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Abstract

A major goal in distant-speech recognition is to transform speech signals of a target
speaker into symbols in order to trigger a dialog manager. Spatio-temporal filters, so
called beamformers, usually enhance the target speaker’s speech signals in a noisy and
reverberant environment. However, a beamformer requires information on the target
speaker’s position. A source localizer provides this information, which facilitates steer-
ing a beam into the direction of the target speaker. Unfortunately, the beamformer also
captures noise and reverberation, especially from the target speaker’s direction. To addi-
tionally reduce these artifacts, one can employ bandpass filters in order to emphasize the
target speaker’s harmonic components. But these bandpass filters require information
on the target speaker’s fundamental frequency. The problem becomes more challenging
in case of two or more target speakers. This is where a joint estimator has to be used.

Two new and intuitive algorithms robustly localize and characterize simultaneously
active acoustic harmonic sources intersecting in the spatial and frequency domains. They
jointly determine the sources’ fundamental frequencies, their respective amplitudes, and
their directions of arrival based on a non-parametric signal representation. Variable-scale
sampling of unbiased cross-correlation functions facilitates the representation of these
three parameters in a joint parameter space. An even better solution is to employ the
chirp z-transform, compute the cross-spectrum between pairs of microphone signals, and
weight the cross-spectrum’s magnitudes by considering a relative phase-delay mask. In
both cases, a multidimensional maxima detector sparsifies the joint parameter space. In
comparison to alternative approaches based on cross-correlation functions and model-
based dictionaries, the new algorithms solve the issue of pitch-period doubling, they cope
with one or more harmonic sources, and they associate the determined parameters to
their corresponding sources in a multidimensional sparse joint parameter space. State-
of-the-art multiple-target trackers, e.g., trackers based on the probability hypothesis
density recursion and the multi-Bernoulli recursion, track these parameters over time.

Experiments based on synthetically generated harmonic signals, synthetically filtered
speech signals under varying reverberant and noisy conditions, and real recordings yield
promising results. A unique, comprehensive multi-sensor Austrian German speech cor-
pus with moving and non-moving speakers provides recordings labeled with spatial and
temporal information. This corpus facilitates the evaluation of estimators that jointly
determine a speaker’s spatial and temporal parameters, including fundamental frequen-
cies.
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The joint recall measure, the root-mean-square error, and the cumulative distribution
function of fundamental frequencies and/or directions of arrival serve as performance
measures. The optimal subpattern assignment distance and its components, e.g., the
localization error and the labeling error, serve as a performance measure for the multiple-
target trackers.

The evaluations show promising results: On average, both algorithms solve prob-
lems, which cannot be solved by their predecessors and other algorithms. The two
algorithms outperform existing algorithms in terms of the joint recall measure and the
root-mean-square error, and they achieve root-mean-square errors of one Hertz or one
degree and smaller, which facilitates, e.g., distant-speech enhancement or source separa-
tion for automatic speech recognition. The optimal subpattern assignment distance as
well as visualized tracks show that the sparse joint parameter space can be directly fed
into a multiple-target tracker yielding smooth tracks.

Index Terms—Chirp z-transform, data association, direction of arrival, fundamental
frequency, glottogram, GM-PHD, GM-CPHD, GM-CBMeMBer, joint estimation, mi-
crophone array, multiple-target tracking, optimal subpattern assignment, pitch analysis,
pitch estimation, pitch-period doubling, position-pitch algorithm, POPI, probability hy-
pothesis density filter, relative phase-delay masking, RPDM, source localization, sparse
joint parameter space, speaker separation, speaker tracking, variable-scale sampling,
VSS.



Kurzfassung

In einem Bereich der Spracherkennung, der sich mit aus der Distanz aufgenommenen
Sprachsignalen beschäftigt, geht es um die Umwandlung von gesprochenen Worten in
Symbole. Diese Symbole werden, zum Beispiel, an einen Dialog-Manager weitergeleitet.
Mittels räumlich-zeitlicher Filter, sogenannter Beamformer, kann man störende Signale
in solchen Aufnahmen dämpfen. Diese Filter benötigen räumliche Informationen über
den Sprecher, um dessen Signale in der Aufnahme hervorzuheben. Ein Lokalisierungsal-
gorithmus stellt diese Informationen zur Verfügung. Ein herkömmlicher Beamformer
hebt allerdings Störsignale hervor, die aus der Richtung des Zielsprechers kommen.
Um diese Störsignale zu unterdrücken, bedarf es an Bandfilter. Diese Filter benötigen
wiederum Informationen über die Grundfrequenz des Sprechers. Schwieriger wird es,
wenn mehrere Sprecher gleichzeitig sprechen. In solchen Fällen braucht man Algo-
rithmen, die gemeinsam die räumlichen und zeitlichen Komponenten ermitteln. In
meiner Arbeit führe ich zwei Algorithmen ein, die akustische, gleichzeitig aktive, har-
monische Quellen lokalisieren und charakterisieren. Diese Quellen können sich sowohl
in der räumlichen Domäne als auch im Frequenzbereich überschneiden. Die beiden
Algorithmen ermitteln die Grundfrequenzen, die dazugehörigen Amplituden und die
Einfallsrichtungen der von den Quellen emittierten Signale bzw. Schallwellen. Diese
Ermittlung beruht auf einer nicht-parametrischen Signaldarstellung. Der erste Algo-
rithmus tastet unverzerrte Kreuzkorrelationsfunktionen ab und ermöglicht dadurch die
Darstellung dieser Parameter in einem gemeinsamen Parameterraum. Der zweite Algo-
rithmus basiert auf Chirp-z Transformationen, Kreuz-Spektren und deren Gewichtung
mittels relativer Phasenlaufzeitmasken. In beiden Fällen kommt ein mehrdimension-
aler Maximum-Detektor zum Einsatz, der den gemeinsamen Parameterraum in einen
dünn besetzten Parameterraum umwandelt. Im Vergleich zu Modell-basierten und
Korrelation-basierten Ansätzen lösen die neuen Algorithmen das Problem der Grundpe-
riodenverdopplung. Zudem sind sie in der Lage, die Parameter von mehreren harmonis-
chen Quellen zu ermitteln. Neueste Tracking-Algorithmen generieren mehrdimensionale,
räumlich-zeitliche Trajektorien, die, zum Beispiel, einen Beamformer mit Informationen
versorgen. Experimente werden in geräuschvollen, halligen Umgebungen durchgeführt
und ergeben vielversprechende Ergebnisse. Ein einzigartiger, neuer Sprachkorpus stellt
die für gewisse Experimente notwendigen Signale zur Verfügung. Zur Beurteilung der Al-
gorithmen finden spezielle Maße, wie zum Beispiel die kumulative Verteilungsfunktion,
das Recall-Maß, und ein Maß für die Beurteilung der Genauigkeit von Multi-Target
Trackern, Verwendung. Die Evaluierungen zeigen, dass die beiden neuen Algorithmen
Probleme lösen, die deren Vorgänger nicht lösen können. Zudem schneiden die beiden
Algorithmen in vielerlei Hinsicht deutlich besser ab als alternative Ansätze.
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Preface

As a child I was not that much into TV series; however, there was one series I used to
watch with my brother: Star Trek: The Next Generation. Besides exploring space and
fighting villains, one essential part of the series totally caught my attention: the USS
Enterprise—a starship cruising through space. Besides splendid warp drives and photon
torpedos, there was a unique feature that fascinated me: the starship’s communication
system. In some episodes, the captain set off the red alert in a corridor. A sweeping alarm
tone drowned out the quiet but still noisy soundscape, crew members started running
around and discussing with each other, or they even started screaming (depending on the
current threats). However, without wearing a head-mounted microphone, the captain
communicated with the starship and issued orders executed by the central computer.
As a child, I never figured out how it worked. Preliminary (and probably childish)
experiments together with my brother showed that even with cordless telephones in a
noisy environment (loud music in our children’s rooms) a smooth communication was
simply impossible (at this time cell phones were far away from being market-ready).
Perhaps these experiences were probably the reason why microphones and hands-free
communication systems always fascinated me. Years later someone explained me how
these systems theoretically work. To my utter astonishment, I realized that they did
not properly work in practice; and during my studies I figured out why we are still far
away from having such a system in our households. But after reading and publishing
my first papers, I noticed that we are getting closer to a system capable of handling
natural, interfering noise sources in a real environment. In the end I am very happy to
contribute new ideas and algorithms to the field of hands-free communications; may they
even be part of answers and solutions to future questions and challenges. And before you
start diving into the theory of localizing, characterizing, and tracking speakers (these
are typical tasks of such a system), there is just one more thing I want to tell you and
which, probably, perfectly closes this preface: Live long and prosper.

XIV



Chapter 1

Introduction

Athletes know the risks and hazards of sports. They know their limits and how far they
can go. However, accidents with disastrous consequences happen even in standard situa-
tions. Unfortunately, several athletes suffered severe accidents; they are now paralyzed.
What do these athletes have in common besides their accidents and sports? They are
strong characters with an iron will to improve their life. However, it is a psychic stress
for all of them to have to go without things they were used to, e.g., their independence
or their ability to open a window without any help. The fates of athletes that suffered
severe injuries as well as the fates of elderly or physically handicapped people triggered
my will to help them solving their everyday problems. And this will was one reason why
I decided to work on a topic strongly linked to those fates.

As part of a project funded by the European Union, I worked in an international team
on the development of a system for voice-controlled home environments and for ambient
assisted living. The project named ”Distant-speech interaction for Robust Home Appli-
cations” (short: DIRHA) [1] addressed the problem of natural, spontaneous communi-
cation with an automated home environment and distant-speech controlled interaction
with appliances and security services. Especially for elderly or handicapped/disabled
people, daily routines can be challenging. Simple tasks such as lowering the blinds of a
window, switching on or turning off a room’s lights, and making sure that the entrance
door is locked usually stretch these people quite a bit. Based on a distant-speech in-
teraction interface, the developed voice-controlled system assists them in everyday life
by executing commands issued by an authorized person. In case of ambiguous or un-
clear commands, the system automatically asks further questions for clarification. This
guarantees an extended period of being independent of, e.g., caretakers.

Nowadays, the voice-controlled systems for ambient assisted living—they are not
market-ready, yet—feature expensive hardware and lack accuracy and reliability. For
instance, reverberation and interfering sources dramatically degrade the system’s per-
formance. However, the system has to work accurately when issuing commands, even
though other people in the same room acoustically interfere. In case of open windows
and vehicles passing by the building, the system has to wake up when calling it. Fig. 1.1,
highlights the system’s complexity.

The system removes echo echo caused by acoustic feedback, it filters the sampled wave
field to remove interfering sources, it classifies the acoustic event by, e.g., distinguishing
between speech and noise, it transforms spoken words into symbols subsequently fed

1
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Fig. 1.1: Block diagram showing the basic components of a voice-controlled system for
ambient assisted living. For instance, microphones mounted on the ceilings and the walls
sample the acoustic wave field. An echo canceller removes echo produced by the system’s
feedback paths (e.g., the loudspeakers) and feeds the resulting signal into a spatio-
temporal filter, e.g., a source localizer or a beamformer. An acoustic event detector
and classifier looks out for wake-up words that initiate a dialog. Symbols returned by a
speech recognizer facilitates an interaction between the target speaker and the system.
And loudspeakers return the system’s spoken questions and confirmations.

into a dialog manager, etc.
For sound-field analysis [2–4], sound-field coding [5], and computational auditory [6,7]

or acoustic [8] scene analysis, which is part of the system’s core tasks, signal parameters
often need to be associated with their origin, e.g., a signal-emitting source. To describe
such a scene [9–11], I need to detect, localize, characterize, separate, track, and interpret
these sources [1, 12]. To localize and characterize them, I jointly estimate multiple
parameters to form a joint parameter space and to avoid data association requiring
additional algorithms. After tracking these sources I can feed the corresponding tracks
into a spatio-temporal filter, e.g., a beamformer. A beamformer requires information
on the target speaker’s position. A source localizer provides this information, which
facilitates steering a beam into the direction of the target speaker. Unfortunately, the
beamformer also captures noise and reverberation, especially from the target speaker’s
direction. To additionally reduce these artifacts, one can employ bandpass filters in
order to emphasize the target speaker’s harmonic components. But these filters require
information on the target speaker’s fundamental frequency. The problem becomes more
challenging in case of two or more target speakers. This is where a joint estimator—an
algorithm that localizes and characterizes the target speaker—has to be used.

Localizing and characterizing harmonic sources as well as joint parameter spaces are
a major issue, e.g., in the context of teleconferencing or automatic meeting transcription,
or in separating instruments of an orchestral recording [13–36]. The larger the difference
of the sources’ parameters, the better the separator’s performance. For example, if I
separate two sources represented in a spectrogram, I still need to find source-independent
parameters to succeed. Unfortunately, they are rare and hard to find. However, assuming
the fundamental frequency (f0) as the parameter of my choice, the overlap of a female
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and a male speaker’s f0s is small due to anatomical reasons [37]. (The overlap of f0s is
limited; higher harmonics can overlap. In this thesis, I essentially focus on the f0s.)

What if two speakers with similar f0 talk simultaneously? Then, I face crossings in
the time-frequency domain that decrease the separator’s performance. Moreover, they
introduce uncertainty about the f0s’ association with the correct source. Another chal-
lenging problem is crossings followed by a discontinuous change of intonation. A tracker
would need to decide which f0 corresponds to which source—an ambiguous problem
without a distinct solution. But when I extend this lower-dimensional problem to a
higher-dimensional one by considering the direction of arrival (DOA), I decrease the
number of simultaneous crossings of both f0 and DOA to a minimum or zero. This will
increase the separator’s ability to associate the f0s to their origin.

Localizing sources spatially over time is a well known problem since decades, though,
as literature points out [38], it is difficult to solve (especially in reverberant environ-
ments). There is a multitude of approaches based on a single microphone array or
several distributed microphone arrays assuming plane and/or spherical wave propaga-
tion. To narrow down this topic’s scope, I will mainly focus on a single uniform linear
microphone array and plane wave propagation.

Since audio signals produced by a speaker [39] or a musical instrument [40] (e.g.,
a wind or a string instrument) feature harmonic structures, I exploit these structures
to characterize their origin. Superficially speaking, the harmonic structures’ energy is
spread over a broad frequency band. But examining these structures in more detail, I
identify multiple narrow bands containing information on the harmonic structure [27],
which enables us to use, e.g., sparse estimators.

From the system’s point of view, there is a multitude of tasks that need to be accom-
plished. To narrow down the scope, I focus on estimating DOA, f0, the corresponding
harmonics, and the respective amplitudes of harmonic sources.

1.1 Problem Statement

I address the problem of jointly estimating the f0s, their respective amplitudes, and
DOAs of moving and non-moving harmonic sources (as illustrated in Fig. 1.2) by uti-
lizing a non-parametric signal representation; hence, I bypass an explicit statistical esti-
mator. After determining these parameters, I employ different multiple-target trackers
to produce smooth spatio-temporal tracks; one track for every harmonic component of
each source.

The definition of the signal measured at the im-th microphone is

xim [nt] =

Ns∑

ip=1

H(ip)
im
{sip [nt]}+

Nr∑

ir=1

H(ir)
im
{νir [nt]} (1.1)

for im = 1, ..., Nm microphones, where sip [nt] denotes a harmonic source’s signal and
where νir [nt] represents the signal of an interfering noise source, which is not correlated
with other sources; Ns is the number of the harmonic sources, Nr is the number of the
interfering noise sources, nt is the absolute time in samples, and ip and ir are the indices
of harmonic sources and interfering noise sources, respectively. The system operator H
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Fig. 1.2: Three-dimensional coordinate systems with two moving harmonic sources,
s1(ϕ1, ϑ1, f

(1)
0 ) and s2(ϕ2, ϑ2, f

(2)
0 ), in a reverberant environment (left) and in free field

(right). Variables f0, ϕ, and ϑ denote the fundamental frequency, the azimuth, and the
elevation of a source, respectively; k is the spherical unit vector, and mi represents the
microphone coordinates. The black, dashed lines are extensions of the spherical unit
vectors. (With their origin in the array’s center, these lines point to sources.) The
black, dashed-dotted lines represent angles. The gray, dotted lines are projections of the
spherical unit vectors’ extension on the xy-plane and the xz-plane.

denotes a source’s spatialization in reverberant conditions (in case of real-data experi-
ments) and free-field conditions (in case of synthetic-data experiments). For instance, to
model a source’s movement in free field, I consider the two-dimensional impulse response
him [nt, ns] = δ [ns − τim [nt]fs], where τim is the time difference of arrival (TDOA), ns
is the time shift, and fs is the sampling frequency. (Considering a high resolution and
rounding τim [nt]fs to an integer number, I kept the quantization error negligible small.)
For a harmonic signal s[nt] sampled at frequency fs, which sweeps its instantaneous f0

in a linear or exponential manner from f1 to f2 within T2 seconds and which consists of
Nq harmonics with amplitudes αiq , I write in the linear case

s[nt] =

Nq∑

iq=1

αiq cos

(
2πiq

[
f1(nt/fs) +

f2 − f1

T2

(nt/fs)
2

2

])
(1.2)

and in the exponential case

s[nt] =

Nq∑

iq=1

αiq cos


 2πiqf1T2

ln(f2/f1)



{
f2

f1

}nt/fs
T2
− 1




 , (1.3)

respectively, for 0 ≤ nt ≤ T2fs. I omitted the index ip for simplicity. These practically
relevant signals are reasonable models for continuous changes of f0 in voiced speech or
glissandi played by a violinist during a concert. Throughout the article, the DOA is
composed of the tuple (ϕ, ϑ), where ϕ is the azimuth and ϑ is the elevation.

The questions now are: Do algorithms exist that solve or partially solve the afore-
mentioned problem statement? Is it even possible to extract the DOAs, f0s, and the
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respective amplitudes from one or more harmonic sources from the sampled acoustic
wave field?

1.2 Existing Approaches

In the past two decades, several research teams developed approaches to jointly detect or
estimate DOAs and f0s. Based on their publications, I distinguish between two groups.

The first group represents pioneering approaches, in the field of source localization,
that estimate and represent both source parameters, the DOAs and the f0s, separately.
For instance, [13] and [14] presented a robust method for speech-signal time-delay esti-
mation in reverberant environments based on estimating f0s. A different groundbreaking
approach for binaural signals builds on multi-pitch tracking [15]. To localize a speaker,
the approaches presented in [16, 17] estimate time delays and frequencies of multiple
sinusoids.

The second group consists of approaches that jointly estimate and represent param-
eters in a JPS. In this field, extensive research has been done.

Until 2012, Jesper R. Jensen and some of his colleagues published several ground-
breaking papers [18–23, 26] about jointly estimating a harmonic source’s DOA and f0.
He summarized most of his findings in terms of a cumulative doctoral thesis entitled ”En-
hancement of Periodic Signals: With Application to Speech Signals” [41] submitted at
Aalborg University Denmark. Though joint estimation was just one part of his thesis, he
essentially contributed to this field by introducing algorithms yielding promising results,
e.g., the nonlinear least squares estimator and the two-dimensional filtering methods
based on the Capon method. He wrote that the joint estimation of parameters is the key
to obtain robust and accurate estimators. In fact, the joint estimation is a prerequisite to
resolve the DOA and the f0 of two sources in the following cases: first, both sources share
the same DOA but a different f0; second, both sources feature the same f0 but a differ-
ent DOA. In his thesis as well as in one of his papers [21], he proposed two-dimensional
filtering methods to jointly estimate the aforementioned parameters of harmonic sources.
According to [21], the two dimensions refer to two-dimensional sinusoids, i.e., a complex
exponential function that depends on a spatial and a temporal parameter. The simplest
method, as he stated, is the periodogram-based method. It employs two-dimensional
filters, which pass a signal component with a given temporal and spatial frequency in
an undistorted manner. This method assumes white Gaussian noise as an input signal.
The second proposed method is based on a generalization of the two-dimensional Capon
method; it relies on a single two-dimensional filter. In his filter design, he considered
constraints for multiple harmonics and minimized the two-dimensional filter’s output
power subject to distortionless constraints on the harmonics. In another paper [23], he
introduced algorithms based on nonlinear least squares methods. He stated that they
are maximum likelihood estimators—they attain the Cramer-Rao bounds—when the
noise is white Gaussian, the environment is anechoic, and the target emits its signals
in the far-field. In both papers, he mentioned that finding the optimum parameters
may imply a huge computational burden, since both algorithms rely on a grid search.
A way round the problem is using a gradient search, which can dramatically decrease
the computational cost. One of the most recent algorithms is based on a broadband
minimum-variance distortionless response beamformer [22]. The authors applied the
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algorithm to clean speech signals distorted by the signals of a non-moving interfering
harmonic source with five harmonics, a white noise source, and reverberation simulated
by using the image method. In [26] they employed a network of unsynchronized uniform
linear arrays and maximum-likelihood TDOA-estimators, built on cone-based localiza-
tion methods and inspired by [23]. Driven by his brilliant ideas, I pursued similar goals
but with different approaches. However, to improve my approaches by making them
more efficient and accurate in certain scenarios, I had to study and implement his meth-
ods in detail. As a result, I conducted experiments with the nonlinear least squares
methods and compared their results with the results of experiments where I used my
proposed algorithms as well as my algorithms’ predecessor, the POPI algorithm.

Similar to Jesper R. Jensen, Ted Kronvall introduced remarkable algorithms to jointly
estimate the DOA and the f0. He summarized them in his doctoral thesis submitted
in 2015 at Lund University [42]. Unlike Jesper R. Jensen, Ted Kronvall applied sparse
models. All in all, it seems to me that his algorithms [24, 42] are closely related to
Jesper R. Jensen’s algorithms. However, Ted Kronvall’s algorithms consider additional
parameters making them more efficient and more accurate. For instance, in [24], they
jointly estimated the TDOA and f0 of two sources by using the alternating direction
of multipliers method optimization procedure. In his thesis, he covered several topics
related to a signal’s spectral content, i.e., grouped line spectra. In comparison to Jesper
R. Jensen’s algorithms, his algorithms do not need the knowledge of the exact model
order, they are based on sparse modeling, they utilize an over-complete dictionary, and
they employ the alternating direction of multipliers optimization (ADMM) procedure
to solve convex problems. Instead of using the well-known but resource-intensive CVX
toolbox, he decided to use ADMM. It solves the problem of estimating line spectra,
where the least-squares cost function additionally contains a penalty function to avoid
overfitting. Using the ADMM, the algorithms estimate the f0 by solving a convex opti-
mization problem, then they estimate the DOA by modeling sensor and source positions
in the near field and the far field. Consequently, he estimates the parameters successively
(and not jointly). In the remaining part of this summary, I will focus on algorithms re-
lated to the problem of joint estimation. The first algorithm, named array DOA and
pitch estimation using block sparsity (APEBS), jointly estimates the f0 and the DOA
of an unknown number of harmonic sources. It is an approach based on a dictionary
learning framework. By using the ADMM, the method alternates between estimating
the f0s using an extension of the sparse group least absolute shrinkage and selection
operator (SGL) and learning the phase offsets, which are related to the DOAs. Known
as the harmonic audio localization using block sparsity (HALO) estimator, the second
algorithm jointly estimates the f0 and the DOAs from sources positioned in the near
field and the far field. Again, he applies the ADMM, which solves a complex problem,
by, first, estimating the f0s and complex amplitudes considering a sinusoidal model, and,
second, finding each source’s position by utilizing the difference in phase and the relative
attenuation of the magnitude estimates.

A pioneering doctoral thesis showing striking parallels with Ted Kronvall’s work is
the thesis written by Stefan Ingi Adalbjörnsson submitted in 2014 at Lund University
[43]. He examined sparse modeling heuristics and applied sparse and robust modeling
strategies to various problems related to (joint) parameter estimation, e.g., in the field
of audio signal processing, deoxyribonucleic acid sequencing, and spectroscopy. To keep
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this summary compact, I reduce its scope to audio signal processing with focus on joint
parameter estimation. Similar to Ted Kronvall but unlike Jesper R. Jensen, Stefan I.
Adalbjörnsson introduced algorithms that do not require prior knowledge of the model
order (the number of a signal’s harmonics; a maximum number is sufficient). To improve
the efficiency of his algorithms, he assumed signal models featuring sparse properties.
For instance, a small set of a large dictionary of possible candidates of Fourier kernels
represented as vectors, which contain information about sinusoidal components, forms
a signal. In other words, he linked the parameters of interest to a small number of a
large dictionary’s components. By assuming sparse signal models, he formulated efficient
algorithms that accurately reconstruct a signal using non-zero components only yielding
unique solutions. He minimized a cost function by employing convex optimization. As
Ted Kronvall stated, convex optimization can be resource consuming. Thus, to guarantee
an efficient and fast solution in case of convex optimization problems, he employed the
framework of the alternating direction method of multipliers (ADMM). This framework
solves large-scale optimization problems by increasing the number of variables; it splits
a problem into sub-problems. Moreover, the framework utilizes the knowledge of sparse
models, which increased the algorithms’ efficiency in finding a solution. In his thesis
as well as in [44] he presented an algorithm to estimate the f0 by exploiting (block)
sparsities based on an efficient ADMM implementation in case of one or more sources.
Although the algorithm, which is known as pitch estimation using l2-norm and block
sparsity including the total variation penalty function, is not a joint estimator, it is at
least an important part of the joint estimator described later on. He guaranteed that
the algorithm converges and that it is robust enough to cope with the problem of pitch-
period doubling. To evaluate the algorithm’s performance, he conducted experiments
with simulated signals and signals recorded in a real environment. In the latter case, he
estimated the f0s of a guitar recording and a recording featuring a viola and a speaker—
both were active simultaneously—focusing on the speaker’s voiced parts only. He showed
that the algorithm still works if one or more harmonics are missing. In [27] as well as
in his thesis, he presented a joint estimator for localizing one or more audio sources in a
non-/reverberant environment. The algorithm is based on the aforementioned algorithm
and is known as HALO. It localizes harmonic sources employing a generalization of the
previously described algorithm and utilizing a limited dictionary containing components
representing possible locations and frequencies. These components are necessary to
model the phase differences and relative attenuations between each channel’s signal.
The generalization considers the measurements of all channels. The algorithm properly
works for arbitrary but known array geometries, it assumes a sinusoidal signal model,
and—which is remarkable—it estimates a source’s f0s and spatial parameters in the near
field and the far field over time.

A different approach to jointly estimate and represent f0s and interaural time-
differences is to apply extended recurrent timing neural networks [25]. However, to
narrow down the scope, I skip discussing this approach in detail.

What do all reported studies have in common?
First, they did not explain how to solve the data association problem while estimat-

ing or detecting the parameters. Although they utilize cross-correlation functions or
cross-correlograms, the algorithms described in [13] and [14] estimate the TDOA of a
single harmonic source only; the authors ignored estimating the frequency components.
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Actually, these algorithms are incapable of estimating frequency components; thus, a
data association is unfeasible and, anyway, unnecessary due to a restriction to scenarios
with a single harmonic source. However, the authors highlighted the positive aspects of
cross-correlation functions. The algorithms presented in [16, 17] estimate both parame-
ters, the TDOA and the f0. However, these algorithms cope with scenarios where a single
harmonic source is active only; their TDOA-estimates depend on prior f0-estimates (i.e.,
the TDOA is estimated after the f0). In both cases, data association is feasible if a single
harmonic source is active only. Despite utilizing frequency information, the approach
presented in [15] estimates TDOAs only. However, it facilitates estimating the TDOAs
of two sources. So far, it is unclear if all these algorithms return reasonable results in
case of moving sources. The authors of [14] claimed that it is possible to develop an
algorithm that tracks moving harmonic sources; they did not describe how to realize
that, though. The algorithm proposed in [18] features data association, but only in case
of a single harmonic source. It determines the maximum argument of a cost function
based on dictionaries for single-source scenarios only. The same is true for [19,22,23,26].
In [21] the authors claimed that they can estimate the parameters of two sources. They
estimated the parameters of two sources by determining the two highest peaks in their
JPS; however, as soon as, e.g., the second harmonic of the dominant source is larger then
the first harmonic of the second source, the algorithm fails to estimate the parameters of
both sources. As a consequence, the data association fails. The authors of [20] presented
an ESPRIT-based algorithm that estimates the parameters associated to a single source
only. They introduced another algorithm that copes with one or more sources, too, but
only in a multipath-free environment. All in all, the algorithms presented in [24,27] can
estimate and associate the parameters of one or more harmonic sources. Although the
algorithms determine the maximum argument only, the dictionary (or code book) in the
decoding step covers multiple-source scenarios. However, if the grid in the joint param-
eter space spanned by the (sparsified) dictionary is not fine enough, the RMSEs and Rs
dramatically increase. A finer grid means a larger dictionary and, thus, an increased
computational complexity. More importantly, the authors ignored the case where the
dictionary lacks certain entries; for instance, two active harmonic sources with missing
second or third harmonics due to, e.g., interfering noise sources. In [25] the authors
presented a different approach based on supervised learning and recurrent timing neural
networks. The authors claim that their approach can estimate the parameters of two or
more sources; however, they just showed that their approach works for a single harmonic
source, i.e., data association is unfeasible in case of two or more sources.

Second, all proposed algorithms (except the one in [20]) did not span a joint pa-
rameter space or did not sparsify the joint parameter space to decrease the amount of
data to be processed. None of the algorithms proposed in [13–17] span a parameter
space, which is a major reason why these algorithms except [15] are unable to estimate
the parameters of two or more harmonic sources. In [15] it is unclear how the authors
extracted the arguments (i.e., the TDOAs of the impinging plane waves) of the resulting
histogram contours. Neither the proposed approaches in [18,19] nor the algorithms pre-
sented in [21–23,25,26] span a SJPS due to the restriction of estimating the parameters
of a single harmonic source only. In [24, 27] the authors presented SJPSs of the DOAs
and the magnitudes only, although their algorithms are theoretically capable of spanning
a SJPS with frequency components.
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Third, all studies did not consider any (multiple-target) trackers to form smooth
spatio-temporal tracks of the sources’ harmonic components over time. Neither the
approaches of the first group, [13–17], nor the algorithms of the second group, [18–
27], employ a (multiple-target) tracker to obtain smooth spatio-temporal trajectories.
Tracking is important to reduce the number of clutter (caused by multipath components
or interfering sources). In case of, e.g., multiple-target and sub-band beamforming,
the decrease in clutter by employing trackers and feeding the smoothed tracks into a
beamformer results in a reduced number of steered beams in different directions. This
decrease in clutter dramatically reduces, e.g., the amount of computational resources.

Fourth, many approaches rely on estimating the global extremum of a cost function,
which, in most cases, means that they are able to detect or estimate the parameters
of a single source (at a certain instant of time) only. In [13] the authors compute the
minimum argument, e.g., of a generic or weighted least-squares cost function, where a
peak corresponds to the most likely parameters of a single harmonic source only. As
a consequence, distinguishing between two simultaneously active harmonic sources or
estimating the parameters of two or more sources simultaneously is impossible. The
algorithms proposed in [16, 17] estimate a single TDOA per instant of time. Moreover,
they fail to assign extracted parameters to a certain source. Neither [14] nor [15] describe
how they estimate/extract the TDOAs in case of a multi-modal cost function. However,
in [14] the authors presumably estimate the TDOAs by determining the maximum ar-
gument of a cross-correlation function. As indicated earlier, the approaches presented
in [18, 19, 21–23, 26] rely on estimating the maximum argument or the minimum argu-
ment; they ignored extending their dictionaries to scenarios with two or more harmonic
sources. Unlike [18, 19, 21–23, 26] the authors of [24, 27] considered extended dictionar-
ies, and the proposed approaches presented in [20, 25] bypass estimating the maximum
argument or minimum argument of a cost function.

Fifth, most of the authors focused on testing their approaches on signals produced
by musical instruments or on a very small number of speech signals. For instance, the
authors in [16] conducted experiments with a small set of synthetically generated sinu-
soidal signals and with a portion of a Cantonese word. In [17], the authors evaluated
their proposed algorithm by complex sinusoids, a synthesized diphthong, and a portion
of a recorded vowel. In [14] they considered a set of speech signals of non-moving sources
recorded with spatially distributed microphones. The authors in [13] conducted exper-
iments with synthetically spatially filtered segments of sampled speech. The authors
in [21,24] used synthesized harmonic signals only to evaluate their proposed algorithms.
In [25] they solely conducted experiments with spoken digits. The experiments de-
scribed in [19, 26, 27] covered scenarios with synthesized harmonic signals as well as a
very small number of experiments with the sentence “Why were you away a year, Roy?”.
In [18, 20, 22, 23] the authors conducted experiments with synthesized harmonic signals
and spatially filtered or recorded trumped signals. The big advantage in terms of a
trumpet signal is the constant and dominant tone over a long period of time.

Bringing it all together, the existing approaches either fail to jointly estimate the
DOAs, the f0s, and the respective amplitudes of two or more harmonic targets (due to
their missing data association for two or more targets) or fail to estimate the targets’
higher harmonics (which are indispensable when the f0 is distorted by an interfering
source). Some approaches fail in both cases. Moreover, all authors omitted a target
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tracker; as a consequence, they failed to show that they can successfully feed a tracker
with the estimates provided by their estimators. All publications lack experiments with
a comprehensive set of naturally spoken sentences that consist of voiced and unvoiced
parts as well as breaks. The authors failed to conduct experiments with sentences spoken
by a male and female speaker in a real reverberant environment. All these issues led
me to innovative real-time capable solutions for two or more sources based on [45] and
tested on synthetic data and speech data recorded in a real reverberant environment.
The solutions are based on approaches and findings published in the recent years starting
in 2007.

1.3 The Predecessors’ Roadmap

Képesi et al. [45, 46] introduced the idea of jointly estimating and representing both
parameters in an SJPS in 2007 by means of extracting certain features from a biased
CCF using two microphones only. Until 2013 several studies extended this idea.

The doctoral thesis of Tania Habib [47] submitted in 2011 at Graz University of
Technology was a corner stone of my work. She analyzed auditory inspired methods
for localizing and tracking one or more speakers using a 24-element uniform circular
microphone array [35, 47]. Moreover, she elaborated on a source localizer named POPI
algorithm [45], which requires two or more microphones and which spans a so called
POPI plane. This plane consists of three types of parameters: DOAs, frequencies, and
color-coded amplitudes. As a result of elaborating on several combinations, she intro-
duced five enhanced versions of the predecessor [45] in order to localize acoustic sources.
The first one was a multi-microphone position-pitch algorithm. This was basically the
algorithm presented in [45] extended by additional microphones (up to 24) spanning
a uniform circular microphone array. The array’s circular shape featuring an equidis-
tant microphone spacing was necessary to arrange the microphones in pairs. Each pair
shared the same reference point—the intersection of each pair’s connecting line (or base
line)—which was a prerequisite to combine the POPI planes of each pair. Her second
algorithm employed a cepstrum-based weighting function to suppress cross-terms intro-
duced by the cross-correlation function. However, she omitted this kind of weighting
in her succeeding algorithms, because it introduced errors when two sources were ac-
tive simultaneously. Extending her predecessors by a gammatone filter bank yielded
the third algorithm: the multiband position-pitch (MPOPI) algorithm. It was capable
of localizing one or more speakers. The full-band approaches—the previously men-
tioned algorithms—succeeded in scenarios with a single speaker only. She additionally
introduced the frequency selection-based multiband position-pitch (MPOPI-FS) algo-
rithm, her fourth algorithm, which only considered bands carrying a speaker’s signal.
Thus, she was able to improve the algorithms accuracy by reducing interfering non-
harmonic artefacts. Last but not least, she extended the MPOPI-FS by an additional
module [15,48], which was working in parallel. This module computed spectro-temporal
fragments used to improve the frequency selection. She called the resulting algorithm
the spectro-temporal fragment-based MPOPI (MPOPI-STF) algorithm. To evaluate all
these algorithms, she additionally set up a corpus containing recordings of real speakers’
signals played back via loudspeakers in a reverberant room. Bringing it all together, she
extended [45] by adding modules and filters inspired by auditory models of the human
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inner ear. She showed that utilizing these modules and filters improve the localization
accuracy by taking advantage of temporal information encoded in the cross-correlation
function.

However, after reviewing them and conducting a vast number of experiments, I came
to the conclusion that several modifications reported in [28–36,45, 47] were unfavorable
for the aforementioned problem scenario. For instance, they estimated DOAs only and
did not exploit their algorithms’ (hidden) abilities to estimate f0s. They considered
broadband analysis in case of two or more sources which yielded accurate directional
information but erroneous temporal information, as shown in my experiments. They an-
alyzed summed CCFs, which introduced pitch-period doubling. They employed biased
CCFs yielding estimates with varying amplitudes for signals whose sinusoidal compo-
nents exhibit the same amplitude. The application of gammatone bandpass filters caused
distorted estimates due to varying gains within a band and a missing group delay com-
pensation. They did not consider a sparse representation of their estimates, which could
have been directly fed into, e.g., a tracker. They also considered spectro-temporal frag-
ments analysis [15, 48] and combined their existing algorithm with a spectro-temporal
pre-processing module yielding a dramatic increase in computational costs.

In this thesis, I introduce a subclass of the aforementioned second group which is
composed of my two algorithms that jointly estimate and represent both parameters in
an SJPS. I sparsify the JPS by employing a multidimensional maxima detector, which
facilitates estimating two or more harmonic sources. In [45, 46], the authors suggested
the idea of joint estimation and representation in an SJPS obtained by sampling a CCF.
It is the cornerstone of the two proposed algorithms, i.e., the VSS-based algorithm and
the RPDM-based algorithm.

1.4 Research Questions

The drawbacks and issues of the alternative approaches and the predecessors led me to
the following research questions, which I will address in my thesis:

� How to redesign the POPI-algorithm in order to jointly estimate the DOAs, the f0s,
and their respective amplitudes of one or more harmonic sources? Is it necessary
to start designing the algorithm from scratch?

� How to sparsify the joint parameter space of the proposed algorithms (which fea-
tures more dimensions than the POPI-plane) in order to directly feed the estimates
into a tracker?

� How to solve the problem of pitch-period doubling using cross-correlation functions
and cross-spectra?

� How to jointly estimate the sources’ parameters without requiring prior knowledge
about the model order and the number of simultaneously active harmonic sources?

� How good are the estimates of the proposed estimators, the predecessor, and a
state-of-the-art joint estimator in case of utterances that feature voiced and un-
voiced parts as well as breaks?
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� Are there any suitable speech corpora available in order to conduct experiments
with joint estimators?

� Can I apply multiple-target trackers to the estimates of the proposed algorithms
and, if yes, which multiple-target tracker should be preferred?

� Are there any unknown phenomena that should be considered when jointly esti-
mating the parameters of harmonic sources in reverberant environments?

1.5 Contributions and Innovations

In this thesis, I introduce two innovative algorithms to localize and characterize one
or more harmonic sources in free field and in reverberant environments. By utilizing a
non-parametric signal representation, I bypass employing explicit statistical estimators.
Both algorithms compute a (quasi-continuous) JPS and sparsify it, which yields a SJPS.
A SJPS contains relevant information, i.e., estimates. These estimates can be directly
fed into a multiple-target tracker. The proposed algorithms solve the problem of pitch-
period doubling. They jointly determine the parameters of harmonic sources without
requiring prior knowledge about the model order and the number of simultaneously
active harmonic sources. I introduce a unique, comprehensive speech corpus that features
glottograms and recordings labeled with the speakers’ f0s and spatial information. These
labels are a prerequisite to conduct experiments with algorithms that jointly estimate
the parameters of harmonic sources. For the very first time, I conducted experiments
with recordings of spoken sentences that consist of voiced and unvoiced parts as well as
breaks. And last but not least, I highlight and discuss an unexpected phenomenon in
reverberant environments when employing joint estimators.

1.6 Summary by Chapters

In this thesis, I address the problem of jointly localizing, characterizing, and tracking
one or more harmonic sources in different acoustic environments.

In Chapter 2 I describe my first approach based on cross-correlation functions and
variable-scale sampling to solve the aforementioned problem. Moreover, I highlight its
innovations and its contributions in that specific field of research. Additionally, I thor-
oughly explain the utilized metrics, I describe and discuss the conducted experiments and
their outcomes, and I compare the results with the outcomes of alternative approaches.

In Chapter 3 I introduce another approach—I preferably call it the first approach’s
successor—based on cross-spectra and relative phase-delay masking. It bypasses draw-
backs of its predecessor, which yields better results in terms of accuracy. I explain the
experimental design and experimental results followed by a detailed discussion.

Supposing that both approaches’ estimates can be directly fed into a tracker, I employ
state-of-the-art multiple-target trackers to generate accurate and smooth trajectories in
a parameter space. In Chapter 4 I describe the trackers, specific metrics that compare
estimated tracks and ground-truth tracks, and experiments as well as their outcomes.

Chapter 5 contains information on a unique, comprehensive Austrian German multi-
sensor corpus, which I had to set up to produce meaningful results for the thesis’s problem
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statements. Besides recording procedures, post-processing, and quality assurance, I
present, e.g., a speaker’s spatial trajectories and glottograms.

In Chapter 6 I briefly highlight the advantages and disadvantages of the authors’
approaches followed by a discussion of their influential doctoral theses to position my
work in that field of joint estimation of DOAs and f0s. I finish this chapter by concluding
my thesis and by sharing some of my ideas and open questions.

Afterwards I highlight other achievements during my doctoral program, which are
related to spatio-temporal filtering methods and microphone arrays, in the appendix.
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Chapter 2

Joint Estimator Based on
Variable-Scale Sampling1

In this chapter, I thoroughly describe my first approach based on variable-scale sam-
pling [49] to localize and characterize one or more harmonic sources; Fig. 2.1 shows the
approach’s block diagram. I will discuss its components, the experiments designed for
evaluating the algorithm’s performance, the corresponding results, as well as the utilized
metrics in the remaining part of this chapter. Before doing so, I highlight the contri-
butions and innovations introduced by this approach in the field of jointly estimating
DOAs and f0s.

2.1 Contributions and Innovations

The proposed algorithm localizes and characterizes one or more simultaneously active
harmonic sources in free field and in reverberant environments. It is based on [45] and
inspired by [28–36]. In contrast to its predecessor, the proposed algorithm addition-
ally determines f0s and their respective amplitudes but features fewer components. In
comparison to [13–25, 28–36, 45], the algorithm sparsifies a (quasi-continuous) JPS and
determines parameters of harmonic sources without utilizing an explicit statistical esti-
mator. Utilizing unbiased CCFs, considering bandpass filters that feature a manageable
flat passband, processing each band separately, doing narrow-band analysis, employing
variable-scale sampling, and representing the estimates in a SJPS, the algorithm solves
the problem of pitch-period doubling. It jointly determines the parameters of harmonic
sources without requiring prior knowledge about the model order, i.e., the number of
harmonics, and the number of simultaneously active harmonic sources. Beyond that, I
conducted a vast number of experiments with simultaneously active, synthetically gen-
erated sources featuring non-stationary harmonic signals causing intersections in the
spatial and frequency domains. To conduct experiments with recorded speech signals
from male and female speakers in a real reverberant environment, I compiled a unique
speech corpus [50,51], which contains recordings of spoken sentences that contain voiced

1This chapter is substantially based on the journal paper [49] and was revised and adapted to the
present thesis. As first author of the journal paper, I did everything on my own except the implementation
of the aNLS algorithm and the NLS algorithm [23] implemented by Mattia Gabbrielli.
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and unvoiced parts as well as breaks. In contrast with [13–25, 28–36, 45], I determined
the ground truth for the recorded signals’ instantaneous f0s by analyzing their corre-
sponding recorded glottograms, which enabled me to use a large variety of naturally
produced fluent speech signals.

2.2 Parameters of Interest

The DOA is the source’s spatial angle of incidence [52,53]. It is the spatialization of the
relative TDOA of a propagating monochromatic plane wave observed at two different
locations (or microphones). The f0 [7] is the inverse of the fundamental period (T0) of
harmonic sources. It is the component of a harmonic structure exhibiting the lowest
frequency. I do not refer to this as pitch, because pitch is a perceptual attribute and not
a physical quantity [54,55]. By using f0 as a parameter, I can improve the performance of
a speech separating system [56] and efficiently employ subband beamforming. Besides,
it improves parameter estimation when two or more speakers share the same DOA
[18,35,57].

2.3 Microphone Array

To sample the acoustic wave field at specific positions in space [52], I employ an array
made up of omnidirectional microphones. In case of a linear or planar array, I recommend
to mount it on the enclosure of a room, e.g., the ceiling or the walls, to reduce or
avoid spatial ambiguity [53]. To jointly estimate DOAs and f0s using the proposed
algorithm, the array’s maximum dimension da has to be large enough to decrease its
omnidirectional behavior at lower frequencies but short enough so that the assumption
of plane wave propagation remains valid [58] and no spatial aliasing occurs [53, 58].
In case of the proposed approach, the plane wave propagation is essential in order to
sample the cross-correlation functions. Thus, to ensure plane wave propagation [59], the
minimum distance between a source and a uniform linear array’s center, dmin, has to be

dmin(γi, λω, da) = d2
a sin(γi)

2/(2λω) + da | cos(γi)|/2− λω/8, (2.1)

where da is the array’s maximum dimension, γi is the angle of incidence, and λω is
the wavelength of interest. Given da, for all angles of incidence, 0 ≤ γi < 2π, and
wavelengths of interest, λω = v/f , 80 ≤ f ≤ 1000 with f as the frequency of interest in
Hz and v as the speed of sound in m/s, the minimum distance, d̂min, is

d̂min = max
γi,λω

dmin(γi, λω). (2.2)

In case of a uniform circular array (UCA), da is the array’s diameter.

2.4 Filter Bank

In the proposed approach, a filter bank is a prerequisite to solve the multiple-source
problem, to avoid pitch-period doubling [60,61] when using the CCF [62], and to reduce
the influence of noise and narrow-band interfering sources.
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In case of two or more harmonic sources, the CCF emphasizes the dominant source.
Usually, this results in the estimation of the dominant source’s parameters only. When
using CCFs, a filter bank limits this nonlinear effect to a single frequency band only.
The narrower the bands the better the estimation of all harmonic sources’ parameters.
Since voiced speech is sparse in time-frequency domain [63–66], the bandwidths can be
small.

Given the CCF of a dual-channel harmonic broadband signal (i.e., a broadband sig-
nal captured by two microphones); sampling the function with all intervals of interest
will result in estimated parameters unequal zero at multiples of the fundamental period.
(These multiples do not physically exist.) This effect is called pitch-period doubling.
Sampling the CCF of two bandpass-filtered signals with a specific set of sampling in-
tervals solves the problem of pitch-period doubling. The set should contain sampling
intervals that match the passband frequencies of the corresponding frequency band.
Hence, the bandwidth must be limited (as described shortly).

A dominating interfering noise signal yields a high peak in the CCF of a dual-channel
broadband signal. Depending on the noise signal’s energy, the sampled CCF cause
wrong estimated harmonic components in the joint parameter space. (There should be
estimates for harmonic signals only.) Bandpass filters reduce the noise signal’s energy in
a frequency band without reducing the energy of a harmonic signal’s component in the
same frequency band. In such a case, the CCF will emphasize the harmonic component.
If no harmonic component is present, the energy of the noise signal is small in case of
narrow frequency bands and, therefore, will not be detected by the maxima detector.

Even in case of acoustic beating caused by two superimposed signals with almost the
same f0 [67], narrow-band filters limit this effect when using a CCF and when the two
f0s are close to a band’s edge.

2.4.1 Bandpass Filter

I employ Kaiser window order-estimated bandpass filters [68–71] with predefined lower
and upper cut-off frequencies to attain decreased passband ripple and steep passband-
stopband transitions with a manageable order. The filters exhibit impulse responses with
decreasing lengths to higher bands and constant group delays. Common alternatives
are, e.g., the Gammatone filter [72], the Butterworth filter [73], and the Cauer filter [73].
They feature a non-constant group delay that has to be compensated by phase reversed
filtering. However, by using symmetric FIR filters, I just need to properly delay the
filtered signals.

2.4.2 Group Delay Compensation

To compare the estimated f0 with its ground-truth value and to provide time-synchronous
f0-estimates, I compensate the constant group delay. In case of symmetric FIR filters, I
delay the bandpass-filtered signal of the ib-th band by

∆N
(ib)
h = (N

(ib)
h − 1)/2 (2.3)

samples, where N
(ib)
h is the odd number of samples of the ib-th bandpass filter’s impulse

response hib [n].
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2.4.3 Bandwidth

The bandwidth of each frequency band must be small enough so that the sampling
intervals (which match the frequency band’s periods) do not sample multiples of the
harmonic signal’s fundamental period. Therefore, I split the frequency range of interest
into Nb bands with equal bandwidth smaller or equal than ∆f = fl/2 with fl as the
lowest f0 of interest (which is 75 Hz in the upcoming experiments). The number of
bands is

Nb < (fu − fl)/∆f, (2.4)

where fu is the highest cut-off frequency.

2.5 Unbiased Cross-Correlation Function

The CCF [7,70,74],

cxi1xi2 [l] =

+∞∑

m=−∞
xi1 [m]x∗i2 [l +m], (2.5)

is a function of time lag l, where (·)∗ denotes complex conjugation. To determine DOAs
and f0s, I calculate cxi1xi2 [l] of xi1 [m] and xi2 [m], each with a support interval of length
Nx (between 0 ≤ m ≤ Nx − 1), for −Nx + 1 ≤ l ≤ Nx − 1. By considering the Wiener-
Khinchin theorem [75], I speed up the computation of the cross-correlation function
according to

cxi1xi2 [l] = F−1{Cxi1xi2 [k]} = F−1{Xi1 [k] ·X∗i2 [k]}, (2.6)

where F−1 is the inverse discrete Fourier transform and Cxi1xi2 [k] is the cross spectrum
of Xi1 [k] = F{xi1 [n]} and Xi2 [k] = F{xi2 [n]}. The windowed CCF is

cxi1xi2 [l] =





w[l]
Nx−1−l∑
m=0

xi1 [m]x∗i2 [m+ l] l ≥ 0

w[−l]
Nx−1+l∑
m=0

xi2 [m]x∗i1 [m− l] l < 0

, (2.7)

where m denotes the time shift. Considering the window

w[l] =





1

Nx − |l|
−Nx + 1 ≤ l ≤ Nx − 1

0 else
, (2.8)

to reduce the decrease in amplitude (for |l| > 0) yields the unbiased CCF [76]. Prelimi-
nary experiments showed that computing the unbiased CCF frame-wise over time with
the frame size and the overlap of frames mentioned in [77] (i.e., a frame size of 0.032 s
and an overlap of 0.010 s) yields the best results.
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2.6 Sampling Phase and Sampling Period

The two major parameters to sample the CCF are the sampling phase and the sampling
period.

The sampling phase LΦ(ϕ, ϑ) is an extrinsic parameter that is related to TDOAs,

τi1,i2(ϕ, ϑ) = −(mi1 −mi2)Tk(ϕ, ϑ)/v, (2.9)

with k(ϕ, ϑ) = (sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ), cos(ϑ))T as the spherical unit vector, ϕ and ϑ
as the azimuth and elevation of a source, mi1 and mi2 as the i1-th and i2-th microphone
coordinates, and with v as the speed of sound. To sample a CCF, I transform the TDOA
into the sampling phase according to

L
(i1,i2)
Φ (ϕ, ϑ) = bτi1,i2(ϕ, ϑ)/Tse, (2.10)

where Ts = f−1
s , Ts ∈ R, and b·e rounds its argument to the nearest integer to avoid

fractional delays. The sampling period LT (T0) is an intrinsic parameter related to a
source’s f0:

LT (T0) = bT0/Tse , (2.11)

where T0 ∈ R. Considering a low sampling frequency (fs < 8000 Hz) and a big array
aperture (da > 0.5 m), errors caused by spatial aliasing, imperfectly optimized bandpass
filters, and a decreasing frequency resolution to higher frequencies would predominate.
Relative to those errors, rounding errors turn out to be negligible.

To localize and characterize one or more harmonic sources, I calculate sampling
periods and sampling phases for all f0s and directions of interest. I define the subset
of sampling phases and sampling periods for the ib-th band and a pair of microphones
consisting of microphone i1 and i2 as

L
(i1,i2,ib)
Φ,T ⊂

(
L

(i1,i2)
Φ , L

(ib)
T

)
, (2.12)

L
(ib)
T = {LT (T0) | T0 = f−1

0 , ibfl≤f0≤(2ib+1)fl/2}, (2.13)

L
(i1,i2)
Φ = {L(i1,i2)

Φ (ϕ, ϑ) | 0≤ϕ<360, 0≤ϑ≤180}. (2.14)

This yields Nb ·Ng subsets, where Ng is the number of pairs of microphones. A single
tuple of an arbitrary sampling period and sampling phase is defined as

L
∆
=
(
L

(i1,i2)
Φ (ϕ, ϑ), L

(ib)
T (T0)

)
. (2.15)

To save computational resources, a lookup table provides all Nb ·Ng subsets.
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2.7 Variable-Scale Sampling of Cross-Correlation Function

Sampling each CCF enables us to jointly estimate DOAs, f0s, and the respective am-
plitudes of one or more harmonic sources. I sample the CCF with a limited number of
sampling points at specific lags. Therefore, I define a discrete sampling function known
as the Shah function [78],

III
(ib)
i1,i2

[l] =

Nd∑

i=−Nd

δ
[
l −
(
iL

(ib)
T (T0) + L

(i1,i2)
Φ (ϕ, ϑ)

)]
, (2.16)

where δ[·] is the Kronecker delta. The number of sampling points is 2Nd + 1, where
Nd ∈ {1, 2}. I sample the CCF according to

ĉ(ib)
xi1xi2

[l] = c(ib)
xi1xi2

[l] · III(ib)
i1,i2

[l]. (2.17)

Inserting (2.16) into (2.17) and summing over all lags l yields

ĉ(ib)
xi1xi2

=
1

2Nd + 1

Nx−1∑

l=−Nx+1

c(ib)
xi1xi2

[l]

Nd∑

i=−Nd

δ
[
l −
(
iL

(ib)
T (T0) + L

(i1,i2)
Φ (ϕ, ϑ)

)]
, (2.18)

for an arbitrary L. Now, I construct a 3-tuple (L
(i1,i2)
Φ (ϕ, ϑ), L

(ib)
T (T0), ĉ

(ib)
xi1xi2

) that rep-
resents a point in a 4-dimensional joint parameter space (spanned by both angles, the
frequencies or periods, and the amplitudes). I compute the CCF of the signals of each
pair of microphones’ band and for lags l distributed symmetrically around l = 0. In
order to justify the use of the unbiased CCF, I first analyze a variable-scale sampled,
biased CCF of a periodic signal. If I compute the biased CCF of a certain frequency
band (see Fig. 2.2 top), perform the variable-scale sampling, and sum over all lags, I can
estimate the frequency components. If I would do this for a periodic signal with a low-
frequency component, there would be a remarkable difference in amplitudes compared
to the previous case. The resulting amplitude of the high-frequency component is larger
than the amplitude of the low-frequency component. However, the sampled amplitudes
should be identical. By using the unbiased CCF, I overcome this problem. As shown in
Fig. 2.2 (middle, bottom), the peaks’ amplitudes of each unbiased CCF around l = 0
are almost identical due to the weighting described in (2.8).

2.8 Joint Parameter Space

The JPS is a joint representation of sampling periods, sampling phases, and respective
amplitudes over time. Due to the joint estimation, these signal parameters are asso-
ciated with each other. Fig. 2.3 shows a three dimensional JPS representing 3-tuples

(L
(i1,i2)
Φ (ϕ, ϑ = 90◦), L

(ib)
T (T0), ĉ

(ib)
xi1xi2

). I set up a JPS for each pair of microphones and
add them together. The parameter space still contains irrelevant information. However,
I am interested in tuples, i.e., points in the JPS, representing local maxima. Therefore,
I sparsify this space (see Fig. 2.3) by employing an efficient multidimensional maxima
detector to obtain a sparse representation of it, i.e., an SJPS, as shown in Fig. 2.4.
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Fig. 2.2: Variable-scale sampling of the biased (top) and unbiased (middle, bottom)
CCF by applying the Shah function with five (Nd = 3) and three (Nd = 1) sampling
points, respectively, different sampling phases (red, black, yellow) and sampling periods
based on the following frequencies: 7 Hz (top, middle) and 3 Hz (bottom). The yellow
dashed lines (top) represent the decrease of amplitudes in case of the biased CCF.

2.9 Multidimensional Maxima Detector

To detect local maxima in the JPS, I apply a real-time capable multidimensional maxima
detector based on Lemire’s streaming maximum-minimum filter [79,80].

Based on a sliding, hypercubic window, the detector sparsifies the JPS, which con-
tains the associated parameters of one or more sources. If the window size is too small,
the detector might detect fluctuations caused by, e.g., noise, which would introduce unde-
sirable local maxima, i.e., clutter. If the window size is too large, the detector might fail
in detecting two or more sources, whose parameters are close together in the parameter
space. A fundamental problem of extrema detection in bounded spaces is the detection
of endpoint or boundary extrema [81], which can be true or false extrema. To solve the
problem, I extend the sampling phases’ domain according to 0−Nv ≤ ϕ < 360 +Nv

and 0−Nv ≤ ϑ ≤ 180 +Nv, and I extend each subset of sampling periods by a single
period, Nv = 1, at both set boundaries. Afterwards, I employ the extrema detector and
eliminate those extrema detected in the extension. I sort the list of maxima according to
their amplitude and select Ne maxima with the highest amplitudes. Variable Ne must be
higher than the number of expected harmonic sources, Ns, times the maximum number
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(a)

(b)

Fig. 2.3: A normalized three-dimensional JPS (similar to the POPI plane [45]) represent-
ing the jointly estimated DOAs, f0s and their corresponding second, third, and fourth
harmonics with the respective CCF-values (half-wave rectified and normalized to achieve
values between zero and one) computed (a) with the proposed algorithm and (b) with
its predecessor [35] without considering spectral fragments. In this figure, the sources’

parameters are ϕs1 = 90◦ and f
(s1)
0 = 240 Hz as well as ϕs2 = 270◦ and f

(s2)
0 = 160 Hz.

By comparing both planes one can see in (b) that the predecessor exhibits pitch-period
doubling (at approximately 120 Hz and 90◦), fewer harmonics, and harmonics with dif-
ferent amplitudes—all of them should be identical in this scenario. The widening of the
Gaussian-like kernels to lower frequency bands in (a) is due to the increase in a band’s
CCF’s sampling periods to lower frequency bands and the variable-scale sampling in lag
domain. The higher the band, the narrower the Gaussian-like kernel and vice versa.
Sampling the CCF of a harmonic dual-channel broadband signal significantly decreases
the widening effect, as shown in (b).
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Fig. 2.4: Trajectories obtained after joint estimation of DOAs, f0s, and second, third,
and fourth harmonics with their respective amplitudes with (a) the proposed algorithm
and (b) with its modified predecessor [35]. In order to generate a SJPS with [35], I
avoided marginalizing over frequencies and utilized a multidimensional maxima detec-
tor. The predecessor’s SJPS exhibits far more clutter, wrong amplitudes (yellow to
red), missing higher harmonics, and spurious “subharmonics”. In both cases, I applied
Lemire’s extrema detector to sparsify the JPS.
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Algorithm 1: Source Localizer and Characterizer
Data: Discrete-time multi-channel signals.
Result: Sparse joint parameter spaces.

1 initialization; // (2.3), (2.8),

2 compute sets of indices for variable-scale sampling; // (2.9)-(2.14)

// store sets in lookup table

// consider extensions for maxima detector

3 split into frequency bands by applying bandpass filters;
4 split into frames;
5 while getting frames do
6 foreach pair of microphones do
7 foreach frequency band do
8 transform frames of both mic-channels into frequency domain;
9 compute cross spectrum;

10 transform into time domain; // (2.6)

11 apply inverse windowing; // (2.7)

12 apply sets of indices to unbiased cross correlation;
13 sum samples related to each set’s indices; // (2.18)

// joint parameter space per pair and band

14 end
15 concatenate ( 6=sum) each frequency band’s joint parameter space;

// joint parameter space per microphone pair

16 end
17 sum all microphone pairs’ joint parameter spaces;
18 scale joint parameter space by number of pairs of microphones;

// joint parameter space

19 detect maxima; // [80]

20 eliminate maxima in extension (see Section 2.9);
// sparse joint parameter space

21 end

Fig. 2.5: Pseudo code of the proposed algorithm based on variable-scale sampling. Two
slashes indicate a comment.

of a signal’s harmonics, N̂q, that can occur in the range of [fl, fu], where N̂qfl ≤ fu.

2.10 Joint Parameter Estimation

The SJPS is a non-parametric signal representation that contains the JPS’s local maxima
only. To jointly estimate the parameters of one or more harmonic sources, I need to know
the general signal model (1.2) or (1.3) and analyze the SJPS. As shown in Fig. 2.4(a),
the f0’s, the corresponding harmonics, and their respective amplitudes at a certain DOA
belong to a single harmonic source. To determine the f0 of this specific source without
using an explicit estimator or detector, I pick its lowest estimated frequency within a
narrow tolerance window around a certain DOA and ignore isolated clutter. Fig. 2.5
contains the algorithm’s pseudo code, which literally refers to all blocks shown in Fig. 2.1.
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2.11 Metrics

To evaluate the performance of algorithms that localize and characterize harmonic
sources, I employed metrics well known in the field of information retrieval, classifica-
tion, or parameter estimation: the recall, the root mean square error, and the cumulative
distribution function.

2.11.1 Joint Recall

The recall is the ratio of the number of correctly retrieved relevant parameters to the
total number of relevant parameters; a tuple (ϕ, f0) represents such a relevant parameter.
Using the terminology of a confusion matrix, e.g., true positives (TP) and false negatives
(FN), I defined the recall of jointly estimated DOAs and f0s, i.e., the joint recall, as

Ri(ϕ, f0) =
TPi(ϕ, f0)

TPi(ϕ, f0) + FNi(ϕ, f0)
(2.19)

with i denoting the index of a Monte Carlo experiment. The average joint recall of Nc

Monte Carlo experiments is

R(ϕ, f0) =
1

Nc

Nc∑

i=1

Ri(ϕ, f0). (2.20)

A prerequisite in noisy environments or in case of estimation errors is to consider toler-
ance windows around ground-truth items to be able to score true positives. For instance,
an estimate lying inside that region yields a true positive. If two or more estimates are
inside an intersection of two or more ground-truth items’ tolerance windows, I have to
optimally assign the estimates to the ground-truth items. As the following example
shows, this can be challenging.

Example 1. Optimal Assignment As this example shows, assigning estimates to
ground-truth items is not always straight forward. Ambiguities, as described below,
can cause better or worse scores.

0 1 2 3 4 5 6
ix

0

1

2

3

4

5

6

iy

0 1 2 3 4 5 6
ix
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1

2

3

4

5
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iy

Fig. 2.6: Ambiguities in assigning ground-truth items (?) to estimates (◦). The tuple
(ix, iy) represents a coordinate consisting of indices ix and iy.
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Considering a tolerance window of (1, 1), I can assign in the left figure, e.g., es-

timate (3, 2) to item (3, 3). This yields TP = 1, because the second estimate (2, 3)

cannot be assigned to item (4, 1) due to the tolerance window. However, assigning

estimate (3, 2) to item (4, 1) facilitates assigning estimate (2, 3) to item (3, 3), which

yields TP = 2. In the right figure, I can assign estimate (3, 2) to item (3, 3), which re-

sults in TP = 1. This is not the global optimum; thus, I have to assign estimate (2, 3)

to item (3, 3) before assigning estimate (3, 2) to item (4, 1), which is the optimal way

to assign the estimates to the ground-truth items. Assigning two estimated items to

one ground-truth item does not increase the joint recall; but it can decrease the joint

recall when the second estimated item should be assigned to another ground-truth

item in the vicinity. Thus, I assume that one ground-truth item can be assigned to a

single estimated item. �

Inspired by the optimal subpattern assignment (OSPA) distance [82,83] and its label
assignment (I will describe both metrics in Chapter 4), I designed a method that assigns
estimates to ground-truth items in an optimum manner regarding the number of true
positives. The method is as follows: First, I identify elements of the estimates (Y) that
lie inside the tolerance region of an element of ground-truth items (X) and construct a
tuple, (x,y), (x ∈ X, y ∈ Y) which I assign to a set of tuples. Second, I eliminate the
tuple whose first component, x, occurs once in the set and increase the number of true
positives by one. I repeat this procedure until each tuple with a unique first component
is eliminated from the set. The next step is to decompose each tuple and construct
two sets consisting of the tuples’ first and second components considering that there
are no duplicates in a set. After determining the cardinalities of both sets, I increase
the number of true positives by the smallest set’s cardinality. By considering the true
positives, the number of elements in X, as well as the number of elements in Y, I am able
to compute the false negatives which are required to compute the recall and precision.
Figure 2.7 shows another description of the aforementioned assignment algorithm in
terms of pseudo-code. I designed this algorithm to optimally assign the ground-truth
items to estimated items in terms of joint recall.

Example 2. Optimal Assignment Assume that X = {x(1),x(2)} and Y =
{y(1),y(2)} are located at indices {(1, 3), (3, 1)} and {(2, 2), (4, 2)}, respectively. Con-
sidering a tolerance region of one index in all directions, the following assignments
exist: (x(1),y(1)), (x(2),y(1)), and (x(2),y(2)). Due to |Y| = 2, I can choose at most
two assignments. However, if I first select (x(2),y(1)), I cannot select the former
or latter assignment anymore due to the tolerance region. Thus, I need to find the
optimal assignment by applying the aforementioned method. Ensuring an optimal as-
signment, the method selects the components with indices (2, 2) first, because ix = 2
occurs once. Another way to show how this method works is as follows:

ix iy
1 1
1 2
2 2

⇒
ix iy
1 1
1 2

⇒ Ix = {1}
Iy = {1, 2} ⇒ min(|Ix|, |Iy|) = 1
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Algorithm 2: Determining Parameters of the Confusion Matrix
Data: Y (estimates), X (ground-truth items), x ∈ X, y ∈ Y
Result: TP (true positives), FP (false positives), FN (false negatives)

1 ix = iy = 0;
2 foreach y ∈ Y do
3 iy := iy + 1;
4 foreach x ∈ X do
5 ix := ix + 1;
6 if (x−w 5 y 5 x + w) then
7 Ix := Ix ∪ {ix};
8 Iy := Iy ∪ {iy};
9 Ixy := Ixy ∪ {(ix, iy)};

10 end

11 end

12 end
13 repeat
14 Ic = {∅};
15 foreach ix ∈ Ix do
16 Jxy := {(ix, jy) | ∀iy ∈ Iy ∧ (ix, jy) ∈ Ixy};
17 if |Jxy| = 1 then
18 (jx, jy) := Jxy;
19 Ik := {kx | ∀kx ∈ Ix ∧ (kx, jy) ∈ Ixy};
20 Ixy := Ixy \ {(kx, jy) | ∀kx ∈ Ix ∧ (kx, jy) ∈ Ixy};
21 Ix := Ix \ Ik;
22 Iy := Iy \ Ik;
23 Ic := Ic ∪ Ik;

24 end

25 end
26 TP := TP+|Ic|;
27 until |Ic| ≡ 0;
28 TP := TP + min(|Ix|, |Iy|);
29 FN := |X| − TP;
30 FP := |Y| − TP;

// Note that Ix ∪ Ix = Ix leads to |Ix| ≡ |Iy |, |Ix| ≤ |Ixy |, |Ix| ≤ |X|, and |Iy | ≤ |Y|.

Fig. 2.7: Pseudo-code representing the computation of the number of true positives, false
positives, false negatives, and the assignment of estimates to ground-truth items.

First, I eliminate the row in the table with an index ix that occurs once only; the

number of true positives increases by one. Then, I assume the new table’s left and

right column as sets Ix and Iy, respectively, calculate their cardinalities, and select

the set with the lowest cardinality yielding a total number of two true positives. �

2.11.2 Root Mean Square Error

The root mean square error represents the difference between ground-truth items and
estimated items and is defined as

RMSEi1(Θ̂) =

√√√√√ 1

NF,i1

NF,i1∑

i2=1

(Θ̂i2 −Θi2)2 (2.21)
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with Θ̂ and Θ denoting an estimated value and a ground-truth value, respectively. For
instance, Θ̂ = ϕ and Θ = ψ, where ϕ is the true DOA and ψ is the estimated DOA. NF,i1

is the total number of frames of a windowed signal in a single Monte Carlo experiment. It
represents the RMSE of DOAs, and f0s, where ψ and f0 are the ground-truth parameters.
The average RMSE of all Monte Carlo experiments is

RMSE(Θ̂) =
1

Nc

Nc∑

i=1

RMSEi(Θ̂). (2.22)

When considering a tolerance window (as in case of the joint recall metric), I have to
optimally assign estimated items to ground-truth items regarding the number of RMSE
computations per frame. The assignment algorithm has to assign as many estimates
to ground-truth items as possible regardless of each pair’s distance. Figure 2.8 shows
the metric’s pseudo-code, which is partially identical to the recall’s pseudo-code. As
in case of the joint recall, the algorithm first assigns estimates to ground-truth items
yielding the maximum number of possible pairings. Each tuple containing a unique first
ground-truth item is eliminated from the set. The algorithm computes the distances
between a certain ground-truth item and each remaining estimated items, selects the
estimated item featuring the smallest distance to the ground-truth item, and stores the
new pairing (x(ix),y(iy)) in a new set Z until no ground-truth items are left.

2.11.3 Cumulative Distribution Function

To visualize the experimental results of a big-data problem, I employ the cumulative
distribution function. It illustrates a vast number of results in terms of a monotonic
increasing curve. I use X as a random variable whose individual outcomes are RMSEi,
i = 1, ..., Nc. Then, its cumulative distribution function FX(RMSE) for a given RMSE
is

FX(RMSE) = P (X ≤ RMSE). (2.23)

To compute the cumulative distribution function of recalls, I choose Y as a random
variable where its outcomes are the recall values Ri, i = 1, ..., Nc yielding

FY (1− R) = P (Y ≤ 1− R). (2.24)

The cumulative distribution function for recalls is

FY (R) = P (Y ≤ R). (2.25)

However, as I am interested in values of R close to 100%, I may redefine R = 1 − ε to
obtain

FY (1− ε) = P (Y ≤ 1− ε), (2.26)

and finally, to make the graph reflect monotonically decreasing quality in a similar way
as the CDF of the RMSE, I consider

1− FY (1− ε) = 1− P (Y ≤ 1− ε) = P (Y > 1− ε) = P (Y > R). (2.27)
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Algorithm 3: Assigning Estimates to Ground-Truth Items
Data: Y (estimates), X (ground-truth items), x ∈ X, y ∈ Y
Result: Z (set of paired estimates and ground-truth items)

1 ix = iy = 0;
2 foreach y ∈ Y do
3 iy := iy + 1;
4 foreach x ∈ X do
5 ix := ix + 1;
6 if (x−w 5 y 5 x + w) then
7 Ix := Ix ∪ {ix};
8 Iy := Iy ∪ {iy};
9 Ixy := Ixy ∪ {(ix, iy)};

10 end

11 end

12 end
13 Z = {∅};
14 repeat
15 Ic = {∅};
16 foreach ix ∈ Ix do
17 Jxy := {(ix, jy) | ∀iy ∈ Iy ∧ (ix, jy) ∈ Ixy};
18 if |Jxy| = 1 then
19 (jx, jy) := Jxy;
20 Ik := {kx | ∀kx ∈ Ix ∧ (kx, jy) ∈ Ixy};
21 Ixy := Ixy \ {(kx, jy) | ∀kx ∈ Ix ∧ (kx, jy) ∈ Ixy};
22 Ix := Ix \ Ik;
23 Iy := Iy \ Ik;
24 Ic := Ic ∪ Ik;

25 Z := Z ∪ {(x(jx),y(jy))};
26 end

27 end
28 if (|Ic| ≡ 0 ∧ |Ix| > 0) then

29 (jx, jy) = arg min
(ix,iy)∈Ixy

|x(ix) − y(iy)|;

30 Ix := Ix \ {kx | ∀kx ∈ Ix ∧ (kx, jy) ∈ Ixy};
31 Iy := Iy \ {ky | ∀ky ∈ Iy ∧ (jx, ky) ∈ Ixy};
32 Ixy := Ixy \ {(kx, ky) | ∀kx ∈ Ix ∧ (kx, jy) ∈ Ixy,∀ky ∈ Iy ∧ (jx, ky) ∈ Ixy};
33 Z := Z ∪ {(x(jx),y(jy))};
34 Ic = a, a ∈ R \ 0;

35 end

36 until |Ic| ≡ 0;
// Note that Ix ∪ Ix = Ix leads to |Ix| ≡ |Iy |, |Ix| ≤ |Ixy |, |Ix| ≤ |X|, and |Iy | ≤ |Y|.

Fig. 2.8: Pseudo-code representing the assignment of estimates to ground-truth items
required to compute the root mean square error.
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Table 2.1: List of all relevant parameters for generating synthetically spatialized, linearly
frequency-sweeping signals. The variables denote the angular step size ∆ϕ, the elevation
angle ϑ, the number of microphones Nm, the array lengths da, the number of harmonics
Nq, the sweep’s start frequency and stop frequency f1 and f2, the sweep’s duration T2,
the distance between the source and the array’s center |s|, the signal-to-noise ratio SNR,
the signal-to-interference ratio SIR, the temporal signal components’ amplitude α, the
uniform distribution of noise with its interval U(−0.4, 0.4), and the angular grid Φ.

∆ϕ ϑ Nm da Nq f1 f2 T2 |s|

1◦ 90◦ {2, 4, 6, 8, 16} {0.20, 0.30, 0.40} m 4 80 Hz 500 Hz 2 s 3 m

SNR/SIR α ν Φ

{−10, 0, 10, 20, 30} dB 0.4
√

10
SNR
10 U(−0.4, 0.4) {0◦, . . . , 359◦}

It describes the probability that a certain percentage of all experiments yields an 1−R,
i.e.,

FY (1− R) = P (Y ≤ 1− R), (2.28)

of a certain value and smaller. For instance, in the latter case, 1 − R = 0.75 equals a
joint recall of 0.25 (or 25%). I estimate the CDFs, FX(RMSE) and FY (1 − R), by (a)
computing the total number of Monte Carlo experiments, (b) sorting all corresponding
results (i.e., ∀i : RMSEi or ∀i : 1− Ri) in an ascending manner, (c) defining intervals
from 0 to a non-negative number unequal zero, and (d) counting the measurements lying
within those intervals. Employing a CDF to visualize results yields several benefits,
especially in case of Monte Carlo experiments. First, it reveals the whole range of
outcomes, i.e., RMSEs and Rs or 1− Rs, and their corresponding probabilities. Second,
the slope of a CDF tells us in which interval most of the outcomes occur.

2.12 Experimental Design

Before giving details on the experimental design, I introduce algorithmic and environ-
mental parameters valid for all upcoming experiments. Table 2.1 lists most of the algo-
rithmic and environmental parameters. In addition to these parameters, I set the frame
size to 0.032 s, the overlap of frames to 0.010 s, and the size of the maxima detector’s
search window to (6× 6) indices. For the evaluations, I considered a tolerance window
of 10 Hz and 10◦ around the ground truth to define the root-mean-square errors and
joint recalls, especially in case of double-source experiments. I also considered an abso-
lute amplitude threshold of 10−5 in the JPS to limit the number of detected maxima;
maxima below that value were omitted.

In the next subsections, I thoroughly describe the different categories of experiments
with synthesized signals and experiments with synthetically spatialized real speech sig-
nals.
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2.12.1 Experiments with Synthesized Signals

For these experiments, I simulated spatially non-moving and moving harmonic sources
and noise sources in free field considering a uniform circular array withNm ≥ 4. Table 2.1
lists all relevant parameters for generating the corresponding signals described in (1.3).
In some experiments, I added uniformly distributed noise (rather than Gaussian noise)
to avoid clipping signals and to be able to precisely control the distribution’s support. In
all double-source experiments I attenuated or amplified the target source signal yielding
different SNRs.

To determine the best setting of algorithmic parameters, I conducted a vast number
of Monte Carlo experiments in four different categories.

In each experiment, I randomly chose the sampling frequency, fs ∈ {16, 32, 48, 64, 96}
kHz, the number of the Shah function’s sampling points, Nd ∈ {1, 2}, and the param-
eters mentioned before. I initialized each source with a random DOA. In case of two
sources, I set the minimum initial angular difference between each source to 20◦. Mobile
sources were moving along circular paths with an angular velocity of 1 m/s or 3 m/s
clockwise or counter-clockwise causing intersections in spatial trajectories and frequen-
cies. If two microphones were selected only, I considered azimuth angles in the interval
[0, 180] degrees only due to a linear array’s spatial ambiguity [53].

In each category, I carried out 105 Monte Carlo experiments to find the most robust
setting of algorithmic parameters. After doing so, I selected the most robust setting of
parameters for further experiments to determine the algorithm’s performance. These
experiments were, again, Monte Carlo experiments due to varying initial DOAs, veloc-
ities, directions of moving sources, SNRs, and SIRs. I conducted experiments in four
different categories with different algorithms for comparison:

The first category of experiments is as follows: In the first scenario a single non-
moving source (see Fig. 2.9(a)) emitted an frequency-sweeping harmonic signal at varying
locations. In the second scenario a single moving source emitted an frequency-sweeping
harmonic signal while moving along a circular path around the microphone array.

In the second category’s first scenario a non-moving harmonic source emitted an f0-
sweeping harmonic signal at varying locations together with a non-moving noise source
(see Fig. 2.9(b)) featuring a different location. In another scenario each source moved
along a circular path around the array, which featured spatial intersections.

In the third category, there are again two different scenarios: two non-moving har-
monic sources (see Fig. 2.9(c)) and two moving harmonic sources (see Fig. 2.10); in both
scenarios the harmonic sources were emitting an f0-sweeping harmonic signal at different
locations. The goal was to estimate the parameters of both sources.

In category number four, I simulated a trumpet emitting a sequence of tones [18,20,
23] in a noisy environment by considering a non-moving, randomly frequency-hopping
harmonic source and a noise source at varying locations. The signal model was the
same as described earlier, except that the f0 changed abruptly after time intervals of
500 ms. The authors of the aforementioned articles presumably conducted experiments
with a trumpet due to its distinct harmonics and constant tones over (short) time inter-
vals. Especially constant tones are advantageous when estimating frequency components
frame-wise and adaptively. Furthermore, a trumpet is usually part of a classical and con-
temporary orchestra and, thus, a good choice when conducting experiments in the field
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of music signal processing.

Comparisons With Other Algorithms

Additionally, I conducted experiments with four different algorithms denoted as VSS
(variable scale sampling), POPI (position-pitch [35, 45]), NLS (nonlinear least squares
[23]), and aNLS (approximate nonlinear least squares [23]). I considered experiments
from the first three categories with non-moving sources.

At this point, I need to clarify some issues regarding the NLS and the aNLS pub-
lished in [23]. First, one of my master students, Mattia Gabbrielli, implemented both
algorithms following the description in [23]. He realized that some relevant information
was missing. The authors did not specify the line search algorithm to adapt the step
size over iterations. Thus, I decided to implement a backtracking line search based on
the Armijo-Goldstein condition [84]. Second, they did not mention which initial values
they used for their step sizes and starting points. I fixed the initial step size, δ(init) = 1,
and I randomly selected the initial parameters (the DOA and the f0) inside the domain.
Third, almost all arguments of exponential functions in [23] feature a unit; however, all
units in an exponential function’s argument must cancel out. I realized that they did
not multiply the affected arguments with the sampling period Ts. A workaround would
be defining the time instances nt in seconds instead of samples. Regarding the use of
the NLS and aNLS algorithm, I set the model order to 4, the number of time instances
per frame to 80, the number of iterations to 60, the line search method’s contraction
factor and slope modifier to 0.5 and 10−5, respectively, and the sampling frequency, as
suggested in [23], to 8 kHz.

Originally, the POPI algorithm estimates DOAs only. As a consequence, determining
a source’s true f0s using the POPI-algorithm presented in [35,45] is impossible. In order
to generate a SJPS with the POPI algorithm, I avoided marginalizing over frequencies
and utilized a multidimensional maxima detector.

2.12.2 Experiments with Real Speech Signals

To evaluate the algorithm’s performance in real environments, I especially set up an
Austrian-German speech corpus (AMISCO: The Austrian German Multi-Sensor Corpus)
[50, 51]. I thoroughly describe this corpus in Chapter 5. For these experiments I used
recordings of read items from speakers 08 (female) and 22 (male) (see Fig. 5.3). Besides,
I only focused on two- and three-channel recordings in the meeting room with arrays’
maximum diameters of da = 0.30 m and da = 0.60 m, respectively. I applied a short-
term power estimation utilizing a first-order infinite impulse response smoothing of the
signal’s instantaneous power [85] to compute the speaker’s SNR. To extract f0s from all
glottograms, I first computed a one-sided unbiased auto-correlation of each glottogram’s
frame (with a frame length of 32 ms and a frame shift of 5 ms). Then, I employed a
maximum detector to detect the lag of the auto-correlation’s global maximum between
lags of 2 ms and 13 ms. The inverse of the global maximum’s lag corresponds to the f0,
which I used as the true f0 [51].
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(a) fs = 48 kHz
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(b) fs=48 kHz, ϕn=354◦, SNR=−10 dB
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(c) fs = 96 kHz, SIR = 0 dB

Fig. 2.9: Jointly estimated f0s, second, third, and fourth harmonics, as well as DOAs of
a non-moving frequency-sweeping source. The experimental parameters are as follows:
source direction ϕs = 150◦, maximum dimension of microphone array da = 0.40 m,
Nm = 8 microphones, five sampling points (Nd = 2), Ne = 8 is the maximum number
of the selected maxima, angular resolution ∆ϕ = 1◦, and (3, 3) is the window size of
the maxima detector. The frequency-sweeping harmonic signal starts at f0 = 75 Hz
and ends at f0 = 500 Hz. All harmonics exhibit the same amplitude. The distance
between the virtual microphones and the source is |s| = 3 m. The left column illustrates
the time signals, whereas the right column shows the respective SJPSs. In (a) there is a
snapshot of a non-moving frequency-sweeping harmonic source with four harmonics (left)
and the corresponding SJPS (right). In (b) I considered additive white noise yielding
SNR = −10 dB. The plots in (c) show the time signal and the SJPS of two non-moving
frequency-sweeping harmonic sources with (ϕ

(1)
s , ϕ

(2)
s ) = (90◦, 240◦) and SIR = 0 dB.
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Fig. 2.10: Jointly (a) and disjointly (b,c) estimated f0s and their second, third, and
fourth harmonics, as well as DOAs of two moving, frequency-sweeping sources. The ex-
perimental parameters are as follows: initial source directions (ϕ

(1)
s , ϕ

(2)
s ) = (120◦, 240◦),

source velocity vt = 6 m/s, distance between the center of the microphone array and the
sources |s| = 3 m, sampling frequency fs = 96 kHz, SIR = 0 dB, da = 0.40 m maximum
dimension of microphone array, Nm = 8 microphones, five sampling points (Nd = 2),
Ne = 8 is the maximum number of the selected maxima, angular resolution ∆ϕ = 1◦,
and (3, 3) is the maxima detector’s window size. The frequency-sweeping harmonic sig-
nals start with f0 = 75 Hz and f0 = 500 Hz and end at f0 = 500 Hz and f0 = 75 Hz,
respectively. All harmonics exhibit the same amplitude. The plots in (b,c) illustrate
the parameter spaces of disjoint estimates. Without prior knowledge it is impossible to
associate the curves in (b) with their corresponding spatial trajectories in (c). However,
in (a) these curves and trajectories are already associated to each other. The blue lines
(plotted in the 75 Hz-plane) are the spatial trajectories of the angular components.
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Table 2.2: Results of synthetic-data experiments with all parameters. The letters S,
Ŝ, and N denote experiments with a frequency-sweeping harmonic source, a frequency-
hopping harmonic source, and a noise source, respectively. The values below P (Y >R)
are the joint recalls, R(ϕ, f0), in %. The values below P (X≤RMSE) are the root-mean-
square errors, RMSE(ϕ), in degrees (left) and RMSE(f0) in Hertz (right). For instance,
R(ϕ, f0) ≥ 96% for P (Y >R) ≈ 90% implies there is a joint recall of 96% or higher in
90% of all experiments with a harmonic source plus noise source.

P (Y >R)≈100% P (Y >R)≈90% P (Y >R)≈80% P (X≤RMSE)≈100% P (X≤RMSE)≈90% P (X≤RMSE)≈80%

S 100 100 100 ≤ 1.20 / ≤ 3.20 ≤ 0.90 / ≤ 3.15 ≤ 0.80 / ≤ 3.10
S+N ≥ 90 ≥ 96 100 ≤ 5.20 / ≤ 3.60 ≤ 3.90 / ≤ 3.40 ≤ 2.10 / ≤ 3.30
S+S ≥ 83 ≥ 85 ≥ 87 ≤ 2.80 / ≤ 3.50 ≤ 2.00 / ≤ 3.30 ≤ 1.80 / ≤ 3.20

Ŝ+N ≥ 70 ≥ 90 ≥ 96 ≤ 5.50 / ≤ 3.75 ≤ 3.60 / ≤ 1.80 ≤ 2.00 / ≤ 1.60

2.13 Experimental Results

This section summarizes the results of the aforementioned experiments. I start with
the outcomes of the experiments based on fully synthesized signals and close the section
with the outcomes of the experiments based on real speech signals.

2.13.1 Experiments with Synthesized Signals

In each category of experiments described in the previous section, I first conducted Monte
Carlo experiments with varying parameters to describe the algorithm’s robustness for
different settings; Fig. 2.11–2.14 show the corresponding results for each category, and
Table 2.2 summarizes and highlights the important aspects of these figures. Then, I
selected the best parameters, which are fs = 32 kHz, da = 0.40 m, Nm = 8, Ne = 16, and
Nd = 2, to do further experiments; Table 2.3 lists the corresponding results. Afterwards,
I conducted experiments with the POPI, the NLS, and the aNLS algorithm. Table 2.4
lists the most important outcomes. It shows that the new algorithm outperforms all
the others in terms of R(ϕ, f0). Fig. 2.9 (a) and (b) illustrates the SJPS over time of
a non-moving harmonic source and a non-moving harmonic source plus an interfering
noise source, respectively. Fig. 2.9 (c) and Fig. 2.10 show the SJPS over time of two non-
moving harmonic sources and two moving harmonic sources, respectively. As illustrated
in Fig. 2.11, P (Y > R) = 100% for ε ≥ 0. This means that each experiment resulted
in R(ϕ, f0) = 100%. Moreover, the RMSE(ϕ) and the RMSE(f0) are around 0.8◦ and
3 Hz, respectively. Furthermore, I considered experiments with different SNRs and SIRs.
Fig. 2.12 (a) shows that the R(ϕ, f0) ≥ 90% in 100% of all experiments; the RMSE(f0) is
similar to Fig. 2.11 but the range of the RMSE(ϕ) is larger. As presented in Fig. 2.12 (b),
the RMSE(ϕ) decreases for increasing SNR. In Fig. 2.13 (a) there is R(ϕ, f0) ≥ 83% in
100% of all experiments; the RMSE(f0) is similar to Fig. 2.11 but the range of RMSE(ϕ)
is larger but still smaller than in Fig. 2.12 (a). Fig. 2.13 (b) reflects these observations.
The remarkable differences between Fig. 2.14 and Figs. 2.11 – 2.13 are the decreased
RMSE(f0)s and RMSE(ϕ)s.
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Fig. 2.11: Resulting cumulative distribution functions of an experiment with synthesized
moving harmonic sources. The curves describe the probability that the opposite of R in
percent (top), i.e., (ε = 1−R), and the RMSE (bottom) of jointly estimated DOAs and
f0s has a value equal to or less than 1− R and RMSE.

Table 2.3: Results of synthetic-data experiments with the best parameters. The letters S,
Ŝ, and N denote experiments with a frequency-sweeping harmonic source, a frequency-
hopping harmonic source, and a noise source, respectively. In case of the categories
(S + N) or (Ŝ + N), the first value in each column represents the averaged results of all
experiments with varying SNR, the second one for SNR = 30 dB, and the third one with
SNR = −10 dB. In case of category (S + S), the second value in each column represents
the experimental results with SIR = 30 dB, the third with SIR = 0 dB; they are marked
with a star. I set da = 0.40 m, Nm = 8, and fs = 32 kHz.

Scenario R(ϕ, f0) [%] RMSE(ϕ) [◦] RMSE(f0) [Hz]

non-moving S 100 0.26 3.03
moving S 100 0.56 3.03

AVG 30 dB -10 dB AVG 30 dB -10 dB AVG 30 dB -10 dB
non-moving S+N 100 100 98 1.22 0.29 3.48 3.07 3.03 3.20
moving S+N 100 100 98 1.45 0.56 3.66 3.08 3.03 3.21

non-moving Ŝ+N 97 93 97 1.17 0.11 3.23 1.17 1.08 1.58

AVG 30 dB 0 dB AVG 30 dB 0 dB AVG 30 dB 0 dB
non-moving S+S 91 87∗ 93∗ 1.09 0.35∗ 1.56∗ 2.96 3.04∗ 3.01∗

moving S+S 91 87∗ 94∗ 1.25 0.60∗ 1.78∗ 2.95 3.03∗ 2.98∗
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Fig. 2.12: (a) Cumulative distribution functions and (b) root-mean-square errors and
joint recalls of experiments with a synthesized moving harmonic source and a noise
source and with different SNRs.
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Fig. 2.13: (a) Cumulative distribution functions and (b) root-mean-square errors and
joint recalls of experiments with two synthesized moving harmonic sources and with
different SIRs.
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Fig. 2.14: (a) Cumulative distribution functions and (b) root-mean-square errors and
joint recalls of experiments with synthesized non-moving harmonic frequency-hopping
sources and noise sources and with different SNRs.
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Table 2.4: Results of synthetic-data experiments with different approaches: VSS (vari-
able scale sampling), POPI (position-pitch [45]), NLS (nonlinear least squares [23]), and
aNLS (approximate nonlinear least squares [23]). The table consists of three sections
covering the results of experiments with a single non-moving harmonic source, a single
non-moving harmonic source plus noise source, and two non-moving harmonic sources,
respectively. In section two, the first column of each subsection represents the aver-
aged results of all experiments with varying SNR, the second one with SNR = 30 dB,
and the third one with SNR = −10 dB. In section three, the second column in each
subsection represents the results of experiments with SIR = 30 dB, the third one with
SIR = 0 dB; they are marked with a star. I set da = 0.40 m and Nm = 8. Note: The
POPI-algorithm [35] doubles pitch periods and estimates DOAs only. As a consequence,
determining a source’s true fundamental frequencies using the POPI-algorithm is im-
possible.

Algorithm R(ϕ, f0) [%] RMSE(ϕ) [◦] RMSE(f0) [Hz]

VSS 100 0.26 3.03
POPI 100 0.01 3.00
NLS 51 3.80 0.39
aNLS 41 3.53 1.23

AVG 30 dB -10 dB AVG 30 dB -10 dB AVG 30 dB -10 dB
VSS 100 100 98 1.22 0.29 3.48 3.07 3.03 3.20
POPI 100 100 98 0.30 0.02 1.64 3.03 3.01 3.05
NLS 43 58 2 4.34 3.75 6.34 2.05 0.59 5.30
aNLS 32 44 2 4.13 3.48 5.54 2.24 1.27 5.74

AVG 30 dB 0 dB AVG 30 dB 0 dB AVG 30 dB 0 dB
VSS 91 87∗ 93∗ 1.09 0.35∗ 1.56∗ 2.96 3.04∗ 3.01∗

POPI 66 52∗ 92∗ 1.35 0.03∗ 2.26∗ 3.32 3.00∗ 3.17∗

NLS 25 29∗ 10∗ 4.46 3.89∗ 5.21∗ 2.29 0.63∗ 3.56∗

aNLS 19 22∗ 8∗ 4.21 3.52∗ 5.49∗ 2.33 1.23∗ 3.96∗
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2.13.2 Experiments with Real Speech Signals

I initially conducted Monte Carlo experiments to determine the best parameters, which
are as follows: fs = 32 kHz, Ne = 16, and Nd = 2. After selecting the best setting of
parameters, I continued conducting Monte Carlo experiments by randomly selecting
speech recordings. Due to a fixed setting of parameters and environmental properties,
I show P (X ≤ RMSE) and P (Y > R) only. In comparison to Fig. 2.11–2.14, Fig. 2.15
and Fig. 2.16 additionally feature R(ϕ) and R(f0).

2.14 Discussion

In this section, I discuss the outcomes of the experiments with synthesized signals and
the results of the experiments with real speech signals.

2.14.1 Synthesized Signals

In the first category (single harmonic source) the proposed algorithm achieves a R(ϕ, f0) =
100% in each Monte Carlo experiment as shown in Fig. 2.11, Table 2.2, and Table 2.3.
The algorithm perfectly solves the problem of jointly estimating the DOAs and the f0s
of a single harmonic source while keeping the RMSE(ϕ) and the RMSE(f0) low.

In the second category (single harmonic source plus noise source) the algorithm
achieves a R(ϕ, f0) = 100% in experiments with SNR ≥ 0 dB. As shown in Fig. 2.12
the recall starts decreasing for SNR < 0 dB, which highlights the robustness against
noise sources exhibiting the same or lower power as the harmonic source of interest.
Table 2.2 supports this statement by showing that in 80% and 100% of all experiments
the algorithm achieves an R(ϕ, f0) = 100% and an R(ϕ, f0) ≥ 90%. Table 2.2 emphasizes
the algorithm’s robustness for experiments with an SNR ≥ 0 dB; the RMSE(ϕ) and the
RMSE(f0) are still low.

In the third category (two harmonic sources) the proposed algorithm features, as
shown in Fig. 2.13, lower RMSEs than in the previous one; however, R(ϕ, f0) is lower than
in all other categories. This is due to the beating effect during crossings of frequencies
shown in Fig. 2.9 (c) at 0.97 s (left) and at 240◦ and 0.5 s (right) as well as in Fig. 2.10
(b) at 0.4 s and 330 Hz, at 1.18 s and 730 Hz, and at 1.4 s and 550 Hz. This effect causes
destructive interference of the superimposed signals. When estimating both harmonic
sources, the proposed algorithm achieves the highest R(ϕ, f0) when SIR = 0 dB, because
the signals of both sources exhibit the same power, i.e., they are equally present. In case
of SIR = 30 dB, one source dominates the other, which is problematic if both sources are
spatially close to each other. The results in case of SIR = ±10 dB are almost identical,
because one source is dominating the other one.

In comparison to the previous category and as shown in Fig. 2.14, the R(ϕ, f0)
in the fourth category (non-sweeping harmonic source plus noise source) is lower at
fs = 16 kHz due to the signals’ characteristics and the lower frequency resolution at
higher frequencies. In this category, the f0s to-be-estimated are constant over a long
period of time. The RMSE(f0)s increase if the ground truth of f0 exhibits a value at
higher frequencies and if the ground-truth value is not an element of the frequency grid
defined by (2.11). The RMSEs are smaller than in case of frequency-sweeping harmonic
sources because the signals’ f0s are constant over certain time intervals and, though
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Fig. 2.15: Cumulative distribution functions of experiments with two-channel recordings
of (a) a female speaker and (b) a male speaker.
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Fig. 2.16: Cumulative distribution functions of experiments with three-channel record-
ings of (a) a female speaker and (b) a male speaker.
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being uniformly distributed in the frequency range, they occur more often in a range
where the frequency resolution is approximately constant. Comparing with the results
listed in [23], the proposed algorithm does not outperform the joint estimator presented
in [23]. In this specific category and regarding the RMSE, I show that my algorithm
works with harmonic signals based on a musical instrument’s signal model.

So far, the results show that the RMSE(f0) does not fall below 2.9 Hz in categories
one, two, and three. This is due to several reasons: First, the finite number of sampling
periods causes a quantization error. Second, increasing the Shah function’s sampling
interval linearly and sample-by-sample in the lag domain corresponds to a nonlinear
decrease of the frequency interval in the frequency domain (f = 1/T ). Thus, the quan-
tization intervals in the frequency domain get larger to higher frequencies. Third, I
generated the source signals sample-by-sample in time domain using (1.3). However, I
defined the instantaneous frequency in the center of each frame as the ground-truth value,
because the proposed algorithm estimates f0s frame-by-frame. Fourth, the rounding of
sampling periods to the nearest integer causes increasing errors to higher frequencies.
Furthermore, the results show that noise mainly affects the estimation of DOA.

Comparisons With Other Algorithms

As listed in Table 2.4, the proposed algorithm outperforms or compares favorably with
the other algorithms in all three categories in terms of R(ϕ, f0), especially in experiments
with two sources. The NLS algorithm as well as the aNLS algorithm are unable to es-
timate parameters of two or more sources. Their accuracy decreases for low SNRs and
SIRs. The modified POPI algorithm performs better, however, as soon as one source
dominates the other, its estimation accuracy decreases. Focusing on RMSE(ϕ), the
proposed algorithm outperforms all other algorithms in experiments with two harmonic
sources. In case of a single harmonic source, the modified POPI algorithm achieves
the smallest RMSE(ϕ), which is due to the use of a single broadband CCF; it exhibits
a narrow peak at the lag corresponding to the dominant source’s DOA. The NLS ex-
hibits the smallest RMSE(f0), which corresponds to the findings reported in [23]. The
proposed algorithm achieves RMSE(f0) ≈ 3 Hz; this is mostly due to the decreasing
frequency resolution for increasing frequencies. According to [23], the ideal NLS esti-
mator is a maximum likelihood estimator that attains the Cramér-Rao bound in case
of single-source experiments with white Gaussian noise. In such experiments, it should
outperform all other algorithms, but this was not the case due to the following reasons:
The aforementioned statement is true if I would evaluate the cost function for all f0 can-
didates and DOA candidates and search for the global maximum. However, the authors
of [23] presented a version based on gradient ascent, which may converge to the global
maximum (the true DOA and f0) or to local maxima (with wrong f0s) depending on
the initial values and the employed line search algorithm. Furthermore, due to a finite
number of iterations in order to compute the coefficients, the algorithm sometimes failed
to reach the correct DOA. Moreover, I applied uniformly distributed white noise instead
of white Gaussian noise; and, unlike [23], I employed frequency-sweeping signals. To
sum it up, the proposed algorithm is able to jointly estimate the DOAs and f0s of two
or more harmonic sources, whereas the others can cope with a single source only or they
focus on the dominant source.
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2.14.2 Real Speech Signals

This set of experiments employs speech signals recorded in a real environment featur-
ing, e.g., reverberation, (strong) multi-path components, and non-harmonic components
like plosives, fricatives, and noise. Despite these challenging characteristics, the fig-
ures show, however, that the algorithm successfully localizes and characterizes sources
using two or three microphones. Thus, the joint estimation of parameters and their
representation in an SJPS introduces new possibilities to further process the param-
eters in a higher-dimensional sense in a real environment. Besides, evaluating DOA
and f0 disjointly by using the proposed algorithm yields even better results than esti-
mating them jointly. However, estimating parameters disjointly requires an additional
step, the data association, which in turn requires a certain amount of prior knowl-
edge. In Fig. 2.15 and Fig. 2.16, one can see that, sometimes, P (Y > R(ϕ)) = 100%
and P (Y > R(f0)) = 100%, but P (Y > R(ϕ, f0)) < 100%. This is true because R(f0) =
R(ϕ) = 100% does not necessarily imply that R(ϕ, f0) = 100%. For instance, if there
is one reference item and if there are two estimated items, one matching the true
f0 only and the other one matching the true ϕ only, then R(ϕ, f0) = 0%, although
R(f0) = R(ϕ) = 100%. A captured signal’s frame contained direct-path and multi-path
components of a source. Due to the reverberation room’s memory effect, the frequencies
of the multi-path components slightly differed from the frequencies of the direct-path
components within a time frame, because the true f0 continuously changes as a func-
tion of time. Additionally, sometimes the multi-path components dominated in energy.
These effects introduced small errors in f0. Focusing on the joint estimation of DOAs
and f0s, both effects mentioned above decreased the R. Regarding RMSE one can see
that RMSE(f0) < RMSE(ϕ), which is opposite to the experiments with synthetic data.
This is again due to the multi-path components.



Chapter 3

Joint Estimator Based on
Relative Phase-Delay Masking1

In this chapter, I present my second approach to localize and characterize one or more
harmonic sources. It is based on the first approach, but features significant differences
in the stage of jointly extracting parameters. Fig. 3.1 shows the block diagram of the
new algorithm. I will discuss its components shown in Fig. 3.1 (bottom), which differ
from the previously described approach based on variable-scale sampling.

3.1 Contributions and Innovations

The proposed algorithm sparsifies a (quasi-continuous) joint parameter space (JPS) by
using the chirp z-transform (CZT), the relative phase-delay masking (RPDM), an opti-
mized filter bank, and a multi-dimensional maxima detector. It is inspired by [28–36] and
based on [45, 49]. As compared with my the VSS-based algorithm, the novel approach
features several innovations making it more accurate and resource-efficient: First, an
invariant frequency resolution guarantees the same conditions for estimating frequency
components of higher-pitched and lower-pitched harmonic sources; now, on average, the
DOAs and f0s of female speakers are as accurate as the DOAs and f0s of male speakers.
Second, it employs a CZT instead of a discrete Fourier transform (DFT) which enables
us to compute high-resolution cross-spectra of small frequency ranges of interest with
a lower sampling frequency fs. Third, I avoid (back-)transforming cross-spectra into
CCFs in the lag domain to compute unbiased CCFs. Fourth, I circumvent setting up a
comprehensive lookup table. Fifth, I introduce a technique based on a single tolerance
parameter making the new algorithm more robust against small phase mismatches.

3.2 Chirp z-Transform

In the late 60s, Bluestein [87] and Rabiner et al. [88] published articles about the CZT.
They describe how to compute the z-transform at Na points lying on a contour in the

1This chapter is substantially based on the submitted journal paper [86] and was revised and adapted
to the present thesis. As first author of the journal paper, I did everything on my own except the
implementation of the aNLS algorithm and the NLS algorithm [23] implemented by Mattia Gabbrielli.
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Fig. 3.1: Block-diagrams of algorithms based on (top) variable-scale sampling [49] and
(bottom) the chirp z-transform (CZT) and relative phase-delay masking (RPDM). All
components inside the outer dashed rectangles belong to a module for one pair of mi-
crophones and one frequency band. The number of modules depends on the number
of available pairs of microphones and the number of frequency bands. The compo-
nents in the filled rectangle highlight the differences between the present approach and
the approach presented in Chapter 2. The components labeled with ’Windowing’ split
the discrete-time signals xi1 [nt] and xi2 [nt] from microphones with index i1 and i2 into
frames; nt is the sample index of the whole captured signal and n is the sample index of
a windowed signal. Variable hib [nt] is the impulse response of the ib-th bandpass filter,

ϕ is the azimuth, and ϑ denotes the elevation. In (top), c
(ig)
xi1xi2

[l] is the cross-correlation

function (CCF) of the frames x
(ig)
i1

[n] and x
(ig)
i2

[n] with lag-index l, c
(ig)
xi1xi2 ,Li3

[l] is the

CCF sampled with a certain sampling period and sampling phase (both represented

by Li3), c
(ig)
xi1xi2 ,Li3

is the sampled CCF summed over all lags, L
(i1,i2,ib)
Φ,T denotes the

subset of sampling phases and sampling periods for the ib-th band and the microphones
labeled with i1 and i2. The lookup table (LUT) contains all relevant indices for variable-

scale sampling. In (bottom), C
(ig)
xi1xi2

[k] is the cross-spectrum of the frames x
(ig)
i1

[n] and

x
(ig)
i2

[n] with spectral index k, τi1,i2(ω[k]) is the relative phase delay with angular fre-

quency ω[k], Ξ(ig)(φ, θ, ω[k]) is the RPDM, and Ξ̂(ig)(φ, θ, ω[k]) represents the masked
cross-spectrum’s magnitudes.
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z-plane and how to analyze a narrow-band frequency spectrum with high resolution.
The spiral-shaped or circular contour can start at any point, z, in the z-plane. To define
contours for different bands with index ib, I set the normalized angular starting point
βs,ib , the normalized angular spacing βa,ib , and the number of points, Na, on the contour.
For a contour that starts at the angle βs,ib and ends at the angle βs,ib + (Na − 1)βa,ib , I
write

zk,ib = Aib ·W
−k
ib
, (3.1)

with k = {0, 1, . . . , Na − 1} as the ib-th band’s CZT-index. The parameter Aib is the
complex-valued starting point in the z-plane with its radius A0,

Aib = A0 · ej2πβs,ib , (3.2)

and Wib defines if the contour spirals in or out with respect to the origin and depending
on a parameter W0,

Wib = W0 · e−j2πβa,ib . (3.3)

The normalized angular starting point is

βs,ib = f
(ib)
min/fs, (3.4)

and the normalized angular spacing is

βa,ib = (f (ib)
max − f

(ib)
min)/((Na − 1) · fs), (3.5)

where fs is the sampling frequency, f
(ib)
min and f

(ib)
max denote a band’s lowest and highest f0

of interest, respectively. For Aib = 1, W0 = 1, N = Na, and βa,ib = 1/N , where N is the
number of samples of a sequence (x[n])n∈N , the resulting CZT is identical to the DFT.
The general form of the CZT is

X(zk,ib) =

N−1∑

n=0

x[n]z−nk,ib . (3.6)

I rewrite (3.6) by inserting (3.1) into (3.6), which yields

X(zk,ib) =

N−1∑

n=0

x[n]A−nib W
nk
ib
. (3.7)

For localizing and characterizing harmonic sources, I am interested in a very small arc of
the z-plane’s unit circle; thus, I set βs,ib > 0, A0 = 1, Na < N , and consider Bluestein’s
substitution [87–89],

nk =
n2 + k2 − (k − n)2

2
, (3.8)

which results in

X(ib)[k] = X(zk,ib)||zk,ib |=1 (3.9)
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or

X(ib)[k] = ejπβa,ibk
2
N−1∑

n=0

x[n]e−j2πβs,ibnejπβa,ibn
2
e−jπβa,ib (k−n)2 . (3.10)

The angular frequencies corresponding to indices k are

ωib [k] = 2π

(
k
f

(ib)
max − f (ib)

min

Na − 1
+ f

(ib)
min

)
, (3.11)

See [71,90] for efficient implementations of the CZT based on the fast Fourier transform.
The next step is to compute a cross-spectrum of two chirp-z transformed sequences.

3.3 Cross-Spectrum

For a cross-spectrum of the CZT of two sequences (xi1 [n])n∈N and (xi2 [n])n∈N , where
i1 and i2 are the microphone indices and (·)∗ denotes a complex conjugation, I write

C(ib)
xi1xi2

[k] = X
(ib)
i1

[k]X
∗(ib)
i2

[k] (3.12)

with

X
(ib)
i [k] = ejπβa,ibk

2
N−1∑

n=0

xi[n]e−j2πβs,ibnejπβa,ibn
2
e−jπβa,ib (k−n)2 . (3.13)

From that, I derive the relative phase delay for the relative phase-delay masking.

3.4 Relative Phase Delay

In general, the phase delay is a measure of the time delay (in seconds) corresponding to
a signal’s phase shift or, in case of the cross-spectrum, the phase difference. To trans-
form the phase difference of a cross-spectrum’s complex-valued component to TDOAs
in seconds, I divide the negative phase,

−φ(ib)
i1,i2

[k] = −∠C(ib)
xi1xi2

[k] (3.14)

wrapped to [−π,+π], by the angular frequency ωib [k]:

τi1,i2(ωib [k]) = −
φ

(ib)
i1,i2

[k]

ωib [k]
. (3.15)

As described in [91], the delay in time domain, i.e., the TDOA, corresponds to a phase
shift or phase rotation in frequency domain. Computing the maximum argument of
the inverse discrete Fourier-transformed cross-spectrum’s phase (or phase spectrum)
yields the delay estimate in a single-source scenario. Thus, the cross-spectrum’s phase
(delay) relates to the TDOA; computing the cross-spectrum’s group delay is, therefore,
unnecessary.

The next step is to compute a relative phase-delay mask.
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3.5 Relative Phase-Delay Mask

Before defining the RPDM, I compute frequency-independent TDOAs,

τ̄i1,i2(ϕ, ϑ) = −(mi1 −mi2)Tk(ϕ, ϑ)/v, (3.16)

for all directions of interest, (ϕ, ϑ), with

k(ϕ, ϑ) = (sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ), cos(ϑ))T (3.17)

as the spherical unit vector, ϕ and ϑ as the azimuth and elevation, mi1 and mi2 as the
i1-th and i2-th microphone coordinates, and v as the speed of sound. Due to calibration
errors, spherical wave propagation (deviating from the plane wave propagation assump-
tion), and non-ideal acoustic point sources, the estimated TDOAs, τi1,i2(ωib [k]), will
rarely match the exact values of the ideal TDOAs, τ̄i1,i2(ϕ, ϑ). Thus, a lookup-table, as
utilized in the predecessor, is always inaccurate. However, a mask helps us to overcome
these issues, and it introduces robustness. Consequently, I have to consider intervals of

TDOAs, [τ̄
(−)
i1,i2

(ϕ, ϑ), τ̄
(+)
i1,i2

(ϕ, ϑ)], where

τ̄
(−)
i1,i2

(ϕ, ϑ) = min [τ̄i1,i2(ϕ− εϕ, ϑ− εϑ), τ̄i1,i2(ϕ+ εϕ, ϑ+ εϑ)] (3.18)

and

τ̄
(+)
i1,i2

(ϕ, ϑ) = max [τ̄i1,i2(ϕ− εϕ, ϑ− εϑ), τ̄i1,i2(ϕ+ εϕ, ϑ+ εϑ)] (3.19)

with εϕ and εϑ as the DOA-tolerance parameters that introduce the robustness. In
practice, 0 ≤ εϕ, εϑ ≤ ξr, where ξr depends on the system’s mismatches and the required
accuracy. After defining these intervals (intervals for a certain ε are shown in Fig. 3.2), I
assign triples of parameters, (ϕ, ϑ, ωib [k]), to the estimated TDOAs, τi1,i2(ωib [k]), which
results in the binary RPDM:

Ξ
(ib)
i1,i2

(ϕ, ϑ, ωib [k]) =

{
1, τ̄

(−)
i1,i2

(ϕ, ϑ) ≤ τi1,i2(ωib [k]) ≤ τ̄ (+)
i1,i2

(ϕ, ϑ)

0, else
. (3.20)

Assuming ideal algorithmic and environmental conditions, the binary RPDM is sparse
with values unequal zero at indices corresponding to (ϕ0, ϑ0, ωiq [k])(ip), where ϕ0, ϑ0,
and ωiq [k] is the azimuth angle, the elevation angle, and the iq-th harmonic of the ip-th
source, respectively. However, due to, e.g., reverberant environments, I get a sparse
binary RPDM with values unequal zero at indices corresponding to (ϕiϕ , ϑiϑ , ωiω [k])(ip),
where ωiω is a harmonic or inharmonic component, and ϕiϕ and ϑiϑ denote the azimuth
and elevation of a direct path or reflected component, respectively. The captured com-
ponents’ indices are iϕ, iϑ, and iω. The resulting binary RPDM consists of finite regions,
where each region includes the estimate of the true item. To determine this estimate, I

weight the magnitudes of the cross-spectrum, |C(ib)
xi1xi2

[k]|, by the elements of the binary
RPDMs yielding masked cross-spectrum magnitudes.
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Fig. 3.2: Physically possible time delays of arrival (TDOAs) (in samples) for all azimuthal
angles of interest, and a pair of omni-directional microphones placed on the y-axis of the
coordinate system (shown in Fig. 1.2) with a microphone-spacing of 0.5 m, a sampling
frequency of 32 kHz, and DOA-tolerances of εϕ = 5◦ and εϑ = 0◦. The DOA-tolerance
defines the size of the colored area and the robustness of the algorithm. For instance,
the larger the tolerance value, the larger the colored area and the larger the robustness.
If the measured TDOA for a certain frequency, ω, i.e., τi1,i2(ωib [k]), is inside the colored
area spanned by the two curves shown above, the relative phase-delay mask will get
values equal to one at frequencies and angles which correspond to the TDOAs inside the
area.
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3.6 Masked Cross-Spectrum Magnitudes

To obtain the weighted RPDM, I multiply each RPDMs non-zero element by the corre-
sponding magnitude of the cross-spectrum according to

|Ĉ|(ib)i1,i2
(ϕ, ϑ, ωib [k]) = |C(ib)

xi1xi2
[k]| ·Ξ(ib)

i1,i2
(ϕ, ϑ, ωib [k]) (3.21)

I rewrite (3.21) by combining (3.20) and (3.21), which yields the masked cross-spectrum
magnitude or weighted RPDM:

|Ĉ|(ib)i1,i2
(ϕ, ϑ, ωib [k]) =

{
|C(ib)
xi1xi2

[k]|, τ̄
(−)
i1,i2

(ϕ, ϑ) ≤ τi1,i2(ωib [k]) ≤ τ̄ (+)
i1,i2

(ϕ, ϑ)

0, else
. (3.22)

Computing (3.22) for all ϕ, ϑ, and ωib [k] results in the JPS. Applying the multidimen-
sional maxima detector (used in case of the VSS-based algorithm) to the JPS, I set up
a SJPS.

3.7 Sparse Joint Parameter Space

The JPS is a representation of angles ϕ and ϑ as well as frequencies ωib and their

respective amplitudes |Ĉ|(ib)i1,i2
(ϕ, ϑ, ωib [k]) over time. Thus, a point in the JPS at an

arbitrary frame index is labeled as a 4-tuple (ϕ, ϑ, ωib [k], |Ĉ|(ib)i1,i2
). I set up a JPS for

each band and each pair of sensors. As shown in Fig. 3.3, the bands’ JPSs have to
be merged (and not summed), the microphones’ JPSs have to be summed. In order
to eliminate irrelevant information in the JPS shown in Fig. 3.4, I employ an efficient
multidimensional maxima detector as described in [49] to obtain a sparse representation
of the JPS: the sparse joint parameter space (SJPS) as shown in Fig. 3.5. Fig. 3.6 shows
the algorithm’s pseudo code, which should support the programmer when implementing
the algorithm.

3.8 Experimental Design

Before giving details on the experimental design, I introduce algorithmic and environ-
mental parameters valid for all upcoming experiments. I set the frame size to 0.032 s,
the overlap of frames to 0.010 s, and the size of the maxima detector’s search window
to (3× 3) indices. For the evaluations, I considered a tolerance window of 5 Hz and 5◦

around the ground truth to define the root-mean-square errors and joint recalls, espe-
cially in case of double-source experiments. I also considered an amplitude threshold of
10−5 in the JPS to limit the number of detected maxima; maxima below that value were
omitted. Table 3.1 lists the remaining algorithmic and environmental parameters.

The upcoming subsections inform about the experiments with synthesized signals as
well as the experiments with synthetically spatialized speech signals.

3.8.1 Experiments with Synthesized Signals

To determine the performance of the proposed algorithm, its predecessors, and other al-
gorithms, I carried out experiments with non-moving harmonic sources and noise sources
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Fig. 3.3: Illustration of how to sum and merge JPSs. Summing the JPSs of all pairs
of microphones per band and merging each band’s JPS along the angular frequencies ω
yields the overall JPS labeled with (2) in Fig. 3.1. In the figure above, ib represents the
band index, i is the microphone pair’s index, ϕ is the azimuth angle, and ωib denotes
frequencies corresponding to a band with index ib.

Table 3.1: Parameters of the synthetically spatialized, linearly frequency-sweeping sig-
nals. The variables denote the angular step size ∆ϕ, the elevation angle ϑ, the number
of microphones Nm, the array length da, the number of harmonics Nq, the sweep’s start
frequency and stop frequency f1 and f2, the sweep’s duration T2, the distance between
the source and the array’s center |s|, the signal to noise ratio SNR, the signal to interfer-
ence ratio SIR, the temporal signal components’ amplitude α, the normal distribution
of noise with its parameters N (0, 1), and the angular grid Φ.

∆ϕ ϑ Nm da Nq f1 f2 T2 |s|

1◦ 90◦ 8 0.50 m 4 80 Hz 500 Hz 2 s 3 m

SNR/SIR α ν Φ

{−10, 0, 10, 20, 30} dB 0.4
√

10
SNR
10 N (0, 1) {−75◦, . . . , 75◦}
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(a)

(b)

Fig. 3.4: A normalized three-dimensional JPS (similar to the POPI plane [45]) rep-
resenting the jointly estimated DOAs, f0s and their corresponding second, third, and
fourth harmonics with the respective amplitudes (half-wave rectified and normalized to
achieve values between zero and one) computed (a) with the proposed RPDM-based
algorithm and (b) with its VSS-based predecessor [49] based on variable-scale sampling
in lag domain. By comparing the planes in (a) and (b) one can see that both algorithms
correctly estimate the snapshot of the two frequency-sweeping harmonic sources at −45◦

and 45◦ with instantaneous f0s around 180 Hz and 310 Hz. In (b), the widening of the
Gaussian-like kernels to lower frequency bands is due to the increase in a band’s CCF’s
sampling periods to lower frequency bands. However, one can avoid this widening by
employing the RPDM-based algorithm, as shown in (a). In comparison to [35], there is
no pitch-period doubling. To generate these plots, I set the spatial (angular) step size to
1◦, the bandwidths to 36 Hz, the sampling frequency to 32 kHz, the eight-microphone
circular array’s diameter to 50 cm, the frame length to 0.032 s, the frame shift to 0.010
s, the number of sampling points to 5 in case of (b), and the DOA-tolerance to ε = 0.5◦

in case of (a).
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Fig. 3.5: Resulting estimates (similar to trajectories generated by a tracker) after jointly
estimating DOAs, f0s and second, third, and fourth harmonics with the respective
amplitudes. I synthetically spatialized two frequency-sweeping harmonic sources at
φs1 = −95◦ and φs2 = 95◦ and simulated the sampled acoustic wave field observed
by an eight-element uniform circular array with a diameter of 0.5 m.
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Algorithm 4: Source Localizer and Characterizer
Data: Discrete-time multi-channel signals.
Result: Sparse joint parameter spaces.

1 initialization; // (3.1), (3.4), (3.5), (3.18), (3.19)

// design optimized bandpass filters (see [49] )

// compute intervals of time delays of arrival

// compute contours of each band’s chirp z-transform

// consider extensions for maxima detector (see [49])

2 split into frequency bands by applying bandpass filters;
3 split into frames;
4 while getting frames do
5 foreach pair of microphones do
6 foreach frequency band do
7 apply chirp z-transform to both mic-channels;

// use (3.10) or consider implementation as described in [71,90] to increase

efficiency

8 compute cross-spectrum; // (3.12)

9 compute magnitudes;
10 compute relative phase delays; // (3.15)

11 compute relative phase-delay mask; // (3.20)

12 mask cross-spectrum magnitudes; // (3.22)

// joint parameter space per pair and band

13 end
14 concatenate each frequency band’s joint parameter space;

// joint parameter space per pair

15 end
16 sum all pairs’ joint parameter spaces;
17 scale joint parameter space by number of pairs of microphones;

// joint parameter space

18 detect maxima; // [80]

19 eliminate maxima in extension;
// sparse joint parameter space

20 end

Fig. 3.6: Pseudo-code of the proposed algorithm based on relative phase delay masking.
Two slashes indicate a comment.
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in free field. Table 3.1 lists all relevant parameters for generating the corresponding sig-
nals described in Fig. 1.2. As I showed in the previous chapter and in [49], and as I
will show later, there is a negligible difference in R (joint recall) and RMSE between
experiments with moving sources and experiments with non-moving sources. When I
used the new approach, the difference was negligible, too, although the sources’ velocity
was relatively high compared to moving speakers in a real environment. Thus, I skip
the discussion of experiments with moving sources. At the beginning of an experiment,
I assigned a random DOA to each source without considering a minimum angular dif-
ference between two sources (in case of double-source experiments). I conducted Monte
Carlo experiments because of randomly selected initial DOAs, SNRs, or SIRs, in three
different categories and with different algorithms for comparisons.

In the first category, a non-moving source emitted an f0-sweeping harmonic signal
at varying locations. Fig. 3.7 (a) shows a short frame of such a signal.

In the second category, a non-moving harmonic source emitted an f0-sweeping har-
monic signal at varying locations together with a non-moving noise source featuring a
different location (see Fig. 3.7 (b)).

In the third category, two non-moving harmonic sources emitted an f0-sweeping
harmonic signal at different locations (see Fig. 3.5 and Fig. 3.7 (c)). I estimated the f0

of both sources.

Comparisons With Other Algorithms

To compare the performance of five different algorithms, I conducted experiments with
the RPDM-based algorithm, its predecessor denoted as VSS (variable-scale sampling
[49]), as well as POPI (position-pitch [35, 45]), the NLS (nonlinear least squares [23])
and the aNLS (approximate nonlinear least squares [23]). I used the same parameters
as described in the previous chapter.

3.8.2 Experiments with Synthetically Spatialized and Reverberated
Real Speech Signals

In these experiments, I used a subset of the Austrian-German speech corpus [50, 51].
Fig. 3.7 shows representative signals of this corpus. However, I synthetically spatial-
ized the close-talking recordings and added reverberation with different reverberation
times by utilizing a toolbox named image-source method for room impulse response
simulation [92]. By considering the same room geometry mentioned in [51] I simulated a
meeting-room with a reverberation time of T60 = {0, 0.1, 0.5} s and for eight microphones
representing a linear array with a maximum dimension of 0.5 m.

3.9 Experimental Results

This section summarizes the results of the aforementioned experiments. I start with the
outcomes of the experiments based on fully synthesized signals and close the section with
the outcomes of the experiments based on synthetically spatialized and reverberated real
speech signals.
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Fig. 3.7: The plots shown above represent different types of synthetically generated sig-
nals and real recorded signals; (a), (b), and (c) show a signal’s snapshot of a non-moving
linearly frequency-sweeping harmonic source with four harmonics (a) without any in-
terferences, (b) with an interfering Gaussian noise source, and (c) with an interfering,
linearly frequency-sweeping harmonic source. To generate these plots, I set the sam-
pling frequency to fs = 32 kHz and the initial fundamental frequency to f0 = 80 Hz
or f0 = 500 Hz. In case of (b) and (c), a linearly frequency-sweeping source plus
a white Gaussian noise source and two linearly frequency-sweeping sources, I set the

initial DOAs to (ϕ
(1)
s , ϕ

(2)
s ) = (−45◦, 45◦) and SNR = SIR = 0 dB. In case of (c), I in-

verted the sweep of the second source yielding initial fundamental frequencies according

to (f
(1)
0 , f

(2)
0 ) = (80 Hz, 500 Hz). Plot (d) shows the headset microphone’s, plot (e) the

laryngograph’s time signals of the first phoneme /e:/ of the (German-language) sentence
[je: ne:a dE5 tsaIg5 aUf axt ka:m dEstO Unru:Ig5 vU5d@n di: lOYt@] (IPA) read by a female
speaker.
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Fig. 3.8: Resulting cumulative distribution functions of an experiment with synthesized
harmonic sources. The curves describe the probabilities that the opposite of R in percent
(top), i.e., (ε = 1− R), of jointly estimated DOAs and f0s, and the RMSE (bottom) of
estimated DOAs and f0s have a value equal to or less than 1−R or RMSE, respectively.

3.9.1 Experiments with Synthesized Signals

By varying algorithmic parameters and signals based on randomly generated white noise,
I conducted between 1, 000 and 10, 000 Monte Carlo experiments in each category. The
final number of experiments depended on the number of all possible combinations of
parameters. Table 3.2 lists all three categories’ results of the Monte Carlo experiments.
Fig. 3.8, Fig. 3.9, and Fig. 3.10 show CDFs of category one (linearly frequency-sweeping
harmonic source), category two (linearly frequency-sweeping harmonic source and noise
source), as well as category three (two linearly frequency-sweeping harmonic sources),
respectively. The legends’ items 1− R(ϕ), 1− R(f0), and 1− R(ϕ, f0) denote one minus
the recall of DOAs, f0s, and DOAs and f0s, respectively. The remaining legends’ items,
RMSE(ϕ) and RMSE(f0), denote the root-mean-square error’s CDFs of f0s and DOAs,
respectively.

3.9.2 Experiments with Synthetically Spatialized and Reverberated
Real Speech Signals

Due to a fixed set of algorithmic parameters, varying reverberant conditions (T60 =
{0, 100, 500} ms), and a limited number of a male and female speaker’s recordings, I
show results of P (X ≤ RMSE) and P (Y > R) in Fig. 3.11 only.
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Fig. 3.9: (a) Cumulative distribution functions and (b) root-mean-square errors and
joint recalls for different SNRs of experiments with a synthesized harmonic source and
a noise source.
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Fig. 3.10: (a) Cumulative distribution functions and (b) root-mean-square errors and
joint recalls for different SIRs of experiments with two synthesized harmonic sources.



63

Table 3.2: Results of synthetic-data experiments with different approaches: RPDM (the
new approach), VSS (variable scale sampling [49]), POPI (position-pitch [45]), NLS
(nonlinear least squares [23]), and aNLS (approximate nonlinear least squares [23]). The
table consists of three sections covering the results of experiments with a single non-
moving harmonic source, a single non-moving harmonic source plus noise source, and
two non-moving harmonic sources, respectively. In the second section, the first value in
each column represents the averaged results of all experiments with varying SNR, the
second one for SNR = 30 dB, and the third one for SNR = −10 dB. In the third section,
the second value in each column represents the results for SIR = 30 dB, the third for
SIR = 0 dB. I set da = 0.50 m, Nm = 8, and fs = 32 kHz. Note: The POPI-algorithm
[35] doubles pitch periods and estimates DOAs only. As a consequence, determining a
source’s true fundamental frequencies using the POPI-algorithm is impossible.

Algorithm R(ϕ, f0) [%] RMSE(ϕ) [◦] RMSE(f0) [Hz]

RPDM 100 0.92 1.05
VSS 93 1.01 1.41
POPI 100 0.01 3.24
NLS 49 3.54 0.30
aNLS 39 3.81 1.15

AVG 30 dB -10 dB AVG 30 dB -10 dB AVG 30 dB -10 dB
RPDM 98 100 86 1.68 0.94 2.79 1.36 1.06 2.12
VSS 90 94 75 1.77 0.84 3.06 1.57 1.30 2.32
POPI 100 100 98 0.48 0.02 1.69 3.31 3.24 3.56
NLS 37 48 3 3.95 3.68 3.80 1.60 0.41 5.21
aNLS 30 39 3 4.03 3.88 3.42 1.61 1.16 4.44

AVG 30 dB 0 dB AVG 30 dB 0 dB AVG 30 dB 0 dB
RPDM 90 80 97 1.26 1.01 1.41 1.19 1.08 1.27
VSS 87 81 90 1.34 1.04 1.43 1.41 1.31 1.49
POPI 62 52 91 1.47 0.03 2.06 3.71 3.24 3.70
NLS 24 28 12 4.00 3.71 4.33 1.69 0.52 2.65
aNLS 17 20 8 3.98 2.63 4.71 1.99 1.15 2.88
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Fig. 3.11: Cumulative distribution functions of joint recalls and root-mean-square errors
of experiments with synthetically spatialized and reverberated real speech signals of a
female (a,c,e) and a male (b,d,f) speaker. The reverberation times are as follows: (a,b)
T60 = 0 ms, (c,d) T60 = 100 ms, and (e,f) T60 = 500 ms.
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3.10 Discussion

In this section, I discuss the experimental results as well as the RPDM-based algorithm’s
improvement in frequency resolution and the computational complexity. Additionally, I
compare the results with the outcomes of the VSS-based algorithm.

3.10.1 Experiments with Synthesized Signals

In the first category (single harmonic source) the RPDM-based algorithm achieved the
highest recall rates, R(ϕ) = R(f0) = R(ϕ, f0) = R(ϕ, f0) = 100%, and lowest aver-
age root-mean-square errors, RMSE(ϕ) = 0.92◦ and RMSE(f0) = 1.05 Hz, as shown in
Fig. 3.8 and Table 3.2. Thus, the algorithm perfectly solves the problem of localizing
and characterizing a frequency-sweeping harmonic source in free field in terms of the
(average joint) recall.

Regarding the second category (single harmonic source plus noise source), the CDFs
shown in Fig. 3.9 (a) represent the results of all SNR-experiments. One can see that
∀ε : R(f0) ≥ R(ϕ) ≥ R(ϕ, f0) and P (Y > R) 6= 100% around ε = 0 which is due
to experiments with SNR ≤ 0 dB. However, for SNR > 0 dB, the algorithm achieved
P (Y > R) = 100%. These numbers highlight the algorithm’s robustness in case of
white Gaussian noise sources featuring a power smaller than the power of harmonic
sources. Fig. 3.9 (b) (top) shows a small increase in RMSE(ϕ), which is attributable
to experiments with SNR ≤ 0, as Fig. 3.9 (b) (bottom) confirms. Table 3.2 empha-
sizes the algorithm’s robustness for experiments with SNR = {−10, . . . , 30} dB, because
R(ϕ, f0) = 98%. The average RMSEs, RMSE(f0) ≈ 1 Hz and RMSE(ϕ) ≈ 1◦, are still
low.

Fig. 3.10 (a) illustrates the results of all SIR-experiments in category three (two har-
monic sources). Similar to Fig. 3.9 (a), Fig. 3.10 shows that ∀ε : R(f0) ≥ R(ϕ) ≥ R(ϕ, f0)
and P (Y > R) 6= 100% for ε ≤ 29%. Again, this is due to experiments with SIR ≤ 0 dB.
There are two major reasons why I cannot achieve R(·) = 100% in any experiment:
First, the beating effect during crossings of frequencies [67]. Superimposed signals
might cancel out each other at frequency crossings; these crossings cause destructive
interference. Though having ground-truth data at frequency-crossings, there is no esti-
mate at all due to destructive interference resulting in missing estimates. Second, the
cross-spectrum (and the CCF) emphasizes the dominating source due to its nonlinear
characteristics [93, 94]. Thus, if one source dominates, the other one is literally sup-
pressed. If both sources feature the same power, i.e., SIR = 0 dB, I achieve the highest
R(ϕ, f0); they are equally present. If one source dominates the other, which is true in
case of SIR = {−10, 10, 20, 30} dB, the recall is lower. If SIR = ±10 dB, the results are
identical because one source, no matter which one, dominated the other source.

Comparisons with other Algorithms

In the following lines, I will discuss the results listed in Table 3.2 of the RPDM-based
algorithm in relation to the VSS-based algorithm, the modified POPI algorithm, and
the NLS approach as well as the aNLS approach.

On average, the RPDM-based algorithm outperforms its predecessor, the VSS-based
algorithm, in each category, especially in terms of RMSE(f0) and R(ϕ, f0), which is
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3-8% higher. These results indicate that the VSS-based algorithm’s nonlinear frequency
resolution to higher frequencies affects its performance. There is also a decrease in
RMSE(ϕ) in case of the RPDM-based algorithm. The increasing number of grid-points
to higher frequencies leads to a higher number of estimates that are closer to the ground
truth. As a consequence, this yields an increased R(ϕ, f0).

On average, the modified POPI algorithm is at least as good or slightly better than
the RPDM-based algorithm in terms of R(ϕ, f0) and RMSE(ϕ) in experiments with a
single source and a noise. However, once a second harmonic source interferes, the per-
formance of POPI dramatically decreases and the RPDM-based algorithm outperforms
POPI for each measure. This is because POPI is based on the sum of CCFs yielding a
single CCF that carries information of two sources, where the dominating source is em-
phasized and the other one literally suppressed. Moreover, POPI exhibits pitch-period
doubling and the worst RMSE(f0)s. However, it features the best RMSE(ϕ) due to the
use of a summed CCF, and, as shown in the table, it can successfully cope with white
Gaussian noise.

In general, the RPDM-based algorithm yields very promising results especially in
noisy experiments and experiments with two harmonic sources. The invariant frequency
resolution leads to an RMSE(f0), which is always best except in the single-source exper-
iments, where the NLS performs best.

3.10.2 Experiments with Synthetically Spatialized and Reverberated
Real Speech Signals

Fig. 3.11 (a) and (b) illustrate the CDFs of experiments with a female speaker and a male
speaker in free field. In both cases, the RPDM-based algorithm perfectly estimated the
speakers’ DOAs, i.e. ∀ε : P (Y > R(ϕ)) = 100%. Consequently, the joint recall mostly
depends on the capability of estimating the frequency components.

Fig. 3.11 (c) and (d) show the CDFs of experiments featuring a reverberant environ-
ment with a reverberation time of T60 = 100 ms. In comparison to the previous figures,
there is almost no change in P (Y > R(ϕ)) and P (Y > R(f0). However, there is a de-
crease in the number of experiments exhibiting a high joint recall, R(ϕ, f0), in case of
the male speaker and the female speakers.

Fig. 3.11 (e) and (f) illustrate the CDFs of experiments with a reverberation time of
T60 = 500 ms. Compared with Fig. 3.11 (c) and (d), there is a decrease in P (Y > R(ϕ))
but no noticeable decrease in P (Y > R(f0)). Reverberation causes a decrease in localiza-
tion accuracy, as stated in many papers about source localization. However, it does not
affect the signals’ frequency components except in the presence of resonance frequencies
depending on the room geometry. There is a small decrease in P (Y > R(ϕ, f0)), which
shows, again, that the joint recall rather depends on the frequency components than the
DOAs.

Compared with the results of real-data experiments carried out with the VSS-based
algorithm, the new approach shows a reduction in RMSE (up to 4 Hz and 4◦). However,
the experiments with real signals in the previous chapter and in [49] were conducted
with two and three microphones only. According to Fig. 3.11 (a-f) (bottom), the RMSEs
slightly change for increasing reverberation time T60, and their CDFs are almost identical
for experiments with male and female speakers, especially in case of RMSE(f0).
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3.10.3 The Use of Linear Sweeps

In the previous chapter and in [49] I evaluated the algorithms’ performance by using ex-
ponential sweeps in synthetic-data experiments. After conducting experiments with the
RPDM-based approach, I noticed that this kind of sweeps were in favor of the predeces-
sor’s major drawback—the nonlinear frequency resolution. However, this time I applied
linear sweeps to the VSS-based algorithm, too. According to the results, I realized that
it featured a decreased performance due to the discussed drawback. Table 3.2 shows that
by employing the CZT and the RPDM I can solve this issue. Thus, the RPDM-based
approach outperforms the VSS-based approach in terms of RMSE(ϕ), RMSE(f0), and
R(ϕ, f0) in all experimental categories. These results highlight one novelty of the new
approach: the invariant frequency resolution.

3.10.4 Improvements in Frequency Resolution

In comparison to the RPDM-based algorithm, the frequency resolution of the VSS-based
algorithm is nonlinearly decreasing to higher frequencies. The predecessor uniformly
samples the cross-correlation function around lag zero with different sampling intervals.
It increases the intervals lag-wise, which yields a linear increase in sampling period but a
non-linear decrease in frequency, f0 = T−1

0 . As a consequence, the predecessor features
a non-linearly decreasing frequency resolution for lag-wise decreasing periods,

f0[l · Ts] = (l · Ts)−1, (3.23)

f0[l · Ts + Ts] = (l · Ts + Ts)
−1 (3.24)

with l as the lag-index and Ts as the sampling period. This decrease in frequency
resolution causes an increasing RMSE to higher frequencies. I can decrease the RMSE
by increasing fs; however, I cannot eliminate the nonlinear resolution. The proposed
algorithm samples a unit circle’s arc uniformly, which yields uniformly spaced frequencies
according to

f0[k] = k · (fmax − fmin)/(M − 1) + fmin (3.25)

with fmin and fmax as the bounding frequencies, M as the number of the chirp’s points,
and k as the frequency index.

3.10.5 Computational Complexity

It is difficult to clearly determine the computational complexity of an algorithm in terms
of the big O-notation when using unfree software, e.g., MATLAB. Most built-in func-
tions are not accessible. Thus, I failed to investigate the function’s implementation and,
as a consequence, its exact complexity. (For instance: A trigonometric function, e.g.,
sin, either returns values stored in a lookup table or returns values based on a com-
putation with order O(M(n)log2(n)), where M(n) depends on the computer number
format.) However, in Table 3.3 I list variables denoting the number of a module’s ap-
plication for a single frame. At first glance, the predecessor denoted as VSS requires
fewer computations, because there are fewer variables in the last three rows. Tak-
ing a closer look at the variables, one can see that NΦ ≈ Nϕ ·Nϑ, NT ≈ Nb ·Nk, and
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Table 3.3: Computational complexity of the VSS-based approach and the RPDM-based
approach. This table lists variables denoting the number of a module’s application per
frame. For instance, NBPF = Nm · Nb means that a bandpass filter has to be applied
Nm · Nb times, where Nm and Nb is the number of microphones and the number of
bands, respectively. The remaining variables are as follows: NBPF is the number of
bandpass filters, NJPS is the number of joint parameter spaces, NSJPS is the number
of sparse joint parameter spaces, NMAX is the number of maxima detections, NDFT

is the number of discrete Fourier transforms, NCSP is the number of computing the
cross-spectrum, NIDFT is the number of inverse discrete Fourier transforms, NVSS is
the number of variable-scale sampling procedures, NSUM is the number of summations,
NCZT is the number of chirp z-transforms, NRPD is the number of relative phase delays,
NRPDM is the number of applying relative phase-delay masking, and NWGT is the number
of weightings. Moreover, Np is the number of microphone pairs, NT is the number of
sampling periods, NΦ is the number of sampling phases, Nk is the number of CZT-indices
per band, Nϕ is the number of azimuth angles, and Nϑ is the number of elevation angles.

# Applications VSS RPDM # Applications

NBPF Nm ·Nb Nm ·Nb NBPF

NJPS 1 1 NJPS

NSJPS 1 1 NSJPS

NMAX 1 1 NMAX

NDFT Nm ·Nb Nm ·Nb NCZT

NCSP Np ·Nb Np ·Nb NCSP

NIDFT Np ·Nb Np ·Nb ·Nk NRPD

NVSS Np ·NT ·NΦ Np ·Nb ·Nk ·Nϕ ·Nϑ NRPDM

NSUM Np ·NT ·NΦ Np ·Nb ·Nk ·Nϕ ·Nϑ NWGT

NT ·NΦ ≈ Nb ·Nk ·Nϕ ·Nϑ. This implies that the number of each component’s applica-
tion per frame is approximately the same in case of the RPDM-based approach and its
predecessor. Both algorithms are real-time capable for a manageable number of bands
and microphones, even when a single core for computations is used only.



Chapter 4

Bayesian Multiple-Target
Trackers1

Albeit there is a large number of publications about multiple-target tracking, I usually
stick to literature published by those who originally invented/introduced new algorithms.
For instance, Ronald P. S. Mahler thoroughly described the random finite sets (RFS), the
finite set statistics (FISST), and Bayesian multiple-target tracking in [95,96]. Apart from
Mahler, the Vo Brothers, Ba-Ngu Vo and Ba-Tuong Vo, carefully described multiple-
target trackers, e.g., the Gaussian mixture probability hypothesis density (GM-PHD)
filter [97], the Gaussian mixture cardinalized probability hypothesis density filter (GM-
CPHD) filter [98], and the Gaussian mixture cardinality-balanced multi-Bernoulli multi-
target (GM-CBMeMBer) filter [99]. Besides, Daniel E. Clark published literature about
the basics of random-set filtering [100].

The upcoming part summarizes all the aforementioned references about multiple-
target tracking. But before going into detail, I summarize and explain its origin: single-
target filtering and Bayesian multiple-target tracking.

The goal in the former field is to estimate a system’s state that changes over time
by utilizing a sequence of noisy observations. This state, for instance, contains kine-
matic characteristics, i.e., its position in space and its velocity, etc. In practice, I have
access to observations representing noise-corrupted sensor measurements. To estimate a
target’s state after receiving a new observation and without reprocessing the preceding
observations, I apply a recursive filter.

In a single-target environment, I usually represent a state and an observation as a
vector. However, in a multiple-target environment, a state and an observation are finite
sets (or collections) of vectors. An observation is a set of various elements, e.g., observed
states distorted by noise as well as spurious target-independent observations, known as
clutter. Targets appear and disappear in a scene (e.g., the surveillance region); the
number of (observed) states vary with time.

The whole concept of multiple-target tracking is based on finite sets. They represent

1This chapter is based on research initiated during my stay at the DSP-Lab at University of Califor-
nia, San Diego (UCSD). Collaboration with Bhaskar D. Rao is gratefully acknowledged. My personal
contributions are the application of FISST-based multiple-target trackers (GM-PHD, GM-CPHD, GM-
CBMeMBer) and the application of the optimal subpattern assignment (OSPA) distance in the field of
joint parameter estimation and parameter tracking of harmonic sources.
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multiple-target states in all variations, e.g., an empty set when no target is active or a
set consisting of three targets. In contrast, it is impossible to describe a target-less scene
by vector analysis alone.

Bringing it all together, the objective of multiple-target tracking is to jointly estimate
the number of targets and their states at each instant of time from a sequence of noisy
and/or cluttered observations.

To associate observations with their corresponding targets in multiple-target track-
ing, I require a huge amount of computational resources. However, utilizing RFS [101]
bypasses the association problem. In theory, a certain number of targets is a set-valued
state; a certain number of observations is a set-valued observation. Considering this
specific formulation, I can dynamically estimate the states of multiple targets in a noisy
and cluttered environment using a Bayesian filtering framework [101]. Moreover, this
formulation results in a generalization of the single-target Bayesian filter. In the classical
single-target (Bayesian) framework, a state as well as an observation is a (vector-valued)
random variable’s realization. In the multiple-target framework, a (multiple-target) state
and (multiple-target) observation is a finite set (of vectors). As a consequence, I need
the concept of RFS to apply the Bayesian framework to this specific (multiple-target)
tracking problem.

For the first time in 1996, Mahler used the RFS theory in the field of multiple-sensor
and multiple-target filtering [102]. In the years that followed, the RFS theory evolved into
the FISST theory. Unfortunately, the resulting FISST-based Bayesian multiple-target
recursion was intractable. In 2000, Mahler approximated the recursion by employing
the probability hypothesis density (PHD) filter. Described in [97, 101], this filter prop-
agates the first-order statistical moment (or intensity) of the states’ RFS. In contrast
to the previous approaches, the PHD recursion operates on a single-target state space
(though being a multiple-target tracking algorithm). As a consequence, it circumvents
the combinatorial increase of computational resources that would have been caused by
data association. However, at this point the PHD recursion contains integrals which lack
closed-form solutions.

In 2005, Vo et al. introduced a closed-form solution to the PHD recursion for linear
Gaussian and mildly nonlinear multiple-target models. In [97], they present an analytic
solution to the PHD recursion for linear Gaussian target dynamics and a Gaussian
birth model based on Kalman filtering, i.e., by propagating Gaussian components: the
means, the weights, and the covariances of states. By using the GM-PHD filter, I can
extract the state estimates from the posterior intensity more efficiently compared with
clustering in a particle-based approach [97] (an approach based on sequential Monte
Carlo techniques). (Integrating a density function over its entire space yields one; in
comparison to that, integrating an intensity function over its entire space can yield values
smaller or larger than one.) A GM-PHD filter’s drawback is the increasing number of
Gaussian components over time. To mitigate this problem, I can employ pruning and
merging, which I will describe later.

As mentioned before, multiple-target filtering has its origin in single-target filtering.
To understand the link between both, I first have to focus on single-target filtering as
described below.
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4.1 Single-Target Filtering

In a hidden Markov model, a state xk ∈ X with X as a set of vectors at time index k is
not directly observable. However, observing it yields an observation zk ∈ Z, with Z as
a set of vectors, which represents a state distorted by noise and/or interferences. Given
a state xk−1 at time index k − 1, the density function of translating a state from time
index k − 1 to time index k, i.e., from xk−1 to xk, is fk|k−1(xk|xk−1). Given a state xk,
the density function of receiving the observation zk is gk(zk|xk). Given all observations
z1:k = (z1, . . . , zk) with time indices {1, . . . , k}, a state’s probability density at time
index k is pk(xk|z1:k), where pk(·) is the posterior density at time index k. Knowing
the initial density p0(·), the posterior density is the likelihood times the prior density
divided by the likelihood marginalized over the states according to

pk(xk|z1:k) =
gk(zk|xk)pk|k−1(xk|z1:k−1)∫
gk(zk|x)pk|k−1(x|z1:k−1)dx

, (4.1)

with the prior density

pk|k−1(xk|z1:k−1) =

∫
fk|k−1(xk|x)pk−1(x|z1:k−1)dx (4.2)

where pk(·|z1:k) contains the entire information about xk. By using the minimum mean
squared error (MMSE) criterion or the maximum a posteriori (MAP) criterion [97], I
can estimate xk.

When I apply single-target filtering (as described before) in a multiple-target sce-
nario, I fail in determining which target generated which observation. There are methods
based on single-target filtering that handle multiple targets and associate observations to
their corresponding states, but these methods are usually computationally expensive [95].
However, a simple and clear solution to multiple target tracking and association is em-
ploying multiple-target filtering based on RFS and FISST.

4.2 Multiple-Target Filtering

The objective of multiple-target filtering is to jointly estimate the number of targets and
their states at each instant of time from a sequence of noisy and/or cluttered observa-
tions.

Given the number of targets at time index k − 1, Nx,k−1, the target states at time
index k − 1 are {xk−1,1, . . . ,xk−1,Nx,k−1

}, where ∀i : xk−1,i ∈ X The states’ order in
a set is irrelevant for RFSs. Given the number of observations at time index k, Nx,k,
the observations at time index k are {zk,1, . . . , zk,Nz,k

}, where ∀i : zk,i ∈ Z. These
observations may originate from targets and clutter.

In multiple-target filtering, states and observations are finite sets of subsets, Xk ∈
F(X ) and Zk ∈ F(Z), respectively, where

Xk =
{
xk,1, . . . ,xk,Nx,k

}
(4.3)

and

Zk =
{
zk,1, . . . , zk,Nz,k

}
(4.4)
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with F(X ) ⊆ X and F(Z) ⊆ Z. Moreover, each set of states and observations, Xk and
Zk, is a multiple-target state and multiple-target observation, respectively, modeled as an
RFS. While being a set, Xk is a finite-set-valued random variable featuring a (discrete)
probability mass function and a joint density function; i.e. for a given cardinality of
Xk, |Xk|, the set’s probability density function represents the joint distribution of each
element in Xk, whereas the probability mass function of Xk characterizes its cardinality.

In case of multiple-target filtering based on RFS and FISST, targets may die, survive
(evolve), or appear at time index k yielding Nx,k new states. Given a multiple-target
state Xk−1, each xk−1 ∈ Xk−1 survives and continues existing at time index k with
probability pS,k(xk−1) before it will be translated into xk according to fk|k−1(xk|xk−1).
Considering the terminology of RFSs, the aforementioned statement is equal to the RFS

Sk|k−1(xk−1) =

{
{xk} if target survives

∅ if target dies
. (4.5)

It is a non-empty set, if the target survives; otherwise it is empty.
A new target begin to exist after birth (which is independent of any existing target)

or spawning (which depends on existing targets). For instance, if a sensor (array) fails
to resolve a group of closely spaced targets, this group will be represented as a single
state. Once the targets diverge from each other and the sensor resolves each target, the
group will suddenly be represented as multiple (spawned) targets. Assuming random
finite sets for birth, Γk, death and surviving, Sk|k−1(xk−1), and spawning, Bk|k−1(xk−1),
the multiple-target state Xk = {xk,1, . . . ,xk,Nx,k

} is

Xk =

{ ⋃

i∈Xk−1

Sk|k−1(i)

}
∪

{ ⋃

i∈Xk−1

Bk|k−1(i)

}
∪ Γk. (4.6)

Given a state xk, a sensor detects it with probability pD,k(xk) or misses it with prob-
ability 1 − pD,k(xk) and obtains a state-related observation zk according to gk(zk|xk).
(The detection probability, pD,k(xk), affects the multiple-target tracker’s posterior in-
tensity; I will come back to it in (4.13)). Considering the terminology of RFSs, this is
equal to

Ok(xk) =

{
{zk} if measured

∅ if missed
(4.7)

Considering clutter as an independent RFS, Kk, the RFS representing the received
observations at the sensor is

Zk =

{ ⋃

i∈Xk

Ok(i)

}
∪Kk (4.8)

To describe the translation of a multiple-target state or a multiple-target observation,
I employ the multiple-target transition density fk|k−1(Xk|Xk−1) and the multiple-target
likelihood gk(Zk|Xk), which were explicitly derived in [101, 103, 104]. Similar to (4.1),
the optimal multiple-target Bayes filter’s multiple-target posterior density is

pk(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫

gk(Zk|X)pk|k−1(X|Z1:k−1)µs(dX)
, (4.9)
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with its prior density

pk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|X)pk−1(X|Z1:k−1)µs(dX) (4.10)

where pk(·|Z1:k) contains the entire information about multiple-target state Xk and
where µs is an appropriate reference measure on F(X ) [104]. Solving the integrals in
(4.9) is intractable; thus, I need an approximation to make multiple-target tracking
feasible. For instance, the PHD filter bypasses this intractability.

4.3 PHD Filtering

By using the PHD filter to approximate the optimal multiple-target Bayes filter recur-
sion, I propagate the FISST-based first moment of the multiple-target posterior density,
also known as the posterior intensity or probability hypothesis density [101]. In com-
parison to the posterior density, integrating the posterior intensity does not yield a unit
value. The intensity DX is a nonnegative function. Integrating DX in a region S yields
the expected number of targets in that region, i.e.,

∫

S
DX(x)dx = E{|S ∩X|} . (4.11)

For any state x, its intensity at this specific point, x, is DX(x). The intensity’s local
maxima are vectors in X and, thus, potential target states. The total number of targets,
N̂x, in a scene is

∫
DX(x)dx = N̂x. (4.12)

To estimate the elements in X, I choose the bN̂xe highest peaks in DX(x), where b·e
denotes rounding to the nearest integer.

As described in [97], considering the following assumptions enables us to successfully
employ the PHD filter. First, each target evolves independently. Second, each tar-
get generates observations independently. Third, spurious observations (or clutter) are
Poisson distributed and independent of observations generated by targets. Fourth, the
multiple-target predicted density pk|k−1 is Poisson-distributed. Furthermore, assume
that the densities are approximately intensities, pk ∼ Dk and pk|k−1 ∼ Dk|k−1; then,
after applying FISST [101] to (4.9) and (4.10), the posterior intensity is

Dk(x) = [1− pD,k(x))]Dk|k−1(x) +
∑

z∈Zk

pD,k(x)gk(z|x)Dk|k−1(x)

κk(z) +
∫
pD,k(ξ)gk(z|ξ)Dk|k−1(ξ)dξ

(4.13)

with its prior intensity

Dk|k−1(x) =

∫
pS,kfk|k−1(x|ξ)Dk−1(ξ)dξ +

∫
βk|k−1(x|ξ)Dk−1(ξ)dξ + γk(x), (4.14)

where βk|k−1 is the intensity of Bk|k−1, γk is the intensity of Γk, and κk is the clutter
intensity of Kk. For instance, the clutter intensity can be modeled as follows:

κk(zk) = λc · ck(zk) (4.15)
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with λc as the average number of Poisson-distributed false alarms and ck(zk) as the
clutter distribution. The intensities, (4.13) and (4.14), are related to (4.6) and (4.8).

To sum it up, the PHD filter operates on the single-target state space, whereas the
multiple-target Bayes filter operates on the multiple-target state space, as formulated in
(4.9) and (4.10). However, the PHD recursion, it involves multi-dimensional integrals,
lacks a closed-form solution in general [105]. Assuming linear Gaussian multiple-target
models bypasses this problem; it yields a closed-form solution of the PHD recursion: the
Gaussian mixture probability hypothesis density (GM-PHD) filter.

4.4 GM-PHD Filtering

When employing the GM-PHD filter, I additionally have to consider the following as-
sumptions: First, each target moves according to a linear Gaussian dynamical model
with state transition matrix Fk−1, mean Fk−1ξ, and process noise covariance Qk−1:

fk|k−1(x|ξ) = N (x;Fk−1ξ,Qk−1) . (4.16)

Second, each sensor observes a scene according to a linear Gaussian observation model

gk(z|x) = N (z;Hkx, Rk) , (4.17)

where Hk is the observation matrix, Hkx is the mean, and Rk is the observation noise
covariance matrix. Third, the survival probabilities and detection probabilities are inde-
pendent of the states, i.e., pS,k(x) = pS,k and pD,k(x) = pD,k. Fourth, the birth intensity
as well as the spawning intensity are based on Gaussian mixtures according to

γk(x) =

Nγ,k∑

i=1

w
(i)
γ,kN

(
x;m

(i)
γ,k, P

(i)
γ,k

)
(4.18)

and

βk|k−1(x|ξ) =

Nβ,k∑

i=1

w
(i)
β,kN (x;F

(i)
β,k−1ξ + d

(i)
β,k−1, Q

(i)
β,k−1), (4.19)

where Nγ,k is the number of born targets, Nβ,k denotes the number of spawned targets,
wγ,k and wβ,k are the born and spawned targets’ weights, respectively, Pγ,k represents
the born target’s covariance matrix, and where dβ,k−1 defines the difference between the
spawned target and its parent target. The means m represent the intensities’ peaks.

4.4.1 The Previous Posterior Intensity

The posterior intensity at time index k − 1 is a Gaussian mixture:

Dk−1(x) =

Nk−1∑

i=1

w
(i)
k−1N

(
x;m

(i)
k−1, P

(i)
k−1

)
, (4.20)

where Nk−1 is the previous posterior intensity’s number of Gaussian components at
time index k − 1 (i.e., after predicting and updating the states in the previous instant
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of time). Its corresponding track table, Lk−1, consists of a set of quadruples (4-tuples),

which represent the weights, the means, the covariances, and the labels, l
(i)
k−1, of each

state:

Lk−1 =
{(
l
(i)
k−1, w

(i)
k−1,m

(i)
k−1, P

(i)
k−1

)}Nk−1

i=1
. (4.21)

4.4.2 The Prediction Intensity

The predicted intensity at time index k is a Gaussian mixture consisting of the surviving
intensity DS,k|k−1(x), the spawning intensity Dβ,k|k−1(x), and the birth intensity γk(x)
according to

Dk|k−1(x) = DS,k|k−1(x) +Dβ,k|k−1(x) + γk(x) (4.22)

with the surviving intensity

DS,k|k−1(x) =

Nk−1∑

i=1

w
(i)
S,k|k−1N

(
x;m

(i)
S,k|k−1, P

(i)
S,k|k−1

)
, (4.23)

where the weights, the means, and the covariances of the surviving targets are

w
(i)
S,k|k−1 = pS,kw

(i)
k−1, (4.24)

m
(i)
S,k|k−1 = Fk−1m

(i)
k−1, (4.25)

P
(i)
S,k|k−1 = Qk−1 + Fk−1P

(i)
k−1F

T
k−1, (4.26)

and where the spawning intensity is

Dβ,k|k−1(x) =

Nk−1∑

i1=1

Nβ,k∑

i2=1

w
(i1,i2)
β,k|k−1N

(
x;m

(i1,i2)
β,k|k−1, P

(i1,i2)
β,k|k−1

)
(4.27)

with the means and the covariances of the spawned targets

w
(i1,i2)
β,k|k−1 = w

(i1)
k−1w

(i2)
β,k , (4.28)

m
(i1,i2)
β,k|k−1 = F

(i2)
β,k−1m

(i1)
k−1 + d

(i2)
β,k−1, (4.29)

P
(i1,i2)
β,k|k−1 = Q

(i2)
β,k−1 + F

(i2)
β,k−1P

(i1)
β,k−1

(
F

(i2)
β,k−1

)T
. (4.30)

The track table corresponding to the predicted intensity is

Lk|k−1 =
{(
l
(i)
S,k|k−1, w

(i)
S,k|k−1,m

(i)
S,k|k−1, P

(i)
S,k|k−1

)}Nk−1

i=1
(4.31)

∪
{(
l
(i1,i2)
β,k|k−1, w

(i1,i2)
β,k|k−1,m

(i1,i2)
β,k|k−1, P

(i1)
β,k|k−1

)}i2=1,...,Nβ,k

i1=1,...,Nk−1

(4.32)

∪
{(
l
(i)
γ,k, w

(i)
γ,k,m

(i)
γ,k, P

(i)
γ,k

)}Nγ,k
i=1

. (4.33)
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I assign randomly generated labels, lγ,k(i) and l
(i1,i2)
β,k|k−1, to the born components and the

spawned components, respectively. The surviving components maintain their labels, i.e.,

l
(i)
S,k|k−1 = l

(i)
k−1.

Considering that all intensities are Gaussian mixtures, I rewrite (4.22) according to

Dk|k−1(x) =

Nk|k−1∑

i=1

w
(i)
k|k−1N

(
x;m

(i)
k|k−1, P

(i)
k|k−1

)
, (4.34)

where Nk|k−1 is the prediction intensity’s number of the Gaussian components.

4.4.3 The Posterior Intensity

As in case of the previous posterior intensity and the prior intensity, the posterior in-
tensity is a Gaussian mixture given by

Dk(x) = (1− pD,k)Dk|k−1(x) +
∑

z∈Zk

DD,k(x, z) (4.35)

with

DD,k(x, z) =

Nk|k−1∑

i=1

w
(i)
k (z)N

(
x;m

(i)
k (z), P

(i)
k

)
, (4.36)

where the weights, the means, and the covariances of the detected targets are

w
(i)
k (z) =

pD,kw
(i)
k|k−1q

(i)
k (z)

κk(z) + pD,k
∑Nk|k−1

ι=1 w
(ι)
k|k−1q

(ι)
k (z)

, (4.37)

m
(i)
k (z) = m

(i)
k|k−1 +K

(i)
k ·

(
z−Hkm

(i)
k|k−1

)
, (4.38)

P
(i)
k =

(
I −K(i)

k Hk

)
P

(i)
k|k−1 (4.39)

with

K
(i)
k = P

(i)
k|k−1H

T
k ·
(
HkP

(i)
k|k−1H

T
k +Rk

)−1
, (4.40)

q
(i)
k (z) = N

(
z;Hkm

(i)
k|k−1, Rk +HkP

(i)
k|k−1H

T
k

)
. (4.41)

The the updated components’ track table consists of the predicted components’ labels
and the labels of the observation-corrected components:

Lk =
{(
l
(i)
k , w

(i)
k ,m

(i)
k , P

(i)
k

)}Nk|k−1

i=1
(4.42)

∪
{(
l
(i)
k (z), w

(i)
k (z),m

(i)
k (z), P

(i)
k (z)

)}i=1,...,Nk|k−1

z∈Zk
(4.43)

The components which are independent of z maintain their preceding labels; each
observation-dependent component retain the same label as its predecessor causing mul-
tiple components with the same label. Pruning and merging eliminate those multiples
which feature low weights.
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4.4.4 The Implementation

The relevant equations in order to implement the GM-PHD filter are (4.24)–(4.26), as
well as (4.28)–(4.30) and (4.37)–(4.41). In [97, 106], the authors listed pseudo-codes
and/or examples. When using the GM-PHD filter, the posterior intensities’ number of
Gaussian components increases without bounds. To limit this number, I prune compo-
nents with small weights and merge components which are close together utilizing, e.g.,
the Mahalanobis distance. After updating all components, I select those with weights
above a certain threshold and consider them as extracted multiple-target state estimates.
For the next iteration, consider the remaining components and extracted components.
See [97] for details on pruning and merging.

The PHD filter as well as the GM-PHD filter are both special cases of a more com-
plex filter, the cardinalized probability hypothesis density (CPHD) filter, which also
propagates probability mass functions of the number of targets.

4.5 CPHD Filtering

In 2007, Mahler derived a generalization of the PHD recursion: the cardinalized prob-
ability hypothesis density recursion [107]. It jointly propagates the posterior intensity
and the posterior cardinality (i.e., the probability mass function of the targets’ num-
ber) [98,108]. In general, this recursion is intractable; however, there exists a closed-form
solution in case of linear Gaussian dynamics and birth processes. In comparison to the
PHD filter, it improves the accuracy of estimating states, and it decreases the variance
of the estimated number of targets.

The PHD filter models the cardinality of targets by employing the Poisson distribu-
tion. The distribution’s mean is equal to its variance; thus, for a high number of targets,
the PHD filter propagates the cardinality information with a high variance. Stated dif-
ferently, the PHD recursion’s principal weakness is the loss of higher order cardinality
information [98,109].

In comparison to the PHD filter, the CPHD filter additionally propagates the pos-
terior cardinality mass function; the function depends on the posterior intensity. The
principal weakness of the CPHD filter is the filter’s complex intensity functions. The
assumptions that need to be considered to employ the CPHD filter are similar to the
PHD filter’s assumptions [98]. The only difference is the clutter process’s RFS, which is
independent and identically distributed.

The following equations are a prerequisite to analyze the intensity functions and the
cardinality mass functions. I denote the binomial coefficient as Ci1i2 = i1!/(i2!(i1 − i2)!),

the permutation coefficient as P i1i2 = i1!/(i1 − i2)!, the inner product of two real sequences
as 〈x,y〉 =

∑∞
i=0 x[i]y[i], and I represent the elementary symmetric function as

ei(Z) =
∑

S⊆Z,|S|=i


∏

ζ∈S
ζ




with ei(0) = 1.
The posterior intensity and the posterior cardinality mass function at time index

k− 1 are Dk−1 and pk−1, respectively. Considering pΓ,k as the cardinality mass function
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of births at time index k, the predicted cardinality mass function is

pk|k−1[n] =
n∑

i2=0

pΓ,k[n− i2]
∞∑

i1=i2

Ci1i2 pk−1[i1]
〈pS,k, Dk−1〉i2〈1− pS,k, Dk−1〉i1−i2

〈1, Dk−1〉i1
, (4.44)

which is the convolution of the cardinality mass functions of the born targets and the
surviving targets. The predicted intensity is

Dk|k−1(x) =

∫
pS,k(ζ)fk|k−1(x|ζ)Dk−1(ζ)dζ + γk(x). (4.45)

Updating the predicted intensity Dk|k−1 and the predicted cardinality mass function
pk|k−1 yields the updated cardinality mass function,

pk[n] =
Υ0
k[Dk|k−1, Zk](n) · pk|k−1[n]

〈Υ0
k[Dk|k−1, Zk], pk|k−1〉

, (4.46)

and the updated intensity,

Dk(x) =
〈Υ1

k[Dk|k−1, Zk], pk|k−1〉
〈Υ0

k[Dk|k−1, Zk], pk|k−1〉
(
1− pD,k(x)

)
Dk|k−1(x)

+
∑

z∈Zk

〈Υ1
k[Dk|k−1, Zk \ {z}], pk|k−1〉
〈Υ0

k[Dk|k−1, Zk], pk|k−1〉
ψk,z(x)Dk|k−1(x), (4.47)

with

Υu
k [D,Z](n) =

min(|Z|,n−u)∑

i=0

(|Z| − i)! pK,k(|Z| − i)Pni+u
〈1− pD,k, D〉n−i−u

〈1, D〉n
ei (Λk(D,Z)) , (4.48)

as well as

ψk,z(x) =
〈1, κk〉
κk(z)

gk(z|x)pD,k(x) (4.49)

and

Λk(D,Z) = {〈D,ψk,z〉 : z ∈ Z}; (4.50)

the expression Zk \ {z} denotes the set of all observations at time index k without the
observation z.

4.6 GM-CPHD Filtering

For a special class of linear Gaussian multiple-target models, there exists a closed-form
solution of the CPHD recursion. The assumptions made in case of the GM-PHD filter
also hold in case of the GM-CPHD filter. Considering all those assumptions, I can
propagate the posterior intensity and the posterior cardinality mass function over time.
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4.6.1 The Previous Posterior Intensity

The posterior intensity at time index k − 1 is a Gaussian mixture of the form

Dk−1(x) =

Nk−1∑

i=1

w
(i)
k−1N

(
x;m

(i)
k−1, P

(i)
k−1

)
. (4.51)

Its corresponding track table is identical to the GM-PHD filter’s track table:

Lk−1 =
{(
l
(i)
k−1, w

(i)
k−1,m

(i)
k−1, P

(i)
k−1

)}Nk−1

i=1
. (4.52)

4.6.2 The Prediction Intensity and Cardinality Mass Function

The predicted cardinality mass function, which consists of the cardinality mass function
of births, pΓ,k, and a combinatorial term, is

pk|k−1[n] =

n∑

i2=0

pΓ,k[n− i2]

∞∑

i1=i2

Ci1i2 pk−1[i1]pi2S,k(1− pS,k)
i1−i2 , (4.53)

and the predicted intensity at time index k is a Gaussian mixture according to

Dk|k−1(x) = DS,k|k−1(x) + γk(x) (4.54)

with the same surviving intensity as in (4.23). Considering that all intensities are Gaus-
sian mixtures, I rewrite (4.54) as follows:

Dk|k−1(x) =

Nk|k−1∑

i=1

w
(i)
k|k−1N

(
x;m

(i)
k|k−1, P

(i)
k|k−1

)
. (4.55)

Due to simplicity, I omit the spawned components, which yields the following track table:

Lk|k−1 =
{(
l
(i)
S,k|k−1, w

(i)
S,k|k−1,m

(i)
S,k|k−1, P

(i)
S,k|k−1

)}Nk−1

i=1

∪
{(
l
(i)
γ,k, w

(i)
γ,k,m

(i)
γ,k, P

(i)
γ,k

)}Nγ,k
i=1

. (4.56)

4.6.3 The Posterior Intensity and Cardinality Mass Function

The posterior cardinality mass function is

pk[n] =
Ψ0
k[wk|k−1, Zk](n)pk|k−1[n]

〈Ψ0
k[wk|k−1, Zk], pk|k−1〉

, (4.57)

whereas the posterior intensity is a Gaussian mixture given by

Dk(x) =
Ψ1
k[wk|k−1, Zk]pk|k−1[n]

〈Ψ0
k[wk|k−1, Zk], pk|k−1〉

(1− pD,k)Dk|k−1(x)

+
∑

z∈Zk

Nk|k−1∑

i=1

w
(i)
k (z)N

(
x;m

(i)
k (z), P

(i)
k

)
, (4.58)
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where

Ψu
k [w,Z](n) =

min(|Z|,n−u)∑

i=0

(|Z| − i)! pK,k(|Z| − i)Pni+u
(1− pD,k)n−i−u

〈1, w〉i+u
ei (Λk(w,Z)) , (4.59)

Λk(w,Z) =

{
〈1, κk〉
κk(z)

pD,kw
T qk(z) : z ∈ Z

}
, (4.60)

wk|k−1 =
(
w

(1)
k|k−1, . . . , w

(Nk|k−1)

k|k−1

)T
, (4.61)

qk(z) =
(
q

(1)
k (z), . . . , q

(Nk|k−1)

k (z)
)T

. (4.62)

(Note that there are typographical errors in several publications of Vo et al.; however,
in my thesis I have already considered the corrected equations listed in [108] on page
5816. I verified this by reimplementing the algorithm in Julia; experiments with the
corrected equations yielded plausible results.) The parameters of the corresponding
means and covariances of the detected targets are identical to the PHD filter’s means
and covariances. However, the weights differ from (4.37) as follows:

w
(i)
k (z) = pD,kw

(i)
k|k−1q

(i)
k (z)

〈Ψ1
k[wk|k−1, Zk \ {z}], pk|k−1〉
〈Ψ0

k[wk|k−1, Zk], pk|k−1〉
〈1, κk〉
κk(z)

. (4.63)

The track table of the updated components consists of the predicted components’ labels
and the labels of the observation-corrected components:

Lk =
{(
l
(i)
k , w

(i)
k ,m

(i)
k , P

(i)
k

)}Nk|k−1

i=1
(4.64)

∪
{(
l
(i)
k (z), w

(i)
k (z),m

(i)
k (z), P

(i)
k (z)

)}i=1,...,Nk|k−1

z∈Zk
. (4.65)

This track table is identical to the GM-PHD filter’s track table.

4.6.4 The Implementation

The relevant equations in order to implement the GM-CPHD filter are listed in the
following. To compute the means and the covariances, I consider (4.24)–(4.26) as well
as (4.38)–(4.41). For the weights, (4.63), I compute all cardinality mass functions, i.e.,
(4.53) and (4.57) for all possible numbers of targets. Even in case of the GM-CPHD filter,
I have to limit the number of the posterior intensity’s components; thus, I employ pruning
and merging. Due to the cardinality mass function’s infinite number of components, I
have to set a maximum number of possible targets, which is larger than the number
of targets on the scene at any time. A resource-consuming step is the computation of
the elementary symmetric function for a large number of states. To save resources, I
utilize Newton-Girard formulas or employ Vieta’s theorem [110]. To extract components
representing possible targets, I apply the same procedure as explained in the chapter
about the GM-PHD filter. To estimate the number of targets, I employ an expected
a posteriori (EAP) estimator, NEAP,k = E{|Xk|} or a maximum a posteriori (MAP)
estimator, NMAP,k = arg max pk(·).

Until now, I explained filters based on Poisson RFSs. However, there is another
one that assumes Bernoulli RFSs: the cardinality-balanced multi-target multi-Bernoulli
(CBMeMBer) filter. It requires less computational resources than the CPHD filter.
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4.7 CBMeMBer Filtering

The multi-target multi-Bernoulli (MeMBer) recursion proposed by Mahler approximates
the Bayes multiple-target recursion if the clutter density is low [95]. Instead of propa-
gating moments and/or cardinality mass functions as in case of the PHD recursion and
the CPHD recursion, the MeMBer recursion approximately propagates the multiple-
target posterior density (whereas the PHD recursion and the CPHD recursion operate
on the single-target state space). Although the MeMBer filter propagates the multiple-
target posterior density, its performance is similar to the performance of the PHD filter.
More precisely, the recursion propagates a multi-Bernoulli RFS’s parameters, which ap-
proximates the posterior multiple-target RFS. However, Mahler’s MeMBer recursion
described in [95] features a bias in cardinality when updating the predicted tracks, as
described in [99]. To bypass this bias, Vo et al. introduced the cardinality-balanced
MeMBer filter, which propagates a set of multi-Bernoulli parameters that characterize
the posterior multiple-target RFS.

To highlight the differences between the MeMBer recursion and the CPHD and PHD
recursions, I first need to recap the differences between a random vector and an RFS. A
random vector generates a fixed number and order of randomly sampled points, whereas
the RFS’s number of sampled points and the order of these points are random. In other
words, an RFS is a finite-set valued random variable, and its probability mass function
or probability density function describes its randomness.

In case of the PHD filter and the CPHD filter, I assumed a Poisson RFS characterized
by its intensity function D, where N̂x =

∫
D(x)dx is its cardinality and D(·)/N̂x is its

density
In contrast to the PHD filter and the CPHD filter (both are based on Poisson RFSs)

I now have to consider Bernoulli RFSs. A Bernoulli RFS is empty with a probability of
1− r and is a singleton with probability r. A probability density p distributes the set’s
element according to

π(X) =

{
1− r X = ∅
r · p(x) X = {x}

(4.66)

A random finite set of multiple targets requires a union of a fixed number of indepen-
dent Bernoulli RFSs, X =

⋃Mx
i=1X

(i). A set’s existence probability is r(i) ∈ (0, 1)}, i.e.,
it describes the probability that the i-th hypothesized track is a true track. A set’s prob-
ability density is p(i), which describes the estimated current state of the track [99]. The

parameter set {(r(i), p(i))}Mx

i=1 describes a multi-Bernoulli RFS with Mx as the number
of tracks. The multi-Bernoulli RFS’s probability density is

π({x1, . . . ,xn}) = π(∅)
∑

1≤i1 6=···6=in≤Mx

n∏

j=1

r(ij)p(ij)(xj)

1− r(ij)
(4.67)

with π(∅) =
∏Mx
j=1(1 − r(j)); its abbreviated form is π = {(r(i), p(i))}Mx

i=1. The Bernoulli
RFS Sk|k−1(xk−1) with r = pS,k(xk−1) and p(·) = fk|k−1(·|xk−1) models the translation
of state xk−1 ∈ Xk−1 from time index k− 1 to time index k. The Bernoulli RFS Ok(xk)
with r = pD,k(xk) and p(·) = gk(·|xk) describes how a target xk ∈ Xk generates an
observation zk.
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The original MeMBer recursion described in [95] approximates the multiple-target
Bayes recursion by employing multi-Bernoulli RFSs. By propagating a finite, time-
varying number of hypothesized tracks, the recursion propagates the multiple-target
posterior probability density over time. A probability of existence and a probability
density of the current hypothesized state characterize each track.

The assumptions that need to be considered to employ the MeMBer filter are similar
to those of the PHD filter and the CPHD filter except that the target births follow a
multi-Bernoulli RFS, which is independent of the target survivals.

Given the number of persistent tracks Mx,k−1 and the multi-Bernoulli posterior
multiple-target density at time index k − 1,

πk−1 =
{(
r

(i)
k−1, p

(i)
k−1

)}Mk−1

i=1
, (4.68)

the multi-Bernoulli predicted multiple-target density is the union of the multi-Bernoulli
parameter sets of the surviving targets and target births,

πk|k−1 =
{(
r

(i)
P,k|k−1, p

(i)
P,k|k−1

)}Mk−1

i=1
∪
{(
r

(i)
γ,k, p

(i)
γ,k

)}Mγ,k

i=1
(4.69)

with the number of born tracksMγ,k, the existence probability r
(i)
P,k|k−1 = r

(i)
k−1〈p

(i)
k−1, pS,k〉,

and the probability density p
(i)
P,k|k−1(x) = 〈fk|k−1(x | ·), p(i)

k−1pS,k〉/〈p
(i)
k−1, pS,k〉, and with

the parameters of the multi-Bernoulli RFS of births, {(r(i)
γ,k, p

(i)
γ,k)}

Mγ,k

i=1 . Given the number
of legacy tracks Mk|k−1 and the predicted multi-Bernoulli multiple-target density,

πk|k−1 =
{(
r

(i)
k|k−1, p

(i)
k|k−1

)}Mk|k−1

i=1
, (4.70)

the approximated multi-Bernoulli posterior multiple-target density is the union of the
multi-Bernoulli parameter sets of the legacy tracks and the observation-corrected tracks,

πk ≈
{(
r

(i)
L,k, p

(i)
L,k

)}Mk|k−1

i=1
∪
{(
rU,k(z), pU,k(·; z)

)}
z∈Zk

(4.71)

with the existence probability of the legacy tracks

r
(i)
L,k = r

(i)
k|k−1

1− 〈p(i)
k|k−1, pD,k〉

1− r(i)
k|k−1〈p

(i)
k|k−1, pD,k〉

,

the probability density of the legacy tracks

p
(i)
L,k(x) = p

(i)
k|k−1(x)

1− pD,k(x)

1− 〈p(i)
k|k−1, pD,k〉

,

the existence probability of the observation-corrected tracks

rU,k(z) =

∑Mk|k−1

i=1

r
(i)
k|k−1

〈p(i)
k|k−1

,ψk,z〉

1−r(i)
k|k−1

〈p(i)
k|k−1

,pD,k〉

κk(z) +
∑Mk|k−1

i=1

r
(i)
k|k−1

〈p(i)
k|k−1

,ψk,z〉

1−r(i)
k|k−1

〈p(i)
k|k−1

,pD,k〉

,
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and the probability density of the observation-corrected tracks

pU,k(x; z) =

∑Mk|k−1

i=1

r
(i)
k|k−1

p
(i)
k|k−1

ψk,z(x)

1−r(i)
k|k−1

〈p(i)
k|k−1

,pD,k〉

∑Mk|k−1

i=1

r
(i)
k|k−1

〈p(i)
k|k−1

,ψk,z〉

1−r(i)
k|k−1

〈p(i)
k|k−1

,pD,k〉

,

where ψk,z(x) = gk(z|x)pD,k(x). Without going into detail, I would like to highlight
that Mahler [95] (unwittingly) introduced a cardinality bias. To significantly reduce this
bias, Vo et al. [99] proposed a modified existence probability,

r∗U,k(z) =

∑Mk|k−1

i=1

r
(i)
k|k−1

(1−r(i)
k|k−1

)〈p(i)
k|k−1

,ψk,z〉

(1−r(i)
k|k−1

〈p(i)
k|k−1

,pD,k〉)2

κk(z) +
∑Mk|k−1

i=1

r
(i)
k|k−1

〈p(i)
k|k−1

,ψk,z〉

1−r(i)
k|k−1

〈p(i)
k|k−1

,pD,k〉

, (4.72)

and a modified multi-target multi-Bernoulli posterior density according to

πk ≈
{(
r

(i)
L,k, p

(i)
L,k

)}Mk|k−1

i=1
∪
{(
r∗U,k(z), p∗U,k(·; z)

)}
z∈Zk

(4.73)

with a new probability density

p∗U,k(x; z) =

∑Mk|k−1

i=1

r
(i)
k|k−1

1−r(i)
k|k−1

p
(i)
k|k−1ψk,z(x)

∑Mk|k−1

i=1

r
(i)
k|k−1

1−r(i)
k|k−1

〈p(i)
k|k−1, ψk,z〉

, (4.74)

which yields the cardinality-balanced multi-target multi-Bernoulli (CBMeMBer) filter.
It features a similar complexity as the PHD filter and a lower complexity as the CPHD
filter [95,96,99].

4.8 GM-CBMeMBer Filtering

As in case of the GM-CPHD filter, all but one assumption made in case of the GM-PHD
filter also hold for the GM-CBMeMBer filter. The only difference is the birth model

represented by a multi-Bernoulli parameter set {(r(i)
γ,k, p

(i)
γ,k)}

Mγ,k

i=1 with

p
(i1)
γ,k (x) =

N
(i1)
γ,k∑

i2=1

w
(i1,i2)
γ,k N

(
x;m

(i1,i2)
γ,k , P

(i1,i2)
γ,k

)
. (4.75)

4.8.1 The Previous Posterior Multiple-Target Density

The multi-Bernoulli posterior multiple-target density at time index k − 1 is

πk−1 =
{(
r

(i)
k−1, p

(i)
k−1

)}Mk−1

i=1
. (4.76)

Its corresponding track table is

Lk−1 =
{(
l
(i)
k−1, r

(i)
k−1, p

(i)
k−1

)}Mk−1

i=1
. (4.77)
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4.8.2 The Predicted Multiple-Target Density

The predicted multi-Bernoulli multiple-target density of the form

πk|k−1 =
{(
r

(i)
P,k|k−1, p

(i)
P,k|k−1

)}Mk−1

i=1
∪
{(
r

(i)
γ,k, p

(i)
γ,k

)}Mγ,k

i=1
(4.78)

as well as the predicted track table,

Lk|k−1 =
{(
l
(i)
P,k|k−1, r

(i)
P,k|k−1, p

(i)
P,k|k−1

)}Mk−1

i=1
∪
{(
l
(i)
γ,k, r

(i)
γ,k, p

(i)
γ,k

)}Mγ,k

i=1
, (4.79)

consist of the existence probability

r
(i)
P,k|k−1 = r

(i)
k−1pS,k, (4.80)

the probability density

p
(i1)
P,k|k−1(x) =

N
(i1)
k−1∑

i2=1

w
(i1,i2)
k−1 N

(
x;m

(i1,i2)
P,k|k−1, P

(i1,i2)
P,k|k−1

)
, (4.81)

and the existence probabilities and probability densities of the birth model. The survived

targets’ labels are l
(i)
P,k|k−1 = l

(i)
k−1, i.e., they maintain their labels, whereas the born

targets’ labels, l
(i)
γ,k, are randomly generated.

4.8.3 The Posterior Multiple-Target Density

The posterior multi-Bernoulli multiple-target density of the form

πk =
{(
r

(i)
L,k, p

(i)
L,k

)}Mk|k−1

i=1
∪
{(
r∗U,k(z), p∗U,k(·; z)

)}
z∈Zk

(4.82)

as well as its corresponding track table,

Lk =
{(
l
(i)
L,k, r

(i)
L,k, p

(i)
L,k

)}Mk|k−1

i=1
∪
{(
lU,k(z), r∗U,k(z), p∗U,k(·; z)

)}
z∈Zk

, (4.83)

consist of the existence probability of the legacy tracks,

r
(i)
L,k = r

(i)
k|k−1

1− pD,k
1− r(i)

k|k−1pD,k
, (4.84)

the probability density of the legacy tracks,

p
(i)
L,k(x) = p

(i)
k|k−1(x), (4.85)

the existence probability of the observation-corrected tracks

r∗U,k(z) =

∑Mk|k−1

i=1

r
(i)
k|k−1

(
1−r(i)

k|k−1

)
%
(i)
U,k(z)(

1−r(i)
k|k−1

pD,k

)2
κk(z) +

∑Mk|k−1

i=1

r
(i)
k|k−1

%
(i)
U,k(z)

1−r(i)
k|k−1

pD,k

, (4.86)
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and the probability density of the observation-corrected tracks

p∗U,k(x; z) =

∑Mk|k−1

i1=1

∑N
(i1)

k|k−1

i2=1 w
(i1,i2)
U,k (z)N

(
x;m

(i1,i2)
U,k , P

(i1,i2)
U,k

)

∑Mk|k−1

i1=1

∑N
(i1)

k|k−1

i2=1 w
(i1,i2)
U,k (z)

, (4.87)

where

%
(i1)
U,k (z) = pD,k

N
(i1)

k|k−1∑

i2=1

w
(i1,i2)
k|k−1q

(i1,i2)
k (z), (4.88)

q
(i1,i2)
k (z) = N

(
z;Hkm

(i1,i2)
k|k−1 , HkP

(i1,i2)
k|k−1 H

T
k +Rk

)
, (4.89)

and

w
(i1,i2)
U,k (z) =

r
(i1)
k|k−1

1− r(i1)
k|k−1

pD,kw
(i1,i2)
k|k−1q

(i1,i2)
k (z). (4.90)

The legacy components’ labels are l
(i)
L,k = l

(i)
k|k−1, i.e., they retain their labels, whereas

the observation-updated components’ labels are lU,k(z) = l
(i1)
k|k−1, where

i1 =arg max
i2

r
(i2)
k|k−1(1− r(i2)

k|k−1)p
(i2)
U,k (z)/(1− r(i2)

k|k−1pD,k)
2 . (4.91)

As explained in [99], an observation-updated component’s label is the label of the pre-
dicted track which has the largest contribution to the current observation-updated prob-
ability of existence.

4.8.4 The Implementation

As in case of the GM-PHD filter and the GM-CPHD filter, the GM-CBMeMBer filter’s
number of Gaussian components increases without bound. Thus, I prune hypothesized
tracks by rejecting those tracks with an existence probability below a certain threshold.
To discard Gaussian components of the remaining tracks, I reject those components with
weights below a certain threshold and merge those components featuring a distance to
each other which is smaller than a certain threshold. The relevant equations in order
to implement the GM-CBMeMBer filter are those used in case of the GM-PHD filter as
well as (4.80), (4.84), (4.86), (4.88), (4.89), (4.90) instead of (4.37), and (4.91).

Given the multi-Bernoulli posterior multiple-target density after pruning and merg-
ing:

πk =
{(
r

(i)
k , p

(i)
k

)}Mk

i=1
.

As described in [107] and in the code related to [99], I estimate the cardinality of this
density (after considering pruning and merging) by utilizing the expected a posteriori
estimator according to

MEAP,k =

Mk∑

i=1

r
(i)
k , (4.92)
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or by employing the maximum a posteriori estimator according to

MMAP,k =arg max
i2

ei2

({
r

(i1)
k /(1− r(i1)

k )
}Mk

i1=1

)
(4.93)

where i1 = 0, . . . ,Mk and ei2(·) is the elementary symmetric function, or by computing
the minimum of the number of remaining tracks and the maximum-a-posteriori-based
cardinality,

MMIN,k = min (Mk,MMAP) . (4.94)

The cardinality’s variance is

σ2
M,k =

Mk∑

i=1

r
(i)
k · (1− r

(i)
k ). (4.95)

4.9 Metrics

To evaluate the algorithms’ performance, I employed metrics well known in the field of
multiple-target tracking: the optimal subpattern assignment and label assignment for
(multiple) tracks [82,83].

4.9.1 Optimal Subpattern Assignment for Tracks

I originally wanted to apply the metrics precision and recall as well as the root mean
square error to evaluate the trackers’ performance. However, I wondered if there is a
metric that incorporates the aforementioned ones. Searching for alternatives, I soon
realized that publications (co-)authored by Ba-Ngu and Ba-Tuong Vo as well as Daniel
Clark and Ronald Mahler will lead me to what I was looking for.

A common metric to describe a multiple-target filter’s performance is the Hausdorff
metric [111]; however, it does not take differences in cardinality, i.e., a set’s number
of elements, into account. To bypass this drawback, Hoffman and Mahler [112] pro-
posed a new metric based on the Wasserstein distance. Unfortunately, it features other
shortcomings listed in [111]. Years later, Schuhmacher et al. [111] evaluated several
multiple-target filters by utilizing the OSPA distance, a metric that did not feature any
shortcomings. Still, the metric was applicable to filtering algorithms only. (A multiple-
target filtering algorithm sequentially estimates the number of states and their position
in the state space; a multiple-target tracking algorithm outputs tracks: estimated tem-
poral sequences of labeled states associated with targets.) To overcome this drawback,
Ristic et al. [82, 83] proposed the OSPA distance for tracks: a metric defined on the
space of finite sets of tracks, where each track is a labeled as a temporal sequence of
states varying in length. It measures the distance between the set of ground-truth tracks,
known a priori, and the set of estimated tracks. The metric’s scores are typically av-
eraged over independent Monte Carlo experiments. It combines various aspects of a
multiple-target tracker’s performance: the timeliness, the track accuracy, the continuity,
the data association, the false tracks, etc. The metric is defined on the space of finite
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sets of objects, i.e., tracks, over discrete-time support points T = (t1, t2, . . . , tk, . . . , tK).
A track is a labeled sequence of objects, Xk, for time indices k = {1, 2, . . . ,K},

X = (X1, X2, . . . , XK) , (4.96)

where Xk is either an empty set or a tuple consisting of a label l, the track’s label, and
a state vector xk, (l,xk), l ∈ N:

Xk =

{
∅ if 1k = 0

{(l,xk)} if 1k = 1
; (4.97)

variable 1k indicates a track’s existence at time index k. A track’s label does not
change with time, but its state vector evolves in a state space. This space consists
of the angular domain and the frequency domain as well as their corresponding velocity
domains in order to represent a state, xk = (ϕk, fk, ϕ̇k, ḟk)

T , where ϕ̇k and ḟk denote
the derivatives, i.e., velocities, of the angular and frequency component, respectively.
Ristic et al. defined the proposed metric at one particular discrete-time support point
tk (or time index k), where the set of all tracks is Xk (Xk ∈ Xk) and where the set of
finite subsets of X is Xk. If Xk is an arbitrary non-empty set, then the metric maps a
multi-dimensional argument to a real number: D : Xk × Xk → R+ = [0,∞). According
to [83], the proposed metric satisfies three axioms for all Xk,Zk,Wk ∈ Xk, where Xk is
the set of tracks representing the ground truth at time index k, Zk is the set of estimated
tracks at time index k, and where Wk is a non-empty set:

1. identity: D (Xk,Zk) = 0 in case of Xk = Zk only,

2. symmetry: D (Xk,Zk) = D (Zk,Xk),

3. triangle inequality: D (Xk,Zk) ≤ D (Xk,Wk) +D (Wk,Zk).

The OSPA distance, D (Xk,Zk), between any two sets of tracks at time index k is a
metric on Xk [82, 111],

Xk = {(l1,xk,1), . . . , (lNMk ,xk,NMk )}, (4.98)

Zk = {(l̂1, zk,1), . . . , (l̂NNk , zk,NNk )}, (4.99)

where NMk
and NNk are the cardinalities of the sets Xk and Zk, respectively, and where

l̂ denotes an estimated track’s label.
Due to a fixed-length permutation of a certain number of elements, I distinguish be-

tween two different cases: NMk
≤ NNk and NMk

> NNk ; i.e., the case where the number
of elements of ground-truth tracks is equal or smaller than the number of estimated
tracks, and the case where the number of ground-truth tracks is larger than the number
of estimated tracks.

Given NMk
≤ NNk , an OSPA order 1 ≤ ηo < ∞, a cutoff parameter a, and a set

of permutations ΠNNk
, where each permutation b consists of NMk

elements taken from
{1, 2, . . . , NNk}, the OSPA distance between Xk and Zk is defined as

Dηo,a(Xk,Zk) =


 1

NNk


 min
b∈ΠNNk

NMk∑

i=1

(Aηo,a(x̄k,i, z̄k,b(i)) + Bηo,a(NNk , NMk
))






1
ηo

,

(4.100)
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with x̄k,i = (li,xk.i) and z̄k,i = (l̂b(i), zk,b(i)). Variable a denotes the exponentiated
scaling factor of the cardinality error component,

Bηo,a(NNk , NMk
) = (NNk −NMk

) · aηo , (4.101)

the limit of the base distance error component for a certain ηo,

Aηo,a(x̄k,i, z̄k,b(i)) = da
(
x̄k,i, z̄k,b(i)

)ηo , (4.102)

and the upper limit of the cutoff distance

da(x̄k,i, z̄k,b(i)) = min
(
a, d(x̄k,i, z̄k,b(i))

)
(4.103)

between two tracks at time index k with a > 0. The base distance—as part of the cutoff
distance—is

d(x̄k,i, z̄k,b(i)) = ηb

√
d(xk,i, zk,b(i))ηb + d(li, l̂b(i))ηb (4.104)

with 1 ≤ ηb ≤ ∞ as the base distance’s order. The base distance consists of the
localization base distance and the labeling error,

d(xk,i, zk,b(i)) = ||xk,i − zk,b(i)||ηb (4.105)

and

d(li, l̂b(i)) = c ·
(

1− δ[li, l̂b(i)]
)
, (4.106)

respectively, where δ[li, l̂b(i)] is the Kronecker delta yielding δ[li, l̂b(i)] = 1 if li = l̂b(i) and

δ[li, l̂b(i)] = 0 if li 6= l̂b(i). Variable c ∈ [0, a] represents a penalty assigned to the labeling
error; there is no penalty if c = 0, whereas c = a assigns the maximum penalty. As
ηo increases, the OSPA distance between a ground-truth item and an estimated item
increases, too. An increasing cutoff parameter a results in an increasing penalty for
cardinality errors, i.e., it is the assigned error if an item is assumed to be unassignable.

If the number of ground-truth tracks is larger than the number of estimated tracks,
i.e., NMk

> NNk , I need to interchange the metric’s arguments according to

Dηo,a(Xk,Zk) , Dηo,a(Zk,Xk). (4.107)

If I would compute Dηo,a(Xk,Zk) in case of NMk
> NNk , I would not be able to cal-

culate the set of permutations, ΠNNk
, of length NMk

with elements {1, 2, . . . , NNk} due
to missing elements. However, I solve this problem by interchanging the metric’s argu-
ments. The interchange of arguments does not change the OSPA distance because of
the symmetry axiom.

The base distances requires the labels of estimated tracks and ground-truth tracks.
Thus, I assign the labels of ground-truth tracks to the estimated tracks.
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4.9.2 Optimal Label Assignment

To compute the aforementioned base distance (and the labeling error), I assign the labels
of the ground-truth tracks to the estimated tracks in a globally optimum manner. As
mentioned in [95], there are several approaches to assign labels to tracks. However, I
decided to use the one mentioned in [83] and covered below: By minimizing the global
OSPA distance between pairs of tracks over time, I assign labels of ground-truth tracks,

{X(1), . . . , X(NMk )}, to estimated tracks, {Z(1), . . . , Z(NNk )}, with X
(l)
k as a track at

time index k and where NMk
and NNk are the total numbers of ground-truth tracks and

estimated tracks, respectively. As in case of the OSPA distance, I need to distinguish
between two cases: the case where NMk

≤ NNk and the case where NMk
> NNk .

The goal is to determine an optimal global assignment b∗, which optimally assigns the
ground-truth tracks to a certain set of estimated tracks. I determine this assignment by
minimizing the global OSPA distance between each discrete-time support point’s pairs
of tracks.

For NMk
≤ NNk and a set of permutations ΠNNk

, where b ∈ ΠNNk
, and where each

permutation b consists of NMk
elements taken from {1, 2, . . . NNk}, the assignment is as

follows:

b∗ = arg min
b∈ΠNNk

NMk∑

l=1

K∑

k=1

(
1lk1

b(l)
k min

(
a, ‖xlk − z

b(l)
k ‖2

)
+

(1− 1lk)1
b(l)
k a+ 1lk(1− 1

b(l)
k )a

)
.

(4.108)

Variable 1lk indicates whether a ground-truth track exists, whereas 1
b(l)
k indicates that a

b-assigned estimated track exists. If one track exists and another one does not at index
k, the label assignment imposes a penalty, a. The higher a the more the label assignment
favors the assignment of longer-duration estimated tracks to ground-truth tracks. If b∗

indicates that an estimated track is assigned to a ground-truth track with label lk, then
I need to set the estimated track’s label to lk, too. Each unassigned estimated track
receives a label different from all ground-truth tracks’ labels.

In case of NMk
> NNk , I interchange the ground-truth tracks with the estimated

tracks, as done in case of the OSPA distance, due to the computation of permutations
with length NMk

.
To evaluate a multiple-target tracking algorithm’s performance, it is sufficient to

compute the OSPA distance. However, to obtain more insight into certain types of
errors, I compute some OSPA components separately.

Implementing (4.108) is unfeasible for scenarios with a high number of tracks; it
takes too much time to compute (4.108) for all permutations b ∈ ΠNNk

. Instead of im-
plementing the aforementioned equation, I employed the Munkres method [113] (known
as Kuhn-Munkres algorithm or Hungarian algorithm) to speed up optimally assigning
labels to the estimated tracks. It is a combinatorial optimization algorithm that solves
the label assignment in polynomial time.
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4.9.3 Components of Optimal Subpattern Assignment

The OSPA distance consists of two major components: the cardinality error compo-
nent (4.101) and the base distance error component (4.102) [82, 111]. They account for
localization errors and cardinality errors, respectively.

For NMk
≤ NNk , I compute the base distance error component and the cardinality

error component separately according to

Qηo,a(Xk,Zk) =


 1

NNk

min
b∈ΠNNk

NMk∑

i=1

Aηo,a(x̄k,i, z̄k,b(i))




1
ηo

, (4.109)

and

Rηo,a(NNk , NMk
) =

(
(NNk −NMk

)aηo

NNk

) 1
ηo

(4.110)

to obtain valuable additional information, though separation is not necessary when cal-
culating the OSPA distance.

In case of NMk
> NNk , Qηo,a(Xk,Zk) , Qηo,a(Zk,Xk) which is necessary due to the

computation of permutations of lengthNMk
. Moreover,Rηo,a(NNk , NMk

) , Rηo,a(NMk
, NNk),

because in [111] they assume Rηo,a as a metric on the space of nonnegative integers. Be-
yond that, Rηo,a(NNk , NMk

) would yield a complex value which violates D : Xk ×Xk →
N+ = [0,∞).

Example 3. Cardinality Error Component The cardinality error is a nonlinear
measure. It is difficult to interpret this error without knowing the value of the cutoff
parameter and the OSPA order.

For instance, a cardinality error with value three does not necessarily mean that

there are NN estimated tracks and NM = NN − 3 ground-truth tracks. Given the

OSPA order, ηo = 1, the cutoff parameter, a = 4, the number of estimated tracks,

NN = 4, and the number of ground-truth tracks, NM = 1, then Rηo,a(NNk , NMk
) = 3.

However, if NN = 3, then Rηo,a(NNk , NMk
) = 8/3 6= 2. As this example shows,

Rηo,a(NNk , NMk
) ∈ R. �

4.9.4 Averaged Metrics

For my evaluations, I introduced two versions of the averaged OSPA distance, the aver-
aged cardinality error, and the averaged localization error. The first version yields the
average over all Monte Carlo experiments for a single frame index. The second version
computes the mean value of the first one.

The OSPA distance averaged over (all) Nc Monte Carlo experiments is

Dηo,a(Xk,Zk) =
1

Nc

Nc∑

i=1

Dηo,a,i(Xk,Zk) (4.111)
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where i is the Monte Carlo experiment’s index. Similar to (4.111), the averaged local-
ization error is as follows:

Qηo,a(Xk,Zk) =
1

Nc

Nc∑

i=1

Qηo,a,i(Xk,Zk). (4.112)

To compute the averaged cardinality error, I consider

Rηo,a(NNk , NMk
) =

1

Nc

Nc∑

i=1

Rηo,a,i(NNk , NMk
). (4.113)

In the experiments, I additionally computed the mean values of the OSPA distance,

Dηo,a =
1

NF

NF∑

k=1

Dηo,a(Xk,Zk), (4.114)

the localization error,

Qηo,a =
1

NF

NF∑

k=1

Qηo,a(Xk,Zk), (4.115)

and the cardinality error,

Rηo,a =
1

NF

NF∑

k=1

Rηo,a(NNk , NMk
). (4.116)

4.10 Experimental Design

To show that I can feed multiple-target trackers with the estimates of the proposed joint
estimators, I conducted experiments with the GM-PHD filter, the GM-CPHD filter,
and the GM-CBMeMBer filter. Instead of considering both joint estimators, I focused
on experiments with the RPDM-based algorithm, the VSS-based algorithm’s successor,
due to its invariant frequency intervals. These invariant intervals ensure an improved
observation-based correction of estimated states at higher frequencies.

In total I conducted experiments in three different categories. In the first category, I
employed signals of synthetically generated and spatialized linearly frequency-sweeping
harmonic sources. In the second category, I used signals of synthetically spatialized
sources based on close-talking speech recordings. In the last category, I conducted ex-
periments with signals of speakers recorded in a reverberant environment.

In the first category, I considered linearly frequency-sweeping harmonic sources mixed
with spatially filtered white Gaussian noise. Table 4.1 lists all necessary algorithmic
parameters for the RPDM-based algorithm, and Table 4.2 covers all relevant parameters
in order to generate and spatialize the sources. The azimuth domain spanned a grid of
angles between −90◦ and +90◦, the size of the maxima detector’s search window was
(3 × 3) indices. The experiments’ goal was to track the harmonic signal’s f0 as well as
the second, third, and fourth harmonic.
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In the second category’s experiments, I utilized the same subset of the Austrian
German speech corpus [51] as mentioned in the previous chapters. Considering the
parameters mentioned in Table 4.2, I synthetically spatialized the close-talking speech
recordings. I used the f0s provided by the Austrian German speech corpus. Table 4.1,
lists all necessary algorithmic parameters for the RPDM-based algorithm. The goal of
the experiments with speech recordings was to successfully track the speaker’s f0. I did
not synthetically add any reverberation or interferences to keep the experiments feasible
without algorithmically manipulating any multiple-target tracker. The main purpose of
these experiments is to present a working cascade of joint estimator and multiple-target
tracker for the very first time.

In the third category, I conducted experiments with real speech signals recorded in a
meeting room to localize, characterize, and track a male speaker. Details on that room
can be found in Chapter 5. As shown in Fig. 4.1 and Fig. 4.2, I sampled the meeting
room’s acoustic wave field by using two microphone arrays: one above the window (la-
beled as A1 in Fig. 4.2) and one at the whiteboard (labeled as A2 in Fig. 4.2). For the
upcoming evaluations, I used the outermost microphones of A2 only. (Chapter 5 includes
information on the arrays’ geometries.) A male speaker uttered vowels and the sentence
“Why were you away a year, Roy?” at six different positions on two arcs. The positions’
labels at the window’s arc are L1, M1, and R1; those at the whiteboard’s arc are L2, M2,
and R2. The arcs’ radii are 2.42 m measured from the arrays’ central microphone. To
extract the speaker’s f0s of each utterance, I utilized a laryngograph. The laryngograph
returns glottograms used to extract those frequencies. (Chapter 5 contains detailed
information on how to record and process glottograms in order to extract f0s.) I con-
sidered the same procedures described in Chapter 5 to prepare the speaker, to calibrate
the hardware, and to post-process the recordings. Table 4.1 lists the algorithmic param-
eters for the RPDM-based algorithm. To highlight a certain phenomenon unknown in
the field of joint estimation, I employed a set of recordings that slightly differed from
the recordings of the Austrian German speech corpus [50]. I required recordings of a
speaker, which looked exactly toward the center of the microphone array and which
uttered voiced sounds with an invariant pitch, i.e., vowels or the sentences “Why were
you away a year, Roy?”. However, the aforementioned speech corpus lacks such voiced
utterances.

To compute the tracks, I applied the GM-PHD filter, the GM-CPHD filter, and
the GM-CBMeMBer filter to the observations generated by the RPDM-based estimator.
Table 4.3, Table 4.4, and Table 4.5 list the algorithmic parameters of each tracker used
in these experiments. I additionally considered a uniform clutter distribution, a uniform
birth distribution, and a normal distribution for updating and spawning the states. In
case of the GM-CPHD filter, I utilized the Poisson distribution to model the cardinality
mass function for bearing states and for clutter as well as the Binomial distribution for
computing the cardinality’s masses of surviving states.

In all experiments, the multiple-target trackers assumed linear Gaussian target dy-
namics according to

fk|k−1(mk|k−1 | mk−1) = N
(
mk|k−1;Fk−1mk−1, Qk−1

)
(4.117)

and a linear Gaussian observation model,

gk(zk | mk|k−1) = N
(
zk;Hkmk|k−1, Rk

)
, (4.118)
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Table 4.1: Algorithmic and environmental parameters of the RPDM-based estimator.
The variables denote the speed of sound v, the sampling frequency fs, the lowest and
highest fundamental frequency of interest fl and fu, the desired amplitudes of the stop
band and the pass band as and ap, the desired ripples of the stop band and the pass
band bs and bp, the number of extrema Ne, and the DOA-tolerance parameter ε. The
first (left) value of fu and Ne is used in experiments with simulated data, whereas the
second value is used in experiments with spatially filtered speech recordings. The third
value of Ne is used in experiments with real speech signals recorded in a meeting room.

v fs fl fu as ap bs bp Ne ε

343.2 m/s 48 kHz 70 Hz 1610 Hz | 400 Hz 0 1 0.01 0.05 16 | 2 | 4 0.5

Table 4.2: Parameters of the synthetically spatialized, linearly frequency-sweeping
sources. The variables denote the angular step size ∆ϕ, the elevation angle ϑ, the num-
ber of microphones Nm, the array length da, the number of harmonics Nq, the sweep’s
start frequency and stop frequency f1 and f2, the sweep’s duration T2, the signal to
noise ratio SNR, the temporal signal components’ amplitude α, the normal distribution
of noise with its parameters N (0, 1), and the angular grid Φ.

∆ϕ ϑ Nm da Nq f1 f2 T2

1◦ 90◦ 8 0.5 m 4 80 Hz 400 Hz 2 s

SNR α ν Φ

{−10, 0, 10, 20, 30} dB 0.4
√

10
SNR
10 N (0, 1) {−65◦, . . . ,+65◦}

with state transition matrix and process noise covariance

Fk =

[
I2 I2

02 I2

]
, Qk = σ2

Q

[
I2/4 I2/2
I2/2 I2

]
, (4.119)

respectively, where In is the (n× n) identity matrix and 0n is the (n× n) zero matrix.
In order to compute the OSPA distance as well as its components, the cardinality

error component and the base distance error component, I set the OSPA parameters in
all experiments as described in Table 4.6.

4.11 Experimental Results

In this section, I present the results of experiments with multiple-target trackers applied
to estimates computed by the RPDM-based algorithm. The results comprise visualiza-
tions of computed tracks and metrics, i.e., the OSPA distance, the cardinality error,
and the localization error over frame indices. In the experiments, I employed signals
of synthetically generated and spatialized linearly frequency-sweeping harmonic sources,
signals of synthetically spatialized sources based on close-talking speech recordings, and
signals of speakers recorded in a reverberant environment.
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Table 4.3: Algorithmic parameters of the GM-PHD filter. The variables denote the
surviving probability pS , the detection probability pD, the spawning probability pβ,
the birth probability pγ , the spawned target’s covariance matrix Pγ , the born target’s
covariance matrix Pγ , the clutter rate λc, the standard deviation of observation noise σR,
the standard deviation of process noise σQ, the threshold ξv for pruning states according
to their velocity, the threshold ξm for merging states, the threshold ξp for pruning states
according to their weights, and the threshold ξe for selecting states as final estimates.
The left value of a pair of values refers to experiments with sweeping signals, whereas
the right value refers to experiments with speech signals.

pS pD pβ pγ Pβ Pγ λc σR σQ ξv ξm ξp ξe

0.99 | 0.95 0.9 0.01 0.1 | 0.35 diag(25) diag(25) 8 | 1 10 0.1 10 10 10−4 | 10−6 10−3

Table 4.4: Algorithmic parameters of the GM-CPHD filter. The variables denote the
surviving probability pS , the detection probability pD, the birth probability pγ , the born
target’s covariance matrix Pγ , the clutter rate λc, the standard deviation of observation
noise σR, the standard deviation of process noise σQ, the threshold ξv for pruning states
according to their velocity, the threshold ξm for merging states, the threshold ξp for
pruning states according to their weights, the threshold ξe for selecting states as final
estimates, the mean cardinality of born states E{|Xγ |}, and the mean cardinality of
clutter E{|XK |}. Both mean cardinalities are the mean values of Poisson distributions.

pS pD pγ Pγ λc σR σQ ξv ξm ξp ξe E{|Xγ |} E{|XK |}

0.99 0.85 0.10 diag(25) 1 10 0.1 10 10 10−4 0.1 0.5 0.5

Table 4.5: Algorithmic parameters of the GM-CBMeMBer filter. The variables denote
the surviving probability pS , the detection probability pD, the birth probability pγ , the
born target’s covariance matrix Pγ , the clutter rate λc, the standard deviation of obser-
vation noise σR, the standard deviation of process noise σQ, the threshold ξv for pruning
states according to their velocity, the threshold ξm for merging states, the threshold ξp
for pruning states according to their weights, the threshold ξe for selecting states as final
estimates, and the threshold ξt for pruning tracks according to their probabilities.

pS pD pγ Pγ λc σR σQ ξv ξm ξp ξe ξt

0.99 0.85 0.10 diag(25) 1 10 0.1 10 10 10−4 0.01 0.01

Table 4.6: Parameters of the optimal subpattern assignment metric. The variables
denote the cutoff parameter a, the labeling-error penalty c, the OSPA order ηo, and the
base distance order ηb.

a c ηo ηb

10 1 1 1
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Table 4.7: Measured reverberation times T30 and corresponding standard deviations σT30
in seconds for several frequencies f in the meeting room labeled with CPR. A detailed
description of the methods used to measure the reverberation time can be found in [114].

f [Hz] 63 125 250 500 1000 2000 4000 8000 16000

T30 [s] 0.90 0.59 0.54 0.51 0.51 0.50 0.48 0.44 0.41
σT30 [s] ± 0.11 ± 0.03 ± 0.03 ± 0.01 ± 0.01 ± 0.01 ± 0.02 ± 0.01 ± 0.01
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Fig. 4.1: Floor plan of the recording environment. The meeting room features six
microphones. Both microphone arrays, the array above the window and the array above
the whiteboard, consist of three uniformly spaced microphones. The label CH denotes
the ceiling height. The labels L1, M1, and R1 as well as L2, M2, and R2 represent the
speaker’s positions on two different black arcs. The arcs guarantee a constant distance
between the source and the central microphone of each array; thus, the direct paths’
attenuation (the paths between the speaker and the array’s central microphone) is the
same at each position. The speaker always looked into the direction of an array’s central
microphone.
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A1
A2

D

H
L

B

T1 T2

Fig. 4.2: A speaker utters vowels and sentences at different positions on an arc (T2)
facing east in the meeting room. Two arrays (A1 and A2) sample the room’s acoustic
wave field. There are marked trajectories (T1 and T2) on the floor. The speaker wears
a backpack (B) which contains a laryngograph and wireless transmitters. The speaker
wears the laryngograph’s sensors (L) on the neck and a head-mounted microphone (H).
A laser distance meter (D) measures the distance between the array’s central microphone
and several points in the room to be able to draw an arc with a constant radius.
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Table 4.8: Values representing the OSPA distance, the cardinality error, and the local-
ization error averaged over all frames of all Monte Carlo experiments with synthetically
generated sources.

GM-PHD GM-CPHD GM-CBMeMBer

Averaged OSPA Dηo,a 9.20 12.03 26.77

Averaged Localization Error Qηo,a 4.56 3.45 1.84

Averaged Cardinality Error Rηo,a 1.62 2.69 6.40

4.11.1 Experiments with Synthesized Signals

Fig. 4.3, Fig. 4.5, and Fig. 4.7 show three-dimensionally visualized (a) RPDM-based
frame-by-frame estimates and (b) original tracks marginalized over frequencies or frame
indices (gray) and estimated tracks (black) of synthetically generated and spatialized
linearly frequency-sweeping harmonic sources superimposed by spatially filtered noise
yielding an SNR = 10 dB. Additionally, these figures contain estimated and original
tracks marginalized over (c) frequencies or (d) angles as well as (e) their corresponding
OSPA distances, (f) cardinality errors, and (g) localization errors of the GM-PHD filter
(Fig. 4.3), the GM-CPHD filter (Fig. 4.5), and the GM-CBMeMBer filter (Fig. 4.7).
Fig. 4.4, Fig. 4.6, and Fig. 4.8 present metrics averaged over all Monte Carlo experiments
and for each multiple-target tracker: (a) the OSPA distance, (b) the OSPA distance of
experiments with SNR = {−10, 0, 10, 20, 30} dB, (c) the cardinality error and (d) the
cardinality errors of experiments with the aforementioned SNRs, (e) the localization
error considering all SNRs and (f) the localization errors of experiments with certain
SNRs. I applied a moving average filter with weights (0.25, 0.5, 0.25) to improve the SNR-
dependent curves’ readability. Table 4.8 lists values representing the OSPA distance, the
cardinality error, and the localization error averaged over all Monte Carlo experiments
and over all frames. Stated differently, these values represent the means of the plotted
values in the left column of Fig. 4.4, Fig. 4.6, and Fig. 4.8.

4.11.2 Experiments with Synthetically Spatialized Real Speech Signals

Fig. 4.9, Fig. 4.11, and Fig. 4.13 show (a-b) observations, (c-d) original tracks and
estimated tracks, and (e-h) marginalized tracks, while Fig. 4.10, Fig. 4.12, and Fig. 4.14
show (a-b) OSPA distances, (c-d) cardinality errors, (e-f) and localization errors. The
plots in the left columns of Fig. 4.9–4.14 show the visualized results based on recordings
of a female speaker, whereas the plots in the right columns feature results based on
recordings of a male speaker. To emphasize the differences between the trackers’ resulting
trajectories, I selected a specific set of experiments. In case of the experiments based
on the male speaker’s recordings, I show the results of each tracker based on the same
recording. In case of the experiments with the female speaker, I present results based
on different recordings. However, in comparison to Fig. 4.3–4.8, I did not visualize the
averaged metrics due to varying speech activity over time; the number of non-zero items
for averaging would highly vary for each frame index. Table 4.9 lists values representing
the localization error averaged over all Monte Carlo experiments and over all frames.
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Fig. 4.3: (a) Frame-by-frame estimates, (b) original tracks marginalized over frequencies
or frame indices (gray) and estimated tracks (black) of the f0s, their second, third, and
fourth harmonic’s components (of a noisy signal with SNR = 10 dB) produced by the
RPDM-based algorithm and the GM-PHD filter; (c) original tracks and estimated tracks
of the DOAs in spatial domain after marginalizing over the frequency components, and
(d) original tracks and estimated tracks in frequency domain after marginalizing over the
spatial components. The plots in (e-g) show the OSPA distance, the cardinality error,
and the localization error, respectively.
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Fig. 4.4: (a) OSPA distances and (b) SNR-dependent OSPA distances averaged over all
experiments, (c) cardinality errors and (d) SNR-dependent cardinality errors averaged
over all experiments, (e) localization errors and (f) SNR-dependent localization errors av-
eraged over all experiments of the GM-PHD filter’s tracks. The RPDM-based algorithm
estimated the f0s, their second, third, and fourth harmonic’s components of linearly
frequency-sweeping harmonic sources superimposed by filtered noise. A weighted mov-
ing average filter with weights (0.25, 0.5, 0.25) smoothed the curves of the SNR-dependent
metrics.
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Fig. 4.5: (a) Frame-by-frame estimates, (b) original tracks marginalized over frequencies
or frame indices (gray) and estimated tracks (black) of the f0s, their second, third,
and fourth harmonic’s components (of a noisy signal with SNR = 10 dB) produced by
the RPDM-based algorithm and the GM-CPHD filter; (c) original tracks and estimated
tracks of the DOAs in spatial domain after marginalizing over the frequency components,
and (d) original tracks and estimated tracks in frequency domain after marginalizing over
the spatial components. The plots in (e-g) show the OSPA distance, the cardinality error,
and the localization error, respectively.
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Fig. 4.6: (a) OSPA distances and (b) SNR-dependent OSPA distances averaged over all
experiments, (c) cardinality errors and (d) SNR-dependent cardinality errors averaged
over all experiments, (e) localization errors and (f) SNR-dependent localization errors
averaged over all experiments of the GM-CPHD filter’s tracks. The RPDM-based algo-
rithm estimated the f0s, their second, third, and fourth harmonic’s components of lin-
early frequency-sweeping harmonic sources superimposed by filtered noise. A weighted
moving average filter with weights (0.25, 0.5, 0.25) smoothed the curves of the SNR-
dependent metrics.



102

50
100

150
200 100

50
0

50
100

500

1000

1500

Frame Indices Angles [Deg]

Fr
e
q

u
e
n
ci

e
s 

[H
z]

(a)

50
100

150
200 100

50
0

50
100

500

1000

1500

Frame Indices Angles [Deg]

Fr
e
q

u
e
n
ci

e
s 

[H
z]

(b)

0 50 100 150 200
100

50

0

50

100

Frame Indices

A
n
g

le
s 

[D
e
g

]

True Tracks Estimated Tracks

(c)

0 50 100 150 200

500

1000

1500

Frame Indices

Fr
e
q

u
e
n
ci

e
s 

[H
z]

True Tracks Estimated Tracks

(d)

0 100 200
Frame Indices

0

10

20

30

40

O
S

P
A

 D
is

ta
n
ce

s

(e)

0 100 200
Frame Indices

0

5

10

15

C
a
rd

in
a
lit

y
 E

rr
o
rs

(f)

0 100 200
Frame Indices

0

5

10

15

Lo
ca

liz
a
ti

o
n

E
rr

o
rs

(g)

Fig. 4.7: (a) Frame-by-frame estimates, (b) original tracks marginalized over frequencies
or frame indices (gray) and estimated tracks (black) of the f0s, their second, third,
and fourth harmonic’s components (of a noisy signal with SNR = 10 dB) produced
by the RPDM-based algorithm and the GM-CBMeMBer filter; (c) original tracks and
estimated tracks of the DOAs in spatial domain after marginalizing over the frequency
components, and (d) original tracks and estimated tracks in frequency domain after
marginalizing over the spatial components. The plots in (e-g) show the OSPA distance,
the cardinality error, and the localization error, respectively.
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Fig. 4.8: (a) OSPA distances and (b) SNR-dependent OSPA distances averaged over all
experiments, (c) cardinality errors and (d) SNR-dependent cardinality errors averaged
over all experiments, (e) localization errors and (f) SNR-dependent localization errors
averaged over all experiments of the GM-CBMeMBer filter’s tracks. The RPDM-based
algorithm estimated the f0s, their second, third, and fourth harmonic’s components of
linearly frequency-sweeping harmonic sources superimposed by filtered noise. A weighted
moving average filter with weights (0.25, 0.5, 0.25) smoothed the curves of the SNR-
dependent metrics.
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Fig. 4.9: (a,b) Frame-by-frame estimates and (c,d) original tracks marginalized over
frequencies or frame indices (gray) and estimated tracks (black) of the fundamental
frequencies and the second harmonic’s components produced by the RPDM-based al-
gorithm and the GM-PHD filter, respectively, (e,f) original tracks and estimated tracks
of the DOAs in spatial domain after marginalizing over the frequency components, and
(g,h) original tracks and estimated tracks in frequency domain after marginalizing over
the spatial components of spatially filtered signals of a female speaker (left column) and
a male speaker (right column).
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Fig. 4.10: (a,b) OSPA distances, (c,d) cardinality errors, and (e,f) localization errors of
GM-PHD filtered tracks based on spatially filtered speech recordings of a female speaker
(left column) and a male speaker (right column).
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Fig. 4.11: (a,b) Frame-by-frame estimates and (c,d) original tracks marginalized over
frequencies or frame indices (gray) and estimated tracks (black) of the fundamental
frequencies and the second harmonic’s components produced by the RPDM-based algo-
rithm and the GM-CPHD filter, respectively, (e,f) original tracks and estimated tracks
of the DOAs in spatial domain after marginalizing over the frequency components, and
(g,h) original tracks and estimated tracks in frequency domain after marginalizing over
the spatial components of spatially filtered signals of a female speaker (left column) and
a male speaker (right column).
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Fig. 4.12: (a,b) OSPA distances, (c,d) cardinality errors, and (e,f) localization errors
of GM-CPHD filtered tracks based on spatially filtered speech recordings of a female
speaker (left column) and a male speaker (right column).
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Fig. 4.13: (a,b) Frame-by-frame estimates and (c,d) original tracks marginalized over
frequencies or frame indices (gray) and estimated tracks (black) of the fundamental
frequencies and the second harmonic’s components produced by the RPDM-based al-
gorithm and the GM-CBMeMBer filter, respectively, (e,f) original tracks and estimated
tracks of the DOAs in spatial domain after marginalizing over the frequency components,
and (g,h) original tracks and estimated tracks in frequency domain after marginalizing
over the spatial components of spatially filtered signals of a female speaker (left column)
and a male speaker (right column).
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Fig. 4.14: (a,b) OSPA distances, (c,d) cardinality errors, and (e,f) localization errors of
GM-CBMeMBer filtered tracks based on spatially filtered speech recordings of a female
speaker (left column) and a male speaker (right column).
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Table 4.9: Values representing the localization error averaged over over all frames of all
Monte Carlo experiments with real speech recordings from a female (left value) and male
(right value) speaker.

GM-PHD GM-CPHD GM-CBMeMBer

Averaged Localization Error Qηo,a 9.53 / 11.91 11.02 / 12.60 4.93 / 6.80

4.11.3 Experiments with Real Reverberant Speech Recordings

In case of experiments with real reverberant speech signals recorded in a meeting room,
I present visualizations of estimates and tracks shown in Fig. 4.15–4.17. These figures
illustrate (a-b) the observations and (c-d) the corresponding trajectories in a three-
dimensional space; additionally, they include plots marginalized over (e-f) frequencies
or (g-h) angles. The left column of each figure represents the estimates and tracks of a
male speaker uttering a vowel. The right column shows estimates and tracks of a male
speaker uttering the sentence “Why were you away a year, Roy?” with almost constant
pitch. I decided to avoid varying the pitch to demonstrate a fascinating phenomenon
in reverberant environments when using frame-based joint estimators. The outermost
microphones of the whiteboard’s microphone array (A2) provided the corresponding sig-
nals. The speaker stood at position M2. I excluded visualizations of (averaged) metrics
due to phenomena described in the corresponding discussion.

4.12 Discussion

A thorough evaluation of the results yielded an overview of each multiple-target tracker’s
accuracy and new findings on the RPDM-based algorithm’s behavior in experiments
described before. For instance, the estimator produces more clutter around the ground-
truth f0’s and ground-truth harmonics at higher frequencies. One reason for that are the
ripples around the bandpass filters’ cutoff frequencies. Though using optimized Kaiser
window-order estimated bandpass filters, the ripple around these frequencies increases
towards higher frequencies. This might cause wrong estimates in a neighboring band’s
edge, if the harmonic source’s frequency is close to that edge. From a multiple-target
tracker’s point of view, this increase of (correlated) clutter to higher frequencies has to
be considered (in the future) in terms of an increasing variance of observation noise to
higher frequencies when predicting and updating states.

The structure of this section’s remaining part is as follows: First, I discuss each
multiple-target tracker’s results of experiments with synthesized signals. Second, I dis-
cuss the outcomes of experiments with synthetically spatialized real speech signals. And
third, I discuss the results of experiments with speech signals recorded in a reverberant
environment.

4.12.1 Experiments with Synthesized Signals

The ground-truth signals in the experiments started with a delay of three frames and
stopped three frames before the end, which ensured a silence at the beginning and the
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Fig. 4.15: (a,b) Frame-by-frame estimates, (c,d) estimated tracks (black) and (marginal-
ized) ground-truth tracks (gray) of the f0s, the second and the third harmonic’s compo-
nents produced by the RPDM-based algorithm and the GM-PHD filter, (e,f) tracks of the
DOAs in spatial domain after marginalizing over the frequency components, and (g,h)
tracks in frequency domain after marginalizing over the spatial components of a speaker
uttering a vowel (left column) and a sentence (right column) with almost constant pitch.
The labels denote (1) the f0-trajectory, (2,3) the second and third harmonics’ trajecto-
ries, (6) the f0s marginalized over time at the ground-truth DOAs, (7) the DOAs over
time marginalized over the ground-truth f0s, and (8) the true joint parameters over time.
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Fig. 4.16: (a,b) Frame-by-frame estimates, (c,d) estimated tracks (black) and (marginal-
ized) ground-truth tracks (gray) of the f0s, the second and the third harmonic’s compo-
nents produced by the RPDM-based algorithm and the GM-CPHD filter, (e,f) tracks of
the DOAs in spatial domain after marginalizing over the frequency components, and (g,h)
tracks in frequency domain after marginalizing over the spatial components of a speaker
uttering a vowel (left column) and a sentence (right column) with almost constant pitch.
The labels denote (1) the f0-trajectory, (2,3) the second and third harmonics’ trajecto-
ries, (4) a birth process, (5) a death/birth process, (6) the f0s marginalized over time
at the ground-truth DOAs, (7) the DOAs over time marginalized over the ground-truth
f0s, and (8) the true joint parameters over time.
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Fig. 4.17: (a,b) Frame-by-frame estimates, (c,d) estimated tracks (black) and (marginal-
ized) ground-truth tracks (gray) of the f0s, the second and the third harmonic’s com-
ponents produced by the RPDM-based algorithm and the GM-CBMeMBer filter, (e,f)
tracks of the DOAs in spatial domain after marginalizing over the frequency components,
and (g,h) tracks in frequency domain after marginalizing over the spatial components
of a speaker uttering a vowel (left column) and a sentence (right column) with almost
constant pitch. The labels denote (1) the f0-trajectory, (2,3) the second and third
harmonics’ trajectories, (6) the f0s marginalized over time at the ground-truth DOAs,
(7) the DOAs over time marginalized over the ground-truth f0s, and (8) the true joint
parameters over time.
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end of each signal. This was necessary to observe each tracker’s birth processes and
death processes at the beginning and the end of each experiment.

Depending on the tracker’s performance, the cardinality errors were high at the
beginning and the end of every experiment; each tracker required two to three frames
to successfully start and stop tracking. Hence, the localization errors are zero at these
frames, because there is a ground-truth track but no estimated track to compare with
or vice versa.

Focusing on the GM-PHD filter’s results shown in Fig. 4.3, (c) presents the smoothest
tracks in terms of DOA in comparison to all other multiple-target trackers, especially
at lower frequencies. In contrast to the other trackers, the GM-PHD filter requires
two to three additional frames to start a track as shown in (d). Although (e-g) are
snapshots representing the metrics of a single experiment only, they reveal interesting
details hidden in the average metric’s results. According to (f) there are sudden changes
in cardinality, i.e., in the number of tracks. Fig. 4.4 shows the averaged metrics of all
experiments (left column) and of experiments with different SNRs (right column). In
addition, Table 4.8 presents the means of the averaged metrics of experiments with all
SNRs. Comparing with all other trackers’ visualized results, Fig. 4.4 (a,c,e), presents
the smallest averaged OSPA distances, the smallest averaged cardinality errors, and the
highest averaged localization errors making the GM-PHD filter an ideal tracker if a small
OSPA distance and a low cardinality error is more important than a high localization
accuracy. Distinguishing between different SNRs, Fig. 4.4 (b,d,f) shows the smallest
peak value in OSPA distance, the smallest values in cardinality error, but the highest
values in localization error over time. This is consistent with the snapshots’ evaluations.
The cardinality error is high for a low SNR and vice versa, but the error slowly increases
towards higher frequencies. As expected, the localization error is high for a low SNR
and small for a high SNR. As in case of the cardinality error, the error increases towards
higher frequencies. The OSPA distance combines the cardinality error, the localization
error, and the labeling error. For SNR = −10 dB the OSPA distances are high due to
a large number of (spatially correlated) clutter causing deviations in tracks. Contrary
to expectations, for SNR = 10 dB rather than SNR = 30 dB the OSPA distances are
the smallest. The higher the SNR, the lower the amount of clutter. The first column of
Table 4.8 reflects all these findings in terms of single values.

As shown in Fig. 4.5 (d), the GM-CPHD filter features the smoothest tracks in fre-
quency domain. The filter starts tracking from the beginning; thus, it requires fewer
frames to give birth to and to kill tracks—an advantage of balancing the cardinality.
However, the higher the ground-truth’s frequency at the beginning (e.g., in case of the
fourth harmonic), the longer it takes to give birth to a track. In terms of DOA, the track
shows deviations at its beginning, which is linked to the estimator’s decreased accuracy
for low-pitched sources; the tracker cannot produce smooth tracks under such conditions.
The snapshot of the GM-CPHD filter’s cardinality error in (f) shows the smallest num-
ber of cardinality errors and the smallest number of changes. Comparing the averaged
metrics in Fig. 4.6 (a,c,e) with those of the GM-PHD filter, the GM-CPHD filter’s aver-
aged OSPA distance and averaged cardinality error is higher, but its localization error
is smaller. Distinguishing between different SNRs, Fig. 4.6 (b,d,f) shows increasing av-
eraged OSPA distances for increasing frequencies, especially for SNR = {10, 20, 30} dB.
Only for SNR = −10 dB, the curve maintains its OSPA distance after 25 frames. This
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is also true for the cardinality errors. However, the localization errors are as expected.
The higher the SNR, the larger the error and vice versa. In comparison to the GM-PHD
filter, the GM-CPHD filter features smaller localization errors, as reflected in Table 4.8.

Looking at Fig. 4.5 (b,g), there are two striking properties that characterizes the
GM-CBMeMBer filter: The first one is the small localization error. In comparison to
the GM-PHD filter and the GM-CPHD filter, the GM-CBMeMBer filter features the
smallest localization errors over time. Solely at the beginning there is a peak at the first
few frames after giving birth to the tracks. Even this peak is much smaller compared to
the peaks of the other trackers. However, the second striking property is the number of
dropouts, e.g., killed tracks followed by born tracks after a short break. This is due to
the pruning of tracks. One major feature of the GM-CBMeMBer filter is that the filter
prunes states and tracks; however, to keep the localization error small, I prune more
tracks, which causes these dropouts. Considering the snapshots, the GM-CBMeMBer
filter exhibits the highest OSPA distances (d) and highest cardinality errors (e), but its
localization errors (f) are significantly smaller than in case of the GM-PHD filter and GM-
CPHD filter. Comparing the averaged metrics in Fig. 4.8 (a,c,e) with those of the GM-
PHD filter and GM-CPHD filter, the GM-CBMeMBer filter’s averaged OSPA distance
and averaged cardinality error is the highest, but its localization error is the smallest.
Distinguishing between different SNRs, Fig. 4.8 (b,d,f) shows the largest peak value
in OSPA distance; interestingly, it features the smallest distances for SNR = −10 dB.
A plausible explanation is that the (correlated) noise causes more tracks close to the
ground-truth trajectories. The tracks closer to the ground-truth trajectories feature
higher weights and, thus, won’t be pruned. Though being a cardinality balanced tracker,
it features the largest cardinality errors, but, again, the smallest localization errors, as
reflected in Table 4.8. It is interesting to see that the metrics stay almost constant over
time.

To sum it up, for the very first time I showed that feeding multiple-target trackers
with jointly estimated parameters yields smooth spatio-temporal trajectories. If the goal
is to achieve the smoothest tracks in spatial domain, the smallest OSPA distances, and
the smallest cardinality errors, then the GM-PHD filter is the best choice. If smooth
tracks in frequency domain and small localization errors are important, then the GM-
CPHD filter is the best choice. However, if the localization error should be as small as
possible, then the GM-CBMeMBer filter should be the first choice.

4.12.2 Experiments with Synthetically Spatialized Real Speech Signals

The main purpose of the experiments with spatially filtered speech signals was to show
that the cascade of the RPDM-based algorithm combined with multiple-target trackers
yields promising results in the field of localizing, characterizing, and tracking of harmonic
sources. The experiments’ goal was to successfully produce tracks that correspond to the
ground-truth tracks of a speaker representing its current DOA and its f0. In these exper-
iments I focused on the localization error. It takes the distance between the estimated
track and the ground-truth track of the f0 and DOA into account only, i.e., it ignores
the cardinality error and labeling error. According to (c-h) of Fig. 4.9, Fig. 4.11, and
Fig. 4.13, one can see that each multiple-target tracker successfully tracks the ground-
truth parameters of the male speaker and the female speaker. Table 4.9 confirms that the
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GM-CBMeMBer filter yields the smallest localization errors, even in case of real speech.
This makes it an ideal tracker if localization accuracy and cardinality play a major and
minor role, respectively. For the sake of completeness, I added Fig. 4.10, Fig. 4.12, and
Fig. 4.14, showing the OSPA distance, the cardinality error, and the localization error.

The table and the figures show that the GM-PHD filter and the GM-CPHD filter
are the best choices in order to compute smooth tracks, whereas the GM-CBMeMBer
filter is the best choice when a small localization error is desired.

4.12.3 Experiments with Real Reverberant Speech Recordings

In all experiments with real reverberant speech recordings, the speaker was positioned
perpendicular to the array’s baseline (axis), as shown in Fig. 4.1 and Fig. 4.2. The
estimator as well as the tracker should theoretically return estimates or tracks that
correspond to the angle perpendicular to the linear array’s axis. The two microphones
should capture signals that feature no phase difference to each other. Interestingly,
Fig. 4.20 shows something different, so do Fig. 4.15, Fig. 4.16, and Fig. 4.17. Fig. 4.20
(a,b) illustrate the captured signals of the phoneme /j/ of the sentence “Why were you
away a year, Roy?”. Plot (a) represents broadband signals, plot (b) shows bandpass-
filtered signals with lower and upper cutoff frequency of 240 Hz and 280 Hz, respectively.
As one can see in (b), the microphone signals feature a phase difference; however, it
should be zero. There are several reasons that caused this phase difference. As shown
in Table 4.7 the reverberation time T30 of the meeting room is larger than 0.5 s in
the frequency range of interest. The reverberation and head movements while speaking
additionally affects the propagating waves.

The signals’ waveforms of impulses generated by clapping hands in front of the ar-
ray showed that both signals are in phase, i.e., there is no phase difference. For in-
stance, Fig. 4.20 (c,d) depicts the captured signals of the phoneme /w/, which is the
first phoneme of the aforementioned sentence. Silence preceded this phoneme; thus, dur-
ing this time interval the microphones captured direct-path components only. Although
the two microphone signals differ in amplitude, they feature a phase difference of zero.

Given a wave field sampled by a two-element microphone array during a time frame,
where a non-moving harmonic source positioned perpendicular to the array axis emitted
a sinusoidal signal in a small reverberant room. Assuming a frame length of 32 ms
and a small array diameter, the estimator will neither estimate the exact ground-truth
angle of the speaker nor the exact angle of the reflections. In fact, it estimates the
angle of the impinging acoustic wave composed of the source’s direct-path component
and reflections, whereas the direct-path component features the same frequency as the
reflections. As a consequence, the estimated DOA of a time frame is the mean of the
captured direct-path component and the captured reflections. Due to varying textured
surfaces, furniture, room modes, etc., the paths of the reflections vary with frequency.
Therefore, the harmonics’ DOAs at a certain instant of time are different, as shown in
Fig. 4.16. Example 4 describes this phenomenon in terms of equations and visualizations.
Bringing it all together, this phenomenon is the reason why I loose spatial information on
reflections and true sources. However, the estimator follows each harmonic’s impinging
waves that feature the highest energy. This maximizes the SNR. Nonetheless, more
studies are required to further investigate this phenomenon.
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Example 4. Given a wave field sampled by a two-element microphone array during
a time frame, where a non-moving harmonic source positioned perpendicular to the
array axis emitted a sinusoidal signal in a small reverberant room. Assuming a frame
length of 32 ms, a small array diameter of 0.5 m, a distance between the source and
the center of the array of 2 m, and the path lengths of two reflections, which are 3.5 m
and 3.6 m, as illustrated in Fig. 4.18 (left). As the following calculation in this simple
example will show, the estimated TDOA will neither correspond to the source-related
TDOA nor to the TDOA of a reflection.

Walls

Fig. 4.18: Left: A part of a reverberant room featuring a harmonic source s, two
microphones m1 and m2 representing the two-element microphone array, two arrows
representing the direct-path components labeled as φ1 and φ̃1, and two arrows rep-
resenting reflections labeled as φ2 and φ̃2. The symbol φ denotes the phase of the
captured direct-path components and reflections. Right: Complex plane with a vector
of length Ã1 and phase angle φ̃1 representing the direct-path component captured at
microphone m1, a vector of length Ã2 and phase angle φ̃2 representing the reflection
captured at microphone m1, and a vector of length Ã1,2 and phase angle φ̃1,2 repre-
senting the sum of the aforementioned vectors. The symbols Re and Im denote the
real axis and the imaginary axis, respectively.

Given the source signal

s(t) = A sin (ωt) , (4.120)

the signals captured by microphone m1 and m2,

x1(t) = Ã1 sin
(
ωt+ φ̃1

)
+ Ã2 sin

(
ωt+ φ̃2

)
(4.121)

and

x2(t) = A1 sin (ωt+ φ1) +A2 sin (ωt+ φ2) . (4.122)

If there is no attenuation, then A1 = Ã1, A2 = Ã2, and A1 = A2.
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According to (3.15) the TDOA is

τ1,2(ω) = −∆φ1,2

ω
(4.123)

with

∆φ1,2 =
φ̃1 + φ̃2

2
− φ1 + φ2

2
. (4.124)

I derived (φ̃1 + φ̃2)/2 in Fig. 4.18 (right). Rewriting (4.123) yields

τ1,2(ω) = −

φ̃1 + φ̃2

2
− φ1 + φ2

2
ω

=
φ1 + φ2 − φ̃1 − φ̃2

2ω
. (4.125)

Since the source is perpendicular to the microphone array’s center, φ̃1 = φ1. This
results in

τ1,2(ω)
∣∣
φ̃1=φ1

=
1

ω
· φ2 − φ̃2

2
. (4.126)

The resulting TDOA neither refers to the TDOA of the direct-path component nor

to the TDOAs of both reflections. It refers to the mean of both reflections’ phases.

�

In Fig. 4.16 (d,f,h) there are numbered labels. Number one, two, and three label the
trajectory of the f0 and the trajectories of the second and third harmonics, respectively.
Number six labels the utterance’s true f0s marginalized over time at the ground-truth
DOAs. Number seven labels the speaker’s DOA marginalized over the ground-truth f0s.
The label with number eight marks the true joint parameters over time.

In plot (d) one can see that the estimated trajectories feature different and varying
DOAs. The first harmonic’s trajectory features different DOAs than the second har-
monic’s trajectory. Plot (f) emphasizes this phenomenon. Against my expectations, the
trajectories do not permanently overlap when marginalizing over the frequencies. The
second and third harmonic’s trajectory is close to the ground-truth, i.e., 180◦. But the
first harmonic features significant deviations of up to 50◦. However, all trajectories are
smooth, the estimates in (b) are closely distributed around the estimated trajectories.
The deviations are high at the beginning of the tracks. This is due to early, strong reflec-
tions in the acoustic wave field. Plot (h) shows trajectories of the f0s and components of
the second and third harmonic without significant deviations. These trajectories are as
expected. As shown at the beginning of the track labeled with one, the tracker requires
two to three frames of estimates before starting a track; this corresponds to the theory.
Label five marks a death/birth process although the signal is still present. This is due
to the frequency domain’s upper limit, which is obviously exceeded at this point.

Prima facie, the data association seems to fail when trying to assign a trajectory of
f0s and trajectories of the corresponding harmonic components to a source. Given such
a challenging environment as described before, the spatial components of a source’s tra-
jectories feature different DOAs at a certain instant of time. However, I can still assign
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Algorithm 5: Iterative Grouping of Trajectories
Data: G (set of trajectories of harmonic sources),

G, H (trajectories), VG, VH (trajectories’ support points);
Result: His (set of grouped trajectories assigned to a source);

1 VG,H ≡ VG ∩ VH ;

2 d
(
G(ig), H(ig)

)
≡ ln

(
G(ig)

)
− ln

(
H(ig)

)
;

3 ∆d
(
G(ig), H(ig)

)
≡ d

(
G(ig), H(ig)

)
− d

(
G(ig−1), H(ig−1)

)
;

4 is = 1;
5 repeat
6 G ∈ G;

7 His =

{
H

∣∣∣∣H ∈ G ∧ |VG,H |−1
∑

ig∈VG,H

∆d
(
G(ig), H(ig)

)
≤ ε

}
;

8 G = G \ His
9 is = is + 1;

10 until G = ∅;

Fig. 4.19: Pseudo-code for grouping the trajectories of a harmonic source. In case
of a real reverberant environment, the harmonic source’s trajectories rarely overlap in
spatial domain; however, in frequency domain they are integer multiples of the trajectory
representing the fundamental frequencies. Thus, one can group the trajectories of a
source assuming that, e.g., speech is sparse in temporal-frequency domain. In the pseudo-
code, G and H are trajectories, VG and VH are sets containing the support points of the
trajectories G and H, respectively, VG,H is a set of support points of the intersection of
set VG and Vz, d(·) is a distance measure between two values, ∆d(·) is a finite difference,
ig is the frame index, is is the source index, and ε is a very small value. For simplicity,
the trajectories G and H contain frequency components only; in practice, consider the
frequency components of G and H only. Ideally, ε = 0; however, due to mismatches and
finite precision, ε > 0.

trajectories to their corresponding source, because, first, the spatial components are still
associated with the frequency components in the SJPS, second, the sources’ trajectories
are integer multiples of their trajectories containing the f0s. To group trajectories that
correspond to a certain source, I assume that speech is sparse in the time-frequency do-
main [63–66]. Fig. 4.19 presents an algorithm that groups each source’s trajectories and
allows to estimate the number of harmonic sources. Additionally, it assigns fragments
of a trajectory (caused by unexpected death-and-birth processes) to the correct group
of trajectories.

The existing approaches as well as the POPI-based approaches described in the
introduction expect the harmonics of a harmonic source’s signal to feature the same
DOAs per frame. This is why they will fail to find the speaker’s exact DOA and f0

in such challenging acoustic environments. A solution is to extend their dictionaries so
that they cover the cases where a source’s harmonics feature different DOAs at a certain
instant of time. However, this would dramatically increase the processing time (i.e., the
time to find the maximum argument).
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Fig. 4.20: Time signals of two microphones representing a snapshot of the sentence
“Why were you away a year, Roy?” spoken by a speaker positioned perpendicular to
the microphone array’s baseline. Plots (a,b) show time signals of the phoneme /j/,
whereas plots (c,d) show time signals of the phoneme /w/. Each signal’s curve features
a certain marker. Plots (a,c) show snapshots of the broadband signals, plots (b,d) show
snapshots of bandpass-filtered signals with lower and upper cutoff frequency 240 Hz and
280 Hz, respectively.



Chapter 5

AMISCO: The Austrian German
Multi-Sensor Corpus1

In this chapter, I finally introduce the aforementioned corpus entitled AMISCO: the
Austrian German multi-sensor corpus; it is the first corpus of its sort. I discuss existing
corpora, compare some of them with the proposed corpus, thoroughly describe the data
collection, the editing, the post-processing, as well as the quality assurance and the
validation.

5.1 Contributions and Innovations

This unique, comprehensive Austrian German speech corpus features glottograms and
recordings labeled with the speakers’ f0s and spatial information. These special labels
are a prerequisite to conduct experiments with algorithms that jointly estimate the DOAs
and the f0s harmonic sources. It is a collection of two-room and 43-channel close-talking
and distant-talking high-quality speech recordings from 24 moving and non-moving single
speakers, balanced male and female. It contains around 8.2 hours of read speech, 53,000
word tokens based on 2,700 unique word types.

5.2 The First Corpus of Its Sort

In the field of distant speech enhancement [115, 116], several research teams dedicated
their time to jointly detect or estimate a source’s DOA and f0 with two or more micro-
phones. Finding these parameters is a prerequisite to improve, e.g., the word accuracy
rate of a speech recognizer by applying beamforming or source separation algorithms.
They applied their algorithms to synthesized harmonic signals [21,24], signals from mu-
sical instruments [18,23], snapshots of filtered clean-speech signals [17,22], synthetically
spatialized signals [22], or speech signals without having a reliable ground truth of the

1This chapter is substantially based on the conference paper [51] and was revised and adapted to
the present thesis. As first author of the conference paper, I did the planning and the post-processing
of the corpus on my own, whereas colleagues (Martin Hagmüller and Thomas C. Pichler) and I did the
recording as well as the quality assurance (and some parts explicitly stated in the chapter.) Moreover, I
wrote the conference paper all by myself.
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Fig. 5.1: Floor plan of the recording environment. The kitchen on the left features three,
the meeting room on the right 38 microphones. All microphones but the microphones
in the meeting room’s center are mounted on the wall; the remaining microphones, i.e.,
the microphones of the uniform circular array and the pentagonal array) are mounted
on the ceiling. Additionally, the meeting room features a video camera and four Kinects
(highlighted as red loudspeaker symbols: top right, center right, bottom left, top left).
There are five loudspeakers (illustrated as red or black loudspeaker symbols with three
arcs: bottom left to bottom right, top left, top right) mounted on the walls. A red
loudspeaker symbol featuring three arcs denotes a loudspeaker and a Kinect or a camera.
The crosses’ center represents the speakers’ positions (labeled with numbers from 1 to
16), whereas the arrows signify the orientation of the speakers. The blue, green, and red
lines represent the trajectories. The label CH denotes the ceiling height.

f0 [35]. One thing they all had in common was no access to multi-channel speech signals
recorded in real environments and labeled with f0s and DOAs or positions in space,
because such data did not exist.

To make such data publicly available, I, therefore, set up a corpus containing Aus-
trian German multi-sensor, multi-channel speech recordings in a real environment, shown
in Fig. 5.1 and Fig. 5.2, labeled with a speaker’s f0s, positions, orientations, and other
parameters. The new corpus offers glottograms that can be used in prosody analy-
sis, speech coding, speaker identification, as well as speech recognition. They are a
prerequisite to evaluate pitch-detectors, e.g., YIN [117] and RAPT [118], and pitch-
trackers [119]. Furthermore, the corpus is suitable for linguistic studies, various machine
learning and (multi-modal and multi-channel) signal processing tasks, and studies re-
lated to a speaker’s f0.

There are outstanding corpora available; however, they do not meet my requirements
to jointly detect and estimate DOAs and f0s.
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Fig. 5.2: A speaker reads sentences shown on the smart-phone’s screen (S) at position
ten (P) facing east in the meeting room. There are two Kinects (K) next to the white-
board, a work station (W) on the right-hand side, and marked trajectories (T) and
positions (P) on the floor. The speaker is wearing a backpack (B) containing a battery-
driven laryngograph and transmitters. The laryngograph’s sensor (L) is mounted on the
speaker’s neck. The bright arrows on the floor mark the directions of movement, the
small cross-shaped markers represent the positions with four orientations. The red spot
on the left-hand side of the speaker marks the pentagonal array’s center (mounted on
the ceiling).
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On the one hand, there are four corpora that include glottograms: the Mocha-
TIMIT database [120], the Keele corpus [121], the PTDB-TUG corpus [122], and the
GRASS corpus, [123]. The Mocha-TIMIT [120] includes single-channel recordings from
a male and a female speaker sampled at 16 kHz. The PTDB-TUG [122] and the Keele
corpus [121] contain single-channel and close-talking speech recordings, which cannot
be used for multi-channel experiments. The GRASS corpus [123], provides glottograms
that are highly distorted.

On the other hand, there are corpora containing multi-room and multi-channel
recordings: the ATHENA corpus [124] and the DIRHA-GRID corpus [125].

However, none of these corpora contains moving speakers, and none of them but [123]
contains any (Austrian) German speech recordings, which are indispensable for experi-
ments with (Austrian) German voice-controlled systems. Almost all corpora mentioned
before lack video recordings, which are important for audio-visual experiments and qual-
ity assurance. In [126], Le Roux et al. summarized the properties of over 40 data sets;
however, neither ShATR [127], AV16.3 [128], ICSI Meet [129], nor NIST meet [130],
CHIL [131], AMI [132], ETAPE [133], just to mention a few, feature ground-truth data
on f0s. Thus, these data sets are useless for jointly estimating the f0s and the DOAs of
harmonic sources.

All these lacks led me to set up a new, unique, and comprehensive corpus called
“AMISCO: The Austrian German Multi-Sensor Corpus.”

5.3 Data Collection and Editing

5.3.1 Speakers

The corpus contains read-speech produced by 24 speakers, balanced male and female,
aged between 25 and 52, 23 of them with Austrian German, and one with German
German accent to be able to draw a rough comparison between both variants’ pronunci-
ations. Since discussing the differences between Austrian German and German German
is out of this article’s scope, I refer to [123, 134, 135] for more information about this
topic. All speakers but one were born in Austria; one was born in Germany. Those who
were born in Austria grew up in non-western provinces, which ensures reduced dialectal
variations. At the time of recording, all of them lived in Graz, Austria, and exhibited
a higher education with at least a university degree. I asked each speaker to fill in a
short questionnaire to get an overview of his/her language skills, education, diseases of
the vocal tract (including the larynx), and other personal parameters. Additionally, I
measured each speaker’s body height which is a prerequisite to approximate the position
of the signal-emitting head in space.

5.3.2 Equipment

To guarantee high-quality recordings, two colleagues, Thomas C. Pichler and Martin
Hagmüller, and I employed the high-end RME Hammerfall HDSPe RayDAT sound card
with a HDSP 9632 word clock module to connect the computer with three Focusrite Oc-
toPre MkII Dynamic pre-amplifiers and three audio interfaces. Additionally, we utilized
an AKG CMS 70 dual station for wireless recordings, an Intel Xeon CPU E3-1275L v3
(4 cores, 8 threads) with 32 GB EEC RAM, 120 GB and 250 GB SSD, and Debian Linux
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7.8 with Kernel 3.14. We sampled the acoustic wave field by employing different types of
arrays: a wall-mounted 2-element linear array with a length of 30 cm, three wall-mounted
3-element linear arrays with a length of 60 cm, and a ceiling-mounted 5-element pentago-
nal array with a diameter of 54.44 cm and a microphone in its center. These microphone
arrays featured SHURE MX391 Microflex Boundary omni-directional boundary micro-
phones. We also used 24 MP34DT01 MEMS omni-directional microphones connected to
three AST-Robotics STM32F407 micro-controller-boards to set up a 24-element (3 × 8
MEMS microphones) circular microphone array with a diameter of 61.90 cm; it sur-
rounded the pentagonal array. The micro-controller-boards were connected to the server
via USB. To facilitate close-talking and laryngograph recordings, we employed an AKG
HC577 L headset microphone, a portable laryngograph, and two wireless transmitters
(of the AKG CMS 70 dual station) connected to these devices. The transmitters and
the receivers were synchronized with the central word clock. Additionally, we used four
Kinects (featuring the Microsoft Kinect skeleton tracker based on SDK v1.8) for skele-
ton tracking and a video camera; the Kinects and the camera captured 30 frames per
second. A multi-core computer operated the Kinects and transmitted the captured data
via TCP/IP to the main server. For recording and post-processing, particularly for syn-
chronizing audio with video data, we employed the following digital audio workstations:
Ardour 3.5.403 and Reaper 4.77. In total, we applied 43 acoustic sensors (including the
laryngograph’s sensor which measures the laryngeal transconductance), four Kinects (for
skeleton tracking), and a video camera.

5.3.3 Recording Environment

We did the recordings in rooms that are characteristic for ambient assisted living and
staff meetings [1, 136], i.e., a kitchen at home and a meeting room in a company. In
these rooms, distant speech enhancement, e.g., localization and characterization of mul-
tiple sources [50], has to be applied for successful speech recognition. Fig. 5.2 and
Fig. 5.1 show the recording environment consisting of a meeting room with dimensions
(5.3× 5.8× 3.1) m and a kitchen with dimensions (4.0× 5.7× 3.1) m. The reverberation
time in the meeting room is around T60,c ≈ 500 ms, whereas the reverberation time in
the kitchen is about T60,k ≈ 700 ms when placing sound-emitting sources in the meeting
room and keeping the connecting door open.

5.3.4 Calibration

To guarantee a well-calibrated recording system, we generated a diffuse noise field, mea-
sured the average captured power (over all frequencies) of each channel, and adjusted
each channel’s gain to obtain the same average captured power for each channel. We
employed five pre-installed hi-fi loudspeakers in the meeting room to play back white
noise. To verify a diffuse noise field, we measured the A-weighted equivalent sound
pressure level in front of each microphone by applying a sound level meter. Measure-
ments revealed level differences between ±1 dB. To calibrate the Kinects, we selected
four position markers in the center of the meeting room (at position 6, 7, 10, and 11),
which were in the visual field of all Kinects. We computed the markers’ coordinates by
using a laser distance meter and walked within the area spanned by those markers on
well-defined paths to determine the deviations. Then, we adjusted the Kinects’ positions
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and orientations by hand and measured both parameters by applying a laser distance
meter. After repeating the measurement procedure several times, we averaged all mea-
surements and entered the resulting coordinates in the Kinects’ config-files to improve
their accuracy.

5.3.5 Recording Procedure

Each speaker read items that appeared on a smart-phone’s screen. At the beginning, I
informed the speaker about the purpose of the recording, and he/she signed a statement
of agreement (e.g., including our commitment to preserve the speaker’s anonymity). Af-
terwards, I instructed the speaker about the overall procedure and equipped him/her
with a headset, a backpack containing a battery-driven laryngograph and wireless trans-
mitters. On the neck close to the larynx we mounted the laryngograph’s sensors. We
recorded the speaker in one session (50-60 min) composed of three sub-sessions (10-12
min) and short breaks where we informed the speaker about the upcoming tasks. In sub-
session 1, the speaker read 104 short items at positions, which were selected uniformly at
random, with 5 different orientations per position: north, east, south, west, and center
of the pentagonal array. In sub-session 2, the speaker walked at constant speed along
predefined trajectories marked at the floor. We split this sub-session into three parts:
(1) reading 24 long sentences and walking along the heptagon-shaped trajectory clock-
wise, walking along the inner, straight trajectories from (2) west to east and (3) north to
south, and vice versa, and reading in total 40 long sentences. Sub-session 3 was identical
to sub-session 1, except that the speaker read 64 long items. During the whole session,
a colleague and I (we were sitting in the same room) supervised the speaker by verifying
the read items, the positions and orientations, and by visually examining the speaker’s
gait velocity in sub-session 2. Furthermore, we triggered the change of sentences-to-read
by manually changing the slides (shown on the smart phone) using TeamViewer. In case
of any bloopers, interferences, or other problems, we told the speaker to stop, to wait,
and to read the item again.

5.3.6 Acquisition Data

The recorded utterances represent read speech, phonetically balanced sentences, com-
mands, and digits. The sentences were identical to those used in the GRASS corpus [123],
and the orthographic transcriptions include around 53,000 word tokens and 2,070 unique
word types. We recorded the utterances with a sampling frequency of 48 kHz and en-
coded them with PCM S24 LE (araw). After synchronizing the audio recordings with
the video data we set markers ∼ 0.5 s before and after each utterance by hand. Then,
we exported the markers as a text file (one file per session) and split the original multi-
channel files and the Kinects’ skeleton tracks into chunks. Table 5.1 shows the minimum,
maximum, and average segmental SNR over all speakers for one microphone of each mi-
crophone array and the headset in dB. (I describe the segmental SNR’s computation in
the next section.) The varying SNR-values are due to varying speech levels and distances
between each speaker and the corresponding microphone. Apart from speech recordings
(see Fig. 5.3 and Fig. 5.4), we provide estimated f0s, glottograms, positions and orienta-
tions of each speaker, files containing additional information about the speaker and the
scenarios, as well as orthographic transcriptions. Moreover, we provide different noise
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Table 5.1: Minimum, maximum, and average signal-to-noise ratio over all speakers in
dB for one microphone of each microphone array and the headset. CPR denotes the
meeting room.

Min-SNR [dB] Max-SNR [dB] Avg-SNR [dB]

Headset 23.58 52.23 38.67
CPR 1-2 18.97 36.43 24.73
CPR 3-5 19.14 35.75 24.84
CPR 6-8 19.32 36.66 25.09

CPR 9-14 19.06 37.14 24.33
Kitchen 15-17 17.27 31.54 21.35

MEMS M1 20.68 42.14 27.46
MEMS M2 21.97 45.09 29.62
MEMS M3 21.50 44.53 29.15

recordings in the meeting room and kitchen: moving chairs, smashing and closing doors,
running water-tap, etc.

5.4 Post-Processing

5.4.1 Signal-to-Noise Ratio

I determined segmental SNRs of each speaker’s recorded utterance by applying a short-
term power estimation utilizing a first-order IIR smoothing of the signal’s instantaneous
power [85] of a microphone signal x[n] according to

Ps[n] = (1− γs[n]) · x2[n] + γs[n] · Ps[n− 1] (5.1)

with

γs[n] =

{
γr if x2[n] > Ps[n− 1]

γf otherwise
. (5.2)

Variables γr and γf are smoothing constants for rising and falling signal edges, x[n] is
the input signal at index n, and Ps[n] is the smoothed instantaneous power of the signal.
Then, I estimated the local background noise power as follows:

Pb[n] = (1 + εs) ·min (Ps[n], Pb[n− 1]) , (5.3)

where εs is a small positive constant, which controls the maximum speed for increasing
the estimated noise level. After this, I computed the power ratio,

P [n] = 10 · log10 ({Ps[n]− Pb[n]}/Pb[n]) , (5.4)

and averaged all values of P [n] above a certain threshold µSNR yielding the average SNR
per audio file:

SNR(i2) =
1

|K|
∑

i1∈K
P [i1] (5.5)
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Fig. 5.3: Spectrogram of a male speaker’s speech signal recorded with a headset. The
(German-language) utterance is [aIn pri:mi:ti:v5 mEnS vIrt kaIn@ SOY kEnn@n] (IPA). The
f0’s ground-truth values are marked with a blue line. The corresponding audio file used
for this figure is 22 m short 1 wireless 042 9 1.wav, where 22 denotes the speaker’s
id-number, m is the gender, short 1 is the session, wireless denotes the headset’s
recording, 042 is the id-number of the spoken item, 9 is the position, and 1 is the
orientation, respectively.
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Fig. 5.4: Time signals of the first phoneme /e:/ of the (German-language) sentence [je:
ne:a dE5 tsaIg5 aUf axt ka:m dEstO Unru:Ig5 vU5d@n di: lOYt@] (IPA) read by speaker two.
To plot these figures, I used the file named 02 f long 2 <LABEL> 028 6 2.wav, where
<LABEL> is a wildcard used for the room and the microphone number. For instance,
the used audio file in plot (c) is 02 f long 2 cpr1-2 028 6 2.wav, where 02 denotes
the speaker’s id-number, f is the gender, long 2 is the session, cpr1-2 represents the
room’s label (cpr) and the used microphones (1 and 2), 028 denotes the id-number of
the spoken item, 6 is the position, and 2 is the orientation, respectively. The figures
show the signals of (a) the headset microphone, (b) the laryngograph (represented as a
glottogram), (c) the first microphone of the linear array labeled as CPR1-2, (d) a MEMS
microphone of the circular array’s first MEMS module, and (e) the first microphone of
the kitchen’s linear array. In comparison to (a), the signals in (c-e) are time-shifted and
filtered due to the time-differences of arrival and the influence of the room.



130

with K = {i1 | ∀i1 : P [i1] ≥ µSNR}, where |K| is the cardinality of set K. Averaging the
SNRs of all speakers’ utterances yields the overall SNR per microphone:

SNR =
1

Nu

Nu∑

i2=1

SNR(i2), (5.6)

where Nu is the number of all utterances of all speakers. I chose a sampling frequency of
fs = 48 kHz, γr = 0.99, γf = 0.97, εs = 2 ·10−5, µSNR = 15 dB, and Pb[0] = Ps[0] = x[0]2

as initial values.

5.4.2 Resampling & Filtering Skeleton Tracks

Since the Kinects delivered unequally spaced detections in time (they lacked a clock to
control the frame rate), the data points had to be resampled with equally spaced 30 fps.
Assuming that the speakers had a constant gait velocity (which we verified by visually
examining their velocity), I resampled the resulting skeleton tracks (provided by the
Kinect skeleton tracker) by considering linear interpolation, which yielded data points
with equally spaced time-intervals. The measurement of the Kinects’ positions with a
laser distance meter by hand introduced a small systematic error. Thus, I decided to
make use of some prior knowledge: all speakers were walking on marked trajectories.
Moreover, the visual evaluations of the videos revealed that all speakers were walking on
the trajectories, which were marked on the floor, without (visually) noticeable deviations
(e.g., deviations smaller than ±15 cm). Therefore, I computed the squared error between
each detection and a fine grid of points on the trajectories. Then I determined the point
on the trajectories where the squared error of a detection exhibited the global minimum,
and mapped the detection to this point of the trajectory (see Fig. 5.5). The corpus
provides the original and modified skeleton tracks as text files.

5.4.3 Estimating Fundamental Frequency

First, I upsampled the glottogram from fs = 48 kHz to fs = 96 kHz. Then, I filtered
the signal with a Kaiser window order-estimated bandpass filter with a lower and upper
cut-off frequency of 70 Hz and 8000 Hz. After compensating the introduced group-delay,
I split the whole signal into frames with a frame length of 32 ms and a frame shift of
5 ms. I computed the one-sided unbiased auto-correlation of each frame and applied
a maximum detector based on the Lemire-algorithm [79] with a sliding-window size of
10 samples to each frame. After eliminating maxima with a lag below 2 ms and above
13 ms, I selected the global maximum of all remaining maxima. To eliminate outliers
(e.g., caused by the speaker’s act of swallowing), I computed the first derivative of the
f0-trajectory and eliminated sudden jumps with at least a minor sixth—this corresponds
to a pitch ratio of 8 : 5—upwards and downwards. The corpus provides the glottograms
as wav-files and the trajectories of the estimated f0s (see Fig. 5.6) as text files.

5.4.4 Orthographic Transcription

To generate accurate transcriptions of the recorded utterances, I followed the transcrip-
tion guidelines mentioned in [123], which lists all symbols used for the orthographic
transcription.
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Fig. 5.5: The original (blue and curvy) and modified (red and straight) skeleton tracks
represented as trajectories in the meeting room’s floor plan. These trajectories corre-
spond to a snapshot of a speaker’s movements in sub-session 2.

Time [ s ]
1 2 3 4 5 6

F
re
q
u
en
cy

[H
z]

100

150

200

250

300

350

Fig. 5.6: The estimated f0-trajectory of speaker 2 uttering the (German-language) sen-
tence [je: ne:a dE5 tsaIg5 aUf axt ka:m dEstO Unru:Ig5 vU5d@n di: lOYt@] (IPA).
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5.5 Quality Assurance & Validation

I prepared protocols for each speaker’s (sub-)session beforehand; these protocols defined
what to say and where to go. They contained all selected sentences, positions, as well
as orientations. During each (sub-)session, two assistants supervised the speaker by
verifying the read items, the positions and orientations, and the speaker’s gait velocity.
I used the protocols to create a first transcription of the utterances. Afterwards, two
colleagues and I checked all recorded utterances, video tracks, and text files, and made
corrections if required.

5.6 Results & Discussion on AMISCO

I evaluated the experiments of the joint DOA and f0 estimators in terms of recalls and
root-mean-square errors by using a subset of the AMISCO’s recordings. From a set of 24
speakers, I randomly selected one male speaker and one female speaker. The evaluation’s
results are listed in [50], and they are shown as cumulative distribution functions of
recalls and root-mean-square errors. The author of [137] analyzed the laryngograph
(electroglottograph) recordings focusing on gender differences and speaker identity for
excitation signal synthesis—the synthesis of the vocal folds’ movements. The author
of [138] used parts of the corpus to evaluate the performance of differential microphone
arrays for speaker localization and speaker separation.

During the recording and the post-processing, my colleagues and I encountered three
problems. First, not being able to connect the camera and the Kinects to the word clock
used for the audio recordings, we noticed varying delays between the starting-point
of the audio and video recordings. To overcome this problem, a person clapped his
hands once in the middle of the room at the beginning and the end of each sub-session.
Captured by the audio and video devices, I was able to synchronize the audio recordings
with the video data during post-processing by acoustically and visually aligning the
moment of clapping in the audio and video tracks. Doing so for each recording, I
realized that there was no significant rate drift between those two devices. Second, I
had to split the 24 MEMS microphones into three groups due to the fixed number of
eight microphone-connections on the microcontroller-boards. I knew that there will be
clock-drifts and synchronization problems between the boards, because they were not
connected to a central word clock (this was a hardware-restriction). Thus, I set up the
24-element circular array in a way that eight MEMS microphones connected to one board
represent an 8-element circular array with constant angular interval of 45◦; considering
all three circular arrays, the interleaved 24-element circular array exhibits an interval of
15◦. Third, due to an undetectable and unpredictable problem with the internal power
supply of the laryngograph, speaker 1 exhibits distorted glottograms that should not be
used. Speaker 24 doesn’t include any skeleton tracks due to undetected communication
problems between the Kinects and the computer during recording.

The corpus provides single-speaker recordings due to a limitation in equipment. For
instance, I had access to a single laryngograph; as a consequence, I could simultaneously
measure the laryngeal transconductance of one speaker only. Moreover, the Kinects
solely tracked the skeleton of a single person.

To highlight a certain phenomenon unknown in the field of joint estimation and
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mentioned in Chapter 4, I had to employ a different set of recordings that slightly
differed from the recordings of the Austrian German Multi-Sensor corpus. I required
recordings of a speaker, which looked exactly toward the center of the microphone array
and which uttered voiced sounds with an invariant pitch, i.e., vowels or the sentences
Why were you away a year, Roy?. However, the Austrian German speech corpus lacks
such voiced utterances.

5.7 Conclusion

The Austrian German multi-sensor corpus (AMISCO) is a collection of two-room and 43-
channel close- and distant-talking Austrian German high-quality speech recordings from
24 moving and non-moving speakers, balanced male and female. It contains around 8.2
hours of read speech, 53,000 word tokens based on 2,070 unique word types. Furthermore,
this corpus features orthographic transcriptions, glottograms, fundamental frequencies,
and positions and orientations of speakers located at certain positions or walking along
pre-defined trajectories. The new corpus offers glottograms that can be used in prosody
analysis, speech coding, speaker identification, as well as speech recognition. The synergy
of all these components yields a unique and comprehensive corpus that can be used in
several fields of research, e.g., signal processing, linguistic studies, or machine learning.

In comparison to all datasets listed in [126], the new corpus additionally features
ground-truth data on fundamental frequencies. The authors of [126] reported that the
perfect data set is out of reach when they aim at automatic speech recognition research
using microphone arrays. However, they insufficiently described the features of a perfect
data set. Thus, according to [126], it is unclear if the Austrian German Multi-Sensor
corpus meets all criteria that define a perfect data set. For challenging experiments in
the field of joint parameter estimation, it definitely is a valuable data set.

The website of the corpus [139] provides audio samples along with further information
on the corpus. It provides information on how to obtain a copy of the corpus and scripts
to extract the f0 of the glottogram, and how to process the raw skeleton tracks (in case
you want to apply different algorithms to these data). This website also provides the
symbols for the orthographic transcriptions.
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Chapter 6

Conclusion

To position my work in the field of joint DOA and f0 estimation, I did a literature
research with focus on doctoral theses. I thoroughly described four of the most inspir-
ing theses in Section 1.2 and Section 1.3 to cast light on this field of research. The
authors of these theses are Tania Habib, Jesper R. Jensen, Ted Kronvall, and Stefan
I. Adalbjörnsson. This chapter consists of discussions of the aforementioned theses, a
conclusion of my thesis, and an outlook for research of future PhD students in this area.

6.1 Discussion of Related Doctoral Theses

My belief in more efficient realizations of an algorithm regarding accuracy, computational
resources, and the horizon of undreamt-of possibilities always inspired me to focus on the
principles and properties of fundamental operations and basic filters first. Thus, after
carefully analyzing Tania Habib’s work [35, 47] I realized that the module that com-
puted the spectro-temporal fragments was actually one of my major concerns. Though
improving the accuracy in localizing speakers, I believed that this extension was redun-
dant. In other words, overloading the direct predecessor with such a resource-consuming
module was unnecessary. And this certain belief literally fired the starting pistol for a
revealing journey in the field of joint parameter estimation extending. After analyzing
Tania Habib’s and her former colleague’s publication about localization utilizing spatial
and temporal information of a cross-correlation function [45] and thinking about how
to improve these algorithms, I was able to introduce two new, innovative, and more
powerful algorithms. For instance, elaborating on the fundamental principles of her
algorithms [35, 47] and their corresponding predecessor [45], I figured out how to over-
come their fundamental problems, e.g., the pitch-period doubling, the cross-correlation
function’s limitations (it emphasizes the features of the dominating source), the use of
a biased cross-correlation function (it estimated harmonics with different amplitudes
although they should be identical), the summation (marginalization) over frequencies
that caused a loss of information in the frequency domain, the algorithms’ decreasing
frequency resolution towards higher frequencies, and the lack of a joint representation in
a sparse joint parameter space. Moreover, her database presented in [47] was insufficient
for evaluating my new algorithms because it lacked ground-truth frequency information.
The database did not provide any information about the speakers’ fundamental peri-
ods or fundamental frequencies, which can be determined by using a laryngograph that

135
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records glottal activities and returns glottograms. This lack inspired me to set up an
even more comprehensive corpus featuring additional data, e.g., glottograms of a speaker
giving access to a speaker’s fundamental periods during voiced parts of speech.

In case of the nonlinear least squares methods introduced by Jesper R. Jensen, I
realized that employing the gradient search results in a decrease in accuracy. With-
out knowing anything about the parameters’ ideal initial values and with a lack of
information on how to update the step-size, it is difficult to achieve good results, even
when I updated the step sizes by utilizing the Armijo-Goldstein condition—a line search
method. Both issues are neither covered in his thesis nor in his papers. The problems
are as follows: The algorithm often converges to local maxima unless the parameters’
initial values are close to the global maximum. Since employing the Armijo-Goldstein
condition improves the algorithms’ behavior of convergence, I should obtain accurate
estimates of the parameters. However, I realized that line search methods require a
sufficiently high number of iterations, which was neither mentioned in the papers nor in
the thesis. If this number is not high enough, the estimate in terms of the DOA might
feature a significant error. Besides, there are many other parameters that have to be
selected carefully when applying algorithms based on gradient search and line search.
Nevertheless, all these issues triggered an avalanche full of questions; most of these ques-
tions were even related to my algorithms I was working on. I am glad that I found
many answers. For instance, I realized that the signal model for the whole optimization
procedure has to cover situations where a speaker’s harmonics feature different DOAs at
an instant of time in a reverberant environment; as shown in Fig. 4.16 and Fig. 4.20 in
Chapter 4, the DOAs of a speaker’s harmonics at a certain instant of time are rarely the
same. These issues led me to the algorithms presented in my thesis. Thus, especially
the inspiring work of Jesper R. Jensen positively influenced my work. Comparing his
work with mine answers the question, which algorithm performs better in reverberant
environments. His approach assumes a signal model where the DOAs of a speaker’s har-
monics are identical at a certain instant of time—it will fail in challenging reverberant
environments—, whereas my approach also estimates the speaker’s harmonics featur-
ing different DOAs at a certain instant of time. Additionally, the comparison reveals
that employing gradient search requires accurate prior knowledge to achieve the same
accuracy as a grid search-based approach.

I soon realized that the theses of Stefan I. Adalbjörnsson and Ted Kronvall were
strongly related to each other. Indeed, both were working in parallel at the same depart-
ment. Although Stefan I. Adalbjörnsson finished almost one year before Ted Kronvall, it
seemed to me that Ted Kronvall’s intention was to build on the algorithms and findings
of Stefan I. Adalbjörnsson. However, Ted Kronvall solely focused on applications re-
lated to audio signal processing, whereas Stefan I. Adalbjörnsson applied his algorithms
to problems in different fields of research, e.g., spectroscopy. Interestingly, both obvi-
ously learned from the shortcomings of Jesper R. Jensen’s proposed algorithms. I felt
vindicated when I read that, regarding the a-/NLS algorithm, they rejected the idea of
utilizing a gradient method due to the high number of local maxima; their statement
was totally in line with my findings. Unlike Jesper R. Jensen, Stefan I. Adalbjörnsson
approximated the non-linear model by a linear one employing convex relaxations, con-
vex optimization, as well as the framework of alternating direction method of multipliers
(ADMM). Stefan I. Adalbjörnsson and Ted Kronvall additionally focused on sparse mod-
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els. In comparison to Jesper R. Jensen’s algorithms, theirs rely on the prior knowledge
of the highest possible model order, and some of them can cope with inharmonicities.
I read Ted Kronvall’s thesis after analyzing the outcomes of experiments with the non-
linear least squares estimators proposed by Jesper R. Jensen. I was glad to see that Ted
Kronvall listed several points regarding the NLS’s drawbacks that coincided with my
experiments’ findings. He claimed that the NLS works poorly in practice because the
resulting grid after determining the maximum arguments was highly multimodal, the
optimization needs to be well initialized, i.e., the starting parameters have to be close to
the global maximum, the evaluation grid must feature closely spaced grid points, and the
sources’ frequencies must be sufficiently separated in order to achieve good estimates.
He also claimed that the global maximum is very sharp; however, I disagree because the
size of the grid’s Gaussian-kernel like global maximum—let’s call it variance—depends
on, e.g., the sensor spacing. Choosing a realistic spacing in hand-held devices causes
the kernel’s variance to increase. Regarding Ted Kronvall’s thesis, I realized that he
worked with real signals, too. However, these signals represented the spoken sentence
”Why were you away a year, Roy”, which contains voiced parts only. In his thesis, the
algorithms’ behavior in case of fricatives, unvoiced speech, and silence is missing. In
contrast, I considered sentences containing all of these properties when I evaluated the
VSS-based and RPDM-based approaches. However, in Chapter 4 I considered voiced
speech only to highlight that a speaker’s harmonics feature different DOAs at a certain
instant of time in a challenging reverberant environment. In their experiments, they
evaluated their algorithms with synthetically generated harmonic signals in the near
field and the far field. In case of real signals, they placed two loudspeakers in a room
playing back the sentence ”Why were you away a year, Roy?”. Unfortunately, there
are no experiments with sentences containing voiced and unvoiced parts. Thus, the ap-
proaches behavior in case of natural speech is unclear. In many experiments, e.g., [27],
the distance between the array and the source was relatively small, i.e., approximately
50 cm. Considering distances around 50 cm and large arrays, as utilized in his experi-
ments, a near-field assumption is necessary for successful source localization. However,
as shown in his thesis and in his publications, the spatial resolution towards larger dis-
tances becomes non-linearly smaller. Stated differently, the intervals between the grid
points towards larger distances become larger. This yields a high spatial resolution in
the array’s vicinity, but a decreasing spatial resolution towards larger distances. Thus,
the near-field property increases the algorithm’s complexity and decreases the spatial
resolution towards larger distances. In distant-speech enhancement, the distance be-
tween the arrays and the speakers are usually large: the arrays are mounted on the
ceilings and the walls, whereas the speakers move, sit, or lie somewhere in the room.
Thus, it is questionable if near-field assumptions are necessary. Due to these reasons
I focused on far-field assumptions only. Besides, assuming near-field wave propagation
requires knowledge about the distance between the array and the source. Relying on the
relative attenuation of magnitude estimates (as done in Ted Kronvall’s experiments) in
real reverberant environments is questionable; more studies are required.

At this point, I would like to highlight the advantages of my proposed algorithms.
In contrast to Jesper R. Jensen’s approaches, my approaches, first, do not need any

prior knowledge about the model order. As in case of Ted Kronvall’s and Stefan I.
Adalbjörnsson’s approaches, the model order has to be set to a maximum only in order
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to limit the dictionaries or lookup tables.
Second, my approaches do not need information about the number of active speakers,

which is a prerequisite in Jesper R. Jensen’s approaches. However, in my approaches a
maximum number of simultaneously active speakers must be set. This also applies to
Ted Kronvall’s and Stefan I. Adalbjörnsson’s approaches.

Third, my approaches do not rely on sinusoidal models where the speaker’s harmon-
ics has to feature the same DOAs at an instant of time. I showed that the speaker’s
harmonics usually exhibits different DOAs in reverberant environments. Neither Jesper
R. Jensen’s approaches nor Ted Kronvall’s and Stefan I. Adalbjörnsson’s approaches
handle such challenging situations.

Fourth, my estimators were successfully tested on signals with unvoiced speech, frica-
tives, and silence; they featured a robust behavior. In contrast, none of the aforemen-
tioned authors tested their algorithms on sentences containing voiced, unvoiced, and
silent parts. In fact, they did not consider silence and unvoiced parts in their models.
However, my approaches feature an amplitude threshold for all bands. It ensures that
there are solely estimates during voiced parts in scenarios described in this thesis.

6.2 Conclusion

In this thesis, I started with two innovative algorithms which characterize and localize
harmonic sources. The algorithms based on microphone arrays jointly estimate the
sources’ directions of arrival, fundamental frequencies, and their respective amplitudes
based on a non-parametric signal representation in a sparse joint parameter space. The
algorithms are purely deterministic and real-time capable. They neither rely on an
explicit statistical estimator, any machine learning algorithms or data-driven methods,
nor do they require any training material. The algorithms solve the issue of pitch-period
doubling when using cross-correlation functions and cross-spectra. They estimate a
source’s harmonics even if they feature different directions of arrival at a certain instant
of time, which is the case in reverberant environments.

Both algorithms span a sparse joint parameter space (which can be directly fed into
a tracker) by applying a framework based on a filter bank and a fast and accurate mul-
tidimensional maxima detector. The first algorithm applies variable-scale sampling to
cross-correlation functions. Focusing on the joint parameter space, it features invariant
period intervals but nonlinearly increasing frequency intervals caused by the sampling-
procedure in the lag domain. To overcome the problem of varying frequency intervals, I
introduced the second algorithm, which employs a chirp z-transform and relative phase-
delay masking. Moreover, a tolerance parameter (related to the direction of arrival)
makes the new algorithm robust against small phase mismatches.

I conducted a vast number of Monte Carlo experiments with synthesized harmonic
signals in free-field conditions and reverberant conditions as well as experiments with
synthetically spatialized speech signals featuring different reverberation times and speech
signals recorded in a reverberant environment.

Most of the speech signals were part of the introduced Austrian German multi-
sensor corpus (AMISCO). It is a collection of two-room and 43-channel close-talking
and distant-talking Austrian German high-quality speech recordings from 24 moving
and non-moving single speakers, balanced male and female. It contains around 8.2 hours
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of read speech, 53, 000 word tokens based on 2, 070 unique word types. Furthermore,
this corpus features orthographic transcriptions, glottograms, fundamental frequencies,
and positions and orientations of speakers located at certain positions or walking along
pre-defined trajectories. The synergy of all these different components yields a unique
and comprehensive corpus that can be used in several fields of research, e.g., linguistic
studies, signal processing, or machine learning.

I even went one step further by applying multiple-target trackers to the estimates of
my second and most advanced joint localization algorithm. To find the most appropriate
tracker, I conducted experiments with the Gaussian mixture probability hypothesis den-
sity filter, the Gaussian mixture cardinalized probability hypothesis density filter, and
the Gaussian mixture cardinality-balanced multi-target multi-Bernoulli filter. The Gaus-
sian mixture cardinalized probability hypothesis density filter produce the smoothest
spatio-temporal trajectories, whereas the Gaussian mixture cardinality-balanced multi-
target multi-Bernoulli filter yields the smallest localization errors.

By using the root-mean-square error, the joint recall measure, and the cumulative
distribution function of fundamental frequencies and directions of arrival, I determined
the introduced algorithms’ performances and compared them with performances of dif-
ferent algorithms. In case of multiple-target tracking, I employed the optimal subpattern
assignment distance and its components: the localization error and the cardinality error.

Bringing it all together, the new algorithms are valuable contributions to the field
of localizing and characterizing harmonic sources. They can improve the accuracy of
a wake-up word or event detector, spatio-temporal filters, blind source separators, or
they can decrease the word error rate of voice-controlled, distant-speech interacting
systems. I proofed that the joint estimators’ outcome can be directly fed into a multiple-
target tracker yielding smooth spatio-temporal trajectories. Furthermore, I highlighted a
phenomenon in real reverberant environments where the harmonics of a speaker feature
different directions of arrival at a certain instant of time.

6.3 Outlook

At the very end of my doctoral program I still have many ideas and open questions in
mind that need to be discussed. (Un-)fortunately, time is limited and things have to come
to an end. Everyone has to trace new (unknown but exciting) paths, so do I. Tracing a
new path means leaving the old one at a crossroads. This implies that there are several
other paths that are connected to the crossroads; paths that can be explored by others.
Therefore, I would like to share some of my ideas and open questions in the remaining
part of this outlook for research of future PhD students in the field of joint parameter
estimation. May the following ideas and questions be exciting paths-to-be-explored.

First, both introduced approaches are only applicable to distant-speech scenarios due
to the far-field assumption made when determining DOAs. However, in close-talking
scenarios I have to assume spherical wave propagation, i.e., near-field conditions. The
publications of Ted Kronvall and Stefan I. Adalbjörnsson [24,27,42] are a good starting
point in order to modify my two proposed algorithms to localize and characterize sources
in the near field.

Second, I only focused on localization, characterization, and tracking. However, the
next logical step is to feed a subband beamformer with the trajectories of a multiple-
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target tracker. The subband beamformer can be, e.g., a cascade of a beamformer and a
bandpass filter or a beamformer that considers bandpass filtering. The result should be
a steered beam in spatial and frequency domain.

Third, after introducing a proper subband beamformer, a comprehensive evaluation
of an overall system, i.e., a system consisting of a joint estimator, a tracker, and a
subband beamformer, might yield new insights in that field of research. Someone might
figure out how to optimize the overall system and/or how to improve the overall system’s
accuracy. An automatic speech recognizer can evaluate the system’s accuracy.

Last but not least, there are some minor issues-to-be-examined. For instance, is the
Kaiser window order-estimated bandpass filter the optimal filter or how can the tracker
make use of the amplitudes estimated by the two approaches. In [106] there are hints
on how to solve the latter issue.



Appendix A

Other Contributions

Besides working on localizing, characterizing, and tracking one or more harmonic sources,
I contributed algorithms and findings in the field of beamforming.

A list of findings and evaluations based on experiments with different beamformers
is presented in [140]

Pessentheiner, H., Petrik, S., and Romsdorfer, H., “Beamforming Using Uni-
form Circular Arrays for Distant Speech Recognition in Reverberant Envi-
ronments and Double Talk Scenarios,” in Proc. 13th Annual Conference
of the International Speech Communication Association, Portland, Oregon,
USA, Sep. 2012, pp. 1368–1371.

This paper describes an adaptation of the most common state-of-the-art broadband
beamformers to uniform circular arrays. The goal was to find the most robust system for
distant speech recognition in double talk scenarios by attenuating competing speakers,
enhancing the target speaker’s signals, and applying a word recognizer and objective
speech quality measures. As a result of this work, I presented a new beamformer.

In [141]

Pessentheiner, H., Kubin, G., and Romsdorfer, H., “Improving Beamforming
for Distant Speech Recognition in Reverberant Environments Using a Genetic
Algorithm for Planar Array Synthesis,” in Proc. 10. ITG Conference on
Speech Communication, Braunschweig, Germany, Sep. 2012, pp. 1–4,

I highlighted a major disadvantage in beamforming when using a (horizontal) uniform
circular array: a high sensitivity to reflections from the ceiling and the floor in a re-
verberant environment. Furthermore, I presented the so called CVX beamformer for
the very first time. It is based on the convex optimization of a three-dimensional cost
function considering three-dimensional constraints. To effectively attenuate interfering
sources, I introduced a constraint that facilitates placing nulls in any direction.

In the following publications, colleagues and I applied the CVX beamformer to differ-
ent scenarios, e.g., in reverberant and/or noisy environments with a pentagonal-shaped
or star-shaped sensor array:

Morales-Cordovilla, J. A., Pessentheiner, H., Hagmüller, M., Mowlaee, P.,
Pernkopf, F., and Kubin, G., “A German Distant Speech Recognizer based

141
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on 3D Beamforming and Harmonic Missing Data Mask,” in Proc. 40th Italian
(AIA) Annual Conference on Acoustics and 39th German Annual Conference
on Acoustics (DAGA), Merano, Italy, Mar. 2013, pp. 2049–2052.

Morales-Cordovilla, J. A., Hagmüller, M., Pessentheiner, H., and Kubin, G.,
“Distant Speech Recognition in Reverberant Noisy Conditions Employing a
Microphone Array,” in Proc. 22nd European Signal Processing Conference
(EUSIPCO), Lisbon, Portugal, Sep. 2014, pp. 2380–2384.

Morales-Cordovilla, J. A., Pessentheiner, H., Hagmüller, M., González, J.
A., and Kubin, G., “CVX-Optimized Beamforming and Vector Taylor Se-
ries Compensation with German ASR Employing Star-Shaped Microphone
Array,” in Proc. Second International Conference, IberSPEECH 2014, Las
Palmas de Gran Canaria, Spain, Nov. 2014, pp. 148–157.

These publications [142–144] highlight the newly introduced beamformer’s power and
abilities by conducting experiments in the field of distant speech recognition.

Besides working on beamformers, colleagues and I also dealt with room localization
for distant speech recognition, i.e., determining the speaker’s room in a set of rooms
connected via an open door [145]:

Morales-Cordovilla, J. A., Pessentheiner, H., Hagmüller, M., and Kubin, G.,
“Room Localization for Distant Speech Recognition,” in Proc. 15th Annual
Conference of the International Speech Communication Association, Singa-
pore, Sep. 2014, pp. 2450–2453.

In 2013, colleagues and I participated in the 2nd CHiME challenge. As a result,
we published a paper about single-channel speech separation and model-driven speech
enhancement algorithms [146]:

Mowlaee, P., Morales-Cordovilla, J. A., Pernkopf, F., Pessentheiner, H.,
Hagmüller, M., and Kubin, G., “The 2nd CHiME Speech Separation and
Recognition Challenge: Approaches on Single-Channel Speech Separation
and Model-Driven Speech Enhancement,” in Proc. 2nd CHiME Speech Sepa-
ration and Recognition Challenge, IEEE Int. Conf. Acoustics, Speech, Signal
Processing, Vancouver, Canada, May 2013, pp. 59–64.

The 2nd CHiME challenge addressed the development of machine listening applications
for operation in real-world multiple-source reverberant and noisy conditions. The goal
was to recover the sound field’s target speech signal.

AMISCO’s preceding corpus is the GRASS corpus, i.e., the Graz Corpus of read and
spontaneous speech presented in

Schuppler, B., Hagmüller, M., Morales-Cordovilla, J. A., and Pessentheiner,
H., “GRASS: The Graz Corpus of Read and Spontaneous Speech,” in Proc.
Ninth International Conference on Language Resources and Evaluation (LREC),
Reykjavik, Iceland, May 2014, pp. 1465–1470.
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Colleagues and I set up a comprehensive Austrian German corpus for, e.g., speech recog-
nition. As described in [123], the corpus consists of three components. First, the conver-
sation speech component contains free conversations. Second, the commands component
contains commands and keywords. Third, the read speech component contains phonet-
ically balanced sentences and digits.
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Appendix B

Inter-/National Projects and
Research Programs

During my doctoral program, I was working in several projects listed below, where I
substantially contributed algorithms and ideas in the field of signal processing.

B.1 Advanced Audio Processing

The program named Advanced Audio Processing (AAP) [147] was a K-Project in the
COMET program of the Austrian government. Co-sponsored by the provincial gov-
ernment and industrial partners, its aims were, among others, the cooperation between
scientific and industrial partners. The project’s developed core competencies in the field
of acoustic multiple-input multiple-output systems and in the area of signal improve-
ment and perceptual optimization. One of its goals was combining the development of
sophisticated algorithms and the development of real-time solutions in the field of audio
signal processing. The algorithms and systems were applied to the area of professional
audio and communication technologies, automotive applications, and applications in
the entertainment industry yielding new algorithms/systems for in-car-communications,
dictation and teleconferencing, professional headphones and loudspeakers, and casino
gaming machines.

B.2 Acoustic Sensing and Design

Acoustic Sensing and Design (ASD) [148] is a K-Project in the COMET program of
the Austrian government, and it was the successor of the AAP program. It combined
aspects of acoustic sensing and designing, e.g., combining different sensors, microphones
and video cameras, in terms of sensor arrays and sensor networks for acoustic monitoring.
The resulting algorithms and systems can be used in the field of acoustic intelligence
for automotive applications and in the area of ambient audio for personal mobility and
health.
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B.3 Distant-Speech Interaction for Robust Home Applica-
tions

A European project named DIRHA [1] addressed the development of voice-enabled au-
tomated home environments on distant-speech interaction in different languages. The
major goal of this project was the successful acoustic interaction between a human tar-
get speaker and an intelligent computer-operated apartment. A target speaker assigned
tasks to the computer-operated apartment just by saying commands anywhere (with-
out relying on close-talking or head-mounted microphones). The system monitored the
environment by processing acoustic activities in different rooms in parallel by utilizing
distributed microphone arrays and sophisticated signal-processing algorithms. Typical
challenges were speaker localization, acoustic echo cancellation, speech enhancement,
acoustic event segmentation and classification, speech understanding, dialogue manage-
ment, and speech synthesis. As a result, my colleagues and I set up a prototype at Graz
University of Technology.

B.4 Psychological Status Monitoring by Content Analy-
sis and Acoustic-Phonetic Analysis of Crew Talks and
Video Diaries

Psychological Status Monitoring by Content Analysis and Acoustic-Phonetic Analysis
of Crew Talks and Video Diaries (short: CAPA) [149] is an international project related
to a funding program by the European Space Agency (ESA) [150]. Its main goal is the
phonological and content analysis of speech samples periodically recorded at Concordia
Antarctic Research Station. Two circular microphone arrays installed above a dining
table capture social conversations once a week. From a signal processing point of view,
the major challenge is to separate and enhance each speaker’s signals to provide high
quality recordings with negligible acoustic interferences and noise. The main purpose of
this international project is to study the psychological behavior of a crew working and
living together in an isolated environment (the Antarctic research station). The findings
are essential for future manned space flights.



Appendix C

Glossaries

C.1 List of Acronyms

AAP Advanced Audio Processing
ASD Advanced Sensing and Design
ADMM Alternating Direction of Multipliers Optimization
AIA Associazione Italiana di Acustica
APEBS Array DOA and Pitch Estimation using Block Sparsity
AMISCO Austrian German Multi-Sensor Corpus
ATHENA Greek Multi-Sensory Database for Home Automation Control
AVG Average
aNLS Approximated Nonlinear Least-Squares
CAPA Psychological Status Monitoring by Content Analysis and

Acoustic-Phonetic Analysis of Crew Talks and Video Diaries
CBMeMBer Cardinality-Balanced Multi-Target Multi-Bernoulli
CCF Cross-Correlation Function
CDF Cumulative Distribution Function
CHiME International Workshop on Machine Listening in Multisource En-

vironments
COMET Compentence Centers for Excellent Technologies
CPHD Cardinalized Probability Hypothesis Density
CPR Cocktail Party Room
CVX Convex (Optimized)
CZT Chirp z-Transform
DAGA Deutsche Arbeitsgemeinschaft für Akustik
DIRHA Distant-speech Interaction for Robust Home Application
DFT Discrete Fourier Transform

147



148

DOA Direction of Arrival
EAP Expected a Posteriori
ESA European Space Agency
EUSIPCO European Signal Processing Conference
FIR Finite Impulse Response
FISST Finite Set Statistics
FN False Negative
GM-PHD Gaussian Mixture Probability Hypothesis Density
GM-CPHD Gaussian Mixture Cardinalized Probability Hypothesis Density
GM-CBMeMBer Gaussian Mixture Cardinality-Balanced Multi-Target Multi-

Bernoulli
GNU GNU’s not Unix!
GRASS Graz Corpus of Read and Spontaneous Speech
HALO Harmonic Audio Localization Using Block Sparsity
IEEE Institute of Electrical and Electronics Engineers
IIR Infinite Impulse Response
IPA International Phonetic Alphabet
ITG Informationstechnische Gesellschaft
JPS Joint Parameter Space
LE Little Endian
LREC Language Resources and Evaluation Conference
MAP Maximum a Posteriori
MeMBer Multi-Target Multi-Bernoulli
MEMS Microelectromechanical Systems
MMSE Minimum Mean Square Error
MPOPI Multiband Position-Pitch
MPOPI-FS Frequency selection-based Multiband Position-Pitch
MPOPI-STF Spectro-Temporal Fragment-based Multiband Position-Pitch
NLS Nonlinear Least-Squares
OSPA Optimal Subpattern Assignment
PCM Pulse-Code Modulation
PEBS2TV Pitch Estimation using l2-norm Block Sparsity Including Total

Variation Penalty
PHD Probability Hypothesis Density
PTDB-TUG Pitch Tracking Database from Graz University of Technology
POPI Position-Pitch
R Recall
RAPT Robust Algorithm for Pitch Tracking
RFS Random Finite Set
RMSE Root Mean Square Error
RPDM Relative Phase-Delay Masking
SDK Software Development Kit
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SGL Sparse Group Least Absolute Shrinkage and Selection Operator
SIR Signal-to-Interference Ratio
SJPS Sparse Joint Parameter Space
SNR Signal-to-Noise Ratio
SPSC Signal Processing and Speech Communication Laboratory
TCP/IP Transmission Control Protocol and Internet Protocol
TDOA Time-Difference of Arrival
TIMIT Texas Instruments and Massachusetts Institute of Technology
TP True Positive
UCA Uniform Circular Array
USB Universal Serial Bus
USS United States Ship
VSS Variable-Scale Sampling
YIN Oriental Philosophy (Yin)

C.2 List of Symbols

Variables

A Amplitude of a sinusoidal component
Ab CZT’s complex-valued starting point of contour in the z-plane
A0 CZT’s Radius of contour’s starting point in the z-plane
C lj Binomial coefficient

Pnj Permutation coefficient

T Any period
T0 Fundamental period
T2 Length of a sweep in seconds
T60 Reverberation time (60 dB)
T60,c Reverberation time (60 dB) in the cocktail party room
T60,k Reverberation time (60 dB) in the kitchen
Ts Sampling Period
Wb CZT’s complex-valued parameter defining if contour spirals in or

out in z-plane
W0 CZT’s spiral parameter
X Random variable
Y Random variable
a Exponentiated scaling factor of the optimal subpattern assign-

ment’s cardinality error
c Penalty assigned to labeling error
da Microphone array’s maximum dimension

d̂min Minimum distance ensuring plane wave propagation for all DOAs
and f0

dβ,k−1 Difference between spawned target and parent target
f Frequency
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f0 Fundamental frequency
f1 Start frequency of a sweep
f2 End frequency of a sweep
fk Frequency

ḟk Differentiated frequency
fl Lowest fundamental frequency of interest
fu Highest cut-off frequency

f
(ib)
min Band’s lowest fundamental frequency of interest

f
(ib)
max Band’s highest fundamental frequency of interest
fs Sampling frequency
lk−1 Label
lS,k|k−1 Label of survived targets

lβ,k|k−1 Label of spawned targets

lP,k|k−1 Label of survived targets

lγ,k Label of born targets
lk Label
lL,k Label of legacy track
lU,k Label of observation-corrected track

l̂k Label of observed track
mk Means of posterior intensity’s target states
mU,k Means of observation-corrected target states
mγ,k Means of born target states
mk−1 Means of previous posterior intensity’s target states
mk|k−1 Weights of predicted intensity’s target states

mβ,k|k−1 Means of previous target states

mS,k|k−1 Means of survived target states

ns Time shift in samples
p Probability density
p0 Initial density
pγ,k Probability density of born track
pL,k Probability density of legacy track
pU,k Probability density of observation-corrected track
pS,k Survival probability
pD,k Detection probability
pk−1 Probability density of previous track
pk|k−1 Probability density of predicted track

pP,k|k−1 Probability density of survived track

pβ Spawning probability
pγ Birth probability
qk Drawn sample of a normal distribution
r Existence probability
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rL,k Existence probability of legacy track
rU,k Existence probability of observation-corrected track
rγ,k Existence probability of born track
rk−1 Existence probability of previous track
rk|k−1 Existence probability of predicted track

rP,k|k−1 Existence probability of survived track

|s| Distance between array’s center and source
tk Discrete-time support point
v Speed of sound
vt Target velocity
wk Weights of posterior intensity’s target states
wk−1 Weights of previous posterior intensity’s target states
wk|k−1 Weights of predicted intensity’s target states

wU,k Weights of observation-corrected target states
wS,k|k−1 Weights of survived target states

wβ,k Weights of spawned target states
wγ,k Weights of born target states
wβ,k|k−1 Weights of previous target states weighted with weights of

spawned target states
z Point in z-plane
α Amplitude of a harmonic component
βs,ib CZT’s normalized angular starting point on contour in z-plane
βa,ib CZT’s normalized angular spacing between points on contour in

z-plane
γf Smoothing constant for falling signal edges
γi Angle of incidence
γr Smoothing constant for rising signal edges
δ Kronecker delta (δ[·]) or Dirac delta (δ(·))
δ(init) Step size of an adaptive filter
ε Very small number
εϕ Robustness parameter (w.r.t. azimuth) for relative phase-delay

masking
εϑ Robustness parameter (w.r.t. elevation) for relative phase-delay

masking
ε Recall-related variable for computing cumulative distribution

functions
εs Constant controlling maximum speed of increasing the estimated

noise level
ηb Base-distance order
ηo Optimal subpattern assignment order
θ Elevation
ϑ Elevation
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ϑlϑ Elevation of direct-path or reflected component
λc Clutter rate or average number of Poisson-distributed false

alarms
λω Wavelength of interest
µs Reference measure on subset of targets
µSNR Threshold for computing noise power
ξe Threshold for selecting states as final estimates
ξm Threshold for merging states with small distance
ξp Threshold for pruning states with low weights
ξr Threshold for robustness parameter
ξv Threshold for pruning states with high velocity
%U,k Weighted and drawn sample of a normal distribution
σJ Standard deviation of a cardinality
σQ Standard deviation of process noise
σR Standard deviation of observation noise
σM,k Variance of a cardinality distribution
τ Time difference of arrival
φ Azimuth
φn Azimuth of noise source
φs Azimuth of source
φt Azimuth of target
ϕ Azimuth
ϕk Azimuth angle
ϕ̇k Differentiated azimuth angle
ϕlϕ Azimuth of direct-path or reflected component
φi,j Phase of a signal
χ Parameter related to observation-corrected track
ψ Ground-truth angle
ω Angular frequency
ωq Angular frequency of the q-th harmonic
ωlω Harmonic or inharmonic component
∆f Bandwidth
∆Nh Bandpass filter’s group delay
∆ϕ Angular step size

Operators

E Expectation operator
H System operator denoting a source’s spatialization
b·e Rounding operator (rounding to nearest integer)

Indices

ib Band index
ig Frame index
im Microphone index
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ip Index of a harmonic source
ir Index of an interfering noise source
is Index of a set of grouped trajectories
ix Index of Cartesian coordinate (x)
iy Index of Cartesian coordinate (y)
jx Index of Cartesian coordinate (x)
jy Index of Cartesian coordinate (y)
k Index of discrete Fourier transform
k Time index of a state/observation (used as subscript)
l Lag index of a cross-correlation function
iϕ Index of azimuth angle of a direct-path or reflected component
iϑ Index of elevation angle of a direct-path or reflected component
iω Index of angular frequency of a harmonic or inharmonic compo-

nents
m Sample index of a windowed signal
n Sample index of a windowed signal
nt Absolute time in samples or sample index

Numbers (Cardinalities)

M̂ Total number of target states in a scene
MEAP,k Expected a posteriori cardinality of the multi-Bernoulli posterior

multiple-target density
MMAP,k Maximum a posteriori cardinality of the multi-Bernoulli poste-

rior multiple-target density
MMIN,k Minimum number of tracks
Mk−1 Number of persistent tracks
Mk|k−1 Number of legacy tracks

Mx Number of Bernoulli random finite sets
N Arbitrary number of samples
Na Number of points lying on a z-plane’s contour
Nb Number of bands
Nc Number of Monte Carlo experiments
Nd Number of sampling points minus one divided by 2
Ne Number of maxima
Nf Number of frames
Ng Number of pairs of microphones
Nh Number of samples of a bandpass filter’s impulse response
Nk Number of observed states
Nk−1 Number of survived target states
Nk|k−1 Number of predicted target states

Nm Number of microphones
NMk

Number of ground-truth tracks
NNk Number of estimated tracks
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Nq Number of harmonics
Nr Number of interfering noise sources
Ns Number of harmonic sources
NT Number of sampling periods
Nu Number of utterances
Nv Number of extended sampling periods
Nx Number of samples of a microphone signal
Nx Number of states

N̂x Total number of targets in a scene
Nz Number of observations
Nβ,k Number of spawned target states
Nγ,k Number of born target states
Nϕ Number of azimuth angles
Nθ Number of elevation angles
NΦ Number of directions of arrival
NBPF Number of bandpass filters (equal to Nb)
NCSP Number of cross-spectrums
NCZT Number of chirp z-transforms (not their length)
NDFT Number of discrete Fourier transforms (not their length)
NIDFT Number of inverse discrete Fourier transforms (not their length)
NJPS Number of joint parameter spaces
NMAX Number of maxima detections
NRPD Number of relative phase delays
NRPDM Number of applied relative phase-delay masks
NSJPS Number of sparse joint parameter spaces
NSUM Number of summations
NVSS Number of variable-scale sampling procedures
NWGT Number of weightings

Distributions

N Normal distribution
U Uniform distribution

Vectors

k Spherical unit vector
m Microphone coordinates vector
w Tolerance vector of joint recall and root-mean-square error
x Target state vector
y Arbitrary state vector
z Observation vector

Matrices

0N0 Matrix containing N0 ×N0 zeros
Fk−1 Transition matrix
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Fβ,k−1 Transition matrix for spawning targets
Hk Observation matrix
IN0 Identity matrix containing N0 ones in the main diagonal
PU,k Covariance matrix of observation-corrected target states
Pk−1 Covariance matrix of previous posterior intensity’s target states
Pβ,k|k−1 Covariance matrix of previous target states

Pk|k−1 Covariance matrix of predicted intensity’s target states

Pk Covariance matrix of posterior intensity’s target states
PS,k|k−1 Covariance matrix of survived target states

Pγ,k Covariance matrix of born target states
Qk−1 Process noise covariance matrix
Qβ,k−1 Process noise covariance matrix for spawning targets
Rk Observation noise covariance matrix

Tuples

LΦ,T Tuple consisting of sampling phase and sampling period
Θ Tuple of ground-truth items

Θ̂ Tuple of estimated items
Lk−1 Track table
Lk|k−1 Track table

Lk Track table
T Discrete-time support points
b Permutation of a set of permutations

Sets

Bk|k−1(xk−1) Random finite set of spawned states

G Trajectory of a harmonic source
H Trajectory of a harmonic source
Ic Set of Cartesian coordinates’ indices
Ik Set of Cartesian coordinates’ indices
Ix Set of Cartesian coordinates’ indices
Iy Set of Cartesian coordinates’ indices
Ixy Set of tuples consisting of Cartesian coordinates’ indices
Jxy Set of tuples consisting of Cartesian coordinates’ indices
Kk Random finite set of clutter and spurious observations
LT Set of sampling periods
LΦ Set of sampling phases
LΦ,T Set of sampling phases and sampling periods
Ok(zk) Random finite set of observed states
Sk|k−1(xk−1) Random finite set of survived states

VG Set containing the support points of a trajectory
VH Set containing the support points of a trajectory
Wk Non-empty set of tracks



156

Xk Set of ground-truth states
Yk Set of estimated states
Zk Set of tuples of states
Xk Set of all possible target states
Zk Set of all possible observations
Xk Finite set of states
Zk Finite set of observations
F(Xk) Finite subset of states
F(Zk) Finite subset of observations
|Xk| Set’s cardinality of target states
|Zk| Set’s cardinality of observations
S Region of the state space to be integrated
Γk Random finite set of born states
Π Set of permutations
∅ Empty set
Xk Set of all tracks
C Set of complex numbers
N Set of natural numbers
R Set of real numbers
Z Set of integer numbers

Functions

s[nt] Harmonic signal
ν[nt] Interfering noise source
x[nt] Signal captured by a microphone
h[n] Impulse response
cxi1xi2 [l] Cross-correlation function of two microphone signals

cxi1xi2 ,L[l] Sampled cross-correlation function of two microphone signals

cxi1xi2 ,L Sampled and summed cross-correlation function of two micro-
phone signals

Cxi1xi2 [k] Cross-spectrum of two microphone signals

F{·} Fourier transform
CZT{·} Chirp z-transform
X[k] Discrete Fourier transform of captured signal
τi,j(ϕ, ϑ) Time-difference of arrival
LΦ(ϕ, ϑ) Sampling phase
LT (T0) Sampling phase
III[l] Sampling function
IIIL[l] Sampling function for a certain sampling phase and sampling

period
R(ϕ, f0) Joint recall

R(ϕ, f0) Joint recall averaged over all Monte Carlo simulations
TP(ϕ, f0) True positive
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FN(ϕ, f0) False negative
FP(ϕ, f0) False positive

RMSE(Θ̂) Root mean square error of a parameter tuple

RMSE(Θ̂) Root mean square error of a parameter tuple averaged over all
Monte Carlo simulations

FX(·) Cumulative distribution function of random variable X
FY (·) Cumulative distribution function of random variable Y
P (·) Probability function
X(·) Transformed signal in z-domain
Ξ(φ, θ, ωb[k]) Binary relative phase-delay mask

Ξ̂(φ, θ, ωb[k]) Weighted relative phase-delay mask
fk|k−1(xk|xk−1) Density function of translating a state

gk(zk|xk) Density function of receiving an observation
pk(xk|z1:k) Posterior density of states
pk|k−1(xk|z1:k−1) Prior distribution of states

fk|k−1(Xk|Xk−1) Density function of translating sets of states

gk(Zk|Xk) Density function of receiving sets of observations
pk(Xk|Z1:k) Posterior density of sets of states
pk|k−1(Xk|Z1:k−1) Prior distribution of sets of states

p0(x0) Initial distribution of states
DX(x) Nonnegative intensity function
Dk(x) Posterior intensity function
Dk|k−1(x) Intensity function describing a translation

Dk−1(x) Posterior intensity function
DS,k|k−1(x) Intensity function describing surviving targets

Dβ,k|k−1(x) Intensity function describing spawning targets

DD,k(x) Detection intensity function
κk(z) Clutter intensity function
ck(zk) Spatial distribution of clutter
βk|k−1(x) Spawning intensity function

γk(x) Birth intensity function
ei(Z) Elementary symmetric function of order i
pk−1[n] Previous posterior cardinality distribution
pk|k−1[n] Predicted cardinality distribution

pk[n] Posterior cardinality distribution
pΓ,k[n] Cardinality distribution of born targets
Υu
k [Dk|k−1|Zk](n) Weighting function for posterior intensity and posterior cardinal-

ity distribution
Λk(D,Z) Function describing the arguments of an elementary symmetric

function
ψk,z(·) Weighting function for posterior intensity and posterior cardinal-

ity distribution considering clutter
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π({x1, . . . ,xNk}) Multi-Bernoulli random finite set’s probability density
πk−1({x1, . . . ,xNk−1

}) Multi-Bernoulli random finite set’s probability density
πk|k−1({x1, . . . ,xNk|k−1

}) Predicted multi-Bernoulli random finite set’s probability density

πk({x1, . . . ,xNk} Posterior multi-Bernoulli random finite set’s probability density
τ(ϕ, ϑ) Frequency-independent time difference of arrival
1k Indicator function returning zero or one
D Optimal subpattern assignment distance

D Averaged optimal subpattern assignment distance
Q Localization error
R Cardinality error

Q Averaged localization error

R Averaged cardinality error
Pb Noise power
Ps Signal power
γs Function selecting smoothing constant for rising and falling sig-

nal edges
w[l] Function describing the CCF’s window

d(G(ig), H(ig)) Function describing the distance in frequency domain between
two trajectories

dmin(γi, γw) Function describing the minimum distance ensuring plane wave
propagation

hib [n] Band-dependent delay

φ
(ib)
i1,i2

[k] Cross-spectrum’s phase

pS,k(xk−1) Surviving probability of a state
pD,k(xk) Detection probability of a state
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[36] M. Wohlmayr and M. Képesi, “Joint Position-Pitch Extraction from Multichannel
Audio,” in Proc. 8th Annual Conference of the International Speech Communica-
tion Association, Antwerp, Belgium, Aug. 2007, pp. 1629–1632.

[37] L. Thurman and G. Welch, Bodymind & Voice: Foundations of Voice Education,
Revised Edition. Chicago, IL, USA: The Voicecare Network, 2000.

[38] X. Alameda-Pineda and R. Horaud, “A Geometric Approach to Sound Source
Localization from Time-Delay Estimates,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 22, no. 6, pp. 1082–1095, Jun. 2014.

[39] J. Benesty, M. M. Sondhi, and Y. Huang, Eds., Springer Handbook of Speech
Processing, 1st ed. Berlin, Germany: Springer, 2008.

[40] N. H. Fletcher and T. Rossing, The Physics of Musical Instruments, 2nd ed. New
York: Springer, Jun. 1998.

[41] J. R. Jensen, “Enhancement of Periodic Signals: with Application to Speech Sig-
nals,” Ph.D. dissertation, Aalborg University, Niels Jernes Vej 12, 9220 Aalborg
st, Denmark, Aug. 2012.

[42] T. Kronvall, “Sparse Modeling of Grouped Line Spectra,” Ph.D. dissertation, Lund
University, Box 118, SE-221 00 Lund, Sweden, Jun. 2015.

[43] S. I. Adalbjörnsson, “Sparse Modeling Heuristics for Parameter Estimation: Ap-
plications in Statistical Signal Processing,” Ph.D. dissertation, Lund University,
Box 118, SE-221 00 Lund, Sweden, Jun. 2016.

[44] S. I. Adalbjörnsson, A. Jakobsson, and M. G. Christensen, “Multi-pitch estimation
exploiting block sparsity,” Signal Processing, vol. 109, pp. 236–247, Apr. 2015.
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Resources and Evaluation. Portorož, Slovenia: European Language Resources
Association, May 2016, pp. 760–766.

[52] J. Benesty, J. Chen, and Y. Huan, Microphone Array Signal Processing. Berlin,
Germany: Springer, Mar. 2008.

[53] I. J. Tashev, Sound Capture and Processing: Practical Approaches. Chichester,
U.K.: Wiley, Jul. 2009.

[54] A. Klapuri and M. Davy, Signal Processing Methods for Music Transcription. New
York, NY, USA: Springer, Feb. 2007.

[55] W. M. Hartmann, “Pitch, periodicity, and auditory organization,” The Journal of
the Acoustical Society of America, vol. 100, no. 6, pp. 3491–3502, Dec. 1996.

[56] M. Stark, M. Wohlmayr, and F. Pernkopf, “Source–Filter-Based Single-Channel
Speech Separation Using Pitch Information,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 19, no. 2, pp. 242–255, Feb. 2011.

[57] W. Zhang and B. D. Rao, “A Two Microphone-Based Approach for Source Lo-
calization of Multiple Speech Sources,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 18, no. 8, pp. 1913–1928, Nov. 2010.

[58] H. L. V. Trees, Optimum Array Processing: Part IV of Detection, Estimation, and
Modulation Theory. New York, NY, USA: Wiley, May 2002.

[59] J. G. Ryan, “Criterion for the minimum source distance at which plane-wave beam-
forming can be applied,” The Journal of the Acoustical Society of America, vol.
104, no. 1, pp. 595–598, Jul. 1998.

[60] L. Rabiner, “On the Use of Autocorrelation Analysis for Pitch Detection,” IEEE
Transactions on Acoustic, Speech, and Signal Processing, vol. 25, no. 1, pp. 24–33,
Feb. 1977.

[61] W. Hess, Pitch Determination of Speech Signals: Algorithms and Devices, 1st ed.
Berlin, Germany: Springer, Jun. 1983.

[62] C. Roads, The Computer Music Tutorial. Cambridge, MA, USA: MIT Press, Feb.
1996.

https://www.spsc.tugraz.at/tools/amisco
https://www.spsc.tugraz.at/tools/amisco


164

[63] A. Jourjine, S. Rickard, and O. Yilmaz, “Blind Separation of Disjoint Orthogonal
Signals: Demixing N Sources from 2 Mixtures,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing, vol. 5, Istanbul, Turkey, Jun.
2000, pp. 2985–2988.

[64] A. Nadas, D. Nahamoo, and M. A. Picheny, “Speech Recognition using Noise-
Adaptive Prototypes,” IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 37, no. 10, pp. 1495–1503, Oct. 1989.

[65] S. T. Roweis, “One Microphone Source Separation,” in Advances in Neural Infor-
mation Processing Systems. Cambridge, MA, USA: MIT Press, 2000, vol. 13, pp.
793–799.

[66] D. Wang, “Time-Frequency Masking for Speech Separation and Its Potential for
Hearing Aid Design,” Tends in Amplification, vol. 12, no. 4, pp. 332–353, Dec.
2008.

[67] G. Weinreich, “Coupled piano strings,” Journal of the Acoustical Society of Amer-
ica, vol. 62, no. 6, pp. 1474–1484, 1977.

[68] J. F. Kaiser, “Nonrecursive digital filter design using I 0-sinh window function,”
in Proc. IEEE International Symposium on Circuits and Systems, San Francisco,
CA, USA, Apr. 1974, pp. 20–23.

[69] ——, “On the use of the I 0-sinh window for spectrum analysis,” IEEE Transac-
tions on Acoustic, Speech, and Signal Processing, vol. ASSP-28, no. 1, pp. 105–107,
1980.

[70] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed.
Englewood Cliffs, NJ, USA: Prentice-Hall, Aug. 2009.

[71] “MATLAB and Signal Processing Toolbox Release 2015a,” Mathworks,
Natick, MA, USA, Accessed on: May 31, 2016. [Online]. Available:
https://se.mathworks.com/products/signal.html

[72] M. Slaney, “An Efficient Implementation of the Patterson-Holdsworth Auditory
Filter Bank,” Apple Computer, Inc., Cupertino, CA, USA., Tech. Rep. 35, 1993.
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