, LCL filter, and
grid connection.
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Chapter 8 IMC-Based Active Damping Current Controller

8.1 Controller Development

The resonance frequency of the system shown in Fig. 8.1 can be calculated as fol-
lows [50]:

fres =
ωres

2π
=

√
1

C f

(
1
L1

+
1

L2 + Lg

)
. (8.1)

Fig. 8.2 shows the simplified block diagram of the system in Fig. 8.1.
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Figure 8.2: Simplified block diagram of the proposed IMC-based active damping
current controller (ESRs are not considered), VSC, and LCL filter system.

8.1.1 Detailed Model

The current controller aims to control the DG unit output current i2 by adjusting the
inverter output voltage vi. Applying basic block diagram reduction rules to the LCL
filter transfer functions G1(s), G2(s), and G3(s) in Fig. 8.2 gives the LCL filter model
(ESRs are considered):

G̃P(s) =
I2(s)
Vi(s)

=
G1(s)G2(s)G3(s)

1 + G1(s)G2(s) + G2(s)G3(s)
=

1
(sL1+R1)sC f (s(L2+Lg)+R2+Rg)

1 + 1
(sL1+R1)sC f

+ 1
sC f (s(L2+Lg)+R2+Rg)

=
1

αs3 + βs2 + γs + δ
,

(8.2)

where

α = L1(L2 + Lg)C f

β = L1C f (R2 + Rg) + R1(L2 + Lg)C f

γ = R1(R2 + Rg)C f + L1 + L2 + Lg

δ = R1 + R2 + Rg.

(8.3)
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8.1 Controller Development

To improve the accuracy of the model, the on-resistance ron of the VSC switches can
be added R1. For the representation in RRF, the frequency shift s→ s + jω is applied
to the plant model in Equation 8.2:

G̃dq
P (s) =

1
α(s + jω)3 + β(s + jω)2 + γ(s + jω) + δ

, (8.4)

where ω is the angular speed of the RRF. Inserting Equation 8.4 into Equation 3.3
and selecting n = 3 to make the controller proper yields:

Kdq(s) =
αs3 + βs2 + (γ − 3ω2α)s + (δ − ω2β)

s3λ3 + s23λ2 + 3λs
+ j

3αωs2 + 2ωβs + (ωγ − ω3α)
s3λ3 + s23λ2 + 3λs

, (8.5)

where λ is the tuning parameter.
Fig. 8.3 shows the structure of the IMC-based active damping controller along

with the LCL filter in the dq reference frame.
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Figure 8.3: Block diagram of the IMC-based active damping current controller (ESRs
are considered), VSC, and LCL filter model in the dq reference frame.

Gd(s) = e−1.5s/ fsw models the time delay of the VSC [55]. The IMC-based controller
Kdq(s) in Equation 8.5 represents a high-order multi-input multi-output (MIMO) con-
troller and can be classified as a Category 2 control approach. However, compared to
other Category 2 methods [57–60], Kdq(s) is both the controller and the filter, with only
one tuning parameter λ for both of them. The inner controller GC(s) is the inverse
of the LCL filter model. Moreover, decoupling between d and q axes is taken into
account. These characteristics make the performance of the proposed IMC-based
active damping approach superior to existing methods.
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Chapter 8 IMC-Based Active Damping Current Controller

8.1.2 Simplified Model

If the R
ωL ratio of the LCL filter is small, the control structure can be simplified. Setting

the resistances R1, R2, and Rg in Equation 8.2 to zero yields the following transfer
function for the LCL filter without ESRs [58, 61]:

G′P(s) =
1

sL1(L2 + Lg)C f

1
s2 + ω2

res
=

1
s(α′s2 + β′)

, (8.6)

where considering (8.1) results inα
′ = L1(L2 + Lg)C f

β′ = L1 + L2 + Lg.
(8.7)

Applying the frequency shift s→ s+ jω to Equation 8.6 and substituting Equation 8.6
into Equation 3.3, results in the simplified MIMO control transfer function (n = 3):

K′dq(s) =

(
s + jω

s

)
︸   ︷︷   ︸

MIMO Controller

(
(α′s2 + β′ − α′ω2) + j(2α′ωs)

s2λ3 + s3λ2 + 3λ

)
︸                                 ︷︷                                 ︸

MIMO Filter

. (8.8)

Fig. 8.4 shows the block diagram of this simplified controller which will be used
for frequency-domain analysis in Chapter 9.
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Figure 8.4: Block diagram of the IMC-based active damping current controller in the
dq reference frame (ESRs are not considered).
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Chapter 9

Frequency Domain Analysis

This chapter studies the frequency responses of the LCL filter, the proposed IMC-
based active damping current controller, and their combination. The parameters of
the LCL filter are listed in Table 9.1 and taken from [50] which provides typical filter
values for medium-power applications.

Table 9.1: Study System Parameters Part III

Parameter Value Parameter Value Parameter Value

f 60 Hz fsw 3780Hz λ 0.0006

L1, L2 1.8 mH R1, R2 0.1Ω Krc 15

Lg 2.5 mH Rg 0.4Ω ωrc 0.2ωsw

C f 27 µF Vg 480 V Dz 12.6381

CDC 19280 µF VDC 1200 V Dp 10039

The bode plots are drawn based on the simplified control loop for the DG unit
output current i2 in Fig. 8.2, which does not take the dq coupling terms in Equation 8.8
into account. The VSC is modeled with a time delay Td = 1.5/ fsw [55]. For
demonstration purposes, the ESRs of the LCL filter are neglected.

9.1 Bode Plots

In the following, the frequency response of the IMC-based controller K(s) subsequent
to a change in the order of its low-pass filter GLPF(s) (n = 3, 4, 5) is investigated.
Furthermore, the effect of the tuning parameter λ on the open-loop transfer function
of Fig. 8.2 is studied.
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Chapter 9 Frequency Domain Analysis

Fig. 9.1 shows the bode plots of the LCL filter and IMC-based active damping
controller for different orders of n and λ = 0.0007.
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Figure 9.1: Frequency responses of the LCL filter and different orders of the IMC
controller (n = 3, 4, 5) when ESRs are neglected and λ = 0.0007.

As expected, the LCL filter shows a high magnitude peak and a sharp phase drop
from −90◦ to −270◦ at the resonance frequency (in case ESRs are considered, the
resonance peak is smaller and the phase drops more smoothly). Fig. 9.1 shows that
the proposed controller, which is according to the internal model principle designed
to be the inverse of the plant, produces an anti-resonance (sharp amplitude dip) at
the resonance frequency for all orders of GLPF(s). As the order of GLPF(s) increases,
the bandwidth slightly decreases and the attenuation of high frequencies increases
(both high bandwidth and high attenuation of the switching frequency are desirable).
There is a tradeoff between the speed of the system and its harmonic rejection
capability. As expected, increasing the order of GLPF(s) also adds an additional −90◦

per increased order to the phase.
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9.1 Bode Plots

Fig. 9.2 shows the bode plots of the open-loop transfer function of the circuit in
Fig. 8.2 when ESRs are neglected.
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Figure 9.2: Frequency response of the open-loop transfer function of the simplified
block diagram shown in Fig. 8.2 when ESRs are neglected (n = 3).

The change in frequency response is shown for 0.0006 ≤ λ ≤ 0.0008 (GLPF(s) with
n = 3). It is evident that the controller successfully compensates for the resonance
peak of the LCL filter. As λ increases, the bandwidth decreases and the controller
becomes slower. On the other hand, the attenuation of higher frequencies increases,
which improves damping of switching harmonics. Similar to the choice of n in
Fig. 9.1, the choice of λ is a tradeoff between the speed of the system and its harmonic
rejection capability.
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Chapter 10

Other Active Damping Methods

This chapter provides an overview of two selected active damping methods to
compare with the proposed IMC-based active damping current controller. From
Category 1 (additional feedback) methods, the virtual RC damping method [55]
is chosen which measures and feeds back the capacitor current. From Category 2
(high-order filter) methods, the notch filter–based approach with a PI controller [58]
is used.

Both methods are implemented with conventional PI controllers in the dq reference
frame. To achieve the best transient behavior, decoupling and voltage feedforward
terms are included. For low-frequency dynamics, the LCL filter can be approximated
with a simple L filter [48]. Taking ESRs into account, the best results are obtained
when controllers are tuned to attain zero-pole cancellation [1,62] with R = R1+R2+Rg,
L = L1 + L2 + Lg, and τ = L/R (also considered was the symmetrical optimum tuning
method for PI controllers [49, 63]).

10.1 Virtual RC Damping

Split capacitor damping is an established passive damping method in which the
filter capacitor is paralleled with a series RC network to increase damping while
keeping the power dissipation relatively low. As a further development of the virtual
R damping method in [52], reference [55] proposed a virtual RC active damping
strategy. This method measures the capacitor current and feeds it back through a
high-pass filter to add damping. The high-pass filter acts like a virtual RC network
in parallel to the filter capacitor.
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Chapter 10 Other Active Damping Methods

Fig. 10.1 shows the block diagram of the implementation of the virtual RC damping
method.
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Figure 10.1: Block diagram of the virtual RC damping method combined with con-
ventional PI current controllers in the dq reference frame, including
cross-coupling and voltage feedforward terms.

The best results are obtained when the high-pass filter of the virtual RC method
sKrc

s+ωrc
is implemented with Krc = 15 and ωrc = 0.2ωsw.

10.2 Notch Filter Damping

The notch filter–based active damping approach [58] utilizes a notch filter cascaded
with a conventional PI current controller. The notch filter compensates the resonance
peak of the LCL filter with an anti-resonance at the same frequency. This method is in
general very frequency selective; hence, it is necessary to adjust the depth and width
of the notch filter to increase robustness. However, a broader filter characteristic
reduces the bandwidth of the controller.
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10.2 Notch Filter Damping

Fig. 10.2 shows the block diagram of the implementation of the notch filter damp-
ing method.
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Figure 10.2: Block diagram of the notch filters combined with conventional PI cur-
rent controllers in the dq reference frame, including cross-coupling and
voltage feedforward terms.

The notch filter coefficients Dz and Dp are listed in Table 9.1 and tuned based on
the resonance peak magnitude apeak of the LCL filter including ESRs (see Figs. 8.1
and 8.2), with recommended 10% robustness [58]. Hence, filter parameter changes
resulting in resonance frequency shifts of ±10% (∆ω = 0.1ωres) are covered, while
acceptable dynamic behavior is retained.
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Chapter 11

Time Domain Simulations

This chapter discusses simulation case studies to evaluate the transient performance
and robustness of the proposed IMC-based active damping current controller. The
study system shown in Fig. 8.1 is modeled in PSCAD/EMTDC environment with
the system parameters in Table 9.1. The results are compared with the two methods
discussed in Chapter 10: virtual RC damping method (see Fig. 10.1) and the notch
filter–based damping approach (see Fig. 10.2). The three studied methods are tuned
to have similar rise times, settling times, and d-component overshoots.

As waveforms exhibit distortion during the robustness tests, the total harmonic
distortion (THD) of the injected current i2 is defined as an indicator of power quality
degradation:

THD63 =

√√
63∑

h=2

( Ih

I

)2

. (11.1)

11.1 Transient Performance

This section studies the transient behavior of the injected currents of the virtual RC,
the notch filter, and the proposed IMC-based active damping methods.

Fig. 11.1 shows the dq-components of the current i2 of the three tested methods
for a step change from 50 A to 100 A in the d-component at t = 0.1 s, while the
q-component is kept at zero.
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Figure 11.1: dq-components of the current i2 subsequent to a 50 A step change in the
d-component at t = 0.1 s: (a) virtual RC, (b) notch filter, and (c) IMC.

All three methods successfully track the new operating state, having settling times
of around 20 ms and d-component overshoots of around 7%. As the insets show,
the virtual RC method exhibits small decaying transient oscillations in both d and
q axes, while the notch filter and the IMC-based methods show smooth transitions.
Notice that the IMC-based method exhibits very good decoupling between the d and
q axes, having a q-component overshoot of 2%, while the virtual RC and notch filter
approachs have q-component overshoots of 10% and 14%, respectively.
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11.1 Transient Performance

Fig. 11.2 shows the corresponding injected three-phase currents i2abc for the three
tested methods.
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Figure 11.2: Three-phase currents i2abc subsequent to a 50 A step change in the d-
component at t = 0.1 s: (a) virtual RC, (b) notch filter, and (c) IMC.

Again, the notch filter and the IMC-based methods show smooth transitions, while
the virtual RC method has short decaying oscillations, agreeing with what is seen in
Fig. 11.1(a).
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Chapter 11 Time Domain Simulations

11.2 Filter Robustness

This section studies the robustness of these three active damping approaches against
filter parameter changes that alter the resonance frequency (see Equation 8.1) due to,
e.g., heat or aging. The inductance L2 is increased step by step and the behavior of
the three methods is studied (alternatively, the inductance L1 or the filter capacitance
C f could be changed). THD values are provided in Table 11.1.

Table 11.1: Steady State THD63 Values for L2 Changes

L2 (mH) virtual RC notch filter IMC

9.6 0.64 1.10 0.82

14.5 unstable unstable 4.04

As mentioned in Section 10.2, the notch filter is designed to be able to withstand
parameter changes that cause a resonance frequency shift of 10%. It is expected that
beyond this limit, the transient response of the notch filter–based damping method
degrades significantly.

Fig. 11.3 shows the dq-currents of the three methods when L2 is 9.6 mH (the design
value is 1.8 mH) and a 50 A step change in the d-component of the current is applied.

78



11.2 Filter Robustness

-100
-50

0
50

100

i2 abcv irRC

-100
-50

0
50

100

0.08 0.09 0.1 0.11 0.12 0.13 0.14

-100
-50

0
50

100

Time (s)

-100
-50

0
50

100
150

i2 abcv irRCLg87

-100
-50

0
50

100
150

0.96 0.98 1 1.02 1.04

-100
-50

0
50

100
150

Time (s)

-100
-50

0
50

100

i2 abcv irRCrob96

-100
-50

0
50

100

0.96 0.98 1 1.02 1.04

-100
-50

0
50

100

Time (s)

0.96 0.98 1 1.02 1.04

-100
-50

0
50

100

Time (s)

-50
0

50

100

150

i2dqv irRCLg87

-50
0

50

100

150

0 0.5 1 1.5 2
-50

0

50

100

150

Time (s)

i2dqv irRCLg10057

L925

-50

0

50

100

i2dqv irRCrob

-50

0

50

100

0 0.5 1 1.5 2
-50

0

50

100

Time (s)

i 2
a
b
c,

v
ir

R
C

   
(A

)
i 2
a
b
c,

N
o

tc
h

   
(A

)
i 2
a
b
c,

IM
C

   
(A

)

i 2
a
b
c,

v
ir

R
C

   
(A

)
i 2
a
b
c,

N
o

tc
h

   
(A

)
i 2
a
b
c,

IM
C

   
(A

)

i 2
a
b
c,

v
ir

R
C

   
(A

)
i 2
a
b
c,

N
o

tc
h

   
(A

)
i 2
a
b
c,

IM
C

   
(A

)

i 2
d
q
,v

ir
R

C
   
(A

)
i 2
d
q
,N

o
tc

h
   
(A

)
i 2
d
q
,I

M
C

   
(A

)

i 2
d
q
,v

ir
R

C
   
(A

)
i 2
d
q
,N

o
tc

h
   
(A

)
i 2
d
q
,I

M
C

   
(A

)
i 2
a
b
c,

IM
C

   
(A

)

-20
0

20

40

60

80

100

0 0.5 1 1.5 2
-20

0

20

40

60

80

100
120

120

Time (s)

id

iq

id

iqi 2
d
q
,v

ir
R

C
   
(A

)
i 2
d
q
,I

M
C

   
(A

)

i
2
dq
v
irRC0

20

40

60

80

100

i 2
d
q
,v

ir
R

C
   
(A

)

0

20

40

60

80

100

0 0.5 1 1.5 2

0

20

40

60

80

100

Time (s)

id

iq

id

iq

id

iq

i 2
d
q
,N

o
tc

h
   
(A

)
i 2
d
q
,I

M
C

   
(A

)

i
2
dq
v
irRC

r
ob
96

0

50

100

0

50

100

0 0.5 1 1.5 2

0

50

100

Time (s)

id

iq

id

iq

id

iq

i 2
d
q
,v

ir
R

C
   
(A

)
i 2
d
q
,N

o
tc

h
   
(A

)
i 2
d
q
,I

M
C

   
(A

)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
90

100
110
120

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-20
-10

0
10
20

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
90

100
110
120

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-20
-10

0
10
20

0.1 0.12 0.14 0.16 0.18 0.2
95

100

105

110

0.1 0.12 0.14 0.16 0.18 0.2-20
-10

0
10
20

0.1 0.12 0.14 0.16 0.18 0.2
95

100

105

110

0.1 0.12 0.14 0.16 0.18 0.2
-20
-10

0
10
20

0.1 0.12 0.14 0.16 0.18 0.2
95

100

105

110

0.1 0.12 0.14 0.16 0.18 0.2
-20
-10

0
10
20

0.1 0.15 0.2 0.25 0.3 0.35 0.495
100
105
110
115

0.1 0.15 0.2 0.25 0.3 0.35 0.4
-20
-10

0
10

0.1 0.15 0.2 0.25 0.3 0.35 0.495
100
105
110
115

0.1 0.15 0.2 0.25 0.3 0.35 0.4
-20
-10

0
10

0.1 0.15 0.2 0.25 0.3 0.35 0.495
100
105
110
115

0.1 0.15 0.2 0.25 0.3 0.35 0.4
-20
-10

0
10

id
iq

id
iq

id
iq

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

id
iq

id
iq

Figure 11.3: dq-components of the current i2 subsequent to a 50 A step change in the
d-component at t = 0.1 s for L2 = 9.6 mH: (a) virtual RC, (b) notch filter,
and (c) IMC.

With this value of L2, the robustness limit of the notch filter method is reached as
the resonance frequency is shifted to lower frequencies by 10% of its original value,
i.e., 540 rad/s. All three methods show steady state oscillations in d and q axes (see
Table 11.1 for corresponding THD values).

The virtual RC method has the lowest THD value but the transients in Fig. 11.3(a)
slightly degrade compared to Fig. 11.1(a), having a settling time of 50 ms and dq-
overshoots of 8% and 17.5%, respectively. The transient response of the notch filter–
based approach in Fig. 11.3(b) clearly degrades compared to Fig. 11.1(b), having a
settling time of 75 ms and dq-overshoots of 13% and 24%, respectively. This behavior
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Chapter 11 Time Domain Simulations

is expected, as the notch filter is designed for a robustness of 10% [58]. However,
the transient behavior of the proposed IMC-based method does not significantly
degrade and is still very fast with a small overshoot and very good axes decoupling
(settling time of 25 ms and dq-overshoots of 4% and 3%, respectively).

For L2 < 9.6 mH, the transient behavior of the currents is similar to that in Fig. 11.1
but shows small steady state oscillations. Once the value of L2 is in the neighbor-
hood of the robustness limit of the notch filter method, its transient performance
degrades significantly. Increasing L2 even further increases the THD value and leads
to instability of the notch filter method.

Fig. 11.4 shows the three-phase currents i2abc when L2 is 9.6 mH.
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Figure 11.4: Steady state three-phase currents i2abc subsequent to a 50 A step change
in the d-component at t = 0.1 s for L2 = 9.6 mH: (a) virtual RC, (b) notch
filter, and (c) IMC.

As can be seen, all three methods are stable but the current waveforms show
distortions in their peaks (also see Table 11.1 for corresponding THD values).
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11.2 Filter Robustness

In the next step, L2 is further increased to 14.5 mH. As shown in Figs. 11.5(a) and
(b), the virtual RC and notch filter damping methods lose tracking ability, leading to
instability (the L2 stability limit is around 12 mH for virtual RC damping and around
10 mH for the notch filter approach).
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Figure 11.5: dq-components of the current i2 subsequent to a 50 A step change in the
d-component at t = 0.1 s for L2 = 14.5 mH: (a) virtual RC, (b) notch filter,
and (c) IMC.

Notice that for L2 = 14.5 mH, the proposed IMC-based method (see Fig. 11.5(c))
still retains stability, showing mild oscillations in d and q axes (its stability limit is
around 14.7 mH with a THD value of 4.56%). The IMC-based method is much more
stable than both virtual RC and notch filter damping methods.
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Fig. 11.6 shows the steady state three-phase current waveforms i2abc of the IMC-
based method.
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Figure 11.6: Three-phase currents i2abc subsequent to a 50 A step change in the d-
component at t = 0.1 s for L2 = 14.5 mH using IMC method.

The waveforms show distortion; however, the THD value of 4.04% (also see Ta-
ble 11.1) is below the 5% limit [64] of the IEEE standard 1547 and hence still accept-
able.
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11.3 Grid Connection Robustness

11.3 Grid Connection Robustness

This subsection studies the behavior of the IMC controller in situations of a weak
grid connection (large coupling inductor, e.g., long transmission line). Owing to
changes of switching states in the grid, Lg can change during operation which alters
the resonance frequency Equation 8.1. Therefore, Lg is successively increased and
the behavior of the three controllers is studied.

Fig. 11.7 shows the dq-currents of all three methods when Lg is increased from 2.5
mH to 8.7 mH.
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Figure 11.7: dq-components of the current i2 subsequent to a 50 A step change in the
d-component at t = 0.1 s for Lg = 8.7 mH: (a) virtual RC, (b) notch filter,
and (c) IMC.

As can be seen, the notch filter approach shows large oscillations in the d and
q axes, while the virtual RC and the proposed IMC-based approaches show very
robust behavior and no steady state oscillations. For Lg ≥ 8.7 mH, the oscillations
of the notch filter approach become larger and cause instability eventually.
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Chapter 11 Time Domain Simulations

Fig. 11.8 shows the corresponding steady state three-phase currents of all three
methods.
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Figure 11.8: Steady state three-phase currents i2abc subsequent to a 50 A step change
in the d-component at t = 0.1 s for Lg = 8.7 mH: (a) virtual RC, (b) notch
filter, and (c) IMC.

While the virtual RC and IMC-based approaches show no harmonic distortion,
the notch filter approach has large distortion with a THD value of around 40% (see
Table 11.2).

Table 11.2: Steady State THD63 Values for Lg Changes

Lg (mH) virtual RC notch filter IMC

8.7 0 40 0

10.057 0 unstable 0

10.0925 unstable unstable 0
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11.3 Grid Connection Robustness

Figs. 11.9(a) and (b) show the Lg stability limits of the virtual RC and IMC damping
methods, i.e., 10.057 mH for the virtual RC damping and 10.0925 mH for the proposed
IMC-based method.
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Figure 11.9: dq-components of the current i2 subsequent to a 50 A step change in the
d-component at t = 0.1 s: (a) virtual RC (Lg = 10.057 mH) and (b) IMC
(Lg = 10.0925 mH).

The proposed method is slightly more stable than the virtual RC damping. How-
ever, a further increase in Lg causes instability for both approaches.
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Chapter 12

Conclusion Part III

High-order filter–based active damping techniques (e.g., notch filters) are effective
in damping the resonance of LCL filters but lack robustness. They are designed
to compensate the resonance peak of the LCL filter and take some robustness into
account, which compromises bandwidth. The notch filter approach requires separate
tuning of the PI controllers and the notch filters which are particularly hard to tune
as information about the resonance peak magnitude apeak is required. Additional
feedback active damping approaches (e.g., virtual RC) are usually more robust than
filter-based once but they need additional sensors. The virtual RC method requires
separate tuning of the PI controllers and high-pass filters.

Part III of this thesis proposes an internal model control (IMC)-based active damp-
ing approach. The IMC-based controller is essentially a high-order MIMO filter
which combines the advantages of both filter-based and additional feedback–based
active damping methods. It does not require extra sensors (like the notch filter ap-
proach) and has better robustness than the virtual RC method. Moreover, the tran-
sient response of the IMC controller hardly degrades when parameters are changed,
while the compared methods show large overshoots and might violate current lim-
itations. Although the IMC controller has higher complexity, it is very easy to tune
as it has only one tuning parameter. Due to the easy tuning and high robustness, the
proposed IMC-based active damping method is superior to both the virtual RC and
notch filter methods.
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Future Work

In the process of writing this thesis, several research directions for future studies
emerged and are listed below:

Part II

1. For the sake of simplicity, the voltage source converters of the study microgrid
in Part II do not take switching into account and are essentially controlled
ideal voltage sources. For future studies, switching actions of the voltage
source converters should be considered.

2. The used power controller utilizes conventional droop control. The inter-
nal model–based controllers could be studied with other power sharing ap-
proaches, e.g., VPD/FQB, complex line impedance–based droop control, an-
gle droop control, voltage-current droop control [65], or washout filter–based
power sharing [43, 66].

3. A practical implementation of the internal model–based voltage and current
controllers in the voltage source converters of a physical islanded microgrid
would be necessary to confirm the time-domain simulation case studies.

4. Future studies could also investigate the behavior of the IMC-based voltage
and current controllers in case of non-linear loads and/or highly resistive lines
in a low-voltage microgrid.

Part III

1. The proposed IMC-based active damping controller is studied for a single grid-
connected voltage source converter with LCL filter. As the next step, it would
be interesting to study multiple grid-connected LCL-filtered voltage source
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Chapter 12 Conclusion Part III

converters in parallel to study multi-resonance phenomenons as pointed out
in [50, 60].

2. Also, an experimental implementation of the proposed IMC-based active damp-
ing controller would be necessary to confirm the time-domain simulation case
studies.

3. The proposed active damping controller is designed for grid-connected VSCs
with LCL filters. It would be interesting to develop an IMC-based voltage
regulator for LCL-filtered voltage source converters in an islanded microgrid.

4. The discussed resonance problem could also be tackled by an active disturbance
rejection–based approach utilizing state observers.
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