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Abstract

The flow of dry and wet granular material in simple geometries cannot easily
be predicted for design or optimization processes in its industrial applications.
To better understand the granular behavior of a bed of monodisperse spherical
beads in a four-bladed cylindrical mixer, the effect of various geometrical, op-
erational and material parameters on the particle stress, mixing behavior and
impeller torque were studied using DEM simulations.

The cohesive forces at different liquid contents were implemented using a simpli-
fied version of the model proposed by Mikami et al. [15], and the computational
performance of the DEM simulation was enhanced by using reduced shear mod-
uli.

In the observed range, the torque on the impeller and its fluctuation were pro-
portional to the number of particles. The quasistatic regime was not observed
at high fill heights in the dry simulations. The normal stress in the particle bed
could be approximated by hydrostatics for the region above the blades. In the
blade region, the stress was lower than predicted by hydrostatics.

The impeller torque decreased for higher blade clearances due to the lower shear
rates below the blades. At a very low friction of µs = 0.1, the particle bed moved
almost as a solid block. At friction coefficients of 0.5 and 1.0, the particles moved
slower and the torque increased. The particle movement was very similar for
µs = 0.5 and µs = 1.0, both having a very high mixing rate compared to the
low-friction case. Increasing the cohesiveness of the system also increased the
torque and improved the initial mixing rate, but the mixing rate at high Bond
numbers dropped severely after a few revolutions. The diffusion coefficient had
its maximum at a Bond number of roughly ten.
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Kurzfassung

Das Verhalten trockener und feuchter granularer Systeme in unkomplizierten
Geometrien kann nicht auf einfache Weise vorhergesagt werden, wird jedoch in
vielen industriell relevanten Auslegungs- und Optimierungsprozessen benötigt.
Um das granulare Verhalten eines Betts monodisperser sphärischer Partikel in
einem vierflügeligen zylindrischen Mischer besser zu verstehen, wurden in einer
DEM-Simulation die Auswirkungen verschiedener Geometrie-, Betriebs- und
Materialparameter auf die Spannungen, das Mischverhalten und das Drehmo-
ment am Impeller untersucht.

Die Kohäsionskräfte bei verschiedenen Flüssigkeitsgehalten wurden mittels einer
vereinfachten Version des Modells von Mikami et al. berechnet [15], und
die Rechenperformance der DEM Simulation wurde durch eine Reduktion des
Schubmoduls der Partikel verbessert.

Im untersuchten Bereich waren das Impellerdrehmoment sowie seine Fluktu-
ation proportional zur Anzahl der Partikel. Bei Simulationen mit großen
Füllhöhen konnte kein quasistatisches Regime beobachtet werden. Die Nor-
malspannungen im Partikelbett über dem Impeller konnten durch hydrostatis-
che Berechnungen angenähert werden. Im Bereich der Rührflügel waren die
Spannungen jedoch geringer als die hydrostatische Näherung.

Das Drehmoment am Impeller nahm bei zunehmendem Abstand der Flügel vom
Mischerboden ab, da bei größerem Abstand die Scherrate geringer war. Bei sehr
geringer Reibung (µs = 0.1) bewegte sich das Material als beinahe einheitliches
Bett. Bei Reibungen von 0.5 und 1.0 bewegten sich die Partikel langsamer
und das Drehmoment war höher. Die Partikel bewegten sich bei µs = 0.5
und µs = 1.0 auf sehr ähnliche Weise, und beide zeigten ein deutlich besseres
Mischverhalten als die Simulationen bei geringer Reibung. Auch beim Erhöhen
der Kohäsion stiegen das Drehmoment sowie die anfängliche Mischrate, jedoch
sank die Mischrate nach wenigen Umdrehungen bei hohen Bondzahlen. Der
Diffusionskoeffizient zeigte ein Maximum bei einer Bondzahl von etwa zehn.
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1 Introduction

1.1 Motivation

The flow of dry and wet granular material, though relevant for numerous in-
dustrial branches such as the pharmaceutical and food industry, is not yet un-
derstood well enough to reliably predict its behavior. While fluid flows can be
described using sets of first-principle equations with a known initial state and
boundary conditions, no such tools are available for granular systems. Tradi-
tionally, heuristic methods are used for the design, scale-up and problem-solving
of granular processes [17, p. 1ff].

While the behavior of granular flows in simple geometries such as shear flows or
Couette flows has been studied extensively, less data is available on geometries
commonly used in industrial processes. One of the most universally employed
geometries is the cylindrical mixer agitated with an impeller. Although it is
typically used to create homogeneous blends of granular material, it is in some
cases used to improve the heat and mass transfer, e.g. in agitated drying [17,
p. 3ff]. The flow patterns and shear rates as well as the influence of the geometry,
the operating parameters and the particle properties in these agitated mixers
have been studied by Brenda Remy [17].

1.2 Flow regimes

The rheological behavior of granular materials cannot be described as easily as
that of fluid flows, since the correlation between stress and strain rates is not
readily available [17, p. 4ff]. The local stress conditions determine whether a
granular material behaves like an elastic solid or like a fluid. While in its elastic-
solid state, it can support high loads. Since much of the load is distributed
between the frictional bonds between the particles, the capacity is limited by
these bonds [8].

Once enough bonds have been overcome, the granular material starts to flow
in blocks consisting of many particles. These move along shear bands which
approximately follow the stress characteristics of the material [8]. These shear
bands are, however, not infinitesimally thin planes but rather zones with a depth
in the order of ten particles. In these bands, the particles form force chains, i.e.
structures that support the bulk of the stress [3]. As long as the movement is
slow enough, the particles will stay in frictional contact with their neighbors.
This regime is called quasistatic [8]. In this state, the bulk material can be
considered a continuous plastic solid [3].

If, on the other hand, the speed is increased, the material will reach a state in
which the particles move freely and without staying in contact with their initial
neighbors. This is commonly called the rapid-flow regime. In this regime,
the stress τij correlates to the square of the shear rate γ, as demonstrated in
equation 1. ρP is the particle density, R the particle radius, and fij is a tensor-
valued function of the solid fraction v [8].

τij = ρPR
2fijγ

2 (1)
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The motion of a single particle in this regime can be described as the sum of
the mean bulk velocity vector and a seemingly random velocity component. In
analogy to the random thermal motion on a molecular level, the mean-square
value of the random velocities is usually called granular temperature. Like
the molecular temperature, the granular temperature generates pressure and
governs the internal transport rates of mass, momentum, and energy. There
are, however, fundamental differences between the molecular and the granular
temperature. The granular temperature is lost almost instantaneously once
no more energy is supplied to the system to make up for the energy lost in
dissipation [8].

In an attempt to bridge the gap between the quasistatic and the rapid-flow
regimes, Campbell [3, p. 219ff] proposed a model that considered the elastic
properties of the material. He then divided the whole granular flow field into
an elastic-quasistatic regime and an inertial regime. The former is governed
by elastic forces while the latter is controlled mainly by inertial forces. In the
transition regime (elastic-inertial), the forces are of the same order of magnitude.
[3, p. 219ff]

In their study of the intermediate flow regime, Tardos et al. [25] suggested a
dimensionless shear rate γ∗ as shown in equation 2, wherein dP is the particle
size and g is the gravitational acceleration. The dimensionless shear rate was
then used to describe different regimes of powder flow.

γ∗ = γ

√
dp
g

(2)

Their analysis of experimental data led to the conclusion that the torque and
stress of a powder in an unconfined flow were independent of the shear rate.
For confined Couette flows, however, he found that the dimensionless shear
stress was dependent on γ∗ n, wherein n appeared to be related to the particle
concentration C. At very low shear rates - i.e., in the quasistatic regime - the
index n was 0, effectively rendering the system independent of the shear rate.

At higher dimensionless shear rates (intermediate regime), Tardos et al. con-
sidered the correlation to be τ ∝ (γ∗)n with n starting below one and rising to
one as the shear rate increased. At very high shear rates (γ∗ > 3), the particle
bed was in the rapid granular flow regime and followed τ ∝ (γ∗)2 .

The experimental data provided by Remy [17, p. 146ff] for bladed mixers showed
the same shear-independent behavior for dimensionless shear rates γ∗ < 0.1. It
can be explained by the predominant mechanism for momentum transfer in the
quasistatic regime, which is the formation of force chains. At low rotational
speeds, the average number of these chains does not change for different speeds.

At higher shear rates (γ∗ > 0.1), the shear stress scaled linearly with the shear
rate [17, p. 146ff]. Extrapolating the stress to a shear rate of γ∗ = 0 led to
an offset of the stress, similar to the relation used to describe Bingham fluids:
τσr = τy + κγo, with τy being the yield stress and κ the apparent viscosity [17,
p. 147].
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1.3 Cohesion

1.3.1 Regimes

Cohesive forces are attractive forces between the particles. Their origin may be
van der Waals-forces, electrostatic charges, or capillary forces. For uncharged
wet particles that exceed diameters of several hundred micrometers, the capillary
forces caused by liquid bridges govern the cohesive behavior [1].

Different regimes can be described as the liquid content increases [16]:

Pendular: At low liquid contents, liquid bridges form between the particles.
This results in capillary attraction. For spherical particles, the upper limit
of this regime is a liquid volume fraction of 23 % [27].

Funicular: Some of the pores are completely filled with liquid while liquid
bridges remain at some of the contact points. Both contribute to the
capillary forces.

Capillary: All pores are completely filled with liquid. The liquid surface still
forms menisci and the liquid pressure is lower than the ambient pressure.
Capillary attraction exists.

Slurry/droplet: The particles are surrounded by liquid, the liquid surface
is convex. The liquid pressure is equal to or higher than the ambient
pressure. No capillary attraction exists.

Only the pendular regime was studied in this work.

1.3.2 Pressure and force in a liquid bridge

For the pendular case, the pressure difference from the ambient pressure Pa to
the pressure in the liquid bridge Pl between two identical smooth spheres can be
described by the Young-Laplace-equation (equation 3), where γ is the surface
tension. This case is depicted in figure 1. The curvature term in parentheses
in the Young-Laplace equation is positive when the meniscus is drawn back
into the liquid, resulting in a liquid pressure that is lower than the ambient
pressure [16].

∆P = Pa − Pl = γ

(
1

r1
+

1

r2

)
(3)

As gravitation is a dominant force in many systems, the capillary force is often
compared to gravity by calculating the capillary length a (see equation 4). For
length scales much smaller than a, the capillary forces dominate the system.
Length scales significantly larger than a occur in systems that are governed by
gravitation [16].

a =

√
2γ

ρlg
(4)
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Figure 1: Liquid bridge between two spheres

The attractive force between the two particles is the sum of the surface tension
and the pressure difference, as shown in equation 5, where ∆P is given by
equation 3.

Fbridge = 2πr2γ + πr22∆P (5)

1.3.3 Bond number

The Bond number gives the ratio of the maximum cohesive force FC to the
gravitational force FG (see equation 6). It can be described as a measure of the
cohesiveness of the system [16].

Bo =

∣∣∣∣FCFG
∣∣∣∣ =

2πRγ

(4/3)πR3ρg
=

3γ

2R2ρg
(6)

Li et al. [10] formulated a more extensive granular Bond number that includes
the wetting angle θ. The index m stands for the smaller particles in non-
homogenous particle beds.

Bo =

∣∣∣∣FCFG
∣∣∣∣ =

2πR∗γ [cos(θ)]m
(4/3)πg[R3ρ]m

=
3γR∗ [cos(θ)]m

2g[R3ρ]m
(7)

At low shear rates, the Bond number indicates whether cohesion plays a signif-
icant role in the system [17].

1.3.4 Cohesion number

At high shear rates, the ratio of the maximum cohesive force to the average
normal force becomes the relevant parameter. As can be seen in equation 8,
the average normal force is the product of the pressure P in the system and
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the square of the particle radius R. At values higher than one of this cohesion
number η, cohesive forces play an important role in the system. [17][14].

η =
N c

PR2
(8)
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1.4 Rigid bed theory

The rigid bed theory describes the movement of the particle bed in a tank under
the assumption that it moves like a solid cylindrical body at the blade rotational
speed ω. The speed of a particle at the distance r from the center is

v = rω (9)

Taking into consideration the shaft diameter leads to the following equation for
the average speed of a particle in the bed:

|v̄| = 1

(R2
tank −R2

shaft)π

∫ Rtank

Rshaft

(2πr)(ωr)dr

|v̄| = 2

3
ω

(
R3

tank −R3
shaft

R2
tank −R2

shaft

)
(10)
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2 Methods

2.1 Discrete element method

The discrete element method (DEM) was used to describe the particulate system
by integrating Newton’s equations of motion beginning with the initial state. A
sufficiently small time step was chosen for the simulation so that particles could
be assumed to interact only with their neighbors. Therefore, only pairwise
interactions of neighboring particles were taken into account to calculate each
particle’s position, velocity, and the resulting forces. The particle motion was
then described by equations 11 and 12 [19].

mi
dvi
dt

=
∑
j

(FNij + FTij ) +mig (11)

Ii
dωi
dt

=
∑
j

(Ri × FTij ) + τrij (12)

These equations use the mass mi, the radius Ri, the moment of inertia Ii, the
velocity vi, the angular velocity ωi, and the gravitational acceleration g. The
contact force was accounted for by equation 13, based on the work done by Tsuji
et al. [26] [19].

FN = −k̃nδ
3/2
n − γ̃nδ̇nδ

1/4
n (13)

In this equation, k̃n is the normal stiffness coefficient, δn is the normal displace-
ment and γ̃n is the normal damping coefficient. The normal stiffness coefficient
was calculated as follows:

k̃n =
E
√

2R∗

3(1− ν2)
(14)

In this equation, E is the particle’s Young modulus, which describes the response
to uniaxial stress. It was calculated from the shear modulus G and the Poisson
ratio ν as shown in equation 15 [12]. The effective radius R∗ of the contacting
particles was obtained from equation 16.

E = 2G(1 + ν) (15)

R∗ =
RiRj
Ri +Rj

(16)

Equation 17 yields the normal damping coefficient under the assumption of a
constant coefficient of reconstitution e [21].

γ̃n = − ln e√
ln2 e+ π2

(17)
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The other force needed to evaluate equations 11 and 12 is the tangential force,
which was calculated from equation 18.

FT = −k̃tδt − γ̃tδ̇tδ
1/4 (18)

k̃t is the tangential stiffness coefficient, δt is the tangential displacement, and γ̃t
is the tangential damping coefficient which was assumed to be equal to the nor-
mal damping coefficient. k̃t was calculated using the shear modulus G according
to the work done my Mindlin [6]:

k̃t =
2
√

2R∗G

2− ν
δ
1/2
n (19)

The tangential displacement was obtained as follows:

δt =

∫
vtreldt (20)

The relative tangential velocity of the colliding particles resulted from the fol-
lowing equation.

vrel = (vi − vj) · s+ ωiRi + ωjRj (21)

s denotes the tangential decomposition of the unit vector connecting the center
of the particle.

The tangential force is limited by the Coulomb condition:

FT < µs|FN | (22)

In case the tangential force obtained from equation 18 was higher than the
Coulomb limit, the tangential displacement was set to δt = FT

/kt [19].

2.2 Cohesion model

The DEM simulation needed an explicit calculation of the liquid bridge force
Fbridge from the particle radius R, the liquid volume V , the surface tension γ,
the contact angle β, and the separation distance h. Also, the rupture distance
hrupture and the viscous resistance Fviscous needed to be calculated [16]. The
relation used in the simulations was proposed by Mikami et al. [15].

It calculated the liquid bridge force between particles from a regression expres-
sion based on numerical simulations of the Young-Laplace equation (equation 3).

A normalized capillary force F̂ c was defined as

F̂ c =
F c

2πRγ
(23)

where γ is the surface tension. The expression for the calculation of F̂ c was

8



F̂ c = exp(Aĥ+B) + C (24)

The parameters A, B and C for particle-particle interactions were calculated as
follows:

A = −1.1V̂ −0.53 (25)

B = (−0.34 ln(V̂ − 0.96)θ2 − 0.019 ln V̂ + 0.48 (26)

C = 0.0042 ln V̂ + 0.0078 (27)

For particle-wall-interactions, the following equations were used [23]:

A = −1.9V̂ −0.51 (28)

B = (−0.016 ln(V̂ − 0.976)θ2 − 0.012 ln V̂ + 1.2 (29)

C = 0.013 ln V̂ + 0.18 (30)

θ is the contact angle of the liquid bridge. The dimensionless liquid bridge
volume is

V̂ =
V

R3
(31)

and the dimensionless separation distance between the particle surfaces is

ĥ =
h

R
(32)

The distance at which the pendular bridge broke was determined according to
an equation by Lian et. al. [11].

ĥc = R∗(0.62θ + 0.99)V̂ 0.34 (33)

The influence of the viscosity can be described by the Capillary number [20]:

Ca =
ηU

γ
(34)

η is the dynamic viscosity of the liquid and U is the characteristic speed. At the
highest rotational speed used in the simulations (200 rpm), the tip speed was
0.94 m s−1. For a granular system with water at 20 ◦C, the resulting capillary
number was 0.013. Since the viscous forces appeared to be very small compared
to the capillary forces, they were neglected in the simulations.

Furthermore, the cohesive forces were assumed to only apply as long as the
particles were in physical contact. This simplification avoided the high com-
putational demands of considering forces between particles that were up to the
rupture distance apart from each other.

9



2.3 Stiffness modification to reduce the computational
time

The Rayleigh time step is the time needed by a shear wave to propagate through
a particle, and is therefore the maximum time step for a quasistatic DEM simu-
lation. Equation 35 shows how the Rayleigh time step was evaluated by EDEM.
R is the radius of the biggest particle, ρ is the particle density, G stands for the
shear modulus, and ν is the Poisson’s ratio [22].

TR =
πR
√
ρ/G

0.1631ν + 0.8766
(35)

For systems that are not in the quasistatic regime, time steps of around 0.2TR
(at coordination numbers ≥ 4) to 0.4TR (at low coordination numbers) are
recommended by the EDEM documentation [22].

As TR scales with 1/
√
G, the time step increases for lower values of the shear

modulus [22].

The Hertz-Mindlin model implemented in EDEM calculated the normal contact
forces Fn according to equation 36. kHM is the normal stiffness, δn the normal
overlap, cHM the normal damping coefficient (a function of the coefficient of
restitution e), vn is the normal relative velocity, and ~n is the unit vector from
the center of the colliding particle [12].

~Fn = ~Fn,k + ~Fn,d =
(
kHMδ

3/2
n + cHM~vnδ

1/4
n ~n

)
~n (36)

The stiffness kHM was calculated as follows:

kHM =
4

3
E∗
√
R∗ (37)

The effective radius R∗ of the particles was calculated as shown in equation 16.
The effective Young’s modulus E∗ follows equation 38, wherein ν is the Poisson’s
ratio.

1

E∗
=

1− ν2i
Ei

+
1− ν2j
Ej

(38)

A reduction of the shear modulus G leads to a reduction of the Young’s modulus,
as can be seen in equation 15, and of the stiffness kHM. Since the Rayleigh time
step scales with 1/

√
G, the lower stiffness then allows for larger time steps in the

simulation, thus reducing the computational time. No general recommendation
can be given for the value of G [12]. Instead, the momentum of the colliding
particles has to be taken into account. Therefore, a comparison of the normal
overlap instead of the shear modulus was suggested [12].

A study conducted by Malone and Xu [13] suggested that even for the normal
overlap, no general limit can be stated. The amount of overlap that can be
permitted without significantly changing the behavior depends on the system
and on which variables are of interest. Typical values for reported acceptable
overlaps lie in the range of 0.1 % to 1 %. In the case of cohesive systems, low
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values for the stiffness lead to defluidization, whereas a high contact stiffness
results in smooth fluidisation [13].

For a system similar to the geometry 1 described in appendix A.1, Brenda
Remy [19] allowed the maximum normal overlap to reach 4 %, with an average
normal overlap of < 1%.

2.3.1 EDEM simulation of two-particle collisions

The normal overlap was observed in simple EDEM simulations of one particle
moving at speed vcol colliding with a stationary particle.

The effect of the time step on the resolution (i.e. the amount of time steps
per collision) was studied at different values for the shear modulus and at var-
ious collision velocities. The collision speeds were varied from 0.12 m s−1 to
0.96 m s−1. Since no fully elastic collisions were allowed to occur in the stirred
tank simulations, this assumption was an overestimation.

The reference speed for particles in the stirred tank simulations was the impeller
tip speed vtip. In both geometry 1 and geometry 2, the investigated collision
speed range of 0.12 m s−1 to 0.96 m s−1 corresponded to an rpm range of 12.5 rpm
to 100 rpm. To achieve a good resolution of the collisions, a minimum amount
of 20 time steps per collision was assumed to be necessary. A low resolution
(few time steps per collision) led to high overlaps and, subsequently, high normal
forces and accelerations. These caused exit speeds that were significantly higher
than the ones suggested by the coefficient of restitution, and in some cases even
surpassed the collision speed.

The amount of time steps for each collision was approximately inversely pro-
portional to the relative time step under the studied conditions (see figure 2).

Therefore, the necessary relative time step to fulfill the resolution criterion could
easily be estimated from the two-particle simulations at different speeds and
shear moduli. It is shown in figure 3, which is valid for particle diameters of
2 mm and 3 mm. For a simulation that needed to be conducted at a given shear
modulus and rotational speed, the tip speed was calculated from the geometry.
The maximum allowed percentage of the Rayleigh time step that still resulted in
a resolution of at least 20 time steps per collision could be read at the intersection
of the shear modulus with the line for the collision speed.

2.3.2 Choosing the shear modulus from the settling behavior and
the impeller torque

EDEM simulations were conducted to determine the lower limit of the shear
modulus to still be able to depict the system without significant deviation from
the expected height of the particle bed. A given amount of particles was allowed
to settle without any blade rotation in the geometry 1. The steady-state values
for the overlap as well as the filling height were observed at different values for
the shear modulus G. As shown in figure 4, the bed height is low at low shear
moduli and levels off at a shear modulus of the order of magnitude 3× 106 Pa.
This suggested that any shear modulus above that value was able to depict the
system without a significant error in the bed height.
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Figure 2: Number of time steps during two-particle collision versus relative time
step

Figure 3: Necessary relative time step for the two-particle collision
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Figure 4: Height of the particle bed in the geometry 1 for different shear moduli

The torque on the impeller at different shear moduli in the range of 2.6× 104 Pa
to 8.6× 108 Pa was also observed at a rotational speed of 50 rpm and a friction
of µs = 0.1. The torque increased with higher shear moduli until leveling off at
a shear modulus of roughly 1× 107 Pa.

2.3.3 Effect of the shear modulus on the speed profile

In the geometry 1 at a blade clearance of 5 mm and a fill level that just covered
the blade, the particle bed was stirred at 50 rpm. The static friction was set to
µs = 0.1. The speed profile was studied for different shear moduli in the range
of 2.6× 104 Pa to 2.6× 108 Pa. The results are shown in figure 5.

It was observed that lower shear moduli led to the particle bed behaving more
like a rigid bed. This could be traced to the longer collision times and lower
collision frequency for softer particles. They tended to stay in contact longer
during a collision, whereas stiffer particles had more collisions per time interval
due to the small overlaps and the resulting short contact times.

2.3.4 Effect of the stiffness on the collision speed and number of
collisions

A dimensionless normal collision speed was defined as

v∗n =
vn

ωRblade
(39)
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Figure 5: Speed profile in the geometry 1 mixer at 50 rpm for different shear
moduli G (µs = 0.1)

where ω was the rotational speed and Rblade was the blade radius.

The cumulative distribution of the dimensionless normal collision speed was
studied for simulations of glass beads at a fill level that just covered the blades
in the geometry 1 at a rotational speed of 50 rpm and with a static friction of
µs = 0.1. The results for different shear moduli G can be seen in figure 6. At
high shear moduli, the distribution moved towards low collision speeds.

The number of collisions rose as the particles became stiffer. This might be
traced back to the lower overlap and the resulting short contact times for stiff
particles. Softer particles, on the other hand, tend to remain in contact for a
long time, resulting in a lower number of contacts in the same time span.

2.3.5 Monitoring of the normal overlap

For all simulations within the scope of this work, the maximum and the average
value for the normal overlap were documented. The maximum overlap was
sensitive to the simulated time span while the average normal overlap provided
a more robust tool for the comparison of simulations.

The average overlap δavg showed a linear dependence of the simulation time step
tsim. The correlation to the shear modulus G and the impeller speed ω could
be described by a power law:

δavg = a · f(G) + b ·Gc · ω · tsim (40)
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Figure 6: Cumulative distribution of the normal collision speed at different shear
moduli

The shear modulus was, however, set to the same value (G = 8.6× 106 Pa) for
most simulations and equation 40 was simplified to:

δavg = a′ + b′ · ω · tsim (41)

For simulations in both geometries, the sensitivity of the overlap to the fill height
of the tank was analyzed. In the quasistatic regime, the average normal overlap
rose almost linearly with the fill height in the observed H/D (fill height to
tank diameter) range of 0.32 to 1.30 (see figure 7). In the intermediate regime,
the sensitivity of the dry simulation to the bed height diverged from the linear
behavior, whereas the overlap in the wet simulations responded linearly to the
fill height (see figure 8). This suggests that for a dry bed in the intermediate
regime, the average overlap was dominated by shear forces for low fill heights
and by the weight of the particle bed at high levels.

2.4 Bulk density

The bulk density was calculated for different height elements from the number
N of particles in that height element and the volume Vhe of each height element
under consideration of the volume taken up by the shaft and blades:

ρbulk =
Nd3p(π/6)ρp

Vhe
(42)
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Figure 7: Average normal overlap at different fill heights (geometry 2, 10 rpm,
dp = 3 mm)

Figure 8: Average normal overlap at different fill heights (geometry 2, 200 rpm,
dp = 3 mm)
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2.5 Steady state

To judge whether steady state was reached, the kinetic energy of the particle
bed was calculated from the particle masses mi and the particle speed vi:

Ekin =
∑

mi ∗ v2i (43)

The system was assumed to be at steady state once the long-term average of
the kinetic energy was reached.

2.6 Mixing

To evaluate the mixing in the simulations, the monodisperse particle bed was
studied visually. Before the onset of the impeller motion, the particle bed was
horizontally divided into two same-sized fractions of particles of different colors.
The mixing quality at any given time step could easily be estimated visually. In
addition, the relative standard deviation (RSD) of the entire particle bed was
determined [19]. To that avail, the simulation domain was divided into a sample
grid.

RSD =
σconc
Mconc

(44)

σconc was the standard deviation of the particle concentration of one of the
particle fractions over all the sample cells and Mconc was the overall mean
particle concentration, which amounted to Mconc = 0.5 for each of the two
particle fractions. The RSD of the system is sensitive to the size of the sampling
grid [4, p. 447], and typically the size of the sampling grid in pharmaceutical
processes is chosen to be the size of the product (e.g. the unit dose) [5, p. 110f].
Brenda Remy [17, p. 43] cited a grid size of about 5 particle diameters for a
similar geometry. Within the scope of this work, a cubic grid with a grid size
of 10 mm was chosen.

The particle diffusivities were calculated according to equation 45. The time
step was set to one blade pass, or 1/4 of a revolution [2] [20].

Dij =
∣∣(∆xi − ∆̄xi)(∆xj − ∆̄xj)

∣∣ 1

2∆t
(45)

They were then normalized with the tip speed Vtip and the tank diameter D:

D∗ij =
Dij

DVtip
(46)

[2]
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2.7 Power spectrum

The power spectrum of the shear stress data from the simulations was analyzed.
The power spectrum Sxx,j of the Signal x at the frequency j was be calculated
as

Sxx,j = 2
∆2

T
XjX

∗
j (47)

In this equation, ∆ denotes the sampling interval and T is the duration of
the signal recording. Xj is the Fourier transform of x, and X∗j is its complex
conjugate. [9]

The Nyquist frequency, which is half the sampling frequency of the simulation
(see equation 48), is the highest frequency that can be observed at a given
sampling rate. [9]

fNyquist =
1

2∆
(48)

All simulations were set to a sampling rate of 0.1 s−1, and the resulting Nyquist
frequency was fNyquist = 5 s−1.
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Figure 9: Blade design (a) Figure 10: Blade design (b)

3 Effect of the geometry

3.1 Blade shape

Simulations were run at blade clearances reaching from 0.1 mm to 40 mm. For
blade clearances significantly higher than the particle diameter, a simple blade
design was employed (see blade design a in figure 9). At blade clearances similar
to or lower than the particle diameter, this blade design led to very high contact
forces between the lower front edge of the blade and the particles. As a result,
the overlap became very high and particles started to pass through the vessel
wall and leave the simulation.

To avoid these high contact forces, a different blade design was introduced (see
design b in figure 10). At low clearances, the blades swept particles from the
floor rather than pushing them down. The shape, as well as the rounded edges,
led to more stable simulations.

3.2 Wall clearance

A wall clearance similar in value to the particle diameter led to very high overlaps
between the blades and the particles and subsequently to high contact forces
and particle velocities. To avoid this effect, the ratio of the wall clearance to
the particle diameter was either kept higher than two (e.g. 2.5 in the geometry
1) or significantly below one (e.g. 0.67 in the geometry 2).

3.3 Blade clearance

The influence of the distance of the blades from the bottom at a fill level just
covering the blades was studied. The friction µs of the particles was varied from
0.1 to 1 and the studied range of rotational speeds was 10 rpm to 200 rpm.

At a bottom clearance of 5 mm and a fill level of 30 mm, the whole particle bed
was moved by the impeller. This motion caused the particle bed to rise to a
height of up to 45 mm as the rotational speed was set to up to 200 rpm.

At a bottom clearance of 40 mm and a fill level of 60 mm, a stagnant region
formed at the bottom of the tank. In the quasistatic regime, the stagnant region
measured 35 mm of the particle bed regardless of the friction (see figure 11).
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In the intermediate regime (200 rpm), the fill level rose to 80 mm. The high-
friction simulations in that regime still showed a clear distinction between the
moved part of the bed and the stagnant region (see figure 12). The simulations
with a friction of µs = 0.1 on the other hand showed a wider transition zone
from the moved bed to the stagnant region (see figure 13).
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(a) At 0 revolutions (b) At 5 revolutions

Figure 11: Side view of the reactor (40 mm blade clearance, 10 rpm, µs = 0.1)

(a) At 0 revolutions (b) At 5 revolutions

Figure 12: Side view of the reactor (40 mm blade clearance, 200 rpm, µs = 1.0)

(a) At 0 revolutions (b) At 5 revolutions

Figure 13: Side view of the reactor (40 mm blade clearance, 200 rpm, µs = 0.1)
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Figure 14: Torque vs dimensionless shear rate at different blade clearances
(geometry 1, µs = 1.0)

Figure 14 shows the torque over the dimensionless shear rate γ∗ for different
blade clearances at a static friction of µs = 1.0. For both blade orientations -
acute and obtuse - the torque was distinctly lower for simulations with a blade
clearance of 40 mm than for those with a clearance of 5 mm. The low blade
clearance led to a high shear rate in the thin particle layer below the blade,
which resulted in a high torque on the impeller.

3.4 Blade orientation

As can be seen in figure 14, the torque exerted on the impeller was approximately
twice as high in the case of the acute blade orientation than with the obtuse
orientation. This correlated with the pressure exerted on the tank bottom by
the blades (see table 1). It changed only little with the rotational speed but was
dependent on the blade clearance and the blade orientation. The pressure more
than doubled in the geometry with a blade clearance of 5 mm when the blade
orientation was switched from obtuse to acute, while in the 40 mm case it only
increased by roughly 50 %. It is assumed that the larger blade clearance in the
latter case led to more load being taken by the walls instead of the bottom of
the tank.

3.5 Fill level

The geometry 2 simulations were studied at different fill levels (number of par-
ticles ranging from 6400 to 32 000, fill level 30 mm to 122 mm) with and without
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5 mm blade clearance 40 mm blade clearance
obtuse 357 Pa 766 Pa
acute 795 Pa 1126 Pa

Table 1: Average pressure at tank bottom, geometry 1 (µs = 1.0, 200 rpm)

cohesive forces (i.e., with and without liquid). The resulting torque values for
the dry simulations can be seen in figure 17.

Figure 15 shows the increase in impeller torque as the fill level increases in the
quasistatic regime (γ∗ = .018) for the geometry 2. Figure 16 shows the same
relation in the intermediate regime (γ∗ = 0.366).

The increase in pressure at higher fill heights resulted in higher torque fluctua-
tions. Figure 18 shows the torque fluctuation T ′ = T−T̄ for different fill heights
at 10 rpm. The increase in the standard deviation of T ′ with the fill height is
shown in figure 19.

An analysis of the normal stress showed that the profiles of the normal stress
P over the height of the bed were similar for the dry and the wet simulations.
The normal stress curves were compared to the hydrostatic pressure, which in
turn was obtained from the bulk density profiles:

Phyd(hi) =

∫ H

hi

ρbulk(h) g dh (49)

In the region above the blades, the hydrostatic pressure calculation was able to
approximate the normal stress (see figure 20). In the blade region, the normal
stress was lower than the hydrostatic prediction for all different fill heights. This
decrease was observed in all three individual components of the normal stress
(see figure 21).
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Figure 15: Torque vs number of particles at 10 rpm (blade clearance 0.1 mm,
geometry 2)

Figure 16: Torque vs number of particles at 200 rpm (Blade clearance 0.1 mm,
geometry 2)
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Figure 17: Torque vs γ∗ at different fill levels in the geometry 2 (µs = 0.5,
Bo = 0)

Figure 18: Torque fluctuation at different fill heights (geometry 2, 10 rpm,
µs = 0.5, geometry 2, Bo = 0)
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Figure 19: Standard deviation of (T − T̄ ) vs fill height (geometry 2, 10 rpm,
µs = 0.5, geometry 2, Bo = 0)

Figure 20: Normal stress (solid lines) and hydrostatic pressure (dashed lines) at
different fill heights (geometry 2, Bo = 0, 10 rpm)
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Figure 21: Individual normal stress components and hydrostatic pressure at
H/D = 1 (geometry 2, Bo = 0, 10 rpm)
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4 Effect of the static friction

The static friction coefficient µs was varied between 0.1, 0.5 and 1 and was
always set to identical values for the particle-particle and the particle-wall in-
teraction.

A study [18] that used shear cell analyses to experimentally determine the fric-
tion of glass beads reported a friction of µs = 0.32 for uncoated glass beads. It
was further shown that a static friction of µs = 0.5 in the DEM simulation of
a similar geometry provided comparable results. A different study [7] reported
the friction of spherical glass beads at diameters of 1 µm to 800 µm in a shear
cell to be in the range of 0.44 to 0.47.

Another study [24] showed that sliding frictions of both 0.3 and 0.5 yielded good
results for the simulations of a bladed vertical tank mixer when compared to
experiments. Increasing the friction from µs = 0.2 to 0.3 had a significant effect
on the simulation while the change of the velocity profile was less pronounced
between values of 0.3 and 0.5.

Figure 22 shows the speed profile of the particles in the geometry 1 at 50 rpm
and 5 mm blade clearance. The simulation with a high static friction coefficient
(µs = 1.0) yielded a speed distribution profile that was shifted towards slower
speeds compared to the one predicted by the rigid bed theory. A reduction
of the coefficient of friction by one order of magnitude led to a speed profile
that was close to that of the ideal rigid bed. The same effect was observed by
Stewart [24]. At low frictions, the particles tended to move as one block, while
at higher frictions they were significantly slowed down by the walls and the
tank bottom. This observation held true for the whole simulated rpm range of
10 rpm to 200 rpm. This led to faster mixing at higher frictions (see figure 23).
It is noteworthy that the difference between a friction coefficient of 0.1 and 0.5
was more pronounced than the difference between 0.5 and 1.0.

The impeller torque increased at higher µs (see figure 24). At very low rotational
speeds (down to 1 rpm), the torque started to rise with decreasing speed. This
behavior is indicative of the stick-slip regime and was especially pronounced in
high friction simulations.
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Figure 22: Speed profiles at different values for the static friction µs in the
geometry 1 at 50 rpm and with 5 mm blade clearance

Figure 23: RSD over revolutions for geometry 1 simulations (50 rpm, obtuse
blade orientation, G = 8.6× 106 Pa) at different frictions µs

29



Figure 24: Torque vs γ∗ for the geometry 1 at 50 rpm and 5 mm blade clearance
at different frictions
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5 Effect of cohesiveness

The dimensionless liquid bridge volume V̂ , the surface tension γ of the liquid
and the liquid wetting angle θ were set as parameters for the cohesion model.
While the liquid bridge volume V̂ = 0.04 and the wetting angle θ = 0 were left
unchanged in the scope of this work, the surface tension γ was varied to change
the cohesiveness of the system.

The Bond number of the system was then evaluated using the relation suggested
by Li et al. [10] (see section 1.3.3).

Simulations were run at Bond numbers ranging from 0 (dry system) to 40. The
coefficient of friction was left at µs = 0.5 for all the simulations.

Figure 25 shows the torque for the dry and wet simulations at a fill height
that just covered the blades. These simulations showed quasistatic regimes as
predicted by Tardos (see section 1.2), although the quasistatic regime was less
pronounced at Bo = 0 than at higher Bond numbers. Figure 26 shows the effect
of increasing the fill level drastically. The dry simulations at high fill level did
not have a distinct quasistatic regime in the studied rpm range. In the wet
simulations, on the other hand, The torque even started to rise sharply as the
shear rate was reduced at the high fill level.

Figure 27 shows the increase of the torque with the Bond number for different
fill heights.

The mixing of quasistatic particle beds that are just covering the blades is
shown in figure 28 and 29. It can be noted that the best mixing occurred in
the simulation with the highest Bond number. Furthermore, the particle bed
lagged behind the blades in all the simulations, i.e. the bed did not rotate as
fast as the blades.

Showing the RSD value over time allowed for a quantitative analysis of the mix-
ing behavior (see figure 30). Simulations with high Bond numbers demonstrated
a high initial mixing rate, while low Bond numbers correlated with slow initial
mixing. After a few revolutions, the simulations with high Bond numbers were
mixing slower than those with low Bond numbers.

Figure 31 shows how the diffusivity changed for the studied quasistatic simula-
tions as the Bond number increased. Similar to Remy’s observations [20], the
diffusivity increased initially as the Bond number was increased, before decreas-
ing again at very high Bond numbers.

In the range of the blades, the power spectrum of the shear stress showed a
dominant frequency of around four times the rotational speed of the impeller,
independent of the fill height and the Bond number. This frequency is equiv-
alent to the frequency of blade passes of the four-bladed impeller. The second
dominant frequency was at eight times the impeller frequency, i.e. twice the
blade pass frequency.
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Figure 25: Torque vs γ∗ (geometry 2, Np = 6400)

Figure 26: Torque vs γ∗ (geometry 2, Np = 32000)
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Figure 27: Torque vs Bond number at different fill heights (geometry 2, 10 rpm)

(a) 0 rev, Bo = 0 (b) 1 rev, Bo = 0

(c) 1 rev, Bo = 20 (d) 1 rev, Bo = 40

Figure 28: Top view of the reactor (geometry 2, 10 rpm), Np = 6400
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(a) 0 rev, Bo = 0 (b) 1 rev, Bo = 0

(c) 1 rev, Bo = 20 (d) 1 rev, Bo = 40

Figure 29: Side view of the reactor (geometry 2, 10 rpm, Np = 6400)

Figure 30: RSD vs revolutions at different Bo numbers

34



Figure 31: Dimensionless diffusivity D∗ vs Bond number (geometry 2, Np =
6400, 10 rpm)
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A Appendix

A.1 Geometry

The dimensions of the simulated mixers are listed in table 2 and table 3.

A.2 Simulation parameters

Table 4 shows the input parameters for the particles in the simulations.

Dimension Value
Tank diameter D 100 mm
Shaft diameter Dshaft 25 mm
Blade diameter Dblade 90 mm
Height of blades hblade 19.2 mm
Blade clearance from bottom 0.1 mm to 40 mm
Particle diameter dp 2 mm

Dimensionless geometry number Value
Tank diameter/particle size 50
Blade diameter/tank diameter 0.9
Blade clearance/particle diameter 2.5 to 20
Wall clearance/particle diameter 2.5

Table 2: Dimensions of the geometry 1
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Dimension Value
Tank diameter D 94 mm
Shaft diameter Dshaft 25 mm
Blade diameter Dblade 90 mm
Height of blades hblade 19.2 mm
Blade clearance from bottom 0.1 mm to 1 mm
Particle diameter dp 3 mm

Dimensionless geometry number Value
Tank diameter/particle size 31.3
Blade diameter/tank diameter 0.9
Blade clearance/particle diameter 0.033 to 0.333
Wall clearance/particle diameter 0.667

Table 3: Dimensions of the geometry 2

Variable Symbol Value
Rolling friction coefficient µr 0.005
Static friction coefficient µs 0.1 to 0.5
Particle density ρ 2.2 g l−1

Shear modulus G 2.6× 106 Pa to 2.6× 1010 Pa
Coefficient of restitution e 0.6
Poisson’s ratio ν 0.25

Table 4: Simulation parameters
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