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Image Shading Corre
tion via TGV and DCT with Appli
ation to MRI

Abstra
t

Magneti
 Resonan
e Imaging is a measurement method whi
h produ
es representative data of

the insight of human bodies. In this work a retrospe
tive 
orre
tion method for the inhomogeneity

artifa
t is 
omposed of other approved image pro
essing te
hniques, extended and evaluated.

The proposed method performs denoising and simultaneous bias estimation by the TGV-L

1

Primal-Dual algorithm for volumetri
 data. Bias 
orre
tion is done by solving a Poisson Equation

via a dire
t form solution in the 
osine domain. The algorithm is implemented for general TGV

order and e�
iently 
al
ulates most operations in parallel.

Several image types are pro
essed in
luding 3D MR measurement data. The results in
lude

a quantitative 
omparison to ground truth data and metri
 values. Additionally a qualitative

evaluation by intensity pro�le line plots and an estimate of the probability density fun
tions is

given.

Under the assumption of pie
ewise 
onstant obje
ts of interest and a slowly and smoothly

varying bias �eld the proposed method su

essfully estimates higher-order bias �elds. The

method outperforms the referen
e method N4ITK in several aspe
ts and may improve the per-

forman
e of other imaging tasks, and 
ould be applied to several other imaging modalities.

Keywords: MR Inhomogeneity 
orre
tion, bias, shading, TGV, DCT

Bildbeleu
htungskorrektur via TGV und DCT mit Anwendung auf MRI

Zusammenfassung

Magnetresonanzbildgebung ist eine Messmethode, wel
he representative Daten vom inneren

des mens
hli
hen Körpers produziert. In dieser Arbeit wird eine retrospektive Korrekturmethode

für das Inhomogenitätenartefakt aus anderen bewährten Bildverarbeitungste
hniken zusammen-

gestellt, erweitert und evaluiert.

Die vorges
hlagene Methode entfernt glei
hzeitig Signalraus
hen und s
hätzt das Inhomoge-

nitätenfeld mittels TGV-L

1

Primal-Dual Algorithmus für Volumsdaten. Die Inhomogenitätenkor-

rektur wird dur
h die Lösung einer Poisson-Glei
hung in der Kosinusdomäne dur
hgeführt. Der

Algorithmus ist für eine generelle Ordnung von TGV implementiert und die meisten Operationen

werden parallel ausgeführt.

Vers
hiedene Bildtypen � au
h 3D MR Messdaten � werden verarbeitet. Die Resultate ent-

halten einen quantitativen Verglei
h mit Ground Truth Daten und die Bere
hnung von mehreren

Metrikwerten. Weiters wird eine qualitative Evaluierung dur
h visuelle Darstellung von Intensi-

tätspro�len entlang einer Linie und der Wahrs
heinli
hkeitsdi
htefunktion dur
hgeführt.

Unter der Annahme von stü
kweise konstanten Objekten und einen si
h langsam und ste-

tig ändernden Inhomogenitätenfeldes s
hätzt die vorges
hlagene Variationsmethode erfolgrei
h

Inhomogenitäten höherer Ordnung. Die Methode übertri�t in einigen Aspekten die Referenzme-

thode N4ITK, und könnte die Leistung von anderen Bildverarbeitungsaufgaben verbessern und

au
h auf andere Bildmodalitäten angewendet werden.

S
hlüsselworte: MR Inhomogenitätenkorrektur, Trift, S
hatten, TGV, DCT
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List of Abbreviations and Symbols

Abbreviations Des
ription

CG Conjugate Gradient

CV Coe�
ient of Variation

DCT Dis
rete Cosine Transform

DICOM Digital Imaging and Communi
ations in Medi
ine

FT Fourier Transform

GPU Graphi
 Pro
essing Unit

HSV Hue Saturation Value

KDE Kernel Density Estimation

MR Magnet Resonan
e

PDE Partial Di�erential Equation

PDF Probability Density Fun
tion

RMSE Root Mean Square Error

TE E
ho Time

TGV Total Generalized Variation

TI Inversion Time

TR Repetition Time

TV Total Variation

T1 Spin-Latti
e Relaxation Time

T2 Spin-Spin Relaxation Time

Table 1: List of Abbreviations

Symbol Meaning

k TGV order

|x| L

1

-norm of x

αi maximum step size for the i-th derivative

λ optimization weight for the data term

Nvoxel voxel 
ount

σk kernel bandwidth for KDE

σs parameter for the spatial distan
e for Bilateral Filter

σi parameter for the intensity di�eren
e for Bilateral Filter

∇i gradient operator of order i

divi divergen
e operator of order i

△ Lapla
e Operator

ρH proton density

fdownsampling downsampling fa
tor

µ mean voxel intensity of an image

Table 2: List of Symbols
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1 Introdu
tion

1.1 Problem Des
ription

Images of the inside of the human body provide 
ru
ial information for medi
al diagnosis,

therapy and resear
h. Magneti
 Resonan
e Imaging is one non-invasive measurement

method to produ
e su
h information. Besides MR, todays medi
ine bene�ts from other

imaging modalities like mi
ros
opy, 
omputer tomography and ultrasound. A 
hallenging

problem � whi
h is 
ommon to these te
hniques � is the intensity inhomogeneity. This

phenomena is dis
ussed in the review of Vovk et al. 2007 [1℄.

It is an undesired signal 
omponent due to an inhomogeneous ex
itation �eld or 
oil

sensitivity pro�le. In MR it espe
ially appears with in
reasing �eld strength. This artifa
t

is 
ommonly de�ned to be slowly and smoothly varying. In other words the spatial

intensity gradient is low and it does not 
ontain sharp edges.

Parti
ularly for quantitative analysis intensity values must not depend on the lo
ation

of the obje
t of interest within the measurement devi
e. Furthermore a bias 
orre
-

tion method should preserve the absolute intensity values of the image. Inhomogeneity


orre
tion improves the performan
e of other image pro
essing tasks like segmentation,

registration and 
lassi�
ation as well as visual inspe
tion.

1.2 Common Solutions

1.2.1 Prospe
tive Methods

Several methods to estimate and 
orre
t the 
oil sensitivity pro�le have been developed.

During devi
e manufa
turing inhomogeneities of the strong stati
 �eld are minimized by

passive shimming. The 
oil �eld arises due to the 
urrent �ow through the 
ir
uit paths

of the 
ondu
tor board. Additionally all other paramagneti
 elements intera
t with the

�eld. Therefore the �eld inhomogeneity is an important 
riterion in devi
e design. A
tive

shimming is an automati
 step whi
h is usually performed on
e the measurement obje
t


hanges. The system measures the inhomogeneity and optimizes the 
oil parameters.

Additionally other retrospe
tive a
tions are performed. The �eld 
an be 
alibrated

by ground truth data. Phantoms are a

urately manufa
tured measurement obje
ts.

For example doped water, pure oils or gels in a test-tube. The inhomogeneity �eld 
an

be approximated by the measurement of multiple equal samples split a
ross the image,

segmentation of the 
ontent, averaging and spline interpolation.

MR s
an parameters in�uen
e the strength of this bias artifa
t. Belaroussia et al.

2006 [2℄ mention the in�uen
e of the sli
e distan
e, repetition time and number of e
hoes.

The authors list some 
orre
tion methods and propose a proto
ol for the evaluation of

these. Spe
ial pulse sequen
es � for example inversion re
overy � 
ompensate the e�e
t

of inhomogeneities partly. The 
oil sensitivity estimation is also an important part in

7



Parallel Imaging. This te
hnique uses multiple 
oils for the image a
quisition. In Knoll

et al. 2012 [3℄ the TGV algorithm is used for the re
onstru
tion of su
h data.

Inhomogeneities additionally originate due to the measurement obje
t. Certainly this

is intended sin
e the signal should represent obje
t stru
tures. Nevertheless there are

additional slow variations whi
h are obje
t-indu
ed.

1.2.2 Retrospe
tive Methods

Retrospe
tive inhomogeneity 
orre
tion methods aim to de
ompose the measured image.

This is an underdetermined problem. Ea
h voxel intensity value of the bias and obje
t

volume is a degree of freedom and only the measured intensities are known. Su
h a prob-

lem 
an only be solved with prior knowledge or assumptions about the imaging sequen
e,

�eld distribution or the imaged obje
ts. The 
ommon signal model of MR de�nes a mul-

tipli
ative bias �eld and an independent additive noise term [1℄. It is frequently found in

literature that the multipli
ative 
omposition is transformed to an additive one by taking

the logarithm [1, 4�13℄.

The 
ommon assumptions used in retrospe
tive methods is that the bias �eld is slowly

and smoothly varying and the imaged obje
ts are pie
ewise 
onstant. Hen
e it follows

that sharp edges in the measured image 
orrespond to the obje
ts of interest. Usually the

shape of the bias �eld is 
ontrolled by the parameters of the 
orre
tion method.

The simplest method for the estimation of the bias �eld is a lowpass �lter. This te
h-

nique assumes the bias to 
ontain low frequen
y information and that a 
uto� frequen
y

exists, whi
h splits the bias from obje
t information. The lowpass 
an be implemented in

the Fourier domain by an ideal or a butterworth �lter.

Homomorphi
 Unsharp Masking �rst blurs the image by a Gaussian �lter. This low

frequen
y image is subtra
ted in the logarithm domain. The resulting high frequen
y

information is multiplied by a 
onstant fa
tor and added to the sour
e image. This

te
hnique weights edge information stronger and thus redu
es slow variations. Axel et al.

1987 [14℄ do not use the logarithm transform and apply this �lter for intensity 
orre
tion

of surfa
e-
oil MR images.

The N3 algorithm by Sled et al. 1998 [15℄ is an implementation of an inverse �lter for

MR inhomogeneity 
orre
tion. It approximates the bias �eld in the logarithm domain by

spline interpolation and iteratively performs de
onvolution of the intensity histogram. A

multi-s
ale extension of N3 is the N4ITK method by Tustison et al. 2010 [16℄. It uses a

Gaussian Pyramid of the sour
e image and su

essively �ts the bias �eld on in
reasing

s
ales. Manjón et al. 2007 [17℄ also use spline interpolation with a multi-s
ale approa
h to

estimate the bias �eld, and optimize their parameters by an entropy related performan
e

measure.

In Land and M
Cann 1971 [18℄ the retinex model is introdu
ed and Horn 1974 further

des
ribes the theoreti
al ba
kground. Retinex is an a
ronym for retina and 
ortex. The

8



human visual per
eption does somehow in
lude an illumination 
orre
tion method. We

re
ognize equal obje
ts under di�erent illumination situations. This phenomena is denoted

by the term 
olor 
onstan
y. Nevertheless the retinex algorithms � whi
h are des
ribed

in the following paragraphs � basi
ally only have the idea of a pixel-wise 
omposition in


ommon. Most methods pro
ess the input image in the logarithm domain. In that way a

multipli
ative 
omposition be
omes additive.

Similar to Homomorphi
 Unsharp Masking the Single S
ale Retinex method uses a

lowpass kernel to extra
t shading information. Multis
ale Retinex 
ontains a linear 
om-

bination of multiple kernels. These two methods are used by Shen and Hwang 2009 [19℄,

Chao et al. 2012 [20℄, Wang and Huang 2014 [21℄ as well as Morel et al. 2014 [22℄. Zhao

et al. 2012 [5℄ derive a 
lose-form solution for a quadrati
 energy fun
tional based on

retinex.

A method 
ommonly found as a prepro
essor in fa
e re
ognition tasks is Empiri
al

Mode De
omposition. Xie 2014 [23℄ des
ribe this method whi
h in
ludes spe
ial basis

fun
tions known as Intrinsi
 Mode Fun
tions. The author explains the method for one-

dimensional data, 
ombines it with the retinex idea and applies it for fa
e re
ognition.

Damerval et al. 2005 [24℄ extended Empiri
al Model De
omposition to two-dimensional

images. In Liang and Si 2015 [25℄ this method is used for MR inhomogeneity 
orre
tion.

Variational image pro
essing methods are widely applied and approved today. Tikanov

et al. 1992 [26℄ des
ribe PDE based methods to solve imaging tasks by the minimization

of a Lagrange fun
tion. Maximum a posteriori probability (MAP) methods in
lude a

model of the probability distribution of the intensity values. Gaussian, Rayleigh, Gibbs

and Ri
ian distributions are used. Fu et al. 2015 [13℄ show how a MAP problem is

transformed into an energy minimization problem. Another probabilisti
 approa
h is

used by Wang et al. 2014 [27℄ and 
ompared to several other retinex methods. The

energy fun
tional usually 
onsists of multiple weighted integral terms of the image data.

These in
lude the L

1

- or L

2

-norm of image 
omponents (sour
e, denoised, bias, deshaded),

the gradient or higher order derivatives of those.

The pioneer work of Kimmel et al. 2003 [6℄ is based on an energy fun
tion whi
h uses

the L

2

-norm of the gradient of the illumination, the deshaded image and the gradient

of the deshaded image. The authors 
hoose a spe
ial Steepest Des
ent algorithm to

minimize their 
ost fun
tion. Their work shows that bias 
orre
tion 
an be done with few

assumptions and parameter values on a PDE basis. Ma and Osher 2010 [7℄ introdu
e the

L

1

-norm of the resulting image in the energy fun
tion. Their motivation is to preserve

edges in the resulting image similar to the ROF model by Rudin et al. 1992 [28℄. This

requires a more 
omplex optimization routine, but highly improves the quality of the

result. They use the Bregman methods to solve the minimization problem. In Morel et

al. 2010 [8℄ a mu
h simpler optimization algorithm is introdu
ed, whi
h 
al
ulates the bias

by the thresholded gradient and the FT. This method is further improved by Limare et

9



al. 2011 [29℄. Ma et al. 2011 [9℄ in
lude the L

1

-norm of the deshaded image in the energy

fun
tional. They extended their optimization method to use the thresholded gradient to

split bias from obje
t information. Their method is evaluated with MR medi
al images

and 
ompared to the N3 algorithm by Sled et al. 1998 [15℄.

Liang and Zhang 2015 [11℄ add additional terms to the energy fun
tional. Their model

in
ludes the deshaded and the bias 
omponent. They use the split inexa
t Uzawa method

whi
h is a variant of the alternating dire
tion method of multipliers (ADMM). Similarity

to TGV

2

-L

1

by Bredies et al. 2010 [30℄ is also dis
ussed by these authors.

MR inhomogeneity 
orre
tion is also 
ombined with simultaneous segmentation by

variational level set methods. Su
h algorithms are used by Verma et al. 2012 [31℄,

Shahvaran et al. 2012 [32℄ and Ivanovska et al. 2016 [33℄ for the segmentation of biologi
al

tissue.

Gilboa and Osher 2009 [34℄ introdu
e non-lo
al di�erential operators to variational

image pro
essing. Non-lo
al operators were des
ribed earlier by Yaroslavsky 1994 [35℄.

Zhang et al. 2013 [10℄ 
ombine non-lo
al di�erentiation and retinex and Zosso et al.

2015 [36℄ further generalize this idea.

10



2 Methods

In this work an additive de
omposition method is evaluated. The fundamental 
ost fun
-

tion is based on the idea of Liang and Zhang 2015 [11℄. It is optimized by the Primal-Dual

algorithm developed by Chambolle and Po
k 2010 [37℄. This algorithm is extended to se
-

ond order TGV in Knoll et al. 2011 [38℄ and applied to the problem of image denoising

and MR re
onstru
tion.

The �rst step of the proposed PDE inhomogeneity 
orre
tion method is to minimize the

fun
tional stated in Equation 1. It only di�ers to the formulation of the image denoising

problem by Knoll et al. 2011 [38℄ in the norm of the data term, and the parameters α0 and

α1. The stated 
ost fun
tion 
onsists of three parts in
luding the L

1

-norm of s
alar �elds

and ve
tor �elds, whi
h are weighted by 
ontrol parameters. First of all it minimizes the

distan
e from the denoised image u to the measured image f . A

ording to the notation

of Chambolle and Po
k 2010 [37℄ this term is weighted by the parameter λ. Low values

of this parameter allow the denoised image to highly di�er from the input image. Higher

values of λ in
rease the weight of the di�eren
e in the overall 
ost fun
tion and therefore

result in more similar images and less denoising.

Next the regularization fun
tional in
ludes the L

1

-norm of the gradient of the denoised

image subtra
ted by a ve
tor �eld v. The subtra
ted ve
tor �eld v is not just totally equal

to the gradient of the denoised image. The last term minimizes the se
ond order gradient

of this ve
tor �eld. These two terms 
ountera
t in the properties of the �nal ve
tor �eld

v. The 
ompromise is balan
ed by the spe
i�
 values 
hosen for the elements of the

parameter ve
tor α. High values of α1 result in less edges, whi
h is equal to a smoother

�eld. If the previous term is weighted stronger the �eld v will 
ontain the edge information

of u. Knoll et al. 2011 [38℄ prevent the image from 
ontaining the stair
asing artifa
t

whi
h usually evolves by using the TV-norm of the gradient.

min
u,v

{

λ

ˆ

Ω

|u− f | dx+ α0

ˆ

Ω

|∇u− v| dx+ α1

ˆ

Ω

|∇2v| dx
}

(1)

This 
ost fun
tion in Equation 1 des
ribes two properties of the denoised image u.

The ve
tor �eld v is introdu
es as an auxiliary variable to 
ontain pie
ewise smooth image

information and to prevent the TV-norm from minimizing all gradients of the denoised

image.

Liang and Zhang 2015 [11℄ have invented a PDE retinex method. The authors des
ribe

the similarity of their 
ost fun
tion to the TGV-L

2

denoising fun
tional of Bredies et al.

2010 [30℄. They interpret the ve
tor �eld v as the gradient of the inhomogeneity �eld

l, and perform inhomogeneity 
orre
tion of MR images by using the simple 
omposition

model stated in Equation 3. While these authors estimate the images r and l at the

same time, TGV-L

1

(Equation 1) results in the gradient of the bias v and the denoised

image u. Liang and Zhang 2015 [11℄ mention the idea to solve a Poisson Equation for
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the transformation of the ve
tor �eld v to the bias s
alar�eld l. This results from the

derivative of the Lagrange Equation of minimizing the L

2

-norm of the di�eren
e of the

gradient of the bias image l and this ve
tor �eld v (Equation 2). The Poisson solver �

whi
h is implemented in this work � is based on the idea of Limare et al. 2011 [29℄ and

des
ribed in Se
tion 2.3 in more detail.

min
l

{
ˆ

Ω

‖∇l − v‖ dx
}

(2)

u = r + l (3)

After solving the minimization of Equation 1 and then Equation 2, the estimate of

the bias-free image r 
an be 
al
ulated by subtra
ting the estimated bias l from the

estimated noise-free image u. For better understanding it is mentioned at this point, that

the amount of denoising is 
ontrolled by the parameter λ and the smoothness of the bias

by α1.

Prior experiments have shown that the logarithm - whi
h is usually used to transform

the multipli
ative 
ombination of r and l to an additive one - is not ne
essary and omitted

in this work. The MR inhomogeneity is therefore not approximated by an multipli
ative

term in the logarithm domain, but dire
tly as an additive one.

The following se
tions des
ribe ea
h single step of the inhomogeneity 
orre
tion method

under investigation. For some presented samples in Se
tion 3 prior denoising is applied

to the data to simplify the interpretation of the results. Bias estimation is done based on

the TGV-fun
tional whi
h is des
ribed in Se
tion 2.2 in detail. The DCT Poisson solver

is derived step-by-step in Se
tion 2.3.

With these 
omponents an inhomogeneity 
orre
tion method is 
omposed. In Se
-

tion 2.4 this method is extended by the idea of pro
essing the algorithm on lower s
ales.

This additionally 
ontrols the shape of the estimated bias �eld and highly improves the

required 
omputation time and memory usage. Another extension of the method is de-

s
ribed in Se
tion 2.5. This powerful Primal-Dual improvement is very spe
i�
 to the

implementation 
hoosen and allows to fully exploit the hardware resour
es.

Pseudo 
ode of the overall method and its modules is listed in Se
tion 2.6. These algo-

rithms are implemented in CUDA (Nvidia Corporation, Santa Clara, USA) to e�
iently

estimate inhomogeneity 
omponents of 3D data. The proposed method is qualitatively

evaluated by visual inspe
tion of the resulting images, histograms and line pro�le plots.

Quantitative evaluation is done based on several metri
 values, whi
h are further des
ribed

in Se
tion 2.7.
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2.1 Prepro
essing

The following pro
edure outlines the general way how prepro
essing is done. If the pipeline

for a spe
i�
 sample di�ers from this des
ription the reason will be explained in Se
tion 3.

First a region of interest of the measurement data is fo
used. This in
ludes the extra
tion

of in planar 
oordinates and the desired sli
es. Then the intensity values are normalized to

the range 0 to 1. The prepo
essing �lter, des
ribed in Se
tion 2.1.2, requires parameters

whi
h depend on the absolute intensity spe
trum values.

The proposed method performs denoising and shading extra
tion simultaneously. Nev-

ertheless evaluation is 
on
entrated on the deshading properties. Therefore prior denoising

is done. First TGV-L

1

removes most of the small stru
tures and then a Bilateral Filter

is applied. With less details the resulting line pro�le plots are easier to analyze. For

example Figure 11 in
ludes su
h a pro�le plot, whi
h representatively shows the e�e
t of

the proposed inhomogeneity 
orre
tion algorithm.

2.1.1 Total Generalized Variation Denoising

Sin
e TGV-L

1

is part of the overall method no additional implementation is ne
essary

to use this pro
edure for prior denoising. The implemented bias 
orre
tion method 
an

therefore additionally be used for prior denoising, be
ause it outputs the estimated noise

and bias free volumes. The denoising problem is stated in Equation 4 as a minimization

of the L

1

-data term and the TGV. The data term is s
aled by the fa
tor λ and the

regularization term is de�ned in Equation 8. The parameter λ balan
es the regularization

and the data term. This parameter is adjusted to the level of noise and desired s
ale of

interest.

min
u

{

λ

ˆ

Ω

|u− f | dx+ TGV k
α (u)

}

(4)

A pseudo-
ode for TGV-L

1

of third and higher order is listed in Algorithm 4. Based

on this 
ode the algorithm is implement in CUDA for 3D images. The TGV fun
tional is

des
ribed in Se
tion 2.2 and dis
ussed in Se
tion 4.1.7.

2.1.2 Bilateral Filtering

Additional denoising is done using a Bilateral Filter. This �lter is des
ribed by Tomasi

and Mandu
hi 1998 [39℄. Parameters are the kernel size, the bandwidth of the exponential

term for the spatial distan
e σs and the bandwidth of the se
ond exponential term for the

intensity di�eren
e σi. Equation 5 shows the underlying model. The denoised intensity

value at the position x is 
al
ulated by the summation of weighted pixel values in a

neighbourhood Nx around x. Also the fa
tor Kx depends on the lo
ation of the pixel. It

normalizes the sum of the weights for ea
h neighbourhood.
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Idenoised (x) =
1

Kx

Nx
∑

k

Ik e
(xk−x)2

σk e
(I(xk)−I(x))2

σi
(5)

This algorithm is an extension of the Gaussian Filter. The se
ond exponential term


ontrols the 
ontrast of edges whi
h should not be blurred. It 
ontrols whi
h edges are

preserved in the denoised image. The implementation is done in CUDA sin
e the resulting

intensity value of ea
h pixel 
an be 
al
ulated in parallel.

Bilaterial Filtering is also used as an edge-preserving lowpass �lter for Multis
ale

Retinex by Chang and Bai 2015 [12℄ and as the solution of a quadrati
 minimization

problem by Elad 2005 [40℄. In this work it is only used for denoising purposes.

2.2 Shading Estimation

2.2.1 Total Generalized Variation

The TGV fun
tional de�ned by Bredies et al. 2010 [30℄ is shown in Equation 6. This

regularization term is generally formulated for d-dimensional real data. It in
ludes the

supremum of the integral of the produ
t of the data u and the k-th order divergen
e of a

ve
tor �eld v. Constraints are de�ned by the maximum norm of symmetri
 tensors of v

of order up to k − 1.

TGV k
α (u) =

= sup

{
ˆ

Ω

u divkv dx | v ∈ Ck
c

(

Ω, Symk
(

R
d
))

,
∥

∥divlv
∥

∥

∞

≤ αl, l = 0, . . . , k − 1

}

(6)

TGV is su

essfully used for several imaging tasks like denoising, re
onstru
tion, zoom-

ing, inpainting and 
ompression. This regularization term minimizes the L

1

-norm of

higher order derivatives. For digital image pro
essing quantization to dis
rete spatial

positions is usually done. The following se
tions will des
ribe this fun
tional for �rst,

se
ond, third and higher order in more detail.

2.2.2 First Order Total Generalized Variation

First order TGV is equal to the TV term weighted by the fa
tor α. It is de�ned as

the L

1

-norm of the gradient a

ording to Equation 7. For two-dimensional images the

gradient produ
es a ve
tor �eld with two elements in ea
h �eld point. The L

1

-norm is

the magnitude of this ve
tor. Integrating all these magnitudes gives overall information

about intensity 
hanges in the image. For example zero-based normally distributed noise

or salt-and-pepper noise in
reases the TV. Su
h noise variants 
an be su

essfully removed

by the Primal-Dual algorithm by Chambolle and Po
k 2010 [37℄.
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TGV 1
α (u) = αTV (u) = α

ˆ

Ω

|∇u| dx (7)

TV is usually 
ombined with a data term. It 
ontains the L

1

- or L

2

-norm of the

di�eren
e to the input data (for example Equation 4). The data term and the regulariza-

tion are usually weighted by parameters. These parameters balan
e between the desired

properties. In 
ase of �rst order TGV these properties are the similarity to the input

image and a low TV. Implementations of this minimization extra
t pie
ewise 
onstant

obje
ts. For input images 
ontaining a slowly and smoothly varying bias the algorithm

outputs a 
ompromise whi
h usually in
ludes the stair
asing artifa
t. This �rst order

TGV fun
tional produ
es pie
ewise 
onstant obje
ts, but su
h model �tting is maybe not

the indented result.

2.2.3 Se
ond Order Total Generalized Variation

In the work of Knoll et al. 2011 [38℄ the se
ond order TGV fun
tional is used for MR

image denoising and re
onstru
tion. This fun
tional extra
ts pie
ewise linear obje
ts. It

is shown in Equation 8. In 
omparison to the previously stated Equation 7 it in
ludes a

ve
tor �eld v whi
h is subtra
ted from the gradient before the L

1

-norm and integration is

performed. Furthermore the fun
tional aims to minimize the L

1

-norm of the se
ond order

gradient of this ve
tor �eld v. The two energy terms are weighted by the fa
tors α0 and

α1 respe
tively.

TGV 2
α (u) = min

v

{

α0

ˆ

Ω

|∇u− v| dx+ α1

ˆ

Ω

|∇2v| dx
}

(8)

Starting at se
ond order, the TGV energy fun
tional itself is a minimization. The

Primal-Dual algorithm alternates between minimization of the TGV and the data term.

In the Primal-Dual implementation the maximum step sizes αi are used in the proje
tion

subroutine whi
h is part of Algorithm 4. Ea
h point in the ve
tor �eld is normalized

separately. If the magnitude of the ve
tor divided by the maximum step size is greater

than 1, the ve
tor is shrinked. This enfor
es the 
onstraint de�ned in Equation 6.

Se
ond order TGV solves the problem of stair
asing artifa
ts. It does not prefer

pie
ewise 
onstant images for u whi
h would dire
tly minimize the TV. This method

rather uses the additional ve
tor �eld v to hold the non-pie
ewise 
onstant information

and therefore indire
tly minimizes the TV. A more detailed dis
ussion 
an be found in

Se
tion 4.1.7.

2.2.4 Third Order Total Generalized Variation

Third order TGV is used for denoising in Bredies et al. 2010 [30℄. The resulting images


ontain pie
ewise quadrati
 obje
ts. The implementation of TGV

3

-L

1

of this work is
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based on the energy fun
tional in Equation 9. This de�nition is based on the general

TGV minimization fun
tional stated in Holler and Kunis
h 2014 [41℄. An additional

ve
tor �eld w is introdu
ed and the L

1

-norm of the third order gradient is weighted by

α2.

TGV 3
α (u) = min

v

{

α1

ˆ

Ω

|∇u− v| dx+ α0

ˆ

Ω

|∇2v − w| dx+ α2

ˆ

Ω

|∇3w| dx
}

(9)

In 
omparison to TGV

2

-L

1

the 3D Primal-Dual implementation of TGV

3

-L

1

introdu
es

30 additional variables of the size of the input image. These are ne
essary for the gradient,

divergen
e, proje
tion and overrelaxation operation. Analysis of the memory usage is done

in Se
tion 3.3.1. The resulting denoised image u and the divergen
e of the ve
tor �eld v

are used in the next step for shading extra
tion. That means shading extra
tion does not

di�er between se
ond and higher order TGV-DCT. The di�eren
e is how the values of

the ve
tor �eld v are 
al
ulated. Note that if the input image would 
ontain data whi
h

results in a zero ve
tor �eld for w (by the minimization of the L

1

-norm of the third order

gradient) the result would be equal to the one produ
ed by se
ond order TGV.

This method requires more memory and 
omputation time per iteration. But it pro-

du
es good results in less iterations. Surely there exists a problem usually known as

over�tting. So it is 
lear at this point that in
reasing the order of TGV will not generally

end up in better performan
e of the algorithm.

Based on the se
ond order TGV

2

-L

1

Matlab (Mathworks In
., Nati
k, USA) imple-

mentation for 2D images by Chambolle and Po
k 2010 [37℄ the algorithm is extended for

3D data. Then a third order version is implemented based on Equation 9. This requires

additional primal and dual variables, but most of the subroutines needed have already

been implemented at this time. The main extension is the third order gradient and

divergen
e operation. Pseudo 
ode for these operations is listed in Algorithms 8 and 9.

2.2.5 Third and Higher Order Total Generalized Variation

By in
reasing the order of the TGV de�nition and the Primal-Dual implementation a gen-

eral pattern be
omes visible. Based on the assumption that the gradient and divergen
e

are symmetri
, any higher order derivative is identi
al to the one for the third order.

Those fun
tionals transform a six-dimensional image to a ve
tor in the same domain.

Subroutines for the gradient, divergen
e, primal and dual update 
an be reused. Similar

to the step from TGV

2

to TGV

3

in
reasing the order by one requires 30 additional image

volume variables. The general minimization fun
tion is shown in Equation 10 based on

Holler and Kunis
h 2014 [41℄. The third and higher order TGV Primal-Dual pseudo-
ode

is shown in Algorithm 4. By default the elements of the maximum step size ve
tor αi

are set to (i+ 1) for i = 0 . . . k − 1. Thus higher order information is added up faster.
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This 
hoi
e for the parameter α is dis
ussed later in Se
tion 4.1.7. These values for the

maximum step size lead to a

eptable 
onvergen
e for the pro
essed images.

TGV k
α (u) =

= min
v







α0

ˆ

Ω

|∇u− v| dx+ α1

ˆ

Ω

|∇2v − w0| dx+
k−3
∑

i=0, wk−2=0

αi+2

ˆ

Ω

|∇3wi − wi+1| dx







(10)

The �rst term in Equation 10 � whi
h is weighted by α0 � shows that the algorithm

aims to minimize the TV of the image. If it would just minimize the TV � as is done

by �rst order TGV in Equation 7 � pie
ewise 
onstant images would be approximated.

For biased images this would lead to the stair
asing artifa
t. Therefore higher order

derivatives are subtra
ted su

essively.

Se
ond order TGV in Equation 8 
orre
ts the TV term by the se
ond order derivative

only. This is su�
ient for purely linear bias �elds. In other words, if the shape of the bias

�eld 
ould be des
ribed by a linear polynomial with respe
t to the spatial dimensions, the

se
ond order method would su

essfully perform inhomogeneity 
orre
tion. In Equation

10 the se
ond term in
ludes the se
ond order derivative and additionally a ve
tor �eld �

whi
h holds third and higher order information � is subtra
ted.

The third term in Equation 10 des
ribes su

essive 
orre
tion of higher order deriva-

tives in a general form. This is possible be
ause it is assumed that the higher order

gradient and divergen
e operation 
an be approximated by the respe
tive symmetrized

third order operation. Se
tion 2.6 
ontains a more detailed des
ription of this assumption.

Note that these higher order ve
tor �elds have the same variable name w with an index

for further identi�
ation.

Finally TGV

k


ontains k parameters for the maximum step size whi
h weight k terms

of the energy fun
tional. These terms 
ontain the L

1

-norm of 
orre
ted gradients of order

up to k-1. Minimization is done by the Primal-Dual algorithm whi
h alternates between

primal and dual update of all in
luded terms. Additionally a L

1

-data term is added to

this optimization. The resulting TGV

k

-L

1

pro
edure is listed in Algorithm 4.

By using the regularization fun
tional in Equation 10, image denoising and shading

estimation is performed simultaneously. Noise is assumed to be un
orrelated and additive.

TGV

k

-L

1

approximates pie
ewise regions of order k-1 to the image and therefore removes

su
h noise whi
h be
omes part of the residual.

Shading estimation is done under the following 
onditions. First the obje
ts of interest

are assumed to be pie
ewise 
onstant. In other words, the measured obje
ts 
onsist of

homogeneous regions whi
h are 
onne
ted by sharp edges. An arti�
ial example of su
h

an image is shown in Figure 1. Se
ond the bias �eld is assumed to 
ontain all higher
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order information. The samples in Se
tion 3 demonstrate the performan
e of this shading

estimation routine. Interpretation and dis
ussion is done in Se
tion 4.

Note that the energy fun
tional above (Equation 10) is the minimization of the L

1

-

norm of the gradient of the denoised image u subtra
ted by a ve
tor �eld v. It does

neither in
lude the estimated bias-free image nor the bias �eld dire
tly. Only the gradient

of the bias is approximated. For inhomogeneity 
orre
tion � whi
h is interpreted as the

de
omposition of pie
ewise 
onstant regions and higher order information in this work

� there are additional steps ne
essary. The following Se
tion 2.3 
ontains two possible

solutions for shading extra
tion based on TGV

k

-L

1

. These alternatives are evaluated and


ompared later in Se
tion 3.3.7.
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2.3 Shading Extra
tion

2.3.1 Poisson Equation

As des
ribed above the gradient of the bias �eld l is approximated by the ve
tor �eld v.

Equation 2 states this approximation in the form of the minimization of the L

2

-norm of

the di�eren
e of those two variables. Derivation of the Lagrange Equation with respe
t to

the spatial dimensions leads to a Poisson Equation whi
h is shown in Equation 11. The

extra
tion of the bias �eld l is therefore done by the inversion of the Lapla
e Operator

(Equation 12).

△l = div v (11)

l = △−1 (div v) (12)

2.3.2 Lapla
e Operator

The �rst step to numeri
ally solve the Poisson Equation is the dis
retization of the Lapla
e

Operator. A

ording to the �rst Primal-Dual algorithm by Chambolle and Po
k 2010 [37℄

the gradient is approximated by the forward di�eren
e with Neumann boundary 
ondi-

tions and the divergen
e by the ba
kward di�eren
e with Diri
hlet Boundary-Conditions.

The Lapla
e Operator is approximated by the divergen
e of the gradient.

2D images are stored into a ve
tor in row-major order. 3D images are reshaped and


ontain the 2D sli
es one after another. The Lapla
e 
onvolution kernel shown in Table 3

transforms this image ve
tor. At the boundaries of the image the 
enter value of the kernel


ontains the number of neighbouring pixels whi
h are inside the image and have non-zero

values in the kernel. This results from the boundary 
onditions previously mentioned.

In the 
orners of a 2D image there are two and at the other boundaries there are three

neighbours 
ontaining non-zero values.

0 -1 0

-1 4 -1

0 -1 0

Table 3: The dis
rete Lapla
e Operator kernel for a 2D image.

For 3D volumes the Lapla
e Operator is performed by the 
onvolution with a 3x3x3

kernel. For ea
h resulting voxel � ex
ept at the boundaries � the intensity values of six

neighbour voxels are taken under 
onsideration.
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2.3.3 Fourier Transform

A dire
t form solution 
an be stated for the inversion of the Lapla
e Operator by using

the di�erentiation rule of the Fourier Transformation. Equation 13 de�nes the forward

di�eren
e in the spatial and Fourier domain. For the one-dimensional 
ase the next

Equation 14 performs the Lapla
e Operator in the Fourier Domain and simpli�es the

two exponential terms by the 
osine fun
tion. A

ording to these identities Equation 15

performs the inversion of the Lapla
e Operator for 3D images.

u [x+ 1]− u [x] = ∇xu = FT−1
(

FT (u)
(

eikx − 1
))

(13)

2 u [x]− u [x+ 1]− u [x− 1] = △xu = FT−1
(

FT (u)
(

2− eikx − e−ikx
))

=

= FT−1 (FT (u) (2− 2 cos (kx))) (14)

△−1 = FT−1

(

FT (u)

6− 2 (cos (kx) + cos (ky) + cos (kz))

)

(15)

2.3.4 Dis
rete Cosine Transform

Another simpli�
ation 
an be done by the assumption of symmetri
 images. In other

words the image is assumed to extend symmetri
ally a
ross the boundaries. Even real data

does not 
ontain an imaginary part in the Fourier Domain. Lapla
e Operator inversion is

therefore implemented a

ording to Equation 15 by using the 
osine transform instead of

the 
omplex Fourier Transform. A similar step is in
luded in the 2D shading 
orre
tion

algorithm of Limare et al. 2011 [29℄. The authors use the FFTW-library by Frigo and

Johnson 2005 [42℄ for the 
osine transform.

In this work the transformation is implemented in CUDA for 2D and 3D data. The op-

eration is separated to ea
h single dimension to a
hieve better performan
e. The forward

transform is a DCT-II and the inverse transform a DCT-IV. Additionally a normaliza-

tion fa
tor is introdu
ed to the inverse transform. Sequential forward and ba
kward

transformation does not s
ale the image's intensity values. The pseudo-
ode for these

transformations is listed in Algorithms 5 and 6.

Only the gradient of the bias v is known from solving Equation 1. There are in�nite

possible solutions to Equation 2, be
ause any 
onstant image added to l does not 
hange

the gradient. Therefore the proposed 
orre
tion method 
an estimate the shape of the

inhomogeneity, but a global 
onstant o�set is missing in the result.

The s
alar bias �eld 
an be 
al
ulated by using Equation 15. Division by zero is

omitted by setting the �rst voxel value in the Fourier Domain to zero [29℄. In the spatial
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domain this sets the mean intensity value to zero. Finally the bias 
omponent is subtra
ted

from the denoised image.

2.3.5 Alternative Poisson Solver

An iterative referen
e method for the DCT Poisson solver is additionally developed. With

the boundary 
onditions mentioned above the Lapla
e Operator is written in matrix form.

The Conjugate Gradient algorithm is implemented in CUDA to invert the linear equation

system. Hestenes and Stiefel 1952 [43℄ developed this numeri
al method. The matrix

multipli
ation is done by simply performing the forward model (Lapla
e Operator) using

a CUDA kernel. The pseudo-
ode for this method is listed in Algorithm 7.

2.4 Downsampled TGV-DCT Bias Corre
tion

The algorithm is further extended by using the fundamental assumption that the bias

�eld is slowly and smoothly varying. Similar to an option of the referen
e method N4ITK

by Tustison et al. 2010 [16℄ bias 
orre
tion is done on a lower s
ale. The input image size

is de
reased for pro
essing. The downsampled image size be
omes the original image size

multiplied by a downsampling fa
tor fdownsampling. This further de
reases the 
omputation

time and makes the estimation of the maximum step size parameter α easier. For example

it is noti
ed during experiments that a general fa
tor for α of 1 leads to good 
onvergen
e

for image sizes up to 128 pixels and a fa
tor of 0.1 for image sizes of about 256. The

downsampling step generally has lowpass 
hara
ter. Therefore fo
using of low frequen
y

information is done earlier.

After the TGV-DCT algorithm 
onverges with the downsampled image (and mask)

volume, the resulting bias �eld is upsampled. The algorithm additionally ensures that

the upsampling pro
edure ends in the same image size as the one of the original image.

This prevents rounding errors with the sampling fa
tor. The ups
aled bias �eld is then

subtra
ted from the input image. Note that this pro
edure does not perform denoising.

The implementation performs 
ubi
 B-spline interpolation between existing voxels to

resample the input volume. These splines 
ontain three 
onditions at every node. The

intensity values, the �rst and the se
ond spatial derivative of 
onne
ted polynomials are

equal respe
tively. This additionally improves smoothness of the estimated bias �eld.

The downsampled version of the bias 
orre
tion algorithm introdu
es one additional

parameter fdownsampling, but highly redu
es 
omputation time and the amount of required

memory. Therefore pro
essing higher order TGV-DCT algorithms and bigger volumetri


data be
omes feasible.
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2.5 Masked TGV-DCT Bias Corre
tion

Another extension of the algorithm is introdu
ed to further improve the performan
e.

During prepro
essing fo
using on a region of interest is usually done. First this involves

the extra
tion of a volume of interest. A start- and an end-index for ea
h spatial dimension

is 
hosen. Next the 
al
ulation of a foreground mask is performed.

In this work mask 
al
ulation is done by a region growing segmentation algorithm.

Several segments with multiple seed points are the input of the algorithm. Ea
h seed

point 
an de�ne a toleran
e value. The algorithm re
ursively grows to unsegmented left,

right, top, bottom, front and ba
k dire
t neighbours until it �nds a value greater than

the toleran
e. To omit sta
k over�ows a maximum re
ursion depth is used. If this depth

is rea
hed the 
urrent voxel is added to a queue and later handled as a new seed point

of the 
urrent segment. Mask generation is done based on the input image, the non-

lo
al gradient of the input image and also based on region growing segmentation results,

inverted and dilated images.

Some volumes have millions of voxels, but only half of them hold foreground infor-

mation. Biologi
al tissue is not aligned on straight lines and be
ause of that the sli
es

expand di�erently and the overall volume in
ludes many ba
kground voxels. The pro-

posed algorithm is implemented in CUDA. Algorithm 4 des
ribes all operations in detail.

To 
al
ulate only ne
essary foreground values the following extension is done.

The algorithm loops over all voxels of the mask and builds up several index-ve
tors.

First it sear
hes all indi
es inside of the mask. Next multiple subsets of these indi
es

are additionally stored. To e�
iently 
al
ulate the gradient- and divergen
e-operations

prior determination of boundary voxels is done. The forward and ba
kward di�eren
e

in 3D requires 2x2x3 index ve
tors. For example the forward di�eren
e in x-dire
tion

is 
al
ulated for voxels inside of the mask whi
h are not lo
ated at the right boundary.

Another subroutine applies the Neumann zero �ux boundary 
ondition in parallel.

Other operations than the gradient and divergen
e (i.a. proje
tion, overrelaxation...)

are done for all voxels inside of the mask. The implementation therefore stores 13 index-

ve
tors built out of the mask volume. The kernel fun
tions are spe
ially designed and do

not 
ontain any bran
hes. Consequently the threads are in syn
, whi
h fully exploit the

resour
es of the graphi
 
ard.
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2.6 Algorithms

The overall method is formulated in Algorithm 1. For a 
hoi
e of the step size ve
tor α and

denoising parameter λ the TGV-L

1

Primal-Dual algorithm of order k ≥ 2 is pro
essed.

The output of this subroutine is the denoised image u and ve
tor �eld v. Next the inversion

of the Lapla
e Operator is done. Finally the bias �eld is subtra
ted from the denoised

image. The se
ond step is either done by Algorithm 2 or Algorithm 3. In Se
tion 3.3.7

these two alternatives are 
ompared in detail.

The third or higher order TGV-L

1

Primal-Dual pseudo-
ode is listed in Algorithm 4. In

this work the TGV-L

1

Primal-Dual algorithm of general order and the DCT and CG Bias

Extra
tion algorithms are implemented for 3D images in CUDA. The forward transform

of the DCT is listed in Algorithm 5 and the inverse transform in Algorithm 6. Pseudo-


ode for CG is shown in Algorithm 7. The variable ND is used to denote the size of the

image in the dimension D.

Algorithm 1 TGV Bias Corre
tion


hoose k ≥ 2, αi > 0, i = 0 . . . k − 1, λ > 0
u, v← TGV k

αL1 (f, λ)
l← △−1 (div v)
r ← u− l

Algorithm 2 DCT Bias Extra
tion

l← DCT−1
(

DCT (div v)
6−2 (cos(kx)+cos(ky)+cos(kz))

)

, kD ← π iD
ND

, iD = 1 . . . ND − 1, D = {x, y, z}

Algorithm 3 CG Bias Extra
tion


hoose ǫconvergence > 0
de�ne the forward model Mlaplace

l← CG (div v, Mlaplace, ǫconvergence)
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Algorithm 4 TGV k
α − L1 Primal-Dual of order k ≥ 3 for 3D images

fun
tion projection (p, αi)
p← p

max
(

1,
‖p‖
αi

)

end

fun
tion dataL1 (u, f, τ, λ)
u← u− τλ, u− f > τλ
u← u+ τλ, u− f < τλ
u← f , ‖u− f‖ < τλ
end

fun
tion overrelaxation (u, uprevious)
ū← 2 u− uprevious

end

fun
tion TGV k
αL1 (f, λ)

u, ū← f
p, v, v̄ ← 0 ∈ R

Nvoxel·3

q, wi, w̄i, ri ← 0 ∈ R
Nvoxel·6

, i = 0 . . . k − 3

hoose τ, σ > 0
repeat

p← projection ((p+ σ (∇ū− v̄)) , α0)
uprevious ← u
u← dataL1 ((u+ τ div p) , f, τ, λ)
ū← overrelaxation (u, uprevious)
q ← projection ((q + σ (∇2v̄ − w̄0)) , α1)
vprevious ← v
v ← v + τ (p+ div2 q)
v̄ ← overrelaxation (v, vprevious)
ri ← projection ((ri + σ (∇3w̄i − ¯wi+1)) , αi+2), i = 0 . . . k − 3, wk−2 = 0
wi,previous ← wi, i = 0 . . . k − 3
w0 ← w0 + τ (q + div3 r0)
wi ← wi + τ (ri−1 + div3 ri), i = 1 . . . k − 3
w̄i ← overrelaxation (wi, wi,previous), i = 0 . . . k − 3
until 
onvergen
e of u
end
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Algorithm 5 DCT for 3D images using separability in ea
h dimension

fun
tion DCTx (finput)
for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← 2 finput [x, y, z] cos
(

π
(

kx +
1
2

)

x
Nx

)

, kx = 0 . . .Nx − 1

end

fun
tion DCTy (finput)
for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← 2 finput [x, y, z] cos
(

π
(

ky +
1
2

)

y

Ny

)

, ky = 0 . . . Ny − 1

end

fun
tion DCTz (finput)
for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← 2 finput [x, y, z] cos
(

π
(

kz +
1
2

)

z
Nz

)

, kz = 0 . . . Nz − 1

end

fun
tion DCT (finput)
foutput ← DCTx (finput)
foutput ← DCTy (foutput)
foutput ← DCTz (foutput)
end

Algorithm 6 Inverse DCT for 3D images using separability in ea
h dimension

fun
tion DCT−1
x (finput)

for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← finput [x, y, z] cos
(

π
(

x+ 1
2

)

kx
Nx

)

, kx = 1 . . . Nx − 1

foutput [x, y, z]← 2 foutput [x, y, z] + finput [0, y, z]

foutput [x, y, z]← foutput[x, y, z]

2Nx

end

fun
tion DCT−1
y (finput)

for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← finput [x, y, z] cos
(

π
(

y + 1
2

)

ky
Ny

)

, ky = 1 . . .Ny − 1

foutput [x, y, z]← 2 foutput [x, y, z] + finput [x, 0, z]

foutput [x, y, z]← foutput[x, y, z]
2Ny

end

fun
tion DCT−1
z (finput)

for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← finput [x, y, z] cos
(

π
(

z + 1
2

)

kz
Nz

)

, kz = 1 . . . Nz − 1

foutput [x, y, z]← 2 foutput [x, y, z] + finput [x, y, 0]

foutput [x, y, z]← foutput[x, y, z]
2Nz

end

fun
tion DCT−1 (finput)
foutput ← DCT−1

x (finput)
foutput ← DCT−1

y (foutput)
foutput ← DCT−1

z (foutput)
end
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Algorithm 7 Conjugate Gradient

fun
tion CG (f, A, ǫ)
x← 0
r ← Ax− f
p← r
ρ0 ← ‖r‖
stop if ρ0 < ǫ2

for k = 0 . . .Nvoxel − 2
s← Ap
σ ← (s, p)
a← ρ

σ

x← x− a p
r ← r − a s
ρk+1 ← ‖r‖
stop if ρk+1 < ǫ2ρ0
b← ρk+1

ρk
p← r + b p
end

The CG Algorithm 7 solves a linear equation system whi
h is des
ribed by the ve
tor

of the right side f and the symmetri
 and positive de�nite matrix A. Note that the initial

guess of x = 0 is usually not part of the CG algorithm itself. The third parameter ǫ

is the 
onvergen
e threshold whi
h is 
ompared to the L

2

-norm of the residual ve
tor r.

The algorithm iteratively performs the forward model with the 
urrent sear
h dire
tion

p and 
al
ulates a step size a via the inner-produ
t. In the worst 
ase it 
onverges after

Nvoxel-1 iterations. In this work the CG algorithm is used to invert the dis
rete Lapla
e

Operator. Se
tion 3.3.7 
ontains results of this algorithm and 
omparison to the DCT

Poisson solver. In that way the performan
e is evaluated.

In general all pixel-wise operations are performed in CUDA. The forward DCT in Al-

gorithm 5 sequentially transforms the input image a

ording to ea
h dimension. Therefore

after DCTx and DCTy a CUDA thread syn
hronization is ne
essary. The same applies

to the inverse DCT in Algorithm 6. These implementations are based on the des
ription

on the FFTW website [44℄.

The TGV k
α − L1 Primal-Dual method in Algorithm 4 performs most operations in

parallel. Syn
hronization is basi
ally only needed before and after ea
h gradient and

divergen
e subroutine 
all. The resulting voxels are dependent on their neighbourhood

and therefore multiple Primal-Dual iterations 
an not be 
al
ulated in parallel. The three

subroutines projection, dataL1 and overrelaxation do not need a syn
hronization point.

For the variables wi, ri and all auxiliary ones a dynami
 array of images is allo
ated. The

higher order gradient and divergen
e operations are des
ribed in the following paragraph.

A

ording to Bredies et al. 2010 [30℄ the TGV dis
retization is based to the forward

δ+ and ba
kward δ− di�eren
e. Depending on the order, the higher order gradient and
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divergen
e alternate between those two di�eren
es. For example the third order gradient

uses forward di�eren
e and the fourth order gradient performs ba
kward di�eren
e opera-

tions. For three spatial dimensions there are six image variables if it is assumed that other


ross terms are nearly zero. The gradient operation for even orders (ba
kward di�eren
e)

is listed in Algorithm 8 and the divergen
e in Algorithm 9. This makes it possible to

e�
iently implement the TGV k
α − L1 Primal-Dual algorithm of order three and above.

Algorithm 8 Gradient operation for 3D images for even order (k = 4, 6 . . .)

∇ : RNvoxel·6 → R
Nvoxel·6

∇x := δx− (w̄x)
∇y := δy− (w̄y)
∇xy :=

1
2
(δx− (w̄xy) + δy− (w̄xy))

∇z := δz− (w̄z)
∇xz :=

1
2
(δx− (w̄xz) + δz− (w̄xz))

∇yz :=
1
2
(δy− (w̄yz) + δz− (w̄yz))

Algorithm 9 Divergen
e operation for 3D images for even order (k = 4, 6 . . .)

div : RNvoxel·6 → R
Nvoxel·6

divx := δx+ (rx)
divy := δy+ (ry)
divxy := δx+ (rxy) + δy+ (rxy)
divz := δz+ (rz)
divxz := δx+ (rxz) + δz+ (rxz)
divyz := δy+ (ryz) + δz+ (ryz)

2.7 Evaluation

Qualitative evalution is done by visual inspe
tion of the image, a representative line

pro�le plot and the histogram of the foreground pixels. The 
oe�
ient of variation, total

variation and entropy are 
al
ulated to present quantitative measures of the performan
e.

These evaluation methods for bias 
orre
tion algorithms are dis
ussed in Arnold et al.

2001 [45℄, Belaroussi et al. 2006 [2℄ and Vovk et al. 2007 [1℄.

2.7.1 Kernel Density Estimation

To 
al
ulate meaningful entropy values the probability density fun
tion of the image

is approximated by Kernel Density Estimation. A quadrati
 Epane
hnik-Kernel with

bandwidth σk = 3% of the intensity spe
trum is generally used and the spe
trum is

quantized to

√
Nvoxel steps. This KDE kernel is analyzed in detail by Huang and Kong

2012 [46℄. For ea
h spe
trum value a CUDA fun
tion loops over the image and sums

up the voxel values weighted by the kernel. Additionally uniform, Gaussian and 
osine
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kernels are implemented. KDE results in a smoother and better 
omparable PDF. An

example is in
luded in Figure 13.

Ba
kground voxels are usually not taken into a

ount for KDE estimation. The ba
k-

ground 
an be ignored by spe
ifying an intensity window or a mask image.

2.7.2 Entropy Cal
ulation

Based on the probability density fun
tion the entropy H is 
al
ulated a

ording to Equa-

tion 16. The implementation only takes probability values p greater than 10−7
for the

summation of the intensity values a.

H = −
∑

a

(p (a) log2 (p (a))) (16)

From the viewpoint of the histogram narrow peaks have low entropy. The bias �eld

is assumed to make peaks wider and thus in
rease entropy. In the extreme 
ase the


orre
tion algorithm minimizes the information of the image to a single narrow peak for

the foreground pixels.

The following 
omparisons in Se
tion 3 generally apply a mask image and a window


ontaining all intensities of voxels inside of the mask.

2.7.3 Coe�
ient of Variation

Another metri
 
ommonly used for the quantitative evaluation of bias 
orre
tion is the


oe�
ient of variation. It is 
al
ulated due to Equation 17 as the fra
tion of the standard

deviation and the mean µ of the intensity values.

CV =
std

µ
(17)

Bias 
orre
tion is assumed to minimize the standard deviation. To make the metri


value less dependent on the absolute intensity values normalization by the mean is done.

2.7.4 Total Variation

The third metri
 used is the TV. The implementation performs a gradient operation and

sums up the magnitude value in ea
h voxel. This metri
 is used to evaluate the degree

of pie
ewise-
onstant obje
ts of the image. Homogeneous regions 
ontain low TV values.

The bias �eld also in
reases this metri
 value.

2.7.5 Lo
al Contrast

The previously des
ribed metri
s entropy, CV and TV have a theoreti
al minimum for

a single intensity value in the image. However the image is assumed to 
ontain multiple
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pie
ewise-
onstant regions. One may perform segmentation during the evaluation and


al
ulate the metri
 values for ea
h region separately. But the performan
e of segmenta-

tion would highly in�uen
e the result. And the segmentation performan
e may depend on

the previously pro
essed algorithm. In this work another approa
h is used. Additionally

to the metri
s entropy, CV and TV the lo
al 
ontrast of several tissue 
lasses is analyzed.

It is simply the intensity di�eren
e of neighbouring regions and is approximated based on

the line pro�le plot.

The bias 
orre
tion method should therefore redu
e the values of CV, TV and entropy.

Furthermore 
ontrast between several pie
ewise-
onstant regions should be preserved. In

other words it should simply remove the bias without destroying the information of the

obje
ts of interest. The 
ombination of the listed metri
s quanti�es this obje
tive.

2.7.6 Trivial Solutions of Inhomogeneity Corre
tion

Small Constant Fa
tor If an inhomogeneity 
orre
tion method would just multiply

all voxels by a 
onstant mu
h smaller than 1, the metri
 values des
ribed above would


hange in the following way. The entropy would not be 
hanged, if the applied window

is also s
aled. The CV would also not be altered, be
ause the mean and the standard

deviation are multiplied by the same fa
tor. But su
h a global operation would s
ale the

TV and the lo
al 
ontrast.

An Additive Constant Another method may just add a global 
onstant to all voxels.

In fa
t this would de
rease the CV, be
ause the mean in
reases and the standard deviation

remains the same. Again the entropy is not altered, if the window is shifted by the same


onstant. And the TV also remains the same, be
ause the gradient operation removes

su
h global additive 
onstant.

Subtra
t or Divide the Input Image Another trivial solution is to subtra
t the

input from itself. Dividing the input by itself is similar. Surely that results in a perfe
tly

uniform image. At this point this trivial solution may seem to be total nonsense.

But in fa
t many inhomogeneity methods roughly perform su
h operations. The tri
k

is to �lter spe
i�
 information. For example Homomorphi
 Unsharp Masking [14℄ removes

low frequen
y 
omponents. If one does not well 
on�gure the proposed algorithm of this

work, it may result in a nearly uniform image. The parameter α1 in Equation 1 
ould

be 
on�gured too low. The last regularization term would not have any e�e
t, and the

estimated bias �eld would be very similar to the denoised image.

Avoid Trivial Solutions To avoid the trivial solutions previously mentioned in the

quantitative evaluation of inhomogeneity 
orre
tion methods, a 
ombination of the listed

metri
s is used. For qualitative evaluation the pixel values of images shown in this work
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are always res
aled from the minimum to the maximum intensity value. A white pixel


orresponds to the maximum and a bla
k pixel to the minimum. The histogram is based

on an intensity-windowed spe
trum as des
ribed above. And line pro�le plots in
lude the

input and output image with the same axis s
aling.

Some authors additionally perform some kind of statisti
 normalization. For example

Limare et al. 2011 [29℄ attempt to res
ale the output image to preserve the mean and

the standard deviation. The authors argue that the 'global 
ontrast' remains the same

in that way. This is not ne
essary with the a
tions des
ribed in the previous paragraph.

And in this work the CV is used to quantify the amount of inhomogeneity.

Trivial additive 
onstants 
ould be avoided by preserving the mean only. Mean pre-

serving 
an either be done by an additive 
onstant or a global fa
tor. Additive mean

preserving has the drawba
k, that a method 
ould apply a global fa
tor smaller than 1,

whi
h result in a de
reasing CV. Multipli
ative mean preserving would 
hange the lo
al


ontrast and the TV.

Quantitative evaluation avoids trivial global fa
tors and additive 
onstants by per-

forming KDE as des
ribed in Se
tion 2.7.1 and no additional transformation is done.
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3 Results

The method is applied to 2D simulated images, 3D simulated MR volumes, standard

test images, 
olor photographs and 3D MR tissue measurements. The following se
tions

in
lude su
h data whi
h is pro
essed by the methods des
ribed above. The results are

later dis
ussed in Se
tion 4.

3.1 Simulated Images

3.1.1 Ground Truth Evaluation

Ground truth data is essential for a proper evaluation. With known bias �eld and obje
t


omponent the result of the algorithm 
an be evaluated with a quantitative metri
. The

�rst sample in Figure 1 is a pie
ewise 
onstant 
omposition of geometri
al obje
ts with

an additive �eld. There are triangles, squares and 
ir
les whi
h 
ontain a single intensity.

The bias is generated using the formula and parameters of Keeling et al. 2011 [47℄. It


ontains linear and quadrati
 terms with respe
t to the spatial dimensions.

Res
aling the intensity values is omitted for this sample. The 
al
ulation of the RMSE

is done based on the di�eren
e of the ground truth to the estimate. Be
ause of the missing


onstant o�set � whi
h is des
ribed in Se
tion 2.3.4 � the zero-frequen
y is removed from

this error. In this work this metri
 is used to evaluate the error of the shape of the

bias �eld only. Additionally no denoising is done for this sample. The estimated bias is

subtra
ted from the input image, instead of using the denoised image.

The TGV

2

-DCT algorithm nearly perfe
tly estimates and 
orre
ts the bias �eld. Pa-

rameters are set to λ = 1, α0 = 0.1 and α1 = 0.2. This line pro�le plot of Figure 1 
ontains

the input in blue and output in green. The line starts at the top-left and rea
hes to the

bottom-right 
orner. It is additionally painted as an overlay in the two 
orresponding

images. Image dimensions are 256x256 and the intensity values are in the range of 0 to

2. The RMSE of the image and the bias is 0.153e-3.

Sample 2 in Figure 2 evaluates the performan
e with respe
t to a multipli
ative in-

homogeneity 
omponent whi
h spawns between 0.4 and 1.6. The input image has the

same intensity range than sample 1. The previously used algorithm with the same pa-

rameter values is used. Inhomogeneity redu
tion is 
learly visible in the line pro�le plot

of Figure 2.

For 
omparison of the estimated bias �eld the ground truth image is subtra
ted from

the input to get an additive bias. The RMSE of the image and the bias is 0.963e-1.
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Figure 1: Sample 1: From top-left

to bottom-right: estimated bias-free

image, bias �eld, algorithm input,

output, estimated bias �eld, line

pro�le plot of input (blue) and out-

put (green).

Figure 2: Sample 2: From top-left

to bottom-right: estimated bias-free

image, multipli
ative bias �eld, al-

gorithm input, output, estimated

additive bias �eld, line pro�le plot

of input (blue) and output (green).

These samples are additionally pro
essed by the referen
e method N4ITK. This method

is developed by Tustison et al. 2010 [16℄ and 
orre
ts inhomogeneities of MR images. The

results for the two arti�
ial samples do not look very promising and are neither listed nor


ompared to the proposed method. Evaluation and 
omparison is later done using MR

samples in Se
tion 3.3.

The two samples above demonstrate the algorithms performan
e for the simple 
ase of

perfe
tly pie
ewise 
onstant measurement obje
ts and a bias �eld whi
h is generated by a

single polynomial fun
tion. The se
ond sample is 
orrupted by a multipli
ative �eld whi
h

is a bit more similar to real MR measurements. The following samples will 
ontinue to get

more 
omplex and therefore gradually approximate MR volumes of biologi
al tissue. In

that way the algorithms performan
e is evaluated and 
an be 
ompared to other methods

whi
h pro
ess the same or similar samples.

3.1.2 Simulated MR volumes

MR phantom data is simulated using the BrainWeb online interfa
e version 1.4 by Co
os
o

et al. 1997 [48℄. Sample 3 is generated with the following parameters: sli
e thi
kness

1mm, s
an te
hnique SFLASH , TR 18ms, TE 10ms, �ip angle 30◦, one e
ho, magnitude

image, zero additional noise, bias �eld A and bias strength 100%. Prepro
essing in
ludes

volume extra
tion (sli
e 59 to 125) and further fo
using. A foreground mask is generated

by region-growing-segmentation based on the non-lo
al gradient. The resulting volume


ontains 180x216x67 voxels.

Shading 
orre
tion is done by the TGV

2

-DCT algorithm with α0 = 1, α1 = 2 in

1300 iterations. To preserve small lobs in the image the denoising parameter is in
reased

to λ = 2. Figure 3 shows sli
e 34 of this sample. The line pro�le plot of this sample
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demonstrates that the intensity of the white matter be
omes more homogeneous. For

quantitative evaluation Table 4 in
ludes the CV, TV and entropy of the input and output

volume. Entropy 
al
ulation is done for an intensity window from 0.1 to 1 with 128

histogram bins. All three metri
 values de
rease and therefore 
on�rm inhomogeneity

redu
tion.

Sample 4 demonstrates simultaneous bias 
orre
tion and denoising. The brain phan-

tom is generated using the same parameters as for sample 3, ex
ept the noise level is 3%.

To eliminate this additional noise the parameter λ is set to 1.2. Figure 4 qualitatively

presents the results for this sample. The 
orre
ted image has redu
ed noise and inhomo-

geneity. Table 5 shows the metri
 values of the input and output image. The relative

di�eren
e of the TV is greater than 45% and also the entropy is highly redu
ed. The CV

value also de
reases.

Figure 3: A representative sli
e of sample

3: algorithm input, output, line pro�le plot

of input (blue) and output (green) and bias

�eld.

Sample 3

CV TV Entropy

1.207 0.552e-1 7.629

1.192 0.463e-1 7.045

1.267 % 16.104 % 7.657 %

Table 4: CV, TV and entropy of the

input and output image of sample 3.

The last row shows the relative dif-

feren
e of the 
orresponding metri


value.

Figure 4: Sample 4: algorithm input, output,

line pro�le plot of input (blue) and output

(green) and bias �eld. This sample is equal to

the one in Figure 3 above expe
t additional

noise is added to the input image.

Sample 4

CV TV Entropy

1.21 0.509-1 7.4

1.189 0.263-1 6.996

1.705% 48.1937% 5.46%

Table 5: CV, TV and entropy of the

input and output image of sample 4.

The last row shows the relative dif-

feren
e of the 
orresponding metri


value.

In 
omparison to the previously shown samples the simulated MR volumes demon-

strate the 
orre
tion of 3D data sets. Be
ause no ground truth data is available for these

samples the metri
s CV, TV and entropy are used to quantitatively evaluate the algo-

rithm's performan
e. Again the se
ond order algorithm is 
hosen be
ause it produ
es
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promising results. It is therefore not ne
essary to in
rease the order in these 
ases.

3.1.3 Standard Test Images

The next sample in Figure 5 shows the Adelson-Che
kboard [49℄. This 
olor image is

transformed to the HSV spa
e using the OpenCV framework [50℄ version 3.1. Only the

value 
hannel is pro
essed, res
aled and written ba
k to the 
olor image �le. Sample 5

in
ludes two regions marked by an A and B. The line pro�le plot beneath this image shows

that those 
ontain the same intensity value. Again the se
ond order algorithm TGV

2

-

DCT with λ = 1, α0 = 1, α1 = 2 is pro
essed. Entropy 
al
ulation is based on KDE as

des
ribed in Se
tion 2.7.1. In the 
orresponding line pro�le plot 
ontrast improvement

between the region A and B is visible. The three metri
 values in Table 6 underpin a

redu
tion of inhomogeneity.

A similar example is the Logvinenko-Illusion shown in Figure 6. Again the lo
al


ontrast is enhan
ed by the extra
tion of the illumination. Table 6 in
ludes the metri


values for this sample.

Figure 5: Image and line pro�le plot of

sample 5. In the �rst row the denoised

image is shown. The position of the line

pro�le is visible in the image. It spreads

from the red square (top left) to the yellow

one (bottom right). The next row 
ontains

the extra
ted shading 
omponent and the

third one the 
orre
ted data.

Figure 6: Image and line pro�le plot of

sample 6. In the �rst row the denoised

image is shown. The position of the line

pro�le is visible in the image. It spreads

from the red square (top left) to the yellow

one (bottom right). The next row 
ontains

the extra
ted shading 
omponent and the

third one the 
orre
ted data.
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Sample 5 Sample 6

CV TV Entropy CV TV Entropy

23.8 4.53 6.5 17.7 10.3 7.22

17.9 4.43 6.69 8.76 7.01 6.93

25% 2.2% 2.85 51% 32% 4%

Table 6: CV, TV and entropy for sample 5 and 6. The �rst row 
ontains the metri
 values

of the denoised data. The se
ond row shows the values for the shading 
orre
ted image

and the third row the relative di�eren
e.

3.2 Natural Images

3.2.1 Standard Color Photographs

The next two test images are published in Fu et al. 2015 [13℄ and used to evaluate

and 
ompare several shading 
orre
tion algorithms. In 
omparison to those methods the

proposed algorithm does not in
lude a gamma 
orre
tion step. For the sample in Figure 7

the TGV

3

-DCT algorithm is pro
essed with λ = 2, α0 = 1, α2 = 2 and α3 = 3. The

darker areas of the image be
ome brighter and the overall shading is partly 
ompensated.

Figure 8 shows the next sample whi
h is 
orre
ted by TGV

k

-DCT of order 2 to 8 with the

α value des
ribed in Se
tion 2.2.5. With in
reasing order the gold globe be
omes more

and more homogeneous.

Figure 7: Input and output image of sample 7.

input 2 3 4 5 6 7 8

Figure 8: Input and output images of sample 8. The number beneath

the output images is the TGV-DCT order.

This se
tion demonstrates the shading 
orre
tion performan
e of the algorithm for


olor photographs. Higher order TGV-DCT is pro
essed to extra
t pie
ewise 
onstant

regions of the image. The two samples show outdoor s
enarios whi
h are illuminated by

sunlight. Light re�e
tion and refra
tion o

ur at material boundaries. The shape of the
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shading �eld might be mu
h more 
ompli
ated than the bias �eld in MR measurements.

The samples are in
luded here to make it possible to qualitatively 
ompare the algorithm

to other variational methods found in literature.

Note that in
reasing the order does not lead to more parameters to adjust, be
ause

default values are used. Therefore shading extra
tion is simply done by 
hoosing a value

for the denoising parameter λ and the order of the TGV fun
tional.

3.2.2 Color Photographs

The e�e
t of in
reasing TGV

k

-DCT order is additionally analyzed in sample 9. The

algorithm is pro
essed with the default parameter values up to the order of 15. Results

are presented in Figure 9. With in
reasing order the image be
omes more and more

pie
ewise 
onstant as the algorithm �ts a pie
ewise polynomial of order k -1 to the image

and extra
ts only the 
onstant information. Although the di�eren
e be
omes smaller

there are details whi
h 
hange. The 
ar in the top-left 
orner be
omes darker. This is the

brightest region of the estimated shading image. With in
reasing order the algorithm �ts

an illumination �eld with pie
es of smaller size.

Figure 10 in
ludes another sample whi
h 
ontains approximately pie
ewise 
onstant

obje
ts. The bla
k and white pattern of the �oor, red and white ball and 
otton tissues

on the wall 
onsist nearly of single 
olors in reality. With in
reasing order shadows on the

wall and �oor disappear. Contrast of the pattern on the �oor de
reases. The behaviour

of the algorithm for in
reasing order is evaluated and des
ribed later in more detail.

input 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 9: Input and output images of sample 9. The number beneath

the output images is the TGV-DCT order.
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input 5 10 15 20 25

Figure 10: Input and output images of sample 10. The number beneath

the output images is the TGV-DCT order.

The samples above are pro
essed by the algorithm of order up to 25. These results

further demonstrate the e�e
t of in
reasing order for 
olor images and are dis
ussed later

in Se
tion 4.1.1. The proposed algorithm primarily aims to 
orre
tion inhomogeneities of

MR images. The following se
tions demonstrate the performan
e for su
h samples and

in
lude 
omparison to a referen
e method.

3.3 3D MR Measurements

MR measurements have been performed using a Skyra (Siemens AG Österrei
h, Wien)

3T devi
e at the IMT Graz. The data in
lude images of the right knee done by a knee


oil. Sample 11 is a volume of 384x384x60 voxels. In the physi
al spa
e the voxel size

is 0.49mm · 0.49mm · 1.4mm. TR is set to 7790ms and TE to 10ms. This turbo spin

e
ho sequen
e generates ρH - and T2-weighted intensity values. To omit spatial details

� and therefore make the line pro�le plots easier to 
ompare � the volume is denoised

in a prepro
essing step. First TGV

2

-L

1

-Primal-Dual denoising with λ = 1 is pro
essed.

Additionally a Bilateral-Filter with a 
onvolution kernel of 32iso is applied. The parameter

for the spatial distan
e is σs = 25 to remove details (wide neighbourhood) and the one

for the intensity di�eren
e is σi = 0.01 (low gradients) to preserve edges. Figure 11

shows the results for this sample. Bias 
orre
tion is done by TGV

2

-DCT with λ = 2,

α0 = 1, α1 = 2. The shading image partly 
ontains the stru
ture of the bone, mus
le

and surrounding tissue. In the line pro�le plot the resulting image does show pie
ewise


onstant regions. The metri
 values in Table 7 de
rease due to the 
orre
tion pro
ess.

Sample 12 has equal dimensions and parameter values despite of the TR (625ms) and

TE (18ms). This generates T1-weighted intensity values. No prior denoising is done for

this sample. Figure 12 shows sli
e 27 of this volume and Table 8 the metri
 values.
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Figure 11: Results for sample 11. The arrange-

ment of the images is the same as in Figure 5.

Sample 11

CV TV Entropy

0.233 0.299e-1 7.32

0.201 0.229e-1 7.05

13% 23% 3.7 %

Table 7: CV, TV and entropy for

sample 11. Rows: denoised data,

deshading and relative di�eren
e.

Figure 12: Results for sample 12. The arrange-

ment of the images is the same as in Figure 5.

Sample 12

CV TV Entropy

1.061 0.635e-1 7.394

1.01 0.633e-1 7.256

4.807% 0.315% 1.866%

Table 8: CV, TV and entropy for

sample 12. Rows: denoised data,

deshading and relative di�eren
e.

Figure 11 demonstrates inhomogeneity 
orre
tion for previously denoised MR mea-

surements. The resulting image 
ontains pie
ewise 
onstant regions for several tissues. In

Figure 12 smaller stru
tures are fo
used and preserved by the method. For these samples

the se
ond order algorithm is pro
essed and improves the quality of the images as 
an be

seen by the redu
tion of the metri
 values in Tables 7 and 8.

Next sample 13 
ontains only sli
e 11 of the se
ond measurement volume. A foreground

mask is generated by region-growing-segmentation and applied to the input and output

image. TGV

k

-DCT of order 2 to 8 with the α value des
ribed in Se
tion 2.2.5 is pro
essed.

Figure 13 shows that with in
reasing order the bias �eld in
ludes more and more of the

tissue stru
ture, the histogram peak around 0.45 be
omes narrower and the pro�le line

straighter. The histogram peak around 0.11 and the pro�le line of the mus
le are less

modi�ed.
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input

2

3

4

5

6

7

8

Figure 13: The �rst row in
ludes the input image sample 13 and the 
orresponding

histogram. The following rows in
lude the TGV-DCT order, output image, histogram of

the output image, bias �eld and line pro�le plot of the input image (blue) and output

image (green).

39



3.3.1 Downsampled TGV-DCT Bias Corre
tion

For the evaluation of the downsampled version of the TGV-DCT bias 
orre
tion algorithm

the following MR volume is pro
essed. After fo
using a region of interest sample 14 has

the dimensions 200x186x65. It shows a transversal magnitude image resulting from a 3D

gradient inversion re
overy sequen
e (MP-RAGE) with TE set to 2.66ms, TR to 1430ms

and TI to 900ms. This results in T1 weighted intensity values.

This volume is pro
essed by the downsampled TGV-DCT bias 
orre
tion algorithm

with multiple values for the downsampling fa
tor fdownsampling and the TGV order k. For

better 
omparison the number of TGV iterations is set to 1e4 for all 
ombinations of the

input parameters. Negative intensity values of the resulting volume are 
lamped to a

value of zero. The absolute 
omputation time is 
ompared between several downsampling

fa
tors. Computation is done on a 
omputer with a Gefor
e GTX 1070 (Nvidia Corpora-

tion, Santa Clara, USA) dedi
ated graphi
 
ard with 8GB memory, a quad
ore i5-4690U

(Intel Corporation, Santa Clara, USA) with 3.5GHz and 16GB working memory. During

pro
essing nearly 100% of the pro
essors 
apa
ity is used.

The masked input volume has the following metri
 values: CV is 0.987, TV is 0.068

and entropy (
al
ulated with 256 intensity bins and a minimum threshold of 0.01) is

6.963. Figure 14 shows sli
e 33 of the input and shading-
orre
ted volumes. A set of

three values for k and fdownsampling is pro
essed whi
h results in nine estimated bias-free

volumes (Figure 14) and bias �elds (Figure 15). The bias �elds shown in
lude more details

with in
reasing order and less details with de
reasing downsampling fa
tor fdownsampling.

Downsampling redu
es the 
omputation time and GPU memory usage whi
h is shown

in Table 9. As des
ribed above in Se
tion 2.2.5 the memory usage in
reases with in
reasing

TGV-DCT order. For the pro
essed sample 14 in
reasing the order by one requires

288MB, 38MB and 5MB additional storage for this image size and three downsampling

fa
tors respe
tively. Downsampling the volume dimensions by

1/4 de
reases the needed


omputation time by about 95% for all three TGV-DCT orders. Also the required memory

is more than 90% less.

Table 10 in
ludes performan
e metri
 values for sample 14. All parameter sets show

an improvement of the image quality ex
ept for TGV

2

-DCT with fdownsampling set to

1/4. For this setting the TV in
reases in 
omparison to the masked input volume. The

quantitatively best result is obtained by TGV

4

-DCT without downsampling. In that 
ase

the CV is redu
ed by about 13%, the TV by 2.5% and the entropy by 11%. These

resulting volumes are 
al
ulated in about 15min and require 872MB GPU memory

(Table 9). The fastest version is se
ond order with

1/4 downsampling fa
tor whi
h requires

about 15 s.
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1

1/2 1/4

TGV

2

-DCT

TGV

3

-DCT

TGV

4

-DCT

Figure 14: Sli
e 33 of the estimated bias-free volumes for sample 14. The top-left image

shows the input. Rows in
lude the estimated bias-free image for TGV orders of 2, 3 and

4. In the 
olumns the fdownsampling parameter is set to 1,

1/2 and 1/4.

1

1/2 1/4

TGV

2

-DCT

TGV

3

-DCT

TGV

4

-DCT

Figure 15: Sli
e 33 of the estimated bias volumes for sample 14. Rows in
lude the

estimated bias sli
e for TGV-DCT orders of 2, 3 and 4. In the 
olumns the fdownsampling

parameter is set to 1,

1/2 and 1/4.
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TGV-DCT order fdownsampling 
omputation time GPU memory usage

[1℄ [1℄ [s℄ [%℄ [MB℄ [%℄

2

1 334.57 100 317 100

1/2 43.297 87.059 61 80.757

1/4 14.898 95.547 27 91.483

3

1 584.166 100 595 100

1/2 75.1473 87.136 99 83.361

1/4 25.2603 95.676 32 94.622

4

1 833.148 100 872 100

1/2 106.413 87.228 136 84.404

1/4 35.715 95.713 37 95.757

Table 9: Computation time in se
onds and GPU memory usage in megabytes for the

pro
essed sample 14. The fourth 
olumns shows the relative di�eren
e of the 
omputation

time of downsampling and the last 
olumn the relative di�eren
e of GPU memory usage.

The bold values mark the optimum.

TGV-DCT order fdownsampling CV TV Entropy

[1℄ [1℄ [1℄ [%℄ [1℄ [%℄ [1℄ [%℄

2

1 0.915 7.295 0.675e-1 0.735 6.683 4.021

1/2 0.936 5.167 0.678e-1 0.294 6.819 2.068

1/4 0.978 0.912 0.683e-1 - 0.441 6.942 0.302

3

1 0.869 11.955 0.667e-1 1.912 6.351 8.789

1/2 0.889 9.929 0.673e-1 1.029 6.55 5.931

1/4 0.924 6.383 0.677e-1 0.441 6.735 3.274

4

1 0.858 13.07 0.663e-1 2.5 6.178 11.274

1/2 0.875 11.348 0.671e-1 1.324 6.429 7.669

1/4 0.902 8.612 0.675e-1 0.735 6.624 4.869

Table 10: Metri
 values for the pro
essed sample 14. The referen
e for the relative values

is the masked input volume. The bold values mark the minimum.

3.3.2 Masked TGV-DCT Bias Corre
tion

The masked version of the TGV-DCT bias 
orre
tion algorithm � des
ribed in Se
tion 2.5

� also highly redu
es the 
omputation time. It is 
ompared to the previously pro
essed

downsampled algorithm by using the same sample volume. Table 11 lists the 
omputation

time and GPU memory required. In all pro
essed 
ases the masked algorithm is mu
h

faster (72 to 80% relative di�eren
e). It is also shown that the required GPU memory in-


reases for the three TGV-DCT orders and downsampling fa
tors. The relative di�eren
e

of the required memory is between 5 and 15%.

After multiplying the input image with the mask, the out
omes for the following three

versions of the algorithm are identi
al. First the algorithm whi
h 
al
ulates all operations

on all voxels is used. Se
ond the masked version is pro
essed with a mask in
luding all
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pixels. Third a mask � generated by region growing segmentation � is taken to e�
iently

perform the ne
essary operations on the foreground pixels only.

TGV-DCT order fdownsampling 
omputation time GPU memory usage

[1℄ [1℄ [s℄ [%℄ [MB℄ [%℄

2

1 75.284 77.498 360 13.565

1/2 11.789 72.771 70 14.754

1/4 3.452 76.826 29 7.407

3

1 125.97 78.436 638 7.227

1/2 19.453 74.114 108 9.091

1/4 5.231 79.291 34 6.25

4

1 176.433 78.823 915 4.931

1/2 27.117 74.517 145 6.618

1/4 7.022 80.337 39 5.405

Table 11: Computation time in se
onds and GPU memory usage in megabytes for the

pro
essed sample 14 using the masked version of the algorithm. The relative di�eren
e

in 
omparison to the downsampled algorithm (Table 9) is shown in 
olumn four and six.

The values in bold represent the optima.

3.3.3 Comparison with the referen
e method

In this se
tion the method is 
ompared to the N4ITK algorithm by Tustinson et al.

2010 [16℄. Data pro
essing is done by the ANTs [51℄ binary (version 2.1) using the default

parameter values: number-of-histogram-bins 200, wiener-�lter-noise 0.1e-1, bias-�eld-

fwhm 0.15, maximum-number-of-iterations 50, spline-order 3, number-of-�tting-levels 4.

For sample 15 the 
onvergen
e measure (
oe�
ient of variation) at the �nal iteration is

0.285e-3. Figure 16 shows the resulting 
orre
ted MR sli
e and bias �eld. The histogram

of the 
orre
ted image 
ontains a single narrow peak. For better 
omparison the additive

bias �eld of the proposed method is 
onverted into a multipli
ative one. This is done

by thresholding and 
onditional pixel-wise division (omitting zero division) of the input

and the output image. In Figure 17 the results of the proposed method for the same

input image and mask are shown. The �rst row 
ontains a line pro�le plot of the bias

�eld of both methods. On the one hand the histogram of the 
orre
ted image 
ontains

a less narrow peak but on the other the line pro�le plot shows a straighter intensity line


ompared to the one of the N4ITK result. Table 12 shows slightly lower entropy and CV

values and a higher TV value for the referen
e method.

A se
ond MR sample is used to 
ompare the two methods. This one is not previously

denoised and 
ontains 7 equal phantom 
ylinders whi
h are a hint for the bias �eld.

Both methods are pro
essed without a mask. N4ITK 
onverges with a CV of 0.653e-3.

Figure 18 
ontains the results for the N4ITK method. A se
ond peak for the mus
le is

visible in the spe
trum and is preserved in both methods. In Figure 19 the line pro�le

plot of the two bias �elds show that N4ITK 
an produ
e fast varying bias �elds too. The
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metri
 values of Table 13 are similar to those of the previous sample in Table 12 .

Figure 16: Results of the N4ITK-method

for sample 15: First row: input image

and the 
orresponding histogram. Se
-

ond row: the shading 
orre
ted image

and the histogram. Third row: the mul-

tipli
ative bias �eld and a line pro�le plot

of the input and the 
orre
ted image.

Figure 17: Results of the proposed TGV-

DCT-method for sample 15: First row:

line pro�le plot of the bias �eld of both

methods. Se
ond row: the shading 
or-

re
ted image and the histogram. Third

row: the multipli
ative bias �eld and a

line pro�le plot of the input and the 
or-

re
ted image.

CV TV Entropy

N4ITK 1.11 0.443e-1 5.96

TGV-DCT 1.14 0.37e-1 6.04

Table 12: CV, TV and entropy of the 
orre
ted sample 15 for the methods N4ITK and

TGV-DCT.
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Figure 18: Results of the N4ITK-method

for sample 16: First row: input image

and the 
orresponding histogram. Se
-

ond row: the shading 
orre
ted image

and the histogram. Third row: the mul-

tipli
ative bias �eld and a line pro�le plot

of the input and the 
orre
ted image.

Figure 19: Results of the proposed TGV-

DCT-method for sample 16: First row:

line pro�le plot of the bias �eld of both

methods. Se
ond row: the shading 
or-

re
ted image and the histogram. Third

row: the multipli
ative bias �eld and a

line pro�le plot of the input and the 
or-

re
ted image.

CV TV Entropy

N4ITK 1.21 0.582e-1 6.33

TGV-DCT 1.25 0.509e-1 6.61

Table 13: CV, TV and entropy of the 
orre
ted sample 16 for the methods N4ITK and

TGV-DCT.

The previous sample 16 is also pro
essed by TGV-DCT of order 3 to 5. Figure 20

shows the resulting image, histogram, line pro�le plot and bias �eld. Table 14 in
ludes

the de
reasing metri
 values for these results. The histogram peak of the mus
le merges

with the one for the other foreground pixels and the bias 
omponent in
ludes more and

more details. So 
ontrast between the mus
le and the surrounding tissue de
reases.

The bias of the seven 
ylinders is partly removed by the pro
essed methods. Be
ause

these regions are separated the PDF domain based method N4ITK performs mu
h better

than the others whi
h 
orre
ted the image in the spatial domain. The line pro�le plot

of Figure 20 shows that TGV-DCT removes the bias inside ea
h 
ylinder, but it does

not estimate a meaningful bias �eld in the ba
kground. Nevertheless it produ
es similar
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results than N4ITK for the biologi
al tissue.

Figure 20: Results of the proposed TGV-DCT-method for sample 16: resulting image,

histogram, line pro�le plot of input and output and bias image. The rows 
ontain the

results for TGV-DCT with order 3,4 and 5.

TGV-DCT Order CV TV Entropy

3 1.157 0.399e-1 7.188

4 1.15 0.389e-1 7.025

5 1.14 0.383e-1 6.949

Table 14: CV, TV and entropy of the 
orre
ted sample 16 for the method TGV-DCT

with in
reasing order.

3.3.4 Estimation with Denoising and Corre
tion based on the Input Image

In the following experiment the downsampled version of the TGV-DCT bias 
orre
tion

algorithm is used to estimate the bias �eld with simultaneous denoising and 
orre
t the

input image without denoising. This is a
hieved by 
hoosing a low value for the denois-

ing parameter λ = 1 and estimating a ve
tor �eld v with this TGV-L

1

parameter. As

des
ribed above in Se
tion 2.4 the estimated bias is subtra
ted from the input image

if downsampling is applied. Figure 21 shows the estimated bias-free image, probability

fun
tion and a representative line pro�le plot. Again sample 16 is pro
essed using N4ITK

and several versions of the proposed algorithm. N4 generates two main peaks in the

intensity spe
trum and a straight line in the pro�le plot. The se
ond order TGV-DCT

algorithm generates a similar result. It di�ers in the width and position of the two in-

tensity 
lasses. The proposed method does not alter the position of the peaks. In other

46



words the absolute intensity values are preserved. Third order TGV-DCT introdu
es ad-

ditional inhomogeneities on the left fat, the bottom bone and top right fat tissue regions.

Nevertheless the intensity peak is narrower than the one of the result of the se
ond order

algorithm. Downsampling the input by one half produ
es a qualitatively better result

with two (symmetri
) Gaussian distributions in the estimated PDF.

The last two 
olumns of Figure 21 show the estimated bias �elds for these 
al
ulations.

N4 works in the logarithm domain and therefore produ
es a multipli
ative bias �eld. For

better 
omparison the input image is subtra
ted by the resulting estimate of the bias-free

image. And the additive bias �elds estimated by the proposed algorithm are transformed

to multipli
ative ones. This is done by dividing the input image with the resulting bias free

image. To omit division by a value near zero the bias-free estimate is �rst thresholded and

division is only done if the divisor is not equal to zero. Although the multipli
ative bias

�eld of N4 and TGV

2

-DCT look similar (for example the gradient at the green line) they

are not easy to 
ompare. In general all output images are res
aled to 
ontain bla
k pixels

for the minimum intensity and white ones for the maxima. The 
al
ulated multipli
ative

bias in
ludes a few bright pixels. One 
an also see bla
k pixels for regions where no

bias �eld is estimated. N4 interpolates the bias in those regions using B-splines. The

bias �elds show more details for in
reasing the TGV-DCT order and less for a de
reasing

downsampling fa
tor.

Table 15 
ontains metri
 values for this experiment. In fa
t N4 generates the worst

CV and TV but a good entropy value. Quantitatively the third order method without

downsampling produ
es the best result. In the following Se
tion 3.3.5 an additional metri


will be introdu
ed to 
ount for the lo
al 
ontrast between several regions. The estimated

multipli
ative bias �eld 
ontains low values in the 
enter of the image and the fa
tors

in
rease with the distan
e from the 
enter. Maximum bias is visible at the top and right

edge.
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Figure 21: The resulting estimated bias-free image, the histogram and a representative

line pro�le plot of the input (blue) and output(green) intensities, the additive and multi-

pli
ative bias �eld for the referen
e method N4ITK and several versions of the proposed

TGV-DCT algorithm. The position of the line is additionally painted to the image. The

rows 
ontain the result of the algorithms and parameters listed in Table 15.

CV TV Entropy

N4ITK 1.144 0.588e-1 7.183

TGV

2

-DCT 1.139 0.524e-1 7.237

TGV

3

-DCT 1.101 0.512e-1 7.03

TGV

3

-DCT fdownsampling = 1/2 1.093 0.534e-1 7.242

Table 15: CV, TV and entropy of the 
orre
ted sample 15 for the method TGV-DCT

with in
reasing order.
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3.3.5 Simultaneous Denoising and Bias Corre
tion

First the authors of the N4ITK algorithm refer to the proposal of the original N3 by

Sled et al. 1998 [15℄ about the intensity spe
trum. Be
ause these algorithms work in the

logarithm domain, zero and very small intensity values are not re
ommended. Therefore

the input image is not res
aled and the DICOM integer values are pro
essed. Be
ause no

prior denoising by a Bilateral Filter is performed, the parameters is not in�uen
ed.

In this the TGV-DCT algorithm will perform simultaneous denoising. This means

no downsampling and a value for the denoising parameter λ smaller than 2. Only the


ombined e�e
t of denoising and deshading are evaluated by the inspe
tion of the resulting

estimated bias-free image.

Figure 22 shows sample 17 whi
h is equal to sample 16 ex
ept the oil 
ylinders are

removed. This �gure in
ludes the estimated bias-free image, the PDF, a representative

line pro�le plot and the additive and multipli
ative bias. The line pro�le plot spawns from

the mus
le through the bone to the fat tissue. PDF estimation is done by KDE with 256

intensity values, a bandwidth of 40 and a window from 150 (to suppress low ba
kground

pixels) to the maximum intensity value of 2135.

The pro
essed algorithms and parameters are shown in Table 16. It in
ludes the


hosen value for λ and the number of iterations pro
essed. Furthermore the required


omputation time and metri
 values are listed. In addition to the three metri
 values

used above the lo
al 
ontrast (des
ribed in Se
tion 2.7.5) is evaluated. This is done by

approximating the intensity di�eren
e from mus
le to bone and from bone to fat based

on the line pro�le plot. In the input image the di�eren
e from the last pixel of the mus
le

to the �rst pixel of the bone is 400 for example.

The input image 
ontains a slow bias whi
h in
reases the intensity values from top-left

to bottom-left at the position of the pro�le line. This widens the PDF peak for the bone

and fat tissue. Nevertheless, there are still two separate peaks visible. As mentioned above

N4 produ
es two very narrow peaks and a smooth and slow varying multipli
ative bias

�eld. It improves the 
ontrast between mus
le and the other pixel values to 700 but there

is no 
ontrast between bone and fat tissue anymore. The maximum values of the bias

�eld are visible at the top and right edge. This �eld is interpolated by B-splines, to allow

values in the ba
kground to be estimated. As mentioned above in Se
tion 3.3.3 N4ITK

pro
esses 200 iterations by default. Table 16 lists the pro
essed algorithms, parameters,

required 
omputation time and metri
 values. N4 requires about 3.8 s and generates the

maximum 
ontrast for the mus
le tissue, but in
reases the TV of the image.

Next, se
ond order TGV-DCT with λ = 1.75 is pro
essed until 
onvergen
e. It redu
es

the CV, TV and entropy value and preserves the original 
ontrast between mus
le and

bone tissue. The additive estimated bias �eld in Figure 22 also shows maximum bias at

the top and right edge. The PDF 
ontains 2 main peaks, but there are two additional
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distributions very 
lose to the se
ond peak. These represent the intensities of the bone,

fat and details in those two tissue 
lasses. Simultaneous denoising additionally redu
es

the metri
 values, the straightness of the intensity pro�le line and allows to sele
t a s
ale

of interest. Therefore unwanted details whi
h are assumed to be noise are removed from

the image.

The next algorithm pro
essed is third order TGV-DCT with the previous denoising

parameter. Only 700 iterations and less than 0.2 s are required for the 
al
ulation. The

bias in the bone tissue is greater than the previous one. This generates brighter pixel

values in the resulting bias-free estimate. In the PDF there are three main peaks visible.

Using the previous denoising parameter value another 
al
ulation performs denoising

and simultaneous bias 
orre
tion by only 1000 iterations of TGV

15

-DCT. This requires

less than 1.5 s 
omputation time and generates the best CV and entropy values of this

experiment. There are three very narrow peaks visible in the PDF and mu
h more details

in the estimated bias �eld.

The next three 
al
ulations perform intensive denoising by setting λ to 1. Again the

maximum step size parameter α 
ontains the values 
al
ulated by the series de�ned in

Se
tion 2.2.5. These results 
ontain very low TV values and require less iterations. Se
ond

order TGV-DCT runs 1000 iterations in 0.2 s. The e�e
t of denoising is 
learly visible in

the line pro�le plot. The third order algorithm produ
es the best TV metri
 value and

also best 
ontrast between bone and fat. The PDF shows three very narrow peaks. The

last 
omputation demonstrates intensive denoising in just 600 iterations by TGV15

-DCT.

All metri
 values are good in 
omparison to the another results. This parameters set

runs faster than the referen
e method and produ
es better results. The resulting bias-free

estimate shows three homogeneous regions and the PDF three very narrow and symmetri


peaks. There are many details 
ontained in the estimated bias whi
h is removed from the

denoised image.

These 
al
ulations show that the proposed algorithm 
an perform simultaneous bias


orre
tion and denoising. This additionally redu
es the metri
 values and therefore im-

proves the quality of the results. Furthermore the absolute intensity values and 
ontrast

between spatially separated regions is preserved.
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Figure 22: In the �rst row the input image and an estimate of the PDF is shown. The

following rows 
ontain the resulting estimated bias-free image, the 
orresponding PDF, a

line pro�le plot of the input and 
orre
ted image, the bias and denoised image for sample

17. Table 16 lists the algorithms and parameter values used.
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Algorithm λ #iter

Required

CV TV Entropy

Contrast Contrast

Time [s℄ M-B B-F

Input 1.046 129.587 7.612 400 200

N4ITK 2e2 3.873 0.992 136.725 7.111 700 0

TGV

2

-DCT 1.75 5e4 9.65 0.961 90.158 7.254 400 100

TGV

3

-DCT 1.75 7e2 0.229 0.96 100.342 7.23 300 100

TGV

15

-DCT 1.75 1e3 1.463 0.923 86.139 6.962 300 120

TGV

2

-DCT 1 1e3 0.2 0.962 70.187 7.2 200 220

TGV

3

-DCT 1 1e3 0.303 0.942 66.834 7.074 300 250

TGV

15

-DCT 1 6e2 0.91 0.934 67.033 7.033 200 150

Table 16: Metri
 values for sample 17. The �rst three 
olumns 
ontain input values:

algorithm, parameter and number of iterations pro
essed. Column four shows the required


omputation time. The following 
olumns present the metri
 values: CV, TV, Entropy

and Contrast between two di�erent tissue edges. These are mus
le-bone (M-B) and bone-

fat (B-F).

3.3.6 In�uen
e of the Parameters on the Inhomogeneity Shape

In prin
iple the shape of the bias �eld depends on the input image and the 
hosen pa-

rameters. As mentioned above in Se
tion 3.3.1 the downsampling fa
tor fdownsampling 
an

also be used to fo
us on low frequen
y information. In this se
tion only the in�uen
e

of the maximum step size parameter for the se
ond order gradient α1 in Equation 1 is

investigated.

In the following experiment the se
ond order TGV-DCT inhomogeneity 
orre
tion

algorithm is pro
essed with λ = 1, α0 = 1 and multiple values for the analyzed parameter

α1. No denoising is performed by subtra
ting the estimated bias from the input image.

Figure 23 shows the resulting bias free estimate, the estimated bias and line pro�le plots

for a set of parameter values.

A similar e�e
t might be rea
hed by 
hoosing smaller values for λ and λ0. But for

parameter estimation it is mu
h simpler to res
ale the intensities and �x α0 to 1. In

Se
tion 4.3 a re
ommendation for a strategy to 
hose a value for the parameter ve
tor α

is given.
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Figure 23: Results of the proposed TGV-DCT-method for sample 16: In ea
h 
olumn

resulting bias free estimate, the bias, and the line pro�le plots of the input image and bias

free estimate are shown. The results of 
olumns are 
al
ulated with α1 ∈ {2, 3, 4, 5}.

3.3.7 Inversion of the Lapla
e Operator

The two alternative methods for the inversion of the Lapla
e Operator are 
ompared as

follows. Sample 12 � whi
h is shown in Figure 12 � is pro
essed by TGV

2

-L

1

with the

default parameters. The �rst input image has the dimensions 251x251 and intensity range

from 0 to 1. The TGV-L1

algorithm generates a denoised image and additionally a ve
tor

�eld v. The divergen
e of this ve
tor �eld is the input for the two extra
tion methods listed

in Algorithm 2 and Algorithm 3. Both methods are exe
uted 20 times. The CG-algorithm


onverges with an error threshold of ǫ = 10−3
after 207 iterations. Additionally sample

13 in Figure 13 is pro
essed. This image has the dimensions 156x156. The parameters

for CG are the same and 
onvergen
e is rea
hed after 342 iterations. Table 17 in
ludes

the required 
omputation time and 
al
ulated metri
 values for the estimated bias-free

images.

Method Duration CV TV Entropy

Sample 12

DCT 44.8ms± 4.238ms 0.578 0.534e-1 7.284

CG 358.35ms± 41.473ms 0.59 0.54e-1 7.306

Sample 13

DCT 160.25ms± 20.760ms 0.632 0.554e-1 7.012

CG 1432ms± 151.344ms 0.638 0.554e-1 7.018

Table 17: CV, TV and entropy of the two alternative bias �eld extra
tion methods for

sample 12 and 13.
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4 Dis
ussion

4.1 Interpretation

4.1.1 Pro
essed Samples

For the simulated ground truth data in Se
tion 3.1.1 the TGV

2

-DCT bias 
orre
tion al-

gorithm su

essfully restores the pie
ewise 
onstant regions of sample 1 and 2. These

samples really are pie
ewise 
onstant 
ompositions without any kind of noise. The 
al-


ulated bias �eld 
ontains only linear and quadrati
 terms with respe
t to the spatial

dimension. The RMSE for the multipli
ative �eld in sample 2 is higher than the value

for sample 1. Nevertheless the algorithm improves the homogeneity of the image shown

in Figure 2.

The next step is the simulation and pro
essing of MR volumes in Se
tion 3.1.2. For

sample 3 the algorithm 
onverges fast and strongly redu
es inhomogeneity. Even for the

noisy MR phantom (sample 4) bias 
orre
tion is su

essful and additionally performs

denoising. The huge redu
tion of the TV and entropy in Table 5 
on�rms this behavior.

The CV metri
 is less in�uen
ed by this zero-mean noise.

The 
olor images Adelson Che
kerboard (sample 5) and Logvinenko Illusion (sample

6) are also used for evaluation in the work of Liang and Zhang 2015 [11℄. The methods

dis
ussed in their work are qualitatively 
ompared to the results in Figure 5 and Fig-

ure 6. The three methods do not estimate the shading on the 
ylinder as well as the

proposed TGV-DCT method does. In sample 6 the pie
ewise 
onstant information is

better preserved in the result.

The standard test photograph sample 7 is 
ompared to 4 di�erent methods in Fu et

al. 2015 [13℄ and sample 8 is in
luded in Kimmel et al. 2003 [6℄. Be
ause no ground

truth and metri
 values are available the results are again only qualitatively 
ompared.

The 
olors of the shaded regions of sample 7 in Figure 7 are better restored. For sample

8 it is di�
ult to de�ne the desired goal. The statue basi
ally 
onsists of white stone and

golden metal. An obje
tive 
omparison is not done here. In
reasing the TGV-DCT order

does redu
e inhomogeneity as 
an be seen in Figures 8 to 10.

Next the algorithm is pro
essed using a measured MR volume. To analyze only the

bias 
orre
tion prior denoising is done. Figure 11 representatively shows that the resulting

image 
ontains pie
ewise 
onstant regions and the shading 
omponent pie
ewise higher

order intensity shapes. Also without prior denoising (sample 12) the bias �eld extra
ted

by TGV

2

-DCT improves the image quality.

Figure 13 shows the e�e
t of in
reasing the TGV-DCT order for a measured MR sli
e.

Up to order 9 the algorithm performs better whi
h is visible in the histogram of the

foreground pixels and line pro�le plot. Prior foreground masking and intensity res
aling

drasti
ally in�uen
es the results. Figure 20 in
ludes the results of the TGV-DCT higher

54



order algorithmwhi
h may not be near the desired goal. In the histogram the two intensity


lasses merge together.

In Se
tion 3.3.6 the in�uen
e of the parameter α1 is under investigation. With in-


reasing value the bias be
omes more smooth. The third term of Equation 1 is weighted

stronger whi
h minimizes the se
ond derivative faster. There are less sharp edges in the

bias �eld, and it is less similar to the gradient of the denoised image.

4.1.2 Downsampled TGV-DCT Bias Corre
tion

Downsampling generally de
reases the required 
omputation time and GPU memory (Ta-

ble 9). Therefore the algorithm 
an be pro
essed mu
h faster and higher order TGV-DCT

be
omes feasible for a spe
i�
 hardware setting. Figure 15 shows that downsampling also

highly in�uen
es the shape of the resulting bias �eld. As des
ribed above in Se
tion 2.4

the low-pass 
hara
ter of the B-spline interpolation of smaller volumes produ
es slower

and smoother �elds. The metri
 values de
rease with in
reasing TGV-DCT order from

2 to 4 (Table 10). On the one hand the results quantitatively get worse with in
reasing

downsampling but on the other fdownsampling is an additional parameter to 
ontrol the

smoothness. Therefore the results may qualitatively get 
loser to the desired goal by

spe
i�
ally adjusting this parameter.

4.1.3 Masked TGV-DCT Bias Corre
tion

Foreground masking does not in�uen
e the resulting volumes as shown in Se
tion 3.3.2.

It requires additional GPU memory for the 13 index-ve
tors, but highly redu
es the


omputation time. It di�ers in the way the boundary 
onditions of the �nite di�eren
es

are applied. The CUDA kernels are in general only laun
hed for ne
essary voxels. Che
ks

for the image dimension and boundary are done previously and not in ea
h iteration.

Basi
ally this version of the algorithm is re
ommended. It is also 
ombined with the

previously dis
ussed downsampled algorithm. For 
ases where the GPU memory is not

su�
ient, the slower TGV-DCT bias 
orre
ton algorithm 
an be used. Note that the

performan
e improvement depends on the 
ount of foreground voxels and therefore on

the mask volume.

4.1.4 Comparison to N4ITK

The N4ITK algorithm is designed for inhomogeneity 
orre
tion of MR images. It assumes

a slow varying bias �eld. This 
onstrained is for
ed by using spline interpolation. Third

order splines have equal intensity values, �rst and se
ond order derivatives at the nodes.

Intensity values between the nodes are interpolated by third order polynomials. The TGV-

DCT method minimizes the TV of the resulting image. Noise is removed by iteratively

subtra
ting the proje
ted derivative and all other non-pie
ewise-
onstant 
ontributions
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be
ome part of the illumination 
omponent. Although these two goals are totally di�erent,

the results are 
omparable for the pro
essed samples.

Figure 20 shows the results for in
reasing TGV-DCT order. In this 
ase higher order

algorithms do not improve the results qualitatively, if one is interested in the 
ontrast of

the mus
le to its surrounding tissue. Nevertheless the metri
 values in Table 14 de
rease.

Simultaneous denoising and bias 
orre
tion � as des
ribed in Se
tion 3.3.5 � greatly

improves the metri
 values. Previous experiments have shown that redu
tion of the metri


values CV, TV and entropy is not enough to quantize good image restoration. The extreme


ase of bias 
orre
tion would generate a single intensity value whi
h would end up in the

theoreti
ally best metri
 values. This would surely not be the intended result. Qualitative

inspe
tion of the image, PDF and line pro�le plot would 
learly show that the result is

getting worse, but the metri
 values improve (Figure 21 and Table 15). The lo
al 
ontrast

between several separated tissue type regions is introdu
ed to quantitatively 
ount for the

distan
e between multiple intensity distributions in the PDF. It is approximated based on

the line pro�le plot. This measurement is assumed to be a

urate enough for a meaningful


omparison of the pro
essed samples.

The results of Table 16 and Figure 22 are interpreted as follows. N4 very well performs

bias 
orre
tion. It generates maximum 
ontrast between the mus
le tissue and all other

pixel intensities. The estimated multipli
ative bias �eld is smoothly and slowly varying

in the whole image. The downside of the result is that all other tissue 
lasses than mus
le

get the same intensity value. This produ
es maximum homogeneity but totally removes

the 
ontrast.

Several results of the proposed TGV-DCT algorithm shown in Figure 22 outperform

the referen
e method. Simultaneous denoising additionally produ
es more homogeneous

regions in the image. In 
ontrast to N4 the TGV-DCT algorithm works in the spatial

and not the PDF domain. Therefore, it 
an use the information of spatial separations in

the image and thus images with better 
ontrast for multiple very 
lose tissue intensities


an be produ
ed. On the other hand it does not estimate a meaningful bias �eld between

isolated obje
ts (oil 
ylinder in Figures 19 and 20). The algorithm 
an produ
e similar

results as N4 with default parameter values. Furthermore, it allows to sele
t the amount

of denoising and shape of the bias �eld and hen
e the parameters 
an be adjusted to

spe
i�
 situations and desired out
omes.

4.1.5 Evaluation

The 
al
ulated metri
 values show an improvement in most of the tested samples. Al-

though this is generally a hint for good performan
e, redu
tion of these values does not

dire
tly imply well performed shading 
orre
tion. In 
ase of very inhomogeneous illu-

mination � more spe
i�
 if some regions are strongly illuminated and others very less �

the spe
trum 
ontains many intensity values at the beginning and another group at the
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end. This means the entropy is low in the overall image. Shading 
orre
tion in
reases the

entropy in su
h 
ase. A more representative metri
 for these s
enarios is the 
oe�
ient

of variation.

Furthermore, the out
ome of the experiments shows that if one is interested in the


ontrast of several tissue 
lasses evaluation should in
lude other metri
 values � as the

lo
al 
ontrast � or some kind of segmentation pro
edure. In that way the CV, TV and

entropy metri
 
ould be 
al
ulated for several separated regions and 
ombined metri
s

like the joint 
oe�
ient of variation 
an be used. The problem of bias 
orre
tion is 
losely


onne
ted to segmentation of homogeneous regions and 
lassi�
ation of several intensity

distributions in the image.

Note that the 
ontrast metri
 is even improved by a bias �eld in some 
ases. The

slowly and smoothly varying �eld may stret
h the intensity di�eren
e between di�erent

regions. Therefore bias 
orre
tion 
ould also de
rease the 
ontrast by generating good

estimates for the real bias-free data.

4.1.6 Convergen
e of the optimization algorithms

Convergen
e of the proposed bias 
orre
tion method depends on the optimization algo-

rithms used. Bias estimation and denoising is done by a TGV-L

1

Primal-Dual implemen-

tation. TGV is des
ribed in Bredies et al. 2010 [30℄. The authors de�ne 
onvergen
e due

to the L

2

-norm of the �rst term in the TV-norm in Equation 8. A 
onvergen
e estimate

for TGV-L

2

is derived whi
h is dependent on the image dimension, number of iterations

and α0. Unfortunately this estimate 
an not be used for the TGV-L

1

fun
tional. But it

is known that it de
reases monotoni
ally. In this work 
onvergen
e is 
he
ked visually

by the inspe
tion of the image, histogram and line pro�le plots. Additionally statisti
al

values like the minimum, maximum, mean, standard deviation and CV are examined. If

the result 
hanges just in a 
ertain fra
tion (1e-3) of the intensity bandwidth, 
onvergen
e

is assumed.

The se
ond step of the bias 
orre
tion algorithm transforms the ve
tor �eld v into the

s
alar bias l. This problem is stated as a minimization in Equation 2. Convergen
e of

v in the previous step is therefore important. The CG-solver 
onvergen
es for a positive

de�nite matrix afterNvoxel−1 iterations whi
h is proofed by Hestenes and Stiefel 1952 [43℄.
The DCT-solver for the Poisson Equation � des
ribed in Se
tion 2.3.3 � is a 
losed

form solution. It dire
tly 
al
ulates the optimum solution in the 
osine domain.

4.1.7 Conditions for Su

essful Bias Corre
tion by TGV-DCT

To state some 
onditions for su

essful bias estimation using TGV-DCT it is important to

understand the role of ea
h single term of the underlying TGV regularization fun
tional.

Se
tion 2.2.2 des
ribes the �rst order version. It is known that TV-L

1

generates pie
ewise
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onstant images. Why does it extra
t su
h pie
ewise 
onstant regions? The following

dis
ussion about TGV-DCT is based on the fa
t that every fun
tion 
an be de
omposed

by Taylor series expansion. For dis
retized images on a regular grid the distan
e from

the parameter for whi
h the fun
tion is approximated to the origin parameter is 
onstant

and usually de�ned to be simply one. This more spe
i�
 version of the Taylor series is

shown in Equation 18. It is based on the Taylor expansion method des
ribed by Dahmen

and Reusken 2008 [52℄. The s
alar fun
tion value for the parameter x+ 1 is equal to the

fun
tion value left to it plus an in�nite series of weighted derivatives.

f (x+ 1) = f (x) +

∞
∑

i=1

f (i) (x)

i!
(18)

Putting the �rst term to the left side of the equation shows that the �nite forward

di�eren
e is equal to the weighted sum of all derivatives. Note that the gradient operator

is usually approximated by the forward di�eren
e with Neumann zero �ux boundary


onditions. The implementation of TV-L

1

minimizes the L

1

-norm of this gradient. Sin
e

L

1

is a spe
ial p-norm the minimization fun
tional 
an be transformed by the Minkowsky

Inequality to the separate minimization of all derivatives. The aim of TV-L

1

is therefore

interpreted to be the minimization of really all derivatives. In 
ombination with the data

term the optimization produ
es pie
ewise 
onstant (all derivatives near zero) images whi
h

are similar to the input image.

For the investigation of se
ond order TGV-DCT the previously stated Taylor Series

Equation 18 is transformed to additionally 
ontain the �rst derivative of the fun
tion on

the left side. After this transformation the weighted sum of all higher order derivatives

(starting at order two) is equal to the forward di�eren
e minus the �rst derivative. If

one would minimize the terms on the left side this would minimize all derivatives ex
ept

the �rst one. Su
h an optimization would therefore extra
t linear fun
tions. The �rst

term of the TGV

2

-DCT energy fun
tional in Equation 8 des
ribes the minimization of

the L

1

-norm of the gradient of the denoised image u subtra
ted by a ve
tor �eld v. The

se
ond term for
es the minimization of the gradient of this ve
tor �eld. A

ording to the

dis
ussion of TV in the previous paragraph if v would 
ontain the �rst order derivative

the se
ond term would minimize all derivatives of v.

Algorithm 4 iteratively minimizes all terms of Equation 8. The derivative of the

Lagrange with respe
t to u and v is required to obtain the update terms for the iterative

minimization. The dual variable for u is p. It 
ontains the summed up proje
ted forward

di�eren
e of u minus the ve
tor �eld v. The information of p is used for the primal update

of u and v. Note that both terms of TGV

2

-DCT in Equation 8 
ontain v. The primal

update of v is therefore done by summing up p (the derivative of the �rst TGV2

-DCT term

with respe
t to v) and a se
ond term 
ontaining q. The role of q is the minimization of

the L

1

-norm of the gradient of v. At the beginning v̄ is initialized with zero. The variable
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p therefore 
ontains the proje
ted weighted sum of all derivatives in early iterations. And

the ve
tor �eld v stores the forward di�eren
e of u (as part of p) and the weighted sum of

all higher order derivatives (part of p and q). A

ording to Equation 18 this is equal to

the �rst order derivative. The information of the �rst derivative slowly transfers from p to

v with in
reasing iterations. TGV

2

-L

1

therefore approximates pie
ewise linear regions in

the input image. Note that the approximated bias �eld by TGV

2

-DCT does not 
ontain

the residual of this linear approximation. In 
ontrast the downsampled version of the

algorithm does 
ontain the residual in the bias �eld. The maximum step size for q has to

be greater than the one for p. The ve
tor �eld v qui
kly be
omes the �rst order derivative

and the primary minimization of all derivatives ex
ept the �rst one is done via the ve
tor

�eld p.

Third order TGV-DCT extra
ts pie
ewise quadrati
 fun
tions. In 
ontrast to TGV

2

-

DCT the se
ond term does not for
e all derivatives of v to be minimized. It rather

subtra
ts another ve
tor �eld w whi
h 
ontains the quadrati
 information of u. This

se
ond term of TGV

3

is therefore similar to the �rst term of TGV

2

.

In the following paragraph this argumentation is extended to the general 
ase of any

higher order TGV-DCT. Equation 10 des
ribes the TGV fun
tional as a minimization.

For higher order terms it 
ontains a general series whi
h for
es the minimization of higher

order derivatives up to the order k. Sin
e the maximum step sizes in
rease for higher order

terms the algorithm extra
ts higher order information �rst. Additionally higher order

derivation is done by the derivation of one order less as des
ribed above. Continuing with

higher order terms su

essively des
ribes the approximation of pie
ewise higher order

polynomials in the image. Note that the ve
tor �eld v still 
ontains all non-
onstant

information left in the s
alar �eld u. If the obje
ts under interest are assumed to be

pie
ewise 
onstant, this ve
tor �eld v 
an be used to approximate the bias �eld of the

image.

With in
reasing order the algorithm �ts pie
ewise regions with intensity distributions

of more 
omplex shape. The downside of in
reasing order is that if the bias 
omponent

does not 
onsist of su
h higher order polynomials the algorithm starts to �t the pie
ewise


onstant obje
ts with higher order terms. This behaviour is known under the name

over�tting. Therefore parts of the obje
t information 
ontribute to the bias and are

removed.

In
reasing step size values from the �rst to higher derivatives (Se
tion 2.2.5) mean

that higher order information is minimized faster. Therefore it 
onverges earlier and

lower order information needs to be re�ned in later iterations. A general fa
tor for α is

introdu
ed in the algorithm input subroutine. Too large step sizes blur the image in the

early iterations and sharp edges return later. Lower step sizes do not blur the image and

lead to faster 
onvergen
e. But too low step sizes 
an result in a very slow 
orre
tion

pro
ess. This behavior is interpreted as follows. Too large step sizes let the algorithm
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make large updates whi
h may pass over the desired result of the optimization. Su
h

steps introdu
e error to the result whi
h may remain in the data. On the one hand small

steps are more a

urate, but on the other they are slower.

The 
ommon assumption about the bias �eld (slow varying and smooth) is in
luded

in the TGV-DCT model by α0 < α1. These two weights are fa
tors of energy terms in

Equation 10. If the �rst step size is smaller, se
ond order derivatives of the bias �eld

are minimized faster. The e�e
t is less edge-information and therefore smoothness of the

bias. In this work the shape of the �eld is 
ontrolled by the TGV-DCT order and the

downsampling fa
tor only.

Ea
h term in the energy fun
tional of TGV

k

(Equation 10) is weighted. The fa
tor

for the data term of TGV-L

1

is λ and for the L

1

-norm of the derivatives is α. The shape

of the estimated bias �eld depends on the relative value of ea
h integral 
ompared to

the others. The weights 
an therefore be adjusted due to the spe
i�
 image dimensions,

in
luded noise and shape of the bias �eld.

The proposed TGV-DCT bias 
orre
tion method is based on the fundamental as-

sumption that the obje
ts under interest are pie
ewise 
onstant and higher order 
ontent


orresponds to the bias 
omponent. Se
ond order TGV-DCT �ts a pie
ewise linear in-

homogeneity �eld. If the order is in
reased and there is no higher order bias, the e�e
t

des
ribed in the previous paragraph o

urs. Obje
t information wrongly 
ontributes to

the higher order bias. This leads to de
reasing 
ontrast and a very narrow single his-

togram peak. It is therefore re
ommended to start with se
ond order TGV-DCT and

in
rease the order if it is ne
essary and helpful.

4.1.8 MR Coil Sensitivity Estimation

The MR signal model usually 
ontains a multipli
ative bias 
omponent as des
ribed in

Se
tion 1.2.2. In 
ontrast to that, the proposed method approximates an additive bias

�eld. Nevertheless it is possible to transform this estimate to a multipli
ative one. This

is shown in Figure 17 and further des
ribed in Se
tion 3.3.3.

Anyway this estimate may 
ontain several disturbing 
omponents. If the assumption

of pie
ewise 
onstant obje
ts is not perfe
tly ful�lled, the sensitivity pro�le 
ontains part

of the information of the imaged obje
ts.

The algorithm �ts the optimal pie
ewise 
onstant image to the data. Multiple regions

of the same tissue type � whi
h are not 
onne
ted � may not get equal intensity values.

Espe
ially if the bias values in su
h regions are highly varying. Tuning the α param-

eter may help in su
h 
ases. It 
ontrols the shape of the bias �eld, and the proposed

bias 
orre
tion algorithm does in
lude the assumption of smoothly and slowly varying

inhomogeneities (α0 < α1).

A method based on a multipli
ative bias model might result in better performan
e in

su
h situations. But optimization be
omes more di�
ult for in
reasing 
orrelation of the
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estimated parameters.

4.2 Logarithm Transform

In se
tion Se
tion 1.2.2 the logarithm transform of the input image is mentioned. The

multipli
ative bias �eld is transformed into an additive one by many authors [1, 4�13℄.

Simply taking the logarithm 
ould be
ome problemati
 with very low values [15℄. Usually

the intensities are res
aled to values from 1 to 2. The inverse transform - whi
h is ne
essary

to estimate the bias-free image - is the exponential fun
tion and subtra
ting 1 from the

resulting values.

Experiments have shown that the TGV-DCT out
ome does not 
hange if the data is

pro
essed in the logarithm domain. Note that the logarithm transform alters the image in

the PDF domain. This independently alters ea
h voxel of the image. Pie
ewise 
onstant

fun
tions remain pie
ewise 
onstant after taking the logarithm. In the range from 1 to 2

the logarithm is nearly linear. Nevertheless pie
ewise linear fun
tions be
ome nonlinear.

And the value range of the bias free and the bias image is usually not known.

In this work this transformation is omitted. The proposed TGV-DCT algorithm ap-

proximates an additive bias �eld. As 
an be seen in Figure 1, this model su

essfully


orre
ts an additive bias. The following samples in Figures 2 to 4 show that also multi-

pli
ative 
orruptions are partly restored. And �nally the model also 
orre
ts measured

MR volumes (Figures 11 to 14, 20 and 21).

4.3 Re
ommendation for Choosing the Parameters

The out
ome of the algorithm is 
ontrolled by the 
hoi
e of the parameters. For the

se
ond order TGV-DCT algorithm these are the denoising parameter λ (in Equation 4)

and the weights for TGV terms α0 and α1 (in Equation 10).

The se
ond term in Equation 10 in
ludes the denoised image and the gradient of the

shading 
omponent. It is therefore re
ommended to �x α0 to 1, be
ause both images

depend on this parameter.

The �rst parameter to adjust is the denoising parameter. Run about 1e3 iterations

with the setting λ = 1, α0 = 1 and α1 = 2. The result may not 
onverge totally, but the

e�e
t of the denoising parameter will be visible quite soon. For more intensive denoising

(less details) 
hoose a value in the range of (0; 1]. If the algorithm should perform less

denoising, λ has to be in
reased. Values smaller than 3 are re
ommended.

Finally 
hoose the shape of the bias �eld by setting the parameter α1. This is shown in

Figure 23. Bigger values weight the se
ond term of Equation 10 stronger, whi
h makes the

bias more smooth. Experiments have shown that a value in the range of (2; 5] is a feasible


hoi
e. This re
ommendation assumes that the intensity values are in the standard range

of the DICOM spe
trum.
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4.4 Con
lusion

Even with the default parameter set the algorithm produ
es meaningful results for the

listed samples. Furthermore the parameters 
an be adjusted to spe
i�
 situations. The

fundamental assumption is that the obje
ts under interest are pie
ewise 
onstant. TGV

k

-

L

1


ombined with the DCT solver for the Poisson Equation approximates su
h pie
ewise


onstant images.

The DCT Poisson solver is preferred over the CG-solver. The results of both methods

are nearly equal (Table 17). But the dire
t form solution of the DCT-solver is mu
h faster.

The proposed method 
orre
ts most of the bias without destroying interesting details and


ontrast between di�erent regions.

Based on the idea of Liang and Zhang 2015 [11℄ the TGV-L

1

algorithm of Bredies et

al. 2010 [30℄ is 
ombined to the DCT Poisson solver by Limare et al. 2011 [29℄. Then the

algorithm is extended to perform higher order TGV-DCT. Furthermore, a downsampled

and a masked version is introdu
ed. The overall method is implemented in CUDA for 3D

images and su

essfully evaluated due to several data sets.

4.5 Outlook

The maximum step size ve
tor α balan
es the regularization terms and therefore 
ontrols

the shape of the extra
ted bias �eld. Analysis, tuning and optimization of this parameter

is a topi
 for future resear
h. Based on the insights of this work investigation of optimal

TGV-DCT order is another open task. This may be done by a histogram based 
lustering

algorithm, whi
h evaluates the 
ontrast of several intensity distributions.

For general 
olor photographs the higher order TGV-DCT algorithm shows potential

for further investigations. As a prepro
essor step this method may improve the per-

forman
e of other imaging tasks like segmentation, registration and 
lassi�
ation. Bias

information may also be removed due to lowering the entropy and thus 
ompress image

�les. By removing slow biases, 3D volume rendering of MR data 
an be presented for a

more intuitive view of tissues under interest.

The se
ond order TGV regularization term is su

essfully used for radial MR data

re
onstru
tion by Knoll et al. 2011 [38℄. Similar to the denoising task the TGV of

the resulting image is minimized. The proposed method 
ould therefore be in
luded

in the re
onstru
tion step whi
h would simultaneously perform transformation of the

measurement data from the k-spa
e, denoising and bias 
orre
tion.

Inhomogeneity 
orre
tion is an important step for quantitative imaging and also the

generation of multimodal images. The algorithm may also be used for other imaging

modalities like mi
ros
opy, 
omputer tomography, ultrasound sin
e these te
hniques 
on-

tain similar non-uniform sensitivity pro�les.
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