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Abstract

Hermite subdivision schemes are iterative methods for refining discrete point-vector
data in order to obtain, in the limit, a function together with its derivatives. In
this thesis we study the convergence behavior of such subdivision schemes as well as
the regularity of the functions which arise as their limits. Furthermore, we establish
properties of Hermite schemes in nonlinear situations, especially of schemes whose
definition is solely via intrinsic properties of the geometry the data are contained in.

The first part of this thesis addresses Hermite subdivision schemes in the setting of
manifolds. We present two adaptations of linear schemes to operate on manifold-
valued data using intrinsic constructions such as geodesics and parallel transport. In
the case of submanifolds of Rn, we also consider manifold-valued schemes which are
defined from linear ones by applying a projection. This approach is not intrinsic,
since projections depend on the submanifold’s embedding in Rn. If the submanifold in
question is invariant with respect to certain transformations, however, the projection
approach can be structure-preserving. For example, this is the case for the special
orthogonal group SO3 ⊂ R3×3.

Furthermore, we present a framework for analyzing nonlinear Hermite schemes with
respect to convergence and C1 smoothness. This is based on a so-called proximity
condition, which allows us to conclude convergence and smoothness properties of a
nonlinear scheme from its linear counterpart.

In the second part we present a method for constructing both vector and Hermite
subdivision schemes with limits of high regularity. This is inspired by a similar method
in scalar subdivision and works by manipulating symbols. Via the iterated application
of the smoothing procedure we developed, an Hermite scheme with limits of regularity
at least C1 can be transformed to a new scheme of arbitrarily high regularity. In
particular, this method gives rise to new linear Hermite schemes.
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1 Introduction

Originally, subdivision schemes refer to the successive refinement of control polygons
for the generation of smooth curves [17] and were mainly used for the design of ge-
ometric models [4]. Due to the simplicity and locality of the resulting algorithms,
subdivision schemes also became a standard method for interpolation and approxima-
tion [16, 18, 33]. Today they find application in the areas of computer aided geometric
design, geometric modeling, approximation theory and for 2D data with irregular
combinatorics, in computer graphics and animation [1, 26, 32, 68, 88]. Furthermore,
subdivision schemes can be used for the construction of wavelets and for the numerical
solution of PDEs [14, 55].

Linear subdivision

Linear subdivision schemes have been studied extensively over the years. As a result,
today’s literature provides a compact framework for their systematic analysis, see e.g.
the classical works [3, 26, 32]. Starting from a control polygon, a linear subdivision
scheme produces refined polygons by iteratively applying linear rules. Via this process,
a smooth curve is obtained in the limit. If, instead of a control polygon, a mesh of
potentially irregular combinatorics is refined, we obtain a smooth surface in the limit.
Prominent examples are the Lane-Riesenfeld algorithm [57], which produces B-Splines
in the limit, and the 4-point scheme [33] in the curve case, and the classical algorithms
by Catmull-Clark and Doo-Sabin in the surface case [2, 21]. For a comprehensive
overview, see [1, 68].

Most examples of linear subdivision schemes, including the ones mentioned above,
are so-called scalar schemes. This means that the linear rule applied to the control
polygon resp. mesh uses real-valued coefficients (called mask). Also, many schemes use
the same set of coefficients in every refinement step (stationary schemes), even though
there has been quite some progress in analyzing level-dependent (i.e. non-stationary)
scalar schemes [6, 10, 12, 29].

From the viewpoint of approximation theory, a linear subdivision scheme refines dis-
crete point data, which are attached to the grid 2−nZs in the n-th refinement step and
produces parametrized univariate (s = 1) or multivariate (s > 1) functions in the limit
[3, 50, 51, 73]. Hermite subdivision schemes, on the other hand, refine discrete point-
vector data in order to obtain, in the limit, a function together with its derivatives.
Setting aside the specific interpretation of the input data, Hermite schemes also differ

1



1 Introduction

in other aspects from the schemes we discussed above: They use matrix-valued masks,
which means that the refinement of the point data, for example, is also influenced by
the vector data. Furthermore, since data at the n-th level constitute a function and its
consecutive derivatives at 2−nZs, by the chain rule, the subdivision scheme becomes
level-dependent. Note also that a convergent Hermite subdivision scheme necessarily
requires the limit function to possess a certain regularity.

A well-studied class of Hermite subdivision schemes was proposed by J.-L. Merrien in
[58]. This class also includes the scheme producing the piecewise cubic interpolant of
given point-vector data.

The convergence analysis of linear Hermite schemes is often transferred to the analysis
of stationary scalar or vector subdivision schemes, which are easier to handle. This
was first proposed by [30, 31] and then pursued by other authors in [22, 23, 25, 60].
We would like to point out the approach of [60] (resp. the more general version [59]),
which allows to analyze Hermite schemes in the same manner as stationary scalar
schemes.

In this thesis we study linear and nonlinear univariate Hermite schemes, which are
inherently stationary [11]. This means that the level-dependence arises only from
the specific interpretation of the input data (as opposed to inherently non-stationary
schemes studied in e.g. [9]). Furthermore, we restrict ourselves to schemes which
produce a function and its first derivative, even though we believe that our results
can be generalized to schemes refining more than one derivative (see Section “Future
research”).

Nonlinear subdivision

In recent years, the adaption of linear subdivision schemes to operate on data lying in
nonlinear spaces (such as manifolds) has become a topic of high interest, also from the
viewpoint of applications [20, 70, 77, 80]. Many adaptions proposed in the literature
are of intrinsic nature and are defined solely in terms of the structure imposed on the
manifold, like a Riemannian metric, or a Lie group structure. They do not depend on
auxiliary data like an embedding or a parametrization of the manifold in question. A
commonly used method replaces elementary linear operations, such as binary averaging
or point-vector addition, by analogous ones in manifolds, see e.g. [35, 46, 77, 78, 79].
The approach via projection [41, 77, 84], on the other hand, required the manifold
to be embedded in an ambient space where subdivision is already defined. Other
adaptions reinterpret a subdivision rule as the minimizer of a function [36, 79] or via
the expected values of random variables [37]. A comprehensive overview of different
manifold-valued analogues of linear subdivision schemes and their properties can be
found in [43].
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The schemes mentioned in the paragraph above operate on manifold-valued data and
create limits in the same manifold. Such schemes are necessarily nonlinear. Nonlin-
earities may also arise in contexts not related to manifolds, for example, from the aim
of preserving certain structures, such as circles [5]. In this paper the dependence of
the limit on the input data is nonlinear, but the topic is different from the one studied
here. The interested reader is referred to [15, 38, 39, 66, 67] and references therein.

Subdivision schemes in manifolds behave in a manner different from their linear coun-
terparts. In general manifolds, certain geometric construction might not be globally
defined or not uniquely defined (think of antipodal points on the sphere and their
geodesic midpoint). Also, convergence results in general manifolds are only available
for very dense input data. These problems can be avoided, for example, by restrict-
ing to suitable geometries, such as Cartan-Hadamard manifolds or by restricting to
simpler schemes, like interpolating ones.

Many results for subdivision schemes in general manifolds are available for “dense
enough” input data. Usually, their proofs are based on a so-called proximity condi-
tion, which allows to conclude properties of a nonlinear scheme from the linear scheme
it is derived from. Topics studied include the convergence and smoothness of uni-
variate [43, 46, 75, 77, 78, 85, 86] and multivariate schemes [40, 42, 83] (also with
irregular combinatorics [81]), approximation order and stability [28, 44, 87], wavelets
and multiscale transforms [45, 47, 48, 53, 82] and others.

Results concerning the convergence of subdivision schemes for all input data can be
found for example in complete Riemannian manifolds [35, 34], in Cartan-Hadamard
spaces for schemes with nonnegative mask coefficients [36, 37, 79] and in the space
of positive-definite matrices [74]. Also, certain interpolatory schemes in complete
manifolds converge for all input data [76].

Many papers are concerned with proving the “smoothness equivalence conjecture”,
see [41, 43, 84, 85, 86]. It has been formulated in [70] and states that a manifold
subdivision scheme possesses exactly the same smoothness as its linear counterpart.
For a certain big class of manifold subdivision algorithms it is now known exactly under
which circumstances their limits are as smooth as the limits of the linear scheme which
has the same mask [43].

The constructions and results mentioned in this section apply to scalar subdivision
schemes of stationary-type, i.e. to schemes refining point data by using the same set
of real coefficients in every subdivision step. Therefore, there is potential for further
research, some of which we discuss in the next sections.

Contributions of this thesis

This thesis has two main contributions to the theory of subdivision schemes. Firstly
we construct intrinsic Hermite subdivision schemes in the manifold setting and ana-
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1 Introduction

lyze their convergence and smoothness Chapters 2 and 3. Secondly we introduce a
framework for creating new linear Hermite schemes whose limits enjoy high regularity
(Chapter 4).

We would like to mention that the results obtained in this thesis essentially coincide
with the author’s publications listed below. In fact, Chapters 2 to 4 reproduce the
papers (I) to (III). For the sake of simplicity, the bibliographies of these papers have
been added to the general bibliography of the thesis.

List of publications

(I) C. Moosmüller. C1 analysis of Hermite subdivision schemes on manifolds.
SIAM J. Numer. Anal., 54(5): 3003–3031, 2016.

(II) C. Moosmüller. Hermite subdivision on manifolds via parallel transport. Sub-
mitted, April 2016.

(III) C. Moosmüller and N. Dyn. Smoothing of vector and Hermite subdivision
schemes. In preparation, 2016.

Hermite subdivision for manifold-valued data (Chapters 2 and 3)

Since Hermite subdivision schemes refine point-vector data, which are interpreted as
function values and first derivatives, the space to sample data from is not the manifold
itself, but its tangent bundle. We present three adaptions of linear Hermite subdivision
schemes to operate on point-vector data lying in the tangent bundle: Log-exp, parallel
transport and projection analogues.

The Log-exp and parallel transport analogues are similar in the sense that both are
defined via an intrinsic construction which was essentially first suggested by [70] and
then pursued by [46, 78] for Lie groups and by [79] for general Riemannian manifolds.
The main idea is to move the whole subdivision process from the manifold to a linear
space attached to it, namely to a tangent space. Within this tangent space, a linear
subdivision rule is applied. Then, the refined data are moved back to the manifold.

But how to move from the manifold to a tangent space and back? For point data, this
is realized by the exponential map of the manifold, resp. by its inverse [19, 79]. For
point-vector data, that is, Hermite data, we suggest two approaches:

1. The Log-exp analogue reinterprets point-vector data (p, v) as point-point data
(p, q) via the transformation q = p + v (resp. by an analogous point-vector
addition on the manifold). Now we are in the situation of pure point data,
which can be moved by the exponential map.

2. The parallel transport analogue moves point data by the exponential map and
vector data by a parallel transport operator of the manifold [19].
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These constructions are described in more detail in Section 2.3 resp. Section 3.4.

The projection approach, on the other hand, applies to submanifolds of Rn. It is
of extrinsic nature, since it depends on auxiliary data, such as on the submanifold’s
embedding in Euclidean space. Adaptions of scalar subdivision schemes that use pro-
jections have been studied in e.g. [41, 77, 84]. In this approach, data in the submanifold
are refined by a linear subdivision rule (which, in general, does not produce new data
in the submanifold) and then projected onto the submanifold. The generalization to
Hermite data is straightforward: Point data is mapped via a projection, vector data
via its derivative (see Section 2.3).

Having these adaptions of linear Hermite schemes at hand, a natural question addresses
their convergence and smoothness properties. In particular, it is desirable for nonlinear
adaptions to have the same properties as the linear schemes they are derived from
(“smoothness equivalence”). For reasons discussed in the section above, in general
manifolds, this is only possible by restricting to dense input data.

We follow the ideas of [77] and define a proximity condition for Hermite schemes.
This condition requires a linear scheme and its nonlinear analogue to be “not too
far” from each other. We prove that whenever “proximity” is fulfilled, convergence
and C1 smoothness of nonlinear Hermite schemes can be established from their linear
counterparts, provided that the input data are dense enough (Section 2.6).

In Section 2.7 and Section 3.5 we prove that the Log-exp, parallel transport and
projection analogues are C1 convergent if they are constructed from a C1 linear scheme
by verifying that the proximity condition is fulfilled. Therefore, we prove that C1

convergence carries over from linear schemes to these three analogues.

New Hermite schemes with limits of high regularity (Chapter 4)

The Hermite schemes we study in this thesis refine discrete point-vector data in order
to obtain a function together with its first derivative. Therefore, a convergent Hermite
scheme requires the limit function to be at least C1. This is the minimal regularity
the scheme has to have. Certainly, we may also consider limit functions with higher
regularity. In [11], for example, it is proved that in some cases the de Rham transform
of an Hermite scheme [24] produces C2 limit functions.

The aim of this chapter is to construct new linear Hermite schemes of arbitrarily
high regularity from given ones. For example, starting from the Merrien schemes [58],
which are known to produce C1 limits, we construct new Hermite schemes with limits
of regularity C2, C3, etc.

This is motivated by the well-known “smoothing” procedure for scalar subdivision
schemes: A scalar scheme which has C` (` ≥ 0) limits can be transformed to a new
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1 Introduction

scheme with C`+1 limits via the additional insertion of midpoints in every subdivi-
sion step [32]. This procedure can be described by multiplying the symbol with the
smoothing factor z+1

2 .

A prominent example are the B-Spline functions, which are obtained by the Lane-
Riesenfeld algorithm. For ` ≥ 1, the symbol of the `-th Lane-Riesenfeld algorithm is
given by

a`(z) =
(z + 1)`+1

(2z)`
.

Therefore, a`(z) is obtained from a1(z) by multiplying (`−1) times with the smoothing

factor (and an additional index shift). Since a1(z) = (z+1)2

2 is the symbol of the
scheme generating the piecewise linear interpolant of given input data, the `-th Lane-
Riesenfeld algorithm produces limits of regularity C`−1.

Similar to the scalar case, we approach the smoothing of Hermite schemes by ma-
nipulating symbols. In Theorem 4.41 we present a formula for computing the new,
smoothed mask from a given one in terms of symbols. This procedure is more in-
volved than the simple multiplication with a smoothing factor, but still presents a
generalization of the scalar case. It increases the support of a scheme by a maxi-
mum of 5 (Corollary 4.42), the maximum being attained by the schemes presented in
Example 4.46 and Example 4.47.

Future research

In this section we would like to comment on possible generalizations of the results
presented here and on other topics which are interesting for further research.

1. For Hermite subdivision operating on manifold-valued data, it would be natural
to consider schemes producing a function and more than one derivative (this has
been studied in the linear case, see e.g. [60]). We believe that a generalization
to higher derivatives becomes quite technical: Available results from manifold
subdivision suggest that the case of more than 2 derivatives is more involved
compared to the case of 1 derivative [43, 85]. Also, the data now have to be
sampled from the jet bundle of the manifold.

2. We expect that the results obtained in (I) can be generalized to the (regular)
multivariate setting.

3. Convergence and smoothness of level-dependent manifold-valued schemes still
needs to be analyzed, even in the scalar case. We believe, that this can be
achieved by combining [75, 77] and [10]. Recent results [9] show a similar fac-
torization as in [60] for linear inherently non-stationary Hermite schemes. This
probably allows us to generalize our results from (I) to the non-stationary setting.
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4. Similar to [28, 44] one could study approximation order and stability of manifold-
valued Hermite subdivision schemes.

5. It would be desirable to obtain convergence results for manifold-valued Hermite
schemes for all input data. As previous results suggest [79], Cartan-Hadarmard
manifolds are suitable spaces to work in. By transforming point-vector data to
point-point data as in the Log-exp analogue, we believe that [79] can be applied
to Hermite data.

6. Recently it was suggested to study linear Hermite schemes which produce limit
functions of higher regularity than the minimal one (that is, the number of
derivatives), see [11]. For example, [11] proves that in some cases the de Rham
transform [24] produces C2 limit curves while refining data consisting only of
function values and first derivatives. Our paper (III), on the other hand, is ca-
pable of producing linear schemes with limits of arbitrarily high regularity while
refining this kind of data. It would be interesting to show that the limit functions
of our manifold-valued analogues constructed in (I)-(II) inherit regularity higher
than C1 from their linear counterparts.

7





2 C1 analysis of Hermite subdivision schemes

on manifolds

This chapter comprises the paper (I).

Abstract. We propose two adaptations of linear Hermite subdivision schemes to
operate on manifold-valued data. Our approach is based on a Log-exp analogue and on
projection, respectively and can be applied to both interpolatory and non-interpolatory
Hermite schemes. Furthermore, we introduce a new proximity condition, which bounds
the difference between a linear Hermite subdivision scheme and its manifold-valued
analogue. Verification of this condition gives the main result: The manifold-valued
Hermite subdivision scheme constructed from a C1- convergent linear scheme is also
C1, if certain technical conditions are met.

Keywords. Hermite subdivision ·manifold subdivision · proximity · C1 smoothness

AMS Subject Classification. 65D05 · 65D17 · 41A05 · 41A25

2.1 Introduction

In this paper we continue recent work on adapting linear subdivision schemes to op-
erate on manifold-valued data. We are treating Hermite schemes, which are iterative
methods for refining discrete point-vector data in order to obtain, in the limit, a func-
tion together with its derivatives.

Linear Hermite schemes are widely studied, see e.g. [11, 22, 23, 25, 30, 31, 52, 58,
60] and others. The C1 analysis of linear Hermite schemes is often related to the
convergence analysis of scalar-valued or vector-valued stationary subdivision schemes,
which are easier to handle. This approach was first suggested by [30, 31]. In this
paper we are particularly interested in the approach of [60]: The authors introduce
the Taylor operator and the Taylor scheme for linear Hermite schemes, which play
the same role as the forward difference operator and derived scheme, respectively, in
the analysis of ordinary subdivision schemes [3, 26, 27]. We use the Taylor operator
to define a smoothness condition for linear Hermite schemes (inspired by a similar
condition in [77]), which is sufficient for C1 convergence.

We present two adaptations of linear Hermite schemes to the manifold setting. The
first one is based on the Log-exp approach of [46, 79]; the second one is a so-called

9



2 C1 analysis of Hermite subdivision schemes on manifolds

projection analogue as suggested by [41, 84]. The C1 convergence of these nonlin-
ear Hermite schemes is established from their linear counterparts by means of a new
proximity condition, following the ideas of [77]. Like almost all previous work on sub-
division in general Riemannian manifolds we show convergence only for dense enough
input data, and we show C1 smoothness of all limits which exist. There has been some
progress in showing convergence for any input data, see e.g. [34, 36, 37, 76].

Our results imply C1 convergence of nonlinear analogues of linear Hermite schemes,
in particular analogues of the examples listed in [58].

The paragraph above mentioned previous work on (non-Hermite) subdivision in man-
ifolds, but there is also previous work on nonlinear Hermite subdivision: The paper
[13] gives a detailed discussion of shape-preserving subdivision on the basis of linear
Hermite schemes. Here the dependence of the limit function on the data is nonlinear,
but this topic is different from the one studied in the present paper.

The paper is organized as follows. In Section 2.2 we give a short survey on linear
Hermite subdivision and introduce notation used throughout the text. Section 2.3
presents our adaptation of linear Hermite schemes to the manifold setting. The Log-
exp approach as well as the projection analogue are discussed in detail. The Taylor
operator and the Taylor scheme are defined in Section 2.4, which, together with con-
vergence results of Section 2.6.1, are important ingredients for the C1 analysis of linear
and nonlinear Hermite schemes. In Section 2.6 we prove C1 convergence results, first
in the linear Hermite case by means of a smoothness condition and then in the man-
ifold case using a proximity condition. Section 2.7 concludes the paper by proving
that a proximity condition applies to both the Log-exp analogue and the projection
analogue.

We would like to mention that some results concerning linear Hermite subdivision in
Sections 2.4 and 2.6 are already presented in the literature. We reprove these results
in order to extend them more easily to the manifold-valued case.

2.2 Linear Hermite subdivision

We begin by introducing the notation and recalling some known facts about linear
Hermite subdivision. The data to be refined by a linear Hermite subdivision scheme
consists of a point-vector sequence, where we consider both the point and vector
component to have values in the same real vector space V . In the course of our
analysis we also encounter refinement of vector-data, which cannot be interpreted as
points. To cover all cases we therefore use the notation f for elements in V 2, where f
can be interpreted as point and vector, vector and vector, or as point and point. If the
particular interpretation of the components is of interest, we use

(
p
v

)
for point-vector,(

v
w

)
for vector-vector, and

( p
q

)
for point-point.

10



2.2 Linear Hermite subdivision

Sequences of elements in V 2 are denoted by boldface letters, that is f = {f(α) : α ∈ Z}.
If we are interested in the components, we use the notation

(
p
v

)
= {

( p(α)
v(α)

)
: α ∈ Z},

etc. The space of all sequences with values in V 2 is denoted by `(V 2).

We also consider the space `(L(V )2×2), where L(V ) is the vector space of linear func-
tions on V . Uppercase letters A are used for elements in L(V )2×2 and boldface up-
percase letters A for elements in `(L(V )2×2).

A finitely supported sequence A ∈ `(L(V )2×2) is called mask and with it we associate
a linear subdivision operator SA : `(V 2)→ `(V 2) by

(SAf)(α) =
∑
β∈Z

A(α− 2β)f(β), α ∈ Z, f ∈ `(V 2). (2.1)

We associate two types of linear schemes to a linear subdivision operator SA:

• A linear Hermite subdivision scheme is the procedure of constructing f1, f2, . . .
from f0 ∈ `(V 2) by the rule

Dnfn = SnAf0,

where D ∈ L(V )2×2 is the block-diagonal dilation operator

D =

(
1 0
0 1

2

)
.

Here a constant c is to be understood as c idV . This notation will be used
throughout the text.

• The procedure of constructing g1,g2, . . . from g0 ∈ `(V 2) by the rule

gn = SnAg0

will be called a linear point subdivision scheme. This is because here the two
components of gn ∈ `(V 2) are not interpreted as a point-vector sequence, but as
a point-point sequence.

Note that if f0 = g0, then the two schemes are related via Dnfn = gn. Therefore, the
refined sequences fn and gn only differ in the second component by the factor 2n.

A linear Hermite subdivision scheme is called interpolatory if the mask satisfies A(0) =
D and A(2α) = 0 for all α ∈ Z\0.

We always assume a linear subdivision operator SA of a linear Hermite scheme to
reproduce a degree 1 polynomial and its derivative

f =
{( v + αw

w

)
: α ∈ Z

}
for v, w ∈ V,

11



2 C1 analysis of Hermite subdivision schemes on manifolds

Initial data: g0 Step 1: g1 = SAg0 Limit curve

Figure 2.1: The point subdivision scheme of Example 2.1

apart from a parameter shift. This means that we require that there is ϕ ∈ R such

that the shifted sequence fϕ =
{(

v+(α+ϕ)w
w

)
: α ∈ Z

}
satisfies

(SAfϕ)(α) =
(
v+α+ϕ

2
w

1
2
w

)
, for v, w ∈ V, α ∈ Z.

This condition is called the spectral condition and is equivalent to the requirement
that there is ϕ ∈ R such that both the constant sequence k0 = {

(
w
0

)
: α ∈ Z} and the

linear sequence ` = {
(

(α+ϕ)w
w

)
: α ∈ Z} for w ∈ V obey the rule

SAk0 = k0, SA` = 1
2`. (2.2)

The spectral condition has been introduced in [25] and is crucial for the C1 analysis
of linear Hermite subdivision schemes.

By means of the components of the mask A =
(
a b
c d

)
the spectral condition reads

∑
β∈Z

a(α− 2β) = 1,
∑
β∈Z

c(α− 2β) = 0, (2.3)

∑
β∈Z

a(α− 2β)β + b(α− 2β) =
1

2
(α− ϕ),

∑
β∈Z

c(α− 2β)β + d(α− 2β) =
1

2
, (2.4)

for some ϕ which indicates a parameter transform, and for all α ∈ Z.

Example 2.1. As a model example we consider one of the interpolatory linear Hermite
subdivision schemes introduced in [58], see Figure 2.1. Its mask is given by

A(−1) =

(
1
2 −1

8

3
4 −1

8

)
, A(0) =

(
1 0

0 1
2

)
, A(1) =

(
1
2

1
8

−3
4 −1

8

)
.

It is easy to see that it satisfies the spectral condition eq. (2.2). It is well known that
this scheme produces the piecewise cubic interpolant of given point-vector input data.
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2.3 Hermite subdivision on manifolds

p(0)

v(0)

q(0) p(1) v(1)
q(1)

p(2)

v(2)

q(2)

Figure 2.2: Transformation of input data from point-vector data ( p
v ) to point-point

data ( p
q ), where q = p + v.

2.2.1 Transformation of input data

To a subdivision operator SA we associate a subdivision operator SÃ by transformation
of input data. We change the point-vector input data

(
p
v

)
to point-point input data( p

q

)
via the transformation q = p + v, see Figure 2.2. Hence

( p
q

)
= T

(
p
v

)
, where

T =
(

1 0
1 1

)
. Then we let

SÃ
( p
q

)
= T SAT −1

( p
q

)
,

i.e., the mask Ã is computed from the mask A by the relation

Ã(α) = T A(α)T −1,

for α ∈ Z.

Note that A satisfies eq. (2.3) if and only if Ã =
(
ã b̃
c̃ d̃

)
satisfies∑

β∈Z
ã(α− 2β) + b̃(α− 2β) = 1,

∑
β∈Z

c̃(α− 2β) + d̃(α− 2β) = 1. (2.5)

This is the reproduction property SÃk2 = k2, where k2 is the constant sequence
k2 = {

(
w
w

)
: α ∈ Z} for w ∈ V . In Section 2.3 the subdivision operator SÃ as well as

property eq. (2.5) will be useful.

In Example 2.1, the mask Ã associated to A is given by

Ã(−1) =

(
5
8 −1

8

3
2 −1

4

)
, Ã(0) =

(
1 0

1
2

1
2

)
, Ã(1) =

(
3
8

1
8

−1
4 0

)
. (2.6)

2.3 Hermite subdivision on manifolds

This section presents two methods for deriving nonlinear Hermite subdivision schemes
from linear ones. The first one is an intrinsic construction. It works on any manifold
that has an exponential mapping. The main instances of manifolds we consider here

13



2 C1 analysis of Hermite subdivision schemes on manifolds

are finite-dimensional Riemannian manifolds, Lie groups and symmetric spaces. The
second method invokes a projection and can be defined on submanifolds. We start by
generalizing the notions of subdivision operator, point subdivision scheme, and Hermite
subdivision scheme.

Definition 2.2 (Subdivision operator). A subdivision operator is a map U which takes
as argument a sequence f and produces a new sequence U f . It must satisfy

(i) L2U = UL, where L is the left shift operator, and

(ii) U has compact support, that is, there exists N ∈ N such that both U f(2α) and
U f(2α+ 1) only depend on f(α−N), . . . , f(α+N) for all α ∈ Z and sequences
f .

Note that a linear subdivision operator with finitely supported mask satisfies these
conditions.

While for linear subdivision schemes both point-point and point-vector data can be
taken from the same vector space V 2, this is no longer the case in the manifold set-
ting. On a manifold M , point-point data is sampled from the space M2. For point
subdivision we therefore consider the associated sequence space `(M2).

Definition 2.3 (Point subdivision scheme). Let U be a subdivision operator which
takes arguments in `(M2) and again produces a sequence in M2. We associate a point
subdivision scheme to U :

A point subdivision scheme is the procedure of constructing g1,g2, . . . from input data
g0 ∈ `(M2) by the rule

gn = Ung0.

The derivative in a point of a manifold-valued curve c : R → M lies in a tangent
space of M , namely c′(t) ∈ Tc(t)M . Therefore tangent vectors serve as point-vector
input data for Hermite subdivision. Let TM =

⋃
p∈M TpM be the tangent bundle of

M and `(TM) its associated sequence space. We consider an element of `(TM) as a
point-vector pair

(
p
v

)
, where p is a sequence in M and v a sequence in the appropriate

tangent space, that is v(α) ∈ Tp(α)M for all α ∈ Z (strictly speaking v(α) carries the
information which tangent space it is contained in, but we want to retain the analogy
to the linear case). In this notation let D : `(TM)→ `(TM) be the dilation operator(

p
v

)
7→
(

p
1
2v

)
,

which is an analogue of the block-diagonal operator D defined in Section 2.2.

Definition 2.4 (Hermite subdivision scheme). Let U be a subdivision operator which
takes arguments in `(TM) and again produces a sequence in TM . We associate an
Hermite subdivision scheme to U :

14



2.3 Hermite subdivision on manifolds

An Hermite subdivision scheme is the procedure of constructing f1, f2, . . . from input
data f0 ∈ `(TM) by the rule

Dnfn = Unf0.

An Hermite subdivision scheme is called interpolatory if (U f)(2α) = (Df)(α) for all f
and α ∈ Z. Note that if U is a linear subdivision operator, this is equivalent to the
definition given in Section 2.2.

2.3.1 The Log-exp analogue of a linear subdivision scheme

The idea of using the exponential mapping for transferring linear operations to manifold-
valued data has been proposed by [20, 70]. Analysis of subdivision schemes has been
done by [43, 46, 79, 85, 86] and others.

Constructing a subdivision rule by the Log-exp method requires operations q = p⊕ v
and v = q 	 p, which are similar to point-vector addition and the difference vector of
points. We recall their definition which is found e.g. in [79].

Let N be a Riemannian manifold. For p ∈ N and a tangent vector v ∈ TpN , the
exponential mapping expp(v) gives the endpoint of the geodesic line of length ‖v‖
emanating from p in direction v. It is a local diffeomorphism around 0 ∈ TpN and
hence posses a local inverse exp−1

p .

We define

p⊕ v = expp(v) and q 	 p = exp−1
p (q). (2.7)

While ⊕ is always smooth, and is often defined for all tangent vectors v (for example,
this is the case on complete Riemannian manifolds, see [54, Theorem 10.3]), 	 in
general is definable as a smooth mapping only for p, q close to each other. Since the
convergence and smoothness analysis of Section 2.6.3 only considers “dense enough”
input data, we may assume that 	 is always smooth.

Let G be a Lie group and g its Lie algebra, which is the tangent space at the identity
element. By exp : g → G we denote the exponential mapping in the group [54, §2,
Chapter II]. Define expp : TpG→ G by

expp(v) = p exp(p−1 · v), p ∈ G, v ∈ TpG.

Here p−1·v is the transfer of v to the vector space g by left multiplication with p−1. The
map expp is a local diffeomorphism, hence possesses a local inverse exp−1

p . Define

p⊕ v = expp(v) and q 	 p = exp−1
p (q), for p, q ∈ G and v ∈ TpG. (2.8)

Note that exp−1
p (q) = p · exp−1(p−1q). On Lie groups ⊕ is globally smooth, while this

is generally not the case for 	.
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2 C1 analysis of Hermite subdivision schemes on manifolds

Equation (2.8) is invariant with respect to left translations in G, that is, for g, p, q ∈ G
and v ∈ TpG, we have gp⊕ (g · v) = g(p⊕ v) and (gq)	 (gp) = g · (q 	 p).

We follow the construction of [79] to define an exponential mapping on symmetric
spaces. Let X = G/K be a symmetric space, which is a Lie group G factorized by
a closed subgroup K meeting certain conditions which ensure that an exponential
mapping can be defined. By expp : TpX → X we denote its exponential mapping. We
define

p⊕ v = expp(v) and q 	 p = exp−1
p (q), (2.9)

where p, q ∈ X and v ∈ TpX. As in the Lie group case, ⊕ is globally smooth, while 	
is a diffeomorphism in a neighborhood of p. Furthermore, eq. (2.9) is invariant with
respect to the action of the group G.

Let M be a Riemannian manifold, Lie group or symmetric space. For p, q ∈ M we
define their mean by

mean(p, q) := p⊕ 1

2
(q 	 p).

Again in the case of Lie groups and symmetric spaces we have invariance of the mean
with respect to the action of the group, i.e. mean(gp, gq) = gmean(p, q).

In the following, we derive a subdivision operator UA on TM from a linear subdivision
operator SA which satisfies the spectral condition eq. (2.2).

We write SA in the form

SA

(
p
v

)
(α) =

∑
β∈Z

(
a(α− 2β) b(α− 2β)
c(α− 2β) d(α− 2β)

)(
p(β)
v(β)

)
,

where
(
p
v

)
is point-vector input data.

In Section 2.2.1 we associated a linear subdivision operator SÃ to SA by changing the
input data from point-vector form to point-point form:

SÃ

(
p
q

)
(α) =

∑
β∈Z

(
ã(α− 2β) b̃(α− 2β)

c̃(α− 2β) d̃(α− 2β)

)(
p(β)
q(β)

)
(2.10)

=

(∑
β∈Z ã(α− 2β)p(β) + b̃(α− 2β)q(β)∑
β∈Z c̃(α− 2β)p(β) + d̃(α− 2β)q(β)

)
,

where q = p + v and Ã =
(
ã b̃
c̃ d̃

)
=
(

1 0
1 1

)(
a b
c d

)(
1 0
−1 1

)
. By using the reproduction

property eq. (2.5), the operator eq. (2.10) can be equivalently written as

SÃ

(
p
q

)
(α) =

(
m0(α) +

∑
β∈Z ã(α− 2β)(p(β)−m0(α)) + b̃(α− 2β)(q(β)−m0(α))

m1(α) +
∑

β∈Z c̃(α− 2β)(p(β)−m1(α)) + d̃(α− 2β)(q(β)−m1(α))

)
,

(2.11)
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2.3 Hermite subdivision on manifolds

for any base point sequences m0,m1. This definition is useful for transferring the
linear refinement rule to the manifold setting, since it consists of point-vector addition
and point-point subtraction. As we have seen in the beginning of this section, these
operations are defined on manifolds. We therefore use eq. (2.11) to define a subdivision
operator UA for sequences of tangent vectors:

Consider input data
(
p
v

)
∈ `(TM) and define r ∈ `(M) by r = {p(α)⊕ v(α) : α ∈ Z}.

As to base point sequences, the following possibilities are an obvious choice:

(i) m0 = p or m0 = {mean(p(α), p(α+ 1)) : α ∈ Z},

(ii) m1 = r, m1 = {mean(r(α), r(α+ 1)) : α ∈ Z} or m1 = m0.

Define s1, r1 ∈ `(M) using eq. (2.11):(
s1(α)
r1(α)

)
=

(
m0(α)⊕

∑
β∈Z ã(α− 2β)(p(β)	m0(α)) + b̃(α− 2β)(r(β)	m0(α)),

m1(α)⊕
∑

β∈Z c̃(α− 2β)(p(β)	m1(α)) + d̃(α− 2β)(r(β)	m1(α))

)
,

for α ∈ Z. Therefore, the operator UA defined by

UA

(
p
v

)
(α) =

(
s1(α)

r1(α)	 s1(α)

)
, (2.12)

is a subdivision operator on TM . In Section 2.6 we show that the Hermite scheme
( p
v ) , D−1UA ( p

v ) , D−2U2
A ( p

v ) , . . . converges to a curve and its derivative.

In the case of symmetric spaces and Lie groups, UA is invariant with respect to the
group action.

Remark 2.5. While for the smoothness analysis of manifold-valued Hermite schemes
it does not matter if we use base point sequences (i) or (ii) from above, there is
a preferred choice if the linear Hermite scheme has additional properties, such as
symmetry. A linear Hermite scheme SA is called symmetric, if its mask satisfies
A(γ − α) = A(γ + α) (case 1) or A(γ − α) = A(γ + 1− α) (case 2), for a fixed index
γ and for all α ∈ Z. Then the following relation is fulfilled

SAM = L2MSA, (2.13)

where L is the left shift operator and M operates on sequences q by (Mq)(α) = q(−α)
for all α ∈ Z. A natural question addresses the preservation of symmetry: Is the
manifold-valued analogue of a symmetric linear scheme also symmetric? That is, does
it satisfy eq. (2.13)? Depending on whether we consider case 1 or case 2, the symmetry
is preserved if the base points are chosen as the data points (m0 = p,m1 = r) or as the
geodesic midpoints (m0 = {mean(p(α), p(α + 1)) : α ∈ Z}, m1 = {mean(r(α), r(α +
1)) : α ∈ Z}), respectively. For more details, including examples, see [46].
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2 C1 analysis of Hermite subdivision schemes on manifolds

Example 2.6. Consider the 2-dimensional sphere S2 in R3. It is a Riemannian mani-
fold with metric induced from the ambient space R3. The operations ⊕,	 on p, q ∈ S2

and v ∈ TpS2 = {w ∈ R3 : 〈w, p〉 = 0} are given by

p⊕ v = cos(‖v‖)p+ sin(‖v‖) v

‖v‖
, q 	 p = arccos(〈q, p〉) q − 〈q, p〉p

‖q − 〈q, p〉p‖
. (2.14)

We consider the Log-exp analogue of the linear interpolatory Hermite scheme intro-
duced in Example 2.1 on the sphere. In Figure 2.3 the input data, the first step and
the limit curve of the Log-exp analogue are shown.

For input data ( p
v ) ∈ `(TS2) and r = {p(α) ⊕ v(α) : α ∈ Z}, define the base point

sequences m0,m1 by

m0(2α) = m0(2α+ 1) = mean(p(α+ 1), p(α)) = p(α+ 1)⊕
(1

2
p(α)	 p(α+ 1)

)
,

m1(2α) = m1(2α+ 1) = mean(r(α+ 1), r(α)) = r(α+ 1)⊕
(1

2
r(α)	 r(α+ 1)

)
.

Furthermore, we introduce the sequences v0,v1,w0,w1:

v0
α,β = p(α)	m0(β), v1

α,β = p(α)	m1(β),

w0
α,β = r(α)	m0(β), w1

α,β = r(α)	m1(β),

for α, β ∈ Z. Therefore, the Log-exp version of the Hermite subdivision scheme( s1
r1	s1

)
= UA

( p
v

)
is given by the sequences

s1(2α) = p(α),

r1(2α) = m1(2α)⊕
(1

2
v1
α,2α +

1

2
w1
α,2α

)
,

s1(2α+ 1) = m0(2α+ 1)⊕
(5

8
v0
α+1,2α+1 +

3

8
v0
α,2α+1 −

1

8
w0
α+1,2α+1 +

1

8
w0
α,2α+1

)
,

r1(2α+ 1) = m1(2α+ 1)⊕
(3

2
v1
α+1,2α+1 −

1

4
v1
α,2α+1 −

1

4
w1
α+1,2α+1

)
,

where the coefficients are taken from eq. (2.6).

The sphere is also a symmetric space, namely S2 = SO3/SO2. The exponential map of
S2 as a Riemannian manifold coincides with the exponential map of S2 as a symmetric
space [56, Chapter XI, Theorem 3.3] and therefore the above calculations are valid in
both cases. Furthermore, it can be checked immediately that eq. (2.14) is invariant
with respect to SO3, which implies the invariance of s1 respectively r1.

2.3.2 The projection analogue of a linear subdivision scheme

Projections onto submanifolds have been used to create subdivision schemes for manifold-
valued data by various authors, see [77, 75, 41, 84]. We generalize this method to the
Hermite case.
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2.4 Derived schemes and factorization results

Initial data Step 1 Initial data and limit

Initial data and step 1 Initial data and step 2 Initial data and limit

Figure 2.3: Log-exp analogue of an interpolatory Hermite scheme (first row) vs. a
non-interpolatory one (second row). Both schemes are applied to the same initial data
on the sphere. First row : Initial data, first step and limit curve of the interpolatory
scheme presented in Example 2.6. Second row : Initial data together with the first
step, second step and limit curve of a non-interpolatory scheme. This scheme is the
log-exp analogue of a linear Hermite scheme constructed as the de Rham transform
[24] of a scheme proposed by [58]. The mask is the special case λ = −1

8 , µ = 1
2 in [24,

Section 4].

Let M be a submanifold of Euclidean space Rn. A projection π is a smooth mapping
onto M defined in a neighborhood of M such that π|M = id. Its derivative is denoted
by dπ.

Let SA be a linear subdivision operator. Define a subdivision operator UA that oper-
ates on `(TM) by

UAf(α) = dπ(SAf(α)), for α ∈ Z.

In Section 2.6 we show that the sequence of refined data f , D−1UAf , D−2U2
Af , . . .

converges to a curve and its derivative.

2.4 Derived schemes and factorization results

For the convergence and C1 analysis of linear subdivision schemes, the derived schemes
with respect to the forward difference operator ∆ are of importance, see for example
[3, 27]. In the Hermite case, the Taylor operator T is the natural analogue of ∆, see
[60]. It is introduced as follows:
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2 C1 analysis of Hermite subdivision schemes on manifolds

Definition 2.7. We define operators T,∆0,∆1 acting on `(V 2) in block operator
notation by

T :=

(
∆ −1
0 1

)
, ∆0 :=

(
∆ 0
0 1

)
, ∆1 :=

(
1 0
0 ∆

)
,

where ∆ is the forward difference operator (∆f)(α) = f(α + 1) − f(α). T is called
Taylor operator.

The next proposition considers derived schemes of SA with respect to the operators
∆0, T, ∆1T . In order to keep an overview of these derived schemes, we introduce the
notation ∂TSA to mean the derived scheme of SA with respect to the operator T .

Proposition 2.8. Let A be a mask that satisfies the spectral condition eq. (2.2). Then
there exist derived schemes of SA with respect to ∆0, T,∆1T , i.e. subdivision operators
∂TSA, ∂∆0SA and ∂∆1TSA which satisfy

(i) 2TSA = (∂TSA)T ,

(ii) ∆0SA = (∂∆0SA)∆0 and 2∆1TSA = (∂∆1TSA)∆1T .

Furthermore, if we define a mask E by

E(0) =

(
1 0

0 1

)
, E(−1) = E(1) =

(
1
2 0

0 1
2

)
, E(α) = 0 for α 6= −1, 0, 1,

then there exist subdivision operators SB, SC such that

(iii) SA − SE = SB∆0,

(iv) ∂TSA − SE = SC∆1.

Part (i) is a result of [60]. The second factorization of (ii) is also proved in [60] (in this
paper ∆1T is called complete Taylor operator), but will follow from results we derive
here. The proof of Proposition 2.8 can be found at the end of this section.

The essential ingredient in the proof is the reproduction of constants property eq. (2.2):
SAk0 = k0, where k0 is the constant sequence k0 = {

(
w
0

)
: α ∈ Z} for w ∈ V . The

operator ∂TSA satisfies a different reproduction property, namely

Lemma 2.9. Let A be a mask that satisfies the spectral condition eq. (2.2) and let
∂TSA be the derived scheme of SA w.r.t. T (which exists by [60]). Denote by k1 the
constant sequence k1 = {

(
0
w

)
: α ∈ Z} for w ∈ V . Then we have

(∂TSA)k1 = k1. (2.15)
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2.4 Derived schemes and factorization results

Proof. By property eq. (2.2), there exists ϕ ∈ R such that ` = {
(

(α+ϕ)w
w

)
: α ∈ Z} is

reproduced: SA` = 1
2`. Furthermore for all α ∈ Z

(T`)(α) = T
(

(α+t)w
w

)
=
(

∆ −1
0 1

)(
(α+t)w
w

)
=
(

(α+1+t)w−(α+t)w−w
w

)
=
(

0
w

)
,

hence T` = k1. This implies (∂TSA)k1 = (∂TSA)T` = 2TSA` = T` = k1

Note that the mask E defined in Proposition 2.8 reproduces both k0 and k1, since

SEk0(2α) = E(0)
(
w
0

)
= k0(2α), SEk0(2α+ 1) = (E(−1) + E(1))

(
w
0

)
= k0(2α+ 1)

and similarly for k1. Therefore, in order to prove Proposition 2.8 we are going to study
masks which reproduce either k0 or k1 or both.

The mask of a linear subdivision scheme is often analyzed by considering its symbol,
which is a vector-valued or matrix-valued Laurent polynomial. We recall some basic
facts concerning symbols, as they frequently appear in the sequel.

To a sequence f we associate its symbol by

f∗(z) :=
∑
α∈Z

f(α)zα.

By eq. (2.1) we have the following identities:

(∆f)∗(z) = (z−1 − 1)f∗(z), (SAf)∗(z) = A∗(z)f∗(z2), (2.16)

where A has finite support. The operators of Definition 2.7, acting from the left on
symbols f∗(z), are given by

∆∗0(z) =

(
z−1 − 1 0

0 1

)
, ∆∗1(z) =

(
1 0
0 z−1 − 1

)
, T ∗(z) =

(
z−1 − 1 −1

0 1

)
. (2.17)

Furthermore, we have the following well known result for a finitely supported symbol:∑
β∈Z

f(α− 2β) = 0 ∀α ∈ Z implies f∗(z) = (z−2 − 1)h∗(z), (2.18)

for a symbol h∗(z). This follows from the fact that
∑

β∈Z f(α− 2β) = 0 for all α ∈ Z
implies

∑
β∈Z f(1− 2β) = 0 and

∑
β∈Z f(2β) = 0. Therefore −1 as well as 1 are zeros

of f∗(z). This yields that 1− z2 is a factor of f∗(z).

We say that a mask M annihilates k0 (resp. k1) if SMk0 = 0 (resp. SMk1 = 0).

Proposition 2.10. Let M be a mask that annihilates k0 (resp. k1). Then there exists
a linear subdivision operator SN such that

SM = SN∆0 (resp. SM = SN∆1).
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2 C1 analysis of Hermite subdivision schemes on manifolds

Proof. We prove the case where k0 is annihilated, the other case is analogous. In
terms of symbols, we want to prove that (SMf)∗(z) = (SN∆0f)∗(z). By eqs. (2.16)
and (2.17), this is equivalent to

M∗(z)f∗(z2) = N∗(z)(∆0f)∗(z2) = N∗(z)

(
z−2 − 1 0

0 1

)
f∗(z2).

Let M =
(
a b
c d

)
. Annihilation of k0 implies∑

β∈Z
a(α− 2β) = 0 and

∑
β∈Z

c(α− 2β) = 0.

Thus eq. (2.18) implies that there exist symbols ã∗(z), c̃∗(z) such that a∗(z) = (z−2−
1)ã∗(z) and c∗(z) = (z−2 − 1)c̃∗(z). Therefore

M∗(z) =

(
a∗(z) b∗(z)
c∗(z) d∗(z)

)
=

(
ã∗(z) b∗(z)
c̃∗(z) d∗(z)

)(
z−2 − 1 0

0 1

)
.

The result follows with N∗(z) :=
( ã∗(z) b∗(z)
c̃∗(z) d∗(z)

)
.

The proof of Proposition 2.8 follows from Proposition 2.10:

Proof of Proposition 2.8. Let A be a mask that satisfies the spectral condition eq. (2.2)
and ∂TSA the derived scheme w.r.t. T . We prove (ii)–(iv) of Proposition 2.8.

(ii): The subdivision operator SA reproduces k0 and ∆0k0 = 0. Therefore ∆0SAk0 =
0 and by Proposition 2.10 there exists an operator ∂∆0SA such that ∆0SA = (∂∆0SA)∆0.
Similarly, ∂TSA reproduces k1 (by Lemma 2.9) and ∆1k1 = 0. Thus there exists
∂∆1∂TSA such that ∆1∂TSA = (∂∆1∂TSA)∆1 and hence

2∆1TSA = ∆1(∂TSA)T = (∂∆1∂TSA)∆1T.

Therefore ∂∆1TSA exists and is given by ∂∆1TSA = ∂∆1∂TSA.

(iii): The equation (SA − SE)k0 = 0 and Proposition 2.10 implies that there exists a
subdivision operator SB such that (SA − SE) = SB∆0.

(iv): is proved analogously to (iii).

2.5 Norms

In the following sections we will encounter different types of norms, which are collected
here. On a finite-dimensional vector space V we choose a norm ‖ · ‖. From this norm,
we induce a norm on V 2 by

‖
(
v
w

)
‖ = max{‖v‖, ‖w‖}, for v, w ∈ V. (2.19)
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The norm of an element A ∈ L(V )2×2 is the operator norm

‖A‖ = sup{‖A
(
v0
v1

)
‖, where ‖

(
v0
v1

)
‖ = 1}.

For simplicity we use the same symbol in all three cases; it will be clear from the
context which one is used.

We write `∞(V ) resp. `∞(V 2) resp. `∞(L(V )2×2) for the Banach spaces of all bounded
sequences equipped with the norms

‖p‖∞ = sup
α∈Z
‖p(α)‖ resp. ‖f‖∞ = sup

α∈Z
‖f(α)‖ resp. ‖A‖∞ = sup

α∈Z
‖A(α)‖.

It is easy to see that if f ∈ `∞(V 2) has the components f =
(
v
w

)
, then ‖f‖∞ =

max{‖v‖∞, ‖w‖∞}.

A linear subdivision operator SA as defined in eq. (2.1) maps `(V 2) to `(V 2). Since
the linear combination in eq. (2.1) is finite, it is clear that ‖SAf‖∞ ≤ d‖f‖∞ for
some d > 0. It is not difficult to see that d ≤ supα∈Z

∑
β∈Z ‖A(α − 2β)‖ ≤ N‖A‖∞,

where N is a positive integer such that the support of A is contained in the interval
[−N,N ]. Therefore, SA restricts to an operator `∞(V 2) → `∞(V 2), hence has an
induced operator norm ‖SA‖∞.

Also the operators of Definition 2.7 restrict to operators `∞(V 2) → `∞(V 2), since it
is easy to see that

‖∆0‖∞ = ‖∆1‖∞ = 2 and ‖T‖∞ = 3. (2.20)

We choose the norm eq. (2.19) on V 2 only for technical reasons. We would like to
mention that the results presented in the next sections are valid for any norm on V 2.
Suppose that ‖ · ‖′ is another norm on V 2. Since in every finite dimensional vector
space any two norms are equivalent, there exist constants c0, c1 > 0 such that

c0‖
(
v
w

)
‖ ≤ ‖

(
v
w

)
‖′ ≤ c1‖

(
v
w

)
‖, ∀v, w ∈ V.

For a sequence f ∈ `(V 2), we define ‖f‖′∞ = supα∈Z ‖f(α)‖′. It follows immediately
that ‖f‖∞ and ‖f‖′∞ are equivalent with the same constants c0, c1 > 0 from above:

c0‖f‖∞ ≤ ‖f‖′∞ ≤ c1‖f‖∞. (2.21)

Therefore, a sequence fn converges with respect to ‖ · ‖∞ if and only if it converges
with respect to ‖ · ‖′∞. Furthermore, every inequality of the form ‖f‖∞ ≤ c‖g‖∞ (with
c > 0) induces an inequality ‖f‖′∞ ≤ c′‖g‖′∞ (with c′ > 0) and vice versa. The results
in the following sections will either be concerned with convergence or with this type
of inequalities. Therefore, they hold for any norm on V 2.
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2 C1 analysis of Hermite subdivision schemes on manifolds

2.6 Convergence analysis

In this section we derive the following results concerning C1 convergence of Hermite
subdivision schemes:

• We define a “smoothness condition” for linear Hermite subdivision schemes
which is sufficient for C1 convergence.

• We introduce a “proximity condition”, which bounds the difference between a
nonlinear Hermite subdivision scheme and a linear one.

• We show that the nonlinear Hermite subdivision scheme is C1 convergent if its
linear counterpart is, and certain technical conditions are met.

We start by repeating the definition of convergence for point sequences and point-
vector sequences. This needs the following notion: By Fn(gn) we denote the piecewise
linear interpolant of the sequence gn on the grid 2−nZ. If gn has more than one
component, Fn(gn) is constructed componentwise.

Definition 2.11 (Convergence of point and point-vector sequences). Let V be a vector
space. Then we define:

(i) A point sequence gn ∈ `(V 2) is said to be convergent if Fn(gn) converges uni-
formly on compact intervals to a continuous curve Ψ ∈ C(R, V 2).

(ii) A point-vector sequence
(
pn

vn

)
∈ `(V 2) is said to be C1 convergent if Fn(pn)

converges uniformly on compact intervals to a continuously differentiable curve
ϕ ∈ C1(R, V ) and Fn(vn) converges uniformly on compact intervals to its deriva-
tive ϕ′.

In the case of manifold-valued sequences, we require that (i) resp. (ii) is satisfied in a
chart of the manifold.

In this paper, the sequences gn and
(
pn

vn

)
are produced by subdivision. Due to the

compact support of a subdivision operator U , the limit curve on compact intervals
depends only on finitely many points of the initial data. In order to prove convergence
and smoothness results for subdivision schemes it is therefore sufficient to consider
finite input data. In particular we can assume that the input data is bounded.

For bounded input data Definition 2.11 is equivalent to the following:

(i) A point sequence gn ∈ `∞(V 2) is convergent if there exists a continuous curve
Ψ ∈ C(R, V 2) such that

sup
α∈Z
‖gn(α)−Ψ

( α
2n

)
‖ → 0 as n→∞.
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2.6 Convergence analysis

(ii) A point-vector sequence
(
pn

vn

)
∈ `∞(V 2) is C1 convergent if there exists a con-

tinuously differentiable curve ϕ ∈ C1(R, V ) such that

sup
α∈Z
‖pn(α)− ϕ

( α
2n

)
‖ → 0 and sup

α∈Z
‖vn(α)− ϕ′

( α
2n

)
‖ → 0 as n→∞.

Remark 2.12. In Definition 2.11 we define C1 convergence of a point-vector sequence(
pn

vn

)
. By this we mean that the limit curve ϕ enjoys at least C1 smoothness. There

exist linear Hermite schemes producing a point-vector sequence
(
pn

vn

)
and a C2 limit

curve ϕ (see [11]). We nevertheless use the terminology “C1 convergence”, since we
do not prove anything about higher derivatives in this paper.

Remark 2.13. Recall from Section 2.3 that the Hermite scheme Dnfn = Unf0 and
the point scheme gn = Ung0 only differ in the second component by a factor 2n if
f0 = g0. That is, for fn =

(
pn

vn

)
and gn =

(
pn

un

)
we have 2nun = vn.

If the Hermite scheme fn is C1 convergent with limit ϕ, then the point scheme gn is
convergent with limit Ψ =

(
ϕ
0

)
. In general, the converse is not true. Verification of the

following, however, implies C1 convergence of fn:

• the point sequence pn converges to a continuously differentiable curve ψ1,

• the point sequence 2nun converges to a continuous curve ψ2 and

• ψ′1 = ψ2.

In Sections 2.6.2 and 2.6.3 we will use this line of arguments to prove C1 convergence
of Hermite schemes.

Example 2.14. As already mentioned, the interpolatory linear scheme defined in
Example 2.1 produces the piecewise cubic interpolant of given point-vector input data.
Therefore the Hermite scheme is C1 convergent in the sense of Definition 2.11 (and
hence also the point scheme converges).

The scheme associated to the mask E we defined in Proposition 2.8 is interpolatory and
adds midpoints between two consecutive points in every step. Therefore it produces a
continuous limit which in general is not C1. Hence the point scheme associated with
it is convergent, but the associated Hermite scheme is not.

2.6.1 Convergence results for derived schemes

This section deals solely with the convergence of linear point schemes. We treat the
Taylor scheme gn = (∂TSA)ng0 as well as gn = (∂∆0SA)ng0 and gn = (∂∆1TSA)ng0,
where we use the notation for derived schemes introduced by Proposition 2.8. Results
obtained here will be useful in Sections 2.6.2 and 2.6.3 for the C1 analysis of Hermite
schemes.
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2 C1 analysis of Hermite subdivision schemes on manifolds

Define distance functions D0, D1 in `(V 2) by

D0(g) = ‖∆0g‖∞ and D1(g) = ‖∆1g‖∞. (2.22)

Equation (2.20) implies that both D0(g) and D1(g) are finite if g ∈ `∞(V 2).

We already mentioned in Section 2.5 that a linear subdivision operator SA has an
operator norm. It is given by

‖SA‖∞ = sup{‖SAg‖∞, where ‖g‖∞ = 1}.

Proposition 2.15. Let SA satisfy the spectral condition eq. (2.2) and let ∂TSA be its
derived scheme w.r.t. the Taylor operator T . Then there exist constants c0, c1 such
that for all g ∈ `∞(V 2)

‖Fn+1(SAg)−Fn(g)‖ ≤ c0D0(g),

‖Fn+1(∂TSAg)−Fn(g)‖ ≤ c1D1(g),

where we use the notation ‖ϕ‖ = supt∈R ‖ϕ(t)‖ for a continuous curve ϕ ∈ C(R, V 2).
Furthermore the constant c0 (resp. c1) only depends on SA (resp. ∂TSA) and neither
on n nor on g.

Proof. Observe that

‖Fn(g)−Fn(h)‖ = sup
α∈Z
‖g(α)− h(α)‖ = ‖g − h‖∞,

for n = 0, 1, . . . and g,h ∈ `∞(V 2). Therefore using Proposition 2.8 and Fn(g) =
Fn+1(SEg), with E from Proposition 2.8,

‖Fn+1(SAg)−Fn(g)‖ = ‖Fn+1(SAg)−Fn+1(SEg)‖
= ‖(SA − SE)g‖∞ = ‖SG∆0g‖∞
≤ ‖SG‖∞‖∆0g‖∞ = c0D0(g).

A similar argument proves the result for ∂TSA.

Proposition 2.16. Let SA satisfy the spectral condition eq. (2.2) and let ∂∆0SA be
the derived scheme w.r.t. to the operator ∆0. Then the following are equivalent:

(i) The point scheme gn = SnAg0 is convergent with continuous limit curve
(
ψ
0

)
for

all input data g0.

(ii) The point scheme hn = (∂∆0SA)nh0 converges to 0 for all input data h0 = ∆0g
0.

(iii) There exists a positive constant c0 and α ∈ (0, 1] such that

D0(SnAg) ≤ c02−αnD0(g) for n = 0, 1, . . . and g ∈ `∞(V 2).
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2.6 Convergence analysis

Proof. In fact this proposition follows from similar results in [3, 7, 26]. For the conve-
nience of the reader we give a proof.

Recall that it is sufficient to prove convergence for bounded input data. We therefore
assume that g0 ∈ `∞(V 2).

(i) =⇒ (ii): Let gn =
(
pn

un

)
. Convergence to

(
ψ
0

)
implies that

sup
α∈Z
‖pn(α)− ψ

( α
2n

)
‖ → 0 and sup

α∈Z
‖un(α)‖ → 0 as n→∞. (2.23)

Furthermore hn = (∂∆0SA)nh0 = (∂∆0SA)n∆0g
0 = ∆0S

n
Ag0 = ∆0g

n =
(

∆pn

un

)
, which

immediately implies that the second component of hn converges to 0. As to the first
component, consider

‖(∆pn)(α)‖ = ‖pn(α+ 1)− pn(α)‖

≤
∥∥∥pn(α+ 1)− ψ

(α+ 1

2n

)∥∥∥+
∥∥∥ψ( α

2n

)
− pn(α)

∥∥∥+
∥∥∥ψ(α+ 1

2n

)
− ψ

( α
2n

)∥∥∥.
The continuity of ψ together with eq. (2.23) implies that supα∈Z ‖(∆pn)(α)‖ converges
to 0 and hence hn converges to 0.

(ii) =⇒ (iii): Suppose that hn = SnDh0 converges to 0 with h0 = ∆0g. Then there
exists a positive integer N such that

‖SND∆0g‖∞ ≤
1

2
‖∆0g‖∞.

Write a positive integer n as n = mN + r, where m =
⌊
n
N

⌋
and 0 ≤ r < N . Then we

have

‖∆0S
n
Ag‖∞ = ‖SnD∆0g‖∞ = ‖SrDSmND ∆0g‖∞

≤ 2−m‖SrD‖∞‖∆0g‖∞ = 2−
n
N 2

r
N ‖SrD‖∞‖∆0g‖∞

≤ 2−nα max
0≤r<N

2
r
N ‖SrD‖∞‖∆0g‖∞

≤ c02−nα‖∆0g‖∞,

where α = 1
N and c0 = max0≤r<N 2

r
N ‖SrD‖∞. This proves inequality (iii).

(iii) =⇒ (i): Let gn = SnAg0. Since we want to prove convergence, we may assume
that g0 is bounded. By Proposition 2.15 and assumption (i) we have

‖Fn+1(Sn+1
A g0)−Fn(SnAg0)‖ ≤ c0D0(SnAg0) ≤ c02−αnD0(g0),

for all n = 0, 1, . . .. This shows that Fn(SnAg0) = Fn(gn) is a Cauchy sequence. The
sequence gn takes values in the finite dimensional vector space V 2 which implies that
the space of continuous curves on V 2, equipped with the ∞-norm, is a Banach space.
Therefore Fn(gn) converges to a continuous curve.

Let gn =
(
pn

un

)
. Inequality (iii) implies that ‖∆pn‖∞, ‖un‖∞ converge to 0. Therefore

the second component of the limit curve equals 0.
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2 C1 analysis of Hermite subdivision schemes on manifolds

The following result can be proved analogously to Proposition 2.16:

Proposition 2.17. Let SD satisfy the reproduction property eq. (2.15) and let SF
be such that ∆1SD = SF∆1 (SF exists by Proposition 2.8). Then the following are
equivalent:

(i) The point scheme gn = SnDg0 is convergent with continuous limit curve
(

0
ψ

)
for

all input data g0.

(ii) The point scheme hn = SnFh0 converges to 0 for all input data h0 = ∆1g
0.

(iii) There exists a positive constant c1 and α ∈ (0, 1] such that

D1(SnDg) ≤ c12−αnD1(g) for n = 0, 1, . . . and g ∈ `∞(V 2).

Note that if SA satisfies the spectral condition eq. (2.2), then Proposition 2.17 can be
applied to SD = ∂TSA. The operator SF is then given by ∂∆1TSA.

2.6.2 C1 results for linear Hermite schemes

The C1 analysis of linear Hermite subdivision schemes is often transferred to the
convergence analysis of the respective Taylor schemes, see [22, 23, 25, 60]. The main
theorem of this section (Theorem 2.21) is similar in this regard, but differs somewhat in
the proof. Instead of constructing the limit function explicitly, we invoke convergence
and smoothness conditions which we later adapt to the manifold-valued case.

Definition 2.18 (Convergence and smoothness conditions). Consider a linear subdi-
vision operator SA : `(V 2)→ `(V 2). We use the following terminology:

SA satisfies a convergence condition, if there exists γ0 < 1 and a positive constant c0

such that

D0(SnAg) ≤ c0γ
n
0D0(g) for all g ∈ `∞(V 2).

SA satisfies a smoothness condition, if there exists γ1 < 1 and a positive constant c1

such that

D1(2nTSnAg) ≤ c1γ
n
1D1(Tg) for all g ∈ `∞(V 2).

Define α = − log2(γ0) and β = − log2(γ1). We are content to find contraction factors
γi with 1

2 ≤ γi for i = 0, 1, which is the optimum for linear functions. Therefore we
w.l.o.g. assume that α, β ∈ (0, 1]. We will always work with γ0 = 2−α and γ1 = 2−β.

Definition 2.18 is based on similar conditions in [77, 75, 85]. Note that the convergence
condition is exactly our condition (iii) of Proposition 2.16. Furthermore, the smooth-
ness condition is our condition (iii) of Proposition 2.17 for input data of the form Tg
applied to ∂TSA. The following Lemma is a preparation for Theorem 2.21.
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2.6 Convergence analysis

Lemma 2.19. Let SA satisfy the spectral condition eq. (2.2). If SA satisfies the
smoothness condition of Definition 2.18, then it also satisfies the convergence condi-
tion.

Proof. Let g0 =
(
p0

u0

)
be bounded input data. Define

(
pn

un

)
= SnA

(
p0

u0

)
by iterated

subdivision. By Proposition 2.8 the derived scheme ∂∆0SA exists. We will prove
that the point scheme hn = (∂∆0SA)nh0 with h0 = ∆0g

0 converges to 0. Then
Proposition 2.16 implies the convergence condition.

In order to prove that hn converges to 0, note that

hn = (∂∆0SA)nh0 = (∂∆0SA)n∆0g
0 = ∆0S

n
Ag0 =

(
∆pn

un

)
.

Therefore, we have to prove that

(i) supα∈Z ‖(∆pn)(α)‖ → 0 and

(ii) supα∈Z ‖un(α)‖ → 0.

This will follow from the smoothness condition:

By Proposition 2.8, the Taylor scheme ∂TSA exists. By Proposition 2.17, the smooth-
ness condition implies that the point scheme kn = (∂TSA)nk0 converges to a curve(

0
ψ

)
for all input data k0 = Tg0. Since kn = 2nTSnAg0 = 2n

(
∆pn−un

un

)
we have

sup
α∈Z
‖2n(∆pn)(α)− 2nun(α)‖ → 0,

sup
α∈Z
‖2nun(α)− ψ

( α
2n
)
‖ → 0,

as n→∞. Therefore

sup
α∈Z
‖un(α)‖ ≤ 1

2n
sup
α∈Z
‖2nun(α)− ψ

( α
2n
)
‖+

1

2n
sup
α∈Z
‖ψ
( α

2n
)
‖ → 0,

as n→∞. This proves (ii). We use (ii) to prove (i):

sup
α∈Z
‖(∆pn)(α)‖ ≤ 1

2n
sup
α∈Z
‖2n(∆pn)(α)− 2nun(α)‖+ sup

α∈Z
‖un(α)‖ → 0,

as n→∞. This proves that hn converges to 0. Thus, by Proposition 2.16, SA satisfies
the convergence condition.

As a preparation for the next theorem we state a well-known result, which will also
be useful for the rest of the paper:

Lemma 2.20. [77, Lemma 8] Consider a sequence of polygons pn such that Fn(pn)
converges to ϕ as n → ∞ and ϕ is continuous. If Fn(2n∆pn) is a Cauchy sequence
and ‖2n∆2pn‖∞ → 0 as n→∞, then ϕ is continuously differentiable and Fn(2n∆pn)
converges to ϕ′ as n→∞.
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2 C1 analysis of Hermite subdivision schemes on manifolds

Theorem 2.21. If SA satisfies the spectral condition eq. (2.2) and the smoothness
condition of Definition 2.18, then the linear Hermite scheme fn = D−nSnAf0 is C1

convergent for all input data f0 ∈ `(V 2).

Proof. As suggested in Remark 2.13, we will use the linear point scheme gn = SnAg0

to prove C1 convergence of the Hermite scheme fn = D−nSnAf0.

Let fn =
(
pn

vn

)
and gn =

(
pn

un

)
with 2nun = vn. By Definition 2.11, we have to prove

that pn converges to a C1 curve ϕ and that vn = 2nun converges to its derivative ϕ′.

By Proposition 2.8, the Taylor scheme ∂TSA exists. By Proposition 2.17, the point
scheme kn = (∂TSA)nk0 converges to a continuous curve

(
0
ψ

)
for all input data k0 =

Tg0. Since kn = 2nTSnAg0 = 2nT
(
pn

un

)
= 2n

(
∆pn−un

un

)
, also 2n

(
∆pn−un

un

)
converges to(

0
ψ

)
. This implies that both vn = 2nun and 2n∆pn converge to ψ and that

sup
α∈Z
‖2n(∆pn)(α)− vn(α)‖ → 0 as n→∞. (2.24)

By Lemma 2.19, the convergence condition applies and by Proposition 2.16, the linear
point scheme gn = SnAg0 converges to a continuous curve

(
ϕ
0

)
. Hence, the sequence

pn converges to ϕ.

By Proposition 2.8, the derived scheme ∂∆1TSA exists. By Proposition 2.17, the
linear point scheme hn = (∂∆1TSA)nh0 converges to 0 for all input data h0 = ∆1k

0 =
∆1Tg0. Since

hn = (∂∆1TSA)nh0 = (∂∆1TSA)n∆1Tg0 = 2n∆1TS
n
Ag0 = 2n∆1T

(
pn

un

)
= 2n

(
∆pn−un

∆un

)
,

both 2n(∆pn − un) and 2n∆un converge to 0. Therefore

sup
α∈Z
‖(∆vn)(α)‖ = sup

α∈Z
‖2n(∆un)(α)‖ → 0 as n→∞.

This together with eq. (2.24) and ‖∆‖∞ = 2 indicates that

sup
α∈Z
‖2n(∆2pn)(α)‖ ≤ sup

α∈Z
‖2n(∆2pn)(α)− (∆vn)(α)‖+ sup

α∈Z
‖(∆vn)(α)‖

≤ sup
α∈Z

2‖2n(∆pn)(α)− vn(α)‖+ sup
α∈Z
‖(∆vn)(α)‖ → 0,

as n→∞. To summarize, we showed that

(i) pn converges to a continuous function ϕ,

(ii) 2n∆pn as well as vn converge to a continuous function ψ and

(iii) 2n∆2pn converges to 0.

Lemma 2.20 implies that ϕ is continuously differentiable and that ϕ′ = ψ, which gives
the result.
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2.6 Convergence analysis

Corollary 2.22. If SA satisfies the spectral condition eq. (2.2) and there exists a
positive integer N such that the derived scheme ∂∆1TSA satisfies ‖∂∆1TS

N
A‖∞ < 1,

then the linear Hermite scheme fn = D−nSnAf0 is C1 convergent for all input data
f0 ∈ `(V 2).

Proof. A similar argument as in the proof of Proposition 2.16 shows that ‖∂∆1TS
N
A‖∞ <

1 implies the smoothness condition. The rest then follows from Theorem 2.21.

Remark 2.23. We would like to comment on the independence of the chosen norm,
continuing the discussion of Section 2.5. Certainly, if ‖∂∆1TS

N
A‖∞ < 1 holds for ‖ ·‖∞,

then in general it does not hold for an equivalent norm ‖ · ‖′∞. So in this case, the
choice of norm is relevant. Nevertheless, the result is independent of the chosen norm
in the following sense: If we can prove that ‖∂∆1TS

N
A‖∞ < 1 for any norm ‖ · ‖∞, then

the linear Hermite scheme is C1 convergent with respect to this norm, and therefore,
it is C1 convergent with respect to every other norm.

2.6.3 C1 convergence from proximity

In this section we are going to derive C1 convergence for nonlinear Hermite subdivision
schemes, which are close enough to linear ones. The comparison of a subdivision
operator UA on TM to a linear subdivision operator SA only makes sense in a chart
or in an embedding of M . This paper uses charts. Therefore, from now on, all results
are to be understood in a chart of M . Hence we w.l.o.g. assume that TM ⊂ V 2.
Furthermore, since the particular mask the subdivision operator is not important, we
write S instead of SA and U instead of UA.

We say that a subdivision operator U on TM and a linear subdivision operator S
satisfy the proximity condition if there exists a constant c0 such that

‖
(
U − S

)
g‖∞ ≤ c0D0(g)2. (2.25)

This is analogous to the proximity condition defined in [77].

We start with two theorems similar to [77, Theorem 2 and 5] and [85, Theorem 2.4].
By `ε(V 2) we denote the set of sequences g : Z→ V 2 which satisfy D0(g) < ε.

Theorem 2.24. Let U be a subdivision operator on TM and let S be a linear subdi-
vision operator. Suppose that S and U satisfy the proximity condition eq. (2.25) for
all g ∈ `ε(TM) and that S satisfies the convergence condition

D0(Sng) ≤ c02−αnD0(g). (2.26)

Then there exists a positive integer m such that for every β ∈
(

0, α − log2(c)
m

)
there

exists ε′ ∈ (0, ε) such that Ū = Um satisfies

D0(Ūng) ≤ 2−βmnD0(g), (2.27)

for all g ∈ `ε′(TM).
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2 C1 analysis of Hermite subdivision schemes on manifolds

Proof. Choose m such that µ = α− log2(c0)
m > 0. Then S̄ = Sm satisfies

D0(S̄g) ≤ 2−µmD0(g), (2.28)

for all g ∈ `ε(TM). Furthermore, it is proved in [75, Lemma 3] that the iterates Ū , S̄
satisfy a proximity condition as well. Hence

‖(Ū − S̄)g‖∞ ≤ c̄D0(g)2.

Choose β ∈ (0, µ) and ε′ ∈ (0, ε) such that ε′ satisfies 2c̄ε′ + 2−µm < 2−βm. Note that
we can choose such an ε′ since 2−βm − 2−µm > 0. Then for g ∈ `ε′(TM) we have

D0(Ūng) ≤ ‖(∆0Ū
n −∆0S̄Ū

n−1)g‖∞ + ‖∆0S̄Ū
n−1g‖∞

≤ 2‖(Ū − S̄)Ūn−1g‖∞ +D0(S̄Ūn−1g)

≤ 2c̄D0(Ūn−1g)2 + 2−µmD0(Ūn−1g).

Using this recursion, we will prove by induction that eq. (2.27) holds. For n = 1 we
have

D0(Ūg) ≤ 2c̄D0(g)2 + 2−µmD0(g) < (2c̄ε′ + 2−µm)D0(g) < 2−βmD0(g).

Assume that eq. (2.27) holds for 1, . . . , n− 1. Then

D0(Ūng) ≤ 2c̄D0(Ūn−1g)2 + 2−µmD0(Ūn−1g)

≤ 2c̄2−2βm(n−1)D0(g)2 + 2−µm2−βm(n−1)D0(g)

≤
(
2c̄ε′ + 2−µm

)
2−βm(n−1)D0(g)

≤ 2−βmnD0(g),

which concludes the induction.

Theorem 2.25. Let U be a subdivision operator on TM and let S be a linear subdi-
vision operator. Suppose that S and U satisfy the proximity condition eq. (2.25) for
all g ∈ `ε(TM) and that S satisfies the smoothness condition

D1(2nTSng) ≤ c12−α1nD1(Tg). (2.29)

Then there exists a positive integer m such that for every β1 ∈
(

0, α1 − log2(c1)
m

)
there

exist ε′ ∈ (0, ε) and a linear polynomial P such that Ū = Um satisfies

D1(2mnTŪng) ≤ 2−β1mn
(
D1(Tg) + P (n)D0(g)

)
, (2.30)

for g ∈ `ε′(TM).
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2.6 Convergence analysis

Proof. The linear subdivision operator S satisfies the smoothness condition eq. (2.29)
and hence by Lemma 2.19 it also satisfies the convergence condition eq. (2.26). Hence
there exist c0 > 0 and α0 ∈ (0, 1] such that

D0(SnAg) ≤ c02−α0nD0(g)

and for all g ∈ `ε(TM).

For i = 0, 1 choose mi such that µi = αi − log2(ci)
mi

> 0 and set m = max{m0,m1}.
Decrease α1 until 0 < α1 < 2α0 and increase c1 until 2mc2

0 < c1. Note that these
modifications do not affect the correctness of eq. (2.29).

Then S̄ = Sm satisfies

D0(S̄g) ≤ 2−µ0mD0(g)

D1(T S̄g) ≤ 2(−µ1−1)mD1(Tg),

for g ∈ `ε(TM). As in the proof of Theorem 2.24, the proximity condition for the
iterates S̄ = Sm, Ū = Um is satisfied:

‖(Ū − S̄)g‖∞ ≤ c̄D0(g)2.

Furthermore, by Theorem 2.24, for β0 =
(
α0− log2(c0)

m

)
−η with η ∈

(
0, 2α0−α1

2

)
there

exists ε′ ∈ (0, ε) such that

D0(Ūng) ≤ 2−β0mnD0(g), (2.31)

for g ∈ `ε′(TM). Note that the modifications of c1 and α1 now imply that 1+µ1−2β0 <
0.

We have for all g ∈ `ε′(TM)

D1(TŪng) = ‖∆1TŪ
ng‖∞ ≤ ‖∆1T S̄Ū

n−1g‖∞ + ‖∆1T (S̄ − Ū)Un−1g‖∞
≤ 2(−µ1−1)mD1(TŪn−1g) + 4c̄D0(Ūn−1g)2.

Choose β1 such that β1 ∈ (0, µ1). Then iteration of this recursion gives

D1(TŪng) ≤ 2(−µ1−1)mnD1(Tg) + 4c̄
∑n−1

i=0
2m(−µ1−1)(n−1−i)D0(Ū ig)2

= 2(−µ1−1)mn
(
D1(Tg) + 4c̄2m(1+µ1)

∑n−1

i=0
2m(1+µ1)iD0(Ū ig)2

)
eq. (2.31)

≤ 2(−β1−1)mn
(
D1(Tg) + 4c̄2m(1+µ1)

∑n−1

i=0
2m(1+µ1)i+2(−β0mi)D0(g)2

)
= 2(−β1−1)mn

(
D1(Tg) + 4c̄2m(1+µ1)

∑n−1

i=0
2(1+µ1−2β0)miD0(g)2

)
≤ 2(−β1−1)mn

(
D1(Tg) + 4c̄2m(1+µ1)ε′nD0(g)

)
.

Defining P (n) = 4c̄2m(1+µ1)ε′n gives the result.
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2 C1 analysis of Hermite subdivision schemes on manifolds

Theorem 2.26. Let U be a subdivision operator on TM and let S be a linear subdi-
vision operator which satisfies the spectral condition eq. (2.2). Suppose that S satisfies
the smoothness condition of Definition 2.18 and that S and U satisfy the proximity
condition eq. (2.25) for all input from `ε(TM) for some ε > 0. Then there exists
ε′ > 0 such that the Hermite scheme fn = D−nUnf0 is C1 convergent for all input
f0 ∈ `ε′(TM).

Proof. As suggested in Remark 2.13, we use the point scheme gn = Ung0 to prove C1

convergence of the Hermite scheme fn = D−nUnf0. Let
(
pn

vn

)
= fn and

(
pn

un

)
= gn

with 2nun = vn. We want to show that pn converges to a continuously differentiable
curve ϕ and vn = 2nun converges to its derivative ϕ′.

Since S satisfies the smoothness condition for all f0 ∈ `ε(TM), theorem 2.24 and
theorem 2.25 imply that there exist a positive integer m such that Ū = Um satisfies
both the convergence eq. (2.27) and the smoothness condition eq. (2.30).

We start by considering the case m = 1. Then by eqs. (2.27) and (2.30) there exists
an ε′ ∈ (0, ε) such that U satisfies

D0(Unf0) ≤ 2−β0nD0(f0),

D1(2nTUnf0) ≤ 2−β1n
(
D1(T f0) + P (n)D0(f0)

)
, (2.32)

for all f0 ∈ `ε′(TM) and β0, β1 as in Theorem 2.24 and Theorem 2.25.

We prove C1 convergence of fn for all input data f0 ∈ `ε′(TM). By arguments given
at the beginning of this section, we may assume that f0 is bounded.

For simplicity, we denote the input data by f . We first prove that the sequence pn

converges to a continuous curve:

‖Fn+1(Un+1f)−Fn(Unf)‖ ≤‖Fn+1(Un+1f)−Fn+1(SUnf)‖
+ ‖Fn+1(SUnf)−Fn(Unf)‖

≤‖(U − S)(Unf)‖∞ + ‖Fn+1(SUnf)−Fn(Unf)‖
≤ c0D0(Unf)2 + c1D0(Unf) (2.33)

≤ c02−2β0nD0(f)2 + c12−β0nD0(f).

Inequality eq. (2.33) uses the proximity condition eq. (2.25) for S and U and Propo-
sition 2.15. We have proved that the point scheme gn = Unf is convergent. In
particular, pn converges to a continuous curve ϕ.

We continue by proving that vn converges to a continuous function. By Proposition 2.8
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2.7 Verification of proximity conditions

the Taylor scheme ∂TS exists. We compute

‖Fn+1(2n+1TUn+1f)−Fn(2nTUnf)‖ ≤
‖Fn+1(2n+1TUn+1f)−Fn+1(2n+1TSUnf)‖+ ‖Fn+1(2n+1TSUnf)−Fn(2nTUnf)‖
≤ ‖2n+1T (U − S)Unf‖∞ + ‖Fn+1(∂TS(2nTUnf))−Fn(2nTUnf)‖
≤ 2n+13c0D0(Unf)2 + c1‖2n∆1TU

nf‖∞
= 2n+13c0D0(Unf)2 + c1D1(2nTUnf)

≤ 2n+1−2β0n3c0D0(f)2 + c12−β1n
(
D1(T f) + P (n)D0(f)

)
≤ 2(1−2β0)n6c0D0(f)2 + c12−β1n

(
D1(T f) + P (n)D0(f)

)
=: bn.

In this computation we used ‖T‖∞ = 3, the proximity condition eq. (2.25) for S and
U and Proposition 2.15. By performing modifications as in the proof of Theorem 2.25,
we can achieve that 1 + µ1 − 2β0 < 0 for some µ1 > 0. This implies that 1− 2β0 < 0.
Therefore

∑
bn < ∞, which shows that 2nTUnf is convergent. Since 2nTUnf =

2nTgn = 2nT
(
pn

un

)
= 2n

(
∆pn−un

un

)
, we have proved that 2nun = vn converges to a

continuous curve ψ.

The rest of the proof is analogous to the proof of Theorem 2.21, that is, inequality
eq. (2.32) implies that

• 2n∆pn − 2nun converges to 0 and hence 2n∆pn converges to ψ,

• 2n∆un converges to 0 and hence 2n∆2pn converges to 0.

Therefore, we have proved that

(i) pn converges to a continuous curve ϕ,

(ii) vn and 2n∆pn converge to a continuous curve ψ,

(iii) 2n∆2pn converges to 0.

It follows from Lemma 2.20 that ϕ is C1 with ϕ′ = ψ.

For general m, the proof is analogous. We only have to replace U by Um, 2 by 2m,
etc.

2.7 Verification of proximity conditions

In the following, we verify that the proximity condition eq. (2.25) holds between a
linear subdivision operator and its nonlinear analogues we constructed in Section 2.3.
In particular, this will imply the following result:
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2 C1 analysis of Hermite subdivision schemes on manifolds

Theorem 2.27. Let M be a Riemannian manifold, Lie group or symmetric space
(resp. a submanifold of Euclidean space Rn). Let SA be a linear subdivision operator
that satisfies the spectral condition eq. (2.2), let ∂∆1TSA be its derived scheme w.r.t.
to ∆1T and let UA be the Log-exp analogue (resp. the projection analogue) of SA
on TM . If there exists a positive integer N such that ‖(∂∆1TSA)N‖∞ < 1, then the
Hermite scheme fn = D−nUnAf0 is C1 convergent for dense enough input data f0.

Proof. A similar argument as in the proof of Proposition 2.16 shows that ‖(∂∆1TSA)N‖∞
< 1 implies the smoothness condition of Definition 2.18. In Sections 2.7.1 and 2.7.2 we
will show that the proximity condition holds between SA and UA. Theorem 2.26 then
implies that the Hermite scheme fn is C1 convergent for dense enough input data.

Note that the result of the theorem is independent of the norm ‖ · ‖∞. This follows
from arguments in Remark 2.23.

Example 2.28. We consider the linear subdivision operator SA defined in exam-
ple 2.1. In [60] it is shown that mask F of ∂∆1TSA is given by

F (0) =

(
1 −1

4

3
2 −1

4

)
and F (1) =

(
−1

2
1
2

−3
2

5
4

)

and that ‖∂∆1TSA‖∞ < 1. This implies that the Log-exp analogue (resp. the pro-
jection analogue) on any Riemannian manifold, Lie group or symmetric space (resp.
submanifold of Euclidean space) of SA is C1 convergent for dense enough input data.
In particular, this includes Example 2.6.

2.7.1 Proximity for the Log-exp analogue

Let M denote a Riemannian manifold, Lie group or symmetric space and expp its
exponential map. Using Taylor expansion, in a chart we have

p⊕ v = expp(v) = p+ v +O(‖v‖2), (2.34)

q 	 p = exp−1
p (q) = q − p+O(‖q − p‖2),

where ‖ · ‖ is a norm on Rn, for n = dimM .

Let SA be a linear subdivision operator with mask A =
(
a b
c d

)
that satisfies the spectral

condition eq. (2.2) and let UA be its Log-exp analogue constructed in Section 2.3.1.
As mentioned in Section 2.6, we can restrict the analysis to finite input data

(
p
v

)
. We

aim to prove that the proximity condition eq. (2.25) is satisfied in a chart of M :

‖(SA − UA)
(
p
v

)
‖∞ ≤ c0‖

(
∆p
v

)
‖2∞, (2.35)

for some constant c0. In order to prove this, we introduce some notation.
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2.7 Verification of proximity conditions

Notation

Let q = {p(α) + v(α) : α ∈ Z} and r = {p(α) ⊕ v(α) : α ∈ Z}. Recall that in
Section 2.3.1 we introduced SÃ, which is constructed from SA by transforming point-
vector

(
p
v

)
to point-point data

( p
q

)
:

SÃ

(
p
q

)
(α) =

(∑
β∈Z ã(α− 2β)p(β) + b̃(α− 2β)q(β)∑
β∈Z c̃(α− 2β)p(β) + d̃(α− 2β)q(β)

)
,

with mask given by Ã(α) =
(

1 0
1 1

)
A(α)

(
1 0
−1 1

)
for α ∈ Z. Furthermore, we introduced

the sequences s1, r1 by(
s1(α)
r1(α)

)
=

(
m0(α)⊕

∑
β∈Z ã(α− 2β) (p(β)	m0(α)) + b̃(α− 2β) (r(β)	m0(α))

m1(α)⊕
∑

β∈Z c̃(α− 2β) (p(β)	m1(α)) + d̃(α− 2β) (r(β)	m1(α))

)
in order to define UA by

UA

(
p
v

)
=

(
s1

r1 	 s1

)
.

Let
(
p1

v1

)
= SA

(
p
v

)
. It is easy to see that SÃ

( p
q

)
=
(

1 0
1 1

)
SA
(
p
v

)
, which shows that

the first component is also p1. This justifies the definition
( p1

q̃1

)
= SÃ

( p
q

)
with v1 =

q̃1 − p1. Furthermore, we set and
(
p̃1

r̃1

)
= SÃ

(
p
r

)
.

What we want to prove

Using the notation we just introduced, the proximity condition eq. (2.35) reads:

‖p1 − s1‖∞ ≤ c0‖
(

∆p
v

)
‖2∞,

‖v1 − r1 	 s1‖∞ ≤ c0‖
(

∆p
v

)
‖2∞.

In order to prove this, we show that every term in the following inequalities is less or
equal to c‖

(
∆p
v

)
‖2∞:

‖p1 − s1‖∞ ≤‖p1 − p̃1‖∞ + ‖p̃1 − s1‖∞,
‖v1 − r1 	 s1‖∞ ≤‖q̃1 − r̃1‖∞ + ‖p̃1 − p1‖∞ + ‖r̃1 − r1‖∞

+ ‖s1 − p̃1‖∞ + ‖r1 − s1 − r1 	 s1‖∞.

A closer look at the above terms shows that in fact we only have to analyze three of
them:

(i) ‖p1 − p̃1‖∞. The term ‖q̃1 − r̃1‖∞ can be estimated analogously.

(ii) ‖p̃1 − s1‖∞. The term ‖r̃1 − r1‖ can be estimated analogously.

(iii) ‖r1 − s1 − r1 	 s1‖∞.
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2 C1 analysis of Hermite subdivision schemes on manifolds

Estimation of (i)

The estimation of this term reduces to estimating ‖q− r‖∞. At every index α ∈ Z of
the sequences q and r we have

q − r = p+ v − p⊕ v eq. (2.34)
= p+ v − (p+ v +O(‖v‖2)) = O(‖v‖2),

and therefore ‖q− r‖∞ ≤ c‖v‖2∞.

Estimation of (ii)

In order to estimate ‖p̃1− s1‖∞, we introduce some notation. For ã(α− 2β) write ãβ
and similar with other indices of the form α− 2β. Furthermore, we generally suppress
the index α. Define uβ := p(β)	m0 and tβ := r(β)	m0. Note that p(β) = expm0

(uβ)
and r(β) = expm0

(tβ). We rewrite ‖p̃1 − s1‖ (the index α is suppressed) as follows:

‖m0 +
∑

β ãβ(p(β)−m0) + b̃β(r(β)−m0)

−m0 ⊕
(∑

β ãβ(p(β)	m0) + b̃β(r(β)	m0)
)
‖

= ‖m0 +
∑

β ãβ(expm0
(uβ)−m0) + b̃β(expm0

(tβ)−m0)

− expm0

(∑
β ãβuβ + b̃βtβ

)
‖

= ‖
∑

β ãβuβ + b̃βtβ +O(‖uβ‖2) +O(‖tβ‖2)

−
(∑

β ãβuβ + b̃βtβ +O(‖
∑

β ãβuβ + b̃βtβ‖2)
)
‖

≤ O(supβ ‖uβ‖2) +O(supβ ‖uβ‖ supβ ‖tβ‖) +O(supβ ‖tβ‖2).

Define w := max{supβ ‖uβ‖, supβ ‖tβ‖}. Then we have the estimate

‖p̃1 − s1‖ ≤ c0w
2. (2.36)

By Lemma 2.29 (see below), w ≤ c0‖∆p‖∞ + c1‖v‖∞ ≤ c0‖
(

∆p
v

)
‖∞, which gives the

right estimate.

Estimation of (iii)

We use notation as introduced for the estimation of (ii). The Taylor expansion
eq. (2.34) at every index α implies

‖r1 − s1 − r1 	 s1‖ ≤ c0‖r1 − p1‖2.
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2.7 Verification of proximity conditions

Define Uβ := p(β)	m1, Tβ := r(β)	m1 and W := max{supβ ‖Uβ‖, supβ ‖Tβ‖}. Then
we have

‖r1 − s1‖ =‖ expm1

(∑
β

c̃βUβ + d̃βTβ

)
− expm0

(∑
β

ãβuβ + b̃βtβ

)
‖

≤‖m1 −m0‖+O(sup
β
‖Uβ‖) +O(sup

β
‖Tβ‖) +O(sup

β
‖uβ‖) +O(sup

β
‖tβ‖)

≤‖m1 −m0‖+ c0W + c1w

≤c0‖∆p‖∞ + c1‖v‖∞,

where w is taken from above and the last inequality follows from Lemma 2.29 below.
This shows that ‖r1 − s1 − r1 	 s1‖∞ ≤ c0‖

(
∆p
v

)
‖2∞.

Lemma 2.29. In a chart of M consider finite initial data
(
p
v

)
and r = {p(α) ⊕

v(α) : α ∈ Z}. Let m0 = p or m0 = {mean(p(α+ 1), p(α)) : α ∈ Z} and m1 = r or
m1 = {mean(r(α + 1), r(α)) : α ∈ Z}. Then there exist constants c0, . . . , c8 > 0 such
that

‖p(β)	m0(α)‖ ≤ c0‖∆p‖∞,
‖r(β)	m0(α)‖ ≤ c1‖∆p‖∞ + c2‖v‖∞,
‖p(β)	m1(α)‖ ≤ c3‖∆p‖∞ + c4‖v‖∞,
‖r(β)	m1(α)‖ ≤ c5‖∆p‖∞ + c6‖v‖∞,
‖m1(α)−m0(α)‖ ≤ c7‖∆p‖∞ + c8‖v‖∞,

for all α, β ∈ Z.

Proof. In a sufficiently bounded neighborhood any smooth function is Lipschitz, hence
‖F (x) − F (x0)‖ ≤ c‖x − x0‖. Encode the finite input data

(
p
v

)
in a vector x =( p(i0) ... p(in)

v(i0) ... v(in)

)
and define x0 =

(
p(i0) ... p(i0)

0 ... 0

)
. In order to prove the second inequal-

ity, set F (x) = r(β) 	 m0(α), where the indices α and β appear among i0, . . . , in.
Evaluation at x0 gives F (x0) = 0 and hence by the Lipschitz condition

‖r(β)	m0(α)‖ = ‖F (x)‖ ≤ c‖x− x0‖ ≤ c1‖∆p‖+ c2‖v‖.

The other inequalities are proved analogously.

2.7.2 Proximity for the projection analogue

Let M be a submanifold of Euclidean space Rn, π a projection map onto M and SA be
a linear subdivision operator with mask A =

(
a b
c d

)
that satisfies the spectral condition

eq. (2.2). We want to prove that the proximity condition eq. (2.35) holds between SA
and its projection analogue UA, which is defined by UAf(α) = dπ(SAf(α)).
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2 C1 analysis of Hermite subdivision schemes on manifolds

For α ∈ Z and finite input data f =
(
p
v

)
, define sequences p1 and v1 by(

p1(α)
v1(α)

)
= SA

(
p
v

)
(α) =

(∑
β∈Z a(α− 2β)p(β) + b(α− 2β)v(β)∑
β∈Z c(α− 2β)p(β) + d(α− 2β)v(β)

)
.

Hence in order to prove the proximity condition, we have to show the following in-
equalities

sup
α∈Z
‖p1(α)− π(p1(α))‖ ≤ c0‖

(
∆p
v

)
‖2∞, (2.37)

sup
α∈Z
‖v1(α)− dp1(α)π(v1(α))‖ ≤ c0‖

(
∆p
v

)
‖2∞, (2.38)

where ‖ · ‖ is a norm on Rn.

Preparation

Before we prove eqs. (2.37) and (2.38), we rewrite the terms p1, π(p1), v1 and dp1π(v1)
at an index α. The main ingredient is the following Taylor expansion of the projection
π:

π(p+ v) = π(p) + dpπ(v) +O(‖v‖2), (2.39)

where p is a point in M and v is a tangent vector. This implies

p(β) = π(p(β)) = π(p(α)) + dp(α)π(p(β)− p(α)) +O(‖p(β)− p(α)‖2),

v(β) = dp(β)π(v(β)),

for α, β ∈ Z. Therefore

p1(α) =
∑
β∈Z

a(α− 2β)p(β) + b(α− 2β)v(β) (2.40)

=
∑
β∈Z

a(α− 2β)
(
π(p(α)) + dp(α)π(p(β)− p(α)) +O(‖p(β)− p(α)‖2)

)
+ b(α− 2β)dp(β)π(v(β)).

Using
∑

β∈Z a(α− 2β) = 1, which is the reproduction of constants property eqs. (2.3)
and (2.39) we have

π(p1(α)) = π
(
p(α) +

∑
β∈Z

a(α− 2β)(p(β)− p(α)) + b(α− 2β)v(β)
)

(2.41)

= π(p(α)) +
∑
β∈Z

a(α− 2β)dp(α)π(p(β)− p(α)) + b(α− 2β)dp(α)π(v(β))

+O(sup
β
‖p(β)− p(α)‖2) +O(sup

β
‖p(β)− p(α)‖ sup

β
‖v(β)‖) +O(sup

β
‖v(β)‖2)

=
∑
β∈Z

a(α− 2β)
(
π(p(α)) + dp(α)π(p(β)− p(α))

)
+ b(α− 2β)dp(α)π(v(β))

+ c1‖∆p‖2∞ + c2‖∆p‖∞‖v‖∞ + c3‖v‖2∞.
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2.7 Verification of proximity conditions

Note that sup ‖p(β) − p(α)‖ = O(‖∆p‖∞) since p is finite. Using
∑

β c(α− 2β) = 0,
which is the reproduction of constants property eq. (2.3), we have

v1(α) =
∑
β∈Z

c(α− 2β)p(β) + d(α− 2β)v(β) (2.42)

=
∑
β∈Z

c(α− 2β)
(
p(β)− p1(α)

)
+ d(α− 2β)dp(β)π(v(β)).

Furthermore

dp1(α)π(v1(α)) =
∑
β∈Z

c(α− 2β)dp1(α)

(
p(β)− p1(α)

)
+ d(α− 2β)dp1(α)π(v(β)). (2.43)

Proving the proximity condition

The first part of proximity eq. (2.37) can be estimated using eq. (2.40) and eq. (2.41):

‖p1(α)− π(p1(α))‖ ≤c0 sup
β
‖dp(β)π(v(β))− dp(α)π(v(β))‖+ c1‖∆p‖2∞

+ c2‖∆p‖∞‖v‖∞ + c3‖v‖2∞.

Similarly, the second part of the proximity condition eq. (2.38) can be estimated using
eq. (2.42) and eq. (2.43):

‖v1(α)− dp1(α)π(v1(α))‖ ≤c0 sup
β
‖(p(β)− p1(α))− dp1(α)π(p(β)− p1(α))‖

+ c1 sup
β
‖dp(β)π(v(β))− dp1(α)π(v(β))‖.

Therefore, in order to prove the proximity condition, we have to show that the following
terms are bounded by quadratic terms in ‖∆p‖∞ and ‖v‖∞:

(i) supβ ‖dp(β)π(v(β))− dp(α)π(v(β))‖,

(ii) supβ ‖dp(β)π(v(β))− dp1(α)π(v(β))‖,

(iii) supβ ‖(p(β)− p1(α))− dp1(α)π(p(β)− p1(α))‖.

This is done below.
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2 C1 analysis of Hermite subdivision schemes on manifolds

Proof of (i)-(iii)

For fixed y consider the map ϕ : x 7→ dxπ(y). Using Taylor expansion one can conclude
that ϕ(z)− ϕ(x) = ϕ(x+ (z − x))− ϕ(x) = dxϕ(z − x) +O(‖z − x‖2). Hence

dzπ(y)− dxπ(y) = d2
xπ(y, z − x) +O(‖z − x‖2).

With z = p(β), y = v(β) and x = p(α), we have

‖dp(β)π(v(β))− dp(α)π(v(β))‖ ≤ ‖d2
p(α)π(v(β), p(β)− p(α))‖+O(‖p(β)− p(α)‖2)

(2.44)

≤ c0‖v(β)‖‖p(β)− p(α)‖+O(‖p(β)− p(α)‖2).

The last inequality follows from the fact that in a sufficiently small neighborhood there
exists a uniform constant c0 such that

‖d2
p(α)π(v(β), p(β)− p(α))‖ ≤ c0‖v(β)‖‖p(β)− p(α)‖.

Taking the supremum over inequality eq. (2.44) proves (i). In particular this proves
eq. (2.37). The second inequality (ii) can be proved analogously. Note that ‖p(β) −
p1(α)‖ ≤ c0‖∆p‖∞ + c1‖v‖∞. For part (iii) we have

‖p(β)− p1(α)− dp1(α)π(p(β)− p1(α))‖
≤ ‖π(p(β))− π(p1(α))− dp1(α)π(p(β)− p1(α))‖+ ‖π(p1(α))− p1(α)‖
≤ ‖π(p1(α) + (p(β)− p1(α)))− π(p1(α))− dp1(α)π(p(β)− p1(α))‖+ ‖π(p1(α))− p1(α)‖
≤ O(‖p(β)− p1(α)‖2) + ‖π(p1(α))− p1(α)‖,

where the last inequality follows from eq. (2.39). The bounds on (iii) follow from
eq. (2.37). This proves eq. (2.38) and concludes the proof of Theorem 2.27.

Conclusion

We have studied two natural nonlinear analogues of Hermite subdivision schemes:
One is an intrinsic construction on manifolds equipped with an exponential mapping,
the other one applies to embedded manifolds (i.e., surfaces) and uses projections.
Furthermore, a full C1 analysis for Hermite schemes was presented which allows to
deduce C1 convergence from the verification of a proximity condition. This is used to
prove the result stated in Theorem 2.27: Both nonlinear analogues of a linear Hermite
scheme are C1 convergent, if the derived scheme is appropriately bounded and the
input data is dense enough.
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2.7 Verification of proximity conditions

Generalizations

We would like to comment on generalizations of the results presented in this paper:

It would be natural to consider sequences with more than 2 components, with the
(k + 1)-st component representing k-th derivatives. Judging from the behavior of
point-subdivision in manifolds we expect that the case k = 2 is similar to the case
k = 1, setting aside the technicalities of the jet bundle, but there is a big difference
between k ≤ 2 and k > 2, see [43, 85].

In this paper we are concerned with the analysis of stationary Hermite schemes, i.e.
schemes, whose mask A (except for the dilation matrix D) is independent of the
subdivision level. Recent results [9] provide a factorization of non-stationary Hermite
subdivision operators generalizing the Taylor factorization. We believe that this allows
to extend our results to the non-stationary setting. Non-stationary masks are a topic
of future research.

Acknowledgments. This research is supported by the Austrian Science Fund under
grant No. W1230. The author would like to thank Johannes Wallner for helpful
discussions and gratefully acknowledges the suggestions and remarks of the anonymous
reviewers.
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3 Hermite subdivision on manifolds via parallel

transport

This chapter comprises the paper (II).

Abstract. We propose a new adaption of linear Hermite subdivision schemes to the
manifold setting. Our construction is intrinsic, as it is based solely on geodesics and
on the parallel transport operator of the manifold. The resulting nonlinear Hermite
subdivision schemes are analyzed with respect to convergence and C1 smoothness.
Similar to previous work on manifold-valued subdivision, this analysis is carried out
by proving that a so-called proximity condition is fulfilled. This condition allows to
conclude convergence and smoothness properties of the manifold-valued scheme from
its linear counterpart, provided that the input data are dense enough. Therefore the
main part of this paper is concerned with showing that our nonlinear Hermite scheme
is “close enough”, i.e., in proximity, to the linear scheme it is derived from.

Keywords. Hermite subdivision · manifold subdivision · C1 analysis · proximity

AMS Subject Classification. 41A25 · 65D17 · 53A99

3.1 Introduction

Hermite subdivision is an iterative method for constructing a curve together with its
derivatives from discrete point-vector data. It has mainly been studied in the linear
setting, where many results concerning convergence and smoothness are available, such
as [30, 31, 23, 22, 25, 60] and others.

In a recent paper [64] we propose an analogue of linear Hermite schemes in manifolds
which are equipped with an exponential map. This construction works via conver-
sion of vector data to point data, and makes use of the well-established methods of
non-Hermite subdivision in manifold, see [43] for an overview. The present paper in-
vestigates manifold analogues of Hermite subdivision rules which work directly with
vectors and employ the parallel transport operators available in Riemannian manifolds
and also in Lie groups. In this way subdivision works directly on Hermite data in an
intrinsic way.

The C1 convergence analysis of the nonlinear schemes we obtain by the parallel trans-
port approach is provided from their linear counterparts by means of a proximity
condition for Hermite schemes introduced by [64]. This condition allows to conclude
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3 Hermite subdivision on manifolds via parallel transport

C1 convergence of the manifold-valued scheme if it is “close enough” to a C1 convergent
linear one. Similar to most previous results on manifold subdivision, C1 convergence
can only be deduced if the input data are dense enough.

The paper is organized as follows: In Section 3.2 we recapitulate Hermite subdivision
on both linear spaces and manifolds. Section 3.3 discusses parallel transport and
geodesics, which we use in Section 3.4 to define the parallel transport analogue of a
linear Hermite scheme. The main part of this paper is concerned with proving that
the proximity condition holds between the parallel transport Hermite scheme and the
linear scheme it is derived from (Section 3.5). The results are then stated in Section
3.6.

Throughout this paper we use as an instructive example a certain non-interpolatory
Hermite scheme which is the de Rham transform [24] of a scheme proposed by [58].

3.2 Hermite subdivision: Basic concepts

In this section we recall some known facts about linear Hermite subdivision and in-
troduce a generalized concept of Hermite subdivision for manifold-valued data.

3.2.1 Linear Hermite subdivision

The data to be refined by a linear Hermite subdivision scheme consists of a point-vector
sequence, where we assume that both point and vector sequence take values in the
same finite dimensional vector space V . The space of all such point-vector sequences
is denoted by `(V 2), and an element of this space is written as

(
p
v

)
= {
( pi
vi

)
: i ∈ Z}.

A linear subdivision operator SA is a map `(V 2)→ `(V 2), which is defined by

SA
(
p
v

)
i

=
∑
j∈Z

Ai−2j

( pj
vj

)
, i ∈ Z,

(
p
v

)
∈ `(V 2), (3.1)

where the finitely supported sequence A ∈ `(L(V )2×2) is called mask.

A linear Hermite subdivision scheme is the procedure of constructing
(p1

v1

)
,
(p2

v2

)
, . . .

from input data
(p0

v0

)
∈ `(V 2) by the rule

Dn
(
pn

vn

)
= SnA

(
p0

v0

)
,

where D ∈ L(V )2×2 is the block-diagonal dilation operator

D =

(
1 0
0 1

2

)
.

Here a constant c is to be understood as c idV .
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3.2 Hermite subdivision: Basic concepts

A linear Hermite subdivision operator or scheme is called interpolatory if its mask
satisfies A0 = D and A2i = 0 for all i ∈ Z\0.

We always assume a linear Hermite scheme to satisfy the spectral condition, which is
a useful assumption for the analysis of linear Hermite schemes [23, 22, 25, 60]. We
require that up to a parameter shift the subdivision operator reproduces a degree 1
polynomial and its derivative(

v + iw
w

)
i∈Z

for v, w ∈ V.

To be precise, we require that there exists ϕ ∈ R such that

SA

(
v + (i+ ϕ)w

w

)
i∈Z

=

(
v + i+ϕ

2 w
1
2w

)
i∈Z

,

for all v, w ∈ V . This condition is equivalent to the requirement that there exists
ϕ ∈ R such that the constant sequence c = {

(
v
0

)
: i ∈ Z} and the linear sequence

` = {
(

(i+ϕ)v
v

)
: i ∈ Z} for v ∈ V respectively obey the rules

SAc = c and SA` =
1

2
`. (3.2)

The spectral condition can also be expressed by means of the mask A =
(
a b
c d

)
. It is

equivalent to ∑
j∈Z

ai−2j = 1,
∑
j∈Z

ci−2j = 0, (3.3)

∑
j∈Z

ai−2jj + bi−2j =
1

2
(i− ϕ),

∑
j∈Z

ci−2jj + di−2j =
1

2
, (3.4)

for all i ∈ Z and some ϕ ∈ R, which indicates the parameter transform. Equation (3.3)
is equivalent to the reproduction of constants, whereas (3.4) expresses the reproduction
of linear functions.

3.2.2 Hermite subdivision on manifolds

We would like to consider Hermite subdivision in the more general setting of manifolds.
In this context, tangent vectors serve as point-vector input data for Hermite subdivi-
sion. Therefore, the input data is sampled from the tangent bundle TM =

⋃
x∈M TxM

of a manifold M . Its associated sequence space is denoted by `(TM). In order to retain
the analogy to the linear case, an element of `(TM) is written as a pair

(
p
v

)
consisting

of an M -valued point sequence p and a vector sequence v which takes values in the
appropriate tangent space, i.e., vi ∈ TpiM for i ∈ Z.

A subdivision operator U on TM is a map that takes arguments in `(TM) and produces
again a point-vector sequence. It must satisfy
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3 Hermite subdivision on manifolds via parallel transport

(i) L2U = UL, where L is the left shift operator, and

(ii) U has compact support, that is, there exists N ∈ N such that both U
(
p
v

)
2i

and

U
(
p
v

)
2i+1

only depend on
( pi−N
vi−N

)
, . . . ,

( pi+N
vi+N

)
for all i ∈ Z and sequences

(
p
v

)
.

Let D : `(TM)→ `(TM) be the dilation operator(
p
v

)
7→
(

p
1
2v

)
,

which is an analogue of the block-diagonal operator D defined in Section 3.2.1.

An Hermite subdivision scheme is the procedure of constructing
(p1

v1

)
,
(p2

v2

)
, . . . from

input data
(p0

v0

)
∈ `(TM) by the rule

Dn
(
pn

vn

)
= Un

(
p0

v0

)
.

An Hermite subdivision operator or scheme is called interpolatory if U
(
p
v

)
2i

= D
(
p
v

)
i

for all
(
p
v

)
and i ∈ Z.

Note that these definitions are direct generalizations of the concepts introduced in
Section 3.2.1: Every linear subdivision operator satisfies conditions (i) and (ii) from
above. If U is linear then the definition of (interpolatory) Hermite subdivision scheme
is equivalent to the one given in Section 3.2.1.

3.2.3 Different types of norms

Since we need a variety of norms in the following sections, we summarize all of them
here.

The notation ‖v‖, where v is an element of V = Rn, means that we use the Euclidean
norm. On matrix groups we use the Frobenius norm ‖g‖2 = trace(ggT ), which cor-
responds to the Euclidean norm, if the matrix entries are put into a column vector.
From this norm on V we induce the Euclidean norm ‖

(
v0
v1

)
‖ = (‖v0‖2 + ‖v1‖2)

1
2 on

V 2. On the space L(V )2×2 we use the operator norm∥∥∥(a b
c d

)∥∥∥ = sup
{∥∥∥(a b

c d

)(
v0

v1

)∥∥∥, where
∥∥∥(v0

v1

)∥∥∥ = 1
}
,

where
(
a b
c d

)
∈ L(V )2×2 and

(
v0
v1

)
∈ V 2. We equip the space of sequences `(V 2) with

the norm ∥∥∥(p
v

)∥∥∥
∞

= sup
i∈Z

∥∥∥(pi
vi

)∥∥∥
and denote by `∞(V 2) the space of all sequences which are bounded with respect to
this norm. Similarly we define a norm for A ∈ `(L(V )2×2):

‖A‖∞ = sup
i∈Z
‖Ai‖
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3.2 Hermite subdivision: Basic concepts

and denote by `∞(L(V )2×2) the space of bounded sequences.

A linear subdivision operator SA as defined in (3.1) restricts to an operator `∞(V 2)→
`∞(V 2). This follows from ‖SA

(
p
v

)
‖∞ ≤ d‖A‖∞‖

(
p
v

)
‖∞, where d is a positive integer

such that the support of A is contained in [−d, d]. Therefore SA has an induced
operator norm, which we denote by ‖SA‖∞.

We mention that for the proofs of Section 3.5, the particular choices of the norms
on V and V 2 are not important. We will only need the Euclidean norm in Example
3.9. What we will use, however, are the following facts concerning the equivalence of
norms: Since in every finite dimensional vector space, any two norms are equivalent,
the Euclidean norm ‖

(
v0
v1

)
‖ on V 2 is equivalent to ‖

(
v0
v1

)
‖′ = max{‖v0‖, ‖v1‖}. That

is, there exist constants c1, c1 > 0 such that

c1‖
(
v0
v1

)
‖′ ≤ ‖

(
v0
v1

)
‖ ≤ c2‖

(
v0
v1

)
‖′.

It follows immediately that also the norms ‖
(
p
v

)
‖′∞ = supi ‖

( pi
vi

)
‖′ and ‖

(
p
v

)
‖∞ on

`(V 2) are equivalent with the same constants:

c1‖
(
p
v

)
‖′∞ ≤ ‖

(
p
v

)
‖∞ ≤ c2‖

(
p
v

)
‖′∞. (3.5)

3.2.4 C1 convergence

To a sequence pn of points in a vector space we associate a curve Fn(pn), which is the
piecewise linear interpolant of pn on the grid 2−nZ.

We say that a point-vector sequence
(
pn

vn

)
is C1 convergent, if Fn(pn) resp. Fn(vn)

converge uniformly on compact intervals to a continuously differentiable curve resp.
its derivative. If the point-vector sequence is manifold-valued, then we require that
the above is true in a chart.

An Hermite scheme defined by the subdivision operator U is said to be C1 convergent,
if the point-vector sequence

(
pn

vn

)
constructed via Dn

(
pn

vn

)
= Un

(
p0

v0

)
is C1 convergent.

Due to the compact support of a subdivision operator U , the limit curve on compact
intervals depends only on finitely many points of the initial data. It is therefore
sufficient to consider finite input data and we can assume that the input data are
bounded. Thus we have the following formal definition of C1 convergence:

Definition 3.1. An Hermite subdivision scheme is C1 convergent if for all input data(
p0

v0

)
∈ `∞(V 2) there exists a continuously differentiable curve ϕ ∈ C1(R, V ) such that

the point-vector sequence
(
pn

vn

)
constructed via Dn

(
pn

vn

)
= Un

(
p0

v0

)
satisfies

sup
i∈Z
‖pni − ϕ

( i

2n

)
‖ → 0 and sup

i∈Z
‖vni − ϕ′

( i

2n

)
‖ → 0 as n→∞.
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3 Hermite subdivision on manifolds via parallel transport

Figure 3.1: The linear non-interpolatory Hermite subdivision scheme of Example 3.2.
Left : Input data and second iteration step. Right : Input data and limit curve.

Example 3.2. We consider the de Rham transform [24] of one of the interpolatory
linear Hermite schemes introduced by [58]. It is a non-interpolatory scheme with mask

A−2 =
1

8

(
48
25 −29

25

29
50

13
20

)
, A−1 =

1

8

(
152
25 −31

25

29
50

277
100

)
,

A0 =
1

8

(
152
25

31
25

−29
50

277
100

)
, A1 =

1

8

(
48
25

29
25

−29
50

13
20

)
.

In [24] it is shown that the spectral condition is satisfied and that this scheme is C1

convergent.

3.3 Parallel transport and geodesics

Using parallel transport and geodesics, we are going to adapt linear Hermite subdi-
vision to work on manifold data. We here discuss these concepts for submanifolds
of Euclidean space (i.e., surfaces) and for matrix groups, even though they belong
to the more general classes of Riemannian manifolds resp. Lie groups. The reason is
that we first prove convergence and smoothness results in the special cases of surfaces
and matrix groups (Section 3.5). In Theorem 3.7 we then generalize all our results to
Riemannian manifolds and Lie groups.

3.3.1 Surfaces

On a surface M in Rn we consider vector fields V (t) along a curve g(t), i.e., we require
that V (t) ∈ Tg(t)M for all t. We say that such a vector field V is parallel along g if its
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3.3 Parallel transport and geodesics

derivative is orthogonal to M . Equivalently, the projection of V̇ to the tangent space
Tg(t)M vanishes for all t, i.e.

DV

dt
:= (V̇ )tang = 0. (3.6)

Therefore, parallel vector fields are the solutions of the linear differential equation
(3.6).

Let the curve g connect the points p and m on M , i.e., g(0) = p and g(1) = m. The
parallel transport along g, denoted by Pmp : TpM → TmM , is defined as follows: Pmp (v)
means V (1), where V is the parallel vector field along g with initial value V (0) = v.

Parallel transport along g satisfies

Pmq ◦ Pqp = Pmp , (3.7)

where q is any point on the curve. Furthermore, it is an isometry, that is ‖Pmp (v)‖ =
‖v‖. This is not difficult to show: For two vector fields V,W along g a product rule
holds:

d

dt

〈
V,W

〉
=
〈DV
dt

,W
〉

+
〈
V,
DW

dt

〉
. (3.8)

If V is parallel along g, then (3.8) implies that d
dt〈V (t), V (t)〉 = 0, i.e., ‖V (t)‖ is

constant for all t. So Pmp is an isometry.

In addition to parallel transport, we need the concept of geodesics. A geodesic is a
curve g on M such that ġ is parallel along g, i.e., a curve which satisfies the differential
equation

Dġ

dt
= 0.

It is useful to express geodesics by means of the exponential mapping, which is defined
as follows: expp(v) means g(1), where g is the geodesic starting at the point p with
tangent vector v. A geodesic g can then be written as g(t) = expp(tv).

We mention that D
dt , parallel transport, geodesics and exponential mapping are actually

concepts of Riemannian geometry. Here they are described only for the special case of
surfaces in Euclidean space. For details we refer to textbooks on differential geometry,
e.g. [19].

3.3.2 Matrix groups

This section discusses parallel transport and geodesics in matrix groups, i.e., subgroups
of GL(n,R).

51



3 Hermite subdivision on manifolds via parallel transport

We use the matrix exponential function exp(v) =
∑∞

k=0
1
k!v

k to define an exponential
mapping by expp(v) = p exp(p−1v). Then a geodesic1 g starting at the point p and
tangent vector v is defined by

g(t) = expp(tv). (3.9)

The curve g(t) is a left translate of the 1-parameter subgroup exp(tp−1v), and it is also
a right translate, since p exp(p−1v) = exp(vp−1)p. We define three different parallel
transports P+ m

p , P− m
p and P0 m

p on G, which are mappings of TpG to TmG. The first
two are given by left resp. right multiplication, that is

P+ m
p (v) = mp−1v and P− m

p (v) = vp−1m.

Let g(t) = expp(tv) be the geodesic connecting p and m. Denote by µp,m the geodesic

midpoint of p and m, i.e., µp,m = g(1
2). Then the third kind of parallel transport is

defined by
P0 m
p (v) = µp,mp

−1vp−1µp,m. (3.10)

Therefore, as in the Riemannian case, an exponential mapping, geodesics and parallel
transport can be defined in matrix groups.2

3.3.3 Unified notation

The following sections treat surfaces and matrix groups simultaneously. Therefore we
introduce a unified notation.

M means either a surface or a matrix group. The exponential mapping of M is denoted
by expp(v). In the surface case, Pmp denotes the parallel transport along the geodesic
connecting p and m. If M is a matrix group, Pmp refers to one of the parallel transports
introduced in Section 3.3.2.

Following [79], we introduce the symbols ⊕ and 	 which are analogues of point-vector
addition and difference. For p, q ∈M and v ∈ TpM , let

p⊕ v = expp(v) and q 	 p = exp−1
p (q). (3.11)

Note that in the matrix group case the ⊕ and 	 operations are invariant w.r.t. both
left and right multiplication.

1We call these curves geodesics to emphasize the analogy to the Riemannian case. Note that in the
group case we define geodesics via the exponential map, but in the Riemannian case, we define the
exponential map via geodesics.

2In fact a more general statement is true, which also gives a connection to the case of Riemannian
manifolds: On Lie groups, three operators D

dt

+
, D

dt

−
and D

dt

0
can be defined, which map a vector

field along a curve to another vector field along the same curve. They all define the same geodesics,
namely (3.9) and induce the three parallel transports from above. While P+ m

p and P− m
p are

independent of the curve connecting p and m, Definition (3.10) is only valid if the curve under
consideration is the geodesic connecting p and m. For details see e.g. [69]. Furthermore, if the
group G carries a bi-invariant metric, then the Riemannian covariant derivative D

dt
on G coincides

with D
dt

0
[56, Chapter X].
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3.4 Hermite subdivision on manifolds via parallel transport

While ⊕ is always smooth and often globally defined (this is the case in both matrix
groups and complete surfaces [65, 54]), 	 is in general only smooth in some neighbor-
hood of p. Our results in Section 3.5 are based on [64], which only considers “dense
enough” input data. We therefore assume that 	 is always smooth. As in the ma-
trix group case, we define the midpoint of two points p, q on M : If g is the geodesic
connecting p and q, then

µp,q = g
(1

2

)
= p⊕ 1

2

(
q 	 p

)
.

3.4 Hermite subdivision on manifolds via parallel
transport

Starting with a linear Hermite subdivision operator SA satisfying the spectral condi-
tion (3.2), we define a subdivision operator U in a surface or a matrix group M .

Recall that we can write SA in the form

SA

(
p
v

)
i

=
∑
j∈Z

(
ai−2j bi−2j

ci−2j di−2j

)(
pj
vj

)
=

(∑
j∈Z ai−2jpj + bi−2jvj∑
j∈Z ci−2jpj + di−2jvj

)
. (3.12)

The reproduction of constants (3.3) is characterized by the conditions
∑

j∈Z ai−2j = 1
and

∑
j∈Z ci−2j = 0. This allows us to rewrite (3.12) as

SA

(
p
v

)
i

=

(
mi +

∑
j∈Z ai−2j(pj −mi) + bi−2jvj∑

j∈Z ci−2j(pj −mi) + di−2jvj

)
, (3.13)

for any base point sequence m. We use (3.13) to define a subdivision operator U that
takes arguments in `(TM).

Consider input data
(
p
v

)
∈ `(TM). For the base point sequence m ∈ `(M) we either

choose
mi = pi or mi = µpi,pi+1 for i ∈ Z.

In [79] these base point sequences have been used for the C1 and C2 analysis of
manifold-valued subdivision rules. It was shown in [43, 85], however, that base point
sequences have to be chosen in a more sophisticated manner if one wants to obtain
higher smoothness results.

Based on (3.13) we now define the subdivision operator U for manifold-valued data:

U

(
p
v

)
i

=

(
ri

Primi(wi)

)
, (3.14)

where

{
ri = mi ⊕

∑
j∈Z ai−2j(pj 	mi) + bi−2jP

mi
pj (vj),

wi =
∑

j∈Z ci−2j(pj 	mi) + di−2jP
mi
pj (vj).
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3 Hermite subdivision on manifolds via parallel transport

Figure 3.2: The SO(3)-valued Hermite subdivision scheme of Example 3.3 with respect
to the (0) parallel transport. Input data are represented by spherical triangles. Upper
and lower left figures: Limit curves of point-vector input data and one triangle of the
second iteration step. Upper and lower right figures: second iteration step (tangent
vectors are omitted).

In Section 3.6 we show that the successively generated data
(
p
v

)
, D−1U

(
p
v

)
,

D−2U2
(
p
v

)
, . . . converge to a curve and its derivative.

Note that if M is a matrix group, then U is invariant w.r.t. both left and right mul-
tiplication. Furthermore, if the linear operator SA is interpolatory, then obviously so
is U .

We mention that U can be defined analogously in the more general cases of Riemannian
manifolds and Lie groups.

Example 3.3. Consider the matrix group SO(3) = {p ∈ R3×3 : p is orthogonal and
det(p) > 0}. The tangent space at p ∈ SO(3) is given by TpSO(3) = {v ∈ R3×3 :
p−1v is skew-symmetric}.

We consider the parallel transport version of the linear Hermite scheme introduced in
Example 3.2. Recall from Section 3.3.3 that for p, q ∈ SO(3) and v ∈ TpSO(3) the
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3.5 Proximity inequalities

operators ⊕,	 are given by

p⊕ v = p exp(p−1v) and q 	 p = p log(p−1q),

where exp is the matrix exponential and log is the matrix logarithm.

For input data
(
p
v

)
∈ `(TSO(3)) we choose the base point sequence m as the midpoints

of consecutive points of p:

m2i = m2i+1 = µpi+1,pi = pi+1 ⊕
1

2

(
pi 	 pi+1

)
.

Furthermore, for i, j ∈ Z we introduce the following sequences:

ui,j = pi 	mj ,

zj,i = Pmipj (vj) =


mip

−1
j vj for the (+) parallel transport,

vjp
−1
j mi for the (−) parallel transport,

µpj ,mip
−1
j vjp

−1
j µpj ,mi for the (0) parallel transport.

The operator U of (3.14) is given by

U

(
p
v

)
i

=

(
ri

Primi(wi)

)
,

where

r2i = m2i ⊕
1

8

(48

25
ui+1,2i +

152

25
ui,2i −

29

25
zi+1,2i +

31

25
zi,2i

)
,

w2i =
1

8

(29

50
ui+1,2i −

29

50
ui,2i +

13

20
zi+1,2i +

277

100
zi,2i

)
,

r2i+1 = m2i+1 ⊕
1

8

(152

25
ui+1,2i+1 +

48

25
ui,2i+1 −

31

25
zi+1,2i+1 +

29

25
zi,2i+1

)
,

w2i+1 =
1

8

(29

50
ui+1,2i+1 −

29

50
ui,2i+1 +

277

100
zi+1,2i+1 +

13

20
zi,2i+1

)
.

The coefficients are taken from Example 3.2.

We consider the bi-invariant inner product 〈u, v〉 = trace(uvT ) on SO(3). This bi-
invariant inner product coincides with the standard inner product induced by R9, since
trace(uvT ) =

∑
i,j uijvij . Therefore, SO(3) is a surface which carries a bi-invariant

inner product. It is known that the (0) parallel transport defined above coincides
with the surface parallel transport (the same is true for the exponential mapping).
Therefore, the above calculations are also valid if SO(3) is viewed as a surface.

3.5 Proximity inequalities

In order to conclude convergence and smoothness of ordinary manifold-valued subdivi-
sion rules, the proximity method was introduced, see [77, 75] and others. This method
requires to establish inequalities on the difference between linear subdivision rules and
manifold-valued subdivision rules.
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3 Hermite subdivision on manifolds via parallel transport

3.5.1 The proximity condition for Hermite schemes

Consider a linear Hermite subdivision operator SA and a manifold-valued Hermite
subdivision operator U . Then the proximity condition, introduced by [64] for Hermite
schemes, is given by

‖
(
U − SA

)(
p
v

)
‖∞ ≤ c‖

(
∆p
v

)
‖2∞. (3.15)

Here c is a constant and ∆ denotes the forward difference operator (∆p)i = pi+1 − pi
for i ∈ Z.

To conclude C1 convergence of U from convergence of SA, it is required that condition
(3.15) is fulfilled whenever ‖

(
p
v

)
‖∞ is bounded and ‖

(
∆p
v

)
‖∞ is small enough.

In the following we prove that the proximity condition (3.15) holds between a linear
operator SA and the TM -valued operator U constructed from SA (3.14), where M is
a surface or matrix group.

Recall from Equation (3.14) that we defined sequences r, w by

ri = mi ⊕
∑
j

ai−2j(pj 	mi) + bi−2jP
mi
pj (vj), (3.16)

wi =
∑
j

ci−2j(pj 	mi) + di−2jP
mi
pj (vj),

for i ∈ Z. We also define rlin and wlin, which are the linear versions of r and w. This
means that ⊕ and 	 are replaced by + and − respectively and Pmipj (vj) is replaced by
vj . Therefore, in order to prove (3.15), we have to show the inequalities:

‖r− rlin‖∞ ≤ c‖
(

∆p
v

)
‖2∞, (3.17)

‖Pr
m(w)−wlin‖∞ ≤ c‖

(
∆p
v

)
‖2∞. (3.18)

The main ingredient in the proof is the following lemma:

Lemma 3.4. Let M be a surface or matrix group. Then for p,m ∈ M and tangent
vectors v the following linearizations hold:

p⊕ v = p+ v +O(‖v‖2) as v → 0, (3.19)

m	 p = m− p+O(‖m− p‖2) as m→ p, (3.20)

Ppm(v) = v +O(‖m− p‖ ‖v‖) as m→ p. (3.21)

In the case that M is a surface, Ppm denotes the parallel transport along the geodesic
connecting p and m. If M is a matrix group, then Ppm denotes one of the (+), (−), or
(0) parallel transports.
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3.6 Results

Proof. In a chart of M , (3.19) and (3.20) are exactly the well-known linearization of
the exponential map. In order to prove (3.21), we first observe that (m, v) 7→ Ppm(v)
is smooth. On a surface, this can be deduced from the fact that the solution of an
ordinary differential equation depends smoothly on the initial data. In the matrix
group case, the smoothness of this map follows from the definition of the parallel
transport. Restricting to a unit vector v and using Taylor expansion in a chart at
m = p, we obtain

Ppm(v) = Ppp(v) +O(‖m− p‖) = v +O(‖m− p‖) as m→ p, v = const.

Since Ppm is a linear map, for a general v, we obtain Ppm(v) = v + O(‖m − p‖ ‖v‖) as
m→ p. This completes the proof.

Corollary 3.5 (Proximity inequalities). Let M be a surface or matrix group. Consider
bounded input data

(
p
v

)
on TM and a base point sequence m, which is either given by

mi = pi or mi = µpi,pi+1 for i ∈ Z. Then the sequences r and w as defined in (3.16)
satisfy

ri = rlin
i +O(sup

j
‖mi − pj‖2) +O(sup

j
‖mi − pj‖ sup

j
‖vj‖) +O(sup

j
‖vj‖2),

wi = wlin
i +O(sup

j
‖mi − pj‖ sup

j
‖vj‖),

Primi(wi) = wlin
i +O(sup

j
‖mi − pj‖2) +O(sup

j
‖mi − pj‖ sup

j
‖vj‖) +O(sup

j
‖vj‖2),

for m→ p and v → 0 and i ∈ Z. In particular, the proximity inequalities (3.17) and
(3.18) follow.

Proof. Using Lemma 3.4, the results for r and w immediately follow. Similarly, we
can show that ‖ri −mi‖ = O(supj ‖pj −mi‖) +O(supj ‖vj‖). This implies

Primi(wi) = wi +O(‖ri −mi‖ ‖wi‖)
= wlin

i +O(sup
j
‖mi − pj‖ sup

j
‖vj‖) +O(‖ri −mi‖ ‖wi‖)

= wlin
i +O(sup

j
‖mi − pj‖2) +O(sup

j
‖mi − pj‖ sup

j
‖vj‖) +O(sup

j
‖vj‖2),

Furthermore, Lemma 3.4 implies supj ‖mi−pj‖ ≤ c‖∆p‖∞. Thus the above equations

show that ‖r−rlin‖∞ ≤ cmax{‖∆p‖2∞, ‖v‖2∞} and ‖Pr
m(w)−wlin‖∞ ≤ cmax{‖∆p‖2∞,

‖v‖2∞}. By the equivalence of norms (3.5), the proximity inequality (3.17) and (3.18)
are proved. This completes the proof.

3.6 Results

In the previous section we have gathered all proximity inequalities we need to prove
C1 convergence of the manifold-valued Hermite scheme defined in Section 3.4. Our
main theorem (Theorem 3.7) is analogous to Theorem 27 of [64].
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3 Hermite subdivision on manifolds via parallel transport

Before we state the theorem, we have to introduce the Taylor operator. In linear Her-
mite subdivision, the Taylor operator is the natural analogue to the forward difference
operator (∆p)i = pi+1 − pi for i ∈ Z, see [60]. It acts on `(V 2) and is defined by

T =

(
∆ −1
0 ∆

)
.

In [60] this operator is called complete Taylor operator. We have the following result:

Theorem 3.6 (Merrien and Sauer, 2012). Let SA be a linear subdivision operator
which satisfies the spectral condition (3.2). Then we have the following

1. There exists a linear subdivision operator SB such that

2TSA = SBT.

We call SB the Taylor scheme of SA.

2. If there exists N ∈ N such that ‖SNB ‖∞ < 1, then the linear Hermite scheme
associated to SA is C1 convergent.

Now we can state the main result of our paper:

Theorem 3.7. Let SA be a linear subdivision operator whose mask A satisfies the
spectral condition (3.2), and let SB be the Taylor scheme of SA (Theorem 3.6). Let
M be a surface or a matrix group and let U be the manifold-valued analogue of SA
given by (3.14). Then we have the following result:

If there exists N ∈ N such that ‖SNB ‖∞ < 1, then the Hermite scheme
(
p
v

)
, D−1U

(
p
v

)
,

D−2U2
(
p
v

)
, . . . is C1 convergent whenever

(
p
v

)
are dense enough.

The statement of the theorem remains true if “surface” is replaced by “Riemannian
manifold” and “matrix group” by “Lie group”.

Proof. It is proved in [64] that ‖SNA‖∞ < 1 for some integer N together with the
proximity condition implies C1 convergence of the manifold-valued Hermite scheme.
Therefore, the result follows from Section 3.5 and [64].

Note that the input data does not have to be bounded. This follows from the fact
that on any compact interval the limit curve only depends on finitely many points of
the input data. We can therefore w.l.o.g. assume that ‖

(
p
v

)
‖∞ is bounded.

The global embedding theorem states that any Riemannian manifold can be isomet-
rically embedded as a surface into a Euclidean space of sufficiently high dimension.
The smoothness is preserved by this embedding. Our result applies to this surface.
Furthermore, by Ado’s theorem, any Lie group is locally isomorphic to a matrix group.
Therefore, the generalized statement is also true. This completes the proof.
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3.6 Results

Remark 3.8. We would like to remark on a possible generalization of this result,
which is a topic of future research. It would be natural to consider schemes which
produce more than one derivative, i.e. schemes refining sequences with more than two
components, with the kth component representing the (k − 1)st derivative. This has
been studied in the linear case, see e.g. [60].

We believe that such a generalization becomes quite technical: Available results from
manifold subdivision suggest that the case of more than two derivatives is more in-
volved compared to the case of one derivative [43, 85]. Also, the data now have to be
sampled from the jet bundle of the manifold.

Example 3.9. We consider the linear subdivision operator SA whose mask is defined
in Example 3.2. In [60] it is shown that the operator SB satisfying 2TSA = SBT has
the mask

B−1 =
1

4

(
48
25 −29

25

29
50

13
20

)
, B0 =

1

4

(
179
50 − 73

100

0 53
25

)
, B1 =

1

4

(
67
50

47
100

−29
50

123
100

)
.

We prove ‖SB‖∞ < 1. The norm of a subdivision operator is given by

‖SB‖∞ = sup
{∥∥SB( pv )∥∥∞ :

∥∥( p
v

)∥∥
∞ = 1

}
.

It is well known that

‖SB‖∞ = max
{∑
j∈Z
‖B−2j‖,

∑
j∈Z
‖B−2j+1‖

}
.

Therefore, we have to prove that max{‖B0‖, ‖B−1‖+ ‖B1‖} < 1. The operator norm
of a matrix w.r.t. to the Euclidean norm equals the spectral norm, therefore

‖Bi‖ =
√
λmax(BT

i Bi),

where λmax is the largest eigenvalue of the matrix BT
i Bi for i = −1, 0, 1. This yields

λmax(0) =
178437 + 73

√
1651145

320000
< 1,

λmax(−1) =
57909 + 5

√
75106529

320000
<

36

100
,

λmax(1) =
19329 + 11

√
38537

160000
<

16

100
.

This implies that ‖SB‖∞ < 1 and therefore the C1 convergence of the linear Hermite
scheme defined by SA. Furthermore, Theorem 3.7 shows that its parallel transport
version on any Riemannian manifold or Lie group is C1 convergent for dense enough
input data. In particular this includes SO(3), i.e., our Example 3.3.
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3 Hermite subdivision on manifolds via parallel transport

3.6.1 Conclusion

We have studied a manifold-valued analogue of linear Hermite subdivision schemes
which is defined by using the parallel transport operator of the manifold. This con-
struction is intrinsic and gives rise to a C1 convergent nonlinear subdivision scheme, if
the input data are dense enough and the Taylor scheme is appropriately bounded (The-
orem 3.7). Similar to most convergence and smoothness results of subdivision rules in
general manifolds, the main ingredient of the proof is the method of proximity.
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of the anonymous reviewers. This research is supported by the doctoral program
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4 Smoothing of vector and Hermite subdivision

schemes

This chapter comprises the paper (III) and is joint work with Nira Dyn.

Abstract. In this paper we study the regularity of curves which arise as limits of
subdivision schemes. In particular, we are interested in increasing this regularity. In
scalar subdivision, it is well known that a scheme which produces C` limit curves can be
transformed to a new scheme producing C`+1 limit curves by taking the midpoints in
each round of iteration. This procedure can be described by multiplying the scheme’s
symbol with the smoothing factor z+1

2 . We present a similar smoothing procedure
for vector and Hermite subdivision schemes, approaching this problem algebraically
by manipulating the symbol of a given scheme. The algorithms presented in this
paper allow to construct vector and Hermite subdivision schemes of arbitrarily high
regularity from a convergent vector scheme respectively from an Hermite scheme whose
Taylor scheme is at least C0.

Keywords. Hermite subdivision · vector subdivision · high regularity · smoothing

AMS Subject Classification. 65D10 · 65D15 · 65D17 · 41A05

4.1 Introduction

Subdivision schemes are algorithms which iteratively refine discrete input data and
produce smooth curves or surfaces in the limit. The regularity of the limit curve resp.
surface is a topic of high interest.

In this paper we are concerned with the stationary and univariate case, i.e. with
subdivision schemes using the same set of coefficients (called mask) in every refinement
step and which have curves as limits. We study three types of such schemes: scalar,
vector and Hermite subdivision schemes.

In scalar subdivision the mask is a real-valued sequence and thus it is in fact a special
case of vector subdivision, which uses matrix-valued masks. These schemes have been
studied intensively over the years and many results are available, including (but not
limited to) the analysis of convergence and smoothness. For a non-complete list of
references see [3, 27, 26, 32, 63, 71, 7].
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4 Smoothing of vector and Hermite subdivision schemes

In Hermite subdivision, on the other hand, the input data is interpreted as function
values and derivatives. This results in a level-dependent case of vector subdivision,
where the convergence of a scheme already includes the regularity of the limit curve.
Corresponding literature can be found in [30, 31, 23, 22, 52, 49, 60] and references
therein. Note that we consider inherently stationary Hermite schemes [11], which
means that the level-dependence arises only from the specific interpretation of the
input data. Inherently non-stationary Hermite schemes are discussed e.g. in [9].

The convergence and smoothness analysis of subdivision schemes is strongly connected
to the existence of the derived scheme resp. the Taylor scheme, which arise from
factorizing the original scheme w.r.t. a difference operator ∆ [32, 7] or w.r.t. the
Taylor operator in the Hermite case [60]. In all cases we have the following result:
If the derived scheme (resp. Taylor scheme) produces C` (` ≥ 0) limit curves, then
the original scheme produces C`+1 limit curves, see [32, 7, 60, 11]. This result is the
essential tool in our smoothing approach.

We use a scheme which is known to have a certain regularity as the derived scheme resp.
Taylor scheme of a new, to be computed scheme. By the above result, the regularity of
the new scheme is increased by 1. This idea comes from scalar subdivision, where it is
well known that a scheme with symbol a(z) is the derived scheme of b(z) = 1+z

2 z−1a(z)
[32]. The scheme with symbol b(z) is then the new scheme mentioned above.

It is possible to iterate this process to obtain vector and Hermite subdivision schemes
of arbitrarily high smoothness from a convergent vector scheme respectively from an
Hermite scheme whose Taylor scheme produces at least C0 limits.

We would like to mention other approaches which increase the regularity of subdivision
schemes: It is known that the de Rham transform [24] of some Hermite schemes
increases the regularity by 1, see [11]. In contrast to our approach, it is not clear if
this procedure can be iterated to obtain schemes of higher regularity. Nevertheless,
in the examples listed in [11], the de Rham approach increases the support only by
1, whereas our smoothing procedure has the drawback of producing Hermite schemes
with large supports, see Corollary 4.42, Example 4.46 and Example 4.47. Also, the
authors of [24] use geometric ideas, such as corner cutting. Our approach, on the other
hand, is of an algebraic nature as it manipulates symbols.

A recent result which increases the regularity of an Hermite scheme is contained in
[61]. This is different from our approach, as it also increases the dimension of the
scheme in question.

We would also like to point to the paper [72], which gives a detailed discussion of
generalizing the smoothness procedure to the scalar multivariate setting (with general
dilation). Naturally, vector subdivision schemes appear in this approach, but the aim
is to smoothen scalar schemes.

Our paper is organized as follows. In Section 4.2 we introduce the notation used
throughout this text and recall some definitions concerning subdivision schemes. Sec-
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4.2 Notation and background

tion 4.3 presents the well known smoothing procedure for scalar subdivision schemes.
This is mainly taken from [32]. We introduce new notation, however, to underline
the analogy to the smoothing procedures for vector and Hermite schemes presented
in Sections 4.4 and 4.5. We conclude by applying our smoothing algorithm to an in-
terpolatory Hermite scheme of [58] and to an Hermite scheme of de Rham-type [24].
This results in limit curves of regularity C2 resp. C3.

4.2 Notation and background

In this section we introduce the notation which is used throughout this paper and
recall some known facts about scalar, vector and Hermite subdivision schemes.

Vectors in Rp will be labeled by lowercase letters c. The standard basis is denoted by
e1, . . . , ep. Sequences of elements in Rp are denoted by boldface letters c = {ci ∈ Rp :
i ∈ Z}. The space of all such sequences is `p(Z).

We define a subdivision operator Sa : `p(Z)→ `p(Z) by

(Sac)i =
∑
j∈Z

ai−2jcj , i ∈ Z, c ∈ `p(Z), (4.1)

where the multiplication is to be understood componentwise. The sequence of coeffi-
cients a ∈ `(Z) is called mask. We study the case of finitely supported masks, that is,
masks whose support

supp(a) = {i ∈ Z : ai 6= 0}

is finite. In this case also the sum in eq. (4.1) is finite.

We also consider matrix-valued masks. To distinguish them from the scalar case, we
denote matrices in Rp×p by uppercase letters. Sequences of matrices are denoted by
boldface letters A = {Ai ∈ Rp×p : i ∈ Z}.

We define a subdivision operator SA : `p(Z)→ `p(Z) by

(SAc)i =
∑
j∈Z

Ai−2jcj , i ∈ Z, c ∈ `p(Z), (4.2)

where the finitely supported sequence of coefficients A ∈ `p×p(Z) is called mask. We
define three kinds of subdivision schemes:

Definition 4.1.

1. A scalar subdivision scheme is the procedure of constructing cn (n ≥ 1) from
input data c0 ∈ `p(Z) by the rule cn = Sac

n−1, where a ∈ `(Z) is a mask.

2. A vector subdivision scheme is the procedure of constructing cn (n ≥ 1) from
input data c0 ∈ `p(Z) by the rule cn = SAcn−1, where A is a matrix-valued
mask.

63



4 Smoothing of vector and Hermite subdivision schemes

3. An Hermite subdivision scheme is the procedure of constructing cn (n ≥ 1) from
c0 ∈ `p(Z) by the rule Dncn = SAD

n−1cn−1, where A is a matrix-valued mask
and D is the dilation matrix

D =


1

1
2

. . .
1

2p−1

 .

The difference between scalar and vector subdivision lies in the dimension of the mask.
In scalar subdivision the components of c are refined independently of each other. This
is not the case in vector subdivision. Note also that scalar schemes are a special case
of vector schemes with mask Ai = aiIp, where Ip is the (p×p) unit matrix. In Hermite
subdivision, on the other hand, the components of c are interpreted as function values
and derivatives up to order p− 1. This is represented by the matrix D. In particular,
Hermite subdivision is a level-dependent case of vector subdivision: cn = SÃn

cn−1

with Ãn = {D−nAiDn−1 : i ∈ Z}.

On the space `p(Z) we define a norm by

‖c‖∞ = sup
i∈Z
‖ci‖,

where ‖ · ‖ is a norm on Rp. The Banach space of all bounded sequences is denoted
by `p∞(Z). Using this norm, we define convergence of scalar, vector and Hermite
subdivision schemes. We start with scalar and vector schemes:

Definition 4.2. A scalar (resp. vector) subdivision scheme associated with the mask a
(resp. A) is convergent in `p∞(Z) (also called C0), if for all input data c0 ∈ `p∞(Z) there
exists a function Ψ ∈ C(R,Rp), such that the sequences cn = Snac0 (resp. cn = SnAc0)
satisfy

sup
i∈Z
‖cni −Ψ( i

2n )‖ → 0, as n→∞.

and Ψ 6= 0 for some c0 ∈ `p∞(Z). We say that the scheme is C`, if in addition Ψ is
`-times continuously differentiable.

In Section 4.5 we only consider Hermite subdivision schemes which refine function
values and first derivatives. This point-vector data is subdivided componentwise and
therefore it is sufficient to treat convergence for data in `2(Z).

In order to distinguish between the convergence of vector subdivision schemes and the
convergence of Hermite subdivision schemes, we use notation as introduced in [11]:

Definition 4.3. An Hermite subdivision scheme associated with the mask A is said to
be HC` convergent with ` ≥ 1, if for all input data c0 ∈ `2∞(Z), there exists a function
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4.3 Smoothing of scalar subdivision schemes

Ψ =
(

Ψ0

Ψ1

)
with Ψ0 ∈ C`(R,R) and dΨ0

dt = Ψ1 such that the sequences Dncn = SnAc0

satisfy
sup
i∈Z
‖cni −Ψ( i

2n )‖ → 0, as n→∞.

Note that in contrast to the vector case, an Hermite subdivision scheme is convergent
only if the limit curve already possesses a certain degree of regularity.

Before we start with introducing the smoothing procedure, we would like to recall
some facts about the symbol of a sequence c. The symbol of c is the formal Laurent
series defined by

c∗(z) =
∑
i∈Z

ciz
i.

It is easy to see that the symbol has the following properties:

Lemma 4.4. Let c be a sequence and let a be a mask. By ∆ we denote the forward-
difference operator (∆c)i = ci+1 − ci. Then we have:

(∆c)∗(z) = (z−1 − 1)c∗(z) and (Sac)∗(z) = a∗(z)c∗(z2).

Furthermore, for finite sequences we have the equalities

c∗(1) =
∑
i∈Z

c2i +
∑
i∈Z

c2i+1 and c∗(−1) =
∑
i∈Z

c2i −
∑
i∈Z

c2i+1,

c∗′(1) =
∑
i∈Z

c2i(2i) +
∑
i∈Z

c2i+1(2i+ 1) and c∗′(−1) =
∑
i∈Z

c2i+1(2i+ 1)−
∑
i∈Z

c2i(2i).

4.3 Smoothing of scalar subdivision schemes

In this section we recall the smoothing procedure in scalar subdivision which is realized
by the smoothing factor z+1

2 . The results of this section are taken from [32]. We
introduce notation in order to illustrate the analogy to the smoothing procedures we
will present for vector schemes in Section 4.4.

Recall that in scalar subdivision, the mask is a finitely supported sequence a =
{ai ∈ R : i ∈ Z} and the refinement procedure is obtained by iteratively apply-
ing a subdivision operator Sa as in eq. (4.1). It is well known that the condition∑

i∈Z a2i =
∑

i∈Z a2i+1 = 1 for the mask a is necessary for convergence of the subdi-
vision scheme, see e.g. [32]. In this case a∗(z) has a factor (z + 1) and there exists a
mask ∂a such that

∆Sa = 1
2S∂a∆. (4.3)

The scalar scheme of ∂a is called the derived scheme. It is easy to see that (∂a)∗(z) =

2z a
∗(z)
z+1 .

The following result allows us to define a smoothing procedure:
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4 Smoothing of vector and Hermite subdivision schemes

Theorem 4.5 (Theorem 4.11 and Theorem 4.13 of [32]). Let a be a mask which
satisfies a∗(1) = 2 and a∗(−1) = 0.

1. The scalar scheme associated with a is convergent if and only if the scalar scheme
of 1

2∂a is contractive.

2. If the scalar scheme of ∂a is C` (` ≥ 0) then the scalar subdivision scheme
associated with a is C`+1.

In view of this theorem, a smoothing procedure can be defined as follows: For a mask
a, define a new mask Ia by (Ia)∗(z) = (1+z)

2 z−1a∗(z). Then (Ia)∗(−1) = 0 and
∂(Ia) = a (Note that if ∂a is well-defined, then also I(∂a) = a).

Corollary 4.6. Let a be a mask with C` (` ≥ 0) convergent scalar subdivision scheme.
Then the mask Ia gives rise to a C`+1 convergent scheme.

Therefore, by iterative application of I, a scalar subdivision scheme which is at least
C0 convergent, can be transformed to a new scheme of arbitrarily high regularity. We
call I a smoothing operator resp. and z+1

2 a smoothing factor. Note that the factor
z−1 in I is an index shift.

Example 4.7 (B-Spline curves). An example of the above mentioned smoothing pro-
cedure are B-Spline curves, which are obtained from the Lane-Riesenfeld (L-R) algo-
rithm, see e.g. [32].

Let ` ≥ 1. One step of the `-th L-R algorithm is given by an initial doubling of the
input data, followed by ` rounds of inserting midpoints. Its mask is given by

a∗` (z) =
(

(z+1)
2 z−1

)`
(z + 1).

Therefore, a` = I`−1a1, where a∗1(z) = (z+1)2

2 is the symbol of the subdivision scheme
generating the piecewise linear interpolant of the input data. Thus the limit curves of
the `-th L-R algorithm are C`−1.

4.4 Smoothing of vector subdivision schemes

In this section we describe a smoothing procedure for vector schemes similar to the
scalar case. It is more involved since we consider masks consisting of matrix se-
quences.

We would like to mention that the vector smoothing procedure we present in this
section essentially follows from results by C. Michelli and T. Sauer [62, 63, 71]. We
reprove these results here in order to extend the smoothing procedure more easily to
the Hermite case.
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4.4 Smoothing of vector subdivision schemes

4.4.1 Convergence and smoothness analysis

In this section we collect results concerning the convergence and smoothness of vector
subdivision schemes. Their proofs can be found in [7, 62, 63, 71].

Denote by A0 and A1 the sum of even and odd entries of a mask A, i.e.

A0 =
∑
i∈Z

A2i, A1 =
∑
i∈Z

A2i+1. (4.4)

Following [63], by EA we denote the common eigenspace of A0 and A1 with respect to
the eigenvalue 1:

EA = {v ∈ Rp : A0v = v and A1v = v}. (4.5)

Let k = dim EA. A priori, 0 ≤ k ≤ p. It is well known, however, that for convergent
vector subdivision schemes, EA 6= {0}, i.e. 1 ≤ k ≤ p. Therefore, the existence of a
common eigenvector of A0 and A1 w.r.t. the eigenvalue 1 is a necessary condition for
convergence.

In this paper we are mainly concerned with the special case of vector schemes satisfying
EA = span{e1, . . . , ek}. In [63] it is shown that any vector subdivision scheme can be
transformed to this special type and also that the convergence analysis can be reduced
to this case. We collect this result in the following easy lemma:

Lemma 4.8. Let SA be a C` (` ≥ 0) convergent vector subdivision scheme.

(a) Let R ∈ Rp×p be invertible and define a new mask A by Ai = R−1AiR for i ∈ Z.
Then the vector subdivision scheme associated with A is also C`.

(b) There exists an invertible matrix R ∈ Rp×p such that (using the same notation)
A satisfies EA = span{e1, . . . , ek}, where k = dim EA, 1 ≤ k ≤ p.

We introduce a generalization of the forward-difference operator ∆, by letting

∆k =

(
∆Ik 0

0 Ip−k

)
.

Here Ik is the (k × k) unit matrix. It is shown in [71] that if EA = span{e1, . . . , ek},
then there exists a mask ∂kA such that

∆kSA = 1
2S∂kA∆k. (4.6)

We denote by ∂kA any mask satisfying eq. (4.6). The vector scheme associated with
∂kA is called the derived scheme of A with respect to ∆k. Furthermore, we have the
following result concerning the convergence of A in terms of ∂kA:

Theorem 4.9 (Theorem 4 and Corollary 5 of [7]). Let A be a mask such that EA =
span{e1, . . . , ek}. If ‖1

2S∂kA‖ < 1 (that is, 1
2S∂kA is contractive), then the vector

scheme associated with A is C0.
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4 Smoothing of vector and Hermite subdivision schemes

In fact the authors of [7] show a stronger result, but we only need this special case.
Furthermore we have the following result concerning smoothness:

Theorem 4.10 (Theorem 6 and Corollary 7 of [7]). Let A be a mask such that EA =
span{e1, . . . , ek}. If the vector scheme associated with ∂kA is C` for ` ≥ 0, then the
vector scheme associated with A is C`+1.

Remark 4.11. In the formulation of the result of Theorem 4.10 in [7], SA is required to
be convergent. However, if the scheme associated with ∂kA converges to a C` function,
then the scheme associated with 1

2∂kA is contractive. This implies the convergence of
A.

Before we present the smoothing procedure, we prove a lemma which is useful later.

Lemma 4.12. Let A be a mask. Then we have

EA = {v ∈ Rp : A∗(1)v = 2v and A∗(−1)v = 0}.

Proof. It follows immediately from eq. (4.4) and the definition of a symbol that A0 =
1
2

(
A∗(1) + A∗(−1)

)
and A1 = 1

2

(
A∗(1) − A∗(−1)

)
. This, together with eq. (4.5),

implies the claim of the lemma.

4.4.2 Preparation for smoothing

We would like to modify a given mask B of a C` vector subdivision scheme to obtain
a new scheme SA which is C`+1. The idea is to define A such that ∂kA = B,
i.e. such that ∆kSA = 1

2SB∆k is satisfied for some k. If we can prove that EA =
span{e1, . . . , ek}, then by Theorem 4.9, the scheme SA is C`+1. There are some
immediate questions:

(I) Under what conditions on a mask B can we define a mask A such that ∂kA = B?

(II) How to choose k?

In order to answer these questions, we have to study in more details the derived scheme
∂kA and its “inverse”.

Definition 4.13. Given a mask A, we denote by p its dimension, i.e. Ai ∈ Rp×p for
i ∈ Z. For k ∈ {1, . . . , p}, we use the block notation

A =

(
A11 A12

A21 A22

)
,

with A11 of size (k × k).

The following result is the main tool for our smoothing procedure. It also gives an
answer to question (I).
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4.4 Smoothing of vector subdivision schemes

Lemma 4.14. Let A,B be masks of dimension p. With the notation of Definition 4.13
we have

(a) If there exists k ∈ {1, . . . , p} such that A∗11(−1) = 0,A∗21(−1) = 0 and A∗21(1) = 0,
then we can define a mask ∂kA by ∆kSA = 1

2S∂kA∆k.

(b) If there exists k ∈ {1, . . . , p} such that B∗12(1) = 0, then we can define a mask IkB
by

∆kSIkB = 1
2SB∆k. (4.7)

(c) Under the conditions of (a), the mask Ik(∂kA) exists. In this case, Ik(∂kA) = A.

(d) Under the conditions of (b), the mask ∂k(IkB) exists. In this case, ∂k(IkB) = B.

Proof. Under the assumptions of (a), the matrix

2

(
A∗11(z)/(z−1 + 1) (z−1 − 1)A∗12(z)

A∗21(z)/(z−2 − 1) A∗22(z)

)
,

is a well-defined symbol. If we denote it by (∂kA)∗(z), then the equation ∆kSA =
1
2S∂kA∆k is satisfied. Indeed, if we write this equation in terms of symbols,(

(z−1 − 1)Ik 0
0 Ip−k

)(
A∗11(z) A∗12(z)
A∗21(z) A∗22(z)

)
=

1

2

(
(∂kA)∗11(z) (∂kA)∗12(z)
(∂kA)∗21(z) (∂kA)∗22(z)

)(
(z−2 − 1)Ik 0

0 Ip−k

)
.

then it is satisfied in view of the definition of ∂kA.

Similarly, under the assumptions of (b), the matrix

(IkB)∗(z) =
1

2

(
(z−1 + 1)B∗11(z) B∗12(z)/(z−1 − 1)
(z−2 − 1)B∗21(z) B∗22(z)

)
, (4.8)

is a well-defined symbol which satisfies ∆kSIkB = 1
2SB∆k.

We continue by proving (c). Under the conditions of (a), the symbol (∂kA)∗(z) is well-
defined. Since (∂kA)∗12(1) = 0, from (b) it follows that also Ik(∂kA) is well-defined.
It is easy to see that Ik(∂kA) = A.

Statement (d) is proved in a similar way.

Remark 4.15. Note that if k = p in Lemma 4.14 then IpB = z−1+1
2 Ip, where z−1+1

2
is the smoothing factor in the scalar case.
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4 Smoothing of vector and Hermite subdivision schemes

We have constructed two operators ∂k and Ik, which (under some conditions) are
inverse to each other. Denote by

`ka . . . the set of all masks satisfying the conditions of Lemma 4.14 (a).

`kb . . . the set of all masks satisfying the conditions of Lemma 4.14 (b).

Then we have

∂k : `ka → `kb Ik : `kb → `ka (4.9)

A 7→ ∂kA, B 7→ IkB

such that

∂k(IkB) = B and Ik(∂kA) = A. (4.10)

Remark 4.16. The algebraic conditions in Lemma 4.14 are not sufficient to define
a smoothing procedure for a mask B, based on Theorem 4.10. The application of
Theorem 4.10 to IkB is based on ∂l(IkB), where l is the dimension of EIkB, while
Lemma 4.14 guarantees the existence of ∂k(IkB). Thus the smoothing procedure is
possible if k = l. In the next section we define a class of masks for which this condition
is satisfied if k is chosen as the dimension of EB. This answers question (II).

Corollary 4.17. If A is a mask such that EA = span{e1, . . . , ek}, then there exists a
mask ∂kA.

Proof. From Lemma 4.12 we know that EA = span{e1, . . . , ek} implies the properties
of A required in Lemma 4.14 (a).

Corollary 4.18. For any B ∈ `kb let C∗12(z) be a symbol such that B∗12(z) = (z−1− 1)
C∗12(z). Then

(IkB)∗(1) =

(
B∗11(1) 1

2C∗12(1)

0 1
2B∗22(1)

)
, (IkB)∗(−1) =

(
0 1

2C∗12(−1)

0 1
2B∗22(−1)

)
.

Proof. This follows directly from eq. (4.8).

4.4.3 Transformation to the standard basis

Let B be a mask of a convergent vector subdivision scheme SB. Denote by k =
dim EB. We define a new mask B such that dim EB = k,B ∈ `kb and such that
EIkB = span{e1, . . . , ek}. This is achieved by considering a kind of Jordan normal

form of MB = 1
2(B0 + B1). First we cite a theorem which is of importance to our

analysis:
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4.4 Smoothing of vector subdivision schemes

Theorem 4.19 (Theorem 2.2 of [8]). Let B be a mask of a convergent vector subdi-
vision scheme. A basis of EB is also a basis of the eigenspace of MB = 1

2(B0 + B1)
corresponding to the eigenvalue 1. Moreover, the eigenvalues of MB which are not 1
have modulus less than 1.

In particular, this implies that if SB is a convergent vector scheme, then EB is the
eigenspace of B∗(1) w.r.t. to the eigenvalue 2.

We define a class of feasible subdivision schemes for our smoothing procedure:

Definition 4.20. Let B be a mask of a convergent vector scheme. We term such a
mask admissible if the algebraic multiplicity of the eigenvalue 1 of MB = 1

2(B0 +B1)
equals its geometric multiplicity.

Let B be an admissible mask and let V = {v1, . . . , vk} be a basis of EB (and therefore
also a basis of the eigenspace w.r.t. 1 of MB). We define a matrix

R = [v1, . . . , vk|Q], (4.11)

where the columns ofQ span the invariant (p−k)-dimensional subspace complementary
to EB. Upon complexification, that space is spanned by the eigenvectors and possibly
generalized eigenvectors corresponding to the eigenvalues different from 1. Q completes
V to a basis of Rp and R is a transformation as in (b) of Lemma 4.8. Define a modified
mask B by

Bi = R−1BiR, for i ∈ Z. (4.12)

Then, by Lemma 4.8 we have that EB = span{e1, . . . , ek}. In particular dim EB = k.
Furthermore

MB = 1
2(B

0
+B

1
) = R−1MBR =

(
Ik 0
0 J

)
. (4.13)

We have the following result for B:

Theorem 4.21. Let B be an admissible mask and let k = dim EB. Define B by
eq. (4.12). Then B has the following properties:

(a) The mask B is admissible.

(b) If B is C` for ` ≥ 1 then also B is C`.

(c) EB = span{e1, . . . , ek} and B ∈ `kb .

(d) EIkB = span{e1, . . . , ek}.

Proof. By admissibility and convergence, the eigenvalues of J in eq. (4.13), have
modulus less than 1. Therefore the eigenspace of MB w.r.t. the eigenvalue 1 is
span{e1, . . . , ek} and by Lemma 4.8, B is admissible. This proves (a). Part (b) follows
from Lemma 4.8.
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4 Smoothing of vector and Hermite subdivision schemes

We just proved that EB = span{e1, . . . , ek}. Since B
∗
(1) = B

0
+B

1
= 2MB, it follows

from eq. (4.13) that B
∗
11(1) = 2Ik and B

∗
12(1) = 0. In particular, B ∈ `kb and IkB is

well-defined. This proves (c).

In order to prove (d), we use Lemma 4.12 and prove that EIkB = {v ∈ V n : (IkB)∗(1)v =

2v and (IkB)∗(−1)v = 0} is spanned by e1, . . . , ek. From eq. (4.13) it follows that
B
∗
11(1) = 2Ik and B

∗
22(1) = 2J . Now use Corollary 4.18 to gain the block form:

(IkB)∗(1) =

(
2Ik

1
2C
∗
12(1)

0 J

)
, (IkB)∗(−1) =

(
0 1

2C
∗
12(−1)

0 1
2B
∗
22(−1)

)
, (4.14)

where C
∗
12(z) is such that B

∗
12(z) = (z−1− 1)C

∗
12(z). From the form of these matrices

we see that span{e1, . . . , ek} ⊆ EIkB. Since the eigenspace of (IkB)∗(1) w.r.t. the
eigenvalue 2 is exactly span{e1, . . . , ek} (the matrix J only contributes eigenvalues
with modulus less than 1), we see that in fact span{e1, . . . , ek} = EIkB.

4.4.4 The smoothing procedure for vector schemes

Theorem 4.21 allows us to define the following smoothing procedure which increases
the smoothness of a vector scheme with an admissible mask:

Algorithm 4.22. Let B be an admissible mask such that SB is C` (` ≥ 0). Let
k = dim EB. We define a mask A as follows:

(a) Choose a basis V of EB and define R as in eq. (4.11).

(b) Define B = R−1BR.

(c) Define A = IkB as in eq. (4.8).

(d) Define A = RAR−1.

Then SA is C`+1. Furthermore, a basis of EB is also a basis of EA. In particular,
dim EA = k and A is admissible.

Proof. In step (b) we obtain a mask B with properties listed in Theorem 4.21. In
particular A of step (c) is well-defined and EA = span{e1, . . . , ek}. By Lemma 4.14,
the derived mask ∂kA exists and ∂kA = B. Now we apply Theorem 4.10: The vector
scheme associated with ∂kA = B is C` by assumption and therefore the scheme associ-
ated with A is C`+1. Applying the transformation R does not change the smoothness
of the limit function, see Lemma 4.8. Therefore, also the vector scheme SA is C`+1.

To prove the last claim, let V = {v1, . . . , vk} be the basis of EB. By Theorem 4.21,
{e1, . . . , ek} is a basis of both EB and EA. From Rei = vi for i = 1, . . . , k it follows
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4.4 Smoothing of vector subdivision schemes

immediately that V ⊆ EA. Furthermore, from MA = 1
2A
∗
(1) = 1

2(IkB)∗(1) and
eq. (4.14) we get

MA =

(
Ik

1
4C
∗
12(1)

0 1
2J

)
. (4.15)

Thus the eigenspace of MA w.r.t. to the eigenvalue 1 is spanned by e1, . . . , ek. All
v ∈ EA satisfy MAv = v. Since MA = RMAR

−1, the vector R−1v is an eigenvector
of MA w.r.t. 1. Thus R−1v ∈ span{e1, . . . , ek} which gives v ∈ span{v1, . . . , vk}.
Therefore EA = spanV and dim EA = k.

Since MA and MA have the same eigenvalues, we see from eq. (4.15) that the algebraic
multiplicity of 1 of MA is also k. Therefore, A is admissible.

Corollary 4.23. Assume that B and A are masks as in Algorithm 4.22. If the support
of B is contained in [−N1, N2] with N1, N2 ∈ N, then the support of A is contained in
[−N1−2, N2]. Therefore the smoothing procedure for vector schemes (Algorithm 4.22)
increases the support length at most by 2.

Corollary 4.24. Assume that B and A are masks as in Algorithm 4.22. Then their
symbols B∗(z),A∗(z) are related as follows: If B∗(1) has eigenvalues 2, λ1, . . . , λp−k,
then A∗(1) has eigenvalues 2, 1

2λ1, . . . ,
1
2λp−k. Furthermore, they have the same eigenspace

w.r.t. the eigenvalue 2.

Proof. It is clear that B
∗
(1) has the same eigenvalues as B∗(1). Therefore MB =

1
2B
∗
(1) has eigenvalues 1, 1

2λ1, . . . ,
1
2λp−k and J has eigenvalues 1

2λ1, . . . ,
1
2λp−k. From

eq. (4.15) we see that MA has eigenvalues 1, 1
4λ1, . . . ,

1
4λp−k and hence A

∗
(1) has

eigenvalues 2, 1
2λ1, . . . ,

1
2λp−k. It is clear that A∗(1) has the same eigenvalues as A

∗
(1).

The statement about the eigenspace follows directly from Algorithm 4.22.

Note that Corollary 4.24 is in general not true for B∗(−1) and A∗(−1) in place of
B∗(1) and A∗(1). However, Example 4.28 shows that this can well be the case.

An overview of Algorithm 4.22 can be found in Figure 4.1. Algorithm 4.22 allows us
to extend the operator Ik to the set of admissible masks B with k = dim EB. We let

IkB := R(IkB)R−1. (4.16)

We call Ik a smoothing operator.

Remark 4.25. Note that if B is a mask of dimension p and also dim EB = p, then
(IpB)∗(z) = z−1+1

2 B∗(z), independent of the matrix R. Compare also Remark 4.15.

Theorem 4.26. Let B be a mask of a convergent vector subdivision scheme SB. Then
B is admissible. Thus the smoothing procedure can be applied to any convergent vector
subdivision scheme SB.
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4 Smoothing of vector and Hermite subdivision schemes

SB, C` SB, also C`

SA, also C`+1 SA, C`+1

B = R−1BR

A = IkB

A = RAR−1

smoothing

Figure 4.1: Smoothing procedure for vector subdivision schemes.

This theorem can be seen as a corollary to [8, Theorem 2.2]. In the statement of [8,
Theorem 2.2] it is implied that our Theorem 4.26 is true, but it is not proved. We
provide a proof here:

Proof of Theorem 4.26. Denote by k the geometric multiplicity of the eigenvalue 1 of
MB = 1

2(B0 + B1) and by l its algebraic multiplicity. Then l ≥ k. We want to prove
that actually, l = k. There is a change of basis T such that J = TMBT

−1 has the
partial Jordan normal form

J =


J1

. . .

Jk
R

 ,

where R has eigenvalues with modulus strictly smaller than 1 and the Jordan blocks
J1, . . . , Jk correspond to the eigenvalue 1. Since the total size of the blocks J1, . . . , Jk
is l, the size of one block Ji, for i = 1, . . . , k, lies between 1 and l− (k− 1). It has the
form

Ji =


1 1

1
. . .
. . . 1

1

 .

In [8, Theorem 2.2] it is proved that Mn
B, for n ∈ N, converges as n → ∞. Therefore

also J n converges as n→∞. Since

J n =


Jn1

. . .

Jnk
Rn

 and Jni =


1 n ∗

1
. . .
. . . n

1

 ,

we see that J n converges only if all Ji are of size 1, for i = 1, . . . , k. Therefore l = k
and every convergent scheme is admissible. In particular, our smoothing procedure
can be applied to every convergent subdivision scheme.
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4.4 Smoothing of vector subdivision schemes

Conclusion 4.27. By iterative application of the smoothing operator Ik, a conver-
gent vector subdivision scheme can be transformed to an arbitrarily smooth vector
subdivision scheme.

Example 4.28 (Double-knot cubic spline subdivision). We consider the vector sub-
division scheme with symbol

B∗(z) =
1

8

(
2 + 6z + z2 2z + 5z2

5 + 2z 1 + 6z + 2z2

)
.

It is known that this scheme produces C1 limit curves, see [32]. We apply Algo-
rithm 4.22 to B to obtain a vector subdivision scheme A of regularity C2:

(a) First we find a basis of EB in order to compute the transformation R. The matrices
B∗(1) and B∗(−1) are given by

B∗(1) =
1

8

(
9 7
7 9

)
, B∗(−1) =

1

8

( −3 3
3 −3

)
and have the following eigenvalues and eigenvectors

B∗(1) . . . eigenvalues : 2, 1
4 , eigenvectors:

( 1
1

)
resp.

( −1
1

)
.

B∗(−1) . . . eigenvalues : 0,−3
4 , eigenvectors:

( 1
1

)
resp.

( −1
1

)
.

Therefore EB is spanned by
(

1
1

)
. Since MB = 1

2B∗(1), the transformation R is
given by the eigenvectors of B∗(1):

R =
( 1 −1

1 1

)
, R−1 = 1

2

( 1 1
−1 1

)
.

(b) We continue by computing B = R−1BR. It has the symbol

B
∗
(z) =

1

8

(
4(1 + z)2 3(z2 − 1)
−2(z2 − 1) −1 + 4z − z2

)
.

(c) From (a) we know that k = dim EB = 1. Therefore, we compute A = I1B:

A
∗
(z) =

1

16

(
4z−1(1 + z)3 −3z−1(z + 1)
2z−2(z2 − 1)2 −1 + 4z − z2

)
.

(d) In the last step we go back to the original basis A = RAR−1:

A∗(z) =
1

32
z−2

(
z4 + 16z3 + 18z2 + 7z − 2 3z4 + 8z3 + 14z2 + z − 2

7z4 + 8z3 + 12z2 + 7z + 2 5z4 + 16z3 + 4z2 + z + 2

)
.
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4 Smoothing of vector and Hermite subdivision schemes

From the smoothing procedure it follows that A is C2 convergent.

We verify that EA has indeed the same basis as EB. We compute

A∗(1) =
1

8

( 10 6

9 7

)
, A∗(−1) =

1

16

( −3 3
3 −3

)
and their eigenvalues and eigenvectors:

A∗(1) . . . eigenvalues : 2, 1
8 , eigenvectors:

( 1
1

)
resp.

( −2
3

)
.

A∗(−1) . . . eigenvalues : 0,−3
8 , eigenvectors:

( 1
1

)
resp.

( −1
1

)
.

Therefore EA is also spanned by
(

1
1

)
and dim EA = 1.

Note that the eigenvector with resp. to 1
8 of A∗(1) is different from the eigenvector with

resp. to 1
4 of B∗(1). Therefore we have to use a new transformation matrix R (defined

by the eigenvectors of A∗(1)) if we want to apply a second round of smoothing.

Also, comparing the eigenvalues of A∗(1) and B∗(1) we see that Corollary 4.24 is
satisfied. Note that in this example, also the eigenvalues of A∗(−1) and B∗(−1)
satisfy Corollary 4.24. This follows from the fact that B∗(1) and B∗(−1) have the
same eigenvectors and thus R also transforms B∗(−1) to its Jordan form.

Note that the smoothing procedure increases the support of the mask by 2.

4.5 Smoothing of Hermite subdivision schemes

In this section we describe a similar smoothing procedure for Hermite schemes. We
consider Hermite subdivision schemes which operate on data c ∈ `2(Z), i.e. on function
values and first derivatives. As in the vector case, Hermite subdivision uses matrix-
valued masks A = {Ai ∈ R2×2 : i ∈ Z} and subdivision operators SA as defined in
eq. (4.2). Input data c0 ∈ `2(Z) is refined via Dncn = SnAc0, where D is the dilation
matrix

D =

(
1 0
0 1

2

)
.

An Hermite subdivision scheme is called interpolatory if its mask A satisfies A0 = D
and A2i = 0 for all i ∈ Z\0.

We always assume that an Hermite scheme satisfies the spectral condition. This con-
dition requires that there is ϕ ∈ R such that both the constant sequence k = {

(
1
0

)
:

i ∈ Z} and the linear sequence ` = {
(
i+ϕ

1

)
: i ∈ Z} obey the rule

SAk = k, SA` = 1
2`. (4.17)
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4.5 Smoothing of Hermite subdivision schemes

The spectral condition was introduced in [25] and is crucial for the convergence and
smoothness analysis of linear Hermite subdivision schemes. If the Hermite scheme is
interpolatory we can choose ϕ = 0.

We would like to characterize the spectral condition in terms of the symbol of the
mask A. As in Section 4.4 we introduce the notation

A =

(
a11 a12

a21 a22

)
, (4.18)

where aij ∈ R for i, j ∈ {1, 2}.

Lemma 4.29. A mask A satisfies the spectral condition eq. (4.17) with ϕ ∈ R if and
only if its symbol A∗(z) satisfies

(a) a∗11(1) = 2, a∗11(−1) = 0.

(b) a∗21(1) = 0, a∗21(−1) = 0.

(c) a∗11
′(1)− 2a∗12(1) = 2ϕ, a∗11

′(−1) + 2a∗12(−1) = 0.

(d) a∗21
′(1)− 2a∗22(1) = −2, a∗21

′(−1) + 2a∗22(−1) = 0.

Part (a) and (b) relate to the reproduction of constants, whereas (c) and (d) is the
reproduction of linear functions.

Proof. The spectral condition eq. (4.17) is equivalent to∑
j∈Z

a11(i− 2j) = 1,
∑
j∈Z

a21(i− 2j) = 0, (4.19)

∑
j∈Z

a11(i− 2j)j + a12(i− 2j) =
1

2
(i− ϕ),

∑
j∈Z

a21(i− 2j)j + a22(i− 2j) =
1

2
,

(4.20)

for all i ∈ Z.

If i is even resp. odd, then eq. (4.19) for a11 becomes
∑

j∈Z a11(2j) =
∑

j∈Z a11(2j +
1) = 1. This is equivalent to a∗11(1) = 2 and a∗11(−1) = 0. The proof for a21 works
analogously. This shows the equivalence of (a) and (b) to the reproduction of constants.

We continue with the first part in eq. (4.20). For i we insert 2i and, using eq. (4.19),
we get ∑

j∈Z
a11(2j)(i− j) + a12(2j) =

1

2
(2i− ϕ),

∑
j∈Z

a11(2j)(−j) + a12(2j) = −ϕ
2
,

−1

2

∑
j∈Z

a11(2j)(2j) +
∑
j∈Z

a12(2j) = −ϕ
2
. (4.21)
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4 Smoothing of vector and Hermite subdivision schemes

Similarly, for i→ 2i+ 1 we get

−1

2

∑
j∈Z

a11(2j + 1)(2j + 1) +
∑
j∈Z

a12(2j + 1) = −ϕ
2
. (4.22)

From Lemma 4.4 we know that

a∗11
′(1) =

∑
j∈Z

a11(2j + 1)(2j + 1) + a11(2j)(2j),

a∗11
′(−1) =

∑
j∈Z

a11(2j + 1)(2j + 1)− a11(2j)(2j).

Therefore, by adding resp. subtracting eq. (4.21) and eq. (4.22) we gain

−1

2
a∗11
′(1) + a∗12(1) = −ϕ,

1

2
a∗11
′(−1) + a∗12(−1) = 0,

which is equivalent to (c). Part (d) is proved analogously using the second part in
eq. (4.20).

4.5.1 Convergence and smoothness analysis

In this section we collect results on the HC` smoothness of Hermite schemes. This
follows the lines of [11]. We define the Taylor operator T , which was first suggested
in [60]:

T =
( ∆ −1

0 1

)
.

The Taylor operator is a natural analogue of the operator ∆1 in vector subdivision
resp. the forward difference operator ∆ in scalar subdivision. Similar to eq. (4.6), we
have the following result:

Lemma 4.30 ([60]). If the Hermite subdivision scheme associated with a mask A
satisfies the spectral condition eq. (4.17), then there exists a mask ∂tA such that

TSA = 1
2S∂tAT. (4.23)

The vector scheme associated with ∂tA is called Taylor scheme.

Theorem 4.31 ([11]). Consider an Hermite subdivision scheme which satisfies the
spectral condition eq. (4.17). If its Taylor scheme is C` convergent, for ` ≥ 0, then the
Hermite scheme is HC`+1 convergent.

We would like to mention that as in the vector case (see [7]), this condition is only
sufficient, not necessary.
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4.5 Smoothing of Hermite subdivision schemes

4.5.2 Properties of the Taylor scheme

In order to increase the regularity of an Hermite subdivision scheme, the obvious idea is
to pass to its Taylor scheme eq. (4.23), smoothen this scheme by the vector smoothing
algorithm (Algorithm 4.22) and then use the resulting vector scheme as the Taylor
scheme of a new Hermite scheme. The first question which arises in this process is if
the last step is always possible, i.e., if the smoothing operator Ik of eq. (4.16) maps
Taylor schemes to Taylor schemes. In order to answer this question we have to study
in more detail the Taylor scheme ∂tA.

Definition 4.32. A mask B satisfies the Taylor condition, if it satisfies

(a) b∗12(1) = 0,b∗12(−1) = 0.

(b) b∗22(1) = 2,b∗22(−1) = 0.

(c) b∗11(1) + b∗21(1) = 2.

Here we use the notation of eq. (4.18).

We prove in Theorem 4.34 that the mask ∂tA obtained via eq. (4.23) satisfies this
condition. This justifies the name Taylor condition.

Remark 4.33. Conditions (a) and (b) of Definition 4.32 relate to SBc = c, where c
is the constant sequence ci = e2 =

(
0
1

)
, i ∈ Z. Also, e2 ∈ EB and therefore dim EB ≥ 1.

Theorem 4.34. We have the following connection between masks satisfying the spec-
tral condition eq. (4.17) and masks satisfying the Taylor condition (Definition 4.32):

(a) Let A be a mask satisfying the spectral condition. Then we can define a mask ∂tA
such that TSA = 1

2S∂tAT is satisfied. Also, ∂tA satisfies the Taylor condition.

(b) Let B be a mask satisfying the Taylor condition. Then we can define a mask ItB
such that TSItB = 1

2SBT is satisfied. Also, ItB satisfies the spectral condition.

(c) The mask It(∂tA) resp. ∂t(ItB) is well-defined if ∂tA resp. ItB is well-defined.
In this case It(∂tA) = A resp. ∂t(ItB) = B.

Proof. We consider the general equation TSC = 1
2SDT in terms of symbols:( z−1 − 1 −1

0 1

)( c∗11(z) c∗12(z)
c∗21(z) c∗22(z)

)
=

1

2

( d∗11(z) d∗12(z)
d∗21(z) d∗22(z)

)( z−2 − 1 −1
0 1

)
,

which results in the following equations:

(z−1 − 1)c∗11(z)− c∗21(z) = 1
2d∗11(z)(z−2 − 1), (4.24)

(z−1 − 1)c∗12(z)− c∗22(z) = 1
2(d∗12(z)− d∗11(z)), (4.25)

c∗21(z) = 1
2d∗21(z)(z−2 − 1), (4.26)

c∗22(z) = 1
2(d∗22(z)− d∗21(z)). (4.27)
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4 Smoothing of vector and Hermite subdivision schemes

We also differentiate eqs. (4.24) to (4.26) as it will be useful in the proof. We obtain

− z−2c∗11(z) + (z−1 − 1)c∗11
′(z)− c∗21

′(z) = 1
2(d∗11

′(z)(z−2 − 1)− 2d∗11(z)z−3), (4.28)

− z−2c∗12(z) + (z−1 − 1)c∗12
′(z)− c∗22

′(z) = 1
2(d∗12

′(z)− d∗11
′(z)), (4.29)

c∗21
′(z) = 1

2(d∗21
′(z)(z−2 − 1)− 2z−3d∗21(z)). (4.30)

Proof of (a): In eqs. (4.24) to (4.26), we set C = A and D = ∂tA. Then we get

(∂tA)∗11(z) = 2
( a∗11(z)

z−1 + 1
− a∗21(z)

z−2 − 1

)
,

(∂tA)∗12(z) = 2
(

(z−1 − 1)a∗12(z)− a∗22(z) +
a∗11(z)

z−1 + 1
− a∗21(z)

z−2 − 1

)
,

(∂tA)∗21(z) = 2
a∗21(z)

z−2 − 1
,

(∂tA)∗22(z) = 2
(
a∗22(z) +

a∗21(z)

z−2 − 1

)
,

which is well-defined by the spectral condition (Lemma 4.29). Note that we only need
the first two conditions of Lemma 4.29 (reproduction of constants) to define ∂tA.

We now show that ∂tA satisfies the Taylor condition. Setting z = 1 resp. z = −1 in
eq. (4.28) and using the spectral condition for A we get

(∂tA)∗11(1) = 2a∗22(1), (∂tA)∗11(−1) = 4a∗12(−1) + 2a∗22(−1).

Setting z = 1 resp. z = −1 in (4.25) we obtain

(∂tA)∗12(1) = −2a∗22(1) + (∂tA)∗11(1) = 0,

(∂tA)∗12(−1) = −4a∗12(−1)− 2a∗22(−1) + (∂tA)∗11(−1) = 0.

This proves that part (a) of Definition 4.32 is satisfied.

Equation (4.30) implies (∂tA)∗21(1) = 2−2a∗22(1) and (∂tA)∗21(−1) = −2a∗22(−1). From
eq. (4.27) we obtain

(∂tA)∗22(1) = 2a∗22(1) + (∂tA)∗21(1) = 2,

(∂tA)∗22(−1) = 2a∗22(−1) + (∂tA)∗21(−1) = 0.

This concludes part (b) of Definition 4.32. We come to part (c) of Definition 4.32:

(∂tA)∗11(1) + (∂tA)∗21(1) = 2a∗22(1) + (2− 2a∗22(1)) = 2.

Therefore, we have proved (a) of Theorem 4.34.

80



4.5 Smoothing of Hermite subdivision schemes

Proof of (b): Suppose that B satisfies the Taylor condition. We let D = B and
C = ItB in the above equations. Then

(ItB)∗11(z) =1
2(z−1 + 1)(b∗11(z) + b∗21(z)),

(ItB)∗12(z) =1
2

(
b∗12(z)− b∗11(z)− b∗21(z) + b∗22(z)

)/
(z−1 − 1),

(ItB)∗21(z) =1
2b∗21(z)(z−2 − 1),

(ItB)∗22(z) =1
2(b∗22(z)− b∗21(z)),

which is well-defined by the Taylor condition.

We continue by showing that ItB satisfies the spectral condition. It is immediately
clear from the definition of ItB that (a) and (b) of Lemma 4.29 are satisfied. Further-
more, it is easy to see that

(ItB)∗21
′(1)− 2(ItB)∗22(1) = −b∗21(1)− b∗22(1) + b∗21(1) = −2,

(ItB)∗21
′(−1) + 2(ItB)∗22(−1) = b∗21(1) + b∗22(−1)− b∗21(−1) = 0,

which proves (d) of Lemma 4.29.

From the definition of ItB we see that

(ItB)∗11
′(−1) + 2(ItB)∗12(−1) = − 1

2(b∗11(−1) + b∗21(−1))

− 1
2(b∗12(−1)− b∗11(−1)− b∗21(−1) + b∗22(−1))

= 0.

Furthermore from eq. (4.29) we obtain

(ItB)∗12(1) = −1
2

(
b∗12
′(1)− b∗11

′(1) + b∗22
′(1)− b∗21

′(1)
)
,

which implies that
(ItB)∗11

′(1)− 2(ItB)∗12(1) = 2ϕ

is fulfilled with ϕ = 1
2(b∗12

′(1) + b∗22
′(1)− 1). This proves property (c) of Lemma 4.29,

concluding the proof of part (b).

Proof of (c): Note that the masks ∂tA resp. ItB are well defined iff a∗11(−1) =
a∗21(−1) = a∗21(1) = 0 resp. iff b∗12(1) − b∗11(1) − b∗21(1) + b∗22(1) = 0. Therefore
in order to merely define ∂tA and ItB the spectral resp. the Taylor condition are not
necessary.

If ∂tA is well-defined, i.e. if a∗11(−1) = a∗21(−1) = a∗21(1) = 0 then it is easy to see that

(∂tA)∗12(z)− (∂tA)∗11(z)− (∂tA)∗21(z) + (∂tA)∗12(z) = 2(z−1 − 1)a∗12(z),

which evaluates to 0 at z = 1. Thus It(∂tA) is well-defined.

On the other hand, it is immediately clear from the definition of ItB that (ItB)∗11(−1) =
(ItB)∗21(−1) = (ItB)∗21(1) = 0 and thus ∂t(ItB) is well-defined. The rest of the state-
ment follows from the definition of ∂tA and ItB.
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4 Smoothing of vector and Hermite subdivision schemes

Similarly to Section 4.4 we define

`kt . . . the set of masks B satisfying the Taylor condition (Definition 4.32)

with k = dim EB.

We would like to find out under what condition the smoothing operator Ik for vector
schemes (4.16) satisfies Ik(`kt ) ⊆ `kt . Note that k ∈ {1, 2}, since in this section we
consider the space R2. We start by finding the transformation R of (4.11) of a mask
in `kt :

Lemma 4.35. Let B ∈ `kt . As in Section 4.4 denote by MB = 1
2(B0 +B1). Then MB

has the following eigenvalues and eigenvectors:

1 with eigenvector
( 0

1

)
,

1
2b∗11(1) with eigenvector

( 1
−1

)
.

Furthermore, the algebraic multiplicity of the eigenvalue 1 of MB equals its geometric
multiplicity. Therefore, the matrix

R =
( 0 1

1 −1

)
with inverse R−1 =

( 1 1
1 0

)
.

is a transformation of the form (4.11).

Proof. From Definition 4.32 we immediately get

MB = 1
2(B0 +B1) = 1

2B∗(1) =

(
1
2b∗11(1) 0

1
2b∗21(1) 1

)
.

The eigenvalues of MB can now be read from the diagonal. Also, it is clear that(
0
1

)
is an eigenvector with eigenvalue 1. For the other eigenvector use property (c) of

Definition 4.32:

MB

( 1
−1

)
=

(
1
2b∗11(1) 0

1
2b∗21(1) 1

)( 1
−1

)
=

(
1
2b∗11(1)

1
2b∗21(1)− 1

)
=

(
1
2b∗11(1)

−1
2b∗11(1)

)

= 1
2b∗11(1)

( 1
−1

)
.

If the eigenvalue 1 of MB has algebraic multiplicity 2, then b∗11(1) = 2. The Taylor
condition then implies b∗21(1) = 0 and therefore MB is the identity matrix. Therefore,
the geometric multiplicity of 1 is also 2.

The case of algebraic multiplicity 1 is clear.
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4.5 Smoothing of Hermite subdivision schemes

A direct consequence of these observations is that the eigenvalue condition for admis-
sibility (Definition 4.20) is automatically fulfilled for schemes in `kt .

Corollary 4.36. Let B be a mask satisfying the Taylor condition (Definition 4.32) and
let SB be convergent. Then B ∈ `2t ⇔ b∗21(1) = 0. Similarly, B ∈ `1t ⇔ b∗21(1) 6= 0.

Proof. The “only if” part follows from Lemma 4.35 in both cases. On the other hand,
if b∗21(1) = 0, then MB is the identity matrix and the eigenspace of 1 is spanned by
{e1, e2}. Since B is convergent, also EB is spanned by {e1, e2} and thus B ∈ `2t . The
case for b∗21(1) 6= 0 works analogously.

Theorem 4.37. Let B ∈ `kt and let its vector scheme be convergent. Let Ik be the
smoothing operator for vector schemes, see Section 4.4. Then we have

(i) If k = 2, then I2B ∈ `2t .

(ii) If k = 1, then I1B ∈ `1t iff b∗11(z) + b∗21(z) − b∗12(z) − b∗22(z) has a root at 1 of
multiplicity at least 2.

Note that the Taylor condition (Definition 4.32) implies that there exists a root at 1.
Here we need that the multiplicity is at least 2.

Proof. Note that from Theorem 4.26 we know that B is admissible and therefore we
can apply Ik. We start with proving (i). This is the trivial case. If k = 2 then

(I2B)∗(z) = z−1+1
2 B∗(z) (see Remark 4.25). In particular, (I2B)∗(1) = B∗(1) and

(I2B)∗(−1) = 0. Therefore, I2B satisfies the Taylor condition (Definition 4.32).

We continue with (ii): Recall from Section 4.4 that I1B = R(I1B)R−1 with B =
R−1BR. In Lemma 4.35 the matrix R is computed. Therefore B is given by

B =
( b11 b12

b21 b22

)
=
( b12 + b22 b11 + b21 − b12 − b22

b12 b11 − b12

)
.

Combining this with Corollary 4.18 we obtain

(I1B)∗(1) =
( 2 1

2c∗12(1)

0 1
2b∗11(1)

)
and (I1B)∗(−1) =

( 0 1
2c∗12(−1)

0 1
2b∗11(−1)

)
,

where c∗12(z) is such that b
∗
12(z) = (z−1 − 1)c∗12(z). Therefore

(I1B)∗(1) = R(I1B)∗(1)R−1 =
( 1

2b∗11(1) 0

2 + 1
2(c∗12(1)− b∗11(1)) 2

)
and (4.31)

(I1B)∗(−1) = R(I1B)∗(−1)R−1 =
( 1

2b∗11(−1) 0

1
2(c̄∗12(−1)− b∗11(−1)) 0

)
.

Therefore I1B satisfies the Taylor condition if and only if c∗12(1) = 0. This is equivalent
to b

∗
12(z) = b∗11(z) + b∗21(z)− b∗12(z)− b∗22(z) having a root of multiplicity 2 at 1.

83



4 Smoothing of vector and Hermite subdivision schemes

Therefore, in general, I1(`1t ) * `1t . Nevertheless, we have the following lemma:

Lemma 4.38. Let B be a mask with EB = span{e2} and b∗11(1) 6= 2. Then there

exists a transformation S such that B̃ = S−1BS satisfies the Taylor condition (Defi-
nition 4.32) and E

B̃
= span{e2}.

Proof. If B satisfies EB = span{e2} it follows that

B∗(1) =

(
a 0
b 2

)
, B∗(−1) =

(
c 0
d 0

)
,

with a, b, c, d ∈ R and a 6= 2. Define S by

S =
( 1 0
e 1

)
, S−1 =

( 1 0
−e 1

)
,

with e = 1 + b
a−2 . Then we obtain

B̃∗(1) =

(
a 0

2− a 2

)
, B̃∗(−1) =

(
c 0

d− ec 0

)
.

Therefore B̃ satisfies the Taylor condition. Also, it is clear that e2 ∈ EB̃. Let v ∈ E
B̃

.
Then Sv ∈ EB = span{e2} and v ∈ span{S−1e2} = span{e2}. Therefore also E

B̃
=

span{e2}. Note that b̃∗11(1) 6= 2.

Corollary 4.39. If B ∈ `1t and the vector scheme SB is convergent then Ĩ1(B) ∈ `1t .
Furthermore, the vector scheme of Ĩ1(B) is convergent.

Proof. Since B ∈ `1t , we know that EB = span{e2}. By Algorithm 4.22 it follows that
EI1B has the same basis as EB and is thus also spanned by e2. Equation (4.31) implies
(I1B)∗11(1) = 1

2b∗11(1). By Lemma 4.35 we know that 1
2b∗11(1) is an eigenvalue of MB.

By Theorem 4.19 this eigenvalue is either 1 or has modulus less than 1 (In fact it
cannot be 1 since dim EB = 1). In particular (I1B)∗11(1) 6= 2. Therefore, (I1B)∗(z)
satisfies the conditions of Lemma 4.38.

By Theorem 4.26, the mask B is admissible. Smoothing with I1 results in admissible

masks (Algorithm 4.22). Therefore I1(B) is admissible. Since Ĩ1(B) = S−1I1(B)S,
also this mask is admissible and thus convergent.

4.5.3 The smoothing procedure for Hermite schemes

Theorem 4.37 and Corollary 4.39 allow us to define a smoothing procedure for Hermite
schemes:
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A, HC` ∂tA, C`−1

C, HC`+1 Ik(∂tA), C`

˜I1(∂tA), C`

compute Taylor scheme

k = 1

k = 2, apply It

apply It

vector smoothingHermite smoothing

Figure 4.2: Smoothing algorithm for Hermite subdivision schemes.

Algorithm 4.40. Let A be a mask satisfying the spectral condition eq. (4.17) and
assume that the vector scheme associated with ∂tA is convergent. Let m ≥ 1 be the
multiplicity of the root at 1 of a∗21(z). We define a new mask C by the following
algorithm:

(a) Compute the Taylor scheme ∂tA, see Theorem 4.34.

(b) If m ≥ 2 apply Algorithm 4.22 to obtain B = I2(∂tA). If m = 1 apply Algo-

rithm 4.22 and Lemma 4.38 to obtain B = ˜I1(∂tA).

(c) Define C = It(B), see Theorem 4.34.

Then the mask C satisfies the spectral condition eq. (4.17). Furthermore, if the vector
scheme of ∂tA is C`−1 (` ≥ 1) convergent (hence the Hermite scheme of A is HC`),
then the Hermite scheme of C is HC`+1.

Proof. Since A satisfies the spectral condition, the mask ∂tA is well-defined and sat-
isfies the Taylor condition (see Theorem 4.34). We know that dim E∂tA ∈ {1, 2}.
Corollary 4.36 and the definition of ∂tA in Theorem 4.34 imply

dim E∂tA = 2⇔ ∂tA ∈ `2t ⇔ (∂tA)∗21(1) = 0 ⇔ a∗21
′(1) = 0 ⇔ m ≥ 2.

Similarly, dim E∂tA = 1 ⇔ m = 1.

If m = 2, then ∂tA ∈ `2t and by Theorem 4.37 also B = I2(∂tA) ∈ `2t . Similarly, if

m = 1, then ∂tA ∈ `1t and by Lemma 4.38 the mask B = ˜I1(∂tA) is also in `1t .

Now we can define C = It(B) by using Theorem 4.34. Also by this theorem, the mask
C satisfies the spectral condition. If ∂tA is C`−1 then B is C` by Algorithm 4.22
and Lemma 4.8. Therefore, the Hermite scheme associated with C is HC`+1 since its
Taylor scheme is ∂tC = B and therefore C`.
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4 Smoothing of vector and Hermite subdivision schemes

Theorem 4.41. Let A be a mask satisfying the spectral condition eq. (4.17) and let
the vector scheme associated with ∂tA be convergent. Let m ≥ 1 be the multiplicity of
the root at 1 of a∗21(z). Through Algorithm 4.40 we obtain a new mask C with symbol

C∗(z) =
z−1 + 1

2
A∗(z)

if m ≥ 2. If m = 1 then a∗22(1) 6= 2 and C is given by

c∗11(z) = 1
2(z−1 + 1)

(
a∗12(z)

(
(s− s2)z−3 + s2z−2 + (s2 − 1)z−1 − (s2 + s)

)
+ a∗11(z)

(
s(z−1 − 1)(1− s) + s

)
+ a∗22(z)(s(z−2 − 1)− 1)(s− 1)

+ a∗21(z)(s2 − s)
)
,

c∗12(z) = 1
2

(
a∗12(z)

(
(1− s)2z−3 + s(1− s)z−2 + s(1− s)z−1 + s2

)
+ a∗22(z)

(
− (z−2 − 1)(1− s)2 + s− 1

)
+ a∗11(z)

(
(z−1 − 1)(1− s)2 + 1− s

)
− a∗21(z)(1− s)2

)/
(z−1 − 1),

c∗21(z) = 1
2(z−2 − 1)

(
a∗12(z)

(
− s2z−3 + (s+ s2)(z−2 + z−1)− (s+ 1)2

)
+ a∗11(z)s(1− s(z−1 − 1)) + a∗22(z)s(s(z−2 − 1)− 1) + s2a∗21(z)

)
,

c∗22(z) = 1
2

(
a∗12(z)

(
(s2 − s)z−3 + (1− s2)z−2 − s2z−1 + (s2 + s)

)
+ a∗11(z)(1− s)(1− s(z−1 − 1)) + a∗22(z)s((1− s)(z−2 − 1) + 1)

+ a∗21(z)(s− s2)
)
.

where s = 1 +
a∗12(1)

2−a∗22(1) .

In the special case of a∗12(1) = 0, i.e. s = 1, this reduces to

c∗11(z) = 1
2(z−1 + 1)

(
(z−2 − 2)a∗12(z) + a∗11(z)

)
,

c∗12(z) = 1
2

a∗12(z)

(z−1 − 1)
,

c∗21(z) = 1
2(z−2 − 1)

(
a∗21(z)− a∗11(z)(z−1 − 2)

+ a∗22(z)(z−2 − 2)− a∗12(z)(z−1 − 2)(z−2 − 2)
)
,

c∗22(z) = 1
2(a∗22(z)− (z−1 − 2)a∗12(z)).

Furthermore, if A satisfies the spectral condition with ϕ ∈ R, then C satisfies the
spectral condition with ϕ− 1

2 . In particular, smoothing of interpolatory schemes does
not result in interpolatory schemes.
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Proof. We start with the casem ≥ 2. Then from Remark 4.25 we know that (I2(∂tA))∗(z) =
z−1+1

2 (∂tA)∗(z). From the definition of C we know that (∂tC)∗(z) = z−1+1
2 (∂tA)∗(z).

Using the definition of ∂t in Theorem 4.34 it follows immediately that C∗(z) has the
above form. In order to prove the part concerning ϕ note that c∗11

′(1) = −1 + a∗11
′(1).

Therefore

c∗11
′(1)− 2c∗12(1) = −1 + a∗11

′(1)− 2a∗12(1) = −1 + 2ϕ = 2(ϕ− 1
2).

We continue with m = 1. From the proof of Theorem 4.34 we know that (∂tA11)∗(1) =
2a∗22(1). Lemma 4.35 implies that a∗22(1) is an eigenvalue of M∂tA. Therefore, by
Theorem 4.19, a∗22(1) 6= 2.

Before we prove the above form of C, we have to show that c∗12(z) is well-defined.
Evaluating the numerator at z = 1, we obtain:

a∗12(1)((1− s)2 + 2s(1− s) + s2) + a∗22(1)(s− 1) + 2(1− s)
= a∗12(1)− a∗22(1) + 2 + (a∗22(1)− 2)s = a∗12(1)− a∗22(1) + 2 + (a∗22(1)− 2)− a∗12(1)

= 0.

In order to go from A to B = ˜I1(∂tA) in Algorithm 4.40 we have to follow these steps:

A → ∂tA→ ∂tA = R−1(∂tA)R → I1(∂tA) → B = S−1RI1(∂tA)R−1S

with R from Lemma 4.35 and S from Lemma 4.38.

From the proofs of Theorem 4.34, Theorem 4.37 and Lemma 4.14 we obtain:

I1(∂tA)∗11(z) = (z−2 − 1)a∗12(z) + a∗11(z),

I1(∂tA)∗12(z) = − a∗12(z),

I1(∂tA)∗21(z) = (z−1 − 1)(z−2 − 1)a∗12(z)− (z−2 − 1)a∗22(z)

+ (z−1 − 1)a∗11(z)− a∗21(z),

I1(∂tA)∗22(z) = − (z−1 − 1)a∗12(z) + a∗22(z).

In order to get B from I1(∂tA) we have to transform with the matrix

S−1R =

(
0 1
1 −(e+ 1)

)
, where S =

(
1 0
e 1

)
.

We continue by computing the matrix S of Lemma 4.38, resp. the value e = 1 +
b

a−2 . Thus we have to find the values a = I1(∂tA)∗11(1) and b = I1(∂tA)∗21(1). From
eq. (4.31) we obtain

a = I1(∂tA)∗11(1) =
1

2
(∂tA)∗11(1) = a∗22(1),

b = I1(∂tA)∗21(1) = 2 +
1

2
(c∗12(1)− (∂tA)∗11(1)),
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where (z−1 − 1)c∗12(z) = ∂tA
∗
12(z). It is easy to see that c∗12(z) = −2a∗12(z), which

results in
b = I1(∂tA)∗21(1) = 2− a∗12(1)− a∗22(1).

Therefore

e = 1 +
b

a− 2
= 1 +

2− a∗12(1)− a∗22(1)

a∗22(1)− 2
=

a∗12(1)

2− a∗22(1)
.

Note that the value s in the statement of Theorem 4.41 is exactly e+ 1. Applying the
transformation S−1R we obtain:

b∗11(z) = a∗12(z)(z−1 − 1)(s(z−2 − 1)− 1) + a∗22(z)(−s(z−2 − 1) + 1)

+ a∗11(z)s(z−1 − 1)− sa∗21(z),

b∗12(z) = a∗12(z)(z−1 − 1)(z−2 − 1)− a∗22(z)(z−2 − 1) + a∗11(z)(z−1 − 1)− a∗21(z),

b∗21(z) = a∗12(z)
(

(z−2 − 1)s− s2(z−2 − 1)(z−1 − 1) + s(z−1 − 1)− 1
)

+ a∗22(z)s(s(z−2 − 1)− 1) + a∗11(z)s(1− s(z−1 − 1)) + s2a∗21(z),

b∗22(z) = a∗12(z)(z−2 − 1)(1− s(z−1 − 1)) + a∗22(z)s(z−2 − 1)

+ a∗11(z)(1− s(z−1 − 1)) + sa∗21(z).

Now applying the operator It to B we obtain C as in the statement of the theorem.

We come to the part involving ϕ. Deriving the equations of c∗11(z) and c∗12(z) and
evaluating at z = 1 we obtain:

c∗11
′(1)− 2c∗12(1) = a∗11

′(1)− 2a∗12(1) + (s− 1)(a∗21
′(1)− 2a∗22(1))

+ 2(s− 1) +
1

2
a∗12(1)− s− 1

2
a∗22(1)(1− s)

= 2ϕ+
1

2
(a∗12(1)− a∗22(1))− 1

2
s(2− a∗22(1))

= 2(ϕ− 1

2
).

Corollary 4.42. Let A and C be masks as in Theorem 4.41. If A has support
contained in [−N1, N2] with N1, N2 ∈ N, then the support of C is contained in [−N1−
1, N2] if m ≥ 2 and in [−N1 − 5, N2] if m = 1. Therefore the smoothing procedure for
Hermite schemes (Algorithm 4.40) increases the support length at most by 5.

Corollary 4.43. Let A be a mask satisfying the spectral condition eq. (4.17) and let
the vector scheme associated with ∂tA be convergent. Denote by m the multiplicity of
the root at 1 of a∗21(z). Denote by C the mask obtained via Algorithm 4.40. Then the
root at 1 of c∗21(z) also has multiplicity m.

Proof. If m ≥ 2 this is clear from the definition of C. We continue with m = 1. By
the spectral condition c∗21

′(1) = −2 + 2c∗22(1) = −2 + a∗22(1). Therefore c∗21
′(1) = 0 iff

a∗22(1) = 2. By Theorem 4.41 this can not happen if m = 1.
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Corollary 4.44. Let A be a mask satisfying the spectral condition eq. (4.17) and let
the vector scheme associated with ∂tA be convergent. Assume that the multiplicity of
the root at 1 of a∗21(z) is 1 and that a∗12(1) = 0 (i.e. s = 1). Denote by C the mask
obtained via Algorithm 4.40. Then c∗12(1) = 0 iff a∗12

′(1) = 0.

Proof. From the definition of C in Theorem 4.41 it is easy to see that c∗12(1) =
−1

2a∗12
′(1). Therefore c∗12(1) = 0 iff a∗12

′(1) = 0.

Conclusion 4.45. Consider an Hermite subdivision scheme with mask A satisfying
the spectral condition eq. (4.17) and suppose that its Taylor scheme is of regularity at
least C0 (and hence the Hermite scheme is of regularity at least HC1).

Via the iterated application of Algorithm 4.40, this Hermite scheme can be transformed
to a new Hermite scheme of arbitrarily high regularity.

If the multiplicity of the root at 1 of a∗21(z) is m, then the root at 1 of every new
mask obtained by iterated application of Algorithm 4.40 has the multiplicity m in this
component.

If m = 1 and A satisfies a∗12(1) = 0 (i.e. special case s = 1), then r − 1 iterations of
the smoothing process stay within this special case, where r denotes the multiplicity
of the root at 1 of a∗12(z).

Example 4.46. We consider one of the interpolatory Hermite subdivision scheme
introduced in [58]. Its mask is given by

A−1 =

(
1
2 −1

8

3
4 −1

8

)
, A0 =

(
1 0

0 1
2

)
, A1 =

(
1
2

1
8

−3
4 −1

8

)
.

It is easy to see that it satisfies the spectral condition eq. (4.17) with ϕ = 0. It is well
known that this scheme produces the piecewise cubic interpolant of given point-vector
input data. In [60] it is proved that its Taylor scheme is C0 (and thus the original
Hermite scheme is HC1).

We would like to apply Algorithm 4.40 to this scheme to obtain a new Hermite scheme
C of regularity HC2.

First we compute the symbol:

A∗(z) =

(
1
2(1 + z)2z−1 −1

8(1− z2)z−1

3
4(1− z2)z−1 −1

8z
−1 + 1

2 −
1
8z

)
.

Note that a∗21(1) = 0 and a∗12(1) = 0 both with multiplicity 1. Therefore we are in the
special case of m = 1 and s = 1 of Theorem 4.41.
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Figure 4.3: Basic limit functions and their first derivatives of the Hermite schemes
of Example 4.46. First column: interpolatory HC1 scheme A with limit function f .
Second column: non-interpolatory HC2 scheme C with limit function g.

We apply Theorem 4.41 to gain the symbol of C:

C∗(z) =
1

16

 (z−1 + 1)2(−z−2 + z−1 + 6 + 2z) −z − 1

(z−2 − 1)
(
z−4 − 3z−3 − 3z−2 + 13z−1 + 6

)
z−2 − 3z−1 + 3 + z

 .

From Theorem 4.41 we also know that C satisfies the spectral condition with ϕ = −1
2 .

Therefore the Hermite scheme associated with C is an HC2 scheme which is not
interpolatory (for the basic limit function of this scheme see Figure 4.3). Note that
the support of C is [−6, 1] and has thus increased from length of 3 to the length of 8.

If we want to apply another round of smoothing, we have to use Theorem 4.41 with
m = 1 and s = 14

15 .

Example 4.47. We consider one of the de Rham-type Hermite schemes of [24]. Its
mask is given by

A−2 =
1

8

(
5
4 −3

8

9
2 −5

4

)
, A−1 =

1

8

(
27
4 −9

8

9
2

3
4

)
,

A0 =
1

8

(
27
4

9
8

−9
2

3
4

)
, A1 =

1

8

(
5
4

3
8

−9
2 −5

4

)
.

This is the de Rham transform of the scheme discussed in Example 4.46. It is easy to
see that it satisfies the spectral condition eq. (4.17) with ϕ = −1

2 . In [11] it is proved
that its Taylor scheme is C1 (and thus the original Hermite scheme is HC2).
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We would like to apply Algorithm 4.40 to this scheme to obtain a new Hermite scheme
C of regularity HC3.

First we compute the symbol:

A∗(z) =
1

16

(
1
2(z−1 + 1)(5z + 2z + 5z−1) −3

4(z−1 − 1)(z + 4 + z−1)

9(z−2 − 1)(z + 1) 1
2(z−1 + 1)(−5z + 8− 5z−1)

)
.

Note that a∗21(1) = 0 and a∗12(1) = 0 both with multiplicity 1. Therefore, as in
Example 4.46, we are in the special case m = 1 and s = 1 of Theorem 4.41. We apply
Theorem 4.41 to gain the symbol of C:

c∗11(z) =
1

128
(z−1 + 1)(−3z−4 − 9z−3 + 25z−2 + 75z−1 + 36 + 4z),

c∗12(z) = − 3

128
(z + 4 + z−1),

c∗21(z) =
1

128
(z−2 − 1)

(
3z−5 − 7z−4 − 37z−3 + 37z−2 + 128z−1 + 20− 8z

)
,

c∗22(z) =
1

128
(3z−3 − 7z−2 − 21z−1 + 21− 4z).

From Theorem 4.41 we also know that C satisfies the spectral condition with ϕ = −1.
Therefore the Hermite scheme associated with C is an HC3 scheme which is not
interpolatory (for the basic limit function of this scheme see Figure 4.4). Note that
the support of C is [−7, 1] and has thus increased from length of 4 to the length of 9.

If we want to apply another round of smoothing, we have to use Theorem 4.41 with
m = 1 and s = 41

44 .

Remark 4.48. The Examples 4.46 and 4.47 show that the basic limit functions of
smoothened schemes are no longer symmetric. This deficiency can be remedied by
replacing the smoothened scheme by the average of itself and its mirror reflection.

Conclusion

In this paper we studied a method to construct both vector and Hermite schemes with
limit curves of high regularity. This method is a direct generalization of the well known
smoothing procedure in scalar subdivision and works by manipulating symbols.

In the Hermite case it is possible to construct schemes of arbitrarily high regularity
from an Hermite scheme whose Taylor scheme is at least C0 (Algorithm 4.40). Our
smoothing algorithm increases the support of the mask by a maximum of 5, see Corol-
lary 4.42. This maximum is attained in Example 4.46 and Example 4.47, where we
obtain Hermite schemes of regularity HC2 resp. HC3.

In the vector case our smoothing procedure (Algorithm 4.22) is restricted to schemes
satisfying a certain eigenvalue-condition (these schemes are termed “admissible”, see
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Figure 4.4: Basic limit functions, their first and second derivatives of the Hermite
schemes of Example 4.47. First column: non-interpolatory HC2 scheme A with limit
function f . Second column: non-interpolatory HC3 scheme C with limit function g.

Definition 4.20). We prove in Theorem 4.26, however, that every convergent scheme
is admissible. Therefore, a convergent vector scheme can be raised to arbitrarily high
smoothness. In contrast to the Hermite case, the support length is only increased by
2 (see Corollary 4.23).
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[20] D. L. Donoho. Wavelet-type representation of Lie-valued data. Talk at the IMI
Approximation and Computation Meeting, Charleston, 2001.

[21] D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordinary
points. Computer-Aided Design, 10(6):356–360, 1978.

[22] S. Dubuc. Scalar and Hermite subdivision schemes. Applied and Computational
Harmonic Analysis, 21(3):376–394, 2006.

[23] S. Dubuc and J.-L. Merrien. Convergent vector and Hermite subdivision schemes.
Constructive Approximation, 23(1):1–22, 2005.

[24] S. Dubuc and J.-L. Merrien. de Rham transform of a Hermite subdivision scheme.
In M. Neamtu and L. L. Schumaker, editors, Approximation Theory XII, pages
121–132, Nashville, TN, 2008. Nashboro Press.

[25] S. Dubuc and J.-L. Merrien. Hermite subdivision schemes and Taylor polynomials.
Constructive Approximation, 29(2):219–245, 2009.

[26] N. Dyn. Subdivision schemes in computer-aided geometric design. In Advances
in Numerical Analysis, pages 36–104. Oxford University Press, 1992.

[27] N. Dyn, J. A. Gregory, and D. Levin. Analysis of uniform binary subdivision
schemes for curve design. Constructive Approximation, 7(1):127–147, 1991.

[28] N. Dyn, P. Grohs, and J. Wallner. Approximation order of interpolatory subdivi-
sion schemes. Journal of Computational and Applied Mathematics, 233(7):1697–
1703, 2010.

94



Bibliography

[29] N. Dyn and D. Levin. Analysis of asymptotic equivalent binary subdivision
schemes. Journal of Mathematical Analysis and Applications, 193(2):594–621,
1995.

[30] N. Dyn and D. Levin. Analysis of Hermite-type subdivision schemes. In C. K.
Chui and L. L. Schumaker, editors, Approximation Theory VIII. Vol 2: Wavelets
and Multilevel Approximation, pages 117–124. World Sci., 1995.

[31] N. Dyn and D. Levin. Analysis of Hermite-interpolatory subdivision schemes.
In S. Dubuc and G. Deslauriers, editors, Spline Functions and the Theory of
Wavelets, pages 105–113, Providence, RI, 1999. Amer. Math. Soc.

[32] N. Dyn and D. Levin. Subdivision schemes in geometric modelling. Acta Numer-
ica, 11:73–144, 2002.

[33] N. Dyn, D. Levin, and J. A. Gregory. A 4-point interpolatory subdivision scheme
for curve design. Computer Aided Geometric Design, 4:257–268, 1987.

[34] N. Dyn and N. Sharon. A global approach to the refinement of manifold data.
Math. Comp., 2016. doi:10.1090/mcom/3087.

[35] N. Dyn and N. Sharon. Manifold-valued subdivision schemes based on geodesic
inductive averaging. Journal of Computational and Applied Mathematics, 311:54–
67, 2017.

[36] O. Ebner. Convergence of refinement schemes on metric spaces. Proceedings of
the American Mathematical Society, 141(2):677–686, 2013.

[37] O. Ebner. Stochastic aspects of nonlinear refinement schemes. SIAM Journal on
Numerical Analysis, 52(2):717–734, 2014.

[38] T. Ewald, U. Reif, and M. Sabin. Hölder regularity of geometric subdivision
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