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Abstract

In this work numerical methods for solving the nonlinear time dependent
Richards equation arising in the modeling of ground water flow in porous
media is discussed. The Richards equation will be introduced and discussed
in the case of a homogeneous soil and in the case of a heterogeneous soil.
For both cases unique solvability results for the continuous formulation are
derived. By applying the so called Kirchhoff transformation in combination
with the primal hybrid formulation, we are able to shift one nonlinearity from
the domain to the interfaces. We obtain a system of local partial differential
equations within each subdomain which are linear in the principal part but
with nonlinear coupling conditions. To solve this problem numerically, we adapt
the mortar finite element method to achieve a stable discrete formulation. The
theses concludes with some numerical experiments in two and three space
dimensions.

Zusammenfassung

In dieser Arbeit werden numerische Lösungsverfahren für die nichtlineare zeit-
abhängige Richards–Gleichung besprochen, welche aus der Modellierung von
Grundwasserströmen in porösen Medien hervorgeht. Wir betrachten den Fall
eines homogenen Mediums und auch den Fall eines heterogenen Mediums. Für
beide Fälle werden Resultate zur eindeutigen Lösbarkeit der kontinuierlichen
Formulierung angegeben. Durch die Anwendung der sogenannten Kirchhoff–
Transformation in Kombination mit der primal hybriden Formulierung sind
wir in der Lage, eine Nichtlinearität aus dem Gebiet auf den Koppelrand zu
transformieren. Wir erhalten ein System aus unabhängigen partiellen Diff-
erentialgleichungen in jedem Teilgebiet, welche nun linear im Hauptteil sind,
aber gekoppelt durch nichtlineare Transmissions–Bedingungen. Um diese Prob-
lem numerisch zu lösen, wird die Mortar–Finite–Elemente Methode angepasst,
sodass wir eine stabile diskrete Formulierung erhalten. Am Ende dieser Arbeit
werden numerische Beispiele in zwei und drei Raumdimensionen präsentiert.
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1 Introduction

The equation of interest in this thesis is the Richards equation, which describes
the saturated–unsaturated flow of fluid (water) through a porous medium
and which was introduced in 1931 by the American physicist Lorenzo Adolph
Richards, see [52]. In Figure 1.1 one can see Lorenzo Adolph Richards in

Figure 1.1: Lorenzo Adolph Richards.

front of an experimental setup. The Richards equation is an elliptic–parabolic
partial differential equation and since the equation involves two nonlinear terms,
straightforward approximation methods have to be handled with care or are not
applicable at all. Therefore new strategies and efficient methods are necessary
for solving such kind of problems. In [12] a monotone multigrid method is
considered in the case of homogeneous soil. In the case of heterogeneous soil,
nonlinear Dirichlet–Neumann methods as well as nonlinear Robin type domain
decomposition methods are discussed.
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1 Introduction

In this thesis a different approach is considered. As already mentioned, the
Richards equation involves two nonlinearities, one to describe the saturation
and one to describe the permeability of the soil. In [12, 57] the so called
Kirchhoff transformation is used to shift the nonlinear behaviour of the diffusion
coefficient from the domain to the boundary. However, this transformation
can only be applied in a homogeneous setting. To carry this idea over to the
heterogeneous case, a different formulation is needed to ensure compatibility
with the Kirchhoff transformation. The primal hybrid formulation, see [51, 19],
is used to derive such kind of formulations. After applying local Kirchhoff
transformations a coupled system of equations with a linear capacity coefficient
within the subdomains and nonlinear coupling conditions is derived.

The analogy of the resulting continuous formulation to the discrete mortar
finite element method was decisive for its application as approximation method.
The mortar finite element method was introduced as a nonconforming approach
for several approximation methods, see for example [11]. A lot of work was
done in the field of the mortar finite element method and several articles were
published, the most crucial ones for this work are [15, 16, 41, 70, 71]. Beside
these citations, many more publications on that topic are available. In view of
efficiency, domain decomposition methods for the mortar finite element method
are of special interest, see for example [59]. The precise outline of this thesis is
listed in the following section.

Outline

In Chapter 2 the Richards equation will be derived starting with the principle
of mass balance. Several laws from hydrology are used to obtain the pressure
formulation of the Richards equation which is of interest in this thesis. Fur-
thermore two cases are distinguished, in the first case a homogeneous soil is
considered and in the second case a general heterogeneous soil is assumed.

Afterwards, mathematical preliminaries are summarized. In Section 3.1 ba-
sics from functional analysis are repeated, especially statements about linear
and nonlinear operator equations in Banach spaces. Section 3.2 is about func-
tion spaces and fundamental theorems in those spaces. Finally, superposition
operators and related properties are considered in Section 3.3.
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The main focus of Chapter 4 is on the derivation of a variational formulation
which corresponds to the Richards equation. In Section 4.1 the variational
problem will be analyzed in view of well posedness. Solvability as well as
uniqueness results will be presented. As already mentioned, one has to use the
primal hybrid formulation to obtain a Kirchhoff transformation compatible
formulation. This is done in Section 4.2. Finally, in Section 4.3, the Kirchhoff
transformation is applied to the primal hybrid formulation.

Discretization and linearization strategies for the transformed variational for-
mulation derived in Chapter 4 are discussed in Chapter 5. As done for the
continuous formulation, solvability and uniqueness are investigated and open
problems in the discrete setting are pointed out. Furthermore, a brief description
on some implementational details is done.

Finally, in Chapter 6, numerical experiments in two and three space dimension
are presented and discussed.

The main new result of this thesis is the derived system of local acting partial
differential equations coupled via nonlinear coupling conditions and the analysis
of the corresponding variational problem. Even though the analysis is only
done for the Richards equation, it is rather easy to extend the theory to
general quasilinear partial differential equations. The application of the mortar
finite element method to compute the approximate solution of the nonlinear
transmission problem is also a rather new approach. Although we were not
able to answer all the questions concerning the stability of the derived discrete
problem, the numerical experiments show promising results.
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2 Modeling

Basis of this work is the Richards equation which describes the flow of water
in saturated–unsaturated ground. This equation was first published in [52]. In
order to derive the Richards equation we use fundamental physical laws and
laws from hydrology.

Starting point is the principle of mass balance. Therefore we consider an
arbitrary time dependent control volumina ω(t) ⊂ R3 for t ≥ 0. Let ω(t)
move with the fluid and let ṽ be the velocity field describing the speed of the
movement. The velocity field ṽ is called microscopic velocity. We know, that
the change of mass in the control volumina ω(t) is balanced by sources and
sinks within ω(t). Let f prescribe these sources and sinks within ω(t), therefore
we can write the balance equation as

d
dt

∫
ω(t)

%̃ dx =
∫
ω(t)

% f dx

with the mass density function %̃ and the constant water density %. By the
application of the Reynolds transport theorem, see [30, Theorem 5.4], we
obtain ∫

ω(t)

[
∂%̃

∂t
+∇ · (%̃ ṽ)

]
dx =

∫
ω(t)

%f dx (2.0.1)

for all control volumina ω(t) and for all t ≥ 0.

The variational principle applied on ω(t) in equation (2.0.1) implies

∂%̃

∂t
+∇ · (%̃ ṽ) = % f (2.0.2)

which is the starting point for further considerations.
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2 Modeling

In the field of hydrology the mass density is given as %̃ = % θ n, θ describes
the saturation of the soil and n is the porosity of the soil. The porosity is a
quantity which depends on the soil only, that is n = n(x). It is defined as the
ratio of the void volume and the bulk volume and hence always positive.

By setting the macroscopic velocity field v as v := θ n ṽ, we can rewrite
equation (2.0.2) and obtain

∂(% θ n)
∂t

+∇ · (%v) = % f.

Since % ≡ const and n is just a soil parameter depending on x and independent
of t, we get

n
∂θ

∂t
+∇ · v = f

after cancelling %

The next important result from hydrology is the law of Darcy, see [52]. This
law is given by the equation

v = −C∇h
and describes the relation between the macroscopic velocity field and the
pressure of the water. Here C is the hydraulic conductivity and is a scalar
function if we consider the flow in an isotropic medium. The quantity h is called
piezometric head and can be interpreted as the groundwater level at a point
x ∈ R3 with x = (x, y, z), see [7]. Its relation to the pressure p is given by the
identity

h = p− d
% g

where g is the gravitational constant and d(x) = d(x, y, z) = % g z where z is
the component of the coordinate system pointing downwards in the direction
of gravity. The pressure p is the difference of the pressure of water pw and the
constant pressure of air pa, that is p = pw − pa. The quantity p/(% g) is known as
the pressure head ψ and comes from a hydrostatic pressure if p is positive or
from a capillary pressure or a suction if p is negative.

If the soil is fully saturated, the hydraulic conductivity C is given by the
expression

C = % g

µ
K

6



where µ is the viscosity of water. With K we denote the permeability of the
soil, which is just a function depending on x ∈ R3 and independent of the fluid.
It describes the ability of a porous medium to allow fluids to pass through it
and is a positive quantity.

In the unsaturated case, we can describe C in dependency on θ as

C(θ) = k(θ) % g
µ
K

with the so called relative permeability k. The relative permeability k can be
prescribed by a function mapping the interval [θmin, θmax] to the interval [0, 1]
in a monotonically increasing way. Furthermore, the saturation θ can be written
as a monotonically increasing function mapping the hydrostatic pressure p to
the interval [θmin, θmax].

If we put these relations into the equation (2.0.2) we obtain

n
∂θ(p)
∂t
−∇ ·

(
K

µ
k
(
θ(p)

)
∇
(
p− d

))
= f (2.0.3)

which is known as the pressure formulation of the Richards equation. As one
can see, the Richards equation is a quasilinear elliptic–parabolic equation. If the
soil is fully saturated, that is θ(p) ≡ θmax ≡ const, we obtain a linear elliptic
equation and in the unsaturated case, θ(p) 6= const, we obtain a quasilinear
parabolic equation.

There are several possibilities how one can choose the parameter functions
for the saturation θ and for the relative permeability k. One possibility is the
model based on the work of Brooks and Corey [21, 22] or the model by Van
Genuchten [65]. In this thesis we consider the model introduced by Brooks and
Corey. In their work they introduced the soil–water retention curve Θ as

Θ(p) := θ(p)− θmin
θmax − θmin

=


(
p
pb

)−λ
, p ≤ pb,

1, p > pb

with the so–called bubbling pressure pb < 0 and the pore size distribution factor
λ > 0. Then the relative permeability k can be expressed in terms of Θ as

k(θ) = Θe(λ) =
(

θ − θmin
θmax − θmin

)e(λ)

(2.0.4)
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2 Modeling

with exponent

e(λ) :=

3 + 2
λ

due to Burdine,
5
2 + 2

λ
due to Mualem,

see [65]. The exponent e(λ) due to Burdine was used in the work of Brooks and
Corey, therefore we obtain k(θ) = Θ3+2/λ, see Figure 2.1. Within this framework

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

θmin θmax

θ

k(θ)

Figure 2.1: Relative permeability, θ 7→ k(θ).

we obtain the following representation for the saturation

θ(p) :=


(
p
pb

)−λ (
θmax − θmin

)
+ θmin for p ≤ pb,

θmax for p > pb,
(2.0.5)

see Figure 2.2a. The relative permeability can then be written in terms of the
pressure p as

k(θ(p)) :=


(
p
pb

)−λ e(λ)
=
(
p
pb

)−3λ−2
for p ≤ pb,

1 for p > pb,
(2.0.6)

see Figure 2.2b.

So far, we have derived a partial differential equation describing the flow of
water in porous media and we fixed the choice of the nonlinear parameter

8



2.1 Homogeneous Soil

−3 −2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

pb

θmin
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(a) Saturation, p 7→ θ(p).

−3 −2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8

1

pb

p

k(θ(p))

(b) Composition, p 7→ k(θ(p)).

Figure 2.2: Saturation and composition.

functions, which occur in the Richards equation (2.0.3). All the considerations
we made assume a single soil type in an isotropic medium. In the following two
sections we will briefly discuss two different cases. In the first section we will
consider a homogeneous soil type whereas in the second section a heterogeneous
soil type is of interest.

2.1 Homogeneous Soil

In this section we discuss a homogeneous soil type. Therefore we consider a
domain Ω ⊂ Rd, d = 2, 3, and one specific soil type. See for example Figure 2.3
and assume, that the domain behaves like a sand–type soil.

Then the characteristic parameter functions k and θ are uniquely determined
by the equations (2.0.4) and (2.0.5). The nonlinear parameter functions θ
and k just depend on the unknown pressure p. If we write equation (2.0.3) in
dependency on x ∈ Ω and t > 0 we obtain the equation

n(x) ∂θ(p(x, t))
∂t

−∇ ·
(
K(x)
µ

k
(
θ(p(x, t))

)
∇
(
p(x, t)− d(x)

))
= f(x, t)
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2 Modeling

Ω

Figure 2.3: Illustration of a homogeneous soil.

for the unknown pressure p.

Next, we want to extend this consideration to the heterogeneous case.

2.2 Heterogeneous Soil

In this section we will consider a heterogeneous soil. Therefore we consider a
domain Ω ⊂ Rd with different layers and we assume that each layer behaves
like a different soil type. See for example Figure 2.4 and assume L1 to behave
like a sand–type soil, L2 behaves like a sandy loam–type soil and L3 is assumed
to behave like a loam–type soil.

L1

L2

L3

Figure 2.4: Illustration of a heterogeneous soil.

Within each layer Li ⊂ Ω , i = 1, . . . , NL, the corresponding characteristic
parameter functions ki and θi are uniquely determined by the equations (2.0.4)
and (2.0.5) and they just depend on the unknown pressure p. We can define a
global parameter function θ : Ω× R→ R by defining

θ(x, p) := θi(p) for x ∈ Li and p ∈ R, (2.2.1)

as well as a global function k : Ω× R→ R defined by

k(x, θ) := ki(θ) for x ∈ Li and θ ∈ R. (2.2.2)

10



2.3 Boundary and Initial Conditions

With this representation, the composite function k ◦ θ can be written as

k(x, θ(x, p)) := ki(θi(p)) for x ∈ Li (2.2.3)

and p ∈ R.

If we write equation (2.0.3) in dependency on x ∈ Li and t > 0 we obtain the
equation

n(x) ∂θi(p(x, t))
∂t

−∇ ·
(
K(x)
µ

ki
(
θi(p(x, t))

)
∇
(
p(x, t)− d(x)

))
= f(x, t)

for the unknown pressure p in each layer Li. To complete the set of equations,
we assume continuity of the pressure and of the conormal derivative across the
interfaces.

The Richards equation for a homogeneous soil coincides with the Richards
equation for a heterogeneous soil with just one layer, that is NL = 1. In this
thesis we will mainly restrict ourselves to the more general heterogeneous
case.

2.3 Boundary and Initial Conditions

The purpose of this section is to understand the hydrological meaning of
different boundary conditions. Thus, let Ω ⊂ Rd, d = 2, 3, be a bounded
Lipschitz domain (see Section 3.2.2) with boundary ∂Ω. Then, for all t > 0 the
Richards equation reads

n
∂θ(p)
∂t
−∇ ·

(
K

µ
k
(
θ(p)

)
∇
(
p− d

))
= f in Ω

in terms of the unknown pressure p. In view of readability, we neglect the de-
pendencies on x and t. In this thesis, we consider Dirichlet boundary conditions
and Neumann boundary conditions. For a fixed time t > 0, we denote the
Dirichlet boundary by ΓD ⊂ ∂Ω and the Neumann boundary by ΓN ⊂ ∂Ω.

In hydrology, the Dirichlet boundary condition prescribe a hydrostatic pressure
which is given at the Dirichlet boundary. We denote the given hydrostatic
pressure by gD and so the Dirichlet condition can be written as

p = gD on ΓD.

11



2 Modeling

ΓS
ΓS

ΓDΓN

Figure 2.5: Boundary conditions.

Dirichlet boundary conditions can appear from surface water like lakes or
rivers, see Figure 2.5. Another type of boundary conditions are Neumann type
boundary condition. These boundary conditions prescribe the flow of water
into or out of the domain. This can occur due to water movement around Ω or
for example rain. Homogeneous Neumann boundary conditions can be used
to simulate a impermeable material attached to Ω at ΓN , see Figure 2.5. We
denote the flux across ΓN by gN and write

K

µ
k
(
θ(p)

)
∇
(
p− d

)
· n = gN on ΓN

where n denotes the outer unit normal, see Section 3.2.

It is also possible to take a linear combination of Dirichlet and Neumann
boundary conditions, this would lead to a Robin type boundary condition.
Apart from this more or less standard boundary conditions, Signorini boundary
conditions can also be considered in the context of hydrology. Signorini boundary
conditions are well known for contact problems, see [42]. In the hydrological
framework, Signorini boundary conditions usually appear in the case of dam
problems, see [12].

To obtain a well posed initial boundary value problem, we have to prescribe an
initial condition for t = 0. We write

p = p0 in Ω

where p0 is the given initial condition describing a certain ground state of the
pressure p.

12



2.3 Boundary and Initial Conditions

To summarize, in this chapter we have derived the Richards to describe flow
in porous media and we briefly discussed the case of a homogeneous soil in
Section 2.1 and the case of a heterogeneous soil in Section 2.2. In Section 2.3
we discussed the hydrological meaning of Dirichlet and Neumann boundary
conditions. In the next chapter we will make some preliminary considerations
on Banach spaces, function spaces and operators acting in those spaces.

13





3 Mathematical Preliminaries

In this chapter we recall the mathematical tools we will use in this thesis. In
Section 3.1 we will focus on functional analytic basics. We will continue with
the introduction of function spaces in Section 3.2 and we will state the needed
definitions and theorems. The last part, Section 3.3, is about superposition
operators acting in Lebesgue spaces as well as in Sobolev spaces.

3.1 Elementary Functional Analysis

In this section we recall elementary definitions and tools from functional analysis
which we will need later in this thesis. For more details on this topic we refer
to [19, 43, 58, 68, 74], and [75]. In the first part we recall basic definitions on
Banach spaces and Hilbert spaces and on operators acting in those spaces.

Let V be a Banach space. The space of all bounded and linear functionals from
V to R is denoted by V ′ and is called dual space of V . For u ∈ V and f ∈ V ′
the duality pairing

〈f, u〉
V ′×V

:= f(u)

is defined as the application of f to u. Using the duality pairing the dual norm
can therefore be written as

‖f‖
V ′

:= sup
06=u∈V

∣∣∣〈f, u〉
V ′×V

∣∣∣
‖u‖

V

for all f ∈ V ′. Consequently, there holds the inequality

〈f, u〉
V ′×V

≤ ‖f‖
V ′
‖u‖

V

15



3 Mathematical Preliminaries

for all f ∈ V ′ and u ∈ V . Equipped with the dual norm, the dual space is again
a Banach space.

If V is a Hilbert space, we denote by (u, v)
V
the inner product in V for u, v ∈ V .

We write
‖u‖

V
:=
√

(u, u)
V

for the induced norm on V .

The bidual space V ′′ of V is defined as the dual space of V ′. It is easy to see,
that for each u ∈ V we can construct U ∈ V ′′ as U(f) := 〈f, u〉

V ′×V
with

‖U‖
V ′′

= sup
06=f∈V ′

|U(f)|
‖f‖

V ′

= sup
0 6=f∈V ′

∣∣∣〈f, u〉
V ′×V

∣∣∣
‖f‖

V ′

= ‖u‖
V

for all u ∈ V , see [74, Section 21.5]. If we set

ι(u) := U (3.1.1)

we obtain a linear injective mapping ι : V → V ′′ and ι(V ) ⊂ V ′′. Using this
mapping, we can introduce the concept of reflexivity.

Definition 3.1 (Reflexive Banach space). Let V be a Banach space. We say
V is reflexive iff the mapping ι : V → V ′′ is surjective.

A reflexive Banach space V is therefore normisomorph to V ′′, we write V ∼= V ′′.
Due to the Fréchet-Riesz Theorem, [68, Theorem V.3.6], each Hilbert space
is a reflexive Banach space. Another important property of Banach spaces is
separability.

Definition 3.2 (Separable Banach space). A Banach space V is separable iff
there exists a dense subset W ⊂ V which is at most countable.

In contrast to the finite dimensional case, there exists a further concept of
convergence in the case of infinite dimensional spaces.

Definition 3.3 (Weak convergence). Let {un} ⊂ V be a sequence in a Banach
space V . We say the sequence converges weakly to u ∈ V iff

lim
n→∞

〈f, un〉
V ′×V

= 〈f, u〉
V ′×V

for all f ∈ V ′. We write un ⇀ u.

16



3.1 Elementary Functional Analysis

As the name suggests, weak convergence is a generalization of the usual strong
convergence. In other words, un → u implies un ⇀ u in V .

Since many partial differential equations can be written as abstract operator
equations in Banach or Hilbert spaces, we will recall some of the basic definitions
and notations on operators.

Definition 3.4 (Linear and nonlinear operator). Let V,W be two Banach
spaces over R. The mapping A : V → W is called a linear operator iff

A(η u+ ω v) = η A(u) + ω A(v)

holds in W for all η, ω ∈ R and u, v ∈ V . Otherwise, the operator is called
nonlinear. For a linear operator we will neglect the parentheses and write Au
instead of A(u).

Definition 3.5 (Bounded operator). Let V,W be two Banach spaces and let
A : V → W be an operator mapping V to W . The operator is called bounded, iff
the set A(U) := {A(u) | u ∈ U} is bounded in W for each bounded set U ⊂ V .

For operators in Banach spaces there are several different concepts of continuity,
see for example [75]. We will just repeat four different types of continuity.

Definition 3.6 (Continuous operator). Let V,W be two Banach spaces and let
A : V → W be an operator mapping V to W . The operator is called continuous
at u ∈ V , if for any sequence {un} ⊂ V which converges to u in V , the sequence
{A(un)} ⊂ W converges to A(u) in W . If the operator is continuous at all
u ∈ V , then A is called continuous from V to W .

The above definition of continuity is based on strong convergent sequences.
Using the concept of the more general weak convergence, we can generalize the
definition of continuity.

Definition 3.7 (Demicontinuous operator). Let V,W be two Banach spaces
and let A : V → W be an operator mapping V to W . The operator is called
demicontinuous, if un → u in V implies A(un) ⇀ A(u) in W as n→∞.
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In the definition of continuity, we used strong convergence in the domain
and in the codomain. In the definition of demicontinuity, we used strong
convergence in the domain and weak convergence in the codomain. It is also
possible to interchange the concepts of convergence, which leads to the following
definition.
Definition 3.8 (Strongly continuous operator). Let V,W be two Banach spaces
and let A : V → W be an operator mapping V to W . The operator is called
strongly continuous, if un ⇀ u in V implies A(un)→ A(u) in W as n→∞.

The last type of continuity is called hemicontinuity and is defined in the
following way.
Definition 3.9 (Hemicontinuous operator). Let V be a real Banach space and
let A : V → V ′. The operator A is called hemicontinuous, if the mapping

t 7→ 〈A(u+ tv), w〉
V ′×V

is continuous on [0, 1] for all u, v, w ∈ V .

For a real Banach space V and an arbitrary operator A : V → V ′ it can be easily
checked that strong continuity implies continuity which implies demicontinuity
which finally implies hemicontinuity.

The next proposition shows how the boundedness and the continuity of an
operator are related, see [58, Proposition 2.1].
Proposition 3.10. Let V,W be two Banach spaces and let A : V → W be a
linear operator. Then the following statements are equivalent.

(1) A is continuous at 0 ∈ V .
(2) A is a continuous operator from V to W .
(3) A is a bounded operator.

The space of all linear and bounded operators mapping a Banach space V to a
Banach space W is denoted by L(V,W ). Equipped with the norm

‖A‖
L(V,W )

:= sup
06=u∈V

‖Au‖
W

‖u‖
V

= sup
u∈V
‖u‖

V
=1

‖Au‖
W

this space is again a Banach space, see [58, Proposition 2.2].
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Definition 3.11 (Adjoint operator). Let V,W be two Banach spaces and let
A : V → W be a linear operator. The adjoint operator A′ : W ′ → V ′ is then
defined by

〈A′g, u〉
V ′×V

:= 〈g, Au〉
W ′×W

for all u ∈ V and g ∈ W ′.

In order to show results on nonlinear operator equations, we need the following
definitions.

Definition 3.12 (Coercive operator). Let A : V → V ′ be an operator mapping
a Banach space V to its dual space V ′. If

lim
‖u‖

V
→∞

〈A(u), u〉
V ′×V

‖u‖
V

=∞

then A is called coercive.

Definition 3.13 (V –elliptic operator). Let A : V → V ′ be a continuous and
linear operator mapping a Banach space V to its dual space V ′. If there exists
a constant αA > 0 such that

〈Au, u〉
V ′×V

≥ αA ‖u‖2
V

for all u ∈ V,

then A is called V –elliptic.

In order to state solvability and uniqueness results of nonlinear operator equa-
tions in Banach spaces, the concept of monotonicity is fundamental.

Definition 3.14 (Monotone operator). Let A : V → V ′ be an operator mapping
a Banach space V to its dual space V ′.

(1) The operator A is called monotone iff

〈A(u)− A(v), u− v〉
V ′×V

≥ 0 for all u, v ∈ V.

(2) The operator A is called strictly monotone iff

〈A(u)− A(v), u− v〉
V ′×V

> 0 for all u, v ∈ V, u 6= v.
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(3) The operator A is called strongly monotone iff there is a positive constant
αA > 0 such that

〈A(u)− A(v), u− v〉
V ′×V

> αA ‖u− v‖2
V

for all u, v ∈ V.

(4) Let V be a real reflexive Banach space. The operator A is called pseu-
domonotone iff un ⇀ u as n→∞ and

lim sup
n→∞

〈A(un), un − u〉
V ′×V

≤ 0

implies
〈A(u), u− w〉

V ′×V
≤ lim inf

n→∞
〈A(un), un − w〉

V ′×V

for all w ∈ V .

It is easy to verify that strong monotonicity implies strict monotonicity which
implies monotonicity. In order to show that an operator is pseudomonotone,
the following lemma is of importance.
Lemma 3.15. Let A : V → V ′ be an operator mapping a real reflexive Banach
space V to its dual. Assume that A satisfies the representation

A(u) = Ã(u, u)
with Ã : V × V → V ′. If Ã satisfies

(1) Ã(·, v) is hemicontinuous and bounded for all v ∈ V ,
(2) Ã(u, ·) is hemicontinuous for all u ∈ V ,
(3) Ã(u, ·) is monotone,
(4) if un ⇀ u in V and 〈Ã(un, un)− Ã(un, u), un − u〉

V ′×V
→ 0 implies

Ã(un, v) ⇀ Ã(u, v) in V ′ for all v ∈ V ,
(5) if un ⇀ u in V and Ã(un, v) ⇀ b in V ′ implies 〈Ã(un, v), un〉

V ′×V
→

〈b, u〉
V ′×V

,

then the operator A is pseudomonotone.

Proof. See [32, 6.10 Lemma]. �

After we have repeated some of the basic definitions on operators in Banach
spaces, we can state the main results on linear and nonlinear operator equations
in Banach and Hilbert spaces.
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3.1.1 Liner Operator Equations

Let V,W be two Hilbert spaces and let A : V → W ′ be a continuous and linear
operator. For a given g ∈ W ′ consider the linear operator equation

Au = g (3.1.2)

inW ′. To answer the question of solvability the following theorem is an essential
tool.

Theorem 3.16. Let V,W be two Hilbert spaces and let A : V → W ′ be a
continuous and linear operator. Then for some αA > 0 the following statements
are equivalent.

(1) For all v ∈ W there holds the inf–sup–condition

inf
06=v∈W

sup
06=u∈V

〈Au, v〉
W ′×W

‖u‖
V
‖v‖

W

≥ αA. (3.1.3)

(2) There exists a A† ∈ L(W ′, V ) such that A ◦ A† = I on W ′ and∥∥∥A†∥∥∥
L(W ′,V )

≤ 1/αA.

Proof. For a proof see [18, Theorem 0.1]. �

Theorem 3.16 plays a major role in the theory of saddle point problems, it
ensures solvability of the operator equation (3.1.2) in Hilbert spaces. The
question of uniqueness can be answered by the following theorem.

Theorem 3.17 (Generalized Lax–Milgram–Lemma). Let V,W be two Hilbert
spaces and let A : V → W ′ be a continuous and linear operator. Assume there
exists a constant αA > 0 such that

inf
06=u∈V

sup
06=u∈W

〈Au, v〉
W ′×W

‖u‖
V
‖v‖

W

≥ αA (3.1.4a)

holds and suppose that for all 0 6= v ∈ W we have

sup
06=u∈V

〈Au, v〉
W ′×W

6= 0, (3.1.4b)

then A : V → W ′ is an isomorphism and ‖A−1‖
L(W ′,V )

≤ 1/αA holds.
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Proof. For a proof see [14, Theorem 3.6] or [55, Section 4.2.1]. �

Theorem 3.17 ensures unique solvability of the equation (3.1.2).

Corollary 3.18. Theorem 3.17 remains true if the adjoint conditions are
assumed, that is there exists a constant αA′ > 0 such that

inf
06=v∈W

sup
06=u∈V

〈Au, v〉
W ′×W

‖u‖
V
‖v‖

W

≥ αA′ (3.1.5a)

holds and
sup

06=v∈W
〈Au, v〉

W ′×W
6= 0 (3.1.5b)

for all 0 6= u ∈ V . To be precise, there holds the equivalence of (3.1.4) and
(3.1.5).

Proof. For a proof see [55, Theorem 2.1.44, Remark 2.1.45]. �

For W = V one can use the following theorem to show unique solvability of
the operator equation (3.1.2).

Theorem 3.19 (Lax–Milgram–Lemma). Let V be a Hilbert space and let
A : V → V ′ be a continuous and linear operator. Assume there exists a constant
αA > 0 such that A is V –elliptic, that is

〈Au, u〉
V ′×V

≥ αA ‖u‖2
V

(3.1.6)

for all u ∈ V . Then A : V → V ′ is an isomorphism and ‖A−1‖
L(V ′,V )

≤ 1/αA

holds.

Proof. For a proof see [55, Lemma 2.1.51]. �

Unfortunately these theorems are only applicable to linear operators, but there
are also results on the solvability and uniqueness of nonlinear operator equations
in Banach spaces.
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3.1.2 Nonliner Operator Equations

Let V be a Banach space and let A : V → V ′ be a nonlinear operator. For
a given g ∈ V ′ consider the nonlinear operator equation to find u ∈ V such
that

A(u) = g (3.1.7)

in V ′.

Theorem 3.20 (Main theorem on monotone operators). Let V be a real,
reflexive and separable Banach space. Let A : V → V ′ be a monotone, coercive
and hemicontinuous operator. Then for each g ∈ V ′ there exists a u ∈ V such
that A(u) = g in V ′ and the solution set is bounded, convex and closed. If, in
addition, A is strictly monotone, then the solution is unique.

Proof. For a proof see [75, Theorem 26.A]. �

The main theorem on monotone operators provides results on solvability and
uniqueness on nonlinear operator equations of the form (3.1.7). Unfortunately,
in many cases it is hard to prove that a given operator is strictly monotone or
even monotone. Sometimes it is just possible to show pseudomonotonicity, in
this case the following theorem is of importance.

Theorem 3.21 (Main theorem on pseudomonotone operators). Let V be a
real, reflexive and separable Banach space of infinite dimension. Let A : V → V ′

be a pseudomonotone, bounded and coercive operator. Then for each g ∈ V ′
there exists at least one u ∈ V such that A(u) = g in V ′.

Proof. For a proof see [75, Theorem 27.A]. �

We have recalled the most useful theorems on operator equations in Banach
spaces. Since we are dealing with partial differential equations, we have to
introduce suitable function spaces which allow an application of the abstract
theory done in this section. The introduction is done in the next section and
we will start with classical function spaces. Then we will repeat the Lebesgue
spaces and we will finish the section with Sobolev spaces.
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3.2 Function Spaces

In this section we will introduce some of the most used function spaces. This
section is based on [1, 2, 3, 17, 36, 48, 69, 76]. We say Ω ⊂ Rd, d = 2, 3, is a
domain if Ω is open and connected. We will denote its boundary by Γ = ∂Ω
and by n we will denote the outer unit normal of Γ.

n

Γ

Ω

Figure 3.1: Domain (bounded) in R2.

We begin with the classical spaces of continuous functions.

3.2.1 Classical Spaces

For d ∈ N we call (k1, k2, . . . , kd) = k ∈ Nd
0 a multi index with absolute value

|k| = k1 + k2 + . . .+ kd and factorial k! = k1! k2! . . . kd!. Let u be a sufficient
smooth function, u : Ω→ R, we write

Dku(x) := ∂k1

∂xk1
1

∂k2

∂xk2
2
. . .

∂kd

∂xkdd
u(x1, x2, . . . , xd)

for the partial derivative of order |k|.

Moreover, we denote by

suppu := {x ∈ Ω | u(x) 6= 0}

the support of u.

Definition 3.22 (Ck(Ω)–Spaces). The space C0(Ω) ≡ C(Ω) consists of all
functions u : Ω→ R which are continuous on Ω, that is

C(Ω) := {u : Ω→ R | u is continuous } .
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For k ∈ N the space Ck(Ω) consists of all functions u : Ω→ R such that u is
differentiable for all multi indices k ∈ Nd

0 with |k| ≤ k, that is

Ck(Ω) :=
{
u : Ω→ R | Dku ∈ C(Ω) ∀k ∈ Nd

0 with |k| ≤ k
}
.

For k =∞, the space C∞(Ω) is defined as
C∞(Ω) :=

⋂
k∈N0

Ck(Ω).

Definition 3.23 (Ck(Ω)–Spaces). The space C0(Ω) ≡ C(Ω) consists of all
functions u ∈ C(Ω) such that u has a continuous extension to Ω. For k ∈ N the
space Ck(Ω) consists of all functions u ∈ Ck(Ω) such that Dku ∈ C(Ω) for all
k ∈ Nd

0 with |k| ≤ k. The space C∞(Ω) is defined in the same manner as in
Definition 3.22.

With ‖u‖
∞,Ω

:= sup
x∈Ω
|u(x)| we can define a norm

‖u‖
Ck(Ω)

:= max
k∈Nd0
|k|≤k

∥∥∥Dku
∥∥∥
∞,Ω

on Ck(Ω). Equipped with this norm the space Ck(Ω) is a Banach space.
Definition 3.24 (Ck0 (Ω)–Spaces). For k ∈ N0∪{∞} we define the space Ck0 (Ω)
as

Ck0 (Ω) :=
{
u ∈ Ck(Ω) | suppu b Ω

}
.

This is the space of all functions in Ck(Ω) with compact support in Ω. Equipped
with the norm ‖·‖

Ck(Ω)
the spaces Ck0 (Ω) form Banach spaces.

Another important space is the class of Hölder continuous functions. A function
u : Ω→ R is called Hölder continuous, if there exists positive constants cL, γ ∈ R
with γ ∈ (0, 1], such that

|u(x)− u(y)| ≤ cL |x− y|γ

for all x,y ∈ Ω. The space of functions u ∈ C(Ω) satisfying this condition
is designated by C0,γ(Ω). For u ∈ C0,γ(Ω) we can define the Hölder quotient
[u]γ : Ω× Ω→ R as

[u]γ (x,y) := |u(x)− u(y)|
|x− y|γ

for γ ∈ (0, 1] and u ∈ C0,γ(Ω).
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Definition 3.25 (Ck,γ(Ω)–Spaces). For k ∈ N and γ ∈ (0, 1] we define Ck,γ(Ω)
as

Ck,γ(Ω) :=
{
u ∈ Ck(Ω) | Dku ∈ C0,γ(Ω) ∀k ∈ Nd

0 with |k| ≤ k
}
.

Equipped with the norm

‖u‖
Ck,γ (Ω)

:= ‖u‖
Ck(Ω)

+ |u|
Ck,γ (Ω)

= ‖u‖
Ck(Ω)

+ max
k∈Nd0
|k|=k

∥∥∥∥[Dku
]
γ

∥∥∥∥
∞,Ω×Ω

the space Ck,γ(Ω) is a Banach space.

For further information about continuous functions and the corresponding
function spaces, see [3, Chapter 1], which is the main reference of this subsection.
In the next subsection we want to consider a class of more general function
spaces, the integrable functions.

3.2.2 Lebesgue Spaces

In this subsection we assume that Ω ⊂ Rd is a bounded domain, that is there
exists a constant K > 0 such that |Ω|

d
≤ K <∞.

Before we introduce the Lebesgue space we need the following definition.

Definition 3.26 (M(Ω)–Space). ByM(Ω) we denote the space of all functions
u : Ω→ R, such that u is measurable, that is

M(Ω) := {u : Ω→ R | u measurable} .

We introduce the Lebesgue spaces as subsets ofM(Ω) in the following way.

Definition 3.27 (Lp(Ω)–Spaces). For 1 ≤ p <∞ the space Lp(Ω) is defined
as the space of all functions u : Ω→ R, such that the p-th power of the absolute
value is integrable, that is

Lp(Ω) :=
{
u : Ω→ R | u ∈M(Ω) and ‖u‖

Lp(Ω)
<∞

}
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with the norm
‖u‖p

Lp(Ω)
:=
∫
Ω

|u|p dx.

The Lebesgue space Lp(Ω) is a Banach space, see [3, 1.21 Satz von Fischer-Risz].

For p =∞ we define ‖u‖
L∞(Ω)

:= ess sup
x∈Ω

|u(x)| and the space L∞(Ω) as

L∞(Ω) :=
{
u : Ω→ R | u ∈M(Ω) and ‖u‖

L∞(Ω)
<∞

}
.

The space L∞(Ω) is again a Banach space, see [3, 1.17 Lemma].

For 1 ≤ p < ∞ the dual space of Lp(Ω) is normisomorph to Lq(Ω), i.e.
Lp(Ω)′ ∼= Lq(Ω), with 1/p+1/q = 1. In other words, to each functional f ∈ Lp(Ω)′
there exists an element u ∈ Lq(Ω) with ‖f‖

Lp(Ω)′
= ‖u‖

Lq(Ω)
such that

〈f, v〉
Lp(Ω)′×Lp(Ω)

=
∫
Ω

u v dx

for all v ∈ Lp(Ω), see [68, Satz II.2.4].

Of special interest is the Lebesgue space for p = 2. In this case the space L2(Ω)
is a Hilbert space with the inner product

(u, v)
L2(Ω)

:=
∫
Ω

u v dx

defined for all u, v ∈ L2(Ω).

The inequalities given below are of special interest since they are frequently
used in this thesis.

Theorem 3.28 (Hölder inequality). Let p, q ∈ R with 1 ≤ p, q ≤ ∞ and
1/p + 1/q = 1. For u ∈ Lp(Ω) and v ∈ Lq(Ω) we have u v ∈ L1(Ω) and there
holds ∫

Ω

u v dx ≤ ‖u‖
Lp(Ω)
‖v‖

Lq(Ω)
.

Proof. For a proof see [2, Theorem 2.4]. �
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The Hölder inequality can be extended to more than two functions. For n ∈ N

and i = 1, . . . , n let ui ∈ Lpi(Ω) with
n∑
i=1

1/pi = 1. Then there holds

∫
Ω

n∏
i=1

ui dx ≤
n∏
i=1
‖ui‖

Lpi (Ω)
.

This statement can easily be proven by a recursive application of the above
theorem.

Theorem 3.29 (Minkowski inequality). Let 1 ≤ p ≤ ∞. For u, v ∈ Lp(Ω)
there holds

‖u+ v‖
Lp(Ω)

≤ ‖u‖
Lp(Ω)

+ ‖v‖
Lp(Ω)

.

Proof. For a proof see [3, 1.20 Lemma]. �

Notation 3.30. Let 1 ≤ p ≤ ∞, we write [Lp(Ω)]d as Lp(Ω) and ‖u‖
[Lp(Ω)]d

as
‖u‖

Lp(Ω)
with

‖u‖p
Lp(Ω)

:=
d∑
i=1
‖ui‖p

Lp(Ω)

for all u ∈ Lp(Ω). The Hölder inequality and the Minkowski inequality also
hold in the Lp(Ω)–spaces.

To introduce the Sobolev spaces in a proper way we need the concept of weak
derivatives. Therefore let u ∈ L1(Ω) and k ∈ Nd

0. We say v ∈ L1(Ω) is the
|k|–th weak derivative of u iff∫

Ω

vϕ dx = (−1)|k|
∫
Ω

uDkϕ dx

holds for all ϕ ∈ C∞0 (Ω). We write Dku = v. There is even a more general
definition of the weak derivative using the space Lloc1 (Ω), see [28, Definition 5.3],
but for our purpose the above definition is sufficient.

Definition 3.31. Using the definition of the weak derivative, we can introduce
the weak gradient and the weak divergence. For u ∈ L1(Ω) we call v ∈ L1(Ω)
weak gradient if ∫

Ω

v · ϕ dx = (−1)
∫
Ω

u∇ · ϕ dx
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is satisfied for all ϕ ∈ [C∞0 (Ω)]d, we write ∇u = v. Conversely we call v ∈ L1(Ω)
weak divergence of u ∈ L1(Ω) if∫

Ω

vϕ dx = (−1)
∫
Ω

u · ∇ϕ dx

holds for all ϕ ∈ C∞0 (Ω), we write ∇ · u = v.

3.2.3 Sobolev Spaces

For the introduction of the Sobolev spaces we assume that Ω is a bounded
Lipschitz domain, see [37, Definition 1.2.1.1], [61, Definition 2.1] or [40, Defini-
tion 3.3.1].
Definition 3.32 (W k

p (Ω)–Spaces). Let k ∈ N0 and 1 ≤ p ≤ ∞. We define the
Sobolev space W k

p (Ω) as

W k
p (Ω) :=

{
u ∈ Lp(Ω) | Dku ∈ Lp(Ω) ∀k ∈ Nd

0 with |k| ≤ k
}
.

The corresponding norm is defined as

‖u‖p
Wk
p (Ω)

:=
∑

k∈Nd0
|k|≤k

∥∥∥Dku
∥∥∥p
Lp(Ω)

for u ∈ W k
p (Ω). Equipped with this norm the W k

p (Ω) spaces form Banach spaces,
see [28, Satz 5.10].

The norm can equivalently be written as

‖u‖p
Wk
p (Ω)

:= ‖u‖p
Wk−1
p (Ω)

+ |u|p
Wk
p (Ω)

= ‖u‖p
Wk−1
p (Ω)

+
∑

k∈Nd0
|k|=k

∥∥∥Dku
∥∥∥p
Lp(Ω)

where |u|p
Wk
p (Ω)

denotes the corresponding seminorm.

In [49] it was proven, that the Sobolev spaces can also be characterized as
the closure of C∞(Ω) with respect to the W k

p (Ω)–norm for 1 ≤ p < ∞. For
Lipschitz domains Ω ⊂ Rd this statement can be sharpened to

W k
p (Ω) = Cl(Ω)

‖·‖
Wk
p (Ω)
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for all l ≥ k. The space W k
p,0(Ω) is defined by

W k
p,0(Ω) := Ck0 (Ω)

‖·‖
Wk
p (Ω)

and is the closure of all functions u ∈ C∞(Ω) with compact support in Ω.
Furthermore, it is a closed subspace of W k

p (Ω).

As for Lebesgue spaces, the case p = 2 is again of special interest. The Sobolev
space W k

2 (Ω) is a Hilbert space with the inner product

(u, v)
Wk

2 (Ω)
:=

∑
k∈Nd0
|k|≤k

∫
Ω

(Dku) (Dkv) dx

for u, v ∈ W k
2 (Ω). We identify W k

2 (Ω) with Hk(Ω) and W k
2,0(Ω) with Hk

0 (Ω)
where the latter are defined via Fourier transformations, see [48, Chapter 3].

In the space Hk
0 (Ω) the functional |·|

Hk(Ω)
defines a norm and is equivalent to

the standard norm ‖·‖
Hk(Ω)

. Thus, there holds the norm equivalence

cN ‖u‖
Hk(Ω)

≤ |u|
Hk(Ω)

≤ ‖u‖
Hk(Ω)

for some 0 < cN < 1 and all u ∈ Hk
0 (Ω), see [36, Theorem 1.1], we write

‖u‖
Hk(Ω)

' |u|
Hk(Ω)

.

It is also possible to introduce real order Sobolev spaces, this is done in the
following definition.
Definition 3.33 (W s

p (Ω)–Spaces). Let 1 ≤ p ≤ ∞, s ∈ R with s = k+σ where
k ∈ N0 and σ ∈ (0, 1). We define the Sobolev space W s

p (Ω) as

W s
p (Ω) :=

{
u ∈ W k

p (Ω) |
[
Dku

]
γ
∈ Lp(Ω× Ω) ∀k ∈ Nd

0 with |k| ≤ k
}

with γ := d
p

+ σ and the norm

‖u‖p
Ws
p (Ω)

:= ‖u‖p
Wk
p (Ω)

+ |u|p
Wσ
p (Ω)

= ‖u‖p
Wk
p (Ω)

+
∑

k∈Nd0
|k|=k

∥∥∥∥[Dku
]
γ

∥∥∥∥p
Lp(Ω×Ω)

= ‖u‖p
Wk
p (Ω)

+
∑

k∈Nd0
|k|=k

∫
Ω

∫
Ω

∣∣∣Dku(x)−Dku(y)
∣∣∣p

|x− y|d+σ p dy dx
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which is known as the Sobolev–Slobodetskii norm. Equipped with this norm the
W s
p (Ω) spaces form Banach spaces, see [37, Section 1.3].

In the next step we define Sobolev spaces on manifolds. For this reason consider
Γ = ∂Ω, the boundary of the bounded Lipschitz domain Ω ⊂ Rd.

Definition 3.34 (W s
p (Γ)–Spaces). Let s ∈ (0, 1) and 1 ≤ p < ∞. Then the

space W s
p (Γ) is defined as

W s
p (Γ) :=

{
u ∈ Lp(Γ) | [u]γ ∈ Lp(Γ× Γ)

}
with γ := (d−1)

p
+ s. Equipped with the norm

‖u‖p
Ws
p (Γ)

:= ‖u‖p
Lp(Γ)

+ |u|p
Ws
p (Γ)

:= ‖u‖p
Lp(Γ)

+
∥∥∥[u]γ

∥∥∥p
Lp(Γ×Γ)

= ‖u‖p
Lp(Γ)

+
∫
Γ

∫
Γ

|u(x)− u(y)|p

|x− y|(d−1)+s p dsy dsx

the fractional order Sobolev space W s
p (Γ) is a Banach space, see [1, Theo-

rem 7.51].

For p = 2 the Sobolev space W s
2 (Γ) is a Hilbert space with the inner product

(u, v)
Ws

2 (Γ)
:=
∫
Γ

u v dsx +
∫
Γ

∫
Γ

(
u(x)− u(y)

) (
v(x)− v(y)

)
|x− y|(d−1)+2 s dsy dsx.

for u, v ∈ W s
2 (Γ). We identify W s

2 (Γ) with Hs(Γ).

Consider for a moment the space C∞(Ω), then we can define the operator γ0
Γ

with γ0
Γ

: C∞(Ω)→ C∞(Γ) as the restriction of u to the boundary, that is

γ0
Γ
u := u|Γ

for all u ∈ C∞(Ω). Since C∞(Ω) is dense in W 1
p (Ω), the operator γ0

Γ
can be

extended in a continuous way, see the following theorem.
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Theorem 3.35 (Trace Theorem). Let Ω ⊂ Rd be a bounded Lipschitz domain
with boundary Γ = ∂Ω. For 1/2 < s < 3/2 the operator γ0

Γ
can be extended to a

linear operator γ0
Γ

: Hs(Ω)→ Hs−1/2(Γ) such that∥∥∥γ0
Γ
u
∥∥∥
Hs−1/2(Γ)

≤ cT ‖u‖
Hs(Ω)

holds for all u ∈ Hs(Ω) and a constant cT > 0.

Proof. For a proof see [48, Theorem 3.38]. �

The trace theorem stated in this work is a simplification of a more general
trace theorem for W k

p (Ω)–spaces, see for example [1, Theorem 7.53] or [3,
Theorem A6.6].

Using the trace theorem, the space H1
0 (Ω) can be characterized as the space of

all u ∈ H1(Ω) with γ0
Γ
u = 0.

Theorem 3.36 (Inverse Trace Theorem). Let Ω ⊂ Rd be a bounded Lipschitz
domain. There exists a continuous operator EΩ : Hs−1/2(Γ) → Hs(Ω) and a
constant cE > 0 such that

‖EΩ g‖Hs(Ω)
≤ cE ‖g‖

Hs−1/2(Γ)

holds for all g ∈ Hs−1/2(Γ) and 1/2 < s < 3/2. Furthermore there holds g =
γ0

Γ
EΩ g for all g ∈ Hs−1/2(Γ).

Proof. For a proof see [48, Theorem 3.38]. �

The inverse trace theorem is also true for higher order Sobolev spaces, see for
example [1, 7.56]. If just a non–empty open subset Γ0 ⊂ Γ = ∂Ω is considered,
we define the space Hs(Γ0) as

Hs(Γ0) :=
{
g ∈ L2(Γ0) | ∃ g̃ ∈ Hs(Γ) : g̃|Γ0

= g
}
.

Equipped with the norm

‖g‖
Hs(Γ0)

= inf
g̃∈Hs(Γ)
g̃|Γ0

=g

‖g̃‖
Hs(Γ)

the space Hs(Γ0) is again a Banach space.
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Remark 3.37. For a non–empty open subset Γ0 ⊂ Γ = ∂Ω, the Trace Theo-
rem 3.35 remains true since∥∥∥γ0

Γ0
u
∥∥∥
Hs(Γ0)

≤
∥∥∥γ0

Γ
u
∥∥∥
Hs(Γ)

≤ cT ‖u‖
Hs(Ω)

holds for all u ∈ Hs(Ω). A similar result holds for Theorem 3.36.

For a subset Γ0 ⊂ ∂Ω and by using the trace operator we can define the space

H1
0,Γ0(Ω) :=

{
u ∈ H1(Ω) | γ0

Γ0
u = 0

}
which is a closed subspace of H1(Ω) and there also holds the equivalence

cN ‖u‖
H1(Ω)

≤ |u|
H1(Ω)

≤ ‖u‖
H1(Ω)

(3.2.1)

for some 0 < cN < 1 and all u ∈ H1
0,Γ0(Ω), we write ‖u‖

H1(Ω)
' |u|

H1(Ω)
.

The Trace Theorem 3.35 and the Inverse Trace Theorem 3.36 are one of the
most crucial tools in the analysis of boundary value problems. One further
important property of Sobolev spaces are imbeddings.

Theorem 3.38 (Imbedding Theorem). Let Ω ⊂ Rd be a bounded Lipschitz
domain and 1 ≤ p, q <∞. For l, k ∈ N0 with 0 ≤ l ≤ k the following imbeddings
hold.

(1) If (k − l) p ≤ d and k − d/p ≥ l − d/q, we have W k
p (Ω) � W l

q(Ω) and there
exists a constant cI > 0, such that ‖u‖

Wl
q(Ω)
≤ cI ‖u‖

Wk
p (Ω)

holds for all

u ∈ W k
p (Ω). The imbedding is compact if k − d/p > l − d/q holds, we write

W k
p (Ω) � cW

l
q(Ω).

(2) If (k− l) p > d and k−d/p ≥ l+γ for γ ∈ (0, 1), we have W k
p (Ω) � Cl,γ(Ω)

and there exists a constant cI > 0, such that ‖u‖
Cl,γ (Ω)

≤ cI ‖u‖
Wk
p (Ω)

holds

for all u ∈ W k
p (Ω). The imbedding is compact if k − d/p > l + γ holds, we

write W k
p (Ω) � c Cl,γ(Ω).

Proof. For a proof see [2, Theorem 4.12, Remark 4.13, Theorem 6.3, Remark 6.4].
�
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Theorem 3.38 holds for integer order Sobolev spaces, but there is also a version
of the imbedding theorem which holds for real order Sobolev spaces.

Theorem 3.39 (Imbedding Theorem). Let Ω ⊂ Rd be a bounded Lipschitz
domain and 1 ≤ p <∞ and let s ∈ (0, 1).

(1) If s p ≤ d and s− d/p ≥ −d/q, we have W s
p (Ω) � Lq(Ω) and there exists a

constant cI > 0, such that ‖u‖
Lq(Ω)

≤ cI ‖u‖
Ws
p (Ω)

holds for all u ∈ W s
p (Ω).

(2) If s p > d and s− d/p ≥ γ for γ ∈ (0, 1), we have W s
p (Ω) � C0,γ(Ω) and

there exists a constant cI > 0, such that ‖u‖
C0,γ (Ω)

≤ cI ‖u‖
Ws
p (Ω)

holds for
all u ∈ W s

p (Ω).

Proof. For a proof see [26, Theorem 6.7, Theorem 6.10, Theorem 8.2]. �

Remark 3.40. Let Ω ⊂ Rd be a bounded Lipschitz domain with Lipschitz
boundary Γ = ∂Ω. We know, that the H1/2(Γ)–norm is equivalent to the H1/2(Γ)–
norm defined by

‖g‖
H1/2(Γ)

:=
NC∑
i=1
‖g ◦ Ti‖2

H
1/2(Q)

1/2

for g ∈ H1/2(Γ), see [40, Section 4.2]. In the above definition NC ∈ N is
the finite number of covers of Γ, Ti describes the transformation between the
local and global coordinate system and Q ⊂ Rd−1 is the parameter domain,
see for example [40, Definition 3.3.1]. Therefore, the imbedding theorems are
applicable with d− 1. The statements remain true if just a part of the boundary,
Γ0 ⊂ Γ = ∂Ω, is considered.

The final space we want to introduce is the spaceHdiv(Ω), for further information
see for example [62, Chapter 20].

Definition 3.41 (Hdiv(Ω)–Space). In view of Definition 3.31, we can define
the space Hdiv(Ω) as

Hdiv(Ω) := {q ∈ L2(Ω) | ∇ · q ∈ L2(Ω)} .

This is the space of all functions in L2(Ω) such that the weak divergence is in
L2(Ω). Equipped with the norm

‖q‖2
Hdiv(Ω)

:= ‖q‖2
L2(Ω)

+ ‖∇ · q‖2
L2(Ω)
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the space Hdiv(Ω) is a Banach space. By defining the inner product as

(q, r)
Hdiv(Ω)

:= (q, r)
L2(Ω)

+ (∇ · q,∇ · r)
L2(Ω)

we see, that Hdiv(Ω) is a Hilbert space.

Consider for a moment the mapping q 7→ q · n defined from [C∞(Ω)]d into
L∞(Γ). As for the trace operator, this operator can be extended to the space
Hdiv(Ω) in a continuous way.

Theorem 3.42. Let Ω ⊂ Rd be a bounded Lipschitz domain with Lipschitz
boundary ∂Ω. Then, the linear mapping q 7→ q · n can be extended to an
continuous and surjective operator from Hdiv(Ω) into H1/2(Γ)′. Furthermore,
there exists a constant cNT > 0, such that

‖q · n‖
H

1/2(Γ)
′ ≤ cNT ‖q‖

Hdiv(Ω)

holds for all q ∈ Hdiv(Ω).

Proof. For a proof see [62, Lemma 20.2]. �

Due to the density of C∞(Ω) in H1(Ω) as well as the density of [C∞(Ω)]d in
Hdiv(Ω), Green’s formula can be extended to the following result, see [36,
Theorem 2.4, Theorem 2.5].

Lemma 3.43 (Green’s Formula). Let Ω ⊂ Rd be a bounded Lipschitz domain.
Then Green’s formula∫

Ω

[
q · ∇u+∇ · q u

]
dx = 〈q · n, γ0

Γ
u〉

H
1/2(Γ)

′
×H1/2(Γ)

holds for all u ∈ H1(Ω) and q ∈ Hdiv(Ω).

We introduced the Sobolev spaces in Lipschitz domains and on boundaries of
Lipschitz domains. Furthermore we repeated the basic theorems and lemmata
in Sobolev spaces which we will need in this thesis. In the next section we will
recall the mapping properties of superposition operators in Lebesgue spaces
and Sobolev spaces.
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3.3 Superposition Operators

Since we are dealing with nonlinear problems, superposition operators play an
important role. This section is based on [5] and on [75]. In this section let Ω be
a domain in the Euclidean space Rd and m ∈ N an arbitrary natural number.

Definition 3.44 (Superposition operator). Let u1, . . . , um be real valued func-
tions defined almost everywhere on a domain Ω ⊂ Rd and let l : Ω×Rm → R be
a real valued functional. Then we define the superposition operator (also known
as Nemyckii operator) l as(

l(u)
)
(x) := l

(
x, u1(x), . . . , um(x)

)
by the pointwise application of l to u = (u1, . . . , um)> on Ω.

Let V be a normed space consisting of a subset of all measurable functions
on the open domain Ω and let m = 1. If the superposition operator satisfies
l(u) ∈ V for all u ∈ V , we say that the operator l acts on the space V .

The next step is to consider the mapping properties of such an operator. Since
we only deal with Sobolev spaces and Lebesgue spaces in this thesis, we restrict
ourselves to mapping properties of superposition operators in such spaces. For
further information about mapping properties in other spaces see [5].

Definition 3.45 (Carathéodory function). Let l : Ω× Rm → R. If l satisfies

(1) l(x, ·) : Rm → R is continuous for almost all x ∈ Ω,
(2) l(·, s) : Ω→ R is measurable for all s ∈ Rm,

then l is said to be a Carathéodory function.

The Carathéodory property is crucial for the following theorem about the
mapping properties of superposition operators in Lebesgue spaces.

Theorem 3.46 (Acting conditions in Lebesgue spaces). Let p1, . . . , pm, q ∈ R
with 1 ≤ p1, . . . , pm, q <∞ and let l : Ω× Rm → R be a Carathéodory function
satisfying

|l(x, s)| ≤ a(x) + b
m∑
i=1
|si|

pi/q
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3.3 Superposition Operators

for almost all x ∈ Ω and every s ∈ Rm with a ∈ Lp(Ω) and a non nega-
tive b. Then the related superposition operator l maps

m∏
i=1

Lpi(Ω) into Lq(Ω)
continuously and it is furthermore bounded.

If there exists a function a ∈ L∞(Ω) such that

|l(x, s)| ≤ a(x)

for almost all x ∈ Ω and every s ∈ Rm, then l maps
m∏
i=1

Lpi(Ω) into L∞(Ω).

Proof. See for example [5, Chapter 3] or [75, Section 26.3]. �

We have already discussed some mapping properties of superposition operators.
The following lemmata show some additional properties of superposition opera-
tors based on properties of the underlying function l : Ω × Rm → R. Similar
results to Lemma 3.47 and Lemma 3.48 can be found in [75, Section 26.3] where
stronger assumptions on l : Ω× Rm → R are made.

Lemma 3.47. Let l : Ω×R→ R such that the related superposition operator l is
a continuous mapping from Lp(Ω) to Lq(Ω) with 1 ≤ p, q <∞ and 1/p+ 1/q = 1.
If l(x, ·) : R → R is monotonically increasing for almost all x ∈ Ω, then the
operator l : Lp(Ω)→ Lq(Ω) is monotone.

Proof. In this proof we want to show that l : Lp(Ω)→ Lq(Ω) is monotone, that
is

〈l(u)− l(v), u− v〉
Lq(Ω)×Lp(Ω)

=
∫
Ω

(
l(u)− l(v)

) (
u− v

)
dx ≥ 0

for all u, v ∈ Lp(Ω). The idea is to show the pointwise monotonicity(
l
(
x, u(x)

)
− l
(
x, v(x)

))(
u(x)− v(x)

)
≥ 0 (3.3.1)

for almost all x ∈ Ω. For this, choose arbitrary u, v ∈ Lp(Ω). We have the
decomposition Ω = Ω+ ∪ Ω− with Ω+,Ω− ⊂ Ω such that u ≥ v almost
everywhere in Ω+ and u < v almost everywhere in Ω−. It is easy to verify that
the equation (3.3.1) is pointwise satisfied almost everywhere in Ω+ and almost
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everywhere in Ω−. Therefore inequality (3.3.1) is pointwise satisfied almost
everywhere in Ω and we obtain∫

Ω

(
l(u)− l(v)

) (
u− v

)
dx ≥ 0

for arbitrary u, v ∈ Lp(Ω). �

Lemma 3.48. Let l : Ω × R → R be a mapping such that the related su-
perposition operator l is a continuous mapping from Lp(Ω) to Lq(Ω) with
1 ≤ p, q <∞. If l(x, ·) : R→ R satisfies |l(x, r)− l(x, s)| ≤ cL |r − s|

p/q with a
constant cL > 0 for almost all x ∈ Ω, then ‖l(u)− l(v)‖

Lq(Ω)
≤ cL ‖u− v‖

p/q

Lp(Ω)

for all u, v ∈ Lp(Ω).

Proof. As in the proof of Lemma 3.47 we choose arbitrary u, v ∈ Lp(Ω). Since
|l(x, r)− l(x, s)| ≤ cL |r − s|

p/q holds for almost all x ∈ Ω we have

‖l(u)− l(v)‖q
Lq(Ω)

=
∫
Ω

|l(u)− l(v)|q dx ≤
∫
Ω

cL
q |u− v|p dx

=
(
cL ‖u− v‖

p/q

Lp(Ω)

)q
which shows the desired statement. �

Lemma 3.47 and Lemma 3.48 can be proven in the same way for Lp–spaces
defined on a submanifold Γ0 ⊂ ∂Ω.

We have repeated the theorems and lemmata we need in this thesis concerning
superposition operators in Lebesgue spaces. We will continue with superposition
operator acting on Sobolev spaces.

Theorem 3.49. Let l : R → R be a uniformly Lipschitz continuous function
and 1 ≤ p <∞ and let Ω ⊂ Rd be open. Then the related superposition operator
l acts on W 1

p (Ω) continuously if either l(0) = 0 or |Ω|
d
<∞. Furthermore, the

representation
∇l(u) = l′(u)∇u

holds in L2(Ω).
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Proof. For a proof see [46, 47]. �

In Theorem 3.49 we denote by l′ the superposition operator related to the
derivative of l, which exists almost everywhere due to Rademachers’s theorem,
see for example [31, Theorem 2 in Section 3.1.2].

Theorem 3.50. Let l : R → R be a uniformly Lipschitz continuous function
with Lipschitz constant cL > 0, p ∈ R with 1 ≤ p < ∞ and s ∈ (0, 1). Let
Ω ⊂ Rd be a domain with boundary Γ = ∂Ω. Then the related superposition
operator l acts on W s

p (Γ) continuously if either l(0) = 0 or |Γ|
d−1

<∞.

Proof. First we want to show the mapping property of l, therefore let u ∈ W s
p (Γ).

From

‖l(u)‖
Lp(Γ)

= ‖l(u)− l(0) + l(0)‖
Lp(Γ)

≤ ‖l(u)− l(0)‖
Lp(Γ)

+ ‖l(0)‖
Lp(Γ)

≤ cL ‖u‖
Lp(Γ)

+ |l(0)| |Γ|1/p
d−1

and
∥∥∥[l(u)]γ

∥∥∥p
Lp(Γ×Γ)

=
∫
Γ

∫
Γ

|l(u(x))− l(u(y))|p

|x− y|(d−1)+s p dsy dsx

≤ cpL

∫
Γ

∫
Γ

|u(x)− u(y)|p

|x− y|(d−1)+s p dsy dsx = cpL
∥∥∥[u]γ

∥∥∥p
Lp(Γ×Γ)

we obtain that

‖l(u)‖p
Ws
p (Γ)

= ‖l(u)‖p
Lp(Γ)

+
∥∥∥[l(u)]γ

∥∥∥p
Lp(Γ×Γ)

≤
(
cL ‖u‖

Lp(Γ)
+ |l(0)| |Γ|1/p

d−1

)p
+ cpL

∥∥∥[u]γ
∥∥∥p
Lp(Γ×Γ)

<∞

and therefore l : W s
p (Γ)→ W s

p (Γ).

From Theorem 3.46 we conclude that l : Lp(Γ) → Lp(Γ) is continuous. To
show continuity in W s

p (Γ) we take a sequence {un} ⊂ W s
p (Γ) ⊂ Lp(Γ) such

that un → u in W s
p (Γ). Since {un} converges in W s

p (Γ) we have convergence
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in Lp(Γ). This implies the existence of a subsequence {un′} ⊂ {un} such that
un′(x)→ u(x) for almost all x ∈ Γ as n′ →∞. Next, define fn′ : Γ× Γ→ R as

fn′(x,y) := l(un′(x))− l(un′(y))
|x− y|

(d−1)
p

+s
− l(u(x))− l(u(y))
|x− y|

(d−1)
p

+s

for n′ ∈ N. Furthermore define Σ := Γ×Γ as well as ΣD := {(x,x) ∈ Σ | x ∈ Γ}.
Since un′ converges to u for almost all x ∈ Γ, we have

fn′(x,y)→ 0 as n′ →∞

for almost all (x,y) ∈ Σ \ΣD. Due to the fact that |ΣD|(d−1)(d−1)
= 0, we obtain

convergence for almost all (x,y) ∈ Σ.

With gn′(x,y) := (2 cL)p
2

(
[un′ ]γ (x,y) + [u]γ (x,y)

)
we have the estimate

|fn′(x,y)|p =

∣∣∣∣∣∣ l(un′(x))− l(un′(y))
|x− y|

(d−1)
p

+s
− l(u(x))− l(u(y))
|x− y|

(d−1)
p

+s

∣∣∣∣∣∣
p

≤ 2p−1 |l(un′(x))− l(un′(y))|p + |l(u(x))− l(u(y))|p

|x− y|(d−1)+s p

≤ 2p−1 c
p
L |un′(x)− un′(y)|p + cpL |u(x)− u(y)|p

|x− y|(d−1)+s p = gn′(x,y)

for all n′ ∈ N. Since un′ → u in W s
p (Γ), we obtain∫

Γ

∫
Γ

gn′(x,y) dsy dsx →
∫
Γ

∫
Γ

g(x,y) dsy dsx

with g(x,y) := (2 cL)p [u]γ (x,y). We have shown, that fn′ → 0 almost every-
where in Σ, |fn′|p ≤ gn′ almost everywhere in Σ and gn′ → g in L1(Σ). From
Theorem 1.25 in [3] we obtain that fn′ → 0 in Lp(Σ). Thus we have∥∥∥[l(un′)− l(u)]γ

∥∥∥p
Lp(Γ×Γ)

=

=
∫
Γ

∫
Γ

∣∣∣(l(un′(x))− l(u((x))
)
−
(
l(un′(y))− l(u(y))

)∣∣∣p
|x− y|(d−1)+s p dsy dsx

=
∫
Γ

∫
Γ

|fn′(x,y)|p dsy dsx → 0
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which implies
‖l(un′)− l(u)‖

Ws
p (Γ)
→ 0.

To prove the convergence of ‖l(un)− l(u)‖
Ws
p (Γ)
→ 0, we show by contradiction

that each subsequence {l(un̂)} ⊂ {l(un)} satisfies l(un̂) → l(u) in W s
p (Γ).

From Lemma 4.34 in [6] we can then conclude that ‖l(un)− l(u)‖
Ws
p (Γ)
→ 0.

Thus, let {l(un̂)} ⊂ {l(un)} be a subsequence with ‖l(un̂)− l(u)‖
Ws
p (Γ)

> ε

for all n̂ > N̂ . Since un → u in W s
p (Γ), the subsequence {un̂} ⊂ {un} has a

subsequence {un̂′} ⊂ {un̂} which converges pointwise almost everywhere on Γ.
In the same manner as before, we can can show that ‖l(un̂′)− l(u)‖

Ws
p (Γ)
→ 0

which contradicts our assumption on {l(un̂)} and finishes the proof. �

We have shown, that each uniformly Lipschitz continuous function l : R→ R
induces a continuous superposition operator acting on H1(Ω) and on H1/2(Γ)
with Γ = ∂Ω. The following lemma shows, how these mappings are related to
each other.

Lemma 3.51. Let l : R → R be a uniformly Lipschitz continuous function.
Furthermore let Ω ⊂ Rd be a bounded Lipschitz domain with boundary Γ = ∂Ω.
Then there holds

γ0
Γ
l(u) = l(γ0

Γ
u)

in H1/2(Γ). Here, the superposition operator l on the left hand side is a mapping
l : H1(Ω)→ H1(Ω), whereas the superposition operator l on the right hand side
is a mapping l : H1/2(Γ)→ H1/2(Γ).

Proof. Choose an arbitrary element u ∈ H1(Ω). Since C∞(Ω) is dense in H1(Ω),
there exists a sequence un ⊂ C∞(Ω) such that un → u in H1(Ω) as n → ∞.
For un ∈ C∞(Ω) we have γ0

Γ
l(un) = l(un)|Γ = l(un|Γ) = l(γ0

Γ
un) due to the

continuity of l and un. From Theorem 3.49 and from Theorem 3.50 we get the
continuity of the superposition operator on H1(Ω) as well as on H1/2(Γ). Since
γ0

Γ
: H1(Ω)→ H1/2(Γ) is continuous, we obtain∥∥∥γ0

Γ
l(u)− l(γ0

Γ
u)
∥∥∥
H

1/2(Γ)

= lim
n→∞

∥∥∥γ0
Γ
l(un)− l(γ0

Γ
un)

∥∥∥
H

1/2(Γ)

= 0

which proves the desired statement. �
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We are done with the mathematical preliminaries. We have recalled some of
the main tools from the functional analysis in Section 3.1 and we introduced
function spaces as well as their properties in Section 3.2. In Section 3.3, we
discussed superposition operators acting in Lebesgue spaces and in Sobolev
spaces as well. In the next chapter we will derive a variational formulation
for the Richards equation and we will discuss solvability and uniqueness of
the derived formulation. Therefore we will need the tools we repeated in this
chapter.
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4 Variational Formulation

In this chapter we will derive a variational formulation for the Richards equation
(2.0.3) which was discussed in Chapter 2. In the first section, Section 4.1, we will
apply an implicit–explicit time discretization scheme and we obtain a series of
stationary variational problems which depend on the previous time step. Next,
in Section 4.2, we will discuss the solvability of the derived stationary variational
problems as well as the uniqueness of the solution. Furthermore, a regularity
result is given. After that, we consider in Section 4.3 the Richards equation
in a homogeneous soil. To apply the solvability and uniqueness results from
Section 4.2 we have to state certain assumptions on the nonlinear parameter
functions θ and k introduced in Chapter 2. After clarifying this question, we
apply the so called Kirchhoff transformation and we obtain, in a straight forward
way, a partial differential equation which is now linear in its principal part.
Finally, in Section 4.4, we apply the Kirchhoff transformation to the Richards
equation considered in heterogeneous soil. This can not be done as straight
forward as it was done in Section 4.3. We first have to rewrite the variational
formulation using the primal hybrid formulation before we can apply local
Kirchhoff transformations.

Let us begin with some preliminary assumptions. Assume, we have given a
bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3, with boundary Γ = ∂Ω such that
Γ = ΓD ∪ ΓN and |ΓD|

d−1
> 0. We denote the outer unit normal on ∂Ω by n.

The Richards equation (2.0.3) is a time dependent equation, hence we have to
consider a space–time domain in which we want to solve the equation. Define
the time interval I := (0, T ) for some T ∈ R+. By Q := Ω × I we denote
the corresponding space–time cylinder with surface Σ := Γ× I and base area
Ω0 := Ω× {0}. In the same manner as for ∂Ω we can decompose the surface Σ
into two disjoint parts ΣD and ΣN with ΣD := ΓD × I and ΣN := ΓN × I, see
Figure 4.1.
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4 Variational Formulation

0

T

ΓN

ΣN

ΓD

ΣD

Ω0

Q
time

space
n

Figure 4.1: Sketch of a space–time cylinder.

As already mentioned, we are are interested in the solution of the initial bound-
ary value problem (4.0.1) with initial and boundary conditions as discussed in
Section 2.3.

Initial boundary value problem

Find p : Q→ R such that

n
∂θ(p)
∂t
−∇ ·

(
K

µ
k
(
θ(p)

)
∇
(
p− d

))
= f in Q,

K

µ
k
(
θ(p)

)
∇
(
p− d

)
· n = gN on ΣN ,

p = gD on ΣD,

p = p0 in Ω0

(4.0.1)

holds for given f, gN , gD, and given initial datum p0.

Note, that for the initial boundary value problem (4.0.1) we have to assume
that the nonlinear parameter functions are of certain regularity. For the well
posedness we have to assume θ ∈ C1(Ω× R) as well as k ∈ C1(Ω× R). In the
following section we want to derive a suitable variational formulation of the
initial boundary value problem (4.0.1).
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4.1 Time Discrete Variational Formulation

4.1 Time Discrete Variational Formulation

In this section we want to derive a time discrete variational formulation of the
initial boundary value problem (4.0.1). We will apply a special implicit–explicit
time discretization scheme, but first we have to discretize the time interval I.

Choose M ∈ N and fix corresponding discrete time steps t0, t1, . . . , tM ∈ I such
that 0 = t0 < t1 < . . . < tM−1 < tM = T is a decomposition of the time interval
I, that is

[0, T ] =
M⋃
m=1

[tm−1, tm],

see Figure 4.2. We denote the time step size by τm which is just defined by
τm := tm − tm−1 for each m = 1, . . . ,M .

0 = t0

t1

.

.

.

tM−1

T = tM

} τ1

Γ

Ω

Q

Figure 4.2: Time discretization of space–time cylinder Q.

For sufficient small time step size τm we can approximate the time derivative
at tm by the backward Euler method, that is

∂θ(x, p(x, t)))
∂t

∣∣∣
tm
≈ 1
τm

(
θ(x, p(x, tm))− θ(x, p(x, tm−1))

)
for m = 1, . . . ,M . Next, we approximate p(x, tm) by functions pm(x) which sat-
isfy the following boundary value problem for fm(x) := f(x, tm) and boundary
conditions gNm(x) := gN(x, tm) as well as gDm(x) := gD(x, tm).
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4 Variational Formulation

Implicit time discrete boundary value problem

For each m = 1, . . . ,M find pm : Ω→ R such that

n

τm

(
θ(pm)− θ(pm−1)

)
−∇ ·

(
K

µ
k
(
θ(pm)

)
∇
(
pm − d

))
= fm in Ω,

K

µ
k
(
θ(pm)

)
∇
(
pm − d

)
· n = gNm on ΓN ,

pm = gDm on ΓD
(4.1.1)

holds for given fm, gNm, gDm, and given initial datum p0.

Analogously to the initial boundary value problem (4.0.1), the existence of
a classical solution pm ∈ C2(Ω) ∩ C1(Ω) is not guaranteed as long as the
nonlinearity k ◦ θ is not smooth enough. Hence we have to generalize the
concept of solvability. Goal is to derive a weak formulation of the boundary
value problem (4.1.1) where the solution is allowed to have lower regularity.

To derive such a formulation we define the space

V := H1
0,ΓD(Ω)

which is a closed subspace of H1(Ω) consisting of all functions in H1(Ω)
vanishing on the Dirichlet boundary ΓD.

Next, we multiply the first line of the boundary value problem (4.1.1) with
an arbitrary element v ∈ V and integrate over Ω. Partial integration of the
divergence term gives the identity

∫
Ω

n

τm

(
θ(pm)− θ(pm−1)

)
v dx +

∫
Ω

K

µ
k
(
θ(pm)

)
∇
(
pm − d

)
· ∇v dx =

=
∫
Ω

fm v dx +
∫
∂Ω

K

µ
k
(
θ(pm)

)
∇
(
pm − d

)
· n γ0

∂Ω
v dsx

for all time steps m = 1, . . . ,M .
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4.1 Time Discrete Variational Formulation

If we incorporate the Neumann boundary conditions, line two in problem (4.1.1),
we obtain∫

∂Ω

K

µ
k
(
θ(pm)

)
∇
(
pm − d

)
· n γ0

∂Ω
v dsx =

∫
ΓN

gNm γ
0
ΓN
v dsx

since γ0
ΓD
v = 0 for all v ∈ V .

For the nonlinear diffusion term we apply a simple explicit time discretization
of the form

k
(
θ(pm)

)
∇
(
pm − d

)
≈ k

(
θ(pm)

)
∇pm − k

(
θ(pm−1)

)
∇d

where we keep the nonlinearity within the first term. Hence, we obtain the
variational formulation to find pm ∈ H1(Ω), γ0

ΓD
pm = gDm , such that

∫
Ω

n

τm
θ(pm) v dx +

∫
Ω

K

µ
k
(
θ(pm)

)
∇pm · ∇v dx =

=
∫
Ω

(
fm + n

τm
θ(pm−1)

)
v dx +

∫
Ω

K

µ
k
(
θ(pm−1)

)
∇d · ∇v dx+

+
∫

ΓN

gNm γ
0
ΓN
v dsx

(4.1.2)

for all v ∈ V .

In each time step we have to solve a stationary variational problem with the
variational form (4.1.2) where the right hand side depends on the previous
time step. Note, that the unknown pm ∈ H1(Ω) has to satisfy the Dirichlet
boundary condition γ0

ΓD
pm = gDm. For this reason we consider an extension

pDm := EΩ gDm ∈ H1(Ω) which satisfies the inhomogeneous Dirichlet boundary
condition by construction. Thus we can write the unknown pm as the sum
pm = p0m + pDm with p0m ∈ V and pDm ∈ H1(Ω) defined as above. Due to this
homogenization the new unknown now is p0m ∈ V . For the rest of this thesis
we will skip the subindex m which denotes the current time step and we will
write pm−1 as q. Furthermore, will substitute p0 by p for a better readability.

Thus, we obtain the following variational problem.
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4 Variational Formulation

Implicit–explicit time discrete variational formulation

Find p ∈ V such that∫
Ω

n

τ
θ(p+ pD) v dx +

∫
Ω

K

µ
k
(
θ(p+ pD)

)
∇(p+ pD) · ∇v dx =

=
∫
Ω

(
f + n

τ
θ(q)

)
v dx +

∫
Ω

K

µ
k
(
θ(q)

)
∇d · ∇v dx+

+
∫

ΓN

gN γ
0
ΓN
v dsx

(4.1.3)

for all v ∈ V .

Remark 4.1. Due to the nonlinearity in the time derivative and the implicit–
explicit time discretization scheme, it is hard to state convergence results as τ
tends to zero. However, a good convergence behavior is observed in our numerical
examples, see Chapter 6.

We finally derived a variational problem which corresponds to the Richards
equation (2.0.3) after applying a simple implicit–explicit time discretization
scheme. The next step is to investigate solvability and uniqueness of solutions
to the variational problem (4.1.3) which is done in the next section.

4.2 Solvability and Uniqueness

In this section we will discuss solvability of the variational problem (4.1.3) and
uniqueness of the solution. To state results in a proper way, we assume that the
coefficient functions n and K of the variational problem (4.1.3) are functions
in the space L+

∞(Ω) which is defined by

L+
∞(Ω) :=

{
u ∈ L∞(Ω) | ess inf

x∈Ω
u(x) > 0

}
.

This is not a restriction, since the porosity n and the permeability K are
positive quantities, see Chapter 2.
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4.2 Solvability and Uniqueness

For n,K in L+
∞(Ω) we define the constants

cm := ess inf
x∈Ω

n(x) and cs :=
ess inf

x∈Ω
K(x)

µ

as well as

cM := ‖n‖
L∞(Ω)

and cS :=
‖K‖

L∞(Ω)

µ

which are positive and bounded for a fixed µ ∈ R+.

To obtain results for a more general class of parameter functions, we consider
arbitrary nonlinearities θ and k satisfying the following assumption.

Assumption 4.2. Let θ : Ω × R → R and k : Ω × R → R be Carathéodory
functions as in Definition 3.45 satisfying

|θ(x, s)| ≤ aθ(x) + bθ |s| and |k(x, s)| ≤ bk

for an element aθ ∈ L2(Ω) and non negative bθ and bk. Furthermore assume
that the following conditions hold for almost all x ∈ Ω.

(1) θ(x, ·) ∈ C0,1(R) with Lipschitz constant cL,θ and monotonically increasing.
(2) k(x, ·) ∈ C(R) ∩ L∞(R).
(3) k(x, s) ≥ cα,k > 0 for all s ∈ R.

We are now in the position to formulate the following theorem on the solvability
of the variational problem (4.1.3).

Theorem 4.3. Let n,K ∈ L+
∞(Ω), τ, µ ∈ R+, f, q ∈ L2(Ω), gN ∈ L2(ΓN),

∇d ∈ L2(Ω), gD ∈ H1/2(ΓD) and let Assumption 4.2 hold. Then the variational
problem (4.1.3) has a solution p ∈ V . Furthermore there holds

‖p‖
H1(Ω)

≤ c
(
‖f‖

L2(Ω)
+ 1
τ
‖q − pD‖

L2(Ω)
+‖∇d‖

L2(Ω)
+‖gD‖

H
1/2(ΓD)

+‖gN‖
L2(ΓN )

)
with pD := EΩ gD ∈ H1(Ω) and some positive constant c(Ω, θ, k,K, n, µ).

Proof. We split this proof into two parts. In the first part we show the solvability
of the variational problem (4.1.3) using the theory of monotone operators we
discussed in Section 3.1. In the second part we prove the boundedness of the
solution.
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4 Variational Formulation

Part A) Solvability: First, we define the operator M : V → V ′ by

〈M(p), v〉
V ′×V

:=
∫
Ω

n

τ
θ(p+ pD) v dx

and the operator S̃ : V × V → V ′ by

〈S̃(p, q), v〉
V ′×V

:=
∫
Ω

K

µ
k
(
θ(p+ pD)

)
∇(q + pD) · ∇v dx

for p, q, v ∈ V . The operator S̃(p, p) will be denoted by S(p), that is S : V → V ′

with
〈S(p), v〉

V ′×V
:= 〈S̃(p, p), v〉

V ′×V

for p, v ∈ V .

Goal is to prove that the operator A := M + S defined by is pseudomono-
tone, coercive and bounded. If we succeed, we can apply the main theorem
on pseudomonotone operators, Theorem 3.21. We will start to show the pseu-
domonotonicity of A.

Pseudomonotonicity: By Proposition 27.7 in [75] we know that A is pseu-
domonotone if M is monotone and hemicontinuous and S is pseudomonotone.
We will first show the properties of the operator M .

Consider the nonlinear parameter function θ. Due to the conditions in Assump-
tion 4.2 and from Theorem 3.46, we conclude that θ induces a continuous and
bounded superposition operator mapping L2(Ω) to L2(Ω).

Since θ(x, s) is monotonically increasing in s, we obtain from Lemma 3.47 the
monotonicity ∫

Ω

(
θ(p)− θ(q)

)(
p− q

)
dx ≥ 0

for arbitrary elements p, q ∈ L2(Ω). Since the coefficient function n ∈ L+
∞(Ω) is

bounded from below by 0 < cm ≤ n(x) for almost all x ∈ Ω, we have∫
Ω

n

τ

(
θ(p)− θ(q)

)(
p− q

)
dx ≥ 0
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4.2 Solvability and Uniqueness

for all p, q ∈ L2(Ω). Since V ⊂ H1(Ω) ⊂ L2(Ω) we have

〈M(p)−M(q), p− q〉
V ′×V

=
∫
Ω

(
n

τ
θ(p+ pD)− n

τ
θ(q + pD)

) (
p− q

)
dx =

=
∫
Ω

n

τ
(θ(p+ pD)− θ(q + pD))

(
(p+ pD)− (q + pD)

)
dx ≥ 0 (4.2.1)

for all p, q ∈ V and pD = EΩ gD ∈ H1(Ω) as in Theorem 4.3. This proves the
desired monotonicity result of the operator M : V → V ′.

To show the hemicontinuity of M we prove that M : V → V ′ is continuous.
Let {pn} ⊂ V be a sequence which converges to p ∈ V . Then there holds the
estimate

‖M(p)−M(pn)‖
V ′

= sup
06=v∈V

〈M(p)−M(pn), v〉
V ′×V

‖v‖
H1(Ω)

= sup
06=v∈V

1
‖v‖

H1(Ω)

∫
Ω

n

τ

(
θ(p+ pD)− θ(pn + pD)

)
v dx

≤ cM
τ
‖θ(p+ pD)− θ(pn + pD)‖

L2(Ω)

with an upper bound which tends to zero since θ : L2(Ω)→ L2(Ω) is continuous.
This proves the continuity of M : V → V ′ and due to the considerations made
in Section 3.1, we conclude that M : V → V ′ is hemicontinuous.

So far, we have shown that the operator M : V → V ′ is monotone and
hemicontinuous. The next step is to prove that the operator S : V → V ′ is
pseudomonotone. We want to use Lemma 3.15 to show the desired property.

As done for the operatorM , we want to define a suitable superposition operator
and exploit its properties to show the desired pseudomonotonicity of S. Let s ∈
R2 with s = (s1, s2)> and define l(x, s) := k(x, s1) s2. Due to the assumptions
on k, it is easy to verify that l : Ω× R2 → R is again a Carathéodory function
and there holds

|k(x, s1) s2| ≤ bk |s2| ≤ bk
(
|s1|+ |s2|

)
for arbitrary s1, s2 ∈ R.
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4 Variational Formulation

Theorem 3.46 implies that l induces a continuous and bounded superposition
operator mapping the product space L2(Ω)× L2(Ω) to L2(Ω).

To prove the desired hemicontinuity of S̃ in each argument, we show that S̃ is
continuous in each argument. Therefore let {pn} ⊂ L2(Ω) be a sequence which
converges to p ∈ L2(Ω) and let {qn} ⊂ V be a sequence which converges to
q ∈ V . The convergence of {qn} in V implies ∂xiqn → ∂xiq in L2(Ω) for each
i = 1, . . . , d. Consider now the norm of the difference of the images, that is

∥∥∥S̃(p, q)− S̃(pn, qn)
∥∥∥
V ′

= sup
06=v∈V

〈S̃(p, q)− S̃(pn, qn), v〉
V ′×V

‖v‖
H1(Ω)

.

The duality pairing can be written in terms of the superposition operator l as

〈S̃(p, q)− S̃(pn, qn), v〉
V ′×V

=

=
d∑
i=1

∫
Ω

K

µ

(
k
(
θ(p+ pD)

)
∂xi(q+ pD)− k

(
θ(pn + pD)

)
∂xi(qn + pD)

)
∂xiv dx =

=
d∑
i=1

∫
Ω

K

µ

(
l
(
θ(p+ pD), ∂xi(q+ pD)

)
− l
(
θ(pn + pD), ∂xi(qn + pD)

))
∂xiv dx.

The representation above can be estimated from above by

∥∥∥S̃(p, q)− S̃(pn, qn)
∥∥∥
V ′

= sup
06=v∈V

〈S̃(p, q)− S̃(pn, qn), v〉
V ′×V

‖v‖
H1(Ω)

≤

≤ cS

(
d∑
i=1

∥∥∥l(θ(p+ pD), ∂xi(q + pD)
)
− l
(
θ(pn + pD), ∂xi(qn + pD)

)∥∥∥2

L2(Ω)

)1/2

with a right hand side which converges to zero since θ : L2(Ω) → L2(Ω) is
continuous and the mapping l : L2(Ω)× L2(Ω)→ L2(Ω) is continuous as well.
The continuity of S̃ : L2(Ω)× V → L2(Ω) implies the hemicontinuity of S̃ in
each argument.

The next step is to show the boundedness of S̃(·, q) for an arbitrary but fixed
q ∈ V . From Theorem 3.46 and from the assumptions on k : Ω× R→ R, we
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4.2 Solvability and Uniqueness

conclude that k(p+ pD) ∈ L∞(Ω) for all p ∈ V ⊂ L2(Ω). The estimate

∥∥∥S̃(p, q)
∥∥∥
V ′

= sup
06=v∈V

〈S̃(p, q), v〉
V ′×V

‖v‖
H1(Ω)

= sup
06=v∈V

1
‖v‖

H1(Ω)

∫
Ω

K

µ
k
(
θ(p+ pD)

)
∇(q + pD) · ∇v dx

≤ cS bk ‖q + pD‖
H1(Ω)

implies the boundedness of S̃(·, q) : V → V ′ for all fixed q ∈ V . Hence, the
conditions (1) and (2) in Lemma 3.15 are satisfied.

After that, we want to show the monotonicity condition (3) in Lemma 3.15.
Due to (3) in Assumption 4.2, there holds for arbitrary elements o, p, q ∈ V the
estimate

〈S̃(o, p)− S̃(p, q), p− q〉
V ′×V

=

=
∫
Ω

K

µ

(
k
(
θ(o+ pD)

)
∇(p+ pD)− k

(
θ(o+ pD)

)
∇(q + pD)

)
· ∇(p− q) dx =

=
∫
Ω

K

µ
k
(
θ(o+ pD)

)
|∇(p− q)|2 dx ≥ cs cα,k|p− q|2

H1(Ω)
≥ 0 (4.2.2)

which shows the desired result.

To show condition (4) in Lemma 3.15, assume we have a sequence {pn} ⊂ V
which converges weakly to p ∈ V , that is pn ⇀ p in V . Additionally assume
that 〈S̃(pn, pn)− S̃(pn, p), pn − p〉

V ′×V
→ 0 as n tends to infinity. The estimate

(4.2.2) then implies

〈S̃(pn, pn)− S̃(pn, p), pn − p〉
V ′×V

≥ cN cS cα,k ‖pn − p‖2
H1(Ω)

≥ 0

which shows pn → p in V . The continuity of S̃ : L2(Ω) × V → V ′ gives
S̃(pn, q)→ S̃(p, q) in V ′ which implies the weak convergence result.

For the last point, condition (5) in Lemma 3.15, we again assume that {pn} ⊂ V
is a sequence which converges weakly to p ∈ V , that is pn ⇀ p in V . Furthermore,
we assume, that S̃(pn, q) ⇀ b in V ′ for some q ∈ V . Since V � c L2(Ω) we have
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4 Variational Formulation

pn → p in L2(Ω) and due to the continuity of S̃ : L2(Ω) × V → V ′ we see
that 〈S̃(pn, q), v〉

V ′×V
→ 〈S̃(p, q), v〉

V ′×V
. Since weak limits are unique, we have

b = S̃(p, q) in V ′. Consider now the estimate∣∣∣〈S̃(pn, q), pn〉
V ′×V

− 〈b, p〉
V ′×V

∣∣∣ =
∣∣∣〈S̃(pn, q), pn〉

V ′×V
− 〈S̃(p, q), p〉

V ′×V

∣∣∣ ≤
≤
∣∣∣〈S̃(pn, q)− S̃(p, q), pn〉

V ′×V

∣∣∣+ ∣∣∣〈S̃(p, q), pn − p〉
V ′×V

∣∣∣ ≤
≤
∥∥∥S̃(pn, q)− S̃(p, q)

∥∥∥
V ′
‖pn‖

H1(Ω)
+ 〈S̃(p, q), pn − p〉

V ′×V
.

Since weakly convergent sequences are bounded and S̃ : L2(Ω) × V → V ′ is
continuous, we see that the right hand side of the above estimate tends to zero
as n tends to infinity.

The operator S̃ : V × V → V ′ satisfies all assumptions of Lemma 3.15 which
implies the pseudomonotonicity of the operator S : V → V ′ and further the
pseudomonotonicity of A = M + S : V → V ′. The next step is to prove that
the operator A : V → V ′ is coercive.

Coercivity: To show that the operator A = M + S is coercive, we have to
prove that

〈A(p), p〉
V ′×V

‖p‖
H1(Ω)

→∞

as ‖p‖
H1(Ω)

→∞. To show the desired result we consider each term separately.

We begin with the operator M : V → V ′. Let p ∈ V be arbitrary but fixed, we
have

〈M(p), p〉
V ′×V

= 〈M(p)−M(0), p〉
V ′×V

+ 〈M(0), p〉
V ′×V

and inequality (4.2.1) implies the estimate

〈M(p)−M(0), p〉
V ′×V

= 〈M(p)−M(0), p− 0〉
V ′×V

≥ 0. (4.2.3)

The remaining duality pairing 〈M(0), p〉
V ′×V

can be estimated by using the
Hölder inequality, see Theorem 3.28. Thus, we obtain

〈M(0), p〉
V ′×V

=
∫
Ω

n

τ
θ(pD) p dx ≤ cM

τ
‖θ(pD)‖

L2(Ω)
‖p‖

H1(Ω)
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4.2 Solvability and Uniqueness

for all p ∈ V . Finally we can bound the duality pairing 〈M(p), p〉
V ′×V

from
below by

〈M(p), p〉
V ′×V

≥ −cM
τ
‖θ(pD)‖

L2(Ω)
‖p‖

H1(Ω)

for all p ∈ V .

Next, we consider the operator S. We can write S as

〈S(p), p〉
V ′×V

= 〈S̃(p, p), p〉
V ′×V

=
∫
Ω

K

µ
k
(
θ(p+ pD)

)
∇(p+ pD) · ∇p dx =

=
∫
Ω

K

µ
k
(
θ(p+ pD)

)
∇p · ∇p dx +

∫
Ω

K

µ
k
(
θ(p+ pD)

)
∇pD · ∇p dx =

= 〈S̃(p, p− pD), p〉
V ′×V

+ 〈S̃(p, 0), p〉
V ′×V

for all p ∈ V . The duality pairing 〈S̃(p, p− pD), p〉
V ′×V

can be bounded from
below by

〈S̃(p, p− pD), p〉
V ′×V

=
∫
Ω

K

µ
k
(
θ(p+ pD)

)
∇p · ∇p dx ≥ cs cα,k |p|2

H1(Ω)
(4.2.4)

for each p ∈ V . The second expression 〈S̃(p, 0), p〉
V ′×V

can be bounded from
above using Theorem 3.28 and we obtain

〈S̃(p, 0), p〉
V ′×V

=
∫
Ω

K

µ
k
(
θ(p+ pD)

)
∇pD · ∇p dx ≤ cS bk ‖pD‖

H1(Ω)
‖p‖

H1(Ω)
.

If we use the norm equivalence in V , we have the following lower bound

〈S(p), p〉
V ′×V

≥ c2
N cs cα,k ‖p‖

2
H1(Ω)

− cS bk ‖pD‖
H1(Ω)

‖p‖
H1(Ω)

for all p ∈ V .

Finally, the operator A = M + S can be bounded from below by

〈A(p), p〉
V ′×V

‖p‖
H1(Ω)

≥ c2
N cs cα,k ‖p‖

H1(Ω)
− cS bk ‖pD‖

H1(Ω)
− cM

τ
‖θ(pD)‖

L2(Ω)
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4 Variational Formulation

and the bound tends to infinity as ‖p‖
H1(Ω)

→∞. This proves the coercivity of
the operator A : V → V ′.

So far we have shown that A : V → V ′ is a pseudomonotone and coercive
operator. To be able to apply Theorem 3.21 we have to prove that A is a
bounded operator. This is done in the next step.

Boundedness: To prove boundedness, we fix an arbitrary p ∈ V . We know,
that k(p+ pD) ∈ L∞(Ω) for p ∈ V ⊂ L2(Ω) with ‖k(p+ pD)‖

L∞(Ω)
≤ bk. Since

θ maps L2(Ω) to L2(Ω), we obtain

〈A(p), v〉
V ′×V

=
∫
Ω

n

τ
θ(p+ pD) v dx +

∫
Ω

K

µ
k
(
θ(p+ pD)

)
∇(p+ pD) · ∇v dx

≤
(
cM
τ
‖θ(p+ pD)‖

L2(Ω)
+ cS bk ‖p+ pD‖

H1(Ω)

)
‖v‖

H1(Ω)

for all v ∈ V . The triangle inequality and Lemma 3.48 imply the estimate

‖θ(p+ pD)‖
L2(Ω)

≤ ‖θ(p+ pD)− θ(pD)‖
L2(Ω)

+ ‖θ(pD)‖
L2(Ω)

≤ cL,θ ‖p‖
L2(Ω)

+ ‖θ(pD)‖
L2(Ω)

.

For the operator A : V → V ′ we obtain the upper bound

‖A(p)‖
V ′

= sup
v∈V

〈A(p), v〉
V ′×V

‖v‖
H1(Ω)

≤

≤
(cM
τ
cL,θ + cS bk

)
‖p‖

H1(Ω)
+ cM

τ
‖θ(pD)‖

L2(Ω)
+ cS bk ‖pD‖

H1(Ω)

which proves the boundedness.

We have proven that A : V → V ′ is a bounded, coercive and pseudomonotone
operator. In the last step, we have to prove that F defined by

〈F, v〉
V ′×V

:=
∫
Ω

(
f + n

τ
θ(q)

)
v dx +

∫
Ω

K

µ
k
(
θ(q)

)
∇d · ∇v dx +

∫
ΓN

gN γ
0
ΓN
v dsx
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4.2 Solvability and Uniqueness

is actually an element in V ′ to obtain a solution to the variational problem
(4.1.3). It is easy to verify that F is a linear functional. Due to the assumption
on the data and the considerations made so far, we obtain the estimate∫

Ω

(
f + n

τ
θ(q)

)
v dx ≤

(
‖f‖

L2(Ω)
+ cM

τ
‖θ(q)‖

L2(Ω)

)
‖v‖

H1(Ω)

as well as ∫
Ω

K

µ
k
(
θ(q)

)
∇d · ∇v dx ≤ cS bk ‖∇d‖L2(Ω)

‖v‖
H1(Ω)

.

Using the Trace Theorem 3.35 we have for the remaining surface term the
upper bound ∫

ΓN

gN γ
0
ΓN
v dsx ≤ cT ‖gN‖

L2(ΓN )
‖v‖

H1(Ω)

which implies

‖F‖
V ′
≤ ‖f‖

L2(Ω)
+ cM

τ
‖θ(q)‖

L2(Ω)
+ cS bk ‖∇d‖L2(Ω)

+ cT ‖gN‖
L2(ΓN )

and so F ∈ V ′.

Since V is a real, reflexive and separable Banach space we can apply Theo-
rem 3.21 and can conclude the existence of a p ∈ V such that A(p) = F in
V ′ for F ∈ V ′. Finally we obtain the existence of a solution to the variational
problem (4.1.3). In the last part we want to prove the boundedness of the
solution as stated in Theorem 4.3.

Part B) Boundedness of the solution: Let p ∈ V be a solution to the
variational problem (4.1.3). Since p ∈ V is a valid test function we obtain the
identity∫

Ω

n

τ
θ(p+ pD) p dx +

∫
Ω

K

µ
k
(
θ(p+ pD)

)
∇(p+ pD) · ∇p dx = 〈F, p〉

V ′×V

or in a more abstract way

〈M(p) + S̃(p, p), p〉
V ′×V

= 〈F, p〉
V ′×V

.
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4 Variational Formulation

This can be written as

〈M(p)−M(0) + S̃(p, p− pD), p〉
V ′×V

= 〈F −M(0)− S̃(p, 0), p〉
V ′×V

(4.2.5)

with the same notation as in the coercivity part.

Using the estimates (4.2.3) and (4.2.4) with equation (4.2.5), we obtain

c2
N cs cα,k‖p‖

2
H1(Ω)

≤ 〈M(p)−M(0) + S̃(p, p− pD), p〉
V ′×V

= 〈F −M(0) + S̃(p, 0), p〉
V ′×V

(4.2.6)

for a solution p ∈ V .

The right hand side in equation (4.2.6) is given by the expression∫
Ω

(
f + n

τ

(
θ(q)− θ(pD)

))
p dx +

∫
Ω

K

µ
k
(
θ(q)

)
∇d · ∇p dx−

−
∫
Ω

K

µ
k
(
θ(p+ pD)

)
∇pD · ∇p dx +

∫
ΓN

gN γ
0
ΓN
p dsx

which can be bounded from above by

‖f‖
L2(Ω)
‖p‖

H1(Ω)
+ cM

τ
cL,θ ‖q − pD‖

L2(Ω)
‖p‖

H1(Ω)
+ cS bk ‖∇d‖L2(Ω)

‖p‖
H1(Ω)

+

cS bk cE ‖gD‖
H

1/2(ΓD)
‖p‖

H1(Ω)
+ cT ‖gN‖

L2(ΓN )
‖p‖

H1(Ω)
(4.2.7)

using Lemma 3.48, the Trace Theorem 3.35 and the Inverse Trace Theorem 3.36.

Combining the estimate (4.2.6) and (4.2.7), we obtain

c2
N cs cα,k ‖p‖

H1(Ω)
≤ ‖f‖

L2(Ω)
+ cM

τ
cL,θ ‖q − pD‖

L2(Ω)

+ cS bK ‖∇d‖L2(Ω)
+ cS bK cE ‖gD‖

H
1/2(ΓD)

+ cT ‖gN‖
L2(ΓN )

.

If we set
c := max{1, cS cM cL,θ, bK , cS bK cE, cT}

c2
N cs cα,k

we get the desired bound for p ∈ V solution to the variational problem (4.1.3).
�
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Theorem 4.3 states the existence of a solution to the variational problem (4.1.3)
under certain assumptions on the nonlinear functions θ and k. The next theorem
will provide a uniqueness result assuming a slightly stronger condition on the
nonlinear function k.

Theorem 4.4. Let n,K ∈ L+
∞(Ω), τ, µ ∈ R+, f, q ∈ L2(Ω), gN ∈ L2(ΓN),

∇d ∈ L2(Ω), gD ∈ H1/2(ΓD) and let Assumption 4.2 hold. In addition, assume
that k(x, ·) : R → R is Lipschitz continuous with Lipschitz constant cL,k for
almost all x ∈ Ω. Then, the solution p ∈ V to the variational problem (4.1.3)
is unique.

Proof. To show uniqueness of the solution we follow the lines of the proof of
Theorem 3.2 in [39]. In this work, the uniqueness result is proven for a right
hand side in L2(Ω). Since the right hand side of the variational problem (4.1.3)
is in general not an element in L2(Ω), we have to modify the proof.

First, we make the simple but essential observation, that the composite function
k(x, θ(x, s)) satisfies∣∣∣k(x, θ(x, s))− k(x, θ(x, r))∣∣∣ ≤ cL,k |θ(x, s)− θ(x, r)| ≤ cL,k cL,θ |s− r|

for all s, r ∈ R and almost all x ∈ Ω. We denote the Lipschitz constant of the
composite function cL, that is cL := cL,k cL,θ.

Next, assume there are two solutions p1, p2 ∈ V to the variational problem
(4.1.3), that is

〈M(pi) + S(pi), v〉
V ′×V

= 〈M(pi) + S̃(pi, pi), v〉
V ′×V

= 〈F, v〉
V ′×V

(4.2.8)

is satisfied for all v ∈ V and for i = 1, 2. The operator M,S, S̃ and the right
hand side F ∈ V ′ are defined as in the proof of Theorem 4.3.

For the two solutions we can define the domain

Ω1 := {x ∈ Ω | p2(x) > p1(x)}

and we assume |Ω1|
d
> 0. For an arbitrary ε > 0 define the subset

Ωε := {x ∈ Ω1 | p2(x)− p1(x) > ε}
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4 Variational Formulation

and the function vε := min{ε, (p2 − p1)+}.

We know, that |p| , p+, p− ∈ H1(Ω) for all p ∈ H1(Ω), see for example [31,
Theorem 4 in Section 4.2]. Since we can write the minimum as min{p, q} =
1
2

(
(p+ q)− |p− q|

)
∈ H1(Ω) we conclude that vε ∈ H1(Ω).

For vε and ∇vε there holds the representation

vε =


ε in Ωε,

p2 − p1 in Ω1 \ Ωε,

0 else
and ∇vε =


0 in Ωε,

∇(p2 − p1) in Ω1 \ Ωε,

0 else

and in addition vε ≥ 0 almost everywhere in Ω. Furthermore, there holds
γ0

ΓD
vε = 0 and so vε ∈ V .

Due to the representation of vε we have

cs cα,k |vε|2
H1(Ω)

≤
∫
Ω

K

µ
k
(
θ(p1 + pD)

)
∇vε · ∇vε dx

=
∫

Ω1\Ωε

K

µ
k
(
θ(p1 + pD)

)
∇(p2 − p1) · ∇vε dx

=
∫
Ω

K

µ
k
(
θ(p1 + pD)

)
∇
(
(p2 + pD)− (p1 + pD)

)
· ∇vε dx

= 〈S̃(p1, p2)− S(p1), vε〉
V ′×V

.

Since p1 and p2 satisfy (4.2.8) for all v ∈ V , we obtain

cs cα,k |vε|2
H1(Ω)

≤ 〈M(p1)−M(p2) + S̃(p1, p2)− S̃(p2, p2), vε〉
V ′×V

. (4.2.9)

In a next step, we want to estimate the right hand side of (4.2.9). We consider
first the duality pairing 〈M(p1)−M(p2), vε〉

V ′×V
, which can be written as

〈M(p1)−M(p2), vε〉
V ′×V

=
∫
Ω

n

τ

(
θ(p1 + pD)− θ(p2 + pD)

)
vε dx =

=
∫

Ω1\Ωε

n

τ

(
θ(p1+pD)−θ(p2+pD)

)
vε dx+

∫
Ωε

n

τ

(
θ(p1+pD)−θ(p2+pD)

)
vε dx
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4.2 Solvability and Uniqueness

due to the representation of vε.

To estimate the two expressions in the right hand side we make the following
observations. For the first expression we have vε = (p2 − p1) in Ω1 \ Ωε and
from Lemma 3.47 we conclude∫

Ω1\Ωε

n

τ

(
θ(p1 + pD)− θ(p2 + pD)

)
(p2 − p1) dx =

=
∫

Ω1\Ωε

n

τ

(
θ(p1 + pD)− θ(p2 + pD)

) (
(p2 + pD)− (p1 + pD)

)
dx ≤ 0.

Since vε = ε and p2 > ε+ p1 in Ωε, the second expression can be bounded by∫
Ωε

n

τ

(
θ(p1 + pD)− θ(p2 + pD)

)
ε dx ≤ 0

since θ(x, s) is monotonically increasing in s ∈ R for all x ∈ Ω. Combining
these estimates we obtain

〈M(p1)−M(p2), vε〉
V ′×V

=
∫
Ω

n

τ

(
θ(p1 + pD)− θ(p2 + pD)

)
vε dx ≤ 0. (4.2.10)

Next, we want to estimate the duality pairing 〈S̃(p1, p2)− S̃(p2, p2), vε〉
V ′×V

.
Due to the representation of vε we have

〈S̃(p1, p2)− S̃(p2, p2), vε〉
V ′×V

=

=
∫

Ω1\Ωε

K

µ

(
k
(
θ(p1 + pD)

)
− k

(
θ(p2 + pD)

))
∇p2 · ∇vε dx ≤

≤ cS
∥∥∥k(θ(p1 + pD)

)
− k

(
θ(p2 + pD)

)∥∥∥
L∞(Ω1\Ωε)

‖∇p2‖L2(Ω1\Ωε)
|vε|

H1(Ω)
.

Since 0 < p2 − p1 ≤ ε in Ω1 \Ωε and due to the Lipschitz continuity of θ and k
we obtain

cS
∥∥∥k(θ(p1 + pD)

)
− k

(
θ(p2 + pD)

)∥∥∥
L∞(Ω1\Ωε)

≤ ε cS cL

which leads to the inequality

〈S̃(p1, p2)− S̃(p2, p2), vε〉
V ′×V

≤ ε cS cL ‖∇p2‖L2(Ω1\Ωε)
|vε|

H1(Ω)
. (4.2.11)
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Combining the inequalities (4.2.9), (4.2.10) and (4.2.11), we have

1
ε
|vε|

H1(Ω)
≤ cS cL
cs cα,k

‖∇p2‖L2(Ω1\Ωε)
. (4.2.12)

The final step is to prove that |Ωε|
d
tends to zero for ε↘ 0. Since ε < p2 − p1

in Ωε, we obtain the upper bound

|Ωε|
d

= 1
ε2

∫
Ωε

ε2 dx ≤ 1
ε2

∫
Ωε

|vε|2 dx = 1
ε2‖vε‖

2
L2(Ωε)

≤ 1
ε2‖vε‖

2
L2(Ω)

which holds for all ε > 0.

The norm equivalence (3.2.1) in V with 0 < cN < 1 and the inequality (4.2.12)
imply

|Ωε|
d
≤ 1
ε2

(
1− c2

N

c2
N

)
|vε|2

H1(Ω)
≤
(

1− c2
N

c2
N

) (
cS cL
cs cα,k

)2

‖∇p2‖2
L2(Ω1\Ωε)

with a right hand side which tends to zero since Ωε → Ω1 by construction and
hence |Ω1 \ Ωε|

d
→ 0 as ε↘ 0. From

|Ωε|
d
≤ |Ω1|

d
= |Ω1|

d
− |Ωε|

d
+ |Ωε|

d
= |Ω1 \ Ωε|

d
+ |Ωε|

d

we conclude, that |Ω1|
d
tends to zero as ε↘ 0 and so p1 ≥ p2 almost everywhere

in Ω.

By interchanging the role of p1 and p2 we obtain p2 ≥ p1 almost everywhere in
Ω which implies p1 = p2 almost everywhere in Ω and this proves the statement
of Theorem 4.4. �

Next, we want to prove an L∞(Ω)–bound for the solution to the variational
problem (4.1.3). The proof is based on a special property of real valued functions,
which is stated in the following lemma.

Lemma 4.5. Let r0 ∈ R, r0 ≥ 0, and let f : [r0,∞) → R be a non negative
and non increasing function such that

f(s) ≤ c

(
f(r)

)δ
(s− r)σ
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4.2 Solvability and Uniqueness

for 0 ≤ r0 ≤ r < s with a constant c > 0. Then σ > 0 and δ > 1 imply

f(r0 + %) = 0

for all % ≥ C, where C := c
1
σ

(
f(r0)

) δ−1
σ 2

δ
δ−1 .

Proof. See [29, Lemma 1.4]. �

With this lemma we can prove the following statement about the regularity of
solutions to the variational problem (4.1.3) in two and three space dimensions.

Lemma 4.6. Let Ω ⊂ Rd with d = 2, 3 and let q2 = 2 and q3 = 12/5. Let
n,K ∈ L+

∞(Ω), τ, µ ∈ R+, f, q ∈ L2(Ω), gN ∈ Lqd(ΓN), ∇d ∈ L6(Ω), gD ∈
H1/2(ΓD) ∩ L∞(ΓD) and let Assumption 4.2 hold. In addition, assume that
θ : Ω× R→ R satisfies one of the following conditions.

(1) There exists a mapping s : Ω → R and constants sl, su ∈ R, such that
θ(x, s(x)) = 0 and sl ≤ s(x) ≤ su for all x ∈ Ω.

(2) There exists an element aθ(x) ∈ L2(Ω), such that |θ(x, s)| ≤ aθ(x) for all
x ∈ Ω and s ∈ R.

Then p + pD ∈ H1(Ω) ∩ L∞(Ω) where p ∈ V is a solution to the variational
problem (4.1.3).

Proof. The proof is based on the ideas of the proof of Lemma 2.4 in [29].
We split the proof into three parts, in the first part we do some preliminary
considerations. In the second part we show that p+ pD ∈ H1(Ω) is bounded
from above by some constant almost everywhere in Ω and in the last part we
prove that p + pD ∈ H1(Ω) can also be bounded from below by a constant
almost everywhere in Ω.

Part A) Preliminary Considerations: First, consider the following imbed-
dings, see Theorem 3.38, Theorem 3.39 and Remark 3.40. For d = 2, 3 we
have

H1(Ω) � Lr(Ω) and H
1/2(ΓN) � Ls(ΓN) (4.2.13)
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4 Variational Formulation

for all r ∈ [1,∞) and s ∈ [1,∞) if d = 2 and for all r ∈ [1, 6] and s ∈ [1, 4] if
d = 3. The imbeddings imply the existence of two positive constants cq,Ω > 0
and cr,ΓN > 0 such that

‖p‖
Lr(Ω)

≤ cr,Ω ‖p‖
H1(Ω)

and ‖g‖
Ls(ΓN )

≤ cs,ΓN ‖g‖
H

1/2(ΓN )

holds for all p ∈ H1(Ω) and g ∈ H1/2(ΓN). Next, set rd := 6 and

sd :=

6, d = 2,
4, d = 3

and thus we have
1
rd

+ 1
3 + 1

2 = 1 and 1
sd

+ 1
3 + 1

qd
= 1

for d = 2, 3.

Since gD is assumed to be an element in H1/2(ΓD)∩L∞(ΓD), we can define the
constant G∞ := ‖gD‖

L∞(ΓD)
. In the next two steps we prove the existence of an

upper and lower bound for p+ pD ∈ H1(Ω) where p ∈ V is a solution to the
variational problem (4.1.3). For the remaining part of the proof we write p̃ for
p+ pD.

Part B) Upper Bound: First, we choose an arbitrary but fixed constant
P0 ≥ G∞. For P1 ≥ P0 we define the sets

Ω1 := {x ∈ Ω | p̃(x) > P1} and ΓN,1 :=
{
x ∈ ΓN | γ0

ΓN
p̃(x) > P1

}
as well as p1 ∈ H1(Ω) defined by p1 := p̃−min{p̃, P1}. The function p1 and its
weak gradient ∇p1 satisfy the representation

p1 =

p̃− P1 in Ω1,

0 in Ω \ Ω1
and ∇p1 =

∇p̃ in Ω1,

0 in Ω \ Ω1

in the domain Ω. By applying the trace operator we obtain γ0
ΓD
p1 = 0 and so

p1 ∈ V .
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4.2 Solvability and Uniqueness

Since p1 ∈ V is a legal test function and p ∈ V is a solution to the variational
problem (4.1.3), we have the identity

〈M(p)−M(P1 − pD) + S(p), p1〉
V ′×V

= 〈g −M(P1 − pD), p1〉
V ′×V

using the same notation as in the proof of Theorem 4.3.

Since p1 ∈ V and due to its representation we have

cs cα,k c
2
N ‖p1‖2

H1(Ω)
≤ cs cα,k |p1|2

H1(Ω)
≤

≤
∫
Ω

n

τ

(
θ(p1 +P1)− θ(P1)

) (
(p1 +P1)−P1

)
dx +

∫
Ω

K

µ
k
(
θ(p̃)

)
∇p1 ·∇p1 dx =

=
∫

Ω1

n

τ

(
θ(p+ pD)− θ(P1)

)
p1 dx +

∫
Ω1

K

µ
k
(
θ(p+ pD)

)
∇(p+ pD) · ∇p1 dx =

= 〈M(p)−M(P1 − pD) + S(p), p1〉
V ′×V

= 〈F −M(P1 − pD), p1〉
V ′×V

.

(4.2.14)

Each term of the right hand side of the inequality (4.2.14) can be estimated by
the Hölder inequality and the constants rd, sd chosen in the first part of this
proof.

For the duality pairing 〈F, p1〉
V ′×V

, which is defined as

〈F, p1〉
V ′×V

=
∫
Ω

(
f+n

τ
θ(q)

)
p1 dx+

∫
Ω

K

µ
k
(
θ(q)

)
∇d·∇p1 dx+

∫
ΓN

gN γ
0
ΓN
p1 dsx,

we consider each term explicitly. For the first expression we obtain∫
Ω

(
f + n

τ
θ(q)

)
p1 dx =

∫
Ω1

(
f + n

τ
θ(q)

)
p1 dx

≤
∥∥∥∥f + n

τ
θ(q)

∥∥∥∥
L2(Ω)

‖p1‖
Lrd

(Ω)
|Ω1|

1/3

d

≤ crd,Ω

∥∥∥∥f + n

τ
θ(q)

∥∥∥∥
L2(Ω)

‖p1‖
H1(Ω)

|Ω1|
1/3

d
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while the second expression satisfies the upper bound∫
Ω

K

µ
k
(
θ(q)

)
∇d · ∇p1 dx =

∫
Ω1

K

µ
k
(
θ(q)

)
∇d · ∇p1 dx

≤ cS bk ‖∇d‖L6(Ω)
‖p1‖

H1(Ω)
|Ω1|

1/3

d
.

The third expression can be estimated by∫
ΓN

gN γ
0
ΓN
p1 dsx =

∫
ΓN,1

gN γ
0
ΓN
p1 dsx ≤ ‖gN‖

Lqd
(ΓN )

∥∥∥γ0
ΓN
p1

∥∥∥
Lsd

(ΓN )
|ΓN,1|

1/3

d−1

≤ csd,ΓN cT ‖gN‖Lqd (ΓN )
‖p1‖

H1(Ω)
|ΓN,1|

1/3

d−1
.

If we set

cg := crd,Ω

∥∥∥∥f + n

τ
θ(q)

∥∥∥∥
L2(Ω)

+ cS bk ‖∇d‖L6(Ω)
+ csd,ΓN cT ‖gN‖Lqd (ΓN )

we obtain the upper bound

〈F, p1〉
V ′×V

≤ cg
(
|Ω1|

1/3

d
+ |ΓN,1|

1/3

d−1

)
‖p1‖

H1(Ω)
. (4.2.15)

To estimate the duality pairing 〈M(P1 − pD), p1〉
V ′×V

we have to distinguish
between the two cases (1) and (2).
(1) Since the choice of P0 ≥ G∞ is arbitrary, choose

P0 := max{G∞, su} ≥ G∞.

Due to the choice of P0 and since P1 ≥ P0, we have θ(P1) ≥ 0 and p1(x) =
p̃(x)− P1 ≥ 0 almost everywhere in Ω1. Thus, the estimate

−
∫
Ω

n

τ
θ(P1) p1 dx = −

∫
Ω1

n

τ
θ(P1) p1 dx ≤ 0

holds. Define cB := 0 if (1) holds.
(2) In the second case choose P0 := G∞. Then, there holds

−
∫
Ω

n

τ
θ(P1) p1 dx = −

∫
Ω1

n

τ
θ(P1) p1 dx ≤

(
cM
τ
‖aθ‖

L2(Ω)

)
‖p1‖

H1(Ω)
|Ω1|

1/3

d
.
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In this case define cB := cM
τ
‖aθ‖

L2(Ω)
.

In both cases we get the upper bound

− 〈M(P1 − pD), p1〉
V ′×V

≤ cB ‖p1‖
H1(Ω)

|Ω1|
1/3

d
. (4.2.16)

Using the estimates (4.2.15) and (4.2.16) in combination with the inequality
(4.2.14) we get

‖p1‖
H1(Ω)

≤ cg + cB
cs cα,k c2

N

(
|Ω1|

1/3

d
+ |ΓN,1|

1/3

d−1

)
≤ cg + cB
cs cα,k c2

N

(
|Ω1|

1/4

d
+ |ΓN,1|

1/4

d−1

)4/3
(4.2.17)

Next, choose P2 > P1. In the same manner as for P1 we can define Ω2 and ΓN,2.
Since Ω2 ⊂ Ω1, we obtain

‖p1‖4
L4(Ω1)

=
∫

Ω1

|p1|4 dx ≥
∫

Ω2

|p1|4 dx =
∫

Ω2

|p̃− P1|4 dx

≥
∫

Ω2

|P2 − P1|4 dx = |P2 − P1|4 |Ω2|
d
.

For ΓN,2 ⊂ ΓN,1 the estimate
∥∥∥∥γ0

ΓN,1
p1

∥∥∥∥4

L4(ΓN,1)

=
∫

ΓN,1

∣∣∣∣γ0
ΓN,1

p1

∣∣∣∣4 dsx ≥
∫

ΓN,2

∣∣∣∣γ0
ΓN,1

p1

∣∣∣∣4 dsx

=
∫

ΓN,2

∣∣∣∣γ0
ΓN,1

p̃− P1

∣∣∣∣4 dsx ≥
∫

ΓN,2

|P2 − P1|4 dsx

= |P2 − P1|4 |ΓN,2|
d−1

holds. Combining the previous two estimates with the imbeddings (4.2.13), we
have

|P2 − P1|
(
|ΓN,2|

1/4

d−1
+ |Ω2|

1/4

d

)
≤ (c4,Ω + c4,ΓN cT ) ‖p1‖

H1(Ω)
(4.2.18)
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If we define c := (c4,Ω+c4,ΓN cT ) (cg+cB)
cs cα,k c

2
N

and f(Pi) := |Ωi|
1/4

d
+ |ΓN,i|

1/4

d
, inequality

(4.2.17) and inequality (4.2.18) yield

f(P2) ≤ c
f(P1)4/3

(P2 − P1) .

By applying Lemma 4.5 we get the existence of a constant CP ≥ 0, such that
f(P0 + C) = 0 for all C ≥ CP which implies that p̃(x) ≤ P0 + CP for almost
all x ∈ Ω.

Part C) Lower Bound: To show the existence of a lower bound, we use the
same technique as in the second part. Let N0 ≥ G∞ be arbitrary but fixed. For
N1 ≥ N0 define the sets

Ω1 := {x ∈ Ω | p̃(x) < −N1} and ΓN,1 :=
{
x ∈ ΓN | γ0

ΓN
p̃(x) < −N1

}
as well as the function p1 ∈ H1(Ω) which is defined by p1 := p̃−max{p̃,−N1}.
As in the second part, p1 and ∇p1 satisfy the representation

p1 :=

p̃+N1 in Ω1,

0 in Ω \ Ω1
and ∇p1 :=

∇p̃ in Ω1,

0 in Ω \ Ω1

in the domain Ω. By applying the trace operator we obtain γ0
ΓD
p1 = 0 and so

p1 ∈ V . Since p ∈ V is a solution to the variational problem (4.1.3) and p1 ∈ V
is a test function, we have the identity

〈M(p)−M(−N1 − pD) + S(p), p1〉
V ′×V

= 〈F −M(−N1 − pD), p1〉
V ′×V

.

We proceed as in the second part, we just have to take a closer look at the
duality pairing 〈M(−N1 − pD), p1〉

V ′×V
. Here we again distinguish between the

two cases (1) and (2) of Lemma 4.6.
(1) Since the choice of N0 ≥ G∞ is arbitrary, choose

N0 := max{G∞,−sl} ≥ G∞.

Due to the choice of N0 and since N1 ≥ N0, we have θ(−N1) ≤ 0 and p1(x) =
p̃(x) +N1 ≤ 0 almost everywhere in Ω1. Thus the estimate

−
∫
Ω

n

τ
θ(−N1) p1 dx = −

∫
Ω1

n

τ
θ(−N1) p1 dx ≤ 0
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4.3 Kirchhoff Transformation in Homogeneous Soil

holds. Define cB := 0 if (1) holds.
(2) In the second case choose N0 := G∞. Then, there holds

−
∫
Ω

n

τ
θ(−N1) p1 dx = −

∫
Ω1

n

τ
θ(−N1) p1 dx ≤

(
cM
τ
‖aθ‖

L2(Ω)

)
‖p1‖

H1(Ω)
|Ω1|

1/3

d
.

In this case define cB := cM
τ
‖aθ‖

L2(Ω)
.

Following the lines for the upper bound, we get the existence of a constant
CN ≥ 0, such that f(N0 + C) = 0 for all C ≥ CN which implies that p̃(x) ≥
−(N0 + CN) for almost all x ∈ Ω.

Since CP and CN depend on P0 and N0, they do not coincide in general. All in
all we get the boundedness of p+ pD almost everywhere in Ω, which proves the
desired statement. �

We have proven, that the variational problem (4.1.3) is uniquely solvable under
suitable conditions on general nonlinear functions θ and k. In the next two
sections we choose θ and k as introduced in Chapter 2 and we check if the
conditions in Assumption 4.2 are satisfied. As mentioned in the introduction,
we want to apply the Kirchhoff transformation to obtain a simplified equation
with a linear principal part. In the next section, we will discuss the variational
problem (4.1.3) in the context of a homogeneous soil whereas in the section
after next, a heterogeneous soil is considered.

4.3 Kirchhoff Transformation in Homogeneous
Soil

In this section we apply the Kirchhoff transformation, see [4, 12, 57], to the
Richards equation in a homogeneous soil. As in Section 2.1, we assume to have
a bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3, and soil parameter θ and k
defined by (2.0.4) and (2.0.5), that is

θ(x, s) := θ(s) and k(x, s) := k(s)

for all x ∈ Ω and s ∈ R, see Figure 4.3.
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Ω, θ, k

Figure 4.3: Homogeneous soil type.

Before we apply the Kirchhoff transformation, we want to see if the special
choice of θ and k satisfy the conditions in Assumption 4.2. The saturation is
prescribed by the monotonically increasing function θ mapping R to the interval
[θmin, θmax] ⊂ R. According to Chapter 2, the function θ is defined by

θ(p) :=


(
p
pb

)−λ (
θmax − θmin

)
+ θmin for p ≤ pb,

θmax for p > pb,

for given constants pb < 0 and λ > 0. The derivative of θ is

θ′(p) =

 λ
(−pb)

(
p
pb

)−(λ+1) (
θmax − θmin

)
for p < pb,

0 for p > pb,

which is defined everywhere except at p = pb < 0, see Figure 4.4.

It is easy to verify, that the saturation function θ is Lipschitz continuous. For
p1, p2 ≤ pb we have |θ(p1)− θ(p2)| ≤ cL,θ |p1 − p2| with the positive Lipschitz
constant

cL,θ := lim
p↗pb

θ′(p) = λ

(−pb)
(
θmax − θmin

)
.

For p1 ≤ pb ≤ p2 we use the previous result and obtain

|θ(p1)− θ(p2)| = |θ(p1)− θ(pb)| ≤ cL,θ |p1 − pb| = cL,θ(pb − p1)
≤ cL,θ(p2 − p1) = cL,θ |p1 − p2| .

The Lipschitz continuity for pb ≤ p1, p2 is obvious since θ(p) is constant for all
p ≥ pb. Hence, θ is Lipschitz continuous for all p1, p2 ∈ R.

We conclude, that θ ∈ C0,1(R) ∩ L∞(R) and in addition, θ is monotonically
increasing. Furthermore, we have the upper bound ‖θ‖

L∞(R)
= θmax. Thus, the
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Figure 4.4: Saturation and its derivative.

nonlinear function θ : R→ R fulfills condition (1) in Assumption 4.2 as well as
condition (1) in Lemma 4.6. Furthermore, θ is a Carathéodory function and
there holds

|θ(s)| = |θ(0) + θ(s)− θ(0)| ≤ |θ(0)|+ |θ(s)− θ(0)| ≤ θmax + cL,θ |s|

for all s ∈ R. Hence, θ satisfies the conditions in Assumption 4.2.

Next, we consider the relative permeability k. It is given by the mapping
k : [θmin, θmax]→ [0, 1] ⊂ R with

k(θ) :=
(

θ − θmin
θmax − θmin

)3+2/λ

which is monotonically increasing for a given λ > 0. We can extend k to a
mapping k : R → [0, 1] by setting k(θ) = 0 for θ < θmin and k(θ) = 1 for
θ > θmax which is still a monotonically increasing mapping. The derivative is

k′(θ) =


0 for θ < θmin,

3+2/λ
θmax−θmin

(
θ−θmin

θmax−θmin

)2+2/λ
for θ ∈ (θmin, θmax),

0 for θ > θmax,

71



4 Variational Formulation

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

θmin θmax

θ

k(θ)

0 0.2 0.4 0.6 0.8 1

0

5

10

15

θmin θmax

θ

k′(θ)

Figure 4.5: Relative permeability and its derivative in [θmin, θmax].

which is defined everywhere except at the points θmin and θmax, see Figure 4.5.

In the same manner as for θ, we can verify that k satisfies

|k(θ1)− k(θ2)| ≤ cL,k |θ1 − θ2|

for all θ1, θ2 ∈ R with a positive constant cL,k given by

cL,k := lim
θ↗θmax

k′(θ) = 3 + 2/λ

θmax − θmin
.

This observation implies k ∈ C0,1(R) ∩ L∞(R) with ‖k‖
L∞(R)

= 1. So far the
function k fulfills condition (2) in Assumption 4.2 and the additional Lipschitz
continuity condition of Theorem 4.4. In order to fulfill condition (3) in Assump-
tion 4.2 we choose a fixed α ∈ (0, 1) arbitrarily small. We consider the modified
permeability kα : R→ [α, 1] which is defined by

kα(θ) := max{α, k(θ)} (4.3.1)

for all θ ∈ R. The modified permeability kα is still in C0,1(R) ∩ L∞(R) with
Lipschitz constant cL,k and in addition there holds kα(θ) ≥ α > 0 for all θ ∈ R,
see Figure 4.6. Thus, the saturation function θ and the modified permeability
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Figure 4.6: Modified relative permeability.

kα fulfill the conditions stated in Assumption 4.2.

In the case of a homogeneous soil we thus obtain the following variational
problem.

Variational formulation for homogeneous soil

Find p ∈ V such that∫
Ω

n

τ
θ(p+ pD) v dx +

∫
Ω

K

µ
kα
(
θ(p+ pD)

)
∇(p+ pD) · ∇v dx =

=
∫
Ω

(
f + n

τ
θ(q)

)
v dx +

∫
Ω

K

µ
kα
(
θ(q)

)
∇d · ∇v dx+

+
∫

ΓN

gN γ
0
ΓN
v dsx

(4.3.2)

for all v ∈ V and pD := EΩ gD.

Compared to the variational problem (4.1.3), the problem we obtain in the
homogeneous case is formally identical. The major difference is that the nonlin-
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ear parameter functions do not depend on x ∈ Ω explicitly. We can state the
following corollary concerning solvability and uniqueness.

Corollary 4.7. If n,K ∈ L+
∞(Ω), τ, µ ∈ R+, f, q ∈ L2(Ω), gN ∈ L2(ΓN),

∇d ∈ L2(Ω) and gD ∈ H1/2(ΓD), then the the variational problem (4.3.2) has a
unique solution p ∈ V and there holds

‖p‖
H1(Ω)

≤ c
(
‖f‖

L2(Ω)
+ 1
τ
‖q − pD‖

L2(Ω)
+‖∇d‖

L2(Ω)
+‖gD‖

H
1/2(ΓD)

+‖gN‖
L2(ΓN )

)
with some positive constant c(Ω, θ, k,K, n, µ). If, in addition, gN ∈ Lqd(ΓN)
with qd as in Lemma 4.6 and gD ∈ H1/2(ΓD) ∩ L∞(ΓD), then there holds
p+ pD ∈ H1(Ω) ∩ L∞(Ω).

Proof. From the previous considerations on the nonlinear parameter functions
we have, that θ and k satisfy the conditions stated in Assumption 4.2. The
unique solvability follow from Theorem 4.3 and Theorem 4.4. To show the
regularity, we have to make sure that ∇d ∈ L6(Ω). The function d : Ω→ R was
introduced in Chapter 2 as d(x1, . . . , xd) = % g xd. The gradient of d is constant
in each component and so in L6(Ω). Lemma 4.6 provides the desired regularity
result. �

As already mentioned, we want to apply the Kirchhoff transformation to obtain
a simplification of the variational problem (4.3.2). For this reason we define
the mapping κ : R→ R as

κ(s) :=
s∫

0

kα
(
θ(r)

)
dr (4.3.3)

for all s ∈ R. This mapping is known as Kirchhoff transformation and its
properties are summarized in the following lemmata. The assertions we make
are well known and are based on the fundamental theorem of calculus for
Lebesgue points and on the theory of Lebesgue points, see [53, 67].

Lemma 4.8. If kα ◦ θ ∈ L∞(R) is non negative almost everywhere, then the
Kirchhoff transformation κ : R→ R defined by (4.3.3) is monotonically increas-
ing and Lipschitz continuous with Lipschitz constant ‖κ′‖

L∞(R)
. In addition, we

have κ′ = kα ◦ θ almost everywhere on R.
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4.3 Kirchhoff Transformation in Homogeneous Soil

If kα ◦ θ ∈ L∞(R) satisfies kα ◦ θ ≥ c > 0 almost everywhere on R, then the
Kirchhoff transformation κ has a strictly monotonically increasing and Lipschitz
continuous inverse κ−1 : R→ R with Lipschitz constant

∥∥∥κ−1′
∥∥∥
L∞(R)

. In addition,

we have κ−1′ = 1
κ′◦κ−1 almost everywhere in R.

Proof. For a proof see [57, Lemma 4.2.1]. �

The composite function kα ◦ θ defined by (4.3.1) and (2.0.5) with α > 0 satisfies
the assumptions in Lemma 4.8. In Figure 4.7 the Kirchhoff transformation as
well as its inverse are depicted. The red line illustrates the limiting case α = 0.
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u

κ−1
α (u)

Figure 4.7: Kirchhoff transformation κ and its inverse κ−1.

Since the Kirchhoff transformation κ satisfies the conditions in Theorem 3.49,
we conclude that κ induces a superposition operator which acts on H1(Ω)
continuously. Furthermore, we have

∇κ(v) = κ′(v)∇v = kα
(
θ(v)

)
∇v (4.3.4)

in L2(Ω) for all v ∈ H1(Ω). The representation (4.3.4) is crucial for later
considerations. But we need further properties which are summarized in the
following lemma.
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Lemma 4.9. Assume that kα ◦ θ ∈ L∞(R) satisfies kα ◦ θ ≥ c > 0 almost
everywhere on R. Let Ω ⊂ Rd be a bounded Lipschitz domain and let κ : R→ R
be defined by (4.3.3). Then, the superposition operator κ : H1(Ω)→ H1(Ω) is
bounded.

In addition, the inverse Kirchhoff transformation κ−1 : R → R induces a
continuous superposition operator acting on H1(Ω) which is also bounded.

Proof. From Theorem 3.49 we know that the superposition operator acts
continuously on H1(Ω). The H1(Ω)–norm of κ(v) is

‖κ(v)‖2
H1(Ω)

= ‖κ(v)‖2
L2(Ω)

+ |κ(v)|2
H1(Ω)

which we want to estimate separately. For the L2(Ω)–norm, we use Lemma 3.48
and Lemma 4.8 and thus we obtain

‖κ(v)‖2
L2(Ω)

= ‖κ(v)− κ(0)‖2
L2(Ω)

≤ ‖kα ◦ θ‖2
L∞(R)

‖v‖2
L2(Ω)

for all v ∈ H1(Ω). To estimate the H1(Ω)–seminorm, we use the representation
formula (4.3.4) for the gradient of the Kirchhoff transformed. We obtain

|κ(v)|2
H1(Ω)

=
∫
Ω

|∇κ(v)|2 dx =
∫
Ω

∣∣∣kα(θ(v)
)
∇v

∣∣∣2 dx

≤ ‖kα ◦ θ‖2
L∞(R)

∫
Ω

|∇v|2 dx = ‖kα ◦ θ‖2
L∞(R)

|v|2
H1(Ω)

and hence
‖κ(v)‖

H1(Ω)
≤ ‖kα ◦ θ‖

L∞(R)
‖v‖

H1(Ω)

for all v ∈ H1(Ω). Due to Lemma 4.8, the inverse transformation κ−1 exists
and is Lipschitz continuous. Furthermore, we have

κ−1′(s) = 1
κ′
(
κ−1(s)

) = 1
kα
(
θ(κ−1(s))

)
for all s ∈ R and due to the boundedness of kα ◦ θ we get

1
‖kα ◦ θ‖

L∞(R)

≤ 1
kα
(
θ(κ−1(s))

) ≤ 1
α
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and therefore κ−1′ ∈ L∞(R). Using the same technique as for κ(v) we get∥∥∥κ−1(v)
∥∥∥
H1(Ω)

≤ 1
α
‖v‖

H1(Ω)

for all v ∈ H1(Ω). �

Remark 4.10. To guarantee the boundedness of the inverse superposition
operator κ−1 : H1(Ω)→ H1(Ω), we have to assume that the constant α in the
definition of kα, see (4.3.1), is strictly positive. The case α = 0 is not covered
by our framework but can be handled in the context of variational inequalities,
see for example [12].

We can now use the Kirchhoff transformation to shift one nonlinearity from
the domain to the boundary. For this reason, we introduce a new quantity
u ∈ H1(Ω) which is defined by

u := κ(p+ pD)− uD (4.3.5)

with uD := EΩ κ(gD). The function u ∈ H1(Ω) is known as generalized pressure.
Theorem 3.50 implies κ(gD) ∈ H1/2(ΓD) which ensures that the definition of
uD is well posed. If we apply the trace operator, we obtain the identity

γ0
ΓD
u = γ0

ΓD
κ(p+ pD)− γ0

ΓD
uD = γ0

ΓD
κ(p+ pD)− κ(gD).

From Lemma 3.51 we conclude that

γ0
ΓD
u = κ(γ0

ΓD
p+ γ0

ΓD
pD)− κ(gD) = κ(gD)− κ(gD) = 0

and thus u ∈ V . If we use the representation formula (4.3.4) for the gradient,
we obtain

∇u = ∇κ(p+ pD)−∇uD = kα
(
θ(p+ pD)

)
∇(p+ pD)−∇uD

in L2(Ω). If we plug this representation formula in the left hand side of the
variational problem (4.3.2), we obtain∫

Ω

n

τ
θ(p+ pD) v dx +

∫
Ω

K

µ
kα
(
θ(p+ pD)

)
∇(p+ pD) · ∇v dx =

=
∫
Ω

n

τ
θ
(
κ−1(u+ uD)

)
v dx +

∫
Ω

K

µ
∇(u+ uD) · ∇v dx (4.3.6)
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for all v ∈ V .

Some words to recap the latest lines. We have defined a new function u ∈ V by
(4.3.5) which we used to reformulate the variational formulation (4.3.2) and we
obtained an equivalent representation, see (4.3.6). In contrast to the original
variational formulation, the formulation of the Kirchhoff transformed u is now
linear in its principal part. Thus, we were able to shift one nonlinearity from the
domain to the boundary, hidden in the computation of κ(gD) ∈ H1/2(ΓD). This
computation can be easy if the boundary condition gD is sufficiently regular and
an explicit representation of κ is known. For a general kα ◦ θ the computation
of κ(gD) can be a challenging task.

By setting l := θ ◦ κ−1 we derive the following variational problem which is
equivalent to the variational problem (4.3.2).

Transformed variational formulation for homogeneous soil

Find u ∈ V such that∫
Ω

n

τ
l(u+ uD) v dx +

∫
Ω

K

µ
∇(u+ uD) · ∇v dx =

=
∫
Ω

(
f + n

τ
θ(q)

)
v dx +

∫
Ω

K

µ
kα
(
θ(q)

)
∇d · ∇v dx+

+
∫

ΓN

gN γ
0
ΓN
v dsx

(4.3.7)

for each v ∈ V and uD := EΩ κ(gD).

Instead of solving the fully nonlinear variational problem (4.3.2), we can equiv-
alently solve the nonlinear variational problem (4.3.7) with a linear principal
part. We just have to apply the Kirchhoff transformation to the given Dirichlet
datum gD ∈ H1/2(ΓD). As already mentioned, we just have the implicit defi-
nition (4.3.3) of the Kirchhoff transformation. But one big advantage of the
model introduced by Brooks and Corey is that we can compute an explicit
representation of κ. Therefore, we first define pα < 0 as

pα := pb
α1/(3λ+2)
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4.3 Kirchhoff Transformation in Homogeneous Soil

which satisfies k(pα) = α. We can rewrite kα(θ(p)) defined by (4.3.1) as

kα
(
θ(p)

)
:=


α p ≤ pα,(
p
pb

)−3λ−2
pα < p ≤ pb,

1 p > pb

for all p ∈ R. By integration of kα ◦ θ, we obtain the explicit representation of
the Kirchhoff transformation

κ(p) :=


α (p− pα) + pb

3λ+1

((
3λ+ 2

)
−
(
pα
pb

)−3λ−1
)

p ≤ pα,

pb
3λ+1

((
3λ+ 2

)
−
(
p
pb

)−3λ−1
)

pα < p ≤ pb,

p p > pb

for all p ∈ R. To give an explicit form of the inverse Kirchhoff transformation,
we define

uα := pb
3λ+ 1

((
3λ+ 2

)
−
(
pα
pb

)−3λ−1
)

and we obtain

κ−1(u) :=


u−uα
α

+ pα u ≤ uα,

−
(

(−pb)3λ+2

(3λ+2) (u−pb)−u

)1/(3λ+1)
uα < u ≤ pb,

u u > pb

for all u ∈ R, see Figure 4.7.

As we can see, the Kirchhoff transformation is a useful tool to transform
a certain class of partial differential equations, which are quasilinear in the
principal part, to partial differential equations, which are linear in the principle
part. Especially for stationary problems the advantage is obvious. In this special
case, quasilinear partial differential equations are transformed to a linear partial
differential equations. Next, we want to carry this idea over to the Richards
equation in heterogeneous soil.
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4 Variational Formulation

4.4 Kirchhoff Transformation in Heterogeneous
Soil

In this section, we want to apply the Kirchhoff transformation to the Richards
equation in a heterogeneous soil. But first we want to answer the question
about solvability and uniqueness. As discussed in Section 2.2, we assume that
Ω ⊂ Rd is a bounded Lipschitz domain with different layers. For each soil layer
Li we have corresponding parameter θi and ki defined by (2.0.4) and (2.0.5).
The global parameter functions, defined by (2.2.1) and (2.2.2), are given by

θ(x, s) = θi(s) and k(x, s) = ki(s)

for x ∈ Li and s ∈ R, see Figure 4.8.

L1, θ1, k1

L2, θ2, k2

L3, θ3, k3

Figure 4.8: Heterogeneous soil type.

Due to the observations in Section 4.3, each θi is Lipschitz continuous and
an element of the Banach space L∞(R). For a constant α > 0, the modified
permeability kα,i, defined by (4.3.1), is Lipschitz continuous, in L∞(Ω) and
kα,i ≥ α > 0. It is easy to verify, that the nonlinearities satisfy the conditions
in Assumption 4.2.

If we write down the variational problem (4.1.3) in terms of the nonlinearities
θ and kα as discussed in this section, we obtain the following variational
problem.
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4.4 Kirchhoff Transformation in Heterogeneous Soil

Variational formulation for heterogeneous soil

Find p ∈ V such that∫
Ω

n

τ
θ(p+ pD) v dx +

∫
Ω

K

µ
kα
(
θ(p+ pD)

)
∇(p+ pD) · ∇v dx =

=
∫
Ω

(
f + n

τ
θ(q)

)
v dx +

∫
Ω

K

µ
kα
(
θ(q)

)
∇d · ∇v dx+

+
∫

ΓN

gN γ
0
ΓN
v dsx

(4.4.1)

for all v ∈ V and pD := EΩ gD.

The variational problem (4.4.1) looks formally like the variational problem
(4.3.2), but the nonlinearities in the variational problem (4.4.1) depend explicitly
on x ∈ Ω. Furthermore, it is rather easy to prove the following corollary using
the considerations made in Section 4.3 and the results of Section 4.2.
Corollary 4.11. If n,K ∈ L+

∞(Ω), τ, µ ∈ R+, f, q ∈ L2(Ω), gN ∈ L2(ΓN),
∇d ∈ L2(Ω) and gD ∈ H1/2(ΓD), then the variational problem (4.4.1) has a
unique solution p ∈ V and there holds

‖p‖
H1(Ω)

≤ c
(
‖f‖

L2(Ω)
+ 1
τ
‖q − pD‖

L2(Ω)
+‖∇d‖

L2(Ω)
+‖gD‖

H
1/2(ΓD)

+‖gN‖
L2(ΓN )

)
with some positive constant c(Ω, θ, k,K, n, µ). If, in addition, gN ∈ Lqd(ΓN)
with qd as in Lemma 4.6 and gD ∈ H1/2(ΓD) ∩ L∞(ΓD), then there holds
p+ pD ∈ H1(Ω) ∩ L∞(Ω).

Proof. Follow the lines of the proof to Corollary 4.7. �

Next, we want to apply the Kirchhoff transformation like in Section 4.3 to
obtain a variational problem with a linear principal part. In contrast to the
Kirchhoff transformation defined by (4.3.3), we obtain in this setting a Kirchhoff
transformation κ which depends on x ∈ Ω, that is

κ(x, s) :=
s∫

0

kα(x, θ(x, r)) dr
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4 Variational Formulation

for x ∈ Ω and s ∈ R. Unfortunately we can not apply Theorem 3.49, since the
composite function kα ◦ θ depends on x ∈ Ω.

The idea is to exploit the structure of the nonlinearities. Within each soil layer,
the nonlinear parameter functions θ and k are independent of x ∈ Ω. Goal is
to find an equivalent formulation, such that the nonlinear form∫

Ω

n

τ
θ(p+ pD) v dx +

∫
Ω

K

µ
kα
(
θ(p+ pD)

)
∇(p+ pD) · ∇v dx

can be written as the sum of local forms, that is

NL∑
i=1

∫
Li

n

τ
θ(p+ pD) v dx +

∫
Li

K

µ
kα
(
θ(p+ pD)

)
∇(p+ pD) · ∇v dx

 ,
plus additional coupling conditions.

To introduce a suitable formulation we need the following definition.

Definition 4.12 (Admissible decomposition). Let Ω ⊂ Rd be a bounded Lip-
schitz domain. The family DNΩ := {Ωi}Ni=1 is called admissible decomposition of
Ω, if the following conditions hold.

(1) Ωi ⊂ Ω is an open and bounded Lipschitz domain for i = 1, . . . , N .
(2) Ωi ∩ Ωj = ∅ for all 1 ≤ i, j ≤ N with i 6= j.
(3) Ω = ⋃

Ωi∈DNΩ
Ωi.

By ni we denote the outer unit normal of Ωi ∈ DNΩ and let S denote the skeleton
of DNΩ defined by

S :=
⋃

Ωi∈DNΩ

∂Ωi.

Furthermore we define the interface Γij by Γij := ∂Ωi ∩ ∂Ωj for each pair of
indices i, j with 1 ≤ i, j ≤ N , i 6= j.

Since we want to consider the Richards equation in a heterogeneous soil, the
decomposition of Ω can not be chosen arbitrarily. In Section 2.2 we assumed, that
Ω consists of several soil layers which we denoted by Li ⊂ Ω for i = 1, . . . , NL,
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4.4 Kirchhoff Transformation in Heterogeneous Soil

see Figure 4.9a. This decomposition is a natural decomposition of our domain
induced by the soil parameter and therefore from the problem itself. From now
on, we assume that DNΩ , N ≥ NL, is an admissible decomposition of Ω which
resolve the given natural decomposition, see Figure 4.9b.

L1

L2

L3

(a) Natural decomposition.

Ω1 Ω2 Ω3

Ω4

Ω5

Ω6
Ω7

Ω8

(b) General decomposition.

Figure 4.9: Sketch of natural and general decomposition.

After we clarified the question concerning the decomposition of our domain, we
can continue with the decomposition of the nonlinear form. This is done in the
following subsection.

4.4.1 The Primal Hybrid Framework

In this subsection we want to discuss the primal hybrid method as well as the
tools and statements we need to realize this method. This subsection is based
on the work of [13, 19, 51, 64]. The idea of the primal hybrid formulation is
to consider a larger trial space by removing the constraint of continuity at
the interfaces. These spaces are known as broken Sobolev spaces and are the
fundamentals of discontinuous Galerkin methods, see [27, Section 1.2.5]. For
our purpose we need an extension of the Sobolev space H1(Ω) which is defined
as follows.

Definition 4.13 (Broken Sobolev space). Let Ω ⊂ Rd be an open and bounded
Lipschitz domain with an admissible decomposition DNΩ . The broken Sobolev
space X1(Ω) is defined by

X1(Ω) :=
{
u ∈ L2(Ω) | u|Ωi ∈ H

1(Ωi) ∀Ωi ∈ DNΩ
}
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4 Variational Formulation

where

‖u‖
X1(Ω)

:=
(

N∑
i=1

∥∥∥u|Ωi∥∥∥2

H1(Ωi)

)1/2

defines the corresponding norm.

It is easy to verify, that ‖u‖
H1(Ω)

= ‖u‖
X1(Ω)

for all u ∈ H1(Ω) and thus
H1(Ω) � X1(Ω), that is H1(Ω) is continuously imbedded in X1(Ω). Since one
can not neglect the constraint of continuity completely, we introduce Lagrange
multiplier to obtain continuity. For the introduction of the Lagrange multiplier
in a proper way, we need additional spaces. First, we introduce the following
product trace space

X
1/2(S) :=

N∏
i=1

H
1/2(∂Ωi)

and its dual space

X
1/2(S)′ :=

N∏
i=1

H
1/2(∂Ωi)

′
.

We can define the trace operator γ0
S

: X1(Ω)→ X1/2(S) as

γ0
S
u :=

(
γ0
∂Ω1

u|Ω1
, . . . , γ0

∂ΩN
u|ΩN

)>
which satisfies the stability estimate

∥∥∥γ0
S
u
∥∥∥
X

1/2(S)

:=
(

N∑
i=1

∥∥∥γ0
∂Ωi

u|Ωi

∥∥∥2

H
1/2(∂Ωi)

)1/2

≤ cT,S ‖u‖
X1(Ωi)

for all u ∈ X1(Ω). The constant cT,S is defined by cT,S := max
i=1,...,N

cT,i with cT,i
from the Trace Theorem 3.35 for H1(Ωi). In the same manner, we define the
extension operator EΩ : X1/2(S)→ X1(Ω) as

EΩ g :=
(
EΩ1

g1, . . . , EΩN
gN
)>

for all (g1, . . . , gN)> = g ∈ X1/2(S). The extension operator satisfies

‖EΩ g‖
X1(Ω)

:=
(

N∑
i=1

∥∥∥EΩi
gi
∥∥∥2

H1(Ωi)

)1/2

≤ cE,S ‖g‖
X

1/2(S)
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4.4 Kirchhoff Transformation in Heterogeneous Soil

with cE,S := max
i=1,...,N

cE,i and cE,i from the Inverse Trace Theorem 3.36 for

H1/2(∂Ωi).

Furthermore, we need the space Hdiv
0,ΓN (Ω) which is defined by

Hdiv
0,ΓN (Ω) :=

{
q ∈ Hdiv(Ω) | 0 = 〈q · n, γ0

∂Ω
v〉

H
1/2(∂Ω)

′
×H1/2(∂Ω)

∀ v ∈ V
}
.

(4.4.2)
The space Hdiv

0,ΓN (Ω) is a closed subspace of Hdiv(Ω) introduced in Section 3.2.
Loosely speaking, the elements q ∈ Hdiv

0,ΓN (Ω) satisfy “q ·n ≡ 0” on ΓN . We are
now in the position to define a proper trial space for the Lagrange multiplier
which is needed to obtain continuity of elements u ∈ X1(Ω) on the skeleton.

Definition 4.14. Let Ω ⊂ Rd be an open and bounded Lipschitz domain with an
admissible decomposition DNΩ . Furthermore let ∂Ω = ΓD ∪ ΓN with |ΓD|

d−1
> 0.

The Lagrange multiplier space Q0,ΓN (S) is then defined by

Q0,ΓN (S) :=
{
ν ∈ X1/2(S)′

∣∣∣ ∃ q ∈ Hdiv
0,ΓN (Ω) : q · ni = ν on ∂Ωi ∀Ωi ∈ DNΩ

}
which is a closed subspace of the space X1/2(S)′. The corresponding norm is

‖ν‖
Q0,ΓN (S)

:= inf
q∈Hdiv

0,ΓN
(Ω)

q·ni=ν on ∂Ωi
∀Ωi∈DNΩ

‖q‖
H(div,Ω)

for all ν ∈ Q0,ΓN (S).

The natural norm ‖·‖
Q0,ΓN (S)

defined on the space Q0,ΓN (S) is due to its defini-
tion hard to handle. The following lemma provides an equivalence result with
a more accessible norm.

Lemma 4.15. Let Ω ⊂ Rd be an open and bounded Lipschitz domain with an
admissible decomposition DNΩ . Furthermore, let ∂Ω = ΓD ∪ΓN with |ΓD|

d−1
> 0.

Then, there holds

1
cT,S
‖ν‖

Q0,ΓN (S)
≤ ‖ν‖

X
1/2(S)

′ ≤ cE,S ‖ν‖
Q0,ΓN (S)

for all ν ∈ Q0,ΓN (S), we write ‖ν‖
Q0,ΓN (S)

' ‖ν‖
X

1/2(S)
′ .
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Proof. Let ν ∈ Q0,ΓN (S) and q ∈ Hdiv
0,ΓN (Ω), such that q · ni = ν on ∂Ωi for all

Ωi ∈ DNΩ .

Using Trace Theorem 3.35 and Inverse Trace Theorem 3.36 for H1(Ωi), we
obtain

‖ν‖
X

1/2(S)
′ = sup

06=g∈X1/2(S)

N∑
i=1
〈ν, gi〉

H
1/2(∂Ωi)

′
×H1/2(∂Ωi)

‖g‖
X

1/2(S)

= sup
06=g∈X1/2(S)

N∑
i=1
〈q · ni, γ0

∂Ωi
EΩi

g〉
H

1/2(∂Ωi)
′
×H1/2(∂Ωi)

‖g‖
X

1/2(S)

.

(4.4.3)

If we apply Green’s formula, Lemma 3.43, for each duality pairing, we get

〈q · ni, γ0
∂Ωi
EΩi

g〉
H

1/2(∂Ωi)
′
×H1/2(∂Ωi)

=
∫
Ωi

(
q · ∇EΩi

g +∇ · q EΩi
g
)

dx

≤ ‖q‖
Hdiv(Ωi)

∥∥∥EΩi
g
∥∥∥
H1(Ωi)

≤ cE,i ‖q‖
Hdiv(Ωi)

‖g‖
H

1/2(∂Ωi)

(4.4.4)

with cE,i from the Inverse Trace Theorem 3.36 for H1/2(∂Ωi). If we plug in
estimate (4.4.4) in the representation (4.4.3), we obtain

‖ν‖
X

1/2(S)
′ ≤ sup

06=g∈X1/2(S)

N∑
i=1

cE,i ‖q‖
Hdiv(Ωi)

‖g‖
H

1/2(∂Ωi)

‖g‖
X

1/2(S)

≤ cE,S‖q‖
Hdiv(Ω)

for all ν ∈ Q0,ΓN (S) and q ∈ Hdiv
0,ΓN (Ω), such that q · ni = ν on ∂Ωi for all

Ωi ∈ DNΩ . If we take the infimum over all such q ∈ Hdiv
0,ΓN (Ω), we get the

inequality

1
cE,S
‖ν‖

X
1/2(S)

′ ≤ inf
q∈Hdiv

0,ΓN
(Ω)

q·ni=ν on ∂Ωi
∀Ωi∈DNΩ

‖q‖
Hdiv(Ω)

= ‖ν‖
Q0,ΓN (S)

which proves the first inequality we have to show for the norm equivalence.
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To prove the reverse inequality, we consider elements ui ∈ H1(Ωi), satisfying∫
Ωi

∇ui · ∇v dx +
∫
Ωi

ui v dx = 〈ν, γ0
∂Ωi

v〉
H

1/2(∂Ωi)
′
×H1/2(∂Ωi)

for all v ∈ H1(Ωi). For each ui there holds the estimate

‖ui‖
H1(Ωi)

≤ cT,i ‖ν‖
H

1/2(∂Ωi)
′ (4.4.5)

with cT,i from the Trace Theorem 3.35 for H1(Ωi).

Choose wi = ∇ui in each Ωi, therefore we obtain ∇ · wi = ui in Ωi, see
Definition 3.31, and we have wi · ni = ν on ∂Ωi. In addition, there holds

‖wi‖
Hdiv(Ωi)

= ‖ui‖
H1(Ωi)

≤ cT,i ‖ν‖
H

1/2(∂Ωi)
′ (4.4.6)

for all Ωi ∈ DNΩ . Define a global w ∈ Hdiv
0,ΓN (Ω) by w|Ωi = wi. If we incorporate

estimate (4.4.6), we obtain

‖ν‖
Q0,ΓN (S)

= inf
q∈Hdiv

0,ΓN
(Ω)

q·ni=ν on ∂Ωi
∀Ωi∈DNΩ

‖q‖
Hdiv(Ω)

≤ ‖w‖
Hdiv(Ω)

=
(

N∑
i=1
‖wi‖2

Hdiv(Ωi)

)1/2

≤
(

N∑
i=1

c2
T,i ‖ν‖

2

H
1/2(∂Ωi)

′

)1/2

≤ cT,S ‖ν‖
X

1/2(S)
′

which completes the proof. �

The equivalence of the norms will play an important role in the primal hybrid
framework. The following proposition is as well important but rather obvious
compared to Lemma 4.15.

Proposition 4.16. Let ν ∈ Q0,ΓN (S). Then ν ∈ H1/2(∂Ω)′ and there holds

‖ν‖
H

1/2(∂Ω)
′ ≤ cE ‖ν‖

Q0,ΓN (S)

with cE from the Inverse Trace Theorem 3.36.
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Proof. Let ν ∈ Q0,ΓN (S), and q ∈ Hdiv
0,ΓN (Ω), such that q · ni = ν on ∂Ωi for

all Ωi ∈ DNΩ . Since q ∈ Hdiv
0,ΓN (Ω), the normal trace of q on ∂Ω is well defined,

that is q · n =: ν ∈ H1/2(∂Ω)′. In addition, we have

〈ν, g〉
H

1/2(∂Ω)
′
×H1/2(∂Ω)

= 〈q · n, g〉
H

1/2(∂Ω)
′
×H1/2(∂Ω)

=
∫
Ω

(
q · ∇EΩ g +∇ · q EΩ g

)
dx

≤ ‖q‖
Hdiv(Ω)

‖EΩ g‖
H1(Ω)

≤ cE ‖q‖
Hdiv(Ω)

‖g‖
H

1/2(∂Ω)

for all such q ∈ Hdiv
0,ΓN (Ω). Taking the infimum over all q ∈ Hdiv

0,ΓN (Ω), we obtain

‖ν‖
H

1/2(∂Ω)
′ ≤ cE ‖ν‖

Q0,ΓN (S)

for all ν ∈ Q0,ΓN (S). �

We now have the right spaces to work with, but we still need to realize the
correct side condition for the Lagrange multiplier. In other words, we still need a
condition which allows for a characterization of V in the lager space X1(Ω). To
realize such a condition, consider the bilinear form b : X1(Ω)×Q0,ΓN (S)→ R
defined by

b(u, ν) := −
N∑
i=1
〈ν, γ0

∂Ωi
u|Ωi 〉

H
1/2(∂Ωi)

′
×H1/2(∂Ωi)

for all u ∈ X1(Ω) and ν ∈ Q0,ΓN (S). The bilinear form b(·, ·) induces an
operator B : X1(Ω)→ Q0,ΓN (S)′ given by

〈Bu, ν〉
Q0,ΓN (S)′×Q0,ΓN (S)

:= b(u, ν)

and its adjoint operator B′ : Q0,ΓN (S)→ X1(Ω)′ defined by

〈B′ν, u〉
X1(Ω)′×X1(Ω)

:= b(u, ν)

for all u ∈ X1(Ω) and ν ∈ Q0,ΓN (S). Furthermore, there holds the estimate

b(u, ν) = −
N∑
i=1
〈ν, γ0

∂Ωi
u|Ωi 〉

H
1/2(∂Ωi)

′
×H1/2(∂Ωi)

≤ cT,S ‖ν‖
X

1/2(S)
′ ‖u‖X1(Ω)
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for arbitrary u ∈ X1(Ω) and ν ∈ Q0,ΓN (S). Lemma 4.15 then implies

‖Bu‖
Q0,ΓN (S)′

≤ cT,S cE,S ‖u‖
X1(Ω)

and ‖B′ν‖
X1(Ω)′

≤ cT,S cE,S ‖ν‖
Q0,ΓN (S)

and from Proposition 3.10 we can conclude the continuity of the operators B
and B′.

Next, we want to use the operator B : X1(Ω)→ Q0,ΓN (S)′ to characterize the
space V in the larger space X1(Ω). The following lemma provides the desired
condition.

Lemma 4.17. Let Ω ⊂ Rd be an open and bounded Lipschitz domain with an
admissible decomposition DNΩ with ∂Ω = ΓD ∪ ΓN where |ΓD|

d−1
> 0. Then

there holds
V = KerB

with KerB := {u ∈ X1(Ω) | b(u, ν) = 0 ∀ ν ∈ Q0,ΓN (S)}.

Proof. See for example [19, Proposition 2.1.1]. �

Lemma 4.17 is the principal item in the primal hybrid framework. It allows
the characterization of functions u ∈ H1(Ω) satisfying homogeneous Dirichlet
boundary conditions in the spaceX1(Ω). But, we even can characterize functions
u ∈ H1(Ω) satisfying inhomogeneous Dirichlet boundary conditions in the space
X1(Ω).

Lemma 4.18. Let Ω ⊂ Rd be an open and bounded Lipschitz domain with
an admissible decomposition DNΩ with ∂Ω = ΓD ∪ ΓN where |ΓD|

d−1
> 0.

Furthermore, let g ∈ H1/2(ΓD). The affine space

Vg :=
{
v ∈ H1(Ω) | γ0

ΓD
v = g in H1/2(ΓD)

}
can then be characterized in X1(Ω) as the subset Kerg B ⊂ X1(Ω) defined by

Kerg B :=
{
u ∈X1(Ω)

∣∣∣ b(u, ν) = −〈ν, γ0
∂Ω
EΩ g〉

H
1/2(∂Ω)

′
×H1/2(∂Ω)

∀ ν ∈ Q0,ΓN (S)
}

which is again an affine subspace in X1(Ω).

Proof. To prove the desired statement, we show that the affine subspaces are
included in each other.
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4 Variational Formulation

Vg ⊂ Kerg B: First, we want to show that Vg ⊂ Kerg B. Let v ∈ H1(Ω) such
that γ0

ΓD
v = g in H1/2(ΓD). We have v − EΩ g ∈ V and from Lemma 4.17 we

obtain b(v − EΩ g, ν) = 0 for all ν ∈ Q0,ΓN (S). This is equivalent to

b(v, ν) = b(EΩ g, ν) = −
N∑
i=1
〈ν, γ0

∂Ωi
(EΩ g)|Ωi 〉

H
1/2(∂Ωi)

′
×H1/2(∂Ωi)

= −
N∑
i=1

∫
Ωi

(
q · ∇(EΩ g)|Ωi +∇ · q (EΩ g)|Ωi

)
dx

= −
∫
Ω

(
q · ∇EΩ g +∇ · q EΩ g

)
dx

= −〈ν, γ0
∂Ω
EΩ g〉

H
1/2(∂Ω)

′
×H1/2(∂Ω)

.

(4.4.7)

Since H1(Ω) ⊂ X1(Ω) we see that v ∈ Kerg B and therefore Vg ⊂ Kerg B.

Kerg B ⊂ Vg: Next, we want to prove Kerg B ⊂ Vg. Therefore, let v ∈ X1(Ω),
such that v satisfies

b(u, ν) = −〈ν, γ0
∂Ω
EΩ g〉

H
1/2(∂Ω)

′
×H1/2(∂Ω)

for all ν ∈ Q0,ΓN (S). From (4.4.7) we obtain, that the right hand side satisfies
the representation

−〈ν, γ0
∂Ω
EΩ g〉

H
1/2(∂Ω)

′
×H1/2(∂Ω)

= b(EΩ g, ν)

for all ν ∈ Q0,ΓN (S), thus b(u − EΩ g, ν) = 0 . Lemma 4.17 then implies
u− EΩ g =: w ∈ V and therefore u = w + EΩ g ∈ H1(Ω). If we apply the trace
operator, we obtain γ0

ΓD
u = γ0

ΓD
w + γ0

ΓD
EΩ g = 0 + g = g. This proves the

inclusion Kerg B ⊂ Vg which finishes the proof. �

The last important property we need is the inf–sup–stability of the operator
B : X1(Ω) → Q0,ΓN (S). This stability ensures the surjectivity of B, see
Theorem 3.16.
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4.4 Kirchhoff Transformation in Heterogeneous Soil

Lemma 4.19. Let Ω ⊂ Rd be an open and bounded Lipschitz domain with an
admissible decomposition DNΩ with ∂Ω = ΓD ∪ ΓN where |ΓD|

d−1
> 0. Then

inf
06=ν∈Q0,ΓN (S)

sup
06=u∈X1(Ω)

〈Bu, ν〉
Q0,ΓN (S)′×Q0,ΓN (S)

‖ν‖
X

1/2(S)
′ ‖u‖X1(Ω)

≥ 1
cT,S cE,S

> 0

holds.

Proof. Let ν ∈ Q0,ΓN (S) be an arbitrary element. Due to Lemma 4.15, we have

1
cT,S
‖ν‖

Q0,ΓN (S)
≤ ‖ν‖

X
1/2(S)

′ = sup
06=g∈X1/2(S)

N∑
i=1
〈ν, g〉

H
1/2(∂Ωi)

′
×H1/2(∂Ωi)

‖g‖
X

1/2(S)

. (4.4.8)

Since ‖EΩ g‖
X1(Ω)

≤ cE,S ‖g‖
X

1/2(S)
for all g ∈ X1/2(S), we have

1
cE,S cT,S

‖ν‖
Q0,ΓN (S)

≤ sup
06=g∈X1/2(S)

N∑
i=1
〈ν, γ0

∂Ωi
EΩi

g〉
H

1/2(∂Ωi)
′
×H1/2(∂Ωi)

‖EΩ g‖
X1(Ω)

≤ sup
0 6=u∈X1(Ω)

N∑
i=1
〈ν, γ0

∂Ωi
u|Ωi 〉

H
1/2(∂Ωi)

′
×H1/2(∂Ωi)

‖u‖
X1(Ω)

for all ν ∈ Q0,ΓN (S). Since the supremum of the duality pairing taken over all
u ∈ X1(Ω) equals the supremum of the duality pairing taken over −u ∈ X1(Ω),
we obtain

1
cE,S cT,S

‖ν‖
Q0,ΓN (S)

≤ sup
06=u∈X1(Ω)

−
N∑
i=1
〈ν, γ0

∂Ωi
u|Ωi 〉

H
1/2(∂Ωi)

′
×H1/2(∂Ωi)

‖u‖
X1(Ω)

= sup
06=u∈X1(Ω)

〈Bu, ν〉
Q0,ΓN (S)′×Q0,ΓN (S)

‖u‖
X1(Ω)

for all ν ∈ Q0,ΓN (S). Taking the infimum over all ν ∈ Q0,ΓN (S), we obtain the
desired statement. �
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4 Variational Formulation

We have derived the tools we need to split the nonlinear operator in the
variational problem (4.4.1) into the sum of local operators to apply local
Kirchhoff transformations. This is discussed in the next subsection.

4.4.2 The Primal Hybrid Formulation

In this subsection, we introduce for the rest of this thesis X and M as

X := X1(Ω) and Q := Q0,ΓN (S).

Furthermore, we use the notation vi := v|Ωi for functions v ∈ X.

Using the same notation as in Section 4.2, we have the nonlinear operators
M : V → V ′ and S : V → V ′ from the variational problem (4.4.1). The
operators M and S satisfy the integral representation

〈M(p), v〉
V ′×V

:=
∫
Ω

n

τ
θ(p+ pD) v dx

and
〈S(p), v〉

V ′×V
:=
∫
Ω

K

µ
kα
(
θ(p+ pD)

)
∇(p+ pD) · ∇v dx

for all p, g ∈ V and EΩ gD =: pD ∈ VgD .

We can rewrite the operator M : V → V ′ by replacing the integral over Ω with
the sum of integrals over Ωi with Ωi ∈ DNΩ . That is

〈M(p), v〉
V ′×V

:=
N∑
i=1

∫
Ωi

n

τ
θ(p+ pD)|Ωi v|Ωi dx (4.4.9)

for p, v ∈ V . Note, that the right hand side in equation (4.4.9) is still well
defined, if we choose p + pD ∈ X and v ∈ X. Thus, we can introduce an
extension of M which will be denoted as M̂ defined by

〈M̂(p), v〉
X′×X

:=
N∑
i=1

∫
Ωi

n

τ
θ(p)|Ωi v|Ωi dx
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4.4 Kirchhoff Transformation in Heterogeneous Soil

for all p, v ∈ X. There holds 〈M̂(p+ pD), v〉
X′×X

= 〈M(p), v〉
V ′×V

for all p, v ∈
V . In the definition of M̂ we do not consider the Dirichlet extension which
satisfies the inhomogeneous Dirichlet boundary condition. This condition is
incorporated in a weak sense via an additional condition. Due to the special
structure of the nonlinear function θ, see (2.2.1), and due to the choice of the
domain decomposition DNΩ , we can write θ(p)|Ωi as θi(pi) within each subdomain
Ωi ∈ DNΩ . Thus, M̂ can be written as

〈M̂(p), v〉
X′×X

=
N∑
i=1

∫
Ωi

n

τ
θi(pi) vi dx

for p, v ∈ X1(Ω). In the same manner, we can extend S : V → V ′ to an operator
Ŝ : X → X ′ defined by

〈Ŝ(p), v〉
X′×X

:=
N∑
i=1

∫
Ωi

K

µ
kα
(
θ(p)

)
|Ωi ∇p|Ωi · ∇v|Ωi dx

for p, v ∈ X. Since DNΩ resolves the natural decomposition, see Figure 4.9b, and
due to the structure of θ and kα, we obtain kα

(
θ(p)

)
|Ωi = kα,i

(
θi(pi)

)
within

each Ωi ∈ DNΩ . Hence, Ŝ can be written as

〈Ŝ(p), v〉
X′×X

=
N∑
i=1

∫
Ωi

K

µ
kα,i

(
θi(pi)

)
∇pi · ∇vi dx

for p, v ∈ X. Furthermore, there holds 〈Ŝ(p+ pD), v〉
X′×X

= 〈S(p), v〉
V ′×V

for
all p, v ∈ V . We dropped the Dirichlet extension in the definition of M̂ and
Ŝ. As already mentioned, we will incorporate the inhomogeneous Dirichlet
boundary condition in a weak sense as an additional condition. For this reason
define G ∈ Q′ by the duality pairing

〈G, ν〉
Q′×Q

:= −〈ν, γ0
∂Ω
EΩ gD〉

H
1/2(∂Ω)

′
×H1/2(∂Ω)

(4.4.10)

for all ν ∈ Q. Proposition 4.16 implies the estimate

‖G‖
Q′

= sup
06=ν∈Q

〈G, ν〉
Q′×Q

‖ν‖
Q

= sup
06=ν∈Q

−〈ν, γ0
∂Ω
EΩ g〉

H
1/2(∂Ω)

′
×H1/2(∂Ω)

‖ν‖
Q

≤ cT cE sup
0 6=ν∈Q

‖ν‖
H

1/2(∂Ω)
′ ‖gD‖

H
1/2(ΓD)

‖ν‖
Q

≤ cT c
2
E ‖gD‖

H
1/2(ΓD)
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4 Variational Formulation

which shows, that G is indeed an element in Q′. Next, take a closer look at the
functional F ∈ V ′ which is defined by

〈F, v〉
V ′×V

:=
∫
Ω

(
f + n

τ
θ(q)

)
v dx +

∫
Ω

K

µ
kα
(
θ(q)

)
∇d ·∇v dx +

∫
ΓN

gN γ
0
ΓN
v dsx

for all v ∈ V . Since f and gN are assumed to be square integrable, that is
f ∈ L2(Ω) and gN ∈ L2(ΓN), we see, that F is even an element in the smaller
space X ′ ⊂ V ′. As in the proof of Theorem 4.3 we obtain the estimate

‖F‖
X′
≤ ‖f‖

L2(Ω)
+ cM

τ
‖θ(q)‖

L2(Ω)
+ cS bk ‖∇d‖L2(Ω)

+ cT ‖gN‖
L2(ΓN )

.

We can rewrite the variational problem (4.4.1) using the previous defined
operators and we obtain the following abstract variational problem.

Primal hybrid formulation for heterogeneous soil

Find p ∈ X and λ ∈ Q such that

〈M̂(p) + Ŝ(p), v〉
X′×X

+ 〈B′λ, v〉
X′×X

= 〈F, v〉
X′×X

〈Bp, ν〉
Q′×Q

= 〈G, ν〉
Q′×Q

(4.4.11)

for each v ∈ X and ν ∈ Q.

Using the results from Section 4.4.1 we can prove the following statement which
shows the equivalence of the variational problem (4.4.1) and the primal hybrid
formulation (4.4.11).

Lemma 4.20. The variational problem (4.4.1) is uniquely solvable, iff the
variational problem (4.4.11) is uniquely solvable with G ∈ Q′ defined by (4.4.10)
and F ∈ X ′.

For the solution (u, λ) ∈ X ×Q to the variational problem (4.4.11) there holds

‖p‖
X
≤ ĉ1

(
‖f‖

L2(Ω)
+ 1
τ
‖q − pD‖

L2(Ω)
+ ‖∇d‖

L2(Ω)
+ ‖gD‖

H
1/2(ΓD)

+ ‖gN‖
L2(ΓN )

)
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4.4 Kirchhoff Transformation in Heterogeneous Soil

and

‖λ‖
Q
≤ ĉ2

(
‖f‖

L2(Ω)
+ 1
τ
‖q − p‖

L2(Ω)
+ ‖∇d‖

L2(Ω)
+ ‖p‖

H1(Ω)
+ ‖gN‖

L2(ΓN )

)
with some positive constants ĉ1(Ω, θ, k,K, n, µ) and ĉ2(Ω, θ, k,K, n, µ).

Proof. To show the equivalence, we show that the unique solvability of the
variational problem (4.4.1) implies unique solvability of the primal hybrid
formulation (4.4.11) and vice versa.

(4.4.1)⇒ (4.4.11): First, assume p ∈ V is the unique solution to the varia-
tional problem (4.4.1), that is

〈M(p) + S(p), v〉
V ′×V

= 〈F, v〉
V ′×V

(4.4.12)

for all v ∈ V . We want to prove, that p+ pD =: p̃ ∈ X is the unique solution
to the variational problem (4.4.11).

From Lemma 4.19 and Theorem 3.16, we conclude the existence of a operator
B† ∈ L(Q′, X) such that B ◦B† = I on Q′. This implies ImB = Q′. The Closed
Range Theorem, see [72, Section VII.5], implies ImB′ = (KerB)◦ with

(KerB)◦ :=
{
F ∈ X ′ | 0 = 〈F, v〉

X′×X
∀ v ∈ KerB

}
.

That is, for each F ∈ (KerB)◦ there exists a λ ∈ Q such that B′λ = F in X ′.

Next, define F ∈ X ′ by

〈F , v〉
X′×X

:= 〈F − M̂(p̃)− M̂(p̃), v〉
X′×X

for all v ∈ X. From equation (4.4.12) and Lemma 4.17 we have F ∈ (KerB)◦
and due to our previous considerations there exists a λ ∈ Q, such that

〈B′λ, v〉
X′×X

= 〈F , v〉
X′×X

= 〈F − M̂(p̃)− M̂(p̃), v〉
X′×X

(4.4.13)

holds for all v ∈ X.

From Lemma 4.18 we conclude that

〈Bp̃, ν〉
Q′×Q

= 〈G, ν〉
Q′×Q
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4 Variational Formulation

holds for all ν ∈ Q. Thus p̃ ∈ X and λ ∈ Q is a solution to the primal hybrid
formulation (4.4.11).

It still remains to prove the uniqueness of the solution. The uniqueness of p̃ ∈ X
follows from the uniqueness of p ∈ V . Next, assume we have two solutions
λ1, λ2 ∈ Q. From Lemma 4.19 we obtain

1
cT,S cE,S

‖λ1 − λ2‖
Q
≤ sup

06=v∈X

〈Bv, λ1 − λ2〉
Q′×Q

‖v‖
X

= sup
06=v∈X

〈v,B′λ1 −B′λ2〉
X′×X

‖v‖
X

which is zero due to (4.4.13) and so λ1 = λ2. Therefore, p̃ ∈ X and λ ∈ Q are
the unique solution to the primal hybrid formulation(4.4.11).

(4.4.11)⇒ (4.4.1): To show the reverse implication, let us assume we have
a unique solution p̃ ∈ X and λ ∈ Q to the primal hybrid formulation (4.4.11).
Since p̃ ∈ X is a solution, p̃ satisfies

〈Bp̃, ν〉
Q′×Q

= 〈G, ν〉
Q′×Q

for all ν ∈ Q. From Lemma 4.18 we conclude p̃ ∈ VgD . Next, we define p ∈ V by
p := p̃− pD. From the first equation in the primal hybrid formulation (4.4.11),
we obtain

〈M̂(p+ pD) + Ŝ(p+ pD), v〉
X′×X

+ 〈B′λ, v〉
X′×X

= 〈F, v〉
X′×X

for all v ∈ X. If we choose an arbitrary test function v ∈ V ⊂ X, we obtain

〈B′λ, v〉
X′×X

= 〈λ,Bv〉
X′×X

= 0

and therefore
〈M(p) + S(p), v〉

V ′×V
= 〈F, v〉

V ′×V

for each v ∈ V . The uniqueness of p ∈ V follows from the uniqueness of p̃ ∈ X.
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4.4 Kirchhoff Transformation in Heterogeneous Soil

Boundedness of the solution: It remains to show the desired estimates
for the solution to the primal hybrid formulation (4.4.11). First, we consider
p̃ ∈ X. From Lemma 4.18 we conclude, that p̃ ∈ H1(Ω) and there holds
‖p̃‖

X
= ‖p̃‖

H1(Ω)
. The triangle inequality for p̃ = p+ pD and the Inverse Trace

Theorem 3.36 yield

‖p̃‖
H1(Ω)

= ‖p+ pD‖
H1(Ω)

≤ ‖p‖
H1(Ω)

+ cE ‖gD‖
H

1/2(ΓD)
.

Since p ∈ H1(Ω) is a solution to the variational problem (4.4.1), p satisfies the
estimate in Corollary 4.11 and furthermore the sharper estimate in the proof
of Theorem 4.3. Therefore we obtain the upper bound

c2
N cs cα,k ‖p̃‖X ≤ ‖f‖L2(Ω)

+ cM
τ
cL,θ ‖q − pD‖

L2(Ω)

+ cS bk ‖∇d‖L2(Ω)
+ cT ‖gN‖

L2(ΓN )

+ cE
(
cS bk + c2

N cs cα,k
)
‖gD‖

H
1/2(ΓD)

and by setting ĉ1 := 1
c2N cs cα,k

max{1, cM cL,θ, cS bk, cT , cE (cS bk+c2
N cs cα,k)}, we

get the desired estimate for the norm of p̃.

Next, we want to estimate λ ∈ Q. The stability condition in Lemma 4.19 and
the identity (4.4.13) gives

1
cT,S cE,S

‖λ‖
Q
≤ sup

06=v∈X

〈Bv, λ〉
Q′×Q

‖v‖
X

= sup
0 6=v∈X

〈B′λ, v〉
X′×X

‖v‖
X

= sup
06=v∈X

〈F − M̂(p̃)− Ŝ(p̃), v〉
X′×X

‖v‖
X

.

The numerator in the right hand side of the above estimate satisfies the following
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representation

〈F − M̂(p̃)− Ŝ(p̃), v〉
X′×X

=
N∑
i=1

∫
Ωi

{
fi + n

τ

(
θi(qi)− θi(p̃i)

)}
vi dx+

+
N∑
i=1

∫
Ωi

K

µ

{
kα,i

(
θi(qi)

)
∇di − kα,i

(
θi(p̃i)

)
∇p̃i

}
· ∇vi dx+

+
N∑
i=1

∫
ΓN,i

gN,i γ
0
ΓN,i

vi dsx

for all v ∈ X. In the same manner as in the proof of Theorem 4.3, we obtain
the estimate

〈F − M̂(p̃)− Ŝ(p̃), v〉
X′×X

‖v‖
X

≤ ‖f‖
L2(Ω)

+ cM
τ
cL,θ ‖q − p̃‖

L2(Ω)
+

+ cS bk ‖∇d‖L2(Ω)
+ cS bk ‖p̃‖

H1(Ω)
+ cT,S ‖gN‖

L2(ΓN )

since p + pD = p̃ is an element in H1(Ω). If we define the constant ĉ2 by
ĉ2 := cT,S cE,S max{1, cM cL,θ, cS bk, cS bk, cT,S}, we get

‖λ‖
Q
≤ ĉ2

(
‖f‖

L2(Ω)
+ 1
τ
‖q − p̃‖

L2(Ω)
+ ‖∇d‖

L2(Ω)
+ ‖p̃‖

H1(Ω)
+ ‖gN‖

L2(ΓN )

)
which proves the desired bound. �

As desired, the operators M̂ : X → X ′ and Ŝ : X → X ′ can be written as
the sum of local acting operators and the corresponding variational problem
(4.4.11) is equivalent to the variational problem (4.4.1) which was our starting
point. The next step is to apply the Kirchhoff transformation to the local acting
operators. For this reason we recall the definition of the operator Ŝ : X → X ′,
which is defined by

〈Ŝ(p), v〉
X′×X

=
N∑
i=1

∫
Ωi

K

µ
kα,i

(
θi(pi)

)
∇pi · ∇vi dx
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4.4 Kirchhoff Transformation in Heterogeneous Soil

for all v ∈ X. Due to the special choice of the decomposition DNΩ , the non-
linearities just depend on the unknown p within each subdomain Ωi, that
is

kα,i
(
θi(s)

)
(x) = kα,i

(
θi(s)

)
independent of x ∈ Ωi. As done in the previous Section 4.3, we can define the
mapping κi : R→ R for each i = 1, . . . , N as

κi(s) :=
s∫

0

κα,i
(
θi(r)

)
dr

for all s ∈ R. Each κi induces a superposition operator which acts on H1(Ωi)
continuously, see Theorem 3.49. Furthermore, Lemma 4.9 remains true for κi
as an operator from H1(Ωi) to H1(Ωi).

Thus, we can introduce new local functions ui ∈ H1(Ωi) as the Kirchhoff
transformations of pi, that is ui := κi(pi). As in the homogeneous case, the
gradient of ui satisfies

∇ui = ∇κi(pi) = kα,i
(
θi(pi)

)
∇pi (4.4.14)

in L2(Ωi), see Theorem 3.49.

From Lemma 4.9 we conclude that

‖ui‖
H1(Ωi)

≤ cB,kα,i ‖pi‖
H1(Ωi)

with cB,kα,i := ‖kα,i‖
L∞(R)

for all i = 1, . . . , N . If we set cB,kα := max
i=1,...,N

cB,kα,i

we obtain

‖u‖
X

=
(

N∑
i=1
‖ui‖2

H1(Ωi)

)1/2

≤
(

N∑
i=1

c2
B,kα,i

‖pi‖2
H1(Ωi)

)1/2

≤ cB,kα ‖p‖X

and therefore u ∈ X.

Analogously, we conclude from Lemma 4.9 the existence of the continuous and
bounded inverse operators κ−1

i : H1(Ωi)→ H1(Ωi) and there holds

‖p‖
X

=
(

N∑
i=1
‖pi‖2

H1(Ωi)

)1/2

≤
(

N∑
i=1

1
α2 ‖ui‖

2
H1(Ωi)

)1/2

≤ 1
α
‖u‖

X

99



4 Variational Formulation

for u ∈ X defined as above.

As done in the homogeneous case, we want to rewrite the variational problem
(4.4.11) in terms of u ∈ X. For this reason we consider each term separately.

First consider the nonlinear operator M̂ : X → X ′. Using the representation
pi := κ−1

i (ui) within each Ωi, we obtain

〈M̂(p), v〉
X′×X

=
N∑
i=1

∫
Ωi

n

τ
θi(pi) vi dx =

N∑
i=1

∫
Ωi

n

τ
θi
(
κ−1
i (ui)

)
vi dx

=
N∑
i=1

∫
Ωi

n

τ
li(ui) vi =: 〈L(u), v〉

X′×X

with li := θi ◦ κ−1
i for i = 1, . . . , N . Next, consider the operator Ŝ : X → X ′.

We use the representation (4.4.14) for the gradient and obtain

〈Ŝ(p), v〉
X′×X

=
N∑
i=1

∫
Ωi

K

µ
kα,i

(
θi(pi)

)
∇pi · ∇vi dx

=
N∑
i=1

∫
Ωi

K

µ
∇ui · ∇vi dx =: 〈Au, v〉

X′×X

which is now a linear operator A : X → X ′. Unfortunately we have to rewrite the
linear coupling condition 〈Bp, ν〉

Q′×Q
. Since κi : R→ R satisfies the conditions

of Lemma 3.51, we have

〈Bp, ν〉
Q′×Q

= −
N∑
i=1
〈ν, γ0

∂Ωi
pi〉

Q′×Q
= −

N∑
i=1
〈ν, γ0

∂Ωi
κ−1
i (ui)〉

Q′×Q

= −
N∑
i=1
〈ν, κ−1

i (γ0
∂Ωi

ui)〉
Q′×Q

=: 〈C(u), ν〉
Q′×Q

for all ν ∈ Q.

Thus we were able to transform the nonlinear variational problem (4.4.11) into
the variational problem (4.4.15) with a linear principal part, but with nonlinear
coupling conditions.

100



4.4 Kirchhoff Transformation in Heterogeneous Soil

Transformed primal hybrid formulation for heterogeneous soil

Find u ∈ X and λ ∈ Q such that

〈L(u) + Au, v〉
X′×X

+ 〈B′λ, v〉
X′×X

= 〈F, v〉
X′×X

〈C(u), ν〉
Q′×Q

= 〈G, ν〉
Q′×Q

(4.4.15)

for all v ∈ X and ν ∈ Q.

Since the operators induced by the local Kirchhoff transformation are isomor-
phisms, we obtain unique solvability of the variational problem (4.4.15) from
the unique solvability of the variational problem (4.4.11).

Some words to recap the work done so far. In Section 4.1 we applied an implicit–
explicit time discretization scheme and derived the corresponding variational
problem (4.1.3). The next step was to investigate the unique solvability of
the variational problem (4.1.3). The results were presented in Section 4.2 for
general nonlinearities satisfying certain conditions, see Assumption 4.2. Next,
in Section 4.3, we considered the case of a homogeneous soil with nonlinearities
introduced in Section 2.1. We made sure that this special choice of nonlinearities
fulfills the conditions to ensure unique solvability. In addition, we applied the
Kirchhoff transformation and obtained the transformed variational problem
(4.3.7) with a linear principal part. In the last section, Section 4.4, we considered
the case of a heterogeneous soil with nonlinearities discussed in Section 2.2. As
in Section 4.3, we were able to show unique solvability. To apply the Kirchhoff
transformation we had to do some additional work. With the help of the primal
hybrid formulation it was possible to apply local Kirchhoff transformations
and we obtained the transformed variational problem (4.4.15). In the next
chapter we want to discuss discretization and linearization techniques since the
problem is still a nonlinear problem. We will also analyze the discrete linearized
variational problem in view of solvability and uniqueness.
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5 Linearization, Discretization and
Implementation

In this chapter we want to discuss discretiaztion and linearization strategies
for the solution of the variational problem (4.4.15). We restrict ourselves to
the two and three dimensional case, that is Ω ⊂ Rd with d = 2, 3. As already
mentioned in the introduction, see Chapter 1, we want to apply the mortar
finite element method to discretize the variational problem (4.4.15). In contrast
to the derived primal hybrid formulation, for which the Lagrange multiplier is
defined on the entire skeleton S, the discrete Lagrange multiplier of the mortar
finite element method is just defined on the inner skeleton S \∂Ω, see Figure 5.1
for d = 2. To fit the primal hybrid formulation into the context of the mortar

(a) Primal hybrid formulation. (b) Mortar finite element method.

Figure 5.1: Domain of definition of the Lagrange multiplier.

finite element method, we make the following modification. Assume, we have
given discrete trial spaces X̃h and Q̃h which satisfy the inclusion

X̃h ⊂ X ∩
N∏
i=1
C0(Ωi) and Q̃h ⊂ Q ∩ L2(S)
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5 Linearization, Discretization and Implementation

for some discretization parameter h. For elements uh ∈ X̃h we write again
uh,i for uh|Ωi and since uh,i ∈ C0(Ωi) we write γ0

∂Ωi
uh,i as uh,i|∂Ωi

. Due to the
definition of Q, see (4.4.2), we conclude that every νh ∈ Q̃h satisfies νh|ΓN ≡ 0.
Next, suppose there exist elements uD,h ∈ X̃h, such that

(κ−1
i (uD,h,i|ΓD,i ), νh|ΓD,i )

L2(ΓD,i)
= (γ0

ΓD,i
(EΩ gD)|Ωi , νh|ΓD,i )

L2(ΓD,i)
(5.0.1)

for all νh ∈ Q̃h and for all Dirichlet boundary parts ΓD,i := ΓD ∩ ∂Ωi with
ΓD,i 6= ∅. Since the discrete trial and test space for the Lagrange multiplier is
assumed to be a subspace of L2(S), we can rewrite the linear coupling condition
in the variational problem (4.4.15) as

〈B′νh, vh〉
X′×X

= −
N∑
i=1

(νh, vh,i|∂Ωi
)
L2(∂Ωi)

=

= −
∑

Γij 6=∅
i<j

(νh, vh,i|Γij − vh,j |Γij )
L2(Γij)

−
∑

ΓD,i 6=∅
(νh, vh,i|ΓD,i )

L2(ΓD,i)

for vh ∈ X̃h and νh ∈ Q̃h. Here, according to Definition 4.12, the interfaces
Γij = ∂Ωi ∩ ∂Ωj are defined for 1 ≤ i, j ≤ N , i 6= j. In the above splitting
we neglect the L2(ΓN,i)–inner product on the Neumann boundary parts since
νh ∈ Q̃h is assumed to vanish on ΓN . It is of course possible to sum over all
interfaces Γij with i > j, but since Γij = Γji we just have to ensure that each
interface is counted once.

We can further rewrite the linear coupling condition in terms of jumps across
the interfaces Γij as

〈B′νh, vh〉
X′×X

= −
∑

Γij 6=∅
i<j

(νh, JvhKΓij)
L2(Γij)

−
∑

ΓD,i 6=∅
(νh, vh,i|ΓD,i )

L2(ΓD,i)

with the jump
JvhKΓij := vh,i|Γij − vh,j |Γij

for all vh ∈ X̃h and νh ∈ Q̃h. In the same manner we can rewrite the nonlinear
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coupling term as

〈C(vh), νh〉
Q′×Q

= −
N∑
i=1

(νh, κ−1
i (vh,i|∂Ωi

))
L2(∂Ωi)

=

= −
∑

Γij 6=∅
i<j

(νh, Jκ−1(vh)KΓij)
L2(Γij)

−
∑

ΓD,i 6=∅
(νh, κ−1

i (vh,i|ΓD,i ))
L2(ΓD,i)

for all vh ∈ X̃h and νh ∈ Q̃h. The nonlinear jump across the interfaces Γij is
defined by

Jκ−1(vh)KΓij := κ−1
i (vh,i|Γij )− κ

−1
j (vh,j |Γij )

for all vh ∈ X̃h.

Next, we introduce the subspace Xh ⊂ X̃h as the space of all vh ∈ X̃h satisfying
homogeneous Dirichlet boundary conditions, that is

Xh :=
{
uh ∈ X̃h | uh|ΓD = 0

}
.

Using the spaceXh, we can consider elements ũh ∈ X̃h defined by ũh := uh+uD,h
with uh ∈ Xh. Thus, we obtain

〈C(uh + uD,h), νh〉
Q′×Q

= −
∑

Γij 6=∅
i<j

(νh, Jκ−1(uh + uD,h)KΓij)
L2(Γij)

−
∑

ΓD,i 6=∅
(νh, κ−1

i (uh|ΓD,i + uD,h|ΓD,i ))
L2(ΓD,i)

and since uh ∈ Xh vanishes on ΓD, we have

〈C(uh + uD,h), νh〉
Q′×Q

= −
∑

Γij 6=∅
i<j

(νh, Jκ−1(uh + uD,h)KΓij)
L2(Γij)

−
∑

ΓD,i 6=∅
(νh, κ−1

i (uD,h|ΓD,i ))
L2(ΓD,i)

for all νh ∈ Q̃h. Since the function uD,h ∈ X̃h satisfies (5.0.1), we can rewrite
the second sum in the right hand side as∑

ΓD,i 6=∅
(νh, κ−1

i (uD,h,i|ΓD,i ))
L2(ΓD,i)

=
∑

ΓD,i 6=∅
(νh, γ0

ΓD,i
(EΩ gD)|Ωi )

L2(ΓD,i)
=

= (νh, γ0
ΓD

(EΩ gD))
L2(ΓD)

= (νh, γ0
∂Ω

(EΩ gD))
L2(∂Ω)

= 〈G, νh〉
Q′×Q
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5 Linearization, Discretization and Implementation

for all νh ∈ Q̃h and G ∈ Q′ defined by (4.4.10). We see that uh + uD,h with
uh ∈ Xh satisfies the inhomogeneous Dirichlet boundary conditions, we just
have to ensure that uh + uD,h satisfies the nonlinear jump across the interface,
that is

−
∑

Γij 6=∅
i<j

(νh, Jκ−1(uh + uD,h)KΓij)
L2(Γij)

= 0

for all νh ∈ Q̃h. From the continuous variational problem we know, that testing
with functions v ∈ V which vanish on ΓD is sufficient to ensure that the partial
differential equation is satisfied in the domain. For this reason, we just test
with functions vh ∈ Xh in the discrete variational problem. Thus, the values of
λh on ΓD are negligible.

If we restrict ourselves to the spaces Xh and Qh, which is defined by

Qh :=
{
vh|S\∂Ω | vh ∈ Q̃h

}
,

we obtain the following modified variational problem.

Modified discrete variational problem

Find uh ∈ Xh and λh ∈ Qh such that

m(uh + uD,h, vh) + a(uh, vh) + b(vh, λh) = f(vh)− a(uD,h, vh)
c(uh + uD,h, νh) = 0

(5.0.2)

for each vh ∈ Xh and νh ∈ Qh.

The coupling forms in the above variational problem are given by

b(vh, λh) := −
∑

Γij 6=∅
i<j

∫
Γij

JvhKΓijλh dsx,

c(uh + uD,h, νh) := −
∑

Γij 6=∅
i<j

∫
Γij

Jκ−1(uh + uD,h)KΓijνh dsx
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5.1 Linearization

and for the linear and bilinear forms we have

m(uh + uD,h, vh) :=
N∑
i=1

∫
Ωi

li(uh,i + uD,h,i) vh,i dx,

a(uh, vh) :=
N∑
i=1

∫
Ωi

∇uh,i · ∇vh,i dx,

f(vh) :=
N∑
i=1

∫
Ωi

((
f + n

τ
θ(q)

)
vh,i + K

µ
kα
(
θ(q)

)
∇d · ∇vh,i

)
dx

+
N∑
i=1

∫
ΓN,i

gN γ
0
ΓN,i

vh,i dsx

for all uh, vh ∈ Xh and λh, νh ∈ Qh.

In the following sections, we discuss linearization and discretization techniques
and we briefly describe some implementation details. We start with the Newton’s
method to obtain a linear variational problem in Section 5.1. In Section 5.2 we
introduce suitable trial spaces known from the mortar finite element method.
Next, in Section 5.3 we discuss unique solvability of the discrete problem.
Finally, in Section 5.4, we take a closer look at the implementation.

5.1 Linearization

The modified variational problem (5.0.2) is still a nonlinear problem which
we have to solve. We want to apply the Newton method to obtain a linear
variational problem, see [25] for further information. In the next section we
recall some of the basics concerning Newtons’s method.

5.1.1 The Newton Method

Let V,W be two real Banach spaces and let A : V → W be a nonlinear operator.
Consider the nonlinear equation to find u ∈ V , such that

A(u) = 0 (5.1.1)
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5 Linearization, Discretization and Implementation

inW . We want to solve equation (5.1.1) by applying Newton’s method. Formally,
we can write the method in the following way.

Choose an initial guess u0 ∈ V . For k ∈ N compute uk ∈ V as

uk = uk−1 + δu

with the update δu ∈ V which is a solution to

DA(uk−1) δu = −A(uk−1) (5.1.2)

in W .

To state the above linear problem (5.1.2) in a proper way, we have to define
the derivative of an operator in Banach spaces. For further information see [9,
Section 2.1C] or [73, Section 4.2].

Definition 5.1 (Gâteaux derivative). Let V,W be two real Banach spaces and
let A : V → W be a nonlinear operator. A is said to be Gâteaux differentiable
in v ∈ V , iff

lim
t→0

A(v + t h)− A(v)
t

= DA(v)h, ∀h ∈ V

exists in W with DA(v) ∈ L(V,W ). In this case, DA(v) is called Gâteaux
derivative of A in v and we have

d
dtA(v + t h)|t=0 = DA(v).

The operator A is said to be Gâteaux differentiable on U ⊂ V if A is Gâteaux
differentiable for all v ∈ U .

An extension of the Gâteaux derivative is the Fréchet derivative which is defined
as follows.

Definition 5.2 (Fréchet derivative). Let V,W be two real Banach spaces and let
A : V → W be a nonlinear operator. Then, A is said to be Fréchet differentiable
in v ∈ V , iff there exists a linear operator DA(v) ∈ L(V,W ), such that

lim
h∈V
‖h‖

V
→0

‖A(v + h)− A(v)−DA(v)h‖
W

‖h‖
V

= 0
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5.1 Linearization

holds. In this case DA(v) is called Fréchet derivative of A in v. The operator A
is said to be Fréchet differentiable on U ⊂ V if A is Fréchet differentiable for
all v ∈ U . If DA : V → L(V,W ) is continuous, then A is called continuously
Fréchet differentiable.

It is easy to see, that Fréchet differentiability in v ∈ V implies Gâteaux
differentiability in v ∈ V . This follows immediately from the definition. The
reverse implication holds, if the Gâteaux derivative is continuous in v ∈ V ,
see [9, Theorem 2.1.13]. The following ensures the convergence of the Newton
method to solve a nonlinear problem of the form (5.1.1).

Theorem 5.3 (Kantorovich Theorem). Let V,W be two real Banach spaces
and let U ⊂ V be an open and convex subset. Furthermore let A : V → W
be continuously Fréchet differentiable on U . For an initial guess u0 ∈ U let
DA(u0) ∈ L(V,W ) be invertible and assume, that∥∥∥DA(u0)−1A(u0)

∥∥∥
V

≤ α,∥∥∥DA(u0)−1
(
DA(v)−DA(w)

)∥∥∥
V→V
≤ γ‖v − w‖

V

for all u, v ∈ U . If h0 := α γ ≤ 1/2 holds, then the sequence {uk} obtained by the
Newton iteration is well defined and converges to u with A(u) = 0. If h0 < 1/2,
the convergence is of second order.

Proof. For a proof see [25, Theorem 2.1]. �

In Theorem 5.3 Fréchet differetiability is required to show solvability of the
nonlinear equation (5.1.1). It is also possible to prove convergence results of
Newton like methods for operators which are just Gâteaux differentiable, see for
example [54, 66]. But then additional assumptions are made on the nonlinear
operator.

In the next subsection we want to apply the Newton method to the modified
variational problem (5.0.2). Due to the representation theorem of Riesz, the
considerations made in this subsection are also applicable to forms a(·, ·) which
are nonlinear in the first argument.
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5 Linearization, Discretization and Implementation

5.1.2 Newton Linearization

To apply the Newton method to the modified variational problem (5.0.2), we
have to compute the Fréchet derivative of the nonlinear forms m(·, ·) and c(·, ·)
of the modified variational problem (5.0.2). As already mentioned, the Fréchet
derivative and the Gâteaux derivative of an operator A : V → W coincide if
DA : V → L(V,W ) is continuous. For this reason we use the representation

DA(v) = d
dtA(v + t h)|t=0

to determine the Fréchet derivative, see Definition 5.1.

For the nonlinear form m(·, ·) we obtain

d
dtm(wh + t uh + uD,h, vh)|t=0 =

N∑
i=1

∫
Ωi

li
′(wh,i + uD,h,i)uh,i vh,i dx

=: m′(wh + uD,h, uh, vh)
(5.1.3)

for wh, uh, vh ∈ Xh. The derivative of the nonlinear form m(·, ·) in wh + uD,h is
given by the bilinear form m′(wh + uD,h, ·, ·). We answer the question whether
the operator is well defined or not in Section 5.2 where we introduce a concrete
discrete trial space Xh and a suitable norm. For the nonlinear form c(·, ·) we
have

d
dtc(wh + t uh + uD,h, νh)|t=0 = −

∑
Γij 6=∅
i<j

∫
Γij

Jκ−1′(wh + uD,h)uhKΓijνh dsx

=: c′(wh + uD,h, uh, νh)

(5.1.4)

for wh, uh ∈ Xh and νh ∈ Qh. The derivative in wh + uD,h is given by the
bilinear form c′(wh + uD,h, uh, νh) which will be discussed in more detail in
Section 5.2. The Newton iteration for the modified variational problem (5.0.2)
reads as follows.

Choose an initial guess u0
h ∈ Xh and λ0

h ∈ Qh. Compute ukh ∈ Xh and λkh ∈ Qh

as
ukh := uk−1

h + δuh and λkh := λk−1
h + δλh (5.1.5)
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5.1 Linearization

with the updates δuh ∈ Xh and δλh ∈ Qh which are solutions to

m′(uk−1
h + uh,D, δuh, vh) + a(δuh, vh) + b(vh, δλh) = f̃(vh)

c′(uk−1
h + uh,D, δuh, νh) = g̃(νh)

for all vh ∈ Xh and νh ∈ Qh. The right hand sides are

f̃(vh) := f(vh)− a(uk−1
h + uD,h, vh)− b(vh, λk−1

h )−m(uk−1
h + uD,h, vh)

for all vh ∈ Xh and
g̃(vh) := −c(uk−1

h + uh,D, νh)
for all νh ∈ Qh.

If we plug in the representation (5.1.5) for δuh and δλh, we can compute
ukh ∈ Xh and λkh ∈ Qh directly as solution to the following variational prob-
lem.

Newton iteration for the modified discrete variational problem

For wh ∈ Xh find uh ∈ Xh and λh ∈ Qh such that

m′(wh + uh,D, uh, vh) + a(uh, vh) + b(vh, λh) = f(wh, vh)
c′(wh + uh,D, uh, νh) = g(wh, νh)

(5.1.6)

for all vh ∈ Xh and νh ∈ Qh.

In the variational problem (5.1.6) the given wh ∈ Xh corresponds to the previous
Newton iteration and the right hand sides are

f(wh, vh) := f(vh)− a(uD,h, vh) +m′(wh + uD,h, wh, vh)−m(wh + uD,h, vh)

for all vh ∈ Xh and

g(wh, νh) := c′(wh + uD,h, wh, νh)− c(wh + uD,h, vh)

for all νh ∈ Qh.

We applied the Newton method to the modified nonlinear variational problem
(5.0.2) and obtained the linear variational problem (5.1.6). All the considerations
are done with respect to general discrete trial spaces Xh and Qh. The next step
is to define concrete realizations of the trial spaces, which is done in Section 5.2
and verify the existence of the derivatives defined by (5.1.3) and (5.1.4).
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5 Linearization, Discretization and Implementation

5.2 Space Discretization

In this section we discuss the discretization of trial and test spaces fitting to
the variational problem (5.1.6), see for example [8, 11, 70, 71]. We want to
start with the trial space Xh. To define appropriate spaces, we assume that
Ω ⊂ R2 is a bounded polygonal domain or Ω ⊂ R3 is a bounded polyhedral
domain. We suppose that the subdomains of the decomposition DNΩ are again
polygonal and polyhedral domains, respectively. Furthermore, we expect that
the decomposition is a geometrical conforming and admissible decomposition
where the intersection of the boundaries ∂Ωi ∩ ∂Ωj is either empty, a vertex, a
common edge or in the three dimensional case a common face, see Figure 5.2.
Due to the primal hybrid formulation, the trial and test functions just act

Ω1

Ω2Ω3

Ω1

Ω2Ω3

Ω1

Ω2Ω3

Figure 5.2: Geometrical non–conforming (left) and conforming (right) situation.

locally in each Ωi ∈ DNΩ and are coupled via suitable conditions. This allows
the independent definition of discrete trial spaces in each subdomain. In this
thesis we restrict ourselves to piecewise linear trial functions. Nevertheless, it
is also possible to define trial spaces of higher order, see [45]. But before we
introduce the trial spaces, we have to discretize the underlying computational
domain in a proper way.

112



5.2 Space Discretization

Definition 5.4 (Domain discretization). Let h ∈ R, h > 0, and let Ω ⊂ Rd,
d = 2, 3, be a polygonal and polyhedral domain, respectively. Furthermore, let
DNΩ be an admissible decomposition of Ω. By Th,i := {Tk}

NT,i
k=1 we denote the

discretization of the subdomain Ωi ∈ DNΩ , that is

Ωi =
NT,i⋃
i=1

T i

with nonoverlapping triangles Tk for d = 2 or tetrahedra Tk for d = 3.

For each finite element T ∈ Th,i we define its volume |T | :=
∫
T

dx, its local mesh

size hT := |T |1/d and its diameter dT := sup
x,y∈T

|x− y|. For each Th,i we define

the global mesh size hi by

hi = hmax,i := max
T∈Th,i

hT

and the minimal local mesh size is given by

hmin,i := min
T∈Th,i

hT .

We assume, that each discretization Th,i is globally quasi–uniform, that is

hmax,i
hmin,i

≤ cG,i ≤ cG

with cG,i, cG ∈ R+.

The global domain discretization will be denoted by Th and is defined by

Th :=
N∏
i=1
Th,i,

see for example Figure 5.3 for Ω ⊂ R2.

We have clarified the question concerning the domain discretization, now we
can use the triangulation Th to introduce an appropriate trial space Xh.
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Figure 5.3: Discretization of the subdomains with different mesh sizes.

Definition 5.5 (Discrete trial space Xh). Let Th be an admissible triangulation
of the domain Ω with respect to the decomposition DNΩ . For each Th,i consider

S1(Th,i) :=
{
v ∈ C(Ωi) | v|T ∈ P 1(T ) ∀T ∈ Th,i

}
the space of continuous and piecewise linear functions defined on Ωi. Next,
define

Xh,i :=

S
1(Th,i) ∩H1

0,ΓD,i(Ωi) if ΓD,i 6= ∅,
S1(Th,i) if ΓD,i = ∅

which can be written as the span of a family of linear basis functions, that is
Xh,i = span{ϕk,i}

N̊V,i
k=1 . The global trial space is the product of the local spaces,

that is
Xh :=

N∏
i=1

Xh,i =
N∏
i=1

span{ϕk,i}
N̊V,i
k=1 .

By N̊V,i we denote the number of vertices which are not on the Dirichlet boundary
ΓD,i.

The next step is to define a suitable discrete trial space for the Lagrange
multiplier. Due to the fact, that the Lagrange multiplier act on the skeleton
S \ ∂Ω, we have to find a suitable discretization of the interfaces Γij first.

Definition 5.6 (Interface discretization). Let Th be an admissible triangulation
of the domain Ω with respect to the decomposition DNΩ . For each non–empty
interface Γij = ∂Ωi ∩ ∂Ωj, i 6= j, we define the interface discretization by

Ih,ij :=
{
E ⊂ Rd−1 | ∃T ∈ Th,i : E = T ∩ Γij and |E|

d−1
> 0

}
.
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5.2 Space Discretization

By NE,ij we denote the number of elements, that is NE,ij := |Ih,ij|. For d = 2
the elements are edges of triangles and for d = 3 the elements are faces of
tetrahedra. In general Ih,ij 6= Ih,ji, see Figure 5.4. Since Th,i is assumed to
be globally quasi–uniform, each interface discretization Ih,ij is globally quasi–
uniform as well.

Analogously to the domain discretization, we define for each interface element
E ∈ Ih,ij its volume |E| :=

∫
E

dsx, its local mesh size hE := |E|1/(d−1) and its

diameter dE := sup
x,y∈E

|x− y|.

Th,m′ , Xh,m′ Th,m, Xh,m

Ω2Ω3

Ω2Ω3

Γ2 3

Γ2 3 Γ2 3
Ih,3 2 Ih,2 3

Ih,m′ Ih,m

Figure 5.4: Different discretizations of the interface Γij.

Since every interface Γij can be discretized in two different ways, we have to
fix a unique discretization for each interface to define the discrete Lagrange
multiplier in a proper way. In view of a better approximation property, we want
to choose the finer discretization. The precise definition reads as follows.
Definition 5.7 (Mortar and non–mortar side). Let Th be an admissible tri-
angulation of the domain Ω with respect to the decomposition DNΩ . For each
non–empty interface Γij fix the ordered pair m in the following way

m :=

(i, j) if (NE,ij > NE,ji) or (NE,ij = NE,ji and i < j) ,
(j, i) if (NE,ji > NE,ij) or (NE,ji = NE,ij and j < i) .
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For each non–empty interface, we denote the non–mortar side by Ih,m := Ih,kl
as well as the corresponding domain discretization Th,m := Th,k. The mortar
side is then given by Ih,m′ := Ih,lk and the corresponding domain discretization
is Th,m′ := Th,l, see Figure 5.4. Analogously we define Xh,m := Xh,k and
Xh,m′ := Xh,l.

We use the above definition to ensure that each interface is only counted once
in the coupling terms, see the introduction of Chapter 5.

Of course, the choice of the interface discretization is arbitrary but has to be
fixed. It is even possible to choose an interface discretization Ih,m which is
inherited neither from Th,m nor from Th,m′ . Then, suitable conditions has to be
imposed on the mesh or on the trial space to ensure stability of the coupling
condition, see for example [20].

Next, we want to construct the trial space for the Lagrange multiplier which is
defined in the interface. There are several possibilities to choose this space, see
[71, Section 1.2.4] for d = 2 or [41] for d = 3. In this thesis we want to consider
piecewise constant functions defined on a modified dual interface discretization,
whose construction is discussed in the following.

To define the modified dual interface mesh, we have to introduce ΓC , which
is the set of all cross elements. For d = 2 these elements are points on the
boundary of interfaces and for d = 3 these elements are edges on the boundary
of interfaces. A cross element is an element, which belongs to the boundaries of
more than two subdomains, see Figure 5.5.

For a fixed interface Γm, we denote the number of vertices on Γm by NV,m and
N̊V,m denotes the number of vertices on Γm which are neither on ΓD nor on
ΓC . We distinguish between the two and three dimensional case to construct
the modified dual mesh of the interface discretization Ih,m. Consider the case
d = 2 first.

Let Γm be an arbitrary interface and consider its discretization Ih,m. By Vm we
denote the set of all vertices belonging to Γm. First, we split each edge element
E ∈ Ih,m into two sub elements of equal area by connecting the end points
with the midpoint. Next, for each vertex xk,m ∈ Vm we unite all sub elements
having xk,m as a vertex. We denote this new partition by Ih,m′ and there holds
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Ω1

Ω2Ω3

ΓD

ΓN

(a) Cross points for d = 2.

. . .ΓD

. . .ΓN

y

x

z

(b) Cross edges for d = 3.

Figure 5.5: Cross points and cross edges.

|Ih,m′| = NV,m by construction. We now modify the dual interface mesh by the
following instruction.

(1) If the edge element E ∈ Ih,m has one vertex on ΓC ∪ΓD, we unite it with
the finite element E ′ ∈ Ih,m′ which corresponds to the second vertex.

In Figure 5.6 the construction of a modified dual mesh is depicted for the two
dimensional case. Due to the construction, the number of finite volumes in the

ΓC ΓN

ΓC ΓN

ΓC ΓN

Ih,m

Ih,m
′

dual

modify

Figure 5.6: Construction of the modified dual interface mesh.

modified dual interface mesh is N̊V,m.

Next, we want to discuss the three dimensional case. Let Γm be an arbitrary
interface with discretization Ih,m. We again denote by Vm the set of all vertices
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on Γm. Analogously to the two dimensional case, we split each face element
E ∈ Ih,m into three sub elements of equal size by connecting its midcenter with
the midpoints of each edge. Next, for each vertex xk,m ∈ Vm we unite all sub
elements having xk,m as a vertex. This partition is denoted by Ih,m′ and there
holds |Ih,m′| = NV,m by construction, see Figure 5.7a. In the same manner

ΓC

ΓD

ΓN

(a) Construction of the dual interface mesh.

ΓC

ΓD

ΓN

(b) Construction of the modified dual interface mesh.

as in the two dimensional case, we want to modify the dual mesh to reduce
its number of finite elements to N̊V,m. This can be achieved by the following
instructions.

(1) If the face element E ∈ Ih,m has all of its three vertices on ΓC ∪ ΓD, we
attach this triangle to a adjacent one sharing one common internal edge.

(2) If the face element E ∈ Ih,m has two vertices on ΓC ∪ ΓD, we unite E
and all attached triangles with the element E ′ ∈ Ih,m′ which corresponds
to the inner vertex.
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5.2 Space Discretization

(3) If the face element E ∈ Ih,m has one vertex on ΓC ∪ ΓD, then we split
the triangle by connecting this vertex with the midpoint of the opposite
edge. The new triangles are united with the finite elements in Ih,m′ which
corresponds to the two inner vertices.

Due to the construction, the number of the finite elements in the modified dual
interface mesh is N̊V,m, see for example Figure 5.7b.

In a next step we use the constructed modified dual interface discretization to
define the basis functions for the discrete Lagrange multiplier trial space. So
for each element Ek in the modified dual interface discretization we define the

Ω1

Ω2

ΓN

Γm

m = (2, 1)

ΓC ΓN

ϕ1,mϕ2,mϕ3,mϕ4,mϕ5,mϕ6,m

x1,mx2,mx3,mx4,mx5,mx6,m

ψ1,mψ2,mψ3,mψ4,mψ5,m

Figure 5.8: Construction of the basis functions for the discrete Lagrange multi-
plier for d = 2.

corresponding basis function ψk,m to be one on Ek and zero else, see Figure 5.8
for d = 2. We denote the trial space on the interface Γm as

Qh,m := span{ψk,m}
N̊V,m
k=1 (5.2.1)

and there holds dimQh,m = N̊V,m by construction.

Definition 5.8 (Discrete trial space Qh). Let Th be an admissible triangulation
of the domain Ω with respect to the decomposition DNΩ . For each interface Γij
we fix the mortar side and the non–mortar side according Definition 5.7 and
construct the piecewise constant trial space Qh,m as described for (5.2.1). The
global trial space is defined as the product space, that is

Qh :=
∏
Γm
Qh,m =

∏
Γm

span{ψk,m}
N̊V,m
k=1 .
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Since the coupling conditions are defined on the interface, we introduce for
completeness the trace space on the interfaces Γm. For each m = (k, l), the
trace space Wh,m is given by

Wh,m :=
{
th ∈ L2(Γkl) | th = γ0

Γkl
uh : uh ∈ Xh,m

}
(5.2.2)

and the modified trace space

W̊h,m :=
{
th ∈ Wh,m | th|ΓC∪ΓD

= 0
}

(5.2.3)

which satisfies homogeneous Dirichlet conditions on cross points in R2 and on
cross edges in R3 respectively as well as on the Dirichlet boundary ΓD. The
trace spaces Wh,m and W̊h,m are spanned by the traces of the basis functions of
Xh,m which does not vanish on Γm. Thus, we can write

Wh,m := span{ϕk,m}
NV,m
k=1 and W̊h,m := span{ϕk,m}

N̊V,m
k=1

with N̊V,m ≤ NV,m.

We have discussed how to construct proper trial spaces for the two and three
dimensional case respectively. In the next section we want to answer whether
the discrete problem is solvable or not. To answer this question we first have to
introduce the right norms for the discrete trial spaces.

5.3 Solvability and Uniqueness

We have constructed basis functions for the discrete trial spaces but to state
solvability results, we have to equip the spaces with the right norm. As already
mentioned we want to use the tools and results achieved in the mortar finite
element framework. For the trial space Xh we choose ‖·‖

X
as defined in Defini-

tion 4.13, that is we consider (Xh, ‖·‖
X

). The question about the right norm
for the space Qh is much harder to answer, see [16]. The most natural choice
would be the dual H1/2–norm, but since we are dealing with a saddle point
problem we have to ensure the inf–sup–stability of the side condition, see [18].
Unfortunately no stability estimates for this norm has been established so far.
However, there are estimates for the dual H1/2

00 –norm, see [8], but the estimates
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only hold for domains with no cross elements. One further common approach
is to consider the space Qh,m as a subspace of Q2,m ⊂ L2(Γm) defined by

Q2,m :=
{
ν ∈ L2(Γm) | ‖ν‖

Q2,m
<∞

}
(5.3.1)

equipped with the h–weighted L2–norm

‖ν‖2
Q2,m

:=
∑

E∈Ih,m
hE ‖ν‖2

L2(E)
.

The dual space is therefore given as

Q2,m
′ :=

{
u ∈ L2(Γm) | ‖u‖

Q2,m′
<∞

}
equipped with

‖u‖2
Q2,m′

:=
∑

E∈Ih,m

1
hE
‖u‖2

L2(E)
.

The global spaces are then defined by

Q2 :=
∏
Γm
Q2,m with ‖u‖2

Q2
:=
∑
Γm
‖u‖2

Q2,m

and Q2
′ analogously. For our considerations we choose for the discrete Lagrange

multiplier the h–weighted L2–norm, that is we consider (Qh,m, ‖·‖
Q2,m

) as well
as (Wh,m, ‖·‖

Q2,m′
) for each interface Γm.

Furthermore, we have to assume that for each element in the non–mortar
discretization E ∈ Ih,m the corresponding domain element T ∈ Xh,m has at
least one vertex not on Γm. Under this assumption, the discrete extension with
zero E

h,Ωm
: Wh,m → Xh,m is bounded, that is∥∥∥E

h,Ωm
wh
∥∥∥
H1(Ωi)

≤ cE,h ‖wh‖
Q2,m′

(5.3.2)

for some positive constant cE,h > 0 independent of the mesh size h.

In Section 5.1 we briefly discussed the Newton method and we have seen, that
Fréchet differentiability is essential for the convergence of the Newton iteration.
The following two lemmata show under which conditions the forms m(·, ·) and
c(·, ·) in the variational problem (5.0.2) are Fréchet differentiable.
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Lemma 5.9. Suppose the nonlinear function li := θi ◦ κ−1
i : R → R is a

function in C1(R) and has in addition a Lipschitz continuous and bounded
derivative l′i : R → R with Lipschitz constant cL,l′i > 0 and upper bound
cB,l′i := ‖l′i‖L∞(R)

<∞. Then the nonlinear form m(·, ·) is Fréchet differentiable.

Proof. To show Fréchet differentiability we have to estimate the expression

sup
06=w∈X

m(v + h,w)−m(v, w)−m′(v, h, w)
‖v‖

X

=

= sup
06=w∈X

 1
‖v‖

X

N∑
i=1

∫
Ωi

(
li(vi + hi)− li(vi)− l′i(vi)hi

)
wi dx


which is bounded by the L2(Ω)–norm

‖l(v + h)− l(v)− l′(v)h‖
L2(Ω)

(5.3.3)

with v, h ∈ X. The functions l(v) are due to previous considerations elements in
L2(Ω). The boundedness of l′ : R→ R ensures that the expression l′(v + uD)h
is an element in L2(Ω) and thus the norm in (5.3.3) is well defined. Next, we
want to estimate the expression (5.3.3). Since li : R → R is assumed to be
differentiable, there holds

li(r + s)− li(r) =
s∫

0

l′i(r + t) dt

and the Lipschitz continuity of the derivative implies

|li(r + s)− li(r)− l′i(r) s| =

∣∣∣∣∣∣
s∫

0

[
l′i(r + t)− l′i(r)

]
dt

∣∣∣∣∣∣ ≤ cL,l′i
2 |s|2

for all r, s ∈ R. Thus, for each Ωi ∈ DNΩ and v, h ∈ X we have

‖li(v + h)− li(v)− l′i(v)h‖2
L2(Ωi)

≤
(cL,l′i

2

)2 ∫
Ωi

|v|4 dx =
(cL,l′i

2

)2
‖h‖4

L4(Ωi)

and the Imbedding Theorem 3.38 implies

‖li(v + h)− li(v)− l′i(v)h‖
L2(Ωi)

≤ cI
cL,l′i

2 ‖h‖2
H1(Ωi)

122



5.3 Solvability and Uniqueness

for each subdomain and with a positive constant cI . Summing over all subdo-
mains, we get

‖l(v + h)− l(v)− l′(v)h‖
L2(Ω)

≤ cI
cL,l′

2 ‖h‖
2
X

for v, h ∈ X and cL,l′ := max
i=1,...,NL

cL,l′i . If we combine all these observations, we
obtain

lim
‖h‖

X
→0

1
‖h‖

X

sup
06=w∈X

m(v + h,w)−m(v, w)−m′(v, h, w)
‖v‖

X

≤

≤ lim
‖h‖

X
→0

‖l(v + h)− l(v)− l′(v)h‖
L2(Ω)

‖h‖
X

≤ cI
cL,l′

2 lim
‖h‖

X
→0

‖h‖2
X

‖h‖
X

= 0

which proves the Fréchet differentiability. �

The next step is to prove the Fréchet differentiability of the nonlinear form
c(·, ·) in the variational problem (5.0.2). Since we consider the discrete trial
space Qh as a subspace of the space Q2, we consider c : X ×Q2 → R.

Lemma 5.10. The nonlinear form c : X ×Q2 → R is Fréchet differentiable.

Proof. The form c(·, ·) as defined in the variational problem (5.0.2) is given by
the sum of the nonlinear jumps, that is

c(v, ν) = −
∑
Γm

∫
Γm

(
κ−1
k (γ0

Γm
vk)− κ−1

l (γ0
Γm
vl)
)
ν dsx

=
∑
Γm

∫
Γm

κ−1
l (γ0

Γm
vl) ν dsx −

∫
Γm

κ−1
k (γ0

Γm
vk) ν dsx


for v ∈ X and ν ∈ Q2. For the following we define s := γ0

Γm
vk and t := γ0

Γm
hk

with s, t ∈ H1/2(Γm) For an arbitrary element E ∈ Ih,m we have∫
E

(
κ−1
i (s+ t)− κ−1

i (s)− κ−1
i
′(s) t

)
ν dsx ≤

≤
∫
E

∣∣∣κ−1
i (s+ t)− κ−1

i (s)− κ−1
i
′(s) t

∣∣∣ |ν| dsx
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and since each κ−1
i : R→ R is Lipschitz continuous, see Lemma 4.8, we obtain∫

E

(
κ−1
i (s+ t)− κ−1

i (s)− κ−1
i
′(s) t

)
ν dsx ≤

1
α

∫
E

|t|2 |ν| dsx

≤ 1
α

(
1
h

1/2
E

‖t‖2
L4(E)

h
1/2
E ‖ν‖L2(E)

)

with α > 0. Summing over all elements E ∈ Ih,m yields∫
Γm

(
κ−1
i (s+ t)− κ−1

i (s)− κ−1
i
′(s) t

)
ν dsx ≤

≤
∑

E∈Ih,m

1
α

(
1
h

1/2
E

‖t‖2
L4(E)

h
1/2
E ‖ν‖L2(E)

)

and by applying the Cauchy–Schwarz–inequality we get∫
Γm

(
κ−1
i (s+ t)− κ−1

i (s)− κ−1
i
′(s) t

)
ν dsx ≤

1
αh

1/2
min

‖t‖2
L4(Γm)

‖ν‖
Q2,m

for all s, t ∈ H1/2(Γm) and ν ∈ Q2,m. If we set s := γ0
Γm
vl and t := γ0

Γm
hl, we

obtain exactly the same estimate. Thus, for c : X ×Q2 → R we obtain

c(v + h, ν)− c(v, ν)− c′(v, h, ν) ≤

≤ 1
αh

1/2
min

∑
Γm

(∥∥∥γ0
Γm
hl
∥∥∥2

L4(Γm)
+
∥∥∥γ0

Γm
hk
∥∥∥2

L4(Γm)

)
‖ν‖

Q2,m


which leads to the estimate

c(v + h, ν)− c(v, ν)− c′(v, h, ν) ≤

≤ 21/2

αh
1/2
min

∑
Γm

(∥∥∥γ0
Γm
hl
∥∥∥4

L4(Γm)
+
∥∥∥γ0

Γm
hk
∥∥∥4

L4(Γm)

)1/2

‖ν‖
Q2
.

The sum of the right hand sides, can be rewritten as the sum over all boundaries
∂Ωi \ ∂Ω and thus there holds

∑
Γm

(∥∥∥γ0
Γm
hl
∥∥∥4

L4(Γm)
+
∥∥∥γ0

Γm
hk
∥∥∥4

L4(Γm)

)
≤
(∑

i

∥∥∥γ0
∂Ωi

hi
∥∥∥4

L4(∂Ωi)

)1/2

≤
∑
i

∥∥∥γ0
∂Ωi

hi
∥∥∥2

L4(∂Ωi)
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for all h ∈ X. Due to the Imbedding Theorem 3.38 and the Trace Theorem 3.35
we have∑

i

∥∥∥γ0
∂Ωi

hi
∥∥∥2

L4(∂Ωi)
≤ cI

∑
i

∥∥∥γ0
∂Ωi

hi
∥∥∥2

H
1/2(∂Ωi)

≤ cI cT,S
∑
i

‖hi‖2
H1(Ωi)

for all h ∈ X. If we combine all these estimates we obtain

c(v + h, ν)− c(v, ν)− c′(v, h, ν) ≤ cI cT,S
81/2

αh
1/2
min

‖h‖2
X
‖ν‖

Q2

and in the same manner as in the proof of Lemma 5.9 we can conclude the
Fréchet differentiability. �

In order to apply the Kantorovich Theorem 5.3 we have to ensure that the
linearized operator is invertible. Thus, we have to verify, that for each right
hand side there exists a unique solution to the linearized variational problem
(5.1.6). In contrast to saddle point problems which arise for example from
the Stokes equation, see [36, 63], the saddle point problem (5.1.6) is neither
symmetric nor skew symmetric. For this reason, the standard theory of mixed
formulations discussed in [13, 19] is not applicable. In order to show solvability
of such generalized saddle point problems, we refer to [10, 23] or [50] where the
following theorem is proven.

Theorem 5.11. Let V,W be two Hilbert spaces and let A : V → V ′, B : V →
W ′ and C : V → W ′ be linear and bounded operators. Furthermore, assume
that

sup
06=v∈KerB

〈Au, v〉
V ′×V

‖v‖
V

≥ αA ‖u‖
V

∀u ∈ KerC, (5.3.4a)

sup
06=u∈KerC

〈Au, v〉
V ′×V

> 0 ∀ v ∈ KerB, v 6≡ 0, (5.3.4b)

sup
06=v∈V

〈Bv, q〉
W ′×W

‖v‖
V

≥ αB ‖q‖
W

∀ q ∈ W, (5.3.4c)

sup
0 6=v∈V

〈Cv, q〉
W ′×W

‖v‖
V

≥ αC ‖q‖
W

∀ q ∈ W (5.3.4d)
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hold for positive constants αA, αB and αC. Then for any f ∈ V ′ and g ∈ W ′,
there exists a unique pair (u, p) ∈ V ×W , such that

〈Au, v〉
V ′×V

+ 〈B′p, v〉
V ′×V

= 〈f, v〉
V ′×V

〈Cu, q〉
W ′×W

= 〈g, q〉
W ′×W

for all v ∈ V and q ∈ W . The unique solution satisfies the following bound

‖u‖
V
≤ 1
αC

(
1 + βa

αa

)
‖g‖

W ′
+ 1
αA
‖f‖

V ′

‖p‖
W
≤ 1
αB

(
‖f‖

V ′
+ βa ‖u‖

V

)
with βa = ‖A‖

L(V,V ′)
.

The main idea behind the proof of this theorem is to apply Theorem 3.17 to the
operator A on the kernels of the operators B and C and to apply Theorem 3.16
to B and C separately. We want to apply Theorem 5.11 to the linearized
variational problem (5.1.6). Thus, we have to show the stability estimates
(5.3.4a)–(5.3.4d).

Stability of the linear coupling: To show the inf–sup–stability of the linear
coupling condition, the mortar projection plays a major role. For each interface
Γm the mortar projection Πm : L2(Γm)→ W̊h,m is defined by∫

Γm

(Πmv − v)νh dsx = 0 (5.3.5)

for all νh ∈ Qh,m.

Furthermore, we need the following auxiliary result.

Lemma 5.12. Let wh ∈ W̊h,m and ωh ∈ Qh,m with

wh =
N̊V,m∑
k=1

wk ϕk,m and ωh =
N̊V,m∑
k=1

wk ψk,m,

then there holds ‖wh‖
L2(Γm)

' ‖ωh‖
L2(Γm)

.
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Proof. To prove the above statement, we first consider the element mass matrix
ME ∈ Rd×d for an arbitrary E ∈ Ih,m with entries

(ME)kl :=
∫
E

ϕek ϕel dsx

for 0 ≤ k, l ≤ d− 1. The global vertex index el corresponds to the local vertex
index l belonging to E. The eigenvalues of the matrix ME are

λ0 = |E|
d

and λ1 = . . . λd−1 = |E|
d (d+ 1) ,

see [61, Lemma 9.4]. For each element E with global vertex indices e0, . . . , ed−1,
we denote by wE = (we0 , . . . , wed−1)> ∈ Rd its local coefficient vector, with
wel = 0 if the corresponding vertex xel,m ∈ ∂Γm ∪ ΓD. Thus, we obtain

‖wh‖2
L2(E)

=
∫
E

|wh|2 dsx =
d−1∑
k,l=0

wek wel

∫
E

ϕek ϕel dsx

= w>EME wE ' |E| w>E wE

(5.3.6)

for each E ∈ Ih,m. Since each vertex belongs to a fixed number of elements E,
we obtain

‖wh‖2
L2(Γm)

=
∑

E∈Ih,m
‖wh‖2

L2(E)
'

∑
E∈Ih,m

hd−1
E

d−1∑
k=0

w2
ek

'
N̊V,m∑
k=1

hd−1
k w2

k '
N̊V,m∑
k=1

∫
suppψk,m

|wk ψk,m|2 dsx = ‖ωh‖2
L2(Γm)

which proves the desired result. By hk we denote the maximum of the hE with
E ∈ Ih,m attached to the vertex xk,m. �

This auxiliary result is essential to prove the following equivalence.

Lemma 5.13. Let wh ∈ W̊h,m and ωh ∈ Qh,m be as in Lemma 5.12, then there
holds

1 '
(wh, ωh)

L2(Γm)

‖wh‖
Q2,m′

‖ωh‖
Q2,m

with constants independent of the mesh size h.
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Proof. The idea of this proof is to estimate the eigenvalues of the element
matrices to show the desired result, see for example [60] for further information.

For wh ∈ W̊h,m and ωh ∈ Qh,m the L2(Γm)–inner product is given as

(wh, ωh)
L2(Γm)

=
∫

Γm

wh ωh dsx =
∑

E∈Ih,m

∫
E

wh ωh dsx

=
∑

E∈Ih,m

N̊V,m∑
k,l=1

wk wl

∫
E

ψk,m ϕl,m dsx =
∑

E∈Ih,m
w>EME,1 wE

with the local coefficient vector wE and the mixed mass matrix ME,1 with
entries

(ME,1)kl :=
∫
E

ψek ϕel dsx.

Next, we want to estimate w>EME,1 wE, therefore we distinguish between the
two and three space dimensional case. We consider first the two dimensional
case.

d = 2: Let E ∈ Ih,m be an arbitrary edge element. For E, either no vertex is
on ΓC ∪ ΓD or one vertex is on ΓC ∪ ΓD. If one vertex is on ΓC ∪ ΓD, we have

ME,1 = |E|2

with eigenvalue λ0 = |E| 1
2 . If no vertex of E is on ΓC ∪ ΓD we obtain

ME,1 = |E|8

(
3 1
1 3

)

with eigenvalues λ0 = |E| 1
2 and λ1 = |E| 1

4 .

d = 3: In the three dimensional case, we have to consider four cases for a
element E. Either no vertex of E is on ΓC ∪ ΓD, one vertex is on ΓC ∪ ΓD or
two vertices are on ΓC ∪ ΓD. The fourth case is that all three vertices are on
ΓC ∪ΓD which is due the construction of the spaces not possible for d = 2. The
latter case can be neglected, since the integral

∫
E ψk,m ϕl,m dsx =

∫
E ϕl,m dsx
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vanishes due to suppϕl,m ∩ E = ∅ for all 1 ≤ l ≤ N̊V,m. If two vertices belong
to ΓC ∪ ΓD, we obtain

ME,1 = |E|3
with eigenvalue λ0 = |E| 1

3 . If one vertex is on ΓC ∪ ΓD, we obtain

ME,1 = |E|12

(
3 1
1 3

)

with eigenvalues λ0 = |E| 1
3 and λ1 = |E| 1

6 . Otherwise we have

ME,1 = |E|108

 22 7 7
7 22 7
7 7 22


with eigenvalues λ0 = |E| 1

3 and λ1 = λ2 = |E| 5
36 if no vertex is on ΓC ∪ ΓD.

The case–by–case analysis implies w>EME,1 wE ' |E| w>E wE and (5.3.6) im-
plies

(wh, ωh)
L2(Γm)

'
∑

E∈Ih,m
|E| w>E wE '

∑
E∈Ih,m

w>EME wE = ‖wh‖2
L2(Γm)

.

If we apply Lemma 5.12 we obtain

(wh, ωh)
L2(Γm)

' ‖wh‖
L2(Γm)

‖ωh‖
L2(Γm)

and the global quasi–uniformity of the interface discretization finishes the
proof. �

With Lemma 5.13 it is easy to see that Πm : Q2,m
′ → W̊h,m given by (5.3.5) is

well defined and satisfies

c ‖Πmv‖
Q2,m′

≤ ‖v‖
Q2,m′

with c > 0 independent of the mesh size h. The stability of the linear mortar
projection is essential in the proof of the following lemma.
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Lemma 5.14. Let the discrete trial spaces Xh and Qh be as in Definition 5.5
and Definition 5.8. Furthermore assume that the discrete extension operator
satisfyies the stability estimate (5.3.2). Then, there exists a positive constant
αB > 0, such that

sup
vh∈Xh

b(vh, νh)
‖vh‖

X

≥ αB ‖νh‖
Q2

holds for all νh ∈ Qh.

Proof. For a proof of Lemma 5.14 see [71, Lemma 1.9]. �

Lemma 5.14 provides the stability estimate (5.3.4c) in Theorem 5.11) which
was rather easy to show and follows directly from the mortar finite element
framework. The next step is to prove the stability of the nonlinear coupling
condition of the linearized variational problem (5.1.6).

Stability of the nonlinear coupling: To show the inf–sup–stability of the
nonlinear coupling condition, we define a weighted mortar projection. For each
interface Γm the weighted mortar projection Ψm : L2(Γm)→ W̊h,m is defined
by ∫

Γm

(%mΨmv − v)νh dsx = 0 (5.3.7)

for all νh ∈ Qh,m and some weight function %m ∈ L∞(Γm) ∩ L+
∞(Γm). The goal

is to prove an equivalence similar to the one in Lemma 5.13 which was essential
to show the stability of the linear coupling. To show such an equivalence we
define

rE,m := min
x∈E

%m(x) > 0 and RE,m := max
x∈E

%m(x) <∞

for each element E ∈ Ih,m.

Lemma 5.15. Let wh ∈ W̊h,m and ωh ∈ Qh,m be as in Lemma 5.12. If there
exists a ρ > 0 such that

ρ ≤

(3 rE,m −RE,m), d = 2,
(11

7 rE,m −RE,m), d = 3
(5.3.8)
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holds, then

1 '
(%mwh, ωh)

L2(Γm)

‖wh‖
Q2,m′

‖ωh‖
Q2,m

.

The constants in the above equivalence depend on the weight function %m and ρ
but not on the mesh size h.

Proof. The idea of the proof is similar to the idea in the proof of Lemma 5.13.
We first consider the L2(Γm)–inner product, that is

(%mwh, ωh)
L2(Γm)

=
∫

Γm

%mwh ωh dsx =
∑

E∈Ih,m

∫
E

%mwh ωh dsx

=
∑

E∈Ih,m

N̊V,m∑
k,l=1

wk wl

∫
E

%m ψk,m ϕl,m dsx =
∑

E∈Ih,m
w>EME,2 wE

with the weighted mixed mass matrix ME,2. The entries of ME,2 are given by

(ME,2)kl :=
∫
E

%m ψek ϕel dsx

and it is easy to verify that ME,2 is not symmetric anymore. Thus, we use the
representation

w>EME,2 wE = w>EM
sym
E,2 wE.

with M sym
E,2 := 1

2 (ME,2 +M>
E,2). The essential step in the proof of Lemma 5.13

was the computation of the eigenvalues of the mixed matrix ME,1 which was
done in a straight forward way. This can not be done for the matrix M sym

E,2
explicitly, thus we just estimate the eigenvalues. The estimates are based on
the following property of the entries (ME,2)kl, namely

0 ≤ rE,m (ME,1)kl ≤ (ME,2)kl ≤ RE,m (ME,1)kl.
If we exploit the symmetry of ME,1 we obtain

0 ≤ rE,m (ME,1)kl ≤ (M sym
E,2 )kl ≤ RE,m (ME,1)kl.

Next, we will estimate the eigenvalues ofM sym
E,2 using the theorem of Gerschgorin,

see [34, Satz II]. The symmetry of M sym
E,2 ensures that all eigenvalues are

real numbers in the union of all discs Di with center (M sym
E,2 )ii and radius

Ri = ∑
j 6=i(M sym

E,2 )ij. For this reason we will estimate the expressions Di −Ri

and Di + Ri. We will again distinguish between the two and three space
dimensional case.
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d = 2: Let E ∈ Ih,m be an arbitrary edge element. For E, either no vertex is
on ΓC ∪ΓD or one vertex is on ΓC ∪ΓD. If one vertex is on ΓC ∪ΓD, we obtain

ME,2 = M sym
E,2 =

∫
E

%m ϕe0,m dsx

and thus rE,m |E| 1
2 ≤ λ0 ≤ RE,m |E| 1

2 . If no vertex of E is on ΓC ∪ ΓD we
obtain ME,2 ∈ R2×2. The first Gerschgorin circle can be bounded from below
by

0 < ρ

8 |E| ≤
3 rE,m −RE,m

8 |E| = rE,m
3
8 |E| −

1
2

(
RE,m

1
8 |E|+RE,m

1
8 |E|

)
≤ rE,m (ME,1)11 −

1
2
(
RE,m (ME,1)12 +RE,m (ME,1)21

)
≤ (ME,2)11 −

1
2
(
(ME,2)12 + (ME,2)21

)
= D1 −R1

and for the upper bound we have

D1 +R1 = (ME,2)11 + 1
2
(
(ME,2)12 + (ME,2)21

)
≤ RE,m (ME,1)11 + 1

2
(
RE,m (ME,1)12 +RE,m (ME,1)21

)
≤ RE,m

1
2 |E| .

The lower boundD2−R2 and the upper boundD2+R2 of the second Gerschgorin
circle can be estimated in the same way and we get the bounds ρ

8 |E| ≤ λ0, λ1 ≤
RE,m

1
2 |E| for the eigenvalues of M sym

E,2 .

d = 3: According to the proof of Lemma 5.13, we just have to consider the
following three cases. If two vertices belong to ΓC ∪ ΓD, we obtain

ME,2 = M sym
E,2 =

∫
E

%m ϕe0,m dsx

and thus rE,m |E| 1
3 ≤ λ0 ≤ RE,m |E| 1

3 . If one vertex is on ΓC ∪ ΓD, we have
ME,2 ∈ R2×2 and as in the two dimensional case we get from the first row

0 < ρ

(
1
12 + (10/7)

12

)
|E| ≤ (11/7) rE,m −RE,m

12 |E|+ (10/7) rE,m
12 |E|

≤ 3 rE,m −RE,m

12 |E| ≤ D1 −R1
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and

D1 +R1 ≤ RE,m
1
3 |E| .

The bounds of the second Gerschgorin circle can be estimated in the same
way. In this case we can bound the eigenvalues of M sym

E,2 by 17 ρ
84 |E| ≤ λ0, λ1 ≤

RE,m
1
3 |E|. If no vertex is on ΓC ∪ ΓD, we have to bound three Gerschgorin

circles. The procedure is similar to the previous estimates. The lower bound
for the first circle is

0 < 7 ρ
54 |E| ≤

11 rE,m − 7RE,m

54 |E| ≤ rE,m
22
108 |E| −RE,m

14
108 |E|

= rE,m
22
108 |E| −

1
2 RE,m

28
108 |E| ≤ D1 −R1

and the upper bound is given by

D1 +R1 ≤ RE,m
1
3 |E| .

For the remaining Gerschgorin circles we obtain the same bounds, therefore we
can bound the eigenvalues by 7 ρ

54 |E| ≤ λ0, λ1, λ2 ≤ RE,m
1
3 |E|.

The case–by–case analysis implies w>EME,2 wE = w>EM
sym
E,2 wE ' |E| w>E wE

and (5.3.6) implies

(%mwh, ωh)
L2(Γm)

'
∑

E∈Ih,m
|E| w>E wE '

∑
E∈Ih,m

w>EME wE = ‖wh‖2
L2(Γm)

.

If we apply Lemma 5.12 we obtain

‖wh‖
L2(Γm)

'
(%mwh, ωh)

L2(Γm)

‖ωh‖
L2(Γm)

and if we incorporate the global quasi–uniformity of the interface discretization,
we have

‖wh‖
Q2,m′

'
(%mwh, ωh)

L2(Γm)

‖ωh‖
Q2,m

which yields the desired result. �
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Lemma 5.15 seems to be quite restrictive since the weight function %m has to
satisfy a certain smoothness on Γm. It is rather hard to state a general stability
result for general weight functions, since the shape of the weight function has a
massive influence on the eigenvalues of the matrix M sym

E,2 . We want to show the
influence in the following example in which we compute the smallest eigenvalue
of M sym

E,2 for a set of different weight functions.

Example 5.16. Consider an arbitrary edge E in R2 which can be transformed
to the reference element I = [0, 1]. On I we have

ϕ0(x) = 1− x and ϕ1(x) = x

as well as

ψ0(x) =

1 x < 1/2

0 else
and ψ1(x) =

1 x > 1/2

0 else

for x ∈ I, see Figure 5.9a. Next, we consider three different nonlinear weights
%0, %1 and %2. We choose %0 to be piecewise constant, %1 is continuous and
piecewise linear and %2 is assumed to be differentiable and piecewise cubic, see
Figure 5.9b. For all experiments we fix rE,m = 1 and vary the upper bound

ϕ0 ϕ1ψ0 ψ1

x1/2

E ≃ I

(a) Basis functions on E.

RE,m

rE,m

•
0

•
1

•
1/2x1 x2

%0
%1
%2

(b) Different weights %m.

RE,m of the weight function as well as the interval G := (x1, x2) in which the
weight function is not constant. We denote by x1/2 = 1/2 the center point of the
reference element I. This point is of special interest since we switch between ψ0
and ψ1 at x1/2.
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We compute the smallest eigenvalue of the symmetric and weighted mixed mass
matrix M sym

E,2 given by

M sym
E,2 := 1

2


2

1∫
0
%i ψ0 ϕ0 dsx

1∫
0
%i
(
ψ0 ϕ1 + ψ1 ϕ0

)
%i dsx

1∫
0
%i
(
ψ1 ϕ0 + ψ0 ϕ1

)
dsx 2

1∫
0
%i ψ1 ϕ1 dsx


as it was defined in the proof of Lemma 5.15.

For the first experiment we set x1 = 0.3 and x2 = 0.7. The non–constant part
of the weight function is therefore located around the center point x1/2 the of I.
For an increasing upper bound RE,m we can compute the smallest eigenvalue of
M sym

E,2 with respect to the different weight functions, see Table 5.1. In the case

RE,m 2 3 30 60 120 180 240
%0 0.2973 0.2993 0.0401 -0.2635 -0.8718 -1.4802 -2.0887
%1 0.3166 0.3452 0.8065 1.3023 2.2927 3.2830 4.2732
%2 0.3116 0.3332 0.6030 0.8864 1.4520 2.0174 2.5828

Table 5.1: Smallest eigenvalue of M sym
E,2 with centered G = (0.3, 0.7).

of a piecewise constant weight, the smallest eigenvalue becomes smaller and
smaller if the upper bound of %0 becomes larger. In the case of a continuous
and differentiable function, the smallest eigenvalue stays away from zero and
seems to increase.

For the second experiment we shrink the interval G to x1 = 0.45 and x2 = 0.55.
The interval G is still located around the center point x1/2 but the length of G
was decreased. The continuity of %1 and the differentiability of %2 are obviously
preserved, but the gradient within G becomes steeper. The smallest eigenvalue
of M sym

E,2 is listed in Table 5.2. Obviously we obtain the same result as for
the piecewise constant weight function. In the other cases we see, that the
eigenvalues become negative if we increase the upper bound of the corresponding
weight function. Thus, the smallest eigenvalue depends on the gradient of the
weight function.

For the third experiment shift G to the right by setting x1 = 0.55 and x2 = 0.65.
The length of G is still the same, but the point x1/2 is located outside of G. In
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RE,m 2 3 30 60 120 180 240
%0 0.2973 0.2993 0.0401 -0.2635 -0.8718 -1.4802 -2.0887
%1 0.3019 0.3100 0.2162 0.0960 -0.1452 -0.3867 -0.6282
%2 0.3007 0.3073 0.1714 0.0045 -0.3301 -0.6650 -0.9999

Table 5.2: Smallest eigenvalue of M sym
E,2 with centered G = (0.45, 0.55).

RE,m 2 3 30 60 120 180 240
%0 0.3260 0.3698 1.2961 2.3114 4.3410 6.3705 8.4000
%1 0.3265 0.3708 1.3103 2.3403 4.3994 6.4583 8.5172
%2 0.3263 0.3704 1.3046 2.3287 4.3761 6.4232 8.4703

Table 5.3: Smallest eigenvalue of M sym
E,2 with shifted G = (0.55, 0.65).

Table 5.3 the computed smallest eigenvalues using this setup are listed. As we
can see, the smallest eigenvalue of M sym

E,2 stays away from zero and the values
become larger for increasing upper bounds RE,m. Thus, the location of G plays
an important role for the smallest eigenvalues.

For the last experiment we shift G to the left by setting x1 = 0.35 and x2 = 0.45.
The center point x1/2 of I is again located outside of G. If we compute the
smallest we obtain Table 5.4. Within this setting, we see that the eigenvalues

RE,m 2 3 30 60 120 180 240
%0 0.3052 0.3150 0.2004 0.0534 -0.2417 -0.5370 -0.8324
%1 0.3050 0.3147 0.1985 0.0499 -0.2486 -0.5474 -0.8462
%2 0.3050 0.3148 0.1993 0.0513 -0.2458 -0.5432 -0.8407

Table 5.4: Smallest eigenvalue of M sym
E,2 with shifted G = (0.35, 0.45).

become negative for all three weight functions, even though the center point
x1/2 is located outside of G. Thus, even the location of the bulk influences the
smallest eigenvalue of M sym

E,2 .

We see, that without the explicit knowledge of the shape of the weight function
%m, it is hard check whether the equivalence in Lemma 5.15 is satisfied or not
if %m does not satisfy condition (5.3.7).
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With Lemma 5.15 it is again easy to see that Ψm : Q2,m
′ → W̊h,m given by

(5.3.7) is well defined and satisfies

c ‖Ψmv‖
Q2,m′

≤ ‖v‖
Q2,m′

with a c > 0 depending on %m and ρ but independent of the mesh size h.

Lemma 5.17. Let the discrete trial spaces Xh and Qh be as in Definition 5.5
and Definition 5.8. Furthermore assume that the discrete extension operator
satisfies the stability estimate (5.3.2). If on each interface Γm the weight function
%m := κ−1

k
′(wh,k |Γm + uD,h,k |Γm ) satisfies the condition (5.3.8), then there exists

a positive constant αC > 0, such that

sup
vh∈Xh

c′(wh + uD,h, vh, νh)
‖vh‖

X

≥ αC ‖νh‖
Q2

holds for all νh ∈ Qh.

Proof. The proof of Lemma 5.17 follows again the lines of the proof of [71,
Lemma 1.9] using the weighted mortar projection defined by (5.3.7). �

Thus, Lemma 5.17 provides the stability estimate (5.3.4d) in Theorem 5.11.
Unfortunately we were not able to prove the conditions (5.3.4a) and (5.3.4b)
of Theorem 5.11. Thus, we have to assume that the bilinear form given by
m′(wh + uD,h, ·, ·) + a(·, ·) induces a bijective operator between the two discrete
kernels. In the numerical examples stability issues were only observed in cases
of a mesh which was too coarse.

Remark 5.18. Due to the discrete Newton linearization and the nonconforming
space discretization, a convergence result with respect to the space discretization
parameter h is still an open problem. In our numerical examples the convergenve
of the Newton method is of second order and we observe a good convergence
behavior as h tends to zero.

This leads to the last section in this chapter where we briefly describe the
implementation of the described method.
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5.4 Implementation

In this section, we briefly discuss the implementation which was used to compute
the approximate solution. Thus, we have to solve a sequence of the following
linearized problem.

Newton iteration for the modified discrete variational problem

For wh ∈ Xh find uh ∈ Xh and λh ∈ Qh such that

m′(wh + uD,h, uh, vh) + a(uh, vh) + b(vh, λh) = f(wh, vh)
c′(wh + uD,h, uh, νh) = g(wh, νh)

for all vh ∈ Xh and νh ∈ Qh.

The bilinear forms in the variational problem are

m′(wh + uD,h, uh, vh) =
N∑
i=1

∫
Ωi

li
′(wh,i + uD,h,i)uh,i vh,i dx,

a(uh, vh) =
N∑
i=1

∫
Ωi

∇uh,i · ∇vh,i dx,

b(vh, λh) = −
∑
Γm

∫
Γm

JvhKΓm λh dsx,

c′(wh + uD,h, uh, νh) = −
∑
Γm

∫
Γm

Jκ−1′(wh + uD,h)uhKΓmνh dsx

(5.4.1)

for wh, uh, vh ∈ Xh and λh, νh ∈ Qh. The linear form in the right hand side are
as in Subsection 5.1.2 given by
f(wh, vh) = f(vh)− a(uD,h, vh) +m′(wh + uD,h, wh, vh)−m(wh + uD,h, vh),
g(wh, νh) = c′(wh + uD,h, wh, νh)− c(wh + uD,h, vh)

(5.4.2)
for wh, vh ∈ Xh and νh ∈ Qh. Due to Definition 5.5 and Definition 5.8, the trial
spaces Xh as well as Qh can be written as

Xh =
N∏
i=1

span{ϕk,i}
N̊V,i
k=1 = span{ϕk}NXk=1
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with NX := dimXh =
N∑
i=1

N̊V,i and

Qh =
∏
Γm

span{ψk,m}
N̊V,m
k=1 = span{ψk}NMk=1

with NM := dimQh = ∑
Γm
N̊V,m. Thus, we can express the approximate solution

(uh, λh) ∈ Xh ×Qh as

uh =
NX∑
k=1

uk ϕk and λh =
NM∑
k=1

λk ψk

with u ∈ RNX and λ ∈ RNM . By plugging the representation of the approximate
solution into the linear and bilinear forms (5.4.2) and (5.4.1) we obtain the
corresponding equivalent discrete linear system by testing with each basis
function of Xh and Qh,



A1 0 · · · 0 B>1
0 A2 · · · 0 B>2
... ... . . . ... ...
0 0 · · · AN B>N
C1 C2 · · · CN 0





u1
u2
...

uN
λ

=





f1
f2
...
f3
g

for the unknown coefficient vectors u ∈ RNX and λ ∈ RNM . The block matrices
Ai are square matrices that is, Ai ∈ RN̊V,i×N̊V,i and they are independent
of each other. The coupling is realized by the matrices B>i ∈ RN̊V,i×NM and
Ci ∈ RNM×N̊V,i . The independency of the blocks Ai allows the following Schur
complement reformulation of the above system. That is, instead of solving the
entire (NX +NM)× (NX +NM) system, we solve

S λ = g̃

with the Schur complement S ∈ RNM×NM and g̃ ∈ RNM given by

S =
N∑
i=1

CiA
†
iB
>
i and g̃ =

N∑
i=1

CiA
†
i fi − g.
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By A†i we denote the pseudo inverse of Ai which can be computed for each
subdomain in parallel. In view of efficiency, we implemented the solving al-
gorithm into our in–house C++ software using a distributed memory model
which was realized by using the OpenMPI implementation of the Message–
Passing–Interface, see [33]. To obtain a decomposition of our domain mesh, we
used the external GMSH tool, see [35], which allows to create two and three
dimensional meshes and to partition them. Each partition was saved separately
to provide one single mesh file for each parallel MPI–thread. To speed up
the local assembling routines we used a shared memory parallelization using
OpenMP, see [24]. To compute the pseudo inverse we use the PARDISO solver,
see [44, 56]. A pseudo code of the solving routine is depicted in Algorithm 1,
which we want to discuss briefly.

Algorithm 1 Solving algorithm for given M ∈ N, ε > 0, initial condition u0
i

and initial guess l0i
1: loadMesh()
2: exchangeInterfaceData()
3: t = 0.0
4: ũi = u0

i

5: l̃i = l0i
6: for m = 1 to M do
7: t = t+ τm
8: repeat
9: Ai, Bi, Ci, fmi , gmi = assembleSystem(ũi, um−1

i )
10: A−1

i = pseudoInverse(Ai)
11: Si = CiA

−1
i B>i

12: g̃i = CiA
−1
i fi − gi

13: lmi = parallelGMRES(Si, g̃i, l̃i)
14: umi = A−1

i fi − A−1
i B>i lmi

15: tol = terminationCriteria(Si, g̃i, li,nwt, lmi )
16: ũi = umi
17: l̃i = lmi
18: until tol < ε
19: writeSolution()
20: end for

Before starting the Algorithm 1, we have to create the mesh partitions using
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5.4 Implementation

the GMSH tool. In Line 1 each thread loads the corresponding mesh partition
which was created by GMSH in advance. Then, the interface information of the
local partitions is exchanged, see Line 2. Here we have global communication.
In Line 3–5 we set the current time t = 0.0 and initialize the local previous
Newton iteration ũi and l̃i. Then, we start the time stepping scheme in Lines
6 and update the current time in Lines 7. In Line 8 we start the Newton
iteration. We can assemble the local system matrices and vectors independent
of the other MPI–threads in Line 9 and compute the corresponding local Schur
complement system in Line 10–12. To solve the global Schur complement
system, Line 13, we use a parallel iterative solver which needs to perform
global communication. Since the Schur complement system is non symmetric,
we use a parallel GMRES solver, see for example [38, Section 6.2]. As an initial
guess for the solver, we use the previous Newton iteration l̃i. From lmi we can
compute the local vectors umi , see Line 14. To check the termination criteria
for the Newton method, Line 15, global communication has to be performed.
In Line 16, 17 we update the previous Newton iterations ũi and l̃i. If the
termination criteria is satisfied, we stop the Newton iteration and step into
the next time step, Line 6. If the criteria is not satisfied, we have to perform
a further Newton iteration, Line 8. The parallel work flow is depicted in
Figure 5.10.

Some word to summarize this chapter. In the beginning of this chapter we did
some modifications of the variational problem (4.4.15) we derived in Section 4.4.
These modifications were necessary to fit the primal hybrid formulation into the
mortar finite element context. In Section 5.1 we discussed the linearization of
the modified variational problem using Newton’s method. Next, in Section 5.2,
the construction of proper trial spaces for d = 2, 3 was discussed. After that,
we wanted to answer the question whether the discrete problem if solvable
or not, see Section 5.3. In the last section, Section 5.4, we briefly described
the algorithm we have implemented to sove the derived discrete problem. In
the next chapter we present numerical experiments in two and three space
dimensions.
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5 Linearization, Discretization and Implementation
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Figure 5.10: Parallel program flow chart.
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6 Numerical Experiments

In this last chapter we present numerical experiments which were computed
using the method described in Chapter 4 and Chapter 5. That is, we approximate
the generalized pressure u ∈ X and λ ∈ Q by solving a sequence of discrete
and linearized variational problems of the form (5.1.6). Since we are interested
in the physical pressure we have to apply the inverse Kirchhoff transformation
as discussed in Section 4.3 and Section 4.4.

The soil parameter we used for the computations are listed in Table 6.1. For
the modification of the relative permeability k we choose α = 0.025, see
Definition 4.3.1. The gravitational constant g as well as the viscosity µ are

parameter n K θmin θmax pb λ

sand 0.437 6.54e -5 0.046 0.94 -0.073 0.694
sandy loam 0.453 6.06e -6 0.091 0.94 -0.147 0.378
loam 0.463 3.67e -6 0.058 0.87 -0.112 0.252

Table 6.1: Soil parameter.

normalized to one. In both experiments we choose an equidistant decomposition
of the time interval I = (0, T ) with time step size τ = 1.0. We further assume,
that we do not have sinks or sources within our computational domain Ω, that
is f ≡ 0.

In the following we want to present a two and three dimensional experiment
respectively. First we consider the experiment in two space dimensions.
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6 Numerical Experiments

6.1 Experiment in 2D

For the experiment in two space dimensions, we consider the computational
domain Ω ⊂ R2 depicted in Figure 6.1. The soil parameter for each subdomain
are chosen in the following way. The red and the yellow region behaves like
sand, the blue region behaves like sandy loam and the green region behaves
like loam. We have a Dirichlet boundary on the top, that is ΓD = (0, 1)× {2}
and the remaining boundary is considered as a Neumann boundary, that is

(a) Decomposition. (b) Triangulation of the subdomains.

Figure 6.1: Computational domain.

ΓN = ∂Ω\ΓD. The method discussed in Chapter 5 allows different discretization
of each subdomain Ωi. For this experiment the discretization is depicted in
Figure 6.1b.

According to Section 2.3, we want to apply a pressure on the Dirichlet boundary,
that is

gD(x, t) :=

−5
(
1− t

10

)
, t < 10,

0, t ≥ 10

for all x ∈ ΓD and t > 0. On ΓN we consider a no outflow condition, that is
gN(x, t) ≡ 0. Since we solve the Kirchhoff transformed variational problem
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6.1 Experiment in 2D

(5.1.6), we have to transform the Dirichlet boundary condition as discussed in
Section 4.3, that is

hD,i(x, t) := κi(gD(x, t))

for x ∈ ΓD,i and t > 0. Due to our considerations made in Section 4.3 we
can compute the Kirchhoff transformed Dirichlet datum hD explicitly. The
Neumann boundary condition remains unchanged when applying the Kirchhoff
transformation. The initial datum is given by the constant p0,h ≡ −5 and thus
u0,h,i = κ−1

i (p0,h,i) for the subdomains, see Figure 6.2. The end time T is set to

−0.215719

−0.284024

−0.323372

Figure 6.2: Initial datum p0,h and u0,h.

T = 62000 for this computation. We compute the generalized pressure uh+uD,h
of the variational problem (5.1.6), and transform it to the physical pressure by
applying the inverse Kirchhoff transformation, that is ph,i = κ−1

i (uh,i + uD,h,i)
in each subdomain Ωi. The solutions depicted for different time steps on the
following pages show the physical pressure ph on the left hand side and the
computed discontinuous generalized pressure uh on the right hand side. For a
better identification of the pressure profile we plotted contour lines at several
levels.
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6 Numerical Experiments

Solution at t = 0. Solution at t = 20. Solution at t = 60.

Solution at t = 100. Solution at t = 140. Solution at t = 200.

Solution at t = 270. Solution at t = 340. Solution at t = 440.
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6.1 Experiment in 2D

Solution at t = 55. Solution at t = 680. Solution at t = 840.

Solution at t = 1020. Solution at t = 1250. Solution at t = 1510.

Solution at t = 1820. Solution at t = 2190. Solution at t = 2630.
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6 Numerical Experiments

Solution at t = 3150. Solution at t = 3770. Solution at t = 4510.

Solution at t = 5380. Solution at t = 6420. Solution at t = 7650.

Solution at t = 9110. Solution at t = 10850. Solution at t = 12920.
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6.1 Experiment in 2D

Solution at t = 15370. Solution at t = 18280. Solution at t = 21730.

Solution at t = 25830. Solution at t = 30710. Solution at t = 36490.

Solution at t = 43360. Solution at t = 51520. Solution at t = 60000.
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6 Numerical Experiments

In the following we plotted the average runtime per time step on the left hand
side and on the right hand side we plotted the number of Newton iterations
per time step. We see, that the number of Newton iterations is for almost every

0 62000

1

1.1

1.2

1.3

(a) Average runtime per time step.
0 62000

0

1

2

3

4

(b) Newton iteration per time step.

time step equal to one. We observe that the number of iterations is a little
higher at the beginning which can be explained with the sudden increase of
the pressure at ΓD.

6.2 Experiment in 3D

For the experiment in three space dimensions, we consider the computational
domain Ω ⊂ R3 depicted in Figure 6.16. The computational domain is a
transformation of the unit cube Q = (0, 1)3 ⊂ R3 which was decomposed in
four layers of equal height, that is Ω = F (Q) for some prescribed F : R3 → R3.
In the three dimensional case we use a global uniform discretization of Ω,
see Figure 6.16b. As in the two dimensional case, we have to specify the soil
parameter of each subdomain. The red and yellow region behaves like sand,
the blue region behaves like sandy loam and the green region behaves like
loam. The corresponding parameter are listed in Table 6.1. We have a Dirichlet
boundary ΓD with ΓD = F (x1, x2, 1), x1, x2 ∈ (0, 1), and a Neumann boundary
ΓN = ∂Ω \ ΓD. Analogously to the two dimensional experiment we apply a
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6.2 Experiment in 3D

(a) Computational domain. (b) Triangulation of the subdomains.

Figure 6.16: Computational domain.

pressure at ΓD to simulate a surface water. The associated boundary condition
is defined by

gD(x, t) :=


t−10

2 , t < 10,
0, t ≥ 10

for all x ∈ ΓD and t > 0. On ΓN we consider a no outflow condition, that is
gN(x, t) ≡ 0.

As done in Section 6.1, we have transform the Dirichlet boundary condition
since we solve the Kirchhoff transformed variational problem (5.1.6), that is

hD,i(x, t) := κi(gD(x, t))

for x ∈ ΓD,i and t > 0. The initial datum is given by p0,h ≡ −5 and for the
generalize pressure we obtain u0,h,i = κi(p0,h), see Figure 6.17. The end time T
for this experiment is T = 20000. In contrast to the two dimensional experiment
we just depict the the physical pressure ph which is of interest. To illustrate
the evolution of the pressure, we track the pressure at level −0.84. We also
plot a vertical cut through the computational domain Ω in x–direction and
y–direction respectively.
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6 Numerical Experiments

−0.215719

−0.284024

−0.323372

Figure 6.17: Initial datum p0,h and u0,h.

Solution at t = 0. Solution at t = 30.

Solution at t = 60. Solution at t = 110.
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6.2 Experiment in 3D

Solution at t = 170. Solution at t = 240.

Solution at t = 350. Solution at t = 500.

Solution at t = 730. Solution at t = 1150.
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6 Numerical Experiments

Solution at t = 2060. Solution at t = 5280.

Solution at t = 8080. Solution at t = 11820.

Solution at t = 14620. Solution at t = 17780.
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6.2 Experiment in 3D

Solution at t = 18690. Solution at t = 19100.

Solution at t = 19330. Solution at t = 19480.

Solution at t = 19580. Solution at t = 19660.
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6 Numerical Experiments

Solution at t = 19740. Solution at t = 19850.

Solution at t = 19920. Solution at t = 20000.
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6.2 Experiment in 3D

As for the two dimensional experiment, we plotted the average runtime per
time step and the number of Newton iterations per time step. As we can see

0 20000

10

15

20
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30

(a) Average runtime per time step.

1200 20000
0

1

2

3

4

(b) Newton iteration per time step.

in Figure 6.31a, the number of Newton iterations and thus the runtime of
the corresponding time steps increases for t ∈ [1100, 1300]. In this period, the
change from a low pressure level to a high pressure level leaves the yellow
layer and enters the green layer which seems to have an impact on the Newton
iteration.
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7 Conclusion

In this thesis we considered a novel approach to solve the pressure formulation
of the Richards equation to simulate the flow of water in a heterogeneous porous
medium using the so called Kirchhoff transformation. In Chapter 2 we derived
the Richards equation from the principle of mass balance and we discussed the
equation in a homogeneous soil and in a heterogeneous soil. After we recalled
functional analytical tools in Chapter 3, we analyzed the Richards equation.
After we applied an implicit–explicit time stepping scheme, we derived a series
of stationary variational problems. In Section 3.2 we were able to prove unique
solvability of the stationary variational problem with general nonlinearities. In
Section 3.2 we considered the equation in a homogeneous soil using the model
derived in Section 2.1 and showed unique solvability under some assumptions.
We applied the Kirchhoff transformation and obtained a partial differential
equation with a linear principal part. In Section 3.3 we extended the results from
the homogeneous soil case to the heterogeneous soil case. We had to do some
additional work but finally we derived a system of partial differential equations
with linear principal part coupled via a nonlinear transmission condition. The
similarity to the discrete mortar finite element method was crucial for its
application to compute the approximate solution. Since the problem is still
a nonlinear problem we applied the Newton method to obtain a linearized
problem, see Section 5.1. In Section 5.2 and Section 5.3 we discussed the
discretization of the computational domain to obtain suitable trial spaces as
well as the stability of the linearized system. In the last section we briefly
discuss some implementation details since a lot of work was invested to obtain
a parallel code. Finally, in Chapter 6, numerical experiments in two and three
space dimensions were presented.
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7 Conclusion

Outlook and Open Problems

With this thesis we just did a first step into the field of nonlinear transmission
problems. We just discussed the Richards equation in this thesis but the results
achieved in Chapter 3 are also applicable to the nonlinear heat equation of the
form

∂u

∂t
−∇ ·

(
c(u)∇u

)
= f

where the thermal conductivity depends on the unknown temperature u.

Nevertheless, there are still open problems concerning the numerical treatment
of the variational problem (4.4.11). First of all, one has to think about a more
conform way from the continuous variational problem (4.4.11) to the discrete
counterpart (5.0.2). The question about the right norms for the Lagrange
multiplier is still an open question and consequently inf–sup–stability of the
coupling conditions. Since the linearization of the nonlinear coupling condition
contains an additional weight, one may introduce a different test space for the
Lagrange multiplier to obtain better stability results, thus a Galerkin-Petrov
method has to be considered. As we could see, the solvability of the discrete
saddle point problem is in general still an open problem. The next open question
is the convergence of the approximation method. Since the problem is highly
nonlinear, convergence results are often hard to show and in most cases only
under restrictive assumptions on the nonlinearities. But the question concerning
convergence of the approximate solution already starts with the time stepping
scheme. Furthermore the construction of a suitable preconditioner remains an
untouched problem.
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