
Georg Krispel

Multiple Frame Integration for OCR on
Mobile Devices

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Telematics

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Horst Bischof

Institute for Computer Graphics and Vision

Graz, Austria, Dez. 2016

Abstract

The problem of Optical Character Recognition (OCR) is one of the oldest tasks in com-

puter vision and on a well segmented and orthogonally viewed document it is considered

solved. However, text occurs in all types of man-made surroundings and is exposed to

a tremendous variety. The processing of this scene text is still a popular topic of recent

research. With the rise of smart mobile devices in the last decade and the steady avail-

ability of high resolution cameras, the amount of possible applications even increased.

Nevertheless, state-of-the-art scene text detection and recognition methods are generally

not real-time capable, especially not on the limited hardware of mobile devices. Fur-

thermore, the recognition of text in various surroundings and under low lighting is often

poor. Since, camera streams provide multiple frames showing the same text, they can

be exploited to improve the overall results. Missing information in a single frame due to

reflections or occlusions can be compensated. In this work we propose a text detection and

tracking pipeline dedicated to integrate the redundant information available in multiple

frames. Thereby, the recognition performance is significantly increased. Additionally, it

is shown that the proposed approach is capable of running in real-time on mobile device

hardware exploiting parallel computing threads.

iii

Kurzfassung

Optische Texterkennung (OCR) ist eines der ältesten Probleme in der automatisierten

Bildverarbeitung und angewendet auf gut segmentierte und orthogonal betrachtete Doku-

mente wird es als gelöst angesehen. Allerdings kommt Text in allen menschengemachten

Umgebungen vor und unterliegt einer umfangreichen Variation. Die Verarbeitung von

diesem sogenannten Scenetext ist noch immer ein populäres Thema in aktuellen Publikatio-

nen. Vor allem durch die Verbreitung von Smartphones und Tablets im letzten Jahrzehnt

und der damit einhergehenden ständigen Verfügbarkeit von hochauflösenden Kameras

vervielfältigte sich die Anzahl der Anwendungen. Nichts desto trotz, sind moderne Meth-

oden zur Detektion und Erkennung von Text in der Regel auf mobilen Endgeräten nicht

echtzeitfähig. Weiters ist die Erkennung von Text in verschiedensten Umgebungen mit

teils dürftigen Lichtverhältnissen oft mangelhaft. Da ein Kamera-Stream jedoch mehrere

Bilder die denselben Text zeigen enthalten, kann diese Redundanz genutzt werden um

die Resultate zu verbessern. Fehlende Informationen verursacht durch Reflektionen oder

Hindernisse können kompensiert werden. In dieser Arbeit präsentieren wir eine Text

Detektions- und Tracking-Pipeline zur Integration dieser Information. Hiermit kann die

Texterkennung signifikant verbessert werden. Zusätzlich, wird gezeigt, dass der vorgeschla-

gene Ansatz in der Lage ist in Echtzeit auf mobilen Endgeräten zu funktionieren. Hierfür

werden Prozesse unter der Verwendung von mehreren CPU-Kernen parallelisiert.

v

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master’s

thesis dissertation.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Master-

arbeit identisch.

Ort Datum Unterschrift

Acknowledgments

First of all, I want to thank Prof. Horst Bischof for being my supervisor and for enabling

the possibility to do this thesis at the Institute for Computer Graphics and Vision (ICG).

Many thanks are owed to Clemens Arth, Andreas Hartl, Christian Pirchheim and Horst

Possegger for their helpful advice and useful hints. Additionally, I want to thank the entire

team of Anyline for providing the topic and supporting me throughout working on this

thesis.

Attention will be drawn here especially to my study colleagues for their support and

friendship. Particularly Christoph, David, Erich, Johannes, Jörg, Thomas and Severin for

numerous exhausting but still enjoyable night shifts, nerdy discussions about Maxwell’s

equations and some of my most memorable experiences.

Furthermore, I wand to thank my family, especially my parents and my sister for their

unconditional support, no matter what I do or where I am. Above all, I want to express

my deepest gratitude to my beloved girlfriend Tina, for calming me down, cheering me

up, motivating me and calming me down again.

ix

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution & Outline . 3

2 Text Detection and Recognition in Still Imagery 5

2.1 Plane Rectification . 5

2.1.1 Estimation of the Rectification Homography 8

2.1.1.1 Detection of Rectangular Regions 8

2.1.1.2 Vanishing Points . 9

2.2 Text Detection . 12

2.2.1 Sliding Window Methods . 13

2.2.2 Connected Component Analysis . 13

2.2.2.1 Stroke Width Transform 13

2.2.2.2 Maximally Stable Extremal Regions 16

2.3 Text Recognition . 20

2.4 Summary . 21

3 Text Detection, Tracking and Recognition in Videos 23

3.1 Text Tracking . 23

3.1.1 Template Matching . 24

3.1.2 Particle Filtering . 26

3.1.3 Tracking-by-Detection . 26

3.2 Multiple Frame Integration . 28

3.2.1 Recognition result fusion . 28

3.2.2 Image Enhancement . 29

3.3 Summary . 30

xi

xii

4 A Pipeline for Scene Text Processing on Mobile Devices 31

4.1 Pipeline . 31

4.1.1 Visual Tracking . 32

4.1.2 Rectification . 35

4.1.3 Scene Text Detection . 36

4.1.4 Multiple Frame Integration . 37

4.1.5 Text Recognition . 37

4.2 Requirements . 38

4.3 Summary . 38

5 Impact of MFI on overall Text Processing 39

5.1 Configuration . 39

5.1.1 Datasets . 40

5.2 Detection and Tracking Accuracy . 40

5.2.1 The CLEAR-MOT Metrics . 41

5.2.2 Experiments . 42

5.3 Reading Accuracy . 44

5.4 Algorithm Runtime . 45

5.5 Summary . 47

6 Conclusion & Outlook 49

A List of Acronyms 51

Bibliography 53

List of Figures

1.1 Mobile OCR Applications . 2

2.1 Street View Text (SVT) Dataset Samples 6

2.2 Homography Geometry . 6

2.3 Metric Plane Rectification . 7

2.4 Angle based Error Definition for Vanishing Point Detection 11

2.5 Stroke Width Transform Example . 14

2.6 Stroke Width Transform Algorithm . 15

2.7 Ambiguity of first pass in Stroke Width Transform (SWT) 16

2.8 Extremal Region Component Tree . 17

3.1 Scene Text Character by Rong et al. 24

3.2 SWT-SIFT . 25

3.3 Particle Filtering Process . 27

3.4 Multiple Frame Integration . 28

4.1 Pipeline Processing . 32

4.2 Pipeline Modules . 33

4.3 Pipeline Processing Example . 34

4.4 Plane Rectification Verification . 35

5.1 Sample Frame of Evaluation Datasets . 41

5.2 Multiframe Integration over Time . 44

5.3 Degenerated Multiframe Integration over Time 46

5.4 Recognition Rates . 46

xiii

List of Tables

5.1 Evaluation Dataset Specifications . 40

5.2 Detection and Tracking Accuracy . 43

5.3 Recognition Rates depending on different MFI Methods 45

5.4 Recognition Rates with ECC Registration 47

5.5 Average Time Performance Measurements 47

xv

1
Introduction

Contents

1.1 Motivation . 1

1.2 Contribution & Outline . 3

1.1 Motivation

The task of Optical Character Recognition (OCR) is one of the oldest challenges in com-

puter vision. Since, its beginnings in mid of the last century a vast amount of research

has been published and outstanding progress has been made. Thus, text recognition

given an image of a well segmented, orthogonally viewed document using standard fonts

is considered to be solved.

Still, needless to say, text is not limited to this constraint setup and occurs in our

everyday life in almost any surroundings and situations. Hence, the applications of OCR

are almost unmanageable. Information retrieval from video imagery for indexing, camera

based aid for visually impaired, traffic sign detection and recognition as part of Advanced

Driver Assistance Systems (ADAS) are only a few examples. Detecting and recognizing

text in such cases is still a topic of nowadays research.

The ICDAR 2015 Robust Reading Competition received a total of 44 newly introduced

submissions [29]. The tremendous variety in color, font, size or stroke-width text in natural

scenes can take on, is a difficult challenge for researchers. One possibility to improve the

particular algorithms is to exploit the redundant information available in video data. Since

they are often provided for free, multiple frames showing the same text can be utilized to

enhance the recognition experience.

Text in videos is generally divided in two categories: Caption and scene text. Caption

text is artificially overlaid on television or movies to provide additional information for

the viewer e.g. the end credits or a label indicating the talking person’s name during

1

Reference:

 ()

2 Chapter 1. Introduction

an interview. This type of text most often is clearly legible, likely related the to video’s

content and thus, valuable for indexing the respective type of video data.

What remains is scene text occurring in the depicted scene itself e.g. on signs of all

kinds, license plates or packaging just to name a few possibilities. Contrary to caption

text it can be distorted depending on the relative viewing pose and as already mentioned

can take on an enormous variety. Therefore, algorithms have to adapt to a vast amount

of possibilities to robustly spot and recognize such texts. Additionally, the readability of

scene text depends on many more factors. For example obstacles, reflections or specular

highlights can obscure parts of the desired text and complicate a successful recognition.

(a) (b)

(c)

Figure 1.1: Several applications of text recognition on mobile phones. In (a) a winning code on a
can lid is scanned, image (b) illustrated the scan of an International Bank Account Number (IBAN)
to speed up a transaction process and in (c) scene text is recognized, translated and overlaid in
the display. Image taken from web source1 and [16].

With the general availability of mobile devices including high resolution cameras within

the last decade, the demand on such applications even increased. An enormous amount of

1https://www.anyline.io/

Reference:

 ()

1.2. Contribution & Outline 3

unique video data is produced every day. Text in such videos is an ideal source of informa-

tion to subscript and categorize this huge volume of data. However, text recognition on

mobile hardware itself even has a remarkable number of further applications. It is already

used to overlay text with a respective translation2 or scan in transfer forms, passports and

meter readings3 just to name a few examples.

A significant part of these applications requires a nearly failsafe text recognition. Nev-

ertheless, especially using mobile hardware the setups can vastly differ. There is great

variety in hardware and in environmental conditions. This fact makes the task of robust

text recognition even more challenging. Nevertheless, the text information is almost always

redundantly available respectively the text is visible in multiple frames of a camera stream.

Integrating this information can avoid failures and substantially increase the recognition

certainty. This process is often referred to as Multiple Frame Integration (MFI).

1.2 Contribution & Outline

In this thesis we will propose a modular text processing pipeline capable of running on

state-of-the-art mobile devices in real-time. In a fully-automatic procedure text is detected,

tracked and integrated. A modular design allows the exchange of these modules as well

as to simply integrate a recognition engine.

In the following we are going to give an overview of nowadays research on video text

detection, tracking and recognition. Thereby, thoughts relevant for this thesis are consid-

ered in detail. Chapter 2 is limited to considerations applicable to individual frames. We

will review related work in text detection and recognition. These methods are often the

basis of multi frame approaches.

Afterwards, Chapter 3 extends the consideration to essentially enhancements possible

with the exploitation of multiple frames. As a consequence, research in the field of object

tracking and MFI , i.e. the fusion of the available information in the context of text

recognition will be described.

In Chaper 4 we are going to give an overview of our approach and subsequently describe

the different parts of our pipeline in detail. Finally, we present an evaluation on an use-case

dedicated for MFI (Chapter 5), before giving an outlook and conclude the achievements

in Chapter 6.

2For example the mobile phone app WordLense (http://questvisual.com/) or in research [16, 67]
3https://www.anyline.io/

Reference:

 ()

2
Text Detection and Recognition in Still Imagery

Contents

2.1 Plane Rectification . 5

2.2 Text Detection . 12

2.3 Text Recognition . 20

2.4 Summary . 21

Given an orthogonal view on a binarized, well formatted text document using standard

printed text fonts, Optical Character Recognition (OCR) is considered solved. Even on

handwritten text recent research achieved human-competitive performance on the widely

used MNIST [11, 83] dataset.

However, so-called scene text in natural scenes can take on comprehensive variety. Fig-

ure 2.1 shows sample images as part of the Street View Text (SVT) dataset [84]. The task

to detect and recognize text in this uncontrolled environment faces numerous challenges

like different size, resolutions, colors and perspective distortions. Hereafter, we will survey

methods approaching these problems.

2.1 Plane Rectification

Text in images of natural scenes often experiences strong distortion. A text detection

and recognition module must adapt to that in order to function robustly. Contrary,

there is the possibility to add image rectification as a preprocessing step i.e. providing

an undistorted orthogonal view on the text as input for detection and recognition.

Generally, this may be a hard task. Nevertheless, in most cases words are written on a

nearly planar surfaces. Thus, it is reasonable to model the distortion with a projective

transformation. As a consequence, a simple matrix transformation is sufficient to

transform distorted pixel coordinates into their rectified pendants. Please note, that

throughout this thesis the term rectification is used in this context and not as the stereo

5

Reference:

 ()

Reference:

 ()

6 Chapter 2. Text Detection and Recognition in Still Imagery

Figure 2.1: Samples of the Street View Text (SVT) dataset [84] harvested from Google Street
View. Scene text with high variability in different outdoor scenes.

vision problem image rectification.

In the following, we will review the underlying basics and summarize common approaches.

As well known, any two images of a world plane are related by a projective transfor-

mation1 [21]. This means, there exists a 3× 3 matrix H, which maps the two dimensional

H

C
L C

R

Figure 2.2: Corresponding points in different images representing the projected point on a world
plane are related by the homography H.

1Assuming a pinhole camera model [21].

Reference:

 ()

Reference:

 ()

Reference:

 ()

2.1. Plane Rectification 7

point x in homogeneous coordinates in the first image to its corresponding point x′ in the

second image (see Figure 2.2) with

x′ = Hx. (2.1)

The projective transformation as well as the matrix are often referred to as homography,

which has 9 entries, but only is defined up to scale. Hence, it has 8 Degrees of Freedom

(DOF).

The target of plane rectification is now finding the transformation from a given image to

a hypothetical one whose camera image plane is parallel to the world plane. The result

would be an image showing a world plane without any distortion exceeding the class of

similarity transforms, i.e. the world plane would be metrically rectified [41]. Figure 2.3

shows a possible input and result of a metric rectification.

Figure 2.3: A perspectively distorted plane is metrically rectified.

To put it simply, the image shows the world plane with at most an isotropic scaling,

rotation or translation to a certain extend. Most text detection and recognition methods

can handle such an input. Some methods require text to be aligned horizontally

or at least allow to speed up text detection under this assumption. Neverthe-

less, in practice proper rotation is generally achieved with no greater effort or given for free.

Assuming a pinhole camera model [21] a homogeneous world coordinate

X = (X,Y, Z, 1)T is projected to an image coordinate x with

x = PX, (2.2)

where P is the 3 × 4 projection matrix. For simplicity, we assume a world coordinate

system such that every point on the world plane, which we want to rectify, has Z = 0.

Reference:

 ()

Reference:

 ()

8 Chapter 2. Text Detection and Recognition in Still Imagery

Thus, we can reduce world coordinates to X = (X,Y, 0, 1)T and leave out the third row

of the projection leading to a 3× 3 homography M. Its inverse

H = M−1, (2.3)

is the desired rectification homography, since it maps arbitrary x to an image with a

camera image plane identical to the world plane [35].

2.1.1 Estimation of the Rectification Homography

What remains is the task of finding the proper homography to metrically rectify the image.

In the following, we will review two possibilities in the context of text detection.

2.1.1.1 Detection of Rectangular Regions

A common and well known way to estimate a homography between two images of the

same planar surface is to establish point correspondences. Coordinates of at least 4 non-

collinear points x′ on the world plane and its projections x in the given image [21] have

to be known. A homography H needs to satisfy 2.1 for all points. Since homogeneous

coordinates are considered, the equality in Equation 2.1 is only defined up to scale. To

take this into account commonly

x′ ×Hx = 0 (2.4)

is used, where ’×’ denotes the vector cross product. Given 4 point correspondences, there

is an exact solution for H. Having more than that leads to an over-determined system of

equations. Most certainly there will only be an approximate solution due to measurement

noise. There are several algorithms applicable to solve this type of linear problem, e.g.

the Direct Linear Transformation (DLT) [21].

Many planar surfaces especially the ones containing text do have rectan-

gular shape. Commonly, in images they are perspectively distorted and are

depicted as general quadrangles. Suppose that the aspect ratio of the actual rect-

angle is known, metric plane rectification could be easily done by detecting the quadrangle.

The detection of rectangular regions has many applications as in object extraction

especially in areal images, in augmented reality pipelines or license plate detection. Hence,

there is a decent amount of research available. Lin et al. [44] used primitives likes edges

and corners to form and verify rectangle hypotheses in building extraction. This procedure

is often adapted in subsequent research [78]. Lagunovsky et al. [34] grouped line segements

together, computed intersections to estimate quadrangles and approximated rectangles for

object recognition.

A lot of research in this field is based on the Hough Transform (HT). Zhu et al. [97]

introduces an rectangular HT to efficiently detect rectangles under the assumption that

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2.1. Plane Rectification 9

the dimensions of the rectangular shaped objects are constant and known. Jung et

al. [28] proposed a windowed HT . Thereby, line segments will be detected and grouped

together, if certain geometric conditions are fulfilled.

Hartl et al. [20] proposed a rectangular region extraction approach capable of running

efficiently on mobile devices. The method used a highly optimized and stack-based Canny

edge detector and filtered text before line detection. The high frequent structures caused

by text provoke a strong but false impact to the HT ’s accumulator space. In order to

roughly detect text, connected component are examined for certain criteria e.g. height,

amount of pixel or aspect ratio relative to the particular bounding box.

After HT , the detected lines are grouped and filtered by their orientation to establish

hypotheses for quadrangular structures. The resulting candidates are ranked. A dilated

edge image is used to compute the support for each hypotheses. The best one is taken

and is assumed to form the dominant rectangular region in the given image.

2.1.1.2 Vanishing Points

Manmade planar surfaces often possess texture containing parallel lines like on house

fronts, documents or signs. Experiencing perspective distortion in images, these lines

intersect in vanishing points, usually outside the image. Hereafter, we will consider

a simple metric rectification using at least two vanishing points first introduced by

Liebowitz et al. [41].

On a projective plane all vanishing points lie on the line at infinity l∞. So given two

vanishing points u and v it is easily computed by

l∞ =
(
l1 l2 1

)T
= u× v. (2.5)

In an image of a world plane experiencing perspective distortion vanishing points as

well as the line at infinity are mapped to finite states. Thus, a transformation with the

aim to undo this distortion must map all points x∞ = (x, y, w) on this line back to infinity.

For that coordinate w has to become zero, which leads to the matrix

HP =

1 0 0

0 1 0

l1 l2 1

 . (2.6)

After this transformation images are affinely rectified. The subsequent step is getting

from affine to metric rectification. Therefore, the points

uA = HPu, vA = HPv, (2.7)

which are the affine counterparts of the vanishing points u and v, are computed. They lie

Reference:

 ()

Reference:

 ()

Reference:

 ()

10 Chapter 2. Text Detection and Recognition in Still Imagery

at infinity and represent directions. To remove skew and restore angles, the images have

to be rotated such that uA is aligned with the horizontal axis:

HR =


uAx
‖uA‖

uAy
‖uA‖ 0

− uAy
‖uA‖

uAx
‖uA‖ 0

0 0 1

 . (2.8)

Afterwards the transformation

HA =

1 −cot(θ) 0

0 1 0

0 0 1

 (2.9)

is applied, whereas θ denotes the angle between the directions uA and vA. There may

still be a non-isometric scaling in one of the now orthogonal directions uA and vA. If a

length ratio of the world plane is known, it can easily be corrected with

HS =

µ 0 0

0 1 0

0 0 1

 , (2.10)

while µ denotes the prevalent aspect ratio. The entire transformation H for metric recti-

fication can be composed as

H = HSHAHRHP. (2.11)

Of course all considerations above rely on a robust vanishing point detection.

Pilu et al. [69] exploited the structure of textural documents. Text is grouped using a

proximity measurement to extract directional features and Random Sample Consesus

(RANSAC) [15] to robustly estimate vanishing points. Miao and Peng [53] used

morphological operations in order to obtain connected text and fit lines.

Yin et al. [92] proposed a fast vanishing point estimation dedicated for mobile devices.

They perform a clustering and voting scheme on the Gaussian sphere in order to deal with

problems based on viewpoint sensitivity and noise.

Hereafter, we will review a simple algorithm capable of finding multiple vanishing

points first introduced by Nieto et al. [65]. It uses the M-Estimator Sample Consensus

(MSAC) algorithm [80] in combination with an error function which is based on the angle

between a proposed vanishing direction and a directional image feature.

Two different image features are used to get an idea of a vanishing direction, significant

gradients and line segments. Let assume that a single feature sample x is parametrized

by its homogeneous coordinates r = (x, y, 1)T , i.e. the gradients position respectively

the midpoint of the line segment, furthermore the line t = (t1, t2, t3)
T representing the

proposed vanishing direction.

Reference:

 ()

Reference:

Fischler, Martin A. and Bolles, Robert C. (1981)
Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2.1. Plane Rectification 11

In an ideal situation, an actual vanishing point v = (v1, v2, v3)
T lies on every feature’s

directional line t by means of

v · tT = 0. (2.12)

Needless to say, due to outliers, noise and poor feature extraction the result will deviate

from this expectation. A certain error will occur for all features. Thus, the aim is now to

find a vanishing point ṽ which robustly minimized this error.

v

l

rs
θ

Figure 2.4: An image feature with position r and its proposed vanishing direction l deviate from
a vanishing hypothesis v. The error definition is based on the angle included by the lines l and
s = v × r.

Nieto et al. propose a definition based on the angle θ between t and the line passing

through the feature position and the vanishing point s = r× ṽ (see Figure 2.4):

d(x, ṽ) = |sin(θ)| =

∣∣∣∣∣ −t2s1 + t1s2√
t21 + t22

√
s21 + s22

∣∣∣∣∣ . (2.13)

The sine is chosen since sin(θ) ' θ for small θ and expensive trigonometric is avoided.

Not all features are equally meaningful. Higher gradients and longer line segments make

most likely a better statement. Hence, it is reasonable to add a weighting W

d′(x, ṽ) = W · d(x, ṽ). (2.14)

Assuming Gaussian noise the probability that a feature x points to the vanishing direction

is

p(x|ṽ) ∝ exp
(
− 1

2σ2
d2(x, ṽ)

)
. (2.15)

Given a set of N features X = {xi}Ni=1, the likelihood that all features meet a single

vanishing points is then

p(X|ṽ) =

N∏
i=1

p(xi|ṽ). (2.16)

Under the assumption that 2.15 is normal, i.e. σ = 1, the maximum likelihood is found by

minimizing the sum of squared errors E =
∑N

i=1 d
2(xi, ṽ). Since, this a highly non-linear

problem, the Levenberg-Marquardt [37] method is proposed for solving it.

Up to now only a single vanishing point and no outliers were considered. Hence,

Reference:

 ()

12 Chapter 2. Text Detection and Recognition in Still Imagery

MSAC is used. It generalizes RANSAC through providing a more descriptive definition

of an hypothesis cost.

Both algorithms select a random minimum subset of samples to establish a hypothesis

and evaluate the consensus. Here, two feature’s line parameters are used to compute an

estimated vanishing point v∗ = li×lj. A threshold T is defined for the error, differentiating

between in- and outlier regarding the current hypothesis. RANSAC tries to maximize the

cardinality of the consensus set

CS(v∗) =
{
xi ∈ X : d2(xi,v

∗) < T
}
, (2.17)

containing all features which match the hypothesis. Contrary, instead of simply counting

the inliers, MSAC proposes to sum up the error itself truncated by the threshold to obtain

the global loss

E(X ,v∗) =
N∑
i=1

e(xi,v
∗), (2.18)

whereas

e(xi,v
∗) =

{
d2(xi,v

∗) d2(xi,v
∗) ≤ T

T otherwise
. (2.19)

Thereby, with no greater effort a more precise consensus evaluation is achieved. Nieto et

al. also proposes Maximum Likelihood Estimation Sample Consensus (MLESAC) [80] as

an even more accurate way to model inlier and outlier. It evaluates the hypothesis based

on a probability distribution modeling inlier and outlier error. Assuming a Gaussian

distribution for an inlier and a uniform distribution for an outlier this leads to

p(xi,v
∗) = γe

(
− 1

2σ2
d2(xi,ṽ)

)
+ (1− γ)

1

dmax
, (2.20)

whereas γ is the prior probability of a feature being an inlier and dmax is the maximal

possible error. Since the prior probability is not known, an Expectation Maximization

(EM) approach is used to estimate it.

2.2 Text Detection

The aim of text detection is to spot and localize text in an image. The output of this

step is usually a bounding box or even a pixel-wise segmentation. The related methods

are usually categorized into Connected Component Analysis (CCA) and sliding window

approaches. In the following, we will summarize both methods and give a short overview

of the related research.

Reference:

 ()

2.2. Text Detection 13

2.2.1 Sliding Window Methods

These methods generally examine an image with a sliding window of multiple scales and

utilize a subsequent classifier to spot text. Chen et al. [10] proposed an AdaBoost machine

learning algorithm. They analyzed various image features on text and non-text to find

good indicators. The resulting weak classifiers are used as input for AdaBoost to train a

strong classifier.

Recent research used deep learning respectively Convolutional Neural Networks (CNNs).

In [86] an entire end-to-end text recognition was build in this manner. During an unsu-

pervised step low-level features are learned and fed into two CNNs, one for each, detection

and recognition. Jaderberg et al. [26] used four different networks which share the same

two input layers for low-feature extraction to learn a character/non-character classifier,

case-insensitive character classifier, case-sensitive character classifier and a bigram classi-

fier.

2.2.2 Connected Component Analysis

CCA tries to group characters together by exploiting properties, which the entire text

has in common like color, size or stroke width. Thereby, text proposals are established.

Generally, a verification step is appended to refine the result. Color bleeding, low resolution

and perspective distortion can mitigate the results of this approaches. Contrary, the

computation complexity usually does not depend on the text properties itself and most

often a segmentation for recognition is provided with no additional effort. Distinguished

outcomes can be achieved with this methods. Some of the most successful concepts in this

category rely on the Stroke Width Transform (SWT) or Maximally Stable Extremal Region

(MSER). In the following, we will outline the underlying principles of these approaches

and review some applications.

2.2.2.1 Stroke Width Transform

The SWT operator first introduced by Epshtein et al. [13] exploits the constant stroke

width of characters within text. It computes pixel-wise the width of the stroke it is

most likely related to. Thus, the output is an image of same size as the input, with the

width of the respective related strokes stored in each pixel. An example is illustrated in

Figure 2.5.

First the output image is initialized with ∞. To obtain the stroke’s boundaries,

Canny edge detection [8] is performed on the input. Two parallel running boundaries

with nearly constant distance most likely form a stroke. To compute its width, each

boundary pixel p is considered. Searching along its gradient direction dp results

in finding pixel q on opposite site of the stroke. If gradient direction dq of pixel q

approximately points in opposite direction as dp each pixel along the segment [p,q] is

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

14 Chapter 2. Text Detection and Recognition in Still Imagery

(a) (b)

(c) (d)

Figure 2.5: Stroke Width Transform (SWT) applied to an image of SVT dataset. (a) shows the
input image. Canny edges detection is applied (b) and the SWT assigns the estimated width of
the particular strokes to each pixel (c). In (d) non-text regions are filtered. Not all characters were
detected.

assigned to ||p− q||, besides it already has a lower value. If no opposite pixel q is found,

or a smaller value is already assigned, no values are changed. Figure 2.6 depicts the

process for a single edge pixel.

After this first step especially in corners, pixel do not contain the actual stroke width

as depicted in Figure 2.7. Hence, each non-discarded search direction is passed again and

all pixel values are replaced by their former median. This ensures that each pixel value

along a search direction contains the same and most probable stroke width.

Given this output neighboring pixels are grouped together using the classical CCA

approach [22]. As association characteristic the SWT values are used and their ratio is

spatially limited to a certain value. This permits slightly varying stroke widths given

more exceptional fonts and perspective distortions. To detect dark text on bhright

background and vice versa, the steps above are executed with both, positive and negative

gradient direction.

Reference:

 ()

2.2. Text Detection 15

(a)

p

q

w

(b)

q

p

(c)

Figure 2.6: Stroke Width Transform (SWT) algorithm. (a) shows a typical stroke. (b) illustrates
the distance computation. After Canny edge detection at each border pixel it is searched in gradient
direction to recover the opposite border pixel. In (c) each pixel in search direction is assigned to
the distance w.

To identify actual letters from these components several learned parameter are proposed.

Among others the variance and aspect ratios of the stroke widths, the ratio between the

components diameter to the median stroke width and the dimensions of the components

are restricted. Finally, the often linear form of the text is used to group the letters into

text lines. Hence, similar properties like size, stroke width, average color and spacing is

exploited.

Due to its effectiveness, several researchers adopted the SWT . Yao et al.[90] enhanced

the component filtering and verification step: They proposed a two-layer method to discard

non-text regions, which exploits fast geometric heuristics and a more sophisticated trained

classifier. Later on, the classification was improved and dictionary based error correction

was introduced to enhance the recognition [89].

Huang et al. [23] introduced the Stroke Feature Transform (SFT), an extension of SWT

which additionally considers the color information. During the search for opposite pixel, it

Reference:

 ()

Reference:

 ()

Reference:

 ()

16 Chapter 2. Text Detection and Recognition in Still Imagery

(a) (b)

Figure 2.7: During first iteration of SWT the minimum distance is assigned to the respective
pixels (a). Especially in corners often not the actual width is assigned (b). Thus, a second pass is
needed to review all valid search directions and assign the median of widths to each pixel.

examines if there is no sudden color change along the gradient direction. Further, a second

output image is returned with each pixel containing the mean color of the respective stroke.

Both, the stroke color map and the stroke width map are used to improve the grouping

procedure.

2.2.2.2 Maximally Stable Extremal Regions

MSERs were originally introduced by Matas et al. [49] as an affine covariant and stable

blob detector. They were used to establish correspondences between images showing the

same scene under vastly different viewpoints and improve object detection.

Nevertheless, they experience a high acceptance as basis for text detection. In fact, al-

most all submissions at the ICDAR 2015 Competition on Robust Reading contest make

use of a segmentation based on the MSER algorithm [29]. Hereinafter, we will outline the

underlying principles.

We will assume a gray valued image Iin with intensity values S = {0, 1, ..., 255}2. Consid-

ering a thresholding at every intensity value t results in the binary images

Itb =

{
1 if Iin ≥ t
0 otherwise

. (2.21)

We will refer to pixels with values zero and one as black and white respectively in the

following. Let threshold t grow in the interval [min(Iin),max(Iin)]. The higher it gets,

the more pixel are set to zero. Beginning with an entire white image, black regions will

appear, grow and merge until the white area finally disappears. In each of these binary

2MSER can be defined on any image as long there is a total ordering.

Reference:

 ()

Reference:

 ()

2.2. Text Detection 17

images Extremal Regions (ERs) can be recovered. An ER Q is defined by

∀p ∈ Q,∀q ∈ boundary(Q) −→ Ib(p) ≤ Ib(q), (2.22)

i.e. a contiguous region which outer boundary pixels have strictly higher values than

the region itself. With the thresholded binary images in mind they are black contiguous

regions surrounded by white pixels3. This concepts relies on a certain definition of adja-

cency relation or contiguity. Matas et al.propose a 4-neighborhood where every pixel with

the coordinates

(x± 1, y) or (x, y ± 1) (2.23)

is connected to the pixel at (x, y).

Starting with the ER at t = max(Iin) as root, a component tree can be introduced. Each

node represents an ER and the tree depth is related to the decreasing threshold t. If an

ER is split up due to a lower threshold, the particular tree node will have a child for each

part. Thus, the tree’s edges represent an inclusion relation, i.e. if a region R is the child

of a region Q this means that

∀p ∈ Q −→ p ∈ R. (2.24)

Threshold t=220

Threshold t=216

Threshold t=210

Threshold t=165

Threshold t=125

Threshold t=85

Figure 2.8: Extremal Region (ER) component tree showing the different thresholded binary
images and their inclusion relation. The letter k stays nearly unchanged over a wide range of
different thresholds and hence is most likely an Maximally Stable Extremal Region (MSER).

Figure 2.8 depicts a simplified ER component tree sampling certain thresholds. As

3In accordance to [49] they are referred to as minimum intensity regions.

Reference:

 ()

18 Chapter 2. Text Detection and Recognition in Still Imagery

can be seen, the letter k stays nearly the same respectively is stable over a wide range

of thresholds t. Connected components which maximize this stability property are the

wanted MSERs. What remains is to give a precise definition of this stability criteria.

Let Q1, ...,Qi,Qi+1, ... be a set of nested ERs, i.e. they are nodes on a path of the

component tree and Qi ⊂ Qi+1. The variation or instability Ψ of a region Qi is given by

Ψ(Qi) = |Qi+∆ \ Qi−∆| / |Qi|, (2.25)

whereas |.| denotes the cardinality. ∆ is a parameter of method and influences the

range over witch the instability is considered. The region Q∗i which minimizes Ψ along a

path to the root is considered a MSER.

A lot of research used the MSER algorithm to establish text candidates. Needless to

say, a lot of non-text regions are MSERs as well. Thus, a subsequent verification step is

commonly used to discard non-text regions.

Chen et al. [9] enhanced the mask of an MSER with the help of Canny edges from the

original gray-scale image: To remove over-segmented pixels in blurry images, foreground

pixels are pruned along the gradient direction of the edges. Subsequently, an adapted

distance transform estimated the stroke width of each pixel. Connected components with

a large variation in stroke width were discarded. Contrary, they were grouped into text

lines by similar stroke width and proximity.

In [74] Shi et al. formulated the categorization into text/non-text as minimal cut

problem of an undirected graph. Each MSER denotes a node and is connected to similar

and nearby pendants as well as to two terminals, a foreground and a background node.

The weighted edges were cut in a minimal sense leaving labeled regions, which are grouped

into words and text lines by exploiting several similarity and proximity heuristics.

Koo et al. [31] clustered MSERs by pair-wisely examining adjacency relationships with

an AdaBoost classifier. The candidates are geometrically normalized, binarized and fed

into a multilayer perceptron classifier to filter non-text regions.

Depending on the parametrization, simple MSER extraction can lead to multiple

hierarchically redundant and overlapping text candidates. Yin et al. [93] filtered MSERs

by additionally (see Equation 2.25) penalizing a degenerated aspect ratio of the region.

Thereby, characters are most likely preferred over child/parent regions. Text is grouped

using a single-link clustering approach [27] whilst exploiting distance measurements

computed by a self-training learning algorithm.

The adaptation of ER by Neumann and Matas [60–64] is one of the most successful

end-to-end scene text localization an recognition approaches. The pipeline is referred to

as TextSpotter 2013. They examined the set of ERs in order to efficiently select character

proposals. During an exhaustive search [61] they are grouped into words.

They exploited the inclusion relation denoted in Equation 2.24 to efficiently compute

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2.2. Text Detection 19

descriptors which should indicate whether an ER is a character or not: A region Qt at

threshold t contains the union of some (or none) ERs at (t − 1) and the adjacent pixels

with value t. Thus, they chose descriptors which deliberate this property i.e. can be

computed using the including ER’s descriptors and the additional pixels.

More specifically let assume that the regions {Qt−1} and the pixels {p : Iin(p) = t}
form the ER Qt. Then the descriptor φ(Qt) is computed by

φ(Qt) =

(
⊕ φ(Qt−1)

)
⊕
(
⊕ ψ(p)

)
, (2.26)

whereas ⊕ denotes an operation which combines the descriptors of regions respectively

pixels and ψ(p) is a function that initially computes the descriptor for the additional pix-

els.

Assuming this property, the descriptors for all ER can be computed by successively in-

creasing the threshold t and using the respective preceding descriptors. Only the ones

from the last step have to be stored, which decreases the storage footprint.

Neumann and Matas proposed the following descriptors:

Area a. The cardinality of pixel in an ER. Thus, ψ(p) = 1 for all p and ⊕ denotes a

simple addition.

Bounding box (xmin, ymin, xmax, ymax). The initial function ψ(p) for pixel with co-

ordinates (x, y) returns the quadruple (x, y, x+ 1, y + 1) and the combination function ⊕
denotes a min/max operation respectively. From this descriptor width w and height h

are derived.

Perimeter p. The boundary length of an ER. Depending on the adjacency of a newly

added pixel ψ(p) is computed by

ψ(p) = 4− 2na, (2.27)

whereas na is the number of adjacent pixels having less or equal value i.e. belonging to

the region itself. The operation ⊕ again is an addition.

Euler number η. The Euler number (genus) of an binary image is the difference be-

tween the number connected components and the number of holes. A simple algorithm [70]

counts specific 2× 2 pixel patterns often referred to as quads:

P1 =

{
1 0

0 0
,

0 1

0 0
,

0 0

0 1
,

0 0

1 0

}
(2.28)

P2 =

{
0 1

1 1
,

1 0

1 1
,

1 1

1 0
,

1 1

0 1

}
(2.29)

P3 =

{
1 0

0 1
,

0 1

1 0

}
. (2.30)

Reference:

 ()

20 Chapter 2. Text Detection and Recognition in Still Imagery

If n1, n2, n3 are the number of the occurrences belonging to the particular quad group

P1, P2, P3 respectively, then the Euler number is computed by

η =
1

4
(n1 − n2 + 2n3). (2.31)

Therefore, the initialization function ψ(p) simply needs to count the number of changing

quads ∆n1, ∆n2, ∆n3

ψ(p) =
1

4
(∆n1 −∆n2 + 2∆n3) (2.32)

and the combining function ⊕ again is reduced to a simple addition.

Horizontal crossings ci . The horizontal crossing ci is obtained by counting the

transitions between region and non-region along a horizontal line at row i of the region.

The function ψ(p) just needs to examine the two horizontal adjacent pixels and ⊕ is a

element-wise vectorial addition.

Given this feature descriptors, a Real AdaBoost [73] classifier with decision trees is

employed to estimate the probability p(character|Q) of region Q being a character. Incre-

mentally the threshold is increased, descriptors are computed and only ERs corresponding

to a local maximum of p(character|Q) are passed to a second classification step. More

expensive but more distinctive features in combination with a Support Vector Machine

(SVM) classifier are used to finally determine whether a region is a character or not.

Supplementary to the features mentioned above the following ones were proposed:

Hole area ratio ah/a. ah denotes the number of pixels belonging to pixel holes.

Convex hole ratio ac/a. ac denotes the number of pixels within the convey hull of

the area.

Number of outer boundary inflexion points κ. The number of transitions

between convex and concave angles of the boundary pixels of a region. Compared to

other regions this number is usually quite small considering characters.

By now, only dark text on white background was considered. In order to detect the

opposite too, the process is simply repeated for an inverted input image. Further, the

proposed features are scale-invariant but not all are rotation invariant. To detect multiple

oriented text as well, it is proposed to rotate the image step wise.

As already mentioned, in a final exhaustive search [61] step the ERs still classified as

characters are grouped into words4.

2.3 Text Recognition

Text recognition is the task of converting an image representation of text into a string. In

research (scene) text recognition is often done employing existing and commercial OCR

4ER/MSER-based text tracking is described in Section 3.1.1

Reference:

 ()

Reference:

 ()

2.4. Summary 21

solutions [10, 32, 33]. Recently, words usually are the central focus of most recognition

approaches. Due to their compactness they are easy to segment and group. Further,

high level priors can be introduced by statistically analyzing the morphological and lexical

structure of speech [55, 75, 87].

Nevertheless, text recognition relies on a proper segmentation. If not already provided

by a prior text detection, a particular dedicated step has to be appended e.g. Saidane and

Garcia [72] introduced a CNN -based binarization to robustly segment text from complex

background.

Contrary to these segmentation-based word recognition methods, the field of word spot-

ting tries to spot a word out of a certain set without any character segmentation [48, 84].

Recently, some research focused on designing and learning CNNs capable of processing

words as a whole [24, 25]. In [3] CNNs are used to project text images as well as embedded

labels into a common subspace where they are comparable.

2.4 Summary

In this chapter we reviewed text detection and recognition approaches with the focus on

scene text in single images or individual frames. We summarized the occurring problems,

which are associated with the great variety of text in natural scenes as well as approaches

to solve them.

Possibilities to rectify perspectively distorted text were stated, either based on vanish-

ing point or rectangular region detection. Further, we resumed the two main categories

regarding text detection: CCA methods, which try to associate and segment possible text

regions exploiting their common properties e.g. color/intensity or stroke-width and sliding

window methods, which examine the texture within a search window to determine whether

text is present or not. Finally, we summed up text recognition methods especially designed

for scene text.

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

3
Text Detection, Tracking and Recognition in Videos

Contents

3.1 Text Tracking . 23

3.2 Multiple Frame Integration . 28

3.3 Summary . 30

Hereinafter, we will extend the considerations of Chapter 2 to video footage. Obviously,

a lot concepts apply to multiple frames as well. Nevertheless, the temporal redundancy

in videos opens possibilities to more enhanced methods which are more robust and may

process text even faster, especially under challenging circumstances. Typically text is

detected and tracked over time. As a result multiple images of the same text are available.

They can be used to create a single more legible image of the text or to provide multiple

recognition results. Either way, there is the opportunity to decrease the number of false

recognitions.

Additionally to scene text, videos often contain caption text, i.e. artificially overlaid

text especially occurring in television and movies. In general such texts are more legible

and easier to track due to the restricted motion. In the following, the possible approaches

in accordance to nowadays research are reviewed.

3.1 Text Tracking

The aim of text tracking is to follow the position of text in consecutive frames within

video streams. Needless to say, standard video tracking approaches are often applicable to

text as well. Thus, their categorization can be done similar. Usually methods are divided

into tracking with template matching, particle filtering or tracking-by-detection. In the

following, we will give a short overview of possible approaches in the context of video text.

23

24 Chapter 3. Text Detection, Tracking and Recognition in Videos

Figure 3.1: Schematic illustration of the scene text detection and tracking framework by Rong et
al. [71]: First text regions are extracted by grouping together Maximally Stable Extremal Regions
(MSERs) due to size and alignment. Then each Scene Text Character (STC) is tracked indepen-
dently. The estimated trajectories are used to improve text recognition. Image taken from [71].

3.1.1 Template Matching

Template matching basically tries to find the same feature under a different view in fol-

lowing frames. It searches for the most similar region in a frame given an image patch.

Therefore, a feature representation and a similarity measurement is essential.

The feature extractor and descriptor are the most important parts of trackers [85]. Since

they have plenty of applications, various well researched and widely used feature represen-

tations are available nowadays. Nevertheless, in the following we will examine only those

applied in the context of text tracking. For a general summary we would like to refer to

a more detailed survey e.g. [81].

Early work often focused just on caption text to categorize and semantically investigate

video data. This overlaid text most likely is static or moves linearly e.g. the end credits of a

movie. Even if it is static it is helpful to regard small translation for a few pixels. Lienhard

and Stuber [43] matched the entire text region with its surrounding in subsequent frames

using Mean Absolute Difference (MAD). Li et al. enhanced this approach by postulating

the position of uniformly moving text to decrease the necessary search radius [38]. Later

on [39] they achieved a speed up and sub-pixel accuracy by means of an image pyramid

and added a contour based stabilization step to perform long-term tracking [40]. As a

result of considering all sorts of scene text as well, more advanced motion have to be

utilized. Text most often is written on nearly planar surfaces and hence, depending on

the camera movement can experience various perspective distortions.

Na and Wen [59] used Scale-invariant Feature Transform (SIFT) [46] to extract features

in an region around the detected text. They perform Nearest Neighbor (NN) matching

to establish correspondences and handled motion estimations up to similarity transforms.

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

3.1. Text Tracking 25

To eliminate outliers they analyzed the relative distances between feature points in the

reference frame and assume that the corresponding distances should scale uniformly in the

target frame. Phan et al. [68] introduced a scheme called SWT-SIFT : Given a bounding

box around detected text they performed a Stroke Width Transform (SWT) [13] to obtain

the text’s edges and computed SIFT feature descriptors at fixed scale and each of the

resulting pixels. Thereby, the number of extracted features was increased on low resolution

video text. The homography estimated via Random Sample Consesus (RANSAC) was

refined by sliding the SWT mask over the result.

(a) (b)

(c) (d)

Figure 3.2: SWT-SIFT scheme by Phan et al. [68]: They compute SIFT [46] descriptors at each
pixel of the text’s edges obtained by SWT . At the top the comparison of the amount of extracted
features using native SIFT (a) and SWT-SIFT (b) is illustrated. At the bottom the NN matching
of SIFT (c) and SWT-SIFT (d) is compared. Images taken from [68].

Fragoso et al. [16] assumed text on nearly planar surfaces and performed short-term

tracking on a mobile phone using Efficient Second Order Minimization (ESM) [6]. ESM

iteratively minimizes the difference between a reference and a target frame assuming a

projective transformation. Since, it is costly for a large intra-frame movement, they assume

a sufficiently smooth motion of the camera. Yusufu et al. [94] used Speeded Up Robust

Features (SURF) [5] and Fast Library for Approximate Nearest Neighbors (FLANN) [57]

to extract and match features within caption text regions efficiently. Instead of RANSAC

an efficient histogram based algorithm was introduced to remove false matches.

Hartl et al. [20] assumed text on a planar rectangular region and computed an initial

pose using BRISK features [36]. This information is passed to a highly optimized patch-

based tracker [82]. The proposed method was able to run in real-time on State-of-the-Art

mobile phones.

Since MSER experience great acceptance as basis for text detection (see Section 2.2.2.2)

Gómez and Karatzas [17] adapted the efficient MSER tracking algorithm by Donoser and

Bischof [12]. Compared to full feature matching, the speedup is achieved by searching only

in a small window and looking only into a subset of levels in the component tree. However,

two changes to the original tracking module are proposed to exploit text specific properties

and thus enhance the tracking performance: Invariant moments are used as features to

increase the robustness compared to the originally proposed simple but efficient features

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

26 Chapter 3. Text Detection, Tracking and Recognition in Videos

e.g. gray value or region size. Additionally, instead of single MSERs entire text lines are

considered. Hence mismatches, which are not compliant with a respective dominant line

model can be rejected. The proposed approach is suitable for running on restricted mobile

hardware.

3.1.2 Particle Filtering

Particle filtering, also called Sequential Monte Carlo method, is a filtering technique

estimating a dynamic process’s hidden state based on available observations. It

solves the problem of handling non-linear process models or not normally distributed

parasitic errors. Thus, it is popular for vision based object tracking. With particle

filters the conditional state density p(xt|yt) is represented by a set of N weighted

particles
{

(xt
(1), w

(1)
t), ..., (xt

(N), w
(N)
t)

}
. Considering a single particle xt

(n) at time

t, its weight w
(n)
t is adapted proportionally to the probability of the observation

p(yt|xt
(n)). To put is simply, the iterative process of particle filtering for text behaves

as follows: The amount and the weights of the particles represent the probability

of a certain state i.e. text position. In each step the particles are updated due to

a certain dynamic model and weighted based on an observation. Finally, particles

are re-sampled, i.e. it is ensured that
∑N

i=0w
(i)
t = 1 and strong particles are re-

placed by multiple equally weighted ones. Figure 3.3 schematically illustrates this process.

As for every tracker particle filtering, a sufficient robust feature representation is neces-

sary. Regarding text there has been research using projection profiles [50, 51], cumulative

histograms [18, 77] and Histogram of oriented gradients (HOG) [54].

Further, particle filtering requires a dynamic model, i.e. the definition how particles’

current states are predicting depending on their previous state. In [18, 77] just the velocity

was taken into account and the particle were scattered around the predicted center to bear

the uncertainty in mind. Merino et al. [50, 51] stated that the text movements are too

unpredictable and hence, utilized a constant position prediction model in combination

with an uniform and Gaussian random walk strategy.

Finally, it has to be defined how the particles weights are influenced by observations.

Tanaka and Goto [18, 77] weighted a particle with a measurement denoting the similarity

of the previous and current text block, provided the particle remains onto the text block,

otherwise it is discarded. Merino et al. [50, 51] compared the projected features’ position

with the actual text components found in the image. Minetto et al. [54] exploited the

Battacharyya’s similarity coefficient of the respective HOG descriptors.

3.1.3 Tracking-by-Detection

Tracking-by-detection methods detect text in each single frame separately and match the

detections. Therefore, different type of text features are used like color, position or gradient

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

3.1. Text Tracking 27

(a) (b)

(c) (d)

Figure 3.3: Tracking using particle filtering is illustrated: In (a) a particle lies on a text block pixel
set from the previous frame (light gray). The particle is scattered due to a dynamic model (b),
weighted on the basis of an observation (c) and resampled (d). Thereby, an association from
previous to current text block pixel can be established.

histogram. Since text detection tends to be computationally more expensive these methods

are usually not real-time capable. However, Tracking-by-detection approaches solve the re-

initialization problem after losing track of an object. Lienhard and Effelsberg [42] matched

characters detected in different frame with similar features, moving speed and time span

during they appear. Wolf et al. [88] performed a simple method. They matched bounding

boxes of the detected text by their overlapping ratio over consecutive frames.

Mi et al. [52] assumed non-moving caption text i.e. subtitles and thus, actually did

not perform tracking in the proper sense. Nevertheless, they detect whether the text has

changed by exploiting the region and the edge overlap.

Rong et al. [71] tracked each character independently by searching for the best match-

ing MSER. An motion trajectory is estimated and utilized to lead the text detection

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

28 Chapter 3. Text Detection, Tracking and Recognition in Videos

module in subsequent frames and mitigate the effects of motion blur. This process is

illustrated in Figure 3.1.

3.2 Multiple Frame Integration

Scene text in video footage often experiences low resolution, color bleeding or light reflec-

tions. However, due to poor video quality, even the usually better legible caption text

is sometimes hard to read. Common text recognition under this circumstances is error-

prone. Nevertheless, the text information in videos is highly redundant. Thus, multiple

frames can be exploited to integrate the required information and increase the probability

of getting a correct result. Basically a distinction can be made between recognition result

fusion and image enhancement methods. Figure 3.4 illustrated the difference between

these two categories.

Text
Recognition

Recognition
Result Fusion

Image
Enhancement

Text
Recognition

0 4 9 5 4

0 0 9 5 4

8 4 9 5 4

0 4 9 5 4

0 2 9 5 4

0 4 9 5 4

0 4 9 5 4

Figure 3.4: The two categories of Multiple Frame Integration (MFI): recognition result fusion
methods (top) perform text recognition on each frame separately and fuse the resulting text;
image enhancement methods (bottom) merge the frames itself to get a single more legible image
to perform text recognition on.

3.2.1 Recognition result fusion

Recognition result fusion methods try to recognize the text in each frame separately and

fuse/compare the gathered text to reject false recognitions and get a final text string. In

[43] simply the most frequent recognition result was taken.

Mita et al.[56] grouped redundant recognized characters by position and size and in-

troduced a voting system based on the recognition certainty of the OCR engine to obtain

a likely result. It considered that multiple characters can be spuriously recognized as a

single one or allegedly characters are added.

Additionally to majority voting procedure regarding each character, Rong et al. [71]

proposed a second fusion method. They employed a Conditional Random Fields (CRF)

model to constraint the intermediate result under lexical aspects.

Reference:

 ()

Reference:

 ()

Reference:

 ()

3.2. Multiple Frame Integration 29

Greenhalgh et al. [19] recognized text-based traffic signs and reviewed the ten most

recent recognition results. Entire words are weighted by their recognition certainty and

grouped together if recognized equally. The resulting histogram is used to obtain the most

probable text.

3.2.2 Image Enhancement

Approaches in the first category merge the frames itself to get a single more suited image

to perform text recognition on. Depending on the situation this could mean that the result

should be without any reflections or obstacles and better readable. A simple technique is

averaging and binarizing the multiple text masks to get more reliable one [39]. Wolf et

al. [88] scaled up each related text image using a modified bilinear-interpolation before

averaging and binarizing them to obtain an integrated output. An additional weighting

factor which depends on the temporal mean and standard deviation of a pixel increased

the robustness against outliers during the interpolation.

Zhen et al. [95] split up the text box into smaller boxes and averaged only the clearer

ones. Therefore, they detected and counted corners as contrast measurement. Instead

of averaging, Zhou et al.[96] chose the minimum/maximum intensity value of all corre-

sponding pixels, depending on whether the text is light on dark background or vice versa.

Unfortunately, this method is vulnerable to noise.

Mi et al.[52] mitigated this problem by adding an edge based integration step: Canny

edge detection is performed on each temporal instance of a text region. All edge images

are averaged, thresholded and morphological operations are used to improve the output.

Each edge in the result is associated with the corresponding region in the averaged text

mask. The number of edge pixels relatively to the number of mask pixels is used to reject

small non-text regions produced by noise. However, since the Canny algorithm returns

edges which do not exceed the width of one pixel, this approach obviously assumes strictly

static video text.

Yi et al.[91] filtered frames with blurred text before integration. They divided the

pixels p of the output image into text ttext and background tback by locally thresholding

the average of all frames using the Otsu method [66]. Afterwards they are integrated

separately. While considering bright text on a dark background, the text/foreground is

averaged and a minimum operator is applied to the background:

tint(p) =

{
min{ti(p)} p ∈ tback
1
M

∑
ti(p) p ∈ ttext

, (3.1)

ttext = {p|tavg(p) > Hotsu}, tback = {p|tavg(p) ≤ Hotsu}. (3.2)

t1, t2, ..., tm are the already filtered frames, whereas M denotes their total number. Hotsu

is the local Otsu threshold calculated in tavg.

In [45] and [94] a simple AND was applied to consecutive masks showing the same

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

Qiong Liu (2012)
A Survey of Recent View-based 3D Model Retrieval Methods

Reference:

 ()

30 Chapter 3. Text Detection, Tracking and Recognition in Videos

caption text. It filtered contradictory false positive pixels and retained stable ones.

3.3 Summary

In this chapter the concepts from scene text detection in still imagery were extended

to videos. The enhancements essential while considering video text were discussed. To

exploit the redundant information and improve robustness of text recognition multiple

instances of the same text have to associated. Therefor, different text tracking approaches

were summed up. Further, the information fusion process, often referred to as Multiple

Frame Integration (MFI), was treated.

4
A Pipeline for Scene Text Processing on Mobile Devices

Contents

4.1 Pipeline . 31

4.2 Requirements . 38

4.3 Summary . 38

In this chapter we are going to explain our proposed pipeline in order to detect, track,

integrate and recognize text on mobile phone hardware. It exploits multiple threads in

order to outsource the time consuming text detection module while tracking and recog-

nizing already detected text. The modular concept allows to exchange most of the parts

with little effort.

Further, our method was designed to operate without any user intention, by means of

tap gestures or manual settings. In other words it is capable of processing text in the

described manner just by aiming the camera into the right direction. In the following we

will first give an overview of our pipeline and afterwards describe each part in detail.

4.1 Pipeline

Without constraining practical use cases we make a few assumptions: (1) We postulate

that the text is written on a nearly planar surface (2) which is sufficiently textured for

feature-based tracking. Due to the text, this is almost always the case. (3) While the

short processing phase, we assume an adequately smooth motion of the camera i.e. a user

who does not shake the device.

Since nowadays mobile phones almost all own at least dual core processors, we use two

threads to process scene text. The main thread is responsible for tracking, Multiple Frame

Integration (MFI) and the actual recognition. The second thread performs text detection,

hence hereinafter referred to as text detection thread.

As soon as the camera is focused and aimed to a structured surface, tracking is triggered

31

32 Chapter 4. A Pipeline for Scene Text Processing on Mobile Devices

#0 #1 #8 #9 #10

#0 #0

Main
Thread

Text
Detection
Thread

Plane Rectification Text Detection

Tracking TrackingTracking Tracking & MFI Tracking & MFI

Figure 4.1: A schematic illustration of the pipeline process during initialization. Whereas in the
main thread the planar target is tracked in each frame, the rectification and the text detection are
processed in a parallel text detection thread. Before each tracking cycle, it is examined whether
the text detection is already done. If so, the information telling where the text is located can be
exploited to perform Multiple Frame Integration (MFI) and text recognition. The color coding
indicates the the respective keyframe for tracking.

and estimates the motion of the text plane in each frame. The first frame is considered

as keyframe and each frame is registered to it by computing the associating projective

transformation.

Simultaneously, the same frame is passed to the text detection thread. Parallel to

tracking the keyframe is warped such that the visible underlaying plane is rectified and

subsequently examined for text. Between the tracking cycles, it is checked whether the

text detection has finished. As soon as it returns, the now rectified frame is considered

as the new keyframe. Due to the known homography between the different views on the

plane, we now can deduce the text position in each frame and start the MFI as well as

the text recognition. Figure 4.1 schematically illustrates the entire initialization process

and Figure 4.3 shows an actual example.

If the tracking is lost, we reset the pipeline and repeat the described initialization

phase. Even without losing track, we frequently perform text detection to introduce more

current keyframes.

In the following, the individual modules of our pipeline are described in detail. An

overview is given in Figure 4.2.

4.1.1 Visual Tracking

Our pipeline does not track the text itself, rather the planar surface it is written on.

Thus, the motion is modeled with a homography. This means that the tracker returns a

homography describing the transformation from a current frame to a keyframe. In other

words we register the frames without actually transforming them.

4.1. Pipeline 33

Rectification

Scene Text
Detection

Multiple Frame
Integration

Rectangular Region
Localization and

Extraction (LocEx)

M-Estimator Sample
Consensus (MSAC)

Vanishing Point Detection

TextSpotter (TS)
Stroke-Width-Transform

(SWT)

Automatic
Number Plate

Recognition (ANPR)

Visual Tracking
AKAZE Features &
FLANN Matching

Kanade-Lucas-Tomasi
(KLT) Tracker

Minimum
Operator

Yi Integration
Histogram

Voting

Text
Recognition

Anyline SDK

Figure 4.2: The different modules of our pipeline utilized to perform rectification, text detection,
tracking and multiple frame integration.

In order to not mitigate the user experience we tried to minimize the initialization

phase of the tracker. In our tests we utilized solely feature based tracking methods.

Therefore, this phase consists only of a quick feature extraction. More specifically, we

integrated a pyramidal implementation of the well known Kanade-Lucas-Tomasi (KLT)

feature tracker [47, 76, 79]. It tracks a set of keypoints over time, which we exploit to

estimate the homography to a certain keyframe. Additionally, we evaluated a tracking

approach based on AKAZE features [1, 2]. In each frame features are extracted and

matched with the ones from the keyframe using the Fast Library for Approximate Nearest

Neighbors (FLANN) by Muja et al. [57].

To work without any user intention, we need an indicator which triggers tracking.

Compared to other approaches [17], we do not wait until the text detection module finishes.

This has the advantage that at the time of a successful text detection we already have

processed and registered several frames and can use them to recognize the showed text.

Thus, we need to know when the camera has finished focusing and is held still or just

moved smoothly. A common focus measurement applied to a short window in center of

the current frame covers both. We used the Tenengrad metric, which simply averages the

intensity gradient within the region of interest.

We store the obtained metrics for the last few frames and analyze slope and curvature of

the resulting discrete function to determine whether the focus is on a local maximum. Ad-

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

34 Chapter 4. A Pipeline for Scene Text Processing on Mobile Devices

Figure 4.3: Example of the processing of the pipeline: As soon as the camera focuses, tracking and
text detection is triggered. When text detection is finished the extracted frames are propagated to
MFI . The debug output shows the integrated text patch in the first row and the respective single
extracted patches underneath. Single outliers due to imperfect tracking do not disturb the process.

ditionally we exploit an absolute threshold, which avoids tracking on continuously blurred

frames or almost non-textured scenes. The resulting algorithm behaves intuitively and

coincides well with user intentions. As soon as the camera focus is adjusted tracking is

triggered and the first frame is considered as keyframe. This frame is also passed to the

text detection thread. Figure 4.1 illustrates this process.

Tracking can obviously fail, when the target moves out of the camera view or the

motion becomes to strong. It is essential to robustly detect when this happens in order

to pause tracking or trigger reinitialization. Regarding feature based tracking one obvious

measurement is the amount of features still considered as tracked. Nevertheless, they can

drift away from their dedicated position and a proper functioning tracking is the basis for

the subsequent MFI . Depending on the used approach, the final result can be rendered

4.1. Pipeline 35

unusable due to a single outlier. Further, valuable processing time can be saved, if outliers

are detected immediately. Therefore, we warp a rectangle, which has the same dimensions

as a video frame and evaluate the resulting quadrilateral.

First of all, we test whether the quadrilateral is still convex by trying to find the

diagonals intersection. If the two line segments still intersect, the homography preserves

the convexity of the rectangle’s hull and therefore, is said to be quasi-affine with respect to

the corners of the rectangle. Thus, the homography does not map any of the points lying

on the border of the rectangle to the plane at infinity. This would lead to a degenerated

image that is unlike any possible view seen by a camera [21].

(a) (b) (c) (d)

Figure 4.4: To ensure that the tracking and the image rectification work properly, we evaluated
the particular resulting homographies using an relative area measurement: In the event of success
the area of a rectangle covering the entire frame (a) does not change dramatically due to the
transformation (b). If the homography is becoming degenerated, the influence on the area will
be more severe (c). In order to avoid transformations like shown in (d), we additionally checked
whether the resulting quadrilateral is still convex.

Second, we compute the area of the resulting quadrilateral. If the relative alteration is

to high, we will consider the homography as unusable as well. Empirical tests showed us

that this approach leads to the clearest distinction. Additionally, the accompanying slight

restriction of scaling, in other words the motion away from and towards to the target is

in the sense of the application: Pausing tracking when the camera is intentionally moved

away from the target is reasonable. Figure 4.4 shows the rectification in case of success

and failure.

4.1.2 Rectification

The rectification (see Section 2.1) can be considered as preprocessing step for the text

detection and is processed in the same thread as illustrated in Figure 4.1. It transforms the

Reference:

 ()

36 Chapter 4. A Pipeline for Scene Text Processing on Mobile Devices

current frame such that the dominant planar surface is metrically rectified (see Figure 2.3).

In most cases this means that text is horizontally aligned within the warped image. We

integrated two selectable methods described in Section 2.1.1 for estimating the essential

homography.

First, we utilized the rectangular region extraction approach from Hartl et al. [20]. It

assumes a dominant distinctive rectangular region within the camera view. Although, it

operates very well under this assumption, it is not useful, if text is to small in relation to

the rectangular region. Intuitively, the camera is held too close to the target, the borders

of the rectangle are not visible and the Hough Transform (HT) based approach fails.

Therefore, we exploit a second approach based on the vanishing point detection by

Nieto et al. [65]. The methods detects directional image features and robustly estimates

the two required vanishing points. With this, it is easily possible to compute the required

homography [41].

In exactly the same manner as described for the tracking in Section 4.1.1, the viability

of the resulting homography matrix is estimated. Since text detection is one of the most

time consuming parts of our pipeline it is reasonable to avoid performing it on a frame

warped by a degenerated homography.

4.1.3 Scene Text Detection

The rectification step returns a transformed frame such that the text is horizontally

aligned. This assumption allows to speed up most of the text detection methods. They

achieve rotation invariance with great effort respectively processing time, e.g. by searching

for text in several rotated versions of the input image. Through the rectification we can

omit this additional work.

Several different text detection modules were utilized in our pipeline: First of all

the Stroke Width Transform (SWT) operator1 by Epshtein et al. [13] described in Sec-

tion 2.2.2.1. Second, we integrated the approach of Neumann et al. [62] often referred to

as TextSpotter 2013 (TS), based on the classification and grouping of Extremal Region

(ER) described in Section 2.2.2.2. Finally, we added a simple but effective method based

on the Automatic Number Plate Recognition (ANPR) described in [4], which detects text

by finding close edges with the help of morphological operations.

The output of the text detection module is at least a bounding box surrounding the

text. If available we also store the pixel wise segmentation, which dramatically can speed

up and/or improve text recognition. It occurs that some detection methods return over-

lapping bounding boxes indicating parts of the same text. We merged such bounding

boxes depending the overlap metric

overlap(X ,Y) =
|X ∩ Y|

min(|X | , |Y|)
. (4.1)

1Implementation from https://github.com/aperrau/DetectText

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

4.1. Pipeline 37

Further, predefined use cases often allow to introduce some restrictions for the text, e.g.

if it is required to detect just the meter reading in Figure 2.3. Therefore, we implemented

several heuristics to filter non-required text based on dimension, area, aspect ratio and

color histogram of the bounding box respectively the pixels within.

4.1.4 Multiple Frame Integration

The previous parts of our pipeline provide multiple cropped frames, showing an orthogonal

view of the same text (see Figure 3.4). Obviously, several different text parts can be

detected, MFI is applied on each.

We built in three different MFI methods. First of all, we employed the simple result

fusion approach also used by Greenhalgh et al. [19]. It groups equally recognized results

and weights them by their recognition certainty. The emerging histogram is used to

determine the most likely text.

Second, we applied a simple minimum operator to all extracted and registered image

patches simply returning the lowest valued pixel at the respective positions.

Finally, we exploited the method first introduced by Yi et al.[91]: It performs a mini-

mum and an average operator each on all frames. The averaged image is thresholded using

Otsu’s method [66] in order to distinguish between text and background and the latter is

replaced by its minimized pendant. Thereby, the contrast is increased (see Section 3.2.2

for more details).

Several experiments with common Super Resolution approaches failed, since the under-

lying optimization techniques retained the major complicating interferences like reflections.

Like most image enhancemening MFI methods, they are vulnerable to jitter respec-

tively slight movement due to imperfect tracking. Therefore, we added the possibility to

enable a registration refinement step based on the research of Evangelidis and Psarakis [14].

They proposed an iterative l2-based algorithm for parametric image alignment. They

maximize the so-called Enhanced Correlation Coefficient (ECC), a measurement which is

robust against geometric and photometric distortions. To speed up this process, we pass

the homography provided by the tracking as initialization and limit the number of itera-

tions. If the ECC value is still too low after this optimization step, we have the possibility

to omit the frame during the actual MFI .

4.1.5 Text Recognition

For our evaluation we used a text recognition module based on the Anyline SDK2. Never-

theless, the available debug version is not dedicated for real-time applications and there-

fore, only used to provide a meaningful evaluation of the remaining modules. The com-

mercial OCR engine already embeds several preprocessing steps assuring proper text seg-

mentation customizable to the required use case. Thus, it properly processes any cropped

2https://www.anyline.io/

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

38 Chapter 4. A Pipeline for Scene Text Processing on Mobile Devices

input image without any prior segmentation. The SDK’s core is written in C++ to provide

support on all major platforms.

4.2 Requirements

Our pipeline is a CMake3 project written in C++11 and is based on OpenCV 3.1 and

its Contrib Modules. We ported the core to Android NDK utilizing the Toolchain pro-

vided by OpenCV4. Other external code was used for the M-Estimator Sample Consensus

(MSAC) based vanishing point detection [65], the SWT operator5 and the rectangular

region localization and extraction module by Andreas Hartl [20].

4.3 Summary

In this chapter, we described our proposed pipeline to efficiently process text on mobile

phone hardware. Due to the usage of multiple threads, we achieve a speed up which is

necessary for real-time capable applications. We depicted each part/step of the pipeline

and the thread communication in detail. Furthermore, we summarized approaches which

make it possible to get along without any configuration or user interaction beside aiming

the camera into the right direction.

3https://cmake.org/
4http://opencv.org/platforms/android.html
5https://github.com/aperrau/DetectText

Reference:

 ()

Reference:

 ()

5
Impact of MFI on overall Text Processing

Contents

5.1 Configuration . 39

5.2 Detection and Tracking Accuracy 40

5.3 Reading Accuracy . 44

5.4 Algorithm Runtime . 45

5.5 Summary . 47

In this chapter we are going to evaluate our pipeline and its impact on the overall

text recognition results. Therefore, we assumed the use case of recognizing energy meter

readings. The usually present glass plate in front of the meter reading is prone to reflections

and usually mitigates text recognition results.

Furthermore, it is a reasonable application for scene text detection on mobile hardware.

Power companies can save a considerable amount of money by speeding up the reading

process of analogous energy meters. Even a bigger benefit is gained in customer sup-

port. Human mistakes can be minimized and by storing the respective frames a verifiable

evidence of the meter reading is available for free1.

5.1 Configuration

We tailored our pipeline to solely detect and recognize energy meter readings and omit the

remaining text on the meter. Thus, we introduced additional constraints on the extracted

text patches respectively their bounding boxes to reject non-relevant text. First, we limit

ourselves to meter readings with white text on black background. Therefore, we adjusted

the text detection accordingly (see Section 2.2.2). The digits of the meter readings are

1https://www.anyline.io/energy-anyline-io-en/

39

40 Chapter 5. Impact of MFI on overall Text Processing

almost the only bright text on dark background. Second, we set upper and lower limits of

the aspect ratio and the area2.

Further, we manually extracted multiple meter readings of different meter types and

computed an average intensity histogram HR. We correlate it with each text patch’s

histogram HP :

d(HP , HR) =

∑
I(HP (I)− H̄P)(HR(I)− H̄R)√∑
I(HP (I)− H̄P)(HR(I)− H̄R)

, H̄k =
1

N

∑
J

Hk(J). (5.1)

N is the number os histogram bins and during the evaluation set to 16. If the corre-

lation d(HP , HR) is less than 0.2, we will reject the respective text patch.

5.1.1 Datasets

We recorded several videos with usual mobile phone cameras and resized them in order

to obtain different resolutions. We put a focus on varying lighting conditions. Still, they

represent reasonable use cases for OCR applications on mobile phones. Especially, while

trying to recognize energy meter readings illumination could be poor and the mobile phones

flash LED as additional light source may be required. Table 5.1 provides an overview of

the different evaluation videos and their specifications.

Video ID Light source Camera type max. Resolution No. of Frames Duration

1 Tungsten iPhone 5S 768x1366 228 00:07
2 Daylight iPhone 5S 768x1366 209 00:07
3 Flash iPhone 5S 768x1366 581 00:19
4 Daylight XPeria Z2 768x1366 1280 00:42
5 Tungsten iPhone 5S 768x1366 507 00:16
6 Tungsten iPhone 5S 768x1366 234 00:07

Table 5.1: Evaluation dataset specifications, including the dominant light source.

Figure 5.1 shows representative frames of the evaluation dataset.

We annotated the videos manually with quadrangles surrounding the digits of the meter

readings and added its current value. Therewith, we were able to establish a ground truth

data for a tracking, detection and recognition evaluation.

5.2 Detection and Tracking Accuracy

We tested the influence of the different pipeline detection and tracking modules on the

overall performance. Therefore, we utilized the CLEAR-MOT evaluation framework [7]

2The text patch’s area is considered relatively to the frame area.

Reference:

 ()

5.2. Detection and Tracking Accuracy 41

Figure 5.1: Exemplary frames of the evaluation datasets showing different types of energy meters
and ground truth annotation. The digits of the meter readings are almost the only bright text on
dark background. Reflections due to the front glass and the shiny surfaces, especially in combi-
nation with a camera phones flash light can mitigate the Optical Character Recognition (OCR)
results.

dedicated to deliver intuitive and meaningful measurements describing the tracking per-

formance of a multi-object tracker.

In the following the framework is briefly described. Subsequently, the experiment

results are presented.

5.2.1 The CLEAR-MOT Metrics

The CLEAR-MOT metrics [7] constitute a widely used evaluation framework for multiple

object tracking among others for text in videos [17, 29, 30]. They provide a reasonable

and intuitive statement on the text detection and tracking performance. In the following,

we will briefly describe the two main metrics.

Let oti be an object according to the ground truth and htj be a hypothesis established by

the evaluated system each in a single frame at time t. In our case objects and hypotheses

are both represented by surrounding bounding boxes and typically are visible over multiple

frames. The metrics now rely on a set of mappings (oti, h
t
j), which correspond ground truth

objects with detected and tracked hypotheses. In each frame these correspondences are

established by maximizing the sum of overlaps

overlap(oti, h
t
j) =

a(oti ∩ htj)
a(oti ∪ htj)

, (5.2)

Reference:

 ()

Reference:

 ()

42 Chapter 5. Impact of MFI on overall Text Processing

whereas a(·) denotes a function computing the area of its input polygon. This is a max-

imum weight assignment problem, which is solved by the Munkres’ algorithm [58]. In

accordance to [17, 29, 30], a mapping is considered valid only if overlap(oti, h
t
j) > 0.5.

Given the overlap measurements of all valid correspondences {vti}t,i the Multiple Object

Tracking Precision (MOTP) describes the precision of the detection and tracking

MOTP =

∑
i,t v

t
i∑

t ct
, (5.3)

whereas ct is the amount of valid correspondences in frame t.

The Multiple Object Tracking Accuracy (MOTA) is calculated as:

MOTA = 1−
∑

t(fnt + fpt +mmt)∑
t gt

. (5.4)

Thereby, fnt, fpt, mmt, gt denote respectively the amount of false negatives, false posi-

tives, mismatches and ground truth objects at frame t. A mismatch is counted once if an

id switch occurs, in other words a ground truth object’s hypothesis is swapped.

5.2.2 Experiments

We compared the varying detection and tracking modules with a full tracking-by-detection

approach using the respective text detection. Thereby, text is detected in each frame

separately and the subsequently occurring bounding boxes are associated by their overlap.

Again we maximized the overall sum of overlaps with help of Munkres’ algorithm [58].

Since we exploit multiple threads to detect and track text, the performance of our

pipeline relies on the temporal interaction of the two threads. Thus, to establish real

world conditions, we limited the frame rate with which the single frames are provided to

30 frames per second (FPS).

Table 5.2 shows the comparison of the methods with respect to varying video reso-

lutions. The metrics represent the entire data set by means of all videos. The methods

denoted as native are without any additional modifications beyond respective parametriza-

tion. The remaining methods exploit the basic filtering techniques described in Section 5.1.

Due to the overall results, it can be seen that our evaluation dataset is quite challeng-

ing. However, the relative low metrics do not contradict a feasible usage of the evaluated

methods. Text still can be robustly detected and recognized during its appearance. Es-

pecially the misses stem from the often substantial motion blur whilst moving the mobile

device towards the energy meter.

The available implementation of the Stroke Width Transform (SWT) as well as the

Automatic Number Plate Recognition (ANPR) often failed to group the detected digits

together and due to the small overlap, the resulting bounding boxes were hardly matched

to ground truth data. Due to these high miss rates, we favored the Extremal Region

(ER) classifier TextSpotter 2013 (TS) by Neumann et al. [62] in the following experiments.

Reference:

 ()

Reference:

 ()

5.2. Detection and Tracking Accuracy 43

Resolution Method MOTP Misses FP rate Mismatches MOTA

768x1366

NATIVE TS 0.74 0.27 0.98 0.08 -0.32
NATIVE SWT 0.57 0.99 0.76 0.00 -0.75
NATIVE ANPR 0.60 0.84 18.66 0.01 -18.52
TS 0.75 0.54 0.13 0.02 0.31
MSAC&TS 0.72 0.56 0.10 0.02 0.32
LOCEX&TS 0.75 0.54 0.13 0.02 0.31
KLT&MSAC&TS 0.70 0.65 0.20 0.00 0.15
AKAZE&MSAC&TS 0.70 0.57 0.10 0.02 0.32

480x854

NATIVE TS 0.74 0.29 1.52 0.14 -0.95
NATIVE SWT 0.60 0.99 0.87 0.00 -0.86
NATIVE ANPR 0.60 0.83 11.32 0.01 -11.16
TS 0.75 0.57 0.13 0.02 0.28
MSAC&TS 0.73 0.59 0.10 0.02 0.29
LOCEX&TS 0.75 0.57 0.13 0.02 0.28
KLT&MSAC&TS 0.71 0.48 0.31 0.00 0.21
AKAZE&MSAC&TS 0.70 0.52 0.11 0.02 0.36

320x568

NATIVE TS 0.72 0.34 1.91 0.15 -1.40
NATIVE SWT 0.60 0.98 0.73 0.00 -0.72
NATIVE ANPR 0.60 0.82 6.94 0.01 -6.77
TS 0.74 0.62 0.14 0.02 0.22
MSAC&TS 0.72 0.64 0.14 0.02 0.20
LOCEX&TS 0.74 0.62 0.14 0.02 0.22
KLT&MSAC&TS 0.67 0.53 0.41 0.00 0.06
AKAZE&MSAC&TS 0.69 0.63 0.16 0.01 0.19

Hybrid KLT&MSAC&TS 0.62 0.49 0.17 0.00 0.34

Table 5.2: Detection and tracking accuracy evaluated with the CLEAR-MOT evaluation frame-
work [7]. Native full tracking-by-detection methods are compared with a use case tailored filtering
enhancement and feature based detection and tracking methods.

Both evaluated rectification steps led to neglectable improvement regarding the evaluation

framework.

As observable especially the full-detection results do not vary significantly comparing

the different resolutions. Therefore, we additionally evaluated an optimized hybrid

solution, which scales the image down to speed up text detection and omit the expensive

Enhanced Correlation Coefficient (ECC) image registration. The resulting pipeline was

tested with a resolution of 480 × 854, respectively 240 × 427 for text detection. In this

manner the overall process is speeded up and it takes less tracking cycles until the text

detection module propagates the text position for the first time. As a result, text which

only occurs for a short time is less likely missed. Whereas the tracking precision slightly

decreased, an increase of accuracy can be observed. In Table 5.2 and hereinafter we refer

44 Chapter 5. Impact of MFI on overall Text Processing

to this pipeline configuration as Hybrid.

5.3 Reading Accuracy

During this experiment, we evaluated the impact of Multiple Frame Integration (MFI)

onto the reading accuracy. Therefore, we passed both to the text recognition, the single,

rectified image patches showing the detected and tracked meter reading as well the inte-

grated pendants, which were available by that time. Additionally, we fused the recognition

results utilizing a simple histogram voting strategy (see Section 4.1.4). A reasonable in-

tegration method should lead to similar recognition results at the beginning of a tracked

sequence and improve over time (see Figure 5.2). All detection and tracking approaches

described in Section 5.2.2 were considered and used to obtain the text patches.

(a) (b)

Figure 5.2: Single extracted frames sampled during a sequence of 62 frames (a) and the integrated
pendants in (b). The used integration method first published by Yi et al. [91] increases the contrast
and mitigates reflections over time. It is not corrupted by individual frames with considerable
motion blur. Nevertheless, it is prone to imperfect image registration.

The meter readings decimal places sometimes show ambiguous values. We omit them

by truncating recognized text from right if it exceeds the respective length. The result is

considered correct if it is identical to ground truth data.

As described in Section 4.1.4, we filtered frames with a too high ECC in a first ex-

periment. Here, we only considered the text patches which passed this test. Further, our

optimized Hybrid solution omitting the ECC refinement step as described in Section 5.2.2

was evaluated.

5.4. Algorithm Runtime 45

Resolution Single
frame

Minimum
operator

Yi
integration

Histogram
voting

768x1366 0.45 0.44 0.55 0.63
480x854 0.38 0.50 0.50 0.62
320x568 0.36 0.48 0.43 0.61

Hybrid 0.33 0.29 0.27 0.61

Table 5.3: The relative recognition rates broken down to the image resolution. We passed all
validly detected and tracked text patches as well as their integrated pendants to the text recognition
module and counted the correct recognitions. Image enhancement methods even decrease the
performance using the optimized Hybrid pipeline due to jitter and imperfect image registration.
This configuration omits the computationally expensive ECC registration refinement.

We passed all extracted text patches as well as their integrated pendants to the recogni-

tion module and counted the correctly recognized values. We only considered text patches

with a valid correspondence to a ground truth object (see Section 5.2.1).

Table 5.3 shows the relative reading accuracies using the different integration methods.

In accordance with the experiment in Section 5.2.2, only the faster Kanade-Lucas-Tomasi

(KLT) tracking was utilized in combination with the Hybrid pipeline. The remaining val-

ues combine the results of both tracking methods. As observable, the image enhancement

approaches lead to a performance boost using the ECC refinement step. The reading ac-

curacies even decrease without it. Jitter and motion blur lead to a smeared output and the

digits disappear. Figure 5.3 illustrates this effects. However, the simple voting approach

outperforms the image enhancement methods in all cases. Figure 5.4 summarizes these

results.

Further, we evaluated the impact of MFI on various lightning conditions. Table 5.4

contains the recognition rates in dependence on the respective evaluation videos. It is

noteworthy that especially the frontal light produced by the flash LED in Video 3 mitigates

the results most. This illumination creates specular highlights interfering with the contours

of the digits. However, even in this case the histogram voting can keep up with the image

enhancement methods.

5.4 Algorithm Runtime

Finally, we reviewed the algorithm runtime on a standard Laptop as well as an Android

device. More specifically, we used a Lenovo Thinkpad T440s including a Intel R© CoreTM

i5-4200U processor and a Nvidia Shield tablet containing a Quad-Core-CPU with 2,2 GHz.

We compared the runtime of our optimized hybrid solution with the more accurate

version using the registration refinement. Table 5.5 contains the respective results. It can

bee seen, that the refinement step even with limited iterations is quite computationally

expensive. Nevertheless, the performance of the optimized pipeline achieves practical

46 Chapter 5. Impact of MFI on overall Text Processing

(a) (b)

Figure 5.3: Single extracted frames sampled during a sequence of 50 frames (a) and the integrated
pendants in (b). A simple minimum operator was used to integrate the patches. As can be seen,
the letter disappear due to motion blur and imperfect image registration.

SF MIN YI HIST

Method

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

og
n

it
io

n
ra

te

ECC

Hybrid

Figure 5.4: The recognition rates using the single extracted frames and the different MFI meth-
ods. As observable the image enhancement methods (minimum operator and YI integration) highly
rely on a good image registration and do not perform very well using the optimized tracking. Nev-
ertheless, the simple histogram voting outperforms the remaining methods in both cases.

results.

5.5. Summary 47

Video ID Single frame Minimum
operator

Yi
integration

Histogram
voting

1 0.67 0.66 0.65 0.78
2 0.68 0.65 0.70 0.85
3 0.20 0.40 0.30 0.40
4 0.31 0.34 0.40 0.49
5 0.37 0.47 0.58 0.75
6 0.52 0.75 0.67 0.85

Table 5.4: Average recognition rates over all resolutions in combination with ECC registration
and in dependence on the different videos. Especially Video 3 showing energy meter illuminated
by flash light results in poor recognition rates.

Device Resolution
Tracking
Method

Rectification,
Detection

Total
(Tracking & MFI)

Laptop
480x854 AKAZE 318.2 144.4
480x854 KLT 263.1 22.2
Hybrid KLT 73.1 5.0

Shield Tablet
480x720 KLT 2788.3 469.2
Hybrid KLT 519.2 84.9

Table 5.5: Average time performance measurements in milliseconds.

5.5 Summary

In this chapter, we examined the possibilities of a MFI approach on a defined OCR use

case. We compared the tracking and detection performance of full tracking-by-detection

approaches with the different variations of our proposed multi-thread solution and showed

that the real-time capabilities are obtained with almost no loss of detection/tracking per-

formance.

Furthermore, we analyzed the impact of several integration methods on the reading

accuracy. Especially, frontal illumination due to e.g. a flash light mitigates the recognition

accuracy in this use case and can be significantly improved by utilizing simple and fast

MFI methods. Though, the analyzed image enhancement approaches are vulnerable to

imperfect image registration. Thus, depending on the processing time of the used OCR

engine, result fusion methods should be preferred. Finally, the runtime of our pipeline was

illustrated. It was shown that real-time capabilities on a mobile device are achieved using

an optimized version of our pipeline.

6
Conclusion & Outlook

The aim of this Master’s thesis was to enhance the robustness of existing Optical Character

Recognition (OCR) solutions running on mobile devices. Different illumination, reflections

and specular highlights interfere with text and complicate successful recognition. However,

the redundant information covered by a camera stream can be exploited to mitigate these

effects. Therefore, the possibilities of Multiple Frame Integration (MFI) on such hardware

were evaluated.

To overcome the problem of computationally expensive text detection methods, we

outsourced this task to a parallel running thread while efficiently tracking the detection

results in the remaining time. Thereby, we exploit multi-core architectures implemented

in nowadays mobile devices.

During this thesis several different rectification, detection and tracking approaches

and parametrization as part of our pipeline were examined. We compared them to the

respective full tracking-by-detection approaches utilizing the CLEAR-MOT evaluation

framework [7]. Therefore, a challenging dataset on the defined use case of energy meter

readings was created. It contains digits interfered with significant reflections and high-

lights. We showed that our pipeline is able to keep up with full-detection approaches in

terms of precision and accuracy and runs in feasible time for a practical usage on mobile

device hardware.

TextSpotter 2013 (TS) by Neumann et al. [60–64] was the single reasonable text de-

tection method in our evaluation. Even though the Stroke Width Transform (SWT)

implementation just failed to group the digits together, its runtime does not allow a time

efficient application. The Automatic Number Plate Recognition (ANPR) does detect all

kinds of structured elements and the resulting high number of false positives was not

defensible for our use case.

Since scene text processing is still far from being perfect in nowadays research [29],

we propose to integrate use case specific adjustments for practical usage. We showed that

our general scene text processing pipeline provides already practicable results with minor

adjustments. The basic filtering techniques boosted the overall results tremendously. This

49

50 Chapter 6. Conclusion & Outlook

is because false positives are worse for the detection and tracking performance in this case

than a few more misses. Even replacing the general scene text detection entirely by a

more straightforward solution can be a reasonable step.

Furthermore, we evaluated the impact of different camera resolutions on the overall

performance. We can conclude that the full resolution of cameras build-in in todays mobile

phones and tablets is easily sufficient respectively not necessary to obtain satisfying results.

Our experiments on different MFI approaches showed that the image enhancement

methods require a qualitative registration of the different image patches showing the same

text. However, this kind of registration is likely to be computationally expensive and was

not real-time capable on mobile phones using our configuration. More advanced plane

tracking solutions may provide this accuracy and speed but mostly are commercial and

not freely available.

Additionally, several simple optimization strategies can be exploited to decrease the

runtime respectively enhance the user experience. For example one could filter more of

the extracted text patches before MFI and outsource it to a parallel thread as well. Since

reflections do not move much from one frame to another, it could be a good way to avoid

expendable text patches and save even more runtime.

Though, if the text recognition is sufficiently fast, a result fusion approach can be

even more performant. Although, we just examined a simple voting approach, it clearly

outperformed the image enhancement methods. Thus, it is recommended to prefer this

integration approaches. The Anyline energy module already filters recognized numbers

outside the configured parameters. Therefore, only fully detected results containing a cer-

tain amount of digits were fused. A more sophisticated fusion e.g. considering individual

letters and digits can lead to even more promising results.

Summing up, we showed that MFI in combination with state-of-the-art text detection

and tracking is capable of running in real-time on mobile device hardware. The parallel

processing pipeline constitutes a founded basis for practical applications. Additionally,

this was verified by significantly improving OCR results. Nevertheless, there is still a

notable margin for improvement regarding general state-of-the-art scene text processing.

Thus, given a use case such as recording energy meter readings, introducing use case

tailored adjustments is highly recommended for practical usage. We showed, that even

basic ones can significantly improve the performance and lead to satisfying outcomes.

A
List of Acronyms

ADAS Advanced Driver Assistance Systems

ANPR Automatic Number Plate Recognition

CCA Connected Component Analysis

CNN Convolutional Neural Network

CRF Conditional Random Fields

DLT Direct Linear Transformation

DOF Degrees of Freedom

ECC Enhanced Correlation Coefficient

EM Expectation Maximization

ER Extremal Region

ESM Efficient Second Order Minimization

FLANN Fast Library for Approximate Nearest Neigh-

bors

FPS frames per second

HOG Histogram of oriented gradients

HT Hough Transform

IBAN International Bank Account Number

KLT Kanade-Lucas-Tomasi

MAD Mean Absolute Difference

MFI Multiple Frame Integration

MLESAC Maximum Likelihood Estimation Sample

Consensus

MOTA Multiple Object Tracking Accuracy

MOTP Multiple Object Tracking Precision

MSAC M-Estimator Sample Consensus

MSER Maximally Stable Extremal Region

NN Nearest Neighbor

51

52 Chapter A. List of Acronyms

OCR Optical Character Recognition

RANSAC Random Sample Consesus

SFT Stroke Feature Transform

SIFT Scale-invariant Feature Transform

STC Scene Text Character

SURF Speeded Up Robust Features

SVM Support Vector Machine

SVT Street View Text

SWT Stroke Width Transform

TS TextSpotter 2013

BIBLIOGRAPHY 53

Bibliography

[1] Alcantarilla, P. F., Bartoli, A., and Davison, A. J. (2012). KAZE features. In European

Conference on Computer Vision. (page 33)

[2] Alcantarilla, P. F., Nuevo, J., and Bartoli, A. (2013). Fast explicit diffusion for ac-

celerated features in nonlinear scale spaces. In British Machine Vision Conference.

(page 33)

[3] Almazán, J., Gordo, A., Fornés, A., and Valveny, E. (2014). Word spotting and

recognition with embedded attributes. Transactions on Pattern Analysis and Machine

Intelligence, 36(12):2552–2566. (page 21)

[4] Baggio, D. L., Emami, S., Escriva, D. M., Ievgen, K., Mahmood, N., Saragih, J., and

Shilkrot, R. (2012). Mastering OpenCV with Practical Computer Vision Projects. Packt

Publishing, Limited. (page 36)

[5] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). SURF: Speeded up robust features.

In European Conference on Computer Vision, pages 404–417. Springer. (page 25)

[6] Benhimane, S. and Malis, E. (2004). Real-time image-based tracking of planes using

efficient second-order minimization. In International Conference on Intelligent Robots

and Systems, volume 1, pages 943–948. IEEE. (page 25)

[7] Bernardin, K. and Stiefelhagen, R. (2008). Evaluating multiple object tracking perfor-

mance: the CLEAR MOT metrics. EURASIP Journal on Image and Video Processing,

2008(1):1–10. (page 40, 41, 43, 49)

[8] Canny, J. (1986). A computational approach to edge detection. Transactions on

Pattern Analysis and Machine Intelligence, (6):679–698. (page 13)

[9] Chen, H., Tsai, S. S., Schroth, G., Chen, D. M., Grzeszczuk, R., and Girod, B. (2011).

Robust text detection in natural images with edge-enhanced maximally stable extremal

regions. In International Conference on Image Processing, pages 2609–2612. IEEE.

(page 18)

[10] Chen, X. and Yuille, A. L. (2004). Detecting and reading text in natural scenes. In

Computer Society Conference on Computer Vision and Pattern Recognition, volume 2,

pages II–366. IEEE. (page 13, 21)

[11] Ciresan, D., Meier, U., and Schmidhuber, J. (2012). Multi-column deep neural net-

works for image classification. In Conference on Computer Vision and Pattern Recog-

nition, pages 3642–3649. IEEE. (page 5)

[12] Donoser, M. and Bischof, H. (2006). Efficient maximally stable extremal region

(MSER) tracking. In Computer Society Conference on Computer Vision and Pattern

Recognition, volume 1, pages 553–560. IEEE. (page 25)

54

[13] Epshtein, B., Ofek, E., and Wexler, Y. (2010). Detecting text in natural scenes with

stroke width transform. In Conference on Computer Vision and Pattern Recognition,

pages 2963–2970. IEEE. (page 13, 25, 36)

[14] Evangelidis, G. D. and Psarakis, E. Z. (2008). Parametric image alignment using

enhanced correlation coefficient maximization. Transactions on Pattern Analysis and

Machine Intelligence, 30(10):1858–1865. (page 37)

[15] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography. Commu-

nications of the ACM, 24(6):381–395. (page 10)

[16] Fragoso, V., Gauglitz, S., Zamora, S., Kleban, J., and Turk, M. (2011). TranslatAR: A

mobile augmented reality translator. In Workshop on Applications of Computer Vision,

pages 497–502. IEEE. (page 2, 3, 25)

[17] Gomez, L. and Karatzas, D. (2014). MSER-based real-time text detection and

tracking. In International Conference on Pattern Recognition, pages 3110–3115. IEEE.

(page 25, 33, 41, 42)

[18] Goto, H. and Tanaka, M. (2009). Text-tracking wearable camera system for the

blind. In International Conference on Document Analysis and Recognition, pages 141–

145. IEEE. (page 26)

[19] Greenhalgh, J. and Mirmehdi, M. (2015). Recognizing text-based traffic signs. Trans-

actions on Intelligent Transportation Systems, 16(3):1360–1369. (page 29, 37)

[20] Hartl, A. and Reitmayr, G. (2012). Rectangular target extraction for mobile aug-

mented reality applications. In International Conference on Pattern Recognition, pages

81–84. IEEE. (page 9, 25, 36, 38)

[21] Hartley, R. and Zisserman, A. (2005). Multiple view geometry in computer vision.

Robotica, 23(2):271–271. (page 6, 7, 8, 35)

[22] Horn, B. K. P. (1986). Robot Vision. MIT Press. (page 14)

[23] Huang, W., Lin, Z., Yang, J., and Wang, J. (2013). Text localization in natural

images using stroke feature transform and text covariance descriptors. In International

Conference on Computer Vision, pages 1241–1248. IEEE. (page 15)

[24] Jaderberg, M., Simonyan, K., Vedaldi, A., and Zisserman, A. (2014a). Synthetic

data and artificial neural networks for natural scene text recognition. arXiv preprint

arXiv:1406.2227. (page 21)

[25] Jaderberg, M., Simonyan, K., Vedaldi, A., and Zisserman, A. (2016). Reading text in

the wild with convolutional neural networks. International Journal of Computer Vision,

116(1):1–20. (page 21)

BIBLIOGRAPHY 55

[26] Jaderberg, M., Vedaldi, A., and Zisserman, A. (2014b). Deep features for text spot-

ting. In European Conference on Computer Vision, pages 512–528. Springer. (page 13)

[27] Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM

Computing Surveys, 31(3):264–323. (page 18)

[28] Jung, C. R. and Schramm, R. (2004). Rectangle detection based on a windowed

hough transform. In Symposium on Computer Graphics and Image Processing, pages

113–120. IEEE. (page 9)

[29] Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanov, A., Iwamura,

M., Matas, J., Neumann, L., Chandrasekhar, V. R., Lu, S., et al. (2015). ICDAR 2015

competition on robust reading. In International Conference on Document Analysis and

Recognition, pages 1156–1160. IEEE. (page 1, 16, 41, 42, 49)

[30] Karatzas, D., Shafait, F., Uchida, S., Iwamura, M., i Bigorda, L. G., Mestre, S. R.,

Mas, J., Mota, D. F., Almazan, J. A., and de las Heras, L. P. (2013). ICDAR 2013

robust reading competition. In International Conference on Document Analysis and

Recognition, pages 1484–1493. IEEE. (page 41, 42)

[31] Koo, H. I. and Kim, D. H. (2013). Scene text detection via connected component

clustering and nontext filtering. Transactions on Image Processing, 22(6):2296–2305.

(page 18)

[32] Kumar, D., Prasad, M., and Ramakrishnan, A. (2012). MAPS: Midline analysis and

propagation of segmentation. In Indian Conference on Computer Vision, Graphics and

Image Processing, Proceedings, page 15. ACM. (page 21)

[33] Kumar, D., Prasad, M. A., and Ramakrishnan, A. (2013). NESP: Nonlinear en-

hancement and selection of plane for optimal segmentation and recognition of scene

word images. In IS&T/SPIE Electronic Imaging, pages 865806–865806. International

Society for Optics and Photonics. (page 21)

[34] Lagunovsky, D. and Ablameyko, S. (1999). Straight-line-based primitive extraction in

grey-scale object recognition. Pattern Recognition Letters, 20(10):1005–1014. (page 8)

[35] Lefler, M., Hel-Or, H., and Hel-Or, Y. (2013). Metric plane rectification using sym-

metric vanishing points. In International Conference on Image Processing, pages 300–

304. IEEE. (page 8)

[36] Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). BRISK: Binary robust invariant

scalable keypoints. In International Conference on Computer Vision, pages 2548–2555.

IEEE. (page 25)

[37] Levenberg, K. (1944). A method for the solution of certain non-linear problems in

least squares. The Quarterly of Applied Mathematics, (2):164–168. (page 11)

56

[38] Li, H. and Doermann, D. (1998). Automatic text tracking in digital videos. In Second

Workshop on Multimedia Signal Processing, pages 21–26. IEEE. (page 24)

[39] Li, H. and Doermann, D. (1999). Text enhancement in digital video using multiple

frame integration. In ACM International Conference on Multimedia, pages 19–22. ACM.

(page 24, 29)

[40] Li, H., Doermann, D., and Kia, O. (2000). Automatic text detection and tracking in

digital video. Transactions on Image Processing, 9(1):147–156. (page 24)

[41] Liebowitz, D., Criminisi, A., and Zisserman, A. (1999). Creating architectural models

from images. In Computer Graphics Forum, volume 18, pages 39–50. Wiley Online

Library. (page 7, 9, 36)

[42] Lienhart, R. and Effelsberg, W. (2000). Automatic text segmentation and text recog-

nition for video indexing. Multimedia Systems, 8(1):69–81. (page 27)

[43] Lienhart, R. W. and Stuber, F. (1996). Automatic text recognition in digital videos.

In Electronic Imaging: Science & Technology, pages 180–188. International Society for

Optics and Photonics. (page 24, 28)

[44] Lin, C., Huertas, A., and Nevatia, R. (1994). Detection of buildings using percep-

tual grouping and shadows. In Computer Society Conference on Computer Vision and

Pattern Recognition, pages 62–69. IEEE. (page 8)

[45] Liu, X. and Wang, W. (2012). Robustly extracting captions in videos based on stroke-

like edges and spatio-temporal analysis. Transactions on Multimedia, 14(2):482–489.

(page 29)

[46] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision, 60(2):91–110. (page 24, 25)

[47] Lucas, B. D., Kanade, T., et al. (1981). An iterative image registration technique

with an application to stereo vision. In International Joint Conference on Artificial

Intelligence, volume 81, pages 674–679. (page 33)

[48] Manmatha, R., Han, C., and Riseman, E. M. (1996). Word spotting: A new approach

to indexing handwriting. In Computer Society Conference on Computer Vision and

Pattern Recognition, pages 631–637. IEEE. (page 21)

[49] Matas, J., Chum, O., Urban, M., and Pajdla, T. (2004). Robust wide-baseline stereo

from maximally stable extremal regions. Image and Vision Computing, 22(10):761–767.

(page 16, 17)

[50] Merino, C. and Mirmehdi, M. (2007). A framework towards realtime detection and

tracking of text. In International Workshop on Camera-based Document Analysis and

Recognition, pages 10–17. (page 26)

BIBLIOGRAPHY 57

[51] Merino-Gracia, C., Lenc, K., and Mirmehdi, M. (2011). A head-mounted device

for recognizing text in natural scenes. In International Workshop on Camera-Based

Document Analysis and Recognition, pages 29–41. Springer. (page 26)

[52] Mi, C., Xu, Y., Lu, H., and Xue, X. (2005). A novel video text extraction approach

based on multiple frames. In International Conference on Information Communications

& Signal Processing, pages 678–682. IEEE. (page 27, 29)

[53] Miao, L. and Peng, S. (2006). Perspective rectification of document images based on

morphology. In International Conference on Computational Intelligence and Security,

volume 2, pages 1805–1808. IEEE. (page 10)

[54] Minetto, R., Thome, N., Cord, M., Leite, N. J., and Stolfi, J. (2011). Snoopertrack:

Text detection and tracking for outdoor videos. In International Conference on Image

Processing, pages 505–508. IEEE. (page 26)

[55] Mishra, A., Alahari, K., and Jawahar, C. (2012). Top-down and bottom-up cues for

scene text recognition. In Conference on Computer Vision and Pattern Recognition,

pages 2687–2694. IEEE. (page 21)

[56] Mita, T. and Hori, O. (2001). Improvement of video text recognition by character

selection. In International Conference on Document Analysis and Recognition, Proceed-

ings Conference on, pages 1089–1093. IEEE. (page 28)

[57] Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic

algorithm configuration. International Conference on Computer Vision Theory and

Applications, 2(331-340):2. (page 25, 33)

[58] Munkres, J. (1957). Algorithms for the assignment and transportation problems.

Journal of the Society of Industrial and Applied Mathematics, 5(1):32–38. (page 42)

[59] Na, Y. and Wen, D. (2010). An effective video text tracking algorithm based on

sift feature and geometric constraint. In Pacific-Rim Conference on Multimedia, pages

392–403. Springer. (page 24)

[60] Neumann, L. and Matas, J. (2010). A method for text localization and recognition in

real-world images. In Asian Conference on Computer Vision, pages 770–783. Springer.

(page 18, 49)

[61] Neumann, L. and Matas, J. (2011). Text localization in real-world images using

efficiently pruned exhaustive search. In International Conference on Document Analysis

and Recognition, pages 687–691. IEEE. (page 18, 20)

[62] Neumann, L. and Matas, J. (2012). Real-time scene text localization and recognition.

In Conference on Computer Vision and Pattern Recognition, pages 3538–3545. IEEE.

(page 36, 42)

58

[63] Neumann, L. and Matas, J. (2013). On combining multiple segmentations in scene

text recognition. In International Conference on Document Analysis and Recognition,

pages 523–527. IEEE. (page)

[64] Neumann, L. and Matas, J. (2015). Real-time lexicon-free scene text localization and

recognition. Transactions on Pattern Analysis and Machine Intelligence. (page 18, 49)

[65] Nieto, M. and Salgado, L. (2010). Real-time robust estimation of vanishing points

through nonlinear optimization. In SPIE Photonics Europe, pages 772402–772402. In-

ternational Society for Optics and Photonics. (page 10, 36, 38)

[66] Otsu, N. (1975). A threshold selection method from gray-level histograms. Automat-

ica, 11(285-296):23–27. (page 29, 37)

[67] Petter, M., Fragoso, V., Turk, M., and Baur, C. (2011). Automatic text detection for

mobile augmented reality translation. In International Conference on Computer Vision

Workshops, pages 48–55. IEEE. (page 3)

[68] Phan, T. Q., Shivakumara, P., Lu, T., and Tan, C. L. (2013). Recognition of video

text through temporal integration. In International Conference on Document Analysis

and Recognition, pages 589–593. IEEE. (page 25)

[69] Pilu, M. (2001). Extraction of illusory linear clues in perspectively skewed documents.

In Computer Society Conference on Computer Vision and Pattern Recognition, page

363. (page 10)

[70] Pratt, W. K. (2007). Digital Image Processing: PIKS Scientific Inside. John Wiley

and Sons, Inc., New Jersey, USA. (page 19)

[71] Rong, X., Yi, C., Yang, X., and Tian, Y. (2014). Scene text recognition in multiple

frames based on text tracking. In International Conference on Multimedia and Expo,

pages 1–6. IEEE. (page 24, 27, 28)

[72] Saidane, Z. and Garcia, C. (2007). Robust binarization for video text recognition.

In International Conference on Document Analysis and Recognition, volume 2, pages

874–879. IEEE. (page 21)

[73] Schapire, R. E. and Singer, Y. (1999). Improved boosting algorithms using confidence-

rated predictions. Machine Learning, 37(3):297–336. (page 20)

[74] Shi, C., Wang, C., Xiao, B., Zhang, Y., and Gao, S. (2013a). Scene text detection

using graph model built upon maximally stable extremal regions. Pattern Recognition

Letters, 34(2):107–116. (page 18)

[75] Shi, C., Wang, C., Xiao, B., Zhang, Y., Gao, S., and Zhang, Z. (2013b). Scene

text recognition using part-based tree-structured character detection. In Conference on

Computer Vision and Pattern Recognition, pages 2961–2968. IEEE. (page 21)

BIBLIOGRAPHY 59

[76] Shi, J. and Tomasi, C. (1994). Good features to track. In Computer Society Confer-

ence on Computer Vision and Pattern Recognition, pages 593–600. IEEE. (page 33)

[77] Tanaka, M. and Goto, H. (2008). Text-tracking wearable camera system for visually-

impaired people. In International Conference on Pattern Recognition, pages 1–4. IEEE.

(page 26)

[78] Tao, W.-b., Tian, J.-w., and Liu, J. (2002). A new approach to extract rectangular

building from aerial urban images. In International Conference on Signal Processing,

volume 1, pages 143–146. IEEE. (page 8)

[79] Tomasi, C. and Kanade, T. (1991). Detection and tracking of point features. School

of Computer Science, Carnegie Mellon Univ. Pittsburgh. (page 33)

[80] Torr, P. H. and Zisserman, A. (2000). MLESAC: A new robust estimator with ap-

plication to estimating image geometry. Computer Vision and Image Understanding,

78(1):138–156. (page 10, 12)

[81] Tuytelaars, T. and Mikolajczyk, K. (2008). Local invariant feature detectors: a survey.

Foundations and Trends in Computer Graphics and Vision, 3(3):177–280. (page 24)

[82] Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., and Schmalstieg, D. (2010).

Real-time detection and tracking for augmented reality on mobile phones. Transactions

on Visualization and Computer Graphics, 16(3):355–368. (page 25)

[83] Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., and Fergus, R. (2013). Regularization of

neural networks using dropconnect. In International Conference on Machine Learning,

Proceedings, pages 1058–1066. (page 5)

[84] Wang, K. and Belongie, S. (2010). Word spotting in the wild. Springer. (page 5, 6,

21)

[85] Wang, N., Shi, J., Yeung, D.-Y., and Jia, J. (2015). Understanding and diagnosing

visual tracking systems. In International Conference on Computer Vision, pages 3101–

3109. IEEE. (page 24)

[86] Wang, T., Wu, D. J., Coates, A., and Ng, A. Y. (2012). End-to-end text recognition

with convolutional neural networks. In International Conference on Pattern Recognition,

pages 3304–3308. IEEE. (page 13)

[87] Weinman, J. J., Butler, Z., Knoll, D., and Feild, J. (2014). Toward integrated scene

text reading. Transactions on Pattern Analysis and Machine Intelligence, 36(2):375–

387. (page 21)

[88] Wolf, C., Jolion, J.-M., and Chassaing, F. (2002). Text localization, enhancement

and binarization in multimedia documents. In International Conference on Pattern

Recognition, volume 2, pages 1037–1040. IEEE. (page 27, 29)

60

[89] Yao, C., Bai, X., and Liu, W. (2014). A unified framework for multioriented text de-

tection and recognition. Transactions on Image Processing, 23(11):4737–4749. (page 15)

[90] Yao, C., Bai, X., Liu, W., Ma, Y., and Tu, Z. (2012). Detecting texts of arbitrary

orientations in natural images. In Conference on Computer Vision and Pattern Recog-

nition, pages 1083–1090. IEEE. (page 15)

[91] Yi, J., Peng, Y., and Xiao, J. (2009). Using multiple frame integration for the text

recognition of video. In International Conference on Document Analysis and Recogni-

tion, pages 71–75. IEEE. (page 29, 37, 44)

[92] Yin, X.-C., Hao, H.-W., Sun, J., and Naoi, S. (2011). Robust vanishing point detection

for mobilecam-based documents. In International Conference on Document Analysis

and Recognition, pages 136–140. IEEE. (page 10)

[93] Yin, X.-C., Yin, X., Huang, K., and Hao, H.-W. (2014). Robust text detection

in natural scene images. Transactions on Pattern Analysis and Machine Intelligence,

36(5):970–983. (page 18)

[94] Yusufu, T., Wang, Y., and Fang, X. (2013). A video text detection and tracking

system. In International Symposium on Multimedia, pages 522–529. IEEE. (page 25,

29)

[95] Zhen, W. and Zhiqiang, W. (2010). An efficient video text recognition system. In

International Conference on Intelligent Human-Machine Systems and Cybernetics, vol-

ume 1, pages 174–177. IEEE. (page 29)

[96] Zhou, J., Xu, L., Xiao, B., Dai, R., et al. (2007). A robust system for text extraction in

video. In International Conference on Machine Vision, pages 119–124. IEEE. (page 29)

[97] Zhu, Y., Carragher, B., Mouche, F., and Potter, C. S. (2003). Automatic parti-

cle detection through efficient hough transforms. Transactions on Medical Imaging,

22(9):1053–1062. (page 8)

	Introduction
	Motivation
	Contribution & Outline

	Text Detection and Recognition in Still Imagery
	Plane Rectification
	Estimation of the Rectification Homography
	Detection of Rectangular Regions
	Vanishing Points

	Text Detection
	Sliding Window Methods
	Connected Component Analysis
	Stroke Width Transform
	Maximally Stable Extremal Regions

	Text Recognition
	Summary

	Text Detection, Tracking and Recognition in Videos
	Text Tracking
	Template Matching
	Particle Filtering
	Tracking-by-Detection

	Multiple Frame Integration
	Recognition result fusion
	Image Enhancement

	Summary

	A Pipeline for Scene Text Processing on Mobile Devices
	Pipeline
	Visual Tracking
	Rectification
	Scene Text Detection
	Multiple Frame Integration
	Text Recognition

	Requirements
	Summary

	Impact of MFI on overall Text Processing
	Configuration
	Datasets

	Detection and Tracking Accuracy
	The CLEAR-MOT Metrics
	Experiments

	Reading Accuracy
	Algorithm Runtime
	Summary

	Conclusion & Outlook
	List of Acronyms
	Bibliography

