
 



  



 

 

 

 

 

 

 

 

  



 

  



 

 

 

 

 

 

 

I almost wish I hadn’t gone down the rabbit-hole  

– and yet – and yet – it’s rather curious, you know, this sort of life!  

I do wonder what can have happened to me! 

 

– Lewis Carroll, Alice’s Adventures in Wonderland 
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1. INTRODUCTION 

1.1. Climate change threads  

Noticeable changes in the local and global weather patterns has been detected during 
the past century (EEA, 2012; IPCC, 2013). Observed transformation of temperature, 
precipitation and insolation results in prolonged climatic anomaly and has been 
highlighted in numerous studies (e.g., Breshears et al., 2005; Dai, 2011a, 2011b; EEA, 
2009; Lloyd-Hughes & Saunders, 2002; Migliavacca et al., 2008; Philipona, Behrens, & 
Ruckstuhl, 2009; Schär et al., 2004) calling for attention and appropriate reception 
(EEA, 2012; IPCC, 2013). The most distinct alternation has been recognized for the 
global mean temperature (Dai, 2011a; Beniston, 2013), which between 1880 and 2012 

increased by 0.85°C (land and ocean together) with the most prominent rise reported 
during the last thirty years (IPCC, 2013). Along with temperature, also precipitation 
patterns shifted extensively, revealing a worldwide rainfall decrease with considerable 
regionalization of drying as well as, wettening trends (Dai, 2011a). Consequently, 
arising aridity and elevated temperature result in increased number and scale of 
occurring dry periods and escalated extreme drought events (Dai, 2011b). According to 

recently made climatic predictions, further warming and rainfall scarcities concluding 
in advancing aridity are expected (Dai, 2011a). Sheffield and Wood (2007) suggest that 
by the end of the 21st century short-term drought events (4-6 months) will double their 
spatial extend and probability, whereas long-term drought events will become threefold 

more frequent.  

Drought is one of the most common environmental disasters nowadays. It affects the 
largest number of people and the biggest area worldwide (Mishra & Singh, 2010; Ivits 
et al., 2014), drawing attention of scientists, economists, policy makers, as well as the 
public (EEA, 2010a). Observed climate change, thus emerging drought impact is not 
uniform around the globe. According to Giorgi (2006) Europe and in particular the 
Mediterranean are regions of potentially the strongest climate alternation. Only since 
the year 2000 Europe suffered from three massive summer heat-waves of 2003 (Bréda 

et al., 2006; Rebetez et al., 2006, 2008; Granier et al., 2007; Reichstein et al., 2007), 
2006 (Rebetez et al., 2008; Ivits et al., 2014) and 2010 (Barriopedro et al., 2011; EEA, 
2012; Ivits et al., 2014), which had strong impact on the natural environment and 

agriculture, thus also on the society and economics of the continent (EEA, 2010a). 

1.2. Drought definitions, measures and vegetation impact 

Drought is a very complex and severe weather related natural hazard called by some a 
‘creeping phenomenon’ due to its ambiguous inception and end (Mishra & Singh, 
2010). Drought perception is relative and region dependant, the same as its course and 
impact, which leads to confusion, as well as problems in understanding and defining 
drought in unified terms at a global scale (Mishra & Singh, 2010). 

A considerable majority of conceptual drought definitions (selected examples in Table 
1) limits drought drivers only to precipitation, excluding temperature, insolation and 
wind that together shape water stress through evapotranspiration properties 
(Lloyd-Hughes & Saunders, 2002). Moreover, relative character of a drought 
phenomenon is frequently defined by divergence from local long-term normal 
conditions. Conversely, operational drought definitions provide less elusive, 
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mathematically based phenomenon description with identified onset, length, severity, 
intensity and frequency of the event. However, such precise definitions have only local 
application and in some cases work only under specific circumstances. 

 

Table 1 Selected conceptual drought definitions (subjective selection). 

Definition Source 

Drought is a recurring extreme climate event over land characterized by 

below-normal precipitation over a period of several months to several 

years or even a few decades.  

(Dai, 2011b) 

Drought is an ‘absence of rainfall for a period of time long enough to 

result in depletion of soil water and injury to plants’ 
(Kramer, 1983)  

Droughts are distinct from water scarcity, being a natural phenomenon 

defined as a sustained and extensive occurrence of below-average water 

availability. 

(EEA, 2009b) 

Drought stress occurs whenever soil water drops below a threshold 

inducing restrictions to growth and transpiration. 
(Bréda et al., 2006) 

Drought is a natural phenomenon resulting from less than normal 

precipitation over a large area for an extended period of time. 
(Feyen & Dankers, 2009) 

Drought is a chronic, potential natural disaster characterized by a 

prolonged, abnormal water shortage.’ 
(Ghulam et al., 2006) 

 

Although drought almost always originates from precipitation shortfall, its relative 
character, in terms of perception and impacted environment, determines identification 
of four main drought concepts (Wilhite & Glantz, 1985):  

- Meteorological drought, which occurs when precipitation amount in a given 
period is depleted comparing to the region specific climatological criteria;   

- Hydrological drought, which is defined as precipitation deficit that results in 
reduced surface water resources and affects local water management; 

- Agricultural drought, which is a period when soil moisture is insufficient to 
meet crops requirements resulting in vegetation stress and eventually crop 
failure (this type of drought redefines meteorological and hydrological 
conditions, putting vegetation condition as a reference);  

- Socio-economic drought, which defines water supplies as an economic good, and 
whenever water demand exceeds supply (due to meteorological and or 
hydrological drought or simply elevated water use) a drought event is identified. 

Mishra & Singh (2010) further extended this classification by a ground water drought, 
which is defined through diminished groundwater level, as well as lowered recharge and 
discharge amounts.   

Due to a recognized economical, societal and environmental impact of arising aridity 
detailed drought monitoring became lately of high importance. Enhanced drought 
understanding is a key to identify, mitigate, predict or even prevent arising hazards. 
Diverse drought perceptions are reflected in multitude of related metrics, which 
through addressing selected event manifestations allow on phenomena detection, 
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description, quantification and monitoring. According to Niemeyer (2008) more than 
80 drought indices can be easily identified, with twice as much metrics developed and 
published worldwide. Drought indices can be systematized with respect to employed 
datasets and a background domain into six main categories (after Niemeyer (2008)):  

- Meteorological drought indices, which employ variables originally measured at 
meteorological stations such as precipitation amounts, temperature or insolation 
(e.g. Standardized Precipitation Index (SPI; Mckee et al., 1993) and 
Standardized Precipitation-Evapotranspiration Index (SPEI; Vicente-Serrano et 
al., 2010)); 

- Comprehensive drought indices, which combine meteorological variables with 
local soil moisture information, accounting on local evapotranspiration 

conditions (e.g. Palmer Drought Severity Index (PDSI; Palmer, 1965) and its 
self-calibrating version (scPDSI; Wells et al., 2004)); 

- Agricultural drought indices, which account mainly on evapotranspiration 
conditions and assess soil moisture capacity to foster agricultural crops (e.g. Soil 
Water Index (SWI; Gouveia et al., 2009) and Crop Moisture Index (CMI; 
Palmer, 1968));  

- Hydrological drought indices, which focus on stream-flow and discharge values, 
analyzing local water balance of a catchment (e.g. Surface Water Supply Index 
(SWSI; Doesken et al., 1991));  

- Remote sensing-based drought indices, which take an advantage of Earth 
Observation domain, and exploit, among others, photosyntetical vegetation 
response, vegetation moisture content, temperature, as well as ground moisture 
availability (e.g. Normalized Difference Vegetation Index (NDVI; Tucker, 1979), 
Normalized Difference Water Index (NDWI; Gao, 1996), FAPAR (Fraction of 
Absorbed Photosynthetically Active Radiation; Gobron et al., 2006), Land 
Surface Temperature (LST; Ghulam et al., 2006), Modified Perpendicular 
Drought Index (MPDI; Ghulam et al., 2007) or Microwave Integrated Drought 
Index (MIDI; Zhang & Jia, 2013)); 

- Combined drought indices, which base on consolidation of traditional on-station 
meteorological measurements with remote sensed data (e.g. Vegetation Drought 
Response Index (VegDRI; Brown et al., 2008).  

Traditional implementations of meteorological or comprehensive drought measures, 
such as SPI or scPDSI, are based on long time series of on-station meteorological 
observations. Available records are used to inspect weather conditions at a given point, 
and statistically recognize ‘normal’ as well as ‘extreme’ meteorological events. 
Although these approaches provide a reliable relative drought assessment, especially 
when accounting on local evapotranspiration properties (Rebetez et al., 2006; 
Vicente-Serrano et al., 2010), they limit spatial understanding of the phenomenon. 
Spatial extrapolation of point values can be a solution; however goodness of calculation 
depends greatly on region complexity and density of measurements. Remote sensing 
techniques provide here considerable advantage, assuring consistent wall-to-wall 
observations with sensible time and space resolution. Variety of utilized 
electromagnetic spectra and sensors ensures, among others, information on 
precipitation, humidity, evapotranspiration, soil moisture and vegetation condition, 
which can be employed not only in remotely sensing-based drought indices, but also 
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serves for traditional meteorological or agricultural drought measures. Remarkably, 
vegetation oriented remote-sensed indicators yield direct information on actual 
vegetation status, which is an advantage comparing with meteorologically governed 
models of plant condition.  

1.3. Vegetation drought impact from the optical remote sensing perspective 

Considering vegetation drought impact, hot and arid conditions translate into decrease 
of vegetation water content and change of biochemical properties, concluding in 
diminished plant vigor, productivity as well as, depleted leaf area. These subtle 
changes are, among others, coupled with adjustments of vegetation reflectance 
properties. Water-stress hampered photosynthetical activity reveals in diminished 

absorption in the blue (450-495 nm) and red (620-750 nm) portion of the 
electromagnetic spectrum. As reflectance in these bandwidths increases, leafs 
discoloration from green to yellow, red and brown is observed. Moreover, drought 
driven lowered vegetation water content intensifies reflectance in the infrared portion 
of the electromagnetic spectrum (0.7-2.5 µm), whereas related cell structure changes 
are expressed in a decrease in the 0.7-1.1 µm bandwidth. In the worst case scenario, 
green vegetation dies out, which further alters the electromagnetic response. Moreover, 
drought related change in vegetation condition and density impacts also thermal and 
microwaves bands.   

Aforementioned unique vegetation reflectance properties observed in the visible and 

infrared spectrum are employed in a wide collection of vegetation condition oriented 
indices. While some, such as FAPAR or NDVI aim on photosynthetic plant activity, 
the other explore cell structure and water content (e.g. Normalized Difference Infrared 
Index (NDII; Hardisky et al., 1983), Normalized Difference Water Index (NDWI; Gao, 
1996) or Normalized Burn Ratio (NBR; van Wagtendonk et al., 2004) aka Normalized 
Burn Ratio Index (NBRI; Huang et al., 2010) or NDII7 (Normalized Difference 
Infrared Index band 7; Rahimzadeh Bajgiran et al., 2009) which adopts MODIS band 7 
short infrared information; see Appendix 1 for a review), or even amount of green 
matter (e.g. LAI (Chen et al., 1997)).  

Due to a great simplicity, robustness, as well as abundance of data, NDVI and various 
NDII indices gained high recognition in drought related vegetation monitoring. Despite 

some limitations such as saturation effect (Huete et al., 2002), sensitivity to soil 
information (Gao, 1996), species dependent value range, and nonlinear correlation with 
precipitation (e.g. Peters et al., 2002; Ji & Peters, 2003; Wang et al., 2003; Gouveia et 
al., 2009; Horion et al., 2013) they are successfully applied in local, regional and 
wall-to-wall studies (e.g. Breshears et al., 2005; Gouveia et al., 2009; Ji and Peters, 
2003; Lotsch et al., 2005; Rahimzadeh Bajgiran et al., 2009; Wang and Qu, 2009). 

Many recent studies address vegetation condition and drought impact through MODIS 
and Landsat derived NDVI and NDII7 (aka NBRI) measures approximated as: 
 

 NDVI =  
𝜌0.86–𝜌0.67µm 

𝜌0.86 + 𝜌0.67µm 
 [ 1]  

and 

 NDII7 (aka NBRI) =  
ρ0.86µm −  ρ2.2µm

ρ0.86µm +  ρ2.2µm
 [ 2]  
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where the far infrared spectrum is not affected by the soil water content (Cheng et al., 
2007). Successful detection of pest-defoliation (e.g. Debeurs & Townsend, 2008; Spruce 
et al., 2011) and drought induces productivity drop (Gu et al., 2007; Caccamo et al., 
2011) proved MODIS efficiency considering long, as well as short-term drought 
monitoring (Caccamo et al., 2011; Kharuk et al., 2013). Landsat, although has lower 
temporal resolution, is also apt for drought disturbance detection (Volcani et al., 2005; 
Dorman et al., 2013), especially when taking advantage from high geometric resolution 
as well as long time series of observations (Cohen et al., 2010; Kennedy et al., 2010, 
2014). Furthermore, comparable technical setup of Terra/Aqua and Landsat platforms 
as well as correspondence in MODIS and TM/ETM+ bands made it possible to fuse 
both datasets (e.g. Potapov et al., 2008; Hwang et al., 2011; Gevaert & García-Haro, 

2015) taking advantage of MODIS acquisition frequency and Landsat resolution (Gao 
et al., 2006; Gao, 2013).  

1.4. Climate change and resulting drought in the Alpine forest  

The Alps are not only a local hot-spot of climate change (Auer et al., 2007), but also 
one of the most vulnerable to climate change regions in Europe (Theurillat & Guisan, 
2001; Beniston, 2005; EEA, 2009a; EU, 2009; Rammig et al., 2010). During the past 
century alone, the Alps experienced an average temperature rise of 2°C, which is twice 
as much as has been observed for the rest of the continent (Auer et al., 2007). This 
elevated change can be explained through prolonged sunshine duration (Auer et al., 
2007; Wastl et al., 2012) and drop in wind speed over the region (Matulla et al., 2007), 
which combined with the global temperature increase result in this local extreme. 
Moreover, recent decades revealed regional variations of precipitation patterns with 
wettening trends for the North-West and drying tendencies in the South-East part of 
the Alps (Schmidli et al., 2002; Auer et al., 2005). All observed changes result in 
increasing dryness of the alpine climate (Calanca, 2007) with even more severe advance 
to come (Gebetsroither et al., 2013; Zimmermann et al., 2013a; Gobiet et al., 2014). 
Climatic change model run for the Alps using the moderate scenario A1B (IPCC, 
2000), projected further temperature increase of 3.3°C until the end of the 21st century 
(Gobiet et al., 2014), with even higher amplitude for regions placed above 1500 m asl 
(EEA, 2009a). Foreseen precipitation patterns are also overall negative, although 

increase of snowfall on higher altitudes is expected (Beniston, 2012). Despite this, snow 
cover will decrease dramatically considering its duration as well as coverage (Beniston, 
2012; Gobiet et al., 2014).  

All aforementioned are expected to result in further development of rainfall scarcity 
and drought risk over the Alps (e.g. Calanca, 2007; Gebetsroither et al., 2013). An 
additional problem will be uneven precipitation distribution over a year with very dry 
period of early spring and summer (Beniston, 2012), which is considered as the most 
important for vegetation growth. As indicated by Gebetsroither et al. (2013) areas 
located on lower altitudes (valley floors and lower parts of slopes) will be especially 
exposed to rainfall decrease and heat waves occurring during the vegetation season. 
Although diverse climate models vary significantly among each other, most of them 

agrees on warming and drying trend of the changes (Zimmermann et al., 2013a). 

Despite the fact that alpine environment has a considerable natural change resistance 
capacity (Theurillat & Guisan, 2001), all aforementioned factors translate into an 
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increasing thread for reach biodiversity of the Alps (EEA, 2009a; Engler et al., 2011). 
In fact, the alpine environment already undergoes climate change triggered uphill shift 
of vegetation belts (Gehrig-Fasel et al., 2007; Vittoz et al., 2008; Rigling et al., 2013), 
an alternation of phenological phases (Theurillat & Guisan, 2001; Studer et al., 2005, 
2007), intensification of local dieback processes (e.g. Minerbi et al., 2006; Theurillat 
and Guisan, 2001), increased aridity and more frequent drought events (e.g. 
Gebetsroither et al., 2013), as well as an overall sway of ecological balance (Körner, 
2003; Courbaud et al., 2010; Hanewinkel et al., 2013; Bussotti et al., 2014). Drought 
implications are particularly important for comprehensive monitoring of the alpine 
forest (Standing Forestry Committee Ad Hoc Working Group III on Climate Change 
and Forestry, 2010) – the biggest and the most biodiverse land cover of the Alps 

(Kapos and Iremonger 1998; Körner 2003 p 13).  

Drought vegetation impact, although seemingly apparent, while considered in a long 
term scenario and on a regional to global scale, is still entangled and loaded with 
uncertainty (Schoene & Bernier, 2012). Forest drought influence is yet more complex 
because even though a primary dry spell does not directly lead to a dieback (e.g. Bigler 
et al., 2006; Dobbertin et al., 2005; Minerbi et al., 2006), it makes trees more 
vulnerable to secondary damages and disturbances such as windfalls, pest outbreaks 
(Battisti et al., 2006) or fungus, parasites and pathogens infestations (Rigling et al., 
2013). Furthermore, trees response to drought stress is lagged (Bigler et al., 2006; 
Pichler & Oberhuber, 2007; Etzold et al., 2014) and governed by site-specific 
environmental conditions (Etzold et al., 2014), not to mention inter- and intra- species 
differences (Lévesque et al., 2014). This intricacy is a great hindrance not only for 
sustainable resource management and silviculture (Schoene & Bernier, 2012), but also 
for carbon sink efficiency modeling (Ma et al., 2012; He et al., 2014) and resulting 
climate change scenarios (Bonan, 2008). Consequently, vegetation water stress response 
analyses, with a particular insight on forest, are recently becoming a crucial aspect of 
comprehensive environmental monitoring (Standing Forestry Committee Ad Hoc 
Working Group III on Climate Change and Forestry, 2010; He et al., 2014). 

Although extensive environmental monitoring has a relatively long history in the Alps 
(Gobiet et al., 2014), drought forest issue started to be frequently addressed only for 
the last 20 years, which coincides with extreme heat waves events and arising climate 

change awareness. Dense meteorological monitoring network with long observation 
records not only ensures a reliable data source for climatic analyses (Auer et al., 2007; 
van der Schrier et al., 2007), but also provides a solid background for 
dendrochronological surveys. The latter are especially crucial yielding information on 
trees development governed by drought stress conditions (e.g. Rigling et al., 2001; 
Eilmann et al., 2006; Pichler & Oberhuber, 2007; Weber et al., 2007; Castagneri et al., 
2014). Although such surveys are important from a physiological viewpoint, they are 
limited to small sites or transects (Lévesque et al., 2014), which restrain holistic 
understanding of the complex alpine forest environment. Especially essential are 
studies exploring vegetation competition (e.g. Eilmann et al., 2006; Pichler & 
Oberhuber, 2007; Chauchard et al., 2010; Rigling et al., 2013) and comparing trees 

responses under diverse local environmental conditions (Pichler & Oberhuber, 2007; 
Weber et al., 2012).  
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A remarkable number of recently conducted dendrochronological drought analyses 
focuses on Scots Pine (Pinus sylvestris) trees of dry inner-alpine valleys, which are 
observed to decline lately. Detailed studies revealed that this pioneer tree species 
populating sunny and xeric sites is highly sensitive to drought, and under water stress 
conditions suffer significant radial growth reduction (Rigling et al., 2001; Leuzinger et 
al., 2005; Eilmann et al., 2006; Pichler & Oberhuber, 2007; Weber et al., 2007; 
Lévesque et al., 2014b) and an overall decline (Vacchiano et al., 2012; Feichtinger et 
al., 2014). Moreover, prolonged and severe dry spells in 00’s have resulted in local 
Scots Pine diebacks (Dobbertin et al., 2005; Minerbi et al., 2006; Rigling et al., 2013). 
Further inspection showed that Scots Pine trees located on lower elevations are more 
prone to suffer from aridity (Dobbertin et al., 2005; Vacchiano et al., 2012; Rigling et 
al., 2013), especially when placed on north exposed slopes (Vacchiano et al., 2012). In 
contrary, when considering higher elevations, sun-exposed locations revealed stronger 
decline (Pichler & Oberhuber, 2007; Vacchiano et al., 2012). Moreover, some 
dendrochronological surveys highlight not straightforward Scots Pine performance in 
relation to precipitation and temperature variability, where trees growth depends on 
previous season conditions (Lévesque et al., 2014), in particular on summer 
temperature (Pichler & Oberhuber, 2007). Importantly, tree mortality can occur even 
several years after a drought stress event (Bigler et al., 2006).  

Drought response investigated for other tree species present in the region showed 
strong diversification between xeric and mesic sites. While the latter were expected to 
foster usually increased productivity and growth responses (Lévesque et al., 2014), the 
former were associated with reduced vitality and trees decline (Theurillat & Guisan, 
2001; Eilmann et al., 2006). On the other hand, some studies documented 
contradictory behavior, with the strongest drought impact observed for stands at mesic 
locations (European Beech - Fagus sylvatica L: Weber et al., 2012; Castagneri et al., 
2014; Norway Spruce - Picea Abies: Castagneri et al., 2014; Lévesque et al., 2014; 
European Larch - Larix deciduas: Lévesque et al., 2014). These observations can be 
explained through inadequate trees adaptation capacity to arising aridity conditions 
comparing with stands already living near their ecological limits. Moreover, additional 
factors such as CO2 concentration (Leuzinger et al., 2005) or tree competition 
(Eilmann et al., 2006; Pichler & Oberhuber, 2007; Chauchard et al., 2010; Giuggiola et 
al., 2013; Rigling et al., 2013) even further obscure straightforward understanding of 
the stress related with physiological processes.  

Based on local dendrochronological and physiological studies regional projections and 
models of further forest development and mortality are conducted for the Alps 
(Manusch et al., 2012). It is still arguable how climate change coincides with arising 
precipitation deficit, and how recurrent heat waves will influence the alpine forest. The 
uncertainty load is even greater as progressing alternation of weather patterns had 
already modified trees weather-growth dependence (Coppola et al., 2012).  

As documented, temperature increase shifts trees physiological boundary upslope 
(Moser et al., 2011), resulting in an increase of the forest area (Gehrig-Fasel et al., 
2007; Vittoz et al., 2008). Although vegetation response on the treeline is a crucial 
indicator in the dendro-ecological studies (Körner 2003 p 88), it should be considered 
that the actual timberline is placed below the potential treeline (Pecher et al., 2011; 
Vittoz et al., 2013), thus some of the observed changes may not be triggered directly 
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by the climate alternation (Gehrig-Fasel et al., 2007; Courbaud et al., 2010; Castagneri 
et al., 2014). Modification of precipitation and temperature patterns will also impact 
the lower ecological boundaries of plant occurrence, exposing lower placed regions to 
alien tree species invasion. Increasing aridity is naturally favorable for 
drought-resistant Mediterranean species such as Downy Oak (Rigling et al., 2013), Hop 
Hornbeam (Theurillat & Guisan, 2001) and Manna Ash, which are expected to replace 
European Beech and Norway Spruce (Zimmermann et al., 2013b). These new 
conditions will severely affect not only biodiversity of the alpine forest swaying existing 
ecological balance (Körner, 2003; Courbaud et al., 2010; Hanewinkel et al., 2013), but 
will also change its economic value and carbon sink capacity (Hanewinkel et al., 2013; 
Rigling et al., 2013). Although, the forest productivity is expected to increase at first 

(Jolly et al., 2005; Reichstein et al., 2007; Etzold et al., 2014), in the long run trees 
strength will most probably reduce in the effect of dry conditions and secondary 
damages (Hanewinkel et al., 2013). Furthermore, elevated aridity leads to already 
increased fire thread (Wastl et al., 2012; Ascoli et al., 2013).  

1.5. Motivation, objectives and outline 

Climate alternation and resulting increasing frequency and intensity of extreme 
weather events govern an arising need for efficient and precise forest targeted drought 
monitoring in the Alps. Although there is a large number of single site studies that 
provide essential dendrochronological and physiological information (Moser et al., 2011; 
Lévesque et al., 2014b), comprehensive analyses covering the Alpine region as a whole, 
or its substantial part, are still in deficiency (BMU, 2007).  

Addressing the emerging demand for better understanding of forest response to 
drought conditions and resulting productivity consequences (Standing Forestry 
Committee Ad Hoc Working Group III on Climate Change and Forestry, 2010), this 
thesis presents an approach for a large-scale alpine forest monitoring based on a 
synergy between meteorological observations and remotely sensed data explored using 
PCA decomposition. The study exploits MODIS and Landsat vegetation time series, 
coupled with the scPDSI. Analyses are conducted for the region of South Tyrol and 
focus on drought conditions between 2001 and 2012.  

 

The following main research questions are investigated: 

- is MODIS an appropriate data source for forest drought monitoring within 
complex mountain environment; 

- can PCA decomposition be successful in identifying subtle drought induced 
forest status variability present in time series of remotely sensed vegetation 
indices, and under what conditions the convolution is the most effective; 

- which satellite datasets ensure better recognition of subtle drought impact on 
the alpine forest environment: time series of enhanced temporal resolution and 
moderate spatial resolution (herein MODIS) or datasets with high spatial 
resolution but limited temporal repetition (herein Landsat). 

Furthermore, the study ensures a general but also quite specific overview of identified 
drought impact on South Tyrolean forest.  
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The thesis comprises six chapters including the Introduction section.  

Chapter 2 provides a general background for analyses. All datasets used in the study 
are presented here with detailed description of conducted preprocessing steps. This 
part includes also mathematical principles of PCA, as well as gives an overview of 
environmental conditions in South Tyrol. 

In Chapter 3 drought conditions in South Tyrol are explored by the means of 
on-station precipitation and temperature measurements employed in the scPDSI. A 
synthesis of 2001-2012 meteorological conditions is attained through the S-mode PCA. 
The identified drought temporal variability provides a reference for the further remote 
sensing based analyses. 

Chapter 4 presents 16-day MODIS NDVI and NDII7 2001-2012 time series analyzed 
using the S-mode PCA. Multiple method settings and data setups are investigated in a 
search for a vegetation response to the scPDSI-identified temporal drought variability. 
The most prominent results are spatially projected and further inspected regarding 
drought induced forest phenological changes.  

In Chapter 5 forest drought condition in South Tyrol between 2001 and 2012 are 
investigated using the S-mode PCA of Landsat NDVI and NBRI time series. Due to 
data limitation and frequent cloud cover the survey is based on yearly composites 
assembled from summer acquisitions only. The resulting temporal variability is verified 
against the scPDSI patterns, with the most reliable scores spatially projected and 
further analyzed with respect to the forest phenology. The latter is done at 250 m 
MODIS resolution.  

Finally, Chapter 6 presents a synthesis of results, addresses the research questions, as 
well as gives perspectives for forest drought monitoring in the Alps.  

Results and findings presented in Chapters 1 to 4 compose the following publications: 

- Lewińska K.E., Ivits E, Schardt M., Zebisch M., 2016, Alpine forest drought 
monitoring in South Tyrol: PCA based synergy between scPDSI data and 
MODIS derived NDVI and NDII7 time series, Remote Sensing, 8(8), 
DOI:10.3390/rs8080639 

- Lewińska K.E., Ivits E, Schardt M., Zebisch M, Drought impact on phenology 
and productivity of alpine forest – case study of South Tyrol 2001-2012 
inspected with MODIS time series, in preparation. 
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2. MATERIALS AND METHODS 

2.1. Study area of South Tyrol – physical settings 

South Tyrol, known also as Südtirol or Alto Adige, is a northmost province of the 
Italian Republic (Figure 1) with a capital in Bolzano. The region covers 7400 km² and 
is an autonomous area that shares its borders with Switzerland and Austria. Since 1996 
it is a central part of Tyrol-South Tyrol-Trentino Euroregion.  
 

 
Figure 1 Upper left: South Tyrol location with respect to the national borders and the Alps 

defined according to the Alpine Convention (Ruffini et al., 2007). Main plain: topography of 
the region with location of five main valleys and nine mountain ranges. 

 

South Tyrol is located in the central part of the Alps, on a border between formations 
of the Central Eastern Alps and the Southern Limestone Alps. The land ranges here 
between 190 m asl (southern Etschtal Valley) and 3905 m asl (Mount Ortler, the 
highest peak of the Eastern Alps), with 86% of the area placed above 1000 m asl and 
over 40% above 2000 m asl. (South Tyrol in figures, 2012). It is a typical alpine region 

characterized by a complex and diverse orography. In topography of South Tyrol five 
main valleys can be identify (Figure 1): Vinschgau (Val Venosta), Etschtal 
(Etschtal/Val d’Adige), Eisack (Eisacktal/Valle Isarco), Wipp (Wipptal/Alta Val 
d’Isarco) and Puster (Pustertal/Val Pusteria).  

From the geological viewpoint, the area of South Tyrol comprises mainly metamorphic 
rocks of Austroalpine nappes (Central Eastern Alps) in the North and West part, as 
well as magmatic and sedimentary Southalpine formations in the South and 
South-East (Southern Limestone Alps). Two are separated by the Periadriatic Seam – 
a prominent collision fault between the Apulian and European plates, which resulted in 
a still active orogen of the Alps (Stingl & Mair, 2005).  

Nine main mountain ranges of South Tyrol (Figure 1) are grouped as follow:  
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- The Ortler Alps, the Sesvenna Range, the Ötztal Alps, the Sarntal Alps, the 
Zillertal Alps and the Stubai Alps belong to the Central Eastern Alps build out 
of, so called, Old Crystalline units of metamorphic rocks;  

- The Hohe Tauern of the geological structure of the Hohe Tauern window in the 
Central Eastern Alps build out of gneiss and schist;  

- The Eastern and Western Dolomites belonging to the Southern Limestone Alps 
and composed of permotriassic dolomite and limestone as well as quartz 
porphyries and granites in the West.  

All but the Sarntal Alps have the highest peaks reaching above 3100 m asl. Mountain 
ranges are separated by a network of valleys, formed in the Messinian (last stage of the 
Miocen) and re-formed during the multiple glacial episodes. Nowadays, only trace of 
the last Ica Age called Wuerm Ice Age (110000-10000 YA) is visible in the landscape 
(Stingl & Mair, 2005). Due to intensive erosion processes bottoms of the main valleys 
are filled with quaternary residuum.  

The Alps are a natural barrier between the Mediterranean climate of the Southern 
Europe and the temperate climate of the central Europe with the oceanic-continental 
gradient following the West-East direction. Local climate is additionally shaped 
through the local orography combined with altitudinal gradients of precipitation, 
temperature and solar radiation. The temperature gradient is probably the most 
important of all and governs average temperature decrease of 0.558°C for each 100 m 

of altitudinal change (Theurillat & Guisan, 2001). As decreasing temperature results in 
a reduction of moisture holding capacity of air, precipitation amount raises with 
elevation, reaching its maximum around 2000 m asl. This phenomenon is especially 
strong on windward mountain slopes, and additionally concludes in limited amount of 
clouds above a certain elevation. Moreover, as the atmosphere depth decreases with 
altitude and its isolation role is reduced, more solar radiation reaches the ground and 
more heat is irradiated in the night, which creates large daily temperature range.  

All abovementioned conclude in a profound regionalization of the local climate, which 
is expressed first and foremost, in the altitudinal belts of weather conditions. Based on 
the Köppen-Kottek climate stratification (Kottek et al., 2006) it is possible to identify 
in South Tyrol five main climatic regions: 

- Humid subtropical climate with cold winters (January mean temperature of 
0°C) and warm summers (July average temperature of 23°C) of the Etschtal 
valley, which is the driest and sunniest area; 

- Oceanic climate with cold winters (-3°C to 1°C January mean) and mild 
summers (15°C to 21°C in July) is considerably richer in precipitation with high 
air humidity which leads very often to fog occurrence. It is observed in regions 
located between 300 m and 900 m asl.; 

- Humid continental climate with very cold and potentially snowy winters (-8°C 
to -3°C in January) and mild summers (14°C to 19°C in July) is observed for 
regions located between 900 m and 1400 m asl. This zone is the largest in the 

area; 
- Subarctic climate of very cold and snowy winters (-9°C to -5°C in January) and 

short and rainy summers (12°C in July) characterizes parts placed between 1400 
m asl and 1700 m asl. It is the wettest zone in South Tyrol; 
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- Alpine tundra climate characterized regions above 1700 m asl where yearly 
average temperature oscillates around -5°C. Starting at 3000 m asl the Ice Cap 
climate with averaged January temperature of -14°C is observed.  

Beside the altitude driven diversity of weather conditions, additional regionalization of 
climate can be spotted in the annual cumulative precipitation amounts recorded over 
the area. While the Vinschgau valley experiences yearly average rainfall below 500 mm 
(494.5 mm of normal rainfall amount in Schlanders, 698 m asl), in the Puster Valley 
annual precipitation reaches 1200 mm in the valley, and often 2000 mm on the 
mountain tops. Central part of the region is a transition zone with moderate to low 
yearly rainfall norms (707.3 mm, 711.6 mm and 663 mm for Merano, Bolzano and 

Brixen respectively; South Tyrol in figures, 2012). In general, South Tyrol is considered 
a rather arid region with inter-alpine climate.  

Climatic drivers and orographic situation constitute diverse vegetation growth 
conditions. Mainly due to the altitudinal zonation, compression of multiple bioclimatic 
environments can be observed over a small area. Despite considerable similarities, 
altitudinal vegetation belts are much more complex comparing to the latitudinal 
vegetation zones. Importantly, vertical vegetation distribution in the Alps is 
additionally affected by local insolation conditions (Körner, 2003). It determines not 
only the lower and upper limits of subsequent zones, but often also species occurrence 
within strata. As a result, differences in elevation range of the same or similar plant 
communities can be observed between north and south exposed slopes, as well as the 

same vegetation belts can be composed of diverse vegetation groups on the north and 
south facing mountainsides.  

Five climate-vegetation-soil zones can be identified in the Alps (Ozenda, 1988): 

- Colline belt characteristic for big valleys and lower parts of slopes with mixed 
forest (an upper boundary on 800 m asl and 1000 m asl on the north and south 
slopes respectively); 

- Mountain zone represented mainly by a coniferous forest (an upper boundary on 
1400 m asl for north and 1800 m asl for south exposed slopes); 

- Subalpine zone of dwarf trees and shrubs, which is a natural transition zone 
between the mountain and alpine vegetation belts (an upper range on roughly 
2100 m asl on the north and 2500 m asl on the south facing mountainsides); 

- Alpine zone is a region of meadow vegetation, which from a carpet distribution 
in the lower parts becomes more erratic and patchy moving towards the 
mountain tops (reaching up to 2700 m asl and 3200 m asl on the north and 
south exposed mountain slopes respectively); 

- Nival level is an area of permanent (or almost permanent) snow and ice with 
sparse vegetation (above 2700-3200 m asl, upper boundary of this zone is not 
present in the Alps).  

This zonation combined with landform feature naturally governs a horizontal structure 
of the land use in South Tyrol. Valley floors are extensively used for agriculture, 
expressed mainly in permanent crops of orchards and vineyards (5.3% of the total 
area). Flat or almost flat regions are favorable also for cities and bigger settlements 
(1.2%). Mountainsides are usually devoted to forest, which occupies around 43% of the 
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area of the province. Next in the altitudinal sequence is alpine vegetation of grasslands 
(roughly 17%) followed by bare rocks (19.6%) and glaciers (2.9%). Water bodies and 
semi-natural vegetation land cover classes do not follow elevation belts (Pütz et 
al., 2011).  

2.1.1. Forest 

Forest occupies around 43% of the South Tyrol, which is exactly the number of the 
average forest share in the whole Alps (EEA, 2009a). The region is predominated by a 
coniferous woodland (2855.6 km²; 38.6%) with an addition of mixed (231.5 km²; 3.1%) 
and broadleaved (83.4 km²; 1.1%) stands growing on lower elevations. Emerging from 
the climatic and biological conditions, South Tyrol comprises of three main forest 

regions (Figure 2): Central Inner Alps (Central Endalpica), Transitional Inner Alps 
(Transitional Endalpica) and Southern Inner Alps (Mesalpica) (Provincia Autonomica 
di Bolzano, 2010).  
 

 
Figure 2 Forest regions map. Modified after Provincia Autonomica di Bolzano (2010, p. 17).  

 

The Central Inner Alps are represented by the Vinschgau valley, and are characterized 
by a dry and continental climate with typical European Larch (Larix decidua) forest 
formation on the south exposed parts of the region. Norway Spruce (Picea abies) and 
Silver Fir (Abies alba) stands grow here on shadowy slopes with spruce trees more 
frequent nearer the valley floors and fir moving towards the higher altitudes. Downy 
Oak (Quercus Petraea) and Scots Pine (Pinus sylvestris) trees are present exclusively 
in the valley bottoms in the Colline alpine belt.  

The zone of the Transitional Inner Alps occupies the northern part of South Tyrol 
with the Stubai Alps, Wipptal and a bigger part of Pustertal. Climate of this part is 
less continental comparing with the Central Inner Alps region. Norway Spruce forest 
dominates most of the region with exception of more shadowy places where it is partly 

replaced by Silver Fir. The driest locations are occupied by Scots Pine forest with local 
intrusion of European Larch (Wipp Valley, the Fundres Alps). Oak-Pine forest 
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formations are found here only on the fringe of forest, in the lowest and the warmest 
valleys parts.   

The Southern Inner Alps region, unlikely the two others, is split into two with the 
main part located in the Etschtal and Eisack Valleys, and the second area placed in 
the Eastern Part of the Puster Valley. The main portion of the region is characterized 
by Hop Hornbeam (Ostrya carpinifolia), Manna Ash (Fraxinus ornus) and Downy Oak 
forest with local intrusions of Scots Pine, Sessile Oak (Quercus pubescens) and Sweet 
Chestnut (Castanea sativa) mixed stands. The higher slopes are a frequent location of 
mixed forest composed of Common Beech (Fagus sylvatica) trees accompanied by 
Silver Fir and Norway Spruce, which with increasing elevation becomes a coniferous 
spruce and/or fir forest.  

For all the area, an upper forest boundary is made by Norway Spruce in the lower and 
European Larch with Arolla Pine (Pinus cembra) in the most elevated parts. This 
transition zone of subalpine forest is the most extensive in the Transitional Inner 
Alpine region, but is very limited in the Southern Inner Alps.  

According to local-specific conditions (temperature, precipitation, insolatin, bedrock 
expressed indirectly in soil conditions), South Tyrolean forest is further delimitated 
into seven horizontal belts (Figure 3) (Provincia Autonomica di Bolzano, 2010): 

- Lower Colline belt is in South Tyrol mostly assigned to the valley floors 
occupied by orchard and vineyards. Deciduous Oak forest with Hop Hornbeam 
and Manna Ash is a typical forest of this zone. Mediterranean species are 
present in the lowest and south-most parts of the region progressing along 
Etschtal and Eisack Valleys. Average annual temperature of this zone varies 
between 11°C and 12°C with precipitation amount between 500 mm and 
730 mm. Maximum range of this strata is limited to 800 m asl in the Mesalpica 
region and 900 m asl in the Endalpica area;  

- Upper Colline belt is a region of Oak forest, which in more favorable conditions 
of Mesalpica is mixed with Common Beech, while for more continental and drier 
locations incorporates Scots Pine. A mean temperature ranges here between 8°C 
and 10°C, and is accompanied by 500 mm (Vinschgau) to 800 mm of annual 
precipitation. High temperature and limited rainfall amounts make this region 
especially predisposed to drought conditions. This zone occupies area placed not 

higher than 1250 m asl (800 m if shaded);  
- Sub-Mountain belt is dominated by Common Beech. This competitive specie is 

observed on a wide range of areas (also on poor soils) with exclusion of arid 
continental or regularly flooded sites, unstable soils and poorly ventilates spots. 
Beech habitat is delimitated by minimum annual precipitation of 500-600 mm 
and a minimum yearly averaged temperature of 5.5°C. On lower elevations 
Beech coexists with Downy Oak and Hop Hornbeam, while on higher altitudes 
comprises mixed forest stands with Norway Spruce and Silver Fir. Position of 
this belt varies greatly according to the local conditions. In general, for sunny 
slopes it can be defined from 750 m to 1150 m asl, and 600 m asl to 1000 m asl 

for less insolated locations; 
- Medium-Mountain belt is much alike Sub-mountain zone, with extensive 

Common Beech presence, but also with significant and increasing with elevation 
share of coniferous species such as Silver Fir and Norway Spruce governed by 
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decreasing temperatures and shorter growing season combined with higher 
precipitation amount. The upper boundary of this forest belt is found on sunny 
slopes on average at 1350 m asl. For shaded locations, the Medium-mountain 
belt is placed between 700-800 m and 1200 m asl. 

- Lower High-Mountain belt and Upper High-Mountain belt are considered here 
together. They span on average between 800 m and 1600 m asl. In the Central 
Endalpica region these zones are devoted to European Larch and Scots Pine on 
the sunny slopes, and Norway Spruce in the overshadowed locations. Rainfall 
shortages in Vinschgau limit occurrence of Silver Fir to north exposed slopes 
with annual precipitation exceeding 650 mm. As moisture is not a problem in 
the region of the Transitional Inner Alps (800-900 mm up to 1100-1200 mm per 

year) Norway Spruce and Silver Fir are no longer limited to lee slopes. However, 
snow cover and winter insolation patterns seems to restrict Silver Fir to humid 
north exposed sites. Although both High-Mountain forest belts are very alike, 
the Upper High-Mountain belt can be identified through yearly mean 
temperature of 4.5°C – 6.5°C, 4.5-6.5 months long growing season and 50-60% of 
precipitation occurring during the period of photosinthetical activity;  

 

Figure 3 Forest types elevation belts. Modified after Provincia Autonomica di Bolzano (2010, 

p. 19). 

- Lower Subalpine Belt is a zone spread between 1450 m and 1700 m asl for the 
north exposed slopes, and 1600 m to 1900 m asl on the intensively insolated 
sites. Forest stands are predominated by Norway Spruce, which in drier and 
more extreme locations is accompanied by European Larch. Harsh climatic 
conditions with long winters, short growing season (roughly three months), low 
temperatures (annual average of 2.5°C - 5°C) and intense snowfall (amount of 
total precipitation varies from 600 mm in the Central Endalpica region to 
1200 mm in the Transitional Endalpica zone) limit favorable habitats, 

sometimes resulting in a sparse, detached stands;  
- Upper Subalpine Belt is populated by European Larch and Arolla Pine, which 

gradually transition into dwarfed trees and shrubs. Climatic conditions are very 
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severe, with vegetation season rarely longer than 3 months, strong and chilling 
winds, and extreme negative temperatures during winter. Despite moderate 
precipitation amount (800 mm to 1200 mm a year) these regions are considered 
as rather dry. Weather conditions present in this zone often exceed physiological 
amplitude of tree species.  

A quantitative dissemination of the South Tyrolean woodland according to the forest 
type (according to the EL-04b dataset of geoland2 (2012)), aspect, elevation 
(stratification after Theurillat and Guisan, (2001)) and slope classes, confirms 
dominance of regions placed between 1400 and 2100 m asl (Table 2). The next most 
represented altitudinal zone is the second elevation class (700-1400 m asl), whereas the 

lowest as well as the height regions contribute together to less than 8% of the total 
forest area. The lay of the land controls consequently forest distribution within the 
inclination strata, where the areas with 20-40 degrees of slopping are represented the 
most frequently. Remarkably, over 11% of the woodland growths on slopes with 
inclination exceeding 40 degrees. The majority of forest is located on north and west 
facing mountainsides, with only 21.73% of trees situated on the south exposed slopes. 
As aforementioned, forest in South Tyrol is predominated by coniferous tree species, 
with increasing share of broadleaved trees at lower elevations and valleys floors. 

 

Table 2 Percentage forest allocation within forest type, aspect, elevation and slope classes.  

 [%] 

Coniferous 88.66 
Broadleaved 4.32 
Mixed 7.03 
  N 28.71 
E 23.00 
S 21.73 
W 26.56 
  0-700 m asl 4.50 
700-1400 m asl 33.60 
1400-2100 m asl 59.48 
2100-2500 m asl 2.41 

   0-10 deg. 6.37 
10-20 deg. 17.58 
20-30 deg. 30.74 
30-40 deg 33.76 
40-90 deg. 11.56 
  

2.2. Data 

2.2.1. Meteorological data 

Meteorological service of South Tyrol maintains a dense grid of measurement stations 
with diverse history of observation records. In order to meet requirements posed by the 
scPDSI algorithm (Wells et al., 2004) only stations with uninterrupted, minimum 

25-year-long time series (taking December 2012 as the final record entry, 
meteorological observations had to date back to, at least, January 1988) of monthly 
precipitation cumulative and mean temperature records were selected from the WISKI 
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database of the Hydrographic Office of the Autonomous Province of Bolzano-Südtirol. 
These requirements were fulfilled by 26 stations evenly spread around the region 
(Figure 4). Aforementioned observation points represented diverse altitudinal zones 
and have various record lengths (Table 3). 
 

 

Figure 4 Location of 26 meteorological stations selected for the study. Station numbers follow 

WISKI database nomenclature and correspond with Table 3 

Table 3 Complete list of meteorological stations used in the study with: station numbers 

(correspond with Figure 4), name of the location (in Italian), elevation and length of records 
used in the survey  

Station 

no 

Name (in Italian) Elev. 

[m asl] 

Records 

since 

 Station 

no 

  

Name (in Italian) Elev. 

[m asl] 

Records 

since 

250 Monte Maria 1310 1967  4450 S.Maddalena in Casies 1398 1967 

970 Silandro 698 1988  4760 Anterselva di Mezzo 1236 1941 

1120 Diga di Gioveretto 1851 1973  5050 Predoi 1449 1980 

1580 Vernago - Finale 1950 1967  5980 Brunico 821 1986 

1930 Naturno 541 1973  6150 La Villa in Badia 1390 1987 

2090 Plata 1147 1936  6560 Terento 1349 1981 

2320 Merano - Quarazze 330 1983  6650 Fundres 1159 1977 

2580 Diga di Zoccolo 1144 1979  7490 Ponte Gardena 490 1984 
3260 Vipiteno 948 1935  7560 Fie allo Sciliar 840 1956 

3360 Diga di Vizze 1365 1973  8220 Sarentino 966 1977 

3450 Ridanna 1350 1969  8320 Bolzano 254 1949 

3910 Bressanone 560 1971  8680 Ora 250 1983 

4080 Dobbiaco 1220 1967  9150 Sesto 1310 1956 
         

2.2.1. Ancillary data 

2.2.1.1. DEM 

A Digital Elevation Model with 2.5 m resolution was obtained from the Autonomous 
Province of Bolzano. In order to adjust it to the satellite images used in the study, the 
original dataset was upscaled to 30 m and 250 m resolution (Landsat and MODIS 
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spatial resolution respectively) using bilinear reprojection method. Additional layers of 
slope and exposition were derived directly from the reprojected DEM datasets using 
the ArcGIS 10.1 software (ESRI, 2011).  

2.2.1.2. Forest mask 

Forest mask and forest type mask information were adopted from two core forest 
product of the EU’s FP7 (Seventh Framework Programme) geoland2 project: EL-04a 
and EL-04b datasets for a demo site EU05 Alpine Transect Munich-Innsbruck-
Veronawhich (geoland2, 2012). Information gaps, existing due to cloud cover and 
shadowing (in total 162 km² in South Tyrol only) were filled in using CORINE Land 
Cover 2006 dataset (EEA, 2010b). Despite different forest definitions, CLC2006 was 

the most appropriate supplementary information source, as both datasets share the 
same spatial resolution of 20m and were developed based on corresponding satellite 
images acquired in 2006 (± 1 year).  

Resulting forest mask and forest type mask were initially reprojected from the LAEA 
(Lambert Azimuthal Equal Area) to the UTM 32N projection, and then adjusted from 
20 m to the target resolutions of 30 m and 250 m. The scaling to the 30 m was a 
straightforward process employing nearest neighbor transformation.  

A reprojection from 20 m to 250 m was based on a spatial averaging, where a new 
250x250 m pixel was assigned to a ‘forest’ class only when at least 50% of its area was 
devoted to a forest within the core dataset. Following the geoland2 guidelines, pure 

coniferous or broadleaved forest type was defined only when a share of softwood or 
hardwood trees exceeded 75%.  

2.2.2. MODIS data 

MODIS (Moderate Resolution Imaging Spectroradiometer) is a versatile passive 
scanner constructed on a scientific heritage of AVHRR (Advanced Very High 
Resolution Radiometer), CZCS (Coastal Zone Color Scanner), Sea-WIFS (Sea-Viewing 
Wide Field-of-View Sensor), HIRS (High-resolution Infrared Sounder) and Landsat TM 
(Thematic Mapper) (Guenther et al., 2002). Its uniqueness originates not only from a 
superb technical specification (Table 4), but also from a fact that MODIS flies on 
board two Earth Observing System (EOS) satellites: Terra (launched in December 

1999) and Aqua (launched in May 2002). Furthermore, the MODIS Scientific Team 
supervises constant development of a wide suite of high quality scientific and 
operational products (Justice et al., 2002) that are available free of charge.  

One of the main concerns while working with medium resolution images is geometric 
accuracy. Officially assured geo-location precision of MODIS data reaches 50 m in 
native ISIN (Integrated Sinusoidal) projection (Wolfe et al., 2002). However, an 
independent evaluation reported geometric accuracy at nadir as 113 meters (Knight et 
al., 2006). 

MODIS Vegetation Index product (MOD13Q1) is a standard Level 3 MODIS-Terra 
16-day product coming in a 250 m resolution, a neat spatial structure of Integrated 
Sinusoidal Grid (Huete et al., 1999) and HDF (Hierarchical Data Format) archives. 
The data are generated at regular time-steps of 16 days (23 composites per year), 
where all images  acquired during a  given time period contribute to a final composite 
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Table 4 Essential MODIS sensor specification after Guenther et al. (2002) 

Parameters  

Orbit 705km, sun-synchronous, near-polar, circular,  

Terra: 10:30 descending node 
Aqua: 13:30 ascending node 
  

Resolution 250 m    (bands 1-2) 

500 m    (bands 3-7) 

1000 m   (bands 8-36) 
  

Time resolution overpass 12/24h, revisit 16 days 
  

Radiometric resolution 12 bits 
  

Number of bands 36 
  

Spectral range 0.620 – 0.876 µm     (1-2 visible/NIR channels) 

0.459 – 2.155 µm     (3-7 visible/NIR channels) 

0.405 – 14.385 µm    (8-36 visible/NIR/IR channels) 
  

 

based on their quality (cloud contamination, sun elevation and sensor viewing angle), 
therefore a final product is possibly least corrupted by cloud cover or sensor 
misregistrations. The highest quality of data integration for each of the 16-day time 
periods is ensured for Collection 5 by an improved Constrained View angle – 
Maximum Value Composite (CV-MVC) algorithm (Solano et al., 2010).  

The original MOD13Q1 product comprises 12 bands with the NDVI and EVI 
vegetation indices at its core. They are accompanied by additional bands providing 
per-pixel information on zenith angle, sun elevation, relative azimuth angle and 
composite day of the year (DOY) as well as a bit quality information (QA) layer 
denoting overall pixel reliability. Moreover, MODIS bands 1, 2, 3 and 7 (red 
[620-670 nm], NIR [841-867 nm], blue [459-479 nm] and MIR [2105-2155 nm] 
respectively) are also incorporated into the product (Solano et al., 2010). MOD13Q1 
data are composed from datasets underwent an aerosol correction (Vermote et al., 
2002) and atmospheric correction based on the Second Simulation of a Satellite Signal 
in the Solar Spectrum Vector Code (6S) radiative transfer code (Feng et al., 2012), 
hence are considered to have a limited atmospheric and topographic contamination, as 
the latter is addressed through the index quotients. As a result, no additional 
pre-processing steps are required.  

Following the ISIN grid, South Tyrol is covered by a h18v04 granule. A complete 
2000-2013 MOD13Q1 time series for this tile was acquired from the WIST1 and 
EOSDIS2 services, and comprises 309 scenes (23 scenes per year with only 10 tiles from 
2000). All scenes came from MODIS Collection 5 processing scheme.  

2.2.2.1. Preprocessing 

All required preprocessing steps of MODIS data were performed in the MRT (MODIS 
Reprojection Tool; USGS EROS Data Center, 2002) and ENVI/IDL software (ENVI 

version 4.7 and 4.8, IDL version 7.0 and 8.0 respectively; Exelis Visual Information 

                                      
1
 http://wist.echo.nasa.gov 

2
 http://reverb.echo.nasa.gov 
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Solutions, Boulder, Colorado). Firstly, for each scene NDVI, QA, as well as band 2 
(NIR: 0.840-0.876µm) and 7 (MIR: 2.105-2.155 µm) layers were extracted, subsetted to 
the region of interest and reprojected to the UTM 32N coordinate system using the 
MRT software (Figure 5). Subsequently, NDII7 was computed according to the 
formula: 
 

 𝑁𝐷𝐼𝐼7 =  
𝑏𝑎𝑛𝑑 2 −  𝑏𝑎𝑛𝑑 7

𝑏𝑎𝑛𝑑 2 +  𝑏𝑎𝑛𝑑 7
 [ 3]  

 

 
Figure 5 Preprocessing workflow of MOD13Q1 data 

 

All pixels in the NDVI and NDII7 time series with QA-usefulness values below 
‘acceptable’ were masked out following a suggestion of Colditz et al. (2008). Next, 
outliers (confidence level 0.95 according to Chebyshev’s Theorem) and masked-out low 
quality pixels were replaced using a time-domain linear interpolation carried out in the 
TimeStats Software Tool (Udelhoven, 2011). To ensure the highest quality and limit 
amount of ‘artificial’ values introduced to the time series, the interpolation was 
performed only for a single observation gaps. (Table 5, Table 6). Longer gaps were not 
revised. As a result, a complete 2001-2013 NDII7 time series was available for 52009 
forest pixels (out of 52394). NDVI spatial coverage was not affected.  Finally, having in 
mind findings of Wang et al. (2012), proposed ibid adjustment for the sensor 
degradation was completed for both time series. 

Subsequently, NDVI and NDII7 time series were further processed to ensure multiple 
data setups for the following PCA decomposition. The following were exploited: 

- per-pixel time-domain noise removal using the Savitzky-Golay (SG) filtering of 
the second polynomial degree and a kernel of five (Chen et al., 2004). This 
method assumes correctness of the upper signal envelope and filters abrupt 
drops in the time series, mitigating hence potential atmospheric contamination 

or other periodical disturbances; 
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Table 5 Number of forest pixels that underwent linear interpolation within the 2001-2013 

MODIS derived NDVI time series. Complete forest mask comprises 52394 pixels. 

com-

posite 

year 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

1 6141 253 6137 18804 4389 6749 706 4263 8107 17031 3306 6067 1407 

2 12602 547 3865 11249 3691 4095 9028 5683 18336 8245 1129 5522 11671 
3 3275 429 1729 2259 2342 14171 1994 1230 16827 8130 461 8526 11023 

4 2084 5654 372 10696 3750 7019 533 347 9445 7386 1259 1388 3682 

5 1818 114 57 3503 245 2132 278 481 3172 2837 289 252 4141 
6 1385 46 72 462 12 1329 776 1445 2021 1370 157 32 2676 

7 2599 1474 173 510 166 819 40 11651 309 635 12 665 458 

8 2675 51 27 200 95 193 30 326 154 374 1 697 44 

9 243 113 53 108 1 39 0 894 7 4 35 28 39 
10 119 3 71 0 1 3 528 66 7 6 110 70 122 

11 7 4 0 3 0 2 4 122 4 5 4 3 1 

12 246 12 16 8 0 0 89 3 205 0 0 36 67 
13 6 41 0 50 5 23 0 0 0 43 124 0 1 

14 0 37 6 0 0 103 0 9 3 0 2 0 0 

15 0 0 1 4 8 0 1 6 1 1 0 0 2 
16 0 108 0 0 32 2 0 15 0 1 8 0 0 

17 6 1 0 0 0 0 0 2 3 0 1 0 0 

18 0 4 4 0 0 0 0 0 1 0 0 96 2524 
19 0 11 209 109 0 3 0 1 0 1003 0 0 1 

20 0 1 426 125 30 157 3 344 183 195 11 182 312 

21 53 3122 1333 70 2582 3393 792 727 268 11691 25 124 1277 
22 269 2601 979 1219 14799 966 1698 28383 8105 9836 7759 7567 354 

23 388 1643 10264 5991 12246 6749 760 10472 10140 7088 6995 5958 10527 
 

Table 6 Number of forest pixels that underwent linear interpolation within the 2001-2013 

MODIS derived NDII7 time series. Complete forest mask comprises 52394 pixels 

com-

posite 

year 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

1 864 7382 1362 149 1581 493 3717 2964 529 149 756 522 1188 

2 422 6435 1444 300 1305 512 498 1099 79 289 1577 504 101 

3 837 4266 1173 985 1307 586 1307 1801 155 157 2223 471 123 

4 863 1673 2417 562 1548 250 1654 2953 299 363 1141 2241 305 

5 775 5200 4947 1323 4212 668 3366 2448 1172 990 1796 3630 903 

6 528 4849 5101 1509 6241 2272 861 2471 1476 1146 1231 3042 276 

7 1124 955 3200 1458 2373 1045 2042 7426 347 1488 1633 796 436 

8 283 1383 2819 2130 2175 1953 1845 1111 214 1362 596 718 654 

9 351 2305 1158 1001 634 1848 176 2316 162 669 490 572 1740 

10 353 780 368 920 371 467 1886 888 109 184 560 509 975 

11 90 97 92 215 59 193 99 462 55 43 339 81 79 

12 451 86 94 151 61 26 739 56 878 35 22 45 209 

13 28 168 24 304 19 19 14 5 10 162 545 30 13 

14 8 109 57 8 3 645 32 27 24 44 41 44 1 

15 21 22 91 31 181 433 34 64 72 18 11 8 28 

16 48 430 77 18 256 10 17 24 2 16 44 5 8 

17 181 28 45 26 13 88 33 41 66 33 24 14 10 

18 419 118 219 80 271 164 345 72 51 186 60 333 757 

19 990 1639 464 774 1075 538 506 441 346 67 193 339 131 

20 2839 2681 578 1644 1809 3336 1936 989 517 503 2041 478 546 

21 3807 2111 1582 3601 2840 4399 1924 748 2344 364 3719 1201 957 

22 5162 1876 2903 2158 279 1453 2684 15 372 530 1037 618 2193 

23 
  

6462 2478 1880 2033 562 3712 4448 425 620 708 899 352 573 



2.2 DATA 

 
22 

- removal of seasonality through a per-pixel z-score normalization: 

 

 

 

𝑑 =  
𝑋𝑖𝑗 −  𝜇𝑗−𝑐𝑜𝑚

𝛿𝑗−𝑐𝑜𝑚
 [ 4]  

where: 
Xij denotes a j-th composite (𝑗 ∈ [1; 23]) of an i-th year (𝑖 ∈ [2001; 2013]) of 
the complete time series; 
µj-com  stands for an average value for all j-th composites across all the years; 
σj-com is a standard deviation for all the j-th composite in the time series; 
Normalization leaves out a ‘common’ data component, which for vegetation 
usually represents seasonality, allowing to focus on anomalies. This approach 
can result in much more informative datasets; 

- three different lengths of NDVI and NDII7 time series (applied to the original 
and z-score normalized, as well as SG-filtered and not-filtered datasets), where 
beside the complete MODIS time series comprising all 23 annual composites 
(1-23), a vegetation season time series focusing on a period between end of April 
and mid-October (corresponding with 8th to 18th MODIS annual composites 
(8-18)) as well as high-season data (August to mid-September which coincides 
with composites 14th to 17th (14-17)) were exploited. While time series restricted 
to a vegetation season allow to exclude dormancy state signal and potential 
impact of snow cover, limiting thus an amount of redundant data, high-season 
datasets provide information only on vegetation status during potentially the 
highest drought vegetation stress period. 

Aforementioned techniques were interlaced resulting in variety of NDVI and NDII7 
datasets (Table 7 and Table 8 respectively). Remarkably, SG filtering was always 
performed before normalization and truncating. 

 

Table 7 List of all produced NDVI time series setups. Ranges of corresponding MODIS 16-day 

composites are given in brackets.  

Data z-score 

normalization 
SG filtering 

Annual time window 

(MODIS composites) 

Dataset short 

name 

    
no no full year  (1-23) NDVI1-23 

 no veg. season (8-18) NDVI8-18 

 yes full year  (1-23) NDVISG1-23 

 yes veg. season (8-18) NDVISG8-18 
    

yes no full year (1-23) nNDVI1-23 

 no veg. season (8-18) nNDVI8-18 

 no high season (14-17) nNDVI14-17 

 yes full year (1-23) nNDVISG1-23 

 yes veg. season (8-18) nNDVISG8-18 
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Table 8 List of all produced NDII7 time series setups. Ranges of corresponding MODIS 16-day 

composites are given in brackets. 

Data z-score 

normalization 
SG filtering 

Annual time window 

(MODIS composites) 

Dataset short 

name 

    
no no veg. season (8-18) NDII78-18 
    

yes no veg. season (8-18) nNDII78-18 

 no high season (14-17) nNDII714-17 

     

Furthermore, based on the not-normalized high-season NDVI and NDII7 time series a 
yearly mean datasets were calculated (herein NDVIHS and NDII7HS). These averages 

rendered information on vegetation status during the period of potentially the highest 
drought impact. 

2.2.2.2. Phenological indicators  

The complete, not normalized 2001-2013 MODIS NDVI time series (NDVI1-23) was 
introduced to the Phenolo IDL-nested software developed at the EC Joint Research 
centre (Ivits et al., 2013a). This pixel-bases algorithm derives a selection of yearly 
phenological parameters which provides information on vegetation dynamism, 
phenology and productivity. In this study, the focus was given to three vegetation 
productivity metrics: Cyclic Fraction (CF), approximation of Gross Primary 
Productivity (GPP); as well as two season information parameters: Season Length (SL, 
estimated length of vegetation season) and Season Begin Day (SBD, relative start of a 
season day). While Cyclic Fraction approximates annual seasonal growth between SBD 
and SED (Season End Day; Figure 6), Gross Primary Productivity estimates total 
accumulated biomass of permanent and seasonal vegetation produced during one 
annual vegetation cycle given by a time unit limited by two consecutive local minima 
observed on the vegetation index envelope.  

 

 
Figure 6 Phenolo conceptual scheme for selected productivity and phenology parameters. 

Modified after Ivits et al. (2013a). 



2.2 DATA 

 
24 

Both productivity indices together with two phenology parameters provide extensive 
information on year-to-year vegetation variability (Ivits et al., 2011, 2013b). NDVI 
data were selected here over the NDII7 time series due to more robust seasonality of 
the signal associated directly with plant ‘greenness’. Phenolo algorithm is based on the 
moving average approach (Reed et al., 1994), where an average phenological dynamism 
is computed independently for each pixel based on the available time series. Yearly 
vegetation growth defined as a histogram between two consecutive minima in the 
NDVI envelope (MBD – Minimum Begin Day and MED – Minimum End Day; Figure 
6) determines annual mean and standard deviation. Conceptual, pixel-specific 
approximation of a season length for each year in a time series is a doubled standard 
deviation centered at a histogram barycentre. 

Averaged yearly complements of season length approximations (i.e. length of 
non-vegetation season) gives a lag for moving average (in days). The original NDVI 
time series is next overlaid with the forward and backward lagged averaged NDVI 
curves. Intersections between both define SBD and SED respectively. Together with 
the yearly minima (MBD and MED), SBD and SED determine threshold days for all 
productivity and phenology parameters. Owing to a moving average principle of the 
approach, resulting time series comprised parameters only for the 2002-2012 period.  

Due to a lack of ground-truth data for scaling, final time series of phenology measures 
were treated as indicators of relative changes, rather than absolute values. 

2.2.3. Landsat 

Initiated in 1972 the Landsat program is the longest running satellite earth observation 
project, and an irreplaceable source of environmental information on the global scale. 
Until today, seven Landsat satellites contributed to the enterprise, with the Landsat 
Data Continuity Mission (LDCM; Irons et al., 2012) in service since 30 May 2013. 
Starting from 1982 the Landsat program continuously provides visible, near infrared 
and medium infrared datasets in a constant resolution of 30 meters. It has been 
possible thanks to the Thematic Mapper (TM) and the Enhanced Thematic Mapper 
Plus (ETM+) sensors (Table 9) flying on board Landsat 4, 5 and 7 satellites (Table 
10). Landsat 6 with Enhanced Thematic Mapper (ETM) never got to its orbit. 

Remarkable cohesion between consecutive Landsat platforms as well as their 

equipment, allowed to create unique and consistent data collection. Although between 
1985 and 1999 Landsat 4 and Landsat 5 were transferred to the private sector, which 
negatively affected not only data availability, but also acquisition schemes (Williams et 
al., 2006), recently made decisions including initiated in 2008 opening of the Landsat 
archives (Wulder et al., 2012) aim to reintroduce to the public a complete global 
Landsat time series on a free-of-charge bases. Although the task is still incompleted 
due to abundance of data, an outlook for future Landsat based environmental analyses 
is promising and encouraging (Loveland & Dwyer, 2012; Wulder et al., 2012, 2015). 

Seizing the arising opportunity, the following survey employs a collection of Landsat 
Level 1T products (Standard Terrain Correction – the precision ortho corrected 
product, which provides systematic radiometric and geometric accuracy). To make it 
comparable with MODIS observations, foreseen time frame employed Landsat scenes 
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Table 9 Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) basic 

specification. After Loveland & Dwyer (2012).  

 TM ETM+ 

Platform 
Landsat 4 

Landsat 5 
  

Landsat 7 
  

Number of bands 7 8 

Spectral ranges and resolutions 

Band 1 
Band 2 

Band 3 

Band 4 

Band 5 

Band 6 

Band 7 

Band 8 (PAN) 

Blue: (0.45 - 0.52 µm) 30 m 
Green: (0.52 - 0.60 µm) 30 m  

Red: (0.63 - 0.69 µm) 30 m 

NIR: (0.76 - 0.90 µm) 30 m 

NIR: (1.55 - 1.75 µm) 30 m 

Thermal: (10.40 - 12.50 µm) 120 m 

MIR: (2.08 - 2.35 µm) 30 m 

- 
 

Blue: (0.45 - 0.52 µm) 30 m 
Green: (0.52 - 0.60 µm) 30 m 

Red: (0.63 - 0.69 µm) 30 m 

NIR: (0.77 - 0.90 µm) 30 m 

NIR: (1.55 - 1.75 µm) 30 m 

Thermal: (10.40 - 12.50 µm) 60 m  

MIR: (2.08 - 2.35 µm) 30 m 

PAN: (0.52 - 0.90 µm) 15 m 

 

Table 10 Landsat 4, 5 and 7 platforms specifications. After Loveland & Dwyer (2012) and 

Landsat 7 Science Data Users Handbook (NASA) 

 Landsat 4 Landsat 5 Landsat 7 

Launched 16 July 1982 1 March 1982 15 April 1999 
  

Deactivated 14 December 1994 5 June 2013 Ongoing 
  

Additional 
information 

 
TM operational imaging 
ended in November 2011 

31 May 2003: Scan-line 
corrector (SLC) failure  
  

Orbit 705 km, sun-synchronous, 

polar,  

Inclination: 98.2° 

9:45 AM (±15 min), 

descending node 
  

705 km, sun-synchronous, 

polar,  

Inclination: 98.2° 

9:45 AM (±15 min), 

descending node 
 

705 km, sun-synchronous, 

polar,  

Inclination: 98.2° 

10:00 AM (±15 min), 

descending node 
  

Time 

resolution 

overpass 99 minutes, 

revisit 16 days 
  

overpass 99 minutes, 

revisit 16 days 
  

overpass 99 minutes, 

revisit 16 days 
  

Sensors TM, MSS 
  

TM, MSS 
  

ETM+ 
  

TM – Thematic Mapper; MSS – Multi Spectral Scanner; ETM – Enhanced Thematic Mapper Plus 

 

acquired between 2001 and 2013. This condition determined use of images registered 
with TM and ETM+ sensors onboard on the Landsat 5 and Landsat 7 platforms 
respectively.  

The area of South Tyrol is covered by four neighboring WRS-2 (World Reference 
System 2) tiles (Figure 7). Unfortunately, due to a technical problem of a disc-space 
limitation, only southern granules 192-028 and 193-028 were adopted for further 

investigation. This selection was governed by a fact that combination of both southern 
tiles covers the bigger part of the province, as well as comprises more diverse regions 
exposed to potentially stronger drought impact. Although Landsat archive has been  
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Figure 7 South Tyrol territory with the Landsat WRS-2 tile grid overlaid.  

 

open since 2008 (Wulder et al., 2012), at the moment of initializing this analysis 
(beginning of 2013) still not all Landsat scenes were available and transferred to the 
USGS archive3 from the European ground segment. Moreover, additional limitation in 
data availability was recognized due to the end of Landsat 5 TM operational imaging 

in November 2011 as well as Landsat 7 SLC (Scan Line Corrector) failure in May 2003 
(USGS, 2003). Furthermore, forest drought impact oriented character of the study 
additionally restricted employed datasets to the annual time-window of 
June-September, which corresponds with the period of complete crown development of 
deciduous trees, and potentially the strongest vegetation drought stress. All 
aforementioned, combined with high cloud cover probability over the study site, 
limited considerably data amount and resulted in an executive Landsat time series of 
summer acquisitions 2001-2011. During a dataset selection, only scenes with a 
maximum cloud cover of 80% were considered. Eventually, 24 images met the criteria 
for the 192-028 tile (Table 11). Granule 193-028 was represented by another 23 scenes 
(Table 11). 

 

 

 

 

 

 

 

 

                                      
3
 U.S. Geological Survey, GloVis: http://glovis.usgs.gov 
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Table 11 Landsat 5 and 7 data availability for the 192-028 and 193-028 WRS-2 tiles tor the 

2001-2011 period. Only June-September acquisitions with less than 80% cloud cover were 
considered.  

192-028 
  

193-028 

Dataset 
  

   Acquisition data Dataset    Acquisition date 

LE71920282001158 2001 Jun 7 LE71930282001213 2001 Aug 1 

LE71920282001206 2001 Jul 25 LE71930282002232 2002 Aug 20 

LE71920282002209 2002 Jul 28 LE71930282002200 2002 Jul 19 

LE71920282002225 2002 Aug 13 LT51930282003195 2003 Jul 14 

LE71920282002241 2002 Aug 29 LE71930282003203 2003 Jul 22 

LT51920282003220 2003 Aug 8 LT51930282003211 2003 Jul 30 

LT51920282003236 2003 Aug 24 LT51930282003259 2003 Sep 16 

LE71920282003260 2003 Sep 19 LT51930282004214 2004 Aug 1 

LE71920282004247 2004 Sep 3 LE71930282005208 2005 Jul 27 
LE71920282004263 2004 Sep 19 LE71930282005224 2005 Aug 12 

LE71920282005201 2005 Jul 20 LT51930282006203 2006 Jul 22 

LE71920282005217 2005 Aug 5 LT51930282006235 2006 Aug 23 

LT51920282006244 2006 Sep 1 LT51930282007206 2007 Jul 25 

LE51920282006252 2006 Sep 9 LT51930282007238 2007 Aug 26 

LT51920282007199 2007 Jul 18 LE71930282008201 2008 Jul 19 

LT51920282007231 2007 Aug 19 LT51930282009227 2009 Aug 15 

LT51920282007247 2007 Sep 4 LT51930282009243 2009 Aug 31 
LE71920282008242 2008 Aug 29 LE71930282010238 2010 Aug 26 

LE71920282009228 2009 Aug 8 LT51930282010246 2010 Sep 3 

LE71920282009244 2009 Sep 1 LE71930282010254 2010 Sep 11 

LT51920282010255 2010 Sep 12 LT51930282010262 2010 Sep 19 

LE71920282010263 2010 Sep 20 LT51930282011233 2011 Aug 21 

LT51920282011226 2011 Aug 14 LE71930282011241 2011 Aug 29 

LE71920282011234 
  

2011 Aug 22     

 

2.2.3.1. Preprocessing 

In the first step (Figure 8), all Landsat images were calibrated and atmospherically 

corrected in the LEDAPS processing software (version 1.0.6; Masek et al., 2006). Next, 
each scene was subjected to the f-mask clouds and cloud shadows detection algorithm 
(Zhu & Woodcock, 2012). However, since even the in-house-adjusted f-mask algorithm 

version revealed unacceptable inaccuracy, a follow-up cloud and cloud shadow visual 
screening and digitalization was a must. Resulting masks were subsequently combined 
with automatically calculated no-data mask oriented on SLC stripes detection.  

A wide annual data acquisition time-window of June-September concludes in variation 
of the sun elevation, hence terrain illumination properties. It is especially striking for 
mountainous regions, such as South Tyrol, where complex orography leads to extensive 
topographic shadows. This phenomenon is considerably affecting for multi-temporal 
surveys and time series analyses (Vanonckelen et al., 2013).  

Sun elevation profile calculated for Bolzano 10:00AM (local time, coincided with 
satellites overpass; Figure 9) revealed an overall absolute change of 21° between 15th 
June (local maximum of 54.36°) and 20th September (the latest available observation; 
33.36°).  
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Figure 8 Landsat time series preprocessing workflow. 

 

 
Figure 9 Sun elevation profile between 1st May and 31st September calculated for Bolzano 

10:00AM local time. Maximum sun elevation is observed on 15th June (166 DOY; 54.36°). 
Above 50° values are reported between 9th May and 28th July (129 and 209 DOY respectively). 
During the sun inclination ascend 45°, 40° and 30° threshold values are crossed on 21st August 
(233 DOY), 9th September (252 DOY) and 25th September (268 DOY) respectively.  
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This variation translates into a strong solar radiation discrepancy between both dates 
(Figure 10), with smaller but still considerable differences among all the other 
observations. To properly address this issue a Minneart topographic correction 
implemented in the IMPACT software (Gallaun et al., 2007) was performed for each 
Landsat scene. Computation was done using a 30 m resolution DEM of South Tyrol 
(please see section 2.2.1.1) additionally filtered with a 5x5 mean filter. 

 

 
Figure 10 Solar radiation difference between 15th June and 20th September. 

 

Following a suggestions of Riano et al. (2003), evaluation of topography corrected 
scenes was done through a comparison of the spectral characteristics of images, and 
inspection of standard deviation values calculated for selected regions in the pre- and 
post- corrected images. Due to a different extend of scenes, as well as cloud cover 
conditions, statistical training sites were identified separately for each dataset. As 
presented for the LE71930282002200 and LT51920282003220 images topography 
correction resulted in desired increase of homogeneity (Table 12 and Table 13 
respectively). On the other hand, scenes acquired under low sun angel conditions (here 
example of LT51930282010262) revealed standard deviation increase (Table 14). 
Further inspection of the latter case showed that low sun inclination coupled with 
complex lay of the land, leads to hard shadows occurrence. Despite this, an overall 
quality of the topographic correction was assessed as good. 

In order to ensure a reliable time series analyses, each considered pixel has to be 
represented by at least one value each year. Unfortunately, due to data scarcity, SLC 
stripping issue and frequent cloud cover, this assumption was very difficult to fulfill 
and severely restricted executive 2001-2012 spatial extend of the survey (Figure 11). 
Taking an advantage of the 192-028 and 193-028 tiles overlap, it was decided to 

combine both datasets together, increasing hence a number of observations available 
for the common area. This step allowed to broaden spatial coverage in the central part 
of the province.  
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Table 12 Reduction in standard deviation values after Minneart topography correction 

observed for the LE71930282002200 scene. Analysis performed for 2040 pixels.  

 LE71930282002200 

 no topographic correction topographically corrected 

 Mean St. dev. Mean St. dev. 

Band 1 144.34 71.84 160.22 67.47 

Band 2 249.50 93.61 301.19 81.02 

Band 3 157.72 83.92 184.26 71.97 

Band 4 1682.34 464.85 2004.19 433.41 

Band 5 658.65 276.34 805.66 250.54 

Band 7 298.92 155.02 368.11 135.55 
 

Table 13 Reduction in standard deviation values after Minneart topography correction 

observed for the LT51920282003220 scene. Analysis performed for 5473 pixels. 

 LT51920282003220 

 no topographic correction topographically corrected 

 Mean St. dev. Mean St. dev. 

Band 1 218.32 45.10 229.50 40.97 

Band 2 301.17 59.64 334.38 45.09 

Band 3 233.82 61.52 263.66 47.93 

Band 4 1586.29 277.01 1854.02 215.47 

Band 5 685.71 201.95 837.01 141.03 

Band 7 333.10 117.09 413.05 89.25 
 

Table 14 Increase in standard deviation values after Minneart topography correction observed 

for the LT51930282010262 scene. Analysis performed for 5173 pixels. 

 LT51930282010262 

 no topographic correction topographically corrected 

 Mean St. dev. Mean St. dev. 

Band 1 132.61 40.46 150.32 42.84 

Band 2 223.60 56.05 290.16 53.43 

Band 3 162.23 48.33 222.74 49.45 

Band 4 1154.04 306.00 1703.89 284.43 

Band 5 427.02 162.88 603.92 164.64 

Band 7 185.18 87.31 256.00 89.28 

 

In the following, 192-028 and 193-028 image collections were combined and reordered 
for each year according to data quality (cloud cover and SLC striping) and acquisition 
date. Scenes registered in August were the most favorable since they captured possibly 
the highest drought impact, and have limited cloud contamination (Table 15). During 
the assessment procedure, a so called ‘master image’ was selected. It became a 
reference dataset in a subsequent relative normalization process (Figure 8). Having in 
mind dry conditions present for the majority of the investigated years, it was decided 
based on meteorological records, to assume year 2002 as a period of ‘normal weather 
conditions’. Moreover, reference to a period previous to, or at the beginning of the 

investigated vegetation stress, reduced potential negative drought impact rendered in 
the data. Among five scenes available for the year 2002 (Table 15), LE71920282002209  
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Figure 11 Pixels with a complete 2001-2012 Landsat data time series. 

 

Table 15 Available 2001-2011 Landsat 192-028 and 193-028 datasets ordered for each year 

according to the acquisition date and overall quality. The bolded LE71920282002209 scene was 
selected as a reference (master) dataset in the iMAD normalization.  

 

Dataset Year Date Ordery 

LE71920282001206 2001 Jul 25 1 
LE71930282001213 2001 Aug 1 2 

LE71920282001158 2001 Jun 7 3 

  
 

 
LE71920282002209 2002 Jul 28 1 

LE71930282002200 2002 Jul 19 2 

LE71920282002225 2002 Aug 13 3 

LE71930282002232 2002 Aug 20 4 

LE71920282002241 2002 Aug 29 5 

  
 

 
LT51920282003236 2003 Aug 8 1 

LE71920282003260 2003 Sep 19 2 

LT51930282003211 2003 Jul 30 3 

LT51920282003220 2003 Aug 8 4 

LE71930282003203 2003 Jul 22 5 

LT51930282003259 2003 Sep 16 6 

LT51930282003195 2003 Jul 14 7 

  
 

 
LE71920282004247 2004 Sep 9 1 

LE71920282004263 2004 Sep 19 2 

LT51930282004214 2004 Aug 1 3 

  
 

 
LE71920282005217 2005 Aug 5 1 

LE71930282005224 2005 Aug 12 2 

LE71930282005208 2005 Jul 27 3 

LE71920282005201 2005 Jul 20 4 

  
 

 

  
 

 

  
 

 

  
 

 
  

 
 

 

Dataset Year Date Ordery 

LT51930282006235 2006 Aug 23 1 
LT51920282006244 2006 Sep 1 2 

LE51920282006252 2006 Sep 9 3 

LT51930282006203 2006 Jul 22 4 

    

LT51930282007206 2007 Jul 25 1 

LT51920282007199 2007 Jul 18 2 

LT51920282007231 2007 Aug 18 3 

LT51930282007238 2007 Aug 8 4 

LT51920282007247 2007 Sep 4 5 

    

LE71930282008201 2008 Jul 7 1 

LE71920282008242 2008 Aug 8 2 

    

LT51930282009227 2009 Aug 15 1 

LE71920282009228 2009 Aug 8 2 

LE71920282009244 2009 Sep 9 3 

LT51930282009243 2009 Aug 31 4 

    

LE71930282010238 2010 Aug 26 1 

LT51930282010246 2010 Sep 3 2 

LE71930282010254 2010 Sep 11 3 

LT51920282010255 2010 Sep 12 4 

LT51930282010262 2010 Sep 19 5 

LE71920282010263 2010 Sep 20 6 

    

LE71920282011234 2011 Aug 22 1 

LT51930282011233 2011 Aug 21 2 

LT51920282011226 2011 Aug 14 3 

LE71930282011241 2011 Aug 29 4 
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image showed the highest quality comparing with remaining acquisitions, and therefore 
was selected as a ‘master’ scene. 

Relative normalization to the LE71920282002209 dataset accounted on unification of 
forest phenological phase signal and was performed using the iMAD algorithm (Canty 
et al., 2004). The process was done under a forest mask (see section 2.2.1.2) without 
division into forest ecosystems sub-domains. Further regionalization of already limited 
forest area could lead to excessive complexity and put into a question goodness of the 
overall normalization, as each sub-region would be characterized by a limited number 
of invariant pixels. Although vegetation phenology development is nonlinear (Helmer & 
Ruefenacht, 2007), the considered time-frame was narrow and excluded growth phase, 
making it possible to pass the linearity assumption. 

Subsequently, NDVI and NDII7 indices were derived for each scene. The final 
compositing (Figure 8) was performed for each index separately using the previously 
defined data order. This practice was much alike in a composing module of the 
LandTrendr algorithm (Kennedy et al., 2010) with one composite derived for each 
year. Following the pre-defined images order (Table 15) all data gaps in the primary 
scene were filled in employing information from the second the best scene. The 
procedure was continued with all the consecutive images of a given year until all gaps 
were filled-in or there was no more data to source from. 

The aforementioned processing scheme resulted in a high quality 2001-2012 time series 
of NDVI and NBRI yearly composites, where cloud contamination and topography 
impact were minimized or excluded. Unfortunately, restricted amount of acquisitions as 
well as mountain-specific cloud cover formation process limited spatial coverage of both 
time series to 1336,053 km² (Figure 12), which represents only 42% of the forest are of 
South Tyrol. 

 

 
Figure 12 Final Landsat data coverage with respect to the forested area.  
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2.3. Principal Component Analysis (PCA) 

Constant technology development results in a sustained increase in data collection. On 
one hand, richness of information allows on comprehensive investigation, hence deeper 
understanding of examined issues, but on the other hand, abundance of data imposes a 
need for more complex and efficient processing approaches.  

A degree of convolution complexity increases with an increment of data dimensionality. 
Time series of satellite images is a good example of this phenomenon, as a feature 
space comprises not only the space and value, but also accounts on a time dimension. 
Multiple statistical and mathematical methods for multivariate analyses exist to 
mitigate the effect of data multidimensionality. Particularly interesting are variance 

oriented approaches that identify a dominant variability in space and/or time data 
domain (Venegas, 2001), which can be further related to processes or changes. Among 
these methods, Principal Component Analysis (PCA), Signal Value Decomposition 
(SVD), Common Factor Analysis (CFA) and Independent Components Analysis (ICA) 
are the best known and most frequently used ones.  

The PCA, sometimes called also Empirical Orthogonal Functions (EOF; Wilks, 2006, 
p. 453), was introduced into the natural science in 1965 (Lorenz, 1956) and quickly 
gained wide recognition, especially in the meteorology and climate research  (e.g. 
Singleton; Björnsson & Venegas, 1997; Venegas, 2001; Hannachi, 2004; Bordi et al., 
2006; Schrier et al., 2007; Dai, 2011; Kim et al., 2011; Tatli & Türkeş, 2011). Its 
robustness and straightforward calculation spurred further implementation for 
environmental studies (e.g. Studer et al., 2005; Ivits et al., 2013, 2014a) including a 
land cover classification (Lawley et al., 2011) or time series analyses of remote sensed 
data (e.g. Eastman & Fulk, 1993; Lasaponara, 2006; Chen & Peter Ho, 2008; Small, 
2012; Ivits et al., 2013; Neeti & Ronald Eastman, 2014).  

PCA identifies dominant components within a dataset investigating an 
inter-relationship between its elements. Depending on which dataset dimensions (space, 
time or field) are assigned as a variable and sample, PCA is performed in one of six 
unique modes (Richman Michael B., 1986; Preisendorfer, 1988). Since time series 
analyses focus either on time or space domain, appropriate PCA implementation 
accounts on the S- and T-mode respectively (Preisendorfer, 1988; Machado-Machado et 
al., 2011). Once a data matrix is constructed, accordingly to the selected mode, 
dominant components are identified by solving the eigenproblem based either on 
covariance or correlation matrix, where the latter implies data standardization.  

Mathematical principles of the S-mode covariance-matrix based PCA analysis are as 
follows (modified after: Björnsson & Venegas (1997) and Venegas (2001): 

Taking an M x N dimensional data matrix F, where the M (rows) represents time and 
the N (columns) stands for locations, and M>N a covariance matrix F is formed by: 

 -𝑅𝐹𝐹 = 𝐹𝑡𝐹 [ 5]  

where the Ft
 is a transpose of F, and the RFiFj (a covariance between time series at i 

and j locations, where i,j = 1…N) is defined as: 

 -𝑅𝐹𝑖𝐹𝑗 =
1

N − 1
 𝐹𝑖

𝑁

𝑡=1

 𝑡 𝐹𝑗 (𝑡) [ 6]  
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The RFF covariance matrix is next decomposed into the E and Ʌ matrices through 
solving the eigenproblem (or the eigenvalue problem):  

 -𝑅𝐹𝐹𝐸 = 𝐸 Ʌ [ 7]  

The Ʌ is a diagonal N x N matrix of eigenvalues λN of RFF where λN are usually sorted 
in decreasing order (λ1 > λ2 > … > λN). 

 -Ʌ =   

λ1 0 ⋯
0 λ2 ⋯
⋯ ⋯ ⋯

0
0
⋯

0   0  ⋯ λ𝑁

  [ 8]  

The E is also an N x N dimensions matrix, with each column being an EN eigenvector. 

Moreover, each non-zero eigenvalue λN corresponds with only one E
N 

eigenvector, and 
the eigenvectors are ordered according to the eigenvalues. Each eigenvalue λN informs 
about the proportion of the total variance in RFF explained by the corresponding 
eigenvector EN.  

 -% 𝑜𝑓 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑁 =  
λN

 λ𝑖
𝑁
𝑖=0

∗ 100 [ 9]  

Knowing that 

 -Ʌ = 𝐸𝑡𝐸 = 𝐸𝐸𝑡 = 𝐼 [ 10]  

where I is the Identity Matrix, eigenvectors are clearly orthogonal, thus uncorrelated 
over space. 

Projection of E on the original dataset F 

 -𝐴 = 𝐹𝐸 [ 11]  

gives an AN – a time evolution of the EN vector in time. This means that the F is now 
depicted by the spatial representations of EN vectors called EOFs or loadings, and their 
time evolution AN called principal components (PCs) or scores.  

 -𝐹 = 𝐴𝐸𝑡 [ 12]  

Because a number of non-zero eigenvalues is usually K≤min(M,N), the effective 

amount of components reconstructing the original time series F is not greater than the 
minimal dimension of data matrix F. The equation [ 12]  can be then given as: 

 -𝐹𝑁(𝑡) =  𝐴𝑘(𝑡)

𝐾

𝑘=1

𝐸𝑁
𝑘  [ 13]  

where E is N x K, A is M x K, therefore F is M x N. 

As aforementioned, EOF decomposition can be done based not only on a covariance 
but also on correlation matrix. The former is advisable when data are ‘similar’ or 
normalized a-priori because covariance matrix weights all observations equally. On the 
contrary, the correlation-matrix based approach is advisable for non-normalized data of 
different scales, as correlation matrix implements standardization of a dataset, which 
results in equal weights of all variables (Richman Michael B., 1986). In general, 
standardization allows on better identification of time/space patterns.  

A correlation matrix is calculated through standardization of a covariance matrix 
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 -𝐶𝐹𝑖𝐹𝑗 =
𝑅𝐹𝑖𝐹𝑗

 𝑅𝐹𝑖𝐹𝑖 𝑅𝐹𝑗𝐹𝑗

 [ 14]  

and the eigenproblem in [ 7]  is posed as 

 -𝐶𝐹𝐹𝐸 = 𝐸 Ʌ [ 15]  

All the further convolution steps stay the same. 

The presented reasoning works efficiently only when N<M. An alternative solution for 
N>M introduces the eigenproblem in [ 7]  as: 

 -𝑅𝐹𝐹
𝑡 𝐷 = 𝐷 Ʌ [ 16] 

where D is next projected on F in order to derive E 

 -𝐸 = 𝐹 𝐷 [ 17]  

Since F is M x N, 𝑅𝐹𝐹
𝑡  is M x M, and D is M x M, resulting E has to be M x M, which 

means that not N, but only M eigenvectors are derived for this case. They correspond 
to the first M eigenvalues of Ʌ. 

Independently of a standardization, covariance or correlation matrix is often 
additionally centered (or ‘demeaned’; Venegas, 2001), which makes the variation 
relative to the mean. Importantly, centering done in the S-mode orientation (the mean 
is calculated for each location over time) detrends over space removing geographical 
differences. Conversely, when the centering is performed in the T-mode (the mean is 
calculated over space for each time step) results are detrended over time (Machado-

Machado et al., 2011).  

As indicated by Richman Michael B. (1986), the PCA decomposition can be affected 
by domain shape dependence, instability of subdomains, and inaccuracy of EOFs 
(hence also PCs) desolation, which result in a misleading explanation of physical 
processes. These issues can be addressed through a rotation of a few first PCA 
loadings. The process strengthens and simplifies already detected patterns and 
maximizes the variance of EOFs, which leads to further clumping of similar modes. 
Additionally, regardless whether the orthogonal or oblique (procrustes) rotation model 
is applied, the physically unrealistic orthogonality hypothesis is released, which means 
new EOFs and PCs are correlated (Björnsson & Venegas, 1997). Due to this, the 
rotation is a controversial approach and according to Venegas (2001) should be 

considered individually for each dataset and intended application of PCA results. 

The rotation can be realized through multiple transformations among which the most 
popular are Varimax (Kaiser, 1958) and Promax (Hendrickson & White, 1964) models 
for the orthogonal and oblique rotation respectively.  

Although identification of an optimum number of factors to be rotated is an extremely 
crucial step, this selection is usually based on non-statistical approaches, therefore it is 
also the most elusive part of the process. The most frequently used stopping rules 
include (after Brown, 2009): 

- Kaiser’s stopping rule (Kaiser, 1960), which proposes to rotate all loadings with 
eigenvalue ≥ 1; 

- Cattell’s scree test (Cattell, 1966), in which the selection is based on a visual 
interpretation of the eigenvalues plot and identification of a transition point 
between an incline and leveled line. Because the transition point belongs to the 
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leveled part, only loadings of a lower order than the transition point are rotated. 
Cattell’s scree test can be recognized as simplified graphical solution of the 
N rule (Preisendorfer, 1988); 

- a-priori criterion, where a number of rotated factors is set beforehand; 
- non-trivial factors approach, in which only these loadings are rotated that have 

at least 3 variables loadings above a certain threshold (customary 0.3); 
- percent of cumulative variance criterion, in which rotated are these foremost 

loadings that eigenvalues sum up to a predefine value.  

There is no clear recommendation of the stopping approach. Relatively neat Kaiser’s 
rule, despite great popularity is considered as very inaccurate (Costello & Osborne, 

2005). In contrast, seemingly inaccurate plot interpretation based scree test is 
considered a reliable approach for choosing a number of loadings for rotation.  

PCA decomposition is a very powerful and versatile statistical method, but despite its 
popularity, it is sometimes implemented as an exploratory analysis, without correct 
exploitation of various PCA decomposition modes. Consequently, results might not be 
derived by the optimal PCA setup and next to general methodological constrains 
(Richman Michael B., 1986) they might be additionally affected by poor application. 
Importantly, there is no guaranty that derived scores and/or loadings have a true 
physical meaning and correspond to real processes (Hannachi, 2004). The main 
hindrance for this is the orthogonality assumption which can lead to redistribution of 
variance corresponding with recognizable physical variability between several 

uncorrelated EOF modes. Therefore only processes that act independently are possible 
to be successfully identified (Venegas, 2001). Whenever PCA is applied for 
identification of physically meaningful variability, it is advisable to evaluate results not 
only on a bases of eigenvalues, but also through associating the EOFs and/or PCs with 
known or expected process (Venegas, 2001). Moreover, it should be kept in mind that 
resulting loadings and scores have no arbitrary phase.  

Due to all aforementioned, it is sometimes advised to explore several decomposition 
setups in a search for potentially the most accurate representation of expected 
variability. It is especially valid when the secondary rotation approach is implemented 
into the analysis (Venegas, 2001).  
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3. METEOROLOGICAL CONDITIONS IN SOUTH TYROL 

3.1. Self-Calibrated Palmer Drought Severity Index (scPDSI)  

Although drought originates mainly from rainfall deficit, co-occurring weather 
conditions that shape local evapotranspiration are equally important while estimating 
drought status. Due to this, among traditional drought indices based on long time 
series of on-station observations, comprehensive drought measures accounting on 
evapotranspiration conditions seem to be the most reliable ones (Vicente-Serrano et al., 
2010, 2014; Dai, 2011b; Ma et al., 2012). The Palmer Drought Severity Index (PDSI; 
Palmer, 1965) with its variations (Dai, 2011b; van der Schrier et al., 2013) is probably 
one of the most versatile and widely use comprehensive drought index to date. 

Furthermore, it was demonstrated to be well correlated with forest status (e.g. 
Büntgen et al., 2010; Scharnweber et al., 2011; Gillner et al., 2013). Taking together, 
limited ground truth information and complexity of South Tyrol, scPDSI presents itself 
as the most comprehensive and reliable forest drought related index. 

The PDSI is a simple ‘bucket’ model of water balance that estimates actual soil water 
availability with respect to the potential soil moisture. Beside precipitation and 

temperature records, it employs information on local soil holding capacity and climate 
driven moisture availability. The main flaw of the index is its setting on empirically 
derived constants, which were determined by Palmer for a restricted amount of 
locations and samples (Alley, 1984). Due to this, PDSI defines drought severity classes 

a bit arbitrary, without regard to the local climatic settings. Furthermore, the 
indicator employs the Thornthwaite equation (Thornthwaite, 1948) for a potential 
evapotranspiration model, and assumes precipitation to be always in a liquid phase 
(van der Schrier et al., 2006). Due to this, although the PDSI is a robust drought index 
successfully implemented worldwide (e.g. Mika et al., 2005; Dubrovsky et al., 2009; 
Ram, 2012) and able to compare drought conditions on different location, it is not apt 
for comparisons between diverse climatic regions (Wells et al., 2004; van der Schrier et 
al., 2013).  

To address the PDSI weaknesses several variants of the index have been established 
(Dai, 2011b; van der Schrier et al., 2013). The self-calibrated Palmer Drought Severity 
Index (scPDSI) developed by Wells et al. (2004) takes an advantage of long time series 

of data (minimum 25 years) and substitutes empirical constants in the PDSI model 
with local-climate-based variables derived from the input dataset itself. This liberates 
the index from soil specific information that are not always available, and enhances 
accuracy of a between-climate comparison. Alike the PDSI, scPDSI is based on the 
Thornthwaite equation, and assumes liquid precipitation input. The computation is 
made most commonly on monthly bases and results in values assigned to predefined 
categories (Table 16), where scores follow the normal distribution predefined for 
introduced records. The statistical setup is designed to return extreme drought 
conditions with an approximate probability of 2% (Wells et al., 2004). 

The scPDSI has been successfully applied in numerous studies not only focusing on 
pure climate aspects (e.g. van der Schrier et al., 2006, 2007, 2013; Briffa et al., 2009; 
Potop et al., 2012) but also investigating a climate-vegetation feedback (e.g. Drobyshev 
et al., 2012; Fang et al., 2012) with a particular focus on trees status (e.g. Büntgen et 
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al., 2010; Scharnweber et al., 2011; Gillner et al., 2013). Despite concerns indicated by 
Sheffield et al. (2012) and Vicente-Serrano et al. (2014), the PDSI and scPDSI models 
based on the Thornthwaite equation still remain solid indicators of drought severity 
(Dai, 2011a; Van Der Schrier et al., 2011). Due to this, the scPDSI was selected for 
this study a primary index for the meteorological based drought examination in South 
Tyrol. 

 

Table 16 Classification of the PDSI and scPDSI values (after Wells et al., 2004) 

scPDSI value scPDSI category 

Above 4.00 Extreme wet spell 

3.00 to 3.99 Severe wet spell 

2.00 to 2.99 Moderate wet spell 

1.00 to 1.99 Mild wet spell 

0.50 to 0.99 Incipient wet spell 

0.49 to -0.49 Normal 

-0.50 to -0.99 Incipient drought 

-1.00 to -1.99 Mild drought 

-2.00 to -2.99 Moderate drought 

-3.00 to -3.99 Severe drought 

Below -4.00 Extreme drought 

  

3.2. scPDSI calculation and analyses 

The scPDSI algorithm developed by Wells et al. (2004) was used in this study. The 
model is distributed as a C++ code written within The GreenLeaf Project4 (Wells, 
2003), and with adequate input can provide scPDSI on monthly as well as weekly 
bases. Computation of scores was performed separately for each station based on the 
assembled monthly cumulative precipitation and mean temperature datasets (as 
described in section 2.2.1), hence ensured monthly scores.  

All site-specific time series of different lengths were next collected and organized into 
one consistent structure. In order to match the time-span of MODIS time series, only 
the 2001-2012 scPDSI results were considered further. Subsequently, this collective 
dataset was introduced to the ENVI/IDL implemented correlation-matrix based 

S-mode PCA decomposition, which identified leading meteorological temporal 
variability in the region. Moreover, a yearly drought length (a total duration with the 
index below a certain threshold) and intensity (a mean value of the index below a 
certain threshold; after Mishra and Singh, (2010)) metrics were derived for each station 
for mild to extreme drought events (scPDSI<-1; Table 16). These values were 
subsequently regressed against stations elevation (Table 3) in order to check on 
possible interlink.  

3.3. Results 

The scPDSI calculated for 26 South Tyrolean meteorological stations revealed rather 

consistent weather variability between 2001 and 2012 (Figure 13). 
 

                                      
4
 http://greenleaf.unl.edu 
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Figure 13 Distribution of scPDSI monthly values among the 26 stations (y axis) between 

January 2001 and December 2012 (x axis). Station identification numbers consist with Figure 4 
and Table 3. scPDSI categories after (Wells, 2003). 

 

Almost all stations showed at least moderate drought conditions between 2003 and 
2007, with the most severe dry spells detected in 2003 and 2005. 11 out of 26 locations 
reported drought inception already in mid-2001, where 6 of them experienced a return 
of incipient or moderate wet conditions in 2002. The year 2008 was identified in all 
locations as rather moist period, but still not so wet as the beginning of the 00’s. The 
last four years of the considered term revealed differences between stations, where some 
sites showed wet and very wet spells, while the others experienced dry conditions.  

Spatial recognition indicated that stations located in the Vinschgau Valley (namely 
250, 970, 1120, 1580, 1930, 2320 and 2580) experienced overall the least intense 
drought impact with commonly wet spell before and after the 2003-2007 anomaly. In 
contrary, central and eastern parts of the region (Eisack, Wipp and Puster Valleys) 
were much more affected by aridity, with drought inception already in mid-2001. 
Moreover, rainfall shortages and elevated temperatures were present there also beyond 
2008. Especially extreme conditions were reported for two stations placed in the central 
part of the Eisack Valley and one in the Wipp Valley region (7560 - Fie allo Sciliar,  

3910 - Bressanone, and 3260 - Vipiteno respectively). 

The correlation-matrix based S-mode PCA analysis of the 2001-2012 monthly scPDSI 
time series provided a synthesis of the regional weather conditions. The first resulting 

PC (1scPDSI) accounted on 63%, of the total variance and depicted strong depression 
between 2003 and 2007, followed by an increase concluded in 2008 when values reached 
state observed in 2002 (Figure 14a). The second identified score (2scPDSI; Figure 14b) 
explained 9.95%, of the total variability and revealed a pattern with positive anomaly 
in 2001 and 2002 followed by lower and leveled values. The third principal component 
(3scPDSI; Figure 14c) described 7.36% of the overall signal variance demonstrating a 
leveled response until 2008 with two positive anomalies observed in 2002 and 2008. 
The following years revealed index decrease with an abrupt drop in 2009 and another 
decrease at a break of 2011 and 2012. The overall perception of this pattern suggested 
decreasing trend of y=-0.0013x+0.0948, R²=0.4378 (p=0.0000). Finally, the fourth PC 

(4scPDSI; Figure 14d), which addressed 5.61% of data variability, demonstrated a 
subtle decrease between 2001 and 2008 followed by a strong positive anomaly in 2012. 
This response was defined by an overall insignificant trend of y=-0.0001x+0.0104, 
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Figure 14 Four first PCs derived from the correlation-matrix based S-mode PCA of the 

2001-2012 scPDSI time series: a) 1scPDSI, b) 2scPDSI, c) 3scPDSI and d) 4scPDSI. Presented 
scores explain 63%, 9.95%, 7.36% and 5.61% of the total scPDSI data variance respectively. 

 

R²=0.0052 (p=0.3892). However, focusing on the 2001-2007 period a decreasing 
tendency was described as y=-0.0015x+0.0701, R²=0.429 with p<0.001. Principal 
Components of a higher order revealed no potentially meaningful temporal profiles, as 
well as obtained lower eigenvalues. 

Annual station-specific drought intensity and length measures derived for scPDSI<-1 
rendered main features of local dry spell conditions. Subsequently done year by year 

linear regression of both indicators against stations altitude did not reveal any 
meaningful relationships with most of the results insignificant at the level p<0.05 
(Table 17). Furthermore, the overall on-station averaged drought intensity and length 
also revealed statistically insignificant connection to elevation, where, as expected, 
drought intensity demonstrated slightly positive trend of R²=0.057 (p=0.238), while 
drought length revealed a minor negative tendency of R²=-0.070 (p=0.193). 
 

Table 17 Regression results performed for on-station yearly drought intensity and drought 

length metrics against stations altitude. All scPDSI observations greater than -1 were excluded 

from the analysis.  

Year 
Number of 

observations 

    Drought intensity     Drought length 

regression p-value  regression p-value 

2001 16 0.039 0.462  0.013 0.670 
2002 16 0.153 0.134  0.012 0.683 

2003 26 0.166 0.039  0.037 0.343 

2004 24 0.148 0.064  0.041 0.344 

2005 26 0.054 0.255  0.032 0.385 

2006 25 0.115 0.097  0.252 0.011 

2007 24 0.079 0.184  0.130 0.083 

2008 12 0.248 0.099  0.076 0.385 

2009 14 0.094 0.285  0.097 0.278 
2010 16 0.011 0.693  0.482 0.003 

2011 16 0.184 0.097  0.138 0.156 

2012 16 0.204 0.079  0.002 0.884 
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3.4. Discussion and summary 
5
 

The presented scPDSI results provided an interesting and essential insight into the 
weather variability in South Tyrol between 2001 and 2012.  

First of all, strong scPDSI drought condition was perceived in the region between 2003 
and 2007 with the most severe dry spell in 2005 (Figure 13 and Figure 14a). Secondly, 
a clear positive anomaly was observed in 2008 for all on-stations scPDSI temporal 
profiles (Figure 13), and was well singled out in the 1scPDSI, 3scPDSI and also 
4scPDSI scores (Figure 14a, c and d respectively). Next, the 2scPDSI, as well as 
1scPDSI and 3scPDSI scores (Figure 14b, a and c respectively) highlighted 
above-average wet conditions for 2001 and 2002. Furthermore, the 3scPDSI indicated 

drought circumstances in 2009 and 2011 (Figure 14c), and an overall subtle decreasing 
trend. Finally, the 4scPDSI temporal pattern revealed a fine linear downturn between 
2003 and 2007. Neither decreasing tendency was obvious in the original scPDSI 
dataset. 

Interestingly, the most severe and prolonged drought impact was observed for the 
central and eastern part of the province, especially in the Eisack Valley, at Fie allo 
Sciliar (7560) and Bressanone (3910) stations, as well as in Bolzano (8320). This 
exceptional aridity supports climatic prediction of increasing drought thread in the 
floors and lower slopes of the main inter-alpine southern valleys (Gebetsroither et al., 
2013). On the contrary, the Vinschgau Valley – normally the driest area of South 
Tyrol; although reported drought influence between 2003 and 2007, revealed also a wet 
spell in 2001-2002 and overall moisture conditions from 2008 onwards. This result 
could be explained either by the relativistic nature of the scPDSI, or by indeed 
increasing humidity of the local Vinschgau climate (Schmidli et al., 2002; Auer et al., 
2005).  

The weakest drought stress was observed at stations: Vernago – Finale (1580), Santa 
Maddalena in Casies (4450), and Terento (6560; Figure 13). Although all three 
locations suffered limited drought conditions, they hardly followed the dry-spell 
variability between 2003 and 2007. Their disconnected localization excluded joint, 
regional-specific explanation of the phenomenon. Although the regression analyses 
showed no significant impact of the station altitude on neither drought severity nor 

length, comparison with neighboring locations performed for all three aforementioned 
sites suggests such dependency. Even though regression results indicated statistically 
uniform dry spell impact on all elevations, imposed regional differences in South 
Tyrolean weather patterns could obscure the impact of the elevation gradient. 
Moreover, conducted regression analyses are biased by the fact that all investigated 
meteorological stations are located below 2000 m asl (Table 3). Consequently, no solid 
conclusion on a local drought-elevation interlink should be drawn without further 
investigation.  

Weather conditions during the last four years of the analyzed period varied fairly 
between sites. Stations in the central part of South Tyrol (Eisack and Wipp Valleys) 

                                      
5
 All regional weather specific information used in this section was sourced from the CLIMAREPORT – 

an on-line publication of the Hydrographic Office of the Autonomous Province of Bolzano-Südtirol, 

Avalanche Prevention – Meteorological Service. Climareport numbers 63-204 (2001-2012) 

[URL: http://www.provincia.bz.it/meteo/climareport.asp] 
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revealed a tendency for higher scPDSI scores comparing with the rest of the province, 
which could be linked to the increasing aridity of the lower alpine valleys 
(Gebetsroither et al., 2013).  

Further investigation allowed to put the identified scPDSI variability in a broader 
context of European meteorological events. An inception of the strongest and most 
persistent drought conditions depicted by the 1scPDSI between 2003 and 2007 (Figure 
14a) was in particular agreement with a very hot and dry summer of 2003, triggered 
by the pan-European summer heat wave of 2003 (e.g Rebetez et al., 2006). The 
consecutive year was also characterized by below-normal scPDSI values, which 
harmonized with drought conditions observed in the Western Europe and 
Mediterranean (Spinoni et al., 2015). 2005 drought circumstances comprised an 

extremely arid spring culminated in a drought peak in May – June. These extreme 
conditions were attributed on exceptional setup of pressure system over Europe, and 
considerably affected the Iberian Peninsula and central Mediterranean Basin 
(García-Herrera et al., 2007). An impact of the heat-wave of 2006, associated by 
Rebetez et al. (2008) mainly with Central and North Europe, was demonstrated in the 
analyses also for South Tyrol. Meteorological conditions showed here below-average 
rainfall sums and extreme temperatures from June onwards (Hydrographic Office of 
the Autonomous Province of Bolzano-Südtirol, 2006). Finally, drought conditions 
depicted in 2007 arose from averagely wet, but extremely hot spring and summer of 
2007. These conditions were related to drought events observed in central Europe 
(EEA, 2012), Tyrol (Gruber et al., 2010) as well as the Mediterranean region (August 
& Geiger, 2008). Comparing with the 2006 summer heatwave, which in South Tyrol 
revealed below-average rainfall sums and extreme temperatures only from June 
onwards, 2007 was richer in precipitation, but definitively much warmer in the first 
half of the year. Importantly, the extensive, five-year-long (2003-2007) persistent 
drought conditions identified in the study are in strong accordance with the drought 
response recognized for Central Europe by Ivits et al. (Ivits et al., 2014). An earlier 
ingress of drought marked in the 1scPDSI (Figure 14a) and perceived in the southern 
and eastern parts of South Tyrol (Figure 14) could be linked to the Mediterranean 
drought of 2001-2002 (Ivits et al., 2014).  

Drought conditions in 2009 and 2011-2012 depicted in the 3scPDSI (Figure 14c) were 

perceived in the central and eastern part of South Tyrol (Figure 13) as well as the 
most western outskirts of the province. They correspond well with drought alerts in 
Central Europe (EEA, 2012) and drought in the western and central Mediterranean 
basin (Spinoni et al., 2015). Moreover, the subtle scPDSI decreasing trend identified 
within the 3scPDSI temporal profile likely captured an on-going climate transformation 
and increasing aridity in the region, suggested by Auer et al. (Auer et al., 2005). Alike 
observation was made for the 4scPDSI which indicated scPDSI decrease between 2003 
and 2007 (Figure 14d). 

Beside aforementioned drought events, identified meteorological variability indicated 
several periods with precipitation surplus. The scPDSI increase in 2008, depicted in the 

1scPDSI and 3scPDSI (Figure 14a and c respectively), corresponds with a timing of 
Tropical Cyclone ‘Emma’, which hit Europe in the spring of 2008 and preceded a hot 
but rainy summer. Moreover, the excess of rainfall observed mainly in the northern 
part of South Tyrol in 2001 through 2002, and depicted in the 2scPDSI and 3scPDSI 



METEOROLOGICAL CONDITIONS IN SOUTH TYROL  

 
43 

(Figure 14b and c) is in strong accordance with the continental weather variability and 
flood events in Central Europe in 2002 (Eqecat, 2002). In addition, wetter than average 
meteorological condition denoted by the 1scPDSI and 3scPDSI during 2012 are also 
aligned with humid European weather patterns of that year. 

Importantly, the North Hemisphere 2010 summer heat wave, which strongly impacted 
mainly eastern, northern and central Europe (Barriopedro et al., 2011; EEA, 2012; 
Ivits et al., 2014) did not constrain meteorological conditions in South Tyrol. 

The S-mode PCA decomposition of the scPDSI time series worked well for 
identification of the dominant meteorological variability. Unlike in van der Schrier et 
al. (2013), resulting scores obtained high explanatory values, which supports their 
credibility. Importantly, the 1scPDSI PC came out robust and with very informative 

physical meaning (Figure 14a). The three following principal patterns also revealed 
interesting variability, which was strongly governed by pan-European, as well as more 
local meteorological conditions identified in other studies. 

Potential shortcoming of the scPDSI use for the alpine forest monitoring originates 
from the algorithm assumption on the liquid phase of precipitation. This issue could be 
addressed through a scPDSI-incorporated snowmelt model (van der Schrier et al., 
2007). However, as snowfall and concluding snow cover affect mostly alpine and 
subalpine zones, leaving the colline and mountain forest under limited snow impact, it 
was decided to keep the original assumption. Nevertheless, this aspect should be 
mitigated for broader scPDSI use in the alpine environment. The second issue not 
discussed directly for the scPDSI, neither any other straightforward meteorological 
drought index, is a water discharge due to the land morphology. Slope steepness affects 
local water availability leading to faster runoff, but also implying additional water 
supply from the higher regions (from rainfall or snowmelt). It is a crucial factor, 
especially for the poor and shallow mountain soils with limited water holding capacity. 
Since the on-site scPDSI calibration excludes the inclination influence, results obtained 
for the steep locations are positively biased in comparison to the actual soil moisture 
conditions.  

Another drawback of the presented analysis is a use of on-station measurements, which 
limits spatial understanding of drought variability that is especially complex and 
interesting in the mountains. However, due to a lack of high resolution spatial 

meteorological datasets covering the region of interest, as well as a reliable regional 
model for spatial interpolation of meteorological point measures, employed approach 
was the best possible.  

The use of the Thornthwaite equation based scPDSI model can be questioned too, 
especially in a scope of analyses did by Dai (2011a), Sheffield et al. (2012) and 
Vicente-Serrano et al. (2014) who demonstrated that incorporation of diverse 
evapotranspiration approximations can lead to significantly different results. However, 
as highlighted in Sheffield et al. (2012) this inconsistency is concerning mainly for 
long-term trend analyses, and is not so crucial in rendering drought severity at a given 
moment, neither a series of moments, which was in fact the main purpose of this 

investigation. Therefore it is assumed that the above-presented results are not affected 
by this problem and provide a robust and valuable insight.  
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Demonstrated scPDSI based analyses ensure accurate approximation of local weather 
conditions. Presented variability not only highlighted the most prominent local 
patterns and tendencies, but most importantly, rendered well pan-European 
meteorological changeability, identified in other studies. This observation confirms not 
only a high utility of the scPDSI for drought monitoring, but also shows how dominant 
and extensive were discussed drought events.  

Although the presented study focuses only on a simple scPDSI based synthesis 
analyzing weather conditions between 2001 and 2012, obtained results suggest presence 
of potentially broader and longer trends and relations. It could be very interesting to 
address the topic better, expanding the analysis in time in order to investigate long 
climatic trends in the region. Such a study could provide a better understanding of the 

meteorological variability in South Tyrol, and possibly also in the whole Alps.  
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4. FOREST DROUGHT ASSESSMENT THROUGH MODIS TIME SERIES ANALYSES 

4.1. Design of the study 

PCA decomposition of MODIS derived 2001-2012 NDVI and NDII7 time series was 
targeted at recognizing drought induced forest status variability, and identifying the 
most effective PCA method and data setups to do so. To meet this requirements the 
study design accounted on extensive S-mode PCA analyses (Figure 15) of multiple 
datasets (Table 7 and Table 8), correlation and covariance-matrix based PCA 
convolution as well as two rotation approaches.  

 

  

Figure 15 Conceptual flow chart of data and method setup for the PCA S-mode analyses of 

remotely sensed time series of vegetation indices. NDVI and NDII7 datasets were processed 
separately. 

 

Altogether, 12 PCA decompositions of diverse setups (Table 18) were inspected. They 
aimed at a comparison among: two vegetation indices (namely NDVI and NDII7), 
SG-filtered and not-filtered data, z-score normalization of  time series, different annual 
time-windows as well as correlation and covariance-matrix PCA results. Utility of the 
SG-filtering was examined only for NDVI, since this index better rendered phenology 
dynamism. Exploration of different length of annual time-windows was also focused 
mainly on NDVI time series. Following a suggestion of Eastman & Fulk (1993) a 
covariance-matrix based PCA was applied to z-score normalized time series, while 
not-normalized datasets were decomposed based on a correlation matrix. Remarkably, 
all S-mode PCA analyses were run under the forest mask. 

Results of each tested PCA setup were evaluated through their PCs (scores) 
representing temporal profiles of identified changes. As proposed by Venegas (2001), 
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Table 18 Summary of the S-mode PCA design exploring utility of the NDVI and NDII7 time 

series, data z-score normalization, SG-filtering, diverse annual time windows, correlation and 
covariance-matrix based PCA setting, as well as loading rotation for detection of drought 
related changes in forest status.  

Dataset Index 
z-score 

normalization 

SG 

filtering 

Time window 

(MODIS 

composites) 

PCA 

matrix 
Rotation 

NDVI1-23 NDVI no no full year (1-23) cor no 

NDVISG1-23 NDVI no yes full year (1-23) cor no 

nNDVI1-23 NDVI yes no full year (1-23) cov no 

nNDVISG1-23 NDVI yes yes full year (1-23) cov no 

NDVI8-18 NDVI no no veg. season (8-18) cor no 

NDVISG8-18 NDVI no yes veg. season (8-18) cor no 

nNDVI8-18 NDVI yes no veg. season (8-18) cov yes 

nNDVISG8-18 NDVI yes yes veg. season (8-18) cov no 

nNDVI14-17 NDVI yes no high season (14-17) cov yes 

       NDII78-18 NDII7 no no veg. season (8-18) cor no 

nNDII78-18 NDII7 yes no veg. season (8-18) cov yes 

nNDII714-17 NDII7 yes no high season (14-17) cov no 

       Abbreviations: SG - Savitzky-Golay; veg. – vegetation; cor – correlation; cov – covariance 

 

beside inspection of eigenvalues informing about robustness of each pattern, 
a correspondence with the scPDSI leading PCs was analyzed in order to draw a 
conclusion on an expected vegetation feedback. Only the first four PCs (scores), 
resulting from each of the tested PCA setup and representing temporal profiles of 
changes in forest vegetation status, were cross-compared against four identified scPDSI 
temporal patterns. Owing to inconsistent time steps (16-day vs. monthly) and annual 
windows (12 months vs. 23, 11 or 4 composites per year), vegetation indices based PCs 
and scPDSI temporal profiles were correlated for yearly averages. Since a sign of a 
resulting PCA score function is arbitrary and originates from the data variance based 
rotation of the original dataset, when needed, a sign of emerging PCs was subsequently 
adjusted to fit the scPDSI approximated meteorological variability. This step 
simplified interpretation and comparison between results. A limit to inspect only the 
first four resulting PCs of each PCA setup was governed by eigenvalues that indicate 
amount of dataset variance explained by a given loading and corresponding score. 
Since temporal and spatial patterns associated with higher variance are more likely to 
carry a physical meaning (Venegas, 2001), it was decided to focus only on the most 
prominent PCs. 

The rotation was applied only to three PCA setups based on the nNDVI8-18, nNDII78-18 
and nNDVI14-17 time series (Table 18). This selection was guided by the most 
auspicious drought temporal variability demonstrated among the first four resulting 
PCs of the lowest order obtained using z-score normalized vegetation season datasets. 
The additional inclusion of the high-season NDVI time series illustrated rotation 

impact on dataset with limited data variance. Varimax and Promax approaches were 
implemented for three aforementioned datasets. A number of EOFs to be retain for a 
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rotation was identified using Cattell’s scree test and Kaiser’s stopping rule. Also in a 
case of rotation, the investigation was limited to the first four emerging PCs. 

Influence of Savitzky-Golay filtering on PCA decomposition results was assessed 
through a linear correlation run for corresponding PCA scores derived using filtered 
and non-filtered time series. It provided information on mutual similarity and potential 
advantages originating from noise reduction. Alike quantitative assessment procedure 
was undertaken for the rotation results where the similarity/disparity among rotated 
and original PCs, as well as eigenvectors emerging from diverse rotation approaches 
were investigated.  

Each score potentially carrying information on drought impact on vegetation was 
subsequently correlated on pixel-bases with its original PCA-introduced vegetation 

index time-series. An emerging correlation map showed a spatial projection of a given 
temporal pattern and provided qualitative measure of its spatial representation. Unlike 
an EOF (loading), a correlation map ensures a quantitative resemblance assess thus a 
straightforward interpretation of the investigated temporal variation (Venegas, 2001).  

Although the preselected PCs were derived using diverse datasets and PCA setups, 
they noticeably rendered similar temporal behavior. Therefore, all identified potentially 
drought related scores and their spatial representations were compared in order to 
identify the most reliable and informative patterns for further and detailed 
investigation. During the process PCs and their spatial representations were mutually 
examined using Pearson correlation analysis. Once the most representative potential 
forest drought patterns were selected, they were subsequently analyzed for real 
vegetation impact using time series of phenological indicators (section 2.2.2.2). Each 
selected spatial representation was classified into six drought severity classes using 5th, 
30th, 50th, 70th and 95th percentiles of the correlation values distribution. Class 1 (5th 
percentile) represented regions with the most negative, whereas class 6 (95th percentile) 
the most positive Pearson’s correlation values. Only pixels with significance p<0.1 were 
taken into consideration. The threshold allowed to increase credibility of results 
simultaneously preserving a sensible amount of observations.  

Firstly, significance of each classification was checked through the F-test based 
comparison between strata. Only then, a special insight was given to the areas with the 
strongest agreement with investigated drought temporal patterns (class 6), as well as 

their opposites (class 1). Drought impact assessment was done with yearly phenological 
indices using repeated ANOVA (Analysis of Variance) within factors of:  

- forest type mask (coniferous, mixed, broadleaved); 
- elevation (0-700 m asl, 700-1400 m asl, 1400-2100 m asl, 2100-2500 m asl; 

elevation stratification after Theurillat and Guisan, (2001));  
- exposition (N, E, S, W); 
- inclination (0°-10°, 10°-20°, 20°-30°, 30°-40°, 40°-90°). 
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4.2. Forest condition indicated by PCA of MODIS time series 

4.2.1. NDVI time series 

4.2.1.1. Full year time series: NDVI1-23, nNDVI1-23, NDVISG1-23 and 
nNDVISG1-23 

6 

The correlation-matrix based S-mode PCA of the complete NDVI time series 
(NDVI1-23) revealed seasonality in all first four resulting PCs (Figure A2 1). This 
behavior was the most robust for the first score (1CORNDVI1-23), which explained 
63.23% of the total data variability. The following scores not only demonstrated more 
wobbly temporal profiles but also accounted on significantly smaller data variance 
(3.29%, 2.68 and 1.69% respectively for PCs two to four). The PCs showed limited 
similarity to the scPDSI temporal profiles where only the 2PC (2CORNDVI1-23) and 
3scPDSI, as well as 3PC (3CORNDVI1-23) and 1scPDSI demonstrated significant 
moderate correlation on a yearly basis (Table A2 1). This accordance was however 
vague during a visual inspection of the PCs.  

A seasonal component was clearly detectable in the four first scores of the 
correlation-matrix based S-mode PCA of the complete SG filtered NDVI time series 
(NDVISG1-23; Figure A2 2). The first PC (1CORNDVISG1-23) accounted on 70.86% of 
the total variance and distinctly followed phenological cycle. The consecutive scores 
revealed less prominent temporal behavior with intense spikes. They explained 3.51%, 
2.71% and 1.77% of variability in the time series for the 2PC (2CORNDVISG1-23), 3PC 

(3CORNDVISG1-23) and 4PC (4CORNDVISG1-23) respectively. Moderate resemblance 
was indicated for the 2CORNDVISG1-23 and 3CORNDVISG1-23 that corresponded with 
the 3scPDSI and 1scPDSI scores respectively (Table A2 2). Visual comparison did not 
point to this concurrence. The overall similarity to the NDVI1-23 based PCA results 
was very high (Table A2 3). 

The full year, z-score normalized NDVI time series (nNDVI1-23) introduced into the 
covariance-matrix S-mode PCA revealed temporal patterns with intense changes 
between consecutive observations (Figure A2 3). The first four PCs accounted together 
on 28% of the data variance with the first score (1COVnNDVI1-23) explaining 18.55%. 
Correlation with the scPDSI temporal profiles, done for yearly averages, indicated a 

significant strong negative relation between the 2PC (2COVnNDVI1-23) and 1scPDSI, 
as well as 3PC (3COVnNDVI1-23) and 3scPDSI (Table A2 4). Due to unsteady 
temporal response of the NDVI based scores this relation was latent in the PCs. 

The covariance-matrix implemented S-mode PCA of the complete, z-score normalized 
SG filtered NDVI dataset (nNDVISG1-23) resulted in scores of intense changeability, 
which partly blurred perception of overall trends (Figure A2 4). Alike it was observed 
for three other complete NDVI time series, a significant relation with the scPDSI 
patterns was demonstrated for the 2PC (2COVnNDVISG1-23) which related to the 
1scPDSI score as well as the 3PC (3COVnNDVISG1-23) which correlated with the 
3scPDSI (Table A2 5). Four first resulting scores explained together 34.12% of the 

total data variance where the 1PC (1COVnNDVISG1-23) accounted on 22.48%. The 
following scores addressed correspondingly 6.5%, 3.03% and 2.26% of data variability. 

                                      
6
 Complementary information in the Appendix 2, Section A.2.1 
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Similarity between corresponding principal components of the S-mode PCA run for 
nNDVI1-23 and nNDVISG1-23 time series was strong (Table A2 6). 

4.2.1.2. Vegetation season time series: NDVI8-18, nNDVI8-18, NDVISG8-18 
and nNDVISG8-18 

7 

The correlation-matrix S-mode PCA decomposition of the vegetation season NDVI 
time series (NDVI8-18) left some periodic fluctuations in the PCs (Figure A2 5). It was 
especially strong in the first score, which explained 41.94% of the total data variance. 
Although not supported through a correlation with the scPDSI temporal profiles 
(Table A2 7), the 1PC (1CORNDVI8-18) depicted diminished score envelope in 2003, 
2006, 2007 and 2011. NDVI8-18 derived PCs of the higher order addressed much smaller 

amount of the data variability, namely 4.77%, 3.04% and 2.68% respectively for scores 
two to four. Comparison with the scPDSI temporal profiles done on yearly bases 
indicated the 2PC (2CORNDVI8-18) to be in high accordance with the 1scPDSI patter 
(Table A2 7). Despite positive statistics visual perception of this score presented some 
ambiguity due to various single-value anomalies that obscured the overall trend. 

The first four principal components obtained from the correlation-matrix S-mode PCA 
of the SG filtered, vegetation-season NDVI (NDVISG8-18) indicated  a seasonal 
component (Figure A2 6), which was particularly dominant in the 1PC 
(1CORNDVISG8-18). The pattern accounted on 52.88% of the total data variability and 
demonstrated diminished seasonal maxima of the score envelope in 2003, 2006 and 

2007. This observation was not supported by correlation with the scPDSI (Table A2 
8). Three consecutive PCs of the higher order, which explained 5.03%, 3.23% and 
2.26% of data variance accordingly, demonstrated less robust response with several 
abrupt anomalies. Despite this, a strong relation was indicated between 2PC 
(2CORNDVISG8-18) and the 1scPDSI (Table A2 8), whereas the 3PC 
(3CORNDVISG8-18) was moderately correlated with the 2scPDSI. Correlation between 
corresponding scores that resulted from the NDVI8-18 and NDVISG8-18 based PCA was 
strong only for a pair of the first PCs (Table A2 9). The following scores revealed 
moderate accordance which decreased with increasing PCs order. 

The vegetation season z-score normalized NDVI time series (nNDVI8-18) convoluted 
with the covariance matrix based S-mode PCA produced scores with intense variability 

between consecutive values (Figure A2 7). Dominance of the first PC (1COVnNDVI8-
18) was not so strong comparing with the nNDVI8-18 based results, with the leading 
score explaining 15.25% of the data variance. A potential physical meaning of forest 
drought impact was observed in the 2PC (2COVnNDVI8-18) that negatively correlated 
on yearly bases with the 1scPDSI and 2scPDSI. Furthermore, the 3PC 
(3COVnNDVI8-18) depicted intense score drop in 2003 and was found in negative 
accordance with the 3scPDSI (Table A2 10). Both PCs explained 5.56% and 3.37% of 
the total data variance respectively (Figure A2 7). 

The covariance-matrix based S-mode PCA of the SG filtered, vegetation season z-score 
normalized NDVI time series (nNDVISG8-18) fostered seasonality-free scores (Figure A2 
8). Consequently, data variance was scattered with consecutive 1-4 principal 
components explaining 18.15%, 6.82%, 4.46% and 3.09% data variability respectively. 

                                      
7
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A correlation with the scPDSI patterns was significant only for the 2PC 
(2COVnNDVISG8-18) which was linked to the 1scPDSI and 2scPDSI scores, as well as 
the 3PC (3COVnNDVISG8-18) which was moderately correlated with the 3scPDSI 
(Table A2 11). Resemblance between corresponding nNDVI8-18 and nNDVISG8-18 based 
PCA decomposition results were usual moderate with an exception of a pair of the 
third scores (Table A2 12).  

4.2.1.3. High-season time series: nNDVI14-17 
8 

Among the four first scores originating from the covariance-matrix S-mode PCA of the 
z-score normalized high-season NDVI time series (nNDVI14-17; Figure A2 9) only the 
1PC (1COVnNDVI14-17) and 4PC (4COVnNDVI14-17) revealed significant correlation 

with the scPDSI variability, rendering 1scPDSI and 2scPDSI patterns respectively 
(Table A2 13). In both cases visual comparison suggested partial accordance with the 
scPDSI profiles. On the other hand, the 2PC (2COVnNDVI14-17) as well as the 4PC 
(4COVnNDVI14-17) depicted variability which was much alike the 4scPDSI, however 
this observation was not supported by the statistics (Table A2 13). The first four PCs 
explained accordingly 15.85%, 6.43%, 5.03% and 4.36% of the data variance (Figure A2 
9) revealing limited dominance of the first principal component.  

4.2.2. NDII7 time series 

The NDII78-18 based PCA analyses were narrowed to three designs employing 

vegetation season and high-season time series (Table 18).   

4.2.2.1. Vegetation season time series: NDII78-18, nNDII78-18 
9 

The vegetation season NDII7 (NDII78-18) was decomposed with the correlation-matrix 
based S-mode PCA. Resulting temporal profiles rendered vegetation seasonality of 
diverse level of complexity (Figure A2 10). Already the first extracted PC 
(1CORNDII78-18) showed a potentially meaningful response to drought conditions, 
demonstrating lowered score envelope between 2003 and 2007. This temporal profile 
was strongly consistent on a yearly bases with the 1scPDSI (Table A2 14), and 
represented 22.55% of the total data variance. Furthermore, the 1CORNDII78-18 
indicated moderate negative relation to the 3scPDSI (Table A2 14). Among the scores 

of a higher dimension significant 1scPDSI imprint was apparent in the third 
(3CORNDII78-18) and fourth (4CORNDII78-18) PCs that accounted on 4.40% and 
2.68% of the total data variability respectively. Perception of those agreements was 
however limited due to intensive fluctuation in the NDII78-18 temporal profiles. 

Principal components obtained through the covariance-matrix S-mode PCA 
decomposition of the z-score normalized vegetation season NDII7 time series 
(nNDII78-18) revealed intense anomalies (Figure A2 11). Although the 1PC 
(1COVnNDII78-18), which explained 11.98% of the data variance, revealed on a yearly 
basis strong negative correlation to the 1scPDSI (Table A2 15), their visual accordance 
was not so obvious. This score showed intense anomaly in 2003 and 2004 with a 
contrasting response at a break of 2006 and 2007. Although a PC of the fourth 
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9
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dimension (4COVnNDII78-18) accounted on only 1.66% of the total data variance, it 
clearly resembled the 1scPDSI, which was further supported by correlation analysis 
done on a yearly bases (Table A2 15). Moreover, 4COVnNDII78-18 demonstrated also a 
moderate connection to the 4scPDSI (Table A2 15). Neither a 2PC (2COVnNDII78-18) 
nor 3PC (3COVnNDII78-18) revealed interesting temporal variability following any of 
the scPDSI profiles.   

4.2.2.2. High-season time series: nNDII714-17 
10 

The z-score normalized high-season NDII7 time series (nNDII714-17) was analyzed with 
covariance-matrix implemented S-mode PCA. The first resulting PC 
(1COVnNDII714-17) demonstrated dominance over consecutive scores explaining 14.36% 

of the data variability (Figure A2 12). Its temporal profile moderately related to the 
4scPDSI (Table A2 16). Three consecutive scores explained very similar fraction of the 
total data variability: 3.89%, 3.31% and 3.20% for PCs two, three and four 
respectively. They all showed visual analogy with the 1scPDSI. Yearly means based 
correlation with scPDSI suggested moderate connection between 4PC 
(4COVnNDII714-17) and 4scPDSI as well as detected the 3scPDSI based variability in 
2PC (2COVnNDII714-17) and 3PC (3COVnNDII714-17; Table A2 16). 

4.2.3. Rotation  

4.2.3.1. COVnNDVI8-18
 11 

Following the Cattell’s scree test the five first EOFs were used in rotation analyses of 
the COVnNDVI8-18 dataset (Figure A3 1A). A convolution performed with Varimax 
(Figure A3 1B) and Promax (Figure A3 1C) algorithms produced very similar results 
(Table A3 1), although their visual comparison was not apparent. Among the Varimax 
scores, a significant moderate relation with scPDSI (on yearly bases) was recognized 
for 1PC (1COVnNDVI8-18ROT5V) and 2scPDSI, as well as  for 2PC 
(2COVnNDVI8-18ROT5V) and 3scPDSI (Table A3 2). Promax rotation results had 
smoother temporal profiles and demonstrated better connection with the scPDSI 
patterns (Table A3 2). All four scPDSI temporal patterns were successfully recognized, 
where the 1scPDSI influenced 3PC (3COVnNDVI8-18ROT5P), 2scPDSI controlled 1PC 

(1COVnNDVI8-18ROT5P), 3scPDSI drove 2PC (21COVnNDVI8-18ROT5P) and 3PC 
(3COVnNDVI8-18ROT5P), whereas 4scPDSI governed 4PC (4COVnNDVI8-18ROT5P). 
The rotation clearly altered variance of resulting temporal patterns where only the first 
PCs were strongly correlated with their not-rotated equivalent (Table A3 3).  

Subsequently both rotations were performed using the four first EOFs retained based 
on Kaiser’s stopping rule (Figure A3 1A). Also in this case, corresponding PCs 
produced using orthogonal and oblique rotation solutions (Figure A3 1D and E) were 
highly correlated (Table A3 4). Only two scores obtained through Varimax rotation 
demonstrated correspondence with meteorological variability (on yearly bases): 1PC 
(1COVnNDVI8-18ROT4V), which indicted accordance with 2scPDSI, and 4PC 
(4COVnNDVI8-18ROT4V), which was in line with 1scPDSI (Table A2 5). Temporal 
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patterns derived using Promax solution supported 2scPDSI (2PC; 
2COVnNDVI8-18ROT4V) and 3scPDSI (2COVnNDVI8-18ROT4V and 
3COVnNDVI8-18ROT4V). Notably, rotation performed using the four first EOFs 
demonstrated less intense alternation of variance within PCs (Table A3 6) than it was 
observed for scores based on the rotation of the five first scores. In the former case, 
regardless the rotation approach, all three first PCs showed high to moderate 
correlation with their uncorrelated equivalents. Differences between PCs produced 
based on five and four rotated EOFs were very small for Varimax (Table A3 7) as well 
as Prmax (Table A3 8) solutions.  

4.2.3.2. COVnNDVI14-17 
12 

The Cattell’s scree test performed for the COVnNDVI14-17 dataset indicated seven first 
EOFs (Figure A3 2 A) to be used for a rotation. First four PCs obtained for the 
Varimax (Figure A3 2 B) and Promax (Figure A3 2 C) approaches showed strong 
accordance on a statistical (Table A3 9) as well as visual level. Promax rotation results 
demonstrated smoother temporal profiles and narrower spectrum of changes. 
Correlation with the scPDSI variability performed for yearly averaged time series 
suggested for both rotation solutions a strong connection between 1scPDSI and 4PCs 
(Table A3 10; 4COVnNDVI14-17ROT7V and 4COVnNDVI14-17ROT7P). These scores 
highlighted an intense anomaly in 2002 followed by opposing deviation in 2004. Both 
1PCs (1COVnNDVI14-17ROT7V and 1COVnNDVI14-17ROT7P) revealed 4scPDSI 
impact and emphasized a 2004-2005 anomaly that contrasted with a response in 
2006-2007. Moreover, 1COVnNDVI14-17ROT7V supported also 2scPDSI variability. On 
the other hand, Promax results demonstrated an interlink between 2PC and 4scPDSI, 
as well as 3PC and 3scPDSI. Regardless rotation approach, a strong 2003 anomaly was 
recognized in all 2PCs. Comparison among first four unrotated and rotated scores 
implied no relation (Table A3 11).  

Following the Kaiser’s rule rotation was done for 34 first PC’s (Figure A3 2 A). Both 
algorithms returned highly correlated temporal profiles (Table A3 12) with one strong, 
isolated anomaly in each score (Figure A3 2 D and E for Varimax and Promax 
respectively). Drought related meteorological variability of the 1scPDSI was reflected 
in the 4PCs (Table A3 13). Moreover, a statistically significant connection was 

recognized between the two 2PCs (2COVnNDVI14-17ROT34V and 
2COVnNDVI14-17ROT34P) and 4scPDSI, as well as Promax base 1PC 
(1COVnNDVI14-17ROT34P) and 2scPDSI. A similarity between unrotated and rotated 
COVnNDVI14-17 scores was limited and except from 3PCs and 1PCs revealed variance 
split (Table A3 14). Interestingly, a comparison run separately for Varimax (Table A3 
15) and Promax (Table A3 16) resulting scores derived using seven and 34 EOFs 
showed moderate agreement, with an exception of 3PC’s that were always highly 
correlated.  
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4.2.3.3. COVnNDII78-18 
13

 

For the normalized vegetation season NDII7 time series the Cattell’s scree test 
indicated to retain four first loadings (Figure A3 3A). Temporal patterns of the 
Varimax and Promax rotations (Figure A3 3B and C respectively) revealed very high 
mutual accordance (Table A3 17) where the latter solution demonstrated smoothed 
profiles with lower amplitude of change. In both cases the fourth resulting score was 
found strongly correlated to the 1scPDSI (Table A3 18). Significant negative relation 
was identified also for the 2scPDSI temporal pattern and a pair of the 1PCs 
(1CONnNDII78-18ROT4V and 1CONnNDII78-18ROT4P). Furthermore, 2003 anomaly 
was emphasized in the 1CONnNDII78-18ROT4V and 3CONnNDII78-18ROT4V. 
Accordance with corresponding not-rotated scores increased with a decrease of PC 

order, with orthogonal solution being more conservative (Table A3 19).   

Subsequently, analyses were conducted for the first three scores selected using Kaiser’s 
stopping rule (Figure A3 3 A). PCs derived from both inspected rotation approaches 
demonstrated very high mutual accordance (Table A3 20). Both first PCs 
(1CONnNDII78-18ROT3V and 1CONnNDII78-18ROT3P) showed variability correlated 
with the 1scPDSI (Table A3 21), where the first score from the Varimax solution 
revealed also statistical accordance with 3scPDSI. Furthermore, 2PC obtained through 
the oblique rotation (2CONnNDII78-18ROT3P) was associated with 2scPDSI. Due to 
only three EOFs retained for rotation, variance alternation in final PCs was very small 
(Table A3 22). Accordance between Varimax and Promax emerging scores obtained 
using first four (Table A3 23) and three (Table A3 24) EOFs was very high for 1PCs 
and 2PCs, and moderate for 3PCs.  

4.3. Comparison of PCs identified as potential forest drought responses 

A preliminary inspection of results of multiple S-mode PCA setups allowed to identify 
53 scores that significantly correlated with the scPDSI drought related temporal 
patterns. However, due to inconsistent time-steps between the scPDSI and vegetation 
indices datasets, the comparison was done for yearly averages time series and failed to 
address intra-annual data variability. Consequently, despite high statistics some PCs 
showed temporal variability with strong anomalies that did not relate to recognized 
drought conditions. Therefore, statistical analyses were complemented by a visual 
evaluation of scores, where all erratic and ‘noisy’ patterns were excluded. PCs related 
exclusively to the 2scPDSI were rejected due to a non-drought-associated nature of this 
score. A correlation value minimum threshold for three remaining scPDSI patterns was 
set to 0.6. All aforementioned reduced the number of PCs with recognized potential 
drought vegetation impact, to 16 (Figure 16).  

In order to simplify the further inspection, a phase of all scores rendering alike 
temporal variability were unified to match the appropriate scPDSI PC.  All 16 selected 
scores were mutually compared (Table 19). When time-steps of two inspected PCs 
were inconsistent, a comparison was done for averaged yearly scores. Particularly 
interesting were similarities among principal components that showed alike temporal 

behavior governed by the same dominant scPDSI variability. Furthermore, spatial 
representations  of   identified   PCs  were  also  compared  by   the   means  of  linear  
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Figure 16 PCs that revealed potential physical meaning of forest drought impact:  
A: 2COVnNDVI8-18 (the 2PC from correlation-matrix based PCA of NDVI8-18 time series);  
B: 3COVnNDVI8-18 (the 3PC from covariance based PCA of nNDVI8-18 time series);  
C: 2COVnNDVISG8-18 (the 2PC from correlation-matrix based PCA of NDVISG8-18 time series); 
D: 3COVnNDVISG8-18 (the 3PC from covariance based PCA of nNDVISG8-18 data);  
E: 1COVnNDVI14-17 (the 1PC derived through covariance based PCA of nNDVI14-17);  
F: 1COVNDII78-18 (the 1PC obtained using correlation-based PCA of NDII78-18 dataset);  
G: 1COVnNDII78-18 (the 1PC from covariance-based PCA of nNDII78-18 data);  
H: 4COVnNDII78-18 (the 4PC derived from covariance-matrix based PCA of nNDII78-18 time 
series); I: 3COVnNDII714-17 (the 3PC from covariance-based PCA of nNDII714-17 time series); 
J: 4COVnNDII714-17 (the 4PC from covariance-based PCA of nNDII714-17 time series). 

 

correlation (Table 20).  

In total, nine PCs demonstrated primary resemblance to the 1scPDSI pattern: 
2COVnNDVI8-18, 2COVnNDVISG8-18, 1COVnNDVI14-17, 1CORNDII78-18, 
1COVnNDII78-18, 4COVnNDII78-18, 4COVnNDVI8-18ROT4V, 4COVnNDII78-18ROT4V 
and 4COVnNDII78-18ROT4P (Figure 16 and Table 19 A, C, E, F, G, H, L, O and P 
respectively).  Among  them, the 2COVnNDVISG8-18  (Figure 16D) score obtained the 
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Figure 16 cont PCs that revealed potential physical meaning of forest drought impact:  

K: 3COVnNDVI8-18ROT5P (3PC resulting from the Promax rotation of the five first PCs of 
covariance-matrix based PCA of nNDVI8-18 time series); L: 4COVnNDVI8-18ROT4V (4PC 
resulting from the Varimax rotation of the four first PCs of covariance-matrix based PCA of 
nNDVI8-18 time series); M: 4COVnNDVI14-17ROT7V (4PC resulting from the Varimax rotation 
of the seven first PCs of covariance-matrix based PCA of nNDVI14-17 time series); 
N: 4COVnNDVI14-17ROT7P (4PC resulting from the Promax rotation of the seven first PCs of 
covariance-matrix based PCA of nNDVI14-17 time series); O: 4COVnNDII78-18ROT4V (4PC 
resulting from the Varimax rotation of the four first PCs of covariance-matrix based PCA of 
nNDII78-18 time series); P: 4COVnNDII78-18ROT4P (4PC resulting from the Promax rotation 
of the four first PCs of covariance-matrix based PCA of nNDII78-18 time series) 
 

highest correlation with the 1scPDSI. Despite promising statistic and an abrupt 
anomaly in 2003, this PC presented no additional asset for the potential forest drought 
impact detection. The 2COVnNDVISG8-18 had very high accordance with the 

2COVnNDVI8-18  (Figure 16B),  and  alike  it,  showed  no  connection  to  any  other 
principal component (Table 19). Spatial representation of both PCs (Figure A4 1 and 
Figure A4 3) showed the strongest correlation with identified scores in the central part 
of South Tyrol and along all main valleys. Negative correlation  was observed at the 
highest outskirts of forested area. Similar distribution was recognized in a footprint of 
the 4COVnNDVI14-17ROT7V PC, which was primarily connected with the 4scPDSI 
(Table 20). 

The 4COVnNDII78-18ROT4P (Figure 16P) also demonstrated very high correlation 
with the 1scPDSI and despite some anomalies in its temporal profile, the score revealed 
clear analogy to the dry spell of 2003-2007. Almost equally robust signal was produced 
for the 4COVnNDII78-18ROT4V PC (Figure 16O, Table 19), which even stronger 
emphasized dry conditions in 2006 and 2007. Both aforementioned scores emerged from 
variability detected in 4COVnNDII78-18 (Figure 16H), which was subsequently 
strengthened by the rotation. Mutual correlation among the original and rotated scores  
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was moderate (Table 19) but the main envelope features were well preserved. An 
analogy was detected among spatial representations of all three discussed PCs (Table 
20). They indicated a 2004-2007 NDII7 decrease in the Vinschgau Valley, north part of 
the Eisack Valley as well as western regions of the Western Dolomites (Figure A4 8, 
Figure A4 15 and Figure A4 16). The reversed response was observed in the central 
part of South Tyrol and along the Eisack and Puster Valleys.  

Although the 1COVnNDII78-18 pattern (Figure 16G) demonstrated on a yearly bases 
very high correspondence with the 1scPDSI, as well as was found statistically related 
to the 4COVnNDII78-18ROT4V and 4COVnNDII78-18ROT4P, its actual temporal 
variability was more associated with the 3scPDSI and 4scPDSI. The latter observation 
was supported by an analogy with 3scPDSI and 4scPDSI governed PCs (Table 19). 

Next to signal anomalies in 2003 and 2004, 1COVnNDII78-18 showed lower values for 
2001-2008, followed by raised NDII7 envelope. The spatial representation of the PC 
was a one sided correlation distribution (Figure A4 7) where the highest accordance 
with the principal component was found in the north part of the Eisack Valley, west 
outskirts of the Pustertal and south slopes of the Etschtal Valley. Only the 
1CORNDII78-18 score footprint related to it moderately (Table 20).  

The 1COVnNDVI14-17 (Figure 16E) depicted intense positive anomalies in 2003 and 
2007 parted with lower NDVI values, which was found in moderate agreement with the 
1scPDSI. The score had no significant connection to any other PC but the 
2COVnNDVISG8-18 (Table 19). Its spatial representation indicated the east part of the 
Puster Valley, Vinschgau and west exposed slopes of the Wipp Valleys as regions of 
the highest accordance with identified temporal variability of the score (Figure A4 5). 
This distribution was inversely related to the 4COVnNDVI14-17ROT7V footprint 
(Table 20). Interestingly, correlation distribution of the 1COVnNDVI14-17 was skewed 
towards negative values.  

Despite a clear seasonal component, the 1CORNDII78-18 (Figure 16G) score was 
strongly associated with the 1scPDSI and rendered prolonged arid conditions before 
2008, with two declines in the envelope in 2003 and 2007. Due to phenology signal, this 
PC was weakly correlated with all the other scores related to the 1scPDSI (Table 19), 
but demonstrated yearly-based agreement with 3scPDSI and 4scPDSI associated scores 
(Table 19). A spatial representation of the 1CORNDII78-18 (Figure A4 6) suggested 

potential drought impact mainly in the Northern and Western part of the province, 
which was in moderate agreement with the 1COVnNDII78-18 footprint (Table 20). 

Although statistical alliance of the 4COVnNDVI8-18ROT4V (Figure 16L) temporal 
patter was with the 1scPDSI, this PC demonstrated rather leveled response with 
several single anomalies, among which the 2003 peak was the most distinct. Correlation 
with other inspected scores demonstrated a significant relation mainly with 3scPDSI 
and 4scPDSI associated PCs (Table 19). A spatial footprint of the 
4COVnNDVI8-18ROT4V score indicated central part of South Tyrol, Eisack and Puster 
Valleys as areas with the strongest coincidence to the identified PC (Figure A4 12). 
This pattern corresponded well with spatial representations of the 3COVnNDVI8-18, 

3COVnNDVISG8-18 and 3COVnNDVI8-18ROT5P (Table 20).  

Decreasing NDVI and NDII7 tendencies, being significantly related to the 3scPDSI and 
4scPDSI temporal variability were predominant in seven selected PCs: 
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3COVnNDVI8-18, 3COVnNDVISG8-18, 3COVnNDII714-17, 4COVnNDII714-17, 
3COVnNDVI8-18ROT5P, 4COVnNDVI14-17ROT7V and 4COVnNDVI14-17ROT7P 
(Figure 16 and Table 19 B, D, I, J, K, M and N respectively). 

The highest statistically defined accordance with the decreasing tendency of 4scPDSI 
was observed for 4COVnNDVI14-17ROT7V and 4COVnNDVI14-17ROT7P scores (Figure 
16M and N respectively). Visual inspection of both PCs indicated the latter to have 
smoother and more robust temporal profile with clearer declining tendency, while the 
former revealed variability based mainly on strong anomaly in 2003. Both scores had 
strong mutual correlation and demonstrated strong yearly-averages-based accordance 
to 1CORNDII78-18, 1COVnNDII78-18, 4COVnNDII78-18, 3COVnNDVI8-18ROT5P, 
4COVnNDVI8-18ROT4V, 4COVnNDVI14-17ROT7V and 4COVnNDVI14-17ROT7P 

(Table 19). Resemblance in the time domain resulted in very high accordance in spatial 
representations of both scores (Table 20), which suggested a decreasing NDVI tendency 
to be predominant in the northern and eastern part of South Tyrol (Figure A4 13 and 
Figure A4 14). The southern, central and western portion of the province was 
characterized by negative correlation to both PCs which implied NDVI gain. Both 
footprints were moderately correlated with spatial representations of the 
2COVnNDVI8-18 and 2COVnNDVISG8-18 where the 4COVnNDVI14-17ROT7V 
representation obtained higher statistics and demonstrated an additional negative link 
to the 1COVnNDVI14 17 footprint (Table 20). 

Temporal variability recognized in the 3COVnNDII714-17 PC (Figure 16I) was strongly 
correlated with the 3scPDSI and accounted on NDII7 decrease until 2007, followed by 
higher values. Unfortunately overall perception of this variability was obscured by 
strong positive anomalies in 2005 and 2006. The PC revealed significant yearly-based 
accordance with 3COVnNDVI8-18, 3COVnNDVISG8-18, 1CORNDII78-18, 
1COVnNDII78-18, 3COVnNDVI8-18ROT5P and 4COVnNDVI8-18ROT4V (Table 19). 
On the contrary, its spatial footprint showed no meaningful relation to any PC 
projection (Table 20). Produced correlation map depicted west and north-west part of 
the province to be related to the score temporal variability (Figure A4 9).  

Despite visual similarity to the 1scPDSI, the 4COVnNDII714-17 score (Figure 16J) was 
found to be significantly related to the 4scPDSI. The principal component showed 
deteriorated NDII7 envelope between 2004 and 2007 with intense abrupt drop in the 

first considered composite of 2006. This anomaly clearly predominated statistics. No 
numerical evidence supported a meaningful temporal or spatial based similarity of 
4COVnNDII714-17 with any other analyzed PC (Table 19), neither spatial footprint 
(Table 20). Depicted 4COVnNDII714-17 spatial representation (Figure A4 10) revealed 
the highest correlation with the score in the Vinschgau region as well as on the East 
exposed sloped of the Etschtal and Puster Valleys.    

Both the 3COVnNDVI8-18 and 3COVnNDVISG8-18 (Figure 16B and D respectively) 
depicted NDVI decrease which was related to the 3scPDSI. PCs had very high mutual 
correlation (Table 19) and revealed significant positive relation to the 
3COVnNDVI8-18ROT5P, 3COVnNDVI8-18ROT4V and 3COVnNDII714-17, where the 

latter was checked for the annual yearly scores (Table 19). The 3COVnNDVI8-18 and 
3COVnNDVISG8-18 spatial representations bore substantial accordance (Table 20) 
indicating the north exposed slopes in Vinschgau, Eisack, Wipp and Puster Valleys as 
especially prone to greenness deterioration (Figure A4 2 and Figure A4 4). On the 
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other hand, NDVI increase was suggested by both footprints in the central part of 
South Tyrol along the Eisack and Etschtal Valley. These spatial features were in line 
with the 3COVnNDVI8-18ROT5P and 4COVnNDVI8-18ROT4V footprints (Table 20).  

The 3COVnNDVI8-18ROT5P (Figure 16K) not only accounted on similar temporal 
variability as the 3COVnNDVI8-18, which resulted in decreasing tendency correlated 
with the 3scPDSI, but also incorporated 1scPDSI alike component. The score revealed 
slightly erratic pattern which was proven to have considerable analogy with several 
inspected scores, including the 3COVnNDVI8-18 and 3COVnNDVISG8-18 (Table 19). A 
3COVnNDVI8-18ROT5P spatial representation suggested NDVI decline to be the most 
common for the highest forest stands of the northern and western part of South Tyrol 
as well as south-east portion of the province (Figure A4 11). The stronger, opposite 

reaction of NDVI gradual increase was observed near the valley floors, particularly in 
the central part of South Tyrol and along the Etschta, Eisack and Puster Valleys. 
Alike tendencies were observed for the 3COVnNDVI8-18 and 3COVnNDVISG8-18 and 
4COVnNDVI8 18ROT4V footprints (Table 20).  

Considerable correlation among analyzed temporal patterns and their spatial projection 
was observed. It concerned not only mutual similarity between scores associated with 
the specific scPDSI identified drought temporal variability, but also proved overlaps 
between PCs following the 2003-2007 dry spell and increasing aridity patterns. 
Furthermore, three inspected principal components revealed significant impact of both 
drought variabilities.  

Although scores obtained through the rotation revealed strong correlation with the 
scPDSI scores, their temporal responses were, in general, much more wobbly and with 
sudden peaks and lows, that had no support in the scPDSI, neither could be explained 
by forest processes. Roughness of time-profiles was also common among scores derived 
using the high-season time series. Finally, although the SG filtering reduced noise level 
presented in scores, the convolution ensured no considerable improvement. Taking 
together, having in mind physiological credibility and reliability of the identified NDVI 
and NDII7 forest responses as well as recognizing existing results overlap; three PCs 
were selected together with their footprints for further investigation: 

- 1CORNDII78-18 which showed robust phenological component that corresponded 
with the 1scPDSI, and produced unique spatial correlation pattern;  

- 4COVnNDII78-18 that also followed the 1scPDSI meteorological variability, but 
showed higher time-domain correspondence with other alike PCs, including 
rotation-retained scores. It demonstrated a coherent anomaly-based temporal 
representation with limited signal fluctuations or potential data artifacts that 
translated into the consistent footprint; 

- 3COVnNDVI8-18 which comprised all the most relevant features of the NDVI 
anomaly based PCs rendering the increasing/decreasing ‘greenness’ evolution. 
From all 3scPDSI and 4scPDSI related PC, this score was selected due to good 
correspondence with the other alike scores, and their spatial representations.  

4.4. Assessment of drought impact on forest 

Spatial projections of the three selected PCs rendering potential forest responses to 
drought conditions were subsequently classified using percentiles of their correlation 
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values distributions (Table 21). Only pixels that fulfilled the significance criterion 
(p<0.1) were considered in the further analyses. Pixels that fall between the 95th 
percentile and a maximum (class 6) had the strongest association with the considered 
score phase (Figure 16). On the contrary, all regions assigned to class 1 (minimum to 
5th percentile) revealed opposite properties.   

 

Table 21 Percentiles of correlation values of spatial projections of 1CORNDII78-18, 

4COVnNDII78-18, and 3COVnNDVI8-18 PCs considered as potential drought forest impact 
temporal responses. Indicated threshold values became limits of drought impact classes. 

 

Since PCs identified as potentially drought related had different temporal variability 
that addressed diverse stress-vegetation feedback, resulting spatial representations also 
depicted divergent regionalization of South Tyrol. Furthermore, when interpreted 
within multilevel factors of forest type, exposition, elevation and inclination, allocation 

of drought impact classes revealed interesting principles of behavior (Table 22; further 
examination and description in the following sections). 

 

Table 22 Pixel distribution within factors levels inspected for the 1CORNDII78-18, 

4COVnNDII78-18 and 3COVnNDVI8-18 PCs spatial representations. Class 6 denotes regions with 
the strongest, whereas class 1 the weakest fit to the scores (Figure 16F, H and B). 

 1CORNDII78-18 4COVnNDII78-18 3COVnNDVI8-18 

[%] 1 6 1 6 1(in) 6(d) 

Total (pixels) 2391 2391 692 692 1205 1205 
       
Coniferous 92.30 94.65 91.04 95.38 76.10 96.85 
Broadleaved 2.01* 0.59* 1.88* 0.58* 3.65* 0.33* 
Mixed 5.69 4.64 7.08* 4.05* 20.25 2.82* 
       N 31.12 13.55 25.29 27.17 4.65 62.07 
E 27.52 25.81 17.63 18.79 30.71 11.78 
S 18.74 37.31 27.75 34.54 49.21 5.15 
W 22.63 23.34 29.34 19.51 15.44 21.00 
       0-700 m asl 5.44 0.33* 1.88* 3.90* 13.11 0.50* 
700-1400 m asl 20.91 8.99 33.38 54.77 63.24 31.29 
1400-2100 m asl 54.12 89.00 64.74 33.96 20.66 68.13 
2100-2500m asl 19.53 1.67* - 7.37 2.99* 0.50* 
       0-10 deg. 9.45 8.66 18.50 3.76 14.27 3.90 
10-20 deg. 33.71 27.39 34.54 20.38 36.43 20.08 
20-30 deg. 38.39 41.36 36.56 51.01 40.91 56.85 
30-40 deg 16.14 21.58 10.26 23.70 7.97 18.67 
40-90 deg. 2.30 1.00* 0.14* 1.16* 0.41* 0.50* 
       * - category with less than 50 observations; in-increasing; d - decreasing 
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4.4.1. 1CORNDII78-18 spatial pattern 

The 1CORNDII78-18 PC indicated depleted NDII7 seasonal scores priori to 2008 with 
the lowest maxima observed in 2003 and 2007 (Figure 16F). Regions significantly 
associated with this temporal response (Class 6 in Figure 17) were located mainly 
between 1400 and 2100 m asl (Table 22) in the Vinschgau and Wipp Valleys as well as 
in the Pustertal and the Etschtal Valley. The pattern addressed mainly coniferous 
stands, most often located on the south exposed slopes with moderate to high 
inclination. Class 1 accounted on pixels with very weak or negative correlation to the 
1CORNDII78-18 score (Table 21). This response was identified mainly in the central 
and east part of South Tyrol, with a clear preference for upper forest limits and lower 
forest fringe (Figure 17). Furthermore, this class revealed preferences for north and 

east exposition and low to medium inclination (Table 22) 

 

 
Figure 17 Spatial representation of the 1CORNDII78-18 PC limited to response of class 1 (green) 

and 6 (red). The forest mask marked in gray. 

 

A significance of phenology and productivity
14

 changes in time within recognized 
1CORNDII78-18 response classes was tested with the within-subjects effects test of the 
repeated measures ANOVA performed with the Hujnh-Feldt adjustment. Results 
demonstrated statistically significant differences for time (Table 23) as well as 
combined factors of time and drought classes. Moreover, phenology diversity between 
factors levels was evaluated (Table 24) and demonstrated leading influence of 
elevation, with less evident diversification for slope, aspect and forest type. 

Phenology and productivity changes observed within drought response classes 6 and 1 
revealed for the former higher NDVIHS and NDII7HS scores (Figure 18e and f), with 
three considerable drops detected in 2003, 2007 and 2011. Alike timed declines were 
observed also for class 1, with an exception of the NDVIHS where 2007 decrease was 
 

                                      
14

 Phenological indicators are dresribed in details in section 2.2.2.2. 
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Table 23 Within-subjects effects test of repeated measures ANOVA performed for the spatial 

representation of the 1CORNDII78-18 PC. Test run with the Hujnh-Feldt adjustment returning 
results for the factor of time, and time combined with drought response class (6 levels) within 
selected phenology and productivity indicators. 

 time  time*response class Error 

 df F p  df F p df 

CF 8.793 5443.52

7 

0.000  43.963 57.787 0.000 420546.046 

GPP 9.287 1646.97

0 

0.000  46.436 26.187 0.000 444200.111 

SBD 9.019 1565.92

7 

0.000  45.097 14.181 0.000 431251.907 

SL 9.320 1287.96

0 

0.000  46.601 19.224 0.000 445777.326 

NDVIHS 9.565 8034.55

1 

0.000  47.824 92.282 0.000 457478.427 

NDII7HS 9.668 9627.94

9 

0.000  48.342 28.792 0.000 462430.924 

          

Table 24 Effects of forest type, aspect, elevation and slope factors evaluated for phenology and 

productivity indices within the spatial representation of the 1CORNDII78-18 PC using the test 
of between-subjects effects of repeated ANOVA.  

 Forest type (df=2) Aspect (df=3) Elevation (df=4) Slope (df=4) 

indicato

r 

F p F p F p F p 

CF 24.810 0.000 1.417 0.236 116.669 0.000 5.024 0.000 

GPP 0.154 0.858 5.065 0.002 153.635 0.000 3.093 0.015 

SBD 3.360 0.035 8.037 0.000 31.595 0.000 0.974 0.420 

SL 0.350 0.705 11.737 0.000 6.889 0.000 9.513 0.000 

NDVIHS 50.281 0.000 9.455 0.000 70.970 0.000 24.480 0.000 

NDII7HS 12.691 0.000 2.299 0.075 38.563 0.000 20.112 0.000 
         

 

substituted by a drop in 2006. Both strata demonstrated an increasing significant 
linear trend, which was found particularly strong for the NDII7HS (Table 25). 
Potentially drought affected sites of class 6 revealed the lowest CF (Figure 18a). 
Regardless the response class, seasonal productivity reported an abrupt increase in 
2003 followed by gradual decline, which for class 6 lasted until 2007. A consecutive 
peak was observed again in both strata around 2008-2009. Overall linearity of CF 
change was insignificant for area of class 6, but strong and meaningful within class 1 

(Table 25). Conversely, GPP (Figure 18b) showed higher values for sites consistent 
with the 1CORNDII78-18 PC variability, where overall productivity increase was 
observed (Table 25). A decreasing GPP tendency between 2002 and 2010 was detected 
within class 6, whereas class 1 rendered strong GPP decline between 2008 and 2010.  
SBD showed a vast amplitude of changes (Figure 18c) where sites aligned the strongest 
with the 1CORNDII78-18 score experienced always sooner vegetation onset. This overall 
tendency for earlier season begin (Table 25) was disturbed in 2008-2010. Associated SL 
values depicted a very subtle and statistically significant increase for class 6 (Table 
25), but with no direct link to the SBD variability (Figure 18d). Moreover, respective 
regions experienced lower spectrum of inter-annual SL changes. 

Forest stands demonstrating the strongest accordance with the 1CORNDII78-18 
variability, hence also drought impact, were analyzed further with repetitive ANOVA 
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Figure 18 Year-to-year variability observed within drought impact classes 1 and 6 of the 

1CORNDII78-18 PC footprint: a) CF, b) GPP, c) SBD, d) SL, e) NDVIHS and f) NDII7HS.   

 

Table 25 Strength of overall linear trends identified for phenology and productivity indicators 

within response classes 1 and 6 derived for the spatial representation of the 1CORNDII78-18 
PC. Assessment done using the within subject contrasts test of repeated ANOVA. 

 Class 1 Class 6 

indicator F p F p 

CF 12.728 0.000 1.694 0.193 

GPP 11.578 0.001 13.245* 0.000 

SBD 14.917 0.000 4.990 0.026 

SL 3.580 0.059 7.533* 0.006 

NDVIHS 54.301 0.000 34.776 0.000 

NDII7HS 177.909* 0.000 227.867* 0.000 
     

      * - the strongest trend of all tested contrast order 

 

measures. Firstly, statistical significe of time driven differences of phenological 
measures were confirmed with the within-subjects effect test (Table A5 1). 
Subsequently, combined effect of time and site-specific characteristics was tested, and 
revealed significant and meaningful differences only for CF, NDVIHS and NDII7HS for a 
combination of time and elevation (Table 26). 

Further insight into phenological changes observed within the forest type, aspect, 
elevation and slope levels, was provided for area associated with the 1CORNDII78-18 
response class 6 by detailed temporal profiles of repetitive ANOVA measures (Figure 
A6 1). Forest type classes revealed the strongest diversification for NDVIHS, NDII7HS 

and CF, where coniferous strands obtained always the lowest scores. Moreover, 
needle-leaved woodland revealed the strongest NDVIHS decrease between 2003 and 
2007. GPP productivity demonstrated alike values for all forest types. Notably, mixed  
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Table 26 Effect of elevation factor in time on distinction between productivity indices tested 

for the response class 6 derived for the spatial representation of the 1CORNDII78-18 PC.  
Analyses performed using within-subjects effects test of repeated ANOVA. Only measures with 
significant statistics are shown (p<0.001). 

 time*elevation 

 df F 

CF 27.809 2.385 

NDVIHS 28.995 4.524 

NDII7HS 35.055 3.460 

    

forest reported a bit later vegetation onset between 2003 and 2007, which however did 

not translate into shorter SL. Broadleaved stands were not considered due to 
insufficient representation (Table 22). Exposition had limited impact on phenology, 
where only north exposed sites revealed outstanding responses. Those regions showed 
the highest NDVIHS, NDII7HS and GPP scores, but the lowest CF. Moreover, NDVIHS 
change spectrum observed within the north facing slopes was the highest. Conversely, 
CF dynamism seemed to increase with a shift towards south exposition. A tendency 

towards earlier SBD was observed, with the most intense shift at north facing sites 
between 2003 and 2005. Despite this, north slopes experienced the shortest SL. 
Diversification between three remaining strata was limited. Due to a poor 
representation, only 700-1400 m asl and 1400-2100 m asl elevation zones were 
considered in this part (Table 22). They demonstrated very alike NDVIHS and NDII7HS 
responses rendering the same temporal features. The same was valid for GPP profiles 
that indicated regions placed on 700-1400 m asl to show a smooth increasing trend 
only mildly interrupted in 2005 and 2010. Stands growing on lower altitudes 
demonstrated lower CF and limited time driven changes. Elevation increase translated 
not only into CF increment, but also emphasized inter-annual variability. SBD 
revealed limited elevation dependence, where however the 700-1400m asl class showed 
smoother and more persistent tendency towards earlier vegetation onset. Related 
response was observed for SL, where aforementioned elevation class depicted a robust 
prolongation trend of vegetation season. Conversely, despite SBD decrease, the upper 
elevation strata showed more persistent SL behavior, altered mainly in the second part 
of the observation period. Slope, as expected, showed more favorable vegetation 
conditions for regions with the lowest inclination – the highest NDVIHS, NDII7HS and 
GPP score were observed here. In contrast, the same locations revealed the lowest CF 
with less intense inter-annual variability. Although SBD demonstrated considerable 
differences and intense inter-annual dynamism among inclination classes no clear 
relation was detected. Conversely, SL response was rather coherent. Importantly, 
signal difference among diverse factor classes was much more intense before 2007 than 
later on.  

4.4.2. 4COVnNDII78-18 spatial pattern 

Spatial pattern associated with the 4COVnNDII78-18 PC (Figure 16H) was composed of 

relatively small number of pixels, which was a consequence of the correlation p-value 
criterion (Table 22). Sites recognized as experiencing diminished foliage water content 
between 2004 and 2007 and aggregated in class 6 were located in the west and central 
part of South Tyrol (Figure 19). They were represented almost exclusively by 
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Figure 19 Spatial representation of the 4COVnNDII78-18 PC limited to response of class 1 

(green) and 6 (red). The forest mask marked in gray. 

 

coniferous stands growing mainly between 700 and 2100 m asl, which reflected rather 
well the general lay of the land. A mild preference for south exposition and moderate 
inclination was observed within this class. The opposite response of class 1, was 

recognized principally in the Eisack Valley and the east-most part of the Pustertal. 
This pattern was more common for west and south facing slopes of mid to high 
altitudes and low to moderate inclination (Table 22). 

Year-to-year phenology and productivity variability observed within the 
4COVnNDII78-18 footprint over the 2002-2012 period was not only significant in time, 
but also revealed significant time-controlled differences among six considered drought 
impact classes (Table 27; repeated measures ANOVA performed with Hujnh-Feldt 
adjustment). NDII7HS showed the strongest diversification among drought impact 
classes. Lower, but still robust differences were observed for NDVIHS and CF, whereas 
SL, GPP and SBD were the least affected by variability suggested in the PC. 
Moreover, the forest response was proven to be governed by elevation, slope, aspect 
and forest type (Table 28), where the influence of altitude was the strongest, while 
exposition and inclination were found less dominant, with even insignificant impact on 
CF and GPP. Forest factor was statistically irrelevant for GPP and SL.   

Although the 4COVnNDII78-18 PC showed a decrease between 2004 and 2007, areas 
associated with this score reported diminished NDVIHS and NDII7HS starting already 
from 2003 (Figure 20e and f). A decrease was observed in both envelopes until 2007 
with an intense increase afterwards. Regions indicated by the response class 1 revealed 
usually higher values of phenological indices with significant linear tendency (Table 29) 
and highlighted negative anomalies in 2003 and 2011. Moreover, the NDVIHS time 
series observed for class 1 showed additional decrease in 2006-2007. SBD reported for 
both strata rather complex responses. While an overall perception of the signal within 
class 6 suggested a decreasing SBD tendency (Figure 20c, Table 29), vegetation onset 
between 2003 and 2008 showed progressively later inception. On the other hand, forest 
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Table 27 Within-subjects effect test of repeated measures ANOVA performed for the spatial 

representation of the 4COVnNDII78-18 PC. Test run with the Hujnh-Feldt adjustment 
returning results for factor of time and time combined with impact class (6 levels) within 
selected phenology and productivity indicators. 

 time  time*response class Error 

 df F p  df F p df 

CF 8.781 1494.70

0 

0.000  43.907 40.477 0.000 8705.347 

GPP 9.202 475.511 0.000  46.009 4.284 0.000 127454.137 

SBD 9.024 410.723 0.000  45.120 5.183 0.000 124991.028 

SL 9.353 355.989 0.000  46.766 5.303 0.000 129551.833 

NDVIHS 9.507 2252.72

4 

0.000  47.537 68.155 0.000 131687.247 

NDII7HS 9.683 2711.45

1 

0.000  48.413 256.943 0.000 134113.119 

          

Table 28 Effects of forest type, aspect, elevation and slope factors evaluated for phenology and 

productivity indices within the spatial representation of the 4COVnNDII78-18 PC using the test 
of between subjects effects of repeated ANOVA. 

 Forest type (df=2) Aspect (df=3) Elevation (df=4) Slope (df=4) 

 F p F p F p F p 

CF 28.261 0.000 1.805 0.144 64.356 0.000 1.784 0.129 

GPP 0.860 0.423 2.404 0.065 115.223 0.000 1.131 0.340 

SI 4.443 0.012 3.793 0.010 35.461 0.000 4.524 0.001 

SBD 6.555 0.001 4.825 0.002 36.370 0.000 0.204 0.936 

SL 2.197 0.111 4.841 0.002 2.864 0.022 3.994 0.003 

NDVIHS 21.981 0.000 4.860 0.002 84.364 0.000 4.767 0.001 

NDII7HS 3.061 0.047 0.543 0.653 46.848 0.000 4.652 0.001 
         

 

 
Figure 20 Year-to-year variability observed within drought impact values 1 and 5 of the 

4COVnNDII78-18 PC footprint: a) CF, b) GPP, c) SBD, d) SL, e) NDVIHS and f) NDII7HS.  
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Table 29 Strength of overall linear trends identified for phenology and productivity indicators 

within response classes 1 and 6 derived for the spatial representation of the 4COVnNDII78-18  
PC. Assessment done using the within subject contrasts test of repeated ANOVA. 

 Class 1 Class 6 

 F p F p 

CF 11.034 0.001 0.013 0.911 

GPP 5.534* 0.019 4.479 0.035 

SBD 1.618 0.204 2.480 .0116 

SL 5.225* 0.023 0.076 0.783 

NDVIHS 41.501 0.000 15.287 0.000 

NDII7HS 183.333

* 

0.000 62.645 0.000 

     * - the strongest trend of all tested contrast orders  

 

associated with class 1 revealed wobbly SBD signal with three single-year positive 
peaks and a massive positive anomaly between 2008 and 2010. Although the visual 
interpretation suggested an overall decreasing tendency, this linear relation was 
statistically insignificant (Table 29). SL revealed strong differences between classes 
with the shortest vegetation period denoted for the response class 6 (Figure 20d). 
Importantly, a moderate significant tendency for longer SL was observed in both 
classes (Table 29). Conversely, GPP within class 6 depicted an overall moderate 
decrease until 2010 with an intense rise afterwards (Figure 20b), whereas regions 

belonging to class 1 had not only higher productivity, but also experienced less distinct 
decrease between 2002 and 2010. CF observed within both considered response classes 
revealed contrasting signal between 2004 and 2007 (Figure 20a). While stands 
associated with class 6 showed decreasing CF, areas with the opposite response denoted 
much higher values with an initial increase concluded in a local drop in 2007. During 
the second part of the investigated period both CF signals had alike variability with an 
apparent positive peak centered at 2009. The overall perception of both responses 
suggested linear tendencies, which was statistically confirmed only for class 1  
(Table 29). 

A further investigation of the 4COVnNDII78-18 drought related response of class 6 was 
performed with the within-subjects effects test of repeated ANOVA measures with 

Hujnh-Feldt correction. The analysis confirmed for all metrics significant time 
governed differences (Table A5 2). Time combined with elevation factor revealed 
statistically significant differences only for CF, NDVIHS and NDII7HS (Table 30).  

 

Table 30 Effect of elevation factor in time on distinction between productivity indices tested 

for the response class 6 derived for the spatial representation of the 4COVnNDII78-18 score. 
Analyses performed using within-subjects effects test of repeated ANOVA. Only measures with 
significant statistics are shown (p<0.001). 

 time*elevation 

 df F 

CF 30.000 3.122 

NDVIHS 32.670 6.493 

NDII7HS 36.000 3.963 
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Detailed insight on phenology and productivity variability within forest type, aspect, 
elevation and slope classes was analyzed only for stands affected by diminished plant 
water content (class 6). 

While altitude increase translated on almost linear decrease in NDII7HS, NDVIHS, GPP 
as well as delayed vegetation onset, it had a positive effect on CF (Figure A6 2). 
Regions placed at higher elevations, reported in 2003 CF, NDII7HS and NDVIHS rise, 
which was soon followed by depletion of all three measures. Even though CF and 
NDVIHS revealed subsequent increase already in 2007, NDII7HS recovered not until 
2008. Drought conditions had no effect on CF of stands growing below 1400 m asl, but 
resulted there in lower NDII7HS and NDVIHS. GPP calculated for the regions placed 
between 700 and 1400 m asl showed diminished values for 2004 through 2010, which 

contrasted with a 2002-2007 GPP rise reported for the highest elevation class. A 
distinct shift towards earlier vegetation onset was observed only for the 700-1400m asl 
strata. It had no clear relation with the SL though. Diversification of SL within 
elevation zones was suggested until 2006, where the highest areas experienced 
prolongation of  the vegetation season. Starting from 2007, SL differences were 
irrelevant. 

Exposition had limited impact on phenology and productivity variability under 
diminished foliage water content conditions. All aspect classes reported comparable 
NDII7HS and NDVIHS temporal responses of general 2002-2007 downturn, where the 
south facing regions were characterized by the lowest values (Figure A6 2). Noticeable 
similarity among exposition classes was also observed for GPP. The south-facing 
regions revealed here the smallest, while the west-oriented slopes, the biggest GPP 
variability spectrum. CF provided the best distinction among the aspect classes. West 
and south facing locations reported the lowest seasonal productivity, but also the most 
intense CF decline under drought conditions. In general, west exposition experienced 
the earliest vegetation onset, whereas south facing stands showed the latest SBD. The 
greatest disparity in season start was reported before 2007 and in 2011. All classes but 
S, revealed general SBD delay tendency between 2003 and 2008. This trend was not 
translated into SL profiles that revealed wobbly temporal variability with the greatest 
disparity observed between 2004 and 2006. The most intense SL change was observed 
on west-exposed areas. Discrepancy among aspect classes were reduced after 2007.  

Inclination showed no significant role in governing NDVIHS, NDII7HS nor CF drought 
related responses (Figure A6 2). In all three cases slope levels depicted alike temporal 
variability where leaning increase leaded to NDVIHS and NDII7HS drop, but apparently 
CF rise. Conversely, an inclination-specific response was observed for GPP, where 
steepness increase leaded to nonlinear productivity changes. GPP disparity among 
slope classes was the greatest for 2003 and 2004. Diminished foliage water content 
conditions leaded to modest shift towards an earlier vegetation onset within regions of 
10-40 degrees inclination. On the other hand, sites with leaning of less than 10 degrees 
revealed clear 2002-2009 SBD decrease tendency temporally hampered in 2004-2005. 
The greatest differences in vegetation season length were noted from 2003 through 

2006, where the change variability decreased with slope increment. 

Since neither broadleaved nor mixed stands were represented by a sufficient number of 
pixels (Table 22; Figure A6 2), forest type was excluded from the consideration. 
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4.4.3. 3COVnNDVI8-18 spatial pattern 

The 3COVnNDVI8-18 PC (Figure 16B) implied a gradual decrease in forest ‘greenness’ 
initiated with a 2003 NDVI increase. Response correlated with this variability was 
recognized for coniferous forest (Table 22) growing in majority on north exposed sites 
in the central, north and west parts of South Tyrol (Figure 21). Discussed stands 
occupied usually medium to high altitudes with a clear preference for 1400-2100m asl 
strata and moderate sloping. The reversed response was fostered by class 1 and 
comprised a NDVI drop in 2003 followed by gradual NDVI increase. The rising 
tendency was identified most often in the central part of South Tyrol and the Eisack 
Valley (Figure 21) at medium elevations as well as on south and east exposed slopes 
(Table 22). It was characteristic mainly for coniferous stands, with addition of mixed 

forest growing on slopes with low to moderate inclination. 
 

 

Figure 21 Spatial representation of the 3COVnNDVI8-18 PC limited to response of class 1 

(green) and 6 (red). The forest mask marked in gray. 

 

Significance of phenology and productivity changes observed in the region was 
confirmed using the within-subjects effects test of the repeated measures ANOVA 
performed with the Hujnh-Feldt adjustment (Table 31). Furthermore, differences 
among six drought impact classes were also significant in time, with the greatest 
disparity observed for NDVIHS. The effect of site-specific characteristics on local 
phenology was inspected, and revealed the leading impact of elevation (Table 32). 
Aspect and slope were found less influential, whereas forest type showed significant 
relation only for CF and NDVIHS. 

The alpine forest revealing nNDVI decrease between 2003 and 2012 (class 6) showed an 
overal NDVIHS decline (Table 33) with two local minima in 2007 and 2011 (Figure 

22e). On the contrary, NDII7HS revealed rather levelled response with a minor 
reduction in 2003, and two drops in 2007 and 2011 separated by higher NDII7HS values  
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Table 31 Within-subjects effects test of repeated measures ANOVA performed for the spatial 

representation of the 3COVnNDVI8-18 PC. Test run with the Hujnh-Feldt adjustment 
returning results for the factor of time, and time combined with response class (6 levels)  
within selected phenology and productivity indicators. 

 time  time*response class Error 

 df F p  df F p df 

CF 8.896 2279.982 0.000  44.478 89.880 0.000 214427.103 

NPP 9.316 742.959 0.000  46.581 73.776 0.000 224568.362 

SBD 9.012 627.540 0.000  45.062 32.252 0.000 217242.288 

SL 9.365 533.215 0.000  46.823 48.752 0.000 225734.212 

NDVIHS 9.905 3923.234 0.000  49.493 929.866 0.000 238759.726 

NDII7HS 9.723 5432.021 0.000  48.613 244.681 0.000 232420.809 

          

Table 32 Effects of forest type, aspect, elevation and slope factors evaluated for phenology and 

productivity within the spatial representation of the 3COVnNDVI8-18 PC using the test of 
between subjects effects of repeated ANOVA. 

 Forest type (df=2) Aspect (df=3) Elevation (df=4) Slope (df=4) 

 F p F p F p F p 

CF 14.228 0.000 0.027 0.994 64.442 0.000 2.898 0.021 

GPP 0.394 0.674 1.725 0.160 83.772 0.000 2.772 0.027 

SBD 1.941 0.144 10.885 0.000 17.933 0.000 1.543 0.187 

SL 0.801 0.449 5.993 0.000 3.150 0.013 6.861 0.000 

NDVIHS 29.905 0.000 5.908 0.001 44.437 0.000 13.420 0.000 

NDII7HS 9.399 0.000 1.762 0.152 22.774 0.000 9.798 0.000 
         

 

Table 33 Strength of overall linear trends observed for phenology and productivity indicators 

within response classes 1 and 6 derived for the spatial representation of the 3COVnNDVI8-18 
PC. Assessment done using the within subject contrasts test of repeated ANOVA. 

 Class 1 Class 6 

 F p  F 

CF 25.981 0.000 3.581 0.059 

GPP 91.100 0.000 0.909 0.341 

SBD 38.053 0.000 0.568 0.451 

SL 4.700 0.030 2.182 0.140 

NDVIHS 401.204* 0.000 156.622 0.000 

NDII7HS 385.796* 0.000 8.559 0.004 

         * - the strongest trend of all tested contrast orders  

 

(Figure 22f). A no clear tendency could be identified for SBD observed within those 
regions (Figure 22c; Table 33). Vegetation onset varied greately between consecutive 
years, with earlier SBD in 2003, 2005, 2007 and 2011. Although SL also demonstrated 
considerable variation (Figure 22d) its relation with vegetation onset was limited. 
Despite a downturn in the 3COVnNDVI8-18 envelope, CF demonstrated increasing 
tendency with two intense gains in 2003 and 2009 (Figure 22a), as well as clear gradual  
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Figure 22 Year-to-year variability observed within drought impact classes 1 and 6 of the 

3COVnNDVI8-18 PC footprint: a) CF, b) GPP, c) SBD, d) SL, e) NDVIHS and f) NDII7HS. 

 

decline from 2003 through 2007. GPP temporal profile accounted on a massive increase 
in 2003 followed by equaly strong productivity drop terminated in 2006 (Figure 22b). 

Consecutive years revealed strong GPP variabilit with slightly increasing tendency. 

Drought impact within class 1 opposed the 3COVnNDVI8-18  PC, implying nNDVI 
increase after the initial negative anomaly in 2003. Associated forest stands 
demonstrated for NDVIHS and NDII7HS massive decreases in 2003 followed by a 
progressive increment (Figure 22e and f respectively; Table 33). Both temporal profiles 
were usually below envelopes depicted for class 6, and highlighted small, secondary 
drops in 2007 as well as smooth and levelled response beyound the year 2008. Start of 
the season occurred on average 19.6 days later than within class 6 (Figure 22c) and 
revealed clear 2002-2007 shift towards ealrier onset (Table 33). In contrast, despite 
some minor fluctuation SL showed no apparent long term trends (Table 33) and was 
roughly 32.6 days longer comparing with the opposing impact class (Figure 22d). CF 
revealed an overal increasing tendency (Table 33) comprising drops in 2003, 2006-2007 
and 2010, as well as local maxima of 2004-2005 and 2009-2010 (Figure 22a). Derived 
values were considerably higher than seasonal productivity within stands associated 
with class 6. An initial GPP increment observed since 2003 reversed after 2007 into a 
decline halted in 2010 (Figure 22b). On the other hand an abrupt GPP increase in 
2011 gave an impression of overall upturn (Table 33). 

Phenology changes within the 3COVnNDVI8-18 class 6 response were not always 
positively evaluated for the factor of time with the within-subjects effects test of 
repetitive ANOVA measures (Table A5 3). Corresponding analyses performed for 
combinations of time with four environmental factors revealed significant differences 
for coupling with elevation and forest type only for CF measure (Table 34). 
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Table 34 Effect of elevation factor in time, as well as, forest type in time on distinction 

between phenological indices tested for the response class 6 derived for the spatial 
representation of the 3COVnNDVI8-18 score. Analyses performed using within-subjects effects 
test of repeated ANOVA. Only measures with significant statistics are shown (p<0.001). 

 time*elevation time*forest type 

 df F df F 

CF 29.464 1.960 19.642 2.094 

      

In-depth factors-specific inspection of phenology and productivity within stands 
following the nNDVI decline (class 6) shed some light on temporal variability observed 
within forest type, aspect, elevation and slope levels (Figure A6 3).  

Elevation increase drove NDVIHS and GPP decline, as well as SBD delay but has 
positive effect on NDII7HS, SL and CF (Figure A6 3; based on two altitude classes). 
Overall nominal differences between elevation classes were small for NDVIHS and 
NDII7HS. Conversely, CF showed clear disparity between strata. Regions placed at 
1400-2100 m asl revealed an increasing tendency comprising strong productivity gain in 
2003 and a second local maxima in 2009. The lower elevation class showed very limited 
CF changes over time. GPP disparity between altitudinal classes was apparent in 2002 
and 2006 through 2008. Forest growing within the higher altitudinal zone depicted an 
abrupt GPP rise in 2003 followed by steady decline until 2008. Temporal variability 
observed between 700 and 1400 m asl, although more subtle, implied an overall 
productivity downturn shortly interrupted in 2007. SBD revealed moderate link to 
elevation. Fluctuation in vegetation onset were more frequent at 1400-2100 m asl, 
whereas the lower class depicted shift towards considerably earlier vegetation onset 
between 2004-2005, followed by progressing SBD delay. No straightforward relation 
between SBD and SL was detected. Vegetation season length was more constant at 
higher altitudes, where also intense SL prolongation in 2003 was observed.  

Although aspect affected NDVIHS and NDII7HS values, all exposition-specific temporal 
profiles followed alike, index-specific variability (Figure A6 3), with south facing-slopes 
revealing the lowest NDVIHS and NDII7HS. Moreover, south and west exposed locations 
demonstrated the highest amplitude of NDII7HS changes highlighting three intense 
drops in 2003, 2007 and 2010. CF revealed a clear disparity among expositions classes. 
All regions showed productivity gain in 2003, with the greatest CF rise observed for 
north and east facing regions. Aspect clearly governed forest resistance to prolonged 
drought conditions where east-exposed stands were the first to report substantial 
relative productivity decline. The most apparent GPP deterioration after an initial rise 
in 2003 was observed at north and west exposed sites. Although SBD and SL showed 
no mutual relation, both revealed not only strong temporal variability, but also a 
considerable disparity among aspect classes after 2004. Solely north exposed stands 
rendered an overall uneven shift towards later SBD, whereas three remaining classes 
indicated intense year-to-year vegetation onset changes with the earliest SBD observed 
in 2005-2007. 

Inclination had no impact on NDVIHS nor CF diversification under decreasing 
‘greenness’ conditions (Figure A6 3) and temporal profiles obtained for those indices 
demonstrated a limited disparity among slope classes. On the contrary, NDII7HS was 
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clearly driven by land leaning, but the steepness increase was not linearly related to 
the index values. The fourth steepness class (30-40 deg) revealed here the lowest 
NDII7HS with an outstanding local maximum in 2008. GPP, SBD and SL showed 
enhanced inclination-induced differences from 2005 onward. The strongest year-to-year 
GPP and SBD variability was observed for two zones with the lowest inclination. It 
revealed a distinct shift towards earlier vegetation onset in 2005 through 2007. Relation 
between SBD and SL was vague.  

Consideration of forest types was hindered by insufficient representation of pixels 
associated with broadleaved and mixed stands (Table 22; Figure A6 3). 

Since the reversed, increasing tendency of the 3COVnNDVI8-18 PC also presented 
interesting, potential drought induced forest status evolution, phenology and 

productivity variability within the impact class 1 were also inspected in detail. The 
within-subjects effect test evaluated positively significance of phenology alternation in 
time (Table A5 4). Furthermore, class 1 demonstrated also significant phenology 
differences for a combination of time and elevation factors (Table 35) 

 

Table 35 Effect of elevation factor in time on distinction between phenology and productivity 

indices tested for the response class 1 derived for the spatial representation of the 

3COVnNDVI8-18 score. Analyses performed using within-subjects effects test of repeated 
ANOVA. Only measures with significant statistics are shown (p<0.001).  

 time*elevation 

 df F 

CF 25.458 7.765 

GPP 29.086 2.919 

SBD 25.005 3.131 

NDVIHS 31.845 5.051 

NDII7HS 34.015 2.434 

    

A multilevel investigation revealed limited elevation impact on NDII7HS where a 
distinction among altitude levels was hardly possible (Figure A6 4). Although also 
NDVIHS revealed alike temporal variability for all three considered classes, regions 
placed the highest were characterized by noticeably lower index values. CF depicted a 
disparity between forest productivity below and above 1400 m asl. While the former 
area marked lower CF with suppressed temporal variability and productivity decline in 
2003, the latter revealed not only significantly higher CF, but also more intense 
changes and stronger overall upturn initiated with a clear increase in 2003-2004. 
Conversely, the 1400-2100 m asl elevation class reported the lowest GPP with the 
strongest drop in 2010 and following peak in 2011. Moreover, unlike stands at lower 
elevation, considered forest revealed modest GPP increases in 2005 and 2007. SBD 
showed a minor and nonlinear relation to altitude with the earliest vegetation onset 
observed between 700 and 1400 m asl. The third elevation class was here the only one 
experiencing an earlier SBD in 2003 as well as delayed start of the season in 2008-2009. 
The most apparent, although still rather small SL differences were noted before 2006. 
The third elevation zone, as the only one, implied prolonged vegetation season in 2003.  
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Aspect governed phenology and productivity, but did not alter forest response to 
nNDVI upturn (Figure A6 4). The best distinction among expositions was ensured for 
NDII7HS and CF, where, in both cases, north-facing regions revealed the highest values. 
GPP demonstrated recognition between south-west and north-east aspects, with the 
former having higher productivity yield. Diversification among aspect classes was very 
limited for NDVIHS and SL, and showed no apparent drought stress changes. 
Aspect-specific SBD discrepancies were observed only before 2006 and comprised 
moderate 2002-2007 shift towards earlier onset. Only north-facing stands hampered 
this tendency with a modest SBD increase in 2005.   

Alike aspect, also inclination shaped forest phenology and productivity, but had no 
apparent effect on response to long-term nNDVI change. A relation between slope and 

inspected measures was nonlinear (Figure A6 4). The highest NDVIHS and NDII7HS 
were observed within the first inclination class (0-10 deg.). Moreover, those regions 
experienced the earliest SBD, the longest vegetation season and the highest GPP. 
Areas leaning between 30 and 40 degrees were in perfect opposition. The clearest 
disparity among inclination classes was observed for SBD between 2003 and 2004. 
Temporal profiles implied here strong shift towards earlier vegetation onset within the 
first slope class.  

Forest type analyses comprised coniferous and mixed stands (Figure A6 4). Both levels 
followed alike temporal variability with the former having lower NDVIHS, NDII7HS and 
GPP but higher CF and in general later SBD. The most distinct disparity between 
responses of both forest types was observed in 2003, when mixed woodland revealed 
abrupt CF decline and modestly delayed SBD, which contrasted with responses 
depicted for coniferous stands. 

4.5. Summary and discussion 

Condition of the South Tyrolean forest was extensively investigated in relation to the 
local meteorological variability between 2001 and 2012. Analyses were based on the 
time series of MODIS derived NDVI and NDII7 indices, and focused on identification 
of potential drought stress driven vegetation status changes. The S-mode PCA 
decomposition was the primary exploration method applied to 15 different datasets and 
convolution setups (Table 18). PCA results were evaluated against the dominant 

scPDSI temporal patterns (Chapter 3, Figure 14), which allowed not only to identify 
the most reliable drought related temporal profiles and their footprints, but also 
determined most suitable PCA setups for alpine forest stress monitoring. Moreover, 
extensive phenology and productivity based investigation of three selected responses 
provided detailed information on changes taking place at drought affected sites. 

4.5.1. Utility of diverse S-mode PCA setups and EOFs rotation for forest 
vegetation status monitoring 

Applied multiple S-mode PCA settings and data setups (Table 18) produced variety of 
NDVI and NDII7 based temporal patterns among which many scores demonstrated 
considerable accordance with drought conditions identified through the scPDSI 
analysis.  
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The length of the annual time window composing a time series was recognized as a 
principal factor driving PCA results. Presented analyses indicated that for the alpine 
forest, vegetation response registered during the dormancy state is inessential for 
drought related investigation and can even blur anticipated variability. Moreover, late 
autumn to early spring images can have high probability of snow occurrence, which 
can produce anomalies and outstanding signal that is able to predominate a time 
series. In addition, due to more frequent cloud cover and other registration issues, 1st 
to 7th and 19th to 23rd yearly composites need more preprocessing in terms of 
gap-interpolation (Figure 5 and Figure 6). Exclusion of those composites, realized 
through data truncating to the vegetation season and high-season time series, ensured 
datasets of higher quality and limited variation present in the data to relevant 

minimum. Consequently, PCA decomposition was more efficient in addressing subtle 
drought induced vegetation changes. On the other hand, high-season time series 
restrict understanding of intra-seasonal variability, including only late summer 
information. Although this period is a time of potentially the highest drought impact 
on vegetation, and resulting PCA scores showed good accordance to the scPDSI 
derived meteorological profiles, importance of the late spring and early summer 
weather stress should not be overlooked.  

The z-score normalization of a time series was also an important controlling factor in 
the PCA decomposition. Implemented data z-score normalization combined with the 
covariance-matrix based S-mode PCA outperformed the correlation-matrix based 
decomposition of not-normalized time series. Although the correlation matrix approach 
implies data standardization the process is based on a global mean, whereas the 
applied z-score method uses composite mean assuring hence more exact anomalies. As 
a result a normalized time series carries more precise information on disparity from 
‘normal’ condition, which more accurately refers to the drought concept. This approach 
reduces total variance of a time series being introduced into PCA, hence allows on 
more efficient exploration of drought related signal. Moreover, the time-specific 
expression of anomalies corresponds better with conceptual drought definitions as well 
as computation schemes of drought indices, including the scPDSI. The 
correlation-based PCA of not-normalized time series preserved a seasonal component, 
which controlled resulting temporal profiles and governed very high eigenvalues of first 

PCs. The drought related signal was here either incorporated into the dominant 
patterns, or hidden in the principal components of the higher order. Conversely, PCA 
implementation based on the covariance-matrix and z-score normalized datasets 
generated loadings and scores with more dispersed variability, and less dominant 
leadings patterns.  

Although time series after the Savitzky-Golay filtering obtained higher eigenvalues and 
smoother PCs profiles comparing to non-filtered time series, beforehand noise reduction 
had a very limited impact on temporal as well as spatial representation of identified 
drough responses. Mutual comparison of scores and their spatial projections derived for 
coupled SG-filtered and non-filtered time series showed very strong correlation. 
Importantly, impact of SG filtering was so subtle, that it does not altered variance 

distribution and did not lead to disparate principal components identification. 

A beneficial impact of rotation on strengthening drought related vegetation response 
was selective. Although some temporal patterns came out more robust in terms of 
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correlation with the scPDSI scores, temporal variability of rotated PCs often comprised 
more intense variability with multiple anomalies. Resulting scores tended to depict 
separated anomalies rather than a coherent temporal development. Differences between 
orthogonal Varimax and oblique Promax solutions were limited, but showed the latter 
to produce smoother temporal profiles that better resembled identified meteorological 
conditions. Variability of resulting PCs was strictly governed by a number of rotated 
EOFs. With one exception, Kaiser’s stopping rule and Cattell’s scree test retained a 
very similar number of loadings to be rotated, which implied limited differences of 
emerging PCs. Performed analyses were insufficient to conclude on potential 
inaccuracy of the Kaiser’s approach (Costello & Osborne, 2005). The Cattell’s scree 
test was rather consistent in nominating only a few first EOFs, but was much more 

ambiguous to conduct.  

Due to diverse NDVI and NDII7 design and properties, both indices addressed different 
but complementary drought governed forest changes. While the NDVI focuses on 
‘greenness’ rendering a straightforward canopy status, the NDII7 addresses plant water 
content and cell structure. Although both demonstrated vast information load, each 
index tended to depict selected drought related phenomenon. NDVI was more prone to 
indicate patterns of gradual decline (PCs: 3COVnNDVI8-18, 3COVnNDVISG8-18, 
3COVnNDVI8-18ROT5P and 4COVnNDVI14-17ROT7P), whereas NDII7 rendered 
temporal variability of prolonged decrease between 2003 and 2007 (PCs: 
1CORNDII78-18, 4COVnNDII78-18, 4COVnNDII78-18ROT4V and 
4COVnNDII78-18ROT4P).  

Importantly, multiple PCA setups resulted in similar temporal variability, which 
confirms the method consistency, dominant character of weather stress conditions, as 
well as aptness of applied vegetation related measures. Despite subtle character of 
investigated changes, obtained results provided interesting insight and allowed for 
further identification and investigation of drought impacted forest sites.  

4.5.2. Selection and evaluation of PCA results associated with 
scPDSI-defined drought conditions  

Preliminary examination of results of 15 S-mode PCA setups was targeted at 
identification of temporal patterns related to the scPDSI established meteorological 

drought variability (Chapter 3). Despite severe dry conditions in 2003-2007 
demonstrated by the scPDSI analyses, documented negative drought impact on forest 
vegetation was limited in South Tyrol to diminished trees productivity and local 
discolorations, with only one recorded small-scale dieback event in the Eisack Valley 
(Minerbi et al., 2006). The dry spell in question was translated into lower plant water 
content and crown fitness, which although extensive, were very subtle. Due to this, 
absolute changes in NDVI and NDII7 values were suppressed and addressed only 
narrow variability in the time series. Scarcity of site-specific information on feedback 
between water-stress and forest status or productivity, enforced a rest on an 
assumption upon direct link between drought conditions and NDVI and NDII7 
changes. Consequently, all PCA resulting scores were linearly correlated with the 

scPDSI derived meteorological variability, where owing to the disparity in length and 
annual time-scope of datasets, the comparison was based on yearly averages. This 
approach clearly inhibited a perception of intra-annual variability, as well as 
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identification of more complex forest responses to drought conditions accounting on 
physiologically lagged reaction of some trees species (Pichler & Oberhuber, 2007; 
Lévesque et al., 2014), or site specific differences (Primicia et al., 2015). Inconsistency 
of time steps between the scPDSI and MODIS time series was an important hindrance 
for a qualitative assessment. Although the correlation usually provided sensible 
estimate, additional visual assess between the NDVI and NDII7 scores, and the scPDSI 
temporal patterns was required. Only this synergy ensured identification of scores of 
statistical credibility and physiological feasibility.  

Interestingly, most of the 1scPDSI associated NDII7 PCs showed drought induced 
score decrease not until 2004, while the dry spell started in South Tyrol already in 
2003. On the other hand, a strong 2003 anomaly was clearly detected in numerous PC 

based on the NDII7 as well as, NDVI time series. This distinction could be governed, 
among others, by different vegetation perception of drought incept and persistent 
aridity stress, which is controlled by environmental conditions (e.g. Vacchiano et al., 
2012; Lévesque et al., 2014), tree species (e.g. Scherrer et al., 2011a; Hanewinkel et al., 
2013; Zimmermann et al., 2013a) and local tree competition (e.g. Eilmann et al., 2006; 
Pichler & Oberhuber, 2007; Chauchard et al., 2010; Giuggiola et al., 2013; Rigling et 
al., 2013; Primicia et al., 2015).  
Mutual comparison among 16 identified PCs and their spatial representations 
demonstrated a considerable overlap between scores following the same scPDSI 
variability. This observation supported credibility of identified temporal patterns, as 
well as their footprints. Although, yearly-averages based correlation used for PCs of 
different length restricted comparison of inter-annual variability, an emerging bias was 
negligible.   

Although the 3COVnNDVI8-18 and 4COVnNDII78-18 PCs selected for further analyses 
did not have the strongest statistical connection to the scPDSI, their temporal 
variability had high potential credibility of reliable forest responses to identified 
drought conditions. The 1CORNDII78-18 score was incorporated into the analysis due 
to its unique seasonal component. All three identified patterns addressed variety of 
PCA setups, and demonstrated hardly any mutual overlap of spatial footprints.  

4.5.3. Forest vegetation response to drought15 

Drought impact on forest in South Tyrol implied by three selected PCs was analyzed 
in detail using four vegetation productivity metrics and two phenology indicators, all 
employed into repeated ANOVA measures. The main concern was usually given to the 
regions the strongest associated with recognized drought temporal variability. The 
examination ensured site-specific insight into phenological changes governed by 
underlying dry spell conditions.  

4.5.3.1. 1CORNDII78-18 spatial pattern 

The 1CORNDII78-18 PC rendered NDII7 seasonality with clearly diminished seasonal 
maxima before 2008 and three distinct declines in the envelope in 2003, 2007 and 2010 
(Figure 16F). Irrespective of seasonal component, the signal was the most 
characteristic for alpine and subalpine forest comprising Norway Spruce, Silver Fir 

                                      
15

 All forest specific information are sourced from Provincia Autonomica di Bolzano, (2010) 
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with Scots Pine, Arolla Pine and European Larch growing on drier locations. Although 
an initial response to the dry-spell involved intense productivity increase, forest growth 
capacity was soon depleted (Figure 18), most surely, due to water shortages and 
elevated temperature. While the drought related temperature increase combined with 
priori moist conditions in 2002 acted as a catalyst for coniferous trees growth at high 
elevation (Jolly et al., 2005; Primicia et al., 2015), next-year decline illustrated delayed 
response to arising aridity (Theurillat & Guisan, 2001; Pichler & Oberhuber, 2007; 
Castagneri et al., 2014). Despite the dry-spell, NDII7HS revealed an overall rise, 
implying increase in plant foliage water capacity. NDVIHS reported for 2004-2005 an 
increase with respect to 2003 and 2006 lows, which contrasted with the 1CORNDII78-18 
score. SBD decrease observed between 2003 and 2006 was most probably governed by 

temperature, alike the overall SL prolongation, which translated into moderate GPP 
increase (Table 25). Positive feedback between the seasonality governed PC and 
coniferous stands could be explained through abundance of Larch trees as well as low 
crown density and frequent presence of signal originating from shrubs or grasslands. 
On the other hand, depicted CF values were small, hence it is possible that they 
illustrate actual seasonality of coniferous trees. 

Areas associated with the 1CORNDII78-18 class 1 response comprised a wide spectrum 
of correlation from strongly negative up to values around zero (Table 21). This 
inconsistency obscured statistics and hindered clarity of results. Spatial projection of 
drought impact class 1 indicated lower forest fringe composed of Common Beech, 
Downy Oak, Sessile Oak, Hop Hornbeam, Manna Ash and Sweet Chestnut, as well as, 
upper forest border with Silver Fir, European Larch and Arolla Pine. Discussed 
regions, also demonstrated the heat-wave triggered productivity increase, but unlike for 
class 6, the rising tendencies in GPP and SL lasted until 2007, and were proceeded by 
strong negative anomaly clearly governed by delayed SBD (Figure 18). This 
observation is supported by better adjustment of hardwood trees to increasing aridity 
(Scherrer et al., 2011; Hanewinkel et al., 2013; Zimmermann et al., 2013a) as well as 
beneficial effect of temperature increase on forest vegetation productivity at higher 
elevations (Jolly et al., 2005; Coppola et al., 2012; Primicia et al., 2015). Moreover, 
depicted changes can be presumably attributed on dominance of north-exposed slopes 
among discussed area. However, it has to be kept in mind that phenology scores were 

averaged over a variety of response to the 1CORNDII78-18 PC, including the upper 
fringe of the forest border, which in its definition incorporates sparsely wooded zones of 
grasslands with drafted trees and shrubs. Therefore presented results could carry some 
uncertainty.  

Interestingly, an anomaly of 2010 observed in the 1CORNDII78-18 score and not 
explained by the scPDSI variability, was also visible in the phenologyl time series. 

4.5.3.2. 4COVnNDII78-18 spatial pattern 

Diminished foliage water content between 2004 and 2007 indicated by the 
4COVnNDII78-18 PC, was the most apparent in mountain and subalpine forests 
composed of Norway Spruce, Silver Fir and Downy Oak with regional inclusion of 

Scots Pine and European Larch trees on the most arid locations of south exposed 
slopes, as well as the upper tree line. Considered stands were often located on poor 
mountain soils developed on silicate rocks (Provincia Autonomica di Bolzano, 2010). 
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Forest enclosed in the class 1 response comprised Norway Spruce with addition of 
Downy Oak and Common Beech. It frequently grew on north and west exposed, richer 
silt and carbonate soils (Provincia Autonomica di Bolzano, 2010). Phenological 
response of those areas accounted on higher than for class 6 productivity and 
vegetation status (Figure 20), which can be attributed on more frequent presence of 
hardwood tree species. 

Drought governed disparity between phenology and productivity of two considered 
classes were the most apparent for NDII7HS, NDVIHS and CF. The initial response to 
drought ingress in 2003 was similar within both classes. Despite NDVIHS and NDII7HS 
drops, GPP and CF productivity increase was observed that year. The latter could be 
explained not only by the earlier SBD and longer SL, but also intensified vegetation 

growth at higher altitudes, which is normally constrained by the elevation gradient 
(Jolly et al., 2005; Primicia et al., 2015). Subsequently observed mutual divergence 
between forest productivity of both classes can be related to site-specific differences 
and environmental conditions such as soil structure, elevation and forest species 
distribution (Scherrer et al., 2011; Castagneri et al., 2014; Lévesque et al., 2014b). 
Despite class 6 was in majority detected in the Vinschgau Valley, which is the driest 
region in South Tyrol, expected higher drought adjustment of trees was not observed 
as shown by Feichtinger et al. (2014). Conversely, depicted response indicated 
downturn in forest status. Although the presented data did not suggest any long-term 
trends in forest decline, depicted GPP downturn, especially clear for class 6, implies 
aridity impose forest weakening. It is feasible that longer or more intense drought 
event(s) could exceed adaptation and mitigation abilities of selected forest communities 
and lead local diebacks (Theurillat & Guisan, 2001; Jump & Penuelas, 2005).  

In contrast with forest productivity, phenology measures revealed limited drought 
related diversification between impact classes.  

4.5.3.3. 3COVnNDVI8-18 spatial pattern 

Decreasing nNDVI, associated with the 3COVnNDVI8-18 class 6 response was the most 
common for mountain Norway Spruce forest (Provincia Autonomica di Bolzano, 2010) 
growing in majority at north-exposed slopes. Although Norway Spruce has moderate 
drought tolerance, particularly at lower altitudes (Hartl-Meier et al., 2014), its 

preference for moisture habitats at higher elevations could partly mitigate impact of 
arising aridity (Pichler & Oberhuber, 2007). Consequently, beneficial effect of released 
temperature gradient constrain (e.g. Theurillat & Guisan, 2001; Jolly et al., 2005; 
Castagneri et al., 2014), leaded to the initial productivity increase in 2003. The 
following years demonstrated however CF and GPP decline, where the latter revealed 
particularly massive deterioration. This observation is in line with findings of Pasho et 
al., (2011) who indicated that forest drought response at mesic sites can be stronger 
than at xeric locations. Furthermore, due to shallow root system as well as poor soils 
and rocky bedrock conditions, Norway Spruce is susceptible to elevated temperature 
and depleted soil moisture (Castagneri et al., 2014).  

Despite NDVIHS and GPP decline, discussed forest sites showed overall CF upturn. 
This decoupled response could be partly explained by prolonging SL. A gradual 
vegetation type change is also a probable interpretation, however has to be confirmed 
through other analyses. 
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The nNDVI increase featured in the 3COVnNDVI8-18 class 1 response, highlighted 
regions dominated by Downy Oak, Sessile Oak, Hop Hornbeam, Sweet Chestnut, 
Manna Ask and Common Beach trees, with Scots Pine in dry and hot locations, as 
well as Downy Oak and Norway Spruce forests on higher and shadowy regions 
(Provincia Autonomica di Bolzano, 2010). Most of the discussed stands grows at lower 
altitudes that are more prone to temperature increase and rain decline (Gebetsroither 
et al., 2013), whereas endemic, poor silicate soils cannot mitigate arid conditions. 
Consequently, the observed overall productivity increase and earlier vegetation onset 
tendency suggest upturn in hardwood trees status, which agrees with their overall 
better adjustment to drought (Scherrer et al., 2011; Rigling et al., 2013). Furthermore, 
field observations and documented local Scots Pine dieback (Minerbi et al., 2006) has 

demonstrated drought induced change in competition between coniferous and 
broadleaved trees, where better adjusted hardwood understory species such as Downy 
Oak and Hop Hornbeam replaced evergreen trees withered after the 2003 heat-wave. 
Alike transitions were already observed in other alpine valleys (e.g. Bigler et al., 2006; 
Rigling et al., 2013) and are often attributed on climate change (Hanewinkel et al., 
2013; Zimmermann et al., 2013a). A tendency towards earlier vegetation onset revealed 
within this class is in line with other studies (Theurillat & Guisan, 2001; Studer et al., 
2005, 2007), but interestingly, had no impact on SL. 

4.5.3.4. Drought impact within elevation, slope, aspect and forest type 

Elevation was the most important factor driving forest phenology and productivity, 
also under drought conditions. Its impact varied among three considered spatial 
patterns. Although Ciais et al. (2005) demonstrated Pan-European forest productivity 
decline in 2003, this study revealed GPP and CF drop only within stands indicated by 
the 3COVnNDVI8-18 class 1 response and growing below 1400 m asl. Conversely, forest 
at higher elevations showed clear GPP and CF increase in 2003 and also partly in 
2004. Moreover, in a case of the 1CORNDII78-18  and 3COVnNDVI8-18 class 6 
responses productivity gain due to the heat-wave conditions was spotted already above 
700 m asl. The abovementioned discrepancy could arise from higher resolution data, as 
well as wider range of elevation covered used in this study. Furthermore, above 
presented findings agree with demonstrated by Hartl-Meier et al. (2014) diverse effect 

of elevation increase on different tree species under heat wave conditions, as well as 
reported productivity increase observed for higher alpine regions due to released 
elevation gradient (Dobbertin et al., 2005; Jolly et al., 2005; Vacchiano et al., 2012; 
Gebetsroither et al., 2013; Rigling et al., 2013). Next, an apparent shift towards earlier 
vegetation onset revealed for woodlands growing below 1400 m asl (the 
3COVnNDVI8-18 class 6 was an exception here) potentially reflects climate alternation 
towards warmer and dryer conditions (Zimmermann et al., 2013a), which is 
particularly vivid at lower altitudes (Gebetsroither et al., 2013). Finally, the 
counterintuitive relation between elevation and CF could be partly explained by 
increasing contribution of larch trees in the mountain and subalpine forest. However, 
forest canopy openings being more frequent towards the upper tree line could also lead 

to false perception of increased CF. Remarkably, upturn in seasonal productivity was 
not coupled with prolongation of the vegetation season.  
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Drought impact on forest productivity showed moderate diversification in relation to 
exposition. In most of the cases, all aspect classes followed alike, index-specific 
temporal variability and revealed only minor differences in intensity and timing of 
changes during the meteorological stress period. Those disparities presumably originate 
from species-specific conditions as well as exposition governed water scarcity (Pichler & 
Oberhuber, 2007; Lévesque et al., 2014b). The greatest differences were noted for SBD 
and SL. Disparity among exposition classes enhanced under drought stress conditions 
(from 2004 onwards, as well as between 2003-2006 and in 2011 respectively) with no 
link between aspect-specific responses derived for both spatial patterns. Since Swidrak 
et al. (2013) showed SBD to be controlled by temperature rather than precipitation, as 
well as highlighted influence of photoperiod on growth and competitive strategies of 

various tree species, observed disparity was assumed to emerge from stand composition 
and site-specific conditions governing survival strategies under extreme conditions 
(Brunner et al., 2015). This presumption is supported by CF variability, nevertheless 
should be further confirmed by site-specific surveys, and in a case of SL additionally 
evaluated for drought induced earlier senescence.   

Since inclination governs water discharge and soil formation processes hence moisture 
availability, one would expect an apparent relation between steepness increase and 
deterioration of productivity and phenology indicators (e.g. Rigling et al., 2013). 
However, the presented variability not always followed this assumption, demonstreting 
very complex and often irregular temporal patterns of conterintuitive transition. The 
leading reason for this inconsistence could be very complex and elevation-independent 
allocation of slope classes. Consequently, one inclination strata comprises variety of 
climate-vegetation-soil horizontal belts, which hinders interpretation of potential 
differences among inclination classes.  

Insufficient spatial representation limited analysis of forest type specific variability to 
coniferous and mixed stands recognized within the 3COVnNDVI8-18 class 1 footprint. 
Both forest types revealed adjacent temporal phenology and productivity evolution, 
with an exception in 2003. While coniferous woodland demonstrated that year earlier 
SBD combined with CF increase, mixed stands not only revealed a later vegetation 
onset and considerable CF decline, but also diminished GPP. Initial negative response 
to drought inception fostered by mixed woodland could emerged from the 

aformenetioned unexpected delay in SBD, as well as heatwave conditions that exceeded 
trees mitigation abilities and in the most extreme cases leaded to local diebacks of 
coniferous species (Minerbi et al., 2006) wilting and earlier senescence. Furthermore, 
following horizontal distribution of vegetation belts, mixed forests are located at lower 
altitudes, which subjects them to more intense drought impact (Gebetsroither et al., 
2013; Gobiet et al., 2014). Persistent stress conditions during the following years 
pressumably enforced drought adaptation strategies (e.g. increase in root biomass 
(Brunner et al., 2015)) leading to expected rise of vitality and productivity. As stated 
before, higher CF reported for coniferous stands comparing to mixed stands can be a 
result of forest openings, as well as extended larch presence. 

Notably, the greatest disparities between factors levels were mostly recognized between 
2002 and 2007, as well as in 2011, that is under drought stress conditions. This 
observation implies differences in forest response to aridity governed by local biotic 
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(forest structure, density, competition (Scherrer et al., 2011)) and abiotic (slope, 
exposition, soil (Pasho et al., 2011; Rigling et al., 2013)) qualities. 

4.5.4. General remarks to MODIS derived forest drought response 

While comparing the NDVIHS and NDII7HS time series probed within footprints of 
three PCs identified as drought impact on forest (Figure 18, Figure 20 and Figure 22), 
three global negative anomalies were identified in 2003, 2007 and 2011. While the first 
one is clearly associated with the pan-European heat wave of 2003 (e.g. Granier et al., 
2007; Rebetez et al., 2006; Reichstein et al., 2007) depicted also by the scPDSI (Figure 
14), two others have more complex and local origins. The anomaly of 2007 was 
supported by the scPDSI analysis and arose from extraordinarily hot spring and 

summer. Noticeably, forest NDVIHS and NDII7HS responded more negatively to the hot 
spring of 2007 than to arid summer of 2006. The last anomaly of 2011 was not detected 
in the scPDSI time series, neither was distinct in the PCA scores, but considerably 
affected NDVIHS and NDII7HS envelopes. It originated from a local phenomena 
observed at the beginning of September 2011 (Hydrographic Office of the Autonomous 
Province of Bolzano-Südtirol, 2011). While the first half of the month was 
exceptionally hot, with mean temperatures even two or more degrees above the 
long-term means, the end of the month brought massive precipitation events, which for 
some locations exceeded twofold or more normal rainfall amounts. Although averaged 
temperature and precipitation sums balanced well in the monthly scPDSI, earlier 
senescence triggered by this short heatwave was clearly detectible in the remote-sensed 
data. Beside this exception, year 2011 was considered as favorable even with increased 
GPP productivity. 

Based on presented results, very hot summer of 2010, which was recognized in eastern 
and north Europe as the extreme heat-wave (Barriopedro et al., 2011; EEA, 2012; Ivits 
et al., 2014), had limited impact in South Tyrol. Although its potential imprint was 
visible in the 3COVnNDVI8-18, 3COVnNDVISG8-18 and 3COVnNDVI8-18ROT5P PCs 
(Figure 16 B, C, and K respectively) and leaded to leafs discoloration and local wilting 
(Minerbi, personal communication), potentially related scPDSI anomaly was visible 
only in the 3scPDSI score. Particularly interesting is also a fact that spring weather 
conditions reported for the province in 2010 were favorable and could not explain 

delayed SBD. A potential interpretation of this phenomenon could be linked with the 
2010 eruptions of Eyjafjallajökull in Island, which beginning from 14th April started to 
produce an ash cloud that severely contaminated the atmosphere over Europe 
(Pappalardo et al., 2013). Increased aerosol optical thickness not only limited sun 
energy reaching the ground and being available for vegetation, but also biased remote 
sensing observations, possibly further depleting NDVI envelope and leading to 
corrupted phenological measures.  

In contrast to the scPDSI analysis, regional perception of all three identified drought 
vegetation responses recognized the Vinschgau Valley as the area of forest status 
decline. This observation highlights relativity of weather conditions, local environment 
capacity as well as tree species specific drought adaptation strategies.  

Despite recognized meteorological aridity, NDIIHS showed increasing trends within 
regions associated with drought related temporal variability, as well as within the 
opposite responses. This striking observation could not be explicitly justified based on 
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available datasets and information. Beside actual rise in the plant water content, 
shown variability could had been potentially introduced during the sensor degradation 
adjustment (Wang et al., 2012). However since the NDVIHS time series showed no 
suspicious changeability, the latter is unlikely.  

Although some identified phenological tendencies support climate change projections 
and emerging vegetation transformation trends (Theurillat & Guisan, 2001), the 
presented results are in itself no solid evidence of local climate alternation and 
following vegetation response. Demonstrated forest phenological variability is in line 
with local and continental trends (e.g. Zimmermann et al., 2013b) and observations. 
However, due to a short observation period, as well as extraordinary meteorological 
conditions present during this time, shown results could be biased. Furthermore, 

phenological analyses focus on a very small portion of South Tyrol (topmost canopy), 
leaving tendencies within the bigger part of the South Tyrolean forest unrevealed. 
Confirmed uneven perception of climate alternation in the province and complexity of 
the local environment, exclude a possibility of region-wide generalization of presented 
results and call upon further investigation.  

4.5.5. Approach limitations 

Performed analyses provided complex information on alpine forest status and 
phenology in relation to meteorological variability of prolonged drought conditions. 
During the investigation several aspects emerged.  

Firstly, structure of the forest in South Tyrol is very complex in terms of species 
allocation and stands distribution. Both are addressed by the forest mask. According to 
the GEOLAND standards (geoland2, 2012), a pure coniferous or broadleaved stand is 
identified when a dominant tree type occupies minimum 75% of the area. In other 
words, some stands identified as coniferous can have a considerable share of hardwood 
trees (and the other way round) that affect the spectral response. Moreover, while 
intensive and extensive management practices result in sharp, but jagged lower forest 
boundary, the upper forest fringe is usually a transition zone of drafted trees, shrubs 
and grass. Furthermore, due to local conditions, such as inter- and intra-species 
competition, coniferous forest is thinning out making room for broadleaved trees and 
bushes of an understory. Finally, Larch, a typical alpine coniferous species shows a 

broadleaved-alike phenological response. All aforementioned could influence the 
coniferous forest response, making it more alike to mixed and broadleaved 
communities. Even if this issue can be addressed in high resolution studies, resolution 
decrease leads obviously to generalization and loss of accuracy. Therefore, applied in 
this study forest mask upscaling from 20 m to 250 m resolution implies very low 
chances for spectrally pure pixels. Moreover, the moderate majority threshold used in 
the rescaling could incorporate fraction of non-forest regions into the forest mask. 
Although, a more restricted criterion would result in ‘clearer’ response, it would also 
limit greatly the forest area, hence desired dynamism of the environment could not be 
demonstrated properly.   

Secondly, due to the MODIS pixel size, as well as crown opening and locally 
diminished density of investigated forest stands, top-most canopy response of reduced 
greenness and water content can be potentially compensate by understory, 
undergrowth or even bedrock signal (for the steepest locations). This can be 
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particularly true when the lower forest levels are overshadowed, and populated by 
species with higher water stress tolerance.  

Subsequently, lack of site-specific surveys on tree species response to drought stress 
limited interpretation of the obtained PCA scores only to approximated weather 
variability. Trees response to stress condition is however much more complex than 
that, and not only depends on species physiology and plasticity but also on local 
distribution (Lévesque et al., 2014) and environmental conditions (e.g. Pichler & 
Oberhuber, 2007; Pasho et al., 2011; Rigling et al., 2013; Etzold et al., 2014). The 
aforementioned combined with diverse intensity of aridity, can introduce a certain lag 
to forest response (Bigler et al., 2006; Pichler & Oberhuber, 2007; Castagneri et al., 
2014; Etzold et al., 2014). Unfortunately, shortage of  ancillary dendrological data and 

a mismatch between temporal resolution of the scPDSI and MODIS time series, 
restricted feasible analyses to a direct interaction of meteorological conditions on forest 
phenology neglecting an impact of meteorological conditions in the preceding 
year(s)/season(s). Furthermore, deficiency of reference information hampered 
‘backward’ interpretation where variability in obtained PC and its footprint could be 
explained and evaluated according to local woodland condition.  

Moreover, although the scPDSI is well correlated with forest status (e.g. Büntgen et 
al., 2010; Scharnweber et al., 2011; Gillner et al., 2013), coupling of temperature and 
precipitation variability obscures identification of more specific, interannual trees 
variability (Coppola et al., 2012; Castagneri et al., 2014; Lévesque et al., 2014). 
However, since the study analyzes more general, reional forest response to drought 
conditions, merging of both measurements is not particularly hindering.  

Next, considering lay of the land, SBD, thus also CF and SL measures can be 
inaccurate for the highest elevations due to snow cover (Jönsson et al., 2010). Although 
a snowmelt is expected to be in line with the end of the dormancy state and onset of 
phenological activity, snow occurrence importantly decreases wintertime NDVI, 
resulting in falsely high signal increase in spring (Studer et al., 2007), which 
predictably leads to elevated annual productivity measures. Because due to a lack of 
ground truth data used phenological indices were anyway treated as a between-years 
change trackers rather than absolute indicators of productivity, as well as related snow 
cover issue was observed only for relatively limited number of pixels, presented 

analyses are not significantly hampered by this issue.  

Furthermore, many factors shape forest phenology and plant vitality, potentially 
contributing to the PCA identified variability. However, the most probable damage 
causes that could result in drought-alike response, such as pest infestations or fungal 
attacks, are considered a secondary damage agents, attacking drought weakened trees 
(Rigling et al., 2013). Secondly, such attacks have in South Tyrol always a local 
character, thus could not impact significantly the presented results. Performed 
crosscheck with available large-scale calamites reports revealed no overlay with 
investigated strata, confirming hence exclusive drought variability impact on the PCA 
results. 

Finally, MODIS data not only have their embedded limitations, but also are influenced 
by inaccuracies originating from data preprocessing. Although the composition process 
of the MOD13Q1 product mitigates, among others, an impact of the sensor viewing 
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geometry, sun position or atmospheric optical depths (Solano et al., 2010), these 
processing steps are characterized by certain level of inaccuracy (Vermote & 
Vermeulen, 1999; Mao et al., 2015). Moreover, the sensor calibration also has its 
limitations (Vermote & Vermeulen, 1999). Even though the impact of those 
uncertainties is limited, and was partly further suppressed through the implemented 
QA screening and outliers interpolation, its presence should be kept in mind. An 
additional flaw of MODIS acquisitions emerges from their geometric accuracy (Wolfe 
et al., 2002) and resolution disparity among bands. The latter is concerning for the 
NDII7 time series. Although consecutive MODIS collections improve geolocation 
accuracy, this issue should not be neglected, especially in mountain regions. Finally, an 
additional source of possible errors was recognized in the data reprojection, which, 

despite being a geometric convolution, could enhanced and propagate geolocation 
inaccuracy of the data. However, since the study was based on multiple data sources, 
reprojection of data was inevitable.  

Despite potential limitations, presented results demonstrate high capacity of the 
S-mode PCA for identification of subtle drought related vegetation variability in 
MODIS derived NDVI and NDII7 time series. Selected principal components addressed 
diverse aspects of forest feedback, while extensive phenology and productivity based 
investigation allowed to identify scientifically supported explanation of those responses. 
Captured variability revealed to be site-specific, as well as reflected broader climate 
change induced changes. The study provided comprehensive and exhaustive 
information on South Tyrolean forest condition between 2001 and 2012, simultaneously 
highlighting still existing information shortage and necessity for extensive and 
multidisciplinary environmental monitoring. 
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5. FOREST DROUGHT INVESTIGATION USING LANDSAT TIME SERIES 

5.1. Design of the study 

2001-2011 time series of yearly Landsat NDVI and NBRI composites, hereafter called 

LNDVI and LNBRI respectively, were the secondary datasets used for investigation of 
drought impact on forest in South Tyrol. Despite limited spatial coverage and no 
information on intra-annual vegetation status variability, Landsat data ensure robust 
forest condition information at the 30 meters resolution. Increased spatial resolution 
comparing with the MODIS datasets is the most important asset of Landsat images.  

Alike for the MODIS analyses (Chapter 4), also the Landsat time series were processed 
using the S-mode PCA decomposition (method description in section 2.3). Since each 

of the LNDVI and LNBRI time series comprised 11 composed scenes (one image per 
year), no seasonality component was present in the data. Consequently, a-priori 
normalization was not needed and the S-mode PCA decomposition was based on the 
correlation-matrix (Eastman & Fulk, 1993), which standardized time series. Evaluation 
and further processing of results was carried out alike in the case of MODIS time 
series, where resulting PCs were compared to the scPDSI derived weather dynamism 

averaged to yearly values. Subsequently, the most promising and potentially the most 
drought related temporal variabilities were correlated against the appropriate original 

LNDVI or LNBRI time series. Each resulting spatial representation was further 
classified into six response classes using 5th, 30th, 50th, 70th and 95th percentiles of the 

correlation values distribution. Pixels allocated within class 1 (minimum to 5
th
 

percentile; representing regions with the most negative response to a given phase of the 
selected score), and class 6 (95th percentile to maximum; indicating the most positive 
Pearson’s correlation values) were next investigated in relation to their location and 
natural environment.  

Subsequently, spatial representations of identified Landsat-based PCs showing 
potential impact of drought conditions were converted to the resolution of 250 m. The 
adaptation was done separately for each Landsat-derived drought impact footprint 

using the MODIS Point Spread Function (PSF) model (Huang et al., 2002). This step 
allowed not only on a straightforward comparison between MODIS and Landsat 
drought impact footprints, but also enabled further investigation of Landsat-based 

drought footprints, which was assured by MODIS derived phenology and productivity 
indices (section 2.2.2.2). All mModeled 250 m projections of Landsat drought 
representations were classified using 5th, 30th, 50th, 70th and 95th percentiles. Also here, 
special attention was given to classes 1 (minimum-5th percentile) and 6 (95th percentile-
maximum). Phenology temporal variability was investigated within both strata using 
repeated ANOVA performed for factors of:  

- forest type mask (coniferous, mixed, broadleaved); 
- elevation (0-700 m asl, 700-1400 m asl, 1400-2100 m asl, 2100-2500 m asl; 

elevation stratification after Theurillat and Guisan, (2001));  
- exposition (N, E, S, W); 
- inclination (0°-10°, 10°-20°, 20°-30°, 30°-40°, 40°-90°). 
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5.2. Forest conditions indicated by PCA of LNDVI and LNBRI time series 

5.2.1.  LNDVI time series 16 

The correlation-matrix based S-mode PCA of the LNDVI time series produced PCs 
with suppressed dominance of scores of the lowest order (Table A7 1). The  first PC 
(1CORLNDVI) explained 16.43% of the total variance present in the dataset (Table A7 
1), and demonstrated intense LNDVI decrease in 2003 and 2004, which was followed by 
a steady increase culminated in 2008 (Figure A7 1). This response alluded to the 
1scPDSI (Table 36), showing however shorter drought impact and emphasizing 
greenness recovery. An increase in vegetation status was also revealed in the second 
PC (2CORLNDVI), which presented a steady increase that peaked in 2008 (Figure A7 

1). This score accounted on 14.81% of the data variability and clearly contrasted with 
the identified regional weather patterns (Table 36).  

Scores of the higher order demonstrated dynamic responses, but with limited 
accordance with the scPDSI meteorological variability. They explained 12.85% and 
10.74% of the data variance for the third and fourth PC respectively. Any connection 
to the 2scPDSI was neglected due to non-drought related character of this score.  

 

Table 36 Correlation among the scPDSI scores and first four PC obtained for the S-mode 

correlation-matrix based PCA of the LNDVI 2001-2011 time series (in columns). Comparison 
was done for yearly averages.   

 
CORLNDVI 

1PC 2PC 3PC 4PC 

1scPDSI 0.643, p=0.033 -0.211, p=0.532 -0.052, p=0.879 0.575, p=0.064 

2scPDSI -0.146, p=0.667 -0.910, p<0.000 0.183, p=0.590 -0.040, p=0.916 

3scPDSI 0.421, p=0.197 -0.447, p=0.168 -0.050, p=0.883 0.618, p=0.043 

4scPDSI -0.075, p=0.827 -0.832, p=0.001 0.282, p=0.400 -0.362, p=0.274 

      

5.2.2.  LNBRI time series 17 

The LNBRI time series subjected to the correlation-matrix based S-mode PCA revealed 
in the first and second PC (1CORLNBRI  and 2CORLNBRI respectively) temporal 
variability of potentially high weather related origins (Figure A7 2). While the former 
score highlighted gradual decrease being in strong accordance with the 4scPDSI (Table 
37), the latter depicted depleted LNBRI values between 2003 and 2007 that were in 
line with the 1scPDSI (Table 37). They explained 14.8% and 13.55% of the total data 
variance respectively (Table A7 2). 

The third PC explained 11.45% of the data variability and revealed a response 
highlighting the 2008 anomaly. Although potentially interesting, this pattern had no 
significant support in any of the scPDSI scores (Table 37). The fourth principal 
component, which still accounted on more than 10% of data variance (Figure A7 2), 
revealed two strong anomalies in 2004 and 2008 and demonstrated no potentially 

weather related feedback (Figure A7 2).  

                                      
16

 Complementary information in the Appendix 7, section A.7.1 
17

 Complementary information in the Appendix 7, section A.7.2 
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Table 37 Correlation among the scPDSI scores and first four PC obtained for the S-mode 

correlation-matrix based PCA of the LNBRI 2001-2011 time series (in columns). Comparison 
was done for yearly averages. 

 
CORLNBRI 

1PC 2PC 3PC 4PC 

1scPDSI 0.121, p=0.722 0.839, p=0.001 0.305, p=0.361 0.136, p=0.690 

2scPDSI 0.934, p<0.001 0.198, p=0.559 -0.02, p=0.952 0.132, p=0.698 

3scPDSI 0.315, p=0.345 0.666, p=0.025 0.386, p=0.241 0.270, p=0.422 

4scPDSI 0.929, p<0.001 -0.136, p=0.689 -0.243, p=0.471 0.022, p=0.948 

      

5.3. Assessment of drought impact on forest 

Preliminary inspection of the S-mode PCA results for the LNDVI and LNBRI time 
series indicated in total four scores being well related to scPDSI principal components 
and depicting drought variability in the region. The 1CORLNDVI pattern (Figure 
23A) demonstrated diminished NDVI in 2003-2004 which was consist with the onset of 
the 2003/4–2007 dry spell. Moreover, the score highlighted two positive anomalies in 
2001-2002, and in 2008. The 2CORLNDVI presented an overall increasing tendency 
with a positive peak in 2008 (Figure 23B). Although this variability was in opposition 
to the 4scPDSI (Table 36) it strongly resembled the 3COVnNDVI8-18 MODIS based 
score. Alike the 2CORLNDVI also the 1CORLNBRI PC followed a monotonic 
increasing/decreasing trend (Figure 23C). Also in this case the increasing tendency was 

promoted based comparison to MODIS results. The 2CORLNBRI score strictly adopt 
the 1scPDSI temporal profile (Table 37), rendering soundly not only diminished plant 
water content between 2003 and 2007, but also a moisture peak in 2008. 

 

 

 
Figure 23 PCs that revealed potential physical meaning of forest drought impact:  

A: 1CORLNDVI (the 1PC from the correlation-matrix based S-mode PCA of LNDVI time 
series), B: 2CORLNDVI (the 2PC from the correlation-matrix based S-mode PCA on LNDVI 
time series), C: 1CORLNBRI (the 1PC from the correlation-matrix based S-mode PCA on 

LNBRI time series), and D: 2CORLNBRI (the 2PC from the correlation-matrix based PCA on 

LNBRI time series). 
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Each of the identified scores was next projected by the means of pixel-based correlation 
against its original, PCA-introduced time series (Appendix 8). Emerging patterns were 
classified using percentiles of the correlation values into six response classes (Table 38).  

 

Table 38 Percentiles of correlation values for all four spatial projection of 1CORLNDVI, 

2CORLNDVI, 1CORLNBRI and 2CORLNBRI PCs considered as temporal responses of 
potential drought forest impact. Indicated threshold became limits of drought impact classes. 

 

 

Obtained representations (Appendix 8) showed spatial footprints of identified 
vegetation stress conditions. Diversity in temporal profiles of scores governed disparity 
among footprints. Further inspection of pixels allocation within forest type, exposition, 
elevation and slope classes, was done only for response classes 1 and 6. It allowed to 
shed some more light on potential drought impact hotspots and their opposites (Table 

39; further examination and description in the following sections). 

 

Table 39 Pixel distribution within factors levels inspected for the 1CORLNDVI, CORLNDVI, 

1CORLNBRI and 2CORLNBRI PCs spatial representations. Class 6 denotes regions with the 
strongest, whereas class 1 the weakest fit to the scores in Figure 23. 

 1CORLNDVI 2CORLNDVI 1CORLNBRI 2CORLNBRI 

[%] 1 6 1 6 1 6  1 6 

Total (pixels) 72746 72746 72746 72746 72746 72746 72746 72746 
         
Coniferous  96.74 48.15 89.04 74.87 80.97 88.92 91.54 67.22 
Broadleaved 2.17 27.71 6.72 14.51 11.55 6.14 5.15 18.80 
Mixed 1.09 24.15 4.25 10.62 7.48 4.94 3.31 13.98 
         N 24.31 25.89 25.27 28.08 28.44 21.28 31.06 18.98 
E 22.53 20.04 21.86 21.47 21.86 26.45 20.72 23.01 
S 31.23 18.80 28.85 22.23 24.12 32.32 22.36 26.79 
W 21.92 35.28 24.02 28.21 25.58 19.95 25.87 31.22 
         0-700 m asl 0.97 33.61 3.07 16.65 5.61 7.14 1.71 23.07 
700-1400 m asl 23.05 54.60 35.67 47.25 36.80 52.63 27.03 56.08 
1400-2100 m asl 72.92 11.71 59.52 35.74 55.30 39.96 68.20 20.57 
2100-2500m asl 3.05 0.08 1.74 0.37 2.29 0.27 3.05 0.28 
         0-10 deg. 8.80 3.62 9.34 7.21 9.29 5.89 9.26 4.71 
10-20 deg. 22.13 10.12 24.06 15.89 22.86 14.22 21.42 12.67 
20-30 deg. 35.95 23.36 33.62 28.28 33.53 29.88 34.67 28.06 
30-40 deg 28.42 39.15 26.42 37.15 26.99 40.30 28.99 36.39 
40-90 deg. 4.70 23.75 6.56 11.48 7.33 9.71 5.66 18.18 
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5.3.1. 1CORLNDVI spatial pattern 

The 1CORLNDVI PC (Figure 23A) response class 6 marked the central part of South 
Tyrol, namely in the Eisack and Etschtal Valleys and their smaller joining valleys 
(Figure 24). These locations were in half devoted to coniferous forest with another half 
almost evenly divided between broadleaved and mixed stands. They were placed 
mainly on medium (700-1400 m asl) and low (0-700 m asl) altitudes (Table 39), where 
the latter was overrepresented comparing with the overall forest allocation pattern. 
The aspect distribution promoted west exposed locations, while inclination showed 
preferences for the higher inclination strata.  

The drought impact class 1 highlighted almost exclusively coniferous forest stands in 

the Vinschgau, Wipp and Puster valleys (Figure 24). Considered woodland grew at 
higher and medium elevation of intermediate inclination (20-40 degrees; Table 39), 
which rather well renders orography of the region. Allocation within aspect classes 
revealed preference for the south exposed locations.  

 

 
Figure 24 Spatial representation of the 1CORLNDVI PC limited to response class 1 (green) and 

6 (red). The forest mask is marked in gray. 

5.3.2. 2CORLNDVI spatial pattern 

The 2CORLNDVI score (Figure 23B) suggested an overall ‘greenness’ increase. Spatial 
allocation of this response, associated with class 6, indicated north Etschtal Vallye, 
south-west part of the Eisack Valley as well as Puster Valley (Figure 25). Forest 
structure accounted there on three-fourths of needle leaved dominated stands, and a 
quarter of broadleaved and mixed forests (Table 39). Almost half of class 6 was placed 
between 700 and 1400 m asl. Among the aspect classes west and north exposed slopes 
were in majority. Inclination demonstrated preferences for medium and high steepness.  

The 2CORLNDVI response class 1, which implied gradual decrease of LNDVI was 
unevenly distributed throughout South Tyrol with the most prominent hotspots in the 
central part of the region, as well as the Vischgau Valley (Figure 25). Considered 
woodland grew mainly between 700 and 2100 m asl with 59.52% of the stands placed 
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between 1400 and 2100 m asl. This response was the most often for slopes of 
intermediate inclination (20-40 degrees, Table 39), which well fostered orography of the 
region. Allocation within aspect classes revealed minor preference for the south exposed 
locations. 

 

 
Figure 25 Spatial representation of the 2CORLNDVI PC limited to response class 1 (green) and 

6 (red). The forest mask is marked in gray. 

5.3.3. 1CORLNBRI spatial pattern 

A gradual vegetation water content increase depicted by the 1CORLNBRI PC and 
associated with class 6, highlighted disperse stands located mainly in the central part 
of South Tyrol and along the Vinschgau and the Puster Valleys (Figure 26). It 
accounted mostly on coniferous trees, with an above average share of broadleaved 
forest (Table 39). Recognized stands occurred most frequently at moderate and high 
elevations (700-1400 and 1400-2100 m asl respectively), and on the south and east 
exposed slopes. No inclination preferences were spotted as pattern allocation followed 
the general lay of the land.  

The antagonistic response mapped as the 1CORLNBRI class 1 indicated mainly forest 
in the Vinschgau Valley, as well as some isolated locations in the Puster Valley and 
southern part of the Eisack Valley (Figure 26). Stand structure revealed a dominance 
of needle-leaved stands, but with considerable addition of broadleaved and mixed 
woodland (Table 39). Neither aspect, nor inclination preferences were identified. On 
the contrary, elevation revealed very strong dominance of zones placed between 700 
and 2100 m asl.  
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Figure 26 Spatial representation of the 1CORLNBRI PC limited to response class 1 (green) and 

6 (red). The forest mask is marked in gray. 

5.3.4. 2CORLNBRI spatial pattern 

The 2CORLNBRI principal component, which depicted diminished plant water content 
between 2003 and 2007 (Figure 23D), had the strongest response in the medium 

elevated regions (Table 39) of the Eisack and Etschtal Valleys (Figure 27). The pattern 
was especially firm for west and south exposed slopes and accounted on an 
above-average share of broadleaved and mixed stands. Inclination within the response 
class 6 revealed a tendency towards steeper locations.  
 

 
Figure 27 Spatial representation of the 2CORLNBRI PC limited to response class 1 (green) and 

6 (red). The forest mask is marked in gray. 
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The 2CORLNBRI PC response class 1 highlighted multiple regions located mainly in 
the Vinschgau and Puster Valleys, as well as smaller hotspots in the Wipp Valley and 
in the higher elevated parts of the Eisack Valley (Figure 27). Considered areas were 
devoted mostly to the coniferous stands and covered high and medium elevation zones 
(1400-2100 m and 700-1400 m asl respectively). North exposed locations of low to 
medium inclination were the most characteristic for this response.  

5.4. Modeling synthetic MODIS-like data on Landsat derived spatial 
representations 

In order to compare Landsat results with MODIS derived footprints of drought impact 
as well as, further investigate Landsat-identified drought related variability using the 

time series of phenology and productivity indices, all obtained spatial patterns were 
converted from 30 to 250 m resolution.  

Considerable similarities in technical setups of Landsat 5, Landsat 7 and Terra 
platforms (Table 4 and Table 10) as well as, TM, ETM+ and MODIS spectral bands 
design that facilitates inter-sensor comparison (Price, 2003) were a great asset in the 
process. Although several Landsat-MODIS synergy applications assume perfect 
rendering of ground reflectance from a pixel footprint where a bigger pixel is calculated 
through aggregation of corresponding small pixels within its footprint and further 
linear regression to model an exact value (Feng et al., 2012; e.g. STARFM by Gao et 
al., (2006) or ESTARFM from Zhu et al., (2010)), this straightforward assumption is 

too idealistic and neglects wide spectrum of MODIS viewing angles (Boccardo et al., 
2006) and sensor’s point spread function (PSF; Huang et al., 2002) as well as, 
additional atmosphere effect. The difference between results obtained with a simple 
spatial average filter and PSF convolution are particularly apparent for heterogeneous 
areas and regions with complex morphology (Feng et al., 2012).  

Implemented simulation of MODIS data from Landsat derived information was 
therefore based on proposed by Huang et al., (2002) MODIS PSF model working under 
an additional assumption of negligible TM and ETM+ PSF deviation (Tan et al., 
2006). The MODIS PSF was firstly modeled for 30x30 m resolution grid (Figure 28) 
and subsequently represented as a 23x23 pixels kernel of a moving-window filter 
(Figure 29). Notably, the 7x7 core part of the kernel roughly corresponded to the 

central MODIS pixel of a footprint, accounted on 60% of response. 

Knowing the MODIS pixel grid in South Tyrol, a geometric center of each pixel was 
calculated and overlaid with the Landsat datasets in order to identify corresponding 
middle-point pixels. Those pixels were subsequently used to center the MODIS PSF 
kernel, and determined values of synthetic MODIS-like Landsat-derived pixels. 
Importantly, calculation was enabled only when at least 50% of the kernel cells had 
non-zero values as well as, the kernel’s core was represented by minimum 39 pixels 
(80% out of 49 cells). Otherwise, when the kernel was dominated by no-data, or the 
core was underrepresented, synthetic MODIS-like pixel was assigned a ‘0’ value. These 
conditions were particularly important when working with Landsat dataset which not 
only enclosed heterogeneous coverage and jagged forest borderlines, but also was 
characterized by data gaps. The adopted approach increased credibility and accuracy 
of final aggregation results. 
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Figure 28 MODIS PSF modeled for 30 m resolution Landsat based grid: A: an actual MODIS 

PSF. In gray response from the adjacent area outside the 250x250 m MODIS pixel;  
B: a top-side view of the MODIS PSF simulated for 30m resolution pixels with respect to 
250x250 m greed; C: a top view of the MODIS PSF simulated for 30m resolution pixels with 
respect to 250x250 greed.  

 

 
Figure 29 Spatial representation of the MODIS PSF simulated for 30m resolution pixels. 

Values round-off to the 3 digits precision. Each cell of the 23x23 kernel represents one 30x30m 
Landsat pixel and has a normalized response assigned with respect to the central pixel. 
Corresponding MODIS pixel grid is marked in yellow. The ‘core’ kernel of 7x7 Landsat pixels 
(210x210m; in red) accounts on 60% of the signal rendered in resulting MODIS pixel. 

 

The model presented above was consecutively applied to Landsat derived unclassified 
spatial representations of four selected PCs. This approach allowed to inspect capacity 
of Landsat data to capture drought impact, rather than model MODIS scenes with 
Landsat acquisitions. The process resulted in new correlation footprints of 250 m 
resolution called herein: 1CORL250NDVI, 2CORL250NDVI, 1CORL250NBRI and 
2CORL250NBRI. Although emerging maps rendered almost exact space perception as 

the original impact projections (Appendix 8), convolution affected correlation 
distribution. Consequently, all four newly produced correlation maps were individually 
classified into response classes using the 5th, 30th, 50th, 70th and 95th percentiles (Table 
40; Appendix 9). 
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Table 40 Percentiles of correlation values for synthetic MODIS-like spatial representations of 

1CORLNDVI, 2CORLNDVI, 1CORLNBRI and 2CORLNBRI PCs recognized as potential 
drought governed forest response. Indicated threshold values were being limits of impact 
classes. 

 

 

Change in resolution as well as, principles of the convolution leaded to some 
alternation in aspect, elevation, slope and forest type classes distribution comparing 
with the original Landsat patterns (Table 41). 

 

Table 41 Pixel distribution within factors levels inspected for the 1CORL250NDVI, 

2CORL250NDVI, 1CORL250NBRI and 2CORL250NBRI spatial representations. Class 6 denotes 
regions with the strongest, whereas class 1 the weakest fit to the scores in Figure 23 

 1CORL250NDVI 2CORL250NDVI 1CORL250NBRI 2CORL250NBRI 

 1 6 1(d) 6(in) 1 (d) 6 (in) 1 6 

Total (pixels) 1054 1054 1054 1054 1054 1054 1054 1054 
         Coniferous 98.76 43.99 72.89 93.27 86.02 91.58 97.44 52.18 
Broadleaved 0.48* 19.68 9.48 1.71* 3.74* 1.49* 1.04* 15.56 
Mixed 0.76* 36.33 17.63 5.02 10.25 6.93 1.52* 32.26 
         N 28.69 20.81 31.47 26.45 30.56 17.52 34.16 12.05 
E 15.63 21.67 17.54 18.96 14.75 29.60 14.52 30.27 
S 33.56 14.66 21.61 28.25 20.50 39.50 23.81 23.34 
W 22.12 42.86 29.38 26.35 34.20 13.37 27.51 34.35 
         0-700 m asl 0.19* 46.74 23.51 1.42* 6.70 3.96* 0.09* 40.89 
700-1400 m asl 13.44 50.05 41.90 29.48 28.35 50.10 11.76 54.17 
1400-2100 m asl 84.56 3.22 34.50 68.15 60.54 45.35 85.10 4.93 
2100-2500m asl 1.81* 

 

 0.09* 0.95* 4.41* 0.59* 3.04* - 
         
0-10 deg. 10.01 5.77 9.38 9.38 9.58 6.53 9.49 6.36 
10-20 deg. 37.27 23.65 20.09 34.98 20.98 15.94 29.41 21.92 
20-30 deg. 44.52 41.82 42.94 42.84 45.02 45.15 48.58 43.07 
30-40 deg 8.10 25.92 26.16 12.42 16.95 31.78 12.24 24.67 
40-90 deg. 0.10* 2.84* 1.42* 0.38* 0.57* 0.59* 0.28* 3.98* 
         * - category with less than 50 observations; in – increasing; d – decreasing 

5.4.1. 1CORL250NDVI spatial pattern 

A spatial representation of the 1CORL250NDVI drought impact response (Figure 30) 
was much alike the 1CORLNDVI footprint (Figure 24). However, due to the resolution 
change, allocation within factors’ levels was altered. A footprint of class 6 marked 

decrease in coverage of coniferous and broadleaved stands that accounted now on 
43.99% and 19.68% respectively. In contrast, share of mix stands increased up to 
36.33% (Table 41). Considered area was placed almost exclusively below 1400 m asl on 
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slopes with moderate to high inclination. Among aspect classes west-exposed areas 
were in strong majority. The opposite response depicted by the impact class 1 was 
almost exclusively devoted to needle leaved stands growing between 1400 and 2100 m 
asl. Alike for the 1CORLNDVI spatial pattern, class 1 response was the most common 
on south facing slopes with north exposition being the second most frequent. 
Inclination allocation revealed a shift towards less steep locations, especially 
considering the 10-20 and 20-30 degrees strata (Table 41). 

 

 
Figure 30 Spatial representation of the 1CORLNDVI PC converted into MODIS-like response 

1CORL250NDVI. Only response class 1 (green) and 6 (red) are plotted. The forest mask is 
marked in gray. 

 

Statistical significance of time governed phenology and productivity changes observed 

within the 1CORL250NDVI drought pattern was inspected using the within-subjects 
effects test of the repeated measures ANOVA performed with the Hujnh-Feldt 
adjustment (Table 42). The same approach confirmed significant influence of time on 

changeability of all six investigated metrics within drought response classes. 
Subsequently, impact of site-specific characteristics on phenology and productivity was 
analyzed. The superior influence of elevation was demonstrated (Table 43) along 
weaker and selective impact of aspect, slope and forest type levels.  

Changes in forest status following the 1CORLNDVI PC variability were associated 
with the 1CORL250NDVI drought response class 6. It reported deteriorate NDVIHS 
values between 2003 and 2007 with local minima in 2003 and 2007 (Figure 31). A 
massive NDVIHS increase was revealed in 2008. The same years were marked by drops 
and rises in the NDII7HS envelope, however unlike for the NDVIHS, NDII7HS has a clear 
and statistically significant (Table 44) increasing tendency. Forest response after 2008 
was characterized by high values with some minor fluctuations among which the 2011 

negative anomaly was the strongest one. Although the NDVIHS depicted for the class 1 
fostered the same timing and character of anomalies, local minima were observed there 
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Table 42 Within-subjects effects test of repeated measures ANOVA performed for the 

1CORL250NDVI spatial representation. Test run with the Hujnh-Feldt adjustment returning 
results for the factor of time, and time combined with response class within selected phenology 
and productivity indicators. 

 time  time*correlation class Error 

 df F p  df F p df 

CF 9.158 1283.13

1 

0.000  45.790 45.148 0.000 189828.830 

GPP 9.440 417.107 0.000  47.233 21.265 0.000 195807.460 

SBD 9.348 424.326 0.000  46.738 8.947 0.000 193758.122 

SL 9.572 363.261 0.000  47.860 13.522 0.000 198408.155 

NDVIHS 8.719 2838.74

9 

0.000  43.597 120.109 0.000 184003.798 

NDII7HS 9.594 4740.68

8 

0.000  47.971 51.333 0.000 202064.995 

          

Table 43 Effects of forest type, aspect, elevation and slope factors evaluated for phenology and 

productivity indices within the 1CORL250NDVI spatial representation using the test of between 
subjects effects of repeated ANOVA. 

 Forest type (df=2) Aspect (df=3) Elevation (df=4) Slope (df=4) 

indicator F p F p F p F p 

CF 40.892 0.000 1.126 0.337 58.043 0.000 0.516 0.724 

GPP 1.577 0.207 1.284 0.278 96.532 0.000 4.661 0.001 

SBD 8.303 0.000 4.025 0.007 13.878 0.000 0.505 0.732 

SL 1.358 0.257 5.289 0.001 3.773 0.005 2.298 0.057 

NDVIHS 27.950 0.000 10.010 0.000 61.486 0.000 7.340 0.000 

NDII7HS 0.723 0.485 1.374 0.249 38.349 0.000 10.036 0.000 
         

 

 
Figure 31 Year-to-year variability observed within drought impact classes 1 and 6 of the  

1CORL250NDVI spatial representation of the 1CORLNDVI PC: a) CF, b) GPP, c) SBD, d) SL, 
e) NDVIHS and f) NDII7HS.  
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in 2007 and 2011 with much smaller drop in 2003. On the contrary, NDII7HS within 
class 1 showed variability adjacent to the response of class 6, but with smaller change 
spectrum, hence weaker increasing tendency (Table 44). Forest stands associated with 
variability of class 6 revealed before 2007 distinct change towards an earlier vegetation 
onset, which was interrupted in the following years by SBD. An overall change 
tendency was insignificant (Table 44). Although SL did not adopt SBD changes 
immediately, a general season length perception revealed significant extension of the 
vegetation season (Table 44). SBD and SL observations made for the drought impact 
class 1 revealed rather shaky profile of vegetation onset as well as, trendless and 
elevated SL. The most profound differences between investigated drought responses 
were observed for CF. Regions of high correlation with the 1CORLNDVI PC revealed 

low but steadily increasing CF. Despite small drops in 2003, 2006-2007 and after 2010, 
this tendency was statistically significant (Table 44). In contrast, response within class 
1 not only had higher seasonal growth which achieved its local maxima in 2003 and 
2009, but also depicted massive CF decrease between 2003 and 2007. GPP changes 
observed for class 6 supported CF variability and depicted increasing productivity 
tendency (Table 44) with local peaks in 2004, 2007 and 2011. A reversed manner was 
presented for class 1, where after elevated yield in 2003, GPP declined until 2010. This 
response was however not identified as statistically significant linear trend (Table 44). 

 

Table 44 Strength of overall linear trends observed for phenology and productivity indicators 

within response classes 1 and 6 derived for the 1CORL250NDVI footprint. Assessment done 
using the within subject contrasts test of repeated ANOVA. 

 Class 1 Class 6 

 F p F p 

CF 5.456 0.020 40.316* 0.000 

GPP 0.445 0.505 14.790 0.000 

SBD 0.139 0.710 2.529 0.112 

SL 0.462 0.497 8.410* 0.004 

NDVIHS 1.120 0.290 152.218* 0.000 

NDII7HS 50.230* 0.000 386.024* 0.000 

     * - the strongest trend of all tested contrast orders 

 

Phenology and productivity response within class 6 was further inspected with the 
within-subjects effects test of repeated ANOVA measures with Hujnh-Feldt correction. 
Generated results showed a significant impact of time factor on observed variability 
(Table A10 1). Furthermore, moderate but significant influence of elevation in time 
was revealed for CF and NDVIHS. Combined factors of aspect and time governed 
NDVIHS and NDII7HS, whereas combinations of slope and time, as well as forest type 
and time factors, had limited impact diversification of CF values (Table 45). 

Variability in forest status observed within the class 6 of the 1CORL250NDVI spatial 
representation was deeper inspected within diverse levels of forest type, aspect, 
elevation and slope factors using repeated ANOVA measures plots (Figure A11 1). 
According to derived visualizations, coniferous stands revealed the least intense 
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Table 45 Effect of elevation, aspect, slope and forest type factors in time on distinction between 

productivity indices tested for the response class 6 derived of the 2CORL250NDVI spatial 
representation. Analyses performed using subjects effects test of repeated ANOVA. Only 
measures with significant statistics are shown (p<0.001) 

 time*elevation time*aspect time*slope time*forest 

indicator df F df F df F df F 

CF 20 5.269   40 2.123 20 2.216 

NDVIHS 21.939 2.449 32.909 2.167     

NDII7HS   36.000 3.016     

          

variability with the lowest CF, SL and NDVI HS. The most intense change amplitudes 

were observed for mixed forest, which was especially visible in GPP and SBD profiles. 
Moreover, SBD response was the only example of disparity between coniferous and 
mixed forest in drought stress reaction, where the former showed the soonest onset in 
2005 and 2006, whereas the latter depicted SBD drop in 2004. Forest type revealed a 
limited impact on NDII7HS with broadleaved stands having the highest score. Aspect 
study indicated a positive relation between southern exposition and increase in CF and 

SL values. On the contrary, north-facing sites had more favorable NDVIHS and 
NDII7HS conditions, with the smallest change amplitude. The latter observation did 
not relate to GPP, SBD and SL where profound peaks were detected for north-exposed 
locations. Particularly intriguing was a massive 2002-2007 SBD depression centered at 
2004. Despite this, remaining strata followed mutually alike temporal variability. 
Altitude impact on phenology under drought conditions was rather complex. Although 
elevation increase was positively correlated with NDII7HS, no other index followed this 
relation. Apparent distinction was also observed for CF, with the lowest elevation zone 
showing the best productivity. Inclination role was not utterly explicit. Although the 
lowest sloping zones obtained the highest CF, SBD and SL results, inclination increase 
did not translate on linear decrease of aforementioned metrics. Moreover, NDVIHS and 
NDII7HS revealed very limited differences between inclination levels, which indirectly 
translated on complex response of remaining measures that, in most of the cases, 
followed mutually similar temporal profiles.  

5.4.2. 2CORL250NDVI spatial pattern 

Although  the 2CORL250NDVI (Figure 32) originated from the spatial distribution of 
the 2CORLNDVI PC (Figure 25), allocation of 2CORL250NDVI drought severity classes 
within factors levels was altered due to different resolution and exclusion of some 
regions governed by the spatial aggregation principles (Table 41). Areas associated 
with the drought impact class 6 showed slightly weaker dominance of coniferous stands 
and stronger share of mixed woodland comparing with the 2CORLNDVI footprint 
(Table 41). North and west exposed slopes, of moderate to high inclination (0°-40°) 
were the most common for these stands. Medium and high elevation was favored, but 
the lowest altitude class accounted on 23.51% of the response. On the contrary, class 1 

addressed almost exclusively coniferous forest stands. Aspect allocation revealed small 
dominance of south exposition. 68.15% of the area of class 1 was placed between 1400 
and 2100 m asl, with another 29.48% between 700 and 1400 m asl. Sloping preferences 
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Figure 32 Spatial representation of the 2CORLNDVI PC converted into MODIS-like response 

2CORL250NDVI. Only response class 1 (green) and 6 (red) are plotted. The forest mask is 
marked in gray  

 

revealed this response to be the most prominent at sides with moderate inclination 
(10-30 degrees).  

Significance of time dependent phenology and productivity changes observed within 
the 2CORL250NDVI spatial pattern were tested with the within-subjects effects test of 
the repeated measures ANOVA performed with the Hujnh-Feldt adjustment. Statistics 
confirmed significance of changes of forest status in time (Table 46), as well as a valid 
influence of combined factors of time and drought impact classes within all six 
considered indices. Furthermore, a relation between environmental features and 
phenology-productivity was inspected, and revealed statistically significant connection 

to elevation (Table 47). Differences between aspect, slope and forest type classes were 
less evident, or even irrelevant.  

 

Table 46 Within-subjects effects test of repeated measures ANOVA performed for the 

2CORL250NDVI spatial representation. Test run with the Hujnh-Feldt adjustment returning 
results for the factor of time, and time combined with response class within selected phenology 
and productivity indicators. 

 time  time*correlation class Error 

 df F p  df F p df 

CF 9.109 1204.587 0.000  45.543 14.512 0.000 192236.359 

GPP 9.433 447.711 0.000  47.165 5.042 0.000 199085.480 

SBD 9.346 425.088 0.000  46.732 3.021 0.000 197254.942 

254.942 SL 9.566 383.409 0.000  47.831 4.054 0.000 201896.726 

NDVIHS 8.623 2761.485 0.000  43.115 48.301 0.000 181989.787 

NDII7HS 9.567 4460.367 0.000  47.833 25.397 0.000 201501.175 
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Table 47 Effects of forest type, aspect, elevation and slope factors evaluated for phenology and 

productivity indices within the 2CORL250NDVI spatial representation using the test of between 
subjects effects of repeated ANOVA. 

 Forest type (df=2) Aspect (df=3) Elevation (df=4) Slope (df=4) 

indicator F p F p F p F p 

CF 40.885 0.000 1.125 0.337 58.043 0.000 0.516 0.000 

GPP 1.579 0.206 1.285 0.278 96.542 0.000 4.661 0.001 

SBD 8.302 0.000 4.025 0.007 13.878 0.000 0.505 0.732 

SL 1.355 0.258 5.289 0.001 3.772 0.005 2.297 0.057 

NDVIHS 27.951 0.000 10.009 0.000 61.492 0.000 7.340 0.000 

NDII7HS 0.723 0.485 1.374 0.249 38.355 0.000 10.036 0.000 
         

 

Forest indicated by the 2CORL250NDVI impact classes 6 and 1, associated with the 
increasing and decreasing NDVI tendency respectively, revealed very similar temporal 
responses of all six investigated indices (Figure 33). Both strata demonstrated NDII7HS 
drop in 2003, followed by a strong increasing tendency (Table 48) inhibited shortly in 
2007 and 2011. Remarkably, class 6 had higher NDII7HS and showed smaller decrease 
between 2002 and 2003, and more intense increase between 2003 and 2013 comparing 
with class 1. NDVIHS observed for areas of inclining greenness reported lower scores 
with less intense variability. The only exception was here 2008. Both temporal profiles 
highlighted drop in 2003, 2007 and 2011 as well as rise in 2008 and 2012. Regions 

associated with class 1 experienced much more intense decrease between 2001 and 2007 
and weaker gain in 2008 than class 6. (Figure 33). Although both drought response 
classes revealed between 2002 and 2007 a tendency for earlier vegetation onset, class 1 
demonstrated a smoother envelope (Figure 33). The overall tendency was insignificant 
due to 2008-2010 SBD increase (Table 48). Although SL demonstrated alike, wobbly 
 

 
Figure 33 Year-to-year variability observed within drought impact classes 1 and 6 of the  

2CORL250NDVI spatial representation of the 2CORLNDVI PC: a) CF, b) GPP, c) SBD, d) SL, 
e) NDVIHS and f) NDII7HS. 
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response for both classes, only class 6 showed overall significant linear relation (Table 
48). Interestingly, 2003 and 2004 brought longer vegetation period within both strata, 
which resulted in elevated CF. Productivity rise lasted only until 2004, and was 
followed by CF decline concluded in 2006 and 2007 for class 1 and 6 respectively. 
Despite these deteriorations, the overall CF changeability suggested increasing 
tendencies, which was governed mainly by a massive rise in 2008-2009. GPP 
demonstrated limited correlation to CF. Drought impact class 6 obtained here lower 
productivity scores, with slightly decreasing tendency between 2005 and 2010 
hampered by elevated GPP in 2011. Regions supporting NDVI decline showed more 
intense variability with stronger decrease before 2010, but equally intense rise in 2011 
(Figure 33). 

 

Table 48 Strength of overall linear trends observed for phenology and productivity indicators 

within response classes 1 and 6 derived for the 2CORL250NDVI spatial representation. 
Assessment done using the within subject contrasts test of repeated ANOVA.  

 Class 1 Class 6 

 F p F p 

CF 4.213 0.004 5.567 0.019 

GPP 9.201 0.002 6.985* 0.008 

SBD 2.651 0.104 2.424 0.120 

SL 1.590 0.208 4.602 0.032 

NDVIHS 15.498 0.000 87.803* 0.000 

NDII7HS 137.504* 0.000 224.821* 0.000 

     * - the strongest trend of all tested contrast orders  

 

Subsequently, drought response within class 6 was investigated deeper through the 
within-subjects effects test of repeated ANOVA measures with Hujnh-Feldt correction. 
Significance of time governed changes was confirmed for all phenology and productivity 
measures (Table A10 2). Further analyses performed for time combined with four 
environmental factors revealed significant but limited impact of elevation and time on 
CF, NDVIHS and NDII7HS variability (Table 49). Furthermore slope and time factors 
were found relevant for NDVIHS and NDII7HS. 

 

Table 49 Effect of elevation and slope factors in time on distinction between productivity 

indices tested for the response class 6 derived for the 2CORL250NDVI spatial representation.  
Analyses performed using within-subjects effects test of repeated ANOVA. Only measures with 
significant statistics are shown (p<0.001). 

 time*elevation time*slope 

indicator df F df F 

CF 29.948 3.366   

NDVIHS 32.696 4.778 43.595 2.281 

NDII7HS 36.000 2.771 48.000 2.083 

     

Comprehensive information on drought governed phenology and productivity changes 
within regions of class 6 inspected for forest type, aspect, elevation and slope classes 
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was ensured through repeated ANOVA measures plots (Figure A11 2). Following the 
obtained results coniferous stands showed usually the lowest GPP, NDVIHS and 
NDII7HS scores. Interestingly, needle-leaved forest had the highest CF with a positive 
peak in 2003 followed by a productivity decline lasting until 2006, and a massive 
increase between 2007 and 2009. On the contrary broadleaved and mixed stands 
reported drop in 2003 with a steady productivity rise peaked in 2009. This behavior 
was not transferred on GPP, where hardwood and mixed stands reported light 
productivity incline, whereas needle-leaved forest demonstrated leveled and lower 
scores. Robust differences in SBD were observed between forest types before 2008, with 
coniferous trees revealing earlier vegetation onset for 2003-2008. While mixed stands 
demonstrated overall SBD decrease briefly interrupted in 2008-2010, broadleaved forest 

experienced an abrupt SBD drop between 2004 and 2006, followed by later vegetation 
onset. NDII7HS indicted alike patterns for all three classes with the highest index 
values reported for mixed and hardwood forests. The same observation was made for 
the NDVIHS. SL seemed to be species independent with an exception of 2005-2008 
period when broadleaved forest experienced shorter vegetation. The north exposition 
rendered the highest NDVIHS and NDII7HS with all aspect classes following alike 
temporal profiles. A strong diversification among aspect classes was observed for SBD 
where south and west facing regions experienced the latest vegetation onset, but the 
clearest declining tendency. Very limited differences were observed for SL, where north 
facing forest stands revealed the strongest amplitude of changes. Furthermore, north 
exposed regions experienced CF decline in 2004. GPP on south facing slopes was 

suppressed but revealed a clear increase. Elevation gain leaded to NDVIHS, CF and 
GPP decrease, with the highest variability observed within the lowest altitudinal class. 
All measures suggested increasing trends over time. Interestingly, no linear relation was 
spotted between elevation and SBD neither SL, where the latter revealed the biggest 
differences between factor levels for 2002-2007. The highest NDII7HS was reported for 
stands growing at moderate elevation (700-1400 m asl). The fourth altitudinal class 
was not considered due to insufficient representation (Table 41). Inspection of 
phenological changes driven by inclination demonstrated no straightforward relations. 
Although SL seemed to decline with increasing steepness, it did not translate onto 
other indices. Areas of the lowest inclination demonstrated the lowest CF. The most 

intense differences between classes were observed between 2002 and 2007. Inclination 
class 5 was not considered due to limited representation.  

5.4.3. 1CORL250NBRI spatial pattern 

The 1CORL250NBRI pattern (Figure 34) rendered alike spatial features as the 
1CORLNBRI footprint (Figure 26), but due to change in resolution and associated 
spatial aggregation approach, its allocation within factors levels transformed (Table 
41). Regions that followed the increasing tendency of the 1CORLNBRI PC (response 
class 6) were the most common at south and east exposed slopes of moderate to high 
inclination, which differ slightly from the 1CORLNBRI footprint settings. Considered 
class was located on medium to high altitudes with preference of the former, whereas 

species distribution indicated dominance of coniferous stands with small addition of 
mixed forest and neglected share of broadleaved woodland. The opposite 
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Figure 34 Spatial representation of the 1CORLNBRI PC converted into MODIS-like response 

1CORL250NBRI. Only response class 1 (green) and 6 (red) are plotted. The forest mask is 
marked in gray.  

 

response of class 1 that suggested increasing NBRI was represented by coniferous forest 
with addition of mixed stands. They were located mainly on west and north exposed 
locations of inclination between 10° and 40°. Elevation distribution followed the South 
Tyrolean lay of the land with minor underestimation of the 700-1400 m asl strata. 

Significance of time in phenology and productivity changes, as well as diversification 
between drought response classes in time was confirmed by the within-subjects effects 
test of the repeated measures ANOVA performed with the Hujnh-Feldt adjustment 
(Table 50). Moreover, expected leading influence of elevation on phenology changes 
was confirmed through the between subjects effects test (Table 51). Importance of 

forest type, aspect and slope on forest growth was less relevant and not always 
significant. 

 

Table 50 Within-subjects effects test of repeated measures ANOVA performed for the 

1CORL250NBRI spatial representation. Test run with the Hujnh-Feldt adjustment returning 
results for the factor of time, and time combined with response class within selected phenology 
and productivity indicators.  

 time  time*correlation class Error 

 df F p  df F p df 

CF 9.121 1245.76

2 

0.000  45.603 21.615 0.000 189013.873 

GPP 9.434 437.153 0.000  47.134 3.502 0.000 195505.602 

SBD 9.345 421.075 0.000  46.724 2.548 0.000 193661.760 

SL 9.564 343.228 0.000  47.818 4.836 0.000 198196.865 

NDVIHS 8.678 2628.95

0 

0.000  43.420 69.568 0.000 179966.116 

NDII7HS 9.561 4285.03

6 

0.000  47.839 43.519 0.000 196226.031 
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Table 51 Effects of forest type, aspect, elevation and slope factors evaluated for phenology and 

productivity indices within the 1CORL250NBRI spatial representation using the test of between 
subjects effects of repeated ANOVA. 

 Forest type (d2=2) Aspect (df=3) Elevation (df=4) Slope (df=4) 

indicator F p F p F p F p 

CF 41.216 0.000 1.522 0.207 93.588 0.000 0.640 0.634 

GPP 1.608 0.200 1.302 0.272 153.785 0.000 5.530 0.010 

SBD 7.796 0.000 4.544 0.003 28.905 0.000 0.690 0.599 

SL 1.635 0.195 4.773 0.003 3.565 0.014 2.408 0.047 

NDVIHS 28.137 0.000 7.586 0.000 87.890 0.000 9.140 0.000 

NDII7HS 0.637 0.529 2.209 0.085 47.493 0.000 11.356 0.000 
         

 

Forest stands convergent with the increasing 1CORLNBRI PC and represented by 
class 6, demonstrated NDII7HS decline in 2003 followed by a fast increase slightly 
disturbed in 2007 and 2011 (Figure 35). Variability observed within class 1 
demonstrated lower scores and diminished values between 2002 and 2007 and a gradual 
overall rise. Especially strong drops were detected in 2003 and 2007, where the former 
had the greatest absolute value, while the latter was a global minimum in both 
envelopes. Both profiles showed a significant linear tendency (Table 52). NDVIHS 
defined for class 6 depicted abruptly decreased greenness between 2003 and 2007 with 
higher but unsteady signal afterwards. Conversely, the opposite drought response 

indicated lower NDVIHS scores with strong decrease before 2007 when a global 
minimum was reached, and higher, but still suppressed values until 2012. SBD 
observed for both impact classes showed comparable responses with sooner vegetation 
onset detected between 2003 and 2007, and later phenology incept for 2008-2010. Class 
1 was more prone to earlier start of the season whereas class 6 showed wider change  
 

 
Figure 35 Year-to-year variability observed within drought impact classes 1 and 6 of the  

1CORL250NBRI spatial representation of the 1CORLNBRI PC: a) CF, b) GPP, c) SBD, d) SL, 
e) NDVIHS and f)NDII7HS. 
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spectrum with statistically more robust linearity (Table 52). SL differences were very 
limited between both analyzed responses with, in general, slightly shorter SL observed 
for class 1. Both showed linear tendencies only for class 6 (Table 52). GPP revealed 
better diversification between classes with lower but leveled productivity in class 6, and 
higher but gradually decreasing scores depicted within class 1. Both time profiles 
comprised serried of rises and drops with GPP increase in 2003, 2005, 2007 and 2011, 
and two more robust downs in 2006 and 2010. Also in this case only class 6 reported 
significant linearity of changes. Seasonal vegetation growth approximated by CF 
showed higher productivity within class 6. Although both strata rendered alike 
responses of productivity increase in 2003 and 2008, separated by the index loss 
centered on 2006, absolute changes observed within class 1 were smaller, and supported 

no linearity assumption (Table 52). 

 

Table 52 Strength of overall linear trends observed for phenology and productivity indicators 

within response classes 1 and 6 derived for the 1CORL250NBRI spatial representation. 
Assessment done using the within subject contrasts test of repeated ANOVA 

 Class 1 Class 6 

 F p F p 

CF 1.739 0.188 4.411 0.036 

GPP 2.429 0.119 38.519* 0.000 

SBD 2.948 0.086 6.791 0.009 

SL 3.335 0.068 11.634 0.001 

NDVIHS 0.088 0.767 128.511 0.000 

NDII7HS 78.553* 0.000 400.225* 0.000 

     * - the strongest trend of all tested contrast orders  
 

Further focus was put on the 1CORL250NBRI response class 6. The within-subjects 
effects test of repeated ANOVA measures run with Hujnh-Feldt correction revealed 
significant impact of time on observed phenological changes within class 6 (Table A10 
3). Moreover, a detailed investigation accounting on combined impact of time and four 
environmental factors indicated for CF and NDVIHS meaningful but weak 
diversification within elevation classes (Table 53). 
 

Table 53 Effect of elevation factor in time on distinction between productivity indices tested 

for the response class 6 derived for the 1CORL250NBRI spatial representation. Analyses 
performed using subjects effects test of repeated ANOVA. Only measures with significant 

statistics are shown (p<0.001).  

 time*elevation 

indicator df F 

CF 30.000 2.935 

NDVIHS 34.189 4.316 

    

An investigation of drought governed phenology and productivity variability within 
forest type, aspect, elevation and slope levels, was achieved through repeated ANOVA 
measures run for area of class 6 (Figure A11 3). Differences between forest types, where 
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broadleaved stands were excluded due to limited representation, were distinct and 
showed for coniferous woodland lower NDVIHS and GPP scores, as well as surprisingly 
high CF values. Hardly any divergence was observed for SL, whereas SBD derived for 
mixed stands revealed a strong tendency towards earlier vegetation onset. 
Interestingly, although CF temporal profiles were much alike for both forest types, 
coniferous trees reported an increase in 2003. Phenological indices were reported to be 
exposition-dependent, where the south exposition showed lower NDVIHS and NDII7HS, 
but higher CF and SL comparing with other levels. SBD revealed for north facing 
regions intense changes with the earliest vegetation onset in 2005 and 2011. Although 
the latter drop was present also for other aspects, the former seemed to be site specific 
phenomenon. Moreover, SL showed substantial differences between all four strata in 

the first part of the analyses time-window, with uniform variability beyound 2006. 
Elevation impact on phenology was rather complex and nonlinear. Interestingly the 
highest NDVIHS, NDII7HS and GPP scores were derived for 700-1400 m asl strata. 
Contrasting observation was made for CF and partly also SL. The third altitudinal 
zone (the forth was excluded due to insufficient area), demonstrated in 2003 a 
contrasting response of increased productivity. An inclination increase revealed minor 
negative impact on all phenology and productivity measures but CF. Moreover, 
temporal profiles observed for areas with the lowest steepness showed a bit diverse 
variability than the rest of the investigated region ,demonstrating for SL isolated peaks 
in 2005, as well as CF decrease in 2007. 

5.4.4. 2CORL250NBRI spatial pattern 

Although the 2CORL250NBRI (Figure 36) originated from the spatial response to the 
2CORLNBRI PC (Figure 27), its allocation within factors levels was altered due to a 
different resolution and spatial aggregation principles governing exclusion of some 
regions (Table 41). Areas recognized as inclined with the 2CORLNBRI variability were 
represented in response class 6, and showed only small dominance of coniferous stands 
and definitively stronger share of mixed woodland (Table 41) comparing with the 
2CORLNBRI footprint. Moreover, almost all discussed area was located below 1400 m 
asl with a substantial part belonging to the lowest elevation class (Table 41). 
Furthermore, west and east exposed slopes were the most common location for class 6, 

which indicated a change in relation to the 2CORLNBRI impact representation. On the 
contrary, class 1 addressed almost exclusively coniferous forest stands frequently 
growing on north facing locations and on elevation between 1400 and 2100 m asl. The 
latter revealed a clear shift towards the higher altitudes comparing with the 
2CORLNBRI footprint. Sloping preferences suggested this response to be the most 
prominent at sides with moderate to high inclination (10-40 degrees). 

Significance of time dependent phenology and productivity changes observed for the 
2CORL250NBRI pattern were tested with the within-subjects effects test of the repeated 
measures ANOVA performed with the Hujnh-Feldt adjustment. Statistics confirmed 
significance of time governed forest status differences (Table 54), as well as valid 
influence of combined factors of time and impact class within all six considered indices. 

Independently, a relation between forest response and site specific features of forest 
type, aspect, slope and elevation were looked upon. Analyses demonstrated the biggest 
disparity  between elevation  levels (Table 55). Three  remaining  factors revealed less  
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Figure 36 Spatial representation of the 2CORLNBRI PC converted into MODIS-like response 

2CORL250NBRI. Only response class 1 (green) and 6 (red) are plotted. The forest mask is 
marked in gray. 

 

Table 54 Within-subjects effects test of repeated measures ANOVA performed for the 

2CORL250NBRI spatial representation. Test run with the Hujnh-Feldt adjustment returning 
results for the factor of time, and time combined with response class within selected phenology 
and productivity indicators.  

 time  time*correlation class Error 

 df F p  df F p df 

CF 9.236 1239.76

4 

0.000  46.181 91.465 0.000 194718.746 

GPP 9.448 417.819 0.000  47.238 18.308 0.000 199173.184 

SBD 9.353 407.660 0.000  46.765 14.298 0.000 197178.703 

SL 9.573 358.874 0.000  47.864 17.830 0.000 201815.692 

NDVIHS 8.845 2909.55

9 

0.000  44.223 175.681 0.000 186461.801 

NDII7HS 9.615 4673.46

2 

0.000  48.077 59.046 0.000 200537.469 

          

Table 55 Effects of forest type, aspect, elevation and slope factors evaluated for phenology and 

productivity indices within the 2CORL250NBRI spatial representation using the test of between 
subjects effects of repeated ANOVA. 

 Forest type (df=2) Aspect (df=3) Elevation (df=4) Slope (df=4) 

indicator F p F p F p F p 

CF 40.500 0.000 1.162 0.323 57.699 0.000 0.450 0.773 

GPP 1.663 0.190 1.087 0.353 96.301 0.000 4.847 0.001 

SBD 8.6990 0.000 3.930 0.008 13.741 0.000 0.532 0.712 

SL 1.376 0.253 5.265 0.001 4.020 0.003 2.188 0.068 

NDVIHS 28.084 0.000 10.359 0.000 64.375 0.000 7.733 0.000 

NDII7HS 0.655 0.519 1.548 0.200 40.344 0.000 10.415 0.000 
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apparent impact on forest growth. Areas indicated by the 2CORL250NBRI response 
class 6 revealed in 2003 an intense drop in NDVIHS and NDII7HS envelopes, which was 
next followed by gradual scores increase culminated in 2008 (Figure 37). Consecutive 
years indicated high values of both indices with a minor decrease in 2011. Moreover, 
the 2003-2008 increase was interrupted in 2007 by another abrupt decrease in both 
envelopes. An increasing trend was much stronger for the NDII7HS (Table 56). Regions 
associated with class 1 showed NDII7HS response similar to the one observed for class 
6, however with less intense decrease in 2003. NDVIHS reported for locations following 
the decreasing 2CORLNDVI PC phase demonstrated an overall decline until 2007 with 
an increase episode in 2004. The following years revealed a leveled NDVIHS signal 
concluded in a 2011 drop and 2012 peak (Figure 37). The area associated with response 

class 6 revealed between 2002 and 2007 a steady and intense trend for the earlier 
vegetation onset. Although the consecutive years broke this trend demonstrating an  
 

 
Figure 37 Year-to-year variability observed within drought impact classes 1 and 6 of the  

2CORL250NBRI spatial representation of the 2CORLNBRI PC: a) CF, b) GPP, c) SBD, d) SL, 

e) NDVIHS and f) NDII7HS.  

 

Table 56 Strength of overall linear trends observed for phenology and productivity indicators 

within response classes 1 and 6 derived for the 2CORL250NBRI spatial representation. 
Assessment done using the within subject contrasts test of repeated ANOVA. 

 Class 1 Class 6 

 F p F p 

CF 0.070 0.791 28.495 0.000 

GPP 1.632 0.202 17.458* 0.000 

SBD 1.809 0.179 13.368* 0.000 

SL 0.104 0.747 11.235* 0.001 

NDVIHS 4.938 0.026 149.581 0.000 

NDII7HS 47.399* 0.000 414.768* 0.000 

     * - the strongest trend of all tested contrast orders  
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increase, the overall tendency was sound and significant (Table 56). Accordingly, 
coupled SL showed some fluctuation of the signal, dominated by inclination to season 
prolongation (Table 56). In contrast, SBD observed within class 1 revealed a very 
shaky signal of wide amplitude and no meaningful trend (Table 56). SL derived for this 
stratum revealed, alike for class 6, no clear coupling with the vegetation onset neither 
any prolongation tendency. SL within class 1 suggested for 2003-2007 slightly longer 
vegetation period. Following the SBD tendency, CF observed for class 6 reported 
gradual increase between 2003 and 2009, with CF decrease in 2003. Despite CF drop 
after 2009, the overall increasing tendency was statistically significant (Table 56). 
Conversely, class 1 not only had higher CF, but also revealed an intense increase in 
2003, which was followed by a productivity decline culminated in 2007. Another 

increase was commenced in 2008 and reached its maximum in 2009. GPP 
demonstrated limited correlation to CF. Drought impact class 6 obtained here the 
highest productivity scores, with a moderate, but clear increasing trend (Table 56). 
Years 2005, 2008 and 2011 brought index drop. Area of reversed NBRI temporal 
behavior showed unsteady GPP evolution of high amplitude of changes and hazy 
decreasing tendency between 2005 and 2010, and a consecutive abrupt increase. 

Subsequently, response within the drought impact class 6 was investigated deeper 
through the within-subjects effects test of repeated ANOVA measures with 
Hujnh-Feldt correction. Significance of time governed changes was confirmed for all 
measures (Table A10 4). Further analyses performed for time combined with factors of 
slope, aspect and elevation revealed limited significance only for CF, NDVIHS and 
NDII7HS (Table 57).  

 

Table 57 Effect of elevation, aspect and slope factors in time on distinction between 

productivity indices tested for the response class 6 derived for the 2CORL250NBRI spatial 
representation. Analyses performed using subjects effects test of repeated ANOVA. Only 
measures with significant statistics are shown (p<0.001). 

 time*elevation time*aspect time*slope 

indicato

r 

df F df F df F 

CF 20.000 4.533 30.000 2.713 40.000 2.359 

NDVIHS - - 33.265 3.020 44.354 2.304 

NDII7HS 22.864 2.967 34.295 2.134 45.727 2.688 

        

Comprehensive information on drought governed forest status variability within 
regions of class 6 inspected for forest type, aspect, elevation and slope classes was 
ensured through repeated ANOVA measures plots (Figure A11 4). Following the 
obtained results coniferous stands, as expected, showed the lowest CF, GPP and 
NDVIHS scores. Importantly, they also reported GPP increase for 2002 and 2003, as 
well as the slowest NDVIHS and CF increase between 2003 and 2007. 2008 and 2009 
brought a robust rise of coniferous forest productivity, making it equal with mixed and 
broadleaved. Together with mixed stands, coniferous woodland demonstrated a clear 

SBD decrease between 2002/2003 and 2006/2007. SL seemed to be species independent 
though. North facing slopes revealed the highest NDVIHS and NDII7HS. On the other 
hand, these locations demonstrated outstanding and the lowest CF, SBD and SL 
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scores. SL was particularly strongly diminished between 2003 and 2005, with a gradual 
increase reported afterwards. Moreover, despite an initial GPP rise, north oriented 
forest stands experienced an intense productivity drop in 2005, as well as massive 
depression cantered at 2008. Elevation increase resulted in linear NDII7HS rise, as well 
as NDVIHS and GPP decrease, although the latter revealed also more complex 
variability. The highest considered elevation class (1400-2100 m asl), unlike the lower 
regions, demonstrated a strong, positive CF increase which was additionally coupled 
with prolongation of the vegetation season. On the contrary, forest growing below 1400 
m asl reported productivity drop in 2003. Interestingly, these woodlands seemed to 
experience a lower change amplitude. Elevation governed differences in vegetation 
onset were very subtle. An inspection of phenological changes related to inclination 

suggested rather negative impact of slope increase on GPP, SL and NDVIHS. However, 
no clear tendency was detected as differences between slope classes were very limited. 

5.5. Comparison with MODIS-based drought impact results 

Appealing similarity between identified MODIS and Landsat PCs identified as 
fostering forest drought impact response, called upon examination. As expected, the 
time-domain based comparison coupled the 3COVnNDVI8-18, 2CORLNDVI and 
1CORLNBRI principal components; 1CORNDII78-18 with 2CORLNBRI as well as 
4CONnNDII78-18 and 1CORLNBRI PCs, where the latter correspondence was negative 
(Table 58). Following analyses of appropriate footprints showed however no 
meaningful connection between spatial representation (Table 59). 
 

Table 58 Correlation between MODIS and Landsat PCs fostering forest response to drought 

meteorological conditions. Comparison was done with MODIS scores averaged to yearly values 

and truncated to the 2002-2011 period. 

Landsat based PCs 
MODIS derived drought related PCs 

3COVnNDVI8-18 1CORNDII78-18 4COVnNDII78-18 

1CORLNDVI 0.444,  p=0.172 0.506,  p=0.113 0.090,  p=0.793 

2CORLNDVI 0.694,  p=0.020 0.317,  p=0.342 -0.560,  p=0.073 

1CORLNBRI 0.809,  p=0.003 0.438,  p=0.177 -0.652,  p=0.030 

2CORLNBRI 0.480,  p=0.135 0.689,  p=0.019 0.402,  p=0.220 

     

 

Table 59 Correlation between spatial representations of MODIS and Landsat PCs fostering 

forest response to drought meteorological conditions. Analysis was done for synthetic, 
MODIS-like spatial representations of the original Landsat derived PCs. 

Landsat based PCs 
MODIS derived drought related PCs 

3COVnNDVI8-18 1CORNDII78-18 4COVnNDII78-18 

1CORL250NDVI 0.301,  p=0.000 -0.217,  p=0.000 -0.009,  p=0.000 

2CORL250NDVI 0.100,  p=0.000 0.114,  p=0.000 -0.165,  p=0.000 

1CORL250NBRI -0.229,  p=0.000 0.034,  p=0.000 0.168,  p=0.000 

2CORL250NBRI 0.363,  p=0. 000 -0.160,  p=0.000 0.073,  p=0.000 
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5.6. Summary and discussion 

Results of the S-mode PCA of Landsat derived NDVI and NBRI 2001-2011 time series 
of annual composites (LNDVI and LNBRI respectively) approximated forest condition 
in South Tyrol. Four selected principal components related to the scPDSI temporal 
patterns (Figure 14) were examined further. Since drought impact inspection was 
based on phenology and productivity indices derived from MODIS time series, all 
Landsat-based spatial representations were converted into MODIS-like footprints. 
Analyses ensured a detailed insight into forest variability under meteorological stress 
condition as well as assessed capability of Landsat data for vegetation status studies in 
a complex alpine region. Moreover, a comparison with MODIS results shed some light 
on capacity of both data sources. 

5.6.1. S-mode PCA of Landsat time series  

The four PCs resulting from the correlation-matrix based S-mode PCA of the LNDVI 
and LNBRI time series were recognized as related to the scPDSI approximated 
meteorological variability of drought (Figure 23). In order to match the temporal 
resolution of Landsat PCs, scPDSI profiles were averaged into yearly values, which 
inhibited perception of the intra-annual weather variability. Possible disparity could 
originate from a fact that all scPDSI values within a given year were used to calculate 
mean yearly score, whereas Landsat images adopted for the compositing process were 
restricted to the June-September annual time-window. On the other hand, vegetation 
growth is strongly governed by the weather conditions prior to the summer period 
coincided with acquisition of used Landsat scenes. Since scPDSI PCs showed narrow 
intra-annual, seasonal-dependent variability, used approximation could not undermine 
aptness of the comparison.  

The LNDVI derived PCs focused on forest ‘greenness’ status. The 1CORLNDVI 
highlighted high score for 2001-2002, deteriorated values in 2003 and 2004, and a 
strong isolated peak in 2008 (Figure 23A). All three were in line with consecutive 
meteorological events of elevated rainfall sums observed in central Europe in 2002 
(Eqecat, 2002), the 2003 heat-wave conditions (e.g Rebetez et al., 2006) and the impact 
of ‘Emma’ cyclone in 2008. On the other hand, the 2CORLNDVI depicted steady 
increase of the forest status (Figure 23B) with a small positive anomaly in 2008. 
Although in contrast with the recognized by Auer et al. (2007) regional drying 
tendencies, the response reflected results of the 3COVnNDVI8-18 score from the MODIS 
oriented analyses (Chapter 4).  

Alike for the LNDVI PCA results, the LNBRI based decomposition revealed a potential 
physical meaning in the two first principal components. Since the NBRI index 
approximates plant foliage water content, emerging PCs demonstrated higher 
correlation with the scPDSI profiles (Table 37). The 1CORLNBRI score demonstrated 
a monotonous increasing/decreasing tendency which strongly contrasted/followed 
(depending on the assumed phase of the signal) the 4scPDSI. Although the LNBRI 
decrease was in accordance with some global and regional trends (Auer et al., 2007), 
both tendencies were assumed a possible vegetation development scenarios. This 
decision was supported by analyses performed for the MODIS time series (Chapter 4). 
Finally, the 2CORLNBRI PC depicted deteriorate index between 2003 and 2007 
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followed by a positive anomaly in 2008, which mirrored not only the 1scPDSI pattern, 
but also findings of Ivits et al. (2014).  

Despite restricted temporal resolution as well as spatial coverage, both Landsat-derived 
time series enabled identification of sound temporal patterns, which were strongly 
related to the local and continental meteorological variability, hence stood for potential 
forest response to observed drought conditions.   

5.6.2. MODIS-like dataset modeled on Landsat derived spatial 
representations 

Conversion of four spatial representations of Landsat derived forest drought impact 
responses into MODIS-like footprints was essential for further analyses using 

MODIS-based phenology and productivity information as well as direct comparison 
with MODIS results. The transformation employed MODIS PSF model adjusted to 
work on 30 m resolution scenes and integrated additional spatial aggregation 
conditions, which aimed to increase convolution accuracy and exclude regions with 
limited spatial representation. The convolution was performed directly on PCs 
correlation footprints with no p-value threshold, as this additional condition would 
severely limit available data, hence obscure spatial understanding of results.  

Because the main purpose of the analysis was not to model MODIS-like dataset based 
on Landsat scenes, but to inspect capacity of Landsat data for detection of drought 
impact on forest stands, it was more appropriate to convert Landsat-derived PCs 

impact footprints to MODIS resolution, than to model MODIS time series using 
Landsat acquisitions, and then determine drought vegetation response using PCA. 
Moreover, the former concept is loaded with smaller statistical uncertainty, in some 
cases is assumed as linear (Liang, 2004, chap. 12.3.1) and produces smaller statistical 
errors (Jarihani et al., 2014).  

Although Landsat footprints upscaled to 250 m preserved original spatial distribution, 
emerging geographical patterns of ‘synthetic’ correlation values (Table 38 vs. Table 40) 
were somewhat altered comparing with the original Landsat impact maps (Appendix 8 
vs. Appendix 9). Moreover, environmental characteristics of PCs’ response classes were 
further modified due to the rescaling of the forest type, elevation, aspect and slope 
datasets (Table 39 vs. Table 41). This shows how the resolution adjustment impacts 

the environmental feature of the study site and blurs analysis results, which is 
especially striking for complex and diverse region, such as the Alps. On the other hand, 
spatial generalization is unavoidable in synthesis-oriented studies, but should be 
handled with care and understanding.  

Since the PSF-based conversion was run under spatially limited coverage of the forest 
mask, accuracy of results could be questioned due to not always complete PSF-kernel 
coverage. This particular aspect was addressed by the thresholds set for the entire 
kernel and its core. The kernel’s core 80% cut-off value presented a good compromise 
between reliable outcome and consistent coverage. Because the area outside the 
kernel’s-core accounts on less than 40% of the PSF signal, the 50% criterion was 
chosen to allow on reliable estimation, but without severe restriction on a spatial 
extend of a final result. In other words, synthetic MODIS-like pixel was modeled using 
minimum 68% of its potential signal, where 48% originated from the core area. 



FOREST DROUGHT INVESTIGATION USING LANDSAT TIME SERIES  

 
115 

Although, both values were selected based on an ‘expert’s judgment’ and were not 
supported by any additional analysis, they ensured reasonable compromise.  

The MODIS PSF governed impact of non-forest regions on MODIS pixels within the 
forest mask was ignored. 

5.6.3. Forest vegetation response to drought 

Four Landsat derived spatial representations of drought forest impact upscaled to the 
MODIS resolution were further analyzed using the time series of phenology and 
productivity indicators. A comprehensive identification and understanding of changes 
was ensured through repeated ANOVA measures.  

5.6.3.1. 1CORL250NDVI spatial pattern 

Regions coincident with the 1CORLNDVI PC (Figure 23A) showing a LNDVI decrease 
in 2003 with a following incline peaked in 2008 were represented in the 1CORL250NDVI 
spatial pattern by class 6. They were located mostly in the central part of South Tyrol, 
at medium elevations of the Eisack and Etschtal Valleys slopes (Figure 30). A primary 
habitat of these locations accounts on Sessile Oak, Downy Oak, Hop Hornbeam, 
Manna Ash and Sweet Chestnut with Norway Spruce, Common Beech as well as Scots 
Pine growing in the driest places. Although an initial response to the inception of 
drought condition was negative for these forest stands, presumably due to wilting, an 
overall productivity rise was observed from 2004 onwards. The strongest increase of 

seasonal growth and a steady SBD decline was noted on south facing locations. This 
observation can be explained by the forest structure dominated by hardwood species 
that are better adjusted to arid conditions and outperform coniferous trees growth 
(Scherrer et al., 2011; Rigling et al., 2013). Although the earlier vegetation start is 
presumably not connected to drought conditions (Swidrak et al., 2013), analogus 
observations were made at other alpine sites (EEA, 2009; Theurillat & Guisan, 2001), 
as well as on the continental scale (Ahas et al., 2002) and are being linked with climate 
change (IPCC, 2013).  

The LNDVI decreasing response marked by the 1CORL250NDVI impact class 1 related 
mainly to Norway Spruce and European Larch of subalpine and alpine forest 
formations growing in the Vinschgau, Wipp and Puster valleys (Figure 30). Phenology 

development revealed here diminished gross productivity paired with rising CF that 
showed two strong local maxima in 2003 and 2009. Both peaks were detected one year 
after wet years of 2002 and 2008. This suggests that combined temperature increase 
and moisture supply present in rich silt and carbonate soils prompted trees growth 
(Castagneri et al., 2014), but was soon halted by running out water supplies, which is 
in line with findings of Theurillat & Guisan (2001) and Jump & Penuelas (2005). 
Importantly, regardless CF rise, GPP decline suggests forest structural changes with 
depleting permanent vegetation fraction.  

Despite demonstrated meteorological aridity, both inspected response classes reported 
increasing NDII7HS (Figure 30).   
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5.6.3.2. 2CORL250NDVI spatial pattern 

Forest variability recognized using the 2CORLNDVI PC (Figure 23B) and related to 
its increasing (class 6) and decreasing (class 1) patterns, demonstrated mutually similar 
phenology and productivity changes (Figure 32). Both showed an abrupt NDII7HS 
decrease in 2003, with a steady envelope rise, briefly interrupted in 2007 and 2011. 
Although an intense drop was also detected for both response classes in NDVIHS, class 
1 revealed much stronger decrease of forest ‘greenness’ between 2001 and 2007. On the 
contrary, class 6 demonstrated lower NDVIHS between 2001 and 2007, with two 
negative anomalies in 2003 and 2007, and elevated scores beyound 2008. Regions 
characterized by PC increase were associated with alpine and subalpine stands, located 
sparsely along the Eisack and Puster Valleys as well as at a crossing of the Vinschgau 

and Etschtal regions (Figure 32). Species structure consists there mainly of Norway 
Spruce and Silver Fir as well as European Larch, Scots Pine and Arolla Pine trees 
growing on more arid sites and forming the upper forest line. On the contrary, a 
decreasing LNDVI tendency, identified due to massive 2001-2007 NDVIHS decline, was 
revealed in the central part of South Tyrol, the Vinschgau Valley as well as Wipp 
region (Figure 32). It highlighted mainly coniferous forest of Norway Spruce and Silver 
Fir, with essential share of mixed and broadleaved stands with Downy Oak and Manna 
Ash near the valley floor. Moreover the response indicated the Eisack and Etschtal 
Valleys where woodland structure comprises Downy Oak, Sessile Oak, Hop Hornbeam, 
Manna Ash and Sweet Chestnut, substituted on more arid locations by Common 
Beech.  

Observed accordance of phenology and productivity changes within both classes is 
surprising regarding differences in abovementioned species structure. However, since 
share of hardwood and mixed stands within class 1 was less than 18% and 9,5% 
respectively (Table 41), an impact of broadleaved-specific on mean phenology response 
could be suppressed. Although 2003 brought NDVIHS and NDII7HS drop, productivity 
reported for this year was elevated comparing with 2002. Even higher scores were 
observed in 2004, when only GPP within class 1 revealed decline between 2003 and 
2006, suggesting potential change in forest stand structure. Moreover, another, even 
stronger, CF increase was detected in 2008-2009, but this time was not reflected in 
GPP, neither SI. The observed productivity rise can be explained by a short-lived 
combined impact of elevated temperature and excess of soil moisture after rainy 2002 
and 2008. Especially the former stimulates temperature governed vegetation growth at 
high elevations (Theurillat & Guisan, 2001; Jolly et al., 2005; Primicia et al., 2015). 
However, prolonged dry spell soon depleted moisture accessibility and leaded to decline 
of vegetation status for 2005-2007. Unfortunately, the depicted positive feedback is 
representative only for coniferous forest at high altitudes and leaves unresolved 
decreasing phenology of broadleaved and mixed stands growing near valleys floors. 
Because hardwood tree species are anticipated to take advantage of increasing aridity 
(Hanewinkel et al., 2013; Zimmermann et al., 2013b), it is assumed that 
coniferous-specific response dominated the overall signal.  

Interestingly, despite scPDSI suggested arising aridity, strong increasing trend in 
NDII7HS, and less dominant linear tendencies of productivity rise were depicted. 
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5.6.3.3. 1CORL250NBRI spatial pattern 

In spite of the increasing aridity thread (Auer et al., 2005) supported by the local 
scPDSI tendencies (Figure 14), ANOVA run for the 1CORL250NDVI spatial 
representation of the 1CORLNBRI PC (Figure 23C) suggested within response class 6 
increasing vegetation water capacity. The recognized LNBRI rise was observed in the 
central part of South Tyrol in mixed stands of Sessile Oak, Downy Oak, Sweet 
Chestnut and Norway Spruce as well as in Vinschgau, where forest structure was 
represented by Norway Spruce, European Larch and Arolla Pine trees. Although the 
NDII7HS demonstrated an overall intense increase, NDVIHS indicated diminished 
greenness between 2003 and 2007, with elevated scores only since 2008. Despite 
suppressed NDVIHS and NDII7HS, CF in 2003 was strongly elevated. A similar brief 

productivity increase was observed also in 2008-2009. Both can be explained by a 
short-term beneficial combination of moisture excess and reduced temperature gradient 
limitations (Jolly et al., 2005; Primicia et al., 2015) that stimulated growth of 
coniferous stands (Figure A11 3).  

A comparable, although statistically less certain, response of the 1CORL250NBRI 
impact class 1 was observed for coniferous forests in Vinschgau Valley as well as 
coniferous and mixed woodland of the central part of South Tyrol (Figure 34). Tree 
species recognition indicated here Norway Spruce, Common Beech, Down Oak, Scots 
Pine and European Larch presence. Interestingly, despite the suggested LNBRI 
decrease, NDII7HS revealed deteriorated scores only between 2003 and 2007 with rising 
values from 2008 onward. This variability was accompanied by an intense NDVIHS 

decrease culminated in strong anomaly in 2007. Remaining phenological indices showed 
temporal profiles being in accordance with class 6. Moderate differences were spotted 
for CF and GPP. Although seasonal productivity measure followed described above 
pattern of elevated growth in 2003 and 2008-2009, observed changes were smaller 
comparing with class 6. Also in this case CF increase was attributed on reduction of 
temperature imposed growth limitations (Jolly et al., 2005; Primicia et al., 2015). 
Noticeably, although initially higher, GPP observed within class 1 showed gradual 
decrease until 2010, which implies decreasing permanent vegetation fraction hence also 
alternation of forest structure.  

5.6.3.4. 2CORL250NBRI spatial pattern 

The 2CORLNBRI PC rigidly followed the 1scPDSI temporal pattern, and depicted 

LNBRI decrease between 2003 and 2007 (Figure 23D). Forest stands being the most 
prone to this temporal variability grow at medium and low elevation in the Eisack and 
Etschtal Valleys (Figure 36), where species distribution accounts on Downy Oak, 
Sessile Oak, Common Beech, Sweet Chestnut, Hop Hornbeam and Manna Ash, with 
addition of Norway Spruce, Scots Pine and European Larch on the north as well as 
higher elevations. Initial response to the dry spell accounted on productivity decrease 
in 2003, where CF showed the strongest, while GPP the smallest drop. Given that the 
hardwood tree species compose a substantial part of discussed forest, depicted drop 

could be attributed on leaves wilting. The productivity increase in the following years 
is potentially resulting from a better adaptation to drought conditions. Interesting is 
also GPP decreases in 2005-2006 that not reflected in CF, suggests depleted permanent 
vegetation fraction represented by evergreen vegetation, as well as even a potential 
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transition between needle leaved and hardwood species (Bigler et al., 2006; Rigling et 
al., 2013). The overall CF increase until 2009 with leveled GPP imply expanding 
broadleaved species productivity governed by temperature increase (Hanewinkel et al., 
2013; Rigling et al., 2013; Zimmermann et al., 2013b). Although earlier vegetation 
onset, is not directly related to drought conditions (Swidrak et al., 2013) elevated 
temperature could accelerated the shift, which was particularly apparent for coniferous 
stands (Figure A11 4 ) and is often accounted on climate changes (IPCC, 2013).  

A response contrasting with the 2CORLNBRI temporal pattern was depicted in the 
2CORL250NBRI impact class 1 and exposed various sites placed in majority in the 
Vinschgau, Puster and Wipp Valleys (Figure 36). Highlighted forest formations belong 
to the subalpine vegetation zone and comprise mainly Norway Spruce, European Larch 

and Arolla Pine, where the two latter are especially common in the Vinschgau region. 
The reported NDII7HS increase coupled with the NDVIHS decrease is noteworthy and 
could refer to possible vegetation transfer processes, which is further supported by 
simultaneously decreasing GPP. Independently, CF demonstrated strong dynamism in 
2003 and 2009, likely explained by a catalytic effect of elevated temperature and soil 
moisture surplus from 2002 and 2008, on coniferous trees growth at higher altitudes 
(Jolly et al., 2005; Coppola et al., 2012; Primicia et al., 2015). A CF enhancement 
noted one year after wet years demonstrates a lagged physiological relation of trees 
growth and status to meteorological conditions.  

5.6.3.5. Drought impact within elevation, slope, aspect and forest type 

Among all factors, elevation demonstrated the strongest impact on phenology and 
productivity within four Landsat based drought patterns (Table 43, Table 47, Table 51 
and Table 55). GPP revealed the most robust altitudinal-dependent diversification, 
whereas SL was the least influenced indicator. CF and NDVIHS showed lower, but still 
strong relation to elevation zones, with NDII7HS following closely behind. Governance 
of altitude on SBD was moderate but still clear and significant. Combination of time 
and elevation factors for the response class 6 regions, implied weak influence on CF (all 
four spatial patterns), NDVIHS (1CORL250NDVI, 2CORL250NDVI and 1CORL250NBRI), 
as well as NDII7HS (2CORL250NDVI, and 2CORL250NBRI) (Table 45, Table 49, Table 
53 and Table 57). Detailed analyses performed for the same areas (Appendix 11) were 

limited mainly to 700-1400 m asl, and 1400-2100 m asl elevation zones, which was the 
effect of spatial representation (Table 41). Relying on this restricted information 
altitude increase promoted CF, but had a reversed relationship to NDVIHS, and GPP. 
SBD and SL showed no clear response pattern. Interestingly, NDII7HS had positive 
connection to elevation for 1CORL250NDVI and 1CORL250NBRI, but inversed for 
2CORL250NDVI and 2CORL250NBRI. A diversification between CF initial drought 
response was observed among elevation strata, where response of the forest at higher 
altitudes was in line with observations of Dobbertin et al. (2005), Jolly et al. (2005), 
Vacchiano et al. (2012), Gebetsroither et al. (2013) and Rigling et al. (2013).  

The factor of aspect demonstrated low overall influence on phenology (Table 43, Table 
47, Table 51 and Table 55). F-statistics were the highest for NDVIHS, which is 

presumably attributed on natural species diversity among expositions. These 
differences were however not supported by CF, GPP nor NDII7HS results. SL was 
mildly related to aspect, with lower, but still significant results observed for SBD. 
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Phenology and productivity differences observed within class 6 responses for combined 
factors of aspect and time were rarely significant (Table 45, Table 49, Table 53 and 
Table 57). Very limited relation was observed for NDII7HS (1CORL250NDVI and 
2CORL250NBRI), NDVIHS (1CORL250NDVI and 2CORL250NBRI), as well as CF 
(1CORL250NDVI). According to marginal means analyses done within class 6 responses, 
south exposed regions tend to reveal lower NDVIHS and NDII7HS coupled with the 
highest CF and the latest vegetation onset (Appendix 11). A disparity between north 
and south exposed forest stands were usually apparent which is in line with Rigling et 
al. (2013) and Lévesque et al. (2014). Moreover, SBD observed within north facing 
areas in the 1CORL250NDVI, 1CORL250NBRI and 2CORL250NBRI responses revealed 
between 2003 and 2004/2005 a prompt shift towards earlier vegetation onset. 

Apparently, neither GPP nor SI indicated alike variability among aspect classes.   

Inclination governed the strongest relation with NDII7HS and NDVIHS, which reflected 
also on GPP (Table 43, Table 47, Table 51 and Table 55). Among the remaining 
phenology and productivity indices, only SL demonstrated a significant but limited 
influence of slope. CF and SBD variability showed no relation to inclination. Despite 
this, CF demonstrated significant, but scarcely meaningful diversification for the 
combination of slope and time factors for the 1CORL250NDVI and 2CORL250NBRI class 
6 responses (Table 45 and Table 57). Furthermore, the same factors’ combination was 
relevant for NDVIHS and NDII7HS observed within the class 6 associated areas of the 
2CORL250NDVI and 2CORL250NBRI footprints (Table 49 and Table 57). Precise 
insight into this variability assured through marginal means (Appendix 11) showed 
limited differences between phenology of inclination levels.  

Not surprisingly, forest type demonstrated the highest control over CF and NDVIHS 

(Table 43, Table 47, Table 51 and Table 55). Moreover, SBD also revealed moderate 
influence of forest structure. No other phenology or productivity measure showed 
significant relation to forest type, which is unexpected with respect to anticipated GPP 
disparity. Drought affected sites (class 6 responses) showed no significant changes for a 
combination of forest type and time, but for CF within the 1CORL250NDVI footprint 
(Table 45). This observation was further supported by the marginal means calculated 
for this area, where a clear diversification between coniferous and broadleaved-mixed 
stands was observed (Figure A11 1). Interestingly, needle-leaved forest formations 

demonstrated the highest CF values for the 1CORL250NDVI and 2CORL250NBRI class 
6 spatial representations. Coniferous stands shown usually the lowest NDVIHS and 
NDII7HS, but a distinction among forest types was not always apparent. Despite 
insignificant statistics for the whole region, GPP analyzed only within class 6 revealed 
a good separation.  

The most distinguish differences between temporal profiles of phenology and 
productivity indices derived for each drought impact response, and dissolved into 
diverse factors levels, were usually noticeable before 2008, with more mutually alike 
responses afterwards. This indicates diverse responses and adaptation strategies to 
prolonged drought spell governed by the local environment (Pasho et al., 2011; 

Scherrer et al., 2011; Rigling et al., 2013).  
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5.6.4. General remarks on Landsat derived forest drought response  

All four identified Landsat based principal components revealed sound and physically 
probable temporal patterns. Remarkably, each remotely sensed index depicted two 
alike temporal behaviors of decreasing/increasing long-term tendency supported by 
3scPDSI and 4scPDSI (2CORLNDVI and 1CORLNBRI) as well as drought induced 
diminished scores followed by a 2008 positive anomaly, which is in accordance to the 
1scPDSI (1CORLNDVI and 2CORLNBRI). Further analyses revealed that the former 
are more statistically sound when interpreted as an increment in forest condition. In 
addition to similarity of PCs, also their footprints and MODIS-scale representations 
bear considerable similarity to one another (Appendix 9; Figure 30 and Figure 37, 
Figure 32 and Figure 34). 

While 2CORL250NDVI and 1CORL250NBRI scores demonstrated considerable mutual 
resemblance with limited phenology and productivity differences between drought 
impact classes 1 and 6 (Figure 33 and Figure 35), 1CORL250NDVI and 2CORL250NBRI 
revealed sound disparity between two extreme drought classes (Figure 32 and Figure 
37). Furthermore, responses of two latter patterns were found in accord with each 
other. This diversification was governed mainly by species distribution within identified 
drought responses. The 1CORL250NDVI drought impact class 6 and 2CORL250NBRI 
class 6 indicated forest sites located in the central part of South Tyrol (Figure 30 and 
Figure 37) and composed of all three forest types with significant share of hardwood 
species such as: Sessile Oak, Downy Oak, Common Beech, Hop Hornbeam, Manna Ash 
and Sweet Chestnut. An analogy in the space distribution transfers into affinity of 
phenology and productivity responses registered for both drought representations. The 
common pattern indicated an overall NDII7HS increase, a NDVIHS depression between 
2003 and 2007, sound and statistically significant CF and GPP increases as well as 
2002-2007 tendencies for earlier vegetation onset. At first, these finding seems to be in 
strong contradiction with climate-oriented projections suggesting progressing aridity 
(Auer et al., 2007). However, species composition of discussed sites comprises 
stenothermal tree species, that according to Hanewinkel et al., (2013) and 
Zimmermann et al. (2013a) benefit from increasing temperature and adapt to aridity, 
and in the long way run will substitute dying out coniferous woodland. Consequently, 
observed temporal variability renders local response to alternation of climate 
conditions, where hardwood trees demonstrate increasing productivity. On the 
contrary, both class 6 responses of the 2CORL250NDVI and 1CORL250NBRI, as well as 
1CORL250NDVI class 1 and 2CORL250NBRI class 1 regions highlighted Norway Spruce, 
European Larch, Scots Pine and Arolla Pine habitats. Recognized vegetation 
variability accounted on deteriorated NDVIHS, dynamic but rather leveled SBD, SL 
and GPP scores, as well as increasing modulate CF response with two local maxima in 
2003 and 2009. Although NDII7HS showed always moderate values between 2002 and 
2007, the following years revealed an intense index increase, which translated into 
exceptional an overall increasing trend. As showen, coniferous trees adopted diverse 
from hardwood species response to raised aridity in South Tyrol. Observed long-term 

LNDVI and LNBRI changes suggested vegetation status decline, which was however 
only partly confirmed by forest phenology and productivity. On the one hand, this 
resistance, can be somewhat attributed on allocation of aforementioned coniferous 
species on more favorable, shaded and fertile locations. On the other hand, as Norway 
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Spruce under a dry spell tend to decrease crown density and status (Bréda & Badeau, 
2008), a response from forest floor can potentially corrupt remotely sensed signal. 
Moreover, unlike productivity bust, negative drought impact can occur even several 
years after a drought stress event (Bigler et al., 2006), therefore it is probable that 
consequences of the 2003-2007 drought spell in South Tyrol are still not recognized 
fully.  

Next to the long-term trends, a site- and index-specific variability was detected. 
Regardless the drought pattern nor impact class, all inspected NDVIHS and NDII7HS 
temporal profiles emphasize three local minima in 2003, 2007 and 2011, as well as an 
abrupt and strong peak in 2008 (Figure 31, Figure 33, Figure 35 and Figure 37). It is 
out of a question the 2003 decline is related to the pan-European heat wave (e.g. 

Rebetez et al., 2006) and was also depicted by the scPDSI analysis (Chapter 3). The 
2007 response harmonizes in South Tyrol with extremely hot conditions during spring 
and summer 2007 that could be associated with a drought event observed that year in 
central Europe (EEA, 2012). Although 2006 is considered in Europe also a summer 
heat wave year (e.g. Rebetez et al., 2008) forest NDVIHS and NDII7HS suffered then 
less comparing with 2007, when extreme temperatures were reported much earlier in 
the year. Subsequently, the 2011 drop resulted from extremely hot beginning of 
September, followed by exceptionally reach in precipitation second half of the month 
(Hydrographic Office of the Autonomous Province of Bolzano-Südtirol, 2011). 
Although both records balanced well in the scPDSI, above normal temperatures 
advanced senescence and depleted vegetation condition. Vegetation surplus dated on 
2008 is clearly governed by a rainy and warm summer resulted from the ‘Emma’ 
cyclone impact and is the most compelling in the NDVIHS response. 

Remarkably, phenology and productivity indicators did not always follow the NDVIHS 
and NDII7HS scores, or reacted with a certain delay, which is, among others, a result of 
vegetation resistance and growth strategies (Scherrer et al., 2011). CF response to the 
2003 heatwave revealed instantly diminished productivity for 1CORL250NDVI and 
2CORL250NBRI class 6 regions. Conversely, sites associated with class 1 as well as both 
strata within the 2CORL250NDVI and 1CORL250NBRI pattern revealed relevant CF 
increase. This disparity arises most probably from altitudinal allocation of sites where 
vegetation growth at lower elevations is constrained by precipitation, while the higher 

regions are limited by temperature (Theurillat & Guisan, 2001; Castagneri et al., 
2014). Consequently, the overall temperature increase and precipitation decrease 
stressed vegetation in valley floors and on lower slopes (Gebetsroither et al., 2013) but 
stimulated phenology at higher altitudes (Jolly et al., 2005). However, under prolonged 
dry-spell conditions, species specific resistance and adaptation strategies started to 
govern forest response, with hardwood species showing an enhance growth rate 
(Hanewinkel et al., 2013; Zimmermann et al., 2013b).  

Delay was also observed in phenology response to moist spring and summer of 2008. 
Although the NDVIHS and NDII7HS noted immediate rise which was reflected also in  
the CF productivity, the superior growth conditions including GPP increase, were 

observed in 2009, which is in line with observations of Lévesque et al. (2014).  

Interestingly, CF, GPP and SL depicted in 2010 a decrease, which was not supported 
in the corresponding NDVIHS and NDII7HS temporal profiles. A possible explanation of 
the phenomena can be attributed on late SBD. Although the weather conditions during 
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the spring 2010 were good, April 14
th
 brought an eruption of Eyjafjallajökull. Exhaust 

ashes that contaminated for the following weeks the atmosphere over Europe 
(Pappalardo et al., 2013) were likely to affect the NDVI composites, resulting in falsely 
late vegetation onset. Moreover, this anomaly was frequently coupled with delayed 
SBD in 2008 and 2009, as well as GPP decline (1CORLNDVI class 1, 2CORLNDVI 
class 1 and 6, 1CORLNBRI class 1 and 6, and 2CORLNBRI class 1). Since 
aforementioned regions are characterized in majority by coniferous stands growing at 
higher elevation, it is likely that depicted variability originated from lower temperature 
conditions and restoration of growth restrictions of temperature gradient. However 
more advanced investigation is required to fully support this hypothesis.   

Although four considered environmental factors combined with time revealed a weak 

or insignificant effect on forest phenology within regions of drought impact class 6, 
observed trends and relations suggest direct and indirect influence of elevation, aspect, 
slope and forest type on stands productivity. The most robust, but not linear 
differences between considered levels were noted for elevation. This observation is in 
line with anticipated influence of the elevation gradient, temperature-moisture balance 
(Affolter et al., 2009), vegetation belts as well as emerging species distribution and 
their impact on forest productivity (Pellerin et al., 2012). A diversification of response 
within sites of different exposition was also recognized rather positively, with 
particularly strong CF differences between the south and north facing regions. This 
behavior was already reported in some drought related examinations (e.g. Dobbertin et 
al., 2005; Vacchiano et al., 2012; Rigling et al., 2013). Slope showed the smallest 
contrast between strata. Interestingly, regions with the lowest inclination not always 
demonstrated the highest productivity indicators. Forest type, although was expected 
to be the strongest cause of phenology and productivity diversification among sites, 
revealed mild or even limited differences between coniferous, mixed and broadleaved 
woodland.  

In the light of the progressing aridity thread (Auer et al., 2007) and confirmed 
precipitation rainfall decrease (Chapter 3) robust and statistically significant NDII7HS 
increase noted within all identified patterns and drought impact classes is unexpected. 
Interestingly, corresponding NDVIHS temporal responses do not reveal alike tendencies, 
suggesting either reverse trends or highlighting the 2003-2007 decrease. A long trend 

perception can be however influenced by indices increase in 2008 and high NDVIHS and 
NDII7HS values observed in 2012. The other cause of NDII7HS increase could originates 
from the sensor degradation adjustment (Wang et al., 2012), but is unlikely since the 
NDVIHS demonstrated no increasing trend.  

Taking together, the 1CORLNDVI and 2CORLNBRI and their derivative footprints 
1CORL250NDVI and 2CORL250NBRI shed some more light on complexity of drought 
related weather variability in the alpine forest. 

5.6.5. Utility of Landsat time series for investigation of vegetation drought 
stress in the Alps, and further comments 

The main hindrance in the drought related forest monitoring in South Tyrol between 
2001 and 2011 was a restricted amount of Landsat data. Although the study 
incorporated all available 192-028 and 192-027 scenes acquired between June and 
September with a maximum cloud cover of 80% (24 and 23 datasets respectively) and 
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even used tiles overlap, intra-annual vegetation analyses were beyond any means. 
Furthermore derived yearly composites still presented incomplete coverage of the 
province. As a result, the entire 2001-2011 Landsat time series of yearly composites 
was available for only 42% of the forested area in South Tyrol. Consequently, although 
the S-mode PCA returned four reliable temporal profiles of vegetation development, 
those responses represent only a portion of the South Tyrolean woodland, and will 
change with an increased data coverage.  

Although time series of yearly observations can approximate vegetation trends in a 
long time series of data, or capture main or well-timed short-term changes, they are 
limited in addressing intra-annual growth variability governed by seasonal extreme 
weather events. Despite the fact that the extensive data preprocessing with a specific 

impact put on the data normalization between acquisitions was conducted, reflectance 
value could still be a function of acquisition day and vegetation development phase, 
which obviously corrupts time series interpretation. This is not an issue while 
analyzing a time series comprising bigger amount of scenes registered at comparable 
time, or with constant intervals along a year.  

Despite aforementioned limitations, yearly LNDVI and LNBRI time series introduced to 
the S-mode PCA decomposition resulted in robust and physically probable patterns. 
Furthermore, both indices addressed diverse but complementary forest vegetation 
variability aspects.  

The not questioned asset of the TM and ETM+ data is their spatial resolution of 
30 m, which allows on precise identification of landscape features and further detailed 
investigation. It is particularly desirable in complex and diverse mountainous regions, 
such as the Alps. On the other hand, restricted data availability induces a need for 
ancillary information, or fusion with other remote-sensed datasets when a study implies 
high temporal resolution (Gao et al., 2006; Gao, 2013). In order to provide a deeper 
understanding of investigated problem, the Landsat analysis was supplemented with 
the MODIS based 2002-2012 time series of phenology and productivity indicators, as 
well as 2001-2012 yearly NDVIHS and NDII7HS MODIS derived scores. An imposed 
need for resampling of the Landsat based results to 250 meters leaded to generalization 
of the outcomes. Consequently, the analyses were conducted at 250 m resolution, which 
implies generalization of reference datasets of elevation, aspect, slope and forest type 

distribution, hence blurs any site-specific response and obstructs detailed interpretation 
of drought induced forest feedback. The differences between information quality and 
quantity became particularly clear when comparing original Landsat drought impact 
patterns with their MODIS-alike equivalents. Furthermore, the design of the 
fundamental GEOLAND forest mask, additionally resampled to the 250 m resolution, 
incorporated additional uncertainty and obscured detailed understanding of inspected 
processes. 

Presented results confirm a great capacity of Landsat data for vegetation stress 
monitoring, however reveal also a burning issue of data scarcity and cloud 
contamination. Despite a careful design and performance of the compositing process, 

resulting time series comprises limited information pool. On the other hand, even with 
restricted annual datasets, a general forest vegetation response to drought weather 
conditions was successfully detected using the S-mode PCA approach.  
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Obtained temporal Landsat-based profiles alone provided limited understanding of 
environmental changes and required ancillary MODIS-based dataset to explore 
underlying variability. Importantly, this synergy worked out well, but revealed some 
disparities between the NDVI and NDII7/NBRI responses derived for MODIS and 
Landsat datasets. The latter can be however attributed on applied compositing method 
and difference in data acquisition time.  
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6. SYNTHESIS AND CONCLUSIONS 

The main objective of this thesis was to comprehend alpine forest response to drought 
variability, which is a still unsatisfied demand (Standing Forestry Committee Ad Hoc 
Working Group III on Climate Change and Forestry, 2010) and a great hindrance not 
only for the sustainable resource management and silviculture (Schoene & Bernier, 
2012), but also for carbon sink efficiency modeling (Ma et al., 2012; He et al., 2014) 
and resulting climate change scenarios (Bonan, 2008).  

The study was conducted for the alpine region of South Tyrol and accounted on a 
coupling between the 2001-2012 scPDSI defined weather variability and coinciding 
forest condition investigated with the NDVI and NDII7/NBRI MODIS and Landsat 
derived time series. The S-mode PCA decomposition was proposed and evaluated as a 
versatile approach for remote-sensed time series analysis, and a robust method for 
identification of dominant temporal changes in forest status.  

Performed analyses not only produced detailed information on meteorology induced 
drought condition in the region, but also identified aridity affected forest sites and 
ensured extensive insight on resultant forest productivity and phenology changes. The 
utility of MODIS and Landsat data for alpine forest status monitoring was evaluated, 
the same as functionality and efficiency of the S-mode PCA approach. Presented 
results shed light on diversity and complexity of the alpine mountain forest in South 
Tyrol, providing a detailed insight into the ongoing long- to medium-term changes as 
well as, shorter stress-induced alternation of forest status. 

6.1. Drought conditions in South Tyrol and associated forest stress responses  

The scPDSI-based weather variability in South Tyrol was characterized by heavily 
diminished moisture conditions between 2003 and 2007 as well as progressing aridity 
trend initiated by the 2003 summer heatwave. Both responses are not only in strong 
accordance with other studies conducted at a global and local scale, but also confirm 
intense drought impact in the region. Moreover, on top of these general weather 

tendencies, a regional diversification of weather conditions was identified, where sites 
located at low altitudes in the central part of South Tyrol experience the most severe 
and prolonged drought impact, whereas the Vinschgau Valley is reported to be 

relatively the least affected by arising aridity. Both observations are confirmed by 
other, independent studies. Unfortunately, due to a limited number of meteorological 
stations as well as their restricted spatial location, no compelling conclusions were 
drawn neither on elevation impact on drought strength and evolution, nor possible 
alternation of the temperature and precipitation gradients.  

Meteorology-governed forest status was identified by the S-mode PCA performed on 
the NDVI and NDII7/NBRI time series derived from MODIS and Landsat datasets. 
Although processed independently, both approaches highlighted related leading 
temporal variability of forest status, which beside a direct reference to the scPDSI 
weather related information, accounted also on vegetation resistance and adaptation 
strategies to the percept water stress.  

Even though, the progressing aridity pattern was recognized in the 3COVnNDVI8-18, 
2CORLNDVI and 1CORLNBRI PCs observed changes suggested increasing 
productivity, and alternation in the forest structure. PC that followed the 1scPDSI 
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meteorological changeability (namely: 4COVnNDII78-18, 1CORLNDVI and 
2CORLNBRI) also suggested rise in forest status, but in all the cases improvement was 
smaller and steadier in its tendency. Furthermore, areas associated with the inversed 
forest response revealed decrease in GPP and strong CF variability.  

Identified changes in forest status vary between diverse environment characteristics 
and most importantly tree species structure. Moreover, drought stress conditions 
intensified pre-existing differences among regions and local environmental factors id 
est. exposition, forest types and elevation.  

Even though, each identified principal component embraced unique conditions of the 
forest of South Tyrol, a considerable overleap among responses and resulting footprints 
was identified. Despite apparent simplicity, they provided insight into complex 

variability of the alpine forest. Given no local ground-truth information, observed 
phenology and productivity changes were related to other studies and known forest 
drought responses. Irrespectively of considerable disparity between tree/trees 
community scale of referred surveys, and stand/region scale of this study, identified 
patterns fit well to observations made at other sites. The following drought feedback 
responses were singled out: 

- influence of the elevation gradient on vegetation growth, where plants at higher 
altitudes are limited by temperature, while phenology of lower placed regions is 
subjected to precipitation (Primicia et al., 2015);  

- catalytic effect of moisture surplus in 2002 and 2008, combined with elevated 
temperature that boosted forest productivity in 2003 and 2008-2009 respectively 
(Theurillat & Guisan, 2001; Jolly et al., 2005; Castagneri et al., 2014); 

- persistent aridity conditions of 2003-2007 that drained soil moisture and 
negatively affected growth of coniferous trees (Coppola et al., 2012; Rigling et 
al., 2013; Lévesque et al., 2014); 

- lower susceplibility of hardwood drought-resistant Mediterranean species to dry 
conditions (Hanewinkel et al., 2013; Zimmermann et al., 2013a).   

Although all aforementioned ensured general explanation of the observed forest 
variability, it is important to keep in mind the size and complexity of the analyzed 
area. The orography determines aspect, inclination, insolation, local climate and even 
soil formation, resulting in variety of site-specific conditions that shape species 

allocation, trees growth or trees competition. Furthermore, history of local silviculture 
and natural or artificial character of forest structure as well as, genetic variations on 
species and population level (Brunner et al., 2015) are also of great importance. These 
properties become the most critical during stress conditions that sway the natural 
balance (e.g. Pasho et al., 2011; Scherrer et al., 2011b; Rigling et al., 2013; Lévesque et 
al., 2014). Consequently, the shown results demonstrate generalized perception of the 
phenomena. A great diversity of forest ecosystem and drought responses is recognized 
through disconnected and ‘patchy’ spatial projections of PCs correlation footprints. 
Moreover, derived phenology and productivity indices suggest diverse forest formations 
characterized by various GPP and CF productivity. 

In spite of encouraging results, the presented approach has some flaws. Firstly, the 
scPDSI model does not account on snow retention and snowmelt, potentially providing 
inaccurate spring moisture conditions. Moreover, merger of temperature and 
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precipitation into one measure inhibits investigation of their independent influence on 
trees growth (e.g. Coppola et al., 2012; Castagneri et al., 2014; Lévesque et al., 2014). 
Secondly, the adopted spatial resolution of 250 m could produce some uncertainty, 
particularly when analyzing complex and diverse alpine environment. Pixel size 
determines signal generalization not only in terms of captured forest response, but also 
environmental features adopted during interpretation of results. Furthermore, 
frequently low alpine forest canopy closure implies that registered reflectance can 
originate not only from the top-most stand canopy, but also understory, undergrowth 
or other background. This naturally corrupts the signal obscuring genuine trees 
response. On the other hand, adopted remotely sensed datasets reflect only on the top 
most layer of the forest, usually plant crowns, ensuring approximated, but restricted 

information of forest condition. Finally, a lack of ground truth data on real forest 
drought impact or phenology status, disables straightforward verification of the PCA 
outcomes, and quantitative analyses of forest drought impact. Consequently, time 
series of phenology and productivity measures are treated as an indicator of relative 
changes, whereas validation of identified temporal patterns is conducted indirectly 
against the scPDSI variability and confronted with research published on the topic. In 
addition satellite data are pre-se burden with uncertainty of geolocation, as well as 
registration and preprocessing-errors. 

Nevertheless, considering known studies and climatic projections, presented 
meteorologically induced forest response is in strong accordance with other published 
analyses and state of the art. Although the study covers only 11 years, captured 
long-term tendencies are consistent with trends depicting already ongoing 
transformation of the alpine environment. Moreover, also more site-specific phenology 
changes highlighted in the study are supported by observations made by other 
researchers.  

6.2. S-mode PCA decomposition and datasets evaluation  

The presented investigation confirms high utility of the PCA for analyses of 
remote-sensed time series. Identified results are characterized by high physical meaning 
and ensure comprehensive understanding of drought induced forest response. Moreover, 
implemented time series truncating to the vegetation-season period combined with the 

adequate z-score normalization scheme and S-mode PCA setup, allowed to exclude 
redundant information and target analysis only on relevant portion of data variance. 
Consequently, although as presented, the PCA can be conducted on diverse datasets, 
the method requires a deep understanding of processed information and properties of 
anticipated resulting variability. Despite utterly statistical nature of PCA, the S-mode 
decomposition allowed on robust identification of desired temporal patterns and 
associated spatial representations, even when coping with very subtle variance 
variability.  

Despite the fact that the PCA underlying orthogonality assumption can be physically 
unrealistic, performed secondary rotation did not always improve recognition and 
understanding of investigated variability. However, the rotation is oriented on 

identification of simple structures, which is not a genuine characteristic of temporal 
evolution patterns.   
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Certainly, the performed relative evaluation of resulting PCA patterns could obscure 
the actual limitation and inaccuracy of the method, however considering wellness of 
derived results, potential severe hindrances are at this point imperceptible.   

Regardless some limitations (Gao, 1996; Huete et al., 2002) both NDVI and 
NDII7/NBRI indices provided a reliable estimation of alpine forest condition ensuring 
detection of subtle changes. While the NDVI focuses on ‘greenness’ rendering a 
straightforward canopy status, the NDII7/NBRI addresses plant water content and cell 
structure. Consequently, NDII7 is correlated with net ecosystem carbon exchange 
(Cheng et al., 2007), hence provides a better approximation for carbon cycle models. 
Due to application of the far infrared spectrum range, NDII7/NBRI is insensitive to 
soil moisture and experiences lower saturation effect (de Beurs & Townsend, 2008). 

Moreover, according to DeVries et al. (2015) application of far infrared signal makes 
the index more sensitive to regrowth comparing to NDVI. Although Landsat based 
analyses revealed limited differences between NDVI and NBRI derived results, MODIS 
founded investigation exposed diverse potential of both measures. Even though, the 
utility of the NDII7/NBRI could be considered for some applications superior to NDVI, 
when possible, it is beneficial to apply both measures together, exploiting their 
divergence and complementary properties. 

Because the TM and ETM+ as well as MODIS scanners share considerable similarity 
in spectral bands ranges, the most distinct and crucial differences between datasets 
acquired with Landsat and Terra platforms originate from data spatial and temporal 
resolution. Presented results suggest that despite lower spatial resolution MODIS based 
analyses provided better identification and understanding of drought affected forest 
stands. Daily data acquisitions combined in 16-day CV-MVC composites ensure high 
quality datasets with limited cloud cover contamination, which is especially important 
for mountainous regions. Moreover, a whole-year observation allows on continuous 
monitoring, providing data not only on drought induced stress, but also on recovery 
process. Furthermore, extended time series allows on more realistic inspection as some 
tree species, such as Common Beech, have a lagged reaction to meteorological changes 
(Castagneri et al., 2014). In addition, approximately constant interval between datasets 
enable straightforward modeling of phenology and productivity changes, which, as 
demonstrated, sheds additional light on the perceived variability.  

In spite of extensive data collection and further processing, Landsat obtained results 
provided only a general overview of the weather and drought governed forest response. 
Although the Landsat-derived results were in line with the MODIS analyses, limited 
spatial coverage as well as temporal resolution restricted to only one composition per 
year, leaded to diminished or even insufficient diversification between inspected indices, 
identified temporal responses and hence their spatial representations. Moreover, data 
scarcity disables comprehensive monitoring of a complete vegetation period, excluding 
important influence of the increasing spring drought risk (Beniston, 2012).  

Taking together, MODIS derived NDVI and NDII7 time series showed higher utility 
for forest drought related studies in the alpine region. The most essential advantage 

provided by these data is high data quality and temporal resolution, which balance 
coarse spatial resolution.  
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6.3. Perspectives 

This thesis presents a robust and versatile approach for forest monitoring under 
weather stress conditions. Observed climate alternation determines constantly 
increasing need for comprehensive understanding of environmental processes, and 
improvement in survey techniques and data collection.  

Although the demonstrated approach was shown to be successful and the selected 
datasets provided sufficient scientific input, potential of the approach was not fully 
exploited, and offers room for improvement. The main issue to be addressed is 
enhancing of spatial resolution without sacrificing, or even better with an increase in 
temporal resolution. Drawing from the made experience as well as literature based 

state of the art, MODIS-Landsat synergy would address this aspect well (e.g. Roy et 
al., 2008; Hilker et al., 2009; Zhu et al., 2010). However, taking under consideration 
current status of the Landsat and EOS satellite programs, such solution is not really 
conclusive for the future. Natural successor in the Landsat enterprise is the Landsat 
Data Continuity Mission (LDCM; Irons et al., 2012). Despite preserved temporal and 
spatial resolution LDCM acquired data are no longer a genuine extension of the 
TM/ETM+ time series as the OLI (Operational Land Imaginer) sensor have a bit 
different band wavelength configuration. Conversely, MODIS scanner does not have a 
true follower at the moment. A potential replacement is the Visible Infrared Imaging 
Radiometer Suite (VIIRS) onboard on Suomi NPP platform, but the sensor provides 
data with resolution of 375 m, which could be insufficient for the complex alpine 
environment.  

It is out of a question that already initiated Sentinel-2A/-2B missions supplemented by 
the Sentinel-3A/-3B satellites will provide excellent environmental information source 
for the alpine forest condition monitoring (Malenovský et al., 2012). Importantly, 
missions have been planned for at least 15 years of service, which combining with 
already available Landsat and MODIS archives will assemble extraordinary data 
collection. In contrast, recently experienced limited amount of high resolution Landsat 
or Landsat-like acquisitions attributed on Landsat 5 shutdown in 2013 and Landsat 7 
SLC failure in 2003, is a serious limitation not only for the further time series analyses, 
but also current surveys. It hampers a reliable assessment of observed tendencies in a 
broader perspective of global changes.  

Independently of the great outlook for the future remote-sensed forest monitoring, it is 
important to collect ground truth data and carry out extensive forest campaigns 
objected on comprehensive investigation of physiological changes triggered or enhanced 
by dry conditions, including also secondary damages threats. Essentially, field 
campaigns should address regions of all elevations and multiple tree species. Moreover, 
surveying should not be limited only to extreme events and stress affected sites, nor 
regions particularly endangered by climate change, but also collect information on 
‘normal’ forest status and ‘typical’ woodland. Only reflection on a disparity between 
regular and extreme conditions provides adequate understanding of trees responses to 
stress, correct change interpretation, assessment of physiological limits and 

consequently mitigation and further modeling. However, under revealed ongoing 
change of global and local climate patterns, normality of meteorological conditions 
could be very illusive. Furthermore, an additional concern should be given to 
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monitoring of other forest damages agents, which combined with drought stress can 
increase trees mortality.   

Subsequently, use of additional information on CO2 levels or more local temperature 
and precipitation variability, will definitively allow to enhance interpretation of 
obtained results.   

Furthermore, application of other statistical variance oriented approaches remains still 
open and needs further investigation. Independent Component Analysis (ICA) presents 
itself as a promising solution, however its primary appealing fundamental restriction of 
nongaussian distribution of resulting components could be difficult to meet.  

Last but not least, it is essential to better implement knowledge established through 
the environmental research into the policy and decision-making processes at the local, 
regional and global scale. Only such integrated approach can ensure proper actions 
and mitigation strategies of the ongoing climate alternation. It is particularly 
important for unique and already endangered regions such as the Alps.  

 



APPENDIX 1  

 
131 

APPENDIX 1 

While considering drought related vegetation stress monitoring the biggest impact is 
put on the vegetation water content. For this reason, most of relevant indices employ a 
portion of the 1 µm – 2.5 µm spectrum, which is sensitive to the plant water content. 
According to Tucker (1980) 1.55-1.75µm range is the best-suited spectral interval for 
the monitoring plant canopy water status.  

Mainly due to multiple monitoring objectives as well as diverse satellite sensor 
specifications and spectral resolution, vegetation water content oriented indices employ 
various portions of the infrared spectrum. Unfortunately, it results in some confusion, 
as the same name can represent ratios with diverse wavelength spectra, or the other 
way round, the same mathematical equation stands under multiple names. Although 
this issue was already briefly addressed by Ji et al. (2009) and Yilmaz et al. (2008), the 
topic deserves further attempt for systematization.  

An application of normalized difference between near- and medium-infrared spectra 
was firstly investigated by Kimes et al. (1981) who used Landsat TM bands 4 and 5 
(0.76-0.90 µm and 1.55-1.75 µm respectively) and called the resulting index ND45. 
Later, this formulation was specified by Hardisky et al. (1983) as a sensor independent 
relation called Normalized Difference Infrared Index (NDII): 
 

 NDII =  
ρ0.85µm −  ρ1.65µm

ρ0.85µm +  ρ1.65µm
 [A1 ]  

 

The ratio between NIR and SWIR (or MIR following the Landsat convention) spectral 
channels presents itself as a robust approximation of vegetation condition and found 
application in diverse monitoring approaches (e.g. Yilmaz et al., 2008). This 
recognition resulted in minor, sensor driven differences of applied bandwidth of near 
and medium infrared bands as well as sometimes also in diverse names. For example, 
deriving it from Landsat data Jin and Sader (2005) as well as Wilson and Sader (2002) 
called it Normalized Difference Moisture Index (NDMI). Its MODIS based equivalent 
(calculated using band 2 (0.841-876 µm) and 6 (1.628-1.652 µm)) is referred to as: 
Normalized Difference Infrared Index band 6 (NDII6, Rahimzadeh Bajgiran et al., 
2009); Normalized Difference Water Index band 6 (NDWI6; Chakraborty and Sehgal, 
2010); Normalized Difference Water Index1640 (NDWI1640; Chen et al., 2005); or Land 

Surface Water Index (LSWI; Xiao et al., 2005). Moreover, Delbart et al. (2005) applied 
the same formula to Band 3 (0.78–0.89µm) and SWIR (1.58–1.75µm) of the SPOT 
VEGETATION sensor, titling it Normalized Difference Water Index (NDWI). The 
latter name can leads to further confusion. 

Because the whole infrared spectrum carries vegetation water content information, also 
further portions of the electromagnetic spectrum are used in plant condition studies. A 
good example is MODIS based modification of the original NDII that employs 
reflectance from Short Wavelength Infrared (SWIR) band 7 instead of band 6 (Xiao et 
al., 2005; Rahimzadeh Bajgiran et al., 2009; Verbesselt et al., 2009): 
 

 𝑁𝐷II7 =  
𝜌0.86µ𝑚 −  𝜌2.2µ𝑚

𝜌0.86µ𝑚 +  𝜌2.2µ𝑚
 [A2 ]  



APPENDIX 

 
132 

Also in this case the index appears under multiple names of: NDII7 (Rahimzadeh 
Bajgiran et al., 2009), NDII (Verbesselt et al., 2009), NDWI (Gu et al., 2007) or 
NDWI2130 (Chen et al., 2005).  

Interestingly, when comparing NDII7 with Landsat based indices, it becomes clear that 
this relation is known also as Normalized Burn Ratio (NBR;  van Wagtendonk et al., 
2004) or Normalized Burn Ratio Index (NBRI; Huang et al., 2010). 

Another index providing proxy of vegetation status and vegetation water content is 
formulated by Gao (1996) Normalized Difference Water Index (NDWI):  
 

 NDWI =  
ρ0.86µm −  ρ1.24µm

ρ0.86µm +  ρ1.24µm
 [A3 ]  

 

Alike NDII, it uses normalized rationing of two infrared bands, taking advantage of 
their similar scattering properties. Also in this case naming convention differs and for 
example Chakraborty and Sehgal (2010) who based their study on MODIS data 
referred to it as NDWI5 (Normalized Difference Water Index band 5).  

As previously mentioned, some confusion can arise from the fact that NDWI name is 
used for indices employing diverse infrared electromagnetic spectrum. Moreover, the 
same name is applied to indices used for surface water mapping. Although also 
oriented on water identification, they foster disparate water characteristics basing on 
combination of infrared and green spectra (Ji et al., 2009).   

Because the naming convention of some remote-sensed indices is subjective and can 

lead to some ambiguity, it is important not to take an index name for granted and 
always inspect wavelengths employed in the computation.  
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APPENDIX 2  

A.2. Forest condition indicated by PCA 

A.2.1. NDVI time series 

Full year time series: NDVI1-23, NDVISG1-23, nNDVI1-23 and nNDVISG1-23 

 

Figure A2 1 First four PCs resulted from the S-mode correlation-matrix based PCA of the 

NDVI1-23 (full year NDVI) time series, herein: (a) 1CORNDVI1-23, (b) 2CORNDVI1-23,  
(c) 3CORNDVI1-23 and (d) 4CORNDVI1-23. Temporal patterns explained 63.23%, 3.29%, 2.68% 
and 1.69% of the total NDVI1-23 time series variance respectively. 

 

Table A2 1 Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode correlation-matrix based PCA of the NDVI1-23 (full year NDVI) time series. Due to 
inconsistent length of scPDSI and NDVI1-23 datasets all time evolution patterns were converted 
into yearly average time series. 

 
CORNDVI1-23 

1PC 2PC 3PC 4PC 

1scPDSI   0.179   0.215   0.664*  -0.205 

2scPDSI  -0.268   0.476  -0.112  -0.461 

3scPDSI  -0.008   0.584*  -0.460  -0.290 

4scPDSI  -0.397   0.215  -0.124  -0.491 

             * - significant at the level p<0.05 

 

 

Figure A2 2 First four PCs resulted from the S-mode correlation-matrix based PCA of the 

NDVISG1-23 (full year NDVISG) time series, herein: (a) 1CORNDVISG1-23, (b) 2CORNDVISG1-23, 
(c) 3CORNDVISG1-23 and (d) 4CORNDVISG1-23. Temporal patterns explained 70.86%, 3.51%, 
2.71% and 1.77% of the total NDVISG1-23 time series variance respectively. 
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Table A2 2 Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode correlation-matrix based PCA of the NDVISG1-23 (SG filtered full year NDVI) time 
series. Due to inconsistent length of scPDSI and NDVISG1-23 datasets all time evolution 
patterns were converted into yearly average time series. 

 
CORNDVISG1-23 

1PC 2PC 3PC 4PC 

1scPDSI   0.174   0.144   0.644*   -0.279 

2scPDSI  -0.268   0.446  -0.113  -0.466 

3scPDSI  -0.022   0.620*  -0.444  -0.281 

4scPDSI  -0.417   0.197  -0.169  -0.485 

             * - significant at the level p<0.05 

 

Table A2 3 Correlation between corresponding four first PCs derived for correlation-matrix 

based S-mode PCA of NDVI1-23 and NDVISG1-23 datasets 

PCs correlation p 

1CORNDVI1-23 vs.1CORNDVISG1-23 0.991 0.000 

2CORNDVI1-23 vs. 2CORNDVISG1-23 0.971 0.000 

3CORNDVI1-23 vs. 3CORNDVISG1-23 0.934 0.000 

4CORNDVI1-23 vs. 4CORNDVISG1-23 0.945 0.000 

 

 
Figure A2 3 First four PCs resulted from the S-mode covariance-matrix based PCA of the 

nNDVI1-23 (z-score normalized full year NDVI) time series, herein: (a) 1COVnNDVI1-23,  
(b) 2COVnNDVI1-23, (c) 3COVnNDVI1-23 and (d) 4COVnNDVI1-23. Temporal patterns 
explained 18.55%, 5.35%, 2.31% and 1.79% of the total nNDVI1-23 time series variance 
respectively. 

 

Table A2 4 Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode covariance-matrix based PCA of the nNDVI1-23 (z-score normalized full year NDVI) 

time series. Due to inconsistent length of scPDSI and nNDVI1-23 datasets all time evolution 

patterns were converted into yearly average time series. 

 
COVnNDVI1-23 

1PC 2PC 3PC 4PC 

1scPDSI   0.031  -0.712*   0.456  -0.070 

2scPDSI  -0.263  -0.517  -0.265   0.181 

3scPDSI   0.033  -0.195  -0.731*   0.024 

4scPDSI  -0.535   0.278  -0.086   0.414 

             * - significant at the level p<0.05 
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Figure A2 4 First four PCs resulted from the S-mode covariance-matrix based PCA of the 

nNDVISG1-23 (z-score normalized full year NDVISG) time series, herein: (a) 1COVnNDVISG1-23, 

(b) 2COVnNDVISG1-23, (c) 3COVnNDVISG1-23 and (d) 4COVnNDVISG1-23. Temporal patterns 

explained 22.48%, 6.50%, 3.03% and 2.26% of the total nNDVISG1-23 time series variance 

respectively. 

 

Table A2 5 Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode covariance-matrix based PCA of the nNDVISG1-23 (z-score normalized full year 

NDVISG) time series. Due to inconsistent length of scPDSI and nNDVISG1-23 datasets all time 

evolution patterns were converted into yearly average time series. 

 
COVnNDVISG1-23 

1PC 2PC 3PC 4PC 

1scPDSI   0.098  -0.722*   0.446   0.060 

2scPDSI  -0.221  -0.509  -0.273  -0.215 

3scPDSI   0.059  -0.141  -0.739*  -0.025 

4scPDSI  -0.539  -0.308  -0.127  -0.448 

             * - significant at the level p<0.05 

 

Table A2 6 Correlation based comparison between corresponding four first PCs derived for 

covariance-matrix based S-mode PCA of nNDVI1-23 and nNDVISG1-23 datasets 

PCs correlation p 

1COVnNDVI1-23 vs. 1COVnNDVISG1-23 0.867 0.000 

2COVnNDVI1-23 vs. 2COVnNDVISG1-23 0.865 0.000 

3COVnNDVI1-23 vs. 3COVnNDVISG1-23 0.914 0.000 

4COVnNDVI1-23 vs. 4COVnNDVISG1-23 0.883 0.000 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX 

 

 
136 

Vegetation season time series: NDVI8-18, NDVISG8-18, nNDVI8-18 and 

nNDVISG8-18 

 
Figure A2 5 First four PCs resulted from the S-mode correlation-matrix based PCA of the 

NDVI8-18 (vegetation season NDVI) time series, herein: (a) 1CORNDVI8-18, (b) 2CORNDVI8-18, 

(c) 3CORNDVI8-18 and (d) 4CORNDVI8-18. Temporal patterns explained 41.94%, 4.77%, 3.04% 

and 2.68% of the total NDVI8-18 time series variance respectively. 

 

Table A2 7  Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode correlation-matrix based PCA of the NDVI8-18 (vegetation season NDVI) time series. 

Due to inconsistent length of scPDSI and NDVI8-18 datasets all time evolution patterns were 

converted into yearly average time series. 

 
CORNDVI8-18 

1PC 2PC 3PC 4PC 

1scPDSI   0.062   0.825*   0.213  -0.384 

2scPDSI   0.082   0.450   0.420  -0.392 

3scPDSI  -0.474   0.120   0.457  -0.195 

4scPDSI   0.309   0.054   0.364  -0.423 

             * - significant at the level p<0.05 

 

 
Figure A2 6 First four PCs resulted from the S-mode correlation-matrix based PCA of the 

NDVISG8-18 (vegetation season NDVISG) time series, herein: (a) 1CORNDVISG8-18,  

(b) 2CORNDVISG8-18, (c) 3CORNDVISG8-18 and (d) 4CORNDVISG8-18. Temporal patterns 
explained 52.88%, 5.03%, 3.23% and 2.26% of the total NDVI8-18 time series variance 
respectively.  
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Table A2 8  Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode correlation-matrix based PCA of the NDVISG8-18 (SG filtered vegetation season NDVI) 

time series. Due to inconsistent length of scPDSI and NDVISG8-18 datasets all time evolution 

patterns were converted into yearly average time series. 

 
CORNDVISG8-18 

1PC 2PC 3PC 4PC 

1scPDSI   0.134  -0.837*   0.548   0.241 

2scPDSI   0.058  -0.382   0.582*   0.341 

3scPDSI  -0.509   0.027   0.432   0.149 

4scPDSI   0.403  -0.035    0.384   0.256 

             * - significant at the level p<0.05 

 

Table A2 9 Correlation based comparison between corresponding four first PCs derived for 

correlation-matrix based S-mode PCA of NDVI8-18 and NDVISG8-18 datasets 

PCs correlation p 

1CORNDVI8-18 vs. 1CORNDVISG8-18 0.980 0.000 

2CORNDVI8-18 vs. 2CORNDVISG8-18 0.731 0.000 

3CORNDVI8-18 vs. 3CORNDVISG8-18 0.710 0.000 

4CORNDVI8-18 vs. 4CORNDVISG8-18 0.668 0.000 

 

 
Figure A2 7 First four PCs resulted from the S-mode covariance-matrix based PCA of the 

nNDVI8-18 (z-score normalized vegetation season NDVI) time series, herein:  

(a) 1COVnNDVI8-18, (b) 2COVnNDVI8-18, (c) 3COVnNDVI8-18 and (d) 4COVnNDVI8-18. 

Temporal patterns explained 15.25%, 5.65%, 3.37% and 2.28% of the total nNDVI8-18 time 

series variance respectively. 
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Table A2 10 Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode covariance-matrix based PCA of the nNDVI8-18 (z-score normalized vegetation season 

NDVI) time series. Due to inconsistent length of scPDSI and nNDVI8-18 datasets all time 

evolution patterns were converted into yearly average time series. 

 
COVnNDVI8-18 

1PC 2PC 3PC 4PC 

1scPDSI   0.573  -0.713*   0.310   0.374 

2scPDSI   0.321  -0.608*  -0.360   0.349 

3scPDSI  -0.155  -0.337  -0.632*   0.160 

4scPDSI   0.489   0.013  -0.257   0.261 

            * - significant at the level p<0.05 

 

 
Figure A2 8 First four PCs resulted from the S-mode covariance-matrix based PCA of the 

nNDVISG8-18 (z-score normalized vegetation season NDVISG) time series, herein:  

(a) 1COVnNDVISG8-18, (b) 2COVnNDVISG8-18, (c) 3COVnNDVISG8-18 and  

(d) 4COVnNDVISG8-18. Temporal patterns explained 18.15%, 6.82%, 4.42% and 3.09% of the 

total nNDVISG8-18 time series variance respectively. 
 

Table A2 11 Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode covariance-matrix based PCA of the nNDVISG8-18 (z-score normalized vegetation season 

NDVISG) time series. Due to inconsistent length of scPDSI and nNDVISG8-18 datasets all time 

evolution patterns were converted into yearly average time series. 

 
COVnNDVISG8-18 

1PC 2PC 3PC 4PC 

1scPDSI   0.432  -0.791*   0.234  -0.522 

2scPDSI   0.204  -0.581*  -0.427  -0.502 

3scPDSI   -0.216  -0.183  -0.667*   0.047 

4scPDSI   0.546   0.045  -0.272  -0.514 

            * - significant at the level p<0.05 
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Table A2 12 Correlation based comparison between corresponding four first PCs derived for 

covariance-matrix based S-mode PCA of nNDVI8-18 and nNDVISG8-18 datasets 

PCs correlation p 

1COVnNDVI1-18 vs. 1COVnNDVISG1-18 0.810 0.000 

2COVnNDVI1-18 vs. 2COVnNDVISG1-18 0.795 0.000 

3COVnNDVI1-18 vs. 3COVnNDVISG1-18 0.919 0.000 

4COVnNDVI1-18 vs. 4COVnNDVISG1-18 0.544 0.000 

 

High season time series: nNDVI14-17 

 

Figure A2 9 First four PCs resulted from the S-mode covariance-matrix based PCA of the 

nNDVI14-17  (z-score normalized high-season NDVI) time series, herein: (a) 1COVnNDVI14-17, 

(b) 2COVnNDVI14-17, (c) 3COVnNDVI14-17  and (d) 4COVnNDVI14-17. Temporal patterns 

explained 15.85%, 6.43%, 5.03% and 4.36% of the total nNDVI14-17 time series variance 

respectively. 

 

Table A2 13 Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode covariance-matrix based PCA of the nNDVI14-17 (z-score normalized high-season NDVI) 

time series. Due to inconsistent length of scPDSI and nNDVI14-17 datasets all time evolution 

patterns were converted into yearly average time series. 

 
COVnNDVI14-17 

1PC 2PC 3PC 4PC 

1scPDSI   0.662*  -0.336   0.224   0.356 

2scPDSI   0.268   0.164  -0.271   0.623* 

3scPDSI   0.142   0.530  -0.255   0.512 

4scPDSI   0.242   0.384   0.327  -0.016 

            * - significant at the level p<0.05 

 

 

 

 

 

 

 

 

 



APPENDIX 

 

 
140 

A.2.2. NDII7 time series 

Vegetation season time series: NDII78-18, nNDII78-18  

 

Figure A2 10 First four PCs resulted from the S-mode correlation-matrix based PCA of the 

NDII78-18 (vegetation season NDII7) time series, herein: (a) 1CORNDII78-18,  

(b) 2CORNDII78-18, (c) 3CORNDII78-18 and (d) 4CORNDII78-18. Temporal patterns explained 

22.55%, 8.66%, 4.40% and 2.68% of the total NDII78-18 time series variance respectively. 

 

Table A2 14  Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode correlation-matrix based PCA of the NDII78-18 (vegetation season NDII7) time series. 

Due to inconsistent length of scPDSI and NDII78-18 datasets all time evolution patterns were 

converted into yearly average time series. 

 
CORNDII78-18 

1PC 2PC 3PC 4PC 

1scPDSI   0.736*   0.153  -0.660*  -0.702* 

2scPDSI  -0.172  -0.093   0.193   0.011 

3scPDSI  -0.576*   0.335   0.238   0.386 

4scPDSI   0.030  -0.092   0.050   0.063 

           * - significant at the level p<0.05 

 

 

Figure A2 11 First four PCs resulted from the S-mode covariance-matrix based PCA of the 

nNDII78-18 (z-score normalized vegetation season NDII7) time series, herein:  

(a) 1COVnNDII78-18, (b) 2COVnNDII78-18, (c) 3COVnNDII78-18 and (d) 4COVnNDII78-18. 

Temporal patterns explained 11.98%, 3.39%, 2.23% and 1.66% of the total nNDII78-18 time 

series variance respectively. 
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Table A2 15  Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode covariance-matrix based PCA of the nNDII78-18 (z-score normalized vegetation season 

NDII7) time series. Due to inconsistent length of scPDSI and nNDII78-18 datasets all time 

evolution patterns were converted into yearly average time series. 

 
COVnNDII78-18 

1PC 2PC 3PC 4PC 

1scPDSI  -0.717*  -0.374   0.189   0.608* 

2scPDSI   0.199  -0.278  -0.260   0.502 

3scPDSI   0.559   0.257   0.131  -0.023 

4scPDSI   0.010  -0.243  -0.288   0.583* 

            * - significant at the level p<0.05 

 

High-season time series: nNDII714-17 

 

Figure A2 12 First four PCs resulted from the S-mode covariance-matrix based PCA of the 

nNDII714-17 (z-score normalized high season NDII7) time series, herein: (a) 1COVnNDII714-17, 

(b) 2COVnNDII714-17, (c) 3COVnNDII714-17 and (d) 4COVnNDII714-17. Temporal patterns 

explained 14.36%, 3.89%, 3.31% and 3.20% of the total nNDII714-17 time series variance 

respectively.  

 

Table A2 16  Correlation between the scPDSI scores and first four PCs obtained through the 

S-mode covariance-matrix based PCA of the nNDII714-17 (z-score normalized high-season 

NDII7) time series. Due to inconsistent length of scPDSI and nNDII714-17 datasets all time 

evolution patterns were converted into yearly average time series. 

 
COVnNDII714-17 

1PC 2PC 3PC 4PC 

1scPDSI  -0.387  -0.521   0.122   0.490 

2scPDSI   0.337   0.304  -0.513   0.185 

3scPDSI   0.417   0.680  -0.811*   0.324 

4scPDSI   0.578*   0.208   0.064  -0.668* 

            * - significant at the level p<0.05 
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APPENDIX 3  

A.3. Secondary rotation of selected PCA loadings 

A.3.1. COVnNDVI8-18 

 
B 

 
C 

 
D 

 
E 

 
Figure A3 1 A: Plot of eigenvalues spectrum of the COVnNDVI8-18 (covariance-matrix based 

decomposition of z-score normalized vegetation season NDVI time series) PCA setup. Vertical 
lines represent results of two stopping rules approaches: Cattell’s scree test in red (5), and 
Kaiser’s stopping rule in green (4). First four PCs resulting from the Varimax (B) and Promax 
(C) rotation of the first five loadings of the lowest order retained from the COVnNDVI8-18 
PCA results. First four PCs produced through the Varimax (D) and Promax (E) rotation of 
the first four loadings of the lowest order retained from the COVnNDVI8-18 PCA results. 
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Table A3 1 Correlation based comparison between corresponding 1-4 PCs derived for Varimax 

and Promax rotations performed on the first five EOFs resulted from the covariance-matrix 
based S-mode PCA of the nNDVI8-18 dataset 

PCs correlation p 

1COVnNDVI8-18ROT5V vs. 1COVnNDVI8-18ROT5P 0.904 0.000 

2COVnNDVI8-18ROT5V vs. 2COVnNDVI8-18ROT5P 0.890 0.000 

3COVnNDVI8-18ROT5V vs. 3COVnNDVI8-18ROT5P 0.902 0.000 

4COVnNDVI8-18ROT5V vs. 4COVnNDVI8-18ROT5P 0.867 0.000 

 

Table A3 2 Correlation among the scPDSI scores and first four PCs obtained from Varimax 

(V) and Promax (P) rotations (ROT) of the first five loadings of the COVnNDVI8-18 dataset 
(covariance-matrix based S-mode PCA of the z-score normalized vegetation season NDVI time 
series). Due to inconsistent length of scPDSI and nNDVI8-18 datasets all time evolution patterns 
were converted into yearly average time series 

 COVnNDVI8-18ROT5V  COVnNDVI8-18ROT5P 

1PC 2PC 3PC 4PC  1PC 2PC 3PC 4PC 

1scPDSI  0.308  -0.203   0.569  -0.104    0.290  -0.124   0.590*  -0.205 

2scPDSI  0.638*  -0.495  -0.107   0.353    0.615*  -0.536  -0.186   0.333 

3scPDSI  0.476  -0.588*  -0.533   0.380    0.504  -0.576*  -0.607*   0.324 

4scPDSI  0.503   0.057  -0.057   0.532    0.433   0.020  -0.029   0.612* 

              * - significant at the level p<0.05 

 

Table A3 3 Correlation among four first unrotated PC of the COVnNDVI8-18 dataset 

(covariance-matrix based S-mode PCA of the z-score normalized vegetation season NDVI time 
series) and their rotated (ROT) equivalents derived using Varimax (V; left part of the table) 
and Promax (P; right part of the table) algorithms applied to the first five (5) EOFs of the 
COVnNDVI8-18 dataset. 

 
COVnNDVI8-18ROT5V  COVnNDVI8-18ROT5P 

1PC 2PC 3PC 4PC  1PC 2PC 3PC 4PC 

1CONnNDVI8-18   0.978*   0.620*   0.309*   0.088    0.864*   0.409*   0.176   0.043 

2CONnNDVI8-18  -0.082  -0.276*   0.741*   0.521*   -0.114  -0.289*   0.622*   0.432* 

3CONnNDVI8-18  -0.176*   0.679*  -0.133  -0.147   -0.240*   0.714*  -0.170  -0.161 

4CONnNDVI8-18  -0.063   0.276*   0.316*   0.551*   -0.093   0.295*   0.302*   0.510* 

            * - significant at the level p<0.05 

 

Table A3 4 Correlation based comparison between corresponding 1-4 PCs derived for Varimax 

and Promax rotations performed on the first four EOFs resulted from the covariance-matrix 
based S-mode PCA of the nNDVI8-18 dataset. 

PCs correlation p 

1COVnNDVI8-18ROT4V vs. 1COVnNDVI8-18ROT4P 0.904 0.000 

2COVnNDVI8-18ROT4V vs. 2COVnNDVI8-18ROT4P 0.891 0.000 

3COVnNDVI8-18ROT4V vs. 3COVnNDVI8-18ROT4P 0.908 0.000 

4COVnNDVI8-18ROT4V vs. 4COVnNDVI8-18ROT4P 0.885 0.000 
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Table A3 5 Correlation among the scPDSI scores and first four PCs obtained from Varimax 

(V) and Promax (P) rotations (ROT) of the first four loadings of the COVnNDVI8-18 dataset 
(covariance-matrix based S-mode PCA of the z-score normalized vegetation season NDVI time 
series). Due to inconsistent length of scPDSI and nNDVI8-18 datasets all time evolution patterns 
were converted into yearly average time series. 

 
COVnNDVI8-18ROT4V  COVnNDVI8-18ROT4P 

1PC 2PC 3PC 4PC  1PC 2PC 3PC 4PC 

1scPDSI  -0.072  -0.121   0.548  -0.751*    0.311  -0.330   0.573   0.482 

2scPDSI  -0.614*  -0.294  -0.143  -0.301    0.534  -0.694*   0.009  -0.305 

3scPDSI  -0.396   0.410  -0.200   0.331    0.411  -0.584*  -0.239  -0.658* 

4scPDSI  -0.527  -0.267  -0.090  -0.466    0.405  -0.163  -0.320  -0.069 

              * - significant at the level p<0.05 

 

Table A3 6 Correlation among four first unrotated PC of the COVnNDVI8-18 dataset 

(covariance-matrix based S-mode PCA of the z-score normalized vegetation season NDVI time 
series) and their rotated (ROT) equivalents derived using Varimax (V; left part of the table) 
and Promax (P; right part of the table) algorithms applied to the first four (4) EOFs of the 

COVnNDVI8-18 dataset. 

 COVnNDVI8-18ROT4V  COVnNDVI8-18ROT4P 

1PC 2PC 3PC 4PC  1PC 2PC 3PC 4PC 

1CONnNDVI8-18   0.994*  -0.026   0.464*   0.185*    0.892*  -0.036   0.292*   0.095 

2CONnNDVI8-18   0.024   0.840*  -0.386*   0.720*    0.007   0.714*  -0.359*   0.597* 

3CONnNDVI8-18  -0.075   0.479*   0.704*  -0.273*   -0.100   0.464*   0.706*  -0.301* 

4CONnNDVI8-18  -0.079  -0.254*   0.376*   0.610*   -0.120  -0.278*   0.368*   0.582* 

            * - significant at the level p<0.05 

 

Table A3 7 Correlation basd comparison between corresponding 1-4 PCs derived for Varimax 

rotation performed on the first five and four EOFs resulted from the covariance-matrix based 
S-mode PCA of the nNDVI8-18 dataset. 

PCs correlation p 

1COVnNDVI8-18ROT5V vs. 1COVnNDVI8-18ROT4V 0.989 0.000 

2COVnNDVI8-18ROT5V vs. 2COVnNDVI8-18ROT4V 0.924 0.000 

3COVnNDVI8-18ROT5V vs. 3COVnNDVI8-18ROT4V 0.975 0.000 

4COVnNDVI8-18ROT5V vs. 4COVnNDVI8-18ROT4V 0.820 0.000 

 

Table A3 8 Correlation based comparison between corresponding 1-4 PCs derived for Promax 

rotation performed on the first five and four EOFs resulted from the covariance-matrix based 
S-mode PCA of the nNDVI8-18 dataset. 

PCs correlation p 

1COVnNDVI8-18ROT5P vs. 1COVnNDVI8-18ROT4P 0.976 0.000 

2COVnNDVI8-18ROT5P vs. 2COVnNDVI8-18ROT4P 0.940 0.000 

3COVnNDVI8-18ROT5P vs. 3COVnNDVI8-18ROT4P 0.982 0.000 

4COVnNDVI8-18ROT5P vs. 4COVnNDVI8-18ROT4P 0.789 0.000 
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A.3.2. COVnNDVI14-17 

 

B 

 

C 

 

D 

 

E 

 

Figure A3 2 A: Plot of eigenvalues spectrum of the COVnNDVI14-17 (covariance-matrix based 

decomposition of the z-score normalized high-season NDVI time series) PCA setup. Vertical 
lines represent results of two stopping rules approaches: Cattell’s scree test in green (7), and 
Kaiser’s stopping rule in red (34). First four PCs resulting from the Varimax (B) and Promax 
(C) rotation of the first seven loadings of the lowest order retained from the COVnNDVI14-17 

PCA results. First four PCs produced through the Varimax (D) and Promax (E) rotation of 
the first 34 loadings of the lowest order retained from the COVnNDVI14-17 PCA results. 
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Table A3 9 Correlation between corresponding 1-4 PCs derived for Varimax and Promax 

rotations performed on the first seven EOFs resulted from the covariance-matrix based S-mode 
PCA of the nNDVI14-17 dataset. 

PCs correlation p 

1COVnNDVI14-17 ROT7V vs. 1COVnNDVI14-17 ROT7P 0.937 0.000 

2COVnNDVI14-17 ROT7V vs. 2COVnNDVI14-17 ROT7P 0.909 0.000 

3COVnNDVI14-17 ROT7V vs. 3COVnNDVI14-17 ROT7P 0.883 0.000 

4COVnNDVI14-17 ROT7V vs. 4COVnNDVI14-17 ROT7P 0.872 0.000 

 

Table A3 10 Correlation among the scPDSI scores and first four PCs obtained from Varimax 

(V) and Promax (P) rotations (ROT) of the first seven loadings of the COVnNDVI14-17 dataset 
(covariance-matrix based S-mode PCA of the z-score normalized high-season NDVI time 
series). Due to inconsistent length of scPDSI andnNDVI14-17 datasets all time evolution 
patterns were converted into yearly average time series. 

 
COVnNDVI14-17ROT7V  COVnNDVI14-17ROT7P 

1PC 2PC 3PC 4PC  1PC 2PC 3PC 4PC 

1scPDSI   0.119   0.542   0.043  -0.849*    0.196   0.513  -0.169  -0.839* 

2scPDSI   0.577*  -0.024   0.562  -0.110    0.565  -0.122   0.474  -0.040 

3scPDSI   0.286  -0.179   0.557   0.462    0.148  -0.218   0.601*   0.563 

4scPDSI   0.690*  -0.569   0.044  -0.208    0.755*  -0.633*   0.100  -0.195 

              * - significant at the level p<0.05 

 

Table A3 11 Correlation among four first unrotated PC of the COVnNDVI14-17 dataset 

(covariance-matrix based S-mode PCA of the z-score normalized high-season NDVI time series) 
and their rotated (ROT) equivalents derived using Varimax (V; left part of the table) and 
Promax (P; right part of the table) algorithms applied to the seven (7) first EOFs of the 
COVnNDVI14-17 dataset. 

 COVnNDVI14-17ROT7V  COVnNDVI14-17ROT7P 

1PC 2PC 3PC 4PC  1PC 2PC 3PC 4PC 

1CONnNDVI14-17  -0.154   0.120   0.198   0.334*   -0.164   0.013   0.148   0.342* 

2CONnNDVI14-17  -0.050   0.072  -0.048   0.207   -0.036   0.028  -0.061   0.199 

3CONnNDVI14-17   0.130   0.075  -0.105   0.069    0.133   0.056  -0.059   0.066 

4CONnNDVI14-17  -0.168  -0.098   0.220  -0.035   -0.217   0.062   0.195    0.036 

            * - significant at the level p<0.05 

 

Table A3 12 Correlation between corresponding 1-4 PCs derived for Varimax and Promax 

rotations performed on the first 34 scores resulted from the covariance-matrix based S-mode 
PCA of the nNDVI14-17 dataset. 

PCs correlation p 

1COVnNDVI14-17 ROT34V vs. 1COVnNDVI14-17 ROT34P 0.906 0.000 

2COVnNDVI14-17 ROT34V vs. 2COVnNDVI14-17 ROT34P 0.951 0.000 

3COVnNDVI14-17 ROT34V vs. 3COVnNDVI14-17 ROT34P 0.984 0.000 

4COVnNDVI14-17 ROT34V vs. 4COVnNDVI14-17 ROT34P 0.944 0.000 
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Table A3 13 Correlation among the scPDSI scores and first four PCs obtained from Varimax 

(V) and Promax (P) rotations (ROT) of the first 34 loadings of the COVnNDVI14-17 dataset 
(covariance-matrix based S-mode PCA of the normalized high-season NDVI time series). Due 
to inconsistent length of scPDSI and nNDVI14-17 datasets all time evolution patterns were 
converted into yearly average time series. 

 
COVnNDVI14-17ROT34V  COVnNDVI14-17ROT34P 

1PC 2PC 3PC 4PC  1PC 2PC 3PC 4PC 

1scPDSI -0.313 0.240 0.324 0.817*    0.085   0.209   0.000   0.877* 

2scPDSI 0.338 -0.248 0.081 0.153    0.639*  -0.271   0.192   0.138 

3scPDSI 0.496 -0.031 0.036 -0.457    0.582*  -0.019   0.381  -0.217 

4scPDSI -0.420 -0.652* 0.113 0.255   -0.130  -0.661*   0.054   0.028 

              * - significant at the level p<0.05 

 

Table A3 14 Correlation among four first unrotated PC of the COVnNDVI14-17 dataset 

(covariance-matrix based S-mode PCA of the z-score normalized high-season NDVI time series) 
and their rotated (ROT) equivalents derived using Varimax (V; left part of the table) and 
Promax (P; right part of the table) algorithms applied to the 34 first EOFs of the 

COVnNDVI14-17 dataset. 

 COVnNDVI14-17ROT34V  COVnNDVI14-17ROT34P 

1PC 2PC 3PC 4PC  1PC 2PC 3PC 4PC 

1CONnNDVI14-17   0.817*  -0.313*  -0.156   0.507*    0.575*  -0.161  -0.078   0.290* 

2CONnNDVI14-17   0.374*   0.499*  -0.173   0.030    0.357*   0.374*  -0.157   0.037 

3CONnNDVI14-17   0.116   0.011   0.823*  -0.258    0.143   0.015   0.797*  -0.226 

4CONnNDVI14-17 -  0.067   0.262   0.337*   0.414*   -0.070   0.194   0.357*   0.411* 

            * - significant at the level p<0.05 

 

Table A3 15 Correlation based comparison between corresponding 1-4 PCs derived for Varimax 

rotation performed on the first seven and 34 scores resulted from the covariance-matrix based 
S-mode PCA of the nNDVI14-17 dataset. 

PCs correlation p 

1COVnNDVI14-17 ROT7V vs. 1COVnNDVI14-17 ROT34V 0.571 0.000 

2COVnNDVI14-17 ROT7V vs. 2COVnNDVI14-17 ROT34V 0.615 0.000 

3COVnNDVI14-17 ROT7V vs. 3COVnNDVI14-17 ROT34V 0.958 0.000 

4COVnNDVI14-17 ROT7V vs. 4COVnNDVI14-17 ROT34V 0.765 0.000 

 

Table A3 16 Correlation based comparison between corresponding 1-4 PCs derived for Promax 

rotation performed on the first 7 and 34 scores resulted from the covariance-matrix based 
S-mode PCA of the nNDVI14-17 dataset. 

PCs correlation p 

1COVnNDVI14-17 ROT7P vs. 1COVnNDVI14-17 ROT34P 0.402 0.000 

2COVnNDVI14-17 ROT7P vs. 2COVnNDVI14-17 ROT34P 0.384 0.000 

3COVnNDVI14-17 ROT7P vs. 3COVnNDVI14-17 ROT34P 0.810 0.000 

4COVnNDVI14-17 ROT7P vs. 4COVnNDVI14-17 ROT34P 0.466 0.000 
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A.3.3. COVnNDII78-18 
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Figure A3 3 A: Plot of eigenvalues spectrum of the COVnNDII78-18 (covariance-matrix based 

decomposition of z-score normalized vegetation season NDII7 time series) PCA setup. Vertical 
lines represent results of two stopping rules approaches: Cattell’s scree test in red (4), and 
Kaiser’s stopping rule in green (3). First four PCs resulting from the Varimax (B) and Promax 
(C) rotation of the first four loadings of the lowest order retained from the COVnNDII78-18 
PCA results. First three PCs produced through the Varimax (D) and Promax (E) rotation of 

the first four loadings of the lowest order retained from the COVnNDII78-18 PCA results. 
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Table A3 17 Correlation based comparison between corresponding 1-4 PCs derived for Varimax 

and Promax rotations performed on the first four EOFs resulted from the covariance-matrix 
based S-mode PCA of the nNDII78-18 dataset. 

PCs correlation p 

1COVnNDII78-18 ROT4V vs. 1COVnNDII78-18 ROT4P 0.910 0.000 

2COVnNDII78-18 ROT4V vs. 2COVnNDII78-18 ROT4P 0.897 0.000 

3COVnNDII78-18 ROT4V vs. 3COVnNDII78-18 ROT4P 0.919 0.000 

4COVnNDII78-18 ROT4V vs. 4COVnNDII78-18 ROT4P 0.924 0.000 

 

Table A3 18 Correlation among the scPDSI scores and first four PCs obtained from Varimax 

(V) and Promax (P) rotations (ROT) of the first four loadings of the COVnNDII78-18 dataset 
(covariance-matrix based S-mode PCA of the z-score normalized vegetation season NDII7 time 
series). Due to inconsistent length of scPDSI and nNDII78-18 datasets all time evolution 
patterns were converted into yearly average time series. 

 
COVnNDII78-18ROT4V  COVnNDII78-18ROT4P 

1PC 2PC 3PC 4PC  1PC 2PC 3PC 4PC 

1scPDSI  -0.072  -0.121   0.548   0.751*   -0.061  -0.254   0.550   0.772* 

2scPDSI  -0.614*  -0.294  -0.143   0.301   -0.689*  -0.427  -0.172   0.241 

3scPDSI  -0.396   0.410  -0.200  -0.331   -0.365   0.172  -0.260  -0.397 

4scPDSI  -0.527  -0.267  -0.090   0.466   -0.515  -0.321  -0.066   0.400 

              * - significant at the level p<0.05 

 

Table A3 19 Correlation among four first unrotated PC of the COVnNDII78-18 dataset 

(covariance-matrix based S-mode PCA of the z-score normalized vegetation season NDII7 time 
series) and their rotated (ROT) equivalents derived using Varimax (V; left part of the table) 
and Promax (P; right part of the table) algorithms applied to the five four (4) EOFs of the 
COVnNDII78-18 dataset. 

 COVnNDII78-18ROT4V  COVnNDII78-18ROT4P 

1PC 2PC 3PC 4PC  1PC 2PC 3PC 4PC 

1CONnNDII78-18   0.994*  -0.026   0.464*   0.185*    0.892*  -0.036   0.292*   0.095 

2CONnNDII78-18   0.024   0.840*  -0.386*   0.720*    0.007   0.714*  -0.359*   0.597* 

3CONnNDII78-18  -0.075   0.479*   0.704*  -0.273*   -0.100   0.464*   0.706*  -0.301* 

4CONnNDII78-18  -0.079  -0.254*   0.376*   0.610*   -0.120  -0.278*   0.368*   0.582* 

            * - significant at the level p<0.05 

 

Table A3 20 Correlation based comparison between corresponding 1-4 PCs derived for Varimax 

and Promax rotations performed on the first three EOFs resulted from the covariance-matrix 
based S-mde PCA of the nNDII78-18 dataset. 

PCs correlation p 

1COVnNDII78-18 ROT3V vs. 1COVnNDII78-18 ROT3P 0.907 0.000 

2COVnNDII78-18 ROT3V vs. 2COVnNDII78-18 ROT3P 0.873 0.000 

3COVnNDII78-18 ROT3V vs. 3COVnNDII78-18 ROT3P 0.915 0.000 
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Table A3 21 Correlation among the scPDSI scores and first four PCs obtained from Varimax 

(V) and Promax (P) rotations (ROT) of the first three loadings of the COVnNDII78-18 dataset 
(covariance-matrix based S-mode PCA of the z-score normalized vegetation season NDVI time 
series). Due to inconsistent length of scPDSI and nNDII78-18 datasets all time evolution 
patterns were converted into yearly average time series. 

 
COVnNDII78-18ROT3V  COVnNDII78-18ROT3P 

1PC 2PC 3PC   1PC 2PC 3PC  

1scPDSI   0.693*  -0.243   0.438     0.658*  -0.375   0.435  

2scPDSI  -0.164  -0.447  -0.182    -0.257  -0.584*  -0.213  

3scPDSI  -0.609*   0.316  -0.124    -0.539   0.115  -0.223  

4scPDSI   0.046  -0.418   -0.158     0.023  -0.413  -0.137  

             * - significant at the level p<0.05 

 

Table A3 22 Correlation among four first unrotated PC of the COVnNDII78-18 dataset 

(covariance-matrix based S-mode PCA of the z-score normalized vegetation season NDII7 time 
series) and their rotated (ROT) equivalents derived using Varimax (V; left part of the table) 
and Promax (P; right part of the table) algorithms applied to the three first (3) EOFs of the 

COVnNDII78-18 dataset. 

 COVnNDiI78-18ROT3V  COVnNDII78-18ROT3P 

1PC 2PC 3PC   1PC 2PC 3PC  

1CONnNDII78-18   0.960*   0.027   0.278*     0.867*   0.008   0.269*  

2CONnNDII78-18   0.086   0.919*  -0.384*     0.069   0.810*  -0.383*  

3CONnNDII78-18  -0.266*   0.393*   0.880*    -0.234*   0.321*   0.807*  

            * - significant at the level p<0.05 

 

Table A3 23 Correlation based comparison between corresponding 1-3 PCs derived for Varimax 

rotation performed on the first four and three EOFs resulted from the covariance-matrix based 

S-mode PCA of the nNDII78-18 dataset. 

PCs correlation p 

1COVnNDII78-18 ROT4V vs. 1COVnNDII78-18 ROT3V 0.990 0.000 

2COVnNDII78-18 ROT4V vs. 2COVnNDII78-18 ROT3V 0.972 0.000 

3COVnNDII78-18 ROT4V vs. 3COVnNDII78-18 ROT3V 0.738 0.000 

 

Table A3 24 Correlation based comparison between corresponding 1-3 PCs derived for Promax 

rotation performed on the first four and three scores resulted from the covariance-matrix based 
S-mode PCA of nNDII78-18 dataset. 

PCs correlation p 

1COVnNDII78-18 ROT4P vs. 1COVnNDII78-18 ROT3P 0.968 0.000 

2COVnNDII78-18 ROT4P vs. 2COVnNDII78-18 ROT3P 0.947 0.001 

3COVnNDII78-18 ROT4P vs. 3COVnNDII78-18 ROT3P 0.755 0.000 
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APPENDIX 4 

A.4. Spatial representations of MODIS derived drought impact patterns 

 

 
Figure A4 1 Spatial representation of forest potential drought response identified by the 

2COVnNDVI8-18 PC. Correlation footprint refers to the score presented in the Figure 16A. 
Values next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 
100th percentiles of the correlation distribution.  

 

 
Figure A4 2 Spatial representation of forest potential drought response identified by the 

3COVnNDVI8-18. Correlation footprint refers to the score presented in the Figure 16B. Values 
next to the color ramp represents in the increasing order 0

th
, 5

th
, 30

th
, 50

th
, 70

th
 95

th
 and 100

th
 

percentiles of the correlation distribution. 
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Figure A4 3 Spatial representation of forest potential drought response identified by the 

2COVnNDVISG8-18. Correlation footprint refers to the score presented in the Figure 16C. 
Values next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 
100

th
 percentiles of the correlation distribution. 

 

 
Figure A4 4 Spatial representation of forest potential drought response identified by the 

3COVnNDVISG8-18. Correlation footprint refers to the score presented in the Figure 16D. 
Values next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 
100th percentiles of the correlation distribution. 
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Figure A4 5 Spatial representation of forest potential drought response identified by the 

1COVnNDVI14-17. Correlation footprint refers to the score presented in the Figure 16E. Values 
next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th 
percentiles of the correlation distribution. 

 

 
Figure A4 6 Spatial representation of forest potential drought response identified by the 

1CORNDII78-18. Correlation footprint refers to the score presented in the Figure 16F. Values 
next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th 
percentiles of the correlation distribution. 
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Figure A4 7 Spatial representation of forest potential drought response identified by the 

1COVnNDII78-18. Correlation footprint refers to the score presented in the Figure 16G. Values 
next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th 
percentiles of the correlation distribution. 

 

 

Figure A4 8 Spatial representation of forest potential drought response identified by the 

4COVnNDII78-18. Correlation footprint refers to the score presented in the Figure 16H. Values 
next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th 
percentiles of the correlation distribution. 
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Figure A4 9 Spatial representation of forest potential drought response identified by the 

3COVnNDII714-17. Correlation footprint refers to the score presented in the Figure 16I. Values 
next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th 
percentiles of the correlation distribution. 

 

 

Figure A4 10 Spatial representation of forest potential drought response identified by the 

4COVnNDII714-17. Correlation footprint refers to the score presented in the Figure 16J. Values 
next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th 
percentiles of the correlation distribution. 
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Figure A4 11 Spatial representation of forest potential drought response identified by the 

3COVnNDVI8-18ROT5P. Correlation footprint refers to the score presented in the Figure 16K. 
Values next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 
100

th
 percentiles of the correlation distribution. 

 

 

 

Figure A4 12 Spatial representation of forest potential drought response identified by the 

4COVnNDVI8-18ROT4V. Correlation footprint refers to the score presented in the Figure 16L. 
Values next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 

100th percentiles of the correlation distribution. 
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Figure A4 13 Spatial representation of forest potential drought response identified by the 

4COVnNDVI14-17ROT7V. Correlation footprint refers to the score presented in the Figure 16M. 
Values next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 
100

th
 percentiles of the correlation distribution. 

 

 

Figure A4 14 Spatial representation of forest potential drought response identified by the 

4COVnNDVI14-17ROT7P. Correlation footprint refers to the score presented in the Figure 16N. 
Values next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 
100th percentiles of the correlation distribution. 
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Figure A4 15 Spatial representation of forest potential drought response identified by the 

4COVnNDII78-18ROT4V. Correlation footprint refers to the score presented in the Figure 16O. 
Values next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 
100

th
 percentiles of the correlation distribution. 

 

 

Figure A4 16 Spatial representation of forest potential drought response identified by the 

4COVnNDII78-18ROT4P. Correlation footprint refers to the score presented in the Figure 16P. 
Values next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 
100th percentiles of the correlation distribution. 
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APPENDIX 5 

A.5. The within-subjects effect test or repeated ANOVA  

 

Table A5 1 The within-subjects effects test of repeated measures ANOVA performed for class 6 

of the 1CORNDII78-18 PC spatial representation. Test run with the Hujnh-Feldt adjustment 
returning results for the factor of time within selected phenology and productivity indicators. 

 time  Error 

 df F p  df 

CF 9.098 17.596 0.000  21298.408 

GPP 9.090 5.424 0.000  21279.372 

SBD 8.642 4.166 0.000  20230.441 

SL 9.022 3.238 0.001  21119.430 

NDVIHS 9.506 25.226 0.000  22254.618 

NDII7HS 11.447 50.952 0.000  2341.000 

      
 

Table A5 2 The within-subjects effects test of repeated measures ANOVA performed for class 6 

of the 4COVnNDII78-18 PC spatial representation. Test run with the Hujnh-Feldt adjustment 
returning results for the factor of time within selected phenology and productivity indicators. 

 time  Error 

 df F p  df 

CF 10.000 13.859 0.000  6340.000 

GPP 10.000 5.080 0.000  6340.000 

SBD 10.000 3.895 0.000  6340.000 

SL 10.000 3.218 0.000  6340.000 

NDVIHS 10.587 53.721 0.000  6711.859 

NDII7HS 12.000 95.769 0.000  7608.000 

      
 

Table A5 3 The within-subjects effects test of repeated measures ANOVA performed for class 6 

of the 3COVnNDVI8-18 PC spatial representation. Test run with the Hujnh-Feldt adjustment 
returning results for the factor of time within selected phenology and productivity indicators. 

 time  Error 

 df F p  df 

CF 9.821 4.124 0.000  11225.627 

GPP 9.891 0.604 0.810  11305.458 

SBD 9.205 0.523 0.862  10521.605 

SL 10.000 1.846 0.048  11430.000 

NDVIHS 10.465 32.421 0.000  11961.012 

NDII7HS 11.662 6.420 0.000  13469.839 
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Table A5 4 The within-subjects effects test of repeated measures ANOVA performed for class 1 

of the 3COVnNDVI8-18 PC spatial representation. Test run with the Hujnh-Feldt adjustment 
returning results for the factor of time within selected phenology and productivity indicators. 

 time  Error 

 df F p  df 

CF 8.486 38.342 0.000  9309.011 

GPP 9.695 23.771 0.000  10635.826 

SBD 8.335 15.525 0.000  9143.595 

SL 9.252 14.318 0.000  10149.226 

NDVIHS 10.615 92.926 0.000  11644.694 

NDII7HS 10.700 80.944 0.000  12165.411 
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APPENDIX 6 

A.6. Estimated marginal means plots of repeated ANOVA preformed for 
MODIS derived drought impact patterns 

 

 
Figure A6 1 Marginal means plots of repeated ANOVA derived for (in rows) CF, GPP, SBD, 

SL, NDVIHS and NDII7HS analyzed within the 1CORNDII78-18 drought impact class 6. Values 
are presented within four multilevel-factors (in columns) of forest type, aspect, elevation and 
slope. Profiles plotted in dashed line are based on less than 50 observations.  
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Figure A6 2 Marginal means plots of repeated ANOVA derived for (in rows) CF, GPP, SBD, 

SL, NDVIHS and NDII7HS analyzed within the 4COVnNDII78-18 response class 6. Values are 
presented within four multilevel-factors (in columns) of forest type, aspect, elevation and slope. 
Profiles plotted in dashed line are based on less than 50 observations.   
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Figure A6 3 Marginal means plots of repeated ANOVA derived for (in rows) CF, GPP, SBD, 

SL, NDVIHS and NDII7HS analyzed within the 3COVnNDVI8-18 response class 6. Values are 
presented within four multilevel-factors (in columns) of forest type, aspect, elevation and slope. 

Profiles plotted in dashed line are based on less than 50 observations. 
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Figure A6 4 Marginal means plots of repeated ANOVA derived for (in rows) CF, GPP, SBD, 

SL, NDVIHS and NDII7HS analyzed within the 3COVnNDVI8-18 response class 1. Values are 
presented within four multilevel-factors (in columns) of forest type, aspect, elevation and slope. 
Profiles plotted in dashed line are based on less than 50 observations. 
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APPENDIX 7 

A.7. PCA analyses of Landsat derived LNDVI and LNBRI time series – 
identification of drought related temporal patterns 

A.7.1. Correlation-matrix based PCA of LNDVI 2001-2011 time series 

 
Figure A7 1 First four PCs resulting from the S-mode correlation-matrix based PCA 

decomposition of the LNDVI time series. 

 

Table A7 1 Total variability explained by first four PCs resulting from the S-mode 

correlation-matrix based PCA decomposition of the LNDVI time series. 

A.7.2. Correlation-matrix based PCA of LNBRI 2001-2011 time series 

 
Figure A7 2 First four PCs resulting from the S-mode correlation-matrix based PCA 

decomposition of the LNBRI time series. 

 

Table A7 2 First four PCs resulting from the S-mode correlation-matrix based PCA 

decomposition of the LNBRI time series. 

 

 

 

  

PC Explained variability 

1CORLNDVI 16.43% 

2CORLNDVI 14.81% 

3CORLNDVI 12.85% 

4CORLNDVI 10.74% 

PC Explained variability 

1CORLNBRI 14.80% 

2CORLNBRI 13.55% 

3CORLNBRI 11.45% 

4CORLNBRI 10.70% 
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APPENDIX 8 

A.8. Spatial representations of Landsat derived drought impact patterns 

 

 

Figure A8 1 Spatial representation of forest potential drought response identified by the 

1CORLNDVI PC. Correlation footprint refers to the score presented in the Figure 23A. Values 
next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th 
percentiles of the correlation distribution. 

 

 
Figure A8 2 Spatial representation of forest potential drought response identified by the 

2CORLNDVI PC. Correlation footprint refers to the score presented in the Figure 23B. Values 

next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th 
percentiles of the correlation distribution. 
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Figure A8 3 Spatial representation of forest potential drought response identified by the 

1CORLNBRI PC. Correlation footprint refers to the score presented in the Figure 23C. Values 
next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th 
percentiles of the correlation distribution. 

 

 
Figure A8 4 Spatial representation of forest potential drought response identified by the 

2CORLNBRI PC. Correlation footprint refers to the score presented in the Figure 23D. Values 
next to the color ramp represents in the increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th 
percentiles of the correlation distribution. 
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APPENDIX 9 

A.9. Synthetic MODIS-like spatial representations of Landsat derived drought 
impact patterns  

 

 
Figure A9 1 Spatial representation of forest potential drought response identified by the 

1CORLNDVI PC and represented as synthetic MODIS-like maps. Correlation footprint refers 
to the score presented in the Figure 23A. Values next to the color ramp represents in the 
increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th percentiles of the correlation distribution. 

 

 
Figure A9 2 Spatial representation of forest potential drought response identified by the 

2CORLNDVI PC and represented as synthetic MODIS-like maps. Correlation footprint refers 

to the score presented in the Figure 23B. Values next to the color ramp represents in the 
increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th percentiles of the correlation distribution. 
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Figure A9 3 Spatial representation of forest potential drought response identified by the 

1CORLNBRI PC and represented as synthetic MODIS-like maps. Correlation footprint refers 
to the score presented in the Figure 23C. Values next to the color ramp represents in the 
increasing order 0

th
, 5

th
, 30

th
, 50

th
, 70

th
 95

th
 and 100

th
 percentiles of the correlation distribution. 

 

 
Figure A9 4 Spatial representation of forest potential drought response identified by the 

2CORLNBRI PC and represented as synthetic MODIS-like maps. Correlation footprint refers 
to the score presented in the Figure 23D. Values next to the color ramp represents in the 
increasing order 0th, 5th, 30th, 50th, 70th 95th and 100th percentiles of the correlation distribution. 
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APPENDIX 10 

A.10. The within-subjects effect test or repeated ANOVA  

 

Table A10 1 The within-subjects effects test of repeated measures ANOVA performed for the 

class 6 of the 1CORL250NDVI spatial representation. Test run with the Hujnh-Feldt adjustment 
returning results for the factor of time within selected phenology and productivity indicators. 

 time  Error 

 df F p  df 

CF 9.218 1168.83
9 

0.000  194535.862 

GPP 9.447 417.107 0.000  195807.460 

SBD 9.348 424.326 0.000  193758.122 

SL 9.572 363.261 0.000  198408.155 

NDVIHS 10.354 3961.42

3 

0.000  214610.770 

NDII7HS 11.474 5431.58 0.000  241654.896 

       

Table A10 2 The within-subjects effects test of repeated measures ANOVA performed for the 

class 6 of the 2CORL250NDVI spatial representation. Test run with the Hujnh-Feldt adjustment 
returning results for the factor of time within selected phenology and productivity indicators. 

 time  Error 

 df F p  df 

CF 9.109 104.587 0.000  192236.359 

GPP 9.433 447.711 0.000  199085.480 

SBD 9.346 425.088 0.000  197254.942 

SL 9.566 383.409 0.000  201896.726 

NDVIHS 10.105 3814.02
2 

0.000  213276.115 

NDII7HS 11.45 5201.05

9 

0.000  241206.303 

      
 

Table A10 3 The within-subjects effects test of repeated measures ANOVA performed for the 

class 6 of the 1CORL250NBRI spatial representation. Test run with the Hujnh-Feldt adjustment 
returning results for the factor of time within selected phenology and productivity indicators. 

 time  Error 

 df F p  df 

CF 10.000 8.949 0.000  9350.000 

GPP 10.000 6.362 0.000  9350.000 

SBD 9.796 3.572 0.000  9159.112 

SL 10.000 3.916 0.000  9350.000 

NDVIHS 11.396 32.373 0.000  10655.456 

NDII7HS 12.000 50.161 0.000  11100.000 
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Table A10 4 The within-subjects effects test of repeated measures ANOVA performed for the 

class 6 of the 2CORL250NBRI spatial representation. Test run with the Hujnh-Feldt adjustment 
returning results for the factor of time within selected phenology and productivity indicators. 

 time  Error 

 df F p  df 

CF 9.236 1239.764 0.000  194718.746 

GPP 9.448 417.819 0.000  199173.184 

SBD 9.353 407.660 0.000  197178.703 

SL 9.573 358.874 0.000  201815.692 

NDVIHS 10.352 3975.383 0.000  218238.871 

NDII7HS 11.494 5389.982 0.000  239720.170 
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APPENDIX 11 

A.11. Estimated marginal means plots of repeated ANOVA preformed for 
synthetic MODIS-like Landsat derived drought impact patterns 

 

 
Figure A11 1 Marginal means plots of repeated ANOVA derived for (in rows) CF, GPP, SBD, 

SL, NDVIHS and NDII7HS analyzed within the 1CORL250NDVI response class 6. Values are 

presented within four multilevel-factors (in columns) of forest type, aspect, elevation and slope. 
Profiles plotted in dashed line are based on less than 50 observations. 
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Figure A11 2 Marginal means plots of repeated ANOVA derived for (in rows) CF, GPP, SBD, 

SL, NDVIHS and NDII7HS analyzed within the 2CORL250NDVI response class 6. Values are 
presented within four multilevel-factors (in columns) of forest type, aspect, elevation and slope. 
Profiles plotted in dashed line are based on less than 50 observations. 
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Figure A11 3 Marginal means plots of repeated ANOVA derived for (in rows) CF, GPP, SBD, 

SL, NDVIHS and NDII7HS analyzed within the 1CORL250NBRI response class 6. Values are 
presented within four multilevel-factors (in columns) of forest type, aspect, elevation and slope. 
Profiles plotted in dashed line are based on less than 50 observations. 
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Figure A11 4 Marginal means plots of repeated ANOVA derived for (in rows) CF, GPP, SBD, 

SL, NDVIHS and NDII7HS analyzed within the 2CORL250NBRI response class 6. Values are 
presented within four multilevel-factors (in columns) of forest type, aspect, elevation and slope. 
Profiles plotted in dashed line are based on less than 50 observations. 
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asl – above sea level 

ANOVA – Analysis of Variance 

AVHRR – Advanced Very High Resolution Radiometer 

CF – Cyclic Fraction 

CFA - Common Factor Analysis 

CLC2006 – CORINE Land Cover 2006  

CMI – Crop Moisture Index 

CORINE – Coordinate Information on the Environment 

CV-MVC – Constrained View angle – Maximum Value Composite 

CZCS – Coastal Zone Color Scanner 

DEM – Digital Elevation Model 

DOY – Day Of the Year 

ENVI - Environment for Visualizing Images 

EOF – Empirical Orthogonal Function 

EOS – Earth Observing System 

EVI – Enhanced Vegetation Index 

ETM – Enhanced Thematic Mapper 

ETM+ – Enhanced Thematic Mapper Plus 

EU – European Union 

FAPAR – Fraction of Absorbed Photosynthetically Active Radiation 

FP7 – The Seventh Framework Programme 

GPP – Gross Primary Productivity 

HDF – Hierarchical Data Format 

HIRS – High-resolution Infrared Sounder 

ICA - Independent Components Analysis 

IDL – Interactive Data Language 

iMAD – Iteratively Reweighted Multivariate Alteration Detection 

ISIN – Integrated Sinusoidal 

LAEA - Lambert Azimuthal Equal-Area 

LAI – Leaf Area Index 

Landsat – Land Remote Sensing Satellite 

LEDAPS – Landsat Ecosystem Disturbance Adaptive Processing System 

LDCM – Landsat Data Continuity Mission 

LNBRI - 2001-2011 time series of Landsat NBRI yearly composites 

LNDVI – 2001-2011 time series of Landsat NDVI yearly composites 

LST – Land Surface Temperature 

LSWI – Land Surface Water Index 

MBD – Minimum Begin Day 
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MED – Minimum End Day 

MIDI – Microwave Integrated Drought Index 

MIR – Mid-Infrared 

MOD13Q1 – MODIS-Terra 16-day Vegetation Index product of 250 m resolution  

MODIS – Moderate-Resolution Imaging Spectroradiometer 

MRT – MODIS Reprojection Tool 

MSS – Multi-Spectral Scanner 

MV – Maximum Value 

NBR – Normalized Burn Ratio 

NBRI – Normalized Burn Ratio Index 

NDII – Normalized Difference Infrared Index  

NDII6 – Normalized Difference Infrared Index derived using MODIS band 6 

NDII7 – Normalized Difference Infrared Index derived using MODIS band 7 

NDII7HS – 2001-2013 MODIS high-season (14th-17th) NDII7 mean time series 

NDMI - Normalized Difference Moisture Index 

NDVI – Normalized Difference Vegetation Index 

NDVI1-23 – Complete 2001-2013 MODIS NDVI time series 

NDVI8-18 – Vegetation season 2001-2013 MODIS NDVI time series 

NDVIHS – 2001-2013 MODIS high-season (14th-17th) NDVI mean time series 

NDVISG1-23 – Complete 2001-2013 MODIS NDVI time series after Savitzky-Golay 
filtering 

NDVISG8-18 – Vegetation season 2001-2013 MODIS NDVI time series after Savitzky-
Golay filtering 

NDWI – Normalized Difference Water Index 

NDWI5 – Normalized Difference Water Index derived using MODIS band 5 

NDWI6 – Normalized Difference Water Index derived using MODIS band 6  

NDWI1640 – Normalized Difference Water Index derived using MODIS band 6 

NIR – Near-infrared 

nNDII714-17 – z-score normalized high-season season 2001-2013 MODIS NDII7 time   

series 

nNDII78-18 – z-score normalized vegetation season 2001-2013 MODIS NDII7 time series 

nNDVI1-23 – z-score normalized 2001-2013 MODIS NDVI time series 

nNDVI14-17 – z-score normalized high-season 2001-2013 MODIS NDVI time series 

nNDVI8-18 – z-score normalized vegetation season 2001-2013 MODIS NDVI time series 

nNDVISG1-23 – z-score normalized 2001-2013 MODIS NDVI time series after 
Savitzky-Golay filtering 

nNDVISG8-18 – z-score normalized vegetation season 2001-2013 MODIS NDVI time 

series after Savitzky-Golay filtering 

OLI – Operational Land Imager 
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PAN - Panchromatic 

PC – Principal Component 

PCA – Principal component Analysis 

PDSI – Palmer Drought Severity Index 

PSF – Point Spread Function 

QA – Quality Assessment/Assurance 

SBD – Season Begin Day 

scPDSI – self-calibrated Palmer Drought Severity Index 

Sea-WIFS – Sea-Viewing Wide Field-of-View Sensor 

SED – Season End Day 

SG – Savitzky-Golay filter 

SI – Seasonal Integral 

SL – Season Length 

SLC - Scan-Line Corrector 

SPEI – Standardized Precipitation-Evapotranspiration Index 

SPI – Standardized Precipitation Index 

Suomi NPP - Suomi National Polar-orbiting Partnership 

SVD - Signal Value Decomposition 

SWI – Soil Water Index 

SWIR – Short-wavelength Infrared 

SWSI – Surface Water Supply Index 

TM – Thematic Mapper 

USGS – United States Geological Survey 

UTM – Universal Transverse Mercator 

VegDRI – Vegetation Drought Response Index  

VIIRS - Visible Infrared Imaging Radiometer Suite 

WRS-2 – World Reference System 2 

YA – Year Ago 
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