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Abstract

In a railway vehicle system information about the applied forces in the wheel-rail contact
area is important as these forces have significant influences on running safety, track loading
and ride characteristics. In this work a new method for the inverse estimation of lateral
and vertical wheel-rail contact forces is presented.
Different methods and approaches of inverse input estimation are chosen and applied to

a simple model of a two-mass system. After comparison and discussion of the different
results a method based on a linear Kalman filter is selected to identify wheel-rail contact
forces for a railway vehicle system.
The multibody simulation of a railway vehicle with all its complexity represents the

starting point of the main task of this work and is performed by the software package
SIMPACK. With generated measurement data an estimation of unknown input forces can
be achieved by extension of the system with a form filter.
Comparisons of the obtained results with a SIMPACK simulation in time domain and

frequency domain show high correlation of the estimated and simulated forces, especially
in vertical direction.
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Kurzfassung

Die genaue Messung von Kräften im Rad-Schiene-Kontakt, welche einen signifikanten Ein-
fluss auf die Fahrstabilität, die Sicherheit sowie den Fahrkomfort von Schienenfahrzeugen
haben, ist mit einem großen Zeit- und Kostenaufwand verbunden. Diese Arbeit liefert
eine Berechnungsmethode zur Abschätzung der auftretenden Kräfte in lateraler und ver-
tikaler Richtung anhand einfach zu bestimmender Beschleunigungsdaten. Da man in der
Mehrkörpersimulation für gewöhnlich die Anregungskräfte kennt, stellt dies ein inverses
Problem dar, das in berechnungstechnischer Hinsicht zusätzliche Herausforderungen mit
sich bringt.
Mithilfe der Simulationssoftware SIMPACK werden im Zuge einer Mehrkörpersimula-

tion Beschleunigungsdaten erstellt. In MATLAB wird nachfolgend die Berechnung der
auftretenden Rad-Schiene-Kräfte durch Erweiterung des Systems mit einem Formfilter und
anschließender Zustandsschätzung eines Kalman-Filters durchgeführt.
Die erhaltenen Ergebnisse werden schließlich mit den generierten Messdaten verglichen

und weisen gute Übereinstimmung auf. Vor allem in vertikaler Richtung ist die Abweichung
der invers ermittelten Kräfte von den simulierten Kräften gering.
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1 Introduction

In railway vehicle dynamics, the compound wheel-rail system has to fulfill several funda-
mental functions, such as carrying, guiding and power transmission. Thus, forces occurring
in the wheel-rail contact areas have main influences on running safety, track loading and
ride characteristics of the vehicle. Furthermore, the durability of the vehicle depends on
wheel-rail contact forces. Therefore the knowledge of these forces is essential.
Currently, wheel-rail contact forces are determined based on data from instrumented

wheelsets or track-side measurement devices. The contact forces are computed from the
measured strains as e.g. can be seen in [25]. Wheelsets containing measurement equipment
are custom-made and track-side measurement points have to be installed at many locations
on the track in order to obtain useful results. However, these methods are expensive.
Moreover, it is practically impossible to install instrumented wheelsets during the long
lasting regular operation of a train. Therefore, a great demand of alternative approaches
exists. At present various methods based on the inverse problem of using acceleration data
in order to determine unknown wheel-rail contact forces are proposed. In this work, an
approach with use of a linear Kalman filter for state estimation based on given acceleration
data is introduced.
At the beginning of this thesis the basic theories of system dynamics and signal processing

are reviewed. The linear systems theory is described in detail, since the method will be
applied on a linearized model of a railway vehicle system. In addition the characteristics
of signals and some analyzing methods are presented.
This is followed by a description of inverse problems where four methods for the inverse

identification of unknown input are presented. For better understanding the here regarded
approaches are applied to a simple model of a one-dimensional two-mass system. It is
shown that the unknown excitation can be estimated with knowledge about the system
characteristics and acceleration data through application of the presented methods. The
method with best estimation results is then selected for the identification of unknown input
forces of a railway vehicle system.
The mechanical concepts of multibody simulation with application to railway vehicles are

introduced before the inverse problem solving task for the railway vehicle system can be
discussed. Random track irregularities have main influences on the excitation of a railway
vehicle system and lead to unknown input forces. Therefore a brief introduction about the
characteristics of these irregularities is given.
A main problem in terms of modeling of a railway vehicle is given by the wheel-rail

contact, since the input forces are transmitted through the contact patches. Thus, sev-
eral approaches for the mathematical description of the wheel-rail contact geometry are
presented leading to modeling approaches for the contact forces.
After the complex system of a railway vehicle system is characterized and the mechanical

model can be described, the main part of this work is given. First, the inverse force iden-
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1 Introduction

tification problem of a railway vehicle system based on a SIMPACK simulation [30] has to
be formulated properly. In this case the identification of unknown wheel-rail contact forces
on basis of acceleration measurements with assumption that the system characteristics are
known is the task to be accomplished. Therefore the SIMPACK model is linearized before
the system characteristics are used in order to be implemented in the estimation process.
The system also has to be extended by a special filter element to obtain more accurate
estimation results. On the basis of spectral characteristics of assumed random track ir-
regularities a description of the filter can be given. After that, estimates of the wheel-rail
contact forces with application of a Kalman filter are calculated from acceleration data.
With the presented identification method forces in lateral and vertical direction acting on
the single wheels of the vehicle can be estimated.
Finally the obtained results are compared and discussed with use of different analyses

and measures. The identification method is developed in order to analyze measured accel-
erations of a train. When testing the technique, not only acceleration data is needed but
also contact force data for comparison with the estimated results. In the present work,
a SIMPACK model is used to generate this data. Since the results are promising, the
application of the presented method to a multibody simulation model of a railway vehicle
system can be regarded as a suitable approach to solve the given inverse problem.

9



2 Linear systems and signals

The multi-body simulation of a railway vehicle system requires some basic knowledge
about the theory of systems and signals. This chapter gives a brief introduction in the
characterization of systems, followed by a review of the probability theory which is essential
for the work with signals. A further distinction in terms of signal description in time and
frequency domain is made and finally some basics and methods of filtering are presented.

2.1 Linear systems theory

A mathematical description of a process, or a physical system, is needed in order to control
the process or to obtain informations about it. The definitions and mathematical models
of systems introduced here can be found in [18], [26] and [29]. Figure 2.1 illustrates the
definition of a system in a block diagram: a dynamical system transforms an input signal
u(t) into the output signal y(t).

Figure 2.1: Block diagram of a dynamical system [18]

The modeling task begins with a characterization of the system or the process. Therefore
some basic characteristics are presented next.

2.1.1 Causality, linearity and time invariance

The term of causality has to be introduced while describing systems. A system is causal
if the output at time t is a response because of an input at time t̄ ≤ t. Causality has to be
fulfilled for correct modeling and specification of systems at any time t. The definition for
the causality with two inputs u1(t) and u2(t), that are equal until t = T , is given by:

u1(t) = u2(t) 7→ y1(t) = y2(t) for 0 ≤ t ≤ T (2.1)

where the arrow “ 7→” denotes that the system transforms the input u(t) into the output
y(t). This means that the outputs y1 and y2 only differ if t > T and the system can be
regarded as causal for 0 ≤ t ≤ T . [18]
If the output is proportional to the input the behavior of the system is linear. Linearity

10



2.1 Linear systems theory

is defined with two principles: additivity1 (or superposition principle) and homogeneity2.
That means a system is linear if:

u1(t) 7→ y1(t) and u2(t) 7→ y2(t) (2.2)

u(t) = au1(t) + bu2(t) 7→ y(t) = ay1(t) + by2(t) . (2.3)

However, most real processes are nonlinear. Anyhow, since the mathematical tools for
description, estimation and control are more accessible for linear systems, nonlinear systems
are approximated as linear commonly.
Time invariance is another important property of a system and can be assumed if the

response of the system to a given input is not changing by variation of time. That implies
that the only change in the response is a time shift, which has to be equal to the input
time shift τ .

u1(t) = u2(t− τ) 7→ y1(t) = y2(t− τ) for τ > 0 (2.4)

Many time-variant systems can be regarded as time-invariant if a deviation of parameters
can be neglected or is to slow to influence the system in the regarded period.

2.1.2 State-space representation

The transformation of the input u(t) into the output y(t) can be described by differential
equations. Regarding a linear and time-invariant (LTI) system, shown in Figure 2.2, the
corresponding mathematical model is a linear differential equation of n-th order containing
the physical characteristics of the system.

Figure 2.2: LTI system

An equivalent description is the so-called state-space representation of a system. This
model consists of n differential equations of first-order and is very popular for control
applications. Therefore the differential equation of n-th-order has to be transformed by
introducing the state vector x, which is n-dimensional in general.
A continuous, linear and time-invariant system can be represented by a state equation,

given by equation (2.5), and an output equation , given by equation (2.6), as follows:

ẋ = Ax+ Bu (2.5)

y = Cx+ Du (2.6)

where x is the state vector with its time derivative ẋ. The m inputs of the system are
collected in the input vector u as well as the output vector y contains of all l outputs.

1Additivity: f(a+ b) = f(a) + f(b)
2Homogeneity: λg(a) = g(λa), for all λ

11



2.1 Linear systems theory

The (n×n) - matrix A is called the system matrix and accordingly B is the input matrix
with dimension (n × m) and C is the output matrix with dimension (l × n). The so-
called feedthrough matrix D has a dimension of (l × m) and often is zero if there is no
direct feedthrough in the system. The system matrices A,B,C and D are constant in the
time-invariant case.
Figure 2.3 shows a block diagram of the state-space model from equations (2.5) and

(2.6). The diagram consists of an integration block where x0 represents the initial state
x0 = x(t = 0). It follows that for a given initial state a solution for the output y can be
derived for every time t ≥ 0 assuming that the present and future input u is given.

Figure 2.3: Block diagram of the state-space model [18]

2.1.3 Discretization

Since state estimation and control algorithms are usually implemented in digital electronics
a discretization of the system has to be performed. Instead of a continuous signal, which
is uninterrupted, a discrete signal is a time series consisting of a sequence of values. A
discrete form xk of a continuous signal x(t), as a sine function i.e., can be obtained by
sampling with a sampling step size ∆t.

x(t) = sin(ωt+ ϕ) (2.7)

xk = sin(ωtk + ϕ) = sin(ωk∆t+ ϕ) (2.8)

The continuous sine function of equation (2.7), with the frequency ω and the phase ϕ , is a
function of t and exists for all values of the independent variable t, whereas the associated
discrete function, given by equation (2.8), only exists for the discrete time tk = k∆t with
k ∈ {0, 1, 2, . . . }.
The discretization of signals can implicate unwanted effects as time or phase shifts, that

have to be avoided or taken into account. Another effect is the effect of periodicity, which

12



2.1 Linear systems theory

implies a loss of the original period T0 of a signal, if a periodic signal3 is sampled with a
noninteger sampling interval T0/∆t.
If the sample rate is chosen to low the effect of aliasing can occur. Figure 2.4 shows a

signal sampled with different intervals ∆t and illustrates the aliasing effect as a consequence
of undersampling. As a result the period T1 is higher than the original period T0 according
to the aliased frequency in this example.

0 2 4 6 8 10

−1.5

−1

−0.5

0

0.5

1

1.5

 

Figure 2.4: Aliasing effect

To avoid wrong reconstructions of a signal because of discrete values the sampling fre-
quency fs should be at least more than twice the highest frequency fmax of a signal.
Therefore a sampling theorem including the so-called Nyquist frequency fN has been in-
troduced:

fs =
1

∆t
> fN =

2

T0
= 2fmax . (2.9)

That means the Nyquist frequency fN is the highest frequency for which a reconstruction
of the original signal is possible. In technical applications analog anti-aliasing filters are
often implemented before digitization to remove frequency components that are higher
than twice the sampling frequency.
Considering the discretization of systems not only single signals have to be sampled also

the state-space model of the system has to be discretized. The discrete form of the linear
state-space model from equation (2.5) and (2.6) is the following:

xk+1 = Adxk + Bduk (2.10)

yk = Cdxk + Dduk . (2.11)

3Definition from [26]: “A periodic signal is a repetitive sequence of values with a well-defined timescale
or period T = p ·∆t, so that xk = xk+p.“
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2.1 Linear systems theory

The matrix index d denotes that the discrete-time system matrices are not equal to the
corresponding matrices of the continuous-time system. This requires a transformation with
the discretization step size ∆t, which is derived from the solution of the continuous state
equation (2.5). If A is invertible the discretization can be derived according to [29] by the
following:

Ad = eA∆t, Bd = Ad[I− e−A∆t]A−1B . (2.12)

The dicretized output matrices Cd and Dd are equal to their continuous forms C and D.

2.1.4 Stability

A dynamical system is also characterized by its stability. In general, system stability im-
plies the transformation of a bounded input into a bounded output signal (BIBO stability).
If only the internal condition of a system is considered, the two types marginal stability

(or Lyapunov stability) and asymptotic stability can be given as they are defined in [29]:

“Definition 1: A linear continuous-time, time-invariant system is marginally stable if
the state x(t) is bounded for all t and for all bounded initial states x0 = x(t = 0).”

“Definition 2: A linear continuous-time, time-invariant system is asymptotically stable
if, for all bounded initial states x0,

lim
t→∞

x(t) = 0 .” (2.13)

It can been seen from Definition 1 and Definition 2 that a system is marginally stable if
it is asymptotically stable. The two definitions are types of the so-called internal stability
since they only deal with the state of a system without considering any output.
A linear, continuous-time system without any input is described by the following state-

space model:

ẋ = Ax (2.14)

y = Cx . (2.15)

The solution of equation (2.14) is given by:

x(t) = eAtx0 (2.16)

and is leading to two stability theorems from [29]:

“Theorem 1: A linear continuous-time, time-invariant system is marginally stable if and
only if

lim
t→∞

eAt ≤M <∞ (2.17)

for some constant matrix M. This is just a way of saying that the matrix exponential
does not increase without bound.” 4

4The left term in equation (2.17) is also a matrix what means that the less than or equal to - relation can
be interpreted either as (M− lim

t→∞
eAt) has to be a positive semidefinite matrix or that every element

14



2.1 Linear systems theory

“Theorem 2: A linear continuous-time, time-invariant system is asymptotically stable if
and only if

lim
t→∞

eAt = 0 .” (2.18)

Introducing the Jordan form5 Â of the matrix A two other theorems can be found in
[29] relating the boundedness of eAt with the eigenvalues of A:

“Theorem 3: A linear continuous-time, time-invariant system is marginally stable if and
only if one of the following conditions holds.

1. All of the eigenvalues of A have negative real parts.

2. All of the eigenvalues of A have negative or zero real parts, and those with real
parts equal to zero have a geometric multiplicity equal to their algebraic
multiplicity. That is, the Jordan blocks that are associated with the eigenvalues
that have real parts equal to zero are first order.”

“Theorem 4: A linear continuous-time, time-invariant system is asymptotically stable if
and only if all of the eigenvalues of A have negative real parts.”

In same manner the internal stability for a discrete system can be defined. Consider
a linear, discrete-time system without any input. The state-space model is given by the
following:

xk+1 = Adxk (2.19)

yk = Cdxk . (2.20)

The stability definitions for discrete-time system found in [29] are analogous to the con-
tinuous case:

“Definition 3: A linear discrete-time, time-invariant system is marginally stable if the
state xk is bounded for all k and for all bounded initial states x0.”

“Definition 4: A linear discrete-time, time-invariant system is asymptotically stable if,
for all bounded initial states x0,

lim
k→∞

xk = 0 .” (2.21)

Analogously to the continuous derivation from above the solution of the discrete-time
state equation (2.19) can be found:

xk = Ad
kx0 . (2.22)

Now, the following theorems about marginal and asymptotic stability from [29] can be
stated for discrete-time systems:

of lim
t→∞

eAt is less than or equal to the corresponding elements of M. The given theorem holds for both
interpretations.

5The Jordan form Â can be defined with eAt = QeÂtQ−1, where the columns of Q contains the eigen-
vectors of A to the corresponding eigenvalues λi. The Jordan matrix consists of diagonal entries called
Jordan blocks. The number of Jordan blocks depends on the geometric multiplicity of the relating
eigenvalue.

15



2.1 Linear systems theory

“Theorem 5: A linear discrete-time, time-invariant system is marginally stable if and
only if

lim
k→∞

Ad
k ≤M <∞ (2.23)

for some constant matrix M. This is just a way of saying that the matrix exponential
does not increase without bound.”

“Theorem 6: A linear discrete-time, time-invariant system is asymptotically stable if
and only if

lim
k→∞

Ad
k = 0 .” (2.24)

“Theorem 7: A linear discrete-time, time-invariant system is marginally stable if and
only if one of the following conditions holds.

1. All of the eigenvalues of Ad have magnitude less than or equal to one.

2. All of the eigenvalues of Ad have magnitude less than one or equal to one, and
those with magnitude equal to one have a geometric multiplicity equal to their
algebraic multiplicity. That is, the Jordan blocks that are associated with the
eigenvalues that have magnitude equal to one are first order.”

“Theorem 8: A linear discrete-time, time-invariant system is asymptotically stable if
and only if all of the eigenvalues of Ad have magnitude less than one.”

The above definitions and theorems only consider zero-input systems. According to [18]
the stability of systems with inputs is defined as the following:

A linear system is BIBO stable if for the initial condition x0 = 0 and for any bounded
input |u(t)| < umax for all t > 0 the output stays bounded (|y(t)| < ymax) for all t > 0.

Moreover, a system is also BIBO stable if it is asymptotic stable. Finally, LTI systems can
be characterized in terms of stability as described above, which is elementary for further
investigations.

2.1.5 Controllability and Observability

For the design process of control algorithms the concepts of controllability and observability
are essential. If a signal has to be controlled it is necessary to know how well the system
and its states are controllable, that means how well a system can be driven at a desired
state. The possibility of observation of the initial conditions or states after measurements
can be described by the observability instead.
The characteristics of controllability and observability are closely related to the stabiliz-

ability and the detectability of a system. These two concepts are slightly weaker in their
definitions, what implies that the states of a system can be stabilizable even if they are
not controllable and detectable if they are not observable respectively.

2.1.6 Invertibility

Another characteristic of a system is its invertibility, which is given if there exists any
transformation yielding the input from the output. The inverse problem is a task where
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2.2 Probability theory

the output is known and an unknown input has to be detected. More about the theory of
inverse identification is presented later in this work since an inverse estimation method is
applied to a railway vehicle system.

2.2 Probability theory

Since some identification methods described within this work deal with random or stochas-
tic processes the fundamentals of probability theory are introduced in this section. First,
basic concepts of probability and random variables are discussed. This is followed by a
review of the concept of stochastic processes. The given definitions can be found in [19]
and [29].

2.2.1 Probability and random variables

The concepts of probability base on random experiments with possible outcomes or events.
The probability P (A) describes the number of times event A occurs compared to the total
number of outcomes Ω. That means that P (A) is greater than or equal to zero for any
event A ∈ Ω and P (Ω) is equal to one. Also the condition P (A ∪ B) = P (A) + P (B) is
satisfied for any events A,B ∈ Ω if A ∩B = 0. 6

Considering an event A occurs given the fact that an event B occurred is leading to the
concept of conditional probability. The mathematical definition is:

P (A|B) =
P (A,B)

P (B)
(2.25)

assuming that P (B) > 0. P (A,B) is the so-called joint probability of A and B. From
equation (2.25) it follows that:

P (A,B) = P (A|B)P (B) or P (B,A) = P (B|A)P (A) . (2.26)

Equating the two expressions from above is leading to the well-known Bayes’ Rule:

P (A|B)P (B) = P (B|A)P (A)

P (A|B) =
P (B|A)P (A)

P (B)
.

(2.27)

Two events A and B can either be dependent or independent if the occurrence of one
effects on the probability of the occurrence of the other. The mathematical definition of
independence in concepts of probability is:

P (A,B) = P (A)P (B) . (2.28)

With equation (2.25) it can be seen that P (A|B) = P (B) if P (A) 6= 0 and vice versa
P (B|A) = P (A) if P (B) 6= 0 presuming independence of the events A and B.
A quantity whose exact value is uncertain but some statistical information is available is

6A ∩B means “both A and B” and A ∪B stands for “A or B or both”
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2.2 Probability theory

called a random variable (RV). RVs can either be continuous or discrete depending on the
set of values they can take. The outcome of an experiment never can be a RV since a RV
only is described by its probabilities and can not be equal to a specific value.
The most general way of describing the probabilities of a RV is its probability distribution

function. With a nonrandom independent variable x the probability distribution function
FX(x) of the RV X is defined as:

FX(x) = P (X ≤ x) . (2.29)

The function from equation (2.29) describes the probability of the event that the RV X

takes a value less than or equal to x and has the following properties:

FX(x) ∈ [0, 1] for −∞ < x <∞
FX(−∞) = 0

FX(∞) = 1

FX(x1) ≤ FX(x2) if x1 ≤ ×2 .

(2.30)

The derivative of FX(x) is called probability density function and is more appropriate
for many observations describing the probability distribution of a RV X.

fX(x) =
dFX(x)

dx
(2.31)

Some properties of the probability density function fX(x) are given by equation (2.32):

fX(x) ≥ 0 for −∞ < x <∞∫ ∞
−∞

fX(x)dx = 1 .
(2.32)

With both functions FX(x) and fX(x) the probability of an RV X can be expressed with
the following relation:

P (x1 < X ≤ x2) = FX(x2)− FX(x1) =

∫ x2

x1

fX(x)dx . (2.33)

Usually random processes involve more than one RV. Therefore the joint probability
distribution function FXY (x, y) and the joint probability density function fXY (x, y) are
defined for two RVs X and Y .

FXY (x, y) = P (X ≤ x, Y ≤ y) (2.34)

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
(2.35)

The average of the expected value of a RV over a large number of experiments is called
the expectation value, mean or average of the RV X. Its definition for a discrete RV X is
given by the following:

X̄ = E[X] =
1

N

m∑
i=1

Aini (2.36)
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2.2 Probability theory

where Ai is the outcome that occurs ni times of an experiment that have been run N times
with m different outcomes. For a continuous RV X the expectation E[X] is defined as:

E[X] =

∫ ∞
−∞

xfX(x)dx . (2.37)

The variability of a RV is quantified by its variance σ2
X . This measure denotes how much

the RV varies from its mean and is defined as:

σ2
X = E[(X − X̄)2]

=

∫ ∞
−∞

(x− X̄)2fX(x)dx .
(2.38)

The square root of the variance σ2
X is called the standard deviation σX .

At this point the term of moments of RVs has to be introduced. The expected value of
the i-th power of X, X = E[Xi], is called the i-th moment of X and in addition when
subtracting X̄ before taking powers the so-called central moment of X can be obtained.
Since X = E[(X−X̄)i] is the i-th central moment of X it can be seen that the first central
moment of an RV X is always zero whereas the first moment of X is its mean X̄. From
equation (2.38) it can be seen that the second central moment of a RV X is equal to its
variance σ2

X .
Recalling the definition for statistical independence in equation (2.28) two RVs are said

to be independent if the following relation is satisfied:

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) . (2.39)

The probability density function with the following form:

fX(x) =
1

σX
√

2π
e

[
−(x−x̄)2

2σ2
X

]
(2.40)

is called a Gaussian or normal distribution and shown in Figure 2.5. It can be described
by the central limit theorem that the sum of N independent RVs converges towards a
Gaussian distribution even if the individual distributions are not Gaussian. Many RVs in
nature seem to be a so-called Gaussian RV, a RV with Gaussian distribution, but in fact
are a sum of many individual and independent RVs.
To quantify the dependence of two RVs another measure is introduced here. The covari-

ance CXY of X and Y is defined as:

CXY = E[(X − X̄)(Y − Ȳ )]

= E[XY ]− X̄Ȳ
(2.41)

and is needed to estimate the so-called correlation coefficient ρXY which is a normalized
measure. In equation (2.41) the term E[XY ] is called the correlation RXY of X and Y .
The definition of the correlation coefficient ρXY is given by:

ρXY =
CXY
σXσY

. (2.42)
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2.2 Probability theory

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 2.5: Probability density function of a Gaussian RV for σX = 1

It can be shown that two RVs X and Y are independent if ρXY = 0. Independence implies
uncorrelatedness while the converse is not necessarily true.
For the derivations of the definitions from above scalar RVs are considered. When talking

about multivariate statistics RVs are assumed to be vectors. Hence, if X is an n-element
RV and Y is an m-element RV their correlation RXY and covariance CXY are given by
the following matrices:

RXY = E[XY T ]

=

E[X1Y1] . . . E[X1, Ym]
...

...
E[XnY1] . . . E[Xn, Ym]

 (2.43)

CXY = E[(X − X̄)(Y − Ȳ )T ]

= E[XY T ]− X̄Ȳ T
.

(2.44)

The correlation of a n-element RV X with itself is called autocorrelation and defined as:

RX = E[XXT ]

=

 E[X1]2 . . . E[X1, Xn]2

...
...

E[Xn, X1] . . . E[X2
n]

 .
(2.45)

In analogous manner the autocovariance CX can be introduced with equation (2.46) and
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2.2 Probability theory

finally completes the set of statistical measures of RVs needed within this work.

CX = E[(X − X̄)(X − X̄)T ]

=

 E[(X1 − X̄1)2] . . . E[(X1 − X̄1)(Xn − X̄n)]
...

...
E[(Xn − X̄n)(X1 − X̄1)] . . . E[(Xn − X̄n)2]



=

 σ
2
1 . . . σ1n
...

...
σn1 . . . σ2

n


(2.46)

2.2.2 Stochastic processes

A generalization of the concept of an RV is introduced with stochastic or random processes.
The main idea of this approach is to consider the repeat of a random experiments many
times. This leads to the definition of a stochastic process X(t) as a RV that changes
with time. Random processes are either continuous or discrete in correspondence to the
characteristics of the RVs.
As a consequence of the time dependence the probability distribution and density func-

tions also are functions of time. This leads to a further distinction of stochastic process
into non-stationary and stationary processes if all marginal and joint density functions are
changing with time or not. A special case of a stationary process is the so-called ergodic
process which describes a stochastic process where every realization has the same statis-
tical properties as the whole ensemble7. If the mean value E[X(t)] = x̄ is independent of
the choice of time t and the correlation of two RVs E[X(t1)X(t2)] only depends on the
time difference t2− t1, then the process is called wide-sense stationary. The assumption of
wide-sense stationarity is usually made in practical applications since it can be made even
if the probability density function changes with time.
Analogous to the previous section probability measures can be extended for stochastic

processes. Considering the values X(t1) and X(t2), or Y (t2), taken at time t1 and t2 as
two RVs the corresponding definitions are given as follows:

◦ autocorrelation of a stochastic process:

RX(t1, t2) = E[X(t1)X(t2)T ] . (2.47)

◦ autocovariance of a stochastic process:

CX(t1, t2) = E[
(
X(t1)− X̄(t1)

) (
X(t2)− X̄(t2)

)T
] . (2.48)

◦ cross correlation of a stochastic process:

RXY (t1, t2) = E[X(t1)Y T (t2)] . (2.49)

7An ensemble is a defined set of multiple possible realizations.
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2.2 Probability theory

◦ cross covariance of a stochastic process:

CXY (t1, t2) = E[
(
X(t1)− X̄(t1)

) (
Y (t2)− Ȳ (t2)

)T
] . (2.50)

The transformation from time to frequency domain often simplifies the analysis of linear
systems. For deterministic signals8 an important frequency domain concept is the power
spectral density which also can be extended to stochastic processes. For a wide-sense
stationary stochastic process X(t) the definition of the power spectral density SX is equal
to its definition for deterministic signals and given as the Fourier transform (see section 2.3)
of the autocorrelation:

SX(ω) = F|RX(τ)| =
∫ ∞
−∞

RX(τ)e−jωτdτ . (2.51)

Conversely the inverse Fourier transform of the power spectrum yields the autocorrelation.

RX(τ) =
1

2π

∫ ∞
−∞

SX(ω)ejωτdω (2.52)

Equations (2.51) and (2.52) are defined as the Wiener-Khinchine Theorem linking the time
domain and the frequency domain for stochastic processes. The power spectral density is
proportional to the total power PX and equal to the mean-square value of a process.
Equation (2.53) gives the definition of the total power:

PX = E[x2(t)] =
1

2π

∫ ∞
−∞

SX(ω)dω . (2.53)

Talking about power spectra of stochastic processes leads to the introduction of the term
noise. Random processes can be classified either as white noise or colored noise depending
on their power spectrum. If the power spectral density of a process is constant, i.e. RX(0),
over all frequencies the process is called white noise. The definition can then be written as

SX(ω) = const. = RX(0) . (2.54)

This means that the RV X(t1) is independent from X(t2) for all t1 6= t2. On the other
hand colored noise is given if dependency can be detected. From equation (2.52) it can be
seen that the autocorrelation function of a continuous-time white noise process becomes
the following:

RX(τ) = RX(0)δ(τ) (2.55)

where δ(τ) is the unit impulse function9. This also can be determined in the autocorrelation
of a discrete-time white noise process given in equation (2.56).

RX(k) =

{
σ2
X if k = 0

0 if k 6= 0
(2.56)

8deterministic 6= stochastic
9The function δ(τ) is defined to be zero everywhere except at τ = 0, its area is 1 while the width is 0 and
the height is ∞.
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2.3 Time domain and frequency domain analysis

The definition from above shows that there is no correlation of a white noise process with
itself except at the initial time.

2.3 Time domain and frequency domain analysis

Besides the computation of mean values and mean-square values a signal analysis in time
domain can be performed by decomposition of a signal into scaled and shifted impulses.
For system identification the so-called impulse response h(t) is introduced and defined as

the output signal generated by a linear time-invariant system when the input is an impulse.
For a given input signal u(t) the output y(t) of a stable and causal system can be estimated
as follows10:

y(t) ≡
∫ ∞
−∞

u(t)h(t− τ)dτ =

∫ ∞
−∞

u(t− τ)h(τ)dτ . (2.57)

The output signal y(t) is a so-called convolution between the input and the impulse re-
sponse. Assuming that the input is a stochastic process U(t) equation (2.57) becomes:

Y (t) =

∫ ∞
0

U(t− τ)h(τ)dτ (2.58)

with the stochastic output process Y (t). In addition the expectation or mean value of the
output Ȳ , given by equation (2.59), provides more information about the characteristics
of the output Y (t).

Ȳ = E[Y (t)] = E

[∫ ∞
0

U(t− τ)h(τ)dτ

]
(2.59)

In the same way the autocorrelation of the output as well as the cross correlation between
input and output can be expressed with the impulse response for further investigations in
time domain.
The classical conversion method from time domain into frequency domain is provided by

the Fourier transform which is defined as the following:

F (ω) = F [f(t)] =
1

2π

∫ ∞
−∞

f(t)e−jωtdt (2.60)

where a decomposition of the time history f(t) into its frequency components is performed.
The inverse relationship is given by:

f(t) = F−1[F (ω)] =

∫ ∞
−∞

F (ω)ejωtdω . (2.61)

As mentioned in the previous section, the power spectral density is a useful measure for
signal analysis in frequency domain since it indicates how the signal power of a stochastic
process is distributed over frequency. According to equation (2.51) its estimation requires
a Fourier transform of the autocorrelation of the process.

10To simplify the notation the signals are assumed to be scalars for the given derivations.
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2.4 Filtering

2.4 Filtering

For noise control and other signal processing operations dynamical systems are imple-
mented for passing or rejecting certain frequency components of a signal. These systems
are called filters and are characterized by their different forms and applications. Only a
brief introduction to a complex field in the theory of signals is given here.
Filters can be categorized in different ways as they may be linear or nonlinear, discrete-

time or continuous-time, time-invariant or time-variant and many more classifications can
be found. Categories concerning bandforms are low-pass, high-pass, band-pass and all-
pass.
A low-pass filter element is implemented if only frequency components below a cor-

responding frequency, the so-called cutoff frequency, should pass. Frequency components
above the selected cutoff frequency are attenuated or rejected depending on the polynomial
order of the filter transfer functions.
Figure 2.6a shows the bode diagram representing the amplitude and phase response of a

second-order low-pass filter with a cutoff frequency ωc = 1 Hz. The filtered result due to
the application of this filter to a high frequency signal is given by Figure 2.6b.
The so-called high-pass filter is the opposite to the low-pass filter since it attenuates fre-

quency components below the cutoff frequency. High-frequency components pass instead.
Band-pass filters are a combination of the two filters from above and only frequency

components in a particular frequency band are able to pass the filtering element. A selected
band of frequencies also can be rejected if a so-called band-stop filter is implemented. A
very narrow band-stop filter is the so-called notch filter.
Depending on the filter design the filtered signal is time and/or phase shifted. A filter

applied only for phase control is the all-pass filter. If a series of filters is implemented this
filter can be used to correct the phase shift since its magnitude response is 1 across the
spectrum.
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Figure 2.6: Second-order low-pass filter
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3 Inverse input estimation

The input estimation of a system where only output information is available is the task to
be accomplished in this work. This states a so-called inverse problem which comes along
with several difficulties as there might exist more than one solution, no appropriate existing
model or instabilities in the solutions.
First, inverse problems are characterized and some mathematical background about the

inversion of matrices, especially to handle difficulties like ill-condition or non-invertibility,
is given. For better understanding a one-dimensional two-mass system is chosen for charac-
terization, validation and comparison of the methods which are introduced in the following
sections. The implementation of a Kalman filter, a parity space approach, a regularized
least squares solution and an inverse dynamics method are presented in order to solve the
inverse problem of the unknown input estimation. In the end of this chapter the results
and differences of the given methods are discussed.

3.1 Characteristics of inverse problems

Considering a dynamical system, as shown in Figure 2.1, an engineering task can either
be a forward problem or an inverse problem. On the one hand a forward problem can be
given by a known input that is transformed by a system with known characteristics into
an unknown output, this is called a convolution. On the other hand a forward problem
can be the system design on the basis of a given input and predefined output.
The inverse problem instead is defined as a problem where the output is known and

either the system characteristics or the input is unknown. These two tasks are called
system identification and deconvolution. According to that, the inverse problem to be
solved within this work is a deconvolution since an unknown input has to be estimated for
a given system with measurement data.
The mathematical description of an inverse problem can be given for a linear system as

the following:

y = Cx forward problem (3.1)

x = C−1y inverse problem (3.2)

with the state vector x, the output vector y and the state or output matrix C.
Generally, problems can be classified referring to the characteristics of the available in-

formation. A problem is said to be underdetermined if the numbers of unknowns n exceeds
the number of measurements (equations) m. Problems are regarded as overdetermined if
m > n and even determined if m = n. This has to be taken with care since a problem
actually can be underdetermined as a result of interrelated measurements. If the amount
of available information is not the same for different unknowns an inverse problem is clas-
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3.2 Matrix inversion solutions

sified as mixed-determined, since some unknown quantities may be overdetermined and
some appear to be underdetermined.
This leads to the introduction of the terms rank deficiency and condition number of

matrices. The rank of the state matrix, rank(C), is defined as the number of linearly
independent rows or columns and represents the number of independent measurements.
The rank also can be misleading if a problem is so-called ill-conditioned as described in
[26] with the following matrices:

C1 =

[
1 0

1 1

]
, C2 =

[
1 0

1 10−6

]
, C3 =

[
1 0

1 0

]

with rank(C1) = 2, rank(C2) = 2 and rank(C3) = 1. While C1 is a regular11 square
matrix, C2 represents an ill-conditioned matrix which can be assessed by its large condition
number κC2 . The matrix C3 is a singular matrix and hence noninvertible. The definition
of the condition number κ, given in equation (3.3), is the ratio between the maximum and
minimum absolute value of the eigenvalues or singular values λ:

κ =
max|λ|
min|λ|

. (3.3)

For C1,C2 and C3 the condition numbers are κC1 = 2.6, κC2 = 2 · 106 and κC3 = ∞
characterizing the invertibility of the matrices. If the condition number is very large the
problem is ill-conditioned which results in high influences of numerical inaccuracies to the
solution.
Another characterization of inverse problems is the consistency of a system. Inconsistent

systems have data or model errors which means that there is no solution that can satisfy
all the data.

3.2 Matrix inversion solutions

Different methods for the solution of inverse problems exist. In this section some basic
concepts of matrix inversion for ill-conditioned problems which can be found in [26] are
presented.

3.2.1 Pseudoinverse of matrices

For a regular square matrix an inverse always can be found. In contrast, the inversion
of singular matrices is not possible. However, matrices with similar characteristics as an
inverse can always be constructed and since these matrices are no normal inverse they are
called pseudoinverse or generalized inverse.
Assuming that the output matrix C in equations (3.1) and (3.2) has full column rank,

that means rank(C) = n (with x = [x1, . . . , xn]T ), it is possible that no solution x satisfies
equation (3.1) exactly. The reason therefor is that a noisy output vector can easily lie

11regular 6= singular, that means invertible.
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3.2 Matrix inversion solutions

outside the range12 of C so that the dimension of the range of C (= rank(C)) is smaller
than m (with y = [y1, . . . , ym]T ). In this case C is noninvertible since n < m and the
equivalent inverse problem given in equation (3.2) can not be solved by matrix inversion.
However, an estimated solution x̂ can be obtained if a pseudoinverse C+ of C is used
instead:

x̂ = C+y . (3.4)

It can be shown that the pseudoinverse C+ is not the normal inverse of C if the products
CC+ and C+C are not equal to the identity matrix I. According to the forward problem,
given by equation (3.1), an estimated solution ŷ of the output y can be computed if the
input parameters were x̂. The solution can be obtained by replacing x̂ with equation (3.4)
as the following:

ŷ = Cx̂ = CC+y = RDy (3.5)

with the so-called data resolution matrix RD = CC+. If RD is equal to the identity
matrix I the problem can be resolved without any error between ŷ and y. Similarly, a
model resolution matrix RM = C+C can be introduced by solving the inverse problem
from equation (3.2) and replacing the measured data y with Cx:

x̂ = C+y = C+Cx = RMx . (3.6)

From equation (3.6) it can be seen that RM = I means that the estimated states x̂ are
equal to the real states x of the system.
As a result, the resolution matrices RD and RM represent a measure for the appro-

priateness of the pseudoinverse for the given problem. In the following two sections the
computation of the pseudoinverse C+ of C is presented by two different methods.

3.2.2 Least squares solution

Considering a linear system, as given in equations (3.1) and (3.2), for which an approximate
solution x has to be found, the 2-norm of the difference between Cx and y, ‖Cx− y‖2, is
a measure of the quality of the solution.
A measure of the error between Cx and y can be introduced as a residual vector e with

e = y −Cx . (3.7)

By minimizing the 2-norm of the residuals, ‖e‖2, a so called least squares solution (LSS)
can be obtained. To find the minimum of

√
eT e an objective function Γ = eT e has to be

minimized by setting its derivative equal to zero. This can be performed as follows:

Γ = eT e

= (y −Cx)T (y −Cx)

= yT y − y Cx− xTCT y + xTCTCx

(3.8)

12The set of all possible linear combinations of the column vectors of a matrix is the range of the matrix
and is also called the column space of the matrix.
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3.2 Matrix inversion solutions

∂Γ

∂x

!
= 0 = 0− y C−CT y + 2 CTCx . (3.9)

After rearranging equation (3.9) the least squares solution for x becomes the following:

x = (CTC)−1 CT y . (3.10)

Therefore the square matrix CTC has to be invertible, which is fulfilled since rank(C) =

n. After substitution equation (3.10) can be written equally to equation (3.4) as:

x = C+y (3.11)

with the generalized inverse C+ = (CTC)−1CT .

3.2.3 Singular value decomposition

For ill-conditioned and/or rank-deficient systems the singular value decomposition (SVD)
can be a useful method to find a pseudoinverse of a matrix. In addition, a solution for
inverse problems can be estimated similarly to above (compare equation (3.4)).
Applying the SVD the m× n matrix C from equation (3.1) and (3.2) is factored into

C = USVT (3.12)

where according to [3]

◦ U is a m ×m orthogonal matrix with columns that are the eigenvectors u of CCT

spanning the data space, Rm.

◦ V is a n × n orthogonal matrix with columns that are the eigenvectors v of CTC

spanning the model space, Rn.

◦ S is a m×n diagonal matrix with nonnegative diagonal elements in descending order
called singular values.

Some singular values may be zero so that S can be written as:

S =

[
Sp 0

0 0

]
(3.13)

where Sp is a p× p diagonal matrix composed of those p singular values that are nonzero.
This leads to a compact form of equation (3.12):

C = UpSpV
T
p . (3.14)

Since Up and Vp are orthogonal matrices their inverse is equal to their transpose and a
generalized inverse of C can be written as:

C+ = VpS
−1
p UT

p . (3.15)

The matrix C+ from equation (3.15) is called the Moore-Penrose-Pseudoinverse of C.
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3.3 One-dimensional two-mass system

An inverse solution of equation (3.1) can be estimated with the use of the generalized
inverse from above in equation (3.11). However, the generalized inverse solution may
include terms involving column vectors in Vp with very small nonzero singular values for
ill-conditioned problems. This causes high sensitivity to small amounts of noise in the
data and can lead to an instability of the solution which can be measured with the above
introduced condition number κ (see equation (3.3)).

3.3 One-dimensional two-mass system

In this section a simple dynamical system is presented for better understanding of the
application of inverse input estimation methods. Therefore a mechanical model is described
first by its equations of motion and transformed into a state-space model for the statement
of the inverse input estimation problem.

3.3.1 Mechanical model

Figure 3.1 shows the mechanical model of a two-mass system with free movement in vertical
direction. It consists of two rigid bodies characterized by the masses m1 and m2, two
springs with stiffnesses c1 and c2 and a damper with damping constant d1.

Figure 3.1: One-dimensional two-mass system

The model is described by the following equations of motions according to Euler’s first
law of motion13:

ẍ1 +
d1

m1
(ẋ1 − ẋ2) +

c1

m1
(x1 − x2) = 0 (3.16)

ẍ2 −
d1

m2
(ẋ1 − ẋ2)− c1

m2
(x1 − x2) +

c2

m2
x2 =

c2

m2
w (3.17)

13The definitions of Euler’s equations of motions for rigid bodies can be found e.g. in [15] and [23].
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3.3 One-dimensional two-mass system

where x1, x2 and the time derivatives ẋ1, ẋ2, ẍ1 and ẍ2 are describing the motion of the
center of the masses m1 and m2. The term on the right side of equation (3.17) denotes an
input force as a result of the excitation w = w(t). 14

Equations (3.16) and (3.17) are two second order differential equations. A transformation
into a system of differential equations of first order can be performed by introducing the
state-vector x. The state-space model can then be written as the following:

ẋ = Ax+ Gw (3.18)

with

x =


x1

x2

ẋ1

ẋ2

 , ẋ =


ẋ1

ẋ2

ẍ1

ẍ2

 , A =


0 0 1 0

0 0 0 1

− c1
m1

c1
m1

− d1
m1

d1
m1

c1
m2

− (c1+c2)
m2

d1
m2

− d1
m2

 , G =


0

0

0
c2
m2

 .
At this point no classification of the stated problems in terms of knowledge of the input

w has been made. Since the characteristics of the system are assumed to be known an
inverse problem can be formulated with the goal of estimation of the input w if any output
can be measured.

3.3.2 Input estimation problem

For many applications a LTI system (see section 2.1) is characterized by a known input u(t)

generating the output y(t) as a system response. If the system consists of unknown inputs
an additional input quantity w(t) has to be introduced. A block diagram representation
for a system with known and unknown input is shown in Figure 3.2.

LTI system

Figure 3.2: LTI system with known and unknown input

The corresponding state-space model of the system is given by:

ẋ = Ax+ Bu+ Gw (3.19)

y = Cx+ Du+ Hw (3.20)

with the state vector x, the input vectors u, w and the system matrices A, B, C, D, G

and H.
The two-mass system from above (see Figure 3.1) only has a single input w(t) which is

assumed to be unknown15. This means that no known input affects the system and u(t)

can be set to zero which simplifies the state-space model from equations (3.19) and (3.20).

14The excitation term is named “w” instead of “u” since “u” usually represents a known input signal.
Within this work the input of the given system is regarded as unknown and therefore named “w”.

15Note that the vector w becomes a scalar w as there is only a single excitation w(t).
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3.4 Kalman filter

Another assumption is made concerning the output y(t) of the system in this example:
The output defined to be the acceleration of the mass m1, that is y = ẍ1, and as it is only
one quantity it becomes a scalar. Therefore the output matrix C is given by:

C =
[
− c1
m1

c1
m1

− d1
m1

d1
m1

]
.

The described system has no direct feedthrough and as a result the system matrix H

is a (4 × 1) - zero matrix. Finally, the state-space model of the two-mass system can be
written as follows:

ẋ = Ax+ B��>
0

u + Gw ⇒ ẋ = Ax+ Gw (3.21)

y = Cx+ D��>
0

u +��>
0

Hw ⇒ y = Cx . (3.22)

Since later in this work the obtained output signals are measurement data of the re-
sponse of a railway vehicle system it is required to use a discrete form of the state-space
model (see section 2.1.3). With a given time step k ∈ {0, 1, 2, . . . , n} the discretization of
equations (3.21) and (3.22) leads to:

xk+1 = Adxk + Gdwk (3.23)

yk = Cdxk (3.24)

with the discrete-time state matrices Ad, Gd and Cd. According to [29] the conversion
from continuous-time to discrete-time can be computed if A is invertible, that is the case
here, as follows:

Ad = eA∆t

Gd = Ad[I− e−A∆t]A−1G

Cd = C

(3.25)

where the discretization step size ∆t is defined as ∆t = tk − tk−1 with the discrete time
point tk.
The inverse problem to be solved is the estimation of the unknown excitation w of the

two-mass system described above with knowledge about the system characteristics, given
by the system matrices, and the acceleration data of the mass m1 representing the output
y.

3.4 Kalman filter

For the inverse input estimation a method using a Kalman filter16 is introduced. This filter
computes state estimates of a system and is, according to [31], a so-called optimal filter as
its purpose is to minimize the spread of the estimate-error probability density. The filter
propagates the mean and the covariances of the state taking into account system dynamics
and inputs as well as it incorporates measurements and measurement error statistics.

16The filter is named after R.E. Kalman, who presented in 1960 the well-known filtering method in [14].
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3.4 Kalman filter

An introduction of the discrete Kalman filter algorithm, which is implemented later, is
given in [35]. The following definitions and derivations needed for the filter implementation
can also be found in [29]. Later, the filtering method is applied to estimate the unknown
input of the two-mass system from section 3.3.

3.4.1 The Kalman filter implementation

The aim of the application of a Kalman filter element is to minimize the steady-state error
covariance by constructing a state estimate x̂. Figure 3.3 shows the block diagram of a
system with an integrated Kalman filter.

Figure 3.3: LTI system with a Kalman filter

For this system the discrete-time state-space model is given by:

xk+1 = Adxk + Bduk + Gdwk (3.26)

yk = Cdxk + Dduk + Hdwk + vk (3.27)

with the state-vector x, the known input u and the output y. The terms w and v represent
process noise and measurement noise.
In the context of Kalman filtering it is assumed that the noise processes w and v in

equations (3.26) and (3.27) are white, uncorrelated and zero-mean. Hence the covariance
matrices (see section 2.2) are known and defined as:

E[wwT ] = Q̄, E[vvT ] = R, E[vwT ] = 0 . (3.28)

The amount of available information, e.g. measurements y, affects the state estimation
and depends on the problem to be solved. Therefore a distinction in the notation for an
estimated state x̂ is made as the following:

x̂k|k−1 = E[xk|y1, . . . , yk−1] a priori estimate

x̂k|k = E[xk|y1, . . . , yk] a posteriori estimate .

That means if all measurements up to and including time k are available the estimate
is called an a posteriori estimate and if all measurements before time k is available the
estimate is called an a priori estimate.
The relationship between real and estimated states can be described by the covariance
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3.4 Kalman filter

of the estimation error xk − x̂k which is defined as:

Pk = E[(xk − x̂k)(xk − x̂k)T ] . (3.29)

At the beginning of the estimation process an initialization has to be performed by
declaring an initial estimate x̂0 of the initial state x0 = x(t = t0 = 0):

x̂0|0 = E[x0] (3.30)

P0|0 = E[(x0 − x̂0|0)(x0 − x̂0|0)T ] . (3.31)

The following equations describe the Kalman filter algorithm and have to be calculated
for each time step k = 1, . . . , n after the initialization:

Pk|k−1 = AdPk−1|k−1Ad
−1 + Q (3.32)

x̂k|k−1 = Adx̂k−1|k−1 + Bduk−1 . (3.33)

These equations are called time-update equations and describe a prediction step. For the
covariance Pk the prediction is given by equation (3.32) with Q = GdQ̄GT

d and the a
priori state estimate x̂k|k−1 is predicted according to (3.33). The next task is given by the
so-called measurement-update equations or update step, where the measurements yk are
considered to derive the a posteriori state estimate x̂k|k:

Lk = Pk|k−1Cd
T(CdPk|k−1Cd

T + R)−1

= Pk|kCd
TR−1 (3.34)

Pk|k = (I− LkCd)Pk|k−1(I− LkCd)T + LkRLk
T

= · · · = (I− LkCd)Pk|k−1 (3.35)

x̂k|k = x̂k|k−1 + Lk(yk −Cdx̂k|k−1) . (3.36)

At this point the so-called Kalman filter gain Lk has to be introduced and is defined by
equation (3.34). The final state estimation is given by equation (3.36) and contents the
Kalman filter gain Lk for weighting the estimated measurement error term (yk−Cdx̂k|k−1).
With the presented algorithm states can be estimated on the basis of measurements and

system characteristics which can be applied for inverse problem solving.

3.4.2 Kalman filter application to the two-mass system

Recalling the two-mass system from section 3.3 the Kalman filter is applied here to solve
the inverse problem of the unknown input estimation.
If the unknown input w(t) is regarded as process noise the Kalman filter can be imple-

mented as shown in Figure 3.4. This system does not contain any known input u(t) and
leads to the approach to derive the unknown input, which is assumed to occur as process
noise, through using a Kalman filter algorithm.
Similar to the derivation of equations (3.21) and (3.22) the discrete state-space model
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3.5 Parity space approach

Figure 3.4: State-space model with only unknown input

from equations (3.26) and (3.26) can be simplified for the given system as follows:

xk+1 = Adxk + Bd��*
0uk + Gdwk ⇒ xk+1 = Adxk + Gdwk (3.37)

yk = Cdxk + Dd��*
0uk +���*

0
Hd wk + vk ⇒ yk = Cdxk + vk (3.38)

with the state-vector x, the unknown input w, the known output y and the measurement
noise v where the covariance data is given for. The state matrices Ad, Gd and Cd already
have been derived in section 3.3.
According to the given system the estimator equations (3.33) and (3.36) of the Kalman

filter algorithm for the two-mass system can be written as:

x̂k|k−1 = Adx̂k−1|k−1 + Bd��
�*0

uk−1 ⇒ x̂k|k−1 = Adx̂k−1|k−1 (3.39)

x̂k|k = x̂k|k−1 + Lk(yk −Cdx̂k|k−1) . (3.40)

The calculation of a state estimate x̂ can be performed by the application of the recursive
estimation algorithm which is given by equations (3.32) - (3.36). Therefore equation (3.33)
has to be substituted by equation (3.39).
After the state estimates have been derived an estimated input can be computed. Rear-

ranging of equation (3.23) leads to the following:

wk = G−1
d [xk+1 −Adxk] . (3.41)

Finally the unknown input w can be estimated by solving equation (3.41) using the state
estimate x̂k instead of xk. The results of the performed input estimation are presented
and discussed in section 3.8.

3.5 Parity space approach

Another method is given by the parity space approach which can be found in [7] where two
methods for stochastic fault detection are compared. In this section the general diagnosis
algorithm is introduced first, followed by the application to the two-mass system from
section 3.3.
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3.5 Parity space approach

3.5.1 The parity space approach algorithm

Originally, the parity space approach is applied for fault detection and isolation in a stochas-
tic setting. Within this work, the algorithm is introduced in order to detect an unknown
input based on the following discrete-time state-space model for a linear system:

xk+1 = Adxk + Bu,duk + Bw,dwk + Bv,dvk (3.42)

yk = Cdxk + Du,duk + Dw,dwk + ek (3.43)

with the known input u and an unknown fault input w. The occurring terms v and e are
process and measurement noise which also can be found in the model of the Kalman filter
introduced above.
To formulate the diagnosis task a sliding window is applied to a recursive problem. The

sliding window L is generated by stacking signal values to define signal vectors Yk =

[yk−L+1
T , . . . , yk

T ]T for all signals s ∈ {u,w, v}.
Also the so-called Hankel matrices Hs for all signals s and an observability matrix O

have to be built as the following:

Hs =


Ds,d 0 0 . . . 0

CdBs Ds,d 0 . . . 0

CdAdBs CdBs Ds,d . . . 0
...

. . . . . .
...

CdAL−2
d Bs . . . . . . CdBs Ds,d

 , O =


Cd

CdAd
...

CdAL−1
d

 . (3.44)

Considering the matrices from above equations (3.42) and (3.43) can be rewritten. This
is leading to the central expression of the parity space approach:

Yk −HuUk = Oxk−L+1 + HWWk + HvVk + Ek . (3.45)

For the solution of an inverse problem equation (3.45) can be rearranged as needed and
computed after an initialization has been made. The process is explained more detailed
in the following section where the method is applied exemplary to the two-mass system
introduced in section 3.3.

3.5.2 Parity space approach applied to the two-mass system

For the application of the parity space approach to the state-space model of the two-mass
system, given in equations (3.23) and (3.24), some assumptions are made. The system is
excited by an unknown quantity w called fault input in the system presented above (see
equations (3.42) and (3.43)). Additionally, no occurrence of noise is expected and since
not any known input u is applied to the system equation (3.45) can be written as:

Yk = Oxk−L+1 + HWWk (3.46)
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or in matrix form:

Yk =



Cd

CdAd

CdA2
d

...
CdAL−1

d


︸ ︷︷ ︸

:= O

xk−L+1 +


��
�*0

Dw 0 0 . . . 0

CdGd 0 0 . . . 0

CdAGd CGd 0 . . . 0
...

. . . . . .
...

CdAL−2Gd . . . . . . CdGd 0


︸ ︷︷ ︸

:= Hw

Wk . (3.47)

The goal is to rearrange equation (3.46) to obtain the following expression:

Wk = H−1
w (Yk −Ox̂k−L+1) (3.48)

with Wk = [ŵk−L+1, . . . , ŵk]
T . It can be seen from equation (3.47) that the Hankel

matrix Hw is noninvertible since it contains a zero column and is therefore not of full
rank, respectively is singular. Alternatively, a pseudoinverse H+

w has to be built. This can
be achieved by computation of a least squares solution e.g., see equation (3.9), to obtain a
matrix which has the same size as Hw and satisfies the conditions of an inverse.
Equation (3.48) gives a recursive solution for the unknown input w. After an initialization

and computation of the estimate ŵk the state estimates x̂k−L+1 can be computed for each
time step k = 1, . . . , n with:

x̂k−L+1 = Adx̂k−L + Gdŵk−L . (3.49)

An algorithm for the unknown input identification has been derived using a sliding win-
dow considering the influences of prior states and inputs to the present state of the system.
For the purpose of method validation the estimation results for the two-mass system are
discussed in section 3.8.

3.6 Regularized least squares solution

In section 3.2 matrix inversion methods for inverse problem solving were presented. The
here introduced regularized least squares solution can be found in [26] and is an extension
of a least squares solution. The aim is to include available information about the solution
during the inversion stage in order to solve mixed- and underdetermined problems. The
method is applied to the two-mass system from section 3.3 to estimate the unknown input.

3.6.1 Determination of the RLSS

As the least squares solution (LSS), which is described in section 3.2.2, applies to overde-
termined problems and many inverse problems are mixed-determined (see section 3.1), an
additional term is introduced in the objective function leading to the so-called regularized
least squares solution (RLSS). The RLSS tries to include a priori information about the
solution during the inversion stage to prevent noise in the solution.
Considering an inverse problem, as given by equation (3.2), the expanded objective func-
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tion Γ according to a residual vector e (see equation (3.7)) is the following:

Γ = eT e+ λ [(Rrx)TRrx]

= (y −Cx)T (y −Cx) + λ [(Rrx)TRrx]

= yT y − y Cx− xTCT y + xTCTCx+ λ [xTRr
TRrx] .

(3.50)

Equation (3.50) includes, compared to equation (3.9), an additional regularization crite-
rion λ[(Rrx)TRrx] with a regularization matrix RR and a nonnegative coefficient λ which
provides weighting of the regularization term. Setting the partial derivative of Γ equal to
zero in order to minimize the objective function leads to:

∂Γ

∂x

!
= 0 = 0− 2 CT y + 2 CTCx+ 2 λRrRr

TRr x (3.51)

= −CT y + (CTC + λRr
TRr) x . (3.52)

After inversion of the term (CTC + λRr
TRr) and rearranging of equation (3.52) an

estimate x̂ for x can be obtained representing a regularized least squares solution of the
inverse problem:

x̂ = (CTC + λRr
TRr)−1 CT y . (3.53)

The regularization matrix Rr has to be constructed with different criteria depending on
the stated problem with respect to the a priori knowledge of x. If the local variation of x
can be approximated with a straight line e.g., that means x = a+b·p, the second derivative
d2x
dp2 is minimized and leads to a finite difference of xi+1 − 2xi + xi−1 which can be used to
compute the rows of Rr. In this case a row would have the form of [0 . . . 0 1 −2 1 0 . . . 0].[26]
Another value to be chosen is the regularization coefficient λ which depends on the

characteristics of the given problem, the quality of the data as well as the adequacy of the
considered model. The optimal value of λ can either be found by following the evolution
of the residual or by observation of the evolution of the solution for different values. After
these recursive tasks have been performed the right level for λ can be selected to return
a physical meaningful solution and to adequately justify the data during the estimation
process.
The presented method for stabilizing the solution of inverse problems in a regularized

least squares sense is also called Tikhonov regularization. An introduction with examples
can be found [3].

3.6.2 RLSS of the two-mass system

A RLSS can be estimated for the two-mass system with the unknown input w, shown in
Figure 3.1, and the state-space model is described with equation (3.23) and (3.24).
The unknown input can be obtained by solving equation (3.41) using a state estimate x̂.

According to equation (3.53) the estimation of the state vector can be performed applying
a RLSS method for the two-mass system as follows:

x̂ = (CTC + λRr
TRrR)−1 CT y (3.54)
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with the output or data matrix C and the given output y. The regularization matrix Rr

and the regularization coefficient λ for the considered system has to be defined next as
described above.
After all, the unknown input w of the two-mass system can be computed based on a

state estimate x̂ obtained from the RLSS. The results of the performed computation can
be found in section 3.8.

3.7 Inverse dynamics method

The last estimation method presented in this work is the inverse dynamics method and
can be found in [37] and [38] where it is applied to a railway vehicle system to identify
wheel-rail contact forces. First the mathematical derivation of the algorithm is given which
is followed by the solution of the inverse problem of the unknown input estimation for the
two-mass system from section 3.3.

3.7.1 The inverse dynamics method algorithm

Considering a discrete-time LTI system (see section 2.1.3) the inverse problem of unknown
input estimation can be given by the following state-space model:

xk+1 = Adxk + Gdwk (3.55)

yk = Cdxk (3.56)

with the state vector x, the output vector y the unknown input w and the system matrices
Ad, Cd and Gd. The least-squares error of the output including a weighting term λ1 can
be written as the following:

E =
n∑
k=1

(yk − ŷk)Tλ1(yk − ŷk) (3.57)

with n measurements yi ∈ {y1, . . . , yn} and its estimates ŷi ∈ {ŷ1, . . . , ŷn}. If the problem
is ill-conditioned, as is the case very often because of noisy data, a smoothing term can
be added referring to the Tikhonov regularization (see section 3.6). Equation (3.57) then
becomes to:

E =

n∑
k=1

(yk − ŷk)Tλ1(yk − ŷk) + wk
Tλ2wk (3.58)

with the input w and the regularization matrix λ2 which provides the flexibility of weighting
the input term. The matrices λ1 and λ2 are symmetric and positive definite17 matrices.
Similarly to the RLSS from section 3.6 the objective is to minimize the least-squares

error to obtain a solution of the inverse problem. The definition of the minimization of E

17A symmetric square matrix A is positive definite if all of its eigenvalues are greater than zero.
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for any initial state x is given by:

Wk(x) = min
wk

Ek(x,wk) . (3.59)

The application of the so-called Bellman principle of optimality18 is leading to a recursive
expression which selects wk−1 to minimize Ek:

Wk−1(x) = min
wk−1

[(Cdxk−1 − ŷk−1)Tλ1(Cdxk−1 − ŷk−1) + wk−1
Tλ2wk−1

+ Wk(Adxk−1 + Gdwk−1)] .
(3.60)

By starting at the end of the process where k = n and working backward towards k = 1

a solution can be obtained. At the end point the minimum is derived by choosing wn = 0

which simplifies equation (3.60) as the following:

Wn(x) = min
wn

[(Cdxn − ŷn)Tλ1(Cdxn − ŷn)]

= xn
T (Cd

Tλ1Cd︸ ︷︷ ︸
:= Rn

xn) + xn
T (−2 Cd

Tλ1ŷn)︸ ︷︷ ︸
:= Sn

+ ŷnλ1ŷn︸ ︷︷ ︸
:= qn

= xn
TRnxn + xn

TSn + qn .

(3.61)

Since equation (3.61) shows that Wn is quadratic in xn all of the Wk have to be quadratic
in xk which leads to:

Wk(x) = xk
TRkxk + xk

TSk + qk (3.62)

with Rk = Rn = Cd
Tλ1Cd and Sk = −2 Cd

Tλ1ŷk. This expression can be substituted
into equation (3.60) and becomes the following:

Wk−1 = min
wk−1

[(Cdxk−1 − ŷk−1)Tλ1(Cdxk−1 − ŷk−1) + wk−1
Tλ2wk−1

+ (xk
TRkxk + xk

TSk + qk)(Adxk−1 + Gdwk−1)] .
(3.63)

The next step is the minimization of equation (3.63) by setting the derivative dWk−1

dwk−1

equal to zero. This operation returns the following:

(2λ2 + 2 Gd
TRkGd)ŵk−1 = −Gd

TSk − 2 Gd
TRkAdx̂k−1 (3.64)

where ŵ is the estimated, or optimal, input term and x̂ represents an estimated state. For
reasons of simplification the following matrices are introduced:

Vk = (2λ2 + 2 Gd
TRkGd)−1 (3.65)

H = 2 Gd
TRk . (3.66)

18The optimization principle is a dynamic programming method named after R. Bellman and described
in [4].
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After rearranging equation (3.64) and substitution of the matrices from above a recursive
expression for estimation of the unknown input can be derived and is given by:

ŵk−1 = −VkGd
TSk −VkHAdx̂k−1 . (3.67)

At the beginning of the estimation an initialization has to be made by choosing the
initial state x̂0 and computation of the first estimate ŵ0 according to equation (3.67). The
other estimates of x̂ can then be calculated for each time step k = 1, . . . , n using the input
estimates ŵ from equation (3.67) as follows:

x̂k = Adx̂k−1 + Gdŵk−1 . (3.68)

After performing the recursive algorithm for every time step an estimate ŵ of the un-
known input w is obtained. The introduced procedure of the inverse dynamics method is
applied for the two-mass system in the next section.

3.7.2 Inverse dynamics method for the two-mass system

The application of the inverse dynamics method to the two-mass system presented in
section 3.3 is based on the recursive computation of equations (3.67) and (3.68). The
state-space model of the here regarded system is given by equations (3.23) and (3.24) with
the unknown excitation w and the known output data y.
Since y and w are scalar quantities, the inverse dynamics algorithm for this system

contains of scalar weighting terms λ1 and λ2. Before the estimation process can be started,
an initialization has to be performed by choosing a value for the initial state x̂0. Now
the algorithm can be implemented and computed for each time step k = 1, . . . , n as the
following:

ŵk−1 = −VkGd
TSk − VkHAdx̂k−1 (3.69)

x̂k = Adx̂k−1 + Gdŵk−1 (3.70)

where the matrices, which were introduced in equations (3.65) and (3.66), are given ac-
cording to the inverse-problem of the two-mass system by:

Vk = (2λ2 + 2 Gd
TRkGd)−1 (3.71)

H = 2 Gd
TRk (3.72)

with Rk = Cd
Tλ1Cd and Sk = −2 Cd

Tλ1ŷk.
The simulation results are discussed in the next section and compared with the estimated

inputs which were obtained with other inverse identification methods.

3.8 Results for the two-mass system

The application of the methods from above yields different results for the unknown input
estimation for the one-dimensional two-mass system, which was introduced in section 3.3
and is shown in Figure 3.1.
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For the given inverse problem output data representing the acceleration ẍ1 of mass m1

is needed. The data is obtained by measuring the response of the system to a generated
excitation, which is assumed to be unknown for further estimations. Consequently, the
generation of the input signal has to be investigated before the results can be compared
and discussed.

3.8.1 Generation of a random input signal

For the later introduced railway vehicle system unknown input forces due to random track
irregularities have to be estimated. Referring to that a signal with similar stochastic
characteristics is applied to the excitation of the two-mass system.
The signal can be generated as described in [6] by summation of sinusoids with k different

frequencies as the following:

w(t) =

k∑
i=1

A(ωi) · sin(ωit+ ϕi) (3.73)

with the frequencies ωi = 2πfi, the amplitudes A(ωi) =
√
S(ωi)∆ω ·

√
2 and the phase

shifts ϕi = 2πri, where ri is a random number19 between 0 and 1. The amplitude depends
on S(ωi), the power spectral density (PSD) of the corresponding frequency ωi.
For white noise the PSD is constant, S(ωi) = R0 = σ2 (see section 2.2.2, equations (2.54)

and (2.56)), which results for every frequency ωi in equal amplitudes A(ωi) = Ā =
√
σ2∆ω ·√

2.
Figure 3.5a shows a generated signal with a frequency range from 0.5 Hz to 10 Hz. The

signal is normal or Gaussian distributed with zero-mean and has a variance of σ2 = 2 ·
10−6 m2. From the PSD analysis20, shown in Figure 3.5b, it can be seen that the signal has
similar characteristics to white noise, meaning that the PSD is constant over the frequency
range, which allows the use of the term pseudorandom signal.
The signal shown in Figure 3.5a is applied to the two-mass system and results in a

response which is used for the inverse estimation method. The results of the input which
was estimated through application of inverse methods and the generated input from above
are discussed in section 3.8.3

3.8.2 Model and method parameters

For the input estimation of the two-mass system introduced in section 3.3 model parameters
have to be defined. The later presented results of the inverse problem solution have been
obtained with the values shown in Table 3.1.

19The random number ri can be generated by the MATLAB function rand: ”rand(n) returns an n-by-n
matrix containing pseudorandom values drawn from the standard uniform distribution on the open
interval (0,1).” [20]

20Here a special form of the PSD function is computed using the algorithm of Peter D. Welch. [36] This
method uses a fast fourier transform for estimation of the power spectra and divides the signal into
overlapped sections. After computation of modified periodograms and averaging them the estimate of
the PSD is obtained. The MATLAB function pwelch returns the PSD on the basis of this algorithm.
[20].
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Figure 3.5: Generated pseudorandom input signal

In addition the methods presented in sections 3.4 - 3.7 contain different parameters that
can be varied. Table 3.2 gives an overview of the here chosen values.
It has to be mentioned at this point that no further investigations in terms of parameter

optimization have been made as the aim of this task was to compare the implementation
and appropriateness of the single methods. The comparison is given in the next section.

Parameter Value Unit
m1 1 kg
m2 1 kg
c1 30 N/m
c2 60 N/m
d1 0.5 Ns/m

Table 3.1: Model parameters of the two-mass system

Method Parameter Value
Kalman filter Q = Q 1

R = R 0.0001

Parity space approach L 20

RLSS λ 5

Rr


3 −1 0 0
−3 3 −1 0
1 −3 3 −1
0 1 −3 3


Inverse dynamics method λ1 1

λ2 1

Table 3.2: Parameters for the different estimation methods

3.8.3 Discussion of results

The first method presented in section 3.4 is using a linear Kalman filter algorithm for
state estimation. The result of the identified input is given in Figures 3.6a and 3.6b where
significant correlation can be detected.

42



3.8 Results for the two-mass system

0 5 10 15 20
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

  in s

  
 i
n
 m

 simulated
 estimated - Kalman     

(a) Kalman filter estimation

10 10.5 11 11.5 12
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

  in s

  
 i
n
 m

simulated
estimated - Kalman        

(b) Kalman filter estimation, enlarged

Figure 3.6: Results for the Kalman filter method

The parity space approach, introduced in section 3.5, also provides good estimation of
the unknown input as can be seen in Figures 3.7a and 3.7b.
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Figure 3.7: Results for the parity space approach (PSA) method

The results of the regularized least squares solution (RLSS) according to section 3.6 of the
given inverse problem are shown in Figures 3.8a and 3.8b. It can be seen that the estimation
does not match with the simulated signal. Especially the amplitudes are to high but also
higher frequency components are not identified with this method. The regularization
coefficient λ and the regularization matrix Rr are not chosen adequately enough for the
derivation of correlating results. An optimization of the parameters may could result in
a higher correlation. However, since another method already shows satisfying results and
will be chosen for further estimations within this work, an optimization is not performed
here.
Better results can be obtained with the inverse dynamics method (IDM) which was

introduced in section 3.7. The diagrams in Figures 3.9a and 3.9b show the comparison of
the simulated and the estimated signal where a notable correlation can be detected. Similar

43



3.8 Results for the two-mass system

  in s

  
 i
n
 m

0 5 10 15 20
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
simulated
RLSS   

(a) Estimation of RLSS
  in s

  
 i
n
 m

10 10.5 11 11.5 12
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03
simulated
RLSS   

(b) Estimation of RLSS, enlarged

Figure 3.8: Regularized least squares solution (RLSS) results

to above, the estimation result might be improved if the weighting and regularization
parameters are chosen optimally.
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Figure 3.9: Results for the inverse dynamics method (IDM)

To quantify the deviation of the estimated signals to the simulated input the root-mean-
square error can be calculated as the following:

ε =

√√√√ 1

n

n∑
i=1

(wi − ŵi)2 . (3.74)

Figure 3.10a compares the root-mean-square errors of estimated results and shows that the
Kalman filtering method returns the best results followed by the parity space approach.
The highest error can be detected for the RLSS. It has to be mentioned at this point,
that this error measure does not take phase shifts into account. Hence, a comparison of
estimated and simulated signals in frequency domain should be considered additionally to
be able to make a reliable assessment.
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Figure 3.10: Comparison of inverse estimation methods

A comparison of the correlations in frequency domain is given by Figure 3.10b where
the PSDs of the single methods are illustrated. It can be detected that the spectral
characteristics of the input signals estimated through the Kalman filter algorithm and the
parity space approach are almost equal to the PSD of the simulated signal. As well as in
time domain the RLSS result shows the highest deviation in frequency domain. The PSD
for the signal obtained by the inverse dynamics method indicates that the amplitudes for
frequencies higher than ∼ 0.5 Hz are lower than for the simulated signal.
Concluding the investigations from above it can be said that the Kalman filter method

provides the best estimation results. With the parity space approach almost as good
estimates have been achieved which confirms the suitability of this method for inverse
problem solving tasks. Further optimization of the regularization parameters for the inverse
dynamics method and the RLSS is required to obtain satisfying and stable results.
Since the unknown input estimation for a simple model can be performed successfully -

at least for two methods - the application of an inverse method to a more complex model,
which is introduced in the following chapter, can be attempted. In this work the method
using a Kalman filter for state estimation is selected to identify unknown wheel-rail contact
forces of a railway vehicle system.
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4 Multibody simulation of a railway
vehicle system

This chapter reviews the general procedure of multi-body simulation applied to the complex
system of a sample railway vehicle. At the beginning, the mathematical modeling in terms
of mechanics and the wheel-rail contact theory is presented. Since a railway vehicle system
is excited by irregularities of the rail track the second part of the chapter introduces track
characteristics and the concept of input force implementation.

4.1 Modeling of a railway vehicle system

The modeling task starts with a definition of the mechanical model where the parts and
components of the railway vehicle are characterized and is described in [17], [22] and
[28]. This is followed by a mathematical description to be able to state the equations of
motion which are linearized in the next step. In section 4.1.4 a major problem in railway
vehicle dynamics, the correct modeling of the wheel-rail contact geometry and the occurring
contact forces, is introduced.

4.1.1 Mechanical Model

A railway vehicle system is set up by several components and parts. For execution of a
multibody simulation the system can be reduced considering the components with influence
to the general dynamic behavior only. Figure 4.1 shows the bodies of the regarded railway
vehicle system which are linked by joints and kinematic constraints that allow certain
relative motions and restrict others.
The carbody is assumed to be a single body and is attached to two bogies. A bogie

connects the carbody with the rails and has to fulfill several functions as it has to provide
stability of the train on straight and curved tracks at any speed. The assembly of an axle
and two wheels is called wheelset and every bogie contains two of them.21 Depending on
the type, a wheelset usually carries brake discs and/or a gear box, what is neglected within
this work. The wheelsets are mounted on the bogie frame suspended by several spring
and damping elements. Similarly, the frame is attached spring-loaded to the so-called
bogie bolster which is connected to the carbody. The primary suspension is defined as the
connection between the wheelsets and the bogie frame whereas the connection between
bolsters and bogie frames is the secondary suspension. The bodies of a railway vehicle
system can be regarded either as rigid or flexible if the modal deformation of bodies is

21This is the case for the regarded railway vehicle system. In reality, also bogies that contain three
wheelsets exist.
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Wheelsets 3 & 4

Bolster 2
Bogie frame 2

Carbody

Wheelsets 1 & 2

Bolster 1

Bogie frame 1

Figure 4.1: Railway vehicle system with 2 bogies

considered. In this work all bodies are assumed to be rigid, since structural dynamics is of
minor importance to the investigated problem.
In railway vehicle dynamics the coordinate system is usually chosen as it is illustrated in

Figure 4.1. The driving direction is along the longitudinal axis x while the direction along
the y-axis is called the lateral direction. Accordingly, the vertical direction is along the
z-axes which is positive counted downwards in general. The rotations about the Cartesian
coordinates x, y and z are described by the angles ϕ, ϑ and ψ characterizing a roll-motion
(ϕ) about x, a pitch-motion (ϑ) about y and a yaw-motion (ψ) about z.
In general, time-dependent properties of a simulation model are called states. Considering

a dynamical system (see chapter 2.1.2) its mechanical motions can be described with
knowledge about the states and their change in time. The states are defined measures
to describe the kinematical behavior of the bodies and represent the so-called generalized
coordinates of the body movements which will be used later to formulate the equations of
motion.
As the bodies of a multibody system may not move freely due to geometric properties,

so-called geometric constraints are introduced according to [15] in order to restrain the
abilities of movement. Geometric constraints are taken into account for the simulation
task as so-called algebraic states and lead to differential-algebraic equations (DAE)22.
Regarding constrained dynamic systems the term degrees of freedom (DOF) has to be

introduced describing the number of independent coordinates which are required to describe
the configuration of a system. In the three-dimensional case the total number of DOFs
nDOF of a model or system can be obtained by:

nDOF = 6 · nb − nc (4.1)

and depends on the number of bodies nb and on the number of algebraic constraints

22A differential-algebraic set of equations is a mixed system of differential and algebraic equations and usu-
ally can not be solved with an ordinary numerical solving algorithm for ordinary differential equations
(ODE).
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nc. Since the motion of a body can be described by six independent coordinates (three
translations and three rotations) the number of DOFs of a unconstrained moving body is
six. Each algebraic constraint removes one DOF of the system.
With the given definitions of the system components and state properties from above the

equations of motion can be formulated. This is presented in the following section.

4.1.2 Equations of motion

As an appropriate mechanical model has been defined, the next task of the multibody
simulation process can be performed by formulating the equations of motion of the railway
vehicle system.
Before a general formulation of the equations of motion can be given, the state definitions

used by the multibody simulation software SIMPACK are introduced, since the data used
within this work base on a SIMPACK simulation and the obtained results are compared
with it later. The different types of states according to [30] are the following23:

◦ Joint states sj , ṡj describe the kinematical behavior of bodies and represent the
generalized coordinates of the bodies.

◦ Flexible body states sfb, ṡfb have to be considered if the modal deformation of bodies
are allowed. If all bodies are assumed to be rigid these states are neglected.

◦ Dynamic states sdyn are used to describe the internal behavior of particular elements.
Considering two bodies connected by a spring and a damper in series e.g. (see Fig-
ure 4.2) it can be seen that the length of the spring/damper cannot described by the
joint states of the two bodies (sj1 and sj2). Therefore a third state (sdyn) has to be
defined for the exact description of the spring/damper length.

◦ Algebraic states salg are either used to describe the dynamic behavior of elements
(e.g. force values) or the non-dynamic behavior of elements (e.g. contact point posi-
tions of the wheel-rail contact).

◦ Constraint states sλ are special kinds of algebraic states containing forces and torques
which are applied due to constraints in directions of the restrained kinematic DOFs
(e.g. contact forces in the wheel-rail contact point).

Body 1 Body 2

Figure 4.2: Serial spring-damper element

The formulation of the dynamic equations of motion requires a definition of the gener-
alized coordinate system, that is the coordinate system where the generalized coordinates

23Note that the nomenclature differs from the original definitions which can be found in [30].
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are referred to. In developing general-purpose multibody system algorithms the so-called
absolute Cartesian coordinates with a fixed origin are widely used. However, in railway
dynamics it might be advantageous to use other sets of coordinates in order to derive the
equations of motion.
Figure 4.3 shows an alternative coordinate system which is moving along a specified

trajectory g that is e.g. following the motion of a body. The displacement of a body can
then be uniquely described using the six so-called trajectory coordinates:

- the arc length coordinate s,

- the lateral displacement yt relative to the trajectory,

- the vertical displacement zt relative to the trajectory,

- the roll-angle ϕt about xt,

- the pitch-angle ϑt about yt and

- the yaw-angle ψt about zt.

Figure 4.3: Absolute and trajectory coordinates

With a proper coordinate transformation the relationship between any two sets of coor-
dinates can always be achieved. This makes clear that every coordinate system can be used
to formulate the kinematic and dynamic equations needed for the multibody simulation
process. An advantage of the use of trajectory coordinates is the simpler formulation of
some railway vehicle constraints and of some forcing functions. However, it can make the
implementation in general-purpose multibody system algorithms more difficult.
Constraint functions Ci ∈ {C1, . . . , Cnc} describe the mechanical joints or specified mo-

tion trajectories. They build a set of nc algebraic equations which is added to the nonlinear
Newton-Euler equations of motion to obtain a complete mathematical description of the
dynamical system. The nonlinear DAE set can be written as follows:

C(q, t) = 0 (4.2)

Mqq̈ = Fq −Cq
Tλ (4.3)
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4.1 Modeling of a railway vehicle system

where C is the vector of the constraint functions, q is the vector of the generalized co-
ordinates referring to the chosen coordinate system (and its second time derivative q̈),
Mq is system mass matrix, Fq is the vector of external forces and inertia forces which are
quadratic in velocity (that are centrifugal and Coriolis forces), Cq is the Jacobian matrix of
the constraint equations and λ is the vector containing the so-called Lagrange multipliers.
The index q (or q) denotes that a proper formulation of the matrices and vectors accord-
ing to the generalized coordinate system has to be used. Forces invoked by constraints are
given by the term −Cq

Tλ in equation (4.3) and are e.g. contact forces in the wheel-rail
contact point.
For computational purpose a matrix form of the nonlinear equations of motion is aspired.

Therefore the second time derivative of the constraint functions, given by equation (4.2),
has to be introduced as follows:

C̈(q, t) = Cqq̈ −Q = 0 (4.4)

where a vector Q can be derived. The nonlinear equations of motion from above can then
be written in matrix form as follows:[

Mq Cq
T

Cq 0

][
q̈

λ

]
=

[
Fq

Q

]
(4.5)

with

Mq =


Mq1 0 . . . 0

0 Mq2

. . .
...

...
. . . . . . 0

0 . . . 0 Mqnb

 , Cq =


∂C1
∂q1

. . . ∂C1
∂qnb

...
. . .

...
∂Cnc
∂q1

. . . ∂Cnc
∂qnb

 ,

C =


C1

C2
...

Cnc

 , q =


q1

q2
...
qnb

 , λ =


λ1

λ2
...
λnc

 , Fq =


Fq1
Fq2
...

Fqnb

 , Q =


Q1

Q2
...

Qnc

 . (4.6)

Recalling the state definitions used in SIMPACK the generalized coordinates vector q is
composed by the joint states sj , the flexible body states sfb and the dynamic states sdyn.
Accordingly, the vector λ consists of the algebraic states salg and constraint forces and
torques sλ, which are described by the constraint functions Ci.

4.1.3 Linearization and state-space formulation

A linearization of the nonlinear equations of motion is performed by removing all of the
constraints and replacing them by spring and damper elements. If all bodies are assumed
to be rigid no flexible body states have to be defined. The well-known formulation of the
linear Newton-Euler equations of motion is given by the following differential equation of
second-order:

Mq̈(t) + K1q̇(t) + K2q(t) = Hf(t) = F (t) (4.7)
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where the vector q(t) = (q1(t), . . . , qn(t))T represents n generalized coordinates, M is the
mass matrix, K1 is the damping matrix, K2 is the stiffness matrix and the term Hf(t)

results in a vector F (t) containing external forces. As described above, the matrices and
vectors have to be defined with reference to the generalized coordinate system, that means
M = Mq and so on. For reasons of simplification the indices q and q are suppressed here
and in further derivations.
To obtain a state-space representation of the dynamical system as a set of differential

equations of first-order the state vector x has to be introduced. Before that, equation (4.7)
is rearranged as follows:

q̈(t) = −M−1K1q̇(t)−M−1K1q(t) + M−1Hf(t). (4.8)

The conversion of equation (4.8) into the state-space can be achieved with x = [q q̇]T ,
ẋ = [q̇ q̈]T and u = f yielding the well known representation for a linear system (see
section 2.1.2):

ẋ = Ax+ Bu (4.9)

y = Cx+ Du (4.10)

where x is the state vector, u is the input vector containing known input quantities, y is the
output vector and A,B,C and D are the corresponding system matrices. Equation (4.9)
represents a set of ordinary differential equations of first-order for which a solution usually
can be found with ordinary numerical solving algorithms.
The matrices A and B can be obtained directly from equation (4.8) and are given by:

A =

[
0 I

−M−1K2 −M−1K1

]
, B =

[
0

M−1H

]
. (4.11)

By contrast, the system output matrix C and the feedthrough matrix D are unknown since
the output vector y have not been defined at this point.
According to the state definitions from SIMPACK the state vector x of the linearized

dynamical system is composed as follows:

x(t) =

 sj

sdyn

ṡj

 , ẋ(t) =

 ṡj

ṡdyn

s̈j

 (4.12)

where sj are the joint states and sdyn are the dynamical states (see section 4.1.2). It
can be seen from above that the dynamical states influence the system’s behavior only in
position and velocity. This is because the elements using dynamical states are defined to
be without mass and therefore their inertia forces become zero what decreases the order
of their equations of motion by one.

4.1.4 Modeling of the wheel-rail contact

The interaction of vehicle and rail is an important element that distinguishes railway
vehicles from other multibody system applications. The supporting and guiding forces of
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4.1 Modeling of a railway vehicle system

a railway vehicle must be transmitted through the contact patches between the wheels and
the rails.
Before the forces can be modeled, a description of the wheel and rail profile geometries

has to be introduced to be able to determine the locations of the contact points. The
formulation of the contact patch geometry as well as the force estimation is a complex
field in railway vehicle dynamics. This chapter gives a brief overview of the implemented
approaches.

Profile geometry

The geometries of the wheel profiles and the rail profiles have significant influences on the
driving stability of a vehicle, the traveling comfort and the wear of the single parts.
As described in [17], the most common profile pair used in central Europe is the UIC60E1

profile for the rails and the S1002 profile for the wheels, see Figure 4.4.
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Figure 4.4: Wheel and rail profile geometries

It can be seen in figure 4.4a that the wheel profile is conical which supports the guidance
of the vehicle due to its kinematics as the following: If an unrestrained wheelset with
conical profiles moves laterally from the center of a track the outer wheel is rolling on a
larger radius than the inner one. This results in a yaw motion about the vertical axis as
the wheels have same rotational speed and as a result the wheelset will then naturally
tend back to the center of the track. Considering a curve the rolling radius difference then
matches the yaw velocity needed for the curve, since the wheelset will move outwards.
This leads to the introduction of the term conicity which is the difference in rolling radii
between the wheels over a given lateral shift y of the wheelset.
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Since most profiles are not purely conical, either by design or through wear in service,
the term equivalent conicity is applied and defined in EN 15302 [2] as follows:
“By definition, the equivalent conicity is equal to the tangent of the cone angle of a wheelset
with coned wheels whose lateral movement has the same kinematic wavelength as the given
wheelset (but only on tangent track and on very large-radius curves).”
According to [8] the wheelset will in fact tend to overshoot its equilibrium position due

to the conicity which effects the so-called kinematic oscillation. Klingel observed in [16] a
sinusoidal motion and described the angular frequency ω by

ω = v

√
λc
r0b

(4.13)

where v is the velocity of the wheelset, λc is the equivalent conicity, r0 is the wheel radius
when there is no lateral displacement and b is half the track gauge. The formula makes
clear that the greater the conicity the greater the frequency. Due to that, the oscillation
can cause instability in the motion of the wheelset if the so-called critical speed is reached.
The instability is known also known as hunting and is limited by flange24 contacts but can
lead to damage of track.
In most countries the rails are canted inwards in order to match the conicity of the wheel

to direct the normal force along the web of the rail when the wheelset is in central position.
The cant angle depends on the railway organization and in Germany and Austria e.g. the
rails are canted with a ratio of 1:40.
The wheel profile S1002, as shown in figure 4.4a, is a so-called worn profile since it is

derived from measurements of worn profiles.
With knowledge about the geometric characteristics the next task to be accomplished in

terms of wheel-rail contact force simulation is given by the contact patch description.

Contact geometry and contact forces

One of the fundamental problems that must be addressed in railway vehicle dynamics is
the formulation of the contact forces describing the interaction between the wheels and the
rails. Therefore, a formulation of the wheel-rail contact geometry has to be introduced. A
sample geometry configuration of the contact between a wheel profile (S1002) and a rail
profile (UIC60E1) is shown in Figure 4.5a.
In the contact search process the identification of location, size and shape of the contact

patch is the first step. In SIMPACK the result of the contact search is the number of
contact patches and their locations which are converted into an equivalent ellipse needed
for the normal force calculation. [33]
The Hertzian theory of contact between two elastic bodies is commonly used to give an

approximation of the resulting normal force on an elliptical contact patch and can be found
in [11]. The normal force in the contact area can be calculated with the assumption that
the pressure distribution is a semi-ellipsoid.
In SIMPACK an elastic contact formulation is used. That means that the normal force

in the contact patch is calculated by equivalent springs and dampers. For the calculation

24The flange is the inner part of the wheel that keep the wheels from running off the rails.
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(a) Contact point (b) Vertical and lateral contact forces

Figure 4.5: Wheel-rail contact

the user can choose between the Hertian method and a linear method. Both methods use
an equivalent penetration of the wheels. [30]
The acting force in the contact patch results from a normal and tangential component

and is usually split into a lateral force Y and vertical force Q (see Figure 4.5b). The ratio
Y/Q is often used to assess the safety against derailment.
The static component in lateral direction of the normal force helps to center the wheelset

if the wheelset is displaced since the force is directed towards the track center. This effect
is called the gravitational stiffness.
In reality some points on the surfaces in the contact region may slip while others may

stick when the two bodies, wheel and rail, move relative to each other due to the elasticity
of the bodies. As a result differences between the tangential strains of the bodies occur in
the contact area and leads to a small apparent slip. This slipping effect is called creepage
and leads to tangential creep forces and creep spin moments which have a significant effect
on the driving characteristics of railway vehicles.
Thus, a good model of the contact can be achieved by dividing the contact area in a

region where the particles of the bodies do not slide to each other, the adhesion region,
and a region where the particles are sliding, the slip region. This was first discovered by
Carter and can be found in his work. [5]
The tangential forces due to creepage in the contact area are usually split into longitudinal

and lateral components. Kalker studied the relationship between creepages and creep forces
carefully and proposed well-established methods and algorithms. [12]
In all three directions in which relative motion can occur creepage can be found. Accord-

ing to [8] the creepages are defined as follows:

γx =
v′x − vx

v
(4.14)

γy =
v′y − vy
v

(4.15)

ωz =
Ω′z − Ωz

v
(4.16)

where vx and vy are the actual wheel velocities in x- and y-direction and Ωz is the angular
velocity about the vertical direction. The terms v′x, v′y and Ω′z represent the pure rolling
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4.2 Input by excitation

velocities25 and v is the forward velocity of the wheelset.
A very popular approach is the simplified theory of Kalker which is used in the algorithm

FASTSIM to calculate the tangential forces in the contact and is described in [13]. It has
some assumptions in common to Hertz as it assumes the contact area to be elliptic and
flat. In FASTSIM, the contact surface is separated into a grid of parallel strips and the
creep forces can then be calculated by computing internal creepages for every element. The
relationship between creepage and creep forces is rather complicated and can be found in
[12].
Kalker also proposed a linear theory where the creep forces are linearly dependent on

the creepages as follows [8]:

Fx = −f11γx (4.17)

Fy = −f22γy + f23ωz (4.18)

Mz = −f23γy − f33ωz (4.19)

where γx, γy and ωz are the longitudinal, lateral and spin creepages and f11, f22, f23

and f33 are the linear creep coefficients depending on the Young’s modulus, the Poisson
ration and the ellipse semi-axis. These coefficients are constants and can be calculated
from formulas which were approximated in [12].

4.2 Input by excitation

The excitation of a railway vehicle results mainly from geometry irregularities of the rails
or the wheels. With the assumption that the wheels are not worn and perfectly shaped the
only irregularities are given by the rail track. Input forces due to rail track irregularities
build the unknown quantities to be identified within this work. A possible method of
modeling of the input is presented in the end of this chapter.

4.2.1 Track irregularities

Track irregularities are present even on new tracks. These irregularities are mostly ran-
dom and occur in different directions. Figure 4.6 illustrates the different types of track
irregularities.
Generally a track can be described according to [17] by four irregularities with the fol-

lowing definitions:

lateral: ∆y =
1

2
(yr + yl) (4.20)

vertical: ∆z =
1

2
(zr + zl) (4.21)

crosslevel: ϕcl =
1

2b
(zr − zl) (4.22)

gauge: ∆yG = yr − yl (4.23)

25The pure rolling velocity is the velocity when no creep occurs and thus both bodies have the same
forward velocity.
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4.2 Input by excitation

(a) Rail track (exaggerated illustration)

(b) Horizontal

(c) Vertical and crosslevel

Figure 4.6: Track irregularities

where yl and zl describes the position of the left rail and yr and zr describe the position
of the right rail. The term b is half the track base.
Since misalignments of the track gauge are changing the wheel-rail contact geometry

and do not have influence on the input forces directly, they are neglected for further
investigations.
As stated above the irregularities are random and therefore are commonly characterized

by their power spectral densities (PSDs). These spectral characteristics are obtained from
exemplary track measurements and depend on the regarded track, which is described more
detailed in [6].
According to ERRI B176 the polynomials of the PSDs for track irregularities in lateral

(y), vertical (z) and crosslevel (ϕ) direction are the following:

Sy(Ω) =
b0y

0.00028855 + 0.6803895Ω2 + Ω4
(4.24)

Sz(Ω) =
b0z

0.00028855 + 0.6803895Ω2 + Ω4
(4.25)

Sϕ(Ω) =
b2ϕΩ2

5.535659 · 10−5 + 0.1308172Ω2 + 0.8722335Ω4 + Ω6
(4.26)

where Ω is the spatial frequency in rad/m. The units of the PSDs are m2/(rad/m) in lateral
and vertical direction and rad2/(rad/m) in crosslevel direction. With Ω = 2πf and f = 1

L

the spatial wave length L of the rails can be obtained. [30] For a vehicle traveling with
the velocity V the angular frequency ω in rad/s is defined by ω = V Ω. [10] The numerator
coefficients for low and high track irregularities are shown in Table 4.1.
The rails are mounted on sleepers, which are nowadays usually made out of concrete.

The regarded SIMPACK model also includes four sleeper elements for a more realistic
modeling of the so-called elastic foundation of the rail track. [30]
The sleeper components can also be used to describe an unknown input term as described
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4.2 Input by excitation

Coefficient low irregularity high irregularity
b0y 1.440846 · 10−7 4.164787 · 10−7

b0z 2.741619 · 10−7 7.343623 · 10−7

b2ϕ 4.87399 · 10−7 1.305533 · 10−6

Table 4.1: Coefficients for low and high irregularities

in the following section.

4.2.2 Attainment of the input-force-matrix

The track irregularities lead to input forces which have to be modeled in order to formulate
the inverse problem of unknown input estimation.
A front view of a simplified bogie is given in Figure 4.7 representing the model from the

simulation software SIMPACK. For the later performed force estimation an input matrix
has to be given to be able to identify unknown input signals. Since it is not possible in
SIMPACK (Release 9.5) to declare random track irregularities ∆y, ∆z and ϕcl as input
elements, which would provide the opportunity to export an input matrix, an alternative
approach has to be found.
Assuming the occurrence of a perfect track without any track irregularities, the input

can be regarded as excitations of the sleepers which are transmitted through the wheel-rail
contact to the vehicle. In case of an elastic foundation, a sleeper element has three degrees
of freedom and its motion can be described by the three generalized coordinates ySl, zSl
and ϕSl.

Sleeper

Rail

Wheelset

Bogie frame

Bolster

Carbody

Figure 4.7: Front view of a bogie (simplified)

The state vector xSim of the whole railway vehicle system consists of n generalized co-
ordinates (and its derivatives) including the sleeper coordinates. To model the sleeper
coordinates as input excitations the system has to be transformed. Therefore the SIM-
PACK model which is assembled by nb bodies has to be reduced by the components that
belong to the sleepers.
Figure 4.8 shows the change in the model due to the reduction process. The generalized

coordinates of the sleeper elements can then be used to describe the input because of the
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4.2 Input by excitation

track irregularities ∆y, ∆z and ϕcl. Of course this approach comes along with the loss
of the characteristics of an elastic foundation, but as can be seen later in this work, their
influence for the estimation of input forces is not very high for the regarded model.

(a) Model before reduction (b) Model after reduction

Figure 4.8: Reduction of the SIMPACK model

In further computations a formulation of the input forces can be found with the eliminated
elements. Equation (4.27) gives the state-space representation of the linearized SIMPACK
model without known input (see equation (4.9)):

ẋSim = ASim xSim (4.27)

with the state vector xSim, its derivative ẋSim and the system matrix ASim. The aim is
to rearrange the equation from above to obtain an additional term Gw representing the
input force as shown in equation (4.28).

⇒ ẋ = Ax+ Gw (4.28)

Therefore the state vector xSim and the system matrix ASim have to be reduced by
elimination of components which belong to the sleepers. The procedure is given by equa-
tions (4.29)-(4.31).
First, the rows of the sleeper components (marked in gray) have to be selected and

eliminated. As a result, the input matrix G can be built with the columns of the sleeper
components since they represent the influence of the sleepers on all the other states (marked
in blue). The reduction of xSim and ASim can be achieved through elimination of these
entries.
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4.2 Input by excitation



ẊCar
...

ẊSl1

ẊSl2
...

ẊSl3

ẊSl4
...
ẊN

ẌCar
...

ẌSl1

ẌSl2
...

ẌSl3

ẌSl4
...
ẌN


︸ ︷︷ ︸

ẋSim

=



A1,1 . . . . . . . . . A1,ñ . . . . . . . . . A1,2ñ
...

...
...

...
...

...

...
...

...
Añ,1 . . . . . . . . . Añ,ñ . . . . . . . . . Añ,2ñ
Añ+1,1 . . . . . . . . . Añ+1,ñ . . . . . . . . . Añ+1,2ñ

...
...

...

...
...

...

...
...

...
A2ñ,1 . . . . . . . . . A2ñ,ñ . . . . . . . . . A2ñ,2ñ


︸ ︷︷ ︸

ASim



XCar
...

XSl1

XSl2
...

XSl3

XSl4
...
XN

ẊCar
...

ẊSl1

ẊSl2
...

ẊSl3

ẊSl4
...
ẊN


︸ ︷︷ ︸

xSim

(4.29)

⇒



ẊCar
...
...
...
ẊN

ẌCar
...
...
...
ẌN


︸ ︷︷ ︸

ẋ

=



A1,1 . . . . . . . . . A1,n . . . . . . . . . A1,2n
...

...
...

...
...

...
...

...
...

An,1 . . . . . . . . . An,n . . . . . . . . . An,2n
An+1,1 . . . . . . . . . An+1,n . . . . . . . . . An+1,2n

...
...

...
...

...
...

...
...

...
A2n,1 . . . . . . . . . A2n,n . . . . . . . . . A2n,2n





XCar
...

XSl1

XSl2
...

XSl3

XSl4
...
XN

ẊCar
...

ẊSl1

ẊSl2
...

ẊSl3

ẊSl4
...
ẊN


︸ ︷︷ ︸

xSim

(4.30)
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4.2 Input by excitation

Equation (4.31) is the matrix form of equation (4.28) and represents the new state-space
model of the reduced system.

⇔



ẊCar
...
...
...
ẊN

ẌCar
...
...
...
ẌN


︸ ︷︷ ︸

ẋ

=



A1,1 . . . . . . . . . A1,n . . . . . . . . . A1,2n
...

...
...

...
...

...
...

...
...

An,1 . . . . . . . . . An,n . . . . . . . . . An,2n
An+1,1 . . . . . . . . . An+1,n . . . . . . . . . An+1,2n

...
...

...
...

...
...

...
...

...
A2n,1 . . . . . . . . . A2n,n . . . . . . . . . A2n,2n


︸ ︷︷ ︸

A



XCar
...
...
...
XN

ẊCar
...
...
...
ẊN


︸ ︷︷ ︸

x

+

+




︸ ︷︷ ︸

G



XSl1

XSl2

XSl3

XSl4

ẊSl1

ẊSl2

ẊSl3

ẊSl4


︸ ︷︷ ︸

w

(4.31)

with the state vectors containing the generalized coordinates:

XCar =


yCar
zCar
ϕCar
ψCar
ϑCar

 , XSl1 =

ySl1zSl1
ϕSl1

 , XSl2 =

ySl2zSl2
ϕSl2

 ,

XSl3 =

ySl3zSl3
ϕSl3

 , XSl4 =

ySl4zSl4
ϕSl4

 , XN =

x1N
...
xiN

 .

The indices have the following meanings:

Car Carbody N Random body
Sl1 Front sleeper of front bogie iN Number of generalized coordinates of body N
Sl2 Rear sleeper of front bogie ñ Total number of generalized coordinates of the system
Sl3 Front sleeper of rear bogie n Reduced number of generalized coordinates of the system
Sl3 rear sleeper of rear bogie
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4.2 Input by excitation

As there are four sleepers with three generalized coordinates each (ns = 12), the reduced
system has n = ñ− ns generalized coordinates who form the reduced state vector x. The
state-space matrix A has less elements than ASim since the sleeper components who build
the input matrix G were eliminated. The input vector w is composed by the generalized
coordinates of the four sleepers. Table 4.2 shows the dimensions of the single elements of
the state-space model before and after the reduction of the sleeper elements.

Vector/Matrix Dimension
ẋSim, xSim [2ñ× 1]

ASim [2ñ× 2ñ]
ẋ, x [(2(ñ− ns)× 1] or [2n× 1]
A [(2(ñ− ns)× (2(ñ− ns)] or [2n× 2n]
G [(2(ñ− ns)× 2ns] or [2n× ns]
w [ns × 1]

Table 4.2: Dimensions of vectors and matrices before and after reduction

The input vector is named w since it is regarded as unknown within this work. In chap-
ter 5 an inverse problem is formulated with the objective of estimation of these particular
inputs.

4.2.3 Wheel-rail contact force calculation

The wheel-rail contact forces of the regarded railway vehicle, shown in Figure 4.1, occur in
eight contact patches, since the model contains four wheelsets. Figure 4.9 shows the front
view of a bogie and the applied wheel-rail contact forces on the left and right wheel of a
wheelset.

Figure 4.9: Applied contact forces

The forces can be written in a vector F where Yi1 and Yi2 represent the lateral forces for
the right and the left wheel and Qi1 and Qi2 are the vertical forces for the different sides of
the i-th wheelset respectively (i = 1, 2, 3, 4). If only the resultant forces for each wheelset
are requested a summation of the individual forces can be performed. The output force
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4.2 Input by excitation

vectors F and FΣ including all four wheelsets can then be given as follows:

F =



Y11

Q11

Y12

Q12
...
Y42

Q42


or FΣ =



Y1

Q1

Y2

Q2

Y3

Q3

Y4

Q4


=



Y11 + Y12

Q11 +Q12

Y21 + Y22

Q21 +Q22

Y31 + Y32

Q31 +Q32

Y41 + Y42

Q41 +Q42


(4.32)

where the first index of the forces denotes the wheelset and the second index stands for
the location of the wheel26.
An expression for lateral and vertical contact forces as output vector in state-space rep-

resentation can be given analogous to equation (4.10) by the following:

F = C̄FxSim (4.33)

= CFx+ DFw. (4.34)

where xSim is the state vector and C̄F is the force output matrix. As well as the linearized
state-space matrices this matrix can be obtained from SIMPACK through linearization
about the initial value. Similarly to above, the matrix C̄F has to be split into CF and DF

according to the reduced model, where x is the state vector and w is the unknown input
vector.
With equation (4.34) the contact forces can be calculated directly if the states x and

the input w are known. Later in this work, the wheel-rail forces can be derived using
this expression since the state and input estimates are obtained through application of an
inverse estimation approach as described in chapter 3.

26Y11 e.g. represents the lateral force occurring at the right wheel of the first wheelset, since the first 1
stands for the first wheelset and the second 1 stands for the right wheel.
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5 Input force estimation for a railway
vehicle system

The main part of this work is presented in this chapter. First, the inverse input estimation
problem for a railway vehicle system is formulated. Measurement data provided from a
simulation are the known signals needed for the inverse identification method and obtained
from accelerometers. Before the Kalman filter can be applied in order to obtain state and
input estimates the system has to be extended by a form filter. In the end, the results for
the estimated wheel-rail contact forces are compared with the simulated forces.

5.1 Inverse problem formulation

The wheel-rail contact forces that occur in the contact between wheels and rails of a
railway vehicle system, as described in chapter 4, have significant influences on running
safety and track loading as well as on the durability of vehicle components. Therefore,
their identification is of strong interest.
Due to random track irregularities the prediction of these forces is not trivial. For test-

ing, vehicles are equipped with devices to compute the forces from strain measurements
of strain gauge bridges which are mounted on wheel discs and/or the rail track. There-
fore, instrumented wheelsets are applied which are more or less custom-made. Track-side
measurement points have to be installed at many locations on the track in order to attain
useful results. More about the testing method can be found in [25].
However, these methods are expensive. Moreover, it is practically impossible to install

instrumented wheelsets during the long lasting regular operation of a train. Therefore,
a great demand for alternative approaches exists. But even though testing procedures
are often time consuming and expensive, some measurement data is irreplaceable. At
present various methods based on the inverse problem of using acceleration data in order
to determine unknown wheel-rail contact forces are proposed. Uhl presents in [32] an
inverse method for dynamic load estimation using measurements of system responses. In
[37] and [38] an inverse dynamics method is introduced by Zhu et al. in order to identify
lateral wheel-rail forces. These methods make use of the Thikonov regularization and the
Bellman principle of optimality to minimize the objective function for the estimation of
applied forces due to excitation, which is common for the inverse identification problem.
For the application of these methods no expensive instrumented wheelsets are needed since
accelerometers can be mounted more or less easily on every common vehicle, and sometimes
are already installed by default.
In this work, a new approach is introduced also using measurement data from accelerom-

eters. Hence, the inverse problem to be solved is the estimation of unknown wheel-rail
contact forces with knowledge of acceleration data.
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5.1 Inverse problem formulation

5.1.1 Problem statement

According to chapter 4.2 the linear state-space model of the regarded railway vehicle system
is given by:

ẋ = A x+ G w (5.1)

y = C x+ D w (5.2)

with the state vector x, the input vector w, the output vector y and the system matrices
A, G, C and D.
For the inverse problem described above the input vector w is assumed to be unknown

whereas the output vector y contains the measured accelerations. The system matrices can
be obtained from the simulation in SIMPACK where they are derived from the linearized
equations of motion (see sections 4.1.3 and 4.2.2).
The unknown input represents the sleeper displacements and sleeper velocities. Therefore

a formulation for the calculation of the wheel-rail contact forces has to be introduced
separately. The expression derived in section 4.2.3 is the following:

F = CFx+ DFw . (5.3)

where the output vector F contains the wheel-rail contact forces. The force-output matrices
CF and DF can be obtained in similar manner as the system matrices A, G, C and D

from the simulation in SIMPACK.
The stated inverse problem for the railway vehicle system is according to section 3.1 a de-

convolution with the aim to estimate unknown forces for a given system with measurement
data.

5.1.2 Estimation procedure

For the inverse problem from above the estimation procedure can be split into five steps.
The five steps are defined as follows and are described more detailed in the next sections:

Step 1: Simulation of the railway vehicle system and generation of measurement data.

Step 2: Extension of the linearized system with a form filter.

Step 3: State and input estimation with a Kalman filter on basis of measurement data.

Step 4: Force calculation with estimated states and inputs.

Step 5: Comparison of estimated and simulated results for the input forces.

It has to be mentioned at this point that the same procedure could be applied with real
measurements and results. This would result in exchanging the simulated data and results
used in steps 1 and 5 by real measurements. Within this work measurements are generated
with a simulation in SIMPACK.
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5.2 Measurement data from simulation

5.2 Measurement data from simulation

As stated before, the measurements are acquired from a SIMPACK simulation instead
of an actual vehicle since the main goal was the implementation of an inverse method.
The usage of real measurement data comes along with several additional problems and
phenomena which wanted to be prevented in this study to avoid a growth of complexity
for the considered system.
For the discussed model the positions of the sensors are shown in Figure 5.1. A symmet-

rical configuration is chosen, where eight accelerometers are installed in the axle boxes of
the wheelsets, respectively two on the bogie frames and two in the center between the bol-
sters and the carbody. For better identification of rotations about the z-axis (yaw-motion),
those sensors mounted on the wheelsets provide data in all three directions whereas the
others only measure the y- and z-component of the accelerations.

⊗ . . . accelerometer in [y, z] - direction
⊗ . . . accelerometer in [x, y, z] - direction

Figure 5.1: Positions of sensors on the railway vehicle

In the SIMPACK simulation the vehicle is traveling with a constant speed of 44 m/s

(= 158.4 km/h). This reduces the number of DOFs by one.27 The number of degrees of
freedom n of the regarded model is then 41 which can also be seen in Table 5.1. In the
SIMPACK model the rail track foundation is elastic and therefore four sleeper elements are
implemented. These bodies are used later to obtain the input-matrix for the estimation
process as described in section 4.2.2.

Body DOFs
Carbody 5
Bogie frame, front 6
Bogie frame, rear 6
Wheelset 1 6
Wheelset 2 6
Wheelset 3 6
Wheelset 4 6
nb = 7 n = 41

Body DOFs
Sleeper 1 3
Sleeper 2 3
Sleeper 3 3
Sleeper 4 3
nsb = 4 ns = 12

Table 5.1: DOFs of the simulation model

The model contains 34 additional so-called dynamic states (ndyn = 34) describing special

27In this case the forward motion of the carbody (x-direction) is constrained due to the constant velocity.
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5.3 System extension with a form filter

force elements as serial spring-dampers e.g. (see section 4.1.2, sdyn). This finally results in
a state vector with 140 state entries (= (n+ ns) · 2 + ndyn) for the simulation model.28

The vehicle is driving on a straight track, where high track irregularities (ERRI B176
high, according to [30]) are assumed to be given. This is important in order to select the
correct form filter parameters, given in Table 4.1, required for the system extension which
is introduced next.

5.3 System extension with a form filter

With background knowledge about the spectral characteristics of the unknown input the
state-space model representation in equations (5.1) and (5.2) can be extended with a form
filter containing information about the random track irregularities, which were introduced
in chapter 4.2.1. This is necessary because of the fact that the Kalman filter algorithm,
which will be applied for state estimation, works best with white noise.
Figure 5.2 shows the block diagram of the extended system, where w represents the

unknown input for the railway vehicle system and is equal to the output yFF of the form
filter element. The extension of the model allows the implementation of the Kalman filter
algorithm for the given state-space model even when the unknown input is not white noise,
which is the case for the assumed excitation by random track irregularities.

Form filter Railway vehicle system

Extended system

Figure 5.2: Model of form filter and system

With the PSD polynomials describing the spectral characteristics of the track irreg-
ularities from chapter 4.2.1 the form filter can be formulated. The PSDs S(ω) of the
irregularities can be formulated according to [27] with the constant PSD S0 of white noise
as the following:

S(ω) = S0 · |F (jω)|2 (5.4)

with the transfer function F (jω) of the form filter. The transfer function F (jω) of the
form filter can be derived through factorization of the PSD polynomial since:

|F (jω)|2 = F (jω) · F ∗(jω) = Fff (jω) · F ∗(jω) (5.5)

28The states of the bodies with masses are described by displacement and velocity (two first-order states)
whereas the dynamical states only are described by a differential equation of first-order each (one
first-order state).[30] See also sections 4.1.2 and 4.1.3.
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where F ∗(jω) is the conjugate complex of the transfer function F (jω) = Fff (jω) of the
form filter. The transformation with s = jω leads to:

S(s) = S0 · F (−s) · F (s) (5.6)

Fff (s) = F (s) (5.7)

with the transfer function Fff (s) of the form filter. This formulation is necessary to derive
a state-space model description of the filter.
With assumption of a standard normal distribution of white noise (σ2 = 1, ⇒ S0 = 1)

the PSD polynomials from equations (4.24)-(4.26) can be written after substitution of the
spatial frequency Ω with s = jω (⇒ Ω = s

jV ) as follows:

Sy(s) =
b0yV

4

0.00028855V 4 − 0.6803895V 2s2 + s4
= · · · =

=

√
b0yV

2

0.0169876V 2 − 0.8452V s+ s2︸ ︷︷ ︸
Fy(−s)

·
√
b0yV

2

0.0169876V 2 + 0.8452V s+ s2︸ ︷︷ ︸
Fy(s)=Fffy (s)

(5.8)

Sz(s) =
b0zV

4

0.00028855V 4 − 0.6803895V 2s2 + s4
= · · · =

=

√
b0zV

2

0.0169876V 2 − 0.8452V s+ s2︸ ︷︷ ︸
Fz(−s)

·
√
b0zV

2

0.0169876V 2 + 0.8452V s+ s2︸ ︷︷ ︸
Fz(s)=Fffz (s)

(5.9)

Sϕ(s) =
b2ϕV

4s2

5.535659 · 10−5V 6 + 0.1308172V 4s2 − 0.8722335V 2s4 + s6
= · · · =

=

√
b2ϕV

2s

0.000744V 3 − 0.387184V 2s+ 1.2832V s2 − s3︸ ︷︷ ︸
Fϕ(−s)

·

·
√
b2ϕV

2s

0.000744V 3 + 0.387184V 2s+ 1.2832V s2 + s3︸ ︷︷ ︸
Fϕ(s)=Fffϕ (s)

. (5.10)

The factorization of the PSD polynomials in equations (5.8), (5.9) and (5.10) lead to the
transfer functions Fffy(s), Fffz(s) and Fffϕ(s). With these transfer functions a state-space
model description for the form filter element can be derived and is given by:

ẋffi = Affi
xffi + Bffi

wffi (5.11)

yffi = Cffi
xffi (5.12)

with the matrices for the lateral, vertical and crosslevel direction:
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Affy =

[
0 1

−0.01698676V 2 −0.8452V

]
, Bffy =

[
0

1

]
, Cffy =

[√
b0yV

2 0

0
√
b0yV

2

]
,

Affz =

[
0 1

−0.01698676V 2 −0.8452V

]
, Bffz =

[
0

1

]
, Cffz =

[√
b0zV

2 0

0
√
b0zV

2

]
,

Affϕ =

 0 1 0

0 0 1

−0.000744V 3 −0.387184V 2 −1.2832V

 , Bffϕ =

0

0

1

 ,
Cffϕ =

[
0
√
b2ϕV

2 0

0 0
√
b2ϕV

2

]
.

(5.13)

The combination of all three directions of the irregularities yields a set of equations with
the following matrices:

Aff =

Affy 0 0

0 Affz 0

0 0 Affϕ

 , Bff =

Bffy 0 0

0 Bffz 0

0 0 Bffϕ

 , Cff =

Cffy 0 0

0 Cffz 0

0 0 Cffϕ

 .

(5.14)

Since the railway vehicle consists of four independent wheelsets, where any correlation
between their excitation is neglected, an appropriate description of the form filter has to
be found. Hence the form filter system including all irregularities of the four wheelsets
results in:

ẋFF = AFF xFF + BFF wFF (5.15)

yFF = CFF xFF (5.16)

with the system matrices

AFF =


Aff 0 0 0

0 Aff 0 0

0 0 Aff 0

0 0 0 Aff

 , BFF =


Bff 0 0 0

0 Bff 0 0

0 0 Bff 0

0 0 0 Bff

 ,

CFF =


Cff 0 0 0

0 Cff 0 0

0 0 Cff 0

0 0 0 Cff

 .

(5.17)

The form filter is implemented through the combination with the state-space model of the
railway vehicle system given by equations (5.1) and (5.2). The combination is performed
by setting the unknown input of the railway vehicle system w equal to the output yFF
of the form filter described in equation (5.15) and (5.16). This results in a set of three
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5.4 Kalman filter with unknown input

equations:

ẋ = A x+ GCFF xFF (5.18)

ẋFF = AFF xFF + BFF wFF (5.19)

y = C x+ DCFF xFF . (5.20)

The extended system can be rearranged by introducing the state vector x̃ of the combined
system as follows: [

ẋ

ẋFF

]
︸ ︷︷ ︸

˙̃x

=

[
A GCFF

0 AFF

]
︸ ︷︷ ︸

Ã

[
x

xFF

]
︸ ︷︷ ︸

x̃

+

[
0

BFF

]
︸ ︷︷ ︸

B̃

wFF (5.21)

y =
[
C DCFF

]
︸ ︷︷ ︸

C̃

[
x

xFF

]
︸ ︷︷ ︸

x̃

. (5.22)

Finally, a state-space model description of the railway vehicle system extended with a form
filter for random track irregularities is obtained and given by:

˙̃x = Ã x̃+ B̃ wFF (5.23)

y = C̃ x̃ . (5.24)

5.4 Kalman filter with unknown input

In section 3.4 the Kalman filter algorithm is described and applied for the unknown input
estimation of a two-mass system. In similar manner this approach can be used to identify
the states of the regarded railway vehicle system in order to estimate the unknown wheel-
rail contact forces.
The discrete-time state-space model for the extended system from equations (5.23) and

(5.24) is given by the following set of equations:

x̃k = Ad x̃k−1 + Bd wFFk−1
(5.25)

yk = Cd x̃k (5.26)

with the discrete-time state vector x̃k = [xk xFFk ]T , the output vector yk and the discrete-
time system matrices Ad, Bd and Cd. The discretization with the time step size ∆t =

tk − tk−1 can be performed according to section 2.1.3 by:

Ad = eÃ∆t, Bd = Ad[I− e−Ã∆t]Ã−1B̃ . (5.27)

The discrete-time output matrix Cd is equal to its continuous form C.
Before the update equations can be evaluated the system has to be initialized. The initial
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5.5 Force calculation

estimate ˆ̃x0 of the initial state x̃0 = x̃(t = t0 = 0) is defined as:

ˆ̃x0|0 = E[x̃0] (5.28)

P0|0 = E[(x̃0 − ˆ̃x0|0)(x̃0 − ˆ̃x0|0)T ] (5.29)

and set to be zero here assuming that the vehicle is at rest at the beginning of the simulation
process.
Identically to section 3.4 the Kalman filter algorithm can be applied after the initialization

for each time step k = 1, . . . , n and is defined by the following time-update equations
according to the description of the extended system given in equation (5.25) and (5.26):

Pk|k−1 = AdPk−1|k−1Ad
−1 + Q (5.30)

ˆ̃xk|k−1 = Ad
ˆ̃xk−1|k−1 (5.31)

which represents a prediction step for the covariance Pk and the a priori state estimate
ˆ̃xk|k−1 with Q = GdQ̄GT

d .

The measurement-update equations lead to the a posteriori state estimate ˆ̃xk|k and are
defined as follows:

Lk = Pk|k−1Cd
T(CdPk|k−1Cd

T + R)−1

= Pk|kCd
TR−1 (5.32)

Pk|k = (I− LkCd)Pk|k−1(I− LkCd)T + LkRLk
T

= · · · = (I− LkCd)Pk|k−1 (5.33)
ˆ̃xk|k = ˆ̃xk|k−1 + Lk(yk −Cd

ˆ̃xk|k−1) . (5.34)

With equation (5.34) the final state estimation can be obtained and used for the force
calculation which is presented next.

5.5 Force calculation

The final step of the estimation process is given by the calculation of the wheel-rail contact
forces with the estimated states x̂k and the estimated inputs ŵk of the railway vehicle
system. With use of equations (5.16) and (5.3) an estimation of the wheel-rail contact
forces can be obtained as follows:

ŵk(= ŷFFk) = CFF
ˆ̃xk (5.35)

F̂k = CFx̂k + DFŵk (5.36)

where ˆ̃x is the estimated state of the extended system and x̂ is the estimated state vector
of the railway vehicle system.
With the presented inverse identification method results for the wheel-rail contact forces

acting in the contact patches can be derived and are compared with the simulated results
in the following section.
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5.6 Comparison and validation of results

5.6 Comparison and validation of results

The wheel-rail contact forces are evaluated according to EN 14363 [1] up to frequencies of
20 Hz. Therefore the contact force signals have to be low-pass filtered in advance. Here, a
4th order Butterworth low-pass filter is applied to all of the simulated and the estimated
forces before they are compared with each other.
The simulation time is 100 s while the vehicle, as described above, is driving with a

constant speed of 44 m/s on a straight track, where ERRI high track irregularities are
assumed. The vehicle elements and chosen parameters are given in appendix B.
A comparison of estimated and simulated signals for the resultant vertical contact forces

for the first wheelset (named Wheelset 1 in Figure 4.1) in the time t = 0 − 20 s is shown
in Figure 5.3a. An enlargement of the diagram is given in Figure 5.3b where a significant
correlation can be identified.

0 5 10 15 20
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
x 105

F
or

ce
 i
n
 N

FSIMPACK     
Festimated   

 in s

(a) Vertical contact force

F
or

ce
 i
n
 N

10 10.5 11 11.5 12
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
x 105

FSIMPACK     
Festimated   

 in s

(b) Vertical contact force, enlarged

Figure 5.3: Resultant vertical contact forces for the first wheelset
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Figure 5.4: Comparison for the first wheelset, vertical forces
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5.6 Comparison and validation of results

For the analysis in time domain an additional validation method is provided by com-
parison of the maximum forces of time segments, which are defined here with a constant
length of 5 s (=̂220 m of the corresponding rail track at a speed of 44 m/s). The linear
regression fit of the maximums of the vertical contact forces occurring at the first wheelset
is given in Figure 5.4a as well as the coefficient of determination R2 of the maximums (see
appendix A).
In terms of frequency domain analysis a PSD comparison of the simulated and the es-

timated forces is chosen. Figure 5.4b shows a good agreement of the forces for the first
wheelset in frequency domain.
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Figure 5.5: Resultant lateral contact forces for the first wheelset
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Figure 5.6: Comparison for the first wheelset, lateral forces

There are significant nonlinear effects in the SIMPACK simulation because of the contact
point geometry and tangential force calculation, as described in section 4.1.4. This causes
differences between the SIMPACK-model and the estimation-model, which is based on a
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5.6 Comparison and validation of results

linearized model. Especially in lateral direction, the influence of non-linearity is significant,
hence it is not unexpected that the estimated results are not as good as in vertical direction.
A comparison of the simulated and estimated contact forces in lateral direction for the

first wheelset is given in Figures 5.5a and 5.5b.
Differences of the resulting lateral contact force acting on the first wheelset in time

domain can be especially observed through inspection of the maximum comparison, given
in Figure 5.6a. The PSD analysis in Figure 5.6b compares the simulated and estimated
lateral forces in frequency domain.
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Figure 5.7: Resultant vertical contact forces for the fourth wheelset

The estimation results for the first wheelset are not as good as for the other wheelsets
whereas the best estimation results are obtained for the fourth wheelset. A reliable reason
for this observation cannot be given at this point and would require further investigations.
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Figure 5.8: Comparison for the fourth wheelset, vertical forces

Figures 5.7a and 5.7b show the time domain comparison of the resultant force in vertical
direction for the fourth wheelset. It can be seen that the correlation between the estimated
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5.6 Comparison and validation of results

and simulated forces is better as for the first wheelset. This can also be detected by
comparing the maximums of the forces, shown in Figure 5.8a, where the linear regression fit
of the estimated and the simulated force maximums approves the considerable correlation
in vertical direction. The PSD analysis of the vertical force for the fourth wheelset is given
in Figure 5.8b and also shows good agreement of the results from simulation and estimation
in frequency domain.
For the contact forces acting on the fourth wheelset in lateral direction the comparison

of the simulated and estimated results is given in Figure 5.9a. Differences of the resultant
lateral contact force acting on the fourth wheelset in time domain can be observed through
inspection of the enlarged view, which is shown in Figure 5.9b.

0 5 10 15 20
−3

−2

−1

0

1

2

3
x 104

F
or

ce
 i
n
 N

FSIMPACK     
Festimated   

  in s

(a) Lateral contact force

10 10.5 11 11.5 12
−3

−2

−1

0

1

2

3
x 104

F
or

ce
 i
n
 N

FSIMPACK     
Festimated   

  in s

(b) Lateral contact force, enlarged

Figure 5.9: Resultant lateral contact forces for the fourth wheelset
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Figure 5.10: Comparison for the fourth wheelset, lateral forces

The force maximums in lateral direction, see Figure 5.10a, show not as good correlation
of the estimated and simulated forces acting on the fourth wheelset as in vertical direction.
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5.6 Comparison and validation of results

However, correlation is still given and thus the application of the estimation method also
for the lateral direction can be regarded as suitable.
The presented method also provides a distinction between the forces applied on the

left and right wheels of the wheelsets without restriction to resultant force estimation, as
described in section 4.2.3. As an example, the estimated vertical wheel-rail contact force
of the right wheel (direction of view is the positive x-direction) of the fourth wheelset is
compared to the simulated result in Figures 5.11a and 5.11b.
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Figure 5.11: Vertical contact forces the right wheel of wheelset 4
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Figure 5.12: Comparison for the right wheel of wheelset 4, vertical forces

In Figure 5.12a the comparison of the force maximums is given and shows that the corre-
lation is not as good as for the resultant forces (see Figure 5.8a). The PSD comparison of
the single vertical force on the right side of the fourth wheelset is shown in Figure 5.12b and
underlines the accordance of the estimated and the simulated force in frequency domain.
Accordingly, the time domain results of the estimated and simulated force acting in
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lateral direction on the right wheel of the fourth wheelset are given in Figures 5.13a and
5.13b.
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Figure 5.13: Lateral contact forces for the right wheel of wheelset 4

The comparison of the maximums of the simulated and the estimated forces is shown
in Figure 5.14a and underlines the assumptions from above that the correlation in lateral
direction is not as good as in vertical direction. The frequency domain results, given by
Figure 5.14b, show differences in the spectral characteristics for very low frequencies.
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Figure 5.14: Comparison for the right wheel of wheelset 4, lateral forces

Similar to previous results, the estimation of forces in lateral direction on single sides of
the wheelsets is not as accurate as in vertical direction because of the higher influence of
non-linear factors. However, the results are still correlating.
In general, the estimation of resultant forces provide better results, which can be quanti-

fied by comparing the coefficients of determination considering all sampling points for con-
tact forces acting on the right wheel in lateral (R2

lat−r = 0.82683) and vertical (R2
vert−r =

0.96591) direction with the values for their corresponding resultant forces (R2
lat = 0.85986,
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5.6 Comparison and validation of results

R2
ver = 0.99824). Although the estimation is not as accurate for a single side, the correla-

tion can be regarded as significant, especially in vertical direction.
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6 Conclusion

An estimation method using a Kalman filter algorithm for the inverse determination of
lateral and vertical wheel-rail contact forces was introduced. The method was applied on
a railway vehicle system based on a model from a SIMPACK simulation.
It was shown that inverse problems can be classified as a deconvolution or a system

identification problem. Within this work a deconvolution, the identification of inputs on
the basis of output data with knowledge about the system, was the task to be accomplished.
Consequently, four methods for the inverse identification of unknown input were presented.
The regarded approaches were applied on a simple model of a one-dimensional two-mass
system in order to estimate an unknown excitation quantity with knowledge about the
system characteristics and acceleration data. Good estimation results were obtained from
two methods which are a parity space approach and a method based on a Kalman filter
algorithm. The best fitting estimates compared to a given signal were obtained by the
application of the Kalman filter algorithm. As a result, this method was selected for the
estimation of unknown input forces of the more complex system of a railway vehicle.
Before the inverse problem solving task for a railway vehicle system could have been

discussed, the mechanical concepts of multibody simulation with application to railway
vehicles were presented. Especially random track irregularities are important to consider
for the multibody simulation as they excite the vehicle and lead to unknown input forces.
Since the input forces are transmitted through the contact patches between wheels and
rails, a main problem in terms of modeling of a railway vehicle is given by the wheel-
rail contact. Hence, several approaches for the mathematical description of the wheel-rail
contact geometry were given. After that, the modeling of the contact forces could have
been introduced. Finally, all components needed for the mechanical modeling of a railway
vehicle system were described.
The main goal of this work was the inverse force identification of a railway vehicle sys-

tem based on a SIMPACK simulation. Hence, a statement of the given inverse problem
had to be formulated as the identification of unknown wheel-rail contact forces on basis
of acceleration measurements with assumption that the system characteristics are known.
Acceleration data from the simulation instead of real measurement data were taken al-
ternatively. Afterwards the SIMPACK model was linearized before the system matrices
were exported in order to be implemented in the estimation process. The system was
extended by a form filter element to obtain more accurate estimation results. The form
filter was modeled on the basis of power spectral density polynomials of assumed random
track irregularities. After state estimation by the use of a Kalman filter, wheel-rail contact
forces have been calculated from generated acceleration data. The identification method
is not restricted to the estimation of resultant forces acting on a wheelset. Moreover, a
distinction between the forces occurring on the left and on the right wheel of the single
wheelsets can be made.
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6 Conclusion

The comparison of the results with the SIMPACK simulation show significant correlations
and motivates further investigation of this approach. Especially in vertical direction good
agreement between the estimated and the simulated forces can be detected. Although the
correlation in lateral direction is not as good as in vertical direction, the applied method
still can be regarded as suitable for the solution of the given inverse problem.
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A Simple linear regression

The simple linear regression model is a useful tool to quantify the dependence of two
random variables x and y. More about the characteristics and applications of this model
can be found in [24] and [34]. This chapter presents the derivation of a measure called
the coefficient of determination which is used in this work for the evaluation of estimation
results.
A residual ri for n data points xi and yi is given by the following:

ri = yi − ŷi for i = 1, . . . , n (A.1)

with the mean function ŷi which is defined as:

ŷi = β0 + β1xi (A.2)

with the intercept β0 and the slope β1 which are unknown coefficients.
The discussed method chooses the parameters β0 and β1 to minimize the so-called residual

sum of squares SSresid. The derivation of the least-squares estimates β̂0 and β̂1 can be
found e.g. in [34]. The residual sum of squares is given by:

SSresid =

n∑
i=1

(yi − ŷi)2. (A.3)

For the calculation of the coefficient of determination R2 the so-called regression sum of
squares SSreg and the total sum of squares SStotal have to be introduced as follows:

SSreg =
n∑
i=1

(ŷi − ȳ)2 (A.4)

SStotal =
n∑
i=1

(yi − ȳ)2 (A.5)

where ȳ is the mean of y.
The coefficient of determination R2 can then be obtained by:

R2 =
SSreg
SStotal

= 1− SSresid
SStotal

(A.6)

and represents the goodness of fit of the regression line ŷ to the data y. R2 takes a value
between 0 and 1 where R2 = 1 denotes a perfect fit.
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B Model parameters

A multibody simulation of the railway vehicle system was performed with SIMPACK in
order to obtain acceleration data. The model can be split into bodies and force elements.
The corresponding parameters used within this work are shown in Tables B.1 and B.2.

Bodies Parameter Description Value

1 Carbody mCar body mass 32000 kg
IxxCar

moment of inertia about x 56800 kgm2

IyyCar
moment of inertia about y 19700000 kgm2

IzzCar
moment of inertia about z 19700000 kgm2

2 Bogie frames mBogie body mass 2615 kg
IxxBogie

moment of inertia about x 1722 kgm2

IyyBogie
moment of inertia about y 1476 kgm2

IzzBogie
moment of inertia about z 3076 kgm2

2 Bolsters (dummy) mBolster body mass 10−6 kg
IxxBolster

moment of inertia about x 10−6 kgm2

IyyBolster
moment of inertia about y 10−6 kgm2

IzzBolster
moment of inertia about z 10−6 kgm2

4 Wheelsets mWS body mass 1813 kg
IxxWS

moment of inertia about x 1120 kgm2

IyyWS
moment of inertia about y 112 kgm2

IzzWS
moment of inertia about z 1120 kgm2

Table B.1: Body parameters of the railway vehicle system simulated in SIMPACK
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B Model parameters

Elements Parameter Description Value

2 Traction rods cpTR
linear spring stiffness 5000000 N/m

csTR
serial linear spring stiffness 10000000 N/m

dsTR
serial linear damping 25000 Ns/m

8 Primary springs csxPS
serial linear spring stiffness 60000000 N/m

csyPS
serial linear spring stiffness 7500000 N/m

cpxPS
parallel linear spring stiffness 31391000 N/m

cpyPS
parallel linear spring stiffness 3884000 N/m

cpzPS
parallel linear spring stiffness 1220000 N/m

dsxPS
serial linear damping 15000 Ns/m

dsyPS
serial linear damping 2000 Ns/m

8 Primary dampers csPD
serial linear spring stiffness 600000 N/m

dsPD
serial linear damping 4000 Ns/m

4 Secondary springs cxSS
linear shear stiffness 160000 N/m

cySS
linear shear stiffness 160000 N/m

czSS
linear vertical stiffness 430000 N/m

cϕPS
linear roll bending stiffness 10500 Nm/rad

cψPS
linear pitch bending stiffness 10500 Nm/rad

4 Secondary dampers (lateral) csSDy
serial linear spring stiffness 6000000 N/m

dsSDy
serial linear damping 32000 Ns/m

4 Secondary dampers (vertical) csSDz
serial linear spring stiffness 6000000 N/m

dsSDz
serial linear damping 20000 Ns/m

2 Anti-roll bars cαAR
bending stiffness about x 940000 Nm/rad

Table B.2: Force elements of the railway vehicle system simulated in SIMPACK
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